Replace syserr_list with more portable strerror().
[binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994, 1996, 1997
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* Parse a C expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include "gdb_string.h"
42 #include <ctype.h>
43 #include "expression.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "bfd.h" /* Required by objfiles.h. */
49 #include "symfile.h" /* Required by objfiles.h. */
50 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
51
52 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
53 as well as gratuitiously global symbol names, so we can have multiple
54 yacc generated parsers in gdb. Note that these are only the variables
55 produced by yacc. If other parser generators (bison, byacc, etc) produce
56 additional global names that conflict at link time, then those parser
57 generators need to be fixed instead of adding those names to this list. */
58
59 #define yymaxdepth c_maxdepth
60 #define yyparse c_parse
61 #define yylex c_lex
62 #define yyerror c_error
63 #define yylval c_lval
64 #define yychar c_char
65 #define yydebug c_debug
66 #define yypact c_pact
67 #define yyr1 c_r1
68 #define yyr2 c_r2
69 #define yydef c_def
70 #define yychk c_chk
71 #define yypgo c_pgo
72 #define yyact c_act
73 #define yyexca c_exca
74 #define yyerrflag c_errflag
75 #define yynerrs c_nerrs
76 #define yyps c_ps
77 #define yypv c_pv
78 #define yys c_s
79 #define yy_yys c_yys
80 #define yystate c_state
81 #define yytmp c_tmp
82 #define yyv c_v
83 #define yy_yyv c_yyv
84 #define yyval c_val
85 #define yylloc c_lloc
86 #define yyreds c_reds /* With YYDEBUG defined */
87 #define yytoks c_toks /* With YYDEBUG defined */
88 #define yylhs c_yylhs
89 #define yylen c_yylen
90 #define yydefred c_yydefred
91 #define yydgoto c_yydgoto
92 #define yysindex c_yysindex
93 #define yyrindex c_yyrindex
94 #define yygindex c_yygindex
95 #define yytable c_yytable
96 #define yycheck c_yycheck
97
98 #ifndef YYDEBUG
99 #define YYDEBUG 0 /* Default to no yydebug support */
100 #endif
101
102 int
103 yyparse PARAMS ((void));
104
105 static int
106 yylex PARAMS ((void));
107
108 void
109 yyerror PARAMS ((char *));
110
111 %}
112
113 /* Although the yacc "value" of an expression is not used,
114 since the result is stored in the structure being created,
115 other node types do have values. */
116
117 %union
118 {
119 LONGEST lval;
120 struct {
121 LONGEST val;
122 struct type *type;
123 } typed_val_int;
124 struct {
125 DOUBLEST dval;
126 struct type *type;
127 } typed_val_float;
128 struct symbol *sym;
129 struct type *tval;
130 struct stoken sval;
131 struct ttype tsym;
132 struct symtoken ssym;
133 int voidval;
134 struct block *bval;
135 enum exp_opcode opcode;
136 struct internalvar *ivar;
137
138 struct type **tvec;
139 int *ivec;
140 }
141
142 %{
143 /* YYSTYPE gets defined by %union */
144 static int
145 parse_number PARAMS ((char *, int, int, YYSTYPE *));
146 %}
147
148 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
149 %type <lval> rcurly
150 %type <tval> type typebase
151 %type <tvec> nonempty_typelist
152 /* %type <bval> block */
153
154 /* Fancy type parsing. */
155 %type <voidval> func_mod direct_abs_decl abs_decl
156 %type <tval> ptype
157 %type <lval> array_mod
158
159 %token <typed_val_int> INT
160 %token <typed_val_float> FLOAT
161
162 /* Both NAME and TYPENAME tokens represent symbols in the input,
163 and both convey their data as strings.
164 But a TYPENAME is a string that happens to be defined as a typedef
165 or builtin type name (such as int or char)
166 and a NAME is any other symbol.
167 Contexts where this distinction is not important can use the
168 nonterminal "name", which matches either NAME or TYPENAME. */
169
170 %token <sval> STRING
171 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
172 %token <tsym> TYPENAME
173 %type <sval> name
174 %type <ssym> name_not_typename
175 %type <tsym> typename
176
177 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
178 but which would parse as a valid number in the current input radix.
179 E.g. "c" when input_radix==16. Depending on the parse, it will be
180 turned into a name or into a number. */
181
182 %token <ssym> NAME_OR_INT
183
184 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
185 %token TEMPLATE
186 %token ERROR
187
188 /* Special type cases, put in to allow the parser to distinguish different
189 legal basetypes. */
190 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
191
192 %token <voidval> VARIABLE
193
194 %token <opcode> ASSIGN_MODIFY
195
196 /* C++ */
197 %token THIS
198
199 %left ','
200 %left ABOVE_COMMA
201 %right '=' ASSIGN_MODIFY
202 %right '?'
