70ab302fb312da0f337cc108fc75e0c5d6fbd4a6
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 const gdb_byte *buffer;
107 bfd_size_type size;
108 /* True if we have tried to read this section. */
109 int readin;
110 };
111
112 typedef struct dwarf2_section_info dwarf2_section_info_def;
113 DEF_VEC_O (dwarf2_section_info_def);
114
115 /* All offsets in the index are of this type. It must be
116 architecture-independent. */
117 typedef uint32_t offset_type;
118
119 DEF_VEC_I (offset_type);
120
121 /* Ensure only legit values are used. */
122 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure only legit values are used. */
129 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
137 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
143 /* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145 struct mapped_index
146 {
147 /* Index data format version. */
148 int version;
149
150 /* The total length of the buffer. */
151 off_t total_size;
152
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
158
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
161
162 /* Size in slots, each slot is 2 offset_types. */
163 offset_type symbol_table_slots;
164
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167 };
168
169 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170 DEF_VEC_P (dwarf2_per_cu_ptr);
171
172 /* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
175 struct dwarf2_per_objfile
176 {
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
182 struct dwarf2_section_info macro;
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
185 struct dwarf2_section_info addr;
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
188 struct dwarf2_section_info gdb_index;
189
190 VEC (dwarf2_section_info_def) *types;
191
192 /* Back link. */
193 struct objfile *objfile;
194
195 /* Table of all the compilation units. This is used to locate
196 the target compilation unit of a particular reference. */
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
202 /* The number of .debug_types-related CUs. */
203 int n_type_units;
204
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
207 struct signatured_type **all_type_units;
208
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
219
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
255
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
258 unsigned char using_index;
259
260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
261 struct mapped_index *index_table;
262
263 /* When using index_table, this keeps track of all quick_file_names entries.
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
270 htab_t quick_file_names_table;
271
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
275
276 /* Table mapping type DIEs to their struct type *.
277 This is NULL if not allocated yet.
278 The mapping is done via (CU/TU + DIE offset) -> type. */
279 htab_t die_type_hash;
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
283 };
284
285 static struct dwarf2_per_objfile *dwarf2_per_objfile;
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
299 { ".debug_macro", ".zdebug_macro" },
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
303 { ".debug_addr", ".zdebug_addr" },
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
306 { ".gdb_index", ".zgdb_index" },
307 23
308 };
309
310 /* List of DWO/DWP sections. */
311
312 static const struct dwop_section_names
313 {
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
325 }
326 dwop_section_names =
327 {
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
339 };
340
341 /* local data types */
342
343 /* The data in a compilation unit header, after target2host
344 translation, looks like this. */
345 struct comp_unit_head
346 {
347 unsigned int length;
348 short version;
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
351 sect_offset abbrev_offset;
352
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
355
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
358
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
361 sect_offset offset;
362
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
365 cu_offset first_die_offset;
366 };
367
368 /* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370 struct delayed_method_info
371 {
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386 };
387
388 typedef struct delayed_method_info delayed_method_info;
389 DEF_VEC_O (delayed_method_info);
390
391 /* Internal state when decoding a particular compilation unit. */
392 struct dwarf2_cu
393 {
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
397 /* The header of the compilation unit. */
398 struct comp_unit_head header;
399
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
410 const char *producer;
411
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
427
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backchain to our per_cu entry if the tree has been built. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
450 htab_t die_hash;
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
496 ULONGEST ranges_base;
497
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
505 unsigned int has_loclist : 1;
506
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
513 unsigned int producer_is_gcc_lt_4_3 : 1;
514 unsigned int producer_is_icc : 1;
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
521 };
522
523 /* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
525 read_symtab_private field of the psymtab. */
526
527 struct dwarf2_per_cu_data
528 {
529 /* The start offset and length of this compilation unit.
530 NOTE: Unlike comp_unit_head.length, this length includes
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
534 sect_offset offset;
535 unsigned int length;
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
539 unsigned int queued : 1;
540
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
550 unsigned int is_debug_types : 1;
551
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
561 /* The section this CU/TU lives in.
562 If the DIE refers to a DWO file, this is always the original die,
563 not the DWO file. */
564 struct dwarf2_section_info *section;
565
566 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
567 of the CU cache it gets reset to NULL again. */
568 struct dwarf2_cu *cu;
569
570 /* The corresponding objfile.
571 Normally we can get the objfile from dwarf2_per_objfile.
572 However we can enter this file with just a "per_cu" handle. */
573 struct objfile *objfile;
574
575 /* When using partial symbol tables, the 'psymtab' field is active.
576 Otherwise the 'quick' field is active. */
577 union
578 {
579 /* The partial symbol table associated with this compilation unit,
580 or NULL for unread partial units. */
581 struct partial_symtab *psymtab;
582
583 /* Data needed by the "quick" functions. */
584 struct dwarf2_per_cu_quick_data *quick;
585 } v;
586
587 /* The CUs we import using DW_TAG_imported_unit. This is filled in
588 while reading psymtabs, used to compute the psymtab dependencies,
589 and then cleared. Then it is filled in again while reading full
590 symbols, and only deleted when the objfile is destroyed.
591
592 This is also used to work around a difference between the way gold
593 generates .gdb_index version <=7 and the way gdb does. Arguably this
594 is a gold bug. For symbols coming from TUs, gold records in the index
595 the CU that includes the TU instead of the TU itself. This breaks
596 dw2_lookup_symbol: It assumes that if the index says symbol X lives
597 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
598 will find X. Alas TUs live in their own symtab, so after expanding CU Y
599 we need to look in TU Z to find X. Fortunately, this is akin to
600 DW_TAG_imported_unit, so we just use the same mechanism: For
601 .gdb_index version <=7 this also records the TUs that the CU referred
602 to. Concurrently with this change gdb was modified to emit version 8
603 indices so we only pay a price for gold generated indices. */
604 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
605 };
606
607 /* Entry in the signatured_types hash table. */
608
609 struct signatured_type
610 {
611 /* The "per_cu" object of this type.
612 This struct is used iff per_cu.is_debug_types.
613 N.B.: This is the first member so that it's easy to convert pointers
614 between them. */
615 struct dwarf2_per_cu_data per_cu;
616
617 /* The type's signature. */
618 ULONGEST signature;
619
620 /* Offset in the TU of the type's DIE, as read from the TU header.
621 If this TU is a DWO stub and the definition lives in a DWO file
622 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
623 cu_offset type_offset_in_tu;
624
625 /* Offset in the section of the type's DIE.
626 If the definition lives in a DWO file, this is the offset in the
627 .debug_types.dwo section.
628 The value is zero until the actual value is known.
629 Zero is otherwise not a valid section offset. */
630 sect_offset type_offset_in_section;
631
632 /* Type units are grouped by their DW_AT_stmt_list entry so that they
633 can share them. This points to the containing symtab. */
634 struct type_unit_group *type_unit_group;
635
636 /* The type.
637 The first time we encounter this type we fully read it in and install it
638 in the symbol tables. Subsequent times we only need the type. */
639 struct type *type;
640
641 /* Containing DWO unit.
642 This field is valid iff per_cu.reading_dwo_directly. */
643 struct dwo_unit *dwo_unit;
644 };
645
646 typedef struct signatured_type *sig_type_ptr;
647 DEF_VEC_P (sig_type_ptr);
648
649 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
650 This includes type_unit_group and quick_file_names. */
651
652 struct stmt_list_hash
653 {
654 /* The DWO unit this table is from or NULL if there is none. */
655 struct dwo_unit *dwo_unit;
656
657 /* Offset in .debug_line or .debug_line.dwo. */
658 sect_offset line_offset;
659 };
660
661 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
662 an object of this type. */
663
664 struct type_unit_group
665 {
666 /* dwarf2read.c's main "handle" on a TU symtab.
667 To simplify things we create an artificial CU that "includes" all the
668 type units using this stmt_list so that the rest of the code still has
669 a "per_cu" handle on the symtab.
670 This PER_CU is recognized by having no section. */
671 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
672 struct dwarf2_per_cu_data per_cu;
673
674 /* The TUs that share this DW_AT_stmt_list entry.
675 This is added to while parsing type units to build partial symtabs,
676 and is deleted afterwards and not used again. */
677 VEC (sig_type_ptr) *tus;
678
679 /* The primary symtab.
680 Type units in a group needn't all be defined in the same source file,
681 so we create an essentially anonymous symtab as the primary symtab. */
682 struct symtab *primary_symtab;
683
684 /* The data used to construct the hash key. */
685 struct stmt_list_hash hash;
686
687 /* The number of symtabs from the line header.
688 The value here must match line_header.num_file_names. */
689 unsigned int num_symtabs;
690
691 /* The symbol tables for this TU (obtained from the files listed in
692 DW_AT_stmt_list).
693 WARNING: The order of entries here must match the order of entries
694 in the line header. After the first TU using this type_unit_group, the
695 line header for the subsequent TUs is recreated from this. This is done
696 because we need to use the same symtabs for each TU using the same
697 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
698 there's no guarantee the line header doesn't have duplicate entries. */
699 struct symtab **symtabs;
700 };
701
702 /* These sections are what may appear in a DWO file. */
703
704 struct dwo_sections
705 {
706 struct dwarf2_section_info abbrev;
707 struct dwarf2_section_info line;
708 struct dwarf2_section_info loc;
709 struct dwarf2_section_info macinfo;
710 struct dwarf2_section_info macro;
711 struct dwarf2_section_info str;
712 struct dwarf2_section_info str_offsets;
713 /* In the case of a virtual DWO file, these two are unused. */
714 struct dwarf2_section_info info;
715 VEC (dwarf2_section_info_def) *types;
716 };
717
718 /* CUs/TUs in DWP/DWO files. */
719
720 struct dwo_unit
721 {
722 /* Backlink to the containing struct dwo_file. */
723 struct dwo_file *dwo_file;
724
725 /* The "id" that distinguishes this CU/TU.
726 .debug_info calls this "dwo_id", .debug_types calls this "signature".
727 Since signatures came first, we stick with it for consistency. */
728 ULONGEST signature;
729
730 /* The section this CU/TU lives in, in the DWO file. */
731 struct dwarf2_section_info *section;
732
733 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
734 sect_offset offset;
735 unsigned int length;
736
737 /* For types, offset in the type's DIE of the type defined by this TU. */
738 cu_offset type_offset_in_tu;
739 };
740
741 /* Data for one DWO file.
742 This includes virtual DWO files that have been packaged into a
743 DWP file. */
744
745 struct dwo_file
746 {
747 /* The DW_AT_GNU_dwo_name attribute.
748 For virtual DWO files the name is constructed from the section offsets
749 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
750 from related CU+TUs. */
751 const char *dwo_name;
752
753 /* The DW_AT_comp_dir attribute. */
754 const char *comp_dir;
755
756 /* The bfd, when the file is open. Otherwise this is NULL.
757 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
758 bfd *dbfd;
759
760 /* Section info for this file. */
761 struct dwo_sections sections;
762
763 /* The CU in the file.
764 We only support one because having more than one requires hacking the
765 dwo_name of each to match, which is highly unlikely to happen.
766 Doing this means all TUs can share comp_dir: We also assume that
767 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
768 struct dwo_unit *cu;
769
770 /* Table of TUs in the file.
771 Each element is a struct dwo_unit. */
772 htab_t tus;
773 };
774
775 /* These sections are what may appear in a DWP file. */
776
777 struct dwp_sections
778 {
779 struct dwarf2_section_info str;
780 struct dwarf2_section_info cu_index;
781 struct dwarf2_section_info tu_index;
782 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
783 by section number. We don't need to record them here. */
784 };
785
786 /* These sections are what may appear in a virtual DWO file. */
787
788 struct virtual_dwo_sections
789 {
790 struct dwarf2_section_info abbrev;
791 struct dwarf2_section_info line;
792 struct dwarf2_section_info loc;
793 struct dwarf2_section_info macinfo;
794 struct dwarf2_section_info macro;
795 struct dwarf2_section_info str_offsets;
796 /* Each DWP hash table entry records one CU or one TU.
