5dd47fb6da8fcda57ecdc76df3fce1abed1c89ff
[binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2003, 2004, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Parse a C expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include "gdb_string.h"
42 #include <ctype.h>
43 #include "expression.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "bfd.h" /* Required by objfiles.h. */
49 #include "symfile.h" /* Required by objfiles.h. */
50 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
51 #include "charset.h"
52 #include "block.h"
53 #include "cp-support.h"
54 #include "dfp.h"
55 #include "gdb_assert.h"
56 #include "macroscope.h"
57
58 #define parse_type builtin_type (parse_gdbarch)
59
60 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
61 as well as gratuitiously global symbol names, so we can have multiple
62 yacc generated parsers in gdb. Note that these are only the variables
63 produced by yacc. If other parser generators (bison, byacc, etc) produce
64 additional global names that conflict at link time, then those parser
65 generators need to be fixed instead of adding those names to this list. */
66
67 #define yymaxdepth c_maxdepth
68 #define yyparse c_parse_internal
69 #define yylex c_lex
70 #define yyerror c_error
71 #define yylval c_lval
72 #define yychar c_char
73 #define yydebug c_debug
74 #define yypact c_pact
75 #define yyr1 c_r1
76 #define yyr2 c_r2
77 #define yydef c_def
78 #define yychk c_chk
79 #define yypgo c_pgo
80 #define yyact c_act
81 #define yyexca c_exca
82 #define yyerrflag c_errflag
83 #define yynerrs c_nerrs
84 #define yyps c_ps
85 #define yypv c_pv
86 #define yys c_s
87 #define yy_yys c_yys
88 #define yystate c_state
89 #define yytmp c_tmp
90 #define yyv c_v
91 #define yy_yyv c_yyv
92 #define yyval c_val
93 #define yylloc c_lloc
94 #define yyreds c_reds /* With YYDEBUG defined */
95 #define yytoks c_toks /* With YYDEBUG defined */
96 #define yyname c_name /* With YYDEBUG defined */
97 #define yyrule c_rule /* With YYDEBUG defined */
98 #define yylhs c_yylhs
99 #define yylen c_yylen
100 #define yydefred c_yydefred
101 #define yydgoto c_yydgoto
102 #define yysindex c_yysindex
103 #define yyrindex c_yyrindex
104 #define yygindex c_yygindex
105 #define yytable c_yytable
106 #define yycheck c_yycheck
107
108 #ifndef YYDEBUG
109 #define YYDEBUG 1 /* Default to yydebug support */
110 #endif
111
112 #define YYFPRINTF parser_fprintf
113
114 int yyparse (void);
115
116 static int yylex (void);
117
118 void yyerror (char *);
119
120 %}
121
122 /* Although the yacc "value" of an expression is not used,
123 since the result is stored in the structure being created,
124 other node types do have values. */
125
126 %union
127 {
128 LONGEST lval;
129 struct {
130 LONGEST val;
131 struct type *type;
132 } typed_val_int;
133 struct {
134 DOUBLEST dval;
135 struct type *type;
136 } typed_val_float;
137 struct {
138 gdb_byte val[16];
139 struct type *type;
140 } typed_val_decfloat;
141 struct symbol *sym;
142 struct type *tval;
143 struct stoken sval;
144 struct typed_stoken tsval;
145 struct ttype tsym;
146 struct symtoken ssym;
147 int voidval;
148 struct block *bval;
149 enum exp_opcode opcode;
150 struct internalvar *ivar;
151
152 struct stoken_vector svec;
153 struct type **tvec;
154 int *ivec;
155 }
156
157 %{
158 /* YYSTYPE gets defined by %union */
159 static int parse_number (char *, int, int, YYSTYPE *);
160 %}
161
162 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
163 %type <lval> rcurly
164 %type <tval> type typebase qualified_type
165 %type <tvec> nonempty_typelist
166 /* %type <bval> block */
167
168 /* Fancy type parsing. */
169 %type <voidval> func_mod direct_abs_decl abs_decl
170 %type <tval> ptype
171 %type <lval> array_mod
172
173 %token <typed_val_int> INT
174 %token <typed_val_float> FLOAT
175 %token <typed_val_decfloat> DECFLOAT
176
177 /* Both NAME and TYPENAME tokens represent symbols in the input,
178 and both convey their data as strings.
179 But a TYPENAME is a string that happens to be defined as a typedef
180 or builtin type name (such as int or char)
181 and a NAME is any other symbol.
182 Contexts where this distinction is not important can use the
183 nonterminal "name", which matches either NAME or TYPENAME. */
184
185 %token <tsval> STRING
186 %token <tsval> CHAR
187 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
188 %token <voidval> COMPLETE
189 %token <tsym> TYPENAME
190 %type <sval> name
191 %type <svec> string_exp
192 %type <ssym> name_not_typename
193 %type <tsym> typename
194
195 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
196 but which would parse as a valid number in the current input radix.
197 E.g. "c" when input_radix==16. Depending on the parse, it will be
198 turned into a name or into a number. */
199
200 %token <ssym> NAME_OR_INT
201
202 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
203 %token TEMPLATE
204 %token ERROR
205
206 /* Special type cases, put in to allow the parser to distinguish different
207 legal basetypes. */
208 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
209
210 %token <voidval> VARIABLE
211
212 %token <opcode> ASSIGN_MODIFY
213
214 /* C++ */
215 %token TRUEKEYWORD
216 %token FALSEKEYWORD
217
218
219 %left ','
220 %left ABOVE_COMMA
221 %right '=' ASSIGN_MODIFY
222 %right '?'
223 %left OROR
224 %left ANDAND
225 %left '|'
226 %left '^'
227 %left '&'
228 %left EQUAL NOTEQUAL
229 %left '<' '>' LEQ GEQ
230 %left LSH RSH
231 %left '@'
232 %left '+' '-'
233 %left '*' '/' '%'
234 %right UNARY INCREMENT DECREMENT
235 %right ARROW ARROW_STAR '.' DOT_STAR '[' '('
236 %token <ssym> BLOCKNAME
237 %token <bval> FILENAME
238 %type <bval> block
239 %left COLONCOLON
240
241 \f
242 %%
243
244 start : exp1
245 | type_exp
246 ;
247
248 type_exp: type
249 { write_exp_elt_opcode(OP_TYPE);
250 write_exp_elt_type($1);
251 write_exp_elt_opcode(OP_TYPE);}
252 ;
253
254 /* Expressions, including the comma operator. */
255 exp1 : exp
256 | exp1 ',' exp
257 { write_exp_elt_opcode (BINOP_COMMA); }
258 ;
259
260 /* Expressions, not including the comma operator. */
261 exp : '*' exp %prec UNARY
262 { write_exp_elt_opcode (UNOP_IND); }
263 ;
264
265 exp : '&' exp %prec UNARY
266 { write_exp_elt_opcode (UNOP_ADDR); }
267 ;
268
269 exp : '-' exp %prec UNARY
270 { write_exp_elt_opcode (UNOP_NEG); }
271 ;
272
273 exp : '+' exp %prec UNARY
274 { write_exp_elt_opcode (UNOP_PLUS); }
275 ;
276
277 exp : '!' exp %prec UNARY
278 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
279 ;
280
281 exp : '~' exp %prec UNARY
282 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
283 ;
284
285 exp : INCREMENT exp %prec UNARY
286 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
287 ;
288
289 exp : DECREMENT exp %prec UNARY
290 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
291 ;
292
293 exp : exp INCREMENT %prec UNARY
294 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
295 ;
296
297 exp : exp DECREMENT %prec UNARY
298 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
299 ;
300
301 exp : SIZEOF exp %prec UNARY
302 { write_exp_elt_opcode (UNOP_SIZEOF); }
303 ;
304
305 exp : exp ARROW name
306 { write_exp_elt_opcode (STRUCTOP_PTR);
307 write_exp_string ($3);
308 write_exp_elt_opcode (STRUCTOP_PTR); }
309 ;
310
311 exp : exp ARROW name COMPLETE
312 { mark_struct_expression ();
313 write_exp_elt_opcode (STRUCTOP_PTR);
314 write_exp_string ($3);
315 write_exp_elt_opcode (STRUCTOP_PTR); }
316 ;
317
318 exp : exp ARROW COMPLETE
319 { struct stoken s;
320 mark_struct_expression ();
321 write_exp_elt_opcode (STRUCTOP_PTR);
322 s.ptr = "";
323 s.length = 0;
324 write_exp_string (s);
325 write_exp_elt_opcode (STRUCTOP_PTR); }
326 ;
327
