Add INTEGER_TO_ADDRESS to hadle nasty harvard architectures that do
[binutils-gdb.git] / gdb / config / mips / tm-mips.h
1 /* Definitions to make GDB run on a mips box under 4.3bsd.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000
4 Free Software Foundation, Inc.
5 Contributed by Per Bothner (bothner@cs.wisc.edu) at U.Wisconsin
6 and by Alessandro Forin (af@cs.cmu.edu) at CMU..
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #ifndef TM_MIPS_H
26 #define TM_MIPS_H 1
27
28 #define GDB_MULTI_ARCH 1
29
30 #include "regcache.h"
31
32 struct frame_info;
33 struct symbol;
34 struct type;
35 struct value;
36
37 #include <bfd.h>
38 #include "coff/sym.h" /* Needed for PDR below. */
39 #include "coff/symconst.h"
40
41 #if !defined (MIPS_EABI)
42 #define MIPS_EABI 0
43 #endif
44
45 /* PC should be masked to remove possible MIPS16 flag */
46 #if !defined (GDB_TARGET_MASK_DISAS_PC)
47 #define GDB_TARGET_MASK_DISAS_PC(addr) UNMAKE_MIPS16_ADDR(addr)
48 #endif
49 #if !defined (GDB_TARGET_UNMASK_DISAS_PC)
50 #define GDB_TARGET_UNMASK_DISAS_PC(addr) MAKE_MIPS16_ADDR(addr)
51 #endif
52
53 /* The name of the usual type of MIPS processor that is in the target
54 system. */
55
56 #define DEFAULT_MIPS_TYPE "generic"
57
58 /* Remove useless bits from the stack pointer. */
59
60 #define TARGET_READ_SP() ADDR_BITS_REMOVE (read_register (SP_REGNUM))
61
62 /* Offset from address of function to start of its code.
63 Zero on most machines. */
64
65 #define FUNCTION_START_OFFSET 0
66
67 /* Return non-zero if PC points to an instruction which will cause a step
68 to execute both the instruction at PC and an instruction at PC+4. */
69 extern int mips_step_skips_delay (CORE_ADDR);
70 #define STEP_SKIPS_DELAY_P (1)
71 #define STEP_SKIPS_DELAY(pc) (mips_step_skips_delay (pc))
72
73 /* Are we currently handling a signal */
74
75 extern int in_sigtramp (CORE_ADDR, char *);
76 #define IN_SIGTRAMP(pc, name) in_sigtramp(pc, name)
77
78 /* Say how long (ordinary) registers are. This is a piece of bogosity
79 used in push_word and a few other places; REGISTER_RAW_SIZE is the
80 real way to know how big a register is. */
81
82 #define REGISTER_SIZE 4
83
84 /* The size of a register. This is predefined in tm-mips64.h. We
85 can't use REGISTER_SIZE because that is used for various other
86 things. */
87
88 #ifndef MIPS_REGSIZE
89 #define MIPS_REGSIZE 4
90 #endif
91
92 /* Number of machine registers */
93
94 #ifndef NUM_REGS
95 #define NUM_REGS 90
96 #endif
97
98 /* Given the register index, return the name of the corresponding
99 register. */
100 extern char *mips_register_name (int regnr);
101 #define REGISTER_NAME(i) mips_register_name (i)
102
103 /* Initializer for an array of names of registers.
104 There should be NUM_REGS strings in this initializer. */
105
106 #ifndef MIPS_REGISTER_NAMES
107 #define MIPS_REGISTER_NAMES \
108 { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
109 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
110 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
111 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", \
112 "sr", "lo", "hi", "bad", "cause","pc", \
113 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
114 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
115 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",\
116 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",\
117 "fsr", "fir", "fp", "", \
118 "", "", "", "", "", "", "", "", \
119 "", "", "", "", "", "", "", "", \
120 }
121 #endif
122
123 /* Register numbers of various important registers.
