2007-06-09 Markus Deuling <deuling@de.ibm.com>
[binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "dwarf2expr.h"
26 #include "elf/dwarf2.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35 #include "value.h"
36
37 #include "gdb_assert.h"
38 #include "gdb_string.h"
39
40 #include "complaints.h"
41 #include "dwarf2-frame.h"
42
43 /* Call Frame Information (CFI). */
44
45 /* Common Information Entry (CIE). */
46
47 struct dwarf2_cie
48 {
49 /* Offset into the .debug_frame section where this CIE was found.
50 Used to identify this CIE. */
51 ULONGEST cie_pointer;
52
53 /* Constant that is factored out of all advance location
54 instructions. */
55 ULONGEST code_alignment_factor;
56
57 /* Constants that is factored out of all offset instructions. */
58 LONGEST data_alignment_factor;
59
60 /* Return address column. */
61 ULONGEST return_address_register;
62
63 /* Instruction sequence to initialize a register set. */
64 gdb_byte *initial_instructions;
65 gdb_byte *end;
66
67 /* Saved augmentation, in case it's needed later. */
68 char *augmentation;
69
70 /* Encoding of addresses. */
71 gdb_byte encoding;
72
73 /* True if a 'z' augmentation existed. */
74 unsigned char saw_z_augmentation;
75
76 /* True if an 'S' augmentation existed. */
77 unsigned char signal_frame;
78
79 /* The version recorded in the CIE. */
80 unsigned char version;
81
82 struct dwarf2_cie *next;
83 };
84
85 /* Frame Description Entry (FDE). */
86
87 struct dwarf2_fde
88 {
89 /* CIE for this FDE. */
90 struct dwarf2_cie *cie;
91
92 /* First location associated with this FDE. */
93 CORE_ADDR initial_location;
94
95 /* Number of bytes of program instructions described by this FDE. */
96 CORE_ADDR address_range;
97
98 /* Instruction sequence. */
99 gdb_byte *instructions;
100 gdb_byte *end;
101
102 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
103 section. */
104 unsigned char eh_frame_p;
105
106 struct dwarf2_fde *next;
107 };
108
109 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
110
111 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
112 int eh_frame_p);
113 \f
114
115 /* Structure describing a frame state. */
116
117 struct dwarf2_frame_state
118 {
119 /* Each register save state can be described in terms of a CFA slot,
120 another register, or a location expression. */
121 struct dwarf2_frame_state_reg_info
122 {
123 struct dwarf2_frame_state_reg *reg;
124 int num_regs;
125
126 /* Used to implement DW_CFA_remember_state. */
127 struct dwarf2_frame_state_reg_info *prev;
128 } regs;
129
130 LONGEST cfa_offset;
131 ULONGEST cfa_reg;
132 gdb_byte *cfa_exp;
133 enum {
134 CFA_UNSET,
135 CFA_REG_OFFSET,
136 CFA_EXP
137 } cfa_how;
138
139 /* The PC described by the current frame state. */
140 CORE_ADDR pc;
141
142 /* Initial register set from the CIE.
143 Used to implement DW_CFA_restore. */
144 struct dwarf2_frame_state_reg_info initial;
145
146 /* The information we care about from the CIE. */
147 LONGEST data_align;
148 ULONGEST code_align;
149 ULONGEST retaddr_column;
150
151 /* Flags for known producer quirks. */
152
153 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
154 and DW_CFA_def_cfa_offset takes a factored offset. */
155 int armcc_cfa_offsets_sf;
156
157 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
158 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
159 int armcc_cfa_offsets_reversed;
160 };
161
162 /* Store the length the expression for the CFA in the `cfa_reg' field,
163 which is unused in that case. */
164 #define cfa_exp_len cfa_reg
165
166 /* Assert that the register set RS is large enough to store gdbarch_num_regs
167 columns. If necessary, enlarge the register set. */
168
169 static void
170 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
171 int num_regs)
172 {
173 size_t size = sizeof (struct dwarf2_frame_state_reg);
174
175 if (num_regs <= rs->num_regs)
176 return;
177
178 rs->reg = (struct dwarf2_frame_state_reg *)
179 xrealloc (rs->reg, num_regs * size);
180
181 /* Initialize newly allocated registers. */
182 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
183 rs->num_regs = num_regs;
184 }
185
186 /* Copy the register columns in register set RS into newly allocated
187 memory and return a pointer to this newly created copy. */
188
189 static struct dwarf2_frame_state_reg *
190 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
191 {
192 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
193 struct dwarf2_frame_state_reg *reg;
194
195 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
196 memcpy (reg, rs->reg, size);
197
198 return reg;
199 }
200
201 /* Release the memory allocated to register set RS. */
202
203 static void
204 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
205 {
206 if (rs)
207 {
208 dwarf2_frame_state_free_regs (rs->prev);
209
210 xfree (rs->reg);
211 xfree (rs);
212 }
213 }
214
215 /* Release the memory allocated to the frame state FS. */
216
217 static void
218 dwarf2_frame_state_free (void *p)
219 {
220 struct dwarf2_frame_state *fs = p;
221
222 dwarf2_frame_state_free_regs (fs->initial.prev);
223 dwarf2_frame_state_free_regs (fs->regs.prev);
224 xfree (fs->initial.reg);
225 xfree (fs->regs.reg);
226 xfree (fs);
227 }
228 \f
229
230 /* Helper functions for execute_stack_op. */
231
232 static CORE_ADDR
233 read_reg (void *baton, int reg)
234 {
235 struct frame_info *next_frame = (struct frame_info *) baton;
236 struct gdbarch *gdbarch = get_frame_arch (next_frame);
237 int regnum;
238 gdb_byte *buf;
239
240 regnum = DWARF2_REG_TO_REGNUM (reg);
241
242 buf = alloca (register_size (gdbarch, regnum));
243 frame_unwind_register (next_frame, regnum, buf);
244
245 /* Convert the register to an integer. This returns a LONGEST
246 rather than a CORE_ADDR, but unpack_pointer does the same thing
247 under the covers, and this makes more sense for non-pointer
248 registers. Maybe read_reg and the associated interfaces should
249 deal with "struct value" instead of CORE_ADDR. */
250 return unpack_long (register_type (gdbarch, regnum), buf);
251 }
252
253 static void
254 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
255 {
256 read_memory (addr, buf, len);
257 }
258
259 static void
260 no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
261 {
262 internal_error (__FILE__, __LINE__,
263 _("Support for DW_OP_fbreg is unimplemented"));
264 }
265
266 static CORE_ADDR
267 no_get_tls_address (void *baton, CORE_ADDR offset)
268 {
269 internal_error (__FILE__, __LINE__,
270 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
271 }
272
273 static CORE_ADDR
274 execute_stack_op (gdb_byte *exp, ULONGEST len,
275 struct frame_info *next_frame, CORE_ADDR initial)
276 {
277 struct dwarf_expr_context *ctx;
278 CORE_ADDR result;
279
280 ctx = new_dwarf_expr_context ();
281 ctx->baton = next_frame;
282 ctx->read_reg = read_reg;
283 ctx->read_mem = read_mem;
284 ctx->get_frame_base = no_get_frame_base;
285 ctx->get_tls_address = no_get_tls_address;
286
287 dwarf_expr_push (ctx, initial);
288 dwarf_expr_eval (ctx, exp, len);
289 result = dwarf_expr_fetch (ctx, 0);
290
291 if (ctx->in_reg)
292 result = read_reg (next_frame, result);
293
294 free_dwarf_expr_context (ctx);
295
296 return result;
297 }
298 \f
299
300 static void
301 execute_cfa_program (gdb_byte *insn_ptr, gdb_byte *insn_end,
302 struct frame_info *next_frame,
303 struct dwarf2_frame_state *fs, int eh_frame_p)
304 {
305 CORE_ADDR pc = frame_pc_unwind (next_frame);
306 int bytes_read;
307 struct gdbarch *gdbarch = get_frame_arch (next_frame);
308
309 while (insn_ptr < insn_end && fs->pc <= pc)
310 {
311 gdb_byte insn = *insn_ptr++;
312 ULONGEST utmp, reg;
313 LONGEST offset;
314
315 if ((insn & 0xc0) == DW_CFA_advance_loc)
