* stabs.texinfo (Parameters): More on "local parameters".
[binutils-gdb.git] / gdb / doc / stabs.texinfo
1 \input texinfo
2 @setfilename stabs.info
3
4 @ifinfo
5 @format
6 START-INFO-DIR-ENTRY
7 * Stabs: (stabs). The "stabs" debugging information format.
8 END-INFO-DIR-ENTRY
9 @end format
10 @end ifinfo
11
12 @ifinfo
13 This document describes GNU stabs (debugging symbol tables) in a.out files.
14
15 Copyright 1992 Free Software Foundation, Inc.
16 Contributed by Cygnus Support. Written by Julia Menapace.
17
18 Permission is granted to make and distribute verbatim copies of
19 this manual provided the copyright notice and this permission notice
20 are preserved on all copies.
21
22 @ignore
23 Permission is granted to process this file through Tex and print the
24 results, provided the printed document carries copying permission
25 notice identical to this one except for the removal of this paragraph
26 (this paragraph not being relevant to the printed manual).
27
28 @end ignore
29 Permission is granted to copy or distribute modified versions of this
30 manual under the terms of the GPL (for which purpose this text may be
31 regarded as a program in the language TeX).
32 @end ifinfo
33
34 @setchapternewpage odd
35 @settitle STABS
36 @titlepage
37 @title The ``stabs'' debug format
38 @author Julia Menapace
39 @author Cygnus Support
40 @page
41 @tex
42 \def\$#1${{#1}} % Kluge: collect RCS revision info without $...$
43 \xdef\manvers{\$Revision$} % For use in headers, footers too
44 {\parskip=0pt
45 \hfill Cygnus Support\par
46 \hfill \manvers\par
47 \hfill \TeX{}info \texinfoversion\par
48 }
49 @end tex
50
51 @vskip 0pt plus 1filll
52 Copyright @copyright{} 1992 Free Software Foundation, Inc.
53 Contributed by Cygnus Support.
54
55 Permission is granted to make and distribute verbatim copies of
56 this manual provided the copyright notice and this permission notice
57 are preserved on all copies.
58
59 @end titlepage
60
61 @ifinfo
62 @node Top
63 @top The "stabs" representation of debugging information
64
65 This document describes the GNU stabs debugging format in a.out files.
66
67 @menu
68 * Overview:: Overview of stabs
69 * Program structure:: Encoding of the structure of the program
70 * Simple types::
71 * Example:: A comprehensive example in C
72 * Variables::
73 * Aggregate Types::
74 * Symbol tables:: Symbol information in symbol tables
75 * GNU Cplusplus stabs::
76
77 Appendixes:
78 * Example2.c:: Source code for extended example
79 * Example2.s:: Assembly code for extended example
80 * Quick reference:: Various refernce tables
81 * Expanded reference:: Reference information by stab type
82 * Questions:: Questions and anomolies
83 * xcoff-differences:: Differences between GNU stabs in a.out
84 and GNU stabs in xcoff
85 * Sun-differences:: Differences between GNU stabs and Sun
86 native stabs
87 @end menu
88 @end ifinfo
89
90
91 @node Overview
92 @chapter Overview of stabs
93
94 @dfn{Stabs} refers to a format for information that describes a program
95 to a debugger. This format was apparently invented by
96 @c FIXME! <<name of inventor>> at
97 the University of California at Berkeley, for the @code{pdx} Pascal
98 debugger; the format has spread widely since then.
99
100 @menu
101 * Flow:: Overview of debugging information flow
102 * Stabs format:: Overview of stab format
103 * C example:: A simple example in C source
104 * Assembly code:: The simple example at the assembly level
105 @end menu
106
107 @node Flow
108 @section Overview of debugging information flow
109
110 The GNU C compiler compiles C source in a @file{.c} file into assembly
111 language in a @file{.s} file, which is translated by the assembler into
112 a @file{.o} file, and then linked with other @file{.o} files and
113 libraries to produce an executable file.
114
115 With the @samp{-g} option, GCC puts additional debugging information in
116 the @file{.s} file, which is slightly transformed by the assembler and
117 linker, and carried through into the final executable. This debugging
118 information describes features of the source file like line numbers,
119 the types and scopes of variables, and functions, their parameters and
120 their scopes.
121
122 For some object file formats, the debugging information is
123 encapsulated in assembler directives known collectively as `stab' (symbol
124 table) directives, interspersed with the generated code. Stabs are
125 the native format for debugging information in the a.out and xcoff
126 object file formats. The GNU tools can also emit stabs in the coff
127 and ecoff object file formats.
128
129 The assembler adds the information from stabs to the symbol information
130 it places by default in the symbol table and the string table of the
131 @file{.o} file it is building. The linker consolidates the @file{.o}
132 files into one executable file, with one symbol table and one string
133 table. Debuggers use the symbol and string tables in the executable as
134 a source of debugging information about the program.
135
136 @node Stabs format
137 @section Overview of stab format
138
139 There are three overall formats for stab assembler directives
140 differentiated by the first word of the stab. The name of the directive
141 describes what combination of four possible data fields will follow. It
142 is either @code{.stabs} (string), @code{.stabn} (number), or
143 @code{.stabd} (dot).
144
145 The overall format of each class of stab is:
146
147 @example
148 .stabs "@var{string}",@var{type},0,@var{desc},@var{value}
149 .stabn @var{type},0,@var{desc},@var{value}
150 .stabd @var{type},0,@var{desc}
151 @end example
152
153 In general, in @code{.stabs} the @var{string} field contains name and type
154 information. For @code{.stabd} the value field is implicit and has the value
155 of the current file location. Otherwise the value field often
156 contains a relocatable address, frame pointer offset, or register
157 number, that maps to the source code element described by the stab.
158
159 The real key to decoding the meaning of a stab is the number in its type
160 field. Each possible type number defines a different stab type. The
161 stab type further defines the exact interpretation of, and possible
162 values for, any remaining @code{"@var{string}"}, @var{desc}, or
163 @var{value} fields present in the stab. Table A (@pxref{Stab
164 types,,Table A: Symbol types from stabs}) lists in numeric order
165 the possible type field values for stab directives. The reference
166 section that follows Table A describes the meaning of the fields for
167 each stab type in detail. The examples that follow this overview
168 introduce the stab types in terms of the source code elements they
169 describe.
170
171 For @code{.stabs} the @code{"@var{string}"} field holds the meat of the
172 debugging information. The generally unstructured nature of this field
173 is what makes stabs extensible. For some stab types the string field
174 contains only a name. For other stab types the contents can be a great
175 deal more complex.
176
177 The overall format is of the @code{"@var{string}"} field is:
178
179 @example
180 "@var{name}@r{[}:@var{symbol_descriptor}@r{]}
181 @r{[}@var{type_number}@r{[}=@var{type_descriptor} @r{@dots{}]]}"
182 @end example
183
184 @var{name} is the name of the symbol represented by the stab.
185
186 The @var{symbol_descriptor} following the @samp{:} is an alphabetic
187 character that tells more specifically what kind of symbol the stab
188 represents. If the @var{symbol_descriptor} is omitted, but type
189 information follows, then the stab represents a local variable. For a
190 list of symbol_descriptors, see @ref{Symbol descriptors,,Table C: Symbol
191 descriptors}.
192
193 Type information is either a @var{type_number}, or a
194 @samp{@var{type_number}=}. The @var{type_number} alone is a type
195 reference, referring directly to a type that has already been defined.
196
197 The @samp{@var{type_number}=} is a type definition, where the number
198 represents a new type which is about to be defined. The type definition
199 may refer to other types by number, and those type numbers may be
200 followed by @samp{=} and nested definitions.
201
202 In a type definition, if the character that follows the equals sign is
203 non-numeric then it is a @var{type_descriptor}, and tells what kind of
204 type is about to be defined. Any other values following the
205 @var{type_descriptor} vary, depending on the @var{type_descriptor}. If
206 a number follows the @samp{=} then the number is a @var{type_reference}.
207 This is described more thoroughly in the section on types. @xref{Type
208 Descriptors,,Table D: Type Descriptors}, for a list of
209 @var{type_descriptor} values.
210
211 All this can make the @code{"@var{string}"} field quite long. All
212 versions of GDB, and some versions of DBX, can handle arbitrarily long
213 strings. But many versions of DBX cretinously limit the strings to
214 about 80 characters, so compilers which must work with such DBX's need
215 to split the @code{.stabs} directive into several @code{.stabs}
216 directives. Each stab duplicates exactly all but the
217 @code{"@var{string}"} field. The @code{"@var{string}"} field of the
218 every stab except the last is marked as continued with a
219 double-backslash at the end. Removing the backslashes and concatenating
220 the @code{"@var{string}"} fields of each stab produces the original,
221 long string.
222
223 @node C example
224 @section A simple example in C source
225
226 To get the flavor of how stabs describe source information for a C
227 program, let's look at the simple program:
228
229 @example
230 main()
231 @{
232 printf("Hello world");
233 @}
234 @end example
235
236 When compiled with @samp{-g}, the program above yields the following
237 @file{.s} file. Line numbers have been added to make it easier to refer
238 to parts of the @file{.s} file in the description of the stabs that
239 follows.
240
241 @node Assembly code
242 @section The simple example at the assembly level
243
244 @example
245 1 gcc2_compiled.:
246 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
247 3 .stabs "hello.c",100,0,0,Ltext0
248 4 .text
249 5 Ltext0:
250 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
251 7 .stabs "char:t2=r2;0;127;",128,0,0,0
252 8 .stabs "long int:t3=r1;-2147483648;2147483647;",128,0,0,0
253 9 .stabs "unsigned int:t4=r1;0;-1;",128,0,0,0
254 10 .stabs "long unsigned int:t5=r1;0;-1;",128,0,0,0
255 11 .stabs "short int:t6=r1;-32768;32767;",128,0,0,0
256 12 .stabs "long long int:t7=r1;0;-1;",128,0,0,0
257 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
258 14 .stabs "long long unsigned int:t9=r1;0;-1;",128,0,0,0
259 15 .stabs "signed char:t10=r1;-128;127;",128,0,0,0
260 16 .stabs "unsigned char:t11=r1;0;255;",128,0,0,0
261 17 .stabs "float:t12=r1;4;0;",128,0,0,0
262 18 .stabs "double:t13=r1;8;0;",128,0,0,0
263 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
264 20 .stabs "void:t15=15",128,0,0,0
265 21 .align 4
266 22 LC0:
267 23 .ascii "Hello, world!\12\0"
268 24 .align 4
269 25 .global _main
270 26 .proc 1
271 27 _main:
272 28 .stabn 68,0,4,LM1
273 29 LM1:
274 30 !#PROLOGUE# 0
275 31 save %sp,-136,%sp
276 32 !#PROLOGUE# 1
277 33 call ___main,0
278 34 nop
279 35 .stabn 68,0,5,LM2
280 36 LM2:
281 37 LBB2:
282 38 sethi %hi(LC0),%o1
283 39 or %o1,%lo(LC0),%o0
284 40 call _printf,0
285 41 nop
286 42 .stabn 68,0,6,LM3
287 43 LM3:
288 44 LBE2:
289 45 .stabn 68,0,6,LM4
290 46 LM4:
291 47 L1:
292 48 ret
293 49 restore
294 50 .stabs "main:F1",36,0,0,_main
295 51 .stabn 192,0,0,LBB2
296 52 .stabn 224,0,0,LBE2
297 @end example
298
299 This simple ``hello world'' example demonstrates several of the stab
300 types used to describe C language source files.
301
302 @node Program structure
303 @chapter Encoding for the structure of the program
304
305 @menu
306 * Source file:: The path and name of the source file
307 * Line numbers::
308 * Procedures::
309 * Block Structure::
310 @end menu
311
312 @node Source file
313 @section The path and name of the source file
314
315 @table @strong
316 @item Directive:
317 @code{.stabs}
318 @item Type:
319 @code{N_SO}
320 @end table
321
322 The first stabs in the .s file contain the name and path of the source
323 file that was compiled to produce the .s file. This information is
324 contained in two records of stab type N_SO (100).
325
326 @example
327 .stabs "path_name", N_SO, NIL, NIL, Code_address_of_program_start
328 .stabs "file_name:", N_SO, NIL, NIL, Code_address_of_program_start
329 @end example
330
331 @example
332 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
333 3 .stabs "hello.c",100,0,0,Ltext0
334 4 .text
335 5 Ltext0:
336 @end example
337
338 @node Line numbers
339 @section Line Numbers
340
341 @table @strong
342 @item Directive:
343 @code{.stabn}
344 @item Type:
345 @code{N_SLINE}
346 @end table
347
348 The start of source lines is represented by the @code{N_SLINE} (68) stab
349 type.
350
351 @example
352 .stabn N_SLINE, NIL, @var{line}, @var{address}
353 @end example
354
355 @var{line} is a source line number; @var{address} represents the code
356 address for the start of that source line.
357
358 @example
359 27 _main:
360 28 .stabn 68,0,4,LM1
361 29 LM1:
362 30 !#PROLOGUE# 0
363 @end example
364
365 @node Procedures
366 @section Procedures
367
368 @table @strong
369 @item Directive:
370 @code{.stabs}
371 @item Type:
372 @code{N_FUN}
373 @item Symbol Descriptors:
374 @code{f} (local), @code{F} (global)
375 @end table
376
377 Procedures are described by the @code{N_FUN} stab type. The symbol
378 descriptor for a procedure is @samp{F} if the procedure is globally
379 scoped and @samp{f} if the procedure is static (locally scoped).
380
381 The @code{N_FUN} stab representing a procedure is located immediately
382 following the code of the procedure. The @code{N_FUN} stab is in turn
383 directly followed by a group of other stabs describing elements of the
384 procedure. These other stabs describe the procedure's parameters, its
385 block local variables and its block structure.
386
387 @example
388 48 ret
389 49 restore
390 @end example
391
392 The @code{.stabs} entry after this code fragment shows the @var{name} of
393 the procedure (@code{main}); the type descriptor @var{desc} (@code{F},
394 for a global procedure); a reference to the predefined type @code{int}
395 for the return type; and the starting @var{address} of the procedure.
