gdb/MAINTAINERS: add Luis Machado as global maintainer
[binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2023 Free Software Foundation, Inc.
4
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "trad-frame.h"
28 #include "dwarf2/frame.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "gdbtypes.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "value.h"
36 #include "opcode/cris.h"
37 #include "osabi.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "regset.h"
41
42 #include "objfiles.h"
43
44 #include "solib.h"
45 #include "solib-svr4.h"
46 #include "dis-asm.h"
47
48 #include "cris-tdep.h"
49
50 enum cris_num_regs
51 {
52 /* There are no floating point registers. Used in gdbserver low-linux.c. */
53 NUM_FREGS = 0,
54
55 /* There are 16 general registers. */
56 NUM_GENREGS = 16,
57
58 /* There are 16 special registers. */
59 NUM_SPECREGS = 16,
60
61 /* CRISv32 has a pseudo PC register, not noted here. */
62
63 /* CRISv32 has 16 support registers. */
64 NUM_SUPPREGS = 16
65 };
66
67 /* Register numbers of various important registers.
68 CRIS_FP_REGNUM Contains address of executing stack frame.
69 STR_REGNUM Contains the address of structure return values.
70 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
71 ARG1_REGNUM Contains the first parameter to a function.
72 ARG2_REGNUM Contains the second parameter to a function.
73 ARG3_REGNUM Contains the third parameter to a function.
74 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
75 gdbarch_sp_regnum Contains address of top of stack.
76 gdbarch_pc_regnum Contains address of next instruction.
77 SRP_REGNUM Subroutine return pointer register.
78 BRP_REGNUM Breakpoint return pointer register. */
79
80 enum cris_regnums
81 {
82 /* Enums with respect to the general registers, valid for all
83 CRIS versions. The frame pointer is always in R8. */
84 CRIS_FP_REGNUM = 8,
85 /* ABI related registers. */
86 STR_REGNUM = 9,
87 RET_REGNUM = 10,
88 ARG1_REGNUM = 10,
89 ARG2_REGNUM = 11,
90 ARG3_REGNUM = 12,
91 ARG4_REGNUM = 13,
92
93 /* Registers which happen to be common. */
94 VR_REGNUM = 17,
95 MOF_REGNUM = 23,
96 SRP_REGNUM = 27,
97
98 /* CRISv10 et al. specific registers. */
99 P0_REGNUM = 16,
100 P4_REGNUM = 20,
101 CCR_REGNUM = 21,
102 P8_REGNUM = 24,
103 IBR_REGNUM = 25,
104 IRP_REGNUM = 26,
105 BAR_REGNUM = 28,
106 DCCR_REGNUM = 29,
107 BRP_REGNUM = 30,
108 USP_REGNUM = 31,
109
110 /* CRISv32 specific registers. */
111 ACR_REGNUM = 15,
112 BZ_REGNUM = 16,
113 PID_REGNUM = 18,
114 SRS_REGNUM = 19,
115 WZ_REGNUM = 20,
116 EXS_REGNUM = 21,
117 EDA_REGNUM = 22,
118 DZ_REGNUM = 24,
119 EBP_REGNUM = 25,
120 ERP_REGNUM = 26,
121 NRP_REGNUM = 28,
122 CCS_REGNUM = 29,
123 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
124 SPC_REGNUM = 31,
125 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
126
127 S0_REGNUM = 33,
128 S1_REGNUM = 34,
129 S2_REGNUM = 35,
130 S3_REGNUM = 36,
131 S4_REGNUM = 37,
132 S5_REGNUM = 38,
133 S6_REGNUM = 39,
134 S7_REGNUM = 40,
135 S8_REGNUM = 41,
136 S9_REGNUM = 42,
137 S10_REGNUM = 43,
138 S11_REGNUM = 44,
139 S12_REGNUM = 45,
140 S13_REGNUM = 46,
141 S14_REGNUM = 47,
142 S15_REGNUM = 48,
143 };
144
145 extern const struct cris_spec_reg cris_spec_regs[];
146
147 /* CRIS version, set via the user command 'set cris-version'. Affects
148 register names and sizes. */
149 static unsigned int usr_cmd_cris_version;
150
151 /* Indicates whether to trust the above variable. */
152 static bool usr_cmd_cris_version_valid = false;
153
154 static const char cris_mode_normal[] = "normal";
155 static const char cris_mode_guru[] = "guru";
156 static const char *const cris_modes[] = {
157 cris_mode_normal,
158 cris_mode_guru,
159 0
160 };
161
162 /* CRIS mode, set via the user command 'set cris-mode'. Affects
163 type of break instruction among other things. */
164 static const char *usr_cmd_cris_mode = cris_mode_normal;
165
166 /* Whether to make use of Dwarf-2 CFI (default on). */
167 static bool usr_cmd_cris_dwarf2_cfi = true;
168
169 /* Sigtramp identification code copied from i386-linux-tdep.c. */
170
171 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
172 #define SIGTRAMP_OFFSET0 0
173 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
174 #define SIGTRAMP_OFFSET1 4
175
176 static const unsigned short sigtramp_code[] =
177 {
178 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
179 SIGTRAMP_INSN1 /* break 13 */
180 };
181
182 #define SIGTRAMP_LEN (sizeof sigtramp_code)
183
184 /* Note: same length as normal sigtramp code. */
185
186 static const unsigned short rt_sigtramp_code[] =
187 {
188 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
189 SIGTRAMP_INSN1 /* break 13 */
190 };
191
192 /* If PC is in a sigtramp routine, return the address of the start of
193 the routine. Otherwise, return 0. */
194
195 static CORE_ADDR
196 cris_sigtramp_start (frame_info_ptr this_frame)
197 {
198 CORE_ADDR pc = get_frame_pc (this_frame);
199 gdb_byte buf[SIGTRAMP_LEN];
200
201 if (!safe_frame_unwind_memory (this_frame, pc, buf))
202 return 0;
203
204 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
205 {
206 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
207 return 0;
208
209 pc -= SIGTRAMP_OFFSET1;
210 if (!safe_frame_unwind_memory (this_frame, pc, buf))
211 return 0;
212 }
213
214 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
215 return 0;
216
217 return pc;
218 }
219
220 /* If PC is in a RT sigtramp routine, return the address of the start of
221 the routine. Otherwise, return 0. */
222
223 static CORE_ADDR
224 cris_rt_sigtramp_start (frame_info_ptr this_frame)
225 {
226 CORE_ADDR pc = get_frame_pc (this_frame);
227 gdb_byte buf[SIGTRAMP_LEN];
228
229 if (!safe_frame_unwind_memory (this_frame, pc, buf))
230 return 0;
231
232 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
233 {
234 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
235 return 0;
236
237 pc -= SIGTRAMP_OFFSET1;
238 if (!safe_frame_unwind_memory (this_frame, pc, buf))
239 return 0;
240 }
241
242 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
243 return 0;
244
245 return pc;
246 }
247
248 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
249 return the address of the associated sigcontext structure. */
250
251 static CORE_ADDR
252 cris_sigcontext_addr (frame_info_ptr this_frame)
253 {
254 struct gdbarch *gdbarch = get_frame_arch (this_frame);
255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
256 CORE_ADDR pc;
257 CORE_ADDR sp;
258 gdb_byte buf[4];
259
260 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
261 sp = extract_unsigned_integer (buf, 4, byte_order);
262
263 /* Look for normal sigtramp frame first. */
264 pc = cris_sigtramp_start (this_frame);
265 if (pc)
266 {
267 /* struct signal_frame (arch/cris/kernel/signal.c) contains
268 struct sigcontext as its first member, meaning the SP points to
269 it already. */
270 return sp;
271 }
272
273 pc = cris_rt_sigtramp_start (this_frame);
274 if (pc)
275 {
276 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
277 a struct ucontext, which in turn contains a struct sigcontext.
278 Magic digging:
279 4 + 4 + 128 to struct ucontext, then
280 4 + 4 + 12 to struct sigcontext. */
281 return (sp + 156);
282 }
283
284 error (_("Couldn't recognize signal trampoline."));
285 return 0;
286 }
287
288 struct cris_unwind_cache
289 {
290 /* The previous frame's inner most stack address. Used as this
291 frame ID's stack_addr. */
292 CORE_ADDR prev_sp;
293 /* The frame's base, optionally used by the high-level debug info. */
294 CORE_ADDR base;
295 int size;
296 /* How far the SP and r8 (FP) have been offset from the start of
297 the stack frame (as defined by the previous frame's stack
298 pointer). */
299 LONGEST sp_offset;
300 LONGEST r8_offset;
301 int uses_frame;
302
303 /* From old frame_extra_info struct. */
304 CORE_ADDR return_pc;
305 int leaf_function;
306
307 /* Table indicating the location of each and every register. */
308 trad_frame_saved_reg *saved_regs;
309 };
310
311 static struct cris_unwind_cache *
312 cris_sigtramp_frame_unwind_cache (frame_info_ptr this_frame,
313 void **this_cache)
314 {
315 struct gdbarch *gdbarch = get_frame_arch (this_frame);
316 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
317 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
318 struct cris_unwind_cache *info;
319 CORE_ADDR addr;
320 gdb_byte buf[4];
321 int i;
322
323 if ((*this_cache))
324 return (struct cris_unwind_cache *) (*this_cache);
325
326 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
327 (*this_cache) = info;
328 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
329
330 /* Zero all fields. */
331 info->prev_sp = 0;
332 info->base = 0;
333 info->size = 0;
334 info->sp_offset = 0;
335 info->r8_offset = 0;
336 info->uses_frame = 0;
337 info->return_pc = 0;
338 info->leaf_function = 0;
339
340 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
341 info->base = extract_unsigned_integer (buf, 4, byte_order);
342
343 addr = cris_sigcontext_addr (this_frame);
344
345 /* Layout of the sigcontext struct:
346 struct sigcontext {
347 struct pt_regs regs;
348 unsigned long oldmask;
349 unsigned long usp;
350 }; */
351
352 if (tdep->cris_version == 10)
353 {
354 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
355 struct pt_regs. */
356 for (i = 0; i <= 13; i++)
357 info->saved_regs[i].set_addr (addr + ((15 - i) * 4));
358
359 info->saved_regs[MOF_REGNUM].set_addr (addr + (16 * 4));
360 info->saved_regs[DCCR_REGNUM].set_addr (addr + (17 * 4));
361 info->saved_regs[SRP_REGNUM].set_addr (addr + (18 * 4));
362 /* Note: IRP is off by 2 at this point. There's no point in correcting
363 it though since that will mean that the backtrace will show a PC
364 different from what is shown when stopped. */
365 info->saved_regs[IRP_REGNUM].set_addr (addr + (19 * 4));
366 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
367 = info->saved_regs[IRP_REGNUM];
368 info->saved_regs[gdbarch_sp_regnum (gdbarch)].set_addr (addr + (24 * 4));
369 }
370 else
371 {
372 /* CRISv32. */
373 /* R0 to R13 are stored in order at offset (1 * 4) in
374 struct pt_regs. */
375 for (i = 0; i <= 13; i++)
376 info->saved_regs[i].set_addr (addr + ((i + 1) * 4));
377
378 info->saved_regs[ACR_REGNUM].set_addr (addr + (15 * 4));
379 info->saved_regs[SRS_REGNUM].set_addr (addr + (16 * 4));
380 info->saved_regs[MOF_REGNUM].set_addr (addr + (17 * 4));
381 info->saved_regs[SPC_REGNUM].set_addr (addr + (18 * 4));
382 info->saved_regs[CCS_REGNUM].set_addr (addr + (19 * 4));
383 info->saved_regs[SRP_REGNUM].set_addr (addr + (20 * 4));
384 info->saved_regs[ERP_REGNUM].set_addr (addr + (21 * 4));
385 info->saved_regs[EXS_REGNUM].set_addr (addr + (22 * 4));
386 info->saved_regs[EDA_REGNUM].set_addr (addr + (23 * 4));
387
388 /* FIXME: If ERP is in a delay slot at this point then the PC will
389 be wrong at this point. This problem manifests itself in the
390 sigaltstack.exp test case, which occasionally generates FAILs when
391 the signal is received while in a delay slot.
