more on Parameters
[binutils-gdb.git] / gdb / doc / stabs.texinfo
1 \input texinfo
2 @setfilename stabs.info
3
4 @ifinfo
5 @format
6 START-INFO-DIR-ENTRY
7 * Stabs: (stabs). The "stabs" debugging information format.
8 END-INFO-DIR-ENTRY
9 @end format
10 @end ifinfo
11
12 @ifinfo
13 This document describes GNU stabs (debugging symbol tables) in a.out files.
14
15 Copyright 1992 Free Software Foundation, Inc.
16 Contributed by Cygnus Support. Written by Julia Menapace.
17
18 Permission is granted to make and distribute verbatim copies of
19 this manual provided the copyright notice and this permission notice
20 are preserved on all copies.
21
22 @ignore
23 Permission is granted to process this file through Tex and print the
24 results, provided the printed document carries copying permission
25 notice identical to this one except for the removal of this paragraph
26 (this paragraph not being relevant to the printed manual).
27
28 @end ignore
29 Permission is granted to copy or distribute modified versions of this
30 manual under the terms of the GPL (for which purpose this text may be
31 regarded as a program in the language TeX).
32 @end ifinfo
33
34 @setchapternewpage odd
35 @settitle STABS
36 @titlepage
37 @title The ``stabs'' debug format
38 @author Julia Menapace
39 @author Cygnus Support
40 @page
41 @tex
42 \def\$#1${{#1}} % Kluge: collect RCS revision info without $...$
43 \xdef\manvers{\$Revision$} % For use in headers, footers too
44 {\parskip=0pt
45 \hfill Cygnus Support\par
46 \hfill \manvers\par
47 \hfill \TeX{}info \texinfoversion\par
48 }
49 @end tex
50
51 @vskip 0pt plus 1filll
52 Copyright @copyright{} 1992 Free Software Foundation, Inc.
53 Contributed by Cygnus Support.
54
55 Permission is granted to make and distribute verbatim copies of
56 this manual provided the copyright notice and this permission notice
57 are preserved on all copies.
58
59 @end titlepage
60
61 @ifinfo
62 @node Top
63 @top The "stabs" representation of debugging information
64
65 This document describes the GNU stabs debugging format in a.out files.
66
67 @menu
68 * Overview:: Overview of stabs
69 * Program structure:: Encoding of the structure of the program
70 * Simple types::
71 * Example:: A comprehensive example in C
72 * Variables::
73 * Aggregate Types::
74 * Symbol tables:: Symbol information in symbol tables
75 * GNU Cplusplus stabs::
76
77 Appendixes:
78 * Example2.c:: Source code for extended example
79 * Example2.s:: Assembly code for extended example
80 * Quick reference:: Various refernce tables
81 * Expanded reference:: Reference information by stab type
82 * Questions:: Questions and anomolies
83 * xcoff-differences:: Differences between GNU stabs in a.out
84 and GNU stabs in xcoff
85 * Sun-differences:: Differences between GNU stabs and Sun
86 native stabs
87 @end menu
88 @end ifinfo
89
90
91 @node Overview
92 @chapter Overview of stabs
93
94 @dfn{Stabs} refers to a format for information that describes a program
95 to a debugger. This format was apparently invented by
96 @c FIXME! <<name of inventor>> at
97 the University of California at Berkeley, for the @code{pdx} Pascal
98 debugger; the format has spread widely since then.
99
100 @menu
101 * Flow:: Overview of debugging information flow
102 * Stabs format:: Overview of stab format
103 * C example:: A simple example in C source
104 * Assembly code:: The simple example at the assembly level
105 @end menu
106
107 @node Flow
108 @section Overview of debugging information flow
109
110 The GNU C compiler compiles C source in a @file{.c} file into assembly
111 language in a @file{.s} file, which is translated by the assembler into
112 a @file{.o} file, and then linked with other @file{.o} files and
113 libraries to produce an executable file.
114
115 With the @samp{-g} option, GCC puts additional debugging information in
116 the @file{.s} file, which is slightly transformed by the assembler and
117 linker, and carried through into the final executable. This debugging
118 information describes features of the source file like line numbers,
119 the types and scopes of variables, and functions, their parameters and
120 their scopes.
121
122 For some object file formats, the debugging information is
123 encapsulated in assembler directives known collectively as `stab' (symbol
124 table) directives, interspersed with the generated code. Stabs are
125 the native format for debugging information in the a.out and xcoff
126 object file formats. The GNU tools can also emit stabs in the coff
127 and ecoff object file formats.
128
129 The assembler adds the information from stabs to the symbol information
130 it places by default in the symbol table and the string table of the
131 @file{.o} file it is building. The linker consolidates the @file{.o}
132 files into one executable file, with one symbol table and one string
133 table. Debuggers use the symbol and string tables in the executable as
134 a source of debugging information about the program.
135
136 @node Stabs format
137 @section Overview of stab format
138
139 There are three overall formats for stab assembler directives
140 differentiated by the first word of the stab. The name of the directive
141 describes what combination of four possible data fields will follow. It
142 is either @code{.stabs} (string), @code{.stabn} (number), or
143 @code{.stabd} (dot).
144
145 The overall format of each class of stab is:
146
147 @example
148 .stabs "@var{string}",@var{type},0,@var{desc},@var{value}
149 .stabn @var{type},0,@var{desc},@var{value}
150 .stabd @var{type},0,@var{desc}
151 @end example
152
153 In general, in @code{.stabs} the @var{string} field contains name and type
154 information. For @code{.stabd} the value field is implicit and has the value
155 of the current file location. Otherwise the value field often
156 contains a relocatable address, frame pointer offset, or register
157 number, that maps to the source code element described by the stab.
158
159 The real key to decoding the meaning of a stab is the number in its type
160 field. Each possible type number defines a different stab type. The
161 stab type further defines the exact interpretation of, and possible
162 values for, any remaining @code{"@var{string}"}, @var{desc}, or
163 @var{value} fields present in the stab. Table A (@pxref{Stab
164 types,,Table A: Symbol types from stabs}) lists in numeric order
165 the possible type field values for stab directives. The reference
166 section that follows Table A describes the meaning of the fields for
167 each stab type in detail. The examples that follow this overview
168 introduce the stab types in terms of the source code elements they
169 describe.
170
171 For @code{.stabs} the @code{"@var{string}"} field holds the meat of the
172 debugging information. The generally unstructured nature of this field
173 is what makes stabs extensible. For some stab types the string field
174 contains only a name. For other stab types the contents can be a great
175 deal more complex.
176
177 The overall format is of the @code{"@var{string}"} field is:
178
179 @example
180 "@var{name}@r{[}:@var{symbol_descriptor}@r{]}
181 @r{[}@var{type_number}@r{[}=@var{type_descriptor} @r{@dots{}]]}"
182 @end example
183
184 @var{name} is the name of the symbol represented by the stab.
185
186 The @var{symbol_descriptor} following the @samp{:} is an alphabetic
187 character that tells more specifically what kind of symbol the stab
188 represents. If the @var{symbol_descriptor} is omitted, but type
189 information follows, then the stab represents a local variable. For a
190 list of symbol_descriptors, see @ref{Symbol descriptors,,Table C: Symbol
191 descriptors}.
192
193 Type information is either a @var{type_number}, or a
194 @samp{@var{type_number}=}. The @var{type_number} alone is a type
195 reference, referring directly to a type that has already been defined.
196
197 The @samp{@var{type_number}=} is a type definition, where the number
198 represents a new type which is about to be defined. The type definition
199 may refer to other types by number, and those type numbers may be
200 followed by @samp{=} and nested definitions.
201
202 In a type definition, if the character that follows the equals sign is
203 non-numeric then it is a @var{type_descriptor}, and tells what kind of
204 type is about to be defined. Any other values following the
205 @var{type_descriptor} vary, depending on the @var{type_descriptor}. If
206 a number follows the @samp{=} then the number is a @var{type_reference}.
207 This is described more thoroughly in the section on types. @xref{Type
208 Descriptors,,Table D: Type Descriptors}, for a list of
209 @var{type_descriptor} values.
210
211 All this can make the @code{"@var{string}"} field quite long. All
212 versions of GDB, and some versions of DBX, can handle arbitrarily long
213 strings. But many versions of DBX cretinously limit the strings to
214 about 80 characters, so compilers which must work with such DBX's need
215 to split the @code{.stabs} directive into several @code{.stabs}
216 directives. Each stab duplicates exactly all but the
217 @code{"@var{string}"} field. The @code{"@var{string}"} field of the
218 every stab except the last is marked as continued with a
219 double-backslash at the end. Removing the backslashes and concatenating
220 the @code{"@var{string}"} fields of each stab produces the original,
221 long string.
222
223 @node C example
224 @section A simple example in C source
225
226 To get the flavor of how stabs describe source information for a C
227 program, let's look at the simple program:
228
229 @example
230 main()
231 @{
232 printf("Hello world");
233 @}
234 @end example
235
236 When compiled with @samp{-g}, the program above yields the following
237 @file{.s} file. Line numbers have been added to make it easier to refer
238 to parts of the @file{.s} file in the description of the stabs that
239 follows.
240
241 @node Assembly code
242 @section The simple example at the assembly level
243
244 @example
245 1 gcc2_compiled.:
246 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
247 3 .stabs "hello.c",100,0,0,Ltext0
248 4 .text
249 5 Ltext0:
250 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
251 7 .stabs "char:t2=r2;0;127;",128,0,0,0
252 8 .stabs "long int:t3=r1;-2147483648;2147483647;",128,0,0,0
253 9 .stabs "unsigned int:t4=r1;0;-1;",128,0,0,0
254 10 .stabs "long unsigned int:t5=r1;0;-1;",128,0,0,0
255 11 .stabs "short int:t6=r1;-32768;32767;",128,0,0,0
256 12 .stabs "long long int:t7=r1;0;-1;",128,0,0,0
257 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
258 14 .stabs "long long unsigned int:t9=r1;0;-1;",128,0,0,0
259 15 .stabs "signed char:t10=r1;-128;127;",128,0,0,0
260 16 .stabs "unsigned char:t11=r1;0;255;",128,0,0,0
261 17 .stabs "float:t12=r1;4;0;",128,0,0,0
262 18 .stabs "double:t13=r1;8;0;",128,0,0,0
263 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
264 20 .stabs "void:t15=15",128,0,0,0
265 21 .align 4
266 22 LC0:
267 23 .ascii "Hello, world!\12\0"
268 24 .align 4
269 25 .global _main
270 26 .proc 1
271 27 _main:
272 28 .stabn 68,0,4,LM1
273 29 LM1:
274 30 !#PROLOGUE# 0
275 31 save %sp,-136,%sp
276 32 !#PROLOGUE# 1
277 33 call ___main,0
278 34 nop
279 35 .stabn 68,0,5,LM2
280 36 LM2:
281 37 LBB2:
282 38 sethi %hi(LC0),%o1
283 39 or %o1,%lo(LC0),%o0
284 40 call _printf,0
285 41 nop
286 42 .stabn 68,0,6,LM3
287 43 LM3:
288 44 LBE2:
289 45 .stabn 68,0,6,LM4
290 46 LM4:
291 47 L1:
292 48 ret
293 49 restore
294 50 .stabs "main:F1",36,0,0,_main
295 51 .stabn 192,0,0,LBB2
296 52 .stabn 224,0,0,LBE2
297 @end example
298
299 This simple ``hello world'' example demonstrates several of the stab
300 types used to describe C language source files.
301
302 @node Program structure
303 @chapter Encoding for the structure of the program
304
305 @menu
306 * Source file:: The path and name of the source file
307 * Line numbers::
308 * Procedures::
309 * Block Structure::
310 @end menu
311
312 @node Source file
313 @section The path and name of the source file
314
315 @table @strong
316 @item Directive:
317 @code{.stabs}
318 @item Type:
319 @code{N_SO}
320 @end table
321
322 The first stabs in the .s file contain the name and path of the source
323 file that was compiled to produce the .s file. This information is
324 contained in two records of stab type N_SO (100).
325
326 @example
327 .stabs "path_name", N_SO, NIL, NIL, Code_address_of_program_start
328 .stabs "file_name:", N_SO, NIL, NIL, Code_address_of_program_start
329 @end example
330
331 @example
332 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
333 3 .stabs "hello.c",100,0,0,Ltext0
334 4 .text
335 5 Ltext0:
336 @end example
337
338 @node Line numbers
339 @section Line Numbers
340
341 @table @strong
342 @item Directive:
343 @code{.stabn}
344 @item Type:
345 @code{N_SLINE}
346 @end table
347
348 The start of source lines is represented by the @code{N_SLINE} (68) stab
349 type.
350
351 @example
352 .stabn N_SLINE, NIL, @var{line}, @var{address}
353 @end example
354
355 @var{line} is a source line number; @var{address} represents the code
356 address for the start of that source line.
357
358 @example
359 27 _main:
360 28 .stabn 68,0,4,LM1
361 29 LM1:
362 30 !#PROLOGUE# 0
363 @end example
364
365 @node Procedures
366 @section Procedures
367
368 @table @strong
369 @item Directive:
370 @code{.stabs}
371 @item Type:
372 @code{N_FUN}
373 @item Symbol Descriptors:
374 @code{f} (local), @code{F} (global)
375 @end table
376
377 Procedures are described by the @code{N_FUN} stab type. The symbol
378 descriptor for a procedure is @samp{F} if the procedure is globally
379 scoped and @samp{f} if the procedure is static (locally scoped).
380
381 The @code{N_FUN} stab representing a procedure is located immediately
382 following the code of the procedure. The @code{N_FUN} stab is in turn
383 directly followed by a group of other stabs describing elements of the
384 procedure. These other stabs describe the procedure's parameters, its
385 block local variables and its block structure.
386
387 @example
388 48 ret
389 49 restore
390 @end example
391
392 The @code{.stabs} entry after this code fragment shows the @var{name} of
393 the procedure (@code{main}); the type descriptor @var{desc} (@code{F},
394 for a global procedure); a reference to the predefined type @code{int}
395 for the return type; and the starting @var{address} of the procedure.
