cleanup: use value_lazy_at instead of allocate_value_lazy/attribute setter
[binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "exceptions.h"
34 #include "block.h"
35 #include "gdbcmd.h"
36
37 #include "dwarf2.h"
38 #include "dwarf2expr.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame.h"
41
42 #include "gdb_string.h"
43 #include "gdb_assert.h"
44
45 extern int dwarf2_always_disassemble;
46
47 static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
48 const gdb_byte **start, size_t *length);
49
50 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
51
52 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
53 struct frame_info *frame,
54 const gdb_byte *data,
55 size_t size,
56 struct dwarf2_per_cu_data *per_cu,
57 LONGEST byte_offset);
58
59 /* Until these have formal names, we define these here.
60 ref: http://gcc.gnu.org/wiki/DebugFission
61 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
62 and is then followed by data specific to that entry. */
63
64 enum debug_loc_kind
65 {
66 /* Indicates the end of the list of entries. */
67 DEBUG_LOC_END_OF_LIST = 0,
68
69 /* This is followed by an unsigned LEB128 number that is an index into
70 .debug_addr and specifies the base address for all following entries. */
71 DEBUG_LOC_BASE_ADDRESS = 1,
72
73 /* This is followed by two unsigned LEB128 numbers that are indices into
74 .debug_addr and specify the beginning and ending addresses, and then
75 a normal location expression as in .debug_loc. */
76 DEBUG_LOC_START_END = 2,
77
78 /* This is followed by an unsigned LEB128 number that is an index into
79 .debug_addr and specifies the beginning address, and a 4 byte unsigned
80 number that specifies the length, and then a normal location expression
81 as in .debug_loc. */
82 DEBUG_LOC_START_LENGTH = 3,
83
84 /* An internal value indicating there is insufficient data. */
85 DEBUG_LOC_BUFFER_OVERFLOW = -1,
86
87 /* An internal value indicating an invalid kind of entry was found. */
88 DEBUG_LOC_INVALID_ENTRY = -2
89 };
90
91 /* Helper function which throws an error if a synthetic pointer is
92 invalid. */
93
94 static void
95 invalid_synthetic_pointer (void)
96 {
97 error (_("access outside bounds of object "
98 "referenced via synthetic pointer"));
99 }
100
101 /* Decode the addresses in a non-dwo .debug_loc entry.
102 A pointer to the next byte to examine is returned in *NEW_PTR.
103 The encoded low,high addresses are return in *LOW,*HIGH.
104 The result indicates the kind of entry found. */
105
106 static enum debug_loc_kind
107 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
108 const gdb_byte **new_ptr,
109 CORE_ADDR *low, CORE_ADDR *high,
110 enum bfd_endian byte_order,
111 unsigned int addr_size,
112 int signed_addr_p)
113 {
114 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
115
116 if (buf_end - loc_ptr < 2 * addr_size)
117 return DEBUG_LOC_BUFFER_OVERFLOW;
118
119 if (signed_addr_p)
120 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
121 else
122 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
124
125 if (signed_addr_p)
126 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
127 else
128 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
129 loc_ptr += addr_size;
130
131 *new_ptr = loc_ptr;
132
133 /* A base-address-selection entry. */
134 if ((*low & base_mask) == base_mask)
135 return DEBUG_LOC_BASE_ADDRESS;
136
137 /* An end-of-list entry. */
138 if (*low == 0 && *high == 0)
139 return DEBUG_LOC_END_OF_LIST;
140
141 return DEBUG_LOC_START_END;
142 }
143
144 /* Decode the addresses in .debug_loc.dwo entry.
145 A pointer to the next byte to examine is returned in *NEW_PTR.
146 The encoded low,high addresses are return in *LOW,*HIGH.
147 The result indicates the kind of entry found. */
148
149 static enum debug_loc_kind
150 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
151 const gdb_byte *loc_ptr,
152 const gdb_byte *buf_end,
153 const gdb_byte **new_ptr,
154 CORE_ADDR *low, CORE_ADDR *high,
155 enum bfd_endian byte_order)
156 {
157 uint64_t low_index, high_index;
158
159 if (loc_ptr == buf_end)
160 return DEBUG_LOC_BUFFER_OVERFLOW;
161
162 switch (*loc_ptr++)
163 {
164 case DEBUG_LOC_END_OF_LIST:
165 *new_ptr = loc_ptr;
166 return DEBUG_LOC_END_OF_LIST;
167 case DEBUG_LOC_BASE_ADDRESS:
168 *low = 0;
169 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
170 if (loc_ptr == NULL)
171 return DEBUG_LOC_BUFFER_OVERFLOW;
172 *high = dwarf2_read_addr_index (per_cu, high_index);
173 *new_ptr = loc_ptr;
174 return DEBUG_LOC_BASE_ADDRESS;
175 case DEBUG_LOC_START_END:
176 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
177 if (loc_ptr == NULL)
178 return DEBUG_LOC_BUFFER_OVERFLOW;
179 *low = dwarf2_read_addr_index (per_cu, low_index);
180 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
181 if (loc_ptr == NULL)
182 return DEBUG_LOC_BUFFER_OVERFLOW;
183 *high = dwarf2_read_addr_index (per_cu, high_index);
184 *new_ptr = loc_ptr;
185 return DEBUG_LOC_START_END;
186 case DEBUG_LOC_START_LENGTH:
187 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
188 if (loc_ptr == NULL)
189 return DEBUG_LOC_BUFFER_OVERFLOW;
190 *low = dwarf2_read_addr_index (per_cu, low_index);
191 if (loc_ptr + 4 > buf_end)
192 return DEBUG_LOC_BUFFER_OVERFLOW;
193 *high = *low;
194 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
195 *new_ptr = loc_ptr + 4;
196 return DEBUG_LOC_START_LENGTH;
197 default:
198 return DEBUG_LOC_INVALID_ENTRY;
199 }
200 }
201
202 /* A function for dealing with location lists. Given a
203 symbol baton (BATON) and a pc value (PC), find the appropriate
204 location expression, set *LOCEXPR_LENGTH, and return a pointer
205 to the beginning of the expression. Returns NULL on failure.
206
207 For now, only return the first matching location expression; there
208 can be more than one in the list. */
209
210 const gdb_byte *
211 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
212 size_t *locexpr_length, CORE_ADDR pc)
213 {
214 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
215 struct gdbarch *gdbarch = get_objfile_arch (objfile);
216 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
217 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
218 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
219 /* Adjust base_address for relocatable objects. */
220 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
221 CORE_ADDR base_address = baton->base_address + base_offset;
222 const gdb_byte *loc_ptr, *buf_end;
223
224 loc_ptr = baton->data;
225 buf_end = baton->data + baton->size;
226
227 while (1)
228 {
229 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
230 int length;
231 enum debug_loc_kind kind;
232 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
233
234 if (baton->from_dwo)
235 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
236 loc_ptr, buf_end, &new_ptr,
237 &low, &high, byte_order);
238 else
239 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
240 &low, &high,
241 byte_order, addr_size,
242 signed_addr_p);
243 loc_ptr = new_ptr;
244 switch (kind)
245 {
246 case DEBUG_LOC_END_OF_LIST:
247 *locexpr_length = 0;
248 return NULL;
249 case DEBUG_LOC_BASE_ADDRESS:
250 base_address = high + base_offset;
251 continue;
252 case DEBUG_LOC_START_END:
253 case DEBUG_LOC_START_LENGTH:
254 break;
255 case DEBUG_LOC_BUFFER_OVERFLOW:
256 case DEBUG_LOC_INVALID_ENTRY:
257 error (_("dwarf2_find_location_expression: "
258 "Corrupted DWARF expression."));
259 default:
260 gdb_assert_not_reached ("bad debug_loc_kind");
261 }
262
263 /* Otherwise, a location expression entry.
264 If the entry is from a DWO, don't add base address: the entry is
265 from .debug_addr which has absolute addresses. */
266 if (! baton->from_dwo)
267 {
268 low += base_address;
269 high += base_address;
270 }
271
272 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
273 loc_ptr += 2;
274
275 if (low == high && pc == low)
276 {
277 /* This is entry PC record present only at entry point
278 of a function. Verify it is really the function entry point. */
279
280 struct block *pc_block = block_for_pc (pc);
281 struct symbol *pc_func = NULL;
282
283 if (pc_block)
284 pc_func = block_linkage_function (pc_block);
285
286 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
287 {
288 *locexpr_length = length;
289 return loc_ptr;
290 }
291 }
292
293 if (pc >= low && pc < high)
294 {
295 *locexpr_length = length;
296 return loc_ptr;
297 }
298
299 loc_ptr += length;
300 }
301 }
302
303 /* This is the baton used when performing dwarf2 expression
304 evaluation. */
305 struct dwarf_expr_baton
306 {
307 struct frame_info *frame;
308 struct dwarf2_per_cu_data *per_cu;
309 };
310
311 /* Helper functions for dwarf2_evaluate_loc_desc. */
312
313 /* Using the frame specified in BATON, return the value of register
314 REGNUM, treated as a pointer. */
315 static CORE_ADDR
316 dwarf_expr_read_reg (void *baton, int dwarf_regnum)
317 {
318 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
319 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
320 CORE_ADDR result;
321 int regnum;
322
323 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
324 result = address_from_register (builtin_type (gdbarch)->builtin_data_ptr,
325 regnum, debaton->frame);
326 return result;
327 }
328
329 /* Read memory at ADDR (length LEN) into BUF. */
330
331 static void
332 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
333 {
334 read_memory (addr, buf, len);
335 }
336
337 /* Using the frame specified in BATON, find the location expression
338 describing the frame base. Return a pointer to it in START and
339 its length in LENGTH. */
340 static void
341 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
342 {
343 /* FIXME: cagney/2003-03-26: This code should be using
344 get_frame_base_address(), and then implement a dwarf2 specific
345 this_base method. */
346 struct symbol *framefunc;
347 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
348 struct block *bl = get_frame_block (debaton->frame, NULL);
349
350 if (bl == NULL)
351 error (_("frame address is not available."));
352
353 /* Use block_linkage_function, which returns a real (not inlined)
354 function, instead of get_frame_function, which may return an
355 inlined function. */
356 framefunc = block_linkage_function (bl);
357
358 /* If we found a frame-relative symbol then it was certainly within
359 some function associated with a frame. If we can't find the frame,
360 something has gone wrong. */
361 gdb_assert (framefunc != NULL);
362
363 dwarf_expr_frame_base_1 (framefunc,
364 get_frame_address_in_block (debaton->frame),
365 start, length);
366 }
367
368 /* Implement find_frame_base_location method for LOC_BLOCK functions using
369 DWARF expression for its DW_AT_frame_base. */
370
371 static void
372 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
373 const gdb_byte **start, size_t *length)
374 {
375 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
376
377 *length = symbaton->size;
378 *start = symbaton->data;
379 }
380
381 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
382 function uses DWARF expression for its DW_AT_frame_base. */
383
384 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
385 {
386 locexpr_find_frame_base_location
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF location list for its DW_AT_frame_base. */
391
392 static void
393 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
397
398 *start = dwarf2_find_location_expression (symbaton, length, pc);
399 }
400
401 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
402 function uses DWARF location list for its DW_AT_frame_base. */
403
404 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
405 {
406 loclist_find_frame_base_location
407 };
408
409 static void
410 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
411 const gdb_byte **start, size_t *length)
412 {
413 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
414 {
415 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
416
417 ops_block->find_frame_base_location (framefunc, pc, start, length);
418 }
419 else
420 *length = 0;
421
422 if (*length == 0)
423 error (_("Could not find the frame base for \"%s\"."),
424 SYMBOL_NATURAL_NAME (framefunc));
425 }
426
427 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
428 the frame in BATON. */
429
430 static CORE_ADDR
431 dwarf_expr_frame_cfa (void *baton)
432 {
433 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
434
435 return dwarf2_frame_cfa (debaton->frame);
436 }
437
438 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
439 the frame in BATON. */
440
441 static CORE_ADDR
442 dwarf_expr_frame_pc (void *baton)
443 {
444 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
445
446 return get_frame_address_in_block (debaton->frame);
447 }
448
449 /* Using the objfile specified in BATON, find the address for the
450 current thread's thread-local storage with offset OFFSET. */
451 static CORE_ADDR
452 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
453 {
454 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
455 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
456
457 return target_translate_tls_address (objfile, offset);
458 }
459
460 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
461 current CU (as is PER_CU). State of the CTX is not affected by the
462 call and return. */
463
464 static void
465 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
466 struct dwarf2_per_cu_data *per_cu,
467 CORE_ADDR (*get_frame_pc) (void *baton),
468 void *baton)
469 {
470 struct dwarf2_locexpr_baton block;
471
472 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
473
474 /* DW_OP_call_ref is currently not supported. */
475 gdb_assert (block.per_cu == per_cu);
476
477 dwarf_expr_eval (ctx, block.data, block.size);
478 }
479
480 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
481
482 static void
483 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
484 {
485 struct dwarf_expr_baton *debaton = ctx->baton;
486
487 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
488 ctx->funcs->get_frame_pc, ctx->baton);
489 }
490
491 /* Callback function for dwarf2_evaluate_loc_desc. */
492
493 static struct type *
494 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
495 cu_offset die_offset)
496 {
497 struct dwarf_expr_baton *debaton = ctx->baton;
498
499 return dwarf2_get_die_type (die_offset, debaton->per_cu);
500 }
501
502 /* See dwarf2loc.h. */
503
504 unsigned int entry_values_debug = 0;
505
506 /* Helper to set entry_values_debug. */
507
508 static void
509 show_entry_values_debug (struct ui_file *file, int from_tty,
510 struct cmd_list_element *c, const char *value)
511 {
512 fprintf_filtered (file,
513 _("Entry values and tail call frames debugging is %s.\n"),
514 value);
515 }
516
517 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
518 CALLER_FRAME (for registers) can be NULL if it is not known. This function
519 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
520
521 static CORE_ADDR
522 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
523 struct call_site *call_site,
524 struct frame_info *caller_frame)
525 {
526 switch (FIELD_LOC_KIND (call_site->target))
527 {
528 case FIELD_LOC_KIND_DWARF_BLOCK:
529 {
530 struct dwarf2_locexpr_baton *dwarf_block;
531 struct value *val;
532 struct type *caller_core_addr_type;
533 struct gdbarch *caller_arch;
534
535 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
536 if (dwarf_block == NULL)
537 {
538 struct bound_minimal_symbol msym;
539
540 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
541 throw_error (NO_ENTRY_VALUE_ERROR,
542 _("DW_AT_GNU_call_site_target is not specified "
543 "at %s in %s"),
544 paddress (call_site_gdbarch, call_site->pc),
545 (msym.minsym == NULL ? "???"
546 : SYMBOL_PRINT_NAME (msym.minsym)));
547
548 }
549 if (caller_frame == NULL)
550 {
551 struct bound_minimal_symbol msym;
552
553 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
554 throw_error (NO_ENTRY_VALUE_ERROR,
555 _("DW_AT_GNU_call_site_target DWARF block resolving "
556 "requires known frame which is currently not "
557 "available at %s in %s"),
558 paddress (call_site_gdbarch, call_site->pc),
559 (msym.minsym == NULL ? "???"
