Move pending_macros to buildsym_compunit
[binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986-2018 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* This module provides subroutines used for creating and adding to
20 the symbol table. These routines are called from various symbol-
21 file-reading routines.
22
23 Routines to support specific debugging information formats (stabs,
24 DWARF, etc) belong somewhere else.
25
26 The basic way this module is used is as follows:
27
28 buildsym_init ();
29 scoped_free_pendings free_pending;
30 cust = start_symtab (...);
31 ... read debug info ...
32 cust = end_symtab (...);
33
34 The compunit symtab pointer ("cust") is returned from both start_symtab
35 and end_symtab to simplify the debug info readers.
36
37 There are minor variations on this, e.g., dwarf2read.c splits end_symtab
38 into two calls: end_symtab_get_static_block, end_symtab_from_static_block,
39 but all debug info readers follow this basic flow.
40
41 Reading DWARF Type Units is another variation:
42
43 buildsym_init ();
44 scoped_free_pendings free_pending;
45 cust = start_symtab (...);
46 ... read debug info ...
47 cust = end_expandable_symtab (...);
48
49 And then reading subsequent Type Units within the containing "Comp Unit"
50 will use a second flow:
51
52 buildsym_init ();
53 scoped_free_pendings free_pending;
54 cust = restart_symtab (...);
55 ... read debug info ...
56 cust = augment_type_symtab (...);
57
58 dbxread.c and xcoffread.c use another variation:
59
60 buildsym_init ();
61 scoped_free_pendings free_pending;
62 cust = start_symtab (...);
63 ... read debug info ...
64 cust = end_symtab (...);
65 ... start_symtab + read + end_symtab repeated ...
66 */
67
68 #include "defs.h"
69 #include "bfd.h"
70 #include "gdb_obstack.h"
71 #include "symtab.h"
72 #include "symfile.h"
73 #include "objfiles.h"
74 #include "gdbtypes.h"
75 #include "complaints.h"
76 #include "expression.h" /* For "enum exp_opcode" used by... */
77 #include "bcache.h"
78 #include "filenames.h" /* For DOSish file names. */
79 #include "macrotab.h"
80 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
81 #include "block.h"
82 #include "cp-support.h"
83 #include "dictionary.h"
84 #include "addrmap.h"
85 #include <algorithm>
86
87 /* Ask buildsym.h to define the vars it normally declares `extern'. */
88 #define EXTERN
89 /**/
90 #include "buildsym.h" /* Our own declarations. */
91 #undef EXTERN
92
93 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
94 questionable--see comment where we call them). */
95
96 #include "stabsread.h"
97
98 /* Buildsym's counterpart to struct compunit_symtab.
99 TODO(dje): Move all related global state into here. */
100
101 struct buildsym_compunit
102 {
103 /* Start recording information about a primary source file (IOW, not an
104 included source file).
105 COMP_DIR is the directory in which the compilation unit was compiled
106 (or NULL if not known). */
107
108 buildsym_compunit (struct objfile *objfile_, const char *name,
109 const char *comp_dir_, enum language language_)
110 : objfile (objfile_),
111 m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
112 comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
113 language (language_)
114 {
115 }
116
117 ~buildsym_compunit ()
118 {
119 struct subfile *subfile, *nextsub;
120
121 if (m_pending_macros != nullptr)
122 free_macro_table (m_pending_macros);
123
124 for (subfile = subfiles;
125 subfile != NULL;
126 subfile = nextsub)
127 {
128 nextsub = subfile->next;
129 xfree (subfile->name);
130 xfree (subfile->line_vector);
131 xfree (subfile);
132 }
133 }
134
135 void set_last_source_file (const char *name)
136 {
137 char *new_name = name == NULL ? NULL : xstrdup (name);
138 m_last_source_file.reset (new_name);
139 }
140
141 struct macro_table *get_macro_table ()
142 {
143 if (m_pending_macros == nullptr)
144 m_pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
145 objfile->per_bfd->macro_cache,
146 compunit_symtab);
147 return m_pending_macros;
148 }
149
150 struct macro_table *release_macros ()
151 {
152 struct macro_table *result = m_pending_macros;
153 m_pending_macros = nullptr;
154 return result;
155 }
156
157 /* The objfile we're reading debug info from. */
158 struct objfile *objfile;
159
160 /* List of subfiles (source files).
161 Files are added to the front of the list.
162 This is important mostly for the language determination hacks we use,
163 which iterate over previously added files. */
164 struct subfile *subfiles = nullptr;
165
166 /* The subfile of the main source file. */
167 struct subfile *main_subfile = nullptr;
168
169 /* Name of source file whose symbol data we are now processing. This
170 comes from a symbol of type N_SO for stabs. For DWARF it comes
171 from the DW_AT_name attribute of a DW_TAG_compile_unit DIE. */
172 gdb::unique_xmalloc_ptr<char> m_last_source_file;
173
174 /* E.g., DW_AT_comp_dir if DWARF. Space for this is malloc'd. */
175 gdb::unique_xmalloc_ptr<char> comp_dir;
176
177 /* Space for this is not malloc'd, and is assumed to have at least
178 the same lifetime as objfile. */
179 const char *producer = nullptr;
180
181 /* Space for this is not malloc'd, and is assumed to have at least
182 the same lifetime as objfile. */
183 const char *debugformat = nullptr;
184
185 /* The compunit we are building. */
186 struct compunit_symtab *compunit_symtab = nullptr;
187
188 /* Language of this compunit_symtab. */
189 enum language language;
190
191 /* The macro table for the compilation unit whose symbols we're
192 currently reading. */
193 struct macro_table *m_pending_macros = nullptr;
194 };
195
196 /* The work-in-progress of the compunit we are building.
197 This is created first, before any subfiles by start_symtab. */
198
199 static struct buildsym_compunit *buildsym_compunit;
200
201 /* List of free `struct pending' structures for reuse. */
202
203 static struct pending *free_pendings;
204
205 /* Non-zero if symtab has line number info. This prevents an
206 otherwise empty symtab from being tossed. */
207
208 static int have_line_numbers;
209
210 /* The mutable address map for the compilation unit whose symbols
211 we're currently reading. The symtabs' shared blockvector will
212 point to a fixed copy of this. */
213 static struct addrmap *pending_addrmap;
214
215 /* The obstack on which we allocate pending_addrmap.
216 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
217 initialized (and holds pending_addrmap). */
218 static struct obstack pending_addrmap_obstack;
219
220 /* Non-zero if we recorded any ranges in the addrmap that are
221 different from those in the blockvector already. We set this to
222 zero when we start processing a symfile, and if it's still zero at
223 the end, then we just toss the addrmap. */
224 static int pending_addrmap_interesting;
225
226 /* An obstack used for allocating pending blocks. */
227
228 static struct obstack pending_block_obstack;
229
230 /* List of blocks already made (lexical contexts already closed).
