* dwarf2loc.c (dwarf2_compile_expr_to_ax) <DW_OP_fbreg>: Only
[binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "exceptions.h"
34 #include "block.h"
35 #include "gdbcmd.h"
36
37 #include "dwarf2.h"
38 #include "dwarf2expr.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame.h"
41
42 #include "gdb_string.h"
43 #include "gdb_assert.h"
44
45 DEF_VEC_I(int);
46
47 extern int dwarf2_always_disassemble;
48
49 static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
50 const gdb_byte **start, size_t *length);
51
52 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
53
54 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
55 struct frame_info *frame,
56 const gdb_byte *data,
57 size_t size,
58 struct dwarf2_per_cu_data *per_cu,
59 LONGEST byte_offset);
60
61 /* Until these have formal names, we define these here.
62 ref: http://gcc.gnu.org/wiki/DebugFission
63 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
64 and is then followed by data specific to that entry. */
65
66 enum debug_loc_kind
67 {
68 /* Indicates the end of the list of entries. */
69 DEBUG_LOC_END_OF_LIST = 0,
70
71 /* This is followed by an unsigned LEB128 number that is an index into
72 .debug_addr and specifies the base address for all following entries. */
73 DEBUG_LOC_BASE_ADDRESS = 1,
74
75 /* This is followed by two unsigned LEB128 numbers that are indices into
76 .debug_addr and specify the beginning and ending addresses, and then
77 a normal location expression as in .debug_loc. */
78 DEBUG_LOC_START_END = 2,
79
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the beginning address, and a 4 byte unsigned
82 number that specifies the length, and then a normal location expression
83 as in .debug_loc. */
84 DEBUG_LOC_START_LENGTH = 3,
85
86 /* An internal value indicating there is insufficient data. */
87 DEBUG_LOC_BUFFER_OVERFLOW = -1,
88
89 /* An internal value indicating an invalid kind of entry was found. */
90 DEBUG_LOC_INVALID_ENTRY = -2
91 };
92
93 /* Decode the addresses in a non-dwo .debug_loc entry.
94 A pointer to the next byte to examine is returned in *NEW_PTR.
95 The encoded low,high addresses are return in *LOW,*HIGH.
96 The result indicates the kind of entry found. */
97
98 static enum debug_loc_kind
99 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
100 const gdb_byte **new_ptr,
101 CORE_ADDR *low, CORE_ADDR *high,
102 enum bfd_endian byte_order,
103 unsigned int addr_size,
104 int signed_addr_p)
105 {
106 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
107
108 if (buf_end - loc_ptr < 2 * addr_size)
109 return DEBUG_LOC_BUFFER_OVERFLOW;
110
111 if (signed_addr_p)
112 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
113 else
114 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
115 loc_ptr += addr_size;
116
117 if (signed_addr_p)
118 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
119 else
120 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
121 loc_ptr += addr_size;
122
123 *new_ptr = loc_ptr;
124
125 /* A base-address-selection entry. */
126 if ((*low & base_mask) == base_mask)
127 return DEBUG_LOC_BASE_ADDRESS;
128
129 /* An end-of-list entry. */
130 if (*low == 0 && *high == 0)
131 return DEBUG_LOC_END_OF_LIST;
132
133 return DEBUG_LOC_START_END;
134 }
135
136 /* Decode the addresses in .debug_loc.dwo entry.
137 A pointer to the next byte to examine is returned in *NEW_PTR.
138 The encoded low,high addresses are return in *LOW,*HIGH.
139 The result indicates the kind of entry found. */
140
141 static enum debug_loc_kind
142 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
143 const gdb_byte *loc_ptr,
144 const gdb_byte *buf_end,
145 const gdb_byte **new_ptr,
146 CORE_ADDR *low, CORE_ADDR *high,
147 enum bfd_endian byte_order)
148 {
149 uint64_t low_index, high_index;
150
151 if (loc_ptr == buf_end)
152 return DEBUG_LOC_BUFFER_OVERFLOW;
153
154 switch (*loc_ptr++)
155 {
156 case DEBUG_LOC_END_OF_LIST:
157 *new_ptr = loc_ptr;
158 return DEBUG_LOC_END_OF_LIST;
159 case DEBUG_LOC_BASE_ADDRESS:
160 *low = 0;
161 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
162 if (loc_ptr == NULL)
163 return DEBUG_LOC_BUFFER_OVERFLOW;
164 *high = dwarf2_read_addr_index (per_cu, high_index);
165 *new_ptr = loc_ptr;
166 return DEBUG_LOC_BASE_ADDRESS;
167 case DEBUG_LOC_START_END:
168 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
169 if (loc_ptr == NULL)
170 return DEBUG_LOC_BUFFER_OVERFLOW;
171 *low = dwarf2_read_addr_index (per_cu, low_index);
172 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
173 if (loc_ptr == NULL)
174 return DEBUG_LOC_BUFFER_OVERFLOW;
175 *high = dwarf2_read_addr_index (per_cu, high_index);
176 *new_ptr = loc_ptr;
177 return DEBUG_LOC_START_END;
178 case DEBUG_LOC_START_LENGTH:
179 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
180 if (loc_ptr == NULL)
181 return DEBUG_LOC_BUFFER_OVERFLOW;
182 *low = dwarf2_read_addr_index (per_cu, low_index);
183 if (loc_ptr + 4 > buf_end)
184 return DEBUG_LOC_BUFFER_OVERFLOW;
185 *high = *low;
186 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
187 *new_ptr = loc_ptr + 4;
188 return DEBUG_LOC_START_LENGTH;
189 default:
190 return DEBUG_LOC_INVALID_ENTRY;
191 }
192 }
193
194 /* A function for dealing with location lists. Given a
195 symbol baton (BATON) and a pc value (PC), find the appropriate
196 location expression, set *LOCEXPR_LENGTH, and return a pointer
197 to the beginning of the expression. Returns NULL on failure.
198
199 For now, only return the first matching location expression; there
200 can be more than one in the list. */
201
202 const gdb_byte *
203 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
204 size_t *locexpr_length, CORE_ADDR pc)
205 {
206 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
208 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
209 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
210 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
211 /* Adjust base_address for relocatable objects. */
212 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
213 CORE_ADDR base_address = baton->base_address + base_offset;
214 const gdb_byte *loc_ptr, *buf_end;
215
216 loc_ptr = baton->data;
217 buf_end = baton->data + baton->size;
218
219 while (1)
220 {
221 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
222 int length;
223 enum debug_loc_kind kind;
224 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
225
226 if (baton->from_dwo)
227 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
228 loc_ptr, buf_end, &new_ptr,
229 &low, &high, byte_order);
230 else
231 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
232 &low, &high,
233 byte_order, addr_size,
234 signed_addr_p);
235 loc_ptr = new_ptr;
236 switch (kind)
237 {
238 case DEBUG_LOC_END_OF_LIST:
239 *locexpr_length = 0;
240 return NULL;
241 case DEBUG_LOC_BASE_ADDRESS:
242 base_address = high + base_offset;
243 continue;
244 case DEBUG_LOC_START_END:
245 case DEBUG_LOC_START_LENGTH:
246 break;
247 case DEBUG_LOC_BUFFER_OVERFLOW:
248 case DEBUG_LOC_INVALID_ENTRY:
249 error (_("dwarf2_find_location_expression: "
250 "Corrupted DWARF expression."));
251 default:
252 gdb_assert_not_reached ("bad debug_loc_kind");
253 }
254
255 /* Otherwise, a location expression entry. */
256 low += base_address;
257 high += base_address;
258
259 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
260 loc_ptr += 2;
261
262 if (low == high && pc == low)
263 {
264 /* This is entry PC record present only at entry point
265 of a function. Verify it is really the function entry point. */
266
267 struct block *pc_block = block_for_pc (pc);
268 struct symbol *pc_func = NULL;
269
270 if (pc_block)
271 pc_func = block_linkage_function (pc_block);
272
273 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
274 {
275 *locexpr_length = length;
276 return loc_ptr;
277 }
278 }
279
280 if (pc >= low && pc < high)
281 {
282 *locexpr_length = length;
283 return loc_ptr;
284 }
285
286 loc_ptr += length;
287 }
288 }
289
290 /* This is the baton used when performing dwarf2 expression
291 evaluation. */
292 struct dwarf_expr_baton
293 {
294 struct frame_info *frame;
295 struct dwarf2_per_cu_data *per_cu;
296 };
297
298 /* Helper functions for dwarf2_evaluate_loc_desc. */
299
300 /* Using the frame specified in BATON, return the value of register
301 REGNUM, treated as a pointer. */
302 static CORE_ADDR
303 dwarf_expr_read_reg (void *baton, int dwarf_regnum)
304 {
305 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
306 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
307 CORE_ADDR result;
308 int regnum;
309
310 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
311 result = address_from_register (builtin_type (gdbarch)->builtin_data_ptr,
312 regnum, debaton->frame);
313 return result;
314 }
315
316 /* Read memory at ADDR (length LEN) into BUF. */
317
318 static void
319 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
320 {
321 read_memory (addr, buf, len);
322 }
323
324 /* Using the frame specified in BATON, find the location expression
325 describing the frame base. Return a pointer to it in START and
326 its length in LENGTH. */
327 static void
328 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
329 {
330 /* FIXME: cagney/2003-03-26: This code should be using
331 get_frame_base_address(), and then implement a dwarf2 specific
332 this_base method. */
333 struct symbol *framefunc;
334 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
335 struct block *bl = get_frame_block (debaton->frame, NULL);
336
337 if (bl == NULL)
338 error (_("frame address is not available."));
339
340 /* Use block_linkage_function, which returns a real (not inlined)
341 function, instead of get_frame_function, which may return an
342 inlined function. */
343 framefunc = block_linkage_function (bl);
344
345 /* If we found a frame-relative symbol then it was certainly within
346 some function associated with a frame. If we can't find the frame,
347 something has gone wrong. */
348 gdb_assert (framefunc != NULL);
349
350 dwarf_expr_frame_base_1 (framefunc,
351 get_frame_address_in_block (debaton->frame),
352 start, length);
353 }
354
355 static void
356 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
357 const gdb_byte **start, size_t *length)
358 {
359 if (SYMBOL_LOCATION_BATON (framefunc) == NULL)
360 *length = 0;
361 else if (SYMBOL_COMPUTED_OPS (framefunc) == &dwarf2_loclist_funcs)
362 {
363 struct dwarf2_loclist_baton *symbaton;
364
365 symbaton = SYMBOL_LOCATION_BATON (framefunc);
366 *start = dwarf2_find_location_expression (symbaton, length, pc);
367 }
368 else
369 {
370 struct dwarf2_locexpr_baton *symbaton;
371
372 symbaton = SYMBOL_LOCATION_BATON (framefunc);
373 if (symbaton != NULL)
374 {
375 *length = symbaton->size;
376 *start = symbaton->data;
377 }
378 else
379 *length = 0;
380 }
381
382 if (*length == 0)
383 error (_("Could not find the frame base for \"%s\"."),
384 SYMBOL_NATURAL_NAME (framefunc));
385 }
386
387 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
388 the frame in BATON. */
389
390 static CORE_ADDR
391 dwarf_expr_frame_cfa (void *baton)
392 {
393 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
394
395 return dwarf2_frame_cfa (debaton->frame);
396 }
397
398 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
399 the frame in BATON. */
400
401 static CORE_ADDR
402 dwarf_expr_frame_pc (void *baton)
403 {
404 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
405
406 return get_frame_address_in_block (debaton->frame);
407 }
408
409 /* Using the objfile specified in BATON, find the address for the
410 current thread's thread-local storage with offset OFFSET. */
411 static CORE_ADDR
412 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
413 {
414 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
415 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
416
417 return target_translate_tls_address (objfile, offset);
418 }
419
420 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
421 current CU (as is PER_CU). State of the CTX is not affected by the
422 call and return. */
423
424 static void
425 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
426 struct dwarf2_per_cu_data *per_cu,
427 CORE_ADDR (*get_frame_pc) (void *baton),
428 void *baton)
429 {
430 struct dwarf2_locexpr_baton block;
431
432 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
433
434 /* DW_OP_call_ref is currently not supported. */
435 gdb_assert (block.per_cu == per_cu);
436
437 dwarf_expr_eval (ctx, block.data, block.size);
438 }
439
440 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
441
442 static void
443 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
444 {
445 struct dwarf_expr_baton *debaton = ctx->baton;
446
447 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
448 ctx->funcs->get_frame_pc, ctx->baton);
449 }
450
451 /* Callback function for dwarf2_evaluate_loc_desc. */
452
453 static struct type *
454 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
455 cu_offset die_offset)
456 {
457 struct dwarf_expr_baton *debaton = ctx->baton;
458
459 return dwarf2_get_die_type (die_offset, debaton->per_cu);
460 }
461
462 /* See dwarf2loc.h. */
463
464 unsigned int entry_values_debug = 0;
465
466 /* Helper to set entry_values_debug. */
467
468 static void
469 show_entry_values_debug (struct ui_file *file, int from_tty,
470 struct cmd_list_element *c, const char *value)
471 {
472 fprintf_filtered (file,
473 _("Entry values and tail call frames debugging is %s.\n"),
474 value);
475 }
476
477 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
478 CALLER_FRAME (for registers) can be NULL if it is not known. This function
479 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
480
481 static CORE_ADDR
482 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
483 struct call_site *call_site,
484 struct frame_info *caller_frame)
485 {
486 switch (FIELD_LOC_KIND (call_site->target))
487 {
488 case FIELD_LOC_KIND_DWARF_BLOCK:
489 {
490 struct dwarf2_locexpr_baton *dwarf_block;
491 struct value *val;
492 struct type *caller_core_addr_type;
493 struct gdbarch *caller_arch;
494
495 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
496 if (dwarf_block == NULL)
497 {
498 struct minimal_symbol *msym;
499
500 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
501 throw_error (NO_ENTRY_VALUE_ERROR,
502 _("DW_AT_GNU_call_site_target is not specified "
503 "at %s in %s"),
504 paddress (call_site_gdbarch, call_site->pc),
505 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
506
507 }
508 if (caller_frame == NULL)
509 {
510 struct minimal_symbol *msym;
511
512 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
513 throw_error (NO_ENTRY_VALUE_ERROR,
514 _("DW_AT_GNU_call_site_target DWARF block resolving "
515 "requires known frame which is currently not "
516 "available at %s in %s"),
517 paddress (call_site_gdbarch, call_site->pc),
518 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
519
520 }
521 caller_arch = get_frame_arch (caller_frame);
522 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
523 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
524 dwarf_block->data, dwarf_block->size,
525 dwarf_block->per_cu);
526 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
527 location. */
528 if (VALUE_LVAL (val) == lval_memory)
529 return value_address (val);
530 else
531 return value_as_address (val);
532 }
533
534 case FIELD_LOC_KIND_PHYSNAME:
535 {
536 const char *physname;
537 struct minimal_symbol *msym;
538
539 physname = FIELD_STATIC_PHYSNAME (call_site->target);
540 msym = lookup_minimal_symbol_text (physname, NULL);
541 if (msym == NULL)
542 {
543 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
544 throw_error (NO_ENTRY_VALUE_ERROR,
545 _("Cannot find function \"%s\" for a call site target "
546 "at %s in %s"),
547 physname, paddress (call_site_gdbarch, call_site->pc),
548 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
549
550 }
551 return SYMBOL_VALUE_ADDRESS (msym);
552 }
553
554 case FIELD_LOC_KIND_PHYSADDR:
555 return FIELD_STATIC_PHYSADDR (call_site->target);
556
557 default:
558 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
559 }
560 }
561
562 /* Convert function entry point exact address ADDR to the function which is
563 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
564 NO_ENTRY_VALUE_ERROR otherwise. */
565
566 static struct symbol *
567 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
568 {
569 struct symbol *sym = find_pc_function (addr);
570 struct type *type;
571
572 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
573 throw_error (NO_ENTRY_VALUE_ERROR,
574 _("DW_TAG_GNU_call_site resolving failed to find function "
575 "name for address %s"),
576 paddress (gdbarch, addr));
577
578 type = SYMBOL_TYPE (sym);
579 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
580 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
581
582 return sym;
583 }
584
585 /* Verify function with entry point exact address ADDR can never call itself
586 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
587 can call itself via tail calls.
