2003-02-01 Andrew Cagney <ac131313@redhat.com>
[binutils-gdb.git] / gdb / d10v-tdep.c
1 /* Target-dependent code for Mitsubishi D10V, for GDB.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Contributed by Martin Hunt, hunt@cygnus.com */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdb_string.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "language.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41
42 #include "floatformat.h"
43 #include "gdb/sim-d10v.h"
44 #include "sim-regno.h"
45
46 #include "gdb_assert.h"
47
48 struct frame_extra_info
49 {
50 CORE_ADDR return_pc;
51 int frameless;
52 int size;
53 };
54
55 struct gdbarch_tdep
56 {
57 int a0_regnum;
58 int nr_dmap_regs;
59 unsigned long (*dmap_register) (int nr);
60 unsigned long (*imap_register) (int nr);
61 };
62
63 /* These are the addresses the D10V-EVA board maps data and
64 instruction memory to. */
65
66 enum memspace {
67 DMEM_START = 0x2000000,
68 IMEM_START = 0x1000000,
69 STACK_START = 0x200bffe
70 };
71
72 /* d10v register names. */
73
74 enum
75 {
76 R0_REGNUM = 0,
77 R3_REGNUM = 3,
78 _FP_REGNUM = 11,
79 LR_REGNUM = 13,
80 _SP_REGNUM = 15,
81 PSW_REGNUM = 16,
82 _PC_REGNUM = 18,
83 NR_IMAP_REGS = 2,
84 NR_A_REGS = 2,
85 TS2_NUM_REGS = 37,
86 TS3_NUM_REGS = 42,
87 /* d10v calling convention. */
88 ARG1_REGNUM = R0_REGNUM,
89 ARGN_REGNUM = R3_REGNUM,
90 RET1_REGNUM = R0_REGNUM,
91 };
92
93 #define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
94 #define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
95
96 /* Local functions */
97
98 extern void _initialize_d10v_tdep (void);
99
100 static CORE_ADDR d10v_read_sp (void);
101
102 static CORE_ADDR d10v_read_fp (void);
103
104 static void d10v_eva_prepare_to_trace (void);
105
106 static void d10v_eva_get_trace_data (void);
107
108 static CORE_ADDR
109 d10v_stack_align (CORE_ADDR len)
110 {
111 return (len + 1) & ~1;
112 }
113
114 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
115 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
116 and TYPE is the type (which is known to be struct, union or array).
117
118 The d10v returns anything less than 8 bytes in size in
119 registers. */
120
121 static int
122 d10v_use_struct_convention (int gcc_p, struct type *type)
123 {
124 long alignment;
125 int i;
126 /* The d10v only passes a struct in a register when that structure
127 has an alignment that matches the size of a register. */
128 /* If the structure doesn't fit in 4 registers, put it on the
129 stack. */
130 if (TYPE_LENGTH (type) > 8)
131 return 1;
132 /* If the struct contains only one field, don't put it on the stack
133 - gcc can fit it in one or more registers. */
134 if (TYPE_NFIELDS (type) == 1)
135 return 0;
136 alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
137 for (i = 1; i < TYPE_NFIELDS (type); i++)
138 {
139 /* If the alignment changes, just assume it goes on the
140 stack. */
141 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
142 return 1;
143 }
144 /* If the alignment is suitable for the d10v's 16 bit registers,
145 don't put it on the stack. */
146 if (alignment == 2 || alignment == 4)
147 return 0;
148 return 1;
149 }
150
151
152 static const unsigned char *
153 d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
154 {
155 static unsigned char breakpoint[] =
156 {0x2f, 0x90, 0x5e, 0x00};
157 *lenptr = sizeof (breakpoint);
158 return breakpoint;
159 }
160
161 /* Map the REG_NR onto an ascii name. Return NULL or an empty string
162 when the reg_nr isn't valid. */
163
164 enum ts2_regnums
165 {
166 TS2_IMAP0_REGNUM = 32,
167 TS2_DMAP_REGNUM = 34,
168 TS2_NR_DMAP_REGS = 1,
169 TS2_A0_REGNUM = 35
170 };
171
172 static const char *
173 d10v_ts2_register_name (int reg_nr)
174 {
175 static char *register_names[] =
176 {
177 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
178 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
179 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
180 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
181 "imap0", "imap1", "dmap", "a0", "a1"
182 };
183 if (reg_nr < 0)
184 return NULL;
185 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
186 return NULL;
187 return register_names[reg_nr];
188 }
189
190 enum ts3_regnums
191 {
192 TS3_IMAP0_REGNUM = 36,
193 TS3_DMAP0_REGNUM = 38,
194 TS3_NR_DMAP_REGS = 4,
195 TS3_A0_REGNUM = 32
196 };
197
198 static const char *
199 d10v_ts3_register_name (int reg_nr)
200 {
201 static char *register_names[] =
202 {
203 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
204 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
205 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
206 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
207 "a0", "a1",
208 "spi", "spu",
209 "imap0", "imap1",
210 "dmap0", "dmap1", "dmap2", "dmap3"
211 };
212 if (reg_nr < 0)
213 return NULL;
214 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
215 return NULL;
216 return register_names[reg_nr];
217 }
218
219 /* Access the DMAP/IMAP registers in a target independent way.
220
221 Divide the D10V's 64k data space into four 16k segments:
222 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
223 0xc000 -- 0xffff.
224
225 On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
226 0x7fff) always map to the on-chip data RAM, and the fourth always
227 maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
228 unified memory or instruction memory, under the control of the
229 single DMAP register.
