Fix DW_OP_GNU_regval_type with FP registers
[binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
37
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40 #include "ax.h"
41 #include "dwarf2loc.h"
42 #include "exceptions.h"
43 #include "dwarf2-frame-tailcall.h"
44
45 struct comp_unit;
46
47 /* Call Frame Information (CFI). */
48
49 /* Common Information Entry (CIE). */
50
51 struct dwarf2_cie
52 {
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
73
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
77 /* Encoding of addresses. */
78 gdb_byte encoding;
79
80 /* Target address size in bytes. */
81 int addr_size;
82
83 /* Target pointer size in bytes. */
84 int ptr_size;
85
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
92 /* The version recorded in the CIE. */
93 unsigned char version;
94
95 /* The segment size. */
96 unsigned char segment_size;
97 };
98
99 struct dwarf2_cie_table
100 {
101 int num_entries;
102 struct dwarf2_cie **entries;
103 };
104
105 /* Frame Description Entry (FDE). */
106
107 struct dwarf2_fde
108 {
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
119 const gdb_byte *instructions;
120 const gdb_byte *end;
121
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
125 };
126
127 struct dwarf2_fde_table
128 {
129 int num_entries;
130 struct dwarf2_fde **entries;
131 };
132
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136 struct comp_unit
137 {
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
143 /* Pointer to the .debug_frame section loaded into memory. */
144 const gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157 };
158
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
161
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
164
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
169 \f
170
171 /* Structure describing a frame state. */
172
173 struct dwarf2_frame_state
174 {
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
179 struct dwarf2_frame_state_reg *reg;
180 int num_regs;
181
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
189 const gdb_byte *cfa_exp;
190
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
216 };
217
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
221
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
224
225 static void
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228 {
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
240 }
241
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247 {
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255 }
256
257 /* Release the memory allocated to register set RS. */
258
259 static void
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261 {
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269 }
270
271 /* Release the memory allocated to the frame state FS. */
272
273 static void
274 dwarf2_frame_state_free (void *p)
275 {
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283 }
284 \f
285
286 /* Helper functions for execute_stack_op. */
287
288 static CORE_ADDR
289 read_reg (void *baton, int reg)
290 {
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
293 int regnum;
294 gdb_byte *buf;
295
296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
297
298 buf = alloca (register_size (gdbarch, regnum));
299 get_frame_register (this_frame, regnum, buf);
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
307 }
308
309 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
310
311 static struct value *
312 get_reg_value (void *baton, struct type *type, int reg)
313 {
314 struct frame_info *this_frame = (struct frame_info *) baton;
315 struct gdbarch *gdbarch = get_frame_arch (this_frame);
316 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
317
318 return value_from_register (type, regnum, this_frame);
319 }
320
321 static void
322 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
323 {
324 read_memory (addr, buf, len);
325 }
326
327 /* Execute the required actions for both the DW_CFA_restore and
328 DW_CFA_restore_extended instructions. */
329 static void
330 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
331 struct dwarf2_frame_state *fs, int eh_frame_p)
332 {
333 ULONGEST reg;
334
335 gdb_assert (fs->initial.reg);
336 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
337 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
338
339 /* Check if this register was explicitly initialized in the
340 CIE initial instructions. If not, default the rule to
341 UNSPECIFIED. */
342 if (reg < fs->initial.num_regs)
343 fs->regs.reg[reg] = fs->initial.reg[reg];
344 else
345 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
346
347 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
348 complaint (&symfile_complaints, _("\
349 incomplete CFI data; DW_CFA_restore unspecified\n\
350 register %s (#%d) at %s"),
351 gdbarch_register_name
352 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
353 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
354 paddress (gdbarch, fs->pc));
355 }
356
357 /* Virtual method table for execute_stack_op below. */
358
359 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
360 {
361 read_reg,
362 get_reg_value,
363 read_mem,
364 ctx_no_get_frame_base,
365 ctx_no_get_frame_cfa,
366 ctx_no_get_frame_pc,
367 ctx_no_get_tls_address,
368 ctx_no_dwarf_call,
369 ctx_no_get_base_type,
370 ctx_no_push_dwarf_reg_entry_value,
371 ctx_no_get_addr_index
372 };
373
374 static CORE_ADDR
375 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
376 CORE_ADDR offset, struct frame_info *this_frame,
377 CORE_ADDR initial, int initial_in_stack_memory)
378 {
379 struct dwarf_expr_context *ctx;
380 CORE_ADDR result;
381 struct cleanup *old_chain;
382
383 ctx = new_dwarf_expr_context ();
384 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
385 make_cleanup_value_free_to_mark (value_mark ());
386
387 ctx->gdbarch = get_frame_arch (this_frame);
388 ctx->addr_size = addr_size;
389 ctx->ref_addr_size = -1;
390 ctx->offset = offset;
391 ctx->baton = this_frame;
392 ctx->funcs = &dwarf2_frame_ctx_funcs;
393
394 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
395 dwarf_expr_eval (ctx, exp, len);
396
397 if (ctx->location == DWARF_VALUE_MEMORY)
398 result = dwarf_expr_fetch_address (ctx, 0);
399 else if (ctx->location == DWARF_VALUE_REGISTER)
400 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
401 else
402 {
403 /* This is actually invalid DWARF, but if we ever do run across
404 it somehow, we might as well support it. So, instead, report
405 it as unimplemented. */
406 error (_("\
407 Not implemented: computing unwound register using explicit value operator"));
408 }
409
410 do_cleanups (old_chain);
411
412 return result;
413 }
414 \f
415
416 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
417 PC. Modify FS state accordingly. Return current INSN_PTR where the
418 execution has stopped, one can resume it on the next call. */
419
420 static const gdb_byte *
421 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
422 const gdb_byte *insn_end, struct gdbarch *gdbarch,
423 CORE_ADDR pc, struct dwarf2_frame_state *fs)
424 {
425 int eh_frame_p = fde->eh_frame_p;
426 unsigned int bytes_read;
427 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
428
429 while (insn_ptr < insn_end && fs->pc <= pc)
430 {
431 gdb_byte insn = *insn_ptr++;
432 uint64_t utmp, reg;
433 int64_t offset;
434
435 if ((insn & 0xc0) == DW_CFA_advance_loc)
436 fs->pc += (insn & 0x3f) * fs->code_align;
437 else if ((insn & 0xc0) == DW_CFA_offset)
438 {
439 reg = insn & 0x3f;
440 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
441 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
442 offset = utmp * fs->data_align;
443 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
444 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
445 fs->regs.reg[reg].loc.offset = offset;
446 }
447 else if ((insn & 0xc0) == DW_CFA_restore)
448 {
449 reg = insn & 0x3f;
450 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
451 }
452 else
453 {
454 switch (insn)
455 {
456 case DW_CFA_set_loc:
457 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
458 fde->cie->ptr_size, insn_ptr,
459 &bytes_read, fde->initial_location);
460 /* Apply the objfile offset for relocatable objects. */
461 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
462 SECT_OFF_TEXT (fde->cie->unit->objfile));
463 insn_ptr += bytes_read;
464 break;
465
466 case DW_CFA_advance_loc1:
467 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
468 fs->pc += utmp * fs->code_align;
469 insn_ptr++;
470 break;
471 case DW_CFA_advance_loc2:
472 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
473 fs->pc += utmp * fs->code_align;
474 insn_ptr += 2;
475 break;
476 case DW_CFA_advance_loc4:
477 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
478 fs->pc += utmp * fs->code_align;
479 insn_ptr += 4;
480 break;
481
482 case DW_CFA_offset_extended:
483 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
484 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
486 offset = utmp * fs->data_align;
