* frame.h, symtab.h, findvar.c (read_var_value): Change basereg
[binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Parse a C expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator. */
36
37 %{
38
39 #include "defs.h"
40 #include "expression.h"
41 #include "parser-defs.h"
42 #include "value.h"
43 #include "language.h"
44 #include "c-lang.h"
45
46 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
47 as well as gratuitiously global symbol names, so we can have multiple
48 yacc generated parsers in gdb. Note that these are only the variables
49 produced by yacc. If other parser generators (bison, byacc, etc) produce
50 additional global names that conflict at link time, then those parser
51 generators need to be fixed instead of adding those names to this list. */
52
53 #define yymaxdepth c_maxdepth
54 #define yyparse c_parse
55 #define yylex c_lex
56 #define yyerror c_error
57 #define yylval c_lval
58 #define yychar c_char
59 #define yydebug c_debug
60 #define yypact c_pact
61 #define yyr1 c_r1
62 #define yyr2 c_r2
63 #define yydef c_def
64 #define yychk c_chk
65 #define yypgo c_pgo
66 #define yyact c_act
67 #define yyexca c_exca
68 #define yyerrflag c_errflag
69 #define yynerrs c_nerrs
70 #define yyps c_ps
71 #define yypv c_pv
72 #define yys c_s
73 #define yy_yys c_yys
74 #define yystate c_state
75 #define yytmp c_tmp
76 #define yyv c_v
77 #define yy_yyv c_yyv
78 #define yyval c_val
79 #define yylloc c_lloc
80 #define yyreds c_reds /* With YYDEBUG defined */
81 #define yytoks c_toks /* With YYDEBUG defined */
82
83 #ifndef YYDEBUG
84 #define YYDEBUG 0 /* Default to no yydebug support */
85 #endif
86
87 int
88 yyparse PARAMS ((void));
89
90 static int
91 yylex PARAMS ((void));
92
93 void
94 yyerror PARAMS ((char *));
95
96 %}
97
98 /* Although the yacc "value" of an expression is not used,
99 since the result is stored in the structure being created,
100 other node types do have values. */
101
102 %union
103 {
104 LONGEST lval;
105 struct {
106 LONGEST val;
107 struct type *type;
108 } typed_val;
109 double dval;
110 struct symbol *sym;
111 struct type *tval;
112 struct stoken sval;
113 struct ttype tsym;
114 struct symtoken ssym;
115 int voidval;
116 struct block *bval;
117 enum exp_opcode opcode;
118 struct internalvar *ivar;
119
120 struct type **tvec;
121 int *ivec;
122 }
123
124 %{
125 /* YYSTYPE gets defined by %union */
126 static int
127 parse_number PARAMS ((char *, int, int, YYSTYPE *));
128 %}
129
130 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
131 %type <lval> rcurly
132 %type <tval> type typebase
133 %type <tvec> nonempty_typelist
134 /* %type <bval> block */
135
136 /* Fancy type parsing. */
137 %type <voidval> func_mod direct_abs_decl abs_decl
138 %type <tval> ptype
139 %type <lval> array_mod
140
141 %token <typed_val> INT
142 %token <dval> FLOAT
143
144 /* Both NAME and TYPENAME tokens represent symbols in the input,
145 and both convey their data as strings.
146 But a TYPENAME is a string that happens to be defined as a typedef
147 or builtin type name (such as int or char)
148 and a NAME is any other symbol.
149 Contexts where this distinction is not important can use the
150 nonterminal "name", which matches either NAME or TYPENAME. */
151
152 %token <sval> STRING
153 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
154 %token <tsym> TYPENAME
155 %type <sval> name
156 %type <ssym> name_not_typename
157 %type <tsym> typename
158
159 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
160 but which would parse as a valid number in the current input radix.
161 E.g. "c" when input_radix==16. Depending on the parse, it will be
162 turned into a name or into a number. */
163
164 %token <ssym> NAME_OR_INT
165
166 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
167 %token TEMPLATE
168 %token ERROR
169
170 /* Special type cases, put in to allow the parser to distinguish different
171 legal basetypes. */
172 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
173 %token <lval> LAST REGNAME
174
175 %token <ivar> VARIABLE
176
177 %token <opcode> ASSIGN_MODIFY
178
179 /* C++ */
180 %token THIS
181
182 %left ','
183 %left ABOVE_COMMA
184 %right '=' ASSIGN_MODIFY
185 %right '?'