328 exp : exp ARROW qualified_name
329 { /* exp->type::name becomes exp->*(&type::name) */
330 /* Note: this doesn't work if name is a
331 static member! FIXME */
332 write_exp_elt_opcode (UNOP_ADDR);
333 write_exp_elt_opcode (STRUCTOP_MPTR); }
334 ;
335
336 exp : exp ARROW_STAR exp
337 { write_exp_elt_opcode (STRUCTOP_MPTR); }
338 ;
339
340 exp : exp '.' name
341 { write_exp_elt_opcode (STRUCTOP_STRUCT);
342 write_exp_string ($3);
343 write_exp_elt_opcode (STRUCTOP_STRUCT); }
344 ;
345
346 exp : exp '.' name COMPLETE
347 { mark_struct_expression ();
348 write_exp_elt_opcode (STRUCTOP_STRUCT);
349 write_exp_string ($3);
350 write_exp_elt_opcode (STRUCTOP_STRUCT); }
351 ;
352
353 exp : exp '.' COMPLETE
354 { struct stoken s;
355 mark_struct_expression ();
356 write_exp_elt_opcode (STRUCTOP_STRUCT);
357 s.ptr = "";
358 s.length = 0;
359 write_exp_string (s);
360 write_exp_elt_opcode (STRUCTOP_STRUCT); }
361 ;
362
363 exp : exp '.' qualified_name
364 { /* exp.type::name becomes exp.*(&type::name) */
365 /* Note: this doesn't work if name is a
366 static member! FIXME */
367 write_exp_elt_opcode (UNOP_ADDR);
368 write_exp_elt_opcode (STRUCTOP_MEMBER); }
369 ;
370
371 exp : exp DOT_STAR exp
372 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
373 ;
374
375 exp : exp '[' exp1 ']'
376 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
377 ;
378
379 exp : exp '('
380 /* This is to save the value of arglist_len
381 being accumulated by an outer function call. */
382 { start_arglist (); }
383 arglist ')' %prec ARROW
384 { write_exp_elt_opcode (OP_FUNCALL);
385 write_exp_elt_longcst ((LONGEST) end_arglist ());
386 write_exp_elt_opcode (OP_FUNCALL); }
387 ;
388
389 lcurly : '{'
390 { start_arglist (); }
391 ;
392
393 arglist :
394 ;
395
396 arglist : exp
397 { arglist_len = 1; }
398 ;
399
400 arglist : arglist ',' exp %prec ABOVE_COMMA
401 { arglist_len++; }
402 ;
403
404 exp : exp '(' nonempty_typelist ')' const_or_volatile
405 { int i;
406 write_exp_elt_opcode (TYPE_INSTANCE);
407 write_exp_elt_longcst ((LONGEST) $<ivec>3[0]);
408 for (i = 0; i < $<ivec>3[0]; ++i)
409 write_exp_elt_type ($<tvec>3[i + 1]);
410 write_exp_elt_longcst((LONGEST) $<ivec>3[0]);
411 write_exp_elt_opcode (TYPE_INSTANCE);
412 free ($3);
413 }
414 ;
415
416 rcurly : '}'
417 { $$ = end_arglist () - 1; }
418 ;
419 exp : lcurly arglist rcurly %prec ARROW
420 { write_exp_elt_opcode (OP_ARRAY);
421 write_exp_elt_longcst ((LONGEST) 0);
422 write_exp_elt_longcst ((LONGEST) $3);
423 write_exp_elt_opcode (OP_ARRAY); }
424 ;
425
426 exp : lcurly type rcurly exp %prec UNARY
427 { write_exp_elt_opcode (UNOP_MEMVAL);
428 write_exp_elt_type ($2);
429 write_exp_elt_opcode (UNOP_MEMVAL); }
430 ;
431
432 exp : '(' type ')' exp %prec UNARY
433 { write_exp_elt_opcode (UNOP_CAST);
434 write_exp_elt_type ($2);
435 write_exp_elt_opcode (UNOP_CAST); }
436 ;
437
438 exp : '(' exp1 ')'
439 { }
440 ;
441
442 /* Binary operators in order of decreasing precedence. */
443
444 exp : exp '@' exp
445 { write_exp_elt_opcode (BINOP_REPEAT); }
446 ;
447
448 exp : exp '*' exp
449 { write_exp_elt_opcode (BINOP_MUL); }
450 ;
451
452 exp : exp '/' exp
453 { write_exp_elt_opcode (BINOP_DIV); }
454 ;
455
456 exp : exp '%' exp
457 { write_exp_elt_opcode (BINOP_REM); }
458 ;
459
460 exp : exp '+' exp
461 { write_exp_elt_opcode (BINOP_ADD); }
462 ;
463
464 exp : exp '-' exp
465 { write_exp_elt_opcode (BINOP_SUB); }
466 ;
467
468 exp : exp LSH exp
469 { write_exp_elt_opcode (BINOP_LSH); }
470 ;
471
472 exp : exp RSH exp
473 { write_exp_elt_opcode (BINOP_RSH); }
474 ;
475
476 exp : exp EQUAL exp
477 { write_exp_elt_opcode (BINOP_EQUAL); }
478 ;
479
480 exp : exp NOTEQUAL exp
481 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
482 ;
483
484 exp : exp LEQ exp
485 { write_exp_elt_opcode (BINOP_LEQ); }
486 ;
487
488 exp : exp GEQ exp
489 { write_exp_elt_opcode (BINOP_GEQ); }
490 ;
491
492 exp : exp '<' exp
493 { write_exp_elt_opcode (BINOP_LESS); }
494 ;
495
496 exp : exp '>' exp
497 { write_exp_elt_opcode (BINOP_GTR); }
498 ;
499
500 exp : exp '&' exp
501 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
502 ;
503
504 exp : exp '^' exp
505 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
506 ;
507
508 exp : exp '|' exp
509 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
510 ;
511
512 exp : exp ANDAND exp
513 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
514 ;
515
516 exp : exp OROR exp
517 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
518 ;
519
520 exp : exp '?' exp ':' exp %prec '?'
521 { write_exp_elt_opcode (TERNOP_COND); }
522 ;
523
524 exp : exp '=' exp
525 { write_exp_elt_opcode (BINOP_ASSIGN); }
526 ;
527
528 exp : exp ASSIGN_MODIFY exp
529 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
530 write_exp_elt_opcode ($2);
531 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
532 ;
533
534 exp : INT
535 { write_exp_elt_opcode (OP_LONG);
536 write_exp_elt_type ($1.type);
537 write_exp_elt_longcst ((LONGEST)($1.val));
538 write_exp_elt_opcode (OP_LONG); }
539 ;
540
541 exp : CHAR
542 {
543 struct stoken_vector vec;
544 vec.len = 1;
545 vec.tokens = &$1;
546 write_exp_string_vector ($1.type, &vec);
547 }
548 ;
549
550 exp : NAME_OR_INT
551 { YYSTYPE val;
552 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
553 write_exp_elt_opcode (OP_LONG);
554 write_exp_elt_type (val.typed_val_int.type);
555 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
556 write_exp_elt_opcode (OP_LONG);
557 }
558 ;
559
560
561 exp : FLOAT
562 { write_exp_elt_opcode (OP_DOUBLE);
563 write_exp_elt_type ($1.type);
564 write_exp_elt_dblcst ($1.dval);
565 write_exp_elt_opcode (OP_DOUBLE); }
566 ;
567
568 exp : DECFLOAT
569 { write_exp_elt_opcode (OP_DECFLOAT);
570 write_exp_elt_type ($1.type);
571 write_exp_elt_decfloatcst ($1.val);
572 write_exp_elt_opcode (OP_DECFLOAT); }
573 ;
574
575 exp : variable
576 ;
577
578 exp : VARIABLE
579 /* Already written by write_dollar_variable. */
580 ;
581
582 exp : SIZEOF '(' type ')' %prec UNARY
583 { write_exp_elt_opcode (OP_LONG);
584 write_exp_elt_type (parse_type->builtin_int);
585 CHECK_TYPEDEF ($3);
586 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
587 write_exp_elt_opcode (OP_LONG); }
588 ;
589
590 string_exp:
591 STRING
592 {
593 /* We copy the string here, and not in the
594 lexer, to guarantee that we do not leak a
595 string. Note that we follow the
596 NUL-termination convention of the
597 lexer. */
598 struct typed_stoken *vec = XNEW (struct typed_stoken);
599 $$.len = 1;
600 $$.tokens = vec;
601
602 vec->type = $1.type;
603 vec->length = $1.length;
604 vec->ptr = malloc ($1.length + 1);
605 memcpy (vec->ptr, $1.ptr, $1.length + 1);
606 }
607
608 | string_exp STRING
609 {
610 /* Note that we NUL-terminate here, but just
611 for convenience. */
612 char *p;
613 ++$$.len;
614 $$.tokens = realloc ($$.tokens,
615 $$.len * sizeof (struct typed_stoken));
616
617 p = malloc ($2.length + 1);
618 memcpy (p, $2.ptr, $2.length + 1);
619
620 $$.tokens[$$.len - 1].type = $2.type;
621 $$.tokens[$$.len - 1].length = $2.length;
622 $$.tokens[$$.len - 1].ptr = p;
623 }
624 ;
625
626 exp : string_exp
627 {
628 int i;
629 enum c_string_type type = C_STRING;
630
631 for (i = 0; i < $1.len; ++i)
632 {
633 switch ($1.tokens[i].type)
634 {
635 case C_STRING:
636 break;
637 case C_WIDE_STRING:
638 case C_STRING_16:
639 case C_STRING_32:
640 if (type != C_STRING
641 && type != $1.tokens[i].type)
642 error ("Undefined string concatenation.");
643 type = $1.tokens[i].type;
644 break;
645 default:
646 /* internal error */
647 internal_error (__FILE__, __LINE__,
648 "unrecognized type in string concatenation");
649 }
650 }
651
652 write_exp_string_vector (type, &$1);
