gdb: ensure the cast in gdbarch_tdep is valid
[binutils-gdb.git] / gdb / ctfread.c
1 /* Compact ANSI-C Type Format (CTF) support in GDB.
2
3 Copyright (C) 2019-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* This file format can be used to compactly represent the information needed
21 by a debugger to interpret the ANSI-C types used by a given program.
22 Traditionally, this kind of information is generated by the compiler when
23 invoked with the -g flag and is stored in "stabs" strings or in the more
24 modern DWARF format. A new -gtLEVEL option has been added in gcc to generate
25 such information. CTF provides a representation of only the information
26 that is relevant to debugging a complex, optimized C program such as the
27 operating system kernel in a form that is significantly more compact than
28 the equivalent stabs or DWARF representation. The format is data-model
29 independent, so consumers do not need different code depending on whether
30 they are 32-bit or 64-bit programs. CTF assumes that a standard ELF symbol
31 table is available for use in the debugger, and uses the structure and data
32 of the symbol table to avoid storing redundant information. The CTF data
33 may be compressed on disk or in memory, indicated by a bit in the header.
34 CTF may be interpreted in a raw disk file, or it may be stored in an ELF
35 section, typically named .ctf. Data structures are aligned so that a raw
36 CTF file or CTF ELF section may be manipulated using mmap(2).
37
38 The CTF file or section itself has the following structure:
39
40 +--------+--------+---------+----------+----------+-------+--------+
41 | file | type | data | function | variable | data | string |
42 | header | labels | objects | info | info | types | table |
43 +--------+--------+---------+----------+----------+-------+--------+
44
45 The file header stores a magic number and version information, encoding
46 flags, and the byte offset of each of the sections relative to the end of the
47 header itself. If the CTF data has been uniquified against another set of
48 CTF data, a reference to that data also appears in the header. This
49 reference is the name of the label corresponding to the types uniquified
50 against.
51
52 Following the header is a list of labels, used to group the types included in
53 the data types section. Each label is accompanied by a type ID i. A given
54 label refers to the group of types whose IDs are in the range [0, i].
55
56 Data object and function records are stored in the same order as they appear
57 in the corresponding symbol table, except that symbols marked SHN_UNDEF are
58 not stored and symbols that have no type data are padded out with zeroes.
59 For each data object, the type ID (a small integer) is recorded. For each
60 function, the type ID of the return type and argument types is recorded.
61
62 Variable records (as distinct from data objects) provide a modicum of support
63 for non-ELF systems, mapping a variable name to a CTF type ID. The variable
64 names are sorted into ASCIIbetical order, permitting binary searching.
65
66 The data types section is a list of variable size records that represent each
67 type, in order by their ID. The types themselves form a directed graph,
68 where each node may contain one or more outgoing edges to other type nodes,
69 denoted by their ID.
70
71 Strings are recorded as a string table ID (0 or 1) and a byte offset into the
72 string table. String table 0 is the internal CTF string table. String table
73 1 is the external string table, which is the string table associated with the
74 ELF symbol table for this object. CTF does not record any strings that are
75 already in the symbol table, and the CTF string table does not contain any
76 duplicated strings. */
77
78 #include "defs.h"
79 #include "buildsym.h"
80 #include "complaints.h"
81 #include "block.h"
82 #include "ctfread.h"
83 #include "psympriv.h"
84
85 #if ENABLE_LIBCTF
86
87 #include "ctf.h"
88 #include "ctf-api.h"
89
90 static const struct objfile_key<htab, htab_deleter> ctf_tid_key;
91
92 struct ctf_fp_info
93 {
94 explicit ctf_fp_info (ctf_dict_t *cfp) : fp (cfp) {}
95 ~ctf_fp_info ();
96 ctf_dict_t *fp;
97 };
98
99 /* Cleanup function for the ctf_dict_key data. */
100 ctf_fp_info::~ctf_fp_info ()
101 {
102 if (fp == nullptr)
103 return;
104
105 ctf_archive_t *arc = ctf_get_arc (fp);
106 ctf_dict_close (fp);
107 ctf_close (arc);
108 }
109
110 static const objfile_key<ctf_fp_info> ctf_dict_key;
111
112 /* A CTF context consists of a file pointer and an objfile pointer. */
113
114 struct ctf_context
115 {
116 ctf_dict_t *fp;
117 struct objfile *of;
118 psymtab_storage *partial_symtabs;
119 partial_symtab *pst;
120 ctf_archive_t *arc;
121 struct buildsym_compunit *builder;
122 };
123
124 /* A partial symtab, specialized for this module. */
125 struct ctf_psymtab : public standard_psymtab
126 {
127 ctf_psymtab (const char *filename,
128 psymtab_storage *partial_symtabs,
129 objfile_per_bfd_storage *objfile_per_bfd,
130 CORE_ADDR addr)
131 : standard_psymtab (filename, partial_symtabs, objfile_per_bfd, addr)
132 {
133 }
134
135 void read_symtab (struct objfile *) override;
136 void expand_psymtab (struct objfile *) override;
137
138 struct ctf_context context;
139 };
140
141 /* The routines that read and process fields/members of a C struct, union,
142 or enumeration, pass lists of data member fields in an instance of a
143 ctf_field_info structure. It is derived from dwarf2read.c. */
144
145 struct ctf_nextfield
146 {
147 struct field field {};
148 };
149
150 struct ctf_field_info
151 {
152 /* List of data member fields. */
153 std::vector<struct ctf_nextfield> fields;
154
155 /* Context. */
156 struct ctf_context *cur_context;
157
158 /* Parent type. */
159 struct type *ptype;
160
161 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head
162 of a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
163 std::vector<struct decl_field> typedef_field_list;
164
165 /* Nested types defined by this struct and the number of elements in
166 this list. */
167 std::vector<struct decl_field> nested_types_list;
168 };
169
170 /* Data held for a translation unit. */
171
172 struct ctf_per_tu_data
173 {
174 ctf_dict_t *fp;
175 struct objfile *of;
176 ctf_archive_t *arc;
177 psymtab_storage *pss;
178 psymbol_functions *psf;
179 };
180
181 /* Local function prototypes */
182
183 static int ctf_add_type_cb (ctf_id_t tid, void *arg);
184
185 static struct type *read_array_type (struct ctf_context *cp, ctf_id_t tid);
186
187 static struct type *read_pointer_type (struct ctf_context *cp, ctf_id_t tid,
188 ctf_id_t btid);
189