186 %left OROR
187 %left ANDAND
188 %left '|'
189 %left '^'
190 %left '&'
191 %left EQUAL NOTEQUAL
192 %left '<' '>' LEQ GEQ
193 %left LSH RSH
194 %left '@'
195 %left '+' '-'
196 %left '*' '/' '%'
197 %right UNARY INCREMENT DECREMENT
198 %right ARROW '.' '[' '('
199 %token <ssym> BLOCKNAME
200 %type <bval> block
201 %left COLONCOLON
202
203 \f
204 %%
205
206 start : exp1
207 | type_exp
208 ;
209
210 type_exp: type
211 { write_exp_elt_opcode(OP_TYPE);
212 write_exp_elt_type($1);
213 write_exp_elt_opcode(OP_TYPE);}
214 ;
215
216 /* Expressions, including the comma operator. */
217 exp1 : exp
218 | exp1 ',' exp
219 { write_exp_elt_opcode (BINOP_COMMA); }
220 ;
221
222 /* Expressions, not including the comma operator. */
223 exp : '*' exp %prec UNARY
224 { write_exp_elt_opcode (UNOP_IND); }
225
226 exp : '&' exp %prec UNARY
227 { write_exp_elt_opcode (UNOP_ADDR); }
228
229 exp : '-' exp %prec UNARY
230 { write_exp_elt_opcode (UNOP_NEG); }
231 ;
232
233 exp : '!' exp %prec UNARY
234 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
235 ;
236
237 exp : '~' exp %prec UNARY
238 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
239 ;
240
241 exp : INCREMENT exp %prec UNARY
242 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
243 ;
244
245 exp : DECREMENT exp %prec UNARY
246 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
247 ;
248
249 exp : exp INCREMENT %prec UNARY
250 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
251 ;
252
253 exp : exp DECREMENT %prec UNARY
254 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
255 ;
256
257 exp : SIZEOF exp %prec UNARY
258 { write_exp_elt_opcode (UNOP_SIZEOF); }
259 ;
260
261 exp : exp ARROW name
262 { write_exp_elt_opcode (STRUCTOP_PTR);
263 write_exp_string ($3);
264 write_exp_elt_opcode (STRUCTOP_PTR); }
265 ;
266
267 exp : exp ARROW qualified_name
268 { /* exp->type::name becomes exp->*(&type::name) */
269 /* Note: this doesn't work if name is a
270 static member! FIXME */
271 write_exp_elt_opcode (UNOP_ADDR);
272 write_exp_elt_opcode (STRUCTOP_MPTR); }
273 ;
274 exp : exp ARROW '*' exp
275 { write_exp_elt_opcode (STRUCTOP_MPTR); }
276 ;
277
278 exp : exp '.' name
279 { write_exp_elt_opcode (STRUCTOP_STRUCT);
280 write_exp_string ($3);
281 write_exp_elt_opcode (STRUCTOP_STRUCT); }
282 ;
283
284 exp : exp '.' qualified_name
285 { /* exp.type::name becomes exp.*(&type::name) */
286 /* Note: this doesn't work if name is a
287 static member! FIXME */
288 write_exp_elt_opcode (UNOP_ADDR);
289 write_exp_elt_opcode (STRUCTOP_MEMBER); }
290 ;
291
292 exp : exp '.' '*' exp
293 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
294 ;
295
296 exp : exp '[' exp1 ']'
297 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
298 ;
299
300 exp : exp '('
301 /* This is to save the value of arglist_len
302 being accumulated by an outer function call. */
303 { start_arglist (); }
304 arglist ')' %prec ARROW
305 { write_exp_elt_opcode (OP_FUNCALL);
306 write_exp_elt_longcst ((LONGEST) end_arglist ());
307 write_exp_elt_opcode (OP_FUNCALL); }
308 ;
309
310 lcurly : '{'
311 { start_arglist (); }
312 ;
313
314 arglist :
315 ;
316
317 arglist : exp
318 { arglist_len = 1; }
319 ;
320
321 arglist : arglist ',' exp %prec ABOVE_COMMA
322 { arglist_len++; }
323 ;
324
325 rcurly : '}'
326 { $$ = end_arglist () - 1; }
327 ;
328 exp : lcurly arglist rcurly %prec ARROW
329 { write_exp_elt_opcode (OP_ARRAY);
330 write_exp_elt_longcst ((LONGEST) 0);
331 write_exp_elt_longcst ((LONGEST) $3);
332 write_exp_elt_opcode (OP_ARRAY); }
333 ;
334
335 exp : lcurly type rcurly exp %prec UNARY
336 { write_exp_elt_opcode (UNOP_MEMVAL);
337 write_exp_elt_type ($2);
338 write_exp_elt_opcode (UNOP_MEMVAL); }
339 ;
340
341 exp : '(' type ')' exp %prec UNARY
342 { write_exp_elt_opcode (UNOP_CAST);
343 write_exp_elt_type ($2);
344 write_exp_elt_opcode (UNOP_CAST); }
345 ;
346
347 exp : '(' exp1 ')'
348 { }
349 ;
350
351 /* Binary operators in order of decreasing precedence. */
352
353 exp : exp '@' exp
354 { write_exp_elt_opcode (BINOP_REPEAT); }
355 ;
356
357 exp : exp '*' exp
358 { write_exp_elt_opcode (BINOP_MUL); }
359 ;
360
361 exp : exp '/' exp
362 { write_exp_elt_opcode (BINOP_DIV); }
363 ;
364
365 exp : exp '%' exp
366 { write_exp_elt_opcode (BINOP_REM); }
367 ;
368
369 exp : exp '+' exp
370 { write_exp_elt_opcode (BINOP_ADD); }
371 ;
372
373 exp : exp '-' exp
374 { write_exp_elt_opcode (BINOP_SUB); }
375 ;
376
377 exp : exp LSH exp
378 { write_exp_elt_opcode (BINOP_LSH); }
379 ;
380
381 exp : exp RSH exp
382 { write_exp_elt_opcode (BINOP_RSH); }
383 ;
384
385 exp : exp EQUAL exp
386 { write_exp_elt_opcode (BINOP_EQUAL); }
387 ;
388
389 exp : exp NOTEQUAL exp
390 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
391 ;
392
393 exp : exp LEQ exp
394 { write_exp_elt_opcode (BINOP_LEQ); }
395 ;
396
397 exp : exp GEQ exp
398 { write_exp_elt_opcode (BINOP_GEQ); }
399 ;
400
401 exp : exp '<' exp
402 { write_exp_elt_opcode (BINOP_LESS); }
403 ;
404
405 exp : exp '>' exp
406 { write_exp_elt_opcode (BINOP_GTR); }
407 ;
408
409 exp : exp '&' exp
410 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
411 ;
412
413 exp : exp '^' exp
414 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
415 ;
416
417 exp : exp '|' exp
418 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
419 ;
420
421 exp : exp ANDAND exp
422 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
423 ;
424
425 exp : exp OROR exp
426 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
427 ;
428
429 exp : exp '?' exp ':' exp %prec '?'