316 fs->pc += (insn & 0x3f) * fs->code_align;
317 else if ((insn & 0xc0) == DW_CFA_offset)
318 {
319 reg = insn & 0x3f;
320 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
321 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
322 offset = utmp * fs->data_align;
323 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
324 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
325 fs->regs.reg[reg].loc.offset = offset;
326 }
327 else if ((insn & 0xc0) == DW_CFA_restore)
328 {
329 gdb_assert (fs->initial.reg);
330 reg = insn & 0x3f;
331 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
332 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
333 if (reg < fs->initial.num_regs)
334 fs->regs.reg[reg] = fs->initial.reg[reg];
335 else
336 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
337
338 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
339 complaint (&symfile_complaints, _("\
340 incomplete CFI data; DW_CFA_restore unspecified\n\
341 register %s (#%d) at 0x%s"),
342 gdbarch_register_name
343 (current_gdbarch, DWARF2_REG_TO_REGNUM(reg)),
344 DWARF2_REG_TO_REGNUM(reg), paddr (fs->pc));
345 }
346 else
347 {
348 switch (insn)
349 {
350 case DW_CFA_set_loc:
351 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
352 insn_ptr += bytes_read;
353 break;
354
355 case DW_CFA_advance_loc1:
356 utmp = extract_unsigned_integer (insn_ptr, 1);
357 fs->pc += utmp * fs->code_align;
358 insn_ptr++;
359 break;
360 case DW_CFA_advance_loc2:
361 utmp = extract_unsigned_integer (insn_ptr, 2);
362 fs->pc += utmp * fs->code_align;
363 insn_ptr += 2;
364 break;
365 case DW_CFA_advance_loc4:
366 utmp = extract_unsigned_integer (insn_ptr, 4);
367 fs->pc += utmp * fs->code_align;
368 insn_ptr += 4;
369 break;
370
371 case DW_CFA_offset_extended:
372 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
373 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
374 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
375 offset = utmp * fs->data_align;
376 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
377 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
378 fs->regs.reg[reg].loc.offset = offset;
379 break;
380
381 case DW_CFA_restore_extended:
382 gdb_assert (fs->initial.reg);
383 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
384 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
385 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
386 fs->regs.reg[reg] = fs->initial.reg[reg];
387 break;
388
389 case DW_CFA_undefined:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
391 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
392 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
393 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
394 break;
395
396 case DW_CFA_same_value:
397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
398 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
399 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
400 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
401 break;
402
403 case DW_CFA_register:
404 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
405 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
406 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
407 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
408 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
409 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
410 fs->regs.reg[reg].loc.reg = utmp;
411 break;
412
413 case DW_CFA_remember_state:
414 {
415 struct dwarf2_frame_state_reg_info *new_rs;
416
417 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
418 *new_rs = fs->regs;
419 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
420 fs->regs.prev = new_rs;
421 }
422 break;
423
424 case DW_CFA_restore_state:
425 {
426 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
427
428 if (old_rs == NULL)
429 {
430 complaint (&symfile_complaints, _("\
431 bad CFI data; mismatched DW_CFA_restore_state at 0x%s"), paddr (fs->pc));
432 }
433 else
434 {
435 xfree (fs->regs.reg);
436 fs->regs = *old_rs;
437 xfree (old_rs);
438 }
439 }
440 break;
441
442 case DW_CFA_def_cfa:
443 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
444 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
445
446 if (fs->armcc_cfa_offsets_sf)
447 utmp *= fs->data_align;
448
449 fs->cfa_offset = utmp;
450 fs->cfa_how = CFA_REG_OFFSET;
451 break;
452
453 case DW_CFA_def_cfa_register:
454 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
455 fs->cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->cfa_reg,
456 eh_frame_p);
457 fs->cfa_how = CFA_REG_OFFSET;
458 break;
459
460 case DW_CFA_def_cfa_offset:
461 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
462
463 if (fs->armcc_cfa_offsets_sf)
464 utmp *= fs->data_align;
465
466 fs->cfa_offset = utmp;
467 /* cfa_how deliberately not set. */
468 break;
469
470 case DW_CFA_nop:
471 break;
472
473 case DW_CFA_def_cfa_expression:
474 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
475 fs->cfa_exp = insn_ptr;
476 fs->cfa_how = CFA_EXP;
477 insn_ptr += fs->cfa_exp_len;
478 break;
479
480 case DW_CFA_expression:
481 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
482 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
483 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
484 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
485 fs->regs.reg[reg].loc.exp = insn_ptr;
486 fs->regs.reg[reg].exp_len = utmp;
487 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
488 insn_ptr += utmp;
489 break;
490
491 case DW_CFA_offset_extended_sf:
492 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
494 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
495 offset *= fs->data_align;
496 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
497 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
498 fs->regs.reg[reg].loc.offset = offset;
499 break;
500
501 case DW_CFA_val_offset:
502 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
505 offset = utmp * fs->data_align;
506 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
507 fs->regs.reg[reg].loc.offset = offset;
508 break;
509
510 case DW_CFA_val_offset_sf:
511 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
512 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
513 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
514 offset *= fs->data_align;
515 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
516 fs->regs.reg[reg].loc.offset = offset;
517 break;
518
519 case DW_CFA_val_expression:
520 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
521 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
522 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
523 fs->regs.reg[reg].loc.exp = insn_ptr;
524 fs->regs.reg[reg].exp_len = utmp;
525 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
526 insn_ptr += utmp;
527 break;
528
529 case DW_CFA_def_cfa_sf:
530 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
531 fs->cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->cfa_reg,
532 eh_frame_p);
533 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
534 fs->cfa_offset = offset * fs->data_align;
535 fs->cfa_how = CFA_REG_OFFSET;
536 break;
537
538 case DW_CFA_def_cfa_offset_sf:
539 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
540 fs->cfa_offset = offset * fs->data_align;
541 /* cfa_how deliberately not set. */
542 break;
543
544 case DW_CFA_GNU_window_save:
545 /* This is SPARC-specific code, and contains hard-coded
546 constants for the register numbering scheme used by
547 GCC. Rather than having a architecture-specific
548 operation that's only ever used by a single
549 architecture, we provide the implementation here.
