2003-01-07 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Axis Communications AB.
4 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "symtab.h"
25 #include "inferior.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "value.h"
31 #include "opcode/cris.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34
35 /* To get entry_point_address. */
36 #include "symfile.h"
37
38 #include "solib.h" /* Support for shared libraries. */
39 #include "solib-svr4.h" /* For struct link_map_offsets. */
40 #include "gdb_string.h"
41
42
43 enum cris_num_regs
44 {
45 /* There are no floating point registers. Used in gdbserver low-linux.c. */
46 NUM_FREGS = 0,
47
48 /* There are 16 general registers. */
49 NUM_GENREGS = 16,
50
51 /* There are 16 special registers. */
52 NUM_SPECREGS = 16
53 };
54
55 /* Register numbers of various important registers.
56 FP_REGNUM Contains address of executing stack frame.
57 STR_REGNUM Contains the address of structure return values.
58 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
59 ARG1_REGNUM Contains the first parameter to a function.
60 ARG2_REGNUM Contains the second parameter to a function.
61 ARG3_REGNUM Contains the third parameter to a function.
62 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
63 SP_REGNUM Contains address of top of stack.
64 PC_REGNUM Contains address of next instruction.
65 SRP_REGNUM Subroutine return pointer register.
66 BRP_REGNUM Breakpoint return pointer register. */
67
68 /* FP_REGNUM = 8, SP_REGNUM = 14, and PC_REGNUM = 15 have been incorporated
69 into the multi-arch framework. */
70
71 enum cris_regnums
72 {
73 /* Enums with respect to the general registers, valid for all
74 CRIS versions. */
75 STR_REGNUM = 9,
76 RET_REGNUM = 10,
77 ARG1_REGNUM = 10,
78 ARG2_REGNUM = 11,
79 ARG3_REGNUM = 12,
80 ARG4_REGNUM = 13,
81
82 /* Enums with respect to the special registers, some of which may not be
83 applicable to all CRIS versions. */
84 P0_REGNUM = 16,
85 VR_REGNUM = 17,
86 P2_REGNUM = 18,
87 P3_REGNUM = 19,
88 P4_REGNUM = 20,
89 CCR_REGNUM = 21,
90 MOF_REGNUM = 23,
91 P8_REGNUM = 24,
92 IBR_REGNUM = 25,
93 IRP_REGNUM = 26,
94 SRP_REGNUM = 27,
95 BAR_REGNUM = 28,
96 DCCR_REGNUM = 29,
97 BRP_REGNUM = 30,
98 USP_REGNUM = 31
99 };
100
101 extern const struct cris_spec_reg cris_spec_regs[];
102
103 /* CRIS version, set via the user command 'set cris-version'. Affects
104 register names and sizes.*/
105 static int usr_cmd_cris_version;
106
107 /* Indicates whether to trust the above variable. */
108 static int usr_cmd_cris_version_valid = 0;
109
110 /* CRIS mode, set via the user command 'set cris-mode'. Affects availability
111 of some registers. */
112 static const char *usr_cmd_cris_mode;
113
114 /* Indicates whether to trust the above variable. */
115 static int usr_cmd_cris_mode_valid = 0;
116
117 static const char CRIS_MODE_USER[] = "CRIS_MODE_USER";
118 static const char CRIS_MODE_SUPERVISOR[] = "CRIS_MODE_SUPERVISOR";
119 static const char *cris_mode_enums[] =
120 {
121 CRIS_MODE_USER,
122 CRIS_MODE_SUPERVISOR,
123 0
124 };
125
126 /* CRIS ABI, set via the user command 'set cris-abi'.
127 There are two flavours:
128 1. Original ABI with 32-bit doubles, where arguments <= 4 bytes are
129 passed by value.
130 2. New ABI with 64-bit doubles, where arguments <= 8 bytes are passed by
131 value. */
132 static const char *usr_cmd_cris_abi;
133
134 /* Indicates whether to trust the above variable. */
135 static int usr_cmd_cris_abi_valid = 0;
136
137 /* These variables are strings instead of enums to make them usable as
138 parameters to add_set_enum_cmd. */
139 static const char CRIS_ABI_ORIGINAL[] = "CRIS_ABI_ORIGINAL";
140 static const char CRIS_ABI_V2[] = "CRIS_ABI_V2";
141 static const char CRIS_ABI_SYMBOL[] = ".$CRIS_ABI_V2";
142 static const char *cris_abi_enums[] =
143 {
144 CRIS_ABI_ORIGINAL,
145 CRIS_ABI_V2,
146 0
147 };
148
149 /* CRIS architecture specific information. */
150 struct gdbarch_tdep
151 {
152 int cris_version;
153 const char *cris_mode;
154 const char *cris_abi;
155 };
156
157 /* Functions for accessing target dependent data. */
158
159 static int
160 cris_version (void)
161 {
162 return (gdbarch_tdep (current_gdbarch)->cris_version);
163 }
164
165 static const char *
166 cris_mode (void)
167 {
168 return (gdbarch_tdep (current_gdbarch)->cris_mode);
169 }
170
171 static const char *
172 cris_abi (void)
173 {
174 return (gdbarch_tdep (current_gdbarch)->cris_abi);
175 }
176
177 /* For saving call-clobbered contents in R9 when returning structs. */
178 static CORE_ADDR struct_return_address;
179
180 struct frame_extra_info
181 {
182 CORE_ADDR return_pc;
183 int leaf_function;
184 };
185
186 /* The instruction environment needed to find single-step breakpoints. */
187 typedef
188 struct instruction_environment
189 {
190 unsigned long reg[NUM_GENREGS];
191 unsigned long preg[NUM_SPECREGS];
192 unsigned long branch_break_address;
193 unsigned long delay_slot_pc;
194 unsigned long prefix_value;
195 int branch_found;
196 int prefix_found;
197 int invalid;
198 int slot_needed;
199 int delay_slot_pc_active;
200 int xflag_found;
201 int disable_interrupt;
202 } inst_env_type;
203
204 /* Save old breakpoints in order to restore the state before a single_step.
205 At most, two breakpoints will have to be remembered. */
206 typedef
207 char binsn_quantum[BREAKPOINT_MAX];
208 static binsn_quantum break_mem[2];
209 static CORE_ADDR next_pc = 0;
210 static CORE_ADDR branch_target_address = 0;
211 static unsigned char branch_break_inserted = 0;
212
213 /* Machine-dependencies in CRIS for opcodes. */
214
215 /* Instruction sizes. */
216 enum cris_instruction_sizes
217 {
218 INST_BYTE_SIZE = 0,
219 INST_WORD_SIZE = 1,
220 INST_DWORD_SIZE = 2
221 };
222
223 /* Addressing modes. */
224 enum cris_addressing_modes
225 {
226 REGISTER_MODE = 1,
227 INDIRECT_MODE = 2,
228 AUTOINC_MODE = 3
229 };
230
231 /* Prefix addressing modes. */
232 enum cris_prefix_addressing_modes
233 {
234 PREFIX_INDEX_MODE = 2,
235 PREFIX_ASSIGN_MODE = 3,
236
237 /* Handle immediate byte offset addressing mode prefix format. */
238 PREFIX_OFFSET_MODE = 2
239 };
240
241 /* Masks for opcodes. */
242 enum cris_opcode_masks
243 {
244 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
245 SIGNED_EXTEND_BIT_MASK = 0x2,
246 SIGNED_BYTE_MASK = 0x80,
247 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
248 SIGNED_WORD_MASK = 0x8000,
249 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
250 SIGNED_DWORD_MASK = 0x80000000,
251 SIGNED_QUICK_VALUE_MASK = 0x20,
252 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
253 };
254
255 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
256 Bit 15 - 12 Operand2
257 11 - 10 Mode
258 9 - 6 Opcode
259 5 - 4 Size
260 3 - 0 Operand1 */
261
262 static int
263 cris_get_operand2 (unsigned short insn)
264 {
265 return ((insn & 0xF000) >> 12);
266 }
267
268 static int
269 cris_get_mode (unsigned short insn)
270 {
271 return ((insn & 0x0C00) >> 10);
272 }
273
274 static int
275 cris_get_opcode (unsigned short insn)
276 {
277 return ((insn & 0x03C0) >> 6);
278 }
279
280 static int
281 cris_get_size (unsigned short insn)
282 {
283 return ((insn & 0x0030) >> 4);
284 }
285
286 static int
287 cris_get_operand1 (unsigned short insn)
288 {
289 return (insn & 0x000F);
290 }
291
292 /* Additional functions in order to handle opcodes. */
293
294 static int
295 cris_get_wide_opcode (unsigned short insn)
296 {
297 return ((insn & 0x03E0) >> 5);
298 }
299
300 static int
301 cris_get_short_size (unsigned short insn)
302 {
303 return ((insn & 0x0010) >> 4);
304 }
305
306 static int
307 cris_get_quick_value (unsigned short insn)
308 {
309 return (insn & 0x003F);
310 }
311
312 static int
313 cris_get_bdap_quick_offset (unsigned short insn)
314 {
315 return (insn & 0x00FF);
316 }
317
318 static int
319 cris_get_branch_short_offset (unsigned short insn)
320 {
321 return (insn & 0x00FF);
322 }
323
324 static int
325 cris_get_asr_shift_steps (unsigned long value)
326 {
327 return (value & 0x3F);
328 }
329
330 static int
331 cris_get_asr_quick_shift_steps (unsigned short insn)
332 {
333 return (insn & 0x1F);
334 }
335
336 static int
337 cris_get_clear_size (unsigned short insn)
338 {
339 return ((insn) & 0xC000);
340 }
341
342 static int
343 cris_is_signed_extend_bit_on (unsigned short insn)
344 {
345 return (((insn) & 0x20) == 0x20);
346 }
347
348 static int
349 cris_is_xflag_bit_on (unsigned short insn)
350 {
351 return (((insn) & 0x1000) == 0x1000);
352 }
353
354 static void
355 cris_set_size_to_dword (unsigned short *insn)
356 {
357 *insn &= 0xFFCF;
358 *insn |= 0x20;
359 }
360
361 static signed char
362 cris_get_signed_offset (unsigned short insn)
363 {
364 return ((signed char) (insn & 0x00FF));
365 }
366
367 /* Calls an op function given the op-type, working on the insn and the
368 inst_env. */
369 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
370
371 static CORE_ADDR cris_skip_prologue_main (CORE_ADDR pc, int frameless_p);
372
373 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
374 struct gdbarch_list *);
375
376 static int cris_delayed_get_disassembler (bfd_vma, disassemble_info *);
377
378 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
379
380 static void cris_version_update (char *ignore_args, int from_tty,
381 struct cmd_list_element *c);
382
383 static void cris_mode_update (char *ignore_args, int from_tty,
384 struct cmd_list_element *c);
385
386 static void cris_abi_update (char *ignore_args, int from_tty,
387 struct cmd_list_element *c);
388
389 static CORE_ADDR bfd_lookup_symbol (bfd *, const char *);
390
391 /* Frames information. The definition of the struct frame_info is
392
393 CORE_ADDR frame
394 CORE_ADDR pc
395 enum frame_type type;
396 CORE_ADDR return_pc
397 int leaf_function
398
399 If the compilation option -fno-omit-frame-pointer is present the
400 variable frame will be set to the content of R8 which is the frame
401 pointer register.
402
403 The variable pc contains the address where execution is performed
404 in the present frame. The innermost frame contains the current content
405 of the register PC. All other frames contain the content of the
406 register PC in the next frame.
407
408 The variable `type' indicates the frame's type: normal, SIGTRAMP
409 (associated with a signal handler), dummy (associated with a dummy
410 frame).
411
412 The variable return_pc contains the address where execution should be
413 resumed when the present frame has finished, the return address.
414
415 The variable leaf_function is 1 if the return address is in the register
416 SRP, and 0 if it is on the stack.
417
418 Prologue instructions C-code.
419 The prologue may consist of (-fno-omit-frame-pointer)
420 1) 2)
421 push srp
422 push r8 push r8
423 move.d sp,r8 move.d sp,r8
424 subq X,sp subq X,sp
425 movem rY,[sp] movem rY,[sp]
426 move.S rZ,[r8-U] move.S rZ,[r8-U]
427
428 where 1 is a non-terminal function, and 2 is a leaf-function.
429
430 Note that this assumption is extremely brittle, and will break at the
431 slightest change in GCC's prologue.
432
433 If local variables are declared or register contents are saved on stack
434 the subq-instruction will be present with X as the number of bytes
435 needed for storage. The reshuffle with respect to r8 may be performed
436 with any size S (b, w, d) and any of the general registers Z={0..13}.
437 The offset U should be representable by a signed 8-bit value in all cases.
438 Thus, the prefix word is assumed to be immediate byte offset mode followed
439 by another word containing the instruction.
440
441 Degenerate cases:
442 3)
443 push r8
444 move.d sp,r8
445 move.d r8,sp
446 pop r8
447
448 Prologue instructions C++-code.
449 Case 1) and 2) in the C-code may be followed by
450
451 move.d r10,rS ; this
452 move.d r11,rT ; P1
453 move.d r12,rU ; P2
454 move.d r13,rV ; P3
455 move.S [r8+U],rZ ; P4
456
457 if any of the call parameters are stored. The host expects these
458 instructions to be executed in order to get the call parameters right. */
459
460 /* Examine the prologue of a function. The variable ip is the address of
461 the first instruction of the prologue. The variable limit is the address
462 of the first instruction after the prologue. The variable fi contains the
463 information in struct frame_info. The variable frameless_p controls whether
464 the entire prologue is examined (0) or just enough instructions to
465 determine that it is a prologue (1). */
466
467 CORE_ADDR
468 cris_examine (CORE_ADDR ip, CORE_ADDR limit, struct frame_info *fi,
469 int frameless_p)
470 {
471 /* Present instruction. */
472 unsigned short insn;
473
474 /* Next instruction, lookahead. */
475 unsigned short insn_next;
476 int regno;
477
478 /* Is there a push fp? */
479 int have_fp;
480
481 /* Number of byte on stack used for local variables and movem. */
482 int val;
483
484 /* Highest register number in a movem. */
485 int regsave;
486
487 /* move.d r<source_register>,rS */
488 short source_register;
489
490 /* This frame is with respect to a leaf until a push srp is found. */
491 fi->extra_info->leaf_function = 1;
492
493 /* This frame is without the FP until a push fp is found. */
494 have_fp = 0;
495
496 /* Assume nothing on stack. */
497 val = 0;
498 regsave = -1;
499
500 /* No information about register contents so far. */
501
502 /* We only want to know the end of the prologue when fi->saved_regs == 0.
503 When the saved registers are allocated full information is required. */
504 if (get_frame_saved_regs (fi))
505 {
506 for (regno = 0; regno < NUM_REGS; regno++)
507 get_frame_saved_regs (fi)[regno] = 0;
508 }
509
510 /* Find the prologue instructions. */
511 do
512 {
513 insn = read_memory_unsigned_integer (ip, sizeof (short));
514 ip += sizeof (short);
515 if (insn == 0xE1FC)
516 {
517 /* push <reg> 32 bit instruction */
518 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
519 ip += sizeof (short);
520 regno = cris_get_operand2 (insn_next);
521
522 /* This check, meant to recognize srp, used to be regno ==
523 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
524 if (insn_next == 0xBE7E)
525 {
526 if (frameless_p)
527 {
528 return ip;
529 }
530 fi->extra_info->leaf_function = 0;
531 }
532 else if (regno == FP_REGNUM)
533 {
534 have_fp = 1;
535 }
536 }
537 else if (insn == 0x866E)
538 {
539 /* move.d sp,r8 */
540 if (frameless_p)
541 {
542 return ip;
543 }
544 continue;
545 }
546 else if (cris_get_operand2 (insn) == SP_REGNUM
547 && cris_get_mode (insn) == 0x0000
548 && cris_get_opcode (insn) == 0x000A)
549 {
550 /* subq <val>,sp */
551 val = cris_get_quick_value (insn);
552 }
553 else if (cris_get_mode (insn) == 0x0002
554 && cris_get_opcode (insn) == 0x000F
555 && cris_get_size (insn) == 0x0003
556 && cris_get_operand1 (insn) == SP_REGNUM)
557 {
558 /* movem r<regsave>,[sp] */
559 if (frameless_p)
560 {
561 return ip;
562 }
563 regsave = cris_get_operand2 (insn);
564 }
565 else if (cris_get_operand2 (insn) == SP_REGNUM
566 && ((insn & 0x0F00) >> 8) == 0x0001
567 && (cris_get_signed_offset (insn) < 0))
568 {
569 /* Immediate byte offset addressing prefix word with sp as base
570 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
571 is between 64 and 128.