124 Note that some of these values are "real" register numbers,
125 and correspond to the general registers of the machine,
126 and some are "phony" register numbers which are too large
127 to be actual register numbers as far as the user is concerned
128 but do serve to get the desired values when passed to read_register. */
129
130 #define ZERO_REGNUM 0 /* read-only register, always 0 */
131 #define V0_REGNUM 2 /* Function integer return value */
132 #define A0_REGNUM 4 /* Loc of first arg during a subr call */
133 #if MIPS_EABI
134 #define MIPS_LAST_ARG_REGNUM 11 /* EABI uses R4 through R11 for args */
135 #else
136 #define MIPS_LAST_ARG_REGNUM 7 /* old ABI uses R4 through R7 for args */
137 #endif
138 #define T9_REGNUM 25 /* Contains address of callee in PIC */
139 #define SP_REGNUM 29 /* Contains address of top of stack */
140 #define RA_REGNUM 31 /* Contains return address value */
141 #define PS_REGNUM 32 /* Contains processor status */
142 #define HI_REGNUM 34 /* Multiple/divide temp */
143 #define LO_REGNUM 33 /* ... */
144 #define BADVADDR_REGNUM 35 /* bad vaddr for addressing exception */
145 #define CAUSE_REGNUM 36 /* describes last exception */
146 #define PC_REGNUM 37 /* Contains program counter */
147 #define FP0_REGNUM 38 /* Floating point register 0 (single float) */
148 #define FPA0_REGNUM (FP0_REGNUM+12) /* First float argument register */
149 #if MIPS_EABI /* EABI uses F12 through F19 for args */
150 #define MIPS_LAST_FP_ARG_REGNUM (FP0_REGNUM+19)
151 #else /* old ABI uses F12 through F15 for args */
152 #define MIPS_LAST_FP_ARG_REGNUM (FP0_REGNUM+15)
153 #endif
154 #define FCRCS_REGNUM 70 /* FP control/status */
155 #define FCRIR_REGNUM 71 /* FP implementation/revision */
156 #define FP_REGNUM 72 /* Pseudo register that contains true address of executing stack frame */
157 #define UNUSED_REGNUM 73 /* Never used, FIXME */
158 #define FIRST_EMBED_REGNUM 74 /* First CP0 register for embedded use */
159 #define PRID_REGNUM 89 /* Processor ID */
160 #define LAST_EMBED_REGNUM 89 /* Last one */
161
162 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
163 of register dumps. */
164
165 #define DO_REGISTERS_INFO(_regnum, fp) mips_do_registers_info(_regnum, fp)
166 extern void mips_do_registers_info (int, int);
167
168 /* Total amount of space needed to store our copies of the machine's
169 register state, the array `registers'. */
170
171 #define REGISTER_BYTES (NUM_REGS*MIPS_REGSIZE)
172
173 /* Index within `registers' of the first byte of the space for
174 register N. */
175
176 #define REGISTER_BYTE(N) ((N) * MIPS_REGSIZE)
177
178 /* Number of bytes of storage in the actual machine representation for
179 register N. NOTE: This indirectly defines the register size
180 transfered by the GDB protocol. */
181
182 extern int mips_register_raw_size (int reg_nr);
183 #define REGISTER_RAW_SIZE(N) (mips_register_raw_size ((N)))
184
185
186 /* Covert between the RAW and VIRTUAL registers.
187
188 Some MIPS (SR, FSR, FIR) have a `raw' size of MIPS_REGSIZE but are
189 really 32 bit registers. This is a legacy of the 64 bit MIPS GDB
190 protocol which transfers 64 bits for 32 bit registers. */
191
192 extern int mips_register_convertible (int reg_nr);
193 #define REGISTER_CONVERTIBLE(N) (mips_register_convertible ((N)))
194
195
196 void mips_register_convert_to_virtual (int reg_nr, struct type *virtual_type,
197 char *raw_buf, char *virt_buf);
198 #define REGISTER_CONVERT_TO_VIRTUAL(N,VIRTUAL_TYPE,RAW_BUF,VIRT_BUF) \
199 mips_register_convert_to_virtual (N,VIRTUAL_TYPE,RAW_BUF,VIRT_BUF)
200
201 void mips_register_convert_to_raw (struct type *virtual_type, int reg_nr,
202 char *virt_buf, char *raw_buf);
203 #define REGISTER_CONVERT_TO_RAW(VIRTUAL_TYPE,N,VIRT_BUF,RAW_BUF) \
204 mips_register_convert_to_raw (VIRTUAL_TYPE,N,VIRT_BUF,RAW_BUF)
205
206 /* Number of bytes of storage in the program's representation
207 for register N. */
208
209 #define REGISTER_VIRTUAL_SIZE(N) TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (N))
210
211 /* Largest value REGISTER_RAW_SIZE can have. */
212
213 #define MAX_REGISTER_RAW_SIZE 8
214
215 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
216
217 #define MAX_REGISTER_VIRTUAL_SIZE 8
218
219 /* Return the GDB type object for the "standard" data type of data in
220 register N. */
221
222 #ifndef REGISTER_VIRTUAL_TYPE
223 #define REGISTER_VIRTUAL_TYPE(N) \
224 (((N) >= FP0_REGNUM && (N) < FP0_REGNUM+32) ? builtin_type_float \
225 : ((N) == 32 /*SR*/) ? builtin_type_uint32 \
226 : ((N) >= 70 && (N) <= 89) ? builtin_type_uint32 \
227 : builtin_type_int)
228 #endif
229
230 /* All mips targets store doubles in a register pair with the least
231 significant register in the lower numbered register.
