* dbxread.c (read_dbx_dynamic_symtab): Reinstall support for sun3,
[binutils-gdb.git] / gdb / dbxread.c
1 /* Read dbx symbol tables and convert to internal format, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* This module provides three functions: dbx_symfile_init,
22 which initializes to read a symbol file; dbx_new_init, which
23 discards existing cached information when all symbols are being
24 discarded; and dbx_symfile_read, which reads a symbol table
25 from a file.
26
27 dbx_symfile_read only does the minimum work necessary for letting the
28 user "name" things symbolically; it does not read the entire symtab.
29 Instead, it reads the external and static symbols and puts them in partial
30 symbol tables. When more extensive information is requested of a
31 file, the corresponding partial symbol table is mutated into a full
32 fledged symbol table by going back and reading the symbols
33 for real. dbx_psymtab_to_symtab() is the function that does this */
34
35 #include "defs.h"
36 #include <string.h>
37
38 #if defined(USG) || defined(__CYGNUSCLIB__)
39 #include <sys/types.h>
40 #include <fcntl.h>
41 #endif
42
43 #include <obstack.h>
44 #include <sys/param.h>
45 #ifndef NO_SYS_FILE
46 #include <sys/file.h>
47 #endif
48 #include <sys/stat.h>
49 #include <ctype.h>
50 #include "symtab.h"
51 #include "breakpoint.h"
52 #include "command.h"
53 #include "target.h"
54 #include "gdbcore.h" /* for bfd stuff */
55 #include "libbfd.h" /* FIXME Secret internal BFD stuff (bfd_read) */
56 #include "libaout.h" /* FIXME Secret internal BFD stuff for a.out */
57 #include "symfile.h"
58 #include "objfiles.h"
59 #include "buildsym.h"
60 #include "stabsread.h"
61 #include "gdb-stabs.h"
62 #include "demangle.h"
63 #include "language.h" /* Needed inside partial-stab.h */
64 #include "complaints.h"
65
66 #include "aout/aout64.h"
67 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native, now */
68
69 #if !defined (SEEK_SET)
70 #define SEEK_SET 0
71 #define SEEK_CUR 1
72 #endif
73
74 /* Each partial symbol table entry contains a pointer to private data for the
75 read_symtab() function to use when expanding a partial symbol table entry
76 to a full symbol table entry.
77
78 For dbxread this structure contains the offset within the file symbol table
79 of first local symbol for this file, and length (in bytes) of the section
80 of the symbol table devoted to this file's symbols (actually, the section
81 bracketed may contain more than just this file's symbols). It also contains
82 further information needed to locate the symbols if they are in an ELF file.
83
84 If ldsymlen is 0, the only reason for this thing's existence is the
85 dependency list. Nothing else will happen when it is read in. */
86
87 #define LDSYMOFF(p) (((struct symloc *)((p)->read_symtab_private))->ldsymoff)
88 #define LDSYMLEN(p) (((struct symloc *)((p)->read_symtab_private))->ldsymlen)
89 #define SYMLOC(p) ((struct symloc *)((p)->read_symtab_private))
90 #define SYMBOL_SIZE(p) (SYMLOC(p)->symbol_size)
91 #define SYMBOL_OFFSET(p) (SYMLOC(p)->symbol_offset)
92 #define STRING_OFFSET(p) (SYMLOC(p)->string_offset)
93 #define FILE_STRING_OFFSET(p) (SYMLOC(p)->file_string_offset)
94
95 struct symloc {
96 int ldsymoff;
97 int ldsymlen;
98 int symbol_size;
99 int symbol_offset;
100 int string_offset;
101 int file_string_offset;
102 };
103
104 /* Macro to determine which symbols to ignore when reading the first symbol
105 of a file. Some machines override this definition. */
106 #ifndef IGNORE_SYMBOL
107 /* This code is used on Ultrix systems. Ignore it */
108 #define IGNORE_SYMBOL(type) (type == (int)N_NSYMS)
109 #endif
110
111 /* Remember what we deduced to be the source language of this psymtab. */
112
113 static enum language psymtab_language = language_unknown;
114
115 /* Nonzero means give verbose info on gdb action. From main.c. */
116 extern int info_verbose;
117
118 /* The BFD for this file -- implicit parameter to next_symbol_text. */
119
120 static bfd *symfile_bfd;
121
122 /* The size of each symbol in the symbol file (in external form).
123 This is set by dbx_symfile_read when building psymtabs, and by
124 dbx_psymtab_to_symtab when building symtabs. */
125
126 static unsigned symbol_size;
127
128 /* This is the offset of the symbol table in the executable file */
129 static unsigned symbol_table_offset;
130
131 /* This is the offset of the string table in the executable file */
132 static unsigned string_table_offset;
133
134 /* For elf+stab executables, the n_strx field is not a simple index
135 into the string table. Instead, each .o file has a base offset
136 in the string table, and the associated symbols contain offsets
137 from this base. The following two variables contain the base
138 offset for the current and next .o files. */
139 static unsigned int file_string_table_offset;
140 static unsigned int next_file_string_table_offset;
141 \f
142 /* This is the lowest text address we have yet encountered. */
143 static CORE_ADDR lowest_text_address;
144
145 /* Complaints about the symbols we have encountered. */
146
147 struct complaint lbrac_complaint =
148 {"bad block start address patched", 0, 0};
149
150 struct complaint string_table_offset_complaint =
151 {"bad string table offset in symbol %d", 0, 0};
152
153 struct complaint unknown_symtype_complaint =
154 {"unknown symbol type %s", 0, 0};
155
156 struct complaint unknown_symchar_complaint =
157 {"unknown symbol descriptor `%c'", 0, 0};
158
159 struct complaint lbrac_rbrac_complaint =
160 {"block start larger than block end", 0, 0};
161
162 struct complaint lbrac_unmatched_complaint =
163 {"unmatched N_LBRAC before symtab pos %d", 0, 0};
164
165 struct complaint lbrac_mismatch_complaint =
166 {"N_LBRAC/N_RBRAC symbol mismatch at symtab pos %d", 0, 0};
167
168 struct complaint repeated_header_complaint =
169 {"\"repeated\" header file not previously seen, at symtab pos %d", 0, 0};
170
171 struct complaint repeated_header_name_complaint =
172 {"\"repeated\" header file not previously seen, named %s", 0, 0};
173 \f
174 /* During initial symbol readin, we need to have a structure to keep
175 track of which psymtabs have which bincls in them. This structure
176 is used during readin to setup the list of dependencies within each
177 partial symbol table. */
178
179 struct header_file_location
180 {
181 char *name; /* Name of header file */
182 int instance; /* See above */
183 struct partial_symtab *pst; /* Partial symtab that has the
184 BINCL/EINCL defs for this file */
185 };
186
187 /* The actual list and controling variables */
188 static struct header_file_location *bincl_list, *next_bincl;
189 static int bincls_allocated;
190
191 /* Local function prototypes */
192
193 static void
194 free_header_files PARAMS ((void));
195
196 static void
197 init_header_files PARAMS ((void));
198
199 static void
200 read_ofile_symtab PARAMS ((struct partial_symtab *));
201
202 static void
203 dbx_psymtab_to_symtab PARAMS ((struct partial_symtab *));
204
205 static void
206 dbx_psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
207
208 static void
209 read_dbx_dynamic_symtab PARAMS ((struct section_offsets *,
210 struct objfile *objfile));
211
212 static void
213 read_dbx_symtab PARAMS ((struct section_offsets *, struct objfile *,
214 CORE_ADDR, int));
215
216 static void
217 free_bincl_list PARAMS ((struct objfile *));
218
219 static struct partial_symtab *
220 find_corresponding_bincl_psymtab PARAMS ((char *, int));
221
222 static void
223 add_bincl_to_list PARAMS ((struct partial_symtab *, char *, int));
224
225 static void
226 init_bincl_list PARAMS ((int, struct objfile *));
227
228 static void
229 init_psymbol_list PARAMS ((struct objfile *));
230
231 static char *
232 dbx_next_symbol_text PARAMS ((void));
233
234 static void
235 fill_symbuf PARAMS ((bfd *));
236
237 static void
238 dbx_symfile_init PARAMS ((struct objfile *));
239
240 static void
241 dbx_new_init PARAMS ((struct objfile *));
242
243 static void
244 dbx_symfile_read PARAMS ((struct objfile *, struct section_offsets *, int));
245
246 static void
247 dbx_symfile_finish PARAMS ((struct objfile *));
248
249 static void
250 record_minimal_symbol PARAMS ((char *, CORE_ADDR, int, struct objfile *));
251
252 static void
253 add_new_header_file PARAMS ((char *, int));
254
255 static void
256 add_old_header_file PARAMS ((char *, int));
257
258 static void
259 add_this_object_header_file PARAMS ((int));
260
261 /* Free up old header file tables */
262
263 static void
264 free_header_files ()
265 {
266 register int i;
267
268 if (header_files != NULL)
269 {
270 for (i = 0; i < n_header_files; i++)
271 {
272 free (header_files[i].name);
273 }
274 free ((PTR)header_files);
275 header_files = NULL;
276 n_header_files = 0;
277 }
278 if (this_object_header_files)
279 {
280 free ((PTR)this_object_header_files);
281 this_object_header_files = NULL;
282 }
283 n_allocated_header_files = 0;
284 n_allocated_this_object_header_files = 0;
285 }
286
287 /* Allocate new header file tables */
288
289 static void
290 init_header_files ()
291 {
292 n_header_files = 0;
293 n_allocated_header_files = 10;
294 header_files = (struct header_file *)
295 xmalloc (10 * sizeof (struct header_file));
296
297 n_allocated_this_object_header_files = 10;
298 this_object_header_files = (int *) xmalloc (10 * sizeof (int));
299 }
300
301 /* Add header file number I for this object file
302 at the next successive FILENUM. */
303
304 static void
305 add_this_object_header_file (i)
306 int i;
307 {
308 if (n_this_object_header_files == n_allocated_this_object_header_files)
309 {
310 n_allocated_this_object_header_files *= 2;
311 this_object_header_files
312 = (int *) xrealloc ((char *) this_object_header_files,
313 n_allocated_this_object_header_files * sizeof (int));
314 }
315
316 this_object_header_files[n_this_object_header_files++] = i;
317 }
318
319 /* Add to this file an "old" header file, one already seen in
320 a previous object file. NAME is the header file's name.
321 INSTANCE is its instance code, to select among multiple
322 symbol tables for the same header file. */
323
324 static void
325 add_old_header_file (name, instance)
326 char *name;
327 int instance;
328 {
329 register struct header_file *p = header_files;
330 register int i;
331
332 for (i = 0; i < n_header_files; i++)
333 if (STREQ (p[i].name, name) && instance == p[i].instance)
334 {
335 add_this_object_header_file (i);
336 return;
337 }
338 complain (&repeated_header_complaint, symnum);
339 complain (&repeated_header_name_complaint, name);
340 }
341
342 /* Add to this file a "new" header file: definitions for its types follow.
343 NAME is the header file's name.
344 Most often this happens only once for each distinct header file,
345 but not necessarily. If it happens more than once, INSTANCE has
346 a different value each time, and references to the header file
347 use INSTANCE values to select among them.
