Initial creation of sourceware repository
[binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright 1986-1999 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* This module provides subroutines used for creating and adding to
21 the symbol table. These routines are called from various symbol-
22 file-reading routines.
23
24 Routines to support specific debugging information formats (stabs,
25 DWARF, etc) belong somewhere else. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "symfile.h" /* Needed for "struct complaint" */
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "complaints.h"
35 #include "gdb_string.h"
36
37 /* Ask buildsym.h to define the vars it normally declares `extern'. */
38 #define EXTERN /**/
39 #include "buildsym.h" /* Our own declarations */
40 #undef EXTERN
41
42 /* For cleanup_undefined_types and finish_global_stabs (somewhat
43 questionable--see comment where we call them). */
44
45 #include "stabsread.h"
46
47 /* List of free `struct pending' structures for reuse. */
48
49 static struct pending *free_pendings;
50
51 /* Non-zero if symtab has line number info. This prevents an
52 otherwise empty symtab from being tossed. */
53
54 static int have_line_numbers;
55 \f
56 static int compare_line_numbers (const void *ln1p, const void *ln2p);
57 \f
58
59 /* Initial sizes of data structures. These are realloc'd larger if
60 needed, and realloc'd down to the size actually used, when
61 completed. */
62
63 #define INITIAL_CONTEXT_STACK_SIZE 10
64 #define INITIAL_LINE_VECTOR_LENGTH 1000
65 \f
66
67 /* Complaints about the symbols we have encountered. */
68
69 struct complaint block_end_complaint =
70 {"block end address less than block start address in %s (patched it)", 0, 0};
71
72 struct complaint anon_block_end_complaint =
73 {"block end address 0x%lx less than block start address 0x%lx (patched it)", 0, 0};
74
75 struct complaint innerblock_complaint =
76 {"inner block not inside outer block in %s", 0, 0};
77
78 struct complaint innerblock_anon_complaint =
79 {"inner block (0x%lx-0x%lx) not inside outer block (0x%lx-0x%lx)", 0, 0};
80
81 struct complaint blockvector_complaint =
82 {"block at 0x%lx out of order", 0, 0};
83 \f
84 /* maintain the lists of symbols and blocks */
85
86 /* Add a symbol to one of the lists of symbols. */
87
88 void
89 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
90 {
91 register struct pending *link;
92
93 /* If this is an alias for another symbol, don't add it. */
94 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
95 return;
96
97 /* We keep PENDINGSIZE symbols in each link of the list. If we
98 don't have a link with room in it, add a new link. */
99 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
100 {
101 if (free_pendings)
102 {
103 link = free_pendings;
104 free_pendings = link->next;
105 }
106 else
107 {
108 link = (struct pending *) xmalloc (sizeof (struct pending));
109 }
110
111 link->next = *listhead;
112 *listhead = link;
113 link->nsyms = 0;
114 }
115
116 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
117 }
118
119 /* Find a symbol named NAME on a LIST. NAME need not be
120 '\0'-terminated; LENGTH is the length of the name. */
121
122 struct symbol *
123 find_symbol_in_list (struct pending *list, char *name, int length)
124 {
125 int j;
126 char *pp;
127
128 while (list != NULL)
129 {
130 for (j = list->nsyms; --j >= 0;)
131 {
132 pp = SYMBOL_NAME (list->symbol[j]);