572 movem r<regsave>,[sp=sp-<val>] */
573 val = -cris_get_signed_offset (insn);
574 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
575 ip += sizeof (short);
576 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
577 && cris_get_opcode (insn_next) == 0x000F
578 && cris_get_size (insn_next) == 0x0003
579 && cris_get_operand1 (insn_next) == SP_REGNUM)
580 {
581 if (frameless_p)
582 {
583 return ip;
584 }
585 regsave = cris_get_operand2 (insn_next);
586 }
587 else
588 {
589 /* The prologue ended before the limit was reached. */
590 ip -= 2 * sizeof (short);
591 break;
592 }
593 }
594 else if (cris_get_mode (insn) == 0x0001
595 && cris_get_opcode (insn) == 0x0009
596 && cris_get_size (insn) == 0x0002)
597 {
598 /* move.d r<10..13>,r<0..15> */
599 if (frameless_p)
600 {
601 return ip;
602 }
603 source_register = cris_get_operand1 (insn);
604
605 /* FIXME? In the glibc solibs, the prologue might contain something
606 like (this example taken from relocate_doit):
607 move.d $pc,$r0
608 sub.d 0xfffef426,$r0
609 which isn't covered by the source_register check below. Question
610 is whether to add a check for this combo, or make better use of
611 the limit variable instead. */
612 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
613 {
614 /* The prologue ended before the limit was reached. */
615 ip -= sizeof (short);
616 break;
617 }
618 }
619 else if (cris_get_operand2 (insn) == FP_REGNUM
620 /* The size is a fixed-size. */
621 && ((insn & 0x0F00) >> 8) == 0x0001
622 /* A negative offset. */
623 && (cris_get_signed_offset (insn) < 0))
624 {
625 /* move.S rZ,[r8-U] (?) */
626 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
627 ip += sizeof (short);
628 regno = cris_get_operand2 (insn_next);
629 if ((regno >= 0 && regno < SP_REGNUM)
630 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
631 && cris_get_opcode (insn_next) == 0x000F)
632 {
633 /* move.S rZ,[r8-U] */
634 continue;
635 }
636 else
637 {
638 /* The prologue ended before the limit was reached. */
639 ip -= 2 * sizeof (short);
640 break;
641 }
642 }
643 else if (cris_get_operand2 (insn) == FP_REGNUM
644 /* The size is a fixed-size. */
645 && ((insn & 0x0F00) >> 8) == 0x0001
646 /* A positive offset. */
647 && (cris_get_signed_offset (insn) > 0))
648 {
649 /* move.S [r8+U],rZ (?) */
650 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
651 ip += sizeof (short);
652 regno = cris_get_operand2 (insn_next);
653 if ((regno >= 0 && regno < SP_REGNUM)
654 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
655 && cris_get_opcode (insn_next) == 0x0009
656 && cris_get_operand1 (insn_next) == regno)
657 {
658 /* move.S [r8+U],rZ */
659 continue;
660 }
661 else
662 {
663 /* The prologue ended before the limit was reached. */
664 ip -= 2 * sizeof (short);
665 break;
666 }
667 }
668 else
669 {
670 /* The prologue ended before the limit was reached. */
671 ip -= sizeof (short);
672 break;
673 }
674 }
675 while (ip < limit);
676
677 /* We only want to know the end of the prologue when
678 fi->saved_regs == 0. */
679 if (!get_frame_saved_regs (fi))
680 return ip;
681
682 if (have_fp)
683 {
684 get_frame_saved_regs (fi)[FP_REGNUM] = get_frame_base (fi);
685
686 /* Calculate the addresses. */
687 for (regno = regsave; regno >= 0; regno--)
688 {
689 get_frame_saved_regs (fi)[regno] = get_frame_base (fi) - val;
690 val -= 4;
691 }
692 if (fi->extra_info->leaf_function)
693 {
694 /* Set the register SP to contain the stack pointer of
695 the caller. */
696 get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 4;
697 }
698 else
699 {
700 /* Set the register SP to contain the stack pointer of
701 the caller. */
702 get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 8;
703
704 /* Set the register SRP to contain the return address of
705 the caller. */
706 get_frame_saved_regs (fi)[SRP_REGNUM] = get_frame_base (fi) + 4;
707 }
708 }
709 return ip;
710 }
711
712 /* Advance pc beyond any function entry prologue instructions at pc
713 to reach some "real" code. */
714
715 CORE_ADDR
716 cris_skip_prologue (CORE_ADDR pc)
717 {
718 return cris_skip_prologue_main (pc, 0);
719 }
720
721 /* As cris_skip_prologue, but stops as soon as it knows that the function
722 has a frame. Its result is equal to its input pc if the function is
723 frameless, unequal otherwise. */
724
725 CORE_ADDR
726 cris_skip_prologue_frameless_p (CORE_ADDR pc)
727 {
728 return cris_skip_prologue_main (pc, 1);
729 }
730
731 /* Given a PC value corresponding to the start of a function, return the PC
732 of the first instruction after the function prologue. */
733
734 CORE_ADDR
735 cris_skip_prologue_main (CORE_ADDR pc, int frameless_p)
736 {
737 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
738 struct frame_info *fi;
739 struct symtab_and_line sal = find_pc_line (pc, 0);
740 int best_limit;
741 CORE_ADDR pc_after_prologue;
742
743 /* frame_info now contains dynamic memory. Since fi is a dummy
744 here, I don't bother allocating memory for saved_regs. */
745 fi = deprecated_frame_xmalloc_with_cleanup (0, sizeof (struct frame_extra_info));
746
747 /* If there is no symbol information then sal.end == 0, and we end up
748 examining only the first instruction in the function prologue.
749 Exaggerating the limit seems to be harmless. */
750 if (sal.end > 0)
751 best_limit = sal.end;
752 else
753 best_limit = pc + 100;
754
755 pc_after_prologue = cris_examine (pc, best_limit, fi, frameless_p);
756 do_cleanups (old_chain);
757 return pc_after_prologue;
758 }
759
760 /* Use the program counter to determine the contents and size of a breakpoint
761 instruction. It returns a pointer to a string of bytes that encode a
762 breakpoint instruction, stores the length of the string to *lenptr, and
763 adjusts pcptr (if necessary) to point to the actual memory location where
764 the breakpoint should be inserted. */
765
766 const unsigned char *
767 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
768 {
769 static unsigned char break_insn[] = {0x38, 0xe9};
770 *lenptr = 2;
771
772 return break_insn;
773 }
774
775 /* Returns the register SRP (subroutine return pointer) which must contain
776 the content of the register PC after a function call. */
777
778 static CORE_ADDR
779 cris_saved_pc_after_call (struct frame_info *frame)
780 {
781 return read_register (SRP_REGNUM);
782 }
783
784 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
785 0 otherwise. */
786
787 int
788 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
789 {
790 int version = cris_version ();
791
792 switch (spec_reg.applicable_version)
793 {
794 case cris_ver_version_all:
795 return 1;
796 case cris_ver_warning:
797 /* Indeterminate/obsolete. */
798 return 0;
799 case cris_ver_sim:
800 /* Simulator only. */
801 return 0;
802 case cris_ver_v0_3:
803 return (version >= 0 && version <= 3);
804 case cris_ver_v3p:
805 return (version >= 3);
806 case cris_ver_v8:
807 return (version == 8 || version == 9);
808 case cris_ver_v8p:
809 return (version >= 8);
810 case cris_ver_v10p:
811 return (version >= 10);
812 default:
813 /* Invalid cris version. */
814 return 0;
815 }
816 }
817
818 /* Returns the register size in unit byte. Returns 0 for an unimplemented
819 register, -1 for an invalid register. */
820
821 int
822 cris_register_size (int regno)
823 {
824 int i;
825 int spec_regno;
826
827 if (regno >= 0 && regno < NUM_GENREGS)
828 {
829 /* General registers (R0 - R15) are 32 bits. */
830 return 4;
831 }
832 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
833 {
834 /* Special register (R16 - R31). cris_spec_regs is zero-based.
835 Adjust regno accordingly. */
836 spec_regno = regno - NUM_GENREGS;
837
838 /* The entries in cris_spec_regs are stored in register number order,
839 which means we can shortcut into the array when searching it. */
840 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
841 {
842 if (cris_spec_regs[i].number == spec_regno
843 && cris_spec_reg_applicable (cris_spec_regs[i]))
844 /* Go with the first applicable register. */
845 return cris_spec_regs[i].reg_size;
846 }
847 /* Special register not applicable to this CRIS version. */
848 return 0;
849 }
850 else
851 {
852 /* Invalid register. */
853 return -1;
854 }
855 }
856
857 /* Nonzero if regno should not be fetched from the target. This is the case
858 for unimplemented (size 0) and non-existant registers. */
859
860 int
861 cris_cannot_fetch_register (int regno)
862 {
863 return ((regno < 0 || regno >= NUM_REGS)
864 || (cris_register_size (regno) == 0));
865 }
866
867 /* Nonzero if regno should not be written to the target, for various
868 reasons. */
869
870 int
871 cris_cannot_store_register (int regno)
872 {
873 /* There are three kinds of registers we refuse to write to.
874 1. Those that not implemented.
875 2. Those that are read-only (depends on the processor mode).
876 3. Those registers to which a write has no effect.
877 */
878
879 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
880 /* Not implemented. */
881 return 1;
882
883 else if (regno == VR_REGNUM)
884 /* Read-only. */
885 return 1;
886
887 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
888 /* Writing has no effect. */
889 return 1;
890
891 else if (cris_mode () == CRIS_MODE_USER)
892 {
893 if (regno == IBR_REGNUM || regno == BAR_REGNUM || regno == BRP_REGNUM
894 || regno == IRP_REGNUM)
895 /* Read-only in user mode. */
896 return 1;
897 }
898
899 return 0;
900 }
901
902 /* Returns the register offset for the first byte of register regno's space
903 in the saved register state. Returns -1 for an invalid or unimplemented
904 register. */
905
906 int
907 cris_register_offset (int regno)
908 {
909 int i;
910 int reg_size;
911 int offset = 0;
912
913 if (regno >= 0 && regno < NUM_REGS)
914 {
915 /* FIXME: The offsets should be cached and calculated only once,
916 when the architecture being debugged has changed. */
917 for (i = 0; i < regno; i++)
918 offset += cris_register_size (i);
919
920 return offset;
921 }
922 else
923 {
924 /* Invalid register. */
925 return -1;
926 }
927 }
928
929 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
930 of data in register regno. */
931
932 struct type *
933 cris_register_virtual_type (int regno)
934 {
935 if (regno == SP_REGNUM || regno == PC_REGNUM
936 || (regno > P8_REGNUM && regno < USP_REGNUM))
937 {
938 /* SP, PC, IBR, IRP, SRP, BAR, DCCR, BRP */
939 return lookup_pointer_type (builtin_type_void);
940 }
941 else if (regno == P8_REGNUM || regno == USP_REGNUM
942 || (regno >= 0 && regno < SP_REGNUM))
943 {
944 /* R0 - R13, P8, P15 */
945 return builtin_type_unsigned_long;
946 }
947 else if (regno > P3_REGNUM && regno < P8_REGNUM)
948 {
949 /* P4, CCR, DCR0, DCR1 */
950 return builtin_type_unsigned_short;
951 }
952 else if (regno > PC_REGNUM && regno < P4_REGNUM)
953 {
954 /* P0, P1, P2, P3 */
955 return builtin_type_unsigned_char;
956 }
957 else
958 {
959 /* Invalid register. */
960 return builtin_type_void;
961 }
962 }
963
964 /* Stores a function return value of type type, where valbuf is the address
965 of the value to be stored. */
966
967 /* In the original CRIS ABI, R10 is used to store return values. */
968
969 void
970 cris_abi_original_store_return_value (struct type *type, char *valbuf)
971 {
972 int len = TYPE_LENGTH (type);
973
974 if (len <= REGISTER_SIZE)
975 deprecated_write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf, len);
976 else
977 internal_error (__FILE__, __LINE__, "cris_abi_original_store_return_value: type length too large.");
978 }
979
980 /* In the CRIS ABI V2, R10 and R11 are used to store return values. */
981
982 void
983 cris_abi_v2_store_return_value (struct type *type, char *valbuf)
984 {
985 int len = TYPE_LENGTH (type);
986
987 if (len <= 2 * REGISTER_SIZE)
988 {
989 /* Note that this works since R10 and R11 are consecutive registers. */
990 deprecated_write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf,
991 len);
992 }
993 else
994 internal_error (__FILE__, __LINE__, "cris_abi_v2_store_return_value: type length too large.");
995 }
996
997 /* Return the name of register regno as a string. Return NULL for an invalid or
998 unimplemented register. */
999
1000 const char *
1001 cris_register_name (int regno)
1002 {
1003 static char *cris_genreg_names[] =
1004 { "r0", "r1", "r2", "r3", \
1005 "r4", "r5", "r6", "r7", \
1006 "r8", "r9", "r10", "r11", \
1007 "r12", "r13", "sp", "pc" };
1008
1009 int i;
1010 int spec_regno;
1011
1012 if (regno >= 0 && regno < NUM_GENREGS)
1013 {
1014 /* General register. */
1015 return cris_genreg_names[regno];
1016 }
1017 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1018 {
1019 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1020 Adjust regno accordingly. */
1021 spec_regno = regno - NUM_GENREGS;
1022
1023 /* The entries in cris_spec_regs are stored in register number order,
1024 which means we can shortcut into the array when searching it. */
1025 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
1026 {
1027 if (cris_spec_regs[i].number == spec_regno
1028 && cris_spec_reg_applicable (cris_spec_regs[i]))
1029 /* Go with the first applicable register. */
1030 return cris_spec_regs[i].name;
1031 }
1032 /* Special register not applicable to this CRIS version. */
1033 return NULL;
1034 }
1035 else
1036 {
1037 /* Invalid register. */
1038 return NULL;
1039 }
1040 }
1041
1042 int
1043 cris_register_bytes_ok (long bytes)
1044 {
1045 return (bytes == REGISTER_BYTES);
1046 }
1047
1048 /* Extract from an array regbuf containing the raw register state a function
1049 return value of type type, and copy that, in virtual format, into
1050 valbuf. */
1051
1052 /* In the original CRIS ABI, R10 is used to return values. */
1053
1054 void
1055 cris_abi_original_extract_return_value (struct type *type, char *regbuf,
1056 char *valbuf)
1057 {
1058 int len = TYPE_LENGTH (type);
1059
1060 if (len <= REGISTER_SIZE)
1061 memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len);
1062 else
1063 internal_error (__FILE__, __LINE__, "cris_abi_original_extract_return_value: type length too large");
1064 }
1065
1066 /* In the CRIS ABI V2, R10 and R11 are used to store return values. */
1067
1068 void
1069 cris_abi_v2_extract_return_value (struct type *type, char *regbuf,
1070 char *valbuf)
1071 {
1072 int len = TYPE_LENGTH (type);
1073
1074 if (len <= 2 * REGISTER_SIZE)
1075 memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len);
1076 else
1077 internal_error (__FILE__, __LINE__, "cris_abi_v2_extract_return_value: type length too large");
1078 }
1079
1080 /* Store the address of the place in which to copy the structure the
1081 subroutine will return. In the CRIS ABI, R9 is used in order to pass
1082 the address of the allocated area where a structure return value must
1083 be stored. R9 is call-clobbered, which means we must save it here for
1084 later use. */
1085
1086 void
1087 cris_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1088 {
1089 write_register (STR_REGNUM, addr);
1090 struct_return_address = addr;
1091 }
1092
1093 /* Extract from regbuf the address where a function should return a
1094 structure value. It's not there in the CRIS ABI, so we must do it another
1095 way. */
1096
1097 CORE_ADDR
1098 cris_extract_struct_value_address (char *regbuf)
1099 {
1100 return struct_return_address;
1101 }
1102
1103 /* Returns 1 if a value of the given type being returned from a function
1104 must have space allocated for it on the stack. gcc_p is true if the
1105 function being considered is known to have been compiled by GCC.
