infrun.c:handle_inferior_event: Rework random signal checks.
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131 static void clear_command (char *, int);
132
133 static void catch_command (char *, int);
134
135 static int can_use_hardware_watchpoint (struct value *);
136
137 static void break_command_1 (char *, int, int);
138
139 static void mention (struct breakpoint *);
140
141 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147 /* This function is used in gdbtk sources and thus can not be made
148 static. */
149 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154 static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int breakpoint_address_match (struct address_space *aspace1,
170 CORE_ADDR addr1,
171 struct address_space *aspace2,
172 CORE_ADDR addr2);
173
174 static int watchpoint_locations_match (struct bp_location *loc1,
175 struct bp_location *loc2);
176
177 static int breakpoint_location_address_match (struct bp_location *bl,
178 struct address_space *aspace,
179 CORE_ADDR addr);
180
181 static void breakpoints_info (char *, int);
182
183 static void watchpoints_info (char *, int);
184
185 static int breakpoint_1 (char *, int,
186 int (*) (const struct breakpoint *));
187
188 static int breakpoint_cond_eval (void *);
189
190 static void cleanup_executing_breakpoints (void *);
191
192 static void commands_command (char *, int);
193
194 static void condition_command (char *, int);
195
196 typedef enum
197 {
198 mark_inserted,
199 mark_uninserted
200 }
201 insertion_state_t;
202
203 static int remove_breakpoint (struct bp_location *, insertion_state_t);
204 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
205
206 static enum print_stop_action print_bp_stop_message (bpstat bs);
207
208 static int watchpoint_check (void *);
209
210 static void maintenance_info_breakpoints (char *, int);
211
212 static int hw_breakpoint_used_count (void);
213
214 static int hw_watchpoint_use_count (struct breakpoint *);
215
216 static int hw_watchpoint_used_count_others (struct breakpoint *except,
217 enum bptype type,
218 int *other_type_used);
219
220 static void hbreak_command (char *, int);
221
222 static void thbreak_command (char *, int);
223
224 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
225 int count);
226
227 static void stop_command (char *arg, int from_tty);
228
229 static void stopin_command (char *arg, int from_tty);
230
231 static void stopat_command (char *arg, int from_tty);
232
233 static void tcatch_command (char *arg, int from_tty);
234
235 static void detach_single_step_breakpoints (void);
236
237 static int single_step_breakpoint_inserted_here_p (struct address_space *,
238 CORE_ADDR pc);
239
240 static void free_bp_location (struct bp_location *loc);
241 static void incref_bp_location (struct bp_location *loc);
242 static void decref_bp_location (struct bp_location **loc);
243
244 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
245
246 static void update_global_location_list (int);
247
248 static void update_global_location_list_nothrow (int);
249
250 static int is_hardware_watchpoint (const struct breakpoint *bpt);
251
252 static void insert_breakpoint_locations (void);
253
254 static int syscall_catchpoint_p (struct breakpoint *b);
255
256 static void tracepoints_info (char *, int);
257
258 static void delete_trace_command (char *, int);
259
260 static void enable_trace_command (char *, int);
261
262 static void disable_trace_command (char *, int);
263
264 static void trace_pass_command (char *, int);
265
266 static void set_tracepoint_count (int num);
267
268 static int is_masked_watchpoint (const struct breakpoint *b);
269
270 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
271
272 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
273 otherwise. */
274
275 static int strace_marker_p (struct breakpoint *b);
276
277 /* The abstract base class all breakpoint_ops structures inherit
278 from. */
279 struct breakpoint_ops base_breakpoint_ops;
280
281 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
282 that are implemented on top of software or hardware breakpoints
283 (user breakpoints, internal and momentary breakpoints, etc.). */
284 static struct breakpoint_ops bkpt_base_breakpoint_ops;
285
286 /* Internal breakpoints class type. */
287 static struct breakpoint_ops internal_breakpoint_ops;
288
289 /* Momentary breakpoints class type. */
290 static struct breakpoint_ops momentary_breakpoint_ops;
291
292 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
293 static struct breakpoint_ops longjmp_breakpoint_ops;
294
295 /* The breakpoint_ops structure to be used in regular user created
296 breakpoints. */
297 struct breakpoint_ops bkpt_breakpoint_ops;
298
299 /* Breakpoints set on probes. */
300 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
301
302 /* Dynamic printf class type. */
303 struct breakpoint_ops dprintf_breakpoint_ops;
304
305 /* The style in which to perform a dynamic printf. This is a user
306 option because different output options have different tradeoffs;
307 if GDB does the printing, there is better error handling if there
308 is a problem with any of the arguments, but using an inferior
309 function lets you have special-purpose printers and sending of
310 output to the same place as compiled-in print functions. */
311
312 static const char dprintf_style_gdb[] = "gdb";
313 static const char dprintf_style_call[] = "call";
314 static const char dprintf_style_agent[] = "agent";
315 static const char *const dprintf_style_enums[] = {
316 dprintf_style_gdb,
317 dprintf_style_call,
318 dprintf_style_agent,
319 NULL
320 };
321 static const char *dprintf_style = dprintf_style_gdb;
322
323 /* The function to use for dynamic printf if the preferred style is to
324 call into the inferior. The value is simply a string that is
325 copied into the command, so it can be anything that GDB can
326 evaluate to a callable address, not necessarily a function name. */
327
328 static char *dprintf_function = "";
329
330 /* The channel to use for dynamic printf if the preferred style is to
331 call into the inferior; if a nonempty string, it will be passed to
332 the call as the first argument, with the format string as the
333 second. As with the dprintf function, this can be anything that
334 GDB knows how to evaluate, so in addition to common choices like
335 "stderr", this could be an app-specific expression like
336 "mystreams[curlogger]". */
337
338 static char *dprintf_channel = "";
339
340 /* True if dprintf commands should continue to operate even if GDB
341 has disconnected. */
342 static int disconnected_dprintf = 1;
343
344 /* A reference-counted struct command_line. This lets multiple
345 breakpoints share a single command list. */
346 struct counted_command_line
347 {
348 /* The reference count. */
349 int refc;
350
351 /* The command list. */
352 struct command_line *commands;
353 };
354
355 struct command_line *
356 breakpoint_commands (struct breakpoint *b)
357 {
358 return b->commands ? b->commands->commands : NULL;
359 }
360
361 /* Flag indicating that a command has proceeded the inferior past the
362 current breakpoint. */
363
364 static int breakpoint_proceeded;
365
366 const char *
367 bpdisp_text (enum bpdisp disp)
368 {
369 /* NOTE: the following values are a part of MI protocol and
370 represent values of 'disp' field returned when inferior stops at
371 a breakpoint. */
372 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
373
374 return bpdisps[(int) disp];
375 }
376
377 /* Prototypes for exported functions. */
378 /* If FALSE, gdb will not use hardware support for watchpoints, even
379 if such is available. */
380 static int can_use_hw_watchpoints;
381
382 static void
383 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c,
385 const char *value)
386 {
387 fprintf_filtered (file,
388 _("Debugger's willingness to use "
389 "watchpoint hardware is %s.\n"),
390 value);
391 }
392
393 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
394 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
395 for unrecognized breakpoint locations.
396 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
397 static enum auto_boolean pending_break_support;
398 static void
399 show_pending_break_support (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's behavior regarding "
405 "pending breakpoints is %s.\n"),
406 value);
407 }
408
409 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
410 set with "break" but falling in read-only memory.
411 If 0, gdb will warn about such breakpoints, but won't automatically
412 use hardware breakpoints. */
413 static int automatic_hardware_breakpoints;
414 static void
415 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Automatic usage of hardware breakpoints is %s.\n"),
421 value);
422 }
423
424 /* If on, gdb will keep breakpoints inserted even as inferior is
425 stopped, and immediately insert any new breakpoints. If off, gdb
426 will insert breakpoints into inferior only when resuming it, and
427 will remove breakpoints upon stop. If auto, GDB will behave as ON
428 if in non-stop mode, and as OFF if all-stop mode.*/
429
430 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
431
432 static void
433 show_always_inserted_mode (struct ui_file *file, int from_tty,
434 struct cmd_list_element *c, const char *value)
435 {
436 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
437 fprintf_filtered (file,
438 _("Always inserted breakpoint "
439 "mode is %s (currently %s).\n"),
440 value,
441 breakpoints_always_inserted_mode () ? "on" : "off");
442 else
443 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
444 value);
445 }
446
447 int
448 breakpoints_always_inserted_mode (void)
449 {
450 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
451 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
452 }
453
454 static const char condition_evaluation_both[] = "host or target";
455
456 /* Modes for breakpoint condition evaluation. */
457 static const char condition_evaluation_auto[] = "auto";
458 static const char condition_evaluation_host[] = "host";
459 static const char condition_evaluation_target[] = "target";
460 static const char *const condition_evaluation_enums[] = {
461 condition_evaluation_auto,
462 condition_evaluation_host,
463 condition_evaluation_target,
464 NULL
465 };
466
467 /* Global that holds the current mode for breakpoint condition evaluation. */
468 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
469
470 /* Global that we use to display information to the user (gets its value from
471 condition_evaluation_mode_1. */
472 static const char *condition_evaluation_mode = condition_evaluation_auto;
473
474 /* Translate a condition evaluation mode MODE into either "host"
475 or "target". This is used mostly to translate from "auto" to the
476 real setting that is being used. It returns the translated
477 evaluation mode. */
478
479 static const char *
480 translate_condition_evaluation_mode (const char *mode)
481 {
482 if (mode == condition_evaluation_auto)
483 {
484 if (target_supports_evaluation_of_breakpoint_conditions ())
485 return condition_evaluation_target;
486 else
487 return condition_evaluation_host;
488 }
489 else
490 return mode;
491 }
492
493 /* Discovers what condition_evaluation_auto translates to. */
494
495 static const char *
496 breakpoint_condition_evaluation_mode (void)
497 {
498 return translate_condition_evaluation_mode (condition_evaluation_mode);
499 }
500
501 /* Return true if GDB should evaluate breakpoint conditions or false
502 otherwise. */
503
504 static int
505 gdb_evaluates_breakpoint_condition_p (void)
506 {
507 const char *mode = breakpoint_condition_evaluation_mode ();
508
509 return (mode == condition_evaluation_host);
510 }
511
512 void _initialize_breakpoint (void);
513
514 /* Are we executing breakpoint commands? */
515 static int executing_breakpoint_commands;
516
517 /* Are overlay event breakpoints enabled? */
518 static int overlay_events_enabled;
519
520 /* See description in breakpoint.h. */
521 int target_exact_watchpoints = 0;
522
523 /* Walk the following statement or block through all breakpoints.
524 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
525 current breakpoint. */
526
527 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
528
529 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
530 for (B = breakpoint_chain; \
531 B ? (TMP=B->next, 1): 0; \
532 B = TMP)
533
534 /* Similar iterator for the low-level breakpoints. SAFE variant is
535 not provided so update_global_location_list must not be called
536 while executing the block of ALL_BP_LOCATIONS. */
537
538 #define ALL_BP_LOCATIONS(B,BP_TMP) \
539 for (BP_TMP = bp_location; \
540 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
541 BP_TMP++)
542
543 /* Iterates through locations with address ADDRESS for the currently selected
544 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
545 to where the loop should start from.
546 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
547 appropriate location to start with. */
548
549 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
550 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
551 BP_LOCP_TMP = BP_LOCP_START; \
552 BP_LOCP_START \
553 && (BP_LOCP_TMP < bp_location + bp_location_count \
554 && (*BP_LOCP_TMP)->address == ADDRESS); \
555 BP_LOCP_TMP++)
556
557 /* Iterator for tracepoints only. */
558
559 #define ALL_TRACEPOINTS(B) \
560 for (B = breakpoint_chain; B; B = B->next) \
561 if (is_tracepoint (B))
562
563 /* Chains of all breakpoints defined. */
564
565 struct breakpoint *breakpoint_chain;
566
567 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
568
569 static struct bp_location **bp_location;
570
571 /* Number of elements of BP_LOCATION. */
572
573 static unsigned bp_location_count;
574
575 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
576 ADDRESS for the current elements of BP_LOCATION which get a valid
577 result from bp_location_has_shadow. You can use it for roughly
578 limiting the subrange of BP_LOCATION to scan for shadow bytes for
579 an address you need to read. */
580
581 static CORE_ADDR bp_location_placed_address_before_address_max;
582
583 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
584 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
585 BP_LOCATION which get a valid result from bp_location_has_shadow.
586 You can use it for roughly limiting the subrange of BP_LOCATION to
587 scan for shadow bytes for an address you need to read. */
588
589 static CORE_ADDR bp_location_shadow_len_after_address_max;
590
591 /* The locations that no longer correspond to any breakpoint, unlinked
592 from bp_location array, but for which a hit may still be reported
593 by a target. */
594 VEC(bp_location_p) *moribund_locations = NULL;
595
596 /* Number of last breakpoint made. */
597
598 static int breakpoint_count;
599
600 /* The value of `breakpoint_count' before the last command that
601 created breakpoints. If the last (break-like) command created more
602 than one breakpoint, then the difference between BREAKPOINT_COUNT
603 and PREV_BREAKPOINT_COUNT is more than one. */
604 static int prev_breakpoint_count;
605
606 /* Number of last tracepoint made. */
607
608 static int tracepoint_count;
609
610 static struct cmd_list_element *breakpoint_set_cmdlist;
611 static struct cmd_list_element *breakpoint_show_cmdlist;
612 struct cmd_list_element *save_cmdlist;
613
614 /* Return whether a breakpoint is an active enabled breakpoint. */
615 static int
616 breakpoint_enabled (struct breakpoint *b)
617 {
618 return (b->enable_state == bp_enabled);
619 }
620
621 /* Set breakpoint count to NUM. */
622
623 static void
624 set_breakpoint_count (int num)
625 {
626 prev_breakpoint_count = breakpoint_count;
627 breakpoint_count = num;
628 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
629 }
630
631 /* Used by `start_rbreak_breakpoints' below, to record the current
632 breakpoint count before "rbreak" creates any breakpoint. */
633 static int rbreak_start_breakpoint_count;
634
635 /* Called at the start an "rbreak" command to record the first
636 breakpoint made. */
637
638 void
639 start_rbreak_breakpoints (void)
640 {
641 rbreak_start_breakpoint_count = breakpoint_count;
642 }
643
644 /* Called at the end of an "rbreak" command to record the last
645 breakpoint made. */
646
647 void
648 end_rbreak_breakpoints (void)
649 {
650 prev_breakpoint_count = rbreak_start_breakpoint_count;
651 }
652
653 /* Used in run_command to zero the hit count when a new run starts. */
654
655 void
656 clear_breakpoint_hit_counts (void)
657 {
658 struct breakpoint *b;
659
660 ALL_BREAKPOINTS (b)
661 b->hit_count = 0;
662 }
663
664 /* Allocate a new counted_command_line with reference count of 1.
665 The new structure owns COMMANDS. */
666
667 static struct counted_command_line *
668 alloc_counted_command_line (struct command_line *commands)
669 {
670 struct counted_command_line *result
671 = xmalloc (sizeof (struct counted_command_line));
672
673 result->refc = 1;
674 result->commands = commands;
675 return result;
676 }
677
678 /* Increment reference count. This does nothing if CMD is NULL. */
679
680 static void
681 incref_counted_command_line (struct counted_command_line *cmd)
682 {
683 if (cmd)
684 ++cmd->refc;
685 }
686
687 /* Decrement reference count. If the reference count reaches 0,
688 destroy the counted_command_line. Sets *CMDP to NULL. This does
689 nothing if *CMDP is NULL. */
690
691 static void
692 decref_counted_command_line (struct counted_command_line **cmdp)
693 {
694 if (*cmdp)
695 {
696 if (--(*cmdp)->refc == 0)
697 {
698 free_command_lines (&(*cmdp)->commands);
699 xfree (*cmdp);
700 }
701 *cmdp = NULL;
702 }
703 }
704
705 /* A cleanup function that calls decref_counted_command_line. */
706
707 static void
708 do_cleanup_counted_command_line (void *arg)
709 {
710 decref_counted_command_line (arg);
711 }
712
713 /* Create a cleanup that calls decref_counted_command_line on the
714 argument. */
715
716 static struct cleanup *
717 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
718 {
719 return make_cleanup (do_cleanup_counted_command_line, cmdp);
720 }
721
722 \f
723 /* Return the breakpoint with the specified number, or NULL
724 if the number does not refer to an existing breakpoint. */
725
726 struct breakpoint *
727 get_breakpoint (int num)
728 {
729 struct breakpoint *b;
730
731 ALL_BREAKPOINTS (b)
732 if (b->number == num)
733 return b;
734
735 return NULL;
736 }
737
738 \f
739
740 /* Mark locations as "conditions have changed" in case the target supports
741 evaluating conditions on its side. */
742
743 static void
744 mark_breakpoint_modified (struct breakpoint *b)
745 {
746 struct bp_location *loc;
747
748 /* This is only meaningful if the target is
749 evaluating conditions and if the user has
750 opted for condition evaluation on the target's
751 side. */
752 if (gdb_evaluates_breakpoint_condition_p ()
753 || !target_supports_evaluation_of_breakpoint_conditions ())
754 return;
755
756 if (!is_breakpoint (b))
757 return;
758
759 for (loc = b->loc; loc; loc = loc->next)
760 loc->condition_changed = condition_modified;
761 }
762
763 /* Mark location as "conditions have changed" in case the target supports
764 evaluating conditions on its side. */
765
766 static void
767 mark_breakpoint_location_modified (struct bp_location *loc)
768 {
769 /* This is only meaningful if the target is
770 evaluating conditions and if the user has
771 opted for condition evaluation on the target's
772 side. */
773 if (gdb_evaluates_breakpoint_condition_p ()
774 || !target_supports_evaluation_of_breakpoint_conditions ())
775
776 return;
777
778 if (!is_breakpoint (loc->owner))
779 return;
780
781 loc->condition_changed = condition_modified;
782 }
783
784 /* Sets the condition-evaluation mode using the static global
785 condition_evaluation_mode. */
786
787 static void
788 set_condition_evaluation_mode (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 const char *old_mode, *new_mode;
792
793 if ((condition_evaluation_mode_1 == condition_evaluation_target)
794 && !target_supports_evaluation_of_breakpoint_conditions ())
795 {
796 condition_evaluation_mode_1 = condition_evaluation_mode;
797 warning (_("Target does not support breakpoint condition evaluation.\n"
798 "Using host evaluation mode instead."));
799 return;
800 }
801
802 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
803 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
804
805 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
806 settings was "auto". */
807 condition_evaluation_mode = condition_evaluation_mode_1;
808
809 /* Only update the mode if the user picked a different one. */
810 if (new_mode != old_mode)
811 {
812 struct bp_location *loc, **loc_tmp;
813 /* If the user switched to a different evaluation mode, we
814 need to synch the changes with the target as follows:
815
816 "host" -> "target": Send all (valid) conditions to the target.
817 "target" -> "host": Remove all the conditions from the target.
818 */
819
820 if (new_mode == condition_evaluation_target)
821 {
822 /* Mark everything modified and synch conditions with the
823 target. */
824 ALL_BP_LOCATIONS (loc, loc_tmp)
825 mark_breakpoint_location_modified (loc);
826 }
827 else
828 {
829 /* Manually mark non-duplicate locations to synch conditions
830 with the target. We do this to remove all the conditions the
831 target knows about. */
832 ALL_BP_LOCATIONS (loc, loc_tmp)
833 if (is_breakpoint (loc->owner) && loc->inserted)
834 loc->needs_update = 1;
835 }
836
837 /* Do the update. */
838 update_global_location_list (1);
839 }
840
841 return;
842 }
843
844 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
845 what "auto" is translating to. */
846
847 static void
848 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
849 struct cmd_list_element *c, const char *value)
850 {
851 if (condition_evaluation_mode == condition_evaluation_auto)
852 fprintf_filtered (file,
853 _("Breakpoint condition evaluation "
854 "mode is %s (currently %s).\n"),
855 value,
856 breakpoint_condition_evaluation_mode ());
857 else
858 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
859 value);
860 }
861
862 /* A comparison function for bp_location AP and BP that is used by
863 bsearch. This comparison function only cares about addresses, unlike
864 the more general bp_location_compare function. */
865
866 static int
867 bp_location_compare_addrs (const void *ap, const void *bp)
868 {
869 struct bp_location *a = *(void **) ap;
870 struct bp_location *b = *(void **) bp;
871
872 if (a->address == b->address)
873 return 0;
874 else
875 return ((a->address > b->address) - (a->address < b->address));
876 }
877
878 /* Helper function to skip all bp_locations with addresses
879 less than ADDRESS. It returns the first bp_location that
880 is greater than or equal to ADDRESS. If none is found, just
881 return NULL. */
882
883 static struct bp_location **
884 get_first_locp_gte_addr (CORE_ADDR address)
885 {
886 struct bp_location dummy_loc;
887 struct bp_location *dummy_locp = &dummy_loc;
888 struct bp_location **locp_found = NULL;
889
890 /* Initialize the dummy location's address field. */
891 memset (&dummy_loc, 0, sizeof (struct bp_location));
892 dummy_loc.address = address;
893
894 /* Find a close match to the first location at ADDRESS. */
895 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
896 sizeof (struct bp_location **),
897 bp_location_compare_addrs);
898
899 /* Nothing was found, nothing left to do. */
900 if (locp_found == NULL)
901 return NULL;
902
903 /* We may have found a location that is at ADDRESS but is not the first in the
904 location's list. Go backwards (if possible) and locate the first one. */
905 while ((locp_found - 1) >= bp_location
906 && (*(locp_found - 1))->address == address)
907 locp_found--;
908
909 return locp_found;
910 }
911
912 void
913 set_breakpoint_condition (struct breakpoint *b, char *exp,
914 int from_tty)
915 {
916 xfree (b->cond_string);
917 b->cond_string = NULL;
918
919 if (is_watchpoint (b))
920 {
921 struct watchpoint *w = (struct watchpoint *) b;
922
923 xfree (w->cond_exp);
924 w->cond_exp = NULL;
925 }
926 else
927 {
928 struct bp_location *loc;
929
930 for (loc = b->loc; loc; loc = loc->next)
931 {
932 xfree (loc->cond);
933 loc->cond = NULL;
934
935 /* No need to free the condition agent expression
936 bytecode (if we have one). We will handle this
937 when we go through update_global_location_list. */
938 }
939 }
940
941 if (*exp == 0)
942 {
943 if (from_tty)
944 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
945 }
946 else
947 {
948 const char *arg = exp;
949
950 /* I don't know if it matters whether this is the string the user
951 typed in or the decompiled expression. */
952 b->cond_string = xstrdup (arg);
953 b->condition_not_parsed = 0;
954
955 if (is_watchpoint (b))
956 {
957 struct watchpoint *w = (struct watchpoint *) b;
958
959 innermost_block = NULL;
960 arg = exp;
961 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
962 if (*arg)
963 error (_("Junk at end of expression"));
964 w->cond_exp_valid_block = innermost_block;
965 }
966 else
967 {
968 struct bp_location *loc;
969
970 for (loc = b->loc; loc; loc = loc->next)
971 {
972 arg = exp;
973 loc->cond =
974 parse_exp_1 (&arg, loc->address,
975 block_for_pc (loc->address), 0);
976 if (*arg)
977 error (_("Junk at end of expression"));
978 }
979 }
980 }
981 mark_breakpoint_modified (b);
982
983 observer_notify_breakpoint_modified (b);
984 }
985
986 /* Completion for the "condition" command. */
987
988 static VEC (char_ptr) *
989 condition_completer (struct cmd_list_element *cmd,
990 const char *text, const char *word)
991 {
992 const char *space;
993
994 text = skip_spaces_const (text);
995 space = skip_to_space_const (text);
996 if (*space == '\0')
997 {
998 int len;
999 struct breakpoint *b;
1000 VEC (char_ptr) *result = NULL;
1001
1002 if (text[0] == '$')
1003 {
1004 /* We don't support completion of history indices. */
1005 if (isdigit (text[1]))
1006 return NULL;
1007 return complete_internalvar (&text[1]);
1008 }
1009
1010 /* We're completing the breakpoint number. */
1011 len = strlen (text);
1012
1013 ALL_BREAKPOINTS (b)
1014 {
1015 char number[50];
1016
1017 xsnprintf (number, sizeof (number), "%d", b->number);
1018
1019 if (strncmp (number, text, len) == 0)
1020 VEC_safe_push (char_ptr, result, xstrdup (number));
1021 }
1022
1023 return result;
1024 }
1025
1026 /* We're completing the expression part. */
1027 text = skip_spaces_const (space);
1028 return expression_completer (cmd, text, word);
1029 }
1030
1031 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1032
1033 static void
1034 condition_command (char *arg, int from_tty)
1035 {
1036 struct breakpoint *b;
1037 char *p;
1038 int bnum;
1039
1040 if (arg == 0)
1041 error_no_arg (_("breakpoint number"));
1042
1043 p = arg;
1044 bnum = get_number (&p);
1045 if (bnum == 0)
1046 error (_("Bad breakpoint argument: '%s'"), arg);
1047
1048 ALL_BREAKPOINTS (b)
1049 if (b->number == bnum)
1050 {
1051 /* Check if this breakpoint has a Python object assigned to
1052 it, and if it has a definition of the "stop"
1053 method. This method and conditions entered into GDB from
1054 the CLI are mutually exclusive. */
1055 if (b->py_bp_object
1056 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1057 error (_("Cannot set a condition where a Python 'stop' "
1058 "method has been defined in the breakpoint."));
1059 set_breakpoint_condition (b, p, from_tty);
1060
1061 if (is_breakpoint (b))
1062 update_global_location_list (1);
1063
1064 return;
1065 }
1066
1067 error (_("No breakpoint number %d."), bnum);
1068 }
1069
1070 /* Check that COMMAND do not contain commands that are suitable
1071 only for tracepoints and not suitable for ordinary breakpoints.
1072 Throw if any such commands is found. */
1073
1074 static void
1075 check_no_tracepoint_commands (struct command_line *commands)
1076 {
1077 struct command_line *c;
1078
1079 for (c = commands; c; c = c->next)
1080 {
1081 int i;
1082
1083 if (c->control_type == while_stepping_control)
1084 error (_("The 'while-stepping' command can "
1085 "only be used for tracepoints"));
1086
1087 for (i = 0; i < c->body_count; ++i)
1088 check_no_tracepoint_commands ((c->body_list)[i]);
1089
1090 /* Not that command parsing removes leading whitespace and comment
1091 lines and also empty lines. So, we only need to check for
1092 command directly. */
1093 if (strstr (c->line, "collect ") == c->line)
1094 error (_("The 'collect' command can only be used for tracepoints"));
1095
1096 if (strstr (c->line, "teval ") == c->line)
1097 error (_("The 'teval' command can only be used for tracepoints"));
1098 }
1099 }
1100
1101 /* Encapsulate tests for different types of tracepoints. */
1102
1103 static int
1104 is_tracepoint_type (enum bptype type)
1105 {
1106 return (type == bp_tracepoint
1107 || type == bp_fast_tracepoint
1108 || type == bp_static_tracepoint);
1109 }
1110
1111 int
1112 is_tracepoint (const struct breakpoint *b)
1113 {
1114 return is_tracepoint_type (b->type);
1115 }
1116
1117 /* A helper function that validates that COMMANDS are valid for a
1118 breakpoint. This function will throw an exception if a problem is
1119 found. */
1120
1121 static void
1122 validate_commands_for_breakpoint (struct breakpoint *b,
1123 struct command_line *commands)
1124 {
1125 if (is_tracepoint (b))
1126 {
1127 struct tracepoint *t = (struct tracepoint *) b;
1128 struct command_line *c;
1129 struct command_line *while_stepping = 0;
1130
1131 /* Reset the while-stepping step count. The previous commands
1132 might have included a while-stepping action, while the new
1133 ones might not. */
1134 t->step_count = 0;
1135
1136 /* We need to verify that each top-level element of commands is
1137 valid for tracepoints, that there's at most one
1138 while-stepping element, and that the while-stepping's body
1139 has valid tracing commands excluding nested while-stepping.
1140 We also need to validate the tracepoint action line in the
1141 context of the tracepoint --- validate_actionline actually
1142 has side effects, like setting the tracepoint's
1143 while-stepping STEP_COUNT, in addition to checking if the
1144 collect/teval actions parse and make sense in the
1145 tracepoint's context. */
1146 for (c = commands; c; c = c->next)
1147 {
1148 if (c->control_type == while_stepping_control)
1149 {
1150 if (b->type == bp_fast_tracepoint)
1151 error (_("The 'while-stepping' command "
1152 "cannot be used for fast tracepoint"));
1153 else if (b->type == bp_static_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for static tracepoint"));
1156
1157 if (while_stepping)
1158 error (_("The 'while-stepping' command "
1159 "can be used only once"));
1160 else
1161 while_stepping = c;
1162 }
1163
1164 validate_actionline (c->line, b);
1165 }
1166 if (while_stepping)
1167 {
1168 struct command_line *c2;
1169
1170 gdb_assert (while_stepping->body_count == 1);
1171 c2 = while_stepping->body_list[0];
1172 for (; c2; c2 = c2->next)
1173 {
1174 if (c2->control_type == while_stepping_control)
1175 error (_("The 'while-stepping' command cannot be nested"));
1176 }
1177 }
1178 }
1179 else
1180 {
1181 check_no_tracepoint_commands (commands);
1182 }
1183 }
1184
1185 /* Return a vector of all the static tracepoints set at ADDR. The
1186 caller is responsible for releasing the vector. */
1187
1188 VEC(breakpoint_p) *
1189 static_tracepoints_here (CORE_ADDR addr)
1190 {
1191 struct breakpoint *b;
1192 VEC(breakpoint_p) *found = 0;
1193 struct bp_location *loc;
1194
1195 ALL_BREAKPOINTS (b)
1196 if (b->type == bp_static_tracepoint)
1197 {
1198 for (loc = b->loc; loc; loc = loc->next)
1199 if (loc->address == addr)
1200 VEC_safe_push(breakpoint_p, found, b);
1201 }
1202
1203 return found;
1204 }
1205
1206 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1207 validate that only allowed commands are included. */
1208
1209 void
1210 breakpoint_set_commands (struct breakpoint *b,
1211 struct command_line *commands)
1212 {
1213 validate_commands_for_breakpoint (b, commands);
1214
1215 decref_counted_command_line (&b->commands);
1216 b->commands = alloc_counted_command_line (commands);
1217 observer_notify_breakpoint_modified (b);
1218 }
1219
1220 /* Set the internal `silent' flag on the breakpoint. Note that this
1221 is not the same as the "silent" that may appear in the breakpoint's
1222 commands. */
1223
1224 void
1225 breakpoint_set_silent (struct breakpoint *b, int silent)
1226 {
1227 int old_silent = b->silent;
1228
1229 b->silent = silent;
1230 if (old_silent != silent)
1231 observer_notify_breakpoint_modified (b);
1232 }
1233
1234 /* Set the thread for this breakpoint. If THREAD is -1, make the
1235 breakpoint work for any thread. */
1236
1237 void
1238 breakpoint_set_thread (struct breakpoint *b, int thread)
1239 {
1240 int old_thread = b->thread;
1241
1242 b->thread = thread;
1243 if (old_thread != thread)
1244 observer_notify_breakpoint_modified (b);
1245 }
1246
1247 /* Set the task for this breakpoint. If TASK is 0, make the
1248 breakpoint work for any task. */
1249
1250 void
1251 breakpoint_set_task (struct breakpoint *b, int task)
1252 {
1253 int old_task = b->task;
1254
1255 b->task = task;
1256 if (old_task != task)
1257 observer_notify_breakpoint_modified (b);
1258 }
1259
1260 void
1261 check_tracepoint_command (char *line, void *closure)
1262 {
1263 struct breakpoint *b = closure;
1264
1265 validate_actionline (line, b);
1266 }
1267
1268 /* A structure used to pass information through
1269 map_breakpoint_numbers. */
1270
1271 struct commands_info
1272 {
1273 /* True if the command was typed at a tty. */
1274 int from_tty;
1275
1276 /* The breakpoint range spec. */
1277 char *arg;
1278
1279 /* Non-NULL if the body of the commands are being read from this
1280 already-parsed command. */
1281 struct command_line *control;
1282
1283 /* The command lines read from the user, or NULL if they have not
1284 yet been read. */
1285 struct counted_command_line *cmd;
1286 };
1287
1288 /* A callback for map_breakpoint_numbers that sets the commands for
1289 commands_command. */
1290
1291 static void
1292 do_map_commands_command (struct breakpoint *b, void *data)
1293 {
1294 struct commands_info *info = data;
1295
1296 if (info->cmd == NULL)
1297 {
1298 struct command_line *l;
1299
1300 if (info->control != NULL)
1301 l = copy_command_lines (info->control->body_list[0]);
1302 else
1303 {
1304 struct cleanup *old_chain;
1305 char *str;
1306
1307 str = xstrprintf (_("Type commands for breakpoint(s) "
1308 "%s, one per line."),
1309 info->arg);
1310
1311 old_chain = make_cleanup (xfree, str);
1312
1313 l = read_command_lines (str,
1314 info->from_tty, 1,
1315 (is_tracepoint (b)
1316 ? check_tracepoint_command : 0),
1317 b);
1318
1319 do_cleanups (old_chain);
1320 }
1321
1322 info->cmd = alloc_counted_command_line (l);
1323 }
1324
1325 /* If a breakpoint was on the list more than once, we don't need to
1326 do anything. */
1327 if (b->commands != info->cmd)
1328 {
1329 validate_commands_for_breakpoint (b, info->cmd->commands);
1330 incref_counted_command_line (info->cmd);
1331 decref_counted_command_line (&b->commands);
1332 b->commands = info->cmd;
1333 observer_notify_breakpoint_modified (b);
1334 }
1335 }
1336
1337 static void
1338 commands_command_1 (char *arg, int from_tty,
1339 struct command_line *control)
1340 {
1341 struct cleanup *cleanups;
1342 struct commands_info info;
1343
1344 info.from_tty = from_tty;
1345 info.control = control;
1346 info.cmd = NULL;
1347 /* If we read command lines from the user, then `info' will hold an
1348 extra reference to the commands that we must clean up. */
1349 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1350
1351 if (arg == NULL || !*arg)
1352 {
1353 if (breakpoint_count - prev_breakpoint_count > 1)
1354 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1355 breakpoint_count);
1356 else if (breakpoint_count > 0)
1357 arg = xstrprintf ("%d", breakpoint_count);
1358 else
1359 {
1360 /* So that we don't try to free the incoming non-NULL
1361 argument in the cleanup below. Mapping breakpoint
1362 numbers will fail in this case. */
1363 arg = NULL;
1364 }
1365 }
1366 else
1367 /* The command loop has some static state, so we need to preserve
1368 our argument. */
1369 arg = xstrdup (arg);
1370
1371 if (arg != NULL)
1372 make_cleanup (xfree, arg);
1373
1374 info.arg = arg;
1375
1376 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1377
1378 if (info.cmd == NULL)
1379 error (_("No breakpoints specified."));
1380
1381 do_cleanups (cleanups);
1382 }
1383
1384 static void
1385 commands_command (char *arg, int from_tty)
1386 {
1387 commands_command_1 (arg, from_tty, NULL);
1388 }
1389
1390 /* Like commands_command, but instead of reading the commands from
1391 input stream, takes them from an already parsed command structure.
1392
1393 This is used by cli-script.c to DTRT with breakpoint commands
1394 that are part of if and while bodies. */
1395 enum command_control_type
1396 commands_from_control_command (char *arg, struct command_line *cmd)
1397 {
1398 commands_command_1 (arg, 0, cmd);
1399 return simple_control;
1400 }
1401
1402 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1403
1404 static int
1405 bp_location_has_shadow (struct bp_location *bl)
1406 {
1407 if (bl->loc_type != bp_loc_software_breakpoint)
1408 return 0;
1409 if (!bl->inserted)
1410 return 0;
1411 if (bl->target_info.shadow_len == 0)
1412 /* BL isn't valid, or doesn't shadow memory. */
1413 return 0;
1414 return 1;
1415 }
1416
1417 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1418 by replacing any memory breakpoints with their shadowed contents.
1419
1420 If READBUF is not NULL, this buffer must not overlap with any of
1421 the breakpoint location's shadow_contents buffers. Otherwise,
1422 a failed assertion internal error will be raised.
1423
1424 The range of shadowed area by each bp_location is:
1425 bl->address - bp_location_placed_address_before_address_max
1426 up to bl->address + bp_location_shadow_len_after_address_max
1427 The range we were requested to resolve shadows for is:
1428 memaddr ... memaddr + len
1429 Thus the safe cutoff boundaries for performance optimization are
1430 memaddr + len <= (bl->address
1431 - bp_location_placed_address_before_address_max)
1432 and:
1433 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1434
1435 void
1436 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1437 const gdb_byte *writebuf_org,
1438 ULONGEST memaddr, LONGEST len)
1439 {
1440 /* Left boundary, right boundary and median element of our binary
1441 search. */
1442 unsigned bc_l, bc_r, bc;
1443
1444 /* Find BC_L which is a leftmost element which may affect BUF
1445 content. It is safe to report lower value but a failure to
1446 report higher one. */
1447
1448 bc_l = 0;
1449 bc_r = bp_location_count;
1450 while (bc_l + 1 < bc_r)
1451 {
1452 struct bp_location *bl;
1453
1454 bc = (bc_l + bc_r) / 2;
1455 bl = bp_location[bc];
1456
1457 /* Check first BL->ADDRESS will not overflow due to the added
1458 constant. Then advance the left boundary only if we are sure
1459 the BC element can in no way affect the BUF content (MEMADDR
1460 to MEMADDR + LEN range).
1461
1462 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1463 offset so that we cannot miss a breakpoint with its shadow
1464 range tail still reaching MEMADDR. */
1465
1466 if ((bl->address + bp_location_shadow_len_after_address_max
1467 >= bl->address)
1468 && (bl->address + bp_location_shadow_len_after_address_max
1469 <= memaddr))
1470 bc_l = bc;
1471 else
1472 bc_r = bc;
1473 }
1474
1475 /* Due to the binary search above, we need to make sure we pick the
1476 first location that's at BC_L's address. E.g., if there are
1477 multiple locations at the same address, BC_L may end up pointing
1478 at a duplicate location, and miss the "master"/"inserted"
1479 location. Say, given locations L1, L2 and L3 at addresses A and
1480 B:
1481
1482 L1@A, L2@A, L3@B, ...
1483
1484 BC_L could end up pointing at location L2, while the "master"
1485 location could be L1. Since the `loc->inserted' flag is only set
1486 on "master" locations, we'd forget to restore the shadow of L1
1487 and L2. */
1488 while (bc_l > 0
1489 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1490 bc_l--;
1491
1492 /* Now do full processing of the found relevant range of elements. */
1493
1494 for (bc = bc_l; bc < bp_location_count; bc++)
1495 {
1496 struct bp_location *bl = bp_location[bc];
1497 CORE_ADDR bp_addr = 0;
1498 int bp_size = 0;
1499 int bptoffset = 0;
1500
1501 /* bp_location array has BL->OWNER always non-NULL. */
1502 if (bl->owner->type == bp_none)
1503 warning (_("reading through apparently deleted breakpoint #%d?"),
1504 bl->owner->number);
1505
1506 /* Performance optimization: any further element can no longer affect BUF
1507 content. */
1508
1509 if (bl->address >= bp_location_placed_address_before_address_max
1510 && memaddr + len <= (bl->address
1511 - bp_location_placed_address_before_address_max))
1512 break;
1513
1514 if (!bp_location_has_shadow (bl))
1515 continue;
1516 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1517 current_program_space->aspace, 0))
1518 continue;
1519
1520 /* Addresses and length of the part of the breakpoint that
1521 we need to copy. */
1522 bp_addr = bl->target_info.placed_address;
1523 bp_size = bl->target_info.shadow_len;
1524
1525 if (bp_addr + bp_size <= memaddr)
1526 /* The breakpoint is entirely before the chunk of memory we
1527 are reading. */
1528 continue;
1529
1530 if (bp_addr >= memaddr + len)
1531 /* The breakpoint is entirely after the chunk of memory we are
1532 reading. */
1533 continue;
1534
1535 /* Offset within shadow_contents. */
1536 if (bp_addr < memaddr)
1537 {
1538 /* Only copy the second part of the breakpoint. */
1539 bp_size -= memaddr - bp_addr;
1540 bptoffset = memaddr - bp_addr;
1541 bp_addr = memaddr;
1542 }
1543
1544 if (bp_addr + bp_size > memaddr + len)
1545 {
1546 /* Only copy the first part of the breakpoint. */
1547 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1548 }
1549
1550 if (readbuf != NULL)
1551 {
1552 /* Verify that the readbuf buffer does not overlap with
1553 the shadow_contents buffer. */
1554 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1555 || readbuf >= (bl->target_info.shadow_contents
1556 + bl->target_info.shadow_len));
1557
1558 /* Update the read buffer with this inserted breakpoint's
1559 shadow. */
1560 memcpy (readbuf + bp_addr - memaddr,
1561 bl->target_info.shadow_contents + bptoffset, bp_size);
1562 }
1563 else
1564 {
1565 struct gdbarch *gdbarch = bl->gdbarch;
1566 const unsigned char *bp;
1567 CORE_ADDR placed_address = bl->target_info.placed_address;
1568 int placed_size = bl->target_info.placed_size;
1569
1570 /* Update the shadow with what we want to write to memory. */
1571 memcpy (bl->target_info.shadow_contents + bptoffset,
1572 writebuf_org + bp_addr - memaddr, bp_size);
1573
1574 /* Determine appropriate breakpoint contents and size for this
1575 address. */
1576 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1577
1578 /* Update the final write buffer with this inserted
1579 breakpoint's INSN. */
1580 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1581 }
1582 }
1583 }
1584 \f
1585
1586 /* Return true if BPT is either a software breakpoint or a hardware
1587 breakpoint. */
1588
1589 int
1590 is_breakpoint (const struct breakpoint *bpt)
1591 {
1592 return (bpt->type == bp_breakpoint
1593 || bpt->type == bp_hardware_breakpoint
1594 || bpt->type == bp_dprintf);
1595 }
1596
1597 /* Return true if BPT is of any hardware watchpoint kind. */
1598
1599 static int
1600 is_hardware_watchpoint (const struct breakpoint *bpt)
1601 {
1602 return (bpt->type == bp_hardware_watchpoint
1603 || bpt->type == bp_read_watchpoint
1604 || bpt->type == bp_access_watchpoint);
1605 }
1606
1607 /* Return true if BPT is of any watchpoint kind, hardware or
1608 software. */
1609
1610 int
1611 is_watchpoint (const struct breakpoint *bpt)
1612 {
1613 return (is_hardware_watchpoint (bpt)
1614 || bpt->type == bp_watchpoint);
1615 }
1616
1617 /* Returns true if the current thread and its running state are safe
1618 to evaluate or update watchpoint B. Watchpoints on local
1619 expressions need to be evaluated in the context of the thread that
1620 was current when the watchpoint was created, and, that thread needs
1621 to be stopped to be able to select the correct frame context.
1622 Watchpoints on global expressions can be evaluated on any thread,
1623 and in any state. It is presently left to the target allowing
1624 memory accesses when threads are running. */
1625
1626 static int
1627 watchpoint_in_thread_scope (struct watchpoint *b)
1628 {
1629 return (b->base.pspace == current_program_space
1630 && (ptid_equal (b->watchpoint_thread, null_ptid)
1631 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1632 && !is_executing (inferior_ptid))));
1633 }
1634
1635 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1636 associated bp_watchpoint_scope breakpoint. */
1637
1638 static void
1639 watchpoint_del_at_next_stop (struct watchpoint *w)
1640 {
1641 struct breakpoint *b = &w->base;
1642
1643 if (b->related_breakpoint != b)
1644 {
1645 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1646 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1647 b->related_breakpoint->disposition = disp_del_at_next_stop;
1648 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1649 b->related_breakpoint = b;
1650 }
1651 b->disposition = disp_del_at_next_stop;
1652 }
1653
1654 /* Assuming that B is a watchpoint:
1655 - Reparse watchpoint expression, if REPARSE is non-zero
1656 - Evaluate expression and store the result in B->val
1657 - Evaluate the condition if there is one, and store the result
1658 in b->loc->cond.
1659 - Update the list of values that must be watched in B->loc.
1660
1661 If the watchpoint disposition is disp_del_at_next_stop, then do
1662 nothing. If this is local watchpoint that is out of scope, delete
1663 it.
1664
1665 Even with `set breakpoint always-inserted on' the watchpoints are
1666 removed + inserted on each stop here. Normal breakpoints must
1667 never be removed because they might be missed by a running thread
1668 when debugging in non-stop mode. On the other hand, hardware
1669 watchpoints (is_hardware_watchpoint; processed here) are specific
1670 to each LWP since they are stored in each LWP's hardware debug
1671 registers. Therefore, such LWP must be stopped first in order to
1672 be able to modify its hardware watchpoints.
1673
1674 Hardware watchpoints must be reset exactly once after being
1675 presented to the user. It cannot be done sooner, because it would
1676 reset the data used to present the watchpoint hit to the user. And
1677 it must not be done later because it could display the same single
1678 watchpoint hit during multiple GDB stops. Note that the latter is
1679 relevant only to the hardware watchpoint types bp_read_watchpoint
1680 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1681 not user-visible - its hit is suppressed if the memory content has
1682 not changed.
1683
1684 The following constraints influence the location where we can reset
1685 hardware watchpoints:
1686
1687 * target_stopped_by_watchpoint and target_stopped_data_address are
1688 called several times when GDB stops.
1689
1690 [linux]
1691 * Multiple hardware watchpoints can be hit at the same time,
1692 causing GDB to stop. GDB only presents one hardware watchpoint
1693 hit at a time as the reason for stopping, and all the other hits
1694 are presented later, one after the other, each time the user
1695 requests the execution to be resumed. Execution is not resumed
1696 for the threads still having pending hit event stored in
1697 LWP_INFO->STATUS. While the watchpoint is already removed from
1698 the inferior on the first stop the thread hit event is kept being
1699 reported from its cached value by linux_nat_stopped_data_address
1700 until the real thread resume happens after the watchpoint gets
1701 presented and thus its LWP_INFO->STATUS gets reset.
1702
1703 Therefore the hardware watchpoint hit can get safely reset on the
1704 watchpoint removal from inferior. */
1705
1706 static void
1707 update_watchpoint (struct watchpoint *b, int reparse)
1708 {
1709 int within_current_scope;
1710 struct frame_id saved_frame_id;
1711 int frame_saved;
1712
1713 /* If this is a local watchpoint, we only want to check if the
1714 watchpoint frame is in scope if the current thread is the thread
1715 that was used to create the watchpoint. */
1716 if (!watchpoint_in_thread_scope (b))
1717 return;
1718
1719 if (b->base.disposition == disp_del_at_next_stop)
1720 return;
1721
1722 frame_saved = 0;
1723
1724 /* Determine if the watchpoint is within scope. */
1725 if (b->exp_valid_block == NULL)
1726 within_current_scope = 1;
1727 else
1728 {
1729 struct frame_info *fi = get_current_frame ();
1730 struct gdbarch *frame_arch = get_frame_arch (fi);
1731 CORE_ADDR frame_pc = get_frame_pc (fi);
1732
1733 /* If we're in a function epilogue, unwinding may not work
1734 properly, so do not attempt to recreate locations at this
1735 point. See similar comments in watchpoint_check. */
1736 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1737 return;
1738
1739 /* Save the current frame's ID so we can restore it after
1740 evaluating the watchpoint expression on its own frame. */
1741 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1742 took a frame parameter, so that we didn't have to change the
1743 selected frame. */
1744 frame_saved = 1;
1745 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1746
1747 fi = frame_find_by_id (b->watchpoint_frame);
1748 within_current_scope = (fi != NULL);
1749 if (within_current_scope)
1750 select_frame (fi);
1751 }
1752
1753 /* We don't free locations. They are stored in the bp_location array
1754 and update_global_location_list will eventually delete them and
1755 remove breakpoints if needed. */
1756 b->base.loc = NULL;
1757
1758 if (within_current_scope && reparse)
1759 {
1760 const char *s;
1761
1762 if (b->exp)
1763 {
1764 xfree (b->exp);
1765 b->exp = NULL;
1766 }
1767 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1768 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1769 /* If the meaning of expression itself changed, the old value is
1770 no longer relevant. We don't want to report a watchpoint hit
1771 to the user when the old value and the new value may actually
1772 be completely different objects. */
1773 value_free (b->val);
1774 b->val = NULL;
1775 b->val_valid = 0;
1776
1777 /* Note that unlike with breakpoints, the watchpoint's condition
1778 expression is stored in the breakpoint object, not in the
1779 locations (re)created below. */
1780 if (b->base.cond_string != NULL)
1781 {
1782 if (b->cond_exp != NULL)
1783 {
1784 xfree (b->cond_exp);
1785 b->cond_exp = NULL;
1786 }
1787
1788 s = b->base.cond_string;
1789 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1790 }
1791 }
1792
1793 /* If we failed to parse the expression, for example because
1794 it refers to a global variable in a not-yet-loaded shared library,
1795 don't try to insert watchpoint. We don't automatically delete
1796 such watchpoint, though, since failure to parse expression
1797 is different from out-of-scope watchpoint. */
1798 if (!target_has_execution)
1799 {
1800 /* Without execution, memory can't change. No use to try and
1801 set watchpoint locations. The watchpoint will be reset when
1802 the target gains execution, through breakpoint_re_set. */
1803 if (!can_use_hw_watchpoints)
1804 {
1805 if (b->base.ops->works_in_software_mode (&b->base))
1806 b->base.type = bp_watchpoint;
1807 else
1808 error (_("Can't set read/access watchpoint when "
1809 "hardware watchpoints are disabled."));
1810 }
1811 }
1812 else if (within_current_scope && b->exp)
1813 {
1814 int pc = 0;
1815 struct value *val_chain, *v, *result, *next;
1816 struct program_space *frame_pspace;
1817
1818 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1819
1820 /* Avoid setting b->val if it's already set. The meaning of
1821 b->val is 'the last value' user saw, and we should update
1822 it only if we reported that last value to user. As it
1823 happens, the code that reports it updates b->val directly.
1824 We don't keep track of the memory value for masked
1825 watchpoints. */
1826 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1827 {
1828 b->val = v;
1829 b->val_valid = 1;
1830 }
1831
1832 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1833
1834 /* Look at each value on the value chain. */
1835 for (v = val_chain; v; v = value_next (v))
1836 {
1837 /* If it's a memory location, and GDB actually needed
1838 its contents to evaluate the expression, then we
1839 must watch it. If the first value returned is
1840 still lazy, that means an error occurred reading it;
1841 watch it anyway in case it becomes readable. */
1842 if (VALUE_LVAL (v) == lval_memory
1843 && (v == val_chain || ! value_lazy (v)))
1844 {
1845 struct type *vtype = check_typedef (value_type (v));
1846
1847 /* We only watch structs and arrays if user asked
1848 for it explicitly, never if they just happen to
1849 appear in the middle of some value chain. */
1850 if (v == result
1851 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1852 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1853 {
1854 CORE_ADDR addr;
1855 int type;
1856 struct bp_location *loc, **tmp;
1857
1858 addr = value_address (v);
1859 type = hw_write;
1860 if (b->base.type == bp_read_watchpoint)
1861 type = hw_read;
1862 else if (b->base.type == bp_access_watchpoint)
1863 type = hw_access;
1864
1865 loc = allocate_bp_location (&b->base);
1866 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1867 ;
1868 *tmp = loc;
1869 loc->gdbarch = get_type_arch (value_type (v));
1870
1871 loc->pspace = frame_pspace;
1872 loc->address = addr;
1873 loc->length = TYPE_LENGTH (value_type (v));
1874 loc->watchpoint_type = type;
1875 }
1876 }
1877 }
1878
1879 /* Change the type of breakpoint between hardware assisted or
1880 an ordinary watchpoint depending on the hardware support
1881 and free hardware slots. REPARSE is set when the inferior
1882 is started. */
1883 if (reparse)
1884 {
1885 int reg_cnt;
1886 enum bp_loc_type loc_type;
1887 struct bp_location *bl;
1888
1889 reg_cnt = can_use_hardware_watchpoint (val_chain);
1890
1891 if (reg_cnt)
1892 {
1893 int i, target_resources_ok, other_type_used;
1894 enum bptype type;
1895
1896 /* Use an exact watchpoint when there's only one memory region to be
1897 watched, and only one debug register is needed to watch it. */
1898 b->exact = target_exact_watchpoints && reg_cnt == 1;
1899
1900 /* We need to determine how many resources are already
1901 used for all other hardware watchpoints plus this one
1902 to see if we still have enough resources to also fit
1903 this watchpoint in as well. */
1904
1905 /* If this is a software watchpoint, we try to turn it
1906 to a hardware one -- count resources as if B was of
1907 hardware watchpoint type. */
1908 type = b->base.type;
1909 if (type == bp_watchpoint)
1910 type = bp_hardware_watchpoint;
1911
1912 /* This watchpoint may or may not have been placed on
1913 the list yet at this point (it won't be in the list
1914 if we're trying to create it for the first time,
1915 through watch_command), so always account for it
1916 manually. */
1917
1918 /* Count resources used by all watchpoints except B. */
1919 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1920
1921 /* Add in the resources needed for B. */
1922 i += hw_watchpoint_use_count (&b->base);
1923
1924 target_resources_ok
1925 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1926 if (target_resources_ok <= 0)
1927 {
1928 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1929
1930 if (target_resources_ok == 0 && !sw_mode)
1931 error (_("Target does not support this type of "
1932 "hardware watchpoint."));
1933 else if (target_resources_ok < 0 && !sw_mode)
1934 error (_("There are not enough available hardware "
1935 "resources for this watchpoint."));
1936
1937 /* Downgrade to software watchpoint. */
1938 b->base.type = bp_watchpoint;
1939 }
1940 else
1941 {
1942 /* If this was a software watchpoint, we've just
1943 found we have enough resources to turn it to a
1944 hardware watchpoint. Otherwise, this is a
1945 nop. */
1946 b->base.type = type;
1947 }
1948 }
1949 else if (!b->base.ops->works_in_software_mode (&b->base))
1950 {
1951 if (!can_use_hw_watchpoints)
1952 error (_("Can't set read/access watchpoint when "
1953 "hardware watchpoints are disabled."));
1954 else
1955 error (_("Expression cannot be implemented with "
1956 "read/access watchpoint."));
1957 }
1958 else
1959 b->base.type = bp_watchpoint;
1960
1961 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1962 : bp_loc_hardware_watchpoint);
1963 for (bl = b->base.loc; bl; bl = bl->next)
1964 bl->loc_type = loc_type;
1965 }
1966
1967 for (v = val_chain; v; v = next)
1968 {
1969 next = value_next (v);
1970 if (v != b->val)
1971 value_free (v);
1972 }
1973
1974 /* If a software watchpoint is not watching any memory, then the
1975 above left it without any location set up. But,
1976 bpstat_stop_status requires a location to be able to report
1977 stops, so make sure there's at least a dummy one. */
1978 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1979 {
1980 struct breakpoint *base = &b->base;
1981 base->loc = allocate_bp_location (base);
1982 base->loc->pspace = frame_pspace;
1983 base->loc->address = -1;
1984 base->loc->length = -1;
1985 base->loc->watchpoint_type = -1;
1986 }
1987 }
1988 else if (!within_current_scope)
1989 {
1990 printf_filtered (_("\
1991 Watchpoint %d deleted because the program has left the block\n\
1992 in which its expression is valid.\n"),
1993 b->base.number);
1994 watchpoint_del_at_next_stop (b);
1995 }
1996
1997 /* Restore the selected frame. */
1998 if (frame_saved)
1999 select_frame (frame_find_by_id (saved_frame_id));
2000 }
2001
2002
2003 /* Returns 1 iff breakpoint location should be
2004 inserted in the inferior. We don't differentiate the type of BL's owner
2005 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2006 breakpoint_ops is not defined, because in insert_bp_location,
2007 tracepoint's insert_location will not be called. */
2008 static int
2009 should_be_inserted (struct bp_location *bl)
2010 {
2011 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2012 return 0;
2013
2014 if (bl->owner->disposition == disp_del_at_next_stop)
2015 return 0;
2016
2017 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2018 return 0;
2019
2020 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2021 return 0;
2022
2023 /* This is set for example, when we're attached to the parent of a
2024 vfork, and have detached from the child. The child is running
2025 free, and we expect it to do an exec or exit, at which point the
2026 OS makes the parent schedulable again (and the target reports
2027 that the vfork is done). Until the child is done with the shared
2028 memory region, do not insert breakpoints in the parent, otherwise
2029 the child could still trip on the parent's breakpoints. Since
2030 the parent is blocked anyway, it won't miss any breakpoint. */
2031 if (bl->pspace->breakpoints_not_allowed)
2032 return 0;
2033
2034 return 1;
2035 }
2036
2037 /* Same as should_be_inserted but does the check assuming
2038 that the location is not duplicated. */
2039
2040 static int
2041 unduplicated_should_be_inserted (struct bp_location *bl)
2042 {
2043 int result;
2044 const int save_duplicate = bl->duplicate;
2045
2046 bl->duplicate = 0;
2047 result = should_be_inserted (bl);
2048 bl->duplicate = save_duplicate;
2049 return result;
2050 }
2051
2052 /* Parses a conditional described by an expression COND into an
2053 agent expression bytecode suitable for evaluation
2054 by the bytecode interpreter. Return NULL if there was
2055 any error during parsing. */
2056
2057 static struct agent_expr *
2058 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2059 {
2060 struct agent_expr *aexpr = NULL;
2061 volatile struct gdb_exception ex;
2062
2063 if (!cond)
2064 return NULL;
2065
2066 /* We don't want to stop processing, so catch any errors
2067 that may show up. */
2068 TRY_CATCH (ex, RETURN_MASK_ERROR)
2069 {
2070 aexpr = gen_eval_for_expr (scope, cond);
2071 }
2072
2073 if (ex.reason < 0)
2074 {
2075 /* If we got here, it means the condition could not be parsed to a valid
2076 bytecode expression and thus can't be evaluated on the target's side.
2077 It's no use iterating through the conditions. */
2078 return NULL;
2079 }
2080
2081 /* We have a valid agent expression. */
2082 return aexpr;
2083 }
2084
2085 /* Based on location BL, create a list of breakpoint conditions to be
2086 passed on to the target. If we have duplicated locations with different
2087 conditions, we will add such conditions to the list. The idea is that the
2088 target will evaluate the list of conditions and will only notify GDB when
2089 one of them is true. */
2090
2091 static void
2092 build_target_condition_list (struct bp_location *bl)
2093 {
2094 struct bp_location **locp = NULL, **loc2p;
2095 int null_condition_or_parse_error = 0;
2096 int modified = bl->needs_update;
2097 struct bp_location *loc;
2098
2099 /* This is only meaningful if the target is
2100 evaluating conditions and if the user has
2101 opted for condition evaluation on the target's
2102 side. */
2103 if (gdb_evaluates_breakpoint_condition_p ()
2104 || !target_supports_evaluation_of_breakpoint_conditions ())
2105 return;
2106
2107 /* Do a first pass to check for locations with no assigned
2108 conditions or conditions that fail to parse to a valid agent expression
2109 bytecode. If any of these happen, then it's no use to send conditions
2110 to the target since this location will always trigger and generate a
2111 response back to GDB. */
2112 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2113 {
2114 loc = (*loc2p);
2115 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2116 {
2117 if (modified)
2118 {
2119 struct agent_expr *aexpr;
2120
2121 /* Re-parse the conditions since something changed. In that
2122 case we already freed the condition bytecodes (see
2123 force_breakpoint_reinsertion). We just
2124 need to parse the condition to bytecodes again. */
2125 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2126 loc->cond_bytecode = aexpr;
2127
2128 /* Check if we managed to parse the conditional expression
2129 correctly. If not, we will not send this condition
2130 to the target. */
2131 if (aexpr)
2132 continue;
2133 }
2134
2135 /* If we have a NULL bytecode expression, it means something
2136 went wrong or we have a null condition expression. */
2137 if (!loc->cond_bytecode)
2138 {
2139 null_condition_or_parse_error = 1;
2140 break;
2141 }
2142 }
2143 }
2144
2145 /* If any of these happened, it means we will have to evaluate the conditions
2146 for the location's address on gdb's side. It is no use keeping bytecodes
2147 for all the other duplicate locations, thus we free all of them here.
2148
2149 This is so we have a finer control over which locations' conditions are
2150 being evaluated by GDB or the remote stub. */
2151 if (null_condition_or_parse_error)
2152 {
2153 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2154 {
2155 loc = (*loc2p);
2156 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2157 {
2158 /* Only go as far as the first NULL bytecode is
2159 located. */
2160 if (!loc->cond_bytecode)
2161 return;
2162
2163 free_agent_expr (loc->cond_bytecode);
2164 loc->cond_bytecode = NULL;
2165 }
2166 }
2167 }
2168
2169 /* No NULL conditions or failed bytecode generation. Build a condition list
2170 for this location's address. */
2171 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2172 {
2173 loc = (*loc2p);
2174 if (loc->cond
2175 && is_breakpoint (loc->owner)
2176 && loc->pspace->num == bl->pspace->num
2177 && loc->owner->enable_state == bp_enabled
2178 && loc->enabled)
2179 /* Add the condition to the vector. This will be used later to send the
2180 conditions to the target. */
2181 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2182 loc->cond_bytecode);
2183 }
2184
2185 return;
2186 }
2187
2188 /* Parses a command described by string CMD into an agent expression
2189 bytecode suitable for evaluation by the bytecode interpreter.
2190 Return NULL if there was any error during parsing. */
2191
2192 static struct agent_expr *
2193 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2194 {
2195 struct cleanup *old_cleanups = 0;
2196 struct expression *expr, **argvec;
2197 struct agent_expr *aexpr = NULL;
2198 volatile struct gdb_exception ex;
2199 const char *cmdrest;
2200 const char *format_start, *format_end;
2201 struct format_piece *fpieces;
2202 int nargs;
2203 struct gdbarch *gdbarch = get_current_arch ();
2204
2205 if (!cmd)
2206 return NULL;
2207
2208 cmdrest = cmd;
2209
2210 if (*cmdrest == ',')
2211 ++cmdrest;
2212 cmdrest = skip_spaces_const (cmdrest);
2213
2214 if (*cmdrest++ != '"')
2215 error (_("No format string following the location"));
2216
2217 format_start = cmdrest;
2218
2219 fpieces = parse_format_string (&cmdrest);
2220
2221 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2222
2223 format_end = cmdrest;
2224
2225 if (*cmdrest++ != '"')
2226 error (_("Bad format string, non-terminated '\"'."));
2227
2228 cmdrest = skip_spaces_const (cmdrest);
2229
2230 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2231 error (_("Invalid argument syntax"));
2232
2233 if (*cmdrest == ',')
2234 cmdrest++;
2235 cmdrest = skip_spaces_const (cmdrest);
2236
2237 /* For each argument, make an expression. */
2238
2239 argvec = (struct expression **) alloca (strlen (cmd)
2240 * sizeof (struct expression *));
2241
2242 nargs = 0;
2243 while (*cmdrest != '\0')
2244 {
2245 const char *cmd1;
2246
2247 cmd1 = cmdrest;
2248 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2249 argvec[nargs++] = expr;
2250 cmdrest = cmd1;
2251 if (*cmdrest == ',')
2252 ++cmdrest;
2253 }
2254
2255 /* We don't want to stop processing, so catch any errors
2256 that may show up. */
2257 TRY_CATCH (ex, RETURN_MASK_ERROR)
2258 {
2259 aexpr = gen_printf (scope, gdbarch, 0, 0,
2260 format_start, format_end - format_start,
2261 fpieces, nargs, argvec);
2262 }
2263
2264 do_cleanups (old_cleanups);
2265
2266 if (ex.reason < 0)
2267 {
2268 /* If we got here, it means the command could not be parsed to a valid
2269 bytecode expression and thus can't be evaluated on the target's side.
