[gdb/symtab] Use unrelocated addresses in call_site
[binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2021 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit-head.h"
36 #include "dwarf2/cu.h"
37 #include "dwarf2/index-cache.h"
38 #include "dwarf2/index-common.h"
39 #include "dwarf2/leb.h"
40 #include "dwarf2/line-header.h"
41 #include "dwarf2/dwz.h"
42 #include "dwarf2/macro.h"
43 #include "dwarf2/die.h"
44 #include "dwarf2/sect-names.h"
45 #include "dwarf2/stringify.h"
46 #include "dwarf2/public.h"
47 #include "bfd.h"
48 #include "elf-bfd.h"
49 #include "symtab.h"
50 #include "gdbtypes.h"
51 #include "objfiles.h"
52 #include "dwarf2.h"
53 #include "demangle.h"
54 #include "gdb-demangle.h"
55 #include "filenames.h" /* for DOSish file names */
56 #include "language.h"
57 #include "complaints.h"
58 #include "dwarf2/expr.h"
59 #include "dwarf2/loc.h"
60 #include "cp-support.h"
61 #include "hashtab.h"
62 #include "command.h"
63 #include "gdbcmd.h"
64 #include "block.h"
65 #include "addrmap.h"
66 #include "typeprint.h"
67 #include "psympriv.h"
68 #include "c-lang.h"
69 #include "go-lang.h"
70 #include "valprint.h"
71 #include "gdbcore.h" /* for gnutarget */
72 #include "gdb/gdb-index.h"
73 #include "gdb_bfd.h"
74 #include "f-lang.h"
75 #include "source.h"
76 #include "build-id.h"
77 #include "namespace.h"
78 #include "gdbsupport/function-view.h"
79 #include "gdbsupport/gdb_optional.h"
80 #include "gdbsupport/underlying.h"
81 #include "gdbsupport/hash_enum.h"
82 #include "filename-seen-cache.h"
83 #include "producer.h"
84 #include <fcntl.h>
85 #include <algorithm>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
88 #include "rust-lang.h"
89 #include "gdbsupport/pathstuff.h"
90 #include "count-one-bits.h"
91 #include <unordered_set>
92
93 /* When == 1, print basic high level tracing messages.
94 When > 1, be more verbose.
95 This is in contrast to the low level DIE reading of dwarf_die_debug. */
96 static unsigned int dwarf_read_debug = 0;
97
98 /* Print a "dwarf-read" debug statement if dwarf_read_debug is >= 1. */
99
100 #define dwarf_read_debug_printf(fmt, ...) \
101 debug_prefixed_printf_cond (dwarf_read_debug >= 1, "dwarf-read", fmt, \
102 ##__VA_ARGS__)
103
104 /* Print a "dwarf-read" debug statement if dwarf_read_debug is >= 2. */
105
106 #define dwarf_read_debug_printf_v(fmt, ...) \
107 debug_prefixed_printf_cond (dwarf_read_debug >= 2, "dwarf-read", fmt, \
108 ##__VA_ARGS__)
109
110 /* When non-zero, dump DIEs after they are read in. */
111 static unsigned int dwarf_die_debug = 0;
112
113 /* When non-zero, dump line number entries as they are read in. */
114 unsigned int dwarf_line_debug = 0;
115
116 /* When true, cross-check physname against demangler. */
117 static bool check_physname = false;
118
119 /* When true, do not reject deprecated .gdb_index sections. */
120 static bool use_deprecated_index_sections = false;
121
122 /* This is used to store the data that is always per objfile. */
123 static const objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
124
125 /* These are used to store the dwarf2_per_bfd objects.
126
127 objfiles having the same BFD, which doesn't require relocations, are going to
128 share a dwarf2_per_bfd object, which is held in the _bfd_data_key version.
129
130 Other objfiles are not going to share a dwarf2_per_bfd with any other
131 objfiles, so they'll have their own version kept in the _objfile_data_key
132 version. */
133 static const struct bfd_key<dwarf2_per_bfd> dwarf2_per_bfd_bfd_data_key;
134 static const struct objfile_key<dwarf2_per_bfd> dwarf2_per_bfd_objfile_data_key;
135
136 /* The "aclass" indices for various kinds of computed DWARF symbols. */
137
138 static int dwarf2_locexpr_index;
139 static int dwarf2_loclist_index;
140 static int dwarf2_locexpr_block_index;
141 static int dwarf2_loclist_block_index;
142
143 /* Size of .debug_loclists section header for 32-bit DWARF format. */
144 #define LOCLIST_HEADER_SIZE32 12
145
146 /* Size of .debug_loclists section header for 64-bit DWARF format. */
147 #define LOCLIST_HEADER_SIZE64 20
148
149 /* Size of .debug_rnglists section header for 32-bit DWARF format. */
150 #define RNGLIST_HEADER_SIZE32 12
151
152 /* Size of .debug_rnglists section header for 64-bit DWARF format. */
153 #define RNGLIST_HEADER_SIZE64 20
154
155 /* An index into a (C++) symbol name component in a symbol name as
156 recorded in the mapped_index's symbol table. For each C++ symbol
157 in the symbol table, we record one entry for the start of each
158 component in the symbol in a table of name components, and then
159 sort the table, in order to be able to binary search symbol names,
160 ignoring leading namespaces, both completion and regular look up.
161 For example, for symbol "A::B::C", we'll have an entry that points
162 to "A::B::C", another that points to "B::C", and another for "C".
163 Note that function symbols in GDB index have no parameter
164 information, just the function/method names. You can convert a
165 name_component to a "const char *" using the
166 'mapped_index::symbol_name_at(offset_type)' method. */
167
168 struct name_component
169 {
170 /* Offset in the symbol name where the component starts. Stored as
171 a (32-bit) offset instead of a pointer to save memory and improve
172 locality on 64-bit architectures. */
173 offset_type name_offset;
174
175 /* The symbol's index in the symbol and constant pool tables of a
176 mapped_index. */
177 offset_type idx;
178 };
179
180 /* Base class containing bits shared by both .gdb_index and
181 .debug_name indexes. */
182
183 struct mapped_index_base
184 {
185 mapped_index_base () = default;
186 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
187
188 /* The name_component table (a sorted vector). See name_component's
189 description above. */
190 std::vector<name_component> name_components;
191
192 /* How NAME_COMPONENTS is sorted. */
193 enum case_sensitivity name_components_casing;
194
195 /* Return the number of names in the symbol table. */
196 virtual size_t symbol_name_count () const = 0;
197
198 /* Get the name of the symbol at IDX in the symbol table. */
199 virtual const char *symbol_name_at
200 (offset_type idx, dwarf2_per_objfile *per_objfile) const = 0;
201
202 /* Return whether the name at IDX in the symbol table should be
203 ignored. */
204 virtual bool symbol_name_slot_invalid (offset_type idx) const
205 {
206 return false;
207 }
208
209 /* Build the symbol name component sorted vector, if we haven't
210 yet. */
211 void build_name_components (dwarf2_per_objfile *per_objfile);
212
213 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
214 possible matches for LN_NO_PARAMS in the name component
215 vector. */
216 std::pair<std::vector<name_component>::const_iterator,
217 std::vector<name_component>::const_iterator>
218 find_name_components_bounds (const lookup_name_info &ln_no_params,
219 enum language lang,
220 dwarf2_per_objfile *per_objfile) const;
221
222 /* Prevent deleting/destroying via a base class pointer. */
223 protected:
224 ~mapped_index_base() = default;
225 };
226
227 /* This is a view into the index that converts from bytes to an
228 offset_type, and allows indexing. Unaligned bytes are specifically
229 allowed here, and handled via unpacking. */
230
231 class offset_view
232 {
233 public:
234 offset_view () = default;
235
236 explicit offset_view (gdb::array_view<const gdb_byte> bytes)
237 : m_bytes (bytes)
238 {
239 }
240
241 /* Extract the INDEXth offset_type from the array. */
242 offset_type operator[] (size_t index) const
243 {
244 const gdb_byte *bytes = &m_bytes[index * sizeof (offset_type)];
245 return (offset_type) extract_unsigned_integer (bytes,
246 sizeof (offset_type),
247 BFD_ENDIAN_LITTLE);
248 }
249
250 /* Return the number of offset_types in this array. */
251 size_t size () const
252 {
253 return m_bytes.size () / sizeof (offset_type);
254 }
255
256 /* Return true if this view is empty. */
257 bool empty () const
258 {
259 return m_bytes.empty ();
260 }
261
262 private:
263 /* The underlying bytes. */
264 gdb::array_view<const gdb_byte> m_bytes;
265 };
266
267 /* A description of the mapped index. The file format is described in
268 a comment by the code that writes the index. */
269 struct mapped_index final : public mapped_index_base
270 {
271 /* Index data format version. */
272 int version = 0;
273
274 /* The address table data. */
275 gdb::array_view<const gdb_byte> address_table;
276
277 /* The symbol table, implemented as a hash table. */
278 offset_view symbol_table;
279
280 /* A pointer to the constant pool. */
281 gdb::array_view<const gdb_byte> constant_pool;
282
283 /* Return the index into the constant pool of the name of the IDXth
284 symbol in the symbol table. */
285 offset_type symbol_name_index (offset_type idx) const
286 {
287 return symbol_table[2 * idx];
288 }
289
290 /* Return the index into the constant pool of the CU vector of the
291 IDXth symbol in the symbol table. */
292 offset_type symbol_vec_index (offset_type idx) const
293 {
294 return symbol_table[2 * idx + 1];
295 }
296
297 bool symbol_name_slot_invalid (offset_type idx) const override
298 {
299 return (symbol_name_index (idx) == 0
300 && symbol_vec_index (idx) == 0);
301 }
302
303 /* Convenience method to get at the name of the symbol at IDX in the
304 symbol table. */
305 const char *symbol_name_at
306 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
307 {
308 return (const char *) (this->constant_pool.data ()
309 + symbol_name_index (idx));
310 }
311
312 size_t symbol_name_count () const override
313 { return this->symbol_table.size () / 2; }
314 };
315
316 /* A description of the mapped .debug_names.
317 Uninitialized map has CU_COUNT 0. */
318 struct mapped_debug_names final : public mapped_index_base
319 {
320 bfd_endian dwarf5_byte_order;
321 bool dwarf5_is_dwarf64;
322 bool augmentation_is_gdb;
323 uint8_t offset_size;
324 uint32_t cu_count = 0;
325 uint32_t tu_count, bucket_count, name_count;
326 const gdb_byte *cu_table_reordered, *tu_table_reordered;
327 const uint32_t *bucket_table_reordered, *hash_table_reordered;
328 const gdb_byte *name_table_string_offs_reordered;
329 const gdb_byte *name_table_entry_offs_reordered;
330 const gdb_byte *entry_pool;
331
332 struct index_val
333 {
334 ULONGEST dwarf_tag;
335 struct attr
336 {
337 /* Attribute name DW_IDX_*. */
338 ULONGEST dw_idx;
339
340 /* Attribute form DW_FORM_*. */
341 ULONGEST form;
342
343 /* Value if FORM is DW_FORM_implicit_const. */
344 LONGEST implicit_const;
345 };
346 std::vector<attr> attr_vec;
347 };
348
349 std::unordered_map<ULONGEST, index_val> abbrev_map;
350
351 const char *namei_to_name
352 (uint32_t namei, dwarf2_per_objfile *per_objfile) const;
353
354 /* Implementation of the mapped_index_base virtual interface, for
355 the name_components cache. */
356
357 const char *symbol_name_at
358 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
359 { return namei_to_name (idx, per_objfile); }
360
361 size_t symbol_name_count () const override
362 { return this->name_count; }
363 };
364
365 /* See dwarf2read.h. */
366
367 dwarf2_per_objfile *
368 get_dwarf2_per_objfile (struct objfile *objfile)
369 {
370 return dwarf2_objfile_data_key.get (objfile);
371 }
372
373 /* Default names of the debugging sections. */
374
375 /* Note that if the debugging section has been compressed, it might
376 have a name like .zdebug_info. */
377
378 const struct dwarf2_debug_sections dwarf2_elf_names =
379 {
380 { ".debug_info", ".zdebug_info" },
381 { ".debug_abbrev", ".zdebug_abbrev" },
382 { ".debug_line", ".zdebug_line" },
383 { ".debug_loc", ".zdebug_loc" },
384 { ".debug_loclists", ".zdebug_loclists" },
385 { ".debug_macinfo", ".zdebug_macinfo" },
386 { ".debug_macro", ".zdebug_macro" },
387 { ".debug_str", ".zdebug_str" },
388 { ".debug_str_offsets", ".zdebug_str_offsets" },
389 { ".debug_line_str", ".zdebug_line_str" },
390 { ".debug_ranges", ".zdebug_ranges" },
391 { ".debug_rnglists", ".zdebug_rnglists" },
392 { ".debug_types", ".zdebug_types" },
393 { ".debug_addr", ".zdebug_addr" },
394 { ".debug_frame", ".zdebug_frame" },
395 { ".eh_frame", NULL },
396 { ".gdb_index", ".zgdb_index" },
397 { ".debug_names", ".zdebug_names" },
398 { ".debug_aranges", ".zdebug_aranges" },
399 23
400 };
401
402 /* List of DWO/DWP sections. */
403
404 static const struct dwop_section_names
405 {
406 struct dwarf2_section_names abbrev_dwo;
407 struct dwarf2_section_names info_dwo;
408 struct dwarf2_section_names line_dwo;
409 struct dwarf2_section_names loc_dwo;
410 struct dwarf2_section_names loclists_dwo;
411 struct dwarf2_section_names macinfo_dwo;
412 struct dwarf2_section_names macro_dwo;
413 struct dwarf2_section_names rnglists_dwo;
414 struct dwarf2_section_names str_dwo;
415 struct dwarf2_section_names str_offsets_dwo;
416 struct dwarf2_section_names types_dwo;
417 struct dwarf2_section_names cu_index;
418 struct dwarf2_section_names tu_index;
419 }
420 dwop_section_names =
421 {
422 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
423 { ".debug_info.dwo", ".zdebug_info.dwo" },
424 { ".debug_line.dwo", ".zdebug_line.dwo" },
425 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
426 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
427 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
428 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
429 { ".debug_rnglists.dwo", ".zdebug_rnglists.dwo" },
430 { ".debug_str.dwo", ".zdebug_str.dwo" },
431 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
432 { ".debug_types.dwo", ".zdebug_types.dwo" },
433 { ".debug_cu_index", ".zdebug_cu_index" },
434 { ".debug_tu_index", ".zdebug_tu_index" },
435 };
436
437 /* local data types */
438
439 /* The location list and range list sections (.debug_loclists & .debug_rnglists)
440 begin with a header, which contains the following information. */
441 struct loclists_rnglists_header
442 {
443 /* A 4-byte or 12-byte length containing the length of the
444 set of entries for this compilation unit, not including the
445 length field itself. */
446 unsigned int length;
447
448 /* A 2-byte version identifier. */
449 short version;
450
451 /* A 1-byte unsigned integer containing the size in bytes of an address on
452 the target system. */
453 unsigned char addr_size;
454
455 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
456 on the target system. */
457 unsigned char segment_collector_size;
458
459 /* A 4-byte count of the number of offsets that follow the header. */
460 unsigned int offset_entry_count;
461 };
462
463 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
464 This includes type_unit_group and quick_file_names. */
465
466 struct stmt_list_hash
467 {
468 /* The DWO unit this table is from or NULL if there is none. */
469 struct dwo_unit *dwo_unit;
470
471 /* Offset in .debug_line or .debug_line.dwo. */
472 sect_offset line_sect_off;
473 };
474
475 /* Each element of dwarf2_per_bfd->type_unit_groups is a pointer to
476 an object of this type. This contains elements of type unit groups
477 that can be shared across objfiles. The non-shareable parts are in
478 type_unit_group_unshareable. */
479
480 struct type_unit_group : public dwarf2_per_cu_data
481 {
482 /* The TUs that share this DW_AT_stmt_list entry.
483 This is added to while parsing type units to build partial symtabs,
484 and is deleted afterwards and not used again. */
485 std::vector<signatured_type *> *tus = nullptr;
486
487 /* The data used to construct the hash key. */
488 struct stmt_list_hash hash {};
489 };
490
491 /* These sections are what may appear in a (real or virtual) DWO file. */
492
493 struct dwo_sections
494 {
495 struct dwarf2_section_info abbrev;
496 struct dwarf2_section_info line;
497 struct dwarf2_section_info loc;
498 struct dwarf2_section_info loclists;
499 struct dwarf2_section_info macinfo;
500 struct dwarf2_section_info macro;
501 struct dwarf2_section_info rnglists;
502 struct dwarf2_section_info str;
503 struct dwarf2_section_info str_offsets;
504 /* In the case of a virtual DWO file, these two are unused. */
505 struct dwarf2_section_info info;
506 std::vector<dwarf2_section_info> types;
507 };
508
509 /* CUs/TUs in DWP/DWO files. */
510
511 struct dwo_unit
512 {
513 /* Backlink to the containing struct dwo_file. */
514 struct dwo_file *dwo_file;
515
516 /* The "id" that distinguishes this CU/TU.
517 .debug_info calls this "dwo_id", .debug_types calls this "signature".
518 Since signatures came first, we stick with it for consistency. */
519 ULONGEST signature;
520
521 /* The section this CU/TU lives in, in the DWO file. */
522 struct dwarf2_section_info *section;
523
524 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
525 sect_offset sect_off;
526 unsigned int length;
527
528 /* For types, offset in the type's DIE of the type defined by this TU. */
529 cu_offset type_offset_in_tu;
530 };
531
532 /* include/dwarf2.h defines the DWP section codes.
533 It defines a max value but it doesn't define a min value, which we
534 use for error checking, so provide one. */
535
536 enum dwp_v2_section_ids
537 {
538 DW_SECT_MIN = 1
539 };
540
541 /* Data for one DWO file.
542
543 This includes virtual DWO files (a virtual DWO file is a DWO file as it
544 appears in a DWP file). DWP files don't really have DWO files per se -
545 comdat folding of types "loses" the DWO file they came from, and from
546 a high level view DWP files appear to contain a mass of random types.
547 However, to maintain consistency with the non-DWP case we pretend DWP
548 files contain virtual DWO files, and we assign each TU with one virtual
549 DWO file (generally based on the line and abbrev section offsets -
550 a heuristic that seems to work in practice). */
551
552 struct dwo_file
553 {
554 dwo_file () = default;
555 DISABLE_COPY_AND_ASSIGN (dwo_file);
556
557 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
558 For virtual DWO files the name is constructed from the section offsets
559 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
560 from related CU+TUs. */
561 const char *dwo_name = nullptr;
562
563 /* The DW_AT_comp_dir attribute. */
564 const char *comp_dir = nullptr;
565
566 /* The bfd, when the file is open. Otherwise this is NULL.
567 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
568 gdb_bfd_ref_ptr dbfd;
569
570 /* The sections that make up this DWO file.
571 Remember that for virtual DWO files in DWP V2 or DWP V5, these are virtual
572 sections (for lack of a better name). */
573 struct dwo_sections sections {};
574
575 /* The CUs in the file.
576 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
577 an extension to handle LLVM's Link Time Optimization output (where
578 multiple source files may be compiled into a single object/dwo pair). */
579 htab_up cus;
580
581 /* Table of TUs in the file.
582 Each element is a struct dwo_unit. */
583 htab_up tus;
584 };
585
586 /* These sections are what may appear in a DWP file. */
587
588 struct dwp_sections
589 {
590 /* These are used by all DWP versions (1, 2 and 5). */
591 struct dwarf2_section_info str;
592 struct dwarf2_section_info cu_index;
593 struct dwarf2_section_info tu_index;
594
595 /* These are only used by DWP version 2 and version 5 files.
596 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
597 sections are referenced by section number, and are not recorded here.
598 In DWP version 2 or 5 there is at most one copy of all these sections,
599 each section being (effectively) comprised of the concatenation of all of
600 the individual sections that exist in the version 1 format.
601 To keep the code simple we treat each of these concatenated pieces as a
602 section itself (a virtual section?). */
603 struct dwarf2_section_info abbrev;
604 struct dwarf2_section_info info;
605 struct dwarf2_section_info line;
606 struct dwarf2_section_info loc;
607 struct dwarf2_section_info loclists;
608 struct dwarf2_section_info macinfo;
609 struct dwarf2_section_info macro;
610 struct dwarf2_section_info rnglists;
611 struct dwarf2_section_info str_offsets;
612 struct dwarf2_section_info types;
613 };
614
615 /* These sections are what may appear in a virtual DWO file in DWP version 1.
616 A virtual DWO file is a DWO file as it appears in a DWP file. */
617
618 struct virtual_v1_dwo_sections
619 {
620 struct dwarf2_section_info abbrev;
621 struct dwarf2_section_info line;
622 struct dwarf2_section_info loc;
623 struct dwarf2_section_info macinfo;
624 struct dwarf2_section_info macro;
625 struct dwarf2_section_info str_offsets;
626 /* Each DWP hash table entry records one CU or one TU.
627 That is recorded here, and copied to dwo_unit.section. */
628 struct dwarf2_section_info info_or_types;
629 };
630
631 /* Similar to virtual_v1_dwo_sections, but for DWP version 2 or 5.
632 In version 2, the sections of the DWO files are concatenated together
633 and stored in one section of that name. Thus each ELF section contains
634 several "virtual" sections. */
635
636 struct virtual_v2_or_v5_dwo_sections
637 {
638 bfd_size_type abbrev_offset;
639 bfd_size_type abbrev_size;
640
641 bfd_size_type line_offset;
642 bfd_size_type line_size;
643
644 bfd_size_type loc_offset;
645 bfd_size_type loc_size;
646
647 bfd_size_type loclists_offset;
648 bfd_size_type loclists_size;
649
650 bfd_size_type macinfo_offset;
651 bfd_size_type macinfo_size;
652
653 bfd_size_type macro_offset;
654 bfd_size_type macro_size;
655
656 bfd_size_type rnglists_offset;
657 bfd_size_type rnglists_size;
658
659 bfd_size_type str_offsets_offset;
660 bfd_size_type str_offsets_size;
661
662 /* Each DWP hash table entry records one CU or one TU.
663 That is recorded here, and copied to dwo_unit.section. */
664 bfd_size_type info_or_types_offset;
665 bfd_size_type info_or_types_size;
666 };
667
668 /* Contents of DWP hash tables. */
669
670 struct dwp_hash_table
671 {
672 uint32_t version, nr_columns;
673 uint32_t nr_units, nr_slots;
674 const gdb_byte *hash_table, *unit_table;
675 union
676 {
677 struct
678 {
679 const gdb_byte *indices;
680 } v1;
681 struct
682 {
683 /* This is indexed by column number and gives the id of the section
684 in that column. */
685 #define MAX_NR_V2_DWO_SECTIONS \
686 (1 /* .debug_info or .debug_types */ \
687 + 1 /* .debug_abbrev */ \
688 + 1 /* .debug_line */ \
689 + 1 /* .debug_loc */ \
690 + 1 /* .debug_str_offsets */ \
691 + 1 /* .debug_macro or .debug_macinfo */)
692 int section_ids[MAX_NR_V2_DWO_SECTIONS];
693 const gdb_byte *offsets;
694 const gdb_byte *sizes;
695 } v2;
696 struct
697 {
698 /* This is indexed by column number and gives the id of the section
699 in that column. */
700 #define MAX_NR_V5_DWO_SECTIONS \
701 (1 /* .debug_info */ \
702 + 1 /* .debug_abbrev */ \
703 + 1 /* .debug_line */ \
704 + 1 /* .debug_loclists */ \
705 + 1 /* .debug_str_offsets */ \
706 + 1 /* .debug_macro */ \
707 + 1 /* .debug_rnglists */)
708 int section_ids[MAX_NR_V5_DWO_SECTIONS];
709 const gdb_byte *offsets;
710 const gdb_byte *sizes;
711 } v5;
712 } section_pool;
713 };
714
715 /* Data for one DWP file. */
716
717 struct dwp_file
718 {
719 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
720 : name (name_),
721 dbfd (std::move (abfd))
722 {
723 }
724
725 /* Name of the file. */
726 const char *name;
727
728 /* File format version. */
729 int version = 0;
730
731 /* The bfd. */
732 gdb_bfd_ref_ptr dbfd;
733
734 /* Section info for this file. */
735 struct dwp_sections sections {};
736
737 /* Table of CUs in the file. */
738 const struct dwp_hash_table *cus = nullptr;
739
740 /* Table of TUs in the file. */
741 const struct dwp_hash_table *tus = nullptr;
742
743 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
744 htab_up loaded_cus;
745 htab_up loaded_tus;
746
747 /* Table to map ELF section numbers to their sections.
748 This is only needed for the DWP V1 file format. */
749 unsigned int num_sections = 0;
750 asection **elf_sections = nullptr;
751 };
752
753 /* Struct used to pass misc. parameters to read_die_and_children, et
754 al. which are used for both .debug_info and .debug_types dies.
755 All parameters here are unchanging for the life of the call. This
756 struct exists to abstract away the constant parameters of die reading. */
757
758 struct die_reader_specs
759 {
760 /* The bfd of die_section. */
761 bfd *abfd;
762
763 /* The CU of the DIE we are parsing. */
764 struct dwarf2_cu *cu;
765
766 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
767 struct dwo_file *dwo_file;
768
769 /* The section the die comes from.
770 This is either .debug_info or .debug_types, or the .dwo variants. */
771 struct dwarf2_section_info *die_section;
772
773 /* die_section->buffer. */
774 const gdb_byte *buffer;
775
776 /* The end of the buffer. */
777 const gdb_byte *buffer_end;
778
779 /* The abbreviation table to use when reading the DIEs. */
780 struct abbrev_table *abbrev_table;
781 };
782
783 /* A subclass of die_reader_specs that holds storage and has complex
784 constructor and destructor behavior. */
785
786 class cutu_reader : public die_reader_specs
787 {
788 public:
789
790 cutu_reader (dwarf2_per_cu_data *this_cu,
791 dwarf2_per_objfile *per_objfile,
792 struct abbrev_table *abbrev_table,
793 dwarf2_cu *existing_cu,
794 bool skip_partial);
795
796 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
797 dwarf2_per_objfile *per_objfile,
798 struct dwarf2_cu *parent_cu = nullptr,
799 struct dwo_file *dwo_file = nullptr);
800
801 DISABLE_COPY_AND_ASSIGN (cutu_reader);
802
803 const gdb_byte *info_ptr = nullptr;
804 struct die_info *comp_unit_die = nullptr;
805 bool dummy_p = false;
806
807 /* Release the new CU, putting it on the chain. This cannot be done
808 for dummy CUs. */
809 void keep ();
810
811 private:
812 void init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
813 dwarf2_per_objfile *per_objfile,
814 dwarf2_cu *existing_cu);
815
816 struct dwarf2_per_cu_data *m_this_cu;
817 std::unique_ptr<dwarf2_cu> m_new_cu;
818
819 /* The ordinary abbreviation table. */
820 abbrev_table_up m_abbrev_table_holder;
821
822 /* The DWO abbreviation table. */
823 abbrev_table_up m_dwo_abbrev_table;
824 };
825
826 /* When we construct a partial symbol table entry we only
827 need this much information. */
828 struct partial_die_info : public allocate_on_obstack
829 {
830 partial_die_info (sect_offset sect_off, const struct abbrev_info *abbrev);
831
832 /* Disable assign but still keep copy ctor, which is needed
833 load_partial_dies. */
834 partial_die_info& operator=(const partial_die_info& rhs) = delete;
835 partial_die_info (const partial_die_info &) = default;
836
837 /* Adjust the partial die before generating a symbol for it. This
838 function may set the is_external flag or change the DIE's
839 name. */
840 void fixup (struct dwarf2_cu *cu);
841
842 /* Read a minimal amount of information into the minimal die
843 structure. */
844 const gdb_byte *read (const struct die_reader_specs *reader,
845 const struct abbrev_info &abbrev,
846 const gdb_byte *info_ptr);
847
848 /* Compute the name of this partial DIE. This memoizes the
849 result, so it is safe to call multiple times. */
850 const char *name (dwarf2_cu *cu);
851
852 /* Offset of this DIE. */
853 const sect_offset sect_off;
854
855 /* DWARF-2 tag for this DIE. */
856 const ENUM_BITFIELD(dwarf_tag) tag : 16;
857
858 /* Assorted flags describing the data found in this DIE. */
859 const unsigned int has_children : 1;
860
861 unsigned int is_external : 1;
862 unsigned int is_declaration : 1;
863 unsigned int has_type : 1;
864 unsigned int has_specification : 1;
865 unsigned int has_pc_info : 1;
866 unsigned int has_range_info : 1;
867 unsigned int may_be_inlined : 1;
868
869 /* This DIE has been marked DW_AT_main_subprogram. */
870 unsigned int main_subprogram : 1;
871
872 /* Flag set if the SCOPE field of this structure has been
873 computed. */
874 unsigned int scope_set : 1;
875
876 /* Flag set if the DIE has a byte_size attribute. */
877 unsigned int has_byte_size : 1;
878
879 /* Flag set if the DIE has a DW_AT_const_value attribute. */
880 unsigned int has_const_value : 1;
881
882 /* Flag set if any of the DIE's children are template arguments. */
883 unsigned int has_template_arguments : 1;
884
885 /* Flag set if fixup has been called on this die. */
886 unsigned int fixup_called : 1;
887
888 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
889 unsigned int is_dwz : 1;
890
891 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
892 unsigned int spec_is_dwz : 1;
893
894 unsigned int canonical_name : 1;
895
896 /* The name of this DIE. Normally the value of DW_AT_name, but
897 sometimes a default name for unnamed DIEs. */
898 const char *raw_name = nullptr;
899
900 /* The linkage name, if present. */
901 const char *linkage_name = nullptr;
902
903 /* The scope to prepend to our children. This is generally
904 allocated on the comp_unit_obstack, so will disappear
905 when this compilation unit leaves the cache. */
906 const char *scope = nullptr;
907
908 /* Some data associated with the partial DIE. The tag determines
909 which field is live. */
910 union
911 {
912 /* The location description associated with this DIE, if any. */
913 struct dwarf_block *locdesc;
914 /* The offset of an import, for DW_TAG_imported_unit. */
915 sect_offset sect_off;
916 } d {};
917
918 union
919 {
920 /* If HAS_PC_INFO, the PC range associated with this DIE. */
921 struct
922 {
923 CORE_ADDR lowpc;
924 CORE_ADDR highpc;
925 };
926 /* If HAS_RANGE_INFO, the ranges offset associated with this DIE. */
927 ULONGEST ranges_offset;
928 };
929
930 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
931 DW_AT_sibling, if any. */
932 /* NOTE: This member isn't strictly necessary, partial_die_info::read
933 could return DW_AT_sibling values to its caller load_partial_dies. */
934 const gdb_byte *sibling = nullptr;
935
936 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
937 DW_AT_specification (or DW_AT_abstract_origin or
938 DW_AT_extension). */
939 sect_offset spec_offset {};
940
941 /* Pointers to this DIE's parent, first child, and next sibling,
942 if any. */
943 struct partial_die_info *die_parent = nullptr;
944 struct partial_die_info *die_child = nullptr;
945 struct partial_die_info *die_sibling = nullptr;
946
947 friend struct partial_die_info *
948 dwarf2_cu::find_partial_die (sect_offset sect_off);
949
950 private:
951 /* Only need to do look up in dwarf2_cu::find_partial_die. */
952 partial_die_info (sect_offset sect_off)
953 : partial_die_info (sect_off, DW_TAG_padding, 0)
954 {
955 }
956
957 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
958 int has_children_)
959 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
960 {
961 is_external = 0;
962 is_declaration = 0;
963 has_type = 0;
964 has_specification = 0;
965 has_pc_info = 0;
966 has_range_info = 0;
967 may_be_inlined = 0;
968 main_subprogram = 0;
969 scope_set = 0;
970 has_byte_size = 0;
971 has_const_value = 0;
972 has_template_arguments = 0;
973 fixup_called = 0;
974 is_dwz = 0;
975 spec_is_dwz = 0;
976 canonical_name = 0;
977 /* Don't set these using NSDMI (Non-static data member initialisation),
978 because g++-4.8 will error out. */
979 lowpc = 0;
980 highpc = 0;
981 }
982 };
983
984 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
985 but this would require a corresponding change in unpack_field_as_long
986 and friends. */
987 static int bits_per_byte = 8;
988
989 struct variant_part_builder;
990
991 /* When reading a variant, we track a bit more information about the
992 field, and store it in an object of this type. */
993
994 struct variant_field
995 {
996 int first_field = -1;
997 int last_field = -1;
998
999 /* A variant can contain other variant parts. */
1000 std::vector<variant_part_builder> variant_parts;
1001
1002 /* If we see a DW_TAG_variant, then this will be set if this is the
1003 default branch. */
1004 bool default_branch = false;
1005 /* If we see a DW_AT_discr_value, then this will be the discriminant
1006 value. */
1007 ULONGEST discriminant_value = 0;
1008 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1009 data. */
1010 struct dwarf_block *discr_list_data = nullptr;
1011 };
1012
1013 /* This represents a DW_TAG_variant_part. */
1014
1015 struct variant_part_builder
1016 {
1017 /* The offset of the discriminant field. */
1018 sect_offset discriminant_offset {};
1019
1020 /* Variants that are direct children of this variant part. */
1021 std::vector<variant_field> variants;
1022
1023 /* True if we're currently reading a variant. */
1024 bool processing_variant = false;
1025 };
1026
1027 struct nextfield
1028 {
1029 int accessibility = 0;
1030 int virtuality = 0;
1031 /* Variant parts need to find the discriminant, which is a DIE
1032 reference. We track the section offset of each field to make
1033 this link. */
1034 sect_offset offset;
1035 struct field field {};
1036 };
1037
1038 struct fnfieldlist
1039 {
1040 const char *name = nullptr;
1041 std::vector<struct fn_field> fnfields;
1042 };
1043
1044 /* The routines that read and process dies for a C struct or C++ class
1045 pass lists of data member fields and lists of member function fields
1046 in an instance of a field_info structure, as defined below. */
1047 struct field_info
1048 {
1049 /* List of data member and baseclasses fields. */
1050 std::vector<struct nextfield> fields;
1051 std::vector<struct nextfield> baseclasses;
1052
1053 /* Set if the accessibility of one of the fields is not public. */
1054 bool non_public_fields = false;
1055
1056 /* Member function fieldlist array, contains name of possibly overloaded
1057 member function, number of overloaded member functions and a pointer
1058 to the head of the member function field chain. */
1059 std::vector<struct fnfieldlist> fnfieldlists;
1060
1061 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1062 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1063 std::vector<struct decl_field> typedef_field_list;
1064
1065 /* Nested types defined by this class and the number of elements in this
1066 list. */
1067 std::vector<struct decl_field> nested_types_list;
1068
1069 /* If non-null, this is the variant part we are currently
1070 reading. */
1071 variant_part_builder *current_variant_part = nullptr;
1072 /* This holds all the top-level variant parts attached to the type
1073 we're reading. */
1074 std::vector<variant_part_builder> variant_parts;
1075
1076 /* Return the total number of fields (including baseclasses). */
1077 int nfields () const
1078 {
1079 return fields.size () + baseclasses.size ();
1080 }
1081 };
1082
1083 /* Loaded secondary compilation units are kept in memory until they
1084 have not been referenced for the processing of this many
1085 compilation units. Set this to zero to disable caching. Cache
1086 sizes of up to at least twenty will improve startup time for
1087 typical inter-CU-reference binaries, at an obvious memory cost. */
1088 static int dwarf_max_cache_age = 5;
1089 static void
1090 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1091 struct cmd_list_element *c, const char *value)
1092 {
1093 fprintf_filtered (file, _("The upper bound on the age of cached "
1094 "DWARF compilation units is %s.\n"),
1095 value);
1096 }
1097 \f
1098 /* local function prototypes */
1099
1100 static void dwarf2_find_base_address (struct die_info *die,
1101 struct dwarf2_cu *cu);
1102
1103 static dwarf2_psymtab *create_partial_symtab
1104 (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
1105 const char *name);
1106
1107 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1108 const gdb_byte *info_ptr,
1109 struct die_info *type_unit_die);
1110
1111 static void dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile);
1112
1113 static void scan_partial_symbols (struct partial_die_info *,
1114 CORE_ADDR *, CORE_ADDR *,
1115 int, struct dwarf2_cu *);
1116
1117 static void add_partial_symbol (struct partial_die_info *,
1118 struct dwarf2_cu *);
1119
1120 static void add_partial_namespace (struct partial_die_info *pdi,
1121 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1122 int set_addrmap, struct dwarf2_cu *cu);
1123
1124 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1125 CORE_ADDR *highpc, int set_addrmap,
1126 struct dwarf2_cu *cu);
1127
1128 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1129 struct dwarf2_cu *cu);
1130
1131 static void add_partial_subprogram (struct partial_die_info *pdi,
1132 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1133 int need_pc, struct dwarf2_cu *cu);
1134
1135 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1136
1137 static struct partial_die_info *load_partial_dies
1138 (const struct die_reader_specs *, const gdb_byte *, int);
1139
1140 /* A pair of partial_die_info and compilation unit. */
1141 struct cu_partial_die_info
1142 {
1143 /* The compilation unit of the partial_die_info. */
1144 struct dwarf2_cu *cu;
1145 /* A partial_die_info. */
1146 struct partial_die_info *pdi;
1147
1148 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1149 : cu (cu),
1150 pdi (pdi)
1151 { /* Nothing. */ }
1152
1153 private:
1154 cu_partial_die_info () = delete;
1155 };
1156
1157 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1158 struct dwarf2_cu *);
1159
1160 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1161 struct attribute *,
1162 const struct attr_abbrev *,
1163 const gdb_byte *);
1164
1165 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1166 struct attribute *attr, dwarf_tag tag);
1167
1168 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1169
1170 static sect_offset read_abbrev_offset (dwarf2_per_objfile *per_objfile,
1171 dwarf2_section_info *, sect_offset);
1172
1173 static const char *read_indirect_string
1174 (dwarf2_per_objfile *per_objfile, bfd *, const gdb_byte *,
1175 const struct comp_unit_head *, unsigned int *);
1176
1177 static const char *read_indirect_string_at_offset
1178 (dwarf2_per_objfile *per_objfile, LONGEST str_offset);
1179
1180 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1181 const gdb_byte *,
1182 unsigned int *);
1183
1184 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1185 ULONGEST str_index);
1186
1187 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1188 ULONGEST str_index);
1189
1190 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1191 struct dwarf2_cu *);
1192
1193 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1194 struct dwarf2_cu *cu);
1195
1196 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1197
1198 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1199 struct dwarf2_cu *cu);
1200
1201 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1202
1203 static struct die_info *die_specification (struct die_info *die,
1204 struct dwarf2_cu **);
1205
1206 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1207 struct dwarf2_cu *cu);
1208
1209 struct file_and_directory;
1210 static void dwarf_decode_lines (struct line_header *,
1211 const file_and_directory &,
1212 struct dwarf2_cu *, dwarf2_psymtab *,
1213 CORE_ADDR, int decode_mapping);
1214
1215 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1216 const char *);
1217
1218 static struct symbol *new_symbol (struct die_info *, struct type *,
1219 struct dwarf2_cu *, struct symbol * = NULL);
1220
1221 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1222 struct dwarf2_cu *);
1223
1224 static void dwarf2_const_value_attr (const struct attribute *attr,
1225 struct type *type,
1226 const char *name,
1227 struct obstack *obstack,
1228 struct dwarf2_cu *cu, LONGEST *value,
1229 const gdb_byte **bytes,
1230 struct dwarf2_locexpr_baton **baton);
1231
1232 static struct type *read_subrange_index_type (struct die_info *die,
1233 struct dwarf2_cu *cu);
1234
1235 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1236
1237 static int need_gnat_info (struct dwarf2_cu *);
1238
1239 static struct type *die_descriptive_type (struct die_info *,
1240 struct dwarf2_cu *);
1241
1242 static void set_descriptive_type (struct type *, struct die_info *,
1243 struct dwarf2_cu *);
1244
1245 static struct type *die_containing_type (struct die_info *,
1246 struct dwarf2_cu *);
1247
1248 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1249 struct dwarf2_cu *);
1250
1251 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1252
1253 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1254
1255 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1256
1257 static char *typename_concat (struct obstack *obs, const char *prefix,
1258 const char *suffix, int physname,
1259 struct dwarf2_cu *cu);
1260
1261 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1262
1263 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1264
1265 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1266
1267 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1268
1269 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1270
1271 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1272
1273 /* Return the .debug_loclists section to use for cu. */
1274 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1275
1276 /* Return the .debug_rnglists section to use for cu. */
1277 static struct dwarf2_section_info *cu_debug_rnglists_section
1278 (struct dwarf2_cu *cu, dwarf_tag tag);
1279
1280 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1281 values. Keep the items ordered with increasing constraints compliance. */
1282 enum pc_bounds_kind
1283 {
1284 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1285 PC_BOUNDS_NOT_PRESENT,
1286
1287 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1288 were present but they do not form a valid range of PC addresses. */
1289 PC_BOUNDS_INVALID,
1290
1291 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1292 PC_BOUNDS_RANGES,
1293
1294 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1295 PC_BOUNDS_HIGH_LOW,
1296 };
1297
1298 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1299 CORE_ADDR *, CORE_ADDR *,
1300 struct dwarf2_cu *,
1301 dwarf2_psymtab *);
1302
1303 static void get_scope_pc_bounds (struct die_info *,
1304 CORE_ADDR *, CORE_ADDR *,
1305 struct dwarf2_cu *);
1306
1307 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1308 CORE_ADDR, struct dwarf2_cu *);
1309
1310 static void dwarf2_add_field (struct field_info *, struct die_info *,
1311 struct dwarf2_cu *);
1312
1313 static void dwarf2_attach_fields_to_type (struct field_info *,
1314 struct type *, struct dwarf2_cu *);
1315
1316 static void dwarf2_add_member_fn (struct field_info *,
1317 struct die_info *, struct type *,
1318 struct dwarf2_cu *);
1319
1320 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1321 struct type *,
1322 struct dwarf2_cu *);
1323
1324 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1325
1326 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1327
1328 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1329
1330 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1331
1332 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1333
1334 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1335
1336 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1337
1338 static struct type *read_module_type (struct die_info *die,
1339 struct dwarf2_cu *cu);
1340
1341 static const char *namespace_name (struct die_info *die,
1342 int *is_anonymous, struct dwarf2_cu *);
1343
1344 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1345
1346 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1347 bool * = nullptr);
1348
1349 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1350 struct dwarf2_cu *);
1351
1352 static struct die_info *read_die_and_siblings_1
1353 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1354 struct die_info *);
1355
1356 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1357 const gdb_byte *info_ptr,
1358 const gdb_byte **new_info_ptr,
1359 struct die_info *parent);
1360
1361 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1362 struct die_info **, const gdb_byte *,
1363 int);
1364
1365 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1366 struct die_info **, const gdb_byte *);
1367
1368 static void process_die (struct die_info *, struct dwarf2_cu *);
1369
1370 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1371 struct objfile *);
1372
1373 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1374
1375 static const char *dwarf2_full_name (const char *name,
1376 struct die_info *die,
1377 struct dwarf2_cu *cu);
1378
1379 static const char *dwarf2_physname (const char *name, struct die_info *die,
1380 struct dwarf2_cu *cu);
1381
1382 static struct die_info *dwarf2_extension (struct die_info *die,
1383 struct dwarf2_cu **);
1384
1385 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1386
1387 static void dump_die_for_error (struct die_info *);
1388
1389 static void dump_die_1 (struct ui_file *, int level, int max_level,
1390 struct die_info *);
1391
1392 /*static*/ void dump_die (struct die_info *, int max_level);
1393
1394 static void store_in_ref_table (struct die_info *,
1395 struct dwarf2_cu *);
1396
1397 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1398 const struct attribute *,
1399 struct dwarf2_cu **);
1400
1401 static struct die_info *follow_die_ref (struct die_info *,
1402 const struct attribute *,
1403 struct dwarf2_cu **);
1404
1405 static struct die_info *follow_die_sig (struct die_info *,
1406 const struct attribute *,
1407 struct dwarf2_cu **);
1408
1409 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1410 struct dwarf2_cu *);
1411
1412 static struct type *get_DW_AT_signature_type (struct die_info *,
1413 const struct attribute *,
1414 struct dwarf2_cu *);
1415
1416 static void load_full_type_unit (dwarf2_per_cu_data *per_cu,
1417 dwarf2_per_objfile *per_objfile);
1418
1419 static void read_signatured_type (signatured_type *sig_type,
1420 dwarf2_per_objfile *per_objfile);
1421
1422 static int attr_to_dynamic_prop (const struct attribute *attr,
1423 struct die_info *die, struct dwarf2_cu *cu,
1424 struct dynamic_prop *prop, struct type *type);
1425
1426 /* memory allocation interface */
1427
1428 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1429
1430 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1431
1432 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1433
1434 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1435 struct dwarf2_loclist_baton *baton,
1436 const struct attribute *attr);
1437
1438 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1439 struct symbol *sym,
1440 struct dwarf2_cu *cu,
1441 int is_block);
1442
1443 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 const struct abbrev_info *abbrev);
1446
1447 static hashval_t partial_die_hash (const void *item);
1448
1449 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1450
1451 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1452 (sect_offset sect_off, unsigned int offset_in_dwz,
1453 dwarf2_per_objfile *per_objfile);
1454
1455 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1456 struct die_info *comp_unit_die,
1457 enum language pretend_language);
1458
1459 static struct type *set_die_type (struct die_info *, struct type *,
1460 struct dwarf2_cu *, bool = false);
1461
1462 static void create_all_comp_units (dwarf2_per_objfile *per_objfile);
1463
1464 static void load_full_comp_unit (dwarf2_per_cu_data *per_cu,
1465 dwarf2_per_objfile *per_objfile,
1466 dwarf2_cu *existing_cu,
1467 bool skip_partial,
1468 enum language pretend_language);
1469
1470 static void process_full_comp_unit (dwarf2_cu *cu,
1471 enum language pretend_language);
1472
1473 static void process_full_type_unit (dwarf2_cu *cu,
1474 enum language pretend_language);
1475
1476 static struct type *get_die_type_at_offset (sect_offset,
1477 dwarf2_per_cu_data *per_cu,
1478 dwarf2_per_objfile *per_objfile);
1479
1480 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1481
1482 static void queue_comp_unit (dwarf2_per_cu_data *per_cu,
1483 dwarf2_per_objfile *per_objfile,
1484 enum language pretend_language);
1485
1486 static void process_queue (dwarf2_per_objfile *per_objfile);
1487
1488 /* Class, the destructor of which frees all allocated queue entries. This
1489 will only have work to do if an error was thrown while processing the
1490 dwarf. If no error was thrown then the queue entries should have all
1491 been processed, and freed, as we went along. */
1492
1493 class dwarf2_queue_guard
1494 {
1495 public:
1496 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1497 : m_per_objfile (per_objfile)
1498 {
1499 gdb_assert (!m_per_objfile->per_bfd->queue.has_value ());
1500
1501 m_per_objfile->per_bfd->queue.emplace ();
1502 }
1503
1504 /* Free any entries remaining on the queue. There should only be
1505 entries left if we hit an error while processing the dwarf. */
1506 ~dwarf2_queue_guard ()
1507 {
1508 gdb_assert (m_per_objfile->per_bfd->queue.has_value ());
1509
1510 m_per_objfile->per_bfd->queue.reset ();
1511 }
1512
1513 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1514
1515 private:
1516 dwarf2_per_objfile *m_per_objfile;
1517 };
1518
1519 dwarf2_queue_item::~dwarf2_queue_item ()
1520 {
1521 /* Anything still marked queued is likely to be in an
1522 inconsistent state, so discard it. */
1523 if (per_cu->queued)
1524 {
1525 per_objfile->remove_cu (per_cu);
1526 per_cu->queued = 0;
1527 }
1528 }
1529
1530 /* See dwarf2/read.h. */
1531
1532 void
1533 dwarf2_per_cu_data_deleter::operator() (dwarf2_per_cu_data *data)
1534 {
1535 if (data->is_debug_types)
1536 delete static_cast<signatured_type *> (data);
1537 else
1538 delete data;
1539 }
1540
1541 /* The return type of find_file_and_directory. Note, the enclosed
1542 string pointers are only valid while this object is valid. */
1543
1544 struct file_and_directory
1545 {
1546 /* The filename. This is never NULL. */
1547 const char *name;
1548
1549 /* The compilation directory. NULL if not known. If we needed to
1550 compute a new string, it will be stored in the per-BFD string
1551 bcache; otherwise, points directly to the DW_AT_comp_dir string
1552 attribute owned by the obstack that owns the DIE. */
1553 const char *comp_dir;
1554 };
1555
1556 static file_and_directory find_file_and_directory (struct die_info *die,
1557 struct dwarf2_cu *cu);
1558
1559 static const char *compute_include_file_name
1560 (const struct line_header *lh,
1561 const file_entry &fe,
1562 const file_and_directory &cu_info,
1563 gdb::unique_xmalloc_ptr<char> *name_holder);
1564
1565 static htab_up allocate_signatured_type_table ();
1566
1567 static htab_up allocate_dwo_unit_table ();
1568
1569 static struct dwo_unit *lookup_dwo_unit_in_dwp
1570 (dwarf2_per_objfile *per_objfile, struct dwp_file *dwp_file,
1571 const char *comp_dir, ULONGEST signature, int is_debug_types);
1572
1573 static struct dwp_file *get_dwp_file (dwarf2_per_objfile *per_objfile);
1574
1575 static struct dwo_unit *lookup_dwo_comp_unit
1576 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
1577 ULONGEST signature);
1578
1579 static struct dwo_unit *lookup_dwo_type_unit
1580 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir);
1581
1582 static void queue_and_load_all_dwo_tus (dwarf2_cu *cu);
1583
1584 /* A unique pointer to a dwo_file. */
1585
1586 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1587
1588 static void process_cu_includes (dwarf2_per_objfile *per_objfile);
1589
1590 static void check_producer (struct dwarf2_cu *cu);
1591 \f
1592 /* Various complaints about symbol reading that don't abort the process. */
1593
1594 static void
1595 dwarf2_debug_line_missing_file_complaint (void)
1596 {
1597 complaint (_(".debug_line section has line data without a file"));
1598 }
1599
1600 static void
1601 dwarf2_debug_line_missing_end_sequence_complaint (void)
1602 {
1603 complaint (_(".debug_line section has line "
1604 "program sequence without an end"));
1605 }
1606
1607 static void
1608 dwarf2_complex_location_expr_complaint (void)
1609 {
1610 complaint (_("location expression too complex"));
1611 }
1612
1613 static void
1614 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1615 int arg3)
1616 {
1617 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1618 arg1, arg2, arg3);
1619 }
1620
1621 static void
1622 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1623 {
1624 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1625 arg1, arg2);
1626 }
1627
1628 /* Hash function for line_header_hash. */
1629
1630 static hashval_t
1631 line_header_hash (const struct line_header *ofs)
1632 {
1633 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1634 }
1635
1636 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1637
1638 static hashval_t
1639 line_header_hash_voidp (const void *item)
1640 {
1641 const struct line_header *ofs = (const struct line_header *) item;
1642
1643 return line_header_hash (ofs);
1644 }
1645
1646 /* Equality function for line_header_hash. */
1647
1648 static int
1649 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1650 {
1651 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1652 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1653
1654 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1655 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1656 }
1657
1658 \f
1659
1660 /* An iterator for all_comp_units that is based on index. This
1661 approach makes it possible to iterate over all_comp_units safely,
1662 when some caller in the loop may add new units. */
1663
1664 class all_comp_units_iterator
1665 {
1666 public:
1667
1668 all_comp_units_iterator (dwarf2_per_bfd *per_bfd, bool start)
1669 : m_per_bfd (per_bfd),
1670 m_index (start ? 0 : per_bfd->all_comp_units.size ())
1671 {
1672 }
1673
1674 all_comp_units_iterator &operator++ ()
1675 {
1676 ++m_index;
1677 return *this;
1678 }
1679
1680 dwarf2_per_cu_data *operator* () const
1681 {
1682 return m_per_bfd->get_cu (m_index);
1683 }
1684
1685 bool operator== (const all_comp_units_iterator &other) const
1686 {
1687 return m_index == other.m_index;
1688 }
1689
1690
1691 bool operator!= (const all_comp_units_iterator &other) const
1692 {
1693 return m_index != other.m_index;
1694 }
1695
1696 private:
1697
1698 dwarf2_per_bfd *m_per_bfd;
1699 size_t m_index;
1700 };
1701
1702 /* A range adapter for the all_comp_units_iterator. */
1703 class all_comp_units_range
1704 {
1705 public:
1706
1707 all_comp_units_range (dwarf2_per_bfd *per_bfd)
1708 : m_per_bfd (per_bfd)
1709 {
1710 }
1711
1712 all_comp_units_iterator begin ()
1713 {
1714 return all_comp_units_iterator (m_per_bfd, true);
1715 }
1716
1717 all_comp_units_iterator end ()
1718 {
1719 return all_comp_units_iterator (m_per_bfd, false);
1720 }
1721
1722 private:
1723
1724 dwarf2_per_bfd *m_per_bfd;
1725 };
1726
1727 /* See declaration. */
1728
1729 dwarf2_per_bfd::dwarf2_per_bfd (bfd *obfd, const dwarf2_debug_sections *names,
1730 bool can_copy_)
1731 : obfd (obfd),
1732 can_copy (can_copy_)
1733 {
1734 if (names == NULL)
1735 names = &dwarf2_elf_names;
1736
1737 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1738 locate_sections (obfd, sec, *names);
1739 }
1740
1741 dwarf2_per_bfd::~dwarf2_per_bfd ()
1742 {
1743 for (auto &per_cu : all_comp_units)
1744 {
1745 per_cu->imported_symtabs_free ();
1746 per_cu->free_cached_file_names ();
1747 }
1748
1749 /* Everything else should be on this->obstack. */
1750 }
1751
1752 /* See read.h. */
1753
1754 void
1755 dwarf2_per_objfile::remove_all_cus ()
1756 {
1757 gdb_assert (!this->per_bfd->queue.has_value ());
1758
1759 for (auto pair : m_dwarf2_cus)
1760 delete pair.second;
1761
1762 m_dwarf2_cus.clear ();
1763 }
1764
1765 /* A helper class that calls free_cached_comp_units on
1766 destruction. */
1767
1768 class free_cached_comp_units
1769 {
1770 public:
1771
1772 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1773 : m_per_objfile (per_objfile)
1774 {
1775 }
1776
1777 ~free_cached_comp_units ()
1778 {
1779 m_per_objfile->remove_all_cus ();
1780 }
1781
1782 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1783
1784 private:
1785
1786 dwarf2_per_objfile *m_per_objfile;
1787 };
1788
1789 /* See read.h. */
1790
1791 bool
1792 dwarf2_per_objfile::symtab_set_p (const dwarf2_per_cu_data *per_cu) const
1793 {
1794 if (per_cu->index < this->m_symtabs.size ())
1795 return this->m_symtabs[per_cu->index] != nullptr;
1796 return false;
1797 }
1798
1799 /* See read.h. */
1800
1801 compunit_symtab *
1802 dwarf2_per_objfile::get_symtab (const dwarf2_per_cu_data *per_cu) const
1803 {
1804 if (per_cu->index < this->m_symtabs.size ())
1805 return this->m_symtabs[per_cu->index];
1806 return nullptr;
1807 }
1808
1809 /* See read.h. */
1810
1811 void
1812 dwarf2_per_objfile::set_symtab (const dwarf2_per_cu_data *per_cu,
1813 compunit_symtab *symtab)
1814 {
1815 if (per_cu->index >= this->m_symtabs.size ())
1816 this->m_symtabs.resize (per_cu->index + 1);
1817 gdb_assert (this->m_symtabs[per_cu->index] == nullptr);
1818 this->m_symtabs[per_cu->index] = symtab;
1819 }
1820
1821 /* Try to locate the sections we need for DWARF 2 debugging
1822 information and return true if we have enough to do something.
1823 NAMES points to the dwarf2 section names, or is NULL if the standard
1824 ELF names are used. CAN_COPY is true for formats where symbol
1825 interposition is possible and so symbol values must follow copy
1826 relocation rules. */
1827
1828 int
1829 dwarf2_has_info (struct objfile *objfile,
1830 const struct dwarf2_debug_sections *names,
1831 bool can_copy)
1832 {
1833 if (objfile->flags & OBJF_READNEVER)
1834 return 0;
1835
1836 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
1837
1838 if (per_objfile == NULL)
1839 {
1840 dwarf2_per_bfd *per_bfd;
1841
1842 /* We can share a "dwarf2_per_bfd" with other objfiles if the
1843 BFD doesn't require relocations.
1844
1845 We don't share with objfiles for which -readnow was requested,
1846 because it would complicate things when loading the same BFD with
1847 -readnow and then without -readnow. */
1848 if (!gdb_bfd_requires_relocations (objfile->obfd)
1849 && (objfile->flags & OBJF_READNOW) == 0)
1850 {
1851 /* See if one has been created for this BFD yet. */
1852 per_bfd = dwarf2_per_bfd_bfd_data_key.get (objfile->obfd);
1853
1854 if (per_bfd == nullptr)
1855 {
1856 /* No, create it now. */
1857 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1858 dwarf2_per_bfd_bfd_data_key.set (objfile->obfd, per_bfd);
1859 }
1860 }
1861 else
1862 {
1863 /* No sharing possible, create one specifically for this objfile. */
1864 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1865 dwarf2_per_bfd_objfile_data_key.set (objfile, per_bfd);
1866 }
1867
1868 per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile, per_bfd);
1869 }
1870
1871 return (!per_objfile->per_bfd->info.is_virtual
1872 && per_objfile->per_bfd->info.s.section != NULL
1873 && !per_objfile->per_bfd->abbrev.is_virtual
1874 && per_objfile->per_bfd->abbrev.s.section != NULL);
1875 }
1876
1877 /* See declaration. */
1878
1879 void
1880 dwarf2_per_bfd::locate_sections (bfd *abfd, asection *sectp,
1881 const dwarf2_debug_sections &names)
1882 {
1883 flagword aflag = bfd_section_flags (sectp);
1884
1885 if ((aflag & SEC_HAS_CONTENTS) == 0)
1886 {
1887 }
1888 else if (elf_section_data (sectp)->this_hdr.sh_size
1889 > bfd_get_file_size (abfd))
1890 {
1891 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1892 warning (_("Discarding section %s which has a section size (%s"
1893 ") larger than the file size [in module %s]"),
1894 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1895 bfd_get_filename (abfd));
1896 }
1897 else if (names.info.matches (sectp->name))
1898 {
1899 this->info.s.section = sectp;
1900 this->info.size = bfd_section_size (sectp);
1901 }
1902 else if (names.abbrev.matches (sectp->name))
1903 {
1904 this->abbrev.s.section = sectp;
1905 this->abbrev.size = bfd_section_size (sectp);
1906 }
1907 else if (names.line.matches (sectp->name))
1908 {
1909 this->line.s.section = sectp;
1910 this->line.size = bfd_section_size (sectp);
1911 }
1912 else if (names.loc.matches (sectp->name))
1913 {
1914 this->loc.s.section = sectp;
1915 this->loc.size = bfd_section_size (sectp);
1916 }
1917 else if (names.loclists.matches (sectp->name))
1918 {
1919 this->loclists.s.section = sectp;
1920 this->loclists.size = bfd_section_size (sectp);
1921 }
1922 else if (names.macinfo.matches (sectp->name))
1923 {
1924 this->macinfo.s.section = sectp;
1925 this->macinfo.size = bfd_section_size (sectp);
1926 }
1927 else if (names.macro.matches (sectp->name))
1928 {
1929 this->macro.s.section = sectp;
1930 this->macro.size = bfd_section_size (sectp);
1931 }
1932 else if (names.str.matches (sectp->name))
1933 {
1934 this->str.s.section = sectp;
1935 this->str.size = bfd_section_size (sectp);
1936 }
1937 else if (names.str_offsets.matches (sectp->name))
1938 {
1939 this->str_offsets.s.section = sectp;
1940 this->str_offsets.size = bfd_section_size (sectp);
1941 }
1942 else if (names.line_str.matches (sectp->name))
1943 {
1944 this->line_str.s.section = sectp;
1945 this->line_str.size = bfd_section_size (sectp);
1946 }
1947 else if (names.addr.matches (sectp->name))
1948 {
1949 this->addr.s.section = sectp;
1950 this->addr.size = bfd_section_size (sectp);
1951 }
1952 else if (names.frame.matches (sectp->name))
1953 {
1954 this->frame.s.section = sectp;
1955 this->frame.size = bfd_section_size (sectp);
1956 }
1957 else if (names.eh_frame.matches (sectp->name))
1958 {
1959 this->eh_frame.s.section = sectp;
1960 this->eh_frame.size = bfd_section_size (sectp);
1961 }
1962 else if (names.ranges.matches (sectp->name))
1963 {
1964 this->ranges.s.section = sectp;
1965 this->ranges.size = bfd_section_size (sectp);
1966 }
1967 else if (names.rnglists.matches (sectp->name))
1968 {
1969 this->rnglists.s.section = sectp;
1970 this->rnglists.size = bfd_section_size (sectp);
1971 }
1972 else if (names.types.matches (sectp->name))
1973 {
1974 struct dwarf2_section_info type_section;
1975
1976 memset (&type_section, 0, sizeof (type_section));
1977 type_section.s.section = sectp;
1978 type_section.size = bfd_section_size (sectp);
1979
1980 this->types.push_back (type_section);
1981 }
1982 else if (names.gdb_index.matches (sectp->name))
1983 {
1984 this->gdb_index.s.section = sectp;
1985 this->gdb_index.size = bfd_section_size (sectp);
1986 }
1987 else if (names.debug_names.matches (sectp->name))
1988 {
1989 this->debug_names.s.section = sectp;
1990 this->debug_names.size = bfd_section_size (sectp);
1991 }
1992 else if (names.debug_aranges.matches (sectp->name))
1993 {
1994 this->debug_aranges.s.section = sectp;
1995 this->debug_aranges.size = bfd_section_size (sectp);
1996 }
1997
1998 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
1999 && bfd_section_vma (sectp) == 0)
2000 this->has_section_at_zero = true;
2001 }
2002
2003 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2004 SECTION_NAME. */
2005
2006 void
2007 dwarf2_get_section_info (struct objfile *objfile,
2008 enum dwarf2_section_enum sect,
2009 asection **sectp, const gdb_byte **bufp,
2010 bfd_size_type *sizep)
2011 {
2012 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
2013 struct dwarf2_section_info *info;
2014
2015 /* We may see an objfile without any DWARF, in which case we just
2016 return nothing. */
2017 if (per_objfile == NULL)
2018 {
2019 *sectp = NULL;
2020 *bufp = NULL;
2021 *sizep = 0;
2022 return;
2023 }
2024 switch (sect)
2025 {
2026 case DWARF2_DEBUG_FRAME:
2027 info = &per_objfile->per_bfd->frame;
2028 break;
2029 case DWARF2_EH_FRAME:
2030 info = &per_objfile->per_bfd->eh_frame;
2031 break;
2032 default:
2033 gdb_assert_not_reached ("unexpected section");
2034 }
2035
2036 info->read (objfile);
2037
2038 *sectp = info->get_bfd_section ();
2039 *bufp = info->buffer;
2040 *sizep = info->size;
2041 }
2042
2043 \f
2044 /* DWARF quick_symbol_functions support. */
2045
2046 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2047 unique line tables, so we maintain a separate table of all .debug_line
2048 derived entries to support the sharing.
2049 All the quick functions need is the list of file names. We discard the
2050 line_header when we're done and don't need to record it here. */
2051 struct quick_file_names
2052 {
2053 /* The data used to construct the hash key. */
2054 struct stmt_list_hash hash;
2055
2056 /* The number of entries in file_names, real_names. */
2057 unsigned int num_file_names;
2058
2059 /* The CU directory, as given by DW_AT_comp_dir. May be
2060 nullptr. */
2061 const char *comp_dir;
2062
2063 /* The file names from the line table, after being run through
2064 file_full_name. */
2065 const char **file_names;
2066
2067 /* The file names from the line table after being run through
2068 gdb_realpath. These are computed lazily. */
2069 const char **real_names;
2070 };
2071
2072 /* When using the index (and thus not using psymtabs), each CU has an
2073 object of this type. This is used to hold information needed by
2074 the various "quick" methods. */
2075 struct dwarf2_per_cu_quick_data
2076 {
2077 /* The file table. This can be NULL if there was no file table
2078 or it's currently not read in.
2079 NOTE: This points into dwarf2_per_objfile->per_bfd->quick_file_names_table. */
2080 struct quick_file_names *file_names;
2081
2082 /* A temporary mark bit used when iterating over all CUs in
2083 expand_symtabs_matching. */
2084 unsigned int mark : 1;
2085
2086 /* True if we've tried to read the file table. There will be no
2087 point in trying to read it again next time. */
2088 bool files_read : 1;
2089 };
2090
2091 /* A subclass of psymbol_functions that arranges to read the DWARF
2092 partial symbols when needed. */
2093 struct lazy_dwarf_reader : public psymbol_functions
2094 {
2095 using psymbol_functions::psymbol_functions;
2096
2097 bool can_lazily_read_symbols () override
2098 {
2099 return true;
2100 }
2101
2102 void read_partial_symbols (struct objfile *objfile) override
2103 {
2104 if (dwarf2_has_info (objfile, nullptr))
2105 dwarf2_build_psymtabs (objfile, this);
2106 }
2107 };
2108
2109 static quick_symbol_functions_up
2110 make_lazy_dwarf_reader ()
2111 {
2112 return quick_symbol_functions_up (new lazy_dwarf_reader);
2113 }
2114
2115 struct dwarf2_base_index_functions : public quick_symbol_functions
2116 {
2117 bool has_symbols (struct objfile *objfile) override;
2118
2119 bool has_unexpanded_symtabs (struct objfile *objfile) override;
2120
2121 struct symtab *find_last_source_symtab (struct objfile *objfile) override;
2122
2123 void forget_cached_source_info (struct objfile *objfile) override;
2124
2125 enum language lookup_global_symbol_language (struct objfile *objfile,
2126 const char *name,
2127 domain_enum domain,
2128 bool *symbol_found_p) override
2129 {
2130 *symbol_found_p = false;
2131 return language_unknown;
2132 }
2133
2134 void print_stats (struct objfile *objfile, bool print_bcache) override;
2135
2136 void expand_all_symtabs (struct objfile *objfile) override;
2137
2138 struct compunit_symtab *find_pc_sect_compunit_symtab
2139 (struct objfile *objfile, struct bound_minimal_symbol msymbol,
2140 CORE_ADDR pc, struct obj_section *section, int warn_if_readin) override;
2141
2142 struct compunit_symtab *find_compunit_symtab_by_address
2143 (struct objfile *objfile, CORE_ADDR address) override
2144 {
2145 return nullptr;
2146 }
2147
2148 void map_symbol_filenames (struct objfile *objfile,
2149 gdb::function_view<symbol_filename_ftype> fun,
2150 bool need_fullname) override;
2151 };
2152
2153 struct dwarf2_gdb_index : public dwarf2_base_index_functions
2154 {
2155 void dump (struct objfile *objfile) override;
2156
2157 void expand_matching_symbols
2158 (struct objfile *,
2159 const lookup_name_info &lookup_name,
2160 domain_enum domain,
2161 int global,
2162 symbol_compare_ftype *ordered_compare) override;
2163
2164 bool expand_symtabs_matching
2165 (struct objfile *objfile,
2166 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
2167 const lookup_name_info *lookup_name,
2168 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
2169 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
2170 block_search_flags search_flags,
2171 domain_enum domain,
2172 enum search_domain kind) override;
2173 };
2174
2175 struct dwarf2_debug_names_index : public dwarf2_base_index_functions
2176 {
2177 void dump (struct objfile *objfile) override;
2178
2179 void expand_matching_symbols
2180 (struct objfile *,
2181 const lookup_name_info &lookup_name,
2182 domain_enum domain,
2183 int global,
2184 symbol_compare_ftype *ordered_compare) override;
2185
2186 bool expand_symtabs_matching
2187 (struct objfile *objfile,
2188 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
2189 const lookup_name_info *lookup_name,
2190 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
2191 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
2192 block_search_flags search_flags,
2193 domain_enum domain,
2194 enum search_domain kind) override;
2195 };
2196
2197 static quick_symbol_functions_up
2198 make_dwarf_gdb_index ()
2199 {
2200 return quick_symbol_functions_up (new dwarf2_gdb_index);
2201 }
2202
2203 static quick_symbol_functions_up
2204 make_dwarf_debug_names ()
2205 {
2206 return quick_symbol_functions_up (new dwarf2_debug_names_index);
2207 }
2208
2209 /* Utility hash function for a stmt_list_hash. */
2210
2211 static hashval_t
2212 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2213 {
2214 hashval_t v = 0;
2215
2216 if (stmt_list_hash->dwo_unit != NULL)
2217 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2218 v += to_underlying (stmt_list_hash->line_sect_off);
2219 return v;
2220 }
2221
2222 /* Utility equality function for a stmt_list_hash. */
2223
2224 static int
2225 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2226 const struct stmt_list_hash *rhs)
2227 {
2228 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2229 return 0;
2230 if (lhs->dwo_unit != NULL
2231 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2232 return 0;
2233
2234 return lhs->line_sect_off == rhs->line_sect_off;
2235 }
2236
2237 /* Hash function for a quick_file_names. */
2238
2239 static hashval_t
2240 hash_file_name_entry (const void *e)
2241 {
2242 const struct quick_file_names *file_data
2243 = (const struct quick_file_names *) e;
2244
2245 return hash_stmt_list_entry (&file_data->hash);
2246 }
2247
2248 /* Equality function for a quick_file_names. */
2249
2250 static int
2251 eq_file_name_entry (const void *a, const void *b)
2252 {
2253 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2254 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2255
2256 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2257 }
2258
2259 /* Create a quick_file_names hash table. */
2260
2261 static htab_up
2262 create_quick_file_names_table (unsigned int nr_initial_entries)
2263 {
2264 return htab_up (htab_create_alloc (nr_initial_entries,
2265 hash_file_name_entry, eq_file_name_entry,
2266 nullptr, xcalloc, xfree));
2267 }
2268
2269 /* Read in CU (dwarf2_cu object) for PER_CU in the context of PER_OBJFILE. This
2270 function is unrelated to symtabs, symtab would have to be created afterwards.
2271 You should call age_cached_comp_units after processing the CU. */
2272
2273 static dwarf2_cu *
2274 load_cu (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
2275 bool skip_partial)
2276 {
2277 if (per_cu->is_debug_types)
2278 load_full_type_unit (per_cu, per_objfile);
2279 else
2280 load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu),
2281 skip_partial, language_minimal);
2282
2283 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
2284 if (cu == nullptr)
2285 return nullptr; /* Dummy CU. */
2286
2287 dwarf2_find_base_address (cu->dies, cu);
2288
2289 return cu;
2290 }
2291
2292 /* Read in the symbols for PER_CU in the context of PER_OBJFILE. */
2293
2294 static void
2295 dw2_do_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2296 dwarf2_per_objfile *per_objfile, bool skip_partial)
2297 {
2298 /* Skip type_unit_groups, reading the type units they contain
2299 is handled elsewhere. */
2300 if (per_cu->type_unit_group_p ())
2301 return;
2302
2303 {
2304 /* The destructor of dwarf2_queue_guard frees any entries left on
2305 the queue. After this point we're guaranteed to leave this function
2306 with the dwarf queue empty. */
2307 dwarf2_queue_guard q_guard (per_objfile);
2308
2309 if (!per_objfile->symtab_set_p (per_cu))
2310 {
2311 queue_comp_unit (per_cu, per_objfile, language_minimal);
2312 dwarf2_cu *cu = load_cu (per_cu, per_objfile, skip_partial);
2313
2314 /* If we just loaded a CU from a DWO, and we're working with an index
2315 that may badly handle TUs, load all the TUs in that DWO as well.
2316 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2317 if (!per_cu->is_debug_types
2318 && cu != NULL
2319 && cu->dwo_unit != NULL
2320 && per_objfile->per_bfd->index_table != NULL
2321 && per_objfile->per_bfd->index_table->version <= 7
2322 /* DWP files aren't supported yet. */
2323 && get_dwp_file (per_objfile) == NULL)
2324 queue_and_load_all_dwo_tus (cu);
2325 }
2326
2327 process_queue (per_objfile);
2328 }
2329
2330 /* Age the cache, releasing compilation units that have not
2331 been used recently. */
2332 per_objfile->age_comp_units ();
2333 }
2334
2335 /* Ensure that the symbols for PER_CU have been read in. DWARF2_PER_OBJFILE is
2336 the per-objfile for which this symtab is instantiated.
2337
2338 Returns the resulting symbol table. */
2339
2340 static struct compunit_symtab *
2341 dw2_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2342 dwarf2_per_objfile *per_objfile,
2343 bool skip_partial)
2344 {
2345 gdb_assert (per_objfile->per_bfd->using_index);
2346
2347 if (!per_objfile->symtab_set_p (per_cu))
2348 {
2349 free_cached_comp_units freer (per_objfile);
2350 scoped_restore decrementer = increment_reading_symtab ();
2351 dw2_do_instantiate_symtab (per_cu, per_objfile, skip_partial);
2352 process_cu_includes (per_objfile);
2353 }
2354
2355 return per_objfile->get_symtab (per_cu);
2356 }
2357
2358 /* See read.h. */
2359
2360 dwarf2_per_cu_data_up
2361 dwarf2_per_bfd::allocate_per_cu ()
2362 {
2363 dwarf2_per_cu_data_up result (new dwarf2_per_cu_data);
2364 result->per_bfd = this;
2365 result->index = all_comp_units.size ();
2366 return result;
2367 }
2368
2369 /* See read.h. */
2370
2371 signatured_type_up
2372 dwarf2_per_bfd::allocate_signatured_type (ULONGEST signature)
2373 {
2374 signatured_type_up result (new signatured_type (signature));
2375 result->per_bfd = this;
2376 result->index = all_comp_units.size ();
2377 result->is_debug_types = true;
2378 tu_stats.nr_tus++;
2379 return result;
2380 }
2381
2382 /* Return a new dwarf2_per_cu_data allocated on the per-bfd
2383 obstack, and constructed with the specified field values. */
2384
2385 static dwarf2_per_cu_data_up
2386 create_cu_from_index_list (dwarf2_per_bfd *per_bfd,
2387 struct dwarf2_section_info *section,
2388 int is_dwz,
2389 sect_offset sect_off, ULONGEST length)
2390 {
2391 dwarf2_per_cu_data_up the_cu = per_bfd->allocate_per_cu ();
2392 the_cu->sect_off = sect_off;
2393 the_cu->length = length;
2394 the_cu->section = section;
2395 the_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
2396 struct dwarf2_per_cu_quick_data);
2397 the_cu->is_dwz = is_dwz;
2398 return the_cu;
2399 }
2400
2401 /* A helper for create_cus_from_index that handles a given list of
2402 CUs. */
2403
2404 static void
2405 create_cus_from_index_list (dwarf2_per_bfd *per_bfd,
2406 const gdb_byte *cu_list, offset_type n_elements,
2407 struct dwarf2_section_info *section,
2408 int is_dwz)
2409 {
2410 for (offset_type i = 0; i < n_elements; i += 2)
2411 {
2412 gdb_static_assert (sizeof (ULONGEST) >= 8);
2413
2414 sect_offset sect_off
2415 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2416 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2417 cu_list += 2 * 8;
2418
2419 dwarf2_per_cu_data_up per_cu
2420 = create_cu_from_index_list (per_bfd, section, is_dwz, sect_off,
2421 length);
2422 per_bfd->all_comp_units.push_back (std::move (per_cu));
2423 }
2424 }
2425
2426 /* Read the CU list from the mapped index, and use it to create all
2427 the CU objects for PER_BFD. */
2428
2429 static void
2430 create_cus_from_index (dwarf2_per_bfd *per_bfd,
2431 const gdb_byte *cu_list, offset_type cu_list_elements,
2432 const gdb_byte *dwz_list, offset_type dwz_elements)
2433 {
2434 gdb_assert (per_bfd->all_comp_units.empty ());
2435 per_bfd->all_comp_units.reserve ((cu_list_elements + dwz_elements) / 2);
2436
2437 create_cus_from_index_list (per_bfd, cu_list, cu_list_elements,
2438 &per_bfd->info, 0);
2439
2440 if (dwz_elements == 0)
2441 return;
2442
2443 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
2444 create_cus_from_index_list (per_bfd, dwz_list, dwz_elements,
2445 &dwz->info, 1);
2446 }
2447
2448 /* Create the signatured type hash table from the index. */
2449
2450 static void
2451 create_signatured_type_table_from_index
2452 (dwarf2_per_bfd *per_bfd, struct dwarf2_section_info *section,
2453 const gdb_byte *bytes, offset_type elements)
2454 {
2455 htab_up sig_types_hash = allocate_signatured_type_table ();
2456
2457 for (offset_type i = 0; i < elements; i += 3)
2458 {
2459 signatured_type_up sig_type;
2460 ULONGEST signature;
2461 void **slot;
2462 cu_offset type_offset_in_tu;
2463
2464 gdb_static_assert (sizeof (ULONGEST) >= 8);
2465 sect_offset sect_off
2466 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2467 type_offset_in_tu
2468 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2469 BFD_ENDIAN_LITTLE);
2470 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2471 bytes += 3 * 8;
2472
2473 sig_type = per_bfd->allocate_signatured_type (signature);
2474 sig_type->type_offset_in_tu = type_offset_in_tu;
2475 sig_type->section = section;
2476 sig_type->sect_off = sect_off;
2477 sig_type->v.quick
2478 = OBSTACK_ZALLOC (&per_bfd->obstack,
2479 struct dwarf2_per_cu_quick_data);
2480
2481 slot = htab_find_slot (sig_types_hash.get (), sig_type.get (), INSERT);
2482 *slot = sig_type.get ();
2483
2484 per_bfd->all_comp_units.emplace_back (sig_type.release ());
2485 }
2486
2487 per_bfd->signatured_types = std::move (sig_types_hash);
2488 }
2489
2490 /* Create the signatured type hash table from .debug_names. */
2491
2492 static void
2493 create_signatured_type_table_from_debug_names
2494 (dwarf2_per_objfile *per_objfile,
2495 const mapped_debug_names &map,
2496 struct dwarf2_section_info *section,
2497 struct dwarf2_section_info *abbrev_section)
2498 {
2499 struct objfile *objfile = per_objfile->objfile;
2500
2501 section->read (objfile);
2502 abbrev_section->read (objfile);
2503
2504 htab_up sig_types_hash = allocate_signatured_type_table ();
2505
2506 for (uint32_t i = 0; i < map.tu_count; ++i)
2507 {
2508 signatured_type_up sig_type;
2509 void **slot;
2510
2511 sect_offset sect_off
2512 = (sect_offset) (extract_unsigned_integer
2513 (map.tu_table_reordered + i * map.offset_size,
2514 map.offset_size,
2515 map.dwarf5_byte_order));
2516
2517 comp_unit_head cu_header;
2518 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
2519 abbrev_section,
2520 section->buffer + to_underlying (sect_off),
2521 rcuh_kind::TYPE);
2522
2523 sig_type = per_objfile->per_bfd->allocate_signatured_type
2524 (cu_header.signature);
2525 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2526 sig_type->section = section;
2527 sig_type->sect_off = sect_off;
2528 sig_type->v.quick
2529 = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
2530 struct dwarf2_per_cu_quick_data);
2531
2532 slot = htab_find_slot (sig_types_hash.get (), sig_type.get (), INSERT);
2533 *slot = sig_type.get ();
2534
2535 per_objfile->per_bfd->all_comp_units.emplace_back (sig_type.release ());
2536 }
2537
2538 per_objfile->per_bfd->signatured_types = std::move (sig_types_hash);
2539 }
2540
2541 /* Read the address map data from the mapped index, and use it to
2542 populate the psymtabs_addrmap. */
2543
2544 static void
2545 create_addrmap_from_index (dwarf2_per_objfile *per_objfile,
2546 struct mapped_index *index)
2547 {
2548 struct objfile *objfile = per_objfile->objfile;
2549 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
2550 struct gdbarch *gdbarch = objfile->arch ();
2551 const gdb_byte *iter, *end;
2552 struct addrmap *mutable_map;
2553 CORE_ADDR baseaddr;
2554
2555 auto_obstack temp_obstack;
2556
2557 mutable_map = addrmap_create_mutable (&temp_obstack);
2558
2559 iter = index->address_table.data ();
2560 end = iter + index->address_table.size ();
2561
2562 baseaddr = objfile->text_section_offset ();
2563
2564 while (iter < end)
2565 {
2566 ULONGEST hi, lo, cu_index;
2567 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2568 iter += 8;
2569 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2570 iter += 8;
2571 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2572 iter += 4;
2573
2574 if (lo > hi)
2575 {
2576 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2577 hex_string (lo), hex_string (hi));
2578 continue;
2579 }
2580
2581 if (cu_index >= per_bfd->all_comp_units.size ())
2582 {
2583 complaint (_(".gdb_index address table has invalid CU number %u"),
2584 (unsigned) cu_index);
2585 continue;
2586 }
2587
2588 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2589 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2590 addrmap_set_empty (mutable_map, lo, hi - 1,
2591 per_bfd->get_cu (cu_index));
2592 }
2593
2594 per_bfd->index_addrmap = addrmap_create_fixed (mutable_map,
2595 &per_bfd->obstack);
2596 }
2597
2598 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2599 populate the psymtabs_addrmap. */
2600
2601 static void
2602 create_addrmap_from_aranges (dwarf2_per_objfile *per_objfile,
2603 struct dwarf2_section_info *section)
2604 {
2605 struct objfile *objfile = per_objfile->objfile;
2606 bfd *abfd = objfile->obfd;
2607 struct gdbarch *gdbarch = objfile->arch ();
2608 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2609 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
2610
2611 auto_obstack temp_obstack;
2612 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2613
2614 std::unordered_map<sect_offset,
2615 dwarf2_per_cu_data *,
2616 gdb::hash_enum<sect_offset>>
2617 debug_info_offset_to_per_cu;
2618 for (const auto &per_cu : per_bfd->all_comp_units)
2619 {
2620 /* A TU will not need aranges, and skipping them here is an easy
2621 way of ignoring .debug_types -- and possibly seeing a
2622 duplicate section offset -- entirely. */
2623 if (per_cu->is_debug_types)
2624 continue;
2625
2626 const auto insertpair
2627 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off,
2628 per_cu.get ());
2629 if (!insertpair.second)
2630 {
2631 warning (_("Section .debug_aranges in %s has duplicate "
2632 "debug_info_offset %s, ignoring .debug_aranges."),
2633 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2634 return;
2635 }
2636 }
2637
2638 section->read (objfile);
2639
2640 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2641
2642 const gdb_byte *addr = section->buffer;
2643
2644 while (addr < section->buffer + section->size)
2645 {
2646 const gdb_byte *const entry_addr = addr;
2647 unsigned int bytes_read;
2648
2649 const LONGEST entry_length = read_initial_length (abfd, addr,
2650 &bytes_read);
2651 addr += bytes_read;
2652
2653 const gdb_byte *const entry_end = addr + entry_length;
2654 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2655 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2656 if (addr + entry_length > section->buffer + section->size)
2657 {
2658 warning (_("Section .debug_aranges in %s entry at offset %s "
2659 "length %s exceeds section length %s, "
2660 "ignoring .debug_aranges."),
2661 objfile_name (objfile),
2662 plongest (entry_addr - section->buffer),
2663 plongest (bytes_read + entry_length),
2664 pulongest (section->size));
2665 return;
2666 }
2667
2668 /* The version number. */
2669 const uint16_t version = read_2_bytes (abfd, addr);
2670 addr += 2;
2671 if (version != 2)
2672 {
2673 warning (_("Section .debug_aranges in %s entry at offset %s "
2674 "has unsupported version %d, ignoring .debug_aranges."),
2675 objfile_name (objfile),
2676 plongest (entry_addr - section->buffer), version);
2677 return;
2678 }
2679
2680 const uint64_t debug_info_offset
2681 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2682 addr += offset_size;
2683 const auto per_cu_it
2684 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2685 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2686 {
2687 warning (_("Section .debug_aranges in %s entry at offset %s "
2688 "debug_info_offset %s does not exists, "
2689 "ignoring .debug_aranges."),
2690 objfile_name (objfile),
2691 plongest (entry_addr - section->buffer),
2692 pulongest (debug_info_offset));
2693 return;
2694 }
2695 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2696
2697 const uint8_t address_size = *addr++;
2698 if (address_size < 1 || address_size > 8)
2699 {
2700 warning (_("Section .debug_aranges in %s entry at offset %s "
2701 "address_size %u is invalid, ignoring .debug_aranges."),
2702 objfile_name (objfile),
2703 plongest (entry_addr - section->buffer), address_size);
2704 return;
2705 }
2706
2707 const uint8_t segment_selector_size = *addr++;
2708 if (segment_selector_size != 0)
2709 {
2710 warning (_("Section .debug_aranges in %s entry at offset %s "
2711 "segment_selector_size %u is not supported, "
2712 "ignoring .debug_aranges."),
2713 objfile_name (objfile),
2714 plongest (entry_addr - section->buffer),
2715 segment_selector_size);
2716 return;
2717 }
2718
2719 /* Must pad to an alignment boundary that is twice the address
2720 size. It is undocumented by the DWARF standard but GCC does
2721 use it. However, not every compiler does this. We can see
2722 whether it has happened by looking at the total length of the
2723 contents of the aranges for this CU -- it if isn't a multiple
2724 of twice the address size, then we skip any leftover
2725 bytes. */
2726 addr += (entry_end - addr) % (2 * address_size);
2727
2728 for (;;)
2729 {
2730 if (addr + 2 * address_size > entry_end)
2731 {
2732 warning (_("Section .debug_aranges in %s entry at offset %s "
2733 "address list is not properly terminated, "
2734 "ignoring .debug_aranges."),
2735 objfile_name (objfile),
2736 plongest (entry_addr - section->buffer));
2737 return;
2738 }
2739 ULONGEST start = extract_unsigned_integer (addr, address_size,
2740 dwarf5_byte_order);
2741 addr += address_size;
2742 ULONGEST length = extract_unsigned_integer (addr, address_size,
2743 dwarf5_byte_order);
2744 addr += address_size;
2745 if (start == 0 && length == 0)
2746 break;
2747 if (start == 0 && !per_bfd->has_section_at_zero)
2748 {
2749 /* Symbol was eliminated due to a COMDAT group. */
2750 continue;
2751 }
2752 ULONGEST end = start + length;
2753 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2754 - baseaddr);
2755 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2756 - baseaddr);
2757 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2758 }
2759 }
2760
2761 per_bfd->index_addrmap = addrmap_create_fixed (mutable_map,
2762 &per_bfd->obstack);
2763 }
2764
2765 /* A helper function that reads the .gdb_index from BUFFER and fills
2766 in MAP. FILENAME is the name of the file containing the data;
2767 it is used for error reporting. DEPRECATED_OK is true if it is
2768 ok to use deprecated sections.
2769
2770 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2771 out parameters that are filled in with information about the CU and
2772 TU lists in the section.
2773
2774 Returns true if all went well, false otherwise. */
2775
2776 static bool
2777 read_gdb_index_from_buffer (const char *filename,
2778 bool deprecated_ok,
2779 gdb::array_view<const gdb_byte> buffer,
2780 struct mapped_index *map,
2781 const gdb_byte **cu_list,
2782 offset_type *cu_list_elements,
2783 const gdb_byte **types_list,
2784 offset_type *types_list_elements)
2785 {
2786 const gdb_byte *addr = &buffer[0];
2787 offset_view metadata (buffer);
2788
2789 /* Version check. */
2790 offset_type version = metadata[0];
2791 /* Versions earlier than 3 emitted every copy of a psymbol. This
2792 causes the index to behave very poorly for certain requests. Version 3
2793 contained incomplete addrmap. So, it seems better to just ignore such
2794 indices. */
2795 if (version < 4)
2796 {
2797 static int warning_printed = 0;
2798 if (!warning_printed)
2799 {
2800 warning (_("Skipping obsolete .gdb_index section in %s."),
2801 filename);
2802 warning_printed = 1;
2803 }
2804 return 0;
2805 }
2806 /* Index version 4 uses a different hash function than index version
2807 5 and later.
2808
2809 Versions earlier than 6 did not emit psymbols for inlined
2810 functions. Using these files will cause GDB not to be able to
2811 set breakpoints on inlined functions by name, so we ignore these
2812 indices unless the user has done
2813 "set use-deprecated-index-sections on". */
2814 if (version < 6 && !deprecated_ok)
2815 {
2816 static int warning_printed = 0;
2817 if (!warning_printed)
2818 {
2819 warning (_("\
2820 Skipping deprecated .gdb_index section in %s.\n\
2821 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2822 to use the section anyway."),
2823 filename);
2824 warning_printed = 1;
2825 }
2826 return 0;
2827 }
2828 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2829 of the TU (for symbols coming from TUs),
2830 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2831 Plus gold-generated indices can have duplicate entries for global symbols,
2832 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2833 These are just performance bugs, and we can't distinguish gdb-generated
2834 indices from gold-generated ones, so issue no warning here. */
2835
2836 /* Indexes with higher version than the one supported by GDB may be no
2837 longer backward compatible. */
2838 if (version > 8)
2839 return 0;
2840
2841 map->version = version;
2842
2843 int i = 1;
2844 *cu_list = addr + metadata[i];
2845 *cu_list_elements = (metadata[i + 1] - metadata[i]) / 8;
2846 ++i;
2847
2848 *types_list = addr + metadata[i];
2849 *types_list_elements = (metadata[i + 1] - metadata[i]) / 8;
2850 ++i;
2851
2852 const gdb_byte *address_table = addr + metadata[i];
2853 const gdb_byte *address_table_end = addr + metadata[i + 1];
2854 map->address_table
2855 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2856 ++i;
2857
2858 const gdb_byte *symbol_table = addr + metadata[i];
2859 const gdb_byte *symbol_table_end = addr + metadata[i + 1];
2860 map->symbol_table
2861 = offset_view (gdb::array_view<const gdb_byte> (symbol_table,
2862 symbol_table_end));
2863
2864 ++i;
2865 map->constant_pool = buffer.slice (metadata[i]);
2866
2867 if (map->constant_pool.empty () && !map->symbol_table.empty ())
2868 {
2869 /* An empty constant pool implies that all symbol table entries are
2870 empty. Make map->symbol_table.empty () == true. */
2871 map->symbol_table
2872 = offset_view (gdb::array_view<const gdb_byte> (symbol_table,
2873 symbol_table));
2874 }
2875
2876 return 1;
2877 }
2878
2879 /* Callback types for dwarf2_read_gdb_index. */
2880
2881 typedef gdb::function_view
2882 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_bfd *)>
2883 get_gdb_index_contents_ftype;
2884 typedef gdb::function_view
2885 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
2886 get_gdb_index_contents_dwz_ftype;
2887
2888 /* Read .gdb_index. If everything went ok, initialize the "quick"
2889 elements of all the CUs and return 1. Otherwise, return 0. */
2890
2891 static int
2892 dwarf2_read_gdb_index
2893 (dwarf2_per_objfile *per_objfile,
2894 get_gdb_index_contents_ftype get_gdb_index_contents,
2895 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
2896 {
2897 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2898 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2899 struct dwz_file *dwz;
2900 struct objfile *objfile = per_objfile->objfile;
2901 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
2902
2903 gdb::array_view<const gdb_byte> main_index_contents
2904 = get_gdb_index_contents (objfile, per_bfd);
2905
2906 if (main_index_contents.empty ())
2907 return 0;
2908
2909 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
2910 if (!read_gdb_index_from_buffer (objfile_name (objfile),
2911 use_deprecated_index_sections,
2912 main_index_contents, map.get (), &cu_list,
2913 &cu_list_elements, &types_list,
2914 &types_list_elements))
2915 return 0;
2916
2917 /* Don't use the index if it's empty. */
2918 if (map->symbol_table.empty ())
2919 return 0;
2920
2921 /* If there is a .dwz file, read it so we can get its CU list as
2922 well. */
2923 dwz = dwarf2_get_dwz_file (per_bfd);
2924 if (dwz != NULL)
2925 {
2926 struct mapped_index dwz_map;
2927 const gdb_byte *dwz_types_ignore;
2928 offset_type dwz_types_elements_ignore;
2929
2930 gdb::array_view<const gdb_byte> dwz_index_content
2931 = get_gdb_index_contents_dwz (objfile, dwz);
2932
2933 if (dwz_index_content.empty ())
2934 return 0;
2935
2936 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
2937 1, dwz_index_content, &dwz_map,
2938 &dwz_list, &dwz_list_elements,
2939 &dwz_types_ignore,
2940 &dwz_types_elements_ignore))
2941 {
2942 warning (_("could not read '.gdb_index' section from %s; skipping"),
2943 bfd_get_filename (dwz->dwz_bfd.get ()));
2944 return 0;
2945 }
2946 }
2947
2948 create_cus_from_index (per_bfd, cu_list, cu_list_elements, dwz_list,
2949 dwz_list_elements);
2950
2951 if (types_list_elements)
2952 {
2953 /* We can only handle a single .debug_types when we have an
2954 index. */
2955 if (per_bfd->types.size () != 1)
2956 return 0;
2957
2958 dwarf2_section_info *section = &per_bfd->types[0];
2959
2960 create_signatured_type_table_from_index (per_bfd, section, types_list,
2961 types_list_elements);
2962 }
2963
2964 create_addrmap_from_index (per_objfile, map.get ());
2965
2966 per_bfd->index_table = std::move (map);
2967 per_bfd->using_index = 1;
2968 per_bfd->quick_file_names_table =
2969 create_quick_file_names_table (per_bfd->all_comp_units.size ());
2970
2971 return 1;
2972 }
2973
2974 /* die_reader_func for dw2_get_file_names. */
2975
2976 static void
2977 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2978 struct die_info *comp_unit_die)
2979 {
2980 struct dwarf2_cu *cu = reader->cu;
2981 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2982 dwarf2_per_objfile *per_objfile = cu->per_objfile;
2983 struct dwarf2_per_cu_data *lh_cu;
2984 struct attribute *attr;
2985 void **slot;
2986 struct quick_file_names *qfn;
2987
2988 gdb_assert (! this_cu->is_debug_types);
2989
2990 this_cu->v.quick->files_read = true;
2991 /* Our callers never want to match partial units -- instead they
2992 will match the enclosing full CU. */
2993 if (comp_unit_die->tag == DW_TAG_partial_unit)
2994 return;
2995
2996 lh_cu = this_cu;
2997 slot = NULL;
2998
2999 line_header_up lh;
3000 sect_offset line_offset {};
3001
3002 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3003 if (attr != nullptr && attr->form_is_unsigned ())
3004 {
3005 struct quick_file_names find_entry;
3006
3007 line_offset = (sect_offset) attr->as_unsigned ();
3008
3009 /* We may have already read in this line header (TU line header sharing).
3010 If we have we're done. */
3011 find_entry.hash.dwo_unit = cu->dwo_unit;
3012 find_entry.hash.line_sect_off = line_offset;
3013 slot = htab_find_slot (per_objfile->per_bfd->quick_file_names_table.get (),
3014 &find_entry, INSERT);
3015 if (*slot != NULL)
3016 {
3017 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3018 return;
3019 }
3020
3021 lh = dwarf_decode_line_header (line_offset, cu);
3022 }
3023
3024 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3025
3026 int offset = 0;
3027 if (strcmp (fnd.name, "<unknown>") != 0)
3028 ++offset;
3029 else if (lh == nullptr)
3030 return;
3031
3032 qfn = XOBNEW (&per_objfile->per_bfd->obstack, struct quick_file_names);
3033 qfn->hash.dwo_unit = cu->dwo_unit;
3034 qfn->hash.line_sect_off = line_offset;
3035 /* There may not be a DW_AT_stmt_list. */
3036 if (slot != nullptr)
3037 *slot = qfn;
3038
3039 std::vector<const char *> include_names;
3040 if (lh != nullptr)
3041 {
3042 for (const auto &entry : lh->file_names ())
3043 {
3044 gdb::unique_xmalloc_ptr<char> name_holder;
3045 const char *include_name =
3046 compute_include_file_name (lh.get (), entry, fnd, &name_holder);
3047 if (include_name != nullptr)
3048 {
3049 include_name = per_objfile->objfile->intern (include_name);
3050 include_names.push_back (include_name);
3051 }
3052 }
3053 }
3054
3055 qfn->num_file_names = offset + include_names.size ();
3056 qfn->comp_dir = fnd.comp_dir;
3057 qfn->file_names =
3058 XOBNEWVEC (&per_objfile->per_bfd->obstack, const char *,
3059 qfn->num_file_names);
3060 if (offset != 0)
3061 qfn->file_names[0] = xstrdup (fnd.name);
3062
3063 if (!include_names.empty ())
3064 memcpy (&qfn->file_names[offset], include_names.data (),
3065 include_names.size () * sizeof (const char *));
3066
3067 qfn->real_names = NULL;
3068
3069 lh_cu->v.quick->file_names = qfn;
3070 }
3071
3072 /* A helper for the "quick" functions which attempts to read the line
3073 table for THIS_CU. */
3074
3075 static struct quick_file_names *
3076 dw2_get_file_names (dwarf2_per_cu_data *this_cu,
3077 dwarf2_per_objfile *per_objfile)
3078 {
3079 /* This should never be called for TUs. */
3080 gdb_assert (! this_cu->is_debug_types);
3081 /* Nor type unit groups. */
3082 gdb_assert (! this_cu->type_unit_group_p ());
3083
3084 if (this_cu->v.quick->files_read)
3085 return this_cu->v.quick->file_names;
3086
3087 cutu_reader reader (this_cu, per_objfile);
3088 if (!reader.dummy_p)
3089 dw2_get_file_names_reader (&reader, reader.comp_unit_die);
3090
3091 return this_cu->v.quick->file_names;
3092 }
3093
3094 /* A helper for the "quick" functions which computes and caches the
3095 real path for a given file name from the line table. */
3096
3097 static const char *
3098 dw2_get_real_path (dwarf2_per_objfile *per_objfile,
3099 struct quick_file_names *qfn, int index)
3100 {
3101 if (qfn->real_names == NULL)
3102 qfn->real_names = OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
3103 qfn->num_file_names, const char *);
3104
3105 if (qfn->real_names[index] == NULL)
3106 {
3107 const char *dirname = nullptr;
3108
3109 if (!IS_ABSOLUTE_PATH (qfn->file_names[index]))
3110 dirname = qfn->comp_dir;
3111
3112 gdb::unique_xmalloc_ptr<char> fullname;
3113 fullname = find_source_or_rewrite (qfn->file_names[index], dirname);
3114
3115 qfn->real_names[index] = fullname.release ();
3116 }
3117
3118 return qfn->real_names[index];
3119 }
3120
3121 struct symtab *
3122 dwarf2_base_index_functions::find_last_source_symtab (struct objfile *objfile)
3123 {
3124 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3125 dwarf2_per_cu_data *dwarf_cu
3126 = per_objfile->per_bfd->all_comp_units.back ().get ();
3127 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, per_objfile, false);
3128
3129 if (cust == NULL)
3130 return NULL;
3131
3132 return compunit_primary_filetab (cust);
3133 }
3134
3135 /* See read.h. */
3136
3137 void
3138 dwarf2_per_cu_data::free_cached_file_names ()
3139 {
3140 if (per_bfd == nullptr || !per_bfd->using_index || v.quick == nullptr)
3141 return;
3142
3143 struct quick_file_names *file_data = v.quick->file_names;
3144 if (file_data != nullptr && file_data->real_names != nullptr)
3145 {
3146 for (int i = 0; i < file_data->num_file_names; ++i)
3147 {
3148 xfree ((void *) file_data->real_names[i]);
3149 file_data->real_names[i] = nullptr;
3150 }
3151 }
3152 }
3153
3154 void
3155 dwarf2_base_index_functions::forget_cached_source_info
3156 (struct objfile *objfile)
3157 {
3158 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3159
3160 for (auto &per_cu : per_objfile->per_bfd->all_comp_units)
3161 per_cu->free_cached_file_names ();
3162 }
3163
3164 /* Struct used to manage iterating over all CUs looking for a symbol. */
3165
3166 struct dw2_symtab_iterator
3167 {
3168 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3169 dwarf2_per_objfile *per_objfile;
3170 /* If set, only look for symbols that match that block. Valid values are
3171 GLOBAL_BLOCK and STATIC_BLOCK. */
3172 gdb::optional<block_enum> block_index;
3173 /* The kind of symbol we're looking for. */
3174 domain_enum domain;
3175 /* The list of CUs from the index entry of the symbol,
3176 or NULL if not found. */
3177 offset_view vec;
3178 /* The next element in VEC to look at. */
3179 int next;
3180 /* The number of elements in VEC, or zero if there is no match. */
3181 int length;
3182 /* Have we seen a global version of the symbol?