1106 In the CRIS ABI, structure return values are passed to the called
1107 function by reference in register R9 to a caller-allocated area, so
1108 this is always true. */
1109
1110 int
1111 cris_use_struct_convention (int gcc_p, struct type *type)
1112 {
1113 return 1;
1114 }
1115
1116 /* Returns 1 if the given type will be passed by pointer rather than
1117 directly. */
1118
1119 /* In the original CRIS ABI, arguments shorter than or equal to 32 bits are
1120 passed by value. */
1121
1122 int
1123 cris_abi_original_reg_struct_has_addr (int gcc_p, struct type *type)
1124 {
1125 return (TYPE_LENGTH (type) > 4);
1126 }
1127
1128 /* In the CRIS ABI V2, arguments shorter than or equal to 64 bits are passed
1129 by value. */
1130
1131 int
1132 cris_abi_v2_reg_struct_has_addr (int gcc_p, struct type *type)
1133 {
1134 return (TYPE_LENGTH (type) > 8);
1135 }
1136
1137 /* Returns 1 if the function invocation represented by fi does not have a
1138 stack frame associated with it. Otherwise return 0. */
1139
1140 int
1141 cris_frameless_function_invocation (struct frame_info *fi)
1142 {
1143 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1144 return 0;
1145 else
1146 return frameless_look_for_prologue (fi);
1147 }
1148
1149 /* See frame.h. Determines the address of all registers in the current stack
1150 frame storing each in frame->saved_regs. Space for frame->saved_regs shall
1151 be allocated by FRAME_INIT_SAVED_REGS using either frame_saved_regs_zalloc
1152 or frame_obstack_alloc. */
1153
1154 void
1155 cris_frame_init_saved_regs (struct frame_info *fi)
1156 {
1157 CORE_ADDR ip;
1158 struct symtab_and_line sal;
1159 int best_limit;
1160 char *dummy_regs = deprecated_generic_find_dummy_frame (get_frame_pc (fi), fi->frame);
1161
1162 /* Examine the entire prologue. */
1163 register int frameless_p = 0;
1164
1165 /* Has this frame's registers already been initialized? */
1166 if (get_frame_saved_regs (fi))
1167 return;
1168
1169 frame_saved_regs_zalloc (fi);
1170
1171 if (dummy_regs)
1172 {
1173 /* I don't see this ever happening, considering the context in which
1174 cris_frame_init_saved_regs is called (always when we're not in
1175 a dummy frame). */
1176 memcpy (&fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
1177 }
1178 else
1179 {
1180 ip = get_pc_function_start (get_frame_pc (fi));
1181 sal = find_pc_line (ip, 0);
1182
1183 /* If there is no symbol information then sal.end == 0, and we end up
1184 examining only the first instruction in the function prologue.
1185 Exaggerating the limit seems to be harmless. */
1186 if (sal.end > 0)
1187 best_limit = sal.end;
1188 else
1189 best_limit = ip + 100;
1190
1191 cris_examine (ip, best_limit, fi, frameless_p);
1192 }
1193 }
1194
1195 /* Initialises the extra frame information at the creation of a new frame.
1196 The inparameter fromleaf is 0 when the call is from create_new_frame.
1197 When the call is from get_prev_frame_info, fromleaf is determined by
1198 cris_frameless_function_invocation. */
1199
1200 void
1201 cris_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1202 {
1203 if (fi->next)
1204 {
1205 /* Called from get_prev_frame. */
1206 deprecated_update_frame_pc_hack (fi, FRAME_SAVED_PC (fi->next));
1207 }
1208
1209 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1210
1211 fi->extra_info->return_pc = 0;
1212 fi->extra_info->leaf_function = 0;
1213
1214 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), fi->frame, fi->frame))
1215 {
1216 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
1217 by assuming it's always FP. */
1218 deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), fi->frame,
1219 SP_REGNUM));
1220 fi->extra_info->return_pc =
1221 deprecated_read_register_dummy (get_frame_pc (fi), fi->frame, PC_REGNUM);
1222
1223 /* FIXME: Is this necessarily true? */
1224 fi->extra_info->leaf_function = 0;
1225 }
1226 else
1227 {
1228 cris_frame_init_saved_regs (fi);
1229
1230 /* Check fromleaf/frameless_function_invocation. (FIXME) */
1231
1232 if (get_frame_saved_regs (fi)[SRP_REGNUM] != 0)
1233 {
1234 /* SRP was saved on the stack; non-leaf function. */
1235 fi->extra_info->return_pc =
1236 read_memory_integer (get_frame_saved_regs (fi)[SRP_REGNUM],
1237 REGISTER_RAW_SIZE (SRP_REGNUM));
1238 }
1239 else
1240 {
1241 /* SRP is still in a register; leaf function. */
1242 fi->extra_info->return_pc = read_register (SRP_REGNUM);
1243 /* FIXME: Should leaf_function be set to 1 here? */
1244 fi->extra_info->leaf_function = 1;
1245 }
1246 }
1247 }
1248
1249 /* Return the content of the frame pointer in the present frame. In other
1250 words, determine the address of the calling function's frame. */
1251
1252 CORE_ADDR
1253 cris_frame_chain (struct frame_info *fi)
1254 {
1255 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), fi->frame, fi->frame))
1256 {
1257 return fi->frame;
1258 }
1259 else if (!inside_entry_file (get_frame_pc (fi)))
1260 {
1261 return read_memory_unsigned_integer (get_frame_base (fi), 4);
1262 }
1263 else
1264 {
1265 return 0;
1266 }
1267 }
1268
1269 /* Return the saved PC (which equals the return address) of this frame. */
1270
1271 CORE_ADDR
1272 cris_frame_saved_pc (struct frame_info *fi)
1273 {
1274 return fi->extra_info->return_pc;
1275 }
1276
1277 /* Setup the function arguments for calling a function in the inferior. */
1278
1279 CORE_ADDR
1280 cris_abi_original_push_arguments (int nargs, struct value **args,
1281 CORE_ADDR sp, int struct_return,
1282 CORE_ADDR struct_addr)
1283 {
1284 int stack_alloc;
1285 int stack_offset;
1286 int argreg;
1287 int argnum;
1288 struct type *type;
1289 int len;
1290 CORE_ADDR regval;
1291 char *val;
1292
1293 /* Data and parameters reside in different areas on the stack.
1294 Both frame pointers grow toward higher addresses. */
1295 CORE_ADDR fp_params;
1296 CORE_ADDR fp_data;
1297
1298 /* Are we returning a value using a structure return or a normal value
1299 return? struct_addr is the address of the reserved space for the return
1300 structure to be written on the stack. */
1301 if (struct_return)
1302 {
1303 write_register (STR_REGNUM, struct_addr);
1304 }
1305
1306 /* Make sure there's space on the stack. Allocate space for data and a
1307 parameter to refer to that data. */
1308 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1309 stack_alloc += (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + REGISTER_SIZE);
1310 sp -= stack_alloc;
1311 /* We may over-allocate a little here, but that won't hurt anything. */
1312
1313 /* Initialize stack frame pointers. */
1314 fp_params = sp;
1315 fp_data = sp + (nargs * REGISTER_SIZE);
1316
1317 /* Now load as many as possible of the first arguments into
1318 registers, and push the rest onto the stack. */
1319 argreg = ARG1_REGNUM;
1320 stack_offset = 0;
1321
1322 for (argnum = 0; argnum < nargs; argnum++)
1323 {
1324 type = VALUE_TYPE (args[argnum]);
1325 len = TYPE_LENGTH (type);
1326 val = (char *) VALUE_CONTENTS (args[argnum]);
1327
1328 if (len <= REGISTER_SIZE && argreg <= ARG4_REGNUM)
1329 {
1330 /* Data fits in a register; put it in the first available
1331 register. */
1332 write_register (argreg, *(unsigned long *) val);
1333 argreg++;
1334 }
1335 else if (len > REGISTER_SIZE && argreg <= ARG4_REGNUM)
1336 {
1337 /* Data does not fit in register; pass it on the stack and
1338 put its address in the first available register. */
1339 write_memory (fp_data, val, len);
1340 write_register (argreg, fp_data);
1341 fp_data += len;
1342 argreg++;
1343 }
1344 else if (len > REGISTER_SIZE)
1345 {
1346 /* Data does not fit in register; put both data and
1347 parameter on the stack. */
1348 write_memory (fp_data, val, len);
1349 write_memory (fp_params, (char *) (&fp_data), REGISTER_SIZE);
1350 fp_data += len;
1351 fp_params += REGISTER_SIZE;
1352 }
1353 else
1354 {
1355 /* Data fits in a register, but we are out of registers;
1356 put the parameter on the stack. */
1357 write_memory (fp_params, val, REGISTER_SIZE);
1358 fp_params += REGISTER_SIZE;
1359 }
1360 }
1361
1362 return sp;
1363 }
1364
1365 CORE_ADDR
1366 cris_abi_v2_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1367 int struct_return, CORE_ADDR struct_addr)
1368 {
1369 int stack_alloc;
1370 int stack_offset;
1371 int argreg;
1372 int argnum;
1373
1374 CORE_ADDR regval;
1375
1376 /* The function's arguments and memory allocated by gdb for the arguments to
1377 point at reside in separate areas on the stack.
1378 Both frame pointers grow toward higher addresses. */
1379 CORE_ADDR fp_arg;
1380 CORE_ADDR fp_mem;
1381
1382 /* Are we returning a value using a structure return or a normal value
1383 return? struct_addr is the address of the reserved space for the return
1384 structure to be written on the stack. */
1385 if (struct_return)
1386 {
1387 write_register (STR_REGNUM, struct_addr);
1388 }
1389
1390 /* Allocate enough to keep things word-aligned on both parts of the
1391 stack. */
1392 stack_alloc = 0;
1393 for (argnum = 0; argnum < nargs; argnum++)
1394 {
1395 int len;
1396 int reg_demand;
1397
1398 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1399 reg_demand = (len / REGISTER_SIZE) + (len % REGISTER_SIZE != 0 ? 1 : 0);
1400
1401 /* reg_demand * REGISTER_SIZE is the amount of memory we might need to
1402 allocate for this argument. 2 * REGISTER_SIZE is the amount of stack
1403 space we might need to pass the argument itself (either by value or by
1404 reference). */
1405 stack_alloc += (reg_demand * REGISTER_SIZE + 2 * REGISTER_SIZE);
1406 }
1407 sp -= stack_alloc;
1408 /* We may over-allocate a little here, but that won't hurt anything. */
1409
1410 /* Initialize frame pointers. */
1411 fp_arg = sp;
1412 fp_mem = sp + (nargs * (2 * REGISTER_SIZE));
1413
1414 /* Now load as many as possible of the first arguments into registers,
1415 and push the rest onto the stack. */
1416 argreg = ARG1_REGNUM;
1417 stack_offset = 0;
1418
1419 for (argnum = 0; argnum < nargs; argnum++)
1420 {
1421 int len;
1422 char *val;
1423 int reg_demand;
1424 int i;
1425
1426 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1427 val = (char *) VALUE_CONTENTS (args[argnum]);
1428
1429 /* How may registers worth of storage do we need for this argument? */
1430 reg_demand = (len / REGISTER_SIZE) + (len % REGISTER_SIZE != 0 ? 1 : 0);
1431
1432 if (len <= (2 * REGISTER_SIZE)
1433 && (argreg + reg_demand - 1 <= ARG4_REGNUM))
1434 {
1435 /* Data passed by value. Fits in available register(s). */
1436 for (i = 0; i < reg_demand; i++)
1437 {
1438 write_register (argreg, *(unsigned long *) val);
1439 argreg++;
1440 val += REGISTER_SIZE;
1441 }
1442 }
1443 else if (len <= (2 * REGISTER_SIZE) && argreg <= ARG4_REGNUM)
1444 {
1445 /* Data passed by value. Does not fit in available register(s).
1446 Use the register(s) first, then the stack. */
1447 for (i = 0; i < reg_demand; i++)
1448 {
1449 if (argreg <= ARG4_REGNUM)
1450 {
1451 write_register (argreg, *(unsigned long *) val);
1452 argreg++;
1453 val += REGISTER_SIZE;
1454 }
1455 else
1456 {
1457 /* I guess this memory write could write the remaining data
1458 all at once instead of in REGISTER_SIZE chunks. */
1459 write_memory (fp_arg, val, REGISTER_SIZE);
1460 fp_arg += REGISTER_SIZE;
1461 val += REGISTER_SIZE;
1462 }
1463 }
1464 }
1465 else if (len > (2 * REGISTER_SIZE))
1466 {
1467 /* Data passed by reference. Put it on the stack. */
1468 write_memory (fp_mem, val, len);
1469 write_memory (fp_arg, (char *) (&fp_mem), REGISTER_SIZE);
1470
1471 /* fp_mem need not be word-aligned since it's just a chunk of
1472 memory being pointed at. That is, += len would do. */
1473 fp_mem += reg_demand * REGISTER_SIZE;
1474 fp_arg += REGISTER_SIZE;
1475 }
1476 else
1477 {
1478 /* Data passed by value. No available registers. Put it on
1479 the stack. */
1480 write_memory (fp_arg, val, len);
1481
1482 /* fp_arg must be word-aligned (i.e., don't += len) to match
1483 the function prologue. */
1484 fp_arg += reg_demand * REGISTER_SIZE;
1485 }
1486 }
1487
1488 return sp;
1489 }
1490
1491 /* Never put the return address on the stack. The register SRP is pushed
1492 by the called function unless it is a leaf-function. Due to the BRP
1493 register the PC will change when continue is sent. */
1494
1495 CORE_ADDR
1496 cris_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1497 {
1498 write_register (SRP_REGNUM, CALL_DUMMY_ADDRESS ());
1499 return sp;
1500 }
1501
1502 /* Restore the machine to the state it had before the current frame
1503 was created. Discard the innermost frame from the stack and restore
1504 all saved registers. */
1505
1506 void
1507 cris_pop_frame (void)
1508 {
1509 register struct frame_info *fi = get_current_frame ();
1510 register int regno;
1511 register int stack_offset = 0;
1512
1513 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), fi->frame, fi->frame))
1514 {
1515 /* This happens when we hit a breakpoint set at the entry point,
1516 when returning from a dummy frame. */
1517 generic_pop_dummy_frame ();
1518 }
1519 else
1520 {
1521 cris_frame_init_saved_regs (fi);
1522
1523 /* For each register, the address of where it was saved on entry to
1524 the frame now lies in fi->saved_regs[regno], or zero if it was not
1525 saved. This includes special registers such as PC and FP saved in
1526 special ways in the stack frame. The SP_REGNUM is even more
1527 special, the address here is the SP for the next frame, not the
1528 address where the SP was saved. */
1529
1530 /* Restore general registers R0 - R7. They were pushed on the stack
1531 after SP was saved. */
1532 for (regno = 0; regno < FP_REGNUM; regno++)
1533 {
1534 if (get_frame_saved_regs (fi)[regno])
1535 {
1536 write_register (regno,
1537 read_memory_integer (get_frame_saved_regs (fi)[regno], 4));
1538 }
1539 }
1540
1541 if (get_frame_saved_regs (fi)[FP_REGNUM])
1542 {
1543 /* Pop the frame pointer (R8). It was pushed before SP
1544 was saved. */
1545 write_register (FP_REGNUM,
1546 read_memory_integer (get_frame_saved_regs (fi)[FP_REGNUM], 4));
1547 stack_offset += 4;
1548
1549 /* Not a leaf function. */
1550 if (get_frame_saved_regs (fi)[SRP_REGNUM])
1551 {
1552 /* SRP was pushed before SP was saved. */
1553 stack_offset += 4;
1554 }
1555
1556 /* Restore the SP and adjust for R8 and (possibly) SRP. */
1557 write_register (SP_REGNUM, get_frame_saved_regs (fi)[FP_REGNUM] + stack_offset);
1558 }
1559 else
1560 {
1561 /* Currently, we can't get the correct info into fi->saved_regs
1562 without a frame pointer. */
1563 }
1564
1565 /* Restore the PC. */
1566 write_register (PC_REGNUM, fi->extra_info->return_pc);
1567 }
1568 flush_cached_frames ();
1569 }
1570
1571 /* Calculates a value that measures how good inst_args constraints an
1572 instruction. It stems from cris_constraint, found in cris-dis.c. */
1573
1574 static int
1575 constraint (unsigned int insn, const signed char *inst_args,
1576 inst_env_type *inst_env)
1577 {
1578 int retval = 0;
1579 int tmp, i;
1580
1581 const char *s = inst_args;
1582
1583 for (; *s; s++)
1584 switch (*s)
1585 {
1586 case 'm':
1587 if ((insn & 0x30) == 0x30)
1588 return -1;
1589 break;
1590
1591 case 'S':
1592 /* A prefix operand. */
1593 if (inst_env->prefix_found)
1594 break;
1595 else
1596 return -1;
1597
1598 case 'B':
1599 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1600 valid "push" size. In case of special register, it may be != 4. */
1601 if (inst_env->prefix_found)
1602 break;
1603 else
1604 return -1;
1605
1606 case 'D':
1607 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1608 if (!retval)
1609 return -1;
1610 else
1611 retval += 4;
1612 break;
1613
1614 case 'P':
1615 tmp = (insn >> 0xC) & 0xF;
1616
1617 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1618 {
1619 /* Since we match four bits, we will give a value of
1620 4 - 1 = 3 in a match. If there is a corresponding
1621 exact match of a special register in another pattern, it
1622 will get a value of 4, which will be higher. This should
1623 be correct in that an exact pattern would match better that
1624 a general pattern.