487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
489 fs->regs.reg[reg].loc.offset = offset;
490 break;
491
492 case DW_CFA_restore_extended:
493 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
494 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
495 break;
496
497 case DW_CFA_undefined:
498 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
499 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
500 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
501 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
502 break;
503
504 case DW_CFA_same_value:
505 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
506 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
508 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
509 break;
510
511 case DW_CFA_register:
512 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
513 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
514 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
515 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
516 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
517 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
518 fs->regs.reg[reg].loc.reg = utmp;
519 break;
520
521 case DW_CFA_remember_state:
522 {
523 struct dwarf2_frame_state_reg_info *new_rs;
524
525 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
526 *new_rs = fs->regs;
527 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
528 fs->regs.prev = new_rs;
529 }
530 break;
531
532 case DW_CFA_restore_state:
533 {
534 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
535
536 if (old_rs == NULL)
537 {
538 complaint (&symfile_complaints, _("\
539 bad CFI data; mismatched DW_CFA_restore_state at %s"),
540 paddress (gdbarch, fs->pc));
541 }
542 else
543 {
544 xfree (fs->regs.reg);
545 fs->regs = *old_rs;
546 xfree (old_rs);
547 }
548 }
549 break;
550
551 case DW_CFA_def_cfa:
552 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
553 fs->regs.cfa_reg = reg;
554 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
555
556 if (fs->armcc_cfa_offsets_sf)
557 utmp *= fs->data_align;
558
559 fs->regs.cfa_offset = utmp;
560 fs->regs.cfa_how = CFA_REG_OFFSET;
561 break;
562
563 case DW_CFA_def_cfa_register:
564 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
565 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
566 eh_frame_p);
567 fs->regs.cfa_how = CFA_REG_OFFSET;
568 break;
569
570 case DW_CFA_def_cfa_offset:
571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
572
573 if (fs->armcc_cfa_offsets_sf)
574 utmp *= fs->data_align;
575
576 fs->regs.cfa_offset = utmp;
577 /* cfa_how deliberately not set. */
578 break;
579
580 case DW_CFA_nop:
581 break;
582
583 case DW_CFA_def_cfa_expression:
584 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
585 fs->regs.cfa_exp_len = utmp;
586 fs->regs.cfa_exp = insn_ptr;
587 fs->regs.cfa_how = CFA_EXP;
588 insn_ptr += fs->regs.cfa_exp_len;
589 break;
590
591 case DW_CFA_expression:
592 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
593 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
595 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
596 fs->regs.reg[reg].loc.exp = insn_ptr;
597 fs->regs.reg[reg].exp_len = utmp;
598 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
599 insn_ptr += utmp;
600 break;
601
602 case DW_CFA_offset_extended_sf:
603 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
604 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
605 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
606 offset *= fs->data_align;
607 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
608 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
609 fs->regs.reg[reg].loc.offset = offset;
610 break;
611
612 case DW_CFA_val_offset:
613 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
614 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
615 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
616 offset = utmp * fs->data_align;
617 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
618 fs->regs.reg[reg].loc.offset = offset;
619 break;
620
621 case DW_CFA_val_offset_sf:
622 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
623 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
624 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
625 offset *= fs->data_align;
626 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
627 fs->regs.reg[reg].loc.offset = offset;
628 break;
629
630 case DW_CFA_val_expression:
631 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
632 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
633 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
634 fs->regs.reg[reg].loc.exp = insn_ptr;
635 fs->regs.reg[reg].exp_len = utmp;
636 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
637 insn_ptr += utmp;
638 break;
639
640 case DW_CFA_def_cfa_sf:
641 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
642 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
643 eh_frame_p);
644 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
645 fs->regs.cfa_offset = offset * fs->data_align;
646 fs->regs.cfa_how = CFA_REG_OFFSET;
647 break;
648
649 case DW_CFA_def_cfa_offset_sf:
650 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
651 fs->regs.cfa_offset = offset * fs->data_align;
652 /* cfa_how deliberately not set. */
653 break;
654
655 case DW_CFA_GNU_window_save:
656 /* This is SPARC-specific code, and contains hard-coded
657 constants for the register numbering scheme used by
658 GCC. Rather than having a architecture-specific
659 operation that's only ever used by a single
660 architecture, we provide the implementation here.
661 Incidentally that's what GCC does too in its
662 unwinder. */
663 {
664 int size = register_size (gdbarch, 0);
665
666 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
667 for (reg = 8; reg < 16; reg++)
668 {
669 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
670 fs->regs.reg[reg].loc.reg = reg + 16;
671 }
672 for (reg = 16; reg < 32; reg++)
673 {
674 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
675 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
676 }
677 }
678 break;
679
680 case DW_CFA_GNU_args_size:
681 /* Ignored. */
682 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
683 break;
684
685 case DW_CFA_GNU_negative_offset_extended:
686 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
687 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
688 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
689 offset = utmp * fs->data_align;
690 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
691 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
692 fs->regs.reg[reg].loc.offset = -offset;
693 break;
694
695 default:
696 internal_error (__FILE__, __LINE__,
697 _("Unknown CFI encountered."));
698 }
699 }
700 }
701
702 if (fs->initial.reg == NULL)
703 {
704 /* Don't allow remember/restore between CIE and FDE programs. */
705 dwarf2_frame_state_free_regs (fs->regs.prev);
706 fs->regs.prev = NULL;
707 }
708
709 return insn_ptr;
710 }
711 \f
712
713 /* Architecture-specific operations. */
714
715 /* Per-architecture data key. */
716 static struct gdbarch_data *dwarf2_frame_data;
717
718 struct dwarf2_frame_ops
719 {
720 /* Pre-initialize the register state REG for register REGNUM. */
721 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
722 struct frame_info *);
723
724 /* Check whether the THIS_FRAME is a signal trampoline. */
725 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
726
727 /* Convert .eh_frame register number to DWARF register number, or
728 adjust .debug_frame register number. */
729 int (*adjust_regnum) (struct gdbarch *, int, int);
730 };
731
732 /* Default architecture-specific register state initialization
733 function. */
734
735 static void
736 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
737 struct dwarf2_frame_state_reg *reg,
738 struct frame_info *this_frame)
739 {
740 /* If we have a register that acts as a program counter, mark it as
741 a destination for the return address. If we have a register that
742 serves as the stack pointer, arrange for it to be filled with the
743 call frame address (CFA). The other registers are marked as
744 unspecified.
745
746 We copy the return address to the program counter, since many
747 parts in GDB assume that it is possible to get the return address
748 by unwinding the program counter register. However, on ISA's
749 with a dedicated return address register, the CFI usually only
750 contains information to unwind that return address register.
751
752 The reason we're treating the stack pointer special here is
753 because in many cases GCC doesn't emit CFI for the stack pointer
754 and implicitly assumes that it is equal to the CFA. This makes
755 some sense since the DWARF specification (version 3, draft 8,
756 p. 102) says that:
757
758 "Typically, the CFA is defined to be the value of the stack
759 pointer at the call site in the previous frame (which may be
760 different from its value on entry to the current frame)."
