* findvar.c, value.h (symbol_read_needs_frame): New function.
[binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Parse a C expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator. */
36
37 %{
38
39 #include "defs.h"
40 #include "expression.h"
41 #include "parser-defs.h"
42 #include "value.h"
43 #include "language.h"
44 #include "c-lang.h"
45
46 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
47 as well as gratuitiously global symbol names, so we can have multiple
48 yacc generated parsers in gdb. Note that these are only the variables
49 produced by yacc. If other parser generators (bison, byacc, etc) produce
50 additional global names that conflict at link time, then those parser
51 generators need to be fixed instead of adding those names to this list. */
52
53 #define yymaxdepth c_maxdepth
54 #define yyparse c_parse
55 #define yylex c_lex
56 #define yyerror c_error
57 #define yylval c_lval
58 #define yychar c_char
59 #define yydebug c_debug
60 #define yypact c_pact
61 #define yyr1 c_r1
62 #define yyr2 c_r2
63 #define yydef c_def
64 #define yychk c_chk
65 #define yypgo c_pgo
66 #define yyact c_act
67 #define yyexca c_exca
68 #define yyerrflag c_errflag
69 #define yynerrs c_nerrs
70 #define yyps c_ps
71 #define yypv c_pv
72 #define yys c_s
73 #define yy_yys c_yys
74 #define yystate c_state
75 #define yytmp c_tmp
76 #define yyv c_v
77 #define yy_yyv c_yyv
78 #define yyval c_val
79 #define yylloc c_lloc
80 #define yyreds c_reds /* With YYDEBUG defined */
81 #define yytoks c_toks /* With YYDEBUG defined */
82
83 #ifndef YYDEBUG
84 #define YYDEBUG 0 /* Default to no yydebug support */
85 #endif
86
87 int
88 yyparse PARAMS ((void));
89
90 static int
91 yylex PARAMS ((void));
92
93 void
94 yyerror PARAMS ((char *));
95
96 %}
97
98 /* Although the yacc "value" of an expression is not used,
99 since the result is stored in the structure being created,
100 other node types do have values. */
101
102 %union
103 {
104 LONGEST lval;
105 struct {
106 LONGEST val;
107 struct type *type;
108 } typed_val;
109 double dval;
110 struct symbol *sym;
111 struct type *tval;
112 struct stoken sval;
113 struct ttype tsym;
114 struct symtoken ssym;
115 int voidval;
116 struct block *bval;
117 enum exp_opcode opcode;
118 struct internalvar *ivar;
119
120 struct type **tvec;
121 int *ivec;
122 }
123
124 %{
125 /* YYSTYPE gets defined by %union */
126 static int
127 parse_number PARAMS ((char *, int, int, YYSTYPE *));
128 %}
129
130 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
131 %type <lval> rcurly
132 %type <tval> type typebase
133 %type <tvec> nonempty_typelist
134 /* %type <bval> block */
135
136 /* Fancy type parsing. */
137 %type <voidval> func_mod direct_abs_decl abs_decl
138 %type <tval> ptype
139 %type <lval> array_mod
140
141 %token <typed_val> INT
142 %token <dval> FLOAT
143
144 /* Both NAME and TYPENAME tokens represent symbols in the input,
145 and both convey their data as strings.
146 But a TYPENAME is a string that happens to be defined as a typedef
147 or builtin type name (such as int or char)
148 and a NAME is any other symbol.
149 Contexts where this distinction is not important can use the
150 nonterminal "name", which matches either NAME or TYPENAME. */
151
152 %token <sval> STRING
153 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
154 %token <tsym> TYPENAME
155 %type <sval> name
156 %type <ssym> name_not_typename
157 %type <tsym> typename
158
159 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
160 but which would parse as a valid number in the current input radix.
161 E.g. "c" when input_radix==16. Depending on the parse, it will be
162 turned into a name or into a number. */
163
164 %token <ssym> NAME_OR_INT
165
166 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
167 %token TEMPLATE
168 %token ERROR
169
170 /* Special type cases, put in to allow the parser to distinguish different
171 legal basetypes. */
172 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
173 %token <lval> LAST REGNAME
174
175 %token <ivar> VARIABLE
176
177 %token <opcode> ASSIGN_MODIFY
178
179 /* C++ */
180 %token THIS
181
182 %left ','
183 %left ABOVE_COMMA
184 %right '=' ASSIGN_MODIFY
185 %right '?'