588
589 If a funtion can tail call itself its entry value based parameters are
590 unreliable. There is no verification whether the value of some/all
591 parameters is unchanged through the self tail call, we expect if there is
592 a self tail call all the parameters can be modified. */
593
594 static void
595 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
596 {
597 struct obstack addr_obstack;
598 struct cleanup *old_chain;
599 CORE_ADDR addr;
600
601 /* Track here CORE_ADDRs which were already visited. */
602 htab_t addr_hash;
603
604 /* The verification is completely unordered. Track here function addresses
605 which still need to be iterated. */
606 VEC (CORE_ADDR) *todo = NULL;
607
608 obstack_init (&addr_obstack);
609 old_chain = make_cleanup_obstack_free (&addr_obstack);
610 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
611 &addr_obstack, hashtab_obstack_allocate,
612 NULL);
613 make_cleanup_htab_delete (addr_hash);
614
615 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
616
617 VEC_safe_push (CORE_ADDR, todo, verify_addr);
618 while (!VEC_empty (CORE_ADDR, todo))
619 {
620 struct symbol *func_sym;
621 struct call_site *call_site;
622
623 addr = VEC_pop (CORE_ADDR, todo);
624
625 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
626
627 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
628 call_site; call_site = call_site->tail_call_next)
629 {
630 CORE_ADDR target_addr;
631 void **slot;
632
633 /* CALLER_FRAME with registers is not available for tail-call jumped
634 frames. */
635 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
636
637 if (target_addr == verify_addr)
638 {
639 struct minimal_symbol *msym;
640
641 msym = lookup_minimal_symbol_by_pc (verify_addr);
642 throw_error (NO_ENTRY_VALUE_ERROR,
643 _("DW_OP_GNU_entry_value resolving has found "
644 "function \"%s\" at %s can call itself via tail "
645 "calls"),
646 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym),
647 paddress (gdbarch, verify_addr));
648 }
649
650 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
651 if (*slot == NULL)
652 {
653 *slot = obstack_copy (&addr_obstack, &target_addr,
654 sizeof (target_addr));
655 VEC_safe_push (CORE_ADDR, todo, target_addr);
656 }
657 }
658 }
659
660 do_cleanups (old_chain);
661 }
662
663 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
664 ENTRY_VALUES_DEBUG. */
665
666 static void
667 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
668 {
669 CORE_ADDR addr = call_site->pc;
670 struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (addr - 1);
671
672 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
673 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
674
675 }
676
677 /* vec.h needs single word type name, typedef it. */
678 typedef struct call_site *call_sitep;
679
680 /* Define VEC (call_sitep) functions. */
681 DEF_VEC_P (call_sitep);
682
683 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
684 only top callers and bottom callees which are present in both. GDBARCH is
685 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
686 no remaining possibilities to provide unambiguous non-trivial result.
687 RESULTP should point to NULL on the first (initialization) call. Caller is
688 responsible for xfree of any RESULTP data. */
689
690 static void
691 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
692 VEC (call_sitep) *chain)
693 {
694 struct call_site_chain *result = *resultp;
695 long length = VEC_length (call_sitep, chain);
696 int callers, callees, idx;
697
698 if (result == NULL)
699 {
700 /* Create the initial chain containing all the passed PCs. */
701
702 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
703 * (length - 1));
704 result->length = length;
705 result->callers = result->callees = length;
706 memcpy (result->call_site, VEC_address (call_sitep, chain),
707 sizeof (*result->call_site) * length);
708 *resultp = result;
709
710 if (entry_values_debug)
711 {
712 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
713 for (idx = 0; idx < length; idx++)
714 tailcall_dump (gdbarch, result->call_site[idx]);
715 fputc_unfiltered ('\n', gdb_stdlog);
716 }
717
718 return;
719 }
720
721 if (entry_values_debug)
722 {
723 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
724 for (idx = 0; idx < length; idx++)
725 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
726 fputc_unfiltered ('\n', gdb_stdlog);
727 }
728
729 /* Intersect callers. */
730
731 callers = min (result->callers, length);
732 for (idx = 0; idx < callers; idx++)
733 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
734 {
735 result->callers = idx;
736 break;
737 }
738
739 /* Intersect callees. */
740
741 callees = min (result->callees, length);
742 for (idx = 0; idx < callees; idx++)
743 if (result->call_site[result->length - 1 - idx]
744 != VEC_index (call_sitep, chain, length - 1 - idx))
745 {
746 result->callees = idx;
747 break;
748 }
749
750 if (entry_values_debug)
751 {
752 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
753 for (idx = 0; idx < result->callers; idx++)
754 tailcall_dump (gdbarch, result->call_site[idx]);
755 fputs_unfiltered (" |", gdb_stdlog);
756 for (idx = 0; idx < result->callees; idx++)
757 tailcall_dump (gdbarch, result->call_site[result->length
758 - result->callees + idx]);
759 fputc_unfiltered ('\n', gdb_stdlog);
760 }
761
762 if (result->callers == 0 && result->callees == 0)
763 {
764 /* There are no common callers or callees. It could be also a direct
765 call (which has length 0) with ambiguous possibility of an indirect
766 call - CALLERS == CALLEES == 0 is valid during the first allocation
767 but any subsequence processing of such entry means ambiguity. */
768 xfree (result);
769 *resultp = NULL;
770 return;
771 }
772
773 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
774 PC again. In such case there must be two different code paths to reach
775 it, therefore some of the former determined intermediate PCs must differ
776 and the unambiguous chain gets shortened. */
777 gdb_assert (result->callers + result->callees < result->length);
778 }
779
780 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
781 assumed frames between them use GDBARCH. Use depth first search so we can
782 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
783 would have needless GDB stack overhead. Caller is responsible for xfree of
784 the returned result. Any unreliability results in thrown
785 NO_ENTRY_VALUE_ERROR. */
786
787 static struct call_site_chain *
788 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
789 CORE_ADDR callee_pc)
790 {
791 struct obstack addr_obstack;
792 struct cleanup *back_to_retval, *back_to_workdata;
793 struct call_site_chain *retval = NULL;
794 struct call_site *call_site;
795
796 /* Mark CALL_SITEs so we do not visit the same ones twice. */
797 htab_t addr_hash;
798
799 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
800 call_site nor any possible call_site at CALLEE_PC's function is there.
801 Any CALL_SITE in CHAIN will be iterated to its siblings - via
802 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
803 VEC (call_sitep) *chain = NULL;
804
805 /* We are not interested in the specific PC inside the callee function. */
806 callee_pc = get_pc_function_start (callee_pc);
807 if (callee_pc == 0)
808 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
809 paddress (gdbarch, callee_pc));
810
811 back_to_retval = make_cleanup (free_current_contents, &retval);
812
813 obstack_init (&addr_obstack);
814 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
815 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
816 &addr_obstack, hashtab_obstack_allocate,
817 NULL);
818 make_cleanup_htab_delete (addr_hash);
819
820 make_cleanup (VEC_cleanup (call_sitep), &chain);
821
822 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
823 at the target's function. All the possible tail call sites in the
824 target's function will get iterated as already pushed into CHAIN via their
825 TAIL_CALL_NEXT. */
826 call_site = call_site_for_pc (gdbarch, caller_pc);
827
828 while (call_site)
829 {
830 CORE_ADDR target_func_addr;
831 struct call_site *target_call_site;
832
833 /* CALLER_FRAME with registers is not available for tail-call jumped
834 frames. */
835 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
836
837 if (target_func_addr == callee_pc)
838 {
839 chain_candidate (gdbarch, &retval, chain);
840 if (retval == NULL)
841 break;
842
843 /* There is no way to reach CALLEE_PC again as we would prevent
844 entering it twice as being already marked in ADDR_HASH. */
845 target_call_site = NULL;
846 }
847 else
848 {
849 struct symbol *target_func;
850
851 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
852 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
853 }
854
855 do
856 {
857 /* Attempt to visit TARGET_CALL_SITE. */
858
859 if (target_call_site)
860 {
861 void **slot;
862
863 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
864 if (*slot == NULL)
865 {
866 /* Successfully entered TARGET_CALL_SITE. */
867
868 *slot = &target_call_site->pc;
869 VEC_safe_push (call_sitep, chain, target_call_site);
870 break;
871 }
872 }
873
874 /* Backtrack (without revisiting the originating call_site). Try the
875 callers's sibling; if there isn't any try the callers's callers's
876 sibling etc. */
877
878 target_call_site = NULL;
879 while (!VEC_empty (call_sitep, chain))
880 {
881 call_site = VEC_pop (call_sitep, chain);
882
883 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
884 NO_INSERT) != NULL);
885 htab_remove_elt (addr_hash, &call_site->pc);
886
887 target_call_site = call_site->tail_call_next;
888 if (target_call_site)
889 break;
890 }
891 }
892 while (target_call_site);
893
894 if (VEC_empty (call_sitep, chain))
895 call_site = NULL;
896 else
897 call_site = VEC_last (call_sitep, chain);
898 }
899
900 if (retval == NULL)
901 {
902 struct minimal_symbol *msym_caller, *msym_callee;
903
904 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
905 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
906 throw_error (NO_ENTRY_VALUE_ERROR,
907 _("There are no unambiguously determinable intermediate "
908 "callers or callees between caller function \"%s\" at %s "
909 "and callee function \"%s\" at %s"),
910 (msym_caller == NULL
911 ? "???" : SYMBOL_PRINT_NAME (msym_caller)),
912 paddress (gdbarch, caller_pc),
913 (msym_callee == NULL
914 ? "???" : SYMBOL_PRINT_NAME (msym_callee)),
915 paddress (gdbarch, callee_pc));
916 }
917
918 do_cleanups (back_to_workdata);
919 discard_cleanups (back_to_retval);
920 return retval;
921 }
922
923 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
924 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
925 constructed return NULL. Caller is responsible for xfree of the returned
926 result. */
927
928 struct call_site_chain *
929 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
930 CORE_ADDR callee_pc)
931 {
932 volatile struct gdb_exception e;
933 struct call_site_chain *retval = NULL;
934
935 TRY_CATCH (e, RETURN_MASK_ERROR)
936 {
937 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
938 }
939 if (e.reason < 0)
940 {
941 if (e.error == NO_ENTRY_VALUE_ERROR)
942 {
943 if (entry_values_debug)
944 exception_print (gdb_stdout, e);
945
946 return NULL;
947 }
948 else
949 throw_exception (e);
950 }
951 return retval;
952 }
953
954 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
955
956 static int
957 call_site_parameter_matches (struct call_site_parameter *parameter,
958 enum call_site_parameter_kind kind,
959 union call_site_parameter_u kind_u)
960 {
961 if (kind == parameter->kind)
962 switch (kind)
963 {
964 case CALL_SITE_PARAMETER_DWARF_REG:
965 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
966 case CALL_SITE_PARAMETER_FB_OFFSET:
967 return kind_u.fb_offset == parameter->u.fb_offset;
968 case CALL_SITE_PARAMETER_PARAM_OFFSET:
969 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
970 }
971 return 0;
972 }
973
974 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
975 FRAME is for callee.
976
977 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
978 otherwise. */
979
980 static struct call_site_parameter *
981 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
982 enum call_site_parameter_kind kind,
983 union call_site_parameter_u kind_u,
984 struct dwarf2_per_cu_data **per_cu_return)
985 {
986 CORE_ADDR func_addr, caller_pc;
987 struct gdbarch *gdbarch;
988 struct frame_info *caller_frame;
989 struct call_site *call_site;
990 int iparams;
991 /* Initialize it just to avoid a GCC false warning. */
992 struct call_site_parameter *parameter = NULL;
993 CORE_ADDR target_addr;
994
995 while (get_frame_type (frame) == INLINE_FRAME)
996 {
997 frame = get_prev_frame (frame);
998 gdb_assert (frame != NULL);
999 }
1000
1001 func_addr = get_frame_func (frame);
1002 gdbarch = get_frame_arch (frame);
1003 caller_frame = get_prev_frame (frame);
1004 if (gdbarch != frame_unwind_arch (frame))
1005 {
1006 struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (func_addr);
1007 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1008
1009 throw_error (NO_ENTRY_VALUE_ERROR,
1010 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1011 "(of %s (%s)) does not match caller gdbarch %s"),
1012 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1013 paddress (gdbarch, func_addr),
1014 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym),
1015 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1016 }
1017
1018 if (caller_frame == NULL)
1019 {
1020 struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (func_addr);
1021
1022 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1023 "requires caller of %s (%s)"),
1024 paddress (gdbarch, func_addr),
1025 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
1026 }
1027 caller_pc = get_frame_pc (caller_frame);
1028 call_site = call_site_for_pc (gdbarch, caller_pc);
1029
1030 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1031 if (target_addr != func_addr)
1032 {
1033 struct minimal_symbol *target_msym, *func_msym;
1034
1035 target_msym = lookup_minimal_symbol_by_pc (target_addr);
1036 func_msym = lookup_minimal_symbol_by_pc (func_addr);
1037 throw_error (NO_ENTRY_VALUE_ERROR,
1038 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1039 "but the called frame is for %s at %s"),
1040 (target_msym == NULL ? "???"
1041 : SYMBOL_PRINT_NAME (target_msym)),
1042 paddress (gdbarch, target_addr),
1043 func_msym == NULL ? "???" : SYMBOL_PRINT_NAME (func_msym),
1044 paddress (gdbarch, func_addr));
1045 }
1046
1047 /* No entry value based parameters would be reliable if this function can
1048 call itself via tail calls. */
1049 func_verify_no_selftailcall (gdbarch, func_addr);
1050
1051 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1052 {
1053 parameter = &call_site->parameter[iparams];
1054 if (call_site_parameter_matches (parameter, kind, kind_u))
1055 break;
1056 }
1057 if (iparams == call_site->parameter_count)
1058 {
1059 struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (caller_pc);
1060
1061 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1062 determine its value. */
1063 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1064 "at DW_TAG_GNU_call_site %s at %s"),
1065 paddress (gdbarch, caller_pc),
1066 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
1067 }
1068
1069 *per_cu_return = call_site->per_cu;
1070 return parameter;
1071 }
1072
1073 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1074 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1075 DW_AT_GNU_call_site_data_value (dereferenced) block.
1076
1077 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1078 struct value.