761
762 However, this isn't true for all platforms supported by GCC
763 (e.g. IBM S/390 and zSeries). Those architectures should provide
764 their own architecture-specific initialization function. */
765
766 if (regnum == gdbarch_pc_regnum (gdbarch))
767 reg->how = DWARF2_FRAME_REG_RA;
768 else if (regnum == gdbarch_sp_regnum (gdbarch))
769 reg->how = DWARF2_FRAME_REG_CFA;
770 }
771
772 /* Return a default for the architecture-specific operations. */
773
774 static void *
775 dwarf2_frame_init (struct obstack *obstack)
776 {
777 struct dwarf2_frame_ops *ops;
778
779 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
780 ops->init_reg = dwarf2_frame_default_init_reg;
781 return ops;
782 }
783
784 /* Set the architecture-specific register state initialization
785 function for GDBARCH to INIT_REG. */
786
787 void
788 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
789 void (*init_reg) (struct gdbarch *, int,
790 struct dwarf2_frame_state_reg *,
791 struct frame_info *))
792 {
793 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
794
795 ops->init_reg = init_reg;
796 }
797
798 /* Pre-initialize the register state REG for register REGNUM. */
799
800 static void
801 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
802 struct dwarf2_frame_state_reg *reg,
803 struct frame_info *this_frame)
804 {
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 ops->init_reg (gdbarch, regnum, reg, this_frame);
808 }
809
810 /* Set the architecture-specific signal trampoline recognition
811 function for GDBARCH to SIGNAL_FRAME_P. */
812
813 void
814 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
815 int (*signal_frame_p) (struct gdbarch *,
816 struct frame_info *))
817 {
818 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
819
820 ops->signal_frame_p = signal_frame_p;
821 }
822
823 /* Query the architecture-specific signal frame recognizer for
824 THIS_FRAME. */
825
826 static int
827 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
828 struct frame_info *this_frame)
829 {
830 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
831
832 if (ops->signal_frame_p == NULL)
833 return 0;
834 return ops->signal_frame_p (gdbarch, this_frame);
835 }
836
837 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
838 register numbers. */
839
840 void
841 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
842 int (*adjust_regnum) (struct gdbarch *,
843 int, int))
844 {
845 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
846
847 ops->adjust_regnum = adjust_regnum;
848 }
849
850 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
851 register. */
852
853 static int
854 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
855 int regnum, int eh_frame_p)
856 {
857 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
858
859 if (ops->adjust_regnum == NULL)
860 return regnum;
861 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
862 }
863
864 static void
865 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
866 struct dwarf2_fde *fde)
867 {
868 struct symtab *s;
869
870 s = find_pc_symtab (fs->pc);
871 if (s == NULL)
872 return;
873
874 if (producer_is_realview (s->producer))
875 {
876 if (fde->cie->version == 1)
877 fs->armcc_cfa_offsets_sf = 1;
878
879 if (fde->cie->version == 1)
880 fs->armcc_cfa_offsets_reversed = 1;
881
882 /* The reversed offset problem is present in some compilers
883 using DWARF3, but it was eventually fixed. Check the ARM
884 defined augmentations, which are in the format "armcc" followed
885 by a list of one-character options. The "+" option means
886 this problem is fixed (no quirk needed). If the armcc
887 augmentation is missing, the quirk is needed. */
888 if (fde->cie->version == 3
889 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
890 || strchr (fde->cie->augmentation + 5, '+') == NULL))
891 fs->armcc_cfa_offsets_reversed = 1;
892
893 return;
894 }
895 }
896 \f
897
898 void
899 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
900 struct gdbarch *gdbarch,
901 CORE_ADDR pc,
902 struct dwarf2_per_cu_data *data)
903 {
904 struct dwarf2_fde *fde;
905 CORE_ADDR text_offset;
906 struct dwarf2_frame_state fs;
907 int addr_size;
908
909 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
910
911 fs.pc = pc;
912
913 /* Find the correct FDE. */
914 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
915 if (fde == NULL)
916 error (_("Could not compute CFA; needed to translate this expression"));
917
918 /* Extract any interesting information from the CIE. */
919 fs.data_align = fde->cie->data_alignment_factor;
920 fs.code_align = fde->cie->code_alignment_factor;
921 fs.retaddr_column = fde->cie->return_address_register;
922 addr_size = fde->cie->addr_size;
923
924 /* Check for "quirks" - known bugs in producers. */
925 dwarf2_frame_find_quirks (&fs, fde);
926
927 /* First decode all the insns in the CIE. */
928 execute_cfa_program (fde, fde->cie->initial_instructions,
929 fde->cie->end, gdbarch, pc, &fs);
930
931 /* Save the initialized register set. */
932 fs.initial = fs.regs;
933 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
934
935 /* Then decode the insns in the FDE up to our target PC. */
936 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
937
938 /* Calculate the CFA. */
939 switch (fs.regs.cfa_how)
940 {
941 case CFA_REG_OFFSET:
942 {
943 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
944
945 if (regnum == -1)
946 error (_("Unable to access DWARF register number %d"),
947 (int) fs.regs.cfa_reg); /* FIXME */
948 ax_reg (expr, regnum);
949
950 if (fs.regs.cfa_offset != 0)
951 {
952 if (fs.armcc_cfa_offsets_reversed)
953 ax_const_l (expr, -fs.regs.cfa_offset);
954 else
955 ax_const_l (expr, fs.regs.cfa_offset);
956 ax_simple (expr, aop_add);
957 }
958 }
959 break;
960
961 case CFA_EXP:
962 ax_const_l (expr, text_offset);
963 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
964 fs.regs.cfa_exp,
965 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
966 data);
967 break;
968
969 default:
970 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
971 }
972 }
973
974 \f
975 struct dwarf2_frame_cache
976 {
977 /* DWARF Call Frame Address. */
978 CORE_ADDR cfa;
979
980 /* Set if the return address column was marked as unavailable
981 (required non-collected memory or registers to compute). */
982 int unavailable_retaddr;
983
984 /* Set if the return address column was marked as undefined. */
985 int undefined_retaddr;
986
987 /* Saved registers, indexed by GDB register number, not by DWARF
988 register number. */
989 struct dwarf2_frame_state_reg *reg;
990
991 /* Return address register. */
992 struct dwarf2_frame_state_reg retaddr_reg;
993
994 /* Target address size in bytes. */
995 int addr_size;
996
997 /* The .text offset. */
998 CORE_ADDR text_offset;
999
1000 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
1001 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1002 involved. Non-bottom frames of a virtual tail call frames chain use
1003 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1004 them. */
1005 void *tailcall_cache;
1006 };
1007
1008 /* A cleanup that sets a pointer to NULL. */
1009
1010 static void
1011 clear_pointer_cleanup (void *arg)
1012 {
1013 void **ptr = arg;
1014
1015 *ptr = NULL;
1016 }
1017
1018 static struct dwarf2_frame_cache *
1019 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1020 {
1021 struct cleanup *reset_cache_cleanup, *old_chain;
1022 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1023 const int num_regs = gdbarch_num_regs (gdbarch)
1024 + gdbarch_num_pseudo_regs (gdbarch);
1025 struct dwarf2_frame_cache *cache;
1026 struct dwarf2_frame_state *fs;
1027 struct dwarf2_fde *fde;
1028 volatile struct gdb_exception ex;
1029 CORE_ADDR entry_pc;
1030 LONGEST entry_cfa_sp_offset;
1031 int entry_cfa_sp_offset_p = 0;
1032 const gdb_byte *instr;
1033
1034 if (*this_cache)
1035 return *this_cache;
1036
1037 /* Allocate a new cache. */
1038 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1039 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1040 *this_cache = cache;
1041 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1042
1043 /* Allocate and initialize the frame state. */
1044 fs = XZALLOC (struct dwarf2_frame_state);
1045 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1046
1047 /* Unwind the PC.
1048
1049 Note that if the next frame is never supposed to return (i.e. a call
1050 to abort), the compiler might optimize away the instruction at
1051 its return address. As a result the return address will
1052 point at some random instruction, and the CFI for that
1053 instruction is probably worthless to us. GCC's unwinder solves
1054 this problem by substracting 1 from the return address to get an
1055 address in the middle of a presumed call instruction (or the
1056 instruction in the associated delay slot). This should only be
1057 done for "normal" frames and not for resume-type frames (signal
1058 handlers, sentinel frames, dummy frames). The function
1059 get_frame_address_in_block does just this. It's not clear how
1060 reliable the method is though; there is the potential for the
1061 register state pre-call being different to that on return. */
1062 fs->pc = get_frame_address_in_block (this_frame);
1063
1064 /* Find the correct FDE. */
1065 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1066 gdb_assert (fde != NULL);
1067
1068 /* Extract any interesting information from the CIE. */
1069 fs->data_align = fde->cie->data_alignment_factor;
1070 fs->code_align = fde->cie->code_alignment_factor;