232 If the target is big endian, double register values need conversion
233 between memory and register formats. */
234
235 #define REGISTER_CONVERT_TO_TYPE(n, type, buffer) \
236 do {if (TARGET_BYTE_ORDER == BIG_ENDIAN \
237 && REGISTER_RAW_SIZE (n) == 4 \
238 && (n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 \
239 && TYPE_CODE(type) == TYPE_CODE_FLT \
240 && TYPE_LENGTH(type) == 8) { \
241 char __temp[4]; \
242 memcpy (__temp, ((char *)(buffer))+4, 4); \
243 memcpy (((char *)(buffer))+4, (buffer), 4); \
244 memcpy (((char *)(buffer)), __temp, 4); }} while (0)
245
246 #define REGISTER_CONVERT_FROM_TYPE(n, type, buffer) \
247 do {if (TARGET_BYTE_ORDER == BIG_ENDIAN \
248 && REGISTER_RAW_SIZE (n) == 4 \
249 && (n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 \
250 && TYPE_CODE(type) == TYPE_CODE_FLT \
251 && TYPE_LENGTH(type) == 8) { \
252 char __temp[4]; \
253 memcpy (__temp, ((char *)(buffer))+4, 4); \
254 memcpy (((char *)(buffer))+4, (buffer), 4); \
255 memcpy (((char *)(buffer)), __temp, 4); }} while (0)
256
257 /* Store the address of the place in which to copy the structure the
258 subroutine will return. Handled by mips_push_arguments. */
259
260 #define STORE_STRUCT_RETURN(addr, sp)
261 /**/
262
263 /* Extract from an array REGBUF containing the (raw) register state
264 a function return value of type TYPE, and copy that, in virtual format,
265 into VALBUF. XXX floats */
266
267 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
268 mips_extract_return_value(TYPE, REGBUF, VALBUF)
269 extern void mips_extract_return_value (struct type *, char[], char *);
270
271 /* Write into appropriate registers a function return value
272 of type TYPE, given in virtual format. */
273
274 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
275 mips_store_return_value(TYPE, VALBUF)
276 extern void mips_store_return_value (struct type *, char *);
277
278 /* Extract from an array REGBUF containing the (raw) register state
279 the address in which a function should return its structure value,
280 as a CORE_ADDR (or an expression that can be used as one). */
281 /* The address is passed in a0 upon entry to the function, but when
282 the function exits, the compiler has copied the value to v0. This
283 convention is specified by the System V ABI, so I think we can rely
284 on it. */
285
286 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
287 (extract_address (REGBUF + REGISTER_BYTE (V0_REGNUM), \
288 REGISTER_RAW_SIZE (V0_REGNUM)))
289
290 extern use_struct_convention_fn mips_use_struct_convention;
291 #define USE_STRUCT_CONVENTION(gcc_p, type) mips_use_struct_convention (gcc_p, type)
292 \f
293 /* Describe the pointer in each stack frame to the previous stack frame
294 (its caller). */
295
296 /* FRAME_CHAIN takes a frame's nominal address
297 and produces the frame's chain-pointer. */
298
299 #define FRAME_CHAIN(thisframe) (CORE_ADDR) mips_frame_chain (thisframe)
300 extern CORE_ADDR mips_frame_chain (struct frame_info *);
301
302 /* Define other aspects of the stack frame. */
303
304
305 /* A macro that tells us whether the function invocation represented
306 by FI does not have a frame on the stack associated with it. If it
307 does not, FRAMELESS is set to 1, else 0. */
308 /* We handle this differently for mips, and maybe we should not */
309
310 #define FRAMELESS_FUNCTION_INVOCATION(FI) (0)
311
312 /* Saved Pc. */
313
314 #define FRAME_SAVED_PC(FRAME) (mips_frame_saved_pc(FRAME))
315 extern CORE_ADDR mips_frame_saved_pc (struct frame_info *);
316
317 #define FRAME_ARGS_ADDRESS(fi) (fi)->frame
318
319 #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
320
321 /* Return number of args passed to a frame.