392
393 This could be solved by a couple of read_memory_unsigned_integer and a
394 trad_frame_set_value. */
395 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
396 = info->saved_regs[ERP_REGNUM];
397
398 info->saved_regs[gdbarch_sp_regnum (gdbarch)].set_addr (addr + (25 * 4));
399 }
400
401 return info;
402 }
403
404 static void
405 cris_sigtramp_frame_this_id (frame_info_ptr this_frame, void **this_cache,
406 struct frame_id *this_id)
407 {
408 struct cris_unwind_cache *cache =
409 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
410 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
411 }
412
413 /* Forward declaration. */
414
415 static struct value *cris_frame_prev_register (frame_info_ptr this_frame,
416 void **this_cache, int regnum);
417 static struct value *
418 cris_sigtramp_frame_prev_register (frame_info_ptr this_frame,
419 void **this_cache, int regnum)
420 {
421 /* Make sure we've initialized the cache. */
422 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
423 return cris_frame_prev_register (this_frame, this_cache, regnum);
424 }
425
426 static int
427 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
428 frame_info_ptr this_frame,
429 void **this_cache)
430 {
431 if (cris_sigtramp_start (this_frame)
432 || cris_rt_sigtramp_start (this_frame))
433 return 1;
434
435 return 0;
436 }
437
438 static const struct frame_unwind cris_sigtramp_frame_unwind =
439 {
440 "cris sigtramp",
441 SIGTRAMP_FRAME,
442 default_frame_unwind_stop_reason,
443 cris_sigtramp_frame_this_id,
444 cris_sigtramp_frame_prev_register,
445 NULL,
446 cris_sigtramp_frame_sniffer
447 };
448
449 static int
450 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
451 frame_info_ptr this_frame)
452 {
453 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
454 ULONGEST erp;
455 int ret = 0;
456
457 if (tdep->cris_mode == cris_mode_guru)
458 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
459 else
460 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
461
462 if (erp & 0x1)
463 {
464 /* In delay slot - check if there's a breakpoint at the preceding
465 instruction. */
466 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
467 ret = 1;
468 }
469 return ret;
470 }
471
472 /* The instruction environment needed to find single-step breakpoints. */
473
474 typedef
475 struct instruction_environment
476 {
477 unsigned long reg[NUM_GENREGS];
478 unsigned long preg[NUM_SPECREGS];
479 unsigned long branch_break_address;
480 unsigned long delay_slot_pc;
481 unsigned long prefix_value;
482 int branch_found;
483 int prefix_found;
484 int invalid;
485 int slot_needed;
486 int delay_slot_pc_active;
487 int xflag_found;
488 int disable_interrupt;
489 enum bfd_endian byte_order;
490 } inst_env_type;
491
492 /* Machine-dependencies in CRIS for opcodes. */
493
494 /* Instruction sizes. */
495 enum cris_instruction_sizes
496 {
497 INST_BYTE_SIZE = 0,
498 INST_WORD_SIZE = 1,
499 INST_DWORD_SIZE = 2
500 };
501
502 /* Addressing modes. */
503 enum cris_addressing_modes
504 {
505 REGISTER_MODE = 1,
506 INDIRECT_MODE = 2,
507 AUTOINC_MODE = 3
508 };
509
510 /* Prefix addressing modes. */
511 enum cris_prefix_addressing_modes
512 {
513 PREFIX_INDEX_MODE = 2,
514 PREFIX_ASSIGN_MODE = 3,
515
516 /* Handle immediate byte offset addressing mode prefix format. */
517 PREFIX_OFFSET_MODE = 2
518 };
519
520 /* Masks for opcodes. */
521 enum cris_opcode_masks
522 {
523 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
524 SIGNED_EXTEND_BIT_MASK = 0x2,
525 SIGNED_BYTE_MASK = 0x80,
526 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
527 SIGNED_WORD_MASK = 0x8000,
528 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
529 SIGNED_DWORD_MASK = 0x80000000,
530 SIGNED_QUICK_VALUE_MASK = 0x20,
531 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
532 };
533
534 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
535 Bit 15 - 12 Operand2
536 11 - 10 Mode
537 9 - 6 Opcode
538 5 - 4 Size
539 3 - 0 Operand1 */
540
541 static int
542 cris_get_operand2 (unsigned short insn)
543 {
544 return ((insn & 0xF000) >> 12);
545 }
546
547 static int
548 cris_get_mode (unsigned short insn)
549 {
550 return ((insn & 0x0C00) >> 10);
551 }
552
553 static int
554 cris_get_opcode (unsigned short insn)
555 {
556 return ((insn & 0x03C0) >> 6);
557 }
558
559 static int
560 cris_get_size (unsigned short insn)
561 {
562 return ((insn & 0x0030) >> 4);
563 }
564
565 static int
566 cris_get_operand1 (unsigned short insn)
567 {
568 return (insn & 0x000F);
569 }
570
571 /* Additional functions in order to handle opcodes. */
572
573 static int
574 cris_get_quick_value (unsigned short insn)
575 {
576 return (insn & 0x003F);
577 }
578
579 static int
580 cris_get_bdap_quick_offset (unsigned short insn)
581 {
582 return (insn & 0x00FF);
583 }
584
585 static int
586 cris_get_branch_short_offset (unsigned short insn)
587 {
588 return (insn & 0x00FF);
589 }
590
591 static int
592 cris_get_asr_shift_steps (unsigned long value)
593 {
594 return (value & 0x3F);
595 }
596
597 static int
598 cris_get_clear_size (unsigned short insn)
599 {
600 return ((insn) & 0xC000);
601 }
602
603 static int
604 cris_is_signed_extend_bit_on (unsigned short insn)
605 {
606 return (((insn) & 0x20) == 0x20);
607 }
608
609 static int
610 cris_is_xflag_bit_on (unsigned short insn)
611 {
612 return (((insn) & 0x1000) == 0x1000);
613 }
614
615 static void
616 cris_set_size_to_dword (unsigned short *insn)
617 {
618 *insn &= 0xFFCF;
619 *insn |= 0x20;
620 }
621
622 static signed char
623 cris_get_signed_offset (unsigned short insn)
624 {
625 return ((signed char) (insn & 0x00FF));
626 }
627
628 /* Calls an op function given the op-type, working on the insn and the
629 inst_env. */
630 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
631 inst_env_type *);
632
633 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
634 struct gdbarch_list *);
635
636 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
637
638 static void set_cris_version (const char *ignore_args, int from_tty,
639 struct cmd_list_element *c);
640
641 static void set_cris_mode (const char *ignore_args, int from_tty,
642 struct cmd_list_element *c);
643
644 static void set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
645 struct cmd_list_element *c);
646
647 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
648 frame_info_ptr this_frame,
649 struct cris_unwind_cache *info);
650
651 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
652 frame_info_ptr this_frame,
653 struct cris_unwind_cache *info);
654
655 /* When arguments must be pushed onto the stack, they go on in reverse
656 order. The below implements a FILO (stack) to do this.
657 Copied from d10v-tdep.c. */
658
659 struct cris_stack_item
660 {
661 int len;
662 struct cris_stack_item *prev;
663 gdb_byte *data;
664 };
665
666 static struct cris_stack_item *
667 push_stack_item (struct cris_stack_item *prev, const gdb_byte *contents,
668 int len)
669 {
670 struct cris_stack_item *si = XNEW (struct cris_stack_item);
671 si->data = (gdb_byte *) xmalloc (len);
672 si->len = len;
673 si->prev = prev;
674 memcpy (si->data, contents, len);
675 return si;
676 }
677
678 static struct cris_stack_item *
679 pop_stack_item (struct cris_stack_item *si)
680 {
681 struct cris_stack_item *dead = si;
682 si = si->prev;
683 xfree (dead->data);
684 xfree (dead);
685 return si;
686 }
687
688 /* Put here the code to store, into fi->saved_regs, the addresses of
689 the saved registers of frame described by FRAME_INFO. This
690 includes special registers such as pc and fp saved in special ways
691 in the stack frame. sp is even more special: the address we return
692 for it IS the sp for the next frame. */
693
694 static struct cris_unwind_cache *
695 cris_frame_unwind_cache (frame_info_ptr this_frame,
696 void **this_prologue_cache)
697 {
698 struct gdbarch *gdbarch = get_frame_arch (this_frame);
699 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
700 struct cris_unwind_cache *info;
701
702 if ((*this_prologue_cache))
703 return (struct cris_unwind_cache *) (*this_prologue_cache);
704
705 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
706 (*this_prologue_cache) = info;
707 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
708
709 /* Zero all fields. */
710 info->prev_sp = 0;
711 info->base = 0;
712 info->size = 0;
713 info->sp_offset = 0;
714 info->r8_offset = 0;
715 info->uses_frame = 0;
716 info->return_pc = 0;
717 info->leaf_function = 0;
718
719 /* Prologue analysis does the rest... */
720 if (tdep->cris_version == 32)
721 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
722 else
723 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
724
725 return info;
726 }
727
728 /* Given a GDB frame, determine the address of the calling function's
729 frame. This will be used to create a new GDB frame struct. */
730
731 static void
732 cris_frame_this_id (frame_info_ptr this_frame,
733 void **this_prologue_cache,
734 struct frame_id *this_id)
735 {
736 struct cris_unwind_cache *info
737 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
738 CORE_ADDR base;
739 CORE_ADDR func;
740 struct frame_id id;
741
742 /* The FUNC is easy. */
743 func = get_frame_func (this_frame);
744
745 /* Hopefully the prologue analysis either correctly determined the
746 frame's base (which is the SP from the previous frame), or set
747 that base to "NULL". */
748 base = info->prev_sp;
749 if (base == 0)
750 return;
751
752 id = frame_id_build (base, func);
753
754 (*this_id) = id;
755 }
756
757 static struct value *
758 cris_frame_prev_register (frame_info_ptr this_frame,
759 void **this_prologue_cache, int regnum)
760 {
761 struct cris_unwind_cache *info
762 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
763 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
764 }
765
766 static CORE_ADDR
767 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
768 {
769 /* Align to the size of an instruction (so that they can safely be
770 pushed onto the stack). */
771 return sp & ~3;
772 }
773
774 static CORE_ADDR
775 cris_push_dummy_code (struct gdbarch *gdbarch,
776 CORE_ADDR sp, CORE_ADDR funaddr,
777 struct value **args, int nargs,
778 struct type *value_type,
779 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
780 struct regcache *regcache)
781 {
782 /* Allocate space sufficient for a breakpoint. */
783 sp = (sp - 4) & ~3;
784 /* Store the address of that breakpoint */
785 *bp_addr = sp;
786 /* CRIS always starts the call at the callee's entry point. */
787 *real_pc = funaddr;
788 return sp;
789 }
790
791 static CORE_ADDR
792 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
793 struct regcache *regcache, CORE_ADDR bp_addr,
794 int nargs, struct value **args, CORE_ADDR sp,
795 function_call_return_method return_method,
796 CORE_ADDR struct_addr)
797 {
798 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
799 int argreg;
800 int argnum;
801
802 struct cris_stack_item *si = NULL;
803
804 /* Push the return address. */
805 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
806
807 /* Are we returning a value using a structure return or a normal value
808 return? struct_addr is the address of the reserved space for the return
809 structure to be written on the stack. */
810 if (return_method == return_method_struct)
811 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
812
813 /* Now load as many as possible of the first arguments into registers,
814 and push the rest onto the stack. */
815 argreg = ARG1_REGNUM;
816
817 for (argnum = 0; argnum < nargs; argnum++)
818 {
819 int len;
820 const gdb_byte *val;
821 int reg_demand;
822 int i;
823
824 len = args[argnum]->type ()->length ();
825 val = args[argnum]->contents ().data ();
826
827 /* How may registers worth of storage do we need for this argument? */
828 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
829
830 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
831 {
832 /* Data passed by value. Fits in available register(s). */
833 for (i = 0; i < reg_demand; i++)
834 {
835 regcache->cooked_write (argreg, val);
836 argreg++;
837 val += 4;
838 }
839 }
840 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
841 {
842 /* Data passed by value. Does not fit in available register(s).
843 Use the register(s) first, then the stack. */
844 for (i = 0; i < reg_demand; i++)
845 {
846 if (argreg <= ARG4_REGNUM)
847 {
848 regcache->cooked_write (argreg, val);
849 argreg++;
850 val += 4;
851 }
852 else
853 {
854 /* Push item for later so that pushed arguments
855 come in the right order. */
856 si = push_stack_item (si, val, 4);
857 val += 4;
858 }
859 }
860 }
861 else if (len > (2 * 4))
862 {
863 /* Data passed by reference. Push copy of data onto stack
864 and pass pointer to this copy as argument. */
865 sp = (sp - len) & ~3;
866 write_memory (sp, val, len);
867
868 if (argreg <= ARG4_REGNUM)
869 {
870 regcache_cooked_write_unsigned (regcache, argreg, sp);
871 argreg++;
872 }
873 else
874 {
875 gdb_byte buf[4];
876 store_unsigned_integer (buf, 4, byte_order, sp);
877 si = push_stack_item (si, buf, 4);
878 }
879 }
880 else
881 {
882 /* Data passed by value. No available registers. Put it on
883 the stack. */
884 si = push_stack_item (si, val, len);
885 }
886 }
887
888 while (si)
889 {
890 /* fp_arg must be word-aligned (i.e., don't += len) to match
891 the function prologue. */
892 sp = (sp - si->len) & ~3;
893 write_memory (sp, si->data, si->len);
894 si = pop_stack_item (si);
895 }
896
897 /* Finally, update the SP register. */
898 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
899
900 return sp;
901 }
902
903 static const struct frame_unwind cris_frame_unwind =
904 {
905 "cris prologue",
906 NORMAL_FRAME,
907 default_frame_unwind_stop_reason,
908 cris_frame_this_id,
909 cris_frame_prev_register,
910 NULL,
911 default_frame_sniffer
912 };
913
914 static CORE_ADDR
915 cris_frame_base_address (frame_info_ptr this_frame, void **this_cache)
916 {
917 struct cris_unwind_cache *info
918 = cris_frame_unwind_cache (this_frame, this_cache);
919 return info->base;
920 }
921
922 static const struct frame_base cris_frame_base =
923 {
924 &cris_frame_unwind,
925 cris_frame_base_address,
926 cris_frame_base_address,
927 cris_frame_base_address
928 };
929
930 /* Frames information. The definition of the struct frame_info is
931
932 CORE_ADDR frame
933 CORE_ADDR pc
934 enum frame_type type;
935 CORE_ADDR return_pc
936 int leaf_function
937
938 If the compilation option -fno-omit-frame-pointer is present the
939 variable frame will be set to the content of R8 which is the frame
940 pointer register.
941
942 The variable pc contains the address where execution is performed
943 in the present frame. The innermost frame contains the current content
944 of the register PC. All other frames contain the content of the
945 register PC in the next frame.
946
947 The variable `type' indicates the frame's type: normal, SIGTRAMP
948 (associated with a signal handler), dummy (associated with a dummy
949 frame).
950
951 The variable return_pc contains the address where execution should be
952 resumed when the present frame has finished, the return address.
953
954 The variable leaf_function is 1 if the return address is in the register
955 SRP, and 0 if it is on the stack.
956
957 Prologue instructions C-code.
958 The prologue may consist of (-fno-omit-frame-pointer)
959 1) 2)
960 push srp
961 push r8 push r8
962 move.d sp,r8 move.d sp,r8
963 subq X,sp subq X,sp
964 movem rY,[sp] movem rY,[sp]
965 move.S rZ,[r8-U] move.S rZ,[r8-U]
966
967 where 1 is a non-terminal function, and 2 is a leaf-function.
968
969 Note that this assumption is extremely brittle, and will break at the
970 slightest change in GCC's prologue.
971
972 If local variables are declared or register contents are saved on stack
973 the subq-instruction will be present with X as the number of bytes
974 needed for storage. The reshuffle with respect to r8 may be performed
975 with any size S (b, w, d) and any of the general registers Z={0..13}.
976 The offset U should be representable by a signed 8-bit value in all cases.
977 Thus, the prefix word is assumed to be immediate byte offset mode followed
978 by another word containing the instruction.
