* mh-hp300: Don't define CFLAGS to empty. Why should hp300 be
[binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Parse a C expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator. */
36
37 %{
38
39 #include "defs.h"
40 #include "expression.h"
41 #include "parser-defs.h"
42 #include "value.h"
43 #include "language.h"
44 #include "c-lang.h"
45
46 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
47 as well as gratuitiously global symbol names, so we can have multiple
48 yacc generated parsers in gdb. Note that these are only the variables
49 produced by yacc. If other parser generators (bison, byacc, etc) produce
50 additional global names that conflict at link time, then those parser
51 generators need to be fixed instead of adding those names to this list. */
52
53 #define yymaxdepth c_maxdepth
54 #define yyparse c_parse
55 #define yylex c_lex
56 #define yyerror c_error
57 #define yylval c_lval
58 #define yychar c_char
59 #define yydebug c_debug
60 #define yypact c_pact
61 #define yyr1 c_r1
62 #define yyr2 c_r2
63 #define yydef c_def
64 #define yychk c_chk
65 #define yypgo c_pgo
66 #define yyact c_act
67 #define yyexca c_exca
68 #define yyerrflag c_errflag
69 #define yynerrs c_nerrs
70 #define yyps c_ps
71 #define yypv c_pv
72 #define yys c_s
73 #define yy_yys c_yys
74 #define yystate c_state
75 #define yytmp c_tmp
76 #define yyv c_v
77 #define yy_yyv c_yyv
78 #define yyval c_val
79 #define yylloc c_lloc
80 #define yyreds c_reds /* With YYDEBUG defined */
81 #define yytoks c_toks /* With YYDEBUG defined */
82
83 #ifndef YYDEBUG
84 #define YYDEBUG 0 /* Default to no yydebug support */
85 #endif
86
87 int
88 yyparse PARAMS ((void));
89
90 static int
91 yylex PARAMS ((void));
92
93 void
94 yyerror PARAMS ((char *));
95
96 %}
97
98 /* Although the yacc "value" of an expression is not used,
99 since the result is stored in the structure being created,
100 other node types do have values. */
101
102 %union
103 {
104 LONGEST lval;
105 struct {
106 LONGEST val;
107 struct type *type;
108 } typed_val;
109 double dval;
110 struct symbol *sym;
111 struct type *tval;
112 struct stoken sval;
113 struct ttype tsym;
114 struct symtoken ssym;
115 int voidval;
116 struct block *bval;
117 enum exp_opcode opcode;
118 struct internalvar *ivar;
119
120 struct type **tvec;
121 int *ivec;
122 }
123
124 %{
125 /* YYSTYPE gets defined by %union */
126 static int
127 parse_number PARAMS ((char *, int, int, YYSTYPE *));
128 %}
129
130 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
131 %type <lval> rcurly
132 %type <tval> type typebase
133 %type <tvec> nonempty_typelist
134 /* %type <bval> block */
135
136 /* Fancy type parsing. */
137 %type <voidval> func_mod direct_abs_decl abs_decl
138 %type <tval> ptype
139 %type <lval> array_mod
140
141 %token <typed_val> INT
142 %token <dval> FLOAT
143
144 /* Both NAME and TYPENAME tokens represent symbols in the input,
145 and both convey their data as strings.
146 But a TYPENAME is a string that happens to be defined as a typedef
147 or builtin type name (such as int or char)
148 and a NAME is any other symbol.
149 Contexts where this distinction is not important can use the
150 nonterminal "name", which matches either NAME or TYPENAME. */
151
152 %token <sval> STRING
153 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
154 %token <tsym> TYPENAME
155 %type <sval> name
156 %type <ssym> name_not_typename
157 %type <tsym> typename
158
159 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
160 but which would parse as a valid number in the current input radix.
161 E.g. "c" when input_radix==16. Depending on the parse, it will be
162 turned into a name or into a number. */
163
164 %token <ssym> NAME_OR_INT
165
166 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
167 %token TEMPLATE
168 %token ERROR
169
170 /* Special type cases, put in to allow the parser to distinguish different
171 legal basetypes. */
172 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
173 %token <lval> LAST REGNAME
174
175 %token <ivar> VARIABLE
176
177 %token <opcode> ASSIGN_MODIFY
178
179 /* C++ */
180 %token THIS
181
182 %left ','
183 %left ABOVE_COMMA
184 %right '=' ASSIGN_MODIFY
185 %right '?'