430 { write_exp_elt_opcode (TERNOP_COND); }
431 ;
432
433 exp : exp '=' exp
434 { write_exp_elt_opcode (BINOP_ASSIGN); }
435 ;
436
437 exp : exp ASSIGN_MODIFY exp
438 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
439 write_exp_elt_opcode ($2);
440 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
441 ;
442
443 exp : INT
444 { write_exp_elt_opcode (OP_LONG);
445 write_exp_elt_type ($1.type);
446 write_exp_elt_longcst ((LONGEST)($1.val));
447 write_exp_elt_opcode (OP_LONG); }
448 ;
449
450 exp : NAME_OR_INT
451 { YYSTYPE val;
452 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
453 write_exp_elt_opcode (OP_LONG);
454 write_exp_elt_type (val.typed_val.type);
455 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
456 write_exp_elt_opcode (OP_LONG);
457 }
458 ;
459
460
461 exp : FLOAT
462 { write_exp_elt_opcode (OP_DOUBLE);
463 write_exp_elt_type (builtin_type_double);
464 write_exp_elt_dblcst ($1);
465 write_exp_elt_opcode (OP_DOUBLE); }
466 ;
467
468 exp : variable
469 ;
470
471 exp : LAST
472 { write_exp_elt_opcode (OP_LAST);
473 write_exp_elt_longcst ((LONGEST) $1);
474 write_exp_elt_opcode (OP_LAST); }
475 ;
476
477 exp : REGNAME
478 { write_exp_elt_opcode (OP_REGISTER);
479 write_exp_elt_longcst ((LONGEST) $1);
480 write_exp_elt_opcode (OP_REGISTER); }
481 ;
482
483 exp : VARIABLE
484 { write_exp_elt_opcode (OP_INTERNALVAR);
485 write_exp_elt_intern ($1);
486 write_exp_elt_opcode (OP_INTERNALVAR); }
487 ;
488
489 exp : SIZEOF '(' type ')' %prec UNARY
490 { write_exp_elt_opcode (OP_LONG);
491 write_exp_elt_type (builtin_type_int);
492 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
493 write_exp_elt_opcode (OP_LONG); }
494 ;
495
496 exp : STRING
497 { /* C strings are converted into array constants with
498 an explicit null byte added at the end. Thus
499 the array upper bound is the string length.
500 There is no such thing in C as a completely empty
501 string. */
502 char *sp = $1.ptr; int count = $1.length;
503 while (count-- > 0)
504 {
505 write_exp_elt_opcode (OP_LONG);
506 write_exp_elt_type (builtin_type_char);
507 write_exp_elt_longcst ((LONGEST)(*sp++));
508 write_exp_elt_opcode (OP_LONG);
509 }
510 write_exp_elt_opcode (OP_LONG);
511 write_exp_elt_type (builtin_type_char);
512 write_exp_elt_longcst ((LONGEST)'\0');
513 write_exp_elt_opcode (OP_LONG);
514 write_exp_elt_opcode (OP_ARRAY);
515 write_exp_elt_longcst ((LONGEST) 0);
516 write_exp_elt_longcst ((LONGEST) ($1.length));
517 write_exp_elt_opcode (OP_ARRAY); }
518 ;
519
520 /* C++. */
521 exp : THIS
522 { write_exp_elt_opcode (OP_THIS);
523 write_exp_elt_opcode (OP_THIS); }
524 ;
525
526 /* end of C++. */
527
528 block : BLOCKNAME
529 {
530 if ($1.sym != 0)
531 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
532 else
533 {
534 struct symtab *tem =
535 lookup_symtab (copy_name ($1.stoken));
536 if (tem)
537 $$ = BLOCKVECTOR_BLOCK
538 (BLOCKVECTOR (tem), STATIC_BLOCK);
539 else
540 error ("No file or function \"%s\".",
541 copy_name ($1.stoken));
542 }
543 }
544 ;
545
546 block : block COLONCOLON name
547 { struct symbol *tem
548 = lookup_symbol (copy_name ($3), $1,
549 VAR_NAMESPACE, (int *) NULL,
550 (struct symtab **) NULL);
551 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
552 error ("No function \"%s\" in specified context.",
553 copy_name ($3));
554 $$ = SYMBOL_BLOCK_VALUE (tem); }
555 ;
556
557 variable: block COLONCOLON name
558 { struct symbol *sym;
559 sym = lookup_symbol (copy_name ($3), $1,
560 VAR_NAMESPACE, (int *) NULL,
561 (struct symtab **) NULL);
562 if (sym == 0)
563 error ("No symbol \"%s\" in specified context.",
564 copy_name ($3));
565
566 write_exp_elt_opcode (OP_VAR_VALUE);
567 /* block_found is set by lookup_symbol. */
568 write_exp_elt_block (block_found);
569 write_exp_elt_sym (sym);
570 write_exp_elt_opcode (OP_VAR_VALUE); }
571 ;
572
573 qualified_name: typebase COLONCOLON name
574 {
575 struct type *type = $1;
576 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
577 && TYPE_CODE (type) != TYPE_CODE_UNION)
578 error ("`%s' is not defined as an aggregate type.",
579 TYPE_NAME (type));
580
581 write_exp_elt_opcode (OP_SCOPE);
582 write_exp_elt_type (type);
583 write_exp_string ($3);
584 write_exp_elt_opcode (OP_SCOPE);
585 }
586 | typebase COLONCOLON '~' name
587 {
588 struct type *type = $1;
589 struct stoken tmp_token;
590 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
591 && TYPE_CODE (type) != TYPE_CODE_UNION)
592 error ("`%s' is not defined as an aggregate type.",
593 TYPE_NAME (type));
594
595 if (!STREQ (type_name_no_tag (type), $4.ptr))
596 error ("invalid destructor `%s::~%s'",
597 type_name_no_tag (type), $4.ptr);
598
599 tmp_token.ptr = (char*) alloca ($4.length + 2);
600 tmp_token.length = $4.length + 1;
601 tmp_token.ptr[0] = '~';
602 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
603 tmp_token.ptr[tmp_token.length] = 0;
604 write_exp_elt_opcode (OP_SCOPE);
605 write_exp_elt_type (type);
606 write_exp_string (tmp_token);
607 write_exp_elt_opcode (OP_SCOPE);
608 }
609 ;
610
611 variable: qualified_name
612 | COLONCOLON name
613 {
614 char *name = copy_name ($2);
615 struct symbol *sym;
616 struct minimal_symbol *msymbol;
617
618 sym =
619 lookup_symbol (name, (const struct block *) NULL,
620 VAR_NAMESPACE, (int *) NULL,
621 (struct symtab **) NULL);
622 if (sym)
623 {
624 write_exp_elt_opcode (OP_VAR_VALUE);
625 write_exp_elt_block (NULL);
626 write_exp_elt_sym (sym);
627 write_exp_elt_opcode (OP_VAR_VALUE);
628 break;
629 }
630
631 msymbol = lookup_minimal_symbol (name,
632 (struct objfile *) NULL);