133 if (*pp == *name && strncmp (pp, name, length) == 0 &&
134 pp[length] == '\0')
135 {
136 return (list->symbol[j]);
137 }
138 }
139 list = list->next;
140 }
141 return (NULL);
142 }
143
144 /* At end of reading syms, or in case of quit, really free as many
145 `struct pending's as we can easily find. */
146
147 /* ARGSUSED */
148 void
149 really_free_pendings (int foo)
150 {
151 struct pending *next, *next1;
152
153 for (next = free_pendings; next; next = next1)
154 {
155 next1 = next->next;
156 free ((void *) next);
157 }
158 free_pendings = NULL;
159
160 free_pending_blocks ();
161
162 for (next = file_symbols; next != NULL; next = next1)
163 {
164 next1 = next->next;
165 free ((void *) next);
166 }
167 file_symbols = NULL;
168
169 for (next = global_symbols; next != NULL; next = next1)
170 {
171 next1 = next->next;
172 free ((void *) next);
173 }
174 global_symbols = NULL;
175 }
176
177 /* This function is called to discard any pending blocks. */
178
179 void
180 free_pending_blocks (void)
181 {
182 #if 0 /* Now we make the links in the
183 symbol_obstack, so don't free
184 them. */
185 struct pending_block *bnext, *bnext1;
186
187 for (bnext = pending_blocks; bnext; bnext = bnext1)
188 {
189 bnext1 = bnext->next;
190 free ((void *) bnext);
191 }
192 #endif
193 pending_blocks = NULL;
194 }
195
196 /* Take one of the lists of symbols and make a block from it. Keep
197 the order the symbols have in the list (reversed from the input
198 file). Put the block on the list of pending blocks. */
199
200 void
201 finish_block (struct symbol *symbol, struct pending **listhead,
202 struct pending_block *old_blocks,
203 CORE_ADDR start, CORE_ADDR end,
204 struct objfile *objfile)
205 {
206 register struct pending *next, *next1;
207 register struct block *block;
208 register struct pending_block *pblock;
209 struct pending_block *opblock;
210 register int i;
211 register int j;
212
213 /* Count the length of the list of symbols. */
214
215 for (next = *listhead, i = 0;
216 next;
217 i += next->nsyms, next = next->next)
218 {
219 /* EMPTY */ ;
220 }
221
222 block = (struct block *) obstack_alloc (&objfile->symbol_obstack,
223 (sizeof (struct block) + ((i - 1) * sizeof (struct symbol *))));
224
225 /* Copy the symbols into the block. */
226
227 BLOCK_NSYMS (block) = i;
228 for (next = *listhead; next; next = next->next)
229 {
230 for (j = next->nsyms - 1; j >= 0; j--)
231 {
232 BLOCK_SYM (block, --i) = next->symbol[j];
233 }
234 }
235
236 BLOCK_START (block) = start;
237 BLOCK_END (block) = end;
238 /* Superblock filled in when containing block is made */
239 BLOCK_SUPERBLOCK (block) = NULL;
240
241 BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
242
243 /* Put the block in as the value of the symbol that names it. */
244
245 if (symbol)
246 {
247 struct type *ftype = SYMBOL_TYPE (symbol);
248 SYMBOL_BLOCK_VALUE (symbol) = block;
249 BLOCK_FUNCTION (block) = symbol;
250
251 if (TYPE_NFIELDS (ftype) <= 0)
252 {
253 /* No parameter type information is recorded with the
254 function's type. Set that from the type of the
255 parameter symbols. */
256 int nparams = 0, iparams;
257 struct symbol *sym;
258 for (i = 0; i < BLOCK_NSYMS (block); i++)
259 {
260 sym = BLOCK_SYM (block, i);
261 switch (SYMBOL_CLASS (sym))
262 {
263 case LOC_ARG:
264 case LOC_REF_ARG:
265 case LOC_REGPARM:
266 case LOC_REGPARM_ADDR:
267 case LOC_BASEREG_ARG:
268 case LOC_LOCAL_ARG:
269 nparams++;
270 break;
271 case LOC_UNDEF:
272 case LOC_CONST:
273 case LOC_STATIC:
274 case LOC_INDIRECT:
275 case LOC_REGISTER:
276 case LOC_LOCAL:
277 case LOC_TYPEDEF:
278 case LOC_LABEL:
279 case LOC_BLOCK:
280 case LOC_CONST_BYTES:
281 case LOC_BASEREG:
282 case LOC_UNRESOLVED:
283 case LOC_OPTIMIZED_OUT:
284 default:
285 break;
286 }
287 }
288 if (nparams > 0)
289 {
290 TYPE_NFIELDS (ftype) = nparams;
291 TYPE_FIELDS (ftype) = (struct field *)
292 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
293
294 for (i = iparams = 0; iparams < nparams; i++)
295 {
296 sym = BLOCK_SYM (block, i);
297 switch (SYMBOL_CLASS (sym))
298 {
299 case LOC_ARG:
300 case LOC_REF_ARG:
301 case LOC_REGPARM:
302 case LOC_REGPARM_ADDR:
303 case LOC_BASEREG_ARG:
304 case LOC_LOCAL_ARG:
305 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
306 iparams++;
307 break;
308 case LOC_UNDEF:
309 case LOC_CONST:
310 case LOC_STATIC:
311 case LOC_INDIRECT:
312 case LOC_REGISTER:
313 case LOC_LOCAL:
314 case LOC_TYPEDEF:
315 case LOC_LABEL:
316 case LOC_BLOCK:
317 case LOC_CONST_BYTES:
318 case LOC_BASEREG:
319 case LOC_UNRESOLVED:
320 case LOC_OPTIMIZED_OUT:
321 default:
322 break;
323 }
324 }
325 }
326 }
327 }
328 else
329 {
330 BLOCK_FUNCTION (block) = NULL;
331 }
332
333 /* Now "free" the links of the list, and empty the list. */
334
335 for (next = *listhead; next; next = next1)
336 {
337 next1 = next->next;
338 next->next = free_pendings;
339 free_pendings = next;
340 }
341 *listhead = NULL;
342
343 #if 1
344 /* Check to be sure that the blocks have an end address that is
345 greater than starting address */
346
347 if (BLOCK_END (block) < BLOCK_START (block))
348 {
349 if (symbol)
350 {
351 complain (&block_end_complaint, SYMBOL_SOURCE_NAME (symbol));
352 }
353 else
354 {
355 complain (&anon_block_end_complaint, BLOCK_END (block), BLOCK_START (block));
356 }
357 /* Better than nothing */
358 BLOCK_END (block) = BLOCK_START (block);
359 }
360 #endif
361
362 /* Install this block as the superblock of all blocks made since the
363 start of this scope that don't have superblocks yet. */
364
365 opblock = NULL;
366 for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
367 {
368 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
369 {
370 #if 1
371 /* Check to be sure the blocks are nested as we receive
372 them. If the compiler/assembler/linker work, this just
373 burns a small amount of time. */
374 if (BLOCK_START (pblock->block) < BLOCK_START (block) ||
375 BLOCK_END (pblock->block) > BLOCK_END (block))
376 {
377 if (symbol)
378 {
379 complain (&innerblock_complaint,
380 SYMBOL_SOURCE_NAME (symbol));
381 }
382 else
383 {
384 complain (&innerblock_anon_complaint, BLOCK_START (pblock->block),
385 BLOCK_END (pblock->block), BLOCK_START (block),
386 BLOCK_END (block));
387 }
388 if (BLOCK_START (pblock->block) < BLOCK_START (block))
389 BLOCK_START (pblock->block) = BLOCK_START (block);
390 if (BLOCK_END (pblock->block) > BLOCK_END (block))
391 BLOCK_END (pblock->block) = BLOCK_END (block);
392 }
393 #endif
394 BLOCK_SUPERBLOCK (pblock->block) = block;
395 }
396 opblock = pblock;
397 }
398
399 record_pending_block (objfile, block, opblock);
400 }
401
402 /* Record BLOCK on the list of all blocks in the file. Put it after
403 OPBLOCK, or at the beginning if opblock is NULL. This puts the
404 block in the list after all its subblocks.