653 for (i = 0; i < $1.len; ++i)
654 free ($1.tokens[i].ptr);
655 free ($1.tokens);
656 }
657 ;
658
659 /* C++. */
660 exp : TRUEKEYWORD
661 { write_exp_elt_opcode (OP_LONG);
662 write_exp_elt_type (parse_type->builtin_bool);
663 write_exp_elt_longcst ((LONGEST) 1);
664 write_exp_elt_opcode (OP_LONG); }
665 ;
666
667 exp : FALSEKEYWORD
668 { write_exp_elt_opcode (OP_LONG);
669 write_exp_elt_type (parse_type->builtin_bool);
670 write_exp_elt_longcst ((LONGEST) 0);
671 write_exp_elt_opcode (OP_LONG); }
672 ;
673
674 /* end of C++. */
675
676 block : BLOCKNAME
677 {
678 if ($1.sym)
679 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
680 else
681 error ("No file or function \"%s\".",
682 copy_name ($1.stoken));
683 }
684 | FILENAME
685 {
686 $$ = $1;
687 }
688 ;
689
690 block : block COLONCOLON name
691 { struct symbol *tem
692 = lookup_symbol (copy_name ($3), $1,
693 VAR_DOMAIN, (int *) NULL);
694 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
695 error ("No function \"%s\" in specified context.",
696 copy_name ($3));
697 $$ = SYMBOL_BLOCK_VALUE (tem); }
698 ;
699
700 variable: block COLONCOLON name
701 { struct symbol *sym;
702 sym = lookup_symbol (copy_name ($3), $1,
703 VAR_DOMAIN, (int *) NULL);
704 if (sym == 0)
705 error ("No symbol \"%s\" in specified context.",
706 copy_name ($3));
707
708 write_exp_elt_opcode (OP_VAR_VALUE);
709 /* block_found is set by lookup_symbol. */
710 write_exp_elt_block (block_found);
711 write_exp_elt_sym (sym);
712 write_exp_elt_opcode (OP_VAR_VALUE); }
713 ;
714
715 qualified_name: typebase COLONCOLON name
716 {
717 struct type *type = $1;
718 CHECK_TYPEDEF (type);
719 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
720 && TYPE_CODE (type) != TYPE_CODE_UNION
721 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
722 error ("`%s' is not defined as an aggregate type.",
723 TYPE_NAME (type));
724
725 write_exp_elt_opcode (OP_SCOPE);
726 write_exp_elt_type (type);
727 write_exp_string ($3);
728 write_exp_elt_opcode (OP_SCOPE);
729 }
730 | typebase COLONCOLON '~' name
731 {
732 struct type *type = $1;
733 struct stoken tmp_token;
734 CHECK_TYPEDEF (type);
735 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
736 && TYPE_CODE (type) != TYPE_CODE_UNION
737 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
738 error ("`%s' is not defined as an aggregate type.",
739 TYPE_NAME (type));
740
741 tmp_token.ptr = (char*) alloca ($4.length + 2);
742 tmp_token.length = $4.length + 1;
743 tmp_token.ptr[0] = '~';
744 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
745 tmp_token.ptr[tmp_token.length] = 0;
746
747 /* Check for valid destructor name. */
748 destructor_name_p (tmp_token.ptr, type);
749 write_exp_elt_opcode (OP_SCOPE);
750 write_exp_elt_type (type);
751 write_exp_string (tmp_token);
752 write_exp_elt_opcode (OP_SCOPE);
753 }
754 ;
755
756 variable: qualified_name
757 | COLONCOLON name
758 {
759 char *name = copy_name ($2);
760 struct symbol *sym;
761 struct minimal_symbol *msymbol;
762
763 sym =
764 lookup_symbol (name, (const struct block *) NULL,
765 VAR_DOMAIN, (int *) NULL);
766 if (sym)
767 {
768 write_exp_elt_opcode (OP_VAR_VALUE);
769 write_exp_elt_block (NULL);
770 write_exp_elt_sym (sym);
771 write_exp_elt_opcode (OP_VAR_VALUE);
772 break;
773 }
774
775 msymbol = lookup_minimal_symbol (name, NULL, NULL);
776 if (msymbol != NULL)
777 write_exp_msymbol (msymbol);
778 else if (!have_full_symbols () && !have_partial_symbols ())
779 error ("No symbol table is loaded. Use the \"file\" command.");
780 else
781 error ("No symbol \"%s\" in current context.", name);
782 }
783 ;
784
785 variable: name_not_typename
786 { struct symbol *sym = $1.sym;
787
788 if (sym)
789 {
790 if (symbol_read_needs_frame (sym))
791 {
792 if (innermost_block == 0
793 || contained_in (block_found,
794 innermost_block))
795 innermost_block = block_found;
796 }
797
798 write_exp_elt_opcode (OP_VAR_VALUE);
799 /* We want to use the selected frame, not
800 another more inner frame which happens to
801 be in the same block. */
802 write_exp_elt_block (NULL);
803 write_exp_elt_sym (sym);
804 write_exp_elt_opcode (OP_VAR_VALUE);
805 }
806 else if ($1.is_a_field_of_this)
807 {
808 /* C++: it hangs off of `this'. Must
809 not inadvertently convert from a method call
810 to data ref. */
811 if (innermost_block == 0
812 || contained_in (block_found,
813 innermost_block))
814 innermost_block = block_found;
815 write_exp_elt_opcode (OP_THIS);
816 write_exp_elt_opcode (OP_THIS);
817 write_exp_elt_opcode (STRUCTOP_PTR);
818 write_exp_string ($1.stoken);
819 write_exp_elt_opcode (STRUCTOP_PTR);
820 }
821 else
822 {
823 struct minimal_symbol *msymbol;
824 char *arg = copy_name ($1.stoken);
825
826 msymbol =
827 lookup_minimal_symbol (arg, NULL, NULL);
828 if (msymbol != NULL)
829 write_exp_msymbol (msymbol);
830 else if (!have_full_symbols () && !have_partial_symbols ())
831 error ("No symbol table is loaded. Use the \"file\" command.");
832 else
833 error ("No symbol \"%s\" in current context.",
834 copy_name ($1.stoken));
835 }
836 }
837 ;
838
839 space_identifier : '@' NAME
840 { push_type_address_space (copy_name ($2.stoken));
841 push_type (tp_space_identifier);
842 }
843 ;
844
845 const_or_volatile: const_or_volatile_noopt
846 |
847 ;
848
849 cv_with_space_id : const_or_volatile space_identifier const_or_volatile
850 ;
851
852 const_or_volatile_or_space_identifier_noopt: cv_with_space_id
853 | const_or_volatile_noopt
854 ;
855
856 const_or_volatile_or_space_identifier:
857 const_or_volatile_or_space_identifier_noopt
858 |
859 ;
860
861 abs_decl: '*'
862 { push_type (tp_pointer); $$ = 0; }
863 | '*' abs_decl
864 { push_type (tp_pointer); $$ = $2; }
865 | '&'
866 { push_type (tp_reference); $$ = 0; }
867 | '&' abs_decl
868 { push_type (tp_reference); $$ = $2; }
869 | direct_abs_decl
870 ;
871
872 direct_abs_decl: '(' abs_decl ')'
873 { $$ = $2; }
874 | direct_abs_decl array_mod
875 {
876 push_type_int ($2);
877 push_type (tp_array);
878 }
879 | array_mod
880 {
881 push_type_int ($1);
882 push_type (tp_array);
883 $$ = 0;
884 }
885
886 | direct_abs_decl func_mod
887 { push_type (tp_function); }
888 | func_mod
889 { push_type (tp_function); }
890 ;
891
892 array_mod: '[' ']'
893 { $$ = -1; }
894 | '[' INT ']'
895 { $$ = $2.val; }
896 ;
897
898 func_mod: '(' ')'
899 { $$ = 0; }
900 | '(' nonempty_typelist ')'
901 { free ($2); $$ = 0; }
902 ;
903
904 /* We used to try to recognize pointer to member types here, but
905 that didn't work (shift/reduce conflicts meant that these rules never
906 got executed). The problem is that
907 int (foo::bar::baz::bizzle)
908 is a function type but
909 int (foo::bar::baz::bizzle::*)
910 is a pointer to member type. Stroustrup loses again! */
911
912 type : ptype
913 ;
914
915 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
916 : TYPENAME
917 { $$ = $1.type; }
918 | INT_KEYWORD
919 { $$ = parse_type->builtin_int; }
920 | LONG
921 { $$ = parse_type->builtin_long; }
922 | SHORT
923 { $$ = parse_type->builtin_short; }
924 | LONG INT_KEYWORD
925 { $$ = parse_type->builtin_long; }
926 | LONG SIGNED_KEYWORD INT_KEYWORD
927 { $$ = parse_type->builtin_long; }
928 | LONG SIGNED_KEYWORD
929 { $$ = parse_type->builtin_long; }
930 | SIGNED_KEYWORD LONG INT_KEYWORD
931 { $$ = parse_type->builtin_long; }
932 | UNSIGNED LONG INT_KEYWORD
933 { $$ = parse_type->builtin_unsigned_long; }
934 | LONG UNSIGNED INT_KEYWORD
935 { $$ = parse_type->builtin_unsigned_long; }
936 | LONG UNSIGNED
937 { $$ = parse_type->builtin_unsigned_long; }
938 | LONG LONG
939 { $$ = parse_type->builtin_long_long; }
940 | LONG LONG INT_KEYWORD
941 { $$ = parse_type->builtin_long_long; }
942 | LONG LONG SIGNED_KEYWORD INT_KEYWORD