203 %left OROR
204 %left ANDAND
205 %left '|'
206 %left '^'
207 %left '&'
208 %left EQUAL NOTEQUAL
209 %left '<' '>' LEQ GEQ
210 %left LSH RSH
211 %left '@'
212 %left '+' '-'
213 %left '*' '/' '%'
214 %right UNARY INCREMENT DECREMENT
215 %right ARROW '.' '[' '('
216 %token <ssym> BLOCKNAME
217 %token <bval> FILENAME
218 %type <bval> block
219 %left COLONCOLON
220
221 \f
222 %%
223
224 start : exp1
225 | type_exp
226 ;
227
228 type_exp: type
229 { write_exp_elt_opcode(OP_TYPE);
230 write_exp_elt_type($1);
231 write_exp_elt_opcode(OP_TYPE);}
232 ;
233
234 /* Expressions, including the comma operator. */
235 exp1 : exp
236 | exp1 ',' exp
237 { write_exp_elt_opcode (BINOP_COMMA); }
238 ;
239
240 /* Expressions, not including the comma operator. */
241 exp : '*' exp %prec UNARY
242 { write_exp_elt_opcode (UNOP_IND); }
243
244 exp : '&' exp %prec UNARY
245 { write_exp_elt_opcode (UNOP_ADDR); }
246
247 exp : '-' exp %prec UNARY
248 { write_exp_elt_opcode (UNOP_NEG); }
249 ;
250
251 exp : '!' exp %prec UNARY
252 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
253 ;
254
255 exp : '~' exp %prec UNARY
256 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
257 ;
258
259 exp : INCREMENT exp %prec UNARY
260 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
261 ;
262
263 exp : DECREMENT exp %prec UNARY
264 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
265 ;
266
267 exp : exp INCREMENT %prec UNARY
268 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
269 ;
270
271 exp : exp DECREMENT %prec UNARY
272 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
273 ;
274
275 exp : SIZEOF exp %prec UNARY
276 { write_exp_elt_opcode (UNOP_SIZEOF); }
277 ;
278
279 exp : exp ARROW name
280 { write_exp_elt_opcode (STRUCTOP_PTR);
281 write_exp_string ($3);
282 write_exp_elt_opcode (STRUCTOP_PTR); }
283 ;
284
285 exp : exp ARROW qualified_name
286 { /* exp->type::name becomes exp->*(&type::name) */
287 /* Note: this doesn't work if name is a
288 static member! FIXME */
289 write_exp_elt_opcode (UNOP_ADDR);
290 write_exp_elt_opcode (STRUCTOP_MPTR); }
291 ;
292 exp : exp ARROW '*' exp
293 { write_exp_elt_opcode (STRUCTOP_MPTR); }
294 ;
295
296 exp : exp '.' name
297 { write_exp_elt_opcode (STRUCTOP_STRUCT);
298 write_exp_string ($3);
299 write_exp_elt_opcode (STRUCTOP_STRUCT); }
300 ;
301
302 exp : exp '.' qualified_name
303 { /* exp.type::name becomes exp.*(&type::name) */
304 /* Note: this doesn't work if name is a
305 static member! FIXME */
306 write_exp_elt_opcode (UNOP_ADDR);
307 write_exp_elt_opcode (STRUCTOP_MEMBER); }
308 ;
309
310 exp : exp '.' '*' exp
311 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
312 ;
313
314 exp : exp '[' exp1 ']'
315 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
316 ;
317
318 exp : exp '('
319 /* This is to save the value of arglist_len
320 being accumulated by an outer function call. */
321 { start_arglist (); }
322 arglist ')' %prec ARROW
323 { write_exp_elt_opcode (OP_FUNCALL);
324 write_exp_elt_longcst ((LONGEST) end_arglist ());
325 write_exp_elt_opcode (OP_FUNCALL); }
326 ;
327
328 lcurly : '{'
329 { start_arglist (); }
330 ;
331
332 arglist :
333 ;
334
335 arglist : exp
336 { arglist_len = 1; }
337 ;
338
339 arglist : arglist ',' exp %prec ABOVE_COMMA
340 { arglist_len++; }
341 ;
342
343 rcurly : '}'
344 { $$ = end_arglist () - 1; }
345 ;
346 exp : lcurly arglist rcurly %prec ARROW
347 { write_exp_elt_opcode (OP_ARRAY);
348 write_exp_elt_longcst ((LONGEST) 0);
349 write_exp_elt_longcst ((LONGEST) $3);
350 write_exp_elt_opcode (OP_ARRAY); }
351 ;
352
353 exp : lcurly type rcurly exp %prec UNARY
354 { write_exp_elt_opcode (UNOP_MEMVAL);
355 write_exp_elt_type ($2);
356 write_exp_elt_opcode (UNOP_MEMVAL); }
357 ;
358
359 exp : '(' type ')' exp %prec UNARY
360 { write_exp_elt_opcode (UNOP_CAST);
361 write_exp_elt_type ($2);
362 write_exp_elt_opcode (UNOP_CAST); }
363 ;
364
365 exp : '(' exp1 ')'
366 { }
367 ;
368
369 /* Binary operators in order of decreasing precedence. */
370
371 exp : exp '@' exp
372 { write_exp_elt_opcode (BINOP_REPEAT); }
373 ;
374
375 exp : exp '*' exp
376 { write_exp_elt_opcode (BINOP_MUL); }
377 ;
378
379 exp : exp '/' exp
380 { write_exp_elt_opcode (BINOP_DIV); }
381 ;
382
383 exp : exp '%' exp
384 { write_exp_elt_opcode (BINOP_REM); }
385 ;
386
387 exp : exp '+' exp
388 { write_exp_elt_opcode (BINOP_ADD); }
389 ;
390
391 exp : exp '-' exp
392 { write_exp_elt_opcode (BINOP_SUB); }
393 ;
394
395 exp : exp LSH exp
396 { write_exp_elt_opcode (BINOP_LSH); }
397 ;
398
399 exp : exp RSH exp
400 { write_exp_elt_opcode (BINOP_RSH); }
401 ;
402
403 exp : exp EQUAL exp
404 { write_exp_elt_opcode (BINOP_EQUAL); }
405 ;
406
407 exp : exp NOTEQUAL exp
408 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
409 ;
410
411 exp : exp LEQ exp
412 { write_exp_elt_opcode (BINOP_LEQ); }
413 ;
414
415 exp : exp GEQ exp
416 { write_exp_elt_opcode (BINOP_GEQ); }
417 ;
418
419 exp : exp '<' exp
420 { write_exp_elt_opcode (BINOP_LESS); }
421 ;
422
423 exp : exp '>' exp
424 { write_exp_elt_opcode (BINOP_GTR); }
425 ;
426
427 exp : exp '&' exp
428 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
429 ;
430
431 exp : exp '^' exp
432 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
433 ;
434
435 exp : exp '|' exp
436 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
437 ;
438
439 exp : exp ANDAND exp
440 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
441 ;
442
443 exp : exp OROR exp
444 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
445 ;
446
447 exp : exp '?' exp ':' exp %prec '?'
