dprintf-style agent can't explain a trap.
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include <string.h>
40 #include "gdb-demangle.h"
41 #include "filenames.h"
42 #include "annotate.h"
43 #include "symfile.h"
44 #include "objfiles.h"
45 #include "source.h"
46 #include "linespec.h"
47 #include "completer.h"
48 #include "gdb.h"
49 #include "ui-out.h"
50 #include "cli/cli-script.h"
51 #include "gdb_assert.h"
52 #include "block.h"
53 #include "solib.h"
54 #include "solist.h"
55 #include "observer.h"
56 #include "exceptions.h"
57 #include "memattr.h"
58 #include "ada-lang.h"
59 #include "top.h"
60 #include "valprint.h"
61 #include "jit.h"
62 #include "xml-syscall.h"
63 #include "parser-defs.h"
64 #include "gdb_regex.h"
65 #include "probe.h"
66 #include "cli/cli-utils.h"
67 #include "continuations.h"
68 #include "stack.h"
69 #include "skip.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "extension.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131 static void clear_command (char *, int);
132
133 static void catch_command (char *, int);
134
135 static int can_use_hardware_watchpoint (struct value *);
136
137 static void break_command_1 (char *, int, int);
138
139 static void mention (struct breakpoint *);
140
141 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147 /* This function is used in gdbtk sources and thus can not be made
148 static. */
149 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154 static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int watchpoint_locations_match (struct bp_location *loc1,
170 struct bp_location *loc2);
171
172 static int breakpoint_location_address_match (struct bp_location *bl,
173 struct address_space *aspace,
174 CORE_ADDR addr);
175
176 static void breakpoints_info (char *, int);
177
178 static void watchpoints_info (char *, int);
179
180 static int breakpoint_1 (char *, int,
181 int (*) (const struct breakpoint *));
182
183 static int breakpoint_cond_eval (void *);
184
185 static void cleanup_executing_breakpoints (void *);
186
187 static void commands_command (char *, int);
188
189 static void condition_command (char *, int);
190
191 typedef enum
192 {
193 mark_inserted,
194 mark_uninserted
195 }
196 insertion_state_t;
197
198 static int remove_breakpoint (struct bp_location *, insertion_state_t);
199 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
200
201 static enum print_stop_action print_bp_stop_message (bpstat bs);
202
203 static int watchpoint_check (void *);
204
205 static void maintenance_info_breakpoints (char *, int);
206
207 static int hw_breakpoint_used_count (void);
208
209 static int hw_watchpoint_use_count (struct breakpoint *);
210
211 static int hw_watchpoint_used_count_others (struct breakpoint *except,
212 enum bptype type,
213 int *other_type_used);
214
215 static void hbreak_command (char *, int);
216
217 static void thbreak_command (char *, int);
218
219 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
220 int count);
221
222 static void stop_command (char *arg, int from_tty);
223
224 static void stopin_command (char *arg, int from_tty);
225
226 static void stopat_command (char *arg, int from_tty);
227
228 static void tcatch_command (char *arg, int from_tty);
229
230 static void detach_single_step_breakpoints (void);
231
232 static void free_bp_location (struct bp_location *loc);
233 static void incref_bp_location (struct bp_location *loc);
234 static void decref_bp_location (struct bp_location **loc);
235
236 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
237
238 static void update_global_location_list (int);
239
240 static void update_global_location_list_nothrow (int);
241
242 static int is_hardware_watchpoint (const struct breakpoint *bpt);
243
244 static void insert_breakpoint_locations (void);
245
246 static int syscall_catchpoint_p (struct breakpoint *b);
247
248 static void tracepoints_info (char *, int);
249
250 static void delete_trace_command (char *, int);
251
252 static void enable_trace_command (char *, int);
253
254 static void disable_trace_command (char *, int);
255
256 static void trace_pass_command (char *, int);
257
258 static void set_tracepoint_count (int num);
259
260 static int is_masked_watchpoint (const struct breakpoint *b);
261
262 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
263
264 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
265 otherwise. */
266
267 static int strace_marker_p (struct breakpoint *b);
268
269 /* The abstract base class all breakpoint_ops structures inherit
270 from. */
271 struct breakpoint_ops base_breakpoint_ops;
272
273 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
274 that are implemented on top of software or hardware breakpoints
275 (user breakpoints, internal and momentary breakpoints, etc.). */
276 static struct breakpoint_ops bkpt_base_breakpoint_ops;
277
278 /* Internal breakpoints class type. */
279 static struct breakpoint_ops internal_breakpoint_ops;
280
281 /* Momentary breakpoints class type. */
282 static struct breakpoint_ops momentary_breakpoint_ops;
283
284 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
285 static struct breakpoint_ops longjmp_breakpoint_ops;
286
287 /* The breakpoint_ops structure to be used in regular user created
288 breakpoints. */
289 struct breakpoint_ops bkpt_breakpoint_ops;
290
291 /* Breakpoints set on probes. */
292 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
293
294 /* Dynamic printf class type. */
295 struct breakpoint_ops dprintf_breakpoint_ops;
296
297 /* One (or perhaps two) breakpoints used for software single
298 stepping. */
299
300 static void *single_step_breakpoints[2];
301 static struct gdbarch *single_step_gdbarch[2];
302
303 /* The style in which to perform a dynamic printf. This is a user
304 option because different output options have different tradeoffs;
305 if GDB does the printing, there is better error handling if there
306 is a problem with any of the arguments, but using an inferior
307 function lets you have special-purpose printers and sending of
308 output to the same place as compiled-in print functions. */
309
310 static const char dprintf_style_gdb[] = "gdb";
311 static const char dprintf_style_call[] = "call";
312 static const char dprintf_style_agent[] = "agent";
313 static const char *const dprintf_style_enums[] = {
314 dprintf_style_gdb,
315 dprintf_style_call,
316 dprintf_style_agent,
317 NULL
318 };
319 static const char *dprintf_style = dprintf_style_gdb;
320
321 /* The function to use for dynamic printf if the preferred style is to
322 call into the inferior. The value is simply a string that is
323 copied into the command, so it can be anything that GDB can
324 evaluate to a callable address, not necessarily a function name. */
325
326 static char *dprintf_function = "";
327
328 /* The channel to use for dynamic printf if the preferred style is to
329 call into the inferior; if a nonempty string, it will be passed to
330 the call as the first argument, with the format string as the
331 second. As with the dprintf function, this can be anything that
332 GDB knows how to evaluate, so in addition to common choices like
333 "stderr", this could be an app-specific expression like
334 "mystreams[curlogger]". */
335
336 static char *dprintf_channel = "";
337
338 /* True if dprintf commands should continue to operate even if GDB
339 has disconnected. */
340 static int disconnected_dprintf = 1;
341
342 /* A reference-counted struct command_line. This lets multiple
343 breakpoints share a single command list. */
344 struct counted_command_line
345 {
346 /* The reference count. */
347 int refc;
348
349 /* The command list. */
350 struct command_line *commands;
351 };
352
353 struct command_line *
354 breakpoint_commands (struct breakpoint *b)
355 {
356 return b->commands ? b->commands->commands : NULL;
357 }
358
359 /* Flag indicating that a command has proceeded the inferior past the
360 current breakpoint. */
361
362 static int breakpoint_proceeded;
363
364 const char *
365 bpdisp_text (enum bpdisp disp)
366 {
367 /* NOTE: the following values are a part of MI protocol and
368 represent values of 'disp' field returned when inferior stops at
369 a breakpoint. */
370 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
371
372 return bpdisps[(int) disp];
373 }
374
375 /* Prototypes for exported functions. */
376 /* If FALSE, gdb will not use hardware support for watchpoints, even
377 if such is available. */
378 static int can_use_hw_watchpoints;
379
380 static void
381 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c,
383 const char *value)
384 {
385 fprintf_filtered (file,
386 _("Debugger's willingness to use "
387 "watchpoint hardware is %s.\n"),
388 value);
389 }
390
391 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
392 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
393 for unrecognized breakpoint locations.
394 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
395 static enum auto_boolean pending_break_support;
396 static void
397 show_pending_break_support (struct ui_file *file, int from_tty,
398 struct cmd_list_element *c,
399 const char *value)
400 {
401 fprintf_filtered (file,
402 _("Debugger's behavior regarding "
403 "pending breakpoints is %s.\n"),
404 value);
405 }
406
407 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
408 set with "break" but falling in read-only memory.
409 If 0, gdb will warn about such breakpoints, but won't automatically
410 use hardware breakpoints. */
411 static int automatic_hardware_breakpoints;
412 static void
413 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
414 struct cmd_list_element *c,
415 const char *value)
416 {
417 fprintf_filtered (file,
418 _("Automatic usage of hardware breakpoints is %s.\n"),
419 value);
420 }
421
422 /* If on, gdb will keep breakpoints inserted even as inferior is
423 stopped, and immediately insert any new breakpoints. If off, gdb
424 will insert breakpoints into inferior only when resuming it, and
425 will remove breakpoints upon stop. If auto, GDB will behave as ON
426 if in non-stop mode, and as OFF if all-stop mode.*/
427
428 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
429
430 static void
431 show_always_inserted_mode (struct ui_file *file, int from_tty,
432 struct cmd_list_element *c, const char *value)
433 {
434 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
435 fprintf_filtered (file,
436 _("Always inserted breakpoint "
437 "mode is %s (currently %s).\n"),
438 value,
439 breakpoints_always_inserted_mode () ? "on" : "off");
440 else
441 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
442 value);
443 }
444
445 int
446 breakpoints_always_inserted_mode (void)
447 {
448 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
449 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
450 }
451
452 static const char condition_evaluation_both[] = "host or target";
453
454 /* Modes for breakpoint condition evaluation. */
455 static const char condition_evaluation_auto[] = "auto";
456 static const char condition_evaluation_host[] = "host";
457 static const char condition_evaluation_target[] = "target";
458 static const char *const condition_evaluation_enums[] = {
459 condition_evaluation_auto,
460 condition_evaluation_host,
461 condition_evaluation_target,
462 NULL
463 };
464
465 /* Global that holds the current mode for breakpoint condition evaluation. */
466 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
467
468 /* Global that we use to display information to the user (gets its value from
469 condition_evaluation_mode_1. */
470 static const char *condition_evaluation_mode = condition_evaluation_auto;
471
472 /* Translate a condition evaluation mode MODE into either "host"
473 or "target". This is used mostly to translate from "auto" to the
474 real setting that is being used. It returns the translated
475 evaluation mode. */
476
477 static const char *
478 translate_condition_evaluation_mode (const char *mode)
479 {
480 if (mode == condition_evaluation_auto)
481 {
482 if (target_supports_evaluation_of_breakpoint_conditions ())
483 return condition_evaluation_target;
484 else
485 return condition_evaluation_host;
486 }
487 else
488 return mode;
489 }
490
491 /* Discovers what condition_evaluation_auto translates to. */
492
493 static const char *
494 breakpoint_condition_evaluation_mode (void)
495 {
496 return translate_condition_evaluation_mode (condition_evaluation_mode);
497 }
498
499 /* Return true if GDB should evaluate breakpoint conditions or false
500 otherwise. */
501
502 static int
503 gdb_evaluates_breakpoint_condition_p (void)
504 {
505 const char *mode = breakpoint_condition_evaluation_mode ();
506
507 return (mode == condition_evaluation_host);
508 }
509
510 void _initialize_breakpoint (void);
511
512 /* Are we executing breakpoint commands? */
513 static int executing_breakpoint_commands;
514
515 /* Are overlay event breakpoints enabled? */
516 static int overlay_events_enabled;
517
518 /* See description in breakpoint.h. */
519 int target_exact_watchpoints = 0;
520
521 /* Walk the following statement or block through all breakpoints.
522 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
523 current breakpoint. */
524
525 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
526
527 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
528 for (B = breakpoint_chain; \
529 B ? (TMP=B->next, 1): 0; \
530 B = TMP)
531
532 /* Similar iterator for the low-level breakpoints. SAFE variant is
533 not provided so update_global_location_list must not be called
534 while executing the block of ALL_BP_LOCATIONS. */
535
536 #define ALL_BP_LOCATIONS(B,BP_TMP) \
537 for (BP_TMP = bp_location; \
538 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
539 BP_TMP++)
540
541 /* Iterates through locations with address ADDRESS for the currently selected
542 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
543 to where the loop should start from.
544 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
545 appropriate location to start with. */
546
547 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
548 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
549 BP_LOCP_TMP = BP_LOCP_START; \
550 BP_LOCP_START \
551 && (BP_LOCP_TMP < bp_location + bp_location_count \
552 && (*BP_LOCP_TMP)->address == ADDRESS); \
553 BP_LOCP_TMP++)
554
555 /* Iterator for tracepoints only. */
556
557 #define ALL_TRACEPOINTS(B) \
558 for (B = breakpoint_chain; B; B = B->next) \
559 if (is_tracepoint (B))
560
561 /* Chains of all breakpoints defined. */
562
563 struct breakpoint *breakpoint_chain;
564
565 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
566
567 static struct bp_location **bp_location;
568
569 /* Number of elements of BP_LOCATION. */
570
571 static unsigned bp_location_count;
572
573 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
574 ADDRESS for the current elements of BP_LOCATION which get a valid
575 result from bp_location_has_shadow. You can use it for roughly
576 limiting the subrange of BP_LOCATION to scan for shadow bytes for
577 an address you need to read. */
578
579 static CORE_ADDR bp_location_placed_address_before_address_max;
580
581 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
582 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
583 BP_LOCATION which get a valid result from bp_location_has_shadow.
584 You can use it for roughly limiting the subrange of BP_LOCATION to
585 scan for shadow bytes for an address you need to read. */
586
587 static CORE_ADDR bp_location_shadow_len_after_address_max;
588
589 /* The locations that no longer correspond to any breakpoint, unlinked
590 from bp_location array, but for which a hit may still be reported
591 by a target. */
592 VEC(bp_location_p) *moribund_locations = NULL;
593
594 /* Number of last breakpoint made. */
595
596 static int breakpoint_count;
597
598 /* The value of `breakpoint_count' before the last command that
599 created breakpoints. If the last (break-like) command created more
600 than one breakpoint, then the difference between BREAKPOINT_COUNT
601 and PREV_BREAKPOINT_COUNT is more than one. */
602 static int prev_breakpoint_count;
603
604 /* Number of last tracepoint made. */
605
606 static int tracepoint_count;
607
608 static struct cmd_list_element *breakpoint_set_cmdlist;
609 static struct cmd_list_element *breakpoint_show_cmdlist;
610 struct cmd_list_element *save_cmdlist;
611
612 /* Return whether a breakpoint is an active enabled breakpoint. */
613 static int
614 breakpoint_enabled (struct breakpoint *b)
615 {
616 return (b->enable_state == bp_enabled);
617 }
618
619 /* Set breakpoint count to NUM. */
620
621 static void
622 set_breakpoint_count (int num)
623 {
624 prev_breakpoint_count = breakpoint_count;
625 breakpoint_count = num;
626 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
627 }
628
629 /* Used by `start_rbreak_breakpoints' below, to record the current
630 breakpoint count before "rbreak" creates any breakpoint. */
631 static int rbreak_start_breakpoint_count;
632
633 /* Called at the start an "rbreak" command to record the first
634 breakpoint made. */
635
636 void
637 start_rbreak_breakpoints (void)
638 {
639 rbreak_start_breakpoint_count = breakpoint_count;
640 }
641
642 /* Called at the end of an "rbreak" command to record the last
643 breakpoint made. */
644
645 void
646 end_rbreak_breakpoints (void)
647 {
648 prev_breakpoint_count = rbreak_start_breakpoint_count;
649 }
650
651 /* Used in run_command to zero the hit count when a new run starts. */
652
653 void
654 clear_breakpoint_hit_counts (void)
655 {
656 struct breakpoint *b;
657
658 ALL_BREAKPOINTS (b)
659 b->hit_count = 0;
660 }
661
662 /* Allocate a new counted_command_line with reference count of 1.
663 The new structure owns COMMANDS. */
664
665 static struct counted_command_line *
666 alloc_counted_command_line (struct command_line *commands)
667 {
668 struct counted_command_line *result
669 = xmalloc (sizeof (struct counted_command_line));
670
671 result->refc = 1;
672 result->commands = commands;
673 return result;
674 }
675
676 /* Increment reference count. This does nothing if CMD is NULL. */
677
678 static void
679 incref_counted_command_line (struct counted_command_line *cmd)
680 {
681 if (cmd)
682 ++cmd->refc;
683 }
684
685 /* Decrement reference count. If the reference count reaches 0,
686 destroy the counted_command_line. Sets *CMDP to NULL. This does
687 nothing if *CMDP is NULL. */
688
689 static void
690 decref_counted_command_line (struct counted_command_line **cmdp)
691 {
692 if (*cmdp)
693 {
694 if (--(*cmdp)->refc == 0)
695 {
696 free_command_lines (&(*cmdp)->commands);
697 xfree (*cmdp);
698 }
699 *cmdp = NULL;
700 }
701 }
702
703 /* A cleanup function that calls decref_counted_command_line. */
704
705 static void
706 do_cleanup_counted_command_line (void *arg)
707 {
708 decref_counted_command_line (arg);
709 }
710
711 /* Create a cleanup that calls decref_counted_command_line on the
712 argument. */
713
714 static struct cleanup *
715 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
716 {
717 return make_cleanup (do_cleanup_counted_command_line, cmdp);
718 }
719
720 \f
721 /* Return the breakpoint with the specified number, or NULL
722 if the number does not refer to an existing breakpoint. */
723
724 struct breakpoint *
725 get_breakpoint (int num)
726 {
727 struct breakpoint *b;
728
729 ALL_BREAKPOINTS (b)
730 if (b->number == num)
731 return b;
732
733 return NULL;
734 }
735
736 \f
737
738 /* Mark locations as "conditions have changed" in case the target supports
739 evaluating conditions on its side. */
740
741 static void
742 mark_breakpoint_modified (struct breakpoint *b)
743 {
744 struct bp_location *loc;
745
746 /* This is only meaningful if the target is
747 evaluating conditions and if the user has
748 opted for condition evaluation on the target's
749 side. */
750 if (gdb_evaluates_breakpoint_condition_p ()
751 || !target_supports_evaluation_of_breakpoint_conditions ())
752 return;
753
754 if (!is_breakpoint (b))
755 return;
756
757 for (loc = b->loc; loc; loc = loc->next)
758 loc->condition_changed = condition_modified;
759 }
760
761 /* Mark location as "conditions have changed" in case the target supports
762 evaluating conditions on its side. */
763
764 static void
765 mark_breakpoint_location_modified (struct bp_location *loc)
766 {
767 /* This is only meaningful if the target is
768 evaluating conditions and if the user has
769 opted for condition evaluation on the target's
770 side. */
771 if (gdb_evaluates_breakpoint_condition_p ()
772 || !target_supports_evaluation_of_breakpoint_conditions ())
773
774 return;
775
776 if (!is_breakpoint (loc->owner))
777 return;
778
779 loc->condition_changed = condition_modified;
780 }
781
782 /* Sets the condition-evaluation mode using the static global
783 condition_evaluation_mode. */
784
785 static void
786 set_condition_evaluation_mode (char *args, int from_tty,
787 struct cmd_list_element *c)
788 {
789 const char *old_mode, *new_mode;
790
791 if ((condition_evaluation_mode_1 == condition_evaluation_target)
792 && !target_supports_evaluation_of_breakpoint_conditions ())
793 {
794 condition_evaluation_mode_1 = condition_evaluation_mode;
795 warning (_("Target does not support breakpoint condition evaluation.\n"
796 "Using host evaluation mode instead."));
797 return;
798 }
799
800 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
801 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
802
803 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
804 settings was "auto". */
805 condition_evaluation_mode = condition_evaluation_mode_1;
806
807 /* Only update the mode if the user picked a different one. */
808 if (new_mode != old_mode)
809 {
810 struct bp_location *loc, **loc_tmp;
811 /* If the user switched to a different evaluation mode, we
812 need to synch the changes with the target as follows:
813
814 "host" -> "target": Send all (valid) conditions to the target.
815 "target" -> "host": Remove all the conditions from the target.
816 */
817
818 if (new_mode == condition_evaluation_target)
819 {
820 /* Mark everything modified and synch conditions with the
821 target. */
822 ALL_BP_LOCATIONS (loc, loc_tmp)
823 mark_breakpoint_location_modified (loc);
824 }
825 else
826 {
827 /* Manually mark non-duplicate locations to synch conditions
828 with the target. We do this to remove all the conditions the
829 target knows about. */
830 ALL_BP_LOCATIONS (loc, loc_tmp)
831 if (is_breakpoint (loc->owner) && loc->inserted)
832 loc->needs_update = 1;
833 }
834
835 /* Do the update. */
836 update_global_location_list (1);
837 }
838
839 return;
840 }
841
842 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
843 what "auto" is translating to. */
844
845 static void
846 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
847 struct cmd_list_element *c, const char *value)
848 {
849 if (condition_evaluation_mode == condition_evaluation_auto)
850 fprintf_filtered (file,
851 _("Breakpoint condition evaluation "
852 "mode is %s (currently %s).\n"),
853 value,
854 breakpoint_condition_evaluation_mode ());
855 else
856 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
857 value);
858 }
859
860 /* A comparison function for bp_location AP and BP that is used by
861 bsearch. This comparison function only cares about addresses, unlike
862 the more general bp_location_compare function. */
863
864 static int
865 bp_location_compare_addrs (const void *ap, const void *bp)
866 {
867 struct bp_location *a = *(void **) ap;
868 struct bp_location *b = *(void **) bp;
869
870 if (a->address == b->address)
871 return 0;
872 else
873 return ((a->address > b->address) - (a->address < b->address));
874 }
875
876 /* Helper function to skip all bp_locations with addresses
877 less than ADDRESS. It returns the first bp_location that
878 is greater than or equal to ADDRESS. If none is found, just
879 return NULL. */
880
881 static struct bp_location **
882 get_first_locp_gte_addr (CORE_ADDR address)
883 {
884 struct bp_location dummy_loc;
885 struct bp_location *dummy_locp = &dummy_loc;
886 struct bp_location **locp_found = NULL;
887
888 /* Initialize the dummy location's address field. */
889 memset (&dummy_loc, 0, sizeof (struct bp_location));
890 dummy_loc.address = address;
891
892 /* Find a close match to the first location at ADDRESS. */
893 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
894 sizeof (struct bp_location **),
895 bp_location_compare_addrs);
896
897 /* Nothing was found, nothing left to do. */
898 if (locp_found == NULL)
899 return NULL;
900
901 /* We may have found a location that is at ADDRESS but is not the first in the
902 location's list. Go backwards (if possible) and locate the first one. */
903 while ((locp_found - 1) >= bp_location
904 && (*(locp_found - 1))->address == address)
905 locp_found--;
906
907 return locp_found;
908 }
909
910 void
911 set_breakpoint_condition (struct breakpoint *b, char *exp,
912 int from_tty)
913 {
914 xfree (b->cond_string);
915 b->cond_string = NULL;
916
917 if (is_watchpoint (b))
918 {
919 struct watchpoint *w = (struct watchpoint *) b;
920
921 xfree (w->cond_exp);
922 w->cond_exp = NULL;
923 }
924 else
925 {
926 struct bp_location *loc;
927
928 for (loc = b->loc; loc; loc = loc->next)
929 {
930 xfree (loc->cond);
931 loc->cond = NULL;
932
933 /* No need to free the condition agent expression
934 bytecode (if we have one). We will handle this
935 when we go through update_global_location_list. */
936 }
937 }
938
939 if (*exp == 0)
940 {
941 if (from_tty)
942 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
943 }
944 else
945 {
946 const char *arg = exp;
947
948 /* I don't know if it matters whether this is the string the user
949 typed in or the decompiled expression. */
950 b->cond_string = xstrdup (arg);
951 b->condition_not_parsed = 0;
952
953 if (is_watchpoint (b))
954 {
955 struct watchpoint *w = (struct watchpoint *) b;
956
957 innermost_block = NULL;
958 arg = exp;
959 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
960 if (*arg)
961 error (_("Junk at end of expression"));
962 w->cond_exp_valid_block = innermost_block;
963 }
964 else
965 {
966 struct bp_location *loc;
967
968 for (loc = b->loc; loc; loc = loc->next)
969 {
970 arg = exp;
971 loc->cond =
972 parse_exp_1 (&arg, loc->address,
973 block_for_pc (loc->address), 0);
974 if (*arg)
975 error (_("Junk at end of expression"));
976 }
977 }
978 }
979 mark_breakpoint_modified (b);
980
981 observer_notify_breakpoint_modified (b);
982 }
983
984 /* Completion for the "condition" command. */
985
986 static VEC (char_ptr) *
987 condition_completer (struct cmd_list_element *cmd,
988 const char *text, const char *word)
989 {
990 const char *space;
991
992 text = skip_spaces_const (text);
993 space = skip_to_space_const (text);
994 if (*space == '\0')
995 {
996 int len;
997 struct breakpoint *b;
998 VEC (char_ptr) *result = NULL;
999
1000 if (text[0] == '$')
1001 {
1002 /* We don't support completion of history indices. */
1003 if (isdigit (text[1]))
1004 return NULL;
1005 return complete_internalvar (&text[1]);
1006 }
1007
1008 /* We're completing the breakpoint number. */
1009 len = strlen (text);
1010
1011 ALL_BREAKPOINTS (b)
1012 {
1013 char number[50];
1014
1015 xsnprintf (number, sizeof (number), "%d", b->number);
1016
1017 if (strncmp (number, text, len) == 0)
1018 VEC_safe_push (char_ptr, result, xstrdup (number));
1019 }
1020
1021 return result;
1022 }
1023
1024 /* We're completing the expression part. */
1025 text = skip_spaces_const (space);
1026 return expression_completer (cmd, text, word);
1027 }
1028
1029 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1030
1031 static void
1032 condition_command (char *arg, int from_tty)
1033 {
1034 struct breakpoint *b;
1035 char *p;
1036 int bnum;
1037
1038 if (arg == 0)
1039 error_no_arg (_("breakpoint number"));
1040
1041 p = arg;
1042 bnum = get_number (&p);
1043 if (bnum == 0)
1044 error (_("Bad breakpoint argument: '%s'"), arg);
1045
1046 ALL_BREAKPOINTS (b)
1047 if (b->number == bnum)
1048 {
1049 /* Check if this breakpoint has a "stop" method implemented in an
1050 extension language. This method and conditions entered into GDB
1051 from the CLI are mutually exclusive. */
1052 const struct extension_language_defn *extlang
1053 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1054
1055 if (extlang != NULL)
1056 {
1057 error (_("Only one stop condition allowed. There is currently"
1058 " a %s stop condition defined for this breakpoint."),
1059 ext_lang_capitalized_name (extlang));
1060 }
1061 set_breakpoint_condition (b, p, from_tty);
1062
1063 if (is_breakpoint (b))
1064 update_global_location_list (1);
1065
1066 return;
1067 }
1068
1069 error (_("No breakpoint number %d."), bnum);
1070 }
1071
1072 /* Check that COMMAND do not contain commands that are suitable
1073 only for tracepoints and not suitable for ordinary breakpoints.
1074 Throw if any such commands is found. */
1075
1076 static void
1077 check_no_tracepoint_commands (struct command_line *commands)
1078 {
1079 struct command_line *c;
1080
1081 for (c = commands; c; c = c->next)
1082 {
1083 int i;
1084
1085 if (c->control_type == while_stepping_control)
1086 error (_("The 'while-stepping' command can "
1087 "only be used for tracepoints"));
1088
1089 for (i = 0; i < c->body_count; ++i)
1090 check_no_tracepoint_commands ((c->body_list)[i]);
1091
1092 /* Not that command parsing removes leading whitespace and comment
1093 lines and also empty lines. So, we only need to check for
1094 command directly. */
1095 if (strstr (c->line, "collect ") == c->line)
1096 error (_("The 'collect' command can only be used for tracepoints"));
1097
1098 if (strstr (c->line, "teval ") == c->line)
1099 error (_("The 'teval' command can only be used for tracepoints"));
1100 }
1101 }
1102
1103 /* Encapsulate tests for different types of tracepoints. */
1104
1105 static int
1106 is_tracepoint_type (enum bptype type)
1107 {
1108 return (type == bp_tracepoint
1109 || type == bp_fast_tracepoint
1110 || type == bp_static_tracepoint);
1111 }
1112
1113 int
1114 is_tracepoint (const struct breakpoint *b)
1115 {
1116 return is_tracepoint_type (b->type);
1117 }
1118
1119 /* A helper function that validates that COMMANDS are valid for a
1120 breakpoint. This function will throw an exception if a problem is
1121 found. */
1122
1123 static void
1124 validate_commands_for_breakpoint (struct breakpoint *b,
1125 struct command_line *commands)
1126 {
1127 if (is_tracepoint (b))
1128 {
1129 struct tracepoint *t = (struct tracepoint *) b;
1130 struct command_line *c;
1131 struct command_line *while_stepping = 0;
1132
1133 /* Reset the while-stepping step count. The previous commands
1134 might have included a while-stepping action, while the new
1135 ones might not. */
1136 t->step_count = 0;
1137
1138 /* We need to verify that each top-level element of commands is
1139 valid for tracepoints, that there's at most one
1140 while-stepping element, and that the while-stepping's body
1141 has valid tracing commands excluding nested while-stepping.
1142 We also need to validate the tracepoint action line in the
1143 context of the tracepoint --- validate_actionline actually
1144 has side effects, like setting the tracepoint's
1145 while-stepping STEP_COUNT, in addition to checking if the
1146 collect/teval actions parse and make sense in the
1147 tracepoint's context. */
1148 for (c = commands; c; c = c->next)
1149 {
1150 if (c->control_type == while_stepping_control)
1151 {
1152 if (b->type == bp_fast_tracepoint)
1153 error (_("The 'while-stepping' command "
1154 "cannot be used for fast tracepoint"));
1155 else if (b->type == bp_static_tracepoint)
1156 error (_("The 'while-stepping' command "
1157 "cannot be used for static tracepoint"));
1158
1159 if (while_stepping)
1160 error (_("The 'while-stepping' command "
1161 "can be used only once"));
1162 else
1163 while_stepping = c;
1164 }
1165
1166 validate_actionline (c->line, b);
1167 }
1168 if (while_stepping)
1169 {
1170 struct command_line *c2;
1171
1172 gdb_assert (while_stepping->body_count == 1);
1173 c2 = while_stepping->body_list[0];
1174 for (; c2; c2 = c2->next)
1175 {
1176 if (c2->control_type == while_stepping_control)
1177 error (_("The 'while-stepping' command cannot be nested"));
1178 }
1179 }
1180 }
1181 else
1182 {
1183 check_no_tracepoint_commands (commands);
1184 }
1185 }
1186
1187 /* Return a vector of all the static tracepoints set at ADDR. The
1188 caller is responsible for releasing the vector. */
1189
1190 VEC(breakpoint_p) *
1191 static_tracepoints_here (CORE_ADDR addr)
1192 {
1193 struct breakpoint *b;
1194 VEC(breakpoint_p) *found = 0;
1195 struct bp_location *loc;
1196
1197 ALL_BREAKPOINTS (b)
1198 if (b->type == bp_static_tracepoint)
1199 {
1200 for (loc = b->loc; loc; loc = loc->next)
1201 if (loc->address == addr)
1202 VEC_safe_push(breakpoint_p, found, b);
1203 }
1204
1205 return found;
1206 }
1207
1208 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1209 validate that only allowed commands are included. */
1210
1211 void
1212 breakpoint_set_commands (struct breakpoint *b,
1213 struct command_line *commands)
1214 {
1215 validate_commands_for_breakpoint (b, commands);
1216
1217 decref_counted_command_line (&b->commands);
1218 b->commands = alloc_counted_command_line (commands);
1219 observer_notify_breakpoint_modified (b);
1220 }
1221
1222 /* Set the internal `silent' flag on the breakpoint. Note that this
1223 is not the same as the "silent" that may appear in the breakpoint's
1224 commands. */
1225
1226 void
1227 breakpoint_set_silent (struct breakpoint *b, int silent)
1228 {
1229 int old_silent = b->silent;
1230
1231 b->silent = silent;
1232 if (old_silent != silent)
1233 observer_notify_breakpoint_modified (b);
1234 }
1235
1236 /* Set the thread for this breakpoint. If THREAD is -1, make the
1237 breakpoint work for any thread. */
1238
1239 void
1240 breakpoint_set_thread (struct breakpoint *b, int thread)
1241 {
1242 int old_thread = b->thread;
1243
1244 b->thread = thread;
1245 if (old_thread != thread)
1246 observer_notify_breakpoint_modified (b);
1247 }
1248
1249 /* Set the task for this breakpoint. If TASK is 0, make the
1250 breakpoint work for any task. */
1251
1252 void
1253 breakpoint_set_task (struct breakpoint *b, int task)
1254 {
1255 int old_task = b->task;
1256
1257 b->task = task;
1258 if (old_task != task)
1259 observer_notify_breakpoint_modified (b);
1260 }
1261
1262 void
1263 check_tracepoint_command (char *line, void *closure)
1264 {
1265 struct breakpoint *b = closure;
1266
1267 validate_actionline (line, b);
1268 }
1269
1270 /* A structure used to pass information through
1271 map_breakpoint_numbers. */
1272
1273 struct commands_info
1274 {
1275 /* True if the command was typed at a tty. */
1276 int from_tty;
1277
1278 /* The breakpoint range spec. */
1279 char *arg;
1280
1281 /* Non-NULL if the body of the commands are being read from this
1282 already-parsed command. */
1283 struct command_line *control;
1284
1285 /* The command lines read from the user, or NULL if they have not
1286 yet been read. */
1287 struct counted_command_line *cmd;
1288 };
1289
1290 /* A callback for map_breakpoint_numbers that sets the commands for
1291 commands_command. */
1292
1293 static void
1294 do_map_commands_command (struct breakpoint *b, void *data)
1295 {
1296 struct commands_info *info = data;
1297
1298 if (info->cmd == NULL)
1299 {
1300 struct command_line *l;
1301
1302 if (info->control != NULL)
1303 l = copy_command_lines (info->control->body_list[0]);
1304 else
1305 {
1306 struct cleanup *old_chain;
1307 char *str;
1308
1309 str = xstrprintf (_("Type commands for breakpoint(s) "
1310 "%s, one per line."),
1311 info->arg);
1312
1313 old_chain = make_cleanup (xfree, str);
1314
1315 l = read_command_lines (str,
1316 info->from_tty, 1,
1317 (is_tracepoint (b)
1318 ? check_tracepoint_command : 0),
1319 b);
1320
1321 do_cleanups (old_chain);
1322 }
1323
1324 info->cmd = alloc_counted_command_line (l);
1325 }
1326
1327 /* If a breakpoint was on the list more than once, we don't need to
1328 do anything. */
1329 if (b->commands != info->cmd)
1330 {
1331 validate_commands_for_breakpoint (b, info->cmd->commands);
1332 incref_counted_command_line (info->cmd);
1333 decref_counted_command_line (&b->commands);
1334 b->commands = info->cmd;
1335 observer_notify_breakpoint_modified (b);
1336 }
1337 }
1338
1339 static void
1340 commands_command_1 (char *arg, int from_tty,
1341 struct command_line *control)
1342 {
1343 struct cleanup *cleanups;
1344 struct commands_info info;
1345
1346 info.from_tty = from_tty;
1347 info.control = control;
1348 info.cmd = NULL;
1349 /* If we read command lines from the user, then `info' will hold an
1350 extra reference to the commands that we must clean up. */
1351 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1352
1353 if (arg == NULL || !*arg)
1354 {
1355 if (breakpoint_count - prev_breakpoint_count > 1)
1356 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1357 breakpoint_count);
1358 else if (breakpoint_count > 0)
1359 arg = xstrprintf ("%d", breakpoint_count);
1360 else
1361 {
1362 /* So that we don't try to free the incoming non-NULL
1363 argument in the cleanup below. Mapping breakpoint
1364 numbers will fail in this case. */
1365 arg = NULL;
1366 }
1367 }
1368 else
1369 /* The command loop has some static state, so we need to preserve
1370 our argument. */
1371 arg = xstrdup (arg);
1372
1373 if (arg != NULL)
1374 make_cleanup (xfree, arg);
1375
1376 info.arg = arg;
1377
1378 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1379
1380 if (info.cmd == NULL)
1381 error (_("No breakpoints specified."));
1382
1383 do_cleanups (cleanups);
1384 }
1385
1386 static void
1387 commands_command (char *arg, int from_tty)
1388 {
1389 commands_command_1 (arg, from_tty, NULL);
1390 }
1391
1392 /* Like commands_command, but instead of reading the commands from
1393 input stream, takes them from an already parsed command structure.
1394
1395 This is used by cli-script.c to DTRT with breakpoint commands
1396 that are part of if and while bodies. */
1397 enum command_control_type
1398 commands_from_control_command (char *arg, struct command_line *cmd)
1399 {
1400 commands_command_1 (arg, 0, cmd);
1401 return simple_control;
1402 }
1403
1404 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1405
1406 static int
1407 bp_location_has_shadow (struct bp_location *bl)
1408 {
1409 if (bl->loc_type != bp_loc_software_breakpoint)
1410 return 0;
1411 if (!bl->inserted)
1412 return 0;
1413 if (bl->target_info.shadow_len == 0)
1414 /* BL isn't valid, or doesn't shadow memory. */
1415 return 0;
1416 return 1;
1417 }
1418
1419 /* Update BUF, which is LEN bytes read from the target address
1420 MEMADDR, by replacing a memory breakpoint with its shadowed
1421 contents.
1422
1423 If READBUF is not NULL, this buffer must not overlap with the of
1424 the breakpoint location's shadow_contents buffer. Otherwise, a
1425 failed assertion internal error will be raised. */
1426
1427 static void
1428 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1429 const gdb_byte *writebuf_org,
1430 ULONGEST memaddr, LONGEST len,
1431 struct bp_target_info *target_info,
1432 struct gdbarch *gdbarch)
1433 {
1434 /* Now do full processing of the found relevant range of elements. */
1435 CORE_ADDR bp_addr = 0;
1436 int bp_size = 0;
1437 int bptoffset = 0;
1438
1439 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1440 current_program_space->aspace, 0))
1441 {
1442 /* The breakpoint is inserted in a different address space. */
1443 return;
1444 }
1445
1446 /* Addresses and length of the part of the breakpoint that
1447 we need to copy. */
1448 bp_addr = target_info->placed_address;
1449 bp_size = target_info->shadow_len;
1450
1451 if (bp_addr + bp_size <= memaddr)
1452 {
1453 /* The breakpoint is entirely before the chunk of memory we are
1454 reading. */
1455 return;
1456 }
1457
1458 if (bp_addr >= memaddr + len)
1459 {
1460 /* The breakpoint is entirely after the chunk of memory we are
1461 reading. */
1462 return;
1463 }
1464
1465 /* Offset within shadow_contents. */
1466 if (bp_addr < memaddr)
1467 {
1468 /* Only copy the second part of the breakpoint. */
1469 bp_size -= memaddr - bp_addr;
1470 bptoffset = memaddr - bp_addr;
1471 bp_addr = memaddr;
1472 }
1473
1474 if (bp_addr + bp_size > memaddr + len)
1475 {
1476 /* Only copy the first part of the breakpoint. */
1477 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1478 }
1479
1480 if (readbuf != NULL)
1481 {
1482 /* Verify that the readbuf buffer does not overlap with the
1483 shadow_contents buffer. */
1484 gdb_assert (target_info->shadow_contents >= readbuf + len
1485 || readbuf >= (target_info->shadow_contents
1486 + target_info->shadow_len));
1487
1488 /* Update the read buffer with this inserted breakpoint's
1489 shadow. */
1490 memcpy (readbuf + bp_addr - memaddr,
1491 target_info->shadow_contents + bptoffset, bp_size);
1492 }
1493 else
1494 {
1495 const unsigned char *bp;
1496 CORE_ADDR placed_address = target_info->placed_address;
1497 int placed_size = target_info->placed_size;
1498
1499 /* Update the shadow with what we want to write to memory. */
1500 memcpy (target_info->shadow_contents + bptoffset,
1501 writebuf_org + bp_addr - memaddr, bp_size);
1502
1503 /* Determine appropriate breakpoint contents and size for this
1504 address. */
1505 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1506
1507 /* Update the final write buffer with this inserted
1508 breakpoint's INSN. */
1509 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1510 }
1511 }
1512
1513 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1514 by replacing any memory breakpoints with their shadowed contents.
1515
1516 If READBUF is not NULL, this buffer must not overlap with any of
1517 the breakpoint location's shadow_contents buffers. Otherwise,
1518 a failed assertion internal error will be raised.
1519
1520 The range of shadowed area by each bp_location is:
1521 bl->address - bp_location_placed_address_before_address_max
1522 up to bl->address + bp_location_shadow_len_after_address_max
1523 The range we were requested to resolve shadows for is:
1524 memaddr ... memaddr + len
1525 Thus the safe cutoff boundaries for performance optimization are
1526 memaddr + len <= (bl->address
1527 - bp_location_placed_address_before_address_max)
1528 and:
1529 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1530
1531 void
1532 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1533 const gdb_byte *writebuf_org,
1534 ULONGEST memaddr, LONGEST len)
1535 {
1536 /* Left boundary, right boundary and median element of our binary
1537 search. */
1538 unsigned bc_l, bc_r, bc;
1539 size_t i;
1540
1541 /* Find BC_L which is a leftmost element which may affect BUF
1542 content. It is safe to report lower value but a failure to
1543 report higher one. */
1544
1545 bc_l = 0;
1546 bc_r = bp_location_count;
1547 while (bc_l + 1 < bc_r)
1548 {
1549 struct bp_location *bl;
1550
1551 bc = (bc_l + bc_r) / 2;
1552 bl = bp_location[bc];
1553
1554 /* Check first BL->ADDRESS will not overflow due to the added
1555 constant. Then advance the left boundary only if we are sure
1556 the BC element can in no way affect the BUF content (MEMADDR
1557 to MEMADDR + LEN range).
1558
1559 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1560 offset so that we cannot miss a breakpoint with its shadow
1561 range tail still reaching MEMADDR. */
1562
1563 if ((bl->address + bp_location_shadow_len_after_address_max
1564 >= bl->address)
1565 && (bl->address + bp_location_shadow_len_after_address_max
1566 <= memaddr))
1567 bc_l = bc;
1568 else
1569 bc_r = bc;
1570 }
1571
1572 /* Due to the binary search above, we need to make sure we pick the
1573 first location that's at BC_L's address. E.g., if there are
1574 multiple locations at the same address, BC_L may end up pointing
1575 at a duplicate location, and miss the "master"/"inserted"
1576 location. Say, given locations L1, L2 and L3 at addresses A and
1577 B:
1578
1579 L1@A, L2@A, L3@B, ...
1580
1581 BC_L could end up pointing at location L2, while the "master"
1582 location could be L1. Since the `loc->inserted' flag is only set
1583 on "master" locations, we'd forget to restore the shadow of L1
1584 and L2. */
1585 while (bc_l > 0
1586 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1587 bc_l--;
1588
1589 /* Now do full processing of the found relevant range of elements. */
1590
1591 for (bc = bc_l; bc < bp_location_count; bc++)
1592 {
1593 struct bp_location *bl = bp_location[bc];
1594 CORE_ADDR bp_addr = 0;
1595 int bp_size = 0;
1596 int bptoffset = 0;
1597
1598 /* bp_location array has BL->OWNER always non-NULL. */
1599 if (bl->owner->type == bp_none)
1600 warning (_("reading through apparently deleted breakpoint #%d?"),
1601 bl->owner->number);
1602
1603 /* Performance optimization: any further element can no longer affect BUF
1604 content. */
1605
1606 if (bl->address >= bp_location_placed_address_before_address_max
1607 && memaddr + len <= (bl->address
1608 - bp_location_placed_address_before_address_max))
1609 break;
1610
1611 if (!bp_location_has_shadow (bl))
1612 continue;
1613
1614 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1615 memaddr, len, &bl->target_info, bl->gdbarch);
1616 }
1617
1618 /* Now process single-step breakpoints. These are not found in the
1619 bp_location array. */
1620 for (i = 0; i < 2; i++)
1621 {
1622 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
1623
1624 if (bp_tgt != NULL)
1625 {
1626 struct gdbarch *gdbarch = single_step_gdbarch[i];
1627
1628 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1629 memaddr, len, bp_tgt, gdbarch);
1630 }
1631 }
1632 }
1633
1634 \f
1635
1636 /* Return true if BPT is either a software breakpoint or a hardware
1637 breakpoint. */
1638
1639 int
1640 is_breakpoint (const struct breakpoint *bpt)
1641 {
1642 return (bpt->type == bp_breakpoint
1643 || bpt->type == bp_hardware_breakpoint
1644 || bpt->type == bp_dprintf);
1645 }
1646
1647 /* Return true if BPT is of any hardware watchpoint kind. */
1648
1649 static int
1650 is_hardware_watchpoint (const struct breakpoint *bpt)
1651 {
1652 return (bpt->type == bp_hardware_watchpoint
1653 || bpt->type == bp_read_watchpoint
1654 || bpt->type == bp_access_watchpoint);
1655 }
1656
1657 /* Return true if BPT is of any watchpoint kind, hardware or
1658 software. */
1659
1660 int
1661 is_watchpoint (const struct breakpoint *bpt)
1662 {
1663 return (is_hardware_watchpoint (bpt)
1664 || bpt->type == bp_watchpoint);
1665 }
1666
1667 /* Returns true if the current thread and its running state are safe
1668 to evaluate or update watchpoint B. Watchpoints on local
1669 expressions need to be evaluated in the context of the thread that
1670 was current when the watchpoint was created, and, that thread needs
1671 to be stopped to be able to select the correct frame context.
1672 Watchpoints on global expressions can be evaluated on any thread,
1673 and in any state. It is presently left to the target allowing
1674 memory accesses when threads are running. */
1675
1676 static int
1677 watchpoint_in_thread_scope (struct watchpoint *b)
1678 {
1679 return (b->base.pspace == current_program_space
1680 && (ptid_equal (b->watchpoint_thread, null_ptid)
1681 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1682 && !is_executing (inferior_ptid))));
1683 }
1684
1685 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1686 associated bp_watchpoint_scope breakpoint. */
1687
1688 static void
1689 watchpoint_del_at_next_stop (struct watchpoint *w)
1690 {
1691 struct breakpoint *b = &w->base;
1692
1693 if (b->related_breakpoint != b)
1694 {
1695 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1696 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1697 b->related_breakpoint->disposition = disp_del_at_next_stop;
1698 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1699 b->related_breakpoint = b;
1700 }
1701 b->disposition = disp_del_at_next_stop;
1702 }
1703
1704 /* Assuming that B is a watchpoint:
1705 - Reparse watchpoint expression, if REPARSE is non-zero
1706 - Evaluate expression and store the result in B->val
1707 - Evaluate the condition if there is one, and store the result
1708 in b->loc->cond.
1709 - Update the list of values that must be watched in B->loc.
1710
1711 If the watchpoint disposition is disp_del_at_next_stop, then do
1712 nothing. If this is local watchpoint that is out of scope, delete
1713 it.
1714
1715 Even with `set breakpoint always-inserted on' the watchpoints are
1716 removed + inserted on each stop here. Normal breakpoints must
1717 never be removed because they might be missed by a running thread
1718 when debugging in non-stop mode. On the other hand, hardware
1719 watchpoints (is_hardware_watchpoint; processed here) are specific
1720 to each LWP since they are stored in each LWP's hardware debug
1721 registers. Therefore, such LWP must be stopped first in order to
1722 be able to modify its hardware watchpoints.
1723
1724 Hardware watchpoints must be reset exactly once after being
1725 presented to the user. It cannot be done sooner, because it would
1726 reset the data used to present the watchpoint hit to the user. And
1727 it must not be done later because it could display the same single
1728 watchpoint hit during multiple GDB stops. Note that the latter is
1729 relevant only to the hardware watchpoint types bp_read_watchpoint
1730 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1731 not user-visible - its hit is suppressed if the memory content has
1732 not changed.
1733
1734 The following constraints influence the location where we can reset
1735 hardware watchpoints:
1736
1737 * target_stopped_by_watchpoint and target_stopped_data_address are
1738 called several times when GDB stops.
1739
1740 [linux]
1741 * Multiple hardware watchpoints can be hit at the same time,
1742 causing GDB to stop. GDB only presents one hardware watchpoint
1743 hit at a time as the reason for stopping, and all the other hits
1744 are presented later, one after the other, each time the user
1745 requests the execution to be resumed. Execution is not resumed
1746 for the threads still having pending hit event stored in
1747 LWP_INFO->STATUS. While the watchpoint is already removed from
1748 the inferior on the first stop the thread hit event is kept being
1749 reported from its cached value by linux_nat_stopped_data_address
1750 until the real thread resume happens after the watchpoint gets
1751 presented and thus its LWP_INFO->STATUS gets reset.
1752
1753 Therefore the hardware watchpoint hit can get safely reset on the
1754 watchpoint removal from inferior. */
1755
1756 static void
1757 update_watchpoint (struct watchpoint *b, int reparse)
1758 {
1759 int within_current_scope;
1760 struct frame_id saved_frame_id;
1761 int frame_saved;
1762
1763 /* If this is a local watchpoint, we only want to check if the
1764 watchpoint frame is in scope if the current thread is the thread
1765 that was used to create the watchpoint. */
1766 if (!watchpoint_in_thread_scope (b))
1767 return;
1768
1769 if (b->base.disposition == disp_del_at_next_stop)
1770 return;
1771
1772 frame_saved = 0;
1773
1774 /* Determine if the watchpoint is within scope. */
1775 if (b->exp_valid_block == NULL)
1776 within_current_scope = 1;
1777 else
1778 {
1779 struct frame_info *fi = get_current_frame ();
1780 struct gdbarch *frame_arch = get_frame_arch (fi);
1781 CORE_ADDR frame_pc = get_frame_pc (fi);
1782
1783 /* If we're in a function epilogue, unwinding may not work
1784 properly, so do not attempt to recreate locations at this
1785 point. See similar comments in watchpoint_check. */
1786 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1787 return;
1788
1789 /* Save the current frame's ID so we can restore it after
1790 evaluating the watchpoint expression on its own frame. */
1791 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1792 took a frame parameter, so that we didn't have to change the
1793 selected frame. */
1794 frame_saved = 1;
1795 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1796
1797 fi = frame_find_by_id (b->watchpoint_frame);
1798 within_current_scope = (fi != NULL);
1799 if (within_current_scope)
1800 select_frame (fi);
1801 }
1802
1803 /* We don't free locations. They are stored in the bp_location array
1804 and update_global_location_list will eventually delete them and
1805 remove breakpoints if needed. */
1806 b->base.loc = NULL;
1807
1808 if (within_current_scope && reparse)
1809 {
1810 const char *s;
1811
1812 if (b->exp)
1813 {
1814 xfree (b->exp);
1815 b->exp = NULL;
1816 }
1817 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1818 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1819 /* If the meaning of expression itself changed, the old value is
1820 no longer relevant. We don't want to report a watchpoint hit
1821 to the user when the old value and the new value may actually
1822 be completely different objects. */
1823 value_free (b->val);
1824 b->val = NULL;
1825 b->val_valid = 0;
1826
1827 /* Note that unlike with breakpoints, the watchpoint's condition
1828 expression is stored in the breakpoint object, not in the
1829 locations (re)created below. */
1830 if (b->base.cond_string != NULL)
1831 {
1832 if (b->cond_exp != NULL)
1833 {
1834 xfree (b->cond_exp);
1835 b->cond_exp = NULL;
1836 }
1837
1838 s = b->base.cond_string;
1839 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1840 }
1841 }
1842
1843 /* If we failed to parse the expression, for example because
1844 it refers to a global variable in a not-yet-loaded shared library,
1845 don't try to insert watchpoint. We don't automatically delete
1846 such watchpoint, though, since failure to parse expression
1847 is different from out-of-scope watchpoint. */
1848 if (!target_has_execution)
1849 {
1850 /* Without execution, memory can't change. No use to try and
1851 set watchpoint locations. The watchpoint will be reset when
1852 the target gains execution, through breakpoint_re_set. */
1853 if (!can_use_hw_watchpoints)
1854 {
1855 if (b->base.ops->works_in_software_mode (&b->base))
1856 b->base.type = bp_watchpoint;
1857 else
1858 error (_("Can't set read/access watchpoint when "
1859 "hardware watchpoints are disabled."));
1860 }
1861 }
1862 else if (within_current_scope && b->exp)
1863 {
1864 int pc = 0;
1865 struct value *val_chain, *v, *result, *next;
1866 struct program_space *frame_pspace;
1867
1868 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1869
1870 /* Avoid setting b->val if it's already set. The meaning of
1871 b->val is 'the last value' user saw, and we should update
1872 it only if we reported that last value to user. As it
1873 happens, the code that reports it updates b->val directly.
1874 We don't keep track of the memory value for masked
1875 watchpoints. */
1876 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1877 {
1878 b->val = v;
1879 b->val_valid = 1;
1880 }
1881
1882 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1883
1884 /* Look at each value on the value chain. */
1885 for (v = val_chain; v; v = value_next (v))
1886 {
1887 /* If it's a memory location, and GDB actually needed
1888 its contents to evaluate the expression, then we
1889 must watch it. If the first value returned is
1890 still lazy, that means an error occurred reading it;
1891 watch it anyway in case it becomes readable. */
1892 if (VALUE_LVAL (v) == lval_memory
1893 && (v == val_chain || ! value_lazy (v)))
1894 {
1895 struct type *vtype = check_typedef (value_type (v));
1896
1897 /* We only watch structs and arrays if user asked
1898 for it explicitly, never if they just happen to
1899 appear in the middle of some value chain. */
1900 if (v == result
1901 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1902 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1903 {
1904 CORE_ADDR addr;
1905 int type;
1906 struct bp_location *loc, **tmp;
1907
1908 addr = value_address (v);
1909 type = hw_write;
1910 if (b->base.type == bp_read_watchpoint)
1911 type = hw_read;
1912 else if (b->base.type == bp_access_watchpoint)
1913 type = hw_access;
1914
1915 loc = allocate_bp_location (&b->base);
1916 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1917 ;
1918 *tmp = loc;
1919 loc->gdbarch = get_type_arch (value_type (v));
1920
1921 loc->pspace = frame_pspace;
1922 loc->address = addr;
1923 loc->length = TYPE_LENGTH (value_type (v));
1924 loc->watchpoint_type = type;
1925 }
1926 }
1927 }
1928
1929 /* Change the type of breakpoint between hardware assisted or
1930 an ordinary watchpoint depending on the hardware support
1931 and free hardware slots. REPARSE is set when the inferior
1932 is started. */
1933 if (reparse)
1934 {
1935 int reg_cnt;
1936 enum bp_loc_type loc_type;
1937 struct bp_location *bl;
1938
1939 reg_cnt = can_use_hardware_watchpoint (val_chain);
1940
1941 if (reg_cnt)
1942 {
1943 int i, target_resources_ok, other_type_used;
1944 enum bptype type;
1945
1946 /* Use an exact watchpoint when there's only one memory region to be
1947 watched, and only one debug register is needed to watch it. */
1948 b->exact = target_exact_watchpoints && reg_cnt == 1;
1949
1950 /* We need to determine how many resources are already
1951 used for all other hardware watchpoints plus this one
1952 to see if we still have enough resources to also fit
1953 this watchpoint in as well. */
1954
1955 /* If this is a software watchpoint, we try to turn it
1956 to a hardware one -- count resources as if B was of
1957 hardware watchpoint type. */
1958 type = b->base.type;
1959 if (type == bp_watchpoint)
1960 type = bp_hardware_watchpoint;
1961
1962 /* This watchpoint may or may not have been placed on
1963 the list yet at this point (it won't be in the list
1964 if we're trying to create it for the first time,
1965 through watch_command), so always account for it
1966 manually. */
1967
1968 /* Count resources used by all watchpoints except B. */
1969 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1970
1971 /* Add in the resources needed for B. */
1972 i += hw_watchpoint_use_count (&b->base);
1973
1974 target_resources_ok
1975 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1976 if (target_resources_ok <= 0)
1977 {
1978 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1979
1980 if (target_resources_ok == 0 && !sw_mode)
1981 error (_("Target does not support this type of "
1982 "hardware watchpoint."));
1983 else if (target_resources_ok < 0 && !sw_mode)
1984 error (_("There are not enough available hardware "
1985 "resources for this watchpoint."));
1986
1987 /* Downgrade to software watchpoint. */
1988 b->base.type = bp_watchpoint;
1989 }
1990 else
1991 {
1992 /* If this was a software watchpoint, we've just
1993 found we have enough resources to turn it to a
1994 hardware watchpoint. Otherwise, this is a
1995 nop. */
1996 b->base.type = type;
1997 }
1998 }
1999 else if (!b->base.ops->works_in_software_mode (&b->base))
2000 {
2001 if (!can_use_hw_watchpoints)
2002 error (_("Can't set read/access watchpoint when "
2003 "hardware watchpoints are disabled."));
2004 else
2005 error (_("Expression cannot be implemented with "
2006 "read/access watchpoint."));
2007 }
2008 else
2009 b->base.type = bp_watchpoint;
2010
2011 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2012 : bp_loc_hardware_watchpoint);
2013 for (bl = b->base.loc; bl; bl = bl->next)
2014 bl->loc_type = loc_type;
2015 }
2016
2017 for (v = val_chain; v; v = next)
2018 {
2019 next = value_next (v);
2020 if (v != b->val)
2021 value_free (v);
2022 }
2023
2024 /* If a software watchpoint is not watching any memory, then the
2025 above left it without any location set up. But,
2026 bpstat_stop_status requires a location to be able to report
2027 stops, so make sure there's at least a dummy one. */
2028 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2029 {
2030 struct breakpoint *base = &b->base;
2031 base->loc = allocate_bp_location (base);
2032 base->loc->pspace = frame_pspace;
2033 base->loc->address = -1;
2034 base->loc->length = -1;
2035 base->loc->watchpoint_type = -1;
2036 }
2037 }
2038 else if (!within_current_scope)
2039 {
2040 printf_filtered (_("\
2041 Watchpoint %d deleted because the program has left the block\n\
2042 in which its expression is valid.\n"),
2043 b->base.number);
2044 watchpoint_del_at_next_stop (b);
2045 }
2046
2047 /* Restore the selected frame. */
2048 if (frame_saved)
2049 select_frame (frame_find_by_id (saved_frame_id));
2050 }
2051
2052
2053 /* Returns 1 iff breakpoint location should be
2054 inserted in the inferior. We don't differentiate the type of BL's owner
2055 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2056 breakpoint_ops is not defined, because in insert_bp_location,
2057 tracepoint's insert_location will not be called. */
2058 static int
2059 should_be_inserted (struct bp_location *bl)
2060 {
2061 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2062 return 0;
2063
2064 if (bl->owner->disposition == disp_del_at_next_stop)
2065 return 0;
2066
2067 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2068 return 0;
2069
2070 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2071 return 0;
2072
2073 /* This is set for example, when we're attached to the parent of a
2074 vfork, and have detached from the child. The child is running
2075 free, and we expect it to do an exec or exit, at which point the
2076 OS makes the parent schedulable again (and the target reports
2077 that the vfork is done). Until the child is done with the shared
2078 memory region, do not insert breakpoints in the parent, otherwise
2079 the child could still trip on the parent's breakpoints. Since
2080 the parent is blocked anyway, it won't miss any breakpoint. */
2081 if (bl->pspace->breakpoints_not_allowed)
2082 return 0;
2083
2084 /* Don't insert a breakpoint if we're trying to step past its
2085 location. */
2086 if ((bl->loc_type == bp_loc_software_breakpoint
2087 || bl->loc_type == bp_loc_hardware_breakpoint)
2088 && stepping_past_instruction_at (bl->pspace->aspace,
2089 bl->address))
2090 return 0;
2091
2092 return 1;
2093 }
2094
2095 /* Same as should_be_inserted but does the check assuming
2096 that the location is not duplicated. */
2097
2098 static int
2099 unduplicated_should_be_inserted (struct bp_location *bl)
2100 {
2101 int result;
2102 const int save_duplicate = bl->duplicate;
2103
2104 bl->duplicate = 0;
2105 result = should_be_inserted (bl);
2106 bl->duplicate = save_duplicate;
2107 return result;
2108 }
2109
2110 /* Parses a conditional described by an expression COND into an
2111 agent expression bytecode suitable for evaluation
2112 by the bytecode interpreter. Return NULL if there was
2113 any error during parsing. */
2114
2115 static struct agent_expr *
2116 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2117 {
2118 struct agent_expr *aexpr = NULL;
2119 volatile struct gdb_exception ex;
2120
2121 if (!cond)
2122 return NULL;
2123
2124 /* We don't want to stop processing, so catch any errors
2125 that may show up. */
2126 TRY_CATCH (ex, RETURN_MASK_ERROR)
2127 {
2128 aexpr = gen_eval_for_expr (scope, cond);
2129 }
2130
2131 if (ex.reason < 0)
2132 {
2133 /* If we got here, it means the condition could not be parsed to a valid
2134 bytecode expression and thus can't be evaluated on the target's side.
2135 It's no use iterating through the conditions. */
2136 return NULL;
2137 }
2138
2139 /* We have a valid agent expression. */
2140 return aexpr;
2141 }
2142
2143 /* Based on location BL, create a list of breakpoint conditions to be
2144 passed on to the target. If we have duplicated locations with different
2145 conditions, we will add such conditions to the list. The idea is that the
2146 target will evaluate the list of conditions and will only notify GDB when
2147 one of them is true. */
2148
2149 static void
2150 build_target_condition_list (struct bp_location *bl)
2151 {
2152 struct bp_location **locp = NULL, **loc2p;
2153 int null_condition_or_parse_error = 0;
2154 int modified = bl->needs_update;
2155 struct bp_location *loc;
2156
2157 /* Release conditions left over from a previous insert. */
2158 VEC_free (agent_expr_p, bl->target_info.conditions);
2159
2160 /* This is only meaningful if the target is
2161 evaluating conditions and if the user has
2162 opted for condition evaluation on the target's
2163 side. */
2164 if (gdb_evaluates_breakpoint_condition_p ()
2165 || !target_supports_evaluation_of_breakpoint_conditions ())
2166 return;
2167
2168 /* Do a first pass to check for locations with no assigned
2169 conditions or conditions that fail to parse to a valid agent expression
2170 bytecode. If any of these happen, then it's no use to send conditions
2171 to the target since this location will always trigger and generate a
2172 response back to GDB. */
2173 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2174 {
2175 loc = (*loc2p);
2176 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2177 {
2178 if (modified)
2179 {
2180 struct agent_expr *aexpr;
2181
2182 /* Re-parse the conditions since something changed. In that
2183 case we already freed the condition bytecodes (see
2184 force_breakpoint_reinsertion). We just
2185 need to parse the condition to bytecodes again. */
2186 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2187 loc->cond_bytecode = aexpr;
2188
2189 /* Check if we managed to parse the conditional expression
2190 correctly. If not, we will not send this condition
2191 to the target. */
2192 if (aexpr)
2193 continue;
2194 }
2195
2196 /* If we have a NULL bytecode expression, it means something
2197 went wrong or we have a null condition expression. */
2198 if (!loc->cond_bytecode)
2199 {
2200 null_condition_or_parse_error = 1;
2201 break;
2202 }
2203 }
2204 }
2205
2206 /* If any of these happened, it means we will have to evaluate the conditions
2207 for the location's address on gdb's side. It is no use keeping bytecodes
2208 for all the other duplicate locations, thus we free all of them here.
2209
2210 This is so we have a finer control over which locations' conditions are
2211 being evaluated by GDB or the remote stub. */
2212 if (null_condition_or_parse_error)
2213 {
2214 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2215 {
2216 loc = (*loc2p);
2217 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2218 {
2219 /* Only go as far as the first NULL bytecode is
2220 located. */
2221 if (!loc->cond_bytecode)
2222 return;
2223
2224 free_agent_expr (loc->cond_bytecode);
2225 loc->cond_bytecode = NULL;
2226 }
2227 }
2228 }
2229
2230 /* No NULL conditions or failed bytecode generation. Build a condition list
2231 for this location's address. */
2232 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2233 {
2234 loc = (*loc2p);
2235 if (loc->cond
2236 && is_breakpoint (loc->owner)
2237 && loc->pspace->num == bl->pspace->num
2238 && loc->owner->enable_state == bp_enabled
2239 && loc->enabled)
2240 /* Add the condition to the vector. This will be used later to send the
2241 conditions to the target. */
2242 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2243 loc->cond_bytecode);
2244 }
2245
2246 return;
2247 }
2248
2249 /* Parses a command described by string CMD into an agent expression
2250 bytecode suitable for evaluation by the bytecode interpreter.