1079
1080 Function always returns non-NULL, non-optimized out value. It throws
1081 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1082
1083 static struct value *
1084 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1085 CORE_ADDR deref_size, struct type *type,
1086 struct frame_info *caller_frame,
1087 struct dwarf2_per_cu_data *per_cu)
1088 {
1089 const gdb_byte *data_src;
1090 gdb_byte *data;
1091 size_t size;
1092
1093 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1094 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1095
1096 /* DEREF_SIZE size is not verified here. */
1097 if (data_src == NULL)
1098 throw_error (NO_ENTRY_VALUE_ERROR,
1099 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1100
1101 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1102 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1103 DWARF block. */
1104 data = alloca (size + 1);
1105 memcpy (data, data_src, size);
1106 data[size] = DW_OP_stack_value;
1107
1108 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1109 }
1110
1111 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1112 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1113 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1114
1115 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1116 can be more simple as it does not support cross-CU DWARF executions. */
1117
1118 static void
1119 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1120 enum call_site_parameter_kind kind,
1121 union call_site_parameter_u kind_u,
1122 int deref_size)
1123 {
1124 struct dwarf_expr_baton *debaton;
1125 struct frame_info *frame, *caller_frame;
1126 struct dwarf2_per_cu_data *caller_per_cu;
1127 struct dwarf_expr_baton baton_local;
1128 struct dwarf_expr_context saved_ctx;
1129 struct call_site_parameter *parameter;
1130 const gdb_byte *data_src;
1131 size_t size;
1132
1133 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1134 debaton = ctx->baton;
1135 frame = debaton->frame;
1136 caller_frame = get_prev_frame (frame);
1137
1138 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1139 &caller_per_cu);
1140 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1141 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1142
1143 /* DEREF_SIZE size is not verified here. */
1144 if (data_src == NULL)
1145 throw_error (NO_ENTRY_VALUE_ERROR,
1146 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1147
1148 baton_local.frame = caller_frame;
1149 baton_local.per_cu = caller_per_cu;
1150
1151 saved_ctx.gdbarch = ctx->gdbarch;
1152 saved_ctx.addr_size = ctx->addr_size;
1153 saved_ctx.offset = ctx->offset;
1154 saved_ctx.baton = ctx->baton;
1155 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1156 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1157 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1158 ctx->baton = &baton_local;
1159
1160 dwarf_expr_eval (ctx, data_src, size);
1161
1162 ctx->gdbarch = saved_ctx.gdbarch;
1163 ctx->addr_size = saved_ctx.addr_size;
1164 ctx->offset = saved_ctx.offset;
1165 ctx->baton = saved_ctx.baton;
1166 }
1167
1168 /* Callback function for dwarf2_evaluate_loc_desc.
1169 Fetch the address indexed by DW_OP_GNU_addr_index. */
1170
1171 static CORE_ADDR
1172 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1173 {
1174 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1175
1176 return dwarf2_read_addr_index (debaton->per_cu, index);
1177 }
1178
1179 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1180 the indirect method on it, that is use its stored target value, the sole
1181 purpose of entry_data_value_funcs.. */
1182
1183 static struct value *
1184 entry_data_value_coerce_ref (const struct value *value)
1185 {
1186 struct type *checked_type = check_typedef (value_type (value));
1187 struct value *target_val;
1188
1189 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1190 return NULL;
1191
1192 target_val = value_computed_closure (value);
1193 value_incref (target_val);
1194 return target_val;
1195 }
1196
1197 /* Implement copy_closure. */
1198
1199 static void *
1200 entry_data_value_copy_closure (const struct value *v)
1201 {
1202 struct value *target_val = value_computed_closure (v);
1203
1204 value_incref (target_val);
1205 return target_val;
1206 }
1207
1208 /* Implement free_closure. */
1209
1210 static void
1211 entry_data_value_free_closure (struct value *v)
1212 {
1213 struct value *target_val = value_computed_closure (v);
1214
1215 value_free (target_val);
1216 }
1217
1218 /* Vector for methods for an entry value reference where the referenced value
1219 is stored in the caller. On the first dereference use
1220 DW_AT_GNU_call_site_data_value in the caller. */
1221
1222 static const struct lval_funcs entry_data_value_funcs =
1223 {
1224 NULL, /* read */
1225 NULL, /* write */
1226 NULL, /* check_validity */
1227 NULL, /* check_any_valid */
1228 NULL, /* indirect */
1229 entry_data_value_coerce_ref,
1230 NULL, /* check_synthetic_pointer */
1231 entry_data_value_copy_closure,
1232 entry_data_value_free_closure
1233 };
1234
1235 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1236 are used to match DW_AT_location at the caller's
1237 DW_TAG_GNU_call_site_parameter.
1238
1239 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1240 cannot resolve the parameter for any reason. */
1241
1242 static struct value *
1243 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1244 enum call_site_parameter_kind kind,
1245 union call_site_parameter_u kind_u)
1246 {
1247 struct type *checked_type = check_typedef (type);
1248 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1249 struct frame_info *caller_frame = get_prev_frame (frame);
1250 struct value *outer_val, *target_val, *val;
1251 struct call_site_parameter *parameter;
1252 struct dwarf2_per_cu_data *caller_per_cu;
1253 CORE_ADDR addr;
1254
1255 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1256 &caller_per_cu);
1257
1258 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1259 type, caller_frame,
1260 caller_per_cu);
1261
1262 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1263 used and it is not available do not fall back to OUTER_VAL - dereferencing
1264 TYPE_CODE_REF with non-entry data value would give current value - not the
1265 entry value. */
1266
1267 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1268 || TYPE_TARGET_TYPE (checked_type) == NULL)
1269 return outer_val;
1270
1271 target_val = dwarf_entry_parameter_to_value (parameter,
1272 TYPE_LENGTH (target_type),
1273 target_type, caller_frame,
1274 caller_per_cu);
1275
1276 /* value_as_address dereferences TYPE_CODE_REF. */
1277 addr = extract_typed_address (value_contents (outer_val), checked_type);
1278
1279 /* The target entry value has artificial address of the entry value
1280 reference. */
1281 VALUE_LVAL (target_val) = lval_memory;
1282 set_value_address (target_val, addr);
1283
1284 release_value (target_val);
1285 val = allocate_computed_value (type, &entry_data_value_funcs,
1286 target_val /* closure */);
1287
1288 /* Copy the referencing pointer to the new computed value. */
1289 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1290 TYPE_LENGTH (checked_type));
1291 set_value_lazy (val, 0);
1292
1293 return val;
1294 }
1295
1296 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1297 SIZE are DWARF block used to match DW_AT_location at the caller's
1298 DW_TAG_GNU_call_site_parameter.
1299
1300 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1301 cannot resolve the parameter for any reason. */
1302
1303 static struct value *
1304 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1305 const gdb_byte *block, size_t block_len)
1306 {
1307 union call_site_parameter_u kind_u;
1308
1309 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1310 if (kind_u.dwarf_reg != -1)
1311 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1312 kind_u);
1313
1314 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1315 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1316 kind_u);
1317
1318 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1319 suppressed during normal operation. The expression can be arbitrary if
1320 there is no caller-callee entry value binding expected. */
1321 throw_error (NO_ENTRY_VALUE_ERROR,
1322 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1323 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1324 }
1325
1326 struct piece_closure
1327 {
1328 /* Reference count. */
1329 int refc;
1330
1331 /* The CU from which this closure's expression came. */
1332 struct dwarf2_per_cu_data *per_cu;
1333
1334 /* The number of pieces used to describe this variable. */
1335 int n_pieces;
1336
1337 /* The target address size, used only for DWARF_VALUE_STACK. */
1338 int addr_size;
1339
1340 /* The pieces themselves. */
1341 struct dwarf_expr_piece *pieces;
1342 };
1343
1344 /* Allocate a closure for a value formed from separately-described
1345 PIECES. */
1346
1347 static struct piece_closure *
1348 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1349 int n_pieces, struct dwarf_expr_piece *pieces,
1350 int addr_size)
1351 {
1352 struct piece_closure *c = XZALLOC (struct piece_closure);
1353 int i;
1354
1355 c->refc = 1;
1356 c->per_cu = per_cu;
1357 c->n_pieces = n_pieces;
1358 c->addr_size = addr_size;
1359 c->pieces = XCALLOC (n_pieces, struct dwarf_expr_piece);
1360
1361 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1362 for (i = 0; i < n_pieces; ++i)
1363 if (c->pieces[i].location == DWARF_VALUE_STACK)
1364 value_incref (c->pieces[i].v.value);
1365
1366 return c;
1367 }
1368
1369 /* The lowest-level function to extract bits from a byte buffer.
1370 SOURCE is the buffer. It is updated if we read to the end of a
1371 byte.
1372 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1373 updated to reflect the number of bits actually read.
1374 NBITS is the number of bits we want to read. It is updated to
1375 reflect the number of bits actually read. This function may read
1376 fewer bits.
1377 BITS_BIG_ENDIAN is taken directly from gdbarch.
1378 This function returns the extracted bits. */
1379
1380 static unsigned int
1381 extract_bits_primitive (const gdb_byte **source,
1382 unsigned int *source_offset_bits,
1383 int *nbits, int bits_big_endian)
1384 {
1385 unsigned int avail, mask, datum;
1386
1387 gdb_assert (*source_offset_bits < 8);
1388
1389 avail = 8 - *source_offset_bits;
1390 if (avail > *nbits)
1391 avail = *nbits;
1392
1393 mask = (1 << avail) - 1;
1394 datum = **source;
1395 if (bits_big_endian)
1396 datum >>= 8 - (*source_offset_bits + *nbits);
1397 else
1398 datum >>= *source_offset_bits;
1399 datum &= mask;
1400
1401 *nbits -= avail;
1402 *source_offset_bits += avail;
1403 if (*source_offset_bits >= 8)
1404 {
1405 *source_offset_bits -= 8;
1406 ++*source;
1407 }
1408
1409 return datum;
1410 }
1411
1412 /* Extract some bits from a source buffer and move forward in the
1413 buffer.
1414
1415 SOURCE is the source buffer. It is updated as bytes are read.
1416 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1417 bits are read.
1418 NBITS is the number of bits to read.
1419 BITS_BIG_ENDIAN is taken directly from gdbarch.
1420
1421 This function returns the bits that were read. */
1422
1423 static unsigned int
1424 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1425 int nbits, int bits_big_endian)
1426 {
1427 unsigned int datum;
1428
1429 gdb_assert (nbits > 0 && nbits <= 8);
1430
1431 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1432 bits_big_endian);
1433 if (nbits > 0)
1434 {
1435 unsigned int more;
1436
1437 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1438 bits_big_endian);
1439 if (bits_big_endian)
1440 datum <<= nbits;
1441 else
1442 more <<= nbits;
1443 datum |= more;
1444 }
1445
1446 return datum;
1447 }
1448
1449 /* Write some bits into a buffer and move forward in the buffer.
1450
1451 DATUM is the bits to write. The low-order bits of DATUM are used.
1452 DEST is the destination buffer. It is updated as bytes are
1453 written.
1454 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1455 done.
1456 NBITS is the number of valid bits in DATUM.
1457 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1458
1459 static void
1460 insert_bits (unsigned int datum,
1461 gdb_byte *dest, unsigned int dest_offset_bits,
1462 int nbits, int bits_big_endian)
1463 {
1464 unsigned int mask;
1465
1466 gdb_assert (dest_offset_bits + nbits <= 8);
1467
1468 mask = (1 << nbits) - 1;
1469 if (bits_big_endian)
1470 {
1471 datum <<= 8 - (dest_offset_bits + nbits);
1472 mask <<= 8 - (dest_offset_bits + nbits);
1473 }
1474 else
1475 {
1476 datum <<= dest_offset_bits;
1477 mask <<= dest_offset_bits;
1478 }
1479
1480 gdb_assert ((datum & ~mask) == 0);
1481
1482 *dest = (*dest & ~mask) | datum;
1483 }
1484
1485 /* Copy bits from a source to a destination.
1486
1487 DEST is where the bits should be written.
1488 DEST_OFFSET_BITS is the bit offset into DEST.
1489 SOURCE is the source of bits.
1490 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1491 BIT_COUNT is the number of bits to copy.