348
349 dbx output contains "begin" and "end" markers for each new header file,
350 but at this level we just need to know which files there have been;
351 so we record the file when its "begin" is seen and ignore the "end". */
352
353 static void
354 add_new_header_file (name, instance)
355 char *name;
356 int instance;
357 {
358 register int i;
359
360 /* Make sure there is room for one more header file. */
361
362 if (n_header_files == n_allocated_header_files)
363 {
364 n_allocated_header_files *= 2;
365 header_files = (struct header_file *)
366 xrealloc ((char *) header_files,
367 (n_allocated_header_files * sizeof (struct header_file)));
368 }
369
370 /* Create an entry for this header file. */
371
372 i = n_header_files++;
373 header_files[i].name = savestring (name, strlen(name));
374 header_files[i].instance = instance;
375 header_files[i].length = 10;
376 header_files[i].vector
377 = (struct type **) xmalloc (10 * sizeof (struct type *));
378 memset (header_files[i].vector, 0, 10 * sizeof (struct type *));
379
380 add_this_object_header_file (i);
381 }
382
383 #if 0
384 static struct type **
385 explicit_lookup_type (real_filenum, index)
386 int real_filenum, index;
387 {
388 register struct header_file *f = &header_files[real_filenum];
389
390 if (index >= f->length)
391 {
392 f->length *= 2;
393 f->vector = (struct type **)
394 xrealloc (f->vector, f->length * sizeof (struct type *));
395 memset (&f->vector[f->length / 2],
396 '\0', f->length * sizeof (struct type *) / 2);
397 }
398 return &f->vector[index];
399 }
400 #endif
401 \f
402 static void
403 record_minimal_symbol (name, address, type, objfile)
404 char *name;
405 CORE_ADDR address;
406 int type;
407 struct objfile *objfile;
408 {
409 enum minimal_symbol_type ms_type;
410
411 switch (type)
412 {
413 case N_TEXT | N_EXT: ms_type = mst_text; break;
414 case N_DATA | N_EXT: ms_type = mst_data; break;
415 case N_BSS | N_EXT: ms_type = mst_bss; break;
416 case N_ABS | N_EXT: ms_type = mst_abs; break;
417 #ifdef N_SETV
418 case N_SETV | N_EXT: ms_type = mst_data; break;
419 case N_SETV:
420 /* I don't think this type actually exists; since a N_SETV is the result
421 of going over many .o files, it doesn't make sense to have one
422 file local. */
423 ms_type = mst_file_data;
424 break;
425 #endif
426 case N_TEXT:
427 case N_NBTEXT:
428 case N_FN:
429 case N_FN_SEQ:
430 ms_type = mst_file_text;
431 break;
432
433 case N_DATA:
434 ms_type = mst_file_data;
435
436 /* Check for __DYNAMIC, which is used by Sun shared libraries.
437 Record it as global even if it's local, not global, so
438 lookup_minimal_symbol can find it. We don't check symbol_leading_char
439 because for SunOS4 it always is '_'. */
440 if (name[8] == 'C' && STREQ ("__DYNAMIC", name))
441 ms_type = mst_data;
442
443 /* Same with virtual function tables, both global and static. */
444 {
445 char *tempstring = name;
446 if (tempstring[0] == bfd_get_symbol_leading_char (objfile->obfd))
447 ++tempstring;
448 if (VTBL_PREFIX_P ((tempstring)))
449 ms_type = mst_data;
450 }
451 break;
452
453 case N_BSS:
454 ms_type = mst_file_bss;
455 break;
456
457 default: ms_type = mst_unknown; break;
458 }
459
460 if (ms_type == mst_file_text || ms_type == mst_text
461 && address < lowest_text_address)
462 lowest_text_address = address;
463
464 prim_record_minimal_symbol
465 (obsavestring (name, strlen (name), &objfile -> symbol_obstack),
466 address,
467 ms_type,
468 objfile);
469 }
470 \f
471 /* Scan and build partial symbols for a symbol file.
472 We have been initialized by a call to dbx_symfile_init, which
473 put all the relevant info into a "struct dbx_symfile_info",
474 hung off the objfile structure.
475
476 SECTION_OFFSETS contains offsets relative to which the symbols in the
477 various sections are (depending where the sections were actually loaded).
478 MAINLINE is true if we are reading the main symbol
479 table (as opposed to a shared lib or dynamically loaded file). */
480
481 static void
482 dbx_symfile_read (objfile, section_offsets, mainline)
483 struct objfile *objfile;
484 struct section_offsets *section_offsets;
485 int mainline; /* FIXME comments above */
486 {
487 bfd *sym_bfd;
488 int val;
489 struct cleanup *back_to;
490
491 sym_bfd = objfile->obfd;
492 val = bfd_seek (objfile->obfd, DBX_SYMTAB_OFFSET (objfile), SEEK_SET);
493 if (val < 0)
494 perror_with_name (objfile->name);
495
496 /* If we are reinitializing, or if we have never loaded syms yet, init */
497 if (mainline || objfile->global_psymbols.size == 0 || objfile->static_psymbols.size == 0)
498 init_psymbol_list (objfile);
499
500 symbol_size = DBX_SYMBOL_SIZE (objfile);
501 symbol_table_offset = DBX_SYMTAB_OFFSET (objfile);
502
503 pending_blocks = 0;
504 back_to = make_cleanup (really_free_pendings, 0);
505
506 init_minimal_symbol_collection ();
507 make_cleanup (discard_minimal_symbols, 0);
508
509 /* Now that the symbol table data of the executable file are all in core,
510 process them and define symbols accordingly. */
511
512 read_dbx_symtab (section_offsets, objfile,
513 bfd_section_vma (sym_bfd, DBX_TEXT_SECT (objfile)),
514 bfd_section_size (sym_bfd, DBX_TEXT_SECT (objfile)));
515
516 /* Add the dynamic symbols if we are reading the main symbol table. */
517
518 if (mainline)
519 read_dbx_dynamic_symtab (section_offsets, objfile);
520
521 /* Install any minimal symbols that have been collected as the current
522 minimal symbols for this objfile. */
523
524 install_minimal_symbols (objfile);
525
526 if (!have_partial_symbols ()) {
527 wrap_here ("");
528 printf_filtered ("(no debugging symbols found)...");
529 wrap_here ("");
530 }
531
532 do_cleanups (back_to);
533 }
534
535 /* Initialize anything that needs initializing when a completely new
536 symbol file is specified (not just adding some symbols from another
537 file, e.g. a shared library). */
538
539 static void
540 dbx_new_init (ignore)
541 struct objfile *ignore;
542 {
543 stabsread_new_init ();
544 buildsym_new_init ();
545 init_header_files ();
546 }
547
548
549 /* dbx_symfile_init ()
550 is the dbx-specific initialization routine for reading symbols.
551 It is passed a struct objfile which contains, among other things,
552 the BFD for the file whose symbols are being read, and a slot for a pointer
553 to "private data" which we fill with goodies.
554
555 We read the string table into malloc'd space and stash a pointer to it.
556
557 Since BFD doesn't know how to read debug symbols in a format-independent
558 way (and may never do so...), we have to do it ourselves. We will never
559 be called unless this is an a.out (or very similar) file.
560 FIXME, there should be a cleaner peephole into the BFD environment here. */
561
562 #define DBX_STRINGTAB_SIZE_SIZE sizeof(long) /* FIXME */
563
564 static void
565 dbx_symfile_init (objfile)
566 struct objfile *objfile;
567 {
568 int val;
569 bfd *sym_bfd = objfile->obfd;
570 char *name = bfd_get_filename (sym_bfd);
571 unsigned char size_temp[DBX_STRINGTAB_SIZE_SIZE];
572
573 /* Allocate struct to keep track of the symfile */
574 objfile->sym_stab_info = (PTR)
575 xmmalloc (objfile -> md, sizeof (struct dbx_symfile_info));
576
577 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
578 #define STRING_TABLE_OFFSET (sym_bfd->origin + obj_str_filepos (sym_bfd))
579 #define SYMBOL_TABLE_OFFSET (sym_bfd->origin + obj_sym_filepos (sym_bfd))
580
581 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
582
583 DBX_SYMFILE_INFO (objfile)->stab_section_info = NULL;
584 DBX_TEXT_SECT (objfile) = bfd_get_section_by_name (sym_bfd, ".text");
585 if (!DBX_TEXT_SECT (objfile))
586 error ("Can't find .text section in symbol file");
587
588 DBX_SYMBOL_SIZE (objfile) = obj_symbol_entry_size (sym_bfd);
589 DBX_SYMCOUNT (objfile) = bfd_get_symcount (sym_bfd);
590 DBX_SYMTAB_OFFSET (objfile) = SYMBOL_TABLE_OFFSET;
591
592 /* Read the string table and stash it away in the psymbol_obstack. It is
593 only needed as long as we need to expand psymbols into full symbols,
594 so when we blow away the psymbol the string table goes away as well.
595 Note that gdb used to use the results of attempting to malloc the
596 string table, based on the size it read, as a form of sanity check
597 for botched byte swapping, on the theory that a byte swapped string
598 table size would be so totally bogus that the malloc would fail. Now
599 that we put in on the psymbol_obstack, we can't do this since gdb gets
600 a fatal error (out of virtual memory) if the size is bogus. We can
601 however at least check to see if the size is less than the size of
602 the size field itself, or larger than the size of the entire file.
603 Note that all valid string tables have a size greater than zero, since
604 the bytes used to hold the size are included in the count. */
605
606 if (STRING_TABLE_OFFSET == 0)
607 {
608 /* It appears that with the existing bfd code, STRING_TABLE_OFFSET
609 will never be zero, even when there is no string table. This
610 would appear to be a bug in bfd. */
611 DBX_STRINGTAB_SIZE (objfile) = 0;
612 DBX_STRINGTAB (objfile) = NULL;
613 }
614 else
615 {
616 val = bfd_seek (sym_bfd, STRING_TABLE_OFFSET, SEEK_SET);
617 if (val < 0)
618 perror_with_name (name);
619
620 memset ((PTR) size_temp, 0, sizeof (size_temp));
621 val = bfd_read ((PTR) size_temp, sizeof (size_temp), 1, sym_bfd);
622 if (val < 0)
623 {
624 perror_with_name (name);
625 }
626 else if (val == 0)
627 {
628 /* With the existing bfd code, STRING_TABLE_OFFSET will be set to
629 EOF if there is no string table, and attempting to read the size
630 from EOF will read zero bytes. */
631 DBX_STRINGTAB_SIZE (objfile) = 0;
632 DBX_STRINGTAB (objfile) = NULL;
633 }
634 else
635 {
636 /* Read some data that would appear to be the string table size.