186 %left OROR
187 %left ANDAND
188 %left '|'
189 %left '^'
190 %left '&'
191 %left EQUAL NOTEQUAL
192 %left '<' '>' LEQ GEQ
193 %left LSH RSH
194 %left '@'
195 %left '+' '-'
196 %left '*' '/' '%'
197 %right UNARY INCREMENT DECREMENT
198 %right ARROW '.' '[' '('
199 %token <ssym> BLOCKNAME
200 %type <bval> block
201 %left COLONCOLON
202
203 \f
204 %%
205
206 start : exp1
207 | type_exp
208 ;
209
210 type_exp: type
211 { write_exp_elt_opcode(OP_TYPE);
212 write_exp_elt_type($1);
213 write_exp_elt_opcode(OP_TYPE);}
214 ;
215
216 /* Expressions, including the comma operator. */
217 exp1 : exp
218 | exp1 ',' exp
219 { write_exp_elt_opcode (BINOP_COMMA); }
220 ;
221
222 /* Expressions, not including the comma operator. */
223 exp : '*' exp %prec UNARY
224 { write_exp_elt_opcode (UNOP_IND); }
225
226 exp : '&' exp %prec UNARY
227 { write_exp_elt_opcode (UNOP_ADDR); }
228
229 exp : '-' exp %prec UNARY
230 { write_exp_elt_opcode (UNOP_NEG); }
231 ;
232
233 exp : '!' exp %prec UNARY
234 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
235 ;
236
237 exp : '~' exp %prec UNARY
238 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
239 ;
240
241 exp : INCREMENT exp %prec UNARY
242 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
243 ;
244
245 exp : DECREMENT exp %prec UNARY
246 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
247 ;
248
249 exp : exp INCREMENT %prec UNARY
250 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
251 ;
252
253 exp : exp DECREMENT %prec UNARY
254 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
255 ;
256
257 exp : SIZEOF exp %prec UNARY
258 { write_exp_elt_opcode (UNOP_SIZEOF); }
259 ;
260
261 exp : exp ARROW name
262 { write_exp_elt_opcode (STRUCTOP_PTR);
263 write_exp_string ($3);
264 write_exp_elt_opcode (STRUCTOP_PTR); }
265 ;
266
267 exp : exp ARROW qualified_name
268 { /* exp->type::name becomes exp->*(&type::name) */
269 /* Note: this doesn't work if name is a
270 static member! FIXME */
271 write_exp_elt_opcode (UNOP_ADDR);
272 write_exp_elt_opcode (STRUCTOP_MPTR); }
273 ;
274 exp : exp ARROW '*' exp
275 { write_exp_elt_opcode (STRUCTOP_MPTR); }
276 ;
277
278 exp : exp '.' name
279 { write_exp_elt_opcode (STRUCTOP_STRUCT);
280 write_exp_string ($3);
281 write_exp_elt_opcode (STRUCTOP_STRUCT); }
282 ;
283
284 exp : exp '.' qualified_name
285 { /* exp.type::name becomes exp.*(&type::name) */
286 /* Note: this doesn't work if name is a
287 static member! FIXME */
288 write_exp_elt_opcode (UNOP_ADDR);
289 write_exp_elt_opcode (STRUCTOP_MEMBER); }
290 ;
291
292 exp : exp '.' '*' exp
293 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
294 ;
295
296 exp : exp '[' exp1 ']'
297 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
298 ;
299
300 exp : exp '('
301 /* This is to save the value of arglist_len
302 being accumulated by an outer function call. */
303 { start_arglist (); }
304 arglist ')' %prec ARROW
305 { write_exp_elt_opcode (OP_FUNCALL);
306 write_exp_elt_longcst ((LONGEST) end_arglist ());
307 write_exp_elt_opcode (OP_FUNCALL); }
308 ;
309
310 lcurly : '{'
311 { start_arglist (); }
312 ;
313
314 arglist :
315 ;
316
317 arglist : exp
318 { arglist_len = 1; }
319 ;
320
321 arglist : arglist ',' exp %prec ABOVE_COMMA
322 { arglist_len++; }
323 ;
324
325 rcurly : '}'
326 { $$ = end_arglist () - 1; }
327 ;
328 exp : lcurly arglist rcurly %prec ARROW
329 { write_exp_elt_opcode (OP_ARRAY);
330 write_exp_elt_longcst ((LONGEST) 0);
331 write_exp_elt_longcst ((LONGEST) $3);
332 write_exp_elt_opcode (OP_ARRAY); }
333 ;
334
335 exp : lcurly type rcurly exp %prec UNARY
336 { write_exp_elt_opcode (UNOP_MEMVAL);
337 write_exp_elt_type ($2);
338 write_exp_elt_opcode (UNOP_MEMVAL); }
339 ;
340
341 exp : '(' type ')' exp %prec UNARY
342 { write_exp_elt_opcode (UNOP_CAST);
343 write_exp_elt_type ($2);
344 write_exp_elt_opcode (UNOP_CAST); }
345 ;
346
347 exp : '(' exp1 ')'
348 { }
349 ;
350
351 /* Binary operators in order of decreasing precedence. */
352
353 exp : exp '@' exp
354 { write_exp_elt_opcode (BINOP_REPEAT); }
355 ;
356
357 exp : exp '*' exp
358 { write_exp_elt_opcode (BINOP_MUL); }
359 ;
360
361 exp : exp '/' exp
362 { write_exp_elt_opcode (BINOP_DIV); }
363 ;
364
365 exp : exp '%' exp
366 { write_exp_elt_opcode (BINOP_REM); }
367 ;
368
369 exp : exp '+' exp
370 { write_exp_elt_opcode (BINOP_ADD); }
371 ;
372
373 exp : exp '-' exp
374 { write_exp_elt_opcode (BINOP_SUB); }
375 ;
376
377 exp : exp LSH exp
378 { write_exp_elt_opcode (BINOP_LSH); }
379 ;
380
381 exp : exp RSH exp
382 { write_exp_elt_opcode (BINOP_RSH); }
383 ;
384
385 exp : exp EQUAL exp
386 { write_exp_elt_opcode (BINOP_EQUAL); }
387 ;
388
389 exp : exp NOTEQUAL exp
390 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
391 ;
392
393 exp : exp LEQ exp
394 { write_exp_elt_opcode (BINOP_LEQ); }
395 ;
396
397 exp : exp GEQ exp
398 { write_exp_elt_opcode (BINOP_GEQ); }
399 ;
400
401 exp : exp '<' exp
402 { write_exp_elt_opcode (BINOP_LESS); }
403 ;
404
405 exp : exp '>' exp
406 { write_exp_elt_opcode (BINOP_GTR); }
407 ;
408
409 exp : exp '&' exp
410 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
411 ;
412
413 exp : exp '^' exp
414 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
415 ;
416
417 exp : exp '|' exp
418 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
419 ;
420
421 exp : exp ANDAND exp
422 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
423 ;
424
425 exp : exp OROR exp
426 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
427 ;
428
429 exp : exp '?' exp ':' exp %prec '?'