396
397 Here is an exploded summary (with whitespace introduced for clarity),
398 followed by line 50 of our sample assembly output, which has this form:
399
400 @example
401 .stabs "@var{name}:
402 @var{desc} @r{(global proc @samp{F})}
403 @var{return_type_ref} @r{(int)}
404 ",N_FUN, NIL, NIL,
405 @var{address}
406 @end example
407
408 @example
409 50 .stabs "main:F1",36,0,0,_main
410 @end example
411
412 @node Block Structure
413 @section Block Structure
414
415 @table @strong
416 @item Directive:
417 @code{.stabn}
418 @item Types:
419 @code{N_LBRAC}, @code{N_RBRAC}
420 @end table
421
422 The program's block structure is represented by the @code{N_LBRAC} (left
423 brace) and the @code{N_RBRAC} (right brace) stab types. The following code
424 range, which is the body of @code{main}, is labeled with @samp{LBB2:} at the
425 beginning and @samp{LBE2:} at the end.
426
427 @example
428 37 LBB2:
429 38 sethi %hi(LC0),%o1
430 39 or %o1,%lo(LC0),%o0
431 40 call _printf,0
432 41 nop
433 42 .stabn 68,0,6,LM3
434 43 LM3:
435 44 LBE2:
436 @end example
437
438 The @code{N_LBRAC} and @code{N_RBRAC} stabs that describe the block
439 scope of the procedure are located after the @code{N_FUNC} stab that
440 represents the procedure itself. The @code{N_LBRAC} uses the
441 @code{LBB2} label as the code address in its value field, and the
442 @code{N_RBRAC} uses @code{LBE2}.
443
444 @example
445 50 .stabs "main:F1",36,0,0,_main
446 @end example
447
448 @example
449 .stabn N_LBRAC, NIL, NIL, @var{left-brace-address}
450 .stabn N_RBRAC, NIL, NIL, @var{right-brace-address}
451 @end example
452
453 @example
454 51 .stabn 192,0,0,LBB2
455 52 .stabn 224,0,0,LBE2
456 @end example
457
458 @node Simple types
459 @chapter Simple types
460
461 @menu
462 * Basic types:: Basic type definitions
463 * Range types:: Range types defined by min and max value
464 * Float "range" types:: Range type defined by size in bytes
465 @end menu
466
467 @node Basic types
468 @section Basic type definitions
469
470 @table @strong
471 @item Directive:
472 @code{.stabs}
473 @item Type:
474 @code{N_LSYM}
475 @item Symbol Descriptor:
476 @code{t}
477 @end table
478
479 The basic types for the language are described using the @code{N_LSYM} stab
480 type. They are boilerplate and are emited by the compiler for each
481 compilation unit. Basic type definitions are not always a complete
482 description of the type and are sometimes circular. The debugger
483 recognizes the type anyway, and knows how to read bits as that type.
484
485 Each language and compiler defines a slightly different set of basic
486 types. In this example we are looking at the basic types for C emited
487 by the GNU compiler targeting the Sun4. Here the basic types are
488 mostly defined as range types.
489
490
491 @node Range types
492 @section Range types defined by min and max value
493
494 @table @strong
495 @item Type Descriptor:
496 @code{r}
497 @end table
498
499 When defining a range type, if the number after the first semicolon is
500 smaller than the number after the second one, then the two numbers
501 represent the smallest and the largest values in the range.
502
503 @example
504 4 .text
505 5 Ltext0:
506
507 .stabs "@var{name}:
508 @var{descriptor} @r{(type)}
509 @var{type-def}=
510 @var{type-desc}
511 @var{type-ref};
512 @var{low-bound};
513 @var{high-bound};
514 ",
515 N_LSYM, NIL, NIL, NIL
516
517 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
518 7 .stabs "char:t2=r2;0;127;",128,0,0,0
519 @end example
520
521 Here the integer type (@code{1}) is defined as a range of the integer
522 type (@code{1}). Likewise @code{char} is a range of @code{char}. This
523 part of the definition is circular, but at least the high and low bound
524 values of the range hold more information about the type.
525
526 Here short unsigned int is defined as type number 8 and described as a
527 range of type @code{int}, with a minimum value of 0 and a maximum of 65535.
528
529 @example
530 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
531 @end example
532
533 @node Float "range" types
534 @section Range type defined by size in bytes
535
536 @table @strong
537 @item Type Descriptor:
538 @code{r}
539 @end table
540
541 In a range definition, if the first number after the semicolon is
542 positive and the second is zero, then the type being defined is a
543 floating point type, and the number after the first semicolon is the
544 number of bytes needed to represent the type. Note that this does not
545 provide a way to distinguish 8-byte real floating point types from
546 8-byte complex floating point types.
547
548 @example
549 .stabs "@var{name}:
550 @var{desc}
551 @var{type-def}=
552 @var{type-desc}
553 @var{type-ref};
554 @var{bit-count};
555 0;
556 ",
557 N_LSYM, NIL, NIL, NIL
558
559 17 .stabs "float:t12=r1;4;0;",128,0,0,0
560 18 .stabs "double:t13=r1;8;0;",128,0,0,0
561 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
562 @end example
563
564 Cosmically enough, the @code{void} type is defined directly in terms of
565 itself.
566
567 @example
568 .stabs "@var{name}:
569 @var{symbol-desc}
570 @var{type-def}=
571 @var{type-ref}
572 ",N_LSYM,NIL,NIL,NIL
573
574 20 .stabs "void:t15=15",128,0,0,0
575 @end example
576
577
578 @node Example
579 @chapter A Comprehensive Example in C
580
581 Now we'll examine a second program, @code{example2}, which builds on the
582 first example to introduce the rest of the stab types, symbol
583 descriptors, and type descriptors used in C.
584 @xref{Example2.c} for the complete @file{.c} source,
585 and @pxref{Example2.s} for the @file{.s} assembly code.
586 This description includes parts of those files.
587
588 @section Flow of control and nested scopes
589
590 @table @strong
591 @item Directive:
592 @code{.stabn}
593 @item Types:
594 @code{N_SLINE}, @code{N_LBRAC}, @code{N_RBRAC} (cont.)
595 @end table
596
597 Consider the body of @code{main}, from @file{example2.c}. It shows more
598 about how @code{N_SLINE}, @code{N_RBRAC}, and @code{N_LBRAC} stabs are used.
599
600 @example
601 20 @{
602 21 static float s_flap;
603 22 int times;
604 23 for (times=0; times < s_g_repeat; times++)@{
605 24 int inner;
606 25 printf ("Hello world\n");
607 26 @}
608 27 @};
609 @end example
610
611 Here we have a single source line, the @samp{for} line, that generates
612 non-linear flow of control, and non-contiguous code. In this case, an
613 @code{N_SLINE} stab with the same line number proceeds each block of
614 non-contiguous code generated from the same source line.
615
616 The example also shows nested scopes. The @code{N_LBRAC} and
617 @code{N_LBRAC} stabs that describe block structure are nested in the
618 same order as the corresponding code blocks, those of the for loop
619 inside those for the body of main.
620
621 @noindent
622 This is the label for the @code{N_LBRAC} (left brace) stab marking the
623 start of @code{main}.
624
625 @example
626 57 LBB2:
627 @end example
628
629 @noindent
630 In the first code range for C source line 23, the @code{for} loop
631 initialize and test, @code{N_SLINE} (68) records the line number:
632
633 @example
634 .stabn N_SLINE, NIL,
635 @var{line},
636 @var{address}
637
638 58 .stabn 68,0,23,LM2
639 59 LM2:
640 60 st %g0,[%fp-20]
641 61 L2:
642 62 sethi %hi(_s_g_repeat),%o0
643 63 ld [%fp-20],%o1
644 64 ld [%o0+%lo(_s_g_repeat)],%o0
645 65 cmp %o1,%o0
646 66 bge L3
647 67 nop
648
649 @exdent label for the @code{N_LBRAC} (start block) marking the start of @code{for} loop
650
651 68 LBB3:
652 69 .stabn 68,0,25,LM3
653 70 LM3:
654 71 sethi %hi(LC0),%o1
655 72 or %o1,%lo(LC0),%o0
656 73 call _printf,0
657 74 nop
658 75 .stabn 68,0,26,LM4
659 76 LM4:
660
661 @exdent label for the @code{N_RBRAC} (end block) stab marking the end of the @code{for} loop
662
663 77 LBE3:
664 @end example
665
666 @noindent
667 Now we come to the second code range for source line 23, the @code{for}
668 loop increment and return. Once again, @code{N_SLINE} (68) records the
669 source line number:
670
671 @example
672 .stabn, N_SLINE, NIL,
673 @var{line},
674 @var{address}
675
676 78 .stabn 68,0,23,LM5
677 79 LM5:
678 80 L4:
679 81 ld [%fp-20],%o0
680 82 add %o0,1,%o1
681 83 st %o1,[%fp-20]
682 84 b,a L2
683 85 L3:
684 86 .stabn 68,0,27,LM6
685 87 LM6:
686
687 @exdent label for the @code{N_RBRAC} (end block) stab marking the end of the @code{for} loop
688
689 88 LBE2:
690 89 .stabn 68,0,27,LM7
691 90 LM7:
692 91 L1:
693 92 ret
694 93 restore
695 94 .stabs "main:F1",36,0,0,_main
696 95 .stabs "argc:p1",160,0,0,68
697 96 .stabs "argv:p20=*21=*2",160,0,0,72
698 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
699 98 .stabs "times:1",128,0,0,-20
700 @end example
701
702 @noindent
703 Here is an illustration of stabs describing nested scopes. The scope
704 nesting is reflected in the nested bracketing stabs (@code{N_LBRAC},
705 192, appears here).
706
707 @example
708 .stabn N_LBRAC,NIL,NIL,
709 @var{block-start-address}
710
711 99 .stabn 192,0,0,LBB2 ## begin proc label
712 100 .stabs "inner:1",128,0,0,-24
713 101 .stabn 192,0,0,LBB3 ## begin for label
714 @end example
715
716 @noindent
717 @code{N_RBRAC} (224), ``right brace'' ends a lexical block (scope).
718
719 @example
720 .stabn N_RBRAC,NIL,NIL,
721 @var{block-end-address}
722
723 102 .stabn 224,0,0,LBE3 ## end for label
724 103 .stabn 224,0,0,LBE2 ## end proc label
725 @end example
726
727 @node Variables
728 @chapter Variables
729
730 @menu
731 * Automatic variables:: locally scoped
732 * Global Variables::
733 * Register variables::
734 * Initialized statics::
735 * Un-initialized statics::
736 * Parameters::
737 @end menu
738
739 @node Automatic variables
740 @section Locally scoped automatic variables
741
742 @table @strong
743 @item Directive:
744 @code{.stabs}
745 @item Type:
746 @code{N_LSYM}
747 @item Symbol Descriptor:
748 none
749 @end table
750
751
752 In addition to describing types, the @code{N_LSYM} stab type also
753 describes locally scoped automatic variables. Refer again to the body
754 of @code{main} in @file{example2.c}. It allocates two automatic
755 variables: @samp{times} is scoped to the body of @code{main}, and
756 @samp{inner} is scoped to the body of the @code{for} loop.
757 @samp{s_flap} is locally scoped but not automatic, and will be discussed
758 later.
759
760 @example
761 20 @{
762 21 static float s_flap;
763 22 int times;
764 23 for (times=0; times < s_g_repeat; times++)@{
765 24 int inner;
766 25 printf ("Hello world\n");
767 26 @}
768 27 @};
769 @end example
770
771 The @code{N_LSYM} stab for an automatic variable is located just before the
772 @code{N_LBRAC} stab describing the open brace of the block to which it is
773 scoped.
774
775 @example
776 @exdent @code{N_LSYM} (128): automatic variable, scoped locally to @code{main}
777
778 .stabs "@var{name}:
779 @var{type-ref}",
780 N_LSYM, NIL, NIL,
781 @var{frame-pointer-offset}
782
783 98 .stabs "times:1",128,0,0,-20
784 99 .stabn 192,0,0,LBB2 ## begin `main' N_LBRAC
785
786 @exdent @code{N_LSYM} (128): automatic variable, scoped locally to the @code{for} loop
787
788 .stabs "@var{name}:
789 @var{type-ref}",
790 N_LSYM, NIL, NIL,
791 @var{frame-pointer-offset}
792
793 100 .stabs "inner:1",128,0,0,-24
794 101 .stabn 192,0,0,LBB3 ## begin `for' loop N_LBRAC
795 @end example
796
797 Since the character in the string field following the colon is not a
798 letter, there is no symbol descriptor. This means that the stab
799 describes a local variable, and that the number after the colon is a
800 type reference. In this case it a a reference to the basic type @code{int}.
801 Notice also that the frame pointer offset is negative number for
802 automatic variables.
803
804
805 @node Global Variables
806 @section Global Variables
807
808 @table @strong
809 @item Directive:
810 @code{.stabs}
811 @item Type:
812 @code{N_GSYM}
813 @item Symbol Descriptor:
814 @code{G}
815 @end table
816
817 Global variables are represented by the @code{N_GSYM} stab type. The symbol
818 descriptor, following the colon in the string field, is @samp{G}. Following
819 the @samp{G} is a type reference or type definition. In this example it is a
820 type reference to the basic C type, @code{char}. The first source line in
821 @file{example2.c},
822
823 @example
824 1 char g_foo = 'c';
825 @end example
826
827 @noindent
828 yields the following stab. The stab immediately precedes the code that
829 allocates storage for the variable it describes.
830
831 @example
832 @exdent @code{N_GSYM} (32): global symbol
833
834 .stabs "@var{name}:
835 @var{descriptor}
836 @var{type-ref}",
837 N_GSYM, NIL, NIL, NIL
838
839 21 .stabs "g_foo:G2",32,0,0,0
840 22 .global _g_foo
841 23 .data
842 24 _g_foo:
843 25 .byte 99
844 @end example
845
846 The address of the variable represented by the @code{N_GSYM} is not contained
847 in the @code{N_GSYM} stab. The debugger gets this information from the
848 external symbol for the global variable.
849
850 @node Register variables
851 @section Global register variables
852
853 @table @strong
854 @item Directive:
855 @code{.stabs}
856 @item Type:
857 @code{N_RSYM}
858 @item Symbol Descriptor:
859 @code{r}
860 @end table
861
862 The following source line defines a global variable, @code{g_bar}, which is
863 explicitly allocated in global register @code{%g5}.