637 If there really is a string table, then it is probably the right
638 size. Byteswap if necessary and validate the size. Note that
639 the minimum is DBX_STRINGTAB_SIZE_SIZE. If we just read some
640 random data that happened to be at STRING_TABLE_OFFSET, because
641 bfd can't tell us there is no string table, the sanity checks may
642 or may not catch this. */
643 DBX_STRINGTAB_SIZE (objfile) = bfd_h_get_32 (sym_bfd, size_temp);
644
645 if (DBX_STRINGTAB_SIZE (objfile) < sizeof (size_temp)
646 || DBX_STRINGTAB_SIZE (objfile) > bfd_get_size (sym_bfd))
647 error ("ridiculous string table size (%d bytes).",
648 DBX_STRINGTAB_SIZE (objfile));
649
650 DBX_STRINGTAB (objfile) =
651 (char *) obstack_alloc (&objfile -> psymbol_obstack,
652 DBX_STRINGTAB_SIZE (objfile));
653
654 /* Now read in the string table in one big gulp. */
655
656 val = bfd_seek (sym_bfd, STRING_TABLE_OFFSET, SEEK_SET);
657 if (val < 0)
658 perror_with_name (name);
659 val = bfd_read (DBX_STRINGTAB (objfile), DBX_STRINGTAB_SIZE (objfile), 1,
660 sym_bfd);
661 if (val != DBX_STRINGTAB_SIZE (objfile))
662 perror_with_name (name);
663 }
664 }
665 }
666
667 /* Perform any local cleanups required when we are done with a particular
668 objfile. I.E, we are in the process of discarding all symbol information
669 for an objfile, freeing up all memory held for it, and unlinking the
670 objfile struct from the global list of known objfiles. */
671
672 static void
673 dbx_symfile_finish (objfile)
674 struct objfile *objfile;
675 {
676 if (objfile->sym_stab_info != NULL)
677 {
678 mfree (objfile -> md, objfile->sym_stab_info);
679 }
680 free_header_files ();
681 }
682
683 \f
684 /* Buffer for reading the symbol table entries. */
685 static struct internal_nlist symbuf[4096];
686 static int symbuf_idx;
687 static int symbuf_end;
688
689 /* Name of last function encountered. Used in Solaris to approximate
690 object file boundaries. */
691 static char *last_function_name;
692
693 /* The address in memory of the string table of the object file we are
694 reading (which might not be the "main" object file, but might be a
695 shared library or some other dynamically loaded thing). This is set
696 by read_dbx_symtab when building psymtabs, and by read_ofile_symtab
697 when building symtabs, and is used only by next_symbol_text. */
698 static char *stringtab_global;
699
700 /* Refill the symbol table input buffer
701 and set the variables that control fetching entries from it.
702 Reports an error if no data available.
703 This function can read past the end of the symbol table
704 (into the string table) but this does no harm. */
705
706 static void
707 fill_symbuf (sym_bfd)
708 bfd *sym_bfd;
709 {
710 int nbytes = bfd_read ((PTR)symbuf, sizeof (symbuf), 1, sym_bfd);
711 if (nbytes < 0)
712 perror_with_name (bfd_get_filename (sym_bfd));
713 else if (nbytes == 0)
714 error ("Premature end of file reading symbol table");
715 symbuf_end = nbytes / symbol_size;
716 symbuf_idx = 0;
717 }
718
719 #define SWAP_SYMBOL(symp, abfd) \
720 { \
721 (symp)->n_strx = bfd_h_get_32(abfd, \
722 (unsigned char *)&(symp)->n_strx); \
723 (symp)->n_desc = bfd_h_get_16 (abfd, \
724 (unsigned char *)&(symp)->n_desc); \
725 (symp)->n_value = bfd_h_get_32 (abfd, \
726 (unsigned char *)&(symp)->n_value); \
727 }
728
729 /* Invariant: The symbol pointed to by symbuf_idx is the first one
730 that hasn't been swapped. Swap the symbol at the same time
731 that symbuf_idx is incremented. */
732
733 /* dbx allows the text of a symbol name to be continued into the
734 next symbol name! When such a continuation is encountered
735 (a \ at the end of the text of a name)
736 call this function to get the continuation. */
737
738 static char *
739 dbx_next_symbol_text ()
740 {
741 if (symbuf_idx == symbuf_end)
742 fill_symbuf (symfile_bfd);
743 symnum++;
744 SWAP_SYMBOL(&symbuf[symbuf_idx], symfile_bfd);
745 return symbuf[symbuf_idx++].n_strx + stringtab_global
746 + file_string_table_offset;
747 }
748 \f
749 /* Initializes storage for all of the partial symbols that will be
750 created by read_dbx_symtab and subsidiaries. */
751
752 static void
753 init_psymbol_list (objfile)
754 struct objfile *objfile;
755 {
756 /* Free any previously allocated psymbol lists. */
757 if (objfile -> global_psymbols.list)
758 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
759 if (objfile -> static_psymbols.list)
760 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
761
762 /* Current best guess is that there are approximately a twentieth
763 of the total symbols (in a debugging file) are global or static
764 oriented symbols */
765 objfile -> global_psymbols.size = DBX_SYMCOUNT (objfile) / 10;
766 objfile -> static_psymbols.size = DBX_SYMCOUNT (objfile) / 10;
767 objfile -> global_psymbols.next = objfile -> global_psymbols.list = (struct partial_symbol *)
768 xmmalloc (objfile -> md, objfile -> global_psymbols.size * sizeof (struct partial_symbol));
769 objfile -> static_psymbols.next = objfile -> static_psymbols.list = (struct partial_symbol *)
770 xmmalloc (objfile -> md, objfile -> static_psymbols.size * sizeof (struct partial_symbol));
771 }
772
773 /* Initialize the list of bincls to contain none and have some
774 allocated. */
775
776 static void
777 init_bincl_list (number, objfile)
778 int number;
779 struct objfile *objfile;
780 {
781 bincls_allocated = number;
782 next_bincl = bincl_list = (struct header_file_location *)
783 xmmalloc (objfile -> md, bincls_allocated * sizeof(struct header_file_location));
784 }
785
786 /* Add a bincl to the list. */
787
788 static void
789 add_bincl_to_list (pst, name, instance)
790 struct partial_symtab *pst;
791 char *name;
792 int instance;
793 {
794 if (next_bincl >= bincl_list + bincls_allocated)
795 {
796 int offset = next_bincl - bincl_list;
797 bincls_allocated *= 2;
798 bincl_list = (struct header_file_location *)
799 xmrealloc (pst->objfile->md, (char *)bincl_list,
800 bincls_allocated * sizeof (struct header_file_location));
801 next_bincl = bincl_list + offset;
802 }
803 next_bincl->pst = pst;
804 next_bincl->instance = instance;
805 next_bincl++->name = name;
806 }
807
808 /* Given a name, value pair, find the corresponding
809 bincl in the list. Return the partial symtab associated
810 with that header_file_location. */
811
812 static struct partial_symtab *
813 find_corresponding_bincl_psymtab (name, instance)
814 char *name;
815 int instance;
816 {
817 struct header_file_location *bincl;
818
819 for (bincl = bincl_list; bincl < next_bincl; bincl++)
820 if (bincl->instance == instance
821 && STREQ (name, bincl->name))
822 return bincl->pst;
823
824 return (struct partial_symtab *) 0;
825 }
826
827 /* Free the storage allocated for the bincl list. */
828
829 static void
830 free_bincl_list (objfile)
831 struct objfile *objfile;
832 {
833 mfree (objfile -> md, (PTR)bincl_list);
834 bincls_allocated = 0;
835 }
836
837 /* Scan a SunOs dynamic symbol table for symbols of interest and
838 add them to the minimal symbol table. */
839
840 static void
841 read_dbx_dynamic_symtab (section_offsets, objfile)
842 struct section_offsets *section_offsets;
843 struct objfile *objfile;
844 {
845 bfd *abfd = objfile->obfd;
846 struct cleanup *back_to;
847 int counter;
848 long dynsym_size;
849 long dynsym_count;
850 asymbol **dynsyms;
851 asymbol **symptr;
852 arelent **relptr;
853 long dynrel_size;
854 long dynrel_count;
855 arelent **dynrels;
856 CORE_ADDR sym_value;
857
858 /* Check that the symbol file has dynamic symbols that we know about.
859 bfd_arch_unknown can happen if we are reading a sun3 symbol file
860 on a sun4 host (and vice versa) and bfd is not configured
861 --with-target=all. This would trigger an assertion in bfd/sunos.c,
862 so we ignore the dynamic symbols in this case. */
863 if (bfd_get_flavour (abfd) != bfd_target_aout_flavour
864 || (bfd_get_file_flags (abfd) & DYNAMIC) == 0
865 || bfd_get_arch (abfd) == bfd_arch_unknown)
866 return;
867
868 dynsym_size = bfd_get_dynamic_symtab_upper_bound (abfd);
869 if (dynsym_size < 0)
870 return;
871
872 dynsyms = (asymbol **) xmalloc (dynsym_size);
873 back_to = make_cleanup (free, dynsyms);
874
875 dynsym_count = bfd_canonicalize_dynamic_symtab (abfd, dynsyms);
876 if (dynsym_count < 0)
877 {
878 do_cleanups (back_to);
879 return;
880 }
881
882 /* Enter dynamic symbols into the minimal symbol table
883 if this is a stripped executable. */
884 if (bfd_get_symcount (abfd) <= 0)
885 {
886 symptr = dynsyms;
887 for (counter = 0; counter < dynsym_count; counter++, symptr++)
888 {
889 asymbol *sym = *symptr;
890 asection *sec;
891 int type;
892
893 sec = bfd_get_section (sym);
894
895 /* BFD symbols are section relative. */
896 sym_value = sym->value + sec->vma;
897
898 if (bfd_get_section_flags (abfd, sec) & SEC_CODE)
899 {
900 sym_value += ANOFFSET (section_offsets, SECT_OFF_TEXT);
901 type = N_TEXT;
902 }
903 else if (bfd_get_section_flags (abfd, sec) & SEC_DATA)
904 {
905 sym_value += ANOFFSET (section_offsets, SECT_OFF_DATA);
906 type = N_DATA;
907 }
908 else if (bfd_get_section_flags (abfd, sec) & SEC_ALLOC)
909 {
910 sym_value += ANOFFSET (section_offsets, SECT_OFF_BSS);
911 type = N_BSS;
912 }
913 else
914 continue;
915
916 if (sym->flags & BSF_GLOBAL)
917 type |= N_EXT;
918
919 record_minimal_symbol ((char *) bfd_asymbol_name (sym), sym_value,
920 type, objfile);
921 }
922 }
923
924 /* Symbols from shared libraries have a dynamic relocation entry
925 that points to the associated slot in the procedure linkage table.
926 We make a mininal symbol table entry with type mst_solib_trampoline
927 at the address in the procedure linkage table. */
928 dynrel_size = bfd_get_dynamic_reloc_upper_bound (abfd);
929 if (dynrel_size < 0)
930 {
931 do_cleanups (back_to);
932 return;
933 }
934
935 dynrels = (arelent **) xmalloc (dynrel_size);
936 make_cleanup (free, dynrels);
937
938 dynrel_count = bfd_canonicalize_dynamic_reloc (abfd, dynrels, dynsyms);
939 if (dynrel_count < 0)
940 {
941 do_cleanups (back_to);
942 return;
943 }
944
945 for (counter = 0, relptr = dynrels;
946 counter < dynrel_count;
947 counter++, relptr++)
948 {
949 arelent *rel = *relptr;
950 CORE_ADDR address = rel->address;
951
952 switch (bfd_get_arch (abfd))
953 {
954 case bfd_arch_sparc:
955 if (rel->howto->type != RELOC_JMP_SLOT)
956 continue;
957 break;
958 case bfd_arch_m68k:
959 /* `16' is the type BFD produces for a jump table relocation. */
960 if (rel->howto->type != 16)
961 continue;
962
963 /* Adjust address in the jump table to point to
964 the start of the bsr instruction. */
965 address -= 2;
966 break;
967 default:
968 continue;
969 }
970
971 prim_record_minimal_symbol (bfd_asymbol_name (*rel->sym_ptr_ptr),
972 address,
973 mst_solib_trampoline,
974 objfile);
975 }
976
977 do_cleanups (back_to);
978 }
979
980 /* Given pointers to an a.out symbol table in core containing dbx
981 style data, setup partial_symtab's describing each source file for
982 which debugging information is available.