550 Incidentally that's what GCC does too in its
551 unwinder. */
552 {
553 struct gdbarch *gdbarch = get_frame_arch (next_frame);
554 int size = register_size(gdbarch, 0);
555 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
556 for (reg = 8; reg < 16; reg++)
557 {
558 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
559 fs->regs.reg[reg].loc.reg = reg + 16;
560 }
561 for (reg = 16; reg < 32; reg++)
562 {
563 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
564 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
565 }
566 }
567 break;
568
569 case DW_CFA_GNU_args_size:
570 /* Ignored. */
571 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
572 break;
573
574 case DW_CFA_GNU_negative_offset_extended:
575 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
576 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
577 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
578 offset *= fs->data_align;
579 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
580 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
581 fs->regs.reg[reg].loc.offset = -offset;
582 break;
583
584 default:
585 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
586 }
587 }
588 }
589
590 /* Don't allow remember/restore between CIE and FDE programs. */
591 dwarf2_frame_state_free_regs (fs->regs.prev);
592 fs->regs.prev = NULL;
593 }
594 \f
595
596 /* Architecture-specific operations. */
597
598 /* Per-architecture data key. */
599 static struct gdbarch_data *dwarf2_frame_data;
600
601 struct dwarf2_frame_ops
602 {
603 /* Pre-initialize the register state REG for register REGNUM. */
604 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
605 struct frame_info *);
606
607 /* Check whether the frame preceding NEXT_FRAME will be a signal
608 trampoline. */
609 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
610
611 /* Convert .eh_frame register number to DWARF register number, or
612 adjust .debug_frame register number. */
613 int (*adjust_regnum) (struct gdbarch *, int, int);
614 };
615
616 /* Default architecture-specific register state initialization
617 function. */
618
619 static void
620 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
621 struct dwarf2_frame_state_reg *reg,
622 struct frame_info *next_frame)
623 {
624 /* If we have a register that acts as a program counter, mark it as
625 a destination for the return address. If we have a register that
626 serves as the stack pointer, arrange for it to be filled with the
627 call frame address (CFA). The other registers are marked as
628 unspecified.
629
630 We copy the return address to the program counter, since many
631 parts in GDB assume that it is possible to get the return address
632 by unwinding the program counter register. However, on ISA's
633 with a dedicated return address register, the CFI usually only
634 contains information to unwind that return address register.
635
636 The reason we're treating the stack pointer special here is
637 because in many cases GCC doesn't emit CFI for the stack pointer
638 and implicitly assumes that it is equal to the CFA. This makes
639 some sense since the DWARF specification (version 3, draft 8,
640 p. 102) says that:
641
642 "Typically, the CFA is defined to be the value of the stack
643 pointer at the call site in the previous frame (which may be
644 different from its value on entry to the current frame)."
645
646 However, this isn't true for all platforms supported by GCC
647 (e.g. IBM S/390 and zSeries). Those architectures should provide
648 their own architecture-specific initialization function. */
649
650 if (regnum == PC_REGNUM)
651 reg->how = DWARF2_FRAME_REG_RA;
652 else if (regnum == SP_REGNUM)
653 reg->how = DWARF2_FRAME_REG_CFA;
654 }
655
656 /* Return a default for the architecture-specific operations. */
657
658 static void *
659 dwarf2_frame_init (struct obstack *obstack)
660 {
661 struct dwarf2_frame_ops *ops;
662
663 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
664 ops->init_reg = dwarf2_frame_default_init_reg;
665 return ops;
666 }
667
668 /* Set the architecture-specific register state initialization
669 function for GDBARCH to INIT_REG. */
670
671 void
672 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
673 void (*init_reg) (struct gdbarch *, int,
674 struct dwarf2_frame_state_reg *,
675 struct frame_info *))
676 {
677 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
678
679 ops->init_reg = init_reg;
680 }
681
682 /* Pre-initialize the register state REG for register REGNUM. */
683
684 static void
685 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
686 struct dwarf2_frame_state_reg *reg,
687 struct frame_info *next_frame)
688 {
689 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
690
691 ops->init_reg (gdbarch, regnum, reg, next_frame);
692 }
693
694 /* Set the architecture-specific signal trampoline recognition
695 function for GDBARCH to SIGNAL_FRAME_P. */
696
697 void
698 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
699 int (*signal_frame_p) (struct gdbarch *,
700 struct frame_info *))
701 {
702 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
703
704 ops->signal_frame_p = signal_frame_p;
705 }
706
707 /* Query the architecture-specific signal frame recognizer for
708 NEXT_FRAME. */
709
710 static int
711 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
712 struct frame_info *next_frame)
713 {
714 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
715
716 if (ops->signal_frame_p == NULL)
717 return 0;
718 return ops->signal_frame_p (gdbarch, next_frame);
719 }
720
721 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
722 register numbers. */
723
724 void
725 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
726 int (*adjust_regnum) (struct gdbarch *,
727 int, int))
728 {
729 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
730
731 ops->adjust_regnum = adjust_regnum;
732 }
733
734 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
735 register. */
736
737 static int
738 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
739 {
740 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
741
742 if (ops->adjust_regnum == NULL)
743 return regnum;
744 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
745 }
746
747 static void
748 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
749 struct dwarf2_fde *fde)
750 {
751 static const char *arm_idents[] = {
752 "ARM C Compiler, ADS",
753 "Thumb C Compiler, ADS",
754 "ARM C++ Compiler, ADS",
755 "Thumb C++ Compiler, ADS",
756 "ARM/Thumb C/C++ Compiler, RVCT"
757 };
758 int i;
759
760 struct symtab *s;
761
762 s = find_pc_symtab (fs->pc);
763 if (s == NULL || s->producer == NULL)
764 return;
765
766 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
767 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
768 {
769 if (fde->cie->version == 1)
770 fs->armcc_cfa_offsets_sf = 1;
771
772 if (fde->cie->version == 1)
773 fs->armcc_cfa_offsets_reversed = 1;
774
775 /* The reversed offset problem is present in some compilers
776 using DWARF3, but it was eventually fixed. Check the ARM
777 defined augmentations, which are in the format "armcc" followed
778 by a list of one-character options. The "+" option means
779 this problem is fixed (no quirk needed). If the armcc
780 augmentation is missing, the quirk is needed. */
781 if (fde->cie->version == 3
782 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
783 || strchr (fde->cie->augmentation + 5, '+') == NULL))
784 fs->armcc_cfa_offsets_reversed = 1;
785
786 return;
787 }
788 }
789 \f
790
791 struct dwarf2_frame_cache
792 {
793 /* DWARF Call Frame Address. */
794 CORE_ADDR cfa;
795
796 /* Set if the return address column was marked as undefined. */
797 int undefined_retaddr;
798
799 /* Saved registers, indexed by GDB register number, not by DWARF
800 register number. */
801 struct dwarf2_frame_state_reg *reg;
802
803 /* Return address register. */
804 struct dwarf2_frame_state_reg retaddr_reg;
805 };
806
807 static struct dwarf2_frame_cache *
808 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
809 {
810 struct cleanup *old_chain;
811 struct gdbarch *gdbarch = get_frame_arch (next_frame);
812 const int num_regs = gdbarch_num_regs (current_gdbarch)
813 + gdbarch_num_pseudo_regs (current_gdbarch);
814 struct dwarf2_frame_cache *cache;
815 struct dwarf2_frame_state *fs;
816 struct dwarf2_fde *fde;
817
818 if (*this_cache)
819 return *this_cache;
820
821 /* Allocate a new cache. */
822 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
823 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
824
825 /* Allocate and initialize the frame state. */
826 fs = XMALLOC (struct dwarf2_frame_state);
827 memset (fs, 0, sizeof (struct dwarf2_frame_state));
828 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
829
830 /* Unwind the PC.