1071 fs->retaddr_column = fde->cie->return_address_register;
1072 cache->addr_size = fde->cie->addr_size;
1073
1074 /* Check for "quirks" - known bugs in producers. */
1075 dwarf2_frame_find_quirks (fs, fde);
1076
1077 /* First decode all the insns in the CIE. */
1078 execute_cfa_program (fde, fde->cie->initial_instructions,
1079 fde->cie->end, gdbarch,
1080 get_frame_address_in_block (this_frame), fs);
1081
1082 /* Save the initialized register set. */
1083 fs->initial = fs->regs;
1084 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1085
1086 if (get_frame_func_if_available (this_frame, &entry_pc))
1087 {
1088 /* Decode the insns in the FDE up to the entry PC. */
1089 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1090 entry_pc, fs);
1091
1092 if (fs->regs.cfa_how == CFA_REG_OFFSET
1093 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1094 == gdbarch_sp_regnum (gdbarch)))
1095 {
1096 entry_cfa_sp_offset = fs->regs.cfa_offset;
1097 entry_cfa_sp_offset_p = 1;
1098 }
1099 }
1100 else
1101 instr = fde->instructions;
1102
1103 /* Then decode the insns in the FDE up to our target PC. */
1104 execute_cfa_program (fde, instr, fde->end, gdbarch,
1105 get_frame_address_in_block (this_frame), fs);
1106
1107 TRY_CATCH (ex, RETURN_MASK_ERROR)
1108 {
1109 /* Calculate the CFA. */
1110 switch (fs->regs.cfa_how)
1111 {
1112 case CFA_REG_OFFSET:
1113 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1114 if (fs->armcc_cfa_offsets_reversed)
1115 cache->cfa -= fs->regs.cfa_offset;
1116 else
1117 cache->cfa += fs->regs.cfa_offset;
1118 break;
1119
1120 case CFA_EXP:
1121 cache->cfa =
1122 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1123 cache->addr_size, cache->text_offset,
1124 this_frame, 0, 0);
1125 break;
1126
1127 default:
1128 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1129 }
1130 }
1131 if (ex.reason < 0)
1132 {
1133 if (ex.error == NOT_AVAILABLE_ERROR)
1134 {
1135 cache->unavailable_retaddr = 1;
1136 do_cleanups (old_chain);
1137 discard_cleanups (reset_cache_cleanup);
1138 return cache;
1139 }
1140
1141 throw_exception (ex);
1142 }
1143
1144 /* Initialize the register state. */
1145 {
1146 int regnum;
1147
1148 for (regnum = 0; regnum < num_regs; regnum++)
1149 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1150 }
1151
1152 /* Go through the DWARF2 CFI generated table and save its register
1153 location information in the cache. Note that we don't skip the
1154 return address column; it's perfectly all right for it to
1155 correspond to a real register. If it doesn't correspond to a
1156 real register, or if we shouldn't treat it as such,
1157 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1158 the range [0, gdbarch_num_regs). */
1159 {
1160 int column; /* CFI speak for "register number". */
1161
1162 for (column = 0; column < fs->regs.num_regs; column++)
1163 {
1164 /* Use the GDB register number as the destination index. */
1165 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1166
1167 /* If there's no corresponding GDB register, ignore it. */
1168 if (regnum < 0 || regnum >= num_regs)
1169 continue;
1170
1171 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1172 of all debug info registers. If it doesn't, complain (but
1173 not too loudly). It turns out that GCC assumes that an
1174 unspecified register implies "same value" when CFI (draft
1175 7) specifies nothing at all. Such a register could equally
1176 be interpreted as "undefined". Also note that this check
1177 isn't sufficient; it only checks that all registers in the
1178 range [0 .. max column] are specified, and won't detect
1179 problems when a debug info register falls outside of the
1180 table. We need a way of iterating through all the valid
1181 DWARF2 register numbers. */
1182 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1183 {
1184 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1185 complaint (&symfile_complaints, _("\
1186 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1187 gdbarch_register_name (gdbarch, regnum),
1188 paddress (gdbarch, fs->pc));
1189 }
1190 else
1191 cache->reg[regnum] = fs->regs.reg[column];
1192 }
1193 }
1194
1195 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1196 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1197 {
1198 int regnum;
1199
1200 for (regnum = 0; regnum < num_regs; regnum++)
1201 {
1202 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1203 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1204 {
1205 struct dwarf2_frame_state_reg *retaddr_reg =
1206 &fs->regs.reg[fs->retaddr_column];
1207
1208 /* It seems rather bizarre to specify an "empty" column as
1209 the return adress column. However, this is exactly
1210 what GCC does on some targets. It turns out that GCC
1211 assumes that the return address can be found in the
1212 register corresponding to the return address column.
1213 Incidentally, that's how we should treat a return
1214 address column specifying "same value" too. */
1215 if (fs->retaddr_column < fs->regs.num_regs
1216 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1217 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1218 {
1219 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1220 cache->reg[regnum] = *retaddr_reg;
1221 else
1222 cache->retaddr_reg = *retaddr_reg;
1223 }
1224 else
1225 {
1226 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1227 {
1228 cache->reg[regnum].loc.reg = fs->retaddr_column;
1229 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1230 }
1231 else
1232 {
1233 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1234 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1235 }
1236 }
1237 }
1238 }
1239 }
1240
1241 if (fs->retaddr_column < fs->regs.num_regs
1242 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1243 cache->undefined_retaddr = 1;
1244
1245 do_cleanups (old_chain);
1246
1247 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1248 starting at THIS_FRAME. */
1249 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1250 (entry_cfa_sp_offset_p
1251 ? &entry_cfa_sp_offset : NULL));
1252
1253 discard_cleanups (reset_cache_cleanup);
1254 return cache;
1255 }
1256
1257 static enum unwind_stop_reason
1258 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1259 void **this_cache)
1260 {
1261 struct dwarf2_frame_cache *cache
1262 = dwarf2_frame_cache (this_frame, this_cache);
1263
1264 if (cache->unavailable_retaddr)
1265 return UNWIND_UNAVAILABLE;
1266
1267 if (cache->undefined_retaddr)
1268 return UNWIND_OUTERMOST;
1269
1270 return UNWIND_NO_REASON;
1271 }
1272
1273 static void
1274 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1275 struct frame_id *this_id)
1276 {
1277 struct dwarf2_frame_cache *cache =
1278 dwarf2_frame_cache (this_frame, this_cache);
1279
1280 if (cache->unavailable_retaddr)
1281 return;
1282
1283 if (cache->undefined_retaddr)
1284 return;
1285
1286 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1287 }
1288
1289 static struct value *
1290 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1291 int regnum)
1292 {
1293 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1294 struct dwarf2_frame_cache *cache =
1295 dwarf2_frame_cache (this_frame, this_cache);
1296 CORE_ADDR addr;
1297 int realnum;
1298
1299 /* Non-bottom frames of a virtual tail call frames chain use
1300 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1301 them. If dwarf2_tailcall_prev_register_first does not have specific value
1302 unwind the register, tail call frames are assumed to have the register set
1303 of the top caller. */
1304 if (cache->tailcall_cache)
1305 {
1306 struct value *val;
1307
1308 val = dwarf2_tailcall_prev_register_first (this_frame,
1309 &cache->tailcall_cache,
1310 regnum);
1311 if (val)
1312 return val;
1313 }
1314
1315 switch (cache->reg[regnum].how)
1316 {
1317 case DWARF2_FRAME_REG_UNDEFINED:
1318 /* If CFI explicitly specified that the value isn't defined,
1319 mark it as optimized away; the value isn't available. */
1320 return frame_unwind_got_optimized (this_frame, regnum);
1321
1322 case DWARF2_FRAME_REG_SAVED_OFFSET:
1323 addr = cache->cfa + cache->reg[regnum].loc.offset;
1324 return frame_unwind_got_memory (this_frame, regnum, addr);
1325
1326 case DWARF2_FRAME_REG_SAVED_REG:
1327 realnum
1328 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1329 return frame_unwind_got_register (this_frame, regnum, realnum);
1330
1331 case DWARF2_FRAME_REG_SAVED_EXP:
1332 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1333 cache->reg[regnum].exp_len,
1334 cache->addr_size, cache->text_offset,
1335 this_frame, cache->cfa, 1);
1336 return frame_unwind_got_memory (this_frame, regnum, addr);
1337
1338 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1339 addr = cache->cfa + cache->reg[regnum].loc.offset;
1340 return frame_unwind_got_constant (this_frame, regnum, addr);
1341
1342 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1343 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1344 cache->reg[regnum].exp_len,
1345 cache->addr_size, cache->text_offset,
1346 this_frame, cache->cfa, 1);
1347 return frame_unwind_got_constant (this_frame, regnum, addr);
1348
1349 case DWARF2_FRAME_REG_UNSPECIFIED:
1350 /* GCC, in its infinite wisdom decided to not provide unwind
1351 information for registers that are "same value". Since
1352 DWARF2 (3 draft 7) doesn't define such behavior, said
1353 registers are actually undefined (which is different to CFI
1354 "undefined"). Code above issues a complaint about this.