864
865 @example
866 2 register int g_bar asm ("%g5");
867 @end example
868
869 Register variables have their own stab type, @code{N_RSYM}, and their own
870 symbol descriptor, @code{r}. The stab's value field contains the number of
871 the register where the variable data will be stored. Since the
872 variable was not initialized in this compilation unit, the stab is
873 emited at the end of the object file, with the stabs for other
874 uninitialized globals (@code{bcc}).
875
876 @example
877 @exdent @code{N_RSYM} (64): register variable
878
879 .stabs "@var{name}:
880 @var{descriptor}
881 @var{type-ref}",
882 N_RSYM, NIL, NIL,
883 @var{register}
884
885 133 .stabs "g_bar:r1",64,0,0,5
886 @end example
887
888
889 @node Initialized statics
890 @section Initialized static variables
891
892 @table @strong
893 @item Directive:
894 @code{.stabs}
895 @item Type:
896 @code{N_STSYM}
897 @item Symbol Descriptors:
898 @code{S} (file scope), @code{V} (procedure scope)
899 @end table
900
901 Initialized static variables are represented by the @code{N_STSYM} stab
902 type. The symbol descriptor part of the string field shows if the
903 variable is file scope static (@samp{S}) or procedure scope static
904 (@samp{V}). The source line
905
906 @example
907 3 static int s_g_repeat = 2;
908 @end example
909
910 @noindent
911 yields the following code. The stab is located immediately preceding
912 the storage for the variable it represents. Since the variable in
913 this example is file scope static the symbol descriptor is @samp{S}.
914
915 @example
916 @exdent @code{N_STSYM} (38): initialized static variable (data seg w/internal linkage)
917
918 .stabs "@var{name}:
919 @var{descriptor}
920 @var{type-ref}",
921 N_STSYM,NIL,NIL,
922 @var{address}
923
924 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
925 27 .align 4
926 28 _s_g_repeat:
927 29 .word 2
928 @end example
929
930
931 @node Un-initialized statics
932 @section Un-initialized static variables
933
934 @table @strong
935 @item Directive:
936 @code{.stabs}
937 @item Type:
938 @code{N_LCSYM}
939 @item Symbol Descriptors:
940 @code{S} (file scope), @code{V} (procedure scope)
941 @end table
942
943 Un-initialized static variables are represented by the @code{N_LCSYM}
944 stab type. The symbol descriptor part of the string shows if the
945 variable is file scope static (@samp{S}) or procedure scope static
946 (@samp{V}). In this example it is procedure scope static. The source
947 line allocating @code{s_flap} immediately follows the open brace for the
948 procedure @code{main}.
949
950 @example
951 20 @{
952 21 static float s_flap;
953 @end example
954
955 The code that reserves storage for the variable @code{s_flap} precedes the
956 body of body of @code{main}.
957
958 @example
959 39 .reserve _s_flap.0,4,"bss",4
960 @end example
961
962 But since @code{s_flap} is scoped locally to @code{main}, its stab is
963 located with the other stabs representing symbols local to @code{main}.
964 The stab for @code{s_flap} is located just before the @code{N_LBRAC} for
965 @code{main}.
966
967 @example
968 @exdent @code{N_LCSYM} (40): uninitialized static var (BSS seg w/internal linkage)
969
970 .stabs "@var{name}:
971 @var{descriptor}
972 @var{type-ref}",
973 N_LCSYM, NIL, NIL,
974 @var{address}
975
976 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
977 98 .stabs "times:1",128,0,0,-20
978 99 .stabn 192,0,0,LBB2 # N_LBRAC for main.
979 @end example
980
981 @c ............................................................
982
983 @node Parameters
984 @section Parameters
985
986 The symbol descriptor @samp{p} is used to refer to parameters which are
987 in the arglist. Symbols have symbol type @samp{N_PSYM}. The value of
988 the symbol is the offset relative to the argument list.
989
990 If the parameter is passed in a register, then the traditional way to do
991 this is to provide two symbols for each argument:
992
993 @example
994 .stabs "arg:p1" . . . ; N_PSYM
995 .stabs "arg:r1" . . . ; N_RSYM
996 @end example
997
998 Debuggers are expected to use the second one to find the value, and the
999 first one to know that it is an argument.
1000
1001 Because this is kind of ugly, some compilers use symbol descriptor
1002 @samp{P} or @samp{R} to indicate an argument which is in a register.
1003 The symbol value is the register number. @samp{P} and @samp{R} mean the
1004 same thing, the difference is that @samp{P} is a GNU invention and
1005 @samp{R} is an IBM (xcoff) invention. As of version 4.9, GDB should
1006 handle either one. Symbol type @samp{C_RPSYM} is used with @samp{R} and
1007 @samp{N_RSYM} is used with @samp{P}.
1008
1009 There is another case similar to an argument in a register, which is an
1010 argument which is actually stored as a local variable. Sometimes this
1011 happens when the argument was passed in a register and then the compiler
1012 stores it as a local variable. If possible, the compiler should claim
1013 that it's in a register, but this isn't always done. Some compilers use
1014 the pair of symbols approach described above ("arg:p" followed by
1015 "arg:"); this includes gcc1 (not gcc2) on the sparc when passing a small
1016 structure and gcc2 when the argument type is float and it is passed as a
1017 double and converted to float by the prologue (in the latter case the
1018 type of the "arg:p" symbol is double and the type of the "arg:" symbol
1019 is float). GCC, at least on the 960, uses a single @samp{p} symbol
1020 descriptor for an argument which is stored as a local variable but uses
1021 @samp{N_LSYM} instead of @samp{N_PSYM}. In this case the value of the
1022 symbol is an offset relative to the local variables for that function,
1023 not relative to the arguments (on some machines those are the same
1024 thing, but not on all).
1025
1026 As a simple example, the code
1027
1028 @example
1029 main (argc, argv)
1030 int argc;
1031 char **argv;
1032 @{
1033 @end example
1034
1035 produces the stabs
1036
1037 @example
1038 .stabs "main:F1",36,0,0,_main ; 36 is N_FUN
1039 .stabs "argc:p1",160,0,0,68 ; 160 is N_PSYM
1040 .stabs "argv:p20=*21=*2",160,0,0,72
1041 @end example
1042
1043 The type definition of argv is interesting because it contains several
1044 type definitions. Type 21 is ptr to type 2 (char) and argv (type 20) is
1045 ptr to type 21.
1046
1047 @node Aggregate Types
1048 @chapter Aggregate Types
1049
1050 Now let's look at some variable definitions involving complex types.
1051 This involves understanding better how types are described. In the
1052 examples so far types have been described as references to previously
1053 defined types or defined in terms of subranges of or pointers to
1054 previously defined types. The section that follows will talk about
1055 the various other type descriptors that may follow the = sign in a
1056 type definition.
1057
1058 @menu
1059 * Arrays::
1060 * Enumerations::
1061 * Structure tags::
1062 * Typedefs::
1063 * Unions::
1064 * Function types::
1065 @end menu
1066
1067 @node Arrays
1068 @section Array types
1069
1070 @table @strong
1071 @item Directive:
1072 @code{.stabs}
1073 @item Types:
1074 @code{N_GSYM}, @code{N_LSYM}
1075 @item Symbol Descriptor:
1076 @code{T}
1077 @item Type Descriptor:
1078 @code{a}
1079 @end table
1080
1081 As an example of an array type consider the global variable below.
1082
1083 @example
1084 15 char char_vec[3] = @{'a','b','c'@};
1085 @end example
1086
1087 Since the array is a global variable, it is described by the N_GSYM
1088 stab type. The symbol descriptor G, following the colon in stab's
1089 string field, also says the array is a global variable. Following the
1090 G is a definition for type (19) as shown by the equals sign after the
1091 type number.
1092
1093 After the equals sign is a type descriptor, a, which says that the type
1094 being defined is an array. Following the type descriptor for an array
1095 is the type of the index, a semicolon, and the type of the array elements.
1096
1097 The type of the index is often a range type, expressed as the letter r
1098 and some parameters. It defines the size of the array. In in the
1099 example below, the range @code{r1;0;2;} defines an index type which is
1100 a subrange of type 1 (integer), with a lower bound of 0 and an upper
1101 bound of 2. This defines the valid range of subscripts of a
1102 three-element C array.
1103
1104 The array definition above generates the assembly language that
1105 follows.
1106
1107 @example
1108 @exdent <32> N_GSYM - global variable
1109 @exdent .stabs "name:sym_desc(global)type_def(19)=type_desc(array)
1110 @exdent index_type_ref(range of int from 0 to 2);element_type_ref(char)";
1111 @exdent N_GSYM, NIL, NIL, NIL
1112
1113 32 .stabs "char_vec:G19=ar1;0;2;2",32,0,0,0
1114 33 .global _char_vec
1115 34 .align 4
1116 35 _char_vec:
1117 36 .byte 97
1118 37 .byte 98
1119 38 .byte 99
1120 @end example
1121
1122 @node Enumerations
1123 @section Enumerations
1124
1125 @table @strong
1126 @item Directive:
1127 @code{.stabs}
1128 @item Type:
1129 @code{N_LSYM}
1130 @item Symbol Descriptor:
1131 @code{T}
1132 @item Type Descriptor:
1133 @code{e}
1134 @end table
1135
1136 The source line below declares an enumeration type. It is defined at
1137 file scope between the bodies of main and s_proc in example2.c.
1138 Because the N_LSYM is located after the N_RBRAC that marks the end of
1139 the previous procedure's block scope, and before the N_FUN that marks
1140 the beginning of the next procedure's block scope, the N_LSYM does not
1141 describe a block local symbol, but a file local one. The source line:
1142
1143 @example
1144 29 enum e_places @{first,second=3,last@};
1145 @end example
1146
1147 @noindent
1148 generates the following stab, located just after the N_RBRAC (close
1149 brace stab) for main. The type definition is in an N_LSYM stab
1150 because type definitions are file scope not global scope.
1151
1152 @display
1153 <128> N_LSYM - local symbol
1154 .stab "name:sym_dec(type)type_def(22)=sym_desc(enum)
1155 enum_name:value(0),enum_name:value(3),enum_name:value(4),;",
1156 N_LSYM, NIL, NIL, NIL
1157 @end display
1158
1159 @example
1160 104 .stabs "e_places:T22=efirst:0,second:3,last:4,;",128,0,0,0
1161 @end example
1162
1163 The symbol descriptor (T) says that the stab describes a structure,
1164 enumeration, or type tag. The type descriptor e, following the 22= of
1165 the type definition narrows it down to an enumeration type. Following
1166 the e is a list of the elements of the enumeration. The format is
1167 name:value,. The list of elements ends with a ;.
1168
1169 @node Structure tags
1170 @section Structure Tags
1171
1172 @table @strong
1173 @item Directive:
1174 @code{.stabs}
1175 @item Type:
1176 @code{N_LSYM}
1177 @item Symbol Descriptor:
1178 @code{T}
1179 @item Type Descriptor:
1180 @code{s}
1181 @end table
1182
1183 The following source code declares a structure tag and defines an
1184 instance of the structure in global scope. Then a typedef equates the
1185 structure tag with a new type. A seperate stab is generated for the
1186 structure tag, the structure typedef, and the structure instance. The
1187 stabs for the tag and the typedef are emited when the definitions are
1188 encountered. Since the structure elements are not initialized, the
1189 stab and code for the structure variable itself is located at the end
1190 of the program in .common.
1191
1192 @example
1193 6 struct s_tag @{
1194 7 int s_int;
1195 8 float s_float;
1196 9 char s_char_vec[8];
1197 10 struct s_tag* s_next;
1198 11 @} g_an_s;
1199 12
1200 13 typedef struct s_tag s_typedef;
1201 @end example
1202
1203 The structure tag is an N_LSYM stab type because, like the enum, the
1204 symbol is file scope. Like the enum, the symbol descriptor is T, for
1205 enumeration, struct or tag type. The symbol descriptor s following
1206 the 16= of the type definition narrows the symbol type to struct.
1207
1208 Following the struct symbol descriptor is the number of bytes the
1209 struct occupies, followed by a description of each structure element.
1210 The structure element descriptions are of the form name:type, bit
1211 offset from the start of the struct, and number of bits in the
1212 element.
1213
1214
1215 @example
1216 <128> N_LSYM - type definition
1217 .stabs "name:sym_desc(struct tag) Type_def(16)=type_desc(struct type)
1218 struct_bytes
1219 elem_name:type_ref(int),bit_offset,field_bits;
1220 elem_name:type_ref(float),bit_offset,field_bits;
1221 elem_name:type_def(17)=type_desc(array)
1222 index_type(range of int from 0 to 7);
1223 element_type(char),bit_offset,field_bits;;",
1224 N_LSYM,NIL,NIL,NIL
1225
1226 30 .stabs "s_tag:T16=s20s_int:1,0,32;s_float:12,32,32;
1227 s_char_vec:17=ar1;0;7;2,64,64;s_next:18=*16,128,32;;",128,0,0,0
1228 @end example
1229
1230 In this example, two of the structure elements are previously defined
1231 types. For these, the type following the name: part of the element
1232 description is a simple type reference. The other two structure
1233 elements are new types. In this case there is a type definition
1234 embedded after the name:. The type definition for the array element
1235 looks just like a type definition for a standalone array. The s_next
1236 field is a pointer to the same kind of structure that the field is an
1237 element of. So the definition of structure type 16 contains an type
1238 definition for an element which is a pointer to type 16.
1239
1240 @node Typedefs
1241 @section Typedefs
1242
1243 @table @strong
1244 @item Directive:
1245 @code{.stabs}
1246 @item Type:
1247 @code{N_LSYM}
1248 @item Symbol Descriptor:
1249 @code{t}
1250 @end table
1251
1252 Here is the stab for the typedef equating the structure tag with a
1253 type.