1625 Note that there is a reason for not returning zero; the
1626 pattern for "clear" is partly matched in the bit-pattern
1627 (the two lower bits must be zero), while the bit-pattern
1628 for a move from a special register is matched in the
1629 register constraint.
1630 This also means we will will have a race condition if
1631 there is a partly match in three bits in the bit pattern. */
1632 if (tmp == cris_spec_regs[i].number)
1633 {
1634 retval += 3;
1635 break;
1636 }
1637 }
1638
1639 if (cris_spec_regs[i].name == NULL)
1640 return -1;
1641 break;
1642 }
1643 return retval;
1644 }
1645
1646 /* Returns the number of bits set in the variable value. */
1647
1648 static int
1649 number_of_bits (unsigned int value)
1650 {
1651 int number_of_bits = 0;
1652
1653 while (value != 0)
1654 {
1655 number_of_bits += 1;
1656 value &= (value - 1);
1657 }
1658 return number_of_bits;
1659 }
1660
1661 /* Finds the address that should contain the single step breakpoint(s).
1662 It stems from code in cris-dis.c. */
1663
1664 static int
1665 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1666 {
1667 int i;
1668 int max_level_of_match = -1;
1669 int max_matched = -1;
1670 int level_of_match;
1671
1672 for (i = 0; cris_opcodes[i].name != NULL; i++)
1673 {
1674 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1675 && ((cris_opcodes[i].lose & insn) == 0))
1676 {
1677 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1678 if (level_of_match >= 0)
1679 {
1680 level_of_match +=
1681 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1682 if (level_of_match > max_level_of_match)
1683 {
1684 max_matched = i;
1685 max_level_of_match = level_of_match;
1686 if (level_of_match == 16)
1687 {
1688 /* All bits matched, cannot find better. */
1689 break;
1690 }
1691 }
1692 }
1693 }
1694 }
1695 return max_matched;
1696 }
1697
1698 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
1699 actually an internal error. */
1700
1701 static int
1702 find_step_target (inst_env_type *inst_env)
1703 {
1704 int i;
1705 int offset;
1706 unsigned short insn;
1707
1708 /* Create a local register image and set the initial state. */
1709 for (i = 0; i < NUM_GENREGS; i++)
1710 {
1711 inst_env->reg[i] = (unsigned long) read_register (i);
1712 }
1713 offset = NUM_GENREGS;
1714 for (i = 0; i < NUM_SPECREGS; i++)
1715 {
1716 inst_env->preg[i] = (unsigned long) read_register (offset + i);
1717 }
1718 inst_env->branch_found = 0;
1719 inst_env->slot_needed = 0;
1720 inst_env->delay_slot_pc_active = 0;
1721 inst_env->prefix_found = 0;
1722 inst_env->invalid = 0;
1723 inst_env->xflag_found = 0;
1724 inst_env->disable_interrupt = 0;
1725
1726 /* Look for a step target. */
1727 do
1728 {
1729 /* Read an instruction from the client. */
1730 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
1731
1732 /* If the instruction is not in a delay slot the new content of the
1733 PC is [PC] + 2. If the instruction is in a delay slot it is not
1734 that simple. Since a instruction in a delay slot cannot change
1735 the content of the PC, it does not matter what value PC will have.
1736 Just make sure it is a valid instruction. */
1737 if (!inst_env->delay_slot_pc_active)
1738 {
1739 inst_env->reg[PC_REGNUM] += 2;
1740 }
1741 else
1742 {
1743 inst_env->delay_slot_pc_active = 0;
1744 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
1745 }
1746 /* Analyse the present instruction. */
1747 i = find_cris_op (insn, inst_env);
1748 if (i == -1)
1749 {
1750 inst_env->invalid = 1;
1751 }
1752 else
1753 {
1754 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
1755 }
1756 } while (!inst_env->invalid
1757 && (inst_env->prefix_found || inst_env->xflag_found
1758 || inst_env->slot_needed));
1759 return i;
1760 }
1761
1762 /* There is no hardware single-step support. The function find_step_target
1763 digs through the opcodes in order to find all possible targets.
1764 Either one ordinary target or two targets for branches may be found. */
1765
1766 void
1767 cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
1768 {
1769 inst_env_type inst_env;
1770
1771 if (insert_breakpoints)
1772 {
1773 /* Analyse the present instruction environment and insert
1774 breakpoints. */
1775 int status = find_step_target (&inst_env);
1776 if (status == -1)
1777 {
1778 /* Could not find a target. FIXME: Should do something. */
1779 }
1780 else
1781 {
1782 /* Insert at most two breakpoints. One for the next PC content
1783 and possibly another one for a branch, jump, etc. */
1784 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
1785 target_insert_breakpoint (next_pc, break_mem[0]);
1786 if (inst_env.branch_found
1787 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
1788 {
1789 branch_target_address =
1790 (CORE_ADDR) inst_env.branch_break_address;
1791 target_insert_breakpoint (branch_target_address, break_mem[1]);
1792 branch_break_inserted = 1;
1793 }
1794 }
1795 }
1796 else
1797 {
1798 /* Remove breakpoints. */
1799 target_remove_breakpoint (next_pc, break_mem[0]);
1800 if (branch_break_inserted)
1801 {
1802 target_remove_breakpoint (branch_target_address, break_mem[1]);
1803 branch_break_inserted = 0;
1804 }
1805 }
1806 }
1807
1808 /* Calculates the prefix value for quick offset addressing mode. */
1809
1810 void
1811 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1812 {
1813 /* It's invalid to be in a delay slot. You can't have a prefix to this
1814 instruction (not 100% sure). */
1815 if (inst_env->slot_needed || inst_env->prefix_found)
1816 {
1817 inst_env->invalid = 1;
1818 return;
1819 }
1820
1821 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1822 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
1823
1824 /* A prefix doesn't change the xflag_found. But the rest of the flags
1825 need updating. */
1826 inst_env->slot_needed = 0;
1827 inst_env->prefix_found = 1;
1828 }
1829
1830 /* Updates the autoincrement register. The size of the increment is derived
1831 from the size of the operation. The PC is always kept aligned on even
1832 word addresses. */
1833
1834 void
1835 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
1836 {
1837 if (size == INST_BYTE_SIZE)
1838 {
1839 inst_env->reg[cris_get_operand1 (inst)] += 1;
1840
1841 /* The PC must be word aligned, so increase the PC with one
1842 word even if the size is byte. */
1843 if (cris_get_operand1 (inst) == REG_PC)
1844 {
1845 inst_env->reg[REG_PC] += 1;
1846 }
1847 }
1848 else if (size == INST_WORD_SIZE)
1849 {
1850 inst_env->reg[cris_get_operand1 (inst)] += 2;
1851 }
1852 else if (size == INST_DWORD_SIZE)
1853 {
1854 inst_env->reg[cris_get_operand1 (inst)] += 4;
1855 }
1856 else
1857 {
1858 /* Invalid size. */
1859 inst_env->invalid = 1;
1860 }
1861 }
1862
1863 /* Just a forward declaration. */
1864
1865 unsigned long
1866 get_data_from_address (unsigned short *inst, CORE_ADDR address);
1867
1868 /* Calculates the prefix value for the general case of offset addressing
1869 mode. */
1870
1871 void
1872 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1873 {
1874
1875 long offset;
1876
1877 /* It's invalid to be in a delay slot. */
1878 if (inst_env->slot_needed || inst_env->prefix_found)
1879 {
1880 inst_env->invalid = 1;
1881 return;
1882 }
1883
1884 /* The calculation of prefix_value used to be after process_autoincrement,
1885 but that fails for an instruction such as jsr [$r0+12] which is encoded
1886 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
1887 mustn't be incremented until we have read it and what it points at. */
1888 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1889
1890 /* The offset is an indirection of the contents of the operand1 register. */
1891 inst_env->prefix_value +=
1892 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
1893
1894 if (cris_get_mode (inst) == AUTOINC_MODE)
1895 {
1896 process_autoincrement (cris_get_size (inst), inst, inst_env);
1897 }
1898
1899 /* A prefix doesn't change the xflag_found. But the rest of the flags
1900 need updating. */
1901 inst_env->slot_needed = 0;
1902 inst_env->prefix_found = 1;
1903 }
1904
1905 /* Calculates the prefix value for the index addressing mode. */
1906
1907 void
1908 biap_prefix (unsigned short inst, inst_env_type *inst_env)
1909 {
1910 /* It's invalid to be in a delay slot. I can't see that it's possible to
1911 have a prefix to this instruction. So I will treat this as invalid. */
1912 if (inst_env->slot_needed || inst_env->prefix_found)
1913 {
1914 inst_env->invalid = 1;
1915 return;
1916 }
1917
1918 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
1919
1920 /* The offset is the operand2 value shifted the size of the instruction
1921 to the left. */
1922 inst_env->prefix_value +=
1923 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
1924
1925 /* If the PC is operand1 (base) the address used is the address after
1926 the main instruction, i.e. address + 2 (the PC is already compensated
1927 for the prefix operation). */
1928 if (cris_get_operand1 (inst) == REG_PC)
1929 {
1930 inst_env->prefix_value += 2;
1931 }
1932
1933 /* A prefix doesn't change the xflag_found. But the rest of the flags
1934 need updating. */
1935 inst_env->slot_needed = 0;
1936 inst_env->xflag_found = 0;
1937 inst_env->prefix_found = 1;
1938 }
1939
1940 /* Calculates the prefix value for the double indirect addressing mode. */
1941
1942 void
1943 dip_prefix (unsigned short inst, inst_env_type *inst_env)
1944 {
1945
1946 CORE_ADDR address;
1947
1948 /* It's invalid to be in a delay slot. */
1949 if (inst_env->slot_needed || inst_env->prefix_found)
1950 {
1951 inst_env->invalid = 1;
1952 return;
1953 }
1954
1955 /* The prefix value is one dereference of the contents of the operand1
1956 register. */
1957 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
1958 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
1959
1960 /* Check if the mode is autoincrement. */
1961 if (cris_get_mode (inst) == AUTOINC_MODE)
1962 {
1963 inst_env->reg[cris_get_operand1 (inst)] += 4;
1964 }
1965
1966 /* A prefix doesn't change the xflag_found. But the rest of the flags
1967 need updating. */
1968 inst_env->slot_needed = 0;
1969 inst_env->xflag_found = 0;
1970 inst_env->prefix_found = 1;
1971 }
1972
1973 /* Finds the destination for a branch with 8-bits offset. */
1974
1975 void
1976 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
1977 {
1978
1979 short offset;
1980
1981 /* If we have a prefix or are in a delay slot it's bad. */
1982 if (inst_env->slot_needed || inst_env->prefix_found)
1983 {
1984 inst_env->invalid = 1;
1985 return;
1986 }
1987
1988 /* We have a branch, find out where the branch will land. */
1989 offset = cris_get_branch_short_offset (inst);
1990
1991 /* Check if the offset is signed. */
1992 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
1993 {
1994 offset |= 0xFF00;
1995 }
1996
1997 /* The offset ends with the sign bit, set it to zero. The address
1998 should always be word aligned. */
1999 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2000
2001 inst_env->branch_found = 1;
2002 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2003
2004 inst_env->slot_needed = 1;
2005 inst_env->prefix_found = 0;
2006 inst_env->xflag_found = 0;
2007 inst_env->disable_interrupt = 1;
2008 }
2009
2010 /* Finds the destination for a branch with 16-bits offset. */
2011
2012 void
2013 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2014 {
2015 short offset;
2016
2017 /* If we have a prefix or is in a delay slot it's bad. */
2018 if (inst_env->slot_needed || inst_env->prefix_found)
2019 {
2020 inst_env->invalid = 1;
2021 return;
2022 }
2023
2024 /* We have a branch, find out the offset for the branch. */
2025 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2026
2027 /* The instruction is one word longer than normal, so add one word
2028 to the PC. */
2029 inst_env->reg[REG_PC] += 2;
2030
2031 inst_env->branch_found = 1;
2032 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2033
2034
2035 inst_env->slot_needed = 1;
2036 inst_env->prefix_found = 0;
2037 inst_env->xflag_found = 0;
2038 inst_env->disable_interrupt = 1;
2039 }
2040
2041 /* Handles the ABS instruction. */
2042
2043 void
2044 abs_op (unsigned short inst, inst_env_type *inst_env)
2045 {
2046
2047 long value;
2048
2049 /* ABS can't have a prefix, so it's bad if it does. */
2050 if (inst_env->prefix_found)
2051 {
2052 inst_env->invalid = 1;
2053 return;
2054 }
2055
2056 /* Check if the operation affects the PC. */
2057 if (cris_get_operand2 (inst) == REG_PC)
2058 {
2059
2060 /* It's invalid to change to the PC if we are in a delay slot. */
2061 if (inst_env->slot_needed)
2062 {
2063 inst_env->invalid = 1;
2064 return;
2065 }
2066
2067 value = (long) inst_env->reg[REG_PC];
2068
2069 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2070 if (value != SIGNED_DWORD_MASK)
2071 {
2072 value = -value;
2073 inst_env->reg[REG_PC] = (long) value;
2074 }
2075 }
2076
2077 inst_env->slot_needed = 0;
2078 inst_env->prefix_found = 0;
2079 inst_env->xflag_found = 0;
2080 inst_env->disable_interrupt = 0;
2081 }
2082
2083 /* Handles the ADDI instruction. */
2084
2085 void
2086 addi_op (unsigned short inst, inst_env_type *inst_env)
2087 {
2088 /* It's invalid to have the PC as base register. And ADDI can't have
2089 a prefix. */
2090 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2091 {
2092 inst_env->invalid = 1;
2093 return;
2094 }
2095
2096 inst_env->slot_needed = 0;
2097 inst_env->prefix_found = 0;
2098 inst_env->xflag_found = 0;
2099 inst_env->disable_interrupt = 0;
2100 }
2101
2102 /* Handles the ASR instruction. */
2103
2104 void
2105 asr_op (unsigned short inst, inst_env_type *inst_env)
2106 {
2107 int shift_steps;
2108 unsigned long value;
2109 unsigned long signed_extend_mask = 0;
2110
2111 /* ASR can't have a prefix, so check that it doesn't. */
2112 if (inst_env->prefix_found)
2113 {
2114 inst_env->invalid = 1;
2115 return;
2116 }
2117
2118 /* Check if the PC is the target register. */
2119 if (cris_get_operand2 (inst) == REG_PC)
2120 {
2121 /* It's invalid to change the PC in a delay slot. */
2122 if (inst_env->slot_needed)
2123 {
2124 inst_env->invalid = 1;
2125 return;
2126 }
2127 /* Get the number of bits to shift. */
2128 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2129 value = inst_env->reg[REG_PC];
2130
2131 /* Find out how many bits the operation should apply to. */
2132 if (cris_get_size (inst) == INST_BYTE_SIZE)
2133 {
2134 if (value & SIGNED_BYTE_MASK)
2135 {
2136 signed_extend_mask = 0xFF;
2137 signed_extend_mask = signed_extend_mask >> shift_steps;
2138 signed_extend_mask = ~signed_extend_mask;
2139 }
2140 value = value >> shift_steps;
2141 value |= signed_extend_mask;
2142 value &= 0xFF;
2143 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2144 inst_env->reg[REG_PC] |= value;
2145 }
2146 else if (cris_get_size (inst) == INST_WORD_SIZE)
2147 {
2148 if (value & SIGNED_WORD_MASK)
2149 {
2150 signed_extend_mask = 0xFFFF;
2151 signed_extend_mask = signed_extend_mask >> shift_steps;
2152 signed_extend_mask = ~signed_extend_mask;
2153 }
2154 value = value >> shift_steps;
2155 value |= signed_extend_mask;
2156 value &= 0xFFFF;
2157 inst_env->reg[REG_PC] &= 0xFFFF0000;
2158 inst_env->reg[REG_PC] |= value;
2159 }
2160 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2161 {
2162 if (value & SIGNED_DWORD_MASK)
2163 {
2164 signed_extend_mask = 0xFFFFFFFF;
2165 signed_extend_mask = signed_extend_mask >> shift_steps;
2166 signed_extend_mask = ~signed_extend_mask;
2167 }
2168 value = value >> shift_steps;
2169 value |= signed_extend_mask;
2170 inst_env->reg[REG_PC] = value;
2171 }
2172 }
2173 inst_env->slot_needed = 0;
2174 inst_env->prefix_found = 0;
2175 inst_env->xflag_found = 0;
2176 inst_env->disable_interrupt = 0;
2177 }
2178
2179 /* Handles the ASRQ instruction. */
2180
2181 void
2182 asrq_op (unsigned short inst, inst_env_type *inst_env)
2183 {
2184
2185 int shift_steps;
2186 unsigned long value;
2187 unsigned long signed_extend_mask = 0;
2188
2189 /* ASRQ can't have a prefix, so check that it doesn't. */
2190 if (inst_env->prefix_found)
2191 {
2192 inst_env->invalid = 1;
2193 return;
2194 }
2195
2196 /* Check if the PC is the target register. */
2197 if (cris_get_operand2 (inst) == REG_PC)
2198 {
2199
2200 /* It's invalid to change the PC in a delay slot. */
2201 if (inst_env->slot_needed)
2202 {
2203 inst_env->invalid = 1;
2204 return;
2205 }
2206 /* The shift size is given as a 5 bit quick value, i.e. we don't
2207 want the the sign bit of the quick value. */
2208 shift_steps = cris_get_asr_shift_steps (inst);
2209 value = inst_env->reg[REG_PC];