322 Can return -1, meaning no way to tell. */
323
324 #define FRAME_NUM_ARGS(fi) (mips_frame_num_args(fi))
325 extern int mips_frame_num_args (struct frame_info *);
326
327 /* Return number of bytes at start of arglist that are not really args. */
328
329 #define FRAME_ARGS_SKIP 0
330
331 /* Put here the code to store, into a struct frame_saved_regs,
332 the addresses of the saved registers of frame described by FRAME_INFO.
333 This includes special registers such as pc and fp saved in special
334 ways in the stack frame. sp is even more special:
335 the address we return for it IS the sp for the next frame. */
336
337 #define FRAME_INIT_SAVED_REGS(frame_info) \
338 do { \
339 if ((frame_info)->saved_regs == NULL) \
340 mips_find_saved_regs (frame_info); \
341 (frame_info)->saved_regs[SP_REGNUM] = (frame_info)->frame; \
342 } while (0)
343 extern void mips_find_saved_regs (struct frame_info *);
344 \f
345
346 /* Things needed for making the inferior call functions. */
347
348 /* Stack must be aligned on 32-bit boundaries when synthesizing
349 function calls. We don't need STACK_ALIGN, PUSH_ARGUMENTS will
350 handle it. */
351
352 extern CORE_ADDR mips_push_arguments (int, struct value **, CORE_ADDR, int,
353 CORE_ADDR);
354 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
355 (mips_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
356
357 extern CORE_ADDR mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp);
358 #define PUSH_RETURN_ADDRESS(PC, SP) (mips_push_return_address ((PC), (SP)))
359
360 /* Push an empty stack frame, to record the current PC, etc. */
361
362 #define PUSH_DUMMY_FRAME mips_push_dummy_frame()
363 extern void mips_push_dummy_frame (void);
364
365 /* Discard from the stack the innermost frame, restoring all registers. */
366
367 #define POP_FRAME mips_pop_frame()
368 extern void mips_pop_frame (void);
369
370 #define CALL_DUMMY_START_OFFSET (0)
371
372 #define CALL_DUMMY_BREAKPOINT_OFFSET (0)
373
374 /* When calling functions on Irix 5 (or any MIPS SVR4 ABI compliant
375 platform), $t9 ($25) (Dest_Reg) contains the address of the callee
376 (used for PIC). It doesn't hurt to do this on other systems; $t9
377 will be ignored. */
378 #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p) \
379 write_register(T9_REGNUM, fun)
380
381 #define CALL_DUMMY_LOCATION AT_ENTRY_POINT
382
383 #define CALL_DUMMY_ADDRESS() (mips_call_dummy_address ())
384 extern CORE_ADDR mips_call_dummy_address (void);
385
386 /* Special symbol found in blocks associated with routines. We can hang
387 mips_extra_func_info_t's off of this. */
388
389 #define MIPS_EFI_SYMBOL_NAME "__GDB_EFI_INFO__"
390 extern void ecoff_relocate_efi (struct symbol *, CORE_ADDR);
391
392 /* Specific information about a procedure.
393 This overlays the MIPS's PDR records,
394 mipsread.c (ab)uses this to save memory */
395
396 typedef struct mips_extra_func_info
397 {
398 long numargs; /* number of args to procedure (was iopt) */
399 bfd_vma high_addr; /* upper address bound */
400 long frame_adjust; /* offset of FP from SP (used on MIPS16) */
401 PDR pdr; /* Procedure descriptor record */
402 }
403 *mips_extra_func_info_t;
404
405 extern void mips_init_extra_frame_info (int fromleaf, struct frame_info *);
406 #define INIT_EXTRA_FRAME_INFO(fromleaf, fci) \
407 mips_init_extra_frame_info(fromleaf, fci)
408
409 extern void mips_print_extra_frame_info (struct frame_info *frame);
410 #define PRINT_EXTRA_FRAME_INFO(fi) \
411 mips_print_extra_frame_info (fi)
412
413 /* It takes two values to specify a frame on the MIPS.