560 : SYMBOL_PRINT_NAME (msym.minsym)));
561
562 }
563 caller_arch = get_frame_arch (caller_frame);
564 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
565 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
566 dwarf_block->data, dwarf_block->size,
567 dwarf_block->per_cu);
568 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
569 location. */
570 if (VALUE_LVAL (val) == lval_memory)
571 return value_address (val);
572 else
573 return value_as_address (val);
574 }
575
576 case FIELD_LOC_KIND_PHYSNAME:
577 {
578 const char *physname;
579 struct minimal_symbol *msym;
580
581 physname = FIELD_STATIC_PHYSNAME (call_site->target);
582
583 /* Handle both the mangled and demangled PHYSNAME. */
584 msym = lookup_minimal_symbol (physname, NULL, NULL);
585 if (msym == NULL)
586 {
587 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1).minsym;
588 throw_error (NO_ENTRY_VALUE_ERROR,
589 _("Cannot find function \"%s\" for a call site target "
590 "at %s in %s"),
591 physname, paddress (call_site_gdbarch, call_site->pc),
592 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
593
594 }
595 return SYMBOL_VALUE_ADDRESS (msym);
596 }
597
598 case FIELD_LOC_KIND_PHYSADDR:
599 return FIELD_STATIC_PHYSADDR (call_site->target);
600
601 default:
602 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
603 }
604 }
605
606 /* Convert function entry point exact address ADDR to the function which is
607 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
608 NO_ENTRY_VALUE_ERROR otherwise. */
609
610 static struct symbol *
611 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
612 {
613 struct symbol *sym = find_pc_function (addr);
614 struct type *type;
615
616 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
617 throw_error (NO_ENTRY_VALUE_ERROR,
618 _("DW_TAG_GNU_call_site resolving failed to find function "
619 "name for address %s"),
620 paddress (gdbarch, addr));
621
622 type = SYMBOL_TYPE (sym);
623 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
624 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
625
626 return sym;
627 }
628
629 /* Verify function with entry point exact address ADDR can never call itself
630 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
631 can call itself via tail calls.
632
633 If a funtion can tail call itself its entry value based parameters are
634 unreliable. There is no verification whether the value of some/all
635 parameters is unchanged through the self tail call, we expect if there is
636 a self tail call all the parameters can be modified. */
637
638 static void
639 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
640 {
641 struct obstack addr_obstack;
642 struct cleanup *old_chain;
643 CORE_ADDR addr;
644
645 /* Track here CORE_ADDRs which were already visited. */
646 htab_t addr_hash;
647
648 /* The verification is completely unordered. Track here function addresses
649 which still need to be iterated. */
650 VEC (CORE_ADDR) *todo = NULL;
651
652 obstack_init (&addr_obstack);
653 old_chain = make_cleanup_obstack_free (&addr_obstack);
654 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
655 &addr_obstack, hashtab_obstack_allocate,
656 NULL);
657 make_cleanup_htab_delete (addr_hash);
658
659 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
660
661 VEC_safe_push (CORE_ADDR, todo, verify_addr);
662 while (!VEC_empty (CORE_ADDR, todo))
663 {
664 struct symbol *func_sym;
665 struct call_site *call_site;
666
667 addr = VEC_pop (CORE_ADDR, todo);
668
669 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
670
671 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
672 call_site; call_site = call_site->tail_call_next)
673 {
674 CORE_ADDR target_addr;
675 void **slot;
676
677 /* CALLER_FRAME with registers is not available for tail-call jumped
678 frames. */
679 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
680
681 if (target_addr == verify_addr)
682 {
683 struct bound_minimal_symbol msym;
684
685 msym = lookup_minimal_symbol_by_pc (verify_addr);
686 throw_error (NO_ENTRY_VALUE_ERROR,
687 _("DW_OP_GNU_entry_value resolving has found "
688 "function \"%s\" at %s can call itself via tail "
689 "calls"),
690 (msym.minsym == NULL ? "???"
691 : SYMBOL_PRINT_NAME (msym.minsym)),
692 paddress (gdbarch, verify_addr));
693 }
694
695 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
696 if (*slot == NULL)
697 {
698 *slot = obstack_copy (&addr_obstack, &target_addr,
699 sizeof (target_addr));
700 VEC_safe_push (CORE_ADDR, todo, target_addr);
701 }
702 }
703 }
704
705 do_cleanups (old_chain);
706 }
707
708 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
709 ENTRY_VALUES_DEBUG. */
710
711 static void
712 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
713 {
714 CORE_ADDR addr = call_site->pc;
715 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
716
717 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
718 (msym.minsym == NULL ? "???"
719 : SYMBOL_PRINT_NAME (msym.minsym)));
720
721 }
722
723 /* vec.h needs single word type name, typedef it. */
724 typedef struct call_site *call_sitep;
725
726 /* Define VEC (call_sitep) functions. */
727 DEF_VEC_P (call_sitep);
728
729 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
730 only top callers and bottom callees which are present in both. GDBARCH is
731 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
732 no remaining possibilities to provide unambiguous non-trivial result.
733 RESULTP should point to NULL on the first (initialization) call. Caller is
734 responsible for xfree of any RESULTP data. */
735
736 static void
737 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
738 VEC (call_sitep) *chain)
739 {
740 struct call_site_chain *result = *resultp;
741 long length = VEC_length (call_sitep, chain);
742 int callers, callees, idx;
743
744 if (result == NULL)
745 {
746 /* Create the initial chain containing all the passed PCs. */
747
748 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
749 * (length - 1));
750 result->length = length;
751 result->callers = result->callees = length;
752 memcpy (result->call_site, VEC_address (call_sitep, chain),
753 sizeof (*result->call_site) * length);
754 *resultp = result;
755
756 if (entry_values_debug)
757 {
758 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
759 for (idx = 0; idx < length; idx++)
760 tailcall_dump (gdbarch, result->call_site[idx]);
761 fputc_unfiltered ('\n', gdb_stdlog);
762 }
763
764 return;
765 }
766
767 if (entry_values_debug)
768 {
769 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
770 for (idx = 0; idx < length; idx++)
771 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
772 fputc_unfiltered ('\n', gdb_stdlog);
773 }
774
775 /* Intersect callers. */
776
777 callers = min (result->callers, length);
778 for (idx = 0; idx < callers; idx++)
779 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
780 {
781 result->callers = idx;
782 break;
783 }
784
785 /* Intersect callees. */
786
787 callees = min (result->callees, length);
788 for (idx = 0; idx < callees; idx++)
789 if (result->call_site[result->length - 1 - idx]
790 != VEC_index (call_sitep, chain, length - 1 - idx))
791 {
792 result->callees = idx;
793 break;
794 }
795
796 if (entry_values_debug)
797 {
798 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
799 for (idx = 0; idx < result->callers; idx++)
800 tailcall_dump (gdbarch, result->call_site[idx]);
801 fputs_unfiltered (" |", gdb_stdlog);
802 for (idx = 0; idx < result->callees; idx++)
803 tailcall_dump (gdbarch, result->call_site[result->length
804 - result->callees + idx]);
805 fputc_unfiltered ('\n', gdb_stdlog);
806 }
807
808 if (result->callers == 0 && result->callees == 0)
809 {
810 /* There are no common callers or callees. It could be also a direct
811 call (which has length 0) with ambiguous possibility of an indirect
812 call - CALLERS == CALLEES == 0 is valid during the first allocation
813 but any subsequence processing of such entry means ambiguity. */
814 xfree (result);
815 *resultp = NULL;
816 return;
817 }
818
819 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
820 PC again. In such case there must be two different code paths to reach
821 it, therefore some of the former determined intermediate PCs must differ
822 and the unambiguous chain gets shortened. */
823 gdb_assert (result->callers + result->callees < result->length);
824 }
825
826 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
827 assumed frames between them use GDBARCH. Use depth first search so we can
828 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
829 would have needless GDB stack overhead. Caller is responsible for xfree of
830 the returned result. Any unreliability results in thrown
831 NO_ENTRY_VALUE_ERROR. */
832
833 static struct call_site_chain *
834 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
835 CORE_ADDR callee_pc)
836 {
837 CORE_ADDR save_callee_pc = callee_pc;
838 struct obstack addr_obstack;
839 struct cleanup *back_to_retval, *back_to_workdata;
840 struct call_site_chain *retval = NULL;
841 struct call_site *call_site;
842
843 /* Mark CALL_SITEs so we do not visit the same ones twice. */
844 htab_t addr_hash;
845
846 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
847 call_site nor any possible call_site at CALLEE_PC's function is there.
848 Any CALL_SITE in CHAIN will be iterated to its siblings - via
849 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
850 VEC (call_sitep) *chain = NULL;
851
852 /* We are not interested in the specific PC inside the callee function. */
853 callee_pc = get_pc_function_start (callee_pc);
854 if (callee_pc == 0)
855 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
856 paddress (gdbarch, save_callee_pc));
857
858 back_to_retval = make_cleanup (free_current_contents, &retval);
859
860 obstack_init (&addr_obstack);
861 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
862 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
863 &addr_obstack, hashtab_obstack_allocate,
864 NULL);
865 make_cleanup_htab_delete (addr_hash);
866
867 make_cleanup (VEC_cleanup (call_sitep), &chain);
868
869 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
870 at the target's function. All the possible tail call sites in the
871 target's function will get iterated as already pushed into CHAIN via their
872 TAIL_CALL_NEXT. */
873 call_site = call_site_for_pc (gdbarch, caller_pc);
874
875 while (call_site)
876 {
877 CORE_ADDR target_func_addr;
878 struct call_site *target_call_site;
879
880 /* CALLER_FRAME with registers is not available for tail-call jumped
881 frames. */
882 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
883
884 if (target_func_addr == callee_pc)
885 {
886 chain_candidate (gdbarch, &retval, chain);
887 if (retval == NULL)
888 break;
889
890 /* There is no way to reach CALLEE_PC again as we would prevent
891 entering it twice as being already marked in ADDR_HASH. */
892 target_call_site = NULL;
893 }
894 else
895 {
896 struct symbol *target_func;
897
898 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
899 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
900 }
901
902 do
903 {
904 /* Attempt to visit TARGET_CALL_SITE. */
905
906 if (target_call_site)
907 {
908 void **slot;
909
910 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
911 if (*slot == NULL)
912 {
913 /* Successfully entered TARGET_CALL_SITE. */
914
915 *slot = &target_call_site->pc;
916 VEC_safe_push (call_sitep, chain, target_call_site);
917 break;
918 }
919 }
920
921 /* Backtrack (without revisiting the originating call_site). Try the
922 callers's sibling; if there isn't any try the callers's callers's
923 sibling etc. */
924
925 target_call_site = NULL;
926 while (!VEC_empty (call_sitep, chain))
927 {
928 call_site = VEC_pop (call_sitep, chain);
929
930 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
931 NO_INSERT) != NULL);
932 htab_remove_elt (addr_hash, &call_site->pc);
933
934 target_call_site = call_site->tail_call_next;
935 if (target_call_site)
936 break;
937 }
938 }
939 while (target_call_site);
940
941 if (VEC_empty (call_sitep, chain))
942 call_site = NULL;
943 else
944 call_site = VEC_last (call_sitep, chain);
945 }
946
947 if (retval == NULL)
948 {
949 struct bound_minimal_symbol msym_caller, msym_callee;
950
951 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
952 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
953 throw_error (NO_ENTRY_VALUE_ERROR,
954 _("There are no unambiguously determinable intermediate "
955 "callers or callees between caller function \"%s\" at %s "
956 "and callee function \"%s\" at %s"),
957 (msym_caller.minsym == NULL
958 ? "???" : SYMBOL_PRINT_NAME (msym_caller.minsym)),
959 paddress (gdbarch, caller_pc),
960 (msym_callee.minsym == NULL
961 ? "???" : SYMBOL_PRINT_NAME (msym_callee.minsym)),
962 paddress (gdbarch, callee_pc));
963 }
964
965 do_cleanups (back_to_workdata);
966 discard_cleanups (back_to_retval);
967 return retval;
968 }
969
970 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
971 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
972 constructed return NULL. Caller is responsible for xfree of the returned
973 result. */
974
975 struct call_site_chain *
976 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
977 CORE_ADDR callee_pc)
978 {
979 volatile struct gdb_exception e;
980 struct call_site_chain *retval = NULL;
981
982 TRY_CATCH (e, RETURN_MASK_ERROR)
983 {
984 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
985 }
986 if (e.reason < 0)
987 {
988 if (e.error == NO_ENTRY_VALUE_ERROR)
989 {
990 if (entry_values_debug)
991 exception_print (gdb_stdout, e);
992
993 return NULL;
994 }
995 else
996 throw_exception (e);
997 }
998 return retval;
999 }
1000
1001 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1002
1003 static int
1004 call_site_parameter_matches (struct call_site_parameter *parameter,
1005 enum call_site_parameter_kind kind,
1006 union call_site_parameter_u kind_u)
1007 {
1008 if (kind == parameter->kind)
1009 switch (kind)
1010 {
1011 case CALL_SITE_PARAMETER_DWARF_REG:
1012 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1013 case CALL_SITE_PARAMETER_FB_OFFSET:
1014 return kind_u.fb_offset == parameter->u.fb_offset;
1015 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1016 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1017 }
1018 return 0;
1019 }
1020
1021 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1022 FRAME is for callee.
1023
1024 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1025 otherwise. */
1026
1027 static struct call_site_parameter *
1028 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1029 enum call_site_parameter_kind kind,
1030 union call_site_parameter_u kind_u,
1031 struct dwarf2_per_cu_data **per_cu_return)
1032 {
1033 CORE_ADDR func_addr, caller_pc;
1034 struct gdbarch *gdbarch;
1035 struct frame_info *caller_frame;
1036 struct call_site *call_site;
1037 int iparams;
1038 /* Initialize it just to avoid a GCC false warning. */
1039 struct call_site_parameter *parameter = NULL;
1040 CORE_ADDR target_addr;
1041
1042 while (get_frame_type (frame) == INLINE_FRAME)
1043 {
1044 frame = get_prev_frame (frame);
1045 gdb_assert (frame != NULL);
1046 }
1047
1048 func_addr = get_frame_func (frame);
1049 gdbarch = get_frame_arch (frame);
1050 caller_frame = get_prev_frame (frame);
1051 if (gdbarch != frame_unwind_arch (frame))
1052 {
1053 struct bound_minimal_symbol msym
1054 = lookup_minimal_symbol_by_pc (func_addr);
1055 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1056
1057 throw_error (NO_ENTRY_VALUE_ERROR,
1058 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1059 "(of %s (%s)) does not match caller gdbarch %s"),
1060 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1061 paddress (gdbarch, func_addr),
1062 (msym.minsym == NULL ? "???"
1063 : SYMBOL_PRINT_NAME (msym.minsym)),
1064 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1065 }
1066
1067 if (caller_frame == NULL)
1068 {
1069 struct bound_minimal_symbol msym
1070 = lookup_minimal_symbol_by_pc (func_addr);
1071
1072 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1073 "requires caller of %s (%s)"),
1074 paddress (gdbarch, func_addr),
1075 (msym.minsym == NULL ? "???"
1076 : SYMBOL_PRINT_NAME (msym.minsym)));
1077 }
1078 caller_pc = get_frame_pc (caller_frame);
1079 call_site = call_site_for_pc (gdbarch, caller_pc);
1080
1081 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1082 if (target_addr != func_addr)
1083 {
1084 struct minimal_symbol *target_msym, *func_msym;
1085
1086 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1087 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1088 throw_error (NO_ENTRY_VALUE_ERROR,
1089 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1090 "but the called frame is for %s at %s"),
1091 (target_msym == NULL ? "???"