231 This is used at the end to make the blockvector. */
232
233 struct pending_block
234 {
235 struct pending_block *next;
236 struct block *block;
237 };
238
239 /* Pointer to the head of a linked list of symbol blocks which have
240 already been finalized (lexical contexts already closed) and which
241 are just waiting to be built into a blockvector when finalizing the
242 associated symtab. */
243
244 static struct pending_block *pending_blocks;
245
246 struct subfile_stack
247 {
248 struct subfile_stack *next;
249 char *name;
250 };
251
252 static struct subfile_stack *subfile_stack;
253
254 static void free_buildsym_compunit (void);
255
256 static int compare_line_numbers (const void *ln1p, const void *ln2p);
257
258 static void record_pending_block (struct objfile *objfile,
259 struct block *block,
260 struct pending_block *opblock);
261
262 /* Initial sizes of data structures. These are realloc'd larger if
263 needed, and realloc'd down to the size actually used, when
264 completed. */
265
266 #define INITIAL_CONTEXT_STACK_SIZE 10
267 #define INITIAL_LINE_VECTOR_LENGTH 1000
268 \f
269
270 /* Maintain the lists of symbols and blocks. */
271
272 /* Add a symbol to one of the lists of symbols. */
273
274 void
275 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
276 {
277 struct pending *link;
278
279 /* If this is an alias for another symbol, don't add it. */
280 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
281 return;
282
283 /* We keep PENDINGSIZE symbols in each link of the list. If we
284 don't have a link with room in it, add a new link. */
285 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
286 {
287 if (free_pendings)
288 {
289 link = free_pendings;
290 free_pendings = link->next;
291 }
292 else
293 {
294 link = XNEW (struct pending);
295 }
296
297 link->next = *listhead;
298 *listhead = link;
299 link->nsyms = 0;
300 }
301
302 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
303 }
304
305 /* Find a symbol named NAME on a LIST. NAME need not be
306 '\0'-terminated; LENGTH is the length of the name. */
307
308 struct symbol *
309 find_symbol_in_list (struct pending *list, char *name, int length)
310 {
311 int j;
312 const char *pp;
313
314 while (list != NULL)
315 {
316 for (j = list->nsyms; --j >= 0;)
317 {
318 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
319 if (*pp == *name && strncmp (pp, name, length) == 0
320 && pp[length] == '\0')
321 {
322 return (list->symbol[j]);
323 }
324 }
325 list = list->next;
326 }
327 return (NULL);
328 }
329
330 /* At end of reading syms, or in case of quit, ensure everything
331 associated with building symtabs is freed.
332
333 N.B. This is *not* intended to be used when building psymtabs. Some debug
334 info readers call this anyway, which is harmless if confusing. */
335
336 scoped_free_pendings::~scoped_free_pendings ()
337 {
338 struct pending *next, *next1;
339
340 for (next = free_pendings; next; next = next1)
341 {
342 next1 = next->next;
343 xfree ((void *) next);
344 }
345 free_pendings = NULL;
346
347 free_pending_blocks ();
348
349 for (next = file_symbols; next != NULL; next = next1)
350 {
351 next1 = next->next;
352 xfree ((void *) next);
353 }
354 file_symbols = NULL;
355
356 for (next = global_symbols; next != NULL; next = next1)
357 {
358 next1 = next->next;
359 xfree ((void *) next);
360 }
361 global_symbols = NULL;
362
363 if (pending_addrmap)
364 obstack_free (&pending_addrmap_obstack, NULL);
365 pending_addrmap = NULL;
366
367 free_buildsym_compunit ();
368 }
369
370 /* This function is called to discard any pending blocks. */
371
372 void
373 free_pending_blocks (void)
374 {
375 if (pending_blocks != NULL)
376 {
377 obstack_free (&pending_block_obstack, NULL);
378 pending_blocks = NULL;
379 }
380 }
381
382 /* Take one of the lists of symbols and make a block from it. Keep
383 the order the symbols have in the list (reversed from the input
384 file). Put the block on the list of pending blocks. */
385
386 static struct block *
387 finish_block_internal (struct symbol *symbol,
388 struct pending **listhead,
389 struct pending_block *old_blocks,
390 const struct dynamic_prop *static_link,
391 CORE_ADDR start, CORE_ADDR end,
392 int is_global, int expandable)
393 {
394 struct objfile *objfile = buildsym_compunit->objfile;
395 struct gdbarch *gdbarch = get_objfile_arch (objfile);
396 struct pending *next, *next1;
397 struct block *block;
398 struct pending_block *pblock;
399 struct pending_block *opblock;
400
401 block = (is_global
402 ? allocate_global_block (&objfile->objfile_obstack)
403 : allocate_block (&objfile->objfile_obstack));
404
405 if (symbol)
406 {
407 BLOCK_DICT (block)
408 = dict_create_linear (&objfile->objfile_obstack,
409 buildsym_compunit->language, *listhead);
410 }
411 else
412 {
413 if (expandable)
414 {
415 BLOCK_DICT (block)
416 = dict_create_hashed_expandable (buildsym_compunit->language);
417 dict_add_pending (BLOCK_DICT (block), *listhead);
418 }
419 else
420 {
421 BLOCK_DICT (block) =
422 dict_create_hashed (&objfile->objfile_obstack,
423 buildsym_compunit->language, *listhead);
424 }
425 }
426
427 BLOCK_START (block) = start;
428 BLOCK_END (block) = end;
429
430 /* Put the block in as the value of the symbol that names it. */
431
432 if (symbol)
433 {
434 struct type *ftype = SYMBOL_TYPE (symbol);
435 struct dict_iterator iter;
436 SYMBOL_BLOCK_VALUE (symbol) = block;
437 BLOCK_FUNCTION (block) = symbol;
438
439 if (TYPE_NFIELDS (ftype) <= 0)
440 {
441 /* No parameter type information is recorded with the
442 function's type. Set that from the type of the
443 parameter symbols. */
444 int nparams = 0, iparams;
445 struct symbol *sym;
446
447 /* Here we want to directly access the dictionary, because
448 we haven't fully initialized the block yet. */
449 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
450 {
451 if (SYMBOL_IS_ARGUMENT (sym))
452 nparams++;
453 }
454 if (nparams > 0)
455 {
456 TYPE_NFIELDS (ftype) = nparams;
457 TYPE_FIELDS (ftype) = (struct field *)
458 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
459
460 iparams = 0;
461 /* Here we want to directly access the dictionary, because
462 we haven't fully initialized the block yet. */
463 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
464 {
465 if (iparams == nparams)
466 break;
467
468 if (SYMBOL_IS_ARGUMENT (sym))
469 {
470 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
471 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
472 iparams++;
473 }
474 }
475 }
476 }
477 }
478 else
479 {
480 BLOCK_FUNCTION (block) = NULL;
481 }
482
483 if (static_link != NULL)
484 objfile_register_static_link (objfile, block, static_link);
485
486 /* Now "free" the links of the list, and empty the list. */
487
488 for (next = *listhead; next; next = next1)
489 {
490 next1 = next->next;
491 next->next = free_pendings;
492 free_pendings = next;
493 }
494 *listhead = NULL;
495
496 /* Check to be sure that the blocks have an end address that is
497 greater than starting address. */
498
499 if (BLOCK_END (block) < BLOCK_START (block))
500 {
501 if (symbol)
502 {
503 complaint (_("block end address less than block "
504 "start address in %s (patched it)"),
505 SYMBOL_PRINT_NAME (symbol));
506 }
507 else
508 {
509 complaint (_("block end address %s less than block "
510 "start address %s (patched it)"),
511 paddress (gdbarch, BLOCK_END (block)),
512 paddress (gdbarch, BLOCK_START (block)));
513 }
514 /* Better than nothing. */
515 BLOCK_END (block) = BLOCK_START (block);
516 }
517
518 /* Install this block as the superblock of all blocks made since the
519 start of this scope that don't have superblocks yet. */
520
521 opblock = NULL;
522 for (pblock = pending_blocks;
523 pblock && pblock != old_blocks;
524 pblock = pblock->next)
525 {
526 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
527 {
528 /* Check to be sure the blocks are nested as we receive
529 them. If the compiler/assembler/linker work, this just
530 burns a small amount of time.