186 %left OROR
187 %left ANDAND
188 %left '|'
189 %left '^'
190 %left '&'
191 %left EQUAL NOTEQUAL
192 %left '<' '>' LEQ GEQ
193 %left LSH RSH
194 %left '@'
195 %left '+' '-'
196 %left '*' '/' '%'
197 %right UNARY INCREMENT DECREMENT
198 %right ARROW '.' '[' '('
199 %token <ssym> BLOCKNAME
200 %type <bval> block
201 %left COLONCOLON
202
203 \f
204 %%
205
206 start : exp1
207 | type_exp
208 ;
209
210 type_exp: type
211 { write_exp_elt_opcode(OP_TYPE);
212 write_exp_elt_type($1);
213 write_exp_elt_opcode(OP_TYPE);}
214 ;
215
216 /* Expressions, including the comma operator. */
217 exp1 : exp
218 | exp1 ',' exp
219 { write_exp_elt_opcode (BINOP_COMMA); }
220 ;
221
222 /* Expressions, not including the comma operator. */
223 exp : '*' exp %prec UNARY
224 { write_exp_elt_opcode (UNOP_IND); }
225
226 exp : '&' exp %prec UNARY
227 { write_exp_elt_opcode (UNOP_ADDR); }
228
229 exp : '-' exp %prec UNARY
230 { write_exp_elt_opcode (UNOP_NEG); }
231 ;
232
233 exp : '!' exp %prec UNARY
234 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
235 ;
236
237 exp : '~' exp %prec UNARY
238 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
239 ;
240
241 exp : INCREMENT exp %prec UNARY
242 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
243 ;
244
245 exp : DECREMENT exp %prec UNARY
246 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
247 ;
248
249 exp : exp INCREMENT %prec UNARY
250 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
251 ;
252
253 exp : exp DECREMENT %prec UNARY
254 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
255 ;
256
257 exp : SIZEOF exp %prec UNARY
258 { write_exp_elt_opcode (UNOP_SIZEOF); }
259 ;
260
261 exp : exp ARROW name
262 { write_exp_elt_opcode (STRUCTOP_PTR);
263 write_exp_string ($3);
264 write_exp_elt_opcode (STRUCTOP_PTR); }
265 ;
266
267 exp : exp ARROW qualified_name
268 { /* exp->type::name becomes exp->*(&type::name) */
269 /* Note: this doesn't work if name is a
270 static member! FIXME */
271 write_exp_elt_opcode (UNOP_ADDR);
272 write_exp_elt_opcode (STRUCTOP_MPTR); }
273 ;
274 exp : exp ARROW '*' exp
275 { write_exp_elt_opcode (STRUCTOP_MPTR); }
276 ;
277
278 exp : exp '.' name
279 { write_exp_elt_opcode (STRUCTOP_STRUCT);
280 write_exp_string ($3);
281 write_exp_elt_opcode (STRUCTOP_STRUCT); }
282 ;
283
284 exp : exp '.' qualified_name
285 { /* exp.type::name becomes exp.*(&type::name) */
286 /* Note: this doesn't work if name is a
287 static member! FIXME */
288 write_exp_elt_opcode (UNOP_ADDR);
289 write_exp_elt_opcode (STRUCTOP_MEMBER); }
290 ;
291
292 exp : exp '.' '*' exp
293 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
294 ;
295
296 exp : exp '[' exp1 ']'
297 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
298 ;
299
300 exp : exp '('
301 /* This is to save the value of arglist_len
302 being accumulated by an outer function call. */
303 { start_arglist (); }
304 arglist ')' %prec ARROW
305 { write_exp_elt_opcode (OP_FUNCALL);
306 write_exp_elt_longcst ((LONGEST) end_arglist ());
307 write_exp_elt_opcode (OP_FUNCALL); }
308 ;
309
310 lcurly : '{'
311 { start_arglist (); }
312 ;
313
314 arglist :
315 ;
316
317 arglist : exp
318 { arglist_len = 1; }
319 ;
320
321 arglist : arglist ',' exp %prec ABOVE_COMMA
322 { arglist_len++; }
323 ;
324
325 rcurly : '}'
326 { $$ = end_arglist () - 1; }
327 ;
328 exp : lcurly arglist rcurly %prec ARROW
329 { write_exp_elt_opcode (OP_ARRAY);
330 write_exp_elt_longcst ((LONGEST) 0);
331 write_exp_elt_longcst ((LONGEST) $3);
332 write_exp_elt_opcode (OP_ARRAY); }
333 ;
334
335 exp : lcurly type rcurly exp %prec UNARY
336 { write_exp_elt_opcode (UNOP_MEMVAL);
337 write_exp_elt_type ($2);
338 write_exp_elt_opcode (UNOP_MEMVAL); }
339 ;
340
341 exp : '(' type ')' exp %prec UNARY
342 { write_exp_elt_opcode (UNOP_CAST);
343 write_exp_elt_type ($2);
344 write_exp_elt_opcode (UNOP_CAST); }
345 ;
346
347 exp : '(' exp1 ')'
348 { }
349 ;
350
351 /* Binary operators in order of decreasing precedence. */
352
353 exp : exp '@' exp
354 { write_exp_elt_opcode (BINOP_REPEAT); }
355 ;
356
357 exp : exp '*' exp
358 { write_exp_elt_opcode (BINOP_MUL); }
359 ;
360
361 exp : exp '/' exp
362 { write_exp_elt_opcode (BINOP_DIV); }
363 ;
364
365 exp : exp '%' exp
366 { write_exp_elt_opcode (BINOP_REM); }
367 ;
368
369 exp : exp '+' exp
370 { write_exp_elt_opcode (BINOP_ADD); }
371 ;
372
373 exp : exp '-' exp
374 { write_exp_elt_opcode (BINOP_SUB); }
375 ;
376
377 exp : exp LSH exp
378 { write_exp_elt_opcode (BINOP_LSH); }
379 ;
380
381 exp : exp RSH exp
382 { write_exp_elt_opcode (BINOP_RSH); }
383 ;
384
385 exp : exp EQUAL exp
386 { write_exp_elt_opcode (BINOP_EQUAL); }
387 ;
388
389 exp : exp NOTEQUAL exp
390 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
391 ;
392
393 exp : exp LEQ exp
394 { write_exp_elt_opcode (BINOP_LEQ); }
395 ;
396
397 exp : exp GEQ exp
398 { write_exp_elt_opcode (BINOP_GEQ); }
399 ;
400
401 exp : exp '<' exp
402 { write_exp_elt_opcode (BINOP_LESS); }
403 ;
404
405 exp : exp '>' exp
406 { write_exp_elt_opcode (BINOP_GTR); }
407 ;
408
409 exp : exp '&' exp
410 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
411 ;
412
413 exp : exp '^' exp
414 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
415 ;
416
417 exp : exp '|' exp
418 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
419 ;
420
421 exp : exp ANDAND exp
422 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
423 ;
424
425 exp : exp OROR exp
426 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
427 ;
428
429 exp : exp '?' exp ':' exp %prec '?'