396
397 Here is an exploded summary (with whitespace introduced for clarity),
398 followed by line 50 of our sample assembly output, which has this form:
399
400 @example
401 .stabs "@var{name}:
402 @var{desc} @r{(global proc @samp{F})}
403 @var{return_type_ref} @r{(int)}
404 ",N_FUN, NIL, NIL,
405 @var{address}
406 @end example
407
408 @example
409 50 .stabs "main:F1",36,0,0,_main
410 @end example
411
412 @node Block Structure
413 @section Block Structure
414
415 @table @strong
416 @item Directive:
417 @code{.stabn}
418 @item Types:
419 @code{N_LBRAC}, @code{N_RBRAC}
420 @end table
421
422 The program's block structure is represented by the @code{N_LBRAC} (left
423 brace) and the @code{N_RBRAC} (right brace) stab types. The following code
424 range, which is the body of @code{main}, is labeled with @samp{LBB2:} at the
425 beginning and @samp{LBE2:} at the end.
426
427 @example
428 37 LBB2:
429 38 sethi %hi(LC0),%o1
430 39 or %o1,%lo(LC0),%o0
431 40 call _printf,0
432 41 nop
433 42 .stabn 68,0,6,LM3
434 43 LM3:
435 44 LBE2:
436 @end example
437
438 The @code{N_LBRAC} and @code{N_RBRAC} stabs that describe the block
439 scope of the procedure are located after the @code{N_FUNC} stab that
440 represents the procedure itself. The @code{N_LBRAC} uses the
441 @code{LBB2} label as the code address in its value field, and the
442 @code{N_RBRAC} uses @code{LBE2}.
443
444 @example
445 50 .stabs "main:F1",36,0,0,_main
446 @end example
447
448 @example
449 .stabn N_LBRAC, NIL, NIL, @var{left-brace-address}
450 .stabn N_RBRAC, NIL, NIL, @var{right-brace-address}
451 @end example
452
453 @example
454 51 .stabn 192,0,0,LBB2
455 52 .stabn 224,0,0,LBE2
456 @end example
457
458 @node Simple types
459 @chapter Simple types
460
461 @menu
462 * Basic types:: Basic type definitions
463 * Range types:: Range types defined by min and max value
464 * Float "range" types:: Range type defined by size in bytes
465 @end menu
466
467 @node Basic types
468 @section Basic type definitions
469
470 @table @strong
471 @item Directive:
472 @code{.stabs}
473 @item Type:
474 @code{N_LSYM}
475 @item Symbol Descriptor:
476 @code{t}
477 @end table
478
479 The basic types for the language are described using the @code{N_LSYM} stab
480 type. They are boilerplate and are emited by the compiler for each
481 compilation unit. Basic type definitions are not always a complete
482 description of the type and are sometimes circular. The debugger
483 recognizes the type anyway, and knows how to read bits as that type.
484
485 Each language and compiler defines a slightly different set of basic
486 types. In this example we are looking at the basic types for C emited
487 by the GNU compiler targeting the Sun4. Here the basic types are
488 mostly defined as range types.
489
490
491 @node Range types
492 @section Range types defined by min and max value
493
494 @table @strong
495 @item Type Descriptor:
496 @code{r}
497 @end table
498
499 When defining a range type, if the number after the first semicolon is
500 smaller than the number after the second one, then the two numbers
501 represent the smallest and the largest values in the range.
502
503 @example
504 4 .text
505 5 Ltext0:
506
507 .stabs "@var{name}:
508 @var{descriptor} @r{(type)}
509 @var{type-def}=
510 @var{type-desc}
511 @var{type-ref};
512 @var{low-bound};
513 @var{high-bound};
514 ",
515 N_LSYM, NIL, NIL, NIL
516
517 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
518 7 .stabs "char:t2=r2;0;127;",128,0,0,0
519 @end example
520
521 Here the integer type (@code{1}) is defined as a range of the integer
522 type (@code{1}). Likewise @code{char} is a range of @code{char}. This
523 part of the definition is circular, but at least the high and low bound
524 values of the range hold more information about the type.
525
526 Here short unsigned int is defined as type number 8 and described as a
527 range of type @code{int}, with a minimum value of 0 and a maximum of 65535.
528
529 @example
530 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
531 @end example
532
533 @node Float "range" types
534 @section Range type defined by size in bytes
535
536 @table @strong
537 @item Type Descriptor:
538 @code{r}
539 @end table
540
541 In a range definition, if the first number after the semicolon is
542 positive and the second is zero, then the type being defined is a
543 floating point type, and the number after the first semicolon is the
544 number of bytes needed to represent the type. Note that this does not
545 provide a way to distinguish 8-byte real floating point types from
546 8-byte complex floating point types.
547
548 @example
549 .stabs "@var{name}:
550 @var{desc}
551 @var{type-def}=
552 @var{type-desc}
553 @var{type-ref};
554 @var{bit-count};
555 0;
556 ",
557 N_LSYM, NIL, NIL, NIL
558
559 17 .stabs "float:t12=r1;4;0;",128,0,0,0
560 18 .stabs "double:t13=r1;8;0;",128,0,0,0
561 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
562 @end example
563
564 Cosmically enough, the @code{void} type is defined directly in terms of
565 itself.
566
567 @example
568 .stabs "@var{name}:
569 @var{symbol-desc}
570 @var{type-def}=
571 @var{type-ref}
572 ",N_LSYM,NIL,NIL,NIL
573
574 20 .stabs "void:t15=15",128,0,0,0
575 @end example
576
577
578 @node Example
579 @chapter A Comprehensive Example in C
580
581 Now we'll examine a second program, @code{example2}, which builds on the
582 first example to introduce the rest of the stab types, symbol
583 descriptors, and type descriptors used in C.
584 @xref{Example2.c} for the complete @file{.c} source,
585 and @pxref{Example2.s} for the @file{.s} assembly code.
586 This description includes parts of those files.
587
588 @section Flow of control and nested scopes
589
590 @table @strong
591 @item Directive:
592 @code{.stabn}
593 @item Types:
594 @code{N_SLINE}, @code{N_LBRAC}, @code{N_RBRAC} (cont.)
595 @end table
596
597 Consider the body of @code{main}, from @file{example2.c}. It shows more
598 about how @code{N_SLINE}, @code{N_RBRAC}, and @code{N_LBRAC} stabs are used.
599
600 @example
601 20 @{
602 21 static float s_flap;
603 22 int times;
604 23 for (times=0; times < s_g_repeat; times++)@{
605 24 int inner;
606 25 printf ("Hello world\n");
607 26 @}
608 27 @};
609 @end example
610
611 Here we have a single source line, the @samp{for} line, that generates
612 non-linear flow of control, and non-contiguous code. In this case, an
613 @code{N_SLINE} stab with the same line number proceeds each block of
614 non-contiguous code generated from the same source line.
615
616 The example also shows nested scopes. The @code{N_LBRAC} and
617 @code{N_LBRAC} stabs that describe block structure are nested in the
618 same order as the corresponding code blocks, those of the for loop
619 inside those for the body of main.
620
621 @noindent
622 This is the label for the @code{N_LBRAC} (left brace) stab marking the
623 start of @code{main}.
624
625 @example
626 57 LBB2:
627 @end example
628
629 @noindent
630 In the first code range for C source line 23, the @code{for} loop
631 initialize and test, @code{N_SLINE} (68) records the line number:
632
633 @example
634 .stabn N_SLINE, NIL,
635 @var{line},
636 @var{address}
637
638 58 .stabn 68,0,23,LM2
639 59 LM2:
640 60 st %g0,[%fp-20]
641 61 L2:
642 62 sethi %hi(_s_g_repeat),%o0
643 63 ld [%fp-20],%o1
644 64 ld [%o0+%lo(_s_g_repeat)],%o0
645 65 cmp %o1,%o0
646 66 bge L3
647 67 nop
648
649 @exdent label for the @code{N_LBRAC} (start block) marking the start of @code{for} loop
650
651 68 LBB3:
652 69 .stabn 68,0,25,LM3
653 70 LM3:
654 71 sethi %hi(LC0),%o1
655 72 or %o1,%lo(LC0),%o0
656 73 call _printf,0
657 74 nop
658 75 .stabn 68,0,26,LM4
659 76 LM4:
660
661 @exdent label for the @code{N_RBRAC} (end block) stab marking the end of the @code{for} loop
662
663 77 LBE3:
664 @end example
665
666 @noindent
667 Now we come to the second code range for source line 23, the @code{for}
668 loop increment and return. Once again, @code{N_SLINE} (68) records the
669 source line number:
670
671 @example
672 .stabn, N_SLINE, NIL,
673 @var{line},
674 @var{address}
675
676 78 .stabn 68,0,23,LM5
677 79 LM5:
678 80 L4:
679 81 ld [%fp-20],%o0
680 82 add %o0,1,%o1
681 83 st %o1,[%fp-20]
682 84 b,a L2
683 85 L3:
684 86 .stabn 68,0,27,LM6
685 87 LM6:
686
687 @exdent label for the @code{N_RBRAC} (end block) stab marking the end of the @code{for} loop
688
689 88 LBE2:
690 89 .stabn 68,0,27,LM7
691 90 LM7:
692 91 L1:
693 92 ret
694 93 restore
695 94 .stabs "main:F1",36,0,0,_main
696 95 .stabs "argc:p1",160,0,0,68
697 96 .stabs "argv:p20=*21=*2",160,0,0,72
698 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
699 98 .stabs "times:1",128,0,0,-20
700 @end example
701
702 @noindent
703 Here is an illustration of stabs describing nested scopes. The scope
704 nesting is reflected in the nested bracketing stabs (@code{N_LBRAC},
705 192, appears here).
706
707 @example
708 .stabn N_LBRAC,NIL,NIL,
709 @var{block-start-address}
710
711 99 .stabn 192,0,0,LBB2 ## begin proc label
712 100 .stabs "inner:1",128,0,0,-24
713 101 .stabn 192,0,0,LBB3 ## begin for label
714 @end example
715
716 @noindent
717 @code{N_RBRAC} (224), ``right brace'' ends a lexical block (scope).
718
719 @example
720 .stabn N_RBRAC,NIL,NIL,
721 @var{block-end-address}
722
723 102 .stabn 224,0,0,LBE3 ## end for label
724 103 .stabn 224,0,0,LBE2 ## end proc label
725 @end example
726
727 @node Variables
728 @chapter Variables
729
730 @menu
731 * Automatic variables:: locally scoped
732 * Global Variables::
733 * Register variables::
734 * Initialized statics::
735 * Un-initialized statics::
736 * Parameters::
737 @end menu
738
739 @node Automatic variables
740 @section Locally scoped automatic variables
741
742 @table @strong
743 @item Directive:
744 @code{.stabs}
745 @item Type:
746 @code{N_LSYM}
747 @item Symbol Descriptor:
748 none
749 @end table
750
751
752 In addition to describing types, the @code{N_LSYM} stab type also
753 describes locally scoped automatic variables. Refer again to the body
754 of @code{main} in @file{example2.c}. It allocates two automatic
755 variables: @samp{times} is scoped to the body of @code{main}, and
756 @samp{inner} is scoped to the body of the @code{for} loop.
757 @samp{s_flap} is locally scoped but not automatic, and will be discussed
758 later.
759
760 @example
761 20 @{
762 21 static float s_flap;
763 22 int times;
764 23 for (times=0; times < s_g_repeat; times++)@{
765 24 int inner;
766 25 printf ("Hello world\n");
767 26 @}
768 27 @};
769 @end example
770
771 The @code{N_LSYM} stab for an automatic variable is located just before the
772 @code{N_LBRAC} stab describing the open brace of the block to which it is
773 scoped.
774
775 @example
776 @exdent @code{N_LSYM} (128): automatic variable, scoped locally to @code{main}
777
778 .stabs "@var{name}:
779 @var{type-ref}",
780 N_LSYM, NIL, NIL,
781 @var{frame-pointer-offset}
782
783 98 .stabs "times:1",128,0,0,-20
784 99 .stabn 192,0,0,LBB2 ## begin `main' N_LBRAC
785
786 @exdent @code{N_LSYM} (128): automatic variable, scoped locally to the @code{for} loop
787
788 .stabs "@var{name}:
789 @var{type-ref}",
790 N_LSYM, NIL, NIL,
791 @var{frame-pointer-offset}
792
793 100 .stabs "inner:1",128,0,0,-24
794 101 .stabn 192,0,0,LBB3 ## begin `for' loop N_LBRAC
795 @end example
796
797 Since the character in the string field following the colon is not a
798 letter, there is no symbol descriptor. This means that the stab
799 describes a local variable, and that the number after the colon is a
800 type reference. In this case it a a reference to the basic type @code{int}.
801 Notice also that the frame pointer offset is negative number for
802 automatic variables.
803
804
805 @node Global Variables
806 @section Global Variables
807
808 @table @strong
809 @item Directive:
810 @code{.stabs}
811 @item Type:
812 @code{N_GSYM}
813 @item Symbol Descriptor:
814 @code{G}
815 @end table
816
817 Global variables are represented by the @code{N_GSYM} stab type. The symbol
818 descriptor, following the colon in the string field, is @samp{G}. Following
819 the @samp{G} is a type reference or type definition. In this example it is a
820 type reference to the basic C type, @code{char}. The first source line in
821 @file{example2.c},
822
823 @example
824 1 char g_foo = 'c';
825 @end example
826
827 @noindent
828 yields the following stab. The stab immediately precedes the code that
829 allocates storage for the variable it describes.
830
831 @example
832 @exdent @code{N_GSYM} (32): global symbol
833
834 .stabs "@var{name}:
835 @var{descriptor}
836 @var{type-ref}",
837 N_GSYM, NIL, NIL, NIL
838
839 21 .stabs "g_foo:G2",32,0,0,0
840 22 .global _g_foo
841 23 .data
842 24 _g_foo:
843 25 .byte 99
844 @end example
845
846 The address of the variable represented by the @code{N_GSYM} is not contained
847 in the @code{N_GSYM} stab. The debugger gets this information from the
848 external symbol for the global variable.
849
850 @node Register variables
851 @section Global register variables
852
853 @table @strong
854 @item Directive:
855 @code{.stabs}
856 @item Type:
857 @code{N_RSYM}
858 @item Symbol Descriptor:
859 @code{r}
860 @end table
861
862 The following source line defines a global variable, @code{g_bar}, which is
863 explicitly allocated in global register @code{%g5}.
864
865 @example
866 2 register int g_bar asm ("%g5");
867 @end example
868
869 Register variables have their own stab type, @code{N_RSYM}, and their own
870 symbol descriptor, @code{r}. The stab's value field contains the number of
871 the register where the variable data will be stored. Since the
872 variable was not initialized in this compilation unit, the stab is
873 emited at the end of the object file, with the stabs for other
874 uninitialized globals (@code{bcc}).