831
832 Note that if NEXT_FRAME is never supposed to return (i.e. a call
833 to abort), the compiler might optimize away the instruction at
834 NEXT_FRAME's return address. As a result the return address will
835 point at some random instruction, and the CFI for that
836 instruction is probably worthless to us. GCC's unwinder solves
837 this problem by substracting 1 from the return address to get an
838 address in the middle of a presumed call instruction (or the
839 instruction in the associated delay slot). This should only be
840 done for "normal" frames and not for resume-type frames (signal
841 handlers, sentinel frames, dummy frames). The function
842 frame_unwind_address_in_block does just this. It's not clear how
843 reliable the method is though; there is the potential for the
844 register state pre-call being different to that on return. */
845 fs->pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
846
847 /* Find the correct FDE. */
848 fde = dwarf2_frame_find_fde (&fs->pc);
849 gdb_assert (fde != NULL);
850
851 /* Extract any interesting information from the CIE. */
852 fs->data_align = fde->cie->data_alignment_factor;
853 fs->code_align = fde->cie->code_alignment_factor;
854 fs->retaddr_column = fde->cie->return_address_register;
855
856 /* Check for "quirks" - known bugs in producers. */
857 dwarf2_frame_find_quirks (fs, fde);
858
859 /* First decode all the insns in the CIE. */
860 execute_cfa_program (fde->cie->initial_instructions,
861 fde->cie->end, next_frame, fs, fde->eh_frame_p);
862
863 /* Save the initialized register set. */
864 fs->initial = fs->regs;
865 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
866
867 /* Then decode the insns in the FDE up to our target PC. */
868 execute_cfa_program (fde->instructions, fde->end, next_frame, fs,
869 fde->eh_frame_p);
870
871 /* Caclulate the CFA. */
872 switch (fs->cfa_how)
873 {
874 case CFA_REG_OFFSET:
875 cache->cfa = read_reg (next_frame, fs->cfa_reg);
876 if (fs->armcc_cfa_offsets_reversed)
877 cache->cfa -= fs->cfa_offset;
878 else
879 cache->cfa += fs->cfa_offset;
880 break;
881
882 case CFA_EXP:
883 cache->cfa =
884 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
885 break;
886
887 default:
888 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
889 }
890
891 /* Initialize the register state. */
892 {
893 int regnum;
894
895 for (regnum = 0; regnum < num_regs; regnum++)
896 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], next_frame);
897 }
898
899 /* Go through the DWARF2 CFI generated table and save its register
900 location information in the cache. Note that we don't skip the
901 return address column; it's perfectly all right for it to
902 correspond to a real register. If it doesn't correspond to a
903 real register, or if we shouldn't treat it as such,
904 DWARF2_REG_TO_REGNUM should be defined to return a number outside
905 the range [0, gdbarch_num_regs). */
906 {
907 int column; /* CFI speak for "register number". */
908
909 for (column = 0; column < fs->regs.num_regs; column++)
910 {
911 /* Use the GDB register number as the destination index. */
912 int regnum = DWARF2_REG_TO_REGNUM (column);
913
914 /* If there's no corresponding GDB register, ignore it. */
915 if (regnum < 0 || regnum >= num_regs)
916 continue;
917
918 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
919 of all debug info registers. If it doesn't, complain (but
920 not too loudly). It turns out that GCC assumes that an
921 unspecified register implies "same value" when CFI (draft
922 7) specifies nothing at all. Such a register could equally
923 be interpreted as "undefined". Also note that this check
924 isn't sufficient; it only checks that all registers in the
925 range [0 .. max column] are specified, and won't detect
926 problems when a debug info register falls outside of the
927 table. We need a way of iterating through all the valid
928 DWARF2 register numbers. */
929 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
930 {
931 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
932 complaint (&symfile_complaints, _("\
933 incomplete CFI data; unspecified registers (e.g., %s) at 0x%s"),
934 gdbarch_register_name (gdbarch, regnum),
935 paddr_nz (fs->pc));
936 }
937 else
938 cache->reg[regnum] = fs->regs.reg[column];
939 }
940 }
941
942 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
943 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
944 {
945 int regnum;
946
947 for (regnum = 0; regnum < num_regs; regnum++)
948 {
949 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
950 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
951 {
952 struct dwarf2_frame_state_reg *retaddr_reg =
953 &fs->regs.reg[fs->retaddr_column];
954
955 /* It seems rather bizarre to specify an "empty" column as
956 the return adress column. However, this is exactly
957 what GCC does on some targets. It turns out that GCC
958 assumes that the return address can be found in the
959 register corresponding to the return address column.
960 Incidentally, that's how we should treat a return
961 address column specifying "same value" too. */
962 if (fs->retaddr_column < fs->regs.num_regs
963 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
964 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
965 {
966 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
967 cache->reg[regnum] = *retaddr_reg;
968 else
969 cache->retaddr_reg = *retaddr_reg;
970 }
971 else
972 {
973 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
974 {
975 cache->reg[regnum].loc.reg = fs->retaddr_column;
976 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
977 }
978 else
979 {
980 cache->retaddr_reg.loc.reg = fs->retaddr_column;
981 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
982 }
983 }
984 }
985 }
986 }
987
988 if (fs->retaddr_column < fs->regs.num_regs
989 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
990 cache->undefined_retaddr = 1;
991
992 do_cleanups (old_chain);
993
994 *this_cache = cache;
995 return cache;
996 }
997
998 static void
999 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
1000 struct frame_id *this_id)
1001 {
1002 struct dwarf2_frame_cache *cache =
1003 dwarf2_frame_cache (next_frame, this_cache);
1004
1005 if (cache->undefined_retaddr)
1006 return;
1007
1008 (*this_id) = frame_id_build (cache->cfa,
1009 frame_func_unwind (next_frame, NORMAL_FRAME));
