Add gdbserve.mt.
[binutils-gdb.git] / gdb / ch-exp.y
1 /* YACC grammar for Chill expressions, for GDB.
2 Copyright 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Parse a Chill expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator.
36
37 Also note that the language accepted by this parser is more liberal
38 than the one accepted by an actual Chill compiler. For example, the
39 language rule that a simple name string can not be one of the reserved
40 simple name strings is not enforced (e.g "case" is not treated as a
41 reserved name). Another example is that Chill is a strongly typed
42 language, and certain expressions that violate the type constraints
43 may still be evaluated if gdb can do so in a meaningful manner, while
44 such expressions would be rejected by the compiler. The reason for
45 this more liberal behavior is the philosophy that the debugger
46 is intended to be a tool that is used by the programmer when things
47 go wrong, and as such, it should provide as few artificial barriers
48 to it's use as possible. If it can do something meaningful, even
49 something that violates language contraints that are enforced by the
50 compiler, it should do so without complaint.
51
52 */
53
54 %{
55
56 #include "defs.h"
57 #include <string.h>
58 #include <ctype.h>
59 #include "expression.h"
60 #include "language.h"
61 #include "value.h"
62 #include "parser-defs.h"
63 #include "ch-lang.h"
64 #include "bfd.h" /* Required by objfiles.h. */
65 #include "symfile.h" /* Required by objfiles.h. */
66 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
67
68 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
69 as well as gratuitiously global symbol names, so we can have multiple
70 yacc generated parsers in gdb. Note that these are only the variables
71 produced by yacc. If other parser generators (bison, byacc, etc) produce
72 additional global names that conflict at link time, then those parser
73 generators need to be fixed instead of adding those names to this list. */
74
75 #define yymaxdepth chill_maxdepth
76 #define yyparse chill_parse
77 #define yylex chill_lex
78 #define yyerror chill_error
79 #define yylval chill_lval
80 #define yychar chill_char
81 #define yydebug chill_debug
82 #define yypact chill_pact
83 #define yyr1 chill_r1
84 #define yyr2 chill_r2
85 #define yydef chill_def
86 #define yychk chill_chk
87 #define yypgo chill_pgo
88 #define yyact chill_act
89 #define yyexca chill_exca
90 #define yyerrflag chill_errflag
91 #define yynerrs chill_nerrs
92 #define yyps chill_ps
93 #define yypv chill_pv
94 #define yys chill_s
95 #define yy_yys chill_yys
96 #define yystate chill_state
97 #define yytmp chill_tmp
98 #define yyv chill_v
99 #define yy_yyv chill_yyv
100 #define yyval chill_val
101 #define yylloc chill_lloc
102 #define yyreds chill_reds /* With YYDEBUG defined */
103 #define yytoks chill_toks /* With YYDEBUG defined */
104
105 #ifndef YYDEBUG
106 #define YYDEBUG 0 /* Default to no yydebug support */
107 #endif
108
109 int
110 yyparse PARAMS ((void));
111
112 static int
113 yylex PARAMS ((void));
114
115 void
116 yyerror PARAMS ((char *));
117
118 %}
119
120 /* Although the yacc "value" of an expression is not used,
121 since the result is stored in the structure being created,
122 other node types do have values. */
123
124 %union
125 {
126 LONGEST lval;
127 unsigned LONGEST ulval;
128 struct {
129 LONGEST val;
130 struct type *type;
131 } typed_val;
132 double dval;
133 struct symbol *sym;
134 struct type *tval;
135 struct stoken sval;
136 struct ttype tsym;
137 struct symtoken ssym;
138 int voidval;
139 struct block *bval;
140 enum exp_opcode opcode;
141 struct internalvar *ivar;
142
143 struct type **tvec;
144 int *ivec;
145 }
146
147 %token <voidval> FIXME_01
148 %token <voidval> FIXME_02
149 %token <voidval> FIXME_03
150 %token <voidval> FIXME_04
151 %token <voidval> FIXME_05
152 %token <voidval> FIXME_06
153 %token <voidval> FIXME_07
154 %token <voidval> FIXME_08
155 %token <voidval> FIXME_09
156 %token <voidval> FIXME_10
157 %token <voidval> FIXME_11
158 %token <voidval> FIXME_12
159 %token <voidval> FIXME_13
160 %token <voidval> FIXME_14
161 %token <voidval> FIXME_15
162 %token <voidval> FIXME_16
163 %token <voidval> FIXME_17
164 %token <voidval> FIXME_18
165 %token <voidval> FIXME_19
166 %token <voidval> FIXME_20
167 %token <voidval> FIXME_21
168 %token <voidval> FIXME_22
169 %token <voidval> FIXME_24
170 %token <voidval> FIXME_25
171 %token <voidval> FIXME_26
172 %token <voidval> FIXME_27
173 %token <voidval> FIXME_28
174 %token <voidval> FIXME_29
175 %token <voidval> FIXME_30
176
177 %token <typed_val> INTEGER_LITERAL
178 %token <ulval> BOOLEAN_LITERAL
179 %token <typed_val> CHARACTER_LITERAL
180 %token <dval> FLOAT_LITERAL
181 %token <ssym> GENERAL_PROCEDURE_NAME
182 %token <ssym> LOCATION_NAME
183 %token <voidval> SET_LITERAL
184 %token <voidval> EMPTINESS_LITERAL
185 %token <sval> CHARACTER_STRING_LITERAL
186 %token <sval> BIT_STRING_LITERAL
187 %token <tsym> TYPENAME
188 %token <sval> FIELD_NAME
189
190 %token <voidval> '.'
