Add symbol lookup cache.
[binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 /* List of all available core_fns. On gdb startup, each core file
54 register reader calls deprecated_add_core_fns() to register
55 information on each core format it is prepared to read. */
56
57 static struct core_fns *core_file_fns = NULL;
58
59 /* The core_fns for a core file handler that is prepared to read the
60 core file currently open on core_bfd. */
61
62 static struct core_fns *core_vec = NULL;
63
64 /* FIXME: kettenis/20031023: Eventually this variable should
65 disappear. */
66
67 static struct gdbarch *core_gdbarch = NULL;
68
69 /* Per-core data. Currently, only the section table. Note that these
70 target sections are *not* mapped in the current address spaces' set
71 of target sections --- those should come only from pure executable
72 or shared library bfds. The core bfd sections are an
73 implementation detail of the core target, just like ptrace is for
74 unix child targets. */
75 static struct target_section_table *core_data;
76
77 static void core_files_info (struct target_ops *);
78
79 static struct core_fns *sniff_core_bfd (bfd *);
80
81 static int gdb_check_format (bfd *);
82
83 static void core_close (struct target_ops *self);
84
85 static void core_close_cleanup (void *ignore);
86
87 static void add_to_thread_list (bfd *, asection *, void *);
88
89 static void init_core_ops (void);
90
91 void _initialize_corelow (void);
92
93 static struct target_ops core_ops;
94
95 /* An arbitrary identifier for the core inferior. */
96 #define CORELOW_PID 1
97
98 /* Link a new core_fns into the global core_file_fns list. Called on
99 gdb startup by the _initialize routine in each core file register
100 reader, to register information about each format the reader is
101 prepared to handle. */
102
103 void
104 deprecated_add_core_fns (struct core_fns *cf)
105 {
106 cf->next = core_file_fns;
107 core_file_fns = cf;
108 }
109
110 /* The default function that core file handlers can use to examine a
111 core file BFD and decide whether or not to accept the job of
112 reading the core file. */
113
114 int
115 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
116 {
117 int result;
118
119 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
120 return (result);
121 }
122
123 /* Walk through the list of core functions to find a set that can
124 handle the core file open on ABFD. Returns pointer to set that is
125 selected. */
126
127 static struct core_fns *
128 sniff_core_bfd (bfd *abfd)
129 {
130 struct core_fns *cf;
131 struct core_fns *yummy = NULL;
132 int matches = 0;;
133
134 /* Don't sniff if we have support for register sets in
135 CORE_GDBARCH. */
136 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
137 return NULL;
138
139 for (cf = core_file_fns; cf != NULL; cf = cf->next)
140 {
141 if (cf->core_sniffer (cf, abfd))
142 {
143 yummy = cf;
144 matches++;
145 }
146 }
147 if (matches > 1)
148 {
149 warning (_("\"%s\": ambiguous core format, %d handlers match"),
150 bfd_get_filename (abfd), matches);
151 }
152 else if (matches == 0)
153 error (_("\"%s\": no core file handler recognizes format"),
154 bfd_get_filename (abfd));
155
156 return (yummy);
157 }
158
159 /* The default is to reject every core file format we see. Either
160 BFD has to recognize it, or we have to provide a function in the
161 core file handler that recognizes it. */
162
163 int
164 default_check_format (bfd *abfd)
165 {
166 return (0);
167 }
168
169 /* Attempt to recognize core file formats that BFD rejects. */
170
171 static int
172 gdb_check_format (bfd *abfd)
173 {
174 struct core_fns *cf;
175
176 for (cf = core_file_fns; cf != NULL; cf = cf->next)
177 {
178 if (cf->check_format (abfd))
179 {
180 return (1);
181 }
182 }
183 return (0);
184 }
185
186 /* Discard all vestiges of any previous core file and mark data and
187 stack spaces as empty. */
188
189 static void
190 core_close (struct target_ops *self)
191 {
192 if (core_bfd)
193 {
194 int pid = ptid_get_pid (inferior_ptid);