405
406 Allocate the pending block struct in the symbol_obstack to save
407 time. This wastes a little space. FIXME: Is it worth it? */
408
409 void
410 record_pending_block (struct objfile *objfile, struct block *block,
411 struct pending_block *opblock)
412 {
413 register struct pending_block *pblock;
414
415 pblock = (struct pending_block *)
416 obstack_alloc (&objfile->symbol_obstack, sizeof (struct pending_block));
417 pblock->block = block;
418 if (opblock)
419 {
420 pblock->next = opblock->next;
421 opblock->next = pblock;
422 }
423 else
424 {
425 pblock->next = pending_blocks;
426 pending_blocks = pblock;
427 }
428 }
429
430 /* Note that this is only used in this file and in dstread.c, which
431 should be fixed to not need direct access to this function. When
432 that is done, it can be made static again. */
433
434 struct blockvector *
435 make_blockvector (struct objfile *objfile)
436 {
437 register struct pending_block *next;
438 register struct blockvector *blockvector;
439 register int i;
440
441 /* Count the length of the list of blocks. */
442
443 for (next = pending_blocks, i = 0; next; next = next->next, i++)
444 {;
445 }
446
447 blockvector = (struct blockvector *)
448 obstack_alloc (&objfile->symbol_obstack,
449 (sizeof (struct blockvector)
450 + (i - 1) * sizeof (struct block *)));
451
452 /* Copy the blocks into the blockvector. This is done in reverse
453 order, which happens to put the blocks into the proper order
454 (ascending starting address). finish_block has hair to insert
455 each block into the list after its subblocks in order to make
456 sure this is true. */
457
458 BLOCKVECTOR_NBLOCKS (blockvector) = i;
459 for (next = pending_blocks; next; next = next->next)
460 {
461 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
462 }
463
464 #if 0 /* Now we make the links in the
465 obstack, so don't free them. */
466 /* Now free the links of the list, and empty the list. */
467
468 for (next = pending_blocks; next; next = next1)
469 {
470 next1 = next->next;
471 free (next);
472 }
473 #endif
474 pending_blocks = NULL;
475
476 #if 1 /* FIXME, shut this off after a while
477 to speed up symbol reading. */
478 /* Some compilers output blocks in the wrong order, but we depend on
479 their being in the right order so we can binary search. Check the
480 order and moan about it. FIXME. */
481 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
482 {
483 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
484 {
485 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
486 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
487 {
488
489 /* FIXME-32x64: loses if CORE_ADDR doesn't fit in a
490 long. Possible solutions include a version of
491 complain which takes a callback, a
492 sprintf_address_numeric to match
493 print_address_numeric, or a way to set up a GDB_FILE
494 which causes sprintf rather than fprintf to be
495 called. */
496
497 complain (&blockvector_complaint,
498 (unsigned long) BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)));
499 }
500 }
501 }
502 #endif
503
504 return (blockvector);
505 }
506 \f
507 /* Start recording information about source code that came from an
508 included (or otherwise merged-in) source file with a different
509 name. NAME is the name of the file (cannot be NULL), DIRNAME is
510 the directory in which it resides (or NULL if not known). */
511
512 void
513 start_subfile (char *name, char *dirname)
514 {
515 register struct subfile *subfile;
516
517 /* See if this subfile is already known as a subfile of the current
518 main source file. */
519
520 for (subfile = subfiles; subfile; subfile = subfile->next)
521 {
522 if (STREQ (subfile->name, name))
523 {
524 current_subfile = subfile;
525 return;
526 }
527 }
528
529 /* This subfile is not known. Add an entry for it. Make an entry
530 for this subfile in the list of all subfiles of the current main
531 source file. */
532
533 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
534 subfile->next = subfiles;
535 subfiles = subfile;
536 current_subfile = subfile;
537
538 /* Save its name and compilation directory name */
539 subfile->name = (name == NULL) ? NULL : savestring (name, strlen (name));
540 subfile->dirname =
541 (dirname == NULL) ? NULL : savestring (dirname, strlen (dirname));
542
543 /* Initialize line-number recording for this subfile. */
544 subfile->line_vector = NULL;
545
546 /* Default the source language to whatever can be deduced from the
547 filename. If nothing can be deduced (such as for a C/C++ include
548 file with a ".h" extension), then inherit whatever language the
549 previous subfile had. This kludgery is necessary because there
550 is no standard way in some object formats to record the source
551 language. Also, when symtabs are allocated we try to deduce a
552 language then as well, but it is too late for us to use that
553 information while reading symbols, since symtabs aren't allocated
554 until after all the symbols have been processed for a given
555 source file. */
556
557 subfile->language = deduce_language_from_filename (subfile->name);
558 if (subfile->language == language_unknown &&
559 subfile->next != NULL)
560 {
561 subfile->language = subfile->next->language;
562 }
563
564 /* Initialize the debug format string to NULL. We may supply it
565 later via a call to record_debugformat. */
566 subfile->debugformat = NULL;
567
568 /* cfront output is a C program, so in most ways it looks like a C
569 program. But to demangle we need to set the language to C++. We
570 can distinguish cfront code by the fact that it has #line
571 directives which specify a file name ending in .C.