430 { write_exp_elt_opcode (TERNOP_COND); }
431 ;
432
433 exp : exp '=' exp
434 { write_exp_elt_opcode (BINOP_ASSIGN); }
435 ;
436
437 exp : exp ASSIGN_MODIFY exp
438 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
439 write_exp_elt_opcode ($2);
440 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
441 ;
442
443 exp : INT
444 { write_exp_elt_opcode (OP_LONG);
445 write_exp_elt_type ($1.type);
446 write_exp_elt_longcst ((LONGEST)($1.val));
447 write_exp_elt_opcode (OP_LONG); }
448 ;
449
450 exp : NAME_OR_INT
451 { YYSTYPE val;
452 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
453 write_exp_elt_opcode (OP_LONG);
454 write_exp_elt_type (val.typed_val.type);
455 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
456 write_exp_elt_opcode (OP_LONG);
457 }
458 ;
459
460
461 exp : FLOAT
462 { write_exp_elt_opcode (OP_DOUBLE);
463 write_exp_elt_type (builtin_type_double);
464 write_exp_elt_dblcst ($1);
465 write_exp_elt_opcode (OP_DOUBLE); }
466 ;
467
468 exp : variable
469 ;
470
471 exp : LAST
472 { write_exp_elt_opcode (OP_LAST);
473 write_exp_elt_longcst ((LONGEST) $1);
474 write_exp_elt_opcode (OP_LAST); }
475 ;
476
477 exp : REGNAME
478 { write_exp_elt_opcode (OP_REGISTER);
479 write_exp_elt_longcst ((LONGEST) $1);
480 write_exp_elt_opcode (OP_REGISTER); }
481 ;
482
483 exp : VARIABLE
484 { write_exp_elt_opcode (OP_INTERNALVAR);
485 write_exp_elt_intern ($1);
486 write_exp_elt_opcode (OP_INTERNALVAR); }
487 ;
488
489 exp : SIZEOF '(' type ')' %prec UNARY
490 { write_exp_elt_opcode (OP_LONG);
491 write_exp_elt_type (builtin_type_int);
492 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
493 write_exp_elt_opcode (OP_LONG); }
494 ;
495
496 exp : STRING
497 { /* C strings are converted into array constants with
498 an explicit null byte added at the end. Thus
499 the array upper bound is the string length.
500 There is no such thing in C as a completely empty
501 string. */
502 char *sp = $1.ptr; int count = $1.length;
503 while (count-- > 0)
504 {
505 write_exp_elt_opcode (OP_LONG);
506 write_exp_elt_type (builtin_type_char);
507 write_exp_elt_longcst ((LONGEST)(*sp++));
508 write_exp_elt_opcode (OP_LONG);
509 }
510 write_exp_elt_opcode (OP_LONG);
511 write_exp_elt_type (builtin_type_char);
512 write_exp_elt_longcst ((LONGEST)'\0');
513 write_exp_elt_opcode (OP_LONG);
514 write_exp_elt_opcode (OP_ARRAY);
515 write_exp_elt_longcst ((LONGEST) 0);
516 write_exp_elt_longcst ((LONGEST) ($1.length));
517 write_exp_elt_opcode (OP_ARRAY); }
518 ;
519
520 /* C++. */
521 exp : THIS
522 { write_exp_elt_opcode (OP_THIS);
523 write_exp_elt_opcode (OP_THIS); }
524 ;
525
526 /* end of C++. */
527
528 block : BLOCKNAME
529 {
530 if ($1.sym != 0)
531 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
532 else
533 {
534 struct symtab *tem =
535 lookup_symtab (copy_name ($1.stoken));
536 if (tem)
537 $$ = BLOCKVECTOR_BLOCK
538 (BLOCKVECTOR (tem), STATIC_BLOCK);
539 else
540 error ("No file or function \"%s\".",
541 copy_name ($1.stoken));
542 }
543 }
544 ;
545
546 block : block COLONCOLON name
547 { struct symbol *tem
548 = lookup_symbol (copy_name ($3), $1,
549 VAR_NAMESPACE, (int *) NULL,
550 (struct symtab **) NULL);
551 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
552 error ("No function \"%s\" in specified context.",
553 copy_name ($3));
554 $$ = SYMBOL_BLOCK_VALUE (tem); }
555 ;
556
557 variable: block COLONCOLON name
558 { struct symbol *sym;
559 sym = lookup_symbol (copy_name ($3), $1,
560 VAR_NAMESPACE, (int *) NULL,
561 (struct symtab **) NULL);
562 if (sym == 0)
563 error ("No symbol \"%s\" in specified context.",
564 copy_name ($3));
565
566 write_exp_elt_opcode (OP_VAR_VALUE);
567 /* block_found is set by lookup_symbol. */
568 write_exp_elt_block (block_found);
569 write_exp_elt_sym (sym);
570 write_exp_elt_opcode (OP_VAR_VALUE); }
571 ;
572
573 qualified_name: typebase COLONCOLON name
574 {
575 struct type *type = $1;
576 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
577 && TYPE_CODE (type) != TYPE_CODE_UNION)
578 error ("`%s' is not defined as an aggregate type.",
579 TYPE_NAME (type));
580
581 write_exp_elt_opcode (OP_SCOPE);
582 write_exp_elt_type (type);
583 write_exp_string ($3);
584 write_exp_elt_opcode (OP_SCOPE);
585 }
586 | typebase COLONCOLON '~' name
587 {
588 struct type *type = $1;
589 struct stoken tmp_token;
590 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
591 && TYPE_CODE (type) != TYPE_CODE_UNION)
592 error ("`%s' is not defined as an aggregate type.",
593 TYPE_NAME (type));
594
595 if (!STREQ (type_name_no_tag (type), $4.ptr))
596 error ("invalid destructor `%s::~%s'",
597 type_name_no_tag (type), $4.ptr);
598
599 tmp_token.ptr = (char*) alloca ($4.length + 2);
600 tmp_token.length = $4.length + 1;
601 tmp_token.ptr[0] = '~';
602 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
603 tmp_token.ptr[tmp_token.length] = 0;
604 write_exp_elt_opcode (OP_SCOPE);
605 write_exp_elt_type (type);
606 write_exp_string (tmp_token);
607 write_exp_elt_opcode (OP_SCOPE);
608 }
609 ;
610
611 variable: qualified_name
612 | COLONCOLON name
613 {
614 char *name = copy_name ($2);
615 struct symbol *sym;
616 struct minimal_symbol *msymbol;
617
618 sym =
619 lookup_symbol (name, (const struct block *) NULL,