531
532 Skip blocks which correspond to a function; they're not
533 physically nested inside this other blocks, only
534 lexically nested. */
535 if (BLOCK_FUNCTION (pblock->block) == NULL
536 && (BLOCK_START (pblock->block) < BLOCK_START (block)
537 || BLOCK_END (pblock->block) > BLOCK_END (block)))
538 {
539 if (symbol)
540 {
541 complaint (_("inner block not inside outer block in %s"),
542 SYMBOL_PRINT_NAME (symbol));
543 }
544 else
545 {
546 complaint (_("inner block (%s-%s) not "
547 "inside outer block (%s-%s)"),
548 paddress (gdbarch, BLOCK_START (pblock->block)),
549 paddress (gdbarch, BLOCK_END (pblock->block)),
550 paddress (gdbarch, BLOCK_START (block)),
551 paddress (gdbarch, BLOCK_END (block)));
552 }
553 if (BLOCK_START (pblock->block) < BLOCK_START (block))
554 BLOCK_START (pblock->block) = BLOCK_START (block);
555 if (BLOCK_END (pblock->block) > BLOCK_END (block))
556 BLOCK_END (pblock->block) = BLOCK_END (block);
557 }
558 BLOCK_SUPERBLOCK (pblock->block) = block;
559 }
560 opblock = pblock;
561 }
562
563 block_set_using (block,
564 (is_global
565 ? global_using_directives
566 : local_using_directives),
567 &objfile->objfile_obstack);
568 if (is_global)
569 global_using_directives = NULL;
570 else
571 local_using_directives = NULL;
572
573 record_pending_block (objfile, block, opblock);
574
575 return block;
576 }
577
578 struct block *
579 finish_block (struct symbol *symbol,
580 struct pending **listhead,
581 struct pending_block *old_blocks,
582 const struct dynamic_prop *static_link,
583 CORE_ADDR start, CORE_ADDR end)
584 {
585 return finish_block_internal (symbol, listhead, old_blocks, static_link,
586 start, end, 0, 0);
587 }
588
589 /* Record BLOCK on the list of all blocks in the file. Put it after
590 OPBLOCK, or at the beginning if opblock is NULL. This puts the
591 block in the list after all its subblocks.
592
593 Allocate the pending block struct in the objfile_obstack to save
594 time. This wastes a little space. FIXME: Is it worth it? */
595
596 static void
597 record_pending_block (struct objfile *objfile, struct block *block,
598 struct pending_block *opblock)
599 {
600 struct pending_block *pblock;
601
602 if (pending_blocks == NULL)
603 obstack_init (&pending_block_obstack);
604
605 pblock = XOBNEW (&pending_block_obstack, struct pending_block);
606 pblock->block = block;
607 if (opblock)
608 {
609 pblock->next = opblock->next;
610 opblock->next = pblock;
611 }
612 else
613 {
614 pblock->next = pending_blocks;
615 pending_blocks = pblock;
616 }
617 }
618
619
620 /* Record that the range of addresses from START to END_INCLUSIVE
621 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
622 addresses must be set already. You must apply this function to all
623 BLOCK's children before applying it to BLOCK.
624
625 If a call to this function complicates the picture beyond that
626 already provided by BLOCK_START and BLOCK_END, then we create an
627 address map for the block. */
628 void
629 record_block_range (struct block *block,
630 CORE_ADDR start, CORE_ADDR end_inclusive)
631 {
632 /* If this is any different from the range recorded in the block's
633 own BLOCK_START and BLOCK_END, then note that the address map has
634 become interesting. Note that even if this block doesn't have
635 any "interesting" ranges, some later block might, so we still
636 need to record this block in the addrmap. */
637 if (start != BLOCK_START (block)
638 || end_inclusive + 1 != BLOCK_END (block))
639 pending_addrmap_interesting = 1;
640
641 if (! pending_addrmap)
642 {
643 obstack_init (&pending_addrmap_obstack);
644 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
645 }
646
647 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
648 }
649
650 static struct blockvector *
651 make_blockvector (void)
652 {
653 struct objfile *objfile = buildsym_compunit->objfile;
654 struct pending_block *next;
655 struct blockvector *blockvector;
656 int i;
657
658 /* Count the length of the list of blocks. */
659
660 for (next = pending_blocks, i = 0; next; next = next->next, i++)
661 {;
662 }
663
664 blockvector = (struct blockvector *)
665 obstack_alloc (&objfile->objfile_obstack,
666 (sizeof (struct blockvector)
667 + (i - 1) * sizeof (struct block *)));
668
669 /* Copy the blocks into the blockvector. This is done in reverse
670 order, which happens to put the blocks into the proper order
671 (ascending starting address). finish_block has hair to insert
672 each block into the list after its subblocks in order to make
673 sure this is true. */
674
675 BLOCKVECTOR_NBLOCKS (blockvector) = i;
676 for (next = pending_blocks; next; next = next->next)
677 {
678 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
679 }
680
681 free_pending_blocks ();
682
683 /* If we needed an address map for this symtab, record it in the
684 blockvector. */
685 if (pending_addrmap && pending_addrmap_interesting)
686 BLOCKVECTOR_MAP (blockvector)
687 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
688 else
689 BLOCKVECTOR_MAP (blockvector) = 0;
690
691 /* Some compilers output blocks in the wrong order, but we depend on
692 their being in the right order so we can binary search. Check the
693 order and moan about it.
694 Note: Remember that the first two blocks are the global and static
695 blocks. We could special case that fact and begin checking at block 2.