448 { write_exp_elt_opcode (TERNOP_COND); }
449 ;
450
451 exp : exp '=' exp
452 { write_exp_elt_opcode (BINOP_ASSIGN); }
453 ;
454
455 exp : exp ASSIGN_MODIFY exp
456 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
457 write_exp_elt_opcode ($2);
458 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
459 ;
460
461 exp : INT
462 { write_exp_elt_opcode (OP_LONG);
463 write_exp_elt_type ($1.type);
464 write_exp_elt_longcst ((LONGEST)($1.val));
465 write_exp_elt_opcode (OP_LONG); }
466 ;
467
468 exp : NAME_OR_INT
469 { YYSTYPE val;
470 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
471 write_exp_elt_opcode (OP_LONG);
472 write_exp_elt_type (val.typed_val_int.type);
473 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
474 write_exp_elt_opcode (OP_LONG);
475 }
476 ;
477
478
479 exp : FLOAT
480 { write_exp_elt_opcode (OP_DOUBLE);
481 write_exp_elt_type ($1.type);
482 write_exp_elt_dblcst ($1.dval);
483 write_exp_elt_opcode (OP_DOUBLE); }
484 ;
485
486 exp : variable
487 ;
488
489 exp : VARIABLE
490 /* Already written by write_dollar_variable. */
491 ;
492
493 exp : SIZEOF '(' type ')' %prec UNARY
494 { write_exp_elt_opcode (OP_LONG);
495 write_exp_elt_type (builtin_type_int);
496 CHECK_TYPEDEF ($3);
497 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
498 write_exp_elt_opcode (OP_LONG); }
499 ;
500
501 exp : STRING
502 { /* C strings are converted into array constants with
503 an explicit null byte added at the end. Thus
504 the array upper bound is the string length.
505 There is no such thing in C as a completely empty
506 string. */
507 char *sp = $1.ptr; int count = $1.length;
508 while (count-- > 0)
509 {
510 write_exp_elt_opcode (OP_LONG);
511 write_exp_elt_type (builtin_type_char);
512 write_exp_elt_longcst ((LONGEST)(*sp++));
513 write_exp_elt_opcode (OP_LONG);
514 }
515 write_exp_elt_opcode (OP_LONG);
516 write_exp_elt_type (builtin_type_char);
517 write_exp_elt_longcst ((LONGEST)'\0');
518 write_exp_elt_opcode (OP_LONG);
519 write_exp_elt_opcode (OP_ARRAY);
520 write_exp_elt_longcst ((LONGEST) 0);
521 write_exp_elt_longcst ((LONGEST) ($1.length));
522 write_exp_elt_opcode (OP_ARRAY); }
523 ;
524
525 /* C++. */
526 exp : THIS
527 { write_exp_elt_opcode (OP_THIS);
528 write_exp_elt_opcode (OP_THIS); }
529 ;
530
531 /* end of C++. */
532
533 block : BLOCKNAME
534 {
535 if ($1.sym)
536 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
537 else
538 error ("No file or function \"%s\".",
539 copy_name ($1.stoken));
540 }
541 | FILENAME
542 {
543 $$ = $1;
544 }
545 ;
546
547 block : block COLONCOLON name
548 { struct symbol *tem
549 = lookup_symbol (copy_name ($3), $1,
550 VAR_NAMESPACE, (int *) NULL,
551 (struct symtab **) NULL);
552 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
553 error ("No function \"%s\" in specified context.",
554 copy_name ($3));
555 $$ = SYMBOL_BLOCK_VALUE (tem); }
556 ;
557
558 variable: block COLONCOLON name
559 { struct symbol *sym;
560 sym = lookup_symbol (copy_name ($3), $1,
561 VAR_NAMESPACE, (int *) NULL,
562 (struct symtab **) NULL);
563 if (sym == 0)
564 error ("No symbol \"%s\" in specified context.",
565 copy_name ($3));
566
567 write_exp_elt_opcode (OP_VAR_VALUE);
568 /* block_found is set by lookup_symbol. */
569 write_exp_elt_block (block_found);
570 write_exp_elt_sym (sym);
571 write_exp_elt_opcode (OP_VAR_VALUE); }
572 ;
573
574 qualified_name: typebase COLONCOLON name
575 {
576 struct type *type = $1;
577 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
578 && TYPE_CODE (type) != TYPE_CODE_UNION)
579 error ("`%s' is not defined as an aggregate type.",
580 TYPE_NAME (type));
581
582 write_exp_elt_opcode (OP_SCOPE);
583 write_exp_elt_type (type);
584 write_exp_string ($3);
585 write_exp_elt_opcode (OP_SCOPE);
586 }
587 | typebase COLONCOLON '~' name
588 {
589 struct type *type = $1;
590 struct stoken tmp_token;
591 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
592 && TYPE_CODE (type) != TYPE_CODE_UNION)
593 error ("`%s' is not defined as an aggregate type.",
594 TYPE_NAME (type));
595
596 tmp_token.ptr = (char*) alloca ($4.length + 2);
597 tmp_token.length = $4.length + 1;
598 tmp_token.ptr[0] = '~';
599 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
600 tmp_token.ptr[tmp_token.length] = 0;
601
602 /* Check for valid destructor name. */
603 destructor_name_p (tmp_token.ptr, type);
604 write_exp_elt_opcode (OP_SCOPE);
605 write_exp_elt_type (type);
606 write_exp_string (tmp_token);
607 write_exp_elt_opcode (OP_SCOPE);
608 }
609 ;
610
611 variable: qualified_name
612 | COLONCOLON name
613 {
614 char *name = copy_name ($2);
615 struct symbol *sym;
616 struct minimal_symbol *msymbol;
617
618 sym =
619 lookup_symbol (name, (const struct block *) NULL,
620 VAR_NAMESPACE, (int *) NULL,
621 (struct symtab **) NULL);
622 if (sym)
623 {
624 write_exp_elt_opcode (OP_VAR_VALUE);
625 write_exp_elt_block (NULL);
626 write_exp_elt_sym (sym);
627 write_exp_elt_opcode (OP_VAR_VALUE);
628 break;
629 }
630
631 msymbol = lookup_minimal_symbol (name, NULL, NULL);
632 if (msymbol != NULL)
633 {
634 write_exp_msymbol (msymbol,
635 lookup_function_type (builtin_type_int),
636 builtin_type_int);
637 }
638 else
639 if (!have_full_symbols () && !have_partial_symbols ())
640 error ("No symbol table is loaded. Use the \"file\" command.");
641 else
642 error ("No symbol \"%s\" in current context.", name);
643 }
644 ;
645
646 variable: name_not_typename
647 { struct symbol *sym = $1.sym;
648
649 if (sym)
650 {
651 if (symbol_read_needs_frame (sym))
652 {
653 if (innermost_block == 0 ||
654 contained_in (block_found,
655 innermost_block))
656 innermost_block = block_found;
657 }
658
659 write_exp_elt_opcode (OP_VAR_VALUE);
660 /* We want to use the selected frame, not
661 another more inner frame which happens to
662 be in the same block. */
663 write_exp_elt_block (NULL);
664 write_exp_elt_sym (sym);
665 write_exp_elt_opcode (OP_VAR_VALUE);
666 }
667 else if ($1.is_a_field_of_this)
668 {
669 /* C++: it hangs off of `this'. Must
670 not inadvertently convert from a method call
671 to data ref. */
672 if (innermost_block == 0 ||
673 contained_in (block_found, innermost_block))
674 innermost_block = block_found;
675 write_exp_elt_opcode (OP_THIS);
676 write_exp_elt_opcode (OP_THIS);
677 write_exp_elt_opcode (STRUCTOP_PTR);
678 write_exp_string ($1.stoken);
679 write_exp_elt_opcode (STRUCTOP_PTR);
680 }
681 else
682 {
683 struct minimal_symbol *msymbol;
684 register char *arg = copy_name ($1.stoken);
685
686 msymbol =
687 lookup_minimal_symbol (arg, NULL, NULL);
688 if (msymbol != NULL)
689 {
690 write_exp_msymbol (msymbol,
691 lookup_function_type (builtin_type_int),
692 builtin_type_int);
693 }
694 else if (!have_full_symbols () && !have_partial_symbols ())
695 error ("No symbol table is loaded. Use the \"file\" command.");
696 else
697 error ("No symbol \"%s\" in current context.",
698 copy_name ($1.stoken));
699 }
700 }
701 ;
702
703
704 ptype : typebase
705 /* "const" and "volatile" are curently ignored. A type qualifier
706 before the type is currently handled in the typebase rule.