1492 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1493
1494 static void
1495 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1496 const gdb_byte *source, unsigned int source_offset_bits,
1497 unsigned int bit_count,
1498 int bits_big_endian)
1499 {
1500 unsigned int dest_avail;
1501 int datum;
1502
1503 /* Reduce everything to byte-size pieces. */
1504 dest += dest_offset_bits / 8;
1505 dest_offset_bits %= 8;
1506 source += source_offset_bits / 8;
1507 source_offset_bits %= 8;
1508
1509 dest_avail = 8 - dest_offset_bits % 8;
1510
1511 /* See if we can fill the first destination byte. */
1512 if (dest_avail < bit_count)
1513 {
1514 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1515 bits_big_endian);
1516 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1517 ++dest;
1518 dest_offset_bits = 0;
1519 bit_count -= dest_avail;
1520 }
1521
1522 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1523 than 8 bits remaining. */
1524 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1525 for (; bit_count >= 8; bit_count -= 8)
1526 {
1527 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1528 *dest++ = (gdb_byte) datum;
1529 }
1530
1531 /* Finally, we may have a few leftover bits. */
1532 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1533 if (bit_count > 0)
1534 {
1535 datum = extract_bits (&source, &source_offset_bits, bit_count,
1536 bits_big_endian);
1537 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1538 }
1539 }
1540
1541 static void
1542 read_pieced_value (struct value *v)
1543 {
1544 int i;
1545 long offset = 0;
1546 ULONGEST bits_to_skip;
1547 gdb_byte *contents;
1548 struct piece_closure *c
1549 = (struct piece_closure *) value_computed_closure (v);
1550 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1551 size_t type_len;
1552 size_t buffer_size = 0;
1553 char *buffer = NULL;
1554 struct cleanup *cleanup;
1555 int bits_big_endian
1556 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1557
1558 if (value_type (v) != value_enclosing_type (v))
1559 internal_error (__FILE__, __LINE__,
1560 _("Should not be able to create a lazy value with "
1561 "an enclosing type"));
1562
1563 cleanup = make_cleanup (free_current_contents, &buffer);
1564
1565 contents = value_contents_raw (v);
1566 bits_to_skip = 8 * value_offset (v);
1567 if (value_bitsize (v))
1568 {
1569 bits_to_skip += value_bitpos (v);
1570 type_len = value_bitsize (v);
1571 }
1572 else
1573 type_len = 8 * TYPE_LENGTH (value_type (v));
1574
1575 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1576 {
1577 struct dwarf_expr_piece *p = &c->pieces[i];
1578 size_t this_size, this_size_bits;
1579 long dest_offset_bits, source_offset_bits, source_offset;
1580 const gdb_byte *intermediate_buffer;
1581
1582 /* Compute size, source, and destination offsets for copying, in
1583 bits. */
1584 this_size_bits = p->size;
1585 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1586 {
1587 bits_to_skip -= this_size_bits;
1588 continue;
1589 }
1590 if (this_size_bits > type_len - offset)
1591 this_size_bits = type_len - offset;
1592 if (bits_to_skip > 0)
1593 {
1594 dest_offset_bits = 0;
1595 source_offset_bits = bits_to_skip;
1596 this_size_bits -= bits_to_skip;
1597 bits_to_skip = 0;
1598 }
1599 else
1600 {
1601 dest_offset_bits = offset;
1602 source_offset_bits = 0;
1603 }
1604
1605 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1606 source_offset = source_offset_bits / 8;
1607 if (buffer_size < this_size)
1608 {
1609 buffer_size = this_size;
1610 buffer = xrealloc (buffer, buffer_size);
1611 }
1612 intermediate_buffer = buffer;
1613
1614 /* Copy from the source to DEST_BUFFER. */
1615 switch (p->location)
1616 {
1617 case DWARF_VALUE_REGISTER:
1618 {
1619 struct gdbarch *arch = get_frame_arch (frame);
1620 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1621 int reg_offset = source_offset;
1622
1623 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1624 && this_size < register_size (arch, gdb_regnum))
1625 {
1626 /* Big-endian, and we want less than full size. */
1627 reg_offset = register_size (arch, gdb_regnum) - this_size;
1628 /* We want the lower-order THIS_SIZE_BITS of the bytes
1629 we extract from the register. */
1630 source_offset_bits += 8 * this_size - this_size_bits;
1631 }
1632
1633 if (gdb_regnum != -1)
1634 {
1635 int optim, unavail;
1636
1637 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1638 this_size, buffer,
1639 &optim, &unavail))
1640 {
1641 /* Just so garbage doesn't ever shine through. */
1642 memset (buffer, 0, this_size);
1643
1644 if (optim)
1645 set_value_optimized_out (v, 1);
1646 if (unavail)
1647 mark_value_bytes_unavailable (v, offset, this_size);
1648 }
1649 }
1650 else
1651 {
1652 error (_("Unable to access DWARF register number %s"),
1653 paddress (arch, p->v.regno));
1654 }
1655 }
1656 break;
1657
1658 case DWARF_VALUE_MEMORY:
1659 read_value_memory (v, offset,
1660 p->v.mem.in_stack_memory,
1661 p->v.mem.addr + source_offset,
1662 buffer, this_size);
1663 break;
1664
1665 case DWARF_VALUE_STACK:
1666 {
1667 size_t n = this_size;
1668
1669 if (n > c->addr_size - source_offset)
1670 n = (c->addr_size >= source_offset
1671 ? c->addr_size - source_offset
1672 : 0);
1673 if (n == 0)
1674 {
1675 /* Nothing. */
1676 }
1677 else
1678 {
1679 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1680
1681 intermediate_buffer = val_bytes + source_offset;
1682 }
1683 }
1684 break;
1685
1686 case DWARF_VALUE_LITERAL:
1687 {
1688 size_t n = this_size;
1689
1690 if (n > p->v.literal.length - source_offset)
1691 n = (p->v.literal.length >= source_offset
1692 ? p->v.literal.length - source_offset
1693 : 0);
1694 if (n != 0)
1695 intermediate_buffer = p->v.literal.data + source_offset;
1696 }
1697 break;
1698
1699 /* These bits show up as zeros -- but do not cause the value
1700 to be considered optimized-out. */
1701 case DWARF_VALUE_IMPLICIT_POINTER:
1702 break;
1703
1704 case DWARF_VALUE_OPTIMIZED_OUT:
1705 set_value_optimized_out (v, 1);
1706 break;
1707
1708 default:
1709 internal_error (__FILE__, __LINE__, _("invalid location type"));
1710 }
1711
1712 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1713 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1714 copy_bitwise (contents, dest_offset_bits,
1715 intermediate_buffer, source_offset_bits % 8,
1716 this_size_bits, bits_big_endian);
1717
1718 offset += this_size_bits;
1719 }
1720
1721 do_cleanups (cleanup);
1722 }
1723
1724 static void
1725 write_pieced_value (struct value *to, struct value *from)
1726 {
1727 int i;
1728 long offset = 0;
1729 ULONGEST bits_to_skip;
1730 const gdb_byte *contents;
1731 struct piece_closure *c
1732 = (struct piece_closure *) value_computed_closure (to);
1733 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1734 size_t type_len;
1735 size_t buffer_size = 0;
1736 char *buffer = NULL;
1737 struct cleanup *cleanup;
1738 int bits_big_endian
1739 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1740
1741 if (frame == NULL)
1742 {
1743 set_value_optimized_out (to, 1);
1744 return;
1745 }
1746
1747 cleanup = make_cleanup (free_current_contents, &buffer);
1748
1749 contents = value_contents (from);
1750 bits_to_skip = 8 * value_offset (to);
1751 if (value_bitsize (to))
1752 {
1753 bits_to_skip += value_bitpos (to);
1754 type_len = value_bitsize (to);
1755 }
1756 else
1757 type_len = 8 * TYPE_LENGTH (value_type (to));
1758
1759 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1760 {
1761 struct dwarf_expr_piece *p = &c->pieces[i];
1762 size_t this_size_bits, this_size;
1763 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1764 int need_bitwise;
1765 const gdb_byte *source_buffer;
1766
1767 this_size_bits = p->size;
1768 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1769 {
1770 bits_to_skip -= this_size_bits;
1771 continue;
1772 }
1773 if (this_size_bits > type_len - offset)
1774 this_size_bits = type_len - offset;
1775 if (bits_to_skip > 0)
1776 {
1777 dest_offset_bits = bits_to_skip;
1778 source_offset_bits = 0;
1779 this_size_bits -= bits_to_skip;
1780 bits_to_skip = 0;
1781 }
1782 else
1783 {
1784 dest_offset_bits = 0;
1785 source_offset_bits = offset;
1786 }
1787
1788 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1789 source_offset = source_offset_bits / 8;
1790 dest_offset = dest_offset_bits / 8;
1791 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1792 {
1793 source_buffer = contents + source_offset;
1794 need_bitwise = 0;
1795 }
1796 else
1797 {
1798 if (buffer_size < this_size)
1799 {
1800 buffer_size = this_size;
1801 buffer = xrealloc (buffer, buffer_size);
1802 }
1803 source_buffer = buffer;
1804 need_bitwise = 1;
1805 }
1806
1807 switch (p->location)
1808 {
1809 case DWARF_VALUE_REGISTER:
1810 {
1811 struct gdbarch *arch = get_frame_arch (frame);
1812 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1813 int reg_offset = dest_offset;
1814
1815 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1816 && this_size <= register_size (arch, gdb_regnum))
1817 /* Big-endian, and we want less than full size. */
1818 reg_offset = register_size (arch, gdb_regnum) - this_size;
1819
1820 if (gdb_regnum != -1)
1821 {
1822 if (need_bitwise)
1823 {
1824 int optim, unavail;
1825
1826 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1827 this_size, buffer,
1828 &optim, &unavail))
1829 {
1830 if (optim)
1831 error (_("Can't do read-modify-write to "
1832 "update bitfield; containing word has been "
1833 "optimized out"));
1834 if (unavail)
1835 throw_error (NOT_AVAILABLE_ERROR,
1836 _("Can't do read-modify-write to update "
1837 "bitfield; containing word "
1838 "is unavailable"));
1839 }
1840 copy_bitwise (buffer, dest_offset_bits,
1841 contents, source_offset_bits,
1842 this_size_bits,
1843 bits_big_endian);
1844 }
1845
1846 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1847 this_size, source_buffer);
1848 }
1849 else
1850 {
1851 error (_("Unable to write to DWARF register number %s"),
1852 paddress (arch, p->v.regno));
1853 }
1854 }
1855 break;
1856 case DWARF_VALUE_MEMORY:
1857 if (need_bitwise)
1858 {
1859 /* Only the first and last bytes can possibly have any
1860 bits reused. */
1861 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1862 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1863 buffer + this_size - 1, 1);
1864 copy_bitwise (buffer, dest_offset_bits,
1865 contents, source_offset_bits,
1866 this_size_bits,
1867 bits_big_endian);
1868 }
1869
1870 write_memory (p->v.mem.addr + dest_offset,
1871 source_buffer, this_size);
1872 break;
1873 default:
1874 set_value_optimized_out (to, 1);
1875 break;
1876 }
1877 offset += this_size_bits;
1878 }
1879
1880 do_cleanups (cleanup);
1881 }
1882
1883 /* A helper function that checks bit validity in a pieced value.
1884 CHECK_FOR indicates the kind of validity checking.
1885 DWARF_VALUE_MEMORY means to check whether any bit is valid.
1886 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
1887 optimized out.
1888 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
1889 implicit pointer. */
1890
1891 static int
1892 check_pieced_value_bits (const struct value *value, int bit_offset,
1893 int bit_length,
1894 enum dwarf_value_location check_for)
1895 {
1896 struct piece_closure *c
1897 = (struct piece_closure *) value_computed_closure (value);
1898 int i;
1899 int validity = (check_for == DWARF_VALUE_MEMORY
1900 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
1901
1902 bit_offset += 8 * value_offset (value);
1903 if (value_bitsize (value))
1904 bit_offset += value_bitpos (value);
1905
1906 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1907 {
1908 struct dwarf_expr_piece *p = &c->pieces[i];
1909 size_t this_size_bits = p->size;
1910
1911 if (bit_offset > 0)
1912 {
1913 if (bit_offset >= this_size_bits)
1914 {
1915 bit_offset -= this_size_bits;
1916 continue;
1917 }
1918
1919 bit_length -= this_size_bits - bit_offset;
1920 bit_offset = 0;
1921 }
1922 else
1923 bit_length -= this_size_bits;
1924
1925 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
1926 {
1927 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1928 return 0;
1929 }
1930 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
1931 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
1932 {
1933 if (validity)
1934 return 0;
1935 }
1936 else
1937 {
1938 if (!validity)
1939 return 1;
1940 }
1941 }
1942
1943 return validity;
1944 }
1945
1946 static int
1947 check_pieced_value_validity (const struct value *value, int bit_offset,
1948 int bit_length)
1949 {
1950 return check_pieced_value_bits (value, bit_offset, bit_length,
1951 DWARF_VALUE_MEMORY);
1952 }
1953
1954 static int
1955 check_pieced_value_invalid (const struct value *value)
1956 {
1957 return check_pieced_value_bits (value, 0,
1958 8 * TYPE_LENGTH (value_type (value)),
1959 DWARF_VALUE_OPTIMIZED_OUT);
1960 }
1961
1962 /* An implementation of an lval_funcs method to see whether a value is
1963 a synthetic pointer. */
1964
1965 static int
1966 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
1967 int bit_length)
1968 {
1969 return check_pieced_value_bits (value, bit_offset, bit_length,
1970 DWARF_VALUE_IMPLICIT_POINTER);
1971 }
1972
1973 /* A wrapper function for get_frame_address_in_block. */
1974
1975 static CORE_ADDR
1976 get_frame_address_in_block_wrapper (void *baton)
1977 {
1978 return get_frame_address_in_block (baton);
1979 }
1980
1981 /* An implementation of an lval_funcs method to indirect through a
1982 pointer. This handles the synthetic pointer case when needed. */
1983
1984 static struct value *
1985 indirect_pieced_value (struct value *value)
1986 {
1987 struct piece_closure *c
1988 = (struct piece_closure *) value_computed_closure (value);
1989 struct type *type;
1990 struct frame_info *frame;
1991 struct dwarf2_locexpr_baton baton;
1992 int i, bit_offset, bit_length;
1993 struct dwarf_expr_piece *piece = NULL;
1994 LONGEST byte_offset;
1995
1996 type = check_typedef (value_type (value));
1997 if (TYPE_CODE (type) != TYPE_CODE_PTR)
1998 return NULL;
1999
2000 bit_length = 8 * TYPE_LENGTH (type);
2001 bit_offset = 8 * value_offset (value);
2002 if (value_bitsize (value))
2003 bit_offset += value_bitpos (value);
2004
2005 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2006 {
2007 struct dwarf_expr_piece *p = &c->pieces[i];
2008 size_t this_size_bits = p->size;
2009
2010 if (bit_offset > 0)
2011 {
2012 if (bit_offset >= this_size_bits)
2013 {
2014 bit_offset -= this_size_bits;
2015 continue;
2016 }
2017
2018 bit_length -= this_size_bits - bit_offset;
2019 bit_offset = 0;
2020 }
2021 else
2022 bit_length -= this_size_bits;
2023
2024 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2025 return NULL;
2026
2027 if (bit_length != 0)
2028 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2029
2030 piece = p;
2031 break;
2032 }
2033
2034 frame = get_selected_frame (_("No frame selected."));
2035
2036 /* This is an offset requested by GDB, such as value subcripts. */
2037 byte_offset = value_as_address (value);
2038
2039 gdb_assert (piece);
2040 baton
2041 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2042 get_frame_address_in_block_wrapper,
2043 frame);
2044
2045 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2046 baton.data, baton.size, baton.per_cu,
2047 piece->v.ptr.offset + byte_offset);
2048 }
2049
2050 static void *
2051 copy_pieced_value_closure (const struct value *v)
2052 {
2053 struct piece_closure *c
2054 = (struct piece_closure *) value_computed_closure (v);
2055
2056 ++c->refc;
2057 return c;
2058 }
2059
2060 static void
2061 free_pieced_value_closure (struct value *v)
2062 {
2063 struct piece_closure *c
2064 = (struct piece_closure *) value_computed_closure (v);
2065
2066 --c->refc;
2067 if (c->refc == 0)
2068 {
2069 int i;
2070
2071 for (i = 0; i < c->n_pieces; ++i)
2072 if (c->pieces[i].location == DWARF_VALUE_STACK)
2073 value_free (c->pieces[i].v.value);
2074
2075 xfree (c->pieces);
2076 xfree (c);
2077 }
2078 }
2079
2080 /* Functions for accessing a variable described by DW_OP_piece. */
2081 static const struct lval_funcs pieced_value_funcs = {
2082 read_pieced_value,
2083 write_pieced_value,
2084 check_pieced_value_validity,
2085 check_pieced_value_invalid,
2086 indirect_pieced_value,