797 That is recorded here, and copied to dwo_unit.section. */
798 struct dwarf2_section_info info_or_types;
799 };
800
801 /* Contents of DWP hash tables. */
802
803 struct dwp_hash_table
804 {
805 uint32_t nr_units, nr_slots;
806 const gdb_byte *hash_table, *unit_table, *section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 /* Name of the file. */
814 const char *name;
815
816 /* The bfd. */
817 bfd *dbfd;
818
819 /* Section info for this file. */
820 struct dwp_sections sections;
821
822 /* Table of CUs in the file. */
823 const struct dwp_hash_table *cus;
824
825 /* Table of TUs in the file. */
826 const struct dwp_hash_table *tus;
827
828 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
829 htab_t loaded_cutus;
830
831 /* Table to map ELF section numbers to their sections. */
832 unsigned int num_sections;
833 asection **elf_sections;
834 };
835
836 /* This represents a '.dwz' file. */
837
838 struct dwz_file
839 {
840 /* A dwz file can only contain a few sections. */
841 struct dwarf2_section_info abbrev;
842 struct dwarf2_section_info info;
843 struct dwarf2_section_info str;
844 struct dwarf2_section_info line;
845 struct dwarf2_section_info macro;
846 struct dwarf2_section_info gdb_index;
847
848 /* The dwz's BFD. */
849 bfd *dwz_bfd;
850 };
851
852 /* Struct used to pass misc. parameters to read_die_and_children, et
853 al. which are used for both .debug_info and .debug_types dies.
854 All parameters here are unchanging for the life of the call. This
855 struct exists to abstract away the constant parameters of die reading. */
856
857 struct die_reader_specs
858 {
859 /* die_section->asection->owner. */
860 bfd* abfd;
861
862 /* The CU of the DIE we are parsing. */
863 struct dwarf2_cu *cu;
864
865 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
866 struct dwo_file *dwo_file;
867
868 /* The section the die comes from.
869 This is either .debug_info or .debug_types, or the .dwo variants. */
870 struct dwarf2_section_info *die_section;
871
872 /* die_section->buffer. */
873 const gdb_byte *buffer;
874
875 /* The end of the buffer. */
876 const gdb_byte *buffer_end;
877
878 /* The value of the DW_AT_comp_dir attribute. */
879 const char *comp_dir;
880 };
881
882 /* Type of function passed to init_cutu_and_read_dies, et.al. */
883 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
884 const gdb_byte *info_ptr,
885 struct die_info *comp_unit_die,
886 int has_children,
887 void *data);
888
889 /* The line number information for a compilation unit (found in the
890 .debug_line section) begins with a "statement program header",
891 which contains the following information. */
892 struct line_header
893 {
894 unsigned int total_length;
895 unsigned short version;
896 unsigned int header_length;
897 unsigned char minimum_instruction_length;
898 unsigned char maximum_ops_per_instruction;
899 unsigned char default_is_stmt;
900 int line_base;
901 unsigned char line_range;
902 unsigned char opcode_base;
903
904 /* standard_opcode_lengths[i] is the number of operands for the
905 standard opcode whose value is i. This means that
906 standard_opcode_lengths[0] is unused, and the last meaningful
907 element is standard_opcode_lengths[opcode_base - 1]. */
908 unsigned char *standard_opcode_lengths;
909
910 /* The include_directories table. NOTE! These strings are not
911 allocated with xmalloc; instead, they are pointers into
912 debug_line_buffer. If you try to free them, `free' will get
913 indigestion. */
914 unsigned int num_include_dirs, include_dirs_size;
915 const char **include_dirs;
916
917 /* The file_names table. NOTE! These strings are not allocated
918 with xmalloc; instead, they are pointers into debug_line_buffer.
919 Don't try to free them directly. */
920 unsigned int num_file_names, file_names_size;
921 struct file_entry
922 {
923 const char *name;
924 unsigned int dir_index;
925 unsigned int mod_time;
926 unsigned int length;
927 int included_p; /* Non-zero if referenced by the Line Number Program. */
928 struct symtab *symtab; /* The associated symbol table, if any. */
929 } *file_names;
930
931 /* The start and end of the statement program following this
932 header. These point into dwarf2_per_objfile->line_buffer. */
933 const gdb_byte *statement_program_start, *statement_program_end;
934 };
935
936 /* When we construct a partial symbol table entry we only
937 need this much information. */
938 struct partial_die_info
939 {
940 /* Offset of this DIE. */
941 sect_offset offset;
942
943 /* DWARF-2 tag for this DIE. */
944 ENUM_BITFIELD(dwarf_tag) tag : 16;
945
946 /* Assorted flags describing the data found in this DIE. */
947 unsigned int has_children : 1;
948 unsigned int is_external : 1;
949 unsigned int is_declaration : 1;
950 unsigned int has_type : 1;
951 unsigned int has_specification : 1;
952 unsigned int has_pc_info : 1;
953 unsigned int may_be_inlined : 1;
954
955 /* Flag set if the SCOPE field of this structure has been
956 computed. */
957 unsigned int scope_set : 1;
958
959 /* Flag set if the DIE has a byte_size attribute. */
960 unsigned int has_byte_size : 1;
961
962 /* Flag set if any of the DIE's children are template arguments. */
963 unsigned int has_template_arguments : 1;
964
965 /* Flag set if fixup_partial_die has been called on this die. */
966 unsigned int fixup_called : 1;
967
968 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
969 unsigned int is_dwz : 1;
970
971 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
972 unsigned int spec_is_dwz : 1;
973
974 /* The name of this DIE. Normally the value of DW_AT_name, but
975 sometimes a default name for unnamed DIEs. */
976 const char *name;
977
978 /* The linkage name, if present. */
979 const char *linkage_name;
980
981 /* The scope to prepend to our children. This is generally
982 allocated on the comp_unit_obstack, so will disappear
983 when this compilation unit leaves the cache. */
984 const char *scope;
985
986 /* Some data associated with the partial DIE. The tag determines
987 which field is live. */
988 union
989 {
990 /* The location description associated with this DIE, if any. */
991 struct dwarf_block *locdesc;
992 /* The offset of an import, for DW_TAG_imported_unit. */
993 sect_offset offset;
994 } d;
995
996 /* If HAS_PC_INFO, the PC range associated with this DIE. */
997 CORE_ADDR lowpc;
998 CORE_ADDR highpc;
999
1000 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1001 DW_AT_sibling, if any. */
1002 /* NOTE: This member isn't strictly necessary, read_partial_die could
1003 return DW_AT_sibling values to its caller load_partial_dies. */
1004 const gdb_byte *sibling;
1005
1006 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1007 DW_AT_specification (or DW_AT_abstract_origin or
1008 DW_AT_extension). */
1009 sect_offset spec_offset;
1010
1011 /* Pointers to this DIE's parent, first child, and next sibling,
1012 if any. */
1013 struct partial_die_info *die_parent, *die_child, *die_sibling;
1014 };
1015
1016 /* This data structure holds the information of an abbrev. */
1017 struct abbrev_info
1018 {
1019 unsigned int number; /* number identifying abbrev */
1020 enum dwarf_tag tag; /* dwarf tag */
1021 unsigned short has_children; /* boolean */
1022 unsigned short num_attrs; /* number of attributes */
1023 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1024 struct abbrev_info *next; /* next in chain */
1025 };
1026
1027 struct attr_abbrev
1028 {
1029 ENUM_BITFIELD(dwarf_attribute) name : 16;
1030 ENUM_BITFIELD(dwarf_form) form : 16;
1031 };
1032
1033 /* Size of abbrev_table.abbrev_hash_table. */
1034 #define ABBREV_HASH_SIZE 121
1035
1036 /* Top level data structure to contain an abbreviation table. */
1037
1038 struct abbrev_table
1039 {
1040 /* Where the abbrev table came from.
1041 This is used as a sanity check when the table is used. */
1042 sect_offset offset;
1043
1044 /* Storage for the abbrev table. */
1045 struct obstack abbrev_obstack;
1046
1047 /* Hash table of abbrevs.
1048 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1049 It could be statically allocated, but the previous code didn't so we
1050 don't either. */
1051 struct abbrev_info **abbrevs;
1052 };
1053
1054 /* Attributes have a name and a value. */
1055 struct attribute
1056 {
1057 ENUM_BITFIELD(dwarf_attribute) name : 16;
1058 ENUM_BITFIELD(dwarf_form) form : 15;
1059
1060 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1061 field should be in u.str (existing only for DW_STRING) but it is kept
1062 here for better struct attribute alignment. */
1063 unsigned int string_is_canonical : 1;
1064
1065 union
1066 {
1067 const char *str;
1068 struct dwarf_block *blk;
1069 ULONGEST unsnd;
1070 LONGEST snd;
1071 CORE_ADDR addr;
1072 ULONGEST signature;
1073 }
1074 u;
1075 };
1076
1077 /* This data structure holds a complete die structure. */
1078 struct die_info
1079 {
1080 /* DWARF-2 tag for this DIE. */
1081 ENUM_BITFIELD(dwarf_tag) tag : 16;
1082
1083 /* Number of attributes */
1084 unsigned char num_attrs;
1085
1086 /* True if we're presently building the full type name for the
1087 type derived from this DIE. */
1088 unsigned char building_fullname : 1;
1089
1090 /* Abbrev number */
1091 unsigned int abbrev;
1092
1093 /* Offset in .debug_info or .debug_types section. */
1094 sect_offset offset;
1095
1096 /* The dies in a compilation unit form an n-ary tree. PARENT
1097 points to this die's parent; CHILD points to the first child of
1098 this node; and all the children of a given node are chained
1099 together via their SIBLING fields. */
1100 struct die_info *child; /* Its first child, if any. */
1101 struct die_info *sibling; /* Its next sibling, if any. */
1102 struct die_info *parent; /* Its parent, if any. */
1103
1104 /* An array of attributes, with NUM_ATTRS elements. There may be
1105 zero, but it's not common and zero-sized arrays are not
1106 sufficiently portable C. */
1107 struct attribute attrs[1];
1108 };
1109
1110 /* Get at parts of an attribute structure. */
1111
1112 #define DW_STRING(attr) ((attr)->u.str)
1113 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1114 #define DW_UNSND(attr) ((attr)->u.unsnd)
1115 #define DW_BLOCK(attr) ((attr)->u.blk)
1116 #define DW_SND(attr) ((attr)->u.snd)
1117 #define DW_ADDR(attr) ((attr)->u.addr)
1118 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1119
1120 /* Blocks are a bunch of untyped bytes. */
1121 struct dwarf_block
1122 {
1123 size_t size;
1124
1125 /* Valid only if SIZE is not zero. */
1126 const gdb_byte *data;
1127 };
1128
1129 #ifndef ATTR_ALLOC_CHUNK
1130 #define ATTR_ALLOC_CHUNK 4
1131 #endif
1132
1133 /* Allocate fields for structs, unions and enums in this size. */
1134 #ifndef DW_FIELD_ALLOC_CHUNK
1135 #define DW_FIELD_ALLOC_CHUNK 4
1136 #endif
1137
1138 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1139 but this would require a corresponding change in unpack_field_as_long
1140 and friends. */
1141 static int bits_per_byte = 8;
1142
1143 /* The routines that read and process dies for a C struct or C++ class
1144 pass lists of data member fields and lists of member function fields
1145 in an instance of a field_info structure, as defined below. */
1146 struct field_info
1147 {
1148 /* List of data member and baseclasses fields. */
1149 struct nextfield
1150 {
1151 struct nextfield *next;
1152 int accessibility;
1153 int virtuality;
1154 struct field field;
1155 }
1156 *fields, *baseclasses;
1157
1158 /* Number of fields (including baseclasses). */
1159 int nfields;
1160
1161 /* Number of baseclasses. */
1162 int nbaseclasses;
1163
1164 /* Set if the accesibility of one of the fields is not public. */
1165 int non_public_fields;
1166
1167 /* Member function fields array, entries are allocated in the order they
1168 are encountered in the object file. */
1169 struct nextfnfield
1170 {
1171 struct nextfnfield *next;
1172 struct fn_field fnfield;
1173 }
1174 *fnfields;
1175
1176 /* Member function fieldlist array, contains name of possibly overloaded
1177 member function, number of overloaded member functions and a pointer
1178 to the head of the member function field chain. */
1179 struct fnfieldlist
1180 {
1181 const char *name;
1182 int length;
1183 struct nextfnfield *head;
1184 }
1185 *fnfieldlists;
1186
1187 /* Number of entries in the fnfieldlists array. */
1188 int nfnfields;
1189
1190 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1191 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1192 struct typedef_field_list
1193 {
1194 struct typedef_field field;
1195 struct typedef_field_list *next;
1196 }
1197 *typedef_field_list;
1198 unsigned typedef_field_list_count;
1199 };
1200
1201 /* One item on the queue of compilation units to read in full symbols
1202 for. */
1203 struct dwarf2_queue_item
1204 {
1205 struct dwarf2_per_cu_data *per_cu;
1206 enum language pretend_language;