430 { write_exp_elt_opcode (TERNOP_COND); }
431 ;
432
433 exp : exp '=' exp
434 { write_exp_elt_opcode (BINOP_ASSIGN); }
435 ;
436
437 exp : exp ASSIGN_MODIFY exp
438 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
439 write_exp_elt_opcode ($2);
440 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
441 ;
442
443 exp : INT
444 { write_exp_elt_opcode (OP_LONG);
445 write_exp_elt_type ($1.type);
446 write_exp_elt_longcst ((LONGEST)($1.val));
447 write_exp_elt_opcode (OP_LONG); }
448 ;
449
450 exp : NAME_OR_INT
451 { YYSTYPE val;
452 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
453 write_exp_elt_opcode (OP_LONG);
454 write_exp_elt_type (val.typed_val.type);
455 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
456 write_exp_elt_opcode (OP_LONG);
457 }
458 ;
459
460
461 exp : FLOAT
462 { write_exp_elt_opcode (OP_DOUBLE);
463 write_exp_elt_type (builtin_type_double);
464 write_exp_elt_dblcst ($1);
465 write_exp_elt_opcode (OP_DOUBLE); }
466 ;
467
468 exp : variable
469 ;
470
471 exp : LAST
472 { write_exp_elt_opcode (OP_LAST);
473 write_exp_elt_longcst ((LONGEST) $1);
474 write_exp_elt_opcode (OP_LAST); }
475 ;
476
477 exp : REGNAME
478 { write_exp_elt_opcode (OP_REGISTER);
479 write_exp_elt_longcst ((LONGEST) $1);
480 write_exp_elt_opcode (OP_REGISTER); }
481 ;
482
483 exp : VARIABLE
484 { write_exp_elt_opcode (OP_INTERNALVAR);
485 write_exp_elt_intern ($1);
486 write_exp_elt_opcode (OP_INTERNALVAR); }
487 ;
488
489 exp : SIZEOF '(' type ')' %prec UNARY
490 { write_exp_elt_opcode (OP_LONG);
491 write_exp_elt_type (builtin_type_int);
492 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
493 write_exp_elt_opcode (OP_LONG); }
494 ;
495
496 exp : STRING
497 { /* C strings are converted into array constants with
498 an explicit null byte added at the end. Thus
499 the array upper bound is the string length.
500 There is no such thing in C as a completely empty
501 string. */
502 char *sp = $1.ptr; int count = $1.length;
503 while (count-- > 0)
504 {
505 write_exp_elt_opcode (OP_LONG);
506 write_exp_elt_type (builtin_type_char);
507 write_exp_elt_longcst ((LONGEST)(*sp++));
508 write_exp_elt_opcode (OP_LONG);
509 }
510 write_exp_elt_opcode (OP_LONG);
511 write_exp_elt_type (builtin_type_char);
512 write_exp_elt_longcst ((LONGEST)'\0');
513 write_exp_elt_opcode (OP_LONG);
514 write_exp_elt_opcode (OP_ARRAY);
515 write_exp_elt_longcst ((LONGEST) 0);
516 write_exp_elt_longcst ((LONGEST) ($1.length));
517 write_exp_elt_opcode (OP_ARRAY); }
518 ;
519
520 /* C++. */
521 exp : THIS
522 { write_exp_elt_opcode (OP_THIS);
523 write_exp_elt_opcode (OP_THIS); }
524 ;
525
526 /* end of C++. */
527
528 block : BLOCKNAME
529 {
530 if ($1.sym != 0)
531 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
532 else
533 {
534 struct symtab *tem =
535 lookup_symtab (copy_name ($1.stoken));
536 if (tem)
537 $$ = BLOCKVECTOR_BLOCK
538 (BLOCKVECTOR (tem), STATIC_BLOCK);
539 else
540 error ("No file or function \"%s\".",
541 copy_name ($1.stoken));
542 }
543 }
544 ;
545
546 block : block COLONCOLON name
547 { struct symbol *tem
548 = lookup_symbol (copy_name ($3), $1,
549 VAR_NAMESPACE, (int *) NULL,
550 (struct symtab **) NULL);
551 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
552 error ("No function \"%s\" in specified context.",
553 copy_name ($3));
554 $$ = SYMBOL_BLOCK_VALUE (tem); }
555 ;
556
557 variable: block COLONCOLON name
558 { struct symbol *sym;
559 sym = lookup_symbol (copy_name ($3), $1,
560 VAR_NAMESPACE, (int *) NULL,
561 (struct symtab **) NULL);
562 if (sym == 0)
563 error ("No symbol \"%s\" in specified context.",
564 copy_name ($3));
565
566 write_exp_elt_opcode (OP_VAR_VALUE);
567 /* block_found is set by lookup_symbol. */
568 write_exp_elt_block (block_found);
569 write_exp_elt_sym (sym);
570 write_exp_elt_opcode (OP_VAR_VALUE); }
571 ;
572
573 qualified_name: typebase COLONCOLON name
574 {
575 struct type *type = $1;
576 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
577 && TYPE_CODE (type) != TYPE_CODE_UNION)
578 error ("`%s' is not defined as an aggregate type.",
579 TYPE_NAME (type));
580
581 write_exp_elt_opcode (OP_SCOPE);
582 write_exp_elt_type (type);
583 write_exp_string ($3);
584 write_exp_elt_opcode (OP_SCOPE);
585 }
586 | typebase COLONCOLON '~' name
587 {
588 struct type *type = $1;
589 struct stoken tmp_token;
590 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
591 && TYPE_CODE (type) != TYPE_CODE_UNION)
592 error ("`%s' is not defined as an aggregate type.",
593 TYPE_NAME (type));
594
595 if (!STREQ (type_name_no_tag (type), $4.ptr))
596 error ("invalid destructor `%s::~%s'",
597 type_name_no_tag (type), $4.ptr);
598
599 tmp_token.ptr = (char*) alloca ($4.length + 2);
600 tmp_token.length = $4.length + 1;
601 tmp_token.ptr[0] = '~';
602 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
603 tmp_token.ptr[tmp_token.length] = 0;
604 write_exp_elt_opcode (OP_SCOPE);
605 write_exp_elt_type (type);
606 write_exp_string (tmp_token);
607 write_exp_elt_opcode (OP_SCOPE);
608 }
609 ;
610
611 variable: qualified_name
612 | COLONCOLON name
613 {
614 char *name = copy_name ($2);
615 struct symbol *sym;
616 struct minimal_symbol *msymbol;
617
618 sym =
619 lookup_symbol (name, (const struct block *) NULL,
620 VAR_NAMESPACE, (int *) NULL,
621 (struct symtab **) NULL);
622 if (sym)
623 {
624 write_exp_elt_opcode (OP_VAR_VALUE);