1092 : SYMBOL_PRINT_NAME (target_msym)),
1093 paddress (gdbarch, target_addr),
1094 func_msym == NULL ? "???" : SYMBOL_PRINT_NAME (func_msym),
1095 paddress (gdbarch, func_addr));
1096 }
1097
1098 /* No entry value based parameters would be reliable if this function can
1099 call itself via tail calls. */
1100 func_verify_no_selftailcall (gdbarch, func_addr);
1101
1102 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1103 {
1104 parameter = &call_site->parameter[iparams];
1105 if (call_site_parameter_matches (parameter, kind, kind_u))
1106 break;
1107 }
1108 if (iparams == call_site->parameter_count)
1109 {
1110 struct minimal_symbol *msym
1111 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1112
1113 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1114 determine its value. */
1115 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1116 "at DW_TAG_GNU_call_site %s at %s"),
1117 paddress (gdbarch, caller_pc),
1118 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
1119 }
1120
1121 *per_cu_return = call_site->per_cu;
1122 return parameter;
1123 }
1124
1125 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1126 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1127 DW_AT_GNU_call_site_data_value (dereferenced) block.
1128
1129 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1130 struct value.
1131
1132 Function always returns non-NULL, non-optimized out value. It throws
1133 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1134
1135 static struct value *
1136 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1137 CORE_ADDR deref_size, struct type *type,
1138 struct frame_info *caller_frame,
1139 struct dwarf2_per_cu_data *per_cu)
1140 {
1141 const gdb_byte *data_src;
1142 gdb_byte *data;
1143 size_t size;
1144
1145 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1146 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1147
1148 /* DEREF_SIZE size is not verified here. */
1149 if (data_src == NULL)
1150 throw_error (NO_ENTRY_VALUE_ERROR,
1151 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1152
1153 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1154 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1155 DWARF block. */
1156 data = alloca (size + 1);
1157 memcpy (data, data_src, size);
1158 data[size] = DW_OP_stack_value;
1159
1160 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1161 }
1162
1163 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1164 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1165 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1166
1167 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1168 can be more simple as it does not support cross-CU DWARF executions. */
1169
1170 static void
1171 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1172 enum call_site_parameter_kind kind,
1173 union call_site_parameter_u kind_u,
1174 int deref_size)
1175 {
1176 struct dwarf_expr_baton *debaton;
1177 struct frame_info *frame, *caller_frame;
1178 struct dwarf2_per_cu_data *caller_per_cu;
1179 struct dwarf_expr_baton baton_local;
1180 struct dwarf_expr_context saved_ctx;
1181 struct call_site_parameter *parameter;
1182 const gdb_byte *data_src;
1183 size_t size;
1184
1185 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1186 debaton = ctx->baton;
1187 frame = debaton->frame;
1188 caller_frame = get_prev_frame (frame);
1189
1190 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1191 &caller_per_cu);
1192 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1193 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1194
1195 /* DEREF_SIZE size is not verified here. */
1196 if (data_src == NULL)
1197 throw_error (NO_ENTRY_VALUE_ERROR,
1198 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1199
1200 baton_local.frame = caller_frame;
1201 baton_local.per_cu = caller_per_cu;
1202
1203 saved_ctx.gdbarch = ctx->gdbarch;
1204 saved_ctx.addr_size = ctx->addr_size;
1205 saved_ctx.offset = ctx->offset;
1206 saved_ctx.baton = ctx->baton;
1207 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1208 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1209 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1210 ctx->baton = &baton_local;
1211
1212 dwarf_expr_eval (ctx, data_src, size);
1213
1214 ctx->gdbarch = saved_ctx.gdbarch;
1215 ctx->addr_size = saved_ctx.addr_size;
1216 ctx->offset = saved_ctx.offset;
1217 ctx->baton = saved_ctx.baton;
1218 }
1219
1220 /* Callback function for dwarf2_evaluate_loc_desc.
1221 Fetch the address indexed by DW_OP_GNU_addr_index. */
1222
1223 static CORE_ADDR
1224 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1225 {
1226 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1227
1228 return dwarf2_read_addr_index (debaton->per_cu, index);
1229 }
1230
1231 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1232 the indirect method on it, that is use its stored target value, the sole
1233 purpose of entry_data_value_funcs.. */
1234
1235 static struct value *
1236 entry_data_value_coerce_ref (const struct value *value)
1237 {
1238 struct type *checked_type = check_typedef (value_type (value));
1239 struct value *target_val;
1240
1241 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1242 return NULL;
1243
1244 target_val = value_computed_closure (value);
1245 value_incref (target_val);
1246 return target_val;
1247 }
1248
1249 /* Implement copy_closure. */
1250
1251 static void *
1252 entry_data_value_copy_closure (const struct value *v)
1253 {
1254 struct value *target_val = value_computed_closure (v);
1255
1256 value_incref (target_val);
1257 return target_val;
1258 }
1259
1260 /* Implement free_closure. */
1261
1262 static void
1263 entry_data_value_free_closure (struct value *v)
1264 {
1265 struct value *target_val = value_computed_closure (v);
1266
1267 value_free (target_val);
1268 }
1269
1270 /* Vector for methods for an entry value reference where the referenced value
1271 is stored in the caller. On the first dereference use
1272 DW_AT_GNU_call_site_data_value in the caller. */
1273
1274 static const struct lval_funcs entry_data_value_funcs =
1275 {
1276 NULL, /* read */
1277 NULL, /* write */
1278 NULL, /* check_validity */
1279 NULL, /* check_any_valid */
1280 NULL, /* indirect */
1281 entry_data_value_coerce_ref,
1282 NULL, /* check_synthetic_pointer */
1283 entry_data_value_copy_closure,
1284 entry_data_value_free_closure
1285 };
1286
1287 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1288 are used to match DW_AT_location at the caller's
1289 DW_TAG_GNU_call_site_parameter.
1290
1291 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1292 cannot resolve the parameter for any reason. */
1293
1294 static struct value *
1295 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1296 enum call_site_parameter_kind kind,
1297 union call_site_parameter_u kind_u)
1298 {
1299 struct type *checked_type = check_typedef (type);
1300 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1301 struct frame_info *caller_frame = get_prev_frame (frame);
1302 struct value *outer_val, *target_val, *val;
1303 struct call_site_parameter *parameter;
1304 struct dwarf2_per_cu_data *caller_per_cu;
1305 CORE_ADDR addr;
1306
1307 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1308 &caller_per_cu);
1309
1310 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1311 type, caller_frame,
1312 caller_per_cu);
1313
1314 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1315 used and it is not available do not fall back to OUTER_VAL - dereferencing
1316 TYPE_CODE_REF with non-entry data value would give current value - not the
1317 entry value. */
1318
1319 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1320 || TYPE_TARGET_TYPE (checked_type) == NULL)
1321 return outer_val;
1322
1323 target_val = dwarf_entry_parameter_to_value (parameter,
1324 TYPE_LENGTH (target_type),
1325 target_type, caller_frame,
1326 caller_per_cu);
1327
1328 /* value_as_address dereferences TYPE_CODE_REF. */
1329 addr = extract_typed_address (value_contents (outer_val), checked_type);
1330
1331 /* The target entry value has artificial address of the entry value
1332 reference. */
1333 VALUE_LVAL (target_val) = lval_memory;
1334 set_value_address (target_val, addr);
1335
1336 release_value (target_val);
1337 val = allocate_computed_value (type, &entry_data_value_funcs,
1338 target_val /* closure */);
1339
1340 /* Copy the referencing pointer to the new computed value. */
1341 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1342 TYPE_LENGTH (checked_type));
1343 set_value_lazy (val, 0);
1344
1345 return val;
1346 }
1347
1348 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1349 SIZE are DWARF block used to match DW_AT_location at the caller's
1350 DW_TAG_GNU_call_site_parameter.
1351
1352 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1353 cannot resolve the parameter for any reason. */
1354
1355 static struct value *
1356 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1357 const gdb_byte *block, size_t block_len)
1358 {
1359 union call_site_parameter_u kind_u;
1360
1361 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1362 if (kind_u.dwarf_reg != -1)
1363 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1364 kind_u);
1365
1366 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1367 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1368 kind_u);
1369
1370 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1371 suppressed during normal operation. The expression can be arbitrary if
1372 there is no caller-callee entry value binding expected. */
1373 throw_error (NO_ENTRY_VALUE_ERROR,
1374 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1375 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1376 }
1377
1378 struct piece_closure
1379 {
1380 /* Reference count. */
1381 int refc;
1382
1383 /* The CU from which this closure's expression came. */
1384 struct dwarf2_per_cu_data *per_cu;
1385
1386 /* The number of pieces used to describe this variable. */
1387 int n_pieces;
1388
1389 /* The target address size, used only for DWARF_VALUE_STACK. */
1390 int addr_size;
1391
1392 /* The pieces themselves. */
1393 struct dwarf_expr_piece *pieces;
1394 };
1395
1396 /* Allocate a closure for a value formed from separately-described
1397 PIECES. */
1398
1399 static struct piece_closure *
1400 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1401 int n_pieces, struct dwarf_expr_piece *pieces,
1402 int addr_size)
1403 {
1404 struct piece_closure *c = XZALLOC (struct piece_closure);
1405 int i;
1406
1407 c->refc = 1;
1408 c->per_cu = per_cu;
1409 c->n_pieces = n_pieces;
1410 c->addr_size = addr_size;
1411 c->pieces = XCALLOC (n_pieces, struct dwarf_expr_piece);
1412
1413 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1414 for (i = 0; i < n_pieces; ++i)
1415 if (c->pieces[i].location == DWARF_VALUE_STACK)
1416 value_incref (c->pieces[i].v.value);
1417
1418 return c;
1419 }
1420
1421 /* The lowest-level function to extract bits from a byte buffer.
1422 SOURCE is the buffer. It is updated if we read to the end of a
1423 byte.
1424 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1425 updated to reflect the number of bits actually read.
1426 NBITS is the number of bits we want to read. It is updated to
1427 reflect the number of bits actually read. This function may read
1428 fewer bits.
1429 BITS_BIG_ENDIAN is taken directly from gdbarch.
1430 This function returns the extracted bits. */
1431
1432 static unsigned int
1433 extract_bits_primitive (const gdb_byte **source,
1434 unsigned int *source_offset_bits,
1435 int *nbits, int bits_big_endian)
1436 {
1437 unsigned int avail, mask, datum;
1438
1439 gdb_assert (*source_offset_bits < 8);
1440
1441 avail = 8 - *source_offset_bits;
1442 if (avail > *nbits)
1443 avail = *nbits;
1444
1445 mask = (1 << avail) - 1;
1446 datum = **source;
1447 if (bits_big_endian)
1448 datum >>= 8 - (*source_offset_bits + *nbits);
1449 else
1450 datum >>= *source_offset_bits;
1451 datum &= mask;
1452
1453 *nbits -= avail;
1454 *source_offset_bits += avail;
1455 if (*source_offset_bits >= 8)
1456 {
1457 *source_offset_bits -= 8;
1458 ++*source;
1459 }
1460
1461 return datum;
1462 }
1463
1464 /* Extract some bits from a source buffer and move forward in the
1465 buffer.
1466
1467 SOURCE is the source buffer. It is updated as bytes are read.
1468 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1469 bits are read.
1470 NBITS is the number of bits to read.
1471 BITS_BIG_ENDIAN is taken directly from gdbarch.
1472
1473 This function returns the bits that were read. */
1474
1475 static unsigned int
1476 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1477 int nbits, int bits_big_endian)
1478 {
1479 unsigned int datum;
1480
1481 gdb_assert (nbits > 0 && nbits <= 8);
1482
1483 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1484 bits_big_endian);
1485 if (nbits > 0)
1486 {
1487 unsigned int more;
1488
1489 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1490 bits_big_endian);
1491 if (bits_big_endian)
1492 datum <<= nbits;
1493 else
1494 more <<= nbits;
1495 datum |= more;
1496 }
1497
1498 return datum;
1499 }
1500
1501 /* Write some bits into a buffer and move forward in the buffer.
1502
1503 DATUM is the bits to write. The low-order bits of DATUM are used.
1504 DEST is the destination buffer. It is updated as bytes are
1505 written.
1506 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1507 done.
1508 NBITS is the number of valid bits in DATUM.
1509 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1510
1511 static void
1512 insert_bits (unsigned int datum,
1513 gdb_byte *dest, unsigned int dest_offset_bits,
1514 int nbits, int bits_big_endian)
1515 {
1516 unsigned int mask;
1517
1518 gdb_assert (dest_offset_bits + nbits <= 8);
1519
1520 mask = (1 << nbits) - 1;
1521 if (bits_big_endian)
1522 {
1523 datum <<= 8 - (dest_offset_bits + nbits);
1524 mask <<= 8 - (dest_offset_bits + nbits);
1525 }
1526 else
1527 {
1528 datum <<= dest_offset_bits;
1529 mask <<= dest_offset_bits;
1530 }
1531
1532 gdb_assert ((datum & ~mask) == 0);
1533
1534 *dest = (*dest & ~mask) | datum;
1535 }
1536
1537 /* Copy bits from a source to a destination.
1538
1539 DEST is where the bits should be written.
1540 DEST_OFFSET_BITS is the bit offset into DEST.
1541 SOURCE is the source of bits.
1542 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1543 BIT_COUNT is the number of bits to copy.