191 %token <voidval> ';'
192 %token <voidval> ':'
193 %token <voidval> CASE
194 %token <voidval> OF
195 %token <voidval> ESAC
196 %token <voidval> LOGIOR
197 %token <voidval> ORIF
198 %token <voidval> LOGXOR
199 %token <voidval> LOGAND
200 %token <voidval> ANDIF
201 %token <voidval> '='
202 %token <voidval> NOTEQUAL
203 %token <voidval> '>'
204 %token <voidval> GTR
205 %token <voidval> '<'
206 %token <voidval> LEQ
207 %token <voidval> IN
208 %token <voidval> '+'
209 %token <voidval> '-'
210 %token <voidval> '*'
211 %token <voidval> '/'
212 %token <voidval> SLASH_SLASH
213 %token <voidval> MOD
214 %token <voidval> REM
215 %token <voidval> NOT
216 %token <voidval> POINTER
217 %token <voidval> RECEIVE
218 %token <voidval> '['
219 %token <voidval> ']'
220 %token <voidval> '('
221 %token <voidval> ')'
222 %token <voidval> UP
223 %token <voidval> IF
224 %token <voidval> THEN
225 %token <voidval> ELSE
226 %token <voidval> FI
227 %token <voidval> ELSIF
228 %token <voidval> ILLEGAL_TOKEN
229 %token <voidval> NUM
230 %token <voidval> PRED
231 %token <voidval> SUCC
232 %token <voidval> ABS
233 %token <voidval> CARD
234 %token <voidval> MAX_TOKEN
235 %token <voidval> MIN_TOKEN
236 %token <voidval> SIZE
237 %token <voidval> UPPER
238 %token <voidval> LOWER
239 %token <voidval> LENGTH
240
241 /* Tokens which are not Chill tokens used in expressions, but rather GDB
242 specific things that we recognize in the same context as Chill tokens
243 (register names for example). */
244
245 %token <lval> GDB_REGNAME /* Machine register name */
246 %token <lval> GDB_LAST /* Value history */
247 %token <ivar> GDB_VARIABLE /* Convenience variable */
248 %token <voidval> GDB_ASSIGNMENT /* Assign value to somewhere */
249
250 %type <voidval> location
251 %type <voidval> access_name
252 %type <voidval> primitive_value
253 %type <voidval> location_contents
254 %type <voidval> value_name
255 %type <voidval> literal
256 %type <voidval> tuple
257 %type <voidval> value_string_element
258 %type <voidval> value_string_slice
259 %type <voidval> value_array_element
260 %type <voidval> value_array_slice
261 %type <voidval> value_structure_field
262 %type <voidval> expression_conversion
263 %type <voidval> value_procedure_call
264 %type <voidval> value_built_in_routine_call
265 %type <voidval> chill_value_built_in_routine_call
266 %type <voidval> start_expression
267 %type <voidval> zero_adic_operator
268 %type <voidval> parenthesised_expression
269 %type <voidval> value
270 %type <voidval> undefined_value
271 %type <voidval> expression
272 %type <voidval> conditional_expression
273 %type <voidval> then_alternative
274 %type <voidval> else_alternative
275 %type <voidval> sub_expression
276 %type <voidval> value_case_alternative
277 %type <voidval> operand_0
278 %type <voidval> operand_1
279 %type <voidval> operand_2
280 %type <voidval> operand_3
281 %type <voidval> operand_4
282 %type <voidval> operand_5
283 %type <voidval> operand_6
284 %type <voidval> synonym_name
285 %type <voidval> value_enumeration_name
286 %type <voidval> value_do_with_name
287 %type <voidval> value_receive_name
288 %type <voidval> string_primitive_value
289 %type <voidval> start_element
290 %type <voidval> left_element
291 %type <voidval> right_element
292 %type <voidval> slice_size
293 %type <voidval> array_primitive_value
294 %type <voidval> expression_list
295 %type <voidval> lower_element
296 %type <voidval> upper_element
297 %type <voidval> first_element
298 %type <tval> mode_argument
299 %type <voidval> upper_lower_argument
300 %type <voidval> length_argument
301 %type <voidval> array_mode_name
302 %type <voidval> string_mode_name
303 %type <voidval> variant_structure_mode_name
304 %type <voidval> boolean_expression
305 %type <voidval> case_selector_list
306 %type <voidval> subexpression
307 %type <voidval> case_label_specification
308 %type <voidval> buffer_location
309 %type <voidval> single_assignment_action
310 %type <tsym> mode_name
311
312 %%
313
314 /* Z.200, 5.3.1 */
315
316 start : value { }
317 | mode_name
318 { write_exp_elt_opcode(OP_TYPE);
319 write_exp_elt_type($1.type);
320 write_exp_elt_opcode(OP_TYPE);}
321 ;
322
323 value : expression
324 {
325 $$ = 0; /* FIXME */
326 }
327 | undefined_value
328 {
329 $$ = 0; /* FIXME */
330 }
331 ;
332
333 undefined_value : FIXME_01
334 {
335 $$ = 0; /* FIXME */
336 }
337 ;
338
339 /* Z.200, 4.2.1 */
340
341 location : access_name
342 | primitive_value POINTER
343 {
344 write_exp_elt_opcode (UNOP_IND);
345 }
346 ;
347
348 /* Z.200, 4.2.2 */
349
350 access_name : LOCATION_NAME
351 {
352 write_exp_elt_opcode (OP_VAR_VALUE);
353 write_exp_elt_block (NULL);
354 write_exp_elt_sym ($1.sym);
355 write_exp_elt_opcode (OP_VAR_VALUE);
356 }
357 | GDB_LAST /* gdb specific */
358 {
359 write_exp_elt_opcode (OP_LAST);
360 write_exp_elt_longcst ($1);
361 write_exp_elt_opcode (OP_LAST);
362 }
363 | GDB_REGNAME /* gdb specific */
364 {
365 write_exp_elt_opcode (OP_REGISTER);
366 write_exp_elt_longcst ($1);
367 write_exp_elt_opcode (OP_REGISTER);
368 }
369 | GDB_VARIABLE /* gdb specific */
370 {
371 write_exp_elt_opcode (OP_INTERNALVAR);
372 write_exp_elt_intern ($1);
373 write_exp_elt_opcode (OP_INTERNALVAR);
374 }
375 | FIXME_03
376 {
377 $$ = 0; /* FIXME */
378 }
379 ;
380
381 /* Z.200, 4.2.8 */
382
383 expression_list : expression
384 {
385 arglist_len = 1;
386 }
387 | expression_list ',' expression
388 {
389 arglist_len++;
390 }
391
392 /* Z.200, 5.2.1 */
393
394 primitive_value : location_contents
395 {
396 $$ = 0; /* FIXME */
397 }
398 | value_name
399 {
400 $$ = 0; /* FIXME */
401 }
402 | literal
403 {
404 $$ = 0; /* FIXME */
405 }
406 | tuple
407 {
408 $$ = 0; /* FIXME */
409 }
410 | value_string_element
411 {
412 $$ = 0; /* FIXME */
413 }
414 | value_string_slice
415 {
416 $$ = 0; /* FIXME */
417 }
418 | value_array_element
419 {
420 $$ = 0; /* FIXME */
421 }
422 | value_array_slice