625 write_exp_elt_block (NULL);
626 write_exp_elt_sym (sym);
627 write_exp_elt_opcode (OP_VAR_VALUE);
628 break;
629 }
630
631 msymbol = lookup_minimal_symbol (name,
632 (struct objfile *) NULL);
633 if (msymbol != NULL)
634 {
635 write_exp_elt_opcode (OP_LONG);
636 write_exp_elt_type (builtin_type_long);
637 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
638 write_exp_elt_opcode (OP_LONG);
639 write_exp_elt_opcode (UNOP_MEMVAL);
640 if (msymbol -> type == mst_data ||
641 msymbol -> type == mst_bss)
642 write_exp_elt_type (builtin_type_int);
643 else if (msymbol -> type == mst_text)
644 write_exp_elt_type (lookup_function_type (builtin_type_int));
645 else
646 write_exp_elt_type (builtin_type_char);
647 write_exp_elt_opcode (UNOP_MEMVAL);
648 }
649 else
650 if (!have_full_symbols () && !have_partial_symbols ())
651 error ("No symbol table is loaded. Use the \"file\" command.");
652 else
653 error ("No symbol \"%s\" in current context.", name);
654 }
655 ;
656
657 variable: name_not_typename
658 { struct symbol *sym = $1.sym;
659
660 if (sym)
661 {
662 if (symbol_read_needs_frame (sym))
663 {
664 if (innermost_block == 0 ||
665 contained_in (block_found,
666 innermost_block))
667 innermost_block = block_found;
668 }
669
670 write_exp_elt_opcode (OP_VAR_VALUE);
671 /* We want to use the selected frame, not
672 another more inner frame which happens to
673 be in the same block. */
674 write_exp_elt_block (NULL);
675 write_exp_elt_sym (sym);
676 write_exp_elt_opcode (OP_VAR_VALUE);
677 }
678 else if ($1.is_a_field_of_this)
679 {
680 /* C++: it hangs off of `this'. Must
681 not inadvertently convert from a method call
682 to data ref. */
683 if (innermost_block == 0 ||
684 contained_in (block_found, innermost_block))
685 innermost_block = block_found;
686 write_exp_elt_opcode (OP_THIS);
687 write_exp_elt_opcode (OP_THIS);
688 write_exp_elt_opcode (STRUCTOP_PTR);
689 write_exp_string ($1.stoken);
690 write_exp_elt_opcode (STRUCTOP_PTR);
691 }
692 else
693 {
694 struct minimal_symbol *msymbol;
695 register char *arg = copy_name ($1.stoken);
696
697 msymbol = lookup_minimal_symbol (arg,
698 (struct objfile *) NULL);
699 if (msymbol != NULL)
700 {
701 write_exp_elt_opcode (OP_LONG);
702 write_exp_elt_type (builtin_type_long);
703 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
704 write_exp_elt_opcode (OP_LONG);
705 write_exp_elt_opcode (UNOP_MEMVAL);
706 if (msymbol -> type == mst_data ||
707 msymbol -> type == mst_bss)
708 write_exp_elt_type (builtin_type_int);
709 else if (msymbol -> type == mst_text)
710 write_exp_elt_type (lookup_function_type (builtin_type_int));
711 else
712 write_exp_elt_type (builtin_type_char);
713 write_exp_elt_opcode (UNOP_MEMVAL);
714 }
715 else if (!have_full_symbols () && !have_partial_symbols ())
716 error ("No symbol table is loaded. Use the \"file\" command.");
717 else
718 error ("No symbol \"%s\" in current context.",
719 copy_name ($1.stoken));
720 }
721 }
722 ;
723
724
725 ptype : typebase
726 | typebase abs_decl
727 {
728 /* This is where the interesting stuff happens. */
729 int done = 0;
730 int array_size;
731 struct type *follow_type = $1;
732 struct type *range_type;
733
734 while (!done)
735 switch (pop_type ())
736 {
737 case tp_end:
738 done = 1;
739 break;
740 case tp_pointer:
741 follow_type = lookup_pointer_type (follow_type);
742 break;
743 case tp_reference:
744 follow_type = lookup_reference_type (follow_type);
745 break;
746 case tp_array:
747 array_size = pop_type_int ();
748 if (array_size != -1)
749 {
750 range_type =
751 create_range_type ((struct type *) NULL,
752 builtin_type_int, 0,
753 array_size - 1);
754 follow_type =
755 create_array_type ((struct type *) NULL,
756 follow_type, range_type);
757 }
758 else
759 follow_type = lookup_pointer_type (follow_type);
760 break;
761 case tp_function:
762 follow_type = lookup_function_type (follow_type);
763 break;
764 }
765 $$ = follow_type;
766 }
767 ;
768
769 abs_decl: '*'
770 { push_type (tp_pointer); $$ = 0; }
771 | '*' abs_decl
772 { push_type (tp_pointer); $$ = $2; }
773 | '&'
774 { push_type (tp_reference); $$ = 0; }
775 | '&' abs_decl
776 { push_type (tp_reference); $$ = $2; }
777 | direct_abs_decl
778 ;
779
780 direct_abs_decl: '(' abs_decl ')'
781 { $$ = $2; }
782 | direct_abs_decl array_mod
783 {
784 push_type_int ($2);
785 push_type (tp_array);
786 }
787 | array_mod
788 {
789 push_type_int ($1);
790 push_type (tp_array);
791 $$ = 0;
792 }
793 | direct_abs_decl func_mod
794 { push_type (tp_function); }
795 | func_mod
796 { push_type (tp_function); }
797 ;
798
799 array_mod: '[' ']'
800 { $$ = -1; }
801 | '[' INT ']'
802 { $$ = $2.val; }
803 ;
804
805 func_mod: '(' ')'
806 { $$ = 0; }
807 | '(' nonempty_typelist ')'
808 { free ((PTR)$2); $$ = 0; }
809 ;
810
811 type : ptype
812 | typebase COLONCOLON '*'
813 { $$ = lookup_member_type (builtin_type_int, $1); }
814 | type '(' typebase COLONCOLON '*' ')'
815 { $$ = lookup_member_type ($1, $3); }
816 | type '(' typebase COLONCOLON '*' ')' '(' ')'
817 { $$ = lookup_member_type
818 (lookup_function_type ($1), $3); }
819 | type '(' typebase COLONCOLON '*' ')' '(' nonempty_typelist ')'
820 { $$ = lookup_member_type
821 (lookup_function_type ($1), $3);
822 free ((PTR)$8); }
823 ;
824
825 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
826 : TYPENAME
827 { $$ = $1.type; }
828 | INT_KEYWORD
