* infptrace.c: Split out define of PT_KILL; Sequent defines PT_KILL
[binutils-gdb.git] / gdb / config / i386 / tm-symmetry.h
1 /* Target machine definitions for GDB on a Sequent Symmetry under dynix 3.0,
2 with Weitek 1167 and i387 support.
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993 Free Software Foundation, Inc.
4 Symmetry version by Jay Vosburgh (fubar@sequent.com).
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* I don't know if this will work for cross-debugging, even if you do get
23 a copy of the right include file. */
24 #ifdef _SEQUENT_
25 /* ptx */
26 #include <sys/reg.h>
27 #else
28 /* dynix */
29 #include <machine/reg.h>
30 #endif
31
32 #ifdef _SEQUENT_
33 /* ptx, not dynix */
34 #define SDB_REG_TO_REGNUM(value) ptx_coff_regno_to_gdb(value)
35 extern int ptx_coff_regno_to_gdb();
36 #endif /* _SEQUENT_ */
37
38 #define START_INFERIOR_TRAPS_EXPECTED 2
39
40 /* Amount PC must be decremented by after a breakpoint.
41 This is often the number of bytes in BREAKPOINT
42 but not always. */
43
44 #define DECR_PC_AFTER_BREAK 0
45
46 #include "i386/tm-i386v.h"
47
48 /* Nonzero if instruction at PC is a return instruction. */
49 /* For Symmetry, this is really the 'leave' instruction, which */
50 /* is right before the ret */
51
52 #undef
53 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0xc9)
54
55 #if 0
56 --- this code can't be used unless we know we are running native,
57 since it uses host specific ptrace calls.
58 /* code for 80387 fpu. Functions are from i386-dep.c, copied into
59 * symm-dep.c.
60 */
61 #define FLOAT_INFO { i386_float_info(); }
62 #endif
63
64 /* Number of machine registers */
65 #undef NUM_REGS
66 #define NUM_REGS 49
67
68 /* Initializer for an array of names of registers.
69 There should be NUM_REGS strings in this initializer. */
70
71 /* Symmetry registers are in this weird order to match the register
72 numbers in the symbol table entries. If you change the order,
73 things will probably break mysteriously for no apparent reason.
74 Also note that the st(0)...st(7) 387 registers are represented as
75 st0...st7. */
76
77 #undef REGISTER_NAMES
78 #define REGISTER_NAMES { "eax", "edx", "ecx", "st0", "st1", \
79 "ebx", "esi", "edi", "st2", "st3", \
80 "st4", "st5", "st6", "st7", "esp", \
81 "ebp", "eip", "eflags", "fp1", "fp2", \
82 "fp3", "fp4", "fp5", "fp6", "fp7", \
83 "fp8", "fp9", "fp10", "fp11", "fp12", \
84 "fp13", "fp14", "fp15", "fp16", "fp17", \
85 "fp18", "fp19", "fp20", "fp21", "fp22", \
86 "fp23", "fp24", "fp25", "fp26", "fp27", \
87 "fp28", "fp29", "fp30", "fp31" }
88
89 /* Register numbers of various important registers.
90 Note that some of these values are "real" register numbers,
91 and correspond to the general registers of the machine,
92 and some are "phony" register numbers which are too large
93 to be actual register numbers as far as the user is concerned
94 but do serve to get the desired values when passed to read_register. */
95
96 #define EAX_REGNUM 0
97 #define EDX_REGNUM 1
98 #define ECX_REGNUM 2
99 #define ST0_REGNUM 3
100 #define ST1_REGNUM 4
101 #define EBX_REGNUM 5
102 #define ESI_REGNUM 6
103 #define EDI_REGNUM 7
104 #define ST2_REGNUM 8
105 #define ST3_REGNUM 9
106
107 #define ST4_REGNUM 10
108 #define ST5_REGNUM 11
109 #define ST6_REGNUM 12
110 #define ST7_REGNUM 13
111
112 #define FP1_REGNUM 18 /* first 1167 register */
113 /* Get %fp2 - %fp31 by addition, since they are contiguous */
114
115 #undef SP_REGNUM
116 #define SP_REGNUM 14 /* Contains address of top of stack */
117 #undef FP_REGNUM
118 #define FP_REGNUM 15 /* Contains address of executing stack frame */
119 #undef PC_REGNUM
120 #define PC_REGNUM 16 /* Contains program counter */
121 #undef PS_REGNUM
122 #define PS_REGNUM 17 /* Contains processor status */
123
124 #ifndef _SEQUENT_
125 /* dynix, not ptx. For ptx, see register_addr in symm-tdep.c */
126
127 /* The magic numbers below are offsets into u_ar0 in the user struct.