707 The reason for recognizing these here (shift/reduce conflicts)
708 might be obsolete now that some pointer to member rules have
709 been deleted. */
710 | typebase CONST_KEYWORD
711 | typebase VOLATILE_KEYWORD
712 | typebase abs_decl
713 { $$ = follow_types ($1); }
714 | typebase CONST_KEYWORD abs_decl
715 { $$ = follow_types ($1); }
716 | typebase VOLATILE_KEYWORD abs_decl
717 { $$ = follow_types ($1); }
718 ;
719
720 abs_decl: '*'
721 { push_type (tp_pointer); $$ = 0; }
722 | '*' abs_decl
723 { push_type (tp_pointer); $$ = $2; }
724 | '&'
725 { push_type (tp_reference); $$ = 0; }
726 | '&' abs_decl
727 { push_type (tp_reference); $$ = $2; }
728 | direct_abs_decl
729 ;
730
731 direct_abs_decl: '(' abs_decl ')'
732 { $$ = $2; }
733 | direct_abs_decl array_mod
734 {
735 push_type_int ($2);
736 push_type (tp_array);
737 }
738 | array_mod
739 {
740 push_type_int ($1);
741 push_type (tp_array);
742 $$ = 0;
743 }
744
745 | direct_abs_decl func_mod
746 { push_type (tp_function); }
747 | func_mod
748 { push_type (tp_function); }
749 ;
750
751 array_mod: '[' ']'
752 { $$ = -1; }
753 | '[' INT ']'
754 { $$ = $2.val; }
755 ;
756
757 func_mod: '(' ')'
758 { $$ = 0; }
759 | '(' nonempty_typelist ')'
760 { free ((PTR)$2); $$ = 0; }
761 ;
762
763 /* We used to try to recognize more pointer to member types here, but
764 that didn't work (shift/reduce conflicts meant that these rules never
765 got executed). The problem is that
766 int (foo::bar::baz::bizzle)
767 is a function type but
768 int (foo::bar::baz::bizzle::*)
769 is a pointer to member type. Stroustrup loses again! */
770
771 type : ptype
772 | typebase COLONCOLON '*'
773 { $$ = lookup_member_type (builtin_type_int, $1); }
774 ;
775
776 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
777 : TYPENAME
778 { $$ = $1.type; }
779 | INT_KEYWORD
780 { $$ = builtin_type_int; }
781 | LONG
782 { $$ = builtin_type_long; }
783 | SHORT
784 { $$ = builtin_type_short; }
785 | LONG INT_KEYWORD
786 { $$ = builtin_type_long; }
787 | UNSIGNED LONG INT_KEYWORD
788 { $$ = builtin_type_unsigned_long; }
789 | LONG LONG
790 { $$ = builtin_type_long_long; }
791 | LONG LONG INT_KEYWORD
792 { $$ = builtin_type_long_long; }
793 | UNSIGNED LONG LONG
794 { $$ = builtin_type_unsigned_long_long; }
795 | UNSIGNED LONG LONG INT_KEYWORD
796 { $$ = builtin_type_unsigned_long_long; }
797 | SHORT INT_KEYWORD
798 { $$ = builtin_type_short; }
799 | UNSIGNED SHORT INT_KEYWORD
800 { $$ = builtin_type_unsigned_short; }
801 | DOUBLE_KEYWORD
802 { $$ = builtin_type_double; }
803 | LONG DOUBLE_KEYWORD
804 { $$ = builtin_type_long_double; }
805 | STRUCT name
806 { $$ = lookup_struct (copy_name ($2),
807 expression_context_block); }
808 | CLASS name
809 { $$ = lookup_struct (copy_name ($2),
810 expression_context_block); }
811 | UNION name
812 { $$ = lookup_union (copy_name ($2),
813 expression_context_block); }
814 | ENUM name
815 { $$ = lookup_enum (copy_name ($2),
816 expression_context_block); }
817 | UNSIGNED typename
818 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
819 | UNSIGNED
820 { $$ = builtin_type_unsigned_int; }
821 | SIGNED_KEYWORD typename
822 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
823 | SIGNED_KEYWORD
824 { $$ = builtin_type_int; }
825 | TEMPLATE name '<' type '>'
826 { $$ = lookup_template_type(copy_name($2), $4,
827 expression_context_block);
828 }
829 /* "const" and "volatile" are curently ignored. A type qualifier
830 after the type is handled in the ptype rule. I think these could
831 be too. */
832 | CONST_KEYWORD typebase { $$ = $2; }
833 | VOLATILE_KEYWORD typebase { $$ = $2; }
834 ;
835
836 typename: TYPENAME
837 | INT_KEYWORD
838 {
839 $$.stoken.ptr = "int";
840 $$.stoken.length = 3;
841 $$.type = builtin_type_int;
842 }
843 | LONG
844 {
845 $$.stoken.ptr = "long";
846 $$.stoken.length = 4;
847 $$.type = builtin_type_long;
848 }
849 | SHORT
850 {
851 $$.stoken.ptr = "short";
852 $$.stoken.length = 5;
853 $$.type = builtin_type_short;
854 }
855 ;
856
857 nonempty_typelist
858 : type
859 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
860 $<ivec>$[0] = 1; /* Number of types in vector */
861 $$[1] = $1;
862 }
863 | nonempty_typelist ',' type
864 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
865 $$ = (struct type **) realloc ((char *) $1, len);
866 $$[$<ivec>$[0]] = $3;
867 }
868 ;
869
870 name : NAME { $$ = $1.stoken; }
871 | BLOCKNAME { $$ = $1.stoken; }
872 | TYPENAME { $$ = $1.stoken; }
873 | NAME_OR_INT { $$ = $1.stoken; }
874 ;
875
876 name_not_typename : NAME
877 | BLOCKNAME
878 /* These would be useful if name_not_typename was useful, but it is just
879 a fake for "variable", so these cause reduce/reduce conflicts because
880 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
881 =exp) or just an exp. If name_not_typename was ever used in an lvalue
882 context where only a name could occur, this might be useful.