230
231 On the TS3, there are four DMAP registers, each of which controls
232 one of the segments. */
233
234 static unsigned long
235 d10v_ts2_dmap_register (int reg_nr)
236 {
237 switch (reg_nr)
238 {
239 case 0:
240 case 1:
241 return 0x2000;
242 case 2:
243 return read_register (TS2_DMAP_REGNUM);
244 default:
245 return 0;
246 }
247 }
248
249 static unsigned long
250 d10v_ts3_dmap_register (int reg_nr)
251 {
252 return read_register (TS3_DMAP0_REGNUM + reg_nr);
253 }
254
255 static unsigned long
256 d10v_dmap_register (int reg_nr)
257 {
258 return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
259 }
260
261 static unsigned long
262 d10v_ts2_imap_register (int reg_nr)
263 {
264 return read_register (TS2_IMAP0_REGNUM + reg_nr);
265 }
266
267 static unsigned long
268 d10v_ts3_imap_register (int reg_nr)
269 {
270 return read_register (TS3_IMAP0_REGNUM + reg_nr);
271 }
272
273 static unsigned long
274 d10v_imap_register (int reg_nr)
275 {
276 return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
277 }
278
279 /* MAP GDB's internal register numbering (determined by the layout fo
280 the REGISTER_BYTE array) onto the simulator's register
281 numbering. */
282
283 static int
284 d10v_ts2_register_sim_regno (int nr)
285 {
286 if (legacy_register_sim_regno (nr) < 0)
287 return legacy_register_sim_regno (nr);
288 if (nr >= TS2_IMAP0_REGNUM
289 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
290 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
291 if (nr == TS2_DMAP_REGNUM)
292 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
293 if (nr >= TS2_A0_REGNUM
294 && nr < TS2_A0_REGNUM + NR_A_REGS)
295 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
296 return nr;
297 }
298
299 static int
300 d10v_ts3_register_sim_regno (int nr)
301 {
302 if (legacy_register_sim_regno (nr) < 0)
303 return legacy_register_sim_regno (nr);
304 if (nr >= TS3_IMAP0_REGNUM
305 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
306 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
307 if (nr >= TS3_DMAP0_REGNUM
308 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
309 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
310 if (nr >= TS3_A0_REGNUM
311 && nr < TS3_A0_REGNUM + NR_A_REGS)
312 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
313 return nr;
314 }
315
316 /* Index within `registers' of the first byte of the space for
317 register REG_NR. */
318
319 static int
320 d10v_register_byte (int reg_nr)
321 {
322 if (reg_nr < A0_REGNUM)
323 return (reg_nr * 2);
324 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
325 return (A0_REGNUM * 2
326 + (reg_nr - A0_REGNUM) * 8);
327 else
328 return (A0_REGNUM * 2
329 + NR_A_REGS * 8
330 + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
331 }
332
333 /* Number of bytes of storage in the actual machine representation for
334 register REG_NR. */
335
336 static int
337 d10v_register_raw_size (int reg_nr)
338 {
339 if (reg_nr < A0_REGNUM)
340 return 2;
341 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
342 return 8;
343 else
344 return 2;
345 }
346
347 /* Return the GDB type object for the "standard" data type
348 of data in register N. */
349
350 static struct type *
351 d10v_register_virtual_type (int reg_nr)
352 {
353 if (reg_nr == PC_REGNUM)
354 return builtin_type_void_func_ptr;
355 if (reg_nr == _SP_REGNUM || reg_nr == _FP_REGNUM)
356 return builtin_type_void_data_ptr;
357 else if (reg_nr >= A0_REGNUM
358 && reg_nr < (A0_REGNUM + NR_A_REGS))
359 return builtin_type_int64;
360 else
361 return builtin_type_int16;
362 }
363
364 static int
365 d10v_daddr_p (CORE_ADDR x)
366 {
367 return (((x) & 0x3000000) == DMEM_START);
368 }
369
370 static int
371 d10v_iaddr_p (CORE_ADDR x)
372 {
373 return (((x) & 0x3000000) == IMEM_START);
374 }
375
376 static CORE_ADDR
377 d10v_make_daddr (CORE_ADDR x)
378 {
379 return ((x) | DMEM_START);
380 }
381
382 static CORE_ADDR
383 d10v_make_iaddr (CORE_ADDR x)
384 {
385 if (d10v_iaddr_p (x))
386 return x; /* Idempotency -- x is already in the IMEM space. */
387 else
388 return (((x) << 2) | IMEM_START);
389 }
390
391 static CORE_ADDR
392 d10v_convert_iaddr_to_raw (CORE_ADDR x)
393 {
394 return (((x) >> 2) & 0xffff);
395 }
396
397 static CORE_ADDR
398 d10v_convert_daddr_to_raw (CORE_ADDR x)
399 {
400 return ((x) & 0xffff);
401 }
402
403 static void
404 d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
405 {
406 /* Is it a code address? */
407 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
408 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
409 {
410 store_unsigned_integer (buf, TYPE_LENGTH (type),
411 d10v_convert_iaddr_to_raw (addr));
412 }
413 else
414 {
415 /* Strip off any upper segment bits. */
416 store_unsigned_integer (buf, TYPE_LENGTH (type),
417 d10v_convert_daddr_to_raw (addr));
418 }
419 }
420
421 static CORE_ADDR
422 d10v_pointer_to_address (struct type *type, const void *buf)
423 {
424 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
425
426 /* Is it a code address? */
427 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
428 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
429 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
430 return d10v_make_iaddr (addr);
431 else
432 return d10v_make_daddr (addr);
433 }
434
435 /* Don't do anything if we have an integer, this way users can type 'x
436 <addr>' w/o having gdb outsmart them. The internal gdb conversions
437 to the correct space are taken care of in the pointer_to_address
438 function. If we don't do this, 'x $fp' wouldn't work. */
439 static CORE_ADDR
440 d10v_integer_to_address (struct type *type, void *buf)
441 {
442 LONGEST val;
443 val = unpack_long (type, buf);
444 return val;
445 }
446
447 /* Store the address of the place in which to copy the structure the
448 subroutine will return. This is called from call_function.
449
450 We store structs through a pointer passed in the first Argument
451 register. */
452
453 static void
454 d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
455 {
456 write_register (ARG1_REGNUM, (addr));
457 }
458
459 /* Write into appropriate registers a function return value
460 of type TYPE, given in virtual format.