3183 If so we can ignore all further global instances.
3184 This is to work around gold/15646, inefficient gold-generated
3185 indices. */
3186 int global_seen;
3187 };
3188
3189 /* Initialize the index symtab iterator ITER, offset_type NAMEI variant. */
3190
3191 static void
3192 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3193 dwarf2_per_objfile *per_objfile,
3194 gdb::optional<block_enum> block_index,
3195 domain_enum domain, offset_type namei)
3196 {
3197 iter->per_objfile = per_objfile;
3198 iter->block_index = block_index;
3199 iter->domain = domain;
3200 iter->next = 0;
3201 iter->global_seen = 0;
3202 iter->vec = {};
3203 iter->length = 0;
3204
3205 mapped_index *index = per_objfile->per_bfd->index_table.get ();
3206 /* index is NULL if OBJF_READNOW. */
3207 if (index == NULL)
3208 return;
3209
3210 gdb_assert (!index->symbol_name_slot_invalid (namei));
3211 offset_type vec_idx = index->symbol_vec_index (namei);
3212
3213 iter->vec = offset_view (index->constant_pool.slice (vec_idx));
3214 iter->length = iter->vec[0];
3215 }
3216
3217 /* Return the next matching CU or NULL if there are no more. */
3218
3219 static struct dwarf2_per_cu_data *
3220 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3221 {
3222 dwarf2_per_objfile *per_objfile = iter->per_objfile;
3223
3224 for ( ; iter->next < iter->length; ++iter->next)
3225 {
3226 offset_type cu_index_and_attrs = iter->vec[iter->next + 1];
3227 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3228 gdb_index_symbol_kind symbol_kind =
3229 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3230 /* Only check the symbol attributes if they're present.
3231 Indices prior to version 7 don't record them,
3232 and indices >= 7 may elide them for certain symbols
3233 (gold does this). */
3234 int attrs_valid =
3235 (per_objfile->per_bfd->index_table->version >= 7
3236 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3237
3238 /* Don't crash on bad data. */
3239 if (cu_index >= per_objfile->per_bfd->all_comp_units.size ())
3240 {
3241 complaint (_(".gdb_index entry has bad CU index"
3242 " [in module %s]"), objfile_name (per_objfile->objfile));
3243 continue;
3244 }
3245
3246 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cu (cu_index);
3247
3248 /* Skip if already read in. */
3249 if (per_objfile->symtab_set_p (per_cu))
3250 continue;
3251
3252 /* Check static vs global. */
3253 if (attrs_valid)
3254 {
3255 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3256
3257 if (iter->block_index.has_value ())
3258 {
3259 bool want_static = *iter->block_index == STATIC_BLOCK;
3260
3261 if (is_static != want_static)
3262 continue;
3263 }
3264
3265 /* Work around gold/15646. */
3266 if (!is_static
3267 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
3268 {
3269 if (iter->global_seen)
3270 continue;
3271
3272 iter->global_seen = 1;
3273 }
3274 }
3275
3276 /* Only check the symbol's kind if it has one. */
3277 if (attrs_valid)
3278 {
3279 switch (iter->domain)
3280 {
3281 case VAR_DOMAIN:
3282 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3283 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3284 /* Some types are also in VAR_DOMAIN. */
3285 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3286 continue;
3287 break;
3288 case STRUCT_DOMAIN:
3289 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3290 continue;
3291 break;
3292 case LABEL_DOMAIN:
3293 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3294 continue;
3295 break;
3296 case MODULE_DOMAIN:
3297 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3298 continue;
3299 break;
3300 default:
3301 break;
3302 }
3303 }
3304
3305 ++iter->next;
3306 return per_cu;
3307 }
3308
3309 return NULL;
3310 }
3311
3312 void
3313 dwarf2_base_index_functions::print_stats (struct objfile *objfile,
3314 bool print_bcache)
3315 {
3316 if (print_bcache)
3317 return;
3318
3319 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3320 int total = per_objfile->per_bfd->all_comp_units.size ();
3321 int count = 0;
3322
3323 for (int i = 0; i < total; ++i)
3324 {
3325 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cu (i);
3326
3327 if (!per_objfile->symtab_set_p (per_cu))
3328 ++count;
3329 }
3330 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3331 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3332 }
3333
3334 /* This dumps minimal information about the index.
3335 It is called via "mt print objfiles".
3336 One use is to verify .gdb_index has been loaded by the
3337 gdb.dwarf2/gdb-index.exp testcase. */
3338
3339 void
3340 dwarf2_gdb_index::dump (struct objfile *objfile)
3341 {
3342 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3343
3344 gdb_assert (per_objfile->per_bfd->using_index);
3345 printf_filtered (".gdb_index:");
3346 if (per_objfile->per_bfd->index_table != NULL)
3347 {
3348 printf_filtered (" version %d\n",
3349 per_objfile->per_bfd->index_table->version);
3350 }
3351 else
3352 printf_filtered (" faked for \"readnow\"\n");
3353 printf_filtered ("\n");
3354 }
3355
3356 void
3357 dwarf2_base_index_functions::expand_all_symtabs (struct objfile *objfile)
3358 {
3359 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3360 int total_units = per_objfile->per_bfd->all_comp_units.size ();
3361
3362 for (int i = 0; i < total_units; ++i)
3363 {
3364 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cu (i);
3365
3366 /* We don't want to directly expand a partial CU, because if we
3367 read it with the wrong language, then assertion failures can
3368 be triggered later on. See PR symtab/23010. So, tell
3369 dw2_instantiate_symtab to skip partial CUs -- any important
3370 partial CU will be read via DW_TAG_imported_unit anyway. */
3371 dw2_instantiate_symtab (per_cu, per_objfile, true);
3372 }
3373 }
3374
3375 static bool
3376 dw2_expand_symtabs_matching_symbol
3377 (mapped_index_base &index,
3378 const lookup_name_info &lookup_name_in,
3379 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3380 gdb::function_view<bool (offset_type)> match_callback,
3381 dwarf2_per_objfile *per_objfile);
3382
3383 static bool
3384 dw2_expand_symtabs_matching_one
3385 (dwarf2_per_cu_data *per_cu,
3386 dwarf2_per_objfile *per_objfile,
3387 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3388 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify);
3389
3390 void
3391 dwarf2_gdb_index::expand_matching_symbols
3392 (struct objfile *objfile,
3393 const lookup_name_info &name, domain_enum domain,
3394 int global,
3395 symbol_compare_ftype *ordered_compare)
3396 {
3397 /* Used for Ada. */
3398 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3399
3400 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3401
3402 if (per_objfile->per_bfd->index_table != nullptr)
3403 {
3404 mapped_index &index = *per_objfile->per_bfd->index_table;
3405
3406 const char *match_name = name.ada ().lookup_name ().c_str ();
3407 auto matcher = [&] (const char *symname)
3408 {
3409 if (ordered_compare == nullptr)
3410 return true;
3411 return ordered_compare (symname, match_name) == 0;
3412 };
3413
3414 dw2_expand_symtabs_matching_symbol (index, name, matcher,
3415 [&] (offset_type namei)
3416 {
3417 struct dw2_symtab_iterator iter;
3418 struct dwarf2_per_cu_data *per_cu;
3419
3420 dw2_symtab_iter_init (&iter, per_objfile, block_kind, domain,
3421 namei);
3422 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3423 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
3424 nullptr);
3425 return true;
3426 }, per_objfile);
3427 }
3428 else
3429 {
3430 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3431 proceed assuming all symtabs have been read in. */
3432 }
3433 }
3434
3435 /* Starting from a search name, return the string that finds the upper
3436 bound of all strings that start with SEARCH_NAME in a sorted name
3437 list. Returns the empty string to indicate that the upper bound is
3438 the end of the list. */
3439
3440 static std::string
3441 make_sort_after_prefix_name (const char *search_name)
3442 {
3443 /* When looking to complete "func", we find the upper bound of all
3444 symbols that start with "func" by looking for where we'd insert
3445 the closest string that would follow "func" in lexicographical
3446 order. Usually, that's "func"-with-last-character-incremented,
3447 i.e. "fund". Mind non-ASCII characters, though. Usually those
3448 will be UTF-8 multi-byte sequences, but we can't be certain.
3449 Especially mind the 0xff character, which is a valid character in
3450 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3451 rule out compilers allowing it in identifiers. Note that
3452 conveniently, strcmp/strcasecmp are specified to compare
3453 characters interpreted as unsigned char. So what we do is treat
3454 the whole string as a base 256 number composed of a sequence of
3455 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3456 to 0, and carries 1 to the following more-significant position.
3457 If the very first character in SEARCH_NAME ends up incremented
3458 and carries/overflows, then the upper bound is the end of the
3459 list. The string after the empty string is also the empty
3460 string.
3461
3462 Some examples of this operation:
3463
3464 SEARCH_NAME => "+1" RESULT
3465
3466 "abc" => "abd"
3467 "ab\xff" => "ac"
3468 "\xff" "a" "\xff" => "\xff" "b"
3469 "\xff" => ""
3470 "\xff\xff" => ""
3471 "" => ""
3472
3473 Then, with these symbols for example:
3474
3475 func
3476 func1
3477 fund
3478
3479 completing "func" looks for symbols between "func" and
3480 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3481 which finds "func" and "func1", but not "fund".
3482
3483 And with:
3484
3485 funcÿ (Latin1 'ÿ' [0xff])
3486 funcÿ1
3487 fund
3488
3489 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3490 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3491
3492 And with:
3493
3494 ÿÿ (Latin1 'ÿ' [0xff])
3495 ÿÿ1
3496
3497 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3498 the end of the list.
3499 */
3500 std::string after = search_name;
3501 while (!after.empty () && (unsigned char) after.back () == 0xff)
3502 after.pop_back ();
3503 if (!after.empty ())
3504 after.back () = (unsigned char) after.back () + 1;
3505 return after;
3506 }
3507
3508 /* See declaration. */
3509
3510 std::pair<std::vector<name_component>::const_iterator,
3511 std::vector<name_component>::const_iterator>
3512 mapped_index_base::find_name_components_bounds
3513 (const lookup_name_info &lookup_name_without_params, language lang,
3514 dwarf2_per_objfile *per_objfile) const
3515 {
3516 auto *name_cmp
3517 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3518
3519 const char *lang_name
3520 = lookup_name_without_params.language_lookup_name (lang);
3521
3522 /* Comparison function object for lower_bound that matches against a
3523 given symbol name. */
3524 auto lookup_compare_lower = [&] (const name_component &elem,
3525 const char *name)
3526 {
3527 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3528 const char *elem_name = elem_qualified + elem.name_offset;
3529 return name_cmp (elem_name, name) < 0;
3530 };
3531
3532 /* Comparison function object for upper_bound that matches against a
3533 given symbol name. */
3534 auto lookup_compare_upper = [&] (const char *name,
3535 const name_component &elem)
3536 {
3537 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3538 const char *elem_name = elem_qualified + elem.name_offset;
3539 return name_cmp (name, elem_name) < 0;
3540 };
3541
3542 auto begin = this->name_components.begin ();
3543 auto end = this->name_components.end ();
3544
3545 /* Find the lower bound. */
3546 auto lower = [&] ()
3547 {
3548 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3549 return begin;
3550 else
3551 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3552 } ();
3553
3554 /* Find the upper bound. */
3555 auto upper = [&] ()
3556 {
3557 if (lookup_name_without_params.completion_mode ())
3558 {
3559 /* In completion mode, we want UPPER to point past all
3560 symbols names that have the same prefix. I.e., with
3561 these symbols, and completing "func":
3562
3563 function << lower bound
3564 function1
3565 other_function << upper bound
3566
3567 We find the upper bound by looking for the insertion
3568 point of "func"-with-last-character-incremented,
3569 i.e. "fund". */
3570 std::string after = make_sort_after_prefix_name (lang_name);
3571 if (after.empty ())
3572 return end;
3573 return std::lower_bound (lower, end, after.c_str (),
3574 lookup_compare_lower);
3575 }
3576 else
3577 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3578 } ();
3579
3580 return {lower, upper};
3581 }
3582
3583 /* See declaration. */
3584
3585 void
3586 mapped_index_base::build_name_components (dwarf2_per_objfile *per_objfile)
3587 {
3588 if (!this->name_components.empty ())
3589 return;
3590
3591 this->name_components_casing = case_sensitivity;
3592 auto *name_cmp
3593 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3594
3595 /* The code below only knows how to break apart components of C++
3596 symbol names (and other languages that use '::' as
3597 namespace/module separator) and Ada symbol names. */
3598 auto count = this->symbol_name_count ();
3599 for (offset_type idx = 0; idx < count; idx++)
3600 {
3601 if (this->symbol_name_slot_invalid (idx))
3602 continue;
3603
3604 const char *name = this->symbol_name_at (idx, per_objfile);
3605
3606 /* Add each name component to the name component table. */
3607 unsigned int previous_len = 0;
3608
3609 if (strstr (name, "::") != nullptr)
3610 {
3611 for (unsigned int current_len = cp_find_first_component (name);
3612 name[current_len] != '\0';
3613 current_len += cp_find_first_component (name + current_len))
3614 {
3615 gdb_assert (name[current_len] == ':');
3616 this->name_components.push_back ({previous_len, idx});
3617 /* Skip the '::'. */
3618 current_len += 2;
3619 previous_len = current_len;
3620 }
3621 }
3622 else
3623 {
3624 /* Handle the Ada encoded (aka mangled) form here. */
3625 for (const char *iter = strstr (name, "__");
3626 iter != nullptr;
3627 iter = strstr (iter, "__"))
3628 {
3629 this->name_components.push_back ({previous_len, idx});
3630 iter += 2;
3631 previous_len = iter - name;
3632 }
3633 }
3634
3635 this->name_components.push_back ({previous_len, idx});
3636 }
3637
3638 /* Sort name_components elements by name. */
3639 auto name_comp_compare = [&] (const name_component &left,
3640 const name_component &right)
3641 {
3642 const char *left_qualified
3643 = this->symbol_name_at (left.idx, per_objfile);
3644 const char *right_qualified
3645 = this->symbol_name_at (right.idx, per_objfile);
3646
3647 const char *left_name = left_qualified + left.name_offset;
3648 const char *right_name = right_qualified + right.name_offset;
3649
3650 return name_cmp (left_name, right_name) < 0;
3651 };
3652
3653 std::sort (this->name_components.begin (),
3654 this->name_components.end (),
3655 name_comp_compare);
3656 }
3657
3658 /* Helper for dw2_expand_symtabs_matching that works with a
3659 mapped_index_base instead of the containing objfile. This is split
3660 to a separate function in order to be able to unit test the
3661 name_components matching using a mock mapped_index_base. For each
3662 symbol name that matches, calls MATCH_CALLBACK, passing it the
3663 symbol's index in the mapped_index_base symbol table. */
3664
3665 static bool
3666 dw2_expand_symtabs_matching_symbol
3667 (mapped_index_base &index,
3668 const lookup_name_info &lookup_name_in,
3669 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3670 gdb::function_view<bool (offset_type)> match_callback,
3671 dwarf2_per_objfile *per_objfile)
3672 {
3673 lookup_name_info lookup_name_without_params
3674 = lookup_name_in.make_ignore_params ();
3675
3676 /* Build the symbol name component sorted vector, if we haven't
3677 yet. */
3678 index.build_name_components (per_objfile);
3679
3680 /* The same symbol may appear more than once in the range though.
3681 E.g., if we're looking for symbols that complete "w", and we have
3682 a symbol named "w1::w2", we'll find the two name components for
3683 that same symbol in the range. To be sure we only call the
3684 callback once per symbol, we first collect the symbol name
3685 indexes that matched in a temporary vector and ignore
3686 duplicates. */
3687 std::vector<offset_type> matches;
3688
3689 struct name_and_matcher
3690 {
3691 symbol_name_matcher_ftype *matcher;
3692 const char *name;
3693
3694 bool operator== (const name_and_matcher &other) const
3695 {
3696 return matcher == other.matcher && strcmp (name, other.name) == 0;
3697 }
3698 };
3699
3700 /* A vector holding all the different symbol name matchers, for all
3701 languages. */
3702 std::vector<name_and_matcher> matchers;
3703
3704 for (int i = 0; i < nr_languages; i++)
3705 {
3706 enum language lang_e = (enum language) i;
3707
3708 const language_defn *lang = language_def (lang_e);
3709 symbol_name_matcher_ftype *name_matcher
3710 = lang->get_symbol_name_matcher (lookup_name_without_params);
3711
3712 name_and_matcher key {
3713 name_matcher,
3714 lookup_name_without_params.language_lookup_name (lang_e)
3715 };
3716
3717 /* Don't insert the same comparison routine more than once.
3718 Note that we do this linear walk. This is not a problem in
3719 practice because the number of supported languages is
3720 low. */
3721 if (std::find (matchers.begin (), matchers.end (), key)
3722 != matchers.end ())
3723 continue;
3724 matchers.push_back (std::move (key));
3725
3726 auto bounds
3727 = index.find_name_components_bounds (lookup_name_without_params,
3728 lang_e, per_objfile);
3729
3730 /* Now for each symbol name in range, check to see if we have a name
3731 match, and if so, call the MATCH_CALLBACK callback. */
3732
3733 for (; bounds.first != bounds.second; ++bounds.first)
3734 {
3735 const char *qualified
3736 = index.symbol_name_at (bounds.first->idx, per_objfile);
3737
3738 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3739 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3740 continue;
3741
3742 matches.push_back (bounds.first->idx);
3743 }
3744 }
3745
3746 std::sort (matches.begin (), matches.end ());
3747
3748 /* Finally call the callback, once per match. */
3749 ULONGEST prev = -1;
3750 bool result = true;
3751 for (offset_type idx : matches)
3752 {
3753 if (prev != idx)
3754 {
3755 if (!match_callback (idx))
3756 {
3757 result = false;
3758 break;
3759 }
3760 prev = idx;
3761 }
3762 }
3763
3764 /* Above we use a type wider than idx's for 'prev', since 0 and
3765 (offset_type)-1 are both possible values. */
3766 static_assert (sizeof (prev) > sizeof (offset_type), "");
3767
3768 return result;
3769 }
3770
3771 #if GDB_SELF_TEST
3772
3773 namespace selftests { namespace dw2_expand_symtabs_matching {
3774
3775 /* A mock .gdb_index/.debug_names-like name index table, enough to
3776 exercise dw2_expand_symtabs_matching_symbol, which works with the
3777 mapped_index_base interface. Builds an index from the symbol list
3778 passed as parameter to the constructor. */
3779 class mock_mapped_index : public mapped_index_base
3780 {
3781 public:
3782 mock_mapped_index (gdb::array_view<const char *> symbols)
3783 : m_symbol_table (symbols)
3784 {}
3785
3786 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
3787
3788 /* Return the number of names in the symbol table. */
3789 size_t symbol_name_count () const override
3790 {
3791 return m_symbol_table.size ();
3792 }
3793
3794 /* Get the name of the symbol at IDX in the symbol table. */
3795 const char *symbol_name_at
3796 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
3797 {
3798 return m_symbol_table[idx];
3799 }
3800
3801 private:
3802 gdb::array_view<const char *> m_symbol_table;
3803 };
3804
3805 /* Convenience function that converts a NULL pointer to a "<null>"
3806 string, to pass to print routines. */
3807
3808 static const char *
3809 string_or_null (const char *str)
3810 {
3811 return str != NULL ? str : "<null>";
3812 }
3813
3814 /* Check if a lookup_name_info built from
3815 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
3816 index. EXPECTED_LIST is the list of expected matches, in expected
3817 matching order. If no match expected, then an empty list is
3818 specified. Returns true on success. On failure prints a warning
3819 indicating the file:line that failed, and returns false. */
3820
3821 static bool
3822 check_match (const char *file, int line,
3823 mock_mapped_index &mock_index,
3824 const char *name, symbol_name_match_type match_type,
3825 bool completion_mode,
3826 std::initializer_list<const char *> expected_list,
3827 dwarf2_per_objfile *per_objfile)
3828 {
3829 lookup_name_info lookup_name (name, match_type, completion_mode);
3830
3831 bool matched = true;
3832
3833 auto mismatch = [&] (const char *expected_str,
3834 const char *got)
3835 {
3836 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
3837 "expected=\"%s\", got=\"%s\"\n"),
3838 file, line,
3839 (match_type == symbol_name_match_type::FULL
3840 ? "FULL" : "WILD"),
3841 name, string_or_null (expected_str), string_or_null (got));
3842 matched = false;
3843 };
3844
3845 auto expected_it = expected_list.begin ();
3846 auto expected_end = expected_list.end ();
3847
3848 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
3849 nullptr,
3850 [&] (offset_type idx)
3851 {
3852 const char *matched_name = mock_index.symbol_name_at (idx, per_objfile);
3853 const char *expected_str
3854 = expected_it == expected_end ? NULL : *expected_it++;
3855
3856 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
3857 mismatch (expected_str, matched_name);
3858 return true;
3859 }, per_objfile);
3860
3861 const char *expected_str
3862 = expected_it == expected_end ? NULL : *expected_it++;
3863 if (expected_str != NULL)
3864 mismatch (expected_str, NULL);
3865
3866 return matched;
3867 }
3868
3869 /* The symbols added to the mock mapped_index for testing (in
3870 canonical form). */
3871 static const char *test_symbols[] = {
3872 "function",
3873 "std::bar",
3874 "std::zfunction",
3875 "std::zfunction2",
3876 "w1::w2",
3877 "ns::foo<char*>",
3878 "ns::foo<int>",
3879 "ns::foo<long>",
3880 "ns2::tmpl<int>::foo2",
3881 "(anonymous namespace)::A::B::C",
3882
3883 /* These are used to check that the increment-last-char in the
3884 matching algorithm for completion doesn't match "t1_fund" when
3885 completing "t1_func". */
3886 "t1_func",
3887 "t1_func1",
3888 "t1_fund",
3889 "t1_fund1",
3890
3891 /* A UTF-8 name with multi-byte sequences to make sure that
3892 cp-name-parser understands this as a single identifier ("função"
3893 is "function" in PT). */
3894 u8"u8função",
3895
3896 /* \377 (0xff) is Latin1 'ÿ'. */
3897 "yfunc\377",
3898
3899 /* \377 (0xff) is Latin1 'ÿ'. */
3900 "\377",
3901 "\377\377123",
3902
3903 /* A name with all sorts of complications. Starts with "z" to make
3904 it easier for the completion tests below. */
3905 #define Z_SYM_NAME \
3906 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
3907 "::tuple<(anonymous namespace)::ui*, " \
3908 "std::default_delete<(anonymous namespace)::ui>, void>"
3909
3910 Z_SYM_NAME
3911 };
3912
3913 /* Returns true if the mapped_index_base::find_name_component_bounds
3914 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
3915 in completion mode. */
3916
3917 static bool
3918 check_find_bounds_finds (mapped_index_base &index,
3919 const char *search_name,
3920 gdb::array_view<const char *> expected_syms,
3921 dwarf2_per_objfile *per_objfile)
3922 {
3923 lookup_name_info lookup_name (search_name,
3924 symbol_name_match_type::FULL, true);
3925
3926 auto bounds = index.find_name_components_bounds (lookup_name,
3927 language_cplus,
3928 per_objfile);
3929
3930 size_t distance = std::distance (bounds.first, bounds.second);
3931 if (distance != expected_syms.size ())
3932 return false;
3933
3934 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
3935 {
3936 auto nc_elem = bounds.first + exp_elem;
3937 const char *qualified = index.symbol_name_at (nc_elem->idx, per_objfile);
3938 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
3939 return false;
3940 }
3941
3942 return true;
3943 }
3944
3945 /* Test the lower-level mapped_index::find_name_component_bounds
3946 method. */
3947
3948 static void
3949 test_mapped_index_find_name_component_bounds ()
3950 {
3951 mock_mapped_index mock_index (test_symbols);
3952
3953 mock_index.build_name_components (NULL /* per_objfile */);
3954
3955 /* Test the lower-level mapped_index::find_name_component_bounds
3956 method in completion mode. */
3957 {
3958 static const char *expected_syms[] = {
3959 "t1_func",
3960 "t1_func1",
3961 };
3962
3963 SELF_CHECK (check_find_bounds_finds
3964 (mock_index, "t1_func", expected_syms,
3965 NULL /* per_objfile */));
3966 }
3967
3968 /* Check that the increment-last-char in the name matching algorithm
3969 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
3970 {
3971 static const char *expected_syms1[] = {
3972 "\377",
3973 "\377\377123",
3974 };
3975 SELF_CHECK (check_find_bounds_finds
3976 (mock_index, "\377", expected_syms1, NULL /* per_objfile */));
3977
3978 static const char *expected_syms2[] = {
3979 "\377\377123",
3980 };
3981 SELF_CHECK (check_find_bounds_finds
3982 (mock_index, "\377\377", expected_syms2,
3983 NULL /* per_objfile */));
3984 }
3985 }
3986
3987 /* Test dw2_expand_symtabs_matching_symbol. */
3988
3989 static void
3990 test_dw2_expand_symtabs_matching_symbol ()
3991 {
3992 mock_mapped_index mock_index (test_symbols);
3993
3994 /* We let all tests run until the end even if some fails, for debug
3995 convenience. */
3996 bool any_mismatch = false;
3997
3998 /* Create the expected symbols list (an initializer_list). Needed
3999 because lists have commas, and we need to pass them to CHECK,
4000 which is a macro. */
4001 #define EXPECT(...) { __VA_ARGS__ }
4002
4003 /* Wrapper for check_match that passes down the current
4004 __FILE__/__LINE__. */
4005 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4006 any_mismatch |= !check_match (__FILE__, __LINE__, \
4007 mock_index, \
4008 NAME, MATCH_TYPE, COMPLETION_MODE, \
4009 EXPECTED_LIST, NULL)
4010
4011 /* Identity checks. */
4012 for (const char *sym : test_symbols)
4013 {
4014 /* Should be able to match all existing symbols. */
4015 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4016 EXPECT (sym));
4017
4018 /* Should be able to match all existing symbols with
4019 parameters. */
4020 std::string with_params = std::string (sym) + "(int)";
4021 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4022 EXPECT (sym));
4023
4024 /* Should be able to match all existing symbols with
4025 parameters and qualifiers. */
4026 with_params = std::string (sym) + " ( int ) const";
4027 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4028 EXPECT (sym));
4029
4030 /* This should really find sym, but cp-name-parser.y doesn't
4031 know about lvalue/rvalue qualifiers yet. */
4032 with_params = std::string (sym) + " ( int ) &&";
4033 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4034 {});
4035 }
4036
4037 /* Check that the name matching algorithm for completion doesn't get
4038 confused with Latin1 'ÿ' / 0xff. */
4039 {
4040 static const char str[] = "\377";
4041 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4042 EXPECT ("\377", "\377\377123"));
4043 }
4044
4045 /* Check that the increment-last-char in the matching algorithm for
4046 completion doesn't match "t1_fund" when completing "t1_func". */
4047 {
4048 static const char str[] = "t1_func";
4049 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4050 EXPECT ("t1_func", "t1_func1"));
4051 }
4052
4053 /* Check that completion mode works at each prefix of the expected
4054 symbol name. */
4055 {
4056 static const char str[] = "function(int)";
4057 size_t len = strlen (str);
4058 std::string lookup;
4059
4060 for (size_t i = 1; i < len; i++)
4061 {
4062 lookup.assign (str, i);
4063 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4064 EXPECT ("function"));
4065 }
4066 }
4067
4068 /* While "w" is a prefix of both components, the match function
4069 should still only be called once. */
4070 {
4071 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4072 EXPECT ("w1::w2"));
4073 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4074 EXPECT ("w1::w2"));
4075 }
4076
4077 /* Same, with a "complicated" symbol. */
4078 {
4079 static const char str[] = Z_SYM_NAME;
4080 size_t len = strlen (str);
4081 std::string lookup;
4082
4083 for (size_t i = 1; i < len; i++)
4084 {
4085 lookup.assign (str, i);
4086 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4087 EXPECT (Z_SYM_NAME));
4088 }
4089 }
4090
4091 /* In FULL mode, an incomplete symbol doesn't match. */
4092 {
4093 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4094 {});
4095 }
4096
4097 /* A complete symbol with parameters matches any overload, since the
4098 index has no overload info. */
4099 {
4100 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4101 EXPECT ("std::zfunction", "std::zfunction2"));
4102 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4103 EXPECT ("std::zfunction", "std::zfunction2"));
4104 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4105 EXPECT ("std::zfunction", "std::zfunction2"));
4106 }
4107
4108 /* Check that whitespace is ignored appropriately. A symbol with a
4109 template argument list. */
4110 {
4111 static const char expected[] = "ns::foo<int>";
4112 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4113 EXPECT (expected));
4114 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4115 EXPECT (expected));
4116 }
4117
4118 /* Check that whitespace is ignored appropriately. A symbol with a
4119 template argument list that includes a pointer. */
4120 {
4121 static const char expected[] = "ns::foo<char*>";
4122 /* Try both completion and non-completion modes. */
4123 static const bool completion_mode[2] = {false, true};
4124 for (size_t i = 0; i < 2; i++)
4125 {
4126 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4127 completion_mode[i], EXPECT (expected));
4128 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4129 completion_mode[i], EXPECT (expected));
4130
4131 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4132 completion_mode[i], EXPECT (expected));
4133 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4134 completion_mode[i], EXPECT (expected));
4135 }
4136 }
4137
4138 {
4139 /* Check method qualifiers are ignored. */
4140 static const char expected[] = "ns::foo<char*>";
4141 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4142 symbol_name_match_type::FULL, true, EXPECT (expected));
4143 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4144 symbol_name_match_type::FULL, true, EXPECT (expected));
4145 CHECK_MATCH ("foo < char * > ( int ) const",
4146 symbol_name_match_type::WILD, true, EXPECT (expected));
4147 CHECK_MATCH ("foo < char * > ( int ) &&",
4148 symbol_name_match_type::WILD, true, EXPECT (expected));
4149 }
4150
4151 /* Test lookup names that don't match anything. */
4152 {
4153 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4154 {});
4155
4156 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4157 {});
4158 }
4159
4160 /* Some wild matching tests, exercising "(anonymous namespace)",
4161 which should not be confused with a parameter list. */
4162 {
4163 static const char *syms[] = {
4164 "A::B::C",
4165 "B::C",
4166 "C",
4167 "A :: B :: C ( int )",
4168 "B :: C ( int )",
4169 "C ( int )",
4170 };
4171
4172 for (const char *s : syms)
4173 {
4174 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4175 EXPECT ("(anonymous namespace)::A::B::C"));
4176 }
4177 }
4178
4179 {
4180 static const char expected[] = "ns2::tmpl<int>::foo2";
4181 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4182 EXPECT (expected));
4183 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4184 EXPECT (expected));
4185 }
4186
4187 SELF_CHECK (!any_mismatch);
4188
4189 #undef EXPECT
4190 #undef CHECK_MATCH
4191 }
4192
4193 static void
4194 run_test ()
4195 {
4196 test_mapped_index_find_name_component_bounds ();
4197 test_dw2_expand_symtabs_matching_symbol ();
4198 }
4199
4200 }} // namespace selftests::dw2_expand_symtabs_matching
4201
4202 #endif /* GDB_SELF_TEST */
4203
4204 /* If FILE_MATCHER is NULL or if PER_CU has
4205 dwarf2_per_cu_quick_data::MARK set (see
4206 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4207 EXPANSION_NOTIFY on it. */
4208
4209 static bool
4210 dw2_expand_symtabs_matching_one
4211 (dwarf2_per_cu_data *per_cu,
4212 dwarf2_per_objfile *per_objfile,
4213 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4214 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4215 {
4216 if (file_matcher == NULL || per_cu->v.quick->mark)
4217 {
4218 bool symtab_was_null = !per_objfile->symtab_set_p (per_cu);
4219
4220 compunit_symtab *symtab
4221 = dw2_instantiate_symtab (per_cu, per_objfile, false);
4222 gdb_assert (symtab != nullptr);
4223
4224 if (expansion_notify != NULL && symtab_was_null)
4225 return expansion_notify (symtab);
4226 }
4227 return true;
4228 }
4229
4230 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4231 matched, to expand corresponding CUs that were marked. IDX is the
4232 index of the symbol name that matched. */
4233
4234 static bool
4235 dw2_expand_marked_cus
4236 (dwarf2_per_objfile *per_objfile, offset_type idx,
4237 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4238 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4239 block_search_flags search_flags,
4240 search_domain kind)
4241 {
4242 offset_type vec_len, vec_idx;
4243 bool global_seen = false;
4244 mapped_index &index = *per_objfile->per_bfd->index_table;
4245
4246 offset_view vec (index.constant_pool.slice (index.symbol_vec_index (idx)));
4247 vec_len = vec[0];
4248 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4249 {
4250 offset_type cu_index_and_attrs = vec[vec_idx + 1];
4251 /* This value is only valid for index versions >= 7. */
4252 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4253 gdb_index_symbol_kind symbol_kind =
4254 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4255 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4256 /* Only check the symbol attributes if they're present.
4257 Indices prior to version 7 don't record them,
4258 and indices >= 7 may elide them for certain symbols
4259 (gold does this). */
4260 int attrs_valid =
4261 (index.version >= 7
4262 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4263
4264 /* Work around gold/15646. */
4265 if (attrs_valid
4266 && !is_static
4267 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
4268 {
4269 if (global_seen)
4270 continue;
4271
4272 global_seen = true;
4273 }
4274
4275 /* Only check the symbol's kind if it has one. */
4276 if (attrs_valid)
4277 {
4278 if (is_static)
4279 {
4280 if ((search_flags & SEARCH_STATIC_BLOCK) == 0)
4281 continue;
4282 }
4283 else
4284 {
4285 if ((search_flags & SEARCH_GLOBAL_BLOCK) == 0)
4286 continue;
4287 }
4288
4289 switch (kind)
4290 {
4291 case VARIABLES_DOMAIN:
4292 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4293 continue;
4294 break;
4295 case FUNCTIONS_DOMAIN:
4296 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4297 continue;
4298 break;
4299 case TYPES_DOMAIN:
4300 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4301 continue;
4302 break;
4303 case MODULES_DOMAIN:
4304 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4305 continue;
4306 break;
4307 default:
4308 break;
4309 }
4310 }
4311
4312 /* Don't crash on bad data. */
4313 if (cu_index >= per_objfile->per_bfd->all_comp_units.size ())
4314 {
4315 complaint (_(".gdb_index entry has bad CU index"
4316 " [in module %s]"), objfile_name (per_objfile->objfile));
4317 continue;
4318 }
4319
4320 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cu (cu_index);
4321 if (!dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
4322 expansion_notify))
4323 return false;
4324 }
4325
4326 return true;
4327 }
4328
4329 /* If FILE_MATCHER is non-NULL, set all the
4330 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4331 that match FILE_MATCHER. */
4332
4333 static void
4334 dw_expand_symtabs_matching_file_matcher
4335 (dwarf2_per_objfile *per_objfile,
4336 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4337 {
4338 if (file_matcher == NULL)
4339 return;
4340
4341 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4342 htab_eq_pointer,
4343 NULL, xcalloc, xfree));
4344 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4345 htab_eq_pointer,
4346 NULL, xcalloc, xfree));
4347
4348 /* The rule is CUs specify all the files, including those used by
4349 any TU, so there's no need to scan TUs here. */
4350
4351 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
4352 {
4353 QUIT;
4354
4355 if (per_cu->is_debug_types)
4356 continue;
4357 per_cu->v.quick->mark = 0;
4358
4359 /* We only need to look at symtabs not already expanded. */
4360 if (per_objfile->symtab_set_p (per_cu.get ()))
4361 continue;
4362
4363 quick_file_names *file_data = dw2_get_file_names (per_cu.get (),
4364 per_objfile);
4365 if (file_data == NULL)
4366 continue;
4367
4368 if (htab_find (visited_not_found.get (), file_data) != NULL)
4369 continue;
4370 else if (htab_find (visited_found.get (), file_data) != NULL)
4371 {
4372 per_cu->v.quick->mark = 1;
4373 continue;
4374 }
4375
4376 for (int j = 0; j < file_data->num_file_names; ++j)
4377 {
4378 const char *this_real_name;
4379
4380 if (file_matcher (file_data->file_names[j], false))
4381 {
4382 per_cu->v.quick->mark = 1;
4383 break;
4384 }
4385
4386 /* Before we invoke realpath, which can get expensive when many
4387 files are involved, do a quick comparison of the basenames. */
4388 if (!basenames_may_differ
4389 && !file_matcher (lbasename (file_data->file_names[j]),
4390 true))
4391 continue;
4392
4393 this_real_name = dw2_get_real_path (per_objfile, file_data, j);
4394 if (file_matcher (this_real_name, false))
4395 {
4396 per_cu->v.quick->mark = 1;
4397 break;
4398 }
4399 }
4400
4401 void **slot = htab_find_slot (per_cu->v.quick->mark
4402 ? visited_found.get ()
4403 : visited_not_found.get (),
4404 file_data, INSERT);
4405 *slot = file_data;
4406 }
4407 }
4408
4409 bool
4410 dwarf2_gdb_index::expand_symtabs_matching
4411 (struct objfile *objfile,
4412 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4413 const lookup_name_info *lookup_name,
4414 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4415 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4416 block_search_flags search_flags,
4417 domain_enum domain,
4418 enum search_domain kind)
4419 {
4420 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4421
4422 /* index_table is NULL if OBJF_READNOW. */
4423 if (!per_objfile->per_bfd->index_table)
4424 return true;
4425
4426 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
4427
4428 /* This invariant is documented in quick-functions.h. */
4429 gdb_assert (lookup_name != nullptr || symbol_matcher == nullptr);
4430 if (lookup_name == nullptr)
4431 {
4432 for (dwarf2_per_cu_data *per_cu
4433 : all_comp_units_range (per_objfile->per_bfd))
4434 {
4435 QUIT;
4436
4437 if (!dw2_expand_symtabs_matching_one (per_cu, per_objfile,
4438 file_matcher,
4439 expansion_notify))
4440 return false;
4441 }
4442 return true;
4443 }
4444
4445 mapped_index &index = *per_objfile->per_bfd->index_table;
4446
4447 bool result
4448 = dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4449 symbol_matcher,
4450 [&] (offset_type idx)
4451 {
4452 if (!dw2_expand_marked_cus (per_objfile, idx, file_matcher,
4453 expansion_notify, search_flags, kind))
4454 return false;
4455 return true;
4456 }, per_objfile);
4457
4458 return result;
4459 }
4460
4461 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4462 symtab. */
4463
4464 static struct compunit_symtab *
4465 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4466 CORE_ADDR pc)
4467 {
4468 int i;
4469
4470 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4471 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4472 return cust;
4473
4474 if (cust->includes == NULL)
4475 return NULL;
4476
4477 for (i = 0; cust->includes[i]; ++i)
4478 {
4479 struct compunit_symtab *s = cust->includes[i];
4480
4481 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4482 if (s != NULL)
4483 return s;
4484 }
4485
4486 return NULL;
4487 }
4488
4489 struct compunit_symtab *
4490 dwarf2_base_index_functions::find_pc_sect_compunit_symtab
4491 (struct objfile *objfile,
4492 struct bound_minimal_symbol msymbol,
4493 CORE_ADDR pc,
4494 struct obj_section *section,
4495 int warn_if_readin)
4496 {
4497 struct dwarf2_per_cu_data *data;
4498 struct compunit_symtab *result;
4499
4500 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4501 if (per_objfile->per_bfd->index_addrmap == nullptr)
4502 return NULL;
4503
4504 CORE_ADDR baseaddr = objfile->text_section_offset ();
4505 data = ((struct dwarf2_per_cu_data *)
4506 addrmap_find (per_objfile->per_bfd->index_addrmap,
4507 pc - baseaddr));
4508 if (!data)
4509 return NULL;
4510
4511 if (warn_if_readin && per_objfile->symtab_set_p (data))
4512 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4513 paddress (objfile->arch (), pc));
4514
4515 result = recursively_find_pc_sect_compunit_symtab
4516 (dw2_instantiate_symtab (data, per_objfile, false), pc);
4517
4518 gdb_assert (result != NULL);
4519 return result;
4520 }
4521
4522 void
4523 dwarf2_base_index_functions::map_symbol_filenames
4524 (struct objfile *objfile,
4525 gdb::function_view<symbol_filename_ftype> fun,
4526 bool need_fullname)
4527 {
4528 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4529
4530 /* Use caches to ensure we only call FUN once for each filename. */
4531 filename_seen_cache filenames_cache;
4532 std::unordered_set<quick_file_names *> qfn_cache;
4533
4534 /* The rule is CUs specify all the files, including those used by any TU,
4535 so there's no need to scan TUs here. We can ignore file names coming
4536 from already-expanded CUs. It is possible that an expanded CU might
4537 reuse the file names data from a currently unexpanded CU, in this
4538 case we don't want to report the files from the unexpanded CU. */
4539
4540 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
4541 {
4542 if (!per_cu->is_debug_types
4543 && per_objfile->symtab_set_p (per_cu.get ()))
4544 {
4545 if (per_cu->v.quick->file_names != nullptr)
4546 qfn_cache.insert (per_cu->v.quick->file_names);
4547 }
4548 }
4549
4550 for (dwarf2_per_cu_data *per_cu
4551 : all_comp_units_range (per_objfile->per_bfd))
4552 {
4553 /* We only need to look at symtabs not already expanded. */
4554 if (per_cu->is_debug_types || per_objfile->symtab_set_p (per_cu))
4555 continue;
4556
4557 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
4558 if (file_data == nullptr
4559 || qfn_cache.find (file_data) != qfn_cache.end ())
4560 continue;
4561
4562 for (int j = 0; j < file_data->num_file_names; ++j)
4563 {
4564 const char *filename = file_data->file_names[j];
4565 const char *key = filename;
4566 const char *fullname = nullptr;
4567
4568 if (need_fullname)
4569 {
4570 fullname = dw2_get_real_path (per_objfile, file_data, j);
4571 key = fullname;
4572 }
4573
4574 if (!filenames_cache.seen (key))
4575 fun (filename, fullname);
4576 }
4577 }
4578 }
4579
4580 bool
4581 dwarf2_base_index_functions::has_symbols (struct objfile *objfile)
4582 {
4583 return true;
4584 }
4585
4586 /* See quick_symbol_functions::has_unexpanded_symtabs in quick-symbol.h. */
4587
4588 bool
4589 dwarf2_base_index_functions::has_unexpanded_symtabs (struct objfile *objfile)
4590 {
4591 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4592
4593 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
4594 {
4595 /* Is this already expanded? */
4596 if (per_objfile->symtab_set_p (per_cu.get ()))
4597 continue;
4598
4599 /* It has not yet been expanded. */
4600 return true;
4601 }
4602
4603 return false;
4604 }
4605
4606 /* DWARF-5 debug_names reader. */
4607
4608 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4609 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4610
4611 /* A helper function that reads the .debug_names section in SECTION
4612 and fills in MAP. FILENAME is the name of the file containing the
4613 section; it is used for error reporting.
4614
4615 Returns true if all went well, false otherwise. */
4616
4617 static bool
4618 read_debug_names_from_section (struct objfile *objfile,
4619 const char *filename,
4620 struct dwarf2_section_info *section,
4621 mapped_debug_names &map)
4622 {
4623 if (section->empty ())
4624 return false;
4625
4626 /* Older elfutils strip versions could keep the section in the main
4627 executable while splitting it for the separate debug info file. */
4628 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4629 return false;
4630
4631 section->read (objfile);
4632
4633 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4634
4635 const gdb_byte *addr = section->buffer;
4636
4637 bfd *const abfd = section->get_bfd_owner ();
4638
4639 unsigned int bytes_read;
4640 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4641 addr += bytes_read;
4642
4643 map.dwarf5_is_dwarf64 = bytes_read != 4;
4644 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4645 if (bytes_read + length != section->size)
4646 {
4647 /* There may be multiple per-CU indices. */
4648 warning (_("Section .debug_names in %s length %s does not match "
4649 "section length %s, ignoring .debug_names."),
4650 filename, plongest (bytes_read + length),
4651 pulongest (section->size));
4652 return false;
4653 }
4654
4655 /* The version number. */
4656 uint16_t version = read_2_bytes (abfd, addr);
4657 addr += 2;
4658 if (version != 5)
4659 {
4660 warning (_("Section .debug_names in %s has unsupported version %d, "
4661 "ignoring .debug_names."),
4662 filename, version);
4663 return false;
4664 }
4665
4666 /* Padding. */
4667 uint16_t padding = read_2_bytes (abfd, addr);
4668 addr += 2;
4669 if (padding != 0)
4670 {
4671 warning (_("Section .debug_names in %s has unsupported padding %d, "
4672 "ignoring .debug_names."),
4673 filename, padding);
4674 return false;
4675 }
4676
4677 /* comp_unit_count - The number of CUs in the CU list. */
4678 map.cu_count = read_4_bytes (abfd, addr);
4679 addr += 4;
4680
4681 /* local_type_unit_count - The number of TUs in the local TU
4682 list. */
4683 map.tu_count = read_4_bytes (abfd, addr);
4684 addr += 4;
4685
4686 /* foreign_type_unit_count - The number of TUs in the foreign TU
4687 list. */
4688 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4689 addr += 4;
4690 if (foreign_tu_count != 0)
4691 {
4692 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4693 "ignoring .debug_names."),
4694 filename, static_cast<unsigned long> (foreign_tu_count));
4695 return false;
4696 }
4697
4698 /* bucket_count - The number of hash buckets in the hash lookup
4699 table. */
4700 map.bucket_count = read_4_bytes (abfd, addr);
4701 addr += 4;
4702
4703 /* name_count - The number of unique names in the index. */
4704 map.name_count = read_4_bytes (abfd, addr);
4705 addr += 4;
4706
4707 /* abbrev_table_size - The size in bytes of the abbreviations
4708 table. */
4709 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4710 addr += 4;
4711
4712 /* augmentation_string_size - The size in bytes of the augmentation
4713 string. This value is rounded up to a multiple of 4. */
4714 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4715 addr += 4;
4716 map.augmentation_is_gdb = ((augmentation_string_size
4717 == sizeof (dwarf5_augmentation))
4718 && memcmp (addr, dwarf5_augmentation,
4719 sizeof (dwarf5_augmentation)) == 0);
4720 augmentation_string_size += (-augmentation_string_size) & 3;
4721 addr += augmentation_string_size;
4722
4723 /* List of CUs */
4724 map.cu_table_reordered = addr;
4725 addr += map.cu_count * map.offset_size;
4726
4727 /* List of Local TUs */
4728 map.tu_table_reordered = addr;
4729 addr += map.tu_count * map.offset_size;
4730
4731 /* Hash Lookup Table */
4732 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4733 addr += map.bucket_count * 4;
4734 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4735 addr += map.name_count * 4;
4736
4737 /* Name Table */
4738 map.name_table_string_offs_reordered = addr;
4739 addr += map.name_count * map.offset_size;
4740 map.name_table_entry_offs_reordered = addr;
4741 addr += map.name_count * map.offset_size;
4742
4743 const gdb_byte *abbrev_table_start = addr;
4744 for (;;)
4745 {
4746 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4747 addr += bytes_read;
4748 if (index_num == 0)
4749 break;
4750
4751 const auto insertpair
4752 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4753 if (!insertpair.second)
4754 {
4755 warning (_("Section .debug_names in %s has duplicate index %s, "
4756 "ignoring .debug_names."),
4757 filename, pulongest (index_num));
4758 return false;
4759 }
4760 mapped_debug_names::index_val &indexval = insertpair.first->second;
4761 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4762 addr += bytes_read;
4763
4764 for (;;)
4765 {
4766 mapped_debug_names::index_val::attr attr;
4767 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4768 addr += bytes_read;
4769 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4770 addr += bytes_read;
4771 if (attr.form == DW_FORM_implicit_const)
4772 {
4773 attr.implicit_const = read_signed_leb128 (abfd, addr,
4774 &bytes_read);
4775 addr += bytes_read;
4776 }
4777 if (attr.dw_idx == 0 && attr.form == 0)
4778 break;
4779 indexval.attr_vec.push_back (std::move (attr));
4780 }
4781 }
4782 if (addr != abbrev_table_start + abbrev_table_size)
4783 {
4784 warning (_("Section .debug_names in %s has abbreviation_table "
4785 "of size %s vs. written as %u, ignoring .debug_names."),
4786 filename, plongest (addr - abbrev_table_start),
4787 abbrev_table_size);
4788 return false;
4789 }
4790 map.entry_pool = addr;
4791
4792 return true;
4793 }
4794
4795 /* A helper for create_cus_from_debug_names that handles the MAP's CU
4796 list. */
4797
4798 static void
4799 create_cus_from_debug_names_list (dwarf2_per_bfd *per_bfd,
4800 const mapped_debug_names &map,
4801 dwarf2_section_info &section,
4802 bool is_dwz)
4803 {
4804 if (!map.augmentation_is_gdb)
4805 {
4806 for (uint32_t i = 0; i < map.cu_count; ++i)
4807 {
4808 sect_offset sect_off
4809 = (sect_offset) (extract_unsigned_integer
4810 (map.cu_table_reordered + i * map.offset_size,
4811 map.offset_size,
4812 map.dwarf5_byte_order));
4813 /* We don't know the length of the CU, because the CU list in a
4814 .debug_names index can be incomplete, so we can't use the start
4815 of the next CU as end of this CU. We create the CUs here with
4816 length 0, and in cutu_reader::cutu_reader we'll fill in the
4817 actual length. */
4818 dwarf2_per_cu_data_up per_cu
4819 = create_cu_from_index_list (per_bfd, &section, is_dwz,
4820 sect_off, 0);
4821 per_bfd->all_comp_units.push_back (std::move (per_cu));
4822 }
4823 return;
4824 }
4825
4826 sect_offset sect_off_prev;
4827 for (uint32_t i = 0; i <= map.cu_count; ++i)
4828 {
4829 sect_offset sect_off_next;
4830 if (i < map.cu_count)
4831 {
4832 sect_off_next
4833 = (sect_offset) (extract_unsigned_integer
4834 (map.cu_table_reordered + i * map.offset_size,
4835 map.offset_size,
4836 map.dwarf5_byte_order));
4837 }
4838 else
4839 sect_off_next = (sect_offset) section.size;
4840 if (i >= 1)
4841 {
4842 const ULONGEST length = sect_off_next - sect_off_prev;
4843 dwarf2_per_cu_data_up per_cu
4844 = create_cu_from_index_list (per_bfd, &section, is_dwz,
4845 sect_off_prev, length);
4846 per_bfd->all_comp_units.push_back (std::move (per_cu));
4847 }
4848 sect_off_prev = sect_off_next;
4849 }
4850 }
4851
4852 /* Read the CU list from the mapped index, and use it to create all
4853 the CU objects for this dwarf2_per_objfile. */
4854
4855 static void
4856 create_cus_from_debug_names (dwarf2_per_bfd *per_bfd,
4857 const mapped_debug_names &map,
4858 const mapped_debug_names &dwz_map)
4859 {
4860 gdb_assert (per_bfd->all_comp_units.empty ());
4861 per_bfd->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
4862
4863 create_cus_from_debug_names_list (per_bfd, map, per_bfd->info,
4864 false /* is_dwz */);
4865
4866 if (dwz_map.cu_count == 0)
4867 return;
4868
4869 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
4870 create_cus_from_debug_names_list (per_bfd, dwz_map, dwz->info,
4871 true /* is_dwz */);
4872 }
4873
4874 /* Read .debug_names. If everything went ok, initialize the "quick"
4875 elements of all the CUs and return true. Otherwise, return false. */
4876
4877 static bool
4878 dwarf2_read_debug_names (dwarf2_per_objfile *per_objfile)
4879 {
4880 std::unique_ptr<mapped_debug_names> map (new mapped_debug_names);
4881 mapped_debug_names dwz_map;
4882 struct objfile *objfile = per_objfile->objfile;
4883 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
4884
4885 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
4886 &per_bfd->debug_names, *map))
4887 return false;
4888
4889 /* Don't use the index if it's empty. */
4890 if (map->name_count == 0)
4891 return false;
4892
4893 /* If there is a .dwz file, read it so we can get its CU list as
4894 well. */
4895 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
4896 if (dwz != NULL)
4897 {
4898 if (!read_debug_names_from_section (objfile,
4899 bfd_get_filename (dwz->dwz_bfd.get ()),
4900 &dwz->debug_names, dwz_map))
4901 {
4902 warning (_("could not read '.debug_names' section from %s; skipping"),
4903 bfd_get_filename (dwz->dwz_bfd.get ()));
4904 return false;
4905 }
4906 }
4907
4908 create_cus_from_debug_names (per_bfd, *map, dwz_map);
4909
4910 if (map->tu_count != 0)
4911 {
4912 /* We can only handle a single .debug_types when we have an
4913 index. */
4914 if (per_bfd->types.size () != 1)
4915 return false;
4916
4917 dwarf2_section_info *section = &per_bfd->types[0];
4918
4919 create_signatured_type_table_from_debug_names
4920 (per_objfile, *map, section, &per_bfd->abbrev);
4921 }
4922
4923 create_addrmap_from_aranges (per_objfile, &per_bfd->debug_aranges);
4924
4925 per_bfd->debug_names_table = std::move (map);
4926 per_bfd->using_index = 1;
4927 per_bfd->quick_file_names_table =
4928 create_quick_file_names_table (per_bfd->all_comp_units.size ());
4929
4930 return true;
4931 }
4932
4933 /* Type used to manage iterating over all CUs looking for a symbol for
4934 .debug_names. */
4935
4936 class dw2_debug_names_iterator
4937 {
4938 public:
4939 dw2_debug_names_iterator (const mapped_debug_names &map,
4940 block_search_flags block_index,
4941 domain_enum domain,
4942 const char *name, dwarf2_per_objfile *per_objfile)
4943 : m_map (map), m_block_index (block_index), m_domain (domain),
4944 m_addr (find_vec_in_debug_names (map, name, per_objfile)),
4945 m_per_objfile (per_objfile)
4946 {}
4947
4948 dw2_debug_names_iterator (const mapped_debug_names &map,
4949 search_domain search, uint32_t namei,
4950 dwarf2_per_objfile *per_objfile,
4951 domain_enum domain = UNDEF_DOMAIN)
4952 : m_map (map),
4953 m_domain (domain),
4954 m_search (search),
4955 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
4956 m_per_objfile (per_objfile)
4957 {}
4958
4959 dw2_debug_names_iterator (const mapped_debug_names &map,
4960 block_search_flags block_index, domain_enum domain,
4961 uint32_t namei, dwarf2_per_objfile *per_objfile)
4962 : m_map (map), m_block_index (block_index), m_domain (domain),
4963 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
4964 m_per_objfile (per_objfile)
4965 {}
4966
4967 /* Return the next matching CU or NULL if there are no more. */
4968 dwarf2_per_cu_data *next ();
4969
4970 private:
4971 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
4972 const char *name,
4973 dwarf2_per_objfile *per_objfile);
4974 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
4975 uint32_t namei,
4976 dwarf2_per_objfile *per_objfile);
4977
4978 /* The internalized form of .debug_names. */
4979 const mapped_debug_names &m_map;
4980
4981 /* Restrict the search to these blocks. */
4982 block_search_flags m_block_index = (SEARCH_GLOBAL_BLOCK
4983 | SEARCH_STATIC_BLOCK);
4984
4985 /* The kind of symbol we're looking for. */
4986 const domain_enum m_domain = UNDEF_DOMAIN;
4987 const search_domain m_search = ALL_DOMAIN;
4988
4989 /* The list of CUs from the index entry of the symbol, or NULL if
4990 not found. */
4991 const gdb_byte *m_addr;
4992
4993 dwarf2_per_objfile *m_per_objfile;
4994 };
4995
4996 const char *
4997 mapped_debug_names::namei_to_name
4998 (uint32_t namei, dwarf2_per_objfile *per_objfile) const
4999 {
5000 const ULONGEST namei_string_offs
5001 = extract_unsigned_integer ((name_table_string_offs_reordered
5002 + namei * offset_size),
5003 offset_size,
5004 dwarf5_byte_order);
5005 return read_indirect_string_at_offset (per_objfile, namei_string_offs);
5006 }
5007
5008 /* Find a slot in .debug_names for the object named NAME. If NAME is
5009 found, return pointer to its pool data. If NAME cannot be found,
5010 return NULL. */
5011
5012 const gdb_byte *
5013 dw2_debug_names_iterator::find_vec_in_debug_names
5014 (const mapped_debug_names &map, const char *name,
5015 dwarf2_per_objfile *per_objfile)
5016 {
5017 int (*cmp) (const char *, const char *);
5018
5019 gdb::unique_xmalloc_ptr<char> without_params;
5020 if (current_language->la_language == language_cplus
5021 || current_language->la_language == language_fortran
5022 || current_language->la_language == language_d)
5023 {
5024 /* NAME is already canonical. Drop any qualifiers as
5025 .debug_names does not contain any. */
5026
5027 if (strchr (name, '(') != NULL)
5028 {
5029 without_params = cp_remove_params (name);
5030 if (without_params != NULL)
5031 name = without_params.get ();
5032 }
5033 }
5034
5035 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5036
5037 const uint32_t full_hash = dwarf5_djb_hash (name);
5038 uint32_t namei
5039 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5040 (map.bucket_table_reordered
5041 + (full_hash % map.bucket_count)), 4,
5042 map.dwarf5_byte_order);
5043 if (namei == 0)
5044 return NULL;
5045 --namei;
5046 if (namei >= map.name_count)
5047 {
5048 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5049 "[in module %s]"),
5050 namei, map.name_count,
5051 objfile_name (per_objfile->objfile));
5052 return NULL;
5053 }
5054
5055 for (;;)
5056 {
5057 const uint32_t namei_full_hash
5058 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5059 (map.hash_table_reordered + namei), 4,
5060 map.dwarf5_byte_order);
5061 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5062 return NULL;
5063
5064 if (full_hash == namei_full_hash)
5065 {
5066 const char *const namei_string = map.namei_to_name (namei, per_objfile);
5067
5068 #if 0 /* An expensive sanity check. */
5069 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5070 {
5071 complaint (_("Wrong .debug_names hash for string at index %u "
5072 "[in module %s]"),
5073 namei, objfile_name (dwarf2_per_objfile->objfile));
5074 return NULL;
5075 }
5076 #endif
5077
5078 if (cmp (namei_string, name) == 0)
5079 {
5080 const ULONGEST namei_entry_offs
5081 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5082 + namei * map.offset_size),
5083 map.offset_size, map.dwarf5_byte_order);
5084 return map.entry_pool + namei_entry_offs;
5085 }
5086 }
5087
5088 ++namei;
5089 if (namei >= map.name_count)
5090 return NULL;
5091 }
5092 }
5093
5094 const gdb_byte *
5095 dw2_debug_names_iterator::find_vec_in_debug_names
5096 (const mapped_debug_names &map, uint32_t namei, dwarf2_per_objfile *per_objfile)
5097 {
5098 if (namei >= map.name_count)
5099 {
5100 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5101 "[in module %s]"),
5102 namei, map.name_count,
5103 objfile_name (per_objfile->objfile));
5104 return NULL;
5105 }
5106
5107 const ULONGEST namei_entry_offs
5108 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5109 + namei * map.offset_size),
5110 map.offset_size, map.dwarf5_byte_order);
5111 return map.entry_pool + namei_entry_offs;
5112 }
5113
5114 /* See dw2_debug_names_iterator. */
5115
5116 dwarf2_per_cu_data *
5117 dw2_debug_names_iterator::next ()
5118 {
5119 if (m_addr == NULL)
5120 return NULL;
5121
5122 dwarf2_per_bfd *per_bfd = m_per_objfile->per_bfd;
5123 struct objfile *objfile = m_per_objfile->objfile;
5124 bfd *const abfd = objfile->obfd;
5125
5126 again:
5127
5128 unsigned int bytes_read;
5129 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5130 m_addr += bytes_read;
5131 if (abbrev == 0)
5132 return NULL;
5133
5134 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5135 if (indexval_it == m_map.abbrev_map.cend ())
5136 {
5137 complaint (_("Wrong .debug_names undefined abbrev code %s "
5138 "[in module %s]"),
5139 pulongest (abbrev), objfile_name (objfile));
5140 return NULL;
5141 }
5142 const mapped_debug_names::index_val &indexval = indexval_it->second;
5143 enum class symbol_linkage {
5144 unknown,
5145 static_,
5146 extern_,
5147 } symbol_linkage_ = symbol_linkage::unknown;
5148 dwarf2_per_cu_data *per_cu = NULL;
5149 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5150 {
5151 ULONGEST ull;
5152 switch (attr.form)
5153 {
5154 case DW_FORM_implicit_const:
5155 ull = attr.implicit_const;
5156 break;
5157 case DW_FORM_flag_present:
5158 ull = 1;
5159 break;
5160 case DW_FORM_udata:
5161 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5162 m_addr += bytes_read;
5163 break;
5164 case DW_FORM_ref4:
5165 ull = read_4_bytes (abfd, m_addr);
5166 m_addr += 4;
5167 break;
5168 case DW_FORM_ref8:
5169 ull = read_8_bytes (abfd, m_addr);
5170 m_addr += 8;
5171 break;
5172 case DW_FORM_ref_sig8:
5173 ull = read_8_bytes (abfd, m_addr);
5174 m_addr += 8;
5175 break;
5176 default:
5177 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5178 dwarf_form_name (attr.form),
5179 objfile_name (objfile));
5180 return NULL;
5181 }
5182 switch (attr.dw_idx)
5183 {
5184 case DW_IDX_compile_unit:
5185 /* Don't crash on bad data. */
5186 if (ull >= per_bfd->all_comp_units.size ())
5187 {
5188 complaint (_(".debug_names entry has bad CU index %s"
5189 " [in module %s]"),
5190 pulongest (ull),
5191 objfile_name (objfile));
5192 continue;
5193 }
5194 per_cu = per_bfd->get_cu (ull);
5195 break;
5196 case DW_IDX_type_unit:
5197 /* Don't crash on bad data. */
5198 if (ull >= per_bfd->tu_stats.nr_tus)
5199 {
5200 complaint (_(".debug_names entry has bad TU index %s"
5201 " [in module %s]"),
5202 pulongest (ull),
5203 objfile_name (objfile));
5204 continue;
5205 }
5206 per_cu = per_bfd->get_cu (ull + per_bfd->tu_stats.nr_tus);
5207 break;
5208 case DW_IDX_die_offset:
5209 /* In a per-CU index (as opposed to a per-module index), index
5210 entries without CU attribute implicitly refer to the single CU. */
5211 if (per_cu == NULL)
5212 per_cu = per_bfd->get_cu (0);
5213 break;
5214 case DW_IDX_GNU_internal:
5215 if (!m_map.augmentation_is_gdb)
5216 break;
5217 symbol_linkage_ = symbol_linkage::static_;
5218 break;
5219 case DW_IDX_GNU_external:
5220 if (!m_map.augmentation_is_gdb)
5221 break;
5222 symbol_linkage_ = symbol_linkage::extern_;
5223 break;
5224 }
5225 }
5226
5227 /* Skip if already read in. */
5228 if (m_per_objfile->symtab_set_p (per_cu))
5229 goto again;
5230
5231 /* Check static vs global. */
5232 if (symbol_linkage_ != symbol_linkage::unknown)
5233 {
5234 if (symbol_linkage_ == symbol_linkage::static_)
5235 {
5236 if ((m_block_index & SEARCH_STATIC_BLOCK) == 0)
5237 goto again;
5238 }
5239 else
5240 {
5241 if ((m_block_index & SEARCH_GLOBAL_BLOCK) == 0)
5242 goto again;
5243 }
5244 }
5245
5246 /* Match dw2_symtab_iter_next, symbol_kind
5247 and debug_names::psymbol_tag. */
5248 switch (m_domain)
5249 {
5250 case VAR_DOMAIN:
5251 switch (indexval.dwarf_tag)
5252 {
5253 case DW_TAG_variable:
5254 case DW_TAG_subprogram:
5255 /* Some types are also in VAR_DOMAIN. */
5256 case DW_TAG_typedef:
5257 case DW_TAG_structure_type:
5258 break;
5259 default:
5260 goto again;
5261 }
5262 break;
5263 case STRUCT_DOMAIN:
5264 switch (indexval.dwarf_tag)
5265 {
5266 case DW_TAG_typedef:
5267 case DW_TAG_structure_type:
5268 break;
5269 default:
5270 goto again;
5271 }
5272 break;
5273 case LABEL_DOMAIN:
5274 switch (indexval.dwarf_tag)
5275 {
5276 case 0:
5277 case DW_TAG_variable:
5278 break;
5279 default:
5280 goto again;
5281 }
5282 break;
5283 case MODULE_DOMAIN:
5284 switch (indexval.dwarf_tag)
5285 {
5286 case DW_TAG_module:
5287 break;
5288 default:
5289 goto again;
5290 }
5291 break;
5292 default:
5293 break;
5294 }
5295
5296 /* Match dw2_expand_symtabs_matching, symbol_kind and
5297 debug_names::psymbol_tag. */
5298 switch (m_search)
5299 {
5300 case VARIABLES_DOMAIN:
5301 switch (indexval.dwarf_tag)
5302 {
5303 case DW_TAG_variable:
5304 break;
5305 default:
5306 goto again;
5307 }
5308 break;
5309 case FUNCTIONS_DOMAIN:
5310 switch (indexval.dwarf_tag)
5311 {
5312 case DW_TAG_subprogram:
5313 break;
5314 default:
5315 goto again;
5316 }
5317 break;
5318 case TYPES_DOMAIN:
5319 switch (indexval.dwarf_tag)
5320 {
5321 case DW_TAG_typedef:
5322 case DW_TAG_structure_type:
5323 break;
5324 default:
5325 goto again;
5326 }
5327 break;
5328 case MODULES_DOMAIN:
5329 switch (indexval.dwarf_tag)
5330 {
5331 case DW_TAG_module:
5332 break;
5333 default:
5334 goto again;
5335 }
5336 default:
5337 break;
5338 }
5339
5340 return per_cu;
5341 }
5342
5343 /* This dumps minimal information about .debug_names. It is called
5344 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5345 uses this to verify that .debug_names has been loaded. */
5346
5347 void
5348 dwarf2_debug_names_index::dump (struct objfile *objfile)
5349 {
5350 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5351
5352 gdb_assert (per_objfile->per_bfd->using_index);
5353 printf_filtered (".debug_names:");
5354 if (per_objfile->per_bfd->debug_names_table)
5355 printf_filtered (" exists\n");
5356 else
5357 printf_filtered (" faked for \"readnow\"\n");
5358 printf_filtered ("\n");
5359 }
5360
5361 void
5362 dwarf2_debug_names_index::expand_matching_symbols
5363 (struct objfile *objfile,
5364 const lookup_name_info &name, domain_enum domain,
5365 int global,
5366 symbol_compare_ftype *ordered_compare)
5367 {
5368 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5369
5370 /* debug_names_table is NULL if OBJF_READNOW. */
5371 if (!per_objfile->per_bfd->debug_names_table)
5372 return;
5373
5374 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5375 const block_search_flags block_flags
5376 = global ? SEARCH_GLOBAL_BLOCK : SEARCH_STATIC_BLOCK;
5377
5378 const char *match_name = name.ada ().lookup_name ().c_str ();
5379 auto matcher = [&] (const char *symname)
5380 {
5381 if (ordered_compare == nullptr)
5382 return true;
5383 return ordered_compare (symname, match_name) == 0;
5384 };
5385
5386 dw2_expand_symtabs_matching_symbol (map, name, matcher,
5387 [&] (offset_type namei)
5388 {
5389 /* The name was matched, now expand corresponding CUs that were
5390 marked. */
5391 dw2_debug_names_iterator iter (map, block_flags, domain, namei,
5392 per_objfile);
5393
5394 struct dwarf2_per_cu_data *per_cu;
5395 while ((per_cu = iter.next ()) != NULL)
5396 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
5397 nullptr);
5398 return true;
5399 }, per_objfile);
5400 }
5401
5402 bool
5403 dwarf2_debug_names_index::expand_symtabs_matching
5404 (struct objfile *objfile,
5405 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5406 const lookup_name_info *lookup_name,
5407 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5408 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5409 block_search_flags search_flags,
5410 domain_enum domain,
5411 enum search_domain kind)
5412 {
5413 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5414
5415 /* debug_names_table is NULL if OBJF_READNOW. */
5416 if (!per_objfile->per_bfd->debug_names_table)
5417 return true;
5418
5419 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
5420
5421 /* This invariant is documented in quick-functions.h. */
5422 gdb_assert (lookup_name != nullptr || symbol_matcher == nullptr);
5423 if (lookup_name == nullptr)
5424 {
5425 for (dwarf2_per_cu_data *per_cu
5426 : all_comp_units_range (per_objfile->per_bfd))
5427 {
5428 QUIT;
5429
5430 if (!dw2_expand_symtabs_matching_one (per_cu, per_objfile,
5431 file_matcher,
5432 expansion_notify))
5433 return false;
5434 }
5435 return true;
5436 }
5437
5438 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5439
5440 bool result
5441 = dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5442 symbol_matcher,
5443 [&] (offset_type namei)
5444 {
5445 /* The name was matched, now expand corresponding CUs that were
5446 marked. */
5447 dw2_debug_names_iterator iter (map, kind, namei, per_objfile, domain);
5448
5449 struct dwarf2_per_cu_data *per_cu;
5450 while ((per_cu = iter.next ()) != NULL)
5451 if (!dw2_expand_symtabs_matching_one (per_cu, per_objfile,
5452 file_matcher,
5453 expansion_notify))
5454 return false;
5455 return true;
5456 }, per_objfile);
5457
5458 return result;
5459 }
5460
5461 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5462 to either a dwarf2_per_bfd or dwz_file object. */
5463
5464 template <typename T>
5465 static gdb::array_view<const gdb_byte>
5466 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5467 {
5468 dwarf2_section_info *section = &section_owner->gdb_index;
5469
5470 if (section->empty ())
5471 return {};
5472
5473 /* Older elfutils strip versions could keep the section in the main
5474 executable while splitting it for the separate debug info file. */
5475 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5476 return {};
5477
5478 section->read (obj);
5479
5480 /* dwarf2_section_info::size is a bfd_size_type, while
5481 gdb::array_view works with size_t. On 32-bit hosts, with
5482 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5483 is 32-bit. So we need an explicit narrowing conversion here.
5484 This is fine, because it's impossible to allocate or mmap an
5485 array/buffer larger than what size_t can represent. */
5486 return gdb::make_array_view (section->buffer, section->size);
5487 }
5488
5489 /* Lookup the index cache for the contents of the index associated to
5490 DWARF2_OBJ. */
5491
5492 static gdb::array_view<const gdb_byte>
5493 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_bfd *dwarf2_per_bfd)
5494 {
5495 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5496 if (build_id == nullptr)
5497 return {};
5498
5499 return global_index_cache.lookup_gdb_index (build_id,
5500 &dwarf2_per_bfd->index_cache_res);
5501 }
5502
5503 /* Same as the above, but for DWZ. */
5504
5505 static gdb::array_view<const gdb_byte>
5506 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5507 {
5508 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5509 if (build_id == nullptr)
5510 return {};
5511
5512 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5513 }
5514
5515 /* See dwarf2/public.h. */
5516
5517 void
5518 dwarf2_initialize_objfile (struct objfile *objfile)
5519 {
5520 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5521 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
5522
5523 dwarf_read_debug_printf ("called");
5524
5525 /* If we're about to read full symbols, don't bother with the
5526 indices. In this case we also don't care if some other debug
5527 format is making psymtabs, because they are all about to be
5528 expanded anyway. */
5529 if ((objfile->flags & OBJF_READNOW))
5530 {
5531 dwarf_read_debug_printf ("readnow requested");
5532
5533 /* When using READNOW, the using_index flag (set below) indicates that
5534 PER_BFD was already initialized, when we loaded some other objfile. */
5535 if (per_bfd->using_index)
5536 {
5537 dwarf_read_debug_printf ("using_index already set");
5538 objfile->qf.push_front (make_dwarf_gdb_index ());
5539 return;
5540 }
5541
5542 per_bfd->using_index = 1;
5543 create_all_comp_units (per_objfile);
5544 per_bfd->quick_file_names_table
5545 = create_quick_file_names_table (per_bfd->all_comp_units.size ());
5546
5547 for (int i = 0; i < per_bfd->all_comp_units.size (); ++i)
5548 {
5549 dwarf2_per_cu_data *per_cu = per_bfd->get_cu (i);
5550
5551 per_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
5552 struct dwarf2_per_cu_quick_data);
5553 }
5554
5555 /* Arrange for gdb to see the "quick" functions. However, these
5556 functions will be no-ops because we will have expanded all
5557 symtabs. */
5558 objfile->qf.push_front (make_dwarf_gdb_index ());
5559 return;
5560 }
5561
5562 /* Was a debug names index already read when we processed an objfile sharing
5563 PER_BFD? */
5564 if (per_bfd->debug_names_table != nullptr)
5565 {
5566 dwarf_read_debug_printf ("re-using shared debug names table");
5567 objfile->qf.push_front (make_dwarf_debug_names ());
5568 return;
5569 }
5570
5571 /* Was a GDB index already read when we processed an objfile sharing
5572 PER_BFD? */
5573 if (per_bfd->index_table != nullptr)
5574 {
5575 dwarf_read_debug_printf ("re-using shared index table");
5576 objfile->qf.push_front (make_dwarf_gdb_index ());
5577 return;
5578 }
5579
5580 /* There might already be partial symtabs built for this BFD. This happens
5581 when loading the same binary twice with the index-cache enabled. If so,
5582 don't try to read an index. The objfile / per_objfile initialization will
5583 be completed in dwarf2_build_psymtabs, in the standard partial symtabs
5584 code path. */
5585 if (per_bfd->partial_symtabs != nullptr)
5586 {
5587 dwarf_read_debug_printf ("re-using shared partial symtabs");
5588 objfile->qf.push_front (make_lazy_dwarf_reader ());
5589 return;
5590 }
5591
5592 if (dwarf2_read_debug_names (per_objfile))
5593 {
5594 dwarf_read_debug_printf ("found debug names");
5595 objfile->qf.push_front (make_dwarf_debug_names ());
5596 return;
5597 }
5598
5599 if (dwarf2_read_gdb_index (per_objfile,
5600 get_gdb_index_contents_from_section<struct dwarf2_per_bfd>,
5601 get_gdb_index_contents_from_section<dwz_file>))
5602 {
5603 dwarf_read_debug_printf ("found gdb index from file");
5604 objfile->qf.push_front (make_dwarf_gdb_index ());
5605 return;
5606 }
5607
5608 /* ... otherwise, try to find the index in the index cache. */
5609 if (dwarf2_read_gdb_index (per_objfile,
5610 get_gdb_index_contents_from_cache,
5611 get_gdb_index_contents_from_cache_dwz))
5612 {
5613 dwarf_read_debug_printf ("found gdb index from cache");
5614 global_index_cache.hit ();
5615 objfile->qf.push_front (make_dwarf_gdb_index ());
5616 return;
5617 }
5618
5619 global_index_cache.miss ();
5620 objfile->qf.push_front (make_lazy_dwarf_reader ());
5621 }
5622
5623 \f
5624
5625 /* Build a partial symbol table. */
5626
5627 void
5628 dwarf2_build_psymtabs (struct objfile *objfile, psymbol_functions *psf)
5629 {
5630 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5631 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
5632
5633 if (per_bfd->partial_symtabs != nullptr)
5634 {
5635 /* Partial symbols were already read, so now we can simply
5636 attach them. */
5637 if (psf == nullptr)
5638 {
5639 psf = new psymbol_functions (per_bfd->partial_symtabs);
5640 objfile->qf.emplace_front (psf);
5641 }
5642 else
5643 psf->set_partial_symtabs (per_bfd->partial_symtabs);
5644 return;
5645 }
5646
5647 if (psf == nullptr)
5648 {
5649 psf = new psymbol_functions;
5650 objfile->qf.emplace_front (psf);
5651 }
5652 const std::shared_ptr<psymtab_storage> &partial_symtabs
5653 = psf->get_partial_symtabs ();
5654
5655 /* Set the local reference to partial symtabs, so that we don't try
5656 to read them again if reading another objfile with the same BFD.
5657 If we can't in fact share, this won't make a difference anyway as
5658 the dwarf2_per_bfd object won't be shared. */
5659 per_bfd->partial_symtabs = partial_symtabs;
5660
5661 try
5662 {
5663 /* This isn't really ideal: all the data we allocate on the
5664 objfile's obstack is still uselessly kept around. However,
5665 freeing it seems unsafe. */
5666 psymtab_discarder psymtabs (partial_symtabs.get ());
5667 dwarf2_build_psymtabs_hard (per_objfile);
5668 psymtabs.keep ();
5669
5670 /* (maybe) store an index in the cache. */
5671 global_index_cache.store (per_objfile);
5672 }
5673 catch (const gdb_exception_error &except)
5674 {
5675 exception_print (gdb_stderr, except);
5676 }
5677 }
5678
5679 /* Find the base address of the compilation unit for range lists and
5680 location lists. It will normally be specified by DW_AT_low_pc.
5681 In DWARF-3 draft 4, the base address could be overridden by
5682 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5683 compilation units with discontinuous ranges. */
5684
5685 static void
5686 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5687 {
5688 struct attribute *attr;
5689
5690 cu->base_address.reset ();
5691
5692 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5693 if (attr != nullptr)
5694 cu->base_address = attr->as_address ();
5695 else
5696 {
5697 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5698 if (attr != nullptr)
5699 cu->base_address = attr->as_address ();
5700 }
5701 }
5702
5703 /* Helper function that returns the proper abbrev section for
5704 THIS_CU. */
5705
5706 static struct dwarf2_section_info *
5707 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5708 {
5709 struct dwarf2_section_info *abbrev;
5710 dwarf2_per_bfd *per_bfd = this_cu->per_bfd;
5711
5712 if (this_cu->is_dwz)
5713 abbrev = &dwarf2_get_dwz_file (per_bfd, true)->abbrev;
5714 else
5715 abbrev = &per_bfd->abbrev;
5716
5717 return abbrev;
5718 }
5719
5720 /* Fetch the abbreviation table offset from a comp or type unit header. */
5721
5722 static sect_offset
5723 read_abbrev_offset (dwarf2_per_objfile *per_objfile,
5724 struct dwarf2_section_info *section,
5725 sect_offset sect_off)
5726 {
5727 bfd *abfd = section->get_bfd_owner ();
5728 const gdb_byte *info_ptr;
5729 unsigned int initial_length_size, offset_size;
5730 uint16_t version;
5731
5732 section->read (per_objfile->objfile);
5733 info_ptr = section->buffer + to_underlying (sect_off);
5734 read_initial_length (abfd, info_ptr, &initial_length_size);
5735 offset_size = initial_length_size == 4 ? 4 : 8;
5736 info_ptr += initial_length_size;
5737
5738 version = read_2_bytes (abfd, info_ptr);
5739 info_ptr += 2;
5740 if (version >= 5)
5741 {
5742 /* Skip unit type and address size. */
5743 info_ptr += 2;
5744 }
5745
5746 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5747 }
5748
5749 /* A partial symtab that is used only for include files. */
5750 struct dwarf2_include_psymtab : public partial_symtab
5751 {
5752 dwarf2_include_psymtab (const char *filename,
5753 psymtab_storage *partial_symtabs,
5754 objfile_per_bfd_storage *objfile_per_bfd)
5755 : partial_symtab (filename, partial_symtabs, objfile_per_bfd)
5756 {
5757 }
5758
5759 void read_symtab (struct objfile *objfile) override
5760 {
5761 /* It's an include file, no symbols to read for it.
5762 Everything is in the includer symtab. */
5763
5764 /* The expansion of a dwarf2_include_psymtab is just a trigger for
5765 expansion of the includer psymtab. We use the dependencies[0] field to
5766 model the includer. But if we go the regular route of calling
5767 expand_psymtab here, and having expand_psymtab call expand_dependencies
5768 to expand the includer, we'll only use expand_psymtab on the includer
5769 (making it a non-toplevel psymtab), while if we expand the includer via
5770 another path, we'll use read_symtab (making it a toplevel psymtab).
5771 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
5772 psymtab, and trigger read_symtab on the includer here directly. */
5773 includer ()->read_symtab (objfile);
5774 }
5775
5776 void expand_psymtab (struct objfile *objfile) override
5777 {
5778 /* This is not called by read_symtab, and should not be called by any
5779 expand_dependencies. */
5780 gdb_assert (false);
5781 }
5782
5783 bool readin_p (struct objfile *objfile) const override
5784 {
5785 return includer ()->readin_p (objfile);
5786 }
5787
5788 compunit_symtab *get_compunit_symtab (struct objfile *objfile) const override
5789 {
5790 return nullptr;
5791 }
5792
5793 private:
5794 partial_symtab *includer () const
5795 {
5796 /* An include psymtab has exactly one dependency: the psymtab that
5797 includes it. */
5798 gdb_assert (this->number_of_dependencies == 1);
5799 return this->dependencies[0];
5800 }
5801 };
5802
5803 /* Allocate a new partial symtab for file named NAME and mark this new
5804 partial symtab as being an include of PST. */
5805
5806 static void
5807 dwarf2_create_include_psymtab (dwarf2_per_bfd *per_bfd,
5808 const char *name,
5809 dwarf2_psymtab *pst,
5810 psymtab_storage *partial_symtabs,
5811 objfile_per_bfd_storage *objfile_per_bfd)
5812 {
5813 dwarf2_include_psymtab *subpst
5814 = new dwarf2_include_psymtab (name, partial_symtabs, objfile_per_bfd);
5815
5816 if (!IS_ABSOLUTE_PATH (subpst->filename))
5817 subpst->dirname = pst->dirname;
5818
5819 subpst->dependencies = per_bfd->partial_symtabs->allocate_dependencies (1);
5820 subpst->dependencies[0] = pst;
5821 subpst->number_of_dependencies = 1;
5822 }
5823
5824 /* Read the Line Number Program data and extract the list of files
5825 included by the source file represented by PST. Build an include
5826 partial symtab for each of these included files. */
5827
5828 static void
5829 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5830 struct die_info *die,
5831 const file_and_directory &fnd,
5832 dwarf2_psymtab *pst)
5833 {
5834 line_header_up lh;
5835 struct attribute *attr;
5836
5837 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5838 if (attr != nullptr && attr->form_is_unsigned ())
5839 lh = dwarf_decode_line_header ((sect_offset) attr->as_unsigned (), cu);
5840 if (lh == NULL)
5841 return; /* No linetable, so no includes. */
5842
5843 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
5844 that we pass in the raw text_low here; that is ok because we're
5845 only decoding the line table to make include partial symtabs, and
5846 so the addresses aren't really used. */
5847 dwarf_decode_lines (lh.get (), fnd, cu, pst,
5848 pst->raw_text_low (), 1);
5849 }
5850
5851 static hashval_t
5852 hash_signatured_type (const void *item)
5853 {
5854 const struct signatured_type *sig_type
5855 = (const struct signatured_type *) item;
5856
5857 /* This drops the top 32 bits of the signature, but is ok for a hash. */
5858 return sig_type->signature;
5859 }
5860
5861 static int
5862 eq_signatured_type (const void *item_lhs, const void *item_rhs)
5863 {
5864 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
5865 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
5866
5867 return lhs->signature == rhs->signature;
5868 }
5869
5870 /* Allocate a hash table for signatured types. */
5871
5872 static htab_up
5873 allocate_signatured_type_table ()
5874 {
5875 return htab_up (htab_create_alloc (41,
5876 hash_signatured_type,
5877 eq_signatured_type,
5878 NULL, xcalloc, xfree));
5879 }
5880
5881 /* A helper for create_debug_types_hash_table. Read types from SECTION
5882 and fill them into TYPES_HTAB. It will process only type units,
5883 therefore DW_UT_type. */
5884
5885 static void
5886 create_debug_type_hash_table (dwarf2_per_objfile *per_objfile,
5887 struct dwo_file *dwo_file,
5888 dwarf2_section_info *section, htab_up &types_htab,
5889 rcuh_kind section_kind)
5890 {
5891 struct objfile *objfile = per_objfile->objfile;
5892 struct dwarf2_section_info *abbrev_section;
5893 bfd *abfd;
5894 const gdb_byte *info_ptr, *end_ptr;
5895
5896 abbrev_section = &dwo_file->sections.abbrev;
5897
5898 dwarf_read_debug_printf ("Reading %s for %s",
5899 section->get_name (),
5900 abbrev_section->get_file_name ());
5901
5902 section->read (objfile);
5903 info_ptr = section->buffer;
5904
5905 if (info_ptr == NULL)
5906 return;
5907
5908 /* We can't set abfd until now because the section may be empty or
5909 not present, in which case the bfd is unknown. */
5910 abfd = section->get_bfd_owner ();
5911
5912 /* We don't use cutu_reader here because we don't need to read
5913 any dies: the signature is in the header. */
5914
5915 end_ptr = info_ptr + section->size;
5916 while (info_ptr < end_ptr)
5917 {
5918 signatured_type_up sig_type;
5919 struct dwo_unit *dwo_tu;
5920 void **slot;
5921 const gdb_byte *ptr = info_ptr;
5922 struct comp_unit_head header;
5923 unsigned int length;
5924
5925 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
5926
5927 /* Initialize it due to a false compiler warning. */
5928 header.signature = -1;
5929 header.type_cu_offset_in_tu = (cu_offset) -1;
5930
5931 /* We need to read the type's signature in order to build the hash
5932 table, but we don't need anything else just yet. */
5933
5934 ptr = read_and_check_comp_unit_head (per_objfile, &header, section,
5935 abbrev_section, ptr, section_kind);
5936
5937 length = header.get_length ();
5938
5939 /* Skip dummy type units. */
5940 if (ptr >= info_ptr + length
5941 || peek_abbrev_code (abfd, ptr) == 0
5942 || (header.unit_type != DW_UT_type
5943 && header.unit_type != DW_UT_split_type))
5944 {
5945 info_ptr += length;
5946 continue;
5947 }
5948
5949 if (types_htab == NULL)
5950 types_htab = allocate_dwo_unit_table ();
5951
5952 dwo_tu = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, dwo_unit);
5953 dwo_tu->dwo_file = dwo_file;
5954 dwo_tu->signature = header.signature;
5955 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
5956 dwo_tu->section = section;
5957 dwo_tu->sect_off = sect_off;
5958 dwo_tu->length = length;
5959
5960 slot = htab_find_slot (types_htab.get (), dwo_tu, INSERT);
5961 gdb_assert (slot != NULL);
5962 if (*slot != NULL)
5963 complaint (_("debug type entry at offset %s is duplicate to"
5964 " the entry at offset %s, signature %s"),
5965 sect_offset_str (sect_off),
5966 sect_offset_str (dwo_tu->sect_off),
5967 hex_string (header.signature));
5968 *slot = dwo_tu;
5969
5970 dwarf_read_debug_printf_v (" offset %s, signature %s",
5971 sect_offset_str (sect_off),
5972 hex_string (header.signature));
5973
5974 info_ptr += length;
5975 }
5976 }
5977
5978 /* Create the hash table of all entries in the .debug_types
5979 (or .debug_types.dwo) section(s).
5980 DWO_FILE is a pointer to the DWO file object.
5981
5982 The result is a pointer to the hash table or NULL if there are no types.
5983
5984 Note: This function processes DWO files only, not DWP files. */
5985
5986 static void
5987 create_debug_types_hash_table (dwarf2_per_objfile *per_objfile,
5988 struct dwo_file *dwo_file,
5989 gdb::array_view<dwarf2_section_info> type_sections,
5990 htab_up &types_htab)
5991 {
5992 for (dwarf2_section_info &section : type_sections)
5993 create_debug_type_hash_table (per_objfile, dwo_file, &section, types_htab,
5994 rcuh_kind::TYPE);
5995 }
5996
5997 /* Add an entry for signature SIG to dwarf2_per_objfile->per_bfd->signatured_types.
5998 If SLOT is non-NULL, it is the entry to use in the hash table.
5999 Otherwise we find one. */
6000
6001 static struct signatured_type *
6002 add_type_unit (dwarf2_per_objfile *per_objfile, ULONGEST sig, void **slot)
6003 {
6004 if (per_objfile->per_bfd->all_comp_units.size ()
6005 == per_objfile->per_bfd->all_comp_units.capacity ())
6006 ++per_objfile->per_bfd->tu_stats.nr_all_type_units_reallocs;
6007
6008 signatured_type_up sig_type_holder
6009 = per_objfile->per_bfd->allocate_signatured_type (sig);
6010 signatured_type *sig_type = sig_type_holder.get ();
6011
6012 per_objfile->per_bfd->all_comp_units.emplace_back
6013 (sig_type_holder.release ());
6014 if (per_objfile->per_bfd->using_index)
6015 {
6016 sig_type->v.quick =
6017 OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
6018 struct dwarf2_per_cu_quick_data);
6019 }
6020
6021 if (slot == NULL)
6022 {
6023 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6024 sig_type, INSERT);
6025 }
6026 gdb_assert (*slot == NULL);
6027 *slot = sig_type;
6028 /* The rest of sig_type must be filled in by the caller. */
6029 return sig_type;
6030 }
6031
6032 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6033 Fill in SIG_ENTRY with DWO_ENTRY. */
6034
6035 static void
6036 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile *per_objfile,
6037 struct signatured_type *sig_entry,
6038 struct dwo_unit *dwo_entry)
6039 {
6040 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6041
6042 /* Make sure we're not clobbering something we don't expect to. */
6043 gdb_assert (! sig_entry->queued);
6044 gdb_assert (per_objfile->get_cu (sig_entry) == NULL);
6045 if (per_bfd->using_index)
6046 {
6047 gdb_assert (sig_entry->v.quick != NULL);
6048 gdb_assert (!per_objfile->symtab_set_p (sig_entry));
6049 }
6050 else
6051 gdb_assert (sig_entry->v.psymtab == NULL);
6052 gdb_assert (sig_entry->signature == dwo_entry->signature);
6053 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6054 gdb_assert (sig_entry->type_unit_group == NULL);
6055 gdb_assert (sig_entry->dwo_unit == NULL);
6056
6057 sig_entry->section = dwo_entry->section;
6058 sig_entry->sect_off = dwo_entry->sect_off;
6059 sig_entry->length = dwo_entry->length;
6060 sig_entry->reading_dwo_directly = 1;
6061 sig_entry->per_bfd = per_bfd;
6062 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6063 sig_entry->dwo_unit = dwo_entry;
6064 }
6065
6066 /* Subroutine of lookup_signatured_type.
6067 If we haven't read the TU yet, create the signatured_type data structure
6068 for a TU to be read in directly from a DWO file, bypassing the stub.
6069 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6070 using .gdb_index, then when reading a CU we want to stay in the DWO file
6071 containing that CU. Otherwise we could end up reading several other DWO
6072 files (due to comdat folding) to process the transitive closure of all the
6073 mentioned TUs, and that can be slow. The current DWO file will have every
6074 type signature that it needs.
6075 We only do this for .gdb_index because in the psymtab case we already have
6076 to read all the DWOs to build the type unit groups. */
6077
6078 static struct signatured_type *
6079 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6080 {
6081 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6082 struct dwo_file *dwo_file;
6083 struct dwo_unit find_dwo_entry, *dwo_entry;
6084 void **slot;
6085
6086 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
6087
6088 /* If TU skeletons have been removed then we may not have read in any
6089 TUs yet. */
6090 if (per_objfile->per_bfd->signatured_types == NULL)
6091 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6092
6093 /* We only ever need to read in one copy of a signatured type.
6094 Use the global signatured_types array to do our own comdat-folding
6095 of types. If this is the first time we're reading this TU, and
6096 the TU has an entry in .gdb_index, replace the recorded data from
6097 .gdb_index with this TU. */
6098
6099 signatured_type find_sig_entry (sig);
6100 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6101 &find_sig_entry, INSERT);
6102 signatured_type *sig_entry = (struct signatured_type *) *slot;
6103
6104 /* We can get here with the TU already read, *or* in the process of being
6105 read. Don't reassign the global entry to point to this DWO if that's
6106 the case. Also note that if the TU is already being read, it may not
6107 have come from a DWO, the program may be a mix of Fission-compiled
6108 code and non-Fission-compiled code. */
6109
6110 /* Have we already tried to read this TU?
6111 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6112 needn't exist in the global table yet). */
6113 if (sig_entry != NULL && sig_entry->tu_read)
6114 return sig_entry;
6115
6116 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6117 dwo_unit of the TU itself. */
6118 dwo_file = cu->dwo_unit->dwo_file;
6119
6120 /* Ok, this is the first time we're reading this TU. */
6121 if (dwo_file->tus == NULL)
6122 return NULL;
6123 find_dwo_entry.signature = sig;
6124 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6125 &find_dwo_entry);
6126 if (dwo_entry == NULL)
6127 return NULL;
6128
6129 /* If the global table doesn't have an entry for this TU, add one. */
6130 if (sig_entry == NULL)
6131 sig_entry = add_type_unit (per_objfile, sig, slot);
6132
6133 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6134 sig_entry->tu_read = 1;
6135 return sig_entry;
6136 }
6137
6138 /* Subroutine of lookup_signatured_type.
6139 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6140 then try the DWP file. If the TU stub (skeleton) has been removed then
6141 it won't be in .gdb_index. */
6142
6143 static struct signatured_type *
6144 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6145 {
6146 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6147 struct dwp_file *dwp_file = get_dwp_file (per_objfile);
6148 struct dwo_unit *dwo_entry;
6149 void **slot;
6150
6151 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
6152 gdb_assert (dwp_file != NULL);
6153
6154 /* If TU skeletons have been removed then we may not have read in any
6155 TUs yet. */
6156 if (per_objfile->per_bfd->signatured_types == NULL)
6157 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6158
6159 signatured_type find_sig_entry (sig);
6160 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6161 &find_sig_entry, INSERT);
6162 signatured_type *sig_entry = (struct signatured_type *) *slot;
6163
6164 /* Have we already tried to read this TU?
6165 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6166 needn't exist in the global table yet). */
6167 if (sig_entry != NULL)
6168 return sig_entry;
6169
6170 if (dwp_file->tus == NULL)
6171 return NULL;
6172 dwo_entry = lookup_dwo_unit_in_dwp (per_objfile, dwp_file, NULL, sig,
6173 1 /* is_debug_types */);
6174 if (dwo_entry == NULL)
6175 return NULL;
6176
6177 sig_entry = add_type_unit (per_objfile, sig, slot);
6178 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6179
6180 return sig_entry;
6181 }
6182
6183 /* Lookup a signature based type for DW_FORM_ref_sig8.
6184 Returns NULL if signature SIG is not present in the table.
6185 It is up to the caller to complain about this. */
6186
6187 static struct signatured_type *
6188 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6189 {
6190 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6191
6192 if (cu->dwo_unit && per_objfile->per_bfd->using_index)
6193 {
6194 /* We're in a DWO/DWP file, and we're using .gdb_index.
6195 These cases require special processing. */
6196 if (get_dwp_file (per_objfile) == NULL)
6197 return lookup_dwo_signatured_type (cu, sig);
6198 else
6199 return lookup_dwp_signatured_type (cu, sig);
6200 }
6201 else
6202 {
6203 if (per_objfile->per_bfd->signatured_types == NULL)
6204 return NULL;
6205 signatured_type find_entry (sig);
6206 return ((struct signatured_type *)
6207 htab_find (per_objfile->per_bfd->signatured_types.get (),
6208 &find_entry));
6209 }
6210 }
6211
6212 /* Low level DIE reading support. */
6213
6214 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6215
6216 static void
6217 init_cu_die_reader (struct die_reader_specs *reader,
6218 struct dwarf2_cu *cu,
6219 struct dwarf2_section_info *section,
6220 struct dwo_file *dwo_file,
6221 struct abbrev_table *abbrev_table)
6222 {
6223 gdb_assert (section->readin && section->buffer != NULL);
6224 reader->abfd = section->get_bfd_owner ();
6225 reader->cu = cu;
6226 reader->dwo_file = dwo_file;
6227 reader->die_section = section;
6228 reader->buffer = section->buffer;
6229 reader->buffer_end = section->buffer + section->size;
6230 reader->abbrev_table = abbrev_table;
6231 }
6232
6233 /* Subroutine of cutu_reader to simplify it.
6234 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6235 There's just a lot of work to do, and cutu_reader is big enough
6236 already.
6237
6238 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6239 from it to the DIE in the DWO. If NULL we are skipping the stub.
6240 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6241 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6242 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6243 STUB_COMP_DIR may be non-NULL.
6244 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6245 are filled in with the info of the DIE from the DWO file.
6246 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6247 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6248 kept around for at least as long as *RESULT_READER.
6249
6250 The result is non-zero if a valid (non-dummy) DIE was found. */
6251
6252 static int
6253 read_cutu_die_from_dwo (dwarf2_cu *cu,
6254 struct dwo_unit *dwo_unit,
6255 struct die_info *stub_comp_unit_die,
6256 const char *stub_comp_dir,
6257 struct die_reader_specs *result_reader,
6258 const gdb_byte **result_info_ptr,
6259 struct die_info **result_comp_unit_die,
6260 abbrev_table_up *result_dwo_abbrev_table)
6261 {
6262 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6263 dwarf2_per_cu_data *per_cu = cu->per_cu;
6264 struct objfile *objfile = per_objfile->objfile;
6265 bfd *abfd;
6266 const gdb_byte *begin_info_ptr, *info_ptr;
6267 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6268 int i,num_extra_attrs;
6269 struct dwarf2_section_info *dwo_abbrev_section;
6270 struct die_info *comp_unit_die;
6271
6272 /* At most one of these may be provided. */
6273 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6274
6275 /* These attributes aren't processed until later:
6276 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6277 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6278 referenced later. However, these attributes are found in the stub
6279 which we won't have later. In order to not impose this complication
6280 on the rest of the code, we read them here and copy them to the
6281 DWO CU/TU die. */
6282
6283 stmt_list = NULL;
6284 low_pc = NULL;
6285 high_pc = NULL;
6286 ranges = NULL;
6287 comp_dir = NULL;
6288
6289 if (stub_comp_unit_die != NULL)
6290 {
6291 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6292 DWO file. */
6293 if (!per_cu->is_debug_types)
6294 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6295 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6296 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6297 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6298 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6299
6300 cu->addr_base = stub_comp_unit_die->addr_base ();
6301
6302 /* There should be a DW_AT_GNU_ranges_base attribute here (if needed).
6303 We need the value before we can process DW_AT_ranges values from the
6304 DWO. */
6305 cu->gnu_ranges_base = stub_comp_unit_die->gnu_ranges_base ();
6306
6307 /* For DWARF5: record the DW_AT_rnglists_base value from the skeleton. If
6308 there are attributes of form DW_FORM_rnglistx in the skeleton, they'll
6309 need the rnglists base. Attributes of form DW_FORM_rnglistx in the
6310 split unit don't use it, as the DWO has its own .debug_rnglists.dwo
6311 section. */
6312 cu->rnglists_base = stub_comp_unit_die->rnglists_base ();
6313 }
6314 else if (stub_comp_dir != NULL)
6315 {
6316 /* Reconstruct the comp_dir attribute to simplify the code below. */
6317 comp_dir = OBSTACK_ZALLOC (&cu->comp_unit_obstack, struct attribute);
6318 comp_dir->name = DW_AT_comp_dir;
6319 comp_dir->form = DW_FORM_string;
6320 comp_dir->set_string_noncanonical (stub_comp_dir);
6321 }
6322
6323 /* Set up for reading the DWO CU/TU. */
6324 cu->dwo_unit = dwo_unit;
6325 dwarf2_section_info *section = dwo_unit->section;
6326 section->read (objfile);
6327 abfd = section->get_bfd_owner ();
6328 begin_info_ptr = info_ptr = (section->buffer
6329 + to_underlying (dwo_unit->sect_off));
6330 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6331
6332 if (per_cu->is_debug_types)
6333 {
6334 signatured_type *sig_type = (struct signatured_type *) per_cu;
6335
6336 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6337 section, dwo_abbrev_section,
6338 info_ptr, rcuh_kind::TYPE);
6339 /* This is not an assert because it can be caused by bad debug info. */
6340 if (sig_type->signature != cu->header.signature)
6341 {
6342 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6343 " TU at offset %s [in module %s]"),
6344 hex_string (sig_type->signature),
6345 hex_string (cu->header.signature),
6346 sect_offset_str (dwo_unit->sect_off),
6347 bfd_get_filename (abfd));
6348 }
6349 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6350 /* For DWOs coming from DWP files, we don't know the CU length
6351 nor the type's offset in the TU until now. */
6352 dwo_unit->length = cu->header.get_length ();
6353 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6354
6355 /* Establish the type offset that can be used to lookup the type.
6356 For DWO files, we don't know it until now. */
6357 sig_type->type_offset_in_section
6358 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6359 }
6360 else
6361 {
6362 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6363 section, dwo_abbrev_section,
6364 info_ptr, rcuh_kind::COMPILE);
6365 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6366 /* For DWOs coming from DWP files, we don't know the CU length
6367 until now. */
6368 dwo_unit->length = cu->header.get_length ();
6369 }
6370
6371 dwo_abbrev_section->read (objfile);
6372 *result_dwo_abbrev_table
6373 = abbrev_table::read (dwo_abbrev_section, cu->header.abbrev_sect_off);
6374 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6375 result_dwo_abbrev_table->get ());
6376
6377 /* Read in the die, but leave space to copy over the attributes
6378 from the stub. This has the benefit of simplifying the rest of
6379 the code - all the work to maintain the illusion of a single
6380 DW_TAG_{compile,type}_unit DIE is done here. */
6381 num_extra_attrs = ((stmt_list != NULL)
6382 + (low_pc != NULL)
6383 + (high_pc != NULL)
6384 + (ranges != NULL)
6385 + (comp_dir != NULL));
6386 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6387 num_extra_attrs);
6388
6389 /* Copy over the attributes from the stub to the DIE we just read in. */
6390 comp_unit_die = *result_comp_unit_die;
6391 i = comp_unit_die->num_attrs;
6392 if (stmt_list != NULL)
6393 comp_unit_die->attrs[i++] = *stmt_list;
6394 if (low_pc != NULL)
6395 comp_unit_die->attrs[i++] = *low_pc;
6396 if (high_pc != NULL)
6397 comp_unit_die->attrs[i++] = *high_pc;
6398 if (ranges != NULL)
6399 comp_unit_die->attrs[i++] = *ranges;
6400 if (comp_dir != NULL)
6401 comp_unit_die->attrs[i++] = *comp_dir;
6402 comp_unit_die->num_attrs += num_extra_attrs;
6403
6404 if (dwarf_die_debug)
6405 {
6406 fprintf_unfiltered (gdb_stdlog,
6407 "Read die from %s@0x%x of %s:\n",
6408 section->get_name (),
6409 (unsigned) (begin_info_ptr - section->buffer),
6410 bfd_get_filename (abfd));
6411 dump_die (comp_unit_die, dwarf_die_debug);
6412 }
6413
6414 /* Skip dummy compilation units. */
6415 if (info_ptr >= begin_info_ptr + dwo_unit->length
6416 || peek_abbrev_code (abfd, info_ptr) == 0)
6417 return 0;
6418
6419 *result_info_ptr = info_ptr;
6420 return 1;
6421 }
6422
6423 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6424 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6425 signature is part of the header. */
6426 static gdb::optional<ULONGEST>
6427 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6428 {
6429 if (cu->header.version >= 5)
6430 return cu->header.signature;
6431 struct attribute *attr;
6432 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6433 if (attr == nullptr || !attr->form_is_unsigned ())
6434 return gdb::optional<ULONGEST> ();
6435 return attr->as_unsigned ();
6436 }
6437
6438 /* Subroutine of cutu_reader to simplify it.