829 { $$ = builtin_type_int; }
830 | LONG
831 { $$ = builtin_type_long; }
832 | SHORT
833 { $$ = builtin_type_short; }
834 | LONG INT_KEYWORD
835 { $$ = builtin_type_long; }
836 | UNSIGNED LONG INT_KEYWORD
837 { $$ = builtin_type_unsigned_long; }
838 | LONG LONG
839 { $$ = builtin_type_long_long; }
840 | LONG LONG INT_KEYWORD
841 { $$ = builtin_type_long_long; }
842 | UNSIGNED LONG LONG
843 { $$ = builtin_type_unsigned_long_long; }
844 | UNSIGNED LONG LONG INT_KEYWORD
845 { $$ = builtin_type_unsigned_long_long; }
846 | SHORT INT_KEYWORD
847 { $$ = builtin_type_short; }
848 | UNSIGNED SHORT INT_KEYWORD
849 { $$ = builtin_type_unsigned_short; }
850 | STRUCT name
851 { $$ = lookup_struct (copy_name ($2),
852 expression_context_block); }
853 | CLASS name
854 { $$ = lookup_struct (copy_name ($2),
855 expression_context_block); }
856 | UNION name
857 { $$ = lookup_union (copy_name ($2),
858 expression_context_block); }
859 | ENUM name
860 { $$ = lookup_enum (copy_name ($2),
861 expression_context_block); }
862 | UNSIGNED typename
863 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
864 | UNSIGNED
865 { $$ = builtin_type_unsigned_int; }
866 | SIGNED_KEYWORD typename
867 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
868 | SIGNED_KEYWORD
869 { $$ = builtin_type_int; }
870 | TEMPLATE name '<' type '>'
871 { $$ = lookup_template_type(copy_name($2), $4,
872 expression_context_block);
873 }
874 /* "const" and "volatile" are curently ignored. */
875 | CONST_KEYWORD typebase { $$ = $2; }
876 | VOLATILE_KEYWORD typebase { $$ = $2; }
877 ;
878
879 typename: TYPENAME
880 | INT_KEYWORD
881 {
882 $$.stoken.ptr = "int";
883 $$.stoken.length = 3;
884 $$.type = builtin_type_int;
885 }
886 | LONG
887 {
888 $$.stoken.ptr = "long";
889 $$.stoken.length = 4;
890 $$.type = builtin_type_long;
891 }
892 | SHORT
893 {
894 $$.stoken.ptr = "short";
895 $$.stoken.length = 5;
896 $$.type = builtin_type_short;
897 }
898 ;
899
900 nonempty_typelist
901 : type
902 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
903 $<ivec>$[0] = 1; /* Number of types in vector */
904 $$[1] = $1;
905 }
906 | nonempty_typelist ',' type
907 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
908 $$ = (struct type **) realloc ((char *) $1, len);
909 $$[$<ivec>$[0]] = $3;
910 }
911 ;
912
913 name : NAME { $$ = $1.stoken; }
914 | BLOCKNAME { $$ = $1.stoken; }
915 | TYPENAME { $$ = $1.stoken; }
916 | NAME_OR_INT { $$ = $1.stoken; }
917 ;
918
919 name_not_typename : NAME
920 | BLOCKNAME
921 /* These would be useful if name_not_typename was useful, but it is just
922 a fake for "variable", so these cause reduce/reduce conflicts because
923 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
924 =exp) or just an exp. If name_not_typename was ever used in an lvalue
925 context where only a name could occur, this might be useful.
926 | NAME_OR_INT
927 */
928 ;
929
930 %%
931
932 /* Take care of parsing a number (anything that starts with a digit).
933 Set yylval and return the token type; update lexptr.
934 LEN is the number of characters in it. */
935
936 /*** Needs some error checking for the float case ***/
937
938 static int
939 parse_number (p, len, parsed_float, putithere)
940 register char *p;
941 register int len;
942 int parsed_float;
943 YYSTYPE *putithere;
944 {
945 register LONGEST n = 0;
946 register LONGEST prevn = 0;
947 register int i = 0;
948 register int c;
949 register int base = input_radix;
950 int unsigned_p = 0;
951 int long_p = 0;
952 unsigned LONGEST high_bit;
953 struct type *signed_type;
954 struct type *unsigned_type;
955
956 if (parsed_float)
957 {
958 /* It's a float since it contains a point or an exponent. */
959 putithere->dval = atof (p);
960 return FLOAT;
961 }
962
963 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
964 if (p[0] == '0')
965 switch (p[1])
966 {
967 case 'x':
968 case 'X':
969 if (len >= 3)
970 {
971 p += 2;
972 base = 16;
973 len -= 2;
974 }
975 break;
976
977 case 't':
978 case 'T':
979 case 'd':
980 case 'D':
981 if (len >= 3)
982 {
983 p += 2;
984 base = 10;
985 len -= 2;
986 }
987 break;
988
989 default:
990 base = 8;
991 break;
992 }
993
994 while (len-- > 0)
995 {
996 c = *p++;
997 if (c >= 'A' && c <= 'Z')
998 c += 'a' - 'A';
999 if (c != 'l' && c != 'u')
1000 n *= base;
1001 if (c >= '0' && c <= '9')
1002 n += i = c - '0';
1003 else
1004 {
1005 if (base > 10 && c >= 'a' && c <= 'f')
1006 n += i = c - 'a' + 10;
1007 else if (len == 0 && c == 'l')
1008 long_p = 1;
1009 else if (len == 0 && c == 'u')
1010 unsigned_p = 1;
1011 else
1012 return ERROR; /* Char not a digit */
1013 }
1014 if (i >= base)
1015 return ERROR; /* Invalid digit in this base */
1016
1017 /* Portably test for overflow (only works for nonzero values, so make
1018 a second check for zero). */
1019 if((prevn >= n) && n != 0)
1020 unsigned_p=1; /* Try something unsigned */
1021 /* If range checking enabled, portably test for unsigned overflow. */
1022 if(RANGE_CHECK && n!=0)
1023 {
1024 if((unsigned_p && (unsigned)prevn >= (unsigned)n))
1025 range_error("Overflow on numeric constant.");
1026 }
1027 prevn=n;
1028 }
1029
1030 /* If the number is too big to be an int, or it's got an l suffix
1031 then it's a long. Work out if this has to be a long by
1032 shifting right and and seeing if anything remains, and the
1033 target int size is different to the target long size.