461
462 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
463
464 static void
465 d10v_store_return_value (struct type *type, struct regcache *regcache,
466 const void *valbuf)
467 {
468 /* Only char return values need to be shifted right within the first
469 regnum. */
470 if (TYPE_LENGTH (type) == 1
471 && TYPE_CODE (type) == TYPE_CODE_INT)
472 {
473 bfd_byte tmp[2];
474 tmp[1] = *(bfd_byte *)valbuf;
475 regcache_cooked_write (regcache, RET1_REGNUM, tmp);
476 }
477 else
478 {
479 int reg;
480 /* A structure is never more than 8 bytes long. See
481 use_struct_convention(). */
482 gdb_assert (TYPE_LENGTH (type) <= 8);
483 /* Write out most registers, stop loop before trying to write
484 out any dangling byte at the end of the buffer. */
485 for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++)
486 {
487 regcache_cooked_write (regcache, RET1_REGNUM + reg,
488 (bfd_byte *) valbuf + reg * 2);
489 }
490 /* Write out any dangling byte at the end of the buffer. */
491 if ((reg * 2) + 1 == TYPE_LENGTH (type))
492 regcache_cooked_write_part (regcache, reg, 0, 1,
493 (bfd_byte *) valbuf + reg * 2);
494 }
495 }
496
497 /* Extract from an array REGBUF containing the (raw) register state
498 the address in which a function should return its structure value,
499 as a CORE_ADDR (or an expression that can be used as one). */
500
501 static CORE_ADDR
502 d10v_extract_struct_value_address (struct regcache *regcache)
503 {
504 ULONGEST addr;
505 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
506 return (addr | DMEM_START);
507 }
508
509 /* Immediately after a function call, return the saved pc. We can't
510 use frame->return_pc beause that is determined by reading R13 off
511 the stack and that may not be written yet. */
512
513 static CORE_ADDR
514 d10v_saved_pc_after_call (struct frame_info *frame)
515 {
516 return ((read_register (LR_REGNUM) << 2)
517 | IMEM_START);
518 }
519
520 static int
521 check_prologue (unsigned short op)
522 {
523 /* st rn, @-sp */
524 if ((op & 0x7E1F) == 0x6C1F)
525 return 1;
526
527 /* st2w rn, @-sp */
528 if ((op & 0x7E3F) == 0x6E1F)
529 return 1;
530
531 /* subi sp, n */
532 if ((op & 0x7FE1) == 0x01E1)
533 return 1;
534
535 /* mv r11, sp */
536 if (op == 0x417E)
537 return 1;
538
539 /* nop */
540 if (op == 0x5E00)
541 return 1;
542
543 /* st rn, @sp */
544 if ((op & 0x7E1F) == 0x681E)
545 return 1;
546
547 /* st2w rn, @sp */
548 if ((op & 0x7E3F) == 0x3A1E)
549 return 1;
550
551 return 0;
552 }
553
554 static CORE_ADDR
555 d10v_skip_prologue (CORE_ADDR pc)
556 {
557 unsigned long op;
558 unsigned short op1, op2;
559 CORE_ADDR func_addr, func_end;
560 struct symtab_and_line sal;
561
562 /* If we have line debugging information, then the end of the */
563 /* prologue should the first assembly instruction of the first source line */
564 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
565 {
566 sal = find_pc_line (func_addr, 0);
567 if (sal.end && sal.end < func_end)
568 return sal.end;
569 }
570
571 if (target_read_memory (pc, (char *) &op, 4))
572 return pc; /* Can't access it -- assume no prologue. */
573
574 while (1)
575 {
576 op = (unsigned long) read_memory_integer (pc, 4);
577 if ((op & 0xC0000000) == 0xC0000000)
578 {
579 /* long instruction */
580 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
581 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
582 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
583 break;
584 }
585 else
586 {
587 /* short instructions */
588 if ((op & 0xC0000000) == 0x80000000)
589 {
590 op2 = (op & 0x3FFF8000) >> 15;
591 op1 = op & 0x7FFF;
592 }
593 else
594 {
595 op1 = (op & 0x3FFF8000) >> 15;
596 op2 = op & 0x7FFF;
597 }
598 if (check_prologue (op1))
599 {
600 if (!check_prologue (op2))
601 {
602 /* if the previous opcode was really part of the prologue */
603 /* and not just a NOP, then we want to break after both instructions */
604 if (op1 != 0x5E00)
605 pc += 4;
606 break;
607 }
608 }
609 else
610 break;
611 }
612 pc += 4;
613 }
614 return pc;
615 }
616
617 struct d10v_unwind_cache
618 {
619 CORE_ADDR return_pc;
620 int frameless;
621 int size;
622 CORE_ADDR *saved_regs;
623 CORE_ADDR next_addr;
624 int uses_frame;
625 void **regs;
626 };
627
628 static int
629 prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
630 CORE_ADDR addr)
631 {
632 int n;
633
634 /* st rn, @-sp */
635 if ((op & 0x7E1F) == 0x6C1F)
636 {
637 n = (op & 0x1E0) >> 5;
638 info->next_addr -= 2;
639 info->saved_regs[n] = info->next_addr;
640 return 1;
641 }
642
643 /* st2w rn, @-sp */
644 else if ((op & 0x7E3F) == 0x6E1F)
645 {
646 n = (op & 0x1E0) >> 5;
647 info->next_addr -= 4;
648 info->saved_regs[n] = info->next_addr;
649 info->saved_regs[n + 1] = info->next_addr + 2;
650 return 1;
651 }
652
653 /* subi sp, n */
654 if ((op & 0x7FE1) == 0x01E1)
655 {
656 n = (op & 0x1E) >> 1;
657 if (n == 0)
658 n = 16;
659 info->next_addr -= n;
660 return 1;
661 }
662
663 /* mv r11, sp */
664 if (op == 0x417E)
665 {
666 info->uses_frame = 1;
667 return 1;
668 }
669
670 /* nop */
671 if (op == 0x5E00)
672 return 1;
673
674 /* st rn, @sp */
675 if ((op & 0x7E1F) == 0x681E)
676 {
677 n = (op & 0x1E0) >> 5;
678 info->saved_regs[n] = info->next_addr;
679 return 1;
680 }
681
682 /* st2w rn, @sp */
683 if ((op & 0x7E3F) == 0x3A1E)
684 {
685 n = (op & 0x1E0) >> 5;
686 info->saved_regs[n] = info->next_addr;
687 info->saved_regs[n + 1] = info->next_addr + 2;
688 return 1;
689 }
690
691 return 0;
692 }
693
694 /* Put here the code to store, into fi->saved_regs, the addresses of
695 the saved registers of frame described by FRAME_INFO. This
696 includes special registers such as pc and fp saved in special ways
697 in the stack frame. sp is even more special: the address we return
698 for it IS the sp for the next frame. */