883 | NAME_OR_INT
884 */
885 ;
886
887 %%
888
889 /* Take care of parsing a number (anything that starts with a digit).
890 Set yylval and return the token type; update lexptr.
891 LEN is the number of characters in it. */
892
893 /*** Needs some error checking for the float case ***/
894
895 static int
896 parse_number (p, len, parsed_float, putithere)
897 register char *p;
898 register int len;
899 int parsed_float;
900 YYSTYPE *putithere;
901 {
902 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
903 here, and we do kind of silly things like cast to unsigned. */
904 register LONGEST n = 0;
905 register LONGEST prevn = 0;
906 ULONGEST un;
907
908 register int i = 0;
909 register int c;
910 register int base = input_radix;
911 int unsigned_p = 0;
912
913 /* Number of "L" suffixes encountered. */
914 int long_p = 0;
915
916 /* We have found a "L" or "U" suffix. */
917 int found_suffix = 0;
918
919 ULONGEST high_bit;
920 struct type *signed_type;
921 struct type *unsigned_type;
922
923 if (parsed_float)
924 {
925 /* It's a float since it contains a point or an exponent. */
926 char c;
927 int num = 0; /* number of tokens scanned by scanf */
928 char saved_char = p[len];
929
930 p[len] = 0; /* null-terminate the token */
931 if (sizeof (putithere->typed_val_float.dval) <= sizeof (float))
932 num = sscanf (p, "%g%c", (float *) &putithere->typed_val_float.dval,&c);
933 else if (sizeof (putithere->typed_val_float.dval) <= sizeof (double))
934 num = sscanf (p, "%lg%c", (double *) &putithere->typed_val_float.dval,&c);
935 else
936 {
937 #ifdef SCANF_HAS_LONG_DOUBLE
938 num = sscanf (p, "%Lg%c", &putithere->typed_val_float.dval,&c);
939 #else
940 /* Scan it into a double, then assign it to the long double.
941 This at least wins with values representable in the range
942 of doubles. */
943 double temp;
944 num = sscanf (p, "%lg%c", &temp,&c);
945 putithere->typed_val_float.dval = temp;
946 #endif
947 }
948 p[len] = saved_char; /* restore the input stream */
949 if (num != 1) /* check scanf found ONLY a float ... */
950 return ERROR;
951 /* See if it has `f' or `l' suffix (float or long double). */
952
953 c = tolower (p[len - 1]);
954
955 if (c == 'f')
956 putithere->typed_val_float.type = builtin_type_float;
957 else if (c == 'l')
958 putithere->typed_val_float.type = builtin_type_long_double;
959 else if (isdigit (c) || c == '.')
960 putithere->typed_val_float.type = builtin_type_double;
961 else
962 return ERROR;
963
964 return FLOAT;
965 }
966
967 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
968 if (p[0] == '0')
969 switch (p[1])
970 {
971 case 'x':
972 case 'X':
973 if (len >= 3)
974 {
975 p += 2;
976 base = 16;
977 len -= 2;
978 }
979 break;
980
981 case 't':
982 case 'T':
983 case 'd':
984 case 'D':
985 if (len >= 3)
986 {
987 p += 2;
988 base = 10;
989 len -= 2;
990 }
991 break;
992
993 default:
994 base = 8;
995 break;
996 }
997
998 while (len-- > 0)
999 {
1000 c = *p++;
1001 if (c >= 'A' && c <= 'Z')
1002 c += 'a' - 'A';
1003 if (c != 'l' && c != 'u')
1004 n *= base;
1005 if (c >= '0' && c <= '9')
1006 {
1007 if (found_suffix)
1008 return ERROR;
1009 n += i = c - '0';
1010 }
1011 else
1012 {
1013 if (base > 10 && c >= 'a' && c <= 'f')
1014 {
1015 if (found_suffix)
1016 return ERROR;
1017 n += i = c - 'a' + 10;
1018 }
1019 else if (c == 'l')
1020 {
1021 ++long_p;
1022 found_suffix = 1;
1023 }
1024 else if (c == 'u')
1025 {
1026 unsigned_p = 1;
1027 found_suffix = 1;
1028 }
1029 else
1030 return ERROR; /* Char not a digit */
1031 }
1032 if (i >= base)
1033 return ERROR; /* Invalid digit in this base */
1034
1035 /* Portably test for overflow (only works for nonzero values, so make
1036 a second check for zero). FIXME: Can't we just make n and prevn
1037 unsigned and avoid this? */
1038 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1039 unsigned_p = 1; /* Try something unsigned */
1040
1041 /* Portably test for unsigned overflow.