943 { $$ = parse_type->builtin_long_long; }
944 | LONG LONG SIGNED_KEYWORD
945 { $$ = parse_type->builtin_long_long; }
946 | SIGNED_KEYWORD LONG LONG
947 { $$ = parse_type->builtin_long_long; }
948 | SIGNED_KEYWORD LONG LONG INT_KEYWORD
949 { $$ = parse_type->builtin_long_long; }
950 | UNSIGNED LONG LONG
951 { $$ = parse_type->builtin_unsigned_long_long; }
952 | UNSIGNED LONG LONG INT_KEYWORD
953 { $$ = parse_type->builtin_unsigned_long_long; }
954 | LONG LONG UNSIGNED
955 { $$ = parse_type->builtin_unsigned_long_long; }
956 | LONG LONG UNSIGNED INT_KEYWORD
957 { $$ = parse_type->builtin_unsigned_long_long; }
958 | SHORT INT_KEYWORD
959 { $$ = parse_type->builtin_short; }
960 | SHORT SIGNED_KEYWORD INT_KEYWORD
961 { $$ = parse_type->builtin_short; }
962 | SHORT SIGNED_KEYWORD
963 { $$ = parse_type->builtin_short; }
964 | UNSIGNED SHORT INT_KEYWORD
965 { $$ = parse_type->builtin_unsigned_short; }
966 | SHORT UNSIGNED
967 { $$ = parse_type->builtin_unsigned_short; }
968 | SHORT UNSIGNED INT_KEYWORD
969 { $$ = parse_type->builtin_unsigned_short; }
970 | DOUBLE_KEYWORD
971 { $$ = parse_type->builtin_double; }
972 | LONG DOUBLE_KEYWORD
973 { $$ = parse_type->builtin_long_double; }
974 | STRUCT name
975 { $$ = lookup_struct (copy_name ($2),
976 expression_context_block); }
977 | CLASS name
978 { $$ = lookup_struct (copy_name ($2),
979 expression_context_block); }
980 | UNION name
981 { $$ = lookup_union (copy_name ($2),
982 expression_context_block); }
983 | ENUM name
984 { $$ = lookup_enum (copy_name ($2),
985 expression_context_block); }
986 | UNSIGNED typename
987 { $$ = lookup_unsigned_typename (parse_language,
988 parse_gdbarch,
989 TYPE_NAME($2.type)); }
990 | UNSIGNED
991 { $$ = parse_type->builtin_unsigned_int; }
992 | SIGNED_KEYWORD typename
993 { $$ = lookup_signed_typename (parse_language,
994 parse_gdbarch,
995 TYPE_NAME($2.type)); }
996 | SIGNED_KEYWORD
997 { $$ = parse_type->builtin_int; }
998 /* It appears that this rule for templates is never
999 reduced; template recognition happens by lookahead
1000 in the token processing code in yylex. */
1001 | TEMPLATE name '<' type '>'
1002 { $$ = lookup_template_type(copy_name($2), $4,
1003 expression_context_block);
1004 }
1005 | const_or_volatile_or_space_identifier_noopt typebase
1006 { $$ = follow_types ($2); }
1007 | typebase const_or_volatile_or_space_identifier_noopt
1008 { $$ = follow_types ($1); }
1009 | qualified_type
1010 ;
1011
1012 /* FIXME: carlton/2003-09-25: This next bit leads to lots of
1013 reduce-reduce conflicts, because the parser doesn't know whether or
1014 not to use qualified_name or qualified_type: the rules are
1015 identical. If the parser is parsing 'A::B::x', then, when it sees
1016 the second '::', it knows that the expression to the left of it has
1017 to be a type, so it uses qualified_type. But if it is parsing just
1018 'A::B', then it doesn't have any way of knowing which rule to use,
1019 so there's a reduce-reduce conflict; it picks qualified_name, since
1020 that occurs earlier in this file than qualified_type.
1021
1022 There's no good way to fix this with the grammar as it stands; as
1023 far as I can tell, some of the problems arise from ambiguities that
1024 GDB introduces ('start' can be either an expression or a type), but
1025 some of it is inherent to the nature of C++ (you want to treat the
1026 input "(FOO)" fairly differently depending on whether FOO is an
1027 expression or a type, and if FOO is a complex expression, this can
1028 be hard to determine at the right time). Fortunately, it works
1029 pretty well in most cases. For example, if you do 'ptype A::B',
1030 where A::B is a nested type, then the parser will mistakenly
1031 misidentify it as an expression; but evaluate_subexp will get
1032 called with 'noside' set to EVAL_AVOID_SIDE_EFFECTS, and everything
1033 will work out anyways. But there are situations where the parser
1034 will get confused: the most common one that I've run into is when
1035 you want to do
1036
1037 print *((A::B *) x)"
1038
1039 where the parser doesn't realize that A::B has to be a type until
1040 it hits the first right paren, at which point it's too late. (The
1041 workaround is to type "print *(('A::B' *) x)" instead.) (And
1042 another solution is to fix our symbol-handling code so that the
1043 user never wants to type something like that in the first place,
1044 because we get all the types right without the user's help!)
1045
1046 Perhaps we could fix this by making the lexer smarter. Some of
1047 this functionality used to be in the lexer, but in a way that
1048 worked even less well than the current solution: that attempt
1049 involved having the parser sometimes handle '::' and having the
1050 lexer sometimes handle it, and without a clear division of
1051 responsibility, it quickly degenerated into a big mess. Probably
1052 the eventual correct solution will give more of a role to the lexer
1053 (ideally via code that is shared between the lexer and
1054 decode_line_1), but I'm not holding my breath waiting for somebody
1055 to get around to cleaning this up... */
1056
1057 qualified_type: typebase COLONCOLON name
1058 {
1059 struct type *type = $1;
1060 struct type *new_type;
1061 char *ncopy = alloca ($3.length + 1);
1062
1063 memcpy (ncopy, $3.ptr, $3.length);
1064 ncopy[$3.length] = '\0';
1065
1066 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1067 && TYPE_CODE (type) != TYPE_CODE_UNION
1068 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
1069 error ("`%s' is not defined as an aggregate type.",
1070 TYPE_NAME (type));
1071
1072 new_type = cp_lookup_nested_type (type, ncopy,
1073 expression_context_block);
1074 if (new_type == NULL)
1075 error ("No type \"%s\" within class or namespace \"%s\".",
1076 ncopy, TYPE_NAME (type));
1077
1078 $$ = new_type;
1079 }
1080 ;
1081
1082 typename: TYPENAME
1083 | INT_KEYWORD
1084 {
1085 $$.stoken.ptr = "int";
1086 $$.stoken.length = 3;
1087 $$.type = parse_type->builtin_int;
1088 }
1089 | LONG
1090 {
1091 $$.stoken.ptr = "long";
1092 $$.stoken.length = 4;
1093 $$.type = parse_type->builtin_long;
1094 }
1095 | SHORT
1096 {
1097 $$.stoken.ptr = "short";
1098 $$.stoken.length = 5;
1099 $$.type = parse_type->builtin_short;
1100 }
1101 ;
1102
1103 nonempty_typelist
1104 : type
1105 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
1106 $<ivec>$[0] = 1; /* Number of types in vector */
1107 $$[1] = $1;
1108 }
1109 | nonempty_typelist ',' type
1110 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
1111 $$ = (struct type **) realloc ((char *) $1, len);
1112 $$[$<ivec>$[0]] = $3;
1113 }
1114 ;
1115
1116 ptype : typebase
1117 | ptype const_or_volatile_or_space_identifier abs_decl const_or_volatile_or_space_identifier
1118 { $$ = follow_types ($1); }
1119 ;
1120
1121 const_and_volatile: CONST_KEYWORD VOLATILE_KEYWORD
1122 | VOLATILE_KEYWORD CONST_KEYWORD
1123 ;
1124
1125 const_or_volatile_noopt: const_and_volatile
1126 { push_type (tp_const);
1127 push_type (tp_volatile);
1128 }
1129 | CONST_KEYWORD
1130 { push_type (tp_const); }
1131 | VOLATILE_KEYWORD
1132 { push_type (tp_volatile); }
1133 ;
1134
1135 name : NAME { $$ = $1.stoken; }
1136 | BLOCKNAME { $$ = $1.stoken; }
1137 | TYPENAME { $$ = $1.stoken; }
1138 | NAME_OR_INT { $$ = $1.stoken; }
1139 ;
1140
1141 name_not_typename : NAME
1142 | BLOCKNAME
1143 /* These would be useful if name_not_typename was useful, but it is just
1144 a fake for "variable", so these cause reduce/reduce conflicts because
1145 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
1146 =exp) or just an exp. If name_not_typename was ever used in an lvalue
1147 context where only a name could occur, this might be useful.