1254
1255 @display
1256 <128> N_LSYM - type definition
1257 .stabs "name:sym_desc(type name)type_ref(struct_tag)",N_LSYM,NIL,NIL,NIL
1258 @end display
1259
1260 @example
1261 31 .stabs "s_typedef:t16",128,0,0,0
1262 @end example
1263
1264 And here is the code generated for the structure variable.
1265
1266 @display
1267 <32> N_GSYM - global symbol
1268 .stabs "name:sym_desc(global)type_ref(struct_tag)",N_GSYM,NIL,NIL,NIL
1269 @end display
1270
1271 @example
1272 136 .stabs "g_an_s:G16",32,0,0,0
1273 137 .common _g_an_s,20,"bss"
1274 @end example
1275
1276 Notice that the structure tag has the same type number as the typedef
1277 for the structure tag. It is impossible to distinguish between a
1278 variable of the struct type and one of its typedef by looking at the
1279 debugging information.
1280
1281
1282 @node Unions
1283 @section Unions
1284
1285 @table @strong
1286 @item Directive:
1287 @code{.stabs}
1288 @item Type:
1289 @code{N_LSYM}
1290 @item Symbol Descriptor:
1291 @code{T}
1292 @item Type Descriptor:
1293 @code{u}
1294 @end table
1295
1296 Next let's look at unions. In example2 this union type is declared
1297 locally to a procedure and an instance of the union is defined.
1298
1299 @example
1300 36 union u_tag @{
1301 37 int u_int;
1302 38 float u_float;
1303 39 char* u_char;
1304 40 @} an_u;
1305 @end example
1306
1307 This code generates a stab for the union tag and a stab for the union
1308 variable. Both use the N_LSYM stab type. Since the union variable is
1309 scoped locally to the procedure in which it is defined, its stab is
1310 located immediately preceding the N_LBRAC for the procedure's block
1311 start.
1312
1313 The stab for the union tag, however is located preceding the code for
1314 the procedure in which it is defined. The stab type is N_LSYM. This
1315 would seem to imply that the union type is file scope, like the struct
1316 type s_tag. This is not true. The contents and position of the stab
1317 for u_type do not convey any infomation about its procedure local
1318 scope.
1319
1320 @display
1321 <128> N_LSYM - type
1322 .stabs "name:sym_desc(union tag)type_def(22)=type_desc(union)
1323 byte_size(4)
1324 elem_name:type_ref(int),bit_offset(0),bit_size(32);
1325 elem_name:type_ref(float),bit_offset(0),bit_size(32);
1326 elem_name:type_ref(ptr to char),bit_offset(0),bit_size(32);;"
1327 N_LSYM, NIL, NIL, NIL
1328 @end display
1329
1330 @smallexample
1331 105 .stabs "u_tag:T23=u4u_int:1,0,32;u_float:12,0,32;u_char:21,0,32;;",
1332 128,0,0,0
1333 @end smallexample
1334
1335 The symbol descriptor, T, following the name: means that the stab
1336 describes an enumeration, struct or type tag. The type descriptor u,
1337 following the 23= of the type definition, narrows it down to a union
1338 type definition. Following the u is the number of bytes in the union.
1339 After that is a list of union element descriptions. Their format is
1340 name:type, bit offset into the union, and number of bytes for the
1341 element;.
1342
1343 The stab for the union variable follows. Notice that the frame
1344 pointer offset for local variables is negative.
1345
1346 @display
1347 <128> N_LSYM - local variable (with no symbol descriptor)
1348 .stabs "name:type_ref(u_tag)", N_LSYM, NIL, NIL, frame_ptr_offset
1349 @end display
1350
1351 @example
1352 130 .stabs "an_u:23",128,0,0,-20
1353 @end example
1354
1355 @node Function types
1356 @section Function types
1357
1358 @display
1359 type descriptor f
1360 @end display
1361
1362 The last type descriptor in C which remains to be described is used
1363 for function types. Consider the following source line defining a
1364 global function pointer.
1365
1366 @example
1367 4 int (*g_pf)();
1368 @end example
1369
1370 It generates the following code. Since the variable is not
1371 initialized, the code is located in the common area at the end of the
1372 file.
1373
1374 @display
1375 <32> N_GSYM - global variable
1376 .stabs "name:sym_desc(global)type_def(24)=ptr_to(25)=
1377 type_def(func)type_ref(int)
1378 @end display
1379
1380 @example
1381 134 .stabs "g_pf:G24=*25=f1",32,0,0,0
1382 135 .common _g_pf,4,"bss"
1383 @end example
1384
1385 Since the variable is global, the stab type is N_GSYM and the symbol
1386 descriptor is G. The variable defines a new type, 24, which is a
1387 pointer to another new type, 25, which is defined as a function
1388 returning int.
1389
1390 @node Symbol tables
1391 @chapter Symbol information in symbol tables
1392
1393 This section examines more closely the format of symbol table entries
1394 and how stab assembler directives map to them. It also describes what
1395 transformations the assembler and linker make on data from stabs.
1396
1397 Each time the assembler encounters a stab in its input file it puts
1398 each field of the stab into corresponding fields in a symbol table
1399 entry of its output file. If the stab contains a string field, the
1400 symbol table entry for that stab points to a string table entry
1401 containing the string data from the stab. Assembler labels become
1402 relocatable addresses. Symbol table entries in a.out have the format:
1403
1404 @example
1405 struct internal_nlist @{
1406 unsigned long n_strx; /* index into string table of name */
1407 unsigned char n_type; /* type of symbol */
1408 unsigned char n_other; /* misc info (usually empty) */
1409 unsigned short n_desc; /* description field */
1410 bfd_vma n_value; /* value of symbol */
1411 @};
1412 @end example
1413
1414 For .stabs directives, the n_strx field holds the character offset
1415 from the start of the string table to the string table entry
1416 containing the "string" field. For other classes of stabs (.stabn and
1417 .stabd) this field is null.
1418
1419 Symbol table entries with n_type fields containing a value greater or
1420 equal to 0x20 originated as stabs generated by the compiler (with one
1421 random exception). Those with n_type values less than 0x20 were
1422 placed in the symbol table of the executable by the assembler or the
1423 linker.
1424
1425 The linker concatenates object files and does fixups of externally
1426 defined symbols. You can see the transformations made on stab data by
1427 the assembler and linker by examining the symbol table after each pass
1428 of the build, first the assemble and then the link.
1429
1430 To do this use nm with the -ap options. This dumps the symbol table,
1431 including debugging information, unsorted. For stab entries the
1432 columns are: value, other, desc, type, string. For assembler and
1433 linker symbols, the columns are: value, type, string.
1434
1435 There are a few important things to notice about symbol tables. Where
1436 the value field of a stab contains a frame pointer offset, or a
1437 register number, that value is unchanged by the rest of the build.
1438
1439 Where the value field of a stab contains an assembly language label,
1440 it is transformed by each build step. The assembler turns it into a
1441 relocatable address and the linker turns it into an absolute address.
1442 This source line defines a static variable at file scope:
1443
1444 @example
1445 3 static int s_g_repeat
1446 @end example
1447
1448 @noindent
1449 The following stab describes the symbol.
1450
1451 @example
1452 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
1453 @end example
1454
1455 @noindent
1456 The assembler transforms the stab into this symbol table entry in the
1457 @file{.o} file. The location is expressed as a data segment offset.
1458
1459 @example
1460 21 00000084 - 00 0000 STSYM s_g_repeat:S1
1461 @end example
1462
1463 @noindent
1464 in the symbol table entry from the executable, the linker has made the
1465 relocatable address absolute.
1466
1467 @example
1468 22 0000e00c - 00 0000 STSYM s_g_repeat:S1
1469 @end example
1470
1471 Stabs for global variables do not contain location information. In
1472 this case the debugger finds location information in the assembler or
1473 linker symbol table entry describing the variable. The source line:
1474
1475 @example
1476 1 char g_foo = 'c';
1477 @end example
1478
1479 @noindent
1480 generates the stab:
1481
1482 @example
1483 21 .stabs "g_foo:G2",32,0,0,0
1484 @end example
1485
1486 The variable is represented by the following two symbol table entries
1487 in the object file. The first one originated as a stab. The second
1488 one is an external symbol. The upper case D signifies that the n_type
1489 field of the symbol table contains 7, N_DATA with local linkage (see
1490 Table B). The value field following the file's line number is empty
1491 for the stab entry. For the linker symbol it contains the
1492 rellocatable address corresponding to the variable.
1493
1494 @example
1495 19 00000000 - 00 0000 GSYM g_foo:G2
1496 20 00000080 D _g_foo
1497 @end example
1498
1499 @noindent
1500 These entries as transformed by the linker. The linker symbol table
1501 entry now holds an absolute address.
1502
1503 @example
1504 21 00000000 - 00 0000 GSYM g_foo:G2
1505 @dots{}
1506 215 0000e008 D _g_foo
1507 @end example
1508
1509 @node GNU Cplusplus stabs
1510 @chapter GNU C++ stabs
1511
1512 @menu
1513 * Basic Cplusplus types::
1514 * Simple classes::
1515 * Class instance::
1516 * Methods:: Method definition
1517 * Protections::
1518 * Method Modifiers:: (const, volatile, const volatile)
1519 * Virtual Methods::
1520 * Inheritence::
1521 * Virtual Base Classes::
1522 * Static Members::
1523 @end menu
1524
1525
1526 @subsection Symbol descriptors added for C++ descriptions:
1527
1528 @display
1529 P - register parameter.
1530 @end display
1531
1532 @subsection type descriptors added for C++ descriptions
1533
1534 @table @code
1535 @item #
1536 method type (two ## if minimal debug)
1537
1538 @item xs
1539 cross-reference
1540 @end table
1541
1542
1543 @node Basic Cplusplus types
1544 @section Basic types for C++
1545
1546 << the examples that follow are based on a01.C >>
1547
1548
1549 C++ adds two more builtin types to the set defined for C. These are
1550 the unknown type and the vtable record type. The unknown type, type
1551 16, is defined in terms of itself like the void type.
1552
1553 The vtable record type, type 17, is defined as a structure type and
1554 then as a structure tag. The structure has four fields, delta, index,
1555 pfn, and delta2. pfn is the function pointer.
1556
1557 << In boilerplate $vtbl_ptr_type, what are the fields delta,
1558 index, and delta2 used for? >>
1559
1560 This basic type is present in all C++ programs even if there are no
1561 virtual methods defined.
1562
1563 @display
1564 .stabs "struct_name:sym_desc(type)type_def(17)=type_desc(struct)struct_bytes(8)
1565 elem_name(delta):type_ref(short int),bit_offset(0),field_bits(16);
1566 elem_name(index):type_ref(short int),bit_offset(16),field_bits(16);
1567 elem_name(pfn):type_def(18)=type_desc(ptr to)type_ref(void),
1568 bit_offset(32),field_bits(32);
1569 elem_name(delta2):type_def(short int);bit_offset(32),field_bits(16);;"
1570 N_LSYM, NIL, NIL
1571 @end display
1572
1573 @smallexample
1574 .stabs "$vtbl_ptr_type:t17=s8
1575 delta:6,0,16;index:6,16,16;pfn:18=*15,32,32;delta2:6,32,16;;"
1576 ,128,0,0,0
1577 @end smallexample
1578
1579 @display
1580 .stabs "name:sym_dec(struct tag)type_ref($vtbl_ptr_type)",N_LSYM,NIL,NIL,NIL
1581 @end display
1582
1583 @example
1584 .stabs "$vtbl_ptr_type:T17",128,0,0,0
1585 @end example
1586
1587 @node Simple classes
1588 @section Simple class definition
1589
1590 The stabs describing C++ language features are an extension of the
1591 stabs describing C. Stabs representing C++ class types elaborate
1592 extensively on the stab format used to describe structure types in C.
1593 Stabs representing class type variables look just like stabs
1594 representing C language variables.
1595
1596 Consider the following very simple class definition.
1597
1598 @example
1599 class baseA @{
1600 public:
1601 int Adat;
1602 int Ameth(int in, char other);
1603 @};
1604 @end example
1605
1606 The class baseA is represented by two stabs. The first stab describes
1607 the class as a structure type. The second stab describes a structure
1608 tag of the class type. Both stabs are of stab type N_LSYM. Since the
1609 stab is not located between an N_FUN and a N_LBRAC stab this indicates
1610 that the class is defined at file scope. If it were, then the N_LSYM
1611 would signify a local variable.
1612
1613 A stab describing a C++ class type is similar in format to a stab
1614 describing a C struct, with each class member shown as a field in the
1615 structure. The part of the struct format describing fields is
1616 expanded to include extra information relevent to C++ class members.
1617 In addition, if the class has multiple base classes or virtual
1618 functions the struct format outside of the field parts is also
1619 augmented.
1620
1621 In this simple example the field part of the C++ class stab
1622 representing member data looks just like the field part of a C struct
1623 stab. The section on protections describes how its format is
1624 sometimes extended for member data.
1625
1626 The field part of a C++ class stab representing a member function
1627 differs substantially from the field part of a C struct stab. It
1628 still begins with `name:' but then goes on to define a new type number
1629 for the member function, describe its return type, its argument types,
1630 its protection level, any qualifiers applied to the method definition,
1631 and whether the method is virtual or not. If the method is virtual
1632 then the method description goes on to give the vtable index of the
1633 method, and the type number of the first base class defining the
1634 method.
1635
1636 When the field name is a method name it is followed by two colons
1637 rather than one. This is followed by a new type definition for the
1638 method. This is a number followed by an equal sign and then the
1639 symbol descriptor `##', indicating a method type. This is followed by
1640 a type reference showing the return type of the method and a
1641 semi-colon.
1642
1643 The format of an overloaded operator method name differs from that
1644 of other methods. It is "op$::XXXX." where XXXX is the operator name
1645 such as + or +=. The name ends with a period, and any characters except
1646 the period can occur in the XXXX string.
1647
1648 The next part of the method description represents the arguments to
1649 the method, preceeded by a colon and ending with a semi-colon. The
1650 types of the arguments are expressed in the same way argument types
1651 are expressed in C++ name mangling. In this example an int and a char
1652 map to `ic'.
1653
1654 This is followed by a number, a letter, and an asterisk or period,
1655 followed by another semicolon. The number indicates the protections
1656 that apply to the member function. Here the 2 means public. The
1657 letter encodes any qualifier applied to the method definition. In
1658 this case A means that it is a normal function definition. The dot
1659 shows that the method is not virtual. The sections that follow
1660 elaborate further on these fields and describe the additional
1661 information present for virtual methods.