1010 }
1011
1012 static void
1013 dwarf2_signal_frame_this_id (struct frame_info *next_frame, void **this_cache,
1014 struct frame_id *this_id)
1015 {
1016 struct dwarf2_frame_cache *cache =
1017 dwarf2_frame_cache (next_frame, this_cache);
1018
1019 if (cache->undefined_retaddr)
1020 return;
1021
1022 (*this_id) = frame_id_build (cache->cfa,
1023 frame_func_unwind (next_frame, SIGTRAMP_FRAME));
1024 }
1025
1026 static void
1027 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1028 int regnum, int *optimizedp,
1029 enum lval_type *lvalp, CORE_ADDR *addrp,
1030 int *realnump, gdb_byte *valuep)
1031 {
1032 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1033 struct dwarf2_frame_cache *cache =
1034 dwarf2_frame_cache (next_frame, this_cache);
1035
1036 switch (cache->reg[regnum].how)
1037 {
1038 case DWARF2_FRAME_REG_UNDEFINED:
1039 /* If CFI explicitly specified that the value isn't defined,
1040 mark it as optimized away; the value isn't available. */
1041 *optimizedp = 1;
1042 *lvalp = not_lval;
1043 *addrp = 0;
1044 *realnump = -1;
1045 if (valuep)
1046 {
1047 /* In some cases, for example %eflags on the i386, we have
1048 to provide a sane value, even though this register wasn't
1049 saved. Assume we can get it from NEXT_FRAME. */
1050 frame_unwind_register (next_frame, regnum, valuep);
1051 }
1052 break;
1053
1054 case DWARF2_FRAME_REG_SAVED_OFFSET:
1055 *optimizedp = 0;
1056 *lvalp = lval_memory;
1057 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
1058 *realnump = -1;
1059 if (valuep)
1060 {
1061 /* Read the value in from memory. */
1062 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1063 }
1064 break;
1065
1066 case DWARF2_FRAME_REG_SAVED_REG:
1067 *optimizedp = 0;
1068 *lvalp = lval_register;
1069 *addrp = 0;
1070 *realnump = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
1071 if (valuep)
1072 frame_unwind_register (next_frame, (*realnump), valuep);
1073 break;
1074
1075 case DWARF2_FRAME_REG_SAVED_EXP:
1076 *optimizedp = 0;
1077 *lvalp = lval_memory;
1078 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
1079 cache->reg[regnum].exp_len,
1080 next_frame, cache->cfa);
1081 *realnump = -1;
1082 if (valuep)
1083 {
1084 /* Read the value in from memory. */
1085 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1086 }
1087 break;
1088
1089 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1090 *optimizedp = 0;
1091 *lvalp = not_lval;
1092 *addrp = 0;
1093 *realnump = -1;
1094 if (valuep)
1095 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1096 cache->cfa + cache->reg[regnum].loc.offset);
1097 break;
1098
1099 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1100 *optimizedp = 0;
1101 *lvalp = not_lval;
1102 *addrp = 0;
1103 *realnump = -1;
1104 if (valuep)
1105 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1106 execute_stack_op (cache->reg[regnum].loc.exp,
1107 cache->reg[regnum].exp_len,
1108 next_frame, cache->cfa));
1109 break;
1110
1111 case DWARF2_FRAME_REG_UNSPECIFIED:
1112 /* GCC, in its infinite wisdom decided to not provide unwind
1113 information for registers that are "same value". Since
1114 DWARF2 (3 draft 7) doesn't define such behavior, said
1115 registers are actually undefined (which is different to CFI
1116 "undefined"). Code above issues a complaint about this.
1117 Here just fudge the books, assume GCC, and that the value is
1118 more inner on the stack. */
1119 *optimizedp = 0;
1120 *lvalp = lval_register;
1121 *addrp = 0;
1122 *realnump = regnum;
1123 if (valuep)
1124 frame_unwind_register (next_frame, (*realnump), valuep);
1125 break;
1126
1127 case DWARF2_FRAME_REG_SAME_VALUE:
1128 *optimizedp = 0;
1129 *lvalp = lval_register;
1130 *addrp = 0;
1131 *realnump = regnum;
1132 if (valuep)
1133 frame_unwind_register (next_frame, (*realnump), valuep);
1134 break;
1135
1136 case DWARF2_FRAME_REG_CFA:
1137 *optimizedp = 0;
1138 *lvalp = not_lval;
1139 *addrp = 0;
1140 *realnump = -1;
1141 if (valuep)
1142 pack_long (valuep, register_type (gdbarch, regnum), cache->cfa);
1143 break;
1144
1145 case DWARF2_FRAME_REG_CFA_OFFSET:
1146 *optimizedp = 0;
1147 *lvalp = not_lval;
1148 *addrp = 0;
1149 *realnump = -1;
1150 if (valuep)
1151 pack_long (valuep, register_type (gdbarch, regnum),
1152 cache->cfa + cache->reg[regnum].loc.offset);
1153 break;
1154
1155 case DWARF2_FRAME_REG_RA_OFFSET:
1156 *optimizedp = 0;
1157 *lvalp = not_lval;
1158 *addrp = 0;
1159 *realnump = -1;
1160 if (valuep)
1161 {
1162 CORE_ADDR pc = cache->reg[regnum].loc.offset;
1163
1164 regnum = DWARF2_REG_TO_REGNUM (cache->retaddr_reg.loc.reg);
1165 pc += frame_unwind_register_unsigned (next_frame, regnum);
1166 pack_long (valuep, register_type (gdbarch, regnum), pc);
1167 }
1168 break;
1169
1170 default:
1171 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1172 }
1173 }
1174
1175 static const struct frame_unwind dwarf2_frame_unwind =
1176 {
1177 NORMAL_FRAME,
1178 dwarf2_frame_this_id,
1179 dwarf2_frame_prev_register
1180 };
1181
1182 static const struct frame_unwind dwarf2_signal_frame_unwind =
1183 {
1184 SIGTRAMP_FRAME,
1185 dwarf2_signal_frame_this_id,
1186 dwarf2_frame_prev_register
1187 };
1188
1189 const struct frame_unwind *
1190 dwarf2_frame_sniffer (struct frame_info *next_frame)
1191 {
1192 /* Grab an address that is guarenteed to reside somewhere within the
1193 function. frame_pc_unwind(), for a no-return next function, can
1194 end up returning something past the end of this function's body.
1195 If the frame we're sniffing for is a signal frame whose start
1196 address is placed on the stack by the OS, its FDE must
1197 extend one byte before its start address or we will miss it. */
1198 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1199 NORMAL_FRAME);
1200 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1201 if (!fde)
1202 return NULL;
1203
1204 /* On some targets, signal trampolines may have unwind information.
1205 We need to recognize them so that we set the frame type
1206 correctly. */
1207
1208 if (fde->cie->signal_frame
1209 || dwarf2_frame_signal_frame_p (get_frame_arch (next_frame),
1210 next_frame))
1211 return &dwarf2_signal_frame_unwind;
1212
1213 return &dwarf2_frame_unwind;
1214 }
1215 \f
1216
1217 /* There is no explicitly defined relationship between the CFA and the
1218 location of frame's local variables and arguments/parameters.