633 if (msymbol != NULL)
634 {
635 write_exp_elt_opcode (OP_LONG);
636 write_exp_elt_type (builtin_type_int);
637 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
638 write_exp_elt_opcode (OP_LONG);
639 write_exp_elt_opcode (UNOP_MEMVAL);
640 if (msymbol -> type == mst_data ||
641 msymbol -> type == mst_bss)
642 write_exp_elt_type (builtin_type_int);
643 else if (msymbol -> type == mst_text)
644 write_exp_elt_type (lookup_function_type (builtin_type_int));
645 else
646 write_exp_elt_type (builtin_type_char);
647 write_exp_elt_opcode (UNOP_MEMVAL);
648 }
649 else
650 if (!have_full_symbols () && !have_partial_symbols ())
651 error ("No symbol table is loaded. Use the \"file\" command.");
652 else
653 error ("No symbol \"%s\" in current context.", name);
654 }
655 ;
656
657 variable: name_not_typename
658 { struct symbol *sym = $1.sym;
659
660 if (sym)
661 {
662 switch (SYMBOL_CLASS (sym))
663 {
664 case LOC_REGISTER:
665 case LOC_ARG:
666 case LOC_REF_ARG:
667 case LOC_REGPARM:
668 case LOC_LOCAL:
669 case LOC_LOCAL_ARG:
670 case LOC_BASEREG:
671 case LOC_BASEREG_ARG:
672 if (innermost_block == 0 ||
673 contained_in (block_found,
674 innermost_block))
675 innermost_block = block_found;
676 case LOC_UNDEF:
677 case LOC_CONST:
678 case LOC_STATIC:
679 case LOC_TYPEDEF:
680 case LOC_LABEL:
681 case LOC_BLOCK:
682 case LOC_CONST_BYTES:
683 case LOC_OPTIMIZED_OUT:
684
685 /* In this case the expression can
686 be evaluated regardless of what
687 frame we are in, so there is no
688 need to check for the
689 innermost_block. These cases are
690 listed so that gcc -Wall will
691 report types that may not have
692 been considered. */
693
694 break;
695 }
696 write_exp_elt_opcode (OP_VAR_VALUE);
697 /* We want to use the selected frame, not
698 another more inner frame which happens to
699 be in the same block. */
700 write_exp_elt_block (NULL);
701 write_exp_elt_sym (sym);
702 write_exp_elt_opcode (OP_VAR_VALUE);
703 }
704 else if ($1.is_a_field_of_this)
705 {
706 /* C++: it hangs off of `this'. Must
707 not inadvertently convert from a method call
708 to data ref. */
709 if (innermost_block == 0 ||
710 contained_in (block_found, innermost_block))
711 innermost_block = block_found;
712 write_exp_elt_opcode (OP_THIS);
713 write_exp_elt_opcode (OP_THIS);
714 write_exp_elt_opcode (STRUCTOP_PTR);
715 write_exp_string ($1.stoken);
716 write_exp_elt_opcode (STRUCTOP_PTR);
717 }
718 else
719 {
720 struct minimal_symbol *msymbol;
721 register char *arg = copy_name ($1.stoken);
722
723 msymbol = lookup_minimal_symbol (arg,
724 (struct objfile *) NULL);
725 if (msymbol != NULL)
726 {
727 write_exp_elt_opcode (OP_LONG);
728 write_exp_elt_type (builtin_type_int);
729 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
730 write_exp_elt_opcode (OP_LONG);
731 write_exp_elt_opcode (UNOP_MEMVAL);
732 if (msymbol -> type == mst_data ||
733 msymbol -> type == mst_bss)
734 write_exp_elt_type (builtin_type_int);
735 else if (msymbol -> type == mst_text)
736 write_exp_elt_type (lookup_function_type (builtin_type_int));
737 else
738 write_exp_elt_type (builtin_type_char);
739 write_exp_elt_opcode (UNOP_MEMVAL);
740 }
741 else if (!have_full_symbols () && !have_partial_symbols ())
742 error ("No symbol table is loaded. Use the \"file\" command.");
743 else
744 error ("No symbol \"%s\" in current context.",
745 copy_name ($1.stoken));
746 }
747 }
748 ;
749
750
751 ptype : typebase
752 | typebase abs_decl
753 {
754 /* This is where the interesting stuff happens. */
755 int done = 0;
756 int array_size;
757 struct type *follow_type = $1;
758 struct type *range_type;
759
760 while (!done)
761 switch (pop_type ())
762 {
763 case tp_end:
764 done = 1;
765 break;
766 case tp_pointer:
767 follow_type = lookup_pointer_type (follow_type);
768 break;
769 case tp_reference:
770 follow_type = lookup_reference_type (follow_type);
771 break;
772 case tp_array:
773 array_size = pop_type_int ();
774 if (array_size != -1)
775 {
776 range_type =
777 create_range_type ((struct type *) NULL,
778 builtin_type_int, 0,
779 array_size - 1);
780 follow_type =
781 create_array_type ((struct type *) NULL,
782 follow_type, range_type);
783 }
784 else
785 follow_type = lookup_pointer_type (follow_type);
786 break;
787 case tp_function:
788 follow_type = lookup_function_type (follow_type);
789 break;
790 }
791 $$ = follow_type;
792 }
793 ;
794
795 abs_decl: '*'
796 { push_type (tp_pointer); $$ = 0; }
797 | '*' abs_decl
798 { push_type (tp_pointer); $$ = $2; }
799 | '&'
800 { push_type (tp_reference); $$ = 0; }
801 | '&' abs_decl
802 { push_type (tp_reference); $$ = $2; }
803 | direct_abs_decl
804 ;
805
806 direct_abs_decl: '(' abs_decl ')'
807 { $$ = $2; }
808 | direct_abs_decl array_mod
809 {
810 push_type_int ($2);
811 push_type (tp_array);
812 }
813 | array_mod
814 {
815 push_type_int ($1);
816 push_type (tp_array);
817 $$ = 0;
818 }
819 | direct_abs_decl func_mod
820 { push_type (tp_function); }
821 | func_mod
822 { push_type (tp_function); }
823 ;
824
825 array_mod: '[' ']'
826 { $$ = -1; }
827 | '[' INT ']'
828 { $$ = $2.val; }
829 ;
830
831 func_mod: '(' ')'
832 { $$ = 0; }
833 | '(' nonempty_typelist ')'
834 { free ((PTR)$2); $$ = 0; }
835 ;
836
837 type : ptype
838 | typebase COLONCOLON '*'
839 { $$ = lookup_member_type (builtin_type_int, $1); }
840 | type '(' typebase COLONCOLON '*' ')'
841 { $$ = lookup_member_type ($1, $3); }
842 | type '(' typebase COLONCOLON '*' ')' '(' ')'
843 { $$ = lookup_member_type
844 (lookup_function_type ($1), $3); }
845 | type '(' typebase COLONCOLON '*' ')' '(' nonempty_typelist ')'