2210 if (value & SIGNED_DWORD_MASK)
2211 {
2212 signed_extend_mask = 0xFFFFFFFF;
2213 signed_extend_mask = signed_extend_mask >> shift_steps;
2214 signed_extend_mask = ~signed_extend_mask;
2215 }
2216 value = value >> shift_steps;
2217 value |= signed_extend_mask;
2218 inst_env->reg[REG_PC] = value;
2219 }
2220 inst_env->slot_needed = 0;
2221 inst_env->prefix_found = 0;
2222 inst_env->xflag_found = 0;
2223 inst_env->disable_interrupt = 0;
2224 }
2225
2226 /* Handles the AX, EI and SETF instruction. */
2227
2228 void
2229 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2230 {
2231 if (inst_env->prefix_found)
2232 {
2233 inst_env->invalid = 1;
2234 return;
2235 }
2236 /* Check if the instruction is setting the X flag. */
2237 if (cris_is_xflag_bit_on (inst))
2238 {
2239 inst_env->xflag_found = 1;
2240 }
2241 else
2242 {
2243 inst_env->xflag_found = 0;
2244 }
2245 inst_env->slot_needed = 0;
2246 inst_env->prefix_found = 0;
2247 inst_env->disable_interrupt = 1;
2248 }
2249
2250 /* Checks if the instruction is in assign mode. If so, it updates the assign
2251 register. Note that check_assign assumes that the caller has checked that
2252 there is a prefix to this instruction. The mode check depends on this. */
2253
2254 void
2255 check_assign (unsigned short inst, inst_env_type *inst_env)
2256 {
2257 /* Check if it's an assign addressing mode. */
2258 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2259 {
2260 /* Assign the prefix value to operand 1. */
2261 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2262 }
2263 }
2264
2265 /* Handles the 2-operand BOUND instruction. */
2266
2267 void
2268 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2269 {
2270 /* It's invalid to have the PC as the index operand. */
2271 if (cris_get_operand2 (inst) == REG_PC)
2272 {
2273 inst_env->invalid = 1;
2274 return;
2275 }
2276 /* Check if we have a prefix. */
2277 if (inst_env->prefix_found)
2278 {
2279 check_assign (inst, inst_env);
2280 }
2281 /* Check if this is an autoincrement mode. */
2282 else if (cris_get_mode (inst) == AUTOINC_MODE)
2283 {
2284 /* It's invalid to change the PC in a delay slot. */
2285 if (inst_env->slot_needed)
2286 {
2287 inst_env->invalid = 1;
2288 return;
2289 }
2290 process_autoincrement (cris_get_size (inst), inst, inst_env);
2291 }
2292 inst_env->slot_needed = 0;
2293 inst_env->prefix_found = 0;
2294 inst_env->xflag_found = 0;
2295 inst_env->disable_interrupt = 0;
2296 }
2297
2298 /* Handles the 3-operand BOUND instruction. */
2299
2300 void
2301 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2302 {
2303 /* It's an error if we haven't got a prefix. And it's also an error
2304 if the PC is the destination register. */
2305 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2306 {
2307 inst_env->invalid = 1;
2308 return;
2309 }
2310 inst_env->slot_needed = 0;
2311 inst_env->prefix_found = 0;
2312 inst_env->xflag_found = 0;
2313 inst_env->disable_interrupt = 0;
2314 }
2315
2316 /* Clears the status flags in inst_env. */
2317
2318 void
2319 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2320 {
2321 /* It's an error if we have got a prefix. */
2322 if (inst_env->prefix_found)
2323 {
2324 inst_env->invalid = 1;
2325 return;
2326 }
2327
2328 inst_env->slot_needed = 0;
2329 inst_env->prefix_found = 0;
2330 inst_env->xflag_found = 0;
2331 inst_env->disable_interrupt = 0;
2332 }
2333
2334 /* Clears the status flags in inst_env. */
2335
2336 void
2337 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2338 {
2339 /* It's an error if we have got a prefix. */
2340 if (inst_env->prefix_found)
2341 {
2342 inst_env->invalid = 1;
2343 return;
2344 }
2345
2346 inst_env->slot_needed = 0;
2347 inst_env->prefix_found = 0;
2348 inst_env->xflag_found = 0;
2349 inst_env->disable_interrupt = 1;
2350 }
2351
2352 /* Handles the CLEAR instruction if it's in register mode. */
2353
2354 void
2355 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2356 {
2357 /* Check if the target is the PC. */
2358 if (cris_get_operand2 (inst) == REG_PC)
2359 {
2360 /* The instruction will clear the instruction's size bits. */
2361 int clear_size = cris_get_clear_size (inst);
2362 if (clear_size == INST_BYTE_SIZE)
2363 {
2364 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2365 }
2366 if (clear_size == INST_WORD_SIZE)
2367 {
2368 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2369 }
2370 if (clear_size == INST_DWORD_SIZE)
2371 {
2372 inst_env->delay_slot_pc = 0x0;
2373 }
2374 /* The jump will be delayed with one delay slot. So we need a delay
2375 slot. */
2376 inst_env->slot_needed = 1;
2377 inst_env->delay_slot_pc_active = 1;
2378 }
2379 else
2380 {
2381 /* The PC will not change => no delay slot. */
2382 inst_env->slot_needed = 0;
2383 }
2384 inst_env->prefix_found = 0;
2385 inst_env->xflag_found = 0;
2386 inst_env->disable_interrupt = 0;
2387 }
2388
2389 /* Handles the TEST instruction if it's in register mode. */
2390
2391 void
2392 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2393 {
2394 /* It's an error if we have got a prefix. */
2395 if (inst_env->prefix_found)
2396 {
2397 inst_env->invalid = 1;
2398 return;
2399 }
2400 inst_env->slot_needed = 0;
2401 inst_env->prefix_found = 0;
2402 inst_env->xflag_found = 0;
2403 inst_env->disable_interrupt = 0;
2404
2405 }
2406
2407 /* Handles the CLEAR and TEST instruction if the instruction isn't
2408 in register mode. */
2409
2410 void
2411 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2412 {
2413 /* Check if we are in a prefix mode. */
2414 if (inst_env->prefix_found)
2415 {
2416 /* The only way the PC can change is if this instruction is in
2417 assign addressing mode. */
2418 check_assign (inst, inst_env);
2419 }
2420 /* Indirect mode can't change the PC so just check if the mode is
2421 autoincrement. */
2422 else if (cris_get_mode (inst) == AUTOINC_MODE)
2423 {
2424 process_autoincrement (cris_get_size (inst), inst, inst_env);
2425 }
2426 inst_env->slot_needed = 0;
2427 inst_env->prefix_found = 0;
2428 inst_env->xflag_found = 0;
2429 inst_env->disable_interrupt = 0;
2430 }
2431
2432 /* Checks that the PC isn't the destination register or the instructions has
2433 a prefix. */
2434
2435 void
2436 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2437 {
2438 /* It's invalid to have the PC as the destination. The instruction can't
2439 have a prefix. */
2440 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2441 {
2442 inst_env->invalid = 1;
2443 return;
2444 }
2445
2446 inst_env->slot_needed = 0;
2447 inst_env->prefix_found = 0;
2448 inst_env->xflag_found = 0;
2449 inst_env->disable_interrupt = 0;
2450 }
2451
2452 /* Checks that the instruction doesn't have a prefix. */
2453
2454 void
2455 break_op (unsigned short inst, inst_env_type *inst_env)
2456 {
2457 /* The instruction can't have a prefix. */
2458 if (inst_env->prefix_found)
2459 {
2460 inst_env->invalid = 1;
2461 return;
2462 }
2463
2464 inst_env->slot_needed = 0;
2465 inst_env->prefix_found = 0;
2466 inst_env->xflag_found = 0;
2467 inst_env->disable_interrupt = 1;
2468 }
2469
2470 /* Checks that the PC isn't the destination register and that the instruction
2471 doesn't have a prefix. */
2472
2473 void
2474 scc_op (unsigned short inst, inst_env_type *inst_env)
2475 {
2476 /* It's invalid to have the PC as the destination. The instruction can't
2477 have a prefix. */
2478 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2479 {
2480 inst_env->invalid = 1;
2481 return;
2482 }
2483
2484 inst_env->slot_needed = 0;
2485 inst_env->prefix_found = 0;
2486 inst_env->xflag_found = 0;
2487 inst_env->disable_interrupt = 1;
2488 }
2489
2490 /* Handles the register mode JUMP instruction. */
2491
2492 void
2493 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2494 {
2495 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2496 you can't have a prefix. */
2497 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2498 {
2499 inst_env->invalid = 1;
2500 return;
2501 }
2502
2503 /* Just change the PC. */
2504 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2505 inst_env->slot_needed = 0;
2506 inst_env->prefix_found = 0;
2507 inst_env->xflag_found = 0;
2508 inst_env->disable_interrupt = 1;
2509 }
2510
2511 /* Handles the JUMP instruction for all modes except register. */
2512
2513 void none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2514 {
2515 unsigned long newpc;
2516 CORE_ADDR address;
2517
2518 /* It's invalid to do a JUMP in a delay slot. */
2519 if (inst_env->slot_needed)
2520 {
2521 inst_env->invalid = 1;
2522 }
2523 else
2524 {
2525 /* Check if we have a prefix. */
2526 if (inst_env->prefix_found)
2527 {
2528 check_assign (inst, inst_env);
2529
2530 /* Get the new value for the the PC. */
2531 newpc =
2532 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2533 4);
2534 }
2535 else
2536 {
2537 /* Get the new value for the PC. */
2538 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2539 newpc = read_memory_unsigned_integer (address, 4);
2540
2541 /* Check if we should increment a register. */
2542 if (cris_get_mode (inst) == AUTOINC_MODE)
2543 {
2544 inst_env->reg[cris_get_operand1 (inst)] += 4;
2545 }
2546 }
2547 inst_env->reg[REG_PC] = newpc;
2548 }
2549 inst_env->slot_needed = 0;
2550 inst_env->prefix_found = 0;
2551 inst_env->xflag_found = 0;
2552 inst_env->disable_interrupt = 1;
2553 }
2554
2555 /* Handles moves to special registers (aka P-register) for all modes. */
2556
2557 void
2558 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2559 {
2560 if (inst_env->prefix_found)
2561 {
2562 /* The instruction has a prefix that means we are only interested if
2563 the instruction is in assign mode. */
2564 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2565 {
2566 /* The prefix handles the problem if we are in a delay slot. */
2567 if (cris_get_operand1 (inst) == REG_PC)
2568 {
2569 /* Just take care of the assign. */
2570 check_assign (inst, inst_env);
2571 }
2572 }
2573 }
2574 else if (cris_get_mode (inst) == AUTOINC_MODE)
2575 {
2576 /* The instruction doesn't have a prefix, the only case left that we
2577 are interested in is the autoincrement mode. */
2578 if (cris_get_operand1 (inst) == REG_PC)
2579 {
2580 /* If the PC is to be incremented it's invalid to be in a
2581 delay slot. */
2582 if (inst_env->slot_needed)
2583 {
2584 inst_env->invalid = 1;
2585 return;
2586 }
2587
2588 /* The increment depends on the size of the special register. */
2589 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2590 {
2591 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2592 }
2593 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2594 {
2595 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2596 }
2597 else
2598 {
2599 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2600 }
2601 }
2602 }
2603 inst_env->slot_needed = 0;
2604 inst_env->prefix_found = 0;
2605 inst_env->xflag_found = 0;
2606 inst_env->disable_interrupt = 1;
2607 }
2608
2609 /* Handles moves from special registers (aka P-register) for all modes
2610 except register. */
2611
2612 void
2613 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2614 {
2615 if (inst_env->prefix_found)
2616 {
2617 /* The instruction has a prefix that means we are only interested if
2618 the instruction is in assign mode. */
2619 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2620 {
2621 /* The prefix handles the problem if we are in a delay slot. */
2622 if (cris_get_operand1 (inst) == REG_PC)
2623 {
2624 /* Just take care of the assign. */
2625 check_assign (inst, inst_env);
2626 }
2627 }
2628 }
2629 /* The instruction doesn't have a prefix, the only case left that we
2630 are interested in is the autoincrement mode. */
2631 else if (cris_get_mode (inst) == AUTOINC_MODE)
2632 {
2633 if (cris_get_operand1 (inst) == REG_PC)
2634 {
2635 /* If the PC is to be incremented it's invalid to be in a
2636 delay slot. */
2637 if (inst_env->slot_needed)
2638 {
2639 inst_env->invalid = 1;
2640 return;
2641 }
2642
2643 /* The increment depends on the size of the special register. */
2644 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2645 {
2646 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2647 }
2648 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2649 {
2650 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2651 }
2652 else
2653 {
2654 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2655 }
2656 }
2657 }
2658 inst_env->slot_needed = 0;
2659 inst_env->prefix_found = 0;
2660 inst_env->xflag_found = 0;
2661 inst_env->disable_interrupt = 1;
2662 }
2663
2664 /* Handles moves from special registers (aka P-register) when the mode
2665 is register. */
2666
2667 void
2668 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2669 {
2670 /* Register mode move from special register can't have a prefix. */
2671 if (inst_env->prefix_found)
2672 {
2673 inst_env->invalid = 1;
2674 return;
2675 }
2676
2677 if (cris_get_operand1 (inst) == REG_PC)
2678 {
2679 /* It's invalid to change the PC in a delay slot. */
2680 if (inst_env->slot_needed)
2681 {
2682 inst_env->invalid = 1;
2683 return;
2684 }
2685 /* The destination is the PC, the jump will have a delay slot. */
2686 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2687 inst_env->slot_needed = 1;
2688 inst_env->delay_slot_pc_active = 1;
2689 }
2690 else
2691 {
2692 /* If the destination isn't PC, there will be no jump. */
2693 inst_env->slot_needed = 0;
2694 }
2695 inst_env->prefix_found = 0;
2696 inst_env->xflag_found = 0;
2697 inst_env->disable_interrupt = 1;
2698 }
2699
2700 /* Handles the MOVEM from memory to general register instruction. */
2701
2702 void
2703 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2704 {
2705 if (inst_env->prefix_found)
2706 {
2707 /* The prefix handles the problem if we are in a delay slot. Is the
2708 MOVEM instruction going to change the PC? */
2709 if (cris_get_operand2 (inst) >= REG_PC)
2710 {
2711 inst_env->reg[REG_PC] =
2712 read_memory_unsigned_integer (inst_env->prefix_value, 4);
2713 }
2714 /* The assign value is the value after the increment. Normally, the
2715 assign value is the value before the increment. */
2716 if ((cris_get_operand1 (inst) == REG_PC)
2717 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2718 {
2719 inst_env->reg[REG_PC] = inst_env->prefix_value;
2720 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2721 }
2722 }
2723 else
2724 {
2725 /* Is the MOVEM instruction going to change the PC? */
2726 if (cris_get_operand2 (inst) == REG_PC)
2727 {
2728 /* It's invalid to change the PC in a delay slot. */
2729 if (inst_env->slot_needed)
2730 {
2731 inst_env->invalid = 1;
2732 return;
2733 }
2734 inst_env->reg[REG_PC] =
2735 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
2736 4);
2737 }
2738 /* The increment is not depending on the size, instead it's depending
2739 on the number of registers loaded from memory. */
2740 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2741 {
2742 /* It's invalid to change the PC in a delay slot. */
2743 if (inst_env->slot_needed)
2744 {
2745 inst_env->invalid = 1;
2746 return;
2747 }
2748 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2749 }
2750 }
2751 inst_env->slot_needed = 0;
2752 inst_env->prefix_found = 0;
2753 inst_env->xflag_found = 0;
2754 inst_env->disable_interrupt = 0;
2755 }
2756
2757 /* Handles the MOVEM to memory from general register instruction. */
2758
2759 void
2760 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
2761 {
2762 if (inst_env->prefix_found)
2763 {
2764 /* The assign value is the value after the increment. Normally, the
2765 assign value is the value before the increment. */
2766 if ((cris_get_operand1 (inst) == REG_PC) &&
2767 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2768 {
2769 /* The prefix handles the problem if we are in a delay slot. */
2770 inst_env->reg[REG_PC] = inst_env->prefix_value;
2771 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2772 }
2773 }
2774 else
2775 {
2776 /* The increment is not depending on the size, instead it's depending
2777 on the number of registers loaded to memory. */
2778 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2779 {
2780 /* It's invalid to change the PC in a delay slot. */
2781 if (inst_env->slot_needed)
2782 {
2783 inst_env->invalid = 1;
2784 return;
2785 }
2786 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2787 }
2788 }
2789 inst_env->slot_needed = 0;
2790 inst_env->prefix_found = 0;
2791 inst_env->xflag_found = 0;
2792 inst_env->disable_interrupt = 0;
2793 }
2794
2795 /* Handles the pop instruction to a general register.