620 VAR_NAMESPACE, (int *) NULL,
621 (struct symtab **) NULL);
622 if (sym)
623 {
624 write_exp_elt_opcode (OP_VAR_VALUE);
625 write_exp_elt_block (NULL);
626 write_exp_elt_sym (sym);
627 write_exp_elt_opcode (OP_VAR_VALUE);
628 break;
629 }
630
631 msymbol = lookup_minimal_symbol (name,
632 (struct objfile *) NULL);
633 if (msymbol != NULL)
634 {
635 write_exp_elt_opcode (OP_LONG);
636 write_exp_elt_type (builtin_type_long);
637 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
638 write_exp_elt_opcode (OP_LONG);
639 write_exp_elt_opcode (UNOP_MEMVAL);
640 if (msymbol -> type == mst_data ||
641 msymbol -> type == mst_bss)
642 write_exp_elt_type (builtin_type_int);
643 else if (msymbol -> type == mst_text)
644 write_exp_elt_type (lookup_function_type (builtin_type_int));
645 else
646 write_exp_elt_type (builtin_type_char);
647 write_exp_elt_opcode (UNOP_MEMVAL);
648 }
649 else
650 if (!have_full_symbols () && !have_partial_symbols ())
651 error ("No symbol table is loaded. Use the \"file\" command.");
652 else
653 error ("No symbol \"%s\" in current context.", name);
654 }
655 ;
656
657 variable: name_not_typename
658 { struct symbol *sym = $1.sym;
659
660 if (sym)
661 {
662 if (symbol_read_needs_frame (sym))
663 {
664 if (innermost_block == 0 ||
665 contained_in (block_found,
666 innermost_block))
667 innermost_block = block_found;
668 }
669
670 write_exp_elt_opcode (OP_VAR_VALUE);
671 /* We want to use the selected frame, not
672 another more inner frame which happens to
673 be in the same block. */
674 write_exp_elt_block (NULL);
675 write_exp_elt_sym (sym);
676 write_exp_elt_opcode (OP_VAR_VALUE);
677 }
678 else if ($1.is_a_field_of_this)
679 {
680 /* C++: it hangs off of `this'. Must
681 not inadvertently convert from a method call
682 to data ref. */
683 if (innermost_block == 0 ||
684 contained_in (block_found, innermost_block))
685 innermost_block = block_found;
686 write_exp_elt_opcode (OP_THIS);
687 write_exp_elt_opcode (OP_THIS);
688 write_exp_elt_opcode (STRUCTOP_PTR);
689 write_exp_string ($1.stoken);
690 write_exp_elt_opcode (STRUCTOP_PTR);
691 }
692 else
693 {
694 struct minimal_symbol *msymbol;
695 register char *arg = copy_name ($1.stoken);
696
697 msymbol = lookup_minimal_symbol (arg,
698 (struct objfile *) NULL);
699 if (msymbol != NULL)
700 {
701 write_exp_elt_opcode (OP_LONG);
702 write_exp_elt_type (builtin_type_long);
703 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
704 write_exp_elt_opcode (OP_LONG);
705 write_exp_elt_opcode (UNOP_MEMVAL);
706 if (msymbol -> type == mst_data ||
707 msymbol -> type == mst_bss)
708 write_exp_elt_type (builtin_type_int);
709 else if (msymbol -> type == mst_text)
710 write_exp_elt_type (lookup_function_type (builtin_type_int));
711 else
712 write_exp_elt_type (builtin_type_char);
713 write_exp_elt_opcode (UNOP_MEMVAL);
714 }
715 else if (!have_full_symbols () && !have_partial_symbols ())
716 error ("No symbol table is loaded. Use the \"file\" command.");
717 else
718 error ("No symbol \"%s\" in current context.",
719 copy_name ($1.stoken));
720 }
721 }
722 ;
723
724
725 ptype : typebase
726 /* "const" and "volatile" are curently ignored. A type qualifier
727 before the type is currently handled in the typebase rule.
728 The reason for recognizing these here (shift/reduce conflicts)
729 might be obsolete now that some pointer to member rules have
730 been deleted. */
731 | typebase CONST_KEYWORD
732 | typebase VOLATILE_KEYWORD
733 | typebase abs_decl
734 { $$ = follow_types ($1); }
735 | typebase CONST_KEYWORD abs_decl
736 { $$ = follow_types ($1); }
737 | typebase VOLATILE_KEYWORD abs_decl
738 { $$ = follow_types ($1); }
739 ;
740
741 abs_decl: '*'
742 { push_type (tp_pointer); $$ = 0; }
743 | '*' abs_decl
744 { push_type (tp_pointer); $$ = $2; }
745 | '&'
746 { push_type (tp_reference); $$ = 0; }
747 | '&' abs_decl
748 { push_type (tp_reference); $$ = $2; }
749 | direct_abs_decl
750 ;
751
752 direct_abs_decl: '(' abs_decl ')'
753 { $$ = $2; }
754 | direct_abs_decl array_mod
755 {
756 push_type_int ($2);
757 push_type (tp_array);
758 }
759 | array_mod
760 {
761 push_type_int ($1);
762 push_type (tp_array);
763 $$ = 0;
764 }
765
766 | direct_abs_decl func_mod
767 { push_type (tp_function); }
768 | func_mod
769 { push_type (tp_function); }
770 ;
771
772 array_mod: '[' ']'
773 { $$ = -1; }
774 | '[' INT ']'
775 { $$ = $2.val; }
776 ;
777
778 func_mod: '(' ')'
779 { $$ = 0; }
780 | '(' nonempty_typelist ')'
781 { free ((PTR)$2); $$ = 0; }
782 ;
783
784 /* We used to try to recognize more pointer to member types here, but
785 that didn't work (shift/reduce conflicts meant that these rules never
786 got executed). The problem is that
787 int (foo::bar::baz::bizzle)
788 is a function type but
789 int (foo::bar::baz::bizzle::*)
790 is a pointer to member type. Stroustrup loses again! */
791
792 type : ptype
793 | typebase COLONCOLON '*'
794 { $$ = lookup_member_type (builtin_type_int, $1); }
795 ;
796
797 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
798 : TYPENAME
799 { $$ = $1.type; }
800 | INT_KEYWORD
801 { $$ = builtin_type_int; }
802 | LONG
803 { $$ = builtin_type_long; }
804 | SHORT
805 { $$ = builtin_type_short; }
806 | LONG INT_KEYWORD
807 { $$ = builtin_type_long; }