1662
1663
1664 @display
1665 .stabs "class_name:sym_desc(type)type_def(20)=type_desc(struct)struct_bytes(4)
1666 field_name(Adat):type(int),bit_offset(0),field_bits(32);
1667
1668 method_name(Ameth)::type_def(21)=type_desc(method)return_type(int);
1669 :arg_types(int char);
1670 protection(public)qualifier(normal)virtual(no);;"
1671 N_LSYM,NIL,NIL,NIL
1672 @end display
1673
1674 @smallexample
1675 .stabs "baseA:t20=s4Adat:1,0,32;Ameth::21=##1;:ic;2A.;;",128,0,0,0
1676
1677 .stabs "class_name:sym_desc(struct tag)",N_LSYM,NIL,NIL,NIL
1678
1679 .stabs "baseA:T20",128,0,0,0
1680 @end smallexample
1681
1682 @node Class instance
1683 @section Class instance
1684
1685 As shown above, describing even a simple C++ class definition is
1686 accomplished by massively extending the stab format used in C to
1687 describe structure types. However, once the class is defined, C stabs
1688 with no modifications can be used to describe class instances. The
1689 following source:
1690
1691 @example
1692 main () @{
1693 baseA AbaseA;
1694 @}
1695 @end example
1696
1697 @noindent
1698 yields the following stab describing the class instance. It looks no
1699 different from a standard C stab describing a local variable.
1700
1701 @display
1702 .stabs "name:type_ref(baseA)", N_LSYM, NIL, NIL, frame_ptr_offset
1703 @end display
1704
1705 @example
1706 .stabs "AbaseA:20",128,0,0,-20
1707 @end example
1708
1709 @node Methods
1710 @section Method defintion
1711
1712 The class definition shown above declares Ameth. The C++ source below
1713 defines Ameth:
1714
1715 @example
1716 int
1717 baseA::Ameth(int in, char other)
1718 @{
1719 return in;
1720 @};
1721 @end example
1722
1723
1724 This method definition yields three stabs following the code of the
1725 method. One stab describes the method itself and following two
1726 describe its parameters. Although there is only one formal argument
1727 all methods have an implicit argument which is the `this' pointer.
1728 The `this' pointer is a pointer to the object on which the method was
1729 called. Note that the method name is mangled to encode the class name
1730 and argument types. << Name mangling is not described by this
1731 document - Is there already such a doc? >>
1732
1733 @example
1734 .stabs "name:symbol_desriptor(global function)return_type(int)",
1735 N_FUN, NIL, NIL, code_addr_of_method_start
1736
1737 .stabs "Ameth__5baseAic:F1",36,0,0,_Ameth__5baseAic
1738 @end example
1739
1740 Here is the stab for the `this' pointer implicit argument. The name
1741 of the `this' pointer is always `this.' Type 19, the `this' pointer is
1742 defined as a pointer to type 20, baseA, but a stab defining baseA has
1743 not yet been emited. Since the compiler knows it will be emited
1744 shortly, here it just outputs a cross reference to the undefined
1745 symbol, by prefixing the symbol name with xs.
1746
1747 @example
1748 .stabs "name:sym_desc(register param)type_def(19)=
1749 type_desc(ptr to)type_ref(baseA)=
1750 type_desc(cross-reference to)baseA:",N_RSYM,NIL,NIL,register_number
1751
1752 .stabs "this:P19=*20=xsbaseA:",64,0,0,8
1753 @end example
1754
1755 The stab for the explicit integer argument looks just like a parameter
1756 to a C function. The last field of the stab is the offset from the
1757 argument pointer, which in most systems is the same as the frame
1758 pointer.
1759
1760 @example
1761 .stabs "name:sym_desc(value parameter)type_ref(int)",
1762 N_PSYM,NIL,NIL,offset_from_arg_ptr
1763
1764 .stabs "in:p1",160,0,0,72
1765 @end example
1766
1767 << The examples that follow are based on A1.C >>
1768
1769 @node Protections
1770 @section Protections
1771
1772
1773 In the simple class definition shown above all member data and
1774 functions were publicly accessable. The example that follows
1775 contrasts public, protected and privately accessable fields and shows
1776 how these protections are encoded in C++ stabs.
1777
1778 Protections for class member data are signified by two characters
1779 embeded in the stab defining the class type. These characters are
1780 located after the name: part of the string. /0 means private, /1
1781 means protected, and /2 means public. If these characters are omited
1782 this means that the member is public. The following C++ source:
1783
1784 @example
1785 class all_data @{
1786 private:
1787 int priv_dat;
1788 protected:
1789 char prot_dat;
1790 public:
1791 float pub_dat;
1792 @};
1793 @end example
1794
1795 @noindent
1796 generates the following stab to describe the class type all_data.
1797
1798 @display
1799 .stabs "class_name:sym_desc(type)type_def(19)=type_desc(struct)struct_bytes
1800 data_name:/protection(private)type_ref(int),bit_offset,num_bits;
1801 data_name:/protection(protected)type_ref(char),bit_offset,num_bits;
1802 data_name:(/num omited, private)type_ref(float),bit_offset,num_bits;;"
1803 N_LSYM,NIL,NIL,NIL
1804 @end display
1805
1806 @smallexample
1807 .stabs "all_data:t19=s12
1808 priv_dat:/01,0,32;prot_dat:/12,32,8;pub_dat:12,64,32;;",128,0,0,0
1809 @end smallexample
1810
1811 Protections for member functions are signified by one digit embeded in
1812 the field part of the stab describing the method. The digit is 0 if
1813 private, 1 if protected and 2 if public. Consider the C++ class
1814 definition below:
1815
1816 @example
1817 class all_methods @{
1818 private:
1819 int priv_meth(int in)@{return in;@};
1820 protected:
1821 char protMeth(char in)@{return in;@};
1822 public:
1823 float pubMeth(float in)@{return in;@};
1824 @};
1825 @end example
1826
1827 It generates the following stab. The digit in question is to the left
1828 of an `A' in each case. Notice also that in this case two symbol
1829 descriptors apply to the class name struct tag and struct type.
1830
1831 @display
1832 .stabs "class_name:sym_desc(struct tag&type)type_def(21)=
1833 sym_desc(struct)struct_bytes(1)
1834 meth_name::type_def(22)=sym_desc(method)returning(int);
1835 :args(int);protection(private)modifier(normal)virtual(no);
1836 meth_name::type_def(23)=sym_desc(method)returning(char);
1837 :args(char);protection(protected)modifier(normal)virual(no);
1838 meth_name::type_def(24)=sym_desc(method)returning(float);
1839 :args(float);protection(public)modifier(normal)virtual(no);;",
1840 N_LSYM,NIL,NIL,NIL
1841 @end display
1842
1843 @smallexample
1844 .stabs "all_methods:Tt21=s1priv_meth::22=##1;:i;0A.;protMeth::23=##2;:c;1A.;
1845 pubMeth::24=##12;:f;2A.;;",128,0,0,0
1846 @end smallexample
1847
1848 @node Method Modifiers
1849 @section Method Modifiers (const, volatile, const volatile)
1850
1851 << based on a6.C >>
1852
1853 In the class example described above all the methods have the normal
1854 modifier. This method modifier information is located just after the
1855 protection information for the method. This field has four possible
1856 character values. Normal methods use A, const methods use B, volatile
1857 methods use C, and const volatile methods use D. Consider the class
1858 definition below:
1859
1860 @example
1861 class A @{
1862 public:
1863 int ConstMeth (int arg) const @{ return arg; @};
1864 char VolatileMeth (char arg) volatile @{ return arg; @};
1865 float ConstVolMeth (float arg) const volatile @{return arg; @};
1866 @};
1867 @end example
1868
1869 This class is described by the following stab:
1870
1871 @display
1872 .stabs "class(A):sym_desc(struct)type_def(20)=type_desc(struct)struct_bytes(1)
1873 meth_name(ConstMeth)::type_def(21)sym_desc(method)
1874 returning(int);:arg(int);protection(public)modifier(const)virtual(no);
1875 meth_name(VolatileMeth)::type_def(22)=sym_desc(method)
1876 returning(char);:arg(char);protection(public)modifier(volatile)virt(no)
1877 meth_name(ConstVolMeth)::type_def(23)=sym_desc(method)
1878 returning(float);:arg(float);protection(public)modifer(const volatile)
1879 virtual(no);;", @dots{}
1880 @end display
1881
1882 @example
1883 .stabs "A:T20=s1ConstMeth::21=##1;:i;2B.;VolatileMeth::22=##2;:c;2C.;
1884 ConstVolMeth::23=##12;:f;2D.;;",128,0,0,0
1885 @end example
1886
1887 @node Virtual Methods
1888 @section Virtual Methods
1889
1890 << The following examples are based on a4.C >>
1891
1892 The presence of virtual methods in a class definition adds additional
1893 data to the class description. The extra data is appended to the
1894 description of the virtual method and to the end of the class
1895 description. Consider the class definition below:
1896
1897 @example
1898 class A @{
1899 public:
1900 int Adat;
1901 virtual int A_virt (int arg) @{ return arg; @};
1902 @};
1903 @end example
1904
1905 This results in the stab below describing class A. It defines a new
1906 type (20) which is an 8 byte structure. The first field of the class
1907 struct is Adat, an integer, starting at structure offset 0 and
1908 occupying 32 bits.
1909
1910 The second field in the class struct is not explicitly defined by the
1911 C++ class definition but is implied by the fact that the class
1912 contains a virtual method. This field is the vtable pointer. The
1913 name of the vtable pointer field starts with $vf and continues with a
1914 type reference to the class it is part of. In this example the type
1915 reference for class A is 20 so the name of its vtable pointer field is
1916 $vf20, followed by the usual colon.
1917
1918 Next there is a type definition for the vtable pointer type (21).
1919 This is in turn defined as a pointer to another new type (22).
1920
1921 Type 22 is the vtable itself, which is defined as an array, indexed by
1922 a range of integers between 0 and 1, and whose elements are of type
1923 17. Type 17 was the vtable record type defined by the boilerplate C++
1924 type definitions, as shown earlier.
1925
1926 The bit offset of the vtable pointer field is 32. The number of bits
1927 in the field are not specified when the field is a vtable pointer.
1928
1929 Next is the method definition for the virtual member function A_virt.
1930 Its description starts out using the same format as the non-virtual
1931 member functions described above, except instead of a dot after the
1932 `A' there is an asterisk, indicating that the function is virtual.
1933 Since is is virtual some addition information is appended to the end
1934 of the method description.
1935
1936 The first number represents the vtable index of the method. This is a
1937 32 bit unsigned number with the high bit set, followed by a
1938 semi-colon.
1939
1940 The second number is a type reference to the first base class in the
1941 inheritence hierarchy defining the virtual member function. In this
1942 case the class stab describes a base class so the virtual function is
1943 not overriding any other definition of the method. Therefore the
1944 reference is to the type number of the class that the stab is
1945 describing (20).
1946
1947 This is followed by three semi-colons. One marks the end of the
1948 current sub-section, one marks the end of the method field, and the
1949 third marks the end of the struct definition.
1950
1951 For classes containing virtual functions the very last section of the
1952 string part of the stab holds a type reference to the first base
1953 class. This is preceeded by `~%' and followed by a final semi-colon.
1954
1955 @display
1956 .stabs "class_name(A):type_def(20)=sym_desc(struct)struct_bytes(8)
1957 field_name(Adat):type_ref(int),bit_offset(0),field_bits(32);
1958 field_name(A virt func ptr):type_def(21)=type_desc(ptr to)type_def(22)=
1959 sym_desc(array)index_type_ref(range of int from 0 to 1);
1960 elem_type_ref(vtbl elem type),
1961 bit_offset(32);
1962 meth_name(A_virt)::typedef(23)=sym_desc(method)returning(int);
1963 :arg_type(int),protection(public)normal(yes)virtual(yes)
1964 vtable_index(1);class_first_defining(A);;;~%first_base(A);",
1965 N_LSYM,NIL,NIL,NIL
1966 @end display
1967
1968 @example
1969 .stabs "A:t20=s8Adat:1,0,32;$vf20:21=*22=ar1;0;1;17,32;A_virt::23=##1;:i;2A*-2147483647;20;;;~%20;",128,0,0,0
1970 @end example
1971
1972 @node Inheritence
1973 @section Inheritence
1974
1975 Stabs describing C++ derived classes include additional sections that
1976 describe the inheritence hierarchy of the class. A derived class stab
1977 also encodes the number of base classes. For each base class it tells
1978 if the base class is virtual or not, and if the inheritence is private
1979 or public. It also gives the offset into the object of the portion of
1980 the object corresponding to each base class.
1981
1982 This additional information is embeded in the class stab following the
1983 number of bytes in the struct. First the number of base classes
1984 appears bracketed by an exclamation point and a comma.
1985
1986 Then for each base type there repeats a series: two digits, a number,
1987 a comma, another number, and a semi-colon.
1988
1989 The first of the two digits is 1 if the base class is virtual and 0 if
1990 not. The second digit is 2 if the derivation is public and 0 if not.
1991
1992 The number following the first two digits is the offset from the start
1993 of the object to the part of the object pertaining to the base class.
1994
1995 After the comma, the second number is a type_descriptor for the base
1996 type. Finally a semi-colon ends the series, which repeats for each
1997 base class.
1998
1999 The source below defines three base classes A, B, and C and the
2000 derived class D.
2001
2002
2003 @example
2004 class A @{
2005 public:
2006 int Adat;
2007 virtual int A_virt (int arg) @{ return arg; @};
2008 @};
2009
2010 class B @{
2011 public:
2012 int B_dat;
2013 virtual int B_virt (int arg) @{return arg; @};
2014 @};
2015
2016 class C @{
2017 public:
2018 int Cdat;
2019 virtual int C_virt (int arg) @{return arg; @};
2020 @};
2021
2022 class D : A, virtual B, public C @{
2023 public:
2024 int Ddat;
2025 virtual int A_virt (int arg ) @{ return arg+1; @};
2026 virtual int B_virt (int arg) @{ return arg+2; @};
2027 virtual int C_virt (int arg) @{ return arg+3; @};
2028 virtual int D_virt (int arg) @{ return arg; @};
2029 @};
2030 @end example
2031
2032 Class stabs similar to the ones described earlier are generated for
2033 each base class.