1544 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1545
1546 static void
1547 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1548 const gdb_byte *source, unsigned int source_offset_bits,
1549 unsigned int bit_count,
1550 int bits_big_endian)
1551 {
1552 unsigned int dest_avail;
1553 int datum;
1554
1555 /* Reduce everything to byte-size pieces. */
1556 dest += dest_offset_bits / 8;
1557 dest_offset_bits %= 8;
1558 source += source_offset_bits / 8;
1559 source_offset_bits %= 8;
1560
1561 dest_avail = 8 - dest_offset_bits % 8;
1562
1563 /* See if we can fill the first destination byte. */
1564 if (dest_avail < bit_count)
1565 {
1566 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1567 bits_big_endian);
1568 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1569 ++dest;
1570 dest_offset_bits = 0;
1571 bit_count -= dest_avail;
1572 }
1573
1574 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1575 than 8 bits remaining. */
1576 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1577 for (; bit_count >= 8; bit_count -= 8)
1578 {
1579 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1580 *dest++ = (gdb_byte) datum;
1581 }
1582
1583 /* Finally, we may have a few leftover bits. */
1584 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1585 if (bit_count > 0)
1586 {
1587 datum = extract_bits (&source, &source_offset_bits, bit_count,
1588 bits_big_endian);
1589 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1590 }
1591 }
1592
1593 static void
1594 read_pieced_value (struct value *v)
1595 {
1596 int i;
1597 long offset = 0;
1598 ULONGEST bits_to_skip;
1599 gdb_byte *contents;
1600 struct piece_closure *c
1601 = (struct piece_closure *) value_computed_closure (v);
1602 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1603 size_t type_len;
1604 size_t buffer_size = 0;
1605 gdb_byte *buffer = NULL;
1606 struct cleanup *cleanup;
1607 int bits_big_endian
1608 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1609
1610 if (value_type (v) != value_enclosing_type (v))
1611 internal_error (__FILE__, __LINE__,
1612 _("Should not be able to create a lazy value with "
1613 "an enclosing type"));
1614
1615 cleanup = make_cleanup (free_current_contents, &buffer);
1616
1617 contents = value_contents_raw (v);
1618 bits_to_skip = 8 * value_offset (v);
1619 if (value_bitsize (v))
1620 {
1621 bits_to_skip += value_bitpos (v);
1622 type_len = value_bitsize (v);
1623 }
1624 else
1625 type_len = 8 * TYPE_LENGTH (value_type (v));
1626
1627 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1628 {
1629 struct dwarf_expr_piece *p = &c->pieces[i];
1630 size_t this_size, this_size_bits;
1631 long dest_offset_bits, source_offset_bits, source_offset;
1632 const gdb_byte *intermediate_buffer;
1633
1634 /* Compute size, source, and destination offsets for copying, in
1635 bits. */
1636 this_size_bits = p->size;
1637 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1638 {
1639 bits_to_skip -= this_size_bits;
1640 continue;
1641 }
1642 if (bits_to_skip > 0)
1643 {
1644 dest_offset_bits = 0;
1645 source_offset_bits = bits_to_skip;
1646 this_size_bits -= bits_to_skip;
1647 bits_to_skip = 0;
1648 }
1649 else
1650 {
1651 dest_offset_bits = offset;
1652 source_offset_bits = 0;
1653 }
1654 if (this_size_bits > type_len - offset)
1655 this_size_bits = type_len - offset;
1656
1657 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1658 source_offset = source_offset_bits / 8;
1659 if (buffer_size < this_size)
1660 {
1661 buffer_size = this_size;
1662 buffer = xrealloc (buffer, buffer_size);
1663 }
1664 intermediate_buffer = buffer;
1665
1666 /* Copy from the source to DEST_BUFFER. */
1667 switch (p->location)
1668 {
1669 case DWARF_VALUE_REGISTER:
1670 {
1671 struct gdbarch *arch = get_frame_arch (frame);
1672 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1673 int reg_offset = source_offset;
1674
1675 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1676 && this_size < register_size (arch, gdb_regnum))
1677 {
1678 /* Big-endian, and we want less than full size. */
1679 reg_offset = register_size (arch, gdb_regnum) - this_size;
1680 /* We want the lower-order THIS_SIZE_BITS of the bytes
1681 we extract from the register. */
1682 source_offset_bits += 8 * this_size - this_size_bits;
1683 }
1684
1685 if (gdb_regnum != -1)
1686 {
1687 int optim, unavail;
1688
1689 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1690 this_size, buffer,
1691 &optim, &unavail))
1692 {
1693 /* Just so garbage doesn't ever shine through. */
1694 memset (buffer, 0, this_size);
1695
1696 if (optim)
1697 set_value_optimized_out (v, 1);
1698 if (unavail)
1699 mark_value_bytes_unavailable (v, offset, this_size);
1700 }
1701 }
1702 else
1703 {
1704 error (_("Unable to access DWARF register number %s"),
1705 paddress (arch, p->v.regno));
1706 }
1707 }
1708 break;
1709
1710 case DWARF_VALUE_MEMORY:
1711 read_value_memory (v, offset,
1712 p->v.mem.in_stack_memory,
1713 p->v.mem.addr + source_offset,
1714 buffer, this_size);
1715 break;
1716
1717 case DWARF_VALUE_STACK:
1718 {
1719 size_t n = this_size;
1720
1721 if (n > c->addr_size - source_offset)
1722 n = (c->addr_size >= source_offset
1723 ? c->addr_size - source_offset
1724 : 0);
1725 if (n == 0)
1726 {
1727 /* Nothing. */
1728 }
1729 else
1730 {
1731 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1732
1733 intermediate_buffer = val_bytes + source_offset;
1734 }
1735 }
1736 break;
1737
1738 case DWARF_VALUE_LITERAL:
1739 {
1740 size_t n = this_size;
1741
1742 if (n > p->v.literal.length - source_offset)
1743 n = (p->v.literal.length >= source_offset
1744 ? p->v.literal.length - source_offset
1745 : 0);
1746 if (n != 0)
1747 intermediate_buffer = p->v.literal.data + source_offset;
1748 }
1749 break;
1750
1751 /* These bits show up as zeros -- but do not cause the value
1752 to be considered optimized-out. */
1753 case DWARF_VALUE_IMPLICIT_POINTER:
1754 break;
1755
1756 case DWARF_VALUE_OPTIMIZED_OUT:
1757 set_value_optimized_out (v, 1);
1758 break;
1759
1760 default:
1761 internal_error (__FILE__, __LINE__, _("invalid location type"));
1762 }
1763
1764 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1765 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1766 copy_bitwise (contents, dest_offset_bits,
1767 intermediate_buffer, source_offset_bits % 8,
1768 this_size_bits, bits_big_endian);
1769
1770 offset += this_size_bits;
1771 }
1772
1773 do_cleanups (cleanup);
1774 }
1775
1776 static void
1777 write_pieced_value (struct value *to, struct value *from)
1778 {
1779 int i;
1780 long offset = 0;
1781 ULONGEST bits_to_skip;
1782 const gdb_byte *contents;
1783 struct piece_closure *c
1784 = (struct piece_closure *) value_computed_closure (to);
1785 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1786 size_t type_len;
1787 size_t buffer_size = 0;
1788 gdb_byte *buffer = NULL;
1789 struct cleanup *cleanup;
1790 int bits_big_endian
1791 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1792
1793 if (frame == NULL)
1794 {
1795 set_value_optimized_out (to, 1);
1796 return;
1797 }
1798
1799 cleanup = make_cleanup (free_current_contents, &buffer);
1800
1801 contents = value_contents (from);
1802 bits_to_skip = 8 * value_offset (to);
1803 if (value_bitsize (to))
1804 {
1805 bits_to_skip += value_bitpos (to);
1806 type_len = value_bitsize (to);
1807 }
1808 else
1809 type_len = 8 * TYPE_LENGTH (value_type (to));
1810
1811 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1812 {
1813 struct dwarf_expr_piece *p = &c->pieces[i];
1814 size_t this_size_bits, this_size;
1815 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1816 int need_bitwise;
1817 const gdb_byte *source_buffer;
1818
1819 this_size_bits = p->size;
1820 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1821 {
1822 bits_to_skip -= this_size_bits;
1823 continue;
1824 }
1825 if (this_size_bits > type_len - offset)
1826 this_size_bits = type_len - offset;
1827 if (bits_to_skip > 0)
1828 {
1829 dest_offset_bits = bits_to_skip;
1830 source_offset_bits = 0;
1831 this_size_bits -= bits_to_skip;
1832 bits_to_skip = 0;
1833 }
1834 else
1835 {
1836 dest_offset_bits = 0;
1837 source_offset_bits = offset;
1838 }
1839
1840 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1841 source_offset = source_offset_bits / 8;
1842 dest_offset = dest_offset_bits / 8;
1843 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1844 {
1845 source_buffer = contents + source_offset;
1846 need_bitwise = 0;
1847 }
1848 else
1849 {
1850 if (buffer_size < this_size)
1851 {
1852 buffer_size = this_size;
1853 buffer = xrealloc (buffer, buffer_size);
1854 }
1855 source_buffer = buffer;
1856 need_bitwise = 1;
1857 }
1858
1859 switch (p->location)
1860 {
1861 case DWARF_VALUE_REGISTER:
1862 {
1863 struct gdbarch *arch = get_frame_arch (frame);
1864 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1865 int reg_offset = dest_offset;
1866
1867 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1868 && this_size <= register_size (arch, gdb_regnum))
1869 /* Big-endian, and we want less than full size. */
1870 reg_offset = register_size (arch, gdb_regnum) - this_size;
1871
1872 if (gdb_regnum != -1)
1873 {
1874 if (need_bitwise)
1875 {
1876 int optim, unavail;
1877
1878 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1879 this_size, buffer,
1880 &optim, &unavail))
1881 {
1882 if (optim)
1883 error (_("Can't do read-modify-write to "
1884 "update bitfield; containing word has been "
1885 "optimized out"));
1886 if (unavail)
1887 throw_error (NOT_AVAILABLE_ERROR,
1888 _("Can't do read-modify-write to update "
1889 "bitfield; containing word "
1890 "is unavailable"));
1891 }
1892 copy_bitwise (buffer, dest_offset_bits,
1893 contents, source_offset_bits,
1894 this_size_bits,
1895 bits_big_endian);
1896 }
1897
1898 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1899 this_size, source_buffer);
1900 }
1901 else
1902 {
1903 error (_("Unable to write to DWARF register number %s"),
1904 paddress (arch, p->v.regno));
1905 }
1906 }
1907 break;
1908 case DWARF_VALUE_MEMORY:
1909 if (need_bitwise)
1910 {
1911 /* Only the first and last bytes can possibly have any
1912 bits reused. */
1913 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1914 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1915 buffer + this_size - 1, 1);
1916 copy_bitwise (buffer, dest_offset_bits,
1917 contents, source_offset_bits,
1918 this_size_bits,
1919 bits_big_endian);
1920 }
1921
1922 write_memory (p->v.mem.addr + dest_offset,
1923 source_buffer, this_size);
1924 break;
1925 default:
1926 set_value_optimized_out (to, 1);
1927 break;
1928 }
1929 offset += this_size_bits;
1930 }
1931
1932 do_cleanups (cleanup);
1933 }
1934
1935 /* A helper function that checks bit validity in a pieced value.
1936 CHECK_FOR indicates the kind of validity checking.
1937 DWARF_VALUE_MEMORY means to check whether any bit is valid.
1938 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
1939 optimized out.
1940 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
1941 implicit pointer. */
1942
1943 static int
1944 check_pieced_value_bits (const struct value *value, int bit_offset,
1945 int bit_length,
1946 enum dwarf_value_location check_for)
1947 {
1948 struct piece_closure *c
1949 = (struct piece_closure *) value_computed_closure (value);
1950 int i;
1951 int validity = (check_for == DWARF_VALUE_MEMORY
1952 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
1953
1954 bit_offset += 8 * value_offset (value);
1955 if (value_bitsize (value))
1956 bit_offset += value_bitpos (value);
1957
1958 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1959 {
1960 struct dwarf_expr_piece *p = &c->pieces[i];
1961 size_t this_size_bits = p->size;
1962
1963 if (bit_offset > 0)
1964 {
1965 if (bit_offset >= this_size_bits)
1966 {
1967 bit_offset -= this_size_bits;
1968 continue;
1969 }
1970
1971 bit_length -= this_size_bits - bit_offset;
1972 bit_offset = 0;
1973 }
1974 else
1975 bit_length -= this_size_bits;
1976
1977 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
1978 {
1979 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1980 return 0;
1981 }
1982 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
1983 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
1984 {
1985 if (validity)
1986 return 0;
1987 }
1988 else
1989 {
1990 if (!validity)
1991 return 1;
1992 }
1993 }
1994
1995 return validity;
1996 }
1997
1998 static int
1999 check_pieced_value_validity (const struct value *value, int bit_offset,
2000 int bit_length)
2001 {
2002 return check_pieced_value_bits (value, bit_offset, bit_length,
2003 DWARF_VALUE_MEMORY);
2004 }
2005
2006 static int
2007 check_pieced_value_invalid (const struct value *value)
2008 {
2009 return check_pieced_value_bits (value, 0,
2010 8 * TYPE_LENGTH (value_type (value)),
2011 DWARF_VALUE_OPTIMIZED_OUT);
2012 }
2013
2014 /* An implementation of an lval_funcs method to see whether a value is
2015 a synthetic pointer. */
2016
2017 static int
2018 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
2019 int bit_length)
2020 {
2021 return check_pieced_value_bits (value, bit_offset, bit_length,
2022 DWARF_VALUE_IMPLICIT_POINTER);
2023 }
2024
2025 /* A wrapper function for get_frame_address_in_block. */
2026
2027 static CORE_ADDR
2028 get_frame_address_in_block_wrapper (void *baton)
2029 {
2030 return get_frame_address_in_block (baton);
2031 }
2032
2033 /* An implementation of an lval_funcs method to indirect through a
2034 pointer. This handles the synthetic pointer case when needed. */
2035
2036 static struct value *
2037 indirect_pieced_value (struct value *value)
2038 {
2039 struct piece_closure *c
2040 = (struct piece_closure *) value_computed_closure (value);
2041 struct type *type;
2042 struct frame_info *frame;
2043 struct dwarf2_locexpr_baton baton;
2044 int i, bit_offset, bit_length;
2045 struct dwarf_expr_piece *piece = NULL;
2046 LONGEST byte_offset;
2047
2048 type = check_typedef (value_type (value));
2049 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2050 return NULL;
2051
2052 bit_length = 8 * TYPE_LENGTH (type);
2053 bit_offset = 8 * value_offset (value);
2054 if (value_bitsize (value))
2055 bit_offset += value_bitpos (value);
2056
2057 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2058 {
2059 struct dwarf_expr_piece *p = &c->pieces[i];
2060 size_t this_size_bits = p->size;
2061
2062 if (bit_offset > 0)
2063 {
2064 if (bit_offset >= this_size_bits)
2065 {
2066 bit_offset -= this_size_bits;
2067 continue;
2068 }
2069
2070 bit_length -= this_size_bits - bit_offset;
2071 bit_offset = 0;
2072 }
2073 else
2074 bit_length -= this_size_bits;
2075
2076 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2077 return NULL;
2078
2079 if (bit_length != 0)
2080 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2081
2082 piece = p;
2083 break;
2084 }
2085
2086 frame = get_selected_frame (_("No frame selected."));
2087
2088 /* This is an offset requested by GDB, such as value subscripts.