983 SYMFILE_NAME is the name of the file we are reading from
984 and SECTION_OFFSETS is the set of offsets for the various sections
985 of the file (a set of zeros if the mainline program). */
986
987 static void
988 read_dbx_symtab (section_offsets, objfile, text_addr, text_size)
989 struct section_offsets *section_offsets;
990 struct objfile *objfile;
991 CORE_ADDR text_addr;
992 int text_size;
993 {
994 register struct internal_nlist *bufp = 0; /* =0 avoids gcc -Wall glitch */
995 register char *namestring;
996 int nsl;
997 int past_first_source_file = 0;
998 CORE_ADDR last_o_file_start = 0;
999 struct cleanup *back_to;
1000 bfd *abfd;
1001
1002 /* Current partial symtab */
1003 struct partial_symtab *pst;
1004
1005 /* List of current psymtab's include files */
1006 char **psymtab_include_list;
1007 int includes_allocated;
1008 int includes_used;
1009
1010 /* Index within current psymtab dependency list */
1011 struct partial_symtab **dependency_list;
1012 int dependencies_used, dependencies_allocated;
1013
1014 /* FIXME. We probably want to change stringtab_global rather than add this
1015 while processing every symbol entry. FIXME. */
1016 file_string_table_offset = 0;
1017 next_file_string_table_offset = 0;
1018
1019 stringtab_global = DBX_STRINGTAB (objfile);
1020
1021 pst = (struct partial_symtab *) 0;
1022
1023 includes_allocated = 30;
1024 includes_used = 0;
1025 psymtab_include_list = (char **) alloca (includes_allocated *
1026 sizeof (char *));
1027
1028 dependencies_allocated = 30;
1029 dependencies_used = 0;
1030 dependency_list =
1031 (struct partial_symtab **) alloca (dependencies_allocated *
1032 sizeof (struct partial_symtab *));
1033
1034 /* Init bincl list */
1035 init_bincl_list (20, objfile);
1036 back_to = make_cleanup (free_bincl_list, objfile);
1037
1038 last_source_file = NULL;
1039
1040 lowest_text_address = (CORE_ADDR)-1;
1041
1042 symfile_bfd = objfile->obfd; /* For next_text_symbol */
1043 abfd = objfile->obfd;
1044 symbuf_end = symbuf_idx = 0;
1045 next_symbol_text_func = dbx_next_symbol_text;
1046
1047 for (symnum = 0; symnum < DBX_SYMCOUNT (objfile); symnum++)
1048 {
1049 /* Get the symbol for this run and pull out some info */
1050 QUIT; /* allow this to be interruptable */
1051 if (symbuf_idx == symbuf_end)
1052 fill_symbuf (abfd);
1053 bufp = &symbuf[symbuf_idx++];
1054
1055 /*
1056 * Special case to speed up readin.
1057 */
1058 if (bufp->n_type == (unsigned char)N_SLINE) continue;
1059
1060 SWAP_SYMBOL (bufp, abfd);
1061
1062 /* Ok. There is a lot of code duplicated in the rest of this
1063 switch statement (for efficiency reasons). Since I don't
1064 like duplicating code, I will do my penance here, and
1065 describe the code which is duplicated:
1066
1067 *) The assignment to namestring.
1068 *) The call to strchr.
1069 *) The addition of a partial symbol the the two partial
1070 symbol lists. This last is a large section of code, so
1071 I've imbedded it in the following macro.
1072 */
1073
1074 /* Set namestring based on bufp. If the string table index is invalid,
1075 give a fake name, and print a single error message per symbol file read,
1076 rather than abort the symbol reading or flood the user with messages. */
1077
1078 /*FIXME: Too many adds and indirections in here for the inner loop. */
1079 #define SET_NAMESTRING()\
1080 if (((unsigned)bufp->n_strx + file_string_table_offset) >= \
1081 DBX_STRINGTAB_SIZE (objfile)) { \
1082 complain (&string_table_offset_complaint, symnum); \
1083 namestring = "<bad string table offset>"; \
1084 } else \
1085 namestring = bufp->n_strx + file_string_table_offset + \
1086 DBX_STRINGTAB (objfile)
1087
1088 #define CUR_SYMBOL_TYPE bufp->n_type
1089 #define CUR_SYMBOL_VALUE bufp->n_value
1090 #define DBXREAD_ONLY
1091 #define START_PSYMTAB(ofile,secoff,fname,low,symoff,global_syms,static_syms)\
1092 start_psymtab(ofile, secoff, fname, low, symoff, global_syms, static_syms)
1093 #define END_PSYMTAB(pst,ilist,ninc,c_off,c_text,dep_list,n_deps)\
1094 end_psymtab(pst,ilist,ninc,c_off,c_text,dep_list,n_deps)
1095
1096 #include "partial-stab.h"
1097 }
1098
1099 /* If there's stuff to be cleaned up, clean it up. */
1100 if (DBX_SYMCOUNT (objfile) > 0 /* We have some syms */
1101 /*FIXME, does this have a bug at start address 0? */
1102 && last_o_file_start
1103 && objfile -> ei.entry_point < bufp->n_value
1104 && objfile -> ei.entry_point >= last_o_file_start)
1105 {
1106 objfile -> ei.entry_file_lowpc = last_o_file_start;
1107 objfile -> ei.entry_file_highpc = bufp->n_value;
1108 }
1109
1110 if (pst)
1111 {
1112 end_psymtab (pst, psymtab_include_list, includes_used,
1113 symnum * symbol_size,
1114 (lowest_text_address == (CORE_ADDR)-1
1115 ? (text_addr + section_offsets->offsets[SECT_OFF_TEXT])
1116 : lowest_text_address)
1117 + text_size,
1118 dependency_list, dependencies_used);
1119 }
1120
1121 do_cleanups (back_to);
1122 }
1123
1124 /* Allocate and partially fill a partial symtab. It will be
1125 completely filled at the end of the symbol list.
1126
1127 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
1128 is the address relative to which its symbols are (incremental) or 0
1129 (normal). */
1130
1131
1132 struct partial_symtab *
1133 start_psymtab (objfile, section_offsets,
1134 filename, textlow, ldsymoff, global_syms, static_syms)
1135 struct objfile *objfile;
1136 struct section_offsets *section_offsets;
1137 char *filename;
1138 CORE_ADDR textlow;
1139 int ldsymoff;
1140 struct partial_symbol *global_syms;
1141 struct partial_symbol *static_syms;
1142 {
1143 struct partial_symtab *result =
1144 start_psymtab_common(objfile, section_offsets,
1145 filename, textlow, global_syms, static_syms);
1146
1147 result->read_symtab_private = (char *)
1148 obstack_alloc (&objfile -> psymbol_obstack, sizeof (struct symloc));
1149 LDSYMOFF(result) = ldsymoff;
1150 result->read_symtab = dbx_psymtab_to_symtab;
1151 SYMBOL_SIZE(result) = symbol_size;
1152 SYMBOL_OFFSET(result) = symbol_table_offset;
1153 STRING_OFFSET(result) = string_table_offset;
1154 FILE_STRING_OFFSET(result) = file_string_table_offset;
1155
1156 /* If we're handling an ELF file, drag some section-relocation info
1157 for this source file out of the ELF symbol table, to compensate for
1158 Sun brain death. This replaces the section_offsets in this psymtab,
1159 if successful. */
1160 elfstab_offset_sections (objfile, result);
1161
1162 /* Deduce the source language from the filename for this psymtab. */
1163 psymtab_language = deduce_language_from_filename (filename);
1164
1165 return result;
1166 }
1167
1168 /* Close off the current usage of PST.
1169 Returns PST or NULL if the partial symtab was empty and thrown away.
1170
1171 FIXME: List variables and peculiarities of same. */
1172
1173 struct partial_symtab *
1174 end_psymtab (pst, include_list, num_includes, capping_symbol_offset,
1175 capping_text, dependency_list, number_dependencies)
1176 struct partial_symtab *pst;
1177 char **include_list;
1178 int num_includes;
1179 int capping_symbol_offset;
1180 CORE_ADDR capping_text;
1181 struct partial_symtab **dependency_list;
1182 int number_dependencies;
1183 {
1184 int i;
1185 struct partial_symtab *p1;
1186 struct objfile *objfile = pst -> objfile;
1187
1188 if (capping_symbol_offset != -1)
1189 LDSYMLEN(pst) = capping_symbol_offset - LDSYMOFF(pst);
1190 pst->texthigh = capping_text;
1191
1192 #ifdef N_SO_ADDRESS_MAYBE_MISSING
1193 /* Under Solaris, the N_SO symbols always have a value of 0,
1194 instead of the usual address of the .o file. Therefore,
1195 we have to do some tricks to fill in texthigh and textlow.
1196 The first trick is in partial-stab.h: if we see a static
1197 or global function, and the textlow for the current pst
1198 is still 0, then we use that function's address for
1199 the textlow of the pst.
1200
1201 Now, to fill in texthigh, we remember the last function seen
1202 in the .o file (also in partial-stab.h). Also, there's a hack in
1203 bfd/elf.c and gdb/elfread.c to pass the ELF st_size field
1204 to here via the misc_info field. Therefore, we can fill in
1205 a reliable texthigh by taking the address plus size of the
1206 last function in the file.
1207
1208 Unfortunately, that does not cover the case where the last function
1209 in the file is static. See the paragraph below for more comments
1210 on this situation.
1211
1212 Finally, if we have a valid textlow for the current file, we run
1213 down the partial_symtab_list filling in previous texthighs that
1214 are still unknown. */
1215
1216 if (pst->texthigh == 0 && last_function_name) {
1217 char *p;
1218 int n;
1219 struct minimal_symbol *minsym;
1220
1221 p = strchr (last_function_name, ':');
1222 if (p == NULL)
1223 p = last_function_name;
1224 n = p - last_function_name;
1225 p = alloca (n + 1);
1226 strncpy (p, last_function_name, n);
1227 p[n] = 0;
1228
1229 minsym = lookup_minimal_symbol (p, objfile);
1230
1231 if (minsym) {
1232 pst->texthigh = SYMBOL_VALUE_ADDRESS (minsym) +
1233 (long) MSYMBOL_INFO (minsym);
1234 } else {
1235 /* This file ends with a static function, and it's
1236 difficult to imagine how hard it would be to track down
1237 the elf symbol. Luckily, most of the time no one will notice,
1238 since the next file will likely be compiled with -g, so
1239 the code below will copy the first fuction's start address
1240 back to our texthigh variable. (Also, if this file is the
1241 last one in a dynamically linked program, texthigh already
1242 has the right value.) If the next file isn't compiled
1243 with -g, then the last function in this file winds up owning
1244 all of the text space up to the next -g file, or the end (minus
1245 shared libraries). This only matters for single stepping,
1246 and even then it will still work, except that it will single
1247 step through all of the covered functions, instead of setting
1248 breakpoints around them as it usualy does. This makes it
1249 pretty slow, but at least it doesn't fail.