195 inferior_ptid = null_ptid; /* Avoid confusion from thread
196 stuff. */
197 if (pid != 0)
198 exit_inferior_silent (pid);
199
200 /* Clear out solib state while the bfd is still open. See
201 comments in clear_solib in solib.c. */
202 clear_solib ();
203
204 if (core_data)
205 {
206 xfree (core_data->sections);
207 xfree (core_data);
208 core_data = NULL;
209 }
210
211 gdb_bfd_unref (core_bfd);
212 core_bfd = NULL;
213 }
214 core_vec = NULL;
215 core_gdbarch = NULL;
216 }
217
218 static void
219 core_close_cleanup (void *ignore)
220 {
221 core_close (NULL);
222 }
223
224 /* Look for sections whose names start with `.reg/' so that we can
225 extract the list of threads in a core file. */
226
227 static void
228 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
229 {
230 ptid_t ptid;
231 int core_tid;
232 int pid, lwpid;
233 asection *reg_sect = (asection *) reg_sect_arg;
234 int fake_pid_p = 0;
235 struct inferior *inf;
236
237 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
238 return;
239
240 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
241
242 pid = bfd_core_file_pid (core_bfd);
243 if (pid == 0)
244 {
245 fake_pid_p = 1;
246 pid = CORELOW_PID;
247 }
248
249 lwpid = core_tid;
250
251 inf = current_inferior ();
252 if (inf->pid == 0)
253 {
254 inferior_appeared (inf, pid);
255 inf->fake_pid_p = fake_pid_p;
256 }
257
258 ptid = ptid_build (pid, lwpid, 0);
259
260 add_thread (ptid);
261
262 /* Warning, Will Robinson, looking at BFD private data! */
263
264 if (reg_sect != NULL
265 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
266 inferior_ptid = ptid; /* Yes, make it current. */
267 }
268
269 /* This routine opens and sets up the core file bfd. */
270
271 static void
272 core_open (const char *arg, int from_tty)
273 {
274 const char *p;
275 int siggy;
276 struct cleanup *old_chain;
277 char *temp;
278 bfd *temp_bfd;
279 int scratch_chan;
280 int flags;
281 volatile struct gdb_exception except;
282 char *filename;
283
284 target_preopen (from_tty);
285 if (!arg)
286 {
287 if (core_bfd)
288 error (_("No core file specified. (Use `detach' "
289 "to stop debugging a core file.)"));
290 else
291 error (_("No core file specified."));
292 }
293
294 filename = tilde_expand (arg);
295 if (!IS_ABSOLUTE_PATH (filename))
296 {
297 temp = concat (current_directory, "/",
298 filename, (char *) NULL);
299 xfree (filename);
300 filename = temp;
301 }
302
303 old_chain = make_cleanup (xfree, filename);
304
305 flags = O_BINARY | O_LARGEFILE;
306 if (write_files)
307 flags |= O_RDWR;
308 else
309 flags |= O_RDONLY;
310 scratch_chan = gdb_open_cloexec (filename, flags, 0);
311 if (scratch_chan < 0)
312 perror_with_name (filename);
313
314 temp_bfd = gdb_bfd_fopen (filename, gnutarget,
315 write_files ? FOPEN_RUB : FOPEN_RB,
316 scratch_chan);
317 if (temp_bfd == NULL)
318 perror_with_name (filename);
319
320 if (!bfd_check_format (temp_bfd, bfd_core)
321 && !gdb_check_format (temp_bfd))
322 {
323 /* Do it after the err msg */
324 /* FIXME: should be checking for errors from bfd_close (for one
325 thing, on error it does not free all the storage associated
326 with the bfd). */
327 make_cleanup_bfd_unref (temp_bfd);
328 error (_("\"%s\" is not a core dump: %s"),
329 filename, bfd_errmsg (bfd_get_error ()));
330 }
331
332 /* Looks semi-reasonable. Toss the old core file and work on the
333 new. */
334
335 do_cleanups (old_chain);
336 unpush_target (&core_ops);
337 core_bfd = temp_bfd;
338 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
339
340 core_gdbarch = gdbarch_from_bfd (core_bfd);
341
342 /* Find a suitable core file handler to munch on core_bfd */
343 core_vec = sniff_core_bfd (core_bfd);
344
345 validate_files ();
346
347 core_data = XCNEW (struct target_section_table);
348
349 /* Find the data section */
350 if (build_section_table (core_bfd,
351 &core_data->sections,
352 &core_data->sections_end))
353 error (_("\"%s\": Can't find sections: %s"),
354 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
355