2089 However, due to how synthetic pointers are implemented, this is
2090 always presented to us as a pointer type. This means we have to
2091 sign-extend it manually as appropriate. */
2092 byte_offset = value_as_address (value);
2093 if (TYPE_LENGTH (value_type (value)) < sizeof (LONGEST))
2094 byte_offset = gdb_sign_extend (byte_offset,
2095 8 * TYPE_LENGTH (value_type (value)));
2096 byte_offset += piece->v.ptr.offset;
2097
2098 gdb_assert (piece);
2099 baton
2100 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2101 get_frame_address_in_block_wrapper,
2102 frame);
2103
2104 if (baton.data != NULL)
2105 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2106 baton.data, baton.size, baton.per_cu,
2107 byte_offset);
2108
2109 {
2110 struct obstack temp_obstack;
2111 struct cleanup *cleanup;
2112 const gdb_byte *bytes;
2113 LONGEST len;
2114 struct value *result;
2115
2116 obstack_init (&temp_obstack);
2117 cleanup = make_cleanup_obstack_free (&temp_obstack);
2118
2119 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2120 &temp_obstack, &len);
2121 if (bytes == NULL)
2122 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2123 else
2124 {
2125 if (byte_offset < 0
2126 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2127 invalid_synthetic_pointer ();
2128 bytes += byte_offset;
2129 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2130 }
2131
2132 do_cleanups (cleanup);
2133 return result;
2134 }
2135 }
2136
2137 static void *
2138 copy_pieced_value_closure (const struct value *v)
2139 {
2140 struct piece_closure *c
2141 = (struct piece_closure *) value_computed_closure (v);
2142
2143 ++c->refc;
2144 return c;
2145 }
2146
2147 static void
2148 free_pieced_value_closure (struct value *v)
2149 {
2150 struct piece_closure *c
2151 = (struct piece_closure *) value_computed_closure (v);
2152
2153 --c->refc;
2154 if (c->refc == 0)
2155 {
2156 int i;
2157
2158 for (i = 0; i < c->n_pieces; ++i)
2159 if (c->pieces[i].location == DWARF_VALUE_STACK)
2160 value_free (c->pieces[i].v.value);
2161
2162 xfree (c->pieces);
2163 xfree (c);
2164 }
2165 }
2166
2167 /* Functions for accessing a variable described by DW_OP_piece. */
2168 static const struct lval_funcs pieced_value_funcs = {
2169 read_pieced_value,
2170 write_pieced_value,
2171 check_pieced_value_validity,
2172 check_pieced_value_invalid,
2173 indirect_pieced_value,
2174 NULL, /* coerce_ref */
2175 check_pieced_synthetic_pointer,
2176 copy_pieced_value_closure,
2177 free_pieced_value_closure
2178 };
2179
2180 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2181
2182 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2183 {
2184 dwarf_expr_read_reg,
2185 dwarf_expr_read_mem,
2186 dwarf_expr_frame_base,
2187 dwarf_expr_frame_cfa,
2188 dwarf_expr_frame_pc,
2189 dwarf_expr_tls_address,
2190 dwarf_expr_dwarf_call,
2191 dwarf_expr_get_base_type,
2192 dwarf_expr_push_dwarf_reg_entry_value,
2193 dwarf_expr_get_addr_index
2194 };
2195
2196 /* Evaluate a location description, starting at DATA and with length
2197 SIZE, to find the current location of variable of TYPE in the
2198 context of FRAME. BYTE_OFFSET is applied after the contents are
2199 computed. */
2200
2201 static struct value *
2202 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2203 const gdb_byte *data, size_t size,
2204 struct dwarf2_per_cu_data *per_cu,
2205 LONGEST byte_offset)
2206 {
2207 struct value *retval;
2208 struct dwarf_expr_baton baton;
2209 struct dwarf_expr_context *ctx;
2210 struct cleanup *old_chain, *value_chain;
2211 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2212 volatile struct gdb_exception ex;
2213
2214 if (byte_offset < 0)
2215 invalid_synthetic_pointer ();
2216
2217 if (size == 0)
2218 return allocate_optimized_out_value (type);
2219
2220 baton.frame = frame;
2221 baton.per_cu = per_cu;
2222
2223 ctx = new_dwarf_expr_context ();
2224 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2225 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2226
2227 ctx->gdbarch = get_objfile_arch (objfile);
2228 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2229 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2230 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2231 ctx->baton = &baton;
2232 ctx->funcs = &dwarf_expr_ctx_funcs;
2233
2234 TRY_CATCH (ex, RETURN_MASK_ERROR)
2235 {
2236 dwarf_expr_eval (ctx, data, size);
2237 }
2238 if (ex.reason < 0)
2239 {
2240 if (ex.error == NOT_AVAILABLE_ERROR)
2241 {
2242 do_cleanups (old_chain);
2243 retval = allocate_value (type);
2244 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2245 return retval;
2246 }
2247 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2248 {
2249 if (entry_values_debug)
2250 exception_print (gdb_stdout, ex);
2251 do_cleanups (old_chain);
2252 return allocate_optimized_out_value (type);
2253 }
2254 else
2255 throw_exception (ex);
2256 }
2257
2258 if (ctx->num_pieces > 0)
2259 {
2260 struct piece_closure *c;
2261 struct frame_id frame_id = get_frame_id (frame);
2262 ULONGEST bit_size = 0;
2263 int i;
2264
2265 for (i = 0; i < ctx->num_pieces; ++i)
2266 bit_size += ctx->pieces[i].size;
2267 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2268 invalid_synthetic_pointer ();
2269
2270 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2271 ctx->addr_size);
2272 /* We must clean up the value chain after creating the piece
2273 closure but before allocating the result. */
2274 do_cleanups (value_chain);
2275 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2276 VALUE_FRAME_ID (retval) = frame_id;
2277 set_value_offset (retval, byte_offset);
2278 }
2279 else
2280 {
2281 switch (ctx->location)
2282 {
2283 case DWARF_VALUE_REGISTER:
2284 {
2285 struct gdbarch *arch = get_frame_arch (frame);
2286 ULONGEST dwarf_regnum = value_as_long (dwarf_expr_fetch (ctx, 0));
2287 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2288
2289 if (byte_offset != 0)
2290 error (_("cannot use offset on synthetic pointer to register"));
2291 do_cleanups (value_chain);
2292 if (gdb_regnum != -1)
2293 retval = value_from_register (type, gdb_regnum, frame);
2294 else
2295 error (_("Unable to access DWARF register number %s"),
2296 paddress (arch, dwarf_regnum));
2297 }
2298 break;
2299
2300 case DWARF_VALUE_MEMORY:
2301 {
2302 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2303 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2304
2305 do_cleanups (value_chain);
2306 retval = value_at_lazy (type, address + byte_offset);
2307 if (in_stack_memory)
2308 set_value_stack (retval, 1);
2309 }
2310 break;
2311
2312 case DWARF_VALUE_STACK:
2313 {
2314 struct value *value = dwarf_expr_fetch (ctx, 0);
2315 gdb_byte *contents;
2316 const gdb_byte *val_bytes;
2317 size_t n = TYPE_LENGTH (value_type (value));
2318
2319 if (byte_offset + TYPE_LENGTH (type) > n)
2320 invalid_synthetic_pointer ();
2321
2322 val_bytes = value_contents_all (value);
2323 val_bytes += byte_offset;
2324 n -= byte_offset;
2325
2326 /* Preserve VALUE because we are going to free values back
2327 to the mark, but we still need the value contents
2328 below. */
2329 value_incref (value);
2330 do_cleanups (value_chain);
2331 make_cleanup_value_free (value);
2332
2333 retval = allocate_value (type);
2334 contents = value_contents_raw (retval);
2335 if (n > TYPE_LENGTH (type))
2336 {
2337 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2338
2339 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2340 val_bytes += n - TYPE_LENGTH (type);
2341 n = TYPE_LENGTH (type);
2342 }
2343 memcpy (contents, val_bytes, n);
2344 }
2345 break;
2346
2347 case DWARF_VALUE_LITERAL:
2348 {
2349 bfd_byte *contents;
2350 const bfd_byte *ldata;
2351 size_t n = ctx->len;
2352
2353 if (byte_offset + TYPE_LENGTH (type) > n)
2354 invalid_synthetic_pointer ();
2355
2356 do_cleanups (value_chain);
2357 retval = allocate_value (type);
2358 contents = value_contents_raw (retval);
2359
2360 ldata = ctx->data + byte_offset;
2361 n -= byte_offset;
2362
2363 if (n > TYPE_LENGTH (type))
2364 {
2365 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2366
2367 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2368 ldata += n - TYPE_LENGTH (type);
2369 n = TYPE_LENGTH (type);
2370 }
2371 memcpy (contents, ldata, n);
2372 }
2373 break;
2374
2375 case DWARF_VALUE_OPTIMIZED_OUT:
2376 do_cleanups (value_chain);
2377 retval = allocate_optimized_out_value (type);
2378 break;
2379
2380 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2381 operation by execute_stack_op. */
2382 case DWARF_VALUE_IMPLICIT_POINTER:
2383 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2384 it can only be encountered when making a piece. */
2385 default:
2386 internal_error (__FILE__, __LINE__, _("invalid location type"));
2387 }
2388 }
2389
2390 set_value_initialized (retval, ctx->initialized);
2391
2392 do_cleanups (old_chain);
2393
2394 return retval;
2395 }
2396
2397 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2398 passes 0 as the byte_offset. */
2399
2400 struct value *
2401 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2402 const gdb_byte *data, size_t size,
2403 struct dwarf2_per_cu_data *per_cu)
2404 {
2405 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2406 }
2407
2408 \f
2409 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2410
2411 struct needs_frame_baton
2412 {
2413 int needs_frame;
2414 struct dwarf2_per_cu_data *per_cu;
2415 };
2416
2417 /* Reads from registers do require a frame. */
2418 static CORE_ADDR
2419 needs_frame_read_reg (void *baton, int regnum)
2420 {
2421 struct needs_frame_baton *nf_baton = baton;
2422
2423 nf_baton->needs_frame = 1;
2424 return 1;
2425 }
2426
2427 /* Reads from memory do not require a frame. */
2428 static void
2429 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2430 {
2431 memset (buf, 0, len);
2432 }
2433
2434 /* Frame-relative accesses do require a frame. */
2435 static void
2436 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2437 {
2438 static gdb_byte lit0 = DW_OP_lit0;
2439 struct needs_frame_baton *nf_baton = baton;
2440
2441 *start = &lit0;
2442 *length = 1;
2443
2444 nf_baton->needs_frame = 1;
2445 }
2446
2447 /* CFA accesses require a frame. */
2448
2449 static CORE_ADDR
2450 needs_frame_frame_cfa (void *baton)
2451 {
2452 struct needs_frame_baton *nf_baton = baton;
2453
2454 nf_baton->needs_frame = 1;
2455 return 1;
2456 }
2457
2458 /* Thread-local accesses do require a frame. */
2459 static CORE_ADDR
2460 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2461 {
2462 struct needs_frame_baton *nf_baton = baton;
2463
2464 nf_baton->needs_frame = 1;
2465 return 1;
2466 }
2467
2468 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2469
2470 static void
2471 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2472 {
2473 struct needs_frame_baton *nf_baton = ctx->baton;
2474
2475 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2476 ctx->funcs->get_frame_pc, ctx->baton);
2477 }
2478
2479 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2480
2481 static void
2482 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2483 enum call_site_parameter_kind kind,
2484 union call_site_parameter_u kind_u, int deref_size)
2485 {
2486 struct needs_frame_baton *nf_baton = ctx->baton;
2487
2488 nf_baton->needs_frame = 1;
2489
2490 /* The expression may require some stub values on DWARF stack. */
2491 dwarf_expr_push_address (ctx, 0, 0);
2492 }
2493
2494 /* DW_OP_GNU_addr_index doesn't require a frame. */
2495
2496 static CORE_ADDR
2497 needs_get_addr_index (void *baton, unsigned int index)
2498 {
2499 /* Nothing to do. */
2500 return 1;
2501 }
2502
2503 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2504
2505 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2506 {
2507 needs_frame_read_reg,
2508 needs_frame_read_mem,
2509 needs_frame_frame_base,
2510 needs_frame_frame_cfa,
2511 needs_frame_frame_cfa, /* get_frame_pc */
2512 needs_frame_tls_address,
2513 needs_frame_dwarf_call,
2514 NULL, /* get_base_type */
2515 needs_dwarf_reg_entry_value,
2516 needs_get_addr_index
2517 };
2518
2519 /* Return non-zero iff the location expression at DATA (length SIZE)
2520 requires a frame to evaluate. */
2521
2522 static int
2523 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2524 struct dwarf2_per_cu_data *per_cu)
2525 {
2526 struct needs_frame_baton baton;
2527 struct dwarf_expr_context *ctx;
2528 int in_reg;
2529 struct cleanup *old_chain;
2530 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2531
2532 baton.needs_frame = 0;
2533 baton.per_cu = per_cu;
2534
2535 ctx = new_dwarf_expr_context ();
2536 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2537 make_cleanup_value_free_to_mark (value_mark ());
2538
2539 ctx->gdbarch = get_objfile_arch (objfile);
2540 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2541 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2542 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2543 ctx->baton = &baton;
2544 ctx->funcs = &needs_frame_ctx_funcs;
2545
2546 dwarf_expr_eval (ctx, data, size);
2547
2548 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2549
2550 if (ctx->num_pieces > 0)
2551 {
2552 int i;
2553
2554 /* If the location has several pieces, and any of them are in
2555 registers, then we will need a frame to fetch them from. */
2556 for (i = 0; i < ctx->num_pieces; i++)
2557 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2558 in_reg = 1;
2559 }
2560
2561 do_cleanups (old_chain);
2562
2563 return baton.needs_frame || in_reg;
2564 }
2565
2566 /* A helper function that throws an unimplemented error mentioning a
2567 given DWARF operator. */
2568
2569 static void
2570 unimplemented (unsigned int op)
2571 {
2572 const char *name = get_DW_OP_name (op);
2573
2574 if (name)
2575 error (_("DWARF operator %s cannot be translated to an agent expression"),
2576 name);
2577 else
2578 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2579 "to an agent expression"),
2580 op);
2581 }
2582
2583 /* A helper function to convert a DWARF register to an arch register.
2584 ARCH is the architecture.
2585 DWARF_REG is the register.
2586 This will throw an exception if the DWARF register cannot be
2587 translated to an architecture register. */
2588
2589 static int
2590 translate_register (struct gdbarch *arch, int dwarf_reg)
2591 {
2592 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2593 if (reg == -1)
2594 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2595 return reg;
2596 }
2597
2598 /* A helper function that emits an access to memory. ARCH is the
2599 target architecture. EXPR is the expression which we are building.
2600 NBITS is the number of bits we want to read. This emits the
2601 opcodes needed to read the memory and then extract the desired
2602 bits. */
2603
2604 static void
2605 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2606 {
2607 ULONGEST nbytes = (nbits + 7) / 8;
2608
2609 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2610
2611 if (expr->tracing)
2612 ax_trace_quick (expr, nbytes);
2613
2614 if (nbits <= 8)
2615 ax_simple (expr, aop_ref8);
2616 else if (nbits <= 16)
2617 ax_simple (expr, aop_ref16);
2618 else if (nbits <= 32)
2619 ax_simple (expr, aop_ref32);
2620 else
2621 ax_simple (expr, aop_ref64);
2622
2623 /* If we read exactly the number of bytes we wanted, we're done. */
2624 if (8 * nbytes == nbits)
2625 return;
2626
2627 if (gdbarch_bits_big_endian (arch))
2628 {
2629 /* On a bits-big-endian machine, we want the high-order
2630 NBITS. */
2631 ax_const_l (expr, 8 * nbytes - nbits);
2632 ax_simple (expr, aop_rsh_unsigned);
2633 }
2634 else
2635 {
2636 /* On a bits-little-endian box, we want the low-order NBITS. */
2637 ax_zero_ext (expr, nbits);
2638 }
2639 }
2640
2641 /* A helper function to return the frame's PC. */
2642
2643 static CORE_ADDR
2644 get_ax_pc (void *baton)
2645 {
2646 struct agent_expr *expr = baton;
2647
2648 return expr->scope;
2649 }
2650
2651 /* Compile a DWARF location expression to an agent expression.
2652
2653 EXPR is the agent expression we are building.
2654 LOC is the agent value we modify.
2655 ARCH is the architecture.
2656 ADDR_SIZE is the size of addresses, in bytes.
2657 OP_PTR is the start of the location expression.
2658 OP_END is one past the last byte of the location expression.
2659
2660 This will throw an exception for various kinds of errors -- for
2661 example, if the expression cannot be compiled, or if the expression
2662 is invalid. */
2663
2664 void
2665 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2666 struct gdbarch *arch, unsigned int addr_size,
2667 const gdb_byte *op_ptr, const gdb_byte *op_end,
2668 struct dwarf2_per_cu_data *per_cu)
2669 {
2670 struct cleanup *cleanups;
2671 int i, *offsets;
2672 VEC(int) *dw_labels = NULL, *patches = NULL;
2673 const gdb_byte * const base = op_ptr;
2674 const gdb_byte *previous_piece = op_ptr;
2675 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2676 ULONGEST bits_collected = 0;
2677 unsigned int addr_size_bits = 8 * addr_size;
2678 int bits_big_endian = gdbarch_bits_big_endian (arch);
2679
2680 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2681 cleanups = make_cleanup (xfree, offsets);
2682
2683 for (i = 0; i < op_end - op_ptr; ++i)
2684 offsets[i] = -1;
2685
2686 make_cleanup (VEC_cleanup (int), &dw_labels);
2687 make_cleanup (VEC_cleanup (int), &patches);
2688
2689 /* By default we are making an address. */
2690 loc->kind = axs_lvalue_memory;
2691
2692 while (op_ptr < op_end)
2693 {
2694 enum dwarf_location_atom op = *op_ptr;
2695 uint64_t uoffset, reg;
2696 int64_t offset;
2697 int i;
2698
2699 offsets[op_ptr - base] = expr->len;
2700 ++op_ptr;
2701
2702 /* Our basic approach to code generation is to map DWARF
2703 operations directly to AX operations. However, there are
2704 some differences.