696 To avoid making that assumption we do not. */
697 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
698 {
699 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
700 {
701 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
702 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
703 {
704 CORE_ADDR start
705 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
706
707 complaint (_("block at %s out of order"),
708 hex_string ((LONGEST) start));
709 }
710 }
711 }
712
713 return (blockvector);
714 }
715 \f
716 /* Start recording information about source code that came from an
717 included (or otherwise merged-in) source file with a different
718 name. NAME is the name of the file (cannot be NULL). */
719
720 void
721 start_subfile (const char *name)
722 {
723 const char *subfile_dirname;
724 struct subfile *subfile;
725
726 gdb_assert (buildsym_compunit != NULL);
727
728 subfile_dirname = buildsym_compunit->comp_dir.get ();
729
730 /* See if this subfile is already registered. */
731
732 for (subfile = buildsym_compunit->subfiles; subfile; subfile = subfile->next)
733 {
734 char *subfile_name;
735
736 /* If NAME is an absolute path, and this subfile is not, then
737 attempt to create an absolute path to compare. */
738 if (IS_ABSOLUTE_PATH (name)
739 && !IS_ABSOLUTE_PATH (subfile->name)
740 && subfile_dirname != NULL)
741 subfile_name = concat (subfile_dirname, SLASH_STRING,
742 subfile->name, (char *) NULL);
743 else
744 subfile_name = subfile->name;
745
746 if (FILENAME_CMP (subfile_name, name) == 0)
747 {
748 current_subfile = subfile;
749 if (subfile_name != subfile->name)
750 xfree (subfile_name);
751 return;
752 }
753 if (subfile_name != subfile->name)
754 xfree (subfile_name);
755 }
756
757 /* This subfile is not known. Add an entry for it. */
758
759 subfile = XNEW (struct subfile);
760 memset (subfile, 0, sizeof (struct subfile));
761 subfile->buildsym_compunit = buildsym_compunit;
762
763 subfile->next = buildsym_compunit->subfiles;
764 buildsym_compunit->subfiles = subfile;
765
766 current_subfile = subfile;
767
768 subfile->name = xstrdup (name);
769
770 /* Initialize line-number recording for this subfile. */
771 subfile->line_vector = NULL;
772
773 /* Default the source language to whatever can be deduced from the
774 filename. If nothing can be deduced (such as for a C/C++ include
775 file with a ".h" extension), then inherit whatever language the
776 previous subfile had. This kludgery is necessary because there
777 is no standard way in some object formats to record the source
778 language. Also, when symtabs are allocated we try to deduce a
779 language then as well, but it is too late for us to use that
780 information while reading symbols, since symtabs aren't allocated
781 until after all the symbols have been processed for a given
782 source file. */
783
784 subfile->language = deduce_language_from_filename (subfile->name);
785 if (subfile->language == language_unknown
786 && subfile->next != NULL)
787 {
788 subfile->language = subfile->next->language;
789 }
790
791 /* If the filename of this subfile ends in .C, then change the
792 language of any pending subfiles from C to C++. We also accept
793 any other C++ suffixes accepted by deduce_language_from_filename. */
794 /* Likewise for f2c. */
795
796 if (subfile->name)
797 {
798 struct subfile *s;
799 enum language sublang = deduce_language_from_filename (subfile->name);
800
801 if (sublang == language_cplus || sublang == language_fortran)
802 for (s = buildsym_compunit->subfiles; s != NULL; s = s->next)
803 if (s->language == language_c)
804 s->language = sublang;
805 }
806
807 /* And patch up this file if necessary. */
808 if (subfile->language == language_c
809 && subfile->next != NULL
810 && (subfile->next->language == language_cplus
811 || subfile->next->language == language_fortran))
812 {
813 subfile->language = subfile->next->language;
814 }
815 }
816
817 /* Delete the buildsym compunit. */
818
819 static void
820 free_buildsym_compunit (void)
821 {
822 if (buildsym_compunit == NULL)
823 return;
824 delete buildsym_compunit;
825 buildsym_compunit = NULL;
826 current_subfile = NULL;
827 }
828
829 /* For stabs readers, the first N_SO symbol is assumed to be the
830 source file name, and the subfile struct is initialized using that
831 assumption. If another N_SO symbol is later seen, immediately
832 following the first one, then the first one is assumed to be the
833 directory name and the second one is really the source file name.
834
835 So we have to patch up the subfile struct by moving the old name
836 value to dirname and remembering the new name. Some sanity
837 checking is performed to ensure that the state of the subfile
838 struct is reasonable and that the old name we are assuming to be a
839 directory name actually is (by checking for a trailing '/'). */
840
841 void
842 patch_subfile_names (struct subfile *subfile, const char *name)
843 {
844 if (subfile != NULL
845 && buildsym_compunit->comp_dir == NULL
846 && subfile->name != NULL
847 && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
848 {
849 buildsym_compunit->comp_dir.reset (subfile->name);
850 subfile->name = xstrdup (name);
851 set_last_source_file (name);
852
853 /* Default the source language to whatever can be deduced from
854 the filename. If nothing can be deduced (such as for a C/C++
855 include file with a ".h" extension), then inherit whatever
856 language the previous subfile had. This kludgery is
857 necessary because there is no standard way in some object
858 formats to record the source language. Also, when symtabs
859 are allocated we try to deduce a language then as well, but
860 it is too late for us to use that information while reading
861 symbols, since symtabs aren't allocated until after all the
862 symbols have been processed for a given source file. */
863
864 subfile->language = deduce_language_from_filename (subfile->name);
865 if (subfile->language == language_unknown
866 && subfile->next != NULL)
867 {
868 subfile->language = subfile->next->language;
869 }
870 }
871 }
872 \f
873 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
874 switching source files (different subfiles, as we call them) within
875 one object file, but using a stack rather than in an arbitrary
876 order. */
877
878 void
879 push_subfile (void)
880 {
881 struct subfile_stack *tem = XNEW (struct subfile_stack);
882
883 tem->next = subfile_stack;
884 subfile_stack = tem;
885 if (current_subfile == NULL || current_subfile->name == NULL)
886 {
887 internal_error (__FILE__, __LINE__,
888 _("failed internal consistency check"));
889 }
890 tem->name = current_subfile->name;
891 }
892
893 char *
894 pop_subfile (void)
895 {
896 char *name;
897 struct subfile_stack *link = subfile_stack;
898
899 if (link == NULL)
900 {
901 internal_error (__FILE__, __LINE__,
902 _("failed internal consistency check"));
903 }
904 name = link->name;
905 subfile_stack = link->next;
906 xfree ((void *) link);
907 return (name);
908 }
909 \f
910 /* Add a linetable entry for line number LINE and address PC to the
911 line vector for SUBFILE. */
912
913 void
914 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
915 {
916 struct linetable_entry *e;
917
918 /* Ignore the dummy line number in libg.o */
919 if (line == 0xffff)
920 {
921 return;
922 }
923
924 /* Make sure line vector exists and is big enough. */
925 if (!subfile->line_vector)
926 {
927 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
928 subfile->line_vector = (struct linetable *)
929 xmalloc (sizeof (struct linetable)
930 + subfile->line_vector_length * sizeof (struct linetable_entry));
931 subfile->line_vector->nitems = 0;
932 have_line_numbers = 1;
933 }
934
935 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
936 {
937 subfile->line_vector_length *= 2;
938 subfile->line_vector = (struct linetable *)
939 xrealloc ((char *) subfile->line_vector,