979
980 Degenerate cases:
981 3)
982 push r8
983 move.d sp,r8
984 move.d r8,sp
985 pop r8
986
987 Prologue instructions C++-code.
988 Case 1) and 2) in the C-code may be followed by
989
990 move.d r10,rS ; this
991 move.d r11,rT ; P1
992 move.d r12,rU ; P2
993 move.d r13,rV ; P3
994 move.S [r8+U],rZ ; P4
995
996 if any of the call parameters are stored. The host expects these
997 instructions to be executed in order to get the call parameters right. */
998
999 /* Examine the prologue of a function. The variable ip is the address of
1000 the first instruction of the prologue. The variable limit is the address
1001 of the first instruction after the prologue. The variable fi contains the
1002 information in struct frame_info. The variable frameless_p controls whether
1003 the entire prologue is examined (0) or just enough instructions to
1004 determine that it is a prologue (1). */
1005
1006 static CORE_ADDR
1007 cris_scan_prologue (CORE_ADDR pc, frame_info_ptr this_frame,
1008 struct cris_unwind_cache *info)
1009 {
1010 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1011 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1012
1013 /* Present instruction. */
1014 unsigned short insn;
1015
1016 /* Next instruction, lookahead. */
1017 unsigned short insn_next;
1018 int regno;
1019
1020 /* Number of byte on stack used for local variables and movem. */
1021 int val;
1022
1023 /* Highest register number in a movem. */
1024 int regsave;
1025
1026 /* move.d r<source_register>,rS */
1027 short source_register;
1028
1029 /* Scan limit. */
1030 int limit;
1031
1032 /* This frame is with respect to a leaf until a push srp is found. */
1033 if (info)
1034 {
1035 info->leaf_function = 1;
1036 }
1037
1038 /* Assume nothing on stack. */
1039 val = 0;
1040 regsave = -1;
1041
1042 /* If we were called without a this_frame, that means we were called
1043 from cris_skip_prologue which already tried to find the end of the
1044 prologue through the symbol information. 64 instructions past current
1045 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1046 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1047
1048 /* Find the prologue instructions. */
1049 while (pc > 0 && pc < limit)
1050 {
1051 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1052 pc += 2;
1053 if (insn == 0xE1FC)
1054 {
1055 /* push <reg> 32 bit instruction. */
1056 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1057 pc += 2;
1058 regno = cris_get_operand2 (insn_next);
1059 if (info)
1060 {
1061 info->sp_offset += 4;
1062 }
1063 /* This check, meant to recognize srp, used to be regno ==
1064 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1065 if (insn_next == 0xBE7E)
1066 {
1067 if (info)
1068 {
1069 info->leaf_function = 0;
1070 }
1071 }
1072 else if (insn_next == 0x8FEE)
1073 {
1074 /* push $r8 */
1075 if (info)
1076 {
1077 info->r8_offset = info->sp_offset;
1078 }
1079 }
1080 }
1081 else if (insn == 0x866E)
1082 {
1083 /* move.d sp,r8 */
1084 if (info)
1085 {
1086 info->uses_frame = 1;
1087 }
1088 continue;
1089 }
1090 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1091 && cris_get_mode (insn) == 0x0000
1092 && cris_get_opcode (insn) == 0x000A)
1093 {
1094 /* subq <val>,sp */
1095 if (info)
1096 {
1097 info->sp_offset += cris_get_quick_value (insn);
1098 }
1099 }
1100 else if (cris_get_mode (insn) == 0x0002
1101 && cris_get_opcode (insn) == 0x000F
1102 && cris_get_size (insn) == 0x0003
1103 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1104 {
1105 /* movem r<regsave>,[sp] */
1106 regsave = cris_get_operand2 (insn);
1107 }
1108 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1109 && ((insn & 0x0F00) >> 8) == 0x0001
1110 && (cris_get_signed_offset (insn) < 0))
1111 {
1112 /* Immediate byte offset addressing prefix word with sp as base
1113 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1114 is between 64 and 128.
1115 movem r<regsave>,[sp=sp-<val>] */
1116 if (info)
1117 {
1118 info->sp_offset += -cris_get_signed_offset (insn);
1119 }
1120 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1121 pc += 2;
1122 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1123 && cris_get_opcode (insn_next) == 0x000F
1124 && cris_get_size (insn_next) == 0x0003
1125 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1126 (gdbarch))
1127 {
1128 regsave = cris_get_operand2 (insn_next);
1129 }
1130 else
1131 {
1132 /* The prologue ended before the limit was reached. */
1133 pc -= 4;
1134 break;
1135 }
1136 }
1137 else if (cris_get_mode (insn) == 0x0001
1138 && cris_get_opcode (insn) == 0x0009
1139 && cris_get_size (insn) == 0x0002)
1140 {
1141 /* move.d r<10..13>,r<0..15> */
1142 source_register = cris_get_operand1 (insn);
1143
1144 /* FIXME? In the glibc solibs, the prologue might contain something
1145 like (this example taken from relocate_doit):
1146 move.d $pc,$r0
1147 sub.d 0xfffef426,$r0
1148 which isn't covered by the source_register check below. Question
1149 is whether to add a check for this combo, or make better use of
1150 the limit variable instead. */
1151 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1152 {
1153 /* The prologue ended before the limit was reached. */
1154 pc -= 2;
1155 break;
1156 }
1157 }
1158 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1159 /* The size is a fixed-size. */
1160 && ((insn & 0x0F00) >> 8) == 0x0001
1161 /* A negative offset. */
1162 && (cris_get_signed_offset (insn) < 0))
1163 {
1164 /* move.S rZ,[r8-U] (?) */
1165 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1166 pc += 2;
1167 regno = cris_get_operand2 (insn_next);
1168 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1169 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1170 && cris_get_opcode (insn_next) == 0x000F)
1171 {
1172 /* move.S rZ,[r8-U] */
1173 continue;
1174 }
1175 else
1176 {
1177 /* The prologue ended before the limit was reached. */
1178 pc -= 4;
1179 break;
1180 }
1181 }
1182 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1183 /* The size is a fixed-size. */
1184 && ((insn & 0x0F00) >> 8) == 0x0001
1185 /* A positive offset. */
1186 && (cris_get_signed_offset (insn) > 0))
1187 {
1188 /* move.S [r8+U],rZ (?) */
1189 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1190 pc += 2;
1191 regno = cris_get_operand2 (insn_next);
1192 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1193 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1194 && cris_get_opcode (insn_next) == 0x0009
1195 && cris_get_operand1 (insn_next) == regno)
1196 {
1197 /* move.S [r8+U],rZ */
1198 continue;
1199 }
1200 else
1201 {
1202 /* The prologue ended before the limit was reached. */
1203 pc -= 4;
1204 break;
1205 }
1206 }
1207 else
1208 {
1209 /* The prologue ended before the limit was reached. */
1210 pc -= 2;
1211 break;
1212 }
1213 }
1214
1215 /* We only want to know the end of the prologue when this_frame and info
1216 are NULL (called from cris_skip_prologue i.e.). */
1217 if (this_frame == NULL && info == NULL)
1218 {
1219 return pc;
1220 }
1221
1222 info->size = info->sp_offset;
1223
1224 /* Compute the previous frame's stack pointer (which is also the
1225 frame's ID's stack address), and this frame's base pointer. */
1226 if (info->uses_frame)
1227 {
1228 ULONGEST this_base;
1229 /* The SP was moved to the FP. This indicates that a new frame
1230 was created. Get THIS frame's FP value by unwinding it from
1231 the next frame. */
1232 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1233 info->base = this_base;
1234 info->saved_regs[CRIS_FP_REGNUM].set_addr (info->base);
1235
1236 /* The FP points at the last saved register. Adjust the FP back
1237 to before the first saved register giving the SP. */
1238 info->prev_sp = info->base + info->r8_offset;
1239 }
1240 else
1241 {
1242 ULONGEST this_base;
1243 /* Assume that the FP is this frame's SP but with that pushed
1244 stack space added back. */
1245 this_base = get_frame_register_unsigned (this_frame,
1246 gdbarch_sp_regnum (gdbarch));
1247 info->base = this_base;
1248 info->prev_sp = info->base + info->size;
1249 }
1250
1251 /* Calculate the addresses for the saved registers on the stack. */
1252 /* FIXME: The address calculation should really be done on the fly while
1253 we're analyzing the prologue (we only hold one regsave value as it is
1254 now). */
1255 val = info->sp_offset;
1256
1257 for (regno = regsave; regno >= 0; regno--)
1258 {
1259 info->saved_regs[regno].set_addr (info->base + info->r8_offset - val);
1260 val -= 4;
1261 }
1262
1263 /* The previous frame's SP needed to be computed. Save the computed
1264 value. */
1265 info->saved_regs[gdbarch_sp_regnum (gdbarch)].set_value (info->prev_sp);
1266
1267 if (!info->leaf_function)
1268 {
1269 /* SRP saved on the stack. But where? */
1270 if (info->r8_offset == 0)
1271 {
1272 /* R8 not pushed yet. */
1273 info->saved_regs[SRP_REGNUM].set_addr (info->base);
1274 }
1275 else
1276 {
1277 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1278 info->saved_regs[SRP_REGNUM].set_addr (info->base + 4);
1279 }
1280 }
1281
1282 /* The PC is found in SRP (the actual register or located on the stack). */
1283 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1284 = info->saved_regs[SRP_REGNUM];
1285
1286 return pc;
1287 }
1288
1289 static CORE_ADDR
1290 crisv32_scan_prologue (CORE_ADDR pc, frame_info_ptr this_frame,
1291 struct cris_unwind_cache *info)
1292 {
1293 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1294 ULONGEST this_base;
1295
1296 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1297 meant to be a full-fledged prologue scanner. It is only needed for
1298 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1299
1300 * PLT stubs (library calls)
1301 * call dummys
1302 * signal trampolines
1303
1304 For those cases, it is assumed that there is no actual prologue; that
1305 the stack pointer is not adjusted, and (as a consequence) the return
1306 address is not pushed onto the stack. */
1307
1308 /* We only want to know the end of the prologue when this_frame and info
1309 are NULL (called from cris_skip_prologue i.e.). */
1310 if (this_frame == NULL && info == NULL)
1311 {
1312 return pc;
1313 }
1314
1315 /* The SP is assumed to be unaltered. */
1316 this_base = get_frame_register_unsigned (this_frame,
1317 gdbarch_sp_regnum (gdbarch));
1318 info->base = this_base;
1319 info->prev_sp = this_base;
1320
1321 /* The PC is assumed to be found in SRP. */
1322 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1323 = info->saved_regs[SRP_REGNUM];
1324
1325 return pc;
1326 }
1327
1328 /* Advance pc beyond any function entry prologue instructions at pc
1329 to reach some "real" code. */
1330
1331 /* Given a PC value corresponding to the start of a function, return the PC
1332 of the first instruction after the function prologue. */
1333
1334 static CORE_ADDR
1335 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1336 {
1337 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
1338 CORE_ADDR func_addr, func_end;
1339 struct symtab_and_line sal;
1340 CORE_ADDR pc_after_prologue;
1341
1342 /* If we have line debugging information, then the end of the prologue
1343 should the first assembly instruction of the first source line. */
1344 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1345 {
1346 sal = find_pc_line (func_addr, 0);
1347 if (sal.end > 0 && sal.end < func_end)
1348 return sal.end;
1349 }
1350
1351 if (tdep->cris_version == 32)
1352 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1353 else
1354 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1355
1356 return pc_after_prologue;
1357 }
1358
1359 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1360
1361 static int
1362 cris_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1363 {
1364 return 2;
1365 }
1366
1367 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1368
1369 static const gdb_byte *
1370 cris_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1371 {
1372 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
1373 static unsigned char break8_insn[] = {0x38, 0xe9};
1374 static unsigned char break15_insn[] = {0x3f, 0xe9};
1375
1376 *size = kind;
1377
1378 if (tdep->cris_mode == cris_mode_guru)
1379 return break15_insn;
1380 else
1381 return break8_insn;
1382 }
1383
1384 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1385 0 otherwise. */
1386
1387 static int
1388 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1389 struct cris_spec_reg spec_reg)
1390 {
1391 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
1392 unsigned int version = tdep->cris_version;
1393
1394 switch (spec_reg.applicable_version)
1395 {
1396 case cris_ver_version_all:
1397 return 1;
1398 case cris_ver_warning:
1399 /* Indeterminate/obsolete. */
1400 return 0;
1401 case cris_ver_v0_3:
1402 return in_inclusive_range (version, 0U, 3U);
1403 case cris_ver_v3p:
1404 return (version >= 3);
1405 case cris_ver_v8:
1406 return in_inclusive_range (version, 8U, 9U);
1407 case cris_ver_v8p:
1408 return (version >= 8);
1409 case cris_ver_v0_10:
1410 return in_inclusive_range (version, 0U, 10U);
1411 case cris_ver_v3_10:
1412 return in_inclusive_range (version, 3U, 10U);
1413 case cris_ver_v8_10:
1414 return in_inclusive_range (version, 8U, 10U);
1415 case cris_ver_v10:
1416 return (version == 10);
1417 case cris_ver_v10p:
1418 return (version >= 10);
1419 case cris_ver_v32p:
1420 return (version >= 32);
1421 default:
1422 /* Invalid cris version. */
1423 return 0;
1424 }
1425 }
1426
1427 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1428 register, -1 for an invalid register. */
1429
1430 static int
1431 cris_register_size (struct gdbarch *gdbarch, int regno)
1432 {
1433 int i;
1434 int spec_regno;
1435
1436 if (regno >= 0 && regno < NUM_GENREGS)
1437 {
1438 /* General registers (R0 - R15) are 32 bits. */
1439 return 4;
1440 }
1441 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1442 {
1443 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1444 Adjust regno accordingly. */
1445 spec_regno = regno - NUM_GENREGS;
1446
1447 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1448 {
1449 if (cris_spec_regs[i].number == spec_regno
1450 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1451 /* Go with the first applicable register. */
1452 return cris_spec_regs[i].reg_size;
1453 }
1454 /* Special register not applicable to this CRIS version. */
1455 return 0;
1456 }
1457 else if (regno >= gdbarch_pc_regnum (gdbarch)
1458 && regno < gdbarch_num_regs (gdbarch))
1459 {
1460 /* This will apply to CRISv32 only where there are additional registers
1461 after the special registers (pseudo PC and support registers). */
1462 return 4;
1463 }
1464
1465
1466 return -1;
1467 }
1468
1469 /* Nonzero if regno should not be fetched from the target. This is the case
1470 for unimplemented (size 0) and non-existant registers. */
1471
1472 static int
1473 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1474 {
1475 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1476 || (cris_register_size (gdbarch, regno) == 0));
1477 }
1478
1479 /* Nonzero if regno should not be written to the target, for various
1480 reasons. */
1481
1482 static int
1483 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1484 {
1485 /* There are three kinds of registers we refuse to write to.
1486 1. Those that not implemented.
1487 2. Those that are read-only (depends on the processor mode).
1488 3. Those registers to which a write has no effect. */
1489
1490 if (regno < 0
1491 || regno >= gdbarch_num_regs (gdbarch)
1492 || cris_register_size (gdbarch, regno) == 0)
1493 /* Not implemented. */
1494 return 1;
1495
1496 else if (regno == VR_REGNUM)
1497 /* Read-only. */
1498 return 1;
1499
1500 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1501 /* Writing has no effect. */
1502 return 1;
1503
1504 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1505 agent decide whether they are writable. */
1506
1507 return 0;
1508 }
1509
1510 /* Nonzero if regno should not be fetched from the target. This is the case
1511 for unimplemented (size 0) and non-existant registers. */
1512
1513 static int
1514 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1515 {
1516 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1517 || (cris_register_size (gdbarch, regno) == 0));
1518 }
1519
1520 /* Nonzero if regno should not be written to the target, for various
1521 reasons. */
1522
1523 static int
1524 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1525 {
1526 /* There are three kinds of registers we refuse to write to.
1527 1. Those that not implemented.
1528 2. Those that are read-only (depends on the processor mode).