128 * They live in <machine/reg.h>. Gdb calls this macro with blockend
129 * holding u.u_ar0 - KERNEL_U_ADDR. Only the registers listed are
130 * saved in the u area (along with a few others that aren't useful
131 * here. See <machine/reg.h>).
132 */
133
134 #define REGISTER_U_ADDR(addr, blockend, regno) \
135 { struct user foo; /* needed for finding fpu regs */ \
136 switch (regno) { \
137 case 0: \
138 addr = blockend + EAX * sizeof(int); break; \
139 case 1: \
140 addr = blockend + EDX * sizeof(int); break; \
141 case 2: \
142 addr = blockend + ECX * sizeof(int); break; \
143 case 3: /* st(0) */ \
144 addr = blockend - \
145 ((int)&foo.u_fpusave.fpu_stack[0][0] - (int)&foo); \
146 break; \
147 case 4: /* st(1) */ \
148 addr = blockend - \
149 ((int) &foo.u_fpusave.fpu_stack[1][0] - (int)&foo); \
150 break; \
151 case 5: \
152 addr = blockend + EBX * sizeof(int); break; \
153 case 6: \
154 addr = blockend + ESI * sizeof(int); break; \
155 case 7: \
156 addr = blockend + EDI * sizeof(int); break; \
157 case 8: /* st(2) */ \
158 addr = blockend - \
159 ((int) &foo.u_fpusave.fpu_stack[2][0] - (int)&foo); \
160 break; \
161 case 9: /* st(3) */ \
162 addr = blockend - \
163 ((int) &foo.u_fpusave.fpu_stack[3][0] - (int)&foo); \
164 break; \
165 case 10: /* st(4) */ \
166 addr = blockend - \
167 ((int) &foo.u_fpusave.fpu_stack[4][0] - (int)&foo); \
168 break; \
169 case 11: /* st(5) */ \
170 addr = blockend - \
171 ((int) &foo.u_fpusave.fpu_stack[5][0] - (int)&foo); \
172 break; \
173 case 12: /* st(6) */ \
174 addr = blockend - \
175 ((int) &foo.u_fpusave.fpu_stack[6][0] - (int)&foo); \
176 break; \
177 case 13: /* st(7) */ \
178 addr = blockend - \
179 ((int) &foo.u_fpusave.fpu_stack[7][0] - (int)&foo); \
180 break; \
181 case 14: \
182 addr = blockend + ESP * sizeof(int); break; \
183 case 15: \
184 addr = blockend + EBP * sizeof(int); break; \
185 case 16: \
186 addr = blockend + EIP * sizeof(int); break; \
187 case 17: \
188 addr = blockend + FLAGS * sizeof(int); break; \
189 case 18: /* fp1 */ \
190 case 19: /* fp2 */ \
191 case 20: /* fp3 */ \
192 case 21: /* fp4 */ \
193 case 22: /* fp5 */ \
194 case 23: /* fp6 */ \
195 case 24: /* fp7 */ \
196 case 25: /* fp8 */ \
197 case 26: /* fp9 */ \
198 case 27: /* fp10 */ \
199 case 28: /* fp11 */ \
200 case 29: /* fp12 */ \
201 case 30: /* fp13 */ \
202 case 31: /* fp14 */ \
203 case 32: /* fp15 */ \
204 case 33: /* fp16 */ \
205 case 34: /* fp17 */ \
206 case 35: /* fp18 */ \
207 case 36: /* fp19 */ \
208 case 37: /* fp20 */ \
209 case 38: /* fp21 */ \
210 case 39: /* fp22 */ \
211 case 40: /* fp23 */ \
212 case 41: /* fp24 */ \
213 case 42: /* fp25 */ \
214 case 43: /* fp26 */ \
215 case 44: /* fp27 */ \
216 case 45: /* fp28 */ \
217 case 46: /* fp29 */ \
218 case 47: /* fp30 */ \
219 case 48: /* fp31 */ \
220 addr = blockend - \
221 ((int) &foo.u_fpasave.fpa_regs[(regno)-18] - (int)&foo); \