1148 | NAME_OR_INT
1149 */
1150 ;
1151
1152 %%
1153
1154 /* Take care of parsing a number (anything that starts with a digit).
1155 Set yylval and return the token type; update lexptr.
1156 LEN is the number of characters in it. */
1157
1158 /*** Needs some error checking for the float case ***/
1159
1160 static int
1161 parse_number (char *p, int len, int parsed_float, YYSTYPE *putithere)
1162 {
1163 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
1164 here, and we do kind of silly things like cast to unsigned. */
1165 LONGEST n = 0;
1166 LONGEST prevn = 0;
1167 ULONGEST un;
1168
1169 int i = 0;
1170 int c;
1171 int base = input_radix;
1172 int unsigned_p = 0;
1173
1174 /* Number of "L" suffixes encountered. */
1175 int long_p = 0;
1176
1177 /* We have found a "L" or "U" suffix. */
1178 int found_suffix = 0;
1179
1180 ULONGEST high_bit;
1181 struct type *signed_type;
1182 struct type *unsigned_type;
1183
1184 if (parsed_float)
1185 {
1186 /* It's a float since it contains a point or an exponent. */
1187 char *s;
1188 int num; /* number of tokens scanned by scanf */
1189 char saved_char;
1190
1191 /* If it ends at "df", "dd" or "dl", take it as type of decimal floating
1192 point. Return DECFLOAT. */
1193
1194 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'f')
1195 {
1196 p[len - 2] = '\0';
1197 putithere->typed_val_decfloat.type
1198 = parse_type->builtin_decfloat;
1199 decimal_from_string (putithere->typed_val_decfloat.val, 4,
1200 gdbarch_byte_order (parse_gdbarch), p);
1201 p[len - 2] = 'd';
1202 return DECFLOAT;
1203 }
1204
1205 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'd')
1206 {
1207 p[len - 2] = '\0';
1208 putithere->typed_val_decfloat.type
1209 = parse_type->builtin_decdouble;
1210 decimal_from_string (putithere->typed_val_decfloat.val, 8,
1211 gdbarch_byte_order (parse_gdbarch), p);
1212 p[len - 2] = 'd';
1213 return DECFLOAT;
1214 }
1215
1216 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'l')
1217 {
1218 p[len - 2] = '\0';
1219 putithere->typed_val_decfloat.type
1220 = parse_type->builtin_declong;
1221 decimal_from_string (putithere->typed_val_decfloat.val, 16,
1222 gdbarch_byte_order (parse_gdbarch), p);
1223 p[len - 2] = 'd';
1224 return DECFLOAT;
1225 }
1226
1227 s = malloc (len);
1228 saved_char = p[len];
1229 p[len] = 0; /* null-terminate the token */
1230 num = sscanf (p, "%" DOUBLEST_SCAN_FORMAT "%s",
1231 &putithere->typed_val_float.dval, s);
1232 p[len] = saved_char; /* restore the input stream */
1233
1234 if (num == 1)
1235 putithere->typed_val_float.type =
1236 parse_type->builtin_double;
1237
1238 if (num == 2 )
1239 {
1240 /* See if it has any float suffix: 'f' for float, 'l' for long
1241 double. */
1242 if (!strcasecmp (s, "f"))
1243 putithere->typed_val_float.type =
1244 parse_type->builtin_float;
1245 else if (!strcasecmp (s, "l"))
1246 putithere->typed_val_float.type =
1247 parse_type->builtin_long_double;
1248 else
1249 {
1250 free (s);
1251 return ERROR;
1252 }
1253 }
1254
1255 free (s);
1256 return FLOAT;
1257 }
1258
1259 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
1260 if (p[0] == '0')
1261 switch (p[1])
1262 {
1263 case 'x':
1264 case 'X':
1265 if (len >= 3)
1266 {
1267 p += 2;
1268 base = 16;
1269 len -= 2;
1270 }
1271 break;
1272
1273 case 't':
1274 case 'T':
1275 case 'd':
1276 case 'D':
1277 if (len >= 3)
1278 {
1279 p += 2;
1280 base = 10;
1281 len -= 2;
1282 }
1283 break;
1284
1285 default:
1286 base = 8;
1287 break;
1288 }
1289
1290 while (len-- > 0)
1291 {
1292 c = *p++;
1293 if (c >= 'A' && c <= 'Z')
1294 c += 'a' - 'A';
1295 if (c != 'l' && c != 'u')
1296 n *= base;
1297 if (c >= '0' && c <= '9')
1298 {
1299 if (found_suffix)
1300 return ERROR;
1301 n += i = c - '0';
1302 }
1303 else
1304 {
1305 if (base > 10 && c >= 'a' && c <= 'f')
1306 {
1307 if (found_suffix)
1308 return ERROR;
1309 n += i = c - 'a' + 10;
1310 }
1311 else if (c == 'l')
1312 {
1313 ++long_p;
1314 found_suffix = 1;
1315 }
1316 else if (c == 'u')
1317 {
1318 unsigned_p = 1;
1319 found_suffix = 1;
1320 }
1321 else
1322 return ERROR; /* Char not a digit */
1323 }
1324 if (i >= base)
1325 return ERROR; /* Invalid digit in this base */
1326
1327 /* Portably test for overflow (only works for nonzero values, so make
1328 a second check for zero). FIXME: Can't we just make n and prevn
1329 unsigned and avoid this? */
1330 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1331 unsigned_p = 1; /* Try something unsigned */
1332
1333 /* Portably test for unsigned overflow.
1334 FIXME: This check is wrong; for example it doesn't find overflow
1335 on 0x123456789 when LONGEST is 32 bits. */
1336 if (c != 'l' && c != 'u' && n != 0)
1337 {
1338 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
1339 error ("Numeric constant too large.");
1340 }
1341 prevn = n;
1342 }
1343
1344 /* An integer constant is an int, a long, or a long long. An L
1345 suffix forces it to be long; an LL suffix forces it to be long
1346 long. If not forced to a larger size, it gets the first type of
1347 the above that it fits in. To figure out whether it fits, we
1348 shift it right and see whether anything remains. Note that we
1349 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1350 operation, because many compilers will warn about such a shift
1351 (which always produces a zero result). Sometimes gdbarch_int_bit
1352 or gdbarch_long_bit will be that big, sometimes not. To deal with
1353 the case where it is we just always shift the value more than
1354 once, with fewer bits each time. */
1355
1356 un = (ULONGEST)n >> 2;
1357 if (long_p == 0
1358 && (un >> (gdbarch_int_bit (parse_gdbarch) - 2)) == 0)
1359 {
1360 high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch) - 1);
1361
1362 /* A large decimal (not hex or octal) constant (between INT_MAX
1363 and UINT_MAX) is a long or unsigned long, according to ANSI,
1364 never an unsigned int, but this code treats it as unsigned
1365 int. This probably should be fixed. GCC gives a warning on
1366 such constants. */
1367
1368 unsigned_type = parse_type->builtin_unsigned_int;
1369 signed_type = parse_type->builtin_int;
1370 }
1371 else if (long_p <= 1
1372 && (un >> (gdbarch_long_bit (parse_gdbarch) - 2)) == 0)
1373 {
1374 high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch) - 1);
1375 unsigned_type = parse_type->builtin_unsigned_long;
1376 signed_type = parse_type->builtin_long;
1377 }
1378 else
1379 {
1380 int shift;
1381 if (sizeof (ULONGEST) * HOST_CHAR_BIT
1382 < gdbarch_long_long_bit (parse_gdbarch))
1383 /* A long long does not fit in a LONGEST. */
1384 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
1385 else
1386 shift = (gdbarch_long_long_bit (parse_gdbarch) - 1);
1387 high_bit = (ULONGEST) 1 << shift;
1388 unsigned_type = parse_type->builtin_unsigned_long_long;
1389 signed_type = parse_type->builtin_long_long;
1390 }
1391
1392 putithere->typed_val_int.val = n;
1393
1394 /* If the high bit of the worked out type is set then this number
1395 has to be unsigned. */
1396
1397 if (unsigned_p || (n & high_bit))
1398 {
1399 putithere->typed_val_int.type = unsigned_type;
1400 }
1401 else
1402 {
1403 putithere->typed_val_int.type = signed_type;
1404 }
1405
1406 return INT;
1407 }
1408
1409 /* Temporary obstack used for holding strings. */
1410 static struct obstack tempbuf;
1411 static int tempbuf_init;
1412
1413 /* Parse a C escape sequence. The initial backslash of the sequence
1414 is at (*PTR)[-1]. *PTR will be updated to point to just after the
1415 last character of the sequence. If OUTPUT is not NULL, the
1416 translated form of the escape sequence will be written there. If
1417 OUTPUT is NULL, no output is written and the call will only affect
1418 *PTR. If an escape sequence is expressed in target bytes, then the