940 (sizeof (struct linetable)
941 + (subfile->line_vector_length
942 * sizeof (struct linetable_entry))));
943 }
944
945 /* Normally, we treat lines as unsorted. But the end of sequence
946 marker is special. We sort line markers at the same PC by line
947 number, so end of sequence markers (which have line == 0) appear
948 first. This is right if the marker ends the previous function,
949 and there is no padding before the next function. But it is
950 wrong if the previous line was empty and we are now marking a
951 switch to a different subfile. We must leave the end of sequence
952 marker at the end of this group of lines, not sort the empty line
953 to after the marker. The easiest way to accomplish this is to
954 delete any empty lines from our table, if they are followed by
955 end of sequence markers. All we lose is the ability to set
956 breakpoints at some lines which contain no instructions
957 anyway. */
958 if (line == 0 && subfile->line_vector->nitems > 0)
959 {
960 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
961 while (subfile->line_vector->nitems > 0 && e->pc == pc)
962 {
963 e--;
964 subfile->line_vector->nitems--;
965 }
966 }
967
968 e = subfile->line_vector->item + subfile->line_vector->nitems++;
969 e->line = line;
970 e->pc = pc;
971 }
972
973 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
974
975 static int
976 compare_line_numbers (const void *ln1p, const void *ln2p)
977 {
978 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
979 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
980
981 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
982 Please keep it that way. */
983 if (ln1->pc < ln2->pc)
984 return -1;
985
986 if (ln1->pc > ln2->pc)
987 return 1;
988
989 /* If pc equal, sort by line. I'm not sure whether this is optimum
990 behavior (see comment at struct linetable in symtab.h). */
991 return ln1->line - ln2->line;
992 }
993 \f
994 /* See buildsym.h. */
995
996 struct compunit_symtab *
997 buildsym_compunit_symtab (void)
998 {
999 gdb_assert (buildsym_compunit != NULL);
1000
1001 return buildsym_compunit->compunit_symtab;
1002 }
1003
1004 /* See buildsym.h. */
1005
1006 struct macro_table *
1007 get_macro_table (void)
1008 {
1009 struct objfile *objfile;
1010
1011 gdb_assert (buildsym_compunit != NULL);
1012 return buildsym_compunit->get_macro_table ();
1013 }
1014 \f
1015 /* Init state to prepare for building a symtab.
1016 Note: This can't be done in buildsym_init because dbxread.c and xcoffread.c
1017 can call start_symtab+end_symtab multiple times after one call to
1018 buildsym_init. */
1019
1020 static void
1021 prepare_for_building (CORE_ADDR start_addr)
1022 {
1023 last_source_start_addr = start_addr;
1024
1025 local_symbols = NULL;
1026 local_using_directives = NULL;
1027 within_function = 0;
1028 have_line_numbers = 0;
1029
1030 context_stack_depth = 0;
1031
1032 /* These should have been reset either by successful completion of building
1033 a symtab, or by the scoped_free_pendings destructor. */
1034 gdb_assert (file_symbols == NULL);
1035 gdb_assert (global_symbols == NULL);
1036 gdb_assert (global_using_directives == NULL);
1037 gdb_assert (pending_addrmap == NULL);
1038 gdb_assert (current_subfile == NULL);
1039 gdb_assert (buildsym_compunit == nullptr);
1040 }
1041
1042 /* Start a new symtab for a new source file in OBJFILE. Called, for example,
1043 when a stabs symbol of type N_SO is seen, or when a DWARF
1044 TAG_compile_unit DIE is seen. It indicates the start of data for
1045 one original source file.
1046
1047 NAME is the name of the file (cannot be NULL). COMP_DIR is the
1048 directory in which the file was compiled (or NULL if not known).
1049 START_ADDR is the lowest address of objects in the file (or 0 if
1050 not known). LANGUAGE is the language of the source file, or
1051 language_unknown if not known, in which case it'll be deduced from
1052 the filename. */
1053
1054 struct compunit_symtab *
1055 start_symtab (struct objfile *objfile, const char *name, const char *comp_dir,
1056 CORE_ADDR start_addr, enum language language)
1057 {
1058 prepare_for_building (start_addr);
1059
1060 buildsym_compunit = new struct buildsym_compunit (objfile, name, comp_dir,
1061 language);
1062
1063 /* Allocate the compunit symtab now. The caller needs it to allocate
1064 non-primary symtabs. It is also needed by get_macro_table. */
1065 buildsym_compunit->compunit_symtab = allocate_compunit_symtab (objfile,
1066 name);
1067
1068 /* Build the subfile for NAME (the main source file) so that we can record
1069 a pointer to it for later.
1070 IMPORTANT: Do not allocate a struct symtab for NAME here.
1071 It can happen that the debug info provides a different path to NAME than
1072 DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
1073 that only works if the main_subfile doesn't have a symtab yet. */
1074 start_subfile (name);
1075 /* Save this so that we don't have to go looking for it at the end
1076 of the subfiles list. */
1077 buildsym_compunit->main_subfile = current_subfile;
1078
1079 return buildsym_compunit->compunit_symtab;
1080 }
1081
1082 /* Restart compilation for a symtab.
1083 CUST is the result of end_expandable_symtab.
1084 NAME, START_ADDR are the source file we are resuming with.
1085
1086 This is used when a symtab is built from multiple sources.
1087 The symtab is first built with start_symtab/end_expandable_symtab
1088 and then for each additional piece call restart_symtab/augment_*_symtab.
1089 Note: At the moment there is only augment_type_symtab. */
1090
1091 void
1092 restart_symtab (struct compunit_symtab *cust,
1093 const char *name, CORE_ADDR start_addr)
1094 {
1095 prepare_for_building (start_addr);
1096
1097 buildsym_compunit
1098 = new struct buildsym_compunit (COMPUNIT_OBJFILE (cust),
1099 name,
1100 COMPUNIT_DIRNAME (cust),
1101 compunit_language (cust));
1102 buildsym_compunit->compunit_symtab = cust;
1103 }
1104
1105 /* Subroutine of end_symtab to simplify it. Look for a subfile that
1106 matches the main source file's basename. If there is only one, and
1107 if the main source file doesn't have any symbol or line number
1108 information, then copy this file's symtab and line_vector to the
1109 main source file's subfile and discard the other subfile. This can
1110 happen because of a compiler bug or from the user playing games
1111 with #line or from things like a distributed build system that
1112 manipulates the debug info. This can also happen from an innocent
1113 symlink in the paths, we don't canonicalize paths here. */
1114
1115 static void
1116 watch_main_source_file_lossage (void)
1117 {
1118 struct subfile *mainsub, *subfile;
1119
1120 /* We have to watch for buildsym_compunit == NULL here. It's a quirk of
1121 end_symtab, it can return NULL so there may not be a main subfile. */
1122 if (buildsym_compunit == NULL)
1123 return;
1124
1125 /* Get the main source file. */
1126 mainsub = buildsym_compunit->main_subfile;
1127
1128 /* If the main source file doesn't have any line number or symbol
1129 info, look for an alias in another subfile. */
1130
1131 if (mainsub->line_vector == NULL
1132 && mainsub->symtab == NULL)
1133 {
1134 const char *mainbase = lbasename (mainsub->name);
1135 int nr_matches = 0;
1136 struct subfile *prevsub;
1137 struct subfile *mainsub_alias = NULL;
1138 struct subfile *prev_mainsub_alias = NULL;
1139
1140 prevsub = NULL;
1141 for (subfile = buildsym_compunit->subfiles;
1142 subfile != NULL;
1143 subfile = subfile->next)
1144 {
1145 if (subfile == mainsub)
1146 continue;
1147 if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
1148 {
1149 ++nr_matches;
1150 mainsub_alias = subfile;
1151 prev_mainsub_alias = prevsub;
1152 }
1153 prevsub = subfile;
1154 }
1155
1156 if (nr_matches == 1)
1157 {
1158 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
1159
1160 /* Found a match for the main source file.