2251 Return NULL if there was any error during parsing. */
2252
2253 static struct agent_expr *
2254 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2255 {
2256 struct cleanup *old_cleanups = 0;
2257 struct expression *expr, **argvec;
2258 struct agent_expr *aexpr = NULL;
2259 volatile struct gdb_exception ex;
2260 const char *cmdrest;
2261 const char *format_start, *format_end;
2262 struct format_piece *fpieces;
2263 int nargs;
2264 struct gdbarch *gdbarch = get_current_arch ();
2265
2266 if (!cmd)
2267 return NULL;
2268
2269 cmdrest = cmd;
2270
2271 if (*cmdrest == ',')
2272 ++cmdrest;
2273 cmdrest = skip_spaces_const (cmdrest);
2274
2275 if (*cmdrest++ != '"')
2276 error (_("No format string following the location"));
2277
2278 format_start = cmdrest;
2279
2280 fpieces = parse_format_string (&cmdrest);
2281
2282 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2283
2284 format_end = cmdrest;
2285
2286 if (*cmdrest++ != '"')
2287 error (_("Bad format string, non-terminated '\"'."));
2288
2289 cmdrest = skip_spaces_const (cmdrest);
2290
2291 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2292 error (_("Invalid argument syntax"));
2293
2294 if (*cmdrest == ',')
2295 cmdrest++;
2296 cmdrest = skip_spaces_const (cmdrest);
2297
2298 /* For each argument, make an expression. */
2299
2300 argvec = (struct expression **) alloca (strlen (cmd)
2301 * sizeof (struct expression *));
2302
2303 nargs = 0;
2304 while (*cmdrest != '\0')
2305 {
2306 const char *cmd1;
2307
2308 cmd1 = cmdrest;
2309 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2310 argvec[nargs++] = expr;
2311 cmdrest = cmd1;
2312 if (*cmdrest == ',')
2313 ++cmdrest;
2314 }
2315
2316 /* We don't want to stop processing, so catch any errors
2317 that may show up. */
2318 TRY_CATCH (ex, RETURN_MASK_ERROR)
2319 {
2320 aexpr = gen_printf (scope, gdbarch, 0, 0,
2321 format_start, format_end - format_start,
2322 fpieces, nargs, argvec);
2323 }
2324
2325 do_cleanups (old_cleanups);
2326
2327 if (ex.reason < 0)
2328 {
2329 /* If we got here, it means the command could not be parsed to a valid
2330 bytecode expression and thus can't be evaluated on the target's side.
2331 It's no use iterating through the other commands. */
2332 return NULL;
2333 }
2334
2335 /* We have a valid agent expression, return it. */
2336 return aexpr;
2337 }
2338
2339 /* Based on location BL, create a list of breakpoint commands to be
2340 passed on to the target. If we have duplicated locations with
2341 different commands, we will add any such to the list. */
2342
2343 static void
2344 build_target_command_list (struct bp_location *bl)
2345 {
2346 struct bp_location **locp = NULL, **loc2p;
2347 int null_command_or_parse_error = 0;
2348 int modified = bl->needs_update;
2349 struct bp_location *loc;
2350
2351 /* Release commands left over from a previous insert. */
2352 VEC_free (agent_expr_p, bl->target_info.tcommands);
2353
2354 /* For now, limit to agent-style dprintf breakpoints. */
2355 if (bl->owner->type != bp_dprintf
2356 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2357 return;
2358
2359 if (!target_can_run_breakpoint_commands ())
2360 return;
2361
2362 /* Do a first pass to check for locations with no assigned
2363 conditions or conditions that fail to parse to a valid agent expression
2364 bytecode. If any of these happen, then it's no use to send conditions
2365 to the target since this location will always trigger and generate a
2366 response back to GDB. */
2367 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2368 {
2369 loc = (*loc2p);
2370 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2371 {
2372 if (modified)
2373 {
2374 struct agent_expr *aexpr;
2375
2376 /* Re-parse the commands since something changed. In that
2377 case we already freed the command bytecodes (see
2378 force_breakpoint_reinsertion). We just
2379 need to parse the command to bytecodes again. */
2380 aexpr = parse_cmd_to_aexpr (bl->address,
2381 loc->owner->extra_string);
2382 loc->cmd_bytecode = aexpr;
2383
2384 if (!aexpr)
2385 continue;
2386 }
2387
2388 /* If we have a NULL bytecode expression, it means something
2389 went wrong or we have a null command expression. */
2390 if (!loc->cmd_bytecode)
2391 {
2392 null_command_or_parse_error = 1;
2393 break;
2394 }
2395 }
2396 }
2397
2398 /* If anything failed, then we're not doing target-side commands,
2399 and so clean up. */
2400 if (null_command_or_parse_error)
2401 {
2402 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2403 {
2404 loc = (*loc2p);
2405 if (is_breakpoint (loc->owner)
2406 && loc->pspace->num == bl->pspace->num)
2407 {
2408 /* Only go as far as the first NULL bytecode is
2409 located. */
2410 if (loc->cmd_bytecode == NULL)
2411 return;
2412
2413 free_agent_expr (loc->cmd_bytecode);
2414 loc->cmd_bytecode = NULL;
2415 }
2416 }
2417 }
2418
2419 /* No NULL commands or failed bytecode generation. Build a command list
2420 for this location's address. */
2421 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2422 {
2423 loc = (*loc2p);
2424 if (loc->owner->extra_string
2425 && is_breakpoint (loc->owner)
2426 && loc->pspace->num == bl->pspace->num
2427 && loc->owner->enable_state == bp_enabled
2428 && loc->enabled)
2429 /* Add the command to the vector. This will be used later
2430 to send the commands to the target. */
2431 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2432 loc->cmd_bytecode);
2433 }
2434
2435 bl->target_info.persist = 0;
2436 /* Maybe flag this location as persistent. */
2437 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2438 bl->target_info.persist = 1;
2439 }
2440
2441 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2442 location. Any error messages are printed to TMP_ERROR_STREAM; and
2443 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2444 Returns 0 for success, 1 if the bp_location type is not supported or
2445 -1 for failure.
2446
2447 NOTE drow/2003-09-09: This routine could be broken down to an
2448 object-style method for each breakpoint or catchpoint type. */
2449 static int
2450 insert_bp_location (struct bp_location *bl,
2451 struct ui_file *tmp_error_stream,
2452 int *disabled_breaks,
2453 int *hw_breakpoint_error,
2454 int *hw_bp_error_explained_already)
2455 {
2456 enum errors bp_err = GDB_NO_ERROR;
2457 const char *bp_err_message = NULL;
2458 volatile struct gdb_exception e;
2459
2460 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2461 return 0;
2462
2463 /* Note we don't initialize bl->target_info, as that wipes out
2464 the breakpoint location's shadow_contents if the breakpoint
2465 is still inserted at that location. This in turn breaks
2466 target_read_memory which depends on these buffers when
2467 a memory read is requested at the breakpoint location:
2468 Once the target_info has been wiped, we fail to see that
2469 we have a breakpoint inserted at that address and thus
2470 read the breakpoint instead of returning the data saved in
2471 the breakpoint location's shadow contents. */
2472 bl->target_info.placed_address = bl->address;
2473 bl->target_info.placed_address_space = bl->pspace->aspace;
2474 bl->target_info.length = bl->length;
2475
2476 /* When working with target-side conditions, we must pass all the conditions
2477 for the same breakpoint address down to the target since GDB will not
2478 insert those locations. With a list of breakpoint conditions, the target
2479 can decide when to stop and notify GDB. */
2480
2481 if (is_breakpoint (bl->owner))
2482 {
2483 build_target_condition_list (bl);
2484 build_target_command_list (bl);
2485 /* Reset the modification marker. */
2486 bl->needs_update = 0;
2487 }
2488
2489 if (bl->loc_type == bp_loc_software_breakpoint
2490 || bl->loc_type == bp_loc_hardware_breakpoint)
2491 {
2492 if (bl->owner->type != bp_hardware_breakpoint)
2493 {
2494 /* If the explicitly specified breakpoint type
2495 is not hardware breakpoint, check the memory map to see
2496 if the breakpoint address is in read only memory or not.
2497
2498 Two important cases are:
2499 - location type is not hardware breakpoint, memory
2500 is readonly. We change the type of the location to
2501 hardware breakpoint.
2502 - location type is hardware breakpoint, memory is
2503 read-write. This means we've previously made the
2504 location hardware one, but then the memory map changed,
2505 so we undo.
2506
2507 When breakpoints are removed, remove_breakpoints will use
2508 location types we've just set here, the only possible
2509 problem is that memory map has changed during running
2510 program, but it's not going to work anyway with current
2511 gdb. */
2512 struct mem_region *mr
2513 = lookup_mem_region (bl->target_info.placed_address);
2514
2515 if (mr)
2516 {
2517 if (automatic_hardware_breakpoints)
2518 {
2519 enum bp_loc_type new_type;
2520
2521 if (mr->attrib.mode != MEM_RW)
2522 new_type = bp_loc_hardware_breakpoint;
2523 else
2524 new_type = bp_loc_software_breakpoint;
2525
2526 if (new_type != bl->loc_type)
2527 {
2528 static int said = 0;
2529
2530 bl->loc_type = new_type;
2531 if (!said)
2532 {
2533 fprintf_filtered (gdb_stdout,
2534 _("Note: automatically using "
2535 "hardware breakpoints for "
2536 "read-only addresses.\n"));
2537 said = 1;
2538 }
2539 }
2540 }
2541 else if (bl->loc_type == bp_loc_software_breakpoint
2542 && mr->attrib.mode != MEM_RW)
2543 warning (_("cannot set software breakpoint "
2544 "at readonly address %s"),
2545 paddress (bl->gdbarch, bl->address));
2546 }
2547 }
2548
2549 /* First check to see if we have to handle an overlay. */
2550 if (overlay_debugging == ovly_off
2551 || bl->section == NULL
2552 || !(section_is_overlay (bl->section)))
2553 {
2554 /* No overlay handling: just set the breakpoint. */
2555 TRY_CATCH (e, RETURN_MASK_ALL)
2556 {
2557 int val;
2558
2559 val = bl->owner->ops->insert_location (bl);
2560 if (val)
2561 bp_err = GENERIC_ERROR;
2562 }
2563 if (e.reason < 0)
2564 {
2565 bp_err = e.error;
2566 bp_err_message = e.message;
2567 }
2568 }
2569 else
2570 {
2571 /* This breakpoint is in an overlay section.
2572 Shall we set a breakpoint at the LMA? */
2573 if (!overlay_events_enabled)
2574 {
2575 /* Yes -- overlay event support is not active,
2576 so we must try to set a breakpoint at the LMA.
2577 This will not work for a hardware breakpoint. */
2578 if (bl->loc_type == bp_loc_hardware_breakpoint)
2579 warning (_("hardware breakpoint %d not supported in overlay!"),
2580 bl->owner->number);
2581 else
2582 {
2583 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2584 bl->section);
2585 /* Set a software (trap) breakpoint at the LMA. */
2586 bl->overlay_target_info = bl->target_info;
2587 bl->overlay_target_info.placed_address = addr;
2588
2589 /* No overlay handling: just set the breakpoint. */
2590 TRY_CATCH (e, RETURN_MASK_ALL)
2591 {
2592 int val;
2593
2594 val = target_insert_breakpoint (bl->gdbarch,
2595 &bl->overlay_target_info);
2596 if (val)
2597 bp_err = GENERIC_ERROR;
2598 }
2599 if (e.reason < 0)
2600 {
2601 bp_err = e.error;
2602 bp_err_message = e.message;
2603 }
2604
2605 if (bp_err != GDB_NO_ERROR)
2606 fprintf_unfiltered (tmp_error_stream,
2607 "Overlay breakpoint %d "
2608 "failed: in ROM?\n",
2609 bl->owner->number);
2610 }
2611 }
2612 /* Shall we set a breakpoint at the VMA? */
2613 if (section_is_mapped (bl->section))
2614 {
2615 /* Yes. This overlay section is mapped into memory. */
2616 TRY_CATCH (e, RETURN_MASK_ALL)
2617 {
2618 int val;
2619
2620 val = bl->owner->ops->insert_location (bl);
2621 if (val)
2622 bp_err = GENERIC_ERROR;
2623 }
2624 if (e.reason < 0)
2625 {
2626 bp_err = e.error;
2627 bp_err_message = e.message;
2628 }
2629 }
2630 else
2631 {
2632 /* No. This breakpoint will not be inserted.
2633 No error, but do not mark the bp as 'inserted'. */
2634 return 0;
2635 }
2636 }
2637
2638 if (bp_err != GDB_NO_ERROR)
2639 {
2640 /* Can't set the breakpoint. */
2641
2642 /* In some cases, we might not be able to insert a
2643 breakpoint in a shared library that has already been
2644 removed, but we have not yet processed the shlib unload
2645 event. Unfortunately, some targets that implement
2646 breakpoint insertion themselves can't tell why the
2647 breakpoint insertion failed (e.g., the remote target
2648 doesn't define error codes), so we must treat generic
2649 errors as memory errors. */
2650 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2651 && bl->loc_type == bp_loc_software_breakpoint
2652 && (solib_name_from_address (bl->pspace, bl->address)
2653 || userloaded_objfile_contains_address_p (bl->pspace,
2654 bl->address)))
2655 {
2656 /* See also: disable_breakpoints_in_shlibs. */
2657 bl->shlib_disabled = 1;
2658 observer_notify_breakpoint_modified (bl->owner);
2659 if (!*disabled_breaks)
2660 {
2661 fprintf_unfiltered (tmp_error_stream,
2662 "Cannot insert breakpoint %d.\n",
2663 bl->owner->number);
2664 fprintf_unfiltered (tmp_error_stream,
2665 "Temporarily disabling shared "
2666 "library breakpoints:\n");
2667 }
2668 *disabled_breaks = 1;
2669 fprintf_unfiltered (tmp_error_stream,
2670 "breakpoint #%d\n", bl->owner->number);
2671 return 0;
2672 }
2673 else
2674 {
2675 if (bl->loc_type == bp_loc_hardware_breakpoint)
2676 {
2677 *hw_breakpoint_error = 1;
2678 *hw_bp_error_explained_already = bp_err_message != NULL;
2679 fprintf_unfiltered (tmp_error_stream,
2680 "Cannot insert hardware breakpoint %d%s",
2681 bl->owner->number, bp_err_message ? ":" : ".\n");
2682 if (bp_err_message != NULL)
2683 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2684 }
2685 else
2686 {
2687 if (bp_err_message == NULL)
2688 {
2689 char *message
2690 = memory_error_message (TARGET_XFER_E_IO,
2691 bl->gdbarch, bl->address);
2692 struct cleanup *old_chain = make_cleanup (xfree, message);
2693
2694 fprintf_unfiltered (tmp_error_stream,
2695 "Cannot insert breakpoint %d.\n"
2696 "%s\n",
2697 bl->owner->number, message);
2698 do_cleanups (old_chain);
2699 }
2700 else
2701 {
2702 fprintf_unfiltered (tmp_error_stream,
2703 "Cannot insert breakpoint %d: %s\n",
2704 bl->owner->number,
2705 bp_err_message);
2706 }
2707 }
2708 return 1;
2709
2710 }
2711 }
2712 else
2713 bl->inserted = 1;
2714
2715 return 0;
2716 }
2717
2718 else if (bl->loc_type == bp_loc_hardware_watchpoint
2719 /* NOTE drow/2003-09-08: This state only exists for removing
2720 watchpoints. It's not clear that it's necessary... */
2721 && bl->owner->disposition != disp_del_at_next_stop)
2722 {
2723 int val;
2724
2725 gdb_assert (bl->owner->ops != NULL
2726 && bl->owner->ops->insert_location != NULL);
2727
2728 val = bl->owner->ops->insert_location (bl);
2729
2730 /* If trying to set a read-watchpoint, and it turns out it's not
2731 supported, try emulating one with an access watchpoint. */
2732 if (val == 1 && bl->watchpoint_type == hw_read)
2733 {
2734 struct bp_location *loc, **loc_temp;
2735
2736 /* But don't try to insert it, if there's already another
2737 hw_access location that would be considered a duplicate
2738 of this one. */
2739 ALL_BP_LOCATIONS (loc, loc_temp)
2740 if (loc != bl
2741 && loc->watchpoint_type == hw_access
2742 && watchpoint_locations_match (bl, loc))
2743 {
2744 bl->duplicate = 1;
2745 bl->inserted = 1;
2746 bl->target_info = loc->target_info;
2747 bl->watchpoint_type = hw_access;
2748 val = 0;
2749 break;
2750 }
2751
2752 if (val == 1)
2753 {
2754 bl->watchpoint_type = hw_access;
2755 val = bl->owner->ops->insert_location (bl);
2756
2757 if (val)
2758 /* Back to the original value. */
2759 bl->watchpoint_type = hw_read;
2760 }
2761 }
2762
2763 bl->inserted = (val == 0);
2764 }
2765
2766 else if (bl->owner->type == bp_catchpoint)
2767 {
2768 int val;
2769
2770 gdb_assert (bl->owner->ops != NULL
2771 && bl->owner->ops->insert_location != NULL);
2772
2773 val = bl->owner->ops->insert_location (bl);
2774 if (val)
2775 {
2776 bl->owner->enable_state = bp_disabled;
2777
2778 if (val == 1)
2779 warning (_("\
2780 Error inserting catchpoint %d: Your system does not support this type\n\
2781 of catchpoint."), bl->owner->number);
2782 else
2783 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2784 }
2785
2786 bl->inserted = (val == 0);
2787
2788 /* We've already printed an error message if there was a problem
2789 inserting this catchpoint, and we've disabled the catchpoint,
2790 so just return success. */
2791 return 0;
2792 }
2793
2794 return 0;
2795 }
2796
2797 /* This function is called when program space PSPACE is about to be
2798 deleted. It takes care of updating breakpoints to not reference
2799 PSPACE anymore. */
2800
2801 void
2802 breakpoint_program_space_exit (struct program_space *pspace)
2803 {
2804 struct breakpoint *b, *b_temp;
2805 struct bp_location *loc, **loc_temp;
2806
2807 /* Remove any breakpoint that was set through this program space. */
2808 ALL_BREAKPOINTS_SAFE (b, b_temp)
2809 {
2810 if (b->pspace == pspace)
2811 delete_breakpoint (b);
2812 }
2813
2814 /* Breakpoints set through other program spaces could have locations
2815 bound to PSPACE as well. Remove those. */
2816 ALL_BP_LOCATIONS (loc, loc_temp)
2817 {
2818 struct bp_location *tmp;
2819
2820 if (loc->pspace == pspace)
2821 {
2822 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2823 if (loc->owner->loc == loc)
2824 loc->owner->loc = loc->next;
2825 else
2826 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2827 if (tmp->next == loc)
2828 {
2829 tmp->next = loc->next;
2830 break;
2831 }
2832 }
2833 }
2834
2835 /* Now update the global location list to permanently delete the
2836 removed locations above. */
2837 update_global_location_list (0);
2838 }
2839
2840 /* Make sure all breakpoints are inserted in inferior.
2841 Throws exception on any error.
2842 A breakpoint that is already inserted won't be inserted
2843 again, so calling this function twice is safe. */
2844 void
2845 insert_breakpoints (void)
2846 {
2847 struct breakpoint *bpt;
2848
2849 ALL_BREAKPOINTS (bpt)
2850 if (is_hardware_watchpoint (bpt))
2851 {
2852 struct watchpoint *w = (struct watchpoint *) bpt;
2853
2854 update_watchpoint (w, 0 /* don't reparse. */);
2855 }
2856
2857 update_global_location_list (1);
2858
2859 /* update_global_location_list does not insert breakpoints when
2860 always_inserted_mode is not enabled. Explicitly insert them
2861 now. */
2862 if (!breakpoints_always_inserted_mode ())
2863 insert_breakpoint_locations ();
2864 }
2865
2866 /* Invoke CALLBACK for each of bp_location. */
2867
2868 void
2869 iterate_over_bp_locations (walk_bp_location_callback callback)
2870 {
2871 struct bp_location *loc, **loc_tmp;
2872
2873 ALL_BP_LOCATIONS (loc, loc_tmp)
2874 {
2875 callback (loc, NULL);
2876 }
2877 }
2878
2879 /* This is used when we need to synch breakpoint conditions between GDB and the
2880 target. It is the case with deleting and disabling of breakpoints when using
2881 always-inserted mode. */
2882
2883 static void
2884 update_inserted_breakpoint_locations (void)
2885 {
2886 struct bp_location *bl, **blp_tmp;
2887 int error_flag = 0;
2888 int val = 0;
2889 int disabled_breaks = 0;
2890 int hw_breakpoint_error = 0;
2891 int hw_bp_details_reported = 0;
2892
2893 struct ui_file *tmp_error_stream = mem_fileopen ();
2894 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2895
2896 /* Explicitly mark the warning -- this will only be printed if
2897 there was an error. */
2898 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2899
2900 save_current_space_and_thread ();
2901
2902 ALL_BP_LOCATIONS (bl, blp_tmp)
2903 {
2904 /* We only want to update software breakpoints and hardware
2905 breakpoints. */
2906 if (!is_breakpoint (bl->owner))
2907 continue;
2908
2909 /* We only want to update locations that are already inserted
2910 and need updating. This is to avoid unwanted insertion during
2911 deletion of breakpoints. */
2912 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2913 continue;
2914
2915 switch_to_program_space_and_thread (bl->pspace);
2916
2917 /* For targets that support global breakpoints, there's no need
2918 to select an inferior to insert breakpoint to. In fact, even
2919 if we aren't attached to any process yet, we should still
2920 insert breakpoints. */
2921 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2922 && ptid_equal (inferior_ptid, null_ptid))
2923 continue;
2924
2925 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2926 &hw_breakpoint_error, &hw_bp_details_reported);
2927 if (val)
2928 error_flag = val;
2929 }
2930
2931 if (error_flag)
2932 {
2933 target_terminal_ours_for_output ();
2934 error_stream (tmp_error_stream);
2935 }
2936
2937 do_cleanups (cleanups);
2938 }
2939
2940 /* Used when starting or continuing the program. */
2941
2942 static void
2943 insert_breakpoint_locations (void)
2944 {
2945 struct breakpoint *bpt;
2946 struct bp_location *bl, **blp_tmp;
2947 int error_flag = 0;
2948 int val = 0;
2949 int disabled_breaks = 0;
2950 int hw_breakpoint_error = 0;
2951 int hw_bp_error_explained_already = 0;
2952
2953 struct ui_file *tmp_error_stream = mem_fileopen ();
2954 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2955
2956 /* Explicitly mark the warning -- this will only be printed if
2957 there was an error. */
2958 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2959
2960 save_current_space_and_thread ();
2961
2962 ALL_BP_LOCATIONS (bl, blp_tmp)
2963 {
2964 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2965 continue;
2966
2967 /* There is no point inserting thread-specific breakpoints if
2968 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2969 has BL->OWNER always non-NULL. */
2970 if (bl->owner->thread != -1
2971 && !valid_thread_id (bl->owner->thread))
2972 continue;
2973
2974 switch_to_program_space_and_thread (bl->pspace);
2975
2976 /* For targets that support global breakpoints, there's no need
2977 to select an inferior to insert breakpoint to. In fact, even
2978 if we aren't attached to any process yet, we should still
2979 insert breakpoints. */
2980 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2981 && ptid_equal (inferior_ptid, null_ptid))
2982 continue;
2983
2984 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2985 &hw_breakpoint_error, &hw_bp_error_explained_already);
2986 if (val)
2987 error_flag = val;
2988 }
2989
2990 /* If we failed to insert all locations of a watchpoint, remove
2991 them, as half-inserted watchpoint is of limited use. */
2992 ALL_BREAKPOINTS (bpt)
2993 {
2994 int some_failed = 0;
2995 struct bp_location *loc;
2996
2997 if (!is_hardware_watchpoint (bpt))
2998 continue;
2999
3000 if (!breakpoint_enabled (bpt))
3001 continue;
3002
3003 if (bpt->disposition == disp_del_at_next_stop)
3004 continue;
3005
3006 for (loc = bpt->loc; loc; loc = loc->next)
3007 if (!loc->inserted && should_be_inserted (loc))
3008 {
3009 some_failed = 1;
3010 break;
3011 }
3012 if (some_failed)
3013 {
3014 for (loc = bpt->loc; loc; loc = loc->next)
3015 if (loc->inserted)
3016 remove_breakpoint (loc, mark_uninserted);
3017
3018 hw_breakpoint_error = 1;
3019 fprintf_unfiltered (tmp_error_stream,
3020 "Could not insert hardware watchpoint %d.\n",
3021 bpt->number);
3022 error_flag = -1;
3023 }
3024 }
3025
3026 if (error_flag)
3027 {
3028 /* If a hardware breakpoint or watchpoint was inserted, add a
3029 message about possibly exhausted resources. */
3030 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3031 {
3032 fprintf_unfiltered (tmp_error_stream,
3033 "Could not insert hardware breakpoints:\n\
3034 You may have requested too many hardware breakpoints/watchpoints.\n");
3035 }
3036 target_terminal_ours_for_output ();
3037 error_stream (tmp_error_stream);
3038 }
3039
3040 do_cleanups (cleanups);
3041 }
3042
3043 /* Used when the program stops.
3044 Returns zero if successful, or non-zero if there was a problem
3045 removing a breakpoint location. */
3046
3047 int
3048 remove_breakpoints (void)
3049 {
3050 struct bp_location *bl, **blp_tmp;
3051 int val = 0;
3052
3053 ALL_BP_LOCATIONS (bl, blp_tmp)
3054 {
3055 if (bl->inserted && !is_tracepoint (bl->owner))
3056 val |= remove_breakpoint (bl, mark_uninserted);
3057 }
3058 return val;
3059 }
3060
3061 /* When a thread exits, remove breakpoints that are related to
3062 that thread. */
3063
3064 static void
3065 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3066 {
3067 struct breakpoint *b, *b_tmp;
3068
3069 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3070 {
3071 if (b->thread == tp->num && user_breakpoint_p (b))
3072 {
3073 b->disposition = disp_del_at_next_stop;
3074
3075 printf_filtered (_("\
3076 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3077 b->number, tp->num);
3078
3079 /* Hide it from the user. */
3080 b->number = 0;
3081 }
3082 }
3083 }
3084
3085 /* Remove breakpoints of process PID. */
3086
3087 int
3088 remove_breakpoints_pid (int pid)
3089 {
3090 struct bp_location *bl, **blp_tmp;
3091 int val;
3092 struct inferior *inf = find_inferior_pid (pid);
3093
3094 ALL_BP_LOCATIONS (bl, blp_tmp)
3095 {
3096 if (bl->pspace != inf->pspace)
3097 continue;
3098
3099 if (bl->owner->type == bp_dprintf)
3100 continue;
3101
3102 if (bl->inserted)
3103 {
3104 val = remove_breakpoint (bl, mark_uninserted);
3105 if (val != 0)
3106 return val;
3107 }
3108 }
3109 return 0;
3110 }
3111
3112 int
3113 reattach_breakpoints (int pid)
3114 {
3115 struct cleanup *old_chain;
3116 struct bp_location *bl, **blp_tmp;
3117 int val;
3118 struct ui_file *tmp_error_stream;
3119 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3120 struct inferior *inf;
3121 struct thread_info *tp;
3122
3123 tp = any_live_thread_of_process (pid);
3124 if (tp == NULL)
3125 return 1;
3126
3127 inf = find_inferior_pid (pid);
3128 old_chain = save_inferior_ptid ();
3129
3130 inferior_ptid = tp->ptid;
3131
3132 tmp_error_stream = mem_fileopen ();
3133 make_cleanup_ui_file_delete (tmp_error_stream);
3134
3135 ALL_BP_LOCATIONS (bl, blp_tmp)
3136 {
3137 if (bl->pspace != inf->pspace)
3138 continue;
3139
3140 if (bl->inserted)
3141 {
3142 bl->inserted = 0;
3143 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3144 if (val != 0)
3145 {
3146 do_cleanups (old_chain);
3147 return val;
3148 }
3149 }
3150 }
3151 do_cleanups (old_chain);
3152 return 0;
3153 }
3154
3155 static int internal_breakpoint_number = -1;
3156
3157 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3158 If INTERNAL is non-zero, the breakpoint number will be populated
3159 from internal_breakpoint_number and that variable decremented.
3160 Otherwise the breakpoint number will be populated from
3161 breakpoint_count and that value incremented. Internal breakpoints
3162 do not set the internal var bpnum. */
3163 static void
3164 set_breakpoint_number (int internal, struct breakpoint *b)
3165 {
3166 if (internal)
3167 b->number = internal_breakpoint_number--;
3168 else
3169 {
3170 set_breakpoint_count (breakpoint_count + 1);
3171 b->number = breakpoint_count;
3172 }
3173 }
3174
3175 static struct breakpoint *
3176 create_internal_breakpoint (struct gdbarch *gdbarch,
3177 CORE_ADDR address, enum bptype type,
3178 const struct breakpoint_ops *ops)
3179 {
3180 struct symtab_and_line sal;
3181 struct breakpoint *b;
3182
3183 init_sal (&sal); /* Initialize to zeroes. */
3184
3185 sal.pc = address;
3186 sal.section = find_pc_overlay (sal.pc);
3187 sal.pspace = current_program_space;
3188
3189 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3190 b->number = internal_breakpoint_number--;
3191 b->disposition = disp_donttouch;
3192
3193 return b;
3194 }
3195
3196 static const char *const longjmp_names[] =
3197 {
3198 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3199 };
3200 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3201
3202 /* Per-objfile data private to breakpoint.c. */
3203 struct breakpoint_objfile_data
3204 {
3205 /* Minimal symbol for "_ovly_debug_event" (if any). */
3206 struct bound_minimal_symbol overlay_msym;
3207
3208 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3209 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3210
3211 /* True if we have looked for longjmp probes. */
3212 int longjmp_searched;
3213
3214 /* SystemTap probe points for longjmp (if any). */
3215 VEC (probe_p) *longjmp_probes;
3216
3217 /* Minimal symbol for "std::terminate()" (if any). */
3218 struct bound_minimal_symbol terminate_msym;
3219
3220 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3221 struct bound_minimal_symbol exception_msym;
3222
3223 /* True if we have looked for exception probes. */
3224 int exception_searched;
3225
3226 /* SystemTap probe points for unwinding (if any). */
3227 VEC (probe_p) *exception_probes;
3228 };
3229
3230 static const struct objfile_data *breakpoint_objfile_key;
3231
3232 /* Minimal symbol not found sentinel. */
3233 static struct minimal_symbol msym_not_found;
3234
3235 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3236
3237 static int
3238 msym_not_found_p (const struct minimal_symbol *msym)
3239 {
3240 return msym == &msym_not_found;
3241 }
3242
3243 /* Return per-objfile data needed by breakpoint.c.
3244 Allocate the data if necessary. */
3245
3246 static struct breakpoint_objfile_data *
3247 get_breakpoint_objfile_data (struct objfile *objfile)
3248 {
3249 struct breakpoint_objfile_data *bp_objfile_data;
3250
3251 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3252 if (bp_objfile_data == NULL)
3253 {
3254 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3255 sizeof (*bp_objfile_data));
3256
3257 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3258 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3259 }
3260 return bp_objfile_data;
3261 }
3262
3263 static void
3264 free_breakpoint_probes (struct objfile *obj, void *data)
3265 {
3266 struct breakpoint_objfile_data *bp_objfile_data = data;
3267
3268 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3269 VEC_free (probe_p, bp_objfile_data->exception_probes);
3270 }
3271
3272 static void
3273 create_overlay_event_breakpoint (void)
3274 {
3275 struct objfile *objfile;
3276 const char *const func_name = "_ovly_debug_event";
3277
3278 ALL_OBJFILES (objfile)
3279 {
3280 struct breakpoint *b;
3281 struct breakpoint_objfile_data *bp_objfile_data;
3282 CORE_ADDR addr;
3283
3284 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3285
3286 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3287 continue;
3288
3289 if (bp_objfile_data->overlay_msym.minsym == NULL)
3290 {
3291 struct bound_minimal_symbol m;
3292
3293 m = lookup_minimal_symbol_text (func_name, objfile);
3294 if (m.minsym == NULL)
3295 {
3296 /* Avoid future lookups in this objfile. */
3297 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3298 continue;
3299 }
3300 bp_objfile_data->overlay_msym = m;
3301 }
3302
3303 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3304 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3305 bp_overlay_event,
3306 &internal_breakpoint_ops);
3307 b->addr_string = xstrdup (func_name);
3308
3309 if (overlay_debugging == ovly_auto)
3310 {
3311 b->enable_state = bp_enabled;
3312 overlay_events_enabled = 1;
3313 }
3314 else
3315 {
3316 b->enable_state = bp_disabled;
3317 overlay_events_enabled = 0;
3318 }
3319 }
3320 update_global_location_list (1);
3321 }
3322
3323 static void
3324 create_longjmp_master_breakpoint (void)
3325 {
3326 struct program_space *pspace;
3327 struct cleanup *old_chain;
3328
3329 old_chain = save_current_program_space ();
3330
3331 ALL_PSPACES (pspace)
3332 {
3333 struct objfile *objfile;
3334
3335 set_current_program_space (pspace);
3336
3337 ALL_OBJFILES (objfile)
3338 {
3339 int i;
3340 struct gdbarch *gdbarch;
3341 struct breakpoint_objfile_data *bp_objfile_data;
3342
3343 gdbarch = get_objfile_arch (objfile);
3344
3345 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3346
3347 if (!bp_objfile_data->longjmp_searched)
3348 {
3349 VEC (probe_p) *ret;
3350
3351 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3352 if (ret != NULL)
3353 {
3354 /* We are only interested in checking one element. */
3355 struct probe *p = VEC_index (probe_p, ret, 0);
3356
3357 if (!can_evaluate_probe_arguments (p))
3358 {
3359 /* We cannot use the probe interface here, because it does
3360 not know how to evaluate arguments. */
3361 VEC_free (probe_p, ret);
3362 ret = NULL;
3363 }
3364 }
3365 bp_objfile_data->longjmp_probes = ret;
3366 bp_objfile_data->longjmp_searched = 1;
3367 }
3368
3369 if (bp_objfile_data->longjmp_probes != NULL)
3370 {
3371 int i;
3372 struct probe *probe;
3373 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3374
3375 for (i = 0;
3376 VEC_iterate (probe_p,
3377 bp_objfile_data->longjmp_probes,
3378 i, probe);
3379 ++i)
3380 {
3381 struct breakpoint *b;
3382
3383 b = create_internal_breakpoint (gdbarch,
3384 get_probe_address (probe,
3385 objfile),
3386 bp_longjmp_master,
3387 &internal_breakpoint_ops);
3388 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3389 b->enable_state = bp_disabled;
3390 }
3391
3392 continue;
3393 }
3394
3395 if (!gdbarch_get_longjmp_target_p (gdbarch))
3396 continue;
3397
3398 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3399 {
3400 struct breakpoint *b;
3401 const char *func_name;
3402 CORE_ADDR addr;
3403
3404 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3405 continue;
3406
3407 func_name = longjmp_names[i];
3408 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3409 {
3410 struct bound_minimal_symbol m;
3411
3412 m = lookup_minimal_symbol_text (func_name, objfile);
3413 if (m.minsym == NULL)
3414 {
3415 /* Prevent future lookups in this objfile. */
3416 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3417 continue;
3418 }
3419 bp_objfile_data->longjmp_msym[i] = m;
3420 }
3421
3422 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3423 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3424 &internal_breakpoint_ops);
3425 b->addr_string = xstrdup (func_name);
3426 b->enable_state = bp_disabled;
3427 }
3428 }
3429 }
3430 update_global_location_list (1);
3431
3432 do_cleanups (old_chain);
3433 }
3434
3435 /* Create a master std::terminate breakpoint. */
3436 static void
3437 create_std_terminate_master_breakpoint (void)
3438 {
3439 struct program_space *pspace;
3440 struct cleanup *old_chain;
3441 const char *const func_name = "std::terminate()";
3442
3443 old_chain = save_current_program_space ();
3444
3445 ALL_PSPACES (pspace)
3446 {
3447 struct objfile *objfile;
3448 CORE_ADDR addr;
3449
3450 set_current_program_space (pspace);
3451
3452 ALL_OBJFILES (objfile)
3453 {
3454 struct breakpoint *b;
3455 struct breakpoint_objfile_data *bp_objfile_data;
3456
3457 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3458
3459 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3460 continue;
3461
3462 if (bp_objfile_data->terminate_msym.minsym == NULL)
3463 {
3464 struct bound_minimal_symbol m;
3465
3466 m = lookup_minimal_symbol (func_name, NULL, objfile);
3467 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3468 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3469 {
3470 /* Prevent future lookups in this objfile. */
3471 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3472 continue;
3473 }
3474 bp_objfile_data->terminate_msym = m;
3475 }
3476
3477 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3478 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3479 bp_std_terminate_master,
3480 &internal_breakpoint_ops);
3481 b->addr_string = xstrdup (func_name);
3482 b->enable_state = bp_disabled;
3483 }
3484 }
3485
3486 update_global_location_list (1);
3487
3488 do_cleanups (old_chain);
3489 }
3490
3491 /* Install a master breakpoint on the unwinder's debug hook. */
3492
3493 static void
3494 create_exception_master_breakpoint (void)
3495 {
3496 struct objfile *objfile;
3497 const char *const func_name = "_Unwind_DebugHook";
3498
3499 ALL_OBJFILES (objfile)
3500 {
3501 struct breakpoint *b;
3502 struct gdbarch *gdbarch;
3503 struct breakpoint_objfile_data *bp_objfile_data;
3504 CORE_ADDR addr;
3505
3506 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3507
3508 /* We prefer the SystemTap probe point if it exists. */
3509 if (!bp_objfile_data->exception_searched)
3510 {
3511 VEC (probe_p) *ret;
3512
3513 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3514
3515 if (ret != NULL)
3516 {
3517 /* We are only interested in checking one element. */
3518 struct probe *p = VEC_index (probe_p, ret, 0);
3519
3520 if (!can_evaluate_probe_arguments (p))
3521 {
3522 /* We cannot use the probe interface here, because it does
3523 not know how to evaluate arguments. */
3524 VEC_free (probe_p, ret);
3525 ret = NULL;
3526 }
3527 }
3528 bp_objfile_data->exception_probes = ret;
3529 bp_objfile_data->exception_searched = 1;
3530 }
3531
3532 if (bp_objfile_data->exception_probes != NULL)
3533 {
3534 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3535 int i;
3536 struct probe *probe;
3537
3538 for (i = 0;
3539 VEC_iterate (probe_p,
3540 bp_objfile_data->exception_probes,
3541 i, probe);
3542 ++i)
3543 {
3544 struct breakpoint *b;
3545
3546 b = create_internal_breakpoint (gdbarch,
3547 get_probe_address (probe,
3548 objfile),
3549 bp_exception_master,
3550 &internal_breakpoint_ops);
3551 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3552 b->enable_state = bp_disabled;
3553 }
3554
3555 continue;
3556 }
3557
3558 /* Otherwise, try the hook function. */
3559
3560 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3561 continue;
3562
3563 gdbarch = get_objfile_arch (objfile);
3564
3565 if (bp_objfile_data->exception_msym.minsym == NULL)
3566 {
3567 struct bound_minimal_symbol debug_hook;
3568
3569 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3570 if (debug_hook.minsym == NULL)
3571 {
3572 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3573 continue;
3574 }
3575
3576 bp_objfile_data->exception_msym = debug_hook;
3577 }
3578
3579 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3580 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3581 &current_target);
3582 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3583 &internal_breakpoint_ops);
3584 b->addr_string = xstrdup (func_name);
3585 b->enable_state = bp_disabled;
3586 }
3587
3588 update_global_location_list (1);
3589 }
3590
3591 void
3592 update_breakpoints_after_exec (void)
3593 {
3594 struct breakpoint *b, *b_tmp;
3595 struct bp_location *bploc, **bplocp_tmp;
3596
3597 /* We're about to delete breakpoints from GDB's lists. If the
3598 INSERTED flag is true, GDB will try to lift the breakpoints by
3599 writing the breakpoints' "shadow contents" back into memory. The
3600 "shadow contents" are NOT valid after an exec, so GDB should not
3601 do that. Instead, the target is responsible from marking
3602 breakpoints out as soon as it detects an exec. We don't do that
3603 here instead, because there may be other attempts to delete
3604 breakpoints after detecting an exec and before reaching here. */
3605 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3606 if (bploc->pspace == current_program_space)
3607 gdb_assert (!bploc->inserted);
3608
3609 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3610 {
3611 if (b->pspace != current_program_space)
3612 continue;
3613
3614 /* Solib breakpoints must be explicitly reset after an exec(). */
3615 if (b->type == bp_shlib_event)
3616 {
3617 delete_breakpoint (b);
3618 continue;
3619 }
3620
3621 /* JIT breakpoints must be explicitly reset after an exec(). */
3622 if (b->type == bp_jit_event)
3623 {
3624 delete_breakpoint (b);
3625 continue;
3626 }
3627
3628 /* Thread event breakpoints must be set anew after an exec(),
3629 as must overlay event and longjmp master breakpoints. */
3630 if (b->type == bp_thread_event || b->type == bp_overlay_event
3631 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3632 || b->type == bp_exception_master)
3633 {
3634 delete_breakpoint (b);
3635 continue;
3636 }
3637
3638 /* Step-resume breakpoints are meaningless after an exec(). */
3639 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3640 {
3641 delete_breakpoint (b);
3642 continue;
3643 }
3644
3645 /* Longjmp and longjmp-resume breakpoints are also meaningless
3646 after an exec. */
3647 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3648 || b->type == bp_longjmp_call_dummy
3649 || b->type == bp_exception || b->type == bp_exception_resume)
3650 {
3651 delete_breakpoint (b);
3652 continue;
3653 }
3654
3655 if (b->type == bp_catchpoint)
3656 {
3657 /* For now, none of the bp_catchpoint breakpoints need to
3658 do anything at this point. In the future, if some of
3659 the catchpoints need to something, we will need to add
3660 a new method, and call this method from here. */
3661 continue;
3662 }
3663
3664 /* bp_finish is a special case. The only way we ought to be able
3665 to see one of these when an exec() has happened, is if the user
3666 caught a vfork, and then said "finish". Ordinarily a finish just
3667 carries them to the call-site of the current callee, by setting
3668 a temporary bp there and resuming. But in this case, the finish
3669 will carry them entirely through the vfork & exec.
3670
3671 We don't want to allow a bp_finish to remain inserted now. But
3672 we can't safely delete it, 'cause finish_command has a handle to
3673 the bp on a bpstat, and will later want to delete it. There's a
3674 chance (and I've seen it happen) that if we delete the bp_finish
3675 here, that its storage will get reused by the time finish_command
3676 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3677 We really must allow finish_command to delete a bp_finish.
3678
3679 In the absence of a general solution for the "how do we know
3680 it's safe to delete something others may have handles to?"
3681 problem, what we'll do here is just uninsert the bp_finish, and
3682 let finish_command delete it.
3683
3684 (We know the bp_finish is "doomed" in the sense that it's
3685 momentary, and will be deleted as soon as finish_command sees
3686 the inferior stopped. So it doesn't matter that the bp's
3687 address is probably bogus in the new a.out, unlike e.g., the
3688 solib breakpoints.) */
3689
3690 if (b->type == bp_finish)
3691 {
3692 continue;
3693 }
3694
3695 /* Without a symbolic address, we have little hope of the
3696 pre-exec() address meaning the same thing in the post-exec()
3697 a.out. */
3698 if (b->addr_string == NULL)
3699 {
3700 delete_breakpoint (b);
3701 continue;
3702 }
3703 }
3704 /* FIXME what about longjmp breakpoints? Re-create them here? */
3705 create_overlay_event_breakpoint ();
3706 create_longjmp_master_breakpoint ();
3707 create_std_terminate_master_breakpoint ();
3708 create_exception_master_breakpoint ();
3709 }
3710
3711 int
3712 detach_breakpoints (ptid_t ptid)
3713 {
3714 struct bp_location *bl, **blp_tmp;
3715 int val = 0;
3716 struct cleanup *old_chain = save_inferior_ptid ();
3717 struct inferior *inf = current_inferior ();
3718
3719 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3720 error (_("Cannot detach breakpoints of inferior_ptid"));
3721
3722 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3723 inferior_ptid = ptid;
3724 ALL_BP_LOCATIONS (bl, blp_tmp)
3725 {
3726 if (bl->pspace != inf->pspace)
3727 continue;
3728
3729 /* This function must physically remove breakpoints locations
3730 from the specified ptid, without modifying the breakpoint
3731 package's state. Locations of type bp_loc_other are only
3732 maintained at GDB side. So, there is no need to remove
3733 these bp_loc_other locations. Moreover, removing these
3734 would modify the breakpoint package's state. */
3735 if (bl->loc_type == bp_loc_other)
3736 continue;
3737
3738 if (bl->inserted)
3739 val |= remove_breakpoint_1 (bl, mark_inserted);
3740 }
3741
3742 /* Detach single-step breakpoints as well. */
3743 detach_single_step_breakpoints ();
3744
3745 do_cleanups (old_chain);
3746 return val;
3747 }
3748
3749 /* Remove the breakpoint location BL from the current address space.
3750 Note that this is used to detach breakpoints from a child fork.
3751 When we get here, the child isn't in the inferior list, and neither
3752 do we have objects to represent its address space --- we should
3753 *not* look at bl->pspace->aspace here. */
3754
3755 static int
3756 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3757 {
3758 int val;
3759
3760 /* BL is never in moribund_locations by our callers. */
3761 gdb_assert (bl->owner != NULL);
3762
3763 if (bl->owner->enable_state == bp_permanent)
3764 /* Permanent breakpoints cannot be inserted or removed. */
3765 return 0;
3766
3767 /* The type of none suggests that owner is actually deleted.
3768 This should not ever happen. */
3769 gdb_assert (bl->owner->type != bp_none);
3770
3771 if (bl->loc_type == bp_loc_software_breakpoint
3772 || bl->loc_type == bp_loc_hardware_breakpoint)
3773 {
3774 /* "Normal" instruction breakpoint: either the standard
3775 trap-instruction bp (bp_breakpoint), or a
3776 bp_hardware_breakpoint. */
3777
3778 /* First check to see if we have to handle an overlay. */
3779 if (overlay_debugging == ovly_off
3780 || bl->section == NULL
3781 || !(section_is_overlay (bl->section)))
3782 {
3783 /* No overlay handling: just remove the breakpoint. */
3784
3785 /* If we're trying to uninsert a memory breakpoint that we
3786 know is set in a dynamic object that is marked
3787 shlib_disabled, then either the dynamic object was
3788 removed with "remove-symbol-file" or with
3789 "nosharedlibrary". In the former case, we don't know
3790 whether another dynamic object might have loaded over the
3791 breakpoint's address -- the user might well let us know
3792 about it next with add-symbol-file (the whole point of
3793 OBJF_USERLOADED is letting the user manually maintain a
3794 list of dynamically loaded objects). If we have the
3795 breakpoint's shadow memory, that is, this is a software
3796 breakpoint managed by GDB, check whether the breakpoint
3797 is still inserted in memory, to avoid overwriting wrong
3798 code with stale saved shadow contents. Note that HW
3799 breakpoints don't have shadow memory, as they're
3800 implemented using a mechanism that is not dependent on
3801 being able to modify the target's memory, and as such
3802 they should always be removed. */
3803 if (bl->shlib_disabled
3804 && bl->target_info.shadow_len != 0
3805 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3806 val = 0;
3807 else
3808 val = bl->owner->ops->remove_location (bl);
3809 }
3810 else
3811 {
3812 /* This breakpoint is in an overlay section.
3813 Did we set a breakpoint at the LMA? */
3814 if (!overlay_events_enabled)
3815 {
3816 /* Yes -- overlay event support is not active, so we
3817 should have set a breakpoint at the LMA. Remove it.
3818 */
3819 /* Ignore any failures: if the LMA is in ROM, we will
3820 have already warned when we failed to insert it. */
3821 if (bl->loc_type == bp_loc_hardware_breakpoint)
3822 target_remove_hw_breakpoint (bl->gdbarch,
3823 &bl->overlay_target_info);
3824 else
3825 target_remove_breakpoint (bl->gdbarch,
3826 &bl->overlay_target_info);
3827 }
3828 /* Did we set a breakpoint at the VMA?
3829 If so, we will have marked the breakpoint 'inserted'. */
3830 if (bl->inserted)
3831 {
3832 /* Yes -- remove it. Previously we did not bother to
3833 remove the breakpoint if the section had been
3834 unmapped, but let's not rely on that being safe. We
3835 don't know what the overlay manager might do. */
3836
3837 /* However, we should remove *software* breakpoints only
3838 if the section is still mapped, or else we overwrite
3839 wrong code with the saved shadow contents. */
3840 if (bl->loc_type == bp_loc_hardware_breakpoint
3841 || section_is_mapped (bl->section))
3842 val = bl->owner->ops->remove_location (bl);
3843 else
3844 val = 0;
3845 }
3846 else
3847 {
3848 /* No -- not inserted, so no need to remove. No error. */
3849 val = 0;
3850 }
3851 }
3852
3853 /* In some cases, we might not be able to remove a breakpoint in
3854 a shared library that has already been removed, but we have
3855 not yet processed the shlib unload event. Similarly for an
3856 unloaded add-symbol-file object - the user might not yet have
3857 had the chance to remove-symbol-file it. shlib_disabled will
3858 be set if the library/object has already been removed, but
3859 the breakpoint hasn't been uninserted yet, e.g., after
3860 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3861 always-inserted mode. */
3862 if (val
3863 && (bl->loc_type == bp_loc_software_breakpoint
3864 && (bl->shlib_disabled
3865 || solib_name_from_address (bl->pspace, bl->address)
3866 || userloaded_objfile_contains_address_p (bl->pspace,
3867 bl->address))))
3868 val = 0;
3869
3870 if (val)
3871 return val;
3872 bl->inserted = (is == mark_inserted);
3873 }
3874 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3875 {
3876 gdb_assert (bl->owner->ops != NULL
3877 && bl->owner->ops->remove_location != NULL);
3878
3879 bl->inserted = (is == mark_inserted);
3880 bl->owner->ops->remove_location (bl);
3881
3882 /* Failure to remove any of the hardware watchpoints comes here. */
3883 if ((is == mark_uninserted) && (bl->inserted))
3884 warning (_("Could not remove hardware watchpoint %d."),
3885 bl->owner->number);
3886 }
3887 else if (bl->owner->type == bp_catchpoint
3888 && breakpoint_enabled (bl->owner)
3889 && !bl->duplicate)
3890 {
3891 gdb_assert (bl->owner->ops != NULL
3892 && bl->owner->ops->remove_location != NULL);
3893
3894 val = bl->owner->ops->remove_location (bl);
3895 if (val)
3896 return val;
3897
3898 bl->inserted = (is == mark_inserted);
3899 }
3900
3901 return 0;
3902 }
3903
3904 static int
3905 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3906 {
3907 int ret;
3908 struct cleanup *old_chain;
3909
3910 /* BL is never in moribund_locations by our callers. */
3911 gdb_assert (bl->owner != NULL);
3912
3913 if (bl->owner->enable_state == bp_permanent)
3914 /* Permanent breakpoints cannot be inserted or removed. */
3915 return 0;
3916
3917 /* The type of none suggests that owner is actually deleted.
3918 This should not ever happen. */
3919 gdb_assert (bl->owner->type != bp_none);
3920
3921 old_chain = save_current_space_and_thread ();
3922
3923 switch_to_program_space_and_thread (bl->pspace);
3924
3925 ret = remove_breakpoint_1 (bl, is);
3926
3927 do_cleanups (old_chain);
3928 return ret;
3929 }
3930
3931 /* Clear the "inserted" flag in all breakpoints. */
3932
3933 void
3934 mark_breakpoints_out (void)
3935 {
3936 struct bp_location *bl, **blp_tmp;
3937
3938 ALL_BP_LOCATIONS (bl, blp_tmp)
3939 if (bl->pspace == current_program_space)
3940 bl->inserted = 0;
3941 }
3942
3943 /* Clear the "inserted" flag in all breakpoints and delete any
3944 breakpoints which should go away between runs of the program.
3945
3946 Plus other such housekeeping that has to be done for breakpoints
3947 between runs.
3948
3949 Note: this function gets called at the end of a run (by
3950 generic_mourn_inferior) and when a run begins (by
3951 init_wait_for_inferior). */
3952
3953
3954
3955 void
3956 breakpoint_init_inferior (enum inf_context context)
3957 {
3958 struct breakpoint *b, *b_tmp;
3959 struct bp_location *bl, **blp_tmp;
3960 int ix;
3961 struct program_space *pspace = current_program_space;
3962
3963 /* If breakpoint locations are shared across processes, then there's
3964 nothing to do. */
3965 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3966 return;
3967
3968 ALL_BP_LOCATIONS (bl, blp_tmp)
3969 {
3970 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3971 if (bl->pspace == pspace
3972 && bl->owner->enable_state != bp_permanent)
3973 bl->inserted = 0;
3974 }
3975
3976 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3977 {
3978 if (b->loc && b->loc->pspace != pspace)
3979 continue;
3980
3981 switch (b->type)
3982 {
3983 case bp_call_dummy:
3984 case bp_longjmp_call_dummy:
3985
3986 /* If the call dummy breakpoint is at the entry point it will
3987 cause problems when the inferior is rerun, so we better get
3988 rid of it. */
3989
3990 case bp_watchpoint_scope:
3991
3992 /* Also get rid of scope breakpoints. */
3993
3994 case bp_shlib_event:
3995
3996 /* Also remove solib event breakpoints. Their addresses may
3997 have changed since the last time we ran the program.
3998 Actually we may now be debugging against different target;
3999 and so the solib backend that installed this breakpoint may
4000 not be used in by the target. E.g.,
4001
4002 (gdb) file prog-linux
4003 (gdb) run # native linux target
4004 ...
4005 (gdb) kill
4006 (gdb) file prog-win.exe
4007 (gdb) tar rem :9999 # remote Windows gdbserver.
4008 */
4009
4010 case bp_step_resume:
4011
4012 /* Also remove step-resume breakpoints. */
4013
4014 delete_breakpoint (b);
4015 break;
4016
4017 case bp_watchpoint:
4018 case bp_hardware_watchpoint:
4019 case bp_read_watchpoint:
4020 case bp_access_watchpoint:
4021 {
4022 struct watchpoint *w = (struct watchpoint *) b;
4023
4024 /* Likewise for watchpoints on local expressions. */
4025 if (w->exp_valid_block != NULL)
4026 delete_breakpoint (b);
4027 else if (context == inf_starting)
4028 {
4029 /* Reset val field to force reread of starting value in
4030 insert_breakpoints. */
4031 if (w->val)
4032 value_free (w->val);
4033 w->val = NULL;
4034 w->val_valid = 0;
4035 }
4036 }
4037 break;
4038 default:
4039 break;
4040 }
4041 }
4042
4043 /* Get rid of the moribund locations. */
4044 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4045 decref_bp_location (&bl);
4046 VEC_free (bp_location_p, moribund_locations);
4047 }
4048
4049 /* These functions concern about actual breakpoints inserted in the
4050 target --- to e.g. check if we need to do decr_pc adjustment or if
4051 we need to hop over the bkpt --- so we check for address space
4052 match, not program space. */
4053
4054 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4055 exists at PC. It returns ordinary_breakpoint_here if it's an
4056 ordinary breakpoint, or permanent_breakpoint_here if it's a
4057 permanent breakpoint.
4058 - When continuing from a location with an ordinary breakpoint, we
4059 actually single step once before calling insert_breakpoints.
4060 - When continuing from a location with a permanent breakpoint, we
4061 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4062 the target, to advance the PC past the breakpoint. */
4063
4064 enum breakpoint_here
4065 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4066 {
4067 struct bp_location *bl, **blp_tmp;
4068 int any_breakpoint_here = 0;
4069
4070 ALL_BP_LOCATIONS (bl, blp_tmp)
4071 {
4072 if (bl->loc_type != bp_loc_software_breakpoint
4073 && bl->loc_type != bp_loc_hardware_breakpoint)
4074 continue;
4075
4076 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4077 if ((breakpoint_enabled (bl->owner)
4078 || bl->owner->enable_state == bp_permanent)
4079 && breakpoint_location_address_match (bl, aspace, pc))
4080 {
4081 if (overlay_debugging
4082 && section_is_overlay (bl->section)
4083 && !section_is_mapped (bl->section))
4084 continue; /* unmapped overlay -- can't be a match */
4085 else if (bl->owner->enable_state == bp_permanent)
4086 return permanent_breakpoint_here;
4087 else
4088 any_breakpoint_here = 1;
4089 }
4090 }
4091
4092 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4093 }
4094
4095 /* Return true if there's a moribund breakpoint at PC. */
4096
4097 int
4098 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4099 {
4100 struct bp_location *loc;
4101 int ix;
4102
4103 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4104 if (breakpoint_location_address_match (loc, aspace, pc))
4105 return 1;
4106
4107 return 0;
4108 }
4109
4110 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4111 inserted using regular breakpoint_chain / bp_location array
4112 mechanism. This does not check for single-step breakpoints, which
4113 are inserted and removed using direct target manipulation. */
4114
4115 int
4116 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4117 CORE_ADDR pc)
4118 {
4119 struct bp_location *bl, **blp_tmp;
4120
4121 ALL_BP_LOCATIONS (bl, blp_tmp)
4122 {
4123 if (bl->loc_type != bp_loc_software_breakpoint
4124 && bl->loc_type != bp_loc_hardware_breakpoint)
4125 continue;
4126
4127 if (bl->inserted
4128 && breakpoint_location_address_match (bl, aspace, pc))
4129 {
4130 if (overlay_debugging
4131 && section_is_overlay (bl->section)
4132 && !section_is_mapped (bl->section))
4133 continue; /* unmapped overlay -- can't be a match */
4134 else
4135 return 1;
4136 }
4137 }
4138 return 0;
4139 }
4140
4141 /* Returns non-zero iff there's either regular breakpoint
4142 or a single step breakpoint inserted at PC. */
4143
4144 int
4145 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4146 {
4147 if (regular_breakpoint_inserted_here_p (aspace, pc))
4148 return 1;
4149
4150 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4151 return 1;
4152
4153 return 0;
4154 }
4155
4156 /* This function returns non-zero iff there is a software breakpoint
4157 inserted at PC. */
4158
4159 int
4160 software_breakpoint_inserted_here_p (struct address_space *aspace,
4161 CORE_ADDR pc)
4162 {
4163 struct bp_location *bl, **blp_tmp;
4164
4165 ALL_BP_LOCATIONS (bl, blp_tmp)
4166 {
4167 if (bl->loc_type != bp_loc_software_breakpoint)
4168 continue;
4169
4170 if (bl->inserted
4171 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4172 aspace, pc))
4173 {
4174 if (overlay_debugging
4175 && section_is_overlay (bl->section)
4176 && !section_is_mapped (bl->section))
4177 continue; /* unmapped overlay -- can't be a match */
4178 else
4179 return 1;
4180 }
4181 }
4182
4183 /* Also check for software single-step breakpoints. */
4184 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4185 return 1;
4186
4187 return 0;
4188 }
4189
4190 int
4191 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4192 CORE_ADDR addr, ULONGEST len)
4193 {
4194 struct breakpoint *bpt;
4195
4196 ALL_BREAKPOINTS (bpt)
4197 {
4198 struct bp_location *loc;
4199
4200 if (bpt->type != bp_hardware_watchpoint
4201 && bpt->type != bp_access_watchpoint)
4202 continue;
4203
4204 if (!breakpoint_enabled (bpt))
4205 continue;
4206
4207 for (loc = bpt->loc; loc; loc = loc->next)
4208 if (loc->pspace->aspace == aspace && loc->inserted)
4209 {
4210 CORE_ADDR l, h;
4211
4212 /* Check for intersection. */
4213 l = max (loc->address, addr);
4214 h = min (loc->address + loc->length, addr + len);
4215 if (l < h)
4216 return 1;
4217 }
4218 }
4219 return 0;
4220 }
4221
4222 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4223 PC is valid for process/thread PTID. */
4224
4225 int
4226 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4227 ptid_t ptid)
4228 {
4229 struct bp_location *bl, **blp_tmp;
4230 /* The thread and task IDs associated to PTID, computed lazily. */
4231 int thread = -1;
4232 int task = 0;
4233
4234 ALL_BP_LOCATIONS (bl, blp_tmp)
4235 {
4236 if (bl->loc_type != bp_loc_software_breakpoint
4237 && bl->loc_type != bp_loc_hardware_breakpoint)
4238 continue;
4239
4240 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4241 if (!breakpoint_enabled (bl->owner)
4242 && bl->owner->enable_state != bp_permanent)
4243 continue;
4244
4245 if (!breakpoint_location_address_match (bl, aspace, pc))
4246 continue;
4247
4248 if (bl->owner->thread != -1)
4249 {
4250 /* This is a thread-specific breakpoint. Check that ptid
4251 matches that thread. If thread hasn't been computed yet,
4252 it is now time to do so. */
4253 if (thread == -1)
4254 thread = pid_to_thread_id (ptid);
4255 if (bl->owner->thread != thread)
4256 continue;
4257 }
4258
4259 if (bl->owner->task != 0)
4260 {
4261 /* This is a task-specific breakpoint. Check that ptid
4262 matches that task. If task hasn't been computed yet,
4263 it is now time to do so. */
4264 if (task == 0)
4265 task = ada_get_task_number (ptid);
4266 if (bl->owner->task != task)
4267 continue;
4268 }
4269
4270 if (overlay_debugging
4271 && section_is_overlay (bl->section)
4272 && !section_is_mapped (bl->section))
4273 continue; /* unmapped overlay -- can't be a match */
4274
4275 return 1;
4276 }
4277
4278 return 0;
4279 }
4280 \f
4281
4282 /* bpstat stuff. External routines' interfaces are documented
4283 in breakpoint.h. */
4284
4285 int
4286 is_catchpoint (struct breakpoint *ep)
4287 {
4288 return (ep->type == bp_catchpoint);
4289 }
4290
4291 /* Frees any storage that is part of a bpstat. Does not walk the
4292 'next' chain. */
4293
4294 static void
4295 bpstat_free (bpstat bs)
4296 {
4297 if (bs->old_val != NULL)
4298 value_free (bs->old_val);
4299 decref_counted_command_line (&bs->commands);
4300 decref_bp_location (&bs->bp_location_at);
4301 xfree (bs);
4302 }
4303
4304 /* Clear a bpstat so that it says we are not at any breakpoint.
4305 Also free any storage that is part of a bpstat. */
4306
4307 void
4308 bpstat_clear (bpstat *bsp)
4309 {
4310 bpstat p;
4311 bpstat q;
4312
4313 if (bsp == 0)
4314 return;
4315 p = *bsp;
4316 while (p != NULL)
4317 {
4318 q = p->next;
4319 bpstat_free (p);
4320 p = q;
4321 }
4322 *bsp = NULL;
4323 }
4324
4325 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4326 is part of the bpstat is copied as well. */
4327
4328 bpstat
4329 bpstat_copy (bpstat bs)
4330 {
4331 bpstat p = NULL;
4332 bpstat tmp;
4333 bpstat retval = NULL;
4334
4335 if (bs == NULL)
4336 return bs;
4337
4338 for (; bs != NULL; bs = bs->next)
4339 {
4340 tmp = (bpstat) xmalloc (sizeof (*tmp));
4341 memcpy (tmp, bs, sizeof (*tmp));
4342 incref_counted_command_line (tmp->commands);
4343 incref_bp_location (tmp->bp_location_at);
4344 if (bs->old_val != NULL)
4345 {
4346 tmp->old_val = value_copy (bs->old_val);
4347 release_value (tmp->old_val);
4348 }
4349
4350 if (p == NULL)
4351 /* This is the first thing in the chain. */
4352 retval = tmp;
4353 else
4354 p->next = tmp;
4355 p = tmp;
4356 }
4357 p->next = NULL;
4358 return retval;
4359 }
4360
4361 /* Find the bpstat associated with this breakpoint. */
4362
4363 bpstat
4364 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4365 {
4366 if (bsp == NULL)
4367 return NULL;
4368
4369 for (; bsp != NULL; bsp = bsp->next)
4370 {
4371 if (bsp->breakpoint_at == breakpoint)
4372 return bsp;
4373 }
4374 return NULL;
4375 }
4376
4377 /* See breakpoint.h. */
4378
4379 int
4380 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4381 {
4382 for (; bsp != NULL; bsp = bsp->next)
4383 {
4384 if (bsp->breakpoint_at == NULL)
4385 {
4386 /* A moribund location can never explain a signal other than
4387 GDB_SIGNAL_TRAP. */
4388 if (sig == GDB_SIGNAL_TRAP)
4389 return 1;
4390 }
4391 else
4392 {
4393 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4394 sig))
4395 return 1;
4396 }
4397 }
4398
4399 return 0;
4400 }
4401
4402 /* Put in *NUM the breakpoint number of the first breakpoint we are
4403 stopped at. *BSP upon return is a bpstat which points to the
4404 remaining breakpoints stopped at (but which is not guaranteed to be
4405 good for anything but further calls to bpstat_num).