190 static struct type *read_structure_type (struct ctf_context *cp, ctf_id_t tid);
191
192 static struct type *read_enum_type (struct ctf_context *cp, ctf_id_t tid);
193
194 static struct type *read_typedef_type (struct ctf_context *cp, ctf_id_t tid,
195 ctf_id_t btid, const char *name);
196
197 static struct type *read_type_record (struct ctf_context *cp, ctf_id_t tid);
198
199 static void process_structure_type (struct ctf_context *cp, ctf_id_t tid);
200
201 static void process_struct_members (struct ctf_context *cp, ctf_id_t tid,
202 struct type *type);
203
204 static struct type *read_forward_type (struct ctf_context *cp, ctf_id_t tid);
205
206 static struct symbol *new_symbol (struct ctf_context *cp, struct type *type,
207 ctf_id_t tid);
208
209 struct ctf_tid_and_type
210 {
211 ctf_id_t tid;
212 struct type *type;
213 };
214
215 /* Hash function for a ctf_tid_and_type. */
216
217 static hashval_t
218 tid_and_type_hash (const void *item)
219 {
220 const struct ctf_tid_and_type *ids
221 = (const struct ctf_tid_and_type *) item;
222
223 return ids->tid;
224 }
225
226 /* Equality function for a ctf_tid_and_type. */
227
228 static int
229 tid_and_type_eq (const void *item_lhs, const void *item_rhs)
230 {
231 const struct ctf_tid_and_type *ids_lhs
232 = (const struct ctf_tid_and_type *) item_lhs;
233 const struct ctf_tid_and_type *ids_rhs
234 = (const struct ctf_tid_and_type *) item_rhs;
235
236 return ids_lhs->tid == ids_rhs->tid;
237 }
238
239 /* Set the type associated with TID to TYP. */
240
241 static struct type *
242 set_tid_type (struct objfile *of, ctf_id_t tid, struct type *typ)
243 {
244 htab_t htab;
245
246 htab = (htab_t) ctf_tid_key.get (of);
247 if (htab == NULL)
248 {
249 htab = htab_create_alloc (1, tid_and_type_hash,
250 tid_and_type_eq,
251 NULL, xcalloc, xfree);
252 ctf_tid_key.set (of, htab);
253 }
254
255 struct ctf_tid_and_type **slot, ids;
256 ids.tid = tid;
257 ids.type = typ;
258 slot = (struct ctf_tid_and_type **) htab_find_slot (htab, &ids, INSERT);
259 if (*slot == nullptr)
260 *slot = XOBNEW (&of->objfile_obstack, struct ctf_tid_and_type);
261 **slot = ids;
262 return typ;
263 }
264
265 /* Look up the type for TID in tid_and_type hash, return NULL if hash is
266 empty or TID does not have a saved type. */
267
268 static struct type *
269 get_tid_type (struct objfile *of, ctf_id_t tid)
270 {
271 struct ctf_tid_and_type *slot, ids;
272 htab_t htab;
273
274 htab = (htab_t) ctf_tid_key.get (of);
275 if (htab == NULL)
276 return nullptr;
277
278 ids.tid = tid;
279 ids.type = nullptr;
280 slot = (struct ctf_tid_and_type *) htab_find (htab, &ids);
281 if (slot)
282 return slot->type;
283 else
284 return nullptr;
285 }
286
287 /* Fetch the type for TID in CCP OF's tid_and_type hash, add the type to
288 * context CCP if hash is empty or TID does not have a saved type. */
289
290 static struct type *
291 fetch_tid_type (struct ctf_context *ccp, ctf_id_t tid)
292 {
293 struct objfile *of = ccp->of;
294 struct type *typ;
295
296 typ = get_tid_type (of, tid);
297 if (typ == nullptr)
298 {
299 ctf_add_type_cb (tid, ccp);
300 typ = get_tid_type (of, tid);
301 }
302
303 return typ;
304 }
305
306 /* Return the size of storage in bits for INTEGER, FLOAT, or ENUM. */
307
308 static int
309 get_bitsize (ctf_dict_t *fp, ctf_id_t tid, uint32_t kind)
310 {
311 ctf_encoding_t cet;
312
313 if ((kind == CTF_K_INTEGER || kind == CTF_K_ENUM
314 || kind == CTF_K_FLOAT)
315 && ctf_type_reference (fp, tid) != CTF_ERR
316 && ctf_type_encoding (fp, tid, &cet) != CTF_ERR)
317 return cet.cte_bits;
318
319 return 0;
320 }
321
322 /* Set SYM's address, with NAME, from its minimal symbol entry. */
323
324 static void
325 set_symbol_address (struct objfile *of, struct symbol *sym, const char *name)
326 {
327 struct bound_minimal_symbol msym;
328
329 msym = lookup_minimal_symbol (name, nullptr, of);
330 if (msym.minsym != NULL)
331 {
332 sym->set_value_address (msym.value_address ());
333 sym->set_aclass_index (LOC_STATIC);
334 sym->set_section_index (msym.minsym->section_index ());
335 }
336 }
337
338 /* Create the vector of fields, and attach it to TYPE. */
339
340 static void
341 attach_fields_to_type (struct ctf_field_info *fip, struct type *type)
342 {
343 int nfields = fip->fields.size ();
344
345 if (nfields == 0)
346 return;
347
348 /* Record the field count, allocate space for the array of fields. */
349 type->set_num_fields (nfields);
350 type->set_fields
351 ((struct field *) TYPE_ZALLOC (type, sizeof (struct field) * nfields));
352
353 /* Copy the saved-up fields into the field vector. */
354 for (int i = 0; i < nfields; ++i)
355 {
356 struct ctf_nextfield &field = fip->fields[i];
357 type->field (i) = field.field;
358 }
359 }
360
361 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
362 (which may be different from NAME) to the architecture back-end to allow
363 it to guess the correct format if necessary. */
364
365 static struct type *
366 ctf_init_float_type (struct objfile *objfile,
367 int bits,
368 const char *name,
369 const char *name_hint)
370 {
371 struct gdbarch *gdbarch = objfile->arch ();
372 const struct floatformat **format;
373 struct type *type;
374
375 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
376 if (format != nullptr)
377 type = init_float_type (objfile, bits, name, format);
378 else
379 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
380
381 return type;
382 }
383
384 /* Callback to add member NAME to a struct/union type. TID is the type
385 of struct/union member, OFFSET is the offset of member in bits,
386 and ARG contains the ctf_field_info. */
387
388 static int
389 ctf_add_member_cb (const char *name,
390 ctf_id_t tid,
391 unsigned long offset,
392 void *arg)
393 {
394 struct ctf_field_info *fip = (struct ctf_field_info *) arg;
395 struct ctf_context *ccp = fip->cur_context;
396 struct ctf_nextfield new_field;
397 struct field *fp;
398 struct type *t;
399 uint32_t kind;
400
401 fp = &new_field.field;
402 fp->set_name (name);
403
404 kind = ctf_type_kind (ccp->fp, tid);
405 t = fetch_tid_type (ccp, tid);
406 if (t == nullptr)
407 {
408 t = read_type_record (ccp, tid);
409 if (t == nullptr)
410 {
411 complaint (_("ctf_add_member_cb: %s has NO type (%ld)"), name, tid);
412 t = objfile_type (ccp->of)->builtin_error;
413 set_tid_type (ccp->of, tid, t);
414 }
415 }
416
417 if (kind == CTF_K_STRUCT || kind == CTF_K_UNION)
418 process_struct_members (ccp, tid, t);
419
420 fp->set_type (t);
421 fp->set_loc_bitpos (offset / TARGET_CHAR_BIT);
422 FIELD_BITSIZE (*fp) = get_bitsize (ccp->fp, tid, kind);
423
424 fip->fields.emplace_back (new_field);
425
426 return 0;
427 }
428
429 /* Callback to add member NAME of EVAL to an enumeration type.