846 { $$ = lookup_member_type
847 (lookup_function_type ($1), $3);
848 free ((PTR)$8); }
849 ;
850
851 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
852 : TYPENAME
853 { $$ = $1.type; }
854 | INT_KEYWORD
855 { $$ = builtin_type_int; }
856 | LONG
857 { $$ = builtin_type_long; }
858 | SHORT
859 { $$ = builtin_type_short; }
860 | LONG INT_KEYWORD
861 { $$ = builtin_type_long; }
862 | UNSIGNED LONG INT_KEYWORD
863 { $$ = builtin_type_unsigned_long; }
864 | LONG LONG
865 { $$ = builtin_type_long_long; }
866 | LONG LONG INT_KEYWORD
867 { $$ = builtin_type_long_long; }
868 | UNSIGNED LONG LONG
869 { $$ = builtin_type_unsigned_long_long; }
870 | UNSIGNED LONG LONG INT_KEYWORD
871 { $$ = builtin_type_unsigned_long_long; }
872 | SHORT INT_KEYWORD
873 { $$ = builtin_type_short; }
874 | UNSIGNED SHORT INT_KEYWORD
875 { $$ = builtin_type_unsigned_short; }
876 | STRUCT name
877 { $$ = lookup_struct (copy_name ($2),
878 expression_context_block); }
879 | CLASS name
880 { $$ = lookup_struct (copy_name ($2),
881 expression_context_block); }
882 | UNION name
883 { $$ = lookup_union (copy_name ($2),
884 expression_context_block); }
885 | ENUM name
886 { $$ = lookup_enum (copy_name ($2),
887 expression_context_block); }
888 | UNSIGNED typename
889 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
890 | UNSIGNED
891 { $$ = builtin_type_unsigned_int; }
892 | SIGNED_KEYWORD typename
893 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
894 | SIGNED_KEYWORD
895 { $$ = builtin_type_int; }
896 | TEMPLATE name '<' type '>'
897 { $$ = lookup_template_type(copy_name($2), $4,
898 expression_context_block);
899 }
900 /* "const" and "volatile" are curently ignored. */
901 | CONST_KEYWORD typebase { $$ = $2; }
902 | VOLATILE_KEYWORD typebase { $$ = $2; }
903 ;
904
905 typename: TYPENAME
906 | INT_KEYWORD
907 {
908 $$.stoken.ptr = "int";
909 $$.stoken.length = 3;
910 $$.type = builtin_type_int;
911 }
912 | LONG
913 {
914 $$.stoken.ptr = "long";
915 $$.stoken.length = 4;
916 $$.type = builtin_type_long;
917 }
918 | SHORT
919 {
920 $$.stoken.ptr = "short";
921 $$.stoken.length = 5;
922 $$.type = builtin_type_short;
923 }
924 ;
925
926 nonempty_typelist
927 : type
928 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
929 $<ivec>$[0] = 1; /* Number of types in vector */
930 $$[1] = $1;
931 }
932 | nonempty_typelist ',' type
933 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
934 $$ = (struct type **) realloc ((char *) $1, len);
935 $$[$<ivec>$[0]] = $3;
936 }
937 ;
938
939 name : NAME { $$ = $1.stoken; }
940 | BLOCKNAME { $$ = $1.stoken; }
941 | TYPENAME { $$ = $1.stoken; }
942 | NAME_OR_INT { $$ = $1.stoken; }
943 ;
944
945 name_not_typename : NAME
946 | BLOCKNAME
947 /* These would be useful if name_not_typename was useful, but it is just
948 a fake for "variable", so these cause reduce/reduce conflicts because
949 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
950 =exp) or just an exp. If name_not_typename was ever used in an lvalue
951 context where only a name could occur, this might be useful.
952 | NAME_OR_INT
953 */
954 ;
955
956 %%
957
958 /* Take care of parsing a number (anything that starts with a digit).
959 Set yylval and return the token type; update lexptr.
960 LEN is the number of characters in it. */
961
962 /*** Needs some error checking for the float case ***/
963
964 static int
965 parse_number (p, len, parsed_float, putithere)
966 register char *p;
967 register int len;
968 int parsed_float;
969 YYSTYPE *putithere;
970 {
971 register LONGEST n = 0;
972 register LONGEST prevn = 0;
973 register int i;
974 register int c;
975 register int base = input_radix;
976 int unsigned_p = 0;
977 int long_p = 0;
978 unsigned LONGEST high_bit;
979 struct type *signed_type;
980 struct type *unsigned_type;
981
982 if (parsed_float)
983 {
984 /* It's a float since it contains a point or an exponent. */
985 putithere->dval = atof (p);
986 return FLOAT;
987 }
988
989 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
990 if (p[0] == '0')
991 switch (p[1])
992 {
993 case 'x':
994 case 'X':
995 if (len >= 3)
996 {
997 p += 2;
998 base = 16;
999 len -= 2;
1000 }
1001 break;
1002
1003 case 't':
1004 case 'T':
1005 case 'd':
1006 case 'D':
1007 if (len >= 3)
1008 {
1009 p += 2;
1010 base = 10;
1011 len -= 2;
1012 }
1013 break;
1014
1015 default:
1016 base = 8;
1017 break;
1018 }
1019
1020 while (len-- > 0)
1021 {
1022 c = *p++;
1023 if (c >= 'A' && c <= 'Z')
1024 c += 'a' - 'A';
1025 if (c != 'l' && c != 'u')
1026 n *= base;
1027 if (c >= '0' && c <= '9')
1028 n += i = c - '0';
1029 else
1030 {
1031 if (base > 10 && c >= 'a' && c <= 'f')
1032 n += i = c - 'a' + 10;
1033 else if (len == 0 && c == 'l')
1034 long_p = 1;
1035 else if (len == 0 && c == 'u')
1036 unsigned_p = 1;
1037 else
1038 return ERROR; /* Char not a digit */
1039 }
1040 if (i >= base)
1041 return ERROR; /* Invalid digit in this base */
1042
1043 /* Portably test for overflow (only works for nonzero values, so make
1044 a second check for zero). */
1045 if((prevn >= n) && n != 0)
1046 unsigned_p=1; /* Try something unsigned */
1047 /* If range checking enabled, portably test for unsigned overflow. */
1048 if(RANGE_CHECK && n!=0)
1049 {
1050 if((unsigned_p && (unsigned)prevn >= (unsigned)n))
1051 range_error("Overflow on numeric constant.");
1052 }
1053 prevn=n;
1054 }
1055
1056 /* If the number is too big to be an int, or it's got an l suffix
1057 then it's a long. Work out if this has to be a long by
1058 shifting right and and seeing if anything remains, and the
1059 target int size is different to the target long size.