4406
4407 Return 0 if passed a bpstat which does not indicate any breakpoints.
4408 Return -1 if stopped at a breakpoint that has been deleted since
4409 we set it.
4410 Return 1 otherwise. */
4411
4412 int
4413 bpstat_num (bpstat *bsp, int *num)
4414 {
4415 struct breakpoint *b;
4416
4417 if ((*bsp) == NULL)
4418 return 0; /* No more breakpoint values */
4419
4420 /* We assume we'll never have several bpstats that correspond to a
4421 single breakpoint -- otherwise, this function might return the
4422 same number more than once and this will look ugly. */
4423 b = (*bsp)->breakpoint_at;
4424 *bsp = (*bsp)->next;
4425 if (b == NULL)
4426 return -1; /* breakpoint that's been deleted since */
4427
4428 *num = b->number; /* We have its number */
4429 return 1;
4430 }
4431
4432 /* See breakpoint.h. */
4433
4434 void
4435 bpstat_clear_actions (void)
4436 {
4437 struct thread_info *tp;
4438 bpstat bs;
4439
4440 if (ptid_equal (inferior_ptid, null_ptid))
4441 return;
4442
4443 tp = find_thread_ptid (inferior_ptid);
4444 if (tp == NULL)
4445 return;
4446
4447 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4448 {
4449 decref_counted_command_line (&bs->commands);
4450
4451 if (bs->old_val != NULL)
4452 {
4453 value_free (bs->old_val);
4454 bs->old_val = NULL;
4455 }
4456 }
4457 }
4458
4459 /* Called when a command is about to proceed the inferior. */
4460
4461 static void
4462 breakpoint_about_to_proceed (void)
4463 {
4464 if (!ptid_equal (inferior_ptid, null_ptid))
4465 {
4466 struct thread_info *tp = inferior_thread ();
4467
4468 /* Allow inferior function calls in breakpoint commands to not
4469 interrupt the command list. When the call finishes
4470 successfully, the inferior will be standing at the same
4471 breakpoint as if nothing happened. */
4472 if (tp->control.in_infcall)
4473 return;
4474 }
4475
4476 breakpoint_proceeded = 1;
4477 }
4478
4479 /* Stub for cleaning up our state if we error-out of a breakpoint
4480 command. */
4481 static void
4482 cleanup_executing_breakpoints (void *ignore)
4483 {
4484 executing_breakpoint_commands = 0;
4485 }
4486
4487 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4488 or its equivalent. */
4489
4490 static int
4491 command_line_is_silent (struct command_line *cmd)
4492 {
4493 return cmd && (strcmp ("silent", cmd->line) == 0
4494 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4495 }
4496
4497 /* Execute all the commands associated with all the breakpoints at
4498 this location. Any of these commands could cause the process to
4499 proceed beyond this point, etc. We look out for such changes by
4500 checking the global "breakpoint_proceeded" after each command.
4501
4502 Returns true if a breakpoint command resumed the inferior. In that
4503 case, it is the caller's responsibility to recall it again with the
4504 bpstat of the current thread. */
4505
4506 static int
4507 bpstat_do_actions_1 (bpstat *bsp)
4508 {
4509 bpstat bs;
4510 struct cleanup *old_chain;
4511 int again = 0;
4512
4513 /* Avoid endless recursion if a `source' command is contained
4514 in bs->commands. */
4515 if (executing_breakpoint_commands)
4516 return 0;
4517
4518 executing_breakpoint_commands = 1;
4519 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4520
4521 prevent_dont_repeat ();
4522
4523 /* This pointer will iterate over the list of bpstat's. */
4524 bs = *bsp;
4525
4526 breakpoint_proceeded = 0;
4527 for (; bs != NULL; bs = bs->next)
4528 {
4529 struct counted_command_line *ccmd;
4530 struct command_line *cmd;
4531 struct cleanup *this_cmd_tree_chain;
4532
4533 /* Take ownership of the BSP's command tree, if it has one.
4534
4535 The command tree could legitimately contain commands like
4536 'step' and 'next', which call clear_proceed_status, which
4537 frees stop_bpstat's command tree. To make sure this doesn't
4538 free the tree we're executing out from under us, we need to
4539 take ownership of the tree ourselves. Since a given bpstat's
4540 commands are only executed once, we don't need to copy it; we
4541 can clear the pointer in the bpstat, and make sure we free
4542 the tree when we're done. */
4543 ccmd = bs->commands;
4544 bs->commands = NULL;
4545 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4546 cmd = ccmd ? ccmd->commands : NULL;
4547 if (command_line_is_silent (cmd))
4548 {
4549 /* The action has been already done by bpstat_stop_status. */
4550 cmd = cmd->next;
4551 }
4552
4553 while (cmd != NULL)
4554 {
4555 execute_control_command (cmd);
4556
4557 if (breakpoint_proceeded)
4558 break;
4559 else
4560 cmd = cmd->next;
4561 }
4562
4563 /* We can free this command tree now. */
4564 do_cleanups (this_cmd_tree_chain);
4565
4566 if (breakpoint_proceeded)
4567 {
4568 if (target_can_async_p ())
4569 /* If we are in async mode, then the target might be still
4570 running, not stopped at any breakpoint, so nothing for
4571 us to do here -- just return to the event loop. */
4572 ;
4573 else
4574 /* In sync mode, when execute_control_command returns
4575 we're already standing on the next breakpoint.
4576 Breakpoint commands for that stop were not run, since
4577 execute_command does not run breakpoint commands --
4578 only command_line_handler does, but that one is not
4579 involved in execution of breakpoint commands. So, we
4580 can now execute breakpoint commands. It should be
4581 noted that making execute_command do bpstat actions is
4582 not an option -- in this case we'll have recursive
4583 invocation of bpstat for each breakpoint with a
4584 command, and can easily blow up GDB stack. Instead, we
4585 return true, which will trigger the caller to recall us
4586 with the new stop_bpstat. */
4587 again = 1;
4588 break;
4589 }
4590 }
4591 do_cleanups (old_chain);
4592 return again;
4593 }
4594
4595 void
4596 bpstat_do_actions (void)
4597 {
4598 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4599
4600 /* Do any commands attached to breakpoint we are stopped at. */
4601 while (!ptid_equal (inferior_ptid, null_ptid)
4602 && target_has_execution
4603 && !is_exited (inferior_ptid)
4604 && !is_executing (inferior_ptid))
4605 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4606 and only return when it is stopped at the next breakpoint, we
4607 keep doing breakpoint actions until it returns false to
4608 indicate the inferior was not resumed. */
4609 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4610 break;
4611
4612 discard_cleanups (cleanup_if_error);
4613 }
4614
4615 /* Print out the (old or new) value associated with a watchpoint. */
4616
4617 static void
4618 watchpoint_value_print (struct value *val, struct ui_file *stream)
4619 {
4620 if (val == NULL)
4621 fprintf_unfiltered (stream, _("<unreadable>"));
4622 else
4623 {
4624 struct value_print_options opts;
4625 get_user_print_options (&opts);
4626 value_print (val, stream, &opts);
4627 }
4628 }
4629
4630 /* Generic routine for printing messages indicating why we
4631 stopped. The behavior of this function depends on the value
4632 'print_it' in the bpstat structure. Under some circumstances we
4633 may decide not to print anything here and delegate the task to
4634 normal_stop(). */
4635
4636 static enum print_stop_action
4637 print_bp_stop_message (bpstat bs)
4638 {
4639 switch (bs->print_it)
4640 {
4641 case print_it_noop:
4642 /* Nothing should be printed for this bpstat entry. */
4643 return PRINT_UNKNOWN;
4644 break;
4645
4646 case print_it_done:
4647 /* We still want to print the frame, but we already printed the
4648 relevant messages. */
4649 return PRINT_SRC_AND_LOC;
4650 break;
4651
4652 case print_it_normal:
4653 {
4654 struct breakpoint *b = bs->breakpoint_at;
4655
4656 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4657 which has since been deleted. */
4658 if (b == NULL)
4659 return PRINT_UNKNOWN;
4660
4661 /* Normal case. Call the breakpoint's print_it method. */
4662 return b->ops->print_it (bs);
4663 }
4664 break;
4665
4666 default:
4667 internal_error (__FILE__, __LINE__,
4668 _("print_bp_stop_message: unrecognized enum value"));
4669 break;
4670 }
4671 }
4672
4673 /* A helper function that prints a shared library stopped event. */
4674
4675 static void
4676 print_solib_event (int is_catchpoint)
4677 {
4678 int any_deleted
4679 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4680 int any_added
4681 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4682
4683 if (!is_catchpoint)
4684 {
4685 if (any_added || any_deleted)
4686 ui_out_text (current_uiout,
4687 _("Stopped due to shared library event:\n"));
4688 else
4689 ui_out_text (current_uiout,
4690 _("Stopped due to shared library event (no "
4691 "libraries added or removed)\n"));
4692 }
4693
4694 if (ui_out_is_mi_like_p (current_uiout))
4695 ui_out_field_string (current_uiout, "reason",
4696 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4697
4698 if (any_deleted)
4699 {
4700 struct cleanup *cleanup;
4701 char *name;
4702 int ix;
4703
4704 ui_out_text (current_uiout, _(" Inferior unloaded "));
4705 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4706 "removed");
4707 for (ix = 0;
4708 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4709 ix, name);
4710 ++ix)
4711 {
4712 if (ix > 0)
4713 ui_out_text (current_uiout, " ");
4714 ui_out_field_string (current_uiout, "library", name);
4715 ui_out_text (current_uiout, "\n");
4716 }
4717
4718 do_cleanups (cleanup);
4719 }
4720
4721 if (any_added)
4722 {
4723 struct so_list *iter;
4724 int ix;
4725 struct cleanup *cleanup;
4726
4727 ui_out_text (current_uiout, _(" Inferior loaded "));
4728 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4729 "added");
4730 for (ix = 0;
4731 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4732 ix, iter);
4733 ++ix)
4734 {
4735 if (ix > 0)
4736 ui_out_text (current_uiout, " ");
4737 ui_out_field_string (current_uiout, "library", iter->so_name);
4738 ui_out_text (current_uiout, "\n");
4739 }
4740
4741 do_cleanups (cleanup);
4742 }
4743 }
4744
4745 /* Print a message indicating what happened. This is called from
4746 normal_stop(). The input to this routine is the head of the bpstat
4747 list - a list of the eventpoints that caused this stop. KIND is
4748 the target_waitkind for the stopping event. This
4749 routine calls the generic print routine for printing a message
4750 about reasons for stopping. This will print (for example) the
4751 "Breakpoint n," part of the output. The return value of this
4752 routine is one of:
4753
4754 PRINT_UNKNOWN: Means we printed nothing.
4755 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4756 code to print the location. An example is
4757 "Breakpoint 1, " which should be followed by
4758 the location.
4759 PRINT_SRC_ONLY: Means we printed something, but there is no need
4760 to also print the location part of the message.
4761 An example is the catch/throw messages, which
4762 don't require a location appended to the end.
4763 PRINT_NOTHING: We have done some printing and we don't need any
4764 further info to be printed. */
4765
4766 enum print_stop_action
4767 bpstat_print (bpstat bs, int kind)
4768 {
4769 int val;
4770
4771 /* Maybe another breakpoint in the chain caused us to stop.
4772 (Currently all watchpoints go on the bpstat whether hit or not.
4773 That probably could (should) be changed, provided care is taken
4774 with respect to bpstat_explains_signal). */
4775 for (; bs; bs = bs->next)
4776 {
4777 val = print_bp_stop_message (bs);
4778 if (val == PRINT_SRC_ONLY
4779 || val == PRINT_SRC_AND_LOC
4780 || val == PRINT_NOTHING)
4781 return val;
4782 }
4783
4784 /* If we had hit a shared library event breakpoint,
4785 print_bp_stop_message would print out this message. If we hit an
4786 OS-level shared library event, do the same thing. */
4787 if (kind == TARGET_WAITKIND_LOADED)
4788 {
4789 print_solib_event (0);
4790 return PRINT_NOTHING;
4791 }
4792
4793 /* We reached the end of the chain, or we got a null BS to start
4794 with and nothing was printed. */
4795 return PRINT_UNKNOWN;
4796 }
4797
4798 /* Evaluate the expression EXP and return 1 if value is zero.
4799 This returns the inverse of the condition because it is called
4800 from catch_errors which returns 0 if an exception happened, and if an
4801 exception happens we want execution to stop.
4802 The argument is a "struct expression *" that has been cast to a
4803 "void *" to make it pass through catch_errors. */
4804
4805 static int
4806 breakpoint_cond_eval (void *exp)
4807 {
4808 struct value *mark = value_mark ();
4809 int i = !value_true (evaluate_expression ((struct expression *) exp));
4810
4811 value_free_to_mark (mark);
4812 return i;
4813 }
4814
4815 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4816
4817 static bpstat
4818 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4819 {
4820 bpstat bs;
4821
4822 bs = (bpstat) xmalloc (sizeof (*bs));
4823 bs->next = NULL;
4824 **bs_link_pointer = bs;
4825 *bs_link_pointer = &bs->next;
4826 bs->breakpoint_at = bl->owner;
4827 bs->bp_location_at = bl;
4828 incref_bp_location (bl);
4829 /* If the condition is false, etc., don't do the commands. */
4830 bs->commands = NULL;
4831 bs->old_val = NULL;
4832 bs->print_it = print_it_normal;
4833 return bs;
4834 }
4835 \f
4836 /* The target has stopped with waitstatus WS. Check if any hardware
4837 watchpoints have triggered, according to the target. */
4838
4839 int
4840 watchpoints_triggered (struct target_waitstatus *ws)
4841 {
4842 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4843 CORE_ADDR addr;
4844 struct breakpoint *b;
4845
4846 if (!stopped_by_watchpoint)
4847 {
4848 /* We were not stopped by a watchpoint. Mark all watchpoints
4849 as not triggered. */
4850 ALL_BREAKPOINTS (b)
4851 if (is_hardware_watchpoint (b))
4852 {
4853 struct watchpoint *w = (struct watchpoint *) b;
4854
4855 w->watchpoint_triggered = watch_triggered_no;
4856 }
4857
4858 return 0;
4859 }
4860
4861 if (!target_stopped_data_address (&current_target, &addr))
4862 {
4863 /* We were stopped by a watchpoint, but we don't know where.
4864 Mark all watchpoints as unknown. */
4865 ALL_BREAKPOINTS (b)
4866 if (is_hardware_watchpoint (b))
4867 {
4868 struct watchpoint *w = (struct watchpoint *) b;
4869
4870 w->watchpoint_triggered = watch_triggered_unknown;
4871 }
4872
4873 return 1;
4874 }
4875
4876 /* The target could report the data address. Mark watchpoints
4877 affected by this data address as triggered, and all others as not
4878 triggered. */
4879
4880 ALL_BREAKPOINTS (b)
4881 if (is_hardware_watchpoint (b))
4882 {
4883 struct watchpoint *w = (struct watchpoint *) b;
4884 struct bp_location *loc;
4885
4886 w->watchpoint_triggered = watch_triggered_no;
4887 for (loc = b->loc; loc; loc = loc->next)
4888 {
4889 if (is_masked_watchpoint (b))
4890 {
4891 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4892 CORE_ADDR start = loc->address & w->hw_wp_mask;
4893
4894 if (newaddr == start)
4895 {
4896 w->watchpoint_triggered = watch_triggered_yes;
4897 break;
4898 }
4899 }
4900 /* Exact match not required. Within range is sufficient. */
4901 else if (target_watchpoint_addr_within_range (&current_target,
4902 addr, loc->address,
4903 loc->length))
4904 {
4905 w->watchpoint_triggered = watch_triggered_yes;
4906 break;
4907 }
4908 }
4909 }
4910
4911 return 1;
4912 }
4913
4914 /* Possible return values for watchpoint_check (this can't be an enum
4915 because of check_errors). */
4916 /* The watchpoint has been deleted. */
4917 #define WP_DELETED 1
4918 /* The value has changed. */
4919 #define WP_VALUE_CHANGED 2
4920 /* The value has not changed. */
4921 #define WP_VALUE_NOT_CHANGED 3
4922 /* Ignore this watchpoint, no matter if the value changed or not. */
4923 #define WP_IGNORE 4
4924
4925 #define BP_TEMPFLAG 1
4926 #define BP_HARDWAREFLAG 2
4927
4928 /* Evaluate watchpoint condition expression and check if its value
4929 changed.
4930
4931 P should be a pointer to struct bpstat, but is defined as a void *
4932 in order for this function to be usable with catch_errors. */
4933
4934 static int
4935 watchpoint_check (void *p)
4936 {
4937 bpstat bs = (bpstat) p;
4938 struct watchpoint *b;
4939 struct frame_info *fr;
4940 int within_current_scope;
4941
4942 /* BS is built from an existing struct breakpoint. */
4943 gdb_assert (bs->breakpoint_at != NULL);
4944 b = (struct watchpoint *) bs->breakpoint_at;
4945
4946 /* If this is a local watchpoint, we only want to check if the
4947 watchpoint frame is in scope if the current thread is the thread
4948 that was used to create the watchpoint. */
4949 if (!watchpoint_in_thread_scope (b))
4950 return WP_IGNORE;
4951
4952 if (b->exp_valid_block == NULL)
4953 within_current_scope = 1;
4954 else
4955 {
4956 struct frame_info *frame = get_current_frame ();
4957 struct gdbarch *frame_arch = get_frame_arch (frame);
4958 CORE_ADDR frame_pc = get_frame_pc (frame);
4959
4960 /* in_function_epilogue_p() returns a non-zero value if we're
4961 still in the function but the stack frame has already been
4962 invalidated. Since we can't rely on the values of local
4963 variables after the stack has been destroyed, we are treating
4964 the watchpoint in that state as `not changed' without further
4965 checking. Don't mark watchpoints as changed if the current
4966 frame is in an epilogue - even if they are in some other
4967 frame, our view of the stack is likely to be wrong and
4968 frame_find_by_id could error out. */
4969 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4970 return WP_IGNORE;
4971
4972 fr = frame_find_by_id (b->watchpoint_frame);
4973 within_current_scope = (fr != NULL);
4974
4975 /* If we've gotten confused in the unwinder, we might have
4976 returned a frame that can't describe this variable. */
4977 if (within_current_scope)
4978 {
4979 struct symbol *function;
4980
4981 function = get_frame_function (fr);
4982 if (function == NULL
4983 || !contained_in (b->exp_valid_block,
4984 SYMBOL_BLOCK_VALUE (function)))
4985 within_current_scope = 0;
4986 }
4987
4988 if (within_current_scope)
4989 /* If we end up stopping, the current frame will get selected
4990 in normal_stop. So this call to select_frame won't affect
4991 the user. */
4992 select_frame (fr);
4993 }
4994
4995 if (within_current_scope)
4996 {
4997 /* We use value_{,free_to_}mark because it could be a *long*
4998 time before we return to the command level and call
4999 free_all_values. We can't call free_all_values because we
5000 might be in the middle of evaluating a function call. */
5001
5002 int pc = 0;
5003 struct value *mark;
5004 struct value *new_val;
5005
5006 if (is_masked_watchpoint (&b->base))
5007 /* Since we don't know the exact trigger address (from
5008 stopped_data_address), just tell the user we've triggered
5009 a mask watchpoint. */
5010 return WP_VALUE_CHANGED;
5011
5012 mark = value_mark ();
5013 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5014
5015 /* We use value_equal_contents instead of value_equal because
5016 the latter coerces an array to a pointer, thus comparing just
5017 the address of the array instead of its contents. This is
5018 not what we want. */
5019 if ((b->val != NULL) != (new_val != NULL)
5020 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5021 {
5022 if (new_val != NULL)
5023 {
5024 release_value (new_val);
5025 value_free_to_mark (mark);
5026 }
5027 bs->old_val = b->val;
5028 b->val = new_val;
5029 b->val_valid = 1;
5030 return WP_VALUE_CHANGED;
5031 }
5032 else
5033 {
5034 /* Nothing changed. */
5035 value_free_to_mark (mark);
5036 return WP_VALUE_NOT_CHANGED;
5037 }
5038 }
5039 else
5040 {
5041 struct ui_out *uiout = current_uiout;
5042
5043 /* This seems like the only logical thing to do because
5044 if we temporarily ignored the watchpoint, then when
5045 we reenter the block in which it is valid it contains
5046 garbage (in the case of a function, it may have two
5047 garbage values, one before and one after the prologue).
5048 So we can't even detect the first assignment to it and
5049 watch after that (since the garbage may or may not equal
5050 the first value assigned). */
5051 /* We print all the stop information in
5052 breakpoint_ops->print_it, but in this case, by the time we
5053 call breakpoint_ops->print_it this bp will be deleted
5054 already. So we have no choice but print the information
5055 here. */
5056 if (ui_out_is_mi_like_p (uiout))
5057 ui_out_field_string
5058 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5059 ui_out_text (uiout, "\nWatchpoint ");
5060 ui_out_field_int (uiout, "wpnum", b->base.number);
5061 ui_out_text (uiout,
5062 " deleted because the program has left the block in\n\
5063 which its expression is valid.\n");
5064
5065 /* Make sure the watchpoint's commands aren't executed. */
5066 decref_counted_command_line (&b->base.commands);
5067 watchpoint_del_at_next_stop (b);
5068
5069 return WP_DELETED;
5070 }
5071 }
5072
5073 /* Return true if it looks like target has stopped due to hitting
5074 breakpoint location BL. This function does not check if we should
5075 stop, only if BL explains the stop. */
5076
5077 static int
5078 bpstat_check_location (const struct bp_location *bl,
5079 struct address_space *aspace, CORE_ADDR bp_addr,
5080 const struct target_waitstatus *ws)
5081 {
5082 struct breakpoint *b = bl->owner;
5083
5084 /* BL is from an existing breakpoint. */
5085 gdb_assert (b != NULL);
5086
5087 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5088 }
5089
5090 /* Determine if the watched values have actually changed, and we
5091 should stop. If not, set BS->stop to 0. */
5092
5093 static void
5094 bpstat_check_watchpoint (bpstat bs)
5095 {
5096 const struct bp_location *bl;
5097 struct watchpoint *b;
5098
5099 /* BS is built for existing struct breakpoint. */
5100 bl = bs->bp_location_at;
5101 gdb_assert (bl != NULL);
5102 b = (struct watchpoint *) bs->breakpoint_at;
5103 gdb_assert (b != NULL);
5104
5105 {
5106 int must_check_value = 0;
5107
5108 if (b->base.type == bp_watchpoint)
5109 /* For a software watchpoint, we must always check the
5110 watched value. */
5111 must_check_value = 1;
5112 else if (b->watchpoint_triggered == watch_triggered_yes)
5113 /* We have a hardware watchpoint (read, write, or access)
5114 and the target earlier reported an address watched by
5115 this watchpoint. */
5116 must_check_value = 1;
5117 else if (b->watchpoint_triggered == watch_triggered_unknown
5118 && b->base.type == bp_hardware_watchpoint)
5119 /* We were stopped by a hardware watchpoint, but the target could
5120 not report the data address. We must check the watchpoint's
5121 value. Access and read watchpoints are out of luck; without
5122 a data address, we can't figure it out. */
5123 must_check_value = 1;
5124
5125 if (must_check_value)
5126 {
5127 char *message
5128 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5129 b->base.number);
5130 struct cleanup *cleanups = make_cleanup (xfree, message);
5131 int e = catch_errors (watchpoint_check, bs, message,
5132 RETURN_MASK_ALL);
5133 do_cleanups (cleanups);
5134 switch (e)
5135 {
5136 case WP_DELETED:
5137 /* We've already printed what needs to be printed. */
5138 bs->print_it = print_it_done;
5139 /* Stop. */
5140 break;
5141 case WP_IGNORE:
5142 bs->print_it = print_it_noop;
5143 bs->stop = 0;
5144 break;
5145 case WP_VALUE_CHANGED:
5146 if (b->base.type == bp_read_watchpoint)
5147 {
5148 /* There are two cases to consider here:
5149
5150 1. We're watching the triggered memory for reads.
5151 In that case, trust the target, and always report
5152 the watchpoint hit to the user. Even though
5153 reads don't cause value changes, the value may
5154 have changed since the last time it was read, and
5155 since we're not trapping writes, we will not see
5156 those, and as such we should ignore our notion of
5157 old value.
5158
5159 2. We're watching the triggered memory for both
5160 reads and writes. There are two ways this may
5161 happen:
5162
5163 2.1. This is a target that can't break on data
5164 reads only, but can break on accesses (reads or
5165 writes), such as e.g., x86. We detect this case
5166 at the time we try to insert read watchpoints.
5167
5168 2.2. Otherwise, the target supports read
5169 watchpoints, but, the user set an access or write
5170 watchpoint watching the same memory as this read
5171 watchpoint.
5172
5173 If we're watching memory writes as well as reads,
5174 ignore watchpoint hits when we find that the
5175 value hasn't changed, as reads don't cause
5176 changes. This still gives false positives when
5177 the program writes the same value to memory as
5178 what there was already in memory (we will confuse
5179 it for a read), but it's much better than
5180 nothing. */
5181
5182 int other_write_watchpoint = 0;
5183
5184 if (bl->watchpoint_type == hw_read)
5185 {
5186 struct breakpoint *other_b;
5187
5188 ALL_BREAKPOINTS (other_b)
5189 if (other_b->type == bp_hardware_watchpoint
5190 || other_b->type == bp_access_watchpoint)
5191 {
5192 struct watchpoint *other_w =
5193 (struct watchpoint *) other_b;
5194
5195 if (other_w->watchpoint_triggered
5196 == watch_triggered_yes)
5197 {
5198 other_write_watchpoint = 1;
5199 break;
5200 }
5201 }
5202 }
5203
5204 if (other_write_watchpoint
5205 || bl->watchpoint_type == hw_access)
5206 {
5207 /* We're watching the same memory for writes,
5208 and the value changed since the last time we
5209 updated it, so this trap must be for a write.
5210 Ignore it. */
5211 bs->print_it = print_it_noop;
5212 bs->stop = 0;
5213 }
5214 }
5215 break;
5216 case WP_VALUE_NOT_CHANGED:
5217 if (b->base.type == bp_hardware_watchpoint
5218 || b->base.type == bp_watchpoint)
5219 {
5220 /* Don't stop: write watchpoints shouldn't fire if
5221 the value hasn't changed. */
5222 bs->print_it = print_it_noop;
5223 bs->stop = 0;
5224 }
5225 /* Stop. */
5226 break;
5227 default:
5228 /* Can't happen. */
5229 case 0:
5230 /* Error from catch_errors. */
5231 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5232 watchpoint_del_at_next_stop (b);
5233 /* We've already printed what needs to be printed. */
5234 bs->print_it = print_it_done;
5235 break;
5236 }
5237 }
5238 else /* must_check_value == 0 */
5239 {
5240 /* This is a case where some watchpoint(s) triggered, but
5241 not at the address of this watchpoint, or else no
5242 watchpoint triggered after all. So don't print
5243 anything for this watchpoint. */
5244 bs->print_it = print_it_noop;
5245 bs->stop = 0;
5246 }
5247 }
5248 }
5249
5250 /* For breakpoints that are currently marked as telling gdb to stop,
5251 check conditions (condition proper, frame, thread and ignore count)
5252 of breakpoint referred to by BS. If we should not stop for this
5253 breakpoint, set BS->stop to 0. */
5254
5255 static void
5256 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5257 {
5258 const struct bp_location *bl;
5259 struct breakpoint *b;
5260 int value_is_zero = 0;
5261 struct expression *cond;
5262
5263 gdb_assert (bs->stop);
5264
5265 /* BS is built for existing struct breakpoint. */
5266 bl = bs->bp_location_at;
5267 gdb_assert (bl != NULL);
5268 b = bs->breakpoint_at;
5269 gdb_assert (b != NULL);
5270
5271 /* Even if the target evaluated the condition on its end and notified GDB, we
5272 need to do so again since GDB does not know if we stopped due to a
5273 breakpoint or a single step breakpoint. */
5274
5275 if (frame_id_p (b->frame_id)
5276 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5277 {
5278 bs->stop = 0;
5279 return;
5280 }
5281
5282 /* If this is a thread/task-specific breakpoint, don't waste cpu
5283 evaluating the condition if this isn't the specified
5284 thread/task. */
5285 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5286 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5287
5288 {
5289 bs->stop = 0;
5290 return;
5291 }
5292
5293 /* Evaluate extension language breakpoints that have a "stop" method
5294 implemented. */
5295 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5296
5297 if (is_watchpoint (b))
5298 {
5299 struct watchpoint *w = (struct watchpoint *) b;
5300
5301 cond = w->cond_exp;
5302 }
5303 else
5304 cond = bl->cond;
5305
5306 if (cond && b->disposition != disp_del_at_next_stop)
5307 {
5308 int within_current_scope = 1;
5309 struct watchpoint * w;
5310
5311 /* We use value_mark and value_free_to_mark because it could
5312 be a long time before we return to the command level and
5313 call free_all_values. We can't call free_all_values
5314 because we might be in the middle of evaluating a
5315 function call. */
5316 struct value *mark = value_mark ();
5317
5318 if (is_watchpoint (b))
5319 w = (struct watchpoint *) b;
5320 else
5321 w = NULL;
5322
5323 /* Need to select the frame, with all that implies so that
5324 the conditions will have the right context. Because we
5325 use the frame, we will not see an inlined function's
5326 variables when we arrive at a breakpoint at the start
5327 of the inlined function; the current frame will be the
5328 call site. */
5329 if (w == NULL || w->cond_exp_valid_block == NULL)
5330 select_frame (get_current_frame ());
5331 else
5332 {
5333 struct frame_info *frame;
5334
5335 /* For local watchpoint expressions, which particular
5336 instance of a local is being watched matters, so we
5337 keep track of the frame to evaluate the expression
5338 in. To evaluate the condition however, it doesn't
5339 really matter which instantiation of the function
5340 where the condition makes sense triggers the
5341 watchpoint. This allows an expression like "watch
5342 global if q > 10" set in `func', catch writes to
5343 global on all threads that call `func', or catch
5344 writes on all recursive calls of `func' by a single
5345 thread. We simply always evaluate the condition in
5346 the innermost frame that's executing where it makes
5347 sense to evaluate the condition. It seems
5348 intuitive. */
5349 frame = block_innermost_frame (w->cond_exp_valid_block);
5350 if (frame != NULL)
5351 select_frame (frame);
5352 else
5353 within_current_scope = 0;
5354 }
5355 if (within_current_scope)
5356 value_is_zero
5357 = catch_errors (breakpoint_cond_eval, cond,
5358 "Error in testing breakpoint condition:\n",
5359 RETURN_MASK_ALL);
5360 else
5361 {
5362 warning (_("Watchpoint condition cannot be tested "
5363 "in the current scope"));
5364 /* If we failed to set the right context for this
5365 watchpoint, unconditionally report it. */
5366 value_is_zero = 0;
5367 }
5368 /* FIXME-someday, should give breakpoint #. */
5369 value_free_to_mark (mark);
5370 }
5371
5372 if (cond && value_is_zero)
5373 {
5374 bs->stop = 0;
5375 }
5376 else if (b->ignore_count > 0)
5377 {
5378 b->ignore_count--;
5379 bs->stop = 0;
5380 /* Increase the hit count even though we don't stop. */
5381 ++(b->hit_count);
5382 observer_notify_breakpoint_modified (b);
5383 }
5384 }
5385
5386
5387 /* Get a bpstat associated with having just stopped at address
5388 BP_ADDR in thread PTID.
5389
5390 Determine whether we stopped at a breakpoint, etc, or whether we
5391 don't understand this stop. Result is a chain of bpstat's such
5392 that:
5393
5394 if we don't understand the stop, the result is a null pointer.
5395
5396 if we understand why we stopped, the result is not null.
5397
5398 Each element of the chain refers to a particular breakpoint or
5399 watchpoint at which we have stopped. (We may have stopped for
5400 several reasons concurrently.)
5401
5402 Each element of the chain has valid next, breakpoint_at,
5403 commands, FIXME??? fields. */
5404
5405 bpstat
5406 bpstat_stop_status (struct address_space *aspace,
5407 CORE_ADDR bp_addr, ptid_t ptid,
5408 const struct target_waitstatus *ws)
5409 {
5410 struct breakpoint *b = NULL;
5411 struct bp_location *bl;
5412 struct bp_location *loc;
5413 /* First item of allocated bpstat's. */
5414 bpstat bs_head = NULL, *bs_link = &bs_head;
5415 /* Pointer to the last thing in the chain currently. */
5416 bpstat bs;
5417 int ix;
5418 int need_remove_insert;
5419 int removed_any;
5420
5421 /* First, build the bpstat chain with locations that explain a
5422 target stop, while being careful to not set the target running,
5423 as that may invalidate locations (in particular watchpoint
5424 locations are recreated). Resuming will happen here with
5425 breakpoint conditions or watchpoint expressions that include
5426 inferior function calls. */
5427
5428 ALL_BREAKPOINTS (b)
5429 {
5430 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5431 continue;
5432
5433 for (bl = b->loc; bl != NULL; bl = bl->next)
5434 {
5435 /* For hardware watchpoints, we look only at the first
5436 location. The watchpoint_check function will work on the
5437 entire expression, not the individual locations. For
5438 read watchpoints, the watchpoints_triggered function has
5439 checked all locations already. */
5440 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5441 break;
5442
5443 if (!bl->enabled || bl->shlib_disabled)
5444 continue;
5445
5446 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5447 continue;
5448
5449 /* Come here if it's a watchpoint, or if the break address
5450 matches. */
5451
5452 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5453 explain stop. */
5454
5455 /* Assume we stop. Should we find a watchpoint that is not
5456 actually triggered, or if the condition of the breakpoint
5457 evaluates as false, we'll reset 'stop' to 0. */
5458 bs->stop = 1;
5459 bs->print = 1;
5460
5461 /* If this is a scope breakpoint, mark the associated
5462 watchpoint as triggered so that we will handle the
5463 out-of-scope event. We'll get to the watchpoint next
5464 iteration. */
5465 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5466 {
5467 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5468
5469 w->watchpoint_triggered = watch_triggered_yes;
5470 }
5471 }
5472 }
5473
5474 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5475 {
5476 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5477 {
5478 bs = bpstat_alloc (loc, &bs_link);
5479 /* For hits of moribund locations, we should just proceed. */
5480 bs->stop = 0;
5481 bs->print = 0;
5482 bs->print_it = print_it_noop;
5483 }
5484 }
5485
5486 /* A bit of special processing for shlib breakpoints. We need to
5487 process solib loading here, so that the lists of loaded and
5488 unloaded libraries are correct before we handle "catch load" and
5489 "catch unload". */
5490 for (bs = bs_head; bs != NULL; bs = bs->next)
5491 {
5492 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5493 {
5494 handle_solib_event ();
5495 break;
5496 }
5497 }
5498
5499 /* Now go through the locations that caused the target to stop, and
5500 check whether we're interested in reporting this stop to higher
5501 layers, or whether we should resume the target transparently. */
5502
5503 removed_any = 0;
5504
5505 for (bs = bs_head; bs != NULL; bs = bs->next)
5506 {
5507 if (!bs->stop)
5508 continue;
5509
5510 b = bs->breakpoint_at;
5511 b->ops->check_status (bs);
5512 if (bs->stop)
5513 {
5514 bpstat_check_breakpoint_conditions (bs, ptid);
5515
5516 if (bs->stop)
5517 {
5518 ++(b->hit_count);
5519 observer_notify_breakpoint_modified (b);
5520
5521 /* We will stop here. */
5522 if (b->disposition == disp_disable)
5523 {
5524 --(b->enable_count);
5525 if (b->enable_count <= 0
5526 && b->enable_state != bp_permanent)
5527 b->enable_state = bp_disabled;
5528 removed_any = 1;
5529 }
5530 if (b->silent)
5531 bs->print = 0;
5532 bs->commands = b->commands;
5533 incref_counted_command_line (bs->commands);
5534 if (command_line_is_silent (bs->commands
5535 ? bs->commands->commands : NULL))
5536 bs->print = 0;
5537
5538 b->ops->after_condition_true (bs);
5539 }
5540
5541 }
5542
5543 /* Print nothing for this entry if we don't stop or don't
5544 print. */
5545 if (!bs->stop || !bs->print)
5546 bs->print_it = print_it_noop;
5547 }
5548
5549 /* If we aren't stopping, the value of some hardware watchpoint may
5550 not have changed, but the intermediate memory locations we are
5551 watching may have. Don't bother if we're stopping; this will get
5552 done later. */
5553 need_remove_insert = 0;
5554 if (! bpstat_causes_stop (bs_head))
5555 for (bs = bs_head; bs != NULL; bs = bs->next)
5556 if (!bs->stop
5557 && bs->breakpoint_at
5558 && is_hardware_watchpoint (bs->breakpoint_at))
5559 {
5560 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5561
5562 update_watchpoint (w, 0 /* don't reparse. */);
5563 need_remove_insert = 1;
5564 }
5565
5566 if (need_remove_insert)
5567 update_global_location_list (1);
5568 else if (removed_any)
5569 update_global_location_list (0);
5570
5571 return bs_head;
5572 }
5573
5574 static void
5575 handle_jit_event (void)
5576 {
5577 struct frame_info *frame;
5578 struct gdbarch *gdbarch;
5579
5580 /* Switch terminal for any messages produced by
5581 breakpoint_re_set. */
5582 target_terminal_ours_for_output ();
5583
5584 frame = get_current_frame ();
5585 gdbarch = get_frame_arch (frame);
5586
5587 jit_event_handler (gdbarch);
5588
5589 target_terminal_inferior ();
5590 }
5591
5592 /* Prepare WHAT final decision for infrun. */
5593
5594 /* Decide what infrun needs to do with this bpstat. */
5595
5596 struct bpstat_what
5597 bpstat_what (bpstat bs_head)
5598 {
5599 struct bpstat_what retval;
5600 int jit_event = 0;
5601 bpstat bs;
5602
5603 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5604 retval.call_dummy = STOP_NONE;
5605 retval.is_longjmp = 0;
5606
5607 for (bs = bs_head; bs != NULL; bs = bs->next)
5608 {
5609 /* Extract this BS's action. After processing each BS, we check
5610 if its action overrides all we've seem so far. */
5611 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5612 enum bptype bptype;
5613
5614 if (bs->breakpoint_at == NULL)
5615 {
5616 /* I suspect this can happen if it was a momentary
5617 breakpoint which has since been deleted. */
5618 bptype = bp_none;
5619 }
5620 else
5621 bptype = bs->breakpoint_at->type;
5622
5623 switch (bptype)
5624 {
5625 case bp_none:
5626 break;
5627 case bp_breakpoint:
5628 case bp_hardware_breakpoint:
5629 case bp_until:
5630 case bp_finish:
5631 case bp_shlib_event:
5632 if (bs->stop)
5633 {
5634 if (bs->print)
5635 this_action = BPSTAT_WHAT_STOP_NOISY;
5636 else
5637 this_action = BPSTAT_WHAT_STOP_SILENT;
5638 }
5639 else
5640 this_action = BPSTAT_WHAT_SINGLE;
5641 break;
5642 case bp_watchpoint:
5643 case bp_hardware_watchpoint:
5644 case bp_read_watchpoint:
5645 case bp_access_watchpoint:
5646 if (bs->stop)
5647 {
5648 if (bs->print)
5649 this_action = BPSTAT_WHAT_STOP_NOISY;
5650 else
5651 this_action = BPSTAT_WHAT_STOP_SILENT;
5652 }
5653 else
5654 {
5655 /* There was a watchpoint, but we're not stopping.
5656 This requires no further action. */
5657 }
5658 break;
5659 case bp_longjmp:
5660 case bp_longjmp_call_dummy:
5661 case bp_exception:
5662 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5663 retval.is_longjmp = bptype != bp_exception;
5664 break;
5665 case bp_longjmp_resume:
5666 case bp_exception_resume:
5667 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5668 retval.is_longjmp = bptype == bp_longjmp_resume;
5669 break;
5670 case bp_step_resume:
5671 if (bs->stop)
5672 this_action = BPSTAT_WHAT_STEP_RESUME;
5673 else
5674 {
5675 /* It is for the wrong frame. */
5676 this_action = BPSTAT_WHAT_SINGLE;
5677 }
5678 break;
5679 case bp_hp_step_resume:
5680 if (bs->stop)
5681 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5682 else
5683 {
5684 /* It is for the wrong frame. */
5685 this_action = BPSTAT_WHAT_SINGLE;
5686 }
5687 break;
5688 case bp_watchpoint_scope:
5689 case bp_thread_event:
5690 case bp_overlay_event:
5691 case bp_longjmp_master:
5692 case bp_std_terminate_master:
5693 case bp_exception_master:
5694 this_action = BPSTAT_WHAT_SINGLE;
5695 break;
5696 case bp_catchpoint:
5697 if (bs->stop)
5698 {
5699 if (bs->print)
5700 this_action = BPSTAT_WHAT_STOP_NOISY;
5701 else
5702 this_action = BPSTAT_WHAT_STOP_SILENT;
5703 }
5704 else
5705 {
5706 /* There was a catchpoint, but we're not stopping.
5707 This requires no further action. */
5708 }
5709 break;
5710 case bp_jit_event:
5711 jit_event = 1;
5712 this_action = BPSTAT_WHAT_SINGLE;
5713 break;
5714 case bp_call_dummy:
5715 /* Make sure the action is stop (silent or noisy),
5716 so infrun.c pops the dummy frame. */
5717 retval.call_dummy = STOP_STACK_DUMMY;
5718 this_action = BPSTAT_WHAT_STOP_SILENT;
5719 break;
5720 case bp_std_terminate:
5721 /* Make sure the action is stop (silent or noisy),
5722 so infrun.c pops the dummy frame. */
5723 retval.call_dummy = STOP_STD_TERMINATE;
5724 this_action = BPSTAT_WHAT_STOP_SILENT;
5725 break;
5726 case bp_tracepoint:
5727 case bp_fast_tracepoint:
5728 case bp_static_tracepoint:
5729 /* Tracepoint hits should not be reported back to GDB, and
5730 if one got through somehow, it should have been filtered
5731 out already. */
5732 internal_error (__FILE__, __LINE__,
5733 _("bpstat_what: tracepoint encountered"));
5734 break;
5735 case bp_gnu_ifunc_resolver:
5736 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5737 this_action = BPSTAT_WHAT_SINGLE;
5738 break;
5739 case bp_gnu_ifunc_resolver_return:
5740 /* The breakpoint will be removed, execution will restart from the
5741 PC of the former breakpoint. */
5742 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5743 break;
5744
5745 case bp_dprintf:
5746 if (bs->stop)
5747 this_action = BPSTAT_WHAT_STOP_SILENT;
5748 else
5749 this_action = BPSTAT_WHAT_SINGLE;
5750 break;
5751
5752 default:
5753 internal_error (__FILE__, __LINE__,
5754 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5755 }
5756
5757 retval.main_action = max (retval.main_action, this_action);
5758 }
5759
5760 /* These operations may affect the bs->breakpoint_at state so they are
5761 delayed after MAIN_ACTION is decided above. */
5762
5763 if (jit_event)
5764 {
5765 if (debug_infrun)
5766 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5767
5768 handle_jit_event ();
5769 }
5770
5771 for (bs = bs_head; bs != NULL; bs = bs->next)
5772 {
5773 struct breakpoint *b = bs->breakpoint_at;
5774
5775 if (b == NULL)
5776 continue;
5777 switch (b->type)
5778 {
5779 case bp_gnu_ifunc_resolver:
5780 gnu_ifunc_resolver_stop (b);
5781 break;
5782 case bp_gnu_ifunc_resolver_return:
5783 gnu_ifunc_resolver_return_stop (b);
5784 break;
5785 }
5786 }
5787
5788 return retval;
5789 }
5790
5791 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5792 without hardware support). This isn't related to a specific bpstat,
5793 just to things like whether watchpoints are set. */
5794
5795 int
5796 bpstat_should_step (void)
5797 {
5798 struct breakpoint *b;
5799
5800 ALL_BREAKPOINTS (b)
5801 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5802 return 1;
5803 return 0;
5804 }
5805
5806 int
5807 bpstat_causes_stop (bpstat bs)
5808 {
5809 for (; bs != NULL; bs = bs->next)
5810 if (bs->stop)
5811 return 1;
5812
5813 return 0;
5814 }
5815
5816 \f
5817
5818 /* Compute a string of spaces suitable to indent the next line
5819 so it starts at the position corresponding to the table column
5820 named COL_NAME in the currently active table of UIOUT. */
5821
5822 static char *
5823 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5824 {
5825 static char wrap_indent[80];
5826 int i, total_width, width, align;
5827 char *text;
5828
5829 total_width = 0;
5830 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5831 {
5832 if (strcmp (text, col_name) == 0)
5833 {
5834 gdb_assert (total_width < sizeof wrap_indent);
5835 memset (wrap_indent, ' ', total_width);
5836 wrap_indent[total_width] = 0;
5837
5838 return wrap_indent;
5839 }
5840
5841 total_width += width + 1;
5842 }
5843
5844 return NULL;
5845 }
5846
5847 /* Determine if the locations of this breakpoint will have their conditions
5848 evaluated by the target, host or a mix of both. Returns the following:
5849
5850 "host": Host evals condition.
5851 "host or target": Host or Target evals condition.
5852 "target": Target evals condition.
5853 */
5854
5855 static const char *
5856 bp_condition_evaluator (struct breakpoint *b)
5857 {
5858 struct bp_location *bl;
5859 char host_evals = 0;
5860 char target_evals = 0;
5861
5862 if (!b)
5863 return NULL;
5864
5865 if (!is_breakpoint (b))
5866 return NULL;
5867
5868 if (gdb_evaluates_breakpoint_condition_p ()
5869 || !target_supports_evaluation_of_breakpoint_conditions ())
5870 return condition_evaluation_host;
5871
5872 for (bl = b->loc; bl; bl = bl->next)
5873 {
5874 if (bl->cond_bytecode)
5875 target_evals++;
5876 else
5877 host_evals++;
5878 }
5879
5880 if (host_evals && target_evals)
5881 return condition_evaluation_both;
5882 else if (target_evals)
5883 return condition_evaluation_target;
5884 else
5885 return condition_evaluation_host;
5886 }
5887
5888 /* Determine the breakpoint location's condition evaluator. This is
5889 similar to bp_condition_evaluator, but for locations. */
5890
5891 static const char *
5892 bp_location_condition_evaluator (struct bp_location *bl)
5893 {
5894 if (bl && !is_breakpoint (bl->owner))
5895 return NULL;
5896
5897 if (gdb_evaluates_breakpoint_condition_p ()
5898 || !target_supports_evaluation_of_breakpoint_conditions ())
5899 return condition_evaluation_host;
5900
5901 if (bl && bl->cond_bytecode)
5902 return condition_evaluation_target;
5903 else
5904 return condition_evaluation_host;
5905 }
5906
5907 /* Print the LOC location out of the list of B->LOC locations. */
5908
5909 static void
5910 print_breakpoint_location (struct breakpoint *b,
5911 struct bp_location *loc)
5912 {
5913 struct ui_out *uiout = current_uiout;
5914 struct cleanup *old_chain = save_current_program_space ();
5915
5916 if (loc != NULL && loc->shlib_disabled)
5917 loc = NULL;
5918
5919 if (loc != NULL)
5920 set_current_program_space (loc->pspace);
5921
5922 if (b->display_canonical)
5923 ui_out_field_string (uiout, "what", b->addr_string);
5924 else if (loc && loc->symtab)
5925 {
5926 struct symbol *sym
5927 = find_pc_sect_function (loc->address, loc->section);
5928 if (sym)
5929 {
5930 ui_out_text (uiout, "in ");
5931 ui_out_field_string (uiout, "func",
5932 SYMBOL_PRINT_NAME (sym));
5933 ui_out_text (uiout, " ");
5934 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5935 ui_out_text (uiout, "at ");
5936 }
5937 ui_out_field_string (uiout, "file",
5938 symtab_to_filename_for_display (loc->symtab));
5939 ui_out_text (uiout, ":");
5940
5941 if (ui_out_is_mi_like_p (uiout))
5942 ui_out_field_string (uiout, "fullname",
5943 symtab_to_fullname (loc->symtab));
5944
5945 ui_out_field_int (uiout, "line", loc->line_number);
5946 }
5947 else if (loc)
5948 {
5949 struct ui_file *stb = mem_fileopen ();
5950 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5951
5952 print_address_symbolic (loc->gdbarch, loc->address, stb,
5953 demangle, "");
5954 ui_out_field_stream (uiout, "at", stb);
5955
5956 do_cleanups (stb_chain);
5957 }
5958 else
5959 ui_out_field_string (uiout, "pending", b->addr_string);
5960
5961 if (loc && is_breakpoint (b)
5962 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5963 && bp_condition_evaluator (b) == condition_evaluation_both)
5964 {
5965 ui_out_text (uiout, " (");
5966 ui_out_field_string (uiout, "evaluated-by",
5967 bp_location_condition_evaluator (loc));
5968 ui_out_text (uiout, ")");
5969 }
5970
5971 do_cleanups (old_chain);
5972 }
5973
5974 static const char *
5975 bptype_string (enum bptype type)
5976 {
5977 struct ep_type_description
5978 {
5979 enum bptype type;
5980 char *description;
5981 };
5982 static struct ep_type_description bptypes[] =
5983 {
5984 {bp_none, "?deleted?"},
5985 {bp_breakpoint, "breakpoint"},
5986 {bp_hardware_breakpoint, "hw breakpoint"},
5987 {bp_until, "until"},
5988 {bp_finish, "finish"},
5989 {bp_watchpoint, "watchpoint"},
5990 {bp_hardware_watchpoint, "hw watchpoint"},
5991 {bp_read_watchpoint, "read watchpoint"},
5992 {bp_access_watchpoint, "acc watchpoint"},
5993 {bp_longjmp, "longjmp"},
5994 {bp_longjmp_resume, "longjmp resume"},
5995 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5996 {bp_exception, "exception"},
5997 {bp_exception_resume, "exception resume"},
5998 {bp_step_resume, "step resume"},
5999 {bp_hp_step_resume, "high-priority step resume"},
6000 {bp_watchpoint_scope, "watchpoint scope"},
6001 {bp_call_dummy, "call dummy"},
6002 {bp_std_terminate, "std::terminate"},
6003 {bp_shlib_event, "shlib events"},
6004 {bp_thread_event, "thread events"},
6005 {bp_overlay_event, "overlay events"},
6006 {bp_longjmp_master, "longjmp master"},
6007 {bp_std_terminate_master, "std::terminate master"},
6008 {bp_exception_master, "exception master"},
6009 {bp_catchpoint, "catchpoint"},
6010 {bp_tracepoint, "tracepoint"},
6011 {bp_fast_tracepoint, "fast tracepoint"},
6012 {bp_static_tracepoint, "static tracepoint"},
6013 {bp_dprintf, "dprintf"},
6014 {bp_jit_event, "jit events"},
6015 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6016 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6017 };
6018
6019 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6020 || ((int) type != bptypes[(int) type].type))
6021 internal_error (__FILE__, __LINE__,
6022 _("bptypes table does not describe type #%d."),
6023 (int) type);
6024
6025 return bptypes[(int) type].description;
6026 }
6027
6028 /* For MI, output a field named 'thread-groups' with a list as the value.
6029 For CLI, prefix the list with the string 'inf'. */
6030
6031 static void
6032 output_thread_groups (struct ui_out *uiout,
6033 const char *field_name,
6034 VEC(int) *inf_num,
6035 int mi_only)
6036 {
6037 struct cleanup *back_to;
6038 int is_mi = ui_out_is_mi_like_p (uiout);
6039 int inf;
6040 int i;
6041
6042 /* For backward compatibility, don't display inferiors in CLI unless
6043 there are several. Always display them for MI. */
6044 if (!is_mi && mi_only)
6045 return;
6046
6047 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6048
6049 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6050 {
6051 if (is_mi)
6052 {
6053 char mi_group[10];
6054
6055 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6056 ui_out_field_string (uiout, NULL, mi_group);
6057 }
6058 else
6059 {
6060 if (i == 0)
6061 ui_out_text (uiout, " inf ");
6062 else
6063 ui_out_text (uiout, ", ");
6064
6065 ui_out_text (uiout, plongest (inf));
6066 }
6067 }
6068
6069 do_cleanups (back_to);
6070 }
6071
6072 /* Print B to gdb_stdout. */
6073
6074 static void
6075 print_one_breakpoint_location (struct breakpoint *b,
6076 struct bp_location *loc,
6077 int loc_number,
6078 struct bp_location **last_loc,
6079 int allflag)
6080 {
6081 struct command_line *l;
6082 static char bpenables[] = "nynny";
6083
6084 struct ui_out *uiout = current_uiout;
6085 int header_of_multiple = 0;
6086 int part_of_multiple = (loc != NULL);
6087 struct value_print_options opts;
6088
6089 get_user_print_options (&opts);
6090
6091 gdb_assert (!loc || loc_number != 0);
6092 /* See comment in print_one_breakpoint concerning treatment of
6093 breakpoints with single disabled location. */
6094 if (loc == NULL
6095 && (b->loc != NULL
6096 && (b->loc->next != NULL || !b->loc->enabled)))
6097 header_of_multiple = 1;
6098 if (loc == NULL)
6099 loc = b->loc;
6100
6101 annotate_record ();
6102
6103 /* 1 */
6104 annotate_field (0);
6105 if (part_of_multiple)
6106 {
6107 char *formatted;
6108 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6109 ui_out_field_string (uiout, "number", formatted);
6110 xfree (formatted);
6111 }
6112 else
6113 {
6114 ui_out_field_int (uiout, "number", b->number);
6115 }
6116
6117 /* 2 */
6118 annotate_field (1);
6119 if (part_of_multiple)
6120 ui_out_field_skip (uiout, "type");
6121 else
6122 ui_out_field_string (uiout, "type", bptype_string (b->type));
6123
6124 /* 3 */
6125 annotate_field (2);
6126 if (part_of_multiple)
6127 ui_out_field_skip (uiout, "disp");
6128 else
6129 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6130
6131
6132 /* 4 */
6133 annotate_field (3);
6134 if (part_of_multiple)
6135 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6136 else
6137 ui_out_field_fmt (uiout, "enabled", "%c",
6138 bpenables[(int) b->enable_state]);
6139 ui_out_spaces (uiout, 2);
6140
6141
6142 /* 5 and 6 */
6143 if (b->ops != NULL && b->ops->print_one != NULL)
6144 {
6145 /* Although the print_one can possibly print all locations,
6146 calling it here is not likely to get any nice result. So,
6147 make sure there's just one location. */
6148 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6149 b->ops->print_one (b, last_loc);
6150 }
6151 else
6152 switch (b->type)
6153 {
6154 case bp_none:
6155 internal_error (__FILE__, __LINE__,
6156 _("print_one_breakpoint: bp_none encountered\n"));
6157 break;
6158
6159 case bp_watchpoint:
6160 case bp_hardware_watchpoint:
6161 case bp_read_watchpoint:
6162 case bp_access_watchpoint:
6163 {
6164 struct watchpoint *w = (struct watchpoint *) b;
6165
6166 /* Field 4, the address, is omitted (which makes the columns
6167 not line up too nicely with the headers, but the effect
6168 is relatively readable). */
6169 if (opts.addressprint)
6170 ui_out_field_skip (uiout, "addr");
6171 annotate_field (5);
6172 ui_out_field_string (uiout, "what", w->exp_string);
6173 }
6174 break;
6175
6176 case bp_breakpoint:
6177 case bp_hardware_breakpoint:
6178 case bp_until:
6179 case bp_finish:
6180 case bp_longjmp:
6181 case bp_longjmp_resume:
6182 case bp_longjmp_call_dummy:
6183 case bp_exception:
6184 case bp_exception_resume:
6185 case bp_step_resume:
6186 case bp_hp_step_resume:
6187 case bp_watchpoint_scope:
6188 case bp_call_dummy:
6189 case bp_std_terminate:
6190 case bp_shlib_event:
6191 case bp_thread_event:
6192 case bp_overlay_event:
6193 case bp_longjmp_master:
6194 case bp_std_terminate_master:
6195 case bp_exception_master:
6196 case bp_tracepoint:
6197 case bp_fast_tracepoint:
6198 case bp_static_tracepoint:
6199 case bp_dprintf:
6200 case bp_jit_event:
6201 case bp_gnu_ifunc_resolver:
6202 case bp_gnu_ifunc_resolver_return:
6203 if (opts.addressprint)
6204 {
6205 annotate_field (4);
6206 if (header_of_multiple)
6207 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6208 else if (b->loc == NULL || loc->shlib_disabled)
6209 ui_out_field_string (uiout, "addr", "<PENDING>");
6210 else
6211 ui_out_field_core_addr (uiout, "addr",
6212 loc->gdbarch, loc->address);
6213 }
6214 annotate_field (5);
6215 if (!header_of_multiple)
6216 print_breakpoint_location (b, loc);
6217 if (b->loc)
6218 *last_loc = b->loc;
6219 break;
6220 }
6221
6222
6223 if (loc != NULL && !header_of_multiple)
6224 {
6225 struct inferior *inf;
6226 VEC(int) *inf_num = NULL;
6227 int mi_only = 1;
6228
6229 ALL_INFERIORS (inf)
6230 {
6231 if (inf->pspace == loc->pspace)
6232 VEC_safe_push (int, inf_num, inf->num);
6233 }
6234
6235 /* For backward compatibility, don't display inferiors in CLI unless
6236 there are several. Always display for MI. */
6237 if (allflag
6238 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6239 && (number_of_program_spaces () > 1
6240 || number_of_inferiors () > 1)
6241 /* LOC is for existing B, it cannot be in
6242 moribund_locations and thus having NULL OWNER. */
6243 && loc->owner->type != bp_catchpoint))
6244 mi_only = 0;
6245 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6246 VEC_free (int, inf_num);
6247 }
6248
6249 if (!part_of_multiple)
6250 {
6251 if (b->thread != -1)
6252 {
6253 /* FIXME: This seems to be redundant and lost here; see the
6254 "stop only in" line a little further down. */
6255 ui_out_text (uiout, " thread ");
6256 ui_out_field_int (uiout, "thread", b->thread);
6257 }
6258 else if (b->task != 0)
6259 {
6260 ui_out_text (uiout, " task ");
6261 ui_out_field_int (uiout, "task", b->task);
6262 }
6263 }
6264
6265 ui_out_text (uiout, "\n");
6266
6267 if (!part_of_multiple)
6268 b->ops->print_one_detail (b, uiout);
6269
6270 if (part_of_multiple && frame_id_p (b->frame_id))
6271 {
6272 annotate_field (6);
6273 ui_out_text (uiout, "\tstop only in stack frame at ");
6274 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6275 the frame ID. */
6276 ui_out_field_core_addr (uiout, "frame",
6277 b->gdbarch, b->frame_id.stack_addr);
6278 ui_out_text (uiout, "\n");
6279 }
6280
6281 if (!part_of_multiple && b->cond_string)
6282 {
6283 annotate_field (7);
6284 if (is_tracepoint (b))
6285 ui_out_text (uiout, "\ttrace only if ");
6286 else
6287 ui_out_text (uiout, "\tstop only if ");
6288 ui_out_field_string (uiout, "cond", b->cond_string);
6289
6290 /* Print whether the target is doing the breakpoint's condition
6291 evaluation. If GDB is doing the evaluation, don't print anything. */
6292 if (is_breakpoint (b)
6293 && breakpoint_condition_evaluation_mode ()
6294 == condition_evaluation_target)
6295 {
6296 ui_out_text (uiout, " (");
6297 ui_out_field_string (uiout, "evaluated-by",
6298 bp_condition_evaluator (b));
6299 ui_out_text (uiout, " evals)");
6300 }
6301 ui_out_text (uiout, "\n");
6302 }
6303
6304 if (!part_of_multiple && b->thread != -1)
6305 {
6306 /* FIXME should make an annotation for this. */
6307 ui_out_text (uiout, "\tstop only in thread ");
6308 ui_out_field_int (uiout, "thread", b->thread);
6309 ui_out_text (uiout, "\n");
6310 }
6311
6312 if (!part_of_multiple)
6313 {
6314 if (b->hit_count)
6315 {
6316 /* FIXME should make an annotation for this. */
6317 if (is_catchpoint (b))
6318 ui_out_text (uiout, "\tcatchpoint");
6319 else if (is_tracepoint (b))
6320 ui_out_text (uiout, "\ttracepoint");
6321 else
6322 ui_out_text (uiout, "\tbreakpoint");
6323 ui_out_text (uiout, " already hit ");
6324 ui_out_field_int (uiout, "times", b->hit_count);
6325 if (b->hit_count == 1)
6326 ui_out_text (uiout, " time\n");
6327 else
6328 ui_out_text (uiout, " times\n");
6329 }
6330 else
6331 {
6332 /* Output the count also if it is zero, but only if this is mi. */
6333 if (ui_out_is_mi_like_p (uiout))
6334 ui_out_field_int (uiout, "times", b->hit_count);
6335 }
6336 }
6337
6338 if (!part_of_multiple && b->ignore_count)
6339 {
6340 annotate_field (8);
6341 ui_out_text (uiout, "\tignore next ");
6342 ui_out_field_int (uiout, "ignore", b->ignore_count);
6343 ui_out_text (uiout, " hits\n");
6344 }
6345
6346 /* Note that an enable count of 1 corresponds to "enable once"
6347 behavior, which is reported by the combination of enablement and
6348 disposition, so we don't need to mention it here. */
6349 if (!part_of_multiple && b->enable_count > 1)
6350 {
6351 annotate_field (8);
6352 ui_out_text (uiout, "\tdisable after ");
6353 /* Tweak the wording to clarify that ignore and enable counts
6354 are distinct, and have additive effect. */
6355 if (b->ignore_count)
6356 ui_out_text (uiout, "additional ");
6357 else
6358 ui_out_text (uiout, "next ");
6359 ui_out_field_int (uiout, "enable", b->enable_count);
6360 ui_out_text (uiout, " hits\n");
6361 }
6362
6363 if (!part_of_multiple && is_tracepoint (b))
6364 {
6365 struct tracepoint *tp = (struct tracepoint *) b;
6366
6367 if (tp->traceframe_usage)
6368 {
6369 ui_out_text (uiout, "\ttrace buffer usage ");
6370 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6371 ui_out_text (uiout, " bytes\n");
6372 }
6373 }
6374
6375 l = b->commands ? b->commands->commands : NULL;
6376 if (!part_of_multiple && l)
6377 {
6378 struct cleanup *script_chain;
6379
6380 annotate_field (9);
6381 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6382 print_command_lines (uiout, l, 4);
6383 do_cleanups (script_chain);
6384 }
6385
6386 if (is_tracepoint (b))
6387 {
6388 struct tracepoint *t = (struct tracepoint *) b;
6389
6390 if (!part_of_multiple && t->pass_count)
6391 {
6392 annotate_field (10);
6393 ui_out_text (uiout, "\tpass count ");
6394 ui_out_field_int (uiout, "pass", t->pass_count);
6395 ui_out_text (uiout, " \n");
6396 }
6397
6398 /* Don't display it when tracepoint or tracepoint location is
6399 pending. */
6400 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6401 {
6402 annotate_field (11);
6403
6404 if (ui_out_is_mi_like_p (uiout))
6405 ui_out_field_string (uiout, "installed",
6406 loc->inserted ? "y" : "n");
6407 else
6408 {
6409 if (loc->inserted)
6410 ui_out_text (uiout, "\t");
6411 else
6412 ui_out_text (uiout, "\tnot ");
6413 ui_out_text (uiout, "installed on target\n");
6414 }
6415 }
6416 }
6417
6418 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6419 {
6420 if (is_watchpoint (b))
6421 {
6422 struct watchpoint *w = (struct watchpoint *) b;
6423
6424 ui_out_field_string (uiout, "original-location", w->exp_string);
6425 }
6426 else if (b->addr_string)
6427 ui_out_field_string (uiout, "original-location", b->addr_string);
6428 }
6429 }
6430
6431 static void
6432 print_one_breakpoint (struct breakpoint *b,
6433 struct bp_location **last_loc,
6434 int allflag)
6435 {
6436 struct cleanup *bkpt_chain;
6437 struct ui_out *uiout = current_uiout;
6438
6439 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6440
6441 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6442 do_cleanups (bkpt_chain);
6443
6444 /* If this breakpoint has custom print function,
6445 it's already printed. Otherwise, print individual
6446 locations, if any. */
6447 if (b->ops == NULL || b->ops->print_one == NULL)
6448 {
6449 /* If breakpoint has a single location that is disabled, we
6450 print it as if it had several locations, since otherwise it's
6451 hard to represent "breakpoint enabled, location disabled"
6452 situation.