423 {
424 $$ = 0; /* FIXME */
425 }
426 | value_structure_field
427 {
428 $$ = 0; /* FIXME */
429 }
430 | expression_conversion
431 {
432 $$ = 0; /* FIXME */
433 }
434 | value_procedure_call
435 {
436 $$ = 0; /* FIXME */
437 }
438 | value_built_in_routine_call
439 {
440 $$ = 0; /* FIXME */
441 }
442 | start_expression
443 {
444 $$ = 0; /* FIXME */
445 }
446 | zero_adic_operator
447 {
448 $$ = 0; /* FIXME */
449 }
450 | parenthesised_expression
451 {
452 $$ = 0; /* FIXME */
453 }
454 ;
455
456 /* Z.200, 5.2.2 */
457
458 location_contents: location
459 {
460 $$ = 0; /* FIXME */
461 }
462 ;
463
464 /* Z.200, 5.2.3 */
465
466 value_name : synonym_name
467 {
468 $$ = 0; /* FIXME */
469 }
470 | value_enumeration_name
471 {
472 $$ = 0; /* FIXME */
473 }
474 | value_do_with_name
475 {
476 $$ = 0; /* FIXME */
477 }
478 | value_receive_name
479 {
480 $$ = 0; /* FIXME */
481 }
482 | GENERAL_PROCEDURE_NAME
483 {
484 write_exp_elt_opcode (OP_VAR_VALUE);
485 write_exp_elt_block (NULL);
486 write_exp_elt_sym ($1.sym);
487 write_exp_elt_opcode (OP_VAR_VALUE);
488 }
489 ;
490
491 /* Z.200, 5.2.4.1 */
492
493 literal : INTEGER_LITERAL
494 {
495 write_exp_elt_opcode (OP_LONG);
496 write_exp_elt_type ($1.type);
497 write_exp_elt_longcst ((LONGEST) ($1.val));
498 write_exp_elt_opcode (OP_LONG);
499 }
500 | BOOLEAN_LITERAL
501 {
502 write_exp_elt_opcode (OP_BOOL);
503 write_exp_elt_longcst ((LONGEST) $1);
504 write_exp_elt_opcode (OP_BOOL);
505 }
506 | CHARACTER_LITERAL
507 {
508 write_exp_elt_opcode (OP_LONG);
509 write_exp_elt_type ($1.type);
510 write_exp_elt_longcst ((LONGEST) ($1.val));
511 write_exp_elt_opcode (OP_LONG);
512 }
513 | FLOAT_LITERAL
514 {
515 write_exp_elt_opcode (OP_DOUBLE);
516 write_exp_elt_type (builtin_type_double);
517 write_exp_elt_dblcst ($1);
518 write_exp_elt_opcode (OP_DOUBLE);
519 }
520 | SET_LITERAL
521 {
522 $$ = 0; /* FIXME */
523 }
524 | EMPTINESS_LITERAL
525 {
526 $$ = 0; /* FIXME */
527 }
528 | CHARACTER_STRING_LITERAL
529 {
530 write_exp_elt_opcode (OP_STRING);
531 write_exp_string ($1);
532 write_exp_elt_opcode (OP_STRING);
533 }
534 | BIT_STRING_LITERAL
535 {
536 write_exp_elt_opcode (OP_BITSTRING);
537 write_exp_bitstring ($1);
538 write_exp_elt_opcode (OP_BITSTRING);
539 }
540 ;
541
542 /* Z.200, 5.2.5 */
543
544 tuple : FIXME_04
545 {
546 $$ = 0; /* FIXME */
547 }
548 ;
549
550
551 /* Z.200, 5.2.6 */
552
553 value_string_element: string_primitive_value '(' start_element ')'
554 {
555 $$ = 0; /* FIXME */
556 }
557 ;
558
559 /* Z.200, 5.2.7 */
560
561 value_string_slice: string_primitive_value '(' left_element ':' right_element ')'
562 {
563 $$ = 0; /* FIXME */
564 }
565 | string_primitive_value '(' start_element UP slice_size ')'
566 {
567 $$ = 0; /* FIXME */
568 }
569 ;
570
571 /* Z.200, 5.2.8 */
572
573 value_array_element: array_primitive_value '('
574 /* This is to save the value of arglist_len
575 being accumulated for each dimension. */
576 { start_arglist (); }
577 expression_list ')'
578 {
579 write_exp_elt_opcode (MULTI_SUBSCRIPT);
580 write_exp_elt_longcst ((LONGEST) end_arglist ());
581 write_exp_elt_opcode (MULTI_SUBSCRIPT);
582 }
583 ;
584
585 /* Z.200, 5.2.9 */
586
587 value_array_slice: array_primitive_value '(' lower_element ':' upper_element ')'
588 {
589 $$ = 0; /* FIXME */
590 }
591 | array_primitive_value '(' first_element UP slice_size ')'
592 {
593 $$ = 0; /* FIXME */
594 }
595 ;
596
597 /* Z.200, 5.2.10 */
598
599 value_structure_field: primitive_value FIELD_NAME
600 { write_exp_elt_opcode (STRUCTOP_STRUCT);
601 write_exp_string ($2);
602 write_exp_elt_opcode (STRUCTOP_STRUCT);
603 }
604 ;
605
606 /* Z.200, 5.2.11 */
607
608 expression_conversion: mode_name parenthesised_expression
609 {
610 write_exp_elt_opcode (UNOP_CAST);
611 write_exp_elt_type ($1.type);
612 write_exp_elt_opcode (UNOP_CAST);
613 }
614 ;
615
616 /* Z.200, 5.2.12 */
617
618 value_procedure_call: FIXME_05
619 {
620 $$ = 0; /* FIXME */
621 }
622 ;
623
624 /* Z.200, 5.2.13 */
625
626 value_built_in_routine_call: chill_value_built_in_routine_call
627 {
628 $$ = 0; /* FIXME */
629 }
630 ;
631
632 /* Z.200, 5.2.14 */
633
634 start_expression: FIXME_06
635 {
636 $$ = 0; /* FIXME */
637 } /* Not in GNU-Chill */
638 ;
639
640 /* Z.200, 5.2.15 */
641
642 zero_adic_operator: FIXME_07
643 {
644 $$ = 0; /* FIXME */
645 }
646 ;
647
648 /* Z.200, 5.2.16 */
649
650 parenthesised_expression: '(' expression ')'
651 {
652 $$ = 0; /* FIXME */
653 }
654 ;
655
656 /* Z.200, 5.3.2 */
657
658 expression : operand_0
659 {
660 $$ = 0; /* FIXME */
661 }
662 | single_assignment_action
663 {
664 $$ = 0; /* FIXME */
665 }
666 | conditional_expression
667 {
668 $$ = 0; /* FIXME */
669 }
670 ;
671
672 conditional_expression : IF boolean_expression then_alternative else_alternative FI
673 {
674 $$ = 0; /* FIXME */
675 }
676 | CASE case_selector_list OF value_case_alternative '[' ELSE sub_expression ']' ESAC
677 {
678 $$ = 0; /* FIXME */
679 }
680 ;
681
682 then_alternative: THEN subexpression
683 {
684 $$ = 0; /* FIXME */
685 }
686 ;
687
688 else_alternative: ELSE subexpression
689 {
690 $$ = 0; /* FIXME */
691 }
692 | ELSIF boolean_expression then_alternative else_alternative
693 {
694 $$ = 0; /* FIXME */
695 }
696 ;
697
698 sub_expression : expression
699 {
700 $$ = 0; /* FIXME */
701 }
702 ;
703
704 value_case_alternative: case_label_specification ':' sub_expression ';'
705 {
706 $$ = 0; /* FIXME */
707 }
708 ;
709
710 /* Z.200, 5.3.3 */
711
712 operand_0 : operand_1
713 {
714 $$ = 0; /* FIXME */
715 }
716 | operand_0 LOGIOR operand_1
717 {
718 write_exp_elt_opcode (BINOP_BITWISE_IOR);
719 }
720 | operand_0 ORIF operand_1
721 {
722 $$ = 0; /* FIXME */
723 }
724 | operand_0 LOGXOR operand_1
725 {
726 write_exp_elt_opcode (BINOP_BITWISE_XOR);
727 }
728 ;
729
730 /* Z.200, 5.3.4 */
731
732 operand_1 : operand_2
733 {
734 $$ = 0; /* FIXME */
735 }
736 | operand_1 LOGAND operand_2