2034
2035 @c FIXME!!! the linebreaks in the following example probably make the
2036 @c examples literally unusable, but I don't know any other way to get
2037 @c them on the page.
2038 @smallexample
2039 .stabs "A:T20=s8Adat:1,0,32;$vf20:21=*22=ar1;0;1;17,32;
2040 A_virt::23=##1;:i;2A*-2147483647;20;;;~%20;",128,0,0,0
2041
2042 .stabs "B:Tt25=s8Bdat:1,0,32;$vf25:21,32;B_virt::26=##1;
2043 :i;2A*-2147483647;25;;;~%25;",128,0,0,0
2044
2045 .stabs "C:Tt28=s8Cdat:1,0,32;$vf28:21,32;C_virt::29=##1;
2046 :i;2A*-2147483647;28;;;~%28;",128,0,0,0
2047 @end smallexample
2048
2049 In the stab describing derived class D below, the information about
2050 the derivation of this class is encoded as follows.
2051
2052 @display
2053 .stabs "derived_class_name:symbol_descriptors(struct tag&type)=
2054 type_descriptor(struct)struct_bytes(32)!num_bases(3),
2055 base_virtual(no)inheritence_public(no)base_offset(0),
2056 base_class_type_ref(A);
2057 base_virtual(yes)inheritence_public(no)base_offset(NIL),
2058 base_class_type_ref(B);
2059 base_virtual(no)inheritence_public(yes)base_offset(64),
2060 base_class_type_ref(C); @dots{}
2061 @end display
2062
2063 @c FIXME! fake linebreaks.
2064 @smallexample
2065 .stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat:
2066 1,160,32;A_virt::32=##1;:i;2A*-2147483647;20;;B_virt:
2067 :32:i;2A*-2147483647;25;;C_virt::32:i;2A*-2147483647;
2068 28;;D_virt::32:i;2A*-2147483646;31;;;~%20;",128,0,0,0
2069 @end smallexample
2070
2071 @node Virtual Base Classes
2072 @section Virtual Base Classes
2073
2074 A derived class object consists of a concatination in memory of the
2075 data areas defined by each base class, starting with the leftmost and
2076 ending with the rightmost in the list of base classes. The exception
2077 to this rule is for virtual inheritence. In the example above, class
2078 D inherits virtually from base class B. This means that an instance
2079 of a D object will not contain it's own B part but merely a pointer to
2080 a B part, known as a virtual base pointer.
2081
2082 In a derived class stab, the base offset part of the derivation
2083 information, described above, shows how the base class parts are
2084 ordered. The base offset for a virtual base class is always given as
2085 0. Notice that the base offset for B is given as 0 even though B is
2086 not the first base class. The first base class A starts at offset 0.
2087
2088 The field information part of the stab for class D describes the field
2089 which is the pointer to the virtual base class B. The vbase pointer
2090 name is $vb followed by a type reference to the virtual base class.
2091 Since the type id for B in this example is 25, the vbase pointer name
2092 is $vb25.
2093
2094 @c FIXME!! fake linebreaks below
2095 @smallexample
2096 .stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat:1,
2097 160,32;A_virt::32=##1;:i;2A*-2147483647;20;;B_virt::32:i;
2098 2A*-2147483647;25;;C_virt::32:i;2A*-2147483647;28;;D_virt:
2099 :32:i;2A*-2147483646;31;;;~%20;",128,0,0,0
2100 @end smallexample
2101
2102 Following the name and a semicolon is a type reference describing the
2103 type of the virtual base class pointer, in this case 24. Type 24 was
2104 defined earlier as the type of the B class `this` pointer. The
2105 `this' pointer for a class is a pointer to the class type.
2106
2107 @example
2108 .stabs "this:P24=*25=xsB:",64,0,0,8
2109 @end example
2110
2111 Finally the field offset part of the vbase pointer field description
2112 shows that the vbase pointer is the first field in the D object,
2113 before any data fields defined by the class. The layout of a D class
2114 object is a follows, Adat at 0, the vtable pointer for A at 32, Cdat
2115 at 64, the vtable pointer for C at 96, the virtual ase pointer for B
2116 at 128, and Ddat at 160.
2117
2118
2119 @node Static Members
2120 @section Static Members
2121
2122 The data area for a class is a concatenation of the space used by the
2123 data members of the class. If the class has virtual methods, a vtable
2124 pointer follows the class data. The field offset part of each field
2125 description in the class stab shows this ordering.
2126
2127 << How is this reflected in stabs? See Cygnus bug #677 for some info. >>
2128
2129 @node Example2.c
2130 @appendix Example2.c - source code for extended example
2131
2132 @example
2133 1 char g_foo = 'c';
2134 2 register int g_bar asm ("%g5");
2135 3 static int s_g_repeat = 2;
2136 4 int (*g_pf)();
2137 5
2138 6 struct s_tag @{
2139 7 int s_int;
2140 8 float s_float;
2141 9 char s_char_vec[8];
2142 10 struct s_tag* s_next;
2143 11 @} g_an_s;
2144 12
2145 13 typedef struct s_tag s_typedef;
2146 14
2147 15 char char_vec[3] = @{'a','b','c'@};
2148 16
2149 17 main (argc, argv)
2150 18 int argc;
2151 19 char* argv[];
2152 20 @{
2153 21 static float s_flap;
2154 22 int times;
2155 23 for (times=0; times < s_g_repeat; times++)@{
2156 24 int inner;
2157 25 printf ("Hello world\n");
2158 26 @}
2159 27 @};
2160 28
2161 29 enum e_places @{first,second=3,last@};
2162 30
2163 31 static s_proc (s_arg, s_ptr_arg, char_vec)
2164 32 s_typedef s_arg;
2165 33 s_typedef* s_ptr_arg;
2166 34 char* char_vec;
2167 35 @{
2168 36 union u_tag @{
2169 37 int u_int;
2170 38 float u_float;
2171 39 char* u_char;
2172 40 @} an_u;
2173 41 @}
2174 42
2175 43
2176 @end example
2177
2178 @node Example2.s
2179 @appendix Example2.s - assembly code for extended example
2180
2181 @example
2182 1 gcc2_compiled.:
2183 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
2184 3 .stabs "example2.c",100,0,0,Ltext0
2185 4 .text
2186 5 Ltext0:
2187 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
2188 7 .stabs "char:t2=r2;0;127;",128,0,0,0
2189 8 .stabs "long int:t3=r1;-2147483648;2147483647;",128,0,0,0
2190 9 .stabs "unsigned int:t4=r1;0;-1;",128,0,0,0
2191 10 .stabs "long unsigned int:t5=r1;0;-1;",128,0,0,0
2192 11 .stabs "short int:t6=r1;-32768;32767;",128,0,0,0
2193 12 .stabs "long long int:t7=r1;0;-1;",128,0,0,0
2194 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
2195 14 .stabs "long long unsigned int:t9=r1;0;-1;",128,0,0,0
2196 15 .stabs "signed char:t10=r1;-128;127;",128,0,0,0
2197 16 .stabs "unsigned char:t11=r1;0;255;",128,0,0,0
2198 17 .stabs "float:t12=r1;4;0;",128,0,0,0
2199 18 .stabs "double:t13=r1;8;0;",128,0,0,0
2200 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
2201 20 .stabs "void:t15=15",128,0,0,0
2202 21 .stabs "g_foo:G2",32,0,0,0
2203 22 .global _g_foo
2204 23 .data
2205 24 _g_foo:
2206 25 .byte 99
2207 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
2208 27 .align 4
2209 28 _s_g_repeat:
2210 29 .word 2
2211 @c FIXME! fake linebreak in line 30
2212 30 .stabs "s_tag:T16=s20s_int:1,0,32;s_float:12,32,32;s_char_vec:
2213 17=ar1;0;7;2,64,64;s_next:18=*16,128,32;;",128,0,0,0
2214 31 .stabs "s_typedef:t16",128,0,0,0
2215 32 .stabs "char_vec:G19=ar1;0;2;2",32,0,0,0
2216 33 .global _char_vec
2217 34 .align 4
2218 35 _char_vec:
2219 36 .byte 97
2220 37 .byte 98
2221 38 .byte 99
2222 39 .reserve _s_flap.0,4,"bss",4
2223 40 .text
2224 41 .align 4
2225 42 LC0:
2226 43 .ascii "Hello world\12\0"
2227 44 .align 4
2228 45 .global _main
2229 46 .proc 1
2230 47 _main:
2231 48 .stabn 68,0,20,LM1
2232 49 LM1:
2233 50 !#PROLOGUE# 0
2234 51 save %sp,-144,%sp
2235 52 !#PROLOGUE# 1
2236 53 st %i0,[%fp+68]
2237 54 st %i1,[%fp+72]
2238 55 call ___main,0
2239 56 nop
2240 57 LBB2:
2241 58 .stabn 68,0,23,LM2
2242 59 LM2:
2243 60 st %g0,[%fp-20]
2244 61 L2:
2245 62 sethi %hi(_s_g_repeat),%o0
2246 63 ld [%fp-20],%o1
2247 64 ld [%o0+%lo(_s_g_repeat)],%o0
2248 65 cmp %o1,%o0
2249 66 bge L3
2250 67 nop
2251 68 LBB3:
2252 69 .stabn 68,0,25,LM3
2253 70 LM3:
2254 71 sethi %hi(LC0),%o1
2255 72 or %o1,%lo(LC0),%o0
2256 73 call _printf,0
2257 74 nop
2258 75 .stabn 68,0,26,LM4
2259 76 LM4:
2260 77 LBE3:
2261 78 .stabn 68,0,23,LM5
2262 79 LM5:
2263 80 L4:
2264 81 ld [%fp-20],%o0
2265 82 add %o0,1,%o1
2266 83 st %o1,[%fp-20]
2267 84 b,a L2
2268 85 L3:
2269 86 .stabn 68,0,27,LM6
2270 87 LM6:
2271 88 LBE2:
2272 89 .stabn 68,0,27,LM7
2273 90 LM7:
2274 91 L1:
2275 92 ret
2276 93 restore
2277 94 .stabs "main:F1",36,0,0,_main
2278 95 .stabs "argc:p1",160,0,0,68
2279 96 .stabs "argv:p20=*21=*2",160,0,0,72
2280 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
2281 98 .stabs "times:1",128,0,0,-20
2282 99 .stabn 192,0,0,LBB2
2283 100 .stabs "inner:1",128,0,0,-24
2284 101 .stabn 192,0,0,LBB3
2285 102 .stabn 224,0,0,LBE3
2286 103 .stabn 224,0,0,LBE2
2287 104 .stabs "e_places:T22=efirst:0,second:3,last:4,;",128,0,0,0
2288 @c FIXME: fake linebreak in line 105
2289 105 .stabs "u_tag:T23=u4u_int:1,0,32;u_float:12,0,32;u_char:21,0,32;;",
2290 128,0,0,0
2291 106 .align 4
2292 107 .proc 1
2293 108 _s_proc:
2294 109 .stabn 68,0,35,LM8
2295 110 LM8:
2296 111 !#PROLOGUE# 0
2297 112 save %sp,-120,%sp
2298 113 !#PROLOGUE# 1
2299 114 mov %i0,%o0
2300 115 st %i1,[%fp+72]
2301 116 st %i2,[%fp+76]
2302 117 LBB4:
2303 118 .stabn 68,0,41,LM9
2304 119 LM9:
2305 120 LBE4:
2306 121 .stabn 68,0,41,LM10
2307 122 LM10:
2308 123 L5:
2309 124 ret
2310 125 restore
2311 126 .stabs "s_proc:f1",36,0,0,_s_proc
2312 127 .stabs "s_arg:p16",160,0,0,0
2313 128 .stabs "s_ptr_arg:p18",160,0,0,72
2314 129 .stabs "char_vec:p21",160,0,0,76
2315 130 .stabs "an_u:23",128,0,0,-20
2316 131 .stabn 192,0,0,LBB4
2317 132 .stabn 224,0,0,LBE4
2318 133 .stabs "g_bar:r1",64,0,0,5
2319 134 .stabs "g_pf:G24=*25=f1",32,0,0,0
2320 135 .common _g_pf,4,"bss"
2321 136 .stabs "g_an_s:G16",32,0,0,0
2322 137 .common _g_an_s,20,"bss"
2323 @end example
2324
2325
2326 @node Quick reference
2327 @appendix Quick reference
2328
2329 @menu
2330 * Stab types:: Table A: Symbol types from stabs
2331 * Assembler types:: Table B: Symbol types from assembler and linker
2332 * Symbol descriptors:: Table C
2333 * Type Descriptors:: Table D
2334 @end menu
2335
2336 @node Stab types
2337 @section Table A: Symbol types from stabs
2338
2339 Table A lists stab types sorted by type number. Stab type numbers are
2340 32 and greater. This is the full list of stab numbers, including stab
2341 types that are used in languages other than C.
2342
2343 The #define names for these stab types are defined in:
2344 devo/include/aout/stab.def
2345
2346 @smallexample
2347 type type #define used to describe
2348 dec hex name source program feature
2349 ------------------------------------------------
2350 32 0x20 N_GYSM global symbol
2351 34 0X22 N_FNAME function name (for BSD Fortran)
2352 36 0x24 N_FUN function name or text segment variable for C
2353 38 0x26 N_STSYM static symbol (data segment w/internal linkage)
2354 40 0x28 N_LCSYM .lcomm symbol(BSS-seg variable w/internal linkage)
2355 42 0x2a N_MAIN Name of main routine (not used in C)
2356 48 0x30 N_PC global symbol (for Pascal)
2357 50 0x32 N_NSYMS number of symbols (according to Ultrix V4.0)
2358 52 0x34 N_NOMAP no DST map for sym (according to Ultrix V4.0)
2359 64 0x40 N_RSYM register variable
2360 66 0x42 N_M2C Modula-2 compilation unit
2361 68 0x44 N_SLINE line number in text segment
2362 70 0x46 N_DSLINE line number in data segment
2363
2364 72 0x48 N_BSLINE line number in bss segment
2365 72 0x48 N_BROWS Sun source code browser, path to .cb file
2366
2367 74 0x4a N_DEFD GNU Modula2 definition module dependency
2368
2369 80 0x50 N_EHDECL GNU C++ exception variable
2370 80 0x50 N_MOD2 Modula2 info "for imc" (according to Ultrix V4.0)
2371
2372 84 0x54 N_CATCH GNU C++ "catch" clause
2373 96 0x60 N_SSYM structure of union element
2374 100 0x64 N_SO path and name of source file
2375 128 0x80 N_LSYM automatic var in the stack
2376 (also used for type desc.)