430 ARG contains the ctf_field_info. */
431
432 static int
433 ctf_add_enum_member_cb (const char *name, int enum_value, void *arg)
434 {
435 struct ctf_field_info *fip = (struct ctf_field_info *) arg;
436 struct ctf_nextfield new_field;
437 struct field *fp;
438 struct ctf_context *ccp = fip->cur_context;
439
440 fp = &new_field.field;
441 fp->set_name (name);
442 fp->set_type (nullptr);
443 fp->set_loc_enumval (enum_value);
444 FIELD_BITSIZE (*fp) = 0;
445
446 if (name != nullptr)
447 {
448 struct symbol *sym = new (&ccp->of->objfile_obstack) symbol;
449 OBJSTAT (ccp->of, n_syms++);
450
451 sym->set_language (language_c, &ccp->of->objfile_obstack);
452 sym->compute_and_set_names (name, false, ccp->of->per_bfd);
453 sym->set_aclass_index (LOC_CONST);
454 sym->set_domain (VAR_DOMAIN);
455 sym->set_type (fip->ptype);
456 add_symbol_to_list (sym, ccp->builder->get_global_symbols ());
457 }
458
459 fip->fields.emplace_back (new_field);
460
461 return 0;
462 }
463
464 /* Add a new symbol entry, with its name from TID, its access index and
465 domain from TID's kind, and its type from TYPE. */
466
467 static struct symbol *
468 new_symbol (struct ctf_context *ccp, struct type *type, ctf_id_t tid)
469 {
470 struct objfile *objfile = ccp->of;
471 ctf_dict_t *fp = ccp->fp;
472 struct symbol *sym = nullptr;
473
474 const char *name = ctf_type_name_raw (fp, tid);
475 if (name != nullptr)
476 {
477 sym = new (&objfile->objfile_obstack) symbol;
478 OBJSTAT (objfile, n_syms++);
479
480 sym->set_language (language_c, &objfile->objfile_obstack);
481 sym->compute_and_set_names (name, false, objfile->per_bfd);
482 sym->set_domain (VAR_DOMAIN);
483 sym->set_aclass_index (LOC_OPTIMIZED_OUT);
484
485 if (type != nullptr)
486 sym->set_type (type);
487
488 uint32_t kind = ctf_type_kind (fp, tid);
489 switch (kind)
490 {
491 case CTF_K_STRUCT:
492 case CTF_K_UNION:
493 case CTF_K_ENUM:
494 sym->set_aclass_index (LOC_TYPEDEF);
495 sym->set_domain (STRUCT_DOMAIN);
496 break;
497 case CTF_K_FUNCTION:
498 sym->set_aclass_index (LOC_STATIC);
499 set_symbol_address (objfile, sym, sym->linkage_name ());
500 break;
501 case CTF_K_CONST:
502 if (sym->type ()->code () == TYPE_CODE_VOID)
503 sym->set_type (objfile_type (objfile)->builtin_int);
504 break;
505 case CTF_K_TYPEDEF:
506 case CTF_K_INTEGER:
507 case CTF_K_FLOAT:
508 sym->set_aclass_index (LOC_TYPEDEF);
509 sym->set_domain (VAR_DOMAIN);
510 break;
511 case CTF_K_POINTER:
512 break;
513 case CTF_K_VOLATILE:
514 case CTF_K_RESTRICT:
515 break;
516 case CTF_K_SLICE:
517 case CTF_K_ARRAY:
518 case CTF_K_UNKNOWN:
519 break;
520 }
521
522 add_symbol_to_list (sym, ccp->builder->get_file_symbols ());
523 }
524
525 return sym;
526 }
527
528 /* Given a TID of kind CTF_K_INTEGER or CTF_K_FLOAT, find a representation
529 and create the symbol for it. */
530
531 static struct type *
532 read_base_type (struct ctf_context *ccp, ctf_id_t tid)
533 {
534 struct objfile *of = ccp->of;
535 ctf_dict_t *fp = ccp->fp;
536 ctf_encoding_t cet;
537 struct type *type = nullptr;
538 const char *name;
539 uint32_t kind;
540
541 if (ctf_type_encoding (fp, tid, &cet))
542 {
543 complaint (_("ctf_type_encoding read_base_type failed - %s"),
544 ctf_errmsg (ctf_errno (fp)));
545 return nullptr;
546 }
547
548 name = ctf_type_name_raw (fp, tid);
549 if (name == nullptr || strlen (name) == 0)
550 {
551 name = ctf_type_aname (fp, tid);
552 if (name == nullptr)
553 complaint (_("ctf_type_aname read_base_type failed - %s"),
554 ctf_errmsg (ctf_errno (fp)));
555 }
556
557 kind = ctf_type_kind (fp, tid);
558 if (kind == CTF_K_INTEGER)
559 {
560 uint32_t issigned, ischar, isbool;
561 struct gdbarch *gdbarch = of->arch ();
562
563 issigned = cet.cte_format & CTF_INT_SIGNED;
564 ischar = cet.cte_format & CTF_INT_CHAR;
565 isbool = cet.cte_format & CTF_INT_BOOL;
566 if (ischar)
567 type = init_character_type (of, TARGET_CHAR_BIT, !issigned, name);
568 else if (isbool)
569 type = init_boolean_type (of, gdbarch_int_bit (gdbarch),
570 !issigned, name);
571 else
572 {
573 int bits;
574 if (cet.cte_bits && ((cet.cte_bits % TARGET_CHAR_BIT) == 0))
575 bits = cet.cte_bits;
576 else
577 bits = gdbarch_int_bit (gdbarch);
578 type = init_integer_type (of, bits, !issigned, name);
579 }
580 }
581 else if (kind == CTF_K_FLOAT)
582 {
583 uint32_t isflt;
584 isflt = !((cet.cte_format & CTF_FP_IMAGRY) == CTF_FP_IMAGRY
585 || (cet.cte_format & CTF_FP_DIMAGRY) == CTF_FP_DIMAGRY
586 || (cet.cte_format & CTF_FP_LDIMAGRY) == CTF_FP_LDIMAGRY);
587 if (isflt)
588 type = ctf_init_float_type (of, cet.cte_bits, name, name);
589 else
590 {
591 struct type *t
592 = ctf_init_float_type (of, cet.cte_bits / 2, NULL, name);
593 type = init_complex_type (name, t);
594 }
595 }
596 else
597 {
598 complaint (_("read_base_type: unsupported base kind (%d)"), kind);
599 type = init_type (of, TYPE_CODE_ERROR, cet.cte_bits, name);
600 }
601
602 if (name != nullptr && strcmp (name, "char") == 0)
603 type->set_has_no_signedness (true);
604
605 return set_tid_type (of, tid, type);
606 }
607
608 static void
609 process_base_type (struct ctf_context *ccp, ctf_id_t tid)
610 {
611 struct type *type;
612
613 type = read_base_type (ccp, tid);
614 new_symbol (ccp, type, tid);
615 }
616
617 /* Start a structure or union scope (definition) with TID to create a type
618 for the structure or union.