875
876 @example
877 @exdent @code{N_RSYM} (64): register variable
878
879 .stabs "@var{name}:
880 @var{descriptor}
881 @var{type-ref}",
882 N_RSYM, NIL, NIL,
883 @var{register}
884
885 133 .stabs "g_bar:r1",64,0,0,5
886 @end example
887
888
889 @node Initialized statics
890 @section Initialized static variables
891
892 @table @strong
893 @item Directive:
894 @code{.stabs}
895 @item Type:
896 @code{N_STSYM}
897 @item Symbol Descriptors:
898 @code{S} (file scope), @code{V} (procedure scope)
899 @end table
900
901 Initialized static variables are represented by the @code{N_STSYM} stab
902 type. The symbol descriptor part of the string field shows if the
903 variable is file scope static (@samp{S}) or procedure scope static
904 (@samp{V}). The source line
905
906 @example
907 3 static int s_g_repeat = 2;
908 @end example
909
910 @noindent
911 yields the following code. The stab is located immediately preceding
912 the storage for the variable it represents. Since the variable in
913 this example is file scope static the symbol descriptor is @samp{S}.
914
915 @example
916 @exdent @code{N_STSYM} (38): initialized static variable (data seg w/internal linkage)
917
918 .stabs "@var{name}:
919 @var{descriptor}
920 @var{type-ref}",
921 N_STSYM,NIL,NIL,
922 @var{address}
923
924 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
925 27 .align 4
926 28 _s_g_repeat:
927 29 .word 2
928 @end example
929
930
931 @node Un-initialized statics
932 @section Un-initialized static variables
933
934 @table @strong
935 @item Directive:
936 @code{.stabs}
937 @item Type:
938 @code{N_LCSYM}
939 @item Symbol Descriptors:
940 @code{S} (file scope), @code{V} (procedure scope)
941 @end table
942
943 Un-initialized static variables are represented by the @code{N_LCSYM}
944 stab type. The symbol descriptor part of the string shows if the
945 variable is file scope static (@samp{S}) or procedure scope static
946 (@samp{V}). In this example it is procedure scope static. The source
947 line allocating @code{s_flap} immediately follows the open brace for the
948 procedure @code{main}.
949
950 @example
951 20 @{
952 21 static float s_flap;
953 @end example
954
955 The code that reserves storage for the variable @code{s_flap} precedes the
956 body of body of @code{main}.
957
958 @example
959 39 .reserve _s_flap.0,4,"bss",4
960 @end example
961
962 But since @code{s_flap} is scoped locally to @code{main}, its stab is
963 located with the other stabs representing symbols local to @code{main}.
964 The stab for @code{s_flap} is located just before the @code{N_LBRAC} for
965 @code{main}.
966
967 @example
968 @exdent @code{N_LCSYM} (40): uninitialized static var (BSS seg w/internal linkage)
969
970 .stabs "@var{name}:
971 @var{descriptor}
972 @var{type-ref}",
973 N_LCSYM, NIL, NIL,
974 @var{address}
975
976 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
977 98 .stabs "times:1",128,0,0,-20
978 99 .stabn 192,0,0,LBB2 # N_LBRAC for main.
979 @end example
980
981 @c ............................................................
982
983 @node Parameters
984 @section Parameters
985
986 The symbol descriptor @samp{p} is used to refer to parameters which are
987 in the arglist. Symbols have symbol type @samp{N_PSYM}. The value of
988 the symbol is the offset relative to the argument list.
989
990 If the parameter is passed in a register, then the traditional way to do
991 this is to provide two symbols for each argument:
992
993 @example
994 .stabs "arg:p1" . . . ; N_PSYM
995 .stabs "arg:r1" . . . ; N_RSYM
996 @end example
997
998 Debuggers are expected to use the second one to find the value, and the
999 first one to know that it is an argument.
1000
1001 Because this is kind of ugly, some compilers use symbol descriptor
1002 @samp{P} or @samp{R} to indicate an argument which is in a register.
1003 The symbol value is the register number. @samp{P} and @samp{R} mean the
1004 same thing, the difference is that @samp{P} is a GNU invention and
1005 @samp{R} is an IBM (xcoff) invention. As of version 4.9, GDB should
1006 handle either one. Symbol type @samp{C_RPSYM} is used with @samp{R} and
1007 @samp{N_RSYM} is used with @samp{P}.
1008
1009 There is at least one case where GCC uses a @samp{p}/@samp{r} pair
1010 rather than @samp{P}; this is where the argument is passed in the
1011 argument list and then loaded into a register.
1012
1013 On the sparc and hppa, for a @samp{P} symbol whose type is a structure
1014 or union, the register contains the address of the structure. On the
1015 sparc, this is also true of a @samp{p}/@samp{r} pair (using Sun cc) or a
1016 @samp{p} symbol. However, if a (small) structure is really in a
1017 register, @samp{r} is used. And, to top it all off, on the hppa it
1018 might be a structure which was passed on the stack and loaded into a
1019 register and for which there is a @samp{p}/@samp{r} pair! I believe
1020 that symbol descriptor @samp{i} is supposed to deal with this case, but
1021 I don't know details or what compilers or debuggers use it, if any (not
1022 GDB or GCC).
1023
1024 There is another case similar to an argument in a register, which is an
1025 argument which is actually stored as a local variable. Sometimes this
1026 happens when the argument was passed in a register and then the compiler
1027 stores it as a local variable. If possible, the compiler should claim
1028 that it's in a register, but this isn't always done. Some compilers use
1029 the pair of symbols approach described above ("arg:p" followed by
1030 "arg:"); this includes gcc1 (not gcc2) on the sparc when passing a small
1031 structure and gcc2 when the argument type is float and it is passed as a
1032 double and converted to float by the prologue (in the latter case the
1033 type of the "arg:p" symbol is double and the type of the "arg:" symbol
1034 is float). GCC, at least on the 960, uses a single @samp{p} symbol
1035 descriptor for an argument which is stored as a local variable but uses
1036 @samp{N_LSYM} instead of @samp{N_PSYM}. In this case the value of the
1037 symbol is an offset relative to the local variables for that function,
1038 not relative to the arguments (on some machines those are the same
1039 thing, but not on all).
1040
1041 The following are said to go with @samp{N_PSYM}:
1042
1043 @example
1044 "name" -> "param_name:#type"
1045 # -> p (value parameter)
1046 -> i (value parameter by reference, indirect access)
1047 -> v (variable parameter by reference)
1048 -> C (read-only parameter, conformant array bound)
1049 -> x (conformant array value parameter)
1050 -> pP (<<??>>)
1051 -> pF (<<??>>)
1052 -> X (function result variable)
1053 -> b (based variable)
1054
1055 value -> offset from the argument pointer (positive).
1056 @end example
1057
1058 As a simple example, the code
1059
1060 @example
1061 main (argc, argv)
1062 int argc;
1063 char **argv;
1064 @{
1065 @end example
1066
1067 produces the stabs
1068
1069 @example
1070 .stabs "main:F1",36,0,0,_main ; 36 is N_FUN
1071 .stabs "argc:p1",160,0,0,68 ; 160 is N_PSYM
1072 .stabs "argv:p20=*21=*2",160,0,0,72
1073 @end example
1074
1075 The type definition of argv is interesting because it contains several
1076 type definitions. Type 21 is pointer to type 2 (char) and argv (type 20) is
1077 pointer to type 21.
1078
1079 @node Aggregate Types
1080 @chapter Aggregate Types
1081
1082 Now let's look at some variable definitions involving complex types.
1083 This involves understanding better how types are described. In the
1084 examples so far types have been described as references to previously
1085 defined types or defined in terms of subranges of or pointers to
1086 previously defined types. The section that follows will talk about
1087 the various other type descriptors that may follow the = sign in a
1088 type definition.
1089
1090 @menu
1091 * Arrays::
1092 * Enumerations::
1093 * Structure tags::
1094 * Typedefs::
1095 * Unions::
1096 * Function types::
1097 @end menu
1098
1099 @node Arrays
1100 @section Array types
1101
1102 @table @strong
1103 @item Directive:
1104 @code{.stabs}
1105 @item Types:
1106 @code{N_GSYM}, @code{N_LSYM}
1107 @item Symbol Descriptor:
1108 @code{T}
1109 @item Type Descriptor:
1110 @code{a}
1111 @end table
1112
1113 As an example of an array type consider the global variable below.
1114
1115 @example
1116 15 char char_vec[3] = @{'a','b','c'@};
1117 @end example
1118
1119 Since the array is a global variable, it is described by the N_GSYM
1120 stab type. The symbol descriptor G, following the colon in stab's
1121 string field, also says the array is a global variable. Following the
1122 G is a definition for type (19) as shown by the equals sign after the
1123 type number.
1124
1125 After the equals sign is a type descriptor, a, which says that the type
1126 being defined is an array. Following the type descriptor for an array
1127 is the type of the index, a semicolon, and the type of the array elements.
1128
1129 The type of the index is often a range type, expressed as the letter r
1130 and some parameters. It defines the size of the array. In in the
1131 example below, the range @code{r1;0;2;} defines an index type which is
1132 a subrange of type 1 (integer), with a lower bound of 0 and an upper
1133 bound of 2. This defines the valid range of subscripts of a
1134 three-element C array.
1135
1136 The array definition above generates the assembly language that
1137 follows.
1138
1139 @example
1140 @exdent <32> N_GSYM - global variable
1141 @exdent .stabs "name:sym_desc(global)type_def(19)=type_desc(array)
1142 @exdent index_type_ref(range of int from 0 to 2);element_type_ref(char)";
1143 @exdent N_GSYM, NIL, NIL, NIL
1144
1145 32 .stabs "char_vec:G19=ar1;0;2;2",32,0,0,0
1146 33 .global _char_vec
1147 34 .align 4
1148 35 _char_vec:
1149 36 .byte 97
1150 37 .byte 98
1151 38 .byte 99
1152 @end example
1153
1154 @node Enumerations
1155 @section Enumerations
1156
1157 @table @strong
1158 @item Directive:
1159 @code{.stabs}
1160 @item Type:
1161 @code{N_LSYM}
1162 @item Symbol Descriptor:
1163 @code{T}
1164 @item Type Descriptor:
1165 @code{e}
1166 @end table
1167
1168 The source line below declares an enumeration type. It is defined at
1169 file scope between the bodies of main and s_proc in example2.c.
1170 Because the N_LSYM is located after the N_RBRAC that marks the end of
1171 the previous procedure's block scope, and before the N_FUN that marks
1172 the beginning of the next procedure's block scope, the N_LSYM does not
1173 describe a block local symbol, but a file local one. The source line:
1174
1175 @example
1176 29 enum e_places @{first,second=3,last@};
1177 @end example
1178
1179 @noindent
1180 generates the following stab, located just after the N_RBRAC (close
1181 brace stab) for main. The type definition is in an N_LSYM stab
1182 because type definitions are file scope not global scope.
1183
1184 @display
1185 <128> N_LSYM - local symbol
1186 .stab "name:sym_dec(type)type_def(22)=sym_desc(enum)
1187 enum_name:value(0),enum_name:value(3),enum_name:value(4),;",
1188 N_LSYM, NIL, NIL, NIL
1189 @end display
1190
1191 @example
1192 104 .stabs "e_places:T22=efirst:0,second:3,last:4,;",128,0,0,0
1193 @end example
1194
1195 The symbol descriptor (T) says that the stab describes a structure,
1196 enumeration, or type tag. The type descriptor e, following the 22= of
1197 the type definition narrows it down to an enumeration type. Following
1198 the e is a list of the elements of the enumeration. The format is
1199 name:value,. The list of elements ends with a ;.
1200
1201 @node Structure tags
1202 @section Structure Tags
1203
1204 @table @strong
1205 @item Directive:
1206 @code{.stabs}
1207 @item Type:
1208 @code{N_LSYM}
1209 @item Symbol Descriptor:
1210 @code{T}
1211 @item Type Descriptor:
1212 @code{s}
1213 @end table
1214
1215 The following source code declares a structure tag and defines an
1216 instance of the structure in global scope. Then a typedef equates the
1217 structure tag with a new type. A seperate stab is generated for the
1218 structure tag, the structure typedef, and the structure instance. The
1219 stabs for the tag and the typedef are emited when the definitions are
1220 encountered. Since the structure elements are not initialized, the
1221 stab and code for the structure variable itself is located at the end
1222 of the program in .common.
1223
1224 @example
1225 6 struct s_tag @{
1226 7 int s_int;
1227 8 float s_float;
1228 9 char s_char_vec[8];
1229 10 struct s_tag* s_next;
1230 11 @} g_an_s;
1231 12
1232 13 typedef struct s_tag s_typedef;
1233 @end example
1234
1235 The structure tag is an N_LSYM stab type because, like the enum, the
1236 symbol is file scope. Like the enum, the symbol descriptor is T, for
1237 enumeration, struct or tag type. The symbol descriptor s following
1238 the 16= of the type definition narrows the symbol type to struct.
1239
1240 Following the struct symbol descriptor is the number of bytes the
1241 struct occupies, followed by a description of each structure element.
1242 The structure element descriptions are of the form name:type, bit
1243 offset from the start of the struct, and number of bits in the
1244 element.
1245
1246
1247 @example
1248 <128> N_LSYM - type definition
1249 .stabs "name:sym_desc(struct tag) Type_def(16)=type_desc(struct type)
1250 struct_bytes
1251 elem_name:type_ref(int),bit_offset,field_bits;
1252 elem_name:type_ref(float),bit_offset,field_bits;
1253 elem_name:type_def(17)=type_desc(array)
1254 index_type(range of int from 0 to 7);
1255 element_type(char),bit_offset,field_bits;;",
1256 N_LSYM,NIL,NIL,NIL
1257
1258 30 .stabs "s_tag:T16=s20s_int:1,0,32;s_float:12,32,32;
1259 s_char_vec:17=ar1;0;7;2,64,64;s_next:18=*16,128,32;;",128,0,0,0
1260 @end example
1261
1262 In this example, two of the structure elements are previously defined
1263 types. For these, the type following the name: part of the element
1264 description is a simple type reference. The other two structure
1265 elements are new types. In this case there is a type definition
1266 embedded after the name:. The type definition for the array element
1267 looks just like a type definition for a standalone array. The s_next
1268 field is a pointer to the same kind of structure that the field is an
1269 element of. So the definition of structure type 16 contains an type
1270 definition for an element which is a pointer to type 16.