1042 FIXME: This check is wrong; for example it doesn't find overflow
1043 on 0x123456789 when LONGEST is 32 bits. */
1044 if (c != 'l' && c != 'u' && n != 0)
1045 {
1046 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
1047 error ("Numeric constant too large.");
1048 }
1049 prevn = n;
1050 }
1051
1052 /* An integer constant is an int, a long, or a long long. An L
1053 suffix forces it to be long; an LL suffix forces it to be long
1054 long. If not forced to a larger size, it gets the first type of
1055 the above that it fits in. To figure out whether it fits, we
1056 shift it right and see whether anything remains. Note that we
1057 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1058 operation, because many compilers will warn about such a shift
1059 (which always produces a zero result). Sometimes TARGET_INT_BIT
1060 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1061 the case where it is we just always shift the value more than
1062 once, with fewer bits each time. */
1063
1064 un = (ULONGEST)n >> 2;
1065 if (long_p == 0
1066 && (un >> (TARGET_INT_BIT - 2)) == 0)
1067 {
1068 high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1);
1069
1070 /* A large decimal (not hex or octal) constant (between INT_MAX
1071 and UINT_MAX) is a long or unsigned long, according to ANSI,
1072 never an unsigned int, but this code treats it as unsigned
1073 int. This probably should be fixed. GCC gives a warning on
1074 such constants. */
1075
1076 unsigned_type = builtin_type_unsigned_int;
1077 signed_type = builtin_type_int;
1078 }
1079 else if (long_p <= 1
1080 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1081 {
1082 high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1);
1083 unsigned_type = builtin_type_unsigned_long;
1084 signed_type = builtin_type_long;
1085 }
1086 else
1087 {
1088 high_bit = (((ULONGEST)1)
1089 << (TARGET_LONG_LONG_BIT - 32 - 1)
1090 << 16
1091 << 16);
1092 if (high_bit == 0)
1093 /* A long long does not fit in a LONGEST. */
1094 high_bit =
1095 (ULONGEST)1 << (sizeof (LONGEST) * HOST_CHAR_BIT - 1);
1096 unsigned_type = builtin_type_unsigned_long_long;
1097 signed_type = builtin_type_long_long;
1098 }
1099
1100 putithere->typed_val_int.val = n;
1101
1102 /* If the high bit of the worked out type is set then this number
1103 has to be unsigned. */
1104
1105 if (unsigned_p || (n & high_bit))
1106 {
1107 putithere->typed_val_int.type = unsigned_type;
1108 }
1109 else
1110 {
1111 putithere->typed_val_int.type = signed_type;
1112 }
1113
1114 return INT;
1115 }
1116
1117 struct token
1118 {
1119 char *operator;
1120 int token;
1121 enum exp_opcode opcode;
1122 };
1123
1124 static const struct token tokentab3[] =
1125 {
1126 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1127 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1128 };
1129
1130 static const struct token tokentab2[] =
1131 {
1132 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1133 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1134 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1135 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1136 {"%=", ASSIGN_MODIFY, BINOP_REM},
1137 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1138 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1139 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1140 {"++", INCREMENT, BINOP_END},
1141 {"--", DECREMENT, BINOP_END},
1142 {"->", ARROW, BINOP_END},
1143 {"&&", ANDAND, BINOP_END},
1144 {"||", OROR, BINOP_END},
1145 {"::", COLONCOLON, BINOP_END},
1146 {"<<", LSH, BINOP_END},
1147 {">>", RSH, BINOP_END},
1148 {"==", EQUAL, BINOP_END},
1149 {"!=", NOTEQUAL, BINOP_END},
1150 {"<=", LEQ, BINOP_END},
1151 {">=", GEQ, BINOP_END}
1152 };
1153
1154 /* Read one token, getting characters through lexptr. */
1155
1156 static int
1157 yylex ()
1158 {
1159 int c;
1160 int namelen;
1161 unsigned int i;
1162 char *tokstart;
1163 char *tokptr;
1164 int tempbufindex;
1165 static char *tempbuf;
1166 static int tempbufsize;
1167
1168 retry:
1169
1170 tokstart = lexptr;
1171 /* See if it is a special token of length 3. */
1172 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1173 if (STREQN (tokstart, tokentab3[i].operator, 3))
1174 {
1175 lexptr += 3;
1176 yylval.opcode = tokentab3[i].opcode;
1177 return tokentab3[i].token;
1178 }
1179
1180 /* See if it is a special token of length 2. */
1181 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1182 if (STREQN (tokstart, tokentab2[i].operator, 2))
1183 {
1184 lexptr += 2;
1185 yylval.opcode = tokentab2[i].opcode;
1186 return tokentab2[i].token;
1187 }
1188
1189 switch (c = *tokstart)
1190 {
1191 case 0:
1192 return 0;
1193
1194 case ' ':
1195 case '\t':
1196 case '\n':
1197 lexptr++;
1198 goto retry;
1199
1200 case '\'':
1201 /* We either have a character constant ('0' or '\177' for example)
1202 or we have a quoted symbol reference ('foo(int,int)' in C++
1203 for example). */
1204 lexptr++;
1205 c = *lexptr++;
1206 if (c == '\\')
1207 c = parse_escape (&lexptr);
1208 else if (c == '\'')
1209 error ("Empty character constant.");
1210
1211 yylval.typed_val_int.val = c;
1212 yylval.typed_val_int.type = builtin_type_char;
1213
1214 c = *lexptr++;
1215 if (c != '\'')
1216 {
1217 namelen = skip_quoted (tokstart) - tokstart;
1218 if (namelen > 2)
1219 {
1220 lexptr = tokstart + namelen;
1221 if (lexptr[-1] != '\'')
1222 error ("Unmatched single quote.");
1223 namelen -= 2;
1224 tokstart++;
1225 goto tryname;
1226 }
1227 error ("Invalid character constant.");
1228 }
1229 return INT;
1230
1231 case '(':
1232 paren_depth++;
1233 lexptr++;
1234 return c;
1235
1236 case ')':
1237 if (paren_depth == 0)
1238 return 0;
1239 paren_depth--;
1240 lexptr++;
1241 return c;
1242
1243 case ',':
1244 if (comma_terminates && paren_depth == 0)
1245 return 0;
1246 lexptr++;
1247 return c;
1248
1249 case '.':
1250 /* Might be a floating point number. */
1251 if (lexptr[1] < '0' || lexptr[1] > '9')
1252 goto symbol; /* Nope, must be a symbol. */
1253 /* FALL THRU into number case. */
1254
1255 case '0':
1256 case '1':
1257 case '2':
1258 case '3':
1259 case '4':
1260 case '5':
1261 case '6':
1262 case '7':
1263 case '8':
1264 case '9':
1265 {
1266 /* It's a number. */
1267 int got_dot = 0, got_e = 0, toktype;
1268 register char *p = tokstart;
1269 int hex = input_radix > 10;
1270
1271 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1272 {
1273 p += 2;
1274 hex = 1;
1275 }
1276 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1277 {
1278 p += 2;
1279 hex = 0;
1280 }
1281
1282 for (;; ++p)
1283 {
1284 /* This test includes !hex because 'e' is a valid hex digit
1285 and thus does not indicate a floating point number when
1286 the radix is hex. */
1287 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1288 got_dot = got_e = 1;
1289 /* This test does not include !hex, because a '.' always indicates
1290 a decimal floating point number regardless of the radix. */
1291 else if (!got_dot && *p == '.')