1419 entire sequence will simply be copied to OUTPUT. Return 1 if any
1420 character was emitted, 0 otherwise. */
1421
1422 int
1423 c_parse_escape (char **ptr, struct obstack *output)
1424 {
1425 char *tokptr = *ptr;
1426 int result = 1;
1427
1428 /* Some escape sequences undergo character set conversion. Those we
1429 translate here. */
1430 switch (*tokptr)
1431 {
1432 /* Hex escapes do not undergo character set conversion, so keep
1433 the escape sequence for later. */
1434 case 'x':
1435 if (output)
1436 obstack_grow_str (output, "\\x");
1437 ++tokptr;
1438 if (!isxdigit (*tokptr))
1439 error (_("\\x escape without a following hex digit"));
1440 while (isxdigit (*tokptr))
1441 {
1442 if (output)
1443 obstack_1grow (output, *tokptr);
1444 ++tokptr;
1445 }
1446 break;
1447
1448 /* Octal escapes do not undergo character set conversion, so
1449 keep the escape sequence for later. */
1450 case '0':
1451 case '1':
1452 case '2':
1453 case '3':
1454 case '4':
1455 case '5':
1456 case '6':
1457 case '7':
1458 {
1459 int i;
1460 if (output)
1461 obstack_grow_str (output, "\\");
1462 for (i = 0;
1463 i < 3 && isdigit (*tokptr) && *tokptr != '8' && *tokptr != '9';
1464 ++i)
1465 {
1466 if (output)
1467 obstack_1grow (output, *tokptr);
1468 ++tokptr;
1469 }
1470 }
1471 break;
1472
1473 /* We handle UCNs later. We could handle them here, but that
1474 would mean a spurious error in the case where the UCN could
1475 be converted to the target charset but not the host
1476 charset. */
1477 case 'u':
1478 case 'U':
1479 {
1480 char c = *tokptr;
1481 int i, len = c == 'U' ? 8 : 4;
1482 if (output)
1483 {
1484 obstack_1grow (output, '\\');
1485 obstack_1grow (output, *tokptr);
1486 }
1487 ++tokptr;
1488 if (!isxdigit (*tokptr))
1489 error (_("\\%c escape without a following hex digit"), c);
1490 for (i = 0; i < len && isxdigit (*tokptr); ++i)
1491 {
1492 if (output)
1493 obstack_1grow (output, *tokptr);
1494 ++tokptr;
1495 }
1496 }
1497 break;
1498
1499 /* We must pass backslash through so that it does not
1500 cause quoting during the second expansion. */
1501 case '\\':
1502 if (output)
1503 obstack_grow_str (output, "\\\\");
1504 ++tokptr;
1505 break;
1506
1507 /* Escapes which undergo conversion. */
1508 case 'a':
1509 if (output)
1510 obstack_1grow (output, '\a');
1511 ++tokptr;
1512 break;
1513 case 'b':
1514 if (output)
1515 obstack_1grow (output, '\b');
1516 ++tokptr;
1517 break;
1518 case 'f':
1519 if (output)
1520 obstack_1grow (output, '\f');
1521 ++tokptr;
1522 break;
1523 case 'n':
1524 if (output)
1525 obstack_1grow (output, '\n');
1526 ++tokptr;
1527 break;
1528 case 'r':
1529 if (output)
1530 obstack_1grow (output, '\r');
1531 ++tokptr;
1532 break;
1533 case 't':
1534 if (output)
1535 obstack_1grow (output, '\t');
1536 ++tokptr;
1537 break;
1538 case 'v':
1539 if (output)
1540 obstack_1grow (output, '\v');
1541 ++tokptr;
1542 break;
1543
1544 /* GCC extension. */
1545 case 'e':
1546 if (output)
1547 obstack_1grow (output, HOST_ESCAPE_CHAR);
1548 ++tokptr;
1549 break;
1550
1551 /* Backslash-newline expands to nothing at all. */
1552 case '\n':
1553 ++tokptr;
1554 result = 0;
1555 break;
1556
1557 /* A few escapes just expand to the character itself. */
1558 case '\'':
1559 case '\"':
1560 case '?':
1561 /* GCC extensions. */
1562 case '(':
1563 case '{':
1564 case '[':
1565 case '%':
1566 /* Unrecognized escapes turn into the character itself. */
1567 default:
1568 if (output)
1569 obstack_1grow (output, *tokptr);
1570 ++tokptr;
1571 break;
1572 }
1573 *ptr = tokptr;
1574 return result;
1575 }
1576
1577 /* Parse a string or character literal from TOKPTR. The string or
1578 character may be wide or unicode. *OUTPTR is set to just after the
1579 end of the literal in the input string. The resulting token is
1580 stored in VALUE. This returns a token value, either STRING or
1581 CHAR, depending on what was parsed. *HOST_CHARS is set to the
1582 number of host characters in the literal. */
1583 static int
1584 parse_string_or_char (char *tokptr, char **outptr, struct typed_stoken *value,
1585 int *host_chars)
1586 {
1587 int quote, i;
1588 enum c_string_type type;
1589
1590 /* Build the gdb internal form of the input string in tempbuf. Note
1591 that the buffer is null byte terminated *only* for the
1592 convenience of debugging gdb itself and printing the buffer
1593 contents when the buffer contains no embedded nulls. Gdb does
1594 not depend upon the buffer being null byte terminated, it uses
1595 the length string instead. This allows gdb to handle C strings
1596 (as well as strings in other languages) with embedded null
1597 bytes */
1598
1599 if (!tempbuf_init)
1600 tempbuf_init = 1;
1601 else
1602 obstack_free (&tempbuf, NULL);
1603 obstack_init (&tempbuf);
1604
1605 /* Record the string type. */
1606 if (*tokptr == 'L')
1607 {
1608 type = C_WIDE_STRING;
1609 ++tokptr;
1610 }
1611 else if (*tokptr == 'u')
1612 {
1613 type = C_STRING_16;
1614 ++tokptr;
1615 }
1616 else if (*tokptr == 'U')
1617 {
1618 type = C_STRING_32;
1619 ++tokptr;
1620 }
1621 else
1622 type = C_STRING;
1623
1624 /* Skip the quote. */
1625 quote = *tokptr;
1626 if (quote == '\'')
1627 type |= C_CHAR;
1628 ++tokptr;
1629
1630 *host_chars = 0;
1631
1632 while (*tokptr)
1633 {
1634 char c = *tokptr;
1635 if (c == '\\')
1636 {
1637 ++tokptr;
1638 *host_chars += c_parse_escape (&tokptr, &tempbuf);
1639 }
1640 else if (c == quote)
1641 break;
1642 else
1643 {
1644 obstack_1grow (&tempbuf, c);
1645 ++tokptr;
1646 /* FIXME: this does the wrong thing with multi-byte host
1647 characters. We could use mbrlen here, but that would
1648 make "set host-charset" a bit less useful. */
1649 ++*host_chars;
1650 }
1651 }
1652
1653 if (*tokptr != quote)
1654 {
1655 if (quote == '"')
1656 error ("Unterminated string in expression.");
1657 else
1658 error ("Unmatched single quote.");
1659 }
1660 ++tokptr;
1661
1662 value->type = type;
1663 value->ptr = obstack_base (&tempbuf);
1664 value->length = obstack_object_size (&tempbuf);
1665
1666 *outptr = tokptr;
1667
1668 return quote == '"' ? STRING : CHAR;
1669 }
1670
1671 struct token
1672 {
1673 char *operator;
1674 int token;
1675 enum exp_opcode opcode;
1676 int cxx_only;
1677 };
1678
1679 static const struct token tokentab3[] =
1680 {
1681 {">>=", ASSIGN_MODIFY, BINOP_RSH, 0},
1682 {"<<=", ASSIGN_MODIFY, BINOP_LSH, 0},
1683 {"->*", ARROW_STAR, BINOP_END, 1}
1684 };
1685
1686 static const struct token tokentab2[] =
1687 {
1688 {"+=", ASSIGN_MODIFY, BINOP_ADD, 0},
1689 {"-=", ASSIGN_MODIFY, BINOP_SUB, 0},
1690 {"*=", ASSIGN_MODIFY, BINOP_MUL, 0},
1691 {"/=", ASSIGN_MODIFY, BINOP_DIV, 0},
1692 {"%=", ASSIGN_MODIFY, BINOP_REM, 0},
1693 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 0},
1694 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND, 0},
1695 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 0},
1696 {"++", INCREMENT, BINOP_END, 0},
1697 {"--", DECREMENT, BINOP_END, 0},
1698 {"->", ARROW, BINOP_END, 0},
1699 {"&&", ANDAND, BINOP_END, 0},
1700 {"||", OROR, BINOP_END, 0},
1701 /* "::" is *not* only C++: gdb overrides its meaning in several
1702 different ways, e.g., 'filename'::func, function::variable. */
1703 {"::", COLONCOLON, BINOP_END, 0},
1704 {"<<", LSH, BINOP_END, 0},
1705 {">>", RSH, BINOP_END, 0},
1706 {"==", EQUAL, BINOP_END, 0},
1707 {"!=", NOTEQUAL, BINOP_END, 0},
1708 {"<=", LEQ, BINOP_END, 0},
1709 {">=", GEQ, BINOP_END, 0},
1710 {".*", DOT_STAR, BINOP_END, 1}
1711 };
1712
1713 /* Identifier-like tokens. */
1714 static const struct token ident_tokens[] =
1715 {
1716 {"unsigned", UNSIGNED, OP_NULL, 0},
1717 {"template", TEMPLATE, OP_NULL, 1},
1718 {"volatile", VOLATILE_KEYWORD, OP_NULL, 0},
1719 {"struct", STRUCT, OP_NULL, 0},
1720 {"signed", SIGNED_KEYWORD, OP_NULL, 0},
1721 {"sizeof", SIZEOF, OP_NULL, 0},
1722 {"double", DOUBLE_KEYWORD, OP_NULL, 0},