6439 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6440 Returns NULL if the specified DWO unit cannot be found. */
6441
6442 static struct dwo_unit *
6443 lookup_dwo_unit (dwarf2_cu *cu, die_info *comp_unit_die, const char *dwo_name)
6444 {
6445 dwarf2_per_cu_data *per_cu = cu->per_cu;
6446 struct dwo_unit *dwo_unit;
6447 const char *comp_dir;
6448
6449 gdb_assert (cu != NULL);
6450
6451 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6452 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6453 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6454
6455 if (per_cu->is_debug_types)
6456 dwo_unit = lookup_dwo_type_unit (cu, dwo_name, comp_dir);
6457 else
6458 {
6459 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6460
6461 if (!signature.has_value ())
6462 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6463 " [in module %s]"),
6464 dwo_name, bfd_get_filename (per_cu->per_bfd->obfd));
6465
6466 dwo_unit = lookup_dwo_comp_unit (cu, dwo_name, comp_dir, *signature);
6467 }
6468
6469 return dwo_unit;
6470 }
6471
6472 /* Subroutine of cutu_reader to simplify it.
6473 See it for a description of the parameters.
6474 Read a TU directly from a DWO file, bypassing the stub. */
6475
6476 void
6477 cutu_reader::init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
6478 dwarf2_per_objfile *per_objfile,
6479 dwarf2_cu *existing_cu)
6480 {
6481 struct signatured_type *sig_type;
6482
6483 /* Verify we can do the following downcast, and that we have the
6484 data we need. */
6485 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6486 sig_type = (struct signatured_type *) this_cu;
6487 gdb_assert (sig_type->dwo_unit != NULL);
6488
6489 dwarf2_cu *cu;
6490
6491 if (existing_cu != nullptr)
6492 {
6493 cu = existing_cu;
6494 gdb_assert (cu->dwo_unit == sig_type->dwo_unit);
6495 /* There's no need to do the rereading_dwo_cu handling that
6496 cutu_reader does since we don't read the stub. */
6497 }
6498 else
6499 {
6500 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
6501 in per_objfile yet. */
6502 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
6503 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
6504 cu = m_new_cu.get ();
6505 }
6506
6507 /* A future optimization, if needed, would be to use an existing
6508 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6509 could share abbrev tables. */
6510
6511 if (read_cutu_die_from_dwo (cu, sig_type->dwo_unit,
6512 NULL /* stub_comp_unit_die */,
6513 sig_type->dwo_unit->dwo_file->comp_dir,
6514 this, &info_ptr,
6515 &comp_unit_die,
6516 &m_dwo_abbrev_table) == 0)
6517 {
6518 /* Dummy die. */
6519 dummy_p = true;
6520 }
6521 }
6522
6523 /* Initialize a CU (or TU) and read its DIEs.
6524 If the CU defers to a DWO file, read the DWO file as well.
6525
6526 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6527 Otherwise the table specified in the comp unit header is read in and used.
6528 This is an optimization for when we already have the abbrev table.
6529
6530 If EXISTING_CU is non-NULL, then use it. Otherwise, a new CU is
6531 allocated. */
6532
6533 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
6534 dwarf2_per_objfile *per_objfile,
6535 struct abbrev_table *abbrev_table,
6536 dwarf2_cu *existing_cu,
6537 bool skip_partial)
6538 : die_reader_specs {},
6539 m_this_cu (this_cu)
6540 {
6541 struct objfile *objfile = per_objfile->objfile;
6542 struct dwarf2_section_info *section = this_cu->section;
6543 bfd *abfd = section->get_bfd_owner ();
6544 const gdb_byte *begin_info_ptr;
6545 struct signatured_type *sig_type = NULL;
6546 struct dwarf2_section_info *abbrev_section;
6547 /* Non-zero if CU currently points to a DWO file and we need to
6548 reread it. When this happens we need to reread the skeleton die
6549 before we can reread the DWO file (this only applies to CUs, not TUs). */
6550 int rereading_dwo_cu = 0;
6551
6552 if (dwarf_die_debug)
6553 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6554 this_cu->is_debug_types ? "type" : "comp",
6555 sect_offset_str (this_cu->sect_off));
6556
6557 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6558 file (instead of going through the stub), short-circuit all of this. */
6559 if (this_cu->reading_dwo_directly)
6560 {
6561 /* Narrow down the scope of possibilities to have to understand. */
6562 gdb_assert (this_cu->is_debug_types);
6563 gdb_assert (abbrev_table == NULL);
6564 init_tu_and_read_dwo_dies (this_cu, per_objfile, existing_cu);
6565 return;
6566 }
6567
6568 /* This is cheap if the section is already read in. */
6569 section->read (objfile);
6570
6571 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6572
6573 abbrev_section = get_abbrev_section_for_cu (this_cu);
6574
6575 dwarf2_cu *cu;
6576
6577 if (existing_cu != nullptr)
6578 {
6579 cu = existing_cu;
6580 /* If this CU is from a DWO file we need to start over, we need to
6581 refetch the attributes from the skeleton CU.
6582 This could be optimized by retrieving those attributes from when we
6583 were here the first time: the previous comp_unit_die was stored in
6584 comp_unit_obstack. But there's no data yet that we need this
6585 optimization. */
6586 if (cu->dwo_unit != NULL)
6587 rereading_dwo_cu = 1;
6588 }
6589 else
6590 {
6591 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
6592 in per_objfile yet. */
6593 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
6594 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
6595 cu = m_new_cu.get ();
6596 }
6597
6598 /* Get the header. */
6599 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6600 {
6601 /* We already have the header, there's no need to read it in again. */
6602 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6603 }
6604 else
6605 {
6606 if (this_cu->is_debug_types)
6607 {
6608 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6609 section, abbrev_section,
6610 info_ptr, rcuh_kind::TYPE);
6611
6612 /* Since per_cu is the first member of struct signatured_type,
6613 we can go from a pointer to one to a pointer to the other. */
6614 sig_type = (struct signatured_type *) this_cu;
6615 gdb_assert (sig_type->signature == cu->header.signature);
6616 gdb_assert (sig_type->type_offset_in_tu
6617 == cu->header.type_cu_offset_in_tu);
6618 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6619
6620 /* LENGTH has not been set yet for type units if we're
6621 using .gdb_index. */
6622 this_cu->length = cu->header.get_length ();
6623
6624 /* Establish the type offset that can be used to lookup the type. */
6625 sig_type->type_offset_in_section =
6626 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6627
6628 this_cu->dwarf_version = cu->header.version;
6629 }
6630 else
6631 {
6632 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6633 section, abbrev_section,
6634 info_ptr,
6635 rcuh_kind::COMPILE);
6636
6637 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6638 if (this_cu->length == 0)
6639 this_cu->length = cu->header.get_length ();
6640 else
6641 gdb_assert (this_cu->length == cu->header.get_length ());
6642 this_cu->dwarf_version = cu->header.version;
6643 }
6644 }
6645
6646 /* Skip dummy compilation units. */
6647 if (info_ptr >= begin_info_ptr + this_cu->length
6648 || peek_abbrev_code (abfd, info_ptr) == 0)
6649 {
6650 dummy_p = true;
6651 return;
6652 }
6653
6654 /* If we don't have them yet, read the abbrevs for this compilation unit.
6655 And if we need to read them now, make sure they're freed when we're
6656 done. */
6657 if (abbrev_table != NULL)
6658 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6659 else
6660 {
6661 abbrev_section->read (objfile);
6662 m_abbrev_table_holder
6663 = abbrev_table::read (abbrev_section, cu->header.abbrev_sect_off);
6664 abbrev_table = m_abbrev_table_holder.get ();
6665 }
6666
6667 /* Read the top level CU/TU die. */
6668 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6669 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6670
6671 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6672 {
6673 dummy_p = true;
6674 return;
6675 }
6676
6677 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6678 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6679 table from the DWO file and pass the ownership over to us. It will be
6680 referenced from READER, so we must make sure to free it after we're done
6681 with READER.
6682
6683 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6684 DWO CU, that this test will fail (the attribute will not be present). */
6685 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6686 if (dwo_name != nullptr)
6687 {
6688 struct dwo_unit *dwo_unit;
6689 struct die_info *dwo_comp_unit_die;
6690
6691 if (comp_unit_die->has_children)
6692 {
6693 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6694 " has children (offset %s) [in module %s]"),
6695 sect_offset_str (this_cu->sect_off),
6696 bfd_get_filename (abfd));
6697 }
6698 dwo_unit = lookup_dwo_unit (cu, comp_unit_die, dwo_name);
6699 if (dwo_unit != NULL)
6700 {
6701 if (read_cutu_die_from_dwo (cu, dwo_unit,
6702 comp_unit_die, NULL,
6703 this, &info_ptr,
6704 &dwo_comp_unit_die,
6705 &m_dwo_abbrev_table) == 0)
6706 {
6707 /* Dummy die. */
6708 dummy_p = true;
6709 return;
6710 }
6711 comp_unit_die = dwo_comp_unit_die;
6712 }
6713 else
6714 {
6715 /* Yikes, we couldn't find the rest of the DIE, we only have
6716 the stub. A complaint has already been logged. There's
6717 not much more we can do except pass on the stub DIE to
6718 die_reader_func. We don't want to throw an error on bad
6719 debug info. */
6720 }
6721 }
6722 }
6723
6724 void
6725 cutu_reader::keep ()
6726 {
6727 /* Done, clean up. */
6728 gdb_assert (!dummy_p);
6729 if (m_new_cu != NULL)
6730 {
6731 /* Save this dwarf2_cu in the per_objfile. The per_objfile owns it
6732 now. */
6733 dwarf2_per_objfile *per_objfile = m_new_cu->per_objfile;
6734 per_objfile->set_cu (m_this_cu, m_new_cu.release ());
6735 }
6736 }
6737
6738 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
6739 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
6740 assumed to have already done the lookup to find the DWO file).
6741
6742 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
6743 THIS_CU->is_debug_types, but nothing else.
6744
6745 We fill in THIS_CU->length.
6746
6747 THIS_CU->cu is always freed when done.
6748 This is done in order to not leave THIS_CU->cu in a state where we have
6749 to care whether it refers to the "main" CU or the DWO CU.
6750
6751 When parent_cu is passed, it is used to provide a default value for
6752 str_offsets_base and addr_base from the parent. */
6753
6754 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
6755 dwarf2_per_objfile *per_objfile,
6756 struct dwarf2_cu *parent_cu,
6757 struct dwo_file *dwo_file)
6758 : die_reader_specs {},
6759 m_this_cu (this_cu)
6760 {
6761 struct objfile *objfile = per_objfile->objfile;
6762 struct dwarf2_section_info *section = this_cu->section;
6763 bfd *abfd = section->get_bfd_owner ();
6764 struct dwarf2_section_info *abbrev_section;
6765 const gdb_byte *begin_info_ptr, *info_ptr;
6766
6767 if (dwarf_die_debug)
6768 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6769 this_cu->is_debug_types ? "type" : "comp",
6770 sect_offset_str (this_cu->sect_off));
6771
6772 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
6773
6774 abbrev_section = (dwo_file != NULL
6775 ? &dwo_file->sections.abbrev
6776 : get_abbrev_section_for_cu (this_cu));
6777
6778 /* This is cheap if the section is already read in. */
6779 section->read (objfile);
6780
6781 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
6782
6783 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6784 info_ptr = read_and_check_comp_unit_head (per_objfile, &m_new_cu->header,
6785 section, abbrev_section, info_ptr,
6786 (this_cu->is_debug_types
6787 ? rcuh_kind::TYPE
6788 : rcuh_kind::COMPILE));
6789
6790 if (parent_cu != nullptr)
6791 {
6792 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
6793 m_new_cu->addr_base = parent_cu->addr_base;
6794 }
6795 this_cu->length = m_new_cu->header.get_length ();
6796
6797 /* Skip dummy compilation units. */
6798 if (info_ptr >= begin_info_ptr + this_cu->length
6799 || peek_abbrev_code (abfd, info_ptr) == 0)
6800 {
6801 dummy_p = true;
6802 return;
6803 }
6804
6805 abbrev_section->read (objfile);
6806 m_abbrev_table_holder
6807 = abbrev_table::read (abbrev_section, m_new_cu->header.abbrev_sect_off);
6808
6809 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
6810 m_abbrev_table_holder.get ());
6811 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6812 }
6813
6814 \f
6815 /* Type Unit Groups.
6816
6817 Type Unit Groups are a way to collapse the set of all TUs (type units) into
6818 a more manageable set. The grouping is done by DW_AT_stmt_list entry
6819 so that all types coming from the same compilation (.o file) are grouped
6820 together. A future step could be to put the types in the same symtab as
6821 the CU the types ultimately came from. */
6822
6823 static hashval_t
6824 hash_type_unit_group (const void *item)
6825 {
6826 const struct type_unit_group *tu_group
6827 = (const struct type_unit_group *) item;
6828
6829 return hash_stmt_list_entry (&tu_group->hash);
6830 }
6831
6832 static int
6833 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6834 {
6835 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6836 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6837
6838 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6839 }
6840
6841 /* Allocate a hash table for type unit groups. */
6842
6843 static htab_up
6844 allocate_type_unit_groups_table ()
6845 {
6846 return htab_up (htab_create_alloc (3,
6847 hash_type_unit_group,
6848 eq_type_unit_group,
6849 htab_delete_entry<type_unit_group>,
6850 xcalloc, xfree));
6851 }
6852
6853 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6854 partial symtabs. We combine several TUs per psymtab to not let the size
6855 of any one psymtab grow too big. */
6856 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6857 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6858
6859 /* Helper routine for get_type_unit_group.
6860 Create the type_unit_group object used to hold one or more TUs. */
6861
6862 static std::unique_ptr<type_unit_group>
6863 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6864 {
6865 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6866 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6867
6868 std::unique_ptr<type_unit_group> tu_group (new type_unit_group);
6869 tu_group->per_bfd = per_bfd;
6870
6871 if (per_bfd->using_index)
6872 {
6873 tu_group->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
6874 struct dwarf2_per_cu_quick_data);
6875 }
6876 else
6877 {
6878 unsigned int line_offset = to_underlying (line_offset_struct);
6879 dwarf2_psymtab *pst;
6880 std::string name;
6881
6882 /* Give the symtab a useful name for debug purposes. */
6883 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6884 name = string_printf ("<type_units_%d>",
6885 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6886 else
6887 name = string_printf ("<type_units_at_0x%x>", line_offset);
6888
6889 pst = create_partial_symtab (tu_group.get (), per_objfile,
6890 name.c_str ());
6891 pst->anonymous = true;
6892 }
6893
6894 tu_group->hash.dwo_unit = cu->dwo_unit;
6895 tu_group->hash.line_sect_off = line_offset_struct;
6896
6897 return tu_group;
6898 }
6899
6900 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6901 STMT_LIST is a DW_AT_stmt_list attribute. */
6902
6903 static struct type_unit_group *
6904 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6905 {
6906 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6907 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
6908 struct type_unit_group *tu_group;
6909 void **slot;
6910 unsigned int line_offset;
6911 struct type_unit_group type_unit_group_for_lookup;
6912
6913 if (per_objfile->per_bfd->type_unit_groups == NULL)
6914 per_objfile->per_bfd->type_unit_groups = allocate_type_unit_groups_table ();
6915
6916 /* Do we need to create a new group, or can we use an existing one? */
6917
6918 if (stmt_list != nullptr && stmt_list->form_is_unsigned ())
6919 {
6920 line_offset = stmt_list->as_unsigned ();
6921 ++tu_stats->nr_symtab_sharers;
6922 }
6923 else
6924 {
6925 /* Ugh, no stmt_list. Rare, but we have to handle it.
6926 We can do various things here like create one group per TU or
6927 spread them over multiple groups to split up the expansion work.
6928 To avoid worst case scenarios (too many groups or too large groups)
6929 we, umm, group them in bunches. */
6930 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6931 | (tu_stats->nr_stmt_less_type_units
6932 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6933 ++tu_stats->nr_stmt_less_type_units;
6934 }
6935
6936 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6937 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6938 slot = htab_find_slot (per_objfile->per_bfd->type_unit_groups.get (),
6939 &type_unit_group_for_lookup, INSERT);
6940 if (*slot == nullptr)
6941 {
6942 sect_offset line_offset_struct = (sect_offset) line_offset;
6943 std::unique_ptr<type_unit_group> grp
6944 = create_type_unit_group (cu, line_offset_struct);
6945 *slot = grp.release ();
6946 ++tu_stats->nr_symtabs;
6947 }
6948
6949 tu_group = (struct type_unit_group *) *slot;
6950 gdb_assert (tu_group != nullptr);
6951 return tu_group;
6952 }
6953 \f
6954 /* Partial symbol tables. */
6955
6956 /* Create a psymtab named NAME and assign it to PER_CU.
6957
6958 The caller must fill in the following details:
6959 dirname, textlow, texthigh. */
6960
6961 static dwarf2_psymtab *
6962 create_partial_symtab (dwarf2_per_cu_data *per_cu,
6963 dwarf2_per_objfile *per_objfile,
6964 const char *name)
6965 {
6966 dwarf2_psymtab *pst
6967 = new dwarf2_psymtab (name, per_objfile->per_bfd->partial_symtabs.get (),
6968 per_objfile->objfile->per_bfd, per_cu);
6969
6970 pst->psymtabs_addrmap_supported = true;
6971
6972 /* This is the glue that links PST into GDB's symbol API. */
6973 per_cu->v.psymtab = pst;
6974
6975 return pst;
6976 }
6977
6978 /* DIE reader function for process_psymtab_comp_unit. */
6979
6980 static void
6981 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6982 const gdb_byte *info_ptr,
6983 struct die_info *comp_unit_die,
6984 enum language pretend_language)
6985 {
6986 struct dwarf2_cu *cu = reader->cu;
6987 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6988 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6989 struct objfile *objfile = per_objfile->objfile;
6990 struct gdbarch *gdbarch = objfile->arch ();
6991 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6992 CORE_ADDR baseaddr;
6993 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6994 dwarf2_psymtab *pst;
6995 enum pc_bounds_kind cu_bounds_kind;
6996
6997 gdb_assert (! per_cu->is_debug_types);
6998
6999 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7000
7001 /* Allocate a new partial symbol table structure. */
7002 gdb::unique_xmalloc_ptr<char> debug_filename;
7003 static const char artificial[] = "<artificial>";
7004 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
7005 if (strcmp (fnd.name, artificial) == 0)
7006 {
7007 debug_filename.reset (concat (artificial, "@",
7008 sect_offset_str (per_cu->sect_off),
7009 (char *) NULL));
7010 fnd.name = debug_filename.get ();
7011 }
7012
7013 pst = create_partial_symtab (per_cu, per_objfile, fnd.name);
7014
7015 /* This must be done before calling dwarf2_build_include_psymtabs. */
7016 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7017
7018 baseaddr = objfile->text_section_offset ();
7019
7020 dwarf2_find_base_address (comp_unit_die, cu);
7021
7022 /* Possibly set the default values of LOWPC and HIGHPC from
7023 `DW_AT_ranges'. */
7024 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7025 &best_highpc, cu, pst);
7026 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7027 {
7028 CORE_ADDR low
7029 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7030 - baseaddr);
7031 CORE_ADDR high
7032 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7033 - baseaddr - 1);
7034 /* Store the contiguous range if it is not empty; it can be
7035 empty for CUs with no code. */
7036 addrmap_set_empty (per_bfd->partial_symtabs->psymtabs_addrmap,
7037 low, high, pst);
7038 }
7039
7040 /* Check if comp unit has_children.
7041 If so, read the rest of the partial symbols from this comp unit.
7042 If not, there's no more debug_info for this comp unit. */
7043 if (comp_unit_die->has_children)
7044 {
7045 struct partial_die_info *first_die;
7046 CORE_ADDR lowpc, highpc;
7047
7048 lowpc = ((CORE_ADDR) -1);
7049 highpc = ((CORE_ADDR) 0);
7050
7051 first_die = load_partial_dies (reader, info_ptr, 1);
7052
7053 scan_partial_symbols (first_die, &lowpc, &highpc,
7054 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7055
7056 /* If we didn't find a lowpc, set it to highpc to avoid
7057 complaints from `maint check'. */
7058 if (lowpc == ((CORE_ADDR) -1))
7059 lowpc = highpc;
7060
7061 /* If the compilation unit didn't have an explicit address range,
7062 then use the information extracted from its child dies. */
7063 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7064 {
7065 best_lowpc = lowpc;
7066 best_highpc = highpc;
7067 }
7068 }
7069 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7070 best_lowpc + baseaddr)
7071 - baseaddr);
7072 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7073 best_highpc + baseaddr)
7074 - baseaddr);
7075
7076 pst->end ();
7077
7078 if (!cu->per_cu->imported_symtabs_empty ())
7079 {
7080 int i;
7081 int len = cu->per_cu->imported_symtabs_size ();
7082
7083 /* Fill in 'dependencies' here; we fill in 'users' in a
7084 post-pass. */
7085 pst->number_of_dependencies = len;
7086 pst->dependencies
7087 = per_bfd->partial_symtabs->allocate_dependencies (len);
7088 for (i = 0; i < len; ++i)
7089 {
7090 pst->dependencies[i]
7091 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7092 }
7093
7094 cu->per_cu->imported_symtabs_free ();
7095 }
7096
7097 /* Get the list of files included in the current compilation unit,
7098 and build a psymtab for each of them. */
7099 dwarf2_build_include_psymtabs (cu, comp_unit_die, fnd, pst);
7100
7101 dwarf_read_debug_printf ("Psymtab for %s unit @%s: %s - %s"
7102 ", %d global, %d static syms",
7103 per_cu->is_debug_types ? "type" : "comp",
7104 sect_offset_str (per_cu->sect_off),
7105 paddress (gdbarch, pst->text_low (objfile)),
7106 paddress (gdbarch, pst->text_high (objfile)),
7107 (int) pst->global_psymbols.size (),
7108 (int) pst->static_psymbols.size ());
7109 }
7110
7111 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7112 Process compilation unit THIS_CU for a psymtab. */
7113
7114 static void
7115 process_psymtab_comp_unit (dwarf2_per_cu_data *this_cu,
7116 dwarf2_per_objfile *per_objfile,
7117 bool want_partial_unit,
7118 enum language pretend_language)
7119 {
7120 /* If this compilation unit was already read in, free the
7121 cached copy in order to read it in again. This is
7122 necessary because we skipped some symbols when we first
7123 read in the compilation unit (see load_partial_dies).
7124 This problem could be avoided, but the benefit is unclear. */
7125 per_objfile->remove_cu (this_cu);
7126
7127 cutu_reader reader (this_cu, per_objfile, nullptr, nullptr, false);
7128
7129 if (reader.comp_unit_die == nullptr)
7130 return;
7131
7132 switch (reader.comp_unit_die->tag)
7133 {
7134 case DW_TAG_compile_unit:
7135 this_cu->unit_type = DW_UT_compile;
7136 break;
7137 case DW_TAG_partial_unit:
7138 this_cu->unit_type = DW_UT_partial;
7139 break;
7140 case DW_TAG_type_unit:
7141 this_cu->unit_type = DW_UT_type;
7142 break;
7143 default:
7144 error (_("Dwarf Error: unexpected tag '%s' at offset %s [in module %s]"),
7145 dwarf_tag_name (reader.comp_unit_die->tag),
7146 sect_offset_str (reader.cu->per_cu->sect_off),
7147 objfile_name (per_objfile->objfile));
7148 }
7149
7150 if (reader.dummy_p)
7151 {
7152 /* Nothing. */
7153 }
7154 else if (this_cu->is_debug_types)
7155 build_type_psymtabs_reader (&reader, reader.info_ptr,
7156 reader.comp_unit_die);
7157 else if (want_partial_unit
7158 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7159 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7160 reader.comp_unit_die,
7161 pretend_language);
7162
7163 /* Age out any secondary CUs. */
7164 per_objfile->age_comp_units ();
7165 }
7166
7167 /* Reader function for build_type_psymtabs. */
7168
7169 static void
7170 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7171 const gdb_byte *info_ptr,
7172 struct die_info *type_unit_die)
7173 {
7174 dwarf2_per_objfile *per_objfile = reader->cu->per_objfile;
7175 struct dwarf2_cu *cu = reader->cu;
7176 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7177 struct signatured_type *sig_type;
7178 struct type_unit_group *tu_group;
7179 struct attribute *attr;
7180 struct partial_die_info *first_die;
7181 CORE_ADDR lowpc, highpc;
7182 dwarf2_psymtab *pst;
7183
7184 gdb_assert (per_cu->is_debug_types);
7185 sig_type = (struct signatured_type *) per_cu;
7186
7187 if (! type_unit_die->has_children)
7188 return;
7189
7190 attr = type_unit_die->attr (DW_AT_stmt_list);
7191 tu_group = get_type_unit_group (cu, attr);
7192
7193 if (tu_group->tus == nullptr)
7194 tu_group->tus = new std::vector<signatured_type *>;
7195 tu_group->tus->push_back (sig_type);
7196
7197 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7198 pst = create_partial_symtab (per_cu, per_objfile, "");
7199 pst->anonymous = true;
7200
7201 first_die = load_partial_dies (reader, info_ptr, 1);
7202
7203 lowpc = (CORE_ADDR) -1;
7204 highpc = (CORE_ADDR) 0;
7205 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7206
7207 pst->end ();
7208 }
7209
7210 /* Struct used to sort TUs by their abbreviation table offset. */
7211
7212 struct tu_abbrev_offset
7213 {
7214 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7215 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7216 {}
7217
7218 /* This is used when sorting. */
7219 bool operator< (const tu_abbrev_offset &other) const
7220 {
7221 return abbrev_offset < other.abbrev_offset;
7222 }
7223
7224 signatured_type *sig_type;
7225 sect_offset abbrev_offset;
7226 };
7227
7228 /* Efficiently read all the type units.
7229
7230 The efficiency is because we sort TUs by the abbrev table they use and
7231 only read each abbrev table once. In one program there are 200K TUs
7232 sharing 8K abbrev tables.
7233
7234 The main purpose of this function is to support building the
7235 dwarf2_per_objfile->per_bfd->type_unit_groups table.
7236 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7237 can collapse the search space by grouping them by stmt_list.
7238 The savings can be significant, in the same program from above the 200K TUs
7239 share 8K stmt_list tables.
7240
7241 FUNC is expected to call get_type_unit_group, which will create the
7242 struct type_unit_group if necessary and add it to
7243 dwarf2_per_objfile->per_bfd->type_unit_groups. */
7244
7245 static void
7246 build_type_psymtabs (dwarf2_per_objfile *per_objfile)
7247 {
7248 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7249 abbrev_table_up abbrev_table;
7250 sect_offset abbrev_offset;
7251
7252 /* It's up to the caller to not call us multiple times. */
7253 gdb_assert (per_objfile->per_bfd->type_unit_groups == NULL);
7254
7255 if (per_objfile->per_bfd->tu_stats.nr_tus == 0)
7256 return;
7257
7258 /* TUs typically share abbrev tables, and there can be way more TUs than
7259 abbrev tables. Sort by abbrev table to reduce the number of times we
7260 read each abbrev table in.
7261 Alternatives are to punt or to maintain a cache of abbrev tables.
7262 This is simpler and efficient enough for now.
7263
7264 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7265 symtab to use). Typically TUs with the same abbrev offset have the same
7266 stmt_list value too so in practice this should work well.
7267
7268 The basic algorithm here is:
7269
7270 sort TUs by abbrev table
7271 for each TU with same abbrev table:
7272 read abbrev table if first user
7273 read TU top level DIE
7274 [IWBN if DWO skeletons had DW_AT_stmt_list]
7275 call FUNC */
7276
7277 dwarf_read_debug_printf ("Building type unit groups ...");
7278
7279 /* Sort in a separate table to maintain the order of all_comp_units
7280 for .gdb_index: TU indices directly index all_type_units. */
7281 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7282 sorted_by_abbrev.reserve (per_objfile->per_bfd->tu_stats.nr_tus);
7283
7284 for (const auto &cu : per_objfile->per_bfd->all_comp_units)
7285 {
7286 if (cu->is_debug_types)
7287 {
7288 auto sig_type = static_cast<signatured_type *> (cu.get ());
7289 sorted_by_abbrev.emplace_back
7290 (sig_type, read_abbrev_offset (per_objfile, sig_type->section,
7291 sig_type->sect_off));
7292 }
7293 }
7294
7295 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end ());
7296
7297 abbrev_offset = (sect_offset) ~(unsigned) 0;
7298
7299 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7300 {
7301 /* Switch to the next abbrev table if necessary. */
7302 if (abbrev_table == NULL
7303 || tu.abbrev_offset != abbrev_offset)
7304 {
7305 abbrev_offset = tu.abbrev_offset;
7306 per_objfile->per_bfd->abbrev.read (per_objfile->objfile);
7307 abbrev_table =
7308 abbrev_table::read (&per_objfile->per_bfd->abbrev, abbrev_offset);
7309 ++tu_stats->nr_uniq_abbrev_tables;
7310 }
7311
7312 cutu_reader reader (tu.sig_type, per_objfile,
7313 abbrev_table.get (), nullptr, false);
7314 if (!reader.dummy_p)
7315 build_type_psymtabs_reader (&reader, reader.info_ptr,
7316 reader.comp_unit_die);
7317 }
7318 }
7319
7320 /* Print collected type unit statistics. */
7321
7322 static void
7323 print_tu_stats (dwarf2_per_objfile *per_objfile)
7324 {
7325 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7326
7327 dwarf_read_debug_printf ("Type unit statistics:");
7328 dwarf_read_debug_printf (" %d TUs", tu_stats->nr_tus);
7329 dwarf_read_debug_printf (" %d uniq abbrev tables",
7330 tu_stats->nr_uniq_abbrev_tables);
7331 dwarf_read_debug_printf (" %d symtabs from stmt_list entries",
7332 tu_stats->nr_symtabs);
7333 dwarf_read_debug_printf (" %d symtab sharers",
7334 tu_stats->nr_symtab_sharers);
7335 dwarf_read_debug_printf (" %d type units without a stmt_list",
7336 tu_stats->nr_stmt_less_type_units);
7337 dwarf_read_debug_printf (" %d all_type_units reallocs",
7338 tu_stats->nr_all_type_units_reallocs);
7339 }
7340
7341 /* Traversal function for build_type_psymtabs. */
7342
7343 static int
7344 build_type_psymtab_dependencies (void **slot, void *info)
7345 {
7346 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7347 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
7348 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7349 dwarf2_psymtab *pst = tu_group->v.psymtab;
7350 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7351 int i;
7352
7353 gdb_assert (len > 0);
7354 gdb_assert (tu_group->type_unit_group_p ());
7355
7356 pst->number_of_dependencies = len;
7357 pst->dependencies = per_bfd->partial_symtabs->allocate_dependencies (len);
7358 for (i = 0; i < len; ++i)
7359 {
7360 struct signatured_type *iter = tu_group->tus->at (i);
7361 gdb_assert (iter->is_debug_types);
7362 pst->dependencies[i] = iter->v.psymtab;
7363 iter->type_unit_group = tu_group;
7364 }
7365
7366 delete tu_group->tus;
7367 tu_group->tus = nullptr;
7368
7369 return 1;
7370 }
7371
7372 /* Traversal function for process_skeletonless_type_unit.
7373 Read a TU in a DWO file and build partial symbols for it. */
7374
7375 static int
7376 process_skeletonless_type_unit (void **slot, void *info)
7377 {
7378 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7379 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7380
7381 /* If this TU doesn't exist in the global table, add it and read it in. */
7382
7383 if (per_objfile->per_bfd->signatured_types == NULL)
7384 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
7385
7386 signatured_type find_entry (dwo_unit->signature);
7387 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
7388 &find_entry, INSERT);
7389 /* If we've already seen this type there's nothing to do. What's happening
7390 is we're doing our own version of comdat-folding here. */
7391 if (*slot != NULL)
7392 return 1;
7393
7394 /* This does the job that create_all_comp_units would have done for
7395 this TU. */
7396 signatured_type *entry
7397 = add_type_unit (per_objfile, dwo_unit->signature, slot);
7398 fill_in_sig_entry_from_dwo_entry (per_objfile, entry, dwo_unit);
7399 *slot = entry;
7400
7401 /* This does the job that build_type_psymtabs would have done. */
7402 cutu_reader reader (entry, per_objfile, nullptr, nullptr, false);
7403 if (!reader.dummy_p)
7404 build_type_psymtabs_reader (&reader, reader.info_ptr,
7405 reader.comp_unit_die);
7406
7407 return 1;
7408 }
7409
7410 /* Traversal function for process_skeletonless_type_units. */
7411
7412 static int
7413 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7414 {
7415 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7416
7417 if (dwo_file->tus != NULL)
7418 htab_traverse_noresize (dwo_file->tus.get (),
7419 process_skeletonless_type_unit, info);
7420
7421 return 1;
7422 }
7423
7424 /* Scan all TUs of DWO files, verifying we've processed them.
7425 This is needed in case a TU was emitted without its skeleton.
7426 Note: This can't be done until we know what all the DWO files are. */
7427
7428 static void
7429 process_skeletonless_type_units (dwarf2_per_objfile *per_objfile)
7430 {
7431 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7432 if (get_dwp_file (per_objfile) == NULL
7433 && per_objfile->per_bfd->dwo_files != NULL)
7434 {
7435 htab_traverse_noresize (per_objfile->per_bfd->dwo_files.get (),
7436 process_dwo_file_for_skeletonless_type_units,
7437 per_objfile);
7438 }
7439 }
7440
7441 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7442
7443 static void
7444 set_partial_user (dwarf2_per_objfile *per_objfile)
7445 {
7446 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
7447 {
7448 dwarf2_psymtab *pst = per_cu->v.psymtab;
7449
7450 if (pst == NULL)
7451 continue;
7452
7453 for (int j = 0; j < pst->number_of_dependencies; ++j)
7454 {
7455 /* Set the 'user' field only if it is not already set. */
7456 if (pst->dependencies[j]->user == NULL)
7457 pst->dependencies[j]->user = pst;
7458 }
7459 }
7460 }
7461
7462 /* Build the partial symbol table by doing a quick pass through the
7463 .debug_info and .debug_abbrev sections. */
7464
7465 static void
7466 dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile)
7467 {
7468 struct objfile *objfile = per_objfile->objfile;
7469 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
7470
7471 dwarf_read_debug_printf ("Building psymtabs of objfile %s ...",
7472 objfile_name (objfile));
7473
7474 scoped_restore restore_reading_psyms
7475 = make_scoped_restore (&per_bfd->reading_partial_symbols, true);
7476
7477 per_bfd->info.read (objfile);
7478
7479 /* Any cached compilation units will be linked by the per-objfile
7480 read_in_chain. Make sure to free them when we're done. */
7481 free_cached_comp_units freer (per_objfile);
7482
7483 create_all_comp_units (per_objfile);
7484 build_type_psymtabs (per_objfile);
7485
7486 /* Create a temporary address map on a temporary obstack. We later
7487 copy this to the final obstack. */
7488 auto_obstack temp_obstack;
7489
7490 scoped_restore save_psymtabs_addrmap
7491 = make_scoped_restore (&per_bfd->partial_symtabs->psymtabs_addrmap,
7492 addrmap_create_mutable (&temp_obstack));
7493
7494 for (const auto &per_cu : per_bfd->all_comp_units)
7495 {
7496 if (per_cu->v.psymtab != NULL)
7497 /* In case a forward DW_TAG_imported_unit has read the CU already. */
7498 continue;
7499 process_psymtab_comp_unit (per_cu.get (), per_objfile, false,
7500 language_minimal);
7501 }
7502
7503 /* This has to wait until we read the CUs, we need the list of DWOs. */
7504 process_skeletonless_type_units (per_objfile);
7505
7506 /* Now that all TUs have been processed we can fill in the dependencies. */
7507 if (per_bfd->type_unit_groups != NULL)
7508 {
7509 htab_traverse_noresize (per_bfd->type_unit_groups.get (),
7510 build_type_psymtab_dependencies, per_objfile);
7511 }
7512
7513 if (dwarf_read_debug > 0)
7514 print_tu_stats (per_objfile);
7515
7516 set_partial_user (per_objfile);
7517
7518 per_bfd->partial_symtabs->psymtabs_addrmap
7519 = addrmap_create_fixed (per_bfd->partial_symtabs->psymtabs_addrmap,
7520 per_bfd->partial_symtabs->obstack ());
7521 /* At this point we want to keep the address map. */
7522 save_psymtabs_addrmap.release ();
7523
7524 dwarf_read_debug_printf ("Done building psymtabs of %s",
7525 objfile_name (objfile));
7526 }
7527
7528 /* Load the partial DIEs for a secondary CU into memory.
7529 This is also used when rereading a primary CU with load_all_dies. */
7530
7531 static void
7532 load_partial_comp_unit (dwarf2_per_cu_data *this_cu,
7533 dwarf2_per_objfile *per_objfile,
7534 dwarf2_cu *existing_cu)
7535 {
7536 cutu_reader reader (this_cu, per_objfile, nullptr, existing_cu, false);
7537
7538 if (!reader.dummy_p)
7539 {
7540 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7541 language_minimal);
7542
7543 /* Check if comp unit has_children.
7544 If so, read the rest of the partial symbols from this comp unit.
7545 If not, there's no more debug_info for this comp unit. */
7546 if (reader.comp_unit_die->has_children)
7547 load_partial_dies (&reader, reader.info_ptr, 0);
7548
7549 reader.keep ();
7550 }
7551 }
7552
7553 static void
7554 read_comp_units_from_section (dwarf2_per_objfile *per_objfile,
7555 struct dwarf2_section_info *section,
7556 struct dwarf2_section_info *abbrev_section,
7557 unsigned int is_dwz,
7558 htab_up &types_htab,
7559 rcuh_kind section_kind)
7560 {
7561 const gdb_byte *info_ptr;
7562 struct objfile *objfile = per_objfile->objfile;
7563
7564 dwarf_read_debug_printf ("Reading %s for %s",
7565 section->get_name (),
7566 section->get_file_name ());
7567
7568 section->read (objfile);
7569
7570 info_ptr = section->buffer;
7571
7572 while (info_ptr < section->buffer + section->size)
7573 {
7574 dwarf2_per_cu_data_up this_cu;
7575
7576 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7577
7578 comp_unit_head cu_header;
7579 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
7580 abbrev_section, info_ptr,
7581 section_kind);
7582
7583 /* Save the compilation unit for later lookup. */
7584 if (cu_header.unit_type != DW_UT_type)
7585 this_cu = per_objfile->per_bfd->allocate_per_cu ();
7586 else
7587 {
7588 if (types_htab == nullptr)
7589 types_htab = allocate_signatured_type_table ();
7590
7591 auto sig_type = per_objfile->per_bfd->allocate_signatured_type
7592 (cu_header.signature);
7593 signatured_type *sig_ptr = sig_type.get ();
7594 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7595 this_cu.reset (sig_type.release ());
7596
7597 void **slot = htab_find_slot (types_htab.get (), sig_ptr, INSERT);
7598 gdb_assert (slot != nullptr);
7599 if (*slot != nullptr)
7600 complaint (_("debug type entry at offset %s is duplicate to"
7601 " the entry at offset %s, signature %s"),
7602 sect_offset_str (sect_off),
7603 sect_offset_str (sig_ptr->sect_off),
7604 hex_string (sig_ptr->signature));
7605 *slot = sig_ptr;
7606 }
7607 this_cu->sect_off = sect_off;
7608 this_cu->length = cu_header.length + cu_header.initial_length_size;
7609 this_cu->is_dwz = is_dwz;
7610 this_cu->section = section;
7611
7612 info_ptr = info_ptr + this_cu->length;
7613 per_objfile->per_bfd->all_comp_units.push_back (std::move (this_cu));
7614 }
7615 }
7616
7617 /* Create a list of all compilation units in OBJFILE.
7618 This is only done for -readnow and building partial symtabs. */
7619
7620 static void
7621 create_all_comp_units (dwarf2_per_objfile *per_objfile)
7622 {
7623 htab_up types_htab;
7624
7625 read_comp_units_from_section (per_objfile, &per_objfile->per_bfd->info,
7626 &per_objfile->per_bfd->abbrev, 0,
7627 types_htab, rcuh_kind::COMPILE);
7628 for (dwarf2_section_info &section : per_objfile->per_bfd->types)
7629 read_comp_units_from_section (per_objfile, &section,
7630 &per_objfile->per_bfd->abbrev, 0,
7631 types_htab, rcuh_kind::TYPE);
7632
7633 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
7634 if (dwz != NULL)
7635 read_comp_units_from_section (per_objfile, &dwz->info, &dwz->abbrev, 1,
7636 types_htab, rcuh_kind::COMPILE);
7637
7638 per_objfile->per_bfd->signatured_types = std::move (types_htab);
7639 }
7640
7641 /* Process all loaded DIEs for compilation unit CU, starting at
7642 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7643 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7644 DW_AT_ranges). See the comments of add_partial_subprogram on how
7645 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7646
7647 static void
7648 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7649 CORE_ADDR *highpc, int set_addrmap,
7650 struct dwarf2_cu *cu)
7651 {
7652 struct partial_die_info *pdi;
7653
7654 /* Now, march along the PDI's, descending into ones which have
7655 interesting children but skipping the children of the other ones,
7656 until we reach the end of the compilation unit. */
7657
7658 pdi = first_die;
7659
7660 while (pdi != NULL)
7661 {
7662 pdi->fixup (cu);
7663
7664 /* Anonymous namespaces or modules have no name but have interesting
7665 children, so we need to look at them. Ditto for anonymous
7666 enums. */
7667
7668 if (pdi->raw_name != NULL || pdi->tag == DW_TAG_namespace
7669 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7670 || pdi->tag == DW_TAG_imported_unit
7671 || pdi->tag == DW_TAG_inlined_subroutine)
7672 {
7673 switch (pdi->tag)
7674 {
7675 case DW_TAG_subprogram:
7676 case DW_TAG_inlined_subroutine:
7677 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7678 if (cu->per_cu->lang == language_cplus)
7679 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7680 set_addrmap, cu);
7681 break;
7682 case DW_TAG_constant:
7683 case DW_TAG_variable:
7684 case DW_TAG_typedef:
7685 case DW_TAG_union_type:
7686 if (!pdi->is_declaration
7687 || (pdi->tag == DW_TAG_variable && pdi->is_external))
7688 {
7689 add_partial_symbol (pdi, cu);
7690 }
7691 break;
7692 case DW_TAG_class_type:
7693 case DW_TAG_interface_type:
7694 case DW_TAG_structure_type:
7695 if (!pdi->is_declaration)
7696 {
7697 add_partial_symbol (pdi, cu);
7698 }
7699 if ((cu->per_cu->lang == language_rust
7700 || cu->per_cu->lang == language_cplus)
7701 && pdi->has_children)
7702 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7703 set_addrmap, cu);
7704 break;
7705 case DW_TAG_enumeration_type:
7706 if (!pdi->is_declaration)
7707 add_partial_enumeration (pdi, cu);
7708 break;
7709 case DW_TAG_base_type:
7710 case DW_TAG_subrange_type:
7711 /* File scope base type definitions are added to the partial
7712 symbol table. */
7713 add_partial_symbol (pdi, cu);
7714 break;
7715 case DW_TAG_namespace:
7716 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7717 break;
7718 case DW_TAG_module:
7719 if (!pdi->is_declaration)
7720 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7721 break;
7722 case DW_TAG_imported_unit:
7723 {
7724 struct dwarf2_per_cu_data *per_cu;
7725
7726 /* For now we don't handle imported units in type units. */
7727 if (cu->per_cu->is_debug_types)
7728 {
7729 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7730 " supported in type units [in module %s]"),
7731 objfile_name (cu->per_objfile->objfile));
7732 }
7733
7734 per_cu = dwarf2_find_containing_comp_unit
7735 (pdi->d.sect_off, pdi->is_dwz, cu->per_objfile);
7736
7737 /* Go read the partial unit, if needed. */
7738 if (per_cu->v.psymtab == NULL)
7739 process_psymtab_comp_unit (per_cu, cu->per_objfile, true,
7740 cu->per_cu->lang);
7741
7742 if (pdi->die_parent == nullptr
7743 && per_cu->unit_type == DW_UT_compile
7744 && per_cu->lang == language_cplus)
7745 /* Regard import as hint. See corresponding code in
7746 process_imported_unit_die. */
7747 break;
7748
7749 cu->per_cu->imported_symtabs_push (per_cu);
7750 }
7751 break;
7752 case DW_TAG_imported_declaration:
7753 add_partial_symbol (pdi, cu);
7754 break;
7755 default:
7756 break;
7757 }
7758 }
7759
7760 /* If the die has a sibling, skip to the sibling. */
7761
7762 pdi = pdi->die_sibling;
7763 }
7764 }
7765
7766 /* Functions used to compute the fully scoped name of a partial DIE.
7767
7768 Normally, this is simple. For C++, the parent DIE's fully scoped
7769 name is concatenated with "::" and the partial DIE's name.
7770 Enumerators are an exception; they use the scope of their parent
7771 enumeration type, i.e. the name of the enumeration type is not
7772 prepended to the enumerator.
7773
7774 There are two complexities. One is DW_AT_specification; in this
7775 case "parent" means the parent of the target of the specification,
7776 instead of the direct parent of the DIE. The other is compilers
7777 which do not emit DW_TAG_namespace; in this case we try to guess
7778 the fully qualified name of structure types from their members'
7779 linkage names. This must be done using the DIE's children rather
7780 than the children of any DW_AT_specification target. We only need
7781 to do this for structures at the top level, i.e. if the target of
7782 any DW_AT_specification (if any; otherwise the DIE itself) does not
7783 have a parent. */
7784
7785 /* Compute the scope prefix associated with PDI's parent, in
7786 compilation unit CU. The result will be allocated on CU's
7787 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7788 field. NULL is returned if no prefix is necessary. */
7789 static const char *
7790 partial_die_parent_scope (struct partial_die_info *pdi,
7791 struct dwarf2_cu *cu)
7792 {
7793 const char *grandparent_scope;
7794 struct partial_die_info *parent, *real_pdi;
7795
7796 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7797 then this means the parent of the specification DIE. */
7798
7799 real_pdi = pdi;
7800 while (real_pdi->has_specification)
7801 {
7802 auto res = find_partial_die (real_pdi->spec_offset,
7803 real_pdi->spec_is_dwz, cu);
7804 real_pdi = res.pdi;
7805 cu = res.cu;
7806 }
7807
7808 parent = real_pdi->die_parent;
7809 if (parent == NULL)
7810 return NULL;
7811
7812 if (parent->scope_set)
7813 return parent->scope;
7814
7815 parent->fixup (cu);
7816
7817 grandparent_scope = partial_die_parent_scope (parent, cu);
7818
7819 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7820 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7821 Work around this problem here. */
7822 if (cu->per_cu->lang == language_cplus
7823 && parent->tag == DW_TAG_namespace
7824 && strcmp (parent->name (cu), "::") == 0
7825 && grandparent_scope == NULL)
7826 {
7827 parent->scope = NULL;
7828 parent->scope_set = 1;
7829 return NULL;
7830 }
7831
7832 /* Nested subroutines in Fortran get a prefix. */
7833 if (pdi->tag == DW_TAG_enumerator)
7834 /* Enumerators should not get the name of the enumeration as a prefix. */
7835 parent->scope = grandparent_scope;
7836 else if (parent->tag == DW_TAG_namespace
7837 || parent->tag == DW_TAG_module
7838 || parent->tag == DW_TAG_structure_type
7839 || parent->tag == DW_TAG_class_type
7840 || parent->tag == DW_TAG_interface_type
7841 || parent->tag == DW_TAG_union_type
7842 || parent->tag == DW_TAG_enumeration_type
7843 || (cu->per_cu->lang == language_fortran
7844 && parent->tag == DW_TAG_subprogram
7845 && pdi->tag == DW_TAG_subprogram))
7846 {
7847 if (grandparent_scope == NULL)
7848 parent->scope = parent->name (cu);
7849 else
7850 parent->scope = typename_concat (&cu->comp_unit_obstack,
7851 grandparent_scope,
7852 parent->name (cu), 0, cu);
7853 }
7854 else
7855 {
7856 /* FIXME drow/2004-04-01: What should we be doing with
7857 function-local names? For partial symbols, we should probably be
7858 ignoring them. */
7859 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
7860 dwarf_tag_name (parent->tag),
7861 sect_offset_str (pdi->sect_off));
7862 parent->scope = grandparent_scope;
7863 }
7864
7865 parent->scope_set = 1;
7866 return parent->scope;
7867 }
7868
7869 /* Return the fully scoped name associated with PDI, from compilation unit
7870 CU. The result will be allocated with malloc. */
7871
7872 static gdb::unique_xmalloc_ptr<char>
7873 partial_die_full_name (struct partial_die_info *pdi,
7874 struct dwarf2_cu *cu)
7875 {
7876 const char *parent_scope;
7877
7878 /* If this is a template instantiation, we can not work out the
7879 template arguments from partial DIEs. So, unfortunately, we have
7880 to go through the full DIEs. At least any work we do building
7881 types here will be reused if full symbols are loaded later. */
7882 if (pdi->has_template_arguments)
7883 {
7884 pdi->fixup (cu);
7885
7886 if (pdi->name (cu) != NULL && strchr (pdi->name (cu), '<') == NULL)
7887 {
7888 struct die_info *die;
7889 struct attribute attr;
7890 struct dwarf2_cu *ref_cu = cu;
7891
7892 /* DW_FORM_ref_addr is using section offset. */
7893 attr.name = (enum dwarf_attribute) 0;
7894 attr.form = DW_FORM_ref_addr;
7895 attr.u.unsnd = to_underlying (pdi->sect_off);
7896 die = follow_die_ref (NULL, &attr, &ref_cu);
7897
7898 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7899 }
7900 }
7901
7902 parent_scope = partial_die_parent_scope (pdi, cu);
7903 if (parent_scope == NULL)
7904 return NULL;
7905 else
7906 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
7907 pdi->name (cu),
7908 0, cu));
7909 }
7910
7911 static void
7912 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7913 {
7914 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7915 struct objfile *objfile = per_objfile->objfile;
7916 struct gdbarch *gdbarch = objfile->arch ();
7917 CORE_ADDR addr = 0;
7918 const char *actual_name = NULL;
7919 CORE_ADDR baseaddr;
7920
7921 baseaddr = objfile->text_section_offset ();
7922
7923 gdb::unique_xmalloc_ptr<char> built_actual_name
7924 = partial_die_full_name (pdi, cu);
7925 if (built_actual_name != NULL)
7926 actual_name = built_actual_name.get ();
7927
7928 if (actual_name == NULL)
7929 actual_name = pdi->name (cu);
7930
7931 partial_symbol psymbol;
7932 memset (&psymbol, 0, sizeof (psymbol));
7933 psymbol.ginfo.set_language (cu->per_cu->lang,
7934 &objfile->objfile_obstack);
7935 psymbol.ginfo.set_section_index (-1);
7936
7937 /* The code below indicates that the psymbol should be installed by
7938 setting this. */
7939 gdb::optional<psymbol_placement> where;
7940
7941 switch (pdi->tag)
7942 {
7943 case DW_TAG_inlined_subroutine:
7944 case DW_TAG_subprogram:
7945 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
7946 - baseaddr);
7947 if (pdi->is_external
7948 || cu->per_cu->lang == language_ada
7949 || (cu->per_cu->lang == language_fortran
7950 && pdi->die_parent != NULL
7951 && pdi->die_parent->tag == DW_TAG_subprogram))
7952 {
7953 /* Normally, only "external" DIEs are part of the global scope.
7954 But in Ada and Fortran, we want to be able to access nested
7955 procedures globally. So all Ada and Fortran subprograms are
7956 stored in the global scope. */
7957 where = psymbol_placement::GLOBAL;
7958 }
7959 else
7960 where = psymbol_placement::STATIC;
7961
7962 psymbol.domain = VAR_DOMAIN;
7963 psymbol.aclass = LOC_BLOCK;
7964 psymbol.ginfo.set_section_index (SECT_OFF_TEXT (objfile));
7965 psymbol.ginfo.value.address = addr;
7966
7967 if (pdi->main_subprogram && actual_name != NULL)
7968 set_objfile_main_name (objfile, actual_name, cu->per_cu->lang);
7969 break;
7970 case DW_TAG_constant:
7971 psymbol.domain = VAR_DOMAIN;
7972 psymbol.aclass = LOC_STATIC;
7973 where = (pdi->is_external
7974 ? psymbol_placement::GLOBAL
7975 : psymbol_placement::STATIC);
7976 break;
7977 case DW_TAG_variable:
7978 if (pdi->d.locdesc)
7979 addr = decode_locdesc (pdi->d.locdesc, cu);
7980
7981 if (pdi->d.locdesc
7982 && addr == 0
7983 && !per_objfile->per_bfd->has_section_at_zero)
7984 {
7985 /* A global or static variable may also have been stripped
7986 out by the linker if unused, in which case its address
7987 will be nullified; do not add such variables into partial
7988 symbol table then. */
7989 }
7990 else if (pdi->is_external)
7991 {
7992 /* Global Variable.
7993 Don't enter into the minimal symbol tables as there is
7994 a minimal symbol table entry from the ELF symbols already.
7995 Enter into partial symbol table if it has a location
7996 descriptor or a type.
7997 If the location descriptor is missing, new_symbol will create
7998 a LOC_UNRESOLVED symbol, the address of the variable will then
7999 be determined from the minimal symbol table whenever the variable
8000 is referenced.
8001 The address for the partial symbol table entry is not
8002 used by GDB, but it comes in handy for debugging partial symbol
8003 table building. */
8004
8005 if (pdi->d.locdesc || pdi->has_type)
8006 {
8007 psymbol.domain = VAR_DOMAIN;
8008 psymbol.aclass = LOC_STATIC;
8009 psymbol.ginfo.set_section_index (SECT_OFF_TEXT (objfile));
8010 psymbol.ginfo.value.address = addr;
8011 where = psymbol_placement::GLOBAL;
8012 }
8013 }
8014 else
8015 {
8016 int has_loc = pdi->d.locdesc != NULL;
8017
8018 /* Static Variable. Skip symbols whose value we cannot know (those
8019 without location descriptors or constant values). */
8020 if (!has_loc && !pdi->has_const_value)
8021 return;
8022
8023 psymbol.domain = VAR_DOMAIN;
8024 psymbol.aclass = LOC_STATIC;
8025 psymbol.ginfo.set_section_index (SECT_OFF_TEXT (objfile));
8026 if (has_loc)
8027 psymbol.ginfo.value.address = addr;
8028 where = psymbol_placement::STATIC;
8029 }
8030 break;
8031 case DW_TAG_array_type:
8032 case DW_TAG_typedef:
8033 case DW_TAG_base_type:
8034 case DW_TAG_subrange_type:
8035 psymbol.domain = VAR_DOMAIN;
8036 psymbol.aclass = LOC_TYPEDEF;
8037 where = psymbol_placement::STATIC;
8038 break;
8039 case DW_TAG_imported_declaration:
8040 case DW_TAG_namespace:
8041 psymbol.domain = VAR_DOMAIN;
8042 psymbol.aclass = LOC_TYPEDEF;
8043 where = psymbol_placement::GLOBAL;
8044 break;
8045 case DW_TAG_module:
8046 /* With Fortran 77 there might be a "BLOCK DATA" module
8047 available without any name. If so, we skip the module as it
8048 doesn't bring any value. */
8049 if (actual_name != nullptr)
8050 {
8051 psymbol.domain = MODULE_DOMAIN;
8052 psymbol.aclass = LOC_TYPEDEF;
8053 where = psymbol_placement::GLOBAL;
8054 }
8055 break;
8056 case DW_TAG_class_type:
8057 case DW_TAG_interface_type:
8058 case DW_TAG_structure_type:
8059 case DW_TAG_union_type:
8060 case DW_TAG_enumeration_type:
8061 /* Skip external references. The DWARF standard says in the section
8062 about "Structure, Union, and Class Type Entries": "An incomplete
8063 structure, union or class type is represented by a structure,
8064 union or class entry that does not have a byte size attribute
8065 and that has a DW_AT_declaration attribute." */
8066 if (!pdi->has_byte_size && pdi->is_declaration)
8067 return;
8068
8069 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8070 static vs. global. */
8071 psymbol.domain = STRUCT_DOMAIN;
8072 psymbol.aclass = LOC_TYPEDEF;
8073 where = (cu->per_cu->lang == language_cplus
8074 ? psymbol_placement::GLOBAL
8075 : psymbol_placement::STATIC);
8076 break;
8077 case DW_TAG_enumerator:
8078 psymbol.domain = VAR_DOMAIN;
8079 psymbol.aclass = LOC_CONST;
8080 where = (cu->per_cu->lang == language_cplus
8081 ? psymbol_placement::GLOBAL
8082 : psymbol_placement::STATIC);
8083 break;
8084 default:
8085 break;
8086 }
8087
8088 if (where.has_value ())
8089 {
8090 if (built_actual_name != nullptr)
8091 actual_name = objfile->intern (actual_name);
8092 if (pdi->linkage_name == nullptr
8093 || cu->per_cu->lang == language_ada)
8094 psymbol.ginfo.set_linkage_name (actual_name);
8095 else
8096 {
8097 psymbol.ginfo.set_demangled_name (actual_name,
8098 &objfile->objfile_obstack);
8099 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
8100 }
8101 cu->per_cu->v.psymtab->add_psymbol
8102 (psymbol, *where, per_objfile->per_bfd->partial_symtabs.get (),
8103 objfile);
8104 }
8105 }
8106
8107 /* Read a partial die corresponding to a namespace; also, add a symbol
8108 corresponding to that namespace to the symbol table. NAMESPACE is
8109 the name of the enclosing namespace. */
8110
8111 static void
8112 add_partial_namespace (struct partial_die_info *pdi,
8113 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8114 int set_addrmap, struct dwarf2_cu *cu)
8115 {
8116 /* Add a symbol for the namespace. */
8117
8118 add_partial_symbol (pdi, cu);
8119
8120 /* Now scan partial symbols in that namespace. */
8121
8122 if (pdi->has_children)
8123 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8124 }
8125
8126 /* Read a partial die corresponding to a Fortran module. */
8127
8128 static void
8129 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8130 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8131 {
8132 /* Add a symbol for the namespace. */
8133
8134 add_partial_symbol (pdi, cu);
8135
8136 /* Now scan partial symbols in that module. */
8137
8138 if (pdi->has_children)
8139 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8140 }
8141
8142 static int
8143 dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
8144 dwarf2_psymtab *, dwarf_tag);
8145
8146 /* Read a partial die corresponding to a subprogram or an inlined
8147 subprogram and create a partial symbol for that subprogram.
8148 When the CU language allows it, this routine also defines a partial
8149 symbol for each nested subprogram that this subprogram contains.
8150 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8151 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8152
8153 PDI may also be a lexical block, in which case we simply search
8154 recursively for subprograms defined inside that lexical block.
8155 Again, this is only performed when the CU language allows this
8156 type of definitions. */
8157
8158 static void
8159 add_partial_subprogram (struct partial_die_info *pdi,
8160 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8161 int set_addrmap, struct dwarf2_cu *cu)
8162 {
8163 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8164 {
8165 if (pdi->has_pc_info)
8166 {
8167 if (pdi->lowpc < *lowpc)
8168 *lowpc = pdi->lowpc;
8169 if (pdi->highpc > *highpc)
8170 *highpc = pdi->highpc;
8171 if (set_addrmap)
8172 {
8173 struct objfile *objfile = cu->per_objfile->objfile;
8174 dwarf2_per_bfd *per_bfd = cu->per_objfile->per_bfd;
8175 struct gdbarch *gdbarch = objfile->arch ();
8176 CORE_ADDR baseaddr;
8177 CORE_ADDR this_highpc;
8178 CORE_ADDR this_lowpc;
8179
8180 baseaddr = objfile->text_section_offset ();
8181 this_lowpc
8182 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8183 pdi->lowpc + baseaddr)
8184 - baseaddr);
8185 this_highpc
8186 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8187 pdi->highpc + baseaddr)
8188 - baseaddr);
8189 addrmap_set_empty (per_bfd->partial_symtabs->psymtabs_addrmap,
8190 this_lowpc, this_highpc - 1,
8191 cu->per_cu->v.psymtab);
8192 }
8193 }
8194
8195 if (pdi->has_range_info
8196 && dwarf2_ranges_read (pdi->ranges_offset, &pdi->lowpc, &pdi->highpc,
8197 cu,
8198 set_addrmap ? cu->per_cu->v.psymtab : nullptr,
8199 pdi->tag))
8200 {
8201 if (pdi->lowpc < *lowpc)
8202 *lowpc = pdi->lowpc;
8203 if (pdi->highpc > *highpc)
8204 *highpc = pdi->highpc;
8205 }
8206
8207 if (pdi->has_pc_info || pdi->has_range_info
8208 || (!pdi->is_external && pdi->may_be_inlined))
8209 {
8210 if (!pdi->is_declaration)
8211 /* Ignore subprogram DIEs that do not have a name, they are
8212 illegal. Do not emit a complaint at this point, we will
8213 do so when we convert this psymtab into a symtab. */
8214 if (pdi->name (cu))
8215 add_partial_symbol (pdi, cu);
8216 }
8217 }
8218
8219 if (! pdi->has_children)
8220 return;
8221
8222 if (cu->per_cu->lang == language_ada
8223 || cu->per_cu->lang == language_fortran)
8224 {
8225 pdi = pdi->die_child;
8226 while (pdi != NULL)
8227 {
8228 pdi->fixup (cu);
8229 if (pdi->tag == DW_TAG_subprogram
8230 || pdi->tag == DW_TAG_inlined_subroutine
8231 || pdi->tag == DW_TAG_lexical_block)
8232 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8233 pdi = pdi->die_sibling;
8234 }
8235 }
8236 }
8237
8238 /* Read a partial die corresponding to an enumeration type. */
8239
8240 static void
8241 add_partial_enumeration (struct partial_die_info *enum_pdi,
8242 struct dwarf2_cu *cu)
8243 {
8244 struct partial_die_info *pdi;
8245
8246 if (enum_pdi->name (cu) != NULL)
8247 add_partial_symbol (enum_pdi, cu);
8248
8249 pdi = enum_pdi->die_child;
8250 while (pdi)
8251 {
8252 if (pdi->tag != DW_TAG_enumerator || pdi->raw_name == NULL)
8253 complaint (_("malformed enumerator DIE ignored"));
8254 else
8255 add_partial_symbol (pdi, cu);
8256 pdi = pdi->die_sibling;
8257 }
8258 }
8259
8260 /* Return the initial uleb128 in the die at INFO_PTR. */
8261
8262 static unsigned int
8263 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8264 {
8265 unsigned int bytes_read;
8266
8267 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8268 }
8269
8270 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8271 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8272
8273 Return the corresponding abbrev, or NULL if the number is zero (indicating
8274 an empty DIE). In either case *BYTES_READ will be set to the length of
8275 the initial number. */
8276
8277 static const struct abbrev_info *
8278 peek_die_abbrev (const die_reader_specs &reader,
8279 const gdb_byte *info_ptr, unsigned int *bytes_read)
8280 {
8281 dwarf2_cu *cu = reader.cu;
8282 bfd *abfd = reader.abfd;
8283 unsigned int abbrev_number
8284 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8285
8286 if (abbrev_number == 0)
8287 return NULL;
8288
8289 const abbrev_info *abbrev
8290 = reader.abbrev_table->lookup_abbrev (abbrev_number);
8291 if (!abbrev)
8292 {
8293 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8294 " at offset %s [in module %s]"),
8295 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8296 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8297 }
8298
8299 return abbrev;
8300 }
8301
8302 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8303 Returns a pointer to the end of a series of DIEs, terminated by an empty
8304 DIE. Any children of the skipped DIEs will also be skipped. */
8305
8306 static const gdb_byte *
8307 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8308 {
8309 while (1)
8310 {
8311 unsigned int bytes_read;
8312 const abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr,
8313 &bytes_read);
8314
8315 if (abbrev == NULL)
8316 return info_ptr + bytes_read;
8317 else
8318 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8319 }
8320 }
8321
8322 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8323 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8324 abbrev corresponding to that skipped uleb128 should be passed in
8325 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8326 children. */
8327
8328 static const gdb_byte *
8329 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8330 const struct abbrev_info *abbrev)
8331 {
8332 unsigned int bytes_read;
8333 struct attribute attr;
8334 bfd *abfd = reader->abfd;
8335 struct dwarf2_cu *cu = reader->cu;
8336 const gdb_byte *buffer = reader->buffer;
8337 const gdb_byte *buffer_end = reader->buffer_end;
8338 unsigned int form, i;
8339
8340 for (i = 0; i < abbrev->num_attrs; i++)
8341 {
8342 /* The only abbrev we care about is DW_AT_sibling. */
8343 if (abbrev->attrs[i].name == DW_AT_sibling)
8344 {
8345 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
8346 if (attr.form == DW_FORM_ref_addr)
8347 complaint (_("ignoring absolute DW_AT_sibling"));
8348 else
8349 {
8350 sect_offset off = attr.get_ref_die_offset ();
8351 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8352
8353 if (sibling_ptr < info_ptr)
8354 complaint (_("DW_AT_sibling points backwards"));
8355 else if (sibling_ptr > reader->buffer_end)
8356 reader->die_section->overflow_complaint ();
8357 else
8358 return sibling_ptr;
8359 }
8360 }
8361
8362 /* If it isn't DW_AT_sibling, skip this attribute. */
8363 form = abbrev->attrs[i].form;
8364 skip_attribute:
8365 switch (form)
8366 {
8367 case DW_FORM_ref_addr:
8368 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8369 and later it is offset sized. */
8370 if (cu->header.version == 2)
8371 info_ptr += cu->header.addr_size;
8372 else
8373 info_ptr += cu->header.offset_size;
8374 break;
8375 case DW_FORM_GNU_ref_alt:
8376 info_ptr += cu->header.offset_size;
8377 break;
8378 case DW_FORM_addr:
8379 info_ptr += cu->header.addr_size;
8380 break;
8381 case DW_FORM_data1:
8382 case DW_FORM_ref1:
8383 case DW_FORM_flag:
8384 case DW_FORM_strx1:
8385 info_ptr += 1;
8386 break;
8387 case DW_FORM_flag_present:
8388 case DW_FORM_implicit_const:
8389 break;
8390 case DW_FORM_data2:
8391 case DW_FORM_ref2:
8392 case DW_FORM_strx2:
8393 info_ptr += 2;
8394 break;
8395 case DW_FORM_strx3:
8396 info_ptr += 3;
8397 break;
8398 case DW_FORM_data4:
8399 case DW_FORM_ref4:
8400 case DW_FORM_strx4:
8401 info_ptr += 4;
8402 break;
8403 case DW_FORM_data8:
8404 case DW_FORM_ref8:
8405 case DW_FORM_ref_sig8:
8406 info_ptr += 8;
8407 break;
8408 case DW_FORM_data16:
8409 info_ptr += 16;
8410 break;
8411 case DW_FORM_string:
8412 read_direct_string (abfd, info_ptr, &bytes_read);
8413 info_ptr += bytes_read;
8414 break;
8415 case DW_FORM_sec_offset:
8416 case DW_FORM_strp:
8417 case DW_FORM_GNU_strp_alt:
8418 info_ptr += cu->header.offset_size;
8419 break;
8420 case DW_FORM_exprloc:
8421 case DW_FORM_block:
8422 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8423 info_ptr += bytes_read;
8424 break;
8425 case DW_FORM_block1:
8426 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8427 break;
8428 case DW_FORM_block2:
8429 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8430 break;
8431 case DW_FORM_block4:
8432 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8433 break;
8434 case DW_FORM_addrx:
8435 case DW_FORM_strx:
8436 case DW_FORM_sdata:
8437 case DW_FORM_udata:
8438 case DW_FORM_ref_udata:
8439 case DW_FORM_GNU_addr_index:
8440 case DW_FORM_GNU_str_index:
8441 case DW_FORM_rnglistx:
8442 case DW_FORM_loclistx:
8443 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8444 break;
8445 case DW_FORM_indirect:
8446 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8447 info_ptr += bytes_read;
8448 /* We need to continue parsing from here, so just go back to
8449 the top. */
8450 goto skip_attribute;
8451
8452 default:
8453 error (_("Dwarf Error: Cannot handle %s "
8454 "in DWARF reader [in module %s]"),
8455 dwarf_form_name (form),
8456 bfd_get_filename (abfd));
8457 }
8458 }
8459
8460 if (abbrev->has_children)
8461 return skip_children (reader, info_ptr);
8462 else
8463 return info_ptr;
8464 }
8465
8466 /* Locate ORIG_PDI's sibling.
8467 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8468
8469 static const gdb_byte *
8470 locate_pdi_sibling (const struct die_reader_specs *reader,
8471 struct partial_die_info *orig_pdi,
8472 const gdb_byte *info_ptr)
8473 {
8474 /* Do we know the sibling already? */
8475
8476 if (orig_pdi->sibling)
8477 return orig_pdi->sibling;
8478
8479 /* Are there any children to deal with? */
8480
8481 if (!orig_pdi->has_children)
8482 return info_ptr;
8483
8484 /* Skip the children the long way. */
8485
8486 return skip_children (reader, info_ptr);
8487 }
8488
8489 /* Expand this partial symbol table into a full symbol table. SELF is
8490 not NULL. */
8491
8492 void
8493 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8494 {
8495 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
8496
8497 gdb_assert (!per_objfile->symtab_set_p (per_cu_data));
8498
8499 /* If this psymtab is constructed from a debug-only objfile, the
8500 has_section_at_zero flag will not necessarily be correct. We
8501 can get the correct value for this flag by looking at the data
8502 associated with the (presumably stripped) associated objfile. */
8503 if (objfile->separate_debug_objfile_backlink)
8504 {
8505 dwarf2_per_objfile *per_objfile_backlink
8506 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8507
8508 per_objfile->per_bfd->has_section_at_zero
8509 = per_objfile_backlink->per_bfd->has_section_at_zero;
8510 }
8511
8512 expand_psymtab (objfile);
8513
8514 process_cu_includes (per_objfile);
8515 }
8516 \f
8517 /* Reading in full CUs. */
8518
8519 /* Add PER_CU to the queue. */
8520
8521 static void
8522 queue_comp_unit (dwarf2_per_cu_data *per_cu,
8523 dwarf2_per_objfile *per_objfile,
8524 enum language pretend_language)
8525 {
8526 per_cu->queued = 1;
8527
8528 gdb_assert (per_objfile->per_bfd->queue.has_value ());
8529 per_cu->per_bfd->queue->emplace (per_cu, per_objfile, pretend_language);
8530 }
8531
8532 /* If PER_CU is not yet expanded of queued for expansion, add it to the queue.
8533
8534 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8535 dependency.
8536
8537 Return true if maybe_queue_comp_unit requires the caller to load the CU's
8538 DIEs, false otherwise.
8539
8540 Explanation: there is an invariant that if a CU is queued for expansion
8541 (present in `dwarf2_per_bfd::queue`), then its DIEs are loaded
8542 (a dwarf2_cu object exists for this CU, and `dwarf2_per_objfile::get_cu`
8543 returns non-nullptr). If the CU gets enqueued by this function but its DIEs
8544 are not yet loaded, the the caller must load the CU's DIEs to ensure the
8545 invariant is respected.
8546
8547 The caller is therefore not required to load the CU's DIEs (we return false)
8548 if:
8549
8550 - the CU is already expanded, and therefore does not get enqueued
8551 - the CU gets enqueued for expansion, but its DIEs are already loaded
8552
8553 Note that the caller should not use this function's return value as an
8554 indicator of whether the CU's DIEs are loaded right now, it should check
8555 that by calling `dwarf2_per_objfile::get_cu` instead. */
8556
8557 static int
8558 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8559 dwarf2_per_cu_data *per_cu,
8560 dwarf2_per_objfile *per_objfile,
8561 enum language pretend_language)
8562 {
8563 /* We may arrive here during partial symbol reading, if we need full
8564 DIEs to process an unusual case (e.g. template arguments). Do
8565 not queue PER_CU, just tell our caller to load its DIEs. */
8566 if (per_cu->per_bfd->reading_partial_symbols)
8567 {
8568 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
8569
8570 if (cu == NULL || cu->dies == NULL)
8571 return 1;
8572 return 0;
8573 }
8574
8575 /* Mark the dependence relation so that we don't flush PER_CU
8576 too early. */
8577 if (dependent_cu != NULL)
8578 dependent_cu->add_dependence (per_cu);
8579
8580 /* If it's already on the queue, we have nothing to do. */
8581 if (per_cu->queued)
8582 {
8583 /* Verify the invariant that if a CU is queued for expansion, its DIEs are
8584 loaded. */
8585 gdb_assert (per_objfile->get_cu (per_cu) != nullptr);
8586
8587 /* If the CU is queued for expansion, it should not already be
8588 expanded. */
8589 gdb_assert (!per_objfile->symtab_set_p (per_cu));
8590
8591 /* The DIEs are already loaded, the caller doesn't need to do it. */
8592 return 0;
8593 }
8594
8595 bool queued = false;
8596 if (!per_objfile->symtab_set_p (per_cu))
8597 {
8598 /* Add it to the queue. */
8599 queue_comp_unit (per_cu, per_objfile, pretend_language);
8600 queued = true;
8601 }
8602
8603 /* If the compilation unit is already loaded, just mark it as
8604 used. */
8605 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
8606 if (cu != nullptr)
8607 cu->last_used = 0;
8608
8609 /* Ask the caller to load the CU's DIEs if the CU got enqueued for expansion
8610 and the DIEs are not already loaded. */
8611 return queued && cu == nullptr;
8612 }
8613
8614 /* Process the queue. */
8615
8616 static void
8617 process_queue (dwarf2_per_objfile *per_objfile)
8618 {
8619 dwarf_read_debug_printf ("Expanding one or more symtabs of objfile %s ...",
8620 objfile_name (per_objfile->objfile));
8621
8622 /* The queue starts out with one item, but following a DIE reference
8623 may load a new CU, adding it to the end of the queue. */
8624 while (!per_objfile->per_bfd->queue->empty ())
8625 {
8626 dwarf2_queue_item &item = per_objfile->per_bfd->queue->front ();
8627 dwarf2_per_cu_data *per_cu = item.per_cu;
8628
8629 if (!per_objfile->symtab_set_p (per_cu))
8630 {
8631 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
8632
8633 /* Skip dummy CUs. */
8634 if (cu != nullptr)
8635 {
8636 unsigned int debug_print_threshold;
8637 char buf[100];
8638
8639 if (per_cu->is_debug_types)
8640 {
8641 struct signatured_type *sig_type =
8642 (struct signatured_type *) per_cu;
8643
8644 sprintf (buf, "TU %s at offset %s",
8645 hex_string (sig_type->signature),
8646 sect_offset_str (per_cu->sect_off));
8647 /* There can be 100s of TUs.
8648 Only print them in verbose mode. */
8649 debug_print_threshold = 2;
8650 }
8651 else
8652 {
8653 sprintf (buf, "CU at offset %s",
8654 sect_offset_str (per_cu->sect_off));
8655 debug_print_threshold = 1;
8656 }
8657
8658 if (dwarf_read_debug >= debug_print_threshold)
8659 dwarf_read_debug_printf ("Expanding symtab of %s", buf);
8660
8661 if (per_cu->is_debug_types)
8662 process_full_type_unit (cu, item.pretend_language);
8663 else
8664 process_full_comp_unit (cu, item.pretend_language);
8665
8666 if (dwarf_read_debug >= debug_print_threshold)
8667 dwarf_read_debug_printf ("Done expanding %s", buf);
8668 }
8669 }
8670
8671 per_cu->queued = 0;
8672 per_objfile->per_bfd->queue->pop ();
8673 }
8674
8675 dwarf_read_debug_printf ("Done expanding symtabs of %s.",
8676 objfile_name (per_objfile->objfile));
8677 }
8678
8679 /* Read in full symbols for PST, and anything it depends on. */
8680
8681 void
8682 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8683 {
8684 gdb_assert (!readin_p (objfile));
8685
8686 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
8687 free_cached_comp_units freer (per_objfile);
8688 expand_dependencies (objfile);
8689
8690 dw2_do_instantiate_symtab (per_cu_data, per_objfile, false);
8691 gdb_assert (get_compunit_symtab (objfile) != nullptr);
8692 }
8693
8694 /* See psympriv.h. */
8695
8696 bool
8697 dwarf2_psymtab::readin_p (struct objfile *objfile) const
8698 {
8699 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
8700 return per_objfile->symtab_set_p (per_cu_data);
8701 }
8702
8703 /* See psympriv.h. */
8704
8705 compunit_symtab *
8706 dwarf2_psymtab::get_compunit_symtab (struct objfile *objfile) const
8707 {
8708 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
8709 return per_objfile->get_symtab (per_cu_data);
8710 }
8711
8712 /* Trivial hash function for die_info: the hash value of a DIE
8713 is its offset in .debug_info for this objfile. */
8714
8715 static hashval_t
8716 die_hash (const void *item)
8717 {
8718 const struct die_info *die = (const struct die_info *) item;
8719
8720 return to_underlying (die->sect_off);
8721 }
8722
8723 /* Trivial comparison function for die_info structures: two DIEs
8724 are equal if they have the same offset. */
8725
8726 static int
8727 die_eq (const void *item_lhs, const void *item_rhs)
8728 {
8729 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8730 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8731
8732 return die_lhs->sect_off == die_rhs->sect_off;
8733 }
8734
8735 /* Load the DIEs associated with PER_CU into memory.
8736
8737 In some cases, the caller, while reading partial symbols, will need to load
8738 the full symbols for the CU for some reason. It will already have a
8739 dwarf2_cu object for THIS_CU and pass it as EXISTING_CU, so it can be re-used
8740 rather than creating a new one. */
8741
8742 static void
8743 load_full_comp_unit (dwarf2_per_cu_data *this_cu,
8744 dwarf2_per_objfile *per_objfile,
8745 dwarf2_cu *existing_cu,
8746 bool skip_partial,
8747 enum language pretend_language)
8748 {
8749 gdb_assert (! this_cu->is_debug_types);
8750
8751 cutu_reader reader (this_cu, per_objfile, NULL, existing_cu, skip_partial);
8752 if (reader.dummy_p)
8753 return;
8754
8755 struct dwarf2_cu *cu = reader.cu;
8756 const gdb_byte *info_ptr = reader.info_ptr;
8757
8758 gdb_assert (cu->die_hash == NULL);
8759 cu->die_hash =
8760 htab_create_alloc_ex (cu->header.length / 12,
8761 die_hash,
8762 die_eq,
8763 NULL,
8764 &cu->comp_unit_obstack,
8765 hashtab_obstack_allocate,
8766 dummy_obstack_deallocate);
8767
8768 if (reader.comp_unit_die->has_children)
8769 reader.comp_unit_die->child
8770 = read_die_and_siblings (&reader, reader.info_ptr,
8771 &info_ptr, reader.comp_unit_die);
8772 cu->dies = reader.comp_unit_die;
8773 /* comp_unit_die is not stored in die_hash, no need. */
8774
8775 /* We try not to read any attributes in this function, because not
8776 all CUs needed for references have been loaded yet, and symbol
8777 table processing isn't initialized. But we have to set the CU language,
8778 or we won't be able to build types correctly.
8779 Similarly, if we do not read the producer, we can not apply
8780 producer-specific interpretation. */
8781 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8782
8783 reader.keep ();
8784 }
8785
8786 /* Add a DIE to the delayed physname list. */
8787
8788 static void
8789 add_to_method_list (struct type *type, int fnfield_index, int index,
8790 const char *name, struct die_info *die,
8791 struct dwarf2_cu *cu)
8792 {
8793 struct delayed_method_info mi;
8794 mi.type = type;
8795 mi.fnfield_index = fnfield_index;
8796 mi.index = index;
8797 mi.name = name;
8798 mi.die = die;
8799 cu->method_list.push_back (mi);
8800 }
8801
8802 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8803 "const" / "volatile". If so, decrements LEN by the length of the
8804 modifier and return true. Otherwise return false. */
8805
8806 template<size_t N>
8807 static bool
8808 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8809 {
8810 size_t mod_len = sizeof (mod) - 1;
8811 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8812 {
8813 len -= mod_len;
8814 return true;
8815 }
8816 return false;
8817 }
8818
8819 /* Compute the physnames of any methods on the CU's method list.
8820
8821 The computation of method physnames is delayed in order to avoid the
8822 (bad) condition that one of the method's formal parameters is of an as yet
8823 incomplete type. */
8824
8825 static void
8826 compute_delayed_physnames (struct dwarf2_cu *cu)
8827 {
8828 /* Only C++ delays computing physnames. */
8829 if (cu->method_list.empty ())
8830 return;
8831 gdb_assert (cu->per_cu->lang == language_cplus);
8832
8833 for (const delayed_method_info &mi : cu->method_list)
8834 {
8835 const char *physname;
8836 struct fn_fieldlist *fn_flp
8837 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
8838 physname = dwarf2_physname (mi.name, mi.die, cu);
8839 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
8840 = physname ? physname : "";
8841
8842 /* Since there's no tag to indicate whether a method is a
8843 const/volatile overload, extract that information out of the
8844 demangled name. */
8845 if (physname != NULL)
8846 {
8847 size_t len = strlen (physname);
8848
8849 while (1)
8850 {
8851 if (physname[len] == ')') /* shortcut */
8852 break;
8853 else if (check_modifier (physname, len, " const"))
8854 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
8855 else if (check_modifier (physname, len, " volatile"))
8856 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
8857 else
8858 break;
8859 }
8860 }
8861 }
8862
8863 /* The list is no longer needed. */
8864 cu->method_list.clear ();
8865 }
8866
8867 /* Go objects should be embedded in a DW_TAG_module DIE,
8868 and it's not clear if/how imported objects will appear.
8869 To keep Go support simple until that's worked out,
8870 go back through what we've read and create something usable.
8871 We could do this while processing each DIE, and feels kinda cleaner,
8872 but that way is more invasive.
8873 This is to, for example, allow the user to type "p var" or "b main"
8874 without having to specify the package name, and allow lookups
8875 of module.object to work in contexts that use the expression
8876 parser. */
8877
8878 static void
8879 fixup_go_packaging (struct dwarf2_cu *cu)
8880 {
8881 gdb::unique_xmalloc_ptr<char> package_name;
8882 struct pending *list;
8883 int i;
8884
8885 for (list = *cu->get_builder ()->get_global_symbols ();
8886 list != NULL;
8887 list = list->next)
8888 {
8889 for (i = 0; i < list->nsyms; ++i)
8890 {
8891 struct symbol *sym = list->symbol[i];
8892
8893 if (sym->language () == language_go
8894 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8895 {
8896 gdb::unique_xmalloc_ptr<char> this_package_name
8897 (go_symbol_package_name (sym));
8898
8899 if (this_package_name == NULL)
8900 continue;
8901 if (package_name == NULL)
8902 package_name = std::move (this_package_name);
8903 else
8904 {
8905 struct objfile *objfile = cu->per_objfile->objfile;
8906 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
8907 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
8908 (symbol_symtab (sym) != NULL
8909 ? symtab_to_filename_for_display
8910 (symbol_symtab (sym))
8911 : objfile_name (objfile)),
8912 this_package_name.get (), package_name.get ());
8913 }
8914 }
8915 }
8916 }
8917
8918 if (package_name != NULL)
8919 {
8920 struct objfile *objfile = cu->per_objfile->objfile;
8921 const char *saved_package_name = objfile->intern (package_name.get ());
8922 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8923 saved_package_name);
8924 struct symbol *sym;
8925
8926 sym = new (&objfile->objfile_obstack) symbol;
8927 sym->set_language (language_go, &objfile->objfile_obstack);
8928 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
8929 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8930 e.g., "main" finds the "main" module and not C's main(). */
8931 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8932 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8933 SYMBOL_TYPE (sym) = type;
8934
8935 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
8936 }
8937 }
8938
8939 /* Allocate a fully-qualified name consisting of the two parts on the
8940 obstack. */
8941
8942 static const char *
8943 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
8944 {
8945 return obconcat (obstack, p1, "::", p2, (char *) NULL);
8946 }
8947
8948 /* A helper that allocates a variant part to attach to a Rust enum
8949 type. OBSTACK is where the results should be allocated. TYPE is
8950 the type we're processing. DISCRIMINANT_INDEX is the index of the
8951 discriminant. It must be the index of one of the fields of TYPE,
8952 or -1 to mean there is no discriminant (univariant enum).
8953 DEFAULT_INDEX is the index of the default field; or -1 if there is
8954 no default. RANGES is indexed by "effective" field number (the
8955 field index, but omitting the discriminant and default fields) and
8956 must hold the discriminant values used by the variants. Note that
8957 RANGES must have a lifetime at least as long as OBSTACK -- either
8958 already allocated on it, or static. */
8959
8960 static void
8961 alloc_rust_variant (struct obstack *obstack, struct type *type,
8962 int discriminant_index, int default_index,
8963 gdb::array_view<discriminant_range> ranges)
8964 {
8965 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. */
8966 gdb_assert (discriminant_index == -1
8967 || (discriminant_index >= 0
8968 && discriminant_index < type->num_fields ()));
8969 gdb_assert (default_index == -1
8970 || (default_index >= 0 && default_index < type->num_fields ()));
8971
8972 /* We have one variant for each non-discriminant field. */
8973 int n_variants = type->num_fields ();
8974 if (discriminant_index != -1)
8975 --n_variants;
8976
8977 variant *variants = new (obstack) variant[n_variants];
8978 int var_idx = 0;
8979 int range_idx = 0;
8980 for (int i = 0; i < type->num_fields (); ++i)
8981 {
8982 if (i == discriminant_index)
8983 continue;
8984
8985 variants[var_idx].first_field = i;
8986 variants[var_idx].last_field = i + 1;
8987
8988 /* The default field does not need a range, but other fields do.
8989 We skipped the discriminant above. */
8990 if (i != default_index)
8991 {
8992 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
8993 ++range_idx;
8994 }
8995
8996 ++var_idx;
8997 }
8998
8999 gdb_assert (range_idx == ranges.size ());
9000 gdb_assert (var_idx == n_variants);
9001
9002 variant_part *part = new (obstack) variant_part;
9003 part->discriminant_index = discriminant_index;
9004 /* If there is no discriminant, then whether it is signed is of no
9005 consequence. */
9006 part->is_unsigned
9007 = (discriminant_index == -1
9008 ? false
9009 : type->field (discriminant_index).type ()->is_unsigned ());
9010 part->variants = gdb::array_view<variant> (variants, n_variants);
9011
9012 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9013 gdb::array_view<variant_part> *prop_value
9014 = new (storage) gdb::array_view<variant_part> (part, 1);
9015
9016 struct dynamic_prop prop;
9017 prop.set_variant_parts (prop_value);
9018
9019 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
9020 }
9021
9022 /* Some versions of rustc emitted enums in an unusual way.
9023
9024 Ordinary enums were emitted as unions. The first element of each
9025 structure in the union was named "RUST$ENUM$DISR". This element
9026 held the discriminant.
9027
9028 These versions of Rust also implemented the "non-zero"
9029 optimization. When the enum had two values, and one is empty and
9030 the other holds a pointer that cannot be zero, the pointer is used
9031 as the discriminant, with a zero value meaning the empty variant.
9032 Here, the union's first member is of the form
9033 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9034 where the fieldnos are the indices of the fields that should be
9035 traversed in order to find the field (which may be several fields deep)
9036 and the variantname is the name of the variant of the case when the
9037 field is zero.
9038
9039 This function recognizes whether TYPE is of one of these forms,
9040 and, if so, smashes it to be a variant type. */
9041
9042 static void
9043 quirk_rust_enum (struct type *type, struct objfile *objfile)
9044 {
9045 gdb_assert (type->code () == TYPE_CODE_UNION);
9046
9047 /* We don't need to deal with empty enums. */
9048 if (type->num_fields () == 0)
9049 return;
9050
9051 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9052 if (type->num_fields () == 1
9053 && startswith (type->field (0).name (), RUST_ENUM_PREFIX))
9054 {
9055 const char *name = type->field (0).name () + strlen (RUST_ENUM_PREFIX);
9056
9057 /* Decode the field name to find the offset of the
9058 discriminant. */
9059 ULONGEST bit_offset = 0;
9060 struct type *field_type = type->field (0).type ();
9061 while (name[0] >= '0' && name[0] <= '9')
9062 {
9063 char *tail;
9064 unsigned long index = strtoul (name, &tail, 10);
9065 name = tail;
9066 if (*name != '$'
9067 || index >= field_type->num_fields ()
9068 || (TYPE_FIELD_LOC_KIND (field_type, index)
9069 != FIELD_LOC_KIND_BITPOS))
9070 {
9071 complaint (_("Could not parse Rust enum encoding string \"%s\""
9072 "[in module %s]"),
9073 type->field (0).name (),
9074 objfile_name (objfile));
9075 return;
9076 }
9077 ++name;
9078
9079 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9080 field_type = field_type->field (index).type ();
9081 }
9082
9083 /* Smash this type to be a structure type. We have to do this
9084 because the type has already been recorded. */
9085 type->set_code (TYPE_CODE_STRUCT);
9086 type->set_num_fields (3);
9087 /* Save the field we care about. */
9088 struct field saved_field = type->field (0);
9089 type->set_fields
9090 ((struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field)));
9091
9092 /* Put the discriminant at index 0. */
9093 type->field (0).set_type (field_type);
9094 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9095 type->field (0).set_name ("<<discriminant>>");
9096 SET_FIELD_BITPOS (type->field (0), bit_offset);
9097
9098 /* The order of fields doesn't really matter, so put the real
9099 field at index 1 and the data-less field at index 2. */
9100 type->field (1) = saved_field;
9101 type->field (1).set_name
9102 (rust_last_path_segment (type->field (1).type ()->name ()));
9103 type->field (1).type ()->set_name
9104 (rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9105 type->field (1).name ()));
9106
9107 const char *dataless_name
9108 = rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9109 name);
9110 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9111 dataless_name);
9112 type->field (2).set_type (dataless_type);
9113 /* NAME points into the original discriminant name, which
9114 already has the correct lifetime. */
9115 type->field (2).set_name (name);
9116 SET_FIELD_BITPOS (type->field (2), 0);
9117
9118 /* Indicate that this is a variant type. */
9119 static discriminant_range ranges[1] = { { 0, 0 } };
9120 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9121 }
9122 /* A union with a single anonymous field is probably an old-style
9123 univariant enum. */
9124 else if (type->num_fields () == 1 && streq (type->field (0).name (), ""))
9125 {
9126 /* Smash this type to be a structure type. We have to do this
9127 because the type has already been recorded. */
9128 type->set_code (TYPE_CODE_STRUCT);
9129
9130 struct type *field_type = type->field (0).type ();
9131 const char *variant_name
9132 = rust_last_path_segment (field_type->name ());
9133 type->field (0).set_name (variant_name);
9134 field_type->set_name
9135 (rust_fully_qualify (&objfile->objfile_obstack,
9136 type->name (), variant_name));
9137
9138 alloc_rust_variant (&objfile->objfile_obstack, type, -1, 0, {});
9139 }
9140 else
9141 {
9142 struct type *disr_type = nullptr;
9143 for (int i = 0; i < type->num_fields (); ++i)
9144 {
9145 disr_type = type->field (i).type ();
9146
9147 if (disr_type->code () != TYPE_CODE_STRUCT)
9148 {
9149 /* All fields of a true enum will be structs. */
9150 return;
9151 }
9152 else if (disr_type->num_fields () == 0)
9153 {
9154 /* Could be data-less variant, so keep going. */
9155 disr_type = nullptr;
9156 }
9157 else if (strcmp (disr_type->field (0).name (),
9158 "RUST$ENUM$DISR") != 0)
9159 {
9160 /* Not a Rust enum. */
9161 return;
9162 }
9163 else
9164 {
9165 /* Found one. */
9166 break;
9167 }
9168 }
9169
9170 /* If we got here without a discriminant, then it's probably
9171 just a union. */
9172 if (disr_type == nullptr)
9173 return;
9174
9175 /* Smash this type to be a structure type. We have to do this
9176 because the type has already been recorded. */
9177 type->set_code (TYPE_CODE_STRUCT);
9178
9179 /* Make space for the discriminant field. */
9180 struct field *disr_field = &disr_type->field (0);
9181 field *new_fields
9182 = (struct field *) TYPE_ZALLOC (type, ((type->num_fields () + 1)
9183 * sizeof (struct field)));
9184 memcpy (new_fields + 1, type->fields (),
9185 type->num_fields () * sizeof (struct field));
9186 type->set_fields (new_fields);
9187 type->set_num_fields (type->num_fields () + 1);
9188
9189 /* Install the discriminant at index 0 in the union. */
9190 type->field (0) = *disr_field;
9191 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9192 type->field (0).set_name ("<<discriminant>>");
9193
9194 /* We need a way to find the correct discriminant given a
9195 variant name. For convenience we build a map here. */
9196 struct type *enum_type = disr_field->type ();
9197 std::unordered_map<std::string, ULONGEST> discriminant_map;
9198 for (int i = 0; i < enum_type->num_fields (); ++i)
9199 {
9200 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9201 {
9202 const char *name
9203 = rust_last_path_segment (enum_type->field (i).name ());
9204 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9205 }
9206 }
9207
9208 int n_fields = type->num_fields ();
9209 /* We don't need a range entry for the discriminant, but we do
9210 need one for every other field, as there is no default
9211 variant. */
9212 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9213 discriminant_range,
9214 n_fields - 1);
9215 /* Skip the discriminant here. */
9216 for (int i = 1; i < n_fields; ++i)
9217 {
9218 /* Find the final word in the name of this variant's type.
9219 That name can be used to look up the correct
9220 discriminant. */
9221 const char *variant_name
9222 = rust_last_path_segment (type->field (i).type ()->name ());
9223
9224 auto iter = discriminant_map.find (variant_name);
9225 if (iter != discriminant_map.end ())
9226 {
9227 ranges[i - 1].low = iter->second;
9228 ranges[i - 1].high = iter->second;
9229 }
9230
9231 /* In Rust, each element should have the size of the
9232 enclosing enum. */
9233 TYPE_LENGTH (type->field (i).type ()) = TYPE_LENGTH (type);
9234
9235 /* Remove the discriminant field, if it exists. */
9236 struct type *sub_type = type->field (i).type ();
9237 if (sub_type->num_fields () > 0)
9238 {
9239 sub_type->set_num_fields (sub_type->num_fields () - 1);
9240 sub_type->set_fields (sub_type->fields () + 1);
9241 }
9242 type->field (i).set_name (variant_name);
9243 sub_type->set_name
9244 (rust_fully_qualify (&objfile->objfile_obstack,
9245 type->name (), variant_name));
9246 }
9247
9248 /* Indicate that this is a variant type. */
9249 alloc_rust_variant (&objfile->objfile_obstack, type, 0, -1,
9250 gdb::array_view<discriminant_range> (ranges,
9251 n_fields - 1));
9252 }
9253 }
9254
9255 /* Rewrite some Rust unions to be structures with variants parts. */
9256
9257 static void
9258 rust_union_quirks (struct dwarf2_cu *cu)
9259 {
9260 gdb_assert (cu->per_cu->lang == language_rust);
9261 for (type *type_ : cu->rust_unions)
9262 quirk_rust_enum (type_, cu->per_objfile->objfile);
9263 /* We don't need this any more. */
9264 cu->rust_unions.clear ();
9265 }
9266
9267 /* See read.h. */
9268
9269 type_unit_group_unshareable *
9270 dwarf2_per_objfile::get_type_unit_group_unshareable (type_unit_group *tu_group)
9271 {
9272 auto iter = this->m_type_units.find (tu_group);
9273 if (iter != this->m_type_units.end ())
9274 return iter->second.get ();
9275
9276 type_unit_group_unshareable_up uniq (new type_unit_group_unshareable);
9277 type_unit_group_unshareable *result = uniq.get ();
9278 this->m_type_units[tu_group] = std::move (uniq);
9279 return result;
9280 }
9281
9282 struct type *
9283 dwarf2_per_objfile::get_type_for_signatured_type
9284 (signatured_type *sig_type) const
9285 {
9286 auto iter = this->m_type_map.find (sig_type);
9287 if (iter == this->m_type_map.end ())
9288 return nullptr;
9289
9290 return iter->second;
9291 }
9292
9293 void dwarf2_per_objfile::set_type_for_signatured_type
9294 (signatured_type *sig_type, struct type *type)
9295 {
9296 gdb_assert (this->m_type_map.find (sig_type) == this->m_type_map.end ());
9297
9298 this->m_type_map[sig_type] = type;
9299 }
9300
9301 /* A helper function for computing the list of all symbol tables
9302 included by PER_CU. */
9303
9304 static void
9305 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9306 htab_t all_children, htab_t all_type_symtabs,
9307 dwarf2_per_cu_data *per_cu,
9308 dwarf2_per_objfile *per_objfile,
9309 struct compunit_symtab *immediate_parent)
9310 {
9311 void **slot = htab_find_slot (all_children, per_cu, INSERT);
9312 if (*slot != NULL)
9313 {
9314 /* This inclusion and its children have been processed. */
9315 return;
9316 }
9317
9318 *slot = per_cu;
9319
9320 /* Only add a CU if it has a symbol table. */
9321 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9322 if (cust != NULL)
9323 {
9324 /* If this is a type unit only add its symbol table if we haven't
9325 seen it yet (type unit per_cu's can share symtabs). */
9326 if (per_cu->is_debug_types)
9327 {
9328 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9329 if (*slot == NULL)
9330 {
9331 *slot = cust;
9332 result->push_back (cust);
9333 if (cust->user == NULL)
9334 cust->user = immediate_parent;
9335 }
9336 }
9337 else
9338 {
9339 result->push_back (cust);
9340 if (cust->user == NULL)
9341 cust->user = immediate_parent;
9342 }
9343 }
9344
9345 if (!per_cu->imported_symtabs_empty ())
9346 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9347 {
9348 recursively_compute_inclusions (result, all_children,
9349 all_type_symtabs, ptr, per_objfile,
9350 cust);
9351 }
9352 }
9353
9354 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9355 PER_CU. */
9356
9357 static void
9358 compute_compunit_symtab_includes (dwarf2_per_cu_data *per_cu,
9359 dwarf2_per_objfile *per_objfile)
9360 {
9361 gdb_assert (! per_cu->is_debug_types);
9362
9363 if (!per_cu->imported_symtabs_empty ())
9364 {
9365 int len;
9366 std::vector<compunit_symtab *> result_symtabs;
9367 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9368
9369 /* If we don't have a symtab, we can just skip this case. */
9370 if (cust == NULL)
9371 return;
9372
9373 htab_up all_children (htab_create_alloc (1, htab_hash_pointer,
9374 htab_eq_pointer,
9375 NULL, xcalloc, xfree));
9376 htab_up all_type_symtabs (htab_create_alloc (1, htab_hash_pointer,
9377 htab_eq_pointer,
9378 NULL, xcalloc, xfree));
9379
9380 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9381 {
9382 recursively_compute_inclusions (&result_symtabs, all_children.get (),
9383 all_type_symtabs.get (), ptr,
9384 per_objfile, cust);
9385 }
9386
9387 /* Now we have a transitive closure of all the included symtabs. */
9388 len = result_symtabs.size ();
9389 cust->includes
9390 = XOBNEWVEC (&per_objfile->objfile->objfile_obstack,
9391 struct compunit_symtab *, len + 1);
9392 memcpy (cust->includes, result_symtabs.data (),
9393 len * sizeof (compunit_symtab *));
9394 cust->includes[len] = NULL;
9395 }
9396 }
9397
9398 /* Compute the 'includes' field for the symtabs of all the CUs we just
9399 read. */
9400
9401 static void
9402 process_cu_includes (dwarf2_per_objfile *per_objfile)
9403 {
9404 for (dwarf2_per_cu_data *iter : per_objfile->per_bfd->just_read_cus)
9405 {
9406 if (! iter->is_debug_types)
9407 compute_compunit_symtab_includes (iter, per_objfile);
9408 }
9409
9410 per_objfile->per_bfd->just_read_cus.clear ();
9411 }
9412
9413 /* Generate full symbol information for CU, whose DIEs have
9414 already been loaded into memory. */
9415
9416 static void
9417 process_full_comp_unit (dwarf2_cu *cu, enum language pretend_language)
9418 {
9419 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9420 struct objfile *objfile = per_objfile->objfile;
9421 struct gdbarch *gdbarch = objfile->arch ();
9422 CORE_ADDR lowpc, highpc;
9423 struct compunit_symtab *cust;
9424 CORE_ADDR baseaddr;
9425 struct block *static_block;
9426 CORE_ADDR addr;
9427
9428 baseaddr = objfile->text_section_offset ();
9429
9430 /* Clear the list here in case something was left over. */
9431 cu->method_list.clear ();
9432
9433 dwarf2_find_base_address (cu->dies, cu);
9434
9435 /* Before we start reading the top-level DIE, ensure it has a valid tag
9436 type. */
9437 switch (cu->dies->tag)
9438 {
9439 case DW_TAG_compile_unit:
9440 case DW_TAG_partial_unit:
9441 case DW_TAG_type_unit:
9442 break;
9443 default:
9444 error (_("Dwarf Error: unexpected tag '%s' at offset %s [in module %s]"),
9445 dwarf_tag_name (cu->dies->tag),
9446 sect_offset_str (cu->per_cu->sect_off),
9447 objfile_name (per_objfile->objfile));
9448 }
9449
9450 /* Do line number decoding in read_file_scope () */
9451 process_die (cu->dies, cu);
9452
9453 /* For now fudge the Go package. */
9454 if (cu->per_cu->lang == language_go)
9455 fixup_go_packaging (cu);
9456
9457 /* Now that we have processed all the DIEs in the CU, all the types
9458 should be complete, and it should now be safe to compute all of the
9459 physnames. */
9460 compute_delayed_physnames (cu);
9461
9462 if (cu->per_cu->lang == language_rust)
9463 rust_union_quirks (cu);
9464
9465 /* Some compilers don't define a DW_AT_high_pc attribute for the
9466 compilation unit. If the DW_AT_high_pc is missing, synthesize
9467 it, by scanning the DIE's below the compilation unit. */
9468 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9469
9470 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9471 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9472
9473 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9474 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9475 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9476 addrmap to help ensure it has an accurate map of pc values belonging to
9477 this comp unit. */
9478 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9479
9480 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9481 SECT_OFF_TEXT (objfile),
9482 0);
9483
9484 if (cust != NULL)
9485 {
9486 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9487
9488 /* Set symtab language to language from DW_AT_language. If the
9489 compilation is from a C file generated by language preprocessors, do
9490 not set the language if it was already deduced by start_subfile. */
9491 if (!(cu->per_cu->lang == language_c
9492 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9493 COMPUNIT_FILETABS (cust)->language = cu->per_cu->lang;
9494
9495 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9496 produce DW_AT_location with location lists but it can be possibly
9497 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9498 there were bugs in prologue debug info, fixed later in GCC-4.5
9499 by "unwind info for epilogues" patch (which is not directly related).