1207 struct dwarf2_queue_item *next;
1208 };
1209
1210 /* The current queue. */
1211 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1212
1213 /* Loaded secondary compilation units are kept in memory until they
1214 have not been referenced for the processing of this many
1215 compilation units. Set this to zero to disable caching. Cache
1216 sizes of up to at least twenty will improve startup time for
1217 typical inter-CU-reference binaries, at an obvious memory cost. */
1218 static int dwarf2_max_cache_age = 5;
1219 static void
1220 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1221 struct cmd_list_element *c, const char *value)
1222 {
1223 fprintf_filtered (file, _("The upper bound on the age of cached "
1224 "dwarf2 compilation units is %s.\n"),
1225 value);
1226 }
1227
1228
1229 /* Various complaints about symbol reading that don't abort the process. */
1230
1231 static void
1232 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1233 {
1234 complaint (&symfile_complaints,
1235 _("statement list doesn't fit in .debug_line section"));
1236 }
1237
1238 static void
1239 dwarf2_debug_line_missing_file_complaint (void)
1240 {
1241 complaint (&symfile_complaints,
1242 _(".debug_line section has line data without a file"));
1243 }
1244
1245 static void
1246 dwarf2_debug_line_missing_end_sequence_complaint (void)
1247 {
1248 complaint (&symfile_complaints,
1249 _(".debug_line section has line "
1250 "program sequence without an end"));
1251 }
1252
1253 static void
1254 dwarf2_complex_location_expr_complaint (void)
1255 {
1256 complaint (&symfile_complaints, _("location expression too complex"));
1257 }
1258
1259 static void
1260 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1261 int arg3)
1262 {
1263 complaint (&symfile_complaints,
1264 _("const value length mismatch for '%s', got %d, expected %d"),
1265 arg1, arg2, arg3);
1266 }
1267
1268 static void
1269 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1270 {
1271 complaint (&symfile_complaints,
1272 _("debug info runs off end of %s section"
1273 " [in module %s]"),
1274 section->asection->name,
1275 bfd_get_filename (section->asection->owner));
1276 }
1277
1278 static void
1279 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1280 {
1281 complaint (&symfile_complaints,
1282 _("macro debug info contains a "
1283 "malformed macro definition:\n`%s'"),
1284 arg1);
1285 }
1286
1287 static void
1288 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1289 {
1290 complaint (&symfile_complaints,
1291 _("invalid attribute class or form for '%s' in '%s'"),
1292 arg1, arg2);
1293 }
1294
1295 /* local function prototypes */
1296
1297 static void dwarf2_locate_sections (bfd *, asection *, void *);
1298
1299 static void dwarf2_find_base_address (struct die_info *die,
1300 struct dwarf2_cu *cu);
1301
1302 static struct partial_symtab *create_partial_symtab
1303 (struct dwarf2_per_cu_data *per_cu, const char *name);
1304
1305 static void dwarf2_build_psymtabs_hard (struct objfile *);
1306
1307 static void scan_partial_symbols (struct partial_die_info *,
1308 CORE_ADDR *, CORE_ADDR *,
1309 int, struct dwarf2_cu *);
1310
1311 static void add_partial_symbol (struct partial_die_info *,
1312 struct dwarf2_cu *);
1313
1314 static void add_partial_namespace (struct partial_die_info *pdi,
1315 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1316 int need_pc, struct dwarf2_cu *cu);
1317
1318 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1319 CORE_ADDR *highpc, int need_pc,
1320 struct dwarf2_cu *cu);
1321
1322 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1323 struct dwarf2_cu *cu);
1324
1325 static void add_partial_subprogram (struct partial_die_info *pdi,
1326 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1327 int need_pc, struct dwarf2_cu *cu);
1328
1329 static void dwarf2_read_symtab (struct partial_symtab *,
1330 struct objfile *);
1331
1332 static void psymtab_to_symtab_1 (struct partial_symtab *);
1333
1334 static struct abbrev_info *abbrev_table_lookup_abbrev
1335 (const struct abbrev_table *, unsigned int);
1336
1337 static struct abbrev_table *abbrev_table_read_table
1338 (struct dwarf2_section_info *, sect_offset);
1339
1340 static void abbrev_table_free (struct abbrev_table *);
1341
1342 static void abbrev_table_free_cleanup (void *);
1343
1344 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1345 struct dwarf2_section_info *);
1346
1347 static void dwarf2_free_abbrev_table (void *);
1348
1349 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1350
1351 static struct partial_die_info *load_partial_dies
1352 (const struct die_reader_specs *, const gdb_byte *, int);
1353
1354 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1355 struct partial_die_info *,
1356 struct abbrev_info *,
1357 unsigned int,
1358 const gdb_byte *);
1359
1360 static struct partial_die_info *find_partial_die (sect_offset, int,
1361 struct dwarf2_cu *);
1362
1363 static void fixup_partial_die (struct partial_die_info *,
1364 struct dwarf2_cu *);
1365
1366 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1367 struct attribute *, struct attr_abbrev *,
1368 const gdb_byte *);
1369
1370 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1371
1372 static int read_1_signed_byte (bfd *, const gdb_byte *);
1373
1374 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1375
1376 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1377
1378 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1379
1380 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1381 unsigned int *);
1382
1383 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1384
1385 static LONGEST read_checked_initial_length_and_offset
1386 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1387 unsigned int *, unsigned int *);
1388
1389 static LONGEST read_offset (bfd *, const gdb_byte *,
1390 const struct comp_unit_head *,
1391 unsigned int *);
1392
1393 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1394
1395 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1396 sect_offset);
1397
1398 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1399
1400 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1401
1402 static const char *read_indirect_string (bfd *, const gdb_byte *,
1403 const struct comp_unit_head *,
1404 unsigned int *);
1405
1406 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1407
1408 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1409
1410 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1411
1412 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1413 const gdb_byte *,
1414 unsigned int *);
1415
1416 static const char *read_str_index (const struct die_reader_specs *reader,
1417 struct dwarf2_cu *cu, ULONGEST str_index);
1418
1419 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1420
1421 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1422 struct dwarf2_cu *);
1423
1424 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1425 unsigned int);
1426
1427 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1428 struct dwarf2_cu *cu);
1429
1430 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1431
1432 static struct die_info *die_specification (struct die_info *die,
1433 struct dwarf2_cu **);
1434
1435 static void free_line_header (struct line_header *lh);
1436
1437 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1438 struct dwarf2_cu *cu);
1439
1440 static void dwarf_decode_lines (struct line_header *, const char *,
1441 struct dwarf2_cu *, struct partial_symtab *,
1442 int);
1443
1444 static void dwarf2_start_subfile (const char *, const char *, const char *);
1445
1446 static void dwarf2_start_symtab (struct dwarf2_cu *,
1447 const char *, const char *, CORE_ADDR);
1448
1449 static struct symbol *new_symbol (struct die_info *, struct type *,
1450 struct dwarf2_cu *);
1451
1452 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1453 struct dwarf2_cu *, struct symbol *);
1454
1455 static void dwarf2_const_value (struct attribute *, struct symbol *,
1456 struct dwarf2_cu *);
1457
1458 static void dwarf2_const_value_attr (struct attribute *attr,
1459 struct type *type,
1460 const char *name,
1461 struct obstack *obstack,
1462 struct dwarf2_cu *cu, LONGEST *value,
1463 const gdb_byte **bytes,
1464 struct dwarf2_locexpr_baton **baton);
1465
1466 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1467
1468 static int need_gnat_info (struct dwarf2_cu *);
1469
1470 static struct type *die_descriptive_type (struct die_info *,
1471 struct dwarf2_cu *);
1472
1473 static void set_descriptive_type (struct type *, struct die_info *,
1474 struct dwarf2_cu *);
1475
1476 static struct type *die_containing_type (struct die_info *,
1477 struct dwarf2_cu *);
1478
1479 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1480 struct dwarf2_cu *);
1481
1482 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1483
1484 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1485
1486 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1487
1488 static char *typename_concat (struct obstack *obs, const char *prefix,
1489 const char *suffix, int physname,
1490 struct dwarf2_cu *cu);
1491
1492 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1493
1494 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1495
1496 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1497
1498 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1499
1500 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1501
1502 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1503 struct dwarf2_cu *, struct partial_symtab *);
1504
1505 static int dwarf2_get_pc_bounds (struct die_info *,
1506 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1507 struct partial_symtab *);
1508
1509 static void get_scope_pc_bounds (struct die_info *,
1510 CORE_ADDR *, CORE_ADDR *,
1511 struct dwarf2_cu *);
1512
1513 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1514 CORE_ADDR, struct dwarf2_cu *);
1515
1516 static void dwarf2_add_field (struct field_info *, struct die_info *,
1517 struct dwarf2_cu *);
1518
1519 static void dwarf2_attach_fields_to_type (struct field_info *,
1520 struct type *, struct dwarf2_cu *);
1521
1522 static void dwarf2_add_member_fn (struct field_info *,
1523 struct die_info *, struct type *,
1524 struct dwarf2_cu *);
1525
1526 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1527 struct type *,
1528 struct dwarf2_cu *);
1529
1530 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1531
1532 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1533
1534 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1535
1536 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1537
1538 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1539
1540 static struct type *read_module_type (struct die_info *die,
1541 struct dwarf2_cu *cu);
1542
1543 static const char *namespace_name (struct die_info *die,
1544 int *is_anonymous, struct dwarf2_cu *);
1545
1546 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1547
1548 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1549
1550 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1551 struct dwarf2_cu *);
1552
1553 static struct die_info *read_die_and_siblings_1
1554 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1555 struct die_info *);
1556
1557 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1558 const gdb_byte *info_ptr,
1559 const gdb_byte **new_info_ptr,
1560 struct die_info *parent);
1561
1562 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1563 struct die_info **, const gdb_byte *,
1564 int *, int);
1565
1566 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1567 struct die_info **, const gdb_byte *,
1568 int *);
1569
1570 static void process_die (struct die_info *, struct dwarf2_cu *);
1571
1572 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1573 struct obstack *);
1574
1575 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1576
1577 static const char *dwarf2_full_name (const char *name,
1578 struct die_info *die,
1579 struct dwarf2_cu *cu);
1580
1581 static const char *dwarf2_physname (const char *name, struct die_info *die,
1582 struct dwarf2_cu *cu);
1583
1584 static struct die_info *dwarf2_extension (struct die_info *die,
1585 struct dwarf2_cu **);
1586
1587 static const char *dwarf_tag_name (unsigned int);
1588
1589 static const char *dwarf_attr_name (unsigned int);
1590
1591 static const char *dwarf_form_name (unsigned int);
1592
1593 static char *dwarf_bool_name (unsigned int);
1594
1595 static const char *dwarf_type_encoding_name (unsigned int);
1596
1597 static struct die_info *sibling_die (struct die_info *);
1598
1599 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1600
1601 static void dump_die_for_error (struct die_info *);
1602
1603 static void dump_die_1 (struct ui_file *, int level, int max_level,