6453
6454 Note that while hardware watchpoints have several locations
6455 internally, that's not a property exposed to user. */
6456 if (b->loc
6457 && !is_hardware_watchpoint (b)
6458 && (b->loc->next || !b->loc->enabled))
6459 {
6460 struct bp_location *loc;
6461 int n = 1;
6462
6463 for (loc = b->loc; loc; loc = loc->next, ++n)
6464 {
6465 struct cleanup *inner2 =
6466 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6467 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6468 do_cleanups (inner2);
6469 }
6470 }
6471 }
6472 }
6473
6474 static int
6475 breakpoint_address_bits (struct breakpoint *b)
6476 {
6477 int print_address_bits = 0;
6478 struct bp_location *loc;
6479
6480 for (loc = b->loc; loc; loc = loc->next)
6481 {
6482 int addr_bit;
6483
6484 /* Software watchpoints that aren't watching memory don't have
6485 an address to print. */
6486 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6487 continue;
6488
6489 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6490 if (addr_bit > print_address_bits)
6491 print_address_bits = addr_bit;
6492 }
6493
6494 return print_address_bits;
6495 }
6496
6497 struct captured_breakpoint_query_args
6498 {
6499 int bnum;
6500 };
6501
6502 static int
6503 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6504 {
6505 struct captured_breakpoint_query_args *args = data;
6506 struct breakpoint *b;
6507 struct bp_location *dummy_loc = NULL;
6508
6509 ALL_BREAKPOINTS (b)
6510 {
6511 if (args->bnum == b->number)
6512 {
6513 print_one_breakpoint (b, &dummy_loc, 0);
6514 return GDB_RC_OK;
6515 }
6516 }
6517 return GDB_RC_NONE;
6518 }
6519
6520 enum gdb_rc
6521 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6522 char **error_message)
6523 {
6524 struct captured_breakpoint_query_args args;
6525
6526 args.bnum = bnum;
6527 /* For the moment we don't trust print_one_breakpoint() to not throw
6528 an error. */
6529 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6530 error_message, RETURN_MASK_ALL) < 0)
6531 return GDB_RC_FAIL;
6532 else
6533 return GDB_RC_OK;
6534 }
6535
6536 /* Return true if this breakpoint was set by the user, false if it is
6537 internal or momentary. */
6538
6539 int
6540 user_breakpoint_p (struct breakpoint *b)
6541 {
6542 return b->number > 0;
6543 }
6544
6545 /* Print information on user settable breakpoint (watchpoint, etc)
6546 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6547 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6548 FILTER is non-NULL, call it on each breakpoint and only include the
6549 ones for which it returns non-zero. Return the total number of
6550 breakpoints listed. */
6551
6552 static int
6553 breakpoint_1 (char *args, int allflag,
6554 int (*filter) (const struct breakpoint *))
6555 {
6556 struct breakpoint *b;
6557 struct bp_location *last_loc = NULL;
6558 int nr_printable_breakpoints;
6559 struct cleanup *bkpttbl_chain;
6560 struct value_print_options opts;
6561 int print_address_bits = 0;
6562 int print_type_col_width = 14;
6563 struct ui_out *uiout = current_uiout;
6564
6565 get_user_print_options (&opts);
6566
6567 /* Compute the number of rows in the table, as well as the size
6568 required for address fields. */
6569 nr_printable_breakpoints = 0;
6570 ALL_BREAKPOINTS (b)
6571 {
6572 /* If we have a filter, only list the breakpoints it accepts. */
6573 if (filter && !filter (b))
6574 continue;
6575
6576 /* If we have an "args" string, it is a list of breakpoints to
6577 accept. Skip the others. */
6578 if (args != NULL && *args != '\0')
6579 {
6580 if (allflag && parse_and_eval_long (args) != b->number)
6581 continue;
6582 if (!allflag && !number_is_in_list (args, b->number))
6583 continue;
6584 }
6585
6586 if (allflag || user_breakpoint_p (b))
6587 {
6588 int addr_bit, type_len;
6589
6590 addr_bit = breakpoint_address_bits (b);
6591 if (addr_bit > print_address_bits)
6592 print_address_bits = addr_bit;
6593
6594 type_len = strlen (bptype_string (b->type));
6595 if (type_len > print_type_col_width)
6596 print_type_col_width = type_len;
6597
6598 nr_printable_breakpoints++;
6599 }
6600 }
6601
6602 if (opts.addressprint)
6603 bkpttbl_chain
6604 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6605 nr_printable_breakpoints,
6606 "BreakpointTable");
6607 else
6608 bkpttbl_chain
6609 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6610 nr_printable_breakpoints,
6611 "BreakpointTable");
6612
6613 if (nr_printable_breakpoints > 0)
6614 annotate_breakpoints_headers ();
6615 if (nr_printable_breakpoints > 0)
6616 annotate_field (0);
6617 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6618 if (nr_printable_breakpoints > 0)
6619 annotate_field (1);
6620 ui_out_table_header (uiout, print_type_col_width, ui_left,
6621 "type", "Type"); /* 2 */
6622 if (nr_printable_breakpoints > 0)
6623 annotate_field (2);
6624 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6625 if (nr_printable_breakpoints > 0)
6626 annotate_field (3);
6627 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6628 if (opts.addressprint)
6629 {
6630 if (nr_printable_breakpoints > 0)
6631 annotate_field (4);
6632 if (print_address_bits <= 32)
6633 ui_out_table_header (uiout, 10, ui_left,
6634 "addr", "Address"); /* 5 */
6635 else
6636 ui_out_table_header (uiout, 18, ui_left,
6637 "addr", "Address"); /* 5 */
6638 }
6639 if (nr_printable_breakpoints > 0)
6640 annotate_field (5);
6641 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6642 ui_out_table_body (uiout);
6643 if (nr_printable_breakpoints > 0)
6644 annotate_breakpoints_table ();
6645
6646 ALL_BREAKPOINTS (b)
6647 {
6648 QUIT;
6649 /* If we have a filter, only list the breakpoints it accepts. */
6650 if (filter && !filter (b))
6651 continue;
6652
6653 /* If we have an "args" string, it is a list of breakpoints to
6654 accept. Skip the others. */
6655
6656 if (args != NULL && *args != '\0')
6657 {
6658 if (allflag) /* maintenance info breakpoint */
6659 {
6660 if (parse_and_eval_long (args) != b->number)
6661 continue;
6662 }
6663 else /* all others */
6664 {
6665 if (!number_is_in_list (args, b->number))
6666 continue;
6667 }
6668 }
6669 /* We only print out user settable breakpoints unless the
6670 allflag is set. */
6671 if (allflag || user_breakpoint_p (b))
6672 print_one_breakpoint (b, &last_loc, allflag);
6673 }
6674
6675 do_cleanups (bkpttbl_chain);
6676
6677 if (nr_printable_breakpoints == 0)
6678 {
6679 /* If there's a filter, let the caller decide how to report
6680 empty list. */
6681 if (!filter)
6682 {
6683 if (args == NULL || *args == '\0')
6684 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6685 else
6686 ui_out_message (uiout, 0,
6687 "No breakpoint or watchpoint matching '%s'.\n",
6688 args);
6689 }
6690 }
6691 else
6692 {
6693 if (last_loc && !server_command)
6694 set_next_address (last_loc->gdbarch, last_loc->address);
6695 }
6696
6697 /* FIXME? Should this be moved up so that it is only called when
6698 there have been breakpoints? */
6699 annotate_breakpoints_table_end ();
6700
6701 return nr_printable_breakpoints;
6702 }
6703
6704 /* Display the value of default-collect in a way that is generally
6705 compatible with the breakpoint list. */
6706
6707 static void
6708 default_collect_info (void)
6709 {
6710 struct ui_out *uiout = current_uiout;
6711
6712 /* If it has no value (which is frequently the case), say nothing; a
6713 message like "No default-collect." gets in user's face when it's
6714 not wanted. */
6715 if (!*default_collect)
6716 return;
6717
6718 /* The following phrase lines up nicely with per-tracepoint collect
6719 actions. */
6720 ui_out_text (uiout, "default collect ");
6721 ui_out_field_string (uiout, "default-collect", default_collect);
6722 ui_out_text (uiout, " \n");
6723 }
6724
6725 static void
6726 breakpoints_info (char *args, int from_tty)
6727 {
6728 breakpoint_1 (args, 0, NULL);
6729
6730 default_collect_info ();
6731 }
6732
6733 static void
6734 watchpoints_info (char *args, int from_tty)
6735 {
6736 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6737 struct ui_out *uiout = current_uiout;
6738
6739 if (num_printed == 0)
6740 {
6741 if (args == NULL || *args == '\0')
6742 ui_out_message (uiout, 0, "No watchpoints.\n");
6743 else
6744 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6745 }
6746 }
6747
6748 static void
6749 maintenance_info_breakpoints (char *args, int from_tty)
6750 {
6751 breakpoint_1 (args, 1, NULL);
6752
6753 default_collect_info ();
6754 }
6755
6756 static int
6757 breakpoint_has_pc (struct breakpoint *b,
6758 struct program_space *pspace,
6759 CORE_ADDR pc, struct obj_section *section)
6760 {
6761 struct bp_location *bl = b->loc;
6762
6763 for (; bl; bl = bl->next)
6764 {
6765 if (bl->pspace == pspace
6766 && bl->address == pc
6767 && (!overlay_debugging || bl->section == section))
6768 return 1;
6769 }
6770 return 0;
6771 }
6772
6773 /* Print a message describing any user-breakpoints set at PC. This
6774 concerns with logical breakpoints, so we match program spaces, not
6775 address spaces. */
6776
6777 static void
6778 describe_other_breakpoints (struct gdbarch *gdbarch,
6779 struct program_space *pspace, CORE_ADDR pc,
6780 struct obj_section *section, int thread)
6781 {
6782 int others = 0;
6783 struct breakpoint *b;
6784
6785 ALL_BREAKPOINTS (b)
6786 others += (user_breakpoint_p (b)
6787 && breakpoint_has_pc (b, pspace, pc, section));
6788 if (others > 0)
6789 {
6790 if (others == 1)
6791 printf_filtered (_("Note: breakpoint "));
6792 else /* if (others == ???) */
6793 printf_filtered (_("Note: breakpoints "));
6794 ALL_BREAKPOINTS (b)
6795 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6796 {
6797 others--;
6798 printf_filtered ("%d", b->number);
6799 if (b->thread == -1 && thread != -1)
6800 printf_filtered (" (all threads)");
6801 else if (b->thread != -1)
6802 printf_filtered (" (thread %d)", b->thread);
6803 printf_filtered ("%s%s ",
6804 ((b->enable_state == bp_disabled
6805 || b->enable_state == bp_call_disabled)
6806 ? " (disabled)"
6807 : b->enable_state == bp_permanent
6808 ? " (permanent)"
6809 : ""),
6810 (others > 1) ? ","
6811 : ((others == 1) ? " and" : ""));
6812 }
6813 printf_filtered (_("also set at pc "));
6814 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6815 printf_filtered (".\n");
6816 }
6817 }
6818 \f
6819
6820 /* Return true iff it is meaningful to use the address member of
6821 BPT. For some breakpoint types, the address member is irrelevant
6822 and it makes no sense to attempt to compare it to other addresses
6823 (or use it for any other purpose either).
6824
6825 More specifically, each of the following breakpoint types will
6826 always have a zero valued address and we don't want to mark
6827 breakpoints of any of these types to be a duplicate of an actual
6828 breakpoint at address zero:
6829
6830 bp_watchpoint
6831 bp_catchpoint
6832
6833 */
6834
6835 static int
6836 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6837 {
6838 enum bptype type = bpt->type;
6839
6840 return (type != bp_watchpoint && type != bp_catchpoint);
6841 }
6842
6843 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6844 true if LOC1 and LOC2 represent the same watchpoint location. */
6845
6846 static int
6847 watchpoint_locations_match (struct bp_location *loc1,
6848 struct bp_location *loc2)
6849 {
6850 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6851 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6852
6853 /* Both of them must exist. */
6854 gdb_assert (w1 != NULL);
6855 gdb_assert (w2 != NULL);
6856
6857 /* If the target can evaluate the condition expression in hardware,
6858 then we we need to insert both watchpoints even if they are at
6859 the same place. Otherwise the watchpoint will only trigger when
6860 the condition of whichever watchpoint was inserted evaluates to
6861 true, not giving a chance for GDB to check the condition of the
6862 other watchpoint. */
6863 if ((w1->cond_exp
6864 && target_can_accel_watchpoint_condition (loc1->address,
6865 loc1->length,
6866 loc1->watchpoint_type,
6867 w1->cond_exp))
6868 || (w2->cond_exp
6869 && target_can_accel_watchpoint_condition (loc2->address,
6870 loc2->length,
6871 loc2->watchpoint_type,
6872 w2->cond_exp)))
6873 return 0;
6874
6875 /* Note that this checks the owner's type, not the location's. In
6876 case the target does not support read watchpoints, but does
6877 support access watchpoints, we'll have bp_read_watchpoint
6878 watchpoints with hw_access locations. Those should be considered
6879 duplicates of hw_read locations. The hw_read locations will
6880 become hw_access locations later. */
6881 return (loc1->owner->type == loc2->owner->type
6882 && loc1->pspace->aspace == loc2->pspace->aspace
6883 && loc1->address == loc2->address
6884 && loc1->length == loc2->length);
6885 }
6886
6887 /* See breakpoint.h. */
6888
6889 int
6890 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6891 struct address_space *aspace2, CORE_ADDR addr2)
6892 {
6893 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6894 || aspace1 == aspace2)
6895 && addr1 == addr2);
6896 }
6897
6898 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6899 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6900 matches ASPACE2. On targets that have global breakpoints, the address
6901 space doesn't really matter. */
6902
6903 static int
6904 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6905 int len1, struct address_space *aspace2,
6906 CORE_ADDR addr2)
6907 {
6908 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6909 || aspace1 == aspace2)
6910 && addr2 >= addr1 && addr2 < addr1 + len1);
6911 }
6912
6913 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6914 a ranged breakpoint. In most targets, a match happens only if ASPACE
6915 matches the breakpoint's address space. On targets that have global
6916 breakpoints, the address space doesn't really matter. */
6917
6918 static int
6919 breakpoint_location_address_match (struct bp_location *bl,
6920 struct address_space *aspace,
6921 CORE_ADDR addr)
6922 {
6923 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6924 aspace, addr)
6925 || (bl->length
6926 && breakpoint_address_match_range (bl->pspace->aspace,
6927 bl->address, bl->length,
6928 aspace, addr)));
6929 }
6930
6931 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6932 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6933 true, otherwise returns false. */
6934
6935 static int
6936 tracepoint_locations_match (struct bp_location *loc1,
6937 struct bp_location *loc2)
6938 {
6939 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6940 /* Since tracepoint locations are never duplicated with others', tracepoint
6941 locations at the same address of different tracepoints are regarded as
6942 different locations. */
6943 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6944 else
6945 return 0;
6946 }
6947
6948 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6949 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6950 represent the same location. */
6951
6952 static int
6953 breakpoint_locations_match (struct bp_location *loc1,
6954 struct bp_location *loc2)
6955 {
6956 int hw_point1, hw_point2;
6957
6958 /* Both of them must not be in moribund_locations. */
6959 gdb_assert (loc1->owner != NULL);
6960 gdb_assert (loc2->owner != NULL);
6961
6962 hw_point1 = is_hardware_watchpoint (loc1->owner);
6963 hw_point2 = is_hardware_watchpoint (loc2->owner);
6964
6965 if (hw_point1 != hw_point2)
6966 return 0;
6967 else if (hw_point1)
6968 return watchpoint_locations_match (loc1, loc2);
6969 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6970 return tracepoint_locations_match (loc1, loc2);
6971 else
6972 /* We compare bp_location.length in order to cover ranged breakpoints. */
6973 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6974 loc2->pspace->aspace, loc2->address)
6975 && loc1->length == loc2->length);
6976 }
6977
6978 static void
6979 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6980 int bnum, int have_bnum)
6981 {
6982 /* The longest string possibly returned by hex_string_custom
6983 is 50 chars. These must be at least that big for safety. */
6984 char astr1[64];
6985 char astr2[64];
6986
6987 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6988 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6989 if (have_bnum)
6990 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6991 bnum, astr1, astr2);
6992 else
6993 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6994 }
6995
6996 /* Adjust a breakpoint's address to account for architectural
6997 constraints on breakpoint placement. Return the adjusted address.
6998 Note: Very few targets require this kind of adjustment. For most
6999 targets, this function is simply the identity function. */
7000
7001 static CORE_ADDR
7002 adjust_breakpoint_address (struct gdbarch *gdbarch,
7003 CORE_ADDR bpaddr, enum bptype bptype)
7004 {
7005 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7006 {
7007 /* Very few targets need any kind of breakpoint adjustment. */
7008 return bpaddr;
7009 }
7010 else if (bptype == bp_watchpoint
7011 || bptype == bp_hardware_watchpoint
7012 || bptype == bp_read_watchpoint
7013 || bptype == bp_access_watchpoint
7014 || bptype == bp_catchpoint)
7015 {
7016 /* Watchpoints and the various bp_catch_* eventpoints should not
7017 have their addresses modified. */
7018 return bpaddr;
7019 }
7020 else
7021 {
7022 CORE_ADDR adjusted_bpaddr;
7023
7024 /* Some targets have architectural constraints on the placement
7025 of breakpoint instructions. Obtain the adjusted address. */
7026 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7027
7028 /* An adjusted breakpoint address can significantly alter
7029 a user's expectations. Print a warning if an adjustment
7030 is required. */
7031 if (adjusted_bpaddr != bpaddr)
7032 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7033
7034 return adjusted_bpaddr;
7035 }
7036 }
7037
7038 void
7039 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7040 struct breakpoint *owner)
7041 {
7042 memset (loc, 0, sizeof (*loc));
7043
7044 gdb_assert (ops != NULL);
7045
7046 loc->ops = ops;
7047 loc->owner = owner;
7048 loc->cond = NULL;
7049 loc->cond_bytecode = NULL;
7050 loc->shlib_disabled = 0;
7051 loc->enabled = 1;
7052
7053 switch (owner->type)
7054 {
7055 case bp_breakpoint:
7056 case bp_until:
7057 case bp_finish:
7058 case bp_longjmp:
7059 case bp_longjmp_resume:
7060 case bp_longjmp_call_dummy:
7061 case bp_exception:
7062 case bp_exception_resume:
7063 case bp_step_resume:
7064 case bp_hp_step_resume:
7065 case bp_watchpoint_scope:
7066 case bp_call_dummy:
7067 case bp_std_terminate:
7068 case bp_shlib_event:
7069 case bp_thread_event:
7070 case bp_overlay_event:
7071 case bp_jit_event:
7072 case bp_longjmp_master:
7073 case bp_std_terminate_master:
7074 case bp_exception_master:
7075 case bp_gnu_ifunc_resolver:
7076 case bp_gnu_ifunc_resolver_return:
7077 case bp_dprintf:
7078 loc->loc_type = bp_loc_software_breakpoint;
7079 mark_breakpoint_location_modified (loc);
7080 break;
7081 case bp_hardware_breakpoint:
7082 loc->loc_type = bp_loc_hardware_breakpoint;
7083 mark_breakpoint_location_modified (loc);
7084 break;
7085 case bp_hardware_watchpoint:
7086 case bp_read_watchpoint:
7087 case bp_access_watchpoint:
7088 loc->loc_type = bp_loc_hardware_watchpoint;
7089 break;
7090 case bp_watchpoint:
7091 case bp_catchpoint:
7092 case bp_tracepoint:
7093 case bp_fast_tracepoint:
7094 case bp_static_tracepoint:
7095 loc->loc_type = bp_loc_other;
7096 break;
7097 default:
7098 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7099 }
7100
7101 loc->refc = 1;
7102 }
7103
7104 /* Allocate a struct bp_location. */
7105
7106 static struct bp_location *
7107 allocate_bp_location (struct breakpoint *bpt)
7108 {
7109 return bpt->ops->allocate_location (bpt);
7110 }
7111
7112 static void
7113 free_bp_location (struct bp_location *loc)
7114 {
7115 loc->ops->dtor (loc);
7116 xfree (loc);
7117 }
7118
7119 /* Increment reference count. */
7120
7121 static void
7122 incref_bp_location (struct bp_location *bl)
7123 {
7124 ++bl->refc;
7125 }
7126
7127 /* Decrement reference count. If the reference count reaches 0,
7128 destroy the bp_location. Sets *BLP to NULL. */
7129
7130 static void
7131 decref_bp_location (struct bp_location **blp)
7132 {
7133 gdb_assert ((*blp)->refc > 0);
7134
7135 if (--(*blp)->refc == 0)
7136 free_bp_location (*blp);
7137 *blp = NULL;
7138 }
7139
7140 /* Add breakpoint B at the end of the global breakpoint chain. */
7141
7142 static void
7143 add_to_breakpoint_chain (struct breakpoint *b)
7144 {
7145 struct breakpoint *b1;
7146
7147 /* Add this breakpoint to the end of the chain so that a list of
7148 breakpoints will come out in order of increasing numbers. */
7149
7150 b1 = breakpoint_chain;
7151 if (b1 == 0)
7152 breakpoint_chain = b;
7153 else
7154 {
7155 while (b1->next)
7156 b1 = b1->next;
7157 b1->next = b;
7158 }
7159 }
7160
7161 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7162
7163 static void
7164 init_raw_breakpoint_without_location (struct breakpoint *b,
7165 struct gdbarch *gdbarch,
7166 enum bptype bptype,
7167 const struct breakpoint_ops *ops)
7168 {
7169 memset (b, 0, sizeof (*b));
7170
7171 gdb_assert (ops != NULL);
7172
7173 b->ops = ops;
7174 b->type = bptype;
7175 b->gdbarch = gdbarch;
7176 b->language = current_language->la_language;
7177 b->input_radix = input_radix;
7178 b->thread = -1;
7179 b->enable_state = bp_enabled;
7180 b->next = 0;
7181 b->silent = 0;
7182 b->ignore_count = 0;
7183 b->commands = NULL;
7184 b->frame_id = null_frame_id;
7185 b->condition_not_parsed = 0;
7186 b->py_bp_object = NULL;
7187 b->related_breakpoint = b;
7188 }
7189
7190 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7191 that has type BPTYPE and has no locations as yet. */
7192
7193 static struct breakpoint *
7194 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7195 enum bptype bptype,
7196 const struct breakpoint_ops *ops)
7197 {
7198 struct breakpoint *b = XNEW (struct breakpoint);
7199
7200 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7201 add_to_breakpoint_chain (b);
7202 return b;
7203 }
7204
7205 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7206 resolutions should be made as the user specified the location explicitly
7207 enough. */
7208
7209 static void
7210 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7211 {
7212 gdb_assert (loc->owner != NULL);
7213
7214 if (loc->owner->type == bp_breakpoint
7215 || loc->owner->type == bp_hardware_breakpoint
7216 || is_tracepoint (loc->owner))
7217 {
7218 int is_gnu_ifunc;
7219 const char *function_name;
7220 CORE_ADDR func_addr;
7221
7222 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7223 &func_addr, NULL, &is_gnu_ifunc);
7224
7225 if (is_gnu_ifunc && !explicit_loc)
7226 {
7227 struct breakpoint *b = loc->owner;
7228
7229 gdb_assert (loc->pspace == current_program_space);
7230 if (gnu_ifunc_resolve_name (function_name,
7231 &loc->requested_address))
7232 {
7233 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7234 loc->address = adjust_breakpoint_address (loc->gdbarch,
7235 loc->requested_address,
7236 b->type);
7237 }
7238 else if (b->type == bp_breakpoint && b->loc == loc
7239 && loc->next == NULL && b->related_breakpoint == b)
7240 {
7241 /* Create only the whole new breakpoint of this type but do not
7242 mess more complicated breakpoints with multiple locations. */
7243 b->type = bp_gnu_ifunc_resolver;
7244 /* Remember the resolver's address for use by the return
7245 breakpoint. */
7246 loc->related_address = func_addr;
7247 }
7248 }
7249
7250 if (function_name)
7251 loc->function_name = xstrdup (function_name);
7252 }
7253 }
7254
7255 /* Attempt to determine architecture of location identified by SAL. */
7256 struct gdbarch *
7257 get_sal_arch (struct symtab_and_line sal)
7258 {
7259 if (sal.section)
7260 return get_objfile_arch (sal.section->objfile);
7261 if (sal.symtab)
7262 return get_objfile_arch (sal.symtab->objfile);
7263
7264 return NULL;
7265 }
7266
7267 /* Low level routine for partially initializing a breakpoint of type
7268 BPTYPE. The newly created breakpoint's address, section, source
7269 file name, and line number are provided by SAL.
7270
7271 It is expected that the caller will complete the initialization of
7272 the newly created breakpoint struct as well as output any status
7273 information regarding the creation of a new breakpoint. */
7274
7275 static void
7276 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7277 struct symtab_and_line sal, enum bptype bptype,
7278 const struct breakpoint_ops *ops)
7279 {
7280 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7281
7282 add_location_to_breakpoint (b, &sal);
7283
7284 if (bptype != bp_catchpoint)
7285 gdb_assert (sal.pspace != NULL);
7286
7287 /* Store the program space that was used to set the breakpoint,
7288 except for ordinary breakpoints, which are independent of the
7289 program space. */
7290 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7291 b->pspace = sal.pspace;
7292 }
7293
7294 /* set_raw_breakpoint is a low level routine for allocating and
7295 partially initializing a breakpoint of type BPTYPE. The newly
7296 created breakpoint's address, section, source file name, and line
7297 number are provided by SAL. The newly created and partially
7298 initialized breakpoint is added to the breakpoint chain and
7299 is also returned as the value of this function.
7300
7301 It is expected that the caller will complete the initialization of
7302 the newly created breakpoint struct as well as output any status
7303 information regarding the creation of a new breakpoint. In
7304 particular, set_raw_breakpoint does NOT set the breakpoint
7305 number! Care should be taken to not allow an error to occur
7306 prior to completing the initialization of the breakpoint. If this
7307 should happen, a bogus breakpoint will be left on the chain. */
7308
7309 struct breakpoint *
7310 set_raw_breakpoint (struct gdbarch *gdbarch,
7311 struct symtab_and_line sal, enum bptype bptype,
7312 const struct breakpoint_ops *ops)
7313 {
7314 struct breakpoint *b = XNEW (struct breakpoint);
7315
7316 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7317 add_to_breakpoint_chain (b);
7318 return b;
7319 }
7320
7321
7322 /* Note that the breakpoint object B describes a permanent breakpoint
7323 instruction, hard-wired into the inferior's code. */
7324 void
7325 make_breakpoint_permanent (struct breakpoint *b)
7326 {
7327 struct bp_location *bl;
7328
7329 b->enable_state = bp_permanent;
7330
7331 /* By definition, permanent breakpoints are already present in the
7332 code. Mark all locations as inserted. For now,
7333 make_breakpoint_permanent is called in just one place, so it's
7334 hard to say if it's reasonable to have permanent breakpoint with
7335 multiple locations or not, but it's easy to implement. */
7336 for (bl = b->loc; bl; bl = bl->next)
7337 bl->inserted = 1;
7338 }
7339
7340 /* Call this routine when stepping and nexting to enable a breakpoint
7341 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7342 initiated the operation. */
7343
7344 void
7345 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7346 {
7347 struct breakpoint *b, *b_tmp;
7348 int thread = tp->num;
7349
7350 /* To avoid having to rescan all objfile symbols at every step,
7351 we maintain a list of continually-inserted but always disabled
7352 longjmp "master" breakpoints. Here, we simply create momentary
7353 clones of those and enable them for the requested thread. */
7354 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7355 if (b->pspace == current_program_space
7356 && (b->type == bp_longjmp_master
7357 || b->type == bp_exception_master))
7358 {
7359 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7360 struct breakpoint *clone;
7361
7362 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7363 after their removal. */
7364 clone = momentary_breakpoint_from_master (b, type,
7365 &longjmp_breakpoint_ops);
7366 clone->thread = thread;
7367 }
7368
7369 tp->initiating_frame = frame;
7370 }
7371
7372 /* Delete all longjmp breakpoints from THREAD. */
7373 void
7374 delete_longjmp_breakpoint (int thread)
7375 {
7376 struct breakpoint *b, *b_tmp;
7377
7378 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7379 if (b->type == bp_longjmp || b->type == bp_exception)
7380 {
7381 if (b->thread == thread)
7382 delete_breakpoint (b);
7383 }
7384 }
7385
7386 void
7387 delete_longjmp_breakpoint_at_next_stop (int thread)
7388 {
7389 struct breakpoint *b, *b_tmp;
7390
7391 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7392 if (b->type == bp_longjmp || b->type == bp_exception)
7393 {
7394 if (b->thread == thread)
7395 b->disposition = disp_del_at_next_stop;
7396 }
7397 }
7398
7399 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7400 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7401 pointer to any of them. Return NULL if this system cannot place longjmp
7402 breakpoints. */
7403
7404 struct breakpoint *
7405 set_longjmp_breakpoint_for_call_dummy (void)
7406 {
7407 struct breakpoint *b, *retval = NULL;
7408
7409 ALL_BREAKPOINTS (b)
7410 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7411 {
7412 struct breakpoint *new_b;
7413
7414 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7415 &momentary_breakpoint_ops);
7416 new_b->thread = pid_to_thread_id (inferior_ptid);
7417
7418 /* Link NEW_B into the chain of RETVAL breakpoints. */
7419
7420 gdb_assert (new_b->related_breakpoint == new_b);
7421 if (retval == NULL)
7422 retval = new_b;
7423 new_b->related_breakpoint = retval;
7424 while (retval->related_breakpoint != new_b->related_breakpoint)
7425 retval = retval->related_breakpoint;
7426 retval->related_breakpoint = new_b;
7427 }
7428
7429 return retval;
7430 }
7431
7432 /* Verify all existing dummy frames and their associated breakpoints for
7433 THREAD. Remove those which can no longer be found in the current frame
7434 stack.
7435
7436 You should call this function only at places where it is safe to currently
7437 unwind the whole stack. Failed stack unwind would discard live dummy
7438 frames. */
7439
7440 void
7441 check_longjmp_breakpoint_for_call_dummy (int thread)
7442 {
7443 struct breakpoint *b, *b_tmp;
7444
7445 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7446 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7447 {
7448 struct breakpoint *dummy_b = b->related_breakpoint;
7449
7450 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7451 dummy_b = dummy_b->related_breakpoint;
7452 if (dummy_b->type != bp_call_dummy
7453 || frame_find_by_id (dummy_b->frame_id) != NULL)
7454 continue;
7455
7456 dummy_frame_discard (dummy_b->frame_id);
7457
7458 while (b->related_breakpoint != b)
7459 {
7460 if (b_tmp == b->related_breakpoint)
7461 b_tmp = b->related_breakpoint->next;
7462 delete_breakpoint (b->related_breakpoint);
7463 }
7464 delete_breakpoint (b);
7465 }
7466 }
7467
7468 void
7469 enable_overlay_breakpoints (void)
7470 {
7471 struct breakpoint *b;
7472
7473 ALL_BREAKPOINTS (b)
7474 if (b->type == bp_overlay_event)
7475 {
7476 b->enable_state = bp_enabled;
7477 update_global_location_list (1);
7478 overlay_events_enabled = 1;
7479 }
7480 }
7481
7482 void
7483 disable_overlay_breakpoints (void)
7484 {
7485 struct breakpoint *b;
7486
7487 ALL_BREAKPOINTS (b)
7488 if (b->type == bp_overlay_event)
7489 {
7490 b->enable_state = bp_disabled;
7491 update_global_location_list (0);
7492 overlay_events_enabled = 0;
7493 }
7494 }
7495
7496 /* Set an active std::terminate breakpoint for each std::terminate
7497 master breakpoint. */
7498 void
7499 set_std_terminate_breakpoint (void)
7500 {
7501 struct breakpoint *b, *b_tmp;
7502
7503 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7504 if (b->pspace == current_program_space
7505 && b->type == bp_std_terminate_master)
7506 {
7507 momentary_breakpoint_from_master (b, bp_std_terminate,
7508 &momentary_breakpoint_ops);
7509 }
7510 }
7511
7512 /* Delete all the std::terminate breakpoints. */
7513 void
7514 delete_std_terminate_breakpoint (void)
7515 {
7516 struct breakpoint *b, *b_tmp;
7517
7518 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7519 if (b->type == bp_std_terminate)
7520 delete_breakpoint (b);
7521 }
7522
7523 struct breakpoint *
7524 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7525 {
7526 struct breakpoint *b;
7527
7528 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7529 &internal_breakpoint_ops);
7530
7531 b->enable_state = bp_enabled;
7532 /* addr_string has to be used or breakpoint_re_set will delete me. */
7533 b->addr_string
7534 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7535
7536 update_global_location_list_nothrow (1);
7537
7538 return b;
7539 }
7540
7541 void
7542 remove_thread_event_breakpoints (void)
7543 {
7544 struct breakpoint *b, *b_tmp;
7545
7546 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7547 if (b->type == bp_thread_event
7548 && b->loc->pspace == current_program_space)
7549 delete_breakpoint (b);
7550 }
7551
7552 struct lang_and_radix
7553 {
7554 enum language lang;
7555 int radix;
7556 };
7557
7558 /* Create a breakpoint for JIT code registration and unregistration. */
7559
7560 struct breakpoint *
7561 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7562 {
7563 struct breakpoint *b;
7564
7565 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7566 &internal_breakpoint_ops);
7567 update_global_location_list_nothrow (1);
7568 return b;
7569 }
7570
7571 /* Remove JIT code registration and unregistration breakpoint(s). */
7572
7573 void
7574 remove_jit_event_breakpoints (void)
7575 {
7576 struct breakpoint *b, *b_tmp;
7577
7578 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7579 if (b->type == bp_jit_event
7580 && b->loc->pspace == current_program_space)
7581 delete_breakpoint (b);
7582 }
7583
7584 void
7585 remove_solib_event_breakpoints (void)
7586 {
7587 struct breakpoint *b, *b_tmp;
7588
7589 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7590 if (b->type == bp_shlib_event
7591 && b->loc->pspace == current_program_space)
7592 delete_breakpoint (b);
7593 }
7594
7595 struct breakpoint *
7596 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7597 {
7598 struct breakpoint *b;
7599
7600 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7601 &internal_breakpoint_ops);
7602 update_global_location_list_nothrow (1);
7603 return b;
7604 }
7605
7606 /* Disable any breakpoints that are on code in shared libraries. Only
7607 apply to enabled breakpoints, disabled ones can just stay disabled. */
7608
7609 void
7610 disable_breakpoints_in_shlibs (void)
7611 {
7612 struct bp_location *loc, **locp_tmp;
7613
7614 ALL_BP_LOCATIONS (loc, locp_tmp)
7615 {
7616 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7617 struct breakpoint *b = loc->owner;
7618
7619 /* We apply the check to all breakpoints, including disabled for
7620 those with loc->duplicate set. This is so that when breakpoint
7621 becomes enabled, or the duplicate is removed, gdb will try to
7622 insert all breakpoints. If we don't set shlib_disabled here,
7623 we'll try to insert those breakpoints and fail. */
7624 if (((b->type == bp_breakpoint)
7625 || (b->type == bp_jit_event)
7626 || (b->type == bp_hardware_breakpoint)
7627 || (is_tracepoint (b)))
7628 && loc->pspace == current_program_space
7629 && !loc->shlib_disabled
7630 && solib_name_from_address (loc->pspace, loc->address)
7631 )
7632 {
7633 loc->shlib_disabled = 1;
7634 }
7635 }
7636 }
7637
7638 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7639 notification of unloaded_shlib. Only apply to enabled breakpoints,
7640 disabled ones can just stay disabled. */
7641
7642 static void
7643 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7644 {
7645 struct bp_location *loc, **locp_tmp;
7646 int disabled_shlib_breaks = 0;
7647
7648 /* SunOS a.out shared libraries are always mapped, so do not
7649 disable breakpoints; they will only be reported as unloaded
7650 through clear_solib when GDB discards its shared library
7651 list. See clear_solib for more information. */
7652 if (exec_bfd != NULL
7653 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7654 return;
7655
7656 ALL_BP_LOCATIONS (loc, locp_tmp)
7657 {
7658 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7659 struct breakpoint *b = loc->owner;
7660
7661 if (solib->pspace == loc->pspace
7662 && !loc->shlib_disabled
7663 && (((b->type == bp_breakpoint
7664 || b->type == bp_jit_event
7665 || b->type == bp_hardware_breakpoint)
7666 && (loc->loc_type == bp_loc_hardware_breakpoint
7667 || loc->loc_type == bp_loc_software_breakpoint))
7668 || is_tracepoint (b))
7669 && solib_contains_address_p (solib, loc->address))
7670 {
7671 loc->shlib_disabled = 1;
7672 /* At this point, we cannot rely on remove_breakpoint
7673 succeeding so we must mark the breakpoint as not inserted
7674 to prevent future errors occurring in remove_breakpoints. */
7675 loc->inserted = 0;
7676
7677 /* This may cause duplicate notifications for the same breakpoint. */
7678 observer_notify_breakpoint_modified (b);
7679
7680 if (!disabled_shlib_breaks)
7681 {
7682 target_terminal_ours_for_output ();
7683 warning (_("Temporarily disabling breakpoints "
7684 "for unloaded shared library \"%s\""),
7685 solib->so_name);
7686 }
7687 disabled_shlib_breaks = 1;
7688 }
7689 }
7690 }
7691
7692 /* Disable any breakpoints and tracepoints in OBJFILE upon
7693 notification of free_objfile. Only apply to enabled breakpoints,
7694 disabled ones can just stay disabled. */
7695
7696 static void
7697 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7698 {
7699 struct breakpoint *b;
7700
7701 if (objfile == NULL)
7702 return;
7703
7704 /* OBJF_USERLOADED are dynamic modules manually managed by the user
7705 with add-symbol-file/remove-symbol-file. Similarly to how
7706 breakpoints in shared libraries are handled in response to
7707 "nosharedlibrary", mark breakpoints in OBJF_USERLOADED modules
7708 shlib_disabled so they end up uninserted on the next global
7709 location list update. Shared libraries not loaded by the user
7710 aren't handled here -- they're already handled in
7711 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7712 solib_unloaded observer. We skip objfiles that are not
7713 OBJF_USERLOADED (nor OBJF_SHARED) as those aren't considered
7714 dynamic objects (e.g. the main objfile). */
7715 if ((objfile->flags & OBJF_USERLOADED) == 0)
7716 return;
7717
7718 ALL_BREAKPOINTS (b)
7719 {
7720 struct bp_location *loc;
7721 int bp_modified = 0;
7722
7723 if (!is_breakpoint (b) && !is_tracepoint (b))
7724 continue;
7725
7726 for (loc = b->loc; loc != NULL; loc = loc->next)
7727 {
7728 CORE_ADDR loc_addr = loc->address;
7729
7730 if (loc->loc_type != bp_loc_hardware_breakpoint
7731 && loc->loc_type != bp_loc_software_breakpoint)
7732 continue;
7733
7734 if (loc->shlib_disabled != 0)
7735 continue;
7736
7737 if (objfile->pspace != loc->pspace)
7738 continue;
7739
7740 if (loc->loc_type != bp_loc_hardware_breakpoint
7741 && loc->loc_type != bp_loc_software_breakpoint)
7742 continue;
7743
7744 if (is_addr_in_objfile (loc_addr, objfile))
7745 {
7746 loc->shlib_disabled = 1;
7747 /* At this point, we don't know whether the object was
7748 unmapped from the inferior or not, so leave the
7749 inserted flag alone. We'll handle failure to
7750 uninsert quietly, in case the object was indeed
7751 unmapped. */
7752
7753 mark_breakpoint_location_modified (loc);
7754
7755 bp_modified = 1;
7756 }
7757 }
7758
7759 if (bp_modified)
7760 observer_notify_breakpoint_modified (b);
7761 }
7762 }
7763
7764 /* FORK & VFORK catchpoints. */
7765
7766 /* An instance of this type is used to represent a fork or vfork
7767 catchpoint. It includes a "struct breakpoint" as a kind of base
7768 class; users downcast to "struct breakpoint *" when needed. A
7769 breakpoint is really of this type iff its ops pointer points to
7770 CATCH_FORK_BREAKPOINT_OPS. */
7771
7772 struct fork_catchpoint
7773 {
7774 /* The base class. */
7775 struct breakpoint base;
7776
7777 /* Process id of a child process whose forking triggered this
7778 catchpoint. This field is only valid immediately after this
7779 catchpoint has triggered. */
7780 ptid_t forked_inferior_pid;
7781 };
7782
7783 /* Implement the "insert" breakpoint_ops method for fork
7784 catchpoints. */
7785
7786 static int
7787 insert_catch_fork (struct bp_location *bl)
7788 {
7789 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7790 }
7791
7792 /* Implement the "remove" breakpoint_ops method for fork
7793 catchpoints. */
7794
7795 static int
7796 remove_catch_fork (struct bp_location *bl)
7797 {
7798 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7799 }
7800
7801 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7802 catchpoints. */
7803
7804 static int
7805 breakpoint_hit_catch_fork (const struct bp_location *bl,
7806 struct address_space *aspace, CORE_ADDR bp_addr,
7807 const struct target_waitstatus *ws)
7808 {
7809 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7810
7811 if (ws->kind != TARGET_WAITKIND_FORKED)
7812 return 0;
7813
7814 c->forked_inferior_pid = ws->value.related_pid;
7815 return 1;
7816 }
7817
7818 /* Implement the "print_it" breakpoint_ops method for fork
7819 catchpoints. */
7820
7821 static enum print_stop_action
7822 print_it_catch_fork (bpstat bs)
7823 {
7824 struct ui_out *uiout = current_uiout;
7825 struct breakpoint *b = bs->breakpoint_at;
7826 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7827
7828 annotate_catchpoint (b->number);
7829 if (b->disposition == disp_del)
7830 ui_out_text (uiout, "\nTemporary catchpoint ");
7831 else
7832 ui_out_text (uiout, "\nCatchpoint ");
7833 if (ui_out_is_mi_like_p (uiout))
7834 {
7835 ui_out_field_string (uiout, "reason",
7836 async_reason_lookup (EXEC_ASYNC_FORK));
7837 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7838 }
7839 ui_out_field_int (uiout, "bkptno", b->number);
7840 ui_out_text (uiout, " (forked process ");
7841 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7842 ui_out_text (uiout, "), ");
7843 return PRINT_SRC_AND_LOC;
7844 }
7845
7846 /* Implement the "print_one" breakpoint_ops method for fork
7847 catchpoints. */
7848
7849 static void
7850 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7851 {
7852 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7853 struct value_print_options opts;
7854 struct ui_out *uiout = current_uiout;
7855
7856 get_user_print_options (&opts);
7857
7858 /* Field 4, the address, is omitted (which makes the columns not
7859 line up too nicely with the headers, but the effect is relatively
7860 readable). */
7861 if (opts.addressprint)
7862 ui_out_field_skip (uiout, "addr");
7863 annotate_field (5);
7864 ui_out_text (uiout, "fork");
7865 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7866 {
7867 ui_out_text (uiout, ", process ");
7868 ui_out_field_int (uiout, "what",
7869 ptid_get_pid (c->forked_inferior_pid));
7870 ui_out_spaces (uiout, 1);
7871 }
7872
7873 if (ui_out_is_mi_like_p (uiout))
7874 ui_out_field_string (uiout, "catch-type", "fork");
7875 }
7876
7877 /* Implement the "print_mention" breakpoint_ops method for fork
7878 catchpoints. */
7879
7880 static void
7881 print_mention_catch_fork (struct breakpoint *b)
7882 {
7883 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7884 }
7885
7886 /* Implement the "print_recreate" breakpoint_ops method for fork
7887 catchpoints. */
7888
7889 static void
7890 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7891 {
7892 fprintf_unfiltered (fp, "catch fork");
7893 print_recreate_thread (b, fp);
7894 }
7895
7896 /* The breakpoint_ops structure to be used in fork catchpoints. */
7897
7898 static struct breakpoint_ops catch_fork_breakpoint_ops;
7899
7900 /* Implement the "insert" breakpoint_ops method for vfork
7901 catchpoints. */
7902
7903 static int
7904 insert_catch_vfork (struct bp_location *bl)
7905 {
7906 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7907 }
7908
7909 /* Implement the "remove" breakpoint_ops method for vfork
7910 catchpoints. */
7911
7912 static int
7913 remove_catch_vfork (struct bp_location *bl)
7914 {
7915 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7916 }
7917
7918 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7919 catchpoints. */
7920
7921 static int
7922 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7923 struct address_space *aspace, CORE_ADDR bp_addr,
7924 const struct target_waitstatus *ws)
7925 {
7926 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7927
7928 if (ws->kind != TARGET_WAITKIND_VFORKED)
7929 return 0;
7930
7931 c->forked_inferior_pid = ws->value.related_pid;
7932 return 1;
7933 }
7934
7935 /* Implement the "print_it" breakpoint_ops method for vfork
7936 catchpoints. */
7937
7938 static enum print_stop_action
7939 print_it_catch_vfork (bpstat bs)
7940 {
7941 struct ui_out *uiout = current_uiout;
7942 struct breakpoint *b = bs->breakpoint_at;
7943 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7944
7945 annotate_catchpoint (b->number);
7946 if (b->disposition == disp_del)
7947 ui_out_text (uiout, "\nTemporary catchpoint ");
7948 else
7949 ui_out_text (uiout, "\nCatchpoint ");
7950 if (ui_out_is_mi_like_p (uiout))
7951 {
7952 ui_out_field_string (uiout, "reason",
7953 async_reason_lookup (EXEC_ASYNC_VFORK));
7954 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7955 }
7956 ui_out_field_int (uiout, "bkptno", b->number);
7957 ui_out_text (uiout, " (vforked process ");
7958 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7959 ui_out_text (uiout, "), ");
7960 return PRINT_SRC_AND_LOC;
7961 }
7962
7963 /* Implement the "print_one" breakpoint_ops method for vfork
7964 catchpoints. */
7965
7966 static void
7967 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7968 {
7969 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7970 struct value_print_options opts;
7971 struct ui_out *uiout = current_uiout;
7972
7973 get_user_print_options (&opts);
7974 /* Field 4, the address, is omitted (which makes the columns not
7975 line up too nicely with the headers, but the effect is relatively
7976 readable). */
7977 if (opts.addressprint)
7978 ui_out_field_skip (uiout, "addr");
7979 annotate_field (5);
7980 ui_out_text (uiout, "vfork");
7981 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7982 {
7983 ui_out_text (uiout, ", process ");
7984 ui_out_field_int (uiout, "what",
7985 ptid_get_pid (c->forked_inferior_pid));
7986 ui_out_spaces (uiout, 1);
7987 }
7988
7989 if (ui_out_is_mi_like_p (uiout))
7990 ui_out_field_string (uiout, "catch-type", "vfork");
7991 }
7992
7993 /* Implement the "print_mention" breakpoint_ops method for vfork
7994 catchpoints. */
7995
7996 static void
7997 print_mention_catch_vfork (struct breakpoint *b)
7998 {
7999 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8000 }
8001
8002 /* Implement the "print_recreate" breakpoint_ops method for vfork
8003 catchpoints. */
8004
8005 static void
8006 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8007 {
8008 fprintf_unfiltered (fp, "catch vfork");
8009 print_recreate_thread (b, fp);
8010 }
8011
8012 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8013
8014 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8015
8016 /* An instance of this type is used to represent an solib catchpoint.
8017 It includes a "struct breakpoint" as a kind of base class; users
8018 downcast to "struct breakpoint *" when needed. A breakpoint is
8019 really of this type iff its ops pointer points to
8020 CATCH_SOLIB_BREAKPOINT_OPS. */
8021
8022 struct solib_catchpoint
8023 {
8024 /* The base class. */
8025 struct breakpoint base;
8026
8027 /* True for "catch load", false for "catch unload". */
8028 unsigned char is_load;
8029
8030 /* Regular expression to match, if any. COMPILED is only valid when
8031 REGEX is non-NULL. */
8032 char *regex;
8033 regex_t compiled;
8034 };
8035
8036 static void
8037 dtor_catch_solib (struct breakpoint *b)
8038 {
8039 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8040
8041 if (self->regex)
8042 regfree (&self->compiled);
8043 xfree (self->regex);
8044
8045 base_breakpoint_ops.dtor (b);
8046 }
8047
8048 static int
8049 insert_catch_solib (struct bp_location *ignore)
8050 {
8051 return 0;
8052 }
8053
8054 static int
8055 remove_catch_solib (struct bp_location *ignore)
8056 {
8057 return 0;
8058 }
8059
8060 static int
8061 breakpoint_hit_catch_solib (const struct bp_location *bl,
8062 struct address_space *aspace,
8063 CORE_ADDR bp_addr,
8064 const struct target_waitstatus *ws)
8065 {
8066 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8067 struct breakpoint *other;
8068
8069 if (ws->kind == TARGET_WAITKIND_LOADED)
8070 return 1;
8071
8072 ALL_BREAKPOINTS (other)
8073 {
8074 struct bp_location *other_bl;
8075
8076 if (other == bl->owner)
8077 continue;
8078
8079 if (other->type != bp_shlib_event)
8080 continue;
8081
8082 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8083 continue;
8084
8085 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8086 {
8087 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8088 return 1;
8089 }
8090 }
8091
8092 return 0;
8093 }
8094
8095 static void
8096 check_status_catch_solib (struct bpstats *bs)
8097 {
8098 struct solib_catchpoint *self
8099 = (struct solib_catchpoint *) bs->breakpoint_at;
8100 int ix;
8101
8102 if (self->is_load)
8103 {
8104 struct so_list *iter;
8105
8106 for (ix = 0;
8107 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8108 ix, iter);
8109 ++ix)
8110 {
8111 if (!self->regex
8112 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8113 return;
8114 }
8115 }
8116 else
8117 {
8118 char *iter;
8119
8120 for (ix = 0;
8121 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8122 ix, iter);
8123 ++ix)
8124 {
8125 if (!self->regex
8126 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8127 return;
8128 }
8129 }
8130
8131 bs->stop = 0;
8132 bs->print_it = print_it_noop;
8133 }
8134
8135 static enum print_stop_action
8136 print_it_catch_solib (bpstat bs)
8137 {
8138 struct breakpoint *b = bs->breakpoint_at;
8139 struct ui_out *uiout = current_uiout;
8140
8141 annotate_catchpoint (b->number);
8142 if (b->disposition == disp_del)
8143 ui_out_text (uiout, "\nTemporary catchpoint ");
8144 else
8145 ui_out_text (uiout, "\nCatchpoint ");
8146 ui_out_field_int (uiout, "bkptno", b->number);
8147 ui_out_text (uiout, "\n");
8148 if (ui_out_is_mi_like_p (uiout))
8149 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8150 print_solib_event (1);
8151 return PRINT_SRC_AND_LOC;
8152 }
8153
8154 static void
8155 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8156 {
8157 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8158 struct value_print_options opts;
8159 struct ui_out *uiout = current_uiout;
8160 char *msg;
8161
8162 get_user_print_options (&opts);
8163 /* Field 4, the address, is omitted (which makes the columns not
8164 line up too nicely with the headers, but the effect is relatively
8165 readable). */
8166 if (opts.addressprint)
8167 {
8168 annotate_field (4);
8169 ui_out_field_skip (uiout, "addr");
8170 }
8171
8172 annotate_field (5);
8173 if (self->is_load)
8174 {
8175 if (self->regex)
8176 msg = xstrprintf (_("load of library matching %s"), self->regex);
8177 else
8178 msg = xstrdup (_("load of library"));
8179 }
8180 else
8181 {
8182 if (self->regex)
8183 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8184 else
8185 msg = xstrdup (_("unload of library"));
8186 }
8187 ui_out_field_string (uiout, "what", msg);
8188 xfree (msg);
8189
8190 if (ui_out_is_mi_like_p (uiout))
8191 ui_out_field_string (uiout, "catch-type",
8192 self->is_load ? "load" : "unload");
8193 }
8194
8195 static void
8196 print_mention_catch_solib (struct breakpoint *b)
8197 {
8198 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8199
8200 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8201 self->is_load ? "load" : "unload");
8202 }
8203
8204 static void
8205 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8206 {
8207 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8208
8209 fprintf_unfiltered (fp, "%s %s",
8210 b->disposition == disp_del ? "tcatch" : "catch",
8211 self->is_load ? "load" : "unload");
8212 if (self->regex)
8213 fprintf_unfiltered (fp, " %s", self->regex);
8214 fprintf_unfiltered (fp, "\n");
8215 }
8216
8217 static struct breakpoint_ops catch_solib_breakpoint_ops;
8218
8219 /* Shared helper function (MI and CLI) for creating and installing
8220 a shared object event catchpoint. If IS_LOAD is non-zero then
8221 the events to be caught are load events, otherwise they are
8222 unload events. If IS_TEMP is non-zero the catchpoint is a
8223 temporary one. If ENABLED is non-zero the catchpoint is
8224 created in an enabled state. */
8225
8226 void
8227 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8228 {
8229 struct solib_catchpoint *c;
8230 struct gdbarch *gdbarch = get_current_arch ();
8231 struct cleanup *cleanup;
8232
8233 if (!arg)
8234 arg = "";
8235 arg = skip_spaces (arg);
8236
8237 c = XCNEW (struct solib_catchpoint);
8238 cleanup = make_cleanup (xfree, c);
8239
8240 if (*arg != '\0')
8241 {
8242 int errcode;
8243
8244 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8245 if (errcode != 0)
8246 {
8247 char *err = get_regcomp_error (errcode, &c->compiled);
8248
8249 make_cleanup (xfree, err);
8250 error (_("Invalid regexp (%s): %s"), err, arg);
8251 }
8252 c->regex = xstrdup (arg);
8253 }
8254
8255 c->is_load = is_load;
8256 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8257 &catch_solib_breakpoint_ops);
8258
8259 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8260
8261 discard_cleanups (cleanup);
8262 install_breakpoint (0, &c->base, 1);
8263 }
8264
8265 /* A helper function that does all the work for "catch load" and
8266 "catch unload". */
8267
8268 static void
8269 catch_load_or_unload (char *arg, int from_tty, int is_load,
8270 struct cmd_list_element *command)
8271 {
8272 int tempflag;
8273 const int enabled = 1;
8274
8275 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8276
8277 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8278 }
8279
8280 static void
8281 catch_load_command_1 (char *arg, int from_tty,
8282 struct cmd_list_element *command)
8283 {
8284 catch_load_or_unload (arg, from_tty, 1, command);
8285 }
8286
8287 static void
8288 catch_unload_command_1 (char *arg, int from_tty,
8289 struct cmd_list_element *command)
8290 {
8291 catch_load_or_unload (arg, from_tty, 0, command);
8292 }
8293
8294 /* An instance of this type is used to represent a syscall catchpoint.
8295 It includes a "struct breakpoint" as a kind of base class; users
8296 downcast to "struct breakpoint *" when needed. A breakpoint is
8297 really of this type iff its ops pointer points to
8298 CATCH_SYSCALL_BREAKPOINT_OPS. */
8299
8300 struct syscall_catchpoint
8301 {
8302 /* The base class. */
8303 struct breakpoint base;
8304
8305 /* Syscall numbers used for the 'catch syscall' feature. If no
8306 syscall has been specified for filtering, its value is NULL.
8307 Otherwise, it holds a list of all syscalls to be caught. The
8308 list elements are allocated with xmalloc. */
8309 VEC(int) *syscalls_to_be_caught;
8310 };
8311
8312 /* Implement the "dtor" breakpoint_ops method for syscall
8313 catchpoints. */
8314
8315 static void
8316 dtor_catch_syscall (struct breakpoint *b)
8317 {
8318 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8319
8320 VEC_free (int, c->syscalls_to_be_caught);
8321
8322 base_breakpoint_ops.dtor (b);
8323 }
8324
8325 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8326
8327 struct catch_syscall_inferior_data
8328 {
8329 /* We keep a count of the number of times the user has requested a
8330 particular syscall to be tracked, and pass this information to the
8331 target. This lets capable targets implement filtering directly. */
8332
8333 /* Number of times that "any" syscall is requested. */
8334 int any_syscall_count;
8335
8336 /* Count of each system call. */
8337 VEC(int) *syscalls_counts;
8338
8339 /* This counts all syscall catch requests, so we can readily determine
8340 if any catching is necessary. */
8341 int total_syscalls_count;
8342 };
8343
8344 static struct catch_syscall_inferior_data*
8345 get_catch_syscall_inferior_data (struct inferior *inf)
8346 {
8347 struct catch_syscall_inferior_data *inf_data;
8348
8349 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8350 if (inf_data == NULL)
8351 {
8352 inf_data = XCNEW (struct catch_syscall_inferior_data);
8353 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8354 }
8355
8356 return inf_data;
8357 }
8358
8359 static void
8360 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8361 {
8362 xfree (arg);
8363 }
8364
8365
8366 /* Implement the "insert" breakpoint_ops method for syscall
8367 catchpoints. */
8368
8369 static int
8370 insert_catch_syscall (struct bp_location *bl)
8371 {
8372 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8373 struct inferior *inf = current_inferior ();
8374 struct catch_syscall_inferior_data *inf_data
8375 = get_catch_syscall_inferior_data (inf);
8376
8377 ++inf_data->total_syscalls_count;
8378 if (!c->syscalls_to_be_caught)
8379 ++inf_data->any_syscall_count;
8380 else
8381 {
8382 int i, iter;
8383
8384 for (i = 0;
8385 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8386 i++)
8387 {
8388 int elem;
8389
8390 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8391 {
8392 int old_size = VEC_length (int, inf_data->syscalls_counts);
8393 uintptr_t vec_addr_offset
8394 = old_size * ((uintptr_t) sizeof (int));
8395 uintptr_t vec_addr;
8396 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8397 vec_addr = ((uintptr_t) VEC_address (int,
8398 inf_data->syscalls_counts)
8399 + vec_addr_offset);
8400 memset ((void *) vec_addr, 0,
8401 (iter + 1 - old_size) * sizeof (int));
8402 }
8403 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8404 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8405 }
8406 }
8407
8408 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8409 inf_data->total_syscalls_count != 0,
8410 inf_data->any_syscall_count,
8411 VEC_length (int,
8412 inf_data->syscalls_counts),
8413 VEC_address (int,
8414 inf_data->syscalls_counts));
8415 }
8416
8417 /* Implement the "remove" breakpoint_ops method for syscall
8418 catchpoints. */
8419
8420 static int
8421 remove_catch_syscall (struct bp_location *bl)
8422 {
8423 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8424 struct inferior *inf = current_inferior ();
8425 struct catch_syscall_inferior_data *inf_data
8426 = get_catch_syscall_inferior_data (inf);
8427
8428 --inf_data->total_syscalls_count;
8429 if (!c->syscalls_to_be_caught)
8430 --inf_data->any_syscall_count;
8431 else
8432 {
8433 int i, iter;
8434
8435 for (i = 0;
8436 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8437 i++)
8438 {
8439 int elem;
8440 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8441 /* Shouldn't happen. */
8442 continue;
8443 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8444 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8445 }
8446 }
8447
8448 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8449 inf_data->total_syscalls_count != 0,
8450 inf_data->any_syscall_count,
8451 VEC_length (int,
8452 inf_data->syscalls_counts),
8453 VEC_address (int,
8454 inf_data->syscalls_counts));
8455 }
8456
8457 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8458 catchpoints. */
8459
8460 static int
8461 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8462 struct address_space *aspace, CORE_ADDR bp_addr,
8463 const struct target_waitstatus *ws)
8464 {
8465 /* We must check if we are catching specific syscalls in this
8466 breakpoint. If we are, then we must guarantee that the called
8467 syscall is the same syscall we are catching. */
8468 int syscall_number = 0;
8469 const struct syscall_catchpoint *c
8470 = (const struct syscall_catchpoint *) bl->owner;
8471
8472 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8473 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8474 return 0;
8475
8476 syscall_number = ws->value.syscall_number;
8477
8478 /* Now, checking if the syscall is the same. */
8479 if (c->syscalls_to_be_caught)
8480 {
8481 int i, iter;
8482
8483 for (i = 0;
8484 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8485 i++)
8486 if (syscall_number == iter)
8487 return 1;
8488
8489 return 0;
8490 }
8491
8492 return 1;
8493 }
8494
8495 /* Implement the "print_it" breakpoint_ops method for syscall
8496 catchpoints. */
8497
8498 static enum print_stop_action
8499 print_it_catch_syscall (bpstat bs)
8500 {
8501 struct ui_out *uiout = current_uiout;
8502 struct breakpoint *b = bs->breakpoint_at;
8503 /* These are needed because we want to know in which state a
8504 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8505 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8506 must print "called syscall" or "returned from syscall". */
8507 ptid_t ptid;
8508 struct target_waitstatus last;
8509 struct syscall s;
8510
8511 get_last_target_status (&ptid, &last);
8512
8513 get_syscall_by_number (last.value.syscall_number, &s);
8514
8515 annotate_catchpoint (b->number);
8516
8517 if (b->disposition == disp_del)
8518 ui_out_text (uiout, "\nTemporary catchpoint ");
8519 else
8520 ui_out_text (uiout, "\nCatchpoint ");
8521 if (ui_out_is_mi_like_p (uiout))
8522 {
8523 ui_out_field_string (uiout, "reason",
8524 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8525 ? EXEC_ASYNC_SYSCALL_ENTRY
8526 : EXEC_ASYNC_SYSCALL_RETURN));
8527 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8528 }
8529 ui_out_field_int (uiout, "bkptno", b->number);
8530
8531 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8532 ui_out_text (uiout, " (call to syscall ");
8533 else
8534 ui_out_text (uiout, " (returned from syscall ");
8535
8536 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8537 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8538 if (s.name != NULL)
8539 ui_out_field_string (uiout, "syscall-name", s.name);
8540
8541 ui_out_text (uiout, "), ");
8542
8543 return PRINT_SRC_AND_LOC;
8544 }
8545
8546 /* Implement the "print_one" breakpoint_ops method for syscall
8547 catchpoints. */
8548
8549 static void
8550 print_one_catch_syscall (struct breakpoint *b,
8551 struct bp_location **last_loc)
8552 {
8553 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8554 struct value_print_options opts;
8555 struct ui_out *uiout = current_uiout;
8556
8557 get_user_print_options (&opts);
8558 /* Field 4, the address, is omitted (which makes the columns not
8559 line up too nicely with the headers, but the effect is relatively
8560 readable). */
8561 if (opts.addressprint)
8562 ui_out_field_skip (uiout, "addr");
8563 annotate_field (5);
8564
8565 if (c->syscalls_to_be_caught
8566 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8567 ui_out_text (uiout, "syscalls \"");
8568 else
8569 ui_out_text (uiout, "syscall \"");
8570
8571 if (c->syscalls_to_be_caught)
8572 {
8573 int i, iter;
8574 char *text = xstrprintf ("%s", "");
8575
8576 for (i = 0;
8577 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8578 i++)
8579 {
8580 char *x = text;
8581 struct syscall s;
8582 get_syscall_by_number (iter, &s);
8583
8584 if (s.name != NULL)
8585 text = xstrprintf ("%s%s, ", text, s.name);
8586 else
8587 text = xstrprintf ("%s%d, ", text, iter);
8588
8589 /* We have to xfree the last 'text' (now stored at 'x')
8590 because xstrprintf dynamically allocates new space for it
8591 on every call. */
8592 xfree (x);
8593 }
8594 /* Remove the last comma. */
8595 text[strlen (text) - 2] = '\0';
8596 ui_out_field_string (uiout, "what", text);
8597 }
8598 else
8599 ui_out_field_string (uiout, "what", "<any syscall>");
8600 ui_out_text (uiout, "\" ");
8601
8602 if (ui_out_is_mi_like_p (uiout))
8603 ui_out_field_string (uiout, "catch-type", "syscall");
8604 }
8605
8606 /* Implement the "print_mention" breakpoint_ops method for syscall
8607 catchpoints. */
8608
8609 static void
8610 print_mention_catch_syscall (struct breakpoint *b)
8611 {
8612 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8613
8614 if (c->syscalls_to_be_caught)
8615 {
8616 int i, iter;
8617
8618 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8619 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8620 else
8621 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8622
8623 for (i = 0;
8624 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8625 i++)
8626 {
8627 struct syscall s;
8628 get_syscall_by_number (iter, &s);
8629
8630 if (s.name)
8631 printf_filtered (" '%s' [%d]", s.name, s.number);
8632 else
8633 printf_filtered (" %d", s.number);
8634 }
8635 printf_filtered (")");
8636 }
8637 else
8638 printf_filtered (_("Catchpoint %d (any syscall)"),
8639 b->number);
8640 }
8641
8642 /* Implement the "print_recreate" breakpoint_ops method for syscall
8643 catchpoints. */
8644
8645 static void
8646 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8647 {
8648 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8649
8650 fprintf_unfiltered (fp, "catch syscall");
8651
8652 if (c->syscalls_to_be_caught)
8653 {
8654 int i, iter;
8655
8656 for (i = 0;
8657 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8658 i++)
8659 {
8660 struct syscall s;
8661
8662 get_syscall_by_number (iter, &s);
8663 if (s.name)
8664 fprintf_unfiltered (fp, " %s", s.name);
8665 else
8666 fprintf_unfiltered (fp, " %d", s.number);
8667 }
8668 }
8669 print_recreate_thread (b, fp);
8670 }
8671
8672 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8673
8674 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8675
8676 /* Returns non-zero if 'b' is a syscall catchpoint. */
8677
8678 static int
8679 syscall_catchpoint_p (struct breakpoint *b)
8680 {
8681 return (b->ops == &catch_syscall_breakpoint_ops);
8682 }
8683
8684 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8685 is non-zero, then make the breakpoint temporary. If COND_STRING is
8686 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8687 the breakpoint_ops structure associated to the catchpoint. */
8688
8689 void
8690 init_catchpoint (struct breakpoint *b,
8691 struct gdbarch *gdbarch, int tempflag,
8692 char *cond_string,
8693 const struct breakpoint_ops *ops)
8694 {
8695 struct symtab_and_line sal;
8696
8697 init_sal (&sal);
8698 sal.pspace = current_program_space;
8699
8700 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8701
8702 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8703 b->disposition = tempflag ? disp_del : disp_donttouch;
8704 }
8705
8706 void
8707 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8708 {
8709 add_to_breakpoint_chain (b);
8710 set_breakpoint_number (internal, b);
8711 if (is_tracepoint (b))
8712 set_tracepoint_count (breakpoint_count);
8713 if (!internal)
8714 mention (b);
8715 observer_notify_breakpoint_created (b);
8716
8717 if (update_gll)
8718 update_global_location_list (1);
8719 }
8720
8721 static void
8722 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8723 int tempflag, char *cond_string,
8724 const struct breakpoint_ops *ops)
8725 {
8726 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8727
8728 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8729
8730 c->forked_inferior_pid = null_ptid;
8731
8732 install_breakpoint (0, &c->base, 1);
8733 }
8734
8735 /* Exec catchpoints. */
8736
8737 /* An instance of this type is used to represent an exec catchpoint.