1161 Copy its line_vector and symtab to the main subfile
1162 and then discard it. */
1163
1164 mainsub->line_vector = mainsub_alias->line_vector;
1165 mainsub->line_vector_length = mainsub_alias->line_vector_length;
1166 mainsub->symtab = mainsub_alias->symtab;
1167
1168 if (prev_mainsub_alias == NULL)
1169 buildsym_compunit->subfiles = mainsub_alias->next;
1170 else
1171 prev_mainsub_alias->next = mainsub_alias->next;
1172 xfree (mainsub_alias->name);
1173 xfree (mainsub_alias);
1174 }
1175 }
1176 }
1177
1178 /* Reset state after a successful building of a symtab.
1179 This exists because dbxread.c and xcoffread.c can call
1180 start_symtab+end_symtab multiple times after one call to buildsym_init,
1181 and before the scoped_free_pendings destructor is called.
1182 We keep the free_pendings list around for dbx/xcoff sake. */
1183
1184 static void
1185 reset_symtab_globals (void)
1186 {
1187 local_symbols = NULL;
1188 local_using_directives = NULL;
1189 file_symbols = NULL;
1190 global_symbols = NULL;
1191 global_using_directives = NULL;
1192
1193 if (pending_addrmap)
1194 obstack_free (&pending_addrmap_obstack, NULL);
1195 pending_addrmap = NULL;
1196
1197 free_buildsym_compunit ();
1198 }
1199
1200 /* Implementation of the first part of end_symtab. It allows modifying
1201 STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
1202 If the returned value is NULL there is no blockvector created for
1203 this symtab (you still must call end_symtab_from_static_block).
1204
1205 END_ADDR is the same as for end_symtab: the address of the end of the
1206 file's text.
1207
1208 If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
1209 expandable.
1210
1211 If REQUIRED is non-zero, then a symtab is created even if it does
1212 not contain any symbols. */
1213
1214 struct block *
1215 end_symtab_get_static_block (CORE_ADDR end_addr, int expandable, int required)
1216 {
1217 struct objfile *objfile = buildsym_compunit->objfile;
1218
1219 /* Finish the lexical context of the last function in the file; pop
1220 the context stack. */
1221
1222 if (context_stack_depth > 0)
1223 {
1224 struct context_stack *cstk = pop_context ();
1225
1226 /* Make a block for the local symbols within. */
1227 finish_block (cstk->name, &local_symbols, cstk->old_blocks, NULL,
1228 cstk->start_addr, end_addr);
1229
1230 if (context_stack_depth > 0)
1231 {
1232 /* This is said to happen with SCO. The old coffread.c
1233 code simply emptied the context stack, so we do the
1234 same. FIXME: Find out why it is happening. This is not
1235 believed to happen in most cases (even for coffread.c);
1236 it used to be an abort(). */
1237 complaint (_("Context stack not empty in end_symtab"));
1238 context_stack_depth = 0;
1239 }
1240 }
1241
1242 /* Reordered executables may have out of order pending blocks; if
1243 OBJF_REORDERED is true, then sort the pending blocks. */
1244
1245 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
1246 {
1247 struct pending_block *pb;
1248
1249 std::vector<block *> barray;
1250
1251 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1252 barray.push_back (pb->block);
1253
1254 /* Sort blocks by start address in descending order. Blocks with the
1255 same start address must remain in the original order to preserve
1256 inline function caller/callee relationships. */
1257 std::stable_sort (barray.begin (), barray.end (),
1258 [] (const block *a, const block *b)
1259 {
1260 return BLOCK_START (a) > BLOCK_START (b);
1261 });
1262
1263 int i = 0;
1264 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1265 pb->block = barray[i++];
1266 }
1267
1268 /* Cleanup any undefined types that have been left hanging around
1269 (this needs to be done before the finish_blocks so that
1270 file_symbols is still good).
1271
1272 Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
1273 specific, but harmless for other symbol readers, since on gdb
1274 startup or when finished reading stabs, the state is set so these
1275 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1276 we make this cleaner? */
1277
1278 cleanup_undefined_stabs_types (objfile);
1279 finish_global_stabs (objfile);
1280
1281 if (!required
1282 && pending_blocks == NULL
1283 && file_symbols == NULL
1284 && global_symbols == NULL
1285 && have_line_numbers == 0
1286 && buildsym_compunit->m_pending_macros == NULL
1287 && global_using_directives == NULL)
1288 {
1289 /* Ignore symtabs that have no functions with real debugging info. */
1290 return NULL;
1291 }
1292 else
1293 {
1294 /* Define the STATIC_BLOCK. */
1295 return finish_block_internal (NULL, &file_symbols, NULL, NULL,
1296 last_source_start_addr, end_addr,
1297 0, expandable);
1298 }
1299 }
1300
1301 /* Subroutine of end_symtab_from_static_block to simplify it.
1302 Handle the "have blockvector" case.
1303 See end_symtab_from_static_block for a description of the arguments. */
1304
1305 static struct compunit_symtab *
1306 end_symtab_with_blockvector (struct block *static_block,
1307 int section, int expandable)
1308 {
1309 struct objfile *objfile = buildsym_compunit->objfile;
1310 struct compunit_symtab *cu = buildsym_compunit->compunit_symtab;
1311 struct symtab *symtab;
1312 struct blockvector *blockvector;
1313 struct subfile *subfile;
1314 CORE_ADDR end_addr;
1315
1316 gdb_assert (static_block != NULL);
1317 gdb_assert (buildsym_compunit != NULL);
1318 gdb_assert (buildsym_compunit->subfiles != NULL);
1319
1320 end_addr = BLOCK_END (static_block);
1321
1322 /* Create the GLOBAL_BLOCK and build the blockvector. */
1323 finish_block_internal (NULL, &global_symbols, NULL, NULL,
1324 last_source_start_addr, end_addr,
1325 1, expandable);
1326 blockvector = make_blockvector ();
1327
1328 /* Read the line table if it has to be read separately.