619
620 Fill in the type's name and general properties. The members will not be
621 processed, nor a symbol table entry be done until process_structure_type
622 (assuming the type has a name). */
623
624 static struct type *
625 read_structure_type (struct ctf_context *ccp, ctf_id_t tid)
626 {
627 struct objfile *of = ccp->of;
628 ctf_dict_t *fp = ccp->fp;
629 struct type *type;
630 uint32_t kind;
631
632 type = alloc_type (of);
633
634 const char *name = ctf_type_name_raw (fp, tid);
635 if (name != nullptr && strlen (name) != 0)
636 type->set_name (name);
637
638 kind = ctf_type_kind (fp, tid);
639 if (kind == CTF_K_UNION)
640 type->set_code (TYPE_CODE_UNION);
641 else
642 type->set_code (TYPE_CODE_STRUCT);
643
644 TYPE_LENGTH (type) = ctf_type_size (fp, tid);
645 set_type_align (type, ctf_type_align (fp, tid));
646
647 return set_tid_type (ccp->of, tid, type);
648 }
649
650 /* Given a tid of CTF_K_STRUCT or CTF_K_UNION, process all its members
651 and create the symbol for it. */
652
653 static void
654 process_struct_members (struct ctf_context *ccp,
655 ctf_id_t tid,
656 struct type *type)
657 {
658 struct ctf_field_info fi;
659
660 fi.cur_context = ccp;
661 if (ctf_member_iter (ccp->fp, tid, ctf_add_member_cb, &fi) == CTF_ERR)
662 complaint (_("ctf_member_iter process_struct_members failed - %s"),
663 ctf_errmsg (ctf_errno (ccp->fp)));
664
665 /* Attach fields to the type. */
666 attach_fields_to_type (&fi, type);
667
668 new_symbol (ccp, type, tid);
669 }
670
671 static void
672 process_structure_type (struct ctf_context *ccp, ctf_id_t tid)
673 {
674 struct type *type;
675
676 type = read_structure_type (ccp, tid);
677 process_struct_members (ccp, tid, type);
678 }
679
680 /* Create a function type for TID and set its return type. */
681
682 static struct type *
683 read_func_kind_type (struct ctf_context *ccp, ctf_id_t tid)
684 {
685 struct objfile *of = ccp->of;
686 ctf_dict_t *fp = ccp->fp;
687 struct type *type, *rettype, *atype;
688 ctf_funcinfo_t cfi;
689 uint32_t argc;
690
691 type = alloc_type (of);
692
693 type->set_code (TYPE_CODE_FUNC);
694 if (ctf_func_type_info (fp, tid, &cfi) < 0)
695 {
696 const char *fname = ctf_type_name_raw (fp, tid);
697 error (_("Error getting function type info: %s"),
698 fname == nullptr ? "noname" : fname);
699 }
700 rettype = fetch_tid_type (ccp, cfi.ctc_return);
701 TYPE_TARGET_TYPE (type) = rettype;
702 set_type_align (type, ctf_type_align (fp, tid));
703
704 /* Set up function's arguments. */
705 argc = cfi.ctc_argc;
706 type->set_num_fields (argc);
707 if ((cfi.ctc_flags & CTF_FUNC_VARARG) != 0)
708 type->set_has_varargs (true);
709
710 if (argc != 0)
711 {
712 std::vector<ctf_id_t> argv (argc);
713 if (ctf_func_type_args (fp, tid, argc, argv.data ()) == CTF_ERR)
714 return nullptr;
715
716 type->set_fields
717 ((struct field *) TYPE_ZALLOC (type, argc * sizeof (struct field)));
718 struct type *void_type = objfile_type (of)->builtin_void;
719 /* If failed to find the argument type, fill it with void_type. */
720 for (int iparam = 0; iparam < argc; iparam++)
721 {
722 atype = fetch_tid_type (ccp, argv[iparam]);
723 if (atype != nullptr)
724 type->field (iparam).set_type (atype);
725 else
726 type->field (iparam).set_type (void_type);
727 }
728 }
729
730 return set_tid_type (of, tid, type);
731 }
732
733 /* Given a TID of CTF_K_ENUM, process all the members of the
734 enumeration, and create the symbol for the enumeration type. */
735
736 static struct type *
737 read_enum_type (struct ctf_context *ccp, ctf_id_t tid)
738 {
739 struct objfile *of = ccp->of;
740 ctf_dict_t *fp = ccp->fp;
741 struct type *type;
742
743 type = alloc_type (of);
744
745 const char *name = ctf_type_name_raw (fp, tid);
746 if (name != nullptr && strlen (name) != 0)
747 type->set_name (name);
748
749 type->set_code (TYPE_CODE_ENUM);
750 TYPE_LENGTH (type) = ctf_type_size (fp, tid);
751 /* Set the underlying type based on its ctf_type_size bits. */
752 TYPE_TARGET_TYPE (type) = objfile_int_type (of, TYPE_LENGTH (type), false);
753 set_type_align (type, ctf_type_align (fp, tid));
754
755 return set_tid_type (of, tid, type);
756 }
757
758 static void
759 process_enum_type (struct ctf_context *ccp, ctf_id_t tid)
760 {
761 struct type *type;
762 struct ctf_field_info fi;
763
764 type = read_enum_type (ccp, tid);
765
766 fi.cur_context = ccp;
767 fi.ptype = type;
768 if (ctf_enum_iter (ccp->fp, tid, ctf_add_enum_member_cb, &fi) == CTF_ERR)
769 complaint (_("ctf_enum_iter process_enum_type failed - %s"),
770 ctf_errmsg (ctf_errno (ccp->fp)));
771
772 /* Attach fields to the type. */
773 attach_fields_to_type (&fi, type);
774
775 new_symbol (ccp, type, tid);
776 }
777
778 /* Add given cv-qualifiers CNST+VOLTL to the BASE_TYPE of array TID. */
779
780 static struct type *
781 add_array_cv_type (struct ctf_context *ccp,
782 ctf_id_t tid,
783 struct type *base_type,
784 int cnst,
785 int voltl)
786 {
787 struct type *el_type, *inner_array;
788
789 base_type = copy_type (base_type);
790 inner_array = base_type;
791
792 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
793 {
794 TYPE_TARGET_TYPE (inner_array)
795 = copy_type (TYPE_TARGET_TYPE (inner_array));
796 inner_array = TYPE_TARGET_TYPE (inner_array);
797 }
798
799 el_type = TYPE_TARGET_TYPE (inner_array);
800 cnst |= TYPE_CONST (el_type);
801 voltl |= TYPE_VOLATILE (el_type);
802 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, nullptr);
803
804 return set_tid_type (ccp->of, tid, base_type);
805 }
806
807 /* Read all information from a TID of CTF_K_ARRAY. */
808
809 static struct type *
810 read_array_type (struct ctf_context *ccp, ctf_id_t tid)
811 {
812 struct objfile *objfile = ccp->of;
813 ctf_dict_t *fp = ccp->fp;
814 struct type *element_type, *range_type, *idx_type;
815 struct type *type;
816 ctf_arinfo_t ar;
817
818 if (ctf_array_info (fp, tid, &ar) == CTF_ERR)
819 {
820 complaint (_("ctf_array_info read_array_type failed - %s"),
821 ctf_errmsg (ctf_errno (fp)));
822 return nullptr;
823 }
824
825 element_type = fetch_tid_type (ccp, ar.ctr_contents);
826 if (element_type == nullptr)