1292 got_dot = 1;
1293 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1294 && (*p == '-' || *p == '+'))
1295 /* This is the sign of the exponent, not the end of the
1296 number. */
1297 continue;
1298 /* We will take any letters or digits. parse_number will
1299 complain if past the radix, or if L or U are not final. */
1300 else if ((*p < '0' || *p > '9')
1301 && ((*p < 'a' || *p > 'z')
1302 && (*p < 'A' || *p > 'Z')))
1303 break;
1304 }
1305 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1306 if (toktype == ERROR)
1307 {
1308 char *err_copy = (char *) alloca (p - tokstart + 1);
1309
1310 memcpy (err_copy, tokstart, p - tokstart);
1311 err_copy[p - tokstart] = 0;
1312 error ("Invalid number \"%s\".", err_copy);
1313 }
1314 lexptr = p;
1315 return toktype;
1316 }
1317
1318 case '+':
1319 case '-':
1320 case '*':
1321 case '/':
1322 case '%':
1323 case '|':
1324 case '&':
1325 case '^':
1326 case '~':
1327 case '!':
1328 case '@':
1329 case '<':
1330 case '>':
1331 case '[':
1332 case ']':
1333 case '?':
1334 case ':':
1335 case '=':
1336 case '{':
1337 case '}':
1338 symbol:
1339 lexptr++;
1340 return c;
1341
1342 case '"':
1343
1344 /* Build the gdb internal form of the input string in tempbuf,
1345 translating any standard C escape forms seen. Note that the
1346 buffer is null byte terminated *only* for the convenience of
1347 debugging gdb itself and printing the buffer contents when
1348 the buffer contains no embedded nulls. Gdb does not depend
1349 upon the buffer being null byte terminated, it uses the length
1350 string instead. This allows gdb to handle C strings (as well
1351 as strings in other languages) with embedded null bytes */
1352
1353 tokptr = ++tokstart;
1354 tempbufindex = 0;
1355
1356 do {
1357 /* Grow the static temp buffer if necessary, including allocating
1358 the first one on demand. */
1359 if (tempbufindex + 1 >= tempbufsize)
1360 {
1361 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1362 }
1363 switch (*tokptr)
1364 {
1365 case '\0':
1366 case '"':
1367 /* Do nothing, loop will terminate. */
1368 break;
1369 case '\\':
1370 tokptr++;
1371 c = parse_escape (&tokptr);
1372 if (c == -1)
1373 {
1374 continue;
1375 }
1376 tempbuf[tempbufindex++] = c;
1377 break;
1378 default:
1379 tempbuf[tempbufindex++] = *tokptr++;
1380 break;
1381 }
1382 } while ((*tokptr != '"') && (*tokptr != '\0'));
1383 if (*tokptr++ != '"')
1384 {
1385 error ("Unterminated string in expression.");
1386 }
1387 tempbuf[tempbufindex] = '\0'; /* See note above */
1388 yylval.sval.ptr = tempbuf;
1389 yylval.sval.length = tempbufindex;
1390 lexptr = tokptr;
1391 return (STRING);
1392 }
1393
1394 if (!(c == '_' || c == '$'
1395 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1396 /* We must have come across a bad character (e.g. ';'). */
1397 error ("Invalid character '%c' in expression.", c);
1398
1399 /* It's a name. See how long it is. */
1400 namelen = 0;
1401 for (c = tokstart[namelen];
1402 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1403 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1404 {
1405 /* Template parameter lists are part of the name.
1406 FIXME: This mishandles `print $a<4&&$a>3'. */
1407
1408 if (c == '<')
1409 {
1410 int i = namelen;
1411 int nesting_level = 1;
1412 while (tokstart[++i])
1413 {
1414 if (tokstart[i] == '<')
1415 nesting_level++;
1416 else if (tokstart[i] == '>')
1417 {
1418 if (--nesting_level == 0)
1419 break;
1420 }
1421 }
1422 if (tokstart[i] == '>')
1423 namelen = i;
1424 else
1425 break;
1426 }
1427 c = tokstart[++namelen];
1428 }
1429
1430 /* The token "if" terminates the expression and is NOT
1431 removed from the input stream. */
1432 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1433 {
1434 return 0;
1435 }
1436
1437 lexptr += namelen;
1438
1439 tryname:
1440
1441 /* Catch specific keywords. Should be done with a data structure. */
1442 switch (namelen)
1443 {
1444 case 8:
1445 if (STREQN (tokstart, "unsigned", 8))
1446 return UNSIGNED;
1447 if (current_language->la_language == language_cplus
1448 && STREQN (tokstart, "template", 8))
1449 return TEMPLATE;
1450 if (STREQN (tokstart, "volatile", 8))
1451 return VOLATILE_KEYWORD;
1452 break;
1453 case 6:
1454 if (STREQN (tokstart, "struct", 6))
1455 return STRUCT;
1456 if (STREQN (tokstart, "signed", 6))
1457 return SIGNED_KEYWORD;
1458 if (STREQN (tokstart, "sizeof", 6))
1459 return SIZEOF;
1460 if (STREQN (tokstart, "double", 6))
1461 return DOUBLE_KEYWORD;
1462 break;
1463 case 5:
1464 if (current_language->la_language == language_cplus
1465 && STREQN (tokstart, "class", 5))
1466 return CLASS;
1467 if (STREQN (tokstart, "union", 5))
1468 return UNION;
1469 if (STREQN (tokstart, "short", 5))
1470 return SHORT;
1471 if (STREQN (tokstart, "const", 5))
1472 return CONST_KEYWORD;
1473 break;
1474 case 4:
1475 if (STREQN (tokstart, "enum", 4))
1476 return ENUM;
1477 if (STREQN (tokstart, "long", 4))
1478 return LONG;
1479 if (current_language->la_language == language_cplus
1480 && STREQN (tokstart, "this", 4))
1481 {
1482 static const char this_name[] =
1483 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1484
1485 if (lookup_symbol (this_name, expression_context_block,
1486 VAR_NAMESPACE, (int *) NULL,
1487 (struct symtab **) NULL))
1488 return THIS;
1489 }
1490 break;
1491 case 3:
1492 if (STREQN (tokstart, "int", 3))
1493 return INT_KEYWORD;
1494 break;
1495 default:
1496 break;
1497 }
1498
1499 yylval.sval.ptr = tokstart;
1500 yylval.sval.length = namelen;
1501
1502 if (*tokstart == '$')
1503 {
1504 write_dollar_variable (yylval.sval);
1505 return VARIABLE;
1506 }
1507
1508 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1509 functions or symtabs. If this is not so, then ...