2377 130 0x82 N_BINCL beginning of an include file (Sun only)
2378 132 0x84 N_SOL Name of sub-source (#include) file.
2379 160 0xa0 N_PSYM parameter variable
2380 162 0xa2 N_EINCL end of an include file
2381 164 0xa4 N_ENTRY alternate entry point
2382 192 0xc0 N_LBRAC beginning of a lexical block
2383 194 0xc2 N_EXCL place holder for a deleted include file
2384 196 0xc4 N_SCOPE modula2 scope information (Sun linker)
2385 224 0xe0 N_RBRAC end of a lexical block
2386 226 0xe2 N_BCOMM begin named common block
2387 228 0xe4 N_ECOMM end named common block
2388 232 0xe8 N_ECOML end common (local name)
2389
2390 << used on Gould systems for non-base registers syms >>
2391 240 0xf0 N_NBTEXT ??
2392 242 0xf2 N_NBDATA ??
2393 244 0xf4 N_NBBSS ??
2394 246 0xf6 N_NBSTS ??
2395 248 0xf8 N_NBLCS ??
2396 @end smallexample
2397
2398 @node Assembler types
2399 @section Table B: Symbol types from assembler and linker
2400
2401 Table B shows the types of symbol table entries that hold assembler
2402 and linker symbols.
2403
2404 The #define names for these n_types values are defined in
2405 /include/aout/aout64.h
2406
2407 @smallexample
2408 dec hex #define
2409 n_type n_type name used to describe
2410 ------------------------------------------
2411 1 0x0 N_UNDF undefined symbol
2412 2 0x2 N_ABS absolute symbol -- defined at a particular address
2413 3 0x3 extern " (vs. file scope)
2414 4 0x4 N_TEXT text symbol -- defined at offset in text segment
2415 5 0x5 extern " (vs. file scope)
2416 6 0x6 N_DATA data symbol -- defined at offset in data segment
2417 7 0x7 extern " (vs. file scope)
2418 8 0x8 N_BSS BSS symbol -- defined at offset in zero'd segment
2419 9 extern " (vs. file scope)
2420
2421 12 0x0C N_FN_SEQ func name for Sequent compilers (stab exception)
2422
2423 49 0x12 N_COMM common sym -- visable after shared lib dynamic link
2424 31 0x1f N_FN file name of a .o file
2425 @end smallexample
2426
2427 @node Symbol descriptors
2428 @section Table C: Symbol descriptors
2429
2430 @table @code
2431 @item (empty)
2432 Local variable, @xref{Automatic variables}.
2433
2434 @item f
2435 Local function, @xref{Procedures}.
2436
2437 @item F
2438 Global function, @xref{Procedures}.
2439
2440 @item t
2441 Type name, @xref{Typedefs}.
2442
2443 @item T
2444 enumeration, struct or union tag, @xref{Unions}.
2445
2446 @item G
2447 Global variable, @xref{Global Variables}.
2448
2449 @item r
2450 Register variable, @xref{Register variables}.
2451
2452 @item S
2453 Static file scope variable @xref{Initialized statics},
2454 @xref{Un-initialized statics}.
2455
2456 @item V
2457 Static procedure scope variable @xref{Initialized statics},
2458 @xref{Un-initialized statics}.
2459
2460 @item p
2461 Argument list parameter @xref{Parameters}.
2462
2463 @item P
2464 @item R
2465 Register parameter @xref{Parameters}.
2466 @end table
2467
2468 @node Type Descriptors
2469 @section Table D: Type Descriptors
2470
2471 @example
2472 descriptor meaning
2473 -------------------------------------
2474 (empty) type reference
2475 a array type
2476 e enumeration type
2477 f function type
2478 r range type
2479 s structure type
2480 u union specifications
2481 * pointer type
2482 @end example
2483
2484
2485 @node Expanded reference
2486 @appendix Expanded reference by stab type.
2487
2488 Format of an entry:
2489
2490 The first line is the symbol type expressed in decimal, hexadecimal,
2491 and as a #define (see devo/include/aout/stab.def).
2492
2493 The second line describes the language constructs the symbol type
2494 represents.
2495
2496 The third line is the stab format with the significant stab fields
2497 named and the rest NIL.
2498
2499 Subsequent lines expand upon the meaning and possible values for each
2500 significant stab field. # stands in for the type descriptor.
2501
2502 Finally, any further information.
2503
2504 @menu
2505 * N_GSYM:: Global variable
2506 * N_FNAME:: Function name (BSD Fortran)
2507 * N_FUN:: C Function name or text segment variable
2508 * N_STSYM:: Initialized static symbol
2509 * N_LCSYM:: Uninitialized static symbol
2510 * N_MAIN:: Name of main routine (not for C)
2511 * N_PC:: Pascal global symbol
2512 * N_NSYMS:: Number of symbols
2513 * N_NOMAP:: No DST map
2514 * N_RSYM:: Register variable
2515 * N_M2C:: Modula-2 compilation unit
2516 * N_SLINE:: Line number in text segment
2517 * N_DSLINE:: Line number in data segment
2518 * N_BSLINE:: Line number in bss segment
2519 * N_BROWS:: Path to .cb file for Sun source code browser
2520 * N_DEFD:: GNU Modula2 definition module dependency
2521 * N_EHDECL:: GNU C++ exception variable
2522 * N_MOD2:: Modula2 information "for imc"
2523 * N_CATCH:: GNU C++ "catch" clause
2524 * N_SSYM:: Structure or union element
2525 * N_SO:: Source file containing main
2526 * N_LSYM:: Automatic variable
2527 * N_BINCL:: Beginning of include file (Sun only)
2528 * N_SOL:: Name of include file
2529 * N_PSYM:: Parameter variable
2530 * N_EINCL:: End of include file
2531 * N_ENTRY:: Alternate entry point
2532 * N_LBRAC:: Beginning of lexical block
2533 * N_EXCL:: Deleted include file
2534 * N_SCOPE:: Modula2 scope information (Sun only)
2535 * N_RBRAC:: End of lexical block
2536 * N_BCOMM:: Begin named common block
2537 * N_ECOMM:: End named common block
2538 * N_ECOML:: End common
2539 * Gould:: non-base register symbols used on Gould systems
2540 * N_LENG:: Length of preceding entry
2541 @end menu
2542
2543 @node N_GSYM
2544 @section 32 - 0x20 - N_GYSM
2545
2546 @display
2547 Global variable.
2548
2549 .stabs "name", N_GSYM, NIL, NIL, NIL
2550 @end display
2551
2552 @example
2553 "name" -> "symbol_name:#type"
2554 # -> G
2555 @end example
2556
2557 Only the "name" field is significant. The location of the variable is
2558 obtained from the corresponding external symbol.
2559
2560 @node N_FNAME
2561 @section 34 - 0x22 - N_FNAME
2562 Function name (for BSD Fortran)
2563
2564 @display
2565 .stabs "name", N_FNAME, NIL, NIL, NIL
2566 @end display
2567
2568 @example
2569 "name" -> "function_name"
2570 @end example
2571
2572 Only the "name" field is significant. The location of the symbol is
2573 obtained from the corresponding extern symbol.
2574
2575 @node N_FUN
2576 @section 36 - 0x24 - N_FUN
2577 Function name or text segment variable for C.
2578
2579 @display
2580 .stabs "name", N_FUN, NIL, desc, value
2581 @end display
2582
2583 @example
2584 @exdent @emph{For functions:}
2585 "name" -> "proc_name:#return_type"
2586 # -> F (global function)
2587 f (local function)
2588 desc -> line num for proc start. (GCC doesn't set and DBX doesn't miss it.)
2589 value -> Code address of proc start.
2590
2591 @exdent @emph{For text segment variables:}
2592 <<How to create one?>>
2593 @end example
2594
2595 @node N_STSYM
2596 @section 38 - 0x26 - N_STSYM
2597 Initialized static symbol (data segment w/internal linkage).
2598
2599 @display
2600 .stabs "name", N_STSYM, NIL, NIL, value
2601 @end display
2602
2603 @example
2604 "name" -> "symbol_name#type"
2605 # -> S (scope global to compilation unit)
2606 -> V (scope local to a procedure)
2607 value -> Data Address
2608 @end example
2609
2610 @node N_LCSYM
2611 @section 40 - 0x28 - N_LCSYM
2612 Unitialized static (.lcomm) symbol(BSS segment w/internal linkage).
2613
2614 @display
2615 .stabs "name", N_LCLSYM, NIL, NIL, value
2616 @end display
2617
2618 @example
2619 "name" -> "symbol_name#type"
2620 # -> S (scope global to compilation unit)
2621 -> V (scope local to procedure)
2622 value -> BSS Address
2623 @end example
2624
2625 @node N_MAIN
2626 @section 42 - 0x2a - N_MAIN
2627 Name of main routine (not used in C)
2628
2629 @display
2630 .stabs "name", N_MAIN, NIL, NIL, NIL
2631 @end display
2632
2633 @example
2634 "name" -> "name_of_main_routine"
2635 @end example
2636
2637 @node N_PC
2638 @section 48 - 0x30 - N_PC
2639 Global symbol (for Pascal)
2640
2641 @display
2642 .stabs "name", N_PC, NIL, NIL, value
2643 @end display
2644
2645 @example
2646 "name" -> "symbol_name" <<?>>
2647 value -> supposedly the line number (stab.def is skeptical)
2648 @end example
2649
2650 @display
2651 stabdump.c says:
2652
2653 global pascal symbol: name,,0,subtype,line
2654 << subtype? >>
2655 @end display
2656
2657 @node N_NSYMS
2658 @section 50 - 0x32 - N_NSYMS
2659 Number of symbols (according to Ultrix V4.0)
2660
2661 @display
2662 0, files,,funcs,lines (stab.def)
2663 @end display
2664
2665 @node N_NOMAP
2666 @section 52 - 0x34 - N_NOMAP
2667 no DST map for sym (according to Ultrix V4.0)
2668
2669 @display
2670 name, ,0,type,ignored (stab.def)
2671 @end display
2672
2673 @node N_RSYM
2674 @section 64 - 0x40 - N_RSYM
2675 register variable
2676
2677 @display
2678 .stabs "name:type",N_RSYM,0,RegSize,RegNumber (Sun doc)
2679 @end display
2680
2681 @node N_M2C
2682 @section 66 - 0x42 - N_M2C
2683 Modula-2 compilation unit
2684
2685 @display
2686 .stabs "name", N_M2C, 0, desc, value
2687 @end display
2688
2689 @example
2690 "name" -> "unit_name,unit_time_stamp[,code_time_stamp]
2691 desc -> unit_number
2692 value -> 0 (main unit)
2693 1 (any other unit)
2694 @end example
2695
2696 @node N_SLINE
2697 @section 68 - 0x44 - N_SLINE
2698 Line number in text segment
2699
2700 @display
2701 .stabn N_SLINE, 0, desc, value
2702 @end display
2703
2704 @example
2705 desc -> line_number
2706 value -> code_address (relocatable addr where the corresponding code starts)
2707 @end example
2708
2709 For single source lines that generate discontiguous code, such as flow
2710 of control statements, there may be more than one N_SLINE stab for the
2711 same source line. In this case there is a stab at the start of each
2712 code range, each with the same line number.
2713
2714 @node N_DSLINE
2715 @section 70 - 0x46 - N_DSLINE
2716 Line number in data segment
2717
2718 @display
2719 .stabn N_DSLINE, 0, desc, value
2720 @end display
2721
2722 @example
2723 desc -> line_number
2724 value -> data_address (relocatable addr where the corresponding code
2725 starts)
2726 @end example
2727
2728 See comment for N_SLINE above.
2729
2730 @node N_BSLINE
2731 @section 72 - 0x48 - N_BSLINE
2732 Line number in bss segment
2733
2734 @display
2735 .stabn N_BSLINE, 0, desc, value
2736 @end display
2737
2738 @example
2739 desc -> line_number
2740 value -> bss_address (relocatable addr where the corresponding code
2741 starts)
2742 @end example
2743
2744 See comment for N_SLINE above.
2745
2746 @node N_BROWS
2747 @section 72 - 0x48 - N_BROWS
2748 Sun source code browser, path to .cb file
2749
2750 <<?>>
2751 "path to associated .cb file"
2752
2753 Note: type field value overlaps with N_BSLINE
2754
2755 @node N_DEFD
2756 @section 74 - 0x4a - N_DEFD
2757 GNU Modula2 definition module dependency
2758
2759 GNU Modula-2 definition module dependency. Value is the modification
2760 time of the definition file. Other is non-zero if it is imported with
2761 the GNU M2 keyword %INITIALIZE. Perhaps N_M2C can be used if there
2762 are enough empty fields?
2763
2764 @node N_EHDECL
2765 @section 80 - 0x50 - N_EHDECL
2766 GNU C++ exception variable <<?>>
2767
2768 "name is variable name"
2769
2770 Note: conflicts with N_MOD2.
2771
2772 @node N_MOD2
2773 @section 80 - 0x50 - N_MOD2
2774 Modula2 info "for imc" (according to Ultrix V4.0)
2775
2776 Note: conflicts with N_EHDECL <<?>>
2777
2778 @node N_CATCH
2779 @section 84 - 0x54 - N_CATCH
2780 GNU C++ "catch" clause
2781
2782 GNU C++ `catch' clause. Value is its address. Desc is nonzero if
2783 this entry is immediately followed by a CAUGHT stab saying what
2784 exception was caught. Multiple CAUGHT stabs means that multiple
2785 exceptions can be caught here. If Desc is 0, it means all exceptions
2786 are caught here.