356 /* If we have no exec file, try to set the architecture from the
357 core file. We don't do this unconditionally since an exec file
358 typically contains more information that helps us determine the
359 architecture than a core file. */
360 if (!exec_bfd)
361 set_gdbarch_from_file (core_bfd);
362
363 push_target (&core_ops);
364 discard_cleanups (old_chain);
365
366 /* Do this before acknowledging the inferior, so if
367 post_create_inferior throws (can happen easilly if you're loading
368 a core file with the wrong exec), we aren't left with threads
369 from the previous inferior. */
370 init_thread_list ();
371
372 inferior_ptid = null_ptid;
373
374 /* Need to flush the register cache (and the frame cache) from a
375 previous debug session. If inferior_ptid ends up the same as the
376 last debug session --- e.g., b foo; run; gcore core1; step; gcore
377 core2; core core1; core core2 --- then there's potential for
378 get_current_regcache to return the cached regcache of the
379 previous session, and the frame cache being stale. */
380 registers_changed ();
381
382 /* Build up thread list from BFD sections, and possibly set the
383 current thread to the .reg/NN section matching the .reg
384 section. */
385 bfd_map_over_sections (core_bfd, add_to_thread_list,
386 bfd_get_section_by_name (core_bfd, ".reg"));
387
388 if (ptid_equal (inferior_ptid, null_ptid))
389 {
390 /* Either we found no .reg/NN section, and hence we have a
391 non-threaded core (single-threaded, from gdb's perspective),
392 or for some reason add_to_thread_list couldn't determine
393 which was the "main" thread. The latter case shouldn't
394 usually happen, but we're dealing with input here, which can
395 always be broken in different ways. */
396 struct thread_info *thread = first_thread_of_process (-1);
397
398 if (thread == NULL)
399 {
400 inferior_appeared (current_inferior (), CORELOW_PID);
401 inferior_ptid = pid_to_ptid (CORELOW_PID);
402 add_thread_silent (inferior_ptid);
403 }
404 else
405 switch_to_thread (thread->ptid);
406 }
407
408 post_create_inferior (&core_ops, from_tty);
409
410 /* Now go through the target stack looking for threads since there
411 may be a thread_stratum target loaded on top of target core by
412 now. The layer above should claim threads found in the BFD
413 sections. */
414 TRY_CATCH (except, RETURN_MASK_ERROR)
415 {
416 target_update_thread_list ();
417 }
418
419 if (except.reason < 0)
420 exception_print (gdb_stderr, except);
421
422 p = bfd_core_file_failing_command (core_bfd);
423 if (p)
424 printf_filtered (_("Core was generated by `%s'.\n"), p);
425
426 /* Clearing any previous state of convenience variables. */
427 clear_exit_convenience_vars ();
428
429 siggy = bfd_core_file_failing_signal (core_bfd);
430 if (siggy > 0)
431 {
432 /* If we don't have a CORE_GDBARCH to work with, assume a native
433 core (map gdb_signal from host signals). If we do have
434 CORE_GDBARCH to work with, but no gdb_signal_from_target
435 implementation for that gdbarch, as a fallback measure,
436 assume the host signal mapping. It'll be correct for native
437 cores, but most likely incorrect for cross-cores. */
438 enum gdb_signal sig = (core_gdbarch != NULL
439 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
440 ? gdbarch_gdb_signal_from_target (core_gdbarch,
441 siggy)
442 : gdb_signal_from_host (siggy));
443
444 printf_filtered (_("Program terminated with signal %s, %s.\n"),
445 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
446
447 /* Set the value of the internal variable $_exitsignal,
448 which holds the signal uncaught by the inferior. */
449 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
450 siggy);
451 }
452
453 /* Fetch all registers from core file. */
454 target_fetch_registers (get_current_regcache (), -1);
455
456 /* Now, set up the frame cache, and print the top of stack. */
457 reinit_frame_cache ();
458 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
459
460 /* Current thread should be NUM 1 but the user does not know that.