1510 Use token-type TYPENAME for symbols that happen to be defined
1511 currently as names of types; NAME for other symbols.
1512 The caller is not constrained to care about the distinction. */
1513 {
1514 char *tmp = copy_name (yylval.sval);
1515 struct symbol *sym;
1516 int is_a_field_of_this = 0;
1517 int hextype;
1518
1519 sym = lookup_symbol (tmp, expression_context_block,
1520 VAR_NAMESPACE,
1521 current_language->la_language == language_cplus
1522 ? &is_a_field_of_this : (int *) NULL,
1523 (struct symtab **) NULL);
1524 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1525 no psymtabs (coff, xcoff, or some future change to blow away the
1526 psymtabs once once symbols are read). */
1527 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
1528 {
1529 yylval.ssym.sym = sym;
1530 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1531 return BLOCKNAME;
1532 }
1533 else if (!sym)
1534 { /* See if it's a file name. */
1535 struct symtab *symtab;
1536
1537 symtab = lookup_symtab (tmp);
1538
1539 if (symtab)
1540 {
1541 yylval.bval = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
1542 return FILENAME;
1543 }
1544 }
1545
1546 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1547 {
1548 #if 1
1549 /* Despite the following flaw, we need to keep this code enabled.
1550 Because we can get called from check_stub_method, if we don't
1551 handle nested types then it screws many operations in any
1552 program which uses nested types. */
1553 /* In "A::x", if x is a member function of A and there happens
1554 to be a type (nested or not, since the stabs don't make that
1555 distinction) named x, then this code incorrectly thinks we
1556 are dealing with nested types rather than a member function. */
1557
1558 char *p;
1559 char *namestart;
1560 struct symbol *best_sym;
1561
1562 /* Look ahead to detect nested types. This probably should be
1563 done in the grammar, but trying seemed to introduce a lot
1564 of shift/reduce and reduce/reduce conflicts. It's possible
1565 that it could be done, though. Or perhaps a non-grammar, but
1566 less ad hoc, approach would work well. */
1567
1568 /* Since we do not currently have any way of distinguishing
1569 a nested type from a non-nested one (the stabs don't tell
1570 us whether a type is nested), we just ignore the
1571 containing type. */
1572
1573 p = lexptr;
1574 best_sym = sym;
1575 while (1)
1576 {
1577 /* Skip whitespace. */
1578 while (*p == ' ' || *p == '\t' || *p == '\n')
1579 ++p;
1580 if (*p == ':' && p[1] == ':')
1581 {
1582 /* Skip the `::'. */
1583 p += 2;
1584 /* Skip whitespace. */
1585 while (*p == ' ' || *p == '\t' || *p == '\n')
1586 ++p;
1587 namestart = p;
1588 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1589 || (*p >= 'a' && *p <= 'z')
1590 || (*p >= 'A' && *p <= 'Z'))
1591 ++p;
1592 if (p != namestart)
1593 {
1594 struct symbol *cur_sym;
1595 /* As big as the whole rest of the expression, which is
1596 at least big enough. */
1597 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3);
1598 char *tmp1;
1599
1600 tmp1 = ncopy;
1601 memcpy (tmp1, tmp, strlen (tmp));
1602 tmp1 += strlen (tmp);
1603 memcpy (tmp1, "::", 2);
1604 tmp1 += 2;
1605 memcpy (tmp1, namestart, p - namestart);
1606 tmp1[p - namestart] = '\0';
1607 cur_sym = lookup_symbol (ncopy, expression_context_block,
1608 VAR_NAMESPACE, (int *) NULL,
1609 (struct symtab **) NULL);
1610 if (cur_sym)
1611 {
1612 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1613 {
1614 best_sym = cur_sym;
1615 lexptr = p;
1616 }
1617 else
1618 break;
1619 }
1620 else
1621 break;
1622 }
1623 else
1624 break;
1625 }
1626 else
1627 break;
1628 }
1629
1630 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1631 #else /* not 0 */
1632 yylval.tsym.type = SYMBOL_TYPE (sym);
1633 #endif /* not 0 */
1634 return TYPENAME;
1635 }
1636 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1637 return TYPENAME;
1638
1639 /* Input names that aren't symbols but ARE valid hex numbers,
1640 when the input radix permits them, can be names or numbers
1641 depending on the parse. Note we support radixes > 16 here. */
1642 if (!sym &&
1643 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1644 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1645 {
1646 YYSTYPE newlval; /* Its value is ignored. */
1647 hextype = parse_number (tokstart, namelen, 0, &newlval);
1648 if (hextype == INT)
1649 {
1650 yylval.ssym.sym = sym;
1651 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1652 return NAME_OR_INT;
1653 }
1654 }
1655
1656 /* Any other kind of symbol */
1657 yylval.ssym.sym = sym;
1658 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1659 return NAME;
1660 }
1661 }
1662
1663 void
1664 yyerror (msg)
1665 char *msg;
1666 {
1667 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1668 }