222 } \
223 }
224 #endif /* _SEQUENT_ */
225 \f
226 /* Total amount of space needed to store our copies of the machine's
227 register state, the array `registers'. */
228 /* 10 i386 registers, 8 i387 registers, and 31 Weitek 1167 registers */
229 #undef REGISTER_BYTES
230 #define REGISTER_BYTES ((10 * 4) + (8 * 10) + (31 * 4))
231
232 /* Index within `registers' of the first byte of the space for
233 register N. */
234
235 #undef REGISTER_BYTE
236 #define REGISTER_BYTE(N) \
237 ((N < 3) ? (N * 4) : \
238 (N < 5) ? (((N - 2) * 10) + 2) : \
239 (N < 8) ? (((N - 5) * 4) + 32) : \
240 (N < 14) ? (((N - 8) * 10) + 44) : \
241 (((N - 14) * 4) + 104))
242
243 /* Number of bytes of storage in the actual machine representation
244 * for register N. All registers are 4 bytes, except 387 st(0) - st(7),
245 * which are 80 bits each.
246 */
247
248 #undef REGISTER_RAW_SIZE
249 #define REGISTER_RAW_SIZE(N) \
250 ((N < 3) ? 4 : \
251 (N < 5) ? 10 : \
252 (N < 8) ? 4 : \
253 (N < 14) ? 10 : \
254 4)
255
256 /* Largest value REGISTER_RAW_SIZE can have. */
257
258 #undef MAX_REGISTER_RAW_SIZE
259 #define MAX_REGISTER_RAW_SIZE 10
260
261 /* Nonzero if register N requires conversion
262 from raw format to virtual format. */
263
264 #undef REGISTER_CONVERTIBLE
265 #define REGISTER_CONVERTIBLE(N) \
266 ((N < 3) ? 0 : \
267 (N < 5) ? 1 : \
268 (N < 8) ? 0 : \
269 (N < 14) ? 1 : \
270 0)
271
272 /* Convert data from raw format for register REGNUM
273 to virtual format for register REGNUM. */
274
275 #undef REGISTER_CONVERT_TO_VIRTUAL
276 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
277 ((REGNUM < 3) ? bcopy ((FROM), (TO), 4) : \
278 (REGNUM < 5) ? i387_to_double((FROM), (TO)) : \
279 (REGNUM < 8) ? bcopy ((FROM), (TO), 4) : \
280 (REGNUM < 14) ? i387_to_double((FROM), (TO)) : \
281 bcopy ((FROM), (TO), 4))
282
283 extern void
284 i387_to_double PARAMS ((char *, char *));
285
286 /* Convert data from virtual format for register REGNUM
287 to raw format for register REGNUM. */
288
289 #undef REGISTER_CONVERT_TO_RAW
290 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
291 ((REGNUM < 3) ? bcopy ((FROM), (TO), 4) : \
292 (REGNUM < 5) ? double_to_i387((FROM), (TO)) : \
293 (REGNUM < 8) ? bcopy ((FROM), (TO), 4) : \
294 (REGNUM < 14) ? double_to_i387((FROM), (TO)) : \
295 bcopy ((FROM), (TO), 4))
296
297 extern void
298 double_to_i387 PARAMS ((char *, char *));
299
300 /* Return the GDB type object for the "standard" data type
301 of data in register N. */
302
303 #undef REGISTER_VIRTUAL_TYPE
304 #define REGISTER_VIRTUAL_TYPE(N) \
305 ((N < 3) ? builtin_type_int : \
306 (N < 5) ? builtin_type_double : \
307 (N < 8) ? builtin_type_int : \
308 (N < 14) ? builtin_type_double : \
309 builtin_type_int)
310
311 /* from m-i386.h (now known as tm-i386v.h). */
312 /* Store the address of the place in which to copy the structure the