572
573 So if the filename of this subfile ends in .C, then change the
574 language of any pending subfiles from C to C++. We also accept
575 any other C++ suffixes accepted by deduce_language_from_filename
576 (in particular, some people use .cxx with cfront). */
577 /* Likewise for f2c. */
578
579 if (subfile->name)
580 {
581 struct subfile *s;
582 enum language sublang = deduce_language_from_filename (subfile->name);
583
584 if (sublang == language_cplus || sublang == language_fortran)
585 for (s = subfiles; s != NULL; s = s->next)
586 if (s->language == language_c)
587 s->language = sublang;
588 }
589
590 /* And patch up this file if necessary. */
591 if (subfile->language == language_c
592 && subfile->next != NULL
593 && (subfile->next->language == language_cplus
594 || subfile->next->language == language_fortran))
595 {
596 subfile->language = subfile->next->language;
597 }
598 }
599
600 /* For stabs readers, the first N_SO symbol is assumed to be the
601 source file name, and the subfile struct is initialized using that
602 assumption. If another N_SO symbol is later seen, immediately
603 following the first one, then the first one is assumed to be the
604 directory name and the second one is really the source file name.
605
606 So we have to patch up the subfile struct by moving the old name
607 value to dirname and remembering the new name. Some sanity
608 checking is performed to ensure that the state of the subfile
609 struct is reasonable and that the old name we are assuming to be a
610 directory name actually is (by checking for a trailing '/'). */
611
612 void
613 patch_subfile_names (struct subfile *subfile, char *name)
614 {
615 if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
616 && subfile->name[strlen (subfile->name) - 1] == '/')
617 {
618 subfile->dirname = subfile->name;
619 subfile->name = savestring (name, strlen (name));
620 last_source_file = name;
621
622 /* Default the source language to whatever can be deduced from
623 the filename. If nothing can be deduced (such as for a C/C++
624 include file with a ".h" extension), then inherit whatever
625 language the previous subfile had. This kludgery is
626 necessary because there is no standard way in some object
627 formats to record the source language. Also, when symtabs
628 are allocated we try to deduce a language then as well, but
629 it is too late for us to use that information while reading
630 symbols, since symtabs aren't allocated until after all the
631 symbols have been processed for a given source file. */
632
633 subfile->language = deduce_language_from_filename (subfile->name);
634 if (subfile->language == language_unknown &&
635 subfile->next != NULL)
636 {
637 subfile->language = subfile->next->language;
638 }
639 }
640 }
641 \f
642 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
643 switching source files (different subfiles, as we call them) within
644 one object file, but using a stack rather than in an arbitrary
645 order. */
646
647 void
648 push_subfile (void)
649 {
650 register struct subfile_stack *tem
651 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
652
653 tem->next = subfile_stack;
654 subfile_stack = tem;
655 if (current_subfile == NULL || current_subfile->name == NULL)
656 {
657 abort ();
658 }
659 tem->name = current_subfile->name;
660 }
661
662 char *
663 pop_subfile (void)
664 {
665 register char *name;
666 register struct subfile_stack *link = subfile_stack;
667
668 if (link == NULL)
669 {
670 abort ();
671 }
672 name = link->name;
673 subfile_stack = link->next;
674 free ((void *) link);
675 return (name);
676 }
677 \f
678 /* Add a linetable entry for line number LINE and address PC to the
679 line vector for SUBFILE. */
680
681 void
682 record_line (register struct subfile *subfile, int line, CORE_ADDR pc)
683 {
684 struct linetable_entry *e;
685 /* Ignore the dummy line number in libg.o */
686
687 if (line == 0xffff)
688 {
689 return;
690 }
691
692 /* Make sure line vector exists and is big enough. */
693 if (!subfile->line_vector)
694 {
695 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
696 subfile->line_vector = (struct linetable *)
697 xmalloc (sizeof (struct linetable)
698 + subfile->line_vector_length * sizeof (struct linetable_entry));
699 subfile->line_vector->nitems = 0;
700 have_line_numbers = 1;
701 }
702
703 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
704 {
705 subfile->line_vector_length *= 2;
706 subfile->line_vector = (struct linetable *)
707 xrealloc ((char *) subfile->line_vector,
708 (sizeof (struct linetable)
709 + (subfile->line_vector_length
710 * sizeof (struct linetable_entry))));
711 }
712