737 {
738 write_exp_elt_opcode (BINOP_BITWISE_AND);
739 }
740 | operand_1 ANDIF operand_2
741 {
742 $$ = 0; /* FIXME */
743 }
744 ;
745
746 /* Z.200, 5.3.5 */
747
748 operand_2 : operand_3
749 {
750 $$ = 0; /* FIXME */
751 }
752 | operand_2 '=' operand_3
753 {
754 write_exp_elt_opcode (BINOP_EQUAL);
755 }
756 | operand_2 NOTEQUAL operand_3
757 {
758 write_exp_elt_opcode (BINOP_NOTEQUAL);
759 }
760 | operand_2 '>' operand_3
761 {
762 write_exp_elt_opcode (BINOP_GTR);
763 }
764 | operand_2 GTR operand_3
765 {
766 write_exp_elt_opcode (BINOP_GEQ);
767 }
768 | operand_2 '<' operand_3
769 {
770 write_exp_elt_opcode (BINOP_LESS);
771 }
772 | operand_2 LEQ operand_3
773 {
774 write_exp_elt_opcode (BINOP_LEQ);
775 }
776 | operand_2 IN operand_3
777 {
778 write_exp_elt_opcode (BINOP_IN);
779 }
780 ;
781
782
783 /* Z.200, 5.3.6 */
784
785 operand_3 : operand_4
786 {
787 $$ = 0; /* FIXME */
788 }
789 | operand_3 '+' operand_4
790 {
791 write_exp_elt_opcode (BINOP_ADD);
792 }
793 | operand_3 '-' operand_4
794 {
795 write_exp_elt_opcode (BINOP_SUB);
796 }
797 | operand_3 SLASH_SLASH operand_4
798 {
799 write_exp_elt_opcode (BINOP_CONCAT);
800 }
801 ;
802
803 /* Z.200, 5.3.7 */
804
805 operand_4 : operand_5
806 {
807 $$ = 0; /* FIXME */
808 }
809 | operand_4 '*' operand_5
810 {
811 write_exp_elt_opcode (BINOP_MUL);
812 }
813 | operand_4 '/' operand_5
814 {
815 write_exp_elt_opcode (BINOP_DIV);
816 }
817 | operand_4 MOD operand_5
818 {
819 write_exp_elt_opcode (BINOP_MOD);
820 }
821 | operand_4 REM operand_5
822 {
823 write_exp_elt_opcode (BINOP_REM);
824 }
825 ;
826
827 /* Z.200, 5.3.8 */
828
829 operand_5 : operand_6
830 {
831 $$ = 0; /* FIXME */
832 }
833 | '-' operand_6
834 {
835 write_exp_elt_opcode (UNOP_NEG);
836 }
837 | NOT operand_6
838 {
839 write_exp_elt_opcode (UNOP_LOGICAL_NOT);
840 }
841 | parenthesised_expression literal
842 /* We require the string operand to be a literal, to avoid some
843 nasty parsing ambiguities. */
844 {
845 write_exp_elt_opcode (BINOP_CONCAT);
846 }
847 ;
848
849 /* Z.200, 5.3.9 */
850
851 operand_6 : POINTER location
852 {
853 write_exp_elt_opcode (UNOP_ADDR);
854 }
855 | RECEIVE buffer_location
856 {
857 $$ = 0; /* FIXME */
858 }
859 | primitive_value
860 {
861 $$ = 0; /* FIXME */
862 }
863 ;
864
865
866 /* Z.200, 6.2 */
867
868 single_assignment_action :
869 location GDB_ASSIGNMENT value
870 {
871 write_exp_elt_opcode (BINOP_ASSIGN);
872 }
873 ;
874
875 /* Z.200, 6.20.3 */
876
877 chill_value_built_in_routine_call :
878 NUM '(' expression ')'
879 {
880 $$ = 0; /* FIXME */
881 }
882 | PRED '(' expression ')'
883 {
884 $$ = 0; /* FIXME */
885 }
886 | SUCC '(' expression ')'
887 {
888 $$ = 0; /* FIXME */
889 }
890 | ABS '(' expression ')'
891 {
892 $$ = 0; /* FIXME */
893 }
894 | CARD '(' expression ')'
895 {
896 $$ = 0; /* FIXME */
897 }
898 | MAX_TOKEN '(' expression ')'
899 {
900 $$ = 0; /* FIXME */
901 }
902 | MIN_TOKEN '(' expression ')'
903 {
904 $$ = 0; /* FIXME */
905 }
906 | SIZE '(' expression ')'
907 { write_exp_elt_opcode (UNOP_SIZEOF); }
908 | SIZE '(' mode_argument ')'
909 { write_exp_elt_opcode (OP_LONG);
910 write_exp_elt_type (builtin_type_int);
911 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
912 write_exp_elt_opcode (OP_LONG); }
913 | UPPER '(' upper_lower_argument ')'
914 {
915 $$ = 0; /* FIXME */
916 }
917 | LOWER '(' upper_lower_argument ')'
918 {
919 $$ = 0; /* FIXME */
920 }
921 | LENGTH '(' length_argument ')'
922 {
923 $$ = 0; /* FIXME */
924 }
925 ;
926
927 mode_argument : mode_name
928 {
929 $$ = $1.type;
930 }
931 | array_mode_name '(' expression ')'
932 {
933 $$ = 0; /* FIXME */
934 }
935 | string_mode_name '(' expression ')'
936 {
937 $$ = 0; /* FIXME */
938 }
939 | variant_structure_mode_name '(' expression_list ')'
940 {
941 $$ = 0; /* FIXME */
942 }
943 ;
944
945 mode_name : TYPENAME
946 ;
947
948 upper_lower_argument : expression
949 {
950 $$ = 0; /* FIXME */
951 }
952 | mode_name
953 {
954 $$ = 0; /* FIXME */
955 }
956 ;
957
958 length_argument : expression
959 {
960 $$ = 0; /* FIXME */
961 }
962 ;
963
964 /* Z.200, 12.4.3 */
965
966 array_primitive_value : primitive_value
967 {
968 $$ = 0;
969 }
970 ;
971
972
973 /* Things which still need productions... */
974
975 array_mode_name : FIXME_08 { $$ = 0; }
976 string_mode_name : FIXME_09 { $$ = 0; }
977 variant_structure_mode_name: FIXME_10 { $$ = 0; }
978 synonym_name : FIXME_11 { $$ = 0; }
979 value_enumeration_name : FIXME_12 { $$ = 0; }
980 value_do_with_name : FIXME_13 { $$ = 0; }
981 value_receive_name : FIXME_14 { $$ = 0; }
982 string_primitive_value : FIXME_15 { $$ = 0; }
983 start_element : FIXME_16 { $$ = 0; }
984 left_element : FIXME_17 { $$ = 0; }
985 right_element : FIXME_18 { $$ = 0; }
986 slice_size : FIXME_19 { $$ = 0; }
987 lower_element : FIXME_20 { $$ = 0; }
988 upper_element : FIXME_21 { $$ = 0; }
989 first_element : FIXME_22 { $$ = 0; }
990 boolean_expression : FIXME_26 { $$ = 0; }
991 case_selector_list : FIXME_27 { $$ = 0; }
992 subexpression : FIXME_28 { $$ = 0; }
993 case_label_specification: FIXME_29 { $$ = 0; }
994 buffer_location : FIXME_30 { $$ = 0; }
995
996 %%
997
998 /* Implementation of a dynamically expandable buffer for processing input
999 characters acquired through lexptr and building a value to return in
1000 yylval. */
1001
1002 static char *tempbuf; /* Current buffer contents */
1003 static int tempbufsize; /* Size of allocated buffer */
1004 static int tempbufindex; /* Current index into buffer */
1005
1006 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
1007
1008 #define CHECKBUF(size) \
1009 do { \
1010 if (tempbufindex + (size) >= tempbufsize) \
1011 { \
1012 growbuf_by_size (size); \
1013 } \
1014 } while (0);
1015
1016 /* Grow the static temp buffer if necessary, including allocating the first one
1017 on demand. */
1018
1019 static void
1020 growbuf_by_size (count)
1021 int count;
1022 {
1023 int growby;