2796 POP is a assembler macro for MOVE.D [SP+], Rd. */
2797
2798 void
2799 reg_pop_op (unsigned short inst, inst_env_type *inst_env)
2800 {
2801 /* POP can't have a prefix. */
2802 if (inst_env->prefix_found)
2803 {
2804 inst_env->invalid = 1;
2805 return;
2806 }
2807 if (cris_get_operand2 (inst) == REG_PC)
2808 {
2809 /* It's invalid to change the PC in a delay slot. */
2810 if (inst_env->slot_needed)
2811 {
2812 inst_env->invalid = 1;
2813 return;
2814 }
2815 inst_env->reg[REG_PC] =
2816 read_memory_unsigned_integer (inst_env->reg[REG_SP], 4);
2817 }
2818 inst_env->slot_needed = 0;
2819 inst_env->prefix_found = 0;
2820 inst_env->xflag_found = 0;
2821 inst_env->disable_interrupt = 0;
2822 }
2823
2824 /* Handles moves from register to memory. */
2825
2826 void
2827 move_reg_to_mem_index_inc_op (unsigned short inst, inst_env_type *inst_env)
2828 {
2829 /* Check if we have a prefix. */
2830 if (inst_env->prefix_found)
2831 {
2832 /* The only thing that can change the PC is an assign. */
2833 check_assign (inst, inst_env);
2834 }
2835 else if ((cris_get_operand1 (inst) == REG_PC)
2836 && (cris_get_mode (inst) == AUTOINC_MODE))
2837 {
2838 /* It's invalid to change the PC in a delay slot. */
2839 if (inst_env->slot_needed)
2840 {
2841 inst_env->invalid = 1;
2842 return;
2843 }
2844 process_autoincrement (cris_get_size (inst), inst, inst_env);
2845 }
2846 inst_env->slot_needed = 0;
2847 inst_env->prefix_found = 0;
2848 inst_env->xflag_found = 0;
2849 inst_env->disable_interrupt = 0;
2850 }
2851
2852 /* Handles the intructions that's not yet implemented, by setting
2853 inst_env->invalid to true. */
2854
2855 void
2856 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
2857 {
2858 inst_env->invalid = 1;
2859 }
2860
2861 /* Handles the XOR instruction. */
2862
2863 void
2864 xor_op (unsigned short inst, inst_env_type *inst_env)
2865 {
2866 /* XOR can't have a prefix. */
2867 if (inst_env->prefix_found)
2868 {
2869 inst_env->invalid = 1;
2870 return;
2871 }
2872
2873 /* Check if the PC is the target. */
2874 if (cris_get_operand2 (inst) == REG_PC)
2875 {
2876 /* It's invalid to change the PC in a delay slot. */
2877 if (inst_env->slot_needed)
2878 {
2879 inst_env->invalid = 1;
2880 return;
2881 }
2882 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
2883 }
2884 inst_env->slot_needed = 0;
2885 inst_env->prefix_found = 0;
2886 inst_env->xflag_found = 0;
2887 inst_env->disable_interrupt = 0;
2888 }
2889
2890 /* Handles the MULS instruction. */
2891
2892 void
2893 muls_op (unsigned short inst, inst_env_type *inst_env)
2894 {
2895 /* MULS/U can't have a prefix. */
2896 if (inst_env->prefix_found)
2897 {
2898 inst_env->invalid = 1;
2899 return;
2900 }
2901
2902 /* Consider it invalid if the PC is the target. */
2903 if (cris_get_operand2 (inst) == REG_PC)
2904 {
2905 inst_env->invalid = 1;
2906 return;
2907 }
2908 inst_env->slot_needed = 0;
2909 inst_env->prefix_found = 0;
2910 inst_env->xflag_found = 0;
2911 inst_env->disable_interrupt = 0;
2912 }
2913
2914 /* Handles the MULU instruction. */
2915
2916 void
2917 mulu_op (unsigned short inst, inst_env_type *inst_env)
2918 {
2919 /* MULS/U can't have a prefix. */
2920 if (inst_env->prefix_found)
2921 {
2922 inst_env->invalid = 1;
2923 return;
2924 }
2925
2926 /* Consider it invalid if the PC is the target. */
2927 if (cris_get_operand2 (inst) == REG_PC)
2928 {
2929 inst_env->invalid = 1;
2930 return;
2931 }
2932 inst_env->slot_needed = 0;
2933 inst_env->prefix_found = 0;
2934 inst_env->xflag_found = 0;
2935 inst_env->disable_interrupt = 0;
2936 }
2937
2938 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
2939 The MOVE instruction is the move from source to register. */
2940
2941 void
2942 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
2943 unsigned long source1, unsigned long source2)
2944 {
2945 unsigned long pc_mask;
2946 unsigned long operation_mask;
2947
2948 /* Find out how many bits the operation should apply to. */
2949 if (cris_get_size (inst) == INST_BYTE_SIZE)
2950 {
2951 pc_mask = 0xFFFFFF00;
2952 operation_mask = 0xFF;
2953 }
2954 else if (cris_get_size (inst) == INST_WORD_SIZE)
2955 {
2956 pc_mask = 0xFFFF0000;
2957 operation_mask = 0xFFFF;
2958 }
2959 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2960 {
2961 pc_mask = 0x0;
2962 operation_mask = 0xFFFFFFFF;
2963 }
2964 else
2965 {
2966 /* The size is out of range. */
2967 inst_env->invalid = 1;
2968 return;
2969 }
2970
2971 /* The instruction just works on uw_operation_mask bits. */
2972 source2 &= operation_mask;
2973 source1 &= operation_mask;
2974
2975 /* Now calculate the result. The opcode's 3 first bits separates
2976 the different actions. */
2977 switch (cris_get_opcode (inst) & 7)
2978 {
2979 case 0: /* add */
2980 source1 += source2;
2981 break;
2982
2983 case 1: /* move */
2984 source1 = source2;
2985 break;
2986
2987 case 2: /* subtract */
2988 source1 -= source2;
2989 break;
2990
2991 case 3: /* compare */
2992 break;
2993
2994 case 4: /* and */
2995 source1 &= source2;
2996 break;
2997
2998 case 5: /* or */
2999 source1 |= source2;
3000 break;
3001
3002 default:
3003 inst_env->invalid = 1;
3004 return;
3005
3006 break;
3007 }
3008
3009 /* Make sure that the result doesn't contain more than the instruction
3010 size bits. */
3011 source2 &= operation_mask;
3012
3013 /* Calculate the new breakpoint address. */
3014 inst_env->reg[REG_PC] &= pc_mask;
3015 inst_env->reg[REG_PC] |= source1;
3016
3017 }
3018
3019 /* Extends the value from either byte or word size to a dword. If the mode
3020 is zero extend then the value is extended with zero. If instead the mode
3021 is signed extend the sign bit of the value is taken into consideration. */
3022
3023 unsigned long
3024 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3025 {
3026 /* The size can be either byte or word, check which one it is.
3027 Don't check the highest bit, it's indicating if it's a zero
3028 or sign extend. */
3029 if (cris_get_size (*inst) & INST_WORD_SIZE)
3030 {
3031 /* Word size. */
3032 value &= 0xFFFF;
3033
3034 /* Check if the instruction is signed extend. If so, check if value has
3035 the sign bit on. */
3036 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3037 {
3038 value |= SIGNED_WORD_EXTEND_MASK;
3039 }
3040 }
3041 else
3042 {
3043 /* Byte size. */
3044 value &= 0xFF;
3045
3046 /* Check if the instruction is signed extend. If so, check if value has
3047 the sign bit on. */
3048 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3049 {
3050 value |= SIGNED_BYTE_EXTEND_MASK;
3051 }
3052 }
3053 /* The size should now be dword. */
3054 cris_set_size_to_dword (inst);
3055 return value;
3056 }
3057
3058 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3059 instruction. The MOVE instruction is the move from source to register. */
3060
3061 void
3062 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3063 inst_env_type *inst_env)
3064 {
3065 unsigned long operand1;
3066 unsigned long operand2;
3067
3068 /* It's invalid to have a prefix to the instruction. This is a register
3069 mode instruction and can't have a prefix. */
3070 if (inst_env->prefix_found)
3071 {
3072 inst_env->invalid = 1;
3073 return;
3074 }
3075 /* Check if the instruction has PC as its target. */
3076 if (cris_get_operand2 (inst) == REG_PC)
3077 {
3078 if (inst_env->slot_needed)
3079 {
3080 inst_env->invalid = 1;
3081 return;
3082 }
3083 /* The instruction has the PC as its target register. */
3084 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3085 operand2 = inst_env->reg[REG_PC];
3086
3087 /* Check if it's a extend, signed or zero instruction. */
3088 if (cris_get_opcode (inst) < 4)
3089 {
3090 operand1 = do_sign_or_zero_extend (operand1, &inst);
3091 }
3092 /* Calculate the PC value after the instruction, i.e. where the
3093 breakpoint should be. The order of the udw_operands is vital. */
3094 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3095 }
3096 inst_env->slot_needed = 0;
3097 inst_env->prefix_found = 0;
3098 inst_env->xflag_found = 0;
3099 inst_env->disable_interrupt = 0;
3100 }
3101
3102 /* Returns the data contained at address. The size of the data is derived from
3103 the size of the operation. If the instruction is a zero or signed
3104 extend instruction, the size field is changed in instruction. */
3105
3106 unsigned long
3107 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3108 {
3109 int size = cris_get_size (*inst);
3110 unsigned long value;
3111
3112 /* If it's an extend instruction we don't want the signed extend bit,
3113 because it influences the size. */
3114 if (cris_get_opcode (*inst) < 4)
3115 {
3116 size &= ~SIGNED_EXTEND_BIT_MASK;
3117 }
3118 /* Is there a need for checking the size? Size should contain the number of
3119 bytes to read. */
3120 size = 1 << size;
3121 value = read_memory_unsigned_integer (address, size);
3122
3123 /* Check if it's an extend, signed or zero instruction. */
3124 if (cris_get_opcode (*inst) < 4)
3125 {
3126 value = do_sign_or_zero_extend (value, inst);
3127 }
3128 return value;
3129 }
3130
3131 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3132 instructions. The MOVE instruction is the move from source to register. */
3133
3134 void
3135 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3136 inst_env_type *inst_env)
3137 {
3138 unsigned long operand2;
3139 unsigned long operand3;
3140
3141 check_assign (inst, inst_env);
3142 if (cris_get_operand2 (inst) == REG_PC)
3143 {
3144 operand2 = inst_env->reg[REG_PC];
3145
3146 /* Get the value of the third operand. */
3147 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3148
3149 /* Calculate the PC value after the instruction, i.e. where the
3150 breakpoint should be. The order of the udw_operands is vital. */
3151 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3152 }
3153 inst_env->slot_needed = 0;
3154 inst_env->prefix_found = 0;
3155 inst_env->xflag_found = 0;
3156 inst_env->disable_interrupt = 0;
3157 }
3158
3159 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3160 OR instructions. Note that for this to work as expected, the calling
3161 function must have made sure that there is a prefix to this instruction. */
3162
3163 void
3164 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3165 inst_env_type *inst_env)
3166 {
3167 unsigned long operand2;
3168 unsigned long operand3;
3169
3170 if (cris_get_operand1 (inst) == REG_PC)
3171 {
3172 /* The PC will be changed by the instruction. */
3173 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3174
3175 /* Get the value of the third operand. */
3176 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3177
3178 /* Calculate the PC value after the instruction, i.e. where the
3179 breakpoint should be. */
3180 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3181 }
3182 inst_env->slot_needed = 0;
3183 inst_env->prefix_found = 0;
3184 inst_env->xflag_found = 0;
3185 inst_env->disable_interrupt = 0;
3186 }
3187
3188 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3189 instructions. The MOVE instruction is the move from source to register. */
3190
3191 void
3192 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3193 inst_env_type *inst_env)
3194 {
3195 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3196 {
3197 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3198 SUB, AND or OR something weird is going on (if everything works these
3199 instructions should end up in the three operand version). */
3200 inst_env->invalid = 1;
3201 return;
3202 }
3203 else
3204 {
3205 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3206 so use it. */
3207 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3208 }
3209 inst_env->slot_needed = 0;
3210 inst_env->prefix_found = 0;
3211 inst_env->xflag_found = 0;
3212 inst_env->disable_interrupt = 0;
3213 }
3214
3215 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3216 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3217 source to register. */
3218
3219 void
3220 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3221 inst_env_type *inst_env)
3222 {
3223 unsigned long operand1;
3224 unsigned long operand2;
3225 unsigned long operand3;
3226 int size;
3227
3228 /* The instruction is either an indirect or autoincrement addressing mode.