827 return nullptr;
828
829 idx_type = fetch_tid_type (ccp, ar.ctr_index);
830 if (idx_type == nullptr)
831 idx_type = objfile_type (objfile)->builtin_int;
832
833 range_type = create_static_range_type (NULL, idx_type, 0, ar.ctr_nelems - 1);
834 type = create_array_type (NULL, element_type, range_type);
835 if (ar.ctr_nelems <= 1) /* Check if undefined upper bound. */
836 {
837 range_type->bounds ()->high.set_undefined ();
838 TYPE_LENGTH (type) = 0;
839 type->set_target_is_stub (true);
840 }
841 else
842 TYPE_LENGTH (type) = ctf_type_size (fp, tid);
843
844 set_type_align (type, ctf_type_align (fp, tid));
845
846 return set_tid_type (objfile, tid, type);
847 }
848
849 /* Read TID of kind CTF_K_CONST with base type BTID. */
850
851 static struct type *
852 read_const_type (struct ctf_context *ccp, ctf_id_t tid, ctf_id_t btid)
853 {
854 struct objfile *objfile = ccp->of;
855 struct type *base_type, *cv_type;
856
857 base_type = fetch_tid_type (ccp, btid);
858 if (base_type == nullptr)
859 {
860 base_type = read_type_record (ccp, btid);
861 if (base_type == nullptr)
862 {
863 complaint (_("read_const_type: NULL base type (%ld)"), btid);
864 base_type = objfile_type (objfile)->builtin_error;
865 }
866 }
867 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
868
869 return set_tid_type (objfile, tid, cv_type);
870 }
871
872 /* Read TID of kind CTF_K_VOLATILE with base type BTID. */
873
874 static struct type *
875 read_volatile_type (struct ctf_context *ccp, ctf_id_t tid, ctf_id_t btid)
876 {
877 struct objfile *objfile = ccp->of;
878 ctf_dict_t *fp = ccp->fp;
879 struct type *base_type, *cv_type;
880
881 base_type = fetch_tid_type (ccp, btid);
882 if (base_type == nullptr)
883 {
884 base_type = read_type_record (ccp, btid);
885 if (base_type == nullptr)
886 {
887 complaint (_("read_volatile_type: NULL base type (%ld)"), btid);
888 base_type = objfile_type (objfile)->builtin_error;
889 }
890 }
891
892 if (ctf_type_kind (fp, btid) == CTF_K_ARRAY)
893 return add_array_cv_type (ccp, tid, base_type, 0, 1);
894 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
895
896 return set_tid_type (objfile, tid, cv_type);
897 }
898
899 /* Read TID of kind CTF_K_RESTRICT with base type BTID. */
900
901 static struct type *
902 read_restrict_type (struct ctf_context *ccp, ctf_id_t tid, ctf_id_t btid)
903 {
904 struct objfile *objfile = ccp->of;
905 struct type *base_type, *cv_type;
906
907 base_type = fetch_tid_type (ccp, btid);
908 if (base_type == nullptr)
909 {
910 base_type = read_type_record (ccp, btid);
911 if (base_type == nullptr)
912 {
913 complaint (_("read_restrict_type: NULL base type (%ld)"), btid);
914 base_type = objfile_type (objfile)->builtin_error;
915 }
916 }
917 cv_type = make_restrict_type (base_type);
918
919 return set_tid_type (objfile, tid, cv_type);
920 }
921
922 /* Read TID of kind CTF_K_TYPEDEF with its NAME and base type BTID. */
923
924 static struct type *
925 read_typedef_type (struct ctf_context *ccp, ctf_id_t tid,
926 ctf_id_t btid, const char *name)
927 {
928 struct objfile *objfile = ccp->of;
929 struct type *this_type, *target_type;
930
931 char *aname = obstack_strdup (&objfile->objfile_obstack, name);
932 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, aname);
933 set_tid_type (objfile, tid, this_type);
934 target_type = fetch_tid_type (ccp, btid);
935 if (target_type != this_type)
936 TYPE_TARGET_TYPE (this_type) = target_type;
937 else
938 TYPE_TARGET_TYPE (this_type) = nullptr;
939
940 this_type->set_target_is_stub (TYPE_TARGET_TYPE (this_type) != nullptr);
941
942 return set_tid_type (objfile, tid, this_type);
943 }
944
945 /* Read TID of kind CTF_K_POINTER with base type BTID. */
946
947 static struct type *
948 read_pointer_type (struct ctf_context *ccp, ctf_id_t tid, ctf_id_t btid)
949 {
950 struct objfile *of = ccp->of;
951 struct type *target_type, *type;
952
953 target_type = fetch_tid_type (ccp, btid);
954 if (target_type == nullptr)
955 {
956 target_type = read_type_record (ccp, btid);
957 if (target_type == nullptr)
958 {
959 complaint (_("read_pointer_type: NULL target type (%ld)"), btid);
960 target_type = objfile_type (ccp->of)->builtin_error;
961 }
962 }
963
964 type = lookup_pointer_type (target_type);
965 set_type_align (type, ctf_type_align (ccp->fp, tid));
966
967 return set_tid_type (of, tid, type);
968 }
969
970 /* Read information from a TID of CTF_K_FORWARD. */
971
972 static struct type *
973 read_forward_type (struct ctf_context *ccp, ctf_id_t tid)
974 {
975 struct objfile *of = ccp->of;
976 ctf_dict_t *fp = ccp->fp;
977 struct type *type;
978 uint32_t kind;
979
980 type = alloc_type (of);
981
982 const char *name = ctf_type_name_raw (fp, tid);
983 if (name != nullptr && strlen (name) != 0)
984 type->set_name (name);
985
986 kind = ctf_type_kind_forwarded (fp, tid);
987 if (kind == CTF_K_UNION)
988 type->set_code (TYPE_CODE_UNION);
989 else
990 type->set_code (TYPE_CODE_STRUCT);
991
992 TYPE_LENGTH (type) = 0;
993 type->set_is_stub (true);
994
995 return set_tid_type (of, tid, type);
996 }
997
998 /* Read information associated with type TID. */
999
1000 static struct type *
1001 read_type_record (struct ctf_context *ccp, ctf_id_t tid)
1002 {
1003 ctf_dict_t *fp = ccp->fp;
1004 uint32_t kind;
1005 struct type *type = nullptr;
1006 ctf_id_t btid;
1007
1008 kind = ctf_type_kind (fp, tid);
1009 switch (kind)
1010 {
1011 case CTF_K_STRUCT:
1012 case CTF_K_UNION:
1013 type = read_structure_type (ccp, tid);
1014 break;
1015 case CTF_K_ENUM:
1016 type = read_enum_type (ccp, tid);
1017 break;
1018 case CTF_K_FUNCTION:
1019 type = read_func_kind_type (ccp, tid);
1020 break;
1021 case CTF_K_CONST:
1022 btid = ctf_type_reference (fp, tid);
1023 type = read_const_type (ccp, tid, btid);
1024 break;
1025 case CTF_K_TYPEDEF:
1026 {
1027 const char *name = ctf_type_name_raw (fp, tid);
1028 btid = ctf_type_reference (fp, tid);
1029 type = read_typedef_type (ccp, tid, btid, name);
1030 }
1031 break;
1032 case CTF_K_VOLATILE:
1033 btid = ctf_type_reference (fp, tid);
1034 type = read_volatile_type (ccp, tid, btid);
1035 break;