808 | UNSIGNED LONG INT_KEYWORD
809 { $$ = builtin_type_unsigned_long; }
810 | LONG LONG
811 { $$ = builtin_type_long_long; }
812 | LONG LONG INT_KEYWORD
813 { $$ = builtin_type_long_long; }
814 | UNSIGNED LONG LONG
815 { $$ = builtin_type_unsigned_long_long; }
816 | UNSIGNED LONG LONG INT_KEYWORD
817 { $$ = builtin_type_unsigned_long_long; }
818 | SHORT INT_KEYWORD
819 { $$ = builtin_type_short; }
820 | UNSIGNED SHORT INT_KEYWORD
821 { $$ = builtin_type_unsigned_short; }
822 | STRUCT name
823 { $$ = lookup_struct (copy_name ($2),
824 expression_context_block); }
825 | CLASS name
826 { $$ = lookup_struct (copy_name ($2),
827 expression_context_block); }
828 | UNION name
829 { $$ = lookup_union (copy_name ($2),
830 expression_context_block); }
831 | ENUM name
832 { $$ = lookup_enum (copy_name ($2),
833 expression_context_block); }
834 | UNSIGNED typename
835 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
836 | UNSIGNED
837 { $$ = builtin_type_unsigned_int; }
838 | SIGNED_KEYWORD typename
839 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
840 | SIGNED_KEYWORD
841 { $$ = builtin_type_int; }
842 | TEMPLATE name '<' type '>'
843 { $$ = lookup_template_type(copy_name($2), $4,
844 expression_context_block);
845 }
846 /* "const" and "volatile" are curently ignored. A type qualifier
847 after the type is handled in the ptype rule. I think these could
848 be too. */
849 | CONST_KEYWORD typebase { $$ = $2; }
850 | VOLATILE_KEYWORD typebase { $$ = $2; }
851 ;
852
853 typename: TYPENAME
854 | INT_KEYWORD
855 {
856 $$.stoken.ptr = "int";
857 $$.stoken.length = 3;
858 $$.type = builtin_type_int;
859 }
860 | LONG
861 {
862 $$.stoken.ptr = "long";
863 $$.stoken.length = 4;
864 $$.type = builtin_type_long;
865 }
866 | SHORT
867 {
868 $$.stoken.ptr = "short";
869 $$.stoken.length = 5;
870 $$.type = builtin_type_short;
871 }
872 ;
873
874 nonempty_typelist
875 : type
876 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
877 $<ivec>$[0] = 1; /* Number of types in vector */
878 $$[1] = $1;
879 }
880 | nonempty_typelist ',' type
881 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
882 $$ = (struct type **) realloc ((char *) $1, len);
883 $$[$<ivec>$[0]] = $3;
884 }
885 ;
886
887 name : NAME { $$ = $1.stoken; }
888 | BLOCKNAME { $$ = $1.stoken; }
889 | TYPENAME { $$ = $1.stoken; }
890 | NAME_OR_INT { $$ = $1.stoken; }
891 ;
892
893 name_not_typename : NAME
894 | BLOCKNAME
895 /* These would be useful if name_not_typename was useful, but it is just
896 a fake for "variable", so these cause reduce/reduce conflicts because
897 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
898 =exp) or just an exp. If name_not_typename was ever used in an lvalue
899 context where only a name could occur, this might be useful.
900 | NAME_OR_INT
901 */
902 ;
903
904 %%
905
906 /* Take care of parsing a number (anything that starts with a digit).
907 Set yylval and return the token type; update lexptr.
908 LEN is the number of characters in it. */
909
910 /*** Needs some error checking for the float case ***/
911
912 static int
913 parse_number (p, len, parsed_float, putithere)
914 register char *p;
915 register int len;
916 int parsed_float;
917 YYSTYPE *putithere;
918 {
919 register LONGEST n = 0;
920 register LONGEST prevn = 0;
921 register int i = 0;
922 register int c;
923 register int base = input_radix;
924 int unsigned_p = 0;
925 int long_p = 0;
926 unsigned LONGEST high_bit;
927 struct type *signed_type;
928 struct type *unsigned_type;
929
930 if (parsed_float)
931 {
932 /* It's a float since it contains a point or an exponent. */
933 putithere->dval = atof (p);
934 return FLOAT;
935 }
936
937 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
938 if (p[0] == '0')
939 switch (p[1])
940 {
941 case 'x':
942 case 'X':
943 if (len >= 3)
944 {
945 p += 2;
946 base = 16;
947 len -= 2;
948 }
949 break;
950
951 case 't':
952 case 'T':
953 case 'd':
954 case 'D':
955 if (len >= 3)
956 {
957 p += 2;
958 base = 10;
959 len -= 2;
960 }
961 break;
962
963 default:
964 base = 8;
965 break;
966 }
967
968 while (len-- > 0)
969 {
970 c = *p++;
971 if (c >= 'A' && c <= 'Z')
972 c += 'a' - 'A';
973 if (c != 'l' && c != 'u')
974 n *= base;
975 if (c >= '0' && c <= '9')
976 n += i = c - '0';
977 else
978 {
979 if (base > 10 && c >= 'a' && c <= 'f')
980 n += i = c - 'a' + 10;
981 else if (len == 0 && c == 'l')
982 long_p = 1;
983 else if (len == 0 && c == 'u')
984 unsigned_p = 1;
985 else
986 return ERROR; /* Char not a digit */
987 }
988 if (i >= base)
989 return ERROR; /* Invalid digit in this base */
990
991 /* Portably test for overflow (only works for nonzero values, so make
992 a second check for zero). */
993 if((prevn >= n) && n != 0)
994 unsigned_p=1; /* Try something unsigned */
995 /* If range checking enabled, portably test for unsigned overflow. */
996 if(RANGE_CHECK && n!=0)
997 {
998 if((unsigned_p && (unsigned)prevn >= (unsigned)n))
999 range_error("Overflow on numeric constant.");
1000 }
1001 prevn=n;
1002 }
1003
1004 /* If the number is too big to be an int, or it's got an l suffix
1005 then it's a long. Work out if this has to be a long by
1006 shifting right and and seeing if anything remains, and the
1007 target int size is different to the target long size.