1219 Therefore, frame base methods on this page should probably only be
1220 used as a last resort, just to avoid printing total garbage as a
1221 response to the "info frame" command. */
1222
1223 static CORE_ADDR
1224 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
1225 {
1226 struct dwarf2_frame_cache *cache =
1227 dwarf2_frame_cache (next_frame, this_cache);
1228
1229 return cache->cfa;
1230 }
1231
1232 static const struct frame_base dwarf2_frame_base =
1233 {
1234 &dwarf2_frame_unwind,
1235 dwarf2_frame_base_address,
1236 dwarf2_frame_base_address,
1237 dwarf2_frame_base_address
1238 };
1239
1240 const struct frame_base *
1241 dwarf2_frame_base_sniffer (struct frame_info *next_frame)
1242 {
1243 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1244 NORMAL_FRAME);
1245 if (dwarf2_frame_find_fde (&block_addr))
1246 return &dwarf2_frame_base;
1247
1248 return NULL;
1249 }
1250 \f
1251 /* A minimal decoding of DWARF2 compilation units. We only decode
1252 what's needed to get to the call frame information. */
1253
1254 struct comp_unit
1255 {
1256 /* Keep the bfd convenient. */
1257 bfd *abfd;
1258
1259 struct objfile *objfile;
1260
1261 /* Linked list of CIEs for this object. */
1262 struct dwarf2_cie *cie;
1263
1264 /* Pointer to the .debug_frame section loaded into memory. */
1265 gdb_byte *dwarf_frame_buffer;
1266
1267 /* Length of the loaded .debug_frame section. */
1268 unsigned long dwarf_frame_size;
1269
1270 /* Pointer to the .debug_frame section. */
1271 asection *dwarf_frame_section;
1272
1273 /* Base for DW_EH_PE_datarel encodings. */
1274 bfd_vma dbase;
1275
1276 /* Base for DW_EH_PE_textrel encodings. */
1277 bfd_vma tbase;
1278 };
1279
1280 const struct objfile_data *dwarf2_frame_objfile_data;
1281
1282 static unsigned int
1283 read_1_byte (bfd *abfd, gdb_byte *buf)
1284 {
1285 return bfd_get_8 (abfd, buf);
1286 }
1287
1288 static unsigned int
1289 read_4_bytes (bfd *abfd, gdb_byte *buf)
1290 {
1291 return bfd_get_32 (abfd, buf);
1292 }
1293
1294 static ULONGEST
1295 read_8_bytes (bfd *abfd, gdb_byte *buf)
1296 {
1297 return bfd_get_64 (abfd, buf);
1298 }
1299
1300 static ULONGEST
1301 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1302 {
1303 ULONGEST result;
1304 unsigned int num_read;
1305 int shift;
1306 gdb_byte byte;
1307
1308 result = 0;
1309 shift = 0;
1310 num_read = 0;
1311
1312 do
1313 {
1314 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1315 buf++;
1316 num_read++;
1317 result |= ((byte & 0x7f) << shift);
1318 shift += 7;
1319 }
1320 while (byte & 0x80);
1321
1322 *bytes_read_ptr = num_read;
1323
1324 return result;
1325 }
1326
1327 static LONGEST
1328 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1329 {
1330 LONGEST result;
1331 int shift;
1332 unsigned int num_read;
1333 gdb_byte byte;
1334
1335 result = 0;
1336 shift = 0;
1337 num_read = 0;
1338
1339 do
1340 {
1341 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1342 buf++;
1343 num_read++;
1344 result |= ((byte & 0x7f) << shift);
1345 shift += 7;
1346 }
1347 while (byte & 0x80);
1348
1349 if (shift < 8 * sizeof (result) && (byte & 0x40))
1350 result |= -(((LONGEST)1) << shift);
1351
1352 *bytes_read_ptr = num_read;
1353
1354 return result;
1355 }
1356
1357 static ULONGEST
1358 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1359 {
1360 LONGEST result;
1361
1362 result = bfd_get_32 (abfd, buf);
1363 if (result == 0xffffffff)
1364 {
1365 result = bfd_get_64 (abfd, buf + 4);
1366 *bytes_read_ptr = 12;
1367 }
1368 else
1369 *bytes_read_ptr = 4;
1370
1371 return result;
1372 }
1373 \f
1374
1375 /* Pointer encoding helper functions. */
1376
1377 /* GCC supports exception handling based on DWARF2 CFI. However, for
1378 technical reasons, it encodes addresses in its FDE's in a different
1379 way. Several "pointer encodings" are supported. The encoding
1380 that's used for a particular FDE is determined by the 'R'
1381 augmentation in the associated CIE. The argument of this
1382 augmentation is a single byte.
1383
1384 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1385 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1386 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1387 address should be interpreted (absolute, relative to the current
1388 position in the FDE, ...). Bit 7, indicates that the address
1389 should be dereferenced. */
1390
1391 static gdb_byte
1392 encoding_for_size (unsigned int size)
1393 {
1394 switch (size)
1395 {
1396 case 2:
1397 return DW_EH_PE_udata2;
1398 case 4:
1399 return DW_EH_PE_udata4;
1400 case 8:
1401 return DW_EH_PE_udata8;
1402 default:
1403 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1404 }
1405 }
1406
1407 static unsigned int
1408 size_of_encoded_value (gdb_byte encoding)
1409 {
1410 if (encoding == DW_EH_PE_omit)
1411 return 0;
1412
1413 switch (encoding & 0x07)
1414 {
1415 case DW_EH_PE_absptr:
1416 return TYPE_LENGTH (builtin_type_void_data_ptr);
1417 case DW_EH_PE_udata2:
1418 return 2;
1419 case DW_EH_PE_udata4:
1420 return 4;
1421 case DW_EH_PE_udata8:
1422 return 8;
1423 default:
1424 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1425 }
1426 }
1427
1428 static CORE_ADDR
1429 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1430 gdb_byte *buf, unsigned int *bytes_read_ptr)
1431 {
1432 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1433 ptrdiff_t offset;
1434 CORE_ADDR base;
1435
1436 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1437 FDE's. */
1438 if (encoding & DW_EH_PE_indirect)
1439 internal_error (__FILE__, __LINE__,
1440 _("Unsupported encoding: DW_EH_PE_indirect"));
1441
1442 *bytes_read_ptr = 0;
1443
1444 switch (encoding & 0x70)
1445 {
1446 case DW_EH_PE_absptr:
1447 base = 0;
1448 break;
1449 case DW_EH_PE_pcrel:
1450 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1451 base += (buf - unit->dwarf_frame_buffer);
1452 break;
1453 case DW_EH_PE_datarel:
1454 base = unit->dbase;
1455 break;
1456 case DW_EH_PE_textrel:
1457 base = unit->tbase;
1458 break;
1459 case DW_EH_PE_funcrel:
1460 /* FIXME: kettenis/20040501: For now just pretend
1461 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1462 reading the initial location of an FDE it should be treated
1463 as such, and currently that's the only place where this code
1464 is used. */
1465 base = 0;
1466 break;
1467 case DW_EH_PE_aligned:
1468 base = 0;
1469 offset = buf - unit->dwarf_frame_buffer;
1470 if ((offset % ptr_len) != 0)
1471 {
1472 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1473 buf += *bytes_read_ptr;
1474 }
1475 break;
1476 default:
1477 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1478 }
1479
1480 if ((encoding & 0x07) == 0x00)
1481 {
1482 encoding |= encoding_for_size (ptr_len);
1483 if (bfd_get_sign_extend_vma (unit->abfd))
1484 encoding |= DW_EH_PE_signed;
1485 }
1486
1487 switch (encoding & 0x0f)
1488 {
1489 case DW_EH_PE_uleb128:
1490 {
1491 ULONGEST value;
1492 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1493 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1494 return base + value;
1495 }
1496 case DW_EH_PE_udata2:
1497 *bytes_read_ptr += 2;
1498 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1499 case DW_EH_PE_udata4:
1500 *bytes_read_ptr += 4;
1501 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1502 case DW_EH_PE_udata8:
1503 *bytes_read_ptr += 8;
1504 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1505 case DW_EH_PE_sleb128:
1506 {
1507 LONGEST value;