1250
1251 We can fix this with a fairly big change to bfd, but we need
1252 to coordinate better with Cygnus if we want to do that. FIXME. */
1253 }
1254 last_function_name = NULL;
1255 }
1256
1257 /* this test will be true if the last .o file is only data */
1258 if (pst->textlow == 0)
1259 /* This loses if the text section really starts at address zero
1260 (generally true when we are debugging a .o file, for example).
1261 That is why this whole thing is inside N_SO_ADDRESS_MAYBE_MISSING. */
1262 pst->textlow = pst->texthigh;
1263
1264 /* If we know our own starting text address, then walk through all other
1265 psymtabs for this objfile, and if any didn't know their ending text
1266 address, set it to our starting address. Take care to not set our
1267 own ending address to our starting address, nor to set addresses on
1268 `dependency' files that have both textlow and texthigh zero. */
1269 if (pst->textlow) {
1270 ALL_OBJFILE_PSYMTABS (objfile, p1) {
1271 if (p1->texthigh == 0 && p1->textlow != 0 && p1 != pst) {
1272 p1->texthigh = pst->textlow;
1273 /* if this file has only data, then make textlow match texthigh */
1274 if (p1->textlow == 0)
1275 p1->textlow = p1->texthigh;
1276 }
1277 }
1278 }
1279
1280 /* End of kludge for patching Solaris textlow and texthigh. */
1281 #endif /* N_SO_ADDRESS_MAYBE_MISSING. */
1282
1283 pst->n_global_syms =
1284 objfile->global_psymbols.next - (objfile->global_psymbols.list + pst->globals_offset);
1285 pst->n_static_syms =
1286 objfile->static_psymbols.next - (objfile->static_psymbols.list + pst->statics_offset);
1287
1288 pst->number_of_dependencies = number_dependencies;
1289 if (number_dependencies)
1290 {
1291 pst->dependencies = (struct partial_symtab **)
1292 obstack_alloc (&objfile->psymbol_obstack,
1293 number_dependencies * sizeof (struct partial_symtab *));
1294 memcpy (pst->dependencies, dependency_list,
1295 number_dependencies * sizeof (struct partial_symtab *));
1296 }
1297 else
1298 pst->dependencies = 0;
1299
1300 for (i = 0; i < num_includes; i++)
1301 {
1302 struct partial_symtab *subpst =
1303 allocate_psymtab (include_list[i], objfile);
1304
1305 subpst->section_offsets = pst->section_offsets;
1306 subpst->read_symtab_private =
1307 (char *) obstack_alloc (&objfile->psymbol_obstack,
1308 sizeof (struct symloc));
1309 LDSYMOFF(subpst) =
1310 LDSYMLEN(subpst) =
1311 subpst->textlow =
1312 subpst->texthigh = 0;
1313
1314 /* We could save slight bits of space by only making one of these,
1315 shared by the entire set of include files. FIXME-someday. */
1316 subpst->dependencies = (struct partial_symtab **)
1317 obstack_alloc (&objfile->psymbol_obstack,
1318 sizeof (struct partial_symtab *));
1319 subpst->dependencies[0] = pst;
1320 subpst->number_of_dependencies = 1;
1321
1322 subpst->globals_offset =
1323 subpst->n_global_syms =
1324 subpst->statics_offset =
1325 subpst->n_static_syms = 0;
1326
1327 subpst->readin = 0;
1328 subpst->symtab = 0;
1329 subpst->read_symtab = pst->read_symtab;
1330 }
1331
1332 sort_pst_symbols (pst);
1333
1334 /* If there is already a psymtab or symtab for a file of this name, remove it.
1335 (If there is a symtab, more drastic things also happen.)
1336 This happens in VxWorks. */
1337 free_named_symtabs (pst->filename);
1338
1339 if (num_includes == 0
1340 && number_dependencies == 0
1341 && pst->n_global_syms == 0
1342 && pst->n_static_syms == 0)
1343 {
1344 /* Throw away this psymtab, it's empty. We can't deallocate it, since
1345 it is on the obstack, but we can forget to chain it on the list. */
1346 /* Empty psymtabs happen as a result of header files which don't have
1347 any symbols in them. There can be a lot of them. But this check
1348 is wrong, in that a psymtab with N_SLINE entries but nothing else
1349 is not empty, but we don't realize that. Fixing that without slowing
1350 things down might be tricky. */
1351 struct partial_symtab *prev_pst;
1352
1353 /* First, snip it out of the psymtab chain */
1354
1355 if (pst->objfile->psymtabs == pst)
1356 pst->objfile->psymtabs = pst->next;
1357 else
1358 for (prev_pst = pst->objfile->psymtabs; prev_pst; prev_pst = pst->next)
1359 if (prev_pst->next == pst)
1360 prev_pst->next = pst->next;
1361
1362 /* Next, put it on a free list for recycling */
1363
1364 pst->next = pst->objfile->free_psymtabs;
1365 pst->objfile->free_psymtabs = pst;
1366
1367 /* Indicate that psymtab was thrown away. */
1368 pst = (struct partial_symtab *)NULL;
1369 }
1370 return pst;
1371 }
1372 \f
1373 static void
1374 dbx_psymtab_to_symtab_1 (pst)
1375 struct partial_symtab *pst;
1376 {
1377 struct cleanup *old_chain;
1378 int i;
1379
1380 if (!pst)
1381 return;
1382
1383 if (pst->readin)
1384 {
1385 fprintf_unfiltered (gdb_stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
1386 pst->filename);
1387 return;
1388 }
1389
1390 /* Read in all partial symtabs on which this one is dependent */
1391 for (i = 0; i < pst->number_of_dependencies; i++)
1392 if (!pst->dependencies[i]->readin)
1393 {
1394 /* Inform about additional files that need to be read in. */
1395 if (info_verbose)
1396 {
1397 fputs_filtered (" ", gdb_stdout);
1398 wrap_here ("");
1399 fputs_filtered ("and ", gdb_stdout);
1400 wrap_here ("");
1401 printf_filtered ("%s...", pst->dependencies[i]->filename);
1402 wrap_here (""); /* Flush output */
1403 gdb_flush (gdb_stdout);
1404 }
1405 dbx_psymtab_to_symtab_1 (pst->dependencies[i]);
1406 }
1407
1408 if (LDSYMLEN(pst)) /* Otherwise it's a dummy */
1409 {
1410 /* Init stuff necessary for reading in symbols */
1411 stabsread_init ();
1412 buildsym_init ();
1413 old_chain = make_cleanup (really_free_pendings, 0);
1414 file_string_table_offset = FILE_STRING_OFFSET (pst);
1415 symbol_size = SYMBOL_SIZE (pst);
1416
1417 /* Read in this file's symbols */
1418 bfd_seek (pst->objfile->obfd, SYMBOL_OFFSET (pst), SEEK_SET);
1419 read_ofile_symtab (pst);
1420 sort_symtab_syms (pst->symtab);
1421
1422 do_cleanups (old_chain);
1423 }
1424
1425 pst->readin = 1;
1426 }
1427
1428 /* Read in all of the symbols for a given psymtab for real.
1429 Be verbose about it if the user wants that. */
1430
1431 static void
1432 dbx_psymtab_to_symtab (pst)
1433 struct partial_symtab *pst;
1434 {
1435 bfd *sym_bfd;
1436
1437 if (!pst)
1438 return;
1439
1440 if (pst->readin)
1441 {
1442 fprintf_unfiltered (gdb_stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
1443 pst->filename);
1444 return;
1445 }
1446
1447 if (LDSYMLEN(pst) || pst->number_of_dependencies)
1448 {
1449 /* Print the message now, before reading the string table,
1450 to avoid disconcerting pauses. */
1451 if (info_verbose)
1452 {
1453 printf_filtered ("Reading in symbols for %s...", pst->filename);
1454 gdb_flush (gdb_stdout);
1455 }
1456
1457 sym_bfd = pst->objfile->obfd;
1458
1459 next_symbol_text_func = dbx_next_symbol_text;
1460
1461 dbx_psymtab_to_symtab_1 (pst);
1462
1463 /* Match with global symbols. This only needs to be done once,
1464 after all of the symtabs and dependencies have been read in. */
1465 scan_file_globals (pst->objfile);
1466
1467 /* Finish up the debug error message. */
1468 if (info_verbose)
1469 printf_filtered ("done.\n");
1470 }
1471 }
1472
1473 /* Read in a defined section of a specific object file's symbols. */
1474
1475 static void
1476 read_ofile_symtab (pst)
1477 struct partial_symtab *pst;
1478 {
1479 register char *namestring;
1480 register struct internal_nlist *bufp;
1481 unsigned char type;
1482 unsigned max_symnum;
1483 register bfd *abfd;
1484 struct objfile *objfile;
1485 int sym_offset; /* Offset to start of symbols to read */
1486 int sym_size; /* Size of symbols to read */
1487 CORE_ADDR text_offset; /* Start of text segment for symbols */
1488 int text_size; /* Size of text segment for symbols */
1489 struct section_offsets *section_offsets;
1490
1491 objfile = pst->objfile;
1492 sym_offset = LDSYMOFF(pst);
1493 sym_size = LDSYMLEN(pst);
1494 text_offset = pst->textlow;
1495 text_size = pst->texthigh - pst->textlow;
1496 section_offsets = pst->section_offsets;
1497
1498 current_objfile = objfile;
1499 subfile_stack = NULL;
1500
1501 stringtab_global = DBX_STRINGTAB (objfile);
1502 last_source_file = NULL;
1503
1504 abfd = objfile->obfd;
1505 symfile_bfd = objfile->obfd; /* Implicit param to next_text_symbol */
1506 symbuf_end = symbuf_idx = 0;
1507
1508 /* It is necessary to actually read one symbol *before* the start
1509 of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL
1510 occurs before the N_SO symbol.