2270 It's no use iterating through the other commands. */
2271 return NULL;
2272 }
2273
2274 /* We have a valid agent expression, return it. */
2275 return aexpr;
2276 }
2277
2278 /* Based on location BL, create a list of breakpoint commands to be
2279 passed on to the target. If we have duplicated locations with
2280 different commands, we will add any such to the list. */
2281
2282 static void
2283 build_target_command_list (struct bp_location *bl)
2284 {
2285 struct bp_location **locp = NULL, **loc2p;
2286 int null_command_or_parse_error = 0;
2287 int modified = bl->needs_update;
2288 struct bp_location *loc;
2289
2290 /* For now, limit to agent-style dprintf breakpoints. */
2291 if (bl->owner->type != bp_dprintf
2292 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2293 return;
2294
2295 if (!target_can_run_breakpoint_commands ())
2296 return;
2297
2298 /* Do a first pass to check for locations with no assigned
2299 conditions or conditions that fail to parse to a valid agent expression
2300 bytecode. If any of these happen, then it's no use to send conditions
2301 to the target since this location will always trigger and generate a
2302 response back to GDB. */
2303 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2304 {
2305 loc = (*loc2p);
2306 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2307 {
2308 if (modified)
2309 {
2310 struct agent_expr *aexpr;
2311
2312 /* Re-parse the commands since something changed. In that
2313 case we already freed the command bytecodes (see
2314 force_breakpoint_reinsertion). We just
2315 need to parse the command to bytecodes again. */
2316 aexpr = parse_cmd_to_aexpr (bl->address,
2317 loc->owner->extra_string);
2318 loc->cmd_bytecode = aexpr;
2319
2320 if (!aexpr)
2321 continue;
2322 }
2323
2324 /* If we have a NULL bytecode expression, it means something
2325 went wrong or we have a null command expression. */
2326 if (!loc->cmd_bytecode)
2327 {
2328 null_command_or_parse_error = 1;
2329 break;
2330 }
2331 }
2332 }
2333
2334 /* If anything failed, then we're not doing target-side commands,
2335 and so clean up. */
2336 if (null_command_or_parse_error)
2337 {
2338 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2339 {
2340 loc = (*loc2p);
2341 if (is_breakpoint (loc->owner)
2342 && loc->pspace->num == bl->pspace->num)
2343 {
2344 /* Only go as far as the first NULL bytecode is
2345 located. */
2346 if (loc->cmd_bytecode == NULL)
2347 return;
2348
2349 free_agent_expr (loc->cmd_bytecode);
2350 loc->cmd_bytecode = NULL;
2351 }
2352 }
2353 }
2354
2355 /* No NULL commands or failed bytecode generation. Build a command list
2356 for this location's address. */
2357 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2358 {
2359 loc = (*loc2p);
2360 if (loc->owner->extra_string
2361 && is_breakpoint (loc->owner)
2362 && loc->pspace->num == bl->pspace->num
2363 && loc->owner->enable_state == bp_enabled
2364 && loc->enabled)
2365 /* Add the command to the vector. This will be used later
2366 to send the commands to the target. */
2367 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2368 loc->cmd_bytecode);
2369 }
2370
2371 bl->target_info.persist = 0;
2372 /* Maybe flag this location as persistent. */
2373 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2374 bl->target_info.persist = 1;
2375 }
2376
2377 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2378 location. Any error messages are printed to TMP_ERROR_STREAM; and
2379 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2380 Returns 0 for success, 1 if the bp_location type is not supported or
2381 -1 for failure.
2382
2383 NOTE drow/2003-09-09: This routine could be broken down to an
2384 object-style method for each breakpoint or catchpoint type. */
2385 static int
2386 insert_bp_location (struct bp_location *bl,
2387 struct ui_file *tmp_error_stream,
2388 int *disabled_breaks,
2389 int *hw_breakpoint_error,
2390 int *hw_bp_error_explained_already)
2391 {
2392 int val = 0;
2393 char *hw_bp_err_string = NULL;
2394 struct gdb_exception e;
2395
2396 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2397 return 0;
2398
2399 /* Note we don't initialize bl->target_info, as that wipes out
2400 the breakpoint location's shadow_contents if the breakpoint
2401 is still inserted at that location. This in turn breaks
2402 target_read_memory which depends on these buffers when
2403 a memory read is requested at the breakpoint location:
2404 Once the target_info has been wiped, we fail to see that
2405 we have a breakpoint inserted at that address and thus
2406 read the breakpoint instead of returning the data saved in
2407 the breakpoint location's shadow contents. */
2408 bl->target_info.placed_address = bl->address;
2409 bl->target_info.placed_address_space = bl->pspace->aspace;
2410 bl->target_info.length = bl->length;
2411
2412 /* When working with target-side conditions, we must pass all the conditions
2413 for the same breakpoint address down to the target since GDB will not
2414 insert those locations. With a list of breakpoint conditions, the target
2415 can decide when to stop and notify GDB. */
2416
2417 if (is_breakpoint (bl->owner))
2418 {
2419 build_target_condition_list (bl);
2420 build_target_command_list (bl);
2421 /* Reset the modification marker. */
2422 bl->needs_update = 0;
2423 }
2424
2425 if (bl->loc_type == bp_loc_software_breakpoint
2426 || bl->loc_type == bp_loc_hardware_breakpoint)
2427 {
2428 if (bl->owner->type != bp_hardware_breakpoint)
2429 {
2430 /* If the explicitly specified breakpoint type
2431 is not hardware breakpoint, check the memory map to see
2432 if the breakpoint address is in read only memory or not.
2433
2434 Two important cases are:
2435 - location type is not hardware breakpoint, memory
2436 is readonly. We change the type of the location to
2437 hardware breakpoint.
2438 - location type is hardware breakpoint, memory is
2439 read-write. This means we've previously made the
2440 location hardware one, but then the memory map changed,
2441 so we undo.
2442
2443 When breakpoints are removed, remove_breakpoints will use
2444 location types we've just set here, the only possible
2445 problem is that memory map has changed during running
2446 program, but it's not going to work anyway with current
2447 gdb. */
2448 struct mem_region *mr
2449 = lookup_mem_region (bl->target_info.placed_address);
2450
2451 if (mr)
2452 {
2453 if (automatic_hardware_breakpoints)
2454 {
2455 enum bp_loc_type new_type;
2456
2457 if (mr->attrib.mode != MEM_RW)
2458 new_type = bp_loc_hardware_breakpoint;
2459 else
2460 new_type = bp_loc_software_breakpoint;
2461
2462 if (new_type != bl->loc_type)
2463 {
2464 static int said = 0;
2465
2466 bl->loc_type = new_type;
2467 if (!said)
2468 {
2469 fprintf_filtered (gdb_stdout,
2470 _("Note: automatically using "
2471 "hardware breakpoints for "
2472 "read-only addresses.\n"));
2473 said = 1;
2474 }
2475 }
2476 }
2477 else if (bl->loc_type == bp_loc_software_breakpoint
2478 && mr->attrib.mode != MEM_RW)
2479 warning (_("cannot set software breakpoint "
2480 "at readonly address %s"),
2481 paddress (bl->gdbarch, bl->address));
2482 }
2483 }
2484
2485 /* First check to see if we have to handle an overlay. */
2486 if (overlay_debugging == ovly_off
2487 || bl->section == NULL
2488 || !(section_is_overlay (bl->section)))
2489 {
2490 /* No overlay handling: just set the breakpoint. */
2491 TRY_CATCH (e, RETURN_MASK_ALL)
2492 {
2493 val = bl->owner->ops->insert_location (bl);
2494 }
2495 if (e.reason < 0)
2496 {
2497 val = 1;
2498 hw_bp_err_string = (char *) e.message;
2499 }
2500 }
2501 else
2502 {
2503 /* This breakpoint is in an overlay section.
2504 Shall we set a breakpoint at the LMA? */
2505 if (!overlay_events_enabled)
2506 {
2507 /* Yes -- overlay event support is not active,
2508 so we must try to set a breakpoint at the LMA.
2509 This will not work for a hardware breakpoint. */
2510 if (bl->loc_type == bp_loc_hardware_breakpoint)
2511 warning (_("hardware breakpoint %d not supported in overlay!"),
2512 bl->owner->number);
2513 else
2514 {
2515 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2516 bl->section);
2517 /* Set a software (trap) breakpoint at the LMA. */
2518 bl->overlay_target_info = bl->target_info;
2519 bl->overlay_target_info.placed_address = addr;
2520 val = target_insert_breakpoint (bl->gdbarch,
2521 &bl->overlay_target_info);
2522 if (val != 0)
2523 fprintf_unfiltered (tmp_error_stream,
2524 "Overlay breakpoint %d "
2525 "failed: in ROM?\n",
2526 bl->owner->number);
2527 }
2528 }
2529 /* Shall we set a breakpoint at the VMA? */
2530 if (section_is_mapped (bl->section))
2531 {
2532 /* Yes. This overlay section is mapped into memory. */
2533 TRY_CATCH (e, RETURN_MASK_ALL)
2534 {
2535 val = bl->owner->ops->insert_location (bl);
2536 }
2537 if (e.reason < 0)
2538 {
2539 val = 1;
2540 hw_bp_err_string = (char *) e.message;
2541 }
2542 }
2543 else
2544 {
2545 /* No. This breakpoint will not be inserted.
2546 No error, but do not mark the bp as 'inserted'. */
2547 return 0;
2548 }
2549 }
2550
2551 if (val)
2552 {
2553 /* Can't set the breakpoint. */
2554 if (solib_name_from_address (bl->pspace, bl->address))
2555 {
2556 /* See also: disable_breakpoints_in_shlibs. */
2557 val = 0;
2558 bl->shlib_disabled = 1;
2559 observer_notify_breakpoint_modified (bl->owner);
2560 if (!*disabled_breaks)
2561 {
2562 fprintf_unfiltered (tmp_error_stream,
2563 "Cannot insert breakpoint %d.\n",
2564 bl->owner->number);
2565 fprintf_unfiltered (tmp_error_stream,
2566 "Temporarily disabling shared "
2567 "library breakpoints:\n");
2568 }
2569 *disabled_breaks = 1;
2570 fprintf_unfiltered (tmp_error_stream,
2571 "breakpoint #%d\n", bl->owner->number);
2572 }
2573 else
2574 {
2575 if (bl->loc_type == bp_loc_hardware_breakpoint)
2576 {
2577 *hw_breakpoint_error = 1;
2578 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2579 fprintf_unfiltered (tmp_error_stream,
2580 "Cannot insert hardware breakpoint %d%s",
2581 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2582 if (hw_bp_err_string)
2583 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2584 }
2585 else
2586 {
2587 char *message = memory_error_message (TARGET_XFER_E_IO,
2588 bl->gdbarch, bl->address);
2589 struct cleanup *old_chain = make_cleanup (xfree, message);
2590
2591 fprintf_unfiltered (tmp_error_stream,
2592 "Cannot insert breakpoint %d.\n"
2593 "%s\n",
2594 bl->owner->number, message);
2595
2596 do_cleanups (old_chain);
2597 }
2598
2599 }
2600 }
2601 else
2602 bl->inserted = 1;
2603
2604 return val;
2605 }
2606
2607 else if (bl->loc_type == bp_loc_hardware_watchpoint
2608 /* NOTE drow/2003-09-08: This state only exists for removing
2609 watchpoints. It's not clear that it's necessary... */
2610 && bl->owner->disposition != disp_del_at_next_stop)
2611 {
2612 gdb_assert (bl->owner->ops != NULL
2613 && bl->owner->ops->insert_location != NULL);
2614
2615 val = bl->owner->ops->insert_location (bl);
2616
2617 /* If trying to set a read-watchpoint, and it turns out it's not
2618 supported, try emulating one with an access watchpoint. */
2619 if (val == 1 && bl->watchpoint_type == hw_read)
2620 {
2621 struct bp_location *loc, **loc_temp;
2622
2623 /* But don't try to insert it, if there's already another
2624 hw_access location that would be considered a duplicate
2625 of this one. */
2626 ALL_BP_LOCATIONS (loc, loc_temp)
2627 if (loc != bl
2628 && loc->watchpoint_type == hw_access
2629 && watchpoint_locations_match (bl, loc))
2630 {
2631 bl->duplicate = 1;
2632 bl->inserted = 1;
2633 bl->target_info = loc->target_info;
2634 bl->watchpoint_type = hw_access;
2635 val = 0;
2636 break;
2637 }
2638
2639 if (val == 1)
2640 {
2641 bl->watchpoint_type = hw_access;
2642 val = bl->owner->ops->insert_location (bl);
2643
2644 if (val)
2645 /* Back to the original value. */
2646 bl->watchpoint_type = hw_read;
2647 }
2648 }
2649
2650 bl->inserted = (val == 0);
2651 }
2652
2653 else if (bl->owner->type == bp_catchpoint)
2654 {
2655 gdb_assert (bl->owner->ops != NULL
2656 && bl->owner->ops->insert_location != NULL);
2657
2658 val = bl->owner->ops->insert_location (bl);
2659 if (val)
2660 {
2661 bl->owner->enable_state = bp_disabled;
2662
2663 if (val == 1)
2664 warning (_("\
2665 Error inserting catchpoint %d: Your system does not support this type\n\
2666 of catchpoint."), bl->owner->number);
2667 else
2668 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2669 }
2670
2671 bl->inserted = (val == 0);
2672
2673 /* We've already printed an error message if there was a problem
2674 inserting this catchpoint, and we've disabled the catchpoint,
2675 so just return success. */
2676 return 0;
2677 }
2678
2679 return 0;
2680 }
2681
2682 /* This function is called when program space PSPACE is about to be
2683 deleted. It takes care of updating breakpoints to not reference
2684 PSPACE anymore. */
2685
2686 void
2687 breakpoint_program_space_exit (struct program_space *pspace)
2688 {
2689 struct breakpoint *b, *b_temp;
2690 struct bp_location *loc, **loc_temp;
2691
2692 /* Remove any breakpoint that was set through this program space. */
2693 ALL_BREAKPOINTS_SAFE (b, b_temp)
2694 {
2695 if (b->pspace == pspace)
2696 delete_breakpoint (b);
2697 }
2698
2699 /* Breakpoints set through other program spaces could have locations
2700 bound to PSPACE as well. Remove those. */
2701 ALL_BP_LOCATIONS (loc, loc_temp)
2702 {
2703 struct bp_location *tmp;
2704
2705 if (loc->pspace == pspace)
2706 {
2707 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2708 if (loc->owner->loc == loc)
2709 loc->owner->loc = loc->next;
2710 else
2711 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2712 if (tmp->next == loc)
2713 {
2714 tmp->next = loc->next;
2715 break;
2716 }
2717 }
2718 }
2719
2720 /* Now update the global location list to permanently delete the
2721 removed locations above. */
2722 update_global_location_list (0);
2723 }
2724
2725 /* Make sure all breakpoints are inserted in inferior.
2726 Throws exception on any error.
2727 A breakpoint that is already inserted won't be inserted
2728 again, so calling this function twice is safe. */
2729 void
2730 insert_breakpoints (void)
2731 {
2732 struct breakpoint *bpt;
2733
2734 ALL_BREAKPOINTS (bpt)
2735 if (is_hardware_watchpoint (bpt))
2736 {
2737 struct watchpoint *w = (struct watchpoint *) bpt;
2738
2739 update_watchpoint (w, 0 /* don't reparse. */);
2740 }
2741
2742 update_global_location_list (1);
2743
2744 /* update_global_location_list does not insert breakpoints when
2745 always_inserted_mode is not enabled. Explicitly insert them
2746 now. */
2747 if (!breakpoints_always_inserted_mode ())
2748 insert_breakpoint_locations ();
2749 }
2750
2751 /* Invoke CALLBACK for each of bp_location. */
2752
2753 void
2754 iterate_over_bp_locations (walk_bp_location_callback callback)
2755 {
2756 struct bp_location *loc, **loc_tmp;
2757
2758 ALL_BP_LOCATIONS (loc, loc_tmp)
2759 {
2760 callback (loc, NULL);
2761 }
2762 }
2763
2764 /* This is used when we need to synch breakpoint conditions between GDB and the
2765 target. It is the case with deleting and disabling of breakpoints when using
2766 always-inserted mode. */
2767
2768 static void
2769 update_inserted_breakpoint_locations (void)
2770 {
2771 struct bp_location *bl, **blp_tmp;
2772 int error_flag = 0;
2773 int val = 0;
2774 int disabled_breaks = 0;
2775 int hw_breakpoint_error = 0;
2776 int hw_bp_details_reported = 0;
2777
2778 struct ui_file *tmp_error_stream = mem_fileopen ();
2779 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2780
2781 /* Explicitly mark the warning -- this will only be printed if
2782 there was an error. */
2783 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2784
2785 save_current_space_and_thread ();
2786
2787 ALL_BP_LOCATIONS (bl, blp_tmp)
2788 {
2789 /* We only want to update software breakpoints and hardware
2790 breakpoints. */
2791 if (!is_breakpoint (bl->owner))
2792 continue;
2793
2794 /* We only want to update locations that are already inserted
2795 and need updating. This is to avoid unwanted insertion during
2796 deletion of breakpoints. */
2797 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2798 continue;
2799
2800 switch_to_program_space_and_thread (bl->pspace);
2801
2802 /* For targets that support global breakpoints, there's no need
2803 to select an inferior to insert breakpoint to. In fact, even
2804 if we aren't attached to any process yet, we should still
2805 insert breakpoints. */
2806 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2807 && ptid_equal (inferior_ptid, null_ptid))
2808 continue;
2809
2810 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2811 &hw_breakpoint_error, &hw_bp_details_reported);
2812 if (val)
2813 error_flag = val;
2814 }
2815
2816 if (error_flag)
2817 {
2818 target_terminal_ours_for_output ();
2819 error_stream (tmp_error_stream);
2820 }
2821
2822 do_cleanups (cleanups);
2823 }
2824
2825 /* Used when starting or continuing the program. */
2826
2827 static void
2828 insert_breakpoint_locations (void)
2829 {
2830 struct breakpoint *bpt;
2831 struct bp_location *bl, **blp_tmp;
2832 int error_flag = 0;
2833 int val = 0;
2834 int disabled_breaks = 0;
2835 int hw_breakpoint_error = 0;
2836 int hw_bp_error_explained_already = 0;
2837
2838 struct ui_file *tmp_error_stream = mem_fileopen ();
2839 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2840
2841 /* Explicitly mark the warning -- this will only be printed if
2842 there was an error. */
2843 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2844
2845 save_current_space_and_thread ();
2846
2847 ALL_BP_LOCATIONS (bl, blp_tmp)
2848 {
2849 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2850 continue;
2851
2852 /* There is no point inserting thread-specific breakpoints if
2853 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2854 has BL->OWNER always non-NULL. */
2855 if (bl->owner->thread != -1
2856 && !valid_thread_id (bl->owner->thread))
2857 continue;
2858
2859 switch_to_program_space_and_thread (bl->pspace);
2860
2861 /* For targets that support global breakpoints, there's no need
2862 to select an inferior to insert breakpoint to. In fact, even
2863 if we aren't attached to any process yet, we should still
2864 insert breakpoints. */
2865 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2866 && ptid_equal (inferior_ptid, null_ptid))
2867 continue;
2868
2869 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2870 &hw_breakpoint_error, &hw_bp_error_explained_already);
2871 if (val)
2872 error_flag = val;
2873 }
2874
2875 /* If we failed to insert all locations of a watchpoint, remove
2876 them, as half-inserted watchpoint is of limited use. */
2877 ALL_BREAKPOINTS (bpt)
2878 {
2879 int some_failed = 0;
2880 struct bp_location *loc;
2881
2882 if (!is_hardware_watchpoint (bpt))
2883 continue;
2884
2885 if (!breakpoint_enabled (bpt))
2886 continue;
2887
2888 if (bpt->disposition == disp_del_at_next_stop)
2889 continue;
2890
2891 for (loc = bpt->loc; loc; loc = loc->next)
2892 if (!loc->inserted && should_be_inserted (loc))
2893 {
2894 some_failed = 1;
2895 break;
2896 }
2897 if (some_failed)
2898 {
2899 for (loc = bpt->loc; loc; loc = loc->next)
2900 if (loc->inserted)
2901 remove_breakpoint (loc, mark_uninserted);
2902
2903 hw_breakpoint_error = 1;
2904 fprintf_unfiltered (tmp_error_stream,
2905 "Could not insert hardware watchpoint %d.\n",
2906 bpt->number);
2907 error_flag = -1;
2908 }
2909 }
2910
2911 if (error_flag)
2912 {
2913 /* If a hardware breakpoint or watchpoint was inserted, add a
2914 message about possibly exhausted resources. */
2915 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2916 {
2917 fprintf_unfiltered (tmp_error_stream,
2918 "Could not insert hardware breakpoints:\n\
2919 You may have requested too many hardware breakpoints/watchpoints.\n");
2920 }
2921 target_terminal_ours_for_output ();
2922 error_stream (tmp_error_stream);
2923 }
2924
2925 do_cleanups (cleanups);
2926 }
2927
2928 /* Used when the program stops.
2929 Returns zero if successful, or non-zero if there was a problem
2930 removing a breakpoint location. */
2931
2932 int
2933 remove_breakpoints (void)
2934 {
2935 struct bp_location *bl, **blp_tmp;
2936 int val = 0;
2937
2938 ALL_BP_LOCATIONS (bl, blp_tmp)
2939 {
2940 if (bl->inserted && !is_tracepoint (bl->owner))
2941 val |= remove_breakpoint (bl, mark_uninserted);
2942 }
2943 return val;
2944 }
2945
2946 /* When a thread exits, remove breakpoints that are related to
2947 that thread. */
2948
2949 static void
2950 remove_threaded_breakpoints (struct thread_info *tp, int silent)
2951 {
2952 struct breakpoint *b, *b_tmp;
2953
2954 ALL_BREAKPOINTS_SAFE (b, b_tmp)
2955 {
2956 if (b->thread == tp->num && user_breakpoint_p (b))
2957 {
2958 b->disposition = disp_del_at_next_stop;
2959
2960 printf_filtered (_("\
2961 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
2962 b->number, tp->num);
2963
2964 /* Hide it from the user. */
2965 b->number = 0;
2966 }
2967 }
2968 }
2969
2970 /* Remove breakpoints of process PID. */
2971
2972 int
2973 remove_breakpoints_pid (int pid)
2974 {
2975 struct bp_location *bl, **blp_tmp;
2976 int val;
2977 struct inferior *inf = find_inferior_pid (pid);
2978
2979 ALL_BP_LOCATIONS (bl, blp_tmp)
2980 {
2981 if (bl->pspace != inf->pspace)
2982 continue;
2983
2984 if (bl->owner->type == bp_dprintf)
2985 continue;
2986
2987 if (bl->inserted)
2988 {
2989 val = remove_breakpoint (bl, mark_uninserted);
2990 if (val != 0)
2991 return val;
2992 }
2993 }
2994 return 0;
2995 }
2996
2997 int
2998 reattach_breakpoints (int pid)
2999 {
3000 struct cleanup *old_chain;
3001 struct bp_location *bl, **blp_tmp;
3002 int val;
3003 struct ui_file *tmp_error_stream;
3004 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3005 struct inferior *inf;
3006 struct thread_info *tp;
3007
3008 tp = any_live_thread_of_process (pid);
3009 if (tp == NULL)
3010 return 1;
3011
3012 inf = find_inferior_pid (pid);
3013 old_chain = save_inferior_ptid ();
3014
3015 inferior_ptid = tp->ptid;
3016
3017 tmp_error_stream = mem_fileopen ();
3018 make_cleanup_ui_file_delete (tmp_error_stream);
3019
3020 ALL_BP_LOCATIONS (bl, blp_tmp)
3021 {
3022 if (bl->pspace != inf->pspace)
3023 continue;
3024
3025 if (bl->inserted)
3026 {
3027 bl->inserted = 0;
3028 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3029 if (val != 0)
3030 {
3031 do_cleanups (old_chain);
3032 return val;
3033 }
3034 }
3035 }
3036 do_cleanups (old_chain);
3037 return 0;
3038 }
3039
3040 static int internal_breakpoint_number = -1;
3041
3042 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3043 If INTERNAL is non-zero, the breakpoint number will be populated
3044 from internal_breakpoint_number and that variable decremented.
3045 Otherwise the breakpoint number will be populated from
3046 breakpoint_count and that value incremented. Internal breakpoints
3047 do not set the internal var bpnum. */
3048 static void
3049 set_breakpoint_number (int internal, struct breakpoint *b)
3050 {
3051 if (internal)
3052 b->number = internal_breakpoint_number--;
3053 else
3054 {
3055 set_breakpoint_count (breakpoint_count + 1);
3056 b->number = breakpoint_count;
3057 }
3058 }
3059
3060 static struct breakpoint *
3061 create_internal_breakpoint (struct gdbarch *gdbarch,
3062 CORE_ADDR address, enum bptype type,
3063 const struct breakpoint_ops *ops)
3064 {
3065 struct symtab_and_line sal;
3066 struct breakpoint *b;
3067
3068 init_sal (&sal); /* Initialize to zeroes. */
3069
3070 sal.pc = address;
3071 sal.section = find_pc_overlay (sal.pc);
3072 sal.pspace = current_program_space;
3073
3074 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3075 b->number = internal_breakpoint_number--;
3076 b->disposition = disp_donttouch;
3077
3078 return b;
3079 }
3080
3081 static const char *const longjmp_names[] =
3082 {
3083 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3084 };
3085 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3086
3087 /* Per-objfile data private to breakpoint.c. */
3088 struct breakpoint_objfile_data
3089 {
3090 /* Minimal symbol for "_ovly_debug_event" (if any). */
3091 struct minimal_symbol *overlay_msym;
3092
3093 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3094 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3095
3096 /* True if we have looked for longjmp probes. */
3097 int longjmp_searched;
3098
3099 /* SystemTap probe points for longjmp (if any). */
3100 VEC (probe_p) *longjmp_probes;
3101
3102 /* Minimal symbol for "std::terminate()" (if any). */
3103 struct minimal_symbol *terminate_msym;
3104
3105 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3106 struct minimal_symbol *exception_msym;
3107
3108 /* True if we have looked for exception probes. */
3109 int exception_searched;
3110
3111 /* SystemTap probe points for unwinding (if any). */
3112 VEC (probe_p) *exception_probes;
3113 };
3114
3115 static const struct objfile_data *breakpoint_objfile_key;
3116
3117 /* Minimal symbol not found sentinel. */
3118 static struct minimal_symbol msym_not_found;
3119
3120 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3121
3122 static int
3123 msym_not_found_p (const struct minimal_symbol *msym)
3124 {
3125 return msym == &msym_not_found;
3126 }
3127
3128 /* Return per-objfile data needed by breakpoint.c.
3129 Allocate the data if necessary. */
3130
3131 static struct breakpoint_objfile_data *
3132 get_breakpoint_objfile_data (struct objfile *objfile)
3133 {
3134 struct breakpoint_objfile_data *bp_objfile_data;
3135
3136 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3137 if (bp_objfile_data == NULL)
3138 {
3139 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3140 sizeof (*bp_objfile_data));
3141
3142 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3143 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3144 }
3145 return bp_objfile_data;
3146 }
3147
3148 static void
3149 free_breakpoint_probes (struct objfile *obj, void *data)
3150 {
3151 struct breakpoint_objfile_data *bp_objfile_data = data;
3152
3153 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3154 VEC_free (probe_p, bp_objfile_data->exception_probes);
3155 }
3156
3157 static void
3158 create_overlay_event_breakpoint (void)
3159 {
3160 struct objfile *objfile;
3161 const char *const func_name = "_ovly_debug_event";
3162
3163 ALL_OBJFILES (objfile)
3164 {
3165 struct breakpoint *b;
3166 struct breakpoint_objfile_data *bp_objfile_data;
3167 CORE_ADDR addr;
3168
3169 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3170
3171 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3172 continue;
3173
3174 if (bp_objfile_data->overlay_msym == NULL)
3175 {
3176 struct minimal_symbol *m;
3177
3178 m = lookup_minimal_symbol_text (func_name, objfile);
3179 if (m == NULL)
3180 {
3181 /* Avoid future lookups in this objfile. */
3182 bp_objfile_data->overlay_msym = &msym_not_found;
3183 continue;
3184 }
3185 bp_objfile_data->overlay_msym = m;
3186 }
3187
3188 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3189 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3190 bp_overlay_event,
3191 &internal_breakpoint_ops);
3192 b->addr_string = xstrdup (func_name);
3193
3194 if (overlay_debugging == ovly_auto)
3195 {
3196 b->enable_state = bp_enabled;
3197 overlay_events_enabled = 1;
3198 }
3199 else
3200 {
3201 b->enable_state = bp_disabled;
3202 overlay_events_enabled = 0;
3203 }
3204 }
3205 update_global_location_list (1);
3206 }
3207
3208 static void
3209 create_longjmp_master_breakpoint (void)
3210 {
3211 struct program_space *pspace;
3212 struct cleanup *old_chain;
3213
3214 old_chain = save_current_program_space ();
3215
3216 ALL_PSPACES (pspace)
3217 {
3218 struct objfile *objfile;
3219
3220 set_current_program_space (pspace);
3221
3222 ALL_OBJFILES (objfile)
3223 {
3224 int i;
3225 struct gdbarch *gdbarch;
3226 struct breakpoint_objfile_data *bp_objfile_data;
3227
3228 gdbarch = get_objfile_arch (objfile);
3229
3230 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3231
3232 if (!bp_objfile_data->longjmp_searched)
3233 {
3234 VEC (probe_p) *ret;
3235
3236 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3237 if (ret != NULL)
3238 {
3239 /* We are only interested in checking one element. */
3240 struct probe *p = VEC_index (probe_p, ret, 0);
3241
3242 if (!can_evaluate_probe_arguments (p))
3243 {
3244 /* We cannot use the probe interface here, because it does
3245 not know how to evaluate arguments. */
3246 VEC_free (probe_p, ret);
3247 ret = NULL;
3248 }
3249 }
3250 bp_objfile_data->longjmp_probes = ret;
3251 bp_objfile_data->longjmp_searched = 1;
3252 }
3253
3254 if (bp_objfile_data->longjmp_probes != NULL)
3255 {
3256 int i;
3257 struct probe *probe;
3258 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3259
3260 for (i = 0;
3261 VEC_iterate (probe_p,
3262 bp_objfile_data->longjmp_probes,
3263 i, probe);
3264 ++i)
3265 {
3266 struct breakpoint *b;
3267
3268 b = create_internal_breakpoint (gdbarch, probe->address,
3269 bp_longjmp_master,
3270 &internal_breakpoint_ops);
3271 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3272 b->enable_state = bp_disabled;
3273 }
3274
3275 continue;
3276 }
3277
3278 if (!gdbarch_get_longjmp_target_p (gdbarch))
3279 continue;
3280
3281 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3282 {
3283 struct breakpoint *b;
3284 const char *func_name;
3285 CORE_ADDR addr;
3286
3287 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3288 continue;
3289
3290 func_name = longjmp_names[i];
3291 if (bp_objfile_data->longjmp_msym[i] == NULL)
3292 {
3293 struct minimal_symbol *m;
3294
3295 m = lookup_minimal_symbol_text (func_name, objfile);
3296 if (m == NULL)
3297 {
3298 /* Prevent future lookups in this objfile. */
3299 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3300 continue;
3301 }
3302 bp_objfile_data->longjmp_msym[i] = m;
3303 }
3304
3305 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3306 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3307 &internal_breakpoint_ops);
3308 b->addr_string = xstrdup (func_name);
3309 b->enable_state = bp_disabled;
3310 }
3311 }
3312 }
3313 update_global_location_list (1);
3314
3315 do_cleanups (old_chain);
3316 }
3317
3318 /* Create a master std::terminate breakpoint. */
3319 static void
3320 create_std_terminate_master_breakpoint (void)
3321 {
3322 struct program_space *pspace;
3323 struct cleanup *old_chain;
3324 const char *const func_name = "std::terminate()";
3325
3326 old_chain = save_current_program_space ();
3327
3328 ALL_PSPACES (pspace)
3329 {
3330 struct objfile *objfile;
3331 CORE_ADDR addr;
3332
3333 set_current_program_space (pspace);
3334
3335 ALL_OBJFILES (objfile)
3336 {
3337 struct breakpoint *b;
3338 struct breakpoint_objfile_data *bp_objfile_data;
3339
3340 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3341
3342 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3343 continue;
3344
3345 if (bp_objfile_data->terminate_msym == NULL)
3346 {
3347 struct minimal_symbol *m;
3348
3349 m = lookup_minimal_symbol (func_name, NULL, objfile);
3350 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3351 && MSYMBOL_TYPE (m) != mst_file_text))
3352 {
3353 /* Prevent future lookups in this objfile. */
3354 bp_objfile_data->terminate_msym = &msym_not_found;
3355 continue;
3356 }
3357 bp_objfile_data->terminate_msym = m;
3358 }
3359
3360 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3361 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3362 bp_std_terminate_master,
3363 &internal_breakpoint_ops);
3364 b->addr_string = xstrdup (func_name);
3365 b->enable_state = bp_disabled;
3366 }
3367 }
3368
3369 update_global_location_list (1);
3370
3371 do_cleanups (old_chain);
3372 }
3373
3374 /* Install a master breakpoint on the unwinder's debug hook. */
3375
3376 static void
3377 create_exception_master_breakpoint (void)
3378 {
3379 struct objfile *objfile;
3380 const char *const func_name = "_Unwind_DebugHook";
3381
3382 ALL_OBJFILES (objfile)
3383 {
3384 struct breakpoint *b;
3385 struct gdbarch *gdbarch;
3386 struct breakpoint_objfile_data *bp_objfile_data;
3387 CORE_ADDR addr;
3388
3389 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3390
3391 /* We prefer the SystemTap probe point if it exists. */
3392 if (!bp_objfile_data->exception_searched)
3393 {
3394 VEC (probe_p) *ret;
3395
3396 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3397
3398 if (ret != NULL)
3399 {
3400 /* We are only interested in checking one element. */
3401 struct probe *p = VEC_index (probe_p, ret, 0);
3402
3403 if (!can_evaluate_probe_arguments (p))
3404 {
3405 /* We cannot use the probe interface here, because it does
3406 not know how to evaluate arguments. */
3407 VEC_free (probe_p, ret);
3408 ret = NULL;
3409 }
3410 }
3411 bp_objfile_data->exception_probes = ret;
3412 bp_objfile_data->exception_searched = 1;
3413 }
3414
3415 if (bp_objfile_data->exception_probes != NULL)
3416 {
3417 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3418 int i;
3419 struct probe *probe;
3420
3421 for (i = 0;
3422 VEC_iterate (probe_p,
3423 bp_objfile_data->exception_probes,
3424 i, probe);
3425 ++i)
3426 {
3427 struct breakpoint *b;
3428
3429 b = create_internal_breakpoint (gdbarch, probe->address,
3430 bp_exception_master,
3431 &internal_breakpoint_ops);
3432 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3433 b->enable_state = bp_disabled;
3434 }
3435
3436 continue;
3437 }
3438
3439 /* Otherwise, try the hook function. */
3440
3441 if (msym_not_found_p (bp_objfile_data->exception_msym))
3442 continue;
3443
3444 gdbarch = get_objfile_arch (objfile);
3445
3446 if (bp_objfile_data->exception_msym == NULL)
3447 {
3448 struct minimal_symbol *debug_hook;
3449
3450 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3451 if (debug_hook == NULL)
3452 {
3453 bp_objfile_data->exception_msym = &msym_not_found;
3454 continue;
3455 }
3456
3457 bp_objfile_data->exception_msym = debug_hook;
3458 }
3459
3460 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3461 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3462 &current_target);
3463 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3464 &internal_breakpoint_ops);
3465 b->addr_string = xstrdup (func_name);
3466 b->enable_state = bp_disabled;
3467 }
3468
3469 update_global_location_list (1);
3470 }
3471
3472 void
3473 update_breakpoints_after_exec (void)
3474 {
3475 struct breakpoint *b, *b_tmp;
3476 struct bp_location *bploc, **bplocp_tmp;
3477
3478 /* We're about to delete breakpoints from GDB's lists. If the
3479 INSERTED flag is true, GDB will try to lift the breakpoints by
3480 writing the breakpoints' "shadow contents" back into memory. The
3481 "shadow contents" are NOT valid after an exec, so GDB should not
3482 do that. Instead, the target is responsible from marking
3483 breakpoints out as soon as it detects an exec. We don't do that
3484 here instead, because there may be other attempts to delete
3485 breakpoints after detecting an exec and before reaching here. */
3486 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3487 if (bploc->pspace == current_program_space)
3488 gdb_assert (!bploc->inserted);
3489
3490 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3491 {
3492 if (b->pspace != current_program_space)
3493 continue;
3494
3495 /* Solib breakpoints must be explicitly reset after an exec(). */
3496 if (b->type == bp_shlib_event)
3497 {
3498 delete_breakpoint (b);
3499 continue;
3500 }
3501
3502 /* JIT breakpoints must be explicitly reset after an exec(). */
3503 if (b->type == bp_jit_event)
3504 {
3505 delete_breakpoint (b);
3506 continue;
3507 }
3508
3509 /* Thread event breakpoints must be set anew after an exec(),
3510 as must overlay event and longjmp master breakpoints. */
3511 if (b->type == bp_thread_event || b->type == bp_overlay_event
3512 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3513 || b->type == bp_exception_master)
3514 {
3515 delete_breakpoint (b);
3516 continue;
3517 }
3518
3519 /* Step-resume breakpoints are meaningless after an exec(). */
3520 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3521 {
3522 delete_breakpoint (b);
3523 continue;
3524 }
3525
3526 /* Longjmp and longjmp-resume breakpoints are also meaningless
3527 after an exec. */
3528 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3529 || b->type == bp_longjmp_call_dummy
3530 || b->type == bp_exception || b->type == bp_exception_resume)
3531 {
3532 delete_breakpoint (b);
3533 continue;
3534 }
3535
3536 if (b->type == bp_catchpoint)
3537 {
3538 /* For now, none of the bp_catchpoint breakpoints need to
3539 do anything at this point. In the future, if some of
3540 the catchpoints need to something, we will need to add
3541 a new method, and call this method from here. */
3542 continue;
3543 }
3544
3545 /* bp_finish is a special case. The only way we ought to be able
3546 to see one of these when an exec() has happened, is if the user
3547 caught a vfork, and then said "finish". Ordinarily a finish just
3548 carries them to the call-site of the current callee, by setting
3549 a temporary bp there and resuming. But in this case, the finish
3550 will carry them entirely through the vfork & exec.
3551
3552 We don't want to allow a bp_finish to remain inserted now. But
3553 we can't safely delete it, 'cause finish_command has a handle to
3554 the bp on a bpstat, and will later want to delete it. There's a
3555 chance (and I've seen it happen) that if we delete the bp_finish
3556 here, that its storage will get reused by the time finish_command
3557 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3558 We really must allow finish_command to delete a bp_finish.
3559
3560 In the absence of a general solution for the "how do we know
3561 it's safe to delete something others may have handles to?"
3562 problem, what we'll do here is just uninsert the bp_finish, and
3563 let finish_command delete it.
3564
3565 (We know the bp_finish is "doomed" in the sense that it's
3566 momentary, and will be deleted as soon as finish_command sees
3567 the inferior stopped. So it doesn't matter that the bp's
3568 address is probably bogus in the new a.out, unlike e.g., the
3569 solib breakpoints.) */
3570
3571 if (b->type == bp_finish)
3572 {
3573 continue;
3574 }
3575
3576 /* Without a symbolic address, we have little hope of the
3577 pre-exec() address meaning the same thing in the post-exec()
3578 a.out. */
3579 if (b->addr_string == NULL)
3580 {
3581 delete_breakpoint (b);
3582 continue;
3583 }
3584 }
3585 /* FIXME what about longjmp breakpoints? Re-create them here? */
3586 create_overlay_event_breakpoint ();
3587 create_longjmp_master_breakpoint ();
3588 create_std_terminate_master_breakpoint ();
3589 create_exception_master_breakpoint ();
3590 }
3591
3592 int
3593 detach_breakpoints (ptid_t ptid)
3594 {
3595 struct bp_location *bl, **blp_tmp;
3596 int val = 0;
3597 struct cleanup *old_chain = save_inferior_ptid ();
3598 struct inferior *inf = current_inferior ();
3599
3600 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3601 error (_("Cannot detach breakpoints of inferior_ptid"));
3602
3603 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3604 inferior_ptid = ptid;
3605 ALL_BP_LOCATIONS (bl, blp_tmp)
3606 {
3607 if (bl->pspace != inf->pspace)
3608 continue;
3609
3610 /* This function must physically remove breakpoints locations
3611 from the specified ptid, without modifying the breakpoint
3612 package's state. Locations of type bp_loc_other are only
3613 maintained at GDB side. So, there is no need to remove
3614 these bp_loc_other locations. Moreover, removing these
3615 would modify the breakpoint package's state. */
3616 if (bl->loc_type == bp_loc_other)
3617 continue;
3618
3619 if (bl->inserted)
3620 val |= remove_breakpoint_1 (bl, mark_inserted);
3621 }
3622
3623 /* Detach single-step breakpoints as well. */
3624 detach_single_step_breakpoints ();
3625
3626 do_cleanups (old_chain);
3627 return val;
3628 }
3629
3630 /* Remove the breakpoint location BL from the current address space.
3631 Note that this is used to detach breakpoints from a child fork.
3632 When we get here, the child isn't in the inferior list, and neither
3633 do we have objects to represent its address space --- we should
3634 *not* look at bl->pspace->aspace here. */
3635
3636 static int
3637 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3638 {
3639 int val;
3640
3641 /* BL is never in moribund_locations by our callers. */
3642 gdb_assert (bl->owner != NULL);
3643
3644 if (bl->owner->enable_state == bp_permanent)
3645 /* Permanent breakpoints cannot be inserted or removed. */
3646 return 0;
3647
3648 /* The type of none suggests that owner is actually deleted.
3649 This should not ever happen. */
3650 gdb_assert (bl->owner->type != bp_none);
3651
3652 if (bl->loc_type == bp_loc_software_breakpoint
3653 || bl->loc_type == bp_loc_hardware_breakpoint)
3654 {
3655 /* "Normal" instruction breakpoint: either the standard
3656 trap-instruction bp (bp_breakpoint), or a
3657 bp_hardware_breakpoint. */
3658
3659 /* First check to see if we have to handle an overlay. */
3660 if (overlay_debugging == ovly_off
3661 || bl->section == NULL
3662 || !(section_is_overlay (bl->section)))
3663 {
3664 /* No overlay handling: just remove the breakpoint. */
3665 val = bl->owner->ops->remove_location (bl);
3666 }
3667 else
3668 {
3669 /* This breakpoint is in an overlay section.
3670 Did we set a breakpoint at the LMA? */
3671 if (!overlay_events_enabled)
3672 {
3673 /* Yes -- overlay event support is not active, so we
3674 should have set a breakpoint at the LMA. Remove it.
3675 */
3676 /* Ignore any failures: if the LMA is in ROM, we will
3677 have already warned when we failed to insert it. */
3678 if (bl->loc_type == bp_loc_hardware_breakpoint)
3679 target_remove_hw_breakpoint (bl->gdbarch,
3680 &bl->overlay_target_info);
3681 else
3682 target_remove_breakpoint (bl->gdbarch,
3683 &bl->overlay_target_info);
3684 }
3685 /* Did we set a breakpoint at the VMA?
3686 If so, we will have marked the breakpoint 'inserted'. */
3687 if (bl->inserted)
3688 {
3689 /* Yes -- remove it. Previously we did not bother to
3690 remove the breakpoint if the section had been
3691 unmapped, but let's not rely on that being safe. We
3692 don't know what the overlay manager might do. */
3693
3694 /* However, we should remove *software* breakpoints only
3695 if the section is still mapped, or else we overwrite
3696 wrong code with the saved shadow contents. */
3697 if (bl->loc_type == bp_loc_hardware_breakpoint
3698 || section_is_mapped (bl->section))
3699 val = bl->owner->ops->remove_location (bl);
3700 else
3701 val = 0;
3702 }
3703 else
3704 {
3705 /* No -- not inserted, so no need to remove. No error. */
3706 val = 0;
3707 }
3708 }
3709
3710 /* In some cases, we might not be able to remove a breakpoint
3711 in a shared library that has already been removed, but we
3712 have not yet processed the shlib unload event. */
3713 if (val && solib_name_from_address (bl->pspace, bl->address))
3714 val = 0;
3715
3716 if (val)
3717 return val;
3718 bl->inserted = (is == mark_inserted);
3719 }
3720 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3721 {
3722 gdb_assert (bl->owner->ops != NULL
3723 && bl->owner->ops->remove_location != NULL);
3724
3725 bl->inserted = (is == mark_inserted);
3726 bl->owner->ops->remove_location (bl);
3727
3728 /* Failure to remove any of the hardware watchpoints comes here. */
3729 if ((is == mark_uninserted) && (bl->inserted))
3730 warning (_("Could not remove hardware watchpoint %d."),
3731 bl->owner->number);
3732 }
3733 else if (bl->owner->type == bp_catchpoint
3734 && breakpoint_enabled (bl->owner)
3735 && !bl->duplicate)
3736 {
3737 gdb_assert (bl->owner->ops != NULL
3738 && bl->owner->ops->remove_location != NULL);
3739
3740 val = bl->owner->ops->remove_location (bl);
3741 if (val)
3742 return val;
3743
3744 bl->inserted = (is == mark_inserted);
3745 }
3746
3747 return 0;
3748 }
3749
3750 static int
3751 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3752 {
3753 int ret;
3754 struct cleanup *old_chain;
3755
3756 /* BL is never in moribund_locations by our callers. */
3757 gdb_assert (bl->owner != NULL);
3758
3759 if (bl->owner->enable_state == bp_permanent)
3760 /* Permanent breakpoints cannot be inserted or removed. */
3761 return 0;
3762
3763 /* The type of none suggests that owner is actually deleted.
3764 This should not ever happen. */
3765 gdb_assert (bl->owner->type != bp_none);
3766
3767 old_chain = save_current_space_and_thread ();
3768
3769 switch_to_program_space_and_thread (bl->pspace);
3770
3771 ret = remove_breakpoint_1 (bl, is);
3772
3773 do_cleanups (old_chain);
3774 return ret;
3775 }
3776
3777 /* Clear the "inserted" flag in all breakpoints. */
3778
3779 void
3780 mark_breakpoints_out (void)
3781 {
3782 struct bp_location *bl, **blp_tmp;
3783
3784 ALL_BP_LOCATIONS (bl, blp_tmp)
3785 if (bl->pspace == current_program_space)
3786 bl->inserted = 0;
3787 }
3788
3789 /* Clear the "inserted" flag in all breakpoints and delete any
3790 breakpoints which should go away between runs of the program.
3791
3792 Plus other such housekeeping that has to be done for breakpoints
3793 between runs.
3794
3795 Note: this function gets called at the end of a run (by
3796 generic_mourn_inferior) and when a run begins (by
3797 init_wait_for_inferior). */
3798
3799
3800
3801 void
3802 breakpoint_init_inferior (enum inf_context context)
3803 {
3804 struct breakpoint *b, *b_tmp;
3805 struct bp_location *bl, **blp_tmp;
3806 int ix;
3807 struct program_space *pspace = current_program_space;
3808
3809 /* If breakpoint locations are shared across processes, then there's
3810 nothing to do. */
3811 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3812 return;
3813
3814 ALL_BP_LOCATIONS (bl, blp_tmp)
3815 {
3816 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3817 if (bl->pspace == pspace
3818 && bl->owner->enable_state != bp_permanent)
3819 bl->inserted = 0;
3820 }
3821
3822 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3823 {
3824 if (b->loc && b->loc->pspace != pspace)
3825 continue;
3826
3827 switch (b->type)
3828 {
3829 case bp_call_dummy:
3830 case bp_longjmp_call_dummy:
3831
3832 /* If the call dummy breakpoint is at the entry point it will
3833 cause problems when the inferior is rerun, so we better get
3834 rid of it. */
3835
3836 case bp_watchpoint_scope:
3837
3838 /* Also get rid of scope breakpoints. */
3839
3840 case bp_shlib_event:
3841
3842 /* Also remove solib event breakpoints. Their addresses may
3843 have changed since the last time we ran the program.
3844 Actually we may now be debugging against different target;
3845 and so the solib backend that installed this breakpoint may
3846 not be used in by the target. E.g.,
3847
3848 (gdb) file prog-linux
3849 (gdb) run # native linux target
3850 ...
3851 (gdb) kill
3852 (gdb) file prog-win.exe
3853 (gdb) tar rem :9999 # remote Windows gdbserver.
3854 */
3855
3856 case bp_step_resume:
3857
3858 /* Also remove step-resume breakpoints. */
3859
3860 delete_breakpoint (b);
3861 break;
3862
3863 case bp_watchpoint:
3864 case bp_hardware_watchpoint:
3865 case bp_read_watchpoint:
3866 case bp_access_watchpoint:
3867 {
3868 struct watchpoint *w = (struct watchpoint *) b;
3869
3870 /* Likewise for watchpoints on local expressions. */
3871 if (w->exp_valid_block != NULL)
3872 delete_breakpoint (b);
3873 else if (context == inf_starting)
3874 {
3875 /* Reset val field to force reread of starting value in
3876 insert_breakpoints. */
3877 if (w->val)
3878 value_free (w->val);
3879 w->val = NULL;
3880 w->val_valid = 0;
3881 }
3882 }
3883 break;
3884 default:
3885 break;
3886 }
3887 }
3888
3889 /* Get rid of the moribund locations. */
3890 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3891 decref_bp_location (&bl);
3892 VEC_free (bp_location_p, moribund_locations);
3893 }
3894
3895 /* These functions concern about actual breakpoints inserted in the
3896 target --- to e.g. check if we need to do decr_pc adjustment or if
3897 we need to hop over the bkpt --- so we check for address space
3898 match, not program space. */
3899
3900 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3901 exists at PC. It returns ordinary_breakpoint_here if it's an
3902 ordinary breakpoint, or permanent_breakpoint_here if it's a
3903 permanent breakpoint.
3904 - When continuing from a location with an ordinary breakpoint, we
3905 actually single step once before calling insert_breakpoints.
3906 - When continuing from a location with a permanent breakpoint, we
3907 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3908 the target, to advance the PC past the breakpoint. */
3909
3910 enum breakpoint_here
3911 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3912 {
3913 struct bp_location *bl, **blp_tmp;
3914 int any_breakpoint_here = 0;
3915
3916 ALL_BP_LOCATIONS (bl, blp_tmp)
3917 {
3918 if (bl->loc_type != bp_loc_software_breakpoint
3919 && bl->loc_type != bp_loc_hardware_breakpoint)
3920 continue;
3921
3922 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3923 if ((breakpoint_enabled (bl->owner)
3924 || bl->owner->enable_state == bp_permanent)
3925 && breakpoint_location_address_match (bl, aspace, pc))
3926 {
3927 if (overlay_debugging
3928 && section_is_overlay (bl->section)
3929 && !section_is_mapped (bl->section))
3930 continue; /* unmapped overlay -- can't be a match */
3931 else if (bl->owner->enable_state == bp_permanent)
3932 return permanent_breakpoint_here;
3933 else
3934 any_breakpoint_here = 1;
3935 }
3936 }
3937
3938 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3939 }
3940
3941 /* Return true if there's a moribund breakpoint at PC. */
3942
3943 int
3944 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3945 {
3946 struct bp_location *loc;
3947 int ix;
3948
3949 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3950 if (breakpoint_location_address_match (loc, aspace, pc))
3951 return 1;
3952
3953 return 0;
3954 }
3955
3956 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3957 inserted using regular breakpoint_chain / bp_location array
3958 mechanism. This does not check for single-step breakpoints, which
3959 are inserted and removed using direct target manipulation. */
3960
3961 int
3962 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3963 CORE_ADDR pc)
3964 {
3965 struct bp_location *bl, **blp_tmp;
3966
3967 ALL_BP_LOCATIONS (bl, blp_tmp)
3968 {
3969 if (bl->loc_type != bp_loc_software_breakpoint
3970 && bl->loc_type != bp_loc_hardware_breakpoint)
3971 continue;
3972
3973 if (bl->inserted
3974 && breakpoint_location_address_match (bl, aspace, pc))
3975 {
3976 if (overlay_debugging
3977 && section_is_overlay (bl->section)
3978 && !section_is_mapped (bl->section))
3979 continue; /* unmapped overlay -- can't be a match */
3980 else
3981 return 1;
3982 }
3983 }
3984 return 0;
3985 }
3986
3987 /* Returns non-zero iff there's either regular breakpoint
3988 or a single step breakpoint inserted at PC. */
3989
3990 int
3991 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3992 {
3993 if (regular_breakpoint_inserted_here_p (aspace, pc))
3994 return 1;
3995
3996 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3997 return 1;
3998
3999 return 0;
4000 }
4001
4002 /* This function returns non-zero iff there is a software breakpoint
4003 inserted at PC. */
4004
4005 int
4006 software_breakpoint_inserted_here_p (struct address_space *aspace,
4007 CORE_ADDR pc)
4008 {
4009 struct bp_location *bl, **blp_tmp;
4010
4011 ALL_BP_LOCATIONS (bl, blp_tmp)
4012 {
4013 if (bl->loc_type != bp_loc_software_breakpoint)
4014 continue;
4015
4016 if (bl->inserted
4017 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4018 aspace, pc))
4019 {
4020 if (overlay_debugging
4021 && section_is_overlay (bl->section)
4022 && !section_is_mapped (bl->section))
4023 continue; /* unmapped overlay -- can't be a match */
4024 else
4025 return 1;
4026 }
4027 }
4028
4029 /* Also check for software single-step breakpoints. */
4030 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4031 return 1;
4032
4033 return 0;
4034 }
4035
4036 int
4037 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4038 CORE_ADDR addr, ULONGEST len)
4039 {
4040 struct breakpoint *bpt;
4041
4042 ALL_BREAKPOINTS (bpt)
4043 {
4044 struct bp_location *loc;
4045
4046 if (bpt->type != bp_hardware_watchpoint
4047 && bpt->type != bp_access_watchpoint)
4048 continue;
4049
4050 if (!breakpoint_enabled (bpt))
4051 continue;
4052
4053 for (loc = bpt->loc; loc; loc = loc->next)
4054 if (loc->pspace->aspace == aspace && loc->inserted)
4055 {
4056 CORE_ADDR l, h;
4057
4058 /* Check for intersection. */
4059 l = max (loc->address, addr);
4060 h = min (loc->address + loc->length, addr + len);
4061 if (l < h)
4062 return 1;
4063 }
4064 }
4065 return 0;
4066 }
4067
4068 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4069 PC is valid for process/thread PTID. */
4070
4071 int
4072 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4073 ptid_t ptid)
4074 {
4075 struct bp_location *bl, **blp_tmp;
4076 /* The thread and task IDs associated to PTID, computed lazily. */
4077 int thread = -1;
4078 int task = 0;
4079
4080 ALL_BP_LOCATIONS (bl, blp_tmp)
4081 {
4082 if (bl->loc_type != bp_loc_software_breakpoint
4083 && bl->loc_type != bp_loc_hardware_breakpoint)
4084 continue;
4085
4086 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4087 if (!breakpoint_enabled (bl->owner)
4088 && bl->owner->enable_state != bp_permanent)
4089 continue;
4090
4091 if (!breakpoint_location_address_match (bl, aspace, pc))
4092 continue;
4093
4094 if (bl->owner->thread != -1)
4095 {
4096 /* This is a thread-specific breakpoint. Check that ptid
4097 matches that thread. If thread hasn't been computed yet,
4098 it is now time to do so. */
4099 if (thread == -1)
4100 thread = pid_to_thread_id (ptid);
4101 if (bl->owner->thread != thread)
4102 continue;
4103 }
4104
4105 if (bl->owner->task != 0)
4106 {
4107 /* This is a task-specific breakpoint. Check that ptid
4108 matches that task. If task hasn't been computed yet,
4109 it is now time to do so. */
4110 if (task == 0)
4111 task = ada_get_task_number (ptid);
4112 if (bl->owner->task != task)
4113 continue;
4114 }
4115
4116 if (overlay_debugging
4117 && section_is_overlay (bl->section)
4118 && !section_is_mapped (bl->section))
4119 continue; /* unmapped overlay -- can't be a match */
4120
4121 return 1;
4122 }
4123
4124 return 0;
4125 }
4126 \f
4127
4128 /* bpstat stuff. External routines' interfaces are documented
4129 in breakpoint.h. */
4130
4131 int
4132 is_catchpoint (struct breakpoint *ep)
4133 {
4134 return (ep->type == bp_catchpoint);
4135 }
4136
4137 /* Frees any storage that is part of a bpstat. Does not walk the
4138 'next' chain. */
4139
4140 static void
4141 bpstat_free (bpstat bs)
4142 {
4143 if (bs->old_val != NULL)
4144 value_free (bs->old_val);
4145 decref_counted_command_line (&bs->commands);
4146 decref_bp_location (&bs->bp_location_at);
4147 xfree (bs);
4148 }
4149
4150 /* Clear a bpstat so that it says we are not at any breakpoint.
4151 Also free any storage that is part of a bpstat. */
4152
4153 void
4154 bpstat_clear (bpstat *bsp)
4155 {
4156 bpstat p;
4157 bpstat q;
4158
4159 if (bsp == 0)
4160 return;
4161 p = *bsp;
4162 while (p != NULL)
4163 {
4164 q = p->next;
4165 bpstat_free (p);
4166 p = q;
4167 }
4168 *bsp = NULL;
4169 }
4170
4171 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4172 is part of the bpstat is copied as well. */
4173
4174 bpstat
4175 bpstat_copy (bpstat bs)
4176 {
4177 bpstat p = NULL;
4178 bpstat tmp;
4179 bpstat retval = NULL;
4180
4181 if (bs == NULL)
4182 return bs;
4183
4184 for (; bs != NULL; bs = bs->next)
4185 {
4186 tmp = (bpstat) xmalloc (sizeof (*tmp));
4187 memcpy (tmp, bs, sizeof (*tmp));
4188 incref_counted_command_line (tmp->commands);
4189 incref_bp_location (tmp->bp_location_at);
4190 if (bs->old_val != NULL)
4191 {
4192 tmp->old_val = value_copy (bs->old_val);
4193 release_value (tmp->old_val);
4194 }
4195
4196 if (p == NULL)
4197 /* This is the first thing in the chain. */
4198 retval = tmp;
4199 else
4200 p->next = tmp;
4201 p = tmp;
4202 }
4203 p->next = NULL;
4204 return retval;
4205 }
4206
4207 /* Find the bpstat associated with this breakpoint. */
4208
4209 bpstat
4210 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4211 {
4212 if (bsp == NULL)
4213 return NULL;
4214
4215 for (; bsp != NULL; bsp = bsp->next)
4216 {
4217 if (bsp->breakpoint_at == breakpoint)
4218 return bsp;
4219 }
4220 return NULL;
4221 }
4222
4223 /* See breakpoint.h. */
4224
4225 enum bpstat_signal_value
4226 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4227 {
4228 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4229
4230 for (; bsp != NULL; bsp = bsp->next)
4231 {
4232 /* Ensure that, if we ever entered this loop, then we at least
4233 return BPSTAT_SIGNAL_HIDE. */
4234 enum bpstat_signal_value newval;
4235
4236 if (bsp->breakpoint_at == NULL)
4237 {
4238 /* A moribund location can never explain a signal other than
4239 GDB_SIGNAL_TRAP. */
4240 if (sig == GDB_SIGNAL_TRAP)
4241 newval = BPSTAT_SIGNAL_PASS;
4242 else
4243 newval = BPSTAT_SIGNAL_NO;
4244 }
4245 else
4246 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4247 sig);
4248
4249 if (newval > result)
4250 result = newval;
4251 }
4252
4253 return result;
4254 }
4255
4256 /* Put in *NUM the breakpoint number of the first breakpoint we are
4257 stopped at. *BSP upon return is a bpstat which points to the
4258 remaining breakpoints stopped at (but which is not guaranteed to be
4259 good for anything but further calls to bpstat_num).
4260
4261 Return 0 if passed a bpstat which does not indicate any breakpoints.
4262 Return -1 if stopped at a breakpoint that has been deleted since
4263 we set it.
4264 Return 1 otherwise. */
4265
4266 int
4267 bpstat_num (bpstat *bsp, int *num)
4268 {
4269 struct breakpoint *b;
4270
4271 if ((*bsp) == NULL)
4272 return 0; /* No more breakpoint values */
4273
4274 /* We assume we'll never have several bpstats that correspond to a
4275 single breakpoint -- otherwise, this function might return the
4276 same number more than once and this will look ugly. */
4277 b = (*bsp)->breakpoint_at;
4278 *bsp = (*bsp)->next;
4279 if (b == NULL)
4280 return -1; /* breakpoint that's been deleted since */
4281
4282 *num = b->number; /* We have its number */
4283 return 1;
4284 }
4285
4286 /* See breakpoint.h. */
4287
4288 void
4289 bpstat_clear_actions (void)
4290 {
4291 struct thread_info *tp;
4292 bpstat bs;
4293
4294 if (ptid_equal (inferior_ptid, null_ptid))
4295 return;
4296
4297 tp = find_thread_ptid (inferior_ptid);
4298 if (tp == NULL)
4299 return;
4300
4301 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4302 {
4303 decref_counted_command_line (&bs->commands);
4304
4305 if (bs->old_val != NULL)
4306 {
4307 value_free (bs->old_val);
4308 bs->old_val = NULL;
4309 }
4310 }
4311 }
4312
4313 /* Called when a command is about to proceed the inferior. */
4314
4315 static void
4316 breakpoint_about_to_proceed (void)
4317 {
4318 if (!ptid_equal (inferior_ptid, null_ptid))
4319 {
4320 struct thread_info *tp = inferior_thread ();
4321
4322 /* Allow inferior function calls in breakpoint commands to not
4323 interrupt the command list. When the call finishes
4324 successfully, the inferior will be standing at the same
4325 breakpoint as if nothing happened. */
4326 if (tp->control.in_infcall)
4327 return;
4328 }
4329
4330 breakpoint_proceeded = 1;
4331 }
4332
4333 /* Stub for cleaning up our state if we error-out of a breakpoint
4334 command. */
4335 static void
4336 cleanup_executing_breakpoints (void *ignore)
4337 {
4338 executing_breakpoint_commands = 0;
4339 }
4340
4341 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4342 or its equivalent. */
4343
4344 static int
4345 command_line_is_silent (struct command_line *cmd)
4346 {
4347 return cmd && (strcmp ("silent", cmd->line) == 0
4348 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4349 }
4350
4351 /* Execute all the commands associated with all the breakpoints at
4352 this location. Any of these commands could cause the process to
4353 proceed beyond this point, etc. We look out for such changes by
4354 checking the global "breakpoint_proceeded" after each command.
4355
4356 Returns true if a breakpoint command resumed the inferior. In that
4357 case, it is the caller's responsibility to recall it again with the
4358 bpstat of the current thread. */
4359
4360 static int
4361 bpstat_do_actions_1 (bpstat *bsp)
4362 {
4363 bpstat bs;
4364 struct cleanup *old_chain;
4365 int again = 0;
4366
4367 /* Avoid endless recursion if a `source' command is contained
4368 in bs->commands. */
4369 if (executing_breakpoint_commands)
4370 return 0;
4371
4372 executing_breakpoint_commands = 1;
4373 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4374
4375 prevent_dont_repeat ();
4376
4377 /* This pointer will iterate over the list of bpstat's. */
4378 bs = *bsp;
4379
4380 breakpoint_proceeded = 0;
4381 for (; bs != NULL; bs = bs->next)
4382 {
4383 struct counted_command_line *ccmd;
4384 struct command_line *cmd;
4385 struct cleanup *this_cmd_tree_chain;
4386
4387 /* Take ownership of the BSP's command tree, if it has one.