2705
2706 First, DWARF works on address-sized units, but AX always uses
2707 LONGEST. For most operations we simply ignore this
2708 difference; instead we generate sign extensions as needed
2709 before division and comparison operations. It would be nice
2710 to omit the sign extensions, but there is no way to determine
2711 the size of the target's LONGEST. (This code uses the size
2712 of the host LONGEST in some cases -- that is a bug but it is
2713 difficult to fix.)
2714
2715 Second, some DWARF operations cannot be translated to AX.
2716 For these we simply fail. See
2717 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2718 switch (op)
2719 {
2720 case DW_OP_lit0:
2721 case DW_OP_lit1:
2722 case DW_OP_lit2:
2723 case DW_OP_lit3:
2724 case DW_OP_lit4:
2725 case DW_OP_lit5:
2726 case DW_OP_lit6:
2727 case DW_OP_lit7:
2728 case DW_OP_lit8:
2729 case DW_OP_lit9:
2730 case DW_OP_lit10:
2731 case DW_OP_lit11:
2732 case DW_OP_lit12:
2733 case DW_OP_lit13:
2734 case DW_OP_lit14:
2735 case DW_OP_lit15:
2736 case DW_OP_lit16:
2737 case DW_OP_lit17:
2738 case DW_OP_lit18:
2739 case DW_OP_lit19:
2740 case DW_OP_lit20:
2741 case DW_OP_lit21:
2742 case DW_OP_lit22:
2743 case DW_OP_lit23:
2744 case DW_OP_lit24:
2745 case DW_OP_lit25:
2746 case DW_OP_lit26:
2747 case DW_OP_lit27:
2748 case DW_OP_lit28:
2749 case DW_OP_lit29:
2750 case DW_OP_lit30:
2751 case DW_OP_lit31:
2752 ax_const_l (expr, op - DW_OP_lit0);
2753 break;
2754
2755 case DW_OP_addr:
2756 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2757 op_ptr += addr_size;
2758 /* Some versions of GCC emit DW_OP_addr before
2759 DW_OP_GNU_push_tls_address. In this case the value is an
2760 index, not an address. We don't support things like
2761 branching between the address and the TLS op. */
2762 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2763 uoffset += dwarf2_per_cu_text_offset (per_cu);
2764 ax_const_l (expr, uoffset);
2765 break;
2766
2767 case DW_OP_const1u:
2768 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2769 op_ptr += 1;
2770 break;
2771 case DW_OP_const1s:
2772 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2773 op_ptr += 1;
2774 break;
2775 case DW_OP_const2u:
2776 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2777 op_ptr += 2;
2778 break;
2779 case DW_OP_const2s:
2780 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2781 op_ptr += 2;
2782 break;
2783 case DW_OP_const4u:
2784 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2785 op_ptr += 4;
2786 break;
2787 case DW_OP_const4s:
2788 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2789 op_ptr += 4;
2790 break;
2791 case DW_OP_const8u:
2792 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2793 op_ptr += 8;
2794 break;
2795 case DW_OP_const8s:
2796 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2797 op_ptr += 8;
2798 break;
2799 case DW_OP_constu:
2800 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2801 ax_const_l (expr, uoffset);
2802 break;
2803 case DW_OP_consts:
2804 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2805 ax_const_l (expr, offset);
2806 break;
2807
2808 case DW_OP_reg0:
2809 case DW_OP_reg1:
2810 case DW_OP_reg2:
2811 case DW_OP_reg3:
2812 case DW_OP_reg4:
2813 case DW_OP_reg5:
2814 case DW_OP_reg6:
2815 case DW_OP_reg7:
2816 case DW_OP_reg8:
2817 case DW_OP_reg9:
2818 case DW_OP_reg10:
2819 case DW_OP_reg11:
2820 case DW_OP_reg12:
2821 case DW_OP_reg13:
2822 case DW_OP_reg14:
2823 case DW_OP_reg15:
2824 case DW_OP_reg16:
2825 case DW_OP_reg17:
2826 case DW_OP_reg18:
2827 case DW_OP_reg19:
2828 case DW_OP_reg20:
2829 case DW_OP_reg21:
2830 case DW_OP_reg22:
2831 case DW_OP_reg23:
2832 case DW_OP_reg24:
2833 case DW_OP_reg25:
2834 case DW_OP_reg26:
2835 case DW_OP_reg27:
2836 case DW_OP_reg28:
2837 case DW_OP_reg29:
2838 case DW_OP_reg30:
2839 case DW_OP_reg31:
2840 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2841 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
2842 loc->kind = axs_lvalue_register;
2843 break;
2844
2845 case DW_OP_regx:
2846 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2847 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2848 loc->u.reg = translate_register (arch, reg);
2849 loc->kind = axs_lvalue_register;
2850 break;
2851
2852 case DW_OP_implicit_value:
2853 {
2854 uint64_t len;
2855
2856 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
2857 if (op_ptr + len > op_end)
2858 error (_("DW_OP_implicit_value: too few bytes available."));
2859 if (len > sizeof (ULONGEST))
2860 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
2861 (int) len);
2862
2863 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
2864 byte_order));
2865 op_ptr += len;
2866 dwarf_expr_require_composition (op_ptr, op_end,
2867 "DW_OP_implicit_value");
2868
2869 loc->kind = axs_rvalue;
2870 }
2871 break;
2872
2873 case DW_OP_stack_value:
2874 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
2875 loc->kind = axs_rvalue;
2876 break;
2877
2878 case DW_OP_breg0:
2879 case DW_OP_breg1:
2880 case DW_OP_breg2:
2881 case DW_OP_breg3:
2882 case DW_OP_breg4:
2883 case DW_OP_breg5:
2884 case DW_OP_breg6:
2885 case DW_OP_breg7:
2886 case DW_OP_breg8:
2887 case DW_OP_breg9:
2888 case DW_OP_breg10:
2889 case DW_OP_breg11:
2890 case DW_OP_breg12:
2891 case DW_OP_breg13:
2892 case DW_OP_breg14:
2893 case DW_OP_breg15:
2894 case DW_OP_breg16:
2895 case DW_OP_breg17:
2896 case DW_OP_breg18:
2897 case DW_OP_breg19:
2898 case DW_OP_breg20:
2899 case DW_OP_breg21:
2900 case DW_OP_breg22:
2901 case DW_OP_breg23:
2902 case DW_OP_breg24:
2903 case DW_OP_breg25:
2904 case DW_OP_breg26:
2905 case DW_OP_breg27:
2906 case DW_OP_breg28:
2907 case DW_OP_breg29:
2908 case DW_OP_breg30:
2909 case DW_OP_breg31:
2910 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2911 i = translate_register (arch, op - DW_OP_breg0);
2912 ax_reg (expr, i);
2913 if (offset != 0)
2914 {
2915 ax_const_l (expr, offset);
2916 ax_simple (expr, aop_add);
2917 }
2918 break;
2919 case DW_OP_bregx:
2920 {
2921 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2922 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2923 i = translate_register (arch, reg);
2924 ax_reg (expr, i);
2925 if (offset != 0)
2926 {
2927 ax_const_l (expr, offset);
2928 ax_simple (expr, aop_add);
2929 }
2930 }
2931 break;
2932 case DW_OP_fbreg:
2933 {
2934 const gdb_byte *datastart;
2935 size_t datalen;
2936 struct block *b;
2937 struct symbol *framefunc;
2938
2939 b = block_for_pc (expr->scope);
2940
2941 if (!b)
2942 error (_("No block found for address"));
2943
2944 framefunc = block_linkage_function (b);
2945
2946 if (!framefunc)
2947 error (_("No function found for block"));
2948
2949 dwarf_expr_frame_base_1 (framefunc, expr->scope,
2950 &datastart, &datalen);
2951
2952 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2953 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
2954 datastart + datalen, per_cu);
2955 if (loc->kind == axs_lvalue_register)
2956 require_rvalue (expr, loc);
2957
2958 if (offset != 0)
2959 {
2960 ax_const_l (expr, offset);
2961 ax_simple (expr, aop_add);
2962 }
2963
2964 loc->kind = axs_lvalue_memory;
2965 }
2966 break;
2967
2968 case DW_OP_dup:
2969 ax_simple (expr, aop_dup);
2970 break;
2971
2972 case DW_OP_drop:
2973 ax_simple (expr, aop_pop);
2974 break;
2975
2976 case DW_OP_pick:
2977 offset = *op_ptr++;
2978 ax_pick (expr, offset);
2979 break;
2980
2981 case DW_OP_swap:
2982 ax_simple (expr, aop_swap);
2983 break;
2984
2985 case DW_OP_over:
2986 ax_pick (expr, 1);
2987 break;
2988
2989 case DW_OP_rot:
2990 ax_simple (expr, aop_rot);
2991 break;
2992
2993 case DW_OP_deref:
2994 case DW_OP_deref_size:
2995 {
2996 int size;
2997
2998 if (op == DW_OP_deref_size)
2999 size = *op_ptr++;
3000 else
3001 size = addr_size;
3002
3003 if (size != 1 && size != 2 && size != 4 && size != 8)
3004 error (_("Unsupported size %d in %s"),
3005 size, get_DW_OP_name (op));
3006 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3007 }
3008 break;
3009
3010 case DW_OP_abs:
3011 /* Sign extend the operand. */
3012 ax_ext (expr, addr_size_bits);
3013 ax_simple (expr, aop_dup);
3014 ax_const_l (expr, 0);
3015 ax_simple (expr, aop_less_signed);
3016 ax_simple (expr, aop_log_not);
3017 i = ax_goto (expr, aop_if_goto);
3018 /* We have to emit 0 - X. */
3019 ax_const_l (expr, 0);
3020 ax_simple (expr, aop_swap);
3021 ax_simple (expr, aop_sub);
3022 ax_label (expr, i, expr->len);
3023 break;
3024
3025 case DW_OP_neg:
3026 /* No need to sign extend here. */
3027 ax_const_l (expr, 0);
3028 ax_simple (expr, aop_swap);
3029 ax_simple (expr, aop_sub);
3030 break;
3031
3032 case DW_OP_not:
3033 /* Sign extend the operand. */
3034 ax_ext (expr, addr_size_bits);
3035 ax_simple (expr, aop_bit_not);
3036 break;
3037
3038 case DW_OP_plus_uconst:
3039 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3040 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3041 but we micro-optimize anyhow. */
3042 if (reg != 0)
3043 {
3044 ax_const_l (expr, reg);
3045 ax_simple (expr, aop_add);
3046 }
3047 break;
3048
3049 case DW_OP_and:
3050 ax_simple (expr, aop_bit_and);
3051 break;
3052
3053 case DW_OP_div:
3054 /* Sign extend the operands. */
3055 ax_ext (expr, addr_size_bits);
3056 ax_simple (expr, aop_swap);
3057 ax_ext (expr, addr_size_bits);
3058 ax_simple (expr, aop_swap);
3059 ax_simple (expr, aop_div_signed);
3060 break;
3061
3062 case DW_OP_minus:
3063 ax_simple (expr, aop_sub);
3064 break;
3065
3066 case DW_OP_mod:
3067 ax_simple (expr, aop_rem_unsigned);
3068 break;
3069
3070 case DW_OP_mul:
3071 ax_simple (expr, aop_mul);
3072 break;
3073
3074 case DW_OP_or:
3075 ax_simple (expr, aop_bit_or);
3076 break;
3077
3078 case DW_OP_plus:
3079 ax_simple (expr, aop_add);
3080 break;
3081
3082 case DW_OP_shl:
3083 ax_simple (expr, aop_lsh);
3084 break;
3085
3086 case DW_OP_shr:
3087 ax_simple (expr, aop_rsh_unsigned);
3088 break;
3089
3090 case DW_OP_shra:
3091 ax_simple (expr, aop_rsh_signed);
3092 break;
3093
3094 case DW_OP_xor:
3095 ax_simple (expr, aop_bit_xor);
3096 break;
3097
3098 case DW_OP_le:
3099 /* Sign extend the operands. */
3100 ax_ext (expr, addr_size_bits);
3101 ax_simple (expr, aop_swap);
3102 ax_ext (expr, addr_size_bits);
3103 /* Note no swap here: A <= B is !(B < A). */
3104 ax_simple (expr, aop_less_signed);
3105 ax_simple (expr, aop_log_not);
3106 break;
3107
3108 case DW_OP_ge:
3109 /* Sign extend the operands. */
3110 ax_ext (expr, addr_size_bits);
3111 ax_simple (expr, aop_swap);
3112 ax_ext (expr, addr_size_bits);
3113 ax_simple (expr, aop_swap);
3114 /* A >= B is !(A < B). */
3115 ax_simple (expr, aop_less_signed);
3116 ax_simple (expr, aop_log_not);
3117 break;
3118
3119 case DW_OP_eq:
3120 /* Sign extend the operands. */
3121 ax_ext (expr, addr_size_bits);
3122 ax_simple (expr, aop_swap);
3123 ax_ext (expr, addr_size_bits);
3124 /* No need for a second swap here. */
3125 ax_simple (expr, aop_equal);
3126 break;
3127
3128 case DW_OP_lt:
3129 /* Sign extend the operands. */
3130 ax_ext (expr, addr_size_bits);
3131 ax_simple (expr, aop_swap);
3132 ax_ext (expr, addr_size_bits);
3133 ax_simple (expr, aop_swap);
3134 ax_simple (expr, aop_less_signed);
3135 break;
3136
3137 case DW_OP_gt:
3138 /* Sign extend the operands. */
3139 ax_ext (expr, addr_size_bits);
3140 ax_simple (expr, aop_swap);
3141 ax_ext (expr, addr_size_bits);
3142 /* Note no swap here: A > B is B < A. */
3143 ax_simple (expr, aop_less_signed);
3144 break;
3145
3146 case DW_OP_ne:
3147 /* Sign extend the operands. */
3148 ax_ext (expr, addr_size_bits);
3149 ax_simple (expr, aop_swap);
3150 ax_ext (expr, addr_size_bits);
3151 /* No need for a swap here. */
3152 ax_simple (expr, aop_equal);
3153 ax_simple (expr, aop_log_not);
3154 break;
3155
3156 case DW_OP_call_frame_cfa:
3157 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
3158 loc->kind = axs_lvalue_memory;
3159 break;
3160
3161 case DW_OP_GNU_push_tls_address:
3162 unimplemented (op);
3163 break;
3164
3165 case DW_OP_skip:
3166 offset = extract_signed_integer (op_ptr, 2, byte_order);
3167 op_ptr += 2;
3168 i = ax_goto (expr, aop_goto);
3169 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3170 VEC_safe_push (int, patches, i);
3171 break;
3172
3173 case DW_OP_bra:
3174 offset = extract_signed_integer (op_ptr, 2, byte_order);
3175 op_ptr += 2;
3176 /* Zero extend the operand. */
3177 ax_zero_ext (expr, addr_size_bits);
3178 i = ax_goto (expr, aop_if_goto);
3179 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3180 VEC_safe_push (int, patches, i);
3181 break;
3182
3183 case DW_OP_nop:
3184 break;
3185
3186 case DW_OP_piece:
3187 case DW_OP_bit_piece:
3188 {
3189 uint64_t size, offset;
3190
3191 if (op_ptr - 1 == previous_piece)
3192 error (_("Cannot translate empty pieces to agent expressions"));
3193 previous_piece = op_ptr - 1;
3194
3195 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3196 if (op == DW_OP_piece)
3197 {
3198 size *= 8;
3199 offset = 0;
3200 }
3201 else
3202 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3203
3204 if (bits_collected + size > 8 * sizeof (LONGEST))
3205 error (_("Expression pieces exceed word size"));
3206
3207 /* Access the bits. */
3208 switch (loc->kind)
3209 {
3210 case axs_lvalue_register:
3211 ax_reg (expr, loc->u.reg);
3212 break;
3213
3214 case axs_lvalue_memory:
3215 /* Offset the pointer, if needed. */
3216 if (offset > 8)
3217 {
3218 ax_const_l (expr, offset / 8);
3219 ax_simple (expr, aop_add);
3220 offset %= 8;
3221 }
3222 access_memory (arch, expr, size);
3223 break;
3224 }
3225
3226 /* For a bits-big-endian target, shift up what we already
3227 have. For a bits-little-endian target, shift up the
3228 new data. Note that there is a potential bug here if
3229 the DWARF expression leaves multiple values on the
3230 stack. */
3231 if (bits_collected > 0)
3232 {
3233 if (bits_big_endian)
3234 {
3235 ax_simple (expr, aop_swap);
3236 ax_const_l (expr, size);
3237 ax_simple (expr, aop_lsh);
3238 /* We don't need a second swap here, because
3239 aop_bit_or is symmetric. */
3240 }
3241 else
3242 {
3243 ax_const_l (expr, size);
3244 ax_simple (expr, aop_lsh);
3245 }
3246 ax_simple (expr, aop_bit_or);
3247 }
3248
3249 bits_collected += size;
3250 loc->kind = axs_rvalue;
3251 }
3252 break;
3253
3254 case DW_OP_GNU_uninit:
3255 unimplemented (op);
3256
3257 case DW_OP_call2:
3258 case DW_OP_call4:
3259 {
3260 struct dwarf2_locexpr_baton block;
3261 int size = (op == DW_OP_call2 ? 2 : 4);
3262 cu_offset offset;
3263
3264 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3265 op_ptr += size;