1529 3. Those registers to which a write has no effect. */
1530
1531 if (regno < 0
1532 || regno >= gdbarch_num_regs (gdbarch)
1533 || cris_register_size (gdbarch, regno) == 0)
1534 /* Not implemented. */
1535 return 1;
1536
1537 else if (regno == VR_REGNUM)
1538 /* Read-only. */
1539 return 1;
1540
1541 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1542 /* Writing has no effect. */
1543 return 1;
1544
1545 /* Many special registers are read-only in user mode. Let the debug
1546 agent decide whether they are writable. */
1547
1548 return 0;
1549 }
1550
1551 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1552 of data in register regno. */
1553
1554 static struct type *
1555 cris_register_type (struct gdbarch *gdbarch, int regno)
1556 {
1557 if (regno == gdbarch_pc_regnum (gdbarch))
1558 return builtin_type (gdbarch)->builtin_func_ptr;
1559 else if (regno == gdbarch_sp_regnum (gdbarch)
1560 || regno == CRIS_FP_REGNUM)
1561 return builtin_type (gdbarch)->builtin_data_ptr;
1562 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1563 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1564 /* Note: R8 taken care of previous clause. */
1565 return builtin_type (gdbarch)->builtin_uint32;
1566 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1567 return builtin_type (gdbarch)->builtin_uint16;
1568 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1569 return builtin_type (gdbarch)->builtin_uint8;
1570 else
1571 /* Invalid (unimplemented) register. */
1572 return builtin_type (gdbarch)->builtin_int0;
1573 }
1574
1575 static struct type *
1576 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1577 {
1578 if (regno == gdbarch_pc_regnum (gdbarch))
1579 return builtin_type (gdbarch)->builtin_func_ptr;
1580 else if (regno == gdbarch_sp_regnum (gdbarch)
1581 || regno == CRIS_FP_REGNUM)
1582 return builtin_type (gdbarch)->builtin_data_ptr;
1583 else if ((regno >= 0 && regno <= ACR_REGNUM)
1584 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1585 || (regno == PID_REGNUM)
1586 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1587 /* Note: R8 and SP taken care of by previous clause. */
1588 return builtin_type (gdbarch)->builtin_uint32;
1589 else if (regno == WZ_REGNUM)
1590 return builtin_type (gdbarch)->builtin_uint16;
1591 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1592 return builtin_type (gdbarch)->builtin_uint8;
1593 else
1594 {
1595 /* Invalid (unimplemented) register. Should not happen as there are
1596 no unimplemented CRISv32 registers. */
1597 warning (_("crisv32_register_type: unknown regno %d"), regno);
1598 return builtin_type (gdbarch)->builtin_int0;
1599 }
1600 }
1601
1602 /* Stores a function return value of type type, where valbuf is the address
1603 of the value to be stored. */
1604
1605 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1606
1607 static void
1608 cris_store_return_value (struct type *type, struct regcache *regcache,
1609 const gdb_byte *valbuf)
1610 {
1611 struct gdbarch *gdbarch = regcache->arch ();
1612 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1613 ULONGEST val;
1614 int len = type->length ();
1615
1616 if (len <= 4)
1617 {
1618 /* Put the return value in R10. */
1619 val = extract_unsigned_integer (valbuf, len, byte_order);
1620 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1621 }
1622 else if (len <= 8)
1623 {
1624 /* Put the return value in R10 and R11. */
1625 val = extract_unsigned_integer (valbuf, 4, byte_order);
1626 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1627 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
1628 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1629 }
1630 else
1631 error (_("cris_store_return_value: type length too large."));
1632 }
1633
1634 /* Return the name of register regno as a string. Return NULL for an
1635 invalid or unimplemented register. */
1636
1637 static const char *
1638 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1639 {
1640 int spec_regno;
1641 int i;
1642
1643 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1644 Adjust regno accordingly. */
1645 spec_regno = regno - NUM_GENREGS;
1646
1647 /* Assume nothing about the layout of the cris_spec_regs struct
1648 when searching. */
1649 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1650 {
1651 if (cris_spec_regs[i].number == spec_regno
1652 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1653 /* Go with the first applicable register. */
1654 return cris_spec_regs[i].name;
1655 }
1656 /* Special register not applicable to this CRIS version. */
1657 return "";
1658 }
1659
1660 static const char *
1661 cris_register_name (struct gdbarch *gdbarch, int regno)
1662 {
1663 static const char *cris_genreg_names[] =
1664 { "r0", "r1", "r2", "r3", \
1665 "r4", "r5", "r6", "r7", \
1666 "r8", "r9", "r10", "r11", \
1667 "r12", "r13", "sp", "pc" };
1668
1669 if (regno < NUM_GENREGS)
1670 {
1671 /* General register. */
1672 gdb_static_assert (ARRAY_SIZE (cris_genreg_names) == NUM_GENREGS);
1673 return cris_genreg_names[regno];
1674 }
1675 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1676 {
1677 return cris_special_register_name (gdbarch, regno);
1678 }
1679 else
1680 {
1681 /* Invalid register. */
1682 return "";
1683 }
1684 }
1685
1686 static const char *
1687 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1688 {
1689 static const char *crisv32_genreg_names[] =
1690 { "r0", "r1", "r2", "r3", \
1691 "r4", "r5", "r6", "r7", \
1692 "r8", "r9", "r10", "r11", \
1693 "r12", "r13", "sp", "acr"
1694 };
1695
1696 static const char *crisv32_sreg_names[] =
1697 { "s0", "s1", "s2", "s3", \
1698 "s4", "s5", "s6", "s7", \
1699 "s8", "s9", "s10", "s11", \
1700 "s12", "s13", "s14", "s15"
1701 };
1702
1703 if (regno >= 0 && regno < NUM_GENREGS)
1704 {
1705 /* General register. */
1706 return crisv32_genreg_names[regno];
1707 }
1708 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1709 {
1710 return cris_special_register_name (gdbarch, regno);
1711 }
1712 else if (regno == gdbarch_pc_regnum (gdbarch))
1713 {
1714 return "pc";
1715 }
1716 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1717 {
1718 return crisv32_sreg_names[regno - S0_REGNUM];
1719 }
1720 else
1721 {
1722 /* Invalid register. */
1723 return NULL;
1724 }
1725 }
1726
1727 /* Convert DWARF register number REG to the appropriate register
1728 number used by GDB. */
1729
1730 static int
1731 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1732 {
1733 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1734 numbering, MOF is 18).
1735 Adapted from gcc/config/cris/cris.h. */
1736 static int cris_dwarf_regmap[] = {
1737 0, 1, 2, 3,
1738 4, 5, 6, 7,
1739 8, 9, 10, 11,
1740 12, 13, 14, 15,
1741 27, -1, -1, -1,
1742 -1, -1, -1, 23,
1743 -1, -1, -1, 27,
1744 -1, -1, -1, -1
1745 };
1746 int regnum = -1;
1747
1748 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1749 regnum = cris_dwarf_regmap[reg];
1750
1751 return regnum;
1752 }
1753
1754 /* DWARF-2 frame support. */
1755
1756 static void
1757 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1758 struct dwarf2_frame_state_reg *reg,
1759 frame_info_ptr this_frame)
1760 {
1761 /* The return address column. */
1762 if (regnum == gdbarch_pc_regnum (gdbarch))
1763 reg->how = DWARF2_FRAME_REG_RA;
1764
1765 /* The call frame address. */
1766 else if (regnum == gdbarch_sp_regnum (gdbarch))
1767 reg->how = DWARF2_FRAME_REG_CFA;
1768 }
1769
1770 /* Extract from an array regbuf containing the raw register state a function
1771 return value of type type, and copy that, in virtual format, into
1772 valbuf. */
1773
1774 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1775
1776 static void
1777 cris_extract_return_value (struct type *type, struct regcache *regcache,
1778 gdb_byte *valbuf)
1779 {
1780 struct gdbarch *gdbarch = regcache->arch ();
1781 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1782 ULONGEST val;
1783 int len = type->length ();
1784
1785 if (len <= 4)
1786 {
1787 /* Get the return value from R10. */
1788 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1789 store_unsigned_integer (valbuf, len, byte_order, val);
1790 }
1791 else if (len <= 8)
1792 {
1793 /* Get the return value from R10 and R11. */
1794 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1795 store_unsigned_integer (valbuf, 4, byte_order, val);
1796 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1797 store_unsigned_integer (valbuf + 4, len - 4, byte_order, val);
1798 }
1799 else
1800 error (_("cris_extract_return_value: type length too large"));
1801 }
1802
1803 /* Handle the CRIS return value convention. */
1804
1805 static enum return_value_convention
1806 cris_return_value (struct gdbarch *gdbarch, struct value *function,
1807 struct type *type, struct regcache *regcache,
1808 gdb_byte *readbuf, const gdb_byte *writebuf)
1809 {
1810 if (type->code () == TYPE_CODE_STRUCT
1811 || type->code () == TYPE_CODE_UNION
1812 || type->length () > 8)
1813 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1814 goes on the stack. */
1815 return RETURN_VALUE_STRUCT_CONVENTION;
1816
1817 if (readbuf)
1818 cris_extract_return_value (type, regcache, readbuf);
1819 if (writebuf)
1820 cris_store_return_value (type, regcache, writebuf);
1821
1822 return RETURN_VALUE_REGISTER_CONVENTION;
1823 }
1824
1825 /* Calculates a value that measures how good inst_args constraints an
1826 instruction. It stems from cris_constraint, found in cris-dis.c. */
1827
1828 static int
1829 constraint (unsigned int insn, const char *inst_args,
1830 inst_env_type *inst_env)
1831 {
1832 int retval = 0;
1833 int tmp, i;
1834
1835 const gdb_byte *s = (const gdb_byte *) inst_args;
1836
1837 for (; *s; s++)
1838 switch (*s)
1839 {
1840 case 'm':
1841 if ((insn & 0x30) == 0x30)
1842 return -1;
1843 break;
1844
1845 case 'S':
1846 /* A prefix operand. */
1847 if (inst_env->prefix_found)
1848 break;
1849 else
1850 return -1;
1851
1852 case 'B':
1853 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1854 valid "push" size. In case of special register, it may be != 4. */
1855 if (inst_env->prefix_found)
1856 break;
1857 else
1858 return -1;
1859
1860 case 'D':
1861 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1862 if (!retval)
1863 return -1;
1864 else
1865 retval += 4;
1866 break;
1867
1868 case 'P':
1869 tmp = (insn >> 0xC) & 0xF;
1870
1871 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1872 {
1873 /* Since we match four bits, we will give a value of
1874 4 - 1 = 3 in a match. If there is a corresponding
1875 exact match of a special register in another pattern, it
1876 will get a value of 4, which will be higher. This should
1877 be correct in that an exact pattern would match better that
1878 a general pattern.
1879 Note that there is a reason for not returning zero; the
1880 pattern for "clear" is partly matched in the bit-pattern
1881 (the two lower bits must be zero), while the bit-pattern
1882 for a move from a special register is matched in the
1883 register constraint.
1884 This also means we will will have a race condition if
1885 there is a partly match in three bits in the bit pattern. */
1886 if (tmp == cris_spec_regs[i].number)
1887 {
1888 retval += 3;
1889 break;
1890 }
1891 }
1892
1893 if (cris_spec_regs[i].name == NULL)
1894 return -1;
1895 break;
1896 }
1897 return retval;
1898 }
1899
1900 /* Returns the number of bits set in the variable value. */
1901
1902 static int
1903 number_of_bits (unsigned int value)
1904 {
1905 int number_of_bits = 0;
1906
1907 while (value != 0)
1908 {
1909 number_of_bits += 1;
1910 value &= (value - 1);
1911 }
1912 return number_of_bits;
1913 }
1914
1915 /* Finds the address that should contain the single step breakpoint(s).
1916 It stems from code in cris-dis.c. */
1917
1918 static int
1919 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1920 {
1921 int i;
1922 int max_level_of_match = -1;
1923 int max_matched = -1;
1924 int level_of_match;
1925
1926 for (i = 0; cris_opcodes[i].name != NULL; i++)
1927 {
1928 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1929 && ((cris_opcodes[i].lose & insn) == 0)
1930 /* Only CRISv10 instructions, please. */
1931 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
1932 {
1933 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1934 if (level_of_match >= 0)
1935 {
1936 level_of_match +=
1937 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1938 if (level_of_match > max_level_of_match)
1939 {
1940 max_matched = i;
1941 max_level_of_match = level_of_match;
1942 if (level_of_match == 16)
1943 {
1944 /* All bits matched, cannot find better. */
1945 break;
1946 }
1947 }
1948 }
1949 }
1950 }
1951 return max_matched;
1952 }
1953
1954 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
1955 actually an internal error. */
1956
1957 static int
1958 find_step_target (struct regcache *regcache, inst_env_type *inst_env)
1959 {
1960 int i;
1961 int offset;
1962 unsigned short insn;
1963 struct gdbarch *gdbarch = regcache->arch ();
1964 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1965
1966 /* Create a local register image and set the initial state. */
1967 for (i = 0; i < NUM_GENREGS; i++)
1968 {
1969 inst_env->reg[i] =
1970 (unsigned long) regcache_raw_get_unsigned (regcache, i);
1971 }
1972 offset = NUM_GENREGS;
1973 for (i = 0; i < NUM_SPECREGS; i++)
1974 {
1975 inst_env->preg[i] =
1976 (unsigned long) regcache_raw_get_unsigned (regcache, offset + i);
1977 }
1978 inst_env->branch_found = 0;
1979 inst_env->slot_needed = 0;
1980 inst_env->delay_slot_pc_active = 0;
1981 inst_env->prefix_found = 0;
1982 inst_env->invalid = 0;
1983 inst_env->xflag_found = 0;
1984 inst_env->disable_interrupt = 0;
1985 inst_env->byte_order = byte_order;
1986
1987 /* Look for a step target. */
1988 do
1989 {
1990 /* Read an instruction from the client. */
1991 insn = read_memory_unsigned_integer
1992 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
1993
1994 /* If the instruction is not in a delay slot the new content of the
1995 PC is [PC] + 2. If the instruction is in a delay slot it is not
1996 that simple. Since a instruction in a delay slot cannot change
1997 the content of the PC, it does not matter what value PC will have.
1998 Just make sure it is a valid instruction. */
1999 if (!inst_env->delay_slot_pc_active)
2000 {
2001 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2002 }
2003 else
2004 {
2005 inst_env->delay_slot_pc_active = 0;
2006 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2007 = inst_env->delay_slot_pc;
2008 }
2009 /* Analyse the present instruction. */
2010 i = find_cris_op (insn, inst_env);
2011 if (i == -1)
2012 {
2013 inst_env->invalid = 1;
2014 }
2015 else
2016 {
2017 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2018 }
2019 } while (!inst_env->invalid
2020 && (inst_env->prefix_found || inst_env->xflag_found
2021 || inst_env->slot_needed));
2022 return i;
2023 }
2024
2025 /* There is no hardware single-step support. The function find_step_target
2026 digs through the opcodes in order to find all possible targets.