699
700 struct d10v_unwind_cache *
701 d10v_frame_unwind_cache (struct frame_info *fi,
702 void **cache)
703 {
704 CORE_ADDR fp, pc;
705 unsigned long op;
706 unsigned short op1, op2;
707 int i;
708 struct d10v_unwind_cache *info;
709
710 if ((*cache))
711 return (*cache);
712
713 info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
714 (*cache) = info;
715 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
716
717 info->frameless = 0;
718 info->size = 0;
719 info->return_pc = 0;
720
721 fp = get_frame_base (fi);
722 info->next_addr = 0;
723
724 pc = get_pc_function_start (get_frame_pc (fi));
725
726 info->uses_frame = 0;
727 while (1)
728 {
729 op = (unsigned long) read_memory_integer (pc, 4);
730 if ((op & 0xC0000000) == 0xC0000000)
731 {
732 /* long instruction */
733 if ((op & 0x3FFF0000) == 0x01FF0000)
734 {
735 /* add3 sp,sp,n */
736 short n = op & 0xFFFF;
737 info->next_addr += n;
738 }
739 else if ((op & 0x3F0F0000) == 0x340F0000)
740 {
741 /* st rn, @(offset,sp) */
742 short offset = op & 0xFFFF;
743 short n = (op >> 20) & 0xF;
744 info->saved_regs[n] = info->next_addr + offset;
745 }
746 else if ((op & 0x3F1F0000) == 0x350F0000)
747 {
748 /* st2w rn, @(offset,sp) */
749 short offset = op & 0xFFFF;
750 short n = (op >> 20) & 0xF;
751 info->saved_regs[n] = info->next_addr + offset;
752 info->saved_regs[n + 1] = info->next_addr + offset + 2;
753 }
754 else
755 break;
756 }
757 else
758 {
759 /* short instructions */
760 if ((op & 0xC0000000) == 0x80000000)
761 {
762 op2 = (op & 0x3FFF8000) >> 15;
763 op1 = op & 0x7FFF;
764 }
765 else
766 {
767 op1 = (op & 0x3FFF8000) >> 15;
768 op2 = op & 0x7FFF;
769 }
770 if (!prologue_find_regs (info, op1, pc)
771 || !prologue_find_regs (info, op2, pc))
772 break;
773 }
774 pc += 4;
775 }
776
777 info->size = -info->next_addr;
778
779 if (!(fp & 0xffff))
780 fp = d10v_read_sp ();
781
782 for (i = 0; i < NUM_REGS - 1; i++)
783 if (info->saved_regs[i])
784 {
785 info->saved_regs[i] = fp - (info->next_addr - info->saved_regs[i]);
786 }
787
788 if (info->saved_regs[LR_REGNUM])
789 {
790 CORE_ADDR return_pc
791 = read_memory_unsigned_integer (info->saved_regs[LR_REGNUM],
792 REGISTER_RAW_SIZE (LR_REGNUM));
793 info->return_pc = d10v_make_iaddr (return_pc);
794 }
795 else
796 {
797 ULONGEST return_pc;
798 frame_read_unsigned_register (fi, LR_REGNUM, &return_pc);
799 info->return_pc = d10v_make_iaddr (return_pc);
800 }
801
802 /* The SP is not normally (ever?) saved, but check anyway */
803 if (!info->saved_regs[SP_REGNUM])
804 {
805 /* if the FP was saved, that means the current FP is valid, */
806 /* otherwise, it isn't being used, so we use the SP instead */
807 if (info->uses_frame)
808 info->saved_regs[SP_REGNUM]
809 = d10v_read_fp () + info->size;
810 else
811 {
812 info->saved_regs[SP_REGNUM] = fp + info->size;
813 info->frameless = 1;
814 info->saved_regs[FP_REGNUM] = 0;
815 }
816 }
817
818 return info;
819 }
820
821 static void
822 show_regs (char *args, int from_tty)
823 {
824 int a;
825 printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
826 (long) read_register (PC_REGNUM),
827 (long) d10v_make_iaddr (read_register (PC_REGNUM)),
828 (long) read_register (PSW_REGNUM),
829 (long) read_register (24),
830 (long) read_register (25),
831 (long) read_register (23));
832 printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
833 (long) read_register (0),
834 (long) read_register (1),
835 (long) read_register (2),
836 (long) read_register (3),
837 (long) read_register (4),
838 (long) read_register (5),
839 (long) read_register (6),
840 (long) read_register (7));
841 printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
842 (long) read_register (8),
843 (long) read_register (9),
844 (long) read_register (10),
845 (long) read_register (11),
846 (long) read_register (12),
847 (long) read_register (13),
848 (long) read_register (14),
849 (long) read_register (15));
850 for (a = 0; a < NR_IMAP_REGS; a++)
851 {
852 if (a > 0)
853 printf_filtered (" ");
854 printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
855 }
856 if (NR_DMAP_REGS == 1)
857 printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
858 else
859 {
860 for (a = 0; a < NR_DMAP_REGS; a++)
861 {
862 printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
863 }
864 printf_filtered ("\n");
865 }
866 printf_filtered ("A0-A%d", NR_A_REGS - 1);
867 {
868 char *num = alloca (max_register_size (current_gdbarch));
869 for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
870 {
871 int i;
872 printf_filtered (" ");
873 deprecated_read_register_gen (a, (char *) &num);
874 for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
875 {
876 printf_filtered ("%02x", (num[i] & 0xff));
877 }
878 }
879 }
880 printf_filtered ("\n");
881 }
882
883 static CORE_ADDR
884 d10v_read_pc (ptid_t ptid)
885 {
886 ptid_t save_ptid;
887 CORE_ADDR pc;
888 CORE_ADDR retval;
889
890 save_ptid = inferior_ptid;
891 inferior_ptid = ptid;
892 pc = (int) read_register (PC_REGNUM);
893 inferior_ptid = save_ptid;
894 retval = d10v_make_iaddr (pc);
895 return retval;
896 }
897
898 static void
899 d10v_write_pc (CORE_ADDR val, ptid_t ptid)
900 {
901 ptid_t save_ptid;
902
903 save_ptid = inferior_ptid;
904 inferior_ptid = ptid;
905 write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
906 inferior_ptid = save_ptid;
907 }
908
909 static CORE_ADDR
910 d10v_read_sp (void)
911 {
912 return (d10v_make_daddr (read_register (SP_REGNUM)));
913 }
914
915 static void
916 d10v_write_sp (CORE_ADDR val)
917 {
918 write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
919 }
920
921 static CORE_ADDR
922 d10v_read_fp (void)
923 {
924 return (d10v_make_daddr (read_register (FP_REGNUM)));
925 }
926
927 /* Function: push_return_address (pc)