9500
9501 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9502 needed, it would be wrong due to missing DW_AT_producer there.
9503
9504 Still one can confuse GDB by using non-standard GCC compilation
9505 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9506 */
9507 if (cu->has_loclist && gcc_4_minor >= 5)
9508 cust->locations_valid = 1;
9509
9510 if (gcc_4_minor >= 5)
9511 cust->epilogue_unwind_valid = 1;
9512
9513 cust->set_call_site_htab (cu->call_site_htab);
9514 }
9515
9516 per_objfile->set_symtab (cu->per_cu, cust);
9517
9518 /* Push it for inclusion processing later. */
9519 per_objfile->per_bfd->just_read_cus.push_back (cu->per_cu);
9520
9521 /* Not needed any more. */
9522 cu->reset_builder ();
9523 }
9524
9525 /* Generate full symbol information for type unit CU, whose DIEs have
9526 already been loaded into memory. */
9527
9528 static void
9529 process_full_type_unit (dwarf2_cu *cu,
9530 enum language pretend_language)
9531 {
9532 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9533 struct objfile *objfile = per_objfile->objfile;
9534 struct compunit_symtab *cust;
9535 struct signatured_type *sig_type;
9536
9537 gdb_assert (cu->per_cu->is_debug_types);
9538 sig_type = (struct signatured_type *) cu->per_cu;
9539
9540 /* Clear the list here in case something was left over. */
9541 cu->method_list.clear ();
9542
9543 /* The symbol tables are set up in read_type_unit_scope. */
9544 process_die (cu->dies, cu);
9545
9546 /* For now fudge the Go package. */
9547 if (cu->per_cu->lang == language_go)
9548 fixup_go_packaging (cu);
9549
9550 /* Now that we have processed all the DIEs in the CU, all the types
9551 should be complete, and it should now be safe to compute all of the
9552 physnames. */
9553 compute_delayed_physnames (cu);
9554
9555 if (cu->per_cu->lang == language_rust)
9556 rust_union_quirks (cu);
9557
9558 /* TUs share symbol tables.
9559 If this is the first TU to use this symtab, complete the construction
9560 of it with end_expandable_symtab. Otherwise, complete the addition of
9561 this TU's symbols to the existing symtab. */
9562 type_unit_group_unshareable *tug_unshare =
9563 per_objfile->get_type_unit_group_unshareable (sig_type->type_unit_group);
9564 if (tug_unshare->compunit_symtab == NULL)
9565 {
9566 buildsym_compunit *builder = cu->get_builder ();
9567 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9568 tug_unshare->compunit_symtab = cust;
9569
9570 if (cust != NULL)
9571 {
9572 /* Set symtab language to language from DW_AT_language. If the
9573 compilation is from a C file generated by language preprocessors,
9574 do not set the language if it was already deduced by
9575 start_subfile. */
9576 if (!(cu->per_cu->lang == language_c
9577 && COMPUNIT_FILETABS (cust)->language != language_c))
9578 COMPUNIT_FILETABS (cust)->language = cu->per_cu->lang;
9579 }
9580 }
9581 else
9582 {
9583 cu->get_builder ()->augment_type_symtab ();
9584 cust = tug_unshare->compunit_symtab;
9585 }
9586
9587 per_objfile->set_symtab (cu->per_cu, cust);
9588
9589 /* Not needed any more. */
9590 cu->reset_builder ();
9591 }
9592
9593 /* Process an imported unit DIE. */
9594
9595 static void
9596 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9597 {
9598 struct attribute *attr;
9599
9600 /* For now we don't handle imported units in type units. */
9601 if (cu->per_cu->is_debug_types)
9602 {
9603 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9604 " supported in type units [in module %s]"),
9605 objfile_name (cu->per_objfile->objfile));
9606 }
9607
9608 attr = dwarf2_attr (die, DW_AT_import, cu);
9609 if (attr != NULL)
9610 {
9611 sect_offset sect_off = attr->get_ref_die_offset ();
9612 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9613 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9614 dwarf2_per_cu_data *per_cu
9615 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, per_objfile);
9616
9617 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
9618 into another compilation unit, at root level. Regard this as a hint,
9619 and ignore it. */
9620 if (die->parent && die->parent->parent == NULL
9621 && per_cu->unit_type == DW_UT_compile
9622 && per_cu->lang == language_cplus)
9623 return;
9624
9625 /* If necessary, add it to the queue and load its DIEs. */
9626 if (maybe_queue_comp_unit (cu, per_cu, per_objfile,
9627 cu->per_cu->lang))
9628 load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu),
9629 false, cu->per_cu->lang);
9630
9631 cu->per_cu->imported_symtabs_push (per_cu);
9632 }
9633 }
9634
9635 /* RAII object that represents a process_die scope: i.e.,
9636 starts/finishes processing a DIE. */
9637 class process_die_scope
9638 {
9639 public:
9640 process_die_scope (die_info *die, dwarf2_cu *cu)
9641 : m_die (die), m_cu (cu)
9642 {
9643 /* We should only be processing DIEs not already in process. */
9644 gdb_assert (!m_die->in_process);
9645 m_die->in_process = true;
9646 }
9647
9648 ~process_die_scope ()
9649 {
9650 m_die->in_process = false;
9651
9652 /* If we're done processing the DIE for the CU that owns the line
9653 header, we don't need the line header anymore. */
9654 if (m_cu->line_header_die_owner == m_die)
9655 {
9656 delete m_cu->line_header;
9657 m_cu->line_header = NULL;
9658 m_cu->line_header_die_owner = NULL;
9659 }
9660 }
9661
9662 private:
9663 die_info *m_die;
9664 dwarf2_cu *m_cu;
9665 };
9666
9667 /* Process a die and its children. */
9668
9669 static void
9670 process_die (struct die_info *die, struct dwarf2_cu *cu)
9671 {
9672 process_die_scope scope (die, cu);
9673
9674 switch (die->tag)
9675 {
9676 case DW_TAG_padding:
9677 break;
9678 case DW_TAG_compile_unit:
9679 case DW_TAG_partial_unit:
9680 read_file_scope (die, cu);
9681 break;
9682 case DW_TAG_type_unit:
9683 read_type_unit_scope (die, cu);
9684 break;
9685 case DW_TAG_subprogram:
9686 /* Nested subprograms in Fortran get a prefix. */
9687 if (cu->per_cu->lang == language_fortran
9688 && die->parent != NULL
9689 && die->parent->tag == DW_TAG_subprogram)
9690 cu->processing_has_namespace_info = true;
9691 /* Fall through. */
9692 case DW_TAG_inlined_subroutine:
9693 read_func_scope (die, cu);
9694 break;
9695 case DW_TAG_lexical_block:
9696 case DW_TAG_try_block:
9697 case DW_TAG_catch_block:
9698 read_lexical_block_scope (die, cu);
9699 break;
9700 case DW_TAG_call_site:
9701 case DW_TAG_GNU_call_site:
9702 read_call_site_scope (die, cu);
9703 break;
9704 case DW_TAG_class_type:
9705 case DW_TAG_interface_type:
9706 case DW_TAG_structure_type:
9707 case DW_TAG_union_type:
9708 process_structure_scope (die, cu);
9709 break;
9710 case DW_TAG_enumeration_type:
9711 process_enumeration_scope (die, cu);
9712 break;
9713
9714 /* These dies have a type, but processing them does not create
9715 a symbol or recurse to process the children. Therefore we can
9716 read them on-demand through read_type_die. */
9717 case DW_TAG_subroutine_type:
9718 case DW_TAG_set_type:
9719 case DW_TAG_pointer_type:
9720 case DW_TAG_ptr_to_member_type:
9721 case DW_TAG_reference_type:
9722 case DW_TAG_rvalue_reference_type:
9723 case DW_TAG_string_type:
9724 break;
9725
9726 case DW_TAG_array_type:
9727 /* We only need to handle this case for Ada -- in other
9728 languages, it's normal for the compiler to emit a typedef
9729 instead. */
9730 if (cu->per_cu->lang != language_ada)
9731 break;
9732 /* FALLTHROUGH */
9733 case DW_TAG_base_type:
9734 case DW_TAG_subrange_type:
9735 case DW_TAG_typedef:
9736 /* Add a typedef symbol for the type definition, if it has a
9737 DW_AT_name. */
9738 new_symbol (die, read_type_die (die, cu), cu);
9739 break;
9740 case DW_TAG_common_block:
9741 read_common_block (die, cu);
9742 break;
9743 case DW_TAG_common_inclusion:
9744 break;
9745 case DW_TAG_namespace:
9746 cu->processing_has_namespace_info = true;
9747 read_namespace (die, cu);
9748 break;
9749 case DW_TAG_module:
9750 cu->processing_has_namespace_info = true;
9751 read_module (die, cu);
9752 break;
9753 case DW_TAG_imported_declaration:
9754 cu->processing_has_namespace_info = true;
9755 if (read_namespace_alias (die, cu))
9756 break;
9757 /* The declaration is not a global namespace alias. */
9758 /* Fall through. */
9759 case DW_TAG_imported_module:
9760 cu->processing_has_namespace_info = true;
9761 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9762 || cu->per_cu->lang != language_fortran))
9763 complaint (_("Tag '%s' has unexpected children"),
9764 dwarf_tag_name (die->tag));
9765 read_import_statement (die, cu);
9766 break;
9767
9768 case DW_TAG_imported_unit:
9769 process_imported_unit_die (die, cu);
9770 break;
9771
9772 case DW_TAG_variable:
9773 read_variable (die, cu);
9774 break;
9775
9776 default:
9777 new_symbol (die, NULL, cu);
9778 break;
9779 }
9780 }
9781 \f
9782 /* DWARF name computation. */
9783
9784 /* A helper function for dwarf2_compute_name which determines whether DIE
9785 needs to have the name of the scope prepended to the name listed in the
9786 die. */
9787
9788 static int
9789 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9790 {
9791 struct attribute *attr;
9792
9793 switch (die->tag)
9794 {
9795 case DW_TAG_namespace:
9796 case DW_TAG_typedef:
9797 case DW_TAG_class_type:
9798 case DW_TAG_interface_type:
9799 case DW_TAG_structure_type:
9800 case DW_TAG_union_type:
9801 case DW_TAG_enumeration_type:
9802 case DW_TAG_enumerator:
9803 case DW_TAG_subprogram:
9804 case DW_TAG_inlined_subroutine:
9805 case DW_TAG_member:
9806 case DW_TAG_imported_declaration:
9807 return 1;
9808
9809 case DW_TAG_variable:
9810 case DW_TAG_constant:
9811 /* We only need to prefix "globally" visible variables. These include
9812 any variable marked with DW_AT_external or any variable that
9813 lives in a namespace. [Variables in anonymous namespaces
9814 require prefixing, but they are not DW_AT_external.] */
9815
9816 if (dwarf2_attr (die, DW_AT_specification, cu))
9817 {
9818 struct dwarf2_cu *spec_cu = cu;
9819
9820 return die_needs_namespace (die_specification (die, &spec_cu),
9821 spec_cu);
9822 }
9823
9824 attr = dwarf2_attr (die, DW_AT_external, cu);
9825 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9826 && die->parent->tag != DW_TAG_module)
9827 return 0;
9828 /* A variable in a lexical block of some kind does not need a
9829 namespace, even though in C++ such variables may be external
9830 and have a mangled name. */
9831 if (die->parent->tag == DW_TAG_lexical_block
9832 || die->parent->tag == DW_TAG_try_block
9833 || die->parent->tag == DW_TAG_catch_block
9834 || die->parent->tag == DW_TAG_subprogram)
9835 return 0;
9836 return 1;
9837
9838 default:
9839 return 0;
9840 }
9841 }
9842
9843 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9844 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9845 defined for the given DIE. */
9846
9847 static struct attribute *
9848 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9849 {
9850 struct attribute *attr;
9851
9852 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9853 if (attr == NULL)
9854 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9855
9856 return attr;
9857 }
9858
9859 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9860 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9861 defined for the given DIE. */
9862
9863 static const char *
9864 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9865 {
9866 const char *linkage_name;
9867
9868 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9869 if (linkage_name == NULL)
9870 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9871
9872 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9873 See https://github.com/rust-lang/rust/issues/32925. */
9874 if (cu->per_cu->lang == language_rust && linkage_name != NULL
9875 && strchr (linkage_name, '{') != NULL)
9876 linkage_name = NULL;
9877
9878 return linkage_name;
9879 }
9880
9881 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
9882 compute the physname for the object, which include a method's:
9883 - formal parameters (C++),
9884 - receiver type (Go),
9885
9886 The term "physname" is a bit confusing.
9887 For C++, for example, it is the demangled name.
9888 For Go, for example, it's the mangled name.
9889
9890 For Ada, return the DIE's linkage name rather than the fully qualified
9891 name. PHYSNAME is ignored..
9892
9893 The result is allocated on the objfile->per_bfd's obstack and
9894 canonicalized. */
9895
9896 static const char *
9897 dwarf2_compute_name (const char *name,
9898 struct die_info *die, struct dwarf2_cu *cu,
9899 int physname)
9900 {
9901 struct objfile *objfile = cu->per_objfile->objfile;
9902
9903 if (name == NULL)
9904 name = dwarf2_name (die, cu);
9905
9906 enum language lang = cu->per_cu->lang;
9907
9908 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
9909 but otherwise compute it by typename_concat inside GDB.
9910 FIXME: Actually this is not really true, or at least not always true.
9911 It's all very confusing. compute_and_set_names doesn't try to demangle
9912 Fortran names because there is no mangling standard. So new_symbol
9913 will set the demangled name to the result of dwarf2_full_name, and it is
9914 the demangled name that GDB uses if it exists. */
9915 if (lang == language_ada
9916 || (lang == language_fortran && physname))
9917 {
9918 /* For Ada unit, we prefer the linkage name over the name, as
9919 the former contains the exported name, which the user expects
9920 to be able to reference. Ideally, we want the user to be able
9921 to reference this entity using either natural or linkage name,
9922 but we haven't started looking at this enhancement yet. */
9923 const char *linkage_name = dw2_linkage_name (die, cu);
9924
9925 if (linkage_name != NULL)
9926 return linkage_name;
9927 }
9928
9929 /* These are the only languages we know how to qualify names in. */
9930 if (name != NULL
9931 && (lang == language_cplus
9932 || lang == language_fortran || lang == language_d
9933 || lang == language_rust))
9934 {
9935 if (die_needs_namespace (die, cu))
9936 {
9937 const char *prefix;
9938 const char *canonical_name = NULL;
9939
9940 string_file buf;
9941
9942 prefix = determine_prefix (die, cu);
9943 if (*prefix != '\0')
9944 {
9945 gdb::unique_xmalloc_ptr<char> prefixed_name
9946 (typename_concat (NULL, prefix, name, physname, cu));
9947
9948 buf.puts (prefixed_name.get ());
9949 }
9950 else
9951 buf.puts (name);
9952
9953 /* Template parameters may be specified in the DIE's DW_AT_name, or
9954 as children with DW_TAG_template_type_param or
9955 DW_TAG_value_type_param. If the latter, add them to the name
9956 here. If the name already has template parameters, then
9957 skip this step; some versions of GCC emit both, and
9958 it is more efficient to use the pre-computed name.
9959
9960 Something to keep in mind about this process: it is very
9961 unlikely, or in some cases downright impossible, to produce
9962 something that will match the mangled name of a function.
9963 If the definition of the function has the same debug info,
9964 we should be able to match up with it anyway. But fallbacks
9965 using the minimal symbol, for instance to find a method
9966 implemented in a stripped copy of libstdc++, will not work.
9967 If we do not have debug info for the definition, we will have to
9968 match them up some other way.
9969
9970 When we do name matching there is a related problem with function
9971 templates; two instantiated function templates are allowed to
9972 differ only by their return types, which we do not add here. */
9973
9974 if (lang == language_cplus && strchr (name, '<') == NULL)
9975 {
9976 struct attribute *attr;
9977 struct die_info *child;
9978 int first = 1;
9979
9980 die->building_fullname = 1;
9981
9982 for (child = die->child; child != NULL; child = child->sibling)
9983 {
9984 struct type *type;
9985 LONGEST value;
9986 const gdb_byte *bytes;
9987 struct dwarf2_locexpr_baton *baton;
9988 struct value *v;
9989
9990 if (child->tag != DW_TAG_template_type_param
9991 && child->tag != DW_TAG_template_value_param)
9992 continue;
9993
9994 if (first)
9995 {
9996 buf.puts ("<");
9997 first = 0;
9998 }
9999 else
10000 buf.puts (", ");
10001
10002 attr = dwarf2_attr (child, DW_AT_type, cu);
10003 if (attr == NULL)
10004 {
10005 complaint (_("template parameter missing DW_AT_type"));
10006 buf.puts ("UNKNOWN_TYPE");
10007 continue;
10008 }
10009 type = die_type (child, cu);
10010
10011 if (child->tag == DW_TAG_template_type_param)
10012 {
10013 cu->language_defn->print_type (type, "", &buf, -1, 0,
10014 &type_print_raw_options);
10015 continue;
10016 }
10017
10018 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10019 if (attr == NULL)
10020 {
10021 complaint (_("template parameter missing "
10022 "DW_AT_const_value"));
10023 buf.puts ("UNKNOWN_VALUE");
10024 continue;
10025 }
10026
10027 dwarf2_const_value_attr (attr, type, name,
10028 &cu->comp_unit_obstack, cu,
10029 &value, &bytes, &baton);
10030
10031 if (type->has_no_signedness ())
10032 /* GDB prints characters as NUMBER 'CHAR'. If that's
10033 changed, this can use value_print instead. */
10034 cu->language_defn->printchar (value, type, &buf);
10035 else
10036 {
10037 struct value_print_options opts;
10038
10039 if (baton != NULL)
10040 v = dwarf2_evaluate_loc_desc (type, NULL,
10041 baton->data,
10042 baton->size,
10043 baton->per_cu,
10044 baton->per_objfile);
10045 else if (bytes != NULL)
10046 {
10047 v = allocate_value (type);
10048 memcpy (value_contents_writeable (v), bytes,
10049 TYPE_LENGTH (type));
10050 }
10051 else
10052 v = value_from_longest (type, value);
10053
10054 /* Specify decimal so that we do not depend on
10055 the radix. */
10056 get_formatted_print_options (&opts, 'd');
10057 opts.raw = 1;
10058 value_print (v, &buf, &opts);
10059 release_value (v);
10060 }
10061 }
10062
10063 die->building_fullname = 0;
10064
10065 if (!first)
10066 {
10067 /* Close the argument list, with a space if necessary
10068 (nested templates). */
10069 if (!buf.empty () && buf.string ().back () == '>')
10070 buf.puts (" >");
10071 else
10072 buf.puts (">");
10073 }
10074 }
10075
10076 /* For C++ methods, append formal parameter type
10077 information, if PHYSNAME. */
10078
10079 if (physname && die->tag == DW_TAG_subprogram
10080 && lang == language_cplus)
10081 {
10082 struct type *type = read_type_die (die, cu);
10083
10084 c_type_print_args (type, &buf, 1, lang,
10085 &type_print_raw_options);
10086
10087 if (lang == language_cplus)
10088 {
10089 /* Assume that an artificial first parameter is
10090 "this", but do not crash if it is not. RealView
10091 marks unnamed (and thus unused) parameters as
10092 artificial; there is no way to differentiate
10093 the two cases. */
10094 if (type->num_fields () > 0
10095 && TYPE_FIELD_ARTIFICIAL (type, 0)
10096 && type->field (0).type ()->code () == TYPE_CODE_PTR
10097 && TYPE_CONST (TYPE_TARGET_TYPE (type->field (0).type ())))
10098 buf.puts (" const");
10099 }
10100 }
10101
10102 const std::string &intermediate_name = buf.string ();
10103
10104 if (lang == language_cplus)
10105 canonical_name
10106 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10107 objfile);
10108
10109 /* If we only computed INTERMEDIATE_NAME, or if
10110 INTERMEDIATE_NAME is already canonical, then we need to
10111 intern it. */
10112 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10113 name = objfile->intern (intermediate_name);
10114 else
10115 name = canonical_name;
10116 }
10117 }
10118
10119 return name;
10120 }
10121
10122 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10123 If scope qualifiers are appropriate they will be added. The result
10124 will be allocated on the storage_obstack, or NULL if the DIE does
10125 not have a name. NAME may either be from a previous call to
10126 dwarf2_name or NULL.
10127
10128 The output string will be canonicalized (if C++). */
10129
10130 static const char *
10131 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10132 {
10133 return dwarf2_compute_name (name, die, cu, 0);
10134 }
10135
10136 /* Construct a physname for the given DIE in CU. NAME may either be
10137 from a previous call to dwarf2_name or NULL. The result will be
10138 allocated on the objfile_objstack or NULL if the DIE does not have a
10139 name.
10140
10141 The output string will be canonicalized (if C++). */
10142
10143 static const char *
10144 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10145 {
10146 struct objfile *objfile = cu->per_objfile->objfile;
10147 const char *retval, *mangled = NULL, *canon = NULL;
10148 int need_copy = 1;
10149
10150 /* In this case dwarf2_compute_name is just a shortcut not building anything
10151 on its own. */
10152 if (!die_needs_namespace (die, cu))
10153 return dwarf2_compute_name (name, die, cu, 1);
10154
10155 if (cu->per_cu->lang != language_rust)
10156 mangled = dw2_linkage_name (die, cu);
10157
10158 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10159 has computed. */
10160 gdb::unique_xmalloc_ptr<char> demangled;
10161 if (mangled != NULL)
10162 {
10163 if (cu->language_defn->store_sym_names_in_linkage_form_p ())
10164 {
10165 /* Do nothing (do not demangle the symbol name). */
10166 }
10167 else
10168 {
10169 /* Use DMGL_RET_DROP for C++ template functions to suppress
10170 their return type. It is easier for GDB users to search
10171 for such functions as `name(params)' than `long name(params)'.
10172 In such case the minimal symbol names do not match the full
10173 symbol names but for template functions there is never a need
10174 to look up their definition from their declaration so
10175 the only disadvantage remains the minimal symbol variant
10176 `long name(params)' does not have the proper inferior type. */
10177 demangled.reset (gdb_demangle (mangled,
10178 (DMGL_PARAMS | DMGL_ANSI
10179 | DMGL_RET_DROP)));
10180 }
10181 if (demangled)
10182 canon = demangled.get ();
10183 else
10184 {
10185 canon = mangled;
10186 need_copy = 0;
10187 }
10188 }
10189
10190 if (canon == NULL || check_physname)
10191 {
10192 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10193
10194 if (canon != NULL && strcmp (physname, canon) != 0)
10195 {
10196 /* It may not mean a bug in GDB. The compiler could also
10197 compute DW_AT_linkage_name incorrectly. But in such case
10198 GDB would need to be bug-to-bug compatible. */
10199
10200 complaint (_("Computed physname <%s> does not match demangled <%s> "
10201 "(from linkage <%s>) - DIE at %s [in module %s]"),
10202 physname, canon, mangled, sect_offset_str (die->sect_off),
10203 objfile_name (objfile));
10204
10205 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10206 is available here - over computed PHYSNAME. It is safer
10207 against both buggy GDB and buggy compilers. */
10208
10209 retval = canon;
10210 }
10211 else
10212 {
10213 retval = physname;
10214 need_copy = 0;
10215 }
10216 }
10217 else
10218 retval = canon;
10219
10220 if (need_copy)
10221 retval = objfile->intern (retval);
10222
10223 return retval;
10224 }
10225
10226 /* Inspect DIE in CU for a namespace alias. If one exists, record
10227 a new symbol for it.
10228
10229 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10230
10231 static int
10232 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10233 {
10234 struct attribute *attr;
10235
10236 /* If the die does not have a name, this is not a namespace
10237 alias. */
10238 attr = dwarf2_attr (die, DW_AT_name, cu);
10239 if (attr != NULL)
10240 {
10241 int num;
10242 struct die_info *d = die;
10243 struct dwarf2_cu *imported_cu = cu;
10244
10245 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10246 keep inspecting DIEs until we hit the underlying import. */
10247 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10248 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10249 {
10250 attr = dwarf2_attr (d, DW_AT_import, cu);
10251 if (attr == NULL)
10252 break;
10253
10254 d = follow_die_ref (d, attr, &imported_cu);
10255 if (d->tag != DW_TAG_imported_declaration)
10256 break;
10257 }
10258
10259 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10260 {
10261 complaint (_("DIE at %s has too many recursively imported "
10262 "declarations"), sect_offset_str (d->sect_off));
10263 return 0;
10264 }
10265
10266 if (attr != NULL)
10267 {
10268 struct type *type;
10269 sect_offset sect_off = attr->get_ref_die_offset ();
10270
10271 type = get_die_type_at_offset (sect_off, cu->per_cu, cu->per_objfile);
10272 if (type != NULL && type->code () == TYPE_CODE_NAMESPACE)
10273 {
10274 /* This declaration is a global namespace alias. Add
10275 a symbol for it whose type is the aliased namespace. */
10276 new_symbol (die, type, cu);
10277 return 1;
10278 }
10279 }
10280 }
10281
10282 return 0;
10283 }
10284
10285 /* Return the using directives repository (global or local?) to use in the
10286 current context for CU.
10287
10288 For Ada, imported declarations can materialize renamings, which *may* be
10289 global. However it is impossible (for now?) in DWARF to distinguish
10290 "external" imported declarations and "static" ones. As all imported
10291 declarations seem to be static in all other languages, make them all CU-wide
10292 global only in Ada. */
10293
10294 static struct using_direct **
10295 using_directives (struct dwarf2_cu *cu)
10296 {
10297 if (cu->per_cu->lang == language_ada
10298 && cu->get_builder ()->outermost_context_p ())
10299 return cu->get_builder ()->get_global_using_directives ();
10300 else
10301 return cu->get_builder ()->get_local_using_directives ();
10302 }
10303
10304 /* Read the import statement specified by the given die and record it. */
10305
10306 static void
10307 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10308 {
10309 struct objfile *objfile = cu->per_objfile->objfile;
10310 struct attribute *import_attr;
10311 struct die_info *imported_die, *child_die;
10312 struct dwarf2_cu *imported_cu;
10313 const char *imported_name;
10314 const char *imported_name_prefix;
10315 const char *canonical_name;
10316 const char *import_alias;
10317 const char *imported_declaration = NULL;
10318 const char *import_prefix;
10319 std::vector<const char *> excludes;
10320
10321 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10322 if (import_attr == NULL)
10323 {
10324 complaint (_("Tag '%s' has no DW_AT_import"),
10325 dwarf_tag_name (die->tag));
10326 return;
10327 }
10328
10329 imported_cu = cu;
10330 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10331 imported_name = dwarf2_name (imported_die, imported_cu);
10332 if (imported_name == NULL)
10333 {
10334 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10335
10336 The import in the following code:
10337 namespace A
10338 {
10339 typedef int B;
10340 }
10341
10342 int main ()
10343 {
10344 using A::B;
10345 B b;
10346 return b;
10347 }
10348
10349 ...
10350 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10351 <52> DW_AT_decl_file : 1
10352 <53> DW_AT_decl_line : 6
10353 <54> DW_AT_import : <0x75>
10354 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10355 <59> DW_AT_name : B
10356 <5b> DW_AT_decl_file : 1
10357 <5c> DW_AT_decl_line : 2
10358 <5d> DW_AT_type : <0x6e>
10359 ...
10360 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10361 <76> DW_AT_byte_size : 4
10362 <77> DW_AT_encoding : 5 (signed)
10363
10364 imports the wrong die ( 0x75 instead of 0x58 ).
10365 This case will be ignored until the gcc bug is fixed. */
10366 return;
10367 }
10368
10369 /* Figure out the local name after import. */
10370 import_alias = dwarf2_name (die, cu);
10371
10372 /* Figure out where the statement is being imported to. */
10373 import_prefix = determine_prefix (die, cu);
10374
10375 /* Figure out what the scope of the imported die is and prepend it
10376 to the name of the imported die. */
10377 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10378
10379 if (imported_die->tag != DW_TAG_namespace
10380 && imported_die->tag != DW_TAG_module)
10381 {
10382 imported_declaration = imported_name;
10383 canonical_name = imported_name_prefix;
10384 }
10385 else if (strlen (imported_name_prefix) > 0)
10386 canonical_name = obconcat (&objfile->objfile_obstack,
10387 imported_name_prefix,
10388 (cu->per_cu->lang == language_d
10389 ? "."
10390 : "::"),
10391 imported_name, (char *) NULL);
10392 else
10393 canonical_name = imported_name;
10394
10395 if (die->tag == DW_TAG_imported_module
10396 && cu->per_cu->lang == language_fortran)
10397 for (child_die = die->child; child_die && child_die->tag;
10398 child_die = child_die->sibling)
10399 {
10400 /* DWARF-4: A Fortran use statement with a “rename list” may be
10401 represented by an imported module entry with an import attribute
10402 referring to the module and owned entries corresponding to those
10403 entities that are renamed as part of being imported. */
10404
10405 if (child_die->tag != DW_TAG_imported_declaration)
10406 {
10407 complaint (_("child DW_TAG_imported_declaration expected "
10408 "- DIE at %s [in module %s]"),
10409 sect_offset_str (child_die->sect_off),
10410 objfile_name (objfile));
10411 continue;
10412 }
10413
10414 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10415 if (import_attr == NULL)
10416 {
10417 complaint (_("Tag '%s' has no DW_AT_import"),
10418 dwarf_tag_name (child_die->tag));
10419 continue;
10420 }
10421
10422 imported_cu = cu;
10423 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10424 &imported_cu);
10425 imported_name = dwarf2_name (imported_die, imported_cu);
10426 if (imported_name == NULL)
10427 {
10428 complaint (_("child DW_TAG_imported_declaration has unknown "
10429 "imported name - DIE at %s [in module %s]"),
10430 sect_offset_str (child_die->sect_off),
10431 objfile_name (objfile));
10432 continue;
10433 }
10434
10435 excludes.push_back (imported_name);
10436
10437 process_die (child_die, cu);
10438 }
10439
10440 add_using_directive (using_directives (cu),
10441 import_prefix,
10442 canonical_name,
10443 import_alias,
10444 imported_declaration,
10445 excludes,
10446 0,
10447 &objfile->objfile_obstack);
10448 }
10449
10450 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10451 types, but gives them a size of zero. Starting with version 14,
10452 ICC is compatible with GCC. */
10453
10454 static bool
10455 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10456 {
10457 if (!cu->checked_producer)
10458 check_producer (cu);
10459
10460 return cu->producer_is_icc_lt_14;
10461 }
10462
10463 /* ICC generates a DW_AT_type for C void functions. This was observed on
10464 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10465 which says that void functions should not have a DW_AT_type. */
10466
10467 static bool
10468 producer_is_icc (struct dwarf2_cu *cu)
10469 {
10470 if (!cu->checked_producer)
10471 check_producer (cu);
10472
10473 return cu->producer_is_icc;
10474 }
10475
10476 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10477 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10478 this, it was first present in GCC release 4.3.0. */
10479
10480 static bool
10481 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10482 {
10483 if (!cu->checked_producer)
10484 check_producer (cu);
10485
10486 return cu->producer_is_gcc_lt_4_3;
10487 }
10488
10489 static file_and_directory
10490 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10491 {
10492 file_and_directory res;
10493
10494 /* Find the filename. Do not use dwarf2_name here, since the filename
10495 is not a source language identifier. */
10496 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10497 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10498
10499 if (res.comp_dir == NULL
10500 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10501 && IS_ABSOLUTE_PATH (res.name))
10502 {
10503 std::string comp_dir_storage = ldirname (res.name);
10504 if (!comp_dir_storage.empty ())
10505 res.comp_dir
10506 = cu->per_objfile->objfile->intern (comp_dir_storage.c_str ());
10507 }
10508 if (res.comp_dir != NULL)
10509 {
10510 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10511 directory, get rid of it. */
10512 const char *cp = strchr (res.comp_dir, ':');
10513
10514 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10515 res.comp_dir = cp + 1;
10516 }
10517
10518 if (res.name == NULL)
10519 res.name = "<unknown>";
10520
10521 return res;
10522 }
10523
10524 /* Handle DW_AT_stmt_list for a compilation unit.
10525 DIE is the DW_TAG_compile_unit die for CU.
10526 COMP_DIR is the compilation directory. LOWPC is passed to
10527 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10528
10529 static void
10530 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10531 const file_and_directory &fnd, CORE_ADDR lowpc) /* ARI: editCase function */
10532 {
10533 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10534 struct attribute *attr;
10535 struct line_header line_header_local;
10536 hashval_t line_header_local_hash;
10537 void **slot;
10538 int decode_mapping;
10539
10540 gdb_assert (! cu->per_cu->is_debug_types);
10541
10542 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10543 if (attr == NULL || !attr->form_is_unsigned ())
10544 return;
10545
10546 sect_offset line_offset = (sect_offset) attr->as_unsigned ();
10547
10548 /* The line header hash table is only created if needed (it exists to
10549 prevent redundant reading of the line table for partial_units).
10550 If we're given a partial_unit, we'll need it. If we're given a
10551 compile_unit, then use the line header hash table if it's already
10552 created, but don't create one just yet. */
10553
10554 if (per_objfile->line_header_hash == NULL
10555 && die->tag == DW_TAG_partial_unit)
10556 {
10557 per_objfile->line_header_hash
10558 .reset (htab_create_alloc (127, line_header_hash_voidp,
10559 line_header_eq_voidp,
10560 htab_delete_entry<line_header>,
10561 xcalloc, xfree));
10562 }
10563
10564 line_header_local.sect_off = line_offset;
10565 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10566 line_header_local_hash = line_header_hash (&line_header_local);
10567 if (per_objfile->line_header_hash != NULL)
10568 {
10569 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
10570 &line_header_local,
10571 line_header_local_hash, NO_INSERT);
10572
10573 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10574 is not present in *SLOT (since if there is something in *SLOT then
10575 it will be for a partial_unit). */
10576 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10577 {
10578 gdb_assert (*slot != NULL);
10579 cu->line_header = (struct line_header *) *slot;
10580 return;
10581 }
10582 }
10583
10584 /* dwarf_decode_line_header does not yet provide sufficient information.
10585 We always have to call also dwarf_decode_lines for it. */
10586 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10587 if (lh == NULL)
10588 return;
10589
10590 cu->line_header = lh.release ();
10591 cu->line_header_die_owner = die;
10592
10593 if (per_objfile->line_header_hash == NULL)
10594 slot = NULL;
10595 else
10596 {
10597 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
10598 &line_header_local,
10599 line_header_local_hash, INSERT);
10600 gdb_assert (slot != NULL);
10601 }
10602 if (slot != NULL && *slot == NULL)
10603 {
10604 /* This newly decoded line number information unit will be owned
10605 by line_header_hash hash table. */
10606 *slot = cu->line_header;
10607 cu->line_header_die_owner = NULL;
10608 }
10609 else
10610 {
10611 /* We cannot free any current entry in (*slot) as that struct line_header
10612 may be already used by multiple CUs. Create only temporary decoded
10613 line_header for this CU - it may happen at most once for each line
10614 number information unit. And if we're not using line_header_hash
10615 then this is what we want as well. */
10616 gdb_assert (die->tag != DW_TAG_partial_unit);
10617 }
10618 decode_mapping = (die->tag != DW_TAG_partial_unit);
10619 dwarf_decode_lines (cu->line_header, fnd, cu, nullptr, lowpc,
10620 decode_mapping);
10621
10622 }
10623
10624 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10625
10626 static void
10627 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10628 {
10629 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10630 struct objfile *objfile = per_objfile->objfile;
10631 struct gdbarch *gdbarch = objfile->arch ();
10632 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10633 CORE_ADDR highpc = ((CORE_ADDR) 0);
10634 struct attribute *attr;
10635 struct die_info *child_die;
10636 CORE_ADDR baseaddr;
10637
10638 prepare_one_comp_unit (cu, die, cu->per_cu->lang);
10639 baseaddr = objfile->text_section_offset ();
10640
10641 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10642
10643 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10644 from finish_block. */
10645 if (lowpc == ((CORE_ADDR) -1))
10646 lowpc = highpc;
10647 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10648
10649 file_and_directory fnd = find_file_and_directory (die, cu);
10650
10651 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10652
10653 gdb_assert (per_objfile->sym_cu == nullptr);
10654 scoped_restore restore_sym_cu
10655 = make_scoped_restore (&per_objfile->sym_cu, cu);
10656
10657 /* Decode line number information if present. We do this before
10658 processing child DIEs, so that the line header table is available
10659 for DW_AT_decl_file. */
10660 handle_DW_AT_stmt_list (die, cu, fnd, lowpc);
10661
10662 /* Process all dies in compilation unit. */
10663 if (die->child != NULL)
10664 {
10665 child_die = die->child;
10666 while (child_die && child_die->tag)
10667 {
10668 process_die (child_die, cu);
10669 child_die = child_die->sibling;
10670 }
10671 }
10672 per_objfile->sym_cu = nullptr;
10673
10674 /* Decode macro information, if present. Dwarf 2 macro information
10675 refers to information in the line number info statement program
10676 header, so we can only read it if we've read the header
10677 successfully. */
10678 attr = dwarf2_attr (die, DW_AT_macros, cu);
10679 if (attr == NULL)
10680 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10681 if (attr != nullptr && attr->form_is_unsigned () && cu->line_header)
10682 {
10683 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10684 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10685
10686 dwarf_decode_macros (cu, attr->as_unsigned (), 1);
10687 }
10688 else
10689 {
10690 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10691 if (attr != nullptr && attr->form_is_unsigned () && cu->line_header)
10692 {
10693 unsigned int macro_offset = attr->as_unsigned ();
10694
10695 dwarf_decode_macros (cu, macro_offset, 0);
10696 }
10697 }
10698 }
10699
10700 void
10701 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10702 {
10703 struct type_unit_group *tu_group;
10704 int first_time;
10705 struct attribute *attr;
10706 unsigned int i;
10707 struct signatured_type *sig_type;
10708
10709 gdb_assert (per_cu->is_debug_types);
10710 sig_type = (struct signatured_type *) per_cu;
10711
10712 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10713
10714 /* If we're using .gdb_index (includes -readnow) then
10715 per_cu->type_unit_group may not have been set up yet. */
10716 if (sig_type->type_unit_group == NULL)
10717 sig_type->type_unit_group = get_type_unit_group (this, attr);
10718 tu_group = sig_type->type_unit_group;
10719
10720 /* If we've already processed this stmt_list there's no real need to
10721 do it again, we could fake it and just recreate the part we need
10722 (file name,index -> symtab mapping). If data shows this optimization
10723 is useful we can do it then. */
10724 type_unit_group_unshareable *tug_unshare
10725 = per_objfile->get_type_unit_group_unshareable (tu_group);
10726 first_time = tug_unshare->compunit_symtab == NULL;
10727
10728 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10729 debug info. */
10730 line_header_up lh;
10731 if (attr != NULL && attr->form_is_unsigned ())
10732 {
10733 sect_offset line_offset = (sect_offset) attr->as_unsigned ();
10734 lh = dwarf_decode_line_header (line_offset, this);
10735 }
10736 if (lh == NULL)
10737 {
10738 if (first_time)
10739 start_symtab ("", NULL, 0);
10740 else
10741 {
10742 gdb_assert (tug_unshare->symtabs == NULL);
10743 gdb_assert (m_builder == nullptr);
10744 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
10745 m_builder.reset (new struct buildsym_compunit
10746 (COMPUNIT_OBJFILE (cust), "",
10747 COMPUNIT_DIRNAME (cust),
10748 compunit_language (cust),
10749 0, cust));
10750 list_in_scope = get_builder ()->get_file_symbols ();
10751 }
10752 return;
10753 }
10754
10755 line_header = lh.release ();
10756 line_header_die_owner = die;
10757
10758 if (first_time)
10759 {
10760 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10761
10762 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10763 still initializing it, and our caller (a few levels up)
10764 process_full_type_unit still needs to know if this is the first
10765 time. */
10766
10767 tug_unshare->symtabs
10768 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10769 struct symtab *, line_header->file_names_size ());
10770
10771 auto &file_names = line_header->file_names ();
10772 for (i = 0; i < file_names.size (); ++i)
10773 {
10774 file_entry &fe = file_names[i];
10775 dwarf2_start_subfile (this, fe.name,
10776 fe.include_dir (line_header));
10777 buildsym_compunit *b = get_builder ();
10778 if (b->get_current_subfile ()->symtab == NULL)
10779 {
10780 /* NOTE: start_subfile will recognize when it's been
10781 passed a file it has already seen. So we can't
10782 assume there's a simple mapping from
10783 cu->line_header->file_names to subfiles, plus
10784 cu->line_header->file_names may contain dups. */
10785 b->get_current_subfile ()->symtab
10786 = allocate_symtab (cust, b->get_current_subfile ()->name);
10787 }
10788
10789 fe.symtab = b->get_current_subfile ()->symtab;
10790 tug_unshare->symtabs[i] = fe.symtab;
10791 }
10792 }
10793 else
10794 {
10795 gdb_assert (m_builder == nullptr);
10796 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
10797 m_builder.reset (new struct buildsym_compunit
10798 (COMPUNIT_OBJFILE (cust), "",
10799 COMPUNIT_DIRNAME (cust),
10800 compunit_language (cust),
10801 0, cust));
10802 list_in_scope = get_builder ()->get_file_symbols ();
10803
10804 auto &file_names = line_header->file_names ();
10805 for (i = 0; i < file_names.size (); ++i)
10806 {
10807 file_entry &fe = file_names[i];
10808 fe.symtab = tug_unshare->symtabs[i];
10809 }
10810 }
10811
10812 /* The main symtab is allocated last. Type units don't have DW_AT_name
10813 so they don't have a "real" (so to speak) symtab anyway.
10814 There is later code that will assign the main symtab to all symbols
10815 that don't have one. We need to handle the case of a symbol with a
10816 missing symtab (DW_AT_decl_file) anyway. */
10817 }
10818
10819 /* Process DW_TAG_type_unit.
10820 For TUs we want to skip the first top level sibling if it's not the
10821 actual type being defined by this TU. In this case the first top
10822 level sibling is there to provide context only. */
10823
10824 static void
10825 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10826 {
10827 struct die_info *child_die;
10828
10829 prepare_one_comp_unit (cu, die, language_minimal);
10830
10831 /* Initialize (or reinitialize) the machinery for building symtabs.
10832 We do this before processing child DIEs, so that the line header table
10833 is available for DW_AT_decl_file. */
10834 cu->setup_type_unit_groups (die);
10835
10836 if (die->child != NULL)
10837 {
10838 child_die = die->child;
10839 while (child_die && child_die->tag)
10840 {
10841 process_die (child_die, cu);
10842 child_die = child_die->sibling;
10843 }
10844 }
10845 }
10846 \f
10847 /* DWO/DWP files.
10848
10849 http://gcc.gnu.org/wiki/DebugFission
10850 http://gcc.gnu.org/wiki/DebugFissionDWP
10851
10852 To simplify handling of both DWO files ("object" files with the DWARF info)
10853 and DWP files (a file with the DWOs packaged up into one file), we treat
10854 DWP files as having a collection of virtual DWO files. */
10855
10856 static hashval_t
10857 hash_dwo_file (const void *item)
10858 {
10859 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10860 hashval_t hash;
10861
10862 hash = htab_hash_string (dwo_file->dwo_name);
10863 if (dwo_file->comp_dir != NULL)
10864 hash += htab_hash_string (dwo_file->comp_dir);
10865 return hash;
10866 }
10867
10868 static int
10869 eq_dwo_file (const void *item_lhs, const void *item_rhs)
10870 {
10871 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
10872 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
10873
10874 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
10875 return 0;
10876 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
10877 return lhs->comp_dir == rhs->comp_dir;
10878 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
10879 }
10880
10881 /* Allocate a hash table for DWO files. */
10882
10883 static htab_up
10884 allocate_dwo_file_hash_table ()
10885 {
10886 return htab_up (htab_create_alloc (41,
10887 hash_dwo_file,
10888 eq_dwo_file,
10889 htab_delete_entry<dwo_file>,
10890 xcalloc, xfree));
10891 }
10892
10893 /* Lookup DWO file DWO_NAME. */
10894
10895 static void **
10896 lookup_dwo_file_slot (dwarf2_per_objfile *per_objfile,
10897 const char *dwo_name,
10898 const char *comp_dir)
10899 {
10900 struct dwo_file find_entry;
10901 void **slot;
10902
10903 if (per_objfile->per_bfd->dwo_files == NULL)
10904 per_objfile->per_bfd->dwo_files = allocate_dwo_file_hash_table ();
10905
10906 find_entry.dwo_name = dwo_name;
10907 find_entry.comp_dir = comp_dir;
10908 slot = htab_find_slot (per_objfile->per_bfd->dwo_files.get (), &find_entry,
10909 INSERT);
10910
10911 return slot;
10912 }
10913
10914 static hashval_t
10915 hash_dwo_unit (const void *item)
10916 {
10917 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10918
10919 /* This drops the top 32 bits of the id, but is ok for a hash. */
10920 return dwo_unit->signature;
10921 }
10922
10923 static int
10924 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
10925 {
10926 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
10927 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
10928
10929 /* The signature is assumed to be unique within the DWO file.
10930 So while object file CU dwo_id's always have the value zero,
10931 that's OK, assuming each object file DWO file has only one CU,
10932 and that's the rule for now. */
10933 return lhs->signature == rhs->signature;
10934 }
10935
10936 /* Allocate a hash table for DWO CUs,TUs.
10937 There is one of these tables for each of CUs,TUs for each DWO file. */
10938
10939 static htab_up
10940 allocate_dwo_unit_table ()
10941 {
10942 /* Start out with a pretty small number.
10943 Generally DWO files contain only one CU and maybe some TUs. */
10944 return htab_up (htab_create_alloc (3,
10945 hash_dwo_unit,
10946 eq_dwo_unit,
10947 NULL, xcalloc, xfree));
10948 }
10949
10950 /* die_reader_func for create_dwo_cu. */
10951
10952 static void
10953 create_dwo_cu_reader (const struct die_reader_specs *reader,
10954 const gdb_byte *info_ptr,
10955 struct die_info *comp_unit_die,
10956 struct dwo_file *dwo_file,
10957 struct dwo_unit *dwo_unit)
10958 {
10959 struct dwarf2_cu *cu = reader->cu;
10960 sect_offset sect_off = cu->per_cu->sect_off;
10961 struct dwarf2_section_info *section = cu->per_cu->section;
10962
10963 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
10964 if (!signature.has_value ())
10965 {
10966 complaint (_("Dwarf Error: debug entry at offset %s is missing"
10967 " its dwo_id [in module %s]"),
10968 sect_offset_str (sect_off), dwo_file->dwo_name);
10969 return;
10970 }
10971
10972 dwo_unit->dwo_file = dwo_file;
10973 dwo_unit->signature = *signature;
10974 dwo_unit->section = section;
10975 dwo_unit->sect_off = sect_off;
10976 dwo_unit->length = cu->per_cu->length;
10977
10978 dwarf_read_debug_printf (" offset %s, dwo_id %s",
10979 sect_offset_str (sect_off),
10980 hex_string (dwo_unit->signature));
10981 }
10982
10983 /* Create the dwo_units for the CUs in a DWO_FILE.
10984 Note: This function processes DWO files only, not DWP files. */
10985
10986 static void
10987 create_cus_hash_table (dwarf2_per_objfile *per_objfile,
10988 dwarf2_cu *cu, struct dwo_file &dwo_file,
10989 dwarf2_section_info &section, htab_up &cus_htab)
10990 {
10991 struct objfile *objfile = per_objfile->objfile;
10992 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
10993 const gdb_byte *info_ptr, *end_ptr;
10994
10995 section.read (objfile);
10996 info_ptr = section.buffer;
10997
10998 if (info_ptr == NULL)
10999 return;
11000
11001 dwarf_read_debug_printf ("Reading %s for %s:",
11002 section.get_name (),
11003 section.get_file_name ());
11004
11005 end_ptr = info_ptr + section.size;
11006 while (info_ptr < end_ptr)
11007 {
11008 struct dwarf2_per_cu_data per_cu;
11009 struct dwo_unit read_unit {};
11010 struct dwo_unit *dwo_unit;
11011 void **slot;
11012 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11013
11014 per_cu.per_bfd = per_bfd;
11015 per_cu.is_debug_types = 0;
11016 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11017 per_cu.section = &section;
11018
11019 cutu_reader reader (&per_cu, per_objfile, cu, &dwo_file);
11020 if (!reader.dummy_p)
11021 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11022 &dwo_file, &read_unit);
11023 info_ptr += per_cu.length;
11024
11025 // If the unit could not be parsed, skip it.
11026 if (read_unit.dwo_file == NULL)
11027 continue;
11028
11029 if (cus_htab == NULL)
11030 cus_htab = allocate_dwo_unit_table ();
11031
11032 dwo_unit = OBSTACK_ZALLOC (&per_bfd->obstack,
11033 struct dwo_unit);
11034 *dwo_unit = read_unit;
11035 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11036 gdb_assert (slot != NULL);
11037 if (*slot != NULL)
11038 {
11039 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11040 sect_offset dup_sect_off = dup_cu->sect_off;
11041
11042 complaint (_("debug cu entry at offset %s is duplicate to"
11043 " the entry at offset %s, signature %s"),
11044 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11045 hex_string (dwo_unit->signature));
11046 }
11047 *slot = (void *)dwo_unit;
11048 }
11049 }
11050
11051 /* DWP file .debug_{cu,tu}_index section format:
11052 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11053 [ref: http://dwarfstd.org/doc/DWARF5.pdf, sect 7.3.5 "DWARF Package Files"]
11054
11055 DWP Versions 1 & 2 are older, pre-standard format versions. The first
11056 officially standard DWP format was published with DWARF v5 and is called
11057 Version 5. There are no versions 3 or 4.
11058
11059 DWP Version 1:
11060
11061 Both index sections have the same format, and serve to map a 64-bit
11062 signature to a set of section numbers. Each section begins with a header,
11063 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11064 indexes, and a pool of 32-bit section numbers. The index sections will be
11065 aligned at 8-byte boundaries in the file.
11066
11067 The index section header consists of:
11068
11069 V, 32 bit version number
11070 -, 32 bits unused
11071 N, 32 bit number of compilation units or type units in the index
11072 M, 32 bit number of slots in the hash table
11073
11074 Numbers are recorded using the byte order of the application binary.
11075
11076 The hash table begins at offset 16 in the section, and consists of an array
11077 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11078 order of the application binary). Unused slots in the hash table are 0.
11079 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11080
11081 The parallel table begins immediately after the hash table
11082 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11083 array of 32-bit indexes (using the byte order of the application binary),
11084 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11085 table contains a 32-bit index into the pool of section numbers. For unused
11086 hash table slots, the corresponding entry in the parallel table will be 0.
11087
11088 The pool of section numbers begins immediately following the hash table
11089 (at offset 16 + 12 * M from the beginning of the section). The pool of
11090 section numbers consists of an array of 32-bit words (using the byte order
11091 of the application binary). Each item in the array is indexed starting
11092 from 0. The hash table entry provides the index of the first section
11093 number in the set. Additional section numbers in the set follow, and the
11094 set is terminated by a 0 entry (section number 0 is not used in ELF).
11095
11096 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11097 section must be the first entry in the set, and the .debug_abbrev.dwo must
11098 be the second entry. Other members of the set may follow in any order.
11099
11100 ---
11101
11102 DWP Versions 2 and 5:
11103
11104 DWP Versions 2 and 5 combine all the .debug_info, etc. sections into one,
11105 and the entries in the index tables are now offsets into these sections.
11106 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11107 section.
11108
11109 Index Section Contents:
11110 Header
11111 Hash Table of Signatures dwp_hash_table.hash_table
11112 Parallel Table of Indices dwp_hash_table.unit_table
11113 Table of Section Offsets dwp_hash_table.{v2|v5}.{section_ids,offsets}
11114 Table of Section Sizes dwp_hash_table.{v2|v5}.sizes
11115
11116 The index section header consists of:
11117
11118 V, 32 bit version number
11119 L, 32 bit number of columns in the table of section offsets
11120 N, 32 bit number of compilation units or type units in the index
11121 M, 32 bit number of slots in the hash table
11122
11123 Numbers are recorded using the byte order of the application binary.
11124
11125 The hash table has the same format as version 1.
11126 The parallel table of indices has the same format as version 1,
11127 except that the entries are origin-1 indices into the table of sections
11128 offsets and the table of section sizes.
11129
11130 The table of offsets begins immediately following the parallel table
11131 (at offset 16 + 12 * M from the beginning of the section). The table is
11132 a two-dimensional array of 32-bit words (using the byte order of the
11133 application binary), with L columns and N+1 rows, in row-major order.
11134 Each row in the array is indexed starting from 0. The first row provides
11135 a key to the remaining rows: each column in this row provides an identifier
11136 for a debug section, and the offsets in the same column of subsequent rows
11137 refer to that section. The section identifiers for Version 2 are:
11138
11139 DW_SECT_INFO 1 .debug_info.dwo
11140 DW_SECT_TYPES 2 .debug_types.dwo
11141 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11142 DW_SECT_LINE 4 .debug_line.dwo
11143 DW_SECT_LOC 5 .debug_loc.dwo
11144 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11145 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11146 DW_SECT_MACRO 8 .debug_macro.dwo
11147
11148 The section identifiers for Version 5 are:
11149
11150 DW_SECT_INFO_V5 1 .debug_info.dwo
11151 DW_SECT_RESERVED_V5 2 --
11152 DW_SECT_ABBREV_V5 3 .debug_abbrev.dwo
11153 DW_SECT_LINE_V5 4 .debug_line.dwo
11154 DW_SECT_LOCLISTS_V5 5 .debug_loclists.dwo
11155 DW_SECT_STR_OFFSETS_V5 6 .debug_str_offsets.dwo
11156 DW_SECT_MACRO_V5 7 .debug_macro.dwo
11157 DW_SECT_RNGLISTS_V5 8 .debug_rnglists.dwo
11158
11159 The offsets provided by the CU and TU index sections are the base offsets
11160 for the contributions made by each CU or TU to the corresponding section
11161 in the package file. Each CU and TU header contains an abbrev_offset
11162 field, used to find the abbreviations table for that CU or TU within the
11163 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11164 be interpreted as relative to the base offset given in the index section.
11165 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11166 should be interpreted as relative to the base offset for .debug_line.dwo,
11167 and offsets into other debug sections obtained from DWARF attributes should
11168 also be interpreted as relative to the corresponding base offset.
11169
11170 The table of sizes begins immediately following the table of offsets.
11171 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11172 with L columns and N rows, in row-major order. Each row in the array is
11173 indexed starting from 1 (row 0 is shared by the two tables).
11174
11175 ---
11176
11177 Hash table lookup is handled the same in version 1 and 2:
11178
11179 We assume that N and M will not exceed 2^32 - 1.
11180 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11181
11182 Given a 64-bit compilation unit signature or a type signature S, an entry
11183 in the hash table is located as follows:
11184
11185 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11186 the low-order k bits all set to 1.
11187
11188 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11189
11190 3) If the hash table entry at index H matches the signature, use that
11191 entry. If the hash table entry at index H is unused (all zeroes),
11192 terminate the search: the signature is not present in the table.
11193
11194 4) Let H = (H + H') modulo M. Repeat at Step 3.
11195
11196 Because M > N and H' and M are relatively prime, the search is guaranteed
11197 to stop at an unused slot or find the match. */
11198
11199 /* Create a hash table to map DWO IDs to their CU/TU entry in
11200 .debug_{info,types}.dwo in DWP_FILE.
11201 Returns NULL if there isn't one.
11202 Note: This function processes DWP files only, not DWO files. */
11203
11204 static struct dwp_hash_table *
11205 create_dwp_hash_table (dwarf2_per_objfile *per_objfile,
11206 struct dwp_file *dwp_file, int is_debug_types)
11207 {
11208 struct objfile *objfile = per_objfile->objfile;
11209 bfd *dbfd = dwp_file->dbfd.get ();
11210 const gdb_byte *index_ptr, *index_end;
11211 struct dwarf2_section_info *index;
11212 uint32_t version, nr_columns, nr_units, nr_slots;
11213 struct dwp_hash_table *htab;
11214
11215 if (is_debug_types)
11216 index = &dwp_file->sections.tu_index;
11217 else
11218 index = &dwp_file->sections.cu_index;
11219
11220 if (index->empty ())
11221 return NULL;
11222 index->read (objfile);
11223
11224 index_ptr = index->buffer;
11225 index_end = index_ptr + index->size;
11226
11227 /* For Version 5, the version is really 2 bytes of data & 2 bytes of padding.
11228 For now it's safe to just read 4 bytes (particularly as it's difficult to
11229 tell if you're dealing with Version 5 before you've read the version). */
11230 version = read_4_bytes (dbfd, index_ptr);
11231 index_ptr += 4;
11232 if (version == 2 || version == 5)
11233 nr_columns = read_4_bytes (dbfd, index_ptr);
11234 else
11235 nr_columns = 0;
11236 index_ptr += 4;
11237 nr_units = read_4_bytes (dbfd, index_ptr);
11238 index_ptr += 4;
11239 nr_slots = read_4_bytes (dbfd, index_ptr);
11240 index_ptr += 4;
11241
11242 if (version != 1 && version != 2 && version != 5)
11243 {
11244 error (_("Dwarf Error: unsupported DWP file version (%s)"
11245 " [in module %s]"),
11246 pulongest (version), dwp_file->name);
11247 }
11248 if (nr_slots != (nr_slots & -nr_slots))
11249 {
11250 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11251 " is not power of 2 [in module %s]"),
11252 pulongest (nr_slots), dwp_file->name);
11253 }
11254
11255 htab = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwp_hash_table);
11256 htab->version = version;
11257 htab->nr_columns = nr_columns;
11258 htab->nr_units = nr_units;
11259 htab->nr_slots = nr_slots;
11260 htab->hash_table = index_ptr;
11261 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11262
11263 /* Exit early if the table is empty. */
11264 if (nr_slots == 0 || nr_units == 0
11265 || (version == 2 && nr_columns == 0)
11266 || (version == 5 && nr_columns == 0))
11267 {
11268 /* All must be zero. */
11269 if (nr_slots != 0 || nr_units != 0
11270 || (version == 2 && nr_columns != 0)
11271 || (version == 5 && nr_columns != 0))
11272 {
11273 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11274 " all zero [in modules %s]"),
11275 dwp_file->name);
11276 }
11277 return htab;
11278 }
11279
11280 if (version == 1)
11281 {
11282 htab->section_pool.v1.indices =
11283 htab->unit_table + sizeof (uint32_t) * nr_slots;
11284 /* It's harder to decide whether the section is too small in v1.
11285 V1 is deprecated anyway so we punt. */
11286 }
11287 else if (version == 2)
11288 {
11289 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11290 int *ids = htab->section_pool.v2.section_ids;
11291 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11292 /* Reverse map for error checking. */
11293 int ids_seen[DW_SECT_MAX + 1];
11294 int i;
11295
11296 if (nr_columns < 2)
11297 {
11298 error (_("Dwarf Error: bad DWP hash table, too few columns"
11299 " in section table [in module %s]"),
11300 dwp_file->name);
11301 }
11302 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11303 {
11304 error (_("Dwarf Error: bad DWP hash table, too many columns"
11305 " in section table [in module %s]"),
11306 dwp_file->name);
11307 }
11308 memset (ids, 255, sizeof_ids);
11309 memset (ids_seen, 255, sizeof (ids_seen));
11310 for (i = 0; i < nr_columns; ++i)
11311 {
11312 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11313
11314 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11315 {
11316 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11317 " in section table [in module %s]"),
11318 id, dwp_file->name);
11319 }
11320 if (ids_seen[id] != -1)
11321 {
11322 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11323 " id %d in section table [in module %s]"),
11324 id, dwp_file->name);
11325 }
11326 ids_seen[id] = i;
11327 ids[i] = id;
11328 }
11329 /* Must have exactly one info or types section. */
11330 if (((ids_seen[DW_SECT_INFO] != -1)
11331 + (ids_seen[DW_SECT_TYPES] != -1))
11332 != 1)
11333 {
11334 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11335 " DWO info/types section [in module %s]"),
11336 dwp_file->name);
11337 }
11338 /* Must have an abbrev section. */
11339 if (ids_seen[DW_SECT_ABBREV] == -1)
11340 {
11341 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11342 " section [in module %s]"),
11343 dwp_file->name);
11344 }
11345 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11346 htab->section_pool.v2.sizes =
11347 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11348 * nr_units * nr_columns);
11349 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11350 * nr_units * nr_columns))
11351 > index_end)
11352 {
11353 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11354 " [in module %s]"),
11355 dwp_file->name);
11356 }
11357 }
11358 else /* version == 5 */
11359 {
11360 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11361 int *ids = htab->section_pool.v5.section_ids;
11362 size_t sizeof_ids = sizeof (htab->section_pool.v5.section_ids);
11363 /* Reverse map for error checking. */
11364 int ids_seen[DW_SECT_MAX_V5 + 1];
11365
11366 if (nr_columns < 2)
11367 {
11368 error (_("Dwarf Error: bad DWP hash table, too few columns"
11369 " in section table [in module %s]"),
11370 dwp_file->name);
11371 }
11372 if (nr_columns > MAX_NR_V5_DWO_SECTIONS)
11373 {
11374 error (_("Dwarf Error: bad DWP hash table, too many columns"
11375 " in section table [in module %s]"),
11376 dwp_file->name);
11377 }
11378 memset (ids, 255, sizeof_ids);
11379 memset (ids_seen, 255, sizeof (ids_seen));
11380 for (int i = 0; i < nr_columns; ++i)
11381 {
11382 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11383
11384 if (id < DW_SECT_MIN || id > DW_SECT_MAX_V5)
11385 {
11386 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11387 " in section table [in module %s]"),
11388 id, dwp_file->name);
11389 }
11390 if (ids_seen[id] != -1)
11391 {
11392 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11393 " id %d in section table [in module %s]"),
11394 id, dwp_file->name);
11395 }
11396 ids_seen[id] = i;
11397 ids[i] = id;
11398 }
11399 /* Must have seen an info section. */
11400 if (ids_seen[DW_SECT_INFO_V5] == -1)
11401 {
11402 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11403 " DWO info/types section [in module %s]"),
11404 dwp_file->name);
11405 }
11406 /* Must have an abbrev section. */
11407 if (ids_seen[DW_SECT_ABBREV_V5] == -1)
11408 {
11409 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11410 " section [in module %s]"),
11411 dwp_file->name);
11412 }
11413 htab->section_pool.v5.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11414 htab->section_pool.v5.sizes
11415 = htab->section_pool.v5.offsets + (sizeof (uint32_t)
11416 * nr_units * nr_columns);
11417 if ((htab->section_pool.v5.sizes + (sizeof (uint32_t)
11418 * nr_units * nr_columns))
11419 > index_end)
11420 {
11421 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11422 " [in module %s]"),
11423 dwp_file->name);
11424 }
11425 }
11426
11427 return htab;
11428 }
11429
11430 /* Update SECTIONS with the data from SECTP.
11431
11432 This function is like the other "locate" section routines, but in
11433 this context the sections to read comes from the DWP V1 hash table,
11434 not the full ELF section table.
11435
11436 The result is non-zero for success, or zero if an error was found. */
11437
11438 static int
11439 locate_v1_virtual_dwo_sections (asection *sectp,
11440 struct virtual_v1_dwo_sections *sections)
11441 {
11442 const struct dwop_section_names *names = &dwop_section_names;
11443
11444 if (names->abbrev_dwo.matches (sectp->name))
11445 {
11446 /* There can be only one. */
11447 if (sections->abbrev.s.section != NULL)
11448 return 0;
11449 sections->abbrev.s.section = sectp;
11450 sections->abbrev.size = bfd_section_size (sectp);
11451 }
11452 else if (names->info_dwo.matches (sectp->name)
11453 || names->types_dwo.matches (sectp->name))
11454 {
11455 /* There can be only one. */
11456 if (sections->info_or_types.s.section != NULL)
11457 return 0;
11458 sections->info_or_types.s.section = sectp;
11459 sections->info_or_types.size = bfd_section_size (sectp);
11460 }
11461 else if (names->line_dwo.matches (sectp->name))
11462 {
11463 /* There can be only one. */
11464 if (sections->line.s.section != NULL)
11465 return 0;
11466 sections->line.s.section = sectp;
11467 sections->line.size = bfd_section_size (sectp);
11468 }
11469 else if (names->loc_dwo.matches (sectp->name))
11470 {
11471 /* There can be only one. */
11472 if (sections->loc.s.section != NULL)
11473 return 0;
11474 sections->loc.s.section = sectp;
11475 sections->loc.size = bfd_section_size (sectp);
11476 }
11477 else if (names->macinfo_dwo.matches (sectp->name))
11478 {
11479 /* There can be only one. */
11480 if (sections->macinfo.s.section != NULL)
11481 return 0;
11482 sections->macinfo.s.section = sectp;
11483 sections->macinfo.size = bfd_section_size (sectp);
11484 }
11485 else if (names->macro_dwo.matches (sectp->name))
11486 {
11487 /* There can be only one. */
11488 if (sections->macro.s.section != NULL)
11489 return 0;
11490 sections->macro.s.section = sectp;
11491 sections->macro.size = bfd_section_size (sectp);
11492 }
11493 else if (names->str_offsets_dwo.matches (sectp->name))
11494 {
11495 /* There can be only one. */
11496 if (sections->str_offsets.s.section != NULL)
11497 return 0;
11498 sections->str_offsets.s.section = sectp;
11499 sections->str_offsets.size = bfd_section_size (sectp);
11500 }
11501 else
11502 {
11503 /* No other kind of section is valid. */
11504 return 0;
11505 }
11506
11507 return 1;
11508 }
11509
11510 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11511 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11512 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11513 This is for DWP version 1 files. */
11514
11515 static struct dwo_unit *
11516 create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile *per_objfile,
11517 struct dwp_file *dwp_file,
11518 uint32_t unit_index,
11519 const char *comp_dir,
11520 ULONGEST signature, int is_debug_types)
11521 {
11522 const struct dwp_hash_table *dwp_htab =
11523 is_debug_types ? dwp_file->tus : dwp_file->cus;
11524 bfd *dbfd = dwp_file->dbfd.get ();
11525 const char *kind = is_debug_types ? "TU" : "CU";
11526 struct dwo_file *dwo_file;
11527 struct dwo_unit *dwo_unit;
11528 struct virtual_v1_dwo_sections sections;
11529 void **dwo_file_slot;
11530 int i;
11531
11532 gdb_assert (dwp_file->version == 1);
11533
11534 dwarf_read_debug_printf ("Reading %s %s/%s in DWP V1 file: %s",
11535 kind, pulongest (unit_index), hex_string (signature),
11536 dwp_file->name);
11537
11538 /* Fetch the sections of this DWO unit.
11539 Put a limit on the number of sections we look for so that bad data
11540 doesn't cause us to loop forever. */
11541
11542 #define MAX_NR_V1_DWO_SECTIONS \
11543 (1 /* .debug_info or .debug_types */ \
11544 + 1 /* .debug_abbrev */ \
11545 + 1 /* .debug_line */ \
11546 + 1 /* .debug_loc */ \
11547 + 1 /* .debug_str_offsets */ \
11548 + 1 /* .debug_macro or .debug_macinfo */ \
11549 + 1 /* trailing zero */)
11550
11551 memset (&sections, 0, sizeof (sections));
11552
11553 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11554 {
11555 asection *sectp;
11556 uint32_t section_nr =
11557 read_4_bytes (dbfd,
11558 dwp_htab->section_pool.v1.indices
11559 + (unit_index + i) * sizeof (uint32_t));
11560
11561 if (section_nr == 0)
11562 break;
11563 if (section_nr >= dwp_file->num_sections)
11564 {
11565 error (_("Dwarf Error: bad DWP hash table, section number too large"
11566 " [in module %s]"),
11567 dwp_file->name);
11568 }
11569
11570 sectp = dwp_file->elf_sections[section_nr];
11571 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11572 {
11573 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11574 " [in module %s]"),
11575 dwp_file->name);
11576 }
11577 }
11578
11579 if (i < 2
11580 || sections.info_or_types.empty ()
11581 || sections.abbrev.empty ())
11582 {
11583 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11584 " [in module %s]"),
11585 dwp_file->name);
11586 }
11587 if (i == MAX_NR_V1_DWO_SECTIONS)
11588 {
11589 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11590 " [in module %s]"),
11591 dwp_file->name);
11592 }
11593
11594 /* It's easier for the rest of the code if we fake a struct dwo_file and
11595 have dwo_unit "live" in that. At least for now.
11596
11597 The DWP file can be made up of a random collection of CUs and TUs.
11598 However, for each CU + set of TUs that came from the same original DWO
11599 file, we can combine them back into a virtual DWO file to save space
11600 (fewer struct dwo_file objects to allocate). Remember that for really
11601 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11602
11603 std::string virtual_dwo_name =
11604 string_printf ("virtual-dwo/%d-%d-%d-%d",
11605 sections.abbrev.get_id (),
11606 sections.line.get_id (),
11607 sections.loc.get_id (),
11608 sections.str_offsets.get_id ());
11609 /* Can we use an existing virtual DWO file? */
11610 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
11611 comp_dir);
11612 /* Create one if necessary. */
11613 if (*dwo_file_slot == NULL)
11614 {
11615 dwarf_read_debug_printf ("Creating virtual DWO: %s",
11616 virtual_dwo_name.c_str ());
11617
11618 dwo_file = new struct dwo_file;
11619 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
11620 dwo_file->comp_dir = comp_dir;
11621 dwo_file->sections.abbrev = sections.abbrev;
11622 dwo_file->sections.line = sections.line;
11623 dwo_file->sections.loc = sections.loc;
11624 dwo_file->sections.macinfo = sections.macinfo;
11625 dwo_file->sections.macro = sections.macro;
11626 dwo_file->sections.str_offsets = sections.str_offsets;
11627 /* The "str" section is global to the entire DWP file. */
11628 dwo_file->sections.str = dwp_file->sections.str;
11629 /* The info or types section is assigned below to dwo_unit,
11630 there's no need to record it in dwo_file.
11631 Also, we can't simply record type sections in dwo_file because
11632 we record a pointer into the vector in dwo_unit. As we collect more
11633 types we'll grow the vector and eventually have to reallocate space
11634 for it, invalidating all copies of pointers into the previous
11635 contents. */
11636 *dwo_file_slot = dwo_file;
11637 }
11638 else
11639 {
11640 dwarf_read_debug_printf ("Using existing virtual DWO: %s",
11641 virtual_dwo_name.c_str ());
11642
11643 dwo_file = (struct dwo_file *) *dwo_file_slot;
11644 }
11645
11646 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
11647 dwo_unit->dwo_file = dwo_file;
11648 dwo_unit->signature = signature;
11649 dwo_unit->section =
11650 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
11651 *dwo_unit->section = sections.info_or_types;
11652 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11653
11654 return dwo_unit;
11655 }
11656
11657 /* Subroutine of create_dwo_unit_in_dwp_v2 and create_dwo_unit_in_dwp_v5 to
11658 simplify them. Given a pointer to the containing section SECTION, and
11659 OFFSET,SIZE of the piece within that section used by a TU/CU, return a
11660 virtual section of just that piece. */
11661
11662 static struct dwarf2_section_info
11663 create_dwp_v2_or_v5_section (dwarf2_per_objfile *per_objfile,
11664 struct dwarf2_section_info *section,
11665 bfd_size_type offset, bfd_size_type size)
11666 {
11667 struct dwarf2_section_info result;
11668 asection *sectp;
11669
11670 gdb_assert (section != NULL);
11671 gdb_assert (!section->is_virtual);
11672
11673 memset (&result, 0, sizeof (result));
11674 result.s.containing_section = section;
11675 result.is_virtual = true;
11676
11677 if (size == 0)
11678 return result;
11679
11680 sectp = section->get_bfd_section ();
11681
11682 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11683 bounds of the real section. This is a pretty-rare event, so just
11684 flag an error (easier) instead of a warning and trying to cope. */
11685 if (sectp == NULL
11686 || offset + size > bfd_section_size (sectp))
11687 {
11688 error (_("Dwarf Error: Bad DWP V2 or V5 section info, doesn't fit"
11689 " in section %s [in module %s]"),
11690 sectp ? bfd_section_name (sectp) : "<unknown>",
11691 objfile_name (per_objfile->objfile));
11692 }
11693
11694 result.virtual_offset = offset;
11695 result.size = size;
11696 return result;
11697 }
11698
11699 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11700 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11701 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11702 This is for DWP version 2 files. */
11703
11704 static struct dwo_unit *
11705 create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile *per_objfile,
11706 struct dwp_file *dwp_file,
11707 uint32_t unit_index,
11708 const char *comp_dir,
11709 ULONGEST signature, int is_debug_types)
11710 {
11711 const struct dwp_hash_table *dwp_htab =
11712 is_debug_types ? dwp_file->tus : dwp_file->cus;
11713 bfd *dbfd = dwp_file->dbfd.get ();
11714 const char *kind = is_debug_types ? "TU" : "CU";
11715 struct dwo_file *dwo_file;
11716 struct dwo_unit *dwo_unit;
11717 struct virtual_v2_or_v5_dwo_sections sections;
11718 void **dwo_file_slot;
11719 int i;
11720
11721 gdb_assert (dwp_file->version == 2);
11722
11723 dwarf_read_debug_printf ("Reading %s %s/%s in DWP V2 file: %s",
11724 kind, pulongest (unit_index), hex_string (signature),
11725 dwp_file->name);
11726
11727 /* Fetch the section offsets of this DWO unit. */
11728
11729 memset (&sections, 0, sizeof (sections));
11730
11731 for (i = 0; i < dwp_htab->nr_columns; ++i)
11732 {
11733 uint32_t offset = read_4_bytes (dbfd,
11734 dwp_htab->section_pool.v2.offsets
11735 + (((unit_index - 1) * dwp_htab->nr_columns
11736 + i)
11737 * sizeof (uint32_t)));
11738 uint32_t size = read_4_bytes (dbfd,
11739 dwp_htab->section_pool.v2.sizes
11740 + (((unit_index - 1) * dwp_htab->nr_columns
11741 + i)
11742 * sizeof (uint32_t)));
11743
11744 switch (dwp_htab->section_pool.v2.section_ids[i])
11745 {
11746 case DW_SECT_INFO:
11747 case DW_SECT_TYPES:
11748 sections.info_or_types_offset = offset;
11749 sections.info_or_types_size = size;
11750 break;
11751 case DW_SECT_ABBREV:
11752 sections.abbrev_offset = offset;
11753 sections.abbrev_size = size;
11754 break;
11755 case DW_SECT_LINE:
11756 sections.line_offset = offset;
11757 sections.line_size = size;
11758 break;
11759 case DW_SECT_LOC:
11760 sections.loc_offset = offset;
11761 sections.loc_size = size;
11762 break;
11763 case DW_SECT_STR_OFFSETS:
11764 sections.str_offsets_offset = offset;
11765 sections.str_offsets_size = size;
11766 break;
11767 case DW_SECT_MACINFO:
11768 sections.macinfo_offset = offset;
11769 sections.macinfo_size = size;
11770 break;
11771 case DW_SECT_MACRO:
11772 sections.macro_offset = offset;
11773 sections.macro_size = size;
11774 break;
11775 }
11776 }
11777
11778 /* It's easier for the rest of the code if we fake a struct dwo_file and
11779 have dwo_unit "live" in that. At least for now.
11780
11781 The DWP file can be made up of a random collection of CUs and TUs.
11782 However, for each CU + set of TUs that came from the same original DWO
11783 file, we can combine them back into a virtual DWO file to save space
11784 (fewer struct dwo_file objects to allocate). Remember that for really
11785 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11786
11787 std::string virtual_dwo_name =
11788 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11789 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11790 (long) (sections.line_size ? sections.line_offset : 0),
11791 (long) (sections.loc_size ? sections.loc_offset : 0),
11792 (long) (sections.str_offsets_size
11793 ? sections.str_offsets_offset : 0));
11794 /* Can we use an existing virtual DWO file? */
11795 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
11796 comp_dir);
11797 /* Create one if necessary. */
11798 if (*dwo_file_slot == NULL)
11799 {
11800 dwarf_read_debug_printf ("Creating virtual DWO: %s",
11801 virtual_dwo_name.c_str ());
11802
11803 dwo_file = new struct dwo_file;
11804 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
11805 dwo_file->comp_dir = comp_dir;
11806 dwo_file->sections.abbrev =
11807 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.abbrev,
11808 sections.abbrev_offset,
11809 sections.abbrev_size);
11810 dwo_file->sections.line =
11811 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.line,
11812 sections.line_offset,
11813 sections.line_size);
11814 dwo_file->sections.loc =
11815 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.loc,
11816 sections.loc_offset, sections.loc_size);
11817 dwo_file->sections.macinfo =
11818 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.macinfo,
11819 sections.macinfo_offset,
11820 sections.macinfo_size);
11821 dwo_file->sections.macro =
11822 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.macro,
11823 sections.macro_offset,
11824 sections.macro_size);
11825 dwo_file->sections.str_offsets =
11826 create_dwp_v2_or_v5_section (per_objfile,
11827 &dwp_file->sections.str_offsets,
11828 sections.str_offsets_offset,
11829 sections.str_offsets_size);
11830 /* The "str" section is global to the entire DWP file. */
11831 dwo_file->sections.str = dwp_file->sections.str;
11832 /* The info or types section is assigned below to dwo_unit,
11833 there's no need to record it in dwo_file.
11834 Also, we can't simply record type sections in dwo_file because
11835 we record a pointer into the vector in dwo_unit. As we collect more
11836 types we'll grow the vector and eventually have to reallocate space
11837 for it, invalidating all copies of pointers into the previous
11838 contents. */
11839 *dwo_file_slot = dwo_file;
11840 }
11841 else
11842 {
11843 dwarf_read_debug_printf ("Using existing virtual DWO: %s",
11844 virtual_dwo_name.c_str ());
11845
11846 dwo_file = (struct dwo_file *) *dwo_file_slot;
11847 }
11848
11849 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
11850 dwo_unit->dwo_file = dwo_file;
11851 dwo_unit->signature = signature;
11852 dwo_unit->section =
11853 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
11854 *dwo_unit->section = create_dwp_v2_or_v5_section
11855 (per_objfile,
11856 is_debug_types
11857 ? &dwp_file->sections.types
11858 : &dwp_file->sections.info,
11859 sections.info_or_types_offset,
11860 sections.info_or_types_size);
11861 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11862
11863 return dwo_unit;
11864 }
11865
11866 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11867 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11868 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11869 This is for DWP version 5 files. */
11870
11871 static struct dwo_unit *
11872 create_dwo_unit_in_dwp_v5 (dwarf2_per_objfile *per_objfile,
11873 struct dwp_file *dwp_file,
11874 uint32_t unit_index,
11875 const char *comp_dir,
11876 ULONGEST signature, int is_debug_types)
11877 {
11878 const struct dwp_hash_table *dwp_htab
11879 = is_debug_types ? dwp_file->tus : dwp_file->cus;
11880 bfd *dbfd = dwp_file->dbfd.get ();
11881 const char *kind = is_debug_types ? "TU" : "CU";
11882 struct dwo_file *dwo_file;
11883 struct dwo_unit *dwo_unit;
11884 struct virtual_v2_or_v5_dwo_sections sections {};
11885 void **dwo_file_slot;
11886
11887 gdb_assert (dwp_file->version == 5);
11888
11889 dwarf_read_debug_printf ("Reading %s %s/%s in DWP V5 file: %s",
11890 kind, pulongest (unit_index), hex_string (signature),
11891 dwp_file->name);
11892
11893 /* Fetch the section offsets of this DWO unit. */
11894
11895 /* memset (&sections, 0, sizeof (sections)); */
11896
11897 for (int i = 0; i < dwp_htab->nr_columns; ++i)
11898 {
11899 uint32_t offset = read_4_bytes (dbfd,
11900 dwp_htab->section_pool.v5.offsets
11901 + (((unit_index - 1)
11902 * dwp_htab->nr_columns
11903 + i)
11904 * sizeof (uint32_t)));
11905 uint32_t size = read_4_bytes (dbfd,
11906 dwp_htab->section_pool.v5.sizes
11907 + (((unit_index - 1) * dwp_htab->nr_columns
11908 + i)
11909 * sizeof (uint32_t)));
11910
11911 switch (dwp_htab->section_pool.v5.section_ids[i])
11912 {
11913 case DW_SECT_ABBREV_V5:
11914 sections.abbrev_offset = offset;
11915 sections.abbrev_size = size;
11916 break;
11917 case DW_SECT_INFO_V5:
11918 sections.info_or_types_offset = offset;
11919 sections.info_or_types_size = size;
11920 break;
11921 case DW_SECT_LINE_V5:
11922 sections.line_offset = offset;
11923 sections.line_size = size;
11924 break;
11925 case DW_SECT_LOCLISTS_V5:
11926 sections.loclists_offset = offset;
11927 sections.loclists_size = size;
11928 break;
11929 case DW_SECT_MACRO_V5:
11930 sections.macro_offset = offset;
11931 sections.macro_size = size;
11932 break;
11933 case DW_SECT_RNGLISTS_V5:
11934 sections.rnglists_offset = offset;
11935 sections.rnglists_size = size;
11936 break;
11937 case DW_SECT_STR_OFFSETS_V5:
11938 sections.str_offsets_offset = offset;
11939 sections.str_offsets_size = size;
11940 break;
11941 case DW_SECT_RESERVED_V5:
11942 default:
11943 break;
11944 }
11945 }
11946
11947 /* It's easier for the rest of the code if we fake a struct dwo_file and
11948 have dwo_unit "live" in that. At least for now.
11949
11950 The DWP file can be made up of a random collection of CUs and TUs.
11951 However, for each CU + set of TUs that came from the same original DWO
11952 file, we can combine them back into a virtual DWO file to save space
11953 (fewer struct dwo_file objects to allocate). Remember that for really
11954 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11955
11956 std::string virtual_dwo_name =
11957 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld-%ld-%ld",
11958 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11959 (long) (sections.line_size ? sections.line_offset : 0),
11960 (long) (sections.loclists_size ? sections.loclists_offset : 0),
11961 (long) (sections.str_offsets_size
11962 ? sections.str_offsets_offset : 0),
11963 (long) (sections.macro_size ? sections.macro_offset : 0),
11964 (long) (sections.rnglists_size ? sections.rnglists_offset: 0));
11965 /* Can we use an existing virtual DWO file? */
11966 dwo_file_slot = lookup_dwo_file_slot (per_objfile,
11967 virtual_dwo_name.c_str (),
11968 comp_dir);
11969 /* Create one if necessary. */
11970 if (*dwo_file_slot == NULL)
11971 {
11972 dwarf_read_debug_printf ("Creating virtual DWO: %s",
11973 virtual_dwo_name.c_str ());
11974
11975 dwo_file = new struct dwo_file;
11976 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
11977 dwo_file->comp_dir = comp_dir;
11978 dwo_file->sections.abbrev =
11979 create_dwp_v2_or_v5_section (per_objfile,
11980 &dwp_file->sections.abbrev,
11981 sections.abbrev_offset,
11982 sections.abbrev_size);
11983 dwo_file->sections.line =
11984 create_dwp_v2_or_v5_section (per_objfile,
11985 &dwp_file->sections.line,
11986 sections.line_offset, sections.line_size);
11987 dwo_file->sections.macro =
11988 create_dwp_v2_or_v5_section (per_objfile,
11989 &dwp_file->sections.macro,
11990 sections.macro_offset,
11991 sections.macro_size);
11992 dwo_file->sections.loclists =
11993 create_dwp_v2_or_v5_section (per_objfile,
11994 &dwp_file->sections.loclists,
11995 sections.loclists_offset,
11996 sections.loclists_size);
11997 dwo_file->sections.rnglists =
11998 create_dwp_v2_or_v5_section (per_objfile,
11999 &dwp_file->sections.rnglists,
12000 sections.rnglists_offset,
12001 sections.rnglists_size);
12002 dwo_file->sections.str_offsets =
12003 create_dwp_v2_or_v5_section (per_objfile,
12004 &dwp_file->sections.str_offsets,
12005 sections.str_offsets_offset,
12006 sections.str_offsets_size);
12007 /* The "str" section is global to the entire DWP file. */
12008 dwo_file->sections.str = dwp_file->sections.str;
12009 /* The info or types section is assigned below to dwo_unit,
12010 there's no need to record it in dwo_file.
12011 Also, we can't simply record type sections in dwo_file because
12012 we record a pointer into the vector in dwo_unit. As we collect more
12013 types we'll grow the vector and eventually have to reallocate space
12014 for it, invalidating all copies of pointers into the previous
12015 contents. */
12016 *dwo_file_slot = dwo_file;
12017 }
12018 else
12019 {
12020 dwarf_read_debug_printf ("Using existing virtual DWO: %s",
12021 virtual_dwo_name.c_str ());
12022
12023 dwo_file = (struct dwo_file *) *dwo_file_slot;
12024 }
12025
12026 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
12027 dwo_unit->dwo_file = dwo_file;
12028 dwo_unit->signature = signature;
12029 dwo_unit->section
12030 = XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
12031 *dwo_unit->section = create_dwp_v2_or_v5_section (per_objfile,
12032 &dwp_file->sections.info,
12033 sections.info_or_types_offset,
12034 sections.info_or_types_size);
12035 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12036
12037 return dwo_unit;
12038 }
12039
12040 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12041 Returns NULL if the signature isn't found. */
12042
12043 static struct dwo_unit *
12044 lookup_dwo_unit_in_dwp (dwarf2_per_objfile *per_objfile,
12045 struct dwp_file *dwp_file, const char *comp_dir,
12046 ULONGEST signature, int is_debug_types)
12047 {
12048 const struct dwp_hash_table *dwp_htab =
12049 is_debug_types ? dwp_file->tus : dwp_file->cus;
12050 bfd *dbfd = dwp_file->dbfd.get ();
12051 uint32_t mask = dwp_htab->nr_slots - 1;
12052 uint32_t hash = signature & mask;
12053 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12054 unsigned int i;
12055 void **slot;
12056 struct dwo_unit find_dwo_cu;
12057
12058 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12059 find_dwo_cu.signature = signature;
12060 slot = htab_find_slot (is_debug_types
12061 ? dwp_file->loaded_tus.get ()
12062 : dwp_file->loaded_cus.get (),
12063 &find_dwo_cu, INSERT);
12064
12065 if (*slot != NULL)
12066 return (struct dwo_unit *) *slot;
12067
12068 /* Use a for loop so that we don't loop forever on bad debug info. */
12069 for (i = 0; i < dwp_htab->nr_slots; ++i)
12070 {
12071 ULONGEST signature_in_table;
12072
12073 signature_in_table =
12074 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12075 if (signature_in_table == signature)
12076 {
12077 uint32_t unit_index =
12078 read_4_bytes (dbfd,
12079 dwp_htab->unit_table + hash * sizeof (uint32_t));
12080
12081 if (dwp_file->version == 1)
12082 {
12083 *slot = create_dwo_unit_in_dwp_v1 (per_objfile, dwp_file,
12084 unit_index, comp_dir,
12085 signature, is_debug_types);
12086 }
12087 else if (dwp_file->version == 2)
12088 {
12089 *slot = create_dwo_unit_in_dwp_v2 (per_objfile, dwp_file,
12090 unit_index, comp_dir,
12091 signature, is_debug_types);
12092 }
12093 else /* version == 5 */
12094 {
12095 *slot = create_dwo_unit_in_dwp_v5 (per_objfile, dwp_file,
12096 unit_index, comp_dir,
12097 signature, is_debug_types);
12098 }
12099 return (struct dwo_unit *) *slot;
12100 }
12101 if (signature_in_table == 0)
12102 return NULL;
12103 hash = (hash + hash2) & mask;
12104 }
12105
12106 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12107 " [in module %s]"),
12108 dwp_file->name);
12109 }
12110
12111 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12112 Open the file specified by FILE_NAME and hand it off to BFD for
12113 preliminary analysis. Return a newly initialized bfd *, which
12114 includes a canonicalized copy of FILE_NAME.
12115 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12116 SEARCH_CWD is true if the current directory is to be searched.
12117 It will be searched before debug-file-directory.
12118 If successful, the file is added to the bfd include table of the
12119 objfile's bfd (see gdb_bfd_record_inclusion).
12120 If unable to find/open the file, return NULL.
12121 NOTE: This function is derived from symfile_bfd_open. */
12122
12123 static gdb_bfd_ref_ptr
12124 try_open_dwop_file (dwarf2_per_objfile *per_objfile,
12125 const char *file_name, int is_dwp, int search_cwd)
12126 {
12127 int desc;
12128 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12129 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12130 to debug_file_directory. */
12131 const char *search_path;
12132 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12133
12134 gdb::unique_xmalloc_ptr<char> search_path_holder;
12135 if (search_cwd)
12136 {
12137 if (!debug_file_directory.empty ())
12138 {
12139 search_path_holder.reset (concat (".", dirname_separator_string,
12140 debug_file_directory.c_str (),
12141 (char *) NULL));
12142 search_path = search_path_holder.get ();
12143 }
12144 else
12145 search_path = ".";
12146 }
12147 else
12148 search_path = debug_file_directory.c_str ();
12149
12150 /* Add the path for the executable binary to the list of search paths. */
12151 std::string objfile_dir = ldirname (objfile_name (per_objfile->objfile));
12152 search_path_holder.reset (concat (objfile_dir.c_str (),
12153 dirname_separator_string,
12154 search_path, nullptr));
12155 search_path = search_path_holder.get ();
12156
12157 openp_flags flags = OPF_RETURN_REALPATH;
12158 if (is_dwp)
12159 flags |= OPF_SEARCH_IN_PATH;
12160
12161 gdb::unique_xmalloc_ptr<char> absolute_name;
12162 desc = openp (search_path, flags, file_name,
12163 O_RDONLY | O_BINARY, &absolute_name);
12164 if (desc < 0)
12165 return NULL;
12166
12167 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12168 gnutarget, desc));
12169 if (sym_bfd == NULL)
12170 return NULL;
12171 bfd_set_cacheable (sym_bfd.get (), 1);
12172
12173 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12174 return NULL;
12175
12176 /* Success. Record the bfd as having been included by the objfile's bfd.
12177 This is important because things like demangled_names_hash lives in the
12178 objfile's per_bfd space and may have references to things like symbol
12179 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12180 gdb_bfd_record_inclusion (per_objfile->objfile->obfd, sym_bfd.get ());
12181
12182 return sym_bfd;
12183 }
12184
12185 /* Try to open DWO file FILE_NAME.
12186 COMP_DIR is the DW_AT_comp_dir attribute.
12187 The result is the bfd handle of the file.
12188 If there is a problem finding or opening the file, return NULL.
12189 Upon success, the canonicalized path of the file is stored in the bfd,
12190 same as symfile_bfd_open. */
12191
12192 static gdb_bfd_ref_ptr
12193 open_dwo_file (dwarf2_per_objfile *per_objfile,
12194 const char *file_name, const char *comp_dir)
12195 {
12196 if (IS_ABSOLUTE_PATH (file_name))
12197 return try_open_dwop_file (per_objfile, file_name,
12198 0 /*is_dwp*/, 0 /*search_cwd*/);
12199
12200 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12201
12202 if (comp_dir != NULL)
12203 {
12204 gdb::unique_xmalloc_ptr<char> path_to_try
12205 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12206
12207 /* NOTE: If comp_dir is a relative path, this will also try the
12208 search path, which seems useful. */
12209 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, path_to_try.get (),
12210 0 /*is_dwp*/,
12211 1 /*search_cwd*/));
12212 if (abfd != NULL)
12213 return abfd;
12214 }
12215
12216 /* That didn't work, try debug-file-directory, which, despite its name,
12217 is a list of paths. */
12218
12219 if (debug_file_directory.empty ())
12220 return NULL;
12221
12222 return try_open_dwop_file (per_objfile, file_name,
12223 0 /*is_dwp*/, 1 /*search_cwd*/);
12224 }
12225
12226 /* This function is mapped across the sections and remembers the offset and
12227 size of each of the DWO debugging sections we are interested in. */
12228
12229 static void
12230 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp,
12231 dwo_sections *dwo_sections)
12232 {
12233 const struct dwop_section_names *names = &dwop_section_names;
12234
12235 if (names->abbrev_dwo.matches (sectp->name))
12236 {
12237 dwo_sections->abbrev.s.section = sectp;
12238 dwo_sections->abbrev.size = bfd_section_size (sectp);
12239 }
12240 else if (names->info_dwo.matches (sectp->name))
12241 {
12242 dwo_sections->info.s.section = sectp;
12243 dwo_sections->info.size = bfd_section_size (sectp);
12244 }
12245 else if (names->line_dwo.matches (sectp->name))
12246 {
12247 dwo_sections->line.s.section = sectp;
12248 dwo_sections->line.size = bfd_section_size (sectp);
12249 }
12250 else if (names->loc_dwo.matches (sectp->name))
12251 {
12252 dwo_sections->loc.s.section = sectp;
12253 dwo_sections->loc.size = bfd_section_size (sectp);
12254 }
12255 else if (names->loclists_dwo.matches (sectp->name))
12256 {
12257 dwo_sections->loclists.s.section = sectp;
12258 dwo_sections->loclists.size = bfd_section_size (sectp);
12259 }
12260 else if (names->macinfo_dwo.matches (sectp->name))
12261 {
12262 dwo_sections->macinfo.s.section = sectp;
12263 dwo_sections->macinfo.size = bfd_section_size (sectp);
12264 }
12265 else if (names->macro_dwo.matches (sectp->name))
12266 {
12267 dwo_sections->macro.s.section = sectp;
12268 dwo_sections->macro.size = bfd_section_size (sectp);
12269 }
12270 else if (names->rnglists_dwo.matches (sectp->name))
12271 {
12272 dwo_sections->rnglists.s.section = sectp;
12273 dwo_sections->rnglists.size = bfd_section_size (sectp);
12274 }
12275 else if (names->str_dwo.matches (sectp->name))
12276 {
12277 dwo_sections->str.s.section = sectp;
12278 dwo_sections->str.size = bfd_section_size (sectp);
12279 }
12280 else if (names->str_offsets_dwo.matches (sectp->name))
12281 {
12282 dwo_sections->str_offsets.s.section = sectp;
12283 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12284 }
12285 else if (names->types_dwo.matches (sectp->name))
12286 {
12287 struct dwarf2_section_info type_section;
12288
12289 memset (&type_section, 0, sizeof (type_section));
12290 type_section.s.section = sectp;
12291 type_section.size = bfd_section_size (sectp);
12292 dwo_sections->types.push_back (type_section);
12293 }
12294 }
12295
12296 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12297 by PER_CU. This is for the non-DWP case.
12298 The result is NULL if DWO_NAME can't be found. */
12299
12300 static struct dwo_file *
12301 open_and_init_dwo_file (dwarf2_cu *cu, const char *dwo_name,
12302 const char *comp_dir)
12303 {
12304 dwarf2_per_objfile *per_objfile = cu->per_objfile;
12305
12306 gdb_bfd_ref_ptr dbfd = open_dwo_file (per_objfile, dwo_name, comp_dir);
12307 if (dbfd == NULL)
12308 {
12309 dwarf_read_debug_printf ("DWO file not found: %s", dwo_name);
12310
12311 return NULL;
12312 }
12313
12314 dwo_file_up dwo_file (new struct dwo_file);
12315 dwo_file->dwo_name = dwo_name;
12316 dwo_file->comp_dir = comp_dir;
12317 dwo_file->dbfd = std::move (dbfd);
12318
12319 for (asection *sec : gdb_bfd_sections (dwo_file->dbfd))
12320 dwarf2_locate_dwo_sections (dwo_file->dbfd.get (), sec,
12321 &dwo_file->sections);
12322
12323 create_cus_hash_table (per_objfile, cu, *dwo_file, dwo_file->sections.info,
12324 dwo_file->cus);
12325
12326 if (cu->per_cu->dwarf_version < 5)
12327 {
12328 create_debug_types_hash_table (per_objfile, dwo_file.get (),
12329 dwo_file->sections.types, dwo_file->tus);
12330 }
12331 else
12332 {
12333 create_debug_type_hash_table (per_objfile, dwo_file.get (),
12334 &dwo_file->sections.info, dwo_file->tus,
12335 rcuh_kind::COMPILE);
12336 }
12337
12338 dwarf_read_debug_printf ("DWO file found: %s", dwo_name);
12339
12340 return dwo_file.release ();
12341 }
12342
12343 /* This function is mapped across the sections and remembers the offset and
12344 size of each of the DWP debugging sections common to version 1 and 2 that
12345 we are interested in. */
12346
12347 static void
12348 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12349 dwp_file *dwp_file)
12350 {
12351 const struct dwop_section_names *names = &dwop_section_names;
12352 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12353
12354 /* Record the ELF section number for later lookup: this is what the
12355 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12356 gdb_assert (elf_section_nr < dwp_file->num_sections);
12357 dwp_file->elf_sections[elf_section_nr] = sectp;
12358
12359 /* Look for specific sections that we need. */
12360 if (names->str_dwo.matches (sectp->name))
12361 {
12362 dwp_file->sections.str.s.section = sectp;
12363 dwp_file->sections.str.size = bfd_section_size (sectp);
12364 }
12365 else if (names->cu_index.matches (sectp->name))
12366 {
12367 dwp_file->sections.cu_index.s.section = sectp;
12368 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12369 }
12370 else if (names->tu_index.matches (sectp->name))
12371 {
12372 dwp_file->sections.tu_index.s.section = sectp;
12373 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12374 }
12375 }
12376
12377 /* This function is mapped across the sections and remembers the offset and
12378 size of each of the DWP version 2 debugging sections that we are interested
12379 in. This is split into a separate function because we don't know if we
12380 have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */
12381
12382 static void
12383 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12384 {
12385 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12386 const struct dwop_section_names *names = &dwop_section_names;
12387 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12388
12389 /* Record the ELF section number for later lookup: this is what the
12390 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12391 gdb_assert (elf_section_nr < dwp_file->num_sections);
12392 dwp_file->elf_sections[elf_section_nr] = sectp;
12393
12394 /* Look for specific sections that we need. */
12395 if (names->abbrev_dwo.matches (sectp->name))
12396 {
12397 dwp_file->sections.abbrev.s.section = sectp;
12398 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12399 }
12400 else if (names->info_dwo.matches (sectp->name))
12401 {
12402 dwp_file->sections.info.s.section = sectp;
12403 dwp_file->sections.info.size = bfd_section_size (sectp);
12404 }
12405 else if (names->line_dwo.matches (sectp->name))
12406 {
12407 dwp_file->sections.line.s.section = sectp;
12408 dwp_file->sections.line.size = bfd_section_size (sectp);
12409 }
12410 else if (names->loc_dwo.matches (sectp->name))
12411 {
12412 dwp_file->sections.loc.s.section = sectp;
12413 dwp_file->sections.loc.size = bfd_section_size (sectp);
12414 }
12415 else if (names->macinfo_dwo.matches (sectp->name))
12416 {
12417 dwp_file->sections.macinfo.s.section = sectp;
12418 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12419 }
12420 else if (names->macro_dwo.matches (sectp->name))
12421 {
12422 dwp_file->sections.macro.s.section = sectp;
12423 dwp_file->sections.macro.size = bfd_section_size (sectp);
12424 }
12425 else if (names->str_offsets_dwo.matches (sectp->name))
12426 {
12427 dwp_file->sections.str_offsets.s.section = sectp;
12428 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12429 }
12430 else if (names->types_dwo.matches (sectp->name))
12431 {
12432 dwp_file->sections.types.s.section = sectp;
12433 dwp_file->sections.types.size = bfd_section_size (sectp);
12434 }
12435 }
12436
12437 /* This function is mapped across the sections and remembers the offset and
12438 size of each of the DWP version 5 debugging sections that we are interested
12439 in. This is split into a separate function because we don't know if we
12440 have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */
12441
12442 static void
12443 dwarf2_locate_v5_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12444 {
12445 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12446 const struct dwop_section_names *names = &dwop_section_names;
12447 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12448
12449 /* Record the ELF section number for later lookup: this is what the
12450 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12451 gdb_assert (elf_section_nr < dwp_file->num_sections);
12452 dwp_file->elf_sections[elf_section_nr] = sectp;
12453
12454 /* Look for specific sections that we need. */
12455 if (names->abbrev_dwo.matches (sectp->name))
12456 {
12457 dwp_file->sections.abbrev.s.section = sectp;
12458 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12459 }
12460 else if (names->info_dwo.matches (sectp->name))
12461 {
12462 dwp_file->sections.info.s.section = sectp;
12463 dwp_file->sections.info.size = bfd_section_size (sectp);
12464 }
12465 else if (names->line_dwo.matches (sectp->name))
12466 {
12467 dwp_file->sections.line.s.section = sectp;
12468 dwp_file->sections.line.size = bfd_section_size (sectp);
12469 }
12470 else if (names->loclists_dwo.matches (sectp->name))
12471 {
12472 dwp_file->sections.loclists.s.section = sectp;
12473 dwp_file->sections.loclists.size = bfd_section_size (sectp);
12474 }
12475 else if (names->macro_dwo.matches (sectp->name))
12476 {
12477 dwp_file->sections.macro.s.section = sectp;
12478 dwp_file->sections.macro.size = bfd_section_size (sectp);
12479 }
12480 else if (names->rnglists_dwo.matches (sectp->name))
12481 {
12482 dwp_file->sections.rnglists.s.section = sectp;
12483 dwp_file->sections.rnglists.size = bfd_section_size (sectp);
12484 }
12485 else if (names->str_offsets_dwo.matches (sectp->name))
12486 {
12487 dwp_file->sections.str_offsets.s.section = sectp;
12488 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12489 }
12490 }
12491
12492 /* Hash function for dwp_file loaded CUs/TUs. */
12493
12494 static hashval_t
12495 hash_dwp_loaded_cutus (const void *item)
12496 {
12497 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12498
12499 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12500 return dwo_unit->signature;
12501 }
12502
12503 /* Equality function for dwp_file loaded CUs/TUs. */
12504
12505 static int
12506 eq_dwp_loaded_cutus (const void *a, const void *b)
12507 {
12508 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12509 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12510
12511 return dua->signature == dub->signature;
12512 }
12513
12514 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12515
12516 static htab_up
12517 allocate_dwp_loaded_cutus_table ()
12518 {
12519 return htab_up (htab_create_alloc (3,
12520 hash_dwp_loaded_cutus,
12521 eq_dwp_loaded_cutus,
12522 NULL, xcalloc, xfree));
12523 }
12524
12525 /* Try to open DWP file FILE_NAME.