2027 Either one ordinary target or two targets for branches may be found. */
2028
2029 static std::vector<CORE_ADDR>
2030 cris_software_single_step (struct regcache *regcache)
2031 {
2032 struct gdbarch *gdbarch = regcache->arch ();
2033 inst_env_type inst_env;
2034 std::vector<CORE_ADDR> next_pcs;
2035
2036 /* Analyse the present instruction environment and insert
2037 breakpoints. */
2038 int status = find_step_target (regcache, &inst_env);
2039 if (status == -1)
2040 {
2041 /* Could not find a target. Things are likely to go downhill
2042 from here. */
2043 warning (_("CRIS software single step could not find a step target."));
2044 }
2045 else
2046 {
2047 /* Insert at most two breakpoints. One for the next PC content
2048 and possibly another one for a branch, jump, etc. */
2049 CORE_ADDR next_pc
2050 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2051
2052 next_pcs.push_back (next_pc);
2053 if (inst_env.branch_found
2054 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2055 {
2056 CORE_ADDR branch_target_address
2057 = (CORE_ADDR) inst_env.branch_break_address;
2058
2059 next_pcs.push_back (branch_target_address);
2060 }
2061 }
2062
2063 return next_pcs;
2064 }
2065
2066 /* Calculates the prefix value for quick offset addressing mode. */
2067
2068 static void
2069 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2070 {
2071 /* It's invalid to be in a delay slot. You can't have a prefix to this
2072 instruction (not 100% sure). */
2073 if (inst_env->slot_needed || inst_env->prefix_found)
2074 {
2075 inst_env->invalid = 1;
2076 return;
2077 }
2078
2079 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2080 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2081
2082 /* A prefix doesn't change the xflag_found. But the rest of the flags
2083 need updating. */
2084 inst_env->slot_needed = 0;
2085 inst_env->prefix_found = 1;
2086 }
2087
2088 /* Updates the autoincrement register. The size of the increment is derived
2089 from the size of the operation. The PC is always kept aligned on even
2090 word addresses. */
2091
2092 static void
2093 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2094 {
2095 if (size == INST_BYTE_SIZE)
2096 {
2097 inst_env->reg[cris_get_operand1 (inst)] += 1;
2098
2099 /* The PC must be word aligned, so increase the PC with one
2100 word even if the size is byte. */
2101 if (cris_get_operand1 (inst) == REG_PC)
2102 {
2103 inst_env->reg[REG_PC] += 1;
2104 }
2105 }
2106 else if (size == INST_WORD_SIZE)
2107 {
2108 inst_env->reg[cris_get_operand1 (inst)] += 2;
2109 }
2110 else if (size == INST_DWORD_SIZE)
2111 {
2112 inst_env->reg[cris_get_operand1 (inst)] += 4;
2113 }
2114 else
2115 {
2116 /* Invalid size. */
2117 inst_env->invalid = 1;
2118 }
2119 }
2120
2121 /* Just a forward declaration. */
2122
2123 static unsigned long get_data_from_address (unsigned short *inst,
2124 CORE_ADDR address,
2125 enum bfd_endian byte_order);
2126
2127 /* Calculates the prefix value for the general case of offset addressing
2128 mode. */
2129
2130 static void
2131 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2132 {
2133 /* It's invalid to be in a delay slot. */
2134 if (inst_env->slot_needed || inst_env->prefix_found)
2135 {
2136 inst_env->invalid = 1;
2137 return;
2138 }
2139
2140 /* The calculation of prefix_value used to be after process_autoincrement,
2141 but that fails for an instruction such as jsr [$r0+12] which is encoded
2142 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2143 mustn't be incremented until we have read it and what it points at. */
2144 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2145
2146 /* The offset is an indirection of the contents of the operand1 register. */
2147 inst_env->prefix_value +=
2148 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2149 inst_env->byte_order);
2150
2151 if (cris_get_mode (inst) == AUTOINC_MODE)
2152 {
2153 process_autoincrement (cris_get_size (inst), inst, inst_env);
2154 }
2155
2156 /* A prefix doesn't change the xflag_found. But the rest of the flags
2157 need updating. */
2158 inst_env->slot_needed = 0;
2159 inst_env->prefix_found = 1;
2160 }
2161
2162 /* Calculates the prefix value for the index addressing mode. */
2163
2164 static void
2165 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2166 {
2167 /* It's invalid to be in a delay slot. I can't see that it's possible to
2168 have a prefix to this instruction. So I will treat this as invalid. */
2169 if (inst_env->slot_needed || inst_env->prefix_found)
2170 {
2171 inst_env->invalid = 1;
2172 return;
2173 }
2174
2175 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2176
2177 /* The offset is the operand2 value shifted the size of the instruction
2178 to the left. */
2179 inst_env->prefix_value +=
2180 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2181
2182 /* If the PC is operand1 (base) the address used is the address after
2183 the main instruction, i.e. address + 2 (the PC is already compensated
2184 for the prefix operation). */
2185 if (cris_get_operand1 (inst) == REG_PC)
2186 {
2187 inst_env->prefix_value += 2;
2188 }
2189
2190 /* A prefix doesn't change the xflag_found. But the rest of the flags
2191 need updating. */
2192 inst_env->slot_needed = 0;
2193 inst_env->xflag_found = 0;
2194 inst_env->prefix_found = 1;
2195 }
2196
2197 /* Calculates the prefix value for the double indirect addressing mode. */
2198
2199 static void
2200 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2201 {
2202
2203 CORE_ADDR address;
2204
2205 /* It's invalid to be in a delay slot. */
2206 if (inst_env->slot_needed || inst_env->prefix_found)
2207 {
2208 inst_env->invalid = 1;
2209 return;
2210 }
2211
2212 /* The prefix value is one dereference of the contents of the operand1
2213 register. */
2214 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2215 inst_env->prefix_value
2216 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2217
2218 /* Check if the mode is autoincrement. */
2219 if (cris_get_mode (inst) == AUTOINC_MODE)
2220 {
2221 inst_env->reg[cris_get_operand1 (inst)] += 4;
2222 }
2223
2224 /* A prefix doesn't change the xflag_found. But the rest of the flags
2225 need updating. */
2226 inst_env->slot_needed = 0;
2227 inst_env->xflag_found = 0;
2228 inst_env->prefix_found = 1;
2229 }
2230
2231 /* Finds the destination for a branch with 8-bits offset. */
2232
2233 static void
2234 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2235 {
2236
2237 short offset;
2238
2239 /* If we have a prefix or are in a delay slot it's bad. */
2240 if (inst_env->slot_needed || inst_env->prefix_found)
2241 {
2242 inst_env->invalid = 1;
2243 return;
2244 }
2245
2246 /* We have a branch, find out where the branch will land. */
2247 offset = cris_get_branch_short_offset (inst);
2248
2249 /* Check if the offset is signed. */
2250 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2251 {
2252 offset |= 0xFF00;
2253 }
2254
2255 /* The offset ends with the sign bit, set it to zero. The address
2256 should always be word aligned. */
2257 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2258
2259 inst_env->branch_found = 1;
2260 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2261
2262 inst_env->slot_needed = 1;
2263 inst_env->prefix_found = 0;
2264 inst_env->xflag_found = 0;
2265 inst_env->disable_interrupt = 1;
2266 }
2267
2268 /* Finds the destination for a branch with 16-bits offset. */
2269
2270 static void
2271 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2272 {
2273 short offset;
2274
2275 /* If we have a prefix or is in a delay slot it's bad. */
2276 if (inst_env->slot_needed || inst_env->prefix_found)
2277 {
2278 inst_env->invalid = 1;
2279 return;
2280 }
2281
2282 /* We have a branch, find out the offset for the branch. */
2283 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2284 inst_env->byte_order);
2285
2286 /* The instruction is one word longer than normal, so add one word
2287 to the PC. */
2288 inst_env->reg[REG_PC] += 2;
2289
2290 inst_env->branch_found = 1;
2291 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2292
2293
2294 inst_env->slot_needed = 1;
2295 inst_env->prefix_found = 0;
2296 inst_env->xflag_found = 0;
2297 inst_env->disable_interrupt = 1;
2298 }
2299
2300 /* Handles the ABS instruction. */
2301
2302 static void
2303 abs_op (unsigned short inst, inst_env_type *inst_env)
2304 {
2305
2306 long value;
2307
2308 /* ABS can't have a prefix, so it's bad if it does. */
2309 if (inst_env->prefix_found)
2310 {
2311 inst_env->invalid = 1;
2312 return;
2313 }
2314
2315 /* Check if the operation affects the PC. */
2316 if (cris_get_operand2 (inst) == REG_PC)
2317 {
2318
2319 /* It's invalid to change to the PC if we are in a delay slot. */
2320 if (inst_env->slot_needed)
2321 {
2322 inst_env->invalid = 1;
2323 return;
2324 }
2325
2326 value = (long) inst_env->reg[REG_PC];
2327
2328 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2329 if (value != SIGNED_DWORD_MASK)
2330 {
2331 value = -value;
2332 inst_env->reg[REG_PC] = (long) value;
2333 }
2334 }
2335
2336 inst_env->slot_needed = 0;
2337 inst_env->prefix_found = 0;
2338 inst_env->xflag_found = 0;
2339 inst_env->disable_interrupt = 0;
2340 }
2341
2342 /* Handles the ADDI instruction. */
2343
2344 static void
2345 addi_op (unsigned short inst, inst_env_type *inst_env)
2346 {
2347 /* It's invalid to have the PC as base register. And ADDI can't have
2348 a prefix. */
2349 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2350 {
2351 inst_env->invalid = 1;
2352 return;
2353 }
2354
2355 inst_env->slot_needed = 0;
2356 inst_env->prefix_found = 0;
2357 inst_env->xflag_found = 0;
2358 inst_env->disable_interrupt = 0;
2359 }
2360
2361 /* Handles the ASR instruction. */
2362
2363 static void
2364 asr_op (unsigned short inst, inst_env_type *inst_env)
2365 {
2366 int shift_steps;
2367 unsigned long value;
2368 unsigned long signed_extend_mask = 0;
2369
2370 /* ASR can't have a prefix, so check that it doesn't. */
2371 if (inst_env->prefix_found)
2372 {
2373 inst_env->invalid = 1;
2374 return;
2375 }
2376
2377 /* Check if the PC is the target register. */
2378 if (cris_get_operand2 (inst) == REG_PC)
2379 {
2380 /* It's invalid to change the PC in a delay slot. */
2381 if (inst_env->slot_needed)
2382 {
2383 inst_env->invalid = 1;
2384 return;
2385 }
2386 /* Get the number of bits to shift. */
2387 shift_steps
2388 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2389 value = inst_env->reg[REG_PC];
2390
2391 /* Find out how many bits the operation should apply to. */
2392 if (cris_get_size (inst) == INST_BYTE_SIZE)
2393 {
2394 if (value & SIGNED_BYTE_MASK)
2395 {
2396 signed_extend_mask = 0xFF;
2397 signed_extend_mask = signed_extend_mask >> shift_steps;
2398 signed_extend_mask = ~signed_extend_mask;
2399 }
2400 value = value >> shift_steps;
2401 value |= signed_extend_mask;
2402 value &= 0xFF;
2403 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2404 inst_env->reg[REG_PC] |= value;
2405 }
2406 else if (cris_get_size (inst) == INST_WORD_SIZE)
2407 {
2408 if (value & SIGNED_WORD_MASK)
2409 {
2410 signed_extend_mask = 0xFFFF;
2411 signed_extend_mask = signed_extend_mask >> shift_steps;
2412 signed_extend_mask = ~signed_extend_mask;
2413 }
2414 value = value >> shift_steps;
2415 value |= signed_extend_mask;
2416 value &= 0xFFFF;
2417 inst_env->reg[REG_PC] &= 0xFFFF0000;
2418 inst_env->reg[REG_PC] |= value;
2419 }
2420 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2421 {
2422 if (value & SIGNED_DWORD_MASK)
2423 {
2424 signed_extend_mask = 0xFFFFFFFF;
2425 signed_extend_mask = signed_extend_mask >> shift_steps;
2426 signed_extend_mask = ~signed_extend_mask;
2427 }
2428 value = value >> shift_steps;
2429 value |= signed_extend_mask;
2430 inst_env->reg[REG_PC] = value;
2431 }
2432 }
2433 inst_env->slot_needed = 0;
2434 inst_env->prefix_found = 0;
2435 inst_env->xflag_found = 0;
2436 inst_env->disable_interrupt = 0;
2437 }
2438
2439 /* Handles the ASRQ instruction. */
2440
2441 static void
2442 asrq_op (unsigned short inst, inst_env_type *inst_env)
2443 {
2444
2445 int shift_steps;
2446 unsigned long value;
2447 unsigned long signed_extend_mask = 0;
2448
2449 /* ASRQ can't have a prefix, so check that it doesn't. */
2450 if (inst_env->prefix_found)
2451 {
2452 inst_env->invalid = 1;
2453 return;
2454 }
2455
2456 /* Check if the PC is the target register. */
2457 if (cris_get_operand2 (inst) == REG_PC)
2458 {
2459
2460 /* It's invalid to change the PC in a delay slot. */
2461 if (inst_env->slot_needed)
2462 {
2463 inst_env->invalid = 1;
2464 return;
2465 }
2466 /* The shift size is given as a 5 bit quick value, i.e. we don't
2467 want the sign bit of the quick value. */
2468 shift_steps = cris_get_asr_shift_steps (inst);
2469 value = inst_env->reg[REG_PC];
2470 if (value & SIGNED_DWORD_MASK)
2471 {
2472 signed_extend_mask = 0xFFFFFFFF;
2473 signed_extend_mask = signed_extend_mask >> shift_steps;
2474 signed_extend_mask = ~signed_extend_mask;
2475 }
2476 value = value >> shift_steps;
2477 value |= signed_extend_mask;
2478 inst_env->reg[REG_PC] = value;
2479 }
2480 inst_env->slot_needed = 0;
2481 inst_env->prefix_found = 0;
2482 inst_env->xflag_found = 0;
2483 inst_env->disable_interrupt = 0;
2484 }
2485
2486 /* Handles the AX, EI and SETF instruction. */
2487
2488 static void
2489 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2490 {
2491 if (inst_env->prefix_found)
2492 {
2493 inst_env->invalid = 1;
2494 return;
2495 }
2496 /* Check if the instruction is setting the X flag. */