1355 Here just fudge the books, assume GCC, and that the value is
1356 more inner on the stack. */
1357 return frame_unwind_got_register (this_frame, regnum, regnum);
1358
1359 case DWARF2_FRAME_REG_SAME_VALUE:
1360 return frame_unwind_got_register (this_frame, regnum, regnum);
1361
1362 case DWARF2_FRAME_REG_CFA:
1363 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1364
1365 case DWARF2_FRAME_REG_CFA_OFFSET:
1366 addr = cache->cfa + cache->reg[regnum].loc.offset;
1367 return frame_unwind_got_address (this_frame, regnum, addr);
1368
1369 case DWARF2_FRAME_REG_RA_OFFSET:
1370 addr = cache->reg[regnum].loc.offset;
1371 regnum = gdbarch_dwarf2_reg_to_regnum
1372 (gdbarch, cache->retaddr_reg.loc.reg);
1373 addr += get_frame_register_unsigned (this_frame, regnum);
1374 return frame_unwind_got_address (this_frame, regnum, addr);
1375
1376 case DWARF2_FRAME_REG_FN:
1377 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1378
1379 default:
1380 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1381 }
1382 }
1383
1384 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1385 call frames chain. */
1386
1387 static void
1388 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1389 {
1390 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1391
1392 if (cache->tailcall_cache)
1393 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1394 }
1395
1396 static int
1397 dwarf2_frame_sniffer (const struct frame_unwind *self,
1398 struct frame_info *this_frame, void **this_cache)
1399 {
1400 /* Grab an address that is guarenteed to reside somewhere within the
1401 function. get_frame_pc(), with a no-return next function, can
1402 end up returning something past the end of this function's body.
1403 If the frame we're sniffing for is a signal frame whose start
1404 address is placed on the stack by the OS, its FDE must
1405 extend one byte before its start address or we could potentially
1406 select the FDE of the previous function. */
1407 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1408 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1409
1410 if (!fde)
1411 return 0;
1412
1413 /* On some targets, signal trampolines may have unwind information.
1414 We need to recognize them so that we set the frame type
1415 correctly. */
1416
1417 if (fde->cie->signal_frame
1418 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1419 this_frame))
1420 return self->type == SIGTRAMP_FRAME;
1421
1422 if (self->type != NORMAL_FRAME)
1423 return 0;
1424
1425 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1426 dwarf2_tailcall_sniffer_first. */
1427 dwarf2_frame_cache (this_frame, this_cache);
1428
1429 return 1;
1430 }
1431
1432 static const struct frame_unwind dwarf2_frame_unwind =
1433 {
1434 NORMAL_FRAME,
1435 dwarf2_frame_unwind_stop_reason,
1436 dwarf2_frame_this_id,
1437 dwarf2_frame_prev_register,
1438 NULL,
1439 dwarf2_frame_sniffer,
1440 dwarf2_frame_dealloc_cache
1441 };
1442
1443 static const struct frame_unwind dwarf2_signal_frame_unwind =
1444 {
1445 SIGTRAMP_FRAME,
1446 dwarf2_frame_unwind_stop_reason,
1447 dwarf2_frame_this_id,
1448 dwarf2_frame_prev_register,
1449 NULL,
1450 dwarf2_frame_sniffer,
1451
1452 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1453 NULL
1454 };
1455
1456 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1457
1458 void
1459 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1460 {
1461 /* TAILCALL_FRAME must be first to find the record by
1462 dwarf2_tailcall_sniffer_first. */
1463 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1464
1465 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1466 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1467 }
1468 \f
1469
1470 /* There is no explicitly defined relationship between the CFA and the
1471 location of frame's local variables and arguments/parameters.
1472 Therefore, frame base methods on this page should probably only be
1473 used as a last resort, just to avoid printing total garbage as a
1474 response to the "info frame" command. */
1475
1476 static CORE_ADDR
1477 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1478 {
1479 struct dwarf2_frame_cache *cache =
1480 dwarf2_frame_cache (this_frame, this_cache);
1481
1482 return cache->cfa;
1483 }
1484
1485 static const struct frame_base dwarf2_frame_base =
1486 {
1487 &dwarf2_frame_unwind,
1488 dwarf2_frame_base_address,
1489 dwarf2_frame_base_address,
1490 dwarf2_frame_base_address
1491 };
1492
1493 const struct frame_base *
1494 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1495 {
1496 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1497
1498 if (dwarf2_frame_find_fde (&block_addr, NULL))
1499 return &dwarf2_frame_base;
1500
1501 return NULL;
1502 }
1503
1504 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1505 the DWARF unwinder. This is used to implement
1506 DW_OP_call_frame_cfa. */
1507
1508 CORE_ADDR
1509 dwarf2_frame_cfa (struct frame_info *this_frame)
1510 {
1511 while (get_frame_type (this_frame) == INLINE_FRAME)
1512 this_frame = get_prev_frame (this_frame);
1513 /* This restriction could be lifted if other unwinders are known to
1514 compute the frame base in a way compatible with the DWARF
1515 unwinder. */
1516 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1517 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1518 error (_("can't compute CFA for this frame"));
1519 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1520 throw_error (NOT_AVAILABLE_ERROR,
1521 _("can't compute CFA for this frame: "
1522 "required registers or memory are unavailable"));
1523 return get_frame_base (this_frame);
1524 }
1525 \f
1526 const struct objfile_data *dwarf2_frame_objfile_data;
1527
1528 static unsigned int
1529 read_1_byte (bfd *abfd, const gdb_byte *buf)
1530 {
1531 return bfd_get_8 (abfd, buf);
1532 }
1533
1534 static unsigned int
1535 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1536 {
1537 return bfd_get_32 (abfd, buf);
1538 }
1539
1540 static ULONGEST
1541 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1542 {
1543 return bfd_get_64 (abfd, buf);
1544 }
1545
1546 static ULONGEST
1547 read_initial_length (bfd *abfd, const gdb_byte *buf,
1548 unsigned int *bytes_read_ptr)
1549 {
1550 LONGEST result;
1551
1552 result = bfd_get_32 (abfd, buf);
1553 if (result == 0xffffffff)
1554 {
1555 result = bfd_get_64 (abfd, buf + 4);
1556 *bytes_read_ptr = 12;
1557 }
1558 else
1559 *bytes_read_ptr = 4;
1560
1561 return result;
1562 }
1563 \f
1564
1565 /* Pointer encoding helper functions. */
1566
1567 /* GCC supports exception handling based on DWARF2 CFI. However, for
1568 technical reasons, it encodes addresses in its FDE's in a different
1569 way. Several "pointer encodings" are supported. The encoding
1570 that's used for a particular FDE is determined by the 'R'
1571 augmentation in the associated CIE. The argument of this
1572 augmentation is a single byte.