928 Set up the return address for the inferior function call.
929 Needed for targets where we don't actually execute a JSR/BSR instruction */
930
931 static CORE_ADDR
932 d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
933 {
934 write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
935 return sp;
936 }
937
938
939 /* When arguments must be pushed onto the stack, they go on in reverse
940 order. The below implements a FILO (stack) to do this. */
941
942 struct stack_item
943 {
944 int len;
945 struct stack_item *prev;
946 void *data;
947 };
948
949 static struct stack_item *push_stack_item (struct stack_item *prev,
950 void *contents, int len);
951 static struct stack_item *
952 push_stack_item (struct stack_item *prev, void *contents, int len)
953 {
954 struct stack_item *si;
955 si = xmalloc (sizeof (struct stack_item));
956 si->data = xmalloc (len);
957 si->len = len;
958 si->prev = prev;
959 memcpy (si->data, contents, len);
960 return si;
961 }
962
963 static struct stack_item *pop_stack_item (struct stack_item *si);
964 static struct stack_item *
965 pop_stack_item (struct stack_item *si)
966 {
967 struct stack_item *dead = si;
968 si = si->prev;
969 xfree (dead->data);
970 xfree (dead);
971 return si;
972 }
973
974
975 static CORE_ADDR
976 d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
977 int struct_return, CORE_ADDR struct_addr)
978 {
979 int i;
980 int regnum = ARG1_REGNUM;
981 struct stack_item *si = NULL;
982 long val;
983
984 /* If struct_return is true, then the struct return address will
985 consume one argument-passing register. No need to actually
986 write the value to the register -- that's done by
987 d10v_store_struct_return(). */
988
989 if (struct_return)
990 regnum++;
991
992 /* Fill in registers and arg lists */
993 for (i = 0; i < nargs; i++)
994 {
995 struct value *arg = args[i];
996 struct type *type = check_typedef (VALUE_TYPE (arg));
997 char *contents = VALUE_CONTENTS (arg);
998 int len = TYPE_LENGTH (type);
999 int aligned_regnum = (regnum + 1) & ~1;
1000
1001 /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
1002 if (len <= 2 && regnum <= ARGN_REGNUM)
1003 /* fits in a single register, do not align */
1004 {
1005 val = extract_unsigned_integer (contents, len);
1006 write_register (regnum++, val);
1007 }
1008 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1009 /* value fits in remaining registers, store keeping left
1010 aligned */
1011 {
1012 int b;
1013 regnum = aligned_regnum;
1014 for (b = 0; b < (len & ~1); b += 2)
1015 {
1016 val = extract_unsigned_integer (&contents[b], 2);
1017 write_register (regnum++, val);
1018 }
1019 if (b < len)
1020 {
1021 val = extract_unsigned_integer (&contents[b], 1);
1022 write_register (regnum++, (val << 8));
1023 }
1024 }
1025 else
1026 {
1027 /* arg will go onto stack */
1028 regnum = ARGN_REGNUM + 1;
1029 si = push_stack_item (si, contents, len);
1030 }
1031 }
1032
1033 while (si)
1034 {
1035 sp = (sp - si->len) & ~1;
1036 write_memory (sp, si->data, si->len);
1037 si = pop_stack_item (si);
1038 }
1039
1040 return sp;
1041 }
1042
1043
1044 /* Given a return value in `regbuf' with a type `valtype',
1045 extract and copy its value into `valbuf'. */
1046
1047 static void
1048 d10v_extract_return_value (struct type *type, struct regcache *regcache,
1049 void *valbuf)
1050 {
1051 int len;
1052 #if 0
1053 printf("RET: TYPE=%d len=%d r%d=0x%x\n", TYPE_CODE (type),
1054 TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM,
1055 (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM),
1056 REGISTER_RAW_SIZE (RET1_REGNUM)));
1057 #endif
1058 if (TYPE_LENGTH (type) == 1)
1059 {
1060 ULONGEST c;
1061 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c);
1062 store_unsigned_integer (valbuf, 1, c);
1063 }
1064 else
1065 {
1066 /* For return values of odd size, the first byte is in the
1067 least significant part of the first register. The
1068 remaining bytes in remaining registers. Interestingly, when
1069 such values are passed in, the last byte is in the most
1070 significant byte of that same register - wierd. */
1071 int reg = RET1_REGNUM;
1072 int off = 0;
1073 if (TYPE_LENGTH (type) & 1)
1074 {
1075 regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1,
1076 (bfd_byte *)valbuf + off);
1077 off++;
1078 reg++;
1079 }
1080 /* Transfer the remaining registers. */
1081 for (; off < TYPE_LENGTH (type); reg++, off += 2)
1082 {
1083 regcache_cooked_read (regcache, RET1_REGNUM + reg,
1084 (bfd_byte *) valbuf + off);
1085 }
1086 }
1087 }
1088
1089 /* Translate a GDB virtual ADDR/LEN into a format the remote target
1090 understands. Returns number of bytes that can be transfered
1091 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1092 (segmentation fault). Since the simulator knows all about how the
1093 VM system works, we just call that to do the translation. */
1094
1095 static void
1096 remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1097 CORE_ADDR *targ_addr, int *targ_len)
1098 {
1099 long out_addr;
1100 long out_len;
1101 out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
1102 &out_addr,
1103 d10v_dmap_register,
1104 d10v_imap_register);
1105 *targ_addr = out_addr;
1106 *targ_len = out_len;
1107 }
1108
1109
1110 /* The following code implements access to, and display of, the D10V's
1111 instruction trace buffer. The buffer consists of 64K or more
1112 4-byte words of data, of which each words includes an 8-bit count,
1113 an 8-bit segment number, and a 16-bit instruction address.