1329 This is only used by xcoffread.c. */
1330 if (objfile->sf->sym_read_linetable != NULL)
1331 objfile->sf->sym_read_linetable (objfile);
1332
1333 /* Handle the case where the debug info specifies a different path
1334 for the main source file. It can cause us to lose track of its
1335 line number information. */
1336 watch_main_source_file_lossage ();
1337
1338 /* Now create the symtab objects proper, if not already done,
1339 one for each subfile. */
1340
1341 for (subfile = buildsym_compunit->subfiles;
1342 subfile != NULL;
1343 subfile = subfile->next)
1344 {
1345 int linetablesize = 0;
1346
1347 if (subfile->line_vector)
1348 {
1349 linetablesize = sizeof (struct linetable) +
1350 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1351
1352 /* Like the pending blocks, the line table may be
1353 scrambled in reordered executables. Sort it if
1354 OBJF_REORDERED is true. */
1355 if (objfile->flags & OBJF_REORDERED)
1356 qsort (subfile->line_vector->item,
1357 subfile->line_vector->nitems,
1358 sizeof (struct linetable_entry), compare_line_numbers);
1359 }
1360
1361 /* Allocate a symbol table if necessary. */
1362 if (subfile->symtab == NULL)
1363 subfile->symtab = allocate_symtab (cu, subfile->name);
1364 symtab = subfile->symtab;
1365
1366 /* Fill in its components. */
1367
1368 if (subfile->line_vector)
1369 {
1370 /* Reallocate the line table on the symbol obstack. */
1371 SYMTAB_LINETABLE (symtab) = (struct linetable *)
1372 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1373 memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
1374 linetablesize);
1375 }
1376 else
1377 {
1378 SYMTAB_LINETABLE (symtab) = NULL;
1379 }
1380
1381 /* Use whatever language we have been using for this
1382 subfile, not the one that was deduced in allocate_symtab
1383 from the filename. We already did our own deducing when
1384 we created the subfile, and we may have altered our
1385 opinion of what language it is from things we found in
1386 the symbols. */
1387 symtab->language = subfile->language;
1388 }
1389
1390 /* Make sure the symtab of main_subfile is the first in its list. */
1391 {
1392 struct symtab *main_symtab, *prev_symtab;
1393
1394 main_symtab = buildsym_compunit->main_subfile->symtab;
1395 prev_symtab = NULL;
1396 ALL_COMPUNIT_FILETABS (cu, symtab)
1397 {
1398 if (symtab == main_symtab)
1399 {
1400 if (prev_symtab != NULL)
1401 {
1402 prev_symtab->next = main_symtab->next;
1403 main_symtab->next = COMPUNIT_FILETABS (cu);
1404 COMPUNIT_FILETABS (cu) = main_symtab;
1405 }
1406 break;
1407 }
1408 prev_symtab = symtab;
1409 }
1410 gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
1411 }
1412
1413 /* Fill out the compunit symtab. */
1414
1415 if (buildsym_compunit->comp_dir != NULL)
1416 {
1417 /* Reallocate the dirname on the symbol obstack. */
1418 const char *comp_dir = buildsym_compunit->comp_dir.get ();
1419 COMPUNIT_DIRNAME (cu)
1420 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
1421 comp_dir, strlen (comp_dir));
1422 }
1423
1424 /* Save the debug format string (if any) in the symtab. */
1425 COMPUNIT_DEBUGFORMAT (cu) = buildsym_compunit->debugformat;
1426
1427 /* Similarly for the producer. */
1428 COMPUNIT_PRODUCER (cu) = buildsym_compunit->producer;
1429
1430 COMPUNIT_BLOCKVECTOR (cu) = blockvector;
1431 {
1432 struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1433
1434 set_block_compunit_symtab (b, cu);
1435 }
1436
1437 COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
1438
1439 COMPUNIT_MACRO_TABLE (cu) = buildsym_compunit->release_macros ();
1440
1441 /* Default any symbols without a specified symtab to the primary symtab. */
1442 {
1443 int block_i;
1444
1445 /* The main source file's symtab. */
1446 symtab = COMPUNIT_FILETABS (cu);
1447
1448 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1449 {
1450 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1451 struct symbol *sym;
1452 struct dict_iterator iter;
1453
1454 /* Inlined functions may have symbols not in the global or
1455 static symbol lists. */
1456 if (BLOCK_FUNCTION (block) != NULL)
1457 if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
1458 symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
1459
1460 /* Note that we only want to fix up symbols from the local
1461 blocks, not blocks coming from included symtabs. That is why
1462 we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS. */
1463 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
1464 if (symbol_symtab (sym) == NULL)
1465 symbol_set_symtab (sym, symtab);
1466 }
1467 }
1468
1469 add_compunit_symtab_to_objfile (cu);
1470
1471 return cu;
1472 }
1473
1474 /* Implementation of the second part of end_symtab. Pass STATIC_BLOCK
1475 as value returned by end_symtab_get_static_block.
1476
1477 SECTION is the same as for end_symtab: the section number
1478 (in objfile->section_offsets) of the blockvector and linetable.
1479
1480 If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
1481 expandable. */
1482
1483 struct compunit_symtab *
1484 end_symtab_from_static_block (struct block *static_block,
1485 int section, int expandable)
1486 {
1487 struct compunit_symtab *cu;
1488
1489 if (static_block == NULL)
1490 {
1491 /* Handle the "no blockvector" case.
1492 When this happens there is nothing to record, so there's nothing
1493 to do: memory will be freed up later.
1494
1495 Note: We won't be adding a compunit to the objfile's list of
1496 compunits, so there's nothing to unchain. However, since each symtab
1497 is added to the objfile's obstack we can't free that space.
1498 We could do better, but this is believed to be a sufficiently rare
1499 event. */
1500 cu = NULL;
1501 }
1502 else
1503 cu = end_symtab_with_blockvector (static_block, section, expandable);
1504
1505 reset_symtab_globals ();
1506
1507 return cu;
1508 }
1509
1510 /* Finish the symbol definitions for one main source file, close off
1511 all the lexical contexts for that file (creating struct block's for
1512 them), then make the struct symtab for that file and put it in the
1513 list of all such.
1514
1515 END_ADDR is the address of the end of the file's text. SECTION is
1516 the section number (in objfile->section_offsets) of the blockvector
1517 and linetable.
1518
1519 Note that it is possible for end_symtab() to return NULL. In
1520 particular, for the DWARF case at least, it will return NULL when
1521 it finds a compilation unit that has exactly one DIE, a
1522 TAG_compile_unit DIE. This can happen when we link in an object
1523 file that was compiled from an empty source file. Returning NULL
1524 is probably not the correct thing to do, because then gdb will
1525 never know about this empty file (FIXME).
1526
1527 If you need to modify STATIC_BLOCK before it is finalized you should
1528 call end_symtab_get_static_block and end_symtab_from_static_block
1529 yourself. */
1530
1531 struct compunit_symtab *
1532 end_symtab (CORE_ADDR end_addr, int section)
1533 {
1534 struct block *static_block;
1535
1536 static_block = end_symtab_get_static_block (end_addr, 0, 0);
1537 return end_symtab_from_static_block (static_block, section, 0);
1538 }
1539
1540 /* Same as end_symtab except create a symtab that can be later added to. */
1541
1542 struct compunit_symtab *
1543 end_expandable_symtab (CORE_ADDR end_addr, int section)
1544 {
1545 struct block *static_block;
1546
1547 static_block = end_symtab_get_static_block (end_addr, 1, 0);
1548 return end_symtab_from_static_block (static_block, section, 1);
1549 }
1550
1551 /* Subroutine of augment_type_symtab to simplify it.