2497 if (cris_is_xflag_bit_on (inst))
2498 {
2499 inst_env->xflag_found = 1;
2500 }
2501 else
2502 {
2503 inst_env->xflag_found = 0;
2504 }
2505 inst_env->slot_needed = 0;
2506 inst_env->prefix_found = 0;
2507 inst_env->disable_interrupt = 1;
2508 }
2509
2510 /* Checks if the instruction is in assign mode. If so, it updates the assign
2511 register. Note that check_assign assumes that the caller has checked that
2512 there is a prefix to this instruction. The mode check depends on this. */
2513
2514 static void
2515 check_assign (unsigned short inst, inst_env_type *inst_env)
2516 {
2517 /* Check if it's an assign addressing mode. */
2518 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2519 {
2520 /* Assign the prefix value to operand 1. */
2521 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2522 }
2523 }
2524
2525 /* Handles the 2-operand BOUND instruction. */
2526
2527 static void
2528 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2529 {
2530 /* It's invalid to have the PC as the index operand. */
2531 if (cris_get_operand2 (inst) == REG_PC)
2532 {
2533 inst_env->invalid = 1;
2534 return;
2535 }
2536 /* Check if we have a prefix. */
2537 if (inst_env->prefix_found)
2538 {
2539 check_assign (inst, inst_env);
2540 }
2541 /* Check if this is an autoincrement mode. */
2542 else if (cris_get_mode (inst) == AUTOINC_MODE)
2543 {
2544 /* It's invalid to change the PC in a delay slot. */
2545 if (inst_env->slot_needed)
2546 {
2547 inst_env->invalid = 1;
2548 return;
2549 }
2550 process_autoincrement (cris_get_size (inst), inst, inst_env);
2551 }
2552 inst_env->slot_needed = 0;
2553 inst_env->prefix_found = 0;
2554 inst_env->xflag_found = 0;
2555 inst_env->disable_interrupt = 0;
2556 }
2557
2558 /* Handles the 3-operand BOUND instruction. */
2559
2560 static void
2561 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2562 {
2563 /* It's an error if we haven't got a prefix. And it's also an error
2564 if the PC is the destination register. */
2565 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2566 {
2567 inst_env->invalid = 1;
2568 return;
2569 }
2570 inst_env->slot_needed = 0;
2571 inst_env->prefix_found = 0;
2572 inst_env->xflag_found = 0;
2573 inst_env->disable_interrupt = 0;
2574 }
2575
2576 /* Clears the status flags in inst_env. */
2577
2578 static void
2579 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2580 {
2581 /* It's an error if we have got a prefix. */
2582 if (inst_env->prefix_found)
2583 {
2584 inst_env->invalid = 1;
2585 return;
2586 }
2587
2588 inst_env->slot_needed = 0;
2589 inst_env->prefix_found = 0;
2590 inst_env->xflag_found = 0;
2591 inst_env->disable_interrupt = 0;
2592 }
2593
2594 /* Clears the status flags in inst_env. */
2595
2596 static void
2597 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2598 {
2599 /* It's an error if we have got a prefix. */
2600 if (inst_env->prefix_found)
2601 {
2602 inst_env->invalid = 1;
2603 return;
2604 }
2605
2606 inst_env->slot_needed = 0;
2607 inst_env->prefix_found = 0;
2608 inst_env->xflag_found = 0;
2609 inst_env->disable_interrupt = 1;
2610 }
2611
2612 /* Handles the CLEAR instruction if it's in register mode. */
2613
2614 static void
2615 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2616 {
2617 /* Check if the target is the PC. */
2618 if (cris_get_operand2 (inst) == REG_PC)
2619 {
2620 /* The instruction will clear the instruction's size bits. */
2621 int clear_size = cris_get_clear_size (inst);
2622 if (clear_size == INST_BYTE_SIZE)
2623 {
2624 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2625 }
2626 if (clear_size == INST_WORD_SIZE)
2627 {
2628 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2629 }
2630 if (clear_size == INST_DWORD_SIZE)
2631 {
2632 inst_env->delay_slot_pc = 0x0;
2633 }
2634 /* The jump will be delayed with one delay slot. So we need a delay
2635 slot. */
2636 inst_env->slot_needed = 1;
2637 inst_env->delay_slot_pc_active = 1;
2638 }
2639 else
2640 {
2641 /* The PC will not change => no delay slot. */
2642 inst_env->slot_needed = 0;
2643 }
2644 inst_env->prefix_found = 0;
2645 inst_env->xflag_found = 0;
2646 inst_env->disable_interrupt = 0;
2647 }
2648
2649 /* Handles the TEST instruction if it's in register mode. */
2650
2651 static void
2652 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2653 {
2654 /* It's an error if we have got a prefix. */
2655 if (inst_env->prefix_found)
2656 {
2657 inst_env->invalid = 1;
2658 return;
2659 }
2660 inst_env->slot_needed = 0;
2661 inst_env->prefix_found = 0;
2662 inst_env->xflag_found = 0;
2663 inst_env->disable_interrupt = 0;
2664
2665 }
2666
2667 /* Handles the CLEAR and TEST instruction if the instruction isn't
2668 in register mode. */
2669
2670 static void
2671 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2672 {
2673 /* Check if we are in a prefix mode. */
2674 if (inst_env->prefix_found)
2675 {
2676 /* The only way the PC can change is if this instruction is in
2677 assign addressing mode. */
2678 check_assign (inst, inst_env);
2679 }
2680 /* Indirect mode can't change the PC so just check if the mode is
2681 autoincrement. */
2682 else if (cris_get_mode (inst) == AUTOINC_MODE)
2683 {
2684 process_autoincrement (cris_get_size (inst), inst, inst_env);
2685 }
2686 inst_env->slot_needed = 0;
2687 inst_env->prefix_found = 0;
2688 inst_env->xflag_found = 0;
2689 inst_env->disable_interrupt = 0;
2690 }
2691
2692 /* Checks that the PC isn't the destination register or the instructions has
2693 a prefix. */
2694
2695 static void
2696 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2697 {
2698 /* It's invalid to have the PC as the destination. The instruction can't
2699 have a prefix. */
2700 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2701 {
2702 inst_env->invalid = 1;
2703 return;
2704 }
2705
2706 inst_env->slot_needed = 0;
2707 inst_env->prefix_found = 0;
2708 inst_env->xflag_found = 0;
2709 inst_env->disable_interrupt = 0;
2710 }
2711
2712 /* Checks that the instruction doesn't have a prefix. */
2713
2714 static void
2715 break_op (unsigned short inst, inst_env_type *inst_env)
2716 {
2717 /* The instruction can't have a prefix. */
2718 if (inst_env->prefix_found)
2719 {
2720 inst_env->invalid = 1;
2721 return;
2722 }
2723
2724 inst_env->slot_needed = 0;
2725 inst_env->prefix_found = 0;
2726 inst_env->xflag_found = 0;
2727 inst_env->disable_interrupt = 1;
2728 }
2729
2730 /* Checks that the PC isn't the destination register and that the instruction
2731 doesn't have a prefix. */
2732
2733 static void
2734 scc_op (unsigned short inst, inst_env_type *inst_env)
2735 {
2736 /* It's invalid to have the PC as the destination. The instruction can't
2737 have a prefix. */
2738 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2739 {
2740 inst_env->invalid = 1;
2741 return;
2742 }
2743
2744 inst_env->slot_needed = 0;
2745 inst_env->prefix_found = 0;
2746 inst_env->xflag_found = 0;
2747 inst_env->disable_interrupt = 1;
2748 }
2749
2750 /* Handles the register mode JUMP instruction. */
2751
2752 static void
2753 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2754 {
2755 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2756 you can't have a prefix. */
2757 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2758 {
2759 inst_env->invalid = 1;
2760 return;
2761 }
2762
2763 /* Just change the PC. */
2764 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2765 inst_env->slot_needed = 0;
2766 inst_env->prefix_found = 0;
2767 inst_env->xflag_found = 0;
2768 inst_env->disable_interrupt = 1;
2769 }
2770
2771 /* Handles the JUMP instruction for all modes except register. */
2772
2773 static void
2774 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2775 {
2776 unsigned long newpc;
2777 CORE_ADDR address;
2778
2779 /* It's invalid to do a JUMP in a delay slot. */
2780 if (inst_env->slot_needed)
2781 {
2782 inst_env->invalid = 1;
2783 }
2784 else
2785 {
2786 /* Check if we have a prefix. */
2787 if (inst_env->prefix_found)
2788 {
2789 check_assign (inst, inst_env);
2790
2791 /* Get the new value for the PC. */
2792 newpc =
2793 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2794 4, inst_env->byte_order);
2795 }
2796 else
2797 {
2798 /* Get the new value for the PC. */
2799 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2800 newpc = read_memory_unsigned_integer (address,
2801 4, inst_env->byte_order);
2802
2803 /* Check if we should increment a register. */
2804 if (cris_get_mode (inst) == AUTOINC_MODE)
2805 {
2806 inst_env->reg[cris_get_operand1 (inst)] += 4;
2807 }
2808 }
2809 inst_env->reg[REG_PC] = newpc;
2810 }
2811 inst_env->slot_needed = 0;
2812 inst_env->prefix_found = 0;
2813 inst_env->xflag_found = 0;
2814 inst_env->disable_interrupt = 1;
2815 }
2816
2817 /* Handles moves to special registers (aka P-register) for all modes. */
2818
2819 static void
2820 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2821 inst_env_type *inst_env)
2822 {
2823 if (inst_env->prefix_found)
2824 {
2825 /* The instruction has a prefix that means we are only interested if
2826 the instruction is in assign mode. */
2827 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2828 {
2829 /* The prefix handles the problem if we are in a delay slot. */
2830 if (cris_get_operand1 (inst) == REG_PC)
2831 {
2832 /* Just take care of the assign. */
2833 check_assign (inst, inst_env);
2834 }
2835 }
2836 }
2837 else if (cris_get_mode (inst) == AUTOINC_MODE)
2838 {
2839 /* The instruction doesn't have a prefix, the only case left that we
2840 are interested in is the autoincrement mode. */
2841 if (cris_get_operand1 (inst) == REG_PC)
2842 {
2843 /* If the PC is to be incremented it's invalid to be in a
2844 delay slot. */
2845 if (inst_env->slot_needed)
2846 {
2847 inst_env->invalid = 1;
2848 return;
2849 }
2850
2851 /* The increment depends on the size of the special register. */
2852 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2853 {
2854 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2855 }
2856 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2857 {
2858 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2859 }
2860 else
2861 {
2862 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2863 }
2864 }
2865 }
2866 inst_env->slot_needed = 0;
2867 inst_env->prefix_found = 0;
2868 inst_env->xflag_found = 0;
2869 inst_env->disable_interrupt = 1;
2870 }
2871
2872 /* Handles moves from special registers (aka P-register) for all modes
2873 except register. */
2874
2875 static void
2876 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2877 inst_env_type *inst_env)
2878 {
2879 if (inst_env->prefix_found)
2880 {
2881 /* The instruction has a prefix that means we are only interested if
2882 the instruction is in assign mode. */
2883 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2884 {
2885 /* The prefix handles the problem if we are in a delay slot. */
2886 if (cris_get_operand1 (inst) == REG_PC)
2887 {
2888 /* Just take care of the assign. */
2889 check_assign (inst, inst_env);
2890 }
2891 }
2892 }
2893 /* The instruction doesn't have a prefix, the only case left that we
2894 are interested in is the autoincrement mode. */
2895 else if (cris_get_mode (inst) == AUTOINC_MODE)
2896 {
2897 if (cris_get_operand1 (inst) == REG_PC)
2898 {
2899 /* If the PC is to be incremented it's invalid to be in a
2900 delay slot. */
2901 if (inst_env->slot_needed)
2902 {
2903 inst_env->invalid = 1;
2904 return;
2905 }
2906
2907 /* The increment depends on the size of the special register. */
2908 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2909 {
2910 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2911 }
2912 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2913 {
2914 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2915 }
2916 else
2917 {
2918 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2919 }
2920 }
2921 }
2922 inst_env->slot_needed = 0;
2923 inst_env->prefix_found = 0;
2924 inst_env->xflag_found = 0;
2925 inst_env->disable_interrupt = 1;
2926 }
2927
2928 /* Handles moves from special registers (aka P-register) when the mode
2929 is register. */
2930
2931 static void
2932 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2933 {
2934 /* Register mode move from special register can't have a prefix. */
2935 if (inst_env->prefix_found)
2936 {
2937 inst_env->invalid = 1;
2938 return;
2939 }
2940
2941 if (cris_get_operand1 (inst) == REG_PC)
2942 {
2943 /* It's invalid to change the PC in a delay slot. */
2944 if (inst_env->slot_needed)
2945 {
2946 inst_env->invalid = 1;
2947 return;
2948 }
2949 /* The destination is the PC, the jump will have a delay slot. */
2950 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2951 inst_env->slot_needed = 1;
2952 inst_env->delay_slot_pc_active = 1;
2953 }
2954 else
2955 {
2956 /* If the destination isn't PC, there will be no jump. */
2957 inst_env->slot_needed = 0;
2958 }
2959 inst_env->prefix_found = 0;
2960 inst_env->xflag_found = 0;
2961 inst_env->disable_interrupt = 1;
2962 }
2963
2964 /* Handles the MOVEM from memory to general register instruction. */
2965
2966 static void
2967 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2968 {
2969 if (inst_env->prefix_found)
2970 {
2971 /* The prefix handles the problem if we are in a delay slot. Is the
2972 MOVEM instruction going to change the PC? */
2973 if (cris_get_operand2 (inst) >= REG_PC)
2974 {
2975 inst_env->reg[REG_PC] =
2976 read_memory_unsigned_integer (inst_env->prefix_value,
2977 4, inst_env->byte_order);