1036 case CTF_K_RESTRICT:
1037 btid = ctf_type_reference (fp, tid);
1038 type = read_restrict_type (ccp, tid, btid);
1039 break;
1040 case CTF_K_POINTER:
1041 btid = ctf_type_reference (fp, tid);
1042 type = read_pointer_type (ccp, tid, btid);
1043 break;
1044 case CTF_K_INTEGER:
1045 case CTF_K_FLOAT:
1046 type = read_base_type (ccp, tid);
1047 break;
1048 case CTF_K_ARRAY:
1049 type = read_array_type (ccp, tid);
1050 break;
1051 case CTF_K_FORWARD:
1052 type = read_forward_type (ccp, tid);
1053 break;
1054 case CTF_K_UNKNOWN:
1055 break;
1056 default:
1057 break;
1058 }
1059
1060 return type;
1061 }
1062
1063 /* Callback to add type TID to the symbol table. */
1064
1065 static int
1066 ctf_add_type_cb (ctf_id_t tid, void *arg)
1067 {
1068 struct ctf_context *ccp = (struct ctf_context *) arg;
1069 struct type *type;
1070 uint32_t kind;
1071
1072 /* Check if tid's type has already been defined. */
1073 type = get_tid_type (ccp->of, tid);
1074 if (type != nullptr)
1075 return 0;
1076
1077 ctf_id_t btid = ctf_type_reference (ccp->fp, tid);
1078 kind = ctf_type_kind (ccp->fp, tid);
1079 switch (kind)
1080 {
1081 case CTF_K_STRUCT:
1082 case CTF_K_UNION:
1083 process_structure_type (ccp, tid);
1084 break;
1085 case CTF_K_ENUM:
1086 process_enum_type (ccp, tid);
1087 break;
1088 case CTF_K_FUNCTION:
1089 type = read_func_kind_type (ccp, tid);
1090 new_symbol (ccp, type, tid);
1091 break;
1092 case CTF_K_INTEGER:
1093 case CTF_K_FLOAT:
1094 process_base_type (ccp, tid);
1095 break;
1096 case CTF_K_TYPEDEF:
1097 new_symbol (ccp, read_type_record (ccp, tid), tid);
1098 break;
1099 case CTF_K_CONST:
1100 type = read_const_type (ccp, tid, btid);
1101 new_symbol (ccp, type, tid);
1102 break;
1103 case CTF_K_VOLATILE:
1104 type = read_volatile_type (ccp, tid, btid);
1105 new_symbol (ccp, type, tid);
1106 break;
1107 case CTF_K_RESTRICT:
1108 type = read_restrict_type (ccp, tid, btid);
1109 new_symbol (ccp, type, tid);
1110 break;
1111 case CTF_K_POINTER:
1112 type = read_pointer_type (ccp, tid, btid);
1113 new_symbol (ccp, type, tid);
1114 break;
1115 case CTF_K_ARRAY:
1116 type = read_array_type (ccp, tid);
1117 new_symbol (ccp, type, tid);
1118 break;
1119 case CTF_K_UNKNOWN:
1120 break;
1121 default:
1122 break;
1123 }
1124
1125 return 0;
1126 }
1127
1128 /* Callback to add variable NAME with TID to the symbol table. */
1129
1130 static int
1131 ctf_add_var_cb (const char *name, ctf_id_t id, void *arg)
1132 {
1133 struct ctf_context *ccp = (struct ctf_context *) arg;
1134 struct symbol *sym = nullptr;
1135 struct type *type;
1136 uint32_t kind;
1137
1138 type = get_tid_type (ccp->of, id);
1139
1140 kind = ctf_type_kind (ccp->fp, id);
1141 switch (kind)
1142 {
1143 case CTF_K_FUNCTION:
1144 if (name != nullptr && strcmp (name, "main") == 0)
1145 set_objfile_main_name (ccp->of, name, language_c);
1146 break;
1147 case CTF_K_INTEGER:
1148 case CTF_K_FLOAT:
1149 case CTF_K_VOLATILE:
1150 case CTF_K_RESTRICT:
1151 case CTF_K_TYPEDEF:
1152 case CTF_K_CONST:
1153 case CTF_K_POINTER:
1154 case CTF_K_ARRAY:
1155 if (type != nullptr)
1156 {
1157 sym = new_symbol (ccp, type, id);
1158 if (sym != nullptr)
1159 sym->compute_and_set_names (name, false, ccp->of->per_bfd);
1160 }
1161 break;
1162 case CTF_K_STRUCT:
1163 case CTF_K_UNION:
1164 case CTF_K_ENUM:
1165 if (type == nullptr)
1166 {
1167 complaint (_("ctf_add_var_cb: %s has NO type (%ld)"), name, id);
1168 type = objfile_type (ccp->of)->builtin_error;
1169 }
1170 sym = new (&ccp->of->objfile_obstack) symbol;
1171 OBJSTAT (ccp->of, n_syms++);
1172 sym->set_type (type);
1173 sym->set_domain (VAR_DOMAIN);
1174 sym->set_aclass_index (LOC_OPTIMIZED_OUT);
1175 sym->compute_and_set_names (name, false, ccp->of->per_bfd);
1176 add_symbol_to_list (sym, ccp->builder->get_file_symbols ());
1177 break;
1178 default:
1179 complaint (_("ctf_add_var_cb: kind unsupported (%d)"), kind);
1180 break;
1181 }
1182
1183 if (sym != nullptr)
1184 set_symbol_address (ccp->of, sym, name);
1185
1186 return 0;
1187 }
1188
1189 /* Add entries in either data objects or function info section, controlled
1190 by FUNCTIONS. */
1191
1192 static void
1193 add_stt_entries (struct ctf_context *ccp, int functions)
1194 {
1195 ctf_next_t *i = nullptr;
1196 const char *tname;
1197 ctf_id_t tid;
1198 struct symbol *sym = nullptr;
1199 struct type *type;
1200
1201 while ((tid = ctf_symbol_next (ccp->fp, &i, &tname, functions)) != CTF_ERR)
1202 {
1203 type = get_tid_type (ccp->of, tid);
1204 if (type == nullptr)
1205 continue;
1206 sym = new (&ccp->of->objfile_obstack) symbol;
1207 OBJSTAT (ccp->of, n_syms++);
1208 sym->set_type (type);
1209 sym->set_domain (VAR_DOMAIN);
1210 sym->set_aclass_index (LOC_STATIC);
1211 sym->compute_and_set_names (tname, false, ccp->of->per_bfd);
1212 add_symbol_to_list (sym, ccp->builder->get_global_symbols ());
1213 set_symbol_address (ccp->of, sym, tname);
1214 }
1215 }
1216
1217 /* Add entries in data objects section. */
1218
1219 static void
1220 add_stt_obj (struct ctf_context *ccp)
1221 {
1222 add_stt_entries (ccp, 0);
1223 }
1224
1225 /* Add entries in function info section. */
1226
1227 static void
1228 add_stt_func (struct ctf_context *ccp)
1229 {
1230 add_stt_entries (ccp, 1);
1231 }
1232
1233 /* Get text segment base for OBJFILE, TSIZE contains the segment size. */
1234
1235 static CORE_ADDR
1236 get_objfile_text_range (struct objfile *of, int *tsize)
1237 {
1238 bfd *abfd = of->obfd;
1239 const asection *codes;
1240
1241 codes = bfd_get_section_by_name (abfd, ".text");
1242 *tsize = codes ? bfd_section_size (codes) : 0;
1243 return of->text_section_offset ();
1244 }
1245
1246 /* Start a symtab for OBJFILE in CTF format. */
1247
1248 static void
1249 ctf_start_compunit_symtab (ctf_psymtab *pst,
1250 struct objfile *of, CORE_ADDR text_offset)
1251 {
1252 struct ctf_context *ccp;
1253
1254 ccp = &pst->context;
1255 ccp->builder = new buildsym_compunit
1256 (of, pst->filename, nullptr,
1257 language_c, text_offset);
1258 ccp->builder->record_debugformat ("ctf");
1259 }
1260
1261 /* Finish reading symbol/type definitions in CTF format.