1552 Attach the main source file's symtab to all symbols in PENDING_LIST that
1553 don't have one. */
1554
1555 static void
1556 set_missing_symtab (struct pending *pending_list,
1557 struct compunit_symtab *cu)
1558 {
1559 struct pending *pending;
1560 int i;
1561
1562 for (pending = pending_list; pending != NULL; pending = pending->next)
1563 {
1564 for (i = 0; i < pending->nsyms; ++i)
1565 {
1566 if (symbol_symtab (pending->symbol[i]) == NULL)
1567 symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
1568 }
1569 }
1570 }
1571
1572 /* Same as end_symtab, but for the case where we're adding more symbols
1573 to an existing symtab that is known to contain only type information.
1574 This is the case for DWARF4 Type Units. */
1575
1576 void
1577 augment_type_symtab (void)
1578 {
1579 struct compunit_symtab *cust = buildsym_compunit->compunit_symtab;
1580 const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
1581
1582 if (context_stack_depth > 0)
1583 {
1584 complaint (_("Context stack not empty in augment_type_symtab"));
1585 context_stack_depth = 0;
1586 }
1587 if (pending_blocks != NULL)
1588 complaint (_("Blocks in a type symtab"));
1589 if (buildsym_compunit->m_pending_macros != NULL)
1590 complaint (_("Macro in a type symtab"));
1591 if (have_line_numbers)
1592 complaint (_("Line numbers recorded in a type symtab"));
1593
1594 if (file_symbols != NULL)
1595 {
1596 struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
1597
1598 /* First mark any symbols without a specified symtab as belonging
1599 to the primary symtab. */
1600 set_missing_symtab (file_symbols, cust);
1601
1602 dict_add_pending (BLOCK_DICT (block), file_symbols);
1603 }
1604
1605 if (global_symbols != NULL)
1606 {
1607 struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1608
1609 /* First mark any symbols without a specified symtab as belonging
1610 to the primary symtab. */
1611 set_missing_symtab (global_symbols, cust);
1612
1613 dict_add_pending (BLOCK_DICT (block), global_symbols);
1614 }
1615
1616 reset_symtab_globals ();
1617 }
1618
1619 /* Push a context block. Args are an identifying nesting level
1620 (checkable when you pop it), and the starting PC address of this
1621 context. */
1622
1623 struct context_stack *
1624 push_context (int desc, CORE_ADDR valu)
1625 {
1626 struct context_stack *newobj;
1627
1628 if (context_stack_depth == context_stack_size)
1629 {
1630 context_stack_size *= 2;
1631 context_stack = (struct context_stack *)
1632 xrealloc ((char *) context_stack,
1633 (context_stack_size * sizeof (struct context_stack)));
1634 }
1635
1636 newobj = &context_stack[context_stack_depth++];
1637 newobj->depth = desc;
1638 newobj->locals = local_symbols;
1639 newobj->old_blocks = pending_blocks;
1640 newobj->start_addr = valu;
1641 newobj->local_using_directives = local_using_directives;
1642 newobj->name = NULL;
1643
1644 local_symbols = NULL;
1645 local_using_directives = NULL;
1646
1647 return newobj;
1648 }
1649
1650 /* Pop a context block. Returns the address of the context block just
1651 popped. */
1652
1653 struct context_stack *
1654 pop_context (void)
1655 {
1656 gdb_assert (context_stack_depth > 0);
1657 return (&context_stack[--context_stack_depth]);
1658 }
1659
1660 \f
1661
1662 /* Compute a small integer hash code for the given name. */
1663
1664 int
1665 hashname (const char *name)
1666 {
1667 return (hash(name,strlen(name)) % HASHSIZE);
1668 }
1669 \f
1670
1671 void
1672 record_debugformat (const char *format)
1673 {
1674 buildsym_compunit->debugformat = format;
1675 }
1676
1677 void
1678 record_producer (const char *producer)
1679 {
1680 buildsym_compunit->producer = producer;
1681 }
1682
1683 /* Merge the first symbol list SRCLIST into the second symbol list
1684 TARGETLIST by repeated calls to add_symbol_to_list(). This
1685 procedure "frees" each link of SRCLIST by adding it to the
1686 free_pendings list. Caller must set SRCLIST to a null list after
1687 calling this function.
1688
1689 Void return. */
1690
1691 void
1692 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1693 {
1694 int i;
1695
1696 if (!srclist || !*srclist)
1697 return;
1698
1699 /* Merge in elements from current link. */
1700 for (i = 0; i < (*srclist)->nsyms; i++)
1701 add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1702
1703 /* Recurse on next. */
1704 merge_symbol_lists (&(*srclist)->next, targetlist);
1705
1706 /* "Free" the current link. */
1707 (*srclist)->next = free_pendings;
1708 free_pendings = (*srclist);
1709 }
1710 \f
1711
1712 /* See buildsym.h. */
1713
1714 void
1715 set_last_source_file (const char *name)
1716 {
1717 gdb_assert (buildsym_compunit != nullptr || name == nullptr);
1718 if (buildsym_compunit != nullptr)
1719 buildsym_compunit->set_last_source_file (name);
1720 }
1721
1722 /* See buildsym.h. */
1723
1724 const char *
1725 get_last_source_file (void)
1726 {
1727 if (buildsym_compunit == nullptr)
1728 return nullptr;
1729 return buildsym_compunit->m_last_source_file.get ();
1730 }
1731
1732 \f
1733
1734 /* Initialize anything that needs initializing when starting to read a
1735 fresh piece of a symbol file, e.g. reading in the stuff
1736 corresponding to a psymtab. */
1737
1738 void
1739 buildsym_init (void)
1740 {
1741 subfile_stack = NULL;
1742
1743 pending_addrmap_interesting = 0;
1744
1745 /* Context stack is initially empty. Allocate first one with room
1746 for a few levels; reuse it forever afterward. */
1747 if (context_stack == NULL)
1748 {
1749 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
1750 context_stack = XNEWVEC (struct context_stack, context_stack_size);
1751 }
1752
1753 /* Ensure the scoped_free_pendings destructor was called after
1754 the last time. */
1755 gdb_assert (free_pendings == NULL);
1756 gdb_assert (pending_blocks == NULL);
1757 gdb_assert (file_symbols == NULL);
1758 gdb_assert (global_symbols == NULL);
1759 gdb_assert (global_using_directives == NULL);
1760 gdb_assert (pending_addrmap == NULL);
1761 gdb_assert (buildsym_compunit == NULL);
1762 }
1763
1764 /* Initialize anything that needs initializing when a completely new
1765 symbol file is specified (not just adding some symbols from another
1766 file, e.g. a shared library). */
1767
1768 void
1769 buildsym_new_init (void)
1770 {
1771 buildsym_init ();
1772 }