1271
1272 @node Typedefs
1273 @section Typedefs
1274
1275 @table @strong
1276 @item Directive:
1277 @code{.stabs}
1278 @item Type:
1279 @code{N_LSYM}
1280 @item Symbol Descriptor:
1281 @code{t}
1282 @end table
1283
1284 Here is the stab for the typedef equating the structure tag with a
1285 type.
1286
1287 @display
1288 <128> N_LSYM - type definition
1289 .stabs "name:sym_desc(type name)type_ref(struct_tag)",N_LSYM,NIL,NIL,NIL
1290 @end display
1291
1292 @example
1293 31 .stabs "s_typedef:t16",128,0,0,0
1294 @end example
1295
1296 And here is the code generated for the structure variable.
1297
1298 @display
1299 <32> N_GSYM - global symbol
1300 .stabs "name:sym_desc(global)type_ref(struct_tag)",N_GSYM,NIL,NIL,NIL
1301 @end display
1302
1303 @example
1304 136 .stabs "g_an_s:G16",32,0,0,0
1305 137 .common _g_an_s,20,"bss"
1306 @end example
1307
1308 Notice that the structure tag has the same type number as the typedef
1309 for the structure tag. It is impossible to distinguish between a
1310 variable of the struct type and one of its typedef by looking at the
1311 debugging information.
1312
1313
1314 @node Unions
1315 @section Unions
1316
1317 @table @strong
1318 @item Directive:
1319 @code{.stabs}
1320 @item Type:
1321 @code{N_LSYM}
1322 @item Symbol Descriptor:
1323 @code{T}
1324 @item Type Descriptor:
1325 @code{u}
1326 @end table
1327
1328 Next let's look at unions. In example2 this union type is declared
1329 locally to a procedure and an instance of the union is defined.
1330
1331 @example
1332 36 union u_tag @{
1333 37 int u_int;
1334 38 float u_float;
1335 39 char* u_char;
1336 40 @} an_u;
1337 @end example
1338
1339 This code generates a stab for the union tag and a stab for the union
1340 variable. Both use the N_LSYM stab type. Since the union variable is
1341 scoped locally to the procedure in which it is defined, its stab is
1342 located immediately preceding the N_LBRAC for the procedure's block
1343 start.
1344
1345 The stab for the union tag, however is located preceding the code for
1346 the procedure in which it is defined. The stab type is N_LSYM. This
1347 would seem to imply that the union type is file scope, like the struct
1348 type s_tag. This is not true. The contents and position of the stab
1349 for u_type do not convey any infomation about its procedure local
1350 scope.
1351
1352 @display
1353 <128> N_LSYM - type
1354 .stabs "name:sym_desc(union tag)type_def(22)=type_desc(union)
1355 byte_size(4)
1356 elem_name:type_ref(int),bit_offset(0),bit_size(32);
1357 elem_name:type_ref(float),bit_offset(0),bit_size(32);
1358 elem_name:type_ref(ptr to char),bit_offset(0),bit_size(32);;"
1359 N_LSYM, NIL, NIL, NIL
1360 @end display
1361
1362 @smallexample
1363 105 .stabs "u_tag:T23=u4u_int:1,0,32;u_float:12,0,32;u_char:21,0,32;;",
1364 128,0,0,0
1365 @end smallexample
1366
1367 The symbol descriptor, T, following the name: means that the stab
1368 describes an enumeration, struct or type tag. The type descriptor u,
1369 following the 23= of the type definition, narrows it down to a union
1370 type definition. Following the u is the number of bytes in the union.
1371 After that is a list of union element descriptions. Their format is
1372 name:type, bit offset into the union, and number of bytes for the
1373 element;.
1374
1375 The stab for the union variable follows. Notice that the frame
1376 pointer offset for local variables is negative.
1377
1378 @display
1379 <128> N_LSYM - local variable (with no symbol descriptor)
1380 .stabs "name:type_ref(u_tag)", N_LSYM, NIL, NIL, frame_ptr_offset
1381 @end display
1382
1383 @example
1384 130 .stabs "an_u:23",128,0,0,-20
1385 @end example
1386
1387 @node Function types
1388 @section Function types
1389
1390 @display
1391 type descriptor f
1392 @end display
1393
1394 The last type descriptor in C which remains to be described is used
1395 for function types. Consider the following source line defining a
1396 global function pointer.
1397
1398 @example
1399 4 int (*g_pf)();
1400 @end example
1401
1402 It generates the following code. Since the variable is not
1403 initialized, the code is located in the common area at the end of the
1404 file.
1405
1406 @display
1407 <32> N_GSYM - global variable
1408 .stabs "name:sym_desc(global)type_def(24)=ptr_to(25)=
1409 type_def(func)type_ref(int)
1410 @end display
1411
1412 @example
1413 134 .stabs "g_pf:G24=*25=f1",32,0,0,0
1414 135 .common _g_pf,4,"bss"
1415 @end example
1416
1417 Since the variable is global, the stab type is N_GSYM and the symbol
1418 descriptor is G. The variable defines a new type, 24, which is a
1419 pointer to another new type, 25, which is defined as a function
1420 returning int.
1421
1422 @node Symbol tables
1423 @chapter Symbol information in symbol tables
1424
1425 This section examines more closely the format of symbol table entries
1426 and how stab assembler directives map to them. It also describes what
1427 transformations the assembler and linker make on data from stabs.
1428
1429 Each time the assembler encounters a stab in its input file it puts
1430 each field of the stab into corresponding fields in a symbol table
1431 entry of its output file. If the stab contains a string field, the
1432 symbol table entry for that stab points to a string table entry
1433 containing the string data from the stab. Assembler labels become
1434 relocatable addresses. Symbol table entries in a.out have the format:
1435
1436 @example
1437 struct internal_nlist @{
1438 unsigned long n_strx; /* index into string table of name */
1439 unsigned char n_type; /* type of symbol */
1440 unsigned char n_other; /* misc info (usually empty) */
1441 unsigned short n_desc; /* description field */
1442 bfd_vma n_value; /* value of symbol */
1443 @};
1444 @end example
1445
1446 For .stabs directives, the n_strx field holds the character offset
1447 from the start of the string table to the string table entry
1448 containing the "string" field. For other classes of stabs (.stabn and
1449 .stabd) this field is null.
1450
1451 Symbol table entries with n_type fields containing a value greater or
1452 equal to 0x20 originated as stabs generated by the compiler (with one
1453 random exception). Those with n_type values less than 0x20 were
1454 placed in the symbol table of the executable by the assembler or the
1455 linker.
1456
1457 The linker concatenates object files and does fixups of externally
1458 defined symbols. You can see the transformations made on stab data by
1459 the assembler and linker by examining the symbol table after each pass
1460 of the build, first the assemble and then the link.
1461
1462 To do this use nm with the -ap options. This dumps the symbol table,
1463 including debugging information, unsorted. For stab entries the
1464 columns are: value, other, desc, type, string. For assembler and
1465 linker symbols, the columns are: value, type, string.
1466
1467 There are a few important things to notice about symbol tables. Where
1468 the value field of a stab contains a frame pointer offset, or a
1469 register number, that value is unchanged by the rest of the build.
1470
1471 Where the value field of a stab contains an assembly language label,
1472 it is transformed by each build step. The assembler turns it into a
1473 relocatable address and the linker turns it into an absolute address.
1474 This source line defines a static variable at file scope:
1475
1476 @example
1477 3 static int s_g_repeat
1478 @end example
1479
1480 @noindent
1481 The following stab describes the symbol.
1482
1483 @example
1484 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
1485 @end example
1486
1487 @noindent
1488 The assembler transforms the stab into this symbol table entry in the
1489 @file{.o} file. The location is expressed as a data segment offset.
1490
1491 @example
1492 21 00000084 - 00 0000 STSYM s_g_repeat:S1
1493 @end example
1494
1495 @noindent
1496 in the symbol table entry from the executable, the linker has made the
1497 relocatable address absolute.
1498
1499 @example
1500 22 0000e00c - 00 0000 STSYM s_g_repeat:S1
1501 @end example
1502
1503 Stabs for global variables do not contain location information. In
1504 this case the debugger finds location information in the assembler or
1505 linker symbol table entry describing the variable. The source line:
1506
1507 @example
1508 1 char g_foo = 'c';
1509 @end example
1510
1511 @noindent
1512 generates the stab:
1513
1514 @example
1515 21 .stabs "g_foo:G2",32,0,0,0
1516 @end example
1517
1518 The variable is represented by the following two symbol table entries
1519 in the object file. The first one originated as a stab. The second
1520 one is an external symbol. The upper case D signifies that the n_type
1521 field of the symbol table contains 7, N_DATA with local linkage (see
1522 Table B). The value field following the file's line number is empty
1523 for the stab entry. For the linker symbol it contains the
1524 rellocatable address corresponding to the variable.
1525
1526 @example
1527 19 00000000 - 00 0000 GSYM g_foo:G2
1528 20 00000080 D _g_foo
1529 @end example
1530
1531 @noindent
1532 These entries as transformed by the linker. The linker symbol table
1533 entry now holds an absolute address.
1534
1535 @example
1536 21 00000000 - 00 0000 GSYM g_foo:G2
1537 @dots{}
1538 215 0000e008 D _g_foo
1539 @end example
1540
1541 @node GNU Cplusplus stabs
1542 @chapter GNU C++ stabs
1543
1544 @menu
1545 * Basic Cplusplus types::
1546 * Simple classes::
1547 * Class instance::
1548 * Methods:: Method definition
1549 * Protections::
1550 * Method Modifiers:: (const, volatile, const volatile)
1551 * Virtual Methods::
1552 * Inheritence::
1553 * Virtual Base Classes::
1554 * Static Members::
1555 @end menu
1556
1557
1558 @subsection Symbol descriptors added for C++ descriptions:
1559
1560 @display
1561 P - register parameter.
1562 @end display
1563
1564 @subsection type descriptors added for C++ descriptions
1565
1566 @table @code
1567 @item #
1568 method type (two ## if minimal debug)
1569
1570 @item xs
1571 cross-reference
1572 @end table
1573
1574
1575 @node Basic Cplusplus types
1576 @section Basic types for C++
1577
1578 << the examples that follow are based on a01.C >>
1579
1580
1581 C++ adds two more builtin types to the set defined for C. These are
1582 the unknown type and the vtable record type. The unknown type, type
1583 16, is defined in terms of itself like the void type.
1584
1585 The vtable record type, type 17, is defined as a structure type and
1586 then as a structure tag. The structure has four fields, delta, index,
1587 pfn, and delta2. pfn is the function pointer.
1588
1589 << In boilerplate $vtbl_ptr_type, what are the fields delta,
1590 index, and delta2 used for? >>
1591
1592 This basic type is present in all C++ programs even if there are no
1593 virtual methods defined.
1594
1595 @display
1596 .stabs "struct_name:sym_desc(type)type_def(17)=type_desc(struct)struct_bytes(8)
1597 elem_name(delta):type_ref(short int),bit_offset(0),field_bits(16);
1598 elem_name(index):type_ref(short int),bit_offset(16),field_bits(16);
1599 elem_name(pfn):type_def(18)=type_desc(ptr to)type_ref(void),
1600 bit_offset(32),field_bits(32);
1601 elem_name(delta2):type_def(short int);bit_offset(32),field_bits(16);;"
1602 N_LSYM, NIL, NIL
1603 @end display
1604
1605 @smallexample
1606 .stabs "$vtbl_ptr_type:t17=s8
1607 delta:6,0,16;index:6,16,16;pfn:18=*15,32,32;delta2:6,32,16;;"
1608 ,128,0,0,0
1609 @end smallexample
1610
1611 @display
1612 .stabs "name:sym_dec(struct tag)type_ref($vtbl_ptr_type)",N_LSYM,NIL,NIL,NIL
1613 @end display
1614
1615 @example
1616 .stabs "$vtbl_ptr_type:T17",128,0,0,0
1617 @end example
1618
1619 @node Simple classes
1620 @section Simple class definition
1621
1622 The stabs describing C++ language features are an extension of the
1623 stabs describing C. Stabs representing C++ class types elaborate
1624 extensively on the stab format used to describe structure types in C.
1625 Stabs representing class type variables look just like stabs
1626 representing C language variables.
1627
1628 Consider the following very simple class definition.
1629
1630 @example
1631 class baseA @{
1632 public:
1633 int Adat;
1634 int Ameth(int in, char other);
1635 @};
1636 @end example
1637
1638 The class baseA is represented by two stabs. The first stab describes
1639 the class as a structure type. The second stab describes a structure
1640 tag of the class type. Both stabs are of stab type N_LSYM. Since the
1641 stab is not located between an N_FUN and a N_LBRAC stab this indicates
1642 that the class is defined at file scope. If it were, then the N_LSYM
1643 would signify a local variable.
1644
1645 A stab describing a C++ class type is similar in format to a stab
1646 describing a C struct, with each class member shown as a field in the
1647 structure. The part of the struct format describing fields is
1648 expanded to include extra information relevent to C++ class members.
1649 In addition, if the class has multiple base classes or virtual
1650 functions the struct format outside of the field parts is also
1651 augmented.
1652
1653 In this simple example the field part of the C++ class stab
1654 representing member data looks just like the field part of a C struct
1655 stab. The section on protections describes how its format is
1656 sometimes extended for member data.
1657
1658 The field part of a C++ class stab representing a member function
1659 differs substantially from the field part of a C struct stab. It
1660 still begins with `name:' but then goes on to define a new type number
1661 for the member function, describe its return type, its argument types,
1662 its protection level, any qualifiers applied to the method definition,
1663 and whether the method is virtual or not. If the method is virtual
1664 then the method description goes on to give the vtable index of the
1665 method, and the type number of the first base class defining the
1666 method.
1667
1668 When the field name is a method name it is followed by two colons
1669 rather than one. This is followed by a new type definition for the
1670 method. This is a number followed by an equal sign and then the
1671 symbol descriptor `##', indicating a method type. This is followed by
1672 a type reference showing the return type of the method and a
1673 semi-colon.
1674
1675 The format of an overloaded operator method name differs from that
1676 of other methods. It is "op$::XXXX." where XXXX is the operator name
1677 such as + or +=. The name ends with a period, and any characters except
1678 the period can occur in the XXXX string.