1024
1025 growby = max (count, GROWBY_MIN_SIZE);
1026 tempbufsize += growby;
1027 if (tempbuf == NULL)
1028 {
1029 tempbuf = (char *) malloc (tempbufsize);
1030 }
1031 else
1032 {
1033 tempbuf = (char *) realloc (tempbuf, tempbufsize);
1034 }
1035 }
1036
1037 /* Try to consume a simple name string token. If successful, returns
1038 a pointer to a nullbyte terminated copy of the name that can be used
1039 in symbol table lookups. If not successful, returns NULL. */
1040
1041 static char *
1042 match_simple_name_string ()
1043 {
1044 char *tokptr = lexptr;
1045
1046 if (isalpha (*tokptr) || *tokptr == '_')
1047 {
1048 char *result;
1049 do {
1050 tokptr++;
1051 } while (isalnum (*tokptr) || (*tokptr == '_'));
1052 yylval.sval.ptr = lexptr;
1053 yylval.sval.length = tokptr - lexptr;
1054 lexptr = tokptr;
1055 result = copy_name (yylval.sval);
1056 return result;
1057 }
1058 return (NULL);
1059 }
1060
1061 /* Start looking for a value composed of valid digits as set by the base
1062 in use. Note that '_' characters are valid anywhere, in any quantity,
1063 and are simply ignored. Since we must find at least one valid digit,
1064 or reject this token as an integer literal, we keep track of how many
1065 digits we have encountered. */
1066
1067 static int
1068 decode_integer_value (base, tokptrptr, ivalptr)
1069 int base;
1070 char **tokptrptr;
1071 int *ivalptr;
1072 {
1073 char *tokptr = *tokptrptr;
1074 int temp;
1075 int digits = 0;
1076
1077 while (*tokptr != '\0')
1078 {
1079 temp = *tokptr;
1080 if (isupper (temp))
1081 temp = tolower (temp);
1082 tokptr++;
1083 switch (temp)
1084 {
1085 case '_':
1086 continue;
1087 case '0': case '1': case '2': case '3': case '4':
1088 case '5': case '6': case '7': case '8': case '9':
1089 temp -= '0';
1090 break;
1091 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1092 temp -= 'a';
1093 temp += 10;
1094 break;
1095 default:
1096 temp = base;
1097 break;
1098 }
1099 if (temp < base)
1100 {
1101 digits++;
1102 *ivalptr *= base;
1103 *ivalptr += temp;
1104 }
1105 else
1106 {
1107 /* Found something not in domain for current base. */
1108 tokptr--; /* Unconsume what gave us indigestion. */
1109 break;
1110 }
1111 }
1112
1113 /* If we didn't find any digits, then we don't have a valid integer
1114 value, so reject the entire token. Otherwise, update the lexical
1115 scan pointer, and return non-zero for success. */
1116
1117 if (digits == 0)
1118 {
1119 return (0);
1120 }
1121 else
1122 {
1123 *tokptrptr = tokptr;
1124 return (1);
1125 }
1126 }
1127
1128 static int
1129 decode_integer_literal (valptr, tokptrptr)
1130 int *valptr;
1131 char **tokptrptr;
1132 {
1133 char *tokptr = *tokptrptr;
1134 int base = 0;
1135 int ival = 0;
1136 int explicit_base = 0;
1137
1138 /* Look for an explicit base specifier, which is optional. */
1139
1140 switch (*tokptr)
1141 {
1142 case 'd':
1143 case 'D':
1144 explicit_base++;
1145 base = 10;
1146 tokptr++;
1147 break;
1148 case 'b':
1149 case 'B':
1150 explicit_base++;
1151 base = 2;
1152 tokptr++;
1153 break;
1154 case 'h':
1155 case 'H':
1156 explicit_base++;
1157 base = 16;
1158 tokptr++;
1159 break;
1160 case 'o':
1161 case 'O':
1162 explicit_base++;
1163 base = 8;
1164 tokptr++;
1165 break;
1166 default:
1167 base = 10;
1168 break;
1169 }
1170
1171 /* If we found an explicit base ensure that the character after the
1172 explicit base is a single quote. */
1173
1174 if (explicit_base && (*tokptr++ != '\''))
1175 {
1176 return (0);
1177 }
1178
1179 /* Attempt to decode whatever follows as an integer value in the
1180 indicated base, updating the token pointer in the process and
1181 computing the value into ival. Also, if we have an explicit
1182 base, then the next character must not be a single quote, or we
1183 have a bitstring literal, so reject the entire token in this case.
1184 Otherwise, update the lexical scan pointer, and return non-zero
1185 for success. */
1186
1187 if (!decode_integer_value (base, &tokptr, &ival))
1188 {
1189 return (0);
1190 }
1191 else if (explicit_base && (*tokptr == '\''))
1192 {
1193 return (0);
1194 }
1195 else
1196 {
1197 *valptr = ival;
1198 *tokptrptr = tokptr;
1199 return (1);
1200 }
1201 }
1202
1203 /* If it wasn't for the fact that floating point values can contain '_'
1204 characters, we could just let strtod do all the hard work by letting it
1205 try to consume as much of the current token buffer as possible and
1206 find a legal conversion. Unfortunately we need to filter out the '_'
1207 characters before calling strtod, which we do by copying the other
1208 legal chars to a local buffer to be converted. However since we also
1209 need to keep track of where the last unconsumed character in the input
1210 buffer is, we have transfer only as many characters as may compose a
1211 legal floating point value. */
1212
1213 static int
1214 match_float_literal ()
1215 {
1216 char *tokptr = lexptr;
1217 char *buf;
1218 char *copy;
1219 double dval;
1220 extern double strtod ();
1221
1222 /* Make local buffer in which to build the string to convert. This is
1223 required because underscores are valid in chill floating point numbers
1224 but not in the string passed to strtod to convert. The string will be
1225 no longer than our input string. */
1226
1227 copy = buf = (char *) alloca (strlen (tokptr) + 1);
1228
1229 /* Transfer all leading digits to the conversion buffer, discarding any
1230 underscores. */
1231
1232 while (isdigit (*tokptr) || *tokptr == '_')
1233 {
1234 if (*tokptr != '_')
1235 {
1236 *copy++ = *tokptr;
1237 }
1238 tokptr++;
1239 }
1240
1241 /* Now accept either a '.', or one of [eEdD]. Dot is legal regardless
1242 of whether we found any leading digits, and we simply accept it and
1243 continue on to look for the fractional part and/or exponent. One of
1244 [eEdD] is legal only if we have seen digits, and means that there