3266
3267 offset.cu_off = uoffset;
3268 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3269 get_ax_pc, expr);
3270
3271 /* DW_OP_call_ref is currently not supported. */
3272 gdb_assert (block.per_cu == per_cu);
3273
3274 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3275 block.data, block.data + block.size,
3276 per_cu);
3277 }
3278 break;
3279
3280 case DW_OP_call_ref:
3281 unimplemented (op);
3282
3283 default:
3284 unimplemented (op);
3285 }
3286 }
3287
3288 /* Patch all the branches we emitted. */
3289 for (i = 0; i < VEC_length (int, patches); ++i)
3290 {
3291 int targ = offsets[VEC_index (int, dw_labels, i)];
3292 if (targ == -1)
3293 internal_error (__FILE__, __LINE__, _("invalid label"));
3294 ax_label (expr, VEC_index (int, patches, i), targ);
3295 }
3296
3297 do_cleanups (cleanups);
3298 }
3299
3300 \f
3301 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3302 evaluator to calculate the location. */
3303 static struct value *
3304 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3305 {
3306 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3307 struct value *val;
3308
3309 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3310 dlbaton->size, dlbaton->per_cu);
3311
3312 return val;
3313 }
3314
3315 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3316 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3317 will be thrown. */
3318
3319 static struct value *
3320 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3321 {
3322 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3323
3324 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3325 dlbaton->size);
3326 }
3327
3328 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3329 static int
3330 locexpr_read_needs_frame (struct symbol *symbol)
3331 {
3332 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3333
3334 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3335 dlbaton->per_cu);
3336 }
3337
3338 /* Return true if DATA points to the end of a piece. END is one past
3339 the last byte in the expression. */
3340
3341 static int
3342 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3343 {
3344 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3345 }
3346
3347 /* Helper for locexpr_describe_location_piece that finds the name of a
3348 DWARF register. */
3349
3350 static const char *
3351 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3352 {
3353 int regnum;
3354
3355 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3356 return gdbarch_register_name (gdbarch, regnum);
3357 }
3358
3359 /* Nicely describe a single piece of a location, returning an updated
3360 position in the bytecode sequence. This function cannot recognize
3361 all locations; if a location is not recognized, it simply returns
3362 DATA. If there is an error during reading, e.g. we run off the end
3363 of the buffer, an error is thrown. */
3364
3365 static const gdb_byte *
3366 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3367 CORE_ADDR addr, struct objfile *objfile,
3368 struct dwarf2_per_cu_data *per_cu,
3369 const gdb_byte *data, const gdb_byte *end,
3370 unsigned int addr_size)
3371 {
3372 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3373 size_t leb128_size;
3374
3375 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3376 {
3377 fprintf_filtered (stream, _("a variable in $%s"),
3378 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3379 data += 1;
3380 }
3381 else if (data[0] == DW_OP_regx)
3382 {
3383 uint64_t reg;
3384
3385 data = safe_read_uleb128 (data + 1, end, &reg);
3386 fprintf_filtered (stream, _("a variable in $%s"),
3387 locexpr_regname (gdbarch, reg));
3388 }
3389 else if (data[0] == DW_OP_fbreg)
3390 {
3391 struct block *b;
3392 struct symbol *framefunc;
3393 int frame_reg = 0;
3394 int64_t frame_offset;
3395 const gdb_byte *base_data, *new_data, *save_data = data;
3396 size_t base_size;
3397 int64_t base_offset = 0;
3398
3399 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3400 if (!piece_end_p (new_data, end))
3401 return data;
3402 data = new_data;
3403
3404 b = block_for_pc (addr);
3405
3406 if (!b)
3407 error (_("No block found for address for symbol \"%s\"."),
3408 SYMBOL_PRINT_NAME (symbol));
3409
3410 framefunc = block_linkage_function (b);
3411
3412 if (!framefunc)
3413 error (_("No function found for block for symbol \"%s\"."),
3414 SYMBOL_PRINT_NAME (symbol));
3415
3416 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
3417
3418 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3419 {
3420 const gdb_byte *buf_end;
3421
3422 frame_reg = base_data[0] - DW_OP_breg0;
3423 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3424 &base_offset);
3425 if (buf_end != base_data + base_size)
3426 error (_("Unexpected opcode after "
3427 "DW_OP_breg%u for symbol \"%s\"."),
3428 frame_reg, SYMBOL_PRINT_NAME (symbol));
3429 }
3430 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3431 {
3432 /* The frame base is just the register, with no offset. */
3433 frame_reg = base_data[0] - DW_OP_reg0;
3434 base_offset = 0;
3435 }
3436 else
3437 {
3438 /* We don't know what to do with the frame base expression,
3439 so we can't trace this variable; give up. */
3440 return save_data;
3441 }
3442
3443 fprintf_filtered (stream,
3444 _("a variable at frame base reg $%s offset %s+%s"),
3445 locexpr_regname (gdbarch, frame_reg),
3446 plongest (base_offset), plongest (frame_offset));
3447 }
3448 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3449 && piece_end_p (data, end))
3450 {
3451 int64_t offset;
3452
3453 data = safe_read_sleb128 (data + 1, end, &offset);
3454
3455 fprintf_filtered (stream,
3456 _("a variable at offset %s from base reg $%s"),
3457 plongest (offset),
3458 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3459 }
3460
3461 /* The location expression for a TLS variable looks like this (on a
3462 64-bit LE machine):
3463
3464 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3465 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3466
3467 0x3 is the encoding for DW_OP_addr, which has an operand as long
3468 as the size of an address on the target machine (here is 8
3469 bytes). Note that more recent version of GCC emit DW_OP_const4u
3470 or DW_OP_const8u, depending on address size, rather than
3471 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3472 The operand represents the offset at which the variable is within
3473 the thread local storage. */
3474
3475 else if (data + 1 + addr_size < end
3476 && (data[0] == DW_OP_addr
3477 || (addr_size == 4 && data[0] == DW_OP_const4u)
3478 || (addr_size == 8 && data[0] == DW_OP_const8u))
3479 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3480 && piece_end_p (data + 2 + addr_size, end))
3481 {
3482 ULONGEST offset;
3483 offset = extract_unsigned_integer (data + 1, addr_size,
3484 gdbarch_byte_order (gdbarch));
3485
3486 fprintf_filtered (stream,
3487 _("a thread-local variable at offset 0x%s "
3488 "in the thread-local storage for `%s'"),
3489 phex_nz (offset, addr_size), objfile->name);
3490
3491 data += 1 + addr_size + 1;
3492 }
3493
3494 /* With -gsplit-dwarf a TLS variable can also look like this:
3495 DW_AT_location : 3 byte block: fc 4 e0
3496 (DW_OP_GNU_const_index: 4;
3497 DW_OP_GNU_push_tls_address) */
3498 else if (data + 3 <= end
3499 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3500 && data[0] == DW_OP_GNU_const_index
3501 && leb128_size > 0
3502 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3503 && piece_end_p (data + 2 + leb128_size, end))
3504 {
3505 uint64_t offset;
3506
3507 data = safe_read_uleb128 (data + 1, end, &offset);
3508 offset = dwarf2_read_addr_index (per_cu, offset);
3509 fprintf_filtered (stream,
3510 _("a thread-local variable at offset 0x%s "
3511 "in the thread-local storage for `%s'"),
3512 phex_nz (offset, addr_size), objfile->name);
3513 ++data;
3514 }
3515
3516 else if (data[0] >= DW_OP_lit0
3517 && data[0] <= DW_OP_lit31
3518 && data + 1 < end
3519 && data[1] == DW_OP_stack_value)
3520 {
3521 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3522 data += 2;
3523 }
3524
3525 return data;
3526 }
3527
3528 /* Disassemble an expression, stopping at the end of a piece or at the
3529 end of the expression. Returns a pointer to the next unread byte
3530 in the input expression. If ALL is nonzero, then this function
3531 will keep going until it reaches the end of the expression.
3532 If there is an error during reading, e.g. we run off the end
3533 of the buffer, an error is thrown. */
3534
3535 static const gdb_byte *
3536 disassemble_dwarf_expression (struct ui_file *stream,
3537 struct gdbarch *arch, unsigned int addr_size,
3538 int offset_size, const gdb_byte *start,
3539 const gdb_byte *data, const gdb_byte *end,
3540 int indent, int all,
3541 struct dwarf2_per_cu_data *per_cu)
3542 {
3543 while (data < end
3544 && (all
3545 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3546 {
3547 enum dwarf_location_atom op = *data++;
3548 uint64_t ul;
3549 int64_t l;
3550 const char *name;
3551
3552 name = get_DW_OP_name (op);
3553
3554 if (!name)
3555 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3556 op, (long) (data - 1 - start));
3557 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3558 (long) (data - 1 - start), name);
3559
3560 switch (op)
3561 {
3562 case DW_OP_addr:
3563 ul = extract_unsigned_integer (data, addr_size,
3564 gdbarch_byte_order (arch));
3565 data += addr_size;
3566 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3567 break;
3568
3569 case DW_OP_const1u:
3570 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3571 data += 1;
3572 fprintf_filtered (stream, " %s", pulongest (ul));
3573 break;
3574 case DW_OP_const1s:
3575 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3576 data += 1;
3577 fprintf_filtered (stream, " %s", plongest (l));
3578 break;
3579 case DW_OP_const2u:
3580 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3581 data += 2;
3582 fprintf_filtered (stream, " %s", pulongest (ul));
3583 break;
3584 case DW_OP_const2s:
3585 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3586 data += 2;
3587 fprintf_filtered (stream, " %s", plongest (l));
3588 break;
3589 case DW_OP_const4u:
3590 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3591 data += 4;
3592 fprintf_filtered (stream, " %s", pulongest (ul));
3593 break;
3594 case DW_OP_const4s:
3595 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3596 data += 4;
3597 fprintf_filtered (stream, " %s", plongest (l));
3598 break;
3599 case DW_OP_const8u:
3600 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3601 data += 8;
3602 fprintf_filtered (stream, " %s", pulongest (ul));
3603 break;
3604 case DW_OP_const8s:
3605 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3606 data += 8;
3607 fprintf_filtered (stream, " %s", plongest (l));
3608 break;
3609 case DW_OP_constu:
3610 data = safe_read_uleb128 (data, end, &ul);
3611 fprintf_filtered (stream, " %s", pulongest (ul));
3612 break;
3613 case DW_OP_consts:
3614 data = safe_read_sleb128 (data, end, &l);
3615 fprintf_filtered (stream, " %s", plongest (l));
3616 break;
3617
3618 case DW_OP_reg0:
3619 case DW_OP_reg1:
3620 case DW_OP_reg2:
3621 case DW_OP_reg3:
3622 case DW_OP_reg4:
3623 case DW_OP_reg5:
3624 case DW_OP_reg6:
3625 case DW_OP_reg7:
3626 case DW_OP_reg8:
3627 case DW_OP_reg9:
3628 case DW_OP_reg10:
3629 case DW_OP_reg11:
3630 case DW_OP_reg12:
3631 case DW_OP_reg13:
3632 case DW_OP_reg14:
3633 case DW_OP_reg15:
3634 case DW_OP_reg16:
3635 case DW_OP_reg17:
3636 case DW_OP_reg18:
3637 case DW_OP_reg19:
3638 case DW_OP_reg20:
3639 case DW_OP_reg21:
3640 case DW_OP_reg22:
3641 case DW_OP_reg23:
3642 case DW_OP_reg24:
3643 case DW_OP_reg25:
3644 case DW_OP_reg26:
3645 case DW_OP_reg27:
3646 case DW_OP_reg28:
3647 case DW_OP_reg29:
3648 case DW_OP_reg30:
3649 case DW_OP_reg31:
3650 fprintf_filtered (stream, " [$%s]",
3651 locexpr_regname (arch, op - DW_OP_reg0));
3652 break;
3653
3654 case DW_OP_regx:
3655 data = safe_read_uleb128 (data, end, &ul);
3656 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3657 locexpr_regname (arch, (int) ul));
3658 break;
3659
3660 case DW_OP_implicit_value:
3661 data = safe_read_uleb128 (data, end, &ul);
3662 data += ul;
3663 fprintf_filtered (stream, " %s", pulongest (ul));
3664 break;
3665
3666 case DW_OP_breg0:
3667 case DW_OP_breg1:
3668 case DW_OP_breg2:
3669 case DW_OP_breg3:
3670 case DW_OP_breg4:
3671 case DW_OP_breg5:
3672 case DW_OP_breg6:
3673 case DW_OP_breg7:
3674 case DW_OP_breg8:
3675 case DW_OP_breg9:
3676 case DW_OP_breg10:
3677 case DW_OP_breg11:
3678 case DW_OP_breg12:
3679 case DW_OP_breg13:
3680 case DW_OP_breg14:
3681 case DW_OP_breg15:
3682 case DW_OP_breg16:
3683 case DW_OP_breg17:
3684 case DW_OP_breg18:
3685 case DW_OP_breg19:
3686 case DW_OP_breg20:
3687 case DW_OP_breg21:
3688 case DW_OP_breg22:
3689 case DW_OP_breg23:
3690 case DW_OP_breg24:
3691 case DW_OP_breg25:
3692 case DW_OP_breg26:
3693 case DW_OP_breg27:
3694 case DW_OP_breg28:
3695 case DW_OP_breg29:
3696 case DW_OP_breg30:
3697 case DW_OP_breg31:
3698 data = safe_read_sleb128 (data, end, &l);
3699 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3700 locexpr_regname (arch, op - DW_OP_breg0));
3701 break;
3702
3703 case DW_OP_bregx:
3704 data = safe_read_uleb128 (data, end, &ul);
3705 data = safe_read_sleb128 (data, end, &l);
3706 fprintf_filtered (stream, " register %s [$%s] offset %s",
3707 pulongest (ul),
3708 locexpr_regname (arch, (int) ul),
3709 plongest (l));
3710 break;
3711
3712 case DW_OP_fbreg:
3713 data = safe_read_sleb128 (data, end, &l);
3714 fprintf_filtered (stream, " %s", plongest (l));
3715 break;
3716
3717 case DW_OP_xderef_size:
3718 case DW_OP_deref_size:
3719 case DW_OP_pick:
3720 fprintf_filtered (stream, " %d", *data);
3721 ++data;
3722 break;
3723
3724 case DW_OP_plus_uconst:
3725 data = safe_read_uleb128 (data, end, &ul);
3726 fprintf_filtered (stream, " %s", pulongest (ul));
3727 break;
3728
3729 case DW_OP_skip:
3730 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3731 data += 2;
3732 fprintf_filtered (stream, " to %ld",
3733 (long) (data + l - start));
3734 break;
3735
3736 case DW_OP_bra:
3737 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3738 data += 2;
3739 fprintf_filtered (stream, " %ld",
3740 (long) (data + l - start));
3741 break;
3742
3743 case DW_OP_call2:
3744 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3745 data += 2;
3746 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3747 break;