8738 It includes a "struct breakpoint" as a kind of base class; users
8739 downcast to "struct breakpoint *" when needed. A breakpoint is
8740 really of this type iff its ops pointer points to
8741 CATCH_EXEC_BREAKPOINT_OPS. */
8742
8743 struct exec_catchpoint
8744 {
8745 /* The base class. */
8746 struct breakpoint base;
8747
8748 /* Filename of a program whose exec triggered this catchpoint.
8749 This field is only valid immediately after this catchpoint has
8750 triggered. */
8751 char *exec_pathname;
8752 };
8753
8754 /* Implement the "dtor" breakpoint_ops method for exec
8755 catchpoints. */
8756
8757 static void
8758 dtor_catch_exec (struct breakpoint *b)
8759 {
8760 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8761
8762 xfree (c->exec_pathname);
8763
8764 base_breakpoint_ops.dtor (b);
8765 }
8766
8767 static int
8768 insert_catch_exec (struct bp_location *bl)
8769 {
8770 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8771 }
8772
8773 static int
8774 remove_catch_exec (struct bp_location *bl)
8775 {
8776 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8777 }
8778
8779 static int
8780 breakpoint_hit_catch_exec (const struct bp_location *bl,
8781 struct address_space *aspace, CORE_ADDR bp_addr,
8782 const struct target_waitstatus *ws)
8783 {
8784 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8785
8786 if (ws->kind != TARGET_WAITKIND_EXECD)
8787 return 0;
8788
8789 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8790 return 1;
8791 }
8792
8793 static enum print_stop_action
8794 print_it_catch_exec (bpstat bs)
8795 {
8796 struct ui_out *uiout = current_uiout;
8797 struct breakpoint *b = bs->breakpoint_at;
8798 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8799
8800 annotate_catchpoint (b->number);
8801 if (b->disposition == disp_del)
8802 ui_out_text (uiout, "\nTemporary catchpoint ");
8803 else
8804 ui_out_text (uiout, "\nCatchpoint ");
8805 if (ui_out_is_mi_like_p (uiout))
8806 {
8807 ui_out_field_string (uiout, "reason",
8808 async_reason_lookup (EXEC_ASYNC_EXEC));
8809 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8810 }
8811 ui_out_field_int (uiout, "bkptno", b->number);
8812 ui_out_text (uiout, " (exec'd ");
8813 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8814 ui_out_text (uiout, "), ");
8815
8816 return PRINT_SRC_AND_LOC;
8817 }
8818
8819 static void
8820 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8821 {
8822 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8823 struct value_print_options opts;
8824 struct ui_out *uiout = current_uiout;
8825
8826 get_user_print_options (&opts);
8827
8828 /* Field 4, the address, is omitted (which makes the columns
8829 not line up too nicely with the headers, but the effect
8830 is relatively readable). */
8831 if (opts.addressprint)
8832 ui_out_field_skip (uiout, "addr");
8833 annotate_field (5);
8834 ui_out_text (uiout, "exec");
8835 if (c->exec_pathname != NULL)
8836 {
8837 ui_out_text (uiout, ", program \"");
8838 ui_out_field_string (uiout, "what", c->exec_pathname);
8839 ui_out_text (uiout, "\" ");
8840 }
8841
8842 if (ui_out_is_mi_like_p (uiout))
8843 ui_out_field_string (uiout, "catch-type", "exec");
8844 }
8845
8846 static void
8847 print_mention_catch_exec (struct breakpoint *b)
8848 {
8849 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8850 }
8851
8852 /* Implement the "print_recreate" breakpoint_ops method for exec
8853 catchpoints. */
8854
8855 static void
8856 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8857 {
8858 fprintf_unfiltered (fp, "catch exec");
8859 print_recreate_thread (b, fp);
8860 }
8861
8862 static struct breakpoint_ops catch_exec_breakpoint_ops;
8863
8864 static void
8865 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8866 const struct breakpoint_ops *ops)
8867 {
8868 struct syscall_catchpoint *c;
8869 struct gdbarch *gdbarch = get_current_arch ();
8870
8871 c = XNEW (struct syscall_catchpoint);
8872 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8873 c->syscalls_to_be_caught = filter;
8874
8875 install_breakpoint (0, &c->base, 1);
8876 }
8877
8878 static int
8879 hw_breakpoint_used_count (void)
8880 {
8881 int i = 0;
8882 struct breakpoint *b;
8883 struct bp_location *bl;
8884
8885 ALL_BREAKPOINTS (b)
8886 {
8887 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8888 for (bl = b->loc; bl; bl = bl->next)
8889 {
8890 /* Special types of hardware breakpoints may use more than
8891 one register. */
8892 i += b->ops->resources_needed (bl);
8893 }
8894 }
8895
8896 return i;
8897 }
8898
8899 /* Returns the resources B would use if it were a hardware
8900 watchpoint. */
8901
8902 static int
8903 hw_watchpoint_use_count (struct breakpoint *b)
8904 {
8905 int i = 0;
8906 struct bp_location *bl;
8907
8908 if (!breakpoint_enabled (b))
8909 return 0;
8910
8911 for (bl = b->loc; bl; bl = bl->next)
8912 {
8913 /* Special types of hardware watchpoints may use more than
8914 one register. */
8915 i += b->ops->resources_needed (bl);
8916 }
8917
8918 return i;
8919 }
8920
8921 /* Returns the sum the used resources of all hardware watchpoints of
8922 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8923 the sum of the used resources of all hardware watchpoints of other
8924 types _not_ TYPE. */
8925
8926 static int
8927 hw_watchpoint_used_count_others (struct breakpoint *except,
8928 enum bptype type, int *other_type_used)
8929 {
8930 int i = 0;
8931 struct breakpoint *b;
8932
8933 *other_type_used = 0;
8934 ALL_BREAKPOINTS (b)
8935 {
8936 if (b == except)
8937 continue;
8938 if (!breakpoint_enabled (b))
8939 continue;
8940
8941 if (b->type == type)
8942 i += hw_watchpoint_use_count (b);
8943 else if (is_hardware_watchpoint (b))
8944 *other_type_used = 1;
8945 }
8946
8947 return i;
8948 }
8949
8950 void
8951 disable_watchpoints_before_interactive_call_start (void)
8952 {
8953 struct breakpoint *b;
8954
8955 ALL_BREAKPOINTS (b)
8956 {
8957 if (is_watchpoint (b) && breakpoint_enabled (b))
8958 {
8959 b->enable_state = bp_call_disabled;
8960 update_global_location_list (0);
8961 }
8962 }
8963 }
8964
8965 void
8966 enable_watchpoints_after_interactive_call_stop (void)
8967 {
8968 struct breakpoint *b;
8969
8970 ALL_BREAKPOINTS (b)
8971 {
8972 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8973 {
8974 b->enable_state = bp_enabled;
8975 update_global_location_list (1);
8976 }
8977 }
8978 }
8979
8980 void
8981 disable_breakpoints_before_startup (void)
8982 {
8983 current_program_space->executing_startup = 1;
8984 update_global_location_list (0);
8985 }
8986
8987 void
8988 enable_breakpoints_after_startup (void)
8989 {
8990 current_program_space->executing_startup = 0;
8991 breakpoint_re_set ();
8992 }
8993
8994
8995 /* Set a breakpoint that will evaporate an end of command
8996 at address specified by SAL.
8997 Restrict it to frame FRAME if FRAME is nonzero. */
8998
8999 struct breakpoint *
9000 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
9001 struct frame_id frame_id, enum bptype type)
9002 {
9003 struct breakpoint *b;
9004
9005 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
9006 tail-called one. */
9007 gdb_assert (!frame_id_artificial_p (frame_id));
9008
9009 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
9010 b->enable_state = bp_enabled;
9011 b->disposition = disp_donttouch;
9012 b->frame_id = frame_id;
9013
9014 /* If we're debugging a multi-threaded program, then we want
9015 momentary breakpoints to be active in only a single thread of
9016 control. */
9017 if (in_thread_list (inferior_ptid))
9018 b->thread = pid_to_thread_id (inferior_ptid);
9019
9020 update_global_location_list_nothrow (1);
9021
9022 return b;
9023 }
9024
9025 /* Make a momentary breakpoint based on the master breakpoint ORIG.
9026 The new breakpoint will have type TYPE, and use OPS as it
9027 breakpoint_ops. */
9028
9029 static struct breakpoint *
9030 momentary_breakpoint_from_master (struct breakpoint *orig,
9031 enum bptype type,
9032 const struct breakpoint_ops *ops)
9033 {
9034 struct breakpoint *copy;
9035
9036 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
9037 copy->loc = allocate_bp_location (copy);
9038 set_breakpoint_location_function (copy->loc, 1);
9039
9040 copy->loc->gdbarch = orig->loc->gdbarch;
9041 copy->loc->requested_address = orig->loc->requested_address;
9042 copy->loc->address = orig->loc->address;
9043 copy->loc->section = orig->loc->section;
9044 copy->loc->pspace = orig->loc->pspace;
9045 copy->loc->probe = orig->loc->probe;
9046 copy->loc->line_number = orig->loc->line_number;
9047 copy->loc->symtab = orig->loc->symtab;
9048 copy->frame_id = orig->frame_id;
9049 copy->thread = orig->thread;
9050 copy->pspace = orig->pspace;
9051
9052 copy->enable_state = bp_enabled;
9053 copy->disposition = disp_donttouch;
9054 copy->number = internal_breakpoint_number--;
9055
9056 update_global_location_list_nothrow (0);
9057 return copy;
9058 }
9059
9060 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
9061 ORIG is NULL. */
9062
9063 struct breakpoint *
9064 clone_momentary_breakpoint (struct breakpoint *orig)
9065 {
9066 /* If there's nothing to clone, then return nothing. */
9067 if (orig == NULL)
9068 return NULL;
9069
9070 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
9071 }
9072
9073 struct breakpoint *
9074 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
9075 enum bptype type)
9076 {
9077 struct symtab_and_line sal;
9078
9079 sal = find_pc_line (pc, 0);
9080 sal.pc = pc;
9081 sal.section = find_pc_overlay (pc);
9082 sal.explicit_pc = 1;
9083
9084 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
9085 }
9086 \f
9087
9088 /* Tell the user we have just set a breakpoint B. */
9089
9090 static void
9091 mention (struct breakpoint *b)
9092 {
9093 b->ops->print_mention (b);
9094 if (ui_out_is_mi_like_p (current_uiout))
9095 return;
9096 printf_filtered ("\n");
9097 }
9098 \f
9099
9100 static struct bp_location *
9101 add_location_to_breakpoint (struct breakpoint *b,
9102 const struct symtab_and_line *sal)
9103 {
9104 struct bp_location *loc, **tmp;
9105 CORE_ADDR adjusted_address;
9106 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9107
9108 if (loc_gdbarch == NULL)
9109 loc_gdbarch = b->gdbarch;
9110
9111 /* Adjust the breakpoint's address prior to allocating a location.
9112 Once we call allocate_bp_location(), that mostly uninitialized
9113 location will be placed on the location chain. Adjustment of the
9114 breakpoint may cause target_read_memory() to be called and we do
9115 not want its scan of the location chain to find a breakpoint and
9116 location that's only been partially initialized. */
9117 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9118 sal->pc, b->type);
9119
9120 /* Sort the locations by their ADDRESS. */
9121 loc = allocate_bp_location (b);
9122 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9123 tmp = &((*tmp)->next))
9124 ;
9125 loc->next = *tmp;
9126 *tmp = loc;
9127
9128 loc->requested_address = sal->pc;
9129 loc->address = adjusted_address;
9130 loc->pspace = sal->pspace;
9131 loc->probe.probe = sal->probe;
9132 loc->probe.objfile = sal->objfile;
9133 gdb_assert (loc->pspace != NULL);
9134 loc->section = sal->section;
9135 loc->gdbarch = loc_gdbarch;
9136 loc->line_number = sal->line;
9137 loc->symtab = sal->symtab;
9138
9139 set_breakpoint_location_function (loc,
9140 sal->explicit_pc || sal->explicit_line);
9141 return loc;
9142 }
9143 \f
9144
9145 /* Return 1 if LOC is pointing to a permanent breakpoint,
9146 return 0 otherwise. */
9147
9148 static int
9149 bp_loc_is_permanent (struct bp_location *loc)
9150 {
9151 int len;
9152 CORE_ADDR addr;
9153 const gdb_byte *bpoint;
9154 gdb_byte *target_mem;
9155 struct cleanup *cleanup;
9156 int retval = 0;
9157
9158 gdb_assert (loc != NULL);
9159
9160 addr = loc->address;
9161 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9162
9163 /* Software breakpoints unsupported? */
9164 if (bpoint == NULL)
9165 return 0;
9166
9167 target_mem = alloca (len);
9168
9169 /* Enable the automatic memory restoration from breakpoints while
9170 we read the memory. Otherwise we could say about our temporary
9171 breakpoints they are permanent. */
9172 cleanup = save_current_space_and_thread ();
9173
9174 switch_to_program_space_and_thread (loc->pspace);
9175 make_show_memory_breakpoints_cleanup (0);
9176
9177 if (target_read_memory (loc->address, target_mem, len) == 0
9178 && memcmp (target_mem, bpoint, len) == 0)
9179 retval = 1;
9180
9181 do_cleanups (cleanup);
9182
9183 return retval;
9184 }
9185
9186 /* Build a command list for the dprintf corresponding to the current
9187 settings of the dprintf style options. */
9188
9189 static void
9190 update_dprintf_command_list (struct breakpoint *b)
9191 {
9192 char *dprintf_args = b->extra_string;
9193 char *printf_line = NULL;
9194
9195 if (!dprintf_args)
9196 return;
9197
9198 dprintf_args = skip_spaces (dprintf_args);
9199
9200 /* Allow a comma, as it may have terminated a location, but don't
9201 insist on it. */
9202 if (*dprintf_args == ',')
9203 ++dprintf_args;
9204 dprintf_args = skip_spaces (dprintf_args);
9205
9206 if (*dprintf_args != '"')
9207 error (_("Bad format string, missing '\"'."));
9208
9209 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9210 printf_line = xstrprintf ("printf %s", dprintf_args);
9211 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9212 {
9213 if (!dprintf_function)
9214 error (_("No function supplied for dprintf call"));
9215
9216 if (dprintf_channel && strlen (dprintf_channel) > 0)
9217 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9218 dprintf_function,
9219 dprintf_channel,
9220 dprintf_args);
9221 else
9222 printf_line = xstrprintf ("call (void) %s (%s)",
9223 dprintf_function,
9224 dprintf_args);
9225 }
9226 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9227 {
9228 if (target_can_run_breakpoint_commands ())
9229 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9230 else
9231 {
9232 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9233 printf_line = xstrprintf ("printf %s", dprintf_args);
9234 }
9235 }
9236 else
9237 internal_error (__FILE__, __LINE__,
9238 _("Invalid dprintf style."));
9239
9240 gdb_assert (printf_line != NULL);
9241 /* Manufacture a printf sequence. */
9242 {
9243 struct command_line *printf_cmd_line
9244 = xmalloc (sizeof (struct command_line));
9245
9246 printf_cmd_line = xmalloc (sizeof (struct command_line));
9247 printf_cmd_line->control_type = simple_control;
9248 printf_cmd_line->body_count = 0;
9249 printf_cmd_line->body_list = NULL;
9250 printf_cmd_line->next = NULL;
9251 printf_cmd_line->line = printf_line;
9252
9253 breakpoint_set_commands (b, printf_cmd_line);
9254 }
9255 }
9256
9257 /* Update all dprintf commands, making their command lists reflect
9258 current style settings. */
9259
9260 static void
9261 update_dprintf_commands (char *args, int from_tty,
9262 struct cmd_list_element *c)
9263 {
9264 struct breakpoint *b;
9265
9266 ALL_BREAKPOINTS (b)
9267 {
9268 if (b->type == bp_dprintf)
9269 update_dprintf_command_list (b);
9270 }
9271 }
9272
9273 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9274 as textual description of the location, and COND_STRING
9275 as condition expression. */
9276
9277 static void
9278 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9279 struct symtabs_and_lines sals, char *addr_string,
9280 char *filter, char *cond_string,
9281 char *extra_string,
9282 enum bptype type, enum bpdisp disposition,
9283 int thread, int task, int ignore_count,
9284 const struct breakpoint_ops *ops, int from_tty,
9285 int enabled, int internal, unsigned flags,
9286 int display_canonical)
9287 {
9288 int i;
9289
9290 if (type == bp_hardware_breakpoint)
9291 {
9292 int target_resources_ok;
9293
9294 i = hw_breakpoint_used_count ();
9295 target_resources_ok =
9296 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9297 i + 1, 0);
9298 if (target_resources_ok == 0)
9299 error (_("No hardware breakpoint support in the target."));
9300 else if (target_resources_ok < 0)
9301 error (_("Hardware breakpoints used exceeds limit."));
9302 }
9303
9304 gdb_assert (sals.nelts > 0);
9305
9306 for (i = 0; i < sals.nelts; ++i)
9307 {
9308 struct symtab_and_line sal = sals.sals[i];
9309 struct bp_location *loc;
9310
9311 if (from_tty)
9312 {
9313 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9314 if (!loc_gdbarch)
9315 loc_gdbarch = gdbarch;
9316
9317 describe_other_breakpoints (loc_gdbarch,
9318 sal.pspace, sal.pc, sal.section, thread);
9319 }
9320
9321 if (i == 0)
9322 {
9323 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9324 b->thread = thread;
9325 b->task = task;
9326
9327 b->cond_string = cond_string;
9328 b->extra_string = extra_string;
9329 b->ignore_count = ignore_count;
9330 b->enable_state = enabled ? bp_enabled : bp_disabled;
9331 b->disposition = disposition;
9332
9333 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9334 b->loc->inserted = 1;
9335
9336 if (type == bp_static_tracepoint)
9337 {
9338 struct tracepoint *t = (struct tracepoint *) b;
9339 struct static_tracepoint_marker marker;
9340
9341 if (strace_marker_p (b))
9342 {
9343 /* We already know the marker exists, otherwise, we
9344 wouldn't see a sal for it. */
9345 char *p = &addr_string[3];
9346 char *endp;
9347 char *marker_str;
9348
9349 p = skip_spaces (p);
9350
9351 endp = skip_to_space (p);
9352
9353 marker_str = savestring (p, endp - p);
9354 t->static_trace_marker_id = marker_str;
9355
9356 printf_filtered (_("Probed static tracepoint "
9357 "marker \"%s\"\n"),
9358 t->static_trace_marker_id);
9359 }
9360 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9361 {
9362 t->static_trace_marker_id = xstrdup (marker.str_id);
9363 release_static_tracepoint_marker (&marker);
9364
9365 printf_filtered (_("Probed static tracepoint "
9366 "marker \"%s\"\n"),
9367 t->static_trace_marker_id);
9368 }
9369 else
9370 warning (_("Couldn't determine the static "
9371 "tracepoint marker to probe"));
9372 }
9373
9374 loc = b->loc;
9375 }
9376 else
9377 {
9378 loc = add_location_to_breakpoint (b, &sal);
9379 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9380 loc->inserted = 1;
9381 }
9382
9383 if (bp_loc_is_permanent (loc))
9384 make_breakpoint_permanent (b);
9385
9386 if (b->cond_string)
9387 {
9388 const char *arg = b->cond_string;
9389
9390 loc->cond = parse_exp_1 (&arg, loc->address,
9391 block_for_pc (loc->address), 0);
9392 if (*arg)
9393 error (_("Garbage '%s' follows condition"), arg);
9394 }
9395
9396 /* Dynamic printf requires and uses additional arguments on the
9397 command line, otherwise it's an error. */
9398 if (type == bp_dprintf)
9399 {
9400 if (b->extra_string)
9401 update_dprintf_command_list (b);
9402 else
9403 error (_("Format string required"));
9404 }
9405 else if (b->extra_string)
9406 error (_("Garbage '%s' at end of command"), b->extra_string);
9407 }
9408
9409 b->display_canonical = display_canonical;
9410 if (addr_string)
9411 b->addr_string = addr_string;
9412 else
9413 /* addr_string has to be used or breakpoint_re_set will delete
9414 me. */
9415 b->addr_string
9416 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9417 b->filter = filter;
9418 }
9419
9420 static void
9421 create_breakpoint_sal (struct gdbarch *gdbarch,
9422 struct symtabs_and_lines sals, char *addr_string,
9423 char *filter, char *cond_string,
9424 char *extra_string,
9425 enum bptype type, enum bpdisp disposition,
9426 int thread, int task, int ignore_count,
9427 const struct breakpoint_ops *ops, int from_tty,
9428 int enabled, int internal, unsigned flags,
9429 int display_canonical)
9430 {
9431 struct breakpoint *b;
9432 struct cleanup *old_chain;
9433
9434 if (is_tracepoint_type (type))
9435 {
9436 struct tracepoint *t;
9437
9438 t = XCNEW (struct tracepoint);
9439 b = &t->base;
9440 }
9441 else
9442 b = XNEW (struct breakpoint);
9443
9444 old_chain = make_cleanup (xfree, b);
9445
9446 init_breakpoint_sal (b, gdbarch,
9447 sals, addr_string,
9448 filter, cond_string, extra_string,
9449 type, disposition,
9450 thread, task, ignore_count,
9451 ops, from_tty,
9452 enabled, internal, flags,
9453 display_canonical);
9454 discard_cleanups (old_chain);
9455
9456 install_breakpoint (internal, b, 0);
9457 }
9458
9459 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9460 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9461 value. COND_STRING, if not NULL, specified the condition to be
9462 used for all breakpoints. Essentially the only case where
9463 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9464 function. In that case, it's still not possible to specify
9465 separate conditions for different overloaded functions, so
9466 we take just a single condition string.
9467
9468 NOTE: If the function succeeds, the caller is expected to cleanup
9469 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9470 array contents). If the function fails (error() is called), the
9471 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9472 COND and SALS arrays and each of those arrays contents. */
9473
9474 static void
9475 create_breakpoints_sal (struct gdbarch *gdbarch,
9476 struct linespec_result *canonical,
9477 char *cond_string, char *extra_string,
9478 enum bptype type, enum bpdisp disposition,
9479 int thread, int task, int ignore_count,
9480 const struct breakpoint_ops *ops, int from_tty,
9481 int enabled, int internal, unsigned flags)
9482 {
9483 int i;
9484 struct linespec_sals *lsal;
9485
9486 if (canonical->pre_expanded)
9487 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9488
9489 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9490 {
9491 /* Note that 'addr_string' can be NULL in the case of a plain
9492 'break', without arguments. */
9493 char *addr_string = (canonical->addr_string
9494 ? xstrdup (canonical->addr_string)
9495 : NULL);
9496 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9497 struct cleanup *inner = make_cleanup (xfree, addr_string);
9498
9499 make_cleanup (xfree, filter_string);
9500 create_breakpoint_sal (gdbarch, lsal->sals,
9501 addr_string,
9502 filter_string,
9503 cond_string, extra_string,
9504 type, disposition,
9505 thread, task, ignore_count, ops,
9506 from_tty, enabled, internal, flags,
9507 canonical->special_display);
9508 discard_cleanups (inner);
9509 }
9510 }
9511
9512 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9513 followed by conditionals. On return, SALS contains an array of SAL
9514 addresses found. ADDR_STRING contains a vector of (canonical)
9515 address strings. ADDRESS points to the end of the SAL.
9516
9517 The array and the line spec strings are allocated on the heap, it is
9518 the caller's responsibility to free them. */
9519
9520 static void
9521 parse_breakpoint_sals (char **address,
9522 struct linespec_result *canonical)
9523 {
9524 /* If no arg given, or if first arg is 'if ', use the default
9525 breakpoint. */
9526 if ((*address) == NULL
9527 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9528 {
9529 /* The last displayed codepoint, if it's valid, is our default breakpoint
9530 address. */
9531 if (last_displayed_sal_is_valid ())
9532 {
9533 struct linespec_sals lsal;
9534 struct symtab_and_line sal;
9535 CORE_ADDR pc;
9536
9537 init_sal (&sal); /* Initialize to zeroes. */
9538 lsal.sals.sals = (struct symtab_and_line *)
9539 xmalloc (sizeof (struct symtab_and_line));
9540
9541 /* Set sal's pspace, pc, symtab, and line to the values
9542 corresponding to the last call to print_frame_info.
9543 Be sure to reinitialize LINE with NOTCURRENT == 0
9544 as the breakpoint line number is inappropriate otherwise.
9545 find_pc_line would adjust PC, re-set it back. */
9546 get_last_displayed_sal (&sal);
9547 pc = sal.pc;
9548 sal = find_pc_line (pc, 0);
9549
9550 /* "break" without arguments is equivalent to "break *PC"
9551 where PC is the last displayed codepoint's address. So
9552 make sure to set sal.explicit_pc to prevent GDB from
9553 trying to expand the list of sals to include all other
9554 instances with the same symtab and line. */
9555 sal.pc = pc;
9556 sal.explicit_pc = 1;
9557
9558 lsal.sals.sals[0] = sal;
9559 lsal.sals.nelts = 1;
9560 lsal.canonical = NULL;
9561
9562 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9563 }
9564 else
9565 error (_("No default breakpoint address now."));
9566 }
9567 else
9568 {
9569 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9570
9571 /* Force almost all breakpoints to be in terms of the
9572 current_source_symtab (which is decode_line_1's default).
9573 This should produce the results we want almost all of the
9574 time while leaving default_breakpoint_* alone.
9575
9576 ObjC: However, don't match an Objective-C method name which
9577 may have a '+' or '-' succeeded by a '['. */
9578 if (last_displayed_sal_is_valid ()
9579 && (!cursal.symtab
9580 || ((strchr ("+-", (*address)[0]) != NULL)
9581 && ((*address)[1] != '['))))
9582 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9583 get_last_displayed_symtab (),
9584 get_last_displayed_line (),
9585 canonical, NULL, NULL);
9586 else
9587 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9588 cursal.symtab, cursal.line, canonical, NULL, NULL);
9589 }
9590 }
9591
9592
9593 /* Convert each SAL into a real PC. Verify that the PC can be
9594 inserted as a breakpoint. If it can't throw an error. */
9595
9596 static void
9597 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9598 {
9599 int i;
9600
9601 for (i = 0; i < sals->nelts; i++)
9602 resolve_sal_pc (&sals->sals[i]);
9603 }
9604
9605 /* Fast tracepoints may have restrictions on valid locations. For
9606 instance, a fast tracepoint using a jump instead of a trap will
9607 likely have to overwrite more bytes than a trap would, and so can
9608 only be placed where the instruction is longer than the jump, or a
9609 multi-instruction sequence does not have a jump into the middle of
9610 it, etc. */
9611
9612 static void
9613 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9614 struct symtabs_and_lines *sals)
9615 {
9616 int i, rslt;
9617 struct symtab_and_line *sal;
9618 char *msg;
9619 struct cleanup *old_chain;
9620
9621 for (i = 0; i < sals->nelts; i++)
9622 {
9623 struct gdbarch *sarch;
9624
9625 sal = &sals->sals[i];
9626
9627 sarch = get_sal_arch (*sal);
9628 /* We fall back to GDBARCH if there is no architecture
9629 associated with SAL. */
9630 if (sarch == NULL)
9631 sarch = gdbarch;
9632 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9633 NULL, &msg);
9634 old_chain = make_cleanup (xfree, msg);
9635
9636 if (!rslt)
9637 error (_("May not have a fast tracepoint at 0x%s%s"),
9638 paddress (sarch, sal->pc), (msg ? msg : ""));
9639
9640 do_cleanups (old_chain);
9641 }
9642 }
9643
9644 /* Issue an invalid thread ID error. */
9645
9646 static void ATTRIBUTE_NORETURN
9647 invalid_thread_id_error (int id)
9648 {
9649 error (_("Unknown thread %d."), id);
9650 }
9651
9652 /* Given TOK, a string specification of condition and thread, as
9653 accepted by the 'break' command, extract the condition
9654 string and thread number and set *COND_STRING and *THREAD.
9655 PC identifies the context at which the condition should be parsed.
9656 If no condition is found, *COND_STRING is set to NULL.
9657 If no thread is found, *THREAD is set to -1. */
9658
9659 static void
9660 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9661 char **cond_string, int *thread, int *task,
9662 char **rest)
9663 {
9664 *cond_string = NULL;
9665 *thread = -1;
9666 *task = 0;
9667 *rest = NULL;
9668
9669 while (tok && *tok)
9670 {
9671 const char *end_tok;
9672 int toklen;
9673 const char *cond_start = NULL;
9674 const char *cond_end = NULL;
9675
9676 tok = skip_spaces_const (tok);
9677
9678 if ((*tok == '"' || *tok == ',') && rest)
9679 {
9680 *rest = savestring (tok, strlen (tok));
9681 return;
9682 }
9683
9684 end_tok = skip_to_space_const (tok);
9685
9686 toklen = end_tok - tok;
9687
9688 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9689 {
9690 struct expression *expr;
9691
9692 tok = cond_start = end_tok + 1;
9693 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9694 xfree (expr);
9695 cond_end = tok;
9696 *cond_string = savestring (cond_start, cond_end - cond_start);
9697 }
9698 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9699 {
9700 char *tmptok;
9701
9702 tok = end_tok + 1;
9703 *thread = strtol (tok, &tmptok, 0);
9704 if (tok == tmptok)
9705 error (_("Junk after thread keyword."));
9706 if (!valid_thread_id (*thread))
9707 invalid_thread_id_error (*thread);
9708 tok = tmptok;
9709 }
9710 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9711 {
9712 char *tmptok;
9713
9714 tok = end_tok + 1;
9715 *task = strtol (tok, &tmptok, 0);
9716 if (tok == tmptok)
9717 error (_("Junk after task keyword."));
9718 if (!valid_task_id (*task))
9719 error (_("Unknown task %d."), *task);
9720 tok = tmptok;
9721 }
9722 else if (rest)
9723 {
9724 *rest = savestring (tok, strlen (tok));
9725 return;
9726 }
9727 else
9728 error (_("Junk at end of arguments."));
9729 }
9730 }
9731
9732 /* Decode a static tracepoint marker spec. */
9733
9734 static struct symtabs_and_lines
9735 decode_static_tracepoint_spec (char **arg_p)
9736 {
9737 VEC(static_tracepoint_marker_p) *markers = NULL;
9738 struct symtabs_and_lines sals;
9739 struct cleanup *old_chain;
9740 char *p = &(*arg_p)[3];
9741 char *endp;
9742 char *marker_str;
9743 int i;
9744
9745 p = skip_spaces (p);
9746
9747 endp = skip_to_space (p);
9748
9749 marker_str = savestring (p, endp - p);
9750 old_chain = make_cleanup (xfree, marker_str);
9751
9752 markers = target_static_tracepoint_markers_by_strid (marker_str);
9753 if (VEC_empty(static_tracepoint_marker_p, markers))
9754 error (_("No known static tracepoint marker named %s"), marker_str);
9755
9756 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9757 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9758
9759 for (i = 0; i < sals.nelts; i++)
9760 {
9761 struct static_tracepoint_marker *marker;
9762
9763 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9764
9765 init_sal (&sals.sals[i]);
9766
9767 sals.sals[i] = find_pc_line (marker->address, 0);
9768 sals.sals[i].pc = marker->address;
9769
9770 release_static_tracepoint_marker (marker);
9771 }
9772
9773 do_cleanups (old_chain);
9774
9775 *arg_p = endp;
9776 return sals;
9777 }
9778
9779 /* Set a breakpoint. This function is shared between CLI and MI
9780 functions for setting a breakpoint. This function has two major
9781 modes of operations, selected by the PARSE_ARG parameter. If
9782 non-zero, the function will parse ARG, extracting location,
9783 condition, thread and extra string. Otherwise, ARG is just the
9784 breakpoint's location, with condition, thread, and extra string
9785 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9786 If INTERNAL is non-zero, the breakpoint number will be allocated
9787 from the internal breakpoint count. Returns true if any breakpoint
9788 was created; false otherwise. */
9789
9790 int
9791 create_breakpoint (struct gdbarch *gdbarch,
9792 char *arg, char *cond_string,
9793 int thread, char *extra_string,
9794 int parse_arg,
9795 int tempflag, enum bptype type_wanted,
9796 int ignore_count,
9797 enum auto_boolean pending_break_support,
9798 const struct breakpoint_ops *ops,
9799 int from_tty, int enabled, int internal,
9800 unsigned flags)
9801 {
9802 volatile struct gdb_exception e;
9803 char *copy_arg = NULL;
9804 char *addr_start = arg;
9805 struct linespec_result canonical;
9806 struct cleanup *old_chain;
9807 struct cleanup *bkpt_chain = NULL;
9808 int pending = 0;
9809 int task = 0;
9810 int prev_bkpt_count = breakpoint_count;
9811
9812 gdb_assert (ops != NULL);
9813
9814 init_linespec_result (&canonical);
9815
9816 TRY_CATCH (e, RETURN_MASK_ALL)
9817 {
9818 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9819 addr_start, &copy_arg);
9820 }
9821
9822 /* If caller is interested in rc value from parse, set value. */
9823 switch (e.reason)
9824 {
9825 case GDB_NO_ERROR:
9826 if (VEC_empty (linespec_sals, canonical.sals))
9827 return 0;
9828 break;
9829 case RETURN_ERROR:
9830 switch (e.error)
9831 {
9832 case NOT_FOUND_ERROR:
9833
9834 /* If pending breakpoint support is turned off, throw
9835 error. */
9836
9837 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9838 throw_exception (e);
9839
9840 exception_print (gdb_stderr, e);
9841
9842 /* If pending breakpoint support is auto query and the user
9843 selects no, then simply return the error code. */
9844 if (pending_break_support == AUTO_BOOLEAN_AUTO
9845 && !nquery (_("Make %s pending on future shared library load? "),
9846 bptype_string (type_wanted)))
9847 return 0;
9848
9849 /* At this point, either the user was queried about setting
9850 a pending breakpoint and selected yes, or pending
9851 breakpoint behavior is on and thus a pending breakpoint
9852 is defaulted on behalf of the user. */
9853 {
9854 struct linespec_sals lsal;
9855
9856 copy_arg = xstrdup (addr_start);
9857 lsal.canonical = xstrdup (copy_arg);
9858 lsal.sals.nelts = 1;
9859 lsal.sals.sals = XNEW (struct symtab_and_line);
9860 init_sal (&lsal.sals.sals[0]);
9861 pending = 1;
9862 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9863 }
9864 break;
9865 default:
9866 throw_exception (e);
9867 }
9868 break;
9869 default:
9870 throw_exception (e);
9871 }
9872
9873 /* Create a chain of things that always need to be cleaned up. */
9874 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9875
9876 /* ----------------------------- SNIP -----------------------------
9877 Anything added to the cleanup chain beyond this point is assumed
9878 to be part of a breakpoint. If the breakpoint create succeeds
9879 then the memory is not reclaimed. */
9880 bkpt_chain = make_cleanup (null_cleanup, 0);
9881
9882 /* Resolve all line numbers to PC's and verify that the addresses
9883 are ok for the target. */
9884 if (!pending)
9885 {
9886 int ix;
9887 struct linespec_sals *iter;
9888
9889 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9890 breakpoint_sals_to_pc (&iter->sals);
9891 }
9892
9893 /* Fast tracepoints may have additional restrictions on location. */
9894 if (!pending && type_wanted == bp_fast_tracepoint)
9895 {
9896 int ix;
9897 struct linespec_sals *iter;
9898
9899 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9900 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9901 }
9902
9903 /* Verify that condition can be parsed, before setting any
9904 breakpoints. Allocate a separate condition expression for each
9905 breakpoint. */
9906 if (!pending)
9907 {
9908 if (parse_arg)
9909 {
9910 char *rest;
9911 struct linespec_sals *lsal;
9912
9913 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9914
9915 /* Here we only parse 'arg' to separate condition
9916 from thread number, so parsing in context of first
9917 sal is OK. When setting the breakpoint we'll
9918 re-parse it in context of each sal. */
9919
9920 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9921 &thread, &task, &rest);
9922 if (cond_string)
9923 make_cleanup (xfree, cond_string);
9924 if (rest)
9925 make_cleanup (xfree, rest);
9926 if (rest)
9927 extra_string = rest;
9928 }
9929 else
9930 {
9931 if (*arg != '\0')
9932 error (_("Garbage '%s' at end of location"), arg);
9933
9934 /* Create a private copy of condition string. */
9935 if (cond_string)
9936 {
9937 cond_string = xstrdup (cond_string);
9938 make_cleanup (xfree, cond_string);
9939 }
9940 /* Create a private copy of any extra string. */
9941 if (extra_string)
9942 {
9943 extra_string = xstrdup (extra_string);
9944 make_cleanup (xfree, extra_string);
9945 }
9946 }
9947
9948 ops->create_breakpoints_sal (gdbarch, &canonical,
9949 cond_string, extra_string, type_wanted,
9950 tempflag ? disp_del : disp_donttouch,
9951 thread, task, ignore_count, ops,
9952 from_tty, enabled, internal, flags);
9953 }
9954 else
9955 {
9956 struct breakpoint *b;
9957
9958 make_cleanup (xfree, copy_arg);
9959
9960 if (is_tracepoint_type (type_wanted))
9961 {
9962 struct tracepoint *t;
9963
9964 t = XCNEW (struct tracepoint);
9965 b = &t->base;
9966 }
9967 else
9968 b = XNEW (struct breakpoint);
9969
9970 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9971
9972 b->addr_string = copy_arg;
9973 if (parse_arg)
9974 b->cond_string = NULL;
9975 else
9976 {
9977 /* Create a private copy of condition string. */
9978 if (cond_string)
9979 {
9980 cond_string = xstrdup (cond_string);
9981 make_cleanup (xfree, cond_string);
9982 }
9983 b->cond_string = cond_string;
9984 }
9985 b->extra_string = NULL;
9986 b->ignore_count = ignore_count;
9987 b->disposition = tempflag ? disp_del : disp_donttouch;
9988 b->condition_not_parsed = 1;
9989 b->enable_state = enabled ? bp_enabled : bp_disabled;
9990 if ((type_wanted != bp_breakpoint
9991 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9992 b->pspace = current_program_space;
9993
9994 install_breakpoint (internal, b, 0);
9995 }
9996
9997 if (VEC_length (linespec_sals, canonical.sals) > 1)
9998 {
9999 warning (_("Multiple breakpoints were set.\nUse the "
10000 "\"delete\" command to delete unwanted breakpoints."));
10001 prev_breakpoint_count = prev_bkpt_count;
10002 }
10003
10004 /* That's it. Discard the cleanups for data inserted into the
10005 breakpoint. */
10006 discard_cleanups (bkpt_chain);
10007 /* But cleanup everything else. */
10008 do_cleanups (old_chain);
10009
10010 /* error call may happen here - have BKPT_CHAIN already discarded. */
10011 update_global_location_list (1);
10012
10013 return 1;
10014 }
10015
10016 /* Set a breakpoint.
10017 ARG is a string describing breakpoint address,
10018 condition, and thread.
10019 FLAG specifies if a breakpoint is hardware on,
10020 and if breakpoint is temporary, using BP_HARDWARE_FLAG
10021 and BP_TEMPFLAG. */
10022
10023 static void
10024 break_command_1 (char *arg, int flag, int from_tty)
10025 {
10026 int tempflag = flag & BP_TEMPFLAG;
10027 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
10028 ? bp_hardware_breakpoint
10029 : bp_breakpoint);
10030 struct breakpoint_ops *ops;
10031 const char *arg_cp = arg;
10032
10033 /* Matching breakpoints on probes. */
10034 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
10035 ops = &bkpt_probe_breakpoint_ops;
10036 else
10037 ops = &bkpt_breakpoint_ops;
10038
10039 create_breakpoint (get_current_arch (),
10040 arg,
10041 NULL, 0, NULL, 1 /* parse arg */,
10042 tempflag, type_wanted,
10043 0 /* Ignore count */,
10044 pending_break_support,
10045 ops,
10046 from_tty,
10047 1 /* enabled */,
10048 0 /* internal */,
10049 0);
10050 }
10051
10052 /* Helper function for break_command_1 and disassemble_command. */
10053
10054 void
10055 resolve_sal_pc (struct symtab_and_line *sal)
10056 {
10057 CORE_ADDR pc;
10058
10059 if (sal->pc == 0 && sal->symtab != NULL)
10060 {
10061 if (!find_line_pc (sal->symtab, sal->line, &pc))
10062 error (_("No line %d in file \"%s\"."),
10063 sal->line, symtab_to_filename_for_display (sal->symtab));
10064 sal->pc = pc;
10065
10066 /* If this SAL corresponds to a breakpoint inserted using a line
10067 number, then skip the function prologue if necessary. */
10068 if (sal->explicit_line)
10069 skip_prologue_sal (sal);
10070 }
10071
10072 if (sal->section == 0 && sal->symtab != NULL)
10073 {
10074 struct blockvector *bv;
10075 struct block *b;
10076 struct symbol *sym;
10077
10078 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
10079 if (bv != NULL)
10080 {
10081 sym = block_linkage_function (b);
10082 if (sym != NULL)
10083 {
10084 fixup_symbol_section (sym, sal->symtab->objfile);
10085 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
10086 }
10087 else
10088 {
10089 /* It really is worthwhile to have the section, so we'll
10090 just have to look harder. This case can be executed
10091 if we have line numbers but no functions (as can
10092 happen in assembly source). */
10093
10094 struct bound_minimal_symbol msym;
10095 struct cleanup *old_chain = save_current_space_and_thread ();
10096
10097 switch_to_program_space_and_thread (sal->pspace);
10098
10099 msym = lookup_minimal_symbol_by_pc (sal->pc);
10100 if (msym.minsym)
10101 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10102
10103 do_cleanups (old_chain);
10104 }
10105 }
10106 }
10107 }
10108
10109 void
10110 break_command (char *arg, int from_tty)
10111 {
10112 break_command_1 (arg, 0, from_tty);
10113 }
10114
10115 void
10116 tbreak_command (char *arg, int from_tty)
10117 {
10118 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10119 }
10120
10121 static void
10122 hbreak_command (char *arg, int from_tty)
10123 {
10124 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10125 }
10126
10127 static void
10128 thbreak_command (char *arg, int from_tty)
10129 {
10130 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10131 }
10132
10133 static void
10134 stop_command (char *arg, int from_tty)
10135 {
10136 printf_filtered (_("Specify the type of breakpoint to set.\n\
10137 Usage: stop in <function | address>\n\
10138 stop at <line>\n"));
10139 }
10140
10141 static void
10142 stopin_command (char *arg, int from_tty)
10143 {
10144 int badInput = 0;
10145
10146 if (arg == (char *) NULL)
10147 badInput = 1;
10148 else if (*arg != '*')
10149 {
10150 char *argptr = arg;
10151 int hasColon = 0;
10152
10153 /* Look for a ':'. If this is a line number specification, then
10154 say it is bad, otherwise, it should be an address or
10155 function/method name. */
10156 while (*argptr && !hasColon)
10157 {
10158 hasColon = (*argptr == ':');
10159 argptr++;
10160 }
10161
10162 if (hasColon)
10163 badInput = (*argptr != ':'); /* Not a class::method */
10164 else
10165 badInput = isdigit (*arg); /* a simple line number */
10166 }
10167
10168 if (badInput)
10169 printf_filtered (_("Usage: stop in <function | address>\n"));
10170 else
10171 break_command_1 (arg, 0, from_tty);
10172 }
10173
10174 static void
10175 stopat_command (char *arg, int from_tty)
10176 {
10177 int badInput = 0;
10178
10179 if (arg == (char *) NULL || *arg == '*') /* no line number */
10180 badInput = 1;
10181 else
10182 {
10183 char *argptr = arg;
10184 int hasColon = 0;
10185
10186 /* Look for a ':'. If there is a '::' then get out, otherwise
10187 it is probably a line number. */
10188 while (*argptr && !hasColon)
10189 {
10190 hasColon = (*argptr == ':');
10191 argptr++;
10192 }
10193
10194 if (hasColon)
10195 badInput = (*argptr == ':'); /* we have class::method */
10196 else
10197 badInput = !isdigit (*arg); /* not a line number */
10198 }
10199
10200 if (badInput)
10201 printf_filtered (_("Usage: stop at <line>\n"));
10202 else
10203 break_command_1 (arg, 0, from_tty);
10204 }
10205
10206 /* The dynamic printf command is mostly like a regular breakpoint, but
10207 with a prewired command list consisting of a single output command,
10208 built from extra arguments supplied on the dprintf command
10209 line. */
10210
10211 static void
10212 dprintf_command (char *arg, int from_tty)
10213 {
10214 create_breakpoint (get_current_arch (),
10215 arg,
10216 NULL, 0, NULL, 1 /* parse arg */,
10217 0, bp_dprintf,
10218 0 /* Ignore count */,
10219 pending_break_support,
10220 &dprintf_breakpoint_ops,
10221 from_tty,
10222 1 /* enabled */,
10223 0 /* internal */,
10224 0);
10225 }
10226
10227 static void
10228 agent_printf_command (char *arg, int from_tty)
10229 {
10230 error (_("May only run agent-printf on the target"));
10231 }
10232
10233 /* Implement the "breakpoint_hit" breakpoint_ops method for
10234 ranged breakpoints. */
10235
10236 static int
10237 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10238 struct address_space *aspace,
10239 CORE_ADDR bp_addr,
10240 const struct target_waitstatus *ws)
10241 {
10242 if (ws->kind != TARGET_WAITKIND_STOPPED
10243 || ws->value.sig != GDB_SIGNAL_TRAP)
10244 return 0;
10245
10246 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10247 bl->length, aspace, bp_addr);
10248 }
10249
10250 /* Implement the "resources_needed" breakpoint_ops method for
10251 ranged breakpoints. */
10252
10253 static int
10254 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10255 {
10256 return target_ranged_break_num_registers ();
10257 }
10258
10259 /* Implement the "print_it" breakpoint_ops method for
10260 ranged breakpoints. */
10261
10262 static enum print_stop_action
10263 print_it_ranged_breakpoint (bpstat bs)
10264 {
10265 struct breakpoint *b = bs->breakpoint_at;
10266 struct bp_location *bl = b->loc;
10267 struct ui_out *uiout = current_uiout;
10268
10269 gdb_assert (b->type == bp_hardware_breakpoint);
10270
10271 /* Ranged breakpoints have only one location. */
10272 gdb_assert (bl && bl->next == NULL);
10273
10274 annotate_breakpoint (b->number);
10275 if (b->disposition == disp_del)
10276 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10277 else
10278 ui_out_text (uiout, "\nRanged breakpoint ");
10279 if (ui_out_is_mi_like_p (uiout))
10280 {
10281 ui_out_field_string (uiout, "reason",
10282 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10283 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10284 }
10285 ui_out_field_int (uiout, "bkptno", b->number);
10286 ui_out_text (uiout, ", ");
10287
10288 return PRINT_SRC_AND_LOC;
10289 }
10290
10291 /* Implement the "print_one" breakpoint_ops method for
10292 ranged breakpoints. */
10293
10294 static void
10295 print_one_ranged_breakpoint (struct breakpoint *b,
10296 struct bp_location **last_loc)
10297 {
10298 struct bp_location *bl = b->loc;
10299 struct value_print_options opts;
10300 struct ui_out *uiout = current_uiout;
10301
10302 /* Ranged breakpoints have only one location. */
10303 gdb_assert (bl && bl->next == NULL);
10304
10305 get_user_print_options (&opts);
10306
10307 if (opts.addressprint)
10308 /* We don't print the address range here, it will be printed later
10309 by print_one_detail_ranged_breakpoint. */
10310 ui_out_field_skip (uiout, "addr");
10311 annotate_field (5);
10312 print_breakpoint_location (b, bl);
10313 *last_loc = bl;
10314 }
10315
10316 /* Implement the "print_one_detail" breakpoint_ops method for
10317 ranged breakpoints. */
10318
10319 static void
10320 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10321 struct ui_out *uiout)
10322 {
10323 CORE_ADDR address_start, address_end;
10324 struct bp_location *bl = b->loc;
10325 struct ui_file *stb = mem_fileopen ();
10326 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10327
10328 gdb_assert (bl);
10329
10330 address_start = bl->address;
10331 address_end = address_start + bl->length - 1;
10332
10333 ui_out_text (uiout, "\taddress range: ");
10334 fprintf_unfiltered (stb, "[%s, %s]",
10335 print_core_address (bl->gdbarch, address_start),
10336 print_core_address (bl->gdbarch, address_end));
10337 ui_out_field_stream (uiout, "addr", stb);
10338 ui_out_text (uiout, "\n");
10339
10340 do_cleanups (cleanup);
10341 }
10342
10343 /* Implement the "print_mention" breakpoint_ops method for
10344 ranged breakpoints. */
10345
10346 static void
10347 print_mention_ranged_breakpoint (struct breakpoint *b)
10348 {
10349 struct bp_location *bl = b->loc;
10350 struct ui_out *uiout = current_uiout;
10351
10352 gdb_assert (bl);
10353 gdb_assert (b->type == bp_hardware_breakpoint);
10354
10355 if (ui_out_is_mi_like_p (uiout))
10356 return;
10357
10358 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10359 b->number, paddress (bl->gdbarch, bl->address),
10360 paddress (bl->gdbarch, bl->address + bl->length - 1));
10361 }
10362
10363 /* Implement the "print_recreate" breakpoint_ops method for
10364 ranged breakpoints. */
10365
10366 static void
10367 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10368 {
10369 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10370 b->addr_string_range_end);
10371 print_recreate_thread (b, fp);
10372 }
10373
10374 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10375
10376 static struct breakpoint_ops ranged_breakpoint_ops;
10377
10378 /* Find the address where the end of the breakpoint range should be
10379 placed, given the SAL of the end of the range. This is so that if
10380 the user provides a line number, the end of the range is set to the
10381 last instruction of the given line. */
10382
10383 static CORE_ADDR
10384 find_breakpoint_range_end (struct symtab_and_line sal)
10385 {
10386 CORE_ADDR end;
10387
10388 /* If the user provided a PC value, use it. Otherwise,
10389 find the address of the end of the given location. */
10390 if (sal.explicit_pc)
10391 end = sal.pc;
10392 else
10393 {
10394 int ret;
10395 CORE_ADDR start;
10396
10397 ret = find_line_pc_range (sal, &start, &end);
10398 if (!ret)
10399 error (_("Could not find location of the end of the range."));
10400
10401 /* find_line_pc_range returns the start of the next line. */
10402 end--;
10403 }
10404
10405 return end;
10406 }
10407
10408 /* Implement the "break-range" CLI command. */
10409
10410 static void
10411 break_range_command (char *arg, int from_tty)
10412 {
10413 char *arg_start, *addr_string_start, *addr_string_end;
10414 struct linespec_result canonical_start, canonical_end;
10415 int bp_count, can_use_bp, length;
10416 CORE_ADDR end;
10417 struct breakpoint *b;
10418 struct symtab_and_line sal_start, sal_end;
10419 struct cleanup *cleanup_bkpt;
10420 struct linespec_sals *lsal_start, *lsal_end;
10421
10422 /* We don't support software ranged breakpoints. */
10423 if (target_ranged_break_num_registers () < 0)
10424 error (_("This target does not support hardware ranged breakpoints."));
10425
10426 bp_count = hw_breakpoint_used_count ();
10427 bp_count += target_ranged_break_num_registers ();
10428 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10429 bp_count, 0);
10430 if (can_use_bp < 0)
10431 error (_("Hardware breakpoints used exceeds limit."));
10432
10433 arg = skip_spaces (arg);
10434 if (arg == NULL || arg[0] == '\0')
10435 error(_("No address range specified."));
10436
10437 init_linespec_result (&canonical_start);
10438
10439 arg_start = arg;
10440 parse_breakpoint_sals (&arg, &canonical_start);
10441
10442 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10443
10444 if (arg[0] != ',')
10445 error (_("Too few arguments."));
10446 else if (VEC_empty (linespec_sals, canonical_start.sals))
10447 error (_("Could not find location of the beginning of the range."));
10448
10449 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10450
10451 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10452 || lsal_start->sals.nelts != 1)
10453 error (_("Cannot create a ranged breakpoint with multiple locations."));
10454
10455 sal_start = lsal_start->sals.sals[0];
10456 addr_string_start = savestring (arg_start, arg - arg_start);
10457 make_cleanup (xfree, addr_string_start);
10458
10459 arg++; /* Skip the comma. */
10460 arg = skip_spaces (arg);
10461
10462 /* Parse the end location. */
10463
10464 init_linespec_result (&canonical_end);
10465 arg_start = arg;
10466
10467 /* We call decode_line_full directly here instead of using
10468 parse_breakpoint_sals because we need to specify the start location's
10469 symtab and line as the default symtab and line for the end of the
10470 range. This makes it possible to have ranges like "foo.c:27, +14",
10471 where +14 means 14 lines from the start location. */
10472 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10473 sal_start.symtab, sal_start.line,
10474 &canonical_end, NULL, NULL);
10475
10476 make_cleanup_destroy_linespec_result (&canonical_end);
10477
10478 if (VEC_empty (linespec_sals, canonical_end.sals))
10479 error (_("Could not find location of the end of the range."));
10480
10481 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10482 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10483 || lsal_end->sals.nelts != 1)
10484 error (_("Cannot create a ranged breakpoint with multiple locations."));
10485
10486 sal_end = lsal_end->sals.sals[0];
10487 addr_string_end = savestring (arg_start, arg - arg_start);
10488 make_cleanup (xfree, addr_string_end);
10489
10490 end = find_breakpoint_range_end (sal_end);
10491 if (sal_start.pc > end)
10492 error (_("Invalid address range, end precedes start."));
10493
10494 length = end - sal_start.pc + 1;
10495 if (length < 0)
10496 /* Length overflowed. */
10497 error (_("Address range too large."));
10498 else if (length == 1)
10499 {
10500 /* This range is simple enough to be handled by
10501 the `hbreak' command. */
10502 hbreak_command (addr_string_start, 1);
10503
10504 do_cleanups (cleanup_bkpt);
10505
10506 return;
10507 }
10508
10509 /* Now set up the breakpoint. */
10510 b = set_raw_breakpoint (get_current_arch (), sal_start,
10511 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10512 set_breakpoint_count (breakpoint_count + 1);
10513 b->number = breakpoint_count;
10514 b->disposition = disp_donttouch;
10515 b->addr_string = xstrdup (addr_string_start);
10516 b->addr_string_range_end = xstrdup (addr_string_end);
10517 b->loc->length = length;
10518
10519 do_cleanups (cleanup_bkpt);
10520
10521 mention (b);
10522 observer_notify_breakpoint_created (b);
10523 update_global_location_list (1);
10524 }
10525
10526 /* Return non-zero if EXP is verified as constant. Returned zero
10527 means EXP is variable. Also the constant detection may fail for
10528 some constant expressions and in such case still falsely return
10529 zero. */
10530
10531 static int
10532 watchpoint_exp_is_const (const struct expression *exp)
10533 {
10534 int i = exp->nelts;
10535
10536 while (i > 0)
10537 {
10538 int oplenp, argsp;
10539
10540 /* We are only interested in the descriptor of each element. */
10541 operator_length (exp, i, &oplenp, &argsp);
10542 i -= oplenp;
10543
10544 switch (exp->elts[i].opcode)
10545 {
10546 case BINOP_ADD:
10547 case BINOP_SUB:
10548 case BINOP_MUL:
10549 case BINOP_DIV:
10550 case BINOP_REM:
10551 case BINOP_MOD:
10552 case BINOP_LSH:
10553 case BINOP_RSH:
10554 case BINOP_LOGICAL_AND:
10555 case BINOP_LOGICAL_OR:
10556 case BINOP_BITWISE_AND:
10557 case BINOP_BITWISE_IOR:
10558 case BINOP_BITWISE_XOR:
10559 case BINOP_EQUAL:
10560 case BINOP_NOTEQUAL:
10561 case BINOP_LESS:
10562 case BINOP_GTR:
10563 case BINOP_LEQ:
10564 case BINOP_GEQ:
10565 case BINOP_REPEAT:
10566 case BINOP_COMMA:
10567 case BINOP_EXP:
10568 case BINOP_MIN:
10569 case BINOP_MAX:
10570 case BINOP_INTDIV:
10571 case BINOP_CONCAT:
10572 case BINOP_IN:
10573 case BINOP_RANGE:
10574 case TERNOP_COND:
10575 case TERNOP_SLICE:
10576
10577 case OP_LONG:
10578 case OP_DOUBLE:
10579 case OP_DECFLOAT:
10580 case OP_LAST:
10581 case OP_COMPLEX:
10582 case OP_STRING:
10583 case OP_ARRAY:
10584 case OP_TYPE:
10585 case OP_TYPEOF:
10586 case OP_DECLTYPE:
10587 case OP_TYPEID:
10588 case OP_NAME:
10589 case OP_OBJC_NSSTRING:
10590
10591 case UNOP_NEG:
10592 case UNOP_LOGICAL_NOT:
10593 case UNOP_COMPLEMENT:
10594 case UNOP_ADDR:
10595 case UNOP_HIGH:
10596 case UNOP_CAST:
10597
10598 case UNOP_CAST_TYPE:
10599 case UNOP_REINTERPRET_CAST:
10600 case UNOP_DYNAMIC_CAST:
10601 /* Unary, binary and ternary operators: We have to check
10602 their operands. If they are constant, then so is the
10603 result of that operation. For instance, if A and B are
10604 determined to be constants, then so is "A + B".
10605
10606 UNOP_IND is one exception to the rule above, because the
10607 value of *ADDR is not necessarily a constant, even when
10608 ADDR is. */
10609 break;
10610
10611 case OP_VAR_VALUE:
10612 /* Check whether the associated symbol is a constant.
10613
10614 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10615 possible that a buggy compiler could mark a variable as
10616 constant even when it is not, and TYPE_CONST would return
10617 true in this case, while SYMBOL_CLASS wouldn't.
10618
10619 We also have to check for function symbols because they
10620 are always constant. */
10621 {
10622 struct symbol *s = exp->elts[i + 2].symbol;
10623
10624 if (SYMBOL_CLASS (s) != LOC_BLOCK
10625 && SYMBOL_CLASS (s) != LOC_CONST
10626 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10627 return 0;
10628 break;
10629 }
10630
10631 /* The default action is to return 0 because we are using
10632 the optimistic approach here: If we don't know something,
10633 then it is not a constant. */
10634 default:
10635 return 0;
10636 }
10637 }
10638
10639 return 1;
10640 }
10641
10642 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10643
10644 static void
10645 dtor_watchpoint (struct breakpoint *self)
10646 {
10647 struct watchpoint *w = (struct watchpoint *) self;
10648
10649 xfree (w->cond_exp);
10650 xfree (w->exp);
10651 xfree (w->exp_string);
10652 xfree (w->exp_string_reparse);
10653 value_free (w->val);
10654
10655 base_breakpoint_ops.dtor (self);
10656 }
10657
10658 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10659
10660 static void
10661 re_set_watchpoint (struct breakpoint *b)
10662 {
10663 struct watchpoint *w = (struct watchpoint *) b;
10664
10665 /* Watchpoint can be either on expression using entirely global
10666 variables, or it can be on local variables.
10667
10668 Watchpoints of the first kind are never auto-deleted, and even
10669 persist across program restarts. Since they can use variables
10670 from shared libraries, we need to reparse expression as libraries
10671 are loaded and unloaded.
10672
10673 Watchpoints on local variables can also change meaning as result
10674 of solib event. For example, if a watchpoint uses both a local
10675 and a global variables in expression, it's a local watchpoint,
10676 but unloading of a shared library will make the expression
10677 invalid. This is not a very common use case, but we still
10678 re-evaluate expression, to avoid surprises to the user.
10679
10680 Note that for local watchpoints, we re-evaluate it only if
10681 watchpoints frame id is still valid. If it's not, it means the
10682 watchpoint is out of scope and will be deleted soon. In fact,
10683 I'm not sure we'll ever be called in this case.
10684
10685 If a local watchpoint's frame id is still valid, then
10686 w->exp_valid_block is likewise valid, and we can safely use it.