1060
1061 In the expression below, we could have tested
1062 (n >> TARGET_INT_BIT)
1063 to see if it was zero,
1064 but too many compilers warn about that, when ints and longs
1065 are the same size. So we shift it twice, with fewer bits
1066 each time, for the same result. */
1067
1068 if ( (TARGET_INT_BIT != TARGET_LONG_BIT
1069 && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */
1070 || long_p)
1071 {
1072 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1073 unsigned_type = builtin_type_unsigned_long;
1074 signed_type = builtin_type_long;
1075 }
1076 else
1077 {
1078 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1079 unsigned_type = builtin_type_unsigned_int;
1080 signed_type = builtin_type_int;
1081 }
1082
1083 putithere->typed_val.val = n;
1084
1085 /* If the high bit of the worked out type is set then this number
1086 has to be unsigned. */
1087
1088 if (unsigned_p || (n & high_bit))
1089 {
1090 putithere->typed_val.type = unsigned_type;
1091 }
1092 else
1093 {
1094 putithere->typed_val.type = signed_type;
1095 }
1096
1097 return INT;
1098 }
1099
1100 struct token
1101 {
1102 char *operator;
1103 int token;
1104 enum exp_opcode opcode;
1105 };
1106
1107 static const struct token tokentab3[] =
1108 {
1109 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1110 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1111 };
1112
1113 static const struct token tokentab2[] =
1114 {
1115 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1116 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1117 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1118 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1119 {"%=", ASSIGN_MODIFY, BINOP_REM},
1120 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1121 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1122 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1123 {"++", INCREMENT, BINOP_END},
1124 {"--", DECREMENT, BINOP_END},
1125 {"->", ARROW, BINOP_END},
1126 {"&&", ANDAND, BINOP_END},
1127 {"||", OROR, BINOP_END},
1128 {"::", COLONCOLON, BINOP_END},
1129 {"<<", LSH, BINOP_END},
1130 {">>", RSH, BINOP_END},
1131 {"==", EQUAL, BINOP_END},
1132 {"!=", NOTEQUAL, BINOP_END},
1133 {"<=", LEQ, BINOP_END},
1134 {">=", GEQ, BINOP_END}
1135 };
1136
1137 /* Read one token, getting characters through lexptr. */
1138
1139 static int
1140 yylex ()
1141 {
1142 int c;
1143 int namelen;
1144 unsigned int i;
1145 char *tokstart;
1146 char *tokptr;
1147 int tempbufindex;
1148 static char *tempbuf;
1149 static int tempbufsize;
1150
1151 retry:
1152
1153 tokstart = lexptr;
1154 /* See if it is a special token of length 3. */
1155 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1156 if (STREQN (tokstart, tokentab3[i].operator, 3))
1157 {
1158 lexptr += 3;
1159 yylval.opcode = tokentab3[i].opcode;
1160 return tokentab3[i].token;
1161 }
1162
1163 /* See if it is a special token of length 2. */
1164 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1165 if (STREQN (tokstart, tokentab2[i].operator, 2))
1166 {
1167 lexptr += 2;
1168 yylval.opcode = tokentab2[i].opcode;
1169 return tokentab2[i].token;
1170 }
1171
1172 switch (c = *tokstart)
1173 {
1174 case 0:
1175 return 0;
1176
1177 case ' ':
1178 case '\t':
1179 case '\n':
1180 lexptr++;
1181 goto retry;
1182
1183 case '\'':
1184 /* We either have a character constant ('0' or '\177' for example)
1185 or we have a quoted symbol reference ('foo(int,int)' in C++
1186 for example). */
1187 lexptr++;
1188 c = *lexptr++;
1189 if (c == '\\')
1190 c = parse_escape (&lexptr);
1191
1192 yylval.typed_val.val = c;
1193 yylval.typed_val.type = builtin_type_char;
1194
1195 c = *lexptr++;
1196 if (c != '\'')
1197 {
1198 namelen = skip_quoted (tokstart) - tokstart;
1199 if (namelen > 2)
1200 {
1201 lexptr = tokstart + namelen;
1202 if (lexptr[-1] != '\'')
1203 error ("Unmatched single quote.");
1204 namelen -= 2;
1205 tokstart++;
1206 goto tryname;
1207 }
1208 error ("Invalid character constant.");
1209 }
1210 return INT;
1211
1212 case '(':
1213 paren_depth++;
1214 lexptr++;
1215 return c;
1216
1217 case ')':
1218 if (paren_depth == 0)
1219 return 0;
1220 paren_depth--;
1221 lexptr++;
1222 return c;
1223
1224 case ',':
1225 if (comma_terminates && paren_depth == 0)
1226 return 0;
1227 lexptr++;
1228 return c;
1229
1230 case '.':
1231 /* Might be a floating point number. */
1232 if (lexptr[1] < '0' || lexptr[1] > '9')
1233 goto symbol; /* Nope, must be a symbol. */
1234 /* FALL THRU into number case. */
1235
1236 case '0':
1237 case '1':
1238 case '2':
1239 case '3':
1240 case '4':
1241 case '5':
1242 case '6':
1243 case '7':
1244 case '8':
1245 case '9':
1246 {
1247 /* It's a number. */
1248 int got_dot = 0, got_e = 0, toktype;
1249 register char *p = tokstart;
1250 int hex = input_radix > 10;
1251
1252 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1253 {
1254 p += 2;
1255 hex = 1;
1256 }
1257 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1258 {
1259 p += 2;
1260 hex = 0;
1261 }
1262
1263 for (;; ++p)
1264 {
1265 /* This test includes !hex because 'e' is a valid hex digit
1266 and thus does not indicate a floating point number when
1267 the radix is hex. */
1268 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1269 got_dot = got_e = 1;
1270 /* This test does not include !hex, because a '.' always indicates
1271 a decimal floating point number regardless of the radix. */
1272 else if (!got_dot && *p == '.')