1034
1035 In the expression below, we could have tested
1036 (n >> TARGET_INT_BIT)
1037 to see if it was zero,
1038 but too many compilers warn about that, when ints and longs
1039 are the same size. So we shift it twice, with fewer bits
1040 each time, for the same result. */
1041
1042 if ( (TARGET_INT_BIT != TARGET_LONG_BIT
1043 && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */
1044 || long_p)
1045 {
1046 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1047 unsigned_type = builtin_type_unsigned_long;
1048 signed_type = builtin_type_long;
1049 }
1050 else
1051 {
1052 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1053 unsigned_type = builtin_type_unsigned_int;
1054 signed_type = builtin_type_int;
1055 }
1056
1057 putithere->typed_val.val = n;
1058
1059 /* If the high bit of the worked out type is set then this number
1060 has to be unsigned. */
1061
1062 if (unsigned_p || (n & high_bit))
1063 {
1064 putithere->typed_val.type = unsigned_type;
1065 }
1066 else
1067 {
1068 putithere->typed_val.type = signed_type;
1069 }
1070
1071 return INT;
1072 }
1073
1074 struct token
1075 {
1076 char *operator;
1077 int token;
1078 enum exp_opcode opcode;
1079 };
1080
1081 static const struct token tokentab3[] =
1082 {
1083 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1084 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1085 };
1086
1087 static const struct token tokentab2[] =
1088 {
1089 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1090 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1091 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1092 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1093 {"%=", ASSIGN_MODIFY, BINOP_REM},
1094 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1095 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1096 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1097 {"++", INCREMENT, BINOP_END},
1098 {"--", DECREMENT, BINOP_END},
1099 {"->", ARROW, BINOP_END},
1100 {"&&", ANDAND, BINOP_END},
1101 {"||", OROR, BINOP_END},
1102 {"::", COLONCOLON, BINOP_END},
1103 {"<<", LSH, BINOP_END},
1104 {">>", RSH, BINOP_END},
1105 {"==", EQUAL, BINOP_END},
1106 {"!=", NOTEQUAL, BINOP_END},
1107 {"<=", LEQ, BINOP_END},
1108 {">=", GEQ, BINOP_END}
1109 };
1110
1111 /* Read one token, getting characters through lexptr. */
1112
1113 static int
1114 yylex ()
1115 {
1116 int c;
1117 int namelen;
1118 unsigned int i;
1119 char *tokstart;
1120 char *tokptr;
1121 int tempbufindex;
1122 static char *tempbuf;
1123 static int tempbufsize;
1124
1125 retry:
1126
1127 tokstart = lexptr;
1128 /* See if it is a special token of length 3. */
1129 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1130 if (STREQN (tokstart, tokentab3[i].operator, 3))
1131 {
1132 lexptr += 3;
1133 yylval.opcode = tokentab3[i].opcode;
1134 return tokentab3[i].token;
1135 }
1136
1137 /* See if it is a special token of length 2. */
1138 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1139 if (STREQN (tokstart, tokentab2[i].operator, 2))
1140 {
1141 lexptr += 2;
1142 yylval.opcode = tokentab2[i].opcode;
1143 return tokentab2[i].token;
1144 }
1145
1146 switch (c = *tokstart)
1147 {
1148 case 0:
1149 return 0;
1150
1151 case ' ':
1152 case '\t':
1153 case '\n':
1154 lexptr++;
1155 goto retry;
1156
1157 case '\'':
1158 /* We either have a character constant ('0' or '\177' for example)
1159 or we have a quoted symbol reference ('foo(int,int)' in C++
1160 for example). */
1161 lexptr++;
1162 c = *lexptr++;
1163 if (c == '\\')
1164 c = parse_escape (&lexptr);
1165
1166 yylval.typed_val.val = c;
1167 yylval.typed_val.type = builtin_type_char;
1168
1169 c = *lexptr++;
1170 if (c != '\'')
1171 {
1172 namelen = skip_quoted (tokstart) - tokstart;
1173 if (namelen > 2)
1174 {
1175 lexptr = tokstart + namelen;
1176 if (lexptr[-1] != '\'')
1177 error ("Unmatched single quote.");
1178 namelen -= 2;
1179 tokstart++;
1180 goto tryname;
1181 }
1182 error ("Invalid character constant.");
1183 }
1184 return INT;
1185
1186 case '(':
1187 paren_depth++;
1188 lexptr++;
1189 return c;
1190
1191 case ')':
1192 if (paren_depth == 0)
1193 return 0;
1194 paren_depth--;
1195 lexptr++;
1196 return c;
1197
1198 case ',':
1199 if (comma_terminates && paren_depth == 0)
1200 return 0;
1201 lexptr++;
1202 return c;
1203
1204 case '.':
1205 /* Might be a floating point number. */
1206 if (lexptr[1] < '0' || lexptr[1] > '9')
1207 goto symbol; /* Nope, must be a symbol. */
1208 /* FALL THRU into number case. */
1209
1210 case '0':
1211 case '1':
1212 case '2':
1213 case '3':
1214 case '4':
1215 case '5':
1216 case '6':
1217 case '7':
1218 case '8':
1219 case '9':
1220 {
1221 /* It's a number. */
1222 int got_dot = 0, got_e = 0, toktype;
1223 register char *p = tokstart;
1224 int hex = input_radix > 10;
1225
1226 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1227 {
1228 p += 2;
1229 hex = 1;
1230 }
1231 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1232 {
1233 p += 2;
1234 hex = 0;
1235 }
1236
1237 for (;; ++p)
1238 {
1239 /* This test includes !hex because 'e' is a valid hex digit
1240 and thus does not indicate a floating point number when
1241 the radix is hex. */
1242 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1243 got_dot = got_e = 1;
1244 /* This test does not include !hex, because a '.' always indicates
1245 a decimal floating point number regardless of the radix. */
1246 else if (!got_dot && *p == '.')