1723 {"false", FALSEKEYWORD, OP_NULL, 1},
1724 {"class", CLASS, OP_NULL, 1},
1725 {"union", UNION, OP_NULL, 0},
1726 {"short", SHORT, OP_NULL, 0},
1727 {"const", CONST_KEYWORD, OP_NULL, 0},
1728 {"enum", ENUM, OP_NULL, 0},
1729 {"long", LONG, OP_NULL, 0},
1730 {"true", TRUEKEYWORD, OP_NULL, 1},
1731 {"int", INT_KEYWORD, OP_NULL, 0},
1732
1733 {"and", ANDAND, BINOP_END, 1},
1734 {"and_eq", ASSIGN_MODIFY, BINOP_BITWISE_AND, 1},
1735 {"bitand", '&', OP_NULL, 1},
1736 {"bitor", '|', OP_NULL, 1},
1737 {"compl", '~', OP_NULL, 1},
1738 {"not", '!', OP_NULL, 1},
1739 {"not_eq", NOTEQUAL, BINOP_END, 1},
1740 {"or", OROR, BINOP_END, 1},
1741 {"or_eq", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 1},
1742 {"xor", '^', OP_NULL, 1},
1743 {"xor_eq", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 1}
1744 };
1745
1746 /* When we find that lexptr (the global var defined in parse.c) is
1747 pointing at a macro invocation, we expand the invocation, and call
1748 scan_macro_expansion to save the old lexptr here and point lexptr
1749 into the expanded text. When we reach the end of that, we call
1750 end_macro_expansion to pop back to the value we saved here. The
1751 macro expansion code promises to return only fully-expanded text,
1752 so we don't need to "push" more than one level.
1753
1754 This is disgusting, of course. It would be cleaner to do all macro
1755 expansion beforehand, and then hand that to lexptr. But we don't
1756 really know where the expression ends. Remember, in a command like
1757
1758 (gdb) break *ADDRESS if CONDITION
1759
1760 we evaluate ADDRESS in the scope of the current frame, but we
1761 evaluate CONDITION in the scope of the breakpoint's location. So
1762 it's simply wrong to try to macro-expand the whole thing at once. */
1763 static char *macro_original_text;
1764
1765 /* We save all intermediate macro expansions on this obstack for the
1766 duration of a single parse. The expansion text may sometimes have
1767 to live past the end of the expansion, due to yacc lookahead.
1768 Rather than try to be clever about saving the data for a single
1769 token, we simply keep it all and delete it after parsing has
1770 completed. */
1771 static struct obstack expansion_obstack;
1772
1773 static void
1774 scan_macro_expansion (char *expansion)
1775 {
1776 char *copy;
1777
1778 /* We'd better not be trying to push the stack twice. */
1779 gdb_assert (! macro_original_text);
1780
1781 /* Copy to the obstack, and then free the intermediate
1782 expansion. */
1783 copy = obstack_copy0 (&expansion_obstack, expansion, strlen (expansion));
1784 xfree (expansion);
1785
1786 /* Save the old lexptr value, so we can return to it when we're done
1787 parsing the expanded text. */
1788 macro_original_text = lexptr;
1789 lexptr = copy;
1790 }
1791
1792
1793 static int
1794 scanning_macro_expansion (void)
1795 {
1796 return macro_original_text != 0;
1797 }
1798
1799
1800 static void
1801 finished_macro_expansion (void)
1802 {
1803 /* There'd better be something to pop back to. */
1804 gdb_assert (macro_original_text);
1805
1806 /* Pop back to the original text. */
1807 lexptr = macro_original_text;
1808 macro_original_text = 0;
1809 }
1810
1811
1812 static void
1813 scan_macro_cleanup (void *dummy)
1814 {
1815 if (macro_original_text)
1816 finished_macro_expansion ();
1817
1818 obstack_free (&expansion_obstack, NULL);
1819 }
1820
1821
1822 /* The scope used for macro expansion. */
1823 static struct macro_scope *expression_macro_scope;
1824
1825 /* This is set if a NAME token appeared at the very end of the input
1826 string, with no whitespace separating the name from the EOF. This
1827 is used only when parsing to do field name completion. */
1828 static int saw_name_at_eof;
1829
1830 /* This is set if the previously-returned token was a structure
1831 operator -- either '.' or ARROW. This is used only when parsing to
1832 do field name completion. */
1833 static int last_was_structop;
1834
1835 /* Read one token, getting characters through lexptr. */
1836
1837 static int
1838 yylex (void)
1839 {
1840 int c;
1841 int namelen;
1842 unsigned int i;
1843 char *tokstart;
1844 int saw_structop = last_was_structop;
1845 char *copy;
1846
1847 last_was_structop = 0;
1848
1849 retry:
1850
1851 /* Check if this is a macro invocation that we need to expand. */
1852 if (! scanning_macro_expansion ())
1853 {
1854 char *expanded = macro_expand_next (&lexptr,
1855 standard_macro_lookup,
1856 expression_macro_scope);
1857
1858 if (expanded)
1859 scan_macro_expansion (expanded);
1860 }
1861
1862 prev_lexptr = lexptr;
1863
1864 tokstart = lexptr;
1865 /* See if it is a special token of length 3. */
1866 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1867 if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
1868 {
1869 if (tokentab3[i].cxx_only
1870 && parse_language->la_language != language_cplus)
1871 break;
1872
1873 lexptr += 3;
1874 yylval.opcode = tokentab3[i].opcode;
1875 return tokentab3[i].token;
1876 }
1877
1878 /* See if it is a special token of length 2. */
1879 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1880 if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
1881 {
1882 if (tokentab2[i].cxx_only
1883 && parse_language->la_language != language_cplus)
1884 break;
1885
1886 lexptr += 2;
1887 yylval.opcode = tokentab2[i].opcode;
1888 if (in_parse_field && tokentab2[i].token == ARROW)
1889 last_was_structop = 1;
1890 return tokentab2[i].token;
1891 }
1892
1893 switch (c = *tokstart)
1894 {
1895 case 0:
1896 /* If we were just scanning the result of a macro expansion,
1897 then we need to resume scanning the original text.
1898 If we're parsing for field name completion, and the previous
1899 token allows such completion, return a COMPLETE token.
1900 Otherwise, we were already scanning the original text, and
1901 we're really done. */
1902 if (scanning_macro_expansion ())
1903 {
1904 finished_macro_expansion ();
1905 goto retry;
1906 }
1907 else if (saw_name_at_eof)
1908 {
1909 saw_name_at_eof = 0;
1910 return COMPLETE;
1911 }
1912 else if (saw_structop)
1913 return COMPLETE;
1914 else
1915 return 0;
1916
1917 case ' ':
1918 case '\t':
1919 case '\n':
1920 lexptr++;
1921 goto retry;
1922
1923 case '[':
1924 case '(':
1925 paren_depth++;
1926 lexptr++;
1927 return c;
1928
1929 case ']':
1930 case ')':
1931 if (paren_depth == 0)
1932 return 0;
1933 paren_depth--;
1934 lexptr++;
1935 return c;
1936
1937 case ',':
1938 if (comma_terminates
1939 && paren_depth == 0
1940 && ! scanning_macro_expansion ())
1941 return 0;
1942 lexptr++;
1943 return c;
1944
1945 case '.':
1946 /* Might be a floating point number. */
1947 if (lexptr[1] < '0' || lexptr[1] > '9')
1948 {
1949 if (in_parse_field)
1950 last_was_structop = 1;
1951 goto symbol; /* Nope, must be a symbol. */
1952 }
1953 /* FALL THRU into number case. */
1954
1955 case '0':
1956 case '1':
1957 case '2':
1958 case '3':
1959 case '4':
1960 case '5':
1961 case '6':
1962 case '7':
1963 case '8':
1964 case '9':
1965 {
1966 /* It's a number. */
1967 int got_dot = 0, got_e = 0, toktype;
1968 char *p = tokstart;
1969 int hex = input_radix > 10;
1970
1971 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1972 {
1973 p += 2;
1974 hex = 1;
1975 }
1976 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1977 {
1978 p += 2;
1979 hex = 0;
1980 }
1981
1982 for (;; ++p)
1983 {
1984 /* This test includes !hex because 'e' is a valid hex digit
1985 and thus does not indicate a floating point number when
1986 the radix is hex. */
1987 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1988 got_dot = got_e = 1;
1989 /* This test does not include !hex, because a '.' always indicates
1990 a decimal floating point number regardless of the radix. */
1991 else if (!got_dot && *p == '.')