1114
1115 In theory, the trace buffer is continuously capturing instruction
1116 data that the CPU presents on its "debug bus", but in practice, the
1117 ROMified GDB stub only enables tracing when it continues or steps
1118 the program, and stops tracing when the program stops; so it
1119 actually works for GDB to read the buffer counter out of memory and
1120 then read each trace word. The counter records where the tracing
1121 stops, but there is no record of where it started, so we remember
1122 the PC when we resumed and then search backwards in the trace
1123 buffer for a word that includes that address. This is not perfect,
1124 because you will miss trace data if the resumption PC is the target
1125 of a branch. (The value of the buffer counter is semi-random, any
1126 trace data from a previous program stop is gone.) */
1127
1128 /* The address of the last word recorded in the trace buffer. */
1129
1130 #define DBBC_ADDR (0xd80000)
1131
1132 /* The base of the trace buffer, at least for the "Board_0". */
1133
1134 #define TRACE_BUFFER_BASE (0xf40000)
1135
1136 static void trace_command (char *, int);
1137
1138 static void untrace_command (char *, int);
1139
1140 static void trace_info (char *, int);
1141
1142 static void tdisassemble_command (char *, int);
1143
1144 static void display_trace (int, int);
1145
1146 /* True when instruction traces are being collected. */
1147
1148 static int tracing;
1149
1150 /* Remembered PC. */
1151
1152 static CORE_ADDR last_pc;
1153
1154 /* True when trace output should be displayed whenever program stops. */
1155
1156 static int trace_display;
1157
1158 /* True when trace listing should include source lines. */
1159
1160 static int default_trace_show_source = 1;
1161
1162 struct trace_buffer
1163 {
1164 int size;
1165 short *counts;
1166 CORE_ADDR *addrs;
1167 }
1168 trace_data;
1169
1170 static void
1171 trace_command (char *args, int from_tty)
1172 {
1173 /* Clear the host-side trace buffer, allocating space if needed. */
1174 trace_data.size = 0;
1175 if (trace_data.counts == NULL)
1176 trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
1177 if (trace_data.addrs == NULL)
1178 trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
1179
1180 tracing = 1;
1181
1182 printf_filtered ("Tracing is now on.\n");
1183 }
1184
1185 static void
1186 untrace_command (char *args, int from_tty)
1187 {
1188 tracing = 0;
1189
1190 printf_filtered ("Tracing is now off.\n");
1191 }
1192
1193 static void
1194 trace_info (char *args, int from_tty)
1195 {
1196 int i;
1197
1198 if (trace_data.size)
1199 {
1200 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1201
1202 for (i = 0; i < trace_data.size; ++i)
1203 {
1204 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1205 i,
1206 trace_data.counts[i],
1207 (trace_data.counts[i] == 1 ? "" : "s"),
1208 paddr_nz (trace_data.addrs[i]));
1209 }
1210 }
1211 else
1212 printf_filtered ("No entries in trace buffer.\n");
1213
1214 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1215 }
1216
1217 /* Print the instruction at address MEMADDR in debugged memory,
1218 on STREAM. Returns length of the instruction, in bytes. */
1219
1220 static int
1221 print_insn (CORE_ADDR memaddr, struct ui_file *stream)
1222 {
1223 /* If there's no disassembler, something is very wrong. */
1224 if (tm_print_insn == NULL)
1225 internal_error (__FILE__, __LINE__,
1226 "print_insn: no disassembler");
1227
1228 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1229 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
1230 else
1231 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
1232 return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
1233 }
1234
1235 static void
1236 d10v_eva_prepare_to_trace (void)
1237 {
1238 if (!tracing)
1239 return;
1240
1241 last_pc = read_register (PC_REGNUM);
1242 }
1243
1244 /* Collect trace data from the target board and format it into a form
1245 more useful for display. */
1246
1247 static void
1248 d10v_eva_get_trace_data (void)
1249 {
1250 int count, i, j, oldsize;
1251 int trace_addr, trace_seg, trace_cnt, next_cnt;
1252 unsigned int last_trace, trace_word, next_word;
1253 unsigned int *tmpspace;
1254
1255 if (!tracing)
1256 return;
1257
1258 tmpspace = xmalloc (65536 * sizeof (unsigned int));
1259
1260 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1261
1262 /* Collect buffer contents from the target, stopping when we reach
1263 the word recorded when execution resumed. */
1264
1265 count = 0;
1266 while (last_trace > 0)
1267 {
1268 QUIT;
1269 trace_word =
1270 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1271 trace_addr = trace_word & 0xffff;
1272 last_trace -= 4;
1273 /* Ignore an apparently nonsensical entry. */
1274 if (trace_addr == 0xffd5)
1275 continue;
1276 tmpspace[count++] = trace_word;
1277 if (trace_addr == last_pc)
1278 break;
1279 if (count > 65535)
1280 break;
1281 }
1282
1283 /* Move the data to the host-side trace buffer, adjusting counts to
1284 include the last instruction executed and transforming the address
1285 into something that GDB likes. */
1286
1287 for (i = 0; i < count; ++i)
1288 {
1289 trace_word = tmpspace[i];
1290 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1291 trace_addr = trace_word & 0xffff;
1292 next_cnt = (next_word >> 24) & 0xff;
1293 j = trace_data.size + count - i - 1;
1294 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1295 trace_data.counts[j] = next_cnt + 1;
1296 }
1297
1298 oldsize = trace_data.size;
1299 trace_data.size += count;
1300
1301 xfree (tmpspace);
1302
1303 if (trace_display)
1304 display_trace (oldsize, trace_data.size);
1305 }
1306
1307 static void
1308 tdisassemble_command (char *arg, int from_tty)
1309 {
1310 int i, count;
1311 CORE_ADDR low, high;
1312 char *space_index;
1313
1314 if (!arg)
1315 {
1316 low = 0;
1317 high = trace_data.size;
1318 }
1319 else if (!(space_index = (char *) strchr (arg, ' ')))
1320 {
1321 low = parse_and_eval_address (arg);
1322 high = low + 5;
1323 }
1324 else
1325 {
1326 /* Two arguments. */
1327 *space_index = '\0';
1328 low = parse_and_eval_address (arg);
1329 high = parse_and_eval_address (space_index + 1);
1330 if (high < low)
1331 high = low;
1332 }
1333
1334 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
1335
1336 display_trace (low, high);
1337
1338 printf_filtered ("End of trace dump.\n");
1339 gdb_flush (gdb_stdout);
1340 }
1341
1342 static void
1343 display_trace (int low, int high)
1344 {
1345 int i, count, trace_show_source, first, suppress;
1346 CORE_ADDR next_address;
1347
1348 trace_show_source = default_trace_show_source;
1349 if (!have_full_symbols () && !have_partial_symbols ())
1350 {
1351 trace_show_source = 0;