4388
4389 The command tree could legitimately contain commands like
4390 'step' and 'next', which call clear_proceed_status, which
4391 frees stop_bpstat's command tree. To make sure this doesn't
4392 free the tree we're executing out from under us, we need to
4393 take ownership of the tree ourselves. Since a given bpstat's
4394 commands are only executed once, we don't need to copy it; we
4395 can clear the pointer in the bpstat, and make sure we free
4396 the tree when we're done. */
4397 ccmd = bs->commands;
4398 bs->commands = NULL;
4399 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4400 cmd = ccmd ? ccmd->commands : NULL;
4401 if (command_line_is_silent (cmd))
4402 {
4403 /* The action has been already done by bpstat_stop_status. */
4404 cmd = cmd->next;
4405 }
4406
4407 while (cmd != NULL)
4408 {
4409 execute_control_command (cmd);
4410
4411 if (breakpoint_proceeded)
4412 break;
4413 else
4414 cmd = cmd->next;
4415 }
4416
4417 /* We can free this command tree now. */
4418 do_cleanups (this_cmd_tree_chain);
4419
4420 if (breakpoint_proceeded)
4421 {
4422 if (target_can_async_p ())
4423 /* If we are in async mode, then the target might be still
4424 running, not stopped at any breakpoint, so nothing for
4425 us to do here -- just return to the event loop. */
4426 ;
4427 else
4428 /* In sync mode, when execute_control_command returns
4429 we're already standing on the next breakpoint.
4430 Breakpoint commands for that stop were not run, since
4431 execute_command does not run breakpoint commands --
4432 only command_line_handler does, but that one is not
4433 involved in execution of breakpoint commands. So, we
4434 can now execute breakpoint commands. It should be
4435 noted that making execute_command do bpstat actions is
4436 not an option -- in this case we'll have recursive
4437 invocation of bpstat for each breakpoint with a
4438 command, and can easily blow up GDB stack. Instead, we
4439 return true, which will trigger the caller to recall us
4440 with the new stop_bpstat. */
4441 again = 1;
4442 break;
4443 }
4444 }
4445 do_cleanups (old_chain);
4446 return again;
4447 }
4448
4449 void
4450 bpstat_do_actions (void)
4451 {
4452 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4453
4454 /* Do any commands attached to breakpoint we are stopped at. */
4455 while (!ptid_equal (inferior_ptid, null_ptid)
4456 && target_has_execution
4457 && !is_exited (inferior_ptid)
4458 && !is_executing (inferior_ptid))
4459 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4460 and only return when it is stopped at the next breakpoint, we
4461 keep doing breakpoint actions until it returns false to
4462 indicate the inferior was not resumed. */
4463 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4464 break;
4465
4466 discard_cleanups (cleanup_if_error);
4467 }
4468
4469 /* Print out the (old or new) value associated with a watchpoint. */
4470
4471 static void
4472 watchpoint_value_print (struct value *val, struct ui_file *stream)
4473 {
4474 if (val == NULL)
4475 fprintf_unfiltered (stream, _("<unreadable>"));
4476 else
4477 {
4478 struct value_print_options opts;
4479 get_user_print_options (&opts);
4480 value_print (val, stream, &opts);
4481 }
4482 }
4483
4484 /* Generic routine for printing messages indicating why we
4485 stopped. The behavior of this function depends on the value
4486 'print_it' in the bpstat structure. Under some circumstances we
4487 may decide not to print anything here and delegate the task to
4488 normal_stop(). */
4489
4490 static enum print_stop_action
4491 print_bp_stop_message (bpstat bs)
4492 {
4493 switch (bs->print_it)
4494 {
4495 case print_it_noop:
4496 /* Nothing should be printed for this bpstat entry. */
4497 return PRINT_UNKNOWN;
4498 break;
4499
4500 case print_it_done:
4501 /* We still want to print the frame, but we already printed the
4502 relevant messages. */
4503 return PRINT_SRC_AND_LOC;
4504 break;
4505
4506 case print_it_normal:
4507 {
4508 struct breakpoint *b = bs->breakpoint_at;
4509
4510 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4511 which has since been deleted. */
4512 if (b == NULL)
4513 return PRINT_UNKNOWN;
4514
4515 /* Normal case. Call the breakpoint's print_it method. */
4516 return b->ops->print_it (bs);
4517 }
4518 break;
4519
4520 default:
4521 internal_error (__FILE__, __LINE__,
4522 _("print_bp_stop_message: unrecognized enum value"));
4523 break;
4524 }
4525 }
4526
4527 /* A helper function that prints a shared library stopped event. */
4528
4529 static void
4530 print_solib_event (int is_catchpoint)
4531 {
4532 int any_deleted
4533 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4534 int any_added
4535 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4536
4537 if (!is_catchpoint)
4538 {
4539 if (any_added || any_deleted)
4540 ui_out_text (current_uiout,
4541 _("Stopped due to shared library event:\n"));
4542 else
4543 ui_out_text (current_uiout,
4544 _("Stopped due to shared library event (no "
4545 "libraries added or removed)\n"));
4546 }
4547
4548 if (ui_out_is_mi_like_p (current_uiout))
4549 ui_out_field_string (current_uiout, "reason",
4550 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4551
4552 if (any_deleted)
4553 {
4554 struct cleanup *cleanup;
4555 char *name;
4556 int ix;
4557
4558 ui_out_text (current_uiout, _(" Inferior unloaded "));
4559 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4560 "removed");
4561 for (ix = 0;
4562 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4563 ix, name);
4564 ++ix)
4565 {
4566 if (ix > 0)
4567 ui_out_text (current_uiout, " ");
4568 ui_out_field_string (current_uiout, "library", name);
4569 ui_out_text (current_uiout, "\n");
4570 }
4571
4572 do_cleanups (cleanup);
4573 }
4574
4575 if (any_added)
4576 {
4577 struct so_list *iter;
4578 int ix;
4579 struct cleanup *cleanup;
4580
4581 ui_out_text (current_uiout, _(" Inferior loaded "));
4582 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4583 "added");
4584 for (ix = 0;
4585 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4586 ix, iter);
4587 ++ix)
4588 {
4589 if (ix > 0)
4590 ui_out_text (current_uiout, " ");
4591 ui_out_field_string (current_uiout, "library", iter->so_name);
4592 ui_out_text (current_uiout, "\n");
4593 }
4594
4595 do_cleanups (cleanup);
4596 }
4597 }
4598
4599 /* Print a message indicating what happened. This is called from
4600 normal_stop(). The input to this routine is the head of the bpstat
4601 list - a list of the eventpoints that caused this stop. KIND is
4602 the target_waitkind for the stopping event. This
4603 routine calls the generic print routine for printing a message
4604 about reasons for stopping. This will print (for example) the
4605 "Breakpoint n," part of the output. The return value of this
4606 routine is one of:
4607
4608 PRINT_UNKNOWN: Means we printed nothing.
4609 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4610 code to print the location. An example is
4611 "Breakpoint 1, " which should be followed by
4612 the location.
4613 PRINT_SRC_ONLY: Means we printed something, but there is no need
4614 to also print the location part of the message.
4615 An example is the catch/throw messages, which
4616 don't require a location appended to the end.
4617 PRINT_NOTHING: We have done some printing and we don't need any
4618 further info to be printed. */
4619
4620 enum print_stop_action
4621 bpstat_print (bpstat bs, int kind)
4622 {
4623 int val;
4624
4625 /* Maybe another breakpoint in the chain caused us to stop.
4626 (Currently all watchpoints go on the bpstat whether hit or not.
4627 That probably could (should) be changed, provided care is taken
4628 with respect to bpstat_explains_signal). */
4629 for (; bs; bs = bs->next)
4630 {
4631 val = print_bp_stop_message (bs);
4632 if (val == PRINT_SRC_ONLY
4633 || val == PRINT_SRC_AND_LOC
4634 || val == PRINT_NOTHING)
4635 return val;
4636 }
4637
4638 /* If we had hit a shared library event breakpoint,
4639 print_bp_stop_message would print out this message. If we hit an
4640 OS-level shared library event, do the same thing. */
4641 if (kind == TARGET_WAITKIND_LOADED)
4642 {
4643 print_solib_event (0);
4644 return PRINT_NOTHING;
4645 }
4646
4647 /* We reached the end of the chain, or we got a null BS to start
4648 with and nothing was printed. */
4649 return PRINT_UNKNOWN;
4650 }
4651
4652 /* Evaluate the expression EXP and return 1 if value is zero.
4653 This returns the inverse of the condition because it is called
4654 from catch_errors which returns 0 if an exception happened, and if an
4655 exception happens we want execution to stop.
4656 The argument is a "struct expression *" that has been cast to a
4657 "void *" to make it pass through catch_errors. */
4658
4659 static int
4660 breakpoint_cond_eval (void *exp)
4661 {
4662 struct value *mark = value_mark ();
4663 int i = !value_true (evaluate_expression ((struct expression *) exp));
4664
4665 value_free_to_mark (mark);
4666 return i;
4667 }
4668
4669 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4670
4671 static bpstat
4672 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4673 {
4674 bpstat bs;
4675
4676 bs = (bpstat) xmalloc (sizeof (*bs));
4677 bs->next = NULL;
4678 **bs_link_pointer = bs;
4679 *bs_link_pointer = &bs->next;
4680 bs->breakpoint_at = bl->owner;
4681 bs->bp_location_at = bl;
4682 incref_bp_location (bl);
4683 /* If the condition is false, etc., don't do the commands. */
4684 bs->commands = NULL;
4685 bs->old_val = NULL;
4686 bs->print_it = print_it_normal;
4687 return bs;
4688 }
4689 \f
4690 /* The target has stopped with waitstatus WS. Check if any hardware
4691 watchpoints have triggered, according to the target. */
4692
4693 int
4694 watchpoints_triggered (struct target_waitstatus *ws)
4695 {
4696 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4697 CORE_ADDR addr;
4698 struct breakpoint *b;
4699
4700 if (!stopped_by_watchpoint)
4701 {
4702 /* We were not stopped by a watchpoint. Mark all watchpoints
4703 as not triggered. */
4704 ALL_BREAKPOINTS (b)
4705 if (is_hardware_watchpoint (b))
4706 {
4707 struct watchpoint *w = (struct watchpoint *) b;
4708
4709 w->watchpoint_triggered = watch_triggered_no;
4710 }
4711
4712 return 0;
4713 }
4714
4715 if (!target_stopped_data_address (&current_target, &addr))
4716 {
4717 /* We were stopped by a watchpoint, but we don't know where.
4718 Mark all watchpoints as unknown. */
4719 ALL_BREAKPOINTS (b)
4720 if (is_hardware_watchpoint (b))
4721 {
4722 struct watchpoint *w = (struct watchpoint *) b;
4723
4724 w->watchpoint_triggered = watch_triggered_unknown;
4725 }
4726
4727 return 1;
4728 }
4729
4730 /* The target could report the data address. Mark watchpoints
4731 affected by this data address as triggered, and all others as not
4732 triggered. */
4733
4734 ALL_BREAKPOINTS (b)
4735 if (is_hardware_watchpoint (b))
4736 {
4737 struct watchpoint *w = (struct watchpoint *) b;
4738 struct bp_location *loc;
4739
4740 w->watchpoint_triggered = watch_triggered_no;
4741 for (loc = b->loc; loc; loc = loc->next)
4742 {
4743 if (is_masked_watchpoint (b))
4744 {
4745 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4746 CORE_ADDR start = loc->address & w->hw_wp_mask;
4747
4748 if (newaddr == start)
4749 {
4750 w->watchpoint_triggered = watch_triggered_yes;
4751 break;
4752 }
4753 }
4754 /* Exact match not required. Within range is sufficient. */
4755 else if (target_watchpoint_addr_within_range (&current_target,
4756 addr, loc->address,
4757 loc->length))
4758 {
4759 w->watchpoint_triggered = watch_triggered_yes;
4760 break;
4761 }
4762 }
4763 }
4764
4765 return 1;
4766 }
4767
4768 /* Possible return values for watchpoint_check (this can't be an enum
4769 because of check_errors). */
4770 /* The watchpoint has been deleted. */
4771 #define WP_DELETED 1
4772 /* The value has changed. */
4773 #define WP_VALUE_CHANGED 2
4774 /* The value has not changed. */
4775 #define WP_VALUE_NOT_CHANGED 3
4776 /* Ignore this watchpoint, no matter if the value changed or not. */
4777 #define WP_IGNORE 4
4778
4779 #define BP_TEMPFLAG 1
4780 #define BP_HARDWAREFLAG 2
4781
4782 /* Evaluate watchpoint condition expression and check if its value
4783 changed.
4784
4785 P should be a pointer to struct bpstat, but is defined as a void *
4786 in order for this function to be usable with catch_errors. */
4787
4788 static int
4789 watchpoint_check (void *p)
4790 {
4791 bpstat bs = (bpstat) p;
4792 struct watchpoint *b;
4793 struct frame_info *fr;
4794 int within_current_scope;
4795
4796 /* BS is built from an existing struct breakpoint. */
4797 gdb_assert (bs->breakpoint_at != NULL);
4798 b = (struct watchpoint *) bs->breakpoint_at;
4799
4800 /* If this is a local watchpoint, we only want to check if the
4801 watchpoint frame is in scope if the current thread is the thread
4802 that was used to create the watchpoint. */
4803 if (!watchpoint_in_thread_scope (b))
4804 return WP_IGNORE;
4805
4806 if (b->exp_valid_block == NULL)
4807 within_current_scope = 1;
4808 else
4809 {
4810 struct frame_info *frame = get_current_frame ();
4811 struct gdbarch *frame_arch = get_frame_arch (frame);
4812 CORE_ADDR frame_pc = get_frame_pc (frame);
4813
4814 /* in_function_epilogue_p() returns a non-zero value if we're
4815 still in the function but the stack frame has already been
4816 invalidated. Since we can't rely on the values of local
4817 variables after the stack has been destroyed, we are treating
4818 the watchpoint in that state as `not changed' without further
4819 checking. Don't mark watchpoints as changed if the current
4820 frame is in an epilogue - even if they are in some other
4821 frame, our view of the stack is likely to be wrong and
4822 frame_find_by_id could error out. */
4823 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4824 return WP_IGNORE;
4825
4826 fr = frame_find_by_id (b->watchpoint_frame);
4827 within_current_scope = (fr != NULL);
4828
4829 /* If we've gotten confused in the unwinder, we might have
4830 returned a frame that can't describe this variable. */
4831 if (within_current_scope)
4832 {
4833 struct symbol *function;
4834
4835 function = get_frame_function (fr);
4836 if (function == NULL
4837 || !contained_in (b->exp_valid_block,
4838 SYMBOL_BLOCK_VALUE (function)))
4839 within_current_scope = 0;
4840 }
4841
4842 if (within_current_scope)
4843 /* If we end up stopping, the current frame will get selected
4844 in normal_stop. So this call to select_frame won't affect
4845 the user. */
4846 select_frame (fr);
4847 }
4848
4849 if (within_current_scope)
4850 {
4851 /* We use value_{,free_to_}mark because it could be a *long*
4852 time before we return to the command level and call
4853 free_all_values. We can't call free_all_values because we
4854 might be in the middle of evaluating a function call. */
4855
4856 int pc = 0;
4857 struct value *mark;
4858 struct value *new_val;
4859
4860 if (is_masked_watchpoint (&b->base))
4861 /* Since we don't know the exact trigger address (from
4862 stopped_data_address), just tell the user we've triggered
4863 a mask watchpoint. */
4864 return WP_VALUE_CHANGED;
4865
4866 mark = value_mark ();
4867 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4868
4869 /* We use value_equal_contents instead of value_equal because
4870 the latter coerces an array to a pointer, thus comparing just
4871 the address of the array instead of its contents. This is
4872 not what we want. */
4873 if ((b->val != NULL) != (new_val != NULL)
4874 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4875 {
4876 if (new_val != NULL)
4877 {
4878 release_value (new_val);
4879 value_free_to_mark (mark);
4880 }
4881 bs->old_val = b->val;
4882 b->val = new_val;
4883 b->val_valid = 1;
4884 return WP_VALUE_CHANGED;
4885 }
4886 else
4887 {
4888 /* Nothing changed. */
4889 value_free_to_mark (mark);
4890 return WP_VALUE_NOT_CHANGED;
4891 }
4892 }
4893 else
4894 {
4895 struct ui_out *uiout = current_uiout;
4896
4897 /* This seems like the only logical thing to do because
4898 if we temporarily ignored the watchpoint, then when
4899 we reenter the block in which it is valid it contains
4900 garbage (in the case of a function, it may have two
4901 garbage values, one before and one after the prologue).
4902 So we can't even detect the first assignment to it and
4903 watch after that (since the garbage may or may not equal
4904 the first value assigned). */
4905 /* We print all the stop information in
4906 breakpoint_ops->print_it, but in this case, by the time we
4907 call breakpoint_ops->print_it this bp will be deleted
4908 already. So we have no choice but print the information
4909 here. */
4910 if (ui_out_is_mi_like_p (uiout))
4911 ui_out_field_string
4912 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4913 ui_out_text (uiout, "\nWatchpoint ");
4914 ui_out_field_int (uiout, "wpnum", b->base.number);
4915 ui_out_text (uiout,
4916 " deleted because the program has left the block in\n\
4917 which its expression is valid.\n");
4918
4919 /* Make sure the watchpoint's commands aren't executed. */
4920 decref_counted_command_line (&b->base.commands);
4921 watchpoint_del_at_next_stop (b);
4922
4923 return WP_DELETED;
4924 }
4925 }
4926
4927 /* Return true if it looks like target has stopped due to hitting
4928 breakpoint location BL. This function does not check if we should
4929 stop, only if BL explains the stop. */
4930
4931 static int
4932 bpstat_check_location (const struct bp_location *bl,
4933 struct address_space *aspace, CORE_ADDR bp_addr,
4934 const struct target_waitstatus *ws)
4935 {
4936 struct breakpoint *b = bl->owner;
4937
4938 /* BL is from an existing breakpoint. */
4939 gdb_assert (b != NULL);
4940
4941 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4942 }
4943
4944 /* Determine if the watched values have actually changed, and we
4945 should stop. If not, set BS->stop to 0. */
4946
4947 static void
4948 bpstat_check_watchpoint (bpstat bs)
4949 {
4950 const struct bp_location *bl;
4951 struct watchpoint *b;
4952
4953 /* BS is built for existing struct breakpoint. */
4954 bl = bs->bp_location_at;
4955 gdb_assert (bl != NULL);
4956 b = (struct watchpoint *) bs->breakpoint_at;
4957 gdb_assert (b != NULL);
4958
4959 {
4960 int must_check_value = 0;
4961
4962 if (b->base.type == bp_watchpoint)
4963 /* For a software watchpoint, we must always check the
4964 watched value. */
4965 must_check_value = 1;
4966 else if (b->watchpoint_triggered == watch_triggered_yes)
4967 /* We have a hardware watchpoint (read, write, or access)
4968 and the target earlier reported an address watched by
4969 this watchpoint. */
4970 must_check_value = 1;
4971 else if (b->watchpoint_triggered == watch_triggered_unknown
4972 && b->base.type == bp_hardware_watchpoint)
4973 /* We were stopped by a hardware watchpoint, but the target could
4974 not report the data address. We must check the watchpoint's
4975 value. Access and read watchpoints are out of luck; without
4976 a data address, we can't figure it out. */
4977 must_check_value = 1;
4978
4979 if (must_check_value)
4980 {
4981 char *message
4982 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4983 b->base.number);
4984 struct cleanup *cleanups = make_cleanup (xfree, message);
4985 int e = catch_errors (watchpoint_check, bs, message,
4986 RETURN_MASK_ALL);
4987 do_cleanups (cleanups);
4988 switch (e)
4989 {
4990 case WP_DELETED:
4991 /* We've already printed what needs to be printed. */
4992 bs->print_it = print_it_done;
4993 /* Stop. */
4994 break;
4995 case WP_IGNORE:
4996 bs->print_it = print_it_noop;
4997 bs->stop = 0;
4998 break;
4999 case WP_VALUE_CHANGED:
5000 if (b->base.type == bp_read_watchpoint)
5001 {
5002 /* There are two cases to consider here:
5003
5004 1. We're watching the triggered memory for reads.
5005 In that case, trust the target, and always report
5006 the watchpoint hit to the user. Even though
5007 reads don't cause value changes, the value may
5008 have changed since the last time it was read, and
5009 since we're not trapping writes, we will not see
5010 those, and as such we should ignore our notion of
5011 old value.
5012
5013 2. We're watching the triggered memory for both
5014 reads and writes. There are two ways this may
5015 happen:
5016
5017 2.1. This is a target that can't break on data
5018 reads only, but can break on accesses (reads or
5019 writes), such as e.g., x86. We detect this case
5020 at the time we try to insert read watchpoints.
5021
5022 2.2. Otherwise, the target supports read
5023 watchpoints, but, the user set an access or write
5024 watchpoint watching the same memory as this read
5025 watchpoint.
5026
5027 If we're watching memory writes as well as reads,
5028 ignore watchpoint hits when we find that the
5029 value hasn't changed, as reads don't cause
5030 changes. This still gives false positives when
5031 the program writes the same value to memory as
5032 what there was already in memory (we will confuse
5033 it for a read), but it's much better than
5034 nothing. */
5035
5036 int other_write_watchpoint = 0;
5037
5038 if (bl->watchpoint_type == hw_read)
5039 {
5040 struct breakpoint *other_b;
5041
5042 ALL_BREAKPOINTS (other_b)
5043 if (other_b->type == bp_hardware_watchpoint
5044 || other_b->type == bp_access_watchpoint)
5045 {
5046 struct watchpoint *other_w =
5047 (struct watchpoint *) other_b;
5048
5049 if (other_w->watchpoint_triggered
5050 == watch_triggered_yes)
5051 {
5052 other_write_watchpoint = 1;
5053 break;
5054 }
5055 }
5056 }
5057
5058 if (other_write_watchpoint
5059 || bl->watchpoint_type == hw_access)
5060 {
5061 /* We're watching the same memory for writes,
5062 and the value changed since the last time we
5063 updated it, so this trap must be for a write.
5064 Ignore it. */
5065 bs->print_it = print_it_noop;
5066 bs->stop = 0;
5067 }
5068 }
5069 break;
5070 case WP_VALUE_NOT_CHANGED:
5071 if (b->base.type == bp_hardware_watchpoint
5072 || b->base.type == bp_watchpoint)
5073 {
5074 /* Don't stop: write watchpoints shouldn't fire if
5075 the value hasn't changed. */
5076 bs->print_it = print_it_noop;
5077 bs->stop = 0;
5078 }
5079 /* Stop. */
5080 break;
5081 default:
5082 /* Can't happen. */
5083 case 0:
5084 /* Error from catch_errors. */
5085 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5086 watchpoint_del_at_next_stop (b);
5087 /* We've already printed what needs to be printed. */
5088 bs->print_it = print_it_done;
5089 break;
5090 }
5091 }
5092 else /* must_check_value == 0 */
5093 {
5094 /* This is a case where some watchpoint(s) triggered, but
5095 not at the address of this watchpoint, or else no
5096 watchpoint triggered after all. So don't print
5097 anything for this watchpoint. */
5098 bs->print_it = print_it_noop;
5099 bs->stop = 0;
5100 }
5101 }
5102 }
5103
5104 /* For breakpoints that are currently marked as telling gdb to stop,
5105 check conditions (condition proper, frame, thread and ignore count)
5106 of breakpoint referred to by BS. If we should not stop for this
5107 breakpoint, set BS->stop to 0. */
5108
5109 static void
5110 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5111 {
5112 int thread_id = pid_to_thread_id (ptid);
5113 const struct bp_location *bl;
5114 struct breakpoint *b;
5115 int value_is_zero = 0;
5116 struct expression *cond;
5117
5118 gdb_assert (bs->stop);
5119
5120 /* BS is built for existing struct breakpoint. */
5121 bl = bs->bp_location_at;
5122 gdb_assert (bl != NULL);
5123 b = bs->breakpoint_at;
5124 gdb_assert (b != NULL);
5125
5126 /* Even if the target evaluated the condition on its end and notified GDB, we
5127 need to do so again since GDB does not know if we stopped due to a
5128 breakpoint or a single step breakpoint. */
5129
5130 if (frame_id_p (b->frame_id)
5131 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5132 {
5133 bs->stop = 0;
5134 return;
5135 }
5136
5137 /* If this is a thread-specific breakpoint, don't waste cpu evaluating the
5138 condition if this isn't the specified thread. */
5139 if (b->thread != -1 && b->thread != thread_id)
5140 {
5141 bs->stop = 0;
5142 return;
5143 }
5144
5145 /* Evaluate Python breakpoints that have a "stop" method implemented. */
5146 if (b->py_bp_object)
5147 bs->stop = gdbpy_should_stop (b->py_bp_object);
5148
5149 if (is_watchpoint (b))
5150 {
5151 struct watchpoint *w = (struct watchpoint *) b;
5152
5153 cond = w->cond_exp;
5154 }
5155 else
5156 cond = bl->cond;
5157
5158 if (cond && b->disposition != disp_del_at_next_stop)
5159 {
5160 int within_current_scope = 1;
5161 struct watchpoint * w;
5162
5163 /* We use value_mark and value_free_to_mark because it could
5164 be a long time before we return to the command level and
5165 call free_all_values. We can't call free_all_values
5166 because we might be in the middle of evaluating a
5167 function call. */
5168 struct value *mark = value_mark ();
5169
5170 if (is_watchpoint (b))
5171 w = (struct watchpoint *) b;
5172 else
5173 w = NULL;
5174
5175 /* Need to select the frame, with all that implies so that
5176 the conditions will have the right context. Because we
5177 use the frame, we will not see an inlined function's
5178 variables when we arrive at a breakpoint at the start
5179 of the inlined function; the current frame will be the
5180 call site. */
5181 if (w == NULL || w->cond_exp_valid_block == NULL)
5182 select_frame (get_current_frame ());
5183 else
5184 {
5185 struct frame_info *frame;
5186
5187 /* For local watchpoint expressions, which particular
5188 instance of a local is being watched matters, so we
5189 keep track of the frame to evaluate the expression
5190 in. To evaluate the condition however, it doesn't
5191 really matter which instantiation of the function
5192 where the condition makes sense triggers the
5193 watchpoint. This allows an expression like "watch
5194 global if q > 10" set in `func', catch writes to
5195 global on all threads that call `func', or catch
5196 writes on all recursive calls of `func' by a single
5197 thread. We simply always evaluate the condition in
5198 the innermost frame that's executing where it makes
5199 sense to evaluate the condition. It seems
5200 intuitive. */
5201 frame = block_innermost_frame (w->cond_exp_valid_block);
5202 if (frame != NULL)
5203 select_frame (frame);
5204 else
5205 within_current_scope = 0;
5206 }
5207 if (within_current_scope)
5208 value_is_zero
5209 = catch_errors (breakpoint_cond_eval, cond,
5210 "Error in testing breakpoint condition:\n",
5211 RETURN_MASK_ALL);
5212 else
5213 {
5214 warning (_("Watchpoint condition cannot be tested "
5215 "in the current scope"));
5216 /* If we failed to set the right context for this
5217 watchpoint, unconditionally report it. */
5218 value_is_zero = 0;
5219 }
5220 /* FIXME-someday, should give breakpoint #. */
5221 value_free_to_mark (mark);
5222 }
5223
5224 if (cond && value_is_zero)
5225 {
5226 bs->stop = 0;
5227 }
5228 else if (b->ignore_count > 0)
5229 {
5230 b->ignore_count--;
5231 bs->stop = 0;
5232 /* Increase the hit count even though we don't stop. */
5233 ++(b->hit_count);
5234 observer_notify_breakpoint_modified (b);
5235 }
5236 }
5237
5238
5239 /* Get a bpstat associated with having just stopped at address
5240 BP_ADDR in thread PTID.
5241
5242 Determine whether we stopped at a breakpoint, etc, or whether we
5243 don't understand this stop. Result is a chain of bpstat's such
5244 that:
5245
5246 if we don't understand the stop, the result is a null pointer.
5247
5248 if we understand why we stopped, the result is not null.
5249
5250 Each element of the chain refers to a particular breakpoint or
5251 watchpoint at which we have stopped. (We may have stopped for
5252 several reasons concurrently.)
5253
5254 Each element of the chain has valid next, breakpoint_at,
5255 commands, FIXME??? fields. */
5256
5257 bpstat
5258 bpstat_stop_status (struct address_space *aspace,
5259 CORE_ADDR bp_addr, ptid_t ptid,
5260 const struct target_waitstatus *ws)
5261 {
5262 struct breakpoint *b = NULL;
5263 struct bp_location *bl;
5264 struct bp_location *loc;
5265 /* First item of allocated bpstat's. */
5266 bpstat bs_head = NULL, *bs_link = &bs_head;
5267 /* Pointer to the last thing in the chain currently. */
5268 bpstat bs;
5269 int ix;
5270 int need_remove_insert;
5271 int removed_any;
5272
5273 /* First, build the bpstat chain with locations that explain a
5274 target stop, while being careful to not set the target running,
5275 as that may invalidate locations (in particular watchpoint
5276 locations are recreated). Resuming will happen here with
5277 breakpoint conditions or watchpoint expressions that include
5278 inferior function calls. */
5279
5280 ALL_BREAKPOINTS (b)
5281 {
5282 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5283 continue;
5284
5285 for (bl = b->loc; bl != NULL; bl = bl->next)
5286 {
5287 /* For hardware watchpoints, we look only at the first
5288 location. The watchpoint_check function will work on the
5289 entire expression, not the individual locations. For
5290 read watchpoints, the watchpoints_triggered function has
5291 checked all locations already. */
5292 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5293 break;
5294
5295 if (!bl->enabled || bl->shlib_disabled)
5296 continue;
5297
5298 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5299 continue;
5300
5301 /* Come here if it's a watchpoint, or if the break address
5302 matches. */
5303
5304 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5305 explain stop. */
5306
5307 /* Assume we stop. Should we find a watchpoint that is not
5308 actually triggered, or if the condition of the breakpoint
5309 evaluates as false, we'll reset 'stop' to 0. */
5310 bs->stop = 1;
5311 bs->print = 1;
5312
5313 /* If this is a scope breakpoint, mark the associated
5314 watchpoint as triggered so that we will handle the
5315 out-of-scope event. We'll get to the watchpoint next
5316 iteration. */
5317 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5318 {
5319 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5320
5321 w->watchpoint_triggered = watch_triggered_yes;
5322 }
5323 }
5324 }
5325
5326 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5327 {
5328 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5329 {
5330 bs = bpstat_alloc (loc, &bs_link);
5331 /* For hits of moribund locations, we should just proceed. */
5332 bs->stop = 0;
5333 bs->print = 0;
5334 bs->print_it = print_it_noop;
5335 }
5336 }
5337
5338 /* A bit of special processing for shlib breakpoints. We need to
5339 process solib loading here, so that the lists of loaded and
5340 unloaded libraries are correct before we handle "catch load" and
5341 "catch unload". */
5342 for (bs = bs_head; bs != NULL; bs = bs->next)
5343 {
5344 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5345 {
5346 handle_solib_event ();
5347 break;
5348 }
5349 }
5350
5351 /* Now go through the locations that caused the target to stop, and
5352 check whether we're interested in reporting this stop to higher
5353 layers, or whether we should resume the target transparently. */
5354
5355 removed_any = 0;
5356
5357 for (bs = bs_head; bs != NULL; bs = bs->next)
5358 {
5359 if (!bs->stop)
5360 continue;
5361
5362 b = bs->breakpoint_at;
5363 b->ops->check_status (bs);
5364 if (bs->stop)
5365 {
5366 bpstat_check_breakpoint_conditions (bs, ptid);
5367
5368 if (bs->stop)
5369 {
5370 ++(b->hit_count);
5371 observer_notify_breakpoint_modified (b);
5372
5373 /* We will stop here. */
5374 if (b->disposition == disp_disable)
5375 {
5376 --(b->enable_count);
5377 if (b->enable_count <= 0
5378 && b->enable_state != bp_permanent)
5379 b->enable_state = bp_disabled;
5380 removed_any = 1;
5381 }
5382 if (b->silent)
5383 bs->print = 0;
5384 bs->commands = b->commands;
5385 incref_counted_command_line (bs->commands);
5386 if (command_line_is_silent (bs->commands
5387 ? bs->commands->commands : NULL))
5388 bs->print = 0;
5389
5390 b->ops->after_condition_true (bs);
5391 }
5392
5393 }
5394
5395 /* Print nothing for this entry if we don't stop or don't
5396 print. */
5397 if (!bs->stop || !bs->print)
5398 bs->print_it = print_it_noop;
5399 }
5400
5401 /* If we aren't stopping, the value of some hardware watchpoint may
5402 not have changed, but the intermediate memory locations we are
5403 watching may have. Don't bother if we're stopping; this will get
5404 done later. */
5405 need_remove_insert = 0;
5406 if (! bpstat_causes_stop (bs_head))
5407 for (bs = bs_head; bs != NULL; bs = bs->next)
5408 if (!bs->stop
5409 && bs->breakpoint_at
5410 && is_hardware_watchpoint (bs->breakpoint_at))
5411 {
5412 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5413
5414 update_watchpoint (w, 0 /* don't reparse. */);
5415 need_remove_insert = 1;
5416 }
5417
5418 if (need_remove_insert)
5419 update_global_location_list (1);
5420 else if (removed_any)
5421 update_global_location_list (0);
5422
5423 return bs_head;
5424 }
5425
5426 static void
5427 handle_jit_event (void)
5428 {
5429 struct frame_info *frame;
5430 struct gdbarch *gdbarch;
5431
5432 /* Switch terminal for any messages produced by
5433 breakpoint_re_set. */
5434 target_terminal_ours_for_output ();
5435
5436 frame = get_current_frame ();
5437 gdbarch = get_frame_arch (frame);
5438
5439 jit_event_handler (gdbarch);
5440
5441 target_terminal_inferior ();
5442 }
5443
5444 /* Prepare WHAT final decision for infrun. */
5445
5446 /* Decide what infrun needs to do with this bpstat. */
5447
5448 struct bpstat_what
5449 bpstat_what (bpstat bs_head)
5450 {
5451 struct bpstat_what retval;
5452 int jit_event = 0;
5453 bpstat bs;
5454
5455 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5456 retval.call_dummy = STOP_NONE;
5457 retval.is_longjmp = 0;
5458
5459 for (bs = bs_head; bs != NULL; bs = bs->next)
5460 {
5461 /* Extract this BS's action. After processing each BS, we check
5462 if its action overrides all we've seem so far. */
5463 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5464 enum bptype bptype;
5465
5466 if (bs->breakpoint_at == NULL)
5467 {
5468 /* I suspect this can happen if it was a momentary
5469 breakpoint which has since been deleted. */
5470 bptype = bp_none;
5471 }
5472 else
5473 bptype = bs->breakpoint_at->type;
5474
5475 switch (bptype)
5476 {
5477 case bp_none:
5478 break;
5479 case bp_breakpoint:
5480 case bp_hardware_breakpoint:
5481 case bp_until:
5482 case bp_finish:
5483 case bp_shlib_event:
5484 if (bs->stop)
5485 {
5486 if (bs->print)
5487 this_action = BPSTAT_WHAT_STOP_NOISY;
5488 else
5489 this_action = BPSTAT_WHAT_STOP_SILENT;
5490 }
5491 else
5492 this_action = BPSTAT_WHAT_SINGLE;
5493 break;
5494 case bp_watchpoint:
5495 case bp_hardware_watchpoint:
5496 case bp_read_watchpoint:
5497 case bp_access_watchpoint:
5498 if (bs->stop)
5499 {
5500 if (bs->print)
5501 this_action = BPSTAT_WHAT_STOP_NOISY;
5502 else
5503 this_action = BPSTAT_WHAT_STOP_SILENT;
5504 }
5505 else
5506 {
5507 /* There was a watchpoint, but we're not stopping.
5508 This requires no further action. */
5509 }
5510 break;
5511 case bp_longjmp:
5512 case bp_longjmp_call_dummy:
5513 case bp_exception:
5514 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5515 retval.is_longjmp = bptype != bp_exception;
5516 break;
5517 case bp_longjmp_resume:
5518 case bp_exception_resume:
5519 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5520 retval.is_longjmp = bptype == bp_longjmp_resume;
5521 break;
5522 case bp_step_resume:
5523 if (bs->stop)
5524 this_action = BPSTAT_WHAT_STEP_RESUME;
5525 else
5526 {
5527 /* It is for the wrong frame. */
5528 this_action = BPSTAT_WHAT_SINGLE;
5529 }
5530 break;
5531 case bp_hp_step_resume:
5532 if (bs->stop)
5533 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5534 else
5535 {
5536 /* It is for the wrong frame. */
5537 this_action = BPSTAT_WHAT_SINGLE;
5538 }
5539 break;
5540 case bp_watchpoint_scope:
5541 case bp_thread_event:
5542 case bp_overlay_event:
5543 case bp_longjmp_master:
5544 case bp_std_terminate_master:
5545 case bp_exception_master:
5546 this_action = BPSTAT_WHAT_SINGLE;
5547 break;
5548 case bp_catchpoint:
5549 if (bs->stop)
5550 {
5551 if (bs->print)
5552 this_action = BPSTAT_WHAT_STOP_NOISY;
5553 else
5554 this_action = BPSTAT_WHAT_STOP_SILENT;
5555 }
5556 else
5557 {
5558 /* There was a catchpoint, but we're not stopping.
5559 This requires no further action. */
5560 }
5561 break;
5562 case bp_jit_event:
5563 jit_event = 1;
5564 this_action = BPSTAT_WHAT_SINGLE;
5565 break;
5566 case bp_call_dummy:
5567 /* Make sure the action is stop (silent or noisy),
5568 so infrun.c pops the dummy frame. */
5569 retval.call_dummy = STOP_STACK_DUMMY;
5570 this_action = BPSTAT_WHAT_STOP_SILENT;
5571 break;
5572 case bp_std_terminate:
5573 /* Make sure the action is stop (silent or noisy),
5574 so infrun.c pops the dummy frame. */
5575 retval.call_dummy = STOP_STD_TERMINATE;
5576 this_action = BPSTAT_WHAT_STOP_SILENT;
5577 break;
5578 case bp_tracepoint:
5579 case bp_fast_tracepoint:
5580 case bp_static_tracepoint:
5581 /* Tracepoint hits should not be reported back to GDB, and
5582 if one got through somehow, it should have been filtered
5583 out already. */
5584 internal_error (__FILE__, __LINE__,
5585 _("bpstat_what: tracepoint encountered"));
5586 break;
5587 case bp_gnu_ifunc_resolver:
5588 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5589 this_action = BPSTAT_WHAT_SINGLE;
5590 break;
5591 case bp_gnu_ifunc_resolver_return:
5592 /* The breakpoint will be removed, execution will restart from the
5593 PC of the former breakpoint. */
5594 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5595 break;
5596
5597 case bp_dprintf:
5598 if (bs->stop)
5599 this_action = BPSTAT_WHAT_STOP_SILENT;
5600 else
5601 this_action = BPSTAT_WHAT_SINGLE;
5602 break;
5603
5604 default:
5605 internal_error (__FILE__, __LINE__,
5606 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5607 }
5608
5609 retval.main_action = max (retval.main_action, this_action);
5610 }
5611
5612 /* These operations may affect the bs->breakpoint_at state so they are
5613 delayed after MAIN_ACTION is decided above. */
5614
5615 if (jit_event)
5616 {
5617 if (debug_infrun)
5618 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5619
5620 handle_jit_event ();
5621 }
5622
5623 for (bs = bs_head; bs != NULL; bs = bs->next)
5624 {
5625 struct breakpoint *b = bs->breakpoint_at;
5626
5627 if (b == NULL)
5628 continue;
5629 switch (b->type)
5630 {
5631 case bp_gnu_ifunc_resolver:
5632 gnu_ifunc_resolver_stop (b);
5633 break;
5634 case bp_gnu_ifunc_resolver_return:
5635 gnu_ifunc_resolver_return_stop (b);
5636 break;
5637 }
5638 }
5639
5640 return retval;
5641 }
5642
5643 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5644 without hardware support). This isn't related to a specific bpstat,
5645 just to things like whether watchpoints are set. */
5646
5647 int
5648 bpstat_should_step (void)
5649 {
5650 struct breakpoint *b;
5651
5652 ALL_BREAKPOINTS (b)
5653 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5654 return 1;
5655 return 0;
5656 }
5657
5658 int
5659 bpstat_causes_stop (bpstat bs)
5660 {
5661 for (; bs != NULL; bs = bs->next)
5662 if (bs->stop)
5663 return 1;
5664
5665 return 0;
5666 }
5667
5668 \f
5669
5670 /* Compute a string of spaces suitable to indent the next line
5671 so it starts at the position corresponding to the table column
5672 named COL_NAME in the currently active table of UIOUT. */
5673
5674 static char *
5675 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5676 {
5677 static char wrap_indent[80];
5678 int i, total_width, width, align;
5679 char *text;
5680
5681 total_width = 0;
5682 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5683 {
5684 if (strcmp (text, col_name) == 0)
5685 {
5686 gdb_assert (total_width < sizeof wrap_indent);
5687 memset (wrap_indent, ' ', total_width);
5688 wrap_indent[total_width] = 0;
5689
5690 return wrap_indent;
5691 }
5692
5693 total_width += width + 1;
5694 }
5695
5696 return NULL;
5697 }
5698
5699 /* Determine if the locations of this breakpoint will have their conditions
5700 evaluated by the target, host or a mix of both. Returns the following:
5701
5702 "host": Host evals condition.
5703 "host or target": Host or Target evals condition.
5704 "target": Target evals condition.
5705 */
5706
5707 static const char *
5708 bp_condition_evaluator (struct breakpoint *b)
5709 {
5710 struct bp_location *bl;
5711 char host_evals = 0;
5712 char target_evals = 0;
5713
5714 if (!b)
5715 return NULL;
5716
5717 if (!is_breakpoint (b))
5718 return NULL;
5719
5720 if (gdb_evaluates_breakpoint_condition_p ()
5721 || !target_supports_evaluation_of_breakpoint_conditions ())
5722 return condition_evaluation_host;
5723
5724 for (bl = b->loc; bl; bl = bl->next)
5725 {
5726 if (bl->cond_bytecode)
5727 target_evals++;
5728 else
5729 host_evals++;
5730 }
5731
5732 if (host_evals && target_evals)
5733 return condition_evaluation_both;
5734 else if (target_evals)
5735 return condition_evaluation_target;
5736 else
5737 return condition_evaluation_host;
5738 }
5739
5740 /* Determine the breakpoint location's condition evaluator. This is
5741 similar to bp_condition_evaluator, but for locations. */
5742
5743 static const char *
5744 bp_location_condition_evaluator (struct bp_location *bl)
5745 {
5746 if (bl && !is_breakpoint (bl->owner))
5747 return NULL;
5748
5749 if (gdb_evaluates_breakpoint_condition_p ()
5750 || !target_supports_evaluation_of_breakpoint_conditions ())
5751 return condition_evaluation_host;
5752
5753 if (bl && bl->cond_bytecode)
5754 return condition_evaluation_target;
5755 else
5756 return condition_evaluation_host;
5757 }
5758
5759 /* Print the LOC location out of the list of B->LOC locations. */
5760
5761 static void
5762 print_breakpoint_location (struct breakpoint *b,
5763 struct bp_location *loc)
5764 {
5765 struct ui_out *uiout = current_uiout;
5766 struct cleanup *old_chain = save_current_program_space ();
5767
5768 if (loc != NULL && loc->shlib_disabled)
5769 loc = NULL;
5770
5771 if (loc != NULL)
5772 set_current_program_space (loc->pspace);
5773
5774 if (b->display_canonical)
5775 ui_out_field_string (uiout, "what", b->addr_string);
5776 else if (loc && loc->symtab)
5777 {
5778 struct symbol *sym
5779 = find_pc_sect_function (loc->address, loc->section);
5780 if (sym)
5781 {
5782 ui_out_text (uiout, "in ");
5783 ui_out_field_string (uiout, "func",
5784 SYMBOL_PRINT_NAME (sym));
5785 ui_out_text (uiout, " ");
5786 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5787 ui_out_text (uiout, "at ");
5788 }
5789 ui_out_field_string (uiout, "file",
5790 symtab_to_filename_for_display (loc->symtab));
5791 ui_out_text (uiout, ":");
5792
5793 if (ui_out_is_mi_like_p (uiout))
5794 ui_out_field_string (uiout, "fullname",
5795 symtab_to_fullname (loc->symtab));
5796
5797 ui_out_field_int (uiout, "line", loc->line_number);
5798 }
5799 else if (loc)
5800 {
5801 struct ui_file *stb = mem_fileopen ();
5802 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5803
5804 print_address_symbolic (loc->gdbarch, loc->address, stb,
5805 demangle, "");
5806 ui_out_field_stream (uiout, "at", stb);
5807
5808 do_cleanups (stb_chain);
5809 }
5810 else
5811 ui_out_field_string (uiout, "pending", b->addr_string);
5812
5813 if (loc && is_breakpoint (b)
5814 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5815 && bp_condition_evaluator (b) == condition_evaluation_both)
5816 {
5817 ui_out_text (uiout, " (");
5818 ui_out_field_string (uiout, "evaluated-by",
5819 bp_location_condition_evaluator (loc));
5820 ui_out_text (uiout, ")");
5821 }
5822
5823 do_cleanups (old_chain);
5824 }
5825
5826 static const char *
5827 bptype_string (enum bptype type)
5828 {
5829 struct ep_type_description
5830 {
5831 enum bptype type;
5832 char *description;
5833 };
5834 static struct ep_type_description bptypes[] =
5835 {
5836 {bp_none, "?deleted?"},
5837 {bp_breakpoint, "breakpoint"},
5838 {bp_hardware_breakpoint, "hw breakpoint"},
5839 {bp_until, "until"},
5840 {bp_finish, "finish"},
5841 {bp_watchpoint, "watchpoint"},
5842 {bp_hardware_watchpoint, "hw watchpoint"},
5843 {bp_read_watchpoint, "read watchpoint"},
5844 {bp_access_watchpoint, "acc watchpoint"},
5845 {bp_longjmp, "longjmp"},
5846 {bp_longjmp_resume, "longjmp resume"},
5847 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5848 {bp_exception, "exception"},
5849 {bp_exception_resume, "exception resume"},
5850 {bp_step_resume, "step resume"},
5851 {bp_hp_step_resume, "high-priority step resume"},
5852 {bp_watchpoint_scope, "watchpoint scope"},
5853 {bp_call_dummy, "call dummy"},
5854 {bp_std_terminate, "std::terminate"},
5855 {bp_shlib_event, "shlib events"},
5856 {bp_thread_event, "thread events"},
5857 {bp_overlay_event, "overlay events"},
5858 {bp_longjmp_master, "longjmp master"},
5859 {bp_std_terminate_master, "std::terminate master"},
5860 {bp_exception_master, "exception master"},
5861 {bp_catchpoint, "catchpoint"},
5862 {bp_tracepoint, "tracepoint"},
5863 {bp_fast_tracepoint, "fast tracepoint"},
5864 {bp_static_tracepoint, "static tracepoint"},
5865 {bp_dprintf, "dprintf"},
5866 {bp_jit_event, "jit events"},
5867 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5868 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5869 };
5870
5871 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5872 || ((int) type != bptypes[(int) type].type))
5873 internal_error (__FILE__, __LINE__,
5874 _("bptypes table does not describe type #%d."),
5875 (int) type);
5876
5877 return bptypes[(int) type].description;
5878 }
5879
5880 /* For MI, output a field named 'thread-groups' with a list as the value.
5881 For CLI, prefix the list with the string 'inf'. */
5882
5883 static void
5884 output_thread_groups (struct ui_out *uiout,
5885 const char *field_name,
5886 VEC(int) *inf_num,
5887 int mi_only)
5888 {
5889 struct cleanup *back_to;
5890 int is_mi = ui_out_is_mi_like_p (uiout);
5891 int inf;
5892 int i;
5893
5894 /* For backward compatibility, don't display inferiors in CLI unless
5895 there are several. Always display them for MI. */
5896 if (!is_mi && mi_only)
5897 return;
5898
5899 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5900
5901 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5902 {
5903 if (is_mi)
5904 {
5905 char mi_group[10];
5906
5907 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5908 ui_out_field_string (uiout, NULL, mi_group);
5909 }
5910 else
5911 {
5912 if (i == 0)
5913 ui_out_text (uiout, " inf ");
5914 else
5915 ui_out_text (uiout, ", ");
5916
5917 ui_out_text (uiout, plongest (inf));
5918 }
5919 }
5920
5921 do_cleanups (back_to);
5922 }
5923
5924 /* Print B to gdb_stdout. */
5925
5926 static void
5927 print_one_breakpoint_location (struct breakpoint *b,
5928 struct bp_location *loc,
5929 int loc_number,
5930 struct bp_location **last_loc,
5931 int allflag)
5932 {
5933 struct command_line *l;
5934 static char bpenables[] = "nynny";
5935
5936 struct ui_out *uiout = current_uiout;
5937 int header_of_multiple = 0;
5938 int part_of_multiple = (loc != NULL);
5939 struct value_print_options opts;
5940
5941 get_user_print_options (&opts);
5942
5943 gdb_assert (!loc || loc_number != 0);
5944 /* See comment in print_one_breakpoint concerning treatment of
5945 breakpoints with single disabled location. */
5946 if (loc == NULL
5947 && (b->loc != NULL
5948 && (b->loc->next != NULL || !b->loc->enabled)))
5949 header_of_multiple = 1;
5950 if (loc == NULL)
5951 loc = b->loc;
5952
5953 annotate_record ();
5954
5955 /* 1 */
5956 annotate_field (0);
5957 if (part_of_multiple)
5958 {
5959 char *formatted;
5960 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5961 ui_out_field_string (uiout, "number", formatted);
5962 xfree (formatted);
5963 }
5964 else
5965 {
5966 ui_out_field_int (uiout, "number", b->number);
5967 }
5968
5969 /* 2 */
5970 annotate_field (1);
5971 if (part_of_multiple)
5972 ui_out_field_skip (uiout, "type");
5973 else
5974 ui_out_field_string (uiout, "type", bptype_string (b->type));
5975
5976 /* 3 */
5977 annotate_field (2);
5978 if (part_of_multiple)
5979 ui_out_field_skip (uiout, "disp");
5980 else
5981 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5982
5983
5984 /* 4 */
5985 annotate_field (3);
5986 if (part_of_multiple)
5987 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5988 else
5989 ui_out_field_fmt (uiout, "enabled", "%c",
5990 bpenables[(int) b->enable_state]);
5991 ui_out_spaces (uiout, 2);
5992
5993
5994 /* 5 and 6 */
5995 if (b->ops != NULL && b->ops->print_one != NULL)
5996 {
5997 /* Although the print_one can possibly print all locations,
5998 calling it here is not likely to get any nice result. So,
5999 make sure there's just one location. */
6000 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6001 b->ops->print_one (b, last_loc);
6002 }
6003 else
6004 switch (b->type)
6005 {
6006 case bp_none:
6007 internal_error (__FILE__, __LINE__,
6008 _("print_one_breakpoint: bp_none encountered\n"));
6009 break;
6010
6011 case bp_watchpoint:
6012 case bp_hardware_watchpoint:
6013 case bp_read_watchpoint:
6014 case bp_access_watchpoint:
6015 {
6016 struct watchpoint *w = (struct watchpoint *) b;
6017
6018 /* Field 4, the address, is omitted (which makes the columns
6019 not line up too nicely with the headers, but the effect
6020 is relatively readable). */
6021 if (opts.addressprint)
6022 ui_out_field_skip (uiout, "addr");
6023 annotate_field (5);
6024 ui_out_field_string (uiout, "what", w->exp_string);
6025 }
6026 break;
6027
6028 case bp_breakpoint:
6029 case bp_hardware_breakpoint:
6030 case bp_until:
6031 case bp_finish:
6032 case bp_longjmp:
6033 case bp_longjmp_resume:
6034 case bp_longjmp_call_dummy:
6035 case bp_exception:
6036 case bp_exception_resume:
6037 case bp_step_resume:
6038 case bp_hp_step_resume:
6039 case bp_watchpoint_scope:
6040 case bp_call_dummy:
6041 case bp_std_terminate:
6042 case bp_shlib_event:
6043 case bp_thread_event:
6044 case bp_overlay_event:
6045 case bp_longjmp_master:
6046 case bp_std_terminate_master:
6047 case bp_exception_master:
6048 case bp_tracepoint:
6049 case bp_fast_tracepoint:
6050 case bp_static_tracepoint:
6051 case bp_dprintf:
6052 case bp_jit_event:
6053 case bp_gnu_ifunc_resolver:
6054 case bp_gnu_ifunc_resolver_return:
6055 if (opts.addressprint)
6056 {
6057 annotate_field (4);
6058 if (header_of_multiple)
6059 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6060 else if (b->loc == NULL || loc->shlib_disabled)
6061 ui_out_field_string (uiout, "addr", "<PENDING>");
6062 else
6063 ui_out_field_core_addr (uiout, "addr",
6064 loc->gdbarch, loc->address);
6065 }
6066 annotate_field (5);
6067 if (!header_of_multiple)
6068 print_breakpoint_location (b, loc);
6069 if (b->loc)
6070 *last_loc = b->loc;
6071 break;
6072 }
6073
6074
6075 if (loc != NULL && !header_of_multiple)
6076 {
6077 struct inferior *inf;
6078 VEC(int) *inf_num = NULL;
6079 int mi_only = 1;
6080
6081 ALL_INFERIORS (inf)
6082 {
6083 if (inf->pspace == loc->pspace)
6084 VEC_safe_push (int, inf_num, inf->num);
6085 }
6086
6087 /* For backward compatibility, don't display inferiors in CLI unless
6088 there are several. Always display for MI. */
6089 if (allflag
6090 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6091 && (number_of_program_spaces () > 1
6092 || number_of_inferiors () > 1)
6093 /* LOC is for existing B, it cannot be in
6094 moribund_locations and thus having NULL OWNER. */
6095 && loc->owner->type != bp_catchpoint))
6096 mi_only = 0;
6097 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6098 VEC_free (int, inf_num);
6099 }
6100
6101 if (!part_of_multiple)
6102 {
6103 if (b->thread != -1)
6104 {
6105 /* FIXME: This seems to be redundant and lost here; see the
6106 "stop only in" line a little further down. */
6107 ui_out_text (uiout, " thread ");
6108 ui_out_field_int (uiout, "thread", b->thread);
6109 }
6110 else if (b->task != 0)
6111 {
6112 ui_out_text (uiout, " task ");
6113 ui_out_field_int (uiout, "task", b->task);
6114 }
6115 }
6116
6117 ui_out_text (uiout, "\n");
6118
6119 if (!part_of_multiple)
6120 b->ops->print_one_detail (b, uiout);
6121
6122 if (part_of_multiple && frame_id_p (b->frame_id))
6123 {
6124 annotate_field (6);
6125 ui_out_text (uiout, "\tstop only in stack frame at ");
6126 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6127 the frame ID. */
6128 ui_out_field_core_addr (uiout, "frame",
6129 b->gdbarch, b->frame_id.stack_addr);
6130 ui_out_text (uiout, "\n");
6131 }
6132
6133 if (!part_of_multiple && b->cond_string)
6134 {
6135 annotate_field (7);
6136 if (is_tracepoint (b))
6137 ui_out_text (uiout, "\ttrace only if ");
6138 else
6139 ui_out_text (uiout, "\tstop only if ");
6140 ui_out_field_string (uiout, "cond", b->cond_string);
6141
6142 /* Print whether the target is doing the breakpoint's condition
6143 evaluation. If GDB is doing the evaluation, don't print anything. */
6144 if (is_breakpoint (b)
6145 && breakpoint_condition_evaluation_mode ()
6146 == condition_evaluation_target)
6147 {
6148 ui_out_text (uiout, " (");
6149 ui_out_field_string (uiout, "evaluated-by",
6150 bp_condition_evaluator (b));
6151 ui_out_text (uiout, " evals)");
6152 }
6153 ui_out_text (uiout, "\n");
6154 }
6155
6156 if (!part_of_multiple && b->thread != -1)
6157 {
6158 /* FIXME should make an annotation for this. */
6159 ui_out_text (uiout, "\tstop only in thread ");
6160 ui_out_field_int (uiout, "thread", b->thread);
6161 ui_out_text (uiout, "\n");
6162 }
6163
6164 if (!part_of_multiple)
6165 {
6166 if (b->hit_count)
6167 {
6168 /* FIXME should make an annotation for this. */
6169 if (is_catchpoint (b))
6170 ui_out_text (uiout, "\tcatchpoint");
6171 else if (is_tracepoint (b))
6172 ui_out_text (uiout, "\ttracepoint");
6173 else
6174 ui_out_text (uiout, "\tbreakpoint");
6175 ui_out_text (uiout, " already hit ");
6176 ui_out_field_int (uiout, "times", b->hit_count);
6177 if (b->hit_count == 1)
6178 ui_out_text (uiout, " time\n");
6179 else
6180 ui_out_text (uiout, " times\n");
6181 }
6182 else
6183 {
6184 /* Output the count also if it is zero, but only if this is mi. */
6185 if (ui_out_is_mi_like_p (uiout))
6186 ui_out_field_int (uiout, "times", b->hit_count);
6187 }
6188 }
6189
6190 if (!part_of_multiple && b->ignore_count)
6191 {
6192 annotate_field (8);
6193 ui_out_text (uiout, "\tignore next ");
6194 ui_out_field_int (uiout, "ignore", b->ignore_count);
6195 ui_out_text (uiout, " hits\n");
6196 }
6197
6198 /* Note that an enable count of 1 corresponds to "enable once"
6199 behavior, which is reported by the combination of enablement and
6200 disposition, so we don't need to mention it here. */
6201 if (!part_of_multiple && b->enable_count > 1)
6202 {
6203 annotate_field (8);
6204 ui_out_text (uiout, "\tdisable after ");
6205 /* Tweak the wording to clarify that ignore and enable counts
6206 are distinct, and have additive effect. */
6207 if (b->ignore_count)
6208 ui_out_text (uiout, "additional ");
6209 else
6210 ui_out_text (uiout, "next ");
6211 ui_out_field_int (uiout, "enable", b->enable_count);
6212 ui_out_text (uiout, " hits\n");
6213 }
6214
6215 if (!part_of_multiple && is_tracepoint (b))
6216 {
6217 struct tracepoint *tp = (struct tracepoint *) b;
6218
6219 if (tp->traceframe_usage)
6220 {
6221 ui_out_text (uiout, "\ttrace buffer usage ");
6222 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6223 ui_out_text (uiout, " bytes\n");
6224 }
6225 }
6226
6227 l = b->commands ? b->commands->commands : NULL;
6228 if (!part_of_multiple && l)
6229 {
6230 struct cleanup *script_chain;
6231
6232 annotate_field (9);
6233 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6234 print_command_lines (uiout, l, 4);
6235 do_cleanups (script_chain);
6236 }
6237
6238 if (is_tracepoint (b))
6239 {
6240 struct tracepoint *t = (struct tracepoint *) b;
6241
6242 if (!part_of_multiple && t->pass_count)
6243 {
6244 annotate_field (10);
6245 ui_out_text (uiout, "\tpass count ");
6246 ui_out_field_int (uiout, "pass", t->pass_count);
6247 ui_out_text (uiout, " \n");
6248 }
6249
6250 /* Don't display it when tracepoint or tracepoint location is
6251 pending. */
6252 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6253 {
6254 annotate_field (11);
6255
6256 if (ui_out_is_mi_like_p (uiout))
6257 ui_out_field_string (uiout, "installed",
6258 loc->inserted ? "y" : "n");
6259 else
6260 {
6261 if (loc->inserted)
6262 ui_out_text (uiout, "\t");
6263 else
6264 ui_out_text (uiout, "\tnot ");
6265 ui_out_text (uiout, "installed on target\n");
6266 }
6267 }
6268 }
6269
6270 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6271 {
6272 if (is_watchpoint (b))
6273 {
6274 struct watchpoint *w = (struct watchpoint *) b;
6275
6276 ui_out_field_string (uiout, "original-location", w->exp_string);
6277 }
6278 else if (b->addr_string)
6279 ui_out_field_string (uiout, "original-location", b->addr_string);
6280 }
6281 }
6282
6283 static void
6284 print_one_breakpoint (struct breakpoint *b,
6285 struct bp_location **last_loc,
6286 int allflag)
6287 {
6288 struct cleanup *bkpt_chain;
6289 struct ui_out *uiout = current_uiout;
6290
6291 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6292
6293 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6294 do_cleanups (bkpt_chain);
6295
6296 /* If this breakpoint has custom print function,
6297 it's already printed. Otherwise, print individual
6298 locations, if any. */
6299 if (b->ops == NULL || b->ops->print_one == NULL)
6300 {
6301 /* If breakpoint has a single location that is disabled, we
6302 print it as if it had several locations, since otherwise it's
6303 hard to represent "breakpoint enabled, location disabled"
6304 situation.