2978 }
2979 /* The assign value is the value after the increment. Normally, the
2980 assign value is the value before the increment. */
2981 if ((cris_get_operand1 (inst) == REG_PC)
2982 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2983 {
2984 inst_env->reg[REG_PC] = inst_env->prefix_value;
2985 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2986 }
2987 }
2988 else
2989 {
2990 /* Is the MOVEM instruction going to change the PC? */
2991 if (cris_get_operand2 (inst) == REG_PC)
2992 {
2993 /* It's invalid to change the PC in a delay slot. */
2994 if (inst_env->slot_needed)
2995 {
2996 inst_env->invalid = 1;
2997 return;
2998 }
2999 inst_env->reg[REG_PC] =
3000 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3001 4, inst_env->byte_order);
3002 }
3003 /* The increment is not depending on the size, instead it's depending
3004 on the number of registers loaded from memory. */
3005 if ((cris_get_operand1 (inst) == REG_PC)
3006 && (cris_get_mode (inst) == AUTOINC_MODE))
3007 {
3008 /* It's invalid to change the PC in a delay slot. */
3009 if (inst_env->slot_needed)
3010 {
3011 inst_env->invalid = 1;
3012 return;
3013 }
3014 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3015 }
3016 }
3017 inst_env->slot_needed = 0;
3018 inst_env->prefix_found = 0;
3019 inst_env->xflag_found = 0;
3020 inst_env->disable_interrupt = 0;
3021 }
3022
3023 /* Handles the MOVEM to memory from general register instruction. */
3024
3025 static void
3026 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3027 {
3028 if (inst_env->prefix_found)
3029 {
3030 /* The assign value is the value after the increment. Normally, the
3031 assign value is the value before the increment. */
3032 if ((cris_get_operand1 (inst) == REG_PC)
3033 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3034 {
3035 /* The prefix handles the problem if we are in a delay slot. */
3036 inst_env->reg[REG_PC] = inst_env->prefix_value;
3037 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3038 }
3039 }
3040 else
3041 {
3042 /* The increment is not depending on the size, instead it's depending
3043 on the number of registers loaded to memory. */
3044 if ((cris_get_operand1 (inst) == REG_PC)
3045 && (cris_get_mode (inst) == AUTOINC_MODE))
3046 {
3047 /* It's invalid to change the PC in a delay slot. */
3048 if (inst_env->slot_needed)
3049 {
3050 inst_env->invalid = 1;
3051 return;
3052 }
3053 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3054 }
3055 }
3056 inst_env->slot_needed = 0;
3057 inst_env->prefix_found = 0;
3058 inst_env->xflag_found = 0;
3059 inst_env->disable_interrupt = 0;
3060 }
3061
3062 /* Handles the instructions that's not yet implemented, by setting
3063 inst_env->invalid to true. */
3064
3065 static void
3066 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3067 {
3068 inst_env->invalid = 1;
3069 }
3070
3071 /* Handles the XOR instruction. */
3072
3073 static void
3074 xor_op (unsigned short inst, inst_env_type *inst_env)
3075 {
3076 /* XOR can't have a prefix. */
3077 if (inst_env->prefix_found)
3078 {
3079 inst_env->invalid = 1;
3080 return;
3081 }
3082
3083 /* Check if the PC is the target. */
3084 if (cris_get_operand2 (inst) == REG_PC)
3085 {
3086 /* It's invalid to change the PC in a delay slot. */
3087 if (inst_env->slot_needed)
3088 {
3089 inst_env->invalid = 1;
3090 return;
3091 }
3092 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3093 }
3094 inst_env->slot_needed = 0;
3095 inst_env->prefix_found = 0;
3096 inst_env->xflag_found = 0;
3097 inst_env->disable_interrupt = 0;
3098 }
3099
3100 /* Handles the MULS instruction. */
3101
3102 static void
3103 muls_op (unsigned short inst, inst_env_type *inst_env)
3104 {
3105 /* MULS/U can't have a prefix. */
3106 if (inst_env->prefix_found)
3107 {
3108 inst_env->invalid = 1;
3109 return;
3110 }
3111
3112 /* Consider it invalid if the PC is the target. */
3113 if (cris_get_operand2 (inst) == REG_PC)
3114 {
3115 inst_env->invalid = 1;
3116 return;
3117 }
3118 inst_env->slot_needed = 0;
3119 inst_env->prefix_found = 0;
3120 inst_env->xflag_found = 0;
3121 inst_env->disable_interrupt = 0;
3122 }
3123
3124 /* Handles the MULU instruction. */
3125
3126 static void
3127 mulu_op (unsigned short inst, inst_env_type *inst_env)
3128 {
3129 /* MULS/U can't have a prefix. */
3130 if (inst_env->prefix_found)
3131 {
3132 inst_env->invalid = 1;
3133 return;
3134 }
3135
3136 /* Consider it invalid if the PC is the target. */
3137 if (cris_get_operand2 (inst) == REG_PC)
3138 {
3139 inst_env->invalid = 1;
3140 return;
3141 }
3142 inst_env->slot_needed = 0;
3143 inst_env->prefix_found = 0;
3144 inst_env->xflag_found = 0;
3145 inst_env->disable_interrupt = 0;
3146 }
3147
3148 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3149 The MOVE instruction is the move from source to register. */
3150
3151 static void
3152 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3153 unsigned long source1, unsigned long source2)
3154 {
3155 unsigned long pc_mask;
3156 unsigned long operation_mask;
3157
3158 /* Find out how many bits the operation should apply to. */
3159 if (cris_get_size (inst) == INST_BYTE_SIZE)
3160 {
3161 pc_mask = 0xFFFFFF00;
3162 operation_mask = 0xFF;
3163 }
3164 else if (cris_get_size (inst) == INST_WORD_SIZE)
3165 {
3166 pc_mask = 0xFFFF0000;
3167 operation_mask = 0xFFFF;
3168 }
3169 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3170 {
3171 pc_mask = 0x0;
3172 operation_mask = 0xFFFFFFFF;
3173 }
3174 else
3175 {
3176 /* The size is out of range. */
3177 inst_env->invalid = 1;
3178 return;
3179 }
3180
3181 /* The instruction just works on uw_operation_mask bits. */
3182 source2 &= operation_mask;
3183 source1 &= operation_mask;
3184
3185 /* Now calculate the result. The opcode's 3 first bits separates
3186 the different actions. */
3187 switch (cris_get_opcode (inst) & 7)
3188 {
3189 case 0: /* add */
3190 source1 += source2;
3191 break;
3192
3193 case 1: /* move */
3194 source1 = source2;
3195 break;
3196
3197 case 2: /* subtract */
3198 source1 -= source2;
3199 break;
3200
3201 case 3: /* compare */
3202 break;
3203
3204 case 4: /* and */
3205 source1 &= source2;
3206 break;
3207
3208 case 5: /* or */
3209 source1 |= source2;
3210 break;
3211
3212 default:
3213 inst_env->invalid = 1;
3214 return;
3215
3216 break;
3217 }
3218
3219 /* Make sure that the result doesn't contain more than the instruction
3220 size bits. */
3221 source2 &= operation_mask;
3222
3223 /* Calculate the new breakpoint address. */
3224 inst_env->reg[REG_PC] &= pc_mask;
3225 inst_env->reg[REG_PC] |= source1;
3226
3227 }
3228
3229 /* Extends the value from either byte or word size to a dword. If the mode
3230 is zero extend then the value is extended with zero. If instead the mode
3231 is signed extend the sign bit of the value is taken into consideration. */
3232
3233 static unsigned long
3234 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3235 {
3236 /* The size can be either byte or word, check which one it is.
3237 Don't check the highest bit, it's indicating if it's a zero
3238 or sign extend. */
3239 if (cris_get_size (*inst) & INST_WORD_SIZE)
3240 {
3241 /* Word size. */
3242 value &= 0xFFFF;
3243
3244 /* Check if the instruction is signed extend. If so, check if value has
3245 the sign bit on. */
3246 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3247 {
3248 value |= SIGNED_WORD_EXTEND_MASK;
3249 }
3250 }
3251 else
3252 {
3253 /* Byte size. */
3254 value &= 0xFF;
3255
3256 /* Check if the instruction is signed extend. If so, check if value has
3257 the sign bit on. */
3258 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3259 {
3260 value |= SIGNED_BYTE_EXTEND_MASK;
3261 }
3262 }
3263 /* The size should now be dword. */
3264 cris_set_size_to_dword (inst);
3265 return value;
3266 }
3267
3268 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3269 instruction. The MOVE instruction is the move from source to register. */
3270
3271 static void
3272 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3273 inst_env_type *inst_env)
3274 {
3275 unsigned long operand1;
3276 unsigned long operand2;
3277
3278 /* It's invalid to have a prefix to the instruction. This is a register
3279 mode instruction and can't have a prefix. */
3280 if (inst_env->prefix_found)
3281 {
3282 inst_env->invalid = 1;
3283 return;
3284 }
3285 /* Check if the instruction has PC as its target. */
3286 if (cris_get_operand2 (inst) == REG_PC)
3287 {
3288 if (inst_env->slot_needed)
3289 {
3290 inst_env->invalid = 1;
3291 return;
3292 }
3293 /* The instruction has the PC as its target register. */
3294 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3295 operand2 = inst_env->reg[REG_PC];
3296
3297 /* Check if it's a extend, signed or zero instruction. */
3298 if (cris_get_opcode (inst) < 4)
3299 {
3300 operand1 = do_sign_or_zero_extend (operand1, &inst);
3301 }
3302 /* Calculate the PC value after the instruction, i.e. where the
3303 breakpoint should be. The order of the udw_operands is vital. */
3304 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3305 }
3306 inst_env->slot_needed = 0;
3307 inst_env->prefix_found = 0;
3308 inst_env->xflag_found = 0;
3309 inst_env->disable_interrupt = 0;
3310 }
3311
3312 /* Returns the data contained at address. The size of the data is derived from
3313 the size of the operation. If the instruction is a zero or signed
3314 extend instruction, the size field is changed in instruction. */
3315
3316 static unsigned long
3317 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3318 enum bfd_endian byte_order)
3319 {
3320 int size = cris_get_size (*inst);
3321 unsigned long value;
3322
3323 /* If it's an extend instruction we don't want the signed extend bit,
3324 because it influences the size. */
3325 if (cris_get_opcode (*inst) < 4)
3326 {
3327 size &= ~SIGNED_EXTEND_BIT_MASK;
3328 }
3329 /* Is there a need for checking the size? Size should contain the number of
3330 bytes to read. */
3331 size = 1 << size;
3332 value = read_memory_unsigned_integer (address, size, byte_order);
3333
3334 /* Check if it's an extend, signed or zero instruction. */
3335 if (cris_get_opcode (*inst) < 4)
3336 {
3337 value = do_sign_or_zero_extend (value, inst);
3338 }
3339 return value;
3340 }
3341
3342 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3343 instructions. The MOVE instruction is the move from source to register. */
3344
3345 static void
3346 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3347 inst_env_type *inst_env)
3348 {
3349 unsigned long operand2;
3350 unsigned long operand3;
3351
3352 check_assign (inst, inst_env);
3353 if (cris_get_operand2 (inst) == REG_PC)
3354 {
3355 operand2 = inst_env->reg[REG_PC];
3356
3357 /* Get the value of the third operand. */
3358 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3359 inst_env->byte_order);
3360
3361 /* Calculate the PC value after the instruction, i.e. where the
3362 breakpoint should be. The order of the udw_operands is vital. */
3363 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3364 }
3365 inst_env->slot_needed = 0;
3366 inst_env->prefix_found = 0;
3367 inst_env->xflag_found = 0;
3368 inst_env->disable_interrupt = 0;
3369 }
3370
3371 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3372 OR instructions. Note that for this to work as expected, the calling
3373 function must have made sure that there is a prefix to this instruction. */
3374
3375 static void
3376 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3377 inst_env_type *inst_env)
3378 {
3379 unsigned long operand2;
3380 unsigned long operand3;
3381
3382 if (cris_get_operand1 (inst) == REG_PC)
3383 {
3384 /* The PC will be changed by the instruction. */
3385 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3386
3387 /* Get the value of the third operand. */
3388 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3389 inst_env->byte_order);
3390
3391 /* Calculate the PC value after the instruction, i.e. where the
3392 breakpoint should be. */
3393 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3394 }
3395 inst_env->slot_needed = 0;
3396 inst_env->prefix_found = 0;
3397 inst_env->xflag_found = 0;
3398 inst_env->disable_interrupt = 0;
3399 }
3400
3401 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3402 instructions. The MOVE instruction is the move from source to register. */
3403
3404 static void
3405 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3406 inst_env_type *inst_env)
3407 {
3408 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3409 {
3410 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3411 SUB, AND or OR something weird is going on (if everything works these
3412 instructions should end up in the three operand version). */
3413 inst_env->invalid = 1;
3414 return;
3415 }
3416 else
3417 {
3418 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3419 so use it. */
3420 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3421 }
3422 inst_env->slot_needed = 0;
3423 inst_env->prefix_found = 0;
3424 inst_env->xflag_found = 0;
3425 inst_env->disable_interrupt = 0;
3426 }
3427
3428 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3429 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3430 source to register. */
3431
3432 static void
3433 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3434 inst_env_type *inst_env)
3435 {
3436 unsigned long operand1;
3437 unsigned long operand2;
3438 unsigned long operand3;
3439 int size;
3440
3441 /* The instruction is either an indirect or autoincrement addressing mode.