1008
1009 In the expression below, we could have tested
1010 (n >> TARGET_INT_BIT)
1011 to see if it was zero,
1012 but too many compilers warn about that, when ints and longs
1013 are the same size. So we shift it twice, with fewer bits
1014 each time, for the same result. */
1015
1016 if ( (TARGET_INT_BIT != TARGET_LONG_BIT
1017 && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */
1018 || long_p)
1019 {
1020 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1021 unsigned_type = builtin_type_unsigned_long;
1022 signed_type = builtin_type_long;
1023 }
1024 else
1025 {
1026 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1027 unsigned_type = builtin_type_unsigned_int;
1028 signed_type = builtin_type_int;
1029 }
1030
1031 putithere->typed_val.val = n;
1032
1033 /* If the high bit of the worked out type is set then this number
1034 has to be unsigned. */
1035
1036 if (unsigned_p || (n & high_bit))
1037 {
1038 putithere->typed_val.type = unsigned_type;
1039 }
1040 else
1041 {
1042 putithere->typed_val.type = signed_type;
1043 }
1044
1045 return INT;
1046 }
1047
1048 struct token
1049 {
1050 char *operator;
1051 int token;
1052 enum exp_opcode opcode;
1053 };
1054
1055 static const struct token tokentab3[] =
1056 {
1057 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1058 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1059 };
1060
1061 static const struct token tokentab2[] =
1062 {
1063 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1064 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1065 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1066 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1067 {"%=", ASSIGN_MODIFY, BINOP_REM},
1068 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1069 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1070 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1071 {"++", INCREMENT, BINOP_END},
1072 {"--", DECREMENT, BINOP_END},
1073 {"->", ARROW, BINOP_END},
1074 {"&&", ANDAND, BINOP_END},
1075 {"||", OROR, BINOP_END},
1076 {"::", COLONCOLON, BINOP_END},
1077 {"<<", LSH, BINOP_END},
1078 {">>", RSH, BINOP_END},
1079 {"==", EQUAL, BINOP_END},
1080 {"!=", NOTEQUAL, BINOP_END},
1081 {"<=", LEQ, BINOP_END},
1082 {">=", GEQ, BINOP_END}
1083 };
1084
1085 /* Read one token, getting characters through lexptr. */
1086
1087 static int
1088 yylex ()
1089 {
1090 int c;
1091 int namelen;
1092 unsigned int i;
1093 char *tokstart;
1094 char *tokptr;
1095 int tempbufindex;
1096 static char *tempbuf;
1097 static int tempbufsize;
1098
1099 retry:
1100
1101 tokstart = lexptr;
1102 /* See if it is a special token of length 3. */
1103 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1104 if (STREQN (tokstart, tokentab3[i].operator, 3))
1105 {
1106 lexptr += 3;
1107 yylval.opcode = tokentab3[i].opcode;
1108 return tokentab3[i].token;
1109 }
1110
1111 /* See if it is a special token of length 2. */
1112 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1113 if (STREQN (tokstart, tokentab2[i].operator, 2))
1114 {
1115 lexptr += 2;
1116 yylval.opcode = tokentab2[i].opcode;
1117 return tokentab2[i].token;
1118 }
1119
1120 switch (c = *tokstart)
1121 {
1122 case 0:
1123 return 0;
1124
1125 case ' ':
1126 case '\t':
1127 case '\n':
1128 lexptr++;
1129 goto retry;
1130
1131 case '\'':
1132 /* We either have a character constant ('0' or '\177' for example)
1133 or we have a quoted symbol reference ('foo(int,int)' in C++
1134 for example). */
1135 lexptr++;
1136 c = *lexptr++;
1137 if (c == '\\')
1138 c = parse_escape (&lexptr);
1139
1140 yylval.typed_val.val = c;
1141 yylval.typed_val.type = builtin_type_char;
1142
1143 c = *lexptr++;
1144 if (c != '\'')
1145 {
1146 namelen = skip_quoted (tokstart) - tokstart;
1147 if (namelen > 2)
1148 {
1149 lexptr = tokstart + namelen;
1150 if (lexptr[-1] != '\'')
1151 error ("Unmatched single quote.");
1152 namelen -= 2;
1153 tokstart++;
1154 goto tryname;
1155 }
1156 error ("Invalid character constant.");
1157 }
1158 return INT;
1159
1160 case '(':
1161 paren_depth++;
1162 lexptr++;
1163 return c;
1164
1165 case ')':
1166 if (paren_depth == 0)
1167 return 0;
1168 paren_depth--;
1169 lexptr++;
1170 return c;
1171
1172 case ',':
1173 if (comma_terminates && paren_depth == 0)
1174 return 0;
1175 lexptr++;
1176 return c;
1177
1178 case '.':
1179 /* Might be a floating point number. */
1180 if (lexptr[1] < '0' || lexptr[1] > '9')
1181 goto symbol; /* Nope, must be a symbol. */
1182 /* FALL THRU into number case. */
1183
1184 case '0':
1185 case '1':
1186 case '2':
1187 case '3':
1188 case '4':
1189 case '5':
1190 case '6':
1191 case '7':
1192 case '8':
1193 case '9':
1194 {
1195 /* It's a number. */
1196 int got_dot = 0, got_e = 0, toktype;
1197 register char *p = tokstart;
1198 int hex = input_radix > 10;
1199
1200 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1201 {
1202 p += 2;
1203 hex = 1;
1204 }
1205 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1206 {
1207 p += 2;
1208 hex = 0;
1209 }
1210
1211 for (;; ++p)
1212 {
1213 /* This test includes !hex because 'e' is a valid hex digit
1214 and thus does not indicate a floating point number when
1215 the radix is hex. */
1216 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1217 got_dot = got_e = 1;
1218 /* This test does not include !hex, because a '.' always indicates
1219 a decimal floating point number regardless of the radix. */
1220 else if (!got_dot && *p == '.')