1508 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1509 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1510 return base + value;
1511 }
1512 case DW_EH_PE_sdata2:
1513 *bytes_read_ptr += 2;
1514 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1515 case DW_EH_PE_sdata4:
1516 *bytes_read_ptr += 4;
1517 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1518 case DW_EH_PE_sdata8:
1519 *bytes_read_ptr += 8;
1520 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1521 default:
1522 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1523 }
1524 }
1525 \f
1526
1527 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1528 That's why we use a simple linked list here. */
1529
1530 static struct dwarf2_cie *
1531 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1532 {
1533 struct dwarf2_cie *cie = unit->cie;
1534
1535 while (cie)
1536 {
1537 if (cie->cie_pointer == cie_pointer)
1538 return cie;
1539
1540 cie = cie->next;
1541 }
1542
1543 return NULL;
1544 }
1545
1546 static void
1547 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1548 {
1549 cie->next = unit->cie;
1550 unit->cie = cie;
1551 }
1552
1553 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1554 inital location associated with it into *PC. */
1555
1556 static struct dwarf2_fde *
1557 dwarf2_frame_find_fde (CORE_ADDR *pc)
1558 {
1559 struct objfile *objfile;
1560
1561 ALL_OBJFILES (objfile)
1562 {
1563 struct dwarf2_fde *fde;
1564 CORE_ADDR offset;
1565
1566 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1567 if (fde == NULL)
1568 continue;
1569
1570 gdb_assert (objfile->section_offsets);
1571 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1572
1573 while (fde)
1574 {
1575 if (*pc >= fde->initial_location + offset
1576 && *pc < fde->initial_location + offset + fde->address_range)
1577 {
1578 *pc = fde->initial_location + offset;
1579 return fde;
1580 }
1581
1582 fde = fde->next;
1583 }
1584 }
1585
1586 return NULL;
1587 }
1588
1589 static void
1590 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1591 {
1592 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1593 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1594 }
1595
1596 #ifdef CC_HAS_LONG_LONG
1597 #define DW64_CIE_ID 0xffffffffffffffffULL
1598 #else
1599 #define DW64_CIE_ID ~0
1600 #endif
1601
1602 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1603 int eh_frame_p);
1604
1605 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1606 the next byte to be processed. */
1607 static gdb_byte *
1608 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1609 {
1610 gdb_byte *buf, *end;
1611 LONGEST length;
1612 unsigned int bytes_read;
1613 int dwarf64_p;
1614 ULONGEST cie_id;
1615 ULONGEST cie_pointer;
1616
1617 buf = start;
1618 length = read_initial_length (unit->abfd, buf, &bytes_read);
1619 buf += bytes_read;
1620 end = buf + length;
1621
1622 /* Are we still within the section? */
1623 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1624 return NULL;
1625
1626 if (length == 0)
1627 return end;
1628
1629 /* Distinguish between 32 and 64-bit encoded frame info. */
1630 dwarf64_p = (bytes_read == 12);
1631
1632 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1633 if (eh_frame_p)
1634 cie_id = 0;
1635 else if (dwarf64_p)
1636 cie_id = DW64_CIE_ID;
1637 else
1638 cie_id = DW_CIE_ID;
1639
1640 if (dwarf64_p)
1641 {
1642 cie_pointer = read_8_bytes (unit->abfd, buf);
1643 buf += 8;
1644 }
1645 else
1646 {
1647 cie_pointer = read_4_bytes (unit->abfd, buf);
1648 buf += 4;
1649 }
1650
1651 if (cie_pointer == cie_id)
1652 {
1653 /* This is a CIE. */
1654 struct dwarf2_cie *cie;
1655 char *augmentation;
1656 unsigned int cie_version;
1657
1658 /* Record the offset into the .debug_frame section of this CIE. */
1659 cie_pointer = start - unit->dwarf_frame_buffer;
1660
1661 /* Check whether we've already read it. */
1662 if (find_cie (unit, cie_pointer))
1663 return end;
1664
1665 cie = (struct dwarf2_cie *)
1666 obstack_alloc (&unit->objfile->objfile_obstack,
1667 sizeof (struct dwarf2_cie));
1668 cie->initial_instructions = NULL;
1669 cie->cie_pointer = cie_pointer;
1670
1671 /* The encoding for FDE's in a normal .debug_frame section
1672 depends on the target address size. */
1673 cie->encoding = DW_EH_PE_absptr;
1674
1675 /* We'll determine the final value later, but we need to
1676 initialize it conservatively. */
1677 cie->signal_frame = 0;
1678
1679 /* Check version number. */
1680 cie_version = read_1_byte (unit->abfd, buf);
1681 if (cie_version != 1 && cie_version != 3)
1682 return NULL;
1683 cie->version = cie_version;
1684 buf += 1;
1685
1686 /* Interpret the interesting bits of the augmentation. */
1687 cie->augmentation = augmentation = (char *) buf;
1688 buf += (strlen (augmentation) + 1);
1689
1690 /* Ignore armcc augmentations. We only use them for quirks,
1691 and that doesn't happen until later. */
1692 if (strncmp (augmentation, "armcc", 5) == 0)
1693 augmentation += strlen (augmentation);
1694
1695 /* The GCC 2.x "eh" augmentation has a pointer immediately
1696 following the augmentation string, so it must be handled
1697 first. */
1698 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1699 {
1700 /* Skip. */
1701 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1702 augmentation += 2;
1703 }
1704
1705 cie->code_alignment_factor =
1706 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1707 buf += bytes_read;
1708
1709 cie->data_alignment_factor =
1710 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1711 buf += bytes_read;
1712
1713 if (cie_version == 1)
1714 {
1715 cie->return_address_register = read_1_byte (unit->abfd, buf);
1716 bytes_read = 1;
1717 }
1718 else
1719 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1720 &bytes_read);
1721 cie->return_address_register
1722 = dwarf2_frame_adjust_regnum (current_gdbarch,
1723 cie->return_address_register,
1724 eh_frame_p);
1725
1726 buf += bytes_read;
1727
1728 cie->saw_z_augmentation = (*augmentation == 'z');
1729 if (cie->saw_z_augmentation)
1730 {
1731 ULONGEST length;
1732
1733 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1734 buf += bytes_read;
1735 if (buf > end)
1736 return NULL;
1737 cie->initial_instructions = buf + length;
1738 augmentation++;
1739 }
1740
1741 while (*augmentation)
1742 {
1743 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1744 if (*augmentation == 'L')
1745 {
1746 /* Skip. */
1747 buf++;
1748 augmentation++;
1749 }
1750
1751 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1752 else if (*augmentation == 'R')
1753 {
1754 cie->encoding = *buf++;
1755 augmentation++;
1756 }
1757
1758 /* "P" indicates a personality routine in the CIE augmentation. */
1759 else if (*augmentation == 'P')
1760 {
1761 /* Skip. Avoid indirection since we throw away the result. */
1762 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1763 read_encoded_value (unit, encoding, buf, &bytes_read);
1764 buf += bytes_read;
1765 augmentation++;
1766 }
1767
1768 /* "S" indicates a signal frame, such that the return
1769 address must not be decremented to locate the call frame
1770 info for the previous frame; it might even be the first
1771 instruction of a function, so decrementing it would take
1772 us to a different function. */
1773 else if (*augmentation == 'S')
1774 {
1775 cie->signal_frame = 1;
1776 augmentation++;
1777 }
1778
1779 /* Otherwise we have an unknown augmentation. Assume that either
1780 there is no augmentation data, or we saw a 'z' prefix. */
1781 else
1782 {
1783 if (cie->initial_instructions)