1247 got_dot = 1;
1248 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1249 && (*p == '-' || *p == '+'))
1250 /* This is the sign of the exponent, not the end of the
1251 number. */
1252 continue;
1253 /* We will take any letters or digits. parse_number will
1254 complain if past the radix, or if L or U are not final. */
1255 else if ((*p < '0' || *p > '9')
1256 && ((*p < 'a' || *p > 'z')
1257 && (*p < 'A' || *p > 'Z')))
1258 break;
1259 }
1260 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1261 if (toktype == ERROR)
1262 {
1263 char *err_copy = (char *) alloca (p - tokstart + 1);
1264
1265 memcpy (err_copy, tokstart, p - tokstart);
1266 err_copy[p - tokstart] = 0;
1267 error ("Invalid number \"%s\".", err_copy);
1268 }
1269 lexptr = p;
1270 return toktype;
1271 }
1272
1273 case '+':
1274 case '-':
1275 case '*':
1276 case '/':
1277 case '%':
1278 case '|':
1279 case '&':
1280 case '^':
1281 case '~':
1282 case '!':
1283 case '@':
1284 case '<':
1285 case '>':
1286 case '[':
1287 case ']':
1288 case '?':
1289 case ':':
1290 case '=':
1291 case '{':
1292 case '}':
1293 symbol:
1294 lexptr++;
1295 return c;
1296
1297 case '"':
1298
1299 /* Build the gdb internal form of the input string in tempbuf,
1300 translating any standard C escape forms seen. Note that the
1301 buffer is null byte terminated *only* for the convenience of
1302 debugging gdb itself and printing the buffer contents when
1303 the buffer contains no embedded nulls. Gdb does not depend
1304 upon the buffer being null byte terminated, it uses the length
1305 string instead. This allows gdb to handle C strings (as well
1306 as strings in other languages) with embedded null bytes */
1307
1308 tokptr = ++tokstart;
1309 tempbufindex = 0;
1310
1311 do {
1312 /* Grow the static temp buffer if necessary, including allocating
1313 the first one on demand. */
1314 if (tempbufindex + 1 >= tempbufsize)
1315 {
1316 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1317 }
1318 switch (*tokptr)
1319 {
1320 case '\0':
1321 case '"':
1322 /* Do nothing, loop will terminate. */
1323 break;
1324 case '\\':
1325 tokptr++;
1326 c = parse_escape (&tokptr);
1327 if (c == -1)
1328 {
1329 continue;
1330 }
1331 tempbuf[tempbufindex++] = c;
1332 break;
1333 default:
1334 tempbuf[tempbufindex++] = *tokptr++;
1335 break;
1336 }
1337 } while ((*tokptr != '"') && (*tokptr != '\0'));
1338 if (*tokptr++ != '"')
1339 {
1340 error ("Unterminated string in expression.");
1341 }
1342 tempbuf[tempbufindex] = '\0'; /* See note above */
1343 yylval.sval.ptr = tempbuf;
1344 yylval.sval.length = tempbufindex;
1345 lexptr = tokptr;
1346 return (STRING);
1347 }
1348
1349 if (!(c == '_' || c == '$'
1350 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1351 /* We must have come across a bad character (e.g. ';'). */
1352 error ("Invalid character '%c' in expression.", c);
1353
1354 /* It's a name. See how long it is. */
1355 namelen = 0;
1356 for (c = tokstart[namelen];
1357 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1358 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1359 c = tokstart[++namelen])
1360 ;
1361
1362 /* The token "if" terminates the expression and is NOT
1363 removed from the input stream. */
1364 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1365 {
1366 return 0;
1367 }
1368
1369 lexptr += namelen;
1370
1371 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1372 and $$digits (equivalent to $<-digits> if you could type that).
1373 Make token type LAST, and put the number (the digits) in yylval. */
1374
1375 tryname:
1376 if (*tokstart == '$')
1377 {
1378 register int negate = 0;
1379 c = 1;
1380 /* Double dollar means negate the number and add -1 as well.