6305
6306 Note that while hardware watchpoints have several locations
6307 internally, that's not a property exposed to user. */
6308 if (b->loc
6309 && !is_hardware_watchpoint (b)
6310 && (b->loc->next || !b->loc->enabled))
6311 {
6312 struct bp_location *loc;
6313 int n = 1;
6314
6315 for (loc = b->loc; loc; loc = loc->next, ++n)
6316 {
6317 struct cleanup *inner2 =
6318 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6319 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6320 do_cleanups (inner2);
6321 }
6322 }
6323 }
6324 }
6325
6326 static int
6327 breakpoint_address_bits (struct breakpoint *b)
6328 {
6329 int print_address_bits = 0;
6330 struct bp_location *loc;
6331
6332 for (loc = b->loc; loc; loc = loc->next)
6333 {
6334 int addr_bit;
6335
6336 /* Software watchpoints that aren't watching memory don't have
6337 an address to print. */
6338 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6339 continue;
6340
6341 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6342 if (addr_bit > print_address_bits)
6343 print_address_bits = addr_bit;
6344 }
6345
6346 return print_address_bits;
6347 }
6348
6349 struct captured_breakpoint_query_args
6350 {
6351 int bnum;
6352 };
6353
6354 static int
6355 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6356 {
6357 struct captured_breakpoint_query_args *args = data;
6358 struct breakpoint *b;
6359 struct bp_location *dummy_loc = NULL;
6360
6361 ALL_BREAKPOINTS (b)
6362 {
6363 if (args->bnum == b->number)
6364 {
6365 print_one_breakpoint (b, &dummy_loc, 0);
6366 return GDB_RC_OK;
6367 }
6368 }
6369 return GDB_RC_NONE;
6370 }
6371
6372 enum gdb_rc
6373 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6374 char **error_message)
6375 {
6376 struct captured_breakpoint_query_args args;
6377
6378 args.bnum = bnum;
6379 /* For the moment we don't trust print_one_breakpoint() to not throw
6380 an error. */
6381 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6382 error_message, RETURN_MASK_ALL) < 0)
6383 return GDB_RC_FAIL;
6384 else
6385 return GDB_RC_OK;
6386 }
6387
6388 /* Return true if this breakpoint was set by the user, false if it is
6389 internal or momentary. */
6390
6391 int
6392 user_breakpoint_p (struct breakpoint *b)
6393 {
6394 return b->number > 0;
6395 }
6396
6397 /* Print information on user settable breakpoint (watchpoint, etc)
6398 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6399 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6400 FILTER is non-NULL, call it on each breakpoint and only include the
6401 ones for which it returns non-zero. Return the total number of
6402 breakpoints listed. */
6403
6404 static int
6405 breakpoint_1 (char *args, int allflag,
6406 int (*filter) (const struct breakpoint *))
6407 {
6408 struct breakpoint *b;
6409 struct bp_location *last_loc = NULL;
6410 int nr_printable_breakpoints;
6411 struct cleanup *bkpttbl_chain;
6412 struct value_print_options opts;
6413 int print_address_bits = 0;
6414 int print_type_col_width = 14;
6415 struct ui_out *uiout = current_uiout;
6416
6417 get_user_print_options (&opts);
6418
6419 /* Compute the number of rows in the table, as well as the size
6420 required for address fields. */
6421 nr_printable_breakpoints = 0;
6422 ALL_BREAKPOINTS (b)
6423 {
6424 /* If we have a filter, only list the breakpoints it accepts. */
6425 if (filter && !filter (b))
6426 continue;
6427
6428 /* If we have an "args" string, it is a list of breakpoints to
6429 accept. Skip the others. */
6430 if (args != NULL && *args != '\0')
6431 {
6432 if (allflag && parse_and_eval_long (args) != b->number)
6433 continue;
6434 if (!allflag && !number_is_in_list (args, b->number))
6435 continue;
6436 }
6437
6438 if (allflag || user_breakpoint_p (b))
6439 {
6440 int addr_bit, type_len;
6441
6442 addr_bit = breakpoint_address_bits (b);
6443 if (addr_bit > print_address_bits)
6444 print_address_bits = addr_bit;
6445
6446 type_len = strlen (bptype_string (b->type));
6447 if (type_len > print_type_col_width)
6448 print_type_col_width = type_len;
6449
6450 nr_printable_breakpoints++;
6451 }
6452 }
6453
6454 if (opts.addressprint)
6455 bkpttbl_chain
6456 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6457 nr_printable_breakpoints,
6458 "BreakpointTable");
6459 else
6460 bkpttbl_chain
6461 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6462 nr_printable_breakpoints,
6463 "BreakpointTable");
6464
6465 if (nr_printable_breakpoints > 0)
6466 annotate_breakpoints_headers ();
6467 if (nr_printable_breakpoints > 0)
6468 annotate_field (0);
6469 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6470 if (nr_printable_breakpoints > 0)
6471 annotate_field (1);
6472 ui_out_table_header (uiout, print_type_col_width, ui_left,
6473 "type", "Type"); /* 2 */
6474 if (nr_printable_breakpoints > 0)
6475 annotate_field (2);
6476 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6477 if (nr_printable_breakpoints > 0)
6478 annotate_field (3);
6479 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6480 if (opts.addressprint)
6481 {
6482 if (nr_printable_breakpoints > 0)
6483 annotate_field (4);
6484 if (print_address_bits <= 32)
6485 ui_out_table_header (uiout, 10, ui_left,
6486 "addr", "Address"); /* 5 */
6487 else
6488 ui_out_table_header (uiout, 18, ui_left,
6489 "addr", "Address"); /* 5 */
6490 }
6491 if (nr_printable_breakpoints > 0)
6492 annotate_field (5);
6493 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6494 ui_out_table_body (uiout);
6495 if (nr_printable_breakpoints > 0)
6496 annotate_breakpoints_table ();
6497
6498 ALL_BREAKPOINTS (b)
6499 {
6500 QUIT;
6501 /* If we have a filter, only list the breakpoints it accepts. */
6502 if (filter && !filter (b))
6503 continue;
6504
6505 /* If we have an "args" string, it is a list of breakpoints to
6506 accept. Skip the others. */
6507
6508 if (args != NULL && *args != '\0')
6509 {
6510 if (allflag) /* maintenance info breakpoint */
6511 {
6512 if (parse_and_eval_long (args) != b->number)
6513 continue;
6514 }
6515 else /* all others */
6516 {
6517 if (!number_is_in_list (args, b->number))
6518 continue;
6519 }
6520 }
6521 /* We only print out user settable breakpoints unless the
6522 allflag is set. */
6523 if (allflag || user_breakpoint_p (b))
6524 print_one_breakpoint (b, &last_loc, allflag);
6525 }
6526
6527 do_cleanups (bkpttbl_chain);
6528
6529 if (nr_printable_breakpoints == 0)
6530 {
6531 /* If there's a filter, let the caller decide how to report
6532 empty list. */
6533 if (!filter)
6534 {
6535 if (args == NULL || *args == '\0')
6536 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6537 else
6538 ui_out_message (uiout, 0,
6539 "No breakpoint or watchpoint matching '%s'.\n",
6540 args);
6541 }
6542 }
6543 else
6544 {
6545 if (last_loc && !server_command)
6546 set_next_address (last_loc->gdbarch, last_loc->address);
6547 }
6548
6549 /* FIXME? Should this be moved up so that it is only called when
6550 there have been breakpoints? */
6551 annotate_breakpoints_table_end ();
6552
6553 return nr_printable_breakpoints;
6554 }
6555
6556 /* Display the value of default-collect in a way that is generally
6557 compatible with the breakpoint list. */
6558
6559 static void
6560 default_collect_info (void)
6561 {
6562 struct ui_out *uiout = current_uiout;
6563
6564 /* If it has no value (which is frequently the case), say nothing; a
6565 message like "No default-collect." gets in user's face when it's
6566 not wanted. */
6567 if (!*default_collect)
6568 return;
6569
6570 /* The following phrase lines up nicely with per-tracepoint collect
6571 actions. */
6572 ui_out_text (uiout, "default collect ");
6573 ui_out_field_string (uiout, "default-collect", default_collect);
6574 ui_out_text (uiout, " \n");
6575 }
6576
6577 static void
6578 breakpoints_info (char *args, int from_tty)
6579 {
6580 breakpoint_1 (args, 0, NULL);
6581
6582 default_collect_info ();
6583 }
6584
6585 static void
6586 watchpoints_info (char *args, int from_tty)
6587 {
6588 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6589 struct ui_out *uiout = current_uiout;
6590
6591 if (num_printed == 0)
6592 {
6593 if (args == NULL || *args == '\0')
6594 ui_out_message (uiout, 0, "No watchpoints.\n");
6595 else
6596 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6597 }
6598 }
6599
6600 static void
6601 maintenance_info_breakpoints (char *args, int from_tty)
6602 {
6603 breakpoint_1 (args, 1, NULL);
6604
6605 default_collect_info ();
6606 }
6607
6608 static int
6609 breakpoint_has_pc (struct breakpoint *b,
6610 struct program_space *pspace,
6611 CORE_ADDR pc, struct obj_section *section)
6612 {
6613 struct bp_location *bl = b->loc;
6614
6615 for (; bl; bl = bl->next)
6616 {
6617 if (bl->pspace == pspace
6618 && bl->address == pc
6619 && (!overlay_debugging || bl->section == section))
6620 return 1;
6621 }
6622 return 0;
6623 }
6624
6625 /* Print a message describing any user-breakpoints set at PC. This
6626 concerns with logical breakpoints, so we match program spaces, not
6627 address spaces. */
6628
6629 static void
6630 describe_other_breakpoints (struct gdbarch *gdbarch,
6631 struct program_space *pspace, CORE_ADDR pc,
6632 struct obj_section *section, int thread)
6633 {
6634 int others = 0;
6635 struct breakpoint *b;
6636
6637 ALL_BREAKPOINTS (b)
6638 others += (user_breakpoint_p (b)
6639 && breakpoint_has_pc (b, pspace, pc, section));
6640 if (others > 0)
6641 {
6642 if (others == 1)
6643 printf_filtered (_("Note: breakpoint "));
6644 else /* if (others == ???) */
6645 printf_filtered (_("Note: breakpoints "));
6646 ALL_BREAKPOINTS (b)
6647 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6648 {
6649 others--;
6650 printf_filtered ("%d", b->number);
6651 if (b->thread == -1 && thread != -1)
6652 printf_filtered (" (all threads)");
6653 else if (b->thread != -1)
6654 printf_filtered (" (thread %d)", b->thread);
6655 printf_filtered ("%s%s ",
6656 ((b->enable_state == bp_disabled
6657 || b->enable_state == bp_call_disabled)
6658 ? " (disabled)"
6659 : b->enable_state == bp_permanent
6660 ? " (permanent)"
6661 : ""),
6662 (others > 1) ? ","
6663 : ((others == 1) ? " and" : ""));
6664 }
6665 printf_filtered (_("also set at pc "));
6666 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6667 printf_filtered (".\n");
6668 }
6669 }
6670 \f
6671
6672 /* Return true iff it is meaningful to use the address member of
6673 BPT. For some breakpoint types, the address member is irrelevant
6674 and it makes no sense to attempt to compare it to other addresses
6675 (or use it for any other purpose either).
6676
6677 More specifically, each of the following breakpoint types will
6678 always have a zero valued address and we don't want to mark
6679 breakpoints of any of these types to be a duplicate of an actual
6680 breakpoint at address zero:
6681
6682 bp_watchpoint
6683 bp_catchpoint
6684
6685 */
6686
6687 static int
6688 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6689 {
6690 enum bptype type = bpt->type;
6691
6692 return (type != bp_watchpoint && type != bp_catchpoint);
6693 }
6694
6695 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6696 true if LOC1 and LOC2 represent the same watchpoint location. */
6697
6698 static int
6699 watchpoint_locations_match (struct bp_location *loc1,
6700 struct bp_location *loc2)
6701 {
6702 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6703 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6704
6705 /* Both of them must exist. */
6706 gdb_assert (w1 != NULL);
6707 gdb_assert (w2 != NULL);
6708
6709 /* If the target can evaluate the condition expression in hardware,
6710 then we we need to insert both watchpoints even if they are at
6711 the same place. Otherwise the watchpoint will only trigger when
6712 the condition of whichever watchpoint was inserted evaluates to
6713 true, not giving a chance for GDB to check the condition of the
6714 other watchpoint. */
6715 if ((w1->cond_exp
6716 && target_can_accel_watchpoint_condition (loc1->address,
6717 loc1->length,
6718 loc1->watchpoint_type,
6719 w1->cond_exp))
6720 || (w2->cond_exp
6721 && target_can_accel_watchpoint_condition (loc2->address,
6722 loc2->length,
6723 loc2->watchpoint_type,
6724 w2->cond_exp)))
6725 return 0;
6726
6727 /* Note that this checks the owner's type, not the location's. In
6728 case the target does not support read watchpoints, but does
6729 support access watchpoints, we'll have bp_read_watchpoint
6730 watchpoints with hw_access locations. Those should be considered
6731 duplicates of hw_read locations. The hw_read locations will
6732 become hw_access locations later. */
6733 return (loc1->owner->type == loc2->owner->type
6734 && loc1->pspace->aspace == loc2->pspace->aspace
6735 && loc1->address == loc2->address
6736 && loc1->length == loc2->length);
6737 }
6738
6739 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6740 same breakpoint location. In most targets, this can only be true
6741 if ASPACE1 matches ASPACE2. On targets that have global
6742 breakpoints, the address space doesn't really matter. */
6743
6744 static int
6745 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6746 struct address_space *aspace2, CORE_ADDR addr2)
6747 {
6748 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6749 || aspace1 == aspace2)
6750 && addr1 == addr2);
6751 }
6752
6753 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6754 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6755 matches ASPACE2. On targets that have global breakpoints, the address
6756 space doesn't really matter. */
6757
6758 static int
6759 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6760 int len1, struct address_space *aspace2,
6761 CORE_ADDR addr2)
6762 {
6763 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6764 || aspace1 == aspace2)
6765 && addr2 >= addr1 && addr2 < addr1 + len1);
6766 }
6767
6768 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6769 a ranged breakpoint. In most targets, a match happens only if ASPACE
6770 matches the breakpoint's address space. On targets that have global
6771 breakpoints, the address space doesn't really matter. */
6772
6773 static int
6774 breakpoint_location_address_match (struct bp_location *bl,
6775 struct address_space *aspace,
6776 CORE_ADDR addr)
6777 {
6778 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6779 aspace, addr)
6780 || (bl->length
6781 && breakpoint_address_match_range (bl->pspace->aspace,
6782 bl->address, bl->length,
6783 aspace, addr)));
6784 }
6785
6786 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6787 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6788 true, otherwise returns false. */
6789
6790 static int
6791 tracepoint_locations_match (struct bp_location *loc1,
6792 struct bp_location *loc2)
6793 {
6794 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6795 /* Since tracepoint locations are never duplicated with others', tracepoint
6796 locations at the same address of different tracepoints are regarded as
6797 different locations. */
6798 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6799 else
6800 return 0;
6801 }
6802
6803 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6804 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6805 represent the same location. */
6806
6807 static int
6808 breakpoint_locations_match (struct bp_location *loc1,
6809 struct bp_location *loc2)
6810 {
6811 int hw_point1, hw_point2;
6812
6813 /* Both of them must not be in moribund_locations. */
6814 gdb_assert (loc1->owner != NULL);
6815 gdb_assert (loc2->owner != NULL);
6816
6817 hw_point1 = is_hardware_watchpoint (loc1->owner);
6818 hw_point2 = is_hardware_watchpoint (loc2->owner);
6819
6820 if (hw_point1 != hw_point2)
6821 return 0;
6822 else if (hw_point1)
6823 return watchpoint_locations_match (loc1, loc2);
6824 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6825 return tracepoint_locations_match (loc1, loc2);
6826 else
6827 /* We compare bp_location.length in order to cover ranged breakpoints. */
6828 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6829 loc2->pspace->aspace, loc2->address)
6830 && loc1->length == loc2->length);
6831 }
6832
6833 static void
6834 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6835 int bnum, int have_bnum)
6836 {
6837 /* The longest string possibly returned by hex_string_custom
6838 is 50 chars. These must be at least that big for safety. */
6839 char astr1[64];
6840 char astr2[64];
6841
6842 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6843 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6844 if (have_bnum)
6845 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6846 bnum, astr1, astr2);
6847 else
6848 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6849 }
6850
6851 /* Adjust a breakpoint's address to account for architectural
6852 constraints on breakpoint placement. Return the adjusted address.
6853 Note: Very few targets require this kind of adjustment. For most
6854 targets, this function is simply the identity function. */
6855
6856 static CORE_ADDR
6857 adjust_breakpoint_address (struct gdbarch *gdbarch,
6858 CORE_ADDR bpaddr, enum bptype bptype)
6859 {
6860 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6861 {
6862 /* Very few targets need any kind of breakpoint adjustment. */
6863 return bpaddr;
6864 }
6865 else if (bptype == bp_watchpoint
6866 || bptype == bp_hardware_watchpoint
6867 || bptype == bp_read_watchpoint
6868 || bptype == bp_access_watchpoint
6869 || bptype == bp_catchpoint)
6870 {
6871 /* Watchpoints and the various bp_catch_* eventpoints should not
6872 have their addresses modified. */
6873 return bpaddr;
6874 }
6875 else
6876 {
6877 CORE_ADDR adjusted_bpaddr;
6878
6879 /* Some targets have architectural constraints on the placement
6880 of breakpoint instructions. Obtain the adjusted address. */
6881 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6882
6883 /* An adjusted breakpoint address can significantly alter
6884 a user's expectations. Print a warning if an adjustment
6885 is required. */
6886 if (adjusted_bpaddr != bpaddr)
6887 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6888
6889 return adjusted_bpaddr;
6890 }
6891 }
6892
6893 void
6894 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6895 struct breakpoint *owner)
6896 {
6897 memset (loc, 0, sizeof (*loc));
6898
6899 gdb_assert (ops != NULL);
6900
6901 loc->ops = ops;
6902 loc->owner = owner;
6903 loc->cond = NULL;
6904 loc->cond_bytecode = NULL;
6905 loc->shlib_disabled = 0;
6906 loc->enabled = 1;
6907
6908 switch (owner->type)
6909 {
6910 case bp_breakpoint:
6911 case bp_until:
6912 case bp_finish:
6913 case bp_longjmp:
6914 case bp_longjmp_resume:
6915 case bp_longjmp_call_dummy:
6916 case bp_exception:
6917 case bp_exception_resume:
6918 case bp_step_resume:
6919 case bp_hp_step_resume:
6920 case bp_watchpoint_scope:
6921 case bp_call_dummy:
6922 case bp_std_terminate:
6923 case bp_shlib_event:
6924 case bp_thread_event:
6925 case bp_overlay_event:
6926 case bp_jit_event:
6927 case bp_longjmp_master:
6928 case bp_std_terminate_master:
6929 case bp_exception_master:
6930 case bp_gnu_ifunc_resolver:
6931 case bp_gnu_ifunc_resolver_return:
6932 case bp_dprintf:
6933 loc->loc_type = bp_loc_software_breakpoint;
6934 mark_breakpoint_location_modified (loc);
6935 break;
6936 case bp_hardware_breakpoint:
6937 loc->loc_type = bp_loc_hardware_breakpoint;
6938 mark_breakpoint_location_modified (loc);
6939 break;
6940 case bp_hardware_watchpoint:
6941 case bp_read_watchpoint:
6942 case bp_access_watchpoint:
6943 loc->loc_type = bp_loc_hardware_watchpoint;
6944 break;
6945 case bp_watchpoint:
6946 case bp_catchpoint:
6947 case bp_tracepoint:
6948 case bp_fast_tracepoint:
6949 case bp_static_tracepoint:
6950 loc->loc_type = bp_loc_other;
6951 break;
6952 default:
6953 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6954 }
6955
6956 loc->refc = 1;
6957 }
6958
6959 /* Allocate a struct bp_location. */
6960
6961 static struct bp_location *
6962 allocate_bp_location (struct breakpoint *bpt)
6963 {
6964 return bpt->ops->allocate_location (bpt);
6965 }
6966
6967 static void
6968 free_bp_location (struct bp_location *loc)
6969 {
6970 loc->ops->dtor (loc);
6971 xfree (loc);
6972 }
6973
6974 /* Increment reference count. */
6975
6976 static void
6977 incref_bp_location (struct bp_location *bl)
6978 {
6979 ++bl->refc;
6980 }
6981
6982 /* Decrement reference count. If the reference count reaches 0,
6983 destroy the bp_location. Sets *BLP to NULL. */
6984
6985 static void
6986 decref_bp_location (struct bp_location **blp)
6987 {
6988 gdb_assert ((*blp)->refc > 0);
6989
6990 if (--(*blp)->refc == 0)
6991 free_bp_location (*blp);
6992 *blp = NULL;
6993 }
6994
6995 /* Add breakpoint B at the end of the global breakpoint chain. */
6996
6997 static void
6998 add_to_breakpoint_chain (struct breakpoint *b)
6999 {
7000 struct breakpoint *b1;
7001
7002 /* Add this breakpoint to the end of the chain so that a list of
7003 breakpoints will come out in order of increasing numbers. */
7004
7005 b1 = breakpoint_chain;
7006 if (b1 == 0)
7007 breakpoint_chain = b;
7008 else
7009 {
7010 while (b1->next)
7011 b1 = b1->next;
7012 b1->next = b;
7013 }
7014 }
7015
7016 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7017
7018 static void
7019 init_raw_breakpoint_without_location (struct breakpoint *b,
7020 struct gdbarch *gdbarch,
7021 enum bptype bptype,
7022 const struct breakpoint_ops *ops)
7023 {
7024 memset (b, 0, sizeof (*b));
7025
7026 gdb_assert (ops != NULL);
7027
7028 b->ops = ops;
7029 b->type = bptype;
7030 b->gdbarch = gdbarch;
7031 b->language = current_language->la_language;
7032 b->input_radix = input_radix;
7033 b->thread = -1;
7034 b->enable_state = bp_enabled;
7035 b->next = 0;
7036 b->silent = 0;
7037 b->ignore_count = 0;
7038 b->commands = NULL;
7039 b->frame_id = null_frame_id;
7040 b->condition_not_parsed = 0;
7041 b->py_bp_object = NULL;
7042 b->related_breakpoint = b;
7043 }
7044
7045 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7046 that has type BPTYPE and has no locations as yet. */
7047
7048 static struct breakpoint *
7049 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7050 enum bptype bptype,
7051 const struct breakpoint_ops *ops)
7052 {
7053 struct breakpoint *b = XNEW (struct breakpoint);
7054
7055 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7056 add_to_breakpoint_chain (b);
7057 return b;
7058 }
7059
7060 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7061 resolutions should be made as the user specified the location explicitly
7062 enough. */
7063
7064 static void
7065 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7066 {
7067 gdb_assert (loc->owner != NULL);
7068
7069 if (loc->owner->type == bp_breakpoint
7070 || loc->owner->type == bp_hardware_breakpoint
7071 || is_tracepoint (loc->owner))
7072 {
7073 int is_gnu_ifunc;
7074 const char *function_name;
7075 CORE_ADDR func_addr;
7076
7077 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7078 &func_addr, NULL, &is_gnu_ifunc);
7079
7080 if (is_gnu_ifunc && !explicit_loc)
7081 {
7082 struct breakpoint *b = loc->owner;
7083
7084 gdb_assert (loc->pspace == current_program_space);
7085 if (gnu_ifunc_resolve_name (function_name,
7086 &loc->requested_address))
7087 {
7088 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7089 loc->address = adjust_breakpoint_address (loc->gdbarch,
7090 loc->requested_address,
7091 b->type);
7092 }
7093 else if (b->type == bp_breakpoint && b->loc == loc
7094 && loc->next == NULL && b->related_breakpoint == b)
7095 {
7096 /* Create only the whole new breakpoint of this type but do not
7097 mess more complicated breakpoints with multiple locations. */
7098 b->type = bp_gnu_ifunc_resolver;
7099 /* Remember the resolver's address for use by the return
7100 breakpoint. */
7101 loc->related_address = func_addr;
7102 }
7103 }
7104
7105 if (function_name)
7106 loc->function_name = xstrdup (function_name);
7107 }
7108 }
7109
7110 /* Attempt to determine architecture of location identified by SAL. */
7111 struct gdbarch *
7112 get_sal_arch (struct symtab_and_line sal)
7113 {
7114 if (sal.section)
7115 return get_objfile_arch (sal.section->objfile);
7116 if (sal.symtab)
7117 return get_objfile_arch (sal.symtab->objfile);
7118
7119 return NULL;
7120 }
7121
7122 /* Low level routine for partially initializing a breakpoint of type
7123 BPTYPE. The newly created breakpoint's address, section, source
7124 file name, and line number are provided by SAL.
7125
7126 It is expected that the caller will complete the initialization of
7127 the newly created breakpoint struct as well as output any status
7128 information regarding the creation of a new breakpoint. */
7129
7130 static void
7131 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7132 struct symtab_and_line sal, enum bptype bptype,
7133 const struct breakpoint_ops *ops)
7134 {
7135 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7136
7137 add_location_to_breakpoint (b, &sal);
7138
7139 if (bptype != bp_catchpoint)
7140 gdb_assert (sal.pspace != NULL);
7141
7142 /* Store the program space that was used to set the breakpoint,
7143 except for ordinary breakpoints, which are independent of the
7144 program space. */
7145 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7146 b->pspace = sal.pspace;
7147 }
7148
7149 /* set_raw_breakpoint is a low level routine for allocating and
7150 partially initializing a breakpoint of type BPTYPE. The newly
7151 created breakpoint's address, section, source file name, and line
7152 number are provided by SAL. The newly created and partially
7153 initialized breakpoint is added to the breakpoint chain and
7154 is also returned as the value of this function.
7155
7156 It is expected that the caller will complete the initialization of
7157 the newly created breakpoint struct as well as output any status
7158 information regarding the creation of a new breakpoint. In
7159 particular, set_raw_breakpoint does NOT set the breakpoint
7160 number! Care should be taken to not allow an error to occur
7161 prior to completing the initialization of the breakpoint. If this
7162 should happen, a bogus breakpoint will be left on the chain. */
7163
7164 struct breakpoint *
7165 set_raw_breakpoint (struct gdbarch *gdbarch,
7166 struct symtab_and_line sal, enum bptype bptype,
7167 const struct breakpoint_ops *ops)
7168 {
7169 struct breakpoint *b = XNEW (struct breakpoint);
7170
7171 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7172 add_to_breakpoint_chain (b);
7173 return b;
7174 }
7175
7176
7177 /* Note that the breakpoint object B describes a permanent breakpoint
7178 instruction, hard-wired into the inferior's code. */
7179 void
7180 make_breakpoint_permanent (struct breakpoint *b)
7181 {
7182 struct bp_location *bl;
7183
7184 b->enable_state = bp_permanent;
7185
7186 /* By definition, permanent breakpoints are already present in the
7187 code. Mark all locations as inserted. For now,
7188 make_breakpoint_permanent is called in just one place, so it's
7189 hard to say if it's reasonable to have permanent breakpoint with
7190 multiple locations or not, but it's easy to implement. */
7191 for (bl = b->loc; bl; bl = bl->next)
7192 bl->inserted = 1;
7193 }
7194
7195 /* Call this routine when stepping and nexting to enable a breakpoint
7196 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7197 initiated the operation. */
7198
7199 void
7200 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7201 {
7202 struct breakpoint *b, *b_tmp;
7203 int thread = tp->num;
7204
7205 /* To avoid having to rescan all objfile symbols at every step,
7206 we maintain a list of continually-inserted but always disabled
7207 longjmp "master" breakpoints. Here, we simply create momentary
7208 clones of those and enable them for the requested thread. */
7209 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7210 if (b->pspace == current_program_space
7211 && (b->type == bp_longjmp_master
7212 || b->type == bp_exception_master))
7213 {
7214 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7215 struct breakpoint *clone;
7216
7217 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7218 after their removal. */
7219 clone = momentary_breakpoint_from_master (b, type,
7220 &longjmp_breakpoint_ops);
7221 clone->thread = thread;
7222 }
7223
7224 tp->initiating_frame = frame;
7225 }
7226
7227 /* Delete all longjmp breakpoints from THREAD. */
7228 void
7229 delete_longjmp_breakpoint (int thread)
7230 {
7231 struct breakpoint *b, *b_tmp;
7232
7233 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7234 if (b->type == bp_longjmp || b->type == bp_exception)
7235 {
7236 if (b->thread == thread)
7237 delete_breakpoint (b);
7238 }
7239 }
7240
7241 void
7242 delete_longjmp_breakpoint_at_next_stop (int thread)
7243 {
7244 struct breakpoint *b, *b_tmp;
7245
7246 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7247 if (b->type == bp_longjmp || b->type == bp_exception)
7248 {
7249 if (b->thread == thread)
7250 b->disposition = disp_del_at_next_stop;
7251 }
7252 }
7253
7254 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7255 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7256 pointer to any of them. Return NULL if this system cannot place longjmp
7257 breakpoints. */
7258
7259 struct breakpoint *
7260 set_longjmp_breakpoint_for_call_dummy (void)
7261 {
7262 struct breakpoint *b, *retval = NULL;
7263
7264 ALL_BREAKPOINTS (b)
7265 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7266 {
7267 struct breakpoint *new_b;
7268
7269 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7270 &momentary_breakpoint_ops);
7271 new_b->thread = pid_to_thread_id (inferior_ptid);
7272
7273 /* Link NEW_B into the chain of RETVAL breakpoints. */
7274
7275 gdb_assert (new_b->related_breakpoint == new_b);
7276 if (retval == NULL)
7277 retval = new_b;
7278 new_b->related_breakpoint = retval;
7279 while (retval->related_breakpoint != new_b->related_breakpoint)
7280 retval = retval->related_breakpoint;
7281 retval->related_breakpoint = new_b;
7282 }
7283
7284 return retval;
7285 }
7286
7287 /* Verify all existing dummy frames and their associated breakpoints for
7288 THREAD. Remove those which can no longer be found in the current frame
7289 stack.
7290
7291 You should call this function only at places where it is safe to currently
7292 unwind the whole stack. Failed stack unwind would discard live dummy
7293 frames. */
7294
7295 void
7296 check_longjmp_breakpoint_for_call_dummy (int thread)
7297 {
7298 struct breakpoint *b, *b_tmp;
7299
7300 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7301 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7302 {
7303 struct breakpoint *dummy_b = b->related_breakpoint;
7304
7305 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7306 dummy_b = dummy_b->related_breakpoint;
7307 if (dummy_b->type != bp_call_dummy
7308 || frame_find_by_id (dummy_b->frame_id) != NULL)
7309 continue;
7310
7311 dummy_frame_discard (dummy_b->frame_id);
7312
7313 while (b->related_breakpoint != b)
7314 {
7315 if (b_tmp == b->related_breakpoint)
7316 b_tmp = b->related_breakpoint->next;
7317 delete_breakpoint (b->related_breakpoint);
7318 }
7319 delete_breakpoint (b);
7320 }
7321 }
7322
7323 void
7324 enable_overlay_breakpoints (void)
7325 {
7326 struct breakpoint *b;
7327
7328 ALL_BREAKPOINTS (b)
7329 if (b->type == bp_overlay_event)
7330 {
7331 b->enable_state = bp_enabled;
7332 update_global_location_list (1);
7333 overlay_events_enabled = 1;
7334 }
7335 }
7336
7337 void
7338 disable_overlay_breakpoints (void)
7339 {
7340 struct breakpoint *b;
7341
7342 ALL_BREAKPOINTS (b)
7343 if (b->type == bp_overlay_event)
7344 {
7345 b->enable_state = bp_disabled;
7346 update_global_location_list (0);
7347 overlay_events_enabled = 0;
7348 }
7349 }
7350
7351 /* Set an active std::terminate breakpoint for each std::terminate
7352 master breakpoint. */
7353 void
7354 set_std_terminate_breakpoint (void)
7355 {
7356 struct breakpoint *b, *b_tmp;
7357
7358 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7359 if (b->pspace == current_program_space
7360 && b->type == bp_std_terminate_master)
7361 {
7362 momentary_breakpoint_from_master (b, bp_std_terminate,
7363 &momentary_breakpoint_ops);
7364 }
7365 }
7366
7367 /* Delete all the std::terminate breakpoints. */
7368 void
7369 delete_std_terminate_breakpoint (void)
7370 {
7371 struct breakpoint *b, *b_tmp;
7372
7373 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7374 if (b->type == bp_std_terminate)
7375 delete_breakpoint (b);
7376 }
7377
7378 struct breakpoint *
7379 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7380 {
7381 struct breakpoint *b;
7382
7383 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7384 &internal_breakpoint_ops);
7385
7386 b->enable_state = bp_enabled;
7387 /* addr_string has to be used or breakpoint_re_set will delete me. */
7388 b->addr_string
7389 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7390
7391 update_global_location_list_nothrow (1);
7392
7393 return b;
7394 }
7395
7396 void
7397 remove_thread_event_breakpoints (void)
7398 {
7399 struct breakpoint *b, *b_tmp;
7400
7401 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7402 if (b->type == bp_thread_event
7403 && b->loc->pspace == current_program_space)
7404 delete_breakpoint (b);
7405 }
7406
7407 struct lang_and_radix
7408 {
7409 enum language lang;
7410 int radix;
7411 };
7412
7413 /* Create a breakpoint for JIT code registration and unregistration. */
7414
7415 struct breakpoint *
7416 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7417 {
7418 struct breakpoint *b;
7419
7420 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7421 &internal_breakpoint_ops);
7422 update_global_location_list_nothrow (1);
7423 return b;
7424 }
7425
7426 /* Remove JIT code registration and unregistration breakpoint(s). */
7427
7428 void
7429 remove_jit_event_breakpoints (void)
7430 {
7431 struct breakpoint *b, *b_tmp;
7432
7433 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7434 if (b->type == bp_jit_event
7435 && b->loc->pspace == current_program_space)
7436 delete_breakpoint (b);
7437 }
7438
7439 void
7440 remove_solib_event_breakpoints (void)
7441 {
7442 struct breakpoint *b, *b_tmp;
7443
7444 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7445 if (b->type == bp_shlib_event
7446 && b->loc->pspace == current_program_space)
7447 delete_breakpoint (b);
7448 }
7449
7450 struct breakpoint *
7451 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7452 {
7453 struct breakpoint *b;
7454
7455 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7456 &internal_breakpoint_ops);
7457 update_global_location_list_nothrow (1);
7458 return b;
7459 }
7460
7461 /* Disable any breakpoints that are on code in shared libraries. Only
7462 apply to enabled breakpoints, disabled ones can just stay disabled. */
7463
7464 void
7465 disable_breakpoints_in_shlibs (void)
7466 {
7467 struct bp_location *loc, **locp_tmp;
7468
7469 ALL_BP_LOCATIONS (loc, locp_tmp)
7470 {
7471 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7472 struct breakpoint *b = loc->owner;
7473
7474 /* We apply the check to all breakpoints, including disabled for
7475 those with loc->duplicate set. This is so that when breakpoint
7476 becomes enabled, or the duplicate is removed, gdb will try to
7477 insert all breakpoints. If we don't set shlib_disabled here,
7478 we'll try to insert those breakpoints and fail. */
7479 if (((b->type == bp_breakpoint)
7480 || (b->type == bp_jit_event)
7481 || (b->type == bp_hardware_breakpoint)
7482 || (is_tracepoint (b)))
7483 && loc->pspace == current_program_space
7484 && !loc->shlib_disabled
7485 && solib_name_from_address (loc->pspace, loc->address)
7486 )
7487 {
7488 loc->shlib_disabled = 1;
7489 }
7490 }
7491 }
7492
7493 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7494 notification of unloaded_shlib. Only apply to enabled breakpoints,
7495 disabled ones can just stay disabled. */
7496
7497 static void
7498 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7499 {
7500 struct bp_location *loc, **locp_tmp;
7501 int disabled_shlib_breaks = 0;
7502
7503 /* SunOS a.out shared libraries are always mapped, so do not
7504 disable breakpoints; they will only be reported as unloaded
7505 through clear_solib when GDB discards its shared library
7506 list. See clear_solib for more information. */
7507 if (exec_bfd != NULL
7508 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7509 return;
7510
7511 ALL_BP_LOCATIONS (loc, locp_tmp)
7512 {
7513 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7514 struct breakpoint *b = loc->owner;
7515
7516 if (solib->pspace == loc->pspace
7517 && !loc->shlib_disabled
7518 && (((b->type == bp_breakpoint
7519 || b->type == bp_jit_event
7520 || b->type == bp_hardware_breakpoint)
7521 && (loc->loc_type == bp_loc_hardware_breakpoint
7522 || loc->loc_type == bp_loc_software_breakpoint))
7523 || is_tracepoint (b))
7524 && solib_contains_address_p (solib, loc->address))
7525 {
7526 loc->shlib_disabled = 1;
7527 /* At this point, we cannot rely on remove_breakpoint
7528 succeeding so we must mark the breakpoint as not inserted
7529 to prevent future errors occurring in remove_breakpoints. */
7530 loc->inserted = 0;
7531
7532 /* This may cause duplicate notifications for the same breakpoint. */
7533 observer_notify_breakpoint_modified (b);
7534
7535 if (!disabled_shlib_breaks)
7536 {
7537 target_terminal_ours_for_output ();
7538 warning (_("Temporarily disabling breakpoints "
7539 "for unloaded shared library \"%s\""),
7540 solib->so_name);
7541 }
7542 disabled_shlib_breaks = 1;
7543 }
7544 }
7545 }
7546
7547 /* Disable any breakpoints and tracepoints in OBJFILE upon
7548 notification of free_objfile. Only apply to enabled breakpoints,
7549 disabled ones can just stay disabled. */
7550
7551 static void
7552 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7553 {
7554 struct breakpoint *b;
7555
7556 if (objfile == NULL)
7557 return;
7558
7559 /* If the file is a shared library not loaded by the user then
7560 solib_unloaded was notified and disable_breakpoints_in_unloaded_shlib
7561 was called. In that case there is no need to take action again. */
7562 if ((objfile->flags & OBJF_SHARED) && !(objfile->flags & OBJF_USERLOADED))
7563 return;
7564
7565 ALL_BREAKPOINTS (b)
7566 {
7567 struct bp_location *loc;
7568 int bp_modified = 0;
7569
7570 if (!is_breakpoint (b) && !is_tracepoint (b))
7571 continue;
7572
7573 for (loc = b->loc; loc != NULL; loc = loc->next)
7574 {
7575 CORE_ADDR loc_addr = loc->address;
7576
7577 if (loc->loc_type != bp_loc_hardware_breakpoint
7578 && loc->loc_type != bp_loc_software_breakpoint)
7579 continue;
7580
7581 if (loc->shlib_disabled != 0)
7582 continue;
7583
7584 if (objfile->pspace != loc->pspace)
7585 continue;
7586
7587 if (loc->loc_type != bp_loc_hardware_breakpoint
7588 && loc->loc_type != bp_loc_software_breakpoint)
7589 continue;
7590
7591 if (is_addr_in_objfile (loc_addr, objfile))
7592 {
7593 loc->shlib_disabled = 1;
7594 loc->inserted = 0;
7595
7596 mark_breakpoint_location_modified (loc);
7597
7598 bp_modified = 1;
7599 }
7600 }
7601
7602 if (bp_modified)
7603 observer_notify_breakpoint_modified (b);
7604 }
7605 }
7606
7607 /* FORK & VFORK catchpoints. */
7608
7609 /* An instance of this type is used to represent a fork or vfork
7610 catchpoint. It includes a "struct breakpoint" as a kind of base
7611 class; users downcast to "struct breakpoint *" when needed. A
7612 breakpoint is really of this type iff its ops pointer points to
7613 CATCH_FORK_BREAKPOINT_OPS. */
7614
7615 struct fork_catchpoint
7616 {
7617 /* The base class. */
7618 struct breakpoint base;
7619
7620 /* Process id of a child process whose forking triggered this
7621 catchpoint. This field is only valid immediately after this
7622 catchpoint has triggered. */
7623 ptid_t forked_inferior_pid;
7624 };
7625
7626 /* Implement the "insert" breakpoint_ops method for fork
7627 catchpoints. */
7628
7629 static int
7630 insert_catch_fork (struct bp_location *bl)
7631 {
7632 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7633 }
7634
7635 /* Implement the "remove" breakpoint_ops method for fork
7636 catchpoints. */
7637
7638 static int
7639 remove_catch_fork (struct bp_location *bl)
7640 {
7641 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7642 }
7643
7644 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7645 catchpoints. */
7646
7647 static int
7648 breakpoint_hit_catch_fork (const struct bp_location *bl,
7649 struct address_space *aspace, CORE_ADDR bp_addr,
7650 const struct target_waitstatus *ws)
7651 {
7652 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7653
7654 if (ws->kind != TARGET_WAITKIND_FORKED)
7655 return 0;
7656
7657 c->forked_inferior_pid = ws->value.related_pid;
7658 return 1;
7659 }
7660
7661 /* Implement the "print_it" breakpoint_ops method for fork
7662 catchpoints. */
7663
7664 static enum print_stop_action
7665 print_it_catch_fork (bpstat bs)
7666 {
7667 struct ui_out *uiout = current_uiout;
7668 struct breakpoint *b = bs->breakpoint_at;
7669 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7670
7671 annotate_catchpoint (b->number);
7672 if (b->disposition == disp_del)
7673 ui_out_text (uiout, "\nTemporary catchpoint ");
7674 else
7675 ui_out_text (uiout, "\nCatchpoint ");
7676 if (ui_out_is_mi_like_p (uiout))
7677 {
7678 ui_out_field_string (uiout, "reason",
7679 async_reason_lookup (EXEC_ASYNC_FORK));
7680 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7681 }
7682 ui_out_field_int (uiout, "bkptno", b->number);
7683 ui_out_text (uiout, " (forked process ");
7684 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7685 ui_out_text (uiout, "), ");
7686 return PRINT_SRC_AND_LOC;
7687 }
7688
7689 /* Implement the "print_one" breakpoint_ops method for fork
7690 catchpoints. */
7691
7692 static void
7693 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7694 {
7695 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7696 struct value_print_options opts;
7697 struct ui_out *uiout = current_uiout;
7698
7699 get_user_print_options (&opts);
7700
7701 /* Field 4, the address, is omitted (which makes the columns not
7702 line up too nicely with the headers, but the effect is relatively
7703 readable). */
7704 if (opts.addressprint)
7705 ui_out_field_skip (uiout, "addr");
7706 annotate_field (5);
7707 ui_out_text (uiout, "fork");
7708 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7709 {
7710 ui_out_text (uiout, ", process ");
7711 ui_out_field_int (uiout, "what",
7712 ptid_get_pid (c->forked_inferior_pid));
7713 ui_out_spaces (uiout, 1);
7714 }
7715
7716 if (ui_out_is_mi_like_p (uiout))
7717 ui_out_field_string (uiout, "catch-type", "fork");
7718 }
7719
7720 /* Implement the "print_mention" breakpoint_ops method for fork
7721 catchpoints. */
7722
7723 static void
7724 print_mention_catch_fork (struct breakpoint *b)
7725 {
7726 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7727 }
7728
7729 /* Implement the "print_recreate" breakpoint_ops method for fork
7730 catchpoints. */
7731
7732 static void
7733 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7734 {
7735 fprintf_unfiltered (fp, "catch fork");
7736 print_recreate_thread (b, fp);
7737 }
7738
7739 /* The breakpoint_ops structure to be used in fork catchpoints. */
7740
7741 static struct breakpoint_ops catch_fork_breakpoint_ops;
7742
7743 /* Implement the "insert" breakpoint_ops method for vfork
7744 catchpoints. */
7745
7746 static int
7747 insert_catch_vfork (struct bp_location *bl)
7748 {
7749 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7750 }
7751
7752 /* Implement the "remove" breakpoint_ops method for vfork
7753 catchpoints. */
7754
7755 static int
7756 remove_catch_vfork (struct bp_location *bl)
7757 {
7758 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7759 }
7760
7761 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7762 catchpoints. */
7763
7764 static int
7765 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7766 struct address_space *aspace, CORE_ADDR bp_addr,
7767 const struct target_waitstatus *ws)
7768 {
7769 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7770
7771 if (ws->kind != TARGET_WAITKIND_VFORKED)
7772 return 0;
7773
7774 c->forked_inferior_pid = ws->value.related_pid;
7775 return 1;
7776 }
7777
7778 /* Implement the "print_it" breakpoint_ops method for vfork
7779 catchpoints. */
7780
7781 static enum print_stop_action
7782 print_it_catch_vfork (bpstat bs)
7783 {
7784 struct ui_out *uiout = current_uiout;
7785 struct breakpoint *b = bs->breakpoint_at;
7786 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7787
7788 annotate_catchpoint (b->number);
7789 if (b->disposition == disp_del)
7790 ui_out_text (uiout, "\nTemporary catchpoint ");
7791 else
7792 ui_out_text (uiout, "\nCatchpoint ");
7793 if (ui_out_is_mi_like_p (uiout))
7794 {
7795 ui_out_field_string (uiout, "reason",
7796 async_reason_lookup (EXEC_ASYNC_VFORK));
7797 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7798 }
7799 ui_out_field_int (uiout, "bkptno", b->number);
7800 ui_out_text (uiout, " (vforked process ");
7801 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7802 ui_out_text (uiout, "), ");
7803 return PRINT_SRC_AND_LOC;
7804 }
7805
7806 /* Implement the "print_one" breakpoint_ops method for vfork
7807 catchpoints. */
7808
7809 static void
7810 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7811 {
7812 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7813 struct value_print_options opts;
7814 struct ui_out *uiout = current_uiout;
7815
7816 get_user_print_options (&opts);
7817 /* Field 4, the address, is omitted (which makes the columns not
7818 line up too nicely with the headers, but the effect is relatively
7819 readable). */
7820 if (opts.addressprint)
7821 ui_out_field_skip (uiout, "addr");
7822 annotate_field (5);
7823 ui_out_text (uiout, "vfork");
7824 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7825 {
7826 ui_out_text (uiout, ", process ");
7827 ui_out_field_int (uiout, "what",
7828 ptid_get_pid (c->forked_inferior_pid));
7829 ui_out_spaces (uiout, 1);
7830 }
7831
7832 if (ui_out_is_mi_like_p (uiout))
7833 ui_out_field_string (uiout, "catch-type", "vfork");
7834 }
7835
7836 /* Implement the "print_mention" breakpoint_ops method for vfork
7837 catchpoints. */
7838
7839 static void
7840 print_mention_catch_vfork (struct breakpoint *b)
7841 {
7842 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7843 }
7844
7845 /* Implement the "print_recreate" breakpoint_ops method for vfork
7846 catchpoints. */
7847
7848 static void
7849 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7850 {
7851 fprintf_unfiltered (fp, "catch vfork");
7852 print_recreate_thread (b, fp);
7853 }
7854
7855 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7856
7857 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7858
7859 /* An instance of this type is used to represent an solib catchpoint.
7860 It includes a "struct breakpoint" as a kind of base class; users
7861 downcast to "struct breakpoint *" when needed. A breakpoint is
7862 really of this type iff its ops pointer points to
7863 CATCH_SOLIB_BREAKPOINT_OPS. */
7864
7865 struct solib_catchpoint
7866 {
7867 /* The base class. */
7868 struct breakpoint base;
7869
7870 /* True for "catch load", false for "catch unload". */
7871 unsigned char is_load;
7872
7873 /* Regular expression to match, if any. COMPILED is only valid when
7874 REGEX is non-NULL. */
7875 char *regex;
7876 regex_t compiled;
7877 };
7878
7879 static void
7880 dtor_catch_solib (struct breakpoint *b)
7881 {
7882 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7883
7884 if (self->regex)
7885 regfree (&self->compiled);
7886 xfree (self->regex);
7887
7888 base_breakpoint_ops.dtor (b);
7889 }
7890
7891 static int
7892 insert_catch_solib (struct bp_location *ignore)
7893 {
7894 return 0;
7895 }
7896
7897 static int
7898 remove_catch_solib (struct bp_location *ignore)
7899 {
7900 return 0;
7901 }
7902
7903 static int
7904 breakpoint_hit_catch_solib (const struct bp_location *bl,
7905 struct address_space *aspace,
7906 CORE_ADDR bp_addr,
7907 const struct target_waitstatus *ws)
7908 {
7909 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7910 struct breakpoint *other;
7911
7912 if (ws->kind == TARGET_WAITKIND_LOADED)
7913 return 1;
7914
7915 ALL_BREAKPOINTS (other)
7916 {
7917 struct bp_location *other_bl;
7918
7919 if (other == bl->owner)
7920 continue;
7921
7922 if (other->type != bp_shlib_event)
7923 continue;
7924
7925 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7926 continue;
7927
7928 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7929 {
7930 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7931 return 1;
7932 }
7933 }
7934
7935 return 0;
7936 }
7937
7938 static void
7939 check_status_catch_solib (struct bpstats *bs)
7940 {
7941 struct solib_catchpoint *self
7942 = (struct solib_catchpoint *) bs->breakpoint_at;
7943 int ix;
7944
7945 if (self->is_load)
7946 {
7947 struct so_list *iter;
7948
7949 for (ix = 0;
7950 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7951 ix, iter);
7952 ++ix)
7953 {
7954 if (!self->regex
7955 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7956 return;
7957 }
7958 }
7959 else
7960 {
7961 char *iter;
7962
7963 for (ix = 0;
7964 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7965 ix, iter);
7966 ++ix)
7967 {
7968 if (!self->regex
7969 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7970 return;
7971 }
7972 }
7973
7974 bs->stop = 0;
7975 bs->print_it = print_it_noop;
7976 }
7977
7978 static enum print_stop_action
7979 print_it_catch_solib (bpstat bs)
7980 {
7981 struct breakpoint *b = bs->breakpoint_at;
7982 struct ui_out *uiout = current_uiout;
7983
7984 annotate_catchpoint (b->number);
7985 if (b->disposition == disp_del)
7986 ui_out_text (uiout, "\nTemporary catchpoint ");
7987 else
7988 ui_out_text (uiout, "\nCatchpoint ");
7989 ui_out_field_int (uiout, "bkptno", b->number);
7990 ui_out_text (uiout, "\n");
7991 if (ui_out_is_mi_like_p (uiout))
7992 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7993 print_solib_event (1);
7994 return PRINT_SRC_AND_LOC;
7995 }
7996
7997 static void
7998 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7999 {
8000 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8001 struct value_print_options opts;
8002 struct ui_out *uiout = current_uiout;
8003 char *msg;
8004
8005 get_user_print_options (&opts);
8006 /* Field 4, the address, is omitted (which makes the columns not
8007 line up too nicely with the headers, but the effect is relatively
8008 readable). */
8009 if (opts.addressprint)
8010 {
8011 annotate_field (4);
8012 ui_out_field_skip (uiout, "addr");
8013 }
8014
8015 annotate_field (5);
8016 if (self->is_load)
8017 {
8018 if (self->regex)
8019 msg = xstrprintf (_("load of library matching %s"), self->regex);
8020 else
8021 msg = xstrdup (_("load of library"));
8022 }
8023 else
8024 {
8025 if (self->regex)
8026 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8027 else
8028 msg = xstrdup (_("unload of library"));
8029 }
8030 ui_out_field_string (uiout, "what", msg);
8031 xfree (msg);
8032
8033 if (ui_out_is_mi_like_p (uiout))
8034 ui_out_field_string (uiout, "catch-type",
8035 self->is_load ? "load" : "unload");
8036 }
8037
8038 static void
8039 print_mention_catch_solib (struct breakpoint *b)
8040 {
8041 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8042
8043 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8044 self->is_load ? "load" : "unload");
8045 }
8046
8047 static void
8048 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8049 {
8050 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8051
8052 fprintf_unfiltered (fp, "%s %s",
8053 b->disposition == disp_del ? "tcatch" : "catch",
8054 self->is_load ? "load" : "unload");
8055 if (self->regex)
8056 fprintf_unfiltered (fp, " %s", self->regex);
8057 fprintf_unfiltered (fp, "\n");
8058 }
8059
8060 static struct breakpoint_ops catch_solib_breakpoint_ops;
8061
8062 /* Shared helper function (MI and CLI) for creating and installing
8063 a shared object event catchpoint. If IS_LOAD is non-zero then
8064 the events to be caught are load events, otherwise they are
8065 unload events. If IS_TEMP is non-zero the catchpoint is a
8066 temporary one. If ENABLED is non-zero the catchpoint is
8067 created in an enabled state. */
8068
8069 void
8070 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8071 {
8072 struct solib_catchpoint *c;
8073 struct gdbarch *gdbarch = get_current_arch ();
8074 struct cleanup *cleanup;
8075
8076 if (!arg)
8077 arg = "";
8078 arg = skip_spaces (arg);
8079
8080 c = XCNEW (struct solib_catchpoint);
8081 cleanup = make_cleanup (xfree, c);
8082
8083 if (*arg != '\0')
8084 {
8085 int errcode;
8086
8087 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8088 if (errcode != 0)
8089 {
8090 char *err = get_regcomp_error (errcode, &c->compiled);
8091
8092 make_cleanup (xfree, err);
8093 error (_("Invalid regexp (%s): %s"), err, arg);
8094 }
8095 c->regex = xstrdup (arg);
8096 }
8097
8098 c->is_load = is_load;
8099 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8100 &catch_solib_breakpoint_ops);
8101
8102 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8103
8104 discard_cleanups (cleanup);
8105 install_breakpoint (0, &c->base, 1);
8106 }
8107
8108 /* A helper function that does all the work for "catch load" and
8109 "catch unload". */
8110
8111 static void
8112 catch_load_or_unload (char *arg, int from_tty, int is_load,
8113 struct cmd_list_element *command)
8114 {
8115 int tempflag;
8116 const int enabled = 1;
8117
8118 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8119
8120 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8121 }
8122
8123 static void
8124 catch_load_command_1 (char *arg, int from_tty,
8125 struct cmd_list_element *command)
8126 {
8127 catch_load_or_unload (arg, from_tty, 1, command);
8128 }
8129
8130 static void
8131 catch_unload_command_1 (char *arg, int from_tty,
8132 struct cmd_list_element *command)
8133 {
8134 catch_load_or_unload (arg, from_tty, 0, command);
8135 }
8136
8137 /* An instance of this type is used to represent a syscall catchpoint.
8138 It includes a "struct breakpoint" as a kind of base class; users
8139 downcast to "struct breakpoint *" when needed. A breakpoint is
8140 really of this type iff its ops pointer points to
8141 CATCH_SYSCALL_BREAKPOINT_OPS. */
8142
8143 struct syscall_catchpoint
8144 {
8145 /* The base class. */
8146 struct breakpoint base;
8147
8148 /* Syscall numbers used for the 'catch syscall' feature. If no
8149 syscall has been specified for filtering, its value is NULL.
8150 Otherwise, it holds a list of all syscalls to be caught. The
8151 list elements are allocated with xmalloc. */
8152 VEC(int) *syscalls_to_be_caught;
8153 };
8154
8155 /* Implement the "dtor" breakpoint_ops method for syscall
8156 catchpoints. */
8157
8158 static void
8159 dtor_catch_syscall (struct breakpoint *b)
8160 {
8161 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8162
8163 VEC_free (int, c->syscalls_to_be_caught);
8164
8165 base_breakpoint_ops.dtor (b);
8166 }
8167
8168 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8169
8170 struct catch_syscall_inferior_data
8171 {
8172 /* We keep a count of the number of times the user has requested a
8173 particular syscall to be tracked, and pass this information to the
8174 target. This lets capable targets implement filtering directly. */
8175
8176 /* Number of times that "any" syscall is requested. */
8177 int any_syscall_count;
8178
8179 /* Count of each system call. */
8180 VEC(int) *syscalls_counts;
8181
8182 /* This counts all syscall catch requests, so we can readily determine
8183 if any catching is necessary. */
8184 int total_syscalls_count;
8185 };
8186
8187 static struct catch_syscall_inferior_data*
8188 get_catch_syscall_inferior_data (struct inferior *inf)
8189 {
8190 struct catch_syscall_inferior_data *inf_data;
8191
8192 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8193 if (inf_data == NULL)
8194 {
8195 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8196 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8197 }
8198
8199 return inf_data;
8200 }
8201
8202 static void
8203 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8204 {
8205 xfree (arg);
8206 }
8207
8208
8209 /* Implement the "insert" breakpoint_ops method for syscall
8210 catchpoints. */
8211
8212 static int
8213 insert_catch_syscall (struct bp_location *bl)
8214 {
8215 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8216 struct inferior *inf = current_inferior ();
8217 struct catch_syscall_inferior_data *inf_data
8218 = get_catch_syscall_inferior_data (inf);
8219
8220 ++inf_data->total_syscalls_count;
8221 if (!c->syscalls_to_be_caught)
8222 ++inf_data->any_syscall_count;
8223 else
8224 {
8225 int i, iter;
8226
8227 for (i = 0;
8228 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8229 i++)
8230 {
8231 int elem;
8232
8233 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8234 {
8235 int old_size = VEC_length (int, inf_data->syscalls_counts);
8236 uintptr_t vec_addr_offset
8237 = old_size * ((uintptr_t) sizeof (int));
8238 uintptr_t vec_addr;
8239 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8240 vec_addr = ((uintptr_t) VEC_address (int,
8241 inf_data->syscalls_counts)
8242 + vec_addr_offset);
8243 memset ((void *) vec_addr, 0,
8244 (iter + 1 - old_size) * sizeof (int));
8245 }
8246 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8247 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8248 }
8249 }
8250
8251 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8252 inf_data->total_syscalls_count != 0,
8253 inf_data->any_syscall_count,
8254 VEC_length (int,
8255 inf_data->syscalls_counts),
8256 VEC_address (int,
8257 inf_data->syscalls_counts));
8258 }
8259
8260 /* Implement the "remove" breakpoint_ops method for syscall
8261 catchpoints. */
8262
8263 static int
8264 remove_catch_syscall (struct bp_location *bl)
8265 {
8266 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8267 struct inferior *inf = current_inferior ();
8268 struct catch_syscall_inferior_data *inf_data
8269 = get_catch_syscall_inferior_data (inf);
8270
8271 --inf_data->total_syscalls_count;
8272 if (!c->syscalls_to_be_caught)
8273 --inf_data->any_syscall_count;
8274 else
8275 {
8276 int i, iter;
8277
8278 for (i = 0;
8279 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8280 i++)
8281 {
8282 int elem;
8283 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8284 /* Shouldn't happen. */
8285 continue;
8286 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8287 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8288 }
8289 }
8290
8291 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8292 inf_data->total_syscalls_count != 0,
8293 inf_data->any_syscall_count,
8294 VEC_length (int,
8295 inf_data->syscalls_counts),
8296 VEC_address (int,
8297 inf_data->syscalls_counts));
8298 }
8299
8300 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8301 catchpoints. */
8302
8303 static int
8304 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8305 struct address_space *aspace, CORE_ADDR bp_addr,
8306 const struct target_waitstatus *ws)
8307 {
8308 /* We must check if we are catching specific syscalls in this
8309 breakpoint. If we are, then we must guarantee that the called
8310 syscall is the same syscall we are catching. */
8311 int syscall_number = 0;
8312 const struct syscall_catchpoint *c
8313 = (const struct syscall_catchpoint *) bl->owner;
8314
8315 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8316 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8317 return 0;
8318
8319 syscall_number = ws->value.syscall_number;
8320
8321 /* Now, checking if the syscall is the same. */
8322 if (c->syscalls_to_be_caught)
8323 {
8324 int i, iter;
8325
8326 for (i = 0;
8327 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8328 i++)
8329 if (syscall_number == iter)
8330 break;
8331 /* Not the same. */
8332 if (!iter)
8333 return 0;
8334 }
8335
8336 return 1;
8337 }
8338
8339 /* Implement the "print_it" breakpoint_ops method for syscall
8340 catchpoints. */
8341
8342 static enum print_stop_action
8343 print_it_catch_syscall (bpstat bs)
8344 {
8345 struct ui_out *uiout = current_uiout;
8346 struct breakpoint *b = bs->breakpoint_at;
8347 /* These are needed because we want to know in which state a
8348 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8349 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8350 must print "called syscall" or "returned from syscall". */
8351 ptid_t ptid;
8352 struct target_waitstatus last;
8353 struct syscall s;
8354
8355 get_last_target_status (&ptid, &last);
8356
8357 get_syscall_by_number (last.value.syscall_number, &s);
8358
8359 annotate_catchpoint (b->number);
8360
8361 if (b->disposition == disp_del)
8362 ui_out_text (uiout, "\nTemporary catchpoint ");
8363 else
8364 ui_out_text (uiout, "\nCatchpoint ");
8365 if (ui_out_is_mi_like_p (uiout))
8366 {
8367 ui_out_field_string (uiout, "reason",
8368 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8369 ? EXEC_ASYNC_SYSCALL_ENTRY
8370 : EXEC_ASYNC_SYSCALL_RETURN));
8371 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8372 }
8373 ui_out_field_int (uiout, "bkptno", b->number);
8374
8375 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8376 ui_out_text (uiout, " (call to syscall ");
8377 else
8378 ui_out_text (uiout, " (returned from syscall ");
8379
8380 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8381 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8382 if (s.name != NULL)
8383 ui_out_field_string (uiout, "syscall-name", s.name);
8384
8385 ui_out_text (uiout, "), ");
8386
8387 return PRINT_SRC_AND_LOC;
8388 }
8389
8390 /* Implement the "print_one" breakpoint_ops method for syscall
8391 catchpoints. */
8392
8393 static void
8394 print_one_catch_syscall (struct breakpoint *b,
8395 struct bp_location **last_loc)
8396 {
8397 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8398 struct value_print_options opts;
8399 struct ui_out *uiout = current_uiout;
8400
8401 get_user_print_options (&opts);
8402 /* Field 4, the address, is omitted (which makes the columns not
8403 line up too nicely with the headers, but the effect is relatively
8404 readable). */
8405 if (opts.addressprint)
8406 ui_out_field_skip (uiout, "addr");
8407 annotate_field (5);
8408
8409 if (c->syscalls_to_be_caught
8410 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8411 ui_out_text (uiout, "syscalls \"");
8412 else
8413 ui_out_text (uiout, "syscall \"");
8414
8415 if (c->syscalls_to_be_caught)
8416 {
8417 int i, iter;
8418 char *text = xstrprintf ("%s", "");
8419
8420 for (i = 0;
8421 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8422 i++)
8423 {
8424 char *x = text;
8425 struct syscall s;
8426 get_syscall_by_number (iter, &s);
8427
8428 if (s.name != NULL)
8429 text = xstrprintf ("%s%s, ", text, s.name);
8430 else
8431 text = xstrprintf ("%s%d, ", text, iter);
8432
8433 /* We have to xfree the last 'text' (now stored at 'x')
8434 because xstrprintf dynamically allocates new space for it
8435 on every call. */
8436 xfree (x);
8437 }
8438 /* Remove the last comma. */
8439 text[strlen (text) - 2] = '\0';
8440 ui_out_field_string (uiout, "what", text);
8441 }
8442 else
8443 ui_out_field_string (uiout, "what", "<any syscall>");
8444 ui_out_text (uiout, "\" ");
8445
8446 if (ui_out_is_mi_like_p (uiout))
8447 ui_out_field_string (uiout, "catch-type", "syscall");
8448 }
8449
8450 /* Implement the "print_mention" breakpoint_ops method for syscall
8451 catchpoints. */
8452
8453 static void
8454 print_mention_catch_syscall (struct breakpoint *b)
8455 {
8456 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8457
8458 if (c->syscalls_to_be_caught)
8459 {
8460 int i, iter;
8461
8462 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8463 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8464 else
8465 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8466
8467 for (i = 0;
8468 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8469 i++)
8470 {
8471 struct syscall s;
8472 get_syscall_by_number (iter, &s);
8473
8474 if (s.name)
8475 printf_filtered (" '%s' [%d]", s.name, s.number);
8476 else
8477 printf_filtered (" %d", s.number);
8478 }
8479 printf_filtered (")");
8480 }
8481 else
8482 printf_filtered (_("Catchpoint %d (any syscall)"),
8483 b->number);
8484 }
8485
8486 /* Implement the "print_recreate" breakpoint_ops method for syscall
8487 catchpoints. */
8488
8489 static void
8490 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8491 {
8492 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8493
8494 fprintf_unfiltered (fp, "catch syscall");
8495
8496 if (c->syscalls_to_be_caught)
8497 {
8498 int i, iter;
8499
8500 for (i = 0;
8501 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8502 i++)
8503 {
8504 struct syscall s;
8505
8506 get_syscall_by_number (iter, &s);
8507 if (s.name)
8508 fprintf_unfiltered (fp, " %s", s.name);
8509 else
8510 fprintf_unfiltered (fp, " %d", s.number);
8511 }
8512 }
8513 print_recreate_thread (b, fp);
8514 }
8515
8516 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8517
8518 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8519
8520 /* Returns non-zero if 'b' is a syscall catchpoint. */
8521
8522 static int
8523 syscall_catchpoint_p (struct breakpoint *b)
8524 {
8525 return (b->ops == &catch_syscall_breakpoint_ops);
8526 }
8527
8528 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8529 is non-zero, then make the breakpoint temporary. If COND_STRING is
8530 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8531 the breakpoint_ops structure associated to the catchpoint. */
8532
8533 void
8534 init_catchpoint (struct breakpoint *b,
8535 struct gdbarch *gdbarch, int tempflag,
8536 char *cond_string,
8537 const struct breakpoint_ops *ops)
8538 {
8539 struct symtab_and_line sal;
8540
8541 init_sal (&sal);
8542 sal.pspace = current_program_space;
8543
8544 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8545
8546 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8547 b->disposition = tempflag ? disp_del : disp_donttouch;
8548 }
8549
8550 void
8551 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8552 {
8553 add_to_breakpoint_chain (b);
8554 set_breakpoint_number (internal, b);
8555 if (is_tracepoint (b))
8556 set_tracepoint_count (breakpoint_count);
8557 if (!internal)
8558 mention (b);
8559 observer_notify_breakpoint_created (b);
8560
8561 if (update_gll)
8562 update_global_location_list (1);
8563 }
8564
8565 static void
8566 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8567 int tempflag, char *cond_string,
8568 const struct breakpoint_ops *ops)
8569 {
8570 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8571
8572 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8573
8574 c->forked_inferior_pid = null_ptid;
8575
8576 install_breakpoint (0, &c->base, 1);
8577 }
8578
8579 /* Exec catchpoints. */
8580
8581 /* An instance of this type is used to represent an exec catchpoint.