12526 The result is the bfd handle of the file.
12527 If there is a problem finding or opening the file, return NULL.
12528 Upon success, the canonicalized path of the file is stored in the bfd,
12529 same as symfile_bfd_open. */
12530
12531 static gdb_bfd_ref_ptr
12532 open_dwp_file (dwarf2_per_objfile *per_objfile, const char *file_name)
12533 {
12534 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, file_name,
12535 1 /*is_dwp*/,
12536 1 /*search_cwd*/));
12537 if (abfd != NULL)
12538 return abfd;
12539
12540 /* Work around upstream bug 15652.
12541 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12542 [Whether that's a "bug" is debatable, but it is getting in our way.]
12543 We have no real idea where the dwp file is, because gdb's realpath-ing
12544 of the executable's path may have discarded the needed info.
12545 [IWBN if the dwp file name was recorded in the executable, akin to
12546 .gnu_debuglink, but that doesn't exist yet.]
12547 Strip the directory from FILE_NAME and search again. */
12548 if (!debug_file_directory.empty ())
12549 {
12550 /* Don't implicitly search the current directory here.
12551 If the user wants to search "." to handle this case,
12552 it must be added to debug-file-directory. */
12553 return try_open_dwop_file (per_objfile, lbasename (file_name),
12554 1 /*is_dwp*/,
12555 0 /*search_cwd*/);
12556 }
12557
12558 return NULL;
12559 }
12560
12561 /* Initialize the use of the DWP file for the current objfile.
12562 By convention the name of the DWP file is ${objfile}.dwp.
12563 The result is NULL if it can't be found. */
12564
12565 static std::unique_ptr<struct dwp_file>
12566 open_and_init_dwp_file (dwarf2_per_objfile *per_objfile)
12567 {
12568 struct objfile *objfile = per_objfile->objfile;
12569
12570 /* Try to find first .dwp for the binary file before any symbolic links
12571 resolving. */
12572
12573 /* If the objfile is a debug file, find the name of the real binary
12574 file and get the name of dwp file from there. */
12575 std::string dwp_name;
12576 if (objfile->separate_debug_objfile_backlink != NULL)
12577 {
12578 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12579 const char *backlink_basename = lbasename (backlink->original_name);
12580
12581 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12582 }
12583 else
12584 dwp_name = objfile->original_name;
12585
12586 dwp_name += ".dwp";
12587
12588 gdb_bfd_ref_ptr dbfd (open_dwp_file (per_objfile, dwp_name.c_str ()));
12589 if (dbfd == NULL
12590 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12591 {
12592 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12593 dwp_name = objfile_name (objfile);
12594 dwp_name += ".dwp";
12595 dbfd = open_dwp_file (per_objfile, dwp_name.c_str ());
12596 }
12597
12598 if (dbfd == NULL)
12599 {
12600 dwarf_read_debug_printf ("DWP file not found: %s", dwp_name.c_str ());
12601
12602 return std::unique_ptr<dwp_file> ();
12603 }
12604
12605 const char *name = bfd_get_filename (dbfd.get ());
12606 std::unique_ptr<struct dwp_file> dwp_file
12607 (new struct dwp_file (name, std::move (dbfd)));
12608
12609 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12610 dwp_file->elf_sections =
12611 OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
12612 dwp_file->num_sections, asection *);
12613
12614 for (asection *sec : gdb_bfd_sections (dwp_file->dbfd))
12615 dwarf2_locate_common_dwp_sections (dwp_file->dbfd.get (), sec,
12616 dwp_file.get ());
12617
12618 dwp_file->cus = create_dwp_hash_table (per_objfile, dwp_file.get (), 0);
12619
12620 dwp_file->tus = create_dwp_hash_table (per_objfile, dwp_file.get (), 1);
12621
12622 /* The DWP file version is stored in the hash table. Oh well. */
12623 if (dwp_file->cus && dwp_file->tus
12624 && dwp_file->cus->version != dwp_file->tus->version)
12625 {
12626 /* Technically speaking, we should try to limp along, but this is
12627 pretty bizarre. We use pulongest here because that's the established
12628 portability solution (e.g, we cannot use %u for uint32_t). */
12629 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12630 " TU version %s [in DWP file %s]"),
12631 pulongest (dwp_file->cus->version),
12632 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12633 }
12634
12635 if (dwp_file->cus)
12636 dwp_file->version = dwp_file->cus->version;
12637 else if (dwp_file->tus)
12638 dwp_file->version = dwp_file->tus->version;
12639 else
12640 dwp_file->version = 2;
12641
12642 for (asection *sec : gdb_bfd_sections (dwp_file->dbfd))
12643 {
12644 if (dwp_file->version == 2)
12645 dwarf2_locate_v2_dwp_sections (dwp_file->dbfd.get (), sec,
12646 dwp_file.get ());
12647 else
12648 dwarf2_locate_v5_dwp_sections (dwp_file->dbfd.get (), sec,
12649 dwp_file.get ());
12650 }
12651
12652 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12653 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12654
12655 dwarf_read_debug_printf ("DWP file found: %s", dwp_file->name);
12656 dwarf_read_debug_printf (" %s CUs, %s TUs",
12657 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12658 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12659
12660 return dwp_file;
12661 }
12662
12663 /* Wrapper around open_and_init_dwp_file, only open it once. */
12664
12665 static struct dwp_file *
12666 get_dwp_file (dwarf2_per_objfile *per_objfile)
12667 {
12668 if (!per_objfile->per_bfd->dwp_checked)
12669 {
12670 per_objfile->per_bfd->dwp_file = open_and_init_dwp_file (per_objfile);
12671 per_objfile->per_bfd->dwp_checked = 1;
12672 }
12673 return per_objfile->per_bfd->dwp_file.get ();
12674 }
12675
12676 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12677 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12678 or in the DWP file for the objfile, referenced by THIS_UNIT.
12679 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12680 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12681
12682 This is called, for example, when wanting to read a variable with a
12683 complex location. Therefore we don't want to do file i/o for every call.
12684 Therefore we don't want to look for a DWO file on every call.
12685 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12686 then we check if we've already seen DWO_NAME, and only THEN do we check
12687 for a DWO file.
12688
12689 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12690 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12691
12692 static struct dwo_unit *
12693 lookup_dwo_cutu (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
12694 ULONGEST signature, int is_debug_types)
12695 {
12696 dwarf2_per_objfile *per_objfile = cu->per_objfile;
12697 struct objfile *objfile = per_objfile->objfile;
12698 const char *kind = is_debug_types ? "TU" : "CU";
12699 void **dwo_file_slot;
12700 struct dwo_file *dwo_file;
12701 struct dwp_file *dwp_file;
12702
12703 /* First see if there's a DWP file.
12704 If we have a DWP file but didn't find the DWO inside it, don't
12705 look for the original DWO file. It makes gdb behave differently
12706 depending on whether one is debugging in the build tree. */
12707
12708 dwp_file = get_dwp_file (per_objfile);
12709 if (dwp_file != NULL)
12710 {
12711 const struct dwp_hash_table *dwp_htab =
12712 is_debug_types ? dwp_file->tus : dwp_file->cus;
12713
12714 if (dwp_htab != NULL)
12715 {
12716 struct dwo_unit *dwo_cutu =
12717 lookup_dwo_unit_in_dwp (per_objfile, dwp_file, comp_dir, signature,
12718 is_debug_types);
12719
12720 if (dwo_cutu != NULL)
12721 {
12722 dwarf_read_debug_printf ("Virtual DWO %s %s found: @%s",
12723 kind, hex_string (signature),
12724 host_address_to_string (dwo_cutu));
12725
12726 return dwo_cutu;
12727 }
12728 }
12729 }
12730 else
12731 {
12732 /* No DWP file, look for the DWO file. */
12733
12734 dwo_file_slot = lookup_dwo_file_slot (per_objfile, dwo_name, comp_dir);
12735 if (*dwo_file_slot == NULL)
12736 {
12737 /* Read in the file and build a table of the CUs/TUs it contains. */
12738 *dwo_file_slot = open_and_init_dwo_file (cu, dwo_name, comp_dir);
12739 }
12740 /* NOTE: This will be NULL if unable to open the file. */
12741 dwo_file = (struct dwo_file *) *dwo_file_slot;
12742
12743 if (dwo_file != NULL)
12744 {
12745 struct dwo_unit *dwo_cutu = NULL;
12746
12747 if (is_debug_types && dwo_file->tus)
12748 {
12749 struct dwo_unit find_dwo_cutu;
12750
12751 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12752 find_dwo_cutu.signature = signature;
12753 dwo_cutu
12754 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12755 &find_dwo_cutu);
12756 }
12757 else if (!is_debug_types && dwo_file->cus)
12758 {
12759 struct dwo_unit find_dwo_cutu;
12760
12761 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12762 find_dwo_cutu.signature = signature;
12763 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12764 &find_dwo_cutu);
12765 }
12766
12767 if (dwo_cutu != NULL)
12768 {
12769 dwarf_read_debug_printf ("DWO %s %s(%s) found: @%s",
12770 kind, dwo_name, hex_string (signature),
12771 host_address_to_string (dwo_cutu));
12772
12773 return dwo_cutu;
12774 }
12775 }
12776 }
12777
12778 /* We didn't find it. This could mean a dwo_id mismatch, or
12779 someone deleted the DWO/DWP file, or the search path isn't set up
12780 correctly to find the file. */
12781
12782 dwarf_read_debug_printf ("DWO %s %s(%s) not found",
12783 kind, dwo_name, hex_string (signature));
12784
12785 /* This is a warning and not a complaint because it can be caused by
12786 pilot error (e.g., user accidentally deleting the DWO). */
12787 {
12788 /* Print the name of the DWP file if we looked there, helps the user
12789 better diagnose the problem. */
12790 std::string dwp_text;
12791
12792 if (dwp_file != NULL)
12793 dwp_text = string_printf (" [in DWP file %s]",
12794 lbasename (dwp_file->name));
12795
12796 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12797 " [in module %s]"),
12798 kind, dwo_name, hex_string (signature), dwp_text.c_str (), kind,
12799 sect_offset_str (cu->per_cu->sect_off), objfile_name (objfile));
12800 }
12801 return NULL;
12802 }
12803
12804 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12805 See lookup_dwo_cutu_unit for details. */
12806
12807 static struct dwo_unit *
12808 lookup_dwo_comp_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
12809 ULONGEST signature)
12810 {
12811 gdb_assert (!cu->per_cu->is_debug_types);
12812
12813 return lookup_dwo_cutu (cu, dwo_name, comp_dir, signature, 0);
12814 }
12815
12816 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12817 See lookup_dwo_cutu_unit for details. */
12818
12819 static struct dwo_unit *
12820 lookup_dwo_type_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir)
12821 {
12822 gdb_assert (cu->per_cu->is_debug_types);
12823
12824 signatured_type *sig_type = (signatured_type *) cu->per_cu;
12825
12826 return lookup_dwo_cutu (cu, dwo_name, comp_dir, sig_type->signature, 1);
12827 }
12828
12829 /* Traversal function for queue_and_load_all_dwo_tus. */
12830
12831 static int
12832 queue_and_load_dwo_tu (void **slot, void *info)
12833 {
12834 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12835 dwarf2_cu *cu = (dwarf2_cu *) info;
12836 ULONGEST signature = dwo_unit->signature;
12837 signatured_type *sig_type = lookup_dwo_signatured_type (cu, signature);
12838
12839 if (sig_type != NULL)
12840 {
12841 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12842 a real dependency of PER_CU on SIG_TYPE. That is detected later
12843 while processing PER_CU. */
12844 if (maybe_queue_comp_unit (NULL, sig_type, cu->per_objfile,
12845 cu->per_cu->lang))
12846 load_full_type_unit (sig_type, cu->per_objfile);
12847 cu->per_cu->imported_symtabs_push (sig_type);
12848 }
12849
12850 return 1;
12851 }
12852
12853 /* Queue all TUs contained in the DWO of CU to be read in.
12854 The DWO may have the only definition of the type, though it may not be
12855 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12856 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12857
12858 static void
12859 queue_and_load_all_dwo_tus (dwarf2_cu *cu)
12860 {
12861 struct dwo_unit *dwo_unit;
12862 struct dwo_file *dwo_file;
12863
12864 gdb_assert (cu != nullptr);
12865 gdb_assert (!cu->per_cu->is_debug_types);
12866 gdb_assert (get_dwp_file (cu->per_objfile) == nullptr);
12867
12868 dwo_unit = cu->dwo_unit;
12869 gdb_assert (dwo_unit != NULL);
12870
12871 dwo_file = dwo_unit->dwo_file;
12872 if (dwo_file->tus != NULL)
12873 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu, cu);
12874 }
12875
12876 /* Read in various DIEs. */
12877
12878 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12879 Inherit only the children of the DW_AT_abstract_origin DIE not being
12880 already referenced by DW_AT_abstract_origin from the children of the
12881 current DIE. */
12882
12883 static void
12884 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12885 {
12886 struct die_info *child_die;
12887 sect_offset *offsetp;
12888 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12889 struct die_info *origin_die;
12890 /* Iterator of the ORIGIN_DIE children. */
12891 struct die_info *origin_child_die;
12892 struct attribute *attr;
12893 struct dwarf2_cu *origin_cu;
12894 struct pending **origin_previous_list_in_scope;
12895
12896 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12897 if (!attr)
12898 return;
12899
12900 /* Note that following die references may follow to a die in a
12901 different cu. */
12902
12903 origin_cu = cu;
12904 origin_die = follow_die_ref (die, attr, &origin_cu);
12905
12906 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12907 symbols in. */
12908 origin_previous_list_in_scope = origin_cu->list_in_scope;
12909 origin_cu->list_in_scope = cu->list_in_scope;
12910
12911 if (die->tag != origin_die->tag
12912 && !(die->tag == DW_TAG_inlined_subroutine
12913 && origin_die->tag == DW_TAG_subprogram))
12914 complaint (_("DIE %s and its abstract origin %s have different tags"),
12915 sect_offset_str (die->sect_off),
12916 sect_offset_str (origin_die->sect_off));
12917
12918 /* Find if the concrete and abstract trees are structurally the
12919 same. This is a shallow traversal and it is not bullet-proof;
12920 the compiler can trick the debugger into believing that the trees
12921 are isomorphic, whereas they actually are not. However, the
12922 likelyhood of this happening is pretty low, and a full-fledged
12923 check would be an overkill. */
12924 bool are_isomorphic = true;
12925 die_info *concrete_child = die->child;
12926 die_info *abstract_child = origin_die->child;
12927 while (concrete_child != nullptr || abstract_child != nullptr)
12928 {
12929 if (concrete_child == nullptr
12930 || abstract_child == nullptr
12931 || concrete_child->tag != abstract_child->tag)
12932 {
12933 are_isomorphic = false;
12934 break;
12935 }
12936
12937 concrete_child = concrete_child->sibling;
12938 abstract_child = abstract_child->sibling;
12939 }
12940
12941 /* Walk the origin's children in parallel to the concrete children.
12942 This helps match an origin child in case the debug info misses
12943 DW_AT_abstract_origin attributes. Keep in mind that the abstract
12944 origin tree may not have the same tree structure as the concrete
12945 DIE, though. */
12946 die_info *corresponding_abstract_child
12947 = are_isomorphic ? origin_die->child : nullptr;
12948
12949 std::vector<sect_offset> offsets;
12950
12951 for (child_die = die->child;
12952 child_die && child_die->tag;
12953 child_die = child_die->sibling)
12954 {
12955 struct die_info *child_origin_die;
12956 struct dwarf2_cu *child_origin_cu;
12957
12958 /* We are trying to process concrete instance entries:
12959 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12960 it's not relevant to our analysis here. i.e. detecting DIEs that are
12961 present in the abstract instance but not referenced in the concrete
12962 one. */
12963 if (child_die->tag == DW_TAG_call_site
12964 || child_die->tag == DW_TAG_GNU_call_site)
12965 {
12966 if (are_isomorphic)
12967 corresponding_abstract_child
12968 = corresponding_abstract_child->sibling;
12969 continue;
12970 }
12971
12972 /* For each CHILD_DIE, find the corresponding child of
12973 ORIGIN_DIE. If there is more than one layer of
12974 DW_AT_abstract_origin, follow them all; there shouldn't be,
12975 but GCC versions at least through 4.4 generate this (GCC PR
12976 40573). */
12977 child_origin_die = child_die;
12978 child_origin_cu = cu;
12979 while (1)
12980 {
12981 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12982 child_origin_cu);
12983 if (attr == NULL)
12984 break;
12985 child_origin_die = follow_die_ref (child_origin_die, attr,
12986 &child_origin_cu);
12987 }
12988
12989 /* If missing DW_AT_abstract_origin, try the corresponding child
12990 of the origin. Clang emits such lexical scopes. */
12991 if (child_origin_die == child_die
12992 && dwarf2_attr (child_die, DW_AT_abstract_origin, cu) == nullptr
12993 && are_isomorphic
12994 && child_die->tag == DW_TAG_lexical_block)
12995 child_origin_die = corresponding_abstract_child;
12996
12997 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12998 counterpart may exist. */
12999 if (child_origin_die != child_die)
13000 {
13001 if (child_die->tag != child_origin_die->tag
13002 && !(child_die->tag == DW_TAG_inlined_subroutine
13003 && child_origin_die->tag == DW_TAG_subprogram))
13004 complaint (_("Child DIE %s and its abstract origin %s have "
13005 "different tags"),
13006 sect_offset_str (child_die->sect_off),
13007 sect_offset_str (child_origin_die->sect_off));
13008 if (child_origin_die->parent != origin_die)
13009 complaint (_("Child DIE %s and its abstract origin %s have "
13010 "different parents"),
13011 sect_offset_str (child_die->sect_off),
13012 sect_offset_str (child_origin_die->sect_off));
13013 else
13014 offsets.push_back (child_origin_die->sect_off);
13015 }
13016
13017 if (are_isomorphic)
13018 corresponding_abstract_child = corresponding_abstract_child->sibling;
13019 }
13020 std::sort (offsets.begin (), offsets.end ());
13021 sect_offset *offsets_end = offsets.data () + offsets.size ();
13022 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13023 if (offsetp[-1] == *offsetp)
13024 complaint (_("Multiple children of DIE %s refer "
13025 "to DIE %s as their abstract origin"),
13026 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13027
13028 offsetp = offsets.data ();
13029 origin_child_die = origin_die->child;
13030 while (origin_child_die && origin_child_die->tag)
13031 {
13032 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13033 while (offsetp < offsets_end
13034 && *offsetp < origin_child_die->sect_off)
13035 offsetp++;
13036 if (offsetp >= offsets_end
13037 || *offsetp > origin_child_die->sect_off)
13038 {
13039 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13040 Check whether we're already processing ORIGIN_CHILD_DIE.
13041 This can happen with mutually referenced abstract_origins.
13042 PR 16581. */
13043 if (!origin_child_die->in_process)
13044 process_die (origin_child_die, origin_cu);
13045 }
13046 origin_child_die = origin_child_die->sibling;
13047 }
13048 origin_cu->list_in_scope = origin_previous_list_in_scope;
13049
13050 if (cu != origin_cu)
13051 compute_delayed_physnames (origin_cu);
13052 }
13053
13054 static void
13055 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13056 {
13057 struct objfile *objfile = cu->per_objfile->objfile;
13058 struct gdbarch *gdbarch = objfile->arch ();
13059 struct context_stack *newobj;
13060 CORE_ADDR lowpc;
13061 CORE_ADDR highpc;
13062 struct die_info *child_die;
13063 struct attribute *attr, *call_line, *call_file;
13064 const char *name;
13065 CORE_ADDR baseaddr;
13066 struct block *block;
13067 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13068 std::vector<struct symbol *> template_args;
13069 struct template_symbol *templ_func = NULL;
13070
13071 if (inlined_func)
13072 {
13073 /* If we do not have call site information, we can't show the
13074 caller of this inlined function. That's too confusing, so
13075 only use the scope for local variables. */
13076 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13077 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13078 if (call_line == NULL || call_file == NULL)
13079 {
13080 read_lexical_block_scope (die, cu);
13081 return;
13082 }
13083 }
13084
13085 baseaddr = objfile->text_section_offset ();
13086
13087 name = dwarf2_name (die, cu);
13088
13089 /* Ignore functions with missing or empty names. These are actually
13090 illegal according to the DWARF standard. */
13091 if (name == NULL)
13092 {
13093 complaint (_("missing name for subprogram DIE at %s"),
13094 sect_offset_str (die->sect_off));
13095 return;
13096 }
13097
13098 /* Ignore functions with missing or invalid low and high pc attributes. */
13099 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13100 <= PC_BOUNDS_INVALID)
13101 {
13102 attr = dwarf2_attr (die, DW_AT_external, cu);
13103 if (attr == nullptr || !attr->as_boolean ())
13104 complaint (_("cannot get low and high bounds "
13105 "for subprogram DIE at %s"),
13106 sect_offset_str (die->sect_off));
13107 return;
13108 }
13109
13110 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13111 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13112
13113 /* If we have any template arguments, then we must allocate a
13114 different sort of symbol. */
13115 for (child_die = die->child; child_die; child_die = child_die->sibling)
13116 {
13117 if (child_die->tag == DW_TAG_template_type_param
13118 || child_die->tag == DW_TAG_template_value_param)
13119 {
13120 templ_func = new (&objfile->objfile_obstack) template_symbol;
13121 templ_func->subclass = SYMBOL_TEMPLATE;
13122 break;
13123 }
13124 }
13125
13126 gdb_assert (cu->get_builder () != nullptr);
13127 newobj = cu->get_builder ()->push_context (0, lowpc);
13128 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13129 (struct symbol *) templ_func);
13130
13131 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13132 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13133 cu->per_cu->lang);
13134
13135 /* If there is a location expression for DW_AT_frame_base, record
13136 it. */
13137 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13138 if (attr != nullptr)
13139 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13140
13141 /* If there is a location for the static link, record it. */
13142 newobj->static_link = NULL;
13143 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13144 if (attr != nullptr)
13145 {
13146 newobj->static_link
13147 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13148 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13149 cu->addr_type ());
13150 }
13151
13152 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13153
13154 if (die->child != NULL)
13155 {
13156 child_die = die->child;
13157 while (child_die && child_die->tag)
13158 {
13159 if (child_die->tag == DW_TAG_template_type_param
13160 || child_die->tag == DW_TAG_template_value_param)
13161 {
13162 struct symbol *arg = new_symbol (child_die, NULL, cu);
13163
13164 if (arg != NULL)
13165 template_args.push_back (arg);
13166 }
13167 else
13168 process_die (child_die, cu);
13169 child_die = child_die->sibling;
13170 }
13171 }
13172
13173 inherit_abstract_dies (die, cu);
13174
13175 /* If we have a DW_AT_specification, we might need to import using
13176 directives from the context of the specification DIE. See the
13177 comment in determine_prefix. */
13178 if (cu->per_cu->lang == language_cplus
13179 && dwarf2_attr (die, DW_AT_specification, cu))
13180 {
13181 struct dwarf2_cu *spec_cu = cu;
13182 struct die_info *spec_die = die_specification (die, &spec_cu);
13183
13184 while (spec_die)
13185 {
13186 child_die = spec_die->child;
13187 while (child_die && child_die->tag)
13188 {
13189 if (child_die->tag == DW_TAG_imported_module)
13190 process_die (child_die, spec_cu);
13191 child_die = child_die->sibling;
13192 }
13193
13194 /* In some cases, GCC generates specification DIEs that
13195 themselves contain DW_AT_specification attributes. */
13196 spec_die = die_specification (spec_die, &spec_cu);
13197 }
13198 }
13199
13200 struct context_stack cstk = cu->get_builder ()->pop_context ();
13201 /* Make a block for the local symbols within. */
13202 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13203 cstk.static_link, lowpc, highpc);
13204
13205 /* For C++, set the block's scope. */
13206 if ((cu->per_cu->lang == language_cplus
13207 || cu->per_cu->lang == language_fortran
13208 || cu->per_cu->lang == language_d
13209 || cu->per_cu->lang == language_rust)
13210 && cu->processing_has_namespace_info)
13211 block_set_scope (block, determine_prefix (die, cu),
13212 &objfile->objfile_obstack);
13213
13214 /* If we have address ranges, record them. */
13215 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13216
13217 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13218
13219 /* Attach template arguments to function. */
13220 if (!template_args.empty ())
13221 {
13222 gdb_assert (templ_func != NULL);
13223
13224 templ_func->n_template_arguments = template_args.size ();
13225 templ_func->template_arguments
13226 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13227 templ_func->n_template_arguments);
13228 memcpy (templ_func->template_arguments,
13229 template_args.data (),
13230 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13231
13232 /* Make sure that the symtab is set on the new symbols. Even
13233 though they don't appear in this symtab directly, other parts
13234 of gdb assume that symbols do, and this is reasonably
13235 true. */
13236 for (symbol *sym : template_args)
13237 symbol_set_symtab (sym, symbol_symtab (templ_func));
13238 }
13239
13240 /* In C++, we can have functions nested inside functions (e.g., when
13241 a function declares a class that has methods). This means that
13242 when we finish processing a function scope, we may need to go
13243 back to building a containing block's symbol lists. */
13244 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13245 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13246
13247 /* If we've finished processing a top-level function, subsequent
13248 symbols go in the file symbol list. */
13249 if (cu->get_builder ()->outermost_context_p ())
13250 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13251 }
13252
13253 /* Process all the DIES contained within a lexical block scope. Start
13254 a new scope, process the dies, and then close the scope. */
13255
13256 static void
13257 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13258 {
13259 struct objfile *objfile = cu->per_objfile->objfile;
13260 struct gdbarch *gdbarch = objfile->arch ();
13261 CORE_ADDR lowpc, highpc;
13262 struct die_info *child_die;
13263 CORE_ADDR baseaddr;
13264
13265 baseaddr = objfile->text_section_offset ();
13266
13267 /* Ignore blocks with missing or invalid low and high pc attributes. */
13268 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13269 as multiple lexical blocks? Handling children in a sane way would
13270 be nasty. Might be easier to properly extend generic blocks to
13271 describe ranges. */
13272 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13273 {
13274 case PC_BOUNDS_NOT_PRESENT:
13275 /* DW_TAG_lexical_block has no attributes, process its children as if
13276 there was no wrapping by that DW_TAG_lexical_block.
13277 GCC does no longer produces such DWARF since GCC r224161. */
13278 for (child_die = die->child;
13279 child_die != NULL && child_die->tag;
13280 child_die = child_die->sibling)
13281 {
13282 /* We might already be processing this DIE. This can happen
13283 in an unusual circumstance -- where a subroutine A
13284 appears lexically in another subroutine B, but A actually
13285 inlines B. The recursion is broken here, rather than in
13286 inherit_abstract_dies, because it seems better to simply
13287 drop concrete children here. */
13288 if (!child_die->in_process)
13289 process_die (child_die, cu);
13290 }
13291 return;
13292 case PC_BOUNDS_INVALID:
13293 return;
13294 }
13295 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13296 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13297
13298 cu->get_builder ()->push_context (0, lowpc);
13299 if (die->child != NULL)
13300 {
13301 child_die = die->child;
13302 while (child_die && child_die->tag)
13303 {
13304 process_die (child_die, cu);
13305 child_die = child_die->sibling;
13306 }
13307 }
13308 inherit_abstract_dies (die, cu);
13309 struct context_stack cstk = cu->get_builder ()->pop_context ();
13310
13311 if (*cu->get_builder ()->get_local_symbols () != NULL
13312 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13313 {
13314 struct block *block
13315 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13316 cstk.start_addr, highpc);
13317
13318 /* Note that recording ranges after traversing children, as we
13319 do here, means that recording a parent's ranges entails
13320 walking across all its children's ranges as they appear in
13321 the address map, which is quadratic behavior.
13322
13323 It would be nicer to record the parent's ranges before
13324 traversing its children, simply overriding whatever you find
13325 there. But since we don't even decide whether to create a
13326 block until after we've traversed its children, that's hard
13327 to do. */
13328 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13329 }
13330 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13331 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13332 }
13333
13334 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13335
13336 static void
13337 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13338 {
13339 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13340 struct objfile *objfile = per_objfile->objfile;
13341 struct gdbarch *gdbarch = objfile->arch ();
13342 CORE_ADDR pc, baseaddr;
13343 struct attribute *attr;
13344 void **slot;
13345 int nparams;
13346 struct die_info *child_die;
13347
13348 baseaddr = objfile->text_section_offset ();
13349
13350 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13351 if (attr == NULL)
13352 {
13353 /* This was a pre-DWARF-5 GNU extension alias
13354 for DW_AT_call_return_pc. */
13355 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13356 }
13357 if (!attr)
13358 {
13359 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13360 "DIE %s [in module %s]"),
13361 sect_offset_str (die->sect_off), objfile_name (objfile));
13362 return;
13363 }
13364 pc = attr->as_address () + baseaddr;
13365 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13366 pc -= baseaddr;
13367
13368 if (cu->call_site_htab == NULL)
13369 cu->call_site_htab = htab_create_alloc_ex (16, call_site::hash,
13370 call_site::eq, NULL,
13371 &objfile->objfile_obstack,
13372 hashtab_obstack_allocate, NULL);
13373 struct call_site call_site_local (pc, nullptr, nullptr);
13374 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13375 if (*slot != NULL)
13376 {
13377 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13378 "DIE %s [in module %s]"),
13379 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13380 objfile_name (objfile));
13381 return;
13382 }
13383
13384 /* Count parameters at the caller. */
13385
13386 nparams = 0;
13387 for (child_die = die->child; child_die && child_die->tag;
13388 child_die = child_die->sibling)
13389 {
13390 if (child_die->tag != DW_TAG_call_site_parameter
13391 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13392 {
13393 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13394 "DW_TAG_call_site child DIE %s [in module %s]"),
13395 child_die->tag, sect_offset_str (child_die->sect_off),
13396 objfile_name (objfile));
13397 continue;
13398 }
13399
13400 nparams++;
13401 }
13402
13403 struct call_site *call_site
13404 = new (XOBNEWVAR (&objfile->objfile_obstack,
13405 struct call_site,
13406 sizeof (*call_site) + sizeof (call_site->parameter[0]) * nparams))
13407 struct call_site (pc, cu->per_cu, per_objfile);
13408 *slot = call_site;
13409
13410 /* We never call the destructor of call_site, so we must ensure it is
13411 trivially destructible. */
13412 gdb_static_assert(std::is_trivially_destructible<struct call_site>::value);
13413
13414 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13415 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13416 {
13417 struct die_info *func_die;
13418
13419 /* Skip also over DW_TAG_inlined_subroutine. */
13420 for (func_die = die->parent;
13421 func_die && func_die->tag != DW_TAG_subprogram
13422 && func_die->tag != DW_TAG_subroutine_type;
13423 func_die = func_die->parent);
13424
13425 /* DW_AT_call_all_calls is a superset
13426 of DW_AT_call_all_tail_calls. */
13427 if (func_die
13428 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13429 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13430 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13431 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13432 {
13433 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13434 not complete. But keep CALL_SITE for look ups via call_site_htab,
13435 both the initial caller containing the real return address PC and
13436 the final callee containing the current PC of a chain of tail
13437 calls do not need to have the tail call list complete. But any
13438 function candidate for a virtual tail call frame searched via
13439 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13440 determined unambiguously. */
13441 }
13442 else
13443 {
13444 struct type *func_type = NULL;
13445
13446 if (func_die)
13447 func_type = get_die_type (func_die, cu);
13448 if (func_type != NULL)
13449 {
13450 gdb_assert (func_type->code () == TYPE_CODE_FUNC);
13451
13452 /* Enlist this call site to the function. */
13453 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13454 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13455 }
13456 else
13457 complaint (_("Cannot find function owning DW_TAG_call_site "
13458 "DIE %s [in module %s]"),
13459 sect_offset_str (die->sect_off), objfile_name (objfile));
13460 }
13461 }
13462
13463 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13464 if (attr == NULL)
13465 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13466 if (attr == NULL)
13467 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13468 if (attr == NULL)
13469 {
13470 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13471 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13472 }
13473 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13474 if (!attr || (attr->form_is_block () && attr->as_block ()->size == 0))
13475 /* Keep NULL DWARF_BLOCK. */;
13476 else if (attr->form_is_block ())
13477 {
13478 struct dwarf2_locexpr_baton *dlbaton;
13479 struct dwarf_block *block = attr->as_block ();
13480
13481 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13482 dlbaton->data = block->data;
13483 dlbaton->size = block->size;
13484 dlbaton->per_objfile = per_objfile;
13485 dlbaton->per_cu = cu->per_cu;
13486
13487 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13488 }
13489 else if (attr->form_is_ref ())
13490 {
13491 struct dwarf2_cu *target_cu = cu;
13492 struct die_info *target_die;
13493
13494 target_die = follow_die_ref (die, attr, &target_cu);
13495 gdb_assert (target_cu->per_objfile->objfile == objfile);
13496 if (die_is_declaration (target_die, target_cu))
13497 {
13498 const char *target_physname;
13499
13500 /* Prefer the mangled name; otherwise compute the demangled one. */
13501 target_physname = dw2_linkage_name (target_die, target_cu);
13502 if (target_physname == NULL)
13503 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13504 if (target_physname == NULL)
13505 complaint (_("DW_AT_call_target target DIE has invalid "
13506 "physname, for referencing DIE %s [in module %s]"),
13507 sect_offset_str (die->sect_off), objfile_name (objfile));
13508 else
13509 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13510 }
13511 else
13512 {
13513 CORE_ADDR lowpc;
13514
13515 /* DW_AT_entry_pc should be preferred. */
13516 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13517 <= PC_BOUNDS_INVALID)
13518 complaint (_("DW_AT_call_target target DIE has invalid "
13519 "low pc, for referencing DIE %s [in module %s]"),
13520 sect_offset_str (die->sect_off), objfile_name (objfile));
13521 else
13522 {
13523 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr)
13524 - baseaddr);
13525 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13526 }
13527 }
13528 }
13529 else
13530 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13531 "block nor reference, for DIE %s [in module %s]"),
13532 sect_offset_str (die->sect_off), objfile_name (objfile));
13533
13534 for (child_die = die->child;
13535 child_die && child_die->tag;
13536 child_die = child_die->sibling)
13537 {
13538 struct call_site_parameter *parameter;
13539 struct attribute *loc, *origin;
13540
13541 if (child_die->tag != DW_TAG_call_site_parameter
13542 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13543 {
13544 /* Already printed the complaint above. */
13545 continue;
13546 }
13547
13548 gdb_assert (call_site->parameter_count < nparams);
13549 parameter = &call_site->parameter[call_site->parameter_count];
13550
13551 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13552 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13553 register is contained in DW_AT_call_value. */
13554
13555 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13556 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13557 if (origin == NULL)
13558 {
13559 /* This was a pre-DWARF-5 GNU extension alias
13560 for DW_AT_call_parameter. */
13561 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13562 }
13563 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13564 {
13565 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13566
13567 sect_offset sect_off = origin->get_ref_die_offset ();
13568 if (!cu->header.offset_in_cu_p (sect_off))
13569 {
13570 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13571 binding can be done only inside one CU. Such referenced DIE
13572 therefore cannot be even moved to DW_TAG_partial_unit. */
13573 complaint (_("DW_AT_call_parameter offset is not in CU for "
13574 "DW_TAG_call_site child DIE %s [in module %s]"),
13575 sect_offset_str (child_die->sect_off),
13576 objfile_name (objfile));
13577 continue;
13578 }
13579 parameter->u.param_cu_off
13580 = (cu_offset) (sect_off - cu->header.sect_off);
13581 }
13582 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13583 {
13584 complaint (_("No DW_FORM_block* DW_AT_location for "
13585 "DW_TAG_call_site child DIE %s [in module %s]"),
13586 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13587 continue;
13588 }
13589 else
13590 {
13591 struct dwarf_block *block = loc->as_block ();
13592
13593 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13594 (block->data, &block->data[block->size]);
13595 if (parameter->u.dwarf_reg != -1)
13596 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13597 else if (dwarf_block_to_sp_offset (gdbarch, block->data,
13598 &block->data[block->size],
13599 &parameter->u.fb_offset))
13600 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13601 else
13602 {
13603 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13604 "for DW_FORM_block* DW_AT_location is supported for "
13605 "DW_TAG_call_site child DIE %s "
13606 "[in module %s]"),
13607 sect_offset_str (child_die->sect_off),
13608 objfile_name (objfile));
13609 continue;
13610 }
13611 }
13612
13613 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13614 if (attr == NULL)
13615 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13616 if (attr == NULL || !attr->form_is_block ())
13617 {
13618 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13619 "DW_TAG_call_site child DIE %s [in module %s]"),
13620 sect_offset_str (child_die->sect_off),
13621 objfile_name (objfile));
13622 continue;
13623 }
13624
13625 struct dwarf_block *block = attr->as_block ();
13626 parameter->value = block->data;
13627 parameter->value_size = block->size;
13628
13629 /* Parameters are not pre-cleared by memset above. */
13630 parameter->data_value = NULL;
13631 parameter->data_value_size = 0;
13632 call_site->parameter_count++;
13633
13634 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13635 if (attr == NULL)
13636 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13637 if (attr != nullptr)
13638 {
13639 if (!attr->form_is_block ())
13640 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13641 "DW_TAG_call_site child DIE %s [in module %s]"),
13642 sect_offset_str (child_die->sect_off),
13643 objfile_name (objfile));
13644 else
13645 {
13646 block = attr->as_block ();
13647 parameter->data_value = block->data;
13648 parameter->data_value_size = block->size;
13649 }
13650 }
13651 }
13652 }
13653
13654 /* Helper function for read_variable. If DIE represents a virtual
13655 table, then return the type of the concrete object that is
13656 associated with the virtual table. Otherwise, return NULL. */
13657
13658 static struct type *
13659 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13660 {
13661 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13662 if (attr == NULL)
13663 return NULL;
13664
13665 /* Find the type DIE. */
13666 struct die_info *type_die = NULL;
13667 struct dwarf2_cu *type_cu = cu;
13668
13669 if (attr->form_is_ref ())
13670 type_die = follow_die_ref (die, attr, &type_cu);
13671 if (type_die == NULL)
13672 return NULL;
13673
13674 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13675 return NULL;
13676 return die_containing_type (type_die, type_cu);
13677 }
13678
13679 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13680
13681 static void
13682 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13683 {
13684 struct rust_vtable_symbol *storage = NULL;
13685
13686 if (cu->per_cu->lang == language_rust)
13687 {
13688 struct type *containing_type = rust_containing_type (die, cu);
13689
13690 if (containing_type != NULL)
13691 {
13692 struct objfile *objfile = cu->per_objfile->objfile;
13693
13694 storage = new (&objfile->objfile_obstack) rust_vtable_symbol;
13695 storage->concrete_type = containing_type;
13696 storage->subclass = SYMBOL_RUST_VTABLE;
13697 }
13698 }
13699
13700 struct symbol *res = new_symbol (die, NULL, cu, storage);
13701 struct attribute *abstract_origin
13702 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13703 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13704 if (res == NULL && loc && abstract_origin)
13705 {
13706 /* We have a variable without a name, but with a location and an abstract
13707 origin. This may be a concrete instance of an abstract variable
13708 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13709 later. */
13710 struct dwarf2_cu *origin_cu = cu;
13711 struct die_info *origin_die
13712 = follow_die_ref (die, abstract_origin, &origin_cu);
13713 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13714 per_objfile->per_bfd->abstract_to_concrete
13715 [origin_die->sect_off].push_back (die->sect_off);
13716 }
13717 }
13718
13719 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13720 reading .debug_rnglists.
13721 Callback's type should be:
13722 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13723 Return true if the attributes are present and valid, otherwise,
13724 return false. */
13725
13726 template <typename Callback>
13727 static bool
13728 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13729 dwarf_tag tag, Callback &&callback)
13730 {
13731 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13732 struct objfile *objfile = per_objfile->objfile;
13733 bfd *obfd = objfile->obfd;
13734 /* Base address selection entry. */
13735 gdb::optional<CORE_ADDR> base;
13736 const gdb_byte *buffer;
13737 bool overflow = false;
13738 ULONGEST addr_index;
13739 struct dwarf2_section_info *rnglists_section;
13740
13741 base = cu->base_address;
13742 rnglists_section = cu_debug_rnglists_section (cu, tag);
13743 rnglists_section->read (objfile);
13744
13745 if (offset >= rnglists_section->size)
13746 {
13747 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13748 offset);
13749 return false;
13750 }
13751 buffer = rnglists_section->buffer + offset;
13752
13753 while (1)
13754 {
13755 /* Initialize it due to a false compiler warning. */
13756 CORE_ADDR range_beginning = 0, range_end = 0;
13757 const gdb_byte *buf_end = (rnglists_section->buffer
13758 + rnglists_section->size);
13759 unsigned int bytes_read;
13760
13761 if (buffer == buf_end)
13762 {
13763 overflow = true;
13764 break;
13765 }
13766 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13767 switch (rlet)
13768 {
13769 case DW_RLE_end_of_list:
13770 break;
13771 case DW_RLE_base_address:
13772 if (buffer + cu->header.addr_size > buf_end)
13773 {
13774 overflow = true;
13775 break;
13776 }
13777 base = cu->header.read_address (obfd, buffer, &bytes_read);
13778 buffer += bytes_read;
13779 break;
13780 case DW_RLE_base_addressx:
13781 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13782 buffer += bytes_read;
13783 base = read_addr_index (cu, addr_index);
13784 break;
13785 case DW_RLE_start_length:
13786 if (buffer + cu->header.addr_size > buf_end)
13787 {
13788 overflow = true;
13789 break;
13790 }
13791 range_beginning = cu->header.read_address (obfd, buffer,
13792 &bytes_read);
13793 buffer += bytes_read;
13794 range_end = (range_beginning
13795 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13796 buffer += bytes_read;
13797 if (buffer > buf_end)
13798 {
13799 overflow = true;
13800 break;
13801 }
13802 break;
13803 case DW_RLE_startx_length:
13804 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13805 buffer += bytes_read;
13806 range_beginning = read_addr_index (cu, addr_index);
13807 if (buffer > buf_end)
13808 {
13809 overflow = true;
13810 break;
13811 }
13812 range_end = (range_beginning
13813 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13814 buffer += bytes_read;
13815 break;
13816 case DW_RLE_offset_pair:
13817 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13818 buffer += bytes_read;
13819 if (buffer > buf_end)
13820 {
13821 overflow = true;
13822 break;
13823 }
13824 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13825 buffer += bytes_read;
13826 if (buffer > buf_end)
13827 {
13828 overflow = true;
13829 break;
13830 }
13831 break;
13832 case DW_RLE_start_end:
13833 if (buffer + 2 * cu->header.addr_size > buf_end)
13834 {
13835 overflow = true;
13836 break;
13837 }
13838 range_beginning = cu->header.read_address (obfd, buffer,
13839 &bytes_read);
13840 buffer += bytes_read;
13841 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13842 buffer += bytes_read;
13843 break;
13844 case DW_RLE_startx_endx:
13845 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13846 buffer += bytes_read;
13847 range_beginning = read_addr_index (cu, addr_index);
13848 if (buffer > buf_end)
13849 {
13850 overflow = true;
13851 break;
13852 }
13853 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13854 buffer += bytes_read;
13855 range_end = read_addr_index (cu, addr_index);
13856 break;
13857 default:
13858 complaint (_("Invalid .debug_rnglists data (no base address)"));
13859 return false;
13860 }
13861 if (rlet == DW_RLE_end_of_list || overflow)
13862 break;
13863 if (rlet == DW_RLE_base_address)
13864 continue;
13865
13866 if (range_beginning > range_end)
13867 {
13868 /* Inverted range entries are invalid. */
13869 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13870 return false;
13871 }
13872
13873 /* Empty range entries have no effect. */
13874 if (range_beginning == range_end)
13875 continue;
13876
13877 /* Only DW_RLE_offset_pair needs the base address added. */
13878 if (rlet == DW_RLE_offset_pair)
13879 {
13880 if (!base.has_value ())
13881 {
13882 /* We have no valid base address for the DW_RLE_offset_pair. */
13883 complaint (_("Invalid .debug_rnglists data (no base address for "
13884 "DW_RLE_offset_pair)"));
13885 return false;
13886 }
13887
13888 range_beginning += *base;
13889 range_end += *base;
13890 }
13891
13892 /* A not-uncommon case of bad debug info.
13893 Don't pollute the addrmap with bad data. */
13894 if (range_beginning == 0
13895 && !per_objfile->per_bfd->has_section_at_zero)
13896 {
13897 complaint (_(".debug_rnglists entry has start address of zero"
13898 " [in module %s]"), objfile_name (objfile));
13899 continue;
13900 }
13901
13902 callback (range_beginning, range_end);
13903 }
13904
13905 if (overflow)
13906 {
13907 complaint (_("Offset %d is not terminated "
13908 "for DW_AT_ranges attribute"),
13909 offset);
13910 return false;
13911 }
13912
13913 return true;
13914 }
13915
13916 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13917 Callback's type should be:
13918 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13919 Return 1 if the attributes are present and valid, otherwise, return 0. */
13920
13921 template <typename Callback>
13922 static int
13923 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu, dwarf_tag tag,
13924 Callback &&callback)
13925 {
13926 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13927 struct objfile *objfile = per_objfile->objfile;
13928 struct comp_unit_head *cu_header = &cu->header;
13929 bfd *obfd = objfile->obfd;
13930 unsigned int addr_size = cu_header->addr_size;
13931 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13932 /* Base address selection entry. */
13933 gdb::optional<CORE_ADDR> base;
13934 unsigned int dummy;
13935 const gdb_byte *buffer;
13936
13937 if (cu_header->version >= 5)
13938 return dwarf2_rnglists_process (offset, cu, tag, callback);
13939
13940 base = cu->base_address;
13941
13942 per_objfile->per_bfd->ranges.read (objfile);
13943 if (offset >= per_objfile->per_bfd->ranges.size)
13944 {
13945 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13946 offset);
13947 return 0;
13948 }
13949 buffer = per_objfile->per_bfd->ranges.buffer + offset;
13950
13951 while (1)
13952 {
13953 CORE_ADDR range_beginning, range_end;
13954
13955 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13956 buffer += addr_size;
13957 range_end = cu->header.read_address (obfd, buffer, &dummy);
13958 buffer += addr_size;
13959 offset += 2 * addr_size;
13960
13961 /* An end of list marker is a pair of zero addresses. */
13962 if (range_beginning == 0 && range_end == 0)
13963 /* Found the end of list entry. */
13964 break;
13965
13966 /* Each base address selection entry is a pair of 2 values.
13967 The first is the largest possible address, the second is
13968 the base address. Check for a base address here. */
13969 if ((range_beginning & mask) == mask)
13970 {
13971 /* If we found the largest possible address, then we already
13972 have the base address in range_end. */
13973 base = range_end;
13974 continue;
13975 }
13976
13977 if (!base.has_value ())
13978 {
13979 /* We have no valid base address for the ranges
13980 data. */
13981 complaint (_("Invalid .debug_ranges data (no base address)"));
13982 return 0;
13983 }
13984
13985 if (range_beginning > range_end)
13986 {
13987 /* Inverted range entries are invalid. */
13988 complaint (_("Invalid .debug_ranges data (inverted range)"));
13989 return 0;
13990 }
13991
13992 /* Empty range entries have no effect. */
13993 if (range_beginning == range_end)
13994 continue;
13995
13996 range_beginning += *base;
13997 range_end += *base;
13998
13999 /* A not-uncommon case of bad debug info.
14000 Don't pollute the addrmap with bad data. */
14001 if (range_beginning == 0
14002 && !per_objfile->per_bfd->has_section_at_zero)
14003 {
14004 complaint (_(".debug_ranges entry has start address of zero"
14005 " [in module %s]"), objfile_name (objfile));
14006 continue;
14007 }
14008
14009 callback (range_beginning, range_end);
14010 }
14011
14012 return 1;
14013 }
14014
14015 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14016 Return 1 if the attributes are present and valid, otherwise, return 0.
14017 If RANGES_PST is not NULL we should set up the `psymtabs_addrmap'. */
14018
14019 static int
14020 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14021 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14022 dwarf2_psymtab *ranges_pst, dwarf_tag tag)
14023 {
14024 struct objfile *objfile = cu->per_objfile->objfile;
14025 dwarf2_per_bfd *per_bfd = cu->per_objfile->per_bfd;
14026 struct gdbarch *gdbarch = objfile->arch ();
14027 const CORE_ADDR baseaddr = objfile->text_section_offset ();
14028 int low_set = 0;
14029 CORE_ADDR low = 0;
14030 CORE_ADDR high = 0;
14031 int retval;
14032
14033 retval = dwarf2_ranges_process (offset, cu, tag,
14034 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14035 {
14036 if (ranges_pst != NULL)
14037 {
14038 CORE_ADDR lowpc;
14039 CORE_ADDR highpc;
14040
14041 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14042 range_beginning + baseaddr)
14043 - baseaddr);
14044 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14045 range_end + baseaddr)
14046 - baseaddr);
14047 addrmap_set_empty (per_bfd->partial_symtabs->psymtabs_addrmap,
14048 lowpc, highpc - 1, ranges_pst);
14049 }
14050
14051 /* FIXME: This is recording everything as a low-high
14052 segment of consecutive addresses. We should have a
14053 data structure for discontiguous block ranges
14054 instead. */
14055 if (! low_set)
14056 {
14057 low = range_beginning;
14058 high = range_end;
14059 low_set = 1;
14060 }
14061 else
14062 {
14063 if (range_beginning < low)
14064 low = range_beginning;
14065 if (range_end > high)
14066 high = range_end;
14067 }
14068 });
14069 if (!retval)
14070 return 0;
14071
14072 if (! low_set)
14073 /* If the first entry is an end-of-list marker, the range
14074 describes an empty scope, i.e. no instructions. */
14075 return 0;
14076
14077 if (low_return)
14078 *low_return = low;
14079 if (high_return)
14080 *high_return = high;
14081 return 1;
14082 }
14083
14084 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14085 definition for the return value. *LOWPC and *HIGHPC are set iff
14086 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14087
14088 static enum pc_bounds_kind
14089 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14090 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14091 dwarf2_psymtab *pst)
14092 {
14093 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14094 struct attribute *attr;
14095 struct attribute *attr_high;
14096 CORE_ADDR low = 0;
14097 CORE_ADDR high = 0;
14098 enum pc_bounds_kind ret;
14099
14100 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14101 if (attr_high)
14102 {
14103 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14104 if (attr != nullptr)
14105 {
14106 low = attr->as_address ();
14107 high = attr_high->as_address ();
14108 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14109 high += low;
14110 }
14111 else
14112 /* Found high w/o low attribute. */
14113 return PC_BOUNDS_INVALID;
14114
14115 /* Found consecutive range of addresses. */
14116 ret = PC_BOUNDS_HIGH_LOW;
14117 }
14118 else
14119 {
14120 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14121 if (attr != nullptr && attr->form_is_unsigned ())
14122 {
14123 /* Offset in the .debug_ranges or .debug_rnglist section (depending
14124 on DWARF version). */
14125 ULONGEST ranges_offset = attr->as_unsigned ();
14126
14127 /* See dwarf2_cu::gnu_ranges_base's doc for why we might want to add
14128 this value. */
14129 if (die->tag != DW_TAG_compile_unit)
14130 ranges_offset += cu->gnu_ranges_base;
14131
14132 /* Value of the DW_AT_ranges attribute is the offset in the
14133 .debug_ranges section. */
14134 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst,
14135 die->tag))
14136 return PC_BOUNDS_INVALID;
14137 /* Found discontinuous range of addresses. */
14138 ret = PC_BOUNDS_RANGES;
14139 }
14140 else
14141 return PC_BOUNDS_NOT_PRESENT;
14142 }
14143
14144 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14145 if (high <= low)
14146 return PC_BOUNDS_INVALID;
14147
14148 /* When using the GNU linker, .gnu.linkonce. sections are used to
14149 eliminate duplicate copies of functions and vtables and such.
14150 The linker will arbitrarily choose one and discard the others.
14151 The AT_*_pc values for such functions refer to local labels in
14152 these sections. If the section from that file was discarded, the
14153 labels are not in the output, so the relocs get a value of 0.
14154 If this is a discarded function, mark the pc bounds as invalid,
14155 so that GDB will ignore it. */
14156 if (low == 0 && !per_objfile->per_bfd->has_section_at_zero)
14157 return PC_BOUNDS_INVALID;
14158
14159 *lowpc = low;
14160 if (highpc)
14161 *highpc = high;
14162 return ret;
14163 }
14164
14165 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14166 its low and high PC addresses. Do nothing if these addresses could not
14167 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14168 and HIGHPC to the high address if greater than HIGHPC. */
14169
14170 static void
14171 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14172 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14173 struct dwarf2_cu *cu)
14174 {
14175 CORE_ADDR low, high;
14176 struct die_info *child = die->child;
14177
14178 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14179 {
14180 *lowpc = std::min (*lowpc, low);
14181 *highpc = std::max (*highpc, high);
14182 }
14183
14184 /* If the language does not allow nested subprograms (either inside
14185 subprograms or lexical blocks), we're done. */
14186 if (cu->per_cu->lang != language_ada)
14187 return;
14188
14189 /* Check all the children of the given DIE. If it contains nested
14190 subprograms, then check their pc bounds. Likewise, we need to
14191 check lexical blocks as well, as they may also contain subprogram
14192 definitions. */
14193 while (child && child->tag)
14194 {
14195 if (child->tag == DW_TAG_subprogram
14196 || child->tag == DW_TAG_lexical_block)
14197 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14198 child = child->sibling;
14199 }
14200 }
14201
14202 /* Get the low and high pc's represented by the scope DIE, and store
14203 them in *LOWPC and *HIGHPC. If the correct values can't be
14204 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14205
14206 static void
14207 get_scope_pc_bounds (struct die_info *die,
14208 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14209 struct dwarf2_cu *cu)
14210 {
14211 CORE_ADDR best_low = (CORE_ADDR) -1;
14212 CORE_ADDR best_high = (CORE_ADDR) 0;
14213 CORE_ADDR current_low, current_high;
14214
14215 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14216 >= PC_BOUNDS_RANGES)
14217 {
14218 best_low = current_low;
14219 best_high = current_high;
14220 }
14221 else
14222 {
14223 struct die_info *child = die->child;
14224
14225 while (child && child->tag)
14226 {
14227 switch (child->tag) {
14228 case DW_TAG_subprogram:
14229 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14230 break;
14231 case DW_TAG_namespace:
14232 case DW_TAG_module:
14233 /* FIXME: carlton/2004-01-16: Should we do this for
14234 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14235 that current GCC's always emit the DIEs corresponding
14236 to definitions of methods of classes as children of a
14237 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14238 the DIEs giving the declarations, which could be
14239 anywhere). But I don't see any reason why the
14240 standards says that they have to be there. */
14241 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14242
14243 if (current_low != ((CORE_ADDR) -1))
14244 {
14245 best_low = std::min (best_low, current_low);
14246 best_high = std::max (best_high, current_high);
14247 }
14248 break;
14249 default:
14250 /* Ignore. */
14251 break;
14252 }
14253
14254 child = child->sibling;
14255 }
14256 }
14257
14258 *lowpc = best_low;
14259 *highpc = best_high;
14260 }
14261
14262 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14263 in DIE. */
14264
14265 static void
14266 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14267 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14268 {
14269 struct objfile *objfile = cu->per_objfile->objfile;
14270 struct gdbarch *gdbarch = objfile->arch ();
14271 struct attribute *attr;
14272 struct attribute *attr_high;
14273
14274 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14275 if (attr_high)
14276 {
14277 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14278 if (attr != nullptr)
14279 {
14280 CORE_ADDR low = attr->as_address ();
14281 CORE_ADDR high = attr_high->as_address ();
14282
14283 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14284 high += low;
14285
14286 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14287 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14288 cu->get_builder ()->record_block_range (block, low, high - 1);
14289 }
14290 }
14291
14292 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14293 if (attr != nullptr && attr->form_is_unsigned ())
14294 {
14295 /* Offset in the .debug_ranges or .debug_rnglist section (depending
14296 on DWARF version). */
14297 ULONGEST ranges_offset = attr->as_unsigned ();
14298
14299 /* See dwarf2_cu::gnu_ranges_base's doc for why we might want to add
14300 this value. */
14301 if (die->tag != DW_TAG_compile_unit)
14302 ranges_offset += cu->gnu_ranges_base;
14303
14304 std::vector<blockrange> blockvec;
14305 dwarf2_ranges_process (ranges_offset, cu, die->tag,
14306 [&] (CORE_ADDR start, CORE_ADDR end)
14307 {
14308 start += baseaddr;
14309 end += baseaddr;
14310 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14311 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14312 cu->get_builder ()->record_block_range (block, start, end - 1);
14313 blockvec.emplace_back (start, end);
14314 });
14315
14316 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14317 }
14318 }
14319
14320 /* Check whether the producer field indicates either of GCC < 4.6, or the
14321 Intel C/C++ compiler, and cache the result in CU. */
14322
14323 static void
14324 check_producer (struct dwarf2_cu *cu)
14325 {
14326 int major, minor;
14327
14328 if (cu->producer == NULL)
14329 {
14330 /* For unknown compilers expect their behavior is DWARF version
14331 compliant.
14332
14333 GCC started to support .debug_types sections by -gdwarf-4 since
14334 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14335 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14336 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14337 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14338 }
14339 else if (producer_is_gcc (cu->producer, &major, &minor))
14340 {
14341 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14342 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14343 }
14344 else if (producer_is_icc (cu->producer, &major, &minor))
14345 {
14346 cu->producer_is_icc = true;
14347 cu->producer_is_icc_lt_14 = major < 14;
14348 }
14349 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14350 cu->producer_is_codewarrior = true;
14351 else
14352 {
14353 /* For other non-GCC compilers, expect their behavior is DWARF version
14354 compliant. */
14355 }
14356
14357 cu->checked_producer = true;
14358 }
14359
14360 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14361 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14362 during 4.6.0 experimental. */
14363
14364 static bool
14365 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14366 {
14367 if (!cu->checked_producer)
14368 check_producer (cu);
14369
14370 return cu->producer_is_gxx_lt_4_6;
14371 }
14372
14373
14374 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14375 with incorrect is_stmt attributes. */
14376
14377 static bool
14378 producer_is_codewarrior (struct dwarf2_cu *cu)
14379 {
14380 if (!cu->checked_producer)
14381 check_producer (cu);
14382
14383 return cu->producer_is_codewarrior;
14384 }
14385
14386 /* Return the accessibility of DIE, as given by DW_AT_accessibility.
14387 If that attribute is not available, return the appropriate
14388 default. */
14389
14390 static enum dwarf_access_attribute
14391 dwarf2_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14392 {
14393 attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14394 if (attr != nullptr)
14395 {
14396 LONGEST value = attr->constant_value (-1);
14397 if (value == DW_ACCESS_public
14398 || value == DW_ACCESS_protected
14399 || value == DW_ACCESS_private)
14400 return (dwarf_access_attribute) value;
14401 complaint (_("Unhandled DW_AT_accessibility value (%s)"),
14402 plongest (value));
14403 }
14404
14405 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14406 {
14407 /* The default DWARF 2 accessibility for members is public, the default
14408 accessibility for inheritance is private. */
14409
14410 if (die->tag != DW_TAG_inheritance)
14411 return DW_ACCESS_public;
14412 else
14413 return DW_ACCESS_private;
14414 }
14415 else
14416 {
14417 /* DWARF 3+ defines the default accessibility a different way. The same
14418 rules apply now for DW_TAG_inheritance as for the members and it only
14419 depends on the container kind. */
14420
14421 if (die->parent->tag == DW_TAG_class_type)
14422 return DW_ACCESS_private;
14423 else
14424 return DW_ACCESS_public;
14425 }
14426 }
14427
14428 /* Look for DW_AT_data_member_location or DW_AT_data_bit_offset. Set
14429 *OFFSET to the byte offset. If the attribute was not found return
14430 0, otherwise return 1. If it was found but could not properly be
14431 handled, set *OFFSET to 0. */
14432
14433 static int
14434 handle_member_location (struct die_info *die, struct dwarf2_cu *cu,
14435 LONGEST *offset)
14436 {
14437 struct attribute *attr;
14438
14439 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14440 if (attr != NULL)
14441 {
14442 *offset = 0;
14443
14444 /* Note that we do not check for a section offset first here.
14445 This is because DW_AT_data_member_location is new in DWARF 4,
14446 so if we see it, we can assume that a constant form is really
14447 a constant and not a section offset. */
14448 if (attr->form_is_constant ())
14449 *offset = attr->constant_value (0);
14450 else if (attr->form_is_section_offset ())
14451 dwarf2_complex_location_expr_complaint ();
14452 else if (attr->form_is_block ())
14453 *offset = decode_locdesc (attr->as_block (), cu);
14454 else
14455 dwarf2_complex_location_expr_complaint ();
14456
14457 return 1;
14458 }
14459 else
14460 {
14461 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14462 if (attr != nullptr)
14463 {
14464 *offset = attr->constant_value (0);
14465 return 1;
14466 }
14467 }
14468
14469 return 0;
14470 }
14471
14472 /* Look for DW_AT_data_member_location or DW_AT_data_bit_offset and
14473 store the results in FIELD. */
14474
14475 static void
14476 handle_member_location (struct die_info *die, struct dwarf2_cu *cu,
14477 struct field *field)
14478 {
14479 struct attribute *attr;
14480
14481 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14482 if (attr != NULL)
14483 {
14484 if (attr->form_is_constant ())
14485 {
14486 LONGEST offset = attr->constant_value (0);
14487 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14488 }
14489 else if (attr->form_is_section_offset ())
14490 dwarf2_complex_location_expr_complaint ();
14491 else if (attr->form_is_block ())
14492 {
14493 bool handled;
14494 CORE_ADDR offset = decode_locdesc (attr->as_block (), cu, &handled);
14495 if (handled)
14496 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14497 else
14498 {
14499 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14500 struct objfile *objfile = per_objfile->objfile;
14501 struct dwarf2_locexpr_baton *dlbaton
14502 = XOBNEW (&objfile->objfile_obstack,
14503 struct dwarf2_locexpr_baton);
14504 dlbaton->data = attr->as_block ()->data;
14505 dlbaton->size = attr->as_block ()->size;
14506 /* When using this baton, we want to compute the address
14507 of the field, not the value. This is why
14508 is_reference is set to false here. */
14509 dlbaton->is_reference = false;
14510 dlbaton->per_objfile = per_objfile;
14511 dlbaton->per_cu = cu->per_cu;
14512
14513 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14514 }
14515 }
14516 else
14517 dwarf2_complex_location_expr_complaint ();
14518 }
14519 else
14520 {
14521 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14522 if (attr != nullptr)
14523 SET_FIELD_BITPOS (*field, attr->constant_value (0));
14524 }
14525 }
14526
14527 /* Add an aggregate field to the field list. */
14528
14529 static void
14530 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14531 struct dwarf2_cu *cu)
14532 {
14533 struct objfile *objfile = cu->per_objfile->objfile;
14534 struct gdbarch *gdbarch = objfile->arch ();
14535 struct nextfield *new_field;
14536 struct attribute *attr;
14537 struct field *fp;
14538 const char *fieldname = "";
14539
14540 if (die->tag == DW_TAG_inheritance)
14541 {
14542 fip->baseclasses.emplace_back ();
14543 new_field = &fip->baseclasses.back ();
14544 }
14545 else
14546 {
14547 fip->fields.emplace_back ();
14548 new_field = &fip->fields.back ();
14549 }
14550
14551 new_field->offset = die->sect_off;
14552
14553 new_field->accessibility = dwarf2_access_attribute (die, cu);
14554 if (new_field->accessibility != DW_ACCESS_public)
14555 fip->non_public_fields = true;
14556
14557 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14558 if (attr != nullptr)
14559 new_field->virtuality = attr->as_virtuality ();
14560 else
14561 new_field->virtuality = DW_VIRTUALITY_none;
14562
14563 fp = &new_field->field;
14564
14565 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14566 {
14567 /* Data member other than a C++ static data member. */
14568
14569 /* Get type of field. */
14570 fp->set_type (die_type (die, cu));
14571
14572 SET_FIELD_BITPOS (*fp, 0);
14573
14574 /* Get bit size of field (zero if none). */
14575 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14576 if (attr != nullptr)
14577 {
14578 FIELD_BITSIZE (*fp) = attr->constant_value (0);
14579 }
14580 else
14581 {
14582 FIELD_BITSIZE (*fp) = 0;
14583 }
14584
14585 /* Get bit offset of field. */
14586 handle_member_location (die, cu, fp);
14587 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14588 if (attr != nullptr && attr->form_is_constant ())
14589 {
14590 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14591 {
14592 /* For big endian bits, the DW_AT_bit_offset gives the
14593 additional bit offset from the MSB of the containing
14594 anonymous object to the MSB of the field. We don't
14595 have to do anything special since we don't need to
14596 know the size of the anonymous object. */
14597 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14598 + attr->constant_value (0)));
14599 }
14600 else
14601 {
14602 /* For little endian bits, compute the bit offset to the
14603 MSB of the anonymous object, subtract off the number of
14604 bits from the MSB of the field to the MSB of the
14605 object, and then subtract off the number of bits of
14606 the field itself. The result is the bit offset of
14607 the LSB of the field. */
14608 int anonymous_size;
14609 int bit_offset = attr->constant_value (0);
14610
14611 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14612 if (attr != nullptr && attr->form_is_constant ())
14613 {
14614 /* The size of the anonymous object containing
14615 the bit field is explicit, so use the
14616 indicated size (in bytes). */
14617 anonymous_size = attr->constant_value (0);
14618 }
14619 else
14620 {
14621 /* The size of the anonymous object containing
14622 the bit field must be inferred from the type
14623 attribute of the data member containing the
14624 bit field. */
14625 anonymous_size = TYPE_LENGTH (fp->type ());
14626 }
14627 SET_FIELD_BITPOS (*fp,
14628 (FIELD_BITPOS (*fp)
14629 + anonymous_size * bits_per_byte
14630 - bit_offset - FIELD_BITSIZE (*fp)));
14631 }
14632 }
14633
14634 /* Get name of field. */
14635 fieldname = dwarf2_name (die, cu);
14636 if (fieldname == NULL)
14637 fieldname = "";
14638
14639 /* The name is already allocated along with this objfile, so we don't
14640 need to duplicate it for the type. */
14641 fp->set_name (fieldname);
14642
14643 /* Change accessibility for artificial fields (e.g. virtual table
14644 pointer or virtual base class pointer) to private. */
14645 if (dwarf2_attr (die, DW_AT_artificial, cu))
14646 {
14647 FIELD_ARTIFICIAL (*fp) = 1;
14648 new_field->accessibility = DW_ACCESS_private;
14649 fip->non_public_fields = true;
14650 }
14651 }
14652 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14653 {
14654 /* C++ static member. */
14655
14656 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14657 is a declaration, but all versions of G++ as of this writing
14658 (so through at least 3.2.1) incorrectly generate
14659 DW_TAG_variable tags. */
14660
14661 const char *physname;
14662
14663 /* Get name of field. */
14664 fieldname = dwarf2_name (die, cu);
14665 if (fieldname == NULL)
14666 return;
14667
14668 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14669 if (attr
14670 /* Only create a symbol if this is an external value.
14671 new_symbol checks this and puts the value in the global symbol
14672 table, which we want. If it is not external, new_symbol
14673 will try to put the value in cu->list_in_scope which is wrong. */
14674 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14675 {
14676 /* A static const member, not much different than an enum as far as
14677 we're concerned, except that we can support more types. */
14678 new_symbol (die, NULL, cu);
14679 }
14680
14681 /* Get physical name. */
14682 physname = dwarf2_physname (fieldname, die, cu);
14683
14684 /* The name is already allocated along with this objfile, so we don't
14685 need to duplicate it for the type. */
14686 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14687 fp->set_type (die_type (die, cu));
14688 fp->set_name (fieldname);
14689 }
14690 else if (die->tag == DW_TAG_inheritance)
14691 {
14692 /* C++ base class field. */
14693 handle_member_location (die, cu, fp);
14694 FIELD_BITSIZE (*fp) = 0;
14695 fp->set_type (die_type (die, cu));
14696 fp->set_name (fp->type ()->name ());
14697 }
14698 else
14699 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14700 }
14701
14702 /* Can the type given by DIE define another type? */
14703
14704 static bool
14705 type_can_define_types (const struct die_info *die)
14706 {
14707 switch (die->tag)
14708 {
14709 case DW_TAG_typedef:
14710 case DW_TAG_class_type:
14711 case DW_TAG_structure_type:
14712 case DW_TAG_union_type:
14713 case DW_TAG_enumeration_type:
14714 return true;
14715
14716 default:
14717 return false;
14718 }
14719 }
14720
14721 /* Add a type definition defined in the scope of the FIP's class. */
14722
14723 static void
14724 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14725 struct dwarf2_cu *cu)
14726 {
14727 struct decl_field fp;
14728 memset (&fp, 0, sizeof (fp));
14729
14730 gdb_assert (type_can_define_types (die));
14731
14732 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14733 fp.name = dwarf2_name (die, cu);
14734 fp.type = read_type_die (die, cu);
14735
14736 /* Save accessibility. */
14737 dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu);
14738 switch (accessibility)
14739 {
14740 case DW_ACCESS_public:
14741 /* The assumed value if neither private nor protected. */
14742 break;
14743 case DW_ACCESS_private:
14744 fp.is_private = 1;
14745 break;
14746 case DW_ACCESS_protected:
14747 fp.is_protected = 1;
14748 break;
14749 }
14750
14751 if (die->tag == DW_TAG_typedef)
14752 fip->typedef_field_list.push_back (fp);
14753 else
14754 fip->nested_types_list.push_back (fp);
14755 }
14756
14757 /* A convenience typedef that's used when finding the discriminant
14758 field for a variant part. */
14759 typedef std::unordered_map<sect_offset, int, gdb::hash_enum<sect_offset>>
14760 offset_map_type;
14761
14762 /* Compute the discriminant range for a given variant. OBSTACK is
14763 where the results will be stored. VARIANT is the variant to
14764 process. IS_UNSIGNED indicates whether the discriminant is signed
14765 or unsigned. */
14766
14767 static const gdb::array_view<discriminant_range>
14768 convert_variant_range (struct obstack *obstack, const variant_field &variant,
14769 bool is_unsigned)
14770 {
14771 std::vector<discriminant_range> ranges;
14772
14773 if (variant.default_branch)
14774 return {};
14775
14776 if (variant.discr_list_data == nullptr)
14777 {
14778 discriminant_range r
14779 = {variant.discriminant_value, variant.discriminant_value};
14780 ranges.push_back (r);
14781 }
14782 else
14783 {
14784 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
14785 variant.discr_list_data->size);
14786 while (!data.empty ())
14787 {
14788 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
14789 {
14790 complaint (_("invalid discriminant marker: %d"), data[0]);
14791 break;
14792 }
14793 bool is_range = data[0] == DW_DSC_range;
14794 data = data.slice (1);
14795
14796 ULONGEST low, high;
14797 unsigned int bytes_read;
14798
14799 if (data.empty ())
14800 {
14801 complaint (_("DW_AT_discr_list missing low value"));
14802 break;
14803 }
14804 if (is_unsigned)
14805 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
14806 else
14807 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
14808 &bytes_read);
14809 data = data.slice (bytes_read);
14810
14811 if (is_range)
14812 {
14813 if (data.empty ())
14814 {
14815 complaint (_("DW_AT_discr_list missing high value"));
14816 break;
14817 }
14818 if (is_unsigned)
14819 high = read_unsigned_leb128 (nullptr, data.data (),
14820 &bytes_read);
14821 else
14822 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
14823 &bytes_read);
14824 data = data.slice (bytes_read);
14825 }
14826 else
14827 high = low;
14828
14829 ranges.push_back ({ low, high });
14830 }
14831 }
14832
14833 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
14834 ranges.size ());
14835 std::copy (ranges.begin (), ranges.end (), result);
14836 return gdb::array_view<discriminant_range> (result, ranges.size ());
14837 }
14838
14839 static const gdb::array_view<variant_part> create_variant_parts
14840 (struct obstack *obstack,
14841 const offset_map_type &offset_map,
14842 struct field_info *fi,
14843 const std::vector<variant_part_builder> &variant_parts);
14844
14845 /* Fill in a "struct variant" for a given variant field. RESULT is
14846 the variant to fill in. OBSTACK is where any needed allocations
14847 will be done. OFFSET_MAP holds the mapping from section offsets to
14848 fields for the type. FI describes the fields of the type we're
14849 processing. FIELD is the variant field we're converting. */
14850
14851 static void
14852 create_one_variant (variant &result, struct obstack *obstack,
14853 const offset_map_type &offset_map,
14854 struct field_info *fi, const variant_field &field)
14855 {
14856 result.discriminants = convert_variant_range (obstack, field, false);
14857 result.first_field = field.first_field + fi->baseclasses.size ();
14858 result.last_field = field.last_field + fi->baseclasses.size ();
14859 result.parts = create_variant_parts (obstack, offset_map, fi,
14860 field.variant_parts);
14861 }
14862
14863 /* Fill in a "struct variant_part" for a given variant part. RESULT
14864 is the variant part to fill in. OBSTACK is where any needed
14865 allocations will be done. OFFSET_MAP holds the mapping from
14866 section offsets to fields for the type. FI describes the fields of
14867 the type we're processing. BUILDER is the variant part to be
14868 converted. */
14869
14870 static void
14871 create_one_variant_part (variant_part &result,
14872 struct obstack *obstack,
14873 const offset_map_type &offset_map,
14874 struct field_info *fi,
14875 const variant_part_builder &builder)
14876 {
14877 auto iter = offset_map.find (builder.discriminant_offset);
14878 if (iter == offset_map.end ())
14879 {
14880 result.discriminant_index = -1;
14881 /* Doesn't matter. */
14882 result.is_unsigned = false;
14883 }
14884 else
14885 {
14886 result.discriminant_index = iter->second;
14887 result.is_unsigned
14888 = fi->fields[result.discriminant_index].field.type ()->is_unsigned ();
14889 }
14890
14891 size_t n = builder.variants.size ();
14892 variant *output = new (obstack) variant[n];
14893 for (size_t i = 0; i < n; ++i)
14894 create_one_variant (output[i], obstack, offset_map, fi,
14895 builder.variants[i]);
14896
14897 result.variants = gdb::array_view<variant> (output, n);
14898 }
14899
14900 /* Create a vector of variant parts that can be attached to a type.
14901 OBSTACK is where any needed allocations will be done. OFFSET_MAP
14902 holds the mapping from section offsets to fields for the type. FI
14903 describes the fields of the type we're processing. VARIANT_PARTS
14904 is the vector to convert. */
14905
14906 static const gdb::array_view<variant_part>
14907 create_variant_parts (struct obstack *obstack,
14908 const offset_map_type &offset_map,
14909 struct field_info *fi,
14910 const std::vector<variant_part_builder> &variant_parts)
14911 {
14912 if (variant_parts.empty ())
14913 return {};
14914
14915 size_t n = variant_parts.size ();
14916 variant_part *result = new (obstack) variant_part[n];
14917 for (size_t i = 0; i < n; ++i)
14918 create_one_variant_part (result[i], obstack, offset_map, fi,
14919 variant_parts[i]);
14920
14921 return gdb::array_view<variant_part> (result, n);
14922 }
14923
14924 /* Compute the variant part vector for FIP, attaching it to TYPE when
14925 done. */
14926
14927 static void
14928 add_variant_property (struct field_info *fip, struct type *type,
14929 struct dwarf2_cu *cu)
14930 {
14931 /* Map section offsets of fields to their field index. Note the
14932 field index here does not take the number of baseclasses into
14933 account. */
14934 offset_map_type offset_map;
14935 for (int i = 0; i < fip->fields.size (); ++i)
14936 offset_map[fip->fields[i].offset] = i;
14937
14938 struct objfile *objfile = cu->per_objfile->objfile;
14939 gdb::array_view<variant_part> parts
14940 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
14941 fip->variant_parts);
14942
14943 struct dynamic_prop prop;
14944 prop.set_variant_parts ((gdb::array_view<variant_part> *)
14945 obstack_copy (&objfile->objfile_obstack, &parts,
14946 sizeof (parts)));
14947
14948 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
14949 }
14950
14951 /* Create the vector of fields, and attach it to the type. */
14952
14953 static void
14954 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14955 struct dwarf2_cu *cu)
14956 {
14957 int nfields = fip->nfields ();
14958
14959 /* Record the field count, allocate space for the array of fields,
14960 and create blank accessibility bitfields if necessary. */
14961 type->set_num_fields (nfields);
14962 type->set_fields
14963 ((struct field *) TYPE_ZALLOC (type, sizeof (struct field) * nfields));
14964
14965 if (fip->non_public_fields && cu->per_cu->lang != language_ada)
14966 {
14967 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14968
14969 TYPE_FIELD_PRIVATE_BITS (type) =
14970 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14971 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14972
14973 TYPE_FIELD_PROTECTED_BITS (type) =
14974 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14975 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14976
14977 TYPE_FIELD_IGNORE_BITS (type) =
14978 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14979 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14980 }
14981
14982 /* If the type has baseclasses, allocate and clear a bit vector for
14983 TYPE_FIELD_VIRTUAL_BITS. */
14984 if (!fip->baseclasses.empty () && cu->per_cu->lang != language_ada)
14985 {
14986 int num_bytes = B_BYTES (fip->baseclasses.size ());
14987 unsigned char *pointer;
14988
14989 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14990 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14991 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14992 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14993 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14994 }
14995
14996 if (!fip->variant_parts.empty ())
14997 add_variant_property (fip, type, cu);
14998
14999 /* Copy the saved-up fields into the field vector. */
15000 for (int i = 0; i < nfields; ++i)
15001 {
15002 struct nextfield &field
15003 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15004 : fip->fields[i - fip->baseclasses.size ()]);
15005
15006 type->field (i) = field.field;
15007 switch (field.accessibility)
15008 {
15009 case DW_ACCESS_private:
15010 if (cu->per_cu->lang != language_ada)
15011 SET_TYPE_FIELD_PRIVATE (type, i);
15012 break;
15013
15014 case DW_ACCESS_protected:
15015 if (cu->per_cu->lang != language_ada)
15016 SET_TYPE_FIELD_PROTECTED (type, i);
15017 break;
15018
15019 case DW_ACCESS_public:
15020 break;
15021
15022 default:
15023 /* Unknown accessibility. Complain and treat it as public. */
15024 {
15025 complaint (_("unsupported accessibility %d"),
15026 field.accessibility);
15027 }
15028 break;
15029 }
15030 if (i < fip->baseclasses.size ())
15031 {
15032 switch (field.virtuality)
15033 {
15034 case DW_VIRTUALITY_virtual:
15035 case DW_VIRTUALITY_pure_virtual:
15036 if (cu->per_cu->lang == language_ada)
15037 error (_("unexpected virtuality in component of Ada type"));
15038 SET_TYPE_FIELD_VIRTUAL (type, i);
15039 break;
15040 }
15041 }
15042 }
15043 }
15044
15045 /* Return true if this member function is a constructor, false
15046 otherwise. */
15047
15048 static int
15049 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15050 {
15051 const char *fieldname;
15052 const char *type_name;
15053 int len;
15054
15055 if (die->parent == NULL)
15056 return 0;
15057
15058 if (die->parent->tag != DW_TAG_structure_type
15059 && die->parent->tag != DW_TAG_union_type
15060 && die->parent->tag != DW_TAG_class_type)
15061 return 0;
15062
15063 fieldname = dwarf2_name (die, cu);
15064 type_name = dwarf2_name (die->parent, cu);
15065 if (fieldname == NULL || type_name == NULL)
15066 return 0;
15067
15068 len = strlen (fieldname);
15069 return (strncmp (fieldname, type_name, len) == 0
15070 && (type_name[len] == '\0' || type_name[len] == '<'));
15071 }
15072
15073 /* Add a member function to the proper fieldlist. */
15074
15075 static void
15076 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15077 struct type *type, struct dwarf2_cu *cu)
15078 {
15079 struct objfile *objfile = cu->per_objfile->objfile;
15080 struct attribute *attr;
15081 int i;
15082 struct fnfieldlist *flp = nullptr;
15083 struct fn_field *fnp;
15084 const char *fieldname;
15085 struct type *this_type;
15086
15087 if (cu->per_cu->lang == language_ada)
15088 error (_("unexpected member function in Ada type"));
15089
15090 /* Get name of member function. */
15091 fieldname = dwarf2_name (die, cu);
15092 if (fieldname == NULL)
15093 return;
15094
15095 /* Look up member function name in fieldlist. */
15096 for (i = 0; i < fip->fnfieldlists.size (); i++)
15097 {
15098 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15099 {
15100 flp = &fip->fnfieldlists[i];
15101 break;
15102 }
15103 }
15104
15105 /* Create a new fnfieldlist if necessary. */
15106 if (flp == nullptr)
15107 {
15108 fip->fnfieldlists.emplace_back ();
15109 flp = &fip->fnfieldlists.back ();
15110 flp->name = fieldname;
15111 i = fip->fnfieldlists.size () - 1;
15112 }
15113
15114 /* Create a new member function field and add it to the vector of
15115 fnfieldlists. */
15116 flp->fnfields.emplace_back ();
15117 fnp = &flp->fnfields.back ();
15118
15119 /* Delay processing of the physname until later. */
15120 if (cu->per_cu->lang == language_cplus)
15121 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15122 die, cu);
15123 else
15124 {
15125 const char *physname = dwarf2_physname (fieldname, die, cu);
15126 fnp->physname = physname ? physname : "";
15127 }
15128
15129 fnp->type = alloc_type (objfile);
15130 this_type = read_type_die (die, cu);
15131 if (this_type && this_type->code () == TYPE_CODE_FUNC)
15132 {
15133 int nparams = this_type->num_fields ();
15134
15135 /* TYPE is the domain of this method, and THIS_TYPE is the type
15136 of the method itself (TYPE_CODE_METHOD). */
15137 smash_to_method_type (fnp->type, type,
15138 TYPE_TARGET_TYPE (this_type),
15139 this_type->fields (),
15140 this_type->num_fields (),
15141 this_type->has_varargs ());
15142
15143 /* Handle static member functions.
15144 Dwarf2 has no clean way to discern C++ static and non-static
15145 member functions. G++ helps GDB by marking the first
15146 parameter for non-static member functions (which is the this
15147 pointer) as artificial. We obtain this information from
15148 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15149 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15150 fnp->voffset = VOFFSET_STATIC;
15151 }
15152 else
15153 complaint (_("member function type missing for '%s'"),
15154 dwarf2_full_name (fieldname, die, cu));
15155
15156 /* Get fcontext from DW_AT_containing_type if present. */
15157 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15158 fnp->fcontext = die_containing_type (die, cu);
15159
15160 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15161 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15162
15163 /* Get accessibility. */
15164 dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu);
15165 switch (accessibility)
15166 {
15167 case DW_ACCESS_private:
15168 fnp->is_private = 1;
15169 break;
15170 case DW_ACCESS_protected:
15171 fnp->is_protected = 1;
15172 break;
15173 }
15174
15175 /* Check for artificial methods. */
15176 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15177 if (attr && attr->as_boolean ())
15178 fnp->is_artificial = 1;
15179
15180 /* Check for defaulted methods. */
15181 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15182 if (attr != nullptr)
15183 fnp->defaulted = attr->defaulted ();
15184
15185 /* Check for deleted methods. */
15186 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15187 if (attr != nullptr && attr->as_boolean ())
15188 fnp->is_deleted = 1;
15189
15190 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15191
15192 /* Get index in virtual function table if it is a virtual member
15193 function. For older versions of GCC, this is an offset in the
15194 appropriate virtual table, as specified by DW_AT_containing_type.
15195 For everyone else, it is an expression to be evaluated relative
15196 to the object address. */
15197
15198 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15199 if (attr != nullptr)
15200 {
15201 if (attr->form_is_block () && attr->as_block ()->size > 0)
15202 {
15203 struct dwarf_block *block = attr->as_block ();
15204
15205 if (block->data[0] == DW_OP_constu)
15206 {
15207 /* Old-style GCC. */
15208 fnp->voffset = decode_locdesc (block, cu) + 2;
15209 }
15210 else if (block->data[0] == DW_OP_deref
15211 || (block->size > 1
15212 && block->data[0] == DW_OP_deref_size
15213 && block->data[1] == cu->header.addr_size))
15214 {
15215 fnp->voffset = decode_locdesc (block, cu);
15216 if ((fnp->voffset % cu->header.addr_size) != 0)
15217 dwarf2_complex_location_expr_complaint ();
15218 else
15219 fnp->voffset /= cu->header.addr_size;
15220 fnp->voffset += 2;
15221 }
15222 else
15223 dwarf2_complex_location_expr_complaint ();
15224
15225 if (!fnp->fcontext)
15226 {
15227 /* If there is no `this' field and no DW_AT_containing_type,
15228 we cannot actually find a base class context for the
15229 vtable! */
15230 if (this_type->num_fields () == 0
15231 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15232 {
15233 complaint (_("cannot determine context for virtual member "
15234 "function \"%s\" (offset %s)"),
15235 fieldname, sect_offset_str (die->sect_off));
15236 }
15237 else
15238 {
15239 fnp->fcontext
15240 = TYPE_TARGET_TYPE (this_type->field (0).type ());
15241 }
15242 }
15243 }
15244 else if (attr->form_is_section_offset ())
15245 {
15246 dwarf2_complex_location_expr_complaint ();
15247 }
15248 else
15249 {
15250 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15251 fieldname);
15252 }
15253 }
15254 else
15255 {
15256 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15257 if (attr != nullptr && attr->as_virtuality () != DW_VIRTUALITY_none)
15258 {
15259 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15260 complaint (_("Member function \"%s\" (offset %s) is virtual "
15261 "but the vtable offset is not specified"),
15262 fieldname, sect_offset_str (die->sect_off));
15263 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15264 TYPE_CPLUS_DYNAMIC (type) = 1;
15265 }
15266 }
15267 }
15268
15269 /* Create the vector of member function fields, and attach it to the type. */
15270
15271 static void
15272 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15273 struct dwarf2_cu *cu)
15274 {
15275 if (cu->per_cu->lang == language_ada)
15276 error (_("unexpected member functions in Ada type"));
15277
15278 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15279 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15280 TYPE_ALLOC (type,
15281 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15282
15283 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15284 {
15285 struct fnfieldlist &nf = fip->fnfieldlists[i];
15286 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15287
15288 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15289 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15290 fn_flp->fn_fields = (struct fn_field *)
15291 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15292
15293 for (int k = 0; k < nf.fnfields.size (); ++k)
15294 fn_flp->fn_fields[k] = nf.fnfields[k];
15295 }
15296
15297 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15298 }
15299
15300 /* Returns non-zero if NAME is the name of a vtable member in CU's
15301 language, zero otherwise. */
15302 static int
15303 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15304 {
15305 static const char vptr[] = "_vptr";
15306
15307 /* Look for the C++ form of the vtable. */
15308 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15309 return 1;
15310
15311 return 0;
15312 }
15313
15314 /* GCC outputs unnamed structures that are really pointers to member
15315 functions, with the ABI-specified layout. If TYPE describes
15316 such a structure, smash it into a member function type.
15317
15318 GCC shouldn't do this; it should just output pointer to member DIEs.
15319 This is GCC PR debug/28767. */
15320
15321 static void
15322 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15323 {
15324 struct type *pfn_type, *self_type, *new_type;
15325
15326 /* Check for a structure with no name and two children. */
15327 if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2)
15328 return;
15329
15330 /* Check for __pfn and __delta members. */
15331 if (type->field (0).name () == NULL
15332 || strcmp (type->field (0).name (), "__pfn") != 0
15333 || type->field (1).name () == NULL
15334 || strcmp (type->field (1).name (), "__delta") != 0)
15335 return;
15336
15337 /* Find the type of the method. */
15338 pfn_type = type->field (0).type ();
15339 if (pfn_type == NULL
15340 || pfn_type->code () != TYPE_CODE_PTR
15341 || TYPE_TARGET_TYPE (pfn_type)->code () != TYPE_CODE_FUNC)
15342 return;
15343
15344 /* Look for the "this" argument. */
15345 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15346 if (pfn_type->num_fields () == 0
15347 /* || pfn_type->field (0).type () == NULL */
15348 || pfn_type->field (0).type ()->code () != TYPE_CODE_PTR)
15349 return;
15350
15351 self_type = TYPE_TARGET_TYPE (pfn_type->field (0).type ());
15352 new_type = alloc_type (objfile);
15353 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15354 pfn_type->fields (), pfn_type->num_fields (),
15355 pfn_type->has_varargs ());
15356 smash_to_methodptr_type (type, new_type);
15357 }
15358
15359 /* Helper for quirk_ada_thick_pointer. If TYPE is an array type that
15360 requires rewriting, then copy it and return the updated copy.
15361 Otherwise return nullptr. */
15362
15363 static struct type *
15364 rewrite_array_type (struct type *type)
15365 {
15366 if (type->code () != TYPE_CODE_ARRAY)
15367 return nullptr;
15368
15369 struct type *index_type = type->index_type ();
15370 range_bounds *current_bounds = index_type->bounds ();
15371
15372 /* Handle multi-dimensional arrays. */
15373 struct type *new_target = rewrite_array_type (TYPE_TARGET_TYPE (type));
15374 if (new_target == nullptr)
15375 {
15376 /* Maybe we don't need to rewrite this array. */
15377 if (current_bounds->low.kind () == PROP_CONST
15378 && current_bounds->high.kind () == PROP_CONST)
15379 return nullptr;
15380 }
15381
15382 /* Either the target type was rewritten, or the bounds have to be
15383 updated. Either way we want to copy the type and update
15384 everything. */
15385 struct type *copy = copy_type (type);
15386 int nfields = copy->num_fields ();
15387 field *new_fields
15388 = ((struct field *) TYPE_ZALLOC (copy,
15389 nfields * sizeof (struct field)));
15390 memcpy (new_fields, copy->fields (), nfields * sizeof (struct field));
15391 copy->set_fields (new_fields);
15392 if (new_target != nullptr)
15393 TYPE_TARGET_TYPE (copy) = new_target;
15394
15395 struct type *index_copy = copy_type (index_type);
15396 range_bounds *bounds
15397 = (struct range_bounds *) TYPE_ZALLOC (index_copy,
15398 sizeof (range_bounds));
15399 *bounds = *current_bounds;
15400 bounds->low.set_const_val (1);
15401 bounds->high.set_const_val (0);
15402 index_copy->set_bounds (bounds);
15403 copy->set_index_type (index_copy);
15404
15405 return copy;
15406 }
15407
15408 /* While some versions of GCC will generate complicated DWARF for an
15409 array (see quirk_ada_thick_pointer), more recent versions were
15410 modified to emit an explicit thick pointer structure. However, in
15411 this case, the array still has DWARF expressions for its ranges,
15412 and these must be ignored. */
15413
15414 static void
15415 quirk_ada_thick_pointer_struct (struct die_info *die, struct dwarf2_cu *cu,
15416 struct type *type)
15417 {
15418 gdb_assert (cu->per_cu->lang == language_ada);
15419
15420 /* Check for a structure with two children. */
15421 if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2)
15422 return;
15423
15424 /* Check for P_ARRAY and P_BOUNDS members. */
15425 if (type->field (0).name () == NULL
15426 || strcmp (type->field (0).name (), "P_ARRAY") != 0
15427 || type->field (1).name () == NULL
15428 || strcmp (type->field (1).name (), "P_BOUNDS") != 0)
15429 return;
15430
15431 /* Make sure we're looking at a pointer to an array. */
15432 if (type->field (0).type ()->code () != TYPE_CODE_PTR)
15433 return;
15434
15435 /* The Ada code already knows how to handle these types, so all that
15436 we need to do is turn the bounds into static bounds. However, we
15437 don't want to rewrite existing array or index types in-place,
15438 because those may be referenced in other contexts where this
15439 rewriting is undesirable. */
15440 struct type *new_ary_type
15441 = rewrite_array_type (TYPE_TARGET_TYPE (type->field (0).type ()));
15442 if (new_ary_type != nullptr)
15443 type->field (0).set_type (lookup_pointer_type (new_ary_type));
15444 }
15445
15446 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15447 appropriate error checking and issuing complaints if there is a
15448 problem. */
15449
15450 static ULONGEST
15451 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15452 {
15453 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15454
15455 if (attr == nullptr)
15456 return 0;
15457
15458 if (!attr->form_is_constant ())
15459 {
15460 complaint (_("DW_AT_alignment must have constant form"
15461 " - DIE at %s [in module %s]"),
15462 sect_offset_str (die->sect_off),
15463 objfile_name (cu->per_objfile->objfile));
15464 return 0;
15465 }
15466
15467 LONGEST val = attr->constant_value (0);
15468 if (val < 0)
15469 {
15470 complaint (_("DW_AT_alignment value must not be negative"
15471 " - DIE at %s [in module %s]"),
15472 sect_offset_str (die->sect_off),
15473 objfile_name (cu->per_objfile->objfile));
15474 return 0;
15475 }
15476 ULONGEST align = val;
15477
15478 if (align == 0)
15479 {
15480 complaint (_("DW_AT_alignment value must not be zero"
15481 " - DIE at %s [in module %s]"),
15482 sect_offset_str (die->sect_off),
15483 objfile_name (cu->per_objfile->objfile));
15484 return 0;
15485 }
15486 if ((align & (align - 1)) != 0)
15487 {
15488 complaint (_("DW_AT_alignment value must be a power of 2"
15489 " - DIE at %s [in module %s]"),
15490 sect_offset_str (die->sect_off),
15491 objfile_name (cu->per_objfile->objfile));
15492 return 0;
15493 }
15494
15495 return align;
15496 }
15497
15498 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15499 the alignment for TYPE. */
15500
15501 static void
15502 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15503 struct type *type)
15504 {
15505 if (!set_type_align (type, get_alignment (cu, die)))
15506 complaint (_("DW_AT_alignment value too large"
15507 " - DIE at %s [in module %s]"),
15508 sect_offset_str (die->sect_off),
15509 objfile_name (cu->per_objfile->objfile));
15510 }
15511
15512 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15513 constant for a type, according to DWARF5 spec, Table 5.5. */
15514
15515 static bool
15516 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15517 {
15518 switch (value)
15519 {
15520 case DW_CC_normal:
15521 case DW_CC_pass_by_reference:
15522 case DW_CC_pass_by_value:
15523 return true;
15524
15525 default:
15526 complaint (_("unrecognized DW_AT_calling_convention value "
15527 "(%s) for a type"), pulongest (value));
15528 return false;
15529 }
15530 }
15531
15532 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15533 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15534 also according to GNU-specific values (see include/dwarf2.h). */
15535
15536 static bool
15537 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15538 {
15539 switch (value)
15540 {
15541 case DW_CC_normal:
15542 case DW_CC_program:
15543 case DW_CC_nocall:
15544 return true;
15545
15546 case DW_CC_GNU_renesas_sh:
15547 case DW_CC_GNU_borland_fastcall_i386:
15548 case DW_CC_GDB_IBM_OpenCL:
15549 return true;
15550
15551 default:
15552 complaint (_("unrecognized DW_AT_calling_convention value "
15553 "(%s) for a subroutine"), pulongest (value));
15554 return false;
15555 }
15556 }
15557
15558 /* Called when we find the DIE that starts a structure or union scope
15559 (definition) to create a type for the structure or union. Fill in
15560 the type's name and general properties; the members will not be
15561 processed until process_structure_scope. A symbol table entry for
15562 the type will also not be done until process_structure_scope (assuming
15563 the type has a name).
15564
15565 NOTE: we need to call these functions regardless of whether or not the
15566 DIE has a DW_AT_name attribute, since it might be an anonymous
15567 structure or union. This gets the type entered into our set of
15568 user defined types. */
15569
15570 static struct type *
15571 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15572 {
15573 struct objfile *objfile = cu->per_objfile->objfile;
15574 struct type *type;
15575 struct attribute *attr;
15576 const char *name;
15577
15578 /* If the definition of this type lives in .debug_types, read that type.
15579 Don't follow DW_AT_specification though, that will take us back up
15580 the chain and we want to go down. */
15581 attr = die->attr (DW_AT_signature);
15582 if (attr != nullptr)
15583 {
15584 type = get_DW_AT_signature_type (die, attr, cu);
15585
15586 /* The type's CU may not be the same as CU.