1573
1574 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1575 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1576 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1577 address should be interpreted (absolute, relative to the current
1578 position in the FDE, ...). Bit 7, indicates that the address
1579 should be dereferenced. */
1580
1581 static gdb_byte
1582 encoding_for_size (unsigned int size)
1583 {
1584 switch (size)
1585 {
1586 case 2:
1587 return DW_EH_PE_udata2;
1588 case 4:
1589 return DW_EH_PE_udata4;
1590 case 8:
1591 return DW_EH_PE_udata8;
1592 default:
1593 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1594 }
1595 }
1596
1597 static CORE_ADDR
1598 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1599 int ptr_len, const gdb_byte *buf,
1600 unsigned int *bytes_read_ptr,
1601 CORE_ADDR func_base)
1602 {
1603 ptrdiff_t offset;
1604 CORE_ADDR base;
1605
1606 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1607 FDE's. */
1608 if (encoding & DW_EH_PE_indirect)
1609 internal_error (__FILE__, __LINE__,
1610 _("Unsupported encoding: DW_EH_PE_indirect"));
1611
1612 *bytes_read_ptr = 0;
1613
1614 switch (encoding & 0x70)
1615 {
1616 case DW_EH_PE_absptr:
1617 base = 0;
1618 break;
1619 case DW_EH_PE_pcrel:
1620 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1621 base += (buf - unit->dwarf_frame_buffer);
1622 break;
1623 case DW_EH_PE_datarel:
1624 base = unit->dbase;
1625 break;
1626 case DW_EH_PE_textrel:
1627 base = unit->tbase;
1628 break;
1629 case DW_EH_PE_funcrel:
1630 base = func_base;
1631 break;
1632 case DW_EH_PE_aligned:
1633 base = 0;
1634 offset = buf - unit->dwarf_frame_buffer;
1635 if ((offset % ptr_len) != 0)
1636 {
1637 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1638 buf += *bytes_read_ptr;
1639 }
1640 break;
1641 default:
1642 internal_error (__FILE__, __LINE__,
1643 _("Invalid or unsupported encoding"));
1644 }
1645
1646 if ((encoding & 0x07) == 0x00)
1647 {
1648 encoding |= encoding_for_size (ptr_len);
1649 if (bfd_get_sign_extend_vma (unit->abfd))
1650 encoding |= DW_EH_PE_signed;
1651 }
1652
1653 switch (encoding & 0x0f)
1654 {
1655 case DW_EH_PE_uleb128:
1656 {
1657 uint64_t value;
1658 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1659
1660 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1661 return base + value;
1662 }
1663 case DW_EH_PE_udata2:
1664 *bytes_read_ptr += 2;
1665 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1666 case DW_EH_PE_udata4:
1667 *bytes_read_ptr += 4;
1668 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1669 case DW_EH_PE_udata8:
1670 *bytes_read_ptr += 8;
1671 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1672 case DW_EH_PE_sleb128:
1673 {
1674 int64_t value;
1675 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1676
1677 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1678 return base + value;
1679 }
1680 case DW_EH_PE_sdata2:
1681 *bytes_read_ptr += 2;
1682 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1683 case DW_EH_PE_sdata4:
1684 *bytes_read_ptr += 4;
1685 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1686 case DW_EH_PE_sdata8:
1687 *bytes_read_ptr += 8;
1688 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1689 default:
1690 internal_error (__FILE__, __LINE__,
1691 _("Invalid or unsupported encoding"));
1692 }
1693 }
1694 \f
1695
1696 static int
1697 bsearch_cie_cmp (const void *key, const void *element)
1698 {
1699 ULONGEST cie_pointer = *(ULONGEST *) key;
1700 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1701
1702 if (cie_pointer == cie->cie_pointer)
1703 return 0;
1704
1705 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1706 }
1707
1708 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1709 static struct dwarf2_cie *
1710 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1711 {
1712 struct dwarf2_cie **p_cie;
1713
1714 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1715 bsearch be non-NULL. */
1716 if (cie_table->entries == NULL)
1717 {
1718 gdb_assert (cie_table->num_entries == 0);
1719 return NULL;
1720 }
1721
1722 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1723 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1724 if (p_cie != NULL)
1725 return *p_cie;
1726 return NULL;
1727 }
1728
1729 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1730 static void
1731 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1732 {
1733 const int n = cie_table->num_entries;
1734
1735 gdb_assert (n < 1
1736 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1737
1738 cie_table->entries =
1739 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1740 cie_table->entries[n] = cie;
1741 cie_table->num_entries = n + 1;
1742 }
1743
1744 static int
1745 bsearch_fde_cmp (const void *key, const void *element)
1746 {
1747 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1748 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1749
1750 if (seek_pc < fde->initial_location)
1751 return -1;
1752 if (seek_pc < fde->initial_location + fde->address_range)
1753 return 0;
1754 return 1;
1755 }
1756
1757 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1758 inital location associated with it into *PC. */
1759
1760 static struct dwarf2_fde *
1761 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1762 {
1763 struct objfile *objfile;
1764
1765 ALL_OBJFILES (objfile)
1766 {
1767 struct dwarf2_fde_table *fde_table;
1768 struct dwarf2_fde **p_fde;
1769 CORE_ADDR offset;
1770 CORE_ADDR seek_pc;
1771
1772 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1773 if (fde_table == NULL)
1774 {
1775 dwarf2_build_frame_info (objfile);
1776 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1777 }
1778 gdb_assert (fde_table != NULL);
1779
1780 if (fde_table->num_entries == 0)
1781 continue;
1782
1783 gdb_assert (objfile->section_offsets);
1784 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1785
1786 gdb_assert (fde_table->num_entries > 0);
1787 if (*pc < offset + fde_table->entries[0]->initial_location)
1788 continue;
1789
1790 seek_pc = *pc - offset;
1791 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1792 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1793 if (p_fde != NULL)
1794 {
1795 *pc = (*p_fde)->initial_location + offset;
1796 if (out_offset)
1797 *out_offset = offset;
1798 return *p_fde;
1799 }
1800 }
1801 return NULL;
1802 }
1803
1804 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1805 static void
1806 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1807 {
1808 if (fde->address_range == 0)
1809 /* Discard useless FDEs. */
1810 return;
1811
1812 fde_table->num_entries += 1;
1813 fde_table->entries =
1814 xrealloc (fde_table->entries,
1815 fde_table->num_entries * sizeof (fde_table->entries[0]));
1816 fde_table->entries[fde_table->num_entries - 1] = fde;
1817 }
1818
1819 #define DW64_CIE_ID 0xffffffffffffffffULL
1820
1821 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1822 or any of them. */
1823
1824 enum eh_frame_type
1825 {
1826 EH_CIE_TYPE_ID = 1 << 0,
1827 EH_FDE_TYPE_ID = 1 << 1,
1828 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1829 };
1830
1831 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1832 const gdb_byte *start,
1833 int eh_frame_p,
1834 struct dwarf2_cie_table *cie_table,
1835 struct dwarf2_fde_table *fde_table,
1836 enum eh_frame_type entry_type);
1837
1838 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1839 Return NULL if invalid input, otherwise the next byte to be processed. */
1840
1841 static const gdb_byte *
1842 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1843 int eh_frame_p,
1844 struct dwarf2_cie_table *cie_table,
1845 struct dwarf2_fde_table *fde_table,
1846 enum eh_frame_type entry_type)
1847 {
1848 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1849 const gdb_byte *buf, *end;
1850 LONGEST length;
1851 unsigned int bytes_read;
1852 int dwarf64_p;
1853 ULONGEST cie_id;
1854 ULONGEST cie_pointer;
1855 int64_t sleb128;
1856 uint64_t uleb128;
1857
1858 buf = start;
1859 length = read_initial_length (unit->abfd, buf, &bytes_read);
1860 buf += bytes_read;
1861 end = buf + length;
1862
1863 /* Are we still within the section? */
1864 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1865 return NULL;
1866
1867 if (length == 0)
1868 return end;
1869
1870 /* Distinguish between 32 and 64-bit encoded frame info. */
1871 dwarf64_p = (bytes_read == 12);
1872
1873 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1874 if (eh_frame_p)
1875 cie_id = 0;
1876 else if (dwarf64_p)
1877 cie_id = DW64_CIE_ID;
1878 else
1879 cie_id = DW_CIE_ID;
1880
1881 if (dwarf64_p)
1882 {
1883 cie_pointer = read_8_bytes (unit->abfd, buf);
1884 buf += 8;
1885 }
1886 else
1887 {
1888 cie_pointer = read_4_bytes (unit->abfd, buf);
1889 buf += 4;
1890 }
1891
1892 if (cie_pointer == cie_id)
1893 {
1894 /* This is a CIE. */
1895 struct dwarf2_cie *cie;
1896 char *augmentation;
1897 unsigned int cie_version;
1898
1899 /* Check that a CIE was expected. */
1900 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1901 error (_("Found a CIE when not expecting it."));
1902
1903 /* Record the offset into the .debug_frame section of this CIE. */
1904 cie_pointer = start - unit->dwarf_frame_buffer;
1905
1906 /* Check whether we've already read it. */
1907 if (find_cie (cie_table, cie_pointer))
1908 return end;
1909
1910 cie = (struct dwarf2_cie *)
1911 obstack_alloc (&unit->objfile->objfile_obstack,
1912 sizeof (struct dwarf2_cie));
1913 cie->initial_instructions = NULL;
1914 cie->cie_pointer = cie_pointer;
1915
1916 /* The encoding for FDE's in a normal .debug_frame section
1917 depends on the target address size. */
1918 cie->encoding = DW_EH_PE_absptr;
1919
1920 /* We'll determine the final value later, but we need to
1921 initialize it conservatively. */
1922 cie->signal_frame = 0;
1923
1924 /* Check version number. */