8582 It includes a "struct breakpoint" as a kind of base class; users
8583 downcast to "struct breakpoint *" when needed. A breakpoint is
8584 really of this type iff its ops pointer points to
8585 CATCH_EXEC_BREAKPOINT_OPS. */
8586
8587 struct exec_catchpoint
8588 {
8589 /* The base class. */
8590 struct breakpoint base;
8591
8592 /* Filename of a program whose exec triggered this catchpoint.
8593 This field is only valid immediately after this catchpoint has
8594 triggered. */
8595 char *exec_pathname;
8596 };
8597
8598 /* Implement the "dtor" breakpoint_ops method for exec
8599 catchpoints. */
8600
8601 static void
8602 dtor_catch_exec (struct breakpoint *b)
8603 {
8604 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8605
8606 xfree (c->exec_pathname);
8607
8608 base_breakpoint_ops.dtor (b);
8609 }
8610
8611 static int
8612 insert_catch_exec (struct bp_location *bl)
8613 {
8614 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8615 }
8616
8617 static int
8618 remove_catch_exec (struct bp_location *bl)
8619 {
8620 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8621 }
8622
8623 static int
8624 breakpoint_hit_catch_exec (const struct bp_location *bl,
8625 struct address_space *aspace, CORE_ADDR bp_addr,
8626 const struct target_waitstatus *ws)
8627 {
8628 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8629
8630 if (ws->kind != TARGET_WAITKIND_EXECD)
8631 return 0;
8632
8633 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8634 return 1;
8635 }
8636
8637 static enum print_stop_action
8638 print_it_catch_exec (bpstat bs)
8639 {
8640 struct ui_out *uiout = current_uiout;
8641 struct breakpoint *b = bs->breakpoint_at;
8642 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8643
8644 annotate_catchpoint (b->number);
8645 if (b->disposition == disp_del)
8646 ui_out_text (uiout, "\nTemporary catchpoint ");
8647 else
8648 ui_out_text (uiout, "\nCatchpoint ");
8649 if (ui_out_is_mi_like_p (uiout))
8650 {
8651 ui_out_field_string (uiout, "reason",
8652 async_reason_lookup (EXEC_ASYNC_EXEC));
8653 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8654 }
8655 ui_out_field_int (uiout, "bkptno", b->number);
8656 ui_out_text (uiout, " (exec'd ");
8657 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8658 ui_out_text (uiout, "), ");
8659
8660 return PRINT_SRC_AND_LOC;
8661 }
8662
8663 static void
8664 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8665 {
8666 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8667 struct value_print_options opts;
8668 struct ui_out *uiout = current_uiout;
8669
8670 get_user_print_options (&opts);
8671
8672 /* Field 4, the address, is omitted (which makes the columns
8673 not line up too nicely with the headers, but the effect
8674 is relatively readable). */
8675 if (opts.addressprint)
8676 ui_out_field_skip (uiout, "addr");
8677 annotate_field (5);
8678 ui_out_text (uiout, "exec");
8679 if (c->exec_pathname != NULL)
8680 {
8681 ui_out_text (uiout, ", program \"");
8682 ui_out_field_string (uiout, "what", c->exec_pathname);
8683 ui_out_text (uiout, "\" ");
8684 }
8685
8686 if (ui_out_is_mi_like_p (uiout))
8687 ui_out_field_string (uiout, "catch-type", "exec");
8688 }
8689
8690 static void
8691 print_mention_catch_exec (struct breakpoint *b)
8692 {
8693 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8694 }
8695
8696 /* Implement the "print_recreate" breakpoint_ops method for exec
8697 catchpoints. */
8698
8699 static void
8700 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8701 {
8702 fprintf_unfiltered (fp, "catch exec");
8703 print_recreate_thread (b, fp);
8704 }
8705
8706 static struct breakpoint_ops catch_exec_breakpoint_ops;
8707
8708 static void
8709 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8710 const struct breakpoint_ops *ops)
8711 {
8712 struct syscall_catchpoint *c;
8713 struct gdbarch *gdbarch = get_current_arch ();
8714
8715 c = XNEW (struct syscall_catchpoint);
8716 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8717 c->syscalls_to_be_caught = filter;
8718
8719 install_breakpoint (0, &c->base, 1);
8720 }
8721
8722 static int
8723 hw_breakpoint_used_count (void)
8724 {
8725 int i = 0;
8726 struct breakpoint *b;
8727 struct bp_location *bl;
8728
8729 ALL_BREAKPOINTS (b)
8730 {
8731 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8732 for (bl = b->loc; bl; bl = bl->next)
8733 {
8734 /* Special types of hardware breakpoints may use more than
8735 one register. */
8736 i += b->ops->resources_needed (bl);
8737 }
8738 }
8739
8740 return i;
8741 }
8742
8743 /* Returns the resources B would use if it were a hardware
8744 watchpoint. */
8745
8746 static int
8747 hw_watchpoint_use_count (struct breakpoint *b)
8748 {
8749 int i = 0;
8750 struct bp_location *bl;
8751
8752 if (!breakpoint_enabled (b))
8753 return 0;
8754
8755 for (bl = b->loc; bl; bl = bl->next)
8756 {
8757 /* Special types of hardware watchpoints may use more than
8758 one register. */
8759 i += b->ops->resources_needed (bl);
8760 }
8761
8762 return i;
8763 }
8764
8765 /* Returns the sum the used resources of all hardware watchpoints of
8766 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8767 the sum of the used resources of all hardware watchpoints of other
8768 types _not_ TYPE. */
8769
8770 static int
8771 hw_watchpoint_used_count_others (struct breakpoint *except,
8772 enum bptype type, int *other_type_used)
8773 {
8774 int i = 0;
8775 struct breakpoint *b;
8776
8777 *other_type_used = 0;
8778 ALL_BREAKPOINTS (b)
8779 {
8780 if (b == except)
8781 continue;
8782 if (!breakpoint_enabled (b))
8783 continue;
8784
8785 if (b->type == type)
8786 i += hw_watchpoint_use_count (b);
8787 else if (is_hardware_watchpoint (b))
8788 *other_type_used = 1;
8789 }
8790
8791 return i;
8792 }
8793
8794 void
8795 disable_watchpoints_before_interactive_call_start (void)
8796 {
8797 struct breakpoint *b;
8798
8799 ALL_BREAKPOINTS (b)
8800 {
8801 if (is_watchpoint (b) && breakpoint_enabled (b))
8802 {
8803 b->enable_state = bp_call_disabled;
8804 update_global_location_list (0);
8805 }
8806 }
8807 }
8808
8809 void
8810 enable_watchpoints_after_interactive_call_stop (void)
8811 {
8812 struct breakpoint *b;
8813
8814 ALL_BREAKPOINTS (b)
8815 {
8816 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8817 {
8818 b->enable_state = bp_enabled;
8819 update_global_location_list (1);
8820 }
8821 }
8822 }
8823
8824 void
8825 disable_breakpoints_before_startup (void)
8826 {
8827 current_program_space->executing_startup = 1;
8828 update_global_location_list (0);
8829 }
8830
8831 void
8832 enable_breakpoints_after_startup (void)
8833 {
8834 current_program_space->executing_startup = 0;
8835 breakpoint_re_set ();
8836 }
8837
8838
8839 /* Set a breakpoint that will evaporate an end of command
8840 at address specified by SAL.
8841 Restrict it to frame FRAME if FRAME is nonzero. */
8842
8843 struct breakpoint *
8844 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8845 struct frame_id frame_id, enum bptype type)
8846 {
8847 struct breakpoint *b;
8848
8849 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8850 tail-called one. */
8851 gdb_assert (!frame_id_artificial_p (frame_id));
8852
8853 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8854 b->enable_state = bp_enabled;
8855 b->disposition = disp_donttouch;
8856 b->frame_id = frame_id;
8857
8858 /* If we're debugging a multi-threaded program, then we want
8859 momentary breakpoints to be active in only a single thread of
8860 control. */
8861 if (in_thread_list (inferior_ptid))
8862 b->thread = pid_to_thread_id (inferior_ptid);
8863
8864 update_global_location_list_nothrow (1);
8865
8866 return b;
8867 }
8868
8869 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8870 The new breakpoint will have type TYPE, and use OPS as it
8871 breakpoint_ops. */
8872
8873 static struct breakpoint *
8874 momentary_breakpoint_from_master (struct breakpoint *orig,
8875 enum bptype type,
8876 const struct breakpoint_ops *ops)
8877 {
8878 struct breakpoint *copy;
8879
8880 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8881 copy->loc = allocate_bp_location (copy);
8882 set_breakpoint_location_function (copy->loc, 1);
8883
8884 copy->loc->gdbarch = orig->loc->gdbarch;
8885 copy->loc->requested_address = orig->loc->requested_address;
8886 copy->loc->address = orig->loc->address;
8887 copy->loc->section = orig->loc->section;
8888 copy->loc->pspace = orig->loc->pspace;
8889 copy->loc->probe = orig->loc->probe;
8890 copy->loc->line_number = orig->loc->line_number;
8891 copy->loc->symtab = orig->loc->symtab;
8892 copy->frame_id = orig->frame_id;
8893 copy->thread = orig->thread;
8894 copy->pspace = orig->pspace;
8895
8896 copy->enable_state = bp_enabled;
8897 copy->disposition = disp_donttouch;
8898 copy->number = internal_breakpoint_number--;
8899
8900 update_global_location_list_nothrow (0);
8901 return copy;
8902 }
8903
8904 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8905 ORIG is NULL. */
8906
8907 struct breakpoint *
8908 clone_momentary_breakpoint (struct breakpoint *orig)
8909 {
8910 /* If there's nothing to clone, then return nothing. */
8911 if (orig == NULL)
8912 return NULL;
8913
8914 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8915 }
8916
8917 struct breakpoint *
8918 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8919 enum bptype type)
8920 {
8921 struct symtab_and_line sal;
8922
8923 sal = find_pc_line (pc, 0);
8924 sal.pc = pc;
8925 sal.section = find_pc_overlay (pc);
8926 sal.explicit_pc = 1;
8927
8928 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8929 }
8930 \f
8931
8932 /* Tell the user we have just set a breakpoint B. */
8933
8934 static void
8935 mention (struct breakpoint *b)
8936 {
8937 b->ops->print_mention (b);
8938 if (ui_out_is_mi_like_p (current_uiout))
8939 return;
8940 printf_filtered ("\n");
8941 }
8942 \f
8943
8944 static struct bp_location *
8945 add_location_to_breakpoint (struct breakpoint *b,
8946 const struct symtab_and_line *sal)
8947 {
8948 struct bp_location *loc, **tmp;
8949 CORE_ADDR adjusted_address;
8950 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8951
8952 if (loc_gdbarch == NULL)
8953 loc_gdbarch = b->gdbarch;
8954
8955 /* Adjust the breakpoint's address prior to allocating a location.
8956 Once we call allocate_bp_location(), that mostly uninitialized
8957 location will be placed on the location chain. Adjustment of the
8958 breakpoint may cause target_read_memory() to be called and we do
8959 not want its scan of the location chain to find a breakpoint and
8960 location that's only been partially initialized. */
8961 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8962 sal->pc, b->type);
8963
8964 /* Sort the locations by their ADDRESS. */
8965 loc = allocate_bp_location (b);
8966 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8967 tmp = &((*tmp)->next))
8968 ;
8969 loc->next = *tmp;
8970 *tmp = loc;
8971
8972 loc->requested_address = sal->pc;
8973 loc->address = adjusted_address;
8974 loc->pspace = sal->pspace;
8975 loc->probe = sal->probe;
8976 gdb_assert (loc->pspace != NULL);
8977 loc->section = sal->section;
8978 loc->gdbarch = loc_gdbarch;
8979 loc->line_number = sal->line;
8980 loc->symtab = sal->symtab;
8981
8982 set_breakpoint_location_function (loc,
8983 sal->explicit_pc || sal->explicit_line);
8984 return loc;
8985 }
8986 \f
8987
8988 /* Return 1 if LOC is pointing to a permanent breakpoint,
8989 return 0 otherwise. */
8990
8991 static int
8992 bp_loc_is_permanent (struct bp_location *loc)
8993 {
8994 int len;
8995 CORE_ADDR addr;
8996 const gdb_byte *bpoint;
8997 gdb_byte *target_mem;
8998 struct cleanup *cleanup;
8999 int retval = 0;
9000
9001 gdb_assert (loc != NULL);
9002
9003 addr = loc->address;
9004 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9005
9006 /* Software breakpoints unsupported? */
9007 if (bpoint == NULL)
9008 return 0;
9009
9010 target_mem = alloca (len);
9011
9012 /* Enable the automatic memory restoration from breakpoints while
9013 we read the memory. Otherwise we could say about our temporary
9014 breakpoints they are permanent. */
9015 cleanup = save_current_space_and_thread ();
9016
9017 switch_to_program_space_and_thread (loc->pspace);
9018 make_show_memory_breakpoints_cleanup (0);
9019
9020 if (target_read_memory (loc->address, target_mem, len) == 0
9021 && memcmp (target_mem, bpoint, len) == 0)
9022 retval = 1;
9023
9024 do_cleanups (cleanup);
9025
9026 return retval;
9027 }
9028
9029 /* Build a command list for the dprintf corresponding to the current
9030 settings of the dprintf style options. */
9031
9032 static void
9033 update_dprintf_command_list (struct breakpoint *b)
9034 {
9035 char *dprintf_args = b->extra_string;
9036 char *printf_line = NULL;
9037
9038 if (!dprintf_args)
9039 return;
9040
9041 dprintf_args = skip_spaces (dprintf_args);
9042
9043 /* Allow a comma, as it may have terminated a location, but don't
9044 insist on it. */
9045 if (*dprintf_args == ',')
9046 ++dprintf_args;
9047 dprintf_args = skip_spaces (dprintf_args);
9048
9049 if (*dprintf_args != '"')
9050 error (_("Bad format string, missing '\"'."));
9051
9052 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9053 printf_line = xstrprintf ("printf %s", dprintf_args);
9054 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9055 {
9056 if (!dprintf_function)
9057 error (_("No function supplied for dprintf call"));
9058
9059 if (dprintf_channel && strlen (dprintf_channel) > 0)
9060 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9061 dprintf_function,
9062 dprintf_channel,
9063 dprintf_args);
9064 else
9065 printf_line = xstrprintf ("call (void) %s (%s)",
9066 dprintf_function,
9067 dprintf_args);
9068 }
9069 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9070 {
9071 if (target_can_run_breakpoint_commands ())
9072 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9073 else
9074 {
9075 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9076 printf_line = xstrprintf ("printf %s", dprintf_args);
9077 }
9078 }
9079 else
9080 internal_error (__FILE__, __LINE__,
9081 _("Invalid dprintf style."));
9082
9083 gdb_assert (printf_line != NULL);
9084 /* Manufacture a printf sequence. */
9085 {
9086 struct command_line *printf_cmd_line
9087 = xmalloc (sizeof (struct command_line));
9088
9089 printf_cmd_line = xmalloc (sizeof (struct command_line));
9090 printf_cmd_line->control_type = simple_control;
9091 printf_cmd_line->body_count = 0;
9092 printf_cmd_line->body_list = NULL;
9093 printf_cmd_line->next = NULL;
9094 printf_cmd_line->line = printf_line;
9095
9096 breakpoint_set_commands (b, printf_cmd_line);
9097 }
9098 }
9099
9100 /* Update all dprintf commands, making their command lists reflect
9101 current style settings. */
9102
9103 static void
9104 update_dprintf_commands (char *args, int from_tty,
9105 struct cmd_list_element *c)
9106 {
9107 struct breakpoint *b;
9108
9109 ALL_BREAKPOINTS (b)
9110 {
9111 if (b->type == bp_dprintf)
9112 update_dprintf_command_list (b);
9113 }
9114 }
9115
9116 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9117 as textual description of the location, and COND_STRING
9118 as condition expression. */
9119
9120 static void
9121 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9122 struct symtabs_and_lines sals, char *addr_string,
9123 char *filter, char *cond_string,
9124 char *extra_string,
9125 enum bptype type, enum bpdisp disposition,
9126 int thread, int task, int ignore_count,
9127 const struct breakpoint_ops *ops, int from_tty,
9128 int enabled, int internal, unsigned flags,
9129 int display_canonical)
9130 {
9131 int i;
9132
9133 if (type == bp_hardware_breakpoint)
9134 {
9135 int target_resources_ok;
9136
9137 i = hw_breakpoint_used_count ();
9138 target_resources_ok =
9139 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9140 i + 1, 0);
9141 if (target_resources_ok == 0)
9142 error (_("No hardware breakpoint support in the target."));
9143 else if (target_resources_ok < 0)
9144 error (_("Hardware breakpoints used exceeds limit."));
9145 }
9146
9147 gdb_assert (sals.nelts > 0);
9148
9149 for (i = 0; i < sals.nelts; ++i)
9150 {
9151 struct symtab_and_line sal = sals.sals[i];
9152 struct bp_location *loc;
9153
9154 if (from_tty)
9155 {
9156 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9157 if (!loc_gdbarch)
9158 loc_gdbarch = gdbarch;
9159
9160 describe_other_breakpoints (loc_gdbarch,
9161 sal.pspace, sal.pc, sal.section, thread);
9162 }
9163
9164 if (i == 0)
9165 {
9166 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9167 b->thread = thread;
9168 b->task = task;
9169
9170 b->cond_string = cond_string;
9171 b->extra_string = extra_string;
9172 b->ignore_count = ignore_count;
9173 b->enable_state = enabled ? bp_enabled : bp_disabled;
9174 b->disposition = disposition;
9175
9176 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9177 b->loc->inserted = 1;
9178
9179 if (type == bp_static_tracepoint)
9180 {
9181 struct tracepoint *t = (struct tracepoint *) b;
9182 struct static_tracepoint_marker marker;
9183
9184 if (strace_marker_p (b))
9185 {
9186 /* We already know the marker exists, otherwise, we
9187 wouldn't see a sal for it. */
9188 char *p = &addr_string[3];
9189 char *endp;
9190 char *marker_str;
9191
9192 p = skip_spaces (p);
9193
9194 endp = skip_to_space (p);
9195
9196 marker_str = savestring (p, endp - p);
9197 t->static_trace_marker_id = marker_str;
9198
9199 printf_filtered (_("Probed static tracepoint "
9200 "marker \"%s\"\n"),
9201 t->static_trace_marker_id);
9202 }
9203 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9204 {
9205 t->static_trace_marker_id = xstrdup (marker.str_id);
9206 release_static_tracepoint_marker (&marker);
9207
9208 printf_filtered (_("Probed static tracepoint "
9209 "marker \"%s\"\n"),
9210 t->static_trace_marker_id);
9211 }
9212 else
9213 warning (_("Couldn't determine the static "
9214 "tracepoint marker to probe"));
9215 }
9216
9217 loc = b->loc;
9218 }
9219 else
9220 {
9221 loc = add_location_to_breakpoint (b, &sal);
9222 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9223 loc->inserted = 1;
9224 }
9225
9226 if (bp_loc_is_permanent (loc))
9227 make_breakpoint_permanent (b);
9228
9229 if (b->cond_string)
9230 {
9231 const char *arg = b->cond_string;
9232
9233 loc->cond = parse_exp_1 (&arg, loc->address,
9234 block_for_pc (loc->address), 0);
9235 if (*arg)
9236 error (_("Garbage '%s' follows condition"), arg);
9237 }
9238
9239 /* Dynamic printf requires and uses additional arguments on the
9240 command line, otherwise it's an error. */
9241 if (type == bp_dprintf)
9242 {
9243 if (b->extra_string)
9244 update_dprintf_command_list (b);
9245 else
9246 error (_("Format string required"));
9247 }
9248 else if (b->extra_string)
9249 error (_("Garbage '%s' at end of command"), b->extra_string);
9250 }
9251
9252 b->display_canonical = display_canonical;
9253 if (addr_string)
9254 b->addr_string = addr_string;
9255 else
9256 /* addr_string has to be used or breakpoint_re_set will delete
9257 me. */
9258 b->addr_string
9259 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9260 b->filter = filter;
9261 }
9262
9263 static void
9264 create_breakpoint_sal (struct gdbarch *gdbarch,
9265 struct symtabs_and_lines sals, char *addr_string,
9266 char *filter, char *cond_string,
9267 char *extra_string,
9268 enum bptype type, enum bpdisp disposition,
9269 int thread, int task, int ignore_count,
9270 const struct breakpoint_ops *ops, int from_tty,
9271 int enabled, int internal, unsigned flags,
9272 int display_canonical)
9273 {
9274 struct breakpoint *b;
9275 struct cleanup *old_chain;
9276
9277 if (is_tracepoint_type (type))
9278 {
9279 struct tracepoint *t;
9280
9281 t = XCNEW (struct tracepoint);
9282 b = &t->base;
9283 }
9284 else
9285 b = XNEW (struct breakpoint);
9286
9287 old_chain = make_cleanup (xfree, b);
9288
9289 init_breakpoint_sal (b, gdbarch,
9290 sals, addr_string,
9291 filter, cond_string, extra_string,
9292 type, disposition,
9293 thread, task, ignore_count,
9294 ops, from_tty,
9295 enabled, internal, flags,
9296 display_canonical);
9297 discard_cleanups (old_chain);
9298
9299 install_breakpoint (internal, b, 0);
9300 }
9301
9302 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9303 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9304 value. COND_STRING, if not NULL, specified the condition to be
9305 used for all breakpoints. Essentially the only case where
9306 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9307 function. In that case, it's still not possible to specify
9308 separate conditions for different overloaded functions, so
9309 we take just a single condition string.
9310
9311 NOTE: If the function succeeds, the caller is expected to cleanup
9312 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9313 array contents). If the function fails (error() is called), the
9314 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9315 COND and SALS arrays and each of those arrays contents. */
9316
9317 static void
9318 create_breakpoints_sal (struct gdbarch *gdbarch,
9319 struct linespec_result *canonical,
9320 char *cond_string, char *extra_string,
9321 enum bptype type, enum bpdisp disposition,
9322 int thread, int task, int ignore_count,
9323 const struct breakpoint_ops *ops, int from_tty,
9324 int enabled, int internal, unsigned flags)
9325 {
9326 int i;
9327 struct linespec_sals *lsal;
9328
9329 if (canonical->pre_expanded)
9330 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9331
9332 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9333 {
9334 /* Note that 'addr_string' can be NULL in the case of a plain
9335 'break', without arguments. */
9336 char *addr_string = (canonical->addr_string
9337 ? xstrdup (canonical->addr_string)
9338 : NULL);
9339 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9340 struct cleanup *inner = make_cleanup (xfree, addr_string);
9341
9342 make_cleanup (xfree, filter_string);
9343 create_breakpoint_sal (gdbarch, lsal->sals,
9344 addr_string,
9345 filter_string,
9346 cond_string, extra_string,
9347 type, disposition,
9348 thread, task, ignore_count, ops,
9349 from_tty, enabled, internal, flags,
9350 canonical->special_display);
9351 discard_cleanups (inner);
9352 }
9353 }
9354
9355 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9356 followed by conditionals. On return, SALS contains an array of SAL
9357 addresses found. ADDR_STRING contains a vector of (canonical)
9358 address strings. ADDRESS points to the end of the SAL.
9359
9360 The array and the line spec strings are allocated on the heap, it is
9361 the caller's responsibility to free them. */
9362
9363 static void
9364 parse_breakpoint_sals (char **address,
9365 struct linespec_result *canonical)
9366 {
9367 /* If no arg given, or if first arg is 'if ', use the default
9368 breakpoint. */
9369 if ((*address) == NULL
9370 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9371 {
9372 /* The last displayed codepoint, if it's valid, is our default breakpoint
9373 address. */
9374 if (last_displayed_sal_is_valid ())
9375 {
9376 struct linespec_sals lsal;
9377 struct symtab_and_line sal;
9378 CORE_ADDR pc;
9379
9380 init_sal (&sal); /* Initialize to zeroes. */
9381 lsal.sals.sals = (struct symtab_and_line *)
9382 xmalloc (sizeof (struct symtab_and_line));
9383
9384 /* Set sal's pspace, pc, symtab, and line to the values
9385 corresponding to the last call to print_frame_info.
9386 Be sure to reinitialize LINE with NOTCURRENT == 0
9387 as the breakpoint line number is inappropriate otherwise.
9388 find_pc_line would adjust PC, re-set it back. */
9389 get_last_displayed_sal (&sal);
9390 pc = sal.pc;
9391 sal = find_pc_line (pc, 0);
9392
9393 /* "break" without arguments is equivalent to "break *PC"
9394 where PC is the last displayed codepoint's address. So
9395 make sure to set sal.explicit_pc to prevent GDB from
9396 trying to expand the list of sals to include all other
9397 instances with the same symtab and line. */
9398 sal.pc = pc;
9399 sal.explicit_pc = 1;
9400
9401 lsal.sals.sals[0] = sal;
9402 lsal.sals.nelts = 1;
9403 lsal.canonical = NULL;
9404
9405 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9406 }
9407 else
9408 error (_("No default breakpoint address now."));
9409 }
9410 else
9411 {
9412 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9413
9414 /* Force almost all breakpoints to be in terms of the
9415 current_source_symtab (which is decode_line_1's default).
9416 This should produce the results we want almost all of the
9417 time while leaving default_breakpoint_* alone.
9418
9419 ObjC: However, don't match an Objective-C method name which
9420 may have a '+' or '-' succeeded by a '['. */
9421 if (last_displayed_sal_is_valid ()
9422 && (!cursal.symtab
9423 || ((strchr ("+-", (*address)[0]) != NULL)
9424 && ((*address)[1] != '['))))
9425 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9426 get_last_displayed_symtab (),
9427 get_last_displayed_line (),
9428 canonical, NULL, NULL);
9429 else
9430 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9431 cursal.symtab, cursal.line, canonical, NULL, NULL);
9432 }
9433 }
9434
9435
9436 /* Convert each SAL into a real PC. Verify that the PC can be
9437 inserted as a breakpoint. If it can't throw an error. */
9438
9439 static void
9440 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9441 {
9442 int i;
9443
9444 for (i = 0; i < sals->nelts; i++)
9445 resolve_sal_pc (&sals->sals[i]);
9446 }
9447
9448 /* Fast tracepoints may have restrictions on valid locations. For
9449 instance, a fast tracepoint using a jump instead of a trap will
9450 likely have to overwrite more bytes than a trap would, and so can
9451 only be placed where the instruction is longer than the jump, or a
9452 multi-instruction sequence does not have a jump into the middle of
9453 it, etc. */
9454
9455 static void
9456 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9457 struct symtabs_and_lines *sals)
9458 {
9459 int i, rslt;
9460 struct symtab_and_line *sal;
9461 char *msg;
9462 struct cleanup *old_chain;
9463
9464 for (i = 0; i < sals->nelts; i++)
9465 {
9466 struct gdbarch *sarch;
9467
9468 sal = &sals->sals[i];
9469
9470 sarch = get_sal_arch (*sal);
9471 /* We fall back to GDBARCH if there is no architecture
9472 associated with SAL. */
9473 if (sarch == NULL)
9474 sarch = gdbarch;
9475 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9476 NULL, &msg);
9477 old_chain = make_cleanup (xfree, msg);
9478
9479 if (!rslt)
9480 error (_("May not have a fast tracepoint at 0x%s%s"),
9481 paddress (sarch, sal->pc), (msg ? msg : ""));
9482
9483 do_cleanups (old_chain);
9484 }
9485 }
9486
9487 /* Issue an invalid thread ID error. */
9488
9489 static void ATTRIBUTE_NORETURN
9490 invalid_thread_id_error (int id)
9491 {
9492 error (_("Unknown thread %d."), id);
9493 }
9494
9495 /* Given TOK, a string specification of condition and thread, as
9496 accepted by the 'break' command, extract the condition
9497 string and thread number and set *COND_STRING and *THREAD.
9498 PC identifies the context at which the condition should be parsed.
9499 If no condition is found, *COND_STRING is set to NULL.
9500 If no thread is found, *THREAD is set to -1. */
9501
9502 static void
9503 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9504 char **cond_string, int *thread, int *task,
9505 char **rest)
9506 {
9507 *cond_string = NULL;
9508 *thread = -1;
9509 *task = 0;
9510 *rest = NULL;
9511
9512 while (tok && *tok)
9513 {
9514 const char *end_tok;
9515 int toklen;
9516 const char *cond_start = NULL;
9517 const char *cond_end = NULL;
9518
9519 tok = skip_spaces_const (tok);
9520
9521 if ((*tok == '"' || *tok == ',') && rest)
9522 {
9523 *rest = savestring (tok, strlen (tok));
9524 return;
9525 }
9526
9527 end_tok = skip_to_space_const (tok);
9528
9529 toklen = end_tok - tok;
9530
9531 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9532 {
9533 struct expression *expr;
9534
9535 tok = cond_start = end_tok + 1;
9536 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9537 xfree (expr);
9538 cond_end = tok;
9539 *cond_string = savestring (cond_start, cond_end - cond_start);
9540 }
9541 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9542 {
9543 char *tmptok;
9544
9545 tok = end_tok + 1;
9546 *thread = strtol (tok, &tmptok, 0);
9547 if (tok == tmptok)
9548 error (_("Junk after thread keyword."));
9549 if (!valid_thread_id (*thread))
9550 invalid_thread_id_error (*thread);
9551 tok = tmptok;
9552 }
9553 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9554 {
9555 char *tmptok;
9556
9557 tok = end_tok + 1;
9558 *task = strtol (tok, &tmptok, 0);
9559 if (tok == tmptok)
9560 error (_("Junk after task keyword."));
9561 if (!valid_task_id (*task))
9562 error (_("Unknown task %d."), *task);
9563 tok = tmptok;
9564 }
9565 else if (rest)
9566 {
9567 *rest = savestring (tok, strlen (tok));
9568 return;
9569 }
9570 else
9571 error (_("Junk at end of arguments."));
9572 }
9573 }
9574
9575 /* Decode a static tracepoint marker spec. */
9576
9577 static struct symtabs_and_lines
9578 decode_static_tracepoint_spec (char **arg_p)
9579 {
9580 VEC(static_tracepoint_marker_p) *markers = NULL;
9581 struct symtabs_and_lines sals;
9582 struct cleanup *old_chain;
9583 char *p = &(*arg_p)[3];
9584 char *endp;
9585 char *marker_str;
9586 int i;
9587
9588 p = skip_spaces (p);
9589
9590 endp = skip_to_space (p);
9591
9592 marker_str = savestring (p, endp - p);
9593 old_chain = make_cleanup (xfree, marker_str);
9594
9595 markers = target_static_tracepoint_markers_by_strid (marker_str);
9596 if (VEC_empty(static_tracepoint_marker_p, markers))
9597 error (_("No known static tracepoint marker named %s"), marker_str);
9598
9599 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9600 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9601
9602 for (i = 0; i < sals.nelts; i++)
9603 {
9604 struct static_tracepoint_marker *marker;
9605
9606 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9607
9608 init_sal (&sals.sals[i]);
9609
9610 sals.sals[i] = find_pc_line (marker->address, 0);
9611 sals.sals[i].pc = marker->address;
9612
9613 release_static_tracepoint_marker (marker);
9614 }
9615
9616 do_cleanups (old_chain);
9617
9618 *arg_p = endp;
9619 return sals;
9620 }
9621
9622 /* Set a breakpoint. This function is shared between CLI and MI
9623 functions for setting a breakpoint. This function has two major
9624 modes of operations, selected by the PARSE_ARG parameter. If
9625 non-zero, the function will parse ARG, extracting location,
9626 condition, thread and extra string. Otherwise, ARG is just the
9627 breakpoint's location, with condition, thread, and extra string
9628 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9629 If INTERNAL is non-zero, the breakpoint number will be allocated
9630 from the internal breakpoint count. Returns true if any breakpoint
9631 was created; false otherwise. */
9632
9633 int
9634 create_breakpoint (struct gdbarch *gdbarch,
9635 char *arg, char *cond_string,
9636 int thread, char *extra_string,
9637 int parse_arg,
9638 int tempflag, enum bptype type_wanted,
9639 int ignore_count,
9640 enum auto_boolean pending_break_support,
9641 const struct breakpoint_ops *ops,
9642 int from_tty, int enabled, int internal,
9643 unsigned flags)
9644 {
9645 volatile struct gdb_exception e;
9646 char *copy_arg = NULL;
9647 char *addr_start = arg;
9648 struct linespec_result canonical;
9649 struct cleanup *old_chain;
9650 struct cleanup *bkpt_chain = NULL;
9651 int pending = 0;
9652 int task = 0;
9653 int prev_bkpt_count = breakpoint_count;
9654
9655 gdb_assert (ops != NULL);
9656
9657 init_linespec_result (&canonical);
9658
9659 TRY_CATCH (e, RETURN_MASK_ALL)
9660 {
9661 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9662 addr_start, &copy_arg);
9663 }
9664
9665 /* If caller is interested in rc value from parse, set value. */
9666 switch (e.reason)
9667 {
9668 case GDB_NO_ERROR:
9669 if (VEC_empty (linespec_sals, canonical.sals))
9670 return 0;
9671 break;
9672 case RETURN_ERROR:
9673 switch (e.error)
9674 {
9675 case NOT_FOUND_ERROR:
9676
9677 /* If pending breakpoint support is turned off, throw
9678 error. */
9679
9680 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9681 throw_exception (e);
9682
9683 exception_print (gdb_stderr, e);
9684
9685 /* If pending breakpoint support is auto query and the user
9686 selects no, then simply return the error code. */
9687 if (pending_break_support == AUTO_BOOLEAN_AUTO
9688 && !nquery (_("Make %s pending on future shared library load? "),
9689 bptype_string (type_wanted)))
9690 return 0;
9691
9692 /* At this point, either the user was queried about setting
9693 a pending breakpoint and selected yes, or pending
9694 breakpoint behavior is on and thus a pending breakpoint
9695 is defaulted on behalf of the user. */
9696 {
9697 struct linespec_sals lsal;
9698
9699 copy_arg = xstrdup (addr_start);
9700 lsal.canonical = xstrdup (copy_arg);
9701 lsal.sals.nelts = 1;
9702 lsal.sals.sals = XNEW (struct symtab_and_line);
9703 init_sal (&lsal.sals.sals[0]);
9704 pending = 1;
9705 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9706 }
9707 break;
9708 default:
9709 throw_exception (e);
9710 }
9711 break;
9712 default:
9713 throw_exception (e);
9714 }
9715
9716 /* Create a chain of things that always need to be cleaned up. */
9717 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9718
9719 /* ----------------------------- SNIP -----------------------------
9720 Anything added to the cleanup chain beyond this point is assumed
9721 to be part of a breakpoint. If the breakpoint create succeeds
9722 then the memory is not reclaimed. */
9723 bkpt_chain = make_cleanup (null_cleanup, 0);
9724
9725 /* Resolve all line numbers to PC's and verify that the addresses
9726 are ok for the target. */
9727 if (!pending)
9728 {
9729 int ix;
9730 struct linespec_sals *iter;
9731
9732 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9733 breakpoint_sals_to_pc (&iter->sals);
9734 }
9735
9736 /* Fast tracepoints may have additional restrictions on location. */
9737 if (!pending && type_wanted == bp_fast_tracepoint)
9738 {
9739 int ix;
9740 struct linespec_sals *iter;
9741
9742 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9743 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9744 }
9745
9746 /* Verify that condition can be parsed, before setting any
9747 breakpoints. Allocate a separate condition expression for each
9748 breakpoint. */
9749 if (!pending)
9750 {
9751 if (parse_arg)
9752 {
9753 char *rest;
9754 struct linespec_sals *lsal;
9755
9756 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9757
9758 /* Here we only parse 'arg' to separate condition
9759 from thread number, so parsing in context of first
9760 sal is OK. When setting the breakpoint we'll
9761 re-parse it in context of each sal. */
9762
9763 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9764 &thread, &task, &rest);
9765 if (cond_string)
9766 make_cleanup (xfree, cond_string);
9767 if (rest)
9768 make_cleanup (xfree, rest);
9769 if (rest)
9770 extra_string = rest;
9771 }
9772 else
9773 {
9774 if (*arg != '\0')
9775 error (_("Garbage '%s' at end of location"), arg);
9776
9777 /* Create a private copy of condition string. */
9778 if (cond_string)
9779 {
9780 cond_string = xstrdup (cond_string);
9781 make_cleanup (xfree, cond_string);
9782 }
9783 /* Create a private copy of any extra string. */
9784 if (extra_string)
9785 {
9786 extra_string = xstrdup (extra_string);
9787 make_cleanup (xfree, extra_string);
9788 }
9789 }
9790
9791 ops->create_breakpoints_sal (gdbarch, &canonical,
9792 cond_string, extra_string, type_wanted,
9793 tempflag ? disp_del : disp_donttouch,
9794 thread, task, ignore_count, ops,
9795 from_tty, enabled, internal, flags);
9796 }
9797 else
9798 {
9799 struct breakpoint *b;
9800
9801 make_cleanup (xfree, copy_arg);
9802
9803 if (is_tracepoint_type (type_wanted))
9804 {
9805 struct tracepoint *t;
9806
9807 t = XCNEW (struct tracepoint);
9808 b = &t->base;
9809 }
9810 else
9811 b = XNEW (struct breakpoint);
9812
9813 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9814
9815 b->addr_string = copy_arg;
9816 if (parse_arg)
9817 b->cond_string = NULL;
9818 else
9819 {
9820 /* Create a private copy of condition string. */
9821 if (cond_string)
9822 {
9823 cond_string = xstrdup (cond_string);
9824 make_cleanup (xfree, cond_string);
9825 }
9826 b->cond_string = cond_string;
9827 }
9828 b->extra_string = NULL;
9829 b->ignore_count = ignore_count;
9830 b->disposition = tempflag ? disp_del : disp_donttouch;
9831 b->condition_not_parsed = 1;
9832 b->enable_state = enabled ? bp_enabled : bp_disabled;
9833 if ((type_wanted != bp_breakpoint
9834 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9835 b->pspace = current_program_space;
9836
9837 install_breakpoint (internal, b, 0);
9838 }
9839
9840 if (VEC_length (linespec_sals, canonical.sals) > 1)
9841 {
9842 warning (_("Multiple breakpoints were set.\nUse the "
9843 "\"delete\" command to delete unwanted breakpoints."));
9844 prev_breakpoint_count = prev_bkpt_count;
9845 }
9846
9847 /* That's it. Discard the cleanups for data inserted into the
9848 breakpoint. */
9849 discard_cleanups (bkpt_chain);
9850 /* But cleanup everything else. */
9851 do_cleanups (old_chain);
9852
9853 /* error call may happen here - have BKPT_CHAIN already discarded. */
9854 update_global_location_list (1);
9855
9856 return 1;
9857 }
9858
9859 /* Set a breakpoint.
9860 ARG is a string describing breakpoint address,
9861 condition, and thread.
9862 FLAG specifies if a breakpoint is hardware on,
9863 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9864 and BP_TEMPFLAG. */
9865
9866 static void
9867 break_command_1 (char *arg, int flag, int from_tty)
9868 {
9869 int tempflag = flag & BP_TEMPFLAG;
9870 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9871 ? bp_hardware_breakpoint
9872 : bp_breakpoint);
9873 struct breakpoint_ops *ops;
9874 const char *arg_cp = arg;
9875
9876 /* Matching breakpoints on probes. */
9877 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9878 ops = &bkpt_probe_breakpoint_ops;
9879 else
9880 ops = &bkpt_breakpoint_ops;
9881
9882 create_breakpoint (get_current_arch (),
9883 arg,
9884 NULL, 0, NULL, 1 /* parse arg */,
9885 tempflag, type_wanted,
9886 0 /* Ignore count */,
9887 pending_break_support,
9888 ops,
9889 from_tty,
9890 1 /* enabled */,
9891 0 /* internal */,
9892 0);
9893 }
9894
9895 /* Helper function for break_command_1 and disassemble_command. */
9896
9897 void
9898 resolve_sal_pc (struct symtab_and_line *sal)
9899 {
9900 CORE_ADDR pc;
9901
9902 if (sal->pc == 0 && sal->symtab != NULL)
9903 {
9904 if (!find_line_pc (sal->symtab, sal->line, &pc))
9905 error (_("No line %d in file \"%s\"."),
9906 sal->line, symtab_to_filename_for_display (sal->symtab));
9907 sal->pc = pc;
9908
9909 /* If this SAL corresponds to a breakpoint inserted using a line
9910 number, then skip the function prologue if necessary. */
9911 if (sal->explicit_line)
9912 skip_prologue_sal (sal);
9913 }
9914
9915 if (sal->section == 0 && sal->symtab != NULL)
9916 {
9917 struct blockvector *bv;
9918 struct block *b;
9919 struct symbol *sym;
9920
9921 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9922 if (bv != NULL)
9923 {
9924 sym = block_linkage_function (b);
9925 if (sym != NULL)
9926 {
9927 fixup_symbol_section (sym, sal->symtab->objfile);
9928 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9929 }
9930 else
9931 {
9932 /* It really is worthwhile to have the section, so we'll
9933 just have to look harder. This case can be executed
9934 if we have line numbers but no functions (as can
9935 happen in assembly source). */
9936
9937 struct bound_minimal_symbol msym;
9938 struct cleanup *old_chain = save_current_space_and_thread ();
9939
9940 switch_to_program_space_and_thread (sal->pspace);
9941
9942 msym = lookup_minimal_symbol_by_pc (sal->pc);
9943 if (msym.minsym)
9944 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9945
9946 do_cleanups (old_chain);
9947 }
9948 }
9949 }
9950 }
9951
9952 void
9953 break_command (char *arg, int from_tty)
9954 {
9955 break_command_1 (arg, 0, from_tty);
9956 }
9957
9958 void
9959 tbreak_command (char *arg, int from_tty)
9960 {
9961 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9962 }
9963
9964 static void
9965 hbreak_command (char *arg, int from_tty)
9966 {
9967 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9968 }
9969
9970 static void
9971 thbreak_command (char *arg, int from_tty)
9972 {
9973 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9974 }
9975
9976 static void
9977 stop_command (char *arg, int from_tty)
9978 {
9979 printf_filtered (_("Specify the type of breakpoint to set.\n\
9980 Usage: stop in <function | address>\n\
9981 stop at <line>\n"));
9982 }
9983
9984 static void
9985 stopin_command (char *arg, int from_tty)
9986 {
9987 int badInput = 0;
9988
9989 if (arg == (char *) NULL)
9990 badInput = 1;
9991 else if (*arg != '*')
9992 {
9993 char *argptr = arg;
9994 int hasColon = 0;
9995
9996 /* Look for a ':'. If this is a line number specification, then
9997 say it is bad, otherwise, it should be an address or
9998 function/method name. */
9999 while (*argptr && !hasColon)
10000 {
10001 hasColon = (*argptr == ':');
10002 argptr++;
10003 }
10004
10005 if (hasColon)
10006 badInput = (*argptr != ':'); /* Not a class::method */
10007 else
10008 badInput = isdigit (*arg); /* a simple line number */
10009 }
10010
10011 if (badInput)
10012 printf_filtered (_("Usage: stop in <function | address>\n"));
10013 else
10014 break_command_1 (arg, 0, from_tty);
10015 }
10016
10017 static void
10018 stopat_command (char *arg, int from_tty)
10019 {
10020 int badInput = 0;
10021
10022 if (arg == (char *) NULL || *arg == '*') /* no line number */
10023 badInput = 1;
10024 else
10025 {
10026 char *argptr = arg;
10027 int hasColon = 0;
10028
10029 /* Look for a ':'. If there is a '::' then get out, otherwise
10030 it is probably a line number. */
10031 while (*argptr && !hasColon)
10032 {
10033 hasColon = (*argptr == ':');
10034 argptr++;
10035 }
10036
10037 if (hasColon)
10038 badInput = (*argptr == ':'); /* we have class::method */
10039 else
10040 badInput = !isdigit (*arg); /* not a line number */
10041 }
10042
10043 if (badInput)
10044 printf_filtered (_("Usage: stop at <line>\n"));
10045 else
10046 break_command_1 (arg, 0, from_tty);
10047 }
10048
10049 /* The dynamic printf command is mostly like a regular breakpoint, but
10050 with a prewired command list consisting of a single output command,
10051 built from extra arguments supplied on the dprintf command
10052 line. */
10053
10054 static void
10055 dprintf_command (char *arg, int from_tty)
10056 {
10057 create_breakpoint (get_current_arch (),
10058 arg,
10059 NULL, 0, NULL, 1 /* parse arg */,
10060 0, bp_dprintf,
10061 0 /* Ignore count */,
10062 pending_break_support,
10063 &dprintf_breakpoint_ops,
10064 from_tty,
10065 1 /* enabled */,
10066 0 /* internal */,
10067 0);
10068 }
10069
10070 static void
10071 agent_printf_command (char *arg, int from_tty)
10072 {
10073 error (_("May only run agent-printf on the target"));
10074 }
10075
10076 /* Implement the "breakpoint_hit" breakpoint_ops method for
10077 ranged breakpoints. */
10078
10079 static int
10080 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10081 struct address_space *aspace,
10082 CORE_ADDR bp_addr,
10083 const struct target_waitstatus *ws)
10084 {
10085 if (ws->kind != TARGET_WAITKIND_STOPPED
10086 || ws->value.sig != GDB_SIGNAL_TRAP)
10087 return 0;
10088
10089 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10090 bl->length, aspace, bp_addr);
10091 }
10092
10093 /* Implement the "resources_needed" breakpoint_ops method for
10094 ranged breakpoints. */
10095
10096 static int
10097 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10098 {
10099 return target_ranged_break_num_registers ();
10100 }
10101
10102 /* Implement the "print_it" breakpoint_ops method for
10103 ranged breakpoints. */
10104
10105 static enum print_stop_action
10106 print_it_ranged_breakpoint (bpstat bs)
10107 {
10108 struct breakpoint *b = bs->breakpoint_at;
10109 struct bp_location *bl = b->loc;
10110 struct ui_out *uiout = current_uiout;
10111
10112 gdb_assert (b->type == bp_hardware_breakpoint);
10113
10114 /* Ranged breakpoints have only one location. */
10115 gdb_assert (bl && bl->next == NULL);
10116
10117 annotate_breakpoint (b->number);
10118 if (b->disposition == disp_del)
10119 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10120 else
10121 ui_out_text (uiout, "\nRanged breakpoint ");
10122 if (ui_out_is_mi_like_p (uiout))
10123 {
10124 ui_out_field_string (uiout, "reason",
10125 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10126 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10127 }
10128 ui_out_field_int (uiout, "bkptno", b->number);
10129 ui_out_text (uiout, ", ");
10130
10131 return PRINT_SRC_AND_LOC;
10132 }
10133
10134 /* Implement the "print_one" breakpoint_ops method for
10135 ranged breakpoints. */
10136
10137 static void
10138 print_one_ranged_breakpoint (struct breakpoint *b,
10139 struct bp_location **last_loc)
10140 {
10141 struct bp_location *bl = b->loc;
10142 struct value_print_options opts;
10143 struct ui_out *uiout = current_uiout;
10144
10145 /* Ranged breakpoints have only one location. */
10146 gdb_assert (bl && bl->next == NULL);
10147
10148 get_user_print_options (&opts);
10149
10150 if (opts.addressprint)
10151 /* We don't print the address range here, it will be printed later
10152 by print_one_detail_ranged_breakpoint. */
10153 ui_out_field_skip (uiout, "addr");
10154 annotate_field (5);
10155 print_breakpoint_location (b, bl);
10156 *last_loc = bl;
10157 }
10158
10159 /* Implement the "print_one_detail" breakpoint_ops method for
10160 ranged breakpoints. */
10161
10162 static void
10163 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10164 struct ui_out *uiout)
10165 {
10166 CORE_ADDR address_start, address_end;
10167 struct bp_location *bl = b->loc;
10168 struct ui_file *stb = mem_fileopen ();
10169 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10170
10171 gdb_assert (bl);
10172
10173 address_start = bl->address;
10174 address_end = address_start + bl->length - 1;
10175
10176 ui_out_text (uiout, "\taddress range: ");
10177 fprintf_unfiltered (stb, "[%s, %s]",
10178 print_core_address (bl->gdbarch, address_start),
10179 print_core_address (bl->gdbarch, address_end));
10180 ui_out_field_stream (uiout, "addr", stb);
10181 ui_out_text (uiout, "\n");
10182
10183 do_cleanups (cleanup);
10184 }
10185
10186 /* Implement the "print_mention" breakpoint_ops method for
10187 ranged breakpoints. */
10188
10189 static void
10190 print_mention_ranged_breakpoint (struct breakpoint *b)
10191 {
10192 struct bp_location *bl = b->loc;
10193 struct ui_out *uiout = current_uiout;
10194
10195 gdb_assert (bl);
10196 gdb_assert (b->type == bp_hardware_breakpoint);
10197
10198 if (ui_out_is_mi_like_p (uiout))
10199 return;
10200
10201 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10202 b->number, paddress (bl->gdbarch, bl->address),
10203 paddress (bl->gdbarch, bl->address + bl->length - 1));
10204 }
10205
10206 /* Implement the "print_recreate" breakpoint_ops method for
10207 ranged breakpoints. */
10208
10209 static void
10210 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10211 {
10212 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10213 b->addr_string_range_end);
10214 print_recreate_thread (b, fp);
10215 }
10216
10217 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10218
10219 static struct breakpoint_ops ranged_breakpoint_ops;
10220
10221 /* Find the address where the end of the breakpoint range should be
10222 placed, given the SAL of the end of the range. This is so that if
10223 the user provides a line number, the end of the range is set to the
10224 last instruction of the given line. */
10225
10226 static CORE_ADDR
10227 find_breakpoint_range_end (struct symtab_and_line sal)
10228 {
10229 CORE_ADDR end;
10230
10231 /* If the user provided a PC value, use it. Otherwise,
10232 find the address of the end of the given location. */
10233 if (sal.explicit_pc)
10234 end = sal.pc;
10235 else
10236 {
10237 int ret;
10238 CORE_ADDR start;
10239
10240 ret = find_line_pc_range (sal, &start, &end);
10241 if (!ret)
10242 error (_("Could not find location of the end of the range."));
10243
10244 /* find_line_pc_range returns the start of the next line. */
10245 end--;
10246 }
10247
10248 return end;
10249 }
10250
10251 /* Implement the "break-range" CLI command. */
10252
10253 static void
10254 break_range_command (char *arg, int from_tty)
10255 {
10256 char *arg_start, *addr_string_start, *addr_string_end;
10257 struct linespec_result canonical_start, canonical_end;
10258 int bp_count, can_use_bp, length;
10259 CORE_ADDR end;
10260 struct breakpoint *b;
10261 struct symtab_and_line sal_start, sal_end;
10262 struct cleanup *cleanup_bkpt;
10263 struct linespec_sals *lsal_start, *lsal_end;
10264
10265 /* We don't support software ranged breakpoints. */
10266 if (target_ranged_break_num_registers () < 0)
10267 error (_("This target does not support hardware ranged breakpoints."));
10268
10269 bp_count = hw_breakpoint_used_count ();
10270 bp_count += target_ranged_break_num_registers ();
10271 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10272 bp_count, 0);
10273 if (can_use_bp < 0)
10274 error (_("Hardware breakpoints used exceeds limit."));
10275
10276 arg = skip_spaces (arg);
10277 if (arg == NULL || arg[0] == '\0')
10278 error(_("No address range specified."));
10279
10280 init_linespec_result (&canonical_start);
10281
10282 arg_start = arg;
10283 parse_breakpoint_sals (&arg, &canonical_start);
10284
10285 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10286
10287 if (arg[0] != ',')
10288 error (_("Too few arguments."));
10289 else if (VEC_empty (linespec_sals, canonical_start.sals))
10290 error (_("Could not find location of the beginning of the range."));
10291
10292 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10293
10294 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10295 || lsal_start->sals.nelts != 1)
10296 error (_("Cannot create a ranged breakpoint with multiple locations."));
10297
10298 sal_start = lsal_start->sals.sals[0];
10299 addr_string_start = savestring (arg_start, arg - arg_start);
10300 make_cleanup (xfree, addr_string_start);
10301
10302 arg++; /* Skip the comma. */
10303 arg = skip_spaces (arg);
10304
10305 /* Parse the end location. */
10306
10307 init_linespec_result (&canonical_end);
10308 arg_start = arg;
10309
10310 /* We call decode_line_full directly here instead of using
10311 parse_breakpoint_sals because we need to specify the start location's
10312 symtab and line as the default symtab and line for the end of the
10313 range. This makes it possible to have ranges like "foo.c:27, +14",
10314 where +14 means 14 lines from the start location. */
10315 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10316 sal_start.symtab, sal_start.line,
10317 &canonical_end, NULL, NULL);
10318
10319 make_cleanup_destroy_linespec_result (&canonical_end);
10320
10321 if (VEC_empty (linespec_sals, canonical_end.sals))
10322 error (_("Could not find location of the end of the range."));
10323
10324 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10325 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10326 || lsal_end->sals.nelts != 1)
10327 error (_("Cannot create a ranged breakpoint with multiple locations."));
10328
10329 sal_end = lsal_end->sals.sals[0];
10330 addr_string_end = savestring (arg_start, arg - arg_start);
10331 make_cleanup (xfree, addr_string_end);
10332
10333 end = find_breakpoint_range_end (sal_end);
10334 if (sal_start.pc > end)
10335 error (_("Invalid address range, end precedes start."));
10336
10337 length = end - sal_start.pc + 1;
10338 if (length < 0)
10339 /* Length overflowed. */
10340 error (_("Address range too large."));
10341 else if (length == 1)
10342 {
10343 /* This range is simple enough to be handled by
10344 the `hbreak' command. */
10345 hbreak_command (addr_string_start, 1);
10346
10347 do_cleanups (cleanup_bkpt);
10348
10349 return;
10350 }
10351
10352 /* Now set up the breakpoint. */
10353 b = set_raw_breakpoint (get_current_arch (), sal_start,
10354 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10355 set_breakpoint_count (breakpoint_count + 1);
10356 b->number = breakpoint_count;
10357 b->disposition = disp_donttouch;
10358 b->addr_string = xstrdup (addr_string_start);
10359 b->addr_string_range_end = xstrdup (addr_string_end);
10360 b->loc->length = length;
10361
10362 do_cleanups (cleanup_bkpt);
10363
10364 mention (b);
10365 observer_notify_breakpoint_created (b);
10366 update_global_location_list (1);
10367 }
10368
10369 /* Return non-zero if EXP is verified as constant. Returned zero
10370 means EXP is variable. Also the constant detection may fail for
10371 some constant expressions and in such case still falsely return
10372 zero. */
10373
10374 static int
10375 watchpoint_exp_is_const (const struct expression *exp)
10376 {
10377 int i = exp->nelts;
10378
10379 while (i > 0)
10380 {
10381 int oplenp, argsp;
10382
10383 /* We are only interested in the descriptor of each element. */
10384 operator_length (exp, i, &oplenp, &argsp);
10385 i -= oplenp;
10386
10387 switch (exp->elts[i].opcode)
10388 {
10389 case BINOP_ADD:
10390 case BINOP_SUB:
10391 case BINOP_MUL:
10392 case BINOP_DIV:
10393 case BINOP_REM:
10394 case BINOP_MOD:
10395 case BINOP_LSH:
10396 case BINOP_RSH:
10397 case BINOP_LOGICAL_AND:
10398 case BINOP_LOGICAL_OR:
10399 case BINOP_BITWISE_AND:
10400 case BINOP_BITWISE_IOR:
10401 case BINOP_BITWISE_XOR:
10402 case BINOP_EQUAL:
10403 case BINOP_NOTEQUAL:
10404 case BINOP_LESS:
10405 case BINOP_GTR:
10406 case BINOP_LEQ:
10407 case BINOP_GEQ:
10408 case BINOP_REPEAT:
10409 case BINOP_COMMA:
10410 case BINOP_EXP:
10411 case BINOP_MIN:
10412 case BINOP_MAX:
10413 case BINOP_INTDIV:
10414 case BINOP_CONCAT:
10415 case BINOP_IN:
10416 case BINOP_RANGE:
10417 case TERNOP_COND:
10418 case TERNOP_SLICE:
10419
10420 case OP_LONG:
10421 case OP_DOUBLE:
10422 case OP_DECFLOAT:
10423 case OP_LAST:
10424 case OP_COMPLEX:
10425 case OP_STRING:
10426 case OP_ARRAY:
10427 case OP_TYPE:
10428 case OP_TYPEOF:
10429 case OP_DECLTYPE:
10430 case OP_TYPEID:
10431 case OP_NAME:
10432 case OP_OBJC_NSSTRING:
10433
10434 case UNOP_NEG:
10435 case UNOP_LOGICAL_NOT:
10436 case UNOP_COMPLEMENT:
10437 case UNOP_ADDR:
10438 case UNOP_HIGH:
10439 case UNOP_CAST:
10440
10441 case UNOP_CAST_TYPE:
10442 case UNOP_REINTERPRET_CAST:
10443 case UNOP_DYNAMIC_CAST:
10444 /* Unary, binary and ternary operators: We have to check
10445 their operands. If they are constant, then so is the
10446 result of that operation. For instance, if A and B are
10447 determined to be constants, then so is "A + B".
10448
10449 UNOP_IND is one exception to the rule above, because the
10450 value of *ADDR is not necessarily a constant, even when
10451 ADDR is. */
10452 break;
10453
10454 case OP_VAR_VALUE:
10455 /* Check whether the associated symbol is a constant.
10456
10457 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10458 possible that a buggy compiler could mark a variable as
10459 constant even when it is not, and TYPE_CONST would return
10460 true in this case, while SYMBOL_CLASS wouldn't.
10461
10462 We also have to check for function symbols because they
10463 are always constant. */
10464 {
10465 struct symbol *s = exp->elts[i + 2].symbol;
10466
10467 if (SYMBOL_CLASS (s) != LOC_BLOCK
10468 && SYMBOL_CLASS (s) != LOC_CONST
10469 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10470 return 0;
10471 break;
10472 }
10473
10474 /* The default action is to return 0 because we are using
10475 the optimistic approach here: If we don't know something,
10476 then it is not a constant. */
10477 default:
10478 return 0;
10479 }
10480 }
10481
10482 return 1;
10483 }
10484
10485 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10486
10487 static void
10488 dtor_watchpoint (struct breakpoint *self)
10489 {
10490 struct watchpoint *w = (struct watchpoint *) self;
10491
10492 xfree (w->cond_exp);
10493 xfree (w->exp);
10494 xfree (w->exp_string);
10495 xfree (w->exp_string_reparse);
10496 value_free (w->val);
10497
10498 base_breakpoint_ops.dtor (self);
10499 }
10500
10501 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10502
10503 static void
10504 re_set_watchpoint (struct breakpoint *b)
10505 {
10506 struct watchpoint *w = (struct watchpoint *) b;
10507
10508 /* Watchpoint can be either on expression using entirely global
10509 variables, or it can be on local variables.
10510
10511 Watchpoints of the first kind are never auto-deleted, and even
10512 persist across program restarts. Since they can use variables
10513 from shared libraries, we need to reparse expression as libraries
10514 are loaded and unloaded.
10515
10516 Watchpoints on local variables can also change meaning as result
10517 of solib event. For example, if a watchpoint uses both a local
10518 and a global variables in expression, it's a local watchpoint,
10519 but unloading of a shared library will make the expression
10520 invalid. This is not a very common use case, but we still
10521 re-evaluate expression, to avoid surprises to the user.
10522
10523 Note that for local watchpoints, we re-evaluate it only if
10524 watchpoints frame id is still valid. If it's not, it means the
10525 watchpoint is out of scope and will be deleted soon. In fact,
10526 I'm not sure we'll ever be called in this case.
10527
10528 If a local watchpoint's frame id is still valid, then
10529 w->exp_valid_block is likewise valid, and we can safely use it.