3229 Check if the destination register is the PC. */
3230 if (cris_get_operand2 (inst) == REG_PC)
3231 {
3232 /* Must be done here, get_data_from_address may change the size
3233 field. */
3234 size = cris_get_size (inst);
3235 operand2 = inst_env->reg[REG_PC];
3236
3237 /* Get the value of the third operand, i.e. the indirect operand. */
3238 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3239 operand3 = get_data_from_address (&inst, operand1);
3240
3241 /* Calculate the PC value after the instruction, i.e. where the
3242 breakpoint should be. The order of the udw_operands is vital. */
3243 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3244 }
3245 /* If this is an autoincrement addressing mode, check if the increment
3246 changes the PC. */
3247 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3248 {
3249 /* Get the size field. */
3250 size = cris_get_size (inst);
3251
3252 /* If it's an extend instruction we don't want the signed extend bit,
3253 because it influences the size. */
3254 if (cris_get_opcode (inst) < 4)
3255 {
3256 size &= ~SIGNED_EXTEND_BIT_MASK;
3257 }
3258 process_autoincrement (size, inst, inst_env);
3259 }
3260 inst_env->slot_needed = 0;
3261 inst_env->prefix_found = 0;
3262 inst_env->xflag_found = 0;
3263 inst_env->disable_interrupt = 0;
3264 }
3265
3266 /* Handles the two-operand addressing mode, all modes except register, for
3267 the ADD, SUB CMP, AND and OR instruction. */
3268
3269 void
3270 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3271 inst_env_type *inst_env)
3272 {
3273 if (inst_env->prefix_found)
3274 {
3275 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3276 {
3277 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3278 }
3279 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3280 {
3281 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3282 }
3283 else
3284 {
3285 /* The mode is invalid for a prefixed base instruction. */
3286 inst_env->invalid = 1;
3287 return;
3288 }
3289 }
3290 else
3291 {
3292 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3293 }
3294 }
3295
3296 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3297
3298 void
3299 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3300 {
3301 unsigned long operand1;
3302 unsigned long operand2;
3303
3304 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3305 instruction and can't have a prefix. */
3306 if (inst_env->prefix_found)
3307 {
3308 inst_env->invalid = 1;
3309 return;
3310 }
3311
3312 /* Check if the instruction has PC as its target. */
3313 if (cris_get_operand2 (inst) == REG_PC)
3314 {
3315 if (inst_env->slot_needed)
3316 {
3317 inst_env->invalid = 1;
3318 return;
3319 }
3320 operand1 = cris_get_quick_value (inst);
3321 operand2 = inst_env->reg[REG_PC];
3322
3323 /* The size should now be dword. */
3324 cris_set_size_to_dword (&inst);
3325
3326 /* Calculate the PC value after the instruction, i.e. where the
3327 breakpoint should be. */
3328 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3329 }
3330 inst_env->slot_needed = 0;
3331 inst_env->prefix_found = 0;
3332 inst_env->xflag_found = 0;
3333 inst_env->disable_interrupt = 0;
3334 }
3335
3336 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3337
3338 void
3339 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3340 {
3341 unsigned long operand1;
3342 unsigned long operand2;
3343
3344 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3345 instruction and can't have a prefix. */
3346 if (inst_env->prefix_found)
3347 {
3348 inst_env->invalid = 1;
3349 return;
3350 }
3351 /* Check if the instruction has PC as its target. */
3352 if (cris_get_operand2 (inst) == REG_PC)
3353 {
3354 if (inst_env->slot_needed)
3355 {
3356 inst_env->invalid = 1;
3357 return;
3358 }
3359 /* The instruction has the PC as its target register. */
3360 operand1 = cris_get_quick_value (inst);
3361 operand2 = inst_env->reg[REG_PC];
3362
3363 /* The quick value is signed, so check if we must do a signed extend. */
3364 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3365 {
3366 /* sign extend */
3367 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3368 }
3369 /* The size should now be dword. */
3370 cris_set_size_to_dword (&inst);
3371
3372 /* Calculate the PC value after the instruction, i.e. where the
3373 breakpoint should be. */
3374 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3375 }
3376 inst_env->slot_needed = 0;
3377 inst_env->prefix_found = 0;
3378 inst_env->xflag_found = 0;
3379 inst_env->disable_interrupt = 0;
3380 }
3381
3382 /* Translate op_type to a function and call it. */
3383
3384 static void cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3385 inst_env_type *inst_env)
3386 {
3387 switch (op_type)
3388 {
3389 case cris_not_implemented_op:
3390 not_implemented_op (inst, inst_env);
3391 break;
3392
3393 case cris_abs_op:
3394 abs_op (inst, inst_env);
3395 break;
3396
3397 case cris_addi_op:
3398 addi_op (inst, inst_env);
3399 break;
3400
3401 case cris_asr_op:
3402 asr_op (inst, inst_env);
3403 break;
3404
3405 case cris_asrq_op:
3406 asrq_op (inst, inst_env);
3407 break;
3408
3409 case cris_ax_ei_setf_op:
3410 ax_ei_setf_op (inst, inst_env);
3411 break;
3412
3413 case cris_bdap_prefix:
3414 bdap_prefix (inst, inst_env);
3415 break;
3416
3417 case cris_biap_prefix:
3418 biap_prefix (inst, inst_env);
3419 break;
3420
3421 case cris_break_op:
3422 break_op (inst, inst_env);
3423 break;
3424
3425 case cris_btst_nop_op:
3426 btst_nop_op (inst, inst_env);
3427 break;
3428
3429 case cris_clearf_di_op:
3430 clearf_di_op (inst, inst_env);
3431 break;
3432
3433 case cris_dip_prefix:
3434 dip_prefix (inst, inst_env);
3435 break;
3436
3437 case cris_dstep_logshift_mstep_neg_not_op:
3438 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3439 break;
3440
3441 case cris_eight_bit_offset_branch_op:
3442 eight_bit_offset_branch_op (inst, inst_env);
3443 break;
3444
3445 case cris_move_mem_to_reg_movem_op:
3446 move_mem_to_reg_movem_op (inst, inst_env);
3447 break;
3448
3449 case cris_move_reg_to_mem_movem_op:
3450 move_reg_to_mem_movem_op (inst, inst_env);
3451 break;
3452
3453 case cris_move_to_preg_op:
3454 move_to_preg_op (inst, inst_env);
3455 break;
3456
3457 case cris_muls_op:
3458 muls_op (inst, inst_env);
3459 break;
3460
3461 case cris_mulu_op:
3462 mulu_op (inst, inst_env);
3463 break;
3464
3465 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3466 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3467 break;
3468
3469 case cris_none_reg_mode_clear_test_op:
3470 none_reg_mode_clear_test_op (inst, inst_env);
3471 break;
3472
3473 case cris_none_reg_mode_jump_op:
3474 none_reg_mode_jump_op (inst, inst_env);
3475 break;
3476
3477 case cris_none_reg_mode_move_from_preg_op:
3478 none_reg_mode_move_from_preg_op (inst, inst_env);
3479 break;
3480
3481 case cris_quick_mode_add_sub_op:
3482 quick_mode_add_sub_op (inst, inst_env);
3483 break;
3484
3485 case cris_quick_mode_and_cmp_move_or_op:
3486 quick_mode_and_cmp_move_or_op (inst, inst_env);
3487 break;
3488
3489 case cris_quick_mode_bdap_prefix:
3490 quick_mode_bdap_prefix (inst, inst_env);
3491 break;
3492
3493 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3494 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3495 break;
3496
3497 case cris_reg_mode_clear_op:
3498 reg_mode_clear_op (inst, inst_env);
3499 break;
3500
3501 case cris_reg_mode_jump_op:
3502 reg_mode_jump_op (inst, inst_env);
3503 break;
3504
3505 case cris_reg_mode_move_from_preg_op:
3506 reg_mode_move_from_preg_op (inst, inst_env);
3507 break;
3508
3509 case cris_reg_mode_test_op:
3510 reg_mode_test_op (inst, inst_env);
3511 break;
3512
3513 case cris_scc_op:
3514 scc_op (inst, inst_env);
3515 break;
3516
3517 case cris_sixteen_bit_offset_branch_op:
3518 sixteen_bit_offset_branch_op (inst, inst_env);
3519 break;
3520
3521 case cris_three_operand_add_sub_cmp_and_or_op:
3522 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3523 break;
3524
3525 case cris_three_operand_bound_op:
3526 three_operand_bound_op (inst, inst_env);
3527 break;
3528
3529 case cris_two_operand_bound_op:
3530 two_operand_bound_op (inst, inst_env);
3531 break;
3532
3533 case cris_xor_op:
3534 xor_op (inst, inst_env);
3535 break;
3536 }
3537 }
3538
3539 /* This wrapper is to avoid cris_get_assembler being called before
3540 exec_bfd has been set. */
3541
3542 static int
3543 cris_delayed_get_disassembler (bfd_vma addr, disassemble_info *info)
3544 {
3545 tm_print_insn = cris_get_disassembler (exec_bfd);
3546 return TARGET_PRINT_INSN (addr, info);
3547 }
3548
3549 /* Copied from <asm/elf.h>. */
3550 typedef unsigned long elf_greg_t;
3551
3552 /* Same as user_regs_struct struct in <asm/user.h>. */
3553 typedef elf_greg_t elf_gregset_t[35];
3554
3555 /* Unpack an elf_gregset_t into GDB's register cache. */
3556
3557 void
3558 supply_gregset (elf_gregset_t *gregsetp)
3559 {
3560 int i;
3561 elf_greg_t *regp = *gregsetp;
3562 static char zerobuf[4] = {0};
3563
3564 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3565 knows about the actual size of each register so that's no problem. */
3566 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3567 {
3568 supply_register (i, (char *)&regp[i]);
3569 }
3570 }
3571
3572 /* Use a local version of this function to get the correct types for
3573 regsets, until multi-arch core support is ready. */
3574
3575 static void
3576 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3577 int which, CORE_ADDR reg_addr)
3578 {
3579 elf_gregset_t gregset;
3580
3581 switch (which)
3582 {
3583 case 0:
3584 if (core_reg_size != sizeof (gregset))
3585 {
3586 warning ("wrong size gregset struct in core file");
3587 }
3588 else
3589 {
3590 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3591 supply_gregset (&gregset);
3592 }
3593
3594 default:
3595 /* We've covered all the kinds of registers we know about here,
3596 so this must be something we wouldn't know what to do with
3597 anyway. Just ignore it. */
3598 break;
3599 }
3600 }
3601
3602 static struct core_fns cris_elf_core_fns =
3603 {
3604 bfd_target_elf_flavour, /* core_flavour */
3605 default_check_format, /* check_format */
3606 default_core_sniffer, /* core_sniffer */
3607 fetch_core_registers, /* core_read_registers */
3608 NULL /* next */
3609 };
3610
3611 /* Fetch (and possibly build) an appropriate link_map_offsets
3612 structure for native GNU/Linux CRIS targets using the struct
3613 offsets defined in link.h (but without actual reference to that
3614 file).
3615
3616 This makes it possible to access GNU/Linux CRIS shared libraries
3617 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3618 debugging).
3619
3620 See gdb/solib-svr4.h for an explanation of these fields. */
3621
3622 struct link_map_offsets *
3623 cris_linux_svr4_fetch_link_map_offsets (void)
3624 {
3625 static struct link_map_offsets lmo;
3626 static struct link_map_offsets *lmp = NULL;
3627
3628 if (lmp == NULL)
3629 {
3630 lmp = &lmo;
3631
3632 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3633 this is all we need. */
3634 lmo.r_map_offset = 4;
3635 lmo.r_map_size = 4;
3636
3637 lmo.link_map_size = 20;
3638
3639 lmo.l_addr_offset = 0;
3640 lmo.l_addr_size = 4;
3641
3642 lmo.l_name_offset = 4;
3643 lmo.l_name_size = 4;
3644
3645 lmo.l_next_offset = 12;
3646 lmo.l_next_size = 4;
3647
3648 lmo.l_prev_offset = 16;
3649 lmo.l_prev_size = 4;
3650 }
3651
3652 return lmp;
3653 }
3654
3655 static void
3656 cris_fpless_backtrace (char *noargs, int from_tty)
3657 {
3658 /* Points at the instruction after the jsr (except when in innermost frame
3659 where it points at the original pc). */
3660 CORE_ADDR pc = 0;
3661
3662 /* Temporary variable, used for parsing from the start of the function that
3663 the pc is in, up to the pc. */
3664 CORE_ADDR tmp_pc = 0;
3665 CORE_ADDR sp = 0;
3666
3667 /* Information about current frame. */
3668 struct symtab_and_line sal;
3669 char* func_name;
3670
3671 /* Present instruction. */
3672 unsigned short insn;
3673
3674 /* Next instruction, lookahead. */
3675 unsigned short insn_next;
3676
3677 /* This is to store the offset between sp at start of function and until we
3678 reach push srp (if any). */
3679 int sp_add_later = 0;
3680 int push_srp_found = 0;
3681
3682 int val = 0;
3683
3684 /* Frame counter. */
3685 int frame = 0;
3686
3687 /* For the innermost frame, we want to look at srp in case it's a leaf
3688 function (since there's no push srp in that case). */
3689 int innermost_frame = 1;
3690
3691 deprecated_read_register_gen (PC_REGNUM, (char *) &pc);
3692 deprecated_read_register_gen (SP_REGNUM, (char *) &sp);
3693
3694 /* We make an explicit return when we can't find an outer frame. */
3695 while (1)
3696 {
3697 /* Get file name and line number. */
3698 sal = find_pc_line (pc, 0);
3699
3700 /* Get function name. */
3701 find_pc_partial_function (pc, &func_name, (CORE_ADDR *) NULL,
3702 (CORE_ADDR *) NULL);
3703
3704 /* Print information about current frame. */
3705 printf_unfiltered ("#%i 0x%08lx in %s", frame++, pc, func_name);
3706 if (sal.symtab)
3707 {
3708 printf_unfiltered (" at %s:%i", sal.symtab->filename, sal.line);
3709 }
3710 printf_unfiltered ("\n");
3711
3712 /* Get the start address of this function. */
3713 tmp_pc = get_pc_function_start (pc);
3714
3715 /* Mini parser, only meant to find push sp and sub ...,sp from the start
3716 of the function, up to the pc. */
3717 while (tmp_pc < pc)
3718 {
3719 insn = read_memory_unsigned_integer (tmp_pc, sizeof (short));
3720 tmp_pc += sizeof (short);
3721 if (insn == 0xE1FC)
3722 {
3723 /* push <reg> 32 bit instruction */
3724 insn_next = read_memory_unsigned_integer (tmp_pc,
3725 sizeof (short));
3726 tmp_pc += sizeof (short);
3727
3728 /* Recognize srp. */
3729 if (insn_next == 0xBE7E)
3730 {
3731 /* For subsequent (not this one though) push or sub which
3732 affects sp, adjust sp immediately. */
3733 push_srp_found = 1;
3734
3735 /* Note: this will break if we ever encounter a
3736 push vr (1 byte) or push ccr (2 bytes). */
3737 sp_add_later += 4;
3738 }
3739 else
3740 {
3741 /* Some other register was pushed. */
3742 if (push_srp_found)
3743 {
3744 sp += 4;
3745 }
3746 else
3747 {
3748 sp_add_later += 4;
3749 }
3750 }
3751 }
3752 else if (cris_get_operand2 (insn) == SP_REGNUM
3753 && cris_get_mode (insn) == 0x0000
3754 && cris_get_opcode (insn) == 0x000A)
3755 {
3756 /* subq <val>,sp */
3757 val = cris_get_quick_value (insn);
3758
3759 if (push_srp_found)
3760 {
3761 sp += val;
3762 }
3763 else
3764 {
3765 sp_add_later += val;
3766 }
3767
3768 }
3769 else if (cris_get_operand2 (insn) == SP_REGNUM
3770 /* Autoincrement addressing mode. */
3771 && cris_get_mode (insn) == 0x0003
3772 /* Opcode. */
3773 && ((insn) & 0x03E0) >> 5 == 0x0004)
3774 {
3775 /* subu <val>,sp */
3776 val = get_data_from_address (&insn, tmp_pc);
3777
3778 if (push_srp_found)
3779 {
3780 sp += val;
3781 }
3782 else
3783 {
3784 sp_add_later += val;
3785 }
3786 }
3787 else if (cris_get_operand2 (insn) == SP_REGNUM
3788 && ((insn & 0x0F00) >> 8) == 0x0001
3789 && (cris_get_signed_offset (insn) < 0))
3790 {
3791 /* Immediate byte offset addressing prefix word with sp as base
3792 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
3793 is between 64 and 128.
3794 movem r<regsave>,[sp=sp-<val>] */
3795 val = -cris_get_signed_offset (insn);
3796 insn_next = read_memory_unsigned_integer (tmp_pc,
3797 sizeof (short));
3798 tmp_pc += sizeof (short);
3799
3800 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
3801 && cris_get_opcode (insn_next) == 0x000F
3802 && cris_get_size (insn_next) == 0x0003
3803 && cris_get_operand1 (insn_next) == SP_REGNUM)
3804 {
3805 if (push_srp_found)
3806 {
3807 sp += val;
3808 }
3809 else
3810 {
3811 sp_add_later += val;
3812 }
3813 }
3814 }
3815 }
3816
3817 if (push_srp_found)
3818 {
3819 /* Reset flag. */
3820 push_srp_found = 0;
3821
3822 /* sp should now point at where srp is stored on the stack. Update
3823 the pc to the srp. */
3824 pc = read_memory_unsigned_integer (sp, 4);
3825 }
3826 else if (innermost_frame)
3827 {
3828 /* We couldn't find a push srp in the prologue, so this must be
3829 a leaf function, and thus we use the srp register directly.