313 subroutine will return. This is called from call_function. FIXME:
314 Why is it writing register 0? Is the symmetry different from tm-i386v.h,
315 or is it some sort of artifact? FIXME. */
316
317 #undef STORE_STRUCT_RETURN
318 #define STORE_STRUCT_RETURN(ADDR, SP) \
319 { (SP) -= sizeof (ADDR); \
320 write_memory ((SP), &(ADDR), sizeof (ADDR)); \
321 write_register(0, (ADDR)); }
322
323 /* Extract from an array REGBUF containing the (raw) register state
324 a function return value of type TYPE, and copy that, in virtual format,
325 into VALBUF. */
326
327 #undef EXTRACT_RETURN_VALUE
328 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
329 symmetry_extract_return_value(TYPE, REGBUF, VALBUF)
330
331 \f
332 /* Things needed for making the inferior call functions. FIXME: Merge
333 this with the main 386 stuff. */
334
335 #define PUSH_DUMMY_FRAME \
336 { CORE_ADDR sp = read_register (SP_REGNUM); \
337 int regnum; \
338 sp = push_word (sp, read_register (PC_REGNUM)); \
339 sp = push_word (sp, read_register (FP_REGNUM)); \
340 write_register (FP_REGNUM, sp); \
341 for (regnum = 0; regnum < NUM_REGS; regnum++) \
342 sp = push_word (sp, read_register (regnum)); \
343 write_register (SP_REGNUM, sp); \
344 }
345
346 #define POP_FRAME \
347 { \
348 FRAME frame = get_current_frame (); \
349 CORE_ADDR fp; \
350 int regnum; \
351 struct frame_saved_regs fsr; \
352 struct frame_info *fi; \
353 fi = get_frame_info (frame); \
354 fp = fi->frame; \
355 get_frame_saved_regs (fi, &fsr); \
356 for (regnum = 0; regnum < NUM_REGS; regnum++) { \
357 CORE_ADDR adr; \
358 adr = fsr.regs[regnum]; \
359 if (adr) \
360 write_register (regnum, read_memory_integer (adr, 4)); \
361 } \
362 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
363 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
364 write_register (SP_REGNUM, fp + 8); \
365 flush_cached_frames (); \
366 set_current_frame ( create_new_frame (read_register (FP_REGNUM), \
367 read_pc ())); \
368 }
369
370 /* from i386-dep.c, worked better than my original... */
371 /* This sequence of words is the instructions
372 * call (32-bit offset)
373 * int 3
374 * This is 6 bytes.
375 */
376
377 #define CALL_DUMMY { 0x223344e8, 0xcc11 }
378
379 #define CALL_DUMMY_LENGTH 8
380
381 #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
382
383 /* Insert the specified number of args and function address
384 into a call sequence of the above form stored at DUMMYNAME. */
385
386 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
387 { \
388 int from, to, delta, loc; \
389 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH); \
390 from = loc + 5; \
391 to = (int)(fun); \
392 delta = to - from; \
393 *(int *)((char *)(dummyname) + 1) = delta; \
394 }
395
396 extern void
397 print_387_control_word PARAMS ((unsigned int));
398
399 extern void
400 print_387_status_word PARAMS ((unsigned int));