1925 cie_version = read_1_byte (unit->abfd, buf);
1926 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1927 return NULL;
1928 cie->version = cie_version;
1929 buf += 1;
1930
1931 /* Interpret the interesting bits of the augmentation. */
1932 cie->augmentation = augmentation = (char *) buf;
1933 buf += (strlen (augmentation) + 1);
1934
1935 /* Ignore armcc augmentations. We only use them for quirks,
1936 and that doesn't happen until later. */
1937 if (strncmp (augmentation, "armcc", 5) == 0)
1938 augmentation += strlen (augmentation);
1939
1940 /* The GCC 2.x "eh" augmentation has a pointer immediately
1941 following the augmentation string, so it must be handled
1942 first. */
1943 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1944 {
1945 /* Skip. */
1946 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1947 augmentation += 2;
1948 }
1949
1950 if (cie->version >= 4)
1951 {
1952 /* FIXME: check that this is the same as from the CU header. */
1953 cie->addr_size = read_1_byte (unit->abfd, buf);
1954 ++buf;
1955 cie->segment_size = read_1_byte (unit->abfd, buf);
1956 ++buf;
1957 }
1958 else
1959 {
1960 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1961 cie->segment_size = 0;
1962 }
1963 /* Address values in .eh_frame sections are defined to have the
1964 target's pointer size. Watchout: This breaks frame info for
1965 targets with pointer size < address size, unless a .debug_frame
1966 section exists as well. */
1967 if (eh_frame_p)
1968 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1969 else
1970 cie->ptr_size = cie->addr_size;
1971
1972 buf = gdb_read_uleb128 (buf, end, &uleb128);
1973 if (buf == NULL)
1974 return NULL;
1975 cie->code_alignment_factor = uleb128;
1976
1977 buf = gdb_read_sleb128 (buf, end, &sleb128);
1978 if (buf == NULL)
1979 return NULL;
1980 cie->data_alignment_factor = sleb128;
1981
1982 if (cie_version == 1)
1983 {
1984 cie->return_address_register = read_1_byte (unit->abfd, buf);
1985 ++buf;
1986 }
1987 else
1988 {
1989 buf = gdb_read_uleb128 (buf, end, &uleb128);
1990 if (buf == NULL)
1991 return NULL;
1992 cie->return_address_register = uleb128;
1993 }
1994
1995 cie->return_address_register
1996 = dwarf2_frame_adjust_regnum (gdbarch,
1997 cie->return_address_register,
1998 eh_frame_p);
1999
2000 cie->saw_z_augmentation = (*augmentation == 'z');
2001 if (cie->saw_z_augmentation)
2002 {
2003 uint64_t length;
2004
2005 buf = gdb_read_uleb128 (buf, end, &length);
2006 if (buf == NULL)
2007 return NULL;
2008 cie->initial_instructions = buf + length;
2009 augmentation++;
2010 }
2011
2012 while (*augmentation)
2013 {
2014 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2015 if (*augmentation == 'L')
2016 {
2017 /* Skip. */
2018 buf++;
2019 augmentation++;
2020 }
2021
2022 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2023 else if (*augmentation == 'R')
2024 {
2025 cie->encoding = *buf++;
2026 augmentation++;
2027 }
2028
2029 /* "P" indicates a personality routine in the CIE augmentation. */
2030 else if (*augmentation == 'P')
2031 {
2032 /* Skip. Avoid indirection since we throw away the result. */
2033 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2034 read_encoded_value (unit, encoding, cie->ptr_size,
2035 buf, &bytes_read, 0);
2036 buf += bytes_read;
2037 augmentation++;
2038 }
2039
2040 /* "S" indicates a signal frame, such that the return
2041 address must not be decremented to locate the call frame
2042 info for the previous frame; it might even be the first
2043 instruction of a function, so decrementing it would take
2044 us to a different function. */
2045 else if (*augmentation == 'S')
2046 {
2047 cie->signal_frame = 1;
2048 augmentation++;
2049 }
2050
2051 /* Otherwise we have an unknown augmentation. Assume that either
2052 there is no augmentation data, or we saw a 'z' prefix. */
2053 else
2054 {
2055 if (cie->initial_instructions)
2056 buf = cie->initial_instructions;
2057 break;
2058 }
2059 }
2060
2061 cie->initial_instructions = buf;
2062 cie->end = end;
2063 cie->unit = unit;
2064
2065 add_cie (cie_table, cie);
2066 }
2067 else
2068 {
2069 /* This is a FDE. */
2070 struct dwarf2_fde *fde;
2071
2072 /* Check that an FDE was expected. */
2073 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2074 error (_("Found an FDE when not expecting it."));
2075
2076 /* In an .eh_frame section, the CIE pointer is the delta between the
2077 address within the FDE where the CIE pointer is stored and the
2078 address of the CIE. Convert it to an offset into the .eh_frame
2079 section. */
2080 if (eh_frame_p)
2081 {
2082 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2083 cie_pointer -= (dwarf64_p ? 8 : 4);
2084 }
2085
2086 /* In either case, validate the result is still within the section. */
2087 if (cie_pointer >= unit->dwarf_frame_size)
2088 return NULL;
2089
2090 fde = (struct dwarf2_fde *)
2091 obstack_alloc (&unit->objfile->objfile_obstack,
2092 sizeof (struct dwarf2_fde));
2093 fde->cie = find_cie (cie_table, cie_pointer);
2094 if (fde->cie == NULL)
2095 {
2096 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2097 eh_frame_p, cie_table, fde_table,
2098 EH_CIE_TYPE_ID);
2099 fde->cie = find_cie (cie_table, cie_pointer);
2100 }
2101
2102 gdb_assert (fde->cie != NULL);
2103
2104 fde->initial_location =
2105 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2106 buf, &bytes_read, 0);
2107 buf += bytes_read;
2108
2109 fde->address_range =
2110 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2111 fde->cie->ptr_size, buf, &bytes_read, 0);
2112 buf += bytes_read;
2113
2114 /* A 'z' augmentation in the CIE implies the presence of an
2115 augmentation field in the FDE as well. The only thing known
2116 to be in here at present is the LSDA entry for EH. So we
2117 can skip the whole thing. */
2118 if (fde->cie->saw_z_augmentation)
2119 {
2120 uint64_t length;
2121
2122 buf = gdb_read_uleb128 (buf, end, &length);
2123 if (buf == NULL)
2124 return NULL;
2125 buf += length;
2126 if (buf > end)
2127 return NULL;
2128 }
2129
2130 fde->instructions = buf;
2131 fde->end = end;
2132
2133 fde->eh_frame_p = eh_frame_p;
2134
2135 add_fde (fde_table, fde);
2136 }
2137
2138 return end;
2139 }
2140
2141 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2142 expect an FDE or a CIE. */
2143
2144 static const gdb_byte *
2145 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2146 int eh_frame_p,
2147 struct dwarf2_cie_table *cie_table,
2148 struct dwarf2_fde_table *fde_table,
2149 enum eh_frame_type entry_type)
2150 {
2151 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2152 const gdb_byte *ret;
2153 ptrdiff_t start_offset;
2154
2155 while (1)
2156 {
2157 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2158 cie_table, fde_table, entry_type);
2159 if (ret != NULL)
2160 break;
2161
2162 /* We have corrupt input data of some form. */
2163
2164 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2165 and mismatches wrt padding and alignment of debug sections. */
2166 /* Note that there is no requirement in the standard for any
2167 alignment at all in the frame unwind sections. Testing for
2168 alignment before trying to interpret data would be incorrect.
2169
2170 However, GCC traditionally arranged for frame sections to be
2171 sized such that the FDE length and CIE fields happen to be
2172 aligned (in theory, for performance). This, unfortunately,
2173 was done with .align directives, which had the side effect of
2174 forcing the section to be aligned by the linker.
2175
2176 This becomes a problem when you have some other producer that
2177 creates frame sections that are not as strictly aligned. That
2178 produces a hole in the frame info that gets filled by the
2179 linker with zeros.
2180
2181 The GCC behaviour is arguably a bug, but it's effectively now
2182 part of the ABI, so we're now stuck with it, at least at the
2183 object file level. A smart linker may decide, in the process
2184 of compressing duplicate CIE information, that it can rewrite
2185 the entire output section without this extra padding. */
2186
2187 start_offset = start - unit->dwarf_frame_buffer;
2188 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2189 {
2190 start += 4 - (start_offset & 3);
2191 workaround = ALIGN4;
2192 continue;
2193 }
2194 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2195 {
2196 start += 8 - (start_offset & 7);
2197 workaround = ALIGN8;
2198 continue;
2199 }
2200
2201 /* Nothing left to try. Arrange to return as if we've consumed
2202 the entire input section. Hopefully we'll get valid info from
2203 the other of .debug_frame/.eh_frame. */
2204 workaround = FAIL;
2205 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2206 break;
2207 }
2208
2209 switch (workaround)
2210 {
2211 case NONE:
2212 break;
2213
2214 case ALIGN4:
2215 complaint (&symfile_complaints, _("\
2216 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2217 unit->dwarf_frame_section->owner->filename,
2218 unit->dwarf_frame_section->name);
2219 break;
2220
2221 case ALIGN8:
2222 complaint (&symfile_complaints, _("\
2223 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2224 unit->dwarf_frame_section->owner->filename,
2225 unit->dwarf_frame_section->name);
2226 break;
2227
2228 default:
2229 complaint (&symfile_complaints,
2230 _("Corrupt data in %s:%s"),
2231 unit->dwarf_frame_section->owner->filename,
2232 unit->dwarf_frame_section->name);
2233 break;
2234 }
2235
2236 return ret;
2237 }
2238 \f
2239 static int
2240 qsort_fde_cmp (const void *a, const void *b)
2241 {
2242 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2243 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2244
2245 if (aa->initial_location == bb->initial_location)
2246 {
2247 if (aa->address_range != bb->address_range
2248 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2249 /* Linker bug, e.g. gold/10400.