15587 Ensure TYPE is recorded with CU in die_type_hash. */
15588 return set_die_type (die, type, cu);
15589 }
15590
15591 type = alloc_type (objfile);
15592 INIT_CPLUS_SPECIFIC (type);
15593
15594 name = dwarf2_name (die, cu);
15595 if (name != NULL)
15596 {
15597 if (cu->per_cu->lang == language_cplus
15598 || cu->per_cu->lang == language_d
15599 || cu->per_cu->lang == language_rust)
15600 {
15601 const char *full_name = dwarf2_full_name (name, die, cu);
15602
15603 /* dwarf2_full_name might have already finished building the DIE's
15604 type. If so, there is no need to continue. */
15605 if (get_die_type (die, cu) != NULL)
15606 return get_die_type (die, cu);
15607
15608 type->set_name (full_name);
15609 }
15610 else
15611 {
15612 /* The name is already allocated along with this objfile, so
15613 we don't need to duplicate it for the type. */
15614 type->set_name (name);
15615 }
15616 }
15617
15618 if (die->tag == DW_TAG_structure_type)
15619 {
15620 type->set_code (TYPE_CODE_STRUCT);
15621 }
15622 else if (die->tag == DW_TAG_union_type)
15623 {
15624 type->set_code (TYPE_CODE_UNION);
15625 }
15626 else
15627 {
15628 type->set_code (TYPE_CODE_STRUCT);
15629 }
15630
15631 if (cu->per_cu->lang == language_cplus && die->tag == DW_TAG_class_type)
15632 type->set_is_declared_class (true);
15633
15634 /* Store the calling convention in the type if it's available in
15635 the die. Otherwise the calling convention remains set to
15636 the default value DW_CC_normal. */
15637 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15638 if (attr != nullptr
15639 && is_valid_DW_AT_calling_convention_for_type (attr->constant_value (0)))
15640 {
15641 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15642 TYPE_CPLUS_CALLING_CONVENTION (type)
15643 = (enum dwarf_calling_convention) (attr->constant_value (0));
15644 }
15645
15646 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15647 if (attr != nullptr)
15648 {
15649 if (attr->form_is_constant ())
15650 TYPE_LENGTH (type) = attr->constant_value (0);
15651 else
15652 {
15653 struct dynamic_prop prop;
15654 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
15655 type->add_dyn_prop (DYN_PROP_BYTE_SIZE, prop);
15656 TYPE_LENGTH (type) = 0;
15657 }
15658 }
15659 else
15660 {
15661 TYPE_LENGTH (type) = 0;
15662 }
15663
15664 maybe_set_alignment (cu, die, type);
15665
15666 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15667 {
15668 /* ICC<14 does not output the required DW_AT_declaration on
15669 incomplete types, but gives them a size of zero. */
15670 type->set_is_stub (true);
15671 }
15672 else
15673 type->set_stub_is_supported (true);
15674
15675 if (die_is_declaration (die, cu))
15676 type->set_is_stub (true);
15677 else if (attr == NULL && die->child == NULL
15678 && producer_is_realview (cu->producer))
15679 /* RealView does not output the required DW_AT_declaration
15680 on incomplete types. */
15681 type->set_is_stub (true);
15682
15683 /* We need to add the type field to the die immediately so we don't
15684 infinitely recurse when dealing with pointers to the structure
15685 type within the structure itself. */
15686 set_die_type (die, type, cu);
15687
15688 /* set_die_type should be already done. */
15689 set_descriptive_type (type, die, cu);
15690
15691 return type;
15692 }
15693
15694 static void handle_struct_member_die
15695 (struct die_info *child_die,
15696 struct type *type,
15697 struct field_info *fi,
15698 std::vector<struct symbol *> *template_args,
15699 struct dwarf2_cu *cu);
15700
15701 /* A helper for handle_struct_member_die that handles
15702 DW_TAG_variant_part. */
15703
15704 static void
15705 handle_variant_part (struct die_info *die, struct type *type,
15706 struct field_info *fi,
15707 std::vector<struct symbol *> *template_args,
15708 struct dwarf2_cu *cu)
15709 {
15710 variant_part_builder *new_part;
15711 if (fi->current_variant_part == nullptr)
15712 {
15713 fi->variant_parts.emplace_back ();
15714 new_part = &fi->variant_parts.back ();
15715 }
15716 else if (!fi->current_variant_part->processing_variant)
15717 {
15718 complaint (_("nested DW_TAG_variant_part seen "
15719 "- DIE at %s [in module %s]"),
15720 sect_offset_str (die->sect_off),
15721 objfile_name (cu->per_objfile->objfile));
15722 return;
15723 }
15724 else
15725 {
15726 variant_field &current = fi->current_variant_part->variants.back ();
15727 current.variant_parts.emplace_back ();
15728 new_part = &current.variant_parts.back ();
15729 }
15730
15731 /* When we recurse, we want callees to add to this new variant
15732 part. */
15733 scoped_restore save_current_variant_part
15734 = make_scoped_restore (&fi->current_variant_part, new_part);
15735
15736 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15737 if (discr == NULL)
15738 {
15739 /* It's a univariant form, an extension we support. */
15740 }
15741 else if (discr->form_is_ref ())
15742 {
15743 struct dwarf2_cu *target_cu = cu;
15744 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15745
15746 new_part->discriminant_offset = target_die->sect_off;
15747 }
15748 else
15749 {
15750 complaint (_("DW_AT_discr does not have DIE reference form"
15751 " - DIE at %s [in module %s]"),
15752 sect_offset_str (die->sect_off),
15753 objfile_name (cu->per_objfile->objfile));
15754 }
15755
15756 for (die_info *child_die = die->child;
15757 child_die != NULL;
15758 child_die = child_die->sibling)
15759 handle_struct_member_die (child_die, type, fi, template_args, cu);
15760 }
15761
15762 /* A helper for handle_struct_member_die that handles
15763 DW_TAG_variant. */
15764
15765 static void
15766 handle_variant (struct die_info *die, struct type *type,
15767 struct field_info *fi,
15768 std::vector<struct symbol *> *template_args,
15769 struct dwarf2_cu *cu)
15770 {
15771 if (fi->current_variant_part == nullptr)
15772 {
15773 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
15774 "- DIE at %s [in module %s]"),
15775 sect_offset_str (die->sect_off),
15776 objfile_name (cu->per_objfile->objfile));
15777 return;
15778 }
15779 if (fi->current_variant_part->processing_variant)
15780 {
15781 complaint (_("nested DW_TAG_variant seen "
15782 "- DIE at %s [in module %s]"),
15783 sect_offset_str (die->sect_off),
15784 objfile_name (cu->per_objfile->objfile));
15785 return;
15786 }
15787
15788 scoped_restore save_processing_variant
15789 = make_scoped_restore (&fi->current_variant_part->processing_variant,
15790 true);
15791
15792 fi->current_variant_part->variants.emplace_back ();
15793 variant_field &variant = fi->current_variant_part->variants.back ();
15794 variant.first_field = fi->fields.size ();
15795
15796 /* In a variant we want to get the discriminant and also add a
15797 field for our sole member child. */
15798 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
15799 if (discr == nullptr || !discr->form_is_constant ())
15800 {
15801 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
15802 if (discr == nullptr || discr->as_block ()->size == 0)
15803 variant.default_branch = true;
15804 else
15805 variant.discr_list_data = discr->as_block ();
15806 }
15807 else
15808 variant.discriminant_value = discr->constant_value (0);
15809
15810 for (die_info *variant_child = die->child;
15811 variant_child != NULL;
15812 variant_child = variant_child->sibling)
15813 handle_struct_member_die (variant_child, type, fi, template_args, cu);
15814
15815 variant.last_field = fi->fields.size ();
15816 }
15817
15818 /* A helper for process_structure_scope that handles a single member
15819 DIE. */
15820
15821 static void
15822 handle_struct_member_die (struct die_info *child_die, struct type *type,
15823 struct field_info *fi,
15824 std::vector<struct symbol *> *template_args,
15825 struct dwarf2_cu *cu)
15826 {
15827 if (child_die->tag == DW_TAG_member
15828 || child_die->tag == DW_TAG_variable)
15829 {
15830 /* NOTE: carlton/2002-11-05: A C++ static data member
15831 should be a DW_TAG_member that is a declaration, but
15832 all versions of G++ as of this writing (so through at
15833 least 3.2.1) incorrectly generate DW_TAG_variable
15834 tags for them instead. */
15835 dwarf2_add_field (fi, child_die, cu);
15836 }
15837 else if (child_die->tag == DW_TAG_subprogram)
15838 {
15839 /* Rust doesn't have member functions in the C++ sense.
15840 However, it does emit ordinary functions as children
15841 of a struct DIE. */
15842 if (cu->per_cu->lang == language_rust)
15843 read_func_scope (child_die, cu);
15844 else
15845 {
15846 /* C++ member function. */
15847 dwarf2_add_member_fn (fi, child_die, type, cu);
15848 }
15849 }
15850 else if (child_die->tag == DW_TAG_inheritance)
15851 {
15852 /* C++ base class field. */
15853 dwarf2_add_field (fi, child_die, cu);
15854 }
15855 else if (type_can_define_types (child_die))
15856 dwarf2_add_type_defn (fi, child_die, cu);
15857 else if (child_die->tag == DW_TAG_template_type_param
15858 || child_die->tag == DW_TAG_template_value_param)
15859 {
15860 struct symbol *arg = new_symbol (child_die, NULL, cu);
15861
15862 if (arg != NULL)
15863 template_args->push_back (arg);
15864 }
15865 else if (child_die->tag == DW_TAG_variant_part)
15866 handle_variant_part (child_die, type, fi, template_args, cu);
15867 else if (child_die->tag == DW_TAG_variant)
15868 handle_variant (child_die, type, fi, template_args, cu);
15869 }
15870
15871 /* Finish creating a structure or union type, including filling in
15872 its members and creating a symbol for it. */
15873
15874 static void
15875 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15876 {
15877 struct objfile *objfile = cu->per_objfile->objfile;
15878 struct die_info *child_die;
15879 struct type *type;
15880
15881 type = get_die_type (die, cu);
15882 if (type == NULL)
15883 type = read_structure_type (die, cu);
15884
15885 bool has_template_parameters = false;
15886 if (die->child != NULL && ! die_is_declaration (die, cu))
15887 {
15888 struct field_info fi;
15889 std::vector<struct symbol *> template_args;
15890
15891 child_die = die->child;
15892
15893 while (child_die && child_die->tag)
15894 {
15895 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15896 child_die = child_die->sibling;
15897 }
15898
15899 /* Attach template arguments to type. */
15900 if (!template_args.empty ())
15901 {
15902 has_template_parameters = true;
15903 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15904 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15905 TYPE_TEMPLATE_ARGUMENTS (type)
15906 = XOBNEWVEC (&objfile->objfile_obstack,
15907 struct symbol *,
15908 TYPE_N_TEMPLATE_ARGUMENTS (type));
15909 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15910 template_args.data (),
15911 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15912 * sizeof (struct symbol *)));
15913 }
15914
15915 /* Attach fields and member functions to the type. */
15916 if (fi.nfields () > 0)
15917 dwarf2_attach_fields_to_type (&fi, type, cu);
15918 if (!fi.fnfieldlists.empty ())
15919 {
15920 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15921
15922 /* Get the type which refers to the base class (possibly this
15923 class itself) which contains the vtable pointer for the current
15924 class from the DW_AT_containing_type attribute. This use of
15925 DW_AT_containing_type is a GNU extension. */
15926
15927 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15928 {
15929 struct type *t = die_containing_type (die, cu);
15930
15931 set_type_vptr_basetype (type, t);
15932 if (type == t)
15933 {
15934 int i;
15935
15936 /* Our own class provides vtbl ptr. */
15937 for (i = t->num_fields () - 1;
15938 i >= TYPE_N_BASECLASSES (t);
15939 --i)
15940 {
15941 const char *fieldname = t->field (i).name ();
15942
15943 if (is_vtable_name (fieldname, cu))
15944 {
15945 set_type_vptr_fieldno (type, i);
15946 break;
15947 }
15948 }
15949
15950 /* Complain if virtual function table field not found. */
15951 if (i < TYPE_N_BASECLASSES (t))
15952 complaint (_("virtual function table pointer "
15953 "not found when defining class '%s'"),
15954 type->name () ? type->name () : "");
15955 }
15956 else
15957 {
15958 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15959 }
15960 }
15961 else if (cu->producer
15962 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15963 {
15964 /* The IBM XLC compiler does not provide direct indication
15965 of the containing type, but the vtable pointer is
15966 always named __vfp. */
15967
15968 int i;
15969
15970 for (i = type->num_fields () - 1;
15971 i >= TYPE_N_BASECLASSES (type);
15972 --i)
15973 {
15974 if (strcmp (type->field (i).name (), "__vfp") == 0)
15975 {
15976 set_type_vptr_fieldno (type, i);
15977 set_type_vptr_basetype (type, type);
15978 break;
15979 }
15980 }
15981 }
15982 }
15983
15984 /* Copy fi.typedef_field_list linked list elements content into the
15985 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15986 if (!fi.typedef_field_list.empty ())
15987 {
15988 int count = fi.typedef_field_list.size ();
15989
15990 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15991 TYPE_TYPEDEF_FIELD_ARRAY (type)
15992 = ((struct decl_field *)
15993 TYPE_ALLOC (type,
15994 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15995 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15996
15997 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15998 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15999 }
16000
16001 /* Copy fi.nested_types_list linked list elements content into the
16002 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16003 if (!fi.nested_types_list.empty ()
16004 && cu->per_cu->lang != language_ada)
16005 {
16006 int count = fi.nested_types_list.size ();
16007
16008 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16009 TYPE_NESTED_TYPES_ARRAY (type)
16010 = ((struct decl_field *)
16011 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16012 TYPE_NESTED_TYPES_COUNT (type) = count;
16013
16014 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16015 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16016 }
16017 }
16018
16019 quirk_gcc_member_function_pointer (type, objfile);
16020 if (cu->per_cu->lang == language_rust && die->tag == DW_TAG_union_type)
16021 cu->rust_unions.push_back (type);
16022 else if (cu->per_cu->lang == language_ada)
16023 quirk_ada_thick_pointer_struct (die, cu, type);
16024
16025 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16026 snapshots) has been known to create a die giving a declaration
16027 for a class that has, as a child, a die giving a definition for a
16028 nested class. So we have to process our children even if the
16029 current die is a declaration. Normally, of course, a declaration
16030 won't have any children at all. */
16031
16032 child_die = die->child;
16033
16034 while (child_die != NULL && child_die->tag)
16035 {
16036 if (child_die->tag == DW_TAG_member
16037 || child_die->tag == DW_TAG_variable
16038 || child_die->tag == DW_TAG_inheritance
16039 || child_die->tag == DW_TAG_template_value_param
16040 || child_die->tag == DW_TAG_template_type_param)
16041 {
16042 /* Do nothing. */
16043 }
16044 else
16045 process_die (child_die, cu);
16046
16047 child_die = child_die->sibling;
16048 }
16049
16050 /* Do not consider external references. According to the DWARF standard,
16051 these DIEs are identified by the fact that they have no byte_size
16052 attribute, and a declaration attribute. */
16053 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16054 || !die_is_declaration (die, cu)
16055 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
16056 {
16057 struct symbol *sym = new_symbol (die, type, cu);
16058
16059 if (has_template_parameters)
16060 {
16061 struct symtab *symtab;
16062 if (sym != nullptr)
16063 symtab = symbol_symtab (sym);
16064 else if (cu->line_header != nullptr)
16065 {
16066 /* Any related symtab will do. */
16067 symtab
16068 = cu->line_header->file_names ()[0].symtab;
16069 }
16070 else
16071 {
16072 symtab = nullptr;
16073 complaint (_("could not find suitable "
16074 "symtab for template parameter"
16075 " - DIE at %s [in module %s]"),
16076 sect_offset_str (die->sect_off),
16077 objfile_name (objfile));
16078 }
16079
16080 if (symtab != nullptr)
16081 {
16082 /* Make sure that the symtab is set on the new symbols.
16083 Even though they don't appear in this symtab directly,
16084 other parts of gdb assume that symbols do, and this is
16085 reasonably true. */
16086 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16087 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16088 }
16089 }
16090 }
16091 }
16092
16093 /* Assuming DIE is an enumeration type, and TYPE is its associated
16094 type, update TYPE using some information only available in DIE's
16095 children. In particular, the fields are computed. */
16096
16097 static void
16098 update_enumeration_type_from_children (struct die_info *die,
16099 struct type *type,
16100 struct dwarf2_cu *cu)
16101 {
16102 struct die_info *child_die;
16103 int unsigned_enum = 1;
16104 int flag_enum = 1;
16105
16106 auto_obstack obstack;
16107 std::vector<struct field> fields;
16108
16109 for (child_die = die->child;
16110 child_die != NULL && child_die->tag;
16111 child_die = child_die->sibling)
16112 {
16113 struct attribute *attr;
16114 LONGEST value;
16115 const gdb_byte *bytes;
16116 struct dwarf2_locexpr_baton *baton;
16117 const char *name;
16118
16119 if (child_die->tag != DW_TAG_enumerator)
16120 continue;
16121
16122 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16123 if (attr == NULL)
16124 continue;
16125
16126 name = dwarf2_name (child_die, cu);
16127 if (name == NULL)
16128 name = "<anonymous enumerator>";
16129
16130 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16131 &value, &bytes, &baton);
16132 if (value < 0)
16133 {
16134 unsigned_enum = 0;
16135 flag_enum = 0;
16136 }
16137 else
16138 {
16139 if (count_one_bits_ll (value) >= 2)
16140 flag_enum = 0;
16141 }
16142
16143 fields.emplace_back ();
16144 struct field &field = fields.back ();
16145 field.set_name (dwarf2_physname (name, child_die, cu));
16146 SET_FIELD_ENUMVAL (field, value);
16147 }
16148
16149 if (!fields.empty ())
16150 {
16151 type->set_num_fields (fields.size ());
16152 type->set_fields
16153 ((struct field *)
16154 TYPE_ALLOC (type, sizeof (struct field) * fields.size ()));
16155 memcpy (type->fields (), fields.data (),
16156 sizeof (struct field) * fields.size ());
16157 }
16158
16159 if (unsigned_enum)
16160 type->set_is_unsigned (true);
16161
16162 if (flag_enum)
16163 type->set_is_flag_enum (true);
16164 }
16165
16166 /* Given a DW_AT_enumeration_type die, set its type. We do not
16167 complete the type's fields yet, or create any symbols. */
16168
16169 static struct type *
16170 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16171 {
16172 struct objfile *objfile = cu->per_objfile->objfile;
16173 struct type *type;
16174 struct attribute *attr;
16175 const char *name;
16176
16177 /* If the definition of this type lives in .debug_types, read that type.
16178 Don't follow DW_AT_specification though, that will take us back up
16179 the chain and we want to go down. */
16180 attr = die->attr (DW_AT_signature);
16181 if (attr != nullptr)
16182 {
16183 type = get_DW_AT_signature_type (die, attr, cu);
16184
16185 /* The type's CU may not be the same as CU.
16186 Ensure TYPE is recorded with CU in die_type_hash. */
16187 return set_die_type (die, type, cu);
16188 }
16189
16190 type = alloc_type (objfile);
16191
16192 type->set_code (TYPE_CODE_ENUM);
16193 name = dwarf2_full_name (NULL, die, cu);
16194 if (name != NULL)
16195 type->set_name (name);
16196
16197 attr = dwarf2_attr (die, DW_AT_type, cu);
16198 if (attr != NULL)
16199 {
16200 struct type *underlying_type = die_type (die, cu);
16201
16202 TYPE_TARGET_TYPE (type) = underlying_type;
16203 }
16204
16205 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16206 if (attr != nullptr)
16207 {
16208 TYPE_LENGTH (type) = attr->constant_value (0);
16209 }
16210 else
16211 {
16212 TYPE_LENGTH (type) = 0;
16213 }
16214
16215 maybe_set_alignment (cu, die, type);
16216
16217 /* The enumeration DIE can be incomplete. In Ada, any type can be
16218 declared as private in the package spec, and then defined only
16219 inside the package body. Such types are known as Taft Amendment
16220 Types. When another package uses such a type, an incomplete DIE
16221 may be generated by the compiler. */
16222 if (die_is_declaration (die, cu))
16223 type->set_is_stub (true);
16224
16225 /* If this type has an underlying type that is not a stub, then we
16226 may use its attributes. We always use the "unsigned" attribute
16227 in this situation, because ordinarily we guess whether the type
16228 is unsigned -- but the guess can be wrong and the underlying type
16229 can tell us the reality. However, we defer to a local size
16230 attribute if one exists, because this lets the compiler override
16231 the underlying type if needed. */
16232 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_TARGET_TYPE (type)->is_stub ())
16233 {
16234 struct type *underlying_type = TYPE_TARGET_TYPE (type);
16235 underlying_type = check_typedef (underlying_type);
16236
16237 type->set_is_unsigned (underlying_type->is_unsigned ());
16238
16239 if (TYPE_LENGTH (type) == 0)
16240 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
16241
16242 if (TYPE_RAW_ALIGN (type) == 0
16243 && TYPE_RAW_ALIGN (underlying_type) != 0)
16244 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
16245 }
16246
16247 type->set_is_declared_class (dwarf2_flag_true_p (die, DW_AT_enum_class, cu));
16248
16249 set_die_type (die, type, cu);
16250
16251 /* Finish the creation of this type by using the enum's children.
16252 Note that, as usual, this must come after set_die_type to avoid
16253 infinite recursion when trying to compute the names of the
16254 enumerators. */
16255 update_enumeration_type_from_children (die, type, cu);
16256
16257 return type;
16258 }
16259
16260 /* Given a pointer to a die which begins an enumeration, process all
16261 the dies that define the members of the enumeration, and create the
16262 symbol for the enumeration type.
16263
16264 NOTE: We reverse the order of the element list. */
16265
16266 static void
16267 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16268 {
16269 struct type *this_type;
16270
16271 this_type = get_die_type (die, cu);
16272 if (this_type == NULL)
16273 this_type = read_enumeration_type (die, cu);
16274
16275 if (die->child != NULL)
16276 {
16277 struct die_info *child_die;
16278 const char *name;
16279
16280 child_die = die->child;
16281 while (child_die && child_die->tag)
16282 {
16283 if (child_die->tag != DW_TAG_enumerator)
16284 {
16285 process_die (child_die, cu);
16286 }
16287 else
16288 {
16289 name = dwarf2_name (child_die, cu);
16290 if (name)
16291 new_symbol (child_die, this_type, cu);
16292 }
16293
16294 child_die = child_die->sibling;
16295 }
16296 }
16297
16298 /* If we are reading an enum from a .debug_types unit, and the enum
16299 is a declaration, and the enum is not the signatured type in the
16300 unit, then we do not want to add a symbol for it. Adding a
16301 symbol would in some cases obscure the true definition of the
16302 enum, giving users an incomplete type when the definition is
16303 actually available. Note that we do not want to do this for all
16304 enums which are just declarations, because C++0x allows forward
16305 enum declarations. */
16306 if (cu->per_cu->is_debug_types
16307 && die_is_declaration (die, cu))
16308 {
16309 struct signatured_type *sig_type;
16310
16311 sig_type = (struct signatured_type *) cu->per_cu;
16312 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16313 if (sig_type->type_offset_in_section != die->sect_off)
16314 return;
16315 }
16316
16317 new_symbol (die, this_type, cu);
16318 }
16319
16320 /* Helper function for quirk_ada_thick_pointer that examines a bounds
16321 expression for an index type and finds the corresponding field
16322 offset in the hidden "P_BOUNDS" structure. Returns true on success
16323 and updates *FIELD, false if it fails to recognize an
16324 expression. */
16325
16326 static bool
16327 recognize_bound_expression (struct die_info *die, enum dwarf_attribute name,
16328 int *bounds_offset, struct field *field,
16329 struct dwarf2_cu *cu)
16330 {
16331 struct attribute *attr = dwarf2_attr (die, name, cu);
16332 if (attr == nullptr || !attr->form_is_block ())
16333 return false;
16334
16335 const struct dwarf_block *block = attr->as_block ();
16336 const gdb_byte *start = block->data;
16337 const gdb_byte *end = block->data + block->size;
16338
16339 /* The expression to recognize generally looks like:
16340
16341 (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref;
16342 DW_OP_plus_uconst: 4; DW_OP_deref_size: 4)
16343
16344 However, the second "plus_uconst" may be missing:
16345
16346 (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref;
16347 DW_OP_deref_size: 4)
16348
16349 This happens when the field is at the start of the structure.
16350
16351 Also, the final deref may not be sized:
16352
16353 (DW_OP_push_object_address; DW_OP_plus_uconst: 4; DW_OP_deref;
16354 DW_OP_deref)
16355
16356 This happens when the size of the index type happens to be the
16357 same as the architecture's word size. This can occur with or
16358 without the second plus_uconst. */
16359
16360 if (end - start < 2)
16361 return false;
16362 if (*start++ != DW_OP_push_object_address)
16363 return false;
16364 if (*start++ != DW_OP_plus_uconst)
16365 return false;
16366
16367 uint64_t this_bound_off;
16368 start = gdb_read_uleb128 (start, end, &this_bound_off);
16369 if (start == nullptr || (int) this_bound_off != this_bound_off)
16370 return false;
16371 /* Update *BOUNDS_OFFSET if needed, or alternatively verify that it
16372 is consistent among all bounds. */
16373 if (*bounds_offset == -1)
16374 *bounds_offset = this_bound_off;
16375 else if (*bounds_offset != this_bound_off)
16376 return false;
16377
16378 if (start == end || *start++ != DW_OP_deref)
16379 return false;
16380
16381 int offset = 0;
16382 if (start ==end)
16383 return false;
16384 else if (*start == DW_OP_deref_size || *start == DW_OP_deref)
16385 {
16386 /* This means an offset of 0. */
16387 }
16388 else if (*start++ != DW_OP_plus_uconst)
16389 return false;
16390 else
16391 {
16392 /* The size is the parameter to DW_OP_plus_uconst. */
16393 uint64_t val;
16394 start = gdb_read_uleb128 (start, end, &val);
16395 if (start == nullptr)
16396 return false;
16397 if ((int) val != val)
16398 return false;
16399 offset = val;
16400 }
16401
16402 if (start == end)
16403 return false;
16404
16405 uint64_t size;
16406 if (*start == DW_OP_deref_size)
16407 {
16408 start = gdb_read_uleb128 (start + 1, end, &size);
16409 if (start == nullptr)
16410 return false;
16411 }
16412 else if (*start == DW_OP_deref)
16413 {
16414 size = cu->header.addr_size;
16415 ++start;
16416 }
16417 else
16418 return false;
16419
16420 SET_FIELD_BITPOS (*field, 8 * offset);
16421 if (size != TYPE_LENGTH (field->type ()))
16422 FIELD_BITSIZE (*field) = 8 * size;
16423
16424 return true;
16425 }
16426
16427 /* With -fgnat-encodings=minimal, gcc will emit some unusual DWARF for
16428 some kinds of Ada arrays:
16429
16430 <1><11db>: Abbrev Number: 7 (DW_TAG_array_type)
16431 <11dc> DW_AT_name : (indirect string, offset: 0x1bb8): string
16432 <11e0> DW_AT_data_location: 2 byte block: 97 6
16433 (DW_OP_push_object_address; DW_OP_deref)
16434 <11e3> DW_AT_type : <0x1173>
16435 <11e7> DW_AT_sibling : <0x1201>
16436 <2><11eb>: Abbrev Number: 8 (DW_TAG_subrange_type)
16437 <11ec> DW_AT_type : <0x1206>
16438 <11f0> DW_AT_lower_bound : 6 byte block: 97 23 8 6 94 4
16439 (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref;
16440 DW_OP_deref_size: 4)
16441 <11f7> DW_AT_upper_bound : 8 byte block: 97 23 8 6 23 4 94 4
16442 (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref;
16443 DW_OP_plus_uconst: 4; DW_OP_deref_size: 4)
16444
16445 This actually represents a "thick pointer", which is a structure
16446 with two elements: one that is a pointer to the array data, and one
16447 that is a pointer to another structure; this second structure holds
16448 the array bounds.
16449
16450 This returns a new type on success, or nullptr if this didn't
16451 recognize the type. */
16452
16453 static struct type *
16454 quirk_ada_thick_pointer (struct die_info *die, struct dwarf2_cu *cu,
16455 struct type *type)
16456 {
16457 struct attribute *attr = dwarf2_attr (die, DW_AT_data_location, cu);
16458 /* So far we've only seen this with block form. */
16459 if (attr == nullptr || !attr->form_is_block ())
16460 return nullptr;
16461
16462 /* Note that this will fail if the structure layout is changed by
16463 the compiler. However, we have no good way to recognize some
16464 other layout, because we don't know what expression the compiler
16465 might choose to emit should this happen. */
16466 struct dwarf_block *blk = attr->as_block ();
16467 if (blk->size != 2
16468 || blk->data[0] != DW_OP_push_object_address
16469 || blk->data[1] != DW_OP_deref)
16470 return nullptr;
16471
16472 int bounds_offset = -1;
16473 int max_align = -1;
16474 std::vector<struct field> range_fields;
16475 for (struct die_info *child_die = die->child;
16476 child_die;
16477 child_die = child_die->sibling)
16478 {
16479 if (child_die->tag == DW_TAG_subrange_type)
16480 {
16481 struct type *underlying = read_subrange_index_type (child_die, cu);
16482
16483 int this_align = type_align (underlying);
16484 if (this_align > max_align)
16485 max_align = this_align;
16486
16487 range_fields.emplace_back ();
16488 range_fields.emplace_back ();
16489
16490 struct field &lower = range_fields[range_fields.size () - 2];
16491 struct field &upper = range_fields[range_fields.size () - 1];
16492
16493 lower.set_type (underlying);
16494 FIELD_ARTIFICIAL (lower) = 1;
16495
16496 upper.set_type (underlying);
16497 FIELD_ARTIFICIAL (upper) = 1;
16498
16499 if (!recognize_bound_expression (child_die, DW_AT_lower_bound,
16500 &bounds_offset, &lower, cu)
16501 || !recognize_bound_expression (child_die, DW_AT_upper_bound,
16502 &bounds_offset, &upper, cu))
16503 return nullptr;
16504 }
16505 }
16506
16507 /* This shouldn't really happen, but double-check that we found
16508 where the bounds are stored. */
16509 if (bounds_offset == -1)
16510 return nullptr;
16511
16512 struct objfile *objfile = cu->per_objfile->objfile;
16513 for (int i = 0; i < range_fields.size (); i += 2)
16514 {
16515 char name[20];
16516
16517 /* Set the name of each field in the bounds. */
16518 xsnprintf (name, sizeof (name), "LB%d", i / 2);
16519 range_fields[i].set_name (objfile->intern (name));
16520 xsnprintf (name, sizeof (name), "UB%d", i / 2);
16521 range_fields[i + 1].set_name (objfile->intern (name));
16522 }
16523
16524 struct type *bounds = alloc_type (objfile);
16525 bounds->set_code (TYPE_CODE_STRUCT);
16526
16527 bounds->set_num_fields (range_fields.size ());
16528 bounds->set_fields
16529 ((struct field *) TYPE_ALLOC (bounds, (bounds->num_fields ()
16530 * sizeof (struct field))));
16531 memcpy (bounds->fields (), range_fields.data (),
16532 bounds->num_fields () * sizeof (struct field));
16533
16534 int last_fieldno = range_fields.size () - 1;
16535 int bounds_size = (TYPE_FIELD_BITPOS (bounds, last_fieldno) / 8
16536 + TYPE_LENGTH (bounds->field (last_fieldno).type ()));
16537 TYPE_LENGTH (bounds) = align_up (bounds_size, max_align);
16538
16539 /* Rewrite the existing array type in place. Specifically, we
16540 remove any dynamic properties we might have read, and we replace
16541 the index types. */
16542 struct type *iter = type;
16543 for (int i = 0; i < range_fields.size (); i += 2)
16544 {
16545 gdb_assert (iter->code () == TYPE_CODE_ARRAY);
16546 iter->main_type->dyn_prop_list = nullptr;
16547 iter->set_index_type
16548 (create_static_range_type (NULL, bounds->field (i).type (), 1, 0));
16549 iter = TYPE_TARGET_TYPE (iter);
16550 }
16551
16552 struct type *result = alloc_type (objfile);
16553 result->set_code (TYPE_CODE_STRUCT);
16554
16555 result->set_num_fields (2);
16556 result->set_fields
16557 ((struct field *) TYPE_ZALLOC (result, (result->num_fields ()
16558 * sizeof (struct field))));
16559
16560 /* The names are chosen to coincide with what the compiler does with
16561 -fgnat-encodings=all, which the Ada code in gdb already
16562 understands. */
16563 result->field (0).set_name ("P_ARRAY");
16564 result->field (0).set_type (lookup_pointer_type (type));
16565
16566 result->field (1).set_name ("P_BOUNDS");
16567 result->field (1).set_type (lookup_pointer_type (bounds));
16568 SET_FIELD_BITPOS (result->field (1), 8 * bounds_offset);
16569
16570 result->set_name (type->name ());
16571 TYPE_LENGTH (result) = (TYPE_LENGTH (result->field (0).type ())
16572 + TYPE_LENGTH (result->field (1).type ()));
16573
16574 return result;
16575 }
16576
16577 /* Extract all information from a DW_TAG_array_type DIE and put it in
16578 the DIE's type field. For now, this only handles one dimensional
16579 arrays. */
16580
16581 static struct type *
16582 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16583 {
16584 struct objfile *objfile = cu->per_objfile->objfile;
16585 struct die_info *child_die;
16586 struct type *type;
16587 struct type *element_type, *range_type, *index_type;
16588 struct attribute *attr;
16589 const char *name;
16590 struct dynamic_prop *byte_stride_prop = NULL;
16591 unsigned int bit_stride = 0;
16592
16593 element_type = die_type (die, cu);
16594
16595 /* The die_type call above may have already set the type for this DIE. */
16596 type = get_die_type (die, cu);
16597 if (type)
16598 return type;
16599
16600 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16601 if (attr != NULL)
16602 {
16603 int stride_ok;
16604 struct type *prop_type = cu->addr_sized_int_type (false);
16605
16606 byte_stride_prop
16607 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16608 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16609 prop_type);
16610 if (!stride_ok)
16611 {
16612 complaint (_("unable to read array DW_AT_byte_stride "
16613 " - DIE at %s [in module %s]"),
16614 sect_offset_str (die->sect_off),
16615 objfile_name (cu->per_objfile->objfile));
16616 /* Ignore this attribute. We will likely not be able to print
16617 arrays of this type correctly, but there is little we can do
16618 to help if we cannot read the attribute's value. */
16619 byte_stride_prop = NULL;
16620 }
16621 }
16622
16623 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16624 if (attr != NULL)
16625 bit_stride = attr->constant_value (0);
16626
16627 /* Irix 6.2 native cc creates array types without children for
16628 arrays with unspecified length. */
16629 if (die->child == NULL)
16630 {
16631 index_type = objfile_type (objfile)->builtin_int;
16632 range_type = create_static_range_type (NULL, index_type, 0, -1);
16633 type = create_array_type_with_stride (NULL, element_type, range_type,
16634 byte_stride_prop, bit_stride);
16635 return set_die_type (die, type, cu);
16636 }
16637
16638 std::vector<struct type *> range_types;
16639 child_die = die->child;
16640 while (child_die && child_die->tag)
16641 {
16642 if (child_die->tag == DW_TAG_subrange_type)
16643 {
16644 struct type *child_type = read_type_die (child_die, cu);
16645
16646 if (child_type != NULL)
16647 {
16648 /* The range type was succesfully read. Save it for the
16649 array type creation. */
16650 range_types.push_back (child_type);
16651 }
16652 }
16653 child_die = child_die->sibling;
16654 }
16655
16656 if (range_types.empty ())
16657 {
16658 complaint (_("unable to find array range - DIE at %s [in module %s]"),
16659 sect_offset_str (die->sect_off),
16660 objfile_name (cu->per_objfile->objfile));
16661 return NULL;
16662 }
16663
16664 /* Dwarf2 dimensions are output from left to right, create the
16665 necessary array types in backwards order. */
16666
16667 type = element_type;
16668
16669 if (read_array_order (die, cu) == DW_ORD_col_major)
16670 {
16671 int i = 0;
16672
16673 while (i < range_types.size ())
16674 {
16675 type = create_array_type_with_stride (NULL, type, range_types[i++],
16676 byte_stride_prop, bit_stride);
16677 bit_stride = 0;
16678 byte_stride_prop = nullptr;
16679 }
16680 }
16681 else
16682 {
16683 size_t ndim = range_types.size ();
16684 while (ndim-- > 0)
16685 {
16686 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16687 byte_stride_prop, bit_stride);
16688 bit_stride = 0;
16689 byte_stride_prop = nullptr;
16690 }
16691 }
16692
16693 gdb_assert (type != element_type);
16694
16695 /* Understand Dwarf2 support for vector types (like they occur on
16696 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16697 array type. This is not part of the Dwarf2/3 standard yet, but a
16698 custom vendor extension. The main difference between a regular
16699 array and the vector variant is that vectors are passed by value
16700 to functions. */
16701 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16702 if (attr != nullptr)
16703 make_vector_type (type);
16704
16705 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16706 implementation may choose to implement triple vectors using this
16707 attribute. */
16708 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16709 if (attr != nullptr && attr->form_is_unsigned ())
16710 {
16711 if (attr->as_unsigned () >= TYPE_LENGTH (type))
16712 TYPE_LENGTH (type) = attr->as_unsigned ();
16713 else
16714 complaint (_("DW_AT_byte_size for array type smaller "
16715 "than the total size of elements"));
16716 }
16717
16718 name = dwarf2_name (die, cu);
16719 if (name)
16720 type->set_name (name);
16721
16722 maybe_set_alignment (cu, die, type);
16723
16724 struct type *replacement_type = nullptr;
16725 if (cu->per_cu->lang == language_ada)
16726 {
16727 replacement_type = quirk_ada_thick_pointer (die, cu, type);
16728 if (replacement_type != nullptr)
16729 type = replacement_type;
16730 }
16731
16732 /* Install the type in the die. */
16733 set_die_type (die, type, cu, replacement_type != nullptr);
16734
16735 /* set_die_type should be already done. */
16736 set_descriptive_type (type, die, cu);
16737
16738 return type;
16739 }
16740
16741 static enum dwarf_array_dim_ordering
16742 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16743 {
16744 struct attribute *attr;
16745
16746 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16747
16748 if (attr != nullptr)
16749 {
16750 LONGEST val = attr->constant_value (-1);
16751 if (val == DW_ORD_row_major || val == DW_ORD_col_major)
16752 return (enum dwarf_array_dim_ordering) val;
16753 }
16754
16755 /* GNU F77 is a special case, as at 08/2004 array type info is the
16756 opposite order to the dwarf2 specification, but data is still
16757 laid out as per normal fortran.
16758
16759 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16760 version checking. */
16761
16762 if (cu->per_cu->lang == language_fortran
16763 && cu->producer && strstr (cu->producer, "GNU F77"))
16764 {
16765 return DW_ORD_row_major;
16766 }
16767
16768 switch (cu->language_defn->array_ordering ())
16769 {
16770 case array_column_major:
16771 return DW_ORD_col_major;
16772 case array_row_major:
16773 default:
16774 return DW_ORD_row_major;
16775 };
16776 }
16777
16778 /* Extract all information from a DW_TAG_set_type DIE and put it in
16779 the DIE's type field. */
16780
16781 static struct type *
16782 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16783 {
16784 struct type *domain_type, *set_type;
16785 struct attribute *attr;
16786
16787 domain_type = die_type (die, cu);
16788
16789 /* The die_type call above may have already set the type for this DIE. */
16790 set_type = get_die_type (die, cu);
16791 if (set_type)
16792 return set_type;
16793
16794 set_type = create_set_type (NULL, domain_type);
16795
16796 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16797 if (attr != nullptr && attr->form_is_unsigned ())
16798 TYPE_LENGTH (set_type) = attr->as_unsigned ();
16799
16800 maybe_set_alignment (cu, die, set_type);
16801
16802 return set_die_type (die, set_type, cu);
16803 }
16804
16805 /* A helper for read_common_block that creates a locexpr baton.
16806 SYM is the symbol which we are marking as computed.
16807 COMMON_DIE is the DIE for the common block.
16808 COMMON_LOC is the location expression attribute for the common
16809 block itself.
16810 MEMBER_LOC is the location expression attribute for the particular
16811 member of the common block that we are processing.
16812 CU is the CU from which the above come. */
16813
16814 static void
16815 mark_common_block_symbol_computed (struct symbol *sym,
16816 struct die_info *common_die,
16817 struct attribute *common_loc,
16818 struct attribute *member_loc,
16819 struct dwarf2_cu *cu)
16820 {
16821 dwarf2_per_objfile *per_objfile = cu->per_objfile;
16822 struct objfile *objfile = per_objfile->objfile;
16823 struct dwarf2_locexpr_baton *baton;
16824 gdb_byte *ptr;
16825 unsigned int cu_off;
16826 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16827 LONGEST offset = 0;
16828
16829 gdb_assert (common_loc && member_loc);
16830 gdb_assert (common_loc->form_is_block ());
16831 gdb_assert (member_loc->form_is_block ()
16832 || member_loc->form_is_constant ());
16833
16834 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16835 baton->per_objfile = per_objfile;
16836 baton->per_cu = cu->per_cu;
16837 gdb_assert (baton->per_cu);
16838
16839 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16840
16841 if (member_loc->form_is_constant ())
16842 {
16843 offset = member_loc->constant_value (0);
16844 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16845 }
16846 else
16847 baton->size += member_loc->as_block ()->size;
16848
16849 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16850 baton->data = ptr;
16851
16852 *ptr++ = DW_OP_call4;
16853 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16854 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16855 ptr += 4;
16856
16857 if (member_loc->form_is_constant ())
16858 {
16859 *ptr++ = DW_OP_addr;
16860 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16861 ptr += cu->header.addr_size;
16862 }
16863 else
16864 {
16865 /* We have to copy the data here, because DW_OP_call4 will only
16866 use a DW_AT_location attribute. */
16867 struct dwarf_block *block = member_loc->as_block ();
16868 memcpy (ptr, block->data, block->size);
16869 ptr += block->size;
16870 }
16871
16872 *ptr++ = DW_OP_plus;
16873 gdb_assert (ptr - baton->data == baton->size);
16874
16875 SYMBOL_LOCATION_BATON (sym) = baton;
16876 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16877 }
16878
16879 /* Create appropriate locally-scoped variables for all the
16880 DW_TAG_common_block entries. Also create a struct common_block
16881 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16882 is used to separate the common blocks name namespace from regular
16883 variable names. */
16884
16885 static void
16886 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16887 {
16888 struct attribute *attr;
16889
16890 attr = dwarf2_attr (die, DW_AT_location, cu);
16891 if (attr != nullptr)
16892 {
16893 /* Support the .debug_loc offsets. */
16894 if (attr->form_is_block ())
16895 {
16896 /* Ok. */
16897 }
16898 else if (attr->form_is_section_offset ())
16899 {
16900 dwarf2_complex_location_expr_complaint ();
16901 attr = NULL;
16902 }
16903 else
16904 {
16905 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16906 "common block member");
16907 attr = NULL;
16908 }
16909 }
16910
16911 if (die->child != NULL)
16912 {
16913 struct objfile *objfile = cu->per_objfile->objfile;
16914 struct die_info *child_die;
16915 size_t n_entries = 0, size;
16916 struct common_block *common_block;
16917 struct symbol *sym;
16918
16919 for (child_die = die->child;
16920 child_die && child_die->tag;
16921 child_die = child_die->sibling)
16922 ++n_entries;
16923
16924 size = (sizeof (struct common_block)
16925 + (n_entries - 1) * sizeof (struct symbol *));
16926 common_block
16927 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16928 size);
16929 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16930 common_block->n_entries = 0;
16931
16932 for (child_die = die->child;
16933 child_die && child_die->tag;
16934 child_die = child_die->sibling)
16935 {
16936 /* Create the symbol in the DW_TAG_common_block block in the current
16937 symbol scope. */
16938 sym = new_symbol (child_die, NULL, cu);
16939 if (sym != NULL)
16940 {
16941 struct attribute *member_loc;
16942
16943 common_block->contents[common_block->n_entries++] = sym;
16944
16945 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16946 cu);
16947 if (member_loc)
16948 {
16949 /* GDB has handled this for a long time, but it is
16950 not specified by DWARF. It seems to have been
16951 emitted by gfortran at least as recently as:
16952 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16953 complaint (_("Variable in common block has "
16954 "DW_AT_data_member_location "
16955 "- DIE at %s [in module %s]"),
16956 sect_offset_str (child_die->sect_off),
16957 objfile_name (objfile));
16958
16959 if (member_loc->form_is_section_offset ())
16960 dwarf2_complex_location_expr_complaint ();
16961 else if (member_loc->form_is_constant ()
16962 || member_loc->form_is_block ())
16963 {
16964 if (attr != nullptr)
16965 mark_common_block_symbol_computed (sym, die, attr,
16966 member_loc, cu);
16967 }
16968 else
16969 dwarf2_complex_location_expr_complaint ();
16970 }
16971 }
16972 }
16973
16974 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16975 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16976 }
16977 }
16978
16979 /* Create a type for a C++ namespace. */
16980
16981 static struct type *
16982 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16983 {
16984 struct objfile *objfile = cu->per_objfile->objfile;
16985 const char *previous_prefix, *name;
16986 int is_anonymous;
16987 struct type *type;
16988
16989 /* For extensions, reuse the type of the original namespace. */
16990 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16991 {
16992 struct die_info *ext_die;
16993 struct dwarf2_cu *ext_cu = cu;
16994
16995 ext_die = dwarf2_extension (die, &ext_cu);
16996 type = read_type_die (ext_die, ext_cu);
16997
16998 /* EXT_CU may not be the same as CU.
16999 Ensure TYPE is recorded with CU in die_type_hash. */
17000 return set_die_type (die, type, cu);
17001 }
17002
17003 name = namespace_name (die, &is_anonymous, cu);
17004
17005 /* Now build the name of the current namespace. */
17006
17007 previous_prefix = determine_prefix (die, cu);
17008 if (previous_prefix[0] != '\0')
17009 name = typename_concat (&objfile->objfile_obstack,
17010 previous_prefix, name, 0, cu);
17011
17012 /* Create the type. */
17013 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
17014
17015 return set_die_type (die, type, cu);
17016 }
17017
17018 /* Read a namespace scope. */
17019
17020 static void
17021 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
17022 {
17023 struct objfile *objfile = cu->per_objfile->objfile;
17024 int is_anonymous;
17025
17026 /* Add a symbol associated to this if we haven't seen the namespace
17027 before. Also, add a using directive if it's an anonymous
17028 namespace. */
17029
17030 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
17031 {
17032 struct type *type;
17033
17034 type = read_type_die (die, cu);
17035 new_symbol (die, type, cu);
17036
17037 namespace_name (die, &is_anonymous, cu);
17038 if (is_anonymous)
17039 {
17040 const char *previous_prefix = determine_prefix (die, cu);
17041
17042 std::vector<const char *> excludes;
17043 add_using_directive (using_directives (cu),
17044 previous_prefix, type->name (), NULL,
17045 NULL, excludes, 0, &objfile->objfile_obstack);
17046 }
17047 }
17048
17049 if (die->child != NULL)
17050 {
17051 struct die_info *child_die = die->child;
17052
17053 while (child_die && child_die->tag)
17054 {
17055 process_die (child_die, cu);
17056 child_die = child_die->sibling;
17057 }
17058 }
17059 }
17060
17061 /* Read a Fortran module as type. This DIE can be only a declaration used for
17062 imported module. Still we need that type as local Fortran "use ... only"
17063 declaration imports depend on the created type in determine_prefix. */
17064
17065 static struct type *
17066 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
17067 {
17068 struct objfile *objfile = cu->per_objfile->objfile;
17069 const char *module_name;
17070 struct type *type;
17071
17072 module_name = dwarf2_name (die, cu);
17073 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
17074
17075 return set_die_type (die, type, cu);
17076 }
17077
17078 /* Read a Fortran module. */
17079
17080 static void
17081 read_module (struct die_info *die, struct dwarf2_cu *cu)
17082 {
17083 struct die_info *child_die = die->child;
17084 struct type *type;
17085
17086 type = read_type_die (die, cu);
17087 new_symbol (die, type, cu);
17088
17089 while (child_die && child_die->tag)
17090 {
17091 process_die (child_die, cu);
17092 child_die = child_die->sibling;
17093 }
17094 }
17095
17096 /* Return the name of the namespace represented by DIE. Set
17097 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
17098 namespace. */
17099
17100 static const char *
17101 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
17102 {
17103 struct die_info *current_die;
17104 const char *name = NULL;
17105
17106 /* Loop through the extensions until we find a name. */
17107
17108 for (current_die = die;
17109 current_die != NULL;
17110 current_die = dwarf2_extension (die, &cu))
17111 {
17112 /* We don't use dwarf2_name here so that we can detect the absence
17113 of a name -> anonymous namespace. */
17114 name = dwarf2_string_attr (die, DW_AT_name, cu);
17115
17116 if (name != NULL)
17117 break;
17118 }
17119
17120 /* Is it an anonymous namespace? */
17121
17122 *is_anonymous = (name == NULL);
17123 if (*is_anonymous)
17124 name = CP_ANONYMOUS_NAMESPACE_STR;
17125
17126 return name;
17127 }
17128
17129 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17130 the user defined type vector. */
17131
17132 static struct type *
17133 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17134 {
17135 struct gdbarch *gdbarch = cu->per_objfile->objfile->arch ();
17136 struct comp_unit_head *cu_header = &cu->header;
17137 struct type *type;
17138 struct attribute *attr_byte_size;
17139 struct attribute *attr_address_class;
17140 int byte_size, addr_class;
17141 struct type *target_type;
17142
17143 target_type = die_type (die, cu);
17144
17145 /* The die_type call above may have already set the type for this DIE. */
17146 type = get_die_type (die, cu);
17147 if (type)
17148 return type;
17149
17150 type = lookup_pointer_type (target_type);
17151
17152 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17153 if (attr_byte_size)
17154 byte_size = attr_byte_size->constant_value (cu_header->addr_size);
17155 else
17156 byte_size = cu_header->addr_size;
17157
17158 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17159 if (attr_address_class)
17160 addr_class = attr_address_class->constant_value (DW_ADDR_none);
17161 else
17162 addr_class = DW_ADDR_none;
17163
17164 ULONGEST alignment = get_alignment (cu, die);
17165
17166 /* If the pointer size, alignment, or address class is different
17167 than the default, create a type variant marked as such and set
17168 the length accordingly. */
17169 if (TYPE_LENGTH (type) != byte_size
17170 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17171 && alignment != TYPE_RAW_ALIGN (type))
17172 || addr_class != DW_ADDR_none)
17173 {
17174 if (gdbarch_address_class_type_flags_p (gdbarch))
17175 {
17176 type_instance_flags type_flags
17177 = gdbarch_address_class_type_flags (gdbarch, byte_size,
17178 addr_class);
17179 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17180 == 0);
17181 type = make_type_with_address_space (type, type_flags);
17182 }
17183 else if (TYPE_LENGTH (type) != byte_size)
17184 {
17185 complaint (_("invalid pointer size %d"), byte_size);
17186 }
17187 else if (TYPE_RAW_ALIGN (type) != alignment)
17188 {
17189 complaint (_("Invalid DW_AT_alignment"
17190 " - DIE at %s [in module %s]"),
17191 sect_offset_str (die->sect_off),
17192 objfile_name (cu->per_objfile->objfile));
17193 }
17194 else
17195 {
17196 /* Should we also complain about unhandled address classes? */
17197 }
17198 }
17199
17200 TYPE_LENGTH (type) = byte_size;
17201 set_type_align (type, alignment);
17202 return set_die_type (die, type, cu);
17203 }
17204
17205 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17206 the user defined type vector. */
17207
17208 static struct type *
17209 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17210 {
17211 struct type *type;
17212 struct type *to_type;
17213 struct type *domain;
17214
17215 to_type = die_type (die, cu);
17216 domain = die_containing_type (die, cu);
17217
17218 /* The calls above may have already set the type for this DIE. */
17219 type = get_die_type (die, cu);
17220 if (type)
17221 return type;
17222
17223 if (check_typedef (to_type)->code () == TYPE_CODE_METHOD)
17224 type = lookup_methodptr_type (to_type);
17225 else if (check_typedef (to_type)->code () == TYPE_CODE_FUNC)
17226 {
17227 struct type *new_type = alloc_type (cu->per_objfile->objfile);
17228
17229 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17230 to_type->fields (), to_type->num_fields (),
17231 to_type->has_varargs ());
17232 type = lookup_methodptr_type (new_type);
17233 }
17234 else
17235 type = lookup_memberptr_type (to_type, domain);
17236
17237 return set_die_type (die, type, cu);
17238 }
17239
17240 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17241 the user defined type vector. */
17242
17243 static struct type *
17244 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17245 enum type_code refcode)
17246 {
17247 struct comp_unit_head *cu_header = &cu->header;
17248 struct type *type, *target_type;
17249 struct attribute *attr;
17250
17251 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17252
17253 target_type = die_type (die, cu);
17254
17255 /* The die_type call above may have already set the type for this DIE. */
17256 type = get_die_type (die, cu);
17257 if (type)
17258 return type;
17259
17260 type = lookup_reference_type (target_type, refcode);
17261 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17262 if (attr != nullptr)
17263 {
17264 TYPE_LENGTH (type) = attr->constant_value (cu_header->addr_size);
17265 }
17266 else
17267 {
17268 TYPE_LENGTH (type) = cu_header->addr_size;
17269 }
17270 maybe_set_alignment (cu, die, type);
17271 return set_die_type (die, type, cu);
17272 }
17273
17274 /* Add the given cv-qualifiers to the element type of the array. GCC
17275 outputs DWARF type qualifiers that apply to an array, not the
17276 element type. But GDB relies on the array element type to carry
17277 the cv-qualifiers. This mimics section 6.7.3 of the C99
17278 specification. */
17279
17280 static struct type *
17281 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17282 struct type *base_type, int cnst, int voltl)
17283 {
17284 struct type *el_type, *inner_array;
17285
17286 base_type = copy_type (base_type);
17287 inner_array = base_type;
17288
17289 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
17290 {
17291 TYPE_TARGET_TYPE (inner_array) =
17292 copy_type (TYPE_TARGET_TYPE (inner_array));
17293 inner_array = TYPE_TARGET_TYPE (inner_array);
17294 }
17295
17296 el_type = TYPE_TARGET_TYPE (inner_array);
17297 cnst |= TYPE_CONST (el_type);
17298 voltl |= TYPE_VOLATILE (el_type);
17299 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17300
17301 return set_die_type (die, base_type, cu);
17302 }
17303
17304 static struct type *
17305 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17306 {
17307 struct type *base_type, *cv_type;
17308
17309 base_type = die_type (die, cu);
17310
17311 /* The die_type call above may have already set the type for this DIE. */
17312 cv_type = get_die_type (die, cu);
17313 if (cv_type)
17314 return cv_type;
17315
17316 /* In case the const qualifier is applied to an array type, the element type
17317 is so qualified, not the array type (section 6.7.3 of C99). */
17318 if (base_type->code () == TYPE_CODE_ARRAY)
17319 return add_array_cv_type (die, cu, base_type, 1, 0);
17320
17321 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17322 return set_die_type (die, cv_type, cu);
17323 }
17324
17325 static struct type *
17326 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17327 {
17328 struct type *base_type, *cv_type;
17329
17330 base_type = die_type (die, cu);
17331
17332 /* The die_type call above may have already set the type for this DIE. */
17333 cv_type = get_die_type (die, cu);
17334 if (cv_type)
17335 return cv_type;
17336
17337 /* In case the volatile qualifier is applied to an array type, the
17338 element type is so qualified, not the array type (section 6.7.3
17339 of C99). */
17340 if (base_type->code () == TYPE_CODE_ARRAY)
17341 return add_array_cv_type (die, cu, base_type, 0, 1);
17342
17343 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17344 return set_die_type (die, cv_type, cu);
17345 }
17346
17347 /* Handle DW_TAG_restrict_type. */
17348
17349 static struct type *
17350 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17351 {
17352 struct type *base_type, *cv_type;
17353
17354 base_type = die_type (die, cu);
17355
17356 /* The die_type call above may have already set the type for this DIE. */
17357 cv_type = get_die_type (die, cu);
17358 if (cv_type)
17359 return cv_type;
17360
17361 cv_type = make_restrict_type (base_type);
17362 return set_die_type (die, cv_type, cu);
17363 }
17364
17365 /* Handle DW_TAG_atomic_type. */
17366
17367 static struct type *
17368 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17369 {
17370 struct type *base_type, *cv_type;
17371
17372 base_type = die_type (die, cu);
17373
17374 /* The die_type call above may have already set the type for this DIE. */
17375 cv_type = get_die_type (die, cu);
17376 if (cv_type)
17377 return cv_type;
17378
17379 cv_type = make_atomic_type (base_type);
17380 return set_die_type (die, cv_type, cu);
17381 }
17382
17383 /* Extract all information from a DW_TAG_string_type DIE and add to
17384 the user defined type vector. It isn't really a user defined type,
17385 but it behaves like one, with other DIE's using an AT_user_def_type
17386 attribute to reference it. */
17387
17388 static struct type *
17389 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17390 {
17391 struct objfile *objfile = cu->per_objfile->objfile;
17392 struct gdbarch *gdbarch = objfile->arch ();
17393 struct type *type, *range_type, *index_type, *char_type;
17394 struct attribute *attr;
17395 struct dynamic_prop prop;
17396 bool length_is_constant = true;
17397 LONGEST length;
17398
17399 /* There are a couple of places where bit sizes might be made use of
17400 when parsing a DW_TAG_string_type, however, no producer that we know
17401 of make use of these. Handling bit sizes that are a multiple of the
17402 byte size is easy enough, but what about other bit sizes? Lets deal
17403 with that problem when we have to. Warn about these attributes being
17404 unsupported, then parse the type and ignore them like we always
17405 have. */
17406 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
17407 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
17408 {
17409 static bool warning_printed = false;
17410 if (!warning_printed)
17411 {
17412 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
17413 "currently supported on DW_TAG_string_type."));
17414 warning_printed = true;
17415 }
17416 }
17417
17418 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17419 if (attr != nullptr && !attr->form_is_constant ())
17420 {
17421 /* The string length describes the location at which the length of
17422 the string can be found. The size of the length field can be
17423 specified with one of the attributes below. */
17424 struct type *prop_type;
17425 struct attribute *len
17426 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
17427 if (len == nullptr)
17428 len = dwarf2_attr (die, DW_AT_byte_size, cu);
17429 if (len != nullptr && len->form_is_constant ())
17430 {
17431 /* Pass 0 as the default as we know this attribute is constant
17432 and the default value will not be returned. */
17433 LONGEST sz = len->constant_value (0);
17434 prop_type = cu->per_objfile->int_type (sz, true);
17435 }
17436 else
17437 {
17438 /* If the size is not specified then we assume it is the size of
17439 an address on this target. */
17440 prop_type = cu->addr_sized_int_type (true);
17441 }
17442
17443 /* Convert the attribute into a dynamic property. */
17444 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
17445 length = 1;
17446 else
17447 length_is_constant = false;
17448 }
17449 else if (attr != nullptr)
17450 {
17451 /* This DW_AT_string_length just contains the length with no
17452 indirection. There's no need to create a dynamic property in this
17453 case. Pass 0 for the default value as we know it will not be
17454 returned in this case. */
17455 length = attr->constant_value (0);
17456 }
17457 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
17458 {
17459 /* We don't currently support non-constant byte sizes for strings. */
17460 length = attr->constant_value (1);
17461 }
17462 else
17463 {
17464 /* Use 1 as a fallback length if we have nothing else. */
17465 length = 1;
17466 }
17467
17468 index_type = objfile_type (objfile)->builtin_int;
17469 if (length_is_constant)
17470 range_type = create_static_range_type (NULL, index_type, 1, length);
17471 else
17472 {
17473 struct dynamic_prop low_bound;
17474
17475 low_bound.set_const_val (1);
17476 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17477 }
17478 char_type = language_string_char_type (cu->language_defn, gdbarch);
17479 type = create_string_type (NULL, char_type, range_type);
17480
17481 return set_die_type (die, type, cu);
17482 }
17483
17484 /* Assuming that DIE corresponds to a function, returns nonzero
17485 if the function is prototyped. */
17486
17487 static int
17488 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17489 {
17490 struct attribute *attr;
17491
17492 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17493 if (attr && attr->as_boolean ())
17494 return 1;
17495
17496 /* The DWARF standard implies that the DW_AT_prototyped attribute
17497 is only meaningful for C, but the concept also extends to other
17498 languages that allow unprototyped functions (Eg: Objective C).
17499 For all other languages, assume that functions are always
17500 prototyped. */
17501 if (cu->per_cu->lang != language_c
17502 && cu->per_cu->lang != language_objc
17503 && cu->per_cu->lang != language_opencl)
17504 return 1;
17505
17506 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17507 prototyped and unprototyped functions; default to prototyped,
17508 since that is more common in modern code (and RealView warns
17509 about unprototyped functions). */
17510 if (producer_is_realview (cu->producer))
17511 return 1;
17512
17513 return 0;
17514 }
17515
17516 /* Handle DIES due to C code like:
17517
17518 struct foo
17519 {
17520 int (*funcp)(int a, long l);
17521 int b;
17522 };
17523
17524 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17525
17526 static struct type *
17527 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17528 {
17529 struct objfile *objfile = cu->per_objfile->objfile;
17530 struct type *type; /* Type that this function returns. */
17531 struct type *ftype; /* Function that returns above type. */
17532 struct attribute *attr;
17533
17534 type = die_type (die, cu);
17535
17536 /* The die_type call above may have already set the type for this DIE. */
17537 ftype = get_die_type (die, cu);
17538 if (ftype)
17539 return ftype;
17540
17541 ftype = lookup_function_type (type);
17542
17543 if (prototyped_function_p (die, cu))
17544 ftype->set_is_prototyped (true);
17545
17546 /* Store the calling convention in the type if it's available in
17547 the subroutine die. Otherwise set the calling convention to
17548 the default value DW_CC_normal. */
17549 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17550 if (attr != nullptr
17551 && is_valid_DW_AT_calling_convention_for_subroutine (attr->constant_value (0)))
17552 TYPE_CALLING_CONVENTION (ftype)
17553 = (enum dwarf_calling_convention) attr->constant_value (0);
17554 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17555 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17556 else
17557 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17558
17559 /* Record whether the function returns normally to its caller or not
17560 if the DWARF producer set that information. */
17561 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17562 if (attr && attr->as_boolean ())
17563 TYPE_NO_RETURN (ftype) = 1;
17564
17565 /* We need to add the subroutine type to the die immediately so
17566 we don't infinitely recurse when dealing with parameters
17567 declared as the same subroutine type. */
17568 set_die_type (die, ftype, cu);
17569
17570 if (die->child != NULL)
17571 {
17572 struct type *void_type = objfile_type (objfile)->builtin_void;
17573 struct die_info *child_die;
17574 int nparams, iparams;
17575
17576 /* Count the number of parameters.
17577 FIXME: GDB currently ignores vararg functions, but knows about
17578 vararg member functions. */
17579 nparams = 0;
17580 child_die = die->child;
17581 while (child_die && child_die->tag)
17582 {
17583 if (child_die->tag == DW_TAG_formal_parameter)
17584 nparams++;
17585 else if (child_die->tag == DW_TAG_unspecified_parameters)
17586 ftype->set_has_varargs (true);
17587
17588 child_die = child_die->sibling;
17589 }
17590
17591 /* Allocate storage for parameters and fill them in. */
17592 ftype->set_num_fields (nparams);
17593 ftype->set_fields
17594 ((struct field *) TYPE_ZALLOC (ftype, nparams * sizeof (struct field)));
17595
17596 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17597 even if we error out during the parameters reading below. */
17598 for (iparams = 0; iparams < nparams; iparams++)
17599 ftype->field (iparams).set_type (void_type);
17600
17601 iparams = 0;
17602 child_die = die->child;
17603 while (child_die && child_die->tag)
17604 {
17605 if (child_die->tag == DW_TAG_formal_parameter)
17606 {
17607 struct type *arg_type;
17608
17609 /* DWARF version 2 has no clean way to discern C++
17610 static and non-static member functions. G++ helps
17611 GDB by marking the first parameter for non-static
17612 member functions (which is the this pointer) as
17613 artificial. We pass this information to
17614 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17615
17616 DWARF version 3 added DW_AT_object_pointer, which GCC
17617 4.5 does not yet generate. */
17618 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17619 if (attr != nullptr)
17620 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = attr->as_boolean ();
17621 else
17622 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17623 arg_type = die_type (child_die, cu);
17624
17625 /* RealView does not mark THIS as const, which the testsuite
17626 expects. GCC marks THIS as const in method definitions,
17627 but not in the class specifications (GCC PR 43053). */
17628 if (cu->per_cu->lang == language_cplus
17629 && !TYPE_CONST (arg_type)
17630 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17631 {
17632 int is_this = 0;
17633 struct dwarf2_cu *arg_cu = cu;
17634 const char *name = dwarf2_name (child_die, cu);
17635
17636 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17637 if (attr != nullptr)
17638 {
17639 /* If the compiler emits this, use it. */
17640 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17641 is_this = 1;
17642 }
17643 else if (name && strcmp (name, "this") == 0)
17644 /* Function definitions will have the argument names. */
17645 is_this = 1;
17646 else if (name == NULL && iparams == 0)
17647 /* Declarations may not have the names, so like
17648 elsewhere in GDB, assume an artificial first
17649 argument is "this". */
17650 is_this = 1;
17651
17652 if (is_this)
17653 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17654 arg_type, 0);
17655 }
17656
17657 ftype->field (iparams).set_type (arg_type);
17658 iparams++;
17659 }
17660 child_die = child_die->sibling;
17661 }
17662 }
17663
17664 return ftype;
17665 }
17666
17667 static struct type *
17668 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17669 {
17670 struct objfile *objfile = cu->per_objfile->objfile;
17671 const char *name = NULL;
17672 struct type *this_type, *target_type;
17673
17674 name = dwarf2_full_name (NULL, die, cu);
17675 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17676 this_type->set_target_is_stub (true);
17677 set_die_type (die, this_type, cu);
17678 target_type = die_type (die, cu);
17679 if (target_type != this_type)
17680 TYPE_TARGET_TYPE (this_type) = target_type;
17681 else
17682 {
17683 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17684 spec and cause infinite loops in GDB. */
17685 complaint (_("Self-referential DW_TAG_typedef "
17686 "- DIE at %s [in module %s]"),
17687 sect_offset_str (die->sect_off), objfile_name (objfile));
17688 TYPE_TARGET_TYPE (this_type) = NULL;
17689 }
17690 if (name == NULL)
17691 {
17692 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17693 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17694 Handle these by just returning the target type, rather than
17695 constructing an anonymous typedef type and trying to handle this
17696 elsewhere. */
17697 set_die_type (die, target_type, cu);
17698 return target_type;
17699 }
17700 return this_type;
17701 }
17702
17703 /* Helper for get_dwarf2_rational_constant that computes the value of
17704 a given gmp_mpz given an attribute. */
17705
17706 static void
17707 get_mpz (struct dwarf2_cu *cu, gdb_mpz *value, struct attribute *attr)
17708 {
17709 /* GCC will sometimes emit a 16-byte constant value as a DWARF
17710 location expression that pushes an implicit value. */
17711 if (attr->form == DW_FORM_exprloc)
17712 {
17713 dwarf_block *blk = attr->as_block ();
17714 if (blk->size > 0 && blk->data[0] == DW_OP_implicit_value)
17715 {
17716 uint64_t len;
17717 const gdb_byte *ptr = safe_read_uleb128 (blk->data + 1,
17718 blk->data + blk->size,
17719 &len);
17720 if (ptr - blk->data + len <= blk->size)
17721 {
17722 mpz_import (value->val, len,
17723 bfd_big_endian (cu->per_objfile->objfile->obfd) ? 1 : -1,
17724 1, 0, 0, ptr);
17725 return;
17726 }
17727 }
17728
17729 /* On failure set it to 1. */
17730 *value = gdb_mpz (1);
17731 }
17732 else if (attr->form_is_block ())
17733 {
17734 dwarf_block *blk = attr->as_block ();
17735 mpz_import (value->val, blk->size,
17736 bfd_big_endian (cu->per_objfile->objfile->obfd) ? 1 : -1,
17737 1, 0, 0, blk->data);
17738 }
17739 else
17740 *value = gdb_mpz (attr->constant_value (1));
17741 }
17742
17743 /* Assuming DIE is a rational DW_TAG_constant, read the DIE's
17744 numerator and denominator into NUMERATOR and DENOMINATOR (resp).
17745
17746 If the numerator and/or numerator attribute is missing,
17747 a complaint is filed, and NUMERATOR and DENOMINATOR are left
17748 untouched. */
17749
17750 static void
17751 get_dwarf2_rational_constant (struct die_info *die, struct dwarf2_cu *cu,
17752 gdb_mpz *numerator, gdb_mpz *denominator)
17753 {
17754 struct attribute *num_attr, *denom_attr;
17755
17756 num_attr = dwarf2_attr (die, DW_AT_GNU_numerator, cu);
17757 if (num_attr == nullptr)
17758 complaint (_("DW_AT_GNU_numerator missing in %s DIE at %s"),
17759 dwarf_tag_name (die->tag), sect_offset_str (die->sect_off));
17760
17761 denom_attr = dwarf2_attr (die, DW_AT_GNU_denominator, cu);
17762 if (denom_attr == nullptr)
17763 complaint (_("DW_AT_GNU_denominator missing in %s DIE at %s"),
17764 dwarf_tag_name (die->tag), sect_offset_str (die->sect_off));
17765
17766 if (num_attr == nullptr || denom_attr == nullptr)
17767 return;
17768
17769 get_mpz (cu, numerator, num_attr);
17770 get_mpz (cu, denominator, denom_attr);
17771 }
17772
17773 /* Same as get_dwarf2_rational_constant, but extracting an unsigned
17774 rational constant, rather than a signed one.
17775
17776 If the rational constant has a negative value, a complaint
17777 is filed, and NUMERATOR and DENOMINATOR are left untouched. */
17778
17779 static void
17780 get_dwarf2_unsigned_rational_constant (struct die_info *die,
17781 struct dwarf2_cu *cu,
17782 gdb_mpz *numerator,
17783 gdb_mpz *denominator)
17784 {
17785 gdb_mpz num (1);
17786 gdb_mpz denom (1);
17787
17788 get_dwarf2_rational_constant (die, cu, &num, &denom);
17789 if (mpz_sgn (num.val) == -1 && mpz_sgn (denom.val) == -1)
17790 {
17791 mpz_neg (num.val, num.val);
17792 mpz_neg (denom.val, denom.val);
17793 }
17794 else if (mpz_sgn (num.val) == -1)
17795 {
17796 complaint (_("unexpected negative value for DW_AT_GNU_numerator"
17797 " in DIE at %s"),
17798 sect_offset_str (die->sect_off));
17799 return;
17800 }
17801 else if (mpz_sgn (denom.val) == -1)
17802 {
17803 complaint (_("unexpected negative value for DW_AT_GNU_denominator"
17804 " in DIE at %s"),
17805 sect_offset_str (die->sect_off));
17806 return;
17807 }
17808
17809 *numerator = std::move (num);
17810 *denominator = std::move (denom);
17811 }
17812
17813 /* Assuming that ENCODING is a string whose contents starting at the
17814 K'th character is "_nn" where "nn" is a decimal number, scan that
17815 number and set RESULT to the value. K is updated to point to the
17816 character immediately following the number.
17817
17818 If the string does not conform to the format described above, false
17819 is returned, and K may or may not be changed. */
17820
17821 static bool
17822 ada_get_gnat_encoded_number (const char *encoding, int &k, gdb_mpz *result)
17823 {
17824 /* The next character should be an underscore ('_') followed
17825 by a digit. */
17826 if (encoding[k] != '_' || !isdigit (encoding[k + 1]))
17827 return false;
17828
17829 /* Skip the underscore. */
17830 k++;
17831 int start = k;
17832
17833 /* Determine the number of digits for our number. */
17834 while (isdigit (encoding[k]))
17835 k++;
17836 if (k == start)
17837 return false;
17838
17839 std::string copy (&encoding[start], k - start);
17840 if (mpz_set_str (result->val, copy.c_str (), 10) == -1)
17841 return false;
17842
17843 return true;
17844 }
17845
17846 /* Scan two numbers from ENCODING at OFFSET, assuming the string is of
17847 the form _NN_DD, where NN and DD are decimal numbers. Set NUM and
17848 DENOM, update OFFSET, and return true on success. Return false on
17849 failure. */
17850
17851 static bool
17852 ada_get_gnat_encoded_ratio (const char *encoding, int &offset,
17853 gdb_mpz *num, gdb_mpz *denom)
17854 {
17855 if (!ada_get_gnat_encoded_number (encoding, offset, num))
17856 return false;
17857 return ada_get_gnat_encoded_number (encoding, offset, denom);
17858 }
17859
17860 /* Assuming DIE corresponds to a fixed point type, finish the creation
17861 of the corresponding TYPE by setting its type-specific data. CU is
17862 the DIE's CU. SUFFIX is the "XF" type name suffix coming from GNAT
17863 encodings. It is nullptr if the GNAT encoding should be
17864 ignored. */
17865
17866 static void
17867 finish_fixed_point_type (struct type *type, const char *suffix,
17868 struct die_info *die, struct dwarf2_cu *cu)
17869 {
17870 gdb_assert (type->code () == TYPE_CODE_FIXED_POINT
17871 && TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FIXED_POINT);
17872
17873 /* If GNAT encodings are preferred, don't examine the
17874 attributes. */
17875 struct attribute *attr = nullptr;
17876 if (suffix == nullptr)
17877 {
17878 attr = dwarf2_attr (die, DW_AT_binary_scale, cu);
17879 if (attr == nullptr)
17880 attr = dwarf2_attr (die, DW_AT_decimal_scale, cu);
17881 if (attr == nullptr)
17882 attr = dwarf2_attr (die, DW_AT_small, cu);
17883 }
17884
17885 /* Numerator and denominator of our fixed-point type's scaling factor.
17886 The default is a scaling factor of 1, which we use as a fallback
17887 when we are not able to decode it (problem with the debugging info,
17888 unsupported forms, bug in GDB, etc...). Using that as the default
17889 allows us to at least print the unscaled value, which might still
17890 be useful to a user. */
17891 gdb_mpz scale_num (1);
17892 gdb_mpz scale_denom (1);
17893
17894 if (attr == nullptr)
17895 {
17896 int offset = 0;
17897 if (suffix != nullptr
17898 && ada_get_gnat_encoded_ratio (suffix, offset, &scale_num,
17899 &scale_denom)
17900 /* The number might be encoded as _nn_dd_nn_dd, where the
17901 second ratio is the 'small value. In this situation, we
17902 want the second value. */
17903 && (suffix[offset] != '_'
17904 || ada_get_gnat_encoded_ratio (suffix, offset, &scale_num,
17905 &scale_denom)))
17906 {
17907 /* Found it. */
17908 }
17909 else
17910 {
17911 /* Scaling factor not found. Assume a scaling factor of 1,
17912 and hope for the best. At least the user will be able to
17913 see the encoded value. */
17914 scale_num = 1;
17915 scale_denom = 1;
17916 complaint (_("no scale found for fixed-point type (DIE at %s)"),
17917 sect_offset_str (die->sect_off));
17918 }
17919 }
17920 else if (attr->name == DW_AT_binary_scale)
17921 {
17922 LONGEST scale_exp = attr->constant_value (0);
17923 gdb_mpz *num_or_denom = scale_exp > 0 ? &scale_num : &scale_denom;
17924
17925 mpz_mul_2exp (num_or_denom->val, num_or_denom->val, std::abs (scale_exp));
17926 }
17927 else if (attr->name == DW_AT_decimal_scale)
17928 {
17929 LONGEST scale_exp = attr->constant_value (0);
17930 gdb_mpz *num_or_denom = scale_exp > 0 ? &scale_num : &scale_denom;
17931
17932 mpz_ui_pow_ui (num_or_denom->val, 10, std::abs (scale_exp));
17933 }
17934 else if (attr->name == DW_AT_small)
17935 {
17936 struct die_info *scale_die;
17937 struct dwarf2_cu *scale_cu = cu;
17938
17939 scale_die = follow_die_ref (die, attr, &scale_cu);
17940 if (scale_die->tag == DW_TAG_constant)
17941 get_dwarf2_unsigned_rational_constant (scale_die, scale_cu,
17942 &scale_num, &scale_denom);
17943 else
17944 complaint (_("%s DIE not supported as target of DW_AT_small attribute"
17945 " (DIE at %s)"),
17946 dwarf_tag_name (die->tag), sect_offset_str (die->sect_off));
17947 }
17948 else
17949 {
17950 complaint (_("unsupported scale attribute %s for fixed-point type"
17951 " (DIE at %s)"),
17952 dwarf_attr_name (attr->name),
17953 sect_offset_str (die->sect_off));
17954 }
17955
17956 gdb_mpq &scaling_factor = type->fixed_point_info ().scaling_factor;
17957 mpz_set (mpq_numref (scaling_factor.val), scale_num.val);
17958 mpz_set (mpq_denref (scaling_factor.val), scale_denom.val);
17959 mpq_canonicalize (scaling_factor.val);
17960 }
17961
17962 /* The gnat-encoding suffix for fixed point. */
17963
17964 #define GNAT_FIXED_POINT_SUFFIX "___XF_"
17965
17966 /* If NAME encodes an Ada fixed-point type, return a pointer to the
17967 "XF" suffix of the name. The text after this is what encodes the
17968 'small and 'delta information. Otherwise, return nullptr. */
17969
17970 static const char *
17971 gnat_encoded_fixed_point_type_info (const char *name)
17972 {
17973 return strstr (name, GNAT_FIXED_POINT_SUFFIX);
17974 }
17975
17976 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17977 (which may be different from NAME) to the architecture back-end to allow
17978 it to guess the correct format if necessary. */
17979
17980 static struct type *
17981 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17982 const char *name_hint, enum bfd_endian byte_order)
17983 {
17984 struct gdbarch *gdbarch = objfile->arch ();
17985 const struct floatformat **format;
17986 struct type *type;
17987
17988 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17989 if (format)
17990 type = init_float_type (objfile, bits, name, format, byte_order);
17991 else
17992 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17993
17994 return type;
17995 }
17996
17997 /* Allocate an integer type of size BITS and name NAME. */
17998
17999 static struct type *
18000 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
18001 int bits, int unsigned_p, const char *name)
18002 {
18003 struct type *type;
18004
18005 /* Versions of Intel's C Compiler generate an integer type called "void"
18006 instead of using DW_TAG_unspecified_type. This has been seen on
18007 at least versions 14, 17, and 18. */
18008 if (bits == 0 && producer_is_icc (cu) && name != nullptr
18009 && strcmp (name, "void") == 0)
18010 type = objfile_type (objfile)->builtin_void;
18011 else
18012 type = init_integer_type (objfile, bits, unsigned_p, name);
18013
18014 return type;
18015 }
18016
18017 /* Return true if DIE has a DW_AT_small attribute whose value is
18018 a constant rational, where both the numerator and denominator
18019 are equal to zero.
18020
18021 CU is the DIE's Compilation Unit. */
18022
18023 static bool
18024 has_zero_over_zero_small_attribute (struct die_info *die,
18025 struct dwarf2_cu *cu)
18026 {
18027 struct attribute *attr = dwarf2_attr (die, DW_AT_small, cu);
18028 if (attr == nullptr)
18029 return false;
18030
18031 struct dwarf2_cu *scale_cu = cu;
18032 struct die_info *scale_die
18033 = follow_die_ref (die, attr, &scale_cu);
18034
18035 if (scale_die->tag != DW_TAG_constant)
18036 return false;
18037
18038 gdb_mpz num (1), denom (1);
18039 get_dwarf2_rational_constant (scale_die, cu, &num, &denom);
18040 return mpz_sgn (num.val) == 0 && mpz_sgn (denom.val) == 0;
18041 }
18042
18043 /* Initialise and return a floating point type of size BITS suitable for
18044 use as a component of a complex number. The NAME_HINT is passed through
18045 when initialising the floating point type and is the name of the complex
18046 type.
18047
18048 As DWARF doesn't currently provide an explicit name for the components
18049 of a complex number, but it can be helpful to have these components
18050 named, we try to select a suitable name based on the size of the
18051 component. */
18052 static struct type *
18053 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
18054 struct objfile *objfile,
18055 int bits, const char *name_hint,
18056 enum bfd_endian byte_order)
18057 {
18058 gdbarch *gdbarch = objfile->arch ();
18059 struct type *tt = nullptr;
18060
18061 /* Try to find a suitable floating point builtin type of size BITS.
18062 We're going to use the name of this type as the name for the complex
18063 target type that we are about to create. */
18064 switch (cu->per_cu->lang)
18065 {
18066 case language_fortran:
18067 switch (bits)
18068 {
18069 case 32:
18070 tt = builtin_f_type (gdbarch)->builtin_real;
18071 break;
18072 case 64:
18073 tt = builtin_f_type (gdbarch)->builtin_real_s8;
18074 break;
18075 case 96: /* The x86-32 ABI specifies 96-bit long double. */
18076 case 128:
18077 tt = builtin_f_type (gdbarch)->builtin_real_s16;
18078 break;
18079 }
18080 break;
18081 default:
18082 switch (bits)
18083 {
18084 case 32:
18085 tt = builtin_type (gdbarch)->builtin_float;
18086 break;
18087 case 64:
18088 tt = builtin_type (gdbarch)->builtin_double;
18089 break;
18090 case 96: /* The x86-32 ABI specifies 96-bit long double. */
18091 case 128:
18092 tt = builtin_type (gdbarch)->builtin_long_double;
18093 break;
18094 }
18095 break;
18096 }
18097
18098 /* If the type we found doesn't match the size we were looking for, then
18099 pretend we didn't find a type at all, the complex target type we
18100 create will then be nameless. */
18101 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
18102 tt = nullptr;
18103
18104 const char *name = (tt == nullptr) ? nullptr : tt->name ();
18105 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
18106 }
18107
18108 /* Find a representation of a given base type and install
18109 it in the TYPE field of the die. */
18110
18111 static struct type *
18112 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
18113 {
18114 struct objfile *objfile = cu->per_objfile->objfile;
18115 struct type *type;
18116 struct attribute *attr;
18117 int encoding = 0, bits = 0;
18118 const char *name;
18119 gdbarch *arch;
18120
18121 attr = dwarf2_attr (die, DW_AT_encoding, cu);
18122 if (attr != nullptr && attr->form_is_constant ())
18123 encoding = attr->constant_value (0);
18124 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18125 if (attr != nullptr)
18126 bits = attr->constant_value (0) * TARGET_CHAR_BIT;
18127 name = dwarf2_name (die, cu);
18128 if (!name)
18129 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
18130
18131 arch = objfile->arch ();
18132 enum bfd_endian byte_order = gdbarch_byte_order (arch);
18133
18134 attr = dwarf2_attr (die, DW_AT_endianity, cu);
18135 if (attr != nullptr && attr->form_is_constant ())
18136 {
18137 int endianity = attr->constant_value (0);
18138
18139 switch (endianity)
18140 {
18141 case DW_END_big:
18142 byte_order = BFD_ENDIAN_BIG;
18143 break;
18144 case DW_END_little:
18145 byte_order = BFD_ENDIAN_LITTLE;
18146 break;
18147 default:
18148 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
18149 break;
18150 }
18151 }
18152
18153 if ((encoding == DW_ATE_signed_fixed || encoding == DW_ATE_unsigned_fixed)
18154 && cu->per_cu->lang == language_ada
18155 && has_zero_over_zero_small_attribute (die, cu))
18156 {
18157 /* brobecker/2018-02-24: This is a fixed point type for which
18158 the scaling factor is represented as fraction whose value
18159 does not make sense (zero divided by zero), so we should
18160 normally never see these. However, there is a small category
18161 of fixed point types for which GNAT is unable to provide
18162 the scaling factor via the standard DWARF mechanisms, and
18163 for which the info is provided via the GNAT encodings instead.
18164 This is likely what this DIE is about. */
18165 encoding = (encoding == DW_ATE_signed_fixed
18166 ? DW_ATE_signed
18167 : DW_ATE_unsigned);
18168 }
18169
18170 /* With GNAT encodings, fixed-point information will be encoded in
18171 the type name. Note that this can also occur with the above
18172 zero-over-zero case, which is why this is a separate "if" rather
18173 than an "else if". */
18174 const char *gnat_encoding_suffix = nullptr;
18175 if ((encoding == DW_ATE_signed || encoding == DW_ATE_unsigned)
18176 && cu->per_cu->lang == language_ada
18177 && name != nullptr)
18178 {
18179 gnat_encoding_suffix = gnat_encoded_fixed_point_type_info (name);
18180 if (gnat_encoding_suffix != nullptr)
18181 {
18182 gdb_assert (startswith (gnat_encoding_suffix,
18183 GNAT_FIXED_POINT_SUFFIX));
18184 name = obstack_strndup (&cu->per_objfile->objfile->objfile_obstack,
18185 name, gnat_encoding_suffix - name);
18186 /* Use -1 here so that SUFFIX points at the "_" after the
18187 "XF". */
18188 gnat_encoding_suffix += strlen (GNAT_FIXED_POINT_SUFFIX) - 1;
18189
18190 encoding = (encoding == DW_ATE_signed
18191 ? DW_ATE_signed_fixed
18192 : DW_ATE_unsigned_fixed);
18193 }
18194 }
18195
18196 switch (encoding)
18197 {
18198 case DW_ATE_address:
18199 /* Turn DW_ATE_address into a void * pointer. */
18200 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
18201 type = init_pointer_type (objfile, bits, name, type);
18202 break;
18203 case DW_ATE_boolean:
18204 type = init_boolean_type (objfile, bits, 1, name);
18205 break;
18206 case DW_ATE_complex_float:
18207 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
18208 byte_order);
18209 if (type->code () == TYPE_CODE_ERROR)
18210 {
18211 if (name == nullptr)
18212 {
18213 struct obstack *obstack
18214 = &cu->per_objfile->objfile->objfile_obstack;
18215 name = obconcat (obstack, "_Complex ", type->name (),
18216 nullptr);
18217 }
18218 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
18219 }
18220 else
18221 type = init_complex_type (name, type);
18222 break;
18223 case DW_ATE_decimal_float:
18224 type = init_decfloat_type (objfile, bits, name);
18225 break;
18226 case DW_ATE_float:
18227 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
18228 break;
18229 case DW_ATE_signed:
18230 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
18231 break;
18232 case DW_ATE_unsigned:
18233 if (cu->per_cu->lang == language_fortran
18234 && name
18235 && startswith (name, "character("))
18236 type = init_character_type (objfile, bits, 1, name);
18237 else
18238 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18239 break;
18240 case DW_ATE_signed_char:
18241 if (cu->per_cu->lang == language_ada
18242 || cu->per_cu->lang == language_m2
18243 || cu->per_cu->lang == language_pascal
18244 || cu->per_cu->lang == language_fortran)
18245 type = init_character_type (objfile, bits, 0, name);
18246 else
18247 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
18248 break;
18249 case DW_ATE_unsigned_char:
18250 if (cu->per_cu->lang == language_ada
18251 || cu->per_cu->lang == language_m2
18252 || cu->per_cu->lang == language_pascal
18253 || cu->per_cu->lang == language_fortran
18254 || cu->per_cu->lang == language_rust)
18255 type = init_character_type (objfile, bits, 1, name);
18256 else
18257 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18258 break;
18259 case DW_ATE_UTF:
18260 {
18261 if (bits == 16)
18262 type = builtin_type (arch)->builtin_char16;
18263 else if (bits == 32)
18264 type = builtin_type (arch)->builtin_char32;
18265 else
18266 {
18267 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
18268 bits);
18269 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18270 }
18271 return set_die_type (die, type, cu);
18272 }
18273 break;
18274 case DW_ATE_signed_fixed:
18275 type = init_fixed_point_type (objfile, bits, 0, name);
18276 finish_fixed_point_type (type, gnat_encoding_suffix, die, cu);
18277 break;
18278 case DW_ATE_unsigned_fixed:
18279 type = init_fixed_point_type (objfile, bits, 1, name);
18280 finish_fixed_point_type (type, gnat_encoding_suffix, die, cu);
18281 break;
18282
18283 default:
18284 complaint (_("unsupported DW_AT_encoding: '%s'"),
18285 dwarf_type_encoding_name (encoding));
18286 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
18287 break;
18288 }
18289
18290 if (name && strcmp (name, "char") == 0)
18291 type->set_has_no_signedness (true);
18292
18293 maybe_set_alignment (cu, die, type);
18294
18295 type->set_endianity_is_not_default (gdbarch_byte_order (arch) != byte_order);
18296
18297 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_INT)
18298 {
18299 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
18300 if (attr != nullptr && attr->as_unsigned () <= 8 * TYPE_LENGTH (type))
18301 {
18302 unsigned real_bit_size = attr->as_unsigned ();
18303 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
18304 /* Only use the attributes if they make sense together. */
18305 if (attr == nullptr
18306 || (attr->as_unsigned () + real_bit_size
18307 <= 8 * TYPE_LENGTH (type)))
18308 {
18309 TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_size
18310 = real_bit_size;
18311 if (attr != nullptr)
18312 TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_offset
18313 = attr->as_unsigned ();
18314 }
18315 }
18316 }
18317
18318 return set_die_type (die, type, cu);
18319 }
18320
18321 /* A helper function that returns the name of DIE, if it refers to a
18322 variable declaration. */
18323
18324 static const char *
18325 var_decl_name (struct die_info *die, struct dwarf2_cu *cu)
18326 {
18327 if (die->tag != DW_TAG_variable)
18328 return nullptr;
18329
18330 attribute *attr = dwarf2_attr (die, DW_AT_declaration, cu);
18331 if (attr == nullptr || !attr->as_boolean ())
18332 return nullptr;
18333
18334 attr = dwarf2_attr (die, DW_AT_name, cu);
18335 if (attr == nullptr)
18336 return nullptr;
18337 return attr->as_string ();
18338 }
18339
18340 /* Parse dwarf attribute if it's a block, reference or constant and put the
18341 resulting value of the attribute into struct bound_prop.
18342 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
18343
18344 static int
18345 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
18346 struct dwarf2_cu *cu, struct dynamic_prop *prop,
18347 struct type *default_type)
18348 {
18349 struct dwarf2_property_baton *baton;
18350 dwarf2_per_objfile *per_objfile = cu->per_objfile;
18351 struct objfile *objfile = per_objfile->objfile;
18352 struct obstack *obstack = &objfile->objfile_obstack;
18353
18354 gdb_assert (default_type != NULL);
18355
18356 if (attr == NULL || prop == NULL)
18357 return 0;
18358
18359 if (attr->form_is_block ())
18360 {
18361 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18362 baton->property_type = default_type;
18363 baton->locexpr.per_cu = cu->per_cu;
18364 baton->locexpr.per_objfile = per_objfile;
18365
18366 struct dwarf_block *block;
18367 if (attr->form == DW_FORM_data16)
18368 {
18369 size_t data_size = 16;
18370 block = XOBNEW (obstack, struct dwarf_block);
18371 block->size = (data_size
18372 + 2 /* Extra bytes for DW_OP and arg. */);
18373 gdb_byte *data = XOBNEWVEC (obstack, gdb_byte, block->size);
18374 data[0] = DW_OP_implicit_value;
18375 data[1] = data_size;
18376 memcpy (&data[2], attr->as_block ()->data, data_size);
18377 block->data = data;
18378 }
18379 else
18380 block = attr->as_block ();
18381
18382 baton->locexpr.size = block->size;
18383 baton->locexpr.data = block->data;
18384 switch (attr->name)
18385 {
18386 case DW_AT_string_length:
18387 baton->locexpr.is_reference = true;
18388 break;
18389 default:
18390 baton->locexpr.is_reference = false;
18391 break;
18392 }
18393
18394 prop->set_locexpr (baton);
18395 gdb_assert (prop->baton () != NULL);
18396 }
18397 else if (attr->form_is_ref ())
18398 {
18399 struct dwarf2_cu *target_cu = cu;
18400 struct die_info *target_die;
18401 struct attribute *target_attr;
18402
18403 target_die = follow_die_ref (die, attr, &target_cu);
18404 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
18405 if (target_attr == NULL)
18406 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
18407 target_cu);
18408 if (target_attr == nullptr)
18409 target_attr = dwarf2_attr (target_die, DW_AT_data_bit_offset,
18410 target_cu);
18411 if (target_attr == NULL)
18412 {
18413 const char *name = var_decl_name (target_die, target_cu);
18414 if (name != nullptr)
18415 {
18416 prop->set_variable_name (name);
18417 return 1;
18418 }
18419 return 0;
18420 }
18421
18422 switch (target_attr->name)
18423 {
18424 case DW_AT_location:
18425 if (target_attr->form_is_section_offset ())
18426 {
18427 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18428 baton->property_type = die_type (target_die, target_cu);
18429 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
18430 prop->set_loclist (baton);
18431 gdb_assert (prop->baton () != NULL);
18432 }
18433 else if (target_attr->form_is_block ())
18434 {
18435 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18436 baton->property_type = die_type (target_die, target_cu);
18437 baton->locexpr.per_cu = cu->per_cu;
18438 baton->locexpr.per_objfile = per_objfile;
18439 struct dwarf_block *block = target_attr->as_block ();
18440 baton->locexpr.size = block->size;
18441 baton->locexpr.data = block->data;
18442 baton->locexpr.is_reference = true;
18443 prop->set_locexpr (baton);
18444 gdb_assert (prop->baton () != NULL);
18445 }
18446 else
18447 {
18448 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18449 "dynamic property");
18450 return 0;
18451 }
18452 break;
18453 case DW_AT_data_member_location:
18454 case DW_AT_data_bit_offset:
18455 {
18456 LONGEST offset;
18457
18458 if (!handle_member_location (target_die, target_cu, &offset))
18459 return 0;
18460
18461 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18462 baton->property_type = read_type_die (target_die->parent,
18463 target_cu);
18464 baton->offset_info.offset = offset;
18465 baton->offset_info.type = die_type (target_die, target_cu);
18466 prop->set_addr_offset (baton);
18467 break;
18468 }
18469 }
18470 }
18471 else if (attr->form_is_constant ())
18472 prop->set_const_val (attr->constant_value (0));
18473 else
18474 {
18475 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
18476 dwarf2_name (die, cu));
18477 return 0;
18478 }
18479
18480 return 1;
18481 }
18482
18483 /* See read.h. */
18484
18485 struct type *
18486 dwarf2_per_objfile::int_type (int size_in_bytes, bool unsigned_p) const
18487 {
18488 struct type *int_type;
18489
18490 /* Helper macro to examine the various builtin types. */
18491 #define TRY_TYPE(F) \
18492 int_type = (unsigned_p \
18493 ? objfile_type (objfile)->builtin_unsigned_ ## F \
18494 : objfile_type (objfile)->builtin_ ## F); \
18495 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
18496 return int_type
18497
18498 TRY_TYPE (char);
18499 TRY_TYPE (short);
18500 TRY_TYPE (int);
18501 TRY_TYPE (long);
18502 TRY_TYPE (long_long);
18503
18504 #undef TRY_TYPE
18505
18506 gdb_assert_not_reached ("unable to find suitable integer type");
18507 }
18508
18509 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
18510 present (which is valid) then compute the default type based on the
18511 compilation units address size. */
18512
18513 static struct type *
18514 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
18515 {
18516 struct type *index_type = die_type (die, cu);
18517
18518 /* Dwarf-2 specifications explicitly allows to create subrange types
18519 without specifying a base type.
18520 In that case, the base type must be set to the type of
18521 the lower bound, upper bound or count, in that order, if any of these
18522 three attributes references an object that has a type.
18523 If no base type is found, the Dwarf-2 specifications say that
18524 a signed integer type of size equal to the size of an address should
18525 be used.
18526 For the following C code: `extern char gdb_int [];'
18527 GCC produces an empty range DIE.
18528 FIXME: muller/2010-05-28: Possible references to object for low bound,
18529 high bound or count are not yet handled by this code. */
18530 if (index_type->code () == TYPE_CODE_VOID)
18531 index_type = cu->addr_sized_int_type (false);
18532
18533 return index_type;
18534 }
18535
18536 /* Read the given DW_AT_subrange DIE. */
18537
18538 static struct type *
18539 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
18540 {
18541 struct type *base_type, *orig_base_type;
18542 struct type *range_type;
18543 struct attribute *attr;
18544 struct dynamic_prop low, high;
18545 int low_default_is_valid;
18546 int high_bound_is_count = 0;
18547 const char *name;
18548 ULONGEST negative_mask;
18549
18550 orig_base_type = read_subrange_index_type (die, cu);
18551
18552 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
18553 whereas the real type might be. So, we use ORIG_BASE_TYPE when
18554 creating the range type, but we use the result of check_typedef
18555 when examining properties of the type. */
18556 base_type = check_typedef (orig_base_type);
18557
18558 /* The die_type call above may have already set the type for this DIE. */
18559 range_type = get_die_type (die, cu);
18560 if (range_type)
18561 return range_type;
18562
18563 high.set_const_val (0);
18564
18565 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
18566 omitting DW_AT_lower_bound. */
18567 switch (cu->per_cu->lang)
18568 {
18569 case language_c:
18570 case language_cplus:
18571 low.set_const_val (0);
18572 low_default_is_valid = 1;
18573 break;
18574 case language_fortran:
18575 low.set_const_val (1);
18576 low_default_is_valid = 1;
18577 break;
18578 case language_d:
18579 case language_objc:
18580 case language_rust:
18581 low.set_const_val (0);
18582 low_default_is_valid = (cu->header.version >= 4);
18583 break;
18584 case language_ada:
18585 case language_m2:
18586 case language_pascal:
18587 low.set_const_val (1);
18588 low_default_is_valid = (cu->header.version >= 4);
18589 break;
18590 default:
18591 low.set_const_val (0);
18592 low_default_is_valid = 0;
18593 break;
18594 }
18595
18596 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
18597 if (attr != nullptr)
18598 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
18599 else if (!low_default_is_valid)
18600 complaint (_("Missing DW_AT_lower_bound "
18601 "- DIE at %s [in module %s]"),
18602 sect_offset_str (die->sect_off),
18603 objfile_name (cu->per_objfile->objfile));
18604
18605 struct attribute *attr_ub, *attr_count;
18606 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
18607 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18608 {
18609 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
18610 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18611 {
18612 /* If bounds are constant do the final calculation here. */
18613 if (low.kind () == PROP_CONST && high.kind () == PROP_CONST)
18614 high.set_const_val (low.const_val () + high.const_val () - 1);
18615 else
18616 high_bound_is_count = 1;
18617 }
18618 else
18619 {
18620 if (attr_ub != NULL)
18621 complaint (_("Unresolved DW_AT_upper_bound "
18622 "- DIE at %s [in module %s]"),
18623 sect_offset_str (die->sect_off),
18624 objfile_name (cu->per_objfile->objfile));
18625 if (attr_count != NULL)
18626 complaint (_("Unresolved DW_AT_count "
18627 "- DIE at %s [in module %s]"),
18628 sect_offset_str (die->sect_off),
18629 objfile_name (cu->per_objfile->objfile));
18630 }
18631 }
18632
18633 LONGEST bias = 0;
18634 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
18635 if (bias_attr != nullptr && bias_attr->form_is_constant ())
18636 bias = bias_attr->constant_value (0);
18637
18638 /* Normally, the DWARF producers are expected to use a signed
18639 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18640 But this is unfortunately not always the case, as witnessed
18641 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18642 is used instead. To work around that ambiguity, we treat
18643 the bounds as signed, and thus sign-extend their values, when
18644 the base type is signed. */
18645 negative_mask =
18646 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18647 if (low.kind () == PROP_CONST
18648 && !base_type->is_unsigned () && (low.const_val () & negative_mask))
18649 low.set_const_val (low.const_val () | negative_mask);
18650 if (high.kind () == PROP_CONST
18651 && !base_type->is_unsigned () && (high.const_val () & negative_mask))
18652 high.set_const_val (high.const_val () | negative_mask);
18653
18654 /* Check for bit and byte strides. */
18655 struct dynamic_prop byte_stride_prop;
18656 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
18657 if (attr_byte_stride != nullptr)
18658 {
18659 struct type *prop_type = cu->addr_sized_int_type (false);
18660 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
18661 prop_type);
18662 }
18663
18664 struct dynamic_prop bit_stride_prop;
18665 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
18666 if (attr_bit_stride != nullptr)
18667 {
18668 /* It only makes sense to have either a bit or byte stride. */
18669 if (attr_byte_stride != nullptr)
18670 {
18671 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
18672 "- DIE at %s [in module %s]"),
18673 sect_offset_str (die->sect_off),
18674 objfile_name (cu->per_objfile->objfile));
18675 attr_bit_stride = nullptr;
18676 }
18677 else
18678 {
18679 struct type *prop_type = cu->addr_sized_int_type (false);
18680 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
18681 prop_type);
18682 }
18683 }
18684
18685 if (attr_byte_stride != nullptr
18686 || attr_bit_stride != nullptr)
18687 {
18688 bool byte_stride_p = (attr_byte_stride != nullptr);
18689 struct dynamic_prop *stride
18690 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
18691
18692 range_type
18693 = create_range_type_with_stride (NULL, orig_base_type, &low,
18694 &high, bias, stride, byte_stride_p);
18695 }
18696 else
18697 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
18698
18699 if (high_bound_is_count)
18700 range_type->bounds ()->flag_upper_bound_is_count = 1;
18701
18702 /* Ada expects an empty array on no boundary attributes. */
18703 if (attr == NULL && cu->per_cu->lang != language_ada)
18704 range_type->bounds ()->high.set_undefined ();
18705
18706 name = dwarf2_name (die, cu);
18707 if (name)
18708 range_type->set_name (name);
18709
18710 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18711 if (attr != nullptr)
18712 TYPE_LENGTH (range_type) = attr->constant_value (0);
18713
18714 maybe_set_alignment (cu, die, range_type);
18715
18716 set_die_type (die, range_type, cu);
18717
18718 /* set_die_type should be already done. */
18719 set_descriptive_type (range_type, die, cu);
18720
18721 return range_type;
18722 }
18723
18724 static struct type *
18725 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18726 {
18727 struct type *type;
18728
18729 type = init_type (cu->per_objfile->objfile, TYPE_CODE_VOID, 0, NULL);
18730 type->set_name (dwarf2_name (die, cu));
18731
18732 /* In Ada, an unspecified type is typically used when the description
18733 of the type is deferred to a different unit. When encountering
18734 such a type, we treat it as a stub, and try to resolve it later on,
18735 when needed. */
18736 if (cu->per_cu->lang == language_ada)
18737 type->set_is_stub (true);
18738
18739 return set_die_type (die, type, cu);
18740 }
18741
18742 /* Read a single die and all its descendents. Set the die's sibling
18743 field to NULL; set other fields in the die correctly, and set all
18744 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18745 location of the info_ptr after reading all of those dies. PARENT
18746 is the parent of the die in question. */
18747
18748 static struct die_info *
18749 read_die_and_children (const struct die_reader_specs *reader,
18750 const gdb_byte *info_ptr,
18751 const gdb_byte **new_info_ptr,
18752 struct die_info *parent)
18753 {
18754 struct die_info *die;
18755 const gdb_byte *cur_ptr;
18756
18757 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
18758 if (die == NULL)
18759 {
18760 *new_info_ptr = cur_ptr;
18761 return NULL;
18762 }
18763 store_in_ref_table (die, reader->cu);
18764
18765 if (die->has_children)
18766 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18767 else
18768 {
18769 die->child = NULL;
18770 *new_info_ptr = cur_ptr;
18771 }
18772
18773 die->sibling = NULL;
18774 die->parent = parent;
18775 return die;
18776 }
18777
18778 /* Read a die, all of its descendents, and all of its siblings; set
18779 all of the fields of all of the dies correctly. Arguments are as
18780 in read_die_and_children. */
18781
18782 static struct die_info *
18783 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18784 const gdb_byte *info_ptr,
18785 const gdb_byte **new_info_ptr,
18786 struct die_info *parent)
18787 {
18788 struct die_info *first_die, *last_sibling;
18789 const gdb_byte *cur_ptr;
18790
18791 cur_ptr = info_ptr;
18792 first_die = last_sibling = NULL;
18793
18794 while (1)
18795 {
18796 struct die_info *die
18797 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18798
18799 if (die == NULL)
18800 {
18801 *new_info_ptr = cur_ptr;
18802 return first_die;
18803 }
18804
18805 if (!first_die)
18806 first_die = die;
18807 else
18808 last_sibling->sibling = die;
18809
18810 last_sibling = die;
18811 }
18812 }
18813
18814 /* Read a die, all of its descendents, and all of its siblings; set
18815 all of the fields of all of the dies correctly. Arguments are as
18816 in read_die_and_children.