1352 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1353 printf_filtered ("Trace will not display any source.\n");
1354 }
1355
1356 first = 1;
1357 suppress = 0;
1358 for (i = low; i < high; ++i)
1359 {
1360 next_address = trace_data.addrs[i];
1361 count = trace_data.counts[i];
1362 while (count-- > 0)
1363 {
1364 QUIT;
1365 if (trace_show_source)
1366 {
1367 struct symtab_and_line sal, sal_prev;
1368
1369 sal_prev = find_pc_line (next_address - 4, 0);
1370 sal = find_pc_line (next_address, 0);
1371
1372 if (sal.symtab)
1373 {
1374 if (first || sal.line != sal_prev.line)
1375 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1376 suppress = 0;
1377 }
1378 else
1379 {
1380 if (!suppress)
1381 /* FIXME-32x64--assumes sal.pc fits in long. */
1382 printf_filtered ("No source file for address %s.\n",
1383 local_hex_string ((unsigned long) sal.pc));
1384 suppress = 1;
1385 }
1386 }
1387 first = 0;
1388 print_address (next_address, gdb_stdout);
1389 printf_filtered (":");
1390 printf_filtered ("\t");
1391 wrap_here (" ");
1392 next_address = next_address + print_insn (next_address, gdb_stdout);
1393 printf_filtered ("\n");
1394 gdb_flush (gdb_stdout);
1395 }
1396 }
1397 }
1398
1399
1400 static CORE_ADDR
1401 d10v_frame_pc_unwind (struct frame_info *frame,
1402 void **cache)
1403 {
1404 struct d10v_unwind_cache *info = d10v_frame_unwind_cache (frame, cache);
1405 return info->return_pc;
1406 }
1407
1408 /* Given a GDB frame, determine the address of the calling function's
1409 frame. This will be used to create a new GDB frame struct. */
1410
1411 static void
1412 d10v_frame_id_unwind (struct frame_info *frame,
1413 void **cache,
1414 struct frame_id *id)
1415 {
1416 struct d10v_unwind_cache *info = d10v_frame_unwind_cache (frame, cache);
1417 CORE_ADDR addr;
1418
1419 /* Start with a NULL frame ID. */
1420 (*id) = null_frame_id;
1421
1422 if (info->return_pc == IMEM_START
1423 || info->return_pc <= IMEM_START
1424 || inside_entry_file (info->return_pc))
1425 {
1426 /* This is meant to halt the backtrace at "_start".
1427 Make sure we don't halt it at a generic dummy frame. */
1428 return;
1429 }
1430
1431 if (!info->saved_regs[FP_REGNUM])
1432 {
1433 if (!info->saved_regs[SP_REGNUM]
1434 || info->saved_regs[SP_REGNUM] == STACK_START)
1435 return;
1436
1437 id->base = info->saved_regs[SP_REGNUM];
1438 id->pc = info->return_pc;
1439 }
1440
1441 addr = read_memory_unsigned_integer (info->saved_regs[FP_REGNUM],
1442 REGISTER_RAW_SIZE (FP_REGNUM));
1443 if (addr == 0)
1444 return;
1445
1446 id->base = d10v_make_daddr (addr);
1447 id->pc = info->return_pc;
1448 }
1449
1450 static void
1451 saved_regs_unwinder (struct frame_info *frame,
1452 CORE_ADDR *saved_regs,
1453 int regnum, int *optimizedp,
1454 enum lval_type *lvalp, CORE_ADDR *addrp,
1455 int *realnump, void *bufferp)
1456 {
1457 /* If we're using generic dummy frames, we'd better not be in a call
1458 dummy. (generic_call_dummy_register_unwind ought to have been called
1459 instead.) */
1460 gdb_assert (!(DEPRECATED_USE_GENERIC_DUMMY_FRAMES
1461 && (get_frame_type (frame) == DUMMY_FRAME)));
1462
1463 if (saved_regs[regnum] != 0)
1464 {
1465 if (regnum == SP_REGNUM)
1466 {
1467 /* SP register treated specially. */
1468 *optimizedp = 0;
1469 *lvalp = not_lval;
1470 *addrp = 0;
1471 *realnump = -1;
1472 if (bufferp != NULL)
1473 store_address (bufferp, REGISTER_RAW_SIZE (regnum),
1474 saved_regs[regnum]);
1475 }
1476 else
1477 {
1478 /* Any other register is saved in memory, fetch it but cache
1479 a local copy of its value. */
1480 *optimizedp = 0;
1481 *lvalp = lval_memory;
1482 *addrp = saved_regs[regnum];
1483 *realnump = -1;
1484 if (bufferp != NULL)
1485 {
1486 /* Read the value in from memory. */
1487 read_memory (saved_regs[regnum], bufferp,
1488 REGISTER_RAW_SIZE (regnum));
1489 }
1490 }
1491 return;
1492 }
1493
1494 /* No luck, assume this and the next frame have the same register
1495 value. If a value is needed, pass the request on down the chain;
1496 otherwise just return an indication that the value is in the same
1497 register as the next frame. */
1498 frame_register (frame, regnum, optimizedp, lvalp, addrp,
1499 realnump, bufferp);
1500 }
1501
1502
1503 static void
1504 d10v_frame_register_unwind (struct frame_info *frame,
1505 void **cache,
1506 int regnum, int *optimizedp,
1507 enum lval_type *lvalp, CORE_ADDR *addrp,
1508 int *realnump, void *bufferp)
1509 {
1510 struct d10v_unwind_cache *info = d10v_frame_unwind_cache (frame, cache);
1511 saved_regs_unwinder (frame, info->saved_regs, regnum, optimizedp,
1512 lvalp, addrp, realnump, bufferp);
1513 }
1514
1515
1516 static void
1517 d10v_frame_pop (struct frame_info *fi, void **unwind_cache,
1518 struct regcache *regcache)
1519 {
1520 struct d10v_unwind_cache *info = d10v_frame_unwind_cache (fi, unwind_cache);
1521 CORE_ADDR fp;
1522 int regnum;
1523 char raw_buffer[8];
1524
1525 fp = get_frame_base (fi);
1526
1527 /* now update the current registers with the old values */
1528 for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
1529 {
1530 if (info->saved_regs[regnum])
1531 {
1532 read_memory (info->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
1533 deprecated_write_register_bytes (REGISTER_BYTE (regnum), raw_buffer,
1534 REGISTER_RAW_SIZE (regnum));
1535 }
1536 }
1537 for (regnum = 0; regnum < SP_REGNUM; regnum++)
1538 {
1539 if (info->saved_regs[regnum])
1540 {
1541 write_register (regnum, read_memory_unsigned_integer (info->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
1542 }
1543 }
1544 if (info->saved_regs[PSW_REGNUM])
1545 {
1546 write_register (PSW_REGNUM, read_memory_unsigned_integer (info->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
1547 }
1548
1549 write_register (PC_REGNUM, read_register (LR_REGNUM));
1550 write_register (SP_REGNUM, fp + info->size);
1551 target_store_registers (-1);
1552 flush_cached_frames ();
1553 }
1554
1555 static struct frame_unwind d10v_frame_unwind = {
1556 d10v_frame_pop,
1557 d10v_frame_pc_unwind,
1558 d10v_frame_id_unwind,
1559 d10v_frame_register_unwind
1560 };
1561
1562 const struct frame_unwind *
1563 d10v_frame_p (CORE_ADDR pc)
1564 {
1565 return &d10v_frame_unwind;
1566 }
1567
1568 static gdbarch_init_ftype d10v_gdbarch_init;
1569
1570 static struct gdbarch *
1571 d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1572 {
1573 static LONGEST d10v_call_dummy_words[] =
1574 {0};
1575 struct gdbarch *gdbarch;
1576 int d10v_num_regs;
1577 struct gdbarch_tdep *tdep;
1578 gdbarch_register_name_ftype *d10v_register_name;
1579 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
1580
1581 /* Find a candidate among the list of pre-declared architectures. */
1582 arches = gdbarch_list_lookup_by_info (arches, &info);