1381 Thus $$ alone means -1. */
1382 if (namelen >= 2 && tokstart[1] == '$')
1383 {
1384 negate = 1;
1385 c = 2;
1386 }
1387 if (c == namelen)
1388 {
1389 /* Just dollars (one or two) */
1390 yylval.lval = - negate;
1391 return LAST;
1392 }
1393 /* Is the rest of the token digits? */
1394 for (; c < namelen; c++)
1395 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1396 break;
1397 if (c == namelen)
1398 {
1399 yylval.lval = atoi (tokstart + 1 + negate);
1400 if (negate)
1401 yylval.lval = - yylval.lval;
1402 return LAST;
1403 }
1404 }
1405
1406 /* Handle tokens that refer to machine registers:
1407 $ followed by a register name. */
1408
1409 if (*tokstart == '$') {
1410 for (c = 0; c < NUM_REGS; c++)
1411 if (namelen - 1 == strlen (reg_names[c])
1412 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1413 {
1414 yylval.lval = c;
1415 return REGNAME;
1416 }
1417 for (c = 0; c < num_std_regs; c++)
1418 if (namelen - 1 == strlen (std_regs[c].name)
1419 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1420 {
1421 yylval.lval = std_regs[c].regnum;
1422 return REGNAME;
1423 }
1424 }
1425 /* Catch specific keywords. Should be done with a data structure. */
1426 switch (namelen)
1427 {
1428 case 8:
1429 if (STREQN (tokstart, "unsigned", 8))
1430 return UNSIGNED;
1431 if (current_language->la_language == language_cplus
1432 && STREQN (tokstart, "template", 8))
1433 return TEMPLATE;
1434 if (STREQN (tokstart, "volatile", 8))
1435 return VOLATILE_KEYWORD;
1436 break;
1437 case 6:
1438 if (STREQN (tokstart, "struct", 6))
1439 return STRUCT;
1440 if (STREQN (tokstart, "signed", 6))
1441 return SIGNED_KEYWORD;
1442 if (STREQN (tokstart, "sizeof", 6))
1443 return SIZEOF;
1444 break;
1445 case 5:
1446 if (current_language->la_language == language_cplus
1447 && STREQN (tokstart, "class", 5))
1448 return CLASS;
1449 if (STREQN (tokstart, "union", 5))
1450 return UNION;
1451 if (STREQN (tokstart, "short", 5))
1452 return SHORT;
1453 if (STREQN (tokstart, "const", 5))
1454 return CONST_KEYWORD;
1455 break;
1456 case 4:
1457 if (STREQN (tokstart, "enum", 4))
1458 return ENUM;
1459 if (STREQN (tokstart, "long", 4))
1460 return LONG;
1461 if (current_language->la_language == language_cplus
1462 && STREQN (tokstart, "this", 4))
1463 {
1464 static const char this_name[] =
1465 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1466
1467 if (lookup_symbol (this_name, expression_context_block,
1468 VAR_NAMESPACE, (int *) NULL,
1469 (struct symtab **) NULL))
1470 return THIS;
1471 }
1472 break;
1473 case 3:
1474 if (STREQN (tokstart, "int", 3))
1475 return INT_KEYWORD;
1476 break;
1477 default:
1478 break;
1479 }
1480
1481 yylval.sval.ptr = tokstart;
1482 yylval.sval.length = namelen;
1483
1484 /* Any other names starting in $ are debugger internal variables. */
1485
1486 if (*tokstart == '$')
1487 {
1488 yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
1489 return VARIABLE;
1490 }
1491
1492 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1493 functions or symtabs. If this is not so, then ...
1494 Use token-type TYPENAME for symbols that happen to be defined
1495 currently as names of types; NAME for other symbols.
1496 The caller is not constrained to care about the distinction. */
1497 {
1498 char *tmp = copy_name (yylval.sval);
1499 struct symbol *sym;
1500 int is_a_field_of_this = 0;
1501 int hextype;
1502
1503 sym = lookup_symbol (tmp, expression_context_block,
1504 VAR_NAMESPACE,
1505 current_language->la_language == language_cplus
1506 ? &is_a_field_of_this : (int *) NULL,
1507 (struct symtab **) NULL);
1508 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1509 lookup_partial_symtab (tmp))
1510 {
1511 yylval.ssym.sym = sym;
1512 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1513 return BLOCKNAME;
1514 }
1515 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1516 {
1517 char *p;
1518 char *namestart;
1519 struct symbol *best_sym;
1520
1521 /* Look ahead to detect nested types. This probably should be
1522 done in the grammar, but trying seemed to introduce a lot
1523 of shift/reduce and reduce/reduce conflicts. It's possible
1524 that it could be done, though. Or perhaps a non-grammar, but
1525 less ad hoc, approach would work well. */
1526
1527 /* Since we do not currently have any way of distinguishing
1528 a nested type from a non-nested one (the stabs don't tell
1529 us whether a type is nested), we just ignore the
1530 containing type. */
1531
1532 p = lexptr;
1533 best_sym = sym;
1534 while (1)
1535 {
1536 /* Skip whitespace. */
1537 while (*p == ' ' || *p == '\t' || *p == '\n')
1538 ++p;
1539 if (*p == ':' && p[1] == ':')
1540 {
1541 /* Skip the `::'. */
1542 p += 2;
1543 /* Skip whitespace. */
1544 while (*p == ' ' || *p == '\t' || *p == '\n')
1545 ++p;
1546 namestart = p;
1547 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1548 || (*p >= 'a' && *p <= 'z')
1549 || (*p >= 'A' && *p <= 'Z'))
1550 ++p;
1551 if (p != namestart)
1552 {
1553 struct symbol *cur_sym;
1554 /* As big as the whole rest of the expression, which is
1555 at least big enough. */
1556 char *tmp = alloca (strlen (namestart));
1557
1558 memcpy (tmp, namestart, p - namestart);
1559 tmp[p - namestart] = '\0';
1560 cur_sym = lookup_symbol (tmp, expression_context_block,
1561 VAR_NAMESPACE, (int *) NULL,
1562 (struct symtab **) NULL);
1563 if (cur_sym)
1564 {
1565 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1566 {
1567 best_sym = cur_sym;
1568 lexptr = p;
1569 }
1570 else
1571 break;
1572 }
1573 else
1574 break;
1575 }
1576 else
1577 break;
1578 }
1579 else
1580 break;
1581 }
1582
1583 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1584 return TYPENAME;
1585 }
1586 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1587 return TYPENAME;
1588
1589 /* Input names that aren't symbols but ARE valid hex numbers,
1590 when the input radix permits them, can be names or numbers
1591 depending on the parse. Note we support radixes > 16 here. */
1592 if (!sym &&
1593 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1594 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1595 {
1596 YYSTYPE newlval; /* Its value is ignored. */
1597 hextype = parse_number (tokstart, namelen, 0, &newlval);
1598 if (hextype == INT)
1599 {
1600 yylval.ssym.sym = sym;
1601 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1602 return NAME_OR_INT;
1603 }
1604 }
1605
1606 /* Any other kind of symbol */
1607 yylval.ssym.sym = sym;
1608 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1609 return NAME;
1610 }
1611 }
1612
1613 void
1614 yyerror (msg)
1615 char *msg;
1616 {
1617 error (msg ? msg : "Invalid syntax in expression.");
1618 }