1604 struct die_info *);
1605
1606 /*static*/ void dump_die (struct die_info *, int max_level);
1607
1608 static void store_in_ref_table (struct die_info *,
1609 struct dwarf2_cu *);
1610
1611 static int is_ref_attr (struct attribute *);
1612
1613 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1614
1615 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1616
1617 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1618 struct attribute *,
1619 struct dwarf2_cu **);
1620
1621 static struct die_info *follow_die_ref (struct die_info *,
1622 struct attribute *,
1623 struct dwarf2_cu **);
1624
1625 static struct die_info *follow_die_sig (struct die_info *,
1626 struct attribute *,
1627 struct dwarf2_cu **);
1628
1629 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1630 struct dwarf2_cu *);
1631
1632 static struct type *get_DW_AT_signature_type (struct die_info *,
1633 struct attribute *,
1634 struct dwarf2_cu *);
1635
1636 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1637
1638 static void read_signatured_type (struct signatured_type *);
1639
1640 static struct type_unit_group *get_type_unit_group
1641 (struct dwarf2_cu *, struct attribute *);
1642
1643 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1644
1645 /* memory allocation interface */
1646
1647 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1648
1649 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1650
1651 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1652 const char *, int);
1653
1654 static int attr_form_is_block (struct attribute *);
1655
1656 static int attr_form_is_section_offset (struct attribute *);
1657
1658 static int attr_form_is_constant (struct attribute *);
1659
1660 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1661 struct dwarf2_loclist_baton *baton,
1662 struct attribute *attr);
1663
1664 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1665 struct symbol *sym,
1666 struct dwarf2_cu *cu,
1667 int is_block);
1668
1669 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1670 const gdb_byte *info_ptr,
1671 struct abbrev_info *abbrev);
1672
1673 static void free_stack_comp_unit (void *);
1674
1675 static hashval_t partial_die_hash (const void *item);
1676
1677 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1678
1679 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1680 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1681
1682 static void init_one_comp_unit (struct dwarf2_cu *cu,
1683 struct dwarf2_per_cu_data *per_cu);
1684
1685 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1686 struct die_info *comp_unit_die,
1687 enum language pretend_language);
1688
1689 static void free_heap_comp_unit (void *);
1690
1691 static void free_cached_comp_units (void *);
1692
1693 static void age_cached_comp_units (void);
1694
1695 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1696
1697 static struct type *set_die_type (struct die_info *, struct type *,
1698 struct dwarf2_cu *);
1699
1700 static void create_all_comp_units (struct objfile *);
1701
1702 static int create_all_type_units (struct objfile *);
1703
1704 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1705 enum language);
1706
1707 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1708 enum language);
1709
1710 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1711 enum language);
1712
1713 static void dwarf2_add_dependence (struct dwarf2_cu *,
1714 struct dwarf2_per_cu_data *);
1715
1716 static void dwarf2_mark (struct dwarf2_cu *);
1717
1718 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1719
1720 static struct type *get_die_type_at_offset (sect_offset,
1721 struct dwarf2_per_cu_data *);
1722
1723 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1724
1725 static void dwarf2_release_queue (void *dummy);
1726
1727 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1728 enum language pretend_language);
1729
1730 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1731 struct dwarf2_per_cu_data *per_cu,
1732 enum language pretend_language);
1733
1734 static void process_queue (void);
1735
1736 static void find_file_and_directory (struct die_info *die,
1737 struct dwarf2_cu *cu,
1738 const char **name, const char **comp_dir);
1739
1740 static char *file_full_name (int file, struct line_header *lh,
1741 const char *comp_dir);
1742
1743 static const gdb_byte *read_and_check_comp_unit_head
1744 (struct comp_unit_head *header,
1745 struct dwarf2_section_info *section,
1746 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1747 int is_debug_types_section);
1748
1749 static void init_cutu_and_read_dies
1750 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1751 int use_existing_cu, int keep,
1752 die_reader_func_ftype *die_reader_func, void *data);
1753
1754 static void init_cutu_and_read_dies_simple
1755 (struct dwarf2_per_cu_data *this_cu,
1756 die_reader_func_ftype *die_reader_func, void *data);
1757
1758 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1759
1760 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1761
1762 static struct dwo_unit *lookup_dwo_in_dwp
1763 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1764 const char *comp_dir, ULONGEST signature, int is_debug_types);
1765
1766 static struct dwp_file *get_dwp_file (void);
1767
1768 static struct dwo_unit *lookup_dwo_comp_unit
1769 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1770
1771 static struct dwo_unit *lookup_dwo_type_unit
1772 (struct signatured_type *, const char *, const char *);
1773
1774 static void free_dwo_file_cleanup (void *);
1775
1776 static void process_cu_includes (void);
1777
1778 static void check_producer (struct dwarf2_cu *cu);
1779
1780 #if WORDS_BIGENDIAN
1781
1782 /* Convert VALUE between big- and little-endian. */
1783 static offset_type
1784 byte_swap (offset_type value)
1785 {
1786 offset_type result;
1787
1788 result = (value & 0xff) << 24;
1789 result |= (value & 0xff00) << 8;
1790 result |= (value & 0xff0000) >> 8;
1791 result |= (value & 0xff000000) >> 24;
1792 return result;
1793 }
1794
1795 #define MAYBE_SWAP(V) byte_swap (V)
1796
1797 #else
1798 #define MAYBE_SWAP(V) (V)
1799 #endif /* WORDS_BIGENDIAN */
1800
1801 /* The suffix for an index file. */
1802 #define INDEX_SUFFIX ".gdb-index"
1803
1804 /* Try to locate the sections we need for DWARF 2 debugging
1805 information and return true if we have enough to do something.
1806 NAMES points to the dwarf2 section names, or is NULL if the standard
1807 ELF names are used. */
1808
1809 int
1810 dwarf2_has_info (struct objfile *objfile,
1811 const struct dwarf2_debug_sections *names)
1812 {
1813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1814 if (!dwarf2_per_objfile)
1815 {
1816 /* Initialize per-objfile state. */
1817 struct dwarf2_per_objfile *data
1818 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1819
1820 memset (data, 0, sizeof (*data));
1821 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1822 dwarf2_per_objfile = data;
1823
1824 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1825 (void *) names);
1826 dwarf2_per_objfile->objfile = objfile;
1827 }
1828 return (dwarf2_per_objfile->info.asection != NULL
1829 && dwarf2_per_objfile->abbrev.asection != NULL);
1830 }
1831
1832 /* When loading sections, we look either for uncompressed section or for
1833 compressed section names. */
1834
1835 static int
1836 section_is_p (const char *section_name,
1837 const struct dwarf2_section_names *names)
1838 {
1839 if (names->normal != NULL
1840 && strcmp (section_name, names->normal) == 0)
1841 return 1;
1842 if (names->compressed != NULL
1843 && strcmp (section_name, names->compressed) == 0)
1844 return 1;
1845 return 0;
1846 }
1847
1848 /* This function is mapped across the sections and remembers the
1849 offset and size of each of the debugging sections we are interested
1850 in. */
1851
1852 static void
1853 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1854 {
1855 const struct dwarf2_debug_sections *names;
1856 flagword aflag = bfd_get_section_flags (abfd, sectp);
1857
1858 if (vnames == NULL)
1859 names = &dwarf2_elf_names;
1860 else
1861 names = (const struct dwarf2_debug_sections *) vnames;
1862
1863 if ((aflag & SEC_HAS_CONTENTS) == 0)
1864 {
1865 }
1866 else if (section_is_p (sectp->name, &names->info))
1867 {
1868 dwarf2_per_objfile->info.asection = sectp;
1869 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1870 }
1871 else if (section_is_p (sectp->name, &names->abbrev))
1872 {
1873 dwarf2_per_objfile->abbrev.asection = sectp;
1874 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1875 }
1876 else if (section_is_p (sectp->name, &names->line))
1877 {
1878 dwarf2_per_objfile->line.asection = sectp;
1879 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1880 }
1881 else if (section_is_p (sectp->name, &names->loc))
1882 {
1883 dwarf2_per_objfile->loc.asection = sectp;
1884 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1885 }
1886 else if (section_is_p (sectp->name, &names->macinfo))
1887 {
1888 dwarf2_per_objfile->macinfo.asection = sectp;
1889 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1890 }
1891 else if (section_is_p (sectp->name, &names->macro))
1892 {
1893 dwarf2_per_objfile->macro.asection = sectp;
1894 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1895 }
1896 else if (section_is_p (sectp->name, &names->str))
1897 {
1898 dwarf2_per_objfile->str.asection = sectp;
1899 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1900 }
1901 else if (section_is_p (sectp->name, &names->addr))
1902 {
1903 dwarf2_per_objfile->addr.asection = sectp;
1904 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1905 }
1906 else if (section_is_p (sectp->name, &names->frame))
1907 {
1908 dwarf2_per_objfile->frame.asection = sectp;
1909 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1910 }
1911 else if (section_is_p (sectp->name, &names->eh_frame))
1912 {
1913 dwarf2_per_objfile->eh_frame.asection = sectp;
1914 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1915 }
1916 else if (section_is_p (sectp->name, &names->ranges))
1917 {
1918 dwarf2_per_objfile->ranges.asection = sectp;
1919 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1920 }
1921 else if (section_is_p (sectp->name, &names->types))
1922 {
1923 struct dwarf2_section_info type_section;
1924
1925 memset (&type_section, 0, sizeof (type_section));
1926 type_section.asection = sectp;
1927 type_section.size = bfd_get_section_size (sectp);
1928
1929 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1930 &type_section);
1931 }
1932 else if (section_is_p (sectp->name, &names->gdb_index))
1933 {
1934 dwarf2_per_objfile->gdb_index.asection = sectp;
1935 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1936 }
1937
1938 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1939 && bfd_section_vma (abfd, sectp) == 0)
1940 dwarf2_per_objfile->has_section_at_zero = 1;
1941 }
1942
1943 /* A helper function that decides whether a section is empty,
1944 or not present. */
1945
1946 static int
1947 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1948 {
1949 return info->asection == NULL || info->size == 0;
1950 }
1951
1952 /* Read the contents of the section INFO.
1953 OBJFILE is the main object file, but not necessarily the file where
1954 the section comes from. E.g., for DWO files INFO->asection->owner
1955 is the bfd of the DWO file.
1956 If the section is compressed, uncompress it before returning. */
1957
1958 static void
1959 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1960 {
1961 asection *sectp = info->asection;
1962 bfd *abfd;
1963 gdb_byte *buf, *retbuf;
1964 unsigned char header[4];
1965
1966 if (info->readin)
1967 return;
1968 info->buffer = NULL;
1969 info->readin = 1;
1970
1971 if (dwarf2_section_empty_p (info))
1972 return;
1973
1974 abfd = sectp->owner;
1975
1976 /* If the section has relocations, we must read it ourselves.
1977 Otherwise we attach it to the BFD. */
1978 if ((sectp->flags & SEC_RELOC) == 0)
1979 {
1980 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1981 return;
1982 }
1983
1984 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1985 info->buffer = buf;
1986
1987 /* When debugging .o files, we may need to apply relocations; see
1988 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1989 We never compress sections in .o files, so we only need to
1990 try this when the section is not compressed. */
1991 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1992 if (retbuf != NULL)
1993 {
1994 info->buffer = retbuf;
1995 return;
1996 }
1997
1998 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1999 || bfd_bread (buf, info->size, abfd) != info->size)
2000 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2001 bfd_get_filename (abfd));
2002 }
2003
2004 /* A helper function that returns the size of a section in a safe way.