1679
1680 The next part of the method description represents the arguments to
1681 the method, preceeded by a colon and ending with a semi-colon. The
1682 types of the arguments are expressed in the same way argument types
1683 are expressed in C++ name mangling. In this example an int and a char
1684 map to `ic'.
1685
1686 This is followed by a number, a letter, and an asterisk or period,
1687 followed by another semicolon. The number indicates the protections
1688 that apply to the member function. Here the 2 means public. The
1689 letter encodes any qualifier applied to the method definition. In
1690 this case A means that it is a normal function definition. The dot
1691 shows that the method is not virtual. The sections that follow
1692 elaborate further on these fields and describe the additional
1693 information present for virtual methods.
1694
1695
1696 @display
1697 .stabs "class_name:sym_desc(type)type_def(20)=type_desc(struct)struct_bytes(4)
1698 field_name(Adat):type(int),bit_offset(0),field_bits(32);
1699
1700 method_name(Ameth)::type_def(21)=type_desc(method)return_type(int);
1701 :arg_types(int char);
1702 protection(public)qualifier(normal)virtual(no);;"
1703 N_LSYM,NIL,NIL,NIL
1704 @end display
1705
1706 @smallexample
1707 .stabs "baseA:t20=s4Adat:1,0,32;Ameth::21=##1;:ic;2A.;;",128,0,0,0
1708
1709 .stabs "class_name:sym_desc(struct tag)",N_LSYM,NIL,NIL,NIL
1710
1711 .stabs "baseA:T20",128,0,0,0
1712 @end smallexample
1713
1714 @node Class instance
1715 @section Class instance
1716
1717 As shown above, describing even a simple C++ class definition is
1718 accomplished by massively extending the stab format used in C to
1719 describe structure types. However, once the class is defined, C stabs
1720 with no modifications can be used to describe class instances. The
1721 following source:
1722
1723 @example
1724 main () @{
1725 baseA AbaseA;
1726 @}
1727 @end example
1728
1729 @noindent
1730 yields the following stab describing the class instance. It looks no
1731 different from a standard C stab describing a local variable.
1732
1733 @display
1734 .stabs "name:type_ref(baseA)", N_LSYM, NIL, NIL, frame_ptr_offset
1735 @end display
1736
1737 @example
1738 .stabs "AbaseA:20",128,0,0,-20
1739 @end example
1740
1741 @node Methods
1742 @section Method defintion
1743
1744 The class definition shown above declares Ameth. The C++ source below
1745 defines Ameth:
1746
1747 @example
1748 int
1749 baseA::Ameth(int in, char other)
1750 @{
1751 return in;
1752 @};
1753 @end example
1754
1755
1756 This method definition yields three stabs following the code of the
1757 method. One stab describes the method itself and following two
1758 describe its parameters. Although there is only one formal argument
1759 all methods have an implicit argument which is the `this' pointer.
1760 The `this' pointer is a pointer to the object on which the method was
1761 called. Note that the method name is mangled to encode the class name
1762 and argument types. << Name mangling is not described by this
1763 document - Is there already such a doc? >>
1764
1765 @example
1766 .stabs "name:symbol_desriptor(global function)return_type(int)",
1767 N_FUN, NIL, NIL, code_addr_of_method_start
1768
1769 .stabs "Ameth__5baseAic:F1",36,0,0,_Ameth__5baseAic
1770 @end example
1771
1772 Here is the stab for the `this' pointer implicit argument. The name
1773 of the `this' pointer is always `this.' Type 19, the `this' pointer is
1774 defined as a pointer to type 20, baseA, but a stab defining baseA has
1775 not yet been emited. Since the compiler knows it will be emited
1776 shortly, here it just outputs a cross reference to the undefined
1777 symbol, by prefixing the symbol name with xs.
1778
1779 @example
1780 .stabs "name:sym_desc(register param)type_def(19)=
1781 type_desc(ptr to)type_ref(baseA)=
1782 type_desc(cross-reference to)baseA:",N_RSYM,NIL,NIL,register_number
1783
1784 .stabs "this:P19=*20=xsbaseA:",64,0,0,8
1785 @end example
1786
1787 The stab for the explicit integer argument looks just like a parameter
1788 to a C function. The last field of the stab is the offset from the
1789 argument pointer, which in most systems is the same as the frame
1790 pointer.
1791
1792 @example
1793 .stabs "name:sym_desc(value parameter)type_ref(int)",
1794 N_PSYM,NIL,NIL,offset_from_arg_ptr
1795
1796 .stabs "in:p1",160,0,0,72
1797 @end example
1798
1799 << The examples that follow are based on A1.C >>
1800
1801 @node Protections
1802 @section Protections
1803
1804
1805 In the simple class definition shown above all member data and
1806 functions were publicly accessable. The example that follows
1807 contrasts public, protected and privately accessable fields and shows
1808 how these protections are encoded in C++ stabs.
1809
1810 Protections for class member data are signified by two characters
1811 embeded in the stab defining the class type. These characters are
1812 located after the name: part of the string. /0 means private, /1
1813 means protected, and /2 means public. If these characters are omited
1814 this means that the member is public. The following C++ source:
1815
1816 @example
1817 class all_data @{
1818 private:
1819 int priv_dat;
1820 protected:
1821 char prot_dat;
1822 public:
1823 float pub_dat;
1824 @};
1825 @end example
1826
1827 @noindent
1828 generates the following stab to describe the class type all_data.
1829
1830 @display
1831 .stabs "class_name:sym_desc(type)type_def(19)=type_desc(struct)struct_bytes
1832 data_name:/protection(private)type_ref(int),bit_offset,num_bits;
1833 data_name:/protection(protected)type_ref(char),bit_offset,num_bits;
1834 data_name:(/num omited, private)type_ref(float),bit_offset,num_bits;;"
1835 N_LSYM,NIL,NIL,NIL
1836 @end display
1837
1838 @smallexample
1839 .stabs "all_data:t19=s12
1840 priv_dat:/01,0,32;prot_dat:/12,32,8;pub_dat:12,64,32;;",128,0,0,0
1841 @end smallexample
1842
1843 Protections for member functions are signified by one digit embeded in
1844 the field part of the stab describing the method. The digit is 0 if
1845 private, 1 if protected and 2 if public. Consider the C++ class
1846 definition below:
1847
1848 @example
1849 class all_methods @{
1850 private:
1851 int priv_meth(int in)@{return in;@};
1852 protected:
1853 char protMeth(char in)@{return in;@};
1854 public:
1855 float pubMeth(float in)@{return in;@};
1856 @};
1857 @end example
1858
1859 It generates the following stab. The digit in question is to the left
1860 of an `A' in each case. Notice also that in this case two symbol
1861 descriptors apply to the class name struct tag and struct type.
1862
1863 @display
1864 .stabs "class_name:sym_desc(struct tag&type)type_def(21)=
1865 sym_desc(struct)struct_bytes(1)
1866 meth_name::type_def(22)=sym_desc(method)returning(int);
1867 :args(int);protection(private)modifier(normal)virtual(no);
1868 meth_name::type_def(23)=sym_desc(method)returning(char);
1869 :args(char);protection(protected)modifier(normal)virual(no);
1870 meth_name::type_def(24)=sym_desc(method)returning(float);
1871 :args(float);protection(public)modifier(normal)virtual(no);;",
1872 N_LSYM,NIL,NIL,NIL
1873 @end display
1874
1875 @smallexample
1876 .stabs "all_methods:Tt21=s1priv_meth::22=##1;:i;0A.;protMeth::23=##2;:c;1A.;
1877 pubMeth::24=##12;:f;2A.;;",128,0,0,0
1878 @end smallexample
1879
1880 @node Method Modifiers
1881 @section Method Modifiers (const, volatile, const volatile)
1882
1883 << based on a6.C >>
1884
1885 In the class example described above all the methods have the normal
1886 modifier. This method modifier information is located just after the
1887 protection information for the method. This field has four possible
1888 character values. Normal methods use A, const methods use B, volatile
1889 methods use C, and const volatile methods use D. Consider the class
1890 definition below:
1891
1892 @example
1893 class A @{
1894 public:
1895 int ConstMeth (int arg) const @{ return arg; @};
1896 char VolatileMeth (char arg) volatile @{ return arg; @};
1897 float ConstVolMeth (float arg) const volatile @{return arg; @};
1898 @};
1899 @end example
1900
1901 This class is described by the following stab:
1902
1903 @display
1904 .stabs "class(A):sym_desc(struct)type_def(20)=type_desc(struct)struct_bytes(1)
1905 meth_name(ConstMeth)::type_def(21)sym_desc(method)
1906 returning(int);:arg(int);protection(public)modifier(const)virtual(no);
1907 meth_name(VolatileMeth)::type_def(22)=sym_desc(method)
1908 returning(char);:arg(char);protection(public)modifier(volatile)virt(no)
1909 meth_name(ConstVolMeth)::type_def(23)=sym_desc(method)
1910 returning(float);:arg(float);protection(public)modifer(const volatile)
1911 virtual(no);;", @dots{}
1912 @end display
1913
1914 @example
1915 .stabs "A:T20=s1ConstMeth::21=##1;:i;2B.;VolatileMeth::22=##2;:c;2C.;
1916 ConstVolMeth::23=##12;:f;2D.;;",128,0,0,0
1917 @end example
1918
1919 @node Virtual Methods
1920 @section Virtual Methods
1921
1922 << The following examples are based on a4.C >>
1923
1924 The presence of virtual methods in a class definition adds additional
1925 data to the class description. The extra data is appended to the
1926 description of the virtual method and to the end of the class
1927 description. Consider the class definition below:
1928
1929 @example
1930 class A @{
1931 public:
1932 int Adat;
1933 virtual int A_virt (int arg) @{ return arg; @};
1934 @};
1935 @end example
1936
1937 This results in the stab below describing class A. It defines a new
1938 type (20) which is an 8 byte structure. The first field of the class
1939 struct is Adat, an integer, starting at structure offset 0 and
1940 occupying 32 bits.
1941
1942 The second field in the class struct is not explicitly defined by the
1943 C++ class definition but is implied by the fact that the class
1944 contains a virtual method. This field is the vtable pointer. The
1945 name of the vtable pointer field starts with $vf and continues with a
1946 type reference to the class it is part of. In this example the type
1947 reference for class A is 20 so the name of its vtable pointer field is
1948 $vf20, followed by the usual colon.
1949
1950 Next there is a type definition for the vtable pointer type (21).
1951 This is in turn defined as a pointer to another new type (22).
1952
1953 Type 22 is the vtable itself, which is defined as an array, indexed by
1954 a range of integers between 0 and 1, and whose elements are of type
1955 17. Type 17 was the vtable record type defined by the boilerplate C++
1956 type definitions, as shown earlier.
1957
1958 The bit offset of the vtable pointer field is 32. The number of bits
1959 in the field are not specified when the field is a vtable pointer.
1960
1961 Next is the method definition for the virtual member function A_virt.
1962 Its description starts out using the same format as the non-virtual
1963 member functions described above, except instead of a dot after the
1964 `A' there is an asterisk, indicating that the function is virtual.
1965 Since is is virtual some addition information is appended to the end
1966 of the method description.
1967
1968 The first number represents the vtable index of the method. This is a
1969 32 bit unsigned number with the high bit set, followed by a
1970 semi-colon.
1971
1972 The second number is a type reference to the first base class in the
1973 inheritence hierarchy defining the virtual member function. In this
1974 case the class stab describes a base class so the virtual function is
1975 not overriding any other definition of the method. Therefore the
1976 reference is to the type number of the class that the stab is
1977 describing (20).
1978
1979 This is followed by three semi-colons. One marks the end of the
1980 current sub-section, one marks the end of the method field, and the
1981 third marks the end of the struct definition.
1982
1983 For classes containing virtual functions the very last section of the
1984 string part of the stab holds a type reference to the first base
1985 class. This is preceeded by `~%' and followed by a final semi-colon.
1986
1987 @display
1988 .stabs "class_name(A):type_def(20)=sym_desc(struct)struct_bytes(8)
1989 field_name(Adat):type_ref(int),bit_offset(0),field_bits(32);
1990 field_name(A virt func ptr):type_def(21)=type_desc(ptr to)type_def(22)=
1991 sym_desc(array)index_type_ref(range of int from 0 to 1);
1992 elem_type_ref(vtbl elem type),
1993 bit_offset(32);
1994 meth_name(A_virt)::typedef(23)=sym_desc(method)returning(int);
1995 :arg_type(int),protection(public)normal(yes)virtual(yes)
1996 vtable_index(1);class_first_defining(A);;;~%first_base(A);",
1997 N_LSYM,NIL,NIL,NIL
1998 @end display
1999
2000 @example
2001 .stabs "A:t20=s8Adat:1,0,32;$vf20:21=*22=ar1;0;1;17,32;A_virt::23=##1;:i;2A*-2147483647;20;;;~%20;",128,0,0,0
2002 @end example
2003
2004 @node Inheritence
2005 @section Inheritence
2006
2007 Stabs describing C++ derived classes include additional sections that
2008 describe the inheritence hierarchy of the class. A derived class stab
2009 also encodes the number of base classes. For each base class it tells
2010 if the base class is virtual or not, and if the inheritence is private
2011 or public. It also gives the offset into the object of the portion of
2012 the object corresponding to each base class.
2013
2014 This additional information is embeded in the class stab following the
2015 number of bytes in the struct. First the number of base classes
2016 appears bracketed by an exclamation point and a comma.
2017
2018 Then for each base type there repeats a series: two digits, a number,
2019 a comma, another number, and a semi-colon.
2020
2021 The first of the two digits is 1 if the base class is virtual and 0 if
2022 not. The second digit is 2 if the derivation is public and 0 if not.
2023
2024 The number following the first two digits is the offset from the start
2025 of the object to the part of the object pertaining to the base class.
2026
2027 After the comma, the second number is a type_descriptor for the base
2028 type. Finally a semi-colon ends the series, which repeats for each
2029 base class.
2030
2031 The source below defines three base classes A, B, and C and the
2032 derived class D.