10687
10688 Don't do anything about disabled watchpoints, since they will be
10689 reevaluated again when enabled. */
10690 update_watchpoint (w, 1 /* reparse */);
10691 }
10692
10693 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10694
10695 static int
10696 insert_watchpoint (struct bp_location *bl)
10697 {
10698 struct watchpoint *w = (struct watchpoint *) bl->owner;
10699 int length = w->exact ? 1 : bl->length;
10700
10701 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10702 w->cond_exp);
10703 }
10704
10705 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10706
10707 static int
10708 remove_watchpoint (struct bp_location *bl)
10709 {
10710 struct watchpoint *w = (struct watchpoint *) bl->owner;
10711 int length = w->exact ? 1 : bl->length;
10712
10713 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10714 w->cond_exp);
10715 }
10716
10717 static int
10718 breakpoint_hit_watchpoint (const struct bp_location *bl,
10719 struct address_space *aspace, CORE_ADDR bp_addr,
10720 const struct target_waitstatus *ws)
10721 {
10722 struct breakpoint *b = bl->owner;
10723 struct watchpoint *w = (struct watchpoint *) b;
10724
10725 /* Continuable hardware watchpoints are treated as non-existent if the
10726 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10727 some data address). Otherwise gdb won't stop on a break instruction
10728 in the code (not from a breakpoint) when a hardware watchpoint has
10729 been defined. Also skip watchpoints which we know did not trigger
10730 (did not match the data address). */
10731 if (is_hardware_watchpoint (b)
10732 && w->watchpoint_triggered == watch_triggered_no)
10733 return 0;
10734
10735 return 1;
10736 }
10737
10738 static void
10739 check_status_watchpoint (bpstat bs)
10740 {
10741 gdb_assert (is_watchpoint (bs->breakpoint_at));
10742
10743 bpstat_check_watchpoint (bs);
10744 }
10745
10746 /* Implement the "resources_needed" breakpoint_ops method for
10747 hardware watchpoints. */
10748
10749 static int
10750 resources_needed_watchpoint (const struct bp_location *bl)
10751 {
10752 struct watchpoint *w = (struct watchpoint *) bl->owner;
10753 int length = w->exact? 1 : bl->length;
10754
10755 return target_region_ok_for_hw_watchpoint (bl->address, length);
10756 }
10757
10758 /* Implement the "works_in_software_mode" breakpoint_ops method for
10759 hardware watchpoints. */
10760
10761 static int
10762 works_in_software_mode_watchpoint (const struct breakpoint *b)
10763 {
10764 /* Read and access watchpoints only work with hardware support. */
10765 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10766 }
10767
10768 static enum print_stop_action
10769 print_it_watchpoint (bpstat bs)
10770 {
10771 struct cleanup *old_chain;
10772 struct breakpoint *b;
10773 struct ui_file *stb;
10774 enum print_stop_action result;
10775 struct watchpoint *w;
10776 struct ui_out *uiout = current_uiout;
10777
10778 gdb_assert (bs->bp_location_at != NULL);
10779
10780 b = bs->breakpoint_at;
10781 w = (struct watchpoint *) b;
10782
10783 stb = mem_fileopen ();
10784 old_chain = make_cleanup_ui_file_delete (stb);
10785
10786 switch (b->type)
10787 {
10788 case bp_watchpoint:
10789 case bp_hardware_watchpoint:
10790 annotate_watchpoint (b->number);
10791 if (ui_out_is_mi_like_p (uiout))
10792 ui_out_field_string
10793 (uiout, "reason",
10794 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10795 mention (b);
10796 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10797 ui_out_text (uiout, "\nOld value = ");
10798 watchpoint_value_print (bs->old_val, stb);
10799 ui_out_field_stream (uiout, "old", stb);
10800 ui_out_text (uiout, "\nNew value = ");
10801 watchpoint_value_print (w->val, stb);
10802 ui_out_field_stream (uiout, "new", stb);
10803 ui_out_text (uiout, "\n");
10804 /* More than one watchpoint may have been triggered. */
10805 result = PRINT_UNKNOWN;
10806 break;
10807
10808 case bp_read_watchpoint:
10809 if (ui_out_is_mi_like_p (uiout))
10810 ui_out_field_string
10811 (uiout, "reason",
10812 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10813 mention (b);
10814 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10815 ui_out_text (uiout, "\nValue = ");
10816 watchpoint_value_print (w->val, stb);
10817 ui_out_field_stream (uiout, "value", stb);
10818 ui_out_text (uiout, "\n");
10819 result = PRINT_UNKNOWN;
10820 break;
10821
10822 case bp_access_watchpoint:
10823 if (bs->old_val != NULL)
10824 {
10825 annotate_watchpoint (b->number);
10826 if (ui_out_is_mi_like_p (uiout))
10827 ui_out_field_string
10828 (uiout, "reason",
10829 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10830 mention (b);
10831 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10832 ui_out_text (uiout, "\nOld value = ");
10833 watchpoint_value_print (bs->old_val, stb);
10834 ui_out_field_stream (uiout, "old", stb);
10835 ui_out_text (uiout, "\nNew value = ");
10836 }
10837 else
10838 {
10839 mention (b);
10840 if (ui_out_is_mi_like_p (uiout))
10841 ui_out_field_string
10842 (uiout, "reason",
10843 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10844 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10845 ui_out_text (uiout, "\nValue = ");
10846 }
10847 watchpoint_value_print (w->val, stb);
10848 ui_out_field_stream (uiout, "new", stb);
10849 ui_out_text (uiout, "\n");
10850 result = PRINT_UNKNOWN;
10851 break;
10852 default:
10853 result = PRINT_UNKNOWN;
10854 }
10855
10856 do_cleanups (old_chain);
10857 return result;
10858 }
10859
10860 /* Implement the "print_mention" breakpoint_ops method for hardware
10861 watchpoints. */
10862
10863 static void
10864 print_mention_watchpoint (struct breakpoint *b)
10865 {
10866 struct cleanup *ui_out_chain;
10867 struct watchpoint *w = (struct watchpoint *) b;
10868 struct ui_out *uiout = current_uiout;
10869
10870 switch (b->type)
10871 {
10872 case bp_watchpoint:
10873 ui_out_text (uiout, "Watchpoint ");
10874 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10875 break;
10876 case bp_hardware_watchpoint:
10877 ui_out_text (uiout, "Hardware watchpoint ");
10878 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10879 break;
10880 case bp_read_watchpoint:
10881 ui_out_text (uiout, "Hardware read watchpoint ");
10882 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10883 break;
10884 case bp_access_watchpoint:
10885 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10886 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10887 break;
10888 default:
10889 internal_error (__FILE__, __LINE__,
10890 _("Invalid hardware watchpoint type."));
10891 }
10892
10893 ui_out_field_int (uiout, "number", b->number);
10894 ui_out_text (uiout, ": ");
10895 ui_out_field_string (uiout, "exp", w->exp_string);
10896 do_cleanups (ui_out_chain);
10897 }
10898
10899 /* Implement the "print_recreate" breakpoint_ops method for
10900 watchpoints. */
10901
10902 static void
10903 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10904 {
10905 struct watchpoint *w = (struct watchpoint *) b;
10906
10907 switch (b->type)
10908 {
10909 case bp_watchpoint:
10910 case bp_hardware_watchpoint:
10911 fprintf_unfiltered (fp, "watch");
10912 break;
10913 case bp_read_watchpoint:
10914 fprintf_unfiltered (fp, "rwatch");
10915 break;
10916 case bp_access_watchpoint:
10917 fprintf_unfiltered (fp, "awatch");
10918 break;
10919 default:
10920 internal_error (__FILE__, __LINE__,
10921 _("Invalid watchpoint type."));
10922 }
10923
10924 fprintf_unfiltered (fp, " %s", w->exp_string);
10925 print_recreate_thread (b, fp);
10926 }
10927
10928 /* Implement the "explains_signal" breakpoint_ops method for
10929 watchpoints. */
10930
10931 static int
10932 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10933 {
10934 /* A software watchpoint cannot cause a signal other than
10935 GDB_SIGNAL_TRAP. */
10936 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10937 return 0;
10938
10939 return 1;
10940 }
10941
10942 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10943
10944 static struct breakpoint_ops watchpoint_breakpoint_ops;
10945
10946 /* Implement the "insert" breakpoint_ops method for
10947 masked hardware watchpoints. */
10948
10949 static int
10950 insert_masked_watchpoint (struct bp_location *bl)
10951 {
10952 struct watchpoint *w = (struct watchpoint *) bl->owner;
10953
10954 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10955 bl->watchpoint_type);
10956 }
10957
10958 /* Implement the "remove" breakpoint_ops method for
10959 masked hardware watchpoints. */
10960
10961 static int
10962 remove_masked_watchpoint (struct bp_location *bl)
10963 {
10964 struct watchpoint *w = (struct watchpoint *) bl->owner;
10965
10966 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10967 bl->watchpoint_type);
10968 }
10969
10970 /* Implement the "resources_needed" breakpoint_ops method for
10971 masked hardware watchpoints. */
10972
10973 static int
10974 resources_needed_masked_watchpoint (const struct bp_location *bl)
10975 {
10976 struct watchpoint *w = (struct watchpoint *) bl->owner;
10977
10978 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10979 }
10980
10981 /* Implement the "works_in_software_mode" breakpoint_ops method for
10982 masked hardware watchpoints. */
10983
10984 static int
10985 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10986 {
10987 return 0;
10988 }
10989
10990 /* Implement the "print_it" breakpoint_ops method for
10991 masked hardware watchpoints. */
10992
10993 static enum print_stop_action
10994 print_it_masked_watchpoint (bpstat bs)
10995 {
10996 struct breakpoint *b = bs->breakpoint_at;
10997 struct ui_out *uiout = current_uiout;
10998
10999 /* Masked watchpoints have only one location. */
11000 gdb_assert (b->loc && b->loc->next == NULL);
11001
11002 switch (b->type)
11003 {
11004 case bp_hardware_watchpoint:
11005 annotate_watchpoint (b->number);
11006 if (ui_out_is_mi_like_p (uiout))
11007 ui_out_field_string
11008 (uiout, "reason",
11009 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
11010 break;
11011
11012 case bp_read_watchpoint:
11013 if (ui_out_is_mi_like_p (uiout))
11014 ui_out_field_string
11015 (uiout, "reason",
11016 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
11017 break;
11018
11019 case bp_access_watchpoint:
11020 if (ui_out_is_mi_like_p (uiout))
11021 ui_out_field_string
11022 (uiout, "reason",
11023 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
11024 break;
11025 default:
11026 internal_error (__FILE__, __LINE__,
11027 _("Invalid hardware watchpoint type."));
11028 }
11029
11030 mention (b);
11031 ui_out_text (uiout, _("\n\
11032 Check the underlying instruction at PC for the memory\n\
11033 address and value which triggered this watchpoint.\n"));
11034 ui_out_text (uiout, "\n");
11035
11036 /* More than one watchpoint may have been triggered. */
11037 return PRINT_UNKNOWN;
11038 }
11039
11040 /* Implement the "print_one_detail" breakpoint_ops method for
11041 masked hardware watchpoints. */
11042
11043 static void
11044 print_one_detail_masked_watchpoint (const struct breakpoint *b,
11045 struct ui_out *uiout)
11046 {
11047 struct watchpoint *w = (struct watchpoint *) b;
11048
11049 /* Masked watchpoints have only one location. */
11050 gdb_assert (b->loc && b->loc->next == NULL);
11051
11052 ui_out_text (uiout, "\tmask ");
11053 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
11054 ui_out_text (uiout, "\n");
11055 }
11056
11057 /* Implement the "print_mention" breakpoint_ops method for
11058 masked hardware watchpoints. */
11059
11060 static void
11061 print_mention_masked_watchpoint (struct breakpoint *b)
11062 {
11063 struct watchpoint *w = (struct watchpoint *) b;
11064 struct ui_out *uiout = current_uiout;
11065 struct cleanup *ui_out_chain;
11066
11067 switch (b->type)
11068 {
11069 case bp_hardware_watchpoint:
11070 ui_out_text (uiout, "Masked hardware watchpoint ");
11071 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11072 break;
11073 case bp_read_watchpoint:
11074 ui_out_text (uiout, "Masked hardware read watchpoint ");
11075 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11076 break;
11077 case bp_access_watchpoint:
11078 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11079 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11080 break;
11081 default:
11082 internal_error (__FILE__, __LINE__,
11083 _("Invalid hardware watchpoint type."));
11084 }
11085
11086 ui_out_field_int (uiout, "number", b->number);
11087 ui_out_text (uiout, ": ");
11088 ui_out_field_string (uiout, "exp", w->exp_string);
11089 do_cleanups (ui_out_chain);
11090 }
11091
11092 /* Implement the "print_recreate" breakpoint_ops method for
11093 masked hardware watchpoints. */
11094
11095 static void
11096 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11097 {
11098 struct watchpoint *w = (struct watchpoint *) b;
11099 char tmp[40];
11100
11101 switch (b->type)
11102 {
11103 case bp_hardware_watchpoint:
11104 fprintf_unfiltered (fp, "watch");
11105 break;
11106 case bp_read_watchpoint:
11107 fprintf_unfiltered (fp, "rwatch");
11108 break;
11109 case bp_access_watchpoint:
11110 fprintf_unfiltered (fp, "awatch");
11111 break;
11112 default:
11113 internal_error (__FILE__, __LINE__,
11114 _("Invalid hardware watchpoint type."));
11115 }
11116
11117 sprintf_vma (tmp, w->hw_wp_mask);
11118 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11119 print_recreate_thread (b, fp);
11120 }
11121
11122 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11123
11124 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11125
11126 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11127
11128 static int
11129 is_masked_watchpoint (const struct breakpoint *b)
11130 {
11131 return b->ops == &masked_watchpoint_breakpoint_ops;
11132 }
11133
11134 /* accessflag: hw_write: watch write,
11135 hw_read: watch read,
11136 hw_access: watch access (read or write) */
11137 static void
11138 watch_command_1 (const char *arg, int accessflag, int from_tty,
11139 int just_location, int internal)
11140 {
11141 volatile struct gdb_exception e;
11142 struct breakpoint *b, *scope_breakpoint = NULL;
11143 struct expression *exp;
11144 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11145 struct value *val, *mark, *result;
11146 struct frame_info *frame;
11147 const char *exp_start = NULL;
11148 const char *exp_end = NULL;
11149 const char *tok, *end_tok;
11150 int toklen = -1;
11151 const char *cond_start = NULL;
11152 const char *cond_end = NULL;
11153 enum bptype bp_type;
11154 int thread = -1;
11155 int pc = 0;
11156 /* Flag to indicate whether we are going to use masks for
11157 the hardware watchpoint. */
11158 int use_mask = 0;
11159 CORE_ADDR mask = 0;
11160 struct watchpoint *w;
11161 char *expression;
11162 struct cleanup *back_to;
11163
11164 /* Make sure that we actually have parameters to parse. */
11165 if (arg != NULL && arg[0] != '\0')
11166 {
11167 const char *value_start;
11168
11169 exp_end = arg + strlen (arg);
11170
11171 /* Look for "parameter value" pairs at the end
11172 of the arguments string. */
11173 for (tok = exp_end - 1; tok > arg; tok--)
11174 {
11175 /* Skip whitespace at the end of the argument list. */
11176 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11177 tok--;
11178
11179 /* Find the beginning of the last token.
11180 This is the value of the parameter. */
11181 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11182 tok--;
11183 value_start = tok + 1;
11184
11185 /* Skip whitespace. */
11186 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11187 tok--;
11188
11189 end_tok = tok;
11190
11191 /* Find the beginning of the second to last token.
11192 This is the parameter itself. */
11193 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11194 tok--;
11195 tok++;
11196 toklen = end_tok - tok + 1;
11197
11198 if (toklen == 6 && !strncmp (tok, "thread", 6))
11199 {
11200 /* At this point we've found a "thread" token, which means
11201 the user is trying to set a watchpoint that triggers
11202 only in a specific thread. */
11203 char *endp;
11204
11205 if (thread != -1)
11206 error(_("You can specify only one thread."));
11207
11208 /* Extract the thread ID from the next token. */
11209 thread = strtol (value_start, &endp, 0);
11210
11211 /* Check if the user provided a valid numeric value for the
11212 thread ID. */
11213 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11214 error (_("Invalid thread ID specification %s."), value_start);
11215
11216 /* Check if the thread actually exists. */
11217 if (!valid_thread_id (thread))
11218 invalid_thread_id_error (thread);
11219 }
11220 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11221 {
11222 /* We've found a "mask" token, which means the user wants to
11223 create a hardware watchpoint that is going to have the mask
11224 facility. */
11225 struct value *mask_value, *mark;
11226
11227 if (use_mask)
11228 error(_("You can specify only one mask."));
11229
11230 use_mask = just_location = 1;
11231
11232 mark = value_mark ();
11233 mask_value = parse_to_comma_and_eval (&value_start);
11234 mask = value_as_address (mask_value);
11235 value_free_to_mark (mark);
11236 }
11237 else
11238 /* We didn't recognize what we found. We should stop here. */
11239 break;
11240
11241 /* Truncate the string and get rid of the "parameter value" pair before
11242 the arguments string is parsed by the parse_exp_1 function. */
11243 exp_end = tok;
11244 }
11245 }
11246 else
11247 exp_end = arg;
11248
11249 /* Parse the rest of the arguments. From here on out, everything
11250 is in terms of a newly allocated string instead of the original
11251 ARG. */
11252 innermost_block = NULL;
11253 expression = savestring (arg, exp_end - arg);
11254 back_to = make_cleanup (xfree, expression);
11255 exp_start = arg = expression;
11256 exp = parse_exp_1 (&arg, 0, 0, 0);
11257 exp_end = arg;
11258 /* Remove trailing whitespace from the expression before saving it.
11259 This makes the eventual display of the expression string a bit
11260 prettier. */
11261 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11262 --exp_end;
11263
11264 /* Checking if the expression is not constant. */
11265 if (watchpoint_exp_is_const (exp))
11266 {
11267 int len;
11268
11269 len = exp_end - exp_start;
11270 while (len > 0 && isspace (exp_start[len - 1]))
11271 len--;
11272 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11273 }
11274
11275 exp_valid_block = innermost_block;
11276 mark = value_mark ();
11277 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11278
11279 if (just_location)
11280 {
11281 int ret;
11282
11283 exp_valid_block = NULL;
11284 val = value_addr (result);
11285 release_value (val);
11286 value_free_to_mark (mark);
11287
11288 if (use_mask)
11289 {
11290 ret = target_masked_watch_num_registers (value_as_address (val),
11291 mask);
11292 if (ret == -1)
11293 error (_("This target does not support masked watchpoints."));
11294 else if (ret == -2)
11295 error (_("Invalid mask or memory region."));
11296 }
11297 }
11298 else if (val != NULL)
11299 release_value (val);
11300
11301 tok = skip_spaces_const (arg);
11302 end_tok = skip_to_space_const (tok);
11303
11304 toklen = end_tok - tok;
11305 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11306 {
11307 struct expression *cond;
11308
11309 innermost_block = NULL;
11310 tok = cond_start = end_tok + 1;
11311 cond = parse_exp_1 (&tok, 0, 0, 0);
11312
11313 /* The watchpoint expression may not be local, but the condition
11314 may still be. E.g.: `watch global if local > 0'. */
11315 cond_exp_valid_block = innermost_block;
11316
11317 xfree (cond);
11318 cond_end = tok;
11319 }
11320 if (*tok)
11321 error (_("Junk at end of command."));
11322
11323 frame = block_innermost_frame (exp_valid_block);
11324
11325 /* If the expression is "local", then set up a "watchpoint scope"
11326 breakpoint at the point where we've left the scope of the watchpoint
11327 expression. Create the scope breakpoint before the watchpoint, so
11328 that we will encounter it first in bpstat_stop_status. */
11329 if (exp_valid_block && frame)
11330 {
11331 if (frame_id_p (frame_unwind_caller_id (frame)))
11332 {
11333 scope_breakpoint
11334 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11335 frame_unwind_caller_pc (frame),
11336 bp_watchpoint_scope,
11337 &momentary_breakpoint_ops);
11338
11339 scope_breakpoint->enable_state = bp_enabled;
11340
11341 /* Automatically delete the breakpoint when it hits. */
11342 scope_breakpoint->disposition = disp_del;
11343
11344 /* Only break in the proper frame (help with recursion). */
11345 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11346
11347 /* Set the address at which we will stop. */
11348 scope_breakpoint->loc->gdbarch
11349 = frame_unwind_caller_arch (frame);
11350 scope_breakpoint->loc->requested_address
11351 = frame_unwind_caller_pc (frame);
11352 scope_breakpoint->loc->address
11353 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11354 scope_breakpoint->loc->requested_address,
11355 scope_breakpoint->type);
11356 }
11357 }
11358
11359 /* Now set up the breakpoint. We create all watchpoints as hardware
11360 watchpoints here even if hardware watchpoints are turned off, a call
11361 to update_watchpoint later in this function will cause the type to
11362 drop back to bp_watchpoint (software watchpoint) if required. */
11363
11364 if (accessflag == hw_read)
11365 bp_type = bp_read_watchpoint;
11366 else if (accessflag == hw_access)
11367 bp_type = bp_access_watchpoint;
11368 else
11369 bp_type = bp_hardware_watchpoint;
11370
11371 w = XCNEW (struct watchpoint);
11372 b = &w->base;
11373 if (use_mask)
11374 init_raw_breakpoint_without_location (b, NULL, bp_type,
11375 &masked_watchpoint_breakpoint_ops);
11376 else
11377 init_raw_breakpoint_without_location (b, NULL, bp_type,
11378 &watchpoint_breakpoint_ops);
11379 b->thread = thread;
11380 b->disposition = disp_donttouch;
11381 b->pspace = current_program_space;
11382 w->exp = exp;
11383 w->exp_valid_block = exp_valid_block;
11384 w->cond_exp_valid_block = cond_exp_valid_block;
11385 if (just_location)
11386 {
11387 struct type *t = value_type (val);
11388 CORE_ADDR addr = value_as_address (val);
11389 char *name;
11390
11391 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11392 name = type_to_string (t);
11393
11394 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11395 core_addr_to_string (addr));
11396 xfree (name);
11397
11398 w->exp_string = xstrprintf ("-location %.*s",
11399 (int) (exp_end - exp_start), exp_start);
11400
11401 /* The above expression is in C. */
11402 b->language = language_c;
11403 }
11404 else
11405 w->exp_string = savestring (exp_start, exp_end - exp_start);
11406
11407 if (use_mask)
11408 {
11409 w->hw_wp_mask = mask;
11410 }
11411 else
11412 {
11413 w->val = val;
11414 w->val_valid = 1;
11415 }
11416
11417 if (cond_start)
11418 b->cond_string = savestring (cond_start, cond_end - cond_start);
11419 else
11420 b->cond_string = 0;
11421
11422 if (frame)
11423 {
11424 w->watchpoint_frame = get_frame_id (frame);
11425 w->watchpoint_thread = inferior_ptid;
11426 }
11427 else
11428 {
11429 w->watchpoint_frame = null_frame_id;
11430 w->watchpoint_thread = null_ptid;
11431 }
11432
11433 if (scope_breakpoint != NULL)
11434 {
11435 /* The scope breakpoint is related to the watchpoint. We will
11436 need to act on them together. */
11437 b->related_breakpoint = scope_breakpoint;
11438 scope_breakpoint->related_breakpoint = b;
11439 }
11440
11441 if (!just_location)
11442 value_free_to_mark (mark);
11443
11444 TRY_CATCH (e, RETURN_MASK_ALL)
11445 {
11446 /* Finally update the new watchpoint. This creates the locations
11447 that should be inserted. */
11448 update_watchpoint (w, 1);
11449 }
11450 if (e.reason < 0)
11451 {
11452 delete_breakpoint (b);
11453 throw_exception (e);
11454 }
11455
11456 install_breakpoint (internal, b, 1);
11457 do_cleanups (back_to);
11458 }
11459
11460 /* Return count of debug registers needed to watch the given expression.
11461 If the watchpoint cannot be handled in hardware return zero. */
11462
11463 static int
11464 can_use_hardware_watchpoint (struct value *v)
11465 {
11466 int found_memory_cnt = 0;
11467 struct value *head = v;
11468
11469 /* Did the user specifically forbid us to use hardware watchpoints? */
11470 if (!can_use_hw_watchpoints)
11471 return 0;
11472
11473 /* Make sure that the value of the expression depends only upon
11474 memory contents, and values computed from them within GDB. If we
11475 find any register references or function calls, we can't use a
11476 hardware watchpoint.
11477
11478 The idea here is that evaluating an expression generates a series
11479 of values, one holding the value of every subexpression. (The
11480 expression a*b+c has five subexpressions: a, b, a*b, c, and
11481 a*b+c.) GDB's values hold almost enough information to establish
11482 the criteria given above --- they identify memory lvalues,
11483 register lvalues, computed values, etcetera. So we can evaluate
11484 the expression, and then scan the chain of values that leaves
11485 behind to decide whether we can detect any possible change to the
11486 expression's final value using only hardware watchpoints.
11487
11488 However, I don't think that the values returned by inferior
11489 function calls are special in any way. So this function may not
11490 notice that an expression involving an inferior function call
11491 can't be watched with hardware watchpoints. FIXME. */
11492 for (; v; v = value_next (v))
11493 {
11494 if (VALUE_LVAL (v) == lval_memory)
11495 {
11496 if (v != head && value_lazy (v))
11497 /* A lazy memory lvalue in the chain is one that GDB never
11498 needed to fetch; we either just used its address (e.g.,
11499 `a' in `a.b') or we never needed it at all (e.g., `a'
11500 in `a,b'). This doesn't apply to HEAD; if that is
11501 lazy then it was not readable, but watch it anyway. */
11502 ;
11503 else
11504 {
11505 /* Ahh, memory we actually used! Check if we can cover
11506 it with hardware watchpoints. */
11507 struct type *vtype = check_typedef (value_type (v));
11508
11509 /* We only watch structs and arrays if user asked for it
11510 explicitly, never if they just happen to appear in a
11511 middle of some value chain. */
11512 if (v == head
11513 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11514 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11515 {
11516 CORE_ADDR vaddr = value_address (v);
11517 int len;
11518 int num_regs;
11519
11520 len = (target_exact_watchpoints
11521 && is_scalar_type_recursive (vtype))?
11522 1 : TYPE_LENGTH (value_type (v));
11523
11524 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11525 if (!num_regs)
11526 return 0;
11527 else
11528 found_memory_cnt += num_regs;
11529 }
11530 }
11531 }
11532 else if (VALUE_LVAL (v) != not_lval
11533 && deprecated_value_modifiable (v) == 0)
11534 return 0; /* These are values from the history (e.g., $1). */
11535 else if (VALUE_LVAL (v) == lval_register)
11536 return 0; /* Cannot watch a register with a HW watchpoint. */
11537 }
11538
11539 /* The expression itself looks suitable for using a hardware
11540 watchpoint, but give the target machine a chance to reject it. */
11541 return found_memory_cnt;
11542 }
11543
11544 void
11545 watch_command_wrapper (char *arg, int from_tty, int internal)
11546 {
11547 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11548 }
11549
11550 /* A helper function that looks for the "-location" argument and then
11551 calls watch_command_1. */
11552
11553 static void
11554 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11555 {
11556 int just_location = 0;
11557
11558 if (arg
11559 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11560 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11561 {
11562 arg = skip_spaces (arg);
11563 just_location = 1;
11564 }
11565
11566 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11567 }
11568
11569 static void
11570 watch_command (char *arg, int from_tty)
11571 {
11572 watch_maybe_just_location (arg, hw_write, from_tty);
11573 }
11574
11575 void
11576 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11577 {
11578 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11579 }
11580
11581 static void
11582 rwatch_command (char *arg, int from_tty)
11583 {
11584 watch_maybe_just_location (arg, hw_read, from_tty);
11585 }
11586
11587 void
11588 awatch_command_wrapper (char *arg, int from_tty, int internal)
11589 {
11590 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11591 }
11592
11593 static void
11594 awatch_command (char *arg, int from_tty)
11595 {
11596 watch_maybe_just_location (arg, hw_access, from_tty);
11597 }
11598 \f
11599
11600 /* Helper routines for the until_command routine in infcmd.c. Here
11601 because it uses the mechanisms of breakpoints. */
11602
11603 struct until_break_command_continuation_args
11604 {
11605 struct breakpoint *breakpoint;
11606 struct breakpoint *breakpoint2;
11607 int thread_num;
11608 };
11609
11610 /* This function is called by fetch_inferior_event via the
11611 cmd_continuation pointer, to complete the until command. It takes
11612 care of cleaning up the temporary breakpoints set up by the until
11613 command. */
11614 static void
11615 until_break_command_continuation (void *arg, int err)
11616 {
11617 struct until_break_command_continuation_args *a = arg;
11618
11619 delete_breakpoint (a->breakpoint);
11620 if (a->breakpoint2)
11621 delete_breakpoint (a->breakpoint2);
11622 delete_longjmp_breakpoint (a->thread_num);
11623 }
11624
11625 void
11626 until_break_command (char *arg, int from_tty, int anywhere)
11627 {
11628 struct symtabs_and_lines sals;
11629 struct symtab_and_line sal;
11630 struct frame_info *frame;
11631 struct gdbarch *frame_gdbarch;
11632 struct frame_id stack_frame_id;
11633 struct frame_id caller_frame_id;
11634 struct breakpoint *breakpoint;
11635 struct breakpoint *breakpoint2 = NULL;
11636 struct cleanup *old_chain;
11637 int thread;
11638 struct thread_info *tp;
11639
11640 clear_proceed_status ();
11641
11642 /* Set a breakpoint where the user wants it and at return from
11643 this function. */
11644
11645 if (last_displayed_sal_is_valid ())
11646 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11647 get_last_displayed_symtab (),
11648 get_last_displayed_line ());
11649 else
11650 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11651 (struct symtab *) NULL, 0);
11652
11653 if (sals.nelts != 1)
11654 error (_("Couldn't get information on specified line."));
11655
11656 sal = sals.sals[0];
11657 xfree (sals.sals); /* malloc'd, so freed. */
11658
11659 if (*arg)
11660 error (_("Junk at end of arguments."));
11661
11662 resolve_sal_pc (&sal);
11663
11664 tp = inferior_thread ();
11665 thread = tp->num;
11666
11667 old_chain = make_cleanup (null_cleanup, NULL);
11668
11669 /* Note linespec handling above invalidates the frame chain.
11670 Installing a breakpoint also invalidates the frame chain (as it
11671 may need to switch threads), so do any frame handling before
11672 that. */
11673
11674 frame = get_selected_frame (NULL);
11675 frame_gdbarch = get_frame_arch (frame);
11676 stack_frame_id = get_stack_frame_id (frame);
11677 caller_frame_id = frame_unwind_caller_id (frame);
11678
11679 /* Keep within the current frame, or in frames called by the current
11680 one. */
11681
11682 if (frame_id_p (caller_frame_id))
11683 {
11684 struct symtab_and_line sal2;
11685
11686 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11687 sal2.pc = frame_unwind_caller_pc (frame);
11688 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11689 sal2,
11690 caller_frame_id,
11691 bp_until);
11692 make_cleanup_delete_breakpoint (breakpoint2);
11693
11694 set_longjmp_breakpoint (tp, caller_frame_id);
11695 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11696 }
11697
11698 /* set_momentary_breakpoint could invalidate FRAME. */
11699 frame = NULL;
11700
11701 if (anywhere)
11702 /* If the user told us to continue until a specified location,
11703 we don't specify a frame at which we need to stop. */
11704 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11705 null_frame_id, bp_until);
11706 else
11707 /* Otherwise, specify the selected frame, because we want to stop
11708 only at the very same frame. */
11709 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11710 stack_frame_id, bp_until);
11711 make_cleanup_delete_breakpoint (breakpoint);
11712
11713 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11714
11715 /* If we are running asynchronously, and proceed call above has
11716 actually managed to start the target, arrange for breakpoints to
11717 be deleted when the target stops. Otherwise, we're already
11718 stopped and delete breakpoints via cleanup chain. */
11719
11720 if (target_can_async_p () && is_running (inferior_ptid))
11721 {
11722 struct until_break_command_continuation_args *args;
11723 args = xmalloc (sizeof (*args));
11724
11725 args->breakpoint = breakpoint;
11726 args->breakpoint2 = breakpoint2;
11727 args->thread_num = thread;
11728
11729 discard_cleanups (old_chain);
11730 add_continuation (inferior_thread (),
11731 until_break_command_continuation, args,
11732 xfree);
11733 }
11734 else
11735 do_cleanups (old_chain);
11736 }
11737
11738 /* This function attempts to parse an optional "if <cond>" clause
11739 from the arg string. If one is not found, it returns NULL.
11740
11741 Else, it returns a pointer to the condition string. (It does not
11742 attempt to evaluate the string against a particular block.) And,
11743 it updates arg to point to the first character following the parsed
11744 if clause in the arg string. */
11745
11746 char *
11747 ep_parse_optional_if_clause (char **arg)
11748 {
11749 char *cond_string;
11750
11751 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11752 return NULL;
11753
11754 /* Skip the "if" keyword. */
11755 (*arg) += 2;
11756
11757 /* Skip any extra leading whitespace, and record the start of the
11758 condition string. */
11759 *arg = skip_spaces (*arg);
11760 cond_string = *arg;
11761
11762 /* Assume that the condition occupies the remainder of the arg
11763 string. */
11764 (*arg) += strlen (cond_string);
11765
11766 return cond_string;
11767 }
11768
11769 /* Commands to deal with catching events, such as signals, exceptions,
11770 process start/exit, etc. */
11771
11772 typedef enum
11773 {
11774 catch_fork_temporary, catch_vfork_temporary,
11775 catch_fork_permanent, catch_vfork_permanent
11776 }
11777 catch_fork_kind;
11778
11779 static void
11780 catch_fork_command_1 (char *arg, int from_tty,
11781 struct cmd_list_element *command)
11782 {
11783 struct gdbarch *gdbarch = get_current_arch ();
11784 char *cond_string = NULL;
11785 catch_fork_kind fork_kind;
11786 int tempflag;
11787
11788 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11789 tempflag = (fork_kind == catch_fork_temporary
11790 || fork_kind == catch_vfork_temporary);
11791
11792 if (!arg)
11793 arg = "";
11794 arg = skip_spaces (arg);
11795
11796 /* The allowed syntax is:
11797 catch [v]fork
11798 catch [v]fork if <cond>
11799
11800 First, check if there's an if clause. */
11801 cond_string = ep_parse_optional_if_clause (&arg);
11802
11803 if ((*arg != '\0') && !isspace (*arg))
11804 error (_("Junk at end of arguments."));
11805
11806 /* If this target supports it, create a fork or vfork catchpoint
11807 and enable reporting of such events. */
11808 switch (fork_kind)
11809 {
11810 case catch_fork_temporary:
11811 case catch_fork_permanent:
11812 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11813 &catch_fork_breakpoint_ops);
11814 break;
11815 case catch_vfork_temporary:
11816 case catch_vfork_permanent:
11817 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11818 &catch_vfork_breakpoint_ops);
11819 break;
11820 default:
11821 error (_("unsupported or unknown fork kind; cannot catch it"));
11822 break;
11823 }
11824 }
11825
11826 static void
11827 catch_exec_command_1 (char *arg, int from_tty,
11828 struct cmd_list_element *command)
11829 {
11830 struct exec_catchpoint *c;
11831 struct gdbarch *gdbarch = get_current_arch ();
11832 int tempflag;
11833 char *cond_string = NULL;
11834
11835 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11836
11837 if (!arg)
11838 arg = "";
11839 arg = skip_spaces (arg);
11840
11841 /* The allowed syntax is:
11842 catch exec
11843 catch exec if <cond>
11844
11845 First, check if there's an if clause. */
11846 cond_string = ep_parse_optional_if_clause (&arg);
11847
11848 if ((*arg != '\0') && !isspace (*arg))
11849 error (_("Junk at end of arguments."));
11850
11851 c = XNEW (struct exec_catchpoint);
11852 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11853 &catch_exec_breakpoint_ops);
11854 c->exec_pathname = NULL;
11855
11856 install_breakpoint (0, &c->base, 1);
11857 }
11858
11859 void
11860 init_ada_exception_breakpoint (struct breakpoint *b,
11861 struct gdbarch *gdbarch,
11862 struct symtab_and_line sal,
11863 char *addr_string,
11864 const struct breakpoint_ops *ops,
11865 int tempflag,
11866 int enabled,
11867 int from_tty)
11868 {
11869 if (from_tty)
11870 {
11871 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11872 if (!loc_gdbarch)
11873 loc_gdbarch = gdbarch;
11874
11875 describe_other_breakpoints (loc_gdbarch,
11876 sal.pspace, sal.pc, sal.section, -1);
11877 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11878 version for exception catchpoints, because two catchpoints
11879 used for different exception names will use the same address.
11880 In this case, a "breakpoint ... also set at..." warning is
11881 unproductive. Besides, the warning phrasing is also a bit
11882 inappropriate, we should use the word catchpoint, and tell
11883 the user what type of catchpoint it is. The above is good
11884 enough for now, though. */
11885 }
11886
11887 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11888
11889 b->enable_state = enabled ? bp_enabled : bp_disabled;
11890 b->disposition = tempflag ? disp_del : disp_donttouch;
11891 b->addr_string = addr_string;
11892 b->language = language_ada;
11893 }
11894
11895 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11896 filter list, or NULL if no filtering is required. */
11897 static VEC(int) *
11898 catch_syscall_split_args (char *arg)
11899 {
11900 VEC(int) *result = NULL;
11901 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11902
11903 while (*arg != '\0')
11904 {
11905 int i, syscall_number;
11906 char *endptr;
11907 char cur_name[128];
11908 struct syscall s;
11909
11910 /* Skip whitespace. */
11911 arg = skip_spaces (arg);
11912
11913 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11914 cur_name[i] = arg[i];
11915 cur_name[i] = '\0';
11916 arg += i;
11917
11918 /* Check if the user provided a syscall name or a number. */
11919 syscall_number = (int) strtol (cur_name, &endptr, 0);
11920 if (*endptr == '\0')
11921 get_syscall_by_number (syscall_number, &s);
11922 else
11923 {
11924 /* We have a name. Let's check if it's valid and convert it
11925 to a number. */
11926 get_syscall_by_name (cur_name, &s);
11927
11928 if (s.number == UNKNOWN_SYSCALL)
11929 /* Here we have to issue an error instead of a warning,
11930 because GDB cannot do anything useful if there's no
11931 syscall number to be caught. */
11932 error (_("Unknown syscall name '%s'."), cur_name);
11933 }
11934
11935 /* Ok, it's valid. */
11936 VEC_safe_push (int, result, s.number);
11937 }
11938
11939 discard_cleanups (cleanup);
11940 return result;
11941 }
11942
11943 /* Implement the "catch syscall" command. */
11944
11945 static void
11946 catch_syscall_command_1 (char *arg, int from_tty,
11947 struct cmd_list_element *command)
11948 {
11949 int tempflag;
11950 VEC(int) *filter;
11951 struct syscall s;
11952 struct gdbarch *gdbarch = get_current_arch ();
11953
11954 /* Checking if the feature if supported. */
11955 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11956 error (_("The feature 'catch syscall' is not supported on \
11957 this architecture yet."));
11958
11959 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11960
11961 arg = skip_spaces (arg);
11962
11963 /* We need to do this first "dummy" translation in order
11964 to get the syscall XML file loaded or, most important,
11965 to display a warning to the user if there's no XML file
11966 for his/her architecture. */
11967 get_syscall_by_number (0, &s);
11968
11969 /* The allowed syntax is:
11970 catch syscall
11971 catch syscall <name | number> [<name | number> ... <name | number>]
11972
11973 Let's check if there's a syscall name. */
11974
11975 if (arg != NULL)
11976 filter = catch_syscall_split_args (arg);
11977 else
11978 filter = NULL;
11979
11980 create_syscall_event_catchpoint (tempflag, filter,
11981 &catch_syscall_breakpoint_ops);
11982 }
11983
11984 static void
11985 catch_command (char *arg, int from_tty)
11986 {
11987 error (_("Catch requires an event name."));
11988 }
11989 \f
11990
11991 static void
11992 tcatch_command (char *arg, int from_tty)
11993 {
11994 error (_("Catch requires an event name."));
11995 }
11996
11997 /* A qsort comparison function that sorts breakpoints in order. */
11998
11999 static int
12000 compare_breakpoints (const void *a, const void *b)
12001 {
12002 const breakpoint_p *ba = a;
12003 uintptr_t ua = (uintptr_t) *ba;
12004 const breakpoint_p *bb = b;
12005 uintptr_t ub = (uintptr_t) *bb;
12006
12007 if ((*ba)->number < (*bb)->number)
12008 return -1;
12009 else if ((*ba)->number > (*bb)->number)
12010 return 1;
12011
12012 /* Now sort by address, in case we see, e..g, two breakpoints with
12013 the number 0. */
12014 if (ua < ub)
12015 return -1;
12016 return ua > ub ? 1 : 0;
12017 }
12018
12019 /* Delete breakpoints by address or line. */
12020
12021 static void
12022 clear_command (char *arg, int from_tty)
12023 {
12024 struct breakpoint *b, *prev;
12025 VEC(breakpoint_p) *found = 0;
12026 int ix;
12027 int default_match;
12028 struct symtabs_and_lines sals;
12029 struct symtab_and_line sal;
12030 int i;
12031 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
12032
12033 if (arg)
12034 {
12035 sals = decode_line_with_current_source (arg,
12036 (DECODE_LINE_FUNFIRSTLINE
12037 | DECODE_LINE_LIST_MODE));
12038 make_cleanup (xfree, sals.sals);
12039 default_match = 0;
12040 }
12041 else
12042 {
12043 sals.sals = (struct symtab_and_line *)
12044 xmalloc (sizeof (struct symtab_and_line));
12045 make_cleanup (xfree, sals.sals);
12046 init_sal (&sal); /* Initialize to zeroes. */
12047
12048 /* Set sal's line, symtab, pc, and pspace to the values
12049 corresponding to the last call to print_frame_info. If the
12050 codepoint is not valid, this will set all the fields to 0. */
12051 get_last_displayed_sal (&sal);
12052 if (sal.symtab == 0)
12053 error (_("No source file specified."));
12054
12055 sals.sals[0] = sal;
12056 sals.nelts = 1;
12057
12058 default_match = 1;
12059 }
12060
12061 /* We don't call resolve_sal_pc here. That's not as bad as it
12062 seems, because all existing breakpoints typically have both
12063 file/line and pc set. So, if clear is given file/line, we can
12064 match this to existing breakpoint without obtaining pc at all.
12065
12066 We only support clearing given the address explicitly
12067 present in breakpoint table. Say, we've set breakpoint
12068 at file:line. There were several PC values for that file:line,
12069 due to optimization, all in one block.
12070
12071 We've picked one PC value. If "clear" is issued with another
12072 PC corresponding to the same file:line, the breakpoint won't
12073 be cleared. We probably can still clear the breakpoint, but
12074 since the other PC value is never presented to user, user
12075 can only find it by guessing, and it does not seem important
12076 to support that. */
12077
12078 /* For each line spec given, delete bps which correspond to it. Do
12079 it in two passes, solely to preserve the current behavior that
12080 from_tty is forced true if we delete more than one
12081 breakpoint. */
12082
12083 found = NULL;
12084 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12085 for (i = 0; i < sals.nelts; i++)
12086 {
12087 const char *sal_fullname;
12088
12089 /* If exact pc given, clear bpts at that pc.
12090 If line given (pc == 0), clear all bpts on specified line.
12091 If defaulting, clear all bpts on default line
12092 or at default pc.
12093
12094 defaulting sal.pc != 0 tests to do
12095
12096 0 1 pc
12097 1 1 pc _and_ line
12098 0 0 line
12099 1 0 <can't happen> */
12100
12101 sal = sals.sals[i];
12102 sal_fullname = (sal.symtab == NULL
12103 ? NULL : symtab_to_fullname (sal.symtab));
12104
12105 /* Find all matching breakpoints and add them to 'found'. */
12106 ALL_BREAKPOINTS (b)
12107 {
12108 int match = 0;
12109 /* Are we going to delete b? */
12110 if (b->type != bp_none && !is_watchpoint (b))
12111 {
12112 struct bp_location *loc = b->loc;
12113 for (; loc; loc = loc->next)
12114 {
12115 /* If the user specified file:line, don't allow a PC
12116 match. This matches historical gdb behavior. */
12117 int pc_match = (!sal.explicit_line
12118 && sal.pc
12119 && (loc->pspace == sal.pspace)
12120 && (loc->address == sal.pc)
12121 && (!section_is_overlay (loc->section)
12122 || loc->section == sal.section));
12123 int line_match = 0;
12124
12125 if ((default_match || sal.explicit_line)
12126 && loc->symtab != NULL
12127 && sal_fullname != NULL
12128 && sal.pspace == loc->pspace
12129 && loc->line_number == sal.line
12130 && filename_cmp (symtab_to_fullname (loc->symtab),
12131 sal_fullname) == 0)
12132 line_match = 1;
12133
12134 if (pc_match || line_match)
12135 {
12136 match = 1;
12137 break;
12138 }
12139 }
12140 }
12141
12142 if (match)
12143 VEC_safe_push(breakpoint_p, found, b);
12144 }
12145 }
12146
12147 /* Now go thru the 'found' chain and delete them. */
12148 if (VEC_empty(breakpoint_p, found))
12149 {
12150 if (arg)
12151 error (_("No breakpoint at %s."), arg);
12152 else
12153 error (_("No breakpoint at this line."));
12154 }
12155
12156 /* Remove duplicates from the vec. */
12157 qsort (VEC_address (breakpoint_p, found),
12158 VEC_length (breakpoint_p, found),
12159 sizeof (breakpoint_p),
12160 compare_breakpoints);
12161 prev = VEC_index (breakpoint_p, found, 0);
12162 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12163 {
12164 if (b == prev)
12165 {
12166 VEC_ordered_remove (breakpoint_p, found, ix);
12167 --ix;
12168 }
12169 }
12170
12171 if (VEC_length(breakpoint_p, found) > 1)
12172 from_tty = 1; /* Always report if deleted more than one. */
12173 if (from_tty)
12174 {
12175 if (VEC_length(breakpoint_p, found) == 1)
12176 printf_unfiltered (_("Deleted breakpoint "));
12177 else
12178 printf_unfiltered (_("Deleted breakpoints "));
12179 }
12180
12181 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12182 {
12183 if (from_tty)
12184 printf_unfiltered ("%d ", b->number);
12185 delete_breakpoint (b);
12186 }
12187 if (from_tty)
12188 putchar_unfiltered ('\n');
12189
12190 do_cleanups (cleanups);
12191 }
12192 \f
12193 /* Delete breakpoint in BS if they are `delete' breakpoints and
12194 all breakpoints that are marked for deletion, whether hit or not.
12195 This is called after any breakpoint is hit, or after errors. */
12196
12197 void
12198 breakpoint_auto_delete (bpstat bs)
12199 {
12200 struct breakpoint *b, *b_tmp;
12201
12202 for (; bs; bs = bs->next)
12203 if (bs->breakpoint_at
12204 && bs->breakpoint_at->disposition == disp_del
12205 && bs->stop)
12206 delete_breakpoint (bs->breakpoint_at);
12207
12208 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12209 {
12210 if (b->disposition == disp_del_at_next_stop)
12211 delete_breakpoint (b);
12212 }
12213 }
12214
12215 /* A comparison function for bp_location AP and BP being interfaced to
12216 qsort. Sort elements primarily by their ADDRESS (no matter what
12217 does breakpoint_address_is_meaningful say for its OWNER),
12218 secondarily by ordering first bp_permanent OWNERed elements and
12219 terciarily just ensuring the array is sorted stable way despite
12220 qsort being an unstable algorithm. */
12221
12222 static int
12223 bp_location_compare (const void *ap, const void *bp)
12224 {
12225 struct bp_location *a = *(void **) ap;
12226 struct bp_location *b = *(void **) bp;
12227 /* A and B come from existing breakpoints having non-NULL OWNER. */
12228 int a_perm = a->owner->enable_state == bp_permanent;
12229 int b_perm = b->owner->enable_state == bp_permanent;
12230
12231 if (a->address != b->address)
12232 return (a->address > b->address) - (a->address < b->address);
12233
12234 /* Sort locations at the same address by their pspace number, keeping
12235 locations of the same inferior (in a multi-inferior environment)
12236 grouped. */
12237
12238 if (a->pspace->num != b->pspace->num)
12239 return ((a->pspace->num > b->pspace->num)
12240 - (a->pspace->num < b->pspace->num));
12241
12242 /* Sort permanent breakpoints first. */
12243 if (a_perm != b_perm)
12244 return (a_perm < b_perm) - (a_perm > b_perm);
12245
12246 /* Make the internal GDB representation stable across GDB runs
12247 where A and B memory inside GDB can differ. Breakpoint locations of
12248 the same type at the same address can be sorted in arbitrary order. */
12249
12250 if (a->owner->number != b->owner->number)
12251 return ((a->owner->number > b->owner->number)
12252 - (a->owner->number < b->owner->number));
12253
12254 return (a > b) - (a < b);
12255 }
12256
12257 /* Set bp_location_placed_address_before_address_max and
12258 bp_location_shadow_len_after_address_max according to the current
12259 content of the bp_location array. */
12260
12261 static void
12262 bp_location_target_extensions_update (void)
12263 {
12264 struct bp_location *bl, **blp_tmp;
12265
12266 bp_location_placed_address_before_address_max = 0;
12267 bp_location_shadow_len_after_address_max = 0;
12268
12269 ALL_BP_LOCATIONS (bl, blp_tmp)
12270 {
12271 CORE_ADDR start, end, addr;
12272
12273 if (!bp_location_has_shadow (bl))
12274 continue;
12275
12276 start = bl->target_info.placed_address;
12277 end = start + bl->target_info.shadow_len;
12278
12279 gdb_assert (bl->address >= start);
12280 addr = bl->address - start;
12281 if (addr > bp_location_placed_address_before_address_max)
12282 bp_location_placed_address_before_address_max = addr;
12283
12284 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12285
12286 gdb_assert (bl->address < end);
12287 addr = end - bl->address;
12288 if (addr > bp_location_shadow_len_after_address_max)
12289 bp_location_shadow_len_after_address_max = addr;
12290 }
12291 }
12292
12293 /* Download tracepoint locations if they haven't been. */
12294
12295 static void
12296 download_tracepoint_locations (void)
12297 {
12298 struct breakpoint *b;
12299 struct cleanup *old_chain;
12300
12301 if (!target_can_download_tracepoint ())
12302 return;
12303
12304 old_chain = save_current_space_and_thread ();
12305
12306 ALL_TRACEPOINTS (b)
12307 {
12308 struct bp_location *bl;
12309 struct tracepoint *t;
12310 int bp_location_downloaded = 0;
12311
12312 if ((b->type == bp_fast_tracepoint
12313 ? !may_insert_fast_tracepoints
12314 : !may_insert_tracepoints))
12315 continue;
12316
12317 for (bl = b->loc; bl; bl = bl->next)
12318 {
12319 /* In tracepoint, locations are _never_ duplicated, so
12320 should_be_inserted is equivalent to
12321 unduplicated_should_be_inserted. */
12322 if (!should_be_inserted (bl) || bl->inserted)
12323 continue;
12324
12325 switch_to_program_space_and_thread (bl->pspace);
12326
12327 target_download_tracepoint (bl);
12328
12329 bl->inserted = 1;
12330 bp_location_downloaded = 1;
12331 }
12332 t = (struct tracepoint *) b;
12333 t->number_on_target = b->number;
12334 if (bp_location_downloaded)
12335 observer_notify_breakpoint_modified (b);
12336 }
12337
12338 do_cleanups (old_chain);
12339 }
12340
12341 /* Swap the insertion/duplication state between two locations. */
12342
12343 static void
12344 swap_insertion (struct bp_location *left, struct bp_location *right)
12345 {
12346 const int left_inserted = left->inserted;
12347 const int left_duplicate = left->duplicate;
12348 const int left_needs_update = left->needs_update;
12349 const struct bp_target_info left_target_info = left->target_info;
12350
12351 /* Locations of tracepoints can never be duplicated. */
12352 if (is_tracepoint (left->owner))
12353 gdb_assert (!left->duplicate);
12354 if (is_tracepoint (right->owner))
12355 gdb_assert (!right->duplicate);
12356
12357 left->inserted = right->inserted;
12358 left->duplicate = right->duplicate;
12359 left->needs_update = right->needs_update;
12360 left->target_info = right->target_info;
12361 right->inserted = left_inserted;
12362 right->duplicate = left_duplicate;
12363 right->needs_update = left_needs_update;
12364 right->target_info = left_target_info;
12365 }
12366
12367 /* Force the re-insertion of the locations at ADDRESS. This is called
12368 once a new/deleted/modified duplicate location is found and we are evaluating
12369 conditions on the target's side. Such conditions need to be updated on
12370 the target. */
12371
12372 static void
12373 force_breakpoint_reinsertion (struct bp_location *bl)
12374 {
12375 struct bp_location **locp = NULL, **loc2p;
12376 struct bp_location *loc;
12377 CORE_ADDR address = 0;
12378 int pspace_num;
12379
12380 address = bl->address;
12381 pspace_num = bl->pspace->num;
12382
12383 /* This is only meaningful if the target is
12384 evaluating conditions and if the user has
12385 opted for condition evaluation on the target's
12386 side. */
12387 if (gdb_evaluates_breakpoint_condition_p ()
12388 || !target_supports_evaluation_of_breakpoint_conditions ())
12389 return;
12390
12391 /* Flag all breakpoint locations with this address and
12392 the same program space as the location
12393 as "its condition has changed". We need to
12394 update the conditions on the target's side. */
12395 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12396 {
12397 loc = *loc2p;
12398
12399 if (!is_breakpoint (loc->owner)
12400 || pspace_num != loc->pspace->num)
12401 continue;
12402
12403 /* Flag the location appropriately. We use a different state to
12404 let everyone know that we already updated the set of locations
12405 with addr bl->address and program space bl->pspace. This is so
12406 we don't have to keep calling these functions just to mark locations
12407 that have already been marked. */
12408 loc->condition_changed = condition_updated;
12409
12410 /* Free the agent expression bytecode as well. We will compute
12411 it later on. */
12412 if (loc->cond_bytecode)
12413 {
12414 free_agent_expr (loc->cond_bytecode);
12415 loc->cond_bytecode = NULL;
12416 }
12417 }
12418 }
12419
12420 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12421 into the inferior, only remove already-inserted locations that no
12422 longer should be inserted. Functions that delete a breakpoint or
12423 breakpoints should pass false, so that deleting a breakpoint
12424 doesn't have the side effect of inserting the locations of other
12425 breakpoints that are marked not-inserted, but should_be_inserted
12426 returns true on them.
12427
12428 This behaviour is useful is situations close to tear-down -- e.g.,
12429 after an exec, while the target still has execution, but breakpoint
12430 shadows of the previous executable image should *NOT* be restored
12431 to the new image; or before detaching, where the target still has
12432 execution and wants to delete breakpoints from GDB's lists, and all
12433 breakpoints had already been removed from the inferior. */
12434
12435 static void
12436 update_global_location_list (int should_insert)
12437 {
12438 struct breakpoint *b;
12439 struct bp_location **locp, *loc;
12440 struct cleanup *cleanups;
12441 /* Last breakpoint location address that was marked for update. */
12442 CORE_ADDR last_addr = 0;
12443 /* Last breakpoint location program space that was marked for update. */
12444 int last_pspace_num = -1;
12445
12446 /* Used in the duplicates detection below. When iterating over all
12447 bp_locations, points to the first bp_location of a given address.
12448 Breakpoints and watchpoints of different types are never
12449 duplicates of each other. Keep one pointer for each type of
12450 breakpoint/watchpoint, so we only need to loop over all locations
12451 once. */
12452 struct bp_location *bp_loc_first; /* breakpoint */
12453 struct bp_location *wp_loc_first; /* hardware watchpoint */
12454 struct bp_location *awp_loc_first; /* access watchpoint */
12455 struct bp_location *rwp_loc_first; /* read watchpoint */
12456
12457 /* Saved former bp_location array which we compare against the newly
12458 built bp_location from the current state of ALL_BREAKPOINTS. */
12459 struct bp_location **old_location, **old_locp;
12460 unsigned old_location_count;
12461
12462 old_location = bp_location;
12463 old_location_count = bp_location_count;
12464 bp_location = NULL;
12465 bp_location_count = 0;
12466 cleanups = make_cleanup (xfree, old_location);
12467
12468 ALL_BREAKPOINTS (b)
12469 for (loc = b->loc; loc; loc = loc->next)
12470 bp_location_count++;
12471
12472 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12473 locp = bp_location;
12474 ALL_BREAKPOINTS (b)
12475 for (loc = b->loc; loc; loc = loc->next)
12476 *locp++ = loc;
12477 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12478 bp_location_compare);
12479
12480 bp_location_target_extensions_update ();
12481
12482 /* Identify bp_location instances that are no longer present in the
12483 new list, and therefore should be freed. Note that it's not
12484 necessary that those locations should be removed from inferior --
12485 if there's another location at the same address (previously
12486 marked as duplicate), we don't need to remove/insert the
12487 location.
12488
12489 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12490 and former bp_location array state respectively. */
12491
12492 locp = bp_location;
12493 for (old_locp = old_location; old_locp < old_location + old_location_count;
12494 old_locp++)
12495 {
12496 struct bp_location *old_loc = *old_locp;
12497 struct bp_location **loc2p;
12498
12499 /* Tells if 'old_loc' is found among the new locations. If
12500 not, we have to free it. */
12501 int found_object = 0;
12502 /* Tells if the location should remain inserted in the target. */
12503 int keep_in_target = 0;
12504 int removed = 0;
12505
12506 /* Skip LOCP entries which will definitely never be needed.
12507 Stop either at or being the one matching OLD_LOC. */
12508 while (locp < bp_location + bp_location_count
12509 && (*locp)->address < old_loc->address)
12510 locp++;
12511
12512 for (loc2p = locp;
12513 (loc2p < bp_location + bp_location_count
12514 && (*loc2p)->address == old_loc->address);
12515 loc2p++)
12516 {
12517 /* Check if this is a new/duplicated location or a duplicated
12518 location that had its condition modified. If so, we want to send
12519 its condition to the target if evaluation of conditions is taking
12520 place there. */
12521 if ((*loc2p)->condition_changed == condition_modified
12522 && (last_addr != old_loc->address
12523 || last_pspace_num != old_loc->pspace->num))
12524 {
12525 force_breakpoint_reinsertion (*loc2p);
12526 last_pspace_num = old_loc->pspace->num;
12527 }
12528
12529 if (*loc2p == old_loc)
12530 found_object = 1;
12531 }
12532
12533 /* We have already handled this address, update it so that we don't
12534 have to go through updates again. */
12535 last_addr = old_loc->address;
12536
12537 /* Target-side condition evaluation: Handle deleted locations. */
12538 if (!found_object)
12539 force_breakpoint_reinsertion (old_loc);
12540
12541 /* If this location is no longer present, and inserted, look if
12542 there's maybe a new location at the same address. If so,
12543 mark that one inserted, and don't remove this one. This is
12544 needed so that we don't have a time window where a breakpoint
12545 at certain location is not inserted. */
12546
12547 if (old_loc->inserted)
12548 {
12549 /* If the location is inserted now, we might have to remove
12550 it. */
12551
12552 if (found_object && should_be_inserted (old_loc))
12553 {
12554 /* The location is still present in the location list,
12555 and still should be inserted. Don't do anything. */
12556 keep_in_target = 1;
12557 }
12558 else
12559 {
12560 /* This location still exists, but it won't be kept in the
12561 target since it may have been disabled. We proceed to
12562 remove its target-side condition. */
12563
12564 /* The location is either no longer present, or got
12565 disabled. See if there's another location at the
12566 same address, in which case we don't need to remove
12567 this one from the target. */
12568
12569 /* OLD_LOC comes from existing struct breakpoint. */
12570 if (breakpoint_address_is_meaningful (old_loc->owner))
12571 {
12572 for (loc2p = locp;
12573 (loc2p < bp_location + bp_location_count
12574 && (*loc2p)->address == old_loc->address);
12575 loc2p++)
12576 {
12577 struct bp_location *loc2 = *loc2p;
12578
12579 if (breakpoint_locations_match (loc2, old_loc))
12580 {
12581 /* Read watchpoint locations are switched to
12582 access watchpoints, if the former are not
12583 supported, but the latter are. */
12584 if (is_hardware_watchpoint (old_loc->owner))
12585 {
12586 gdb_assert (is_hardware_watchpoint (loc2->owner));
12587 loc2->watchpoint_type = old_loc->watchpoint_type;
12588 }
12589
12590 /* loc2 is a duplicated location. We need to check
12591 if it should be inserted in case it will be
12592 unduplicated. */
12593 if (loc2 != old_loc
12594 && unduplicated_should_be_inserted (loc2))
12595 {
12596 swap_insertion (old_loc, loc2);
12597 keep_in_target = 1;
12598 break;
12599 }
12600 }
12601 }
12602 }
12603 }
12604
12605 if (!keep_in_target)
12606 {
12607 if (remove_breakpoint (old_loc, mark_uninserted))
12608 {
12609 /* This is just about all we can do. We could keep
12610 this location on the global list, and try to
12611 remove it next time, but there's no particular
12612 reason why we will succeed next time.
12613
12614 Note that at this point, old_loc->owner is still
12615 valid, as delete_breakpoint frees the breakpoint
12616 only after calling us. */
12617 printf_filtered (_("warning: Error removing "
12618 "breakpoint %d\n"),
12619 old_loc->owner->number);
12620 }
12621 removed = 1;
12622 }
12623 }
12624
12625 if (!found_object)
12626 {
12627 if (removed && non_stop
12628 && breakpoint_address_is_meaningful (old_loc->owner)
12629 && !is_hardware_watchpoint (old_loc->owner))
12630 {
12631 /* This location was removed from the target. In
12632 non-stop mode, a race condition is possible where
12633 we've removed a breakpoint, but stop events for that
12634 breakpoint are already queued and will arrive later.
12635 We apply an heuristic to be able to distinguish such
12636 SIGTRAPs from other random SIGTRAPs: we keep this
12637 breakpoint location for a bit, and will retire it
12638 after we see some number of events. The theory here
12639 is that reporting of events should, "on the average",
12640 be fair, so after a while we'll see events from all
12641 threads that have anything of interest, and no longer
12642 need to keep this breakpoint location around. We
12643 don't hold locations forever so to reduce chances of
12644 mistaking a non-breakpoint SIGTRAP for a breakpoint
12645 SIGTRAP.
12646
12647 The heuristic failing can be disastrous on
12648 decr_pc_after_break targets.
12649
12650 On decr_pc_after_break targets, like e.g., x86-linux,
12651 if we fail to recognize a late breakpoint SIGTRAP,
12652 because events_till_retirement has reached 0 too
12653 soon, we'll fail to do the PC adjustment, and report
12654 a random SIGTRAP to the user. When the user resumes
12655 the inferior, it will most likely immediately crash
12656 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12657 corrupted, because of being resumed e.g., in the
12658 middle of a multi-byte instruction, or skipped a
12659 one-byte instruction. This was actually seen happen
12660 on native x86-linux, and should be less rare on
12661 targets that do not support new thread events, like
12662 remote, due to the heuristic depending on
12663 thread_count.
12664
12665 Mistaking a random SIGTRAP for a breakpoint trap
12666 causes similar symptoms (PC adjustment applied when
12667 it shouldn't), but then again, playing with SIGTRAPs
12668 behind the debugger's back is asking for trouble.
12669
12670 Since hardware watchpoint traps are always
12671 distinguishable from other traps, so we don't need to
12672 apply keep hardware watchpoint moribund locations
12673 around. We simply always ignore hardware watchpoint
12674 traps we can no longer explain. */
12675
12676 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12677 old_loc->owner = NULL;
12678
12679 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12680 }
12681 else
12682 {
12683 old_loc->owner = NULL;
12684 decref_bp_location (&old_loc);
12685 }
12686 }
12687 }
12688
12689 /* Rescan breakpoints at the same address and section, marking the
12690 first one as "first" and any others as "duplicates". This is so
12691 that the bpt instruction is only inserted once. If we have a
12692 permanent breakpoint at the same place as BPT, make that one the
12693 official one, and the rest as duplicates. Permanent breakpoints
12694 are sorted first for the same address.
12695
12696 Do the same for hardware watchpoints, but also considering the
12697 watchpoint's type (regular/access/read) and length. */
12698
12699 bp_loc_first = NULL;
12700 wp_loc_first = NULL;
12701 awp_loc_first = NULL;
12702 rwp_loc_first = NULL;
12703 ALL_BP_LOCATIONS (loc, locp)
12704 {
12705 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12706 non-NULL. */
12707 struct bp_location **loc_first_p;
12708 b = loc->owner;
12709
12710 if (!unduplicated_should_be_inserted (loc)
12711 || !breakpoint_address_is_meaningful (b)
12712 /* Don't detect duplicate for tracepoint locations because they are
12713 never duplicated. See the comments in field `duplicate' of
12714 `struct bp_location'. */
12715 || is_tracepoint (b))
12716 {
12717 /* Clear the condition modification flag. */
12718 loc->condition_changed = condition_unchanged;
12719 continue;
12720 }
12721
12722 /* Permanent breakpoint should always be inserted. */
12723 if (b->enable_state == bp_permanent && ! loc->inserted)
12724 internal_error (__FILE__, __LINE__,
12725 _("allegedly permanent breakpoint is not "
12726 "actually inserted"));
12727
12728 if (b->type == bp_hardware_watchpoint)
12729 loc_first_p = &wp_loc_first;
12730 else if (b->type == bp_read_watchpoint)
12731 loc_first_p = &rwp_loc_first;
12732 else if (b->type == bp_access_watchpoint)
12733 loc_first_p = &awp_loc_first;
12734 else
12735 loc_first_p = &bp_loc_first;
12736
12737 if (*loc_first_p == NULL
12738 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12739 || !breakpoint_locations_match (loc, *loc_first_p))
12740 {
12741 *loc_first_p = loc;
12742 loc->duplicate = 0;
12743
12744 if (is_breakpoint (loc->owner) && loc->condition_changed)
12745 {
12746 loc->needs_update = 1;
12747 /* Clear the condition modification flag. */
12748 loc->condition_changed = condition_unchanged;
12749 }
12750 continue;
12751 }
12752
12753
12754 /* This and the above ensure the invariant that the first location
12755 is not duplicated, and is the inserted one.