2005 If you are positive that the section has been read before using the
2006 size, then it is safe to refer to the dwarf2_section_info object's
2007 "size" field directly. In other cases, you must call this
2008 function, because for compressed sections the size field is not set
2009 correctly until the section has been read. */
2010
2011 static bfd_size_type
2012 dwarf2_section_size (struct objfile *objfile,
2013 struct dwarf2_section_info *info)
2014 {
2015 if (!info->readin)
2016 dwarf2_read_section (objfile, info);
2017 return info->size;
2018 }
2019
2020 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2021 SECTION_NAME. */
2022
2023 void
2024 dwarf2_get_section_info (struct objfile *objfile,
2025 enum dwarf2_section_enum sect,
2026 asection **sectp, const gdb_byte **bufp,
2027 bfd_size_type *sizep)
2028 {
2029 struct dwarf2_per_objfile *data
2030 = objfile_data (objfile, dwarf2_objfile_data_key);
2031 struct dwarf2_section_info *info;
2032
2033 /* We may see an objfile without any DWARF, in which case we just
2034 return nothing. */
2035 if (data == NULL)
2036 {
2037 *sectp = NULL;
2038 *bufp = NULL;
2039 *sizep = 0;
2040 return;
2041 }
2042 switch (sect)
2043 {
2044 case DWARF2_DEBUG_FRAME:
2045 info = &data->frame;
2046 break;
2047 case DWARF2_EH_FRAME:
2048 info = &data->eh_frame;
2049 break;
2050 default:
2051 gdb_assert_not_reached ("unexpected section");
2052 }
2053
2054 dwarf2_read_section (objfile, info);
2055
2056 *sectp = info->asection;
2057 *bufp = info->buffer;
2058 *sizep = info->size;
2059 }
2060
2061 /* A helper function to find the sections for a .dwz file. */
2062
2063 static void
2064 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2065 {
2066 struct dwz_file *dwz_file = arg;
2067
2068 /* Note that we only support the standard ELF names, because .dwz
2069 is ELF-only (at the time of writing). */
2070 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2071 {
2072 dwz_file->abbrev.asection = sectp;
2073 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2074 }
2075 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2076 {
2077 dwz_file->info.asection = sectp;
2078 dwz_file->info.size = bfd_get_section_size (sectp);
2079 }
2080 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2081 {
2082 dwz_file->str.asection = sectp;
2083 dwz_file->str.size = bfd_get_section_size (sectp);
2084 }
2085 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2086 {
2087 dwz_file->line.asection = sectp;
2088 dwz_file->line.size = bfd_get_section_size (sectp);
2089 }
2090 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2091 {
2092 dwz_file->macro.asection = sectp;
2093 dwz_file->macro.size = bfd_get_section_size (sectp);
2094 }
2095 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2096 {
2097 dwz_file->gdb_index.asection = sectp;
2098 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2099 }
2100 }
2101
2102 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2103 there is no .gnu_debugaltlink section in the file. Error if there
2104 is such a section but the file cannot be found. */
2105
2106 static struct dwz_file *
2107 dwarf2_get_dwz_file (void)
2108 {
2109 bfd *dwz_bfd;
2110 char *data;
2111 struct cleanup *cleanup;
2112 const char *filename;
2113 struct dwz_file *result;
2114 unsigned long buildid;
2115
2116 if (dwarf2_per_objfile->dwz_file != NULL)
2117 return dwarf2_per_objfile->dwz_file;
2118
2119 bfd_set_error (bfd_error_no_error);
2120 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2121 &buildid);
2122 if (data == NULL)
2123 {
2124 if (bfd_get_error () == bfd_error_no_error)
2125 return NULL;
2126 error (_("could not read '.gnu_debugaltlink' section: %s"),
2127 bfd_errmsg (bfd_get_error ()));
2128 }
2129 cleanup = make_cleanup (xfree, data);
2130
2131 filename = (const char *) data;
2132 if (!IS_ABSOLUTE_PATH (filename))
2133 {
2134 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2135 char *rel;
2136
2137 make_cleanup (xfree, abs);
2138 abs = ldirname (abs);
2139 make_cleanup (xfree, abs);
2140
2141 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2142 make_cleanup (xfree, rel);
2143 filename = rel;
2144 }
2145
2146 /* The format is just a NUL-terminated file name, followed by the
2147 build-id. For now, though, we ignore the build-id. */
2148 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2149 if (dwz_bfd == NULL)
2150 error (_("could not read '%s': %s"), filename,
2151 bfd_errmsg (bfd_get_error ()));
2152
2153 if (!bfd_check_format (dwz_bfd, bfd_object))
2154 {
2155 gdb_bfd_unref (dwz_bfd);
2156 error (_("file '%s' was not usable: %s"), filename,
2157 bfd_errmsg (bfd_get_error ()));
2158 }
2159
2160 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2161 struct dwz_file);
2162 result->dwz_bfd = dwz_bfd;
2163
2164 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2165
2166 do_cleanups (cleanup);
2167
2168 dwarf2_per_objfile->dwz_file = result;
2169 return result;
2170 }
2171 \f
2172 /* DWARF quick_symbols_functions support. */
2173
2174 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2175 unique line tables, so we maintain a separate table of all .debug_line
2176 derived entries to support the sharing.
2177 All the quick functions need is the list of file names. We discard the
2178 line_header when we're done and don't need to record it here. */
2179 struct quick_file_names
2180 {
2181 /* The data used to construct the hash key. */
2182 struct stmt_list_hash hash;
2183
2184 /* The number of entries in file_names, real_names. */
2185 unsigned int num_file_names;
2186
2187 /* The file names from the line table, after being run through
2188 file_full_name. */
2189 const char **file_names;
2190
2191 /* The file names from the line table after being run through
2192 gdb_realpath. These are computed lazily. */
2193 const char **real_names;
2194 };
2195
2196 /* When using the index (and thus not using psymtabs), each CU has an
2197 object of this type. This is used to hold information needed by
2198 the various "quick" methods. */
2199 struct dwarf2_per_cu_quick_data
2200 {
2201 /* The file table. This can be NULL if there was no file table
2202 or it's currently not read in.
2203 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2204 struct quick_file_names *file_names;
2205
2206 /* The corresponding symbol table. This is NULL if symbols for this
2207 CU have not yet been read. */
2208 struct symtab *symtab;
2209
2210 /* A temporary mark bit used when iterating over all CUs in
2211 expand_symtabs_matching. */
2212 unsigned int mark : 1;
2213
2214 /* True if we've tried to read the file table and found there isn't one.
2215 There will be no point in trying to read it again next time. */
2216 unsigned int no_file_data : 1;
2217 };
2218
2219 /* Utility hash function for a stmt_list_hash. */
2220
2221 static hashval_t
2222 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2223 {
2224 hashval_t v = 0;
2225
2226 if (stmt_list_hash->dwo_unit != NULL)
2227 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2228 v += stmt_list_hash->line_offset.sect_off;
2229 return v;
2230 }
2231
2232 /* Utility equality function for a stmt_list_hash. */
2233
2234 static int
2235 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2236 const struct stmt_list_hash *rhs)
2237 {
2238 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2239 return 0;
2240 if (lhs->dwo_unit != NULL
2241 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2242 return 0;
2243
2244 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2245 }
2246
2247 /* Hash function for a quick_file_names. */
2248
2249 static hashval_t
2250 hash_file_name_entry (const void *e)
2251 {
2252 const struct quick_file_names *file_data = e;
2253
2254 return hash_stmt_list_entry (&file_data->hash);
2255 }
2256
2257 /* Equality function for a quick_file_names. */
2258
2259 static int
2260 eq_file_name_entry (const void *a, const void *b)
2261 {
2262 const struct quick_file_names *ea = a;
2263 const struct quick_file_names *eb = b;
2264
2265 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2266 }
2267
2268 /* Delete function for a quick_file_names. */
2269
2270 static void
2271 delete_file_name_entry (void *e)
2272 {
2273 struct quick_file_names *file_data = e;
2274 int i;
2275
2276 for (i = 0; i < file_data->num_file_names; ++i)
2277 {
2278 xfree ((void*) file_data->file_names[i]);
2279 if (file_data->real_names)
2280 xfree ((void*) file_data->real_names[i]);
2281 }
2282
2283 /* The space for the struct itself lives on objfile_obstack,
2284 so we don't free it here. */
2285 }
2286
2287 /* Create a quick_file_names hash table. */
2288
2289 static htab_t
2290 create_quick_file_names_table (unsigned int nr_initial_entries)
2291 {
2292 return htab_create_alloc (nr_initial_entries,
2293 hash_file_name_entry, eq_file_name_entry,
2294 delete_file_name_entry, xcalloc, xfree);
2295 }
2296
2297 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2298 have to be created afterwards. You should call age_cached_comp_units after
2299 processing PER_CU->CU. dw2_setup must have been already called. */
2300
2301 static void
2302 load_cu (struct dwarf2_per_cu_data *per_cu)
2303 {
2304 if (per_cu->is_debug_types)
2305 load_full_type_unit (per_cu);
2306 else
2307 load_full_comp_unit (per_cu, language_minimal);
2308
2309 gdb_assert (per_cu->cu != NULL);
2310
2311 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2312 }
2313
2314 /* Read in the symbols for PER_CU. */
2315
2316 static void
2317 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2318 {
2319 struct cleanup *back_to;
2320
2321 /* Skip type_unit_groups, reading the type units they contain
2322 is handled elsewhere. */
2323 if (IS_TYPE_UNIT_GROUP (per_cu))
2324 return;
2325
2326 back_to = make_cleanup (dwarf2_release_queue, NULL);
2327
2328 if (dwarf2_per_objfile->using_index
2329 ? per_cu->v.quick->symtab == NULL
2330 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2331 {
2332 queue_comp_unit (per_cu, language_minimal);
2333 load_cu (per_cu);
2334 }
2335
2336 process_queue ();
2337
2338 /* Age the cache, releasing compilation units that have not
2339 been used recently. */
2340 age_cached_comp_units ();
2341
2342 do_cleanups (back_to);
2343 }
2344
2345 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2346 the objfile from which this CU came. Returns the resulting symbol
2347 table. */
2348
2349 static struct symtab *
2350 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2351 {
2352 gdb_assert (dwarf2_per_objfile->using_index);
2353 if (!per_cu->v.quick->symtab)
2354 {
2355 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2356 increment_reading_symtab ();
2357 dw2_do_instantiate_symtab (per_cu);
2358 process_cu_includes ();
2359 do_cleanups (back_to);
2360 }
2361 return per_cu->v.quick->symtab;
2362 }
2363
2364 /* Return the CU given its index.
2365
2366 This is intended for loops like:
2367
2368 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2369 + dwarf2_per_objfile->n_type_units); ++i)
2370 {
2371 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2372
2373 ...;
2374 }
2375 */
2376
2377 static struct dwarf2_per_cu_data *
2378 dw2_get_cu (int index)
2379 {
2380 if (index >= dwarf2_per_objfile->n_comp_units)
2381 {
2382 index -= dwarf2_per_objfile->n_comp_units;
2383 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2384 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2385 }
2386
2387 return dwarf2_per_objfile->all_comp_units[index];
2388 }
2389
2390 /* Return the primary CU given its index.
2391 The difference between this function and dw2_get_cu is in the handling
2392 of type units (TUs). Here we return the type_unit_group object.