713 e = subfile->line_vector->item + subfile->line_vector->nitems++;
714 e->line = line;
715 e->pc = pc;
716 }
717
718 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
719
720 static int
721 compare_line_numbers (const void *ln1p, const void *ln2p)
722 {
723 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
724 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
725
726 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
727 Please keep it that way. */
728 if (ln1->pc < ln2->pc)
729 return -1;
730
731 if (ln1->pc > ln2->pc)
732 return 1;
733
734 /* If pc equal, sort by line. I'm not sure whether this is optimum
735 behavior (see comment at struct linetable in symtab.h). */
736 return ln1->line - ln2->line;
737 }
738 \f
739 /* Start a new symtab for a new source file. Called, for example,
740 when a stabs symbol of type N_SO is seen, or when a DWARF
741 TAG_compile_unit DIE is seen. It indicates the start of data for
742 one original source file. */
743
744 void
745 start_symtab (char *name, char *dirname, CORE_ADDR start_addr)
746 {
747
748 last_source_file = name;
749 last_source_start_addr = start_addr;
750 file_symbols = NULL;
751 global_symbols = NULL;
752 within_function = 0;
753 have_line_numbers = 0;
754
755 /* Context stack is initially empty. Allocate first one with room
756 for 10 levels; reuse it forever afterward. */
757 if (context_stack == NULL)
758 {
759 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
760 context_stack = (struct context_stack *)
761 xmalloc (context_stack_size * sizeof (struct context_stack));
762 }
763 context_stack_depth = 0;
764
765 /* Initialize the list of sub source files with one entry for this
766 file (the top-level source file). */
767
768 subfiles = NULL;
769 current_subfile = NULL;
770 start_subfile (name, dirname);
771 }
772
773 /* Finish the symbol definitions for one main source file, close off
774 all the lexical contexts for that file (creating struct block's for
775 them), then make the struct symtab for that file and put it in the
776 list of all such.
777
778 END_ADDR is the address of the end of the file's text. SECTION is
779 the section number (in objfile->section_offsets) of the blockvector
780 and linetable.
781
782 Note that it is possible for end_symtab() to return NULL. In
783 particular, for the DWARF case at least, it will return NULL when
784 it finds a compilation unit that has exactly one DIE, a
785 TAG_compile_unit DIE. This can happen when we link in an object
786 file that was compiled from an empty source file. Returning NULL
787 is probably not the correct thing to do, because then gdb will
788 never know about this empty file (FIXME). */
789
790 struct symtab *
791 end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section)
792 {
793 register struct symtab *symtab = NULL;
794 register struct blockvector *blockvector;
795 register struct subfile *subfile;
796 register struct context_stack *cstk;
797 struct subfile *nextsub;
798
799 /* Finish the lexical context of the last function in the file; pop
800 the context stack. */
801
802 if (context_stack_depth > 0)
803 {
804 cstk = pop_context ();
805 /* Make a block for the local symbols within. */
806 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
807 cstk->start_addr, end_addr, objfile);
808
809 if (context_stack_depth > 0)
810 {
811 /* This is said to happen with SCO. The old coffread.c
812 code simply emptied the context stack, so we do the
813 same. FIXME: Find out why it is happening. This is not
814 believed to happen in most cases (even for coffread.c);
815 it used to be an abort(). */
816 static struct complaint msg =
817 {"Context stack not empty in end_symtab", 0, 0};
818 complain (&msg);
819 context_stack_depth = 0;
820 }
821 }
822
823 /* Reordered executables may have out of order pending blocks; if
824 OBJF_REORDERED is true, then sort the pending blocks. */
825 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
826 {
827 /* FIXME! Remove this horrid bubble sort and use merge sort!!! */
828 int swapped;
829 do
830 {
831 struct pending_block *pb, *pbnext;
832
833 pb = pending_blocks;
834 pbnext = pb->next;
835 swapped = 0;
836
837 while (pbnext)
838 {
839 /* swap blocks if unordered! */
840
841 if (BLOCK_START (pb->block) < BLOCK_START (pbnext->block))
842 {
843 struct block *tmp = pb->block;
844 pb->block = pbnext->block;
845 pbnext->block = tmp;
846 swapped = 1;
847 }
848 pb = pbnext;
849 pbnext = pbnext->next;
850 }
851 }
852 while (swapped);
853 }
854
855 /* Cleanup any undefined types that have been left hanging around
856 (this needs to be done before the finish_blocks so that
857 file_symbols is still good).