12756 All following are marked as duplicated, and are not inserted. */
12757 if (loc->inserted)
12758 swap_insertion (loc, *loc_first_p);
12759 loc->duplicate = 1;
12760
12761 /* Clear the condition modification flag. */
12762 loc->condition_changed = condition_unchanged;
12763
12764 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12765 && b->enable_state != bp_permanent)
12766 internal_error (__FILE__, __LINE__,
12767 _("another breakpoint was inserted on top of "
12768 "a permanent breakpoint"));
12769 }
12770
12771 if (breakpoints_always_inserted_mode ()
12772 && (have_live_inferiors ()
12773 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12774 {
12775 if (should_insert)
12776 insert_breakpoint_locations ();
12777 else
12778 {
12779 /* Though should_insert is false, we may need to update conditions
12780 on the target's side if it is evaluating such conditions. We
12781 only update conditions for locations that are marked
12782 "needs_update". */
12783 update_inserted_breakpoint_locations ();
12784 }
12785 }
12786
12787 if (should_insert)
12788 download_tracepoint_locations ();
12789
12790 do_cleanups (cleanups);
12791 }
12792
12793 void
12794 breakpoint_retire_moribund (void)
12795 {
12796 struct bp_location *loc;
12797 int ix;
12798
12799 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12800 if (--(loc->events_till_retirement) == 0)
12801 {
12802 decref_bp_location (&loc);
12803 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12804 --ix;
12805 }
12806 }
12807
12808 static void
12809 update_global_location_list_nothrow (int inserting)
12810 {
12811 volatile struct gdb_exception e;
12812
12813 TRY_CATCH (e, RETURN_MASK_ERROR)
12814 update_global_location_list (inserting);
12815 }
12816
12817 /* Clear BKP from a BPS. */
12818
12819 static void
12820 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12821 {
12822 bpstat bs;
12823
12824 for (bs = bps; bs; bs = bs->next)
12825 if (bs->breakpoint_at == bpt)
12826 {
12827 bs->breakpoint_at = NULL;
12828 bs->old_val = NULL;
12829 /* bs->commands will be freed later. */
12830 }
12831 }
12832
12833 /* Callback for iterate_over_threads. */
12834 static int
12835 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12836 {
12837 struct breakpoint *bpt = data;
12838
12839 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12840 return 0;
12841 }
12842
12843 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12844 callbacks. */
12845
12846 static void
12847 say_where (struct breakpoint *b)
12848 {
12849 struct value_print_options opts;
12850
12851 get_user_print_options (&opts);
12852
12853 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12854 single string. */
12855 if (b->loc == NULL)
12856 {
12857 printf_filtered (_(" (%s) pending."), b->addr_string);
12858 }
12859 else
12860 {
12861 if (opts.addressprint || b->loc->symtab == NULL)
12862 {
12863 printf_filtered (" at ");
12864 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12865 gdb_stdout);
12866 }
12867 if (b->loc->symtab != NULL)
12868 {
12869 /* If there is a single location, we can print the location
12870 more nicely. */
12871 if (b->loc->next == NULL)
12872 printf_filtered (": file %s, line %d.",
12873 symtab_to_filename_for_display (b->loc->symtab),
12874 b->loc->line_number);
12875 else
12876 /* This is not ideal, but each location may have a
12877 different file name, and this at least reflects the
12878 real situation somewhat. */
12879 printf_filtered (": %s.", b->addr_string);
12880 }
12881
12882 if (b->loc->next)
12883 {
12884 struct bp_location *loc = b->loc;
12885 int n = 0;
12886 for (; loc; loc = loc->next)
12887 ++n;
12888 printf_filtered (" (%d locations)", n);
12889 }
12890 }
12891 }
12892
12893 /* Default bp_location_ops methods. */
12894
12895 static void
12896 bp_location_dtor (struct bp_location *self)
12897 {
12898 xfree (self->cond);
12899 if (self->cond_bytecode)
12900 free_agent_expr (self->cond_bytecode);
12901 xfree (self->function_name);
12902
12903 VEC_free (agent_expr_p, self->target_info.conditions);
12904 VEC_free (agent_expr_p, self->target_info.tcommands);
12905 }
12906
12907 static const struct bp_location_ops bp_location_ops =
12908 {
12909 bp_location_dtor
12910 };
12911
12912 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12913 inherit from. */
12914
12915 static void
12916 base_breakpoint_dtor (struct breakpoint *self)
12917 {
12918 decref_counted_command_line (&self->commands);
12919 xfree (self->cond_string);
12920 xfree (self->extra_string);
12921 xfree (self->addr_string);
12922 xfree (self->filter);
12923 xfree (self->addr_string_range_end);
12924 }
12925
12926 static struct bp_location *
12927 base_breakpoint_allocate_location (struct breakpoint *self)
12928 {
12929 struct bp_location *loc;
12930
12931 loc = XNEW (struct bp_location);
12932 init_bp_location (loc, &bp_location_ops, self);
12933 return loc;
12934 }
12935
12936 static void
12937 base_breakpoint_re_set (struct breakpoint *b)
12938 {
12939 /* Nothing to re-set. */
12940 }
12941
12942 #define internal_error_pure_virtual_called() \
12943 gdb_assert_not_reached ("pure virtual function called")
12944
12945 static int
12946 base_breakpoint_insert_location (struct bp_location *bl)
12947 {
12948 internal_error_pure_virtual_called ();
12949 }
12950
12951 static int
12952 base_breakpoint_remove_location (struct bp_location *bl)
12953 {
12954 internal_error_pure_virtual_called ();
12955 }
12956
12957 static int
12958 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12959 struct address_space *aspace,
12960 CORE_ADDR bp_addr,
12961 const struct target_waitstatus *ws)
12962 {
12963 internal_error_pure_virtual_called ();
12964 }
12965
12966 static void
12967 base_breakpoint_check_status (bpstat bs)
12968 {
12969 /* Always stop. */
12970 }
12971
12972 /* A "works_in_software_mode" breakpoint_ops method that just internal
12973 errors. */
12974
12975 static int
12976 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12977 {
12978 internal_error_pure_virtual_called ();
12979 }
12980
12981 /* A "resources_needed" breakpoint_ops method that just internal
12982 errors. */
12983
12984 static int
12985 base_breakpoint_resources_needed (const struct bp_location *bl)
12986 {
12987 internal_error_pure_virtual_called ();
12988 }
12989
12990 static enum print_stop_action
12991 base_breakpoint_print_it (bpstat bs)
12992 {
12993 internal_error_pure_virtual_called ();
12994 }
12995
12996 static void
12997 base_breakpoint_print_one_detail (const struct breakpoint *self,
12998 struct ui_out *uiout)
12999 {
13000 /* nothing */
13001 }
13002
13003 static void
13004 base_breakpoint_print_mention (struct breakpoint *b)
13005 {
13006 internal_error_pure_virtual_called ();
13007 }
13008
13009 static void
13010 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
13011 {
13012 internal_error_pure_virtual_called ();
13013 }
13014
13015 static void
13016 base_breakpoint_create_sals_from_address (char **arg,
13017 struct linespec_result *canonical,
13018 enum bptype type_wanted,
13019 char *addr_start,
13020 char **copy_arg)
13021 {
13022 internal_error_pure_virtual_called ();
13023 }
13024
13025 static void
13026 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13027 struct linespec_result *c,
13028 char *cond_string,
13029 char *extra_string,
13030 enum bptype type_wanted,
13031 enum bpdisp disposition,
13032 int thread,
13033 int task, int ignore_count,
13034 const struct breakpoint_ops *o,
13035 int from_tty, int enabled,
13036 int internal, unsigned flags)
13037 {
13038 internal_error_pure_virtual_called ();
13039 }
13040
13041 static void
13042 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
13043 struct symtabs_and_lines *sals)
13044 {
13045 internal_error_pure_virtual_called ();
13046 }
13047
13048 /* The default 'explains_signal' method. */
13049
13050 static int
13051 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13052 {
13053 return 1;
13054 }
13055
13056 /* The default "after_condition_true" method. */
13057
13058 static void
13059 base_breakpoint_after_condition_true (struct bpstats *bs)
13060 {
13061 /* Nothing to do. */
13062 }
13063
13064 struct breakpoint_ops base_breakpoint_ops =
13065 {
13066 base_breakpoint_dtor,
13067 base_breakpoint_allocate_location,
13068 base_breakpoint_re_set,
13069 base_breakpoint_insert_location,
13070 base_breakpoint_remove_location,
13071 base_breakpoint_breakpoint_hit,
13072 base_breakpoint_check_status,
13073 base_breakpoint_resources_needed,
13074 base_breakpoint_works_in_software_mode,
13075 base_breakpoint_print_it,
13076 NULL,
13077 base_breakpoint_print_one_detail,
13078 base_breakpoint_print_mention,
13079 base_breakpoint_print_recreate,
13080 base_breakpoint_create_sals_from_address,
13081 base_breakpoint_create_breakpoints_sal,
13082 base_breakpoint_decode_linespec,
13083 base_breakpoint_explains_signal,
13084 base_breakpoint_after_condition_true,
13085 };
13086
13087 /* Default breakpoint_ops methods. */
13088
13089 static void
13090 bkpt_re_set (struct breakpoint *b)
13091 {
13092 /* FIXME: is this still reachable? */
13093 if (b->addr_string == NULL)
13094 {
13095 /* Anything without a string can't be re-set. */
13096 delete_breakpoint (b);
13097 return;
13098 }
13099
13100 breakpoint_re_set_default (b);
13101 }
13102
13103 static int
13104 bkpt_insert_location (struct bp_location *bl)
13105 {
13106 if (bl->loc_type == bp_loc_hardware_breakpoint)
13107 return target_insert_hw_breakpoint (bl->gdbarch,
13108 &bl->target_info);
13109 else
13110 return target_insert_breakpoint (bl->gdbarch,
13111 &bl->target_info);
13112 }
13113
13114 static int
13115 bkpt_remove_location (struct bp_location *bl)
13116 {
13117 if (bl->loc_type == bp_loc_hardware_breakpoint)
13118 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13119 else
13120 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13121 }
13122
13123 static int
13124 bkpt_breakpoint_hit (const struct bp_location *bl,
13125 struct address_space *aspace, CORE_ADDR bp_addr,
13126 const struct target_waitstatus *ws)
13127 {
13128 if (ws->kind != TARGET_WAITKIND_STOPPED
13129 || ws->value.sig != GDB_SIGNAL_TRAP)
13130 return 0;
13131
13132 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13133 aspace, bp_addr))
13134 return 0;
13135
13136 if (overlay_debugging /* unmapped overlay section */
13137 && section_is_overlay (bl->section)
13138 && !section_is_mapped (bl->section))
13139 return 0;
13140
13141 return 1;
13142 }
13143
13144 static int
13145 dprintf_breakpoint_hit (const struct bp_location *bl,
13146 struct address_space *aspace, CORE_ADDR bp_addr,
13147 const struct target_waitstatus *ws)
13148 {
13149 if (dprintf_style == dprintf_style_agent
13150 && target_can_run_breakpoint_commands ())
13151 {
13152 /* An agent-style dprintf never causes a stop. If we see a trap
13153 for this address it must be for a breakpoint that happens to
13154 be set at the same address. */
13155 return 0;
13156 }
13157
13158 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13159 }
13160
13161 static int
13162 bkpt_resources_needed (const struct bp_location *bl)
13163 {
13164 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13165
13166 return 1;
13167 }
13168
13169 static enum print_stop_action
13170 bkpt_print_it (bpstat bs)
13171 {
13172 struct breakpoint *b;
13173 const struct bp_location *bl;
13174 int bp_temp;
13175 struct ui_out *uiout = current_uiout;
13176
13177 gdb_assert (bs->bp_location_at != NULL);
13178
13179 bl = bs->bp_location_at;
13180 b = bs->breakpoint_at;
13181
13182 bp_temp = b->disposition == disp_del;
13183 if (bl->address != bl->requested_address)
13184 breakpoint_adjustment_warning (bl->requested_address,
13185 bl->address,
13186 b->number, 1);
13187 annotate_breakpoint (b->number);
13188 if (bp_temp)
13189 ui_out_text (uiout, "\nTemporary breakpoint ");
13190 else
13191 ui_out_text (uiout, "\nBreakpoint ");
13192 if (ui_out_is_mi_like_p (uiout))
13193 {
13194 ui_out_field_string (uiout, "reason",
13195 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13196 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13197 }
13198 ui_out_field_int (uiout, "bkptno", b->number);
13199 ui_out_text (uiout, ", ");
13200
13201 return PRINT_SRC_AND_LOC;
13202 }
13203
13204 static void
13205 bkpt_print_mention (struct breakpoint *b)
13206 {
13207 if (ui_out_is_mi_like_p (current_uiout))
13208 return;
13209
13210 switch (b->type)
13211 {
13212 case bp_breakpoint:
13213 case bp_gnu_ifunc_resolver:
13214 if (b->disposition == disp_del)
13215 printf_filtered (_("Temporary breakpoint"));
13216 else
13217 printf_filtered (_("Breakpoint"));
13218 printf_filtered (_(" %d"), b->number);
13219 if (b->type == bp_gnu_ifunc_resolver)
13220 printf_filtered (_(" at gnu-indirect-function resolver"));
13221 break;
13222 case bp_hardware_breakpoint:
13223 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13224 break;
13225 case bp_dprintf:
13226 printf_filtered (_("Dprintf %d"), b->number);
13227 break;
13228 }
13229
13230 say_where (b);
13231 }
13232
13233 static void
13234 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13235 {
13236 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13237 fprintf_unfiltered (fp, "tbreak");
13238 else if (tp->type == bp_breakpoint)
13239 fprintf_unfiltered (fp, "break");
13240 else if (tp->type == bp_hardware_breakpoint
13241 && tp->disposition == disp_del)
13242 fprintf_unfiltered (fp, "thbreak");
13243 else if (tp->type == bp_hardware_breakpoint)
13244 fprintf_unfiltered (fp, "hbreak");
13245 else
13246 internal_error (__FILE__, __LINE__,
13247 _("unhandled breakpoint type %d"), (int) tp->type);
13248
13249 fprintf_unfiltered (fp, " %s", tp->addr_string);
13250 print_recreate_thread (tp, fp);
13251 }
13252
13253 static void
13254 bkpt_create_sals_from_address (char **arg,
13255 struct linespec_result *canonical,
13256 enum bptype type_wanted,
13257 char *addr_start, char **copy_arg)
13258 {
13259 create_sals_from_address_default (arg, canonical, type_wanted,
13260 addr_start, copy_arg);
13261 }
13262
13263 static void
13264 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13265 struct linespec_result *canonical,
13266 char *cond_string,
13267 char *extra_string,
13268 enum bptype type_wanted,
13269 enum bpdisp disposition,
13270 int thread,
13271 int task, int ignore_count,
13272 const struct breakpoint_ops *ops,
13273 int from_tty, int enabled,
13274 int internal, unsigned flags)
13275 {
13276 create_breakpoints_sal_default (gdbarch, canonical,
13277 cond_string, extra_string,
13278 type_wanted,
13279 disposition, thread, task,
13280 ignore_count, ops, from_tty,
13281 enabled, internal, flags);
13282 }
13283
13284 static void
13285 bkpt_decode_linespec (struct breakpoint *b, char **s,
13286 struct symtabs_and_lines *sals)
13287 {
13288 decode_linespec_default (b, s, sals);
13289 }
13290
13291 /* Virtual table for internal breakpoints. */
13292
13293 static void
13294 internal_bkpt_re_set (struct breakpoint *b)
13295 {
13296 switch (b->type)
13297 {
13298 /* Delete overlay event and longjmp master breakpoints; they
13299 will be reset later by breakpoint_re_set. */
13300 case bp_overlay_event:
13301 case bp_longjmp_master:
13302 case bp_std_terminate_master:
13303 case bp_exception_master:
13304 delete_breakpoint (b);
13305 break;
13306
13307 /* This breakpoint is special, it's set up when the inferior
13308 starts and we really don't want to touch it. */
13309 case bp_shlib_event:
13310
13311 /* Like bp_shlib_event, this breakpoint type is special. Once
13312 it is set up, we do not want to touch it. */
13313 case bp_thread_event:
13314 break;
13315 }
13316 }
13317
13318 static void
13319 internal_bkpt_check_status (bpstat bs)
13320 {
13321 if (bs->breakpoint_at->type == bp_shlib_event)
13322 {
13323 /* If requested, stop when the dynamic linker notifies GDB of
13324 events. This allows the user to get control and place
13325 breakpoints in initializer routines for dynamically loaded
13326 objects (among other things). */
13327 bs->stop = stop_on_solib_events;
13328 bs->print = stop_on_solib_events;
13329 }
13330 else
13331 bs->stop = 0;
13332 }
13333
13334 static enum print_stop_action
13335 internal_bkpt_print_it (bpstat bs)
13336 {
13337 struct breakpoint *b;
13338
13339 b = bs->breakpoint_at;
13340
13341 switch (b->type)
13342 {
13343 case bp_shlib_event:
13344 /* Did we stop because the user set the stop_on_solib_events
13345 variable? (If so, we report this as a generic, "Stopped due
13346 to shlib event" message.) */
13347 print_solib_event (0);
13348 break;
13349
13350 case bp_thread_event:
13351 /* Not sure how we will get here.
13352 GDB should not stop for these breakpoints. */
13353 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13354 break;
13355
13356 case bp_overlay_event:
13357 /* By analogy with the thread event, GDB should not stop for these. */
13358 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13359 break;
13360
13361 case bp_longjmp_master:
13362 /* These should never be enabled. */
13363 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13364 break;
13365
13366 case bp_std_terminate_master:
13367 /* These should never be enabled. */
13368 printf_filtered (_("std::terminate Master Breakpoint: "
13369 "gdb should not stop!\n"));
13370 break;
13371
13372 case bp_exception_master:
13373 /* These should never be enabled. */
13374 printf_filtered (_("Exception Master Breakpoint: "
13375 "gdb should not stop!\n"));
13376 break;
13377 }
13378
13379 return PRINT_NOTHING;
13380 }
13381
13382 static void
13383 internal_bkpt_print_mention (struct breakpoint *b)
13384 {
13385 /* Nothing to mention. These breakpoints are internal. */
13386 }
13387
13388 /* Virtual table for momentary breakpoints */
13389
13390 static void
13391 momentary_bkpt_re_set (struct breakpoint *b)
13392 {
13393 /* Keep temporary breakpoints, which can be encountered when we step
13394 over a dlopen call and solib_add is resetting the breakpoints.
13395 Otherwise these should have been blown away via the cleanup chain
13396 or by breakpoint_init_inferior when we rerun the executable. */
13397 }
13398
13399 static void
13400 momentary_bkpt_check_status (bpstat bs)
13401 {
13402 /* Nothing. The point of these breakpoints is causing a stop. */
13403 }
13404
13405 static enum print_stop_action
13406 momentary_bkpt_print_it (bpstat bs)
13407 {
13408 struct ui_out *uiout = current_uiout;
13409
13410 if (ui_out_is_mi_like_p (uiout))
13411 {
13412 struct breakpoint *b = bs->breakpoint_at;
13413
13414 switch (b->type)
13415 {
13416 case bp_finish:
13417 ui_out_field_string
13418 (uiout, "reason",
13419 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13420 break;
13421
13422 case bp_until:
13423 ui_out_field_string
13424 (uiout, "reason",
13425 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13426 break;
13427 }
13428 }
13429
13430 return PRINT_UNKNOWN;
13431 }
13432
13433 static void
13434 momentary_bkpt_print_mention (struct breakpoint *b)
13435 {
13436 /* Nothing to mention. These breakpoints are internal. */
13437 }
13438
13439 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13440
13441 It gets cleared already on the removal of the first one of such placed
13442 breakpoints. This is OK as they get all removed altogether. */
13443
13444 static void
13445 longjmp_bkpt_dtor (struct breakpoint *self)
13446 {
13447 struct thread_info *tp = find_thread_id (self->thread);
13448
13449 if (tp)
13450 tp->initiating_frame = null_frame_id;
13451
13452 momentary_breakpoint_ops.dtor (self);
13453 }
13454
13455 /* Specific methods for probe breakpoints. */
13456
13457 static int
13458 bkpt_probe_insert_location (struct bp_location *bl)
13459 {
13460 int v = bkpt_insert_location (bl);
13461
13462 if (v == 0)
13463 {
13464 /* The insertion was successful, now let's set the probe's semaphore
13465 if needed. */
13466 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13467 bl->probe.objfile,
13468 bl->gdbarch);
13469 }
13470
13471 return v;
13472 }
13473
13474 static int
13475 bkpt_probe_remove_location (struct bp_location *bl)
13476 {
13477 /* Let's clear the semaphore before removing the location. */
13478 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13479 bl->probe.objfile,
13480 bl->gdbarch);
13481
13482 return bkpt_remove_location (bl);
13483 }
13484
13485 static void
13486 bkpt_probe_create_sals_from_address (char **arg,
13487 struct linespec_result *canonical,
13488 enum bptype type_wanted,
13489 char *addr_start, char **copy_arg)
13490 {
13491 struct linespec_sals lsal;
13492
13493 lsal.sals = parse_probes (arg, canonical);
13494
13495 *copy_arg = xstrdup (canonical->addr_string);
13496 lsal.canonical = xstrdup (*copy_arg);
13497
13498 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13499 }
13500
13501 static void
13502 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13503 struct symtabs_and_lines *sals)
13504 {
13505 *sals = parse_probes (s, NULL);
13506 if (!sals->sals)
13507 error (_("probe not found"));
13508 }
13509
13510 /* The breakpoint_ops structure to be used in tracepoints. */
13511
13512 static void
13513 tracepoint_re_set (struct breakpoint *b)
13514 {
13515 breakpoint_re_set_default (b);
13516 }
13517
13518 static int
13519 tracepoint_breakpoint_hit (const struct bp_location *bl,
13520 struct address_space *aspace, CORE_ADDR bp_addr,
13521 const struct target_waitstatus *ws)
13522 {
13523 /* By definition, the inferior does not report stops at
13524 tracepoints. */
13525 return 0;
13526 }
13527
13528 static void
13529 tracepoint_print_one_detail (const struct breakpoint *self,
13530 struct ui_out *uiout)
13531 {
13532 struct tracepoint *tp = (struct tracepoint *) self;
13533 if (tp->static_trace_marker_id)
13534 {
13535 gdb_assert (self->type == bp_static_tracepoint);
13536
13537 ui_out_text (uiout, "\tmarker id is ");
13538 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13539 tp->static_trace_marker_id);
13540 ui_out_text (uiout, "\n");
13541 }
13542 }
13543
13544 static void
13545 tracepoint_print_mention (struct breakpoint *b)
13546 {
13547 if (ui_out_is_mi_like_p (current_uiout))
13548 return;
13549
13550 switch (b->type)
13551 {
13552 case bp_tracepoint:
13553 printf_filtered (_("Tracepoint"));
13554 printf_filtered (_(" %d"), b->number);
13555 break;
13556 case bp_fast_tracepoint:
13557 printf_filtered (_("Fast tracepoint"));
13558 printf_filtered (_(" %d"), b->number);
13559 break;
13560 case bp_static_tracepoint:
13561 printf_filtered (_("Static tracepoint"));
13562 printf_filtered (_(" %d"), b->number);
13563 break;
13564 default:
13565 internal_error (__FILE__, __LINE__,
13566 _("unhandled tracepoint type %d"), (int) b->type);
13567 }
13568
13569 say_where (b);
13570 }
13571
13572 static void
13573 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13574 {
13575 struct tracepoint *tp = (struct tracepoint *) self;
13576
13577 if (self->type == bp_fast_tracepoint)
13578 fprintf_unfiltered (fp, "ftrace");
13579 if (self->type == bp_static_tracepoint)
13580 fprintf_unfiltered (fp, "strace");
13581 else if (self->type == bp_tracepoint)
13582 fprintf_unfiltered (fp, "trace");
13583 else
13584 internal_error (__FILE__, __LINE__,
13585 _("unhandled tracepoint type %d"), (int) self->type);
13586
13587 fprintf_unfiltered (fp, " %s", self->addr_string);
13588 print_recreate_thread (self, fp);
13589
13590 if (tp->pass_count)
13591 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13592 }
13593
13594 static void
13595 tracepoint_create_sals_from_address (char **arg,
13596 struct linespec_result *canonical,
13597 enum bptype type_wanted,
13598 char *addr_start, char **copy_arg)
13599 {
13600 create_sals_from_address_default (arg, canonical, type_wanted,
13601 addr_start, copy_arg);
13602 }
13603
13604 static void
13605 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13606 struct linespec_result *canonical,
13607 char *cond_string,
13608 char *extra_string,
13609 enum bptype type_wanted,
13610 enum bpdisp disposition,
13611 int thread,
13612 int task, int ignore_count,
13613 const struct breakpoint_ops *ops,
13614 int from_tty, int enabled,
13615 int internal, unsigned flags)
13616 {
13617 create_breakpoints_sal_default (gdbarch, canonical,
13618 cond_string, extra_string,
13619 type_wanted,
13620 disposition, thread, task,
13621 ignore_count, ops, from_tty,
13622 enabled, internal, flags);
13623 }
13624
13625 static void
13626 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13627 struct symtabs_and_lines *sals)
13628 {
13629 decode_linespec_default (b, s, sals);
13630 }
13631
13632 struct breakpoint_ops tracepoint_breakpoint_ops;
13633
13634 /* The breakpoint_ops structure to be use on tracepoints placed in a
13635 static probe. */
13636
13637 static void
13638 tracepoint_probe_create_sals_from_address (char **arg,
13639 struct linespec_result *canonical,
13640 enum bptype type_wanted,
13641 char *addr_start, char **copy_arg)
13642 {
13643 /* We use the same method for breakpoint on probes. */
13644 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13645 addr_start, copy_arg);
13646 }
13647
13648 static void
13649 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13650 struct symtabs_and_lines *sals)
13651 {
13652 /* We use the same method for breakpoint on probes. */
13653 bkpt_probe_decode_linespec (b, s, sals);
13654 }
13655
13656 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13657
13658 /* Dprintf breakpoint_ops methods. */
13659
13660 static void
13661 dprintf_re_set (struct breakpoint *b)
13662 {
13663 breakpoint_re_set_default (b);
13664
13665 /* This breakpoint could have been pending, and be resolved now, and
13666 if so, we should now have the extra string. If we don't, the
13667 dprintf was malformed when created, but we couldn't tell because
13668 we can't extract the extra string until the location is
13669 resolved. */
13670 if (b->loc != NULL && b->extra_string == NULL)
13671 error (_("Format string required"));
13672
13673 /* 1 - connect to target 1, that can run breakpoint commands.
13674 2 - create a dprintf, which resolves fine.
13675 3 - disconnect from target 1
13676 4 - connect to target 2, that can NOT run breakpoint commands.
13677
13678 After steps #3/#4, you'll want the dprintf command list to
13679 be updated, because target 1 and 2 may well return different
13680 answers for target_can_run_breakpoint_commands().
13681 Given absence of finer grained resetting, we get to do
13682 it all the time. */
13683 if (b->extra_string != NULL)
13684 update_dprintf_command_list (b);
13685 }
13686
13687 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13688
13689 static void
13690 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13691 {
13692 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13693 tp->extra_string);
13694 print_recreate_thread (tp, fp);
13695 }
13696
13697 /* Implement the "after_condition_true" breakpoint_ops method for
13698 dprintf.
13699
13700 dprintf's are implemented with regular commands in their command
13701 list, but we run the commands here instead of before presenting the
13702 stop to the user, as dprintf's don't actually cause a stop. This
13703 also makes it so that the commands of multiple dprintfs at the same
13704 address are all handled. */
13705
13706 static void
13707 dprintf_after_condition_true (struct bpstats *bs)
13708 {
13709 struct cleanup *old_chain;
13710 struct bpstats tmp_bs = { NULL };
13711 struct bpstats *tmp_bs_p = &tmp_bs;
13712
13713 /* dprintf's never cause a stop. This wasn't set in the
13714 check_status hook instead because that would make the dprintf's
13715 condition not be evaluated. */
13716 bs->stop = 0;
13717
13718 /* Run the command list here. Take ownership of it instead of
13719 copying. We never want these commands to run later in
13720 bpstat_do_actions, if a breakpoint that causes a stop happens to
13721 be set at same address as this dprintf, or even if running the
13722 commands here throws. */
13723 tmp_bs.commands = bs->commands;
13724 bs->commands = NULL;
13725 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13726
13727 bpstat_do_actions_1 (&tmp_bs_p);
13728
13729 /* 'tmp_bs.commands' will usually be NULL by now, but
13730 bpstat_do_actions_1 may return early without processing the whole
13731 list. */
13732 do_cleanups (old_chain);
13733 }
13734
13735 /* The breakpoint_ops structure to be used on static tracepoints with
13736 markers (`-m'). */
13737
13738 static void
13739 strace_marker_create_sals_from_address (char **arg,
13740 struct linespec_result *canonical,
13741 enum bptype type_wanted,
13742 char *addr_start, char **copy_arg)
13743 {
13744 struct linespec_sals lsal;
13745
13746 lsal.sals = decode_static_tracepoint_spec (arg);
13747
13748 *copy_arg = savestring (addr_start, *arg - addr_start);
13749
13750 canonical->addr_string = xstrdup (*copy_arg);
13751 lsal.canonical = xstrdup (*copy_arg);
13752 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13753 }
13754
13755 static void
13756 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13757 struct linespec_result *canonical,
13758 char *cond_string,
13759 char *extra_string,
13760 enum bptype type_wanted,
13761 enum bpdisp disposition,
13762 int thread,
13763 int task, int ignore_count,
13764 const struct breakpoint_ops *ops,
13765 int from_tty, int enabled,
13766 int internal, unsigned flags)
13767 {
13768 int i;
13769 struct linespec_sals *lsal = VEC_index (linespec_sals,
13770 canonical->sals, 0);
13771
13772 /* If the user is creating a static tracepoint by marker id
13773 (strace -m MARKER_ID), then store the sals index, so that
13774 breakpoint_re_set can try to match up which of the newly
13775 found markers corresponds to this one, and, don't try to
13776 expand multiple locations for each sal, given than SALS
13777 already should contain all sals for MARKER_ID. */
13778
13779 for (i = 0; i < lsal->sals.nelts; ++i)
13780 {
13781 struct symtabs_and_lines expanded;
13782 struct tracepoint *tp;
13783 struct cleanup *old_chain;
13784 char *addr_string;
13785
13786 expanded.nelts = 1;
13787 expanded.sals = &lsal->sals.sals[i];
13788
13789 addr_string = xstrdup (canonical->addr_string);
13790 old_chain = make_cleanup (xfree, addr_string);
13791
13792 tp = XCNEW (struct tracepoint);
13793 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13794 addr_string, NULL,
13795 cond_string, extra_string,
13796 type_wanted, disposition,
13797 thread, task, ignore_count, ops,
13798 from_tty, enabled, internal, flags,
13799 canonical->special_display);
13800 /* Given that its possible to have multiple markers with
13801 the same string id, if the user is creating a static
13802 tracepoint by marker id ("strace -m MARKER_ID"), then
13803 store the sals index, so that breakpoint_re_set can
13804 try to match up which of the newly found markers
13805 corresponds to this one */
13806 tp->static_trace_marker_id_idx = i;
13807
13808 install_breakpoint (internal, &tp->base, 0);
13809
13810 discard_cleanups (old_chain);
13811 }
13812 }
13813
13814 static void
13815 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13816 struct symtabs_and_lines *sals)
13817 {
13818 struct tracepoint *tp = (struct tracepoint *) b;
13819
13820 *sals = decode_static_tracepoint_spec (s);
13821 if (sals->nelts > tp->static_trace_marker_id_idx)
13822 {
13823 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13824 sals->nelts = 1;
13825 }
13826 else
13827 error (_("marker %s not found"), tp->static_trace_marker_id);
13828 }
13829
13830 static struct breakpoint_ops strace_marker_breakpoint_ops;
13831
13832 static int
13833 strace_marker_p (struct breakpoint *b)
13834 {
13835 return b->ops == &strace_marker_breakpoint_ops;
13836 }
13837
13838 /* Delete a breakpoint and clean up all traces of it in the data
13839 structures. */
13840
13841 void
13842 delete_breakpoint (struct breakpoint *bpt)
13843 {
13844 struct breakpoint *b;
13845
13846 gdb_assert (bpt != NULL);
13847
13848 /* Has this bp already been deleted? This can happen because
13849 multiple lists can hold pointers to bp's. bpstat lists are
13850 especial culprits.
13851
13852 One example of this happening is a watchpoint's scope bp. When
13853 the scope bp triggers, we notice that the watchpoint is out of
13854 scope, and delete it. We also delete its scope bp. But the
13855 scope bp is marked "auto-deleting", and is already on a bpstat.
13856 That bpstat is then checked for auto-deleting bp's, which are
13857 deleted.
13858
13859 A real solution to this problem might involve reference counts in
13860 bp's, and/or giving them pointers back to their referencing
13861 bpstat's, and teaching delete_breakpoint to only free a bp's
13862 storage when no more references were extent. A cheaper bandaid
13863 was chosen. */
13864 if (bpt->type == bp_none)
13865 return;
13866
13867 /* At least avoid this stale reference until the reference counting
13868 of breakpoints gets resolved. */
13869 if (bpt->related_breakpoint != bpt)
13870 {
13871 struct breakpoint *related;
13872 struct watchpoint *w;
13873
13874 if (bpt->type == bp_watchpoint_scope)
13875 w = (struct watchpoint *) bpt->related_breakpoint;
13876 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13877 w = (struct watchpoint *) bpt;
13878 else
13879 w = NULL;
13880 if (w != NULL)
13881 watchpoint_del_at_next_stop (w);
13882
13883 /* Unlink bpt from the bpt->related_breakpoint ring. */
13884 for (related = bpt; related->related_breakpoint != bpt;
13885 related = related->related_breakpoint);
13886 related->related_breakpoint = bpt->related_breakpoint;
13887 bpt->related_breakpoint = bpt;
13888 }
13889
13890 /* watch_command_1 creates a watchpoint but only sets its number if
13891 update_watchpoint succeeds in creating its bp_locations. If there's
13892 a problem in that process, we'll be asked to delete the half-created
13893 watchpoint. In that case, don't announce the deletion. */
13894 if (bpt->number)
13895 observer_notify_breakpoint_deleted (bpt);
13896
13897 if (breakpoint_chain == bpt)
13898 breakpoint_chain = bpt->next;
13899
13900 ALL_BREAKPOINTS (b)
13901 if (b->next == bpt)
13902 {
13903 b->next = bpt->next;
13904 break;
13905 }
13906
13907 /* Be sure no bpstat's are pointing at the breakpoint after it's
13908 been freed. */
13909 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13910 in all threads for now. Note that we cannot just remove bpstats
13911 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13912 commands are associated with the bpstat; if we remove it here,
13913 then the later call to bpstat_do_actions (&stop_bpstat); in
13914 event-top.c won't do anything, and temporary breakpoints with
13915 commands won't work. */
13916
13917 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13918
13919 /* Now that breakpoint is removed from breakpoint list, update the
13920 global location list. This will remove locations that used to
13921 belong to this breakpoint. Do this before freeing the breakpoint
13922 itself, since remove_breakpoint looks at location's owner. It
13923 might be better design to have location completely
13924 self-contained, but it's not the case now. */
13925 update_global_location_list (0);
13926
13927 bpt->ops->dtor (bpt);
13928 /* On the chance that someone will soon try again to delete this
13929 same bp, we mark it as deleted before freeing its storage. */
13930 bpt->type = bp_none;
13931 xfree (bpt);
13932 }
13933
13934 static void
13935 do_delete_breakpoint_cleanup (void *b)
13936 {
13937 delete_breakpoint (b);
13938 }
13939
13940 struct cleanup *
13941 make_cleanup_delete_breakpoint (struct breakpoint *b)
13942 {
13943 return make_cleanup (do_delete_breakpoint_cleanup, b);
13944 }
13945
13946 /* Iterator function to call a user-provided callback function once
13947 for each of B and its related breakpoints. */
13948
13949 static void
13950 iterate_over_related_breakpoints (struct breakpoint *b,
13951 void (*function) (struct breakpoint *,
13952 void *),
13953 void *data)
13954 {
13955 struct breakpoint *related;
13956
13957 related = b;
13958 do
13959 {
13960 struct breakpoint *next;
13961
13962 /* FUNCTION may delete RELATED. */
13963 next = related->related_breakpoint;
13964
13965 if (next == related)
13966 {
13967 /* RELATED is the last ring entry. */
13968 function (related, data);
13969
13970 /* FUNCTION may have deleted it, so we'd never reach back to
13971 B. There's nothing left to do anyway, so just break
13972 out. */
13973 break;
13974 }
13975 else
13976 function (related, data);
13977
13978 related = next;
13979 }
13980 while (related != b);
13981 }
13982
13983 static void
13984 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13985 {
13986 delete_breakpoint (b);
13987 }
13988
13989 /* A callback for map_breakpoint_numbers that calls
13990 delete_breakpoint. */
13991
13992 static void
13993 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13994 {
13995 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13996 }
13997
13998 void
13999 delete_command (char *arg, int from_tty)
14000 {
14001 struct breakpoint *b, *b_tmp;
14002
14003 dont_repeat ();
14004
14005 if (arg == 0)
14006 {
14007 int breaks_to_delete = 0;
14008
14009 /* Delete all breakpoints if no argument. Do not delete
14010 internal breakpoints, these have to be deleted with an
14011 explicit breakpoint number argument. */
14012 ALL_BREAKPOINTS (b)
14013 if (user_breakpoint_p (b))
14014 {
14015 breaks_to_delete = 1;
14016 break;
14017 }
14018
14019 /* Ask user only if there are some breakpoints to delete. */
14020 if (!from_tty
14021 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
14022 {
14023 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14024 if (user_breakpoint_p (b))
14025 delete_breakpoint (b);
14026 }
14027 }
14028 else
14029 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
14030 }
14031
14032 static int
14033 all_locations_are_pending (struct bp_location *loc)
14034 {
14035 for (; loc; loc = loc->next)
14036 if (!loc->shlib_disabled
14037 && !loc->pspace->executing_startup)
14038 return 0;
14039 return 1;
14040 }
14041
14042 /* Subroutine of update_breakpoint_locations to simplify it.
14043 Return non-zero if multiple fns in list LOC have the same name.
14044 Null names are ignored. */
14045
14046 static int
14047 ambiguous_names_p (struct bp_location *loc)
14048 {
14049 struct bp_location *l;
14050 htab_t htab = htab_create_alloc (13, htab_hash_string,
14051 (int (*) (const void *,
14052 const void *)) streq,
14053 NULL, xcalloc, xfree);
14054
14055 for (l = loc; l != NULL; l = l->next)
14056 {
14057 const char **slot;
14058 const char *name = l->function_name;
14059
14060 /* Allow for some names to be NULL, ignore them. */
14061 if (name == NULL)
14062 continue;
14063
14064 slot = (const char **) htab_find_slot (htab, (const void *) name,
14065 INSERT);
14066 /* NOTE: We can assume slot != NULL here because xcalloc never
14067 returns NULL. */
14068 if (*slot != NULL)
14069 {
14070 htab_delete (htab);
14071 return 1;
14072 }
14073 *slot = name;
14074 }
14075
14076 htab_delete (htab);
14077 return 0;
14078 }
14079
14080 /* When symbols change, it probably means the sources changed as well,
14081 and it might mean the static tracepoint markers are no longer at
14082 the same address or line numbers they used to be at last we
14083 checked. Losing your static tracepoints whenever you rebuild is
14084 undesirable. This function tries to resync/rematch gdb static
14085 tracepoints with the markers on the target, for static tracepoints
14086 that have not been set by marker id. Static tracepoint that have
14087 been set by marker id are reset by marker id in breakpoint_re_set.
14088 The heuristic is:
14089
14090 1) For a tracepoint set at a specific address, look for a marker at
14091 the old PC. If one is found there, assume to be the same marker.
14092 If the name / string id of the marker found is different from the
14093 previous known name, assume that means the user renamed the marker
14094 in the sources, and output a warning.
14095
14096 2) For a tracepoint set at a given line number, look for a marker
14097 at the new address of the old line number. If one is found there,
14098 assume to be the same marker. If the name / string id of the
14099 marker found is different from the previous known name, assume that
14100 means the user renamed the marker in the sources, and output a
14101 warning.
14102
14103 3) If a marker is no longer found at the same address or line, it
14104 may mean the marker no longer exists. But it may also just mean
14105 the code changed a bit. Maybe the user added a few lines of code
14106 that made the marker move up or down (in line number terms). Ask
14107 the target for info about the marker with the string id as we knew
14108 it. If found, update line number and address in the matching
14109 static tracepoint. This will get confused if there's more than one
14110 marker with the same ID (possible in UST, although unadvised
14111 precisely because it confuses tools). */
14112
14113 static struct symtab_and_line
14114 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14115 {
14116 struct tracepoint *tp = (struct tracepoint *) b;
14117 struct static_tracepoint_marker marker;
14118 CORE_ADDR pc;
14119
14120 pc = sal.pc;
14121 if (sal.line)
14122 find_line_pc (sal.symtab, sal.line, &pc);
14123
14124 if (target_static_tracepoint_marker_at (pc, &marker))
14125 {
14126 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14127 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14128 b->number,
14129 tp->static_trace_marker_id, marker.str_id);
14130
14131 xfree (tp->static_trace_marker_id);
14132 tp->static_trace_marker_id = xstrdup (marker.str_id);
14133 release_static_tracepoint_marker (&marker);
14134
14135 return sal;
14136 }
14137
14138 /* Old marker wasn't found on target at lineno. Try looking it up
14139 by string ID. */
14140 if (!sal.explicit_pc
14141 && sal.line != 0
14142 && sal.symtab != NULL
14143 && tp->static_trace_marker_id != NULL)
14144 {
14145 VEC(static_tracepoint_marker_p) *markers;
14146
14147 markers
14148 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14149
14150 if (!VEC_empty(static_tracepoint_marker_p, markers))
14151 {
14152 struct symtab_and_line sal2;
14153 struct symbol *sym;
14154 struct static_tracepoint_marker *tpmarker;
14155 struct ui_out *uiout = current_uiout;
14156
14157 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14158
14159 xfree (tp->static_trace_marker_id);
14160 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14161
14162 warning (_("marker for static tracepoint %d (%s) not "
14163 "found at previous line number"),
14164 b->number, tp->static_trace_marker_id);
14165
14166 init_sal (&sal2);
14167
14168 sal2.pc = tpmarker->address;
14169
14170 sal2 = find_pc_line (tpmarker->address, 0);
14171 sym = find_pc_sect_function (tpmarker->address, NULL);
14172 ui_out_text (uiout, "Now in ");
14173 if (sym)
14174 {
14175 ui_out_field_string (uiout, "func",
14176 SYMBOL_PRINT_NAME (sym));
14177 ui_out_text (uiout, " at ");
14178 }
14179 ui_out_field_string (uiout, "file",
14180 symtab_to_filename_for_display (sal2.symtab));
14181 ui_out_text (uiout, ":");
14182
14183 if (ui_out_is_mi_like_p (uiout))
14184 {
14185 const char *fullname = symtab_to_fullname (sal2.symtab);
14186
14187 ui_out_field_string (uiout, "fullname", fullname);
14188 }
14189
14190 ui_out_field_int (uiout, "line", sal2.line);
14191 ui_out_text (uiout, "\n");
14192
14193 b->loc->line_number = sal2.line;
14194 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14195
14196 xfree (b->addr_string);
14197 b->addr_string = xstrprintf ("%s:%d",
14198 symtab_to_filename_for_display (sal2.symtab),
14199 b->loc->line_number);
14200
14201 /* Might be nice to check if function changed, and warn if
14202 so. */
14203
14204 release_static_tracepoint_marker (tpmarker);
14205 }
14206 }
14207 return sal;
14208 }
14209
14210 /* Returns 1 iff locations A and B are sufficiently same that
14211 we don't need to report breakpoint as changed. */
14212
14213 static int
14214 locations_are_equal (struct bp_location *a, struct bp_location *b)
14215 {
14216 while (a && b)
14217 {
14218 if (a->address != b->address)
14219 return 0;
14220
14221 if (a->shlib_disabled != b->shlib_disabled)
14222 return 0;
14223
14224 if (a->enabled != b->enabled)
14225 return 0;
14226
14227 a = a->next;
14228 b = b->next;
14229 }
14230
14231 if ((a == NULL) != (b == NULL))
14232 return 0;
14233
14234 return 1;
14235 }
14236
14237 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14238 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14239 a ranged breakpoint. */
14240
14241 void
14242 update_breakpoint_locations (struct breakpoint *b,
14243 struct symtabs_and_lines sals,
14244 struct symtabs_and_lines sals_end)
14245 {
14246 int i;
14247 struct bp_location *existing_locations = b->loc;
14248
14249 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14250 {
14251 /* Ranged breakpoints have only one start location and one end
14252 location. */
14253 b->enable_state = bp_disabled;
14254 update_global_location_list (1);
14255 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14256 "multiple locations found\n"),
14257 b->number);
14258 return;
14259 }
14260
14261 /* If there's no new locations, and all existing locations are
14262 pending, don't do anything. This optimizes the common case where
14263 all locations are in the same shared library, that was unloaded.
14264 We'd like to retain the location, so that when the library is
14265 loaded again, we don't loose the enabled/disabled status of the
14266 individual locations. */
14267 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14268 return;
14269
14270 b->loc = NULL;
14271
14272 for (i = 0; i < sals.nelts; ++i)
14273 {
14274 struct bp_location *new_loc;
14275
14276 switch_to_program_space_and_thread (sals.sals[i].pspace);
14277
14278 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14279
14280 /* Reparse conditions, they might contain references to the
14281 old symtab. */
14282 if (b->cond_string != NULL)
14283 {
14284 const char *s;
14285 volatile struct gdb_exception e;
14286
14287 s = b->cond_string;
14288 TRY_CATCH (e, RETURN_MASK_ERROR)
14289 {
14290 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14291 block_for_pc (sals.sals[i].pc),
14292 0);
14293 }
14294 if (e.reason < 0)
14295 {
14296 warning (_("failed to reevaluate condition "
14297 "for breakpoint %d: %s"),
14298 b->number, e.message);
14299 new_loc->enabled = 0;
14300 }
14301 }
14302
14303 if (sals_end.nelts)
14304 {
14305 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14306
14307 new_loc->length = end - sals.sals[0].pc + 1;
14308 }
14309 }
14310
14311 /* Update locations of permanent breakpoints. */
14312 if (b->enable_state == bp_permanent)
14313 make_breakpoint_permanent (b);
14314
14315 /* If possible, carry over 'disable' status from existing
14316 breakpoints. */
14317 {
14318 struct bp_location *e = existing_locations;
14319 /* If there are multiple breakpoints with the same function name,
14320 e.g. for inline functions, comparing function names won't work.
14321 Instead compare pc addresses; this is just a heuristic as things
14322 may have moved, but in practice it gives the correct answer
14323 often enough until a better solution is found. */
14324 int have_ambiguous_names = ambiguous_names_p (b->loc);
14325
14326 for (; e; e = e->next)
14327 {
14328 if (!e->enabled && e->function_name)
14329 {
14330 struct bp_location *l = b->loc;
14331 if (have_ambiguous_names)
14332 {
14333 for (; l; l = l->next)
14334 if (breakpoint_locations_match (e, l))
14335 {
14336 l->enabled = 0;
14337 break;
14338 }
14339 }
14340 else
14341 {
14342 for (; l; l = l->next)
14343 if (l->function_name
14344 && strcmp (e->function_name, l->function_name) == 0)
14345 {
14346 l->enabled = 0;
14347 break;
14348 }
14349 }
14350 }
14351 }
14352 }
14353
14354 if (!locations_are_equal (existing_locations, b->loc))
14355 observer_notify_breakpoint_modified (b);
14356
14357 update_global_location_list (1);
14358 }
14359
14360 /* Find the SaL locations corresponding to the given ADDR_STRING.
14361 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14362
14363 static struct symtabs_and_lines
14364 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14365 {
14366 char *s;
14367 struct symtabs_and_lines sals = {0};
14368 volatile struct gdb_exception e;
14369
14370 gdb_assert (b->ops != NULL);
14371 s = addr_string;
14372
14373 TRY_CATCH (e, RETURN_MASK_ERROR)
14374 {
14375 b->ops->decode_linespec (b, &s, &sals);
14376 }
14377 if (e.reason < 0)
14378 {
14379 int not_found_and_ok = 0;
14380 /* For pending breakpoints, it's expected that parsing will
14381 fail until the right shared library is loaded. User has
14382 already told to create pending breakpoints and don't need
14383 extra messages. If breakpoint is in bp_shlib_disabled
14384 state, then user already saw the message about that
14385 breakpoint being disabled, and don't want to see more
14386 errors. */
14387 if (e.error == NOT_FOUND_ERROR
14388 && (b->condition_not_parsed
14389 || (b->loc && b->loc->shlib_disabled)
14390 || (b->loc && b->loc->pspace->executing_startup)
14391 || b->enable_state == bp_disabled))
14392 not_found_and_ok = 1;
14393
14394 if (!not_found_and_ok)
14395 {
14396 /* We surely don't want to warn about the same breakpoint
14397 10 times. One solution, implemented here, is disable
14398 the breakpoint on error. Another solution would be to
14399 have separate 'warning emitted' flag. Since this
14400 happens only when a binary has changed, I don't know
14401 which approach is better. */
14402 b->enable_state = bp_disabled;
14403 throw_exception (e);
14404 }
14405 }
14406
14407 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14408 {
14409 int i;
14410
14411 for (i = 0; i < sals.nelts; ++i)
14412 resolve_sal_pc (&sals.sals[i]);
14413 if (b->condition_not_parsed && s && s[0])
14414 {
14415 char *cond_string, *extra_string;
14416 int thread, task;
14417
14418 find_condition_and_thread (s, sals.sals[0].pc,
14419 &cond_string, &thread, &task,
14420 &extra_string);
14421 if (cond_string)
14422 b->cond_string = cond_string;
14423 b->thread = thread;
14424 b->task = task;
14425 if (extra_string)
14426 b->extra_string = extra_string;
14427 b->condition_not_parsed = 0;
14428 }
14429
14430 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14431 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14432
14433 *found = 1;
14434 }
14435 else
14436 *found = 0;
14437
14438 return sals;
14439 }
14440
14441 /* The default re_set method, for typical hardware or software
14442 breakpoints. Reevaluate the breakpoint and recreate its
14443 locations. */
14444
14445 static void
14446 breakpoint_re_set_default (struct breakpoint *b)
14447 {
14448 int found;
14449 struct symtabs_and_lines sals, sals_end;
14450 struct symtabs_and_lines expanded = {0};
14451 struct symtabs_and_lines expanded_end = {0};
14452
14453 sals = addr_string_to_sals (b, b->addr_string, &found);
14454 if (found)
14455 {
14456 make_cleanup (xfree, sals.sals);
14457 expanded = sals;
14458 }
14459
14460 if (b->addr_string_range_end)
14461 {
14462 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14463 if (found)
14464 {
14465 make_cleanup (xfree, sals_end.sals);
14466 expanded_end = sals_end;
14467 }
14468 }
14469
14470 update_breakpoint_locations (b, expanded, expanded_end);
14471 }
14472
14473 /* Default method for creating SALs from an address string. It basically
14474 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14475
14476 static void
14477 create_sals_from_address_default (char **arg,
14478 struct linespec_result *canonical,
14479 enum bptype type_wanted,
14480 char *addr_start, char **copy_arg)
14481 {
14482 parse_breakpoint_sals (arg, canonical);
14483 }
14484
14485 /* Call create_breakpoints_sal for the given arguments. This is the default
14486 function for the `create_breakpoints_sal' method of
14487 breakpoint_ops. */
14488
14489 static void
14490 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14491 struct linespec_result *canonical,
14492 char *cond_string,
14493 char *extra_string,
14494 enum bptype type_wanted,
14495 enum bpdisp disposition,
14496 int thread,
14497 int task, int ignore_count,
14498 const struct breakpoint_ops *ops,
14499 int from_tty, int enabled,
14500 int internal, unsigned flags)
14501 {
14502 create_breakpoints_sal (gdbarch, canonical, cond_string,
14503 extra_string,
14504 type_wanted, disposition,
14505 thread, task, ignore_count, ops, from_tty,
14506 enabled, internal, flags);
14507 }
14508
14509 /* Decode the line represented by S by calling decode_line_full. This is the
14510 default function for the `decode_linespec' method of breakpoint_ops. */
14511
14512 static void
14513 decode_linespec_default (struct breakpoint *b, char **s,
14514 struct symtabs_and_lines *sals)
14515 {
14516 struct linespec_result canonical;
14517
14518 init_linespec_result (&canonical);
14519 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14520 (struct symtab *) NULL, 0,
14521 &canonical, multiple_symbols_all,
14522 b->filter);
14523
14524 /* We should get 0 or 1 resulting SALs. */
14525 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14526
14527 if (VEC_length (linespec_sals, canonical.sals) > 0)
14528 {
14529 struct linespec_sals *lsal;
14530
14531 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14532 *sals = lsal->sals;
14533 /* Arrange it so the destructor does not free the
14534 contents. */
14535 lsal->sals.sals = NULL;
14536 }
14537
14538 destroy_linespec_result (&canonical);
14539 }
14540
14541 /* Prepare the global context for a re-set of breakpoint B. */
14542
14543 static struct cleanup *
14544 prepare_re_set_context (struct breakpoint *b)
14545 {
14546 struct cleanup *cleanups;
14547
14548 input_radix = b->input_radix;
14549 cleanups = save_current_space_and_thread ();
14550 if (b->pspace != NULL)
14551 switch_to_program_space_and_thread (b->pspace);
14552 set_language (b->language);
14553
14554 return cleanups;
14555 }
14556
14557 /* Reset a breakpoint given it's struct breakpoint * BINT.
14558 The value we return ends up being the return value from catch_errors.
14559 Unused in this case. */
14560
14561 static int
14562 breakpoint_re_set_one (void *bint)
14563 {
14564 /* Get past catch_errs. */
14565 struct breakpoint *b = (struct breakpoint *) bint;
14566 struct cleanup *cleanups;
14567
14568 cleanups = prepare_re_set_context (b);
14569 b->ops->re_set (b);
14570 do_cleanups (cleanups);
14571 return 0;
14572 }
14573
14574 /* Re-set all breakpoints after symbols have been re-loaded. */
14575 void
14576 breakpoint_re_set (void)
14577 {
14578 struct breakpoint *b, *b_tmp;
14579 enum language save_language;
14580 int save_input_radix;
14581 struct cleanup *old_chain;
14582
14583 save_language = current_language->la_language;
14584 save_input_radix = input_radix;
14585 old_chain = save_current_program_space ();
14586
14587 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14588 {
14589 /* Format possible error msg. */
14590 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14591 b->number);
14592 struct cleanup *cleanups = make_cleanup (xfree, message);
14593 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14594 do_cleanups (cleanups);
14595 }
14596 set_language (save_language);
14597 input_radix = save_input_radix;
14598
14599 jit_breakpoint_re_set ();
14600
14601 do_cleanups (old_chain);
14602
14603 create_overlay_event_breakpoint ();
14604 create_longjmp_master_breakpoint ();
14605 create_std_terminate_master_breakpoint ();
14606 create_exception_master_breakpoint ();
14607 }
14608 \f
14609 /* Reset the thread number of this breakpoint:
14610
14611 - If the breakpoint is for all threads, leave it as-is.
14612 - Else, reset it to the current thread for inferior_ptid. */
14613 void
14614 breakpoint_re_set_thread (struct breakpoint *b)
14615 {
14616 if (b->thread != -1)
14617 {
14618 if (in_thread_list (inferior_ptid))
14619 b->thread = pid_to_thread_id (inferior_ptid);
14620
14621 /* We're being called after following a fork. The new fork is
14622 selected as current, and unless this was a vfork will have a
14623 different program space from the original thread. Reset that
14624 as well. */
14625 b->loc->pspace = current_program_space;
14626 }
14627 }
14628
14629 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14630 If from_tty is nonzero, it prints a message to that effect,
14631 which ends with a period (no newline). */
14632
14633 void
14634 set_ignore_count (int bptnum, int count, int from_tty)
14635 {
14636 struct breakpoint *b;
14637
14638 if (count < 0)
14639 count = 0;
14640
14641 ALL_BREAKPOINTS (b)
14642 if (b->number == bptnum)
14643 {
14644 if (is_tracepoint (b))
14645 {
14646 if (from_tty && count != 0)
14647 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14648 bptnum);
14649 return;
14650 }
14651
14652 b->ignore_count = count;
14653 if (from_tty)
14654 {
14655 if (count == 0)
14656 printf_filtered (_("Will stop next time "
14657 "breakpoint %d is reached."),
14658 bptnum);
14659 else if (count == 1)
14660 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14661 bptnum);
14662 else
14663 printf_filtered (_("Will ignore next %d "
14664 "crossings of breakpoint %d."),
14665 count, bptnum);
14666 }
14667 observer_notify_breakpoint_modified (b);
14668 return;
14669 }
14670
14671 error (_("No breakpoint number %d."), bptnum);
14672 }
14673
14674 /* Command to set ignore-count of breakpoint N to COUNT. */
14675
14676 static void
14677 ignore_command (char *args, int from_tty)
14678 {
14679 char *p = args;
14680 int num;
14681
14682 if (p == 0)
14683 error_no_arg (_("a breakpoint number"));
14684
14685 num = get_number (&p);
14686 if (num == 0)
14687 error (_("bad breakpoint number: '%s'"), args);
14688 if (*p == 0)
14689 error (_("Second argument (specified ignore-count) is missing."));
14690
14691 set_ignore_count (num,
14692 longest_to_int (value_as_long (parse_and_eval (p))),
14693 from_tty);
14694 if (from_tty)
14695 printf_filtered ("\n");
14696 }
14697 \f
14698 /* Call FUNCTION on each of the breakpoints
14699 whose numbers are given in ARGS. */
14700
14701 static void
14702 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14703 void *),
14704 void *data)
14705 {
14706 int num;
14707 struct breakpoint *b, *tmp;
14708 int match;
14709 struct get_number_or_range_state state;
14710
14711 if (args == 0)
14712 error_no_arg (_("one or more breakpoint numbers"));
14713
14714 init_number_or_range (&state, args);
14715
14716 while (!state.finished)
14717 {
14718 char *p = state.string;
14719
14720 match = 0;
14721
14722 num = get_number_or_range (&state);
14723 if (num == 0)
14724 {
14725 warning (_("bad breakpoint number at or near '%s'"), p);
14726 }
14727 else
14728 {
14729 ALL_BREAKPOINTS_SAFE (b, tmp)
14730 if (b->number == num)
14731 {
14732 match = 1;
14733 function (b, data);
14734 break;
14735 }
14736 if (match == 0)
14737 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14738 }
14739 }
14740 }
14741
14742 static struct bp_location *
14743 find_location_by_number (char *number)
14744 {
14745 char *dot = strchr (number, '.');
14746 char *p1;
14747 int bp_num;
14748 int loc_num;
14749 struct breakpoint *b;
14750 struct bp_location *loc;
14751
14752 *dot = '\0';
14753
14754 p1 = number;
14755 bp_num = get_number (&p1);
14756 if (bp_num == 0)
14757 error (_("Bad breakpoint number '%s'"), number);
14758
14759 ALL_BREAKPOINTS (b)
14760 if (b->number == bp_num)
14761 {
14762 break;
14763 }
14764
14765 if (!b || b->number != bp_num)
14766 error (_("Bad breakpoint number '%s'"), number);
14767
14768 p1 = dot+1;
14769 loc_num = get_number (&p1);
14770 if (loc_num == 0)
14771 error (_("Bad breakpoint location number '%s'"), number);
14772
14773 --loc_num;
14774 loc = b->loc;
14775 for (;loc_num && loc; --loc_num, loc = loc->next)
14776 ;
14777 if (!loc)
14778 error (_("Bad breakpoint location number '%s'"), dot+1);
14779
14780 return loc;
14781 }
14782
14783
14784 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14785 If from_tty is nonzero, it prints a message to that effect,
14786 which ends with a period (no newline). */
14787
14788 void
14789 disable_breakpoint (struct breakpoint *bpt)
14790 {
14791 /* Never disable a watchpoint scope breakpoint; we want to
14792 hit them when we leave scope so we can delete both the
14793 watchpoint and its scope breakpoint at that time. */
14794 if (bpt->type == bp_watchpoint_scope)
14795 return;
14796
14797 /* You can't disable permanent breakpoints. */
14798 if (bpt->enable_state == bp_permanent)
14799 return;
14800
14801 bpt->enable_state = bp_disabled;
14802
14803 /* Mark breakpoint locations modified. */
14804 mark_breakpoint_modified (bpt);
14805
14806 if (target_supports_enable_disable_tracepoint ()
14807 && current_trace_status ()->running && is_tracepoint (bpt))
14808 {
14809 struct bp_location *location;
14810
14811 for (location = bpt->loc; location; location = location->next)
14812 target_disable_tracepoint (location);
14813 }
14814
14815 update_global_location_list (0);
14816
14817 observer_notify_breakpoint_modified (bpt);
14818 }
14819
14820 /* A callback for iterate_over_related_breakpoints. */
14821
14822 static void
14823 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14824 {
14825 disable_breakpoint (b);
14826 }
14827
14828 /* A callback for map_breakpoint_numbers that calls
14829 disable_breakpoint. */
14830
14831 static void
14832 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14833 {
14834 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14835 }
14836
14837 static void
14838 disable_command (char *args, int from_tty)
14839 {
14840 if (args == 0)
14841 {
14842 struct breakpoint *bpt;
14843
14844 ALL_BREAKPOINTS (bpt)
14845 if (user_breakpoint_p (bpt))
14846 disable_breakpoint (bpt);
14847 }
14848 else
14849 {
14850 char *num = extract_arg (&args);
14851
14852 while (num)
14853 {
14854 if (strchr (num, '.'))
14855 {
14856 struct bp_location *loc = find_location_by_number (num);
14857
14858 if (loc)
14859 {
14860 if (loc->enabled)
14861 {
14862 loc->enabled = 0;
14863 mark_breakpoint_location_modified (loc);
14864 }
14865 if (target_supports_enable_disable_tracepoint ()
14866 && current_trace_status ()->running && loc->owner
14867 && is_tracepoint (loc->owner))
14868 target_disable_tracepoint (loc);
14869 }
14870 update_global_location_list (0);
14871 }
14872 else
14873 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14874 num = extract_arg (&args);
14875 }
14876 }
14877 }
14878
14879 static void
14880 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14881 int count)
14882 {
14883 int target_resources_ok;
14884
14885 if (bpt->type == bp_hardware_breakpoint)
14886 {
14887 int i;
14888 i = hw_breakpoint_used_count ();
14889 target_resources_ok =
14890 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14891 i + 1, 0);
14892 if (target_resources_ok == 0)
14893 error (_("No hardware breakpoint support in the target."));
14894 else if (target_resources_ok < 0)
14895 error (_("Hardware breakpoints used exceeds limit."));
14896 }
14897
14898 if (is_watchpoint (bpt))
14899 {
14900 /* Initialize it just to avoid a GCC false warning. */
14901 enum enable_state orig_enable_state = 0;
14902 volatile struct gdb_exception e;
14903
14904 TRY_CATCH (e, RETURN_MASK_ALL)
14905 {
14906 struct watchpoint *w = (struct watchpoint *) bpt;
14907
14908 orig_enable_state = bpt->enable_state;
14909 bpt->enable_state = bp_enabled;
14910 update_watchpoint (w, 1 /* reparse */);
14911 }
14912 if (e.reason < 0)
14913 {
14914 bpt->enable_state = orig_enable_state;
14915 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14916 bpt->number);
14917 return;
14918 }
14919 }
14920
14921 if (bpt->enable_state != bp_permanent)
14922 bpt->enable_state = bp_enabled;
14923
14924 bpt->enable_state = bp_enabled;
14925
14926 /* Mark breakpoint locations modified. */
14927 mark_breakpoint_modified (bpt);
14928
14929 if (target_supports_enable_disable_tracepoint ()
14930 && current_trace_status ()->running && is_tracepoint (bpt))
14931 {
14932 struct bp_location *location;
14933
14934 for (location = bpt->loc; location; location = location->next)
14935 target_enable_tracepoint (location);
14936 }
14937
14938 bpt->disposition = disposition;
14939 bpt->enable_count = count;
14940 update_global_location_list (1);
14941
14942 observer_notify_breakpoint_modified (bpt);
14943 }
14944
14945
14946 void
14947 enable_breakpoint (struct breakpoint *bpt)
14948 {
14949 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14950 }
14951
14952 static void
14953 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14954 {
14955 enable_breakpoint (bpt);
14956 }
14957
14958 /* A callback for map_breakpoint_numbers that calls
14959 enable_breakpoint. */
14960
14961 static void
14962 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14963 {
14964 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14965 }
14966
14967 /* The enable command enables the specified breakpoints (or all defined
14968 breakpoints) so they once again become (or continue to be) effective
14969 in stopping the inferior. */
14970
14971 static void
14972 enable_command (char *args, int from_tty)
14973 {
14974 if (args == 0)
14975 {
14976 struct breakpoint *bpt;
14977
14978 ALL_BREAKPOINTS (bpt)
14979 if (user_breakpoint_p (bpt))
14980 enable_breakpoint (bpt);
14981 }
14982 else
14983 {
14984 char *num = extract_arg (&args);
14985
14986 while (num)
14987 {
14988 if (strchr (num, '.'))