2033
2034
2035 @example
2036 class A @{
2037 public:
2038 int Adat;
2039 virtual int A_virt (int arg) @{ return arg; @};
2040 @};
2041
2042 class B @{
2043 public:
2044 int B_dat;
2045 virtual int B_virt (int arg) @{return arg; @};
2046 @};
2047
2048 class C @{
2049 public:
2050 int Cdat;
2051 virtual int C_virt (int arg) @{return arg; @};
2052 @};
2053
2054 class D : A, virtual B, public C @{
2055 public:
2056 int Ddat;
2057 virtual int A_virt (int arg ) @{ return arg+1; @};
2058 virtual int B_virt (int arg) @{ return arg+2; @};
2059 virtual int C_virt (int arg) @{ return arg+3; @};
2060 virtual int D_virt (int arg) @{ return arg; @};
2061 @};
2062 @end example
2063
2064 Class stabs similar to the ones described earlier are generated for
2065 each base class.
2066
2067 @c FIXME!!! the linebreaks in the following example probably make the
2068 @c examples literally unusable, but I don't know any other way to get
2069 @c them on the page.
2070 @smallexample
2071 .stabs "A:T20=s8Adat:1,0,32;$vf20:21=*22=ar1;0;1;17,32;
2072 A_virt::23=##1;:i;2A*-2147483647;20;;;~%20;",128,0,0,0
2073
2074 .stabs "B:Tt25=s8Bdat:1,0,32;$vf25:21,32;B_virt::26=##1;
2075 :i;2A*-2147483647;25;;;~%25;",128,0,0,0
2076
2077 .stabs "C:Tt28=s8Cdat:1,0,32;$vf28:21,32;C_virt::29=##1;
2078 :i;2A*-2147483647;28;;;~%28;",128,0,0,0
2079 @end smallexample
2080
2081 In the stab describing derived class D below, the information about
2082 the derivation of this class is encoded as follows.
2083
2084 @display
2085 .stabs "derived_class_name:symbol_descriptors(struct tag&type)=
2086 type_descriptor(struct)struct_bytes(32)!num_bases(3),
2087 base_virtual(no)inheritence_public(no)base_offset(0),
2088 base_class_type_ref(A);
2089 base_virtual(yes)inheritence_public(no)base_offset(NIL),
2090 base_class_type_ref(B);
2091 base_virtual(no)inheritence_public(yes)base_offset(64),
2092 base_class_type_ref(C); @dots{}
2093 @end display
2094
2095 @c FIXME! fake linebreaks.
2096 @smallexample
2097 .stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat:
2098 1,160,32;A_virt::32=##1;:i;2A*-2147483647;20;;B_virt:
2099 :32:i;2A*-2147483647;25;;C_virt::32:i;2A*-2147483647;
2100 28;;D_virt::32:i;2A*-2147483646;31;;;~%20;",128,0,0,0
2101 @end smallexample
2102
2103 @node Virtual Base Classes
2104 @section Virtual Base Classes
2105
2106 A derived class object consists of a concatination in memory of the
2107 data areas defined by each base class, starting with the leftmost and
2108 ending with the rightmost in the list of base classes. The exception
2109 to this rule is for virtual inheritence. In the example above, class
2110 D inherits virtually from base class B. This means that an instance
2111 of a D object will not contain it's own B part but merely a pointer to
2112 a B part, known as a virtual base pointer.
2113
2114 In a derived class stab, the base offset part of the derivation
2115 information, described above, shows how the base class parts are
2116 ordered. The base offset for a virtual base class is always given as
2117 0. Notice that the base offset for B is given as 0 even though B is
2118 not the first base class. The first base class A starts at offset 0.
2119
2120 The field information part of the stab for class D describes the field
2121 which is the pointer to the virtual base class B. The vbase pointer
2122 name is $vb followed by a type reference to the virtual base class.
2123 Since the type id for B in this example is 25, the vbase pointer name
2124 is $vb25.
2125
2126 @c FIXME!! fake linebreaks below
2127 @smallexample
2128 .stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat:1,
2129 160,32;A_virt::32=##1;:i;2A*-2147483647;20;;B_virt::32:i;
2130 2A*-2147483647;25;;C_virt::32:i;2A*-2147483647;28;;D_virt:
2131 :32:i;2A*-2147483646;31;;;~%20;",128,0,0,0
2132 @end smallexample
2133
2134 Following the name and a semicolon is a type reference describing the
2135 type of the virtual base class pointer, in this case 24. Type 24 was
2136 defined earlier as the type of the B class `this` pointer. The
2137 `this' pointer for a class is a pointer to the class type.
2138
2139 @example
2140 .stabs "this:P24=*25=xsB:",64,0,0,8
2141 @end example
2142
2143 Finally the field offset part of the vbase pointer field description
2144 shows that the vbase pointer is the first field in the D object,
2145 before any data fields defined by the class. The layout of a D class
2146 object is a follows, Adat at 0, the vtable pointer for A at 32, Cdat
2147 at 64, the vtable pointer for C at 96, the virtual ase pointer for B
2148 at 128, and Ddat at 160.
2149
2150
2151 @node Static Members
2152 @section Static Members
2153
2154 The data area for a class is a concatenation of the space used by the
2155 data members of the class. If the class has virtual methods, a vtable
2156 pointer follows the class data. The field offset part of each field
2157 description in the class stab shows this ordering.
2158
2159 << How is this reflected in stabs? See Cygnus bug #677 for some info. >>
2160
2161 @node Example2.c
2162 @appendix Example2.c - source code for extended example
2163
2164 @example
2165 1 char g_foo = 'c';
2166 2 register int g_bar asm ("%g5");
2167 3 static int s_g_repeat = 2;
2168 4 int (*g_pf)();
2169 5
2170 6 struct s_tag @{
2171 7 int s_int;
2172 8 float s_float;
2173 9 char s_char_vec[8];
2174 10 struct s_tag* s_next;
2175 11 @} g_an_s;
2176 12
2177 13 typedef struct s_tag s_typedef;
2178 14
2179 15 char char_vec[3] = @{'a','b','c'@};
2180 16
2181 17 main (argc, argv)
2182 18 int argc;
2183 19 char* argv[];
2184 20 @{
2185 21 static float s_flap;
2186 22 int times;
2187 23 for (times=0; times < s_g_repeat; times++)@{
2188 24 int inner;
2189 25 printf ("Hello world\n");
2190 26 @}
2191 27 @};
2192 28
2193 29 enum e_places @{first,second=3,last@};
2194 30
2195 31 static s_proc (s_arg, s_ptr_arg, char_vec)
2196 32 s_typedef s_arg;
2197 33 s_typedef* s_ptr_arg;
2198 34 char* char_vec;
2199 35 @{
2200 36 union u_tag @{
2201 37 int u_int;
2202 38 float u_float;
2203 39 char* u_char;
2204 40 @} an_u;
2205 41 @}
2206 42
2207 43
2208 @end example
2209
2210 @node Example2.s
2211 @appendix Example2.s - assembly code for extended example
2212
2213 @example
2214 1 gcc2_compiled.:
2215 2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0
2216 3 .stabs "example2.c",100,0,0,Ltext0
2217 4 .text
2218 5 Ltext0:
2219 6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
2220 7 .stabs "char:t2=r2;0;127;",128,0,0,0
2221 8 .stabs "long int:t3=r1;-2147483648;2147483647;",128,0,0,0
2222 9 .stabs "unsigned int:t4=r1;0;-1;",128,0,0,0
2223 10 .stabs "long unsigned int:t5=r1;0;-1;",128,0,0,0
2224 11 .stabs "short int:t6=r1;-32768;32767;",128,0,0,0
2225 12 .stabs "long long int:t7=r1;0;-1;",128,0,0,0
2226 13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0
2227 14 .stabs "long long unsigned int:t9=r1;0;-1;",128,0,0,0
2228 15 .stabs "signed char:t10=r1;-128;127;",128,0,0,0
2229 16 .stabs "unsigned char:t11=r1;0;255;",128,0,0,0
2230 17 .stabs "float:t12=r1;4;0;",128,0,0,0
2231 18 .stabs "double:t13=r1;8;0;",128,0,0,0
2232 19 .stabs "long double:t14=r1;8;0;",128,0,0,0
2233 20 .stabs "void:t15=15",128,0,0,0
2234 21 .stabs "g_foo:G2",32,0,0,0
2235 22 .global _g_foo
2236 23 .data
2237 24 _g_foo:
2238 25 .byte 99
2239 26 .stabs "s_g_repeat:S1",38,0,0,_s_g_repeat
2240 27 .align 4
2241 28 _s_g_repeat:
2242 29 .word 2
2243 @c FIXME! fake linebreak in line 30
2244 30 .stabs "s_tag:T16=s20s_int:1,0,32;s_float:12,32,32;s_char_vec:
2245 17=ar1;0;7;2,64,64;s_next:18=*16,128,32;;",128,0,0,0
2246 31 .stabs "s_typedef:t16",128,0,0,0
2247 32 .stabs "char_vec:G19=ar1;0;2;2",32,0,0,0
2248 33 .global _char_vec
2249 34 .align 4
2250 35 _char_vec:
2251 36 .byte 97
2252 37 .byte 98
2253 38 .byte 99
2254 39 .reserve _s_flap.0,4,"bss",4
2255 40 .text
2256 41 .align 4
2257 42 LC0:
2258 43 .ascii "Hello world\12\0"
2259 44 .align 4
2260 45 .global _main
2261 46 .proc 1
2262 47 _main:
2263 48 .stabn 68,0,20,LM1
2264 49 LM1:
2265 50 !#PROLOGUE# 0
2266 51 save %sp,-144,%sp
2267 52 !#PROLOGUE# 1
2268 53 st %i0,[%fp+68]
2269 54 st %i1,[%fp+72]
2270 55 call ___main,0
2271 56 nop
2272 57 LBB2:
2273 58 .stabn 68,0,23,LM2
2274 59 LM2:
2275 60 st %g0,[%fp-20]
2276 61 L2:
2277 62 sethi %hi(_s_g_repeat),%o0
2278 63 ld [%fp-20],%o1
2279 64 ld [%o0+%lo(_s_g_repeat)],%o0
2280 65 cmp %o1,%o0
2281 66 bge L3
2282 67 nop
2283 68 LBB3:
2284 69 .stabn 68,0,25,LM3
2285 70 LM3:
2286 71 sethi %hi(LC0),%o1
2287 72 or %o1,%lo(LC0),%o0
2288 73 call _printf,0
2289 74 nop
2290 75 .stabn 68,0,26,LM4
2291 76 LM4:
2292 77 LBE3:
2293 78 .stabn 68,0,23,LM5
2294 79 LM5:
2295 80 L4:
2296 81 ld [%fp-20],%o0
2297 82 add %o0,1,%o1
2298 83 st %o1,[%fp-20]
2299 84 b,a L2
2300 85 L3:
2301 86 .stabn 68,0,27,LM6
2302 87 LM6:
2303 88 LBE2:
2304 89 .stabn 68,0,27,LM7
2305 90 LM7:
2306 91 L1:
2307 92 ret
2308 93 restore
2309 94 .stabs "main:F1",36,0,0,_main
2310 95 .stabs "argc:p1",160,0,0,68
2311 96 .stabs "argv:p20=*21=*2",160,0,0,72
2312 97 .stabs "s_flap:V12",40,0,0,_s_flap.0
2313 98 .stabs "times:1",128,0,0,-20
2314 99 .stabn 192,0,0,LBB2
2315 100 .stabs "inner:1",128,0,0,-24
2316 101 .stabn 192,0,0,LBB3
2317 102 .stabn 224,0,0,LBE3
2318 103 .stabn 224,0,0,LBE2
2319 104 .stabs "e_places:T22=efirst:0,second:3,last:4,;",128,0,0,0
2320 @c FIXME: fake linebreak in line 105
2321 105 .stabs "u_tag:T23=u4u_int:1,0,32;u_float:12,0,32;u_char:21,0,32;;",
2322 128,0,0,0
2323 106 .align 4
2324 107 .proc 1
2325 108 _s_proc:
2326 109 .stabn 68,0,35,LM8
2327 110 LM8:
2328 111 !#PROLOGUE# 0
2329 112 save %sp,-120,%sp
2330 113 !#PROLOGUE# 1
2331 114 mov %i0,%o0
2332 115 st %i1,[%fp+72]
2333 116 st %i2,[%fp+76]
2334 117 LBB4:
2335 118 .stabn 68,0,41,LM9
2336 119 LM9:
2337 120 LBE4:
2338 121 .stabn 68,0,41,LM10
2339 122 LM10:
2340 123 L5:
2341 124 ret
2342 125 restore
2343 126 .stabs "s_proc:f1",36,0,0,_s_proc
2344 127 .stabs "s_arg:p16",160,0,0,0
2345 128 .stabs "s_ptr_arg:p18",160,0,0,72
2346 129 .stabs "char_vec:p21",160,0,0,76
2347 130 .stabs "an_u:23",128,0,0,-20
2348 131 .stabn 192,0,0,LBB4
2349 132 .stabn 224,0,0,LBE4
2350 133 .stabs "g_bar:r1",64,0,0,5
2351 134 .stabs "g_pf:G24=*25=f1",32,0,0,0
2352 135 .common _g_pf,4,"bss"
2353 136 .stabs "g_an_s:G16",32,0,0,0
2354 137 .common _g_an_s,20,"bss"
2355 @end example
2356
2357
2358 @node Quick reference
2359 @appendix Quick reference
2360
2361 @menu
2362 * Stab types:: Table A: Symbol types from stabs
2363 * Assembler types:: Table B: Symbol types from assembler and linker
2364 * Symbol descriptors:: Table C
2365 * Type Descriptors:: Table D
2366 @end menu
2367
2368 @node Stab types
2369 @section Table A: Symbol types from stabs
2370
2371 Table A lists stab types sorted by type number. Stab type numbers are
2372 32 and greater. This is the full list of stab numbers, including stab
2373 types that are used in languages other than C.