1583 if (arches != NULL)
1584 return arches->gdbarch;
1585
1586 /* None found, create a new architecture from the information
1587 provided. */
1588 tdep = XMALLOC (struct gdbarch_tdep);
1589 gdbarch = gdbarch_alloc (&info, tdep);
1590
1591 switch (info.bfd_arch_info->mach)
1592 {
1593 case bfd_mach_d10v_ts2:
1594 d10v_num_regs = 37;
1595 d10v_register_name = d10v_ts2_register_name;
1596 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
1597 tdep->a0_regnum = TS2_A0_REGNUM;
1598 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
1599 tdep->dmap_register = d10v_ts2_dmap_register;
1600 tdep->imap_register = d10v_ts2_imap_register;
1601 break;
1602 default:
1603 case bfd_mach_d10v_ts3:
1604 d10v_num_regs = 42;
1605 d10v_register_name = d10v_ts3_register_name;
1606 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
1607 tdep->a0_regnum = TS3_A0_REGNUM;
1608 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
1609 tdep->dmap_register = d10v_ts3_dmap_register;
1610 tdep->imap_register = d10v_ts3_imap_register;
1611 break;
1612 }
1613
1614 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1615 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1616 set_gdbarch_read_fp (gdbarch, d10v_read_fp);
1617 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
1618 set_gdbarch_write_sp (gdbarch, d10v_write_sp);
1619
1620 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1621 set_gdbarch_sp_regnum (gdbarch, 15);
1622 set_gdbarch_fp_regnum (gdbarch, 11);
1623 set_gdbarch_pc_regnum (gdbarch, 18);
1624 set_gdbarch_register_name (gdbarch, d10v_register_name);
1625 set_gdbarch_register_size (gdbarch, 2);
1626 set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
1627 set_gdbarch_register_byte (gdbarch, d10v_register_byte);
1628 set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
1629 set_gdbarch_max_register_raw_size (gdbarch, 8);
1630 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
1631 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1632 set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
1633
1634 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1635 set_gdbarch_addr_bit (gdbarch, 32);
1636 set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
1637 set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
1638 set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
1639 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1640 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1641 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1642 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1643 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1644 double'' is 64 bits. */
1645 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1646 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1647 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1648 switch (info.byte_order)
1649 {
1650 case BFD_ENDIAN_BIG:
1651 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1652 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1653 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1654 break;
1655 case BFD_ENDIAN_LITTLE:
1656 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1657 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1658 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1659 break;
1660 default:
1661 internal_error (__FILE__, __LINE__,
1662 "d10v_gdbarch_init: bad byte order for float format");
1663 }
1664
1665 set_gdbarch_call_dummy_length (gdbarch, 0);
1666 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1667 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1668 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1669 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1670 set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
1671 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
1672 set_gdbarch_call_dummy_p (gdbarch, 1);
1673 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1674 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1675
1676 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
1677 set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
1678 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1679 set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
1680
1681 set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
1682 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1683 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
1684 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1685
1686 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1687 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1688 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1689 set_gdbarch_function_start_offset (gdbarch, 0);
1690 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1691
1692 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1693
1694 set_gdbarch_frame_args_skip (gdbarch, 0);
1695 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
1696
1697 set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
1698 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1699 set_gdbarch_stack_align (gdbarch, d10v_stack_align);
1700
1701 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
1702 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
1703
1704 frame_unwind_append_predicate (gdbarch, d10v_frame_p);
1705
1706 return gdbarch;
1707 }
1708
1709
1710 extern void (*target_resume_hook) (void);
1711 extern void (*target_wait_loop_hook) (void);
1712
1713 void
1714 _initialize_d10v_tdep (void)
1715 {
1716 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1717
1718 tm_print_insn = print_insn_d10v;
1719
1720 target_resume_hook = d10v_eva_prepare_to_trace;
1721 target_wait_loop_hook = d10v_eva_get_trace_data;
1722
1723 add_com ("regs", class_vars, show_regs, "Print all registers");
1724
1725 add_com ("itrace", class_support, trace_command,
1726 "Enable tracing of instruction execution.");
1727
1728 add_com ("iuntrace", class_support, untrace_command,
1729 "Disable tracing of instruction execution.");
1730
1731 add_com ("itdisassemble", class_vars, tdisassemble_command,
1732 "Disassemble the trace buffer.\n\
1733 Two optional arguments specify a range of trace buffer entries\n\
1734 as reported by info trace (NOT addresses!).");
1735
1736 add_info ("itrace", trace_info,
1737 "Display info about the trace data buffer.");
1738
1739 add_show_from_set (add_set_cmd ("itracedisplay", no_class,
1740 var_integer, (char *) &trace_display,
1741 "Set automatic display of trace.\n", &setlist),
1742 &showlist);
1743 add_show_from_set (add_set_cmd ("itracesource", no_class,
1744 var_integer, (char *) &default_trace_show_source,
1745 "Set display of source code with trace.\n", &setlist),
1746 &showlist);
1747
1748 }