3830 This should happen at most once, for the innermost function. */
3831 deprecated_read_register_gen (SRP_REGNUM, (char *) &pc);
3832 }
3833 else
3834 {
3835 /* Couldn't find an outer frame. */
3836 return;
3837 }
3838
3839 /* Reset flag. (In case the innermost frame wasn't a leaf, we don't
3840 want to look at the srp register later either). */
3841 innermost_frame = 0;
3842
3843 /* Now, add the offset for everything up to, and including push srp,
3844 that was held back during the prologue parsing. */
3845 sp += sp_add_later;
3846 sp_add_later = 0;
3847 }
3848 }
3849
3850 void
3851 _initialize_cris_tdep (void)
3852 {
3853 struct cmd_list_element *c;
3854
3855 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3856
3857 /* Used in disassembly. */
3858 tm_print_insn = cris_delayed_get_disassembler;
3859
3860 /* CRIS-specific user-commands. */
3861 c = add_set_cmd ("cris-version", class_support, var_integer,
3862 (char *) &usr_cmd_cris_version,
3863 "Set the current CRIS version.", &setlist);
3864 set_cmd_sfunc (c, cris_version_update);
3865 add_show_from_set (c, &showlist);
3866
3867 c = add_set_enum_cmd ("cris-mode", class_support, cris_mode_enums,
3868 &usr_cmd_cris_mode,
3869 "Set the current CRIS mode.", &setlist);
3870 set_cmd_sfunc (c, cris_mode_update);
3871 add_show_from_set (c, &showlist);
3872
3873 c = add_set_enum_cmd ("cris-abi", class_support, cris_abi_enums,
3874 &usr_cmd_cris_abi,
3875 "Set the current CRIS ABI version.", &setlist);
3876 set_cmd_sfunc (c, cris_abi_update);
3877 add_show_from_set (c, &showlist);
3878
3879 c = add_cmd ("cris-fpless-backtrace", class_support, cris_fpless_backtrace,
3880 "Display call chain using the subroutine return pointer.\n"
3881 "Note that this displays the address after the jump to the "
3882 "subroutine.", &cmdlist);
3883
3884 add_core_fns (&cris_elf_core_fns);
3885
3886 }
3887
3888 /* Prints out all target specific values. */
3889
3890 static void
3891 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3892 {
3893 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3894 if (tdep != NULL)
3895 {
3896 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3897 tdep->cris_version);
3898 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3899 tdep->cris_mode);
3900 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_abi = %s\n",
3901 tdep->cris_abi);
3902
3903 }
3904 }
3905
3906 static void
3907 cris_version_update (char *ignore_args, int from_tty,
3908 struct cmd_list_element *c)
3909 {
3910 struct gdbarch_info info;
3911
3912 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3913 the set command passed as a parameter. The clone operation will
3914 include (BUG?) any ``set'' command callback, if present.
3915 Commands like ``info set'' call all the ``show'' command
3916 callbacks. Unfortunatly, for ``show'' commands cloned from
3917 ``set'', this includes callbacks belonging to ``set'' commands.
3918 Making this worse, this only occures if add_show_from_set() is
3919 called after add_cmd_sfunc() (BUG?). */
3920
3921 /* From here on, trust the user's CRIS version setting. */
3922 if (cmd_type (c) == set_cmd)
3923 {
3924 usr_cmd_cris_version_valid = 1;
3925
3926 /* Update the current architecture, if needed. */
3927 gdbarch_info_init (&info);
3928 if (!gdbarch_update_p (info))
3929 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3930 }
3931 }
3932
3933 static void
3934 cris_mode_update (char *ignore_args, int from_tty,
3935 struct cmd_list_element *c)
3936 {
3937 struct gdbarch_info info;
3938
3939 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3940 the set command passed as a parameter. The clone operation will
3941 include (BUG?) any ``set'' command callback, if present.
3942 Commands like ``info set'' call all the ``show'' command
3943 callbacks. Unfortunatly, for ``show'' commands cloned from
3944 ``set'', this includes callbacks belonging to ``set'' commands.
3945 Making this worse, this only occures if add_show_from_set() is
3946 called after add_cmd_sfunc() (BUG?). */
3947
3948 /* From here on, trust the user's CRIS mode setting. */
3949 if (cmd_type (c) == set_cmd)
3950 {
3951 usr_cmd_cris_mode_valid = 1;
3952
3953 /* Update the current architecture, if needed. */
3954 gdbarch_info_init (&info);
3955 if (!gdbarch_update_p (info))
3956 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3957 }
3958 }
3959
3960 static void
3961 cris_abi_update (char *ignore_args, int from_tty,
3962 struct cmd_list_element *c)
3963 {
3964 struct gdbarch_info info;
3965
3966 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3967 the set command passed as a parameter. The clone operation will
3968 include (BUG?) any ``set'' command callback, if present.
3969 Commands like ``info set'' call all the ``show'' command
3970 callbacks. Unfortunatly, for ``show'' commands cloned from
3971 ``set'', this includes callbacks belonging to ``set'' commands.
3972 Making this worse, this only occures if add_show_from_set() is
3973 called after add_cmd_sfunc() (BUG?). */
3974
3975 /* From here on, trust the user's CRIS ABI setting. */
3976 if (cmd_type (c) == set_cmd)
3977 {
3978 usr_cmd_cris_abi_valid = 1;
3979
3980 /* Update the current architecture, if needed. */
3981 gdbarch_info_init (&info);
3982 if (!gdbarch_update_p (info))
3983 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3984 }
3985 }
3986
3987 /* Copied from pa64solib.c, with a couple of minor changes. */
3988
3989 static CORE_ADDR
3990 bfd_lookup_symbol (bfd *abfd, const char *symname)
3991 {
3992 unsigned int storage_needed;
3993 asymbol *sym;
3994 asymbol **symbol_table;
3995 unsigned int number_of_symbols;
3996 unsigned int i;
3997 struct cleanup *back_to;
3998 CORE_ADDR symaddr = 0;
3999
4000 storage_needed = bfd_get_symtab_upper_bound (abfd);
4001
4002 if (storage_needed > 0)
4003 {
4004 symbol_table = (asymbol **) xmalloc (storage_needed);
4005 back_to = make_cleanup (free, (PTR) symbol_table);
4006 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
4007
4008 for (i = 0; i < number_of_symbols; i++)
4009 {
4010 sym = *symbol_table++;
4011 if (!strcmp (sym->name, symname))
4012 {
4013 /* Bfd symbols are section relative. */
4014 symaddr = sym->value + sym->section->vma;
4015 break;
4016 }
4017 }
4018 do_cleanups (back_to);
4019 }
4020 return (symaddr);
4021 }
4022
4023 static struct gdbarch *
4024 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4025 {
4026 struct gdbarch *gdbarch;
4027 struct gdbarch_tdep *tdep;
4028 int cris_version;
4029 const char *cris_mode;
4030 const char *cris_abi;
4031 CORE_ADDR cris_abi_sym = 0;
4032 int register_bytes;
4033
4034 if (usr_cmd_cris_version_valid)
4035 {
4036 /* Trust the user's CRIS version setting. */
4037 cris_version = usr_cmd_cris_version;
4038 }
4039 else
4040 {
4041 /* Assume it's CRIS version 10. */
4042 cris_version = 10;
4043 }
4044
4045 if (usr_cmd_cris_mode_valid)
4046 {
4047 /* Trust the user's CRIS mode setting. */
4048 cris_mode = usr_cmd_cris_mode;
4049 }
4050 else if (cris_version == 10)
4051 {
4052 /* Assume CRIS version 10 is in user mode. */
4053 cris_mode = CRIS_MODE_USER;
4054 }
4055 else
4056 {
4057 /* Strictly speaking, older CRIS version don't have a supervisor mode,
4058 but we regard its only mode as supervisor mode. */
4059 cris_mode = CRIS_MODE_SUPERVISOR;
4060 }
4061
4062 if (usr_cmd_cris_abi_valid)
4063 {
4064 /* Trust the user's ABI setting. */
4065 cris_abi = usr_cmd_cris_abi;
4066 }
4067 else if (info.abfd)
4068 {
4069 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4070 {
4071 /* An elf target uses the new ABI. */
4072 cris_abi = CRIS_ABI_V2;
4073 }
4074 else if (bfd_get_flavour (info.abfd) == bfd_target_aout_flavour)
4075 {
4076 /* An a.out target may use either ABI. Look for hints in the
4077 symbol table. */
4078 cris_abi_sym = bfd_lookup_symbol (info.abfd, CRIS_ABI_SYMBOL);
4079 cris_abi = cris_abi_sym ? CRIS_ABI_V2 : CRIS_ABI_ORIGINAL;
4080 }
4081 else
4082 {
4083 /* Unknown bfd flavour. Assume it's the new ABI. */
4084 cris_abi = CRIS_ABI_V2;
4085 }
4086 }
4087 else if (arches != NULL)
4088 {
4089 /* No bfd available. Stick with the ABI from the most recently
4090 selected architecture of this same family (the head of arches
4091 always points to this). (This is to avoid changing the ABI
4092 when the user updates the architecture with the 'set
4093 cris-version' command.) */
4094 cris_abi = gdbarch_tdep (arches->gdbarch)->cris_abi;
4095 }
4096 else
4097 {
4098 /* No bfd, and no previously selected architecture available.
4099 Assume it's the new ABI. */
4100 cris_abi = CRIS_ABI_V2;
4101 }
4102
4103 /* Make the current settings visible to the user. */
4104 usr_cmd_cris_version = cris_version;
4105 usr_cmd_cris_mode = cris_mode;
4106 usr_cmd_cris_abi = cris_abi;
4107
4108 /* Find a candidate among the list of pre-declared architectures. Both
4109 CRIS version and ABI must match. */
4110 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4111 arches != NULL;
4112 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4113 {
4114 if ((gdbarch_tdep (arches->gdbarch)->cris_version == cris_version)
4115 && (gdbarch_tdep (arches->gdbarch)->cris_mode == cris_mode)
4116 && (gdbarch_tdep (arches->gdbarch)->cris_abi == cris_abi))
4117 return arches->gdbarch;
4118 }
4119
4120 /* No matching architecture was found. Create a new one. */
4121 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4122 gdbarch = gdbarch_alloc (&info, tdep);
4123
4124 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
4125 ready to unwind the PC first (see frame.c:get_prev_frame()). */
4126 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
4127
4128 tdep->cris_version = cris_version;
4129 tdep->cris_mode = cris_mode;
4130 tdep->cris_abi = cris_abi;
4131
4132 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4133 switch (info.byte_order)
4134 {
4135 case BFD_ENDIAN_LITTLE:
4136 /* Ok. */
4137 break;
4138
4139 case BFD_ENDIAN_BIG:
4140 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: big endian byte order in info");
4141 break;
4142
4143 default:
4144 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown byte order in info");
4145 }
4146
4147 /* Initialize the ABI dependent things. */
4148 if (tdep->cris_abi == CRIS_ABI_ORIGINAL)
4149 {
4150 set_gdbarch_double_bit (gdbarch, 32);
4151 set_gdbarch_push_arguments (gdbarch, cris_abi_original_push_arguments);
4152 set_gdbarch_deprecated_store_return_value (gdbarch,
4153 cris_abi_original_store_return_value);
4154 set_gdbarch_deprecated_extract_return_value
4155 (gdbarch, cris_abi_original_extract_return_value);
4156 set_gdbarch_reg_struct_has_addr
4157 (gdbarch, cris_abi_original_reg_struct_has_addr);
4158 }
4159 else if (tdep->cris_abi == CRIS_ABI_V2)
4160 {
4161 set_gdbarch_double_bit (gdbarch, 64);
4162 set_gdbarch_push_arguments (gdbarch, cris_abi_v2_push_arguments);
4163 set_gdbarch_deprecated_store_return_value (gdbarch, cris_abi_v2_store_return_value);
4164 set_gdbarch_deprecated_extract_return_value
4165 (gdbarch, cris_abi_v2_extract_return_value);
4166 set_gdbarch_reg_struct_has_addr (gdbarch,
4167 cris_abi_v2_reg_struct_has_addr);
4168 }
4169 else
4170 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS ABI");
4171
4172 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4173 which means we have to set this explicitly. */
4174 set_gdbarch_long_double_bit (gdbarch, 64);
4175
4176 /* There are 32 registers (some of which may not be implemented). */
4177 set_gdbarch_num_regs (gdbarch, 32);
4178 set_gdbarch_sp_regnum (gdbarch, 14);
4179 set_gdbarch_fp_regnum (gdbarch, 8);
4180 set_gdbarch_pc_regnum (gdbarch, 15);
4181
4182 set_gdbarch_register_name (gdbarch, cris_register_name);
4183
4184 /* Length of ordinary registers used in push_word and a few other places.
4185 REGISTER_RAW_SIZE is the real way to know how big a register is. */
4186 set_gdbarch_register_size (gdbarch, 4);
4187
4188 /* NEW */
4189 set_gdbarch_register_bytes_ok (gdbarch, cris_register_bytes_ok);
4190 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4191
4192
4193 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4194 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4195
4196
4197 /* The total amount of space needed to store (in an array called registers)
4198 GDB's copy of the machine's register state. Note: We can not use
4199 cris_register_size at this point, since it relies on current_gdbarch
4200 being set. */
4201 switch (tdep->cris_version)
4202 {
4203 case 0:
4204 case 1:
4205 case 2:
4206 case 3:
4207 /* Support for these may be added later. */
4208 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unsupported CRIS version");
4209 break;
4210
4211 case 8:
4212 case 9:
4213 /* CRIS v8 and v9, a.k.a. ETRAX 100. General registers R0 - R15
4214 (32 bits), special registers P0 - P1 (8 bits), P4 - P5 (16 bits),
4215 and P8 - P14 (32 bits). */
4216 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (7 * 4);
4217 break;
4218
4219 case 10:
4220 case 11:
4221 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4222 P7 (32 bits), and P15 (32 bits) have been implemented. */
4223 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (9 * 4);
4224 break;
4225
4226 default:
4227 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS version");
4228 }
4229
4230 set_gdbarch_register_bytes (gdbarch, register_bytes);
4231
4232 /* Returns the register offset for the first byte of register regno's space
4233 in the saved register state. */
4234 set_gdbarch_register_byte (gdbarch, cris_register_offset);
4235
4236 /* The length of the registers in the actual machine representation. */
4237 set_gdbarch_register_raw_size (gdbarch, cris_register_size);
4238
4239 /* The largest value REGISTER_RAW_SIZE can have. */
4240 set_gdbarch_max_register_raw_size (gdbarch, 32);
4241
4242 /* The length of the registers in the program's representation. */
4243 set_gdbarch_register_virtual_size (gdbarch, cris_register_size);
4244
4245 /* The largest value REGISTER_VIRTUAL_SIZE can have. */
4246 set_gdbarch_max_register_virtual_size (gdbarch, 32);
4247
4248 set_gdbarch_register_virtual_type (gdbarch, cris_register_virtual_type);
4249
4250 /* Use generic dummy frames. */
4251
4252 /* Where to execute the call in the memory segments. */
4253 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
4254
4255 /* Start execution at the beginning of dummy. */
4256 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4257 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4258
4259 /* Set to 1 since call_dummy_breakpoint_offset was defined. */
4260 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4261
4262 /* Read all about dummy frames in blockframe.c. */
4263 set_gdbarch_call_dummy_length (gdbarch, 0);
4264 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
4265
4266 /* Defined to 1 to indicate that the target supports inferior function
4267 calls. */
4268 set_gdbarch_call_dummy_p (gdbarch, 1);
4269 set_gdbarch_call_dummy_words (gdbarch, 0);
4270 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
4271
4272 /* No stack adjustment needed when peforming an inferior function call. */
4273 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4274 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
4275
4276 set_gdbarch_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
4277
4278 /* No register requires conversion from raw format to virtual format. */
4279 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
4280
4281 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
4282 set_gdbarch_push_return_address (gdbarch, cris_push_return_address);
4283 set_gdbarch_pop_frame (gdbarch, cris_pop_frame);
4284
4285 set_gdbarch_store_struct_return (gdbarch, cris_store_struct_return);
4286 set_gdbarch_deprecated_extract_struct_value_address
4287 (gdbarch, cris_extract_struct_value_address);
4288 set_gdbarch_use_struct_convention (gdbarch, cris_use_struct_convention);
4289
4290 set_gdbarch_frame_init_saved_regs (gdbarch, cris_frame_init_saved_regs);
4291 set_gdbarch_init_extra_frame_info (gdbarch, cris_init_extra_frame_info);
4292 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4293 set_gdbarch_prologue_frameless_p (gdbarch, generic_prologue_frameless_p);
4294
4295 /* The stack grows downward. */
4296 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4297
4298 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4299
4300 /* The PC must not be decremented after a breakpoint. (The breakpoint
4301 handler takes care of that.) */
4302 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4303
4304 /* Offset from address of function to start of its code. */
4305 set_gdbarch_function_start_offset (gdbarch, 0);
4306
4307 /* The number of bytes at the start of arglist that are not really args,
4308 0 in the CRIS ABI. */
4309 set_gdbarch_frame_args_skip (gdbarch, 0);
4310 set_gdbarch_frameless_function_invocation
4311 (gdbarch, cris_frameless_function_invocation);
4312 set_gdbarch_frame_chain (gdbarch, cris_frame_chain);
4313
4314 set_gdbarch_frame_saved_pc (gdbarch, cris_frame_saved_pc);
4315 set_gdbarch_saved_pc_after_call (gdbarch, cris_saved_pc_after_call);
4316
4317 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
4318
4319 /* No extra stack alignment needed. Set to 1 by default. */
4320 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
4321
4322 /* Helpful for backtracing and returning in a call dummy. */
4323 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
4324
4325 /* Use target_specific function to define link map offsets. */
4326 set_solib_svr4_fetch_link_map_offsets
4327 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);
4328
4329 return gdbarch;
4330 }