2250 Work around it by keeping stable sort order. */
2251 return (a < b) ? -1 : 1;
2252 else
2253 /* Put eh_frame entries after debug_frame ones. */
2254 return aa->eh_frame_p - bb->eh_frame_p;
2255 }
2256
2257 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2258 }
2259
2260 void
2261 dwarf2_build_frame_info (struct objfile *objfile)
2262 {
2263 struct comp_unit *unit;
2264 const gdb_byte *frame_ptr;
2265 struct dwarf2_cie_table cie_table;
2266 struct dwarf2_fde_table fde_table;
2267 struct dwarf2_fde_table *fde_table2;
2268 volatile struct gdb_exception e;
2269
2270 cie_table.num_entries = 0;
2271 cie_table.entries = NULL;
2272
2273 fde_table.num_entries = 0;
2274 fde_table.entries = NULL;
2275
2276 /* Build a minimal decoding of the DWARF2 compilation unit. */
2277 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2278 sizeof (struct comp_unit));
2279 unit->abfd = objfile->obfd;
2280 unit->objfile = objfile;
2281 unit->dbase = 0;
2282 unit->tbase = 0;
2283
2284 if (objfile->separate_debug_objfile_backlink == NULL)
2285 {
2286 /* Do not read .eh_frame from separate file as they must be also
2287 present in the main file. */
2288 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2289 &unit->dwarf_frame_section,
2290 &unit->dwarf_frame_buffer,
2291 &unit->dwarf_frame_size);
2292 if (unit->dwarf_frame_size)
2293 {
2294 asection *got, *txt;
2295
2296 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2297 that is used for the i386/amd64 target, which currently is
2298 the only target in GCC that supports/uses the
2299 DW_EH_PE_datarel encoding. */
2300 got = bfd_get_section_by_name (unit->abfd, ".got");
2301 if (got)
2302 unit->dbase = got->vma;
2303
2304 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2305 so far. */
2306 txt = bfd_get_section_by_name (unit->abfd, ".text");
2307 if (txt)
2308 unit->tbase = txt->vma;
2309
2310 TRY_CATCH (e, RETURN_MASK_ERROR)
2311 {
2312 frame_ptr = unit->dwarf_frame_buffer;
2313 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2314 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2315 &cie_table, &fde_table,
2316 EH_CIE_OR_FDE_TYPE_ID);
2317 }
2318
2319 if (e.reason < 0)
2320 {
2321 warning (_("skipping .eh_frame info of %s: %s"),
2322 objfile_name (objfile), e.message);
2323
2324 if (fde_table.num_entries != 0)
2325 {
2326 xfree (fde_table.entries);
2327 fde_table.entries = NULL;
2328 fde_table.num_entries = 0;
2329 }
2330 /* The cie_table is discarded by the next if. */
2331 }
2332
2333 if (cie_table.num_entries != 0)
2334 {
2335 /* Reinit cie_table: debug_frame has different CIEs. */
2336 xfree (cie_table.entries);
2337 cie_table.num_entries = 0;
2338 cie_table.entries = NULL;
2339 }
2340 }
2341 }
2342
2343 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2344 &unit->dwarf_frame_section,
2345 &unit->dwarf_frame_buffer,
2346 &unit->dwarf_frame_size);
2347 if (unit->dwarf_frame_size)
2348 {
2349 int num_old_fde_entries = fde_table.num_entries;
2350
2351 TRY_CATCH (e, RETURN_MASK_ERROR)
2352 {
2353 frame_ptr = unit->dwarf_frame_buffer;
2354 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2355 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2356 &cie_table, &fde_table,
2357 EH_CIE_OR_FDE_TYPE_ID);
2358 }
2359 if (e.reason < 0)
2360 {
2361 warning (_("skipping .debug_frame info of %s: %s"),
2362 objfile_name (objfile), e.message);
2363
2364 if (fde_table.num_entries != 0)
2365 {
2366 fde_table.num_entries = num_old_fde_entries;
2367 if (num_old_fde_entries == 0)
2368 {
2369 xfree (fde_table.entries);
2370 fde_table.entries = NULL;
2371 }
2372 else
2373 {
2374 fde_table.entries = xrealloc (fde_table.entries,
2375 fde_table.num_entries *
2376 sizeof (fde_table.entries[0]));
2377 }
2378 }
2379 fde_table.num_entries = num_old_fde_entries;
2380 /* The cie_table is discarded by the next if. */
2381 }
2382 }
2383
2384 /* Discard the cie_table, it is no longer needed. */
2385 if (cie_table.num_entries != 0)
2386 {
2387 xfree (cie_table.entries);
2388 cie_table.entries = NULL; /* Paranoia. */
2389 cie_table.num_entries = 0; /* Paranoia. */
2390 }
2391
2392 /* Copy fde_table to obstack: it is needed at runtime. */
2393 fde_table2 = (struct dwarf2_fde_table *)
2394 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2395
2396 if (fde_table.num_entries == 0)
2397 {
2398 fde_table2->entries = NULL;
2399 fde_table2->num_entries = 0;
2400 }
2401 else
2402 {
2403 struct dwarf2_fde *fde_prev = NULL;
2404 struct dwarf2_fde *first_non_zero_fde = NULL;
2405 int i;
2406
2407 /* Prepare FDE table for lookups. */
2408 qsort (fde_table.entries, fde_table.num_entries,
2409 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2410
2411 /* Check for leftovers from --gc-sections. The GNU linker sets
2412 the relevant symbols to zero, but doesn't zero the FDE *end*
2413 ranges because there's no relocation there. It's (offset,
2414 length), not (start, end). On targets where address zero is
2415 just another valid address this can be a problem, since the
2416 FDEs appear to be non-empty in the output --- we could pick
2417 out the wrong FDE. To work around this, when overlaps are
2418 detected, we prefer FDEs that do not start at zero.
2419
2420 Start by finding the first FDE with non-zero start. Below
2421 we'll discard all FDEs that start at zero and overlap this
2422 one. */
2423 for (i = 0; i < fde_table.num_entries; i++)
2424 {
2425 struct dwarf2_fde *fde = fde_table.entries[i];
2426
2427 if (fde->initial_location != 0)
2428 {
2429 first_non_zero_fde = fde;
2430 break;
2431 }
2432 }
2433
2434 /* Since we'll be doing bsearch, squeeze out identical (except
2435 for eh_frame_p) fde entries so bsearch result is predictable.
2436 Also discard leftovers from --gc-sections. */
2437 fde_table2->num_entries = 0;
2438 for (i = 0; i < fde_table.num_entries; i++)
2439 {
2440 struct dwarf2_fde *fde = fde_table.entries[i];
2441
2442 if (fde->initial_location == 0
2443 && first_non_zero_fde != NULL
2444 && (first_non_zero_fde->initial_location
2445 < fde->initial_location + fde->address_range))
2446 continue;
2447
2448 if (fde_prev != NULL
2449 && fde_prev->initial_location == fde->initial_location)
2450 continue;
2451
2452 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2453 sizeof (fde_table.entries[0]));
2454 ++fde_table2->num_entries;
2455 fde_prev = fde;
2456 }
2457 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2458
2459 /* Discard the original fde_table. */
2460 xfree (fde_table.entries);
2461 }
2462
2463 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2464 }
2465
2466 /* Provide a prototype to silence -Wmissing-prototypes. */
2467 void _initialize_dwarf2_frame (void);
2468
2469 void
2470 _initialize_dwarf2_frame (void)
2471 {
2472 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2473 dwarf2_frame_objfile_data = register_objfile_data ();
2474 }