14989 {
14990 struct bp_location *loc = find_location_by_number (num);
14991
14992 if (loc)
14993 {
14994 if (!loc->enabled)
14995 {
14996 loc->enabled = 1;
14997 mark_breakpoint_location_modified (loc);
14998 }
14999 if (target_supports_enable_disable_tracepoint ()
15000 && current_trace_status ()->running && loc->owner
15001 && is_tracepoint (loc->owner))
15002 target_enable_tracepoint (loc);
15003 }
15004 update_global_location_list (1);
15005 }
15006 else
15007 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
15008 num = extract_arg (&args);
15009 }
15010 }
15011 }
15012
15013 /* This struct packages up disposition data for application to multiple
15014 breakpoints. */
15015
15016 struct disp_data
15017 {
15018 enum bpdisp disp;
15019 int count;
15020 };
15021
15022 static void
15023 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
15024 {
15025 struct disp_data disp_data = *(struct disp_data *) arg;
15026
15027 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
15028 }
15029
15030 static void
15031 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
15032 {
15033 struct disp_data disp = { disp_disable, 1 };
15034
15035 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15036 }
15037
15038 static void
15039 enable_once_command (char *args, int from_tty)
15040 {
15041 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
15042 }
15043
15044 static void
15045 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
15046 {
15047 struct disp_data disp = { disp_disable, *(int *) countptr };
15048
15049 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15050 }
15051
15052 static void
15053 enable_count_command (char *args, int from_tty)
15054 {
15055 int count = get_number (&args);
15056
15057 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
15058 }
15059
15060 static void
15061 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15062 {
15063 struct disp_data disp = { disp_del, 1 };
15064
15065 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15066 }
15067
15068 static void
15069 enable_delete_command (char *args, int from_tty)
15070 {
15071 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15072 }
15073 \f
15074 static void
15075 set_breakpoint_cmd (char *args, int from_tty)
15076 {
15077 }
15078
15079 static void
15080 show_breakpoint_cmd (char *args, int from_tty)
15081 {
15082 }
15083
15084 /* Invalidate last known value of any hardware watchpoint if
15085 the memory which that value represents has been written to by
15086 GDB itself. */
15087
15088 static void
15089 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15090 CORE_ADDR addr, ssize_t len,
15091 const bfd_byte *data)
15092 {
15093 struct breakpoint *bp;
15094
15095 ALL_BREAKPOINTS (bp)
15096 if (bp->enable_state == bp_enabled
15097 && bp->type == bp_hardware_watchpoint)
15098 {
15099 struct watchpoint *wp = (struct watchpoint *) bp;
15100
15101 if (wp->val_valid && wp->val)
15102 {
15103 struct bp_location *loc;
15104
15105 for (loc = bp->loc; loc != NULL; loc = loc->next)
15106 if (loc->loc_type == bp_loc_hardware_watchpoint
15107 && loc->address + loc->length > addr
15108 && addr + len > loc->address)
15109 {
15110 value_free (wp->val);
15111 wp->val = NULL;
15112 wp->val_valid = 0;
15113 }
15114 }
15115 }
15116 }
15117
15118 /* Create and insert a raw software breakpoint at PC. Return an
15119 identifier, which should be used to remove the breakpoint later.
15120 In general, places which call this should be using something on the
15121 breakpoint chain instead; this function should be eliminated
15122 someday. */
15123
15124 void *
15125 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
15126 struct address_space *aspace, CORE_ADDR pc)
15127 {
15128 struct bp_target_info *bp_tgt;
15129
15130 bp_tgt = XCNEW (struct bp_target_info);
15131
15132 bp_tgt->placed_address_space = aspace;
15133 bp_tgt->placed_address = pc;
15134
15135 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15136 {
15137 /* Could not insert the breakpoint. */
15138 xfree (bp_tgt);
15139 return NULL;
15140 }
15141
15142 return bp_tgt;
15143 }
15144
15145 /* Remove a breakpoint BP inserted by
15146 deprecated_insert_raw_breakpoint. */
15147
15148 int
15149 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15150 {
15151 struct bp_target_info *bp_tgt = bp;
15152 int ret;
15153
15154 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15155 xfree (bp_tgt);
15156
15157 return ret;
15158 }
15159
15160 /* Create and insert a breakpoint for software single step. */
15161
15162 void
15163 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15164 struct address_space *aspace,
15165 CORE_ADDR next_pc)
15166 {
15167 void **bpt_p;
15168
15169 if (single_step_breakpoints[0] == NULL)
15170 {
15171 bpt_p = &single_step_breakpoints[0];
15172 single_step_gdbarch[0] = gdbarch;
15173 }
15174 else
15175 {
15176 gdb_assert (single_step_breakpoints[1] == NULL);
15177 bpt_p = &single_step_breakpoints[1];
15178 single_step_gdbarch[1] = gdbarch;
15179 }
15180
15181 /* NOTE drow/2006-04-11: A future improvement to this function would
15182 be to only create the breakpoints once, and actually put them on
15183 the breakpoint chain. That would let us use set_raw_breakpoint.
15184 We could adjust the addresses each time they were needed. Doing
15185 this requires corresponding changes elsewhere where single step
15186 breakpoints are handled, however. So, for now, we use this. */
15187
15188 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15189 if (*bpt_p == NULL)
15190 error (_("Could not insert single-step breakpoint at %s"),
15191 paddress (gdbarch, next_pc));
15192 }
15193
15194 /* Check if the breakpoints used for software single stepping
15195 were inserted or not. */
15196
15197 int
15198 single_step_breakpoints_inserted (void)
15199 {
15200 return (single_step_breakpoints[0] != NULL
15201 || single_step_breakpoints[1] != NULL);
15202 }
15203
15204 /* Remove and delete any breakpoints used for software single step. */
15205
15206 void
15207 remove_single_step_breakpoints (void)
15208 {
15209 gdb_assert (single_step_breakpoints[0] != NULL);
15210
15211 /* See insert_single_step_breakpoint for more about this deprecated
15212 call. */
15213 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15214 single_step_breakpoints[0]);
15215 single_step_gdbarch[0] = NULL;
15216 single_step_breakpoints[0] = NULL;
15217
15218 if (single_step_breakpoints[1] != NULL)
15219 {
15220 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15221 single_step_breakpoints[1]);
15222 single_step_gdbarch[1] = NULL;
15223 single_step_breakpoints[1] = NULL;
15224 }
15225 }
15226
15227 /* Delete software single step breakpoints without removing them from
15228 the inferior. This is intended to be used if the inferior's address
15229 space where they were inserted is already gone, e.g. after exit or
15230 exec. */
15231
15232 void
15233 cancel_single_step_breakpoints (void)
15234 {
15235 int i;
15236
15237 for (i = 0; i < 2; i++)
15238 if (single_step_breakpoints[i])
15239 {
15240 xfree (single_step_breakpoints[i]);
15241 single_step_breakpoints[i] = NULL;
15242 single_step_gdbarch[i] = NULL;
15243 }
15244 }
15245
15246 /* Detach software single-step breakpoints from INFERIOR_PTID without
15247 removing them. */
15248
15249 static void
15250 detach_single_step_breakpoints (void)
15251 {
15252 int i;
15253
15254 for (i = 0; i < 2; i++)
15255 if (single_step_breakpoints[i])
15256 target_remove_breakpoint (single_step_gdbarch[i],
15257 single_step_breakpoints[i]);
15258 }
15259
15260 /* Check whether a software single-step breakpoint is inserted at
15261 PC. */
15262
15263 int
15264 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15265 CORE_ADDR pc)
15266 {
15267 int i;
15268
15269 for (i = 0; i < 2; i++)
15270 {
15271 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15272 if (bp_tgt
15273 && breakpoint_address_match (bp_tgt->placed_address_space,
15274 bp_tgt->placed_address,
15275 aspace, pc))
15276 return 1;
15277 }
15278
15279 return 0;
15280 }
15281
15282 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15283 non-zero otherwise. */
15284 static int
15285 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15286 {
15287 if (syscall_catchpoint_p (bp)
15288 && bp->enable_state != bp_disabled
15289 && bp->enable_state != bp_call_disabled)
15290 return 1;
15291 else
15292 return 0;
15293 }
15294
15295 int
15296 catch_syscall_enabled (void)
15297 {
15298 struct catch_syscall_inferior_data *inf_data
15299 = get_catch_syscall_inferior_data (current_inferior ());
15300
15301 return inf_data->total_syscalls_count != 0;
15302 }
15303
15304 int
15305 catching_syscall_number (int syscall_number)
15306 {
15307 struct breakpoint *bp;
15308
15309 ALL_BREAKPOINTS (bp)
15310 if (is_syscall_catchpoint_enabled (bp))
15311 {
15312 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15313
15314 if (c->syscalls_to_be_caught)
15315 {
15316 int i, iter;
15317 for (i = 0;
15318 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15319 i++)
15320 if (syscall_number == iter)
15321 return 1;
15322 }
15323 else
15324 return 1;
15325 }
15326
15327 return 0;
15328 }
15329
15330 /* Complete syscall names. Used by "catch syscall". */
15331 static VEC (char_ptr) *
15332 catch_syscall_completer (struct cmd_list_element *cmd,
15333 const char *text, const char *word)
15334 {
15335 const char **list = get_syscall_names ();
15336 VEC (char_ptr) *retlist
15337 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15338
15339 xfree (list);
15340 return retlist;
15341 }
15342
15343 /* Tracepoint-specific operations. */
15344
15345 /* Set tracepoint count to NUM. */
15346 static void
15347 set_tracepoint_count (int num)
15348 {
15349 tracepoint_count = num;
15350 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15351 }
15352
15353 static void
15354 trace_command (char *arg, int from_tty)
15355 {
15356 struct breakpoint_ops *ops;
15357 const char *arg_cp = arg;
15358
15359 if (arg && probe_linespec_to_ops (&arg_cp))
15360 ops = &tracepoint_probe_breakpoint_ops;
15361 else
15362 ops = &tracepoint_breakpoint_ops;
15363
15364 create_breakpoint (get_current_arch (),
15365 arg,
15366 NULL, 0, NULL, 1 /* parse arg */,
15367 0 /* tempflag */,
15368 bp_tracepoint /* type_wanted */,
15369 0 /* Ignore count */,
15370 pending_break_support,
15371 ops,
15372 from_tty,
15373 1 /* enabled */,
15374 0 /* internal */, 0);
15375 }
15376
15377 static void
15378 ftrace_command (char *arg, int from_tty)
15379 {
15380 create_breakpoint (get_current_arch (),
15381 arg,
15382 NULL, 0, NULL, 1 /* parse arg */,
15383 0 /* tempflag */,
15384 bp_fast_tracepoint /* type_wanted */,
15385 0 /* Ignore count */,
15386 pending_break_support,
15387 &tracepoint_breakpoint_ops,
15388 from_tty,
15389 1 /* enabled */,
15390 0 /* internal */, 0);
15391 }
15392
15393 /* strace command implementation. Creates a static tracepoint. */
15394
15395 static void
15396 strace_command (char *arg, int from_tty)
15397 {
15398 struct breakpoint_ops *ops;
15399
15400 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15401 or with a normal static tracepoint. */
15402 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15403 ops = &strace_marker_breakpoint_ops;
15404 else
15405 ops = &tracepoint_breakpoint_ops;
15406
15407 create_breakpoint (get_current_arch (),
15408 arg,
15409 NULL, 0, NULL, 1 /* parse arg */,
15410 0 /* tempflag */,
15411 bp_static_tracepoint /* type_wanted */,
15412 0 /* Ignore count */,
15413 pending_break_support,
15414 ops,
15415 from_tty,
15416 1 /* enabled */,
15417 0 /* internal */, 0);
15418 }
15419
15420 /* Set up a fake reader function that gets command lines from a linked
15421 list that was acquired during tracepoint uploading. */
15422
15423 static struct uploaded_tp *this_utp;
15424 static int next_cmd;
15425
15426 static char *
15427 read_uploaded_action (void)
15428 {
15429 char *rslt;
15430
15431 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15432
15433 next_cmd++;
15434
15435 return rslt;
15436 }
15437
15438 /* Given information about a tracepoint as recorded on a target (which
15439 can be either a live system or a trace file), attempt to create an
15440 equivalent GDB tracepoint. This is not a reliable process, since
15441 the target does not necessarily have all the information used when
15442 the tracepoint was originally defined. */
15443
15444 struct tracepoint *
15445 create_tracepoint_from_upload (struct uploaded_tp *utp)
15446 {
15447 char *addr_str, small_buf[100];
15448 struct tracepoint *tp;
15449
15450 if (utp->at_string)
15451 addr_str = utp->at_string;
15452 else
15453 {
15454 /* In the absence of a source location, fall back to raw
15455 address. Since there is no way to confirm that the address
15456 means the same thing as when the trace was started, warn the
15457 user. */
15458 warning (_("Uploaded tracepoint %d has no "
15459 "source location, using raw address"),
15460 utp->number);
15461 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15462 addr_str = small_buf;
15463 }
15464
15465 /* There's not much we can do with a sequence of bytecodes. */
15466 if (utp->cond && !utp->cond_string)
15467 warning (_("Uploaded tracepoint %d condition "
15468 "has no source form, ignoring it"),
15469 utp->number);
15470
15471 if (!create_breakpoint (get_current_arch (),
15472 addr_str,
15473 utp->cond_string, -1, NULL,
15474 0 /* parse cond/thread */,
15475 0 /* tempflag */,
15476 utp->type /* type_wanted */,
15477 0 /* Ignore count */,
15478 pending_break_support,
15479 &tracepoint_breakpoint_ops,
15480 0 /* from_tty */,
15481 utp->enabled /* enabled */,
15482 0 /* internal */,
15483 CREATE_BREAKPOINT_FLAGS_INSERTED))
15484 return NULL;
15485
15486 /* Get the tracepoint we just created. */
15487 tp = get_tracepoint (tracepoint_count);
15488 gdb_assert (tp != NULL);
15489
15490 if (utp->pass > 0)
15491 {
15492 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15493 tp->base.number);
15494
15495 trace_pass_command (small_buf, 0);
15496 }
15497
15498 /* If we have uploaded versions of the original commands, set up a
15499 special-purpose "reader" function and call the usual command line
15500 reader, then pass the result to the breakpoint command-setting
15501 function. */
15502 if (!VEC_empty (char_ptr, utp->cmd_strings))
15503 {
15504 struct command_line *cmd_list;
15505
15506 this_utp = utp;
15507 next_cmd = 0;
15508
15509 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15510
15511 breakpoint_set_commands (&tp->base, cmd_list);
15512 }
15513 else if (!VEC_empty (char_ptr, utp->actions)
15514 || !VEC_empty (char_ptr, utp->step_actions))
15515 warning (_("Uploaded tracepoint %d actions "
15516 "have no source form, ignoring them"),
15517 utp->number);
15518
15519 /* Copy any status information that might be available. */
15520 tp->base.hit_count = utp->hit_count;
15521 tp->traceframe_usage = utp->traceframe_usage;
15522
15523 return tp;
15524 }
15525
15526 /* Print information on tracepoint number TPNUM_EXP, or all if
15527 omitted. */
15528
15529 static void
15530 tracepoints_info (char *args, int from_tty)
15531 {
15532 struct ui_out *uiout = current_uiout;
15533 int num_printed;
15534
15535 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15536
15537 if (num_printed == 0)
15538 {
15539 if (args == NULL || *args == '\0')
15540 ui_out_message (uiout, 0, "No tracepoints.\n");
15541 else
15542 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15543 }
15544
15545 default_collect_info ();
15546 }
15547
15548 /* The 'enable trace' command enables tracepoints.
15549 Not supported by all targets. */
15550 static void
15551 enable_trace_command (char *args, int from_tty)
15552 {
15553 enable_command (args, from_tty);
15554 }
15555
15556 /* The 'disable trace' command disables tracepoints.
15557 Not supported by all targets. */
15558 static void
15559 disable_trace_command (char *args, int from_tty)
15560 {
15561 disable_command (args, from_tty);
15562 }
15563
15564 /* Remove a tracepoint (or all if no argument). */
15565 static void
15566 delete_trace_command (char *arg, int from_tty)
15567 {
15568 struct breakpoint *b, *b_tmp;
15569
15570 dont_repeat ();
15571
15572 if (arg == 0)
15573 {
15574 int breaks_to_delete = 0;
15575
15576 /* Delete all breakpoints if no argument.
15577 Do not delete internal or call-dummy breakpoints, these
15578 have to be deleted with an explicit breakpoint number
15579 argument. */
15580 ALL_TRACEPOINTS (b)
15581 if (is_tracepoint (b) && user_breakpoint_p (b))
15582 {
15583 breaks_to_delete = 1;
15584 break;
15585 }
15586
15587 /* Ask user only if there are some breakpoints to delete. */
15588 if (!from_tty
15589 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15590 {
15591 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15592 if (is_tracepoint (b) && user_breakpoint_p (b))
15593 delete_breakpoint (b);
15594 }
15595 }
15596 else
15597 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15598 }
15599
15600 /* Helper function for trace_pass_command. */
15601
15602 static void
15603 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15604 {
15605 tp->pass_count = count;
15606 observer_notify_breakpoint_modified (&tp->base);
15607 if (from_tty)
15608 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15609 tp->base.number, count);
15610 }
15611
15612 /* Set passcount for tracepoint.
15613
15614 First command argument is passcount, second is tracepoint number.
15615 If tracepoint number omitted, apply to most recently defined.
15616 Also accepts special argument "all". */
15617
15618 static void
15619 trace_pass_command (char *args, int from_tty)
15620 {
15621 struct tracepoint *t1;
15622 unsigned int count;
15623
15624 if (args == 0 || *args == 0)
15625 error (_("passcount command requires an "
15626 "argument (count + optional TP num)"));
15627
15628 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15629
15630 args = skip_spaces (args);
15631 if (*args && strncasecmp (args, "all", 3) == 0)
15632 {
15633 struct breakpoint *b;
15634
15635 args += 3; /* Skip special argument "all". */
15636 if (*args)
15637 error (_("Junk at end of arguments."));
15638
15639 ALL_TRACEPOINTS (b)
15640 {
15641 t1 = (struct tracepoint *) b;
15642 trace_pass_set_count (t1, count, from_tty);
15643 }
15644 }
15645 else if (*args == '\0')
15646 {
15647 t1 = get_tracepoint_by_number (&args, NULL);
15648 if (t1)
15649 trace_pass_set_count (t1, count, from_tty);
15650 }
15651 else
15652 {
15653 struct get_number_or_range_state state;
15654
15655 init_number_or_range (&state, args);
15656 while (!state.finished)
15657 {
15658 t1 = get_tracepoint_by_number (&args, &state);
15659 if (t1)
15660 trace_pass_set_count (t1, count, from_tty);
15661 }
15662 }
15663 }
15664
15665 struct tracepoint *
15666 get_tracepoint (int num)
15667 {
15668 struct breakpoint *t;
15669
15670 ALL_TRACEPOINTS (t)
15671 if (t->number == num)
15672 return (struct tracepoint *) t;
15673
15674 return NULL;
15675 }
15676
15677 /* Find the tracepoint with the given target-side number (which may be
15678 different from the tracepoint number after disconnecting and
15679 reconnecting). */
15680
15681 struct tracepoint *
15682 get_tracepoint_by_number_on_target (int num)
15683 {
15684 struct breakpoint *b;
15685
15686 ALL_TRACEPOINTS (b)
15687 {
15688 struct tracepoint *t = (struct tracepoint *) b;
15689
15690 if (t->number_on_target == num)
15691 return t;
15692 }
15693
15694 return NULL;
15695 }
15696
15697 /* Utility: parse a tracepoint number and look it up in the list.
15698 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15699 If the argument is missing, the most recent tracepoint
15700 (tracepoint_count) is returned. */
15701
15702 struct tracepoint *
15703 get_tracepoint_by_number (char **arg,
15704 struct get_number_or_range_state *state)
15705 {
15706 struct breakpoint *t;
15707 int tpnum;
15708 char *instring = arg == NULL ? NULL : *arg;
15709
15710 if (state)
15711 {
15712 gdb_assert (!state->finished);
15713 tpnum = get_number_or_range (state);
15714 }
15715 else if (arg == NULL || *arg == NULL || ! **arg)
15716 tpnum = tracepoint_count;
15717 else
15718 tpnum = get_number (arg);
15719
15720 if (tpnum <= 0)
15721 {
15722 if (instring && *instring)
15723 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15724 instring);
15725 else
15726 printf_filtered (_("No previous tracepoint\n"));
15727 return NULL;
15728 }
15729
15730 ALL_TRACEPOINTS (t)
15731 if (t->number == tpnum)
15732 {
15733 return (struct tracepoint *) t;
15734 }
15735
15736 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15737 return NULL;
15738 }
15739
15740 void
15741 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15742 {
15743 if (b->thread != -1)
15744 fprintf_unfiltered (fp, " thread %d", b->thread);
15745
15746 if (b->task != 0)
15747 fprintf_unfiltered (fp, " task %d", b->task);
15748
15749 fprintf_unfiltered (fp, "\n");
15750 }
15751
15752 /* Save information on user settable breakpoints (watchpoints, etc) to
15753 a new script file named FILENAME. If FILTER is non-NULL, call it
15754 on each breakpoint and only include the ones for which it returns
15755 non-zero. */
15756
15757 static void
15758 save_breakpoints (char *filename, int from_tty,
15759 int (*filter) (const struct breakpoint *))
15760 {
15761 struct breakpoint *tp;
15762 int any = 0;
15763 struct cleanup *cleanup;
15764 struct ui_file *fp;
15765 int extra_trace_bits = 0;
15766
15767 if (filename == 0 || *filename == 0)
15768 error (_("Argument required (file name in which to save)"));
15769
15770 /* See if we have anything to save. */
15771 ALL_BREAKPOINTS (tp)
15772 {
15773 /* Skip internal and momentary breakpoints. */
15774 if (!user_breakpoint_p (tp))
15775 continue;
15776
15777 /* If we have a filter, only save the breakpoints it accepts. */
15778 if (filter && !filter (tp))
15779 continue;
15780
15781 any = 1;
15782
15783 if (is_tracepoint (tp))
15784 {
15785 extra_trace_bits = 1;
15786
15787 /* We can stop searching. */
15788 break;
15789 }
15790 }
15791
15792 if (!any)
15793 {
15794 warning (_("Nothing to save."));
15795 return;
15796 }
15797
15798 filename = tilde_expand (filename);
15799 cleanup = make_cleanup (xfree, filename);
15800 fp = gdb_fopen (filename, "w");
15801 if (!fp)
15802 error (_("Unable to open file '%s' for saving (%s)"),
15803 filename, safe_strerror (errno));
15804 make_cleanup_ui_file_delete (fp);
15805
15806 if (extra_trace_bits)
15807 save_trace_state_variables (fp);
15808
15809 ALL_BREAKPOINTS (tp)
15810 {
15811 /* Skip internal and momentary breakpoints. */
15812 if (!user_breakpoint_p (tp))
15813 continue;
15814
15815 /* If we have a filter, only save the breakpoints it accepts. */
15816 if (filter && !filter (tp))
15817 continue;
15818
15819 tp->ops->print_recreate (tp, fp);
15820
15821 /* Note, we can't rely on tp->number for anything, as we can't
15822 assume the recreated breakpoint numbers will match. Use $bpnum
15823 instead. */
15824
15825 if (tp->cond_string)
15826 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15827
15828 if (tp->ignore_count)
15829 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15830
15831 if (tp->type != bp_dprintf && tp->commands)
15832 {
15833 volatile struct gdb_exception ex;
15834
15835 fprintf_unfiltered (fp, " commands\n");
15836
15837 ui_out_redirect (current_uiout, fp);
15838 TRY_CATCH (ex, RETURN_MASK_ALL)
15839 {
15840 print_command_lines (current_uiout, tp->commands->commands, 2);
15841 }
15842 ui_out_redirect (current_uiout, NULL);
15843
15844 if (ex.reason < 0)
15845 throw_exception (ex);
15846
15847 fprintf_unfiltered (fp, " end\n");
15848 }
15849
15850 if (tp->enable_state == bp_disabled)
15851 fprintf_unfiltered (fp, "disable\n");
15852
15853 /* If this is a multi-location breakpoint, check if the locations
15854 should be individually disabled. Watchpoint locations are
15855 special, and not user visible. */
15856 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15857 {
15858 struct bp_location *loc;
15859 int n = 1;
15860
15861 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15862 if (!loc->enabled)
15863 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15864 }
15865 }
15866
15867 if (extra_trace_bits && *default_collect)
15868 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15869
15870 if (from_tty)
15871 printf_filtered (_("Saved to file '%s'.\n"), filename);
15872 do_cleanups (cleanup);
15873 }
15874
15875 /* The `save breakpoints' command. */
15876
15877 static void
15878 save_breakpoints_command (char *args, int from_tty)
15879 {
15880 save_breakpoints (args, from_tty, NULL);
15881 }
15882
15883 /* The `save tracepoints' command. */
15884
15885 static void
15886 save_tracepoints_command (char *args, int from_tty)
15887 {
15888 save_breakpoints (args, from_tty, is_tracepoint);
15889 }
15890
15891 /* Create a vector of all tracepoints. */
15892
15893 VEC(breakpoint_p) *
15894 all_tracepoints (void)
15895 {
15896 VEC(breakpoint_p) *tp_vec = 0;
15897 struct breakpoint *tp;
15898
15899 ALL_TRACEPOINTS (tp)
15900 {
15901 VEC_safe_push (breakpoint_p, tp_vec, tp);
15902 }
15903
15904 return tp_vec;
15905 }
15906
15907 \f
15908 /* This help string is used for the break, hbreak, tbreak and thbreak
15909 commands. It is defined as a macro to prevent duplication.
15910 COMMAND should be a string constant containing the name of the
15911 command. */
15912 #define BREAK_ARGS_HELP(command) \
15913 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15914 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15915 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15916 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15917 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15918 If a line number is specified, break at start of code for that line.\n\
15919 If a function is specified, break at start of code for that function.\n\
15920 If an address is specified, break at that exact address.\n\
15921 With no LOCATION, uses current execution address of the selected\n\
15922 stack frame. This is useful for breaking on return to a stack frame.\n\
15923 \n\
15924 THREADNUM is the number from \"info threads\".\n\
15925 CONDITION is a boolean expression.\n\
15926 \n\
15927 Multiple breakpoints at one place are permitted, and useful if their\n\
15928 conditions are different.\n\
15929 \n\
15930 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15931
15932 /* List of subcommands for "catch". */
15933 static struct cmd_list_element *catch_cmdlist;
15934
15935 /* List of subcommands for "tcatch". */
15936 static struct cmd_list_element *tcatch_cmdlist;
15937
15938 void
15939 add_catch_command (char *name, char *docstring,
15940 void (*sfunc) (char *args, int from_tty,
15941 struct cmd_list_element *command),
15942 completer_ftype *completer,
15943 void *user_data_catch,
15944 void *user_data_tcatch)
15945 {
15946 struct cmd_list_element *command;
15947
15948 command = add_cmd (name, class_breakpoint, NULL, docstring,
15949 &catch_cmdlist);
15950 set_cmd_sfunc (command, sfunc);
15951 set_cmd_context (command, user_data_catch);
15952 set_cmd_completer (command, completer);
15953
15954 command = add_cmd (name, class_breakpoint, NULL, docstring,
15955 &tcatch_cmdlist);
15956 set_cmd_sfunc (command, sfunc);
15957 set_cmd_context (command, user_data_tcatch);
15958 set_cmd_completer (command, completer);
15959 }
15960
15961 static void
15962 clear_syscall_counts (struct inferior *inf)
15963 {
15964 struct catch_syscall_inferior_data *inf_data
15965 = get_catch_syscall_inferior_data (inf);
15966
15967 inf_data->total_syscalls_count = 0;
15968 inf_data->any_syscall_count = 0;
15969 VEC_free (int, inf_data->syscalls_counts);
15970 }
15971
15972 static void
15973 save_command (char *arg, int from_tty)
15974 {
15975 printf_unfiltered (_("\"save\" must be followed by "
15976 "the name of a save subcommand.\n"));
15977 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15978 }
15979
15980 struct breakpoint *
15981 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15982 void *data)
15983 {
15984 struct breakpoint *b, *b_tmp;
15985
15986 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15987 {
15988 if ((*callback) (b, data))
15989 return b;
15990 }
15991
15992 return NULL;
15993 }
15994
15995 /* Zero if any of the breakpoint's locations could be a location where
15996 functions have been inlined, nonzero otherwise. */
15997
15998 static int
15999 is_non_inline_function (struct breakpoint *b)
16000 {
16001 /* The shared library event breakpoint is set on the address of a
16002 non-inline function. */
16003 if (b->type == bp_shlib_event)
16004 return 1;
16005
16006 return 0;
16007 }
16008
16009 /* Nonzero if the specified PC cannot be a location where functions
16010 have been inlined. */
16011
16012 int
16013 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
16014 const struct target_waitstatus *ws)
16015 {
16016 struct breakpoint *b;
16017 struct bp_location *bl;
16018
16019 ALL_BREAKPOINTS (b)
16020 {
16021 if (!is_non_inline_function (b))
16022 continue;
16023
16024 for (bl = b->loc; bl != NULL; bl = bl->next)
16025 {
16026 if (!bl->shlib_disabled
16027 && bpstat_check_location (bl, aspace, pc, ws))
16028 return 1;
16029 }
16030 }
16031
16032 return 0;
16033 }
16034
16035 /* Remove any references to OBJFILE which is going to be freed. */
16036
16037 void
16038 breakpoint_free_objfile (struct objfile *objfile)
16039 {
16040 struct bp_location **locp, *loc;
16041
16042 ALL_BP_LOCATIONS (loc, locp)
16043 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
16044 loc->symtab = NULL;
16045 }
16046
16047 void
16048 initialize_breakpoint_ops (void)
16049 {
16050 static int initialized = 0;
16051
16052 struct breakpoint_ops *ops;
16053
16054 if (initialized)
16055 return;
16056 initialized = 1;
16057
16058 /* The breakpoint_ops structure to be inherit by all kinds of
16059 breakpoints (real breakpoints, i.e., user "break" breakpoints,
16060 internal and momentary breakpoints, etc.). */
16061 ops = &bkpt_base_breakpoint_ops;
16062 *ops = base_breakpoint_ops;
16063 ops->re_set = bkpt_re_set;
16064 ops->insert_location = bkpt_insert_location;
16065 ops->remove_location = bkpt_remove_location;
16066 ops->breakpoint_hit = bkpt_breakpoint_hit;
16067 ops->create_sals_from_address = bkpt_create_sals_from_address;
16068 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
16069 ops->decode_linespec = bkpt_decode_linespec;
16070
16071 /* The breakpoint_ops structure to be used in regular breakpoints. */
16072 ops = &bkpt_breakpoint_ops;
16073 *ops = bkpt_base_breakpoint_ops;
16074 ops->re_set = bkpt_re_set;
16075 ops->resources_needed = bkpt_resources_needed;
16076 ops->print_it = bkpt_print_it;
16077 ops->print_mention = bkpt_print_mention;
16078 ops->print_recreate = bkpt_print_recreate;
16079
16080 /* Ranged breakpoints. */
16081 ops = &ranged_breakpoint_ops;
16082 *ops = bkpt_breakpoint_ops;
16083 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
16084 ops->resources_needed = resources_needed_ranged_breakpoint;
16085 ops->print_it = print_it_ranged_breakpoint;
16086 ops->print_one = print_one_ranged_breakpoint;
16087 ops->print_one_detail = print_one_detail_ranged_breakpoint;
16088 ops->print_mention = print_mention_ranged_breakpoint;
16089 ops->print_recreate = print_recreate_ranged_breakpoint;
16090
16091 /* Internal breakpoints. */
16092 ops = &internal_breakpoint_ops;
16093 *ops = bkpt_base_breakpoint_ops;
16094 ops->re_set = internal_bkpt_re_set;
16095 ops->check_status = internal_bkpt_check_status;
16096 ops->print_it = internal_bkpt_print_it;
16097 ops->print_mention = internal_bkpt_print_mention;
16098
16099 /* Momentary breakpoints. */
16100 ops = &momentary_breakpoint_ops;
16101 *ops = bkpt_base_breakpoint_ops;
16102 ops->re_set = momentary_bkpt_re_set;
16103 ops->check_status = momentary_bkpt_check_status;
16104 ops->print_it = momentary_bkpt_print_it;
16105 ops->print_mention = momentary_bkpt_print_mention;
16106
16107 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16108 ops = &longjmp_breakpoint_ops;
16109 *ops = momentary_breakpoint_ops;
16110 ops->dtor = longjmp_bkpt_dtor;
16111
16112 /* Probe breakpoints. */
16113 ops = &bkpt_probe_breakpoint_ops;
16114 *ops = bkpt_breakpoint_ops;
16115 ops->insert_location = bkpt_probe_insert_location;
16116 ops->remove_location = bkpt_probe_remove_location;
16117 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16118 ops->decode_linespec = bkpt_probe_decode_linespec;
16119
16120 /* Watchpoints. */
16121 ops = &watchpoint_breakpoint_ops;
16122 *ops = base_breakpoint_ops;
16123 ops->dtor = dtor_watchpoint;
16124 ops->re_set = re_set_watchpoint;
16125 ops->insert_location = insert_watchpoint;
16126 ops->remove_location = remove_watchpoint;
16127 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16128 ops->check_status = check_status_watchpoint;
16129 ops->resources_needed = resources_needed_watchpoint;
16130 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16131 ops->print_it = print_it_watchpoint;
16132 ops->print_mention = print_mention_watchpoint;
16133 ops->print_recreate = print_recreate_watchpoint;
16134 ops->explains_signal = explains_signal_watchpoint;
16135
16136 /* Masked watchpoints. */
16137 ops = &masked_watchpoint_breakpoint_ops;
16138 *ops = watchpoint_breakpoint_ops;
16139 ops->insert_location = insert_masked_watchpoint;
16140 ops->remove_location = remove_masked_watchpoint;
16141 ops->resources_needed = resources_needed_masked_watchpoint;
16142 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16143 ops->print_it = print_it_masked_watchpoint;
16144 ops->print_one_detail = print_one_detail_masked_watchpoint;
16145 ops->print_mention = print_mention_masked_watchpoint;
16146 ops->print_recreate = print_recreate_masked_watchpoint;
16147
16148 /* Tracepoints. */
16149 ops = &tracepoint_breakpoint_ops;
16150 *ops = base_breakpoint_ops;
16151 ops->re_set = tracepoint_re_set;
16152 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16153 ops->print_one_detail = tracepoint_print_one_detail;
16154 ops->print_mention = tracepoint_print_mention;
16155 ops->print_recreate = tracepoint_print_recreate;
16156 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16157 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16158 ops->decode_linespec = tracepoint_decode_linespec;
16159
16160 /* Probe tracepoints. */
16161 ops = &tracepoint_probe_breakpoint_ops;
16162 *ops = tracepoint_breakpoint_ops;
16163 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16164 ops->decode_linespec = tracepoint_probe_decode_linespec;
16165
16166 /* Static tracepoints with marker (`-m'). */
16167 ops = &strace_marker_breakpoint_ops;
16168 *ops = tracepoint_breakpoint_ops;
16169 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16170 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16171 ops->decode_linespec = strace_marker_decode_linespec;
16172
16173 /* Fork catchpoints. */
16174 ops = &catch_fork_breakpoint_ops;
16175 *ops = base_breakpoint_ops;
16176 ops->insert_location = insert_catch_fork;
16177 ops->remove_location = remove_catch_fork;
16178 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16179 ops->print_it = print_it_catch_fork;
16180 ops->print_one = print_one_catch_fork;
16181 ops->print_mention = print_mention_catch_fork;
16182 ops->print_recreate = print_recreate_catch_fork;
16183
16184 /* Vfork catchpoints. */
16185 ops = &catch_vfork_breakpoint_ops;
16186 *ops = base_breakpoint_ops;
16187 ops->insert_location = insert_catch_vfork;
16188 ops->remove_location = remove_catch_vfork;
16189 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16190 ops->print_it = print_it_catch_vfork;
16191 ops->print_one = print_one_catch_vfork;
16192 ops->print_mention = print_mention_catch_vfork;
16193 ops->print_recreate = print_recreate_catch_vfork;
16194
16195 /* Exec catchpoints. */
16196 ops = &catch_exec_breakpoint_ops;
16197 *ops = base_breakpoint_ops;
16198 ops->dtor = dtor_catch_exec;
16199 ops->insert_location = insert_catch_exec;
16200 ops->remove_location = remove_catch_exec;
16201 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16202 ops->print_it = print_it_catch_exec;
16203 ops->print_one = print_one_catch_exec;
16204 ops->print_mention = print_mention_catch_exec;
16205 ops->print_recreate = print_recreate_catch_exec;
16206
16207 /* Syscall catchpoints. */
16208 ops = &catch_syscall_breakpoint_ops;
16209 *ops = base_breakpoint_ops;
16210 ops->dtor = dtor_catch_syscall;
16211 ops->insert_location = insert_catch_syscall;
16212 ops->remove_location = remove_catch_syscall;
16213 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16214 ops->print_it = print_it_catch_syscall;
16215 ops->print_one = print_one_catch_syscall;
16216 ops->print_mention = print_mention_catch_syscall;
16217 ops->print_recreate = print_recreate_catch_syscall;
16218
16219 /* Solib-related catchpoints. */
16220 ops = &catch_solib_breakpoint_ops;
16221 *ops = base_breakpoint_ops;
16222 ops->dtor = dtor_catch_solib;
16223 ops->insert_location = insert_catch_solib;
16224 ops->remove_location = remove_catch_solib;
16225 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16226 ops->check_status = check_status_catch_solib;
16227 ops->print_it = print_it_catch_solib;
16228 ops->print_one = print_one_catch_solib;
16229 ops->print_mention = print_mention_catch_solib;
16230 ops->print_recreate = print_recreate_catch_solib;
16231
16232 ops = &dprintf_breakpoint_ops;
16233 *ops = bkpt_base_breakpoint_ops;
16234 ops->re_set = dprintf_re_set;
16235 ops->resources_needed = bkpt_resources_needed;
16236 ops->print_it = bkpt_print_it;
16237 ops->print_mention = bkpt_print_mention;
16238 ops->print_recreate = dprintf_print_recreate;
16239 ops->after_condition_true = dprintf_after_condition_true;
16240 ops->breakpoint_hit = dprintf_breakpoint_hit;
16241 }
16242
16243 /* Chain containing all defined "enable breakpoint" subcommands. */
16244
16245 static struct cmd_list_element *enablebreaklist = NULL;
16246
16247 void
16248 _initialize_breakpoint (void)
16249 {
16250 struct cmd_list_element *c;
16251
16252 initialize_breakpoint_ops ();
16253
16254 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16255 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16256 observer_attach_inferior_exit (clear_syscall_counts);
16257 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16258
16259 breakpoint_objfile_key
16260 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16261
16262 catch_syscall_inferior_data
16263 = register_inferior_data_with_cleanup (NULL,
16264 catch_syscall_inferior_data_cleanup);
16265
16266 breakpoint_chain = 0;
16267 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16268 before a breakpoint is set. */
16269 breakpoint_count = 0;
16270
16271 tracepoint_count = 0;
16272
16273 add_com ("ignore", class_breakpoint, ignore_command, _("\
16274 Set ignore-count of breakpoint number N to COUNT.\n\
16275 Usage is `ignore N COUNT'."));
16276 if (xdb_commands)
16277 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16278
16279 add_com ("commands", class_breakpoint, commands_command, _("\
16280 Set commands to be executed when a breakpoint is hit.\n\
16281 Give breakpoint number as argument after \"commands\".\n\
16282 With no argument, the targeted breakpoint is the last one set.\n\
16283 The commands themselves follow starting on the next line.\n\
16284 Type a line containing \"end\" to indicate the end of them.\n\
16285 Give \"silent\" as the first line to make the breakpoint silent;\n\
16286 then no output is printed when it is hit, except what the commands print."));
16287
16288 c = add_com ("condition", class_breakpoint, condition_command, _("\
16289 Specify breakpoint number N to break only if COND is true.\n\
16290 Usage is `condition N COND', where N is an integer and COND is an\n\
16291 expression to be evaluated whenever breakpoint N is reached."));
16292 set_cmd_completer (c, condition_completer);
16293
16294 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16295 Set a temporary breakpoint.\n\
16296 Like \"break\" except the breakpoint is only temporary,\n\
16297 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16298 by using \"enable delete\" on the breakpoint number.\n\
16299 \n"
16300 BREAK_ARGS_HELP ("tbreak")));
16301 set_cmd_completer (c, location_completer);
16302
16303 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16304 Set a hardware assisted breakpoint.\n\
16305 Like \"break\" except the breakpoint requires hardware support,\n\
16306 some target hardware may not have this support.\n\
16307 \n"
16308 BREAK_ARGS_HELP ("hbreak")));
16309 set_cmd_completer (c, location_completer);
16310
16311 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16312 Set a temporary hardware assisted breakpoint.\n\
16313 Like \"hbreak\" except the breakpoint is only temporary,\n\
16314 so it will be deleted when hit.\n\
16315 \n"
16316 BREAK_ARGS_HELP ("thbreak")));
16317 set_cmd_completer (c, location_completer);
16318
16319 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16320 Enable some breakpoints.\n\
16321 Give breakpoint numbers (separated by spaces) as arguments.\n\
16322 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16323 This is used to cancel the effect of the \"disable\" command.\n\
16324 With a subcommand you can enable temporarily."),
16325 &enablelist, "enable ", 1, &cmdlist);
16326 if (xdb_commands)
16327 add_com ("ab", class_breakpoint, enable_command, _("\
16328 Enable some breakpoints.\n\
16329 Give breakpoint numbers (separated by spaces) as arguments.\n\
16330 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16331 This is used to cancel the effect of the \"disable\" command.\n\
16332 With a subcommand you can enable temporarily."));
16333
16334 add_com_alias ("en", "enable", class_breakpoint, 1);
16335
16336 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16337 Enable some breakpoints.\n\
16338 Give breakpoint numbers (separated by spaces) as arguments.\n\
16339 This is used to cancel the effect of the \"disable\" command.\n\
16340 May be abbreviated to simply \"enable\".\n"),
16341 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16342
16343 add_cmd ("once", no_class, enable_once_command, _("\
16344 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16345 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16346 &enablebreaklist);
16347
16348 add_cmd ("delete", no_class, enable_delete_command, _("\
16349 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16350 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16351 &enablebreaklist);
16352
16353 add_cmd ("count", no_class, enable_count_command, _("\
16354 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16355 If a breakpoint is hit while enabled in this fashion,\n\
16356 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16357 &enablebreaklist);
16358
16359 add_cmd ("delete", no_class, enable_delete_command, _("\
16360 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16361 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16362 &enablelist);
16363
16364 add_cmd ("once", no_class, enable_once_command, _("\
16365 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16366 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16367 &enablelist);
16368
16369 add_cmd ("count", no_class, enable_count_command, _("\
16370 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16371 If a breakpoint is hit while enabled in this fashion,\n\
16372 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16373 &enablelist);
16374
16375 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16376 Disable some breakpoints.\n\
16377 Arguments are breakpoint numbers with spaces in between.\n\
16378 To disable all breakpoints, give no argument.\n\
16379 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16380 &disablelist, "disable ", 1, &cmdlist);
16381 add_com_alias ("dis", "disable", class_breakpoint, 1);
16382 add_com_alias ("disa", "disable", class_breakpoint, 1);
16383 if (xdb_commands)
16384 add_com ("sb", class_breakpoint, disable_command, _("\
16385 Disable some breakpoints.\n\
16386 Arguments are breakpoint numbers with spaces in between.\n\
16387 To disable all breakpoints, give no argument.\n\
16388 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16389
16390 add_cmd ("breakpoints", class_alias, disable_command, _("\
16391 Disable some breakpoints.\n\
16392 Arguments are breakpoint numbers with spaces in between.\n\
16393 To disable all breakpoints, give no argument.\n\
16394 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16395 This command may be abbreviated \"disable\"."),
16396 &disablelist);
16397
16398 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16399 Delete some breakpoints or auto-display expressions.\n\
16400 Arguments are breakpoint numbers with spaces in between.\n\
16401 To delete all breakpoints, give no argument.\n\
16402 \n\
16403 Also a prefix command for deletion of other GDB objects.\n\
16404 The \"unset\" command is also an alias for \"delete\"."),
16405 &deletelist, "delete ", 1, &cmdlist);
16406 add_com_alias ("d", "delete", class_breakpoint, 1);
16407 add_com_alias ("del", "delete", class_breakpoint, 1);
16408 if (xdb_commands)
16409 add_com ("db", class_breakpoint, delete_command, _("\
16410 Delete some breakpoints.\n\
16411 Arguments are breakpoint numbers with spaces in between.\n\
16412 To delete all breakpoints, give no argument.\n"));
16413
16414 add_cmd ("breakpoints", class_alias, delete_command, _("\
16415 Delete some breakpoints or auto-display expressions.\n\
16416 Arguments are breakpoint numbers with spaces in between.\n\
16417 To delete all breakpoints, give no argument.\n\
16418 This command may be abbreviated \"delete\"."),
16419 &deletelist);
16420
16421 add_com ("clear", class_breakpoint, clear_command, _("\
16422 Clear breakpoint at specified line or function.\n\
16423 Argument may be line number, function name, or \"*\" and an address.\n\
16424 If line number is specified, all breakpoints in that line are cleared.\n\
16425 If function is specified, breakpoints at beginning of function are cleared.\n\
16426 If an address is specified, breakpoints at that address are cleared.\n\
16427 \n\
16428 With no argument, clears all breakpoints in the line that the selected frame\n\
16429 is executing in.\n\
16430 \n\
16431 See also the \"delete\" command which clears breakpoints by number."));
16432 add_com_alias ("cl", "clear", class_breakpoint, 1);
16433
16434 c = add_com ("break", class_breakpoint, break_command, _("\
16435 Set breakpoint at specified line or function.\n"
16436 BREAK_ARGS_HELP ("break")));
16437 set_cmd_completer (c, location_completer);
16438
16439 add_com_alias ("b", "break", class_run, 1);
16440 add_com_alias ("br", "break", class_run, 1);
16441 add_com_alias ("bre", "break", class_run, 1);
16442 add_com_alias ("brea", "break", class_run, 1);
16443
16444 if (xdb_commands)
16445 add_com_alias ("ba", "break", class_breakpoint, 1);
16446
16447 if (dbx_commands)
16448 {
16449 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16450 Break in function/address or break at a line in the current file."),
16451 &stoplist, "stop ", 1, &cmdlist);
16452 add_cmd ("in", class_breakpoint, stopin_command,
16453 _("Break in function or address."), &stoplist);
16454 add_cmd ("at", class_breakpoint, stopat_command,
16455 _("Break at a line in the current file."), &stoplist);
16456 add_com ("status", class_info, breakpoints_info, _("\
16457 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16458 The \"Type\" column indicates one of:\n\
16459 \tbreakpoint - normal breakpoint\n\
16460 \twatchpoint - watchpoint\n\
16461 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16462 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16463 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16464 address and file/line number respectively.\n\
16465 \n\
16466 Convenience variable \"$_\" and default examine address for \"x\"\n\
16467 are set to the address of the last breakpoint listed unless the command\n\
16468 is prefixed with \"server \".\n\n\
16469 Convenience variable \"$bpnum\" contains the number of the last\n\
16470 breakpoint set."));
16471 }
16472
16473 add_info ("breakpoints", breakpoints_info, _("\
16474 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16475 The \"Type\" column indicates one of:\n\
16476 \tbreakpoint - normal breakpoint\n\
16477 \twatchpoint - watchpoint\n\
16478 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16479 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16480 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16481 address and file/line number respectively.\n\
16482 \n\
16483 Convenience variable \"$_\" and default examine address for \"x\"\n\
16484 are set to the address of the last breakpoint listed unless the command\n\
16485 is prefixed with \"server \".\n\n\
16486 Convenience variable \"$bpnum\" contains the number of the last\n\
16487 breakpoint set."));
16488
16489 add_info_alias ("b", "breakpoints", 1);
16490
16491 if (xdb_commands)
16492 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16493 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16494 The \"Type\" column indicates one of:\n\
16495 \tbreakpoint - normal breakpoint\n\
16496 \twatchpoint - watchpoint\n\
16497 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16498 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16499 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16500 address and file/line number respectively.\n\
16501 \n\
16502 Convenience variable \"$_\" and default examine address for \"x\"\n\
16503 are set to the address of the last breakpoint listed unless the command\n\
16504 is prefixed with \"server \".\n\n\
16505 Convenience variable \"$bpnum\" contains the number of the last\n\
16506 breakpoint set."));
16507
16508 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16509 Status of all breakpoints, or breakpoint number NUMBER.\n\
16510 The \"Type\" column indicates one of:\n\
16511 \tbreakpoint - normal breakpoint\n\
16512 \twatchpoint - watchpoint\n\
16513 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16514 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16515 \tuntil - internal breakpoint used by the \"until\" command\n\
16516 \tfinish - internal breakpoint used by the \"finish\" command\n\
16517 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16518 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16519 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16520 address and file/line number respectively.\n\
16521 \n\
16522 Convenience variable \"$_\" and default examine address for \"x\"\n\
16523 are set to the address of the last breakpoint listed unless the command\n\
16524 is prefixed with \"server \".\n\n\
16525 Convenience variable \"$bpnum\" contains the number of the last\n\
16526 breakpoint set."),
16527 &maintenanceinfolist);
16528
16529 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16530 Set catchpoints to catch events."),
16531 &catch_cmdlist, "catch ",
16532 0/*allow-unknown*/, &cmdlist);
16533
16534 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16535 Set temporary catchpoints to catch events."),
16536 &tcatch_cmdlist, "tcatch ",
16537 0/*allow-unknown*/, &cmdlist);
16538
16539 add_catch_command ("fork", _("Catch calls to fork."),
16540 catch_fork_command_1,
16541 NULL,
16542 (void *) (uintptr_t) catch_fork_permanent,
16543 (void *) (uintptr_t) catch_fork_temporary);
16544 add_catch_command ("vfork", _("Catch calls to vfork."),
16545 catch_fork_command_1,
16546 NULL,
16547 (void *) (uintptr_t) catch_vfork_permanent,
16548 (void *) (uintptr_t) catch_vfork_temporary);
16549 add_catch_command ("exec", _("Catch calls to exec."),
16550 catch_exec_command_1,
16551 NULL,
16552 CATCH_PERMANENT,
16553 CATCH_TEMPORARY);
16554 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16555 Usage: catch load [REGEX]\n\
16556 If REGEX is given, only stop for libraries matching the regular expression."),
16557 catch_load_command_1,
16558 NULL,
16559 CATCH_PERMANENT,
16560 CATCH_TEMPORARY);
16561 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16562 Usage: catch unload [REGEX]\n\
16563 If REGEX is given, only stop for libraries matching the regular expression."),
16564 catch_unload_command_1,
16565 NULL,
16566 CATCH_PERMANENT,
16567 CATCH_TEMPORARY);
16568 add_catch_command ("syscall", _("\
16569 Catch system calls by their names and/or numbers.\n\
16570 Arguments say which system calls to catch. If no arguments\n\
16571 are given, every system call will be caught.\n\
16572 Arguments, if given, should be one or more system call names\n\
16573 (if your system supports that), or system call numbers."),
16574 catch_syscall_command_1,
16575 catch_syscall_completer,
16576 CATCH_PERMANENT,
16577 CATCH_TEMPORARY);
16578
16579 c = add_com ("watch", class_breakpoint, watch_command, _("\
16580 Set a watchpoint for an expression.\n\
16581 Usage: watch [-l|-location] EXPRESSION\n\
16582 A watchpoint stops execution of your program whenever the value of\n\
16583 an expression changes.\n\
16584 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16585 the memory to which it refers."));
16586 set_cmd_completer (c, expression_completer);
16587
16588 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16589 Set a read watchpoint for an expression.\n\
16590 Usage: rwatch [-l|-location] EXPRESSION\n\
16591 A watchpoint stops execution of your program whenever the value of\n\
16592 an expression is read.\n\
16593 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16594 the memory to which it refers."));
16595 set_cmd_completer (c, expression_completer);
16596
16597 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16598 Set a watchpoint for an expression.\n\
16599 Usage: awatch [-l|-location] EXPRESSION\n\
16600 A watchpoint stops execution of your program whenever the value of\n\
16601 an expression is either read or written.\n\
16602 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16603 the memory to which it refers."));
16604 set_cmd_completer (c, expression_completer);
16605
16606 add_info ("watchpoints", watchpoints_info, _("\
16607 Status of specified watchpoints (all watchpoints if no argument)."));
16608
16609 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16610 respond to changes - contrary to the description. */
16611 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16612 &can_use_hw_watchpoints, _("\
16613 Set debugger's willingness to use watchpoint hardware."), _("\
16614 Show debugger's willingness to use watchpoint hardware."), _("\
16615 If zero, gdb will not use hardware for new watchpoints, even if\n\
16616 such is available. (However, any hardware watchpoints that were\n\
16617 created before setting this to nonzero, will continue to use watchpoint\n\
16618 hardware.)"),
16619 NULL,
16620 show_can_use_hw_watchpoints,
16621 &setlist, &showlist);
16622
16623 can_use_hw_watchpoints = 1;
16624
16625 /* Tracepoint manipulation commands. */
16626
16627 c = add_com ("trace", class_breakpoint, trace_command, _("\
16628 Set a tracepoint at specified line or function.\n\
16629 \n"
16630 BREAK_ARGS_HELP ("trace") "\n\
16631 Do \"help tracepoints\" for info on other tracepoint commands."));
16632 set_cmd_completer (c, location_completer);
16633
16634 add_com_alias ("tp", "trace", class_alias, 0);
16635 add_com_alias ("tr", "trace", class_alias, 1);
16636 add_com_alias ("tra", "trace", class_alias, 1);
16637 add_com_alias ("trac", "trace", class_alias, 1);
16638
16639 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16640 Set a fast tracepoint at specified line or function.\n\
16641 \n"
16642 BREAK_ARGS_HELP ("ftrace") "\n\
16643 Do \"help tracepoints\" for info on other tracepoint commands."));
16644 set_cmd_completer (c, location_completer);
16645
16646 c = add_com ("strace", class_breakpoint, strace_command, _("\
16647 Set a static tracepoint at specified line, function or marker.\n\
16648 \n\
16649 strace [LOCATION] [if CONDITION]\n\
16650 LOCATION may be a line number, function name, \"*\" and an address,\n\
16651 or -m MARKER_ID.\n\
16652 If a line number is specified, probe the marker at start of code\n\
16653 for that line. If a function is specified, probe the marker at start\n\
16654 of code for that function. If an address is specified, probe the marker\n\
16655 at that exact address. If a marker id is specified, probe the marker\n\
16656 with that name. With no LOCATION, uses current execution address of\n\
16657 the selected stack frame.\n\
16658 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16659 This collects arbitrary user data passed in the probe point call to the\n\
16660 tracing library. You can inspect it when analyzing the trace buffer,\n\
16661 by printing the $_sdata variable like any other convenience variable.\n\
16662 \n\
16663 CONDITION is a boolean expression.\n\
16664 \n\
16665 Multiple tracepoints at one place are permitted, and useful if their\n\
16666 conditions are different.\n\
16667 \n\
16668 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16669 Do \"help tracepoints\" for info on other tracepoint commands."));
16670 set_cmd_completer (c, location_completer);
16671
16672 add_info ("tracepoints", tracepoints_info, _("\
16673 Status of specified tracepoints (all tracepoints if no argument).\n\
16674 Convenience variable \"$tpnum\" contains the number of the\n\
16675 last tracepoint set."));
16676
16677 add_info_alias ("tp", "tracepoints", 1);
16678
16679 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16680 Delete specified tracepoints.\n\
16681 Arguments are tracepoint numbers, separated by spaces.\n\
16682 No argument means delete all tracepoints."),
16683 &deletelist);
16684 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16685
16686 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16687 Disable specified tracepoints.\n\
16688 Arguments are tracepoint numbers, separated by spaces.\n\
16689 No argument means disable all tracepoints."),
16690 &disablelist);
16691 deprecate_cmd (c, "disable");
16692
16693 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16694 Enable specified tracepoints.\n\
16695 Arguments are tracepoint numbers, separated by spaces.\n\
16696 No argument means enable all tracepoints."),
16697 &enablelist);
16698 deprecate_cmd (c, "enable");
16699
16700 add_com ("passcount", class_trace, trace_pass_command, _("\
16701 Set the passcount for a tracepoint.\n\
16702 The trace will end when the tracepoint has been passed 'count' times.\n\
16703 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16704 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16705
16706 add_prefix_cmd ("save", class_breakpoint, save_command,
16707 _("Save breakpoint definitions as a script."),
16708 &save_cmdlist, "save ",
16709 0/*allow-unknown*/, &cmdlist);
16710
16711 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16712 Save current breakpoint definitions as a script.\n\
16713 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16714 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16715 session to restore them."),
16716 &save_cmdlist);
16717 set_cmd_completer (c, filename_completer);
16718
16719 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16720 Save current tracepoint definitions as a script.\n\
16721 Use the 'source' command in another debug session to restore them."),
16722 &save_cmdlist);
16723 set_cmd_completer (c, filename_completer);
16724
16725 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16726 deprecate_cmd (c, "save tracepoints");
16727
16728 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16729 Breakpoint specific settings\n\
16730 Configure various breakpoint-specific variables such as\n\
16731 pending breakpoint behavior"),
16732 &breakpoint_set_cmdlist, "set breakpoint ",
16733 0/*allow-unknown*/, &setlist);
16734 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16735 Breakpoint specific settings\n\
16736 Configure various breakpoint-specific variables such as\n\
16737 pending breakpoint behavior"),
16738 &breakpoint_show_cmdlist, "show breakpoint ",
16739 0/*allow-unknown*/, &showlist);
16740
16741 add_setshow_auto_boolean_cmd ("pending", no_class,
16742 &pending_break_support, _("\
16743 Set debugger's behavior regarding pending breakpoints."), _("\
16744 Show debugger's behavior regarding pending breakpoints."), _("\
16745 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16746 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16747 an error. If auto, an unrecognized breakpoint location results in a\n\
16748 user-query to see if a pending breakpoint should be created."),
16749 NULL,
16750 show_pending_break_support,
16751 &breakpoint_set_cmdlist,
16752 &breakpoint_show_cmdlist);
16753
16754 pending_break_support = AUTO_BOOLEAN_AUTO;
16755
16756 add_setshow_boolean_cmd ("auto-hw", no_class,
16757 &automatic_hardware_breakpoints, _("\
16758 Set automatic usage of hardware breakpoints."), _("\
16759 Show automatic usage of hardware breakpoints."), _("\
16760 If set, the debugger will automatically use hardware breakpoints for\n\
16761 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16762 a warning will be emitted for such breakpoints."),
16763 NULL,
16764 show_automatic_hardware_breakpoints,
16765 &breakpoint_set_cmdlist,
16766 &breakpoint_show_cmdlist);
16767
16768 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16769 &always_inserted_mode, _("\
16770 Set mode for inserting breakpoints."), _("\
16771 Show mode for inserting breakpoints."), _("\
16772 When this mode is off, breakpoints are inserted in inferior when it is\n\
16773 resumed, and removed when execution stops. When this mode is on,\n\
16774 breakpoints are inserted immediately and removed only when the user\n\
16775 deletes the breakpoint. When this mode is auto (which is the default),\n\
16776 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16777 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16778 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16779 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16780 NULL,
16781 &show_always_inserted_mode,
16782 &breakpoint_set_cmdlist,
16783 &breakpoint_show_cmdlist);
16784
16785 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16786 condition_evaluation_enums,
16787 &condition_evaluation_mode_1, _("\
16788 Set mode of breakpoint condition evaluation."), _("\
16789 Show mode of breakpoint condition evaluation."), _("\
16790 When this is set to \"host\", breakpoint conditions will be\n\
16791 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16792 breakpoint conditions will be downloaded to the target (if the target\n\
16793 supports such feature) and conditions will be evaluated on the target's side.\n\
16794 If this is set to \"auto\" (default), this will be automatically set to\n\
16795 \"target\" if it supports condition evaluation, otherwise it will\n\
16796 be set to \"gdb\""),
16797 &set_condition_evaluation_mode,
16798 &show_condition_evaluation_mode,
16799 &breakpoint_set_cmdlist,
16800 &breakpoint_show_cmdlist);
16801
16802 add_com ("break-range", class_breakpoint, break_range_command, _("\
16803 Set a breakpoint for an address range.\n\
16804 break-range START-LOCATION, END-LOCATION\n\
16805 where START-LOCATION and END-LOCATION can be one of the following:\n\
16806 LINENUM, for that line in the current file,\n\
16807 FILE:LINENUM, for that line in that file,\n\
16808 +OFFSET, for that number of lines after the current line\n\
16809 or the start of the range\n\
16810 FUNCTION, for the first line in that function,\n\
16811 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16812 *ADDRESS, for the instruction at that address.\n\
16813 \n\
16814 The breakpoint will stop execution of the inferior whenever it executes\n\
16815 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16816 range (including START-LOCATION and END-LOCATION)."));
16817
16818 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16819 Set a dynamic printf at specified line or function.\n\
16820 dprintf location,format string,arg1,arg2,...\n\
16821 location may be a line number, function name, or \"*\" and an address.\n\
16822 If a line number is specified, break at start of code for that line.\n\
16823 If a function is specified, break at start of code for that function."));
16824 set_cmd_completer (c, location_completer);
16825
16826 add_setshow_enum_cmd ("dprintf-style", class_support,
16827 dprintf_style_enums, &dprintf_style, _("\
16828 Set the style of usage for dynamic printf."), _("\
16829 Show the style of usage for dynamic printf."), _("\
16830 This setting chooses how GDB will do a dynamic printf.\n\
16831 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16832 console, as with the \"printf\" command.\n\
16833 If the value is \"call\", the print is done by calling a function in your\n\
16834 program; by default printf(), but you can choose a different function or\n\
16835 output stream by setting dprintf-function and dprintf-channel."),
16836 update_dprintf_commands, NULL,
16837 &setlist, &showlist);
16838
16839 dprintf_function = xstrdup ("printf");
16840 add_setshow_string_cmd ("dprintf-function", class_support,
16841 &dprintf_function, _("\
16842 Set the function to use for dynamic printf"), _("\
16843 Show the function to use for dynamic printf"), NULL,
16844 update_dprintf_commands, NULL,
16845 &setlist, &showlist);
16846
16847 dprintf_channel = xstrdup ("");
16848 add_setshow_string_cmd ("dprintf-channel", class_support,
16849 &dprintf_channel, _("\
16850 Set the channel to use for dynamic printf"), _("\
16851 Show the channel to use for dynamic printf"), NULL,
16852 update_dprintf_commands, NULL,
16853 &setlist, &showlist);
16854
16855 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16856 &disconnected_dprintf, _("\
16857 Set whether dprintf continues after GDB disconnects."), _("\
16858 Show whether dprintf continues after GDB disconnects."), _("\
16859 Use this to let dprintf commands continue to hit and produce output\n\
16860 even if GDB disconnects or detaches from the target."),
16861 NULL,
16862 NULL,
16863 &setlist, &showlist);
16864
16865 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16866 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16867 (target agent only) This is useful for formatted output in user-defined commands."));
16868
16869 automatic_hardware_breakpoints = 1;
16870
16871 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16872 observer_attach_thread_exit (remove_threaded_breakpoints);
16873 }