10530
10531 Don't do anything about disabled watchpoints, since they will be
10532 reevaluated again when enabled. */
10533 update_watchpoint (w, 1 /* reparse */);
10534 }
10535
10536 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10537
10538 static int
10539 insert_watchpoint (struct bp_location *bl)
10540 {
10541 struct watchpoint *w = (struct watchpoint *) bl->owner;
10542 int length = w->exact ? 1 : bl->length;
10543
10544 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10545 w->cond_exp);
10546 }
10547
10548 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10549
10550 static int
10551 remove_watchpoint (struct bp_location *bl)
10552 {
10553 struct watchpoint *w = (struct watchpoint *) bl->owner;
10554 int length = w->exact ? 1 : bl->length;
10555
10556 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10557 w->cond_exp);
10558 }
10559
10560 static int
10561 breakpoint_hit_watchpoint (const struct bp_location *bl,
10562 struct address_space *aspace, CORE_ADDR bp_addr,
10563 const struct target_waitstatus *ws)
10564 {
10565 struct breakpoint *b = bl->owner;
10566 struct watchpoint *w = (struct watchpoint *) b;
10567
10568 /* Continuable hardware watchpoints are treated as non-existent if the
10569 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10570 some data address). Otherwise gdb won't stop on a break instruction
10571 in the code (not from a breakpoint) when a hardware watchpoint has
10572 been defined. Also skip watchpoints which we know did not trigger
10573 (did not match the data address). */
10574 if (is_hardware_watchpoint (b)
10575 && w->watchpoint_triggered == watch_triggered_no)
10576 return 0;
10577
10578 return 1;
10579 }
10580
10581 static void
10582 check_status_watchpoint (bpstat bs)
10583 {
10584 gdb_assert (is_watchpoint (bs->breakpoint_at));
10585
10586 bpstat_check_watchpoint (bs);
10587 }
10588
10589 /* Implement the "resources_needed" breakpoint_ops method for
10590 hardware watchpoints. */
10591
10592 static int
10593 resources_needed_watchpoint (const struct bp_location *bl)
10594 {
10595 struct watchpoint *w = (struct watchpoint *) bl->owner;
10596 int length = w->exact? 1 : bl->length;
10597
10598 return target_region_ok_for_hw_watchpoint (bl->address, length);
10599 }
10600
10601 /* Implement the "works_in_software_mode" breakpoint_ops method for
10602 hardware watchpoints. */
10603
10604 static int
10605 works_in_software_mode_watchpoint (const struct breakpoint *b)
10606 {
10607 /* Read and access watchpoints only work with hardware support. */
10608 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10609 }
10610
10611 static enum print_stop_action
10612 print_it_watchpoint (bpstat bs)
10613 {
10614 struct cleanup *old_chain;
10615 struct breakpoint *b;
10616 struct ui_file *stb;
10617 enum print_stop_action result;
10618 struct watchpoint *w;
10619 struct ui_out *uiout = current_uiout;
10620
10621 gdb_assert (bs->bp_location_at != NULL);
10622
10623 b = bs->breakpoint_at;
10624 w = (struct watchpoint *) b;
10625
10626 stb = mem_fileopen ();
10627 old_chain = make_cleanup_ui_file_delete (stb);
10628
10629 switch (b->type)
10630 {
10631 case bp_watchpoint:
10632 case bp_hardware_watchpoint:
10633 annotate_watchpoint (b->number);
10634 if (ui_out_is_mi_like_p (uiout))
10635 ui_out_field_string
10636 (uiout, "reason",
10637 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10638 mention (b);
10639 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10640 ui_out_text (uiout, "\nOld value = ");
10641 watchpoint_value_print (bs->old_val, stb);
10642 ui_out_field_stream (uiout, "old", stb);
10643 ui_out_text (uiout, "\nNew value = ");
10644 watchpoint_value_print (w->val, stb);
10645 ui_out_field_stream (uiout, "new", stb);
10646 ui_out_text (uiout, "\n");
10647 /* More than one watchpoint may have been triggered. */
10648 result = PRINT_UNKNOWN;
10649 break;
10650
10651 case bp_read_watchpoint:
10652 if (ui_out_is_mi_like_p (uiout))
10653 ui_out_field_string
10654 (uiout, "reason",
10655 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10656 mention (b);
10657 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10658 ui_out_text (uiout, "\nValue = ");
10659 watchpoint_value_print (w->val, stb);
10660 ui_out_field_stream (uiout, "value", stb);
10661 ui_out_text (uiout, "\n");
10662 result = PRINT_UNKNOWN;
10663 break;
10664
10665 case bp_access_watchpoint:
10666 if (bs->old_val != NULL)
10667 {
10668 annotate_watchpoint (b->number);
10669 if (ui_out_is_mi_like_p (uiout))
10670 ui_out_field_string
10671 (uiout, "reason",
10672 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10673 mention (b);
10674 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10675 ui_out_text (uiout, "\nOld value = ");
10676 watchpoint_value_print (bs->old_val, stb);
10677 ui_out_field_stream (uiout, "old", stb);
10678 ui_out_text (uiout, "\nNew value = ");
10679 }
10680 else
10681 {
10682 mention (b);
10683 if (ui_out_is_mi_like_p (uiout))
10684 ui_out_field_string
10685 (uiout, "reason",
10686 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10687 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10688 ui_out_text (uiout, "\nValue = ");
10689 }
10690 watchpoint_value_print (w->val, stb);
10691 ui_out_field_stream (uiout, "new", stb);
10692 ui_out_text (uiout, "\n");
10693 result = PRINT_UNKNOWN;
10694 break;
10695 default:
10696 result = PRINT_UNKNOWN;
10697 }
10698
10699 do_cleanups (old_chain);
10700 return result;
10701 }
10702
10703 /* Implement the "print_mention" breakpoint_ops method for hardware
10704 watchpoints. */
10705
10706 static void
10707 print_mention_watchpoint (struct breakpoint *b)
10708 {
10709 struct cleanup *ui_out_chain;
10710 struct watchpoint *w = (struct watchpoint *) b;
10711 struct ui_out *uiout = current_uiout;
10712
10713 switch (b->type)
10714 {
10715 case bp_watchpoint:
10716 ui_out_text (uiout, "Watchpoint ");
10717 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10718 break;
10719 case bp_hardware_watchpoint:
10720 ui_out_text (uiout, "Hardware watchpoint ");
10721 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10722 break;
10723 case bp_read_watchpoint:
10724 ui_out_text (uiout, "Hardware read watchpoint ");
10725 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10726 break;
10727 case bp_access_watchpoint:
10728 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10729 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10730 break;
10731 default:
10732 internal_error (__FILE__, __LINE__,
10733 _("Invalid hardware watchpoint type."));
10734 }
10735
10736 ui_out_field_int (uiout, "number", b->number);
10737 ui_out_text (uiout, ": ");
10738 ui_out_field_string (uiout, "exp", w->exp_string);
10739 do_cleanups (ui_out_chain);
10740 }
10741
10742 /* Implement the "print_recreate" breakpoint_ops method for
10743 watchpoints. */
10744
10745 static void
10746 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10747 {
10748 struct watchpoint *w = (struct watchpoint *) b;
10749
10750 switch (b->type)
10751 {
10752 case bp_watchpoint:
10753 case bp_hardware_watchpoint:
10754 fprintf_unfiltered (fp, "watch");
10755 break;
10756 case bp_read_watchpoint:
10757 fprintf_unfiltered (fp, "rwatch");
10758 break;
10759 case bp_access_watchpoint:
10760 fprintf_unfiltered (fp, "awatch");
10761 break;
10762 default:
10763 internal_error (__FILE__, __LINE__,
10764 _("Invalid watchpoint type."));
10765 }
10766
10767 fprintf_unfiltered (fp, " %s", w->exp_string);
10768 print_recreate_thread (b, fp);
10769 }
10770
10771 /* Implement the "explains_signal" breakpoint_ops method for
10772 watchpoints. */
10773
10774 static enum bpstat_signal_value
10775 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10776 {
10777 /* A software watchpoint cannot cause a signal other than
10778 GDB_SIGNAL_TRAP. */
10779 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10780 return BPSTAT_SIGNAL_NO;
10781
10782 return BPSTAT_SIGNAL_PASS;
10783 }
10784
10785 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10786
10787 static struct breakpoint_ops watchpoint_breakpoint_ops;
10788
10789 /* Implement the "insert" breakpoint_ops method for
10790 masked hardware watchpoints. */
10791
10792 static int
10793 insert_masked_watchpoint (struct bp_location *bl)
10794 {
10795 struct watchpoint *w = (struct watchpoint *) bl->owner;
10796
10797 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10798 bl->watchpoint_type);
10799 }
10800
10801 /* Implement the "remove" breakpoint_ops method for
10802 masked hardware watchpoints. */
10803
10804 static int
10805 remove_masked_watchpoint (struct bp_location *bl)
10806 {
10807 struct watchpoint *w = (struct watchpoint *) bl->owner;
10808
10809 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10810 bl->watchpoint_type);
10811 }
10812
10813 /* Implement the "resources_needed" breakpoint_ops method for
10814 masked hardware watchpoints. */
10815
10816 static int
10817 resources_needed_masked_watchpoint (const struct bp_location *bl)
10818 {
10819 struct watchpoint *w = (struct watchpoint *) bl->owner;
10820
10821 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10822 }
10823
10824 /* Implement the "works_in_software_mode" breakpoint_ops method for
10825 masked hardware watchpoints. */
10826
10827 static int
10828 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10829 {
10830 return 0;
10831 }
10832
10833 /* Implement the "print_it" breakpoint_ops method for
10834 masked hardware watchpoints. */
10835
10836 static enum print_stop_action
10837 print_it_masked_watchpoint (bpstat bs)
10838 {
10839 struct breakpoint *b = bs->breakpoint_at;
10840 struct ui_out *uiout = current_uiout;
10841
10842 /* Masked watchpoints have only one location. */
10843 gdb_assert (b->loc && b->loc->next == NULL);
10844
10845 switch (b->type)
10846 {
10847 case bp_hardware_watchpoint:
10848 annotate_watchpoint (b->number);
10849 if (ui_out_is_mi_like_p (uiout))
10850 ui_out_field_string
10851 (uiout, "reason",
10852 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10853 break;
10854
10855 case bp_read_watchpoint:
10856 if (ui_out_is_mi_like_p (uiout))
10857 ui_out_field_string
10858 (uiout, "reason",
10859 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10860 break;
10861
10862 case bp_access_watchpoint:
10863 if (ui_out_is_mi_like_p (uiout))
10864 ui_out_field_string
10865 (uiout, "reason",
10866 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10867 break;
10868 default:
10869 internal_error (__FILE__, __LINE__,
10870 _("Invalid hardware watchpoint type."));
10871 }
10872
10873 mention (b);
10874 ui_out_text (uiout, _("\n\
10875 Check the underlying instruction at PC for the memory\n\
10876 address and value which triggered this watchpoint.\n"));
10877 ui_out_text (uiout, "\n");
10878
10879 /* More than one watchpoint may have been triggered. */
10880 return PRINT_UNKNOWN;
10881 }
10882
10883 /* Implement the "print_one_detail" breakpoint_ops method for
10884 masked hardware watchpoints. */
10885
10886 static void
10887 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10888 struct ui_out *uiout)
10889 {
10890 struct watchpoint *w = (struct watchpoint *) b;
10891
10892 /* Masked watchpoints have only one location. */
10893 gdb_assert (b->loc && b->loc->next == NULL);
10894
10895 ui_out_text (uiout, "\tmask ");
10896 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10897 ui_out_text (uiout, "\n");
10898 }
10899
10900 /* Implement the "print_mention" breakpoint_ops method for
10901 masked hardware watchpoints. */
10902
10903 static void
10904 print_mention_masked_watchpoint (struct breakpoint *b)
10905 {
10906 struct watchpoint *w = (struct watchpoint *) b;
10907 struct ui_out *uiout = current_uiout;
10908 struct cleanup *ui_out_chain;
10909
10910 switch (b->type)
10911 {
10912 case bp_hardware_watchpoint:
10913 ui_out_text (uiout, "Masked hardware watchpoint ");
10914 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10915 break;
10916 case bp_read_watchpoint:
10917 ui_out_text (uiout, "Masked hardware read watchpoint ");
10918 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10919 break;
10920 case bp_access_watchpoint:
10921 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10922 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10923 break;
10924 default:
10925 internal_error (__FILE__, __LINE__,
10926 _("Invalid hardware watchpoint type."));
10927 }
10928
10929 ui_out_field_int (uiout, "number", b->number);
10930 ui_out_text (uiout, ": ");
10931 ui_out_field_string (uiout, "exp", w->exp_string);
10932 do_cleanups (ui_out_chain);
10933 }
10934
10935 /* Implement the "print_recreate" breakpoint_ops method for
10936 masked hardware watchpoints. */
10937
10938 static void
10939 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10940 {
10941 struct watchpoint *w = (struct watchpoint *) b;
10942 char tmp[40];
10943
10944 switch (b->type)
10945 {
10946 case bp_hardware_watchpoint:
10947 fprintf_unfiltered (fp, "watch");
10948 break;
10949 case bp_read_watchpoint:
10950 fprintf_unfiltered (fp, "rwatch");
10951 break;
10952 case bp_access_watchpoint:
10953 fprintf_unfiltered (fp, "awatch");
10954 break;
10955 default:
10956 internal_error (__FILE__, __LINE__,
10957 _("Invalid hardware watchpoint type."));
10958 }
10959
10960 sprintf_vma (tmp, w->hw_wp_mask);
10961 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10962 print_recreate_thread (b, fp);
10963 }
10964
10965 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10966
10967 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10968
10969 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10970
10971 static int
10972 is_masked_watchpoint (const struct breakpoint *b)
10973 {
10974 return b->ops == &masked_watchpoint_breakpoint_ops;
10975 }
10976
10977 /* accessflag: hw_write: watch write,
10978 hw_read: watch read,
10979 hw_access: watch access (read or write) */
10980 static void
10981 watch_command_1 (const char *arg, int accessflag, int from_tty,
10982 int just_location, int internal)
10983 {
10984 volatile struct gdb_exception e;
10985 struct breakpoint *b, *scope_breakpoint = NULL;
10986 struct expression *exp;
10987 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10988 struct value *val, *mark, *result;
10989 struct frame_info *frame;
10990 const char *exp_start = NULL;
10991 const char *exp_end = NULL;
10992 const char *tok, *end_tok;
10993 int toklen = -1;
10994 const char *cond_start = NULL;
10995 const char *cond_end = NULL;
10996 enum bptype bp_type;
10997 int thread = -1;
10998 int pc = 0;
10999 /* Flag to indicate whether we are going to use masks for
11000 the hardware watchpoint. */
11001 int use_mask = 0;
11002 CORE_ADDR mask = 0;
11003 struct watchpoint *w;
11004 char *expression;
11005 struct cleanup *back_to;
11006
11007 /* Make sure that we actually have parameters to parse. */
11008 if (arg != NULL && arg[0] != '\0')
11009 {
11010 const char *value_start;
11011
11012 exp_end = arg + strlen (arg);
11013
11014 /* Look for "parameter value" pairs at the end
11015 of the arguments string. */
11016 for (tok = exp_end - 1; tok > arg; tok--)
11017 {
11018 /* Skip whitespace at the end of the argument list. */
11019 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11020 tok--;
11021
11022 /* Find the beginning of the last token.
11023 This is the value of the parameter. */
11024 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11025 tok--;
11026 value_start = tok + 1;
11027
11028 /* Skip whitespace. */
11029 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11030 tok--;
11031
11032 end_tok = tok;
11033
11034 /* Find the beginning of the second to last token.
11035 This is the parameter itself. */
11036 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11037 tok--;
11038 tok++;
11039 toklen = end_tok - tok + 1;
11040
11041 if (toklen == 6 && !strncmp (tok, "thread", 6))
11042 {
11043 /* At this point we've found a "thread" token, which means
11044 the user is trying to set a watchpoint that triggers
11045 only in a specific thread. */
11046 char *endp;
11047
11048 if (thread != -1)
11049 error(_("You can specify only one thread."));
11050
11051 /* Extract the thread ID from the next token. */
11052 thread = strtol (value_start, &endp, 0);
11053
11054 /* Check if the user provided a valid numeric value for the
11055 thread ID. */
11056 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11057 error (_("Invalid thread ID specification %s."), value_start);
11058
11059 /* Check if the thread actually exists. */
11060 if (!valid_thread_id (thread))
11061 invalid_thread_id_error (thread);
11062 }
11063 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11064 {
11065 /* We've found a "mask" token, which means the user wants to
11066 create a hardware watchpoint that is going to have the mask
11067 facility. */
11068 struct value *mask_value, *mark;
11069
11070 if (use_mask)
11071 error(_("You can specify only one mask."));
11072
11073 use_mask = just_location = 1;
11074
11075 mark = value_mark ();
11076 mask_value = parse_to_comma_and_eval (&value_start);
11077 mask = value_as_address (mask_value);
11078 value_free_to_mark (mark);
11079 }
11080 else
11081 /* We didn't recognize what we found. We should stop here. */
11082 break;
11083
11084 /* Truncate the string and get rid of the "parameter value" pair before
11085 the arguments string is parsed by the parse_exp_1 function. */
11086 exp_end = tok;
11087 }
11088 }
11089 else
11090 exp_end = arg;
11091
11092 /* Parse the rest of the arguments. From here on out, everything
11093 is in terms of a newly allocated string instead of the original
11094 ARG. */
11095 innermost_block = NULL;
11096 expression = savestring (arg, exp_end - arg);
11097 back_to = make_cleanup (xfree, expression);
11098 exp_start = arg = expression;
11099 exp = parse_exp_1 (&arg, 0, 0, 0);
11100 exp_end = arg;
11101 /* Remove trailing whitespace from the expression before saving it.
11102 This makes the eventual display of the expression string a bit
11103 prettier. */
11104 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11105 --exp_end;
11106
11107 /* Checking if the expression is not constant. */
11108 if (watchpoint_exp_is_const (exp))
11109 {
11110 int len;
11111
11112 len = exp_end - exp_start;
11113 while (len > 0 && isspace (exp_start[len - 1]))
11114 len--;
11115 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11116 }
11117
11118 exp_valid_block = innermost_block;
11119 mark = value_mark ();
11120 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11121
11122 if (just_location)
11123 {
11124 int ret;
11125
11126 exp_valid_block = NULL;
11127 val = value_addr (result);
11128 release_value (val);
11129 value_free_to_mark (mark);
11130
11131 if (use_mask)
11132 {
11133 ret = target_masked_watch_num_registers (value_as_address (val),
11134 mask);
11135 if (ret == -1)
11136 error (_("This target does not support masked watchpoints."));
11137 else if (ret == -2)
11138 error (_("Invalid mask or memory region."));
11139 }
11140 }
11141 else if (val != NULL)
11142 release_value (val);
11143
11144 tok = skip_spaces_const (arg);
11145 end_tok = skip_to_space_const (tok);
11146
11147 toklen = end_tok - tok;
11148 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11149 {
11150 struct expression *cond;
11151
11152 innermost_block = NULL;
11153 tok = cond_start = end_tok + 1;
11154 cond = parse_exp_1 (&tok, 0, 0, 0);
11155
11156 /* The watchpoint expression may not be local, but the condition
11157 may still be. E.g.: `watch global if local > 0'. */
11158 cond_exp_valid_block = innermost_block;
11159
11160 xfree (cond);
11161 cond_end = tok;
11162 }
11163 if (*tok)
11164 error (_("Junk at end of command."));
11165
11166 frame = block_innermost_frame (exp_valid_block);
11167
11168 /* If the expression is "local", then set up a "watchpoint scope"
11169 breakpoint at the point where we've left the scope of the watchpoint
11170 expression. Create the scope breakpoint before the watchpoint, so
11171 that we will encounter it first in bpstat_stop_status. */
11172 if (exp_valid_block && frame)
11173 {
11174 if (frame_id_p (frame_unwind_caller_id (frame)))
11175 {
11176 scope_breakpoint
11177 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11178 frame_unwind_caller_pc (frame),
11179 bp_watchpoint_scope,
11180 &momentary_breakpoint_ops);
11181
11182 scope_breakpoint->enable_state = bp_enabled;
11183
11184 /* Automatically delete the breakpoint when it hits. */
11185 scope_breakpoint->disposition = disp_del;
11186
11187 /* Only break in the proper frame (help with recursion). */
11188 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11189
11190 /* Set the address at which we will stop. */
11191 scope_breakpoint->loc->gdbarch
11192 = frame_unwind_caller_arch (frame);
11193 scope_breakpoint->loc->requested_address
11194 = frame_unwind_caller_pc (frame);
11195 scope_breakpoint->loc->address
11196 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11197 scope_breakpoint->loc->requested_address,
11198 scope_breakpoint->type);
11199 }
11200 }
11201
11202 /* Now set up the breakpoint. We create all watchpoints as hardware
11203 watchpoints here even if hardware watchpoints are turned off, a call
11204 to update_watchpoint later in this function will cause the type to
11205 drop back to bp_watchpoint (software watchpoint) if required. */
11206
11207 if (accessflag == hw_read)
11208 bp_type = bp_read_watchpoint;
11209 else if (accessflag == hw_access)
11210 bp_type = bp_access_watchpoint;
11211 else
11212 bp_type = bp_hardware_watchpoint;
11213
11214 w = XCNEW (struct watchpoint);
11215 b = &w->base;
11216 if (use_mask)
11217 init_raw_breakpoint_without_location (b, NULL, bp_type,
11218 &masked_watchpoint_breakpoint_ops);
11219 else
11220 init_raw_breakpoint_without_location (b, NULL, bp_type,
11221 &watchpoint_breakpoint_ops);
11222 b->thread = thread;
11223 b->disposition = disp_donttouch;
11224 b->pspace = current_program_space;
11225 w->exp = exp;
11226 w->exp_valid_block = exp_valid_block;
11227 w->cond_exp_valid_block = cond_exp_valid_block;
11228 if (just_location)
11229 {
11230 struct type *t = value_type (val);
11231 CORE_ADDR addr = value_as_address (val);
11232 char *name;
11233
11234 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11235 name = type_to_string (t);
11236
11237 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11238 core_addr_to_string (addr));
11239 xfree (name);
11240
11241 w->exp_string = xstrprintf ("-location %.*s",
11242 (int) (exp_end - exp_start), exp_start);
11243
11244 /* The above expression is in C. */
11245 b->language = language_c;
11246 }
11247 else
11248 w->exp_string = savestring (exp_start, exp_end - exp_start);
11249
11250 if (use_mask)
11251 {
11252 w->hw_wp_mask = mask;
11253 }
11254 else
11255 {
11256 w->val = val;
11257 w->val_valid = 1;
11258 }
11259
11260 if (cond_start)
11261 b->cond_string = savestring (cond_start, cond_end - cond_start);
11262 else
11263 b->cond_string = 0;
11264
11265 if (frame)
11266 {
11267 w->watchpoint_frame = get_frame_id (frame);
11268 w->watchpoint_thread = inferior_ptid;
11269 }
11270 else
11271 {
11272 w->watchpoint_frame = null_frame_id;
11273 w->watchpoint_thread = null_ptid;
11274 }
11275
11276 if (scope_breakpoint != NULL)
11277 {
11278 /* The scope breakpoint is related to the watchpoint. We will
11279 need to act on them together. */
11280 b->related_breakpoint = scope_breakpoint;
11281 scope_breakpoint->related_breakpoint = b;
11282 }
11283
11284 if (!just_location)
11285 value_free_to_mark (mark);
11286
11287 TRY_CATCH (e, RETURN_MASK_ALL)
11288 {
11289 /* Finally update the new watchpoint. This creates the locations
11290 that should be inserted. */
11291 update_watchpoint (w, 1);
11292 }
11293 if (e.reason < 0)
11294 {
11295 delete_breakpoint (b);
11296 throw_exception (e);
11297 }
11298
11299 install_breakpoint (internal, b, 1);
11300 do_cleanups (back_to);
11301 }
11302
11303 /* Return count of debug registers needed to watch the given expression.
11304 If the watchpoint cannot be handled in hardware return zero. */
11305
11306 static int
11307 can_use_hardware_watchpoint (struct value *v)
11308 {
11309 int found_memory_cnt = 0;
11310 struct value *head = v;
11311
11312 /* Did the user specifically forbid us to use hardware watchpoints? */
11313 if (!can_use_hw_watchpoints)
11314 return 0;
11315
11316 /* Make sure that the value of the expression depends only upon
11317 memory contents, and values computed from them within GDB. If we
11318 find any register references or function calls, we can't use a
11319 hardware watchpoint.
11320
11321 The idea here is that evaluating an expression generates a series
11322 of values, one holding the value of every subexpression. (The
11323 expression a*b+c has five subexpressions: a, b, a*b, c, and
11324 a*b+c.) GDB's values hold almost enough information to establish
11325 the criteria given above --- they identify memory lvalues,
11326 register lvalues, computed values, etcetera. So we can evaluate
11327 the expression, and then scan the chain of values that leaves
11328 behind to decide whether we can detect any possible change to the
11329 expression's final value using only hardware watchpoints.
11330
11331 However, I don't think that the values returned by inferior
11332 function calls are special in any way. So this function may not
11333 notice that an expression involving an inferior function call
11334 can't be watched with hardware watchpoints. FIXME. */
11335 for (; v; v = value_next (v))
11336 {
11337 if (VALUE_LVAL (v) == lval_memory)
11338 {
11339 if (v != head && value_lazy (v))
11340 /* A lazy memory lvalue in the chain is one that GDB never
11341 needed to fetch; we either just used its address (e.g.,
11342 `a' in `a.b') or we never needed it at all (e.g., `a'
11343 in `a,b'). This doesn't apply to HEAD; if that is
11344 lazy then it was not readable, but watch it anyway. */
11345 ;
11346 else
11347 {
11348 /* Ahh, memory we actually used! Check if we can cover
11349 it with hardware watchpoints. */
11350 struct type *vtype = check_typedef (value_type (v));
11351
11352 /* We only watch structs and arrays if user asked for it
11353 explicitly, never if they just happen to appear in a
11354 middle of some value chain. */
11355 if (v == head
11356 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11357 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11358 {
11359 CORE_ADDR vaddr = value_address (v);
11360 int len;
11361 int num_regs;
11362
11363 len = (target_exact_watchpoints
11364 && is_scalar_type_recursive (vtype))?
11365 1 : TYPE_LENGTH (value_type (v));
11366
11367 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11368 if (!num_regs)
11369 return 0;
11370 else
11371 found_memory_cnt += num_regs;
11372 }
11373 }
11374 }
11375 else if (VALUE_LVAL (v) != not_lval
11376 && deprecated_value_modifiable (v) == 0)
11377 return 0; /* These are values from the history (e.g., $1). */
11378 else if (VALUE_LVAL (v) == lval_register)
11379 return 0; /* Cannot watch a register with a HW watchpoint. */
11380 }
11381
11382 /* The expression itself looks suitable for using a hardware
11383 watchpoint, but give the target machine a chance to reject it. */
11384 return found_memory_cnt;
11385 }
11386
11387 void
11388 watch_command_wrapper (char *arg, int from_tty, int internal)
11389 {
11390 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11391 }
11392
11393 /* A helper function that looks for the "-location" argument and then
11394 calls watch_command_1. */
11395
11396 static void
11397 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11398 {
11399 int just_location = 0;
11400
11401 if (arg
11402 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11403 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11404 {
11405 arg = skip_spaces (arg);
11406 just_location = 1;
11407 }
11408
11409 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11410 }
11411
11412 static void
11413 watch_command (char *arg, int from_tty)
11414 {
11415 watch_maybe_just_location (arg, hw_write, from_tty);
11416 }
11417
11418 void
11419 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11420 {
11421 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11422 }
11423
11424 static void
11425 rwatch_command (char *arg, int from_tty)
11426 {
11427 watch_maybe_just_location (arg, hw_read, from_tty);
11428 }
11429
11430 void
11431 awatch_command_wrapper (char *arg, int from_tty, int internal)
11432 {
11433 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11434 }
11435
11436 static void
11437 awatch_command (char *arg, int from_tty)
11438 {
11439 watch_maybe_just_location (arg, hw_access, from_tty);
11440 }
11441 \f
11442
11443 /* Helper routines for the until_command routine in infcmd.c. Here
11444 because it uses the mechanisms of breakpoints. */
11445
11446 struct until_break_command_continuation_args
11447 {
11448 struct breakpoint *breakpoint;
11449 struct breakpoint *breakpoint2;
11450 int thread_num;
11451 };
11452
11453 /* This function is called by fetch_inferior_event via the
11454 cmd_continuation pointer, to complete the until command. It takes
11455 care of cleaning up the temporary breakpoints set up by the until
11456 command. */
11457 static void
11458 until_break_command_continuation (void *arg, int err)
11459 {
11460 struct until_break_command_continuation_args *a = arg;
11461
11462 delete_breakpoint (a->breakpoint);
11463 if (a->breakpoint2)
11464 delete_breakpoint (a->breakpoint2);
11465 delete_longjmp_breakpoint (a->thread_num);
11466 }
11467
11468 void
11469 until_break_command (char *arg, int from_tty, int anywhere)
11470 {
11471 struct symtabs_and_lines sals;
11472 struct symtab_and_line sal;
11473 struct frame_info *frame;
11474 struct gdbarch *frame_gdbarch;
11475 struct frame_id stack_frame_id;
11476 struct frame_id caller_frame_id;
11477 struct breakpoint *breakpoint;
11478 struct breakpoint *breakpoint2 = NULL;
11479 struct cleanup *old_chain;
11480 int thread;
11481 struct thread_info *tp;
11482
11483 clear_proceed_status ();
11484
11485 /* Set a breakpoint where the user wants it and at return from
11486 this function. */
11487
11488 if (last_displayed_sal_is_valid ())
11489 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11490 get_last_displayed_symtab (),
11491 get_last_displayed_line ());
11492 else
11493 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11494 (struct symtab *) NULL, 0);
11495
11496 if (sals.nelts != 1)
11497 error (_("Couldn't get information on specified line."));
11498
11499 sal = sals.sals[0];
11500 xfree (sals.sals); /* malloc'd, so freed. */
11501
11502 if (*arg)
11503 error (_("Junk at end of arguments."));
11504
11505 resolve_sal_pc (&sal);
11506
11507 tp = inferior_thread ();
11508 thread = tp->num;
11509
11510 old_chain = make_cleanup (null_cleanup, NULL);
11511
11512 /* Note linespec handling above invalidates the frame chain.
11513 Installing a breakpoint also invalidates the frame chain (as it
11514 may need to switch threads), so do any frame handling before
11515 that. */
11516
11517 frame = get_selected_frame (NULL);
11518 frame_gdbarch = get_frame_arch (frame);
11519 stack_frame_id = get_stack_frame_id (frame);
11520 caller_frame_id = frame_unwind_caller_id (frame);
11521
11522 /* Keep within the current frame, or in frames called by the current
11523 one. */
11524
11525 if (frame_id_p (caller_frame_id))
11526 {
11527 struct symtab_and_line sal2;
11528
11529 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11530 sal2.pc = frame_unwind_caller_pc (frame);
11531 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11532 sal2,
11533 caller_frame_id,
11534 bp_until);
11535 make_cleanup_delete_breakpoint (breakpoint2);
11536
11537 set_longjmp_breakpoint (tp, caller_frame_id);
11538 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11539 }
11540
11541 /* set_momentary_breakpoint could invalidate FRAME. */
11542 frame = NULL;
11543
11544 if (anywhere)
11545 /* If the user told us to continue until a specified location,
11546 we don't specify a frame at which we need to stop. */
11547 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11548 null_frame_id, bp_until);
11549 else
11550 /* Otherwise, specify the selected frame, because we want to stop
11551 only at the very same frame. */
11552 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11553 stack_frame_id, bp_until);
11554 make_cleanup_delete_breakpoint (breakpoint);
11555
11556 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11557
11558 /* If we are running asynchronously, and proceed call above has
11559 actually managed to start the target, arrange for breakpoints to
11560 be deleted when the target stops. Otherwise, we're already
11561 stopped and delete breakpoints via cleanup chain. */
11562
11563 if (target_can_async_p () && is_running (inferior_ptid))
11564 {
11565 struct until_break_command_continuation_args *args;
11566 args = xmalloc (sizeof (*args));
11567
11568 args->breakpoint = breakpoint;
11569 args->breakpoint2 = breakpoint2;
11570 args->thread_num = thread;
11571
11572 discard_cleanups (old_chain);
11573 add_continuation (inferior_thread (),
11574 until_break_command_continuation, args,
11575 xfree);
11576 }
11577 else
11578 do_cleanups (old_chain);
11579 }
11580
11581 /* This function attempts to parse an optional "if <cond>" clause
11582 from the arg string. If one is not found, it returns NULL.
11583
11584 Else, it returns a pointer to the condition string. (It does not
11585 attempt to evaluate the string against a particular block.) And,
11586 it updates arg to point to the first character following the parsed
11587 if clause in the arg string. */
11588
11589 char *
11590 ep_parse_optional_if_clause (char **arg)
11591 {
11592 char *cond_string;
11593
11594 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11595 return NULL;
11596
11597 /* Skip the "if" keyword. */
11598 (*arg) += 2;
11599
11600 /* Skip any extra leading whitespace, and record the start of the
11601 condition string. */
11602 *arg = skip_spaces (*arg);
11603 cond_string = *arg;
11604
11605 /* Assume that the condition occupies the remainder of the arg
11606 string. */
11607 (*arg) += strlen (cond_string);
11608
11609 return cond_string;
11610 }
11611
11612 /* Commands to deal with catching events, such as signals, exceptions,
11613 process start/exit, etc. */
11614
11615 typedef enum
11616 {
11617 catch_fork_temporary, catch_vfork_temporary,
11618 catch_fork_permanent, catch_vfork_permanent
11619 }
11620 catch_fork_kind;
11621
11622 static void
11623 catch_fork_command_1 (char *arg, int from_tty,
11624 struct cmd_list_element *command)
11625 {
11626 struct gdbarch *gdbarch = get_current_arch ();
11627 char *cond_string = NULL;
11628 catch_fork_kind fork_kind;
11629 int tempflag;
11630
11631 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11632 tempflag = (fork_kind == catch_fork_temporary
11633 || fork_kind == catch_vfork_temporary);
11634
11635 if (!arg)
11636 arg = "";
11637 arg = skip_spaces (arg);
11638
11639 /* The allowed syntax is:
11640 catch [v]fork
11641 catch [v]fork if <cond>
11642
11643 First, check if there's an if clause. */
11644 cond_string = ep_parse_optional_if_clause (&arg);
11645
11646 if ((*arg != '\0') && !isspace (*arg))
11647 error (_("Junk at end of arguments."));
11648
11649 /* If this target supports it, create a fork or vfork catchpoint
11650 and enable reporting of such events. */
11651 switch (fork_kind)
11652 {
11653 case catch_fork_temporary:
11654 case catch_fork_permanent:
11655 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11656 &catch_fork_breakpoint_ops);
11657 break;
11658 case catch_vfork_temporary:
11659 case catch_vfork_permanent:
11660 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11661 &catch_vfork_breakpoint_ops);
11662 break;
11663 default:
11664 error (_("unsupported or unknown fork kind; cannot catch it"));
11665 break;
11666 }
11667 }
11668
11669 static void
11670 catch_exec_command_1 (char *arg, int from_tty,
11671 struct cmd_list_element *command)
11672 {
11673 struct exec_catchpoint *c;
11674 struct gdbarch *gdbarch = get_current_arch ();
11675 int tempflag;
11676 char *cond_string = NULL;
11677
11678 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11679
11680 if (!arg)
11681 arg = "";
11682 arg = skip_spaces (arg);
11683
11684 /* The allowed syntax is:
11685 catch exec
11686 catch exec if <cond>
11687
11688 First, check if there's an if clause. */
11689 cond_string = ep_parse_optional_if_clause (&arg);
11690
11691 if ((*arg != '\0') && !isspace (*arg))
11692 error (_("Junk at end of arguments."));
11693
11694 c = XNEW (struct exec_catchpoint);
11695 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11696 &catch_exec_breakpoint_ops);
11697 c->exec_pathname = NULL;
11698
11699 install_breakpoint (0, &c->base, 1);
11700 }
11701
11702 void
11703 init_ada_exception_breakpoint (struct breakpoint *b,
11704 struct gdbarch *gdbarch,
11705 struct symtab_and_line sal,
11706 char *addr_string,
11707 const struct breakpoint_ops *ops,
11708 int tempflag,
11709 int enabled,
11710 int from_tty)
11711 {
11712 if (from_tty)
11713 {
11714 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11715 if (!loc_gdbarch)
11716 loc_gdbarch = gdbarch;
11717
11718 describe_other_breakpoints (loc_gdbarch,
11719 sal.pspace, sal.pc, sal.section, -1);
11720 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11721 version for exception catchpoints, because two catchpoints
11722 used for different exception names will use the same address.
11723 In this case, a "breakpoint ... also set at..." warning is
11724 unproductive. Besides, the warning phrasing is also a bit
11725 inappropriate, we should use the word catchpoint, and tell
11726 the user what type of catchpoint it is. The above is good
11727 enough for now, though. */
11728 }
11729
11730 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11731
11732 b->enable_state = enabled ? bp_enabled : bp_disabled;
11733 b->disposition = tempflag ? disp_del : disp_donttouch;
11734 b->addr_string = addr_string;
11735 b->language = language_ada;
11736 }
11737
11738 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11739 filter list, or NULL if no filtering is required. */
11740 static VEC(int) *
11741 catch_syscall_split_args (char *arg)
11742 {
11743 VEC(int) *result = NULL;
11744 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11745
11746 while (*arg != '\0')
11747 {
11748 int i, syscall_number;
11749 char *endptr;
11750 char cur_name[128];
11751 struct syscall s;
11752
11753 /* Skip whitespace. */
11754 arg = skip_spaces (arg);
11755
11756 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11757 cur_name[i] = arg[i];
11758 cur_name[i] = '\0';
11759 arg += i;
11760
11761 /* Check if the user provided a syscall name or a number. */
11762 syscall_number = (int) strtol (cur_name, &endptr, 0);
11763 if (*endptr == '\0')
11764 get_syscall_by_number (syscall_number, &s);
11765 else
11766 {
11767 /* We have a name. Let's check if it's valid and convert it
11768 to a number. */
11769 get_syscall_by_name (cur_name, &s);
11770
11771 if (s.number == UNKNOWN_SYSCALL)
11772 /* Here we have to issue an error instead of a warning,
11773 because GDB cannot do anything useful if there's no
11774 syscall number to be caught. */
11775 error (_("Unknown syscall name '%s'."), cur_name);
11776 }
11777
11778 /* Ok, it's valid. */
11779 VEC_safe_push (int, result, s.number);
11780 }
11781
11782 discard_cleanups (cleanup);
11783 return result;
11784 }
11785
11786 /* Implement the "catch syscall" command. */
11787
11788 static void
11789 catch_syscall_command_1 (char *arg, int from_tty,
11790 struct cmd_list_element *command)
11791 {
11792 int tempflag;
11793 VEC(int) *filter;
11794 struct syscall s;
11795 struct gdbarch *gdbarch = get_current_arch ();
11796
11797 /* Checking if the feature if supported. */
11798 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11799 error (_("The feature 'catch syscall' is not supported on \
11800 this architecture yet."));
11801
11802 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11803
11804 arg = skip_spaces (arg);
11805
11806 /* We need to do this first "dummy" translation in order
11807 to get the syscall XML file loaded or, most important,
11808 to display a warning to the user if there's no XML file
11809 for his/her architecture. */
11810 get_syscall_by_number (0, &s);
11811
11812 /* The allowed syntax is:
11813 catch syscall
11814 catch syscall <name | number> [<name | number> ... <name | number>]
11815
11816 Let's check if there's a syscall name. */
11817
11818 if (arg != NULL)
11819 filter = catch_syscall_split_args (arg);
11820 else
11821 filter = NULL;
11822
11823 create_syscall_event_catchpoint (tempflag, filter,
11824 &catch_syscall_breakpoint_ops);
11825 }
11826
11827 static void
11828 catch_command (char *arg, int from_tty)
11829 {
11830 error (_("Catch requires an event name."));
11831 }
11832 \f
11833
11834 static void
11835 tcatch_command (char *arg, int from_tty)
11836 {
11837 error (_("Catch requires an event name."));
11838 }
11839
11840 /* A qsort comparison function that sorts breakpoints in order. */
11841
11842 static int
11843 compare_breakpoints (const void *a, const void *b)
11844 {
11845 const breakpoint_p *ba = a;
11846 uintptr_t ua = (uintptr_t) *ba;
11847 const breakpoint_p *bb = b;
11848 uintptr_t ub = (uintptr_t) *bb;
11849
11850 if ((*ba)->number < (*bb)->number)
11851 return -1;
11852 else if ((*ba)->number > (*bb)->number)
11853 return 1;
11854
11855 /* Now sort by address, in case we see, e..g, two breakpoints with
11856 the number 0. */
11857 if (ua < ub)
11858 return -1;
11859 return ua > ub ? 1 : 0;
11860 }
11861
11862 /* Delete breakpoints by address or line. */
11863
11864 static void
11865 clear_command (char *arg, int from_tty)
11866 {
11867 struct breakpoint *b, *prev;
11868 VEC(breakpoint_p) *found = 0;
11869 int ix;
11870 int default_match;
11871 struct symtabs_and_lines sals;
11872 struct symtab_and_line sal;
11873 int i;
11874 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11875
11876 if (arg)
11877 {
11878 sals = decode_line_with_current_source (arg,
11879 (DECODE_LINE_FUNFIRSTLINE
11880 | DECODE_LINE_LIST_MODE));
11881 make_cleanup (xfree, sals.sals);
11882 default_match = 0;
11883 }
11884 else
11885 {
11886 sals.sals = (struct symtab_and_line *)
11887 xmalloc (sizeof (struct symtab_and_line));
11888 make_cleanup (xfree, sals.sals);
11889 init_sal (&sal); /* Initialize to zeroes. */
11890
11891 /* Set sal's line, symtab, pc, and pspace to the values
11892 corresponding to the last call to print_frame_info. If the
11893 codepoint is not valid, this will set all the fields to 0. */
11894 get_last_displayed_sal (&sal);
11895 if (sal.symtab == 0)
11896 error (_("No source file specified."));
11897
11898 sals.sals[0] = sal;
11899 sals.nelts = 1;
11900
11901 default_match = 1;
11902 }
11903
11904 /* We don't call resolve_sal_pc here. That's not as bad as it
11905 seems, because all existing breakpoints typically have both
11906 file/line and pc set. So, if clear is given file/line, we can
11907 match this to existing breakpoint without obtaining pc at all.
11908
11909 We only support clearing given the address explicitly
11910 present in breakpoint table. Say, we've set breakpoint
11911 at file:line. There were several PC values for that file:line,
11912 due to optimization, all in one block.
11913
11914 We've picked one PC value. If "clear" is issued with another
11915 PC corresponding to the same file:line, the breakpoint won't
11916 be cleared. We probably can still clear the breakpoint, but
11917 since the other PC value is never presented to user, user
11918 can only find it by guessing, and it does not seem important
11919 to support that. */
11920
11921 /* For each line spec given, delete bps which correspond to it. Do
11922 it in two passes, solely to preserve the current behavior that
11923 from_tty is forced true if we delete more than one
11924 breakpoint. */
11925
11926 found = NULL;
11927 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11928 for (i = 0; i < sals.nelts; i++)
11929 {
11930 const char *sal_fullname;
11931
11932 /* If exact pc given, clear bpts at that pc.
11933 If line given (pc == 0), clear all bpts on specified line.
11934 If defaulting, clear all bpts on default line
11935 or at default pc.
11936
11937 defaulting sal.pc != 0 tests to do
11938
11939 0 1 pc
11940 1 1 pc _and_ line
11941 0 0 line
11942 1 0 <can't happen> */
11943
11944 sal = sals.sals[i];
11945 sal_fullname = (sal.symtab == NULL
11946 ? NULL : symtab_to_fullname (sal.symtab));
11947
11948 /* Find all matching breakpoints and add them to 'found'. */
11949 ALL_BREAKPOINTS (b)
11950 {
11951 int match = 0;
11952 /* Are we going to delete b? */
11953 if (b->type != bp_none && !is_watchpoint (b))
11954 {
11955 struct bp_location *loc = b->loc;
11956 for (; loc; loc = loc->next)
11957 {
11958 /* If the user specified file:line, don't allow a PC
11959 match. This matches historical gdb behavior. */
11960 int pc_match = (!sal.explicit_line
11961 && sal.pc
11962 && (loc->pspace == sal.pspace)
11963 && (loc->address == sal.pc)
11964 && (!section_is_overlay (loc->section)
11965 || loc->section == sal.section));
11966 int line_match = 0;
11967
11968 if ((default_match || sal.explicit_line)
11969 && loc->symtab != NULL
11970 && sal_fullname != NULL
11971 && sal.pspace == loc->pspace
11972 && loc->line_number == sal.line
11973 && filename_cmp (symtab_to_fullname (loc->symtab),
11974 sal_fullname) == 0)
11975 line_match = 1;
11976
11977 if (pc_match || line_match)
11978 {
11979 match = 1;
11980 break;
11981 }
11982 }
11983 }
11984
11985 if (match)
11986 VEC_safe_push(breakpoint_p, found, b);
11987 }
11988 }
11989
11990 /* Now go thru the 'found' chain and delete them. */
11991 if (VEC_empty(breakpoint_p, found))
11992 {
11993 if (arg)
11994 error (_("No breakpoint at %s."), arg);
11995 else
11996 error (_("No breakpoint at this line."));
11997 }
11998
11999 /* Remove duplicates from the vec. */
12000 qsort (VEC_address (breakpoint_p, found),
12001 VEC_length (breakpoint_p, found),
12002 sizeof (breakpoint_p),
12003 compare_breakpoints);
12004 prev = VEC_index (breakpoint_p, found, 0);
12005 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12006 {
12007 if (b == prev)
12008 {
12009 VEC_ordered_remove (breakpoint_p, found, ix);
12010 --ix;
12011 }
12012 }
12013
12014 if (VEC_length(breakpoint_p, found) > 1)
12015 from_tty = 1; /* Always report if deleted more than one. */
12016 if (from_tty)
12017 {
12018 if (VEC_length(breakpoint_p, found) == 1)
12019 printf_unfiltered (_("Deleted breakpoint "));
12020 else
12021 printf_unfiltered (_("Deleted breakpoints "));
12022 }
12023
12024 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12025 {
12026 if (from_tty)
12027 printf_unfiltered ("%d ", b->number);
12028 delete_breakpoint (b);
12029 }
12030 if (from_tty)
12031 putchar_unfiltered ('\n');
12032
12033 do_cleanups (cleanups);
12034 }
12035 \f
12036 /* Delete breakpoint in BS if they are `delete' breakpoints and
12037 all breakpoints that are marked for deletion, whether hit or not.
12038 This is called after any breakpoint is hit, or after errors. */
12039
12040 void
12041 breakpoint_auto_delete (bpstat bs)
12042 {
12043 struct breakpoint *b, *b_tmp;
12044
12045 for (; bs; bs = bs->next)
12046 if (bs->breakpoint_at
12047 && bs->breakpoint_at->disposition == disp_del
12048 && bs->stop)
12049 delete_breakpoint (bs->breakpoint_at);
12050
12051 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12052 {
12053 if (b->disposition == disp_del_at_next_stop)
12054 delete_breakpoint (b);
12055 }
12056 }
12057
12058 /* A comparison function for bp_location AP and BP being interfaced to
12059 qsort. Sort elements primarily by their ADDRESS (no matter what
12060 does breakpoint_address_is_meaningful say for its OWNER),
12061 secondarily by ordering first bp_permanent OWNERed elements and
12062 terciarily just ensuring the array is sorted stable way despite
12063 qsort being an unstable algorithm. */
12064
12065 static int
12066 bp_location_compare (const void *ap, const void *bp)
12067 {
12068 struct bp_location *a = *(void **) ap;
12069 struct bp_location *b = *(void **) bp;
12070 /* A and B come from existing breakpoints having non-NULL OWNER. */
12071 int a_perm = a->owner->enable_state == bp_permanent;
12072 int b_perm = b->owner->enable_state == bp_permanent;
12073
12074 if (a->address != b->address)
12075 return (a->address > b->address) - (a->address < b->address);
12076
12077 /* Sort locations at the same address by their pspace number, keeping
12078 locations of the same inferior (in a multi-inferior environment)
12079 grouped. */
12080
12081 if (a->pspace->num != b->pspace->num)
12082 return ((a->pspace->num > b->pspace->num)
12083 - (a->pspace->num < b->pspace->num));
12084
12085 /* Sort permanent breakpoints first. */
12086 if (a_perm != b_perm)
12087 return (a_perm < b_perm) - (a_perm > b_perm);
12088
12089 /* Make the internal GDB representation stable across GDB runs
12090 where A and B memory inside GDB can differ. Breakpoint locations of
12091 the same type at the same address can be sorted in arbitrary order. */
12092
12093 if (a->owner->number != b->owner->number)
12094 return ((a->owner->number > b->owner->number)
12095 - (a->owner->number < b->owner->number));
12096
12097 return (a > b) - (a < b);
12098 }
12099
12100 /* Set bp_location_placed_address_before_address_max and
12101 bp_location_shadow_len_after_address_max according to the current
12102 content of the bp_location array. */
12103
12104 static void
12105 bp_location_target_extensions_update (void)
12106 {
12107 struct bp_location *bl, **blp_tmp;
12108
12109 bp_location_placed_address_before_address_max = 0;
12110 bp_location_shadow_len_after_address_max = 0;
12111
12112 ALL_BP_LOCATIONS (bl, blp_tmp)
12113 {
12114 CORE_ADDR start, end, addr;
12115
12116 if (!bp_location_has_shadow (bl))
12117 continue;
12118
12119 start = bl->target_info.placed_address;
12120 end = start + bl->target_info.shadow_len;
12121
12122 gdb_assert (bl->address >= start);
12123 addr = bl->address - start;
12124 if (addr > bp_location_placed_address_before_address_max)
12125 bp_location_placed_address_before_address_max = addr;
12126
12127 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12128
12129 gdb_assert (bl->address < end);
12130 addr = end - bl->address;
12131 if (addr > bp_location_shadow_len_after_address_max)
12132 bp_location_shadow_len_after_address_max = addr;
12133 }
12134 }
12135
12136 /* Download tracepoint locations if they haven't been. */
12137
12138 static void
12139 download_tracepoint_locations (void)
12140 {
12141 struct breakpoint *b;
12142 struct cleanup *old_chain;
12143
12144 if (!target_can_download_tracepoint ())
12145 return;
12146
12147 old_chain = save_current_space_and_thread ();
12148
12149 ALL_TRACEPOINTS (b)
12150 {
12151 struct bp_location *bl;
12152 struct tracepoint *t;
12153 int bp_location_downloaded = 0;
12154
12155 if ((b->type == bp_fast_tracepoint
12156 ? !may_insert_fast_tracepoints
12157 : !may_insert_tracepoints))
12158 continue;
12159
12160 for (bl = b->loc; bl; bl = bl->next)
12161 {
12162 /* In tracepoint, locations are _never_ duplicated, so
12163 should_be_inserted is equivalent to
12164 unduplicated_should_be_inserted. */
12165 if (!should_be_inserted (bl) || bl->inserted)
12166 continue;
12167
12168 switch_to_program_space_and_thread (bl->pspace);
12169
12170 target_download_tracepoint (bl);
12171
12172 bl->inserted = 1;
12173 bp_location_downloaded = 1;
12174 }
12175 t = (struct tracepoint *) b;
12176 t->number_on_target = b->number;
12177 if (bp_location_downloaded)
12178 observer_notify_breakpoint_modified (b);
12179 }
12180
12181 do_cleanups (old_chain);
12182 }
12183
12184 /* Swap the insertion/duplication state between two locations. */
12185
12186 static void
12187 swap_insertion (struct bp_location *left, struct bp_location *right)
12188 {
12189 const int left_inserted = left->inserted;
12190 const int left_duplicate = left->duplicate;
12191 const int left_needs_update = left->needs_update;
12192 const struct bp_target_info left_target_info = left->target_info;
12193
12194 /* Locations of tracepoints can never be duplicated. */
12195 if (is_tracepoint (left->owner))
12196 gdb_assert (!left->duplicate);
12197 if (is_tracepoint (right->owner))
12198 gdb_assert (!right->duplicate);
12199
12200 left->inserted = right->inserted;
12201 left->duplicate = right->duplicate;
12202 left->needs_update = right->needs_update;
12203 left->target_info = right->target_info;
12204 right->inserted = left_inserted;
12205 right->duplicate = left_duplicate;
12206 right->needs_update = left_needs_update;
12207 right->target_info = left_target_info;
12208 }
12209
12210 /* Force the re-insertion of the locations at ADDRESS. This is called
12211 once a new/deleted/modified duplicate location is found and we are evaluating
12212 conditions on the target's side. Such conditions need to be updated on
12213 the target. */
12214
12215 static void
12216 force_breakpoint_reinsertion (struct bp_location *bl)
12217 {
12218 struct bp_location **locp = NULL, **loc2p;
12219 struct bp_location *loc;
12220 CORE_ADDR address = 0;
12221 int pspace_num;
12222
12223 address = bl->address;
12224 pspace_num = bl->pspace->num;
12225
12226 /* This is only meaningful if the target is
12227 evaluating conditions and if the user has
12228 opted for condition evaluation on the target's
12229 side. */
12230 if (gdb_evaluates_breakpoint_condition_p ()
12231 || !target_supports_evaluation_of_breakpoint_conditions ())
12232 return;
12233
12234 /* Flag all breakpoint locations with this address and
12235 the same program space as the location
12236 as "its condition has changed". We need to
12237 update the conditions on the target's side. */
12238 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12239 {
12240 loc = *loc2p;
12241
12242 if (!is_breakpoint (loc->owner)
12243 || pspace_num != loc->pspace->num)
12244 continue;
12245
12246 /* Flag the location appropriately. We use a different state to
12247 let everyone know that we already updated the set of locations
12248 with addr bl->address and program space bl->pspace. This is so
12249 we don't have to keep calling these functions just to mark locations
12250 that have already been marked. */
12251 loc->condition_changed = condition_updated;
12252
12253 /* Free the agent expression bytecode as well. We will compute
12254 it later on. */
12255 if (loc->cond_bytecode)
12256 {
12257 free_agent_expr (loc->cond_bytecode);
12258 loc->cond_bytecode = NULL;
12259 }
12260 }
12261 }
12262
12263 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12264 into the inferior, only remove already-inserted locations that no
12265 longer should be inserted. Functions that delete a breakpoint or
12266 breakpoints should pass false, so that deleting a breakpoint
12267 doesn't have the side effect of inserting the locations of other
12268 breakpoints that are marked not-inserted, but should_be_inserted
12269 returns true on them.
12270
12271 This behaviour is useful is situations close to tear-down -- e.g.,
12272 after an exec, while the target still has execution, but breakpoint
12273 shadows of the previous executable image should *NOT* be restored
12274 to the new image; or before detaching, where the target still has
12275 execution and wants to delete breakpoints from GDB's lists, and all
12276 breakpoints had already been removed from the inferior. */
12277
12278 static void
12279 update_global_location_list (int should_insert)
12280 {
12281 struct breakpoint *b;
12282 struct bp_location **locp, *loc;
12283 struct cleanup *cleanups;
12284 /* Last breakpoint location address that was marked for update. */
12285 CORE_ADDR last_addr = 0;
12286 /* Last breakpoint location program space that was marked for update. */
12287 int last_pspace_num = -1;
12288
12289 /* Used in the duplicates detection below. When iterating over all
12290 bp_locations, points to the first bp_location of a given address.
12291 Breakpoints and watchpoints of different types are never
12292 duplicates of each other. Keep one pointer for each type of
12293 breakpoint/watchpoint, so we only need to loop over all locations
12294 once. */
12295 struct bp_location *bp_loc_first; /* breakpoint */
12296 struct bp_location *wp_loc_first; /* hardware watchpoint */
12297 struct bp_location *awp_loc_first; /* access watchpoint */
12298 struct bp_location *rwp_loc_first; /* read watchpoint */
12299
12300 /* Saved former bp_location array which we compare against the newly
12301 built bp_location from the current state of ALL_BREAKPOINTS. */
12302 struct bp_location **old_location, **old_locp;
12303 unsigned old_location_count;
12304
12305 old_location = bp_location;
12306 old_location_count = bp_location_count;
12307 bp_location = NULL;
12308 bp_location_count = 0;
12309 cleanups = make_cleanup (xfree, old_location);
12310
12311 ALL_BREAKPOINTS (b)
12312 for (loc = b->loc; loc; loc = loc->next)
12313 bp_location_count++;
12314
12315 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12316 locp = bp_location;
12317 ALL_BREAKPOINTS (b)
12318 for (loc = b->loc; loc; loc = loc->next)
12319 *locp++ = loc;
12320 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12321 bp_location_compare);
12322
12323 bp_location_target_extensions_update ();
12324
12325 /* Identify bp_location instances that are no longer present in the
12326 new list, and therefore should be freed. Note that it's not
12327 necessary that those locations should be removed from inferior --
12328 if there's another location at the same address (previously
12329 marked as duplicate), we don't need to remove/insert the
12330 location.
12331
12332 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12333 and former bp_location array state respectively. */
12334
12335 locp = bp_location;
12336 for (old_locp = old_location; old_locp < old_location + old_location_count;
12337 old_locp++)
12338 {
12339 struct bp_location *old_loc = *old_locp;
12340 struct bp_location **loc2p;
12341
12342 /* Tells if 'old_loc' is found among the new locations. If
12343 not, we have to free it. */
12344 int found_object = 0;
12345 /* Tells if the location should remain inserted in the target. */
12346 int keep_in_target = 0;
12347 int removed = 0;
12348
12349 /* Skip LOCP entries which will definitely never be needed.
12350 Stop either at or being the one matching OLD_LOC. */
12351 while (locp < bp_location + bp_location_count
12352 && (*locp)->address < old_loc->address)
12353 locp++;
12354
12355 for (loc2p = locp;
12356 (loc2p < bp_location + bp_location_count
12357 && (*loc2p)->address == old_loc->address);
12358 loc2p++)
12359 {
12360 /* Check if this is a new/duplicated location or a duplicated
12361 location that had its condition modified. If so, we want to send
12362 its condition to the target if evaluation of conditions is taking
12363 place there. */
12364 if ((*loc2p)->condition_changed == condition_modified
12365 && (last_addr != old_loc->address
12366 || last_pspace_num != old_loc->pspace->num))
12367 {
12368 force_breakpoint_reinsertion (*loc2p);
12369 last_pspace_num = old_loc->pspace->num;
12370 }
12371
12372 if (*loc2p == old_loc)
12373 found_object = 1;
12374 }
12375
12376 /* We have already handled this address, update it so that we don't
12377 have to go through updates again. */
12378 last_addr = old_loc->address;
12379
12380 /* Target-side condition evaluation: Handle deleted locations. */
12381 if (!found_object)
12382 force_breakpoint_reinsertion (old_loc);
12383
12384 /* If this location is no longer present, and inserted, look if
12385 there's maybe a new location at the same address. If so,
12386 mark that one inserted, and don't remove this one. This is
12387 needed so that we don't have a time window where a breakpoint
12388 at certain location is not inserted. */
12389
12390 if (old_loc->inserted)
12391 {
12392 /* If the location is inserted now, we might have to remove
12393 it. */
12394
12395 if (found_object && should_be_inserted (old_loc))
12396 {
12397 /* The location is still present in the location list,
12398 and still should be inserted. Don't do anything. */
12399 keep_in_target = 1;
12400 }
12401 else
12402 {
12403 /* This location still exists, but it won't be kept in the
12404 target since it may have been disabled. We proceed to
12405 remove its target-side condition. */
12406
12407 /* The location is either no longer present, or got
12408 disabled. See if there's another location at the
12409 same address, in which case we don't need to remove
12410 this one from the target. */
12411
12412 /* OLD_LOC comes from existing struct breakpoint. */
12413 if (breakpoint_address_is_meaningful (old_loc->owner))
12414 {
12415 for (loc2p = locp;
12416 (loc2p < bp_location + bp_location_count
12417 && (*loc2p)->address == old_loc->address);
12418 loc2p++)
12419 {
12420 struct bp_location *loc2 = *loc2p;
12421
12422 if (breakpoint_locations_match (loc2, old_loc))
12423 {
12424 /* Read watchpoint locations are switched to
12425 access watchpoints, if the former are not
12426 supported, but the latter are. */
12427 if (is_hardware_watchpoint (old_loc->owner))
12428 {
12429 gdb_assert (is_hardware_watchpoint (loc2->owner));
12430 loc2->watchpoint_type = old_loc->watchpoint_type;
12431 }
12432
12433 /* loc2 is a duplicated location. We need to check
12434 if it should be inserted in case it will be
12435 unduplicated. */
12436 if (loc2 != old_loc
12437 && unduplicated_should_be_inserted (loc2))
12438 {
12439 swap_insertion (old_loc, loc2);
12440 keep_in_target = 1;
12441 break;
12442 }
12443 }
12444 }
12445 }
12446 }
12447
12448 if (!keep_in_target)
12449 {
12450 if (remove_breakpoint (old_loc, mark_uninserted))
12451 {
12452 /* This is just about all we can do. We could keep
12453 this location on the global list, and try to
12454 remove it next time, but there's no particular
12455 reason why we will succeed next time.
12456
12457 Note that at this point, old_loc->owner is still
12458 valid, as delete_breakpoint frees the breakpoint
12459 only after calling us. */
12460 printf_filtered (_("warning: Error removing "
12461 "breakpoint %d\n"),
12462 old_loc->owner->number);
12463 }
12464 removed = 1;
12465 }
12466 }
12467
12468 if (!found_object)
12469 {
12470 if (removed && non_stop
12471 && breakpoint_address_is_meaningful (old_loc->owner)
12472 && !is_hardware_watchpoint (old_loc->owner))
12473 {
12474 /* This location was removed from the target. In
12475 non-stop mode, a race condition is possible where
12476 we've removed a breakpoint, but stop events for that
12477 breakpoint are already queued and will arrive later.
12478 We apply an heuristic to be able to distinguish such
12479 SIGTRAPs from other random SIGTRAPs: we keep this
12480 breakpoint location for a bit, and will retire it
12481 after we see some number of events. The theory here
12482 is that reporting of events should, "on the average",
12483 be fair, so after a while we'll see events from all
12484 threads that have anything of interest, and no longer
12485 need to keep this breakpoint location around. We
12486 don't hold locations forever so to reduce chances of
12487 mistaking a non-breakpoint SIGTRAP for a breakpoint
12488 SIGTRAP.
12489
12490 The heuristic failing can be disastrous on
12491 decr_pc_after_break targets.
12492
12493 On decr_pc_after_break targets, like e.g., x86-linux,
12494 if we fail to recognize a late breakpoint SIGTRAP,
12495 because events_till_retirement has reached 0 too
12496 soon, we'll fail to do the PC adjustment, and report
12497 a random SIGTRAP to the user. When the user resumes
12498 the inferior, it will most likely immediately crash
12499 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12500 corrupted, because of being resumed e.g., in the
12501 middle of a multi-byte instruction, or skipped a
12502 one-byte instruction. This was actually seen happen
12503 on native x86-linux, and should be less rare on
12504 targets that do not support new thread events, like
12505 remote, due to the heuristic depending on
12506 thread_count.
12507
12508 Mistaking a random SIGTRAP for a breakpoint trap
12509 causes similar symptoms (PC adjustment applied when
12510 it shouldn't), but then again, playing with SIGTRAPs
12511 behind the debugger's back is asking for trouble.
12512
12513 Since hardware watchpoint traps are always
12514 distinguishable from other traps, so we don't need to
12515 apply keep hardware watchpoint moribund locations
12516 around. We simply always ignore hardware watchpoint
12517 traps we can no longer explain. */
12518
12519 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12520 old_loc->owner = NULL;
12521
12522 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12523 }
12524 else
12525 {
12526 old_loc->owner = NULL;
12527 decref_bp_location (&old_loc);
12528 }
12529 }
12530 }
12531
12532 /* Rescan breakpoints at the same address and section, marking the
12533 first one as "first" and any others as "duplicates". This is so
12534 that the bpt instruction is only inserted once. If we have a
12535 permanent breakpoint at the same place as BPT, make that one the
12536 official one, and the rest as duplicates. Permanent breakpoints
12537 are sorted first for the same address.
12538
12539 Do the same for hardware watchpoints, but also considering the
12540 watchpoint's type (regular/access/read) and length. */
12541
12542 bp_loc_first = NULL;
12543 wp_loc_first = NULL;
12544 awp_loc_first = NULL;
12545 rwp_loc_first = NULL;
12546 ALL_BP_LOCATIONS (loc, locp)
12547 {
12548 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12549 non-NULL. */
12550 struct bp_location **loc_first_p;
12551 b = loc->owner;
12552
12553 if (!unduplicated_should_be_inserted (loc)
12554 || !breakpoint_address_is_meaningful (b)
12555 /* Don't detect duplicate for tracepoint locations because they are
12556 never duplicated. See the comments in field `duplicate' of
12557 `struct bp_location'. */
12558 || is_tracepoint (b))
12559 {
12560 /* Clear the condition modification flag. */
12561 loc->condition_changed = condition_unchanged;
12562 continue;
12563 }
12564
12565 /* Permanent breakpoint should always be inserted. */
12566 if (b->enable_state == bp_permanent && ! loc->inserted)
12567 internal_error (__FILE__, __LINE__,
12568 _("allegedly permanent breakpoint is not "
12569 "actually inserted"));
12570
12571 if (b->type == bp_hardware_watchpoint)
12572 loc_first_p = &wp_loc_first;
12573 else if (b->type == bp_read_watchpoint)
12574 loc_first_p = &rwp_loc_first;
12575 else if (b->type == bp_access_watchpoint)
12576 loc_first_p = &awp_loc_first;
12577 else
12578 loc_first_p = &bp_loc_first;
12579
12580 if (*loc_first_p == NULL
12581 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12582 || !breakpoint_locations_match (loc, *loc_first_p))
12583 {
12584 *loc_first_p = loc;
12585 loc->duplicate = 0;
12586
12587 if (is_breakpoint (loc->owner) && loc->condition_changed)
12588 {
12589 loc->needs_update = 1;
12590 /* Clear the condition modification flag. */
12591 loc->condition_changed = condition_unchanged;
12592 }
12593 continue;
12594 }
12595
12596
12597 /* This and the above ensure the invariant that the first location
12598 is not duplicated, and is the inserted one.