1262 END_ADDR is the end address of the file's text. SECTION is
1263 the .text section number. */
1264
1265 static struct compunit_symtab *
1266 ctf_end_compunit_symtab (ctf_psymtab *pst,
1267 CORE_ADDR end_addr, int section)
1268 {
1269 struct ctf_context *ccp;
1270
1271 ccp = &pst->context;
1272 struct compunit_symtab *result
1273 = ccp->builder->end_compunit_symtab (end_addr, section);
1274 delete ccp->builder;
1275 ccp->builder = nullptr;
1276 return result;
1277 }
1278
1279 /* Add all members of an enum with type TID to partial symbol table. */
1280
1281 static void
1282 ctf_psymtab_add_enums (struct ctf_context *ccp, ctf_id_t tid)
1283 {
1284 int val;
1285 const char *ename;
1286 ctf_next_t *i = nullptr;
1287
1288 while ((ename = ctf_enum_next (ccp->fp, tid, &i, &val)) != nullptr)
1289 {
1290 ccp->pst->add_psymbol (ename, true,
1291 VAR_DOMAIN, LOC_CONST, -1,
1292 psymbol_placement::GLOBAL,
1293 0, language_c, ccp->partial_symtabs, ccp->of);
1294 }
1295 if (ctf_errno (ccp->fp) != ECTF_NEXT_END)
1296 complaint (_("ctf_enum_next ctf_psymtab_add_enums failed - %s"),
1297 ctf_errmsg (ctf_errno (ccp->fp)));
1298 }
1299
1300 /* Add entries in either data objects or function info section, controlled
1301 by FUNCTIONS, to psymtab. */
1302
1303 static void
1304 ctf_psymtab_add_stt_entries (ctf_dict_t *cfp, ctf_psymtab *pst,
1305 struct objfile *of, int functions)
1306 {
1307 ctf_next_t *i = nullptr;
1308 ctf_id_t tid;
1309 const char *tname;
1310
1311 while ((tid = ctf_symbol_next (cfp, &i, &tname, functions)) != CTF_ERR)
1312 {
1313 uint32_t kind = ctf_type_kind (cfp, tid);
1314 address_class aclass;
1315 domain_enum tdomain;
1316 switch (kind)
1317 {
1318 case CTF_K_STRUCT:
1319 case CTF_K_UNION:
1320 case CTF_K_ENUM:
1321 tdomain = STRUCT_DOMAIN;
1322 break;
1323 default:
1324 tdomain = VAR_DOMAIN;
1325 break;
1326 }
1327
1328 if (kind == CTF_K_FUNCTION)
1329 aclass = LOC_STATIC;
1330 else if (kind == CTF_K_CONST)
1331 aclass = LOC_CONST;
1332 else
1333 aclass = LOC_TYPEDEF;
1334
1335 pst->add_psymbol (tname, true,
1336 tdomain, aclass, -1,
1337 psymbol_placement::GLOBAL,
1338 0, language_c, pst->context.partial_symtabs, of);
1339 }
1340 }
1341
1342 /* Add entries in data objects section to psymtab. */
1343
1344 static void
1345 ctf_psymtab_add_stt_obj (ctf_dict_t *cfp, ctf_psymtab *pst,
1346 struct objfile *of)
1347 {
1348 ctf_psymtab_add_stt_entries (cfp, pst, of, 0);
1349 }
1350
1351 /* Add entries in function info section to psymtab. */
1352
1353 static void
1354 ctf_psymtab_add_stt_func (ctf_dict_t *cfp, ctf_psymtab *pst,
1355 struct objfile *of)
1356 {
1357 ctf_psymtab_add_stt_entries (cfp, pst, of, 1);
1358 }
1359
1360 /* Read in full symbols for PST, and anything it depends on. */
1361
1362 void
1363 ctf_psymtab::expand_psymtab (struct objfile *objfile)
1364 {
1365 struct ctf_context *ccp;
1366
1367 gdb_assert (!readin);
1368
1369 ccp = &context;
1370
1371 /* Iterate over entries in data types section. */
1372 if (ctf_type_iter (ccp->fp, ctf_add_type_cb, ccp) == CTF_ERR)
1373 complaint (_("ctf_type_iter psymtab_to_symtab failed - %s"),
1374 ctf_errmsg (ctf_errno (ccp->fp)));
1375
1376
1377 /* Iterate over entries in variable info section. */
1378 if (ctf_variable_iter (ccp->fp, ctf_add_var_cb, ccp) == CTF_ERR)
1379 complaint (_("ctf_variable_iter psymtab_to_symtab failed - %s"),
1380 ctf_errmsg (ctf_errno (ccp->fp)));
1381
1382 /* Add entries in data objects and function info sections. */
1383 add_stt_obj (ccp);
1384 add_stt_func (ccp);
1385
1386 readin = true;
1387 }
1388
1389 /* Expand partial symbol table PST into a full symbol table.
1390 PST is not NULL. */
1391
1392 void
1393 ctf_psymtab::read_symtab (struct objfile *objfile)
1394 {
1395 if (readin)
1396 warning (_("bug: psymtab for %s is already read in."), filename);
1397 else
1398 {
1399 if (info_verbose)
1400 {
1401 gdb_printf (_("Reading in CTF data for %s..."), filename);
1402 gdb_flush (gdb_stdout);
1403 }
1404
1405 /* Start a symtab. */
1406 CORE_ADDR offset; /* Start of text segment. */
1407 int tsize;
1408
1409 offset = get_objfile_text_range (objfile, &tsize);
1410 ctf_start_compunit_symtab (this, objfile, offset);
1411 expand_psymtab (objfile);
1412
1413 set_text_low (offset);
1414 set_text_high (offset + tsize);
1415 compunit_symtab = ctf_end_compunit_symtab (this, offset + tsize,
1416 SECT_OFF_TEXT (objfile));
1417
1418 /* Finish up the debug error message. */
1419 if (info_verbose)
1420 gdb_printf (_("done.\n"));
1421 }
1422 }
1423
1424 /* Allocate a new partial_symtab NAME.
1425
1426 Each source file that has not been fully read in is represented by
1427 a partial_symtab. This contains the information on where in the
1428 executable the debugging symbols for a specific file are, and a
1429 list of names of global symbols which are located in this file.