2393
2394 This is intended for loops like:
2395
2396 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2397 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2398 {
2399 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2400
2401 ...;
2402 }
2403 */
2404
2405 static struct dwarf2_per_cu_data *
2406 dw2_get_primary_cu (int index)
2407 {
2408 if (index >= dwarf2_per_objfile->n_comp_units)
2409 {
2410 index -= dwarf2_per_objfile->n_comp_units;
2411 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2412 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2413 }
2414
2415 return dwarf2_per_objfile->all_comp_units[index];
2416 }
2417
2418 /* A helper for create_cus_from_index that handles a given list of
2419 CUs. */
2420
2421 static void
2422 create_cus_from_index_list (struct objfile *objfile,
2423 const gdb_byte *cu_list, offset_type n_elements,
2424 struct dwarf2_section_info *section,
2425 int is_dwz,
2426 int base_offset)
2427 {
2428 offset_type i;
2429
2430 for (i = 0; i < n_elements; i += 2)
2431 {
2432 struct dwarf2_per_cu_data *the_cu;
2433 ULONGEST offset, length;
2434
2435 gdb_static_assert (sizeof (ULONGEST) >= 8);
2436 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2437 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2438 cu_list += 2 * 8;
2439
2440 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2441 struct dwarf2_per_cu_data);
2442 the_cu->offset.sect_off = offset;
2443 the_cu->length = length;
2444 the_cu->objfile = objfile;
2445 the_cu->section = section;
2446 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2447 struct dwarf2_per_cu_quick_data);
2448 the_cu->is_dwz = is_dwz;
2449 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2450 }
2451 }
2452
2453 /* Read the CU list from the mapped index, and use it to create all
2454 the CU objects for this objfile. */
2455
2456 static void
2457 create_cus_from_index (struct objfile *objfile,
2458 const gdb_byte *cu_list, offset_type cu_list_elements,
2459 const gdb_byte *dwz_list, offset_type dwz_elements)
2460 {
2461 struct dwz_file *dwz;
2462
2463 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2464 dwarf2_per_objfile->all_comp_units
2465 = obstack_alloc (&objfile->objfile_obstack,
2466 dwarf2_per_objfile->n_comp_units
2467 * sizeof (struct dwarf2_per_cu_data *));
2468
2469 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2470 &dwarf2_per_objfile->info, 0, 0);
2471
2472 if (dwz_elements == 0)
2473 return;
2474
2475 dwz = dwarf2_get_dwz_file ();
2476 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2477 cu_list_elements / 2);
2478 }
2479
2480 /* Create the signatured type hash table from the index. */
2481
2482 static void
2483 create_signatured_type_table_from_index (struct objfile *objfile,
2484 struct dwarf2_section_info *section,
2485 const gdb_byte *bytes,
2486 offset_type elements)
2487 {
2488 offset_type i;
2489 htab_t sig_types_hash;
2490
2491 dwarf2_per_objfile->n_type_units = elements / 3;
2492 dwarf2_per_objfile->all_type_units
2493 = xmalloc (dwarf2_per_objfile->n_type_units
2494 * sizeof (struct signatured_type *));
2495
2496 sig_types_hash = allocate_signatured_type_table (objfile);
2497
2498 for (i = 0; i < elements; i += 3)
2499 {
2500 struct signatured_type *sig_type;
2501 ULONGEST offset, type_offset_in_tu, signature;
2502 void **slot;
2503
2504 gdb_static_assert (sizeof (ULONGEST) >= 8);
2505 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2506 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2507 BFD_ENDIAN_LITTLE);
2508 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2509 bytes += 3 * 8;
2510
2511 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2512 struct signatured_type);
2513 sig_type->signature = signature;
2514 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2515 sig_type->per_cu.is_debug_types = 1;
2516 sig_type->per_cu.section = section;
2517 sig_type->per_cu.offset.sect_off = offset;
2518 sig_type->per_cu.objfile = objfile;
2519 sig_type->per_cu.v.quick
2520 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2521 struct dwarf2_per_cu_quick_data);
2522
2523 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2524 *slot = sig_type;
2525
2526 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2527 }
2528
2529 dwarf2_per_objfile->signatured_types = sig_types_hash;
2530 }
2531
2532 /* Read the address map data from the mapped index, and use it to
2533 populate the objfile's psymtabs_addrmap. */
2534
2535 static void
2536 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2537 {
2538 const gdb_byte *iter, *end;
2539 struct obstack temp_obstack;
2540 struct addrmap *mutable_map;
2541 struct cleanup *cleanup;
2542 CORE_ADDR baseaddr;
2543
2544 obstack_init (&temp_obstack);
2545 cleanup = make_cleanup_obstack_free (&temp_obstack);
2546 mutable_map = addrmap_create_mutable (&temp_obstack);
2547
2548 iter = index->address_table;
2549 end = iter + index->address_table_size;
2550
2551 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2552
2553 while (iter < end)
2554 {
2555 ULONGEST hi, lo, cu_index;
2556 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2557 iter += 8;
2558 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2559 iter += 8;
2560 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2561 iter += 4;
2562
2563 if (cu_index < dwarf2_per_objfile->n_comp_units)
2564 {
2565 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2566 dw2_get_cu (cu_index));
2567 }
2568 else
2569 {
2570 complaint (&symfile_complaints,
2571 _(".gdb_index address table has invalid CU number %u"),
2572 (unsigned) cu_index);
2573 }
2574 }
2575
2576 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2577 &objfile->objfile_obstack);
2578 do_cleanups (cleanup);
2579 }
2580
2581 /* The hash function for strings in the mapped index. This is the same as
2582 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2583 implementation. This is necessary because the hash function is tied to the
2584 format of the mapped index file. The hash values do not have to match with
2585 SYMBOL_HASH_NEXT.
2586
2587 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2588
2589 static hashval_t
2590 mapped_index_string_hash (int index_version, const void *p)
2591 {
2592 const unsigned char *str = (const unsigned char *) p;
2593 hashval_t r = 0;
2594 unsigned char c;
2595
2596 while ((c = *str++) != 0)
2597 {
2598 if (index_version >= 5)
2599 c = tolower (c);
2600 r = r * 67 + c - 113;
2601 }
2602
2603 return r;
2604 }
2605
2606 /* Find a slot in the mapped index INDEX for the object named NAME.
2607 If NAME is found, set *VEC_OUT to point to the CU vector in the
2608 constant pool and return 1. If NAME cannot be found, return 0. */
2609
2610 static int
2611 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2612 offset_type **vec_out)
2613 {
2614 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2615 offset_type hash;
2616 offset_type slot, step;
2617 int (*cmp) (const char *, const char *);
2618
2619 if (current_language->la_language == language_cplus
2620 || current_language->la_language == language_java
2621 || current_language->la_language == language_fortran)
2622 {
2623 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2624 not contain any. */
2625 const char *paren = strchr (name, '(');
2626
2627 if (paren)
2628 {
2629 char *dup;
2630
2631 dup = xmalloc (paren - name + 1);
2632 memcpy (dup, name, paren - name);
2633 dup[paren - name] = 0;
2634
2635 make_cleanup (xfree, dup);
2636 name = dup;
2637 }
2638 }
2639
2640 /* Index version 4 did not support case insensitive searches. But the
2641 indices for case insensitive languages are built in lowercase, therefore
2642 simulate our NAME being searched is also lowercased. */
2643 hash = mapped_index_string_hash ((index->version == 4
2644 && case_sensitivity == case_sensitive_off
2645 ? 5 : index->version),
2646 name);
2647
2648 slot = hash & (index->symbol_table_slots - 1);
2649 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2650 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2651
2652 for (;;)
2653 {
2654 /* Convert a slot number to an offset into the table. */
2655 offset_type i = 2 * slot;
2656 const char *str;
2657 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2658 {
2659 do_cleanups (back_to);
2660 return 0;
2661 }
2662
2663 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2664 if (!cmp (name, str))
2665 {
2666 *vec_out = (offset_type *) (index->constant_pool
2667 + MAYBE_SWAP (index->symbol_table[i + 1]));
2668 do_cleanups (back_to);
2669 return 1;
2670 }
2671
2672 slot = (slot + step) & (index->symbol_table_slots - 1);
2673 }
2674 }
2675
2676 /* A helper function that reads the .gdb_index from SECTION and fills
2677 in MAP. FILENAME is the name of the file containing the section;
2678 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2679 ok to use deprecated sections.
2680
2681 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2682 out parameters that are filled in with information about the CU and
2683 TU lists in the section.
2684
2685 Returns 1 if all went well, 0 otherwise. */
2686
2687 static int
2688 read_index_from_section (struct objfile *objfile,
2689 const char *filename,
2690 int deprecated_ok,
2691 struct dwarf2_section_info *section,
2692 struct mapped_index *map,
2693 const gdb_byte **cu_list,
2694 offset_type *cu_list_elements,
2695 const gdb_byte **types_list,
2696 offset_type *types_list_elements)
2697 {
2698 const gdb_byte *addr;
2699 offset_type version;
2700 offset_type *metadata;
2701 int i;
2702
2703 if (dwarf2_section_empty_p (section))
2704 return 0;
2705
2706 /* Older elfutils strip versions could keep the section in the main
2707 executable while splitting it for the separate debug info file. */
2708 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2709 return 0;
2710
2711 dwarf2_read_section (objfile, section);
2712
2713 addr = section->buffer;
2714 /* Version check. */
2715 version = MAYBE_SWAP (*(offset_type *) addr);
2716 /* Versions earlier than 3 emitted every copy of a psymbol. This
2717 causes the index to behave very poorly for certain requests. Version 3
2718 contained incomplete addrmap. So, it seems better to just ignore such
2719 indices. */
2720 if (version < 4)
2721 {
2722 static int warning_printed = 0;
2723 if (!warning_printed)
2724 {
2725 warning (_("Skipping obsolete .gdb_index section in %s."),
2726 filename);
2727 warning_printed = 1;
2728 }
2729 return 0;
2730 }
2731 /* Index version 4 uses a different hash function than index version
2732 5 and later.