1245 is no fractional part. If we find neither of these, then this is
1246 not a floating point number, so return failure. */
1247
1248 switch (*tokptr++)
1249 {
1250 case '.':
1251 /* Accept and then look for fractional part and/or exponent. */
1252 *copy++ = '.';
1253 break;
1254
1255 case 'e':
1256 case 'E':
1257 case 'd':
1258 case 'D':
1259 if (copy == buf)
1260 {
1261 return (0);
1262 }
1263 *copy++ = 'e';
1264 goto collect_exponent;
1265 break;
1266
1267 default:
1268 return (0);
1269 break;
1270 }
1271
1272 /* We found a '.', copy any fractional digits to the conversion buffer, up
1273 to the first nondigit, non-underscore character. */
1274
1275 while (isdigit (*tokptr) || *tokptr == '_')
1276 {
1277 if (*tokptr != '_')
1278 {
1279 *copy++ = *tokptr;
1280 }
1281 tokptr++;
1282 }
1283
1284 /* Look for an exponent, which must start with one of [eEdD]. If none
1285 is found, jump directly to trying to convert what we have collected
1286 so far. */
1287
1288 switch (*tokptr)
1289 {
1290 case 'e':
1291 case 'E':
1292 case 'd':
1293 case 'D':
1294 *copy++ = 'e';
1295 tokptr++;
1296 break;
1297 default:
1298 goto convert_float;
1299 break;
1300 }
1301
1302 /* Accept an optional '-' or '+' following one of [eEdD]. */
1303
1304 collect_exponent:
1305 if (*tokptr == '+' || *tokptr == '-')
1306 {
1307 *copy++ = *tokptr++;
1308 }
1309
1310 /* Now copy an exponent into the conversion buffer. Note that at the
1311 moment underscores are *not* allowed in exponents. */
1312
1313 while (isdigit (*tokptr))
1314 {
1315 *copy++ = *tokptr++;
1316 }
1317
1318 /* If we transfered any chars to the conversion buffer, try to interpret its
1319 contents as a floating point value. If any characters remain, then we
1320 must not have a valid floating point string. */
1321
1322 convert_float:
1323 *copy = '\0';
1324 if (copy != buf)
1325 {
1326 dval = strtod (buf, &copy);
1327 if (*copy == '\0')
1328 {
1329 yylval.dval = dval;
1330 lexptr = tokptr;
1331 return (FLOAT_LITERAL);
1332 }
1333 }
1334 return (0);
1335 }
1336
1337 /* Recognize a string literal. A string literal is a sequence
1338 of characters enclosed in matching single or double quotes, except that
1339 a single character inside single quotes is a character literal, which
1340 we reject as a string literal. To embed the terminator character inside
1341 a string, it is simply doubled (I.E. "this""is""one""string") */
1342
1343 static int
1344 match_string_literal ()
1345 {
1346 char *tokptr = lexptr;
1347
1348 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
1349 {
1350 CHECKBUF (1);
1351 if (*tokptr == *lexptr)
1352 {
1353 if (*(tokptr + 1) == *lexptr)
1354 {
1355 tokptr++;
1356 }
1357 else
1358 {
1359 break;
1360 }
1361 }
1362 tempbuf[tempbufindex++] = *tokptr;
1363 }
1364 if (*tokptr == '\0' /* no terminator */
1365 || (tempbufindex == 1 && *tokptr == '\'')) /* char literal */
1366 {
1367 return (0);
1368 }
1369 else
1370 {
1371 tempbuf[tempbufindex] = '\0';
1372 yylval.sval.ptr = tempbuf;
1373 yylval.sval.length = tempbufindex;
1374 lexptr = ++tokptr;
1375 return (CHARACTER_STRING_LITERAL);
1376 }
1377 }
1378
1379 /* Recognize a character literal. A character literal is single character
1380 or a control sequence, enclosed in single quotes. A control sequence
1381 is a comma separated list of one or more integer literals, enclosed
1382 in parenthesis and introduced with a circumflex character.
1383
1384 EX: 'a' '^(7)' '^(7,8)'
1385
1386 As a GNU chill extension, the syntax C'xx' is also recognized as a
1387 character literal, where xx is a hex value for the character.
1388
1389 Note that more than a single character, enclosed in single quotes, is
1390 a string literal.
1391
1392 Also note that the control sequence form is not in GNU Chill since it
1393 is ambiguous with the string literal form using single quotes. I.E.
1394 is '^(7)' a character literal or a string literal. In theory it it
1395 possible to tell by context, but GNU Chill doesn't accept the control
1396 sequence form, so neither do we (for now the code is disabled).
1397
1398 Returns CHARACTER_LITERAL if a match is found.
1399 */
1400
1401 static int
1402 match_character_literal ()
1403 {
1404 char *tokptr = lexptr;
1405 int ival = 0;
1406
1407 if ((*tokptr == 'c' || *tokptr == 'C') && (*(tokptr + 1) == '\''))
1408 {
1409 /* We have a GNU chill extension form, so skip the leading "C'",
1410 decode the hex value, and then ensure that we have a trailing
1411 single quote character. */
1412 tokptr += 2;
1413 if (!decode_integer_value (16, &tokptr, &ival) || (*tokptr != '\''))
1414 {
1415 return (0);
1416 }
1417 tokptr++;
1418 }
1419 else if (*tokptr == '\'')
1420 {
1421 tokptr++;
1422
1423 /* Determine which form we have, either a control sequence or the
1424 single character form. */
1425
1426 if ((*tokptr == '^') && (*(tokptr + 1) == '('))
1427 {
1428 #if 0 /* Disable, see note above. -fnf */
1429 /* Match and decode a control sequence. Return zero if we don't
1430 find a valid integer literal, or if the next unconsumed character
1431 after the integer literal is not the trailing ')'.
1432 FIXME: We currently don't handle the multiple integer literal
1433 form. */
1434 tokptr += 2;
1435 if (!decode_integer_literal (&ival, &tokptr) || (*tokptr++ != ')'))
1436 {
1437 return (0);
1438 }
1439 #else
1440 return (0);
1441 #endif
1442 }
1443 else
1444 {
1445 ival = *tokptr++;
1446 }
1447
1448 /* The trailing quote has not yet been consumed. If we don't find
1449 it, then we have no match. */
1450
1451 if (*tokptr++ != '\'')
1452 {
1453 return (0);
1454 }
1455 }
1456 else
1457 {
1458 /* Not a character literal. */
1459 return (0);
1460 }
1461 yylval.typed_val.val = ival;
1462 yylval.typed_val.type = builtin_type_chill_char;
1463 lexptr = tokptr;
1464 return (CHARACTER_LITERAL);
1465 }
1466
1467 /* Recognize an integer literal, as specified in Z.200 sec 5.2.4.2.