1221 got_dot = 1;
1222 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1223 && (*p == '-' || *p == '+'))
1224 /* This is the sign of the exponent, not the end of the
1225 number. */
1226 continue;
1227 /* We will take any letters or digits. parse_number will
1228 complain if past the radix, or if L or U are not final. */
1229 else if ((*p < '0' || *p > '9')
1230 && ((*p < 'a' || *p > 'z')
1231 && (*p < 'A' || *p > 'Z')))
1232 break;
1233 }
1234 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1235 if (toktype == ERROR)
1236 {
1237 char *err_copy = (char *) alloca (p - tokstart + 1);
1238
1239 memcpy (err_copy, tokstart, p - tokstart);
1240 err_copy[p - tokstart] = 0;
1241 error ("Invalid number \"%s\".", err_copy);
1242 }
1243 lexptr = p;
1244 return toktype;
1245 }
1246
1247 case '+':
1248 case '-':
1249 case '*':
1250 case '/':
1251 case '%':
1252 case '|':
1253 case '&':
1254 case '^':
1255 case '~':
1256 case '!':
1257 case '@':
1258 case '<':
1259 case '>':
1260 case '[':
1261 case ']':
1262 case '?':
1263 case ':':
1264 case '=':
1265 case '{':
1266 case '}':
1267 symbol:
1268 lexptr++;
1269 return c;
1270
1271 case '"':
1272
1273 /* Build the gdb internal form of the input string in tempbuf,
1274 translating any standard C escape forms seen. Note that the
1275 buffer is null byte terminated *only* for the convenience of
1276 debugging gdb itself and printing the buffer contents when
1277 the buffer contains no embedded nulls. Gdb does not depend
1278 upon the buffer being null byte terminated, it uses the length
1279 string instead. This allows gdb to handle C strings (as well
1280 as strings in other languages) with embedded null bytes */
1281
1282 tokptr = ++tokstart;
1283 tempbufindex = 0;
1284
1285 do {
1286 /* Grow the static temp buffer if necessary, including allocating
1287 the first one on demand. */
1288 if (tempbufindex + 1 >= tempbufsize)
1289 {
1290 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1291 }
1292 switch (*tokptr)
1293 {
1294 case '\0':
1295 case '"':
1296 /* Do nothing, loop will terminate. */
1297 break;
1298 case '\\':
1299 tokptr++;
1300 c = parse_escape (&tokptr);
1301 if (c == -1)
1302 {
1303 continue;
1304 }
1305 tempbuf[tempbufindex++] = c;
1306 break;
1307 default:
1308 tempbuf[tempbufindex++] = *tokptr++;
1309 break;
1310 }
1311 } while ((*tokptr != '"') && (*tokptr != '\0'));
1312 if (*tokptr++ != '"')
1313 {
1314 error ("Unterminated string in expression.");
1315 }
1316 tempbuf[tempbufindex] = '\0'; /* See note above */
1317 yylval.sval.ptr = tempbuf;
1318 yylval.sval.length = tempbufindex;
1319 lexptr = tokptr;
1320 return (STRING);
1321 }
1322
1323 if (!(c == '_' || c == '$'
1324 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1325 /* We must have come across a bad character (e.g. ';'). */
1326 error ("Invalid character '%c' in expression.", c);
1327
1328 /* It's a name. See how long it is. */
1329 namelen = 0;
1330 for (c = tokstart[namelen];
1331 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1332 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1333 c = tokstart[++namelen])
1334 ;
1335
1336 /* The token "if" terminates the expression and is NOT
1337 removed from the input stream. */
1338 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1339 {
1340 return 0;
1341 }
1342
1343 lexptr += namelen;
1344
1345 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1346 and $$digits (equivalent to $<-digits> if you could type that).
1347 Make token type LAST, and put the number (the digits) in yylval. */
1348
1349 tryname:
1350 if (*tokstart == '$')
1351 {
1352 register int negate = 0;
1353 c = 1;
1354 /* Double dollar means negate the number and add -1 as well.