2787
2788 @node N_SSYM
2789 @section 96 - 0x60 - N_SSYM
2790 Structure or union element
2791
2792 Value is offset in the structure.
2793
2794 <<?looking at structs and unions in C I didn't see these>>
2795
2796 @node N_SO
2797 @section 100 - 0x64 - N_SO
2798 Path and name of source file containing main routine
2799
2800 @display
2801 .stabs "name", N_SO, NIL, NIL, value
2802 @end display
2803
2804 @example
2805 "name" -> /source/directory/
2806 -> source_file
2807
2808 value -> the starting text address of the compilation.
2809 @end example
2810
2811 These are found two in a row. The name field of the first N_SO contains
2812 the directory that the source file is relative to. The name field of
2813 the second N_SO contains the name of the source file itself.
2814
2815 Only some compilers (e.g. gcc2, Sun cc) include the directory; this
2816 symbol can be distinguished by the fact that it ends in a slash.
2817 According to a comment in GDB's partial-stab.h, other compilers
2818 (especially unnamed C++ compilers) put out useless N_SO's for
2819 nonexistent source files (after the N_SO for the real source file).
2820
2821 @node N_LSYM
2822 @section 128 - 0x80 - N_LSYM
2823 Automatic var in the stack (also used for type descriptors.)
2824
2825 @display
2826 .stabs "name" N_LSYM, NIL, NIL, value
2827 @end display
2828
2829 @example
2830 @exdent @emph{For stack based local variables:}
2831
2832 "name" -> name of the variable
2833 value -> offset from frame pointer (negative)
2834
2835 @exdent @emph{For type descriptors:}
2836
2837 "name" -> "name_of_the_type:#type"
2838 # -> t
2839
2840 type -> type_ref (or) type_def
2841
2842 type_ref -> type_number
2843 type_def -> type_number=type_desc etc.
2844 @end example
2845
2846 Type may be either a type reference or a type definition. A type
2847 reference is a number that refers to a previously defined type. A
2848 type definition is the number that will refer to this type, followed
2849 by an equals sign, a type descriptor and the additional data that
2850 defines the type. See the Table D for type descriptors and the
2851 section on types for what data follows each type descriptor.
2852
2853 @node N_BINCL
2854 @section 130 - 0x82 - N_BINCL
2855
2856 Beginning of an include file (Sun only)
2857
2858 Beginning of an include file. Only Sun uses this. In an object file,
2859 only the name is significant. The Sun linker puts data into some of
2860 the other fields.
2861
2862 @node N_SOL
2863 @section 132 - 0x84 - N_SOL
2864
2865 Name of a sub-source file (#include file). Value is starting address
2866 of the compilation.
2867 <<?>>
2868
2869 @node N_PSYM
2870 @section 160 - 0xa0 - N_PSYM
2871
2872 Parameter variable
2873
2874 @display
2875 stabs. "name", N_PSYM, NIL, NIL, value
2876 @end display
2877
2878 @example
2879 "name" -> "param_name:#type"
2880 # -> p (value parameter)
2881 -> i (value parameter by reference, indirect access)
2882 -> v (variable parameter by reference)
2883 -> C (read-only parameter, conformant array bound)
2884 -> x (conformant array value parameter)
2885 -> pP (<<??>>)
2886 -> pF (<<??>>)
2887 -> X (function result variable)
2888 -> b (based variable)
2889
2890 value -> offset from the argument pointer (positive).
2891 @end example
2892
2893 On most machines the argument pointer is the same as the frame
2894 pointer.
2895
2896 @node N_EINCL
2897 @section 162 - 0xa2 - N_EINCL
2898
2899 End of an include file. This and N_BINCL act as brackets around the
2900 file's output. In an ojbect file, there is no significant data in
2901 this entry. The Sun linker puts data into some of the fields.
2902 <<?>>
2903
2904 @node N_ENTRY
2905 @section 164 - 0xa4 - N_ENTRY
2906
2907 Alternate entry point.
2908 Value is its address.
2909 <<?>>
2910
2911 @node N_LBRAC
2912 @section 192 - 0xc0 - N_LBRAC
2913
2914 Beginning of a lexical block (left brace). The variable defined
2915 inside the block precede the N_LBRAC symbol. Or can they follow as
2916 well as long as a new N_FUNC was not encountered. <<?>>
2917
2918 @display
2919 .stabn N_LBRAC, NIL, NIL, value
2920 @end display
2921
2922 @example
2923 value -> code address of block start.
2924 @end example
2925
2926 @node N_EXCL
2927 @section 194 - 0xc2 - N_EXCL
2928
2929 Place holder for a deleted include file. Replaces a N_BINCL and
2930 everything up to the corresponding N_EINCL. The Sun linker generates
2931 these when it finds multiple indentical copies of the symbols from an
2932 included file. This appears only in output from the Sun linker.
2933 <<?>>
2934
2935 @node N_SCOPE
2936 @section 196 - 0xc4 - N_SCOPE
2937
2938 Modula2 scope information (Sun linker)
2939 <<?>>
2940
2941 @node N_RBRAC
2942 @section 224 - 0xe0 - N_RBRAC
2943
2944 End of a lexical block (right brace)
2945
2946 @display
2947 .stabn N_RBRAC, NIL, NIL, value
2948 @end display
2949
2950 @example
2951 value -> code address of the end of the block.
2952 @end example
2953
2954 @node N_BCOMM
2955 @section 226 - 0xe2 - N_BCOMM
2956
2957 Begin named common block.
2958
2959 Only the name is significant.
2960 <<?>>
2961
2962 @node N_ECOMM
2963 @section 228 - 0xe4 - N_ECOMM
2964
2965 End named common block.
2966
2967 Only the name is significant and it should match the N_BCOMM
2968 <<?>>
2969
2970 @node N_ECOML
2971 @section 232 - 0xe8 - N_ECOML
2972
2973 End common (local name)
2974
2975 value is address.
2976 <<?>>
2977
2978 @node Gould
2979 @section Non-base registers on Gould systems
2980 << used on Gould systems for non-base registers syms, values assigned
2981 at random, need real info from Gould. >>
2982 <<?>>
2983
2984 @example
2985 240 0xf0 N_NBTEXT ??
2986 242 0xf2 N_NBDATA ??
2987 244 0xf4 N_NBBSS ??
2988 246 0xf6 N_NBSTS ??
2989 248 0xf8 N_NBLCS ??
2990 @end example
2991
2992 @node N_LENG
2993 @section - 0xfe - N_LENG
2994
2995 Second symbol entry containing a length-value for the preceding entry.
2996 The value is the length.
2997
2998 @node Questions
2999 @appendix Questions and anomalies
3000
3001 @itemize @bullet
3002 @item
3003 For GNU C stabs defining local and global variables (N_LSYM and
3004 N_GSYM), the desc field is supposed to contain the source line number
3005 on which the variable is defined. In reality the desc field is always
3006 0. (This behavour is defined in dbxout.c and putting a line number in
3007 desc is controlled by #ifdef WINNING_GDB which defaults to false). Gdb
3008 supposedly uses this information if you say 'list var'. In reality
3009 var can be a variable defined in the program and gdb says `function
3010 var not defined'
3011
3012 @item
3013 In GNU C stabs there seems to be no way to differentiate tag types:
3014 structures, unions, and enums (symbol descriptor T) and typedefs
3015 (symbol descriptor t) defined at file scope from types defined locally
3016 to a procedure or other more local scope. They all use the N_LSYM
3017 stab type. Types defined at procedure scope are emited after the
3018 N_RBRAC of the preceding function and before the code of the
3019 procedure in which they are defined. This is exactly the same as
3020 types defined in the source file between the two procedure bodies.
3021 GDB overcompensates by placing all types in block #1, the block for
3022 symbols of file scope. This is true for default, -ansi and
3023 -traditional compiler options. (Bugs gcc/1063, gdb/1066.)
3024
3025 @item
3026 What ends the procedure scope? Is it the proc block's N_RBRAC or the
3027 next N_FUN? (I believe its the first.)
3028
3029 @item
3030 The comment in xcoff.h says DBX_STATIC_CONST_VAR_CODE is used for
3031 static const variables. DBX_STATIC_CONST_VAR_CODE is set to N_FUN by
3032 default, in dbxout.c. If included, xcoff.h redefines it to N_STSYM.
3033 But testing the default behaviour, my Sun4 native example shows
3034 N_STSYM not N_FUN is used to describe file static initialized
3035 variables. (the code tests for TREE_READONLY(decl) &&
3036 !TREE_THIS_VOLATILE(decl) and if true uses DBX_STATIC_CONST_VAR_CODE).
3037
3038 @item
3039 Global variable stabs don't have location information. This comes
3040 from the external symbol for the same variable. The external symbol
3041 has a leading underbar on the _name of the variable and the stab does
3042 not. How do we know these two symbol table entries are talking about
3043 the same symbol when their names are different?
3044
3045 @item
3046 Can gcc be configured to output stabs the way the Sun compiler
3047 does, so that their native debugging tools work? <NO?> It doesn't by
3048 default. GDB reads either format of stab. (gcc or SunC). How about
3049 dbx?
3050 @end itemize
3051
3052 @node xcoff-differences
3053 @appendix Differences between GNU stabs in a.out and GNU stabs in xcoff
3054
3055 @c FIXME: Merge *all* these into the main body of the document.
3056 (The AIX/RS6000 native object file format is xcoff with stabs). This
3057 appendix only covers those differences which are not covered in the main
3058 body of this document.
3059
3060 @itemize @bullet
3061 @item
3062 Instead of .stabs, xcoff uses .stabx.
3063
3064 @item
3065 The data fields of an xcoff .stabx are in a different order than an
3066 a.out .stabs. The order is: string, value, type. The desc and null
3067 fields present in a.out stabs are missing in xcoff stabs. For N_GSYM
3068 the value field is the name of the symbol.
3069
3070 @item
3071 BSD a.out stab types correspond to AIX xcoff storage classes. In general the
3072 mapping is N_STABTYPE becomes C_STABTYPE. Some stab types in a.out
3073 are not supported in xcoff. See Table E. for full mappings.
3074
3075 exception:
3076 initialised static N_STSYM and un-initialized static N_LCSYM both map
3077 to the C_STSYM storage class. But the destinction is preserved
3078 because in xcoff N_STSYM and N_LCSYM must be emited in a named static
3079 block. Begin the block with .bs s[RW] data_section_name for N_STSYM
3080 or .bs s bss_section_name for N_LCSYM. End the block with .es
3081
3082 @item
3083 xcoff stabs describing tags and typedefs use the N_DECL (0x8c)instead
3084 of N_LSYM stab type.
3085
3086 @item
3087 xcoff uses N_RPSYM (0x8e) instead of the N_RSYM stab type for register
3088 variables. If the register variable is also a value parameter, then
3089 use R instead of P for the symbol descriptor.
3090
3091 6.
3092 xcoff uses negative numbers as type references to the basic types.
3093 There are no boilerplate type definitions emited for these basic
3094 types. << make table of basic types and type numbers for C >>
3095
3096 @item
3097 xcoff .stabx sometimes don't have the name part of the string field.
3098
3099 @item
3100 xcoff uses a .file stab type to represent the source file name. There
3101 is no stab for the path to the source file.
3102
3103 @item
3104 xcoff uses a .line stab type to represent source lines. The format
3105 is: .line line_number.
3106
3107 @item
3108 xcoff emits line numbers relative to the start of the current
3109 function. The start of a function is marked by .bf. If a function
3110 includes lines from a seperate file, then those line numbers are
3111 absolute line numbers in the <<sub-?>> file being compiled.
3112
3113 @item
3114 The start of current include file is marked with: .bi "filename" and
3115 the end marked with .ei "filename"
3116
3117 @item
3118 If the xcoff stab is a N_FUN (C_FUN) then follow the string field with
3119 ,. instead of just ,
3120 @end itemize
3121
3122
3123 (I think that's it for .s file differences. They could stand to be
3124 better presented. This is just a list of what I have noticed so far.
3125 There are a *lot* of differences in the information in the symbol
3126 tables of the executable and object files.)
3127
3128 Table E: mapping a.out stab types to xcoff storage classes
3129
3130 @example
3131 stab type storage class
3132 -------------------------------
3133 N_GSYM C_GSYM
3134 N_FNAME unknown
3135 N_FUN C_FUN
3136 N_STSYM C_STSYM
3137 N_LCSYM C_STSYM
3138 N_MAIN unkown
3139 N_PC unknown
3140 N_RSYM C_RSYM
3141 N_RPSYM (0x8e) C_RPSYM
3142 N_M2C unknown
3143 N_SLINE unknown
3144 N_DSLINE unknown
3145 N_BSLINE unknown
3146 N_BROWSE unchanged
3147 N_CATCH unknown
3148 N_SSYM unknown
3149 N_SO unknown
3150 N_LSYM C_LSYM
3151 N_DECL (0x8c) C_DECL
3152 N_BINCL unknown
3153 N_SOL unknown
3154 N_PSYM C_PSYM
3155 N_EINCL unknown
3156 N_ENTRY C_ENTRY
3157 N_LBRAC unknown
3158 N_EXCL unknown
3159 N_SCOPE unknown
3160 N_RBRAC unknown
3161 N_BCOMM C_BCOMM
3162 N_ECOMM C_ECOMM
3163 N_ECOML C_ECOML
3164
3165 N_LENG unknown
3166 @end example
3167
3168 @node Sun-differences
3169 @appendix Differences between GNU stabs and Sun native stabs.
3170
3171 @c FIXME: Merge all this stuff into the main body of the document.
3172
3173 @itemize @bullet
3174 @item
3175 GNU C stabs define *all* types, file or procedure scope, as
3176 N_LSYM. Sun doc talks about using N_GSYM too.
3177
3178 @item
3179 Stabs describing block scopes, N_LBRAC and N_RBRAC are supposed to
3180 contain the nesting level of the block in the desc field, re Sun doc.
3181 GNU stabs always have 0 in that field. dbx seems not to care.
3182
3183 @item
3184 Sun C stabs use type number pairs in the format (a,b) where a is a
3185 number starting with 1 and incremented for each sub-source file in the
3186 compilation. b is a number starting with 1 and incremented for each
3187 new type defined in the compilation. GNU C stabs use the type number
3188 alone, with no source file number.
3189 @end itemize
3190
3191 @contents
3192 @bye