12599 All following are marked as duplicated, and are not inserted. */
12600 if (loc->inserted)
12601 swap_insertion (loc, *loc_first_p);
12602 loc->duplicate = 1;
12603
12604 /* Clear the condition modification flag. */
12605 loc->condition_changed = condition_unchanged;
12606
12607 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12608 && b->enable_state != bp_permanent)
12609 internal_error (__FILE__, __LINE__,
12610 _("another breakpoint was inserted on top of "
12611 "a permanent breakpoint"));
12612 }
12613
12614 if (breakpoints_always_inserted_mode ()
12615 && (have_live_inferiors ()
12616 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12617 {
12618 if (should_insert)
12619 insert_breakpoint_locations ();
12620 else
12621 {
12622 /* Though should_insert is false, we may need to update conditions
12623 on the target's side if it is evaluating such conditions. We
12624 only update conditions for locations that are marked
12625 "needs_update". */
12626 update_inserted_breakpoint_locations ();
12627 }
12628 }
12629
12630 if (should_insert)
12631 download_tracepoint_locations ();
12632
12633 do_cleanups (cleanups);
12634 }
12635
12636 void
12637 breakpoint_retire_moribund (void)
12638 {
12639 struct bp_location *loc;
12640 int ix;
12641
12642 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12643 if (--(loc->events_till_retirement) == 0)
12644 {
12645 decref_bp_location (&loc);
12646 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12647 --ix;
12648 }
12649 }
12650
12651 static void
12652 update_global_location_list_nothrow (int inserting)
12653 {
12654 volatile struct gdb_exception e;
12655
12656 TRY_CATCH (e, RETURN_MASK_ERROR)
12657 update_global_location_list (inserting);
12658 }
12659
12660 /* Clear BKP from a BPS. */
12661
12662 static void
12663 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12664 {
12665 bpstat bs;
12666
12667 for (bs = bps; bs; bs = bs->next)
12668 if (bs->breakpoint_at == bpt)
12669 {
12670 bs->breakpoint_at = NULL;
12671 bs->old_val = NULL;
12672 /* bs->commands will be freed later. */
12673 }
12674 }
12675
12676 /* Callback for iterate_over_threads. */
12677 static int
12678 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12679 {
12680 struct breakpoint *bpt = data;
12681
12682 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12683 return 0;
12684 }
12685
12686 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12687 callbacks. */
12688
12689 static void
12690 say_where (struct breakpoint *b)
12691 {
12692 struct value_print_options opts;
12693
12694 get_user_print_options (&opts);
12695
12696 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12697 single string. */
12698 if (b->loc == NULL)
12699 {
12700 printf_filtered (_(" (%s) pending."), b->addr_string);
12701 }
12702 else
12703 {
12704 if (opts.addressprint || b->loc->symtab == NULL)
12705 {
12706 printf_filtered (" at ");
12707 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12708 gdb_stdout);
12709 }
12710 if (b->loc->symtab != NULL)
12711 {
12712 /* If there is a single location, we can print the location
12713 more nicely. */
12714 if (b->loc->next == NULL)
12715 printf_filtered (": file %s, line %d.",
12716 symtab_to_filename_for_display (b->loc->symtab),
12717 b->loc->line_number);
12718 else
12719 /* This is not ideal, but each location may have a
12720 different file name, and this at least reflects the
12721 real situation somewhat. */
12722 printf_filtered (": %s.", b->addr_string);
12723 }
12724
12725 if (b->loc->next)
12726 {
12727 struct bp_location *loc = b->loc;
12728 int n = 0;
12729 for (; loc; loc = loc->next)
12730 ++n;
12731 printf_filtered (" (%d locations)", n);
12732 }
12733 }
12734 }
12735
12736 /* Default bp_location_ops methods. */
12737
12738 static void
12739 bp_location_dtor (struct bp_location *self)
12740 {
12741 xfree (self->cond);
12742 if (self->cond_bytecode)
12743 free_agent_expr (self->cond_bytecode);
12744 xfree (self->function_name);
12745 }
12746
12747 static const struct bp_location_ops bp_location_ops =
12748 {
12749 bp_location_dtor
12750 };
12751
12752 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12753 inherit from. */
12754
12755 static void
12756 base_breakpoint_dtor (struct breakpoint *self)
12757 {
12758 decref_counted_command_line (&self->commands);
12759 xfree (self->cond_string);
12760 xfree (self->extra_string);
12761 xfree (self->addr_string);
12762 xfree (self->filter);
12763 xfree (self->addr_string_range_end);
12764 }
12765
12766 static struct bp_location *
12767 base_breakpoint_allocate_location (struct breakpoint *self)
12768 {
12769 struct bp_location *loc;
12770
12771 loc = XNEW (struct bp_location);
12772 init_bp_location (loc, &bp_location_ops, self);
12773 return loc;
12774 }
12775
12776 static void
12777 base_breakpoint_re_set (struct breakpoint *b)
12778 {
12779 /* Nothing to re-set. */
12780 }
12781
12782 #define internal_error_pure_virtual_called() \
12783 gdb_assert_not_reached ("pure virtual function called")
12784
12785 static int
12786 base_breakpoint_insert_location (struct bp_location *bl)
12787 {
12788 internal_error_pure_virtual_called ();
12789 }
12790
12791 static int
12792 base_breakpoint_remove_location (struct bp_location *bl)
12793 {
12794 internal_error_pure_virtual_called ();
12795 }
12796
12797 static int
12798 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12799 struct address_space *aspace,
12800 CORE_ADDR bp_addr,
12801 const struct target_waitstatus *ws)
12802 {
12803 internal_error_pure_virtual_called ();
12804 }
12805
12806 static void
12807 base_breakpoint_check_status (bpstat bs)
12808 {
12809 /* Always stop. */
12810 }
12811
12812 /* A "works_in_software_mode" breakpoint_ops method that just internal
12813 errors. */
12814
12815 static int
12816 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12817 {
12818 internal_error_pure_virtual_called ();
12819 }
12820
12821 /* A "resources_needed" breakpoint_ops method that just internal
12822 errors. */
12823
12824 static int
12825 base_breakpoint_resources_needed (const struct bp_location *bl)
12826 {
12827 internal_error_pure_virtual_called ();
12828 }
12829
12830 static enum print_stop_action
12831 base_breakpoint_print_it (bpstat bs)
12832 {
12833 internal_error_pure_virtual_called ();
12834 }
12835
12836 static void
12837 base_breakpoint_print_one_detail (const struct breakpoint *self,
12838 struct ui_out *uiout)
12839 {
12840 /* nothing */
12841 }
12842
12843 static void
12844 base_breakpoint_print_mention (struct breakpoint *b)
12845 {
12846 internal_error_pure_virtual_called ();
12847 }
12848
12849 static void
12850 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12851 {
12852 internal_error_pure_virtual_called ();
12853 }
12854
12855 static void
12856 base_breakpoint_create_sals_from_address (char **arg,
12857 struct linespec_result *canonical,
12858 enum bptype type_wanted,
12859 char *addr_start,
12860 char **copy_arg)
12861 {
12862 internal_error_pure_virtual_called ();
12863 }
12864
12865 static void
12866 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12867 struct linespec_result *c,
12868 char *cond_string,
12869 char *extra_string,
12870 enum bptype type_wanted,
12871 enum bpdisp disposition,
12872 int thread,
12873 int task, int ignore_count,
12874 const struct breakpoint_ops *o,
12875 int from_tty, int enabled,
12876 int internal, unsigned flags)
12877 {
12878 internal_error_pure_virtual_called ();
12879 }
12880
12881 static void
12882 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12883 struct symtabs_and_lines *sals)
12884 {
12885 internal_error_pure_virtual_called ();
12886 }
12887
12888 /* The default 'explains_signal' method. */
12889
12890 static enum bpstat_signal_value
12891 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12892 {
12893 return BPSTAT_SIGNAL_PASS;
12894 }
12895
12896 /* The default "after_condition_true" method. */
12897
12898 static void
12899 base_breakpoint_after_condition_true (struct bpstats *bs)
12900 {
12901 /* Nothing to do. */
12902 }
12903
12904 struct breakpoint_ops base_breakpoint_ops =
12905 {
12906 base_breakpoint_dtor,
12907 base_breakpoint_allocate_location,
12908 base_breakpoint_re_set,
12909 base_breakpoint_insert_location,
12910 base_breakpoint_remove_location,
12911 base_breakpoint_breakpoint_hit,
12912 base_breakpoint_check_status,
12913 base_breakpoint_resources_needed,
12914 base_breakpoint_works_in_software_mode,
12915 base_breakpoint_print_it,
12916 NULL,
12917 base_breakpoint_print_one_detail,
12918 base_breakpoint_print_mention,
12919 base_breakpoint_print_recreate,
12920 base_breakpoint_create_sals_from_address,
12921 base_breakpoint_create_breakpoints_sal,
12922 base_breakpoint_decode_linespec,
12923 base_breakpoint_explains_signal,
12924 base_breakpoint_after_condition_true,
12925 };
12926
12927 /* Default breakpoint_ops methods. */
12928
12929 static void
12930 bkpt_re_set (struct breakpoint *b)
12931 {
12932 /* FIXME: is this still reachable? */
12933 if (b->addr_string == NULL)
12934 {
12935 /* Anything without a string can't be re-set. */
12936 delete_breakpoint (b);
12937 return;
12938 }
12939
12940 breakpoint_re_set_default (b);
12941 }
12942
12943 static int
12944 bkpt_insert_location (struct bp_location *bl)
12945 {
12946 if (bl->loc_type == bp_loc_hardware_breakpoint)
12947 return target_insert_hw_breakpoint (bl->gdbarch,
12948 &bl->target_info);
12949 else
12950 return target_insert_breakpoint (bl->gdbarch,
12951 &bl->target_info);
12952 }
12953
12954 static int
12955 bkpt_remove_location (struct bp_location *bl)
12956 {
12957 if (bl->loc_type == bp_loc_hardware_breakpoint)
12958 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12959 else
12960 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12961 }
12962
12963 static int
12964 bkpt_breakpoint_hit (const struct bp_location *bl,
12965 struct address_space *aspace, CORE_ADDR bp_addr,
12966 const struct target_waitstatus *ws)
12967 {
12968 if (ws->kind != TARGET_WAITKIND_STOPPED
12969 || ws->value.sig != GDB_SIGNAL_TRAP)
12970 return 0;
12971
12972 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12973 aspace, bp_addr))
12974 return 0;
12975
12976 if (overlay_debugging /* unmapped overlay section */
12977 && section_is_overlay (bl->section)
12978 && !section_is_mapped (bl->section))
12979 return 0;
12980
12981 return 1;
12982 }
12983
12984 static int
12985 bkpt_resources_needed (const struct bp_location *bl)
12986 {
12987 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12988
12989 return 1;
12990 }
12991
12992 static enum print_stop_action
12993 bkpt_print_it (bpstat bs)
12994 {
12995 struct breakpoint *b;
12996 const struct bp_location *bl;
12997 int bp_temp;
12998 struct ui_out *uiout = current_uiout;
12999
13000 gdb_assert (bs->bp_location_at != NULL);
13001
13002 bl = bs->bp_location_at;
13003 b = bs->breakpoint_at;
13004
13005 bp_temp = b->disposition == disp_del;
13006 if (bl->address != bl->requested_address)
13007 breakpoint_adjustment_warning (bl->requested_address,
13008 bl->address,
13009 b->number, 1);
13010 annotate_breakpoint (b->number);
13011 if (bp_temp)
13012 ui_out_text (uiout, "\nTemporary breakpoint ");
13013 else
13014 ui_out_text (uiout, "\nBreakpoint ");
13015 if (ui_out_is_mi_like_p (uiout))
13016 {
13017 ui_out_field_string (uiout, "reason",
13018 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13019 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13020 }
13021 ui_out_field_int (uiout, "bkptno", b->number);
13022 ui_out_text (uiout, ", ");
13023
13024 return PRINT_SRC_AND_LOC;
13025 }
13026
13027 static void
13028 bkpt_print_mention (struct breakpoint *b)
13029 {
13030 if (ui_out_is_mi_like_p (current_uiout))
13031 return;
13032
13033 switch (b->type)
13034 {
13035 case bp_breakpoint:
13036 case bp_gnu_ifunc_resolver:
13037 if (b->disposition == disp_del)
13038 printf_filtered (_("Temporary breakpoint"));
13039 else
13040 printf_filtered (_("Breakpoint"));
13041 printf_filtered (_(" %d"), b->number);
13042 if (b->type == bp_gnu_ifunc_resolver)
13043 printf_filtered (_(" at gnu-indirect-function resolver"));
13044 break;
13045 case bp_hardware_breakpoint:
13046 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13047 break;
13048 case bp_dprintf:
13049 printf_filtered (_("Dprintf %d"), b->number);
13050 break;
13051 }
13052
13053 say_where (b);
13054 }
13055
13056 static void
13057 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13058 {
13059 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13060 fprintf_unfiltered (fp, "tbreak");
13061 else if (tp->type == bp_breakpoint)
13062 fprintf_unfiltered (fp, "break");
13063 else if (tp->type == bp_hardware_breakpoint
13064 && tp->disposition == disp_del)
13065 fprintf_unfiltered (fp, "thbreak");
13066 else if (tp->type == bp_hardware_breakpoint)
13067 fprintf_unfiltered (fp, "hbreak");
13068 else
13069 internal_error (__FILE__, __LINE__,
13070 _("unhandled breakpoint type %d"), (int) tp->type);
13071
13072 fprintf_unfiltered (fp, " %s", tp->addr_string);
13073 print_recreate_thread (tp, fp);
13074 }
13075
13076 static void
13077 bkpt_create_sals_from_address (char **arg,
13078 struct linespec_result *canonical,
13079 enum bptype type_wanted,
13080 char *addr_start, char **copy_arg)
13081 {
13082 create_sals_from_address_default (arg, canonical, type_wanted,
13083 addr_start, copy_arg);
13084 }
13085
13086 static void
13087 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13088 struct linespec_result *canonical,
13089 char *cond_string,
13090 char *extra_string,
13091 enum bptype type_wanted,
13092 enum bpdisp disposition,
13093 int thread,
13094 int task, int ignore_count,
13095 const struct breakpoint_ops *ops,
13096 int from_tty, int enabled,
13097 int internal, unsigned flags)
13098 {
13099 create_breakpoints_sal_default (gdbarch, canonical,
13100 cond_string, extra_string,
13101 type_wanted,
13102 disposition, thread, task,
13103 ignore_count, ops, from_tty,
13104 enabled, internal, flags);
13105 }
13106
13107 static void
13108 bkpt_decode_linespec (struct breakpoint *b, char **s,
13109 struct symtabs_and_lines *sals)
13110 {
13111 decode_linespec_default (b, s, sals);
13112 }
13113
13114 /* Virtual table for internal breakpoints. */
13115
13116 static void
13117 internal_bkpt_re_set (struct breakpoint *b)
13118 {
13119 switch (b->type)
13120 {
13121 /* Delete overlay event and longjmp master breakpoints; they
13122 will be reset later by breakpoint_re_set. */
13123 case bp_overlay_event:
13124 case bp_longjmp_master:
13125 case bp_std_terminate_master:
13126 case bp_exception_master:
13127 delete_breakpoint (b);
13128 break;
13129
13130 /* This breakpoint is special, it's set up when the inferior
13131 starts and we really don't want to touch it. */
13132 case bp_shlib_event:
13133
13134 /* Like bp_shlib_event, this breakpoint type is special. Once
13135 it is set up, we do not want to touch it. */
13136 case bp_thread_event:
13137 break;
13138 }
13139 }
13140
13141 static void
13142 internal_bkpt_check_status (bpstat bs)
13143 {
13144 if (bs->breakpoint_at->type == bp_shlib_event)
13145 {
13146 /* If requested, stop when the dynamic linker notifies GDB of
13147 events. This allows the user to get control and place
13148 breakpoints in initializer routines for dynamically loaded
13149 objects (among other things). */
13150 bs->stop = stop_on_solib_events;
13151 bs->print = stop_on_solib_events;
13152 }
13153 else
13154 bs->stop = 0;
13155 }
13156
13157 static enum print_stop_action
13158 internal_bkpt_print_it (bpstat bs)
13159 {
13160 struct breakpoint *b;
13161
13162 b = bs->breakpoint_at;
13163
13164 switch (b->type)
13165 {
13166 case bp_shlib_event:
13167 /* Did we stop because the user set the stop_on_solib_events
13168 variable? (If so, we report this as a generic, "Stopped due
13169 to shlib event" message.) */
13170 print_solib_event (0);
13171 break;
13172
13173 case bp_thread_event:
13174 /* Not sure how we will get here.
13175 GDB should not stop for these breakpoints. */
13176 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13177 break;
13178
13179 case bp_overlay_event:
13180 /* By analogy with the thread event, GDB should not stop for these. */
13181 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13182 break;
13183
13184 case bp_longjmp_master:
13185 /* These should never be enabled. */
13186 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13187 break;
13188
13189 case bp_std_terminate_master:
13190 /* These should never be enabled. */
13191 printf_filtered (_("std::terminate Master Breakpoint: "
13192 "gdb should not stop!\n"));
13193 break;
13194
13195 case bp_exception_master:
13196 /* These should never be enabled. */
13197 printf_filtered (_("Exception Master Breakpoint: "
13198 "gdb should not stop!\n"));
13199 break;
13200 }
13201
13202 return PRINT_NOTHING;
13203 }
13204
13205 static void
13206 internal_bkpt_print_mention (struct breakpoint *b)
13207 {
13208 /* Nothing to mention. These breakpoints are internal. */
13209 }
13210
13211 /* Virtual table for momentary breakpoints */
13212
13213 static void
13214 momentary_bkpt_re_set (struct breakpoint *b)
13215 {
13216 /* Keep temporary breakpoints, which can be encountered when we step
13217 over a dlopen call and solib_add is resetting the breakpoints.
13218 Otherwise these should have been blown away via the cleanup chain
13219 or by breakpoint_init_inferior when we rerun the executable. */
13220 }
13221
13222 static void
13223 momentary_bkpt_check_status (bpstat bs)
13224 {
13225 /* Nothing. The point of these breakpoints is causing a stop. */
13226 }
13227
13228 static enum print_stop_action
13229 momentary_bkpt_print_it (bpstat bs)
13230 {
13231 struct ui_out *uiout = current_uiout;
13232
13233 if (ui_out_is_mi_like_p (uiout))
13234 {
13235 struct breakpoint *b = bs->breakpoint_at;
13236
13237 switch (b->type)
13238 {
13239 case bp_finish:
13240 ui_out_field_string
13241 (uiout, "reason",
13242 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13243 break;
13244
13245 case bp_until:
13246 ui_out_field_string
13247 (uiout, "reason",
13248 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13249 break;
13250 }
13251 }
13252
13253 return PRINT_UNKNOWN;
13254 }
13255
13256 static void
13257 momentary_bkpt_print_mention (struct breakpoint *b)
13258 {
13259 /* Nothing to mention. These breakpoints are internal. */
13260 }
13261
13262 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13263
13264 It gets cleared already on the removal of the first one of such placed
13265 breakpoints. This is OK as they get all removed altogether. */
13266
13267 static void
13268 longjmp_bkpt_dtor (struct breakpoint *self)
13269 {
13270 struct thread_info *tp = find_thread_id (self->thread);
13271
13272 if (tp)
13273 tp->initiating_frame = null_frame_id;
13274
13275 momentary_breakpoint_ops.dtor (self);
13276 }
13277
13278 /* Specific methods for probe breakpoints. */
13279
13280 static int
13281 bkpt_probe_insert_location (struct bp_location *bl)
13282 {
13283 int v = bkpt_insert_location (bl);
13284
13285 if (v == 0)
13286 {
13287 /* The insertion was successful, now let's set the probe's semaphore
13288 if needed. */
13289 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13290 }
13291
13292 return v;
13293 }
13294
13295 static int
13296 bkpt_probe_remove_location (struct bp_location *bl)
13297 {
13298 /* Let's clear the semaphore before removing the location. */
13299 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13300
13301 return bkpt_remove_location (bl);
13302 }
13303
13304 static void
13305 bkpt_probe_create_sals_from_address (char **arg,
13306 struct linespec_result *canonical,
13307 enum bptype type_wanted,
13308 char *addr_start, char **copy_arg)
13309 {
13310 struct linespec_sals lsal;
13311
13312 lsal.sals = parse_probes (arg, canonical);
13313
13314 *copy_arg = xstrdup (canonical->addr_string);
13315 lsal.canonical = xstrdup (*copy_arg);
13316
13317 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13318 }
13319
13320 static void
13321 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13322 struct symtabs_and_lines *sals)
13323 {
13324 *sals = parse_probes (s, NULL);
13325 if (!sals->sals)
13326 error (_("probe not found"));
13327 }
13328
13329 /* The breakpoint_ops structure to be used in tracepoints. */
13330
13331 static void
13332 tracepoint_re_set (struct breakpoint *b)
13333 {
13334 breakpoint_re_set_default (b);
13335 }
13336
13337 static int
13338 tracepoint_breakpoint_hit (const struct bp_location *bl,
13339 struct address_space *aspace, CORE_ADDR bp_addr,
13340 const struct target_waitstatus *ws)
13341 {
13342 /* By definition, the inferior does not report stops at
13343 tracepoints. */
13344 return 0;
13345 }
13346
13347 static void
13348 tracepoint_print_one_detail (const struct breakpoint *self,
13349 struct ui_out *uiout)
13350 {
13351 struct tracepoint *tp = (struct tracepoint *) self;
13352 if (tp->static_trace_marker_id)
13353 {
13354 gdb_assert (self->type == bp_static_tracepoint);
13355
13356 ui_out_text (uiout, "\tmarker id is ");
13357 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13358 tp->static_trace_marker_id);
13359 ui_out_text (uiout, "\n");
13360 }
13361 }
13362
13363 static void
13364 tracepoint_print_mention (struct breakpoint *b)
13365 {
13366 if (ui_out_is_mi_like_p (current_uiout))
13367 return;
13368
13369 switch (b->type)
13370 {
13371 case bp_tracepoint:
13372 printf_filtered (_("Tracepoint"));
13373 printf_filtered (_(" %d"), b->number);
13374 break;
13375 case bp_fast_tracepoint:
13376 printf_filtered (_("Fast tracepoint"));
13377 printf_filtered (_(" %d"), b->number);
13378 break;
13379 case bp_static_tracepoint:
13380 printf_filtered (_("Static tracepoint"));
13381 printf_filtered (_(" %d"), b->number);
13382 break;
13383 default:
13384 internal_error (__FILE__, __LINE__,
13385 _("unhandled tracepoint type %d"), (int) b->type);
13386 }
13387
13388 say_where (b);
13389 }
13390
13391 static void
13392 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13393 {
13394 struct tracepoint *tp = (struct tracepoint *) self;
13395
13396 if (self->type == bp_fast_tracepoint)
13397 fprintf_unfiltered (fp, "ftrace");
13398 if (self->type == bp_static_tracepoint)
13399 fprintf_unfiltered (fp, "strace");
13400 else if (self->type == bp_tracepoint)
13401 fprintf_unfiltered (fp, "trace");
13402 else
13403 internal_error (__FILE__, __LINE__,
13404 _("unhandled tracepoint type %d"), (int) self->type);
13405
13406 fprintf_unfiltered (fp, " %s", self->addr_string);
13407 print_recreate_thread (self, fp);
13408
13409 if (tp->pass_count)
13410 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13411 }
13412
13413 static void
13414 tracepoint_create_sals_from_address (char **arg,
13415 struct linespec_result *canonical,
13416 enum bptype type_wanted,
13417 char *addr_start, char **copy_arg)
13418 {
13419 create_sals_from_address_default (arg, canonical, type_wanted,
13420 addr_start, copy_arg);
13421 }
13422
13423 static void
13424 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13425 struct linespec_result *canonical,
13426 char *cond_string,
13427 char *extra_string,
13428 enum bptype type_wanted,
13429 enum bpdisp disposition,
13430 int thread,
13431 int task, int ignore_count,
13432 const struct breakpoint_ops *ops,
13433 int from_tty, int enabled,
13434 int internal, unsigned flags)
13435 {
13436 create_breakpoints_sal_default (gdbarch, canonical,
13437 cond_string, extra_string,
13438 type_wanted,
13439 disposition, thread, task,
13440 ignore_count, ops, from_tty,
13441 enabled, internal, flags);
13442 }
13443
13444 static void
13445 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13446 struct symtabs_and_lines *sals)
13447 {
13448 decode_linespec_default (b, s, sals);
13449 }
13450
13451 struct breakpoint_ops tracepoint_breakpoint_ops;
13452
13453 /* The breakpoint_ops structure to be use on tracepoints placed in a
13454 static probe. */
13455
13456 static void
13457 tracepoint_probe_create_sals_from_address (char **arg,
13458 struct linespec_result *canonical,
13459 enum bptype type_wanted,
13460 char *addr_start, char **copy_arg)
13461 {
13462 /* We use the same method for breakpoint on probes. */
13463 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13464 addr_start, copy_arg);
13465 }
13466
13467 static void
13468 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13469 struct symtabs_and_lines *sals)
13470 {
13471 /* We use the same method for breakpoint on probes. */
13472 bkpt_probe_decode_linespec (b, s, sals);
13473 }
13474
13475 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13476
13477 /* Dprintf breakpoint_ops methods. */
13478
13479 static void
13480 dprintf_re_set (struct breakpoint *b)
13481 {
13482 breakpoint_re_set_default (b);
13483
13484 /* This breakpoint could have been pending, and be resolved now, and
13485 if so, we should now have the extra string. If we don't, the
13486 dprintf was malformed when created, but we couldn't tell because
13487 we can't extract the extra string until the location is
13488 resolved. */
13489 if (b->loc != NULL && b->extra_string == NULL)
13490 error (_("Format string required"));
13491
13492 /* 1 - connect to target 1, that can run breakpoint commands.
13493 2 - create a dprintf, which resolves fine.
13494 3 - disconnect from target 1
13495 4 - connect to target 2, that can NOT run breakpoint commands.
13496
13497 After steps #3/#4, you'll want the dprintf command list to
13498 be updated, because target 1 and 2 may well return different
13499 answers for target_can_run_breakpoint_commands().
13500 Given absence of finer grained resetting, we get to do
13501 it all the time. */
13502 if (b->extra_string != NULL)
13503 update_dprintf_command_list (b);
13504 }
13505
13506 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13507
13508 static void
13509 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13510 {
13511 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13512 tp->extra_string);
13513 print_recreate_thread (tp, fp);
13514 }
13515
13516 /* Implement the "after_condition_true" breakpoint_ops method for
13517 dprintf.
13518
13519 dprintf's are implemented with regular commands in their command
13520 list, but we run the commands here instead of before presenting the
13521 stop to the user, as dprintf's don't actually cause a stop. This
13522 also makes it so that the commands of multiple dprintfs at the same
13523 address are all handled. */
13524
13525 static void
13526 dprintf_after_condition_true (struct bpstats *bs)
13527 {
13528 struct cleanup *old_chain;
13529 struct bpstats tmp_bs = { NULL };
13530 struct bpstats *tmp_bs_p = &tmp_bs;
13531
13532 /* dprintf's never cause a stop. This wasn't set in the
13533 check_status hook instead because that would make the dprintf's
13534 condition not be evaluated. */
13535 bs->stop = 0;
13536
13537 /* Run the command list here. Take ownership of it instead of
13538 copying. We never want these commands to run later in
13539 bpstat_do_actions, if a breakpoint that causes a stop happens to
13540 be set at same address as this dprintf, or even if running the
13541 commands here throws. */
13542 tmp_bs.commands = bs->commands;
13543 bs->commands = NULL;
13544 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13545
13546 bpstat_do_actions_1 (&tmp_bs_p);
13547
13548 /* 'tmp_bs.commands' will usually be NULL by now, but
13549 bpstat_do_actions_1 may return early without processing the whole
13550 list. */
13551 do_cleanups (old_chain);
13552 }
13553
13554 /* The breakpoint_ops structure to be used on static tracepoints with
13555 markers (`-m'). */
13556
13557 static void
13558 strace_marker_create_sals_from_address (char **arg,
13559 struct linespec_result *canonical,
13560 enum bptype type_wanted,
13561 char *addr_start, char **copy_arg)
13562 {
13563 struct linespec_sals lsal;
13564
13565 lsal.sals = decode_static_tracepoint_spec (arg);
13566
13567 *copy_arg = savestring (addr_start, *arg - addr_start);
13568
13569 canonical->addr_string = xstrdup (*copy_arg);
13570 lsal.canonical = xstrdup (*copy_arg);
13571 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13572 }
13573
13574 static void
13575 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13576 struct linespec_result *canonical,
13577 char *cond_string,
13578 char *extra_string,
13579 enum bptype type_wanted,
13580 enum bpdisp disposition,
13581 int thread,
13582 int task, int ignore_count,
13583 const struct breakpoint_ops *ops,
13584 int from_tty, int enabled,
13585 int internal, unsigned flags)
13586 {
13587 int i;
13588 struct linespec_sals *lsal = VEC_index (linespec_sals,
13589 canonical->sals, 0);
13590
13591 /* If the user is creating a static tracepoint by marker id
13592 (strace -m MARKER_ID), then store the sals index, so that
13593 breakpoint_re_set can try to match up which of the newly
13594 found markers corresponds to this one, and, don't try to
13595 expand multiple locations for each sal, given than SALS
13596 already should contain all sals for MARKER_ID. */
13597
13598 for (i = 0; i < lsal->sals.nelts; ++i)
13599 {
13600 struct symtabs_and_lines expanded;
13601 struct tracepoint *tp;
13602 struct cleanup *old_chain;
13603 char *addr_string;
13604
13605 expanded.nelts = 1;
13606 expanded.sals = &lsal->sals.sals[i];
13607
13608 addr_string = xstrdup (canonical->addr_string);
13609 old_chain = make_cleanup (xfree, addr_string);
13610
13611 tp = XCNEW (struct tracepoint);
13612 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13613 addr_string, NULL,
13614 cond_string, extra_string,
13615 type_wanted, disposition,
13616 thread, task, ignore_count, ops,
13617 from_tty, enabled, internal, flags,
13618 canonical->special_display);
13619 /* Given that its possible to have multiple markers with
13620 the same string id, if the user is creating a static
13621 tracepoint by marker id ("strace -m MARKER_ID"), then
13622 store the sals index, so that breakpoint_re_set can
13623 try to match up which of the newly found markers
13624 corresponds to this one */
13625 tp->static_trace_marker_id_idx = i;
13626
13627 install_breakpoint (internal, &tp->base, 0);
13628
13629 discard_cleanups (old_chain);
13630 }
13631 }
13632
13633 static void
13634 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13635 struct symtabs_and_lines *sals)
13636 {
13637 struct tracepoint *tp = (struct tracepoint *) b;
13638
13639 *sals = decode_static_tracepoint_spec (s);
13640 if (sals->nelts > tp->static_trace_marker_id_idx)
13641 {
13642 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13643 sals->nelts = 1;
13644 }
13645 else
13646 error (_("marker %s not found"), tp->static_trace_marker_id);
13647 }
13648
13649 static struct breakpoint_ops strace_marker_breakpoint_ops;
13650
13651 static int
13652 strace_marker_p (struct breakpoint *b)
13653 {
13654 return b->ops == &strace_marker_breakpoint_ops;
13655 }
13656
13657 /* Delete a breakpoint and clean up all traces of it in the data
13658 structures. */
13659
13660 void
13661 delete_breakpoint (struct breakpoint *bpt)
13662 {
13663 struct breakpoint *b;
13664
13665 gdb_assert (bpt != NULL);
13666
13667 /* Has this bp already been deleted? This can happen because
13668 multiple lists can hold pointers to bp's. bpstat lists are
13669 especial culprits.
13670
13671 One example of this happening is a watchpoint's scope bp. When
13672 the scope bp triggers, we notice that the watchpoint is out of
13673 scope, and delete it. We also delete its scope bp. But the
13674 scope bp is marked "auto-deleting", and is already on a bpstat.
13675 That bpstat is then checked for auto-deleting bp's, which are
13676 deleted.
13677
13678 A real solution to this problem might involve reference counts in
13679 bp's, and/or giving them pointers back to their referencing
13680 bpstat's, and teaching delete_breakpoint to only free a bp's
13681 storage when no more references were extent. A cheaper bandaid
13682 was chosen. */
13683 if (bpt->type == bp_none)
13684 return;
13685
13686 /* At least avoid this stale reference until the reference counting
13687 of breakpoints gets resolved. */
13688 if (bpt->related_breakpoint != bpt)
13689 {
13690 struct breakpoint *related;
13691 struct watchpoint *w;
13692
13693 if (bpt->type == bp_watchpoint_scope)
13694 w = (struct watchpoint *) bpt->related_breakpoint;
13695 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13696 w = (struct watchpoint *) bpt;
13697 else
13698 w = NULL;
13699 if (w != NULL)
13700 watchpoint_del_at_next_stop (w);
13701
13702 /* Unlink bpt from the bpt->related_breakpoint ring. */
13703 for (related = bpt; related->related_breakpoint != bpt;
13704 related = related->related_breakpoint);
13705 related->related_breakpoint = bpt->related_breakpoint;
13706 bpt->related_breakpoint = bpt;
13707 }
13708
13709 /* watch_command_1 creates a watchpoint but only sets its number if
13710 update_watchpoint succeeds in creating its bp_locations. If there's
13711 a problem in that process, we'll be asked to delete the half-created
13712 watchpoint. In that case, don't announce the deletion. */
13713 if (bpt->number)
13714 observer_notify_breakpoint_deleted (bpt);
13715
13716 if (breakpoint_chain == bpt)
13717 breakpoint_chain = bpt->next;
13718
13719 ALL_BREAKPOINTS (b)
13720 if (b->next == bpt)
13721 {
13722 b->next = bpt->next;
13723 break;
13724 }
13725
13726 /* Be sure no bpstat's are pointing at the breakpoint after it's
13727 been freed. */
13728 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13729 in all threads for now. Note that we cannot just remove bpstats
13730 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13731 commands are associated with the bpstat; if we remove it here,
13732 then the later call to bpstat_do_actions (&stop_bpstat); in
13733 event-top.c won't do anything, and temporary breakpoints with
13734 commands won't work. */
13735
13736 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13737
13738 /* Now that breakpoint is removed from breakpoint list, update the
13739 global location list. This will remove locations that used to
13740 belong to this breakpoint. Do this before freeing the breakpoint
13741 itself, since remove_breakpoint looks at location's owner. It
13742 might be better design to have location completely
13743 self-contained, but it's not the case now. */
13744 update_global_location_list (0);
13745
13746 bpt->ops->dtor (bpt);
13747 /* On the chance that someone will soon try again to delete this
13748 same bp, we mark it as deleted before freeing its storage. */
13749 bpt->type = bp_none;
13750 xfree (bpt);
13751 }
13752
13753 static void
13754 do_delete_breakpoint_cleanup (void *b)
13755 {
13756 delete_breakpoint (b);
13757 }
13758
13759 struct cleanup *
13760 make_cleanup_delete_breakpoint (struct breakpoint *b)
13761 {
13762 return make_cleanup (do_delete_breakpoint_cleanup, b);
13763 }
13764
13765 /* Iterator function to call a user-provided callback function once
13766 for each of B and its related breakpoints. */
13767
13768 static void
13769 iterate_over_related_breakpoints (struct breakpoint *b,
13770 void (*function) (struct breakpoint *,
13771 void *),
13772 void *data)
13773 {
13774 struct breakpoint *related;
13775
13776 related = b;
13777 do
13778 {
13779 struct breakpoint *next;
13780
13781 /* FUNCTION may delete RELATED. */
13782 next = related->related_breakpoint;
13783
13784 if (next == related)
13785 {
13786 /* RELATED is the last ring entry. */
13787 function (related, data);
13788
13789 /* FUNCTION may have deleted it, so we'd never reach back to
13790 B. There's nothing left to do anyway, so just break
13791 out. */
13792 break;
13793 }
13794 else
13795 function (related, data);
13796
13797 related = next;
13798 }
13799 while (related != b);
13800 }
13801
13802 static void
13803 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13804 {
13805 delete_breakpoint (b);
13806 }
13807
13808 /* A callback for map_breakpoint_numbers that calls
13809 delete_breakpoint. */
13810
13811 static void
13812 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13813 {
13814 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13815 }
13816
13817 void
13818 delete_command (char *arg, int from_tty)
13819 {
13820 struct breakpoint *b, *b_tmp;
13821
13822 dont_repeat ();
13823
13824 if (arg == 0)
13825 {
13826 int breaks_to_delete = 0;
13827
13828 /* Delete all breakpoints if no argument. Do not delete
13829 internal breakpoints, these have to be deleted with an
13830 explicit breakpoint number argument. */
13831 ALL_BREAKPOINTS (b)
13832 if (user_breakpoint_p (b))
13833 {
13834 breaks_to_delete = 1;
13835 break;
13836 }
13837
13838 /* Ask user only if there are some breakpoints to delete. */
13839 if (!from_tty
13840 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13841 {
13842 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13843 if (user_breakpoint_p (b))
13844 delete_breakpoint (b);
13845 }
13846 }
13847 else
13848 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13849 }
13850
13851 static int
13852 all_locations_are_pending (struct bp_location *loc)
13853 {
13854 for (; loc; loc = loc->next)
13855 if (!loc->shlib_disabled
13856 && !loc->pspace->executing_startup)
13857 return 0;
13858 return 1;
13859 }
13860
13861 /* Subroutine of update_breakpoint_locations to simplify it.
13862 Return non-zero if multiple fns in list LOC have the same name.
13863 Null names are ignored. */
13864
13865 static int
13866 ambiguous_names_p (struct bp_location *loc)
13867 {
13868 struct bp_location *l;
13869 htab_t htab = htab_create_alloc (13, htab_hash_string,
13870 (int (*) (const void *,
13871 const void *)) streq,
13872 NULL, xcalloc, xfree);
13873
13874 for (l = loc; l != NULL; l = l->next)
13875 {
13876 const char **slot;
13877 const char *name = l->function_name;
13878
13879 /* Allow for some names to be NULL, ignore them. */
13880 if (name == NULL)
13881 continue;
13882
13883 slot = (const char **) htab_find_slot (htab, (const void *) name,
13884 INSERT);
13885 /* NOTE: We can assume slot != NULL here because xcalloc never
13886 returns NULL. */
13887 if (*slot != NULL)
13888 {
13889 htab_delete (htab);
13890 return 1;
13891 }
13892 *slot = name;
13893 }
13894
13895 htab_delete (htab);
13896 return 0;
13897 }
13898
13899 /* When symbols change, it probably means the sources changed as well,
13900 and it might mean the static tracepoint markers are no longer at
13901 the same address or line numbers they used to be at last we
13902 checked. Losing your static tracepoints whenever you rebuild is
13903 undesirable. This function tries to resync/rematch gdb static
13904 tracepoints with the markers on the target, for static tracepoints
13905 that have not been set by marker id. Static tracepoint that have
13906 been set by marker id are reset by marker id in breakpoint_re_set.
13907 The heuristic is:
13908
13909 1) For a tracepoint set at a specific address, look for a marker at
13910 the old PC. If one is found there, assume to be the same marker.
13911 If the name / string id of the marker found is different from the
13912 previous known name, assume that means the user renamed the marker
13913 in the sources, and output a warning.
13914
13915 2) For a tracepoint set at a given line number, look for a marker
13916 at the new address of the old line number. If one is found there,
13917 assume to be the same marker. If the name / string id of the
13918 marker found is different from the previous known name, assume that
13919 means the user renamed the marker in the sources, and output a
13920 warning.
13921
13922 3) If a marker is no longer found at the same address or line, it
13923 may mean the marker no longer exists. But it may also just mean
13924 the code changed a bit. Maybe the user added a few lines of code
13925 that made the marker move up or down (in line number terms). Ask
13926 the target for info about the marker with the string id as we knew
13927 it. If found, update line number and address in the matching
13928 static tracepoint. This will get confused if there's more than one
13929 marker with the same ID (possible in UST, although unadvised
13930 precisely because it confuses tools). */
13931
13932 static struct symtab_and_line
13933 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13934 {
13935 struct tracepoint *tp = (struct tracepoint *) b;
13936 struct static_tracepoint_marker marker;
13937 CORE_ADDR pc;
13938
13939 pc = sal.pc;
13940 if (sal.line)
13941 find_line_pc (sal.symtab, sal.line, &pc);
13942
13943 if (target_static_tracepoint_marker_at (pc, &marker))
13944 {
13945 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13946 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13947 b->number,
13948 tp->static_trace_marker_id, marker.str_id);
13949
13950 xfree (tp->static_trace_marker_id);
13951 tp->static_trace_marker_id = xstrdup (marker.str_id);
13952 release_static_tracepoint_marker (&marker);
13953
13954 return sal;
13955 }
13956
13957 /* Old marker wasn't found on target at lineno. Try looking it up
13958 by string ID. */
13959 if (!sal.explicit_pc
13960 && sal.line != 0
13961 && sal.symtab != NULL
13962 && tp->static_trace_marker_id != NULL)
13963 {
13964 VEC(static_tracepoint_marker_p) *markers;
13965
13966 markers
13967 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13968
13969 if (!VEC_empty(static_tracepoint_marker_p, markers))
13970 {
13971 struct symtab_and_line sal2;
13972 struct symbol *sym;
13973 struct static_tracepoint_marker *tpmarker;
13974 struct ui_out *uiout = current_uiout;
13975
13976 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13977
13978 xfree (tp->static_trace_marker_id);
13979 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13980
13981 warning (_("marker for static tracepoint %d (%s) not "
13982 "found at previous line number"),
13983 b->number, tp->static_trace_marker_id);
13984
13985 init_sal (&sal2);
13986
13987 sal2.pc = tpmarker->address;
13988
13989 sal2 = find_pc_line (tpmarker->address, 0);
13990 sym = find_pc_sect_function (tpmarker->address, NULL);
13991 ui_out_text (uiout, "Now in ");
13992 if (sym)
13993 {
13994 ui_out_field_string (uiout, "func",
13995 SYMBOL_PRINT_NAME (sym));
13996 ui_out_text (uiout, " at ");
13997 }
13998 ui_out_field_string (uiout, "file",
13999 symtab_to_filename_for_display (sal2.symtab));
14000 ui_out_text (uiout, ":");
14001
14002 if (ui_out_is_mi_like_p (uiout))
14003 {
14004 const char *fullname = symtab_to_fullname (sal2.symtab);
14005
14006 ui_out_field_string (uiout, "fullname", fullname);
14007 }
14008
14009 ui_out_field_int (uiout, "line", sal2.line);
14010 ui_out_text (uiout, "\n");
14011
14012 b->loc->line_number = sal2.line;
14013 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14014
14015 xfree (b->addr_string);
14016 b->addr_string = xstrprintf ("%s:%d",
14017 symtab_to_filename_for_display (sal2.symtab),
14018 b->loc->line_number);
14019
14020 /* Might be nice to check if function changed, and warn if
14021 so. */
14022
14023 release_static_tracepoint_marker (tpmarker);
14024 }
14025 }
14026 return sal;
14027 }
14028
14029 /* Returns 1 iff locations A and B are sufficiently same that
14030 we don't need to report breakpoint as changed. */
14031
14032 static int
14033 locations_are_equal (struct bp_location *a, struct bp_location *b)
14034 {
14035 while (a && b)
14036 {
14037 if (a->address != b->address)
14038 return 0;
14039
14040 if (a->shlib_disabled != b->shlib_disabled)
14041 return 0;
14042
14043 if (a->enabled != b->enabled)
14044 return 0;
14045
14046 a = a->next;
14047 b = b->next;
14048 }
14049
14050 if ((a == NULL) != (b == NULL))
14051 return 0;
14052
14053 return 1;
14054 }
14055
14056 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14057 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14058 a ranged breakpoint. */
14059
14060 void
14061 update_breakpoint_locations (struct breakpoint *b,
14062 struct symtabs_and_lines sals,
14063 struct symtabs_and_lines sals_end)
14064 {
14065 int i;
14066 struct bp_location *existing_locations = b->loc;
14067
14068 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14069 {
14070 /* Ranged breakpoints have only one start location and one end
14071 location. */
14072 b->enable_state = bp_disabled;
14073 update_global_location_list (1);
14074 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14075 "multiple locations found\n"),
14076 b->number);
14077 return;
14078 }
14079
14080 /* If there's no new locations, and all existing locations are
14081 pending, don't do anything. This optimizes the common case where
14082 all locations are in the same shared library, that was unloaded.
14083 We'd like to retain the location, so that when the library is
14084 loaded again, we don't loose the enabled/disabled status of the
14085 individual locations. */
14086 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14087 return;
14088
14089 b->loc = NULL;
14090
14091 for (i = 0; i < sals.nelts; ++i)
14092 {
14093 struct bp_location *new_loc;
14094
14095 switch_to_program_space_and_thread (sals.sals[i].pspace);
14096
14097 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14098
14099 /* Reparse conditions, they might contain references to the
14100 old symtab. */
14101 if (b->cond_string != NULL)
14102 {
14103 const char *s;
14104 volatile struct gdb_exception e;
14105
14106 s = b->cond_string;
14107 TRY_CATCH (e, RETURN_MASK_ERROR)
14108 {
14109 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14110 block_for_pc (sals.sals[i].pc),
14111 0);
14112 }
14113 if (e.reason < 0)
14114 {
14115 warning (_("failed to reevaluate condition "
14116 "for breakpoint %d: %s"),
14117 b->number, e.message);
14118 new_loc->enabled = 0;
14119 }
14120 }
14121
14122 if (sals_end.nelts)
14123 {
14124 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14125
14126 new_loc->length = end - sals.sals[0].pc + 1;
14127 }
14128 }
14129
14130 /* Update locations of permanent breakpoints. */
14131 if (b->enable_state == bp_permanent)
14132 make_breakpoint_permanent (b);
14133
14134 /* If possible, carry over 'disable' status from existing
14135 breakpoints. */
14136 {
14137 struct bp_location *e = existing_locations;
14138 /* If there are multiple breakpoints with the same function name,
14139 e.g. for inline functions, comparing function names won't work.
14140 Instead compare pc addresses; this is just a heuristic as things
14141 may have moved, but in practice it gives the correct answer
14142 often enough until a better solution is found. */
14143 int have_ambiguous_names = ambiguous_names_p (b->loc);
14144
14145 for (; e; e = e->next)
14146 {
14147 if (!e->enabled && e->function_name)
14148 {
14149 struct bp_location *l = b->loc;
14150 if (have_ambiguous_names)
14151 {
14152 for (; l; l = l->next)
14153 if (breakpoint_locations_match (e, l))
14154 {
14155 l->enabled = 0;
14156 break;
14157 }
14158 }
14159 else
14160 {
14161 for (; l; l = l->next)
14162 if (l->function_name
14163 && strcmp (e->function_name, l->function_name) == 0)
14164 {
14165 l->enabled = 0;
14166 break;
14167 }
14168 }
14169 }
14170 }
14171 }
14172
14173 if (!locations_are_equal (existing_locations, b->loc))
14174 observer_notify_breakpoint_modified (b);
14175
14176 update_global_location_list (1);
14177 }
14178
14179 /* Find the SaL locations corresponding to the given ADDR_STRING.
14180 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14181
14182 static struct symtabs_and_lines
14183 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14184 {
14185 char *s;
14186 struct symtabs_and_lines sals = {0};
14187 volatile struct gdb_exception e;
14188
14189 gdb_assert (b->ops != NULL);
14190 s = addr_string;
14191
14192 TRY_CATCH (e, RETURN_MASK_ERROR)
14193 {
14194 b->ops->decode_linespec (b, &s, &sals);
14195 }
14196 if (e.reason < 0)
14197 {
14198 int not_found_and_ok = 0;
14199 /* For pending breakpoints, it's expected that parsing will
14200 fail until the right shared library is loaded. User has
14201 already told to create pending breakpoints and don't need
14202 extra messages. If breakpoint is in bp_shlib_disabled
14203 state, then user already saw the message about that
14204 breakpoint being disabled, and don't want to see more
14205 errors. */
14206 if (e.error == NOT_FOUND_ERROR
14207 && (b->condition_not_parsed
14208 || (b->loc && b->loc->shlib_disabled)
14209 || (b->loc && b->loc->pspace->executing_startup)
14210 || b->enable_state == bp_disabled))
14211 not_found_and_ok = 1;
14212
14213 if (!not_found_and_ok)
14214 {
14215 /* We surely don't want to warn about the same breakpoint
14216 10 times. One solution, implemented here, is disable
14217 the breakpoint on error. Another solution would be to
14218 have separate 'warning emitted' flag. Since this
14219 happens only when a binary has changed, I don't know
14220 which approach is better. */
14221 b->enable_state = bp_disabled;
14222 throw_exception (e);
14223 }
14224 }
14225
14226 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14227 {
14228 int i;
14229
14230 for (i = 0; i < sals.nelts; ++i)
14231 resolve_sal_pc (&sals.sals[i]);
14232 if (b->condition_not_parsed && s && s[0])
14233 {
14234 char *cond_string, *extra_string;
14235 int thread, task;
14236
14237 find_condition_and_thread (s, sals.sals[0].pc,
14238 &cond_string, &thread, &task,
14239 &extra_string);
14240 if (cond_string)
14241 b->cond_string = cond_string;
14242 b->thread = thread;
14243 b->task = task;
14244 if (extra_string)
14245 b->extra_string = extra_string;
14246 b->condition_not_parsed = 0;
14247 }
14248
14249 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14250 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14251
14252 *found = 1;
14253 }
14254 else
14255 *found = 0;
14256
14257 return sals;
14258 }
14259
14260 /* The default re_set method, for typical hardware or software
14261 breakpoints. Reevaluate the breakpoint and recreate its
14262 locations. */
14263
14264 static void
14265 breakpoint_re_set_default (struct breakpoint *b)
14266 {
14267 int found;
14268 struct symtabs_and_lines sals, sals_end;
14269 struct symtabs_and_lines expanded = {0};
14270 struct symtabs_and_lines expanded_end = {0};
14271
14272 sals = addr_string_to_sals (b, b->addr_string, &found);
14273 if (found)
14274 {
14275 make_cleanup (xfree, sals.sals);
14276 expanded = sals;
14277 }
14278
14279 if (b->addr_string_range_end)
14280 {
14281 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14282 if (found)
14283 {
14284 make_cleanup (xfree, sals_end.sals);
14285 expanded_end = sals_end;
14286 }
14287 }
14288
14289 update_breakpoint_locations (b, expanded, expanded_end);
14290 }
14291
14292 /* Default method for creating SALs from an address string. It basically
14293 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14294
14295 static void
14296 create_sals_from_address_default (char **arg,
14297 struct linespec_result *canonical,
14298 enum bptype type_wanted,
14299 char *addr_start, char **copy_arg)
14300 {
14301 parse_breakpoint_sals (arg, canonical);
14302 }
14303
14304 /* Call create_breakpoints_sal for the given arguments. This is the default
14305 function for the `create_breakpoints_sal' method of
14306 breakpoint_ops. */
14307
14308 static void
14309 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14310 struct linespec_result *canonical,
14311 char *cond_string,
14312 char *extra_string,
14313 enum bptype type_wanted,
14314 enum bpdisp disposition,
14315 int thread,
14316 int task, int ignore_count,
14317 const struct breakpoint_ops *ops,
14318 int from_tty, int enabled,
14319 int internal, unsigned flags)
14320 {
14321 create_breakpoints_sal (gdbarch, canonical, cond_string,
14322 extra_string,
14323 type_wanted, disposition,
14324 thread, task, ignore_count, ops, from_tty,
14325 enabled, internal, flags);
14326 }
14327
14328 /* Decode the line represented by S by calling decode_line_full. This is the
14329 default function for the `decode_linespec' method of breakpoint_ops. */
14330
14331 static void
14332 decode_linespec_default (struct breakpoint *b, char **s,
14333 struct symtabs_and_lines *sals)
14334 {
14335 struct linespec_result canonical;
14336
14337 init_linespec_result (&canonical);
14338 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14339 (struct symtab *) NULL, 0,
14340 &canonical, multiple_symbols_all,
14341 b->filter);
14342
14343 /* We should get 0 or 1 resulting SALs. */
14344 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14345
14346 if (VEC_length (linespec_sals, canonical.sals) > 0)
14347 {
14348 struct linespec_sals *lsal;
14349
14350 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14351 *sals = lsal->sals;
14352 /* Arrange it so the destructor does not free the
14353 contents. */
14354 lsal->sals.sals = NULL;
14355 }
14356
14357 destroy_linespec_result (&canonical);
14358 }
14359
14360 /* Prepare the global context for a re-set of breakpoint B. */
14361
14362 static struct cleanup *
14363 prepare_re_set_context (struct breakpoint *b)
14364 {
14365 struct cleanup *cleanups;
14366
14367 input_radix = b->input_radix;
14368 cleanups = save_current_space_and_thread ();
14369 if (b->pspace != NULL)
14370 switch_to_program_space_and_thread (b->pspace);
14371 set_language (b->language);
14372
14373 return cleanups;
14374 }
14375
14376 /* Reset a breakpoint given it's struct breakpoint * BINT.
14377 The value we return ends up being the return value from catch_errors.
14378 Unused in this case. */
14379
14380 static int
14381 breakpoint_re_set_one (void *bint)
14382 {
14383 /* Get past catch_errs. */
14384 struct breakpoint *b = (struct breakpoint *) bint;
14385 struct cleanup *cleanups;
14386
14387 cleanups = prepare_re_set_context (b);
14388 b->ops->re_set (b);
14389 do_cleanups (cleanups);
14390 return 0;
14391 }
14392
14393 /* Re-set all breakpoints after symbols have been re-loaded. */
14394 void
14395 breakpoint_re_set (void)
14396 {
14397 struct breakpoint *b, *b_tmp;
14398 enum language save_language;
14399 int save_input_radix;
14400 struct cleanup *old_chain;
14401
14402 save_language = current_language->la_language;
14403 save_input_radix = input_radix;
14404 old_chain = save_current_program_space ();
14405
14406 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14407 {
14408 /* Format possible error msg. */
14409 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14410 b->number);
14411 struct cleanup *cleanups = make_cleanup (xfree, message);
14412 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14413 do_cleanups (cleanups);
14414 }
14415 set_language (save_language);
14416 input_radix = save_input_radix;
14417
14418 jit_breakpoint_re_set ();
14419
14420 do_cleanups (old_chain);
14421
14422 create_overlay_event_breakpoint ();
14423 create_longjmp_master_breakpoint ();
14424 create_std_terminate_master_breakpoint ();
14425 create_exception_master_breakpoint ();
14426 }
14427 \f
14428 /* Reset the thread number of this breakpoint:
14429
14430 - If the breakpoint is for all threads, leave it as-is.
14431 - Else, reset it to the current thread for inferior_ptid. */
14432 void
14433 breakpoint_re_set_thread (struct breakpoint *b)
14434 {
14435 if (b->thread != -1)
14436 {
14437 if (in_thread_list (inferior_ptid))
14438 b->thread = pid_to_thread_id (inferior_ptid);
14439
14440 /* We're being called after following a fork. The new fork is
14441 selected as current, and unless this was a vfork will have a
14442 different program space from the original thread. Reset that
14443 as well. */
14444 b->loc->pspace = current_program_space;
14445 }
14446 }
14447
14448 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14449 If from_tty is nonzero, it prints a message to that effect,
14450 which ends with a period (no newline). */
14451
14452 void
14453 set_ignore_count (int bptnum, int count, int from_tty)
14454 {
14455 struct breakpoint *b;
14456
14457 if (count < 0)
14458 count = 0;
14459
14460 ALL_BREAKPOINTS (b)
14461 if (b->number == bptnum)
14462 {
14463 if (is_tracepoint (b))
14464 {
14465 if (from_tty && count != 0)
14466 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14467 bptnum);
14468 return;
14469 }
14470
14471 b->ignore_count = count;
14472 if (from_tty)
14473 {
14474 if (count == 0)
14475 printf_filtered (_("Will stop next time "
14476 "breakpoint %d is reached."),
14477 bptnum);
14478 else if (count == 1)
14479 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14480 bptnum);
14481 else
14482 printf_filtered (_("Will ignore next %d "
14483 "crossings of breakpoint %d."),
14484 count, bptnum);
14485 }
14486 observer_notify_breakpoint_modified (b);
14487 return;
14488 }
14489
14490 error (_("No breakpoint number %d."), bptnum);
14491 }
14492
14493 /* Command to set ignore-count of breakpoint N to COUNT. */
14494
14495 static void
14496 ignore_command (char *args, int from_tty)
14497 {
14498 char *p = args;
14499 int num;
14500
14501 if (p == 0)
14502 error_no_arg (_("a breakpoint number"));
14503
14504 num = get_number (&p);
14505 if (num == 0)
14506 error (_("bad breakpoint number: '%s'"), args);
14507 if (*p == 0)
14508 error (_("Second argument (specified ignore-count) is missing."));
14509
14510 set_ignore_count (num,
14511 longest_to_int (value_as_long (parse_and_eval (p))),
14512 from_tty);
14513 if (from_tty)
14514 printf_filtered ("\n");
14515 }
14516 \f
14517 /* Call FUNCTION on each of the breakpoints
14518 whose numbers are given in ARGS. */
14519
14520 static void
14521 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14522 void *),
14523 void *data)
14524 {
14525 int num;
14526 struct breakpoint *b, *tmp;
14527 int match;
14528 struct get_number_or_range_state state;
14529
14530 if (args == 0)
14531 error_no_arg (_("one or more breakpoint numbers"));
14532
14533 init_number_or_range (&state, args);
14534
14535 while (!state.finished)
14536 {
14537 char *p = state.string;
14538
14539 match = 0;
14540
14541 num = get_number_or_range (&state);
14542 if (num == 0)
14543 {
14544 warning (_("bad breakpoint number at or near '%s'"), p);
14545 }
14546 else
14547 {
14548 ALL_BREAKPOINTS_SAFE (b, tmp)
14549 if (b->number == num)
14550 {
14551 match = 1;
14552 function (b, data);
14553 break;
14554 }
14555 if (match == 0)
14556 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14557 }
14558 }
14559 }
14560
14561 static struct bp_location *
14562 find_location_by_number (char *number)
14563 {
14564 char *dot = strchr (number, '.');
14565 char *p1;
14566 int bp_num;
14567 int loc_num;
14568 struct breakpoint *b;
14569 struct bp_location *loc;
14570
14571 *dot = '\0';
14572
14573 p1 = number;
14574 bp_num = get_number (&p1);
14575 if (bp_num == 0)
14576 error (_("Bad breakpoint number '%s'"), number);
14577
14578 ALL_BREAKPOINTS (b)
14579 if (b->number == bp_num)
14580 {
14581 break;
14582 }
14583
14584 if (!b || b->number != bp_num)
14585 error (_("Bad breakpoint number '%s'"), number);
14586
14587 p1 = dot+1;
14588 loc_num = get_number (&p1);
14589 if (loc_num == 0)
14590 error (_("Bad breakpoint location number '%s'"), number);
14591
14592 --loc_num;
14593 loc = b->loc;
14594 for (;loc_num && loc; --loc_num, loc = loc->next)
14595 ;
14596 if (!loc)
14597 error (_("Bad breakpoint location number '%s'"), dot+1);
14598
14599 return loc;
14600 }
14601
14602
14603 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14604 If from_tty is nonzero, it prints a message to that effect,
14605 which ends with a period (no newline). */
14606
14607 void
14608 disable_breakpoint (struct breakpoint *bpt)
14609 {
14610 /* Never disable a watchpoint scope breakpoint; we want to
14611 hit them when we leave scope so we can delete both the
14612 watchpoint and its scope breakpoint at that time. */
14613 if (bpt->type == bp_watchpoint_scope)
14614 return;
14615
14616 /* You can't disable permanent breakpoints. */
14617 if (bpt->enable_state == bp_permanent)
14618 return;
14619
14620 bpt->enable_state = bp_disabled;
14621
14622 /* Mark breakpoint locations modified. */
14623 mark_breakpoint_modified (bpt);
14624
14625 if (target_supports_enable_disable_tracepoint ()
14626 && current_trace_status ()->running && is_tracepoint (bpt))
14627 {
14628 struct bp_location *location;
14629
14630 for (location = bpt->loc; location; location = location->next)
14631 target_disable_tracepoint (location);
14632 }
14633
14634 update_global_location_list (0);
14635
14636 observer_notify_breakpoint_modified (bpt);
14637 }
14638
14639 /* A callback for iterate_over_related_breakpoints. */
14640
14641 static void
14642 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14643 {
14644 disable_breakpoint (b);
14645 }
14646
14647 /* A callback for map_breakpoint_numbers that calls
14648 disable_breakpoint. */
14649
14650 static void
14651 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14652 {
14653 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14654 }
14655
14656 static void
14657 disable_command (char *args, int from_tty)
14658 {
14659 if (args == 0)
14660 {
14661 struct breakpoint *bpt;
14662
14663 ALL_BREAKPOINTS (bpt)
14664 if (user_breakpoint_p (bpt))
14665 disable_breakpoint (bpt);
14666 }
14667 else
14668 {
14669 char *num = extract_arg (&args);
14670
14671 while (num)
14672 {
14673 if (strchr (num, '.'))
14674 {
14675 struct bp_location *loc = find_location_by_number (num);
14676
14677 if (loc)
14678 {
14679 if (loc->enabled)
14680 {
14681 loc->enabled = 0;
14682 mark_breakpoint_location_modified (loc);
14683 }
14684 if (target_supports_enable_disable_tracepoint ()
14685 && current_trace_status ()->running && loc->owner
14686 && is_tracepoint (loc->owner))
14687 target_disable_tracepoint (loc);
14688 }
14689 update_global_location_list (0);
14690 }
14691 else
14692 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14693 num = extract_arg (&args);
14694 }
14695 }
14696 }
14697
14698 static void
14699 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14700 int count)
14701 {
14702 int target_resources_ok;
14703
14704 if (bpt->type == bp_hardware_breakpoint)
14705 {
14706 int i;
14707 i = hw_breakpoint_used_count ();
14708 target_resources_ok =
14709 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14710 i + 1, 0);
14711 if (target_resources_ok == 0)
14712 error (_("No hardware breakpoint support in the target."));
14713 else if (target_resources_ok < 0)
14714 error (_("Hardware breakpoints used exceeds limit."));
14715 }
14716
14717 if (is_watchpoint (bpt))
14718 {
14719 /* Initialize it just to avoid a GCC false warning. */
14720 enum enable_state orig_enable_state = 0;
14721 volatile struct gdb_exception e;
14722
14723 TRY_CATCH (e, RETURN_MASK_ALL)
14724 {
14725 struct watchpoint *w = (struct watchpoint *) bpt;
14726
14727 orig_enable_state = bpt->enable_state;
14728 bpt->enable_state = bp_enabled;
14729 update_watchpoint (w, 1 /* reparse */);
14730 }
14731 if (e.reason < 0)
14732 {
14733 bpt->enable_state = orig_enable_state;
14734 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14735 bpt->number);
14736 return;
14737 }
14738 }
14739
14740 if (bpt->enable_state != bp_permanent)
14741 bpt->enable_state = bp_enabled;
14742
14743 bpt->enable_state = bp_enabled;
14744
14745 /* Mark breakpoint locations modified. */
14746 mark_breakpoint_modified (bpt);
14747
14748 if (target_supports_enable_disable_tracepoint ()
14749 && current_trace_status ()->running && is_tracepoint (bpt))
14750 {
14751 struct bp_location *location;
14752
14753 for (location = bpt->loc; location; location = location->next)
14754 target_enable_tracepoint (location);
14755 }
14756
14757 bpt->disposition = disposition;
14758 bpt->enable_count = count;
14759 update_global_location_list (1);
14760
14761 observer_notify_breakpoint_modified (bpt);
14762 }
14763
14764
14765 void
14766 enable_breakpoint (struct breakpoint *bpt)
14767 {
14768 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14769 }
14770
14771 static void
14772 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14773 {
14774 enable_breakpoint (bpt);
14775 }
14776
14777 /* A callback for map_breakpoint_numbers that calls
14778 enable_breakpoint. */
14779
14780 static void
14781 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14782 {
14783 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14784 }
14785
14786 /* The enable command enables the specified breakpoints (or all defined
14787 breakpoints) so they once again become (or continue to be) effective
14788 in stopping the inferior. */
14789
14790 static void
14791 enable_command (char *args, int from_tty)
14792 {
14793 if (args == 0)
14794 {
14795 struct breakpoint *bpt;
14796
14797 ALL_BREAKPOINTS (bpt)
14798 if (user_breakpoint_p (bpt))
14799 enable_breakpoint (bpt);
14800 }
14801 else
14802 {
14803 char *num = extract_arg (&args);
14804
14805 while (num)
14806 {
14807 if (strchr (num, '.'))