2374
2375 The #define names for these stab types are defined in:
2376 devo/include/aout/stab.def
2377
2378 @smallexample
2379 type type #define used to describe
2380 dec hex name source program feature
2381 ------------------------------------------------
2382 32 0x20 N_GYSM global symbol
2383 34 0X22 N_FNAME function name (for BSD Fortran)
2384 36 0x24 N_FUN function name or text segment variable for C
2385 38 0x26 N_STSYM static symbol (data segment w/internal linkage)
2386 40 0x28 N_LCSYM .lcomm symbol(BSS-seg variable w/internal linkage)
2387 42 0x2a N_MAIN Name of main routine (not used in C)
2388 48 0x30 N_PC global symbol (for Pascal)
2389 50 0x32 N_NSYMS number of symbols (according to Ultrix V4.0)
2390 52 0x34 N_NOMAP no DST map for sym (according to Ultrix V4.0)
2391 64 0x40 N_RSYM register variable
2392 66 0x42 N_M2C Modula-2 compilation unit
2393 68 0x44 N_SLINE line number in text segment
2394 70 0x46 N_DSLINE line number in data segment
2395
2396 72 0x48 N_BSLINE line number in bss segment
2397 72 0x48 N_BROWS Sun source code browser, path to .cb file
2398
2399 74 0x4a N_DEFD GNU Modula2 definition module dependency
2400
2401 80 0x50 N_EHDECL GNU C++ exception variable
2402 80 0x50 N_MOD2 Modula2 info "for imc" (according to Ultrix V4.0)
2403
2404 84 0x54 N_CATCH GNU C++ "catch" clause
2405 96 0x60 N_SSYM structure of union element
2406 100 0x64 N_SO path and name of source file
2407 128 0x80 N_LSYM automatic var in the stack
2408 (also used for type desc.)
2409 130 0x82 N_BINCL beginning of an include file (Sun only)
2410 132 0x84 N_SOL Name of sub-source (#include) file.
2411 160 0xa0 N_PSYM parameter variable
2412 162 0xa2 N_EINCL end of an include file
2413 164 0xa4 N_ENTRY alternate entry point
2414 192 0xc0 N_LBRAC beginning of a lexical block
2415 194 0xc2 N_EXCL place holder for a deleted include file
2416 196 0xc4 N_SCOPE modula2 scope information (Sun linker)
2417 224 0xe0 N_RBRAC end of a lexical block
2418 226 0xe2 N_BCOMM begin named common block
2419 228 0xe4 N_ECOMM end named common block
2420 232 0xe8 N_ECOML end common (local name)
2421
2422 << used on Gould systems for non-base registers syms >>
2423 240 0xf0 N_NBTEXT ??
2424 242 0xf2 N_NBDATA ??
2425 244 0xf4 N_NBBSS ??
2426 246 0xf6 N_NBSTS ??
2427 248 0xf8 N_NBLCS ??
2428 @end smallexample
2429
2430 @node Assembler types
2431 @section Table B: Symbol types from assembler and linker
2432
2433 Table B shows the types of symbol table entries that hold assembler
2434 and linker symbols.
2435
2436 The #define names for these n_types values are defined in
2437 /include/aout/aout64.h
2438
2439 @smallexample
2440 dec hex #define
2441 n_type n_type name used to describe
2442 ------------------------------------------
2443 1 0x0 N_UNDF undefined symbol
2444 2 0x2 N_ABS absolute symbol -- defined at a particular address
2445 3 0x3 extern " (vs. file scope)
2446 4 0x4 N_TEXT text symbol -- defined at offset in text segment
2447 5 0x5 extern " (vs. file scope)
2448 6 0x6 N_DATA data symbol -- defined at offset in data segment
2449 7 0x7 extern " (vs. file scope)
2450 8 0x8 N_BSS BSS symbol -- defined at offset in zero'd segment
2451 9 extern " (vs. file scope)
2452
2453 12 0x0C N_FN_SEQ func name for Sequent compilers (stab exception)
2454
2455 49 0x12 N_COMM common sym -- visable after shared lib dynamic link
2456 31 0x1f N_FN file name of a .o file
2457 @end smallexample
2458
2459 @node Symbol descriptors
2460 @section Table C: Symbol descriptors
2461
2462 @c Please keep this alphabetical
2463 @table @code
2464 @item (empty)
2465 Local variable, @xref{Automatic variables}.
2466
2467 @item C
2468 @xref{Parameters}.
2469
2470 @item f
2471 Local function, @xref{Procedures}.
2472
2473 @item F
2474 Global function, @xref{Procedures}.
2475
2476 @item G
2477 Global variable, @xref{Global Variables}.
2478
2479 @item i
2480 @xref{Parameters}.
2481
2482 @item p
2483 Argument list parameter @xref{Parameters}.
2484
2485 @item pP
2486 @xref{Parameters}.
2487
2488 @item pF
2489 @xref{Parameters}.
2490
2491 @item P
2492 @itemx R
2493 Register parameter @xref{Parameters}.
2494
2495 @item r
2496 Register variable, @xref{Register variables}.
2497
2498 @item S
2499 Static file scope variable @xref{Initialized statics},
2500 @xref{Un-initialized statics}.
2501
2502 @item t
2503 Type name, @xref{Typedefs}.
2504
2505 @item T
2506 enumeration, struct or union tag, @xref{Unions}.
2507
2508 @item v
2509 Call by reference, @xref{Parameters}.
2510
2511 @item V
2512 Static procedure scope variable @xref{Initialized statics},
2513 @xref{Un-initialized statics}.
2514
2515 @item X
2516 Function return variable, @xref{Parameters}.
2517 @end table
2518
2519 @node Type Descriptors
2520 @section Table D: Type Descriptors
2521
2522 @example
2523 descriptor meaning
2524 -------------------------------------
2525 (empty) type reference
2526 a array type
2527 e enumeration type
2528 f function type
2529 r range type
2530 s structure type
2531 u union specifications
2532 * pointer type
2533 @end example
2534
2535
2536 @node Expanded reference
2537 @appendix Expanded reference by stab type.
2538
2539 Format of an entry:
2540
2541 The first line is the symbol type expressed in decimal, hexadecimal,
2542 and as a #define (see devo/include/aout/stab.def).
2543
2544 The second line describes the language constructs the symbol type
2545 represents.
2546
2547 The third line is the stab format with the significant stab fields
2548 named and the rest NIL.
2549
2550 Subsequent lines expand upon the meaning and possible values for each
2551 significant stab field. # stands in for the type descriptor.
2552
2553 Finally, any further information.
2554
2555 @menu
2556 * N_GSYM:: Global variable
2557 * N_FNAME:: Function name (BSD Fortran)
2558 * N_FUN:: C Function name or text segment variable
2559 * N_STSYM:: Initialized static symbol
2560 * N_LCSYM:: Uninitialized static symbol
2561 * N_MAIN:: Name of main routine (not for C)
2562 * N_PC:: Pascal global symbol
2563 * N_NSYMS:: Number of symbols
2564 * N_NOMAP:: No DST map
2565 * N_RSYM:: Register variable
2566 * N_M2C:: Modula-2 compilation unit
2567 * N_SLINE:: Line number in text segment
2568 * N_DSLINE:: Line number in data segment
2569 * N_BSLINE:: Line number in bss segment
2570 * N_BROWS:: Path to .cb file for Sun source code browser
2571 * N_DEFD:: GNU Modula2 definition module dependency
2572 * N_EHDECL:: GNU C++ exception variable
2573 * N_MOD2:: Modula2 information "for imc"
2574 * N_CATCH:: GNU C++ "catch" clause
2575 * N_SSYM:: Structure or union element
2576 * N_SO:: Source file containing main
2577 * N_LSYM:: Automatic variable
2578 * N_BINCL:: Beginning of include file (Sun only)
2579 * N_SOL:: Name of include file
2580 * N_PSYM:: Parameter variable
2581 * N_EINCL:: End of include file
2582 * N_ENTRY:: Alternate entry point
2583 * N_LBRAC:: Beginning of lexical block
2584 * N_EXCL:: Deleted include file
2585 * N_SCOPE:: Modula2 scope information (Sun only)
2586 * N_RBRAC:: End of lexical block
2587 * N_BCOMM:: Begin named common block
2588 * N_ECOMM:: End named common block
2589 * N_ECOML:: End common
2590 * Gould:: non-base register symbols used on Gould systems
2591 * N_LENG:: Length of preceding entry
2592 @end menu
2593
2594 @node N_GSYM
2595 @section 32 - 0x20 - N_GYSM
2596
2597 @display
2598 Global variable.
2599
2600 .stabs "name", N_GSYM, NIL, NIL, NIL
2601 @end display
2602
2603 @example
2604 "name" -> "symbol_name:#type"
2605 # -> G
2606 @end example
2607
2608 Only the "name" field is significant. The location of the variable is
2609 obtained from the corresponding external symbol.
2610
2611 @node N_FNAME
2612 @section 34 - 0x22 - N_FNAME
2613 Function name (for BSD Fortran)
2614
2615 @display
2616 .stabs "name", N_FNAME, NIL, NIL, NIL
2617 @end display
2618
2619 @example
2620 "name" -> "function_name"
2621 @end example
2622
2623 Only the "name" field is significant. The location of the symbol is
2624 obtained from the corresponding extern symbol.
2625
2626 @node N_FUN
2627 @section 36 - 0x24 - N_FUN
2628 Function name or text segment variable for C.
2629
2630 @display
2631 .stabs "name", N_FUN, NIL, desc, value
2632 @end display
2633
2634 @example
2635 @exdent @emph{For functions:}
2636 "name" -> "proc_name:#return_type"
2637 # -> F (global function)
2638 f (local function)
2639 desc -> line num for proc start. (GCC doesn't set and DBX doesn't miss it.)
2640 value -> Code address of proc start.
2641
2642 @exdent @emph{For text segment variables:}
2643 <<How to create one?>>
2644 @end example
2645
2646 @node N_STSYM
2647 @section 38 - 0x26 - N_STSYM
2648 Initialized static symbol (data segment w/internal linkage).
2649
2650 @display
2651 .stabs "name", N_STSYM, NIL, NIL, value
2652 @end display
2653
2654 @example
2655 "name" -> "symbol_name#type"
2656 # -> S (scope global to compilation unit)
2657 -> V (scope local to a procedure)
2658 value -> Data Address
2659 @end example
2660
2661 @node N_LCSYM
2662 @section 40 - 0x28 - N_LCSYM
2663 Unitialized static (.lcomm) symbol(BSS segment w/internal linkage).
2664
2665 @display
2666 .stabs "name", N_LCLSYM, NIL, NIL, value
2667 @end display
2668
2669 @example
2670 "name" -> "symbol_name#type"
2671 # -> S (scope global to compilation unit)
2672 -> V (scope local to procedure)
2673 value -> BSS Address
2674 @end example
2675
2676 @node N_MAIN
2677 @section 42 - 0x2a - N_MAIN
2678 Name of main routine (not used in C)
2679
2680 @display
2681 .stabs "name", N_MAIN, NIL, NIL, NIL
2682 @end display
2683
2684 @example
2685 "name" -> "name_of_main_routine"
2686 @end example
2687
2688 @node N_PC
2689 @section 48 - 0x30 - N_PC
2690 Global symbol (for Pascal)
2691
2692 @display
2693 .stabs "name", N_PC, NIL, NIL, value
2694 @end display
2695
2696 @example
2697 "name" -> "symbol_name" <<?>>
2698 value -> supposedly the line number (stab.def is skeptical)
2699 @end example
2700
2701 @display
2702 stabdump.c says:
2703
2704 global pascal symbol: name,,0,subtype,line
2705 << subtype? >>
2706 @end display
2707
2708 @node N_NSYMS
2709 @section 50 - 0x32 - N_NSYMS
2710 Number of symbols (according to Ultrix V4.0)
2711
2712 @display
2713 0, files,,funcs,lines (stab.def)
2714 @end display
2715
2716 @node N_NOMAP
2717 @section 52 - 0x34 - N_NOMAP
2718 no DST map for sym (according to Ultrix V4.0)
2719
2720 @display
2721 name, ,0,type,ignored (stab.def)
2722 @end display
2723
2724 @node N_RSYM
2725 @section 64 - 0x40 - N_RSYM
2726 register variable
2727
2728 @display
2729 .stabs "name:type",N_RSYM,0,RegSize,RegNumber (Sun doc)
2730 @end display
2731
2732 @node N_M2C
2733 @section 66 - 0x42 - N_M2C
2734 Modula-2 compilation unit
2735
2736 @display
2737 .stabs "name", N_M2C, 0, desc, value
2738 @end display
2739
2740 @example
2741 "name" -> "unit_name,unit_time_stamp[,code_time_stamp]
2742 desc -> unit_number
2743 value -> 0 (main unit)
2744 1 (any other unit)
2745 @end example
2746
2747 @node N_SLINE
2748 @section 68 - 0x44 - N_SLINE
2749 Line number in text segment
2750
2751 @display
2752 .stabn N_SLINE, 0, desc, value
2753 @end display
2754
2755 @example
2756 desc -> line_number
2757 value -> code_address (relocatable addr where the corresponding code starts)
2758 @end example
2759
2760 For single source lines that generate discontiguous code, such as flow
2761 of control statements, there may be more than one N_SLINE stab for the
2762 same source line. In this case there is a stab at the start of each
2763 code range, each with the same line number.
2764
2765 @node N_DSLINE
2766 @section 70 - 0x46 - N_DSLINE
2767 Line number in data segment
2768
2769 @display
2770 .stabn N_DSLINE, 0, desc, value
2771 @end display
2772
2773 @example
2774 desc -> line_number
2775 value -> data_address (relocatable addr where the corresponding code
2776 starts)
2777 @end example
2778
2779 See comment for N_SLINE above.
2780
2781 @node N_BSLINE
2782 @section 72 - 0x48 - N_BSLINE
2783 Line number in bss segment
2784
2785 @display
2786 .stabn N_BSLINE, 0, desc, value
2787 @end display
2788
2789 @example
2790 desc -> line_number
2791 value -> bss_address (relocatable addr where the corresponding code
2792 starts)
2793 @end example
2794
2795 See comment for N_SLINE above.
2796
2797 @node N_BROWS
2798 @section 72 - 0x48 - N_BROWS
2799 Sun source code browser, path to .cb file
2800
2801 <<?>>
2802 "path to associated .cb file"
2803
2804 Note: type field value overlaps with N_BSLINE
2805
2806 @node N_DEFD
2807 @section 74 - 0x4a - N_DEFD
2808 GNU Modula2 definition module dependency
2809
2810 GNU Modula-2 definition module dependency. Value is the modification
2811 time of the definition file. Other is non-zero if it is imported with
2812 the GNU M2 keyword %INITIALIZE. Perhaps N_M2C can be used if there
2813 are enough empty fields?