2087 NULL, /* coerce_ref */
2088 check_pieced_synthetic_pointer,
2089 copy_pieced_value_closure,
2090 free_pieced_value_closure
2091 };
2092
2093 /* Helper function which throws an error if a synthetic pointer is
2094 invalid. */
2095
2096 static void
2097 invalid_synthetic_pointer (void)
2098 {
2099 error (_("access outside bounds of object "
2100 "referenced via synthetic pointer"));
2101 }
2102
2103 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2104
2105 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2106 {
2107 dwarf_expr_read_reg,
2108 dwarf_expr_read_mem,
2109 dwarf_expr_frame_base,
2110 dwarf_expr_frame_cfa,
2111 dwarf_expr_frame_pc,
2112 dwarf_expr_tls_address,
2113 dwarf_expr_dwarf_call,
2114 dwarf_expr_get_base_type,
2115 dwarf_expr_push_dwarf_reg_entry_value,
2116 dwarf_expr_get_addr_index
2117 };
2118
2119 /* Evaluate a location description, starting at DATA and with length
2120 SIZE, to find the current location of variable of TYPE in the
2121 context of FRAME. BYTE_OFFSET is applied after the contents are
2122 computed. */
2123
2124 static struct value *
2125 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2126 const gdb_byte *data, size_t size,
2127 struct dwarf2_per_cu_data *per_cu,
2128 LONGEST byte_offset)
2129 {
2130 struct value *retval;
2131 struct dwarf_expr_baton baton;
2132 struct dwarf_expr_context *ctx;
2133 struct cleanup *old_chain, *value_chain;
2134 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2135 volatile struct gdb_exception ex;
2136
2137 if (byte_offset < 0)
2138 invalid_synthetic_pointer ();
2139
2140 if (size == 0)
2141 return allocate_optimized_out_value (type);
2142
2143 baton.frame = frame;
2144 baton.per_cu = per_cu;
2145
2146 ctx = new_dwarf_expr_context ();
2147 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2148 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2149
2150 ctx->gdbarch = get_objfile_arch (objfile);
2151 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2152 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2153 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2154 ctx->baton = &baton;
2155 ctx->funcs = &dwarf_expr_ctx_funcs;
2156
2157 TRY_CATCH (ex, RETURN_MASK_ERROR)
2158 {
2159 dwarf_expr_eval (ctx, data, size);
2160 }
2161 if (ex.reason < 0)
2162 {
2163 if (ex.error == NOT_AVAILABLE_ERROR)
2164 {
2165 do_cleanups (old_chain);
2166 retval = allocate_value (type);
2167 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2168 return retval;
2169 }
2170 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2171 {
2172 if (entry_values_debug)
2173 exception_print (gdb_stdout, ex);
2174 do_cleanups (old_chain);
2175 return allocate_optimized_out_value (type);
2176 }
2177 else
2178 throw_exception (ex);
2179 }
2180
2181 if (ctx->num_pieces > 0)
2182 {
2183 struct piece_closure *c;
2184 struct frame_id frame_id = get_frame_id (frame);
2185 ULONGEST bit_size = 0;
2186 int i;
2187
2188 for (i = 0; i < ctx->num_pieces; ++i)
2189 bit_size += ctx->pieces[i].size;
2190 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2191 invalid_synthetic_pointer ();
2192
2193 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2194 ctx->addr_size);
2195 /* We must clean up the value chain after creating the piece
2196 closure but before allocating the result. */
2197 do_cleanups (value_chain);
2198 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2199 VALUE_FRAME_ID (retval) = frame_id;
2200 set_value_offset (retval, byte_offset);
2201 }
2202 else
2203 {
2204 switch (ctx->location)
2205 {
2206 case DWARF_VALUE_REGISTER:
2207 {
2208 struct gdbarch *arch = get_frame_arch (frame);
2209 ULONGEST dwarf_regnum = value_as_long (dwarf_expr_fetch (ctx, 0));
2210 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2211
2212 if (byte_offset != 0)
2213 error (_("cannot use offset on synthetic pointer to register"));
2214 do_cleanups (value_chain);
2215 if (gdb_regnum != -1)
2216 retval = value_from_register (type, gdb_regnum, frame);
2217 else
2218 error (_("Unable to access DWARF register number %s"),
2219 paddress (arch, dwarf_regnum));
2220 }
2221 break;
2222
2223 case DWARF_VALUE_MEMORY:
2224 {
2225 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2226 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2227
2228 do_cleanups (value_chain);
2229 retval = allocate_value_lazy (type);
2230 VALUE_LVAL (retval) = lval_memory;
2231 if (in_stack_memory)
2232 set_value_stack (retval, 1);
2233 set_value_address (retval, address + byte_offset);
2234 }
2235 break;
2236
2237 case DWARF_VALUE_STACK:
2238 {
2239 struct value *value = dwarf_expr_fetch (ctx, 0);
2240 gdb_byte *contents;
2241 const gdb_byte *val_bytes;
2242 size_t n = TYPE_LENGTH (value_type (value));
2243
2244 if (byte_offset + TYPE_LENGTH (type) > n)
2245 invalid_synthetic_pointer ();
2246
2247 val_bytes = value_contents_all (value);
2248 val_bytes += byte_offset;
2249 n -= byte_offset;
2250
2251 /* Preserve VALUE because we are going to free values back
2252 to the mark, but we still need the value contents
2253 below. */
2254 value_incref (value);
2255 do_cleanups (value_chain);
2256 make_cleanup_value_free (value);
2257
2258 retval = allocate_value (type);
2259 contents = value_contents_raw (retval);
2260 if (n > TYPE_LENGTH (type))
2261 {
2262 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2263
2264 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2265 val_bytes += n - TYPE_LENGTH (type);
2266 n = TYPE_LENGTH (type);
2267 }
2268 memcpy (contents, val_bytes, n);
2269 }
2270 break;
2271
2272 case DWARF_VALUE_LITERAL:
2273 {
2274 bfd_byte *contents;
2275 const bfd_byte *ldata;
2276 size_t n = ctx->len;
2277
2278 if (byte_offset + TYPE_LENGTH (type) > n)
2279 invalid_synthetic_pointer ();
2280
2281 do_cleanups (value_chain);
2282 retval = allocate_value (type);
2283 contents = value_contents_raw (retval);
2284
2285 ldata = ctx->data + byte_offset;
2286 n -= byte_offset;
2287
2288 if (n > TYPE_LENGTH (type))
2289 {
2290 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2291
2292 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2293 ldata += n - TYPE_LENGTH (type);
2294 n = TYPE_LENGTH (type);
2295 }
2296 memcpy (contents, ldata, n);
2297 }
2298 break;
2299
2300 case DWARF_VALUE_OPTIMIZED_OUT:
2301 do_cleanups (value_chain);
2302 retval = allocate_optimized_out_value (type);
2303 break;
2304
2305 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2306 operation by execute_stack_op. */
2307 case DWARF_VALUE_IMPLICIT_POINTER:
2308 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2309 it can only be encountered when making a piece. */
2310 default:
2311 internal_error (__FILE__, __LINE__, _("invalid location type"));
2312 }
2313 }
2314
2315 set_value_initialized (retval, ctx->initialized);
2316
2317 do_cleanups (old_chain);
2318
2319 return retval;
2320 }
2321
2322 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2323 passes 0 as the byte_offset. */
2324
2325 struct value *
2326 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2327 const gdb_byte *data, size_t size,
2328 struct dwarf2_per_cu_data *per_cu)
2329 {
2330 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2331 }
2332
2333 \f
2334 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2335
2336 struct needs_frame_baton
2337 {
2338 int needs_frame;
2339 struct dwarf2_per_cu_data *per_cu;
2340 };
2341
2342 /* Reads from registers do require a frame. */
2343 static CORE_ADDR
2344 needs_frame_read_reg (void *baton, int regnum)
2345 {
2346 struct needs_frame_baton *nf_baton = baton;
2347
2348 nf_baton->needs_frame = 1;
2349 return 1;
2350 }
2351
2352 /* Reads from memory do not require a frame. */
2353 static void
2354 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2355 {
2356 memset (buf, 0, len);
2357 }
2358
2359 /* Frame-relative accesses do require a frame. */
2360 static void
2361 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2362 {
2363 static gdb_byte lit0 = DW_OP_lit0;
2364 struct needs_frame_baton *nf_baton = baton;
2365
2366 *start = &lit0;
2367 *length = 1;
2368
2369 nf_baton->needs_frame = 1;
2370 }
2371
2372 /* CFA accesses require a frame. */
2373
2374 static CORE_ADDR
2375 needs_frame_frame_cfa (void *baton)
2376 {
2377 struct needs_frame_baton *nf_baton = baton;
2378
2379 nf_baton->needs_frame = 1;
2380 return 1;
2381 }
2382
2383 /* Thread-local accesses do require a frame. */
2384 static CORE_ADDR
2385 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2386 {
2387 struct needs_frame_baton *nf_baton = baton;
2388
2389 nf_baton->needs_frame = 1;
2390 return 1;
2391 }
2392
2393 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2394
2395 static void
2396 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2397 {
2398 struct needs_frame_baton *nf_baton = ctx->baton;
2399
2400 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2401 ctx->funcs->get_frame_pc, ctx->baton);
2402 }
2403
2404 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2405
2406 static void
2407 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2408 enum call_site_parameter_kind kind,
2409 union call_site_parameter_u kind_u, int deref_size)
2410 {
2411 struct needs_frame_baton *nf_baton = ctx->baton;
2412
2413 nf_baton->needs_frame = 1;
2414
2415 /* The expression may require some stub values on DWARF stack. */
2416 dwarf_expr_push_address (ctx, 0, 0);
2417 }
2418
2419 /* DW_OP_GNU_addr_index doesn't require a frame. */
2420
2421 static CORE_ADDR
2422 needs_get_addr_index (void *baton, unsigned int index)
2423 {
2424 /* Nothing to do. */
2425 return 1;
2426 }
2427
2428 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2429
2430 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2431 {
2432 needs_frame_read_reg,
2433 needs_frame_read_mem,
2434 needs_frame_frame_base,
2435 needs_frame_frame_cfa,
2436 needs_frame_frame_cfa, /* get_frame_pc */
2437 needs_frame_tls_address,
2438 needs_frame_dwarf_call,
2439 NULL, /* get_base_type */
2440 needs_dwarf_reg_entry_value,
2441 needs_get_addr_index
2442 };
2443
2444 /* Return non-zero iff the location expression at DATA (length SIZE)
2445 requires a frame to evaluate. */
2446
2447 static int
2448 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2449 struct dwarf2_per_cu_data *per_cu)
2450 {
2451 struct needs_frame_baton baton;
2452 struct dwarf_expr_context *ctx;
2453 int in_reg;
2454 struct cleanup *old_chain;
2455 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2456
2457 baton.needs_frame = 0;
2458 baton.per_cu = per_cu;
2459
2460 ctx = new_dwarf_expr_context ();
2461 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2462 make_cleanup_value_free_to_mark (value_mark ());
2463
2464 ctx->gdbarch = get_objfile_arch (objfile);
2465 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2466 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2467 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2468 ctx->baton = &baton;
2469 ctx->funcs = &needs_frame_ctx_funcs;
2470
2471 dwarf_expr_eval (ctx, data, size);
2472
2473 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2474
2475 if (ctx->num_pieces > 0)
2476 {
2477 int i;
2478
2479 /* If the location has several pieces, and any of them are in
2480 registers, then we will need a frame to fetch them from. */
2481 for (i = 0; i < ctx->num_pieces; i++)
2482 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2483 in_reg = 1;
2484 }
2485
2486 do_cleanups (old_chain);
2487
2488 return baton.needs_frame || in_reg;
2489 }
2490
2491 /* A helper function that throws an unimplemented error mentioning a
2492 given DWARF operator. */
2493
2494 static void
2495 unimplemented (unsigned int op)
2496 {
2497 const char *name = get_DW_OP_name (op);
2498
2499 if (name)
2500 error (_("DWARF operator %s cannot be translated to an agent expression"),
2501 name);
2502 else
2503 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2504 "to an agent expression"),
2505 op);
2506 }
2507
2508 /* A helper function to convert a DWARF register to an arch register.
2509 ARCH is the architecture.
2510 DWARF_REG is the register.
2511 This will throw an exception if the DWARF register cannot be
2512 translated to an architecture register. */
2513
2514 static int
2515 translate_register (struct gdbarch *arch, int dwarf_reg)
2516 {
2517 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2518 if (reg == -1)
2519 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2520 return reg;
2521 }
2522
2523 /* A helper function that emits an access to memory. ARCH is the
2524 target architecture. EXPR is the expression which we are building.
2525 NBITS is the number of bits we want to read. This emits the
2526 opcodes needed to read the memory and then extract the desired
2527 bits. */
2528
2529 static void
2530 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2531 {
2532 ULONGEST nbytes = (nbits + 7) / 8;
2533
2534 gdb_assert (nbits > 0 && nbits <= sizeof (LONGEST));
2535
2536 if (trace_kludge)
2537 ax_trace_quick (expr, nbytes);
2538
2539 if (nbits <= 8)
2540 ax_simple (expr, aop_ref8);
2541 else if (nbits <= 16)
2542 ax_simple (expr, aop_ref16);
2543 else if (nbits <= 32)
2544 ax_simple (expr, aop_ref32);
2545 else
2546 ax_simple (expr, aop_ref64);
2547
2548 /* If we read exactly the number of bytes we wanted, we're done. */
2549 if (8 * nbytes == nbits)
2550 return;
2551
2552 if (gdbarch_bits_big_endian (arch))
2553 {
2554 /* On a bits-big-endian machine, we want the high-order
2555 NBITS. */
2556 ax_const_l (expr, 8 * nbytes - nbits);
2557 ax_simple (expr, aop_rsh_unsigned);
2558 }
2559 else
2560 {
2561 /* On a bits-little-endian box, we want the low-order NBITS. */
2562 ax_zero_ext (expr, nbits);
2563 }
2564 }
2565
2566 /* A helper function to return the frame's PC. */
2567
2568 static CORE_ADDR
2569 get_ax_pc (void *baton)
2570 {
2571 struct agent_expr *expr = baton;
2572
2573 return expr->scope;
2574 }
2575
2576 /* Compile a DWARF location expression to an agent expression.
2577
2578 EXPR is the agent expression we are building.
2579 LOC is the agent value we modify.
2580 ARCH is the architecture.
2581 ADDR_SIZE is the size of addresses, in bytes.
2582 OP_PTR is the start of the location expression.
2583 OP_END is one past the last byte of the location expression.
2584
2585 This will throw an exception for various kinds of errors -- for
2586 example, if the expression cannot be compiled, or if the expression
2587 is invalid. */
2588
2589 void
2590 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2591 struct gdbarch *arch, unsigned int addr_size,
2592 const gdb_byte *op_ptr, const gdb_byte *op_end,
2593 struct dwarf2_per_cu_data *per_cu)
2594 {
2595 struct cleanup *cleanups;
2596 int i, *offsets;
2597 VEC(int) *dw_labels = NULL, *patches = NULL;
2598 const gdb_byte * const base = op_ptr;
2599 const gdb_byte *previous_piece = op_ptr;
2600 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2601 ULONGEST bits_collected = 0;
2602 unsigned int addr_size_bits = 8 * addr_size;
2603 int bits_big_endian = gdbarch_bits_big_endian (arch);
2604
2605 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2606 cleanups = make_cleanup (xfree, offsets);
2607
2608 for (i = 0; i < op_end - op_ptr; ++i)
2609 offsets[i] = -1;
2610
2611 make_cleanup (VEC_cleanup (int), &dw_labels);
2612 make_cleanup (VEC_cleanup (int), &patches);
2613
2614 /* By default we are making an address. */
2615 loc->kind = axs_lvalue_memory;
2616
2617 while (op_ptr < op_end)
2618 {
2619 enum dwarf_location_atom op = *op_ptr;
2620 uint64_t uoffset, reg;
2621 int64_t offset;
2622 int i;
2623
2624 offsets[op_ptr - base] = expr->len;
2625 ++op_ptr;
2626
2627 /* Our basic approach to code generation is to map DWARF
2628 operations directly to AX operations. However, there are
2629 some differences.
2630
2631 First, DWARF works on address-sized units, but AX always uses
2632 LONGEST. For most operations we simply ignore this
2633 difference; instead we generate sign extensions as needed
2634 before division and comparison operations. It would be nice
2635 to omit the sign extensions, but there is no way to determine
2636 the size of the target's LONGEST. (This code uses the size
2637 of the host LONGEST in some cases -- that is a bug but it is
2638 difficult to fix.)