461 If a program is single threaded gdb in general does not mention
462 anything about threads. That is why the test is >= 2. */
463 if (thread_count () >= 2)
464 {
465 TRY_CATCH (except, RETURN_MASK_ERROR)
466 {
467 thread_command (NULL, from_tty);
468 }
469 if (except.reason < 0)
470 exception_print (gdb_stderr, except);
471 }
472 }
473
474 static void
475 core_detach (struct target_ops *ops, const char *args, int from_tty)
476 {
477 if (args)
478 error (_("Too many arguments"));
479 unpush_target (ops);
480 reinit_frame_cache ();
481 if (from_tty)
482 printf_filtered (_("No core file now.\n"));
483 }
484
485 /* Try to retrieve registers from a section in core_bfd, and supply
486 them to core_vec->core_read_registers, as the register set numbered
487 WHICH.
488
489 If inferior_ptid's lwp member is zero, do the single-threaded
490 thing: look for a section named NAME. If inferior_ptid's lwp
491 member is non-zero, do the multi-threaded thing: look for a section
492 named "NAME/LWP", where LWP is the shortest ASCII decimal
493 representation of inferior_ptid's lwp member.
494
495 HUMAN_NAME is a human-readable name for the kind of registers the
496 NAME section contains, for use in error messages.
497
498 If REQUIRED is non-zero, print an error if the core file doesn't
499 have a section by the appropriate name. Otherwise, just do
500 nothing. */
501
502 static void
503 get_core_register_section (struct regcache *regcache,
504 const struct regset *regset,
505 const char *name,
506 int min_size,
507 int which,
508 const char *human_name,
509 int required)
510 {
511 static char *section_name = NULL;
512 struct bfd_section *section;
513 bfd_size_type size;
514 char *contents;
515
516 xfree (section_name);
517
518 if (ptid_get_lwp (inferior_ptid))
519 section_name = xstrprintf ("%s/%ld", name,
520 ptid_get_lwp (inferior_ptid));
521 else
522 section_name = xstrdup (name);
523
524 section = bfd_get_section_by_name (core_bfd, section_name);
525 if (! section)
526 {
527 if (required)
528 warning (_("Couldn't find %s registers in core file."),
529 human_name);
530 return;
531 }
532
533 size = bfd_section_size (core_bfd, section);
534 if (size < min_size)
535 {
536 warning (_("Section `%s' in core file too small."), section_name);
537 return;
538 }
539
540 contents = alloca (size);
541 if (! bfd_get_section_contents (core_bfd, section, contents,
542 (file_ptr) 0, size))
543 {
544 warning (_("Couldn't read %s registers from `%s' section in core file."),
545 human_name, name);
546 return;
547 }
548
549 if (regset != NULL)
550 {
551 regset->supply_regset (regset, regcache, -1, contents, size);
552 return;
553 }
554
555 gdb_assert (core_vec);
556 core_vec->core_read_registers (regcache, contents, size, which,
557 ((CORE_ADDR)
558 bfd_section_vma (core_bfd, section)));
559 }
560
561 /* Callback for get_core_registers that handles a single core file
562 register note section. */
563
564 static void
565 get_core_registers_cb (const char *sect_name, int size,
566 const struct regset *regset,
567 const char *human_name, void *cb_data)
568 {
569 struct regcache *regcache = (struct regcache *) cb_data;
570 int required = 0;
571
572 if (strcmp (sect_name, ".reg") == 0)
573 {
574 required = 1;
575 if (human_name == NULL)
576 human_name = "general-purpose";
577 }
578 else if (strcmp (sect_name, ".reg2") == 0)
579 {
580 if (human_name == NULL)
581 human_name = "floating-point";
582 }
583
584 /* The 'which' parameter is only used when no regset is provided.