1511
1512 Detecting this in read_dbx_symtab
1513 would slow down initial readin, so we look for it here instead. */
1514 if (!processing_acc_compilation && sym_offset >= (int)symbol_size)
1515 {
1516 bfd_seek (symfile_bfd, sym_offset - symbol_size, SEEK_CUR);
1517 fill_symbuf (abfd);
1518 bufp = &symbuf[symbuf_idx++];
1519 SWAP_SYMBOL (bufp, abfd);
1520
1521 SET_NAMESTRING ();
1522
1523 processing_gcc_compilation = 0;
1524 if (bufp->n_type == N_TEXT)
1525 {
1526 const char *tempstring = namestring;
1527
1528 if (STREQ (namestring, GCC_COMPILED_FLAG_SYMBOL))
1529 processing_gcc_compilation = 1;
1530 else if (STREQ (namestring, GCC2_COMPILED_FLAG_SYMBOL))
1531 processing_gcc_compilation = 2;
1532 if (tempstring[0] == bfd_get_symbol_leading_char (symfile_bfd))
1533 ++tempstring;
1534 if (STREQN (tempstring, "__gnu_compiled", 14))
1535 processing_gcc_compilation = 2;
1536 }
1537
1538 /* Try to select a C++ demangling based on the compilation unit
1539 producer. */
1540
1541 if (processing_gcc_compilation)
1542 {
1543 if (AUTO_DEMANGLING)
1544 {
1545 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1546 }
1547 }
1548 }
1549 else
1550 {
1551 /* The N_SO starting this symtab is the first symbol, so we
1552 better not check the symbol before it. I'm not this can
1553 happen, but it doesn't hurt to check for it. */
1554 bfd_seek (symfile_bfd, sym_offset, SEEK_CUR);
1555 processing_gcc_compilation = 0;
1556 }
1557
1558 if (symbuf_idx == symbuf_end)
1559 fill_symbuf (abfd);
1560 bufp = &symbuf[symbuf_idx];
1561 if (bufp->n_type != (unsigned char)N_SO)
1562 error("First symbol in segment of executable not a source symbol");
1563
1564 max_symnum = sym_size / symbol_size;
1565
1566 for (symnum = 0;
1567 symnum < max_symnum;
1568 symnum++)
1569 {
1570 QUIT; /* Allow this to be interruptable */
1571 if (symbuf_idx == symbuf_end)
1572 fill_symbuf(abfd);
1573 bufp = &symbuf[symbuf_idx++];
1574 SWAP_SYMBOL (bufp, abfd);
1575
1576 type = bufp->n_type;
1577
1578 SET_NAMESTRING ();
1579
1580 if (type & N_STAB) {
1581 process_one_symbol (type, bufp->n_desc, bufp->n_value,
1582 namestring, section_offsets, objfile);
1583 }
1584 /* We skip checking for a new .o or -l file; that should never
1585 happen in this routine. */
1586 else if (type == N_TEXT)
1587 {
1588 /* I don't think this code will ever be executed, because
1589 the GCC_COMPILED_FLAG_SYMBOL usually is right before
1590 the N_SO symbol which starts this source file.
1591 However, there is no reason not to accept
1592 the GCC_COMPILED_FLAG_SYMBOL anywhere. */
1593
1594 if (STREQ (namestring, GCC_COMPILED_FLAG_SYMBOL))
1595 processing_gcc_compilation = 1;
1596 else if (STREQ (namestring, GCC2_COMPILED_FLAG_SYMBOL))
1597 processing_gcc_compilation = 2;
1598
1599 if (AUTO_DEMANGLING)
1600 {
1601 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1602 }
1603 }
1604 else if (type & N_EXT || type == (unsigned char)N_TEXT
1605 || type == (unsigned char)N_NBTEXT
1606 ) {
1607 /* Global symbol: see if we came across a dbx defintion for
1608 a corresponding symbol. If so, store the value. Remove
1609 syms from the chain when their values are stored, but
1610 search the whole chain, as there may be several syms from
1611 different files with the same name. */
1612 /* This is probably not true. Since the files will be read
1613 in one at a time, each reference to a global symbol will
1614 be satisfied in each file as it appears. So we skip this
1615 section. */
1616 ;
1617 }
1618 }
1619
1620 current_objfile = NULL;
1621
1622 /* In a Solaris elf file, this variable, which comes from the
1623 value of the N_SO symbol, will still be 0. Luckily, text_offset,
1624 which comes from pst->textlow is correct. */
1625 if (last_source_start_addr == 0)
1626 last_source_start_addr = text_offset;
1627
1628 pst->symtab = end_symtab (text_offset + text_size, 0, 0, objfile,
1629 SECT_OFF_TEXT);
1630 end_stabs ();
1631 }
1632
1633 \f
1634 /* This handles a single symbol from the symbol-file, building symbols
1635 into a GDB symtab. It takes these arguments and an implicit argument.
1636
1637 TYPE is the type field of the ".stab" symbol entry.
1638 DESC is the desc field of the ".stab" entry.
1639 VALU is the value field of the ".stab" entry.
1640 NAME is the symbol name, in our address space.
1641 SECTION_OFFSETS is a set of amounts by which the sections of this object
1642 file were relocated when it was loaded into memory.
1643 All symbols that refer
1644 to memory locations need to be offset by these amounts.
1645 OBJFILE is the object file from which we are reading symbols.
1646 It is used in end_symtab. */
1647
1648 void
1649 process_one_symbol (type, desc, valu, name, section_offsets, objfile)
1650 int type, desc;
1651 CORE_ADDR valu;
1652 char *name;
1653 struct section_offsets *section_offsets;
1654 struct objfile *objfile;
1655 {
1656 #ifdef SUN_FIXED_LBRAC_BUG
1657 /* If SUN_FIXED_LBRAC_BUG is defined, then it tells us whether we need
1658 to correct the address of N_LBRAC's. If it is not defined, then
1659 we never need to correct the addresses. */
1660
1661 /* This records the last pc address we've seen. We depend on there being
1662 an SLINE or FUN or SO before the first LBRAC, since the variable does
1663 not get reset in between reads of different symbol files. */
1664 static CORE_ADDR last_pc_address;
1665 #endif
1666
1667 register struct context_stack *new;
1668 /* This remembers the address of the start of a function. It is used
1669 because in Solaris 2, N_LBRAC, N_RBRAC, and N_SLINE entries are
1670 relative to the current function's start address. On systems
1671 other than Solaris 2, this just holds the SECT_OFF_TEXT value, and is
1672 used to relocate these symbol types rather than SECTION_OFFSETS. */
1673 static CORE_ADDR function_start_offset;
1674
1675 /* If this is nonzero, N_LBRAC, N_RBRAC, and N_SLINE entries are relative
1676 to the function start address. */
1677 int block_address_function_relative;
1678
1679 /* If this is nonzero, we've seen a non-gcc N_OPT symbol for this source
1680 file. Used to detect the SunPRO solaris compiler. */
1681 static int n_opt_found;
1682
1683 /* The stab type used for the definition of the last function.
1684 N_STSYM or N_GSYM for SunOS4 acc; N_FUN for other compilers. */
1685 static int function_stab_type = 0;
1686
1687 /* This is true for Solaris (and all other systems which put stabs
1688 in sections, hopefully, since it would be silly to do things
1689 differently from Solaris), and false for SunOS4 and other a.out
1690 file formats. */
1691 block_address_function_relative =
1692 ((0 == strncmp (bfd_get_target (objfile->obfd), "elf", 3))
1693 || (0 == strncmp (bfd_get_target (objfile->obfd), "som", 3))
1694 || (0 == strncmp (bfd_get_target (objfile->obfd), "coff", 4)));
1695
1696 if (!block_address_function_relative)
1697 /* N_LBRAC, N_RBRAC and N_SLINE entries are not relative to the
1698 function start address, so just use the text offset. */
1699 function_start_offset = ANOFFSET (section_offsets, SECT_OFF_TEXT);
1700
1701 /* Something is wrong if we see real data before
1702 seeing a source file name. */
1703
1704 if (last_source_file == NULL && type != (unsigned char)N_SO)
1705 {
1706 /* Ignore any symbols which appear before an N_SO symbol. Currently
1707 no one puts symbols there, but we should deal gracefully with the
1708 case. A complain()t might be in order (if !IGNORE_SYMBOL (type)),
1709 but this should not be an error (). */
1710 return;
1711 }
1712
1713 switch (type)
1714 {
1715 case N_FUN:
1716 case N_FNAME:
1717 /* Relocate for dynamic loading */
1718 valu += ANOFFSET (section_offsets, SECT_OFF_TEXT);
1719 goto define_a_symbol;
1720
1721 case N_LBRAC:
1722 /* This "symbol" just indicates the start of an inner lexical
1723 context within a function. */
1724
1725 #if defined(BLOCK_ADDRESS_ABSOLUTE)
1726 /* Relocate for dynamic loading (?). */
1727 valu += function_start_offset;
1728 #else
1729 if (block_address_function_relative)
1730 /* Relocate for Sun ELF acc fn-relative syms. */
1731 valu += function_start_offset;
1732 else
1733 /* On most machines, the block addresses are relative to the
1734 N_SO, the linker did not relocate them (sigh). */
1735 valu += last_source_start_addr;
1736 #endif
1737
1738 #ifdef SUN_FIXED_LBRAC_BUG
1739 if (!SUN_FIXED_LBRAC_BUG && valu < last_pc_address) {
1740 /* Patch current LBRAC pc value to match last handy pc value */
1741 complain (&lbrac_complaint);
1742 valu = last_pc_address;
1743 }
1744 #endif
1745 new = push_context (desc, valu);
1746 break;
1747
1748 case N_RBRAC:
1749 /* This "symbol" just indicates the end of an inner lexical
1750 context that was started with N_LBRAC. */
1751
1752 #if defined(BLOCK_ADDRESS_ABSOLUTE)
1753 /* Relocate for dynamic loading (?). */
1754 valu += function_start_offset;
1755 #else
1756 if (block_address_function_relative)
1757 /* Relocate for Sun ELF acc fn-relative syms. */
1758 valu += function_start_offset;
1759 else
1760 /* On most machines, the block addresses are relative to the
1761 N_SO, the linker did not relocate them (sigh). */
1762 valu += last_source_start_addr;
1763 #endif
1764
1765 new = pop_context();
1766 if (desc != new->depth)
1767 complain (&lbrac_mismatch_complaint, symnum);
1768
1769 /* Some compilers put the variable decls inside of an
1770 LBRAC/RBRAC block. This macro should be nonzero if this
1771 is true. DESC is N_DESC from the N_RBRAC symbol.
1772 GCC_P is true if we've detected the GCC_COMPILED_SYMBOL
1773 or the GCC2_COMPILED_SYMBOL. */
1774 #if !defined (VARIABLES_INSIDE_BLOCK)
1775 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) 0
1776 #endif
1777
1778 /* Can only use new->locals as local symbols here if we're in
1779 gcc or on a machine that puts them before the lbrack. */
1780 if (!VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
1781 local_symbols = new->locals;
1782
1783 if (context_stack_depth
1784 > !VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
1785 {
1786 /* This is not the outermost LBRAC...RBRAC pair in the function,
1787 its local symbols preceded it, and are the ones just recovered
1788 from the context stack. Define the block for them (but don't
1789 bother if the block contains no symbols. Should we complain
1790 on blocks without symbols? I can't think of any useful purpose
1791 for them). */
1792 if (local_symbols != NULL)
1793 {
1794 /* Muzzle a compiler bug that makes end < start. (which
1795 compilers? Is this ever harmful?). */
1796 if (new->start_addr > valu)
1797 {
1798 complain (&lbrac_rbrac_complaint);
1799 new->start_addr = valu;
1800 }
1801 /* Make a block for the local symbols within. */
1802 finish_block (0, &local_symbols, new->old_blocks,
1803 new->start_addr, valu, objfile);
1804 }
1805 }
1806 else
1807 {
1808 /* This is the outermost LBRAC...RBRAC pair. There is no
1809 need to do anything; leave the symbols that preceded it
1810 to be attached to the function's own block. We need to
1811 indicate that we just moved outside of the function. */
1812 within_function = 0;
1813 }
1814
1815 if (VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
1816 /* Now pop locals of block just finished. */
1817 local_symbols = new->locals;
1818 break;
1819
1820 case N_FN:
1821 case N_FN_SEQ:
1822 /* This kind of symbol indicates the start of an object file. */
1823 /* Relocate for dynamic loading */
1824 valu += ANOFFSET (section_offsets, SECT_OFF_TEXT);
1825 break;
1826
1827 case N_SO:
1828 /* This type of symbol indicates the start of data
1829 for one source file.