858
859 Both cleanup_undefined_types and finish_global_stabs are stabs
860 specific, but harmless for other symbol readers, since on gdb
861 startup or when finished reading stabs, the state is set so these
862 are no-ops. FIXME: Is this handled right in case of QUIT? Can
863 we make this cleaner? */
864
865 cleanup_undefined_types ();
866 finish_global_stabs (objfile);
867
868 if (pending_blocks == NULL
869 && file_symbols == NULL
870 && global_symbols == NULL
871 && have_line_numbers == 0)
872 {
873 /* Ignore symtabs that have no functions with real debugging
874 info. */
875 blockvector = NULL;
876 }
877 else
878 {
879 /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the
880 blockvector. */
881 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr,
882 objfile);
883 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr,
884 objfile);
885 blockvector = make_blockvector (objfile);
886 }
887
888 #ifndef PROCESS_LINENUMBER_HOOK
889 #define PROCESS_LINENUMBER_HOOK()
890 #endif
891 PROCESS_LINENUMBER_HOOK (); /* Needed for xcoff. */
892
893 /* Now create the symtab objects proper, one for each subfile. */
894 /* (The main file is the last one on the chain.) */
895
896 for (subfile = subfiles; subfile; subfile = nextsub)
897 {
898 int linetablesize = 0;
899 symtab = NULL;
900
901 /* If we have blocks of symbols, make a symtab. Otherwise, just
902 ignore this file and any line number info in it. */
903 if (blockvector)
904 {
905 if (subfile->line_vector)
906 {
907 linetablesize = sizeof (struct linetable) +
908 subfile->line_vector->nitems * sizeof (struct linetable_entry);
909 #if 0
910 /* I think this is artifact from before it went on the
911 obstack. I doubt we'll need the memory between now
912 and when we free it later in this function. */
913 /* First, shrink the linetable to make more memory. */
914 subfile->line_vector = (struct linetable *)
915 xrealloc ((char *) subfile->line_vector, linetablesize);
916 #endif
917
918 /* Like the pending blocks, the line table may be
919 scrambled in reordered executables. Sort it if
920 OBJF_REORDERED is true. */
921 if (objfile->flags & OBJF_REORDERED)
922 qsort (subfile->line_vector->item,
923 subfile->line_vector->nitems,
924 sizeof (struct linetable_entry), compare_line_numbers);
925 }
926
927 /* Now, allocate a symbol table. */
928 symtab = allocate_symtab (subfile->name, objfile);
929
930 /* Fill in its components. */
931 symtab->blockvector = blockvector;
932 if (subfile->line_vector)
933 {
934 /* Reallocate the line table on the symbol obstack */
935 symtab->linetable = (struct linetable *)
936 obstack_alloc (&objfile->symbol_obstack, linetablesize);
937 memcpy (symtab->linetable, subfile->line_vector, linetablesize);
938 }
939 else
940 {
941 symtab->linetable = NULL;
942 }
943 symtab->block_line_section = section;
944 if (subfile->dirname)
945 {
946 /* Reallocate the dirname on the symbol obstack */
947 symtab->dirname = (char *)
948 obstack_alloc (&objfile->symbol_obstack,
949 strlen (subfile->dirname) + 1);
950 strcpy (symtab->dirname, subfile->dirname);
951 }
952 else
953 {
954 symtab->dirname = NULL;
955 }
956 symtab->free_code = free_linetable;
957 symtab->free_ptr = NULL;
958
959 /* Use whatever language we have been using for this
960 subfile, not the one that was deduced in allocate_symtab
961 from the filename. We already did our own deducing when
962 we created the subfile, and we may have altered our
963 opinion of what language it is from things we found in
964 the symbols. */
965 symtab->language = subfile->language;
966
967 /* Save the debug format string (if any) in the symtab */
968 if (subfile->debugformat != NULL)
969 {
970 symtab->debugformat = obsavestring (subfile->debugformat,
971 strlen (subfile->debugformat),
972 &objfile->symbol_obstack);