2814
2815 @node N_EHDECL
2816 @section 80 - 0x50 - N_EHDECL
2817 GNU C++ exception variable <<?>>
2818
2819 "name is variable name"
2820
2821 Note: conflicts with N_MOD2.
2822
2823 @node N_MOD2
2824 @section 80 - 0x50 - N_MOD2
2825 Modula2 info "for imc" (according to Ultrix V4.0)
2826
2827 Note: conflicts with N_EHDECL <<?>>
2828
2829 @node N_CATCH
2830 @section 84 - 0x54 - N_CATCH
2831 GNU C++ "catch" clause
2832
2833 GNU C++ `catch' clause. Value is its address. Desc is nonzero if
2834 this entry is immediately followed by a CAUGHT stab saying what
2835 exception was caught. Multiple CAUGHT stabs means that multiple
2836 exceptions can be caught here. If Desc is 0, it means all exceptions
2837 are caught here.
2838
2839 @node N_SSYM
2840 @section 96 - 0x60 - N_SSYM
2841 Structure or union element
2842
2843 Value is offset in the structure.
2844
2845 <<?looking at structs and unions in C I didn't see these>>
2846
2847 @node N_SO
2848 @section 100 - 0x64 - N_SO
2849 Path and name of source file containing main routine
2850
2851 @display
2852 .stabs "name", N_SO, NIL, NIL, value
2853 @end display
2854
2855 @example
2856 "name" -> /source/directory/
2857 -> source_file
2858
2859 value -> the starting text address of the compilation.
2860 @end example
2861
2862 These are found two in a row. The name field of the first N_SO contains
2863 the directory that the source file is relative to. The name field of
2864 the second N_SO contains the name of the source file itself.
2865
2866 Only some compilers (e.g. gcc2, Sun cc) include the directory; this
2867 symbol can be distinguished by the fact that it ends in a slash.
2868 According to a comment in GDB's partial-stab.h, other compilers
2869 (especially unnamed C++ compilers) put out useless N_SO's for
2870 nonexistent source files (after the N_SO for the real source file).
2871
2872 @node N_LSYM
2873 @section 128 - 0x80 - N_LSYM
2874 Automatic var in the stack (also used for type descriptors.)
2875
2876 @display
2877 .stabs "name" N_LSYM, NIL, NIL, value
2878 @end display
2879
2880 @example
2881 @exdent @emph{For stack based local variables:}
2882
2883 "name" -> name of the variable
2884 value -> offset from frame pointer (negative)
2885
2886 @exdent @emph{For type descriptors:}
2887
2888 "name" -> "name_of_the_type:#type"
2889 # -> t
2890
2891 type -> type_ref (or) type_def
2892
2893 type_ref -> type_number
2894 type_def -> type_number=type_desc etc.
2895 @end example
2896
2897 Type may be either a type reference or a type definition. A type
2898 reference is a number that refers to a previously defined type. A
2899 type definition is the number that will refer to this type, followed
2900 by an equals sign, a type descriptor and the additional data that
2901 defines the type. See the Table D for type descriptors and the
2902 section on types for what data follows each type descriptor.
2903
2904 @node N_BINCL
2905 @section 130 - 0x82 - N_BINCL
2906
2907 Beginning of an include file (Sun only)
2908
2909 Beginning of an include file. Only Sun uses this. In an object file,
2910 only the name is significant. The Sun linker puts data into some of
2911 the other fields.
2912
2913 @node N_SOL
2914 @section 132 - 0x84 - N_SOL
2915
2916 Name of a sub-source file (#include file). Value is starting address
2917 of the compilation.
2918 <<?>>
2919
2920 @node N_PSYM
2921 @section 160 - 0xa0 - N_PSYM
2922
2923 Parameter variable. @xref{Parameters}.
2924
2925 @node N_EINCL
2926 @section 162 - 0xa2 - N_EINCL
2927
2928 End of an include file. This and N_BINCL act as brackets around the
2929 file's output. In an ojbect file, there is no significant data in
2930 this entry. The Sun linker puts data into some of the fields.
2931 <<?>>
2932
2933 @node N_ENTRY
2934 @section 164 - 0xa4 - N_ENTRY
2935
2936 Alternate entry point.
2937 Value is its address.
2938 <<?>>
2939
2940 @node N_LBRAC
2941 @section 192 - 0xc0 - N_LBRAC
2942
2943 Beginning of a lexical block (left brace). The variable defined
2944 inside the block precede the N_LBRAC symbol. Or can they follow as
2945 well as long as a new N_FUNC was not encountered. <<?>>
2946
2947 @display
2948 .stabn N_LBRAC, NIL, NIL, value
2949 @end display
2950
2951 @example
2952 value -> code address of block start.
2953 @end example
2954
2955 @node N_EXCL
2956 @section 194 - 0xc2 - N_EXCL
2957
2958 Place holder for a deleted include file. Replaces a N_BINCL and
2959 everything up to the corresponding N_EINCL. The Sun linker generates
2960 these when it finds multiple indentical copies of the symbols from an
2961 included file. This appears only in output from the Sun linker.
2962 <<?>>
2963
2964 @node N_SCOPE
2965 @section 196 - 0xc4 - N_SCOPE
2966
2967 Modula2 scope information (Sun linker)
2968 <<?>>
2969
2970 @node N_RBRAC
2971 @section 224 - 0xe0 - N_RBRAC
2972
2973 End of a lexical block (right brace)
2974
2975 @display
2976 .stabn N_RBRAC, NIL, NIL, value
2977 @end display
2978
2979 @example
2980 value -> code address of the end of the block.
2981 @end example
2982
2983 @node N_BCOMM
2984 @section 226 - 0xe2 - N_BCOMM
2985
2986 Begin named common block.
2987
2988 Only the name is significant.
2989 <<?>>
2990
2991 @node N_ECOMM
2992 @section 228 - 0xe4 - N_ECOMM
2993
2994 End named common block.
2995
2996 Only the name is significant and it should match the N_BCOMM
2997 <<?>>
2998
2999 @node N_ECOML
3000 @section 232 - 0xe8 - N_ECOML
3001
3002 End common (local name)
3003
3004 value is address.
3005 <<?>>
3006
3007 @node Gould
3008 @section Non-base registers on Gould systems
3009 << used on Gould systems for non-base registers syms, values assigned
3010 at random, need real info from Gould. >>
3011 <<?>>
3012
3013 @example
3014 240 0xf0 N_NBTEXT ??
3015 242 0xf2 N_NBDATA ??
3016 244 0xf4 N_NBBSS ??
3017 246 0xf6 N_NBSTS ??
3018 248 0xf8 N_NBLCS ??
3019 @end example
3020
3021 @node N_LENG
3022 @section - 0xfe - N_LENG
3023
3024 Second symbol entry containing a length-value for the preceding entry.
3025 The value is the length.
3026
3027 @node Questions
3028 @appendix Questions and anomalies
3029
3030 @itemize @bullet
3031 @item
3032 For GNU C stabs defining local and global variables (N_LSYM and
3033 N_GSYM), the desc field is supposed to contain the source line number
3034 on which the variable is defined. In reality the desc field is always
3035 0. (This behavour is defined in dbxout.c and putting a line number in
3036 desc is controlled by #ifdef WINNING_GDB which defaults to false). Gdb
3037 supposedly uses this information if you say 'list var'. In reality
3038 var can be a variable defined in the program and gdb says `function
3039 var not defined'
3040
3041 @item
3042 In GNU C stabs there seems to be no way to differentiate tag types:
3043 structures, unions, and enums (symbol descriptor T) and typedefs
3044 (symbol descriptor t) defined at file scope from types defined locally
3045 to a procedure or other more local scope. They all use the N_LSYM
3046 stab type. Types defined at procedure scope are emited after the
3047 N_RBRAC of the preceding function and before the code of the
3048 procedure in which they are defined. This is exactly the same as
3049 types defined in the source file between the two procedure bodies.
3050 GDB overcompensates by placing all types in block #1, the block for
3051 symbols of file scope. This is true for default, -ansi and
3052 -traditional compiler options. (Bugs gcc/1063, gdb/1066.)
3053
3054 @item
3055 What ends the procedure scope? Is it the proc block's N_RBRAC or the
3056 next N_FUN? (I believe its the first.)
3057
3058 @item
3059 The comment in xcoff.h says DBX_STATIC_CONST_VAR_CODE is used for
3060 static const variables. DBX_STATIC_CONST_VAR_CODE is set to N_FUN by
3061 default, in dbxout.c. If included, xcoff.h redefines it to N_STSYM.
3062 But testing the default behaviour, my Sun4 native example shows
3063 N_STSYM not N_FUN is used to describe file static initialized
3064 variables. (the code tests for TREE_READONLY(decl) &&
3065 !TREE_THIS_VOLATILE(decl) and if true uses DBX_STATIC_CONST_VAR_CODE).
3066
3067 @item
3068 Global variable stabs don't have location information. This comes
3069 from the external symbol for the same variable. The external symbol
3070 has a leading underbar on the _name of the variable and the stab does
3071 not. How do we know these two symbol table entries are talking about
3072 the same symbol when their names are different?
3073
3074 @item
3075 Can gcc be configured to output stabs the way the Sun compiler
3076 does, so that their native debugging tools work? <NO?> It doesn't by
3077 default. GDB reads either format of stab. (gcc or SunC). How about
3078 dbx?
3079 @end itemize
3080
3081 @node xcoff-differences
3082 @appendix Differences between GNU stabs in a.out and GNU stabs in xcoff
3083
3084 @c FIXME: Merge *all* these into the main body of the document.
3085 (The AIX/RS6000 native object file format is xcoff with stabs). This
3086 appendix only covers those differences which are not covered in the main
3087 body of this document.
3088
3089 @itemize @bullet
3090 @item
3091 Instead of .stabs, xcoff uses .stabx.
3092
3093 @item
3094 The data fields of an xcoff .stabx are in a different order than an
3095 a.out .stabs. The order is: string, value, type. The desc and null
3096 fields present in a.out stabs are missing in xcoff stabs. For N_GSYM
3097 the value field is the name of the symbol.
3098
3099 @item
3100 BSD a.out stab types correspond to AIX xcoff storage classes. In general the
3101 mapping is N_STABTYPE becomes C_STABTYPE. Some stab types in a.out
3102 are not supported in xcoff. See Table E. for full mappings.
3103
3104 exception:
3105 initialised static N_STSYM and un-initialized static N_LCSYM both map
3106 to the C_STSYM storage class. But the destinction is preserved
3107 because in xcoff N_STSYM and N_LCSYM must be emited in a named static
3108 block. Begin the block with .bs s[RW] data_section_name for N_STSYM
3109 or .bs s bss_section_name for N_LCSYM. End the block with .es
3110
3111 @item
3112 xcoff stabs describing tags and typedefs use the N_DECL (0x8c)instead
3113 of N_LSYM stab type.
3114
3115 @item
3116 xcoff uses N_RPSYM (0x8e) instead of the N_RSYM stab type for register
3117 variables. If the register variable is also a value parameter, then
3118 use R instead of P for the symbol descriptor.
3119
3120 6.
3121 xcoff uses negative numbers as type references to the basic types.
3122 There are no boilerplate type definitions emited for these basic
3123 types. << make table of basic types and type numbers for C >>
3124
3125 @item
3126 xcoff .stabx sometimes don't have the name part of the string field.
3127
3128 @item
3129 xcoff uses a .file stab type to represent the source file name. There
3130 is no stab for the path to the source file.
3131
3132 @item
3133 xcoff uses a .line stab type to represent source lines. The format
3134 is: .line line_number.
3135
3136 @item
3137 xcoff emits line numbers relative to the start of the current
3138 function. The start of a function is marked by .bf. If a function
3139 includes lines from a seperate file, then those line numbers are
3140 absolute line numbers in the <<sub-?>> file being compiled.
3141
3142 @item
3143 The start of current include file is marked with: .bi "filename" and
3144 the end marked with .ei "filename"
3145
3146 @item
3147 If the xcoff stab is a N_FUN (C_FUN) then follow the string field with
3148 ,. instead of just ,
3149 @end itemize
3150
3151
3152 (I think that's it for .s file differences. They could stand to be
3153 better presented. This is just a list of what I have noticed so far.
3154 There are a *lot* of differences in the information in the symbol
3155 tables of the executable and object files.)
3156
3157 Table E: mapping a.out stab types to xcoff storage classes
3158
3159 @example
3160 stab type storage class
3161 -------------------------------
3162 N_GSYM C_GSYM
3163 N_FNAME unknown
3164 N_FUN C_FUN
3165 N_STSYM C_STSYM
3166 N_LCSYM C_STSYM
3167 N_MAIN unkown
3168 N_PC unknown
3169 N_RSYM C_RSYM
3170 N_RPSYM (0x8e) C_RPSYM
3171 N_M2C unknown
3172 N_SLINE unknown
3173 N_DSLINE unknown
3174 N_BSLINE unknown
3175 N_BROWSE unchanged
3176 N_CATCH unknown
3177 N_SSYM unknown
3178 N_SO unknown
3179 N_LSYM C_LSYM
3180 N_DECL (0x8c) C_DECL
3181 N_BINCL unknown
3182 N_SOL unknown
3183 N_PSYM C_PSYM
3184 N_EINCL unknown
3185 N_ENTRY C_ENTRY
3186 N_LBRAC unknown
3187 N_EXCL unknown
3188 N_SCOPE unknown
3189 N_RBRAC unknown
3190 N_BCOMM C_BCOMM
3191 N_ECOMM C_ECOMM
3192 N_ECOML C_ECOML
3193
3194 N_LENG unknown
3195 @end example
3196
3197 @node Sun-differences
3198 @appendix Differences between GNU stabs and Sun native stabs.
3199
3200 @c FIXME: Merge all this stuff into the main body of the document.
3201
3202 @itemize @bullet
3203 @item
3204 GNU C stabs define *all* types, file or procedure scope, as
3205 N_LSYM. Sun doc talks about using N_GSYM too.
3206
3207 @item
3208 Stabs describing block scopes, N_LBRAC and N_RBRAC are supposed to
3209 contain the nesting level of the block in the desc field, re Sun doc.
3210 GNU stabs always have 0 in that field. dbx seems not to care.
3211
3212 @item
3213 Sun C stabs use type number pairs in the format (a,b) where a is a
3214 number starting with 1 and incremented for each sub-source file in the
3215 compilation. b is a number starting with 1 and incremented for each
3216 new type defined in the compilation. GNU C stabs use the type number
3217 alone, with no source file number.
3218 @end itemize
3219
3220 @contents
3221 @bye