18817 This the main entry point for reading a DIE and all its children. */
18818
18819 static struct die_info *
18820 read_die_and_siblings (const struct die_reader_specs *reader,
18821 const gdb_byte *info_ptr,
18822 const gdb_byte **new_info_ptr,
18823 struct die_info *parent)
18824 {
18825 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18826 new_info_ptr, parent);
18827
18828 if (dwarf_die_debug)
18829 {
18830 fprintf_unfiltered (gdb_stdlog,
18831 "Read die from %s@0x%x of %s:\n",
18832 reader->die_section->get_name (),
18833 (unsigned) (info_ptr - reader->die_section->buffer),
18834 bfd_get_filename (reader->abfd));
18835 dump_die (die, dwarf_die_debug);
18836 }
18837
18838 return die;
18839 }
18840
18841 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18842 attributes.
18843 The caller is responsible for filling in the extra attributes
18844 and updating (*DIEP)->num_attrs.
18845 Set DIEP to point to a newly allocated die with its information,
18846 except for its child, sibling, and parent fields. */
18847
18848 static const gdb_byte *
18849 read_full_die_1 (const struct die_reader_specs *reader,
18850 struct die_info **diep, const gdb_byte *info_ptr,
18851 int num_extra_attrs)
18852 {
18853 unsigned int abbrev_number, bytes_read, i;
18854 const struct abbrev_info *abbrev;
18855 struct die_info *die;
18856 struct dwarf2_cu *cu = reader->cu;
18857 bfd *abfd = reader->abfd;
18858
18859 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18860 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18861 info_ptr += bytes_read;
18862 if (!abbrev_number)
18863 {
18864 *diep = NULL;
18865 return info_ptr;
18866 }
18867
18868 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18869 if (!abbrev)
18870 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18871 abbrev_number,
18872 bfd_get_filename (abfd));
18873
18874 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18875 die->sect_off = sect_off;
18876 die->tag = abbrev->tag;
18877 die->abbrev = abbrev_number;
18878 die->has_children = abbrev->has_children;
18879
18880 /* Make the result usable.
18881 The caller needs to update num_attrs after adding the extra
18882 attributes. */
18883 die->num_attrs = abbrev->num_attrs;
18884
18885 bool any_need_reprocess = false;
18886 for (i = 0; i < abbrev->num_attrs; ++i)
18887 {
18888 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18889 info_ptr);
18890 if (die->attrs[i].requires_reprocessing_p ())
18891 any_need_reprocess = true;
18892 }
18893
18894 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
18895 if (attr != nullptr && attr->form_is_unsigned ())
18896 cu->str_offsets_base = attr->as_unsigned ();
18897
18898 attr = die->attr (DW_AT_loclists_base);
18899 if (attr != nullptr)
18900 cu->loclist_base = attr->as_unsigned ();
18901
18902 auto maybe_addr_base = die->addr_base ();
18903 if (maybe_addr_base.has_value ())
18904 cu->addr_base = *maybe_addr_base;
18905
18906 attr = die->attr (DW_AT_rnglists_base);
18907 if (attr != nullptr)
18908 cu->rnglists_base = attr->as_unsigned ();
18909
18910 if (any_need_reprocess)
18911 {
18912 for (i = 0; i < abbrev->num_attrs; ++i)
18913 {
18914 if (die->attrs[i].requires_reprocessing_p ())
18915 read_attribute_reprocess (reader, &die->attrs[i], die->tag);
18916 }
18917 }
18918 *diep = die;
18919 return info_ptr;
18920 }
18921
18922 /* Read a die and all its attributes.
18923 Set DIEP to point to a newly allocated die with its information,
18924 except for its child, sibling, and parent fields. */
18925
18926 static const gdb_byte *
18927 read_full_die (const struct die_reader_specs *reader,
18928 struct die_info **diep, const gdb_byte *info_ptr)
18929 {
18930 const gdb_byte *result;
18931
18932 result = read_full_die_1 (reader, diep, info_ptr, 0);
18933
18934 if (dwarf_die_debug)
18935 {
18936 fprintf_unfiltered (gdb_stdlog,
18937 "Read die from %s@0x%x of %s:\n",
18938 reader->die_section->get_name (),
18939 (unsigned) (info_ptr - reader->die_section->buffer),
18940 bfd_get_filename (reader->abfd));
18941 dump_die (*diep, dwarf_die_debug);
18942 }
18943
18944 return result;
18945 }
18946 \f
18947
18948 /* Returns nonzero if TAG represents a type that we might generate a partial
18949 symbol for. */
18950
18951 static int
18952 is_type_tag_for_partial (int tag, enum language lang)
18953 {
18954 switch (tag)
18955 {
18956 #if 0
18957 /* Some types that would be reasonable to generate partial symbols for,
18958 that we don't at present. Note that normally this does not
18959 matter, mainly because C compilers don't give names to these
18960 types, but instead emit DW_TAG_typedef. */
18961 case DW_TAG_file_type:
18962 case DW_TAG_ptr_to_member_type:
18963 case DW_TAG_set_type:
18964 case DW_TAG_string_type:
18965 case DW_TAG_subroutine_type:
18966 #endif
18967
18968 /* GNAT may emit an array with a name, but no typedef, so we
18969 need to make a symbol in this case. */
18970 case DW_TAG_array_type:
18971 return lang == language_ada;
18972
18973 case DW_TAG_base_type:
18974 case DW_TAG_class_type:
18975 case DW_TAG_interface_type:
18976 case DW_TAG_enumeration_type:
18977 case DW_TAG_structure_type:
18978 case DW_TAG_subrange_type:
18979 case DW_TAG_typedef:
18980 case DW_TAG_union_type:
18981 return 1;
18982 default:
18983 return 0;
18984 }
18985 }
18986
18987 /* Load all DIEs that are interesting for partial symbols into memory. */
18988
18989 static struct partial_die_info *
18990 load_partial_dies (const struct die_reader_specs *reader,
18991 const gdb_byte *info_ptr, int building_psymtab)
18992 {
18993 struct dwarf2_cu *cu = reader->cu;
18994 struct objfile *objfile = cu->per_objfile->objfile;
18995 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18996 unsigned int bytes_read;
18997 unsigned int load_all = 0;
18998 int nesting_level = 1;
18999
19000 parent_die = NULL;
19001 last_die = NULL;
19002
19003 gdb_assert (cu->per_cu != NULL);
19004 if (cu->load_all_dies)
19005 load_all = 1;
19006
19007 cu->partial_dies
19008 = htab_create_alloc_ex (cu->header.length / 12,
19009 partial_die_hash,
19010 partial_die_eq,
19011 NULL,
19012 &cu->comp_unit_obstack,
19013 hashtab_obstack_allocate,
19014 dummy_obstack_deallocate);
19015
19016 while (1)
19017 {
19018 const abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr,
19019 &bytes_read);
19020
19021 /* A NULL abbrev means the end of a series of children. */
19022 if (abbrev == NULL)
19023 {
19024 if (--nesting_level == 0)
19025 return first_die;
19026
19027 info_ptr += bytes_read;
19028 last_die = parent_die;
19029 parent_die = parent_die->die_parent;
19030 continue;
19031 }
19032
19033 /* Check for template arguments. We never save these; if
19034 they're seen, we just mark the parent, and go on our way. */
19035 if (parent_die != NULL
19036 && cu->per_cu->lang == language_cplus
19037 && (abbrev->tag == DW_TAG_template_type_param
19038 || abbrev->tag == DW_TAG_template_value_param))
19039 {
19040 parent_die->has_template_arguments = 1;
19041
19042 if (!load_all)
19043 {
19044 /* We don't need a partial DIE for the template argument. */
19045 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
19046 continue;
19047 }
19048 }
19049
19050 /* We only recurse into c++ subprograms looking for template arguments.
19051 Skip their other children. */
19052 if (!load_all
19053 && cu->per_cu->lang == language_cplus
19054 && parent_die != NULL
19055 && parent_die->tag == DW_TAG_subprogram
19056 && abbrev->tag != DW_TAG_inlined_subroutine)
19057 {
19058 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
19059 continue;
19060 }
19061
19062 /* Check whether this DIE is interesting enough to save. Normally
19063 we would not be interested in members here, but there may be
19064 later variables referencing them via DW_AT_specification (for
19065 static members). */
19066 if (!load_all
19067 && !is_type_tag_for_partial (abbrev->tag, cu->per_cu->lang)
19068 && abbrev->tag != DW_TAG_constant
19069 && abbrev->tag != DW_TAG_enumerator
19070 && abbrev->tag != DW_TAG_subprogram
19071 && abbrev->tag != DW_TAG_inlined_subroutine
19072 && abbrev->tag != DW_TAG_lexical_block
19073 && abbrev->tag != DW_TAG_variable
19074 && abbrev->tag != DW_TAG_namespace
19075 && abbrev->tag != DW_TAG_module
19076 && abbrev->tag != DW_TAG_member
19077 && abbrev->tag != DW_TAG_imported_unit
19078 && abbrev->tag != DW_TAG_imported_declaration)
19079 {
19080 /* Otherwise we skip to the next sibling, if any. */
19081 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
19082 continue;
19083 }
19084
19085 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
19086 abbrev);
19087
19088 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
19089
19090 /* This two-pass algorithm for processing partial symbols has a
19091 high cost in cache pressure. Thus, handle some simple cases
19092 here which cover the majority of C partial symbols. DIEs
19093 which neither have specification tags in them, nor could have
19094 specification tags elsewhere pointing at them, can simply be
19095 processed and discarded.
19096
19097 This segment is also optional; scan_partial_symbols and
19098 add_partial_symbol will handle these DIEs if we chain
19099 them in normally. When compilers which do not emit large
19100 quantities of duplicate debug information are more common,
19101 this code can probably be removed. */
19102
19103 /* Any complete simple types at the top level (pretty much all
19104 of them, for a language without namespaces), can be processed
19105 directly. */
19106 if (parent_die == NULL
19107 && pdi.has_specification == 0
19108 && pdi.is_declaration == 0
19109 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
19110 || pdi.tag == DW_TAG_base_type
19111 || pdi.tag == DW_TAG_array_type
19112 || pdi.tag == DW_TAG_subrange_type))
19113 {
19114 if (building_psymtab && pdi.raw_name != NULL)
19115 add_partial_symbol (&pdi, cu);
19116
19117 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
19118 continue;
19119 }
19120
19121 /* The exception for DW_TAG_typedef with has_children above is
19122 a workaround of GCC PR debug/47510. In the case of this complaint
19123 type_name_or_error will error on such types later.
19124
19125 GDB skipped children of DW_TAG_typedef by the shortcut above and then
19126 it could not find the child DIEs referenced later, this is checked
19127 above. In correct DWARF DW_TAG_typedef should have no children. */
19128
19129 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
19130 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
19131 "- DIE at %s [in module %s]"),
19132 sect_offset_str (pdi.sect_off), objfile_name (objfile));
19133
19134 /* If we're at the second level, and we're an enumerator, and
19135 our parent has no specification (meaning possibly lives in a
19136 namespace elsewhere), then we can add the partial symbol now
19137 instead of queueing it. */
19138 if (pdi.tag == DW_TAG_enumerator
19139 && parent_die != NULL
19140 && parent_die->die_parent == NULL
19141 && parent_die->tag == DW_TAG_enumeration_type
19142 && parent_die->has_specification == 0)
19143 {
19144 if (pdi.raw_name == NULL)
19145 complaint (_("malformed enumerator DIE ignored"));
19146 else if (building_psymtab)
19147 add_partial_symbol (&pdi, cu);
19148
19149 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
19150 continue;
19151 }
19152
19153 struct partial_die_info *part_die
19154 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
19155
19156 /* We'll save this DIE so link it in. */
19157 part_die->die_parent = parent_die;
19158 part_die->die_sibling = NULL;
19159 part_die->die_child = NULL;
19160
19161 if (last_die && last_die == parent_die)
19162 last_die->die_child = part_die;
19163 else if (last_die)
19164 last_die->die_sibling = part_die;
19165
19166 last_die = part_die;
19167
19168 if (first_die == NULL)
19169 first_die = part_die;
19170
19171 /* Maybe add the DIE to the hash table. Not all DIEs that we
19172 find interesting need to be in the hash table, because we
19173 also have the parent/sibling/child chains; only those that we
19174 might refer to by offset later during partial symbol reading.
19175
19176 For now this means things that might have be the target of a
19177 DW_AT_specification, DW_AT_abstract_origin, or
19178 DW_AT_extension. DW_AT_extension will refer only to
19179 namespaces; DW_AT_abstract_origin refers to functions (and
19180 many things under the function DIE, but we do not recurse
19181 into function DIEs during partial symbol reading) and
19182 possibly variables as well; DW_AT_specification refers to
19183 declarations. Declarations ought to have the DW_AT_declaration
19184 flag. It happens that GCC forgets to put it in sometimes, but
19185 only for functions, not for types.
19186
19187 Adding more things than necessary to the hash table is harmless
19188 except for the performance cost. Adding too few will result in
19189 wasted time in find_partial_die, when we reread the compilation
19190 unit with load_all_dies set. */
19191
19192 if (load_all
19193 || abbrev->tag == DW_TAG_constant
19194 || abbrev->tag == DW_TAG_subprogram
19195 || abbrev->tag == DW_TAG_variable
19196 || abbrev->tag == DW_TAG_namespace
19197 || part_die->is_declaration)
19198 {
19199 void **slot;
19200
19201 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
19202 to_underlying (part_die->sect_off),
19203 INSERT);
19204 *slot = part_die;
19205 }
19206
19207 /* For some DIEs we want to follow their children (if any). For C
19208 we have no reason to follow the children of structures; for other
19209 languages we have to, so that we can get at method physnames
19210 to infer fully qualified class names, for DW_AT_specification,
19211 and for C++ template arguments. For C++, we also look one level
19212 inside functions to find template arguments (if the name of the
19213 function does not already contain the template arguments).
19214
19215 For Ada and Fortran, we need to scan the children of subprograms
19216 and lexical blocks as well because these languages allow the
19217 definition of nested entities that could be interesting for the
19218 debugger, such as nested subprograms for instance. */
19219 if (last_die->has_children
19220 && (load_all
19221 || last_die->tag == DW_TAG_namespace
19222 || last_die->tag == DW_TAG_module
19223 || last_die->tag == DW_TAG_enumeration_type
19224 || (cu->per_cu->lang == language_cplus
19225 && last_die->tag == DW_TAG_subprogram
19226 && (last_die->raw_name == NULL
19227 || strchr (last_die->raw_name, '<') == NULL))
19228 || (cu->per_cu->lang != language_c
19229 && (last_die->tag == DW_TAG_class_type
19230 || last_die->tag == DW_TAG_interface_type
19231 || last_die->tag == DW_TAG_structure_type
19232 || last_die->tag == DW_TAG_union_type))
19233 || ((cu->per_cu->lang == language_ada
19234 || cu->per_cu->lang == language_fortran)
19235 && (last_die->tag == DW_TAG_subprogram
19236 || last_die->tag == DW_TAG_lexical_block))))
19237 {
19238 nesting_level++;
19239 parent_die = last_die;
19240 continue;
19241 }
19242
19243 /* Otherwise we skip to the next sibling, if any. */
19244 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
19245
19246 /* Back to the top, do it again. */
19247 }
19248 }
19249
19250 partial_die_info::partial_die_info (sect_offset sect_off_,
19251 const struct abbrev_info *abbrev)
19252 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
19253 {
19254 }
19255
19256 /* See class definition. */
19257
19258 const char *
19259 partial_die_info::name (dwarf2_cu *cu)
19260 {
19261 if (!canonical_name && raw_name != nullptr)
19262 {
19263 struct objfile *objfile = cu->per_objfile->objfile;
19264 raw_name = dwarf2_canonicalize_name (raw_name, cu, objfile);
19265 canonical_name = 1;
19266 }
19267
19268 return raw_name;
19269 }
19270
19271 /* Read a minimal amount of information into the minimal die structure.
19272 INFO_PTR should point just after the initial uleb128 of a DIE. */
19273
19274 const gdb_byte *
19275 partial_die_info::read (const struct die_reader_specs *reader,
19276 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
19277 {
19278 struct dwarf2_cu *cu = reader->cu;
19279 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19280 unsigned int i;
19281 int has_low_pc_attr = 0;
19282 int has_high_pc_attr = 0;
19283 int high_pc_relative = 0;
19284
19285 for (i = 0; i < abbrev.num_attrs; ++i)
19286 {
19287 attribute attr;
19288 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
19289 /* String and address offsets that need to do the reprocessing have
19290 already been read at this point, so there is no need to wait until
19291 the loop terminates to do the reprocessing. */
19292 if (attr.requires_reprocessing_p ())
19293 read_attribute_reprocess (reader, &attr, tag);
19294 /* Store the data if it is of an attribute we want to keep in a
19295 partial symbol table. */
19296 switch (attr.name)
19297 {
19298 case DW_AT_name:
19299 switch (tag)
19300 {
19301 case DW_TAG_compile_unit:
19302 case DW_TAG_partial_unit:
19303 case DW_TAG_type_unit:
19304 /* Compilation units have a DW_AT_name that is a filename, not
19305 a source language identifier. */
19306 case DW_TAG_enumeration_type:
19307 case DW_TAG_enumerator:
19308 /* These tags always have simple identifiers already; no need
19309 to canonicalize them. */
19310 canonical_name = 1;
19311 raw_name = attr.as_string ();
19312 break;
19313 default:
19314 canonical_name = 0;
19315 raw_name = attr.as_string ();
19316 break;
19317 }
19318 break;
19319 case DW_AT_linkage_name:
19320 case DW_AT_MIPS_linkage_name:
19321 /* Note that both forms of linkage name might appear. We
19322 assume they will be the same, and we only store the last
19323 one we see. */
19324 linkage_name = attr.as_string ();
19325 break;
19326 case DW_AT_low_pc:
19327 has_low_pc_attr = 1;
19328 lowpc = attr.as_address ();
19329 break;
19330 case DW_AT_high_pc:
19331 has_high_pc_attr = 1;
19332 highpc = attr.as_address ();
19333 if (cu->header.version >= 4 && attr.form_is_constant ())
19334 high_pc_relative = 1;
19335 break;
19336 case DW_AT_location:
19337 /* Support the .debug_loc offsets. */
19338 if (attr.form_is_block ())
19339 {
19340 d.locdesc = attr.as_block ();
19341 }
19342 else if (attr.form_is_section_offset ())
19343 {
19344 dwarf2_complex_location_expr_complaint ();
19345 }
19346 else
19347 {
19348 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
19349 "partial symbol information");
19350 }
19351 break;
19352 case DW_AT_external:
19353 is_external = attr.as_boolean ();
19354 break;
19355 case DW_AT_declaration:
19356 is_declaration = attr.as_boolean ();
19357 break;
19358 case DW_AT_type:
19359 has_type = 1;
19360 break;
19361 case DW_AT_abstract_origin:
19362 case DW_AT_specification:
19363 case DW_AT_extension:
19364 has_specification = 1;
19365 spec_offset = attr.get_ref_die_offset ();
19366 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19367 || cu->per_cu->is_dwz);
19368 break;
19369 case DW_AT_sibling:
19370 /* Ignore absolute siblings, they might point outside of
19371 the current compile unit. */
19372 if (attr.form == DW_FORM_ref_addr)
19373 complaint (_("ignoring absolute DW_AT_sibling"));
19374 else
19375 {
19376 const gdb_byte *buffer = reader->buffer;
19377 sect_offset off = attr.get_ref_die_offset ();
19378 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
19379
19380 if (sibling_ptr < info_ptr)
19381 complaint (_("DW_AT_sibling points backwards"));
19382 else if (sibling_ptr > reader->buffer_end)
19383 reader->die_section->overflow_complaint ();
19384 else
19385 sibling = sibling_ptr;
19386 }
19387 break;
19388 case DW_AT_byte_size:
19389 has_byte_size = 1;
19390 break;
19391 case DW_AT_const_value:
19392 has_const_value = 1;
19393 break;
19394 case DW_AT_calling_convention:
19395 /* DWARF doesn't provide a way to identify a program's source-level
19396 entry point. DW_AT_calling_convention attributes are only meant
19397 to describe functions' calling conventions.
19398
19399 However, because it's a necessary piece of information in
19400 Fortran, and before DWARF 4 DW_CC_program was the only
19401 piece of debugging information whose definition refers to
19402 a 'main program' at all, several compilers marked Fortran
19403 main programs with DW_CC_program --- even when those
19404 functions use the standard calling conventions.
19405
19406 Although DWARF now specifies a way to provide this
19407 information, we support this practice for backward
19408 compatibility. */
19409 if (attr.constant_value (0) == DW_CC_program
19410 && cu->per_cu->lang == language_fortran)
19411 main_subprogram = 1;
19412 break;
19413 case DW_AT_inline:
19414 {
19415 LONGEST value = attr.constant_value (-1);
19416 if (value == DW_INL_inlined
19417 || value == DW_INL_declared_inlined)
19418 may_be_inlined = 1;
19419 }
19420 break;
19421
19422 case DW_AT_import:
19423 if (tag == DW_TAG_imported_unit)
19424 {
19425 d.sect_off = attr.get_ref_die_offset ();
19426 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19427 || cu->per_cu->is_dwz);
19428 }
19429 break;
19430
19431 case DW_AT_main_subprogram:
19432 main_subprogram = attr.as_boolean ();
19433 break;
19434
19435 case DW_AT_ranges:
19436 {
19437 /* Offset in the .debug_ranges or .debug_rnglist section (depending
19438 on DWARF version). */
19439 ranges_offset = attr.as_unsigned ();
19440
19441 /* See dwarf2_cu::gnu_ranges_base's doc for why we might want to add
19442 this value. */
19443 if (tag != DW_TAG_compile_unit)
19444 ranges_offset += cu->gnu_ranges_base;
19445
19446 has_range_info = 1;
19447 }
19448 break;
19449
19450 default:
19451 break;
19452 }
19453 }
19454
19455 /* For Ada, if both the name and the linkage name appear, we prefer
19456 the latter. This lets "catch exception" work better, regardless
19457 of the order in which the name and linkage name were emitted.
19458 Really, though, this is just a workaround for the fact that gdb
19459 doesn't store both the name and the linkage name. */
19460 if (cu->per_cu->lang == language_ada && linkage_name != nullptr)
19461 raw_name = linkage_name;
19462
19463 if (high_pc_relative)
19464 highpc += lowpc;
19465
19466 if (has_low_pc_attr && has_high_pc_attr)
19467 {
19468 /* When using the GNU linker, .gnu.linkonce. sections are used to
19469 eliminate duplicate copies of functions and vtables and such.
19470 The linker will arbitrarily choose one and discard the others.
19471 The AT_*_pc values for such functions refer to local labels in
19472 these sections. If the section from that file was discarded, the
19473 labels are not in the output, so the relocs get a value of 0.
19474 If this is a discarded function, mark the pc bounds as invalid,
19475 so that GDB will ignore it. */
19476 if (lowpc == 0 && !per_objfile->per_bfd->has_section_at_zero)
19477 {
19478 struct objfile *objfile = per_objfile->objfile;
19479 struct gdbarch *gdbarch = objfile->arch ();
19480
19481 complaint (_("DW_AT_low_pc %s is zero "
19482 "for DIE at %s [in module %s]"),
19483 paddress (gdbarch, lowpc),
19484 sect_offset_str (sect_off),
19485 objfile_name (objfile));
19486 }
19487 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
19488 else if (lowpc >= highpc)
19489 {
19490 struct objfile *objfile = per_objfile->objfile;
19491 struct gdbarch *gdbarch = objfile->arch ();
19492
19493 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
19494 "for DIE at %s [in module %s]"),
19495 paddress (gdbarch, lowpc),
19496 paddress (gdbarch, highpc),
19497 sect_offset_str (sect_off),
19498 objfile_name (objfile));
19499 }
19500 else
19501 has_pc_info = 1;
19502 }
19503
19504 return info_ptr;
19505 }
19506
19507 /* Find a cached partial DIE at OFFSET in CU. */
19508
19509 struct partial_die_info *
19510 dwarf2_cu::find_partial_die (sect_offset sect_off)
19511 {
19512 struct partial_die_info *lookup_die = NULL;
19513 struct partial_die_info part_die (sect_off);
19514
19515 lookup_die = ((struct partial_die_info *)
19516 htab_find_with_hash (partial_dies, &part_die,
19517 to_underlying (sect_off)));
19518
19519 return lookup_die;
19520 }
19521
19522 /* Find a partial DIE at OFFSET, which may or may not be in CU,
19523 except in the case of .debug_types DIEs which do not reference
19524 outside their CU (they do however referencing other types via
19525 DW_FORM_ref_sig8). */
19526
19527 static const struct cu_partial_die_info
19528 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
19529 {
19530 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19531 struct objfile *objfile = per_objfile->objfile;
19532 struct partial_die_info *pd = NULL;
19533
19534 if (offset_in_dwz == cu->per_cu->is_dwz
19535 && cu->header.offset_in_cu_p (sect_off))
19536 {
19537 pd = cu->find_partial_die (sect_off);
19538 if (pd != NULL)
19539 return { cu, pd };
19540 /* We missed recording what we needed.
19541 Load all dies and try again. */
19542 }
19543 else
19544 {
19545 /* TUs don't reference other CUs/TUs (except via type signatures). */
19546 if (cu->per_cu->is_debug_types)
19547 {
19548 error (_("Dwarf Error: Type Unit at offset %s contains"
19549 " external reference to offset %s [in module %s].\n"),
19550 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
19551 bfd_get_filename (objfile->obfd));
19552 }
19553 dwarf2_per_cu_data *per_cu
19554 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
19555 per_objfile);
19556
19557 cu = per_objfile->get_cu (per_cu);
19558 if (cu == NULL || cu->partial_dies == NULL)
19559 load_partial_comp_unit (per_cu, per_objfile, nullptr);
19560
19561 cu = per_objfile->get_cu (per_cu);
19562
19563 cu->last_used = 0;
19564 pd = cu->find_partial_die (sect_off);
19565 }
19566
19567 /* If we didn't find it, and not all dies have been loaded,
19568 load them all and try again. */
19569
19570 if (pd == NULL && cu->load_all_dies == 0)
19571 {
19572 cu->load_all_dies = 1;
19573
19574 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19575 THIS_CU->cu may already be in use. So we can't just free it and
19576 replace its DIEs with the ones we read in. Instead, we leave those
19577 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19578 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19579 set. */
19580 load_partial_comp_unit (cu->per_cu, per_objfile, cu);
19581
19582 pd = cu->find_partial_die (sect_off);
19583 }
19584
19585 if (pd == NULL)
19586 error (_("Dwarf Error: Cannot find DIE at %s [from module %s]\n"),
19587 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19588 return { cu, pd };
19589 }
19590
19591 /* See if we can figure out if the class lives in a namespace. We do
19592 this by looking for a member function; its demangled name will
19593 contain namespace info, if there is any. */
19594
19595 static void
19596 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19597 struct dwarf2_cu *cu)
19598 {
19599 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19600 what template types look like, because the demangler
19601 frequently doesn't give the same name as the debug info. We
19602 could fix this by only using the demangled name to get the
19603 prefix (but see comment in read_structure_type). */
19604
19605 struct partial_die_info *real_pdi;
19606 struct partial_die_info *child_pdi;
19607
19608 /* If this DIE (this DIE's specification, if any) has a parent, then
19609 we should not do this. We'll prepend the parent's fully qualified
19610 name when we create the partial symbol. */
19611
19612 real_pdi = struct_pdi;
19613 while (real_pdi->has_specification)
19614 {
19615 auto res = find_partial_die (real_pdi->spec_offset,
19616 real_pdi->spec_is_dwz, cu);
19617 real_pdi = res.pdi;
19618 cu = res.cu;
19619 }
19620
19621 if (real_pdi->die_parent != NULL)
19622 return;
19623
19624 for (child_pdi = struct_pdi->die_child;
19625 child_pdi != NULL;
19626 child_pdi = child_pdi->die_sibling)
19627 {
19628 if (child_pdi->tag == DW_TAG_subprogram
19629 && child_pdi->linkage_name != NULL)
19630 {
19631 gdb::unique_xmalloc_ptr<char> actual_class_name
19632 (cu->language_defn->class_name_from_physname
19633 (child_pdi->linkage_name));
19634 if (actual_class_name != NULL)
19635 {
19636 struct objfile *objfile = cu->per_objfile->objfile;
19637 struct_pdi->raw_name = objfile->intern (actual_class_name.get ());
19638 struct_pdi->canonical_name = 1;
19639 }
19640 break;
19641 }
19642 }
19643 }
19644
19645 /* Return true if a DIE with TAG may have the DW_AT_const_value
19646 attribute. */
19647
19648 static bool
19649 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
19650 {
19651 switch (tag)
19652 {
19653 case DW_TAG_constant:
19654 case DW_TAG_enumerator:
19655 case DW_TAG_formal_parameter:
19656 case DW_TAG_template_value_param:
19657 case DW_TAG_variable:
19658 return true;
19659 }
19660
19661 return false;
19662 }
19663
19664 void
19665 partial_die_info::fixup (struct dwarf2_cu *cu)
19666 {
19667 /* Once we've fixed up a die, there's no point in doing so again.
19668 This also avoids a memory leak if we were to call
19669 guess_partial_die_structure_name multiple times. */
19670 if (fixup_called)
19671 return;
19672
19673 /* If we found a reference attribute and the DIE has no name, try
19674 to find a name in the referred to DIE. */
19675
19676 if (raw_name == NULL && has_specification)
19677 {
19678 struct partial_die_info *spec_die;
19679
19680 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19681 spec_die = res.pdi;
19682 cu = res.cu;
19683
19684 spec_die->fixup (cu);
19685
19686 if (spec_die->raw_name)
19687 {
19688 raw_name = spec_die->raw_name;
19689 canonical_name = spec_die->canonical_name;
19690
19691 /* Copy DW_AT_external attribute if it is set. */
19692 if (spec_die->is_external)
19693 is_external = spec_die->is_external;
19694 }
19695 }
19696
19697 if (!has_const_value && has_specification
19698 && can_have_DW_AT_const_value_p (tag))
19699 {
19700 struct partial_die_info *spec_die;
19701
19702 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19703 spec_die = res.pdi;
19704 cu = res.cu;
19705
19706 spec_die->fixup (cu);
19707
19708 if (spec_die->has_const_value)
19709 {
19710 /* Copy DW_AT_const_value attribute if it is set. */
19711 has_const_value = spec_die->has_const_value;
19712 }
19713 }
19714
19715 /* Set default names for some unnamed DIEs. */
19716
19717 if (raw_name == NULL && tag == DW_TAG_namespace)
19718 {
19719 raw_name = CP_ANONYMOUS_NAMESPACE_STR;
19720 canonical_name = 1;
19721 }
19722
19723 /* If there is no parent die to provide a namespace, and there are
19724 children, see if we can determine the namespace from their linkage
19725 name. */
19726 if (cu->per_cu->lang == language_cplus
19727 && !cu->per_objfile->per_bfd->types.empty ()
19728 && die_parent == NULL
19729 && has_children
19730 && (tag == DW_TAG_class_type
19731 || tag == DW_TAG_structure_type
19732 || tag == DW_TAG_union_type))
19733 guess_partial_die_structure_name (this, cu);
19734
19735 /* GCC might emit a nameless struct or union that has a linkage
19736 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19737 if (raw_name == NULL
19738 && (tag == DW_TAG_class_type
19739 || tag == DW_TAG_interface_type
19740 || tag == DW_TAG_structure_type
19741 || tag == DW_TAG_union_type)
19742 && linkage_name != NULL)
19743 {
19744 gdb::unique_xmalloc_ptr<char> demangled
19745 (gdb_demangle (linkage_name, DMGL_TYPES));
19746 if (demangled != nullptr)
19747 {
19748 const char *base;
19749
19750 /* Strip any leading namespaces/classes, keep only the base name.
19751 DW_AT_name for named DIEs does not contain the prefixes. */
19752 base = strrchr (demangled.get (), ':');
19753 if (base && base > demangled.get () && base[-1] == ':')
19754 base++;
19755 else
19756 base = demangled.get ();
19757
19758 struct objfile *objfile = cu->per_objfile->objfile;
19759 raw_name = objfile->intern (base);
19760 canonical_name = 1;
19761 }
19762 }
19763
19764 fixup_called = 1;
19765 }
19766
19767 /* Read the .debug_loclists or .debug_rnglists header (they are the same format)
19768 contents from the given SECTION in the HEADER.
19769
19770 HEADER_OFFSET is the offset of the header in the section. */
19771 static void
19772 read_loclists_rnglists_header (struct loclists_rnglists_header *header,
19773 struct dwarf2_section_info *section,
19774 sect_offset header_offset)
19775 {
19776 unsigned int bytes_read;
19777 bfd *abfd = section->get_bfd_owner ();
19778 const gdb_byte *info_ptr = section->buffer + to_underlying (header_offset);
19779
19780 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
19781 info_ptr += bytes_read;
19782
19783 header->version = read_2_bytes (abfd, info_ptr);
19784 info_ptr += 2;
19785
19786 header->addr_size = read_1_byte (abfd, info_ptr);
19787 info_ptr += 1;
19788
19789 header->segment_collector_size = read_1_byte (abfd, info_ptr);
19790 info_ptr += 1;
19791
19792 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
19793 }
19794
19795 /* Return the DW_AT_loclists_base value for the CU. */
19796 static ULONGEST
19797 lookup_loclist_base (struct dwarf2_cu *cu)
19798 {
19799 /* For the .dwo unit, the loclist_base points to the first offset following
19800 the header. The header consists of the following entities-
19801 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
19802 bit format)
19803 2. version (2 bytes)
19804 3. address size (1 byte)
19805 4. segment selector size (1 byte)
19806 5. offset entry count (4 bytes)
19807 These sizes are derived as per the DWARFv5 standard. */
19808 if (cu->dwo_unit != nullptr)
19809 {
19810 if (cu->header.initial_length_size == 4)
19811 return LOCLIST_HEADER_SIZE32;
19812 return LOCLIST_HEADER_SIZE64;
19813 }
19814 return cu->loclist_base;
19815 }
19816
19817 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
19818 array of offsets in the .debug_loclists section. */
19819
19820 static sect_offset
19821 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
19822 {
19823 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19824 struct objfile *objfile = per_objfile->objfile;
19825 bfd *abfd = objfile->obfd;
19826 ULONGEST loclist_header_size =
19827 (cu->header.initial_length_size == 4 ? LOCLIST_HEADER_SIZE32
19828 : LOCLIST_HEADER_SIZE64);
19829 ULONGEST loclist_base = lookup_loclist_base (cu);
19830
19831 /* Offset in .debug_loclists of the offset for LOCLIST_INDEX. */
19832 ULONGEST start_offset =
19833 loclist_base + loclist_index * cu->header.offset_size;
19834
19835 /* Get loclists section. */
19836 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19837
19838 /* Read the loclists section content. */
19839 section->read (objfile);
19840 if (section->buffer == NULL)
19841 error (_("DW_FORM_loclistx used without .debug_loclists "
19842 "section [in module %s]"), objfile_name (objfile));
19843
19844 /* DW_AT_loclists_base points after the .debug_loclists contribution header,
19845 so if loclist_base is smaller than the header size, we have a problem. */
19846 if (loclist_base < loclist_header_size)
19847 error (_("DW_AT_loclists_base is smaller than header size [in module %s]"),
19848 objfile_name (objfile));
19849
19850 /* Read the header of the loclists contribution. */
19851 struct loclists_rnglists_header header;
19852 read_loclists_rnglists_header (&header, section,
19853 (sect_offset) (loclist_base - loclist_header_size));
19854
19855 /* Verify the loclist index is valid. */
19856 if (loclist_index >= header.offset_entry_count)
19857 error (_("DW_FORM_loclistx pointing outside of "
19858 ".debug_loclists offset array [in module %s]"),
19859 objfile_name (objfile));
19860
19861 /* Validate that reading won't go beyond the end of the section. */
19862 if (start_offset + cu->header.offset_size > section->size)
19863 error (_("Reading DW_FORM_loclistx index beyond end of"
19864 ".debug_loclists section [in module %s]"),
19865 objfile_name (objfile));
19866
19867 const gdb_byte *info_ptr = section->buffer + start_offset;
19868
19869 if (cu->header.offset_size == 4)
19870 return (sect_offset) (bfd_get_32 (abfd, info_ptr) + loclist_base);
19871 else
19872 return (sect_offset) (bfd_get_64 (abfd, info_ptr) + loclist_base);
19873 }
19874
19875 /* Given a DW_FORM_rnglistx value RNGLIST_INDEX, fetch the offset from the
19876 array of offsets in the .debug_rnglists section. */
19877
19878 static sect_offset
19879 read_rnglist_index (struct dwarf2_cu *cu, ULONGEST rnglist_index,
19880 dwarf_tag tag)
19881 {
19882 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
19883 struct objfile *objfile = dwarf2_per_objfile->objfile;
19884 bfd *abfd = objfile->obfd;
19885 ULONGEST rnglist_header_size =
19886 (cu->header.initial_length_size == 4 ? RNGLIST_HEADER_SIZE32
19887 : RNGLIST_HEADER_SIZE64);
19888
19889 /* When reading a DW_FORM_rnglistx from a DWO, we read from the DWO's
19890 .debug_rnglists.dwo section. The rnglists base given in the skeleton
19891 doesn't apply. */
19892 ULONGEST rnglist_base =
19893 (cu->dwo_unit != nullptr) ? rnglist_header_size : cu->rnglists_base;
19894
19895 /* Offset in .debug_rnglists of the offset for RNGLIST_INDEX. */
19896 ULONGEST start_offset =
19897 rnglist_base + rnglist_index * cu->header.offset_size;
19898
19899 /* Get rnglists section. */
19900 struct dwarf2_section_info *section = cu_debug_rnglists_section (cu, tag);
19901
19902 /* Read the rnglists section content. */
19903 section->read (objfile);
19904 if (section->buffer == nullptr)
19905 error (_("DW_FORM_rnglistx used without .debug_rnglists section "
19906 "[in module %s]"),
19907 objfile_name (objfile));
19908
19909 /* DW_AT_rnglists_base points after the .debug_rnglists contribution header,
19910 so if rnglist_base is smaller than the header size, we have a problem. */
19911 if (rnglist_base < rnglist_header_size)
19912 error (_("DW_AT_rnglists_base is smaller than header size [in module %s]"),
19913 objfile_name (objfile));
19914
19915 /* Read the header of the rnglists contribution. */
19916 struct loclists_rnglists_header header;
19917 read_loclists_rnglists_header (&header, section,
19918 (sect_offset) (rnglist_base - rnglist_header_size));
19919
19920 /* Verify the rnglist index is valid. */
19921 if (rnglist_index >= header.offset_entry_count)
19922 error (_("DW_FORM_rnglistx index pointing outside of "
19923 ".debug_rnglists offset array [in module %s]"),
19924 objfile_name (objfile));
19925
19926 /* Validate that reading won't go beyond the end of the section. */
19927 if (start_offset + cu->header.offset_size > section->size)
19928 error (_("Reading DW_FORM_rnglistx index beyond end of"
19929 ".debug_rnglists section [in module %s]"),
19930 objfile_name (objfile));
19931
19932 const gdb_byte *info_ptr = section->buffer + start_offset;
19933
19934 if (cu->header.offset_size == 4)
19935 return (sect_offset) (read_4_bytes (abfd, info_ptr) + rnglist_base);
19936 else
19937 return (sect_offset) (read_8_bytes (abfd, info_ptr) + rnglist_base);
19938 }
19939
19940 /* Process the attributes that had to be skipped in the first round. These
19941 attributes are the ones that need str_offsets_base or addr_base attributes.
19942 They could not have been processed in the first round, because at the time
19943 the values of str_offsets_base or addr_base may not have been known. */
19944 static void
19945 read_attribute_reprocess (const struct die_reader_specs *reader,
19946 struct attribute *attr, dwarf_tag tag)
19947 {
19948 struct dwarf2_cu *cu = reader->cu;
19949 switch (attr->form)
19950 {
19951 case DW_FORM_addrx:
19952 case DW_FORM_GNU_addr_index:
19953 attr->set_address (read_addr_index (cu,
19954 attr->as_unsigned_reprocess ()));
19955 break;
19956 case DW_FORM_loclistx:
19957 {
19958 sect_offset loclists_sect_off
19959 = read_loclist_index (cu, attr->as_unsigned_reprocess ());
19960
19961 attr->set_unsigned (to_underlying (loclists_sect_off));
19962 }
19963 break;
19964 case DW_FORM_rnglistx:
19965 {
19966 sect_offset rnglists_sect_off
19967 = read_rnglist_index (cu, attr->as_unsigned_reprocess (), tag);
19968
19969 attr->set_unsigned (to_underlying (rnglists_sect_off));
19970 }
19971 break;
19972 case DW_FORM_strx:
19973 case DW_FORM_strx1:
19974 case DW_FORM_strx2:
19975 case DW_FORM_strx3:
19976 case DW_FORM_strx4:
19977 case DW_FORM_GNU_str_index:
19978 {
19979 unsigned int str_index = attr->as_unsigned_reprocess ();
19980 gdb_assert (!attr->canonical_string_p ());
19981 if (reader->dwo_file != NULL)
19982 attr->set_string_noncanonical (read_dwo_str_index (reader,
19983 str_index));
19984 else
19985 attr->set_string_noncanonical (read_stub_str_index (cu,
19986 str_index));
19987 break;
19988 }
19989 default:
19990 gdb_assert_not_reached (_("Unexpected DWARF form."));
19991 }
19992 }
19993
19994 /* Read an attribute value described by an attribute form. */
19995
19996 static const gdb_byte *
19997 read_attribute_value (const struct die_reader_specs *reader,
19998 struct attribute *attr, unsigned form,
19999 LONGEST implicit_const, const gdb_byte *info_ptr)
20000 {
20001 struct dwarf2_cu *cu = reader->cu;
20002 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20003 struct objfile *objfile = per_objfile->objfile;
20004 bfd *abfd = reader->abfd;
20005 struct comp_unit_head *cu_header = &cu->header;
20006 unsigned int bytes_read;
20007 struct dwarf_block *blk;
20008
20009 attr->form = (enum dwarf_form) form;
20010 switch (form)
20011 {
20012 case DW_FORM_ref_addr:
20013 if (cu_header->version == 2)
20014 attr->set_unsigned (cu_header->read_address (abfd, info_ptr,
20015 &bytes_read));
20016 else
20017 attr->set_unsigned (cu_header->read_offset (abfd, info_ptr,
20018 &bytes_read));
20019 info_ptr += bytes_read;
20020 break;
20021 case DW_FORM_GNU_ref_alt:
20022 attr->set_unsigned (cu_header->read_offset (abfd, info_ptr,
20023 &bytes_read));
20024 info_ptr += bytes_read;
20025 break;
20026 case DW_FORM_addr:
20027 {
20028 struct gdbarch *gdbarch = objfile->arch ();
20029 CORE_ADDR addr = cu_header->read_address (abfd, info_ptr, &bytes_read);
20030 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
20031 attr->set_address (addr);
20032 info_ptr += bytes_read;
20033 }
20034 break;
20035 case DW_FORM_block2:
20036 blk = dwarf_alloc_block (cu);
20037 blk->size = read_2_bytes (abfd, info_ptr);
20038 info_ptr += 2;
20039 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
20040 info_ptr += blk->size;
20041 attr->set_block (blk);
20042 break;
20043 case DW_FORM_block4:
20044 blk = dwarf_alloc_block (cu);
20045 blk->size = read_4_bytes (abfd, info_ptr);
20046 info_ptr += 4;
20047 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
20048 info_ptr += blk->size;
20049 attr->set_block (blk);
20050 break;
20051 case DW_FORM_data2:
20052 attr->set_unsigned (read_2_bytes (abfd, info_ptr));
20053 info_ptr += 2;
20054 break;
20055 case DW_FORM_data4:
20056 attr->set_unsigned (read_4_bytes (abfd, info_ptr));
20057 info_ptr += 4;
20058 break;
20059 case DW_FORM_data8:
20060 attr->set_unsigned (read_8_bytes (abfd, info_ptr));
20061 info_ptr += 8;
20062 break;
20063 case DW_FORM_data16:
20064 blk = dwarf_alloc_block (cu);
20065 blk->size = 16;
20066 blk->data = read_n_bytes (abfd, info_ptr, 16);
20067 info_ptr += 16;
20068 attr->set_block (blk);
20069 break;
20070 case DW_FORM_sec_offset:
20071 attr->set_unsigned (cu_header->read_offset (abfd, info_ptr,
20072 &bytes_read));
20073 info_ptr += bytes_read;
20074 break;
20075 case DW_FORM_loclistx:
20076 {
20077 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
20078 &bytes_read));
20079 info_ptr += bytes_read;
20080 }
20081 break;
20082 case DW_FORM_string:
20083 attr->set_string_noncanonical (read_direct_string (abfd, info_ptr,
20084 &bytes_read));
20085 info_ptr += bytes_read;
20086 break;
20087 case DW_FORM_strp:
20088 if (!cu->per_cu->is_dwz)
20089 {
20090 attr->set_string_noncanonical
20091 (read_indirect_string (per_objfile,
20092 abfd, info_ptr, cu_header,
20093 &bytes_read));
20094 info_ptr += bytes_read;
20095 break;
20096 }
20097 /* FALLTHROUGH */
20098 case DW_FORM_line_strp:
20099 if (!cu->per_cu->is_dwz)
20100 {
20101 attr->set_string_noncanonical
20102 (per_objfile->read_line_string (info_ptr, cu_header,
20103 &bytes_read));
20104 info_ptr += bytes_read;
20105 break;
20106 }
20107 /* FALLTHROUGH */
20108 case DW_FORM_GNU_strp_alt:
20109 {
20110 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd, true);
20111 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
20112 &bytes_read);
20113
20114 attr->set_string_noncanonical
20115 (dwz->read_string (objfile, str_offset));
20116 info_ptr += bytes_read;
20117 }
20118 break;
20119 case DW_FORM_exprloc:
20120 case DW_FORM_block:
20121 blk = dwarf_alloc_block (cu);
20122 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
20123 info_ptr += bytes_read;
20124 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
20125 info_ptr += blk->size;
20126 attr->set_block (blk);
20127 break;
20128 case DW_FORM_block1:
20129 blk = dwarf_alloc_block (cu);
20130 blk->size = read_1_byte (abfd, info_ptr);
20131 info_ptr += 1;
20132 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
20133 info_ptr += blk->size;
20134 attr->set_block (blk);
20135 break;
20136 case DW_FORM_data1:
20137 case DW_FORM_flag:
20138 attr->set_unsigned (read_1_byte (abfd, info_ptr));
20139 info_ptr += 1;
20140 break;
20141 case DW_FORM_flag_present:
20142 attr->set_unsigned (1);
20143 break;
20144 case DW_FORM_sdata:
20145 attr->set_signed (read_signed_leb128 (abfd, info_ptr, &bytes_read));
20146 info_ptr += bytes_read;
20147 break;
20148 case DW_FORM_rnglistx:
20149 {
20150 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
20151 &bytes_read));
20152 info_ptr += bytes_read;
20153 }
20154 break;
20155 case DW_FORM_udata:
20156 attr->set_unsigned (read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
20157 info_ptr += bytes_read;
20158 break;
20159 case DW_FORM_ref1:
20160 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20161 + read_1_byte (abfd, info_ptr)));
20162 info_ptr += 1;
20163 break;
20164 case DW_FORM_ref2:
20165 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20166 + read_2_bytes (abfd, info_ptr)));
20167 info_ptr += 2;
20168 break;
20169 case DW_FORM_ref4:
20170 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20171 + read_4_bytes (abfd, info_ptr)));
20172 info_ptr += 4;
20173 break;
20174 case DW_FORM_ref8:
20175 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20176 + read_8_bytes (abfd, info_ptr)));
20177 info_ptr += 8;
20178 break;
20179 case DW_FORM_ref_sig8:
20180 attr->set_signature (read_8_bytes (abfd, info_ptr));
20181 info_ptr += 8;
20182 break;
20183 case DW_FORM_ref_udata:
20184 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20185 + read_unsigned_leb128 (abfd, info_ptr,
20186 &bytes_read)));
20187 info_ptr += bytes_read;
20188 break;
20189 case DW_FORM_indirect:
20190 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
20191 info_ptr += bytes_read;
20192 if (form == DW_FORM_implicit_const)
20193 {
20194 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
20195 info_ptr += bytes_read;
20196 }
20197 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
20198 info_ptr);
20199 break;
20200 case DW_FORM_implicit_const:
20201 attr->set_signed (implicit_const);
20202 break;
20203 case DW_FORM_addrx:
20204 case DW_FORM_GNU_addr_index:
20205 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
20206 &bytes_read));
20207 info_ptr += bytes_read;
20208 break;
20209 case DW_FORM_strx:
20210 case DW_FORM_strx1:
20211 case DW_FORM_strx2:
20212 case DW_FORM_strx3:
20213 case DW_FORM_strx4:
20214 case DW_FORM_GNU_str_index:
20215 {
20216 ULONGEST str_index;
20217 if (form == DW_FORM_strx1)
20218 {
20219 str_index = read_1_byte (abfd, info_ptr);
20220 info_ptr += 1;
20221 }
20222 else if (form == DW_FORM_strx2)
20223 {
20224 str_index = read_2_bytes (abfd, info_ptr);
20225 info_ptr += 2;
20226 }
20227 else if (form == DW_FORM_strx3)
20228 {
20229 str_index = read_3_bytes (abfd, info_ptr);
20230 info_ptr += 3;
20231 }
20232 else if (form == DW_FORM_strx4)
20233 {
20234 str_index = read_4_bytes (abfd, info_ptr);
20235 info_ptr += 4;
20236 }
20237 else
20238 {
20239 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
20240 info_ptr += bytes_read;
20241 }
20242 attr->set_unsigned_reprocess (str_index);
20243 }
20244 break;
20245 default:
20246 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
20247 dwarf_form_name (form),
20248 bfd_get_filename (abfd));
20249 }
20250
20251 /* Super hack. */
20252 if (cu->per_cu->is_dwz && attr->form_is_ref ())
20253 attr->form = DW_FORM_GNU_ref_alt;
20254
20255 /* We have seen instances where the compiler tried to emit a byte
20256 size attribute of -1 which ended up being encoded as an unsigned
20257 0xffffffff. Although 0xffffffff is technically a valid size value,
20258 an object of this size seems pretty unlikely so we can relatively
20259 safely treat these cases as if the size attribute was invalid and
20260 treat them as zero by default. */
20261 if (attr->name == DW_AT_byte_size
20262 && form == DW_FORM_data4
20263 && attr->as_unsigned () >= 0xffffffff)
20264 {
20265 complaint
20266 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
20267 hex_string (attr->as_unsigned ()));
20268 attr->set_unsigned (0);
20269 }
20270
20271 return info_ptr;
20272 }
20273
20274 /* Read an attribute described by an abbreviated attribute. */
20275
20276 static const gdb_byte *
20277 read_attribute (const struct die_reader_specs *reader,
20278 struct attribute *attr, const struct attr_abbrev *abbrev,
20279 const gdb_byte *info_ptr)
20280 {
20281 attr->name = abbrev->name;
20282 attr->string_is_canonical = 0;
20283 attr->requires_reprocessing = 0;
20284 return read_attribute_value (reader, attr, abbrev->form,
20285 abbrev->implicit_const, info_ptr);
20286 }
20287
20288 /* Return pointer to string at .debug_str offset STR_OFFSET. */
20289
20290 static const char *
20291 read_indirect_string_at_offset (dwarf2_per_objfile *per_objfile,
20292 LONGEST str_offset)
20293 {
20294 return per_objfile->per_bfd->str.read_string (per_objfile->objfile,
20295 str_offset, "DW_FORM_strp");
20296 }
20297
20298 /* Return pointer to string at .debug_str offset as read from BUF.
20299 BUF is assumed to be in a compilation unit described by CU_HEADER.
20300 Return *BYTES_READ_PTR count of bytes read from BUF. */
20301
20302 static const char *
20303 read_indirect_string (dwarf2_per_objfile *per_objfile, bfd *abfd,
20304 const gdb_byte *buf,
20305 const struct comp_unit_head *cu_header,
20306 unsigned int *bytes_read_ptr)
20307 {
20308 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
20309
20310 return read_indirect_string_at_offset (per_objfile, str_offset);
20311 }
20312
20313 /* See read.h. */
20314
20315 const char *
20316 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
20317 const struct comp_unit_head *cu_header,
20318 unsigned int *bytes_read_ptr)
20319 {
20320 bfd *abfd = objfile->obfd;
20321 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
20322
20323 return per_bfd->line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
20324 }
20325
20326 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
20327 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
20328 ADDR_SIZE is the size of addresses from the CU header. */
20329
20330 static CORE_ADDR
20331 read_addr_index_1 (dwarf2_per_objfile *per_objfile, unsigned int addr_index,
20332 gdb::optional<ULONGEST> addr_base, int addr_size)
20333 {
20334 struct objfile *objfile = per_objfile->objfile;
20335 bfd *abfd = objfile->obfd;
20336 const gdb_byte *info_ptr;
20337 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
20338
20339 per_objfile->per_bfd->addr.read (objfile);
20340 if (per_objfile->per_bfd->addr.buffer == NULL)
20341 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
20342 objfile_name (objfile));
20343 if (addr_base_or_zero + addr_index * addr_size
20344 >= per_objfile->per_bfd->addr.size)
20345 error (_("DW_FORM_addr_index pointing outside of "
20346 ".debug_addr section [in module %s]"),
20347 objfile_name (objfile));
20348 info_ptr = (per_objfile->per_bfd->addr.buffer + addr_base_or_zero
20349 + addr_index * addr_size);
20350 if (addr_size == 4)
20351 return bfd_get_32 (abfd, info_ptr);
20352 else
20353 return bfd_get_64 (abfd, info_ptr);
20354 }
20355
20356 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
20357
20358 static CORE_ADDR
20359 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
20360 {
20361 return read_addr_index_1 (cu->per_objfile, addr_index,
20362 cu->addr_base, cu->header.addr_size);
20363 }
20364
20365 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
20366
20367 static CORE_ADDR
20368 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
20369 unsigned int *bytes_read)
20370 {
20371 bfd *abfd = cu->per_objfile->objfile->obfd;
20372 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
20373
20374 return read_addr_index (cu, addr_index);
20375 }
20376
20377 /* See read.h. */
20378
20379 CORE_ADDR
20380 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu,
20381 dwarf2_per_objfile *per_objfile,
20382 unsigned int addr_index)
20383 {
20384 struct dwarf2_cu *cu = per_objfile->get_cu (per_cu);
20385 gdb::optional<ULONGEST> addr_base;
20386 int addr_size;
20387
20388 /* We need addr_base and addr_size.
20389 If we don't have PER_CU->cu, we have to get it.
20390 Nasty, but the alternative is storing the needed info in PER_CU,
20391 which at this point doesn't seem justified: it's not clear how frequently
20392 it would get used and it would increase the size of every PER_CU.
20393 Entry points like dwarf2_per_cu_addr_size do a similar thing
20394 so we're not in uncharted territory here.
20395 Alas we need to be a bit more complicated as addr_base is contained
20396 in the DIE.
20397
20398 We don't need to read the entire CU(/TU).
20399 We just need the header and top level die.
20400
20401 IWBN to use the aging mechanism to let us lazily later discard the CU.
20402 For now we skip this optimization. */
20403
20404 if (cu != NULL)
20405 {
20406 addr_base = cu->addr_base;
20407 addr_size = cu->header.addr_size;
20408 }
20409 else
20410 {
20411 cutu_reader reader (per_cu, per_objfile, nullptr, nullptr, false);
20412 addr_base = reader.cu->addr_base;
20413 addr_size = reader.cu->header.addr_size;
20414 }
20415
20416 return read_addr_index_1 (per_objfile, addr_index, addr_base, addr_size);
20417 }
20418
20419 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
20420 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
20421 DWO file. */
20422
20423 static const char *
20424 read_str_index (struct dwarf2_cu *cu,
20425 struct dwarf2_section_info *str_section,
20426 struct dwarf2_section_info *str_offsets_section,
20427 ULONGEST str_offsets_base, ULONGEST str_index)
20428 {
20429 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20430 struct objfile *objfile = per_objfile->objfile;
20431 const char *objf_name = objfile_name (objfile);
20432 bfd *abfd = objfile->obfd;
20433 const gdb_byte *info_ptr;
20434 ULONGEST str_offset;
20435 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20436
20437 str_section->read (objfile);
20438 str_offsets_section->read (objfile);
20439 if (str_section->buffer == NULL)
20440 error (_("%s used without %s section"
20441 " in CU at offset %s [in module %s]"),
20442 form_name, str_section->get_name (),
20443 sect_offset_str (cu->header.sect_off), objf_name);
20444 if (str_offsets_section->buffer == NULL)
20445 error (_("%s used without %s section"
20446 " in CU at offset %s [in module %s]"),
20447 form_name, str_section->get_name (),
20448 sect_offset_str (cu->header.sect_off), objf_name);
20449 info_ptr = (str_offsets_section->buffer
20450 + str_offsets_base
20451 + str_index * cu->header.offset_size);
20452 if (cu->header.offset_size == 4)
20453 str_offset = bfd_get_32 (abfd, info_ptr);
20454 else
20455 str_offset = bfd_get_64 (abfd, info_ptr);
20456 if (str_offset >= str_section->size)
20457 error (_("Offset from %s pointing outside of"
20458 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20459 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20460 return (const char *) (str_section->buffer + str_offset);
20461 }
20462
20463 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
20464
20465 static const char *
20466 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20467 {
20468 ULONGEST str_offsets_base = reader->cu->header.version >= 5
20469 ? reader->cu->header.addr_size : 0;
20470 return read_str_index (reader->cu,
20471 &reader->dwo_file->sections.str,
20472 &reader->dwo_file->sections.str_offsets,
20473 str_offsets_base, str_index);
20474 }
20475
20476 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
20477
20478 static const char *
20479 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
20480 {
20481 struct objfile *objfile = cu->per_objfile->objfile;
20482 const char *objf_name = objfile_name (objfile);
20483 static const char form_name[] = "DW_FORM_GNU_str_index";
20484 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
20485
20486 if (!cu->str_offsets_base.has_value ())
20487 error (_("%s used in Fission stub without %s"
20488 " in CU at offset 0x%lx [in module %s]"),
20489 form_name, str_offsets_attr_name,
20490 (long) cu->header.offset_size, objf_name);
20491
20492 return read_str_index (cu,
20493 &cu->per_objfile->per_bfd->str,
20494 &cu->per_objfile->per_bfd->str_offsets,
20495 *cu->str_offsets_base, str_index);
20496 }
20497
20498 /* Return the length of an LEB128 number in BUF. */
20499
20500 static int
20501 leb128_size (const gdb_byte *buf)
20502 {
20503 const gdb_byte *begin = buf;
20504 gdb_byte byte;
20505
20506 while (1)
20507 {
20508 byte = *buf++;
20509 if ((byte & 128) == 0)
20510 return buf - begin;
20511 }
20512 }
20513
20514 static enum language
20515 dwarf_lang_to_enum_language (unsigned int lang)
20516 {
20517 enum language language;
20518
20519 switch (lang)
20520 {
20521 case DW_LANG_C89:
20522 case DW_LANG_C99:
20523 case DW_LANG_C11:
20524 case DW_LANG_C:
20525 case DW_LANG_UPC:
20526 language = language_c;
20527 break;
20528 case DW_LANG_Java:
20529 case DW_LANG_C_plus_plus:
20530 case DW_LANG_C_plus_plus_11:
20531 case DW_LANG_C_plus_plus_14:
20532 language = language_cplus;
20533 break;
20534 case DW_LANG_D:
20535 language = language_d;
20536 break;
20537 case DW_LANG_Fortran77:
20538 case DW_LANG_Fortran90:
20539 case DW_LANG_Fortran95:
20540 case DW_LANG_Fortran03:
20541 case DW_LANG_Fortran08:
20542 language = language_fortran;
20543 break;
20544 case DW_LANG_Go:
20545 language = language_go;
20546 break;
20547 case DW_LANG_Mips_Assembler:
20548 language = language_asm;
20549 break;
20550 case DW_LANG_Ada83:
20551 case DW_LANG_Ada95:
20552 language = language_ada;
20553 break;
20554 case DW_LANG_Modula2:
20555 language = language_m2;
20556 break;
20557 case DW_LANG_Pascal83:
20558 language = language_pascal;
20559 break;
20560 case DW_LANG_ObjC:
20561 language = language_objc;
20562 break;
20563 case DW_LANG_Rust:
20564 case DW_LANG_Rust_old:
20565 language = language_rust;
20566 break;
20567 case DW_LANG_OpenCL:
20568 language = language_opencl;
20569 break;
20570 case DW_LANG_Cobol74:
20571 case DW_LANG_Cobol85:
20572 default:
20573 language = language_minimal;
20574 break;
20575 }
20576
20577 return language;
20578 }
20579
20580 /* Return the named attribute or NULL if not there. */
20581
20582 static struct attribute *
20583 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20584 {
20585 for (;;)
20586 {
20587 unsigned int i;
20588 struct attribute *spec = NULL;
20589
20590 for (i = 0; i < die->num_attrs; ++i)
20591 {
20592 if (die->attrs[i].name == name)
20593 return &die->attrs[i];
20594 if (die->attrs[i].name == DW_AT_specification
20595 || die->attrs[i].name == DW_AT_abstract_origin)
20596 spec = &die->attrs[i];
20597 }
20598
20599 if (!spec)
20600 break;
20601
20602 die = follow_die_ref (die, spec, &cu);
20603 }
20604
20605 return NULL;
20606 }
20607
20608 /* Return the string associated with a string-typed attribute, or NULL if it
20609 is either not found or is of an incorrect type. */
20610
20611 static const char *
20612 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20613 {
20614 struct attribute *attr;
20615 const char *str = NULL;
20616
20617 attr = dwarf2_attr (die, name, cu);
20618
20619 if (attr != NULL)
20620 {
20621 str = attr->as_string ();
20622 if (str == nullptr)
20623 complaint (_("string type expected for attribute %s for "
20624 "DIE at %s in module %s"),
20625 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20626 objfile_name (cu->per_objfile->objfile));
20627 }
20628
20629 return str;
20630 }
20631
20632 /* Return the dwo name or NULL if not present. If present, it is in either
20633 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
20634 static const char *
20635 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20636 {
20637 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20638 if (dwo_name == nullptr)
20639 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20640 return dwo_name;
20641 }
20642
20643 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20644 and holds a non-zero value. This function should only be used for
20645 DW_FORM_flag or DW_FORM_flag_present attributes. */
20646
20647 static int
20648 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20649 {
20650 struct attribute *attr = dwarf2_attr (die, name, cu);
20651
20652 return attr != nullptr && attr->as_boolean ();
20653 }
20654
20655 static int
20656 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20657 {
20658 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20659 which value is non-zero. However, we have to be careful with
20660 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20661 (via dwarf2_flag_true_p) follows this attribute. So we may
20662 end up accidently finding a declaration attribute that belongs
20663 to a different DIE referenced by the specification attribute,
20664 even though the given DIE does not have a declaration attribute. */
20665 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20666 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20667 }
20668
20669 /* Return the die giving the specification for DIE, if there is
20670 one. *SPEC_CU is the CU containing DIE on input, and the CU
20671 containing the return value on output. If there is no
20672 specification, but there is an abstract origin, that is
20673 returned. */
20674
20675 static struct die_info *
20676 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20677 {
20678 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20679 *spec_cu);
20680
20681 if (spec_attr == NULL)
20682 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20683
20684 if (spec_attr == NULL)
20685 return NULL;
20686 else
20687 return follow_die_ref (die, spec_attr, spec_cu);
20688 }
20689
20690 /* A convenience function to find the proper .debug_line section for a CU. */
20691
20692 static struct dwarf2_section_info *
20693 get_debug_line_section (struct dwarf2_cu *cu)
20694 {
20695 struct dwarf2_section_info *section;
20696 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20697
20698 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20699 DWO file. */
20700 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20701 section = &cu->dwo_unit->dwo_file->sections.line;
20702 else if (cu->per_cu->is_dwz)
20703 {
20704 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd, true);
20705
20706 section = &dwz->line;
20707 }
20708 else
20709 section = &per_objfile->per_bfd->line;
20710
20711 return section;
20712 }
20713
20714 /* Read the statement program header starting at OFFSET in
20715 .debug_line, or .debug_line.dwo. Return a pointer
20716 to a struct line_header, allocated using xmalloc.
20717 Returns NULL if there is a problem reading the header, e.g., if it
20718 has a version we don't understand.
20719
20720 NOTE: the strings in the include directory and file name tables of
20721 the returned object point into the dwarf line section buffer,
20722 and must not be freed. */
20723
20724 static line_header_up
20725 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20726 {
20727 struct dwarf2_section_info *section;
20728 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20729
20730 section = get_debug_line_section (cu);
20731 section->read (per_objfile->objfile);
20732 if (section->buffer == NULL)
20733 {
20734 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20735 complaint (_("missing .debug_line.dwo section"));
20736 else
20737 complaint (_("missing .debug_line section"));
20738 return 0;
20739 }
20740
20741 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
20742 per_objfile, section, &cu->header);
20743 }
20744
20745 /* Subroutine of dwarf_decode_lines to simplify it.
20746 Return the file name for the given file_entry.
20747 CU_INFO describes the CU's DW_AT_name and DW_AT_comp_dir.
20748 If space for the result is malloc'd, *NAME_HOLDER will be set.
20749 Returns NULL if FILE_INDEX should be ignored, i.e., it is
20750 equivalent to CU_INFO. */
20751
20752 static const char *
20753 compute_include_file_name (const struct line_header *lh, const file_entry &fe,
20754 const file_and_directory &cu_info,
20755 gdb::unique_xmalloc_ptr<char> *name_holder)
20756 {
20757 const char *include_name = fe.name;
20758 const char *include_name_to_compare = include_name;
20759
20760 const char *dir_name = fe.include_dir (lh);
20761
20762 gdb::unique_xmalloc_ptr<char> hold_compare;
20763 if (!IS_ABSOLUTE_PATH (include_name)
20764 && (dir_name != NULL || cu_info.comp_dir != NULL))
20765 {
20766 /* Avoid creating a duplicate name for CU_INFO.
20767 We do this by comparing INCLUDE_NAME and CU_INFO.
20768 Before we do the comparison, however, we need to account
20769 for DIR_NAME and COMP_DIR.
20770 First prepend dir_name (if non-NULL). If we still don't
20771 have an absolute path prepend comp_dir (if non-NULL).
20772 However, the directory we record in the include-file's
20773 psymtab does not contain COMP_DIR (to match the
20774 corresponding symtab(s)).
20775
20776 Example:
20777
20778 bash$ cd /tmp
20779 bash$ gcc -g ./hello.c
20780 include_name = "hello.c"
20781 dir_name = "."
20782 DW_AT_comp_dir = comp_dir = "/tmp"
20783 DW_AT_name = "./hello.c"
20784
20785 */
20786
20787 if (dir_name != NULL)
20788 {
20789 name_holder->reset (concat (dir_name, SLASH_STRING,
20790 include_name, (char *) NULL));
20791 include_name = name_holder->get ();
20792 include_name_to_compare = include_name;
20793 }
20794 if (!IS_ABSOLUTE_PATH (include_name) && cu_info.comp_dir != nullptr)
20795 {
20796 hold_compare.reset (concat (cu_info.comp_dir, SLASH_STRING,
20797 include_name, (char *) NULL));
20798 include_name_to_compare = hold_compare.get ();
20799 }
20800 }
20801
20802 gdb::unique_xmalloc_ptr<char> copied_name;
20803 const char *cu_filename = cu_info.name;
20804 if (!IS_ABSOLUTE_PATH (cu_filename) && cu_info.comp_dir != nullptr)
20805 {
20806 copied_name.reset (concat (cu_info.comp_dir, SLASH_STRING,
20807 cu_filename, (char *) NULL));
20808 cu_filename = copied_name.get ();
20809 }
20810
20811 if (FILENAME_CMP (include_name_to_compare, cu_filename) == 0)
20812 return nullptr;
20813 return include_name;
20814 }
20815
20816 /* State machine to track the state of the line number program. */
20817
20818 class lnp_state_machine
20819 {
20820 public:
20821 /* Initialize a machine state for the start of a line number
20822 program. */
20823 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20824 bool record_lines_p);
20825
20826 file_entry *current_file ()
20827 {
20828 /* lh->file_names is 0-based, but the file name numbers in the
20829 statement program are 1-based. */
20830 return m_line_header->file_name_at (m_file);
20831 }
20832
20833 /* Record the line in the state machine. END_SEQUENCE is true if
20834 we're processing the end of a sequence. */
20835 void record_line (bool end_sequence);
20836
20837 /* Check ADDRESS is -1, or zero and less than UNRELOCATED_LOWPC, and if true
20838 nop-out rest of the lines in this sequence. */
20839 void check_line_address (struct dwarf2_cu *cu,
20840 const gdb_byte *line_ptr,
20841 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20842
20843 void handle_set_discriminator (unsigned int discriminator)
20844 {
20845 m_discriminator = discriminator;
20846 m_line_has_non_zero_discriminator |= discriminator != 0;
20847 }
20848
20849 /* Handle DW_LNE_set_address. */
20850 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20851 {
20852 m_op_index = 0;
20853 address += baseaddr;
20854 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20855 }
20856
20857 /* Handle DW_LNS_advance_pc. */
20858 void handle_advance_pc (CORE_ADDR adjust);
20859
20860 /* Handle a special opcode. */
20861 void handle_special_opcode (unsigned char op_code);
20862
20863 /* Handle DW_LNS_advance_line. */
20864 void handle_advance_line (int line_delta)
20865 {
20866 advance_line (line_delta);
20867 }
20868
20869 /* Handle DW_LNS_set_file. */
20870 void handle_set_file (file_name_index file);
20871
20872 /* Handle DW_LNS_negate_stmt. */
20873 void handle_negate_stmt ()
20874 {
20875 m_is_stmt = !m_is_stmt;
20876 }
20877
20878 /* Handle DW_LNS_const_add_pc. */
20879 void handle_const_add_pc ();
20880
20881 /* Handle DW_LNS_fixed_advance_pc. */
20882 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20883 {
20884 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20885 m_op_index = 0;
20886 }
20887
20888 /* Handle DW_LNS_copy. */
20889 void handle_copy ()
20890 {
20891 record_line (false);
20892 m_discriminator = 0;
20893 }
20894
20895 /* Handle DW_LNE_end_sequence. */
20896 void handle_end_sequence ()
20897 {
20898 m_currently_recording_lines = true;
20899 }
20900
20901 private:
20902 /* Advance the line by LINE_DELTA. */
20903 void advance_line (int line_delta)
20904 {
20905 m_line += line_delta;
20906
20907 if (line_delta != 0)
20908 m_line_has_non_zero_discriminator = m_discriminator != 0;
20909 }
20910
20911 struct dwarf2_cu *m_cu;
20912
20913 gdbarch *m_gdbarch;
20914
20915 /* True if we're recording lines.
20916 Otherwise we're building partial symtabs and are just interested in
20917 finding include files mentioned by the line number program. */
20918 bool m_record_lines_p;
20919
20920 /* The line number header. */
20921 line_header *m_line_header;
20922
20923 /* These are part of the standard DWARF line number state machine,
20924 and initialized according to the DWARF spec. */
20925
20926 unsigned char m_op_index = 0;
20927 /* The line table index of the current file. */
20928 file_name_index m_file = 1;
20929 unsigned int m_line = 1;
20930
20931 /* These are initialized in the constructor. */
20932
20933 CORE_ADDR m_address;
20934 bool m_is_stmt;
20935 unsigned int m_discriminator;
20936
20937 /* Additional bits of state we need to track. */
20938
20939 /* The last file that we called dwarf2_start_subfile for.
20940 This is only used for TLLs. */
20941 unsigned int m_last_file = 0;
20942 /* The last file a line number was recorded for. */
20943 struct subfile *m_last_subfile = NULL;
20944
20945 /* The address of the last line entry. */
20946 CORE_ADDR m_last_address;
20947
20948 /* Set to true when a previous line at the same address (using
20949 m_last_address) had m_is_stmt true. This is reset to false when a
20950 line entry at a new address (m_address different to m_last_address) is
20951 processed. */
20952 bool m_stmt_at_address = false;
20953
20954 /* When true, record the lines we decode. */
20955 bool m_currently_recording_lines = false;
20956
20957 /* The last line number that was recorded, used to coalesce
20958 consecutive entries for the same line. This can happen, for
20959 example, when discriminators are present. PR 17276. */
20960 unsigned int m_last_line = 0;
20961 bool m_line_has_non_zero_discriminator = false;
20962 };
20963
20964 void
20965 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20966 {
20967 CORE_ADDR addr_adj = (((m_op_index + adjust)
20968 / m_line_header->maximum_ops_per_instruction)
20969 * m_line_header->minimum_instruction_length);
20970 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20971 m_op_index = ((m_op_index + adjust)
20972 % m_line_header->maximum_ops_per_instruction);
20973 }
20974
20975 void
20976 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20977 {
20978 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20979 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
20980 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
20981 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
20982 / m_line_header->maximum_ops_per_instruction)
20983 * m_line_header->minimum_instruction_length);
20984 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20985 m_op_index = ((m_op_index + adj_opcode_d)
20986 % m_line_header->maximum_ops_per_instruction);
20987
20988 int line_delta = m_line_header->line_base + adj_opcode_r;
20989 advance_line (line_delta);
20990 record_line (false);
20991 m_discriminator = 0;
20992 }
20993
20994 void
20995 lnp_state_machine::handle_set_file (file_name_index file)
20996 {
20997 m_file = file;
20998
20999 const file_entry *fe = current_file ();
21000 if (fe == NULL)
21001 dwarf2_debug_line_missing_file_complaint ();
21002 else if (m_record_lines_p)
21003 {
21004 const char *dir = fe->include_dir (m_line_header);
21005
21006 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21007 m_line_has_non_zero_discriminator = m_discriminator != 0;
21008 dwarf2_start_subfile (m_cu, fe->name, dir);
21009 }
21010 }
21011
21012 void
21013 lnp_state_machine::handle_const_add_pc ()
21014 {
21015 CORE_ADDR adjust
21016 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
21017
21018 CORE_ADDR addr_adj
21019 = (((m_op_index + adjust)
21020 / m_line_header->maximum_ops_per_instruction)
21021 * m_line_header->minimum_instruction_length);
21022
21023 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21024 m_op_index = ((m_op_index + adjust)
21025 % m_line_header->maximum_ops_per_instruction);
21026 }
21027
21028 /* Return non-zero if we should add LINE to the line number table.
21029 LINE is the line to add, LAST_LINE is the last line that was added,
21030 LAST_SUBFILE is the subfile for LAST_LINE.
21031 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
21032 had a non-zero discriminator.
21033
21034 We have to be careful in the presence of discriminators.
21035 E.g., for this line:
21036
21037 for (i = 0; i < 100000; i++);
21038
21039 clang can emit four line number entries for that one line,
21040 each with a different discriminator.
21041 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
21042
21043 However, we want gdb to coalesce all four entries into one.
21044 Otherwise the user could stepi into the middle of the line and
21045 gdb would get confused about whether the pc really was in the
21046 middle of the line.
21047
21048 Things are further complicated by the fact that two consecutive
21049 line number entries for the same line is a heuristic used by gcc
21050 to denote the end of the prologue. So we can't just discard duplicate
21051 entries, we have to be selective about it. The heuristic we use is
21052 that we only collapse consecutive entries for the same line if at least
21053 one of those entries has a non-zero discriminator. PR 17276.
21054
21055 Note: Addresses in the line number state machine can never go backwards
21056 within one sequence, thus this coalescing is ok. */
21057
21058 static int
21059 dwarf_record_line_p (struct dwarf2_cu *cu,
21060 unsigned int line, unsigned int last_line,
21061 int line_has_non_zero_discriminator,
21062 struct subfile *last_subfile)
21063 {
21064 if (cu->get_builder ()->get_current_subfile () != last_subfile)
21065 return 1;
21066 if (line != last_line)
21067 return 1;
21068 /* Same line for the same file that we've seen already.
21069 As a last check, for pr 17276, only record the line if the line
21070 has never had a non-zero discriminator. */
21071 if (!line_has_non_zero_discriminator)
21072 return 1;
21073 return 0;
21074 }
21075
21076 /* Use the CU's builder to record line number LINE beginning at
21077 address ADDRESS in the line table of subfile SUBFILE. */
21078
21079 static void
21080 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
21081 unsigned int line, CORE_ADDR address, bool is_stmt,
21082 struct dwarf2_cu *cu)
21083 {
21084 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
21085
21086 if (dwarf_line_debug)
21087 {
21088 fprintf_unfiltered (gdb_stdlog,
21089 "Recording line %u, file %s, address %s\n",
21090 line, lbasename (subfile->name),
21091 paddress (gdbarch, address));
21092 }
21093
21094 if (cu != nullptr)
21095 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
21096 }
21097
21098 /* Subroutine of dwarf_decode_lines_1 to simplify it.
21099 Mark the end of a set of line number records.
21100 The arguments are the same as for dwarf_record_line_1.
21101 If SUBFILE is NULL the request is ignored. */
21102
21103 static void
21104 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
21105 CORE_ADDR address, struct dwarf2_cu *cu)
21106 {
21107 if (subfile == NULL)
21108 return;
21109
21110 if (dwarf_line_debug)
21111 {
21112 fprintf_unfiltered (gdb_stdlog,
21113 "Finishing current line, file %s, address %s\n",
21114 lbasename (subfile->name),
21115 paddress (gdbarch, address));
21116 }
21117
21118 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
21119 }
21120
21121 void
21122 lnp_state_machine::record_line (bool end_sequence)
21123 {
21124 if (dwarf_line_debug)
21125 {
21126 fprintf_unfiltered (gdb_stdlog,
21127 "Processing actual line %u: file %u,"
21128 " address %s, is_stmt %u, discrim %u%s\n",
21129 m_line, m_file,
21130 paddress (m_gdbarch, m_address),
21131 m_is_stmt, m_discriminator,
21132 (end_sequence ? "\t(end sequence)" : ""));
21133 }
21134
21135 file_entry *fe = current_file ();
21136
21137 if (fe == NULL)
21138 dwarf2_debug_line_missing_file_complaint ();
21139 /* For now we ignore lines not starting on an instruction boundary.
21140 But not when processing end_sequence for compatibility with the
21141 previous version of the code. */
21142 else if (m_op_index == 0 || end_sequence)
21143 {
21144 fe->included_p = true;
21145 if (m_record_lines_p)
21146 {
21147 /* When we switch files we insert an end maker in the first file,
21148 switch to the second file and add a new line entry. The
21149 problem is that the end marker inserted in the first file will
21150 discard any previous line entries at the same address. If the
21151 line entries in the first file are marked as is-stmt, while
21152 the new line in the second file is non-stmt, then this means
21153 the end marker will discard is-stmt lines so we can have a
21154 non-stmt line. This means that there are less addresses at
21155 which the user can insert a breakpoint.
21156
21157 To improve this we track the last address in m_last_address,
21158 and whether we have seen an is-stmt at this address. Then
21159 when switching files, if we have seen a stmt at the current
21160 address, and we are switching to create a non-stmt line, then
21161 discard the new line. */
21162 bool file_changed
21163 = m_last_subfile != m_cu->get_builder ()->get_current_subfile ();
21164 bool ignore_this_line
21165 = ((file_changed && !end_sequence && m_last_address == m_address
21166 && !m_is_stmt && m_stmt_at_address)
21167 || (!end_sequence && m_line == 0));
21168
21169 if ((file_changed && !ignore_this_line) || end_sequence)
21170 {
21171 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21172 m_currently_recording_lines ? m_cu : nullptr);
21173 }
21174
21175 if (!end_sequence && !ignore_this_line)
21176 {
21177 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
21178
21179 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21180 m_line_has_non_zero_discriminator,
21181 m_last_subfile))
21182 {
21183 buildsym_compunit *builder = m_cu->get_builder ();
21184 dwarf_record_line_1 (m_gdbarch,
21185 builder->get_current_subfile (),
21186 m_line, m_address, is_stmt,
21187 m_currently_recording_lines ? m_cu : nullptr);
21188 }
21189 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21190 m_last_line = m_line;
21191 }
21192 }
21193 }
21194
21195 /* Track whether we have seen any m_is_stmt true at m_address in case we
21196 have multiple line table entries all at m_address. */
21197 if (m_last_address != m_address)
21198 {
21199 m_stmt_at_address = false;
21200 m_last_address = m_address;
21201 }
21202 m_stmt_at_address |= m_is_stmt;
21203 }
21204
21205 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21206 line_header *lh, bool record_lines_p)
21207 {
21208 m_cu = cu;
21209 m_gdbarch = arch;
21210 m_record_lines_p = record_lines_p;
21211 m_line_header = lh;
21212
21213 m_currently_recording_lines = true;
21214
21215 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21216 was a line entry for it so that the backend has a chance to adjust it
21217 and also record it in case it needs it. This is currently used by MIPS
21218 code, cf. `mips_adjust_dwarf2_line'. */
21219 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21220 m_is_stmt = lh->default_is_stmt;
21221 m_discriminator = 0;
21222
21223 m_last_address = m_address;
21224 m_stmt_at_address = false;
21225 }
21226
21227 void
21228 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21229 const gdb_byte *line_ptr,
21230 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21231 {
21232 /* Linkers resolve a symbolic relocation referencing a GC'd function to 0 or
21233 -1. If ADDRESS is 0, ignoring the opcode will err if the text section is
21234 located at 0x0. In this case, additionally check that if
21235 ADDRESS < UNRELOCATED_LOWPC. */
21236
21237 if ((address == 0 && address < unrelocated_lowpc)
21238 || address == (CORE_ADDR) -1)
21239 {
21240 /* This line table is for a function which has been
21241 GCd by the linker. Ignore it. PR gdb/12528 */
21242
21243 struct objfile *objfile = cu->per_objfile->objfile;
21244 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21245
21246 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21247 line_offset, objfile_name (objfile));
21248 m_currently_recording_lines = false;
21249 /* Note: m_currently_recording_lines is left as false until we see
21250 DW_LNE_end_sequence. */
21251 }
21252 }
21253
21254 /* Subroutine of dwarf_decode_lines to simplify it.
21255 Process the line number information in LH.
21256 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21257 program in order to set included_p for every referenced header. */
21258
21259 static void
21260 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21261 const int decode_for_pst_p, CORE_ADDR lowpc)
21262 {
21263 const gdb_byte *line_ptr, *extended_end;
21264 const gdb_byte *line_end;
21265 unsigned int bytes_read, extended_len;
21266 unsigned char op_code, extended_op;
21267 CORE_ADDR baseaddr;
21268 struct objfile *objfile = cu->per_objfile->objfile;
21269 bfd *abfd = objfile->obfd;
21270 struct gdbarch *gdbarch = objfile->arch ();
21271 /* True if we're recording line info (as opposed to building partial
21272 symtabs and just interested in finding include files mentioned by
21273 the line number program). */
21274 bool record_lines_p = !decode_for_pst_p;
21275
21276 baseaddr = objfile->text_section_offset ();
21277
21278 line_ptr = lh->statement_program_start;
21279 line_end = lh->statement_program_end;
21280
21281 /* Read the statement sequences until there's nothing left. */
21282 while (line_ptr < line_end)
21283 {
21284 /* The DWARF line number program state machine. Reset the state
21285 machine at the start of each sequence. */
21286 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21287 bool end_sequence = false;
21288
21289 if (record_lines_p)
21290 {
21291 /* Start a subfile for the current file of the state
21292 machine. */
21293 const file_entry *fe = state_machine.current_file ();
21294
21295 if (fe != NULL)
21296 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21297 }
21298
21299 /* Decode the table. */
21300 while (line_ptr < line_end && !end_sequence)
21301 {
21302 op_code = read_1_byte (abfd, line_ptr);
21303 line_ptr += 1;
21304
21305 if (op_code >= lh->opcode_base)
21306 {
21307 /* Special opcode. */
21308 state_machine.handle_special_opcode (op_code);
21309 }
21310 else switch (op_code)
21311 {
21312 case DW_LNS_extended_op:
21313 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21314 &bytes_read);
21315 line_ptr += bytes_read;
21316 extended_end = line_ptr + extended_len;
21317 extended_op = read_1_byte (abfd, line_ptr);
21318 line_ptr += 1;
21319 if (DW_LNE_lo_user <= extended_op
21320 && extended_op <= DW_LNE_hi_user)
21321 {
21322 /* Vendor extension, ignore. */
21323 line_ptr = extended_end;
21324 break;
21325 }
21326 switch (extended_op)
21327 {
21328 case DW_LNE_end_sequence:
21329 state_machine.handle_end_sequence ();
21330 end_sequence = true;
21331 break;
21332 case DW_LNE_set_address:
21333 {
21334 CORE_ADDR address
21335 = cu->header.read_address (abfd, line_ptr, &bytes_read);
21336 line_ptr += bytes_read;
21337
21338 state_machine.check_line_address (cu, line_ptr,
21339 lowpc - baseaddr, address);
21340 state_machine.handle_set_address (baseaddr, address);
21341 }
21342 break;
21343 case DW_LNE_define_file:
21344 {
21345 const char *cur_file;
21346 unsigned int mod_time, length;
21347 dir_index dindex;
21348
21349 cur_file = read_direct_string (abfd, line_ptr,
21350 &bytes_read);
21351 line_ptr += bytes_read;
21352 dindex = (dir_index)
21353 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21354 line_ptr += bytes_read;
21355 mod_time =
21356 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21357 line_ptr += bytes_read;
21358 length =
21359 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21360 line_ptr += bytes_read;
21361 lh->add_file_name (cur_file, dindex, mod_time, length);
21362 }
21363 break;
21364 case DW_LNE_set_discriminator:
21365 {
21366 /* The discriminator is not interesting to the
21367 debugger; just ignore it. We still need to
21368 check its value though:
21369 if there are consecutive entries for the same
21370 (non-prologue) line we want to coalesce them.
21371 PR 17276. */
21372 unsigned int discr
21373 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21374 line_ptr += bytes_read;
21375
21376 state_machine.handle_set_discriminator (discr);
21377 }
21378 break;
21379 default:
21380 complaint (_("mangled .debug_line section"));
21381 return;
21382 }
21383 /* Make sure that we parsed the extended op correctly. If e.g.
21384 we expected a different address size than the producer used,
21385 we may have read the wrong number of bytes. */
21386 if (line_ptr != extended_end)
21387 {
21388 complaint (_("mangled .debug_line section"));
21389 return;
21390 }
21391 break;
21392 case DW_LNS_copy:
21393 state_machine.handle_copy ();
21394 break;
21395 case DW_LNS_advance_pc:
21396 {
21397 CORE_ADDR adjust
21398 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21399 line_ptr += bytes_read;
21400
21401 state_machine.handle_advance_pc (adjust);
21402 }
21403 break;
21404 case DW_LNS_advance_line:
21405 {
21406 int line_delta
21407 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21408 line_ptr += bytes_read;
21409
21410 state_machine.handle_advance_line (line_delta);
21411 }
21412 break;
21413 case DW_LNS_set_file:
21414 {
21415 file_name_index file
21416 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21417 &bytes_read);
21418 line_ptr += bytes_read;
21419
21420 state_machine.handle_set_file (file);
21421 }
21422 break;
21423 case DW_LNS_set_column:
21424 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21425 line_ptr += bytes_read;
21426 break;
21427 case DW_LNS_negate_stmt:
21428 state_machine.handle_negate_stmt ();
21429 break;
21430 case DW_LNS_set_basic_block:
21431 break;
21432 /* Add to the address register of the state machine the
21433 address increment value corresponding to special opcode
21434 255. I.e., this value is scaled by the minimum
21435 instruction length since special opcode 255 would have
21436 scaled the increment. */
21437 case DW_LNS_const_add_pc:
21438 state_machine.handle_const_add_pc ();
21439 break;
21440 case DW_LNS_fixed_advance_pc:
21441 {
21442 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21443 line_ptr += 2;
21444
21445 state_machine.handle_fixed_advance_pc (addr_adj);
21446 }
21447 break;
21448 default:
21449 {
21450 /* Unknown standard opcode, ignore it. */
21451 int i;
21452
21453 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21454 {
21455 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21456 line_ptr += bytes_read;
21457 }
21458 }
21459 }
21460 }
21461
21462 if (!end_sequence)
21463 dwarf2_debug_line_missing_end_sequence_complaint ();
21464
21465 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21466 in which case we still finish recording the last line). */
21467 state_machine.record_line (true);
21468 }
21469 }
21470
21471 /* Decode the Line Number Program (LNP) for the given line_header
21472 structure and CU. The actual information extracted and the type
21473 of structures created from the LNP depends on the value of PST.
21474
21475 1. If PST is NULL, then this procedure uses the data from the program
21476 to create all necessary symbol tables, and their linetables.
21477
21478 2. If PST is not NULL, this procedure reads the program to determine
21479 the list of files included by the unit represented by PST, and
21480 builds all the associated partial symbol tables.
21481
21482 FND holds the CU file name and directory, if known.
21483 It is used for relative paths in the line table.
21484
21485 NOTE: It is important that psymtabs have the same file name (via
21486 strcmp) as the corresponding symtab. Since the directory is not
21487 used in the name of the symtab we don't use it in the name of the
21488 psymtabs we create. E.g. expand_line_sal requires this when
21489 finding psymtabs to expand. A good testcase for this is
21490 mb-inline.exp.
21491
21492 LOWPC is the lowest address in CU (or 0 if not known).
21493
21494 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21495 for its PC<->lines mapping information. Otherwise only the filename
21496 table is read in. */
21497
21498 static void
21499 dwarf_decode_lines (struct line_header *lh, const file_and_directory &fnd,
21500 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
21501 CORE_ADDR lowpc, int decode_mapping)
21502 {
21503 struct objfile *objfile = cu->per_objfile->objfile;
21504 const int decode_for_pst_p = (pst != NULL);
21505
21506 if (decode_mapping)
21507 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21508
21509 if (decode_for_pst_p)
21510 {
21511 /* Now that we're done scanning the Line Header Program, we can
21512 create the psymtab of each included file. */
21513 for (auto &file_entry : lh->file_names ())
21514 if (file_entry.included_p)
21515 {
21516 gdb::unique_xmalloc_ptr<char> name_holder;
21517 const char *include_name =
21518 compute_include_file_name (lh, file_entry, fnd, &name_holder);
21519 if (include_name != NULL)
21520 dwarf2_create_include_psymtab
21521 (cu->per_objfile->per_bfd, include_name, pst,
21522 cu->per_objfile->per_bfd->partial_symtabs.get (),
21523 objfile->per_bfd);
21524 }
21525 }
21526 else
21527 {
21528 /* Make sure a symtab is created for every file, even files
21529 which contain only variables (i.e. no code with associated
21530 line numbers). */
21531 buildsym_compunit *builder = cu->get_builder ();
21532 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21533
21534 for (auto &fe : lh->file_names ())
21535 {
21536 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21537 if (builder->get_current_subfile ()->symtab == NULL)
21538 {
21539 builder->get_current_subfile ()->symtab
21540 = allocate_symtab (cust,
21541 builder->get_current_subfile ()->name);
21542 }
21543 fe.symtab = builder->get_current_subfile ()->symtab;
21544 }
21545 }
21546 }
21547
21548 /* Start a subfile for DWARF. FILENAME is the name of the file and
21549 DIRNAME the name of the source directory which contains FILENAME
21550 or NULL if not known.
21551 This routine tries to keep line numbers from identical absolute and
21552 relative file names in a common subfile.
21553
21554 Using the `list' example from the GDB testsuite, which resides in
21555 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21556 of /srcdir/list0.c yields the following debugging information for list0.c:
21557
21558 DW_AT_name: /srcdir/list0.c
21559 DW_AT_comp_dir: /compdir
21560 files.files[0].name: list0.h
21561 files.files[0].dir: /srcdir
21562 files.files[1].name: list0.c
21563 files.files[1].dir: /srcdir
21564
21565 The line number information for list0.c has to end up in a single
21566 subfile, so that `break /srcdir/list0.c:1' works as expected.
21567 start_subfile will ensure that this happens provided that we pass the
21568 concatenation of files.files[1].dir and files.files[1].name as the
21569 subfile's name. */
21570
21571 static void
21572 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21573 const char *dirname)
21574 {
21575 gdb::unique_xmalloc_ptr<char> copy;
21576
21577 /* In order not to lose the line information directory,
21578 we concatenate it to the filename when it makes sense.
21579 Note that the Dwarf3 standard says (speaking of filenames in line
21580 information): ``The directory index is ignored for file names
21581 that represent full path names''. Thus ignoring dirname in the
21582 `else' branch below isn't an issue. */
21583
21584 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21585 {
21586 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
21587 filename = copy.get ();
21588 }
21589
21590 cu->get_builder ()->start_subfile (filename);
21591 }
21592
21593 static void
21594 var_decode_location (struct attribute *attr, struct symbol *sym,
21595 struct dwarf2_cu *cu)
21596 {
21597 struct objfile *objfile = cu->per_objfile->objfile;
21598 struct comp_unit_head *cu_header = &cu->header;
21599
21600 /* NOTE drow/2003-01-30: There used to be a comment and some special
21601 code here to turn a symbol with DW_AT_external and a
21602 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21603 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21604 with some versions of binutils) where shared libraries could have
21605 relocations against symbols in their debug information - the
21606 minimal symbol would have the right address, but the debug info
21607 would not. It's no longer necessary, because we will explicitly
21608 apply relocations when we read in the debug information now. */
21609
21610 /* A DW_AT_location attribute with no contents indicates that a
21611 variable has been optimized away. */
21612 if (attr->form_is_block () && attr->as_block ()->size == 0)
21613 {
21614 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21615 return;
21616 }
21617
21618 /* Handle one degenerate form of location expression specially, to
21619 preserve GDB's previous behavior when section offsets are
21620 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21621 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21622
21623 if (attr->form_is_block ())
21624 {
21625 struct dwarf_block *block = attr->as_block ();
21626
21627 if ((block->data[0] == DW_OP_addr
21628 && block->size == 1 + cu_header->addr_size)
21629 || ((block->data[0] == DW_OP_GNU_addr_index
21630 || block->data[0] == DW_OP_addrx)
21631 && (block->size
21632 == 1 + leb128_size (&block->data[1]))))
21633 {
21634 unsigned int dummy;
21635
21636 if (block->data[0] == DW_OP_addr)
21637 SET_SYMBOL_VALUE_ADDRESS
21638 (sym, cu->header.read_address (objfile->obfd,
21639 block->data + 1,
21640 &dummy));
21641 else
21642 SET_SYMBOL_VALUE_ADDRESS
21643 (sym, read_addr_index_from_leb128 (cu, block->data + 1,
21644 &dummy));
21645 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21646 fixup_symbol_section (sym, objfile);
21647 SET_SYMBOL_VALUE_ADDRESS
21648 (sym,
21649 SYMBOL_VALUE_ADDRESS (sym)
21650 + objfile->section_offsets[sym->section_index ()]);
21651 return;
21652 }
21653 }
21654
21655 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21656 expression evaluator, and use LOC_COMPUTED only when necessary
21657 (i.e. when the value of a register or memory location is
21658 referenced, or a thread-local block, etc.). Then again, it might
21659 not be worthwhile. I'm assuming that it isn't unless performance
21660 or memory numbers show me otherwise. */
21661
21662 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21663
21664 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21665 cu->has_loclist = true;
21666 }
21667
21668 /* Given a pointer to a DWARF information entry, figure out if we need
21669 to make a symbol table entry for it, and if so, create a new entry
21670 and return a pointer to it.
21671 If TYPE is NULL, determine symbol type from the die, otherwise
21672 used the passed type.
21673 If SPACE is not NULL, use it to hold the new symbol. If it is
21674 NULL, allocate a new symbol on the objfile's obstack. */
21675
21676 static struct symbol *
21677 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21678 struct symbol *space)
21679 {
21680 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21681 struct objfile *objfile = per_objfile->objfile;
21682 struct gdbarch *gdbarch = objfile->arch ();
21683 struct symbol *sym = NULL;
21684 const char *name;
21685 struct attribute *attr = NULL;
21686 struct attribute *attr2 = NULL;
21687 CORE_ADDR baseaddr;
21688 struct pending **list_to_add = NULL;
21689
21690 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21691
21692 baseaddr = objfile->text_section_offset ();
21693
21694 name = dwarf2_name (die, cu);
21695 if (name)
21696 {
21697 int suppress_add = 0;
21698
21699 if (space)
21700 sym = space;
21701 else
21702 sym = new (&objfile->objfile_obstack) symbol;
21703 OBJSTAT (objfile, n_syms++);
21704
21705 /* Cache this symbol's name and the name's demangled form (if any). */
21706 sym->set_language (cu->per_cu->lang, &objfile->objfile_obstack);
21707 /* Fortran does not have mangling standard and the mangling does differ
21708 between gfortran, iFort etc. */
21709 const char *physname
21710 = (cu->per_cu->lang == language_fortran
21711 ? dwarf2_full_name (name, die, cu)
21712 : dwarf2_physname (name, die, cu));
21713 const char *linkagename = dw2_linkage_name (die, cu);
21714
21715 if (linkagename == nullptr || cu->per_cu->lang == language_ada)
21716 sym->set_linkage_name (physname);
21717 else
21718 {
21719 sym->set_demangled_name (physname, &objfile->objfile_obstack);
21720 sym->set_linkage_name (linkagename);
21721 }
21722
21723 /* Handle DW_AT_artificial. */
21724 attr = dwarf2_attr (die, DW_AT_artificial, cu);
21725 if (attr != nullptr)
21726 sym->artificial = attr->as_boolean ();
21727
21728 /* Default assumptions.
21729 Use the passed type or decode it from the die. */
21730 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21731 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21732 if (type != NULL)
21733 SYMBOL_TYPE (sym) = type;
21734 else
21735 SYMBOL_TYPE (sym) = die_type (die, cu);
21736 attr = dwarf2_attr (die,
21737 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21738 cu);
21739 if (attr != nullptr)
21740 SYMBOL_LINE (sym) = attr->constant_value (0);
21741
21742 attr = dwarf2_attr (die,
21743 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21744 cu);
21745 if (attr != nullptr && attr->is_nonnegative ())
21746 {
21747 file_name_index file_index
21748 = (file_name_index) attr->as_nonnegative ();
21749 struct file_entry *fe;
21750
21751 if (cu->line_header != NULL)
21752 fe = cu->line_header->file_name_at (file_index);
21753 else
21754 fe = NULL;
21755
21756 if (fe == NULL)
21757 complaint (_("file index out of range"));
21758 else
21759 symbol_set_symtab (sym, fe->symtab);
21760 }
21761
21762 switch (die->tag)
21763 {
21764 case DW_TAG_label:
21765 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21766 if (attr != nullptr)
21767 {
21768 CORE_ADDR addr;
21769
21770 addr = attr->as_address ();
21771 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21772 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21773 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21774 }
21775 else
21776 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21777 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21778 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21779 add_symbol_to_list (sym, cu->list_in_scope);
21780 break;
21781 case DW_TAG_subprogram:
21782 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21783 finish_block. */
21784 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21785 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21786 if ((attr2 != nullptr && attr2->as_boolean ())
21787 || cu->per_cu->lang == language_ada
21788 || cu->per_cu->lang == language_fortran)
21789 {
21790 /* Subprograms marked external are stored as a global symbol.