14808 {
14809 struct bp_location *loc = find_location_by_number (num);
14810
14811 if (loc)
14812 {
14813 if (!loc->enabled)
14814 {
14815 loc->enabled = 1;
14816 mark_breakpoint_location_modified (loc);
14817 }
14818 if (target_supports_enable_disable_tracepoint ()
14819 && current_trace_status ()->running && loc->owner
14820 && is_tracepoint (loc->owner))
14821 target_enable_tracepoint (loc);
14822 }
14823 update_global_location_list (1);
14824 }
14825 else
14826 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14827 num = extract_arg (&args);
14828 }
14829 }
14830 }
14831
14832 /* This struct packages up disposition data for application to multiple
14833 breakpoints. */
14834
14835 struct disp_data
14836 {
14837 enum bpdisp disp;
14838 int count;
14839 };
14840
14841 static void
14842 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14843 {
14844 struct disp_data disp_data = *(struct disp_data *) arg;
14845
14846 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14847 }
14848
14849 static void
14850 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14851 {
14852 struct disp_data disp = { disp_disable, 1 };
14853
14854 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14855 }
14856
14857 static void
14858 enable_once_command (char *args, int from_tty)
14859 {
14860 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14861 }
14862
14863 static void
14864 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14865 {
14866 struct disp_data disp = { disp_disable, *(int *) countptr };
14867
14868 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14869 }
14870
14871 static void
14872 enable_count_command (char *args, int from_tty)
14873 {
14874 int count = get_number (&args);
14875
14876 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14877 }
14878
14879 static void
14880 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14881 {
14882 struct disp_data disp = { disp_del, 1 };
14883
14884 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14885 }
14886
14887 static void
14888 enable_delete_command (char *args, int from_tty)
14889 {
14890 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14891 }
14892 \f
14893 static void
14894 set_breakpoint_cmd (char *args, int from_tty)
14895 {
14896 }
14897
14898 static void
14899 show_breakpoint_cmd (char *args, int from_tty)
14900 {
14901 }
14902
14903 /* Invalidate last known value of any hardware watchpoint if
14904 the memory which that value represents has been written to by
14905 GDB itself. */
14906
14907 static void
14908 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14909 CORE_ADDR addr, ssize_t len,
14910 const bfd_byte *data)
14911 {
14912 struct breakpoint *bp;
14913
14914 ALL_BREAKPOINTS (bp)
14915 if (bp->enable_state == bp_enabled
14916 && bp->type == bp_hardware_watchpoint)
14917 {
14918 struct watchpoint *wp = (struct watchpoint *) bp;
14919
14920 if (wp->val_valid && wp->val)
14921 {
14922 struct bp_location *loc;
14923
14924 for (loc = bp->loc; loc != NULL; loc = loc->next)
14925 if (loc->loc_type == bp_loc_hardware_watchpoint
14926 && loc->address + loc->length > addr
14927 && addr + len > loc->address)
14928 {
14929 value_free (wp->val);
14930 wp->val = NULL;
14931 wp->val_valid = 0;
14932 }
14933 }
14934 }
14935 }
14936
14937 /* Create and insert a raw software breakpoint at PC. Return an
14938 identifier, which should be used to remove the breakpoint later.
14939 In general, places which call this should be using something on the
14940 breakpoint chain instead; this function should be eliminated
14941 someday. */
14942
14943 void *
14944 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14945 struct address_space *aspace, CORE_ADDR pc)
14946 {
14947 struct bp_target_info *bp_tgt;
14948
14949 bp_tgt = XZALLOC (struct bp_target_info);
14950
14951 bp_tgt->placed_address_space = aspace;
14952 bp_tgt->placed_address = pc;
14953
14954 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14955 {
14956 /* Could not insert the breakpoint. */
14957 xfree (bp_tgt);
14958 return NULL;
14959 }
14960
14961 return bp_tgt;
14962 }
14963
14964 /* Remove a breakpoint BP inserted by
14965 deprecated_insert_raw_breakpoint. */
14966
14967 int
14968 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14969 {
14970 struct bp_target_info *bp_tgt = bp;
14971 int ret;
14972
14973 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14974 xfree (bp_tgt);
14975
14976 return ret;
14977 }
14978
14979 /* One (or perhaps two) breakpoints used for software single
14980 stepping. */
14981
14982 static void *single_step_breakpoints[2];
14983 static struct gdbarch *single_step_gdbarch[2];
14984
14985 /* Create and insert a breakpoint for software single step. */
14986
14987 void
14988 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14989 struct address_space *aspace,
14990 CORE_ADDR next_pc)
14991 {
14992 void **bpt_p;
14993
14994 if (single_step_breakpoints[0] == NULL)
14995 {
14996 bpt_p = &single_step_breakpoints[0];
14997 single_step_gdbarch[0] = gdbarch;
14998 }
14999 else
15000 {
15001 gdb_assert (single_step_breakpoints[1] == NULL);
15002 bpt_p = &single_step_breakpoints[1];
15003 single_step_gdbarch[1] = gdbarch;
15004 }
15005
15006 /* NOTE drow/2006-04-11: A future improvement to this function would
15007 be to only create the breakpoints once, and actually put them on
15008 the breakpoint chain. That would let us use set_raw_breakpoint.
15009 We could adjust the addresses each time they were needed. Doing
15010 this requires corresponding changes elsewhere where single step
15011 breakpoints are handled, however. So, for now, we use this. */
15012
15013 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15014 if (*bpt_p == NULL)
15015 error (_("Could not insert single-step breakpoint at %s"),
15016 paddress (gdbarch, next_pc));
15017 }
15018
15019 /* Check if the breakpoints used for software single stepping
15020 were inserted or not. */
15021
15022 int
15023 single_step_breakpoints_inserted (void)
15024 {
15025 return (single_step_breakpoints[0] != NULL
15026 || single_step_breakpoints[1] != NULL);
15027 }
15028
15029 /* Remove and delete any breakpoints used for software single step. */
15030
15031 void
15032 remove_single_step_breakpoints (void)
15033 {
15034 gdb_assert (single_step_breakpoints[0] != NULL);
15035
15036 /* See insert_single_step_breakpoint for more about this deprecated
15037 call. */
15038 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15039 single_step_breakpoints[0]);
15040 single_step_gdbarch[0] = NULL;
15041 single_step_breakpoints[0] = NULL;
15042
15043 if (single_step_breakpoints[1] != NULL)
15044 {
15045 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15046 single_step_breakpoints[1]);
15047 single_step_gdbarch[1] = NULL;
15048 single_step_breakpoints[1] = NULL;
15049 }
15050 }
15051
15052 /* Delete software single step breakpoints without removing them from
15053 the inferior. This is intended to be used if the inferior's address
15054 space where they were inserted is already gone, e.g. after exit or
15055 exec. */
15056
15057 void
15058 cancel_single_step_breakpoints (void)
15059 {
15060 int i;
15061
15062 for (i = 0; i < 2; i++)
15063 if (single_step_breakpoints[i])
15064 {
15065 xfree (single_step_breakpoints[i]);
15066 single_step_breakpoints[i] = NULL;
15067 single_step_gdbarch[i] = NULL;
15068 }
15069 }
15070
15071 /* Detach software single-step breakpoints from INFERIOR_PTID without
15072 removing them. */
15073
15074 static void
15075 detach_single_step_breakpoints (void)
15076 {
15077 int i;
15078
15079 for (i = 0; i < 2; i++)
15080 if (single_step_breakpoints[i])
15081 target_remove_breakpoint (single_step_gdbarch[i],
15082 single_step_breakpoints[i]);
15083 }
15084
15085 /* Check whether a software single-step breakpoint is inserted at
15086 PC. */
15087
15088 static int
15089 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15090 CORE_ADDR pc)
15091 {
15092 int i;
15093
15094 for (i = 0; i < 2; i++)
15095 {
15096 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15097 if (bp_tgt
15098 && breakpoint_address_match (bp_tgt->placed_address_space,
15099 bp_tgt->placed_address,
15100 aspace, pc))
15101 return 1;
15102 }
15103
15104 return 0;
15105 }
15106
15107 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15108 non-zero otherwise. */
15109 static int
15110 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15111 {
15112 if (syscall_catchpoint_p (bp)
15113 && bp->enable_state != bp_disabled
15114 && bp->enable_state != bp_call_disabled)
15115 return 1;
15116 else
15117 return 0;
15118 }
15119
15120 int
15121 catch_syscall_enabled (void)
15122 {
15123 struct catch_syscall_inferior_data *inf_data
15124 = get_catch_syscall_inferior_data (current_inferior ());
15125
15126 return inf_data->total_syscalls_count != 0;
15127 }
15128
15129 int
15130 catching_syscall_number (int syscall_number)
15131 {
15132 struct breakpoint *bp;
15133
15134 ALL_BREAKPOINTS (bp)
15135 if (is_syscall_catchpoint_enabled (bp))
15136 {
15137 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15138
15139 if (c->syscalls_to_be_caught)
15140 {
15141 int i, iter;
15142 for (i = 0;
15143 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15144 i++)
15145 if (syscall_number == iter)
15146 return 1;
15147 }
15148 else
15149 return 1;
15150 }
15151
15152 return 0;
15153 }
15154
15155 /* Complete syscall names. Used by "catch syscall". */
15156 static VEC (char_ptr) *
15157 catch_syscall_completer (struct cmd_list_element *cmd,
15158 const char *text, const char *word)
15159 {
15160 const char **list = get_syscall_names ();
15161 VEC (char_ptr) *retlist
15162 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15163
15164 xfree (list);
15165 return retlist;
15166 }
15167
15168 /* Tracepoint-specific operations. */
15169
15170 /* Set tracepoint count to NUM. */
15171 static void
15172 set_tracepoint_count (int num)
15173 {
15174 tracepoint_count = num;
15175 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15176 }
15177
15178 static void
15179 trace_command (char *arg, int from_tty)
15180 {
15181 struct breakpoint_ops *ops;
15182 const char *arg_cp = arg;
15183
15184 if (arg && probe_linespec_to_ops (&arg_cp))
15185 ops = &tracepoint_probe_breakpoint_ops;
15186 else
15187 ops = &tracepoint_breakpoint_ops;
15188
15189 create_breakpoint (get_current_arch (),
15190 arg,
15191 NULL, 0, NULL, 1 /* parse arg */,
15192 0 /* tempflag */,
15193 bp_tracepoint /* type_wanted */,
15194 0 /* Ignore count */,
15195 pending_break_support,
15196 ops,
15197 from_tty,
15198 1 /* enabled */,
15199 0 /* internal */, 0);
15200 }
15201
15202 static void
15203 ftrace_command (char *arg, int from_tty)
15204 {
15205 create_breakpoint (get_current_arch (),
15206 arg,
15207 NULL, 0, NULL, 1 /* parse arg */,
15208 0 /* tempflag */,
15209 bp_fast_tracepoint /* type_wanted */,
15210 0 /* Ignore count */,
15211 pending_break_support,
15212 &tracepoint_breakpoint_ops,
15213 from_tty,
15214 1 /* enabled */,
15215 0 /* internal */, 0);
15216 }
15217
15218 /* strace command implementation. Creates a static tracepoint. */
15219
15220 static void
15221 strace_command (char *arg, int from_tty)
15222 {
15223 struct breakpoint_ops *ops;
15224
15225 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15226 or with a normal static tracepoint. */
15227 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15228 ops = &strace_marker_breakpoint_ops;
15229 else
15230 ops = &tracepoint_breakpoint_ops;
15231
15232 create_breakpoint (get_current_arch (),
15233 arg,
15234 NULL, 0, NULL, 1 /* parse arg */,
15235 0 /* tempflag */,
15236 bp_static_tracepoint /* type_wanted */,
15237 0 /* Ignore count */,
15238 pending_break_support,
15239 ops,
15240 from_tty,
15241 1 /* enabled */,
15242 0 /* internal */, 0);
15243 }
15244
15245 /* Set up a fake reader function that gets command lines from a linked
15246 list that was acquired during tracepoint uploading. */
15247
15248 static struct uploaded_tp *this_utp;
15249 static int next_cmd;
15250
15251 static char *
15252 read_uploaded_action (void)
15253 {
15254 char *rslt;
15255
15256 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15257
15258 next_cmd++;
15259
15260 return rslt;
15261 }
15262
15263 /* Given information about a tracepoint as recorded on a target (which
15264 can be either a live system or a trace file), attempt to create an
15265 equivalent GDB tracepoint. This is not a reliable process, since
15266 the target does not necessarily have all the information used when
15267 the tracepoint was originally defined. */
15268
15269 struct tracepoint *
15270 create_tracepoint_from_upload (struct uploaded_tp *utp)
15271 {
15272 char *addr_str, small_buf[100];
15273 struct tracepoint *tp;
15274
15275 if (utp->at_string)
15276 addr_str = utp->at_string;
15277 else
15278 {
15279 /* In the absence of a source location, fall back to raw
15280 address. Since there is no way to confirm that the address
15281 means the same thing as when the trace was started, warn the
15282 user. */
15283 warning (_("Uploaded tracepoint %d has no "
15284 "source location, using raw address"),
15285 utp->number);
15286 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15287 addr_str = small_buf;
15288 }
15289
15290 /* There's not much we can do with a sequence of bytecodes. */
15291 if (utp->cond && !utp->cond_string)
15292 warning (_("Uploaded tracepoint %d condition "
15293 "has no source form, ignoring it"),
15294 utp->number);
15295
15296 if (!create_breakpoint (get_current_arch (),
15297 addr_str,
15298 utp->cond_string, -1, NULL,
15299 0 /* parse cond/thread */,
15300 0 /* tempflag */,
15301 utp->type /* type_wanted */,
15302 0 /* Ignore count */,
15303 pending_break_support,
15304 &tracepoint_breakpoint_ops,
15305 0 /* from_tty */,
15306 utp->enabled /* enabled */,
15307 0 /* internal */,
15308 CREATE_BREAKPOINT_FLAGS_INSERTED))
15309 return NULL;
15310
15311 /* Get the tracepoint we just created. */
15312 tp = get_tracepoint (tracepoint_count);
15313 gdb_assert (tp != NULL);
15314
15315 if (utp->pass > 0)
15316 {
15317 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15318 tp->base.number);
15319
15320 trace_pass_command (small_buf, 0);
15321 }
15322
15323 /* If we have uploaded versions of the original commands, set up a
15324 special-purpose "reader" function and call the usual command line
15325 reader, then pass the result to the breakpoint command-setting
15326 function. */
15327 if (!VEC_empty (char_ptr, utp->cmd_strings))
15328 {
15329 struct command_line *cmd_list;
15330
15331 this_utp = utp;
15332 next_cmd = 0;
15333
15334 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15335
15336 breakpoint_set_commands (&tp->base, cmd_list);
15337 }
15338 else if (!VEC_empty (char_ptr, utp->actions)
15339 || !VEC_empty (char_ptr, utp->step_actions))
15340 warning (_("Uploaded tracepoint %d actions "
15341 "have no source form, ignoring them"),
15342 utp->number);
15343
15344 /* Copy any status information that might be available. */
15345 tp->base.hit_count = utp->hit_count;
15346 tp->traceframe_usage = utp->traceframe_usage;
15347
15348 return tp;
15349 }
15350
15351 /* Print information on tracepoint number TPNUM_EXP, or all if
15352 omitted. */
15353
15354 static void
15355 tracepoints_info (char *args, int from_tty)
15356 {
15357 struct ui_out *uiout = current_uiout;
15358 int num_printed;
15359
15360 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15361
15362 if (num_printed == 0)
15363 {
15364 if (args == NULL || *args == '\0')
15365 ui_out_message (uiout, 0, "No tracepoints.\n");
15366 else
15367 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15368 }
15369
15370 default_collect_info ();
15371 }
15372
15373 /* The 'enable trace' command enables tracepoints.
15374 Not supported by all targets. */
15375 static void
15376 enable_trace_command (char *args, int from_tty)
15377 {
15378 enable_command (args, from_tty);
15379 }
15380
15381 /* The 'disable trace' command disables tracepoints.
15382 Not supported by all targets. */
15383 static void
15384 disable_trace_command (char *args, int from_tty)
15385 {
15386 disable_command (args, from_tty);
15387 }
15388
15389 /* Remove a tracepoint (or all if no argument). */
15390 static void
15391 delete_trace_command (char *arg, int from_tty)
15392 {
15393 struct breakpoint *b, *b_tmp;
15394
15395 dont_repeat ();
15396
15397 if (arg == 0)
15398 {
15399 int breaks_to_delete = 0;
15400
15401 /* Delete all breakpoints if no argument.
15402 Do not delete internal or call-dummy breakpoints, these
15403 have to be deleted with an explicit breakpoint number
15404 argument. */
15405 ALL_TRACEPOINTS (b)
15406 if (is_tracepoint (b) && user_breakpoint_p (b))
15407 {
15408 breaks_to_delete = 1;
15409 break;
15410 }
15411
15412 /* Ask user only if there are some breakpoints to delete. */
15413 if (!from_tty
15414 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15415 {
15416 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15417 if (is_tracepoint (b) && user_breakpoint_p (b))
15418 delete_breakpoint (b);
15419 }
15420 }
15421 else
15422 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15423 }
15424
15425 /* Helper function for trace_pass_command. */
15426
15427 static void
15428 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15429 {
15430 tp->pass_count = count;
15431 observer_notify_breakpoint_modified (&tp->base);
15432 if (from_tty)
15433 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15434 tp->base.number, count);
15435 }
15436
15437 /* Set passcount for tracepoint.
15438
15439 First command argument is passcount, second is tracepoint number.
15440 If tracepoint number omitted, apply to most recently defined.
15441 Also accepts special argument "all". */
15442
15443 static void
15444 trace_pass_command (char *args, int from_tty)
15445 {
15446 struct tracepoint *t1;
15447 unsigned int count;
15448
15449 if (args == 0 || *args == 0)
15450 error (_("passcount command requires an "
15451 "argument (count + optional TP num)"));
15452
15453 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15454
15455 args = skip_spaces (args);
15456 if (*args && strncasecmp (args, "all", 3) == 0)
15457 {
15458 struct breakpoint *b;
15459
15460 args += 3; /* Skip special argument "all". */
15461 if (*args)
15462 error (_("Junk at end of arguments."));
15463
15464 ALL_TRACEPOINTS (b)
15465 {
15466 t1 = (struct tracepoint *) b;
15467 trace_pass_set_count (t1, count, from_tty);
15468 }
15469 }
15470 else if (*args == '\0')
15471 {
15472 t1 = get_tracepoint_by_number (&args, NULL, 1);
15473 if (t1)
15474 trace_pass_set_count (t1, count, from_tty);
15475 }
15476 else
15477 {
15478 struct get_number_or_range_state state;
15479
15480 init_number_or_range (&state, args);
15481 while (!state.finished)
15482 {
15483 t1 = get_tracepoint_by_number (&args, &state, 1);
15484 if (t1)
15485 trace_pass_set_count (t1, count, from_tty);
15486 }
15487 }
15488 }
15489
15490 struct tracepoint *
15491 get_tracepoint (int num)
15492 {
15493 struct breakpoint *t;
15494
15495 ALL_TRACEPOINTS (t)
15496 if (t->number == num)
15497 return (struct tracepoint *) t;
15498
15499 return NULL;
15500 }
15501
15502 /* Find the tracepoint with the given target-side number (which may be
15503 different from the tracepoint number after disconnecting and
15504 reconnecting). */
15505
15506 struct tracepoint *
15507 get_tracepoint_by_number_on_target (int num)
15508 {
15509 struct breakpoint *b;
15510
15511 ALL_TRACEPOINTS (b)
15512 {
15513 struct tracepoint *t = (struct tracepoint *) b;
15514
15515 if (t->number_on_target == num)
15516 return t;
15517 }
15518
15519 return NULL;
15520 }
15521
15522 /* Utility: parse a tracepoint number and look it up in the list.
15523 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15524 If OPTIONAL_P is true, then if the argument is missing, the most
15525 recent tracepoint (tracepoint_count) is returned. */
15526 struct tracepoint *
15527 get_tracepoint_by_number (char **arg,
15528 struct get_number_or_range_state *state,
15529 int optional_p)
15530 {
15531 struct breakpoint *t;
15532 int tpnum;
15533 char *instring = arg == NULL ? NULL : *arg;
15534
15535 if (state)
15536 {
15537 gdb_assert (!state->finished);
15538 tpnum = get_number_or_range (state);
15539 }
15540 else if (arg == NULL || *arg == NULL || ! **arg)
15541 {
15542 if (optional_p)
15543 tpnum = tracepoint_count;
15544 else
15545 error_no_arg (_("tracepoint number"));
15546 }
15547 else
15548 tpnum = get_number (arg);
15549
15550 if (tpnum <= 0)
15551 {
15552 if (instring && *instring)
15553 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15554 instring);
15555 else
15556 printf_filtered (_("Tracepoint argument missing "
15557 "and no previous tracepoint\n"));
15558 return NULL;
15559 }
15560
15561 ALL_TRACEPOINTS (t)
15562 if (t->number == tpnum)
15563 {
15564 return (struct tracepoint *) t;
15565 }
15566
15567 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15568 return NULL;
15569 }
15570
15571 void
15572 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15573 {
15574 if (b->thread != -1)
15575 fprintf_unfiltered (fp, " thread %d", b->thread);
15576
15577 if (b->task != 0)
15578 fprintf_unfiltered (fp, " task %d", b->task);
15579
15580 fprintf_unfiltered (fp, "\n");
15581 }
15582
15583 /* Save information on user settable breakpoints (watchpoints, etc) to
15584 a new script file named FILENAME. If FILTER is non-NULL, call it
15585 on each breakpoint and only include the ones for which it returns
15586 non-zero. */
15587
15588 static void
15589 save_breakpoints (char *filename, int from_tty,
15590 int (*filter) (const struct breakpoint *))
15591 {
15592 struct breakpoint *tp;
15593 int any = 0;
15594 struct cleanup *cleanup;
15595 struct ui_file *fp;
15596 int extra_trace_bits = 0;
15597
15598 if (filename == 0 || *filename == 0)
15599 error (_("Argument required (file name in which to save)"));
15600
15601 /* See if we have anything to save. */
15602 ALL_BREAKPOINTS (tp)
15603 {
15604 /* Skip internal and momentary breakpoints. */
15605 if (!user_breakpoint_p (tp))
15606 continue;
15607
15608 /* If we have a filter, only save the breakpoints it accepts. */
15609 if (filter && !filter (tp))
15610 continue;
15611
15612 any = 1;
15613
15614 if (is_tracepoint (tp))
15615 {
15616 extra_trace_bits = 1;
15617
15618 /* We can stop searching. */
15619 break;
15620 }
15621 }
15622
15623 if (!any)
15624 {
15625 warning (_("Nothing to save."));
15626 return;
15627 }
15628
15629 filename = tilde_expand (filename);
15630 cleanup = make_cleanup (xfree, filename);
15631 fp = gdb_fopen (filename, "w");
15632 if (!fp)
15633 error (_("Unable to open file '%s' for saving (%s)"),
15634 filename, safe_strerror (errno));
15635 make_cleanup_ui_file_delete (fp);
15636
15637 if (extra_trace_bits)
15638 save_trace_state_variables (fp);
15639
15640 ALL_BREAKPOINTS (tp)
15641 {
15642 /* Skip internal and momentary breakpoints. */
15643 if (!user_breakpoint_p (tp))
15644 continue;
15645
15646 /* If we have a filter, only save the breakpoints it accepts. */
15647 if (filter && !filter (tp))
15648 continue;
15649
15650 tp->ops->print_recreate (tp, fp);
15651
15652 /* Note, we can't rely on tp->number for anything, as we can't
15653 assume the recreated breakpoint numbers will match. Use $bpnum
15654 instead. */
15655
15656 if (tp->cond_string)
15657 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15658
15659 if (tp->ignore_count)
15660 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15661
15662 if (tp->type != bp_dprintf && tp->commands)
15663 {
15664 volatile struct gdb_exception ex;
15665
15666 fprintf_unfiltered (fp, " commands\n");
15667
15668 ui_out_redirect (current_uiout, fp);
15669 TRY_CATCH (ex, RETURN_MASK_ALL)
15670 {
15671 print_command_lines (current_uiout, tp->commands->commands, 2);
15672 }
15673 ui_out_redirect (current_uiout, NULL);
15674
15675 if (ex.reason < 0)
15676 throw_exception (ex);
15677
15678 fprintf_unfiltered (fp, " end\n");
15679 }
15680
15681 if (tp->enable_state == bp_disabled)
15682 fprintf_unfiltered (fp, "disable\n");
15683
15684 /* If this is a multi-location breakpoint, check if the locations
15685 should be individually disabled. Watchpoint locations are
15686 special, and not user visible. */
15687 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15688 {
15689 struct bp_location *loc;
15690 int n = 1;
15691
15692 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15693 if (!loc->enabled)
15694 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15695 }
15696 }
15697
15698 if (extra_trace_bits && *default_collect)
15699 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15700
15701 if (from_tty)
15702 printf_filtered (_("Saved to file '%s'.\n"), filename);
15703 do_cleanups (cleanup);
15704 }
15705
15706 /* The `save breakpoints' command. */
15707
15708 static void
15709 save_breakpoints_command (char *args, int from_tty)
15710 {
15711 save_breakpoints (args, from_tty, NULL);
15712 }
15713
15714 /* The `save tracepoints' command. */
15715
15716 static void
15717 save_tracepoints_command (char *args, int from_tty)
15718 {
15719 save_breakpoints (args, from_tty, is_tracepoint);
15720 }
15721
15722 /* Create a vector of all tracepoints. */
15723
15724 VEC(breakpoint_p) *
15725 all_tracepoints (void)
15726 {
15727 VEC(breakpoint_p) *tp_vec = 0;
15728 struct breakpoint *tp;
15729
15730 ALL_TRACEPOINTS (tp)
15731 {
15732 VEC_safe_push (breakpoint_p, tp_vec, tp);
15733 }
15734
15735 return tp_vec;
15736 }
15737
15738 \f
15739 /* This help string is used for the break, hbreak, tbreak and thbreak
15740 commands. It is defined as a macro to prevent duplication.
15741 COMMAND should be a string constant containing the name of the
15742 command. */
15743 #define BREAK_ARGS_HELP(command) \
15744 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15745 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15746 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15747 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15748 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15749 If a line number is specified, break at start of code for that line.\n\
15750 If a function is specified, break at start of code for that function.\n\
15751 If an address is specified, break at that exact address.\n\
15752 With no LOCATION, uses current execution address of the selected\n\
15753 stack frame. This is useful for breaking on return to a stack frame.\n\
15754 \n\
15755 THREADNUM is the number from \"info threads\".\n\
15756 CONDITION is a boolean expression.\n\
15757 \n\
15758 Multiple breakpoints at one place are permitted, and useful if their\n\
15759 conditions are different.\n\
15760 \n\
15761 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15762
15763 /* List of subcommands for "catch". */
15764 static struct cmd_list_element *catch_cmdlist;
15765
15766 /* List of subcommands for "tcatch". */
15767 static struct cmd_list_element *tcatch_cmdlist;
15768
15769 void
15770 add_catch_command (char *name, char *docstring,
15771 void (*sfunc) (char *args, int from_tty,
15772 struct cmd_list_element *command),
15773 completer_ftype *completer,
15774 void *user_data_catch,
15775 void *user_data_tcatch)
15776 {
15777 struct cmd_list_element *command;
15778
15779 command = add_cmd (name, class_breakpoint, NULL, docstring,
15780 &catch_cmdlist);
15781 set_cmd_sfunc (command, sfunc);
15782 set_cmd_context (command, user_data_catch);
15783 set_cmd_completer (command, completer);
15784
15785 command = add_cmd (name, class_breakpoint, NULL, docstring,
15786 &tcatch_cmdlist);
15787 set_cmd_sfunc (command, sfunc);
15788 set_cmd_context (command, user_data_tcatch);
15789 set_cmd_completer (command, completer);
15790 }
15791
15792 static void
15793 clear_syscall_counts (struct inferior *inf)
15794 {
15795 struct catch_syscall_inferior_data *inf_data
15796 = get_catch_syscall_inferior_data (inf);
15797
15798 inf_data->total_syscalls_count = 0;
15799 inf_data->any_syscall_count = 0;
15800 VEC_free (int, inf_data->syscalls_counts);
15801 }
15802
15803 static void
15804 save_command (char *arg, int from_tty)
15805 {
15806 printf_unfiltered (_("\"save\" must be followed by "
15807 "the name of a save subcommand.\n"));
15808 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15809 }
15810
15811 struct breakpoint *
15812 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15813 void *data)
15814 {
15815 struct breakpoint *b, *b_tmp;
15816
15817 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15818 {
15819 if ((*callback) (b, data))
15820 return b;
15821 }
15822
15823 return NULL;
15824 }
15825
15826 /* Zero if any of the breakpoint's locations could be a location where
15827 functions have been inlined, nonzero otherwise. */
15828
15829 static int
15830 is_non_inline_function (struct breakpoint *b)
15831 {
15832 /* The shared library event breakpoint is set on the address of a
15833 non-inline function. */
15834 if (b->type == bp_shlib_event)
15835 return 1;
15836
15837 return 0;
15838 }
15839
15840 /* Nonzero if the specified PC cannot be a location where functions
15841 have been inlined. */
15842
15843 int
15844 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15845 const struct target_waitstatus *ws)
15846 {
15847 struct breakpoint *b;
15848 struct bp_location *bl;
15849
15850 ALL_BREAKPOINTS (b)
15851 {
15852 if (!is_non_inline_function (b))
15853 continue;
15854
15855 for (bl = b->loc; bl != NULL; bl = bl->next)
15856 {
15857 if (!bl->shlib_disabled
15858 && bpstat_check_location (bl, aspace, pc, ws))
15859 return 1;
15860 }
15861 }
15862
15863 return 0;
15864 }
15865
15866 /* Remove any references to OBJFILE which is going to be freed. */
15867
15868 void
15869 breakpoint_free_objfile (struct objfile *objfile)
15870 {
15871 struct bp_location **locp, *loc;
15872
15873 ALL_BP_LOCATIONS (loc, locp)
15874 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15875 loc->symtab = NULL;
15876 }
15877
15878 void
15879 initialize_breakpoint_ops (void)
15880 {
15881 static int initialized = 0;
15882
15883 struct breakpoint_ops *ops;
15884
15885 if (initialized)
15886 return;
15887 initialized = 1;
15888
15889 /* The breakpoint_ops structure to be inherit by all kinds of
15890 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15891 internal and momentary breakpoints, etc.). */
15892 ops = &bkpt_base_breakpoint_ops;
15893 *ops = base_breakpoint_ops;
15894 ops->re_set = bkpt_re_set;
15895 ops->insert_location = bkpt_insert_location;
15896 ops->remove_location = bkpt_remove_location;
15897 ops->breakpoint_hit = bkpt_breakpoint_hit;
15898 ops->create_sals_from_address = bkpt_create_sals_from_address;
15899 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15900 ops->decode_linespec = bkpt_decode_linespec;
15901
15902 /* The breakpoint_ops structure to be used in regular breakpoints. */
15903 ops = &bkpt_breakpoint_ops;
15904 *ops = bkpt_base_breakpoint_ops;
15905 ops->re_set = bkpt_re_set;
15906 ops->resources_needed = bkpt_resources_needed;
15907 ops->print_it = bkpt_print_it;
15908 ops->print_mention = bkpt_print_mention;
15909 ops->print_recreate = bkpt_print_recreate;
15910
15911 /* Ranged breakpoints. */
15912 ops = &ranged_breakpoint_ops;
15913 *ops = bkpt_breakpoint_ops;
15914 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15915 ops->resources_needed = resources_needed_ranged_breakpoint;
15916 ops->print_it = print_it_ranged_breakpoint;
15917 ops->print_one = print_one_ranged_breakpoint;
15918 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15919 ops->print_mention = print_mention_ranged_breakpoint;
15920 ops->print_recreate = print_recreate_ranged_breakpoint;
15921
15922 /* Internal breakpoints. */
15923 ops = &internal_breakpoint_ops;
15924 *ops = bkpt_base_breakpoint_ops;
15925 ops->re_set = internal_bkpt_re_set;
15926 ops->check_status = internal_bkpt_check_status;
15927 ops->print_it = internal_bkpt_print_it;
15928 ops->print_mention = internal_bkpt_print_mention;
15929
15930 /* Momentary breakpoints. */
15931 ops = &momentary_breakpoint_ops;
15932 *ops = bkpt_base_breakpoint_ops;
15933 ops->re_set = momentary_bkpt_re_set;
15934 ops->check_status = momentary_bkpt_check_status;
15935 ops->print_it = momentary_bkpt_print_it;
15936 ops->print_mention = momentary_bkpt_print_mention;
15937
15938 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15939 ops = &longjmp_breakpoint_ops;
15940 *ops = momentary_breakpoint_ops;
15941 ops->dtor = longjmp_bkpt_dtor;
15942
15943 /* Probe breakpoints. */
15944 ops = &bkpt_probe_breakpoint_ops;
15945 *ops = bkpt_breakpoint_ops;
15946 ops->insert_location = bkpt_probe_insert_location;
15947 ops->remove_location = bkpt_probe_remove_location;
15948 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15949 ops->decode_linespec = bkpt_probe_decode_linespec;
15950
15951 /* Watchpoints. */
15952 ops = &watchpoint_breakpoint_ops;
15953 *ops = base_breakpoint_ops;
15954 ops->dtor = dtor_watchpoint;
15955 ops->re_set = re_set_watchpoint;
15956 ops->insert_location = insert_watchpoint;
15957 ops->remove_location = remove_watchpoint;
15958 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15959 ops->check_status = check_status_watchpoint;
15960 ops->resources_needed = resources_needed_watchpoint;
15961 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15962 ops->print_it = print_it_watchpoint;
15963 ops->print_mention = print_mention_watchpoint;
15964 ops->print_recreate = print_recreate_watchpoint;
15965 ops->explains_signal = explains_signal_watchpoint;
15966
15967 /* Masked watchpoints. */
15968 ops = &masked_watchpoint_breakpoint_ops;
15969 *ops = watchpoint_breakpoint_ops;
15970 ops->insert_location = insert_masked_watchpoint;
15971 ops->remove_location = remove_masked_watchpoint;
15972 ops->resources_needed = resources_needed_masked_watchpoint;
15973 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15974 ops->print_it = print_it_masked_watchpoint;
15975 ops->print_one_detail = print_one_detail_masked_watchpoint;
15976 ops->print_mention = print_mention_masked_watchpoint;
15977 ops->print_recreate = print_recreate_masked_watchpoint;
15978
15979 /* Tracepoints. */
15980 ops = &tracepoint_breakpoint_ops;
15981 *ops = base_breakpoint_ops;
15982 ops->re_set = tracepoint_re_set;
15983 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15984 ops->print_one_detail = tracepoint_print_one_detail;
15985 ops->print_mention = tracepoint_print_mention;
15986 ops->print_recreate = tracepoint_print_recreate;
15987 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15988 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15989 ops->decode_linespec = tracepoint_decode_linespec;
15990
15991 /* Probe tracepoints. */
15992 ops = &tracepoint_probe_breakpoint_ops;
15993 *ops = tracepoint_breakpoint_ops;
15994 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15995 ops->decode_linespec = tracepoint_probe_decode_linespec;
15996
15997 /* Static tracepoints with marker (`-m'). */
15998 ops = &strace_marker_breakpoint_ops;
15999 *ops = tracepoint_breakpoint_ops;
16000 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16001 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16002 ops->decode_linespec = strace_marker_decode_linespec;
16003
16004 /* Fork catchpoints. */
16005 ops = &catch_fork_breakpoint_ops;
16006 *ops = base_breakpoint_ops;
16007 ops->insert_location = insert_catch_fork;
16008 ops->remove_location = remove_catch_fork;
16009 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16010 ops->print_it = print_it_catch_fork;
16011 ops->print_one = print_one_catch_fork;
16012 ops->print_mention = print_mention_catch_fork;
16013 ops->print_recreate = print_recreate_catch_fork;
16014
16015 /* Vfork catchpoints. */
16016 ops = &catch_vfork_breakpoint_ops;
16017 *ops = base_breakpoint_ops;
16018 ops->insert_location = insert_catch_vfork;
16019 ops->remove_location = remove_catch_vfork;
16020 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16021 ops->print_it = print_it_catch_vfork;
16022 ops->print_one = print_one_catch_vfork;
16023 ops->print_mention = print_mention_catch_vfork;
16024 ops->print_recreate = print_recreate_catch_vfork;
16025
16026 /* Exec catchpoints. */
16027 ops = &catch_exec_breakpoint_ops;
16028 *ops = base_breakpoint_ops;
16029 ops->dtor = dtor_catch_exec;
16030 ops->insert_location = insert_catch_exec;
16031 ops->remove_location = remove_catch_exec;
16032 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16033 ops->print_it = print_it_catch_exec;
16034 ops->print_one = print_one_catch_exec;
16035 ops->print_mention = print_mention_catch_exec;
16036 ops->print_recreate = print_recreate_catch_exec;
16037
16038 /* Syscall catchpoints. */
16039 ops = &catch_syscall_breakpoint_ops;
16040 *ops = base_breakpoint_ops;
16041 ops->dtor = dtor_catch_syscall;
16042 ops->insert_location = insert_catch_syscall;
16043 ops->remove_location = remove_catch_syscall;
16044 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16045 ops->print_it = print_it_catch_syscall;
16046 ops->print_one = print_one_catch_syscall;
16047 ops->print_mention = print_mention_catch_syscall;
16048 ops->print_recreate = print_recreate_catch_syscall;
16049
16050 /* Solib-related catchpoints. */
16051 ops = &catch_solib_breakpoint_ops;
16052 *ops = base_breakpoint_ops;
16053 ops->dtor = dtor_catch_solib;
16054 ops->insert_location = insert_catch_solib;
16055 ops->remove_location = remove_catch_solib;
16056 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16057 ops->check_status = check_status_catch_solib;
16058 ops->print_it = print_it_catch_solib;
16059 ops->print_one = print_one_catch_solib;
16060 ops->print_mention = print_mention_catch_solib;
16061 ops->print_recreate = print_recreate_catch_solib;
16062
16063 ops = &dprintf_breakpoint_ops;
16064 *ops = bkpt_base_breakpoint_ops;
16065 ops->re_set = dprintf_re_set;
16066 ops->resources_needed = bkpt_resources_needed;
16067 ops->print_it = bkpt_print_it;
16068 ops->print_mention = bkpt_print_mention;
16069 ops->print_recreate = dprintf_print_recreate;
16070 ops->after_condition_true = dprintf_after_condition_true;
16071 }
16072
16073 /* Chain containing all defined "enable breakpoint" subcommands. */
16074
16075 static struct cmd_list_element *enablebreaklist = NULL;
16076
16077 void
16078 _initialize_breakpoint (void)
16079 {
16080 struct cmd_list_element *c;
16081
16082 initialize_breakpoint_ops ();
16083
16084 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16085 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16086 observer_attach_inferior_exit (clear_syscall_counts);
16087 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16088
16089 breakpoint_objfile_key
16090 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16091
16092 catch_syscall_inferior_data
16093 = register_inferior_data_with_cleanup (NULL,
16094 catch_syscall_inferior_data_cleanup);
16095
16096 breakpoint_chain = 0;
16097 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16098 before a breakpoint is set. */
16099 breakpoint_count = 0;
16100
16101 tracepoint_count = 0;
16102
16103 add_com ("ignore", class_breakpoint, ignore_command, _("\
16104 Set ignore-count of breakpoint number N to COUNT.\n\
16105 Usage is `ignore N COUNT'."));
16106 if (xdb_commands)
16107 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16108
16109 add_com ("commands", class_breakpoint, commands_command, _("\
16110 Set commands to be executed when a breakpoint is hit.\n\
16111 Give breakpoint number as argument after \"commands\".\n\
16112 With no argument, the targeted breakpoint is the last one set.\n\
16113 The commands themselves follow starting on the next line.\n\
16114 Type a line containing \"end\" to indicate the end of them.\n\
16115 Give \"silent\" as the first line to make the breakpoint silent;\n\
16116 then no output is printed when it is hit, except what the commands print."));
16117
16118 c = add_com ("condition", class_breakpoint, condition_command, _("\
16119 Specify breakpoint number N to break only if COND is true.\n\
16120 Usage is `condition N COND', where N is an integer and COND is an\n\
16121 expression to be evaluated whenever breakpoint N is reached."));
16122 set_cmd_completer (c, condition_completer);
16123
16124 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16125 Set a temporary breakpoint.\n\
16126 Like \"break\" except the breakpoint is only temporary,\n\
16127 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16128 by using \"enable delete\" on the breakpoint number.\n\
16129 \n"
16130 BREAK_ARGS_HELP ("tbreak")));
16131 set_cmd_completer (c, location_completer);
16132
16133 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16134 Set a hardware assisted breakpoint.\n\
16135 Like \"break\" except the breakpoint requires hardware support,\n\
16136 some target hardware may not have this support.\n\
16137 \n"
16138 BREAK_ARGS_HELP ("hbreak")));
16139 set_cmd_completer (c, location_completer);
16140
16141 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16142 Set a temporary hardware assisted breakpoint.\n\
16143 Like \"hbreak\" except the breakpoint is only temporary,\n\
16144 so it will be deleted when hit.\n\
16145 \n"
16146 BREAK_ARGS_HELP ("thbreak")));
16147 set_cmd_completer (c, location_completer);
16148
16149 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16150 Enable some breakpoints.\n\
16151 Give breakpoint numbers (separated by spaces) as arguments.\n\
16152 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16153 This is used to cancel the effect of the \"disable\" command.\n\
16154 With a subcommand you can enable temporarily."),
16155 &enablelist, "enable ", 1, &cmdlist);
16156 if (xdb_commands)
16157 add_com ("ab", class_breakpoint, enable_command, _("\
16158 Enable some breakpoints.\n\
16159 Give breakpoint numbers (separated by spaces) as arguments.\n\
16160 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16161 This is used to cancel the effect of the \"disable\" command.\n\
16162 With a subcommand you can enable temporarily."));
16163
16164 add_com_alias ("en", "enable", class_breakpoint, 1);
16165
16166 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16167 Enable some breakpoints.\n\
16168 Give breakpoint numbers (separated by spaces) as arguments.\n\
16169 This is used to cancel the effect of the \"disable\" command.\n\
16170 May be abbreviated to simply \"enable\".\n"),
16171 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16172
16173 add_cmd ("once", no_class, enable_once_command, _("\
16174 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16175 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16176 &enablebreaklist);
16177
16178 add_cmd ("delete", no_class, enable_delete_command, _("\
16179 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16180 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16181 &enablebreaklist);
16182
16183 add_cmd ("count", no_class, enable_count_command, _("\
16184 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16185 If a breakpoint is hit while enabled in this fashion,\n\
16186 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16187 &enablebreaklist);
16188
16189 add_cmd ("delete", no_class, enable_delete_command, _("\
16190 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16191 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16192 &enablelist);
16193
16194 add_cmd ("once", no_class, enable_once_command, _("\
16195 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16196 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16197 &enablelist);
16198
16199 add_cmd ("count", no_class, enable_count_command, _("\
16200 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16201 If a breakpoint is hit while enabled in this fashion,\n\
16202 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16203 &enablelist);
16204
16205 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16206 Disable some breakpoints.\n\
16207 Arguments are breakpoint numbers with spaces in between.\n\
16208 To disable all breakpoints, give no argument.\n\
16209 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16210 &disablelist, "disable ", 1, &cmdlist);
16211 add_com_alias ("dis", "disable", class_breakpoint, 1);
16212 add_com_alias ("disa", "disable", class_breakpoint, 1);
16213 if (xdb_commands)
16214 add_com ("sb", class_breakpoint, disable_command, _("\
16215 Disable some breakpoints.\n\
16216 Arguments are breakpoint numbers with spaces in between.\n\
16217 To disable all breakpoints, give no argument.\n\
16218 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16219
16220 add_cmd ("breakpoints", class_alias, disable_command, _("\
16221 Disable some breakpoints.\n\
16222 Arguments are breakpoint numbers with spaces in between.\n\
16223 To disable all breakpoints, give no argument.\n\
16224 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16225 This command may be abbreviated \"disable\"."),
16226 &disablelist);
16227
16228 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16229 Delete some breakpoints or auto-display expressions.\n\
16230 Arguments are breakpoint numbers with spaces in between.\n\
16231 To delete all breakpoints, give no argument.\n\
16232 \n\
16233 Also a prefix command for deletion of other GDB objects.\n\
16234 The \"unset\" command is also an alias for \"delete\"."),
16235 &deletelist, "delete ", 1, &cmdlist);
16236 add_com_alias ("d", "delete", class_breakpoint, 1);
16237 add_com_alias ("del", "delete", class_breakpoint, 1);
16238 if (xdb_commands)
16239 add_com ("db", class_breakpoint, delete_command, _("\
16240 Delete some breakpoints.\n\
16241 Arguments are breakpoint numbers with spaces in between.\n\
16242 To delete all breakpoints, give no argument.\n"));
16243
16244 add_cmd ("breakpoints", class_alias, delete_command, _("\
16245 Delete some breakpoints or auto-display expressions.\n\
16246 Arguments are breakpoint numbers with spaces in between.\n\
16247 To delete all breakpoints, give no argument.\n\
16248 This command may be abbreviated \"delete\"."),
16249 &deletelist);
16250
16251 add_com ("clear", class_breakpoint, clear_command, _("\
16252 Clear breakpoint at specified line or function.\n\
16253 Argument may be line number, function name, or \"*\" and an address.\n\
16254 If line number is specified, all breakpoints in that line are cleared.\n\
16255 If function is specified, breakpoints at beginning of function are cleared.\n\
16256 If an address is specified, breakpoints at that address are cleared.\n\
16257 \n\
16258 With no argument, clears all breakpoints in the line that the selected frame\n\
16259 is executing in.\n\
16260 \n\
16261 See also the \"delete\" command which clears breakpoints by number."));
16262 add_com_alias ("cl", "clear", class_breakpoint, 1);
16263
16264 c = add_com ("break", class_breakpoint, break_command, _("\
16265 Set breakpoint at specified line or function.\n"
16266 BREAK_ARGS_HELP ("break")));
16267 set_cmd_completer (c, location_completer);
16268
16269 add_com_alias ("b", "break", class_run, 1);
16270 add_com_alias ("br", "break", class_run, 1);
16271 add_com_alias ("bre", "break", class_run, 1);
16272 add_com_alias ("brea", "break", class_run, 1);
16273
16274 if (xdb_commands)
16275 add_com_alias ("ba", "break", class_breakpoint, 1);
16276
16277 if (dbx_commands)
16278 {
16279 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16280 Break in function/address or break at a line in the current file."),
16281 &stoplist, "stop ", 1, &cmdlist);
16282 add_cmd ("in", class_breakpoint, stopin_command,
16283 _("Break in function or address."), &stoplist);
16284 add_cmd ("at", class_breakpoint, stopat_command,
16285 _("Break at a line in the current file."), &stoplist);
16286 add_com ("status", class_info, breakpoints_info, _("\
16287 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16288 The \"Type\" column indicates one of:\n\
16289 \tbreakpoint - normal breakpoint\n\
16290 \twatchpoint - watchpoint\n\
16291 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16292 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16293 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16294 address and file/line number respectively.\n\
16295 \n\
16296 Convenience variable \"$_\" and default examine address for \"x\"\n\
16297 are set to the address of the last breakpoint listed unless the command\n\
16298 is prefixed with \"server \".\n\n\
16299 Convenience variable \"$bpnum\" contains the number of the last\n\
16300 breakpoint set."));
16301 }
16302
16303 add_info ("breakpoints", breakpoints_info, _("\
16304 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16305 The \"Type\" column indicates one of:\n\
16306 \tbreakpoint - normal breakpoint\n\
16307 \twatchpoint - watchpoint\n\
16308 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16309 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16310 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16311 address and file/line number respectively.\n\
16312 \n\
16313 Convenience variable \"$_\" and default examine address for \"x\"\n\
16314 are set to the address of the last breakpoint listed unless the command\n\
16315 is prefixed with \"server \".\n\n\
16316 Convenience variable \"$bpnum\" contains the number of the last\n\
16317 breakpoint set."));
16318
16319 add_info_alias ("b", "breakpoints", 1);
16320
16321 if (xdb_commands)
16322 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16323 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16324 The \"Type\" column indicates one of:\n\
16325 \tbreakpoint - normal breakpoint\n\
16326 \twatchpoint - watchpoint\n\
16327 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16328 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16329 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16330 address and file/line number respectively.\n\
16331 \n\
16332 Convenience variable \"$_\" and default examine address for \"x\"\n\
16333 are set to the address of the last breakpoint listed unless the command\n\
16334 is prefixed with \"server \".\n\n\
16335 Convenience variable \"$bpnum\" contains the number of the last\n\
16336 breakpoint set."));
16337
16338 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16339 Status of all breakpoints, or breakpoint number NUMBER.\n\
16340 The \"Type\" column indicates one of:\n\
16341 \tbreakpoint - normal breakpoint\n\
16342 \twatchpoint - watchpoint\n\
16343 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16344 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16345 \tuntil - internal breakpoint used by the \"until\" command\n\
16346 \tfinish - internal breakpoint used by the \"finish\" command\n\
16347 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16348 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16349 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16350 address and file/line number respectively.\n\
16351 \n\
16352 Convenience variable \"$_\" and default examine address for \"x\"\n\
16353 are set to the address of the last breakpoint listed unless the command\n\
16354 is prefixed with \"server \".\n\n\
16355 Convenience variable \"$bpnum\" contains the number of the last\n\
16356 breakpoint set."),
16357 &maintenanceinfolist);
16358
16359 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16360 Set catchpoints to catch events."),
16361 &catch_cmdlist, "catch ",
16362 0/*allow-unknown*/, &cmdlist);
16363
16364 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16365 Set temporary catchpoints to catch events."),
16366 &tcatch_cmdlist, "tcatch ",
16367 0/*allow-unknown*/, &cmdlist);
16368
16369 add_catch_command ("fork", _("Catch calls to fork."),
16370 catch_fork_command_1,
16371 NULL,
16372 (void *) (uintptr_t) catch_fork_permanent,
16373 (void *) (uintptr_t) catch_fork_temporary);
16374 add_catch_command ("vfork", _("Catch calls to vfork."),
16375 catch_fork_command_1,
16376 NULL,
16377 (void *) (uintptr_t) catch_vfork_permanent,
16378 (void *) (uintptr_t) catch_vfork_temporary);
16379 add_catch_command ("exec", _("Catch calls to exec."),
16380 catch_exec_command_1,
16381 NULL,
16382 CATCH_PERMANENT,
16383 CATCH_TEMPORARY);
16384 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16385 Usage: catch load [REGEX]\n\
16386 If REGEX is given, only stop for libraries matching the regular expression."),
16387 catch_load_command_1,
16388 NULL,
16389 CATCH_PERMANENT,
16390 CATCH_TEMPORARY);
16391 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16392 Usage: catch unload [REGEX]\n\
16393 If REGEX is given, only stop for libraries matching the regular expression."),
16394 catch_unload_command_1,
16395 NULL,
16396 CATCH_PERMANENT,
16397 CATCH_TEMPORARY);
16398 add_catch_command ("syscall", _("\
16399 Catch system calls by their names and/or numbers.\n\
16400 Arguments say which system calls to catch. If no arguments\n\
16401 are given, every system call will be caught.\n\
16402 Arguments, if given, should be one or more system call names\n\
16403 (if your system supports that), or system call numbers."),
16404 catch_syscall_command_1,
16405 catch_syscall_completer,
16406 CATCH_PERMANENT,
16407 CATCH_TEMPORARY);
16408
16409 c = add_com ("watch", class_breakpoint, watch_command, _("\
16410 Set a watchpoint for an expression.\n\
16411 Usage: watch [-l|-location] EXPRESSION\n\
16412 A watchpoint stops execution of your program whenever the value of\n\
16413 an expression changes.\n\
16414 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16415 the memory to which it refers."));
16416 set_cmd_completer (c, expression_completer);
16417
16418 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16419 Set a read watchpoint for an expression.\n\
16420 Usage: rwatch [-l|-location] EXPRESSION\n\
16421 A watchpoint stops execution of your program whenever the value of\n\
16422 an expression is read.\n\
16423 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16424 the memory to which it refers."));
16425 set_cmd_completer (c, expression_completer);
16426
16427 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16428 Set a watchpoint for an expression.\n\
16429 Usage: awatch [-l|-location] EXPRESSION\n\
16430 A watchpoint stops execution of your program whenever the value of\n\
16431 an expression is either read or written.\n\
16432 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16433 the memory to which it refers."));
16434 set_cmd_completer (c, expression_completer);
16435
16436 add_info ("watchpoints", watchpoints_info, _("\
16437 Status of specified watchpoints (all watchpoints if no argument)."));
16438
16439 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16440 respond to changes - contrary to the description. */
16441 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16442 &can_use_hw_watchpoints, _("\
16443 Set debugger's willingness to use watchpoint hardware."), _("\
16444 Show debugger's willingness to use watchpoint hardware."), _("\
16445 If zero, gdb will not use hardware for new watchpoints, even if\n\
16446 such is available. (However, any hardware watchpoints that were\n\
16447 created before setting this to nonzero, will continue to use watchpoint\n\
16448 hardware.)"),
16449 NULL,
16450 show_can_use_hw_watchpoints,
16451 &setlist, &showlist);
16452
16453 can_use_hw_watchpoints = 1;
16454
16455 /* Tracepoint manipulation commands. */
16456
16457 c = add_com ("trace", class_breakpoint, trace_command, _("\
16458 Set a tracepoint at specified line or function.\n\
16459 \n"
16460 BREAK_ARGS_HELP ("trace") "\n\
16461 Do \"help tracepoints\" for info on other tracepoint commands."));
16462 set_cmd_completer (c, location_completer);
16463
16464 add_com_alias ("tp", "trace", class_alias, 0);
16465 add_com_alias ("tr", "trace", class_alias, 1);
16466 add_com_alias ("tra", "trace", class_alias, 1);
16467 add_com_alias ("trac", "trace", class_alias, 1);
16468
16469 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16470 Set a fast tracepoint at specified line or function.\n\
16471 \n"
16472 BREAK_ARGS_HELP ("ftrace") "\n\
16473 Do \"help tracepoints\" for info on other tracepoint commands."));
16474 set_cmd_completer (c, location_completer);
16475
16476 c = add_com ("strace", class_breakpoint, strace_command, _("\
16477 Set a static tracepoint at specified line, function or marker.\n\
16478 \n\
16479 strace [LOCATION] [if CONDITION]\n\
16480 LOCATION may be a line number, function name, \"*\" and an address,\n\
16481 or -m MARKER_ID.\n\
16482 If a line number is specified, probe the marker at start of code\n\
16483 for that line. If a function is specified, probe the marker at start\n\
16484 of code for that function. If an address is specified, probe the marker\n\
16485 at that exact address. If a marker id is specified, probe the marker\n\
16486 with that name. With no LOCATION, uses current execution address of\n\
16487 the selected stack frame.\n\
16488 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16489 This collects arbitrary user data passed in the probe point call to the\n\
16490 tracing library. You can inspect it when analyzing the trace buffer,\n\
16491 by printing the $_sdata variable like any other convenience variable.\n\
16492 \n\
16493 CONDITION is a boolean expression.\n\
16494 \n\
16495 Multiple tracepoints at one place are permitted, and useful if their\n\
16496 conditions are different.\n\
16497 \n\
16498 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16499 Do \"help tracepoints\" for info on other tracepoint commands."));
16500 set_cmd_completer (c, location_completer);
16501
16502 add_info ("tracepoints", tracepoints_info, _("\
16503 Status of specified tracepoints (all tracepoints if no argument).\n\
16504 Convenience variable \"$tpnum\" contains the number of the\n\
16505 last tracepoint set."));
16506
16507 add_info_alias ("tp", "tracepoints", 1);
16508
16509 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16510 Delete specified tracepoints.\n\
16511 Arguments are tracepoint numbers, separated by spaces.\n\
16512 No argument means delete all tracepoints."),
16513 &deletelist);
16514 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16515
16516 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16517 Disable specified tracepoints.\n\
16518 Arguments are tracepoint numbers, separated by spaces.\n\
16519 No argument means disable all tracepoints."),
16520 &disablelist);
16521 deprecate_cmd (c, "disable");
16522
16523 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16524 Enable specified tracepoints.\n\
16525 Arguments are tracepoint numbers, separated by spaces.\n\
16526 No argument means enable all tracepoints."),
16527 &enablelist);
16528 deprecate_cmd (c, "enable");
16529
16530 add_com ("passcount", class_trace, trace_pass_command, _("\
16531 Set the passcount for a tracepoint.\n\
16532 The trace will end when the tracepoint has been passed 'count' times.\n\
16533 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16534 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16535
16536 add_prefix_cmd ("save", class_breakpoint, save_command,
16537 _("Save breakpoint definitions as a script."),
16538 &save_cmdlist, "save ",
16539 0/*allow-unknown*/, &cmdlist);
16540
16541 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16542 Save current breakpoint definitions as a script.\n\
16543 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16544 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16545 session to restore them."),
16546 &save_cmdlist);
16547 set_cmd_completer (c, filename_completer);
16548
16549 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16550 Save current tracepoint definitions as a script.\n\
16551 Use the 'source' command in another debug session to restore them."),
16552 &save_cmdlist);
16553 set_cmd_completer (c, filename_completer);
16554
16555 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16556 deprecate_cmd (c, "save tracepoints");
16557
16558 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16559 Breakpoint specific settings\n\
16560 Configure various breakpoint-specific variables such as\n\
16561 pending breakpoint behavior"),
16562 &breakpoint_set_cmdlist, "set breakpoint ",
16563 0/*allow-unknown*/, &setlist);
16564 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16565 Breakpoint specific settings\n\
16566 Configure various breakpoint-specific variables such as\n\
16567 pending breakpoint behavior"),
16568 &breakpoint_show_cmdlist, "show breakpoint ",
16569 0/*allow-unknown*/, &showlist);
16570
16571 add_setshow_auto_boolean_cmd ("pending", no_class,
16572 &pending_break_support, _("\
16573 Set debugger's behavior regarding pending breakpoints."), _("\
16574 Show debugger's behavior regarding pending breakpoints."), _("\
16575 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16576 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16577 an error. If auto, an unrecognized breakpoint location results in a\n\
16578 user-query to see if a pending breakpoint should be created."),
16579 NULL,
16580 show_pending_break_support,
16581 &breakpoint_set_cmdlist,
16582 &breakpoint_show_cmdlist);
16583
16584 pending_break_support = AUTO_BOOLEAN_AUTO;
16585
16586 add_setshow_boolean_cmd ("auto-hw", no_class,
16587 &automatic_hardware_breakpoints, _("\
16588 Set automatic usage of hardware breakpoints."), _("\
16589 Show automatic usage of hardware breakpoints."), _("\
16590 If set, the debugger will automatically use hardware breakpoints for\n\
16591 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16592 a warning will be emitted for such breakpoints."),
16593 NULL,
16594 show_automatic_hardware_breakpoints,
16595 &breakpoint_set_cmdlist,
16596 &breakpoint_show_cmdlist);
16597
16598 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16599 &always_inserted_mode, _("\
16600 Set mode for inserting breakpoints."), _("\
16601 Show mode for inserting breakpoints."), _("\
16602 When this mode is off, breakpoints are inserted in inferior when it is\n\
16603 resumed, and removed when execution stops. When this mode is on,\n\
16604 breakpoints are inserted immediately and removed only when the user\n\
16605 deletes the breakpoint. When this mode is auto (which is the default),\n\
16606 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16607 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16608 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16609 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16610 NULL,
16611 &show_always_inserted_mode,
16612 &breakpoint_set_cmdlist,
16613 &breakpoint_show_cmdlist);
16614
16615 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16616 condition_evaluation_enums,
16617 &condition_evaluation_mode_1, _("\
16618 Set mode of breakpoint condition evaluation."), _("\
16619 Show mode of breakpoint condition evaluation."), _("\
16620 When this is set to \"host\", breakpoint conditions will be\n\
16621 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16622 breakpoint conditions will be downloaded to the target (if the target\n\
16623 supports such feature) and conditions will be evaluated on the target's side.\n\
16624 If this is set to \"auto\" (default), this will be automatically set to\n\
16625 \"target\" if it supports condition evaluation, otherwise it will\n\
16626 be set to \"gdb\""),
16627 &set_condition_evaluation_mode,
16628 &show_condition_evaluation_mode,
16629 &breakpoint_set_cmdlist,
16630 &breakpoint_show_cmdlist);
16631
16632 add_com ("break-range", class_breakpoint, break_range_command, _("\
16633 Set a breakpoint for an address range.\n\
16634 break-range START-LOCATION, END-LOCATION\n\
16635 where START-LOCATION and END-LOCATION can be one of the following:\n\
16636 LINENUM, for that line in the current file,\n\
16637 FILE:LINENUM, for that line in that file,\n\
16638 +OFFSET, for that number of lines after the current line\n\
16639 or the start of the range\n\
16640 FUNCTION, for the first line in that function,\n\
16641 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16642 *ADDRESS, for the instruction at that address.\n\
16643 \n\
16644 The breakpoint will stop execution of the inferior whenever it executes\n\
16645 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16646 range (including START-LOCATION and END-LOCATION)."));
16647
16648 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16649 Set a dynamic printf at specified line or function.\n\
16650 dprintf location,format string,arg1,arg2,...\n\
16651 location may be a line number, function name, or \"*\" and an address.\n\
16652 If a line number is specified, break at start of code for that line.\n\
16653 If a function is specified, break at start of code for that function."));
16654 set_cmd_completer (c, location_completer);
16655
16656 add_setshow_enum_cmd ("dprintf-style", class_support,
16657 dprintf_style_enums, &dprintf_style, _("\
16658 Set the style of usage for dynamic printf."), _("\
16659 Show the style of usage for dynamic printf."), _("\
16660 This setting chooses how GDB will do a dynamic printf.\n\
16661 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16662 console, as with the \"printf\" command.\n\
16663 If the value is \"call\", the print is done by calling a function in your\n\
16664 program; by default printf(), but you can choose a different function or\n\
16665 output stream by setting dprintf-function and dprintf-channel."),
16666 update_dprintf_commands, NULL,
16667 &setlist, &showlist);
16668
16669 dprintf_function = xstrdup ("printf");
16670 add_setshow_string_cmd ("dprintf-function", class_support,
16671 &dprintf_function, _("\
16672 Set the function to use for dynamic printf"), _("\
16673 Show the function to use for dynamic printf"), NULL,
16674 update_dprintf_commands, NULL,
16675 &setlist, &showlist);
16676
16677 dprintf_channel = xstrdup ("");
16678 add_setshow_string_cmd ("dprintf-channel", class_support,
16679 &dprintf_channel, _("\
16680 Set the channel to use for dynamic printf"), _("\
16681 Show the channel to use for dynamic printf"), NULL,
16682 update_dprintf_commands, NULL,
16683 &setlist, &showlist);
16684
16685 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16686 &disconnected_dprintf, _("\
16687 Set whether dprintf continues after GDB disconnects."), _("\
16688 Show whether dprintf continues after GDB disconnects."), _("\
16689 Use this to let dprintf commands continue to hit and produce output\n\
16690 even if GDB disconnects or detaches from the target."),
16691 NULL,
16692 NULL,
16693 &setlist, &showlist);
16694
16695 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16696 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16697 (target agent only) This is useful for formatted output in user-defined commands."));
16698
16699 automatic_hardware_breakpoints = 1;
16700
16701 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16702 observer_attach_thread_exit (remove_threaded_breakpoints);
16703 }