1992 got_dot = 1;
1993 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1994 && (*p == '-' || *p == '+'))
1995 /* This is the sign of the exponent, not the end of the
1996 number. */
1997 continue;
1998 /* We will take any letters or digits. parse_number will
1999 complain if past the radix, or if L or U are not final. */
2000 else if ((*p < '0' || *p > '9')
2001 && ((*p < 'a' || *p > 'z')
2002 && (*p < 'A' || *p > 'Z')))
2003 break;
2004 }
2005 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
2006 if (toktype == ERROR)
2007 {
2008 char *err_copy = (char *) alloca (p - tokstart + 1);
2009
2010 memcpy (err_copy, tokstart, p - tokstart);
2011 err_copy[p - tokstart] = 0;
2012 error ("Invalid number \"%s\".", err_copy);
2013 }
2014 lexptr = p;
2015 return toktype;
2016 }
2017
2018 case '+':
2019 case '-':
2020 case '*':
2021 case '/':
2022 case '%':
2023 case '|':
2024 case '&':
2025 case '^':
2026 case '~':
2027 case '!':
2028 case '@':
2029 case '<':
2030 case '>':
2031 case '?':
2032 case ':':
2033 case '=':
2034 case '{':
2035 case '}':
2036 symbol:
2037 lexptr++;
2038 return c;
2039
2040 case 'L':
2041 case 'u':
2042 case 'U':
2043 if (tokstart[1] != '"' && tokstart[1] != '\'')
2044 break;
2045 /* Fall through. */
2046 case '\'':
2047 case '"':
2048 {
2049 int host_len;
2050 int result = parse_string_or_char (tokstart, &lexptr, &yylval.tsval,
2051 &host_len);
2052 if (result == CHAR)
2053 {
2054 if (host_len == 0)
2055 error ("Empty character constant.");
2056 else if (host_len > 2 && c == '\'')
2057 {
2058 ++tokstart;
2059 namelen = lexptr - tokstart - 1;
2060 goto tryname;
2061 }
2062 else if (host_len > 1)
2063 error ("Invalid character constant.");
2064 }
2065 return result;
2066 }
2067 }
2068
2069 if (!(c == '_' || c == '$'
2070 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
2071 /* We must have come across a bad character (e.g. ';'). */
2072 error ("Invalid character '%c' in expression.", c);
2073
2074 /* It's a name. See how long it is. */
2075 namelen = 0;
2076 for (c = tokstart[namelen];
2077 (c == '_' || c == '$' || (c >= '0' && c <= '9')
2078 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
2079 {
2080 /* Template parameter lists are part of the name.
2081 FIXME: This mishandles `print $a<4&&$a>3'. */
2082
2083 if (c == '<')
2084 {
2085 /* Scan ahead to get rest of the template specification. Note
2086 that we look ahead only when the '<' adjoins non-whitespace
2087 characters; for comparison expressions, e.g. "a < b > c",
2088 there must be spaces before the '<', etc. */
2089
2090 char * p = find_template_name_end (tokstart + namelen);
2091 if (p)
2092 namelen = p - tokstart;
2093 break;
2094 }
2095 c = tokstart[++namelen];
2096 }
2097
2098 /* The token "if" terminates the expression and is NOT removed from
2099 the input stream. It doesn't count if it appears in the
2100 expansion of a macro. */
2101 if (namelen == 2
2102 && tokstart[0] == 'i'
2103 && tokstart[1] == 'f'
2104 && ! scanning_macro_expansion ())
2105 {
2106 return 0;
2107 }
2108
2109 lexptr += namelen;
2110
2111 tryname:
2112
2113 yylval.sval.ptr = tokstart;
2114 yylval.sval.length = namelen;
2115
2116 /* Catch specific keywords. */
2117 copy = copy_name (yylval.sval);
2118 for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
2119 if (strcmp (copy, ident_tokens[i].operator) == 0)
2120 {
2121 if (ident_tokens[i].cxx_only
2122 && parse_language->la_language != language_cplus)
2123 break;
2124
2125 /* It is ok to always set this, even though we don't always
2126 strictly need to. */
2127 yylval.opcode = ident_tokens[i].opcode;
2128 return ident_tokens[i].token;
2129 }
2130
2131 if (*tokstart == '$')
2132 {
2133 write_dollar_variable (yylval.sval);
2134 return VARIABLE;
2135 }
2136
2137 /* Use token-type BLOCKNAME for symbols that happen to be defined as
2138 functions or symtabs. If this is not so, then ...
2139 Use token-type TYPENAME for symbols that happen to be defined
2140 currently as names of types; NAME for other symbols.
2141 The caller is not constrained to care about the distinction. */
2142 {
2143 struct symbol *sym;
2144 int is_a_field_of_this = 0;
2145 int hextype;
2146
2147 sym = lookup_symbol (copy, expression_context_block,
2148 VAR_DOMAIN,
2149 parse_language->la_language == language_cplus
2150 ? &is_a_field_of_this : (int *) NULL);
2151 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
2152 no psymtabs (coff, xcoff, or some future change to blow away the
2153 psymtabs once once symbols are read). */
2154 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
2155 {
2156 yylval.ssym.sym = sym;
2157 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2158 return BLOCKNAME;
2159 }
2160 else if (!sym)
2161 { /* See if it's a file name. */
2162 struct symtab *symtab;
2163
2164 symtab = lookup_symtab (copy);
2165
2166 if (symtab)
2167 {
2168 yylval.bval = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
2169 return FILENAME;
2170 }
2171 }
2172
2173 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
2174 {
2175 /* NOTE: carlton/2003-09-25: There used to be code here to
2176 handle nested types. It didn't work very well. See the
2177 comment before qualified_type for more info. */
2178 yylval.tsym.type = SYMBOL_TYPE (sym);
2179 return TYPENAME;
2180 }
2181 yylval.tsym.type
2182 = language_lookup_primitive_type_by_name (parse_language,
2183 parse_gdbarch, copy);
2184 if (yylval.tsym.type != NULL)
2185 return TYPENAME;
2186
2187 /* Input names that aren't symbols but ARE valid hex numbers,
2188 when the input radix permits them, can be names or numbers
2189 depending on the parse. Note we support radixes > 16 here. */
2190 if (!sym
2191 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
2192 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
2193 {
2194 YYSTYPE newlval; /* Its value is ignored. */
2195 hextype = parse_number (tokstart, namelen, 0, &newlval);
2196 if (hextype == INT)
2197 {
2198 yylval.ssym.sym = sym;
2199 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2200 return NAME_OR_INT;
2201 }
2202 }
2203
2204 /* Any other kind of symbol */
2205 yylval.ssym.sym = sym;
2206 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2207 if (in_parse_field && *lexptr == '\0')
2208 saw_name_at_eof = 1;
2209 return NAME;
2210 }
2211 }
2212
2213 int
2214 c_parse (void)
2215 {
2216 int result;
2217 struct cleanup *back_to = make_cleanup (free_current_contents,
2218 &expression_macro_scope);
2219
2220 /* Set up the scope for macro expansion. */
2221 expression_macro_scope = NULL;
2222
2223 if (expression_context_block)
2224 expression_macro_scope
2225 = sal_macro_scope (find_pc_line (expression_context_pc, 0));
2226 else
2227 expression_macro_scope = default_macro_scope ();
2228 if (! expression_macro_scope)
2229 expression_macro_scope = user_macro_scope ();
2230
2231 /* Initialize macro expansion code. */
2232 obstack_init (&expansion_obstack);
2233 gdb_assert (! macro_original_text);
2234 make_cleanup (scan_macro_cleanup, 0);
2235
2236 /* Initialize some state used by the lexer. */
2237 last_was_structop = 0;
2238 saw_name_at_eof = 0;
2239
2240 result = yyparse ();
2241 do_cleanups (back_to);
2242 return result;
2243 }
2244
2245
2246 void
2247 yyerror (char *msg)
2248 {
2249 if (prev_lexptr)
2250 lexptr = prev_lexptr;
2251
2252 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
2253 }