585 Thus we just set it to -1. */
586 get_core_register_section (regcache, regset, sect_name,
587 size, -1, human_name, required);
588 }
589
590 /* Get the registers out of a core file. This is the machine-
591 independent part. Fetch_core_registers is the machine-dependent
592 part, typically implemented in the xm-file for each
593 architecture. */
594
595 /* We just get all the registers, so we don't use regno. */
596
597 static void
598 get_core_registers (struct target_ops *ops,
599 struct regcache *regcache, int regno)
600 {
601 int i;
602 struct gdbarch *gdbarch;
603
604 if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
605 && (core_vec == NULL || core_vec->core_read_registers == NULL))
606 {
607 fprintf_filtered (gdb_stderr,
608 "Can't fetch registers from this type of core file\n");
609 return;
610 }
611
612 gdbarch = get_regcache_arch (regcache);
613 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
614 gdbarch_iterate_over_regset_sections (gdbarch,
615 get_core_registers_cb,
616 (void *) regcache, NULL);
617 else
618 {
619 get_core_register_section (regcache, NULL,
620 ".reg", 0, 0, "general-purpose", 1);
621 get_core_register_section (regcache, NULL,
622 ".reg2", 0, 2, "floating-point", 0);
623 }
624
625 /* Mark all registers not found in the core as unavailable. */
626 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
627 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
628 regcache_raw_supply (regcache, i, NULL);
629 }
630
631 static void
632 core_files_info (struct target_ops *t)
633 {
634 print_section_info (core_data, core_bfd);
635 }
636 \f
637 struct spuid_list
638 {
639 gdb_byte *buf;
640 ULONGEST offset;
641 LONGEST len;
642 ULONGEST pos;
643 ULONGEST written;
644 };
645
646 static void
647 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
648 {
649 struct spuid_list *list = list_p;
650 enum bfd_endian byte_order
651 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
652 int fd, pos = 0;
653
654 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
655 if (pos == 0)
656 return;
657
658 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
659 {
660 store_unsigned_integer (list->buf + list->pos - list->offset,
661 4, byte_order, fd);
662 list->written += 4;
663 }
664 list->pos += 4;
665 }
666
667 /* Read siginfo data from the core, if possible. Returns -1 on
668 failure. Otherwise, returns the number of bytes read. ABFD is the
669 core file's BFD; READBUF, OFFSET, and LEN are all as specified by
670 the to_xfer_partial interface. */
671
672 static LONGEST
673 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, ULONGEST len)
674 {
675 asection *section;
676 char *section_name;
677 const char *name = ".note.linuxcore.siginfo";
678
679 if (ptid_get_lwp (inferior_ptid))
680 section_name = xstrprintf ("%s/%ld", name,
681 ptid_get_lwp (inferior_ptid));
682 else
683 section_name = xstrdup (name);
684
685 section = bfd_get_section_by_name (abfd, section_name);
686 xfree (section_name);
687 if (section == NULL)
688 return -1;
689
690 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
691 return -1;
692
693 return len;
694 }
695
696 static enum target_xfer_status
697 core_xfer_partial (struct target_ops *ops, enum target_object object,
698 const char *annex, gdb_byte *readbuf,
699 const gdb_byte *writebuf, ULONGEST offset,
700 ULONGEST len, ULONGEST *xfered_len)
701 {
702 switch (object)
703 {
704 case TARGET_OBJECT_MEMORY:
705 return section_table_xfer_memory_partial (readbuf, writebuf,
706 offset, len, xfered_len,
707 core_data->sections,
708 core_data->sections_end,
709 NULL);
710
711 case TARGET_OBJECT_AUXV:
712 if (readbuf)
713 {
714 /* When the aux vector is stored in core file, BFD
715 represents this with a fake section called ".auxv". */
716
717 struct bfd_section *section;
718 bfd_size_type size;
719
720 section = bfd_get_section_by_name (core_bfd, ".auxv");
721 if (section == NULL)
722 return TARGET_XFER_E_IO;
723
724 size = bfd_section_size (core_bfd, section);
725 if (offset >= size)
726 return TARGET_XFER_EOF;
727 size -= offset;
728 if (size > len)
729 size = len;
730
731 if (size == 0)
732 return TARGET_XFER_EOF;
733 if (!bfd_get_section_contents (core_bfd, section, readbuf,
734 (file_ptr) offset, size))
735 {
736 warning (_("Couldn't read NT_AUXV note in core file."));