973 }
974
975 /* All symtabs for the main file and the subfiles share a
976 blockvector, so we need to clear primary for everything
977 but the main file. */
978
979 symtab->primary = 0;
980 }
981 if (subfile->name != NULL)
982 {
983 free ((void *) subfile->name);
984 }
985 if (subfile->dirname != NULL)
986 {
987 free ((void *) subfile->dirname);
988 }
989 if (subfile->line_vector != NULL)
990 {
991 free ((void *) subfile->line_vector);
992 }
993 if (subfile->debugformat != NULL)
994 {
995 free ((void *) subfile->debugformat);
996 }
997
998 nextsub = subfile->next;
999 free ((void *) subfile);
1000 }
1001
1002 /* Set this for the main source file. */
1003 if (symtab)
1004 {
1005 symtab->primary = 1;
1006 }
1007
1008 last_source_file = NULL;
1009 current_subfile = NULL;
1010
1011 return symtab;
1012 }
1013
1014 /* Push a context block. Args are an identifying nesting level
1015 (checkable when you pop it), and the starting PC address of this
1016 context. */
1017
1018 struct context_stack *
1019 push_context (int desc, CORE_ADDR valu)
1020 {
1021 register struct context_stack *new;
1022
1023 if (context_stack_depth == context_stack_size)
1024 {
1025 context_stack_size *= 2;
1026 context_stack = (struct context_stack *)
1027 xrealloc ((char *) context_stack,
1028 (context_stack_size * sizeof (struct context_stack)));
1029 }
1030
1031 new = &context_stack[context_stack_depth++];
1032 new->depth = desc;
1033 new->locals = local_symbols;
1034 new->params = param_symbols;
1035 new->old_blocks = pending_blocks;
1036 new->start_addr = valu;
1037 new->name = NULL;
1038
1039 local_symbols = NULL;
1040 param_symbols = NULL;
1041
1042 return new;
1043 }
1044 \f
1045 /* Compute a small integer hash code for the given name. */
1046
1047 int
1048 hashname (char *name)
1049 {
1050 register char *p = name;
1051 register int total = p[0];
1052 register int c;
1053
1054 c = p[1];
1055 total += c << 2;
1056 if (c)
1057 {
1058 c = p[2];
1059 total += c << 4;
1060 if (c)
1061 {
1062 total += p[3] << 6;
1063 }
1064 }
1065
1066 /* Ensure result is positive. */
1067 if (total < 0)
1068 {
1069 total += (1000 << 6);
1070 }
1071 return (total % HASHSIZE);
1072 }
1073 \f
1074
1075 void
1076 record_debugformat (char *format)
1077 {
1078 current_subfile->debugformat = savestring (format, strlen (format));
1079 }
1080
1081 /* Merge the first symbol list SRCLIST into the second symbol list
1082 TARGETLIST by repeated calls to add_symbol_to_list(). This
1083 procedure "frees" each link of SRCLIST by adding it to the
1084 free_pendings list. Caller must set SRCLIST to a null list after
1085 calling this function.
1086
1087 Void return. */
1088
1089 void
1090 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1091 {
1092 register int i;
1093
1094 if (!srclist || !*srclist)
1095 return;
1096
1097 /* Merge in elements from current link. */
1098 for (i = 0; i < (*srclist)->nsyms; i++)
1099 add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1100
1101 /* Recurse on next. */
1102 merge_symbol_lists (&(*srclist)->next, targetlist);
1103
1104 /* "Free" the current link. */
1105 (*srclist)->next = free_pendings;
1106 free_pendings = (*srclist);
1107 }
1108 \f
1109 /* Initialize anything that needs initializing when starting to read a
1110 fresh piece of a symbol file, e.g. reading in the stuff
1111 corresponding to a psymtab. */
1112
1113 void
1114 buildsym_init ()
1115 {
1116 free_pendings = NULL;
1117 file_symbols = NULL;
1118 global_symbols = NULL;
1119 pending_blocks = NULL;
1120 }
1121
1122 /* Initialize anything that needs initializing when a completely new
1123 symbol file is specified (not just adding some symbols from another
1124 file, e.g. a shared library). */
1125
1126 void
1127 buildsym_new_init ()
1128 {
1129 buildsym_init ();
1130 }