1784 buf = cie->initial_instructions;
1785 break;
1786 }
1787 }
1788
1789 cie->initial_instructions = buf;
1790 cie->end = end;
1791
1792 add_cie (unit, cie);
1793 }
1794 else
1795 {
1796 /* This is a FDE. */
1797 struct dwarf2_fde *fde;
1798
1799 /* In an .eh_frame section, the CIE pointer is the delta between the
1800 address within the FDE where the CIE pointer is stored and the
1801 address of the CIE. Convert it to an offset into the .eh_frame
1802 section. */
1803 if (eh_frame_p)
1804 {
1805 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1806 cie_pointer -= (dwarf64_p ? 8 : 4);
1807 }
1808
1809 /* In either case, validate the result is still within the section. */
1810 if (cie_pointer >= unit->dwarf_frame_size)
1811 return NULL;
1812
1813 fde = (struct dwarf2_fde *)
1814 obstack_alloc (&unit->objfile->objfile_obstack,
1815 sizeof (struct dwarf2_fde));
1816 fde->cie = find_cie (unit, cie_pointer);
1817 if (fde->cie == NULL)
1818 {
1819 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1820 eh_frame_p);
1821 fde->cie = find_cie (unit, cie_pointer);
1822 }
1823
1824 gdb_assert (fde->cie != NULL);
1825
1826 fde->initial_location =
1827 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1828 buf += bytes_read;
1829
1830 fde->address_range =
1831 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1832 buf += bytes_read;
1833
1834 /* A 'z' augmentation in the CIE implies the presence of an
1835 augmentation field in the FDE as well. The only thing known
1836 to be in here at present is the LSDA entry for EH. So we
1837 can skip the whole thing. */
1838 if (fde->cie->saw_z_augmentation)
1839 {
1840 ULONGEST length;
1841
1842 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1843 buf += bytes_read + length;
1844 if (buf > end)
1845 return NULL;
1846 }
1847
1848 fde->instructions = buf;
1849 fde->end = end;
1850
1851 fde->eh_frame_p = eh_frame_p;
1852
1853 add_fde (unit, fde);
1854 }
1855
1856 return end;
1857 }
1858
1859 /* Read a CIE or FDE in BUF and decode it. */
1860 static gdb_byte *
1861 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1862 {
1863 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1864 gdb_byte *ret;
1865 const char *msg;
1866 ptrdiff_t start_offset;
1867
1868 while (1)
1869 {
1870 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1871 if (ret != NULL)
1872 break;
1873
1874 /* We have corrupt input data of some form. */
1875
1876 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1877 and mismatches wrt padding and alignment of debug sections. */
1878 /* Note that there is no requirement in the standard for any
1879 alignment at all in the frame unwind sections. Testing for
1880 alignment before trying to interpret data would be incorrect.
1881
1882 However, GCC traditionally arranged for frame sections to be
1883 sized such that the FDE length and CIE fields happen to be
1884 aligned (in theory, for performance). This, unfortunately,
1885 was done with .align directives, which had the side effect of
1886 forcing the section to be aligned by the linker.
1887
1888 This becomes a problem when you have some other producer that
1889 creates frame sections that are not as strictly aligned. That
1890 produces a hole in the frame info that gets filled by the
1891 linker with zeros.
1892
1893 The GCC behaviour is arguably a bug, but it's effectively now
1894 part of the ABI, so we're now stuck with it, at least at the
1895 object file level. A smart linker may decide, in the process
1896 of compressing duplicate CIE information, that it can rewrite
1897 the entire output section without this extra padding. */
1898
1899 start_offset = start - unit->dwarf_frame_buffer;
1900 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1901 {
1902 start += 4 - (start_offset & 3);
1903 workaround = ALIGN4;
1904 continue;
1905 }
1906 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1907 {
1908 start += 8 - (start_offset & 7);
1909 workaround = ALIGN8;
1910 continue;
1911 }
1912
1913 /* Nothing left to try. Arrange to return as if we've consumed
1914 the entire input section. Hopefully we'll get valid info from
1915 the other of .debug_frame/.eh_frame. */
1916 workaround = FAIL;
1917 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1918 break;
1919 }
1920
1921 switch (workaround)
1922 {
1923 case NONE:
1924 break;
1925
1926 case ALIGN4:
1927 complaint (&symfile_complaints,
1928 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1929 unit->dwarf_frame_section->owner->filename,
1930 unit->dwarf_frame_section->name);
1931 break;
1932
1933 case ALIGN8:
1934 complaint (&symfile_complaints,
1935 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1936 unit->dwarf_frame_section->owner->filename,
1937 unit->dwarf_frame_section->name);
1938 break;
1939
1940 default:
1941 complaint (&symfile_complaints,
1942 _("Corrupt data in %s:%s"),
1943 unit->dwarf_frame_section->owner->filename,
1944 unit->dwarf_frame_section->name);
1945 break;
1946 }
1947
1948 return ret;
1949 }
1950 \f
1951
1952 /* FIXME: kettenis/20030504: This still needs to be integrated with
1953 dwarf2read.c in a better way. */
1954
1955 /* Imported from dwarf2read.c. */
1956 extern asection *dwarf_frame_section;
1957 extern asection *dwarf_eh_frame_section;
1958
1959 /* Imported from dwarf2read.c. */
1960 extern gdb_byte *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1961
1962 void
1963 dwarf2_build_frame_info (struct objfile *objfile)
1964 {
1965 struct comp_unit unit;
1966 gdb_byte *frame_ptr;
1967
1968 /* Build a minimal decoding of the DWARF2 compilation unit. */
1969 unit.abfd = objfile->obfd;
1970 unit.objfile = objfile;
1971 unit.dbase = 0;
1972 unit.tbase = 0;
1973
1974 /* First add the information from the .eh_frame section. That way,
1975 the FDEs from that section are searched last. */
1976 if (dwarf_eh_frame_section)
1977 {
1978 asection *got, *txt;
1979
1980 unit.cie = NULL;
1981 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1982 dwarf_eh_frame_section);
1983
1984 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
1985 unit.dwarf_frame_section = dwarf_eh_frame_section;
1986
1987 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1988 that is used for the i386/amd64 target, which currently is
1989 the only target in GCC that supports/uses the
1990 DW_EH_PE_datarel encoding. */
1991 got = bfd_get_section_by_name (unit.abfd, ".got");
1992 if (got)
1993 unit.dbase = got->vma;
1994
1995 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1996 so far. */
1997 txt = bfd_get_section_by_name (unit.abfd, ".text");
1998 if (txt)
1999 unit.tbase = txt->vma;
2000
2001 frame_ptr = unit.dwarf_frame_buffer;
2002 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2003 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
2004 }
2005
2006 if (dwarf_frame_section)
2007 {
2008 unit.cie = NULL;
2009 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
2010 dwarf_frame_section);
2011 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
2012 unit.dwarf_frame_section = dwarf_frame_section;
2013
2014 frame_ptr = unit.dwarf_frame_buffer;
2015 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2016 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
2017 }
2018 }
2019
2020 /* Provide a prototype to silence -Wmissing-prototypes. */
2021 void _initialize_dwarf2_frame (void);
2022
2023 void
2024 _initialize_dwarf2_frame (void)
2025 {
2026 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2027 dwarf2_frame_objfile_data = register_objfile_data ();
2028 }