2733
2734 Versions earlier than 6 did not emit psymbols for inlined
2735 functions. Using these files will cause GDB not to be able to
2736 set breakpoints on inlined functions by name, so we ignore these
2737 indices unless the user has done
2738 "set use-deprecated-index-sections on". */
2739 if (version < 6 && !deprecated_ok)
2740 {
2741 static int warning_printed = 0;
2742 if (!warning_printed)
2743 {
2744 warning (_("\
2745 Skipping deprecated .gdb_index section in %s.\n\
2746 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2747 to use the section anyway."),
2748 filename);
2749 warning_printed = 1;
2750 }
2751 return 0;
2752 }
2753 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2754 of the TU (for symbols coming from TUs). It's just a performance bug, and
2755 we can't distinguish gdb-generated indices from gold-generated ones, so
2756 nothing to do here. */
2757
2758 /* Indexes with higher version than the one supported by GDB may be no
2759 longer backward compatible. */
2760 if (version > 8)
2761 return 0;
2762
2763 map->version = version;
2764 map->total_size = section->size;
2765
2766 metadata = (offset_type *) (addr + sizeof (offset_type));
2767
2768 i = 0;
2769 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2770 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2771 / 8);
2772 ++i;
2773
2774 *types_list = addr + MAYBE_SWAP (metadata[i]);
2775 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2776 - MAYBE_SWAP (metadata[i]))
2777 / 8);
2778 ++i;
2779
2780 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2781 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2782 - MAYBE_SWAP (metadata[i]));
2783 ++i;
2784
2785 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2786 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2787 - MAYBE_SWAP (metadata[i]))
2788 / (2 * sizeof (offset_type)));
2789 ++i;
2790
2791 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2792
2793 return 1;
2794 }
2795
2796
2797 /* Read the index file. If everything went ok, initialize the "quick"
2798 elements of all the CUs and return 1. Otherwise, return 0. */
2799
2800 static int
2801 dwarf2_read_index (struct objfile *objfile)
2802 {
2803 struct mapped_index local_map, *map;
2804 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2805 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2806 struct dwz_file *dwz;
2807
2808 if (!read_index_from_section (objfile, objfile->name,
2809 use_deprecated_index_sections,
2810 &dwarf2_per_objfile->gdb_index, &local_map,
2811 &cu_list, &cu_list_elements,
2812 &types_list, &types_list_elements))
2813 return 0;
2814
2815 /* Don't use the index if it's empty. */
2816 if (local_map.symbol_table_slots == 0)
2817 return 0;
2818
2819 /* If there is a .dwz file, read it so we can get its CU list as
2820 well. */
2821 dwz = dwarf2_get_dwz_file ();
2822 if (dwz != NULL)
2823 {
2824 struct mapped_index dwz_map;
2825 const gdb_byte *dwz_types_ignore;
2826 offset_type dwz_types_elements_ignore;
2827
2828 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2829 1,
2830 &dwz->gdb_index, &dwz_map,
2831 &dwz_list, &dwz_list_elements,
2832 &dwz_types_ignore,
2833 &dwz_types_elements_ignore))
2834 {
2835 warning (_("could not read '.gdb_index' section from %s; skipping"),
2836 bfd_get_filename (dwz->dwz_bfd));
2837 return 0;
2838 }
2839 }
2840
2841 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2842 dwz_list_elements);
2843
2844 if (types_list_elements)
2845 {
2846 struct dwarf2_section_info *section;
2847
2848 /* We can only handle a single .debug_types when we have an
2849 index. */
2850 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2851 return 0;
2852
2853 section = VEC_index (dwarf2_section_info_def,
2854 dwarf2_per_objfile->types, 0);
2855
2856 create_signatured_type_table_from_index (objfile, section, types_list,
2857 types_list_elements);
2858 }
2859
2860 create_addrmap_from_index (objfile, &local_map);
2861
2862 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2863 *map = local_map;
2864
2865 dwarf2_per_objfile->index_table = map;
2866 dwarf2_per_objfile->using_index = 1;
2867 dwarf2_per_objfile->quick_file_names_table =
2868 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2869
2870 return 1;
2871 }
2872
2873 /* A helper for the "quick" functions which sets the global
2874 dwarf2_per_objfile according to OBJFILE. */
2875
2876 static void
2877 dw2_setup (struct objfile *objfile)
2878 {
2879 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2880 gdb_assert (dwarf2_per_objfile);
2881 }
2882
2883 /* die_reader_func for dw2_get_file_names. */
2884
2885 static void
2886 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2887 const gdb_byte *info_ptr,
2888 struct die_info *comp_unit_die,
2889 int has_children,
2890 void *data)
2891 {
2892 struct dwarf2_cu *cu = reader->cu;
2893 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2894 struct objfile *objfile = dwarf2_per_objfile->objfile;
2895 struct dwarf2_per_cu_data *lh_cu;
2896 struct line_header *lh;
2897 struct attribute *attr;
2898 int i;
2899 const char *name, *comp_dir;
2900 void **slot;
2901 struct quick_file_names *qfn;
2902 unsigned int line_offset;
2903
2904 gdb_assert (! this_cu->is_debug_types);
2905
2906 /* Our callers never want to match partial units -- instead they
2907 will match the enclosing full CU. */
2908 if (comp_unit_die->tag == DW_TAG_partial_unit)
2909 {
2910 this_cu->v.quick->no_file_data = 1;
2911 return;
2912 }
2913
2914 lh_cu = this_cu;
2915 lh = NULL;
2916 slot = NULL;
2917 line_offset = 0;
2918
2919 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2920 if (attr)
2921 {
2922 struct quick_file_names find_entry;
2923
2924 line_offset = DW_UNSND (attr);
2925
2926 /* We may have already read in this line header (TU line header sharing).
2927 If we have we're done. */
2928 find_entry.hash.dwo_unit = cu->dwo_unit;
2929 find_entry.hash.line_offset.sect_off = line_offset;
2930 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2931 &find_entry, INSERT);
2932 if (*slot != NULL)
2933 {
2934 lh_cu->v.quick->file_names = *slot;
2935 return;
2936 }
2937
2938 lh = dwarf_decode_line_header (line_offset, cu);
2939 }
2940 if (lh == NULL)
2941 {
2942 lh_cu->v.quick->no_file_data = 1;
2943 return;
2944 }
2945
2946 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2947 qfn->hash.dwo_unit = cu->dwo_unit;
2948 qfn->hash.line_offset.sect_off = line_offset;
2949 gdb_assert (slot != NULL);
2950 *slot = qfn;
2951
2952 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2953
2954 qfn->num_file_names = lh->num_file_names;
2955 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2956 lh->num_file_names * sizeof (char *));
2957 for (i = 0; i < lh->num_file_names; ++i)
2958 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2959 qfn->real_names = NULL;
2960
2961 free_line_header (lh);
2962
2963 lh_cu->v.quick->file_names = qfn;
2964 }
2965
2966 /* A helper for the "quick" functions which attempts to read the line
2967 table for THIS_CU. */
2968
2969 static struct quick_file_names *
2970 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2971 {
2972 /* This should never be called for TUs. */
2973 gdb_assert (! this_cu->is_debug_types);
2974 /* Nor type unit groups. */
2975 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
2976
2977 if (this_cu->v.quick->file_names != NULL)
2978 return this_cu->v.quick->file_names;
2979 /* If we know there is no line data, no point in looking again. */
2980 if (this_cu->v.quick->no_file_data)
2981 return NULL;
2982
2983 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2984
2985 if (this_cu->v.quick->no_file_data)
2986 return NULL;
2987 return this_cu->v.quick->file_names;
2988 }
2989
2990 /* A helper for the "quick" functions which computes and caches the
2991 real path for a given file name from the line table. */
2992
2993 static const char *
2994 dw2_get_real_path (struct objfile *objfile,
2995 struct quick_file_names *qfn, int index)
2996 {
2997 if (qfn->real_names == NULL)
2998 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2999 qfn->num_file_names, sizeof (char *));
3000
3001 if (qfn->real_names[index] == NULL)
3002 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3003
3004 return qfn->real_names[index];
3005 }
3006
3007 static struct symtab *
3008 dw2_find_last_source_symtab (struct objfile *objfile)
3009 {
3010 int index;
3011
3012 dw2_setup (objfile);
3013 index = dwarf2_per_objfile->n_comp_units - 1;
3014 return dw2_instantiate_symtab (dw2_get_cu (index));
3015 }
3016
3017 /* Traversal function for dw2_forget_cached_source_info. */
3018
3019 static int
3020 dw2_free_cached_file_names (void **slot, void *info)
3021 {
3022 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3023
3024 if (file_data->real_names)
3025 {
3026 int i;
3027
3028 for (i = 0; i < file_data->num_file_names; ++i)
3029 {
3030 xfree ((void*) file_data->real_names[i]);
3031 file_data->real_names[i] = NULL;
3032 }
3033 }
3034
3035 return 1;
3036 }
3037
3038 static void
3039 dw2_forget_cached_source_info (struct objfile *objfile)
3040 {
3041 dw2_setup (objfile);
3042
3043 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3044 dw2_free_cached_file_names, NULL);
3045 }
3046
3047 /* Helper function for dw2_map_symtabs_matching_filename that expands
3048 the symtabs and calls the iterator. */
3049
3050 static int
3051 dw2_map_expand_apply (struct objfile *objfile,
3052 struct dwarf2_per_cu_data *per_cu,
3053 const char *name, const char *real_path,
3054 int (*callback) (struct symtab *, void *),
3055 void *data)
3056 {
3057 struct symtab *last_made = objfile->symtabs;
3058
3059 /* Don't visit already-expanded CUs. */
3060 if (per_cu->v.quick->symtab)
3061 return 0;
3062
3063 /* This may expand more than one symtab, and we want to iterate over
3064 all of them. */
3065 dw2_instantiate_symtab (per_cu);
3066
3067 return iterate_over_some_symtabs (name, real_path, callback, data,
3068 objfile->symtabs, last_made);
3069 }
3070
3071 /* Implementation of the map_symtabs_matching_filename method. */
3072
3073 static int
3074 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3075 const char *real_path,
3076 int (*callback) (struct symtab *, void *),
3077 void *data)
3078 {
3079 int i;
3080 const char *name_basename = lbasename (name);
3081
3082 dw2_setup (objfile);
3083
3084 /* The rule is CUs specify all the files, including those used by
3085 any TU, so there's no need to scan TUs here. */
3086
3087 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3088 {
3089 int j;
3090 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3091 struct quick_file_names *file_data;
3092
3093 /* We only need to look at symtabs not already expanded. */
3094 if (per_cu->v.quick->symtab)
3095 continue;
3096
3097 file_data = dw2_get_file_names (per_cu);
3098 if (file_data == NULL)
3099 continue;
3100
3101 for (j = 0; j < file_data->num_file_names; ++j)
3102 {
3103 const char *this_name = file_data->file_names[j];
3104 const char *this_real_name;
3105
3106 if (compare_filenames_for_search (this_name, name))
3107 {
3108 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3109 callback, data))
3110 return 1;
3111 continue;
3112 }
3113
3114 /* Before we invoke realpath, which can get expensive when many
3115 files are involved, do a quick comparison of the basenames. */
3116 if (! basenames_may_differ
3117 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3118 continue;
3119
3120 this_real_name = dw2_get_real_path (objfile, file_data, j);
3121 if (compare_filenames_for_search (this_real_name, name))
3122 {
3123 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3124 callback, data))
3125 return 1;
3126 continue;
3127 }
3128
3129 if (real_path != NULL)
3130 {
3131 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3132 gdb_assert (IS_ABSOLUTE_PATH (name));
3133 if (this_real_name != NULL
3134 && FILENAME_CMP (real_path, this_real_name) == 0)
3135 {
3136 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3137 callback, data))
3138 return 1;
3139 continue;
3140 }
3141 }
3142 }
3143 }
3144
3145 return 0;
3146 }
3147
3148 /* Struct used to manage iterating over all CUs looking for a symbol. */
3149
3150 struct dw2_symtab_iterator
3151 {
3152 /* The internalized form of .gdb_index. */
3153 struct mapped_index *index;
3154 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3155 int want_specific_block;
3156 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3157 Unused if !WANT_SPECIFIC_BLOCK. */
3158 int block_index;
3159 /* The kind of symbol we're looking for. */
3160 domain_enum domain;
3161 /* The list of CUs from the index entry of the symbol,
3162 or NULL if not found. */
3163 offset_type *vec;
3164 /* The next element in VEC to look at. */
3165 int next;
3166 /* The number of elements in VEC, or zero if there is no match. */
3167 int length;
3168 };
3169
3170 /* Initialize the index symtab iterator ITER.
3171 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3172 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3173
3174 static void
3175 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3176 struct mapped_index *index,
3177 int want_specific_block,
3178 int block_index,
3179 domain_enum domain,
3180 const char *name)
3181 {
3182 iter->index = index;
3183 iter->want_specific_block = want_specific_block;
3184 iter->block_index = block_index;
3185 iter->domain = domain;
3186 iter->next = 0;
3187
3188 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3189 iter->length = MAYBE_SWAP (*iter->vec);
3190 else
3191 {
3192 iter->vec = NULL;
3193 iter->length = 0;
3194 }
3195 }
3196
3197 /* Return the next matching CU or NULL if there are no more. */
3198
3199 static struct dwarf2_per_cu_data *
3200 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3201 {
3202 for ( ; iter->next < iter->length; ++iter->next)
3203 {
3204 offset_type cu_index_and_attrs =
3205 MAYBE_SWAP (iter->vec[iter->next + 1]);
3206 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3207 struct dwarf2_per_cu_data *per_cu;
3208 int want_static = iter->block_index != GLOBAL_BLOCK;
3209 /* This value is only valid for index versions >= 7. */
3210 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3211 gdb_index_symbol_kind symbol_kind =
3212 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3213 /* Only check the symbol attributes if they're present.