21791 Ada and Fortran subprograms, whether marked external or
21792 not, are always stored as a global symbol, because we want
21793 to be able to access them globally. For instance, we want
21794 to be able to break on a nested subprogram without having
21795 to specify the context. */
21796 list_to_add = cu->get_builder ()->get_global_symbols ();
21797 }
21798 else
21799 {
21800 list_to_add = cu->list_in_scope;
21801 }
21802 break;
21803 case DW_TAG_inlined_subroutine:
21804 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21805 finish_block. */
21806 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21807 SYMBOL_INLINED (sym) = 1;
21808 list_to_add = cu->list_in_scope;
21809 break;
21810 case DW_TAG_template_value_param:
21811 suppress_add = 1;
21812 /* Fall through. */
21813 case DW_TAG_constant:
21814 case DW_TAG_variable:
21815 case DW_TAG_member:
21816 /* Compilation with minimal debug info may result in
21817 variables with missing type entries. Change the
21818 misleading `void' type to something sensible. */
21819 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_VOID)
21820 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21821
21822 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21823 /* In the case of DW_TAG_member, we should only be called for
21824 static const members. */
21825 if (die->tag == DW_TAG_member)
21826 {
21827 /* dwarf2_add_field uses die_is_declaration,
21828 so we do the same. */
21829 gdb_assert (die_is_declaration (die, cu));
21830 gdb_assert (attr);
21831 }
21832 if (attr != nullptr)
21833 {
21834 dwarf2_const_value (attr, sym, cu);
21835 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21836 if (!suppress_add)
21837 {
21838 if (attr2 != nullptr && attr2->as_boolean ())
21839 list_to_add = cu->get_builder ()->get_global_symbols ();
21840 else
21841 list_to_add = cu->list_in_scope;
21842 }
21843 break;
21844 }
21845 attr = dwarf2_attr (die, DW_AT_location, cu);
21846 if (attr != nullptr)
21847 {
21848 var_decode_location (attr, sym, cu);
21849 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21850
21851 /* Fortran explicitly imports any global symbols to the local
21852 scope by DW_TAG_common_block. */
21853 if (cu->per_cu->lang == language_fortran && die->parent
21854 && die->parent->tag == DW_TAG_common_block)
21855 attr2 = NULL;
21856
21857 if (SYMBOL_CLASS (sym) == LOC_STATIC
21858 && SYMBOL_VALUE_ADDRESS (sym) == 0
21859 && !per_objfile->per_bfd->has_section_at_zero)
21860 {
21861 /* When a static variable is eliminated by the linker,
21862 the corresponding debug information is not stripped
21863 out, but the variable address is set to null;
21864 do not add such variables into symbol table. */
21865 }
21866 else if (attr2 != nullptr && attr2->as_boolean ())
21867 {
21868 if (SYMBOL_CLASS (sym) == LOC_STATIC
21869 && (objfile->flags & OBJF_MAINLINE) == 0
21870 && per_objfile->per_bfd->can_copy)
21871 {
21872 /* A global static variable might be subject to
21873 copy relocation. We first check for a local
21874 minsym, though, because maybe the symbol was
21875 marked hidden, in which case this would not
21876 apply. */
21877 bound_minimal_symbol found
21878 = (lookup_minimal_symbol_linkage
21879 (sym->linkage_name (), objfile));
21880 if (found.minsym != nullptr)
21881 sym->maybe_copied = 1;
21882 }
21883
21884 /* A variable with DW_AT_external is never static,
21885 but it may be block-scoped. */
21886 list_to_add
21887 = ((cu->list_in_scope
21888 == cu->get_builder ()->get_file_symbols ())
21889 ? cu->get_builder ()->get_global_symbols ()
21890 : cu->list_in_scope);
21891 }
21892 else
21893 list_to_add = cu->list_in_scope;
21894 }
21895 else
21896 {
21897 /* We do not know the address of this symbol.
21898 If it is an external symbol and we have type information
21899 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21900 The address of the variable will then be determined from
21901 the minimal symbol table whenever the variable is
21902 referenced. */
21903 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21904
21905 /* Fortran explicitly imports any global symbols to the local
21906 scope by DW_TAG_common_block. */
21907 if (cu->per_cu->lang == language_fortran && die->parent
21908 && die->parent->tag == DW_TAG_common_block)
21909 {
21910 /* SYMBOL_CLASS doesn't matter here because
21911 read_common_block is going to reset it. */
21912 if (!suppress_add)
21913 list_to_add = cu->list_in_scope;
21914 }
21915 else if (attr2 != nullptr && attr2->as_boolean ()
21916 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21917 {
21918 /* A variable with DW_AT_external is never static, but it
21919 may be block-scoped. */
21920 list_to_add
21921 = ((cu->list_in_scope
21922 == cu->get_builder ()->get_file_symbols ())
21923 ? cu->get_builder ()->get_global_symbols ()
21924 : cu->list_in_scope);
21925
21926 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21927 }
21928 else if (!die_is_declaration (die, cu))
21929 {
21930 /* Use the default LOC_OPTIMIZED_OUT class. */
21931 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21932 if (!suppress_add)
21933 list_to_add = cu->list_in_scope;
21934 }
21935 }
21936 break;
21937 case DW_TAG_formal_parameter:
21938 {
21939 /* If we are inside a function, mark this as an argument. If
21940 not, we might be looking at an argument to an inlined function
21941 when we do not have enough information to show inlined frames;
21942 pretend it's a local variable in that case so that the user can
21943 still see it. */
21944 struct context_stack *curr
21945 = cu->get_builder ()->get_current_context_stack ();
21946 if (curr != nullptr && curr->name != nullptr)
21947 SYMBOL_IS_ARGUMENT (sym) = 1;
21948 attr = dwarf2_attr (die, DW_AT_location, cu);
21949 if (attr != nullptr)
21950 {
21951 var_decode_location (attr, sym, cu);
21952 }
21953 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21954 if (attr != nullptr)
21955 {
21956 dwarf2_const_value (attr, sym, cu);
21957 }
21958
21959 list_to_add = cu->list_in_scope;
21960 }
21961 break;
21962 case DW_TAG_unspecified_parameters:
21963 /* From varargs functions; gdb doesn't seem to have any
21964 interest in this information, so just ignore it for now.
21965 (FIXME?) */
21966 break;
21967 case DW_TAG_template_type_param:
21968 suppress_add = 1;
21969 /* Fall through. */
21970 case DW_TAG_class_type:
21971 case DW_TAG_interface_type:
21972 case DW_TAG_structure_type:
21973 case DW_TAG_union_type:
21974 case DW_TAG_set_type:
21975 case DW_TAG_enumeration_type:
21976 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21977 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21978
21979 {
21980 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21981 really ever be static objects: otherwise, if you try
21982 to, say, break of a class's method and you're in a file
21983 which doesn't mention that class, it won't work unless
21984 the check for all static symbols in lookup_symbol_aux
21985 saves you. See the OtherFileClass tests in
21986 gdb.c++/namespace.exp. */
21987
21988 if (!suppress_add)
21989 {
21990 buildsym_compunit *builder = cu->get_builder ();
21991 list_to_add
21992 = (cu->list_in_scope == builder->get_file_symbols ()
21993 && cu->per_cu->lang == language_cplus
21994 ? builder->get_global_symbols ()
21995 : cu->list_in_scope);
21996
21997 /* The semantics of C++ state that "struct foo {
21998 ... }" also defines a typedef for "foo". */
21999 if (cu->per_cu->lang == language_cplus
22000 || cu->per_cu->lang == language_ada
22001 || cu->per_cu->lang == language_d
22002 || cu->per_cu->lang == language_rust)
22003 {
22004 /* The symbol's name is already allocated along
22005 with this objfile, so we don't need to
22006 duplicate it for the type. */
22007 if (SYMBOL_TYPE (sym)->name () == 0)
22008 SYMBOL_TYPE (sym)->set_name (sym->search_name ());
22009 }
22010 }
22011 }
22012 break;
22013 case DW_TAG_typedef:
22014 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22015 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
22016 list_to_add = cu->list_in_scope;
22017 break;
22018 case DW_TAG_array_type:
22019 case DW_TAG_base_type:
22020 case DW_TAG_subrange_type:
22021 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22022 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
22023 list_to_add = cu->list_in_scope;
22024 break;
22025 case DW_TAG_enumerator:
22026 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22027 if (attr != nullptr)
22028 {
22029 dwarf2_const_value (attr, sym, cu);
22030 }
22031 {
22032 /* NOTE: carlton/2003-11-10: See comment above in the
22033 DW_TAG_class_type, etc. block. */
22034
22035 list_to_add
22036 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
22037 && cu->per_cu->lang == language_cplus
22038 ? cu->get_builder ()->get_global_symbols ()
22039 : cu->list_in_scope);
22040 }
22041 break;
22042 case DW_TAG_imported_declaration:
22043 case DW_TAG_namespace:
22044 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22045 list_to_add = cu->get_builder ()->get_global_symbols ();
22046 break;
22047 case DW_TAG_module:
22048 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22049 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
22050 list_to_add = cu->get_builder ()->get_global_symbols ();
22051 break;
22052 case DW_TAG_common_block:
22053 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
22054 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
22055 add_symbol_to_list (sym, cu->list_in_scope);
22056 break;
22057 default:
22058 /* Not a tag we recognize. Hopefully we aren't processing
22059 trash data, but since we must specifically ignore things
22060 we don't recognize, there is nothing else we should do at
22061 this point. */
22062 complaint (_("unsupported tag: '%s'"),
22063 dwarf_tag_name (die->tag));
22064 break;
22065 }
22066
22067 if (suppress_add)
22068 {
22069 sym->hash_next = objfile->template_symbols;
22070 objfile->template_symbols = sym;
22071 list_to_add = NULL;
22072 }
22073
22074 if (list_to_add != NULL)
22075 add_symbol_to_list (sym, list_to_add);
22076
22077 /* For the benefit of old versions of GCC, check for anonymous
22078 namespaces based on the demangled name. */
22079 if (!cu->processing_has_namespace_info
22080 && cu->per_cu->lang == language_cplus)
22081 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
22082 }
22083 return (sym);
22084 }
22085
22086 /* Given an attr with a DW_FORM_dataN value in host byte order,
22087 zero-extend it as appropriate for the symbol's type. The DWARF
22088 standard (v4) is not entirely clear about the meaning of using
22089 DW_FORM_dataN for a constant with a signed type, where the type is
22090 wider than the data. The conclusion of a discussion on the DWARF
22091 list was that this is unspecified. We choose to always zero-extend
22092 because that is the interpretation long in use by GCC. */
22093
22094 static gdb_byte *
22095 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
22096 struct dwarf2_cu *cu, LONGEST *value, int bits)
22097 {
22098 struct objfile *objfile = cu->per_objfile->objfile;
22099 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
22100 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
22101 LONGEST l = attr->constant_value (0);
22102
22103 if (bits < sizeof (*value) * 8)
22104 {
22105 l &= ((LONGEST) 1 << bits) - 1;
22106 *value = l;
22107 }
22108 else if (bits == sizeof (*value) * 8)
22109 *value = l;
22110 else
22111 {
22112 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
22113 store_unsigned_integer (bytes, bits / 8, byte_order, l);
22114 return bytes;
22115 }
22116
22117 return NULL;
22118 }
22119
22120 /* Read a constant value from an attribute. Either set *VALUE, or if
22121 the value does not fit in *VALUE, set *BYTES - either already
22122 allocated on the objfile obstack, or newly allocated on OBSTACK,
22123 or, set *BATON, if we translated the constant to a location
22124 expression. */
22125
22126 static void
22127 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
22128 const char *name, struct obstack *obstack,
22129 struct dwarf2_cu *cu,
22130 LONGEST *value, const gdb_byte **bytes,
22131 struct dwarf2_locexpr_baton **baton)
22132 {
22133 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22134 struct objfile *objfile = per_objfile->objfile;
22135 struct comp_unit_head *cu_header = &cu->header;
22136 struct dwarf_block *blk;
22137 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
22138 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22139
22140 *value = 0;
22141 *bytes = NULL;
22142 *baton = NULL;
22143
22144 switch (attr->form)
22145 {
22146 case DW_FORM_addr:
22147 case DW_FORM_addrx:
22148 case DW_FORM_GNU_addr_index:
22149 {
22150 gdb_byte *data;
22151
22152 if (TYPE_LENGTH (type) != cu_header->addr_size)
22153 dwarf2_const_value_length_mismatch_complaint (name,
22154 cu_header->addr_size,
22155 TYPE_LENGTH (type));
22156 /* Symbols of this form are reasonably rare, so we just
22157 piggyback on the existing location code rather than writing
22158 a new implementation of symbol_computed_ops. */
22159 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
22160 (*baton)->per_objfile = per_objfile;
22161 (*baton)->per_cu = cu->per_cu;
22162 gdb_assert ((*baton)->per_cu);
22163
22164 (*baton)->size = 2 + cu_header->addr_size;
22165 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
22166 (*baton)->data = data;
22167
22168 data[0] = DW_OP_addr;
22169 store_unsigned_integer (&data[1], cu_header->addr_size,
22170 byte_order, attr->as_address ());
22171 data[cu_header->addr_size + 1] = DW_OP_stack_value;
22172 }
22173 break;
22174 case DW_FORM_string:
22175 case DW_FORM_strp:
22176 case DW_FORM_strx:
22177 case DW_FORM_GNU_str_index:
22178 case DW_FORM_GNU_strp_alt:
22179 /* The string is already allocated on the objfile obstack, point
22180 directly to it. */
22181 *bytes = (const gdb_byte *) attr->as_string ();
22182 break;
22183 case DW_FORM_block1:
22184 case DW_FORM_block2:
22185 case DW_FORM_block4:
22186 case DW_FORM_block:
22187 case DW_FORM_exprloc:
22188 case DW_FORM_data16:
22189 blk = attr->as_block ();
22190 if (TYPE_LENGTH (type) != blk->size)
22191 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22192 TYPE_LENGTH (type));
22193 *bytes = blk->data;
22194 break;
22195
22196 /* The DW_AT_const_value attributes are supposed to carry the
22197 symbol's value "represented as it would be on the target
22198 architecture." By the time we get here, it's already been
22199 converted to host endianness, so we just need to sign- or
22200 zero-extend it as appropriate. */
22201 case DW_FORM_data1:
22202 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22203 break;
22204 case DW_FORM_data2:
22205 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22206 break;
22207 case DW_FORM_data4:
22208 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22209 break;
22210 case DW_FORM_data8:
22211 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22212 break;
22213
22214 case DW_FORM_sdata:
22215 case DW_FORM_implicit_const:
22216 *value = attr->as_signed ();
22217 break;
22218
22219 case DW_FORM_udata:
22220 *value = attr->as_unsigned ();
22221 break;
22222
22223 default:
22224 complaint (_("unsupported const value attribute form: '%s'"),
22225 dwarf_form_name (attr->form));
22226 *value = 0;
22227 break;
22228 }
22229 }
22230
22231
22232 /* Copy constant value from an attribute to a symbol. */
22233
22234 static void
22235 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22236 struct dwarf2_cu *cu)
22237 {
22238 struct objfile *objfile = cu->per_objfile->objfile;
22239 LONGEST value;
22240 const gdb_byte *bytes;
22241 struct dwarf2_locexpr_baton *baton;
22242
22243 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22244 sym->print_name (),
22245 &objfile->objfile_obstack, cu,
22246 &value, &bytes, &baton);
22247
22248 if (baton != NULL)
22249 {
22250 SYMBOL_LOCATION_BATON (sym) = baton;
22251 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22252 }
22253 else if (bytes != NULL)
22254 {
22255 SYMBOL_VALUE_BYTES (sym) = bytes;
22256 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22257 }
22258 else
22259 {
22260 SYMBOL_VALUE (sym) = value;
22261 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22262 }
22263 }
22264
22265 /* Return the type of the die in question using its DW_AT_type attribute. */
22266
22267 static struct type *
22268 die_type (struct die_info *die, struct dwarf2_cu *cu)
22269 {
22270 struct attribute *type_attr;
22271
22272 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22273 if (!type_attr)
22274 {
22275 struct objfile *objfile = cu->per_objfile->objfile;
22276 /* A missing DW_AT_type represents a void type. */
22277 return objfile_type (objfile)->builtin_void;
22278 }
22279
22280 return lookup_die_type (die, type_attr, cu);
22281 }
22282
22283 /* True iff CU's producer generates GNAT Ada auxiliary information
22284 that allows to find parallel types through that information instead
22285 of having to do expensive parallel lookups by type name. */
22286
22287 static int
22288 need_gnat_info (struct dwarf2_cu *cu)
22289 {
22290 /* Assume that the Ada compiler was GNAT, which always produces
22291 the auxiliary information. */
22292 return (cu->per_cu->lang == language_ada);
22293 }
22294
22295 /* Return the auxiliary type of the die in question using its
22296 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22297 attribute is not present. */
22298
22299 static struct type *
22300 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22301 {
22302 struct attribute *type_attr;
22303
22304 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22305 if (!type_attr)
22306 return NULL;
22307
22308 return lookup_die_type (die, type_attr, cu);
22309 }
22310
22311 /* If DIE has a descriptive_type attribute, then set the TYPE's
22312 descriptive type accordingly. */
22313
22314 static void
22315 set_descriptive_type (struct type *type, struct die_info *die,
22316 struct dwarf2_cu *cu)
22317 {
22318 struct type *descriptive_type = die_descriptive_type (die, cu);
22319
22320 if (descriptive_type)
22321 {
22322 ALLOCATE_GNAT_AUX_TYPE (type);
22323 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22324 }
22325 }
22326
22327 /* Return the containing type of the die in question using its
22328 DW_AT_containing_type attribute. */
22329
22330 static struct type *
22331 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22332 {
22333 struct attribute *type_attr;
22334 struct objfile *objfile = cu->per_objfile->objfile;
22335
22336 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22337 if (!type_attr)
22338 error (_("Dwarf Error: Problem turning containing type into gdb type "
22339 "[in module %s]"), objfile_name (objfile));
22340
22341 return lookup_die_type (die, type_attr, cu);
22342 }
22343
22344 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22345
22346 static struct type *
22347 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22348 {
22349 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22350 struct objfile *objfile = per_objfile->objfile;
22351 char *saved;
22352
22353 std::string message
22354 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22355 objfile_name (objfile),
22356 sect_offset_str (cu->header.sect_off),
22357 sect_offset_str (die->sect_off));
22358 saved = obstack_strdup (&objfile->objfile_obstack, message);
22359
22360 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22361 }
22362
22363 /* Look up the type of DIE in CU using its type attribute ATTR.
22364 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22365 DW_AT_containing_type.
22366 If there is no type substitute an error marker. */
22367
22368 static struct type *
22369 lookup_die_type (struct die_info *die, const struct attribute *attr,
22370 struct dwarf2_cu *cu)
22371 {
22372 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22373 struct objfile *objfile = per_objfile->objfile;
22374 struct type *this_type;
22375
22376 gdb_assert (attr->name == DW_AT_type
22377 || attr->name == DW_AT_GNAT_descriptive_type
22378 || attr->name == DW_AT_containing_type);
22379
22380 /* First see if we have it cached. */
22381
22382 if (attr->form == DW_FORM_GNU_ref_alt)
22383 {
22384 struct dwarf2_per_cu_data *per_cu;
22385 sect_offset sect_off = attr->get_ref_die_offset ();
22386
22387 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, per_objfile);
22388 this_type = get_die_type_at_offset (sect_off, per_cu, per_objfile);
22389 }
22390 else if (attr->form_is_ref ())
22391 {
22392 sect_offset sect_off = attr->get_ref_die_offset ();
22393
22394 this_type = get_die_type_at_offset (sect_off, cu->per_cu, per_objfile);
22395 }
22396 else if (attr->form == DW_FORM_ref_sig8)
22397 {
22398 ULONGEST signature = attr->as_signature ();
22399
22400 return get_signatured_type (die, signature, cu);
22401 }
22402 else
22403 {
22404 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22405 " at %s [in module %s]"),
22406 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22407 objfile_name (objfile));
22408 return build_error_marker_type (cu, die);
22409 }
22410
22411 /* If not cached we need to read it in. */
22412
22413 if (this_type == NULL)
22414 {
22415 struct die_info *type_die = NULL;
22416 struct dwarf2_cu *type_cu = cu;
22417
22418 if (attr->form_is_ref ())
22419 type_die = follow_die_ref (die, attr, &type_cu);
22420 if (type_die == NULL)
22421 return build_error_marker_type (cu, die);
22422 /* If we find the type now, it's probably because the type came
22423 from an inter-CU reference and the type's CU got expanded before
22424 ours. */
22425 this_type = read_type_die (type_die, type_cu);
22426 }
22427
22428 /* If we still don't have a type use an error marker. */
22429
22430 if (this_type == NULL)
22431 return build_error_marker_type (cu, die);
22432
22433 return this_type;
22434 }
22435
22436 /* Return the type in DIE, CU.
22437 Returns NULL for invalid types.
22438
22439 This first does a lookup in die_type_hash,
22440 and only reads the die in if necessary.
22441
22442 NOTE: This can be called when reading in partial or full symbols. */
22443
22444 static struct type *
22445 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22446 {
22447 struct type *this_type;
22448
22449 this_type = get_die_type (die, cu);
22450 if (this_type)
22451 return this_type;
22452
22453 return read_type_die_1 (die, cu);
22454 }
22455
22456 /* Read the type in DIE, CU.
22457 Returns NULL for invalid types. */
22458
22459 static struct type *
22460 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22461 {
22462 struct type *this_type = NULL;
22463
22464 switch (die->tag)
22465 {
22466 case DW_TAG_class_type:
22467 case DW_TAG_interface_type:
22468 case DW_TAG_structure_type:
22469 case DW_TAG_union_type:
22470 this_type = read_structure_type (die, cu);
22471 break;
22472 case DW_TAG_enumeration_type:
22473 this_type = read_enumeration_type (die, cu);
22474 break;
22475 case DW_TAG_subprogram:
22476 case DW_TAG_subroutine_type:
22477 case DW_TAG_inlined_subroutine:
22478 this_type = read_subroutine_type (die, cu);
22479 break;
22480 case DW_TAG_array_type:
22481 this_type = read_array_type (die, cu);
22482 break;
22483 case DW_TAG_set_type:
22484 this_type = read_set_type (die, cu);
22485 break;
22486 case DW_TAG_pointer_type:
22487 this_type = read_tag_pointer_type (die, cu);
22488 break;
22489 case DW_TAG_ptr_to_member_type:
22490 this_type = read_tag_ptr_to_member_type (die, cu);
22491 break;
22492 case DW_TAG_reference_type:
22493 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22494 break;
22495 case DW_TAG_rvalue_reference_type:
22496 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22497 break;
22498 case DW_TAG_const_type:
22499 this_type = read_tag_const_type (die, cu);
22500 break;
22501 case DW_TAG_volatile_type:
22502 this_type = read_tag_volatile_type (die, cu);
22503 break;
22504 case DW_TAG_restrict_type:
22505 this_type = read_tag_restrict_type (die, cu);
22506 break;
22507 case DW_TAG_string_type:
22508 this_type = read_tag_string_type (die, cu);
22509 break;
22510 case DW_TAG_typedef:
22511 this_type = read_typedef (die, cu);
22512 break;
22513 case DW_TAG_subrange_type:
22514 this_type = read_subrange_type (die, cu);
22515 break;
22516 case DW_TAG_base_type:
22517 this_type = read_base_type (die, cu);
22518 break;
22519 case DW_TAG_unspecified_type:
22520 this_type = read_unspecified_type (die, cu);
22521 break;
22522 case DW_TAG_namespace:
22523 this_type = read_namespace_type (die, cu);
22524 break;
22525 case DW_TAG_module:
22526 this_type = read_module_type (die, cu);
22527 break;
22528 case DW_TAG_atomic_type:
22529 this_type = read_tag_atomic_type (die, cu);
22530 break;
22531 default:
22532 complaint (_("unexpected tag in read_type_die: '%s'"),
22533 dwarf_tag_name (die->tag));
22534 break;
22535 }
22536
22537 return this_type;
22538 }
22539
22540 /* See if we can figure out if the class lives in a namespace. We do
22541 this by looking for a member function; its demangled name will
22542 contain namespace info, if there is any.
22543 Return the computed name or NULL.
22544 Space for the result is allocated on the objfile's obstack.
22545 This is the full-die version of guess_partial_die_structure_name.
22546 In this case we know DIE has no useful parent. */
22547
22548 static const char *
22549 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22550 {
22551 struct die_info *spec_die;
22552 struct dwarf2_cu *spec_cu;
22553 struct die_info *child;
22554 struct objfile *objfile = cu->per_objfile->objfile;
22555
22556 spec_cu = cu;
22557 spec_die = die_specification (die, &spec_cu);
22558 if (spec_die != NULL)
22559 {
22560 die = spec_die;
22561 cu = spec_cu;
22562 }
22563
22564 for (child = die->child;
22565 child != NULL;
22566 child = child->sibling)
22567 {
22568 if (child->tag == DW_TAG_subprogram)
22569 {
22570 const char *linkage_name = dw2_linkage_name (child, cu);
22571
22572 if (linkage_name != NULL)
22573 {
22574 gdb::unique_xmalloc_ptr<char> actual_name
22575 (cu->language_defn->class_name_from_physname (linkage_name));
22576 const char *name = NULL;
22577
22578 if (actual_name != NULL)
22579 {
22580 const char *die_name = dwarf2_name (die, cu);
22581
22582 if (die_name != NULL
22583 && strcmp (die_name, actual_name.get ()) != 0)
22584 {
22585 /* Strip off the class name from the full name.
22586 We want the prefix. */
22587 int die_name_len = strlen (die_name);
22588 int actual_name_len = strlen (actual_name.get ());
22589 const char *ptr = actual_name.get ();
22590
22591 /* Test for '::' as a sanity check. */
22592 if (actual_name_len > die_name_len + 2
22593 && ptr[actual_name_len - die_name_len - 1] == ':')
22594 name = obstack_strndup (
22595 &objfile->per_bfd->storage_obstack,
22596 ptr, actual_name_len - die_name_len - 2);
22597 }
22598 }
22599 return name;
22600 }
22601 }
22602 }
22603
22604 return NULL;
22605 }
22606
22607 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22608 prefix part in such case. See
22609 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22610
22611 static const char *
22612 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22613 {
22614 struct attribute *attr;
22615 const char *base;
22616
22617 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22618 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22619 return NULL;
22620
22621 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22622 return NULL;
22623
22624 attr = dw2_linkage_name_attr (die, cu);
22625 const char *attr_name = attr->as_string ();
22626 if (attr == NULL || attr_name == NULL)
22627 return NULL;
22628
22629 /* dwarf2_name had to be already called. */
22630 gdb_assert (attr->canonical_string_p ());
22631
22632 /* Strip the base name, keep any leading namespaces/classes. */
22633 base = strrchr (attr_name, ':');
22634 if (base == NULL || base == attr_name || base[-1] != ':')
22635 return "";
22636
22637 struct objfile *objfile = cu->per_objfile->objfile;
22638 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22639 attr_name,
22640 &base[-1] - attr_name);
22641 }
22642
22643 /* Return the name of the namespace/class that DIE is defined within,
22644 or "" if we can't tell. The caller should not xfree the result.
22645
22646 For example, if we're within the method foo() in the following
22647 code:
22648
22649 namespace N {
22650 class C {
22651 void foo () {
22652 }
22653 };
22654 }
22655
22656 then determine_prefix on foo's die will return "N::C". */
22657
22658 static const char *
22659 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22660 {
22661 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22662 struct die_info *parent, *spec_die;
22663 struct dwarf2_cu *spec_cu;
22664 struct type *parent_type;
22665 const char *retval;
22666
22667 if (cu->per_cu->lang != language_cplus
22668 && cu->per_cu->lang != language_fortran
22669 && cu->per_cu->lang != language_d
22670 && cu->per_cu->lang != language_rust)
22671 return "";
22672
22673 retval = anonymous_struct_prefix (die, cu);
22674 if (retval)
22675 return retval;
22676
22677 /* We have to be careful in the presence of DW_AT_specification.
22678 For example, with GCC 3.4, given the code
22679
22680 namespace N {
22681 void foo() {
22682 // Definition of N::foo.
22683 }
22684 }
22685
22686 then we'll have a tree of DIEs like this:
22687
22688 1: DW_TAG_compile_unit
22689 2: DW_TAG_namespace // N
22690 3: DW_TAG_subprogram // declaration of N::foo
22691 4: DW_TAG_subprogram // definition of N::foo
22692 DW_AT_specification // refers to die #3
22693
22694 Thus, when processing die #4, we have to pretend that we're in
22695 the context of its DW_AT_specification, namely the contex of die
22696 #3. */
22697 spec_cu = cu;
22698 spec_die = die_specification (die, &spec_cu);
22699 if (spec_die == NULL)
22700 parent = die->parent;
22701 else
22702 {
22703 parent = spec_die->parent;
22704 cu = spec_cu;
22705 }
22706
22707 if (parent == NULL)
22708 return "";
22709 else if (parent->building_fullname)
22710 {
22711 const char *name;
22712 const char *parent_name;
22713
22714 /* It has been seen on RealView 2.2 built binaries,
22715 DW_TAG_template_type_param types actually _defined_ as
22716 children of the parent class:
22717
22718 enum E {};
22719 template class <class Enum> Class{};
22720 Class<enum E> class_e;
22721
22722 1: DW_TAG_class_type (Class)
22723 2: DW_TAG_enumeration_type (E)
22724 3: DW_TAG_enumerator (enum1:0)
22725 3: DW_TAG_enumerator (enum2:1)
22726 ...
22727 2: DW_TAG_template_type_param
22728 DW_AT_type DW_FORM_ref_udata (E)
22729
22730 Besides being broken debug info, it can put GDB into an
22731 infinite loop. Consider:
22732
22733 When we're building the full name for Class<E>, we'll start
22734 at Class, and go look over its template type parameters,
22735 finding E. We'll then try to build the full name of E, and
22736 reach here. We're now trying to build the full name of E,
22737 and look over the parent DIE for containing scope. In the
22738 broken case, if we followed the parent DIE of E, we'd again
22739 find Class, and once again go look at its template type
22740 arguments, etc., etc. Simply don't consider such parent die
22741 as source-level parent of this die (it can't be, the language
22742 doesn't allow it), and break the loop here. */
22743 name = dwarf2_name (die, cu);
22744 parent_name = dwarf2_name (parent, cu);
22745 complaint (_("template param type '%s' defined within parent '%s'"),
22746 name ? name : "<unknown>",
22747 parent_name ? parent_name : "<unknown>");
22748 return "";
22749 }
22750 else
22751 switch (parent->tag)
22752 {
22753 case DW_TAG_namespace:
22754 parent_type = read_type_die (parent, cu);
22755 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22756 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22757 Work around this problem here. */
22758 if (cu->per_cu->lang == language_cplus
22759 && strcmp (parent_type->name (), "::") == 0)
22760 return "";
22761 /* We give a name to even anonymous namespaces. */
22762 return parent_type->name ();
22763 case DW_TAG_class_type:
22764 case DW_TAG_interface_type:
22765 case DW_TAG_structure_type:
22766 case DW_TAG_union_type:
22767 case DW_TAG_module:
22768 parent_type = read_type_die (parent, cu);
22769 if (parent_type->name () != NULL)
22770 return parent_type->name ();
22771 else
22772 /* An anonymous structure is only allowed non-static data
22773 members; no typedefs, no member functions, et cetera.
22774 So it does not need a prefix. */
22775 return "";
22776 case DW_TAG_compile_unit:
22777 case DW_TAG_partial_unit:
22778 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22779 if (cu->per_cu->lang == language_cplus
22780 && !per_objfile->per_bfd->types.empty ()
22781 && die->child != NULL
22782 && (die->tag == DW_TAG_class_type
22783 || die->tag == DW_TAG_structure_type
22784 || die->tag == DW_TAG_union_type))
22785 {
22786 const char *name = guess_full_die_structure_name (die, cu);
22787 if (name != NULL)
22788 return name;
22789 }
22790 return "";
22791 case DW_TAG_subprogram:
22792 /* Nested subroutines in Fortran get a prefix with the name
22793 of the parent's subroutine. */
22794 if (cu->per_cu->lang == language_fortran)
22795 {
22796 if ((die->tag == DW_TAG_subprogram)
22797 && (dwarf2_name (parent, cu) != NULL))
22798 return dwarf2_name (parent, cu);
22799 }
22800 return "";
22801 case DW_TAG_enumeration_type:
22802 parent_type = read_type_die (parent, cu);
22803 if (parent_type->is_declared_class ())
22804 {
22805 if (parent_type->name () != NULL)
22806 return parent_type->name ();
22807 return "";
22808 }
22809 /* Fall through. */
22810 default:
22811 return determine_prefix (parent, cu);
22812 }
22813 }
22814
22815 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22816 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22817 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22818 an obconcat, otherwise allocate storage for the result. The CU argument is
22819 used to determine the language and hence, the appropriate separator. */
22820
22821 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22822
22823 static char *
22824 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22825 int physname, struct dwarf2_cu *cu)
22826 {
22827 const char *lead = "";
22828 const char *sep;
22829
22830 if (suffix == NULL || suffix[0] == '\0'
22831 || prefix == NULL || prefix[0] == '\0')
22832 sep = "";
22833 else if (cu->per_cu->lang == language_d)
22834 {
22835 /* For D, the 'main' function could be defined in any module, but it
22836 should never be prefixed. */
22837 if (strcmp (suffix, "D main") == 0)
22838 {
22839 prefix = "";
22840 sep = "";
22841 }
22842 else
22843 sep = ".";
22844 }
22845 else if (cu->per_cu->lang == language_fortran && physname)
22846 {
22847 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22848 DW_AT_MIPS_linkage_name is preferred and used instead. */
22849
22850 lead = "__";
22851 sep = "_MOD_";
22852 }
22853 else
22854 sep = "::";
22855
22856 if (prefix == NULL)
22857 prefix = "";
22858 if (suffix == NULL)
22859 suffix = "";
22860
22861 if (obs == NULL)
22862 {
22863 char *retval
22864 = ((char *)
22865 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22866
22867 strcpy (retval, lead);
22868 strcat (retval, prefix);
22869 strcat (retval, sep);
22870 strcat (retval, suffix);
22871 return retval;
22872 }
22873 else
22874 {
22875 /* We have an obstack. */
22876 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22877 }
22878 }
22879
22880 /* Get name of a die, return NULL if not found. */
22881
22882 static const char *
22883 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22884 struct objfile *objfile)
22885 {
22886 if (name && cu->per_cu->lang == language_cplus)
22887 {
22888 gdb::unique_xmalloc_ptr<char> canon_name
22889 = cp_canonicalize_string (name);
22890
22891 if (canon_name != nullptr)
22892 name = objfile->intern (canon_name.get ());
22893 }
22894
22895 return name;
22896 }
22897
22898 /* Get name of a die, return NULL if not found.
22899 Anonymous namespaces are converted to their magic string. */
22900
22901 static const char *
22902 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22903 {
22904 struct attribute *attr;
22905 struct objfile *objfile = cu->per_objfile->objfile;
22906
22907 attr = dwarf2_attr (die, DW_AT_name, cu);
22908 const char *attr_name = attr == nullptr ? nullptr : attr->as_string ();
22909 if (attr_name == nullptr
22910 && die->tag != DW_TAG_namespace
22911 && die->tag != DW_TAG_class_type
22912 && die->tag != DW_TAG_interface_type
22913 && die->tag != DW_TAG_structure_type
22914 && die->tag != DW_TAG_union_type)
22915 return NULL;
22916
22917 switch (die->tag)
22918 {
22919 case DW_TAG_compile_unit:
22920 case DW_TAG_partial_unit:
22921 /* Compilation units have a DW_AT_name that is a filename, not
22922 a source language identifier. */
22923 case DW_TAG_enumeration_type:
22924 case DW_TAG_enumerator:
22925 /* These tags always have simple identifiers already; no need
22926 to canonicalize them. */
22927 return attr_name;
22928
22929 case DW_TAG_namespace:
22930 if (attr_name != nullptr)
22931 return attr_name;
22932 return CP_ANONYMOUS_NAMESPACE_STR;
22933
22934 case DW_TAG_class_type:
22935 case DW_TAG_interface_type:
22936 case DW_TAG_structure_type:
22937 case DW_TAG_union_type:
22938 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22939 structures or unions. These were of the form "._%d" in GCC 4.1,
22940 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22941 and GCC 4.4. We work around this problem by ignoring these. */
22942 if (attr_name != nullptr
22943 && (startswith (attr_name, "._")
22944 || startswith (attr_name, "<anonymous")))
22945 return NULL;
22946
22947 /* GCC might emit a nameless typedef that has a linkage name. See
22948 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22949 if (!attr || attr_name == NULL)
22950 {
22951 attr = dw2_linkage_name_attr (die, cu);
22952 attr_name = attr == nullptr ? nullptr : attr->as_string ();
22953 if (attr == NULL || attr_name == NULL)
22954 return NULL;
22955
22956 /* Avoid demangling attr_name the second time on a second
22957 call for the same DIE. */
22958 if (!attr->canonical_string_p ())
22959 {
22960 gdb::unique_xmalloc_ptr<char> demangled
22961 (gdb_demangle (attr_name, DMGL_TYPES));
22962 if (demangled == nullptr)
22963 return nullptr;
22964
22965 attr->set_string_canonical (objfile->intern (demangled.get ()));
22966 attr_name = attr->as_string ();
22967 }
22968
22969 /* Strip any leading namespaces/classes, keep only the
22970 base name. DW_AT_name for named DIEs does not
22971 contain the prefixes. */
22972 const char *base = strrchr (attr_name, ':');
22973 if (base && base > attr_name && base[-1] == ':')
22974 return &base[1];
22975 else
22976 return attr_name;
22977 }
22978 break;
22979
22980 default:
22981 break;
22982 }
22983
22984 if (!attr->canonical_string_p ())
22985 attr->set_string_canonical (dwarf2_canonicalize_name (attr_name, cu,
22986 objfile));
22987 return attr->as_string ();
22988 }
22989
22990 /* Return the die that this die in an extension of, or NULL if there
22991 is none. *EXT_CU is the CU containing DIE on input, and the CU
22992 containing the return value on output. */
22993
22994 static struct die_info *
22995 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22996 {
22997 struct attribute *attr;
22998
22999 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
23000 if (attr == NULL)
23001 return NULL;
23002
23003 return follow_die_ref (die, attr, ext_cu);
23004 }
23005
23006 static void
23007 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
23008 {
23009 unsigned int i;
23010
23011 print_spaces (indent, f);
23012 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
23013 dwarf_tag_name (die->tag), die->abbrev,
23014 sect_offset_str (die->sect_off));
23015
23016 if (die->parent != NULL)
23017 {
23018 print_spaces (indent, f);
23019 fprintf_unfiltered (f, " parent at offset: %s\n",
23020 sect_offset_str (die->parent->sect_off));
23021 }
23022
23023 print_spaces (indent, f);
23024 fprintf_unfiltered (f, " has children: %s\n",
23025 dwarf_bool_name (die->child != NULL));
23026
23027 print_spaces (indent, f);
23028 fprintf_unfiltered (f, " attributes:\n");
23029
23030 for (i = 0; i < die->num_attrs; ++i)
23031 {
23032 print_spaces (indent, f);
23033 fprintf_unfiltered (f, " %s (%s) ",
23034 dwarf_attr_name (die->attrs[i].name),
23035 dwarf_form_name (die->attrs[i].form));
23036
23037 switch (die->attrs[i].form)
23038 {
23039 case DW_FORM_addr:
23040 case DW_FORM_addrx:
23041 case DW_FORM_GNU_addr_index:
23042 fprintf_unfiltered (f, "address: ");
23043 fputs_filtered (hex_string (die->attrs[i].as_address ()), f);
23044 break;
23045 case DW_FORM_block2:
23046 case DW_FORM_block4:
23047 case DW_FORM_block:
23048 case DW_FORM_block1:
23049 fprintf_unfiltered (f, "block: size %s",
23050 pulongest (die->attrs[i].as_block ()->size));
23051 break;
23052 case DW_FORM_exprloc:
23053 fprintf_unfiltered (f, "expression: size %s",
23054 pulongest (die->attrs[i].as_block ()->size));
23055 break;
23056 case DW_FORM_data16:
23057 fprintf_unfiltered (f, "constant of 16 bytes");
23058 break;
23059 case DW_FORM_ref_addr:
23060 fprintf_unfiltered (f, "ref address: ");
23061 fputs_filtered (hex_string (die->attrs[i].as_unsigned ()), f);
23062 break;
23063 case DW_FORM_GNU_ref_alt:
23064 fprintf_unfiltered (f, "alt ref address: ");
23065 fputs_filtered (hex_string (die->attrs[i].as_unsigned ()), f);
23066 break;
23067 case DW_FORM_ref1:
23068 case DW_FORM_ref2:
23069 case DW_FORM_ref4:
23070 case DW_FORM_ref8:
23071 case DW_FORM_ref_udata:
23072 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
23073 (long) (die->attrs[i].as_unsigned ()));
23074 break;
23075 case DW_FORM_data1:
23076 case DW_FORM_data2:
23077 case DW_FORM_data4:
23078 case DW_FORM_data8:
23079 case DW_FORM_udata:
23080 fprintf_unfiltered (f, "constant: %s",
23081 pulongest (die->attrs[i].as_unsigned ()));
23082 break;
23083 case DW_FORM_sec_offset:
23084 fprintf_unfiltered (f, "section offset: %s",
23085 pulongest (die->attrs[i].as_unsigned ()));
23086 break;
23087 case DW_FORM_ref_sig8:
23088 fprintf_unfiltered (f, "signature: %s",
23089 hex_string (die->attrs[i].as_signature ()));
23090 break;
23091 case DW_FORM_string:
23092 case DW_FORM_strp:
23093 case DW_FORM_line_strp:
23094 case DW_FORM_strx:
23095 case DW_FORM_GNU_str_index:
23096 case DW_FORM_GNU_strp_alt:
23097 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23098 die->attrs[i].as_string ()
23099 ? die->attrs[i].as_string () : "",
23100 die->attrs[i].canonical_string_p () ? "is" : "not");
23101 break;
23102 case DW_FORM_flag:
23103 if (die->attrs[i].as_boolean ())
23104 fprintf_unfiltered (f, "flag: TRUE");
23105 else
23106 fprintf_unfiltered (f, "flag: FALSE");
23107 break;
23108 case DW_FORM_flag_present:
23109 fprintf_unfiltered (f, "flag: TRUE");
23110 break;
23111 case DW_FORM_indirect:
23112 /* The reader will have reduced the indirect form to
23113 the "base form" so this form should not occur. */
23114 fprintf_unfiltered (f,
23115 "unexpected attribute form: DW_FORM_indirect");
23116 break;
23117 case DW_FORM_sdata:
23118 case DW_FORM_implicit_const:
23119 fprintf_unfiltered (f, "constant: %s",
23120 plongest (die->attrs[i].as_signed ()));
23121 break;
23122 default:
23123 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23124 die->attrs[i].form);
23125 break;
23126 }
23127 fprintf_unfiltered (f, "\n");
23128 }
23129 }
23130
23131 static void
23132 dump_die_for_error (struct die_info *die)
23133 {
23134 dump_die_shallow (gdb_stderr, 0, die);
23135 }
23136
23137 static void
23138 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23139 {
23140 int indent = level * 4;
23141
23142 gdb_assert (die != NULL);
23143
23144 if (level >= max_level)
23145 return;
23146
23147 dump_die_shallow (f, indent, die);
23148
23149 if (die->child != NULL)
23150 {
23151 print_spaces (indent, f);
23152 fprintf_unfiltered (f, " Children:");
23153 if (level + 1 < max_level)
23154 {
23155 fprintf_unfiltered (f, "\n");
23156 dump_die_1 (f, level + 1, max_level, die->child);
23157 }
23158 else
23159 {
23160 fprintf_unfiltered (f,
23161 " [not printed, max nesting level reached]\n");
23162 }
23163 }
23164
23165 if (die->sibling != NULL && level > 0)
23166 {
23167 dump_die_1 (f, level, max_level, die->sibling);
23168 }
23169 }
23170
23171 /* This is called from the pdie macro in gdbinit.in.
23172 It's not static so gcc will keep a copy callable from gdb. */
23173
23174 void
23175 dump_die (struct die_info *die, int max_level)
23176 {
23177 dump_die_1 (gdb_stdlog, 0, max_level, die);
23178 }
23179
23180 static void
23181 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23182 {
23183 void **slot;
23184
23185 slot = htab_find_slot_with_hash (cu->die_hash, die,
23186 to_underlying (die->sect_off),
23187 INSERT);
23188
23189 *slot = die;
23190 }
23191
23192 /* Follow reference or signature attribute ATTR of SRC_DIE.
23193 On entry *REF_CU is the CU of SRC_DIE.
23194 On exit *REF_CU is the CU of the result. */
23195
23196 static struct die_info *
23197 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23198 struct dwarf2_cu **ref_cu)
23199 {
23200 struct die_info *die;
23201
23202 if (attr->form_is_ref ())
23203 die = follow_die_ref (src_die, attr, ref_cu);
23204 else if (attr->form == DW_FORM_ref_sig8)
23205 die = follow_die_sig (src_die, attr, ref_cu);
23206 else
23207 {
23208 dump_die_for_error (src_die);
23209 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23210 objfile_name ((*ref_cu)->per_objfile->objfile));
23211 }
23212
23213 return die;
23214 }
23215
23216 /* Follow reference OFFSET.
23217 On entry *REF_CU is the CU of the source die referencing OFFSET.
23218 On exit *REF_CU is the CU of the result.
23219 Returns NULL if OFFSET is invalid. */
23220
23221 static struct die_info *
23222 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23223 struct dwarf2_cu **ref_cu)
23224 {
23225 struct die_info temp_die;
23226 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23227 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23228
23229 gdb_assert (cu->per_cu != NULL);
23230
23231 target_cu = cu;
23232
23233 dwarf_read_debug_printf_v ("source CU offset: %s, target offset: %s, "
23234 "source CU contains target offset: %d",
23235 sect_offset_str (cu->per_cu->sect_off),
23236 sect_offset_str (sect_off),
23237 cu->header.offset_in_cu_p (sect_off));
23238
23239 if (cu->per_cu->is_debug_types)
23240 {
23241 /* .debug_types CUs cannot reference anything outside their CU.
23242 If they need to, they have to reference a signatured type via
23243 DW_FORM_ref_sig8. */
23244 if (!cu->header.offset_in_cu_p (sect_off))
23245 return NULL;
23246 }
23247 else if (offset_in_dwz != cu->per_cu->is_dwz
23248 || !cu->header.offset_in_cu_p (sect_off))
23249 {
23250 struct dwarf2_per_cu_data *per_cu;
23251
23252 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23253 per_objfile);
23254
23255 dwarf_read_debug_printf_v ("target CU offset: %s, "
23256 "target CU DIEs loaded: %d",
23257 sect_offset_str (per_cu->sect_off),
23258 per_objfile->get_cu (per_cu) != nullptr);
23259
23260 /* If necessary, add it to the queue and load its DIEs.
23261
23262 Even if maybe_queue_comp_unit doesn't require us to load the CU's DIEs,
23263 it doesn't mean they are currently loaded. Since we require them
23264 to be loaded, we must check for ourselves. */
23265 if (maybe_queue_comp_unit (cu, per_cu, per_objfile, cu->per_cu->lang)
23266 || per_objfile->get_cu (per_cu) == nullptr)
23267 load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu),
23268 false, cu->per_cu->lang);
23269
23270 target_cu = per_objfile->get_cu (per_cu);
23271 gdb_assert (target_cu != nullptr);
23272 }
23273 else if (cu->dies == NULL)
23274 {
23275 /* We're loading full DIEs during partial symbol reading. */
23276 gdb_assert (per_objfile->per_bfd->reading_partial_symbols);
23277 load_full_comp_unit (cu->per_cu, per_objfile, cu, false,
23278 language_minimal);
23279 }
23280
23281 *ref_cu = target_cu;
23282 temp_die.sect_off = sect_off;
23283
23284 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23285 &temp_die,
23286 to_underlying (sect_off));
23287 }
23288
23289 /* Follow reference attribute ATTR of SRC_DIE.
23290 On entry *REF_CU is the CU of SRC_DIE.
23291 On exit *REF_CU is the CU of the result. */
23292
23293 static struct die_info *
23294 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23295 struct dwarf2_cu **ref_cu)
23296 {
23297 sect_offset sect_off = attr->get_ref_die_offset ();
23298 struct dwarf2_cu *cu = *ref_cu;
23299 struct die_info *die;
23300
23301 die = follow_die_offset (sect_off,
23302 (attr->form == DW_FORM_GNU_ref_alt
23303 || cu->per_cu->is_dwz),
23304 ref_cu);
23305 if (!die)
23306 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23307 "at %s [in module %s]"),
23308 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23309 objfile_name (cu->per_objfile->objfile));
23310
23311 return die;
23312 }
23313
23314 /* See read.h. */
23315
23316 struct dwarf2_locexpr_baton
23317 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23318 dwarf2_per_cu_data *per_cu,
23319 dwarf2_per_objfile *per_objfile,
23320 gdb::function_view<CORE_ADDR ()> get_frame_pc,
23321 bool resolve_abstract_p)
23322 {
23323 struct die_info *die;
23324 struct attribute *attr;
23325 struct dwarf2_locexpr_baton retval;
23326 struct objfile *objfile = per_objfile->objfile;
23327
23328 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23329 if (cu == nullptr)
23330 cu = load_cu (per_cu, per_objfile, false);
23331
23332 if (cu == nullptr)
23333 {
23334 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23335 Instead just throw an error, not much else we can do. */
23336 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23337 sect_offset_str (sect_off), objfile_name (objfile));
23338 }
23339
23340 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23341 if (!die)
23342 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23343 sect_offset_str (sect_off), objfile_name (objfile));
23344
23345 attr = dwarf2_attr (die, DW_AT_location, cu);
23346 if (!attr && resolve_abstract_p
23347 && (per_objfile->per_bfd->abstract_to_concrete.find (die->sect_off)
23348 != per_objfile->per_bfd->abstract_to_concrete.end ()))
23349 {
23350 CORE_ADDR pc = get_frame_pc ();
23351 CORE_ADDR baseaddr = objfile->text_section_offset ();
23352 struct gdbarch *gdbarch = objfile->arch ();
23353
23354 for (const auto &cand_off
23355 : per_objfile->per_bfd->abstract_to_concrete[die->sect_off])
23356 {
23357 struct dwarf2_cu *cand_cu = cu;
23358 struct die_info *cand
23359 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23360 if (!cand
23361 || !cand->parent
23362 || cand->parent->tag != DW_TAG_subprogram)
23363 continue;
23364
23365 CORE_ADDR pc_low, pc_high;
23366 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23367 if (pc_low == ((CORE_ADDR) -1))
23368 continue;
23369 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23370 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23371 if (!(pc_low <= pc && pc < pc_high))
23372 continue;
23373
23374 die = cand;
23375 attr = dwarf2_attr (die, DW_AT_location, cu);
23376 break;
23377 }
23378 }
23379
23380 if (!attr)
23381 {
23382 /* DWARF: "If there is no such attribute, then there is no effect.".
23383 DATA is ignored if SIZE is 0. */
23384
23385 retval.data = NULL;
23386 retval.size = 0;
23387 }
23388 else if (attr->form_is_section_offset ())
23389 {
23390 struct dwarf2_loclist_baton loclist_baton;
23391 CORE_ADDR pc = get_frame_pc ();
23392 size_t size;
23393
23394 fill_in_loclist_baton (cu, &loclist_baton, attr);
23395
23396 retval.data = dwarf2_find_location_expression (&loclist_baton,
23397 &size, pc);
23398 retval.size = size;
23399 }
23400 else
23401 {
23402 if (!attr->form_is_block ())
23403 error (_("Dwarf Error: DIE at %s referenced in module %s "
23404 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23405 sect_offset_str (sect_off), objfile_name (objfile));
23406
23407 struct dwarf_block *block = attr->as_block ();
23408 retval.data = block->data;
23409 retval.size = block->size;
23410 }
23411 retval.per_objfile = per_objfile;
23412 retval.per_cu = cu->per_cu;
23413
23414 per_objfile->age_comp_units ();
23415
23416 return retval;
23417 }
23418
23419 /* See read.h. */
23420
23421 struct dwarf2_locexpr_baton
23422 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23423 dwarf2_per_cu_data *per_cu,
23424 dwarf2_per_objfile *per_objfile,
23425 gdb::function_view<CORE_ADDR ()> get_frame_pc)
23426 {
23427 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23428
23429 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, per_objfile,
23430 get_frame_pc);
23431 }
23432
23433 /* Write a constant of a given type as target-ordered bytes into
23434 OBSTACK. */
23435
23436 static const gdb_byte *
23437 write_constant_as_bytes (struct obstack *obstack,
23438 enum bfd_endian byte_order,
23439 struct type *type,
23440 ULONGEST value,
23441 LONGEST *len)
23442 {
23443 gdb_byte *result;
23444
23445 *len = TYPE_LENGTH (type);
23446 result = (gdb_byte *) obstack_alloc (obstack, *len);
23447 store_unsigned_integer (result, *len, byte_order, value);
23448
23449 return result;
23450 }
23451
23452 /* See read.h. */
23453
23454 const gdb_byte *
23455 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23456 dwarf2_per_cu_data *per_cu,
23457 dwarf2_per_objfile *per_objfile,
23458 obstack *obstack,
23459 LONGEST *len)
23460 {
23461 struct die_info *die;
23462 struct attribute *attr;
23463 const gdb_byte *result = NULL;
23464 struct type *type;
23465 LONGEST value;
23466 enum bfd_endian byte_order;
23467 struct objfile *objfile = per_objfile->objfile;
23468
23469 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23470 if (cu == nullptr)
23471 cu = load_cu (per_cu, per_objfile, false);
23472
23473 if (cu == nullptr)
23474 {
23475 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23476 Instead just throw an error, not much else we can do. */
23477 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23478 sect_offset_str (sect_off), objfile_name (objfile));
23479 }
23480
23481 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23482 if (!die)
23483 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23484 sect_offset_str (sect_off), objfile_name (objfile));
23485
23486 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23487 if (attr == NULL)
23488 return NULL;
23489
23490 byte_order = (bfd_big_endian (objfile->obfd)
23491 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23492
23493 switch (attr->form)
23494 {
23495 case DW_FORM_addr:
23496 case DW_FORM_addrx:
23497 case DW_FORM_GNU_addr_index:
23498 {
23499 gdb_byte *tem;
23500
23501 *len = cu->header.addr_size;
23502 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23503 store_unsigned_integer (tem, *len, byte_order, attr->as_address ());
23504 result = tem;
23505 }
23506 break;
23507 case DW_FORM_string:
23508 case DW_FORM_strp:
23509 case DW_FORM_strx:
23510 case DW_FORM_GNU_str_index:
23511 case DW_FORM_GNU_strp_alt:
23512 /* The string is already allocated on the objfile obstack, point
23513 directly to it. */
23514 {
23515 const char *attr_name = attr->as_string ();
23516 result = (const gdb_byte *) attr_name;
23517 *len = strlen (attr_name);
23518 }
23519 break;
23520 case DW_FORM_block1:
23521 case DW_FORM_block2:
23522 case DW_FORM_block4:
23523 case DW_FORM_block:
23524 case DW_FORM_exprloc:
23525 case DW_FORM_data16:
23526 {
23527 struct dwarf_block *block = attr->as_block ();
23528 result = block->data;
23529 *len = block->size;
23530 }
23531 break;
23532
23533 /* The DW_AT_const_value attributes are supposed to carry the
23534 symbol's value "represented as it would be on the target
23535 architecture." By the time we get here, it's already been
23536 converted to host endianness, so we just need to sign- or
23537 zero-extend it as appropriate. */
23538 case DW_FORM_data1:
23539 type = die_type (die, cu);
23540 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23541 if (result == NULL)
23542 result = write_constant_as_bytes (obstack, byte_order,
23543 type, value, len);
23544 break;
23545 case DW_FORM_data2:
23546 type = die_type (die, cu);
23547 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23548 if (result == NULL)
23549 result = write_constant_as_bytes (obstack, byte_order,
23550 type, value, len);
23551 break;
23552 case DW_FORM_data4:
23553 type = die_type (die, cu);
23554 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23555 if (result == NULL)
23556 result = write_constant_as_bytes (obstack, byte_order,
23557 type, value, len);
23558 break;
23559 case DW_FORM_data8:
23560 type = die_type (die, cu);
23561 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23562 if (result == NULL)
23563 result = write_constant_as_bytes (obstack, byte_order,
23564 type, value, len);
23565 break;
23566
23567 case DW_FORM_sdata:
23568 case DW_FORM_implicit_const:
23569 type = die_type (die, cu);
23570 result = write_constant_as_bytes (obstack, byte_order,
23571 type, attr->as_signed (), len);
23572 break;
23573
23574 case DW_FORM_udata:
23575 type = die_type (die, cu);
23576 result = write_constant_as_bytes (obstack, byte_order,
23577 type, attr->as_unsigned (), len);
23578 break;
23579
23580 default:
23581 complaint (_("unsupported const value attribute form: '%s'"),
23582 dwarf_form_name (attr->form));
23583 break;
23584 }
23585
23586 return result;
23587 }
23588
23589 /* See read.h. */
23590
23591 struct type *
23592 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23593 dwarf2_per_cu_data *per_cu,
23594 dwarf2_per_objfile *per_objfile,
23595 const char **var_name)
23596 {
23597 struct die_info *die;
23598
23599 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23600 if (cu == nullptr)
23601 cu = load_cu (per_cu, per_objfile, false);
23602
23603 if (cu == nullptr)
23604 return nullptr;
23605
23606 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23607 if (!die)
23608 return NULL;
23609
23610 if (var_name != nullptr)
23611 *var_name = var_decl_name (die, cu);
23612 return die_type (die, cu);
23613 }
23614
23615 /* See read.h. */
23616
23617 struct type *
23618 dwarf2_get_die_type (cu_offset die_offset,
23619 dwarf2_per_cu_data *per_cu,
23620 dwarf2_per_objfile *per_objfile)
23621 {
23622 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23623 return get_die_type_at_offset (die_offset_sect, per_cu, per_objfile);
23624 }
23625
23626 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23627 On entry *REF_CU is the CU of SRC_DIE.
23628 On exit *REF_CU is the CU of the result.
23629 Returns NULL if the referenced DIE isn't found. */
23630
23631 static struct die_info *
23632 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23633 struct dwarf2_cu **ref_cu)
23634 {
23635 struct die_info temp_die;
23636 struct dwarf2_cu *sig_cu;
23637 struct die_info *die;
23638 dwarf2_per_objfile *per_objfile = (*ref_cu)->per_objfile;
23639
23640
23641 /* While it might be nice to assert sig_type->type == NULL here,
23642 we can get here for DW_AT_imported_declaration where we need
23643 the DIE not the type. */
23644
23645 /* If necessary, add it to the queue and load its DIEs.
23646
23647 Even if maybe_queue_comp_unit doesn't require us to load the CU's DIEs,
23648 it doesn't mean they are currently loaded. Since we require them
23649 to be loaded, we must check for ourselves. */
23650 if (maybe_queue_comp_unit (*ref_cu, sig_type, per_objfile,
23651 language_minimal)
23652 || per_objfile->get_cu (sig_type) == nullptr)
23653 read_signatured_type (sig_type, per_objfile);
23654
23655 sig_cu = per_objfile->get_cu (sig_type);
23656 gdb_assert (sig_cu != NULL);
23657 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23658 temp_die.sect_off = sig_type->type_offset_in_section;
23659 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23660 to_underlying (temp_die.sect_off));
23661 if (die)
23662 {
23663 /* For .gdb_index version 7 keep track of included TUs.
23664 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23665 if (per_objfile->per_bfd->index_table != NULL
23666 && per_objfile->per_bfd->index_table->version <= 7)
23667 {
23668 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23669 }
23670
23671 *ref_cu = sig_cu;
23672 return die;
23673 }
23674
23675 return NULL;
23676 }
23677
23678 /* Follow signatured type referenced by ATTR in SRC_DIE.
23679 On entry *REF_CU is the CU of SRC_DIE.
23680 On exit *REF_CU is the CU of the result.
23681 The result is the DIE of the type.
23682 If the referenced type cannot be found an error is thrown. */
23683
23684 static struct die_info *
23685 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23686 struct dwarf2_cu **ref_cu)
23687 {
23688 ULONGEST signature = attr->as_signature ();
23689 struct signatured_type *sig_type;
23690 struct die_info *die;
23691
23692 gdb_assert (attr->form == DW_FORM_ref_sig8);
23693
23694 sig_type = lookup_signatured_type (*ref_cu, signature);
23695 /* sig_type will be NULL if the signatured type is missing from
23696 the debug info. */
23697 if (sig_type == NULL)
23698 {
23699 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23700 " from DIE at %s [in module %s]"),
23701 hex_string (signature), sect_offset_str (src_die->sect_off),
23702 objfile_name ((*ref_cu)->per_objfile->objfile));
23703 }
23704
23705 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23706 if (die == NULL)
23707 {
23708 dump_die_for_error (src_die);
23709 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23710 " from DIE at %s [in module %s]"),
23711 hex_string (signature), sect_offset_str (src_die->sect_off),
23712 objfile_name ((*ref_cu)->per_objfile->objfile));
23713 }
23714
23715 return die;
23716 }
23717
23718 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23719 reading in and processing the type unit if necessary. */
23720
23721 static struct type *
23722 get_signatured_type (struct die_info *die, ULONGEST signature,
23723 struct dwarf2_cu *cu)
23724 {
23725 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23726 struct signatured_type *sig_type;
23727 struct dwarf2_cu *type_cu;
23728 struct die_info *type_die;
23729 struct type *type;
23730
23731 sig_type = lookup_signatured_type (cu, signature);
23732 /* sig_type will be NULL if the signatured type is missing from
23733 the debug info. */
23734 if (sig_type == NULL)
23735 {
23736 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23737 " from DIE at %s [in module %s]"),
23738 hex_string (signature), sect_offset_str (die->sect_off),
23739 objfile_name (per_objfile->objfile));
23740 return build_error_marker_type (cu, die);
23741 }
23742
23743 /* If we already know the type we're done. */
23744 type = per_objfile->get_type_for_signatured_type (sig_type);
23745 if (type != nullptr)
23746 return type;
23747
23748 type_cu = cu;
23749 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23750 if (type_die != NULL)
23751 {
23752 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23753 is created. This is important, for example, because for c++ classes
23754 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23755 type = read_type_die (type_die, type_cu);
23756 if (type == NULL)
23757 {
23758 complaint (_("Dwarf Error: Cannot build signatured type %s"
23759 " referenced from DIE at %s [in module %s]"),
23760 hex_string (signature), sect_offset_str (die->sect_off),
23761 objfile_name (per_objfile->objfile));
23762 type = build_error_marker_type (cu, die);
23763 }
23764 }
23765 else
23766 {
23767 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23768 " from DIE at %s [in module %s]"),
23769 hex_string (signature), sect_offset_str (die->sect_off),
23770 objfile_name (per_objfile->objfile));
23771 type = build_error_marker_type (cu, die);
23772 }
23773
23774 per_objfile->set_type_for_signatured_type (sig_type, type);
23775
23776 return type;
23777 }
23778
23779 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23780 reading in and processing the type unit if necessary. */
23781
23782 static struct type *
23783 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23784 struct dwarf2_cu *cu) /* ARI: editCase function */
23785 {
23786 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23787 if (attr->form_is_ref ())
23788 {
23789 struct dwarf2_cu *type_cu = cu;
23790 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23791
23792 return read_type_die (type_die, type_cu);
23793 }
23794 else if (attr->form == DW_FORM_ref_sig8)
23795 {
23796 return get_signatured_type (die, attr->as_signature (), cu);
23797 }
23798 else
23799 {
23800 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23801
23802 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23803 " at %s [in module %s]"),
23804 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23805 objfile_name (per_objfile->objfile));
23806 return build_error_marker_type (cu, die);
23807 }
23808 }
23809
23810 /* Load the DIEs associated with type unit PER_CU into memory. */
23811
23812 static void
23813 load_full_type_unit (dwarf2_per_cu_data *per_cu,
23814 dwarf2_per_objfile *per_objfile)
23815 {
23816 struct signatured_type *sig_type;
23817
23818 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23819 gdb_assert (! per_cu->type_unit_group_p ());
23820
23821 /* We have the per_cu, but we need the signatured_type.
23822 Fortunately this is an easy translation. */
23823 gdb_assert (per_cu->is_debug_types);
23824 sig_type = (struct signatured_type *) per_cu;
23825
23826 gdb_assert (per_objfile->get_cu (per_cu) == nullptr);
23827
23828 read_signatured_type (sig_type, per_objfile);
23829
23830 gdb_assert (per_objfile->get_cu (per_cu) != nullptr);
23831 }
23832
23833 /* Read in a signatured type and build its CU and DIEs.
23834 If the type is a stub for the real type in a DWO file,
23835 read in the real type from the DWO file as well. */
23836
23837 static void
23838 read_signatured_type (signatured_type *sig_type,
23839 dwarf2_per_objfile *per_objfile)
23840 {
23841 gdb_assert (sig_type->is_debug_types);
23842 gdb_assert (per_objfile->get_cu (sig_type) == nullptr);
23843
23844 cutu_reader reader (sig_type, per_objfile, nullptr, nullptr, false);
23845
23846 if (!reader.dummy_p)
23847 {
23848 struct dwarf2_cu *cu = reader.cu;
23849 const gdb_byte *info_ptr = reader.info_ptr;
23850
23851 gdb_assert (cu->die_hash == NULL);
23852 cu->die_hash =
23853 htab_create_alloc_ex (cu->header.length / 12,
23854 die_hash,
23855 die_eq,
23856 NULL,
23857 &cu->comp_unit_obstack,
23858 hashtab_obstack_allocate,
23859 dummy_obstack_deallocate);
23860
23861 if (reader.comp_unit_die->has_children)
23862 reader.comp_unit_die->child
23863 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
23864 reader.comp_unit_die);
23865 cu->dies = reader.comp_unit_die;
23866 /* comp_unit_die is not stored in die_hash, no need. */
23867
23868 /* We try not to read any attributes in this function, because
23869 not all CUs needed for references have been loaded yet, and
23870 symbol table processing isn't initialized. But we have to
23871 set the CU language, or we won't be able to build types
23872 correctly. Similarly, if we do not read the producer, we can
23873 not apply producer-specific interpretation. */
23874 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23875
23876 reader.keep ();
23877 }
23878
23879 sig_type->tu_read = 1;
23880 }
23881
23882 /* Decode simple location descriptions.
23883 Given a pointer to a dwarf block that defines a location, compute
23884 the location and return the value. If COMPUTED is non-null, it is
23885 set to true to indicate that decoding was successful, and false
23886 otherwise. If COMPUTED is null, then this function may emit a
23887 complaint. */
23888
23889 static CORE_ADDR
23890 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
23891 {
23892 struct objfile *objfile = cu->per_objfile->objfile;
23893 size_t i;
23894 size_t size = blk->size;
23895 const gdb_byte *data = blk->data;
23896 CORE_ADDR stack[64];
23897 int stacki;
23898 unsigned int bytes_read, unsnd;
23899 gdb_byte op;
23900
23901 if (computed != nullptr)
23902 *computed = false;
23903
23904 i = 0;
23905 stacki = 0;
23906 stack[stacki] = 0;
23907 stack[++stacki] = 0;
23908
23909 while (i < size)
23910 {
23911 op = data[i++];
23912 switch (op)
23913 {
23914 case DW_OP_lit0:
23915 case DW_OP_lit1:
23916 case DW_OP_lit2:
23917 case DW_OP_lit3:
23918 case DW_OP_lit4:
23919 case DW_OP_lit5:
23920 case DW_OP_lit6:
23921 case DW_OP_lit7:
23922 case DW_OP_lit8:
23923 case DW_OP_lit9:
23924 case DW_OP_lit10:
23925 case DW_OP_lit11:
23926 case DW_OP_lit12:
23927 case DW_OP_lit13:
23928 case DW_OP_lit14:
23929 case DW_OP_lit15:
23930 case DW_OP_lit16:
23931 case DW_OP_lit17:
23932 case DW_OP_lit18:
23933 case DW_OP_lit19:
23934 case DW_OP_lit20:
23935 case DW_OP_lit21:
23936 case DW_OP_lit22:
23937 case DW_OP_lit23:
23938 case DW_OP_lit24:
23939 case DW_OP_lit25:
23940 case DW_OP_lit26:
23941 case DW_OP_lit27:
23942 case DW_OP_lit28:
23943 case DW_OP_lit29:
23944 case DW_OP_lit30:
23945 case DW_OP_lit31:
23946 stack[++stacki] = op - DW_OP_lit0;
23947 break;
23948
23949 case DW_OP_reg0:
23950 case DW_OP_reg1:
23951 case DW_OP_reg2:
23952 case DW_OP_reg3:
23953 case DW_OP_reg4:
23954 case DW_OP_reg5:
23955 case DW_OP_reg6:
23956 case DW_OP_reg7:
23957 case DW_OP_reg8:
23958 case DW_OP_reg9:
23959 case DW_OP_reg10:
23960 case DW_OP_reg11:
23961 case DW_OP_reg12:
23962 case DW_OP_reg13:
23963 case DW_OP_reg14:
23964 case DW_OP_reg15:
23965 case DW_OP_reg16:
23966 case DW_OP_reg17:
23967 case DW_OP_reg18:
23968 case DW_OP_reg19:
23969 case DW_OP_reg20:
23970 case DW_OP_reg21:
23971 case DW_OP_reg22:
23972 case DW_OP_reg23:
23973 case DW_OP_reg24:
23974 case DW_OP_reg25:
23975 case DW_OP_reg26:
23976 case DW_OP_reg27:
23977 case DW_OP_reg28:
23978 case DW_OP_reg29:
23979 case DW_OP_reg30:
23980 case DW_OP_reg31:
23981 stack[++stacki] = op - DW_OP_reg0;
23982 if (i < size)
23983 {
23984 if (computed == nullptr)
23985 dwarf2_complex_location_expr_complaint ();
23986 else
23987 return 0;
23988 }
23989 break;
23990
23991 case DW_OP_regx:
23992 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23993 i += bytes_read;
23994 stack[++stacki] = unsnd;
23995 if (i < size)
23996 {
23997 if (computed == nullptr)
23998 dwarf2_complex_location_expr_complaint ();
23999 else
24000 return 0;
24001 }
24002 break;
24003
24004 case DW_OP_addr:
24005 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
24006 &bytes_read);
24007 i += bytes_read;
24008 break;
24009
24010 case DW_OP_const1u:
24011 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
24012 i += 1;
24013 break;
24014
24015 case DW_OP_const1s:
24016 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24017 i += 1;
24018 break;
24019
24020 case DW_OP_const2u:
24021 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24022 i += 2;
24023 break;
24024
24025 case DW_OP_const2s:
24026 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24027 i += 2;
24028 break;
24029
24030 case DW_OP_const4u:
24031 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24032 i += 4;
24033 break;
24034
24035 case DW_OP_const4s:
24036 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24037 i += 4;
24038 break;
24039
24040 case DW_OP_const8u:
24041 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24042 i += 8;
24043 break;
24044
24045 case DW_OP_constu:
24046 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24047 &bytes_read);
24048 i += bytes_read;
24049 break;
24050
24051 case DW_OP_consts:
24052 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24053 i += bytes_read;
24054 break;
24055
24056 case DW_OP_dup:
24057 stack[stacki + 1] = stack[stacki];
24058 stacki++;
24059 break;
24060
24061 case DW_OP_plus:
24062 stack[stacki - 1] += stack[stacki];
24063 stacki--;
24064 break;
24065
24066 case DW_OP_plus_uconst:
24067 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24068 &bytes_read);
24069 i += bytes_read;
24070 break;
24071
24072 case DW_OP_minus:
24073 stack[stacki - 1] -= stack[stacki];
24074 stacki--;
24075 break;
24076
24077 case DW_OP_deref:
24078 /* If we're not the last op, then we definitely can't encode
24079 this using GDB's address_class enum. This is valid for partial
24080 global symbols, although the variable's address will be bogus
24081 in the psymtab. */
24082 if (i < size)
24083 {
24084 if (computed == nullptr)
24085 dwarf2_complex_location_expr_complaint ();
24086 else
24087 return 0;
24088 }
24089 break;
24090
24091 case DW_OP_GNU_push_tls_address:
24092 case DW_OP_form_tls_address:
24093 /* The top of the stack has the offset from the beginning
24094 of the thread control block at which the variable is located. */
24095 /* Nothing should follow this operator, so the top of stack would
24096 be returned. */
24097 /* This is valid for partial global symbols, but the variable's
24098 address will be bogus in the psymtab. Make it always at least
24099 non-zero to not look as a variable garbage collected by linker
24100 which have DW_OP_addr 0. */
24101 if (i < size)
24102 {
24103 if (computed == nullptr)
24104 dwarf2_complex_location_expr_complaint ();
24105 else
24106 return 0;
24107 }
24108 stack[stacki]++;
24109 break;
24110
24111 case DW_OP_GNU_uninit:
24112 if (computed != nullptr)
24113 return 0;
24114 break;
24115
24116 case DW_OP_addrx:
24117 case DW_OP_GNU_addr_index:
24118 case DW_OP_GNU_const_index:
24119 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24120 &bytes_read);
24121 i += bytes_read;
24122 break;
24123
24124 default:
24125 if (computed == nullptr)
24126 {
24127 const char *name = get_DW_OP_name (op);
24128
24129 if (name)
24130 complaint (_("unsupported stack op: '%s'"),
24131 name);
24132 else
24133 complaint (_("unsupported stack op: '%02x'"),
24134 op);
24135 }
24136
24137 return (stack[stacki]);
24138 }
24139
24140 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24141 outside of the allocated space. Also enforce minimum>0. */
24142 if (stacki >= ARRAY_SIZE (stack) - 1)
24143 {
24144 if (computed == nullptr)
24145 complaint (_("location description stack overflow"));
24146 return 0;
24147 }
24148
24149 if (stacki <= 0)
24150 {
24151 if (computed == nullptr)
24152 complaint (_("location description stack underflow"));
24153 return 0;
24154 }
24155 }
24156
24157 if (computed != nullptr)
24158 *computed = true;
24159 return (stack[stacki]);
24160 }
24161
24162 /* memory allocation interface */
24163
24164 static struct dwarf_block *
24165 dwarf_alloc_block (struct dwarf2_cu *cu)
24166 {
24167 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24168 }
24169
24170 static struct die_info *
24171 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24172 {
24173 struct die_info *die;
24174 size_t size = sizeof (struct die_info);
24175
24176 if (num_attrs > 1)
24177 size += (num_attrs - 1) * sizeof (struct attribute);
24178
24179 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24180 memset (die, 0, sizeof (struct die_info));
24181 return (die);
24182 }
24183
24184 \f
24185
24186 /* Macro support. */
24187
24188 /* An overload of dwarf_decode_macros that finds the correct section
24189 and ensures it is read in before calling the other overload. */
24190
24191 static void
24192 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24193 int section_is_gnu)
24194 {
24195 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24196 struct objfile *objfile = per_objfile->objfile;
24197 const struct line_header *lh = cu->line_header;
24198 unsigned int offset_size = cu->header.offset_size;
24199 struct dwarf2_section_info *section;
24200 const char *section_name;
24201
24202 if (cu->dwo_unit != nullptr)
24203 {
24204 if (section_is_gnu)
24205 {
24206 section = &cu->dwo_unit->dwo_file->sections.macro;
24207 section_name = ".debug_macro.dwo";
24208 }
24209 else
24210 {
24211 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24212 section_name = ".debug_macinfo.dwo";
24213 }
24214 }
24215 else
24216 {
24217 if (section_is_gnu)
24218 {
24219 section = &per_objfile->per_bfd->macro;
24220 section_name = ".debug_macro";
24221 }
24222 else
24223 {
24224 section = &per_objfile->per_bfd->macinfo;
24225 section_name = ".debug_macinfo";
24226 }
24227 }
24228
24229 section->read (objfile);
24230 if (section->buffer == nullptr)
24231 {
24232 complaint (_("missing %s section"), section_name);
24233 return;
24234 }
24235
24236 buildsym_compunit *builder = cu->get_builder ();
24237
24238 struct dwarf2_section_info *str_offsets_section;
24239 struct dwarf2_section_info *str_section;
24240 gdb::optional<ULONGEST> str_offsets_base;
24241
24242 if (cu->dwo_unit != nullptr)
24243 {
24244 str_offsets_section = &cu->dwo_unit->dwo_file
24245 ->sections.str_offsets;
24246 str_section = &cu->dwo_unit->dwo_file->sections.str;
24247 str_offsets_base = cu->header.addr_size;
24248 }
24249 else
24250 {
24251 str_offsets_section = &per_objfile->per_bfd->str_offsets;
24252 str_section = &per_objfile->per_bfd->str;
24253 str_offsets_base = cu->str_offsets_base;
24254 }
24255
24256 dwarf_decode_macros (per_objfile, builder, section, lh,
24257 offset_size, offset, str_section, str_offsets_section,
24258 str_offsets_base, section_is_gnu);
24259 }
24260
24261 /* Return the .debug_loc section to use for CU.
24262 For DWO files use .debug_loc.dwo. */
24263
24264 static struct dwarf2_section_info *
24265 cu_debug_loc_section (struct dwarf2_cu *cu)
24266 {
24267 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24268
24269 if (cu->dwo_unit)
24270 {
24271 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24272
24273 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24274 }
24275 return (cu->header.version >= 5 ? &per_objfile->per_bfd->loclists
24276 : &per_objfile->per_bfd->loc);
24277 }
24278
24279 /* Return the .debug_rnglists section to use for CU. */
24280 static struct dwarf2_section_info *
24281 cu_debug_rnglists_section (struct dwarf2_cu *cu, dwarf_tag tag)
24282 {
24283 if (cu->header.version < 5)
24284 error (_(".debug_rnglists section cannot be used in DWARF %d"),
24285 cu->header.version);
24286 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
24287
24288 /* Make sure we read the .debug_rnglists section from the file that
24289 contains the DW_AT_ranges attribute we are reading. Normally that
24290 would be the .dwo file, if there is one. However for DW_TAG_compile_unit
24291 or DW_TAG_skeleton unit, we always want to read from objfile/linked
24292 program. */
24293 if (cu->dwo_unit != nullptr
24294 && tag != DW_TAG_compile_unit
24295 && tag != DW_TAG_skeleton_unit)
24296 {
24297 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24298
24299 if (sections->rnglists.size > 0)
24300 return &sections->rnglists;
24301 else
24302 error (_(".debug_rnglists section is missing from .dwo file."));
24303 }
24304 return &dwarf2_per_objfile->per_bfd->rnglists;
24305 }
24306
24307 /* A helper function that fills in a dwarf2_loclist_baton. */
24308
24309 static void
24310 fill_in_loclist_baton (struct dwarf2_cu *cu,
24311 struct dwarf2_loclist_baton *baton,
24312 const struct attribute *attr)
24313 {
24314 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24315 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24316
24317 section->read (per_objfile->objfile);
24318
24319 baton->per_objfile = per_objfile;
24320 baton->per_cu = cu->per_cu;
24321 gdb_assert (baton->per_cu);
24322 /* We don't know how long the location list is, but make sure we
24323 don't run off the edge of the section. */
24324 baton->size = section->size - attr->as_unsigned ();
24325 baton->data = section->buffer + attr->as_unsigned ();
24326 if (cu->base_address.has_value ())
24327 baton->base_address = *cu->base_address;
24328 else
24329 baton->base_address = 0;
24330 baton->from_dwo = cu->dwo_unit != NULL;
24331 }
24332
24333 static void
24334 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24335 struct dwarf2_cu *cu, int is_block)
24336 {
24337 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24338 struct objfile *objfile = per_objfile->objfile;
24339 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24340
24341 if (attr->form_is_section_offset ()
24342 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24343 the section. If so, fall through to the complaint in the
24344 other branch. */
24345 && attr->as_unsigned () < section->get_size (objfile))
24346 {
24347 struct dwarf2_loclist_baton *baton;
24348
24349 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24350
24351 fill_in_loclist_baton (cu, baton, attr);
24352
24353 if (!cu->base_address.has_value ())
24354 complaint (_("Location list used without "
24355 "specifying the CU base address."));
24356
24357 SYMBOL_ACLASS_INDEX (sym) = (is_block
24358 ? dwarf2_loclist_block_index
24359 : dwarf2_loclist_index);
24360 SYMBOL_LOCATION_BATON (sym) = baton;
24361 }
24362 else
24363 {
24364 struct dwarf2_locexpr_baton *baton;
24365
24366 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24367 baton->per_objfile = per_objfile;
24368 baton->per_cu = cu->per_cu;
24369 gdb_assert (baton->per_cu);
24370
24371 if (attr->form_is_block ())
24372 {
24373 /* Note that we're just copying the block's data pointer
24374 here, not the actual data. We're still pointing into the
24375 info_buffer for SYM's objfile; right now we never release
24376 that buffer, but when we do clean up properly this may
24377 need to change. */
24378 struct dwarf_block *block = attr->as_block ();
24379 baton->size = block->size;
24380 baton->data = block->data;
24381 }
24382 else
24383 {
24384 dwarf2_invalid_attrib_class_complaint ("location description",
24385 sym->natural_name ());
24386 baton->size = 0;
24387 }
24388
24389 SYMBOL_ACLASS_INDEX (sym) = (is_block
24390 ? dwarf2_locexpr_block_index
24391 : dwarf2_locexpr_index);
24392 SYMBOL_LOCATION_BATON (sym) = baton;
24393 }
24394 }
24395
24396 /* See read.h. */
24397
24398 const comp_unit_head *
24399 dwarf2_per_cu_data::get_header () const
24400 {
24401 if (!m_header_read_in)
24402 {
24403 const gdb_byte *info_ptr
24404 = this->section->buffer + to_underlying (this->sect_off);
24405
24406 memset (&m_header, 0, sizeof (m_header));
24407
24408 read_comp_unit_head (&m_header, info_ptr, this->section,
24409 rcuh_kind::COMPILE);
24410
24411 m_header_read_in = true;
24412 }
24413
24414 return &m_header;
24415 }
24416
24417 /* See read.h. */
24418
24419 int
24420 dwarf2_per_cu_data::addr_size () const
24421 {
24422 return this->get_header ()->addr_size;
24423 }
24424
24425 /* See read.h. */
24426
24427 int
24428 dwarf2_per_cu_data::offset_size () const
24429 {
24430 return this->get_header ()->offset_size;
24431 }
24432
24433 /* See read.h. */
24434
24435 int
24436 dwarf2_per_cu_data::ref_addr_size () const
24437 {
24438 const comp_unit_head *header = this->get_header ();
24439
24440 if (header->version == 2)
24441 return header->addr_size;
24442 else
24443 return header->offset_size;
24444 }
24445
24446 /* A helper function for dwarf2_find_containing_comp_unit that returns
24447 the index of the result, and that searches a vector. It will
24448 return a result even if the offset in question does not actually
24449 occur in any CU. This is separate so that it can be unit
24450 tested. */
24451
24452 static int
24453 dwarf2_find_containing_comp_unit
24454 (sect_offset sect_off,
24455 unsigned int offset_in_dwz,
24456 const std::vector<dwarf2_per_cu_data_up> &all_comp_units)
24457 {
24458 int low, high;
24459
24460 low = 0;
24461 high = all_comp_units.size () - 1;
24462 while (high > low)
24463 {
24464 struct dwarf2_per_cu_data *mid_cu;
24465 int mid = low + (high - low) / 2;
24466
24467 mid_cu = all_comp_units[mid].get ();
24468 if (mid_cu->is_dwz > offset_in_dwz
24469 || (mid_cu->is_dwz == offset_in_dwz
24470 && mid_cu->sect_off + mid_cu->length > sect_off))
24471 high = mid;
24472 else
24473 low = mid + 1;
24474 }
24475 gdb_assert (low == high);
24476 return low;
24477 }
24478
24479 /* Locate the .debug_info compilation unit from CU's objfile which contains
24480 the DIE at OFFSET. Raises an error on failure. */
24481
24482 static struct dwarf2_per_cu_data *
24483 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24484 unsigned int offset_in_dwz,
24485 dwarf2_per_objfile *per_objfile)
24486 {
24487 int low = dwarf2_find_containing_comp_unit
24488 (sect_off, offset_in_dwz, per_objfile->per_bfd->all_comp_units);
24489 dwarf2_per_cu_data *this_cu
24490 = per_objfile->per_bfd->all_comp_units[low].get ();
24491
24492 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24493 {
24494 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24495 error (_("Dwarf Error: could not find partial DIE containing "
24496 "offset %s [in module %s]"),
24497 sect_offset_str (sect_off),
24498 bfd_get_filename (per_objfile->objfile->obfd));
24499
24500 gdb_assert (per_objfile->per_bfd->all_comp_units[low-1]->sect_off
24501 <= sect_off);
24502 return per_objfile->per_bfd->all_comp_units[low - 1].get ();
24503 }
24504 else
24505 {
24506 if (low == per_objfile->per_bfd->all_comp_units.size () - 1
24507 && sect_off >= this_cu->sect_off + this_cu->length)
24508 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24509 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24510 return this_cu;
24511 }
24512 }
24513
24514 #if GDB_SELF_TEST
24515
24516 namespace selftests {
24517 namespace find_containing_comp_unit {
24518
24519 static void
24520 run_test ()
24521 {
24522 dwarf2_per_cu_data_up one (new dwarf2_per_cu_data);
24523 dwarf2_per_cu_data *one_ptr = one.get ();
24524 dwarf2_per_cu_data_up two (new dwarf2_per_cu_data);
24525 dwarf2_per_cu_data *two_ptr = two.get ();
24526 dwarf2_per_cu_data_up three (new dwarf2_per_cu_data);
24527 dwarf2_per_cu_data *three_ptr = three.get ();
24528 dwarf2_per_cu_data_up four (new dwarf2_per_cu_data);
24529 dwarf2_per_cu_data *four_ptr = four.get ();
24530
24531 one->length = 5;
24532 two->sect_off = sect_offset (one->length);
24533 two->length = 7;
24534
24535 three->length = 5;
24536 three->is_dwz = 1;
24537 four->sect_off = sect_offset (three->length);
24538 four->length = 7;
24539 four->is_dwz = 1;
24540
24541 std::vector<dwarf2_per_cu_data_up> units;
24542 units.push_back (std::move (one));
24543 units.push_back (std::move (two));
24544 units.push_back (std::move (three));
24545 units.push_back (std::move (four));
24546
24547 int result;
24548
24549 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
24550 SELF_CHECK (units[result].get () == one_ptr);
24551 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
24552 SELF_CHECK (units[result].get () == one_ptr);
24553 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
24554 SELF_CHECK (units[result].get () == two_ptr);
24555
24556 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
24557 SELF_CHECK (units[result].get () == three_ptr);
24558 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
24559 SELF_CHECK (units[result].get () == three_ptr);
24560 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
24561 SELF_CHECK (units[result].get () == four_ptr);
24562 }
24563
24564 }
24565 }
24566
24567 #endif /* GDB_SELF_TEST */
24568
24569 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24570
24571 static void
24572 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24573 enum language pretend_language)
24574 {
24575 struct attribute *attr;
24576
24577 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24578
24579 /* Set the language we're debugging. */
24580 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24581 if (cu->producer != nullptr
24582 && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
24583 {
24584 /* The XLCL doesn't generate DW_LANG_OpenCL because this
24585 attribute is not standardised yet. As a workaround for the
24586 language detection we fall back to the DW_AT_producer
24587 string. */
24588 cu->per_cu->lang = language_opencl;
24589 }
24590 else if (cu->producer != nullptr
24591 && strstr (cu->producer, "GNU Go ") != NULL)
24592 {
24593 /* Similar hack for Go. */
24594 cu->per_cu->lang = language_go;
24595 }
24596 else if (attr != nullptr)
24597 cu->per_cu->lang = dwarf_lang_to_enum_language (attr->constant_value (0));
24598 else
24599 cu->per_cu->lang = pretend_language;
24600 cu->language_defn = language_def (cu->per_cu->lang);
24601 }
24602
24603 /* See read.h. */
24604
24605 dwarf2_cu *
24606 dwarf2_per_objfile::get_cu (dwarf2_per_cu_data *per_cu)
24607 {
24608 auto it = m_dwarf2_cus.find (per_cu);
24609 if (it == m_dwarf2_cus.end ())
24610 return nullptr;
24611
24612 return it->second;
24613 }
24614
24615 /* See read.h. */
24616
24617 void
24618 dwarf2_per_objfile::set_cu (dwarf2_per_cu_data *per_cu, dwarf2_cu *cu)
24619 {
24620 gdb_assert (this->get_cu (per_cu) == nullptr);
24621
24622 m_dwarf2_cus[per_cu] = cu;
24623 }
24624
24625 /* See read.h. */
24626
24627 void
24628 dwarf2_per_objfile::age_comp_units ()
24629 {
24630 dwarf_read_debug_printf_v ("running");
24631
24632 /* This is not expected to be called in the middle of CU expansion. There is
24633 an invariant that if a CU is in the CUs-to-expand queue, its DIEs are
24634 loaded in memory. Calling age_comp_units while the queue is in use could
24635 make us free the DIEs for a CU that is in the queue and therefore break
24636 that invariant. */
24637 gdb_assert (!this->per_bfd->queue.has_value ());
24638
24639 /* Start by clearing all marks. */
24640 for (auto pair : m_dwarf2_cus)
24641 pair.second->clear_mark ();
24642
24643 /* Traverse all CUs, mark them and their dependencies if used recently
24644 enough. */
24645 for (auto pair : m_dwarf2_cus)
24646 {
24647 dwarf2_cu *cu = pair.second;
24648
24649 cu->last_used++;
24650 if (cu->last_used <= dwarf_max_cache_age)
24651 cu->mark ();
24652 }
24653
24654 /* Delete all CUs still not marked. */
24655 for (auto it = m_dwarf2_cus.begin (); it != m_dwarf2_cus.end ();)
24656 {
24657 dwarf2_cu *cu = it->second;
24658
24659 if (!cu->is_marked ())
24660 {
24661 dwarf_read_debug_printf_v ("deleting old CU %s",
24662 sect_offset_str (cu->per_cu->sect_off));
24663 delete cu;
24664 it = m_dwarf2_cus.erase (it);
24665 }
24666 else
24667 it++;
24668 }
24669 }
24670
24671 /* See read.h. */
24672
24673 void
24674 dwarf2_per_objfile::remove_cu (dwarf2_per_cu_data *per_cu)
24675 {
24676 auto it = m_dwarf2_cus.find (per_cu);
24677 if (it == m_dwarf2_cus.end ())
24678 return;
24679
24680 delete it->second;
24681
24682 m_dwarf2_cus.erase (it);
24683 }
24684
24685 dwarf2_per_objfile::~dwarf2_per_objfile ()
24686 {
24687 remove_all_cus ();
24688 }
24689
24690 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
24691 We store these in a hash table separate from the DIEs, and preserve them
24692 when the DIEs are flushed out of cache.
24693
24694 The CU "per_cu" pointer is needed because offset alone is not enough to
24695 uniquely identify the type. A file may have multiple .debug_types sections,
24696 or the type may come from a DWO file. Furthermore, while it's more logical
24697 to use per_cu->section+offset, with Fission the section with the data is in
24698 the DWO file but we don't know that section at the point we need it.
24699 We have to use something in dwarf2_per_cu_data (or the pointer to it)
24700 because we can enter the lookup routine, get_die_type_at_offset, from
24701 outside this file, and thus won't necessarily have PER_CU->cu.
24702 Fortunately, PER_CU is stable for the life of the objfile. */
24703
24704 struct dwarf2_per_cu_offset_and_type
24705 {
24706 const struct dwarf2_per_cu_data *per_cu;
24707 sect_offset sect_off;
24708 struct type *type;
24709 };
24710
24711 /* Hash function for a dwarf2_per_cu_offset_and_type. */
24712
24713 static hashval_t
24714 per_cu_offset_and_type_hash (const void *item)
24715 {
24716 const struct dwarf2_per_cu_offset_and_type *ofs
24717 = (const struct dwarf2_per_cu_offset_and_type *) item;
24718
24719 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
24720 }
24721
24722 /* Equality function for a dwarf2_per_cu_offset_and_type. */
24723
24724 static int
24725 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
24726 {
24727 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
24728 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
24729 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
24730 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
24731
24732 return (ofs_lhs->per_cu == ofs_rhs->per_cu
24733 && ofs_lhs->sect_off == ofs_rhs->sect_off);
24734 }
24735
24736 /* Set the type associated with DIE to TYPE. Save it in CU's hash
24737 table if necessary. For convenience, return TYPE.
24738
24739 The DIEs reading must have careful ordering to:
24740 * Not cause infinite loops trying to read in DIEs as a prerequisite for
24741 reading current DIE.
24742 * Not trying to dereference contents of still incompletely read in types
24743 while reading in other DIEs.
24744 * Enable referencing still incompletely read in types just by a pointer to
24745 the type without accessing its fields.
24746
24747 Therefore caller should follow these rules:
24748 * Try to fetch any prerequisite types we may need to build this DIE type
24749 before building the type and calling set_die_type.
24750 * After building type call set_die_type for current DIE as soon as
24751 possible before fetching more types to complete the current type.
24752 * Make the type as complete as possible before fetching more types. */
24753
24754 static struct type *
24755 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
24756 bool skip_data_location)
24757 {
24758 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24759 struct dwarf2_per_cu_offset_and_type **slot, ofs;
24760 struct objfile *objfile = per_objfile->objfile;
24761 struct attribute *attr;
24762 struct dynamic_prop prop;
24763
24764 /* For Ada types, make sure that the gnat-specific data is always
24765 initialized (if not already set). There are a few types where
24766 we should not be doing so, because the type-specific area is
24767 already used to hold some other piece of info (eg: TYPE_CODE_FLT
24768 where the type-specific area is used to store the floatformat).
24769 But this is not a problem, because the gnat-specific information
24770 is actually not needed for these types. */
24771 if (need_gnat_info (cu)
24772 && type->code () != TYPE_CODE_FUNC
24773 && type->code () != TYPE_CODE_FLT
24774 && type->code () != TYPE_CODE_METHODPTR
24775 && type->code () != TYPE_CODE_MEMBERPTR
24776 && type->code () != TYPE_CODE_METHOD
24777 && type->code () != TYPE_CODE_FIXED_POINT
24778 && !HAVE_GNAT_AUX_INFO (type))
24779 INIT_GNAT_SPECIFIC (type);
24780
24781 /* Read DW_AT_allocated and set in type. */
24782 attr = dwarf2_attr (die, DW_AT_allocated, cu);
24783 if (attr != NULL)
24784 {
24785 struct type *prop_type = cu->addr_sized_int_type (false);
24786 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24787 type->add_dyn_prop (DYN_PROP_ALLOCATED, prop);
24788 }
24789
24790 /* Read DW_AT_associated and set in type. */
24791 attr = dwarf2_attr (die, DW_AT_associated, cu);
24792 if (attr != NULL)
24793 {
24794 struct type *prop_type = cu->addr_sized_int_type (false);
24795 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24796 type->add_dyn_prop (DYN_PROP_ASSOCIATED, prop);
24797 }
24798
24799 /* Read DW_AT_data_location and set in type. */
24800 if (!skip_data_location)
24801 {
24802 attr = dwarf2_attr (die, DW_AT_data_location, cu);
24803 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
24804 type->add_dyn_prop (DYN_PROP_DATA_LOCATION, prop);
24805 }
24806
24807 if (per_objfile->die_type_hash == NULL)
24808 per_objfile->die_type_hash
24809 = htab_up (htab_create_alloc (127,
24810 per_cu_offset_and_type_hash,
24811 per_cu_offset_and_type_eq,
24812 NULL, xcalloc, xfree));
24813
24814 ofs.per_cu = cu->per_cu;
24815 ofs.sect_off = die->sect_off;
24816 ofs.type = type;
24817 slot = (struct dwarf2_per_cu_offset_and_type **)
24818 htab_find_slot (per_objfile->die_type_hash.get (), &ofs, INSERT);
24819 if (*slot)
24820 complaint (_("A problem internal to GDB: DIE %s has type already set"),
24821 sect_offset_str (die->sect_off));
24822 *slot = XOBNEW (&objfile->objfile_obstack,
24823 struct dwarf2_per_cu_offset_and_type);
24824 **slot = ofs;
24825 return type;
24826 }
24827
24828 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24829 or return NULL if the die does not have a saved type. */
24830
24831 static struct type *
24832 get_die_type_at_offset (sect_offset sect_off,
24833 dwarf2_per_cu_data *per_cu,
24834 dwarf2_per_objfile *per_objfile)
24835 {
24836 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24837
24838 if (per_objfile->die_type_hash == NULL)
24839 return NULL;
24840
24841 ofs.per_cu = per_cu;
24842 ofs.sect_off = sect_off;
24843 slot = ((struct dwarf2_per_cu_offset_and_type *)
24844 htab_find (per_objfile->die_type_hash.get (), &ofs));
24845 if (slot)
24846 return slot->type;
24847 else
24848 return NULL;
24849 }
24850
24851 /* Look up the type for DIE in CU in die_type_hash,
24852 or return NULL if DIE does not have a saved type. */
24853
24854 static struct type *
24855 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24856 {
24857 return get_die_type_at_offset (die->sect_off, cu->per_cu, cu->per_objfile);
24858 }
24859
24860 /* Trivial hash function for partial_die_info: the hash value of a DIE
24861 is its offset in .debug_info for this objfile. */
24862
24863 static hashval_t
24864 partial_die_hash (const void *item)
24865 {
24866 const struct partial_die_info *part_die
24867 = (const struct partial_die_info *) item;
24868
24869 return to_underlying (part_die->sect_off);
24870 }
24871
24872 /* Trivial comparison function for partial_die_info structures: two DIEs
24873 are equal if they have the same offset. */
24874
24875 static int
24876 partial_die_eq (const void *item_lhs, const void *item_rhs)
24877 {
24878 const struct partial_die_info *part_die_lhs
24879 = (const struct partial_die_info *) item_lhs;
24880 const struct partial_die_info *part_die_rhs
24881 = (const struct partial_die_info *) item_rhs;
24882
24883 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24884 }
24885
24886 struct cmd_list_element *set_dwarf_cmdlist;
24887 struct cmd_list_element *show_dwarf_cmdlist;
24888
24889 static void
24890 show_check_physname (struct ui_file *file, int from_tty,
24891 struct cmd_list_element *c, const char *value)
24892 {
24893 fprintf_filtered (file,
24894 _("Whether to check \"physname\" is %s.\n"),
24895 value);
24896 }
24897
24898 void _initialize_dwarf2_read ();
24899 void
24900 _initialize_dwarf2_read ()
24901 {
24902 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
24903 Set DWARF specific variables.\n\
24904 Configure DWARF variables such as the cache size."),
24905 &set_dwarf_cmdlist,
24906 0/*allow-unknown*/, &maintenance_set_cmdlist);
24907
24908 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
24909 Show DWARF specific variables.\n\
24910 Show DWARF variables such as the cache size."),
24911 &show_dwarf_cmdlist,
24912 0/*allow-unknown*/, &maintenance_show_cmdlist);
24913
24914 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24915 &dwarf_max_cache_age, _("\
24916 Set the upper bound on the age of cached DWARF compilation units."), _("\
24917 Show the upper bound on the age of cached DWARF compilation units."), _("\
24918 A higher limit means that cached compilation units will be stored\n\
24919 in memory longer, and more total memory will be used. Zero disables\n\
24920 caching, which can slow down startup."),
24921 NULL,
24922 show_dwarf_max_cache_age,
24923 &set_dwarf_cmdlist,
24924 &show_dwarf_cmdlist);
24925
24926 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24927 Set debugging of the DWARF reader."), _("\
24928 Show debugging of the DWARF reader."), _("\
24929 When enabled (non-zero), debugging messages are printed during DWARF\n\
24930 reading and symtab expansion. A value of 1 (one) provides basic\n\
24931 information. A value greater than 1 provides more verbose information."),
24932 NULL,
24933 NULL,
24934 &setdebuglist, &showdebuglist);
24935
24936 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24937 Set debugging of the DWARF DIE reader."), _("\
24938 Show debugging of the DWARF DIE reader."), _("\
24939 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24940 The value is the maximum depth to print."),
24941 NULL,
24942 NULL,
24943 &setdebuglist, &showdebuglist);
24944
24945 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24946 Set debugging of the dwarf line reader."), _("\
24947 Show debugging of the dwarf line reader."), _("\
24948 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24949 A value of 1 (one) provides basic information.\n\
24950 A value greater than 1 provides more verbose information."),
24951 NULL,
24952 NULL,
24953 &setdebuglist, &showdebuglist);
24954
24955 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24956 Set cross-checking of \"physname\" code against demangler."), _("\
24957 Show cross-checking of \"physname\" code against demangler."), _("\
24958 When enabled, GDB's internal \"physname\" code is checked against\n\
24959 the demangler."),
24960 NULL, show_check_physname,
24961 &setdebuglist, &showdebuglist);
24962
24963 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24964 no_class, &use_deprecated_index_sections, _("\
24965 Set whether to use deprecated gdb_index sections."), _("\
24966 Show whether to use deprecated gdb_index sections."), _("\
24967 When enabled, deprecated .gdb_index sections are used anyway.\n\
24968 Normally they are ignored either because of a missing feature or\n\
24969 performance issue.\n\
24970 Warning: This option must be enabled before gdb reads the file."),
24971 NULL,
24972 NULL,
24973 &setlist, &showlist);
24974
24975 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24976 &dwarf2_locexpr_funcs);
24977 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24978 &dwarf2_loclist_funcs);
24979
24980 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24981 &dwarf2_block_frame_base_locexpr_funcs);
24982 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24983 &dwarf2_block_frame_base_loclist_funcs);
24984
24985 #if GDB_SELF_TEST
24986 selftests::register_test ("dw2_expand_symtabs_matching",
24987 selftests::dw2_expand_symtabs_matching::run_test);
24988 selftests::register_test ("dwarf2_find_containing_comp_unit",
24989 selftests::find_containing_comp_unit::run_test);
24990 #endif
24991 }