3442 Check if the destination register is the PC. */
3443 if (cris_get_operand2 (inst) == REG_PC)
3444 {
3445 /* Must be done here, get_data_from_address may change the size
3446 field. */
3447 size = cris_get_size (inst);
3448 operand2 = inst_env->reg[REG_PC];
3449
3450 /* Get the value of the third operand, i.e. the indirect operand. */
3451 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3452 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3453
3454 /* Calculate the PC value after the instruction, i.e. where the
3455 breakpoint should be. The order of the udw_operands is vital. */
3456 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3457 }
3458 /* If this is an autoincrement addressing mode, check if the increment
3459 changes the PC. */
3460 if ((cris_get_operand1 (inst) == REG_PC)
3461 && (cris_get_mode (inst) == AUTOINC_MODE))
3462 {
3463 /* Get the size field. */
3464 size = cris_get_size (inst);
3465
3466 /* If it's an extend instruction we don't want the signed extend bit,
3467 because it influences the size. */
3468 if (cris_get_opcode (inst) < 4)
3469 {
3470 size &= ~SIGNED_EXTEND_BIT_MASK;
3471 }
3472 process_autoincrement (size, inst, inst_env);
3473 }
3474 inst_env->slot_needed = 0;
3475 inst_env->prefix_found = 0;
3476 inst_env->xflag_found = 0;
3477 inst_env->disable_interrupt = 0;
3478 }
3479
3480 /* Handles the two-operand addressing mode, all modes except register, for
3481 the ADD, SUB CMP, AND and OR instruction. */
3482
3483 static void
3484 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3485 inst_env_type *inst_env)
3486 {
3487 if (inst_env->prefix_found)
3488 {
3489 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3490 {
3491 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3492 }
3493 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3494 {
3495 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3496 }
3497 else
3498 {
3499 /* The mode is invalid for a prefixed base instruction. */
3500 inst_env->invalid = 1;
3501 return;
3502 }
3503 }
3504 else
3505 {
3506 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3507 }
3508 }
3509
3510 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3511
3512 static void
3513 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3514 {
3515 unsigned long operand1;
3516 unsigned long operand2;
3517
3518 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3519 instruction and can't have a prefix. */
3520 if (inst_env->prefix_found)
3521 {
3522 inst_env->invalid = 1;
3523 return;
3524 }
3525
3526 /* Check if the instruction has PC as its target. */
3527 if (cris_get_operand2 (inst) == REG_PC)
3528 {
3529 if (inst_env->slot_needed)
3530 {
3531 inst_env->invalid = 1;
3532 return;
3533 }
3534 operand1 = cris_get_quick_value (inst);
3535 operand2 = inst_env->reg[REG_PC];
3536
3537 /* The size should now be dword. */
3538 cris_set_size_to_dword (&inst);
3539
3540 /* Calculate the PC value after the instruction, i.e. where the
3541 breakpoint should be. */
3542 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3543 }
3544 inst_env->slot_needed = 0;
3545 inst_env->prefix_found = 0;
3546 inst_env->xflag_found = 0;
3547 inst_env->disable_interrupt = 0;
3548 }
3549
3550 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3551
3552 static void
3553 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3554 {
3555 unsigned long operand1;
3556 unsigned long operand2;
3557
3558 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3559 instruction and can't have a prefix. */
3560 if (inst_env->prefix_found)
3561 {
3562 inst_env->invalid = 1;
3563 return;
3564 }
3565 /* Check if the instruction has PC as its target. */
3566 if (cris_get_operand2 (inst) == REG_PC)
3567 {
3568 if (inst_env->slot_needed)
3569 {
3570 inst_env->invalid = 1;
3571 return;
3572 }
3573 /* The instruction has the PC as its target register. */
3574 operand1 = cris_get_quick_value (inst);
3575 operand2 = inst_env->reg[REG_PC];
3576
3577 /* The quick value is signed, so check if we must do a signed extend. */
3578 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3579 {
3580 /* sign extend */
3581 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3582 }
3583 /* The size should now be dword. */
3584 cris_set_size_to_dword (&inst);
3585
3586 /* Calculate the PC value after the instruction, i.e. where the
3587 breakpoint should be. */
3588 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3589 }
3590 inst_env->slot_needed = 0;
3591 inst_env->prefix_found = 0;
3592 inst_env->xflag_found = 0;
3593 inst_env->disable_interrupt = 0;
3594 }
3595
3596 /* Translate op_type to a function and call it. */
3597
3598 static void
3599 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3600 unsigned short inst, inst_env_type *inst_env)
3601 {
3602 switch (op_type)
3603 {
3604 case cris_not_implemented_op:
3605 not_implemented_op (inst, inst_env);
3606 break;
3607
3608 case cris_abs_op:
3609 abs_op (inst, inst_env);
3610 break;
3611
3612 case cris_addi_op:
3613 addi_op (inst, inst_env);
3614 break;
3615
3616 case cris_asr_op:
3617 asr_op (inst, inst_env);
3618 break;
3619
3620 case cris_asrq_op:
3621 asrq_op (inst, inst_env);
3622 break;
3623
3624 case cris_ax_ei_setf_op:
3625 ax_ei_setf_op (inst, inst_env);
3626 break;
3627
3628 case cris_bdap_prefix:
3629 bdap_prefix (inst, inst_env);
3630 break;
3631
3632 case cris_biap_prefix:
3633 biap_prefix (inst, inst_env);
3634 break;
3635
3636 case cris_break_op:
3637 break_op (inst, inst_env);
3638 break;
3639
3640 case cris_btst_nop_op:
3641 btst_nop_op (inst, inst_env);
3642 break;
3643
3644 case cris_clearf_di_op:
3645 clearf_di_op (inst, inst_env);
3646 break;
3647
3648 case cris_dip_prefix:
3649 dip_prefix (inst, inst_env);
3650 break;
3651
3652 case cris_dstep_logshift_mstep_neg_not_op:
3653 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3654 break;
3655
3656 case cris_eight_bit_offset_branch_op:
3657 eight_bit_offset_branch_op (inst, inst_env);
3658 break;
3659
3660 case cris_move_mem_to_reg_movem_op:
3661 move_mem_to_reg_movem_op (inst, inst_env);
3662 break;
3663
3664 case cris_move_reg_to_mem_movem_op:
3665 move_reg_to_mem_movem_op (inst, inst_env);
3666 break;
3667
3668 case cris_move_to_preg_op:
3669 move_to_preg_op (gdbarch, inst, inst_env);
3670 break;
3671
3672 case cris_muls_op:
3673 muls_op (inst, inst_env);
3674 break;
3675
3676 case cris_mulu_op:
3677 mulu_op (inst, inst_env);
3678 break;
3679
3680 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3681 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3682 break;
3683
3684 case cris_none_reg_mode_clear_test_op:
3685 none_reg_mode_clear_test_op (inst, inst_env);
3686 break;
3687
3688 case cris_none_reg_mode_jump_op:
3689 none_reg_mode_jump_op (inst, inst_env);
3690 break;
3691
3692 case cris_none_reg_mode_move_from_preg_op:
3693 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3694 break;
3695
3696 case cris_quick_mode_add_sub_op:
3697 quick_mode_add_sub_op (inst, inst_env);
3698 break;
3699
3700 case cris_quick_mode_and_cmp_move_or_op:
3701 quick_mode_and_cmp_move_or_op (inst, inst_env);
3702 break;
3703
3704 case cris_quick_mode_bdap_prefix:
3705 quick_mode_bdap_prefix (inst, inst_env);
3706 break;
3707
3708 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3709 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3710 break;
3711
3712 case cris_reg_mode_clear_op:
3713 reg_mode_clear_op (inst, inst_env);
3714 break;
3715
3716 case cris_reg_mode_jump_op:
3717 reg_mode_jump_op (inst, inst_env);
3718 break;
3719
3720 case cris_reg_mode_move_from_preg_op:
3721 reg_mode_move_from_preg_op (inst, inst_env);
3722 break;
3723
3724 case cris_reg_mode_test_op:
3725 reg_mode_test_op (inst, inst_env);
3726 break;
3727
3728 case cris_scc_op:
3729 scc_op (inst, inst_env);
3730 break;
3731
3732 case cris_sixteen_bit_offset_branch_op:
3733 sixteen_bit_offset_branch_op (inst, inst_env);
3734 break;
3735
3736 case cris_three_operand_add_sub_cmp_and_or_op:
3737 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3738 break;
3739
3740 case cris_three_operand_bound_op:
3741 three_operand_bound_op (inst, inst_env);
3742 break;
3743
3744 case cris_two_operand_bound_op:
3745 two_operand_bound_op (inst, inst_env);
3746 break;
3747
3748 case cris_xor_op:
3749 xor_op (inst, inst_env);
3750 break;
3751 }
3752 }
3753
3754 /* Originally from <asm/elf.h>. */
3755 typedef unsigned char cris_elf_greg_t[4];
3756
3757 /* Same as user_regs_struct struct in <asm/user.h>. */
3758 #define CRISV10_ELF_NGREG 35
3759 typedef cris_elf_greg_t cris_elf_gregset_t[CRISV10_ELF_NGREG];
3760
3761 #define CRISV32_ELF_NGREG 32
3762 typedef cris_elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3763
3764 /* Unpack a cris_elf_gregset_t into GDB's register cache. */
3765
3766 static void
3767 cris_supply_gregset (const struct regset *regset, struct regcache *regcache,
3768 int regnum, const void *gregs, size_t len)
3769 {
3770 struct gdbarch *gdbarch = regcache->arch ();
3771 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
3772 int i;
3773 const cris_elf_greg_t *regp = static_cast<const cris_elf_greg_t *>(gregs);
3774
3775 if (len != sizeof (cris_elf_gregset_t)
3776 && len != sizeof (crisv32_elf_gregset_t))
3777 warning (_("wrong size gregset struct in core file"));
3778 gdb_assert (len >= sizeof (crisv32_elf_gregset_t));
3779
3780 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3781 knows about the actual size of each register so that's no problem. */
3782 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3783 {
3784 if (regnum == -1 || regnum == i)
3785 regcache->raw_supply (i, (char *)&regp[i]);
3786 }
3787
3788 if (tdep->cris_version == 32 && (regnum == -1 || regnum == ERP_REGNUM))
3789 {
3790 /* Needed to set pseudo-register PC for CRISv32. */
3791 /* FIXME: If ERP is in a delay slot at this point then the PC will
3792 be wrong. Issue a warning to alert the user. */
3793 regcache->raw_supply (gdbarch_pc_regnum (gdbarch),
3794 (char *)&regp[ERP_REGNUM]);
3795
3796 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3797 gdb_printf (gdb_stderr, "Warning: PC in delay slot\n");
3798 }
3799 }
3800
3801 static const struct regset cris_regset = {
3802 nullptr,
3803 cris_supply_gregset,
3804 /* We don't need a collect function because we only use this for core files
3805 (via iterate_over_regset_sections). */
3806 nullptr,
3807 REGSET_VARIABLE_SIZE
3808 };
3809
3810 static void cris_iterate_over_regset_sections (struct gdbarch *gdbarch,
3811 iterate_over_regset_sections_cb *cb,
3812 void *cb_data,
3813 const struct regcache *regcache)
3814 {
3815 cb (".reg", sizeof (crisv32_elf_gregset_t), sizeof (crisv32_elf_gregset_t),
3816 &cris_regset, NULL, cb_data);
3817 }
3818
3819 void _initialize_cris_tdep ();
3820 void
3821 _initialize_cris_tdep ()
3822 {
3823 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3824
3825 /* CRIS-specific user-commands. */
3826 add_setshow_zuinteger_cmd ("cris-version", class_support,
3827 &usr_cmd_cris_version,
3828 _("Set the current CRIS version."),
3829 _("Show the current CRIS version."),
3830 _("\
3831 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3832 Defaults to 10. "),
3833 set_cris_version,
3834 NULL, /* FIXME: i18n: Current CRIS version
3835 is %s. */
3836 &setlist, &showlist);
3837
3838 add_setshow_enum_cmd ("cris-mode", class_support,
3839 cris_modes, &usr_cmd_cris_mode,
3840 _("Set the current CRIS mode."),
3841 _("Show the current CRIS mode."),
3842 _("\
3843 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3844 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3845 set_cris_mode,
3846 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3847 &setlist, &showlist);
3848
3849 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3850 &usr_cmd_cris_dwarf2_cfi,
3851 _("Set the usage of Dwarf-2 CFI for CRIS."),
3852 _("Show the usage of Dwarf-2 CFI for CRIS."),
3853 _("Set this to \"off\" if using gcc-cris < R59."),
3854 set_cris_dwarf2_cfi,
3855 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3856 for CRIS is %d. */
3857 &setlist, &showlist);
3858 }
3859
3860 /* Prints out all target specific values. */
3861
3862 static void
3863 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3864 {
3865 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
3866 if (tdep != NULL)
3867 {
3868 gdb_printf (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3869 tdep->cris_version);
3870 gdb_printf (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3871 tdep->cris_mode);
3872 gdb_printf (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3873 tdep->cris_dwarf2_cfi);
3874 }
3875 }
3876
3877 static void
3878 set_cris_version (const char *ignore_args, int from_tty,
3879 struct cmd_list_element *c)
3880 {
3881 struct gdbarch_info info;
3882
3883 usr_cmd_cris_version_valid = 1;
3884
3885 /* Update the current architecture, if needed. */
3886 if (!gdbarch_update_p (info))
3887 internal_error (_("cris_gdbarch_update: failed to update architecture."));
3888 }
3889
3890 static void
3891 set_cris_mode (const char *ignore_args, int from_tty,
3892 struct cmd_list_element *c)
3893 {
3894 struct gdbarch_info info;
3895
3896 /* Update the current architecture, if needed. */
3897 if (!gdbarch_update_p (info))
3898 internal_error ("cris_gdbarch_update: failed to update architecture.");
3899 }
3900
3901 static void
3902 set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
3903 struct cmd_list_element *c)
3904 {
3905 struct gdbarch_info info;
3906
3907 /* Update the current architecture, if needed. */
3908 if (!gdbarch_update_p (info))
3909 internal_error (_("cris_gdbarch_update: failed to update architecture."));
3910 }
3911
3912 static struct gdbarch *
3913 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3914 {
3915 unsigned int cris_version;
3916
3917 if (usr_cmd_cris_version_valid)
3918 {
3919 /* Trust the user's CRIS version setting. */
3920 cris_version = usr_cmd_cris_version;
3921 }
3922 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
3923 {
3924 cris_version = 32;
3925 }
3926 else
3927 {
3928 /* Assume it's CRIS version 10. */
3929 cris_version = 10;
3930 }
3931
3932 /* Make the current settings visible to the user. */
3933 usr_cmd_cris_version = cris_version;
3934
3935 /* Find a candidate among the list of pre-declared architectures. */
3936 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3937 arches != NULL;
3938 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3939 {
3940 cris_gdbarch_tdep *tdep
3941 = gdbarch_tdep<cris_gdbarch_tdep> (arches->gdbarch);
3942
3943 if (tdep->cris_version == usr_cmd_cris_version
3944 && tdep->cris_mode == usr_cmd_cris_mode
3945 && tdep->cris_dwarf2_cfi == usr_cmd_cris_dwarf2_cfi)
3946 return arches->gdbarch;
3947 }
3948
3949 /* No matching architecture was found. Create a new one. */
3950 info.byte_order = BFD_ENDIAN_LITTLE;
3951 gdbarch *gdbarch
3952 = gdbarch_alloc (&info, gdbarch_tdep_up (new cris_gdbarch_tdep));
3953 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
3954
3955 tdep->cris_version = usr_cmd_cris_version;
3956 tdep->cris_mode = usr_cmd_cris_mode;
3957 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
3958
3959 set_gdbarch_return_value (gdbarch, cris_return_value);
3960 set_gdbarch_sp_regnum (gdbarch, 14);
3961
3962 /* Length of ordinary registers used in push_word and a few other
3963 places. register_size() is the real way to know how big a
3964 register is. */
3965
3966 set_gdbarch_double_bit (gdbarch, 64);
3967 /* The default definition of a long double is 2 * gdbarch_double_bit,
3968 which means we have to set this explicitly. */
3969 set_gdbarch_long_double_bit (gdbarch, 64);
3970
3971 /* The total amount of space needed to store (in an array called registers)
3972 GDB's copy of the machine's register state. Note: We can not use
3973 cris_register_size at this point, since it relies on gdbarch
3974 being set. */
3975 switch (tdep->cris_version)
3976 {
3977 case 0:
3978 case 1:
3979 case 2:
3980 case 3:
3981 case 8:
3982 case 9:
3983 /* Old versions; not supported. */
3984 return 0;
3985
3986 case 10:
3987 case 11:
3988 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
3989 P7 (32 bits), and P15 (32 bits) have been implemented. */
3990 set_gdbarch_pc_regnum (gdbarch, 15);
3991 set_gdbarch_register_type (gdbarch, cris_register_type);
3992 /* There are 32 registers (some of which may not be implemented). */
3993 set_gdbarch_num_regs (gdbarch, 32);
3994 set_gdbarch_register_name (gdbarch, cris_register_name);
3995 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
3996 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
3997
3998 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
3999 break;
4000
4001 case 32:
4002 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4003 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4004 and pseudo-register PC (32 bits). */
4005 set_gdbarch_pc_regnum (gdbarch, 32);
4006 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4007 /* 32 registers + pseudo-register PC + 16 support registers. */
4008 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4009 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4010
4011 set_gdbarch_cannot_store_register
4012 (gdbarch, crisv32_cannot_store_register);
4013 set_gdbarch_cannot_fetch_register
4014 (gdbarch, crisv32_cannot_fetch_register);
4015
4016 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4017
4018 set_gdbarch_single_step_through_delay
4019 (gdbarch, crisv32_single_step_through_delay);
4020
4021 break;
4022
4023 default:
4024 /* Unknown version. */
4025 return 0;
4026 }
4027
4028 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4029 have the same ABI). */
4030 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4031 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4032 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4033 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4034
4035 /* The stack grows downward. */
4036 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4037
4038 set_gdbarch_breakpoint_kind_from_pc (gdbarch, cris_breakpoint_kind_from_pc);
4039 set_gdbarch_sw_breakpoint_from_kind (gdbarch, cris_sw_breakpoint_from_kind);
4040 set_gdbarch_iterate_over_regset_sections (gdbarch, cris_iterate_over_regset_sections);
4041
4042 if (tdep->cris_dwarf2_cfi == 1)
4043 {
4044 /* Hook in the Dwarf-2 frame sniffer. */
4045 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4046 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4047 dwarf2_append_unwinders (gdbarch);
4048 }
4049
4050 if (tdep->cris_mode != cris_mode_guru)
4051 {
4052 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4053 }
4054
4055 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4056 frame_base_set_default (gdbarch, &cris_frame_base);
4057
4058 /* Hook in ABI-specific overrides, if they have been registered. */
4059 gdbarch_init_osabi (info, gdbarch);
4060
4061 return gdbarch;
4062 }