1355 Thus $$ alone means -1. */
1356 if (namelen >= 2 && tokstart[1] == '$')
1357 {
1358 negate = 1;
1359 c = 2;
1360 }
1361 if (c == namelen)
1362 {
1363 /* Just dollars (one or two) */
1364 yylval.lval = - negate;
1365 return LAST;
1366 }
1367 /* Is the rest of the token digits? */
1368 for (; c < namelen; c++)
1369 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1370 break;
1371 if (c == namelen)
1372 {
1373 yylval.lval = atoi (tokstart + 1 + negate);
1374 if (negate)
1375 yylval.lval = - yylval.lval;
1376 return LAST;
1377 }
1378 }
1379
1380 /* Handle tokens that refer to machine registers:
1381 $ followed by a register name. */
1382
1383 if (*tokstart == '$') {
1384 for (c = 0; c < NUM_REGS; c++)
1385 if (namelen - 1 == strlen (reg_names[c])
1386 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1387 {
1388 yylval.lval = c;
1389 return REGNAME;
1390 }
1391 for (c = 0; c < num_std_regs; c++)
1392 if (namelen - 1 == strlen (std_regs[c].name)
1393 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1394 {
1395 yylval.lval = std_regs[c].regnum;
1396 return REGNAME;
1397 }
1398 }
1399 /* Catch specific keywords. Should be done with a data structure. */
1400 switch (namelen)
1401 {
1402 case 8:
1403 if (STREQN (tokstart, "unsigned", 8))
1404 return UNSIGNED;
1405 if (current_language->la_language == language_cplus
1406 && STREQN (tokstart, "template", 8))
1407 return TEMPLATE;
1408 if (STREQN (tokstart, "volatile", 8))
1409 return VOLATILE_KEYWORD;
1410 break;
1411 case 6:
1412 if (STREQN (tokstart, "struct", 6))
1413 return STRUCT;
1414 if (STREQN (tokstart, "signed", 6))
1415 return SIGNED_KEYWORD;
1416 if (STREQN (tokstart, "sizeof", 6))
1417 return SIZEOF;
1418 break;
1419 case 5:
1420 if (current_language->la_language == language_cplus
1421 && STREQN (tokstart, "class", 5))
1422 return CLASS;
1423 if (STREQN (tokstart, "union", 5))
1424 return UNION;
1425 if (STREQN (tokstart, "short", 5))
1426 return SHORT;
1427 if (STREQN (tokstart, "const", 5))
1428 return CONST_KEYWORD;
1429 break;
1430 case 4:
1431 if (STREQN (tokstart, "enum", 4))
1432 return ENUM;
1433 if (STREQN (tokstart, "long", 4))
1434 return LONG;
1435 if (current_language->la_language == language_cplus
1436 && STREQN (tokstart, "this", 4))
1437 {
1438 static const char this_name[] =
1439 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1440
1441 if (lookup_symbol (this_name, expression_context_block,
1442 VAR_NAMESPACE, (int *) NULL,
1443 (struct symtab **) NULL))
1444 return THIS;
1445 }
1446 break;
1447 case 3:
1448 if (STREQN (tokstart, "int", 3))
1449 return INT_KEYWORD;
1450 break;
1451 default:
1452 break;
1453 }
1454
1455 yylval.sval.ptr = tokstart;
1456 yylval.sval.length = namelen;
1457
1458 /* Any other names starting in $ are debugger internal variables. */
1459
1460 if (*tokstart == '$')
1461 {
1462 yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
1463 return VARIABLE;
1464 }
1465
1466 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1467 functions or symtabs. If this is not so, then ...
1468 Use token-type TYPENAME for symbols that happen to be defined
1469 currently as names of types; NAME for other symbols.
1470 The caller is not constrained to care about the distinction. */
1471 {
1472 char *tmp = copy_name (yylval.sval);
1473 struct symbol *sym;
1474 int is_a_field_of_this = 0;
1475 int hextype;
1476
1477 sym = lookup_symbol (tmp, expression_context_block,
1478 VAR_NAMESPACE,
1479 current_language->la_language == language_cplus
1480 ? &is_a_field_of_this : (int *) NULL,
1481 (struct symtab **) NULL);
1482 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1483 lookup_partial_symtab (tmp))
1484 {
1485 yylval.ssym.sym = sym;
1486 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1487 return BLOCKNAME;
1488 }
1489 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1490 {
1491 char *p;
1492 char *namestart;
1493 struct symbol *best_sym;
1494
1495 /* Look ahead to detect nested types. This probably should be
1496 done in the grammar, but trying seemed to introduce a lot
1497 of shift/reduce and reduce/reduce conflicts. It's possible
1498 that it could be done, though. Or perhaps a non-grammar, but
1499 less ad hoc, approach would work well. */
1500
1501 /* Since we do not currently have any way of distinguishing
1502 a nested type from a non-nested one (the stabs don't tell
1503 us whether a type is nested), we just ignore the
1504 containing type. */
1505
1506 p = lexptr;
1507 best_sym = sym;
1508 while (1)
1509 {
1510 /* Skip whitespace. */
1511 while (*p == ' ' || *p == '\t' || *p == '\n')
1512 ++p;
1513 if (*p == ':' && p[1] == ':')
1514 {
1515 /* Skip the `::'. */
1516 p += 2;
1517 /* Skip whitespace. */
1518 while (*p == ' ' || *p == '\t' || *p == '\n')
1519 ++p;
1520 namestart = p;
1521 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1522 || (*p >= 'a' && *p <= 'z')
1523 || (*p >= 'A' && *p <= 'Z'))
1524 ++p;
1525 if (p != namestart)
1526 {
1527 struct symbol *cur_sym;
1528 /* As big as the whole rest of the expression, which is
1529 at least big enough. */
1530 char *tmp = alloca (strlen (namestart));
1531
1532 memcpy (tmp, namestart, p - namestart);
1533 tmp[p - namestart] = '\0';
1534 cur_sym = lookup_symbol (tmp, expression_context_block,
1535 VAR_NAMESPACE, (int *) NULL,
1536 (struct symtab **) NULL);
1537 if (cur_sym)
1538 {
1539 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1540 {
1541 best_sym = cur_sym;
1542 lexptr = p;
1543 }
1544 else
1545 break;
1546 }
1547 else
1548 break;
1549 }
1550 else
1551 break;
1552 }
1553 else
1554 break;
1555 }
1556
1557 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1558 return TYPENAME;
1559 }
1560 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1561 return TYPENAME;
1562
1563 /* Input names that aren't symbols but ARE valid hex numbers,
1564 when the input radix permits them, can be names or numbers
1565 depending on the parse. Note we support radixes > 16 here. */
1566 if (!sym &&
1567 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1568 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1569 {
1570 YYSTYPE newlval; /* Its value is ignored. */
1571 hextype = parse_number (tokstart, namelen, 0, &newlval);
1572 if (hextype == INT)
1573 {
1574 yylval.ssym.sym = sym;
1575 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1576 return NAME_OR_INT;
1577 }
1578 }
1579
1580 /* Any other kind of symbol */
1581 yylval.ssym.sym = sym;
1582 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1583 return NAME;
1584 }
1585 }
1586
1587 void
1588 yyerror (msg)
1589 char *msg;
1590 {
1591 error (msg ? msg : "Invalid syntax in expression.");
1592 }