1430 They are all chained on partial symtab lists.
1431
1432 Even after the source file has been read into a symtab, the
1433 partial_symtab remains around. They are allocated on an obstack,
1434 objfile_obstack. */
1435
1436 static ctf_psymtab *
1437 create_partial_symtab (const char *name,
1438 ctf_archive_t *arc,
1439 ctf_dict_t *cfp,
1440 psymtab_storage *partial_symtabs,
1441 struct objfile *objfile)
1442 {
1443 ctf_psymtab *pst;
1444
1445 pst = new ctf_psymtab (name, partial_symtabs, objfile->per_bfd, 0);
1446
1447 pst->context.arc = arc;
1448 pst->context.fp = cfp;
1449 pst->context.of = objfile;
1450 pst->context.partial_symtabs = partial_symtabs;
1451 pst->context.pst = pst;
1452 pst->context.builder = nullptr;
1453
1454 return pst;
1455 }
1456
1457 /* Callback to add type TID to partial symbol table. */
1458
1459 static int
1460 ctf_psymtab_type_cb (ctf_id_t tid, void *arg)
1461 {
1462 struct ctf_context *ccp;
1463 uint32_t kind;
1464 short section = -1;
1465
1466 ccp = (struct ctf_context *) arg;
1467
1468 domain_enum domain = UNDEF_DOMAIN;
1469 enum address_class aclass = LOC_UNDEF;
1470 kind = ctf_type_kind (ccp->fp, tid);
1471 switch (kind)
1472 {
1473 case CTF_K_ENUM:
1474 ctf_psymtab_add_enums (ccp, tid);
1475 /* FALL THROUGH */
1476 case CTF_K_STRUCT:
1477 case CTF_K_UNION:
1478 domain = STRUCT_DOMAIN;
1479 aclass = LOC_TYPEDEF;
1480 break;
1481 case CTF_K_FUNCTION:
1482 case CTF_K_FORWARD:
1483 domain = VAR_DOMAIN;
1484 aclass = LOC_STATIC;
1485 section = SECT_OFF_TEXT (ccp->of);
1486 break;
1487 case CTF_K_CONST:
1488 domain = VAR_DOMAIN;
1489 aclass = LOC_STATIC;
1490 break;
1491 case CTF_K_TYPEDEF:
1492 case CTF_K_POINTER:
1493 case CTF_K_VOLATILE:
1494 case CTF_K_RESTRICT:
1495 domain = VAR_DOMAIN;
1496 aclass = LOC_TYPEDEF;
1497 break;
1498 case CTF_K_INTEGER:
1499 case CTF_K_FLOAT:
1500 domain = VAR_DOMAIN;
1501 aclass = LOC_TYPEDEF;
1502 break;
1503 case CTF_K_ARRAY:
1504 case CTF_K_UNKNOWN:
1505 return 0;
1506 }
1507
1508 const char *name = ctf_type_name_raw (ccp->fp, tid);
1509 if (name == nullptr || strlen (name) == 0)
1510 return 0;
1511
1512 ccp->pst->add_psymbol (name, false,
1513 domain, aclass, section,
1514 psymbol_placement::STATIC,
1515 0, language_c, ccp->partial_symtabs, ccp->of);
1516
1517 return 0;
1518 }
1519
1520 /* Callback to add variable NAME with ID to partial symbol table. */
1521
1522 static int
1523 ctf_psymtab_var_cb (const char *name, ctf_id_t id, void *arg)
1524 {
1525 struct ctf_context *ccp = (struct ctf_context *) arg;
1526
1527 ccp->pst->add_psymbol (name, true,
1528 VAR_DOMAIN, LOC_STATIC, -1,
1529 psymbol_placement::GLOBAL,
1530 0, language_c, ccp->partial_symtabs, ccp->of);
1531 return 0;
1532 }
1533
1534 /* Setup partial_symtab's describing each source file for which
1535 debugging information is available. */
1536
1537 static void
1538 scan_partial_symbols (ctf_dict_t *cfp, psymtab_storage *partial_symtabs,
1539 struct ctf_per_tu_data *tup, const char *fname)
1540 {
1541 struct objfile *of = tup->of;
1542 bool isparent = false;
1543
1544 if (strcmp (fname, ".ctf") == 0)
1545 {
1546 fname = bfd_get_filename (of->obfd);
1547 isparent = true;
1548 }
1549
1550 ctf_psymtab *pst = create_partial_symtab (fname, tup->arc, cfp,
1551 partial_symtabs, of);
1552
1553 struct ctf_context *ccx = &pst->context;
1554 if (isparent == false)
1555 ccx->pst = pst;
1556
1557 if (ctf_type_iter (cfp, ctf_psymtab_type_cb, ccx) == CTF_ERR)
1558 complaint (_("ctf_type_iter scan_partial_symbols failed - %s"),
1559 ctf_errmsg (ctf_errno (cfp)));
1560
1561 if (ctf_variable_iter (cfp, ctf_psymtab_var_cb, ccx) == CTF_ERR)
1562 complaint (_("ctf_variable_iter scan_partial_symbols failed - %s"),
1563 ctf_errmsg (ctf_errno (cfp)));
1564
1565 /* Scan CTF object and function sections which correspond to each
1566 STT_FUNC or STT_OBJECT entry in the symbol table,
1567 pick up what init_symtab has done. */
1568 ctf_psymtab_add_stt_obj (cfp, pst, of);
1569 ctf_psymtab_add_stt_func (cfp, pst, of);
1570
1571 pst->end ();
1572 }
1573
1574 /* Callback to build the psymtab for archive member NAME. */
1575
1576 static int
1577 build_ctf_archive_member (ctf_dict_t *ctf, const char *name, void *arg)
1578 {
1579 struct ctf_per_tu_data *tup = (struct ctf_per_tu_data *) arg;
1580 ctf_dict_t *parent = tup->fp;
1581
1582 if (strcmp (name, ".ctf") != 0)
1583 ctf_import (ctf, parent);
1584
1585 if (info_verbose)
1586 {
1587 gdb_printf (_("Scanning archive member %s..."), name);
1588 gdb_flush (gdb_stdout);
1589 }
1590
1591 psymtab_storage *pss = tup->psf->get_partial_symtabs ().get ();
1592 scan_partial_symbols (ctf, pss, tup, name);
1593
1594 return 0;
1595 }
1596
1597 /* Read CTF debugging information from a BFD section. This is
1598 called from elfread.c. It does a quick pass through the
1599 .ctf section to set up the partial symbol table. */
1600
1601 void
1602 elfctf_build_psymtabs (struct objfile *of)
1603 {
1604 struct ctf_per_tu_data pcu;
1605 bfd *abfd = of->obfd;
1606 int err;
1607
1608 ctf_archive_t *arc = ctf_bfdopen (abfd, &err);
1609 if (arc == nullptr)
1610 error (_("ctf_bfdopen failed on %s - %s"),
1611 bfd_get_filename (abfd), ctf_errmsg (err));
1612
1613 ctf_dict_t *fp = ctf_dict_open (arc, NULL, &err);
1614 if (fp == nullptr)
1615 error (_("ctf_dict_open failed on %s - %s"),
1616 bfd_get_filename (abfd), ctf_errmsg (err));
1617 ctf_dict_key.emplace (of, fp);
1618
1619 pcu.fp = fp;
1620 pcu.of = of;
1621 pcu.arc = arc;
1622
1623 psymbol_functions *psf = new psymbol_functions ();
1624 of->qf.emplace_front (psf);
1625 pcu.psf = psf;
1626
1627 if (ctf_archive_iter (arc, build_ctf_archive_member, &pcu) < 0)
1628 error (_("ctf_archive_iter failed in input file %s: - %s"),
1629 bfd_get_filename (abfd), ctf_errmsg (err));
1630 }
1631
1632 #else
1633
1634 void
1635 elfctf_build_psymtabs (struct objfile *of)
1636 {
1637 /* Nothing to do if CTF is disabled. */
1638 }
1639
1640 #endif /* ENABLE_LIBCTF */