1830 Finish the symbol table of the previous source file
1831 (if any) and start accumulating a new symbol table. */
1832 /* Relocate for dynamic loading */
1833 valu += ANOFFSET (section_offsets, SECT_OFF_TEXT);
1834
1835 n_opt_found = 0;
1836
1837 #ifdef SUN_FIXED_LBRAC_BUG
1838 last_pc_address = valu; /* Save for SunOS bug circumcision */
1839 #endif
1840
1841 #ifdef PCC_SOL_BROKEN
1842 /* pcc bug, occasionally puts out SO for SOL. */
1843 if (context_stack_depth > 0)
1844 {
1845 start_subfile (name, NULL);
1846 break;
1847 }
1848 #endif
1849 if (last_source_file)
1850 {
1851 /* Check if previous symbol was also an N_SO (with some
1852 sanity checks). If so, that one was actually the directory
1853 name, and the current one is the real file name.
1854 Patch things up. */
1855 if (previous_stab_code == (unsigned char) N_SO)
1856 {
1857 patch_subfile_names (current_subfile, name);
1858 break; /* Ignore repeated SOs */
1859 }
1860 end_symtab (valu, 0, 0, objfile, SECT_OFF_TEXT);
1861 end_stabs ();
1862 }
1863 start_stabs ();
1864 start_symtab (name, NULL, valu);
1865 break;
1866
1867
1868 case N_SOL:
1869 /* This type of symbol indicates the start of data for
1870 a sub-source-file, one whose contents were copied or
1871 included in the compilation of the main source file
1872 (whose name was given in the N_SO symbol.) */
1873 /* Relocate for dynamic loading */
1874 valu += ANOFFSET (section_offsets, SECT_OFF_TEXT);
1875 start_subfile (name, current_subfile->dirname);
1876 break;
1877
1878 case N_BINCL:
1879 push_subfile ();
1880 add_new_header_file (name, valu);
1881 start_subfile (name, current_subfile->dirname);
1882 break;
1883
1884 case N_EINCL:
1885 start_subfile (pop_subfile (), current_subfile->dirname);
1886 break;
1887
1888 case N_EXCL:
1889 add_old_header_file (name, valu);
1890 break;
1891
1892 case N_SLINE:
1893 /* This type of "symbol" really just records
1894 one line-number -- core-address correspondence.
1895 Enter it in the line list for this symbol table. */
1896 /* Relocate for dynamic loading and for ELF acc fn-relative syms. */
1897 valu += function_start_offset;
1898 #ifdef SUN_FIXED_LBRAC_BUG
1899 last_pc_address = valu; /* Save for SunOS bug circumcision */
1900 #endif
1901 record_line (current_subfile, desc, valu);
1902 break;
1903
1904 case N_BCOMM:
1905 common_block_start (name, objfile);
1906 break;
1907
1908 case N_ECOMM:
1909 common_block_end (objfile);
1910 break;
1911
1912 /* The following symbol types need to have the appropriate offset added
1913 to their value; then we process symbol definitions in the name. */
1914
1915 case N_STSYM: /* Static symbol in data seg */
1916 case N_LCSYM: /* Static symbol in BSS seg */
1917 case N_ROSYM: /* Static symbol in Read-only data seg */
1918 /* HORRID HACK DEPT. However, it's Sun's furgin' fault.
1919 Solaris2's stabs-in-elf makes *most* symbols relative
1920 but leaves a few absolute (at least for Solaris 2.1 and version
1921 2.0.1 of the SunPRO compiler). N_STSYM and friends sit on the fence.
1922 .stab "foo:S...",N_STSYM is absolute (ld relocates it)
1923 .stab "foo:V...",N_STSYM is relative (section base subtracted).
1924 This leaves us no choice but to search for the 'S' or 'V'...
1925 (or pass the whole section_offsets stuff down ONE MORE function
1926 call level, which we really don't want to do). */
1927 {
1928 char *p;
1929 p = strchr (name, ':');
1930 if (p != 0 && p[1] == 'S')
1931 {
1932 /* The linker relocated it. We don't want to add an
1933 elfstab_offset_sections-type offset, but we *do* want
1934 to add whatever solib.c passed to symbol_file_add as
1935 addr (this is known to affect SunOS4, and I suspect ELF
1936 too). Since elfstab_offset_sections currently does not
1937 muck with the text offset (there is no Ttext.text
1938 symbol), we can get addr from the text offset. If
1939 elfstab_offset_sections ever starts dealing with the
1940 text offset, and we still need to do this, we need to
1941 invent a SECT_OFF_ADDR_KLUDGE or something. */
1942 valu += ANOFFSET (section_offsets, SECT_OFF_TEXT);
1943 goto define_a_symbol;
1944 }
1945 /* Since it's not the kludge case, re-dispatch to the right handler. */
1946 switch (type) {
1947 case N_STSYM: goto case_N_STSYM;
1948 case N_LCSYM: goto case_N_LCSYM;
1949 case N_ROSYM: goto case_N_ROSYM;
1950 default: abort();
1951 }
1952 }
1953
1954 case_N_STSYM: /* Static symbol in data seg */
1955 case N_DSLINE: /* Source line number, data seg */
1956 valu += ANOFFSET (section_offsets, SECT_OFF_DATA);
1957 goto define_a_symbol;
1958
1959 case_N_LCSYM: /* Static symbol in BSS seg */
1960 case N_BSLINE: /* Source line number, bss seg */
1961 /* N_BROWS: overlaps with N_BSLINE */
1962 valu += ANOFFSET (section_offsets, SECT_OFF_BSS);
1963 goto define_a_symbol;
1964
1965 case_N_ROSYM: /* Static symbol in Read-only data seg */
1966 valu += ANOFFSET (section_offsets, SECT_OFF_RODATA);
1967 goto define_a_symbol;
1968
1969 case N_ENTRY: /* Alternate entry point */
1970 /* Relocate for dynamic loading */
1971 valu += ANOFFSET (section_offsets, SECT_OFF_TEXT);
1972 goto define_a_symbol;
1973
1974 /* The following symbol types we don't know how to process. Handle
1975 them in a "default" way, but complain to people who care. */
1976 default:
1977 case N_CATCH: /* Exception handler catcher */
1978 case N_EHDECL: /* Exception handler name */
1979 case N_PC: /* Global symbol in Pascal */
1980 case N_M2C: /* Modula-2 compilation unit */
1981 /* N_MOD2: overlaps with N_EHDECL */
1982 case N_SCOPE: /* Modula-2 scope information */
1983 case N_ECOML: /* End common (local name) */
1984 case N_NBTEXT: /* Gould Non-Base-Register symbols??? */
1985 case N_NBDATA:
1986 case N_NBBSS:
1987 case N_NBSTS:
1988 case N_NBLCS:
1989 complain (&unknown_symtype_complaint, local_hex_string (type));
1990 /* FALLTHROUGH */
1991
1992 /* The following symbol types don't need the address field relocated,
1993 since it is either unused, or is absolute. */
1994 define_a_symbol:
1995 case N_GSYM: /* Global variable */
1996 case N_NSYMS: /* Number of symbols (ultrix) */
1997 case N_NOMAP: /* No map? (ultrix) */
1998 case N_RSYM: /* Register variable */
1999 case N_DEFD: /* Modula-2 GNU module dependency */
2000 case N_SSYM: /* Struct or union element */
2001 case N_LSYM: /* Local symbol in stack */
2002 case N_PSYM: /* Parameter variable */
2003 case N_LENG: /* Length of preceding symbol type */
2004 if (name)
2005 {
2006 int deftype;
2007 char *colon_pos = strchr (name, ':');
2008 if (colon_pos == NULL)
2009 deftype = '\0';
2010 else
2011 deftype = colon_pos[1];
2012
2013 switch (deftype)
2014 {
2015 case 'f':
2016 case 'F':
2017 function_stab_type = type;
2018
2019 #ifdef SUN_FIXED_LBRAC_BUG
2020 /* The Sun acc compiler, under SunOS4, puts out
2021 functions with N_GSYM or N_STSYM. The problem is
2022 that the address of the symbol is no good (for N_GSYM
2023 it doesn't even attept an address; for N_STSYM it
2024 puts out an address but then it gets relocated
2025 relative to the data segment, not the text segment).
2026 Currently we can't fix this up later as we do for
2027 some types of symbol in scan_file_globals.
2028 Fortunately we do have a way of finding the address -
2029 we know that the value in last_pc_address is either
2030 the one we want (if we're dealing with the first
2031 function in an object file), or somewhere in the
2032 previous function. This means that we can use the
2033 minimal symbol table to get the address. */
2034
2035 /* On solaris up to 2.2, the N_FUN stab gets relocated.
2036 On Solaris 2.3, ld no longer relocates stabs (which
2037 is good), and the N_FUN's value is now always zero.
2038 The following code can't deal with this, because
2039 last_pc_address depends on getting the address from a
2040 N_SLINE or some such and in Solaris those are function
2041 relative. Best fix is probably to create a Ttext.text symbol
2042 and handle this like Ddata.data and so on. */
2043
2044 if (type == N_GSYM || type == N_STSYM)
2045 {
2046 struct minimal_symbol *m;
2047 int l = colon_pos - name;
2048
2049 m = lookup_minimal_symbol_by_pc (last_pc_address);
2050 if (m && STREQN (SYMBOL_NAME (m), name, l))
2051 /* last_pc_address was in this function */
2052 valu = SYMBOL_VALUE (m);
2053 else if (m && STREQN (SYMBOL_NAME (m+1), name, l))
2054 /* last_pc_address was in last function */
2055 valu = SYMBOL_VALUE (m+1);
2056 else
2057 /* Not found - use last_pc_address (for finish_block) */
2058 valu = last_pc_address;
2059 }
2060
2061 last_pc_address = valu; /* Save for SunOS bug circumcision */
2062 #endif
2063
2064 if (block_address_function_relative)
2065 /* For Solaris 2.0 compilers, the block addresses and
2066 N_SLINE's are relative to the start of the
2067 function. On normal systems, and when using gcc on
2068 Solaris 2.0, these addresses are just absolute, or
2069 relative to the N_SO, depending on
2070 BLOCK_ADDRESS_ABSOLUTE. */
2071 function_start_offset = valu;
2072
2073 within_function = 1;
2074 if (context_stack_depth > 0)
2075 {
2076 new = pop_context ();
2077 /* Make a block for the local symbols within. */
2078 finish_block (new->name, &local_symbols, new->old_blocks,
2079 new->start_addr, valu, objfile);
2080 }
2081 /* Stack must be empty now. */
2082 if (context_stack_depth != 0)
2083 complain (&lbrac_unmatched_complaint, symnum);
2084
2085 new = push_context (0, valu);
2086 new->name = define_symbol (valu, name, desc, type, objfile);
2087 break;
2088
2089 default:
2090 define_symbol (valu, name, desc, type, objfile);
2091 break;
2092 }
2093 }
2094 break;
2095
2096 /* We use N_OPT to carry the gcc2_compiled flag. Sun uses it
2097 for a bunch of other flags, too. Someday we may parse their
2098 flags; for now we ignore theirs and hope they'll ignore ours. */
2099 case N_OPT: /* Solaris 2: Compiler options */
2100 if (name)
2101 {
2102 if (STREQ (name, GCC2_COMPILED_FLAG_SYMBOL))
2103 {
2104 processing_gcc_compilation = 2;
2105 #if 1 /* Works, but is experimental. -fnf */
2106 if (AUTO_DEMANGLING)
2107 {
2108 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
2109 }
2110 #endif
2111 }
2112 else
2113 n_opt_found = 1;
2114 }
2115 break;
2116
2117 /* The following symbol types can be ignored. */
2118 case N_OBJ: /* Solaris 2: Object file dir and name */
2119 /* N_UNDF: Solaris 2: file separator mark */
2120 /* N_UNDF: -- we will never encounter it, since we only process one
2121 file's symbols at once. */
2122 case N_ENDM: /* Solaris 2: End of module */
2123 case N_MAIN: /* Name of main routine. */
2124 break;
2125 }
2126
2127 previous_stab_code = type;
2128 }
2129 \f
2130 /* FIXME: The only difference between this and elfstab_build_psymtabs is
2131 the call to install_minimal_symbols for elf. If the differences are
2132 really that small, the code should be shared. */
2133
2134 /* Scan and build partial symbols for an coff symbol file.