414
415 In fact, the *PC* is the primary value that sets up a frame. The
416 PC is looked up to see what function it's in; symbol information
417 from that function tells us which register is the frame pointer
418 base, and what offset from there is the "virtual frame pointer".
419 (This is usually an offset from SP.) On most non-MIPS machines,
420 the primary value is the SP, and the PC, if needed, disambiguates
421 multiple functions with the same SP. But on the MIPS we can't do
422 that since the PC is not stored in the same part of the frame every
423 time. This does not seem to be a very clever way to set up frames,
424 but there is nothing we can do about that. */
425
426 #define SETUP_ARBITRARY_FRAME(argc, argv) setup_arbitrary_frame (argc, argv)
427 extern struct frame_info *setup_arbitrary_frame (int, CORE_ADDR *);
428
429 /* Select the default mips disassembler */
430
431 #define TM_PRINT_INSN_MACH 0
432
433
434 /* These are defined in mdebugread.c and are used in mips-tdep.c */
435 extern CORE_ADDR sigtramp_address, sigtramp_end;
436 extern void fixup_sigtramp (void);
437
438 /* Defined in mips-tdep.c and used in remote-mips.c */
439 extern char *mips_read_processor_type (void);
440
441 /* Functions for dealing with MIPS16 call and return stubs. */
442 #define IN_SOLIB_CALL_TRAMPOLINE(pc, name) mips_in_call_stub (pc, name)
443 #define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) mips_in_return_stub (pc, name)
444 #define SKIP_TRAMPOLINE_CODE(pc) mips_skip_stub (pc)
445 #define IGNORE_HELPER_CALL(pc) mips_ignore_helper (pc)
446 extern int mips_in_call_stub (CORE_ADDR pc, char *name);
447 extern int mips_in_return_stub (CORE_ADDR pc, char *name);
448 extern CORE_ADDR mips_skip_stub (CORE_ADDR pc);
449 extern int mips_ignore_helper (CORE_ADDR pc);
450
451 #ifndef TARGET_MIPS
452 #define TARGET_MIPS
453 #endif
454
455 /* Definitions and declarations used by mips-tdep.c and remote-mips.c */
456 #define MIPS_INSTLEN 4 /* Length of an instruction */
457 #define MIPS16_INSTLEN 2 /* Length of an instruction on MIPS16 */
458 #define MIPS_NUMREGS 32 /* Number of integer or float registers */
459 typedef unsigned long t_inst; /* Integer big enough to hold an instruction */
460
461 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
462 macros to test, set, or clear bit 0 of addresses. */
463 #define IS_MIPS16_ADDR(addr) ((addr) & 1)
464 #define MAKE_MIPS16_ADDR(addr) ((addr) | 1)
465 #define UNMAKE_MIPS16_ADDR(addr) ((addr) & ~1)
466
467 #endif /* TM_MIPS_H */
468
469 /* Macros for setting and testing a bit in a minimal symbol that
470 marks it as 16-bit function. The MSB of the minimal symbol's
471 "info" field is used for this purpose. This field is already
472 being used to store the symbol size, so the assumption is
473 that the symbol size cannot exceed 2^31.
474
475 ELF_MAKE_MSYMBOL_SPECIAL
476 tests whether an ELF symbol is "special", i.e. refers
477 to a 16-bit function, and sets a "special" bit in a
478 minimal symbol to mark it as a 16-bit function
479 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
480 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
481 the "info" field with the "special" bit masked out
482 */
483
484 #define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
485 { \
486 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16) { \
487 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000); \
488 SYMBOL_VALUE_ADDRESS (msym) |= 1; \
489 } \
490 }
491
492 #define MSYMBOL_IS_SPECIAL(msym) \
493 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
494 #define MSYMBOL_SIZE(msym) \
495 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
496
497
498 /* Command to set the processor type. */
499 extern void mips_set_processor_type_command (char *, int);
500
501
502 /* Single step based on where the current instruction will take us. */
503 extern void mips_software_single_step (enum target_signal, int);