2639
2640 Second, some DWARF operations cannot be translated to AX.
2641 For these we simply fail. See
2642 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2643 switch (op)
2644 {
2645 case DW_OP_lit0:
2646 case DW_OP_lit1:
2647 case DW_OP_lit2:
2648 case DW_OP_lit3:
2649 case DW_OP_lit4:
2650 case DW_OP_lit5:
2651 case DW_OP_lit6:
2652 case DW_OP_lit7:
2653 case DW_OP_lit8:
2654 case DW_OP_lit9:
2655 case DW_OP_lit10:
2656 case DW_OP_lit11:
2657 case DW_OP_lit12:
2658 case DW_OP_lit13:
2659 case DW_OP_lit14:
2660 case DW_OP_lit15:
2661 case DW_OP_lit16:
2662 case DW_OP_lit17:
2663 case DW_OP_lit18:
2664 case DW_OP_lit19:
2665 case DW_OP_lit20:
2666 case DW_OP_lit21:
2667 case DW_OP_lit22:
2668 case DW_OP_lit23:
2669 case DW_OP_lit24:
2670 case DW_OP_lit25:
2671 case DW_OP_lit26:
2672 case DW_OP_lit27:
2673 case DW_OP_lit28:
2674 case DW_OP_lit29:
2675 case DW_OP_lit30:
2676 case DW_OP_lit31:
2677 ax_const_l (expr, op - DW_OP_lit0);
2678 break;
2679
2680 case DW_OP_addr:
2681 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2682 op_ptr += addr_size;
2683 /* Some versions of GCC emit DW_OP_addr before
2684 DW_OP_GNU_push_tls_address. In this case the value is an
2685 index, not an address. We don't support things like
2686 branching between the address and the TLS op. */
2687 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2688 uoffset += dwarf2_per_cu_text_offset (per_cu);
2689 ax_const_l (expr, uoffset);
2690 break;
2691
2692 case DW_OP_const1u:
2693 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2694 op_ptr += 1;
2695 break;
2696 case DW_OP_const1s:
2697 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2698 op_ptr += 1;
2699 break;
2700 case DW_OP_const2u:
2701 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2702 op_ptr += 2;
2703 break;
2704 case DW_OP_const2s:
2705 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2706 op_ptr += 2;
2707 break;
2708 case DW_OP_const4u:
2709 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2710 op_ptr += 4;
2711 break;
2712 case DW_OP_const4s:
2713 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2714 op_ptr += 4;
2715 break;
2716 case DW_OP_const8u:
2717 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2718 op_ptr += 8;
2719 break;
2720 case DW_OP_const8s:
2721 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2722 op_ptr += 8;
2723 break;
2724 case DW_OP_constu:
2725 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2726 ax_const_l (expr, uoffset);
2727 break;
2728 case DW_OP_consts:
2729 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2730 ax_const_l (expr, offset);
2731 break;
2732
2733 case DW_OP_reg0:
2734 case DW_OP_reg1:
2735 case DW_OP_reg2:
2736 case DW_OP_reg3:
2737 case DW_OP_reg4:
2738 case DW_OP_reg5:
2739 case DW_OP_reg6:
2740 case DW_OP_reg7:
2741 case DW_OP_reg8:
2742 case DW_OP_reg9:
2743 case DW_OP_reg10:
2744 case DW_OP_reg11:
2745 case DW_OP_reg12:
2746 case DW_OP_reg13:
2747 case DW_OP_reg14:
2748 case DW_OP_reg15:
2749 case DW_OP_reg16:
2750 case DW_OP_reg17:
2751 case DW_OP_reg18:
2752 case DW_OP_reg19:
2753 case DW_OP_reg20:
2754 case DW_OP_reg21:
2755 case DW_OP_reg22:
2756 case DW_OP_reg23:
2757 case DW_OP_reg24:
2758 case DW_OP_reg25:
2759 case DW_OP_reg26:
2760 case DW_OP_reg27:
2761 case DW_OP_reg28:
2762 case DW_OP_reg29:
2763 case DW_OP_reg30:
2764 case DW_OP_reg31:
2765 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2766 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
2767 loc->kind = axs_lvalue_register;
2768 break;
2769
2770 case DW_OP_regx:
2771 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2772 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2773 loc->u.reg = translate_register (arch, reg);
2774 loc->kind = axs_lvalue_register;
2775 break;
2776
2777 case DW_OP_implicit_value:
2778 {
2779 uint64_t len;
2780
2781 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
2782 if (op_ptr + len > op_end)
2783 error (_("DW_OP_implicit_value: too few bytes available."));
2784 if (len > sizeof (ULONGEST))
2785 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
2786 (int) len);
2787
2788 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
2789 byte_order));
2790 op_ptr += len;
2791 dwarf_expr_require_composition (op_ptr, op_end,
2792 "DW_OP_implicit_value");
2793
2794 loc->kind = axs_rvalue;
2795 }
2796 break;
2797
2798 case DW_OP_stack_value:
2799 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
2800 loc->kind = axs_rvalue;
2801 break;
2802
2803 case DW_OP_breg0:
2804 case DW_OP_breg1:
2805 case DW_OP_breg2:
2806 case DW_OP_breg3:
2807 case DW_OP_breg4:
2808 case DW_OP_breg5:
2809 case DW_OP_breg6:
2810 case DW_OP_breg7:
2811 case DW_OP_breg8:
2812 case DW_OP_breg9:
2813 case DW_OP_breg10:
2814 case DW_OP_breg11:
2815 case DW_OP_breg12:
2816 case DW_OP_breg13:
2817 case DW_OP_breg14:
2818 case DW_OP_breg15:
2819 case DW_OP_breg16:
2820 case DW_OP_breg17:
2821 case DW_OP_breg18:
2822 case DW_OP_breg19:
2823 case DW_OP_breg20:
2824 case DW_OP_breg21:
2825 case DW_OP_breg22:
2826 case DW_OP_breg23:
2827 case DW_OP_breg24:
2828 case DW_OP_breg25:
2829 case DW_OP_breg26:
2830 case DW_OP_breg27:
2831 case DW_OP_breg28:
2832 case DW_OP_breg29:
2833 case DW_OP_breg30:
2834 case DW_OP_breg31:
2835 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2836 i = translate_register (arch, op - DW_OP_breg0);
2837 ax_reg (expr, i);
2838 if (offset != 0)
2839 {
2840 ax_const_l (expr, offset);
2841 ax_simple (expr, aop_add);
2842 }
2843 break;
2844 case DW_OP_bregx:
2845 {
2846 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2847 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2848 i = translate_register (arch, reg);
2849 ax_reg (expr, i);
2850 if (offset != 0)
2851 {
2852 ax_const_l (expr, offset);
2853 ax_simple (expr, aop_add);
2854 }
2855 }
2856 break;
2857 case DW_OP_fbreg:
2858 {
2859 const gdb_byte *datastart;
2860 size_t datalen;
2861 struct block *b;
2862 struct symbol *framefunc;
2863 LONGEST base_offset = 0;
2864
2865 b = block_for_pc (expr->scope);
2866
2867 if (!b)
2868 error (_("No block found for address"));
2869
2870 framefunc = block_linkage_function (b);
2871
2872 if (!framefunc)
2873 error (_("No function found for block"));
2874
2875 dwarf_expr_frame_base_1 (framefunc, expr->scope,
2876 &datastart, &datalen);
2877
2878 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2879 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
2880 datastart + datalen, per_cu);
2881 if (loc->kind == axs_lvalue_register)
2882 require_rvalue (expr, loc);
2883
2884 if (offset != 0)
2885 {
2886 ax_const_l (expr, offset);
2887 ax_simple (expr, aop_add);
2888 }
2889
2890 loc->kind = axs_lvalue_memory;
2891 }
2892 break;
2893
2894 case DW_OP_dup:
2895 ax_simple (expr, aop_dup);
2896 break;
2897
2898 case DW_OP_drop:
2899 ax_simple (expr, aop_pop);
2900 break;
2901
2902 case DW_OP_pick:
2903 offset = *op_ptr++;
2904 ax_pick (expr, offset);
2905 break;
2906
2907 case DW_OP_swap:
2908 ax_simple (expr, aop_swap);
2909 break;
2910
2911 case DW_OP_over:
2912 ax_pick (expr, 1);
2913 break;
2914
2915 case DW_OP_rot:
2916 ax_simple (expr, aop_rot);
2917 break;
2918
2919 case DW_OP_deref:
2920 case DW_OP_deref_size:
2921 {
2922 int size;
2923
2924 if (op == DW_OP_deref_size)
2925 size = *op_ptr++;
2926 else
2927 size = addr_size;
2928
2929 switch (size)
2930 {
2931 case 8:
2932 ax_simple (expr, aop_ref8);
2933 break;
2934 case 16:
2935 ax_simple (expr, aop_ref16);
2936 break;
2937 case 32:
2938 ax_simple (expr, aop_ref32);
2939 break;
2940 case 64:
2941 ax_simple (expr, aop_ref64);
2942 break;
2943 default:
2944 /* Note that get_DW_OP_name will never return
2945 NULL here. */
2946 error (_("Unsupported size %d in %s"),
2947 size, get_DW_OP_name (op));
2948 }
2949 }
2950 break;
2951
2952 case DW_OP_abs:
2953 /* Sign extend the operand. */
2954 ax_ext (expr, addr_size_bits);
2955 ax_simple (expr, aop_dup);
2956 ax_const_l (expr, 0);
2957 ax_simple (expr, aop_less_signed);
2958 ax_simple (expr, aop_log_not);
2959 i = ax_goto (expr, aop_if_goto);
2960 /* We have to emit 0 - X. */
2961 ax_const_l (expr, 0);
2962 ax_simple (expr, aop_swap);
2963 ax_simple (expr, aop_sub);
2964 ax_label (expr, i, expr->len);
2965 break;
2966
2967 case DW_OP_neg:
2968 /* No need to sign extend here. */
2969 ax_const_l (expr, 0);
2970 ax_simple (expr, aop_swap);
2971 ax_simple (expr, aop_sub);
2972 break;
2973
2974 case DW_OP_not:
2975 /* Sign extend the operand. */
2976 ax_ext (expr, addr_size_bits);
2977 ax_simple (expr, aop_bit_not);
2978 break;
2979
2980 case DW_OP_plus_uconst:
2981 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2982 /* It would be really weird to emit `DW_OP_plus_uconst 0',
2983 but we micro-optimize anyhow. */
2984 if (reg != 0)
2985 {
2986 ax_const_l (expr, reg);
2987 ax_simple (expr, aop_add);
2988 }
2989 break;
2990
2991 case DW_OP_and:
2992 ax_simple (expr, aop_bit_and);
2993 break;
2994
2995 case DW_OP_div:
2996 /* Sign extend the operands. */
2997 ax_ext (expr, addr_size_bits);
2998 ax_simple (expr, aop_swap);
2999 ax_ext (expr, addr_size_bits);
3000 ax_simple (expr, aop_swap);
3001 ax_simple (expr, aop_div_signed);
3002 break;
3003
3004 case DW_OP_minus:
3005 ax_simple (expr, aop_sub);
3006 break;
3007
3008 case DW_OP_mod:
3009 ax_simple (expr, aop_rem_unsigned);
3010 break;
3011
3012 case DW_OP_mul:
3013 ax_simple (expr, aop_mul);
3014 break;
3015
3016 case DW_OP_or:
3017 ax_simple (expr, aop_bit_or);
3018 break;
3019
3020 case DW_OP_plus:
3021 ax_simple (expr, aop_add);
3022 break;
3023
3024 case DW_OP_shl:
3025 ax_simple (expr, aop_lsh);
3026 break;
3027
3028 case DW_OP_shr:
3029 ax_simple (expr, aop_rsh_unsigned);
3030 break;
3031
3032 case DW_OP_shra:
3033 ax_simple (expr, aop_rsh_signed);
3034 break;
3035
3036 case DW_OP_xor:
3037 ax_simple (expr, aop_bit_xor);
3038 break;
3039
3040 case DW_OP_le:
3041 /* Sign extend the operands. */
3042 ax_ext (expr, addr_size_bits);
3043 ax_simple (expr, aop_swap);
3044 ax_ext (expr, addr_size_bits);
3045 /* Note no swap here: A <= B is !(B < A). */
3046 ax_simple (expr, aop_less_signed);
3047 ax_simple (expr, aop_log_not);
3048 break;
3049
3050 case DW_OP_ge:
3051 /* Sign extend the operands. */
3052 ax_ext (expr, addr_size_bits);
3053 ax_simple (expr, aop_swap);
3054 ax_ext (expr, addr_size_bits);
3055 ax_simple (expr, aop_swap);
3056 /* A >= B is !(A < B). */
3057 ax_simple (expr, aop_less_signed);
3058 ax_simple (expr, aop_log_not);
3059 break;
3060
3061 case DW_OP_eq:
3062 /* Sign extend the operands. */
3063 ax_ext (expr, addr_size_bits);
3064 ax_simple (expr, aop_swap);
3065 ax_ext (expr, addr_size_bits);
3066 /* No need for a second swap here. */
3067 ax_simple (expr, aop_equal);
3068 break;
3069
3070 case DW_OP_lt:
3071 /* Sign extend the operands. */
3072 ax_ext (expr, addr_size_bits);
3073 ax_simple (expr, aop_swap);
3074 ax_ext (expr, addr_size_bits);
3075 ax_simple (expr, aop_swap);
3076 ax_simple (expr, aop_less_signed);
3077 break;
3078
3079 case DW_OP_gt:
3080 /* Sign extend the operands. */
3081 ax_ext (expr, addr_size_bits);
3082 ax_simple (expr, aop_swap);
3083 ax_ext (expr, addr_size_bits);
3084 /* Note no swap here: A > B is B < A. */
3085 ax_simple (expr, aop_less_signed);
3086 break;
3087
3088 case DW_OP_ne:
3089 /* Sign extend the operands. */
3090 ax_ext (expr, addr_size_bits);
3091 ax_simple (expr, aop_swap);
3092 ax_ext (expr, addr_size_bits);
3093 /* No need for a swap here. */
3094 ax_simple (expr, aop_equal);
3095 ax_simple (expr, aop_log_not);
3096 break;
3097
3098 case DW_OP_call_frame_cfa:
3099 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
3100 loc->kind = axs_lvalue_memory;
3101 break;
3102
3103 case DW_OP_GNU_push_tls_address:
3104 unimplemented (op);
3105 break;
3106
3107 case DW_OP_skip:
3108 offset = extract_signed_integer (op_ptr, 2, byte_order);
3109 op_ptr += 2;
3110 i = ax_goto (expr, aop_goto);
3111 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3112 VEC_safe_push (int, patches, i);
3113 break;
3114
3115 case DW_OP_bra:
3116 offset = extract_signed_integer (op_ptr, 2, byte_order);
3117 op_ptr += 2;
3118 /* Zero extend the operand. */
3119 ax_zero_ext (expr, addr_size_bits);
3120 i = ax_goto (expr, aop_if_goto);
3121 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3122 VEC_safe_push (int, patches, i);
3123 break;
3124
3125 case DW_OP_nop:
3126 break;
3127
3128 case DW_OP_piece:
3129 case DW_OP_bit_piece:
3130 {
3131 uint64_t size, offset;
3132
3133 if (op_ptr - 1 == previous_piece)
3134 error (_("Cannot translate empty pieces to agent expressions"));
3135 previous_piece = op_ptr - 1;
3136
3137 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3138 if (op == DW_OP_piece)
3139 {
3140 size *= 8;
3141 offset = 0;
3142 }
3143 else
3144 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3145
3146 if (bits_collected + size > 8 * sizeof (LONGEST))
3147 error (_("Expression pieces exceed word size"));
3148
3149 /* Access the bits. */
3150 switch (loc->kind)
3151 {
3152 case axs_lvalue_register:
3153 ax_reg (expr, loc->u.reg);
3154 break;
3155
3156 case axs_lvalue_memory:
3157 /* Offset the pointer, if needed. */
3158 if (offset > 8)
3159 {
3160 ax_const_l (expr, offset / 8);
3161 ax_simple (expr, aop_add);
3162 offset %= 8;
3163 }
3164 access_memory (arch, expr, size);
3165 break;
3166 }
3167
3168 /* For a bits-big-endian target, shift up what we already
3169 have. For a bits-little-endian target, shift up the
3170 new data. Note that there is a potential bug here if
3171 the DWARF expression leaves multiple values on the
3172 stack. */
3173 if (bits_collected > 0)
3174 {
3175 if (bits_big_endian)
3176 {
3177 ax_simple (expr, aop_swap);
3178 ax_const_l (expr, size);
3179 ax_simple (expr, aop_lsh);
3180 /* We don't need a second swap here, because
3181 aop_bit_or is symmetric. */
3182 }
3183 else
3184 {
3185 ax_const_l (expr, size);
3186 ax_simple (expr, aop_lsh);
3187 }
3188 ax_simple (expr, aop_bit_or);
3189 }
3190
3191 bits_collected += size;
3192 loc->kind = axs_rvalue;
3193 }
3194 break;
3195
3196 case DW_OP_GNU_uninit:
3197 unimplemented (op);
3198
3199 case DW_OP_call2:
3200 case DW_OP_call4:
3201 {
3202 struct dwarf2_locexpr_baton block;
3203 int size = (op == DW_OP_call2 ? 2 : 4);
3204 cu_offset offset;
3205
3206 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3207 op_ptr += size;
3208
3209 offset.cu_off = uoffset;
3210 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3211 get_ax_pc, expr);