737 return TARGET_XFER_E_IO;
738 }
739
740 *xfered_len = (ULONGEST) size;
741 return TARGET_XFER_OK;
742 }
743 return TARGET_XFER_E_IO;
744
745 case TARGET_OBJECT_WCOOKIE:
746 if (readbuf)
747 {
748 /* When the StackGhost cookie is stored in core file, BFD
749 represents this with a fake section called
750 ".wcookie". */
751
752 struct bfd_section *section;
753 bfd_size_type size;
754
755 section = bfd_get_section_by_name (core_bfd, ".wcookie");
756 if (section == NULL)
757 return TARGET_XFER_E_IO;
758
759 size = bfd_section_size (core_bfd, section);
760 if (offset >= size)
761 return TARGET_XFER_EOF;
762 size -= offset;
763 if (size > len)
764 size = len;
765
766 if (size == 0)
767 return TARGET_XFER_EOF;
768 if (!bfd_get_section_contents (core_bfd, section, readbuf,
769 (file_ptr) offset, size))
770 {
771 warning (_("Couldn't read StackGhost cookie in core file."));
772 return TARGET_XFER_E_IO;
773 }
774
775 *xfered_len = (ULONGEST) size;
776 return TARGET_XFER_OK;
777
778 }
779 return TARGET_XFER_E_IO;
780
781 case TARGET_OBJECT_LIBRARIES:
782 if (core_gdbarch
783 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
784 {
785 if (writebuf)
786 return TARGET_XFER_E_IO;
787 else
788 {
789 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
790 readbuf,
791 offset, len);
792
793 if (*xfered_len == 0)
794 return TARGET_XFER_EOF;
795 else
796 return TARGET_XFER_OK;
797 }
798 }
799 /* FALL THROUGH */
800
801 case TARGET_OBJECT_LIBRARIES_AIX:
802 if (core_gdbarch
803 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
804 {
805 if (writebuf)
806 return TARGET_XFER_E_IO;
807 else
808 {
809 *xfered_len
810 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
811 readbuf, offset,
812 len);
813
814 if (*xfered_len == 0)
815 return TARGET_XFER_EOF;
816 else
817 return TARGET_XFER_OK;
818 }
819 }
820 /* FALL THROUGH */
821
822 case TARGET_OBJECT_SPU:
823 if (readbuf && annex)
824 {
825 /* When the SPU contexts are stored in a core file, BFD
826 represents this with a fake section called
827 "SPU/<annex>". */
828
829 struct bfd_section *section;
830 bfd_size_type size;
831 char sectionstr[100];
832
833 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
834
835 section = bfd_get_section_by_name (core_bfd, sectionstr);
836 if (section == NULL)
837 return TARGET_XFER_E_IO;
838
839 size = bfd_section_size (core_bfd, section);
840 if (offset >= size)
841 return TARGET_XFER_EOF;
842 size -= offset;
843 if (size > len)
844 size = len;
845
846 if (size == 0)
847 return TARGET_XFER_EOF;
848 if (!bfd_get_section_contents (core_bfd, section, readbuf,
849 (file_ptr) offset, size))
850 {
851 warning (_("Couldn't read SPU section in core file."));
852 return TARGET_XFER_E_IO;
853 }
854
855 *xfered_len = (ULONGEST) size;
856 return TARGET_XFER_OK;
857 }
858 else if (readbuf)
859 {
860 /* NULL annex requests list of all present spuids. */
861 struct spuid_list list;
862
863 list.buf = readbuf;
864 list.offset = offset;
865 list.len = len;
866 list.pos = 0;
867 list.written = 0;
868 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
869
870 if (list.written == 0)
871 return TARGET_XFER_EOF;
872 else
873 {
874 *xfered_len = (ULONGEST) list.written;
875 return TARGET_XFER_OK;
876 }
877 }
878 return TARGET_XFER_E_IO;
879
880 case TARGET_OBJECT_SIGNAL_INFO:
881 if (readbuf)
882 {
883 LONGEST l = get_core_siginfo (core_bfd, readbuf, offset, len);
884
885 if (l > 0)
886 {
887 *xfered_len = len;
888 return TARGET_XFER_OK;
889 }
890 }
891 return TARGET_XFER_E_IO;
892
893 default:
894 return ops->beneath->to_xfer_partial (ops->beneath, object,
895 annex, readbuf,
896 writebuf, offset, len,
897 xfered_len);
898 }
899 }
900
901 \f
902 /* If mourn is being called in all the right places, this could be say
903 `gdb internal error' (since generic_mourn calls
904 breakpoint_init_inferior). */
905
906 static int
907 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
908 struct bp_target_info *bp_tgt)
909 {
910 return 0;
911 }
912
913
914 /* Okay, let's be honest: threads gleaned from a core file aren't
915 exactly lively, are they? On the other hand, if we don't claim
916 that each & every one is alive, then we don't get any of them
917 to appear in an "info thread" command, which is quite a useful
918 behaviour.