2135 The coff file has already been processed to get its minimal symbols.
2136
2137 This routine is the equivalent of dbx_symfile_init and dbx_symfile_read
2138 rolled into one.
2139
2140 OBJFILE is the object file we are reading symbols from.
2141 ADDR is the address relative to which the symbols are (e.g.
2142 the base address of the text segment).
2143 MAINLINE is true if we are reading the main symbol
2144 table (as opposed to a shared lib or dynamically loaded file).
2145 STABOFFSET and STABSIZE define the location in OBJFILE where the .stab
2146 section exists.
2147 STABSTROFFSET and STABSTRSIZE define the location in OBJFILE where the
2148 .stabstr section exists.
2149
2150 This routine is mostly copied from dbx_symfile_init and dbx_symfile_read,
2151 adjusted for coff details. */
2152
2153 void
2154 coffstab_build_psymtabs (objfile, section_offsets, mainline,
2155 staboffset, stabsize,
2156 stabstroffset, stabstrsize)
2157 struct objfile *objfile;
2158 struct section_offsets *section_offsets;
2159 int mainline;
2160 file_ptr staboffset;
2161 unsigned int stabsize;
2162 file_ptr stabstroffset;
2163 unsigned int stabstrsize;
2164 {
2165 int val;
2166 bfd *sym_bfd = objfile->obfd;
2167 char *name = bfd_get_filename (sym_bfd);
2168 struct dbx_symfile_info *info;
2169
2170 /* There is already a dbx_symfile_info allocated by our caller.
2171 It might even contain some info from the coff symtab to help us. */
2172 info = (struct dbx_symfile_info *) objfile->sym_stab_info;
2173
2174 DBX_TEXT_SECT (objfile) = bfd_get_section_by_name (sym_bfd, ".text");
2175 if (!DBX_TEXT_SECT (objfile))
2176 error ("Can't find .text section in symbol file");
2177
2178 #define COFF_STABS_SYMBOL_SIZE 12 /* XXX FIXME XXX */
2179 DBX_SYMBOL_SIZE (objfile) = COFF_STABS_SYMBOL_SIZE;
2180 DBX_SYMCOUNT (objfile) = stabsize / DBX_SYMBOL_SIZE (objfile);
2181 DBX_STRINGTAB_SIZE (objfile) = stabstrsize;
2182 DBX_SYMTAB_OFFSET (objfile) = staboffset;
2183
2184 if (stabstrsize > bfd_get_size (sym_bfd))
2185 error ("ridiculous string table size: %d bytes", stabstrsize);
2186 DBX_STRINGTAB (objfile) = (char *)
2187 obstack_alloc (&objfile->psymbol_obstack, stabstrsize+1);
2188
2189 /* Now read in the string table in one big gulp. */
2190
2191 val = bfd_seek (sym_bfd, stabstroffset, SEEK_SET);
2192 if (val < 0)
2193 perror_with_name (name);
2194 val = bfd_read (DBX_STRINGTAB (objfile), stabstrsize, 1, sym_bfd);
2195 if (val != stabstrsize)
2196 perror_with_name (name);
2197
2198 stabsread_new_init ();
2199 buildsym_new_init ();
2200 free_header_files ();
2201 init_header_files ();
2202
2203 processing_acc_compilation = 1;
2204
2205 /* In a coff file, we've already installed the minimal symbols that came
2206 from the coff (non-stab) symbol table, so always act like an
2207 incremental load here. */
2208 dbx_symfile_read (objfile, section_offsets, 0);
2209 }
2210 \f
2211 /* Scan and build partial symbols for an ELF symbol file.
2212 This ELF file has already been processed to get its minimal symbols,
2213 and any DWARF symbols that were in it.
2214
2215 This routine is the equivalent of dbx_symfile_init and dbx_symfile_read
2216 rolled into one.
2217
2218 OBJFILE is the object file we are reading symbols from.
2219 ADDR is the address relative to which the symbols are (e.g.
2220 the base address of the text segment).
2221 MAINLINE is true if we are reading the main symbol
2222 table (as opposed to a shared lib or dynamically loaded file).
2223 STABOFFSET and STABSIZE define the location in OBJFILE where the .stab
2224 section exists.
2225 STABSTROFFSET and STABSTRSIZE define the location in OBJFILE where the
2226 .stabstr section exists.
2227
2228 This routine is mostly copied from dbx_symfile_init and dbx_symfile_read,
2229 adjusted for elf details. */
2230
2231 void
2232 elfstab_build_psymtabs (objfile, section_offsets, mainline,
2233 staboffset, stabsize,
2234 stabstroffset, stabstrsize)
2235 struct objfile *objfile;
2236 struct section_offsets *section_offsets;
2237 int mainline;
2238 file_ptr staboffset;
2239 unsigned int stabsize;
2240 file_ptr stabstroffset;
2241 unsigned int stabstrsize;
2242 {
2243 int val;
2244 bfd *sym_bfd = objfile->obfd;
2245 char *name = bfd_get_filename (sym_bfd);
2246 struct dbx_symfile_info *info;
2247
2248 /* There is already a dbx_symfile_info allocated by our caller.
2249 It might even contain some info from the ELF symtab to help us. */
2250 info = (struct dbx_symfile_info *) objfile->sym_stab_info;
2251
2252 DBX_TEXT_SECT (objfile) = bfd_get_section_by_name (sym_bfd, ".text");
2253 if (!DBX_TEXT_SECT (objfile))
2254 error ("Can't find .text section in symbol file");
2255
2256 #define ELF_STABS_SYMBOL_SIZE 12 /* XXX FIXME XXX */
2257 DBX_SYMBOL_SIZE (objfile) = ELF_STABS_SYMBOL_SIZE;
2258 DBX_SYMCOUNT (objfile) = stabsize / DBX_SYMBOL_SIZE (objfile);
2259 DBX_STRINGTAB_SIZE (objfile) = stabstrsize;
2260 DBX_SYMTAB_OFFSET (objfile) = staboffset;
2261
2262 if (stabstrsize > bfd_get_size (sym_bfd))
2263 error ("ridiculous string table size: %d bytes", stabstrsize);
2264 DBX_STRINGTAB (objfile) = (char *)
2265 obstack_alloc (&objfile->psymbol_obstack, stabstrsize+1);
2266
2267 /* Now read in the string table in one big gulp. */
2268
2269 val = bfd_seek (sym_bfd, stabstroffset, SEEK_SET);
2270 if (val < 0)
2271 perror_with_name (name);
2272 val = bfd_read (DBX_STRINGTAB (objfile), stabstrsize, 1, sym_bfd);
2273 if (val != stabstrsize)
2274 perror_with_name (name);
2275
2276 stabsread_new_init ();
2277 buildsym_new_init ();
2278 free_header_files ();
2279 init_header_files ();
2280 install_minimal_symbols (objfile);
2281
2282 processing_acc_compilation = 1;
2283
2284 /* In an elf file, we've already installed the minimal symbols that came
2285 from the elf (non-stab) symbol table, so always act like an
2286 incremental load here. */
2287 dbx_symfile_read (objfile, section_offsets, 0);
2288 }
2289 \f
2290 /* Scan and build partial symbols for a PA symbol file.
2291 This PA file has already been processed to get its minimal symbols.
2292
2293 OBJFILE is the object file we are reading symbols from.
2294 ADDR is the address relative to which the symbols are (e.g.
2295 the base address of the text segment).
2296 MAINLINE is true if we are reading the main symbol
2297 table (as opposed to a shared lib or dynamically loaded file).
2298
2299 */
2300
2301 void
2302 pastab_build_psymtabs (objfile, section_offsets, mainline)
2303 struct objfile *objfile;
2304 struct section_offsets *section_offsets;
2305 int mainline;
2306 {
2307 free_header_files ();
2308 init_header_files ();
2309
2310 /* This is needed to debug objects assembled with gas2. */
2311 processing_acc_compilation = 1;
2312
2313 /* In a PA file, we've already installed the minimal symbols that came
2314 from the PA (non-stab) symbol table, so always act like an
2315 incremental load here. */
2316
2317 dbx_symfile_read (objfile, section_offsets, mainline);
2318 }
2319 \f
2320 /* Parse the user's idea of an offset for dynamic linking, into our idea
2321 of how to represent it for fast symbol reading. */
2322
2323 static struct section_offsets *
2324 dbx_symfile_offsets (objfile, addr)
2325 struct objfile *objfile;
2326 CORE_ADDR addr;
2327 {
2328 struct section_offsets *section_offsets;
2329 int i;
2330
2331 objfile->num_sections = SECT_OFF_MAX;
2332 section_offsets = (struct section_offsets *)
2333 obstack_alloc (&objfile -> psymbol_obstack,
2334 sizeof (struct section_offsets)
2335 + sizeof (section_offsets->offsets) * (SECT_OFF_MAX-1));
2336
2337 for (i = 0; i < SECT_OFF_MAX; i++)
2338 ANOFFSET (section_offsets, i) = addr;
2339
2340 return section_offsets;
2341 }
2342 \f
2343 static struct sym_fns aout_sym_fns =
2344 {
2345 bfd_target_aout_flavour,
2346 dbx_new_init, /* sym_new_init: init anything gbl to entire symtab */
2347 dbx_symfile_init, /* sym_init: read initial info, setup for sym_read() */
2348 dbx_symfile_read, /* sym_read: read a symbol file into symtab */
2349 dbx_symfile_finish, /* sym_finish: finished with file, cleanup */
2350 dbx_symfile_offsets, /* sym_offsets: parse user's offsets to internal form */
2351 NULL /* next: pointer to next struct sym_fns */
2352 };
2353
2354 void
2355 _initialize_dbxread ()
2356 {
2357 add_symtab_fns(&aout_sym_fns);
2358 }