3212
3213 /* DW_OP_call_ref is currently not supported. */
3214 gdb_assert (block.per_cu == per_cu);
3215
3216 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3217 block.data, block.data + block.size,
3218 per_cu);
3219 }
3220 break;
3221
3222 case DW_OP_call_ref:
3223 unimplemented (op);
3224
3225 default:
3226 unimplemented (op);
3227 }
3228 }
3229
3230 /* Patch all the branches we emitted. */
3231 for (i = 0; i < VEC_length (int, patches); ++i)
3232 {
3233 int targ = offsets[VEC_index (int, dw_labels, i)];
3234 if (targ == -1)
3235 internal_error (__FILE__, __LINE__, _("invalid label"));
3236 ax_label (expr, VEC_index (int, patches, i), targ);
3237 }
3238
3239 do_cleanups (cleanups);
3240 }
3241
3242 \f
3243 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3244 evaluator to calculate the location. */
3245 static struct value *
3246 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3247 {
3248 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3249 struct value *val;
3250
3251 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3252 dlbaton->size, dlbaton->per_cu);
3253
3254 return val;
3255 }
3256
3257 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3258 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3259 will be thrown. */
3260
3261 static struct value *
3262 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3263 {
3264 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3265
3266 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3267 dlbaton->size);
3268 }
3269
3270 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3271 static int
3272 locexpr_read_needs_frame (struct symbol *symbol)
3273 {
3274 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3275
3276 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3277 dlbaton->per_cu);
3278 }
3279
3280 /* Return true if DATA points to the end of a piece. END is one past
3281 the last byte in the expression. */
3282
3283 static int
3284 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3285 {
3286 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3287 }
3288
3289 /* Helper for locexpr_describe_location_piece that finds the name of a
3290 DWARF register. */
3291
3292 static const char *
3293 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3294 {
3295 int regnum;
3296
3297 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3298 return gdbarch_register_name (gdbarch, regnum);
3299 }
3300
3301 /* Nicely describe a single piece of a location, returning an updated
3302 position in the bytecode sequence. This function cannot recognize
3303 all locations; if a location is not recognized, it simply returns
3304 DATA. If there is an error during reading, e.g. we run off the end
3305 of the buffer, an error is thrown. */
3306
3307 static const gdb_byte *
3308 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3309 CORE_ADDR addr, struct objfile *objfile,
3310 struct dwarf2_per_cu_data *per_cu,
3311 const gdb_byte *data, const gdb_byte *end,
3312 unsigned int addr_size)
3313 {
3314 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3315 size_t leb128_size;
3316
3317 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3318 {
3319 fprintf_filtered (stream, _("a variable in $%s"),
3320 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3321 data += 1;
3322 }
3323 else if (data[0] == DW_OP_regx)
3324 {
3325 uint64_t reg;
3326
3327 data = safe_read_uleb128 (data + 1, end, &reg);
3328 fprintf_filtered (stream, _("a variable in $%s"),
3329 locexpr_regname (gdbarch, reg));
3330 }
3331 else if (data[0] == DW_OP_fbreg)
3332 {
3333 struct block *b;
3334 struct symbol *framefunc;
3335 int frame_reg = 0;
3336 int64_t frame_offset;
3337 const gdb_byte *base_data, *new_data, *save_data = data;
3338 size_t base_size;
3339 int64_t base_offset = 0;
3340
3341 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3342 if (!piece_end_p (new_data, end))
3343 return data;
3344 data = new_data;
3345
3346 b = block_for_pc (addr);
3347
3348 if (!b)
3349 error (_("No block found for address for symbol \"%s\"."),
3350 SYMBOL_PRINT_NAME (symbol));
3351
3352 framefunc = block_linkage_function (b);
3353
3354 if (!framefunc)
3355 error (_("No function found for block for symbol \"%s\"."),
3356 SYMBOL_PRINT_NAME (symbol));
3357
3358 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
3359
3360 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3361 {
3362 const gdb_byte *buf_end;
3363
3364 frame_reg = base_data[0] - DW_OP_breg0;
3365 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3366 &base_offset);
3367 if (buf_end != base_data + base_size)
3368 error (_("Unexpected opcode after "
3369 "DW_OP_breg%u for symbol \"%s\"."),
3370 frame_reg, SYMBOL_PRINT_NAME (symbol));
3371 }
3372 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3373 {
3374 /* The frame base is just the register, with no offset. */
3375 frame_reg = base_data[0] - DW_OP_reg0;
3376 base_offset = 0;
3377 }
3378 else
3379 {
3380 /* We don't know what to do with the frame base expression,
3381 so we can't trace this variable; give up. */
3382 return save_data;
3383 }
3384
3385 fprintf_filtered (stream,
3386 _("a variable at frame base reg $%s offset %s+%s"),
3387 locexpr_regname (gdbarch, frame_reg),
3388 plongest (base_offset), plongest (frame_offset));
3389 }
3390 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3391 && piece_end_p (data, end))
3392 {
3393 int64_t offset;
3394
3395 data = safe_read_sleb128 (data + 1, end, &offset);
3396
3397 fprintf_filtered (stream,
3398 _("a variable at offset %s from base reg $%s"),
3399 plongest (offset),
3400 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3401 }
3402
3403 /* The location expression for a TLS variable looks like this (on a
3404 64-bit LE machine):
3405
3406 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3407 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3408
3409 0x3 is the encoding for DW_OP_addr, which has an operand as long
3410 as the size of an address on the target machine (here is 8
3411 bytes). Note that more recent version of GCC emit DW_OP_const4u
3412 or DW_OP_const8u, depending on address size, rather than
3413 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3414 The operand represents the offset at which the variable is within
3415 the thread local storage. */
3416
3417 else if (data + 1 + addr_size < end
3418 && (data[0] == DW_OP_addr
3419 || (addr_size == 4 && data[0] == DW_OP_const4u)
3420 || (addr_size == 8 && data[0] == DW_OP_const8u))
3421 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3422 && piece_end_p (data + 2 + addr_size, end))
3423 {
3424 ULONGEST offset;
3425 offset = extract_unsigned_integer (data + 1, addr_size,
3426 gdbarch_byte_order (gdbarch));
3427
3428 fprintf_filtered (stream,
3429 _("a thread-local variable at offset 0x%s "
3430 "in the thread-local storage for `%s'"),
3431 phex_nz (offset, addr_size), objfile->name);
3432
3433 data += 1 + addr_size + 1;
3434 }
3435
3436 /* With -gsplit-dwarf a TLS variable can also look like this:
3437 DW_AT_location : 3 byte block: fc 4 e0
3438 (DW_OP_GNU_const_index: 4;
3439 DW_OP_GNU_push_tls_address) */
3440 else if (data + 3 <= end
3441 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3442 && data[0] == DW_OP_GNU_const_index
3443 && leb128_size > 0
3444 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3445 && piece_end_p (data + 2 + leb128_size, end))
3446 {
3447 uint64_t offset;
3448
3449 data = safe_read_uleb128 (data + 1, end, &offset);
3450 offset = dwarf2_read_addr_index (per_cu, offset);
3451 fprintf_filtered (stream,
3452 _("a thread-local variable at offset 0x%s "
3453 "in the thread-local storage for `%s'"),
3454 phex_nz (offset, addr_size), objfile->name);
3455 ++data;
3456 }
3457
3458 else if (data[0] >= DW_OP_lit0
3459 && data[0] <= DW_OP_lit31
3460 && data + 1 < end
3461 && data[1] == DW_OP_stack_value)
3462 {
3463 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3464 data += 2;
3465 }
3466
3467 return data;
3468 }
3469
3470 /* Disassemble an expression, stopping at the end of a piece or at the
3471 end of the expression. Returns a pointer to the next unread byte
3472 in the input expression. If ALL is nonzero, then this function
3473 will keep going until it reaches the end of the expression.
3474 If there is an error during reading, e.g. we run off the end
3475 of the buffer, an error is thrown. */
3476
3477 static const gdb_byte *
3478 disassemble_dwarf_expression (struct ui_file *stream,
3479 struct gdbarch *arch, unsigned int addr_size,
3480 int offset_size, const gdb_byte *start,
3481 const gdb_byte *data, const gdb_byte *end,
3482 int indent, int all,
3483 struct dwarf2_per_cu_data *per_cu)
3484 {
3485 while (data < end
3486 && (all
3487 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3488 {
3489 enum dwarf_location_atom op = *data++;
3490 uint64_t ul;
3491 int64_t l;
3492 const char *name;
3493
3494 name = get_DW_OP_name (op);
3495
3496 if (!name)
3497 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3498 op, (long) (data - 1 - start));
3499 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3500 (long) (data - 1 - start), name);
3501
3502 switch (op)
3503 {
3504 case DW_OP_addr:
3505 ul = extract_unsigned_integer (data, addr_size,
3506 gdbarch_byte_order (arch));
3507 data += addr_size;
3508 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3509 break;
3510
3511 case DW_OP_const1u:
3512 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3513 data += 1;
3514 fprintf_filtered (stream, " %s", pulongest (ul));
3515 break;
3516 case DW_OP_const1s:
3517 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3518 data += 1;
3519 fprintf_filtered (stream, " %s", plongest (l));
3520 break;
3521 case DW_OP_const2u:
3522 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3523 data += 2;
3524 fprintf_filtered (stream, " %s", pulongest (ul));
3525 break;
3526 case DW_OP_const2s:
3527 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3528 data += 2;
3529 fprintf_filtered (stream, " %s", plongest (l));
3530 break;
3531 case DW_OP_const4u:
3532 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3533 data += 4;
3534 fprintf_filtered (stream, " %s", pulongest (ul));
3535 break;
3536 case DW_OP_const4s:
3537 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3538 data += 4;
3539 fprintf_filtered (stream, " %s", plongest (l));
3540 break;
3541 case DW_OP_const8u:
3542 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3543 data += 8;
3544 fprintf_filtered (stream, " %s", pulongest (ul));
3545 break;
3546 case DW_OP_const8s:
3547 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3548 data += 8;
3549 fprintf_filtered (stream, " %s", plongest (l));
3550 break;
3551 case DW_OP_constu:
3552 data = safe_read_uleb128 (data, end, &ul);
3553 fprintf_filtered (stream, " %s", pulongest (ul));
3554 break;
3555 case DW_OP_consts:
3556 data = safe_read_sleb128 (data, end, &l);
3557 fprintf_filtered (stream, " %s", plongest (l));
3558 break;
3559
3560 case DW_OP_reg0:
3561 case DW_OP_reg1:
3562 case DW_OP_reg2:
3563 case DW_OP_reg3:
3564 case DW_OP_reg4:
3565 case DW_OP_reg5:
3566 case DW_OP_reg6:
3567 case DW_OP_reg7:
3568 case DW_OP_reg8:
3569 case DW_OP_reg9:
3570 case DW_OP_reg10:
3571 case DW_OP_reg11:
3572 case DW_OP_reg12:
3573 case DW_OP_reg13:
3574 case DW_OP_reg14:
3575 case DW_OP_reg15:
3576 case DW_OP_reg16:
3577 case DW_OP_reg17:
3578 case DW_OP_reg18:
3579 case DW_OP_reg19:
3580 case DW_OP_reg20:
3581 case DW_OP_reg21:
3582 case DW_OP_reg22:
3583 case DW_OP_reg23:
3584 case DW_OP_reg24:
3585 case DW_OP_reg25:
3586 case DW_OP_reg26:
3587 case DW_OP_reg27:
3588 case DW_OP_reg28:
3589 case DW_OP_reg29:
3590 case DW_OP_reg30:
3591 case DW_OP_reg31:
3592 fprintf_filtered (stream, " [$%s]",
3593 locexpr_regname (arch, op - DW_OP_reg0));
3594 break;
3595
3596 case DW_OP_regx:
3597 data = safe_read_uleb128 (data, end, &ul);
3598 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3599 locexpr_regname (arch, (int) ul));
3600 break;
3601
3602 case DW_OP_implicit_value:
3603 data = safe_read_uleb128 (data, end, &ul);
3604 data += ul;
3605 fprintf_filtered (stream, " %s", pulongest (ul));
3606 break;
3607
3608 case DW_OP_breg0:
3609 case DW_OP_breg1:
3610 case DW_OP_breg2:
3611 case DW_OP_breg3:
3612 case DW_OP_breg4:
3613 case DW_OP_breg5:
3614 case DW_OP_breg6:
3615 case DW_OP_breg7:
3616 case DW_OP_breg8:
3617 case DW_OP_breg9:
3618 case DW_OP_breg10:
3619 case DW_OP_breg11:
3620 case DW_OP_breg12:
3621 case DW_OP_breg13:
3622 case DW_OP_breg14:
3623 case DW_OP_breg15:
3624 case DW_OP_breg16:
3625 case DW_OP_breg17:
3626 case DW_OP_breg18:
3627 case DW_OP_breg19:
3628 case DW_OP_breg20:
3629 case DW_OP_breg21:
3630 case DW_OP_breg22:
3631 case DW_OP_breg23:
3632 case DW_OP_breg24:
3633 case DW_OP_breg25:
3634 case DW_OP_breg26:
3635 case DW_OP_breg27:
3636 case DW_OP_breg28:
3637 case DW_OP_breg29:
3638 case DW_OP_breg30:
3639 case DW_OP_breg31:
3640 data = safe_read_sleb128 (data, end, &l);
3641 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3642 locexpr_regname (arch, op - DW_OP_breg0));
3643 break;
3644
3645 case DW_OP_bregx:
3646 data = safe_read_uleb128 (data, end, &ul);
3647 data = safe_read_sleb128 (data, end, &l);
3648 fprintf_filtered (stream, " register %s [$%s] offset %s",
3649 pulongest (ul),
3650 locexpr_regname (arch, (int) ul),
3651 plongest (l));
3652 break;
3653
3654 case DW_OP_fbreg:
3655 data = safe_read_sleb128 (data, end, &l);
3656 fprintf_filtered (stream, " %s", plongest (l));
3657 break;
3658
3659 case DW_OP_xderef_size:
3660 case DW_OP_deref_size:
3661 case DW_OP_pick:
3662 fprintf_filtered (stream, " %d", *data);
3663 ++data;
3664 break;
3665
3666 case DW_OP_plus_uconst:
3667 data = safe_read_uleb128 (data, end, &ul);
3668 fprintf_filtered (stream, " %s", pulongest (ul));
3669 break;
3670
3671 case DW_OP_skip:
3672 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3673 data += 2;
3674 fprintf_filtered (stream, " to %ld",
3675 (long) (data + l - start));
3676 break;
3677
3678 case DW_OP_bra:
3679 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3680 data += 2;
3681 fprintf_filtered (stream, " %ld",
3682 (long) (data + l - start));
3683 break;
3684
3685 case DW_OP_call2:
3686 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3687 data += 2;
3688 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3689 break;
3690
3691 case DW_OP_call4:
3692 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3693 data += 4;
3694 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3695 break;
3696
3697 case DW_OP_call_ref:
3698 ul = extract_unsigned_integer (data, offset_size,
3699 gdbarch_byte_order (arch));
3700 data += offset_size;
3701 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3702 break;
3703
3704 case DW_OP_piece:
3705 data = safe_read_uleb128 (data, end, &ul);
3706 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3707 break;
3708
3709 case DW_OP_bit_piece:
3710 {
3711 uint64_t offset;
3712
3713 data = safe_read_uleb128 (data, end, &ul);
3714 data = safe_read_uleb128 (data, end, &offset);
3715 fprintf_filtered (stream, " size %s offset %s (bits)",
3716 pulongest (ul), pulongest (offset));
3717 }
3718 break;
3719
3720 case DW_OP_GNU_implicit_pointer:
3721 {
3722 ul = extract_unsigned_integer (data, offset_size,
3723 gdbarch_byte_order (arch));
3724 data += offset_size;
3725
3726 data = safe_read_sleb128 (data, end, &l);
3727
3728 fprintf_filtered (stream, " DIE %s offset %s",
3729 phex_nz (ul, offset_size),
3730 plongest (l));
3731 }
3732 break;
3733
3734 case DW_OP_GNU_deref_type:
3735 {
3736 int addr_size = *data++;
3737 cu_offset offset;
3738 struct type *type;
3739
3740 data = safe_read_uleb128 (data, end, &ul);
3741 offset.cu_off = ul;
3742 type = dwarf2_get_die_type (offset, per_cu);
3743 fprintf_filtered (stream, "<");
3744 type_print (type, "", stream, -1);
3745 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
3746 addr_size);
3747 }
3748 break;
3749
3750 case DW_OP_GNU_const_type:
3751 {
3752 cu_offset type_die;
3753 struct type *type;
3754
3755 data = safe_read_uleb128 (data, end, &ul);
3756 type_die.cu_off = ul;
3757 type = dwarf2_get_die_type (type_die, per_cu);
3758 fprintf_filtered (stream, "<");
3759 type_print (type, "", stream, -1);
3760 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3761 }
3762 break;
3763
3764 case DW_OP_GNU_regval_type:
3765 {
3766 uint64_t reg;
3767 cu_offset type_die;
3768 struct type *type;
3769
3770 data = safe_read_uleb128 (data, end, &reg);
3771 data = safe_read_uleb128 (data, end, &ul);
3772 type_die.cu_off = ul;
3773
3774 type = dwarf2_get_die_type (type_die, per_cu);
3775 fprintf_filtered (stream, "<");
3776 type_print (type, "", stream, -1);
3777 fprintf_filtered (stream, " [0x%s]> [$%s]",
3778 phex_nz (type_die.cu_off, 0),
3779 locexpr_regname (arch, reg));
3780 }
3781 break;
3782
3783 case DW_OP_GNU_convert:
3784 case DW_OP_GNU_reinterpret:
3785 {
3786 cu_offset type_die;
3787
3788 data = safe_read_uleb128 (data, end, &ul);
3789 type_die.cu_off = ul;
3790
3791 if (type_die.cu_off == 0)
3792 fprintf_filtered (stream, "<0>");
3793 else
3794 {
3795 struct type *type;
3796
3797 type = dwarf2_get_die_type (type_die, per_cu);
3798 fprintf_filtered (stream, "<");
3799 type_print (type, "", stream, -1);
3800 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3801 }
3802 }
3803 break;
3804
3805 case DW_OP_GNU_entry_value:
3806 data = safe_read_uleb128 (data, end, &ul);
3807 fputc_filtered ('\n', stream);
3808 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
3809 start, data, data + ul, indent + 2,
3810 all, per_cu);
3811 data += ul;
3812 continue;
3813
3814 case DW_OP_GNU_parameter_ref:
3815 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3816 data += 4;
3817 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3818 break;
3819
3820 case DW_OP_GNU_addr_index:
3821 data = safe_read_uleb128 (data, end, &ul);
3822 ul = dwarf2_read_addr_index (per_cu, ul);
3823 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3824 break;
3825 case DW_OP_GNU_const_index:
3826 data = safe_read_uleb128 (data, end, &ul);
3827 ul = dwarf2_read_addr_index (per_cu, ul);
3828 fprintf_filtered (stream, " %s", pulongest (ul));
3829 break;
3830 }
3831
3832 fprintf_filtered (stream, "\n");
3833 }
3834
3835 return data;
3836 }
3837
3838 /* Describe a single location, which may in turn consist of multiple
3839 pieces. */
3840
3841 static void
3842 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
3843 struct ui_file *stream,
3844 const gdb_byte *data, size_t size,
3845 struct objfile *objfile, unsigned int addr_size,
3846 int offset_size, struct dwarf2_per_cu_data *per_cu)
3847 {
3848 const gdb_byte *end = data + size;
3849 int first_piece = 1, bad = 0;
3850
3851 while (data < end)
3852 {
3853 const gdb_byte *here = data;
3854 int disassemble = 1;
3855
3856 if (first_piece)
3857 first_piece = 0;
3858 else
3859 fprintf_filtered (stream, _(", and "));
3860
3861 if (!dwarf2_always_disassemble)
3862 {
3863 data = locexpr_describe_location_piece (symbol, stream,
3864 addr, objfile, per_cu,
3865 data, end, addr_size);
3866 /* If we printed anything, or if we have an empty piece,
3867 then don't disassemble. */
3868 if (data != here
3869 || data[0] == DW_OP_piece
3870 || data[0] == DW_OP_bit_piece)
3871 disassemble = 0;
3872 }
3873 if (disassemble)
3874 {
3875 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
3876 data = disassemble_dwarf_expression (stream,
3877 get_objfile_arch (objfile),
3878 addr_size, offset_size, data,
3879 data, end, 0,
3880 dwarf2_always_disassemble,
3881 per_cu);
3882 }
3883
3884 if (data < end)
3885 {
3886 int empty = data == here;
3887
3888 if (disassemble)
3889 fprintf_filtered (stream, " ");
3890 if (data[0] == DW_OP_piece)
3891 {
3892 uint64_t bytes;
3893
3894 data = safe_read_uleb128 (data + 1, end, &bytes);
3895
3896 if (empty)
3897 fprintf_filtered (stream, _("an empty %s-byte piece"),
3898 pulongest (bytes));
3899 else
3900 fprintf_filtered (stream, _(" [%s-byte piece]"),
3901 pulongest (bytes));
3902 }
3903 else if (data[0] == DW_OP_bit_piece)
3904 {
3905 uint64_t bits, offset;
3906
3907 data = safe_read_uleb128 (data + 1, end, &bits);
3908 data = safe_read_uleb128 (data, end, &offset);
3909
3910 if (empty)
3911 fprintf_filtered (stream,
3912 _("an empty %s-bit piece"),
3913 pulongest (bits));
3914 else
3915 fprintf_filtered (stream,
3916 _(" [%s-bit piece, offset %s bits]"),
3917 pulongest (bits), pulongest (offset));
3918 }
3919 else
3920 {
3921 bad = 1;
3922 break;
3923 }
3924 }
3925 }
3926
3927 if (bad || data > end)
3928 error (_("Corrupted DWARF2 expression for \"%s\"."),
3929 SYMBOL_PRINT_NAME (symbol));
3930 }
3931
3932 /* Print a natural-language description of SYMBOL to STREAM. This
3933 version is for a symbol with a single location. */
3934
3935 static void
3936 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
3937 struct ui_file *stream)
3938 {
3939 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3940 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
3941 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
3942 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
3943
3944 locexpr_describe_location_1 (symbol, addr, stream,
3945 dlbaton->data, dlbaton->size,
3946 objfile, addr_size, offset_size,
3947 dlbaton->per_cu);
3948 }
3949
3950 /* Describe the location of SYMBOL as an agent value in VALUE, generating
3951 any necessary bytecode in AX. */
3952
3953 static void
3954 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
3955 struct agent_expr *ax, struct axs_value *value)
3956 {
3957 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3958 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
3959
3960 if (dlbaton->size == 0)
3961 value->optimized_out = 1;
3962 else
3963 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
3964 dlbaton->data, dlbaton->data + dlbaton->size,
3965 dlbaton->per_cu);
3966 }
3967
3968 /* The set of location functions used with the DWARF-2 expression
3969 evaluator. */
3970 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
3971 locexpr_read_variable,
3972 locexpr_read_variable_at_entry,
3973 locexpr_read_needs_frame,
3974 locexpr_describe_location,
3975 locexpr_tracepoint_var_ref
3976 };
3977
3978
3979 /* Wrapper functions for location lists. These generally find
3980 the appropriate location expression and call something above. */
3981
3982 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3983 evaluator to calculate the location. */
3984 static struct value *
3985 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
3986 {
3987 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3988 struct value *val;
3989 const gdb_byte *data;
3990 size_t size;
3991 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
3992
3993 data = dwarf2_find_location_expression (dlbaton, &size, pc);
3994 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
3995 dlbaton->per_cu);
3996
3997 return val;
3998 }
3999
4000 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4001 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4002 will be thrown.
4003
4004 Function always returns non-NULL value, it may be marked optimized out if
4005 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4006 if it cannot resolve the parameter for any reason. */
4007
4008 static struct value *
4009 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4010 {
4011 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4012 const gdb_byte *data;
4013 size_t size;
4014 CORE_ADDR pc;
4015
4016 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4017 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4018
4019 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4020 if (data == NULL)
4021 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4022
4023 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4024 }
4025
4026 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4027 static int
4028 loclist_read_needs_frame (struct symbol *symbol)
4029 {
4030 /* If there's a location list, then assume we need to have a frame
4031 to choose the appropriate location expression. With tracking of
4032 global variables this is not necessarily true, but such tracking
4033 is disabled in GCC at the moment until we figure out how to
4034 represent it. */
4035
4036 return 1;
4037 }
4038
4039 /* Print a natural-language description of SYMBOL to STREAM. This
4040 version applies when there is a list of different locations, each
4041 with a specified address range. */
4042
4043 static void
4044 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4045 struct ui_file *stream)
4046 {
4047 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4048 const gdb_byte *loc_ptr, *buf_end;
4049 int first = 1;
4050 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4051 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4052 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4053 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4054 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4055 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4056 /* Adjust base_address for relocatable objects. */
4057 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4058 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4059 int done = 0;
4060
4061 loc_ptr = dlbaton->data;
4062 buf_end = dlbaton->data + dlbaton->size;
4063
4064 fprintf_filtered (stream, _("multi-location:\n"));
4065
4066 /* Iterate through locations until we run out. */
4067 while (!done)
4068 {
4069 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4070 int length;
4071 enum debug_loc_kind kind;
4072 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4073
4074 if (dlbaton->from_dwo)
4075 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4076 loc_ptr, buf_end, &new_ptr,
4077 &low, &high, byte_order);
4078 else
4079 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4080 &low, &high,
4081 byte_order, addr_size,
4082 signed_addr_p);
4083 loc_ptr = new_ptr;
4084 switch (kind)
4085 {
4086 case DEBUG_LOC_END_OF_LIST:
4087 done = 1;
4088 continue;
4089 case DEBUG_LOC_BASE_ADDRESS:
4090 base_address = high + base_offset;
4091 fprintf_filtered (stream, _(" Base address %s"),
4092 paddress (gdbarch, base_address));
4093 continue;
4094 case DEBUG_LOC_START_END:
4095 case DEBUG_LOC_START_LENGTH:
4096 break;
4097 case DEBUG_LOC_BUFFER_OVERFLOW:
4098 case DEBUG_LOC_INVALID_ENTRY:
4099 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4100 SYMBOL_PRINT_NAME (symbol));
4101 default:
4102 gdb_assert_not_reached ("bad debug_loc_kind");
4103 }
4104
4105 /* Otherwise, a location expression entry. */
4106 low += base_address;
4107 high += base_address;
4108
4109 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4110 loc_ptr += 2;
4111
4112 /* (It would improve readability to print only the minimum
4113 necessary digits of the second number of the range.) */
4114 fprintf_filtered (stream, _(" Range %s-%s: "),
4115 paddress (gdbarch, low), paddress (gdbarch, high));
4116
4117 /* Now describe this particular location. */
4118 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4119 objfile, addr_size, offset_size,
4120 dlbaton->per_cu);
4121
4122 fprintf_filtered (stream, "\n");
4123
4124 loc_ptr += length;
4125 }
4126 }
4127
4128 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4129 any necessary bytecode in AX. */
4130 static void
4131 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4132 struct agent_expr *ax, struct axs_value *value)
4133 {
4134 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4135 const gdb_byte *data;
4136 size_t size;
4137 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4138
4139 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4140 if (size == 0)
4141 value->optimized_out = 1;
4142 else
4143 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4144 dlbaton->per_cu);
4145 }
4146
4147 /* The set of location functions used with the DWARF-2 expression
4148 evaluator and location lists. */
4149 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4150 loclist_read_variable,
4151 loclist_read_variable_at_entry,
4152 loclist_read_needs_frame,
4153 loclist_describe_location,
4154 loclist_tracepoint_var_ref
4155 };
4156
4157 /* Provide a prototype to silence -Wmissing-prototypes. */
4158 extern initialize_file_ftype _initialize_dwarf2loc;
4159
4160 void
4161 _initialize_dwarf2loc (void)
4162 {
4163 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4164 &entry_values_debug,
4165 _("Set entry values and tail call frames "
4166 "debugging."),
4167 _("Show entry values and tail call frames "
4168 "debugging."),
4169 _("When non-zero, the process of determining "
4170 "parameter values from function entry point "
4171 "and tail call frames will be printed."),
4172 NULL,
4173 show_entry_values_debug,
4174 &setdebuglist, &showdebuglist);
4175 }