919 */
920 static int
921 core_thread_alive (struct target_ops *ops, ptid_t ptid)
922 {
923 return 1;
924 }
925
926 /* Ask the current architecture what it knows about this core file.
927 That will be used, in turn, to pick a better architecture. This
928 wrapper could be avoided if targets got a chance to specialize
929 core_ops. */
930
931 static const struct target_desc *
932 core_read_description (struct target_ops *target)
933 {
934 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
935 {
936 const struct target_desc *result;
937
938 result = gdbarch_core_read_description (core_gdbarch,
939 target, core_bfd);
940 if (result != NULL)
941 return result;
942 }
943
944 return target->beneath->to_read_description (target->beneath);
945 }
946
947 static char *
948 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
949 {
950 static char buf[64];
951 struct inferior *inf;
952 int pid;
953
954 /* The preferred way is to have a gdbarch/OS specific
955 implementation. */
956 if (core_gdbarch
957 && gdbarch_core_pid_to_str_p (core_gdbarch))
958 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
959
960 /* Otherwise, if we don't have one, we'll just fallback to
961 "process", with normal_pid_to_str. */
962
963 /* Try the LWPID field first. */
964 pid = ptid_get_lwp (ptid);
965 if (pid != 0)
966 return normal_pid_to_str (pid_to_ptid (pid));
967
968 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
969 only if it isn't a fake PID. */
970 inf = find_inferior_ptid (ptid);
971 if (inf != NULL && !inf->fake_pid_p)
972 return normal_pid_to_str (ptid);
973
974 /* No luck. We simply don't have a valid PID to print. */
975 xsnprintf (buf, sizeof buf, "<main task>");
976 return buf;
977 }
978
979 static int
980 core_has_memory (struct target_ops *ops)
981 {
982 return (core_bfd != NULL);
983 }
984
985 static int
986 core_has_stack (struct target_ops *ops)
987 {
988 return (core_bfd != NULL);
989 }
990
991 static int
992 core_has_registers (struct target_ops *ops)
993 {
994 return (core_bfd != NULL);
995 }
996
997 /* Implement the to_info_proc method. */
998
999 static void
1000 core_info_proc (struct target_ops *ops, const char *args,
1001 enum info_proc_what request)
1002 {
1003 struct gdbarch *gdbarch = get_current_arch ();
1004
1005 /* Since this is the core file target, call the 'core_info_proc'
1006 method on gdbarch, not 'info_proc'. */
1007 if (gdbarch_core_info_proc_p (gdbarch))
1008 gdbarch_core_info_proc (gdbarch, args, request);
1009 }
1010
1011 /* Fill in core_ops with its defined operations and properties. */
1012
1013 static void
1014 init_core_ops (void)
1015 {
1016 core_ops.to_shortname = "core";
1017 core_ops.to_longname = "Local core dump file";
1018 core_ops.to_doc =
1019 "Use a core file as a target. Specify the filename of the core file.";
1020 core_ops.to_open = core_open;
1021 core_ops.to_close = core_close;
1022 core_ops.to_detach = core_detach;
1023 core_ops.to_fetch_registers = get_core_registers;
1024 core_ops.to_xfer_partial = core_xfer_partial;
1025 core_ops.to_files_info = core_files_info;
1026 core_ops.to_insert_breakpoint = ignore;
1027 core_ops.to_remove_breakpoint = ignore;
1028 core_ops.to_thread_alive = core_thread_alive;
1029 core_ops.to_read_description = core_read_description;
1030 core_ops.to_pid_to_str = core_pid_to_str;
1031 core_ops.to_stratum = process_stratum;
1032 core_ops.to_has_memory = core_has_memory;
1033 core_ops.to_has_stack = core_has_stack;
1034 core_ops.to_has_registers = core_has_registers;
1035 core_ops.to_info_proc = core_info_proc;
1036 core_ops.to_magic = OPS_MAGIC;
1037
1038 if (core_target)
1039 internal_error (__FILE__, __LINE__,
1040 _("init_core_ops: core target already exists (\"%s\")."),
1041 core_target->to_longname);
1042 core_target = &core_ops;
1043 }
1044
1045 void
1046 _initialize_corelow (void)
1047 {
1048 init_core_ops ();
1049
1050 add_target_with_completer (&core_ops, filename_completer);
1051 }