1468 Note that according to 5.2.4.2, a single "_" is also a valid integer
1469 literal, however GNU-chill requires there to be at least one "digit"
1470 in any integer literal. */
1471
1472 static int
1473 match_integer_literal ()
1474 {
1475 char *tokptr = lexptr;
1476 int ival;
1477
1478 if (!decode_integer_literal (&ival, &tokptr))
1479 {
1480 return (0);
1481 }
1482 else
1483 {
1484 yylval.typed_val.val = ival;
1485 yylval.typed_val.type = builtin_type_int;
1486 lexptr = tokptr;
1487 return (INTEGER_LITERAL);
1488 }
1489 }
1490
1491 /* Recognize a bit-string literal, as specified in Z.200 sec 5.2.4.8
1492 Note that according to 5.2.4.8, a single "_" is also a valid bit-string
1493 literal, however GNU-chill requires there to be at least one "digit"
1494 in any bit-string literal. */
1495
1496 static int
1497 match_bitstring_literal ()
1498 {
1499 char *tokptr = lexptr;
1500 int mask;
1501 int bitoffset = 0;
1502 int bitcount = 0;
1503 int base;
1504 int digit;
1505
1506 tempbufindex = 0;
1507
1508 /* Look for the required explicit base specifier. */
1509
1510 switch (*tokptr++)
1511 {
1512 case 'b':
1513 case 'B':
1514 base = 2;
1515 break;
1516 case 'o':
1517 case 'O':
1518 base = 8;
1519 break;
1520 case 'h':
1521 case 'H':
1522 base = 16;
1523 break;
1524 default:
1525 return (0);
1526 break;
1527 }
1528
1529 /* Ensure that the character after the explicit base is a single quote. */
1530
1531 if (*tokptr++ != '\'')
1532 {
1533 return (0);
1534 }
1535
1536 while (*tokptr != '\0' && *tokptr != '\'')
1537 {
1538 digit = *tokptr;
1539 if (isupper (digit))
1540 digit = tolower (digit);
1541 tokptr++;
1542 switch (digit)
1543 {
1544 case '_':
1545 continue;
1546 case '0': case '1': case '2': case '3': case '4':
1547 case '5': case '6': case '7': case '8': case '9':
1548 digit -= '0';
1549 break;
1550 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1551 digit -= 'a';
1552 digit += 10;
1553 break;
1554 default:
1555 return (0);
1556 break;
1557 }
1558 if (digit >= base)
1559 {
1560 /* Found something not in domain for current base. */
1561 return (0);
1562 }
1563 else
1564 {
1565 /* Extract bits from digit, starting with the msbit appropriate for
1566 the current base, and packing them into the bitstring byte,
1567 starting at the lsbit. */
1568 for (mask = (base >> 1); mask > 0; mask >>= 1)
1569 {
1570 bitcount++;
1571 CHECKBUF (1);
1572 if (digit & mask)
1573 {
1574 tempbuf[tempbufindex] |= (1 << bitoffset);
1575 }
1576 bitoffset++;
1577 if (bitoffset == HOST_CHAR_BIT)
1578 {
1579 bitoffset = 0;
1580 tempbufindex++;
1581 }
1582 }
1583 }
1584 }
1585
1586 /* Verify that we consumed everything up to the trailing single quote,
1587 and that we found some bits (IE not just underbars). */
1588
1589 if (*tokptr++ != '\'')
1590 {
1591 return (0);
1592 }
1593 else
1594 {
1595 yylval.sval.ptr = tempbuf;
1596 yylval.sval.length = bitcount;
1597 lexptr = tokptr;
1598 return (BIT_STRING_LITERAL);
1599 }
1600 }
1601
1602 /* Recognize tokens that start with '$'. These include:
1603
1604 $regname A native register name or a "standard
1605 register name".
1606 Return token GDB_REGNAME.
1607
1608 $variable A convenience variable with a name chosen
1609 by the user.
1610 Return token GDB_VARIABLE.
1611
1612 $digits Value history with index <digits>, starting
1613 from the first value which has index 1.
1614 Return GDB_LAST.
1615
1616 $$digits Value history with index <digits> relative
1617 to the last value. I.E. $$0 is the last
1618 value, $$1 is the one previous to that, $$2
1619 is the one previous to $$1, etc.
1620 Return token GDB_LAST.
1621
1622 $ | $0 | $$0 The last value in the value history.
1623 Return token GDB_LAST.
1624
1625 $$ An abbreviation for the second to the last
1626 value in the value history, I.E. $$1
1627 Return token GDB_LAST.
1628
1629 Note that we currently assume that register names and convenience
1630 variables follow the convention of starting with a letter or '_'.
1631
1632 */
1633
1634 static int
1635 match_dollar_tokens ()
1636 {
1637 char *tokptr;
1638 int regno;
1639 int namelength;
1640 int negate;
1641 int ival;
1642
1643 /* We will always have a successful match, even if it is just for
1644 a single '$', the abbreviation for $$0. So advance lexptr. */
1645
1646 tokptr = ++lexptr;
1647
1648 if (*tokptr == '_' || isalpha (*tokptr))
1649 {
1650 /* Look for a match with a native register name, usually something
1651 like "r0" for example. */
1652
1653 for (regno = 0; regno < NUM_REGS; regno++)
1654 {
1655 namelength = strlen (reg_names[regno]);
1656 if (STREQN (tokptr, reg_names[regno], namelength)
1657 && !isalnum (tokptr[namelength]))
1658 {
1659 yylval.lval = regno;
1660 lexptr += namelength;
1661 return (GDB_REGNAME);
1662 }
1663 }
1664
1665 /* Look for a match with a standard register name, usually something
1666 like "pc", which gdb always recognizes as the program counter
1667 regardless of what the native register name is. */
1668
1669 for (regno = 0; regno < num_std_regs; regno++)
1670 {
1671 namelength = strlen (std_regs[regno].name);
1672 if (STREQN (tokptr, std_regs[regno].name, namelength)
1673 && !isalnum (tokptr[namelength]))
1674 {
1675 yylval.lval = std_regs[regno].regnum;
1676 lexptr += namelength;
1677 return (GDB_REGNAME);
1678 }
1679 }
1680
1681 /* Attempt to match against a convenience variable. Note that
1682 this will always succeed, because if no variable of that name
1683 already exists, the lookup_internalvar will create one for us.
1684 Also note that both lexptr and tokptr currently point to the
1685 start of the input string we are trying to match, and that we
1686 have already tested the first character for non-numeric, so we
1687 don't have to treat it specially. */
1688
1689 while (*tokptr == '_' || isalnum (*tokptr))
1690 {
1691 tokptr++;
1692 }
1693 yylval.sval.ptr = lexptr;
1694 yylval.sval.length = tokptr - lexptr;
1695 yylval.ivar = lookup_internalvar (copy_name (yylval.sval));
1696 lexptr = tokptr;
1697 return (GDB_VARIABLE);
1698 }
1699
1700 /* Since we didn't match against a register name or convenience
1701 variable, our only choice left is a history value. */
1702
1703 if (*tokptr == '$')
1704 {
1705 negate = 1;
1706 ival = 1;
1707 tokptr++;
1708 }
1709 else
1710 {
1711 negate = 0;
1712 ival = 0;
1713 }
1714
1715 /* Attempt to decode more characters as an integer value giving
1716 the index in the history list. If successful, the value will
1717 overwrite ival (currently 0 or 1), and if not, ival will be
1718 left alone, which is good since it is currently correct for
1719 the '$' or '$$' case. */
1720
1721 decode_integer_literal (&ival, &tokptr);
1722 yylval.lval = negate ? -ival : ival;
1723 lexptr = tokptr;
1724 return (GDB_LAST);
1725 }
1726
1727 struct token
1728 {
1729 char *operator;
1730 int token;
1731 };
1732
1733 static const struct token idtokentab[] =