1273 got_dot = 1;
1274 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1275 && (*p == '-' || *p == '+'))
1276 /* This is the sign of the exponent, not the end of the
1277 number. */
1278 continue;
1279 /* We will take any letters or digits. parse_number will
1280 complain if past the radix, or if L or U are not final. */
1281 else if ((*p < '0' || *p > '9')
1282 && ((*p < 'a' || *p > 'z')
1283 && (*p < 'A' || *p > 'Z')))
1284 break;
1285 }
1286 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1287 if (toktype == ERROR)
1288 {
1289 char *err_copy = (char *) alloca (p - tokstart + 1);
1290
1291 memcpy (err_copy, tokstart, p - tokstart);
1292 err_copy[p - tokstart] = 0;
1293 error ("Invalid number \"%s\".", err_copy);
1294 }
1295 lexptr = p;
1296 return toktype;
1297 }
1298
1299 case '+':
1300 case '-':
1301 case '*':
1302 case '/':
1303 case '%':
1304 case '|':
1305 case '&':
1306 case '^':
1307 case '~':
1308 case '!':
1309 case '@':
1310 case '<':
1311 case '>':
1312 case '[':
1313 case ']':
1314 case '?':
1315 case ':':
1316 case '=':
1317 case '{':
1318 case '}':
1319 symbol:
1320 lexptr++;
1321 return c;
1322
1323 case '"':
1324
1325 /* Build the gdb internal form of the input string in tempbuf,
1326 translating any standard C escape forms seen. Note that the
1327 buffer is null byte terminated *only* for the convenience of
1328 debugging gdb itself and printing the buffer contents when
1329 the buffer contains no embedded nulls. Gdb does not depend
1330 upon the buffer being null byte terminated, it uses the length
1331 string instead. This allows gdb to handle C strings (as well
1332 as strings in other languages) with embedded null bytes */
1333
1334 tokptr = ++tokstart;
1335 tempbufindex = 0;
1336
1337 do {
1338 /* Grow the static temp buffer if necessary, including allocating
1339 the first one on demand. */
1340 if (tempbufindex + 1 >= tempbufsize)
1341 {
1342 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1343 }
1344 switch (*tokptr)
1345 {
1346 case '\0':
1347 case '"':
1348 /* Do nothing, loop will terminate. */
1349 break;
1350 case '\\':
1351 tokptr++;
1352 c = parse_escape (&tokptr);
1353 if (c == -1)
1354 {
1355 continue;
1356 }
1357 tempbuf[tempbufindex++] = c;
1358 break;
1359 default:
1360 tempbuf[tempbufindex++] = *tokptr++;
1361 break;
1362 }
1363 } while ((*tokptr != '"') && (*tokptr != '\0'));
1364 if (*tokptr++ != '"')
1365 {
1366 error ("Unterminated string in expression.");
1367 }
1368 tempbuf[tempbufindex] = '\0'; /* See note above */
1369 yylval.sval.ptr = tempbuf;
1370 yylval.sval.length = tempbufindex;
1371 lexptr = tokptr;
1372 return (STRING);
1373 }
1374
1375 if (!(c == '_' || c == '$'
1376 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1377 /* We must have come across a bad character (e.g. ';'). */
1378 error ("Invalid character '%c' in expression.", c);
1379
1380 /* It's a name. See how long it is. */
1381 namelen = 0;
1382 for (c = tokstart[namelen];
1383 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1384 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1385 c = tokstart[++namelen])
1386 ;
1387
1388 /* The token "if" terminates the expression and is NOT
1389 removed from the input stream. */
1390 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1391 {
1392 return 0;
1393 }
1394
1395 lexptr += namelen;
1396
1397 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1398 and $$digits (equivalent to $<-digits> if you could type that).
1399 Make token type LAST, and put the number (the digits) in yylval. */
1400
1401 tryname:
1402 if (*tokstart == '$')
1403 {
1404 register int negate = 0;
1405 c = 1;
1406 /* Double dollar means negate the number and add -1 as well.