3748
3749 case DW_OP_call4:
3750 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3751 data += 4;
3752 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3753 break;
3754
3755 case DW_OP_call_ref:
3756 ul = extract_unsigned_integer (data, offset_size,
3757 gdbarch_byte_order (arch));
3758 data += offset_size;
3759 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3760 break;
3761
3762 case DW_OP_piece:
3763 data = safe_read_uleb128 (data, end, &ul);
3764 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3765 break;
3766
3767 case DW_OP_bit_piece:
3768 {
3769 uint64_t offset;
3770
3771 data = safe_read_uleb128 (data, end, &ul);
3772 data = safe_read_uleb128 (data, end, &offset);
3773 fprintf_filtered (stream, " size %s offset %s (bits)",
3774 pulongest (ul), pulongest (offset));
3775 }
3776 break;
3777
3778 case DW_OP_GNU_implicit_pointer:
3779 {
3780 ul = extract_unsigned_integer (data, offset_size,
3781 gdbarch_byte_order (arch));
3782 data += offset_size;
3783
3784 data = safe_read_sleb128 (data, end, &l);
3785
3786 fprintf_filtered (stream, " DIE %s offset %s",
3787 phex_nz (ul, offset_size),
3788 plongest (l));
3789 }
3790 break;
3791
3792 case DW_OP_GNU_deref_type:
3793 {
3794 int addr_size = *data++;
3795 cu_offset offset;
3796 struct type *type;
3797
3798 data = safe_read_uleb128 (data, end, &ul);
3799 offset.cu_off = ul;
3800 type = dwarf2_get_die_type (offset, per_cu);
3801 fprintf_filtered (stream, "<");
3802 type_print (type, "", stream, -1);
3803 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
3804 addr_size);
3805 }
3806 break;
3807
3808 case DW_OP_GNU_const_type:
3809 {
3810 cu_offset type_die;
3811 struct type *type;
3812
3813 data = safe_read_uleb128 (data, end, &ul);
3814 type_die.cu_off = ul;
3815 type = dwarf2_get_die_type (type_die, per_cu);
3816 fprintf_filtered (stream, "<");
3817 type_print (type, "", stream, -1);
3818 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3819 }
3820 break;
3821
3822 case DW_OP_GNU_regval_type:
3823 {
3824 uint64_t reg;
3825 cu_offset type_die;
3826 struct type *type;
3827
3828 data = safe_read_uleb128 (data, end, &reg);
3829 data = safe_read_uleb128 (data, end, &ul);
3830 type_die.cu_off = ul;
3831
3832 type = dwarf2_get_die_type (type_die, per_cu);
3833 fprintf_filtered (stream, "<");
3834 type_print (type, "", stream, -1);
3835 fprintf_filtered (stream, " [0x%s]> [$%s]",
3836 phex_nz (type_die.cu_off, 0),
3837 locexpr_regname (arch, reg));
3838 }
3839 break;
3840
3841 case DW_OP_GNU_convert:
3842 case DW_OP_GNU_reinterpret:
3843 {
3844 cu_offset type_die;
3845
3846 data = safe_read_uleb128 (data, end, &ul);
3847 type_die.cu_off = ul;
3848
3849 if (type_die.cu_off == 0)
3850 fprintf_filtered (stream, "<0>");
3851 else
3852 {
3853 struct type *type;
3854
3855 type = dwarf2_get_die_type (type_die, per_cu);
3856 fprintf_filtered (stream, "<");
3857 type_print (type, "", stream, -1);
3858 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3859 }
3860 }
3861 break;
3862
3863 case DW_OP_GNU_entry_value:
3864 data = safe_read_uleb128 (data, end, &ul);
3865 fputc_filtered ('\n', stream);
3866 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
3867 start, data, data + ul, indent + 2,
3868 all, per_cu);
3869 data += ul;
3870 continue;
3871
3872 case DW_OP_GNU_parameter_ref:
3873 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3874 data += 4;
3875 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3876 break;
3877
3878 case DW_OP_GNU_addr_index:
3879 data = safe_read_uleb128 (data, end, &ul);
3880 ul = dwarf2_read_addr_index (per_cu, ul);
3881 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3882 break;
3883 case DW_OP_GNU_const_index:
3884 data = safe_read_uleb128 (data, end, &ul);
3885 ul = dwarf2_read_addr_index (per_cu, ul);
3886 fprintf_filtered (stream, " %s", pulongest (ul));
3887 break;
3888 }
3889
3890 fprintf_filtered (stream, "\n");
3891 }
3892
3893 return data;
3894 }
3895
3896 /* Describe a single location, which may in turn consist of multiple
3897 pieces. */
3898
3899 static void
3900 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
3901 struct ui_file *stream,
3902 const gdb_byte *data, size_t size,
3903 struct objfile *objfile, unsigned int addr_size,
3904 int offset_size, struct dwarf2_per_cu_data *per_cu)
3905 {
3906 const gdb_byte *end = data + size;
3907 int first_piece = 1, bad = 0;
3908
3909 while (data < end)
3910 {
3911 const gdb_byte *here = data;
3912 int disassemble = 1;
3913
3914 if (first_piece)
3915 first_piece = 0;
3916 else
3917 fprintf_filtered (stream, _(", and "));
3918
3919 if (!dwarf2_always_disassemble)
3920 {
3921 data = locexpr_describe_location_piece (symbol, stream,
3922 addr, objfile, per_cu,
3923 data, end, addr_size);
3924 /* If we printed anything, or if we have an empty piece,
3925 then don't disassemble. */
3926 if (data != here
3927 || data[0] == DW_OP_piece
3928 || data[0] == DW_OP_bit_piece)
3929 disassemble = 0;
3930 }
3931 if (disassemble)
3932 {
3933 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
3934 data = disassemble_dwarf_expression (stream,
3935 get_objfile_arch (objfile),
3936 addr_size, offset_size, data,
3937 data, end, 0,
3938 dwarf2_always_disassemble,
3939 per_cu);
3940 }
3941
3942 if (data < end)
3943 {
3944 int empty = data == here;
3945
3946 if (disassemble)
3947 fprintf_filtered (stream, " ");
3948 if (data[0] == DW_OP_piece)
3949 {
3950 uint64_t bytes;
3951
3952 data = safe_read_uleb128 (data + 1, end, &bytes);
3953
3954 if (empty)
3955 fprintf_filtered (stream, _("an empty %s-byte piece"),
3956 pulongest (bytes));
3957 else
3958 fprintf_filtered (stream, _(" [%s-byte piece]"),
3959 pulongest (bytes));
3960 }
3961 else if (data[0] == DW_OP_bit_piece)
3962 {
3963 uint64_t bits, offset;
3964
3965 data = safe_read_uleb128 (data + 1, end, &bits);
3966 data = safe_read_uleb128 (data, end, &offset);
3967
3968 if (empty)
3969 fprintf_filtered (stream,
3970 _("an empty %s-bit piece"),
3971 pulongest (bits));
3972 else
3973 fprintf_filtered (stream,
3974 _(" [%s-bit piece, offset %s bits]"),
3975 pulongest (bits), pulongest (offset));
3976 }
3977 else
3978 {
3979 bad = 1;
3980 break;
3981 }
3982 }
3983 }
3984
3985 if (bad || data > end)
3986 error (_("Corrupted DWARF2 expression for \"%s\"."),
3987 SYMBOL_PRINT_NAME (symbol));
3988 }
3989
3990 /* Print a natural-language description of SYMBOL to STREAM. This
3991 version is for a symbol with a single location. */
3992
3993 static void
3994 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
3995 struct ui_file *stream)
3996 {
3997 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3998 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
3999 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4000 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4001
4002 locexpr_describe_location_1 (symbol, addr, stream,
4003 dlbaton->data, dlbaton->size,
4004 objfile, addr_size, offset_size,
4005 dlbaton->per_cu);
4006 }
4007
4008 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4009 any necessary bytecode in AX. */
4010
4011 static void
4012 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4013 struct agent_expr *ax, struct axs_value *value)
4014 {
4015 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4016 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4017
4018 if (dlbaton->size == 0)
4019 value->optimized_out = 1;
4020 else
4021 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4022 dlbaton->data, dlbaton->data + dlbaton->size,
4023 dlbaton->per_cu);
4024 }
4025
4026 /* The set of location functions used with the DWARF-2 expression
4027 evaluator. */
4028 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4029 locexpr_read_variable,
4030 locexpr_read_variable_at_entry,
4031 locexpr_read_needs_frame,
4032 locexpr_describe_location,
4033 0, /* location_has_loclist */
4034 locexpr_tracepoint_var_ref
4035 };
4036
4037
4038 /* Wrapper functions for location lists. These generally find
4039 the appropriate location expression and call something above. */
4040
4041 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4042 evaluator to calculate the location. */
4043 static struct value *
4044 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4045 {
4046 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4047 struct value *val;
4048 const gdb_byte *data;
4049 size_t size;
4050 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4051
4052 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4053 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4054 dlbaton->per_cu);
4055
4056 return val;
4057 }
4058
4059 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4060 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4061 will be thrown.
4062
4063 Function always returns non-NULL value, it may be marked optimized out if
4064 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4065 if it cannot resolve the parameter for any reason. */
4066
4067 static struct value *
4068 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4069 {
4070 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4071 const gdb_byte *data;
4072 size_t size;
4073 CORE_ADDR pc;
4074
4075 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4076 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4077
4078 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4079 if (data == NULL)
4080 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4081
4082 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4083 }
4084
4085 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4086 static int
4087 loclist_read_needs_frame (struct symbol *symbol)
4088 {
4089 /* If there's a location list, then assume we need to have a frame
4090 to choose the appropriate location expression. With tracking of
4091 global variables this is not necessarily true, but such tracking
4092 is disabled in GCC at the moment until we figure out how to
4093 represent it. */
4094
4095 return 1;
4096 }
4097
4098 /* Print a natural-language description of SYMBOL to STREAM. This
4099 version applies when there is a list of different locations, each
4100 with a specified address range. */
4101
4102 static void
4103 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4104 struct ui_file *stream)
4105 {
4106 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4107 const gdb_byte *loc_ptr, *buf_end;
4108 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4109 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4110 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4111 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4112 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4113 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4114 /* Adjust base_address for relocatable objects. */
4115 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4116 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4117 int done = 0;
4118
4119 loc_ptr = dlbaton->data;
4120 buf_end = dlbaton->data + dlbaton->size;
4121
4122 fprintf_filtered (stream, _("multi-location:\n"));
4123
4124 /* Iterate through locations until we run out. */
4125 while (!done)
4126 {
4127 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4128 int length;
4129 enum debug_loc_kind kind;
4130 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4131
4132 if (dlbaton->from_dwo)
4133 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4134 loc_ptr, buf_end, &new_ptr,
4135 &low, &high, byte_order);
4136 else
4137 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4138 &low, &high,
4139 byte_order, addr_size,
4140 signed_addr_p);
4141 loc_ptr = new_ptr;
4142 switch (kind)
4143 {
4144 case DEBUG_LOC_END_OF_LIST:
4145 done = 1;
4146 continue;
4147 case DEBUG_LOC_BASE_ADDRESS:
4148 base_address = high + base_offset;
4149 fprintf_filtered (stream, _(" Base address %s"),
4150 paddress (gdbarch, base_address));
4151 continue;
4152 case DEBUG_LOC_START_END:
4153 case DEBUG_LOC_START_LENGTH:
4154 break;
4155 case DEBUG_LOC_BUFFER_OVERFLOW:
4156 case DEBUG_LOC_INVALID_ENTRY:
4157 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4158 SYMBOL_PRINT_NAME (symbol));
4159 default:
4160 gdb_assert_not_reached ("bad debug_loc_kind");
4161 }
4162
4163 /* Otherwise, a location expression entry. */
4164 low += base_address;
4165 high += base_address;
4166
4167 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4168 loc_ptr += 2;
4169
4170 /* (It would improve readability to print only the minimum
4171 necessary digits of the second number of the range.) */
4172 fprintf_filtered (stream, _(" Range %s-%s: "),
4173 paddress (gdbarch, low), paddress (gdbarch, high));
4174
4175 /* Now describe this particular location. */
4176 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4177 objfile, addr_size, offset_size,
4178 dlbaton->per_cu);
4179
4180 fprintf_filtered (stream, "\n");
4181
4182 loc_ptr += length;
4183 }
4184 }
4185
4186 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4187 any necessary bytecode in AX. */
4188 static void
4189 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4190 struct agent_expr *ax, struct axs_value *value)
4191 {
4192 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4193 const gdb_byte *data;
4194 size_t size;
4195 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4196
4197 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4198 if (size == 0)
4199 value->optimized_out = 1;
4200 else
4201 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4202 dlbaton->per_cu);
4203 }
4204
4205 /* The set of location functions used with the DWARF-2 expression
4206 evaluator and location lists. */
4207 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4208 loclist_read_variable,
4209 loclist_read_variable_at_entry,
4210 loclist_read_needs_frame,
4211 loclist_describe_location,
4212 1, /* location_has_loclist */
4213 loclist_tracepoint_var_ref
4214 };
4215
4216 /* Provide a prototype to silence -Wmissing-prototypes. */
4217 extern initialize_file_ftype _initialize_dwarf2loc;
4218
4219 void
4220 _initialize_dwarf2loc (void)
4221 {
4222 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4223 &entry_values_debug,
4224 _("Set entry values and tail call frames "
4225 "debugging."),
4226 _("Show entry values and tail call frames "
4227 "debugging."),
4228 _("When non-zero, the process of determining "
4229 "parameter values from function entry point "
4230 "and tail call frames will be printed."),
4231 NULL,
4232 show_entry_values_debug,
4233 &setdebuglist, &showdebuglist);
4234 }