1734 {
1735 { "length", LENGTH },
1736 { "lower", LOWER },
1737 { "upper", UPPER },
1738 { "andif", ANDIF },
1739 { "pred", PRED },
1740 { "succ", SUCC },
1741 { "card", CARD },
1742 { "size", SIZE },
1743 { "orif", ORIF },
1744 { "num", NUM },
1745 { "abs", ABS },
1746 { "max", MAX_TOKEN },
1747 { "min", MIN_TOKEN },
1748 { "mod", MOD },
1749 { "rem", REM },
1750 { "not", NOT },
1751 { "xor", LOGXOR },
1752 { "and", LOGAND },
1753 { "in", IN },
1754 { "or", LOGIOR }
1755 };
1756
1757 static const struct token tokentab2[] =
1758 {
1759 { ":=", GDB_ASSIGNMENT },
1760 { "//", SLASH_SLASH },
1761 { "->", POINTER },
1762 { "/=", NOTEQUAL },
1763 { "<=", LEQ },
1764 { ">=", GTR }
1765 };
1766
1767 /* Read one token, getting characters through lexptr. */
1768 /* This is where we will check to make sure that the language and the
1769 operators used are compatible. */
1770
1771 static int
1772 yylex ()
1773 {
1774 unsigned int i;
1775 int token;
1776 char *inputname;
1777 struct symbol *sym;
1778
1779 /* Skip over any leading whitespace. */
1780 while (isspace (*lexptr))
1781 {
1782 lexptr++;
1783 }
1784 /* Look for special single character cases which can't be the first
1785 character of some other multicharacter token. */
1786 switch (*lexptr)
1787 {
1788 case '\0':
1789 return (0);
1790 case ',':
1791 case '=':
1792 case ';':
1793 case '!':
1794 case '+':
1795 case '*':
1796 case '(':
1797 case ')':
1798 case '[':
1799 case ']':
1800 return (*lexptr++);
1801 }
1802 /* Look for characters which start a particular kind of multicharacter
1803 token, such as a character literal, register name, convenience
1804 variable name, string literal, etc. */
1805 switch (*lexptr)
1806 {
1807 case '\'':
1808 case '\"':
1809 /* First try to match a string literal, which is any
1810 sequence of characters enclosed in matching single or double
1811 quotes, except that a single character inside single quotes
1812 is a character literal, so we have to catch that case also. */
1813 token = match_string_literal ();
1814 if (token != 0)
1815 {
1816 return (token);
1817 }
1818 if (*lexptr == '\'')
1819 {
1820 token = match_character_literal ();
1821 if (token != 0)
1822 {
1823 return (token);
1824 }
1825 }
1826 break;
1827 case 'C':
1828 case 'c':
1829 token = match_character_literal ();
1830 if (token != 0)
1831 {
1832 return (token);
1833 }
1834 break;
1835 case '$':
1836 token = match_dollar_tokens ();
1837 if (token != 0)
1838 {
1839 return (token);
1840 }
1841 break;
1842 }
1843 /* See if it is a special token of length 2. */
1844 for (i = 0; i < sizeof (tokentab2) / sizeof (tokentab2[0]); i++)
1845 {
1846 if (STREQN (lexptr, tokentab2[i].operator, 2))
1847 {
1848 lexptr += 2;
1849 return (tokentab2[i].token);
1850 }
1851 }
1852 /* Look for single character cases which which could be the first
1853 character of some other multicharacter token, but aren't, or we
1854 would already have found it. */
1855 switch (*lexptr)
1856 {
1857 case '-':
1858 case ':':
1859 case '/':
1860 case '<':
1861 case '>':
1862 return (*lexptr++);
1863 }
1864 /* Look for a float literal before looking for an integer literal, so
1865 we match as much of the input stream as possible. */
1866 token = match_float_literal ();
1867 if (token != 0)
1868 {
1869 return (token);
1870 }
1871 token = match_bitstring_literal ();
1872 if (token != 0)
1873 {
1874 return (token);
1875 }
1876 token = match_integer_literal ();
1877 if (token != 0)
1878 {
1879 return (token);
1880 }
1881
1882 /* Try to match a simple name string, and if a match is found, then
1883 further classify what sort of name it is and return an appropriate
1884 token. Note that attempting to match a simple name string consumes
1885 the token from lexptr, so we can't back out if we later find that
1886 we can't classify what sort of name it is. */
1887
1888 inputname = match_simple_name_string ();
1889
1890 if (inputname != NULL)
1891 {
1892 char *simplename = (char*) alloca (strlen (inputname));
1893
1894 char *dptr = simplename, *sptr = inputname;
1895 for (; *sptr; sptr++)
1896 *dptr++ = isupper (*sptr) ? tolower(*sptr) : *sptr;
1897
1898 /* See if it is a reserved identifier. */
1899 for (i = 0; i < sizeof (idtokentab) / sizeof (idtokentab[0]); i++)
1900 {
1901 if (STREQ (simplename, idtokentab[i].operator))
1902 {
1903 return (idtokentab[i].token);
1904 }
1905 }
1906
1907 /* Look for other special tokens. */
1908 if (STREQ (simplename, "true"))
1909 {
1910 yylval.ulval = 1;
1911 return (BOOLEAN_LITERAL);
1912 }
1913 if (STREQ (simplename, "false"))
1914 {
1915 yylval.ulval = 0;
1916 return (BOOLEAN_LITERAL);
1917 }
1918
1919 sym = lookup_symbol (inputname, expression_context_block,
1920 VAR_NAMESPACE, (int *) NULL,
1921 (struct symtab **) NULL);
1922 if (sym == NULL && strcmp (inputname, simplename) != 0)
1923 {
1924 sym = lookup_symbol (simplename, expression_context_block,
1925 VAR_NAMESPACE, (int *) NULL,
1926 (struct symtab **) NULL);
1927 }
1928 if (sym != NULL)
1929 {
1930 yylval.ssym.stoken.ptr = NULL;
1931 yylval.ssym.stoken.length = 0;
1932 yylval.ssym.sym = sym;
1933 yylval.ssym.is_a_field_of_this = 0; /* FIXME, C++'ism */
1934 switch (SYMBOL_CLASS (sym))
1935 {
1936 case LOC_BLOCK:
1937 /* Found a procedure name. */
1938 return (GENERAL_PROCEDURE_NAME);
1939 case LOC_STATIC:
1940 /* Found a global or local static variable. */
1941 return (LOCATION_NAME);
1942 case LOC_REGISTER:
1943 case LOC_ARG:
1944 case LOC_REF_ARG:
1945 case LOC_REGPARM:
1946 case LOC_REGPARM_ADDR:
1947 case LOC_LOCAL:
1948 case LOC_LOCAL_ARG:
1949 case LOC_BASEREG:
1950 case LOC_BASEREG_ARG:
1951 if (innermost_block == NULL
1952 || contained_in (block_found, innermost_block))
1953 {
1954 innermost_block = block_found;
1955 }
1956 return (LOCATION_NAME);
1957 break;
1958 case LOC_CONST:
1959 case LOC_LABEL:
1960 return (LOCATION_NAME);
1961 break;
1962 case LOC_TYPEDEF:
1963 yylval.tsym.type = SYMBOL_TYPE (sym);
1964 return TYPENAME;
1965 case LOC_UNDEF:
1966 case LOC_CONST_BYTES:
1967 case LOC_OPTIMIZED_OUT:
1968 error ("Symbol \"%s\" names no location.", inputname);
1969 break;
1970 }
1971 }
1972 else if (!have_full_symbols () && !have_partial_symbols ())
1973 {
1974 error ("No symbol table is loaded. Use the \"file\" command.");
1975 }
1976 else
1977 {
1978 error ("No symbol \"%s\" in current context.", inputname);
1979 }
1980 }
1981
1982 /* Catch single character tokens which are not part of some
1983 longer token. */
1984
1985 switch (*lexptr)
1986 {
1987 case '.': /* Not float for example. */
1988 lexptr++;
1989 while (isspace (*lexptr)) lexptr++;
1990 inputname = match_simple_name_string ();
1991 if (!inputname)
1992 return '.';
1993 return FIELD_NAME;
1994 }
1995
1996 return (ILLEGAL_TOKEN);
1997 }
1998
1999 void
2000 yyerror (msg)
2001 char *msg;
2002 {
2003 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
2004 }