1407 Thus $$ alone means -1. */
1408 if (namelen >= 2 && tokstart[1] == '$')
1409 {
1410 negate = 1;
1411 c = 2;
1412 }
1413 if (c == namelen)
1414 {
1415 /* Just dollars (one or two) */
1416 yylval.lval = - negate;
1417 return LAST;
1418 }
1419 /* Is the rest of the token digits? */
1420 for (; c < namelen; c++)
1421 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1422 break;
1423 if (c == namelen)
1424 {
1425 yylval.lval = atoi (tokstart + 1 + negate);
1426 if (negate)
1427 yylval.lval = - yylval.lval;
1428 return LAST;
1429 }
1430 }
1431
1432 /* Handle tokens that refer to machine registers:
1433 $ followed by a register name. */
1434
1435 if (*tokstart == '$') {
1436 for (c = 0; c < NUM_REGS; c++)
1437 if (namelen - 1 == strlen (reg_names[c])
1438 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1439 {
1440 yylval.lval = c;
1441 return REGNAME;
1442 }
1443 for (c = 0; c < num_std_regs; c++)
1444 if (namelen - 1 == strlen (std_regs[c].name)
1445 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1446 {
1447 yylval.lval = std_regs[c].regnum;
1448 return REGNAME;
1449 }
1450 }
1451 /* Catch specific keywords. Should be done with a data structure. */
1452 switch (namelen)
1453 {
1454 case 8:
1455 if (STREQN (tokstart, "unsigned", 8))
1456 return UNSIGNED;
1457 if (current_language->la_language == language_cplus
1458 && STREQN (tokstart, "template", 8))
1459 return TEMPLATE;
1460 if (STREQN (tokstart, "volatile", 8))
1461 return VOLATILE_KEYWORD;
1462 break;
1463 case 6:
1464 if (STREQN (tokstart, "struct", 6))
1465 return STRUCT;
1466 if (STREQN (tokstart, "signed", 6))
1467 return SIGNED_KEYWORD;
1468 if (STREQN (tokstart, "sizeof", 6))
1469 return SIZEOF;
1470 break;
1471 case 5:
1472 if (current_language->la_language == language_cplus
1473 && STREQN (tokstart, "class", 5))
1474 return CLASS;
1475 if (STREQN (tokstart, "union", 5))
1476 return UNION;
1477 if (STREQN (tokstart, "short", 5))
1478 return SHORT;
1479 if (STREQN (tokstart, "const", 5))
1480 return CONST_KEYWORD;
1481 break;
1482 case 4:
1483 if (STREQN (tokstart, "enum", 4))
1484 return ENUM;
1485 if (STREQN (tokstart, "long", 4))
1486 return LONG;
1487 if (current_language->la_language == language_cplus
1488 && STREQN (tokstart, "this", 4))
1489 {
1490 static const char this_name[] =
1491 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1492
1493 if (lookup_symbol (this_name, expression_context_block,
1494 VAR_NAMESPACE, (int *) NULL,
1495 (struct symtab **) NULL))
1496 return THIS;
1497 }
1498 break;
1499 case 3:
1500 if (STREQN (tokstart, "int", 3))
1501 return INT_KEYWORD;
1502 break;
1503 default:
1504 break;
1505 }
1506
1507 yylval.sval.ptr = tokstart;
1508 yylval.sval.length = namelen;
1509
1510 /* Any other names starting in $ are debugger internal variables. */
1511
1512 if (*tokstart == '$')
1513 {
1514 yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
1515 return VARIABLE;
1516 }
1517
1518 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1519 functions or symtabs. If this is not so, then ...
1520 Use token-type TYPENAME for symbols that happen to be defined
1521 currently as names of types; NAME for other symbols.
1522 The caller is not constrained to care about the distinction. */
1523 {
1524 char *tmp = copy_name (yylval.sval);
1525 struct symbol *sym;
1526 int is_a_field_of_this = 0;
1527 int hextype;
1528
1529 sym = lookup_symbol (tmp, expression_context_block,
1530 VAR_NAMESPACE,
1531 current_language->la_language == language_cplus
1532 ? &is_a_field_of_this : (int *) NULL,
1533 (struct symtab **) NULL);
1534 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1535 lookup_partial_symtab (tmp))
1536 {
1537 yylval.ssym.sym = sym;
1538 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1539 return BLOCKNAME;
1540 }
1541 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1542 {
1543 char *p;
1544 char *namestart;
1545 struct symbol *best_sym;
1546
1547 /* Look ahead to detect nested types. This probably should be
1548 done in the grammar, but trying seemed to introduce a lot
1549 of shift/reduce and reduce/reduce conflicts. It's possible
1550 that it could be done, though. Or perhaps a non-grammar, but
1551 less ad hoc, approach would work well. */
1552
1553 /* Since we do not currently have any way of distinguishing
1554 a nested type from a non-nested one (the stabs don't tell
1555 us whether a type is nested), we just ignore the
1556 containing type. */
1557
1558 p = lexptr;
1559 best_sym = sym;
1560 while (1)
1561 {
1562 /* Skip whitespace. */
1563 while (*p == ' ' || *p == '\t' || *p == '\n')
1564 ++p;
1565 if (*p == ':' && p[1] == ':')
1566 {
1567 /* Skip the `::'. */
1568 p += 2;
1569 /* Skip whitespace. */
1570 while (*p == ' ' || *p == '\t' || *p == '\n')
1571 ++p;
1572 namestart = p;
1573 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1574 || (*p >= 'a' && *p <= 'z')
1575 || (*p >= 'A' && *p <= 'Z'))
1576 ++p;
1577 if (p != namestart)
1578 {
1579 struct symbol *cur_sym;
1580 /* As big as the whole rest of the expression, which is
1581 at least big enough. */
1582 char *tmp = alloca (strlen (namestart));
1583
1584 memcpy (tmp, namestart, p - namestart);
1585 tmp[p - namestart] = '\0';
1586 cur_sym = lookup_symbol (tmp, expression_context_block,
1587 VAR_NAMESPACE, (int *) NULL,
1588 (struct symtab **) NULL);
1589 if (cur_sym)
1590 {
1591 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1592 {
1593 best_sym = cur_sym;
1594 lexptr = p;
1595 }
1596 else
1597 break;
1598 }
1599 else
1600 break;
1601 }
1602 else
1603 break;
1604 }
1605 else
1606 break;
1607 }
1608
1609 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1610 return TYPENAME;
1611 }
1612 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1613 return TYPENAME;
1614
1615 /* Input names that aren't symbols but ARE valid hex numbers,
1616 when the input radix permits them, can be names or numbers
1617 depending on the parse. Note we support radixes > 16 here. */
1618 if (!sym &&
1619 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1620 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1621 {
1622 YYSTYPE newlval; /* Its value is ignored. */
1623 hextype = parse_number (tokstart, namelen, 0, &newlval);
1624 if (hextype == INT)
1625 {
1626 yylval.ssym.sym = sym;
1627 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1628 return NAME_OR_INT;
1629 }
1630 }
1631
1632 /* Any other kind of symbol */
1633 yylval.ssym.sym = sym;
1634 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1635 return NAME;
1636 }
1637 }
1638
1639 void
1640 yyerror (msg)
1641 char *msg;
1642 {
1643 error (msg ? msg : "Invalid syntax in expression.");
1644 }