3214 Indices prior to version 7 don't record them,
3215 and indices >= 7 may elide them for certain symbols
3216 (gold does this). */
3217 int attrs_valid =
3218 (iter->index->version >= 7
3219 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3220
3221 /* Don't crash on bad data. */
3222 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3223 + dwarf2_per_objfile->n_type_units))
3224 {
3225 complaint (&symfile_complaints,
3226 _(".gdb_index entry has bad CU index"
3227 " [in module %s]"), dwarf2_per_objfile->objfile->name);
3228 continue;
3229 }
3230
3231 per_cu = dw2_get_cu (cu_index);
3232
3233 /* Skip if already read in. */
3234 if (per_cu->v.quick->symtab)
3235 continue;
3236
3237 if (attrs_valid
3238 && iter->want_specific_block
3239 && want_static != is_static)
3240 continue;
3241
3242 /* Only check the symbol's kind if it has one. */
3243 if (attrs_valid)
3244 {
3245 switch (iter->domain)
3246 {
3247 case VAR_DOMAIN:
3248 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3249 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3250 /* Some types are also in VAR_DOMAIN. */
3251 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3252 continue;
3253 break;
3254 case STRUCT_DOMAIN:
3255 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3256 continue;
3257 break;
3258 case LABEL_DOMAIN:
3259 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3260 continue;
3261 break;
3262 default:
3263 break;
3264 }
3265 }
3266
3267 ++iter->next;
3268 return per_cu;
3269 }
3270
3271 return NULL;
3272 }
3273
3274 static struct symtab *
3275 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3276 const char *name, domain_enum domain)
3277 {
3278 struct symtab *stab_best = NULL;
3279 struct mapped_index *index;
3280
3281 dw2_setup (objfile);
3282
3283 index = dwarf2_per_objfile->index_table;
3284
3285 /* index is NULL if OBJF_READNOW. */
3286 if (index)
3287 {
3288 struct dw2_symtab_iterator iter;
3289 struct dwarf2_per_cu_data *per_cu;
3290
3291 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3292
3293 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3294 {
3295 struct symbol *sym = NULL;
3296 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3297
3298 /* Some caution must be observed with overloaded functions
3299 and methods, since the index will not contain any overload
3300 information (but NAME might contain it). */
3301 if (stab->primary)
3302 {
3303 struct blockvector *bv = BLOCKVECTOR (stab);
3304 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3305
3306 sym = lookup_block_symbol (block, name, domain);
3307 }
3308
3309 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3310 {
3311 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3312 return stab;
3313
3314 stab_best = stab;
3315 }
3316
3317 /* Keep looking through other CUs. */
3318 }
3319 }
3320
3321 return stab_best;
3322 }
3323
3324 static void
3325 dw2_print_stats (struct objfile *objfile)
3326 {
3327 int i, total, count;
3328
3329 dw2_setup (objfile);
3330 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3331 count = 0;
3332 for (i = 0; i < total; ++i)
3333 {
3334 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3335
3336 if (!per_cu->v.quick->symtab)
3337 ++count;
3338 }
3339 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3340 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3341 }
3342
3343 static void
3344 dw2_dump (struct objfile *objfile)
3345 {
3346 /* Nothing worth printing. */
3347 }
3348
3349 static void
3350 dw2_relocate (struct objfile *objfile,
3351 const struct section_offsets *new_offsets,
3352 const struct section_offsets *delta)
3353 {
3354 /* There's nothing to relocate here. */
3355 }
3356
3357 static void
3358 dw2_expand_symtabs_for_function (struct objfile *objfile,
3359 const char *func_name)
3360 {
3361 struct mapped_index *index;
3362
3363 dw2_setup (objfile);
3364
3365 index = dwarf2_per_objfile->index_table;
3366
3367 /* index is NULL if OBJF_READNOW. */
3368 if (index)
3369 {
3370 struct dw2_symtab_iterator iter;
3371 struct dwarf2_per_cu_data *per_cu;
3372
3373 /* Note: It doesn't matter what we pass for block_index here. */
3374 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3375 func_name);
3376
3377 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3378 dw2_instantiate_symtab (per_cu);
3379 }
3380 }
3381
3382 static void
3383 dw2_expand_all_symtabs (struct objfile *objfile)
3384 {
3385 int i;
3386
3387 dw2_setup (objfile);
3388
3389 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3390 + dwarf2_per_objfile->n_type_units); ++i)
3391 {
3392 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3393
3394 dw2_instantiate_symtab (per_cu);
3395 }
3396 }
3397
3398 static void
3399 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3400 const char *fullname)
3401 {
3402 int i;
3403
3404 dw2_setup (objfile);
3405
3406 /* We don't need to consider type units here.
3407 This is only called for examining code, e.g. expand_line_sal.
3408 There can be an order of magnitude (or more) more type units
3409 than comp units, and we avoid them if we can. */
3410
3411 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3412 {
3413 int j;
3414 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3415 struct quick_file_names *file_data;
3416
3417 /* We only need to look at symtabs not already expanded. */
3418 if (per_cu->v.quick->symtab)
3419 continue;
3420
3421 file_data = dw2_get_file_names (per_cu);
3422 if (file_data == NULL)
3423 continue;
3424
3425 for (j = 0; j < file_data->num_file_names; ++j)
3426 {
3427 const char *this_fullname = file_data->file_names[j];
3428
3429 if (filename_cmp (this_fullname, fullname) == 0)
3430 {
3431 dw2_instantiate_symtab (per_cu);
3432 break;
3433 }
3434 }
3435 }
3436 }
3437
3438 /* A helper function for dw2_find_symbol_file that finds the primary
3439 file name for a given CU. This is a die_reader_func. */
3440
3441 static void
3442 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3443 const gdb_byte *info_ptr,
3444 struct die_info *comp_unit_die,
3445 int has_children,
3446 void *data)
3447 {
3448 const char **result_ptr = data;
3449 struct dwarf2_cu *cu = reader->cu;
3450 struct attribute *attr;
3451
3452 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3453 if (attr == NULL)
3454 *result_ptr = NULL;
3455 else
3456 *result_ptr = DW_STRING (attr);
3457 }
3458
3459 static const char *
3460 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3461 {
3462 struct dwarf2_per_cu_data *per_cu;
3463 offset_type *vec;
3464 const char *filename;
3465
3466 dw2_setup (objfile);
3467
3468 /* index_table is NULL if OBJF_READNOW. */
3469 if (!dwarf2_per_objfile->index_table)
3470 {
3471 struct symtab *s;
3472
3473 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3474 {
3475 struct blockvector *bv = BLOCKVECTOR (s);
3476 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3477 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3478
3479 if (sym)
3480 {
3481 /* Only file extension of returned filename is recognized. */
3482 return SYMBOL_SYMTAB (sym)->filename;
3483 }
3484 }
3485 return NULL;
3486 }
3487
3488 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3489 name, &vec))
3490 return NULL;
3491
3492 /* Note that this just looks at the very first one named NAME -- but
3493 actually we are looking for a function. find_main_filename
3494 should be rewritten so that it doesn't require a custom hook. It
3495 could just use the ordinary symbol tables. */
3496 /* vec[0] is the length, which must always be >0. */
3497 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3498
3499 if (per_cu->v.quick->symtab != NULL)
3500 {
3501 /* Only file extension of returned filename is recognized. */
3502 return per_cu->v.quick->symtab->filename;
3503 }
3504
3505 /* Initialize filename in case there's a problem reading the DWARF,
3506 dw2_get_primary_filename_reader may not get called. */
3507 filename = NULL;
3508 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3509 dw2_get_primary_filename_reader, &filename);
3510
3511 /* Only file extension of returned filename is recognized. */
3512 return filename;
3513 }
3514
3515 static void
3516 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3517 struct objfile *objfile, int global,
3518 int (*callback) (struct block *,
3519 struct symbol *, void *),
3520 void *data, symbol_compare_ftype *match,
3521 symbol_compare_ftype *ordered_compare)
3522 {
3523 /* Currently unimplemented; used for Ada. The function can be called if the
3524 current language is Ada for a non-Ada objfile using GNU index. As Ada
3525 does not look for non-Ada symbols this function should just return. */
3526 }
3527
3528 static void
3529 dw2_expand_symtabs_matching
3530 (struct objfile *objfile,
3531 int (*file_matcher) (const char *, void *, int basenames),
3532 int (*name_matcher) (const char *, void *),
3533 enum search_domain kind,
3534 void *data)
3535 {
3536 int i;
3537 offset_type iter;
3538 struct mapped_index *index;
3539
3540 dw2_setup (objfile);
3541
3542 /* index_table is NULL if OBJF_READNOW. */
3543 if (!dwarf2_per_objfile->index_table)
3544 return;
3545 index = dwarf2_per_objfile->index_table;
3546
3547 if (file_matcher != NULL)
3548 {
3549 struct cleanup *cleanup;
3550 htab_t visited_found, visited_not_found;
3551
3552 visited_found = htab_create_alloc (10,
3553 htab_hash_pointer, htab_eq_pointer,
3554 NULL, xcalloc, xfree);
3555 cleanup = make_cleanup_htab_delete (visited_found);
3556 visited_not_found = htab_create_alloc (10,
3557 htab_hash_pointer, htab_eq_pointer,
3558 NULL, xcalloc, xfree);
3559 make_cleanup_htab_delete (visited_not_found);
3560
3561 /* The rule is CUs specify all the files, including those used by
3562 any TU, so there's no need to scan TUs here. */
3563
3564 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3565 {
3566 int j;
3567 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3568 struct quick_file_names *file_data;
3569 void **slot;
3570
3571 per_cu->v.quick->mark = 0;
3572
3573 /* We only need to look at symtabs not already expanded. */
3574 if (per_cu->v.quick->symtab)
3575 continue;
3576
3577 file_data = dw2_get_file_names (per_cu);
3578 if (file_data == NULL)
3579 continue;
3580
3581 if (htab_find (visited_not_found, file_data) != NULL)
3582 continue;
3583 else if (htab_find (visited_found, file_data) != NULL)
3584 {
3585 per_cu->v.quick->mark = 1;
3586 continue;
3587 }
3588
3589 for (j = 0; j < file_data->num_file_names; ++j)
3590 {
3591 const char *this_real_name;
3592
3593 if (file_matcher (file_data->file_names[j], data, 0))
3594 {
3595 per_cu->v.quick->mark = 1;
3596 break;
3597 }
3598
3599 /* Before we invoke realpath, which can get expensive when many
3600 files are involved, do a quick comparison of the basenames. */
3601 if (!basenames_may_differ
3602 && !file_matcher (lbasename (file_data->file_names[j]),
3603 data, 1))
3604 continue;
3605
3606 this_real_name = dw2_get_real_path (objfile, file_data, j);
3607 if (file_matcher (this_real_name, data, 0))
3608 {
3609 per_cu->v.quick->mark = 1;
3610 break;
3611 }
3612 }
3613
3614 slot = htab_find_slot (per_cu->v.quick->mark
3615 ? visited_found
3616 : visited_not_found,
3617 file_data, INSERT);
3618 *slot = file_data;
3619 }
3620
3621 do_cleanups (cleanup);
3622 }
3623
3624 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3625 {
3626 offset_type idx = 2 * iter;
3627 const char *name;
3628 offset_type *vec, vec_len, vec_idx;
3629
3630 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3631 continue;
3632
3633 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3634
3635 if (! (*name_matcher) (name, data))
3636 continue;
3637
3638 /* The name was matched, now expand corresponding CUs that were
3639 marked. */
3640 vec = (offset_type *) (index->constant_pool
3641 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3642 vec_len = MAYBE_SWAP (vec[0]);
3643 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3644 {
3645 struct dwarf2_per_cu_data *per_cu;
3646 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3647 gdb_index_symbol_kind symbol_kind =
3648 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3649 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3650 /* Only check the symbol attributes if they're present.
3651 Indices prior to version 7 don't record them,
3652 and indices >= 7 may elide them for certain symbols
3653 (gold does this). */
3654 int attrs_valid =
3655 (index->version >= 7
3656 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3657
3658 /* Only check the symbol's kind if it has one. */
3659 if (attrs_valid)
3660 {
3661 switch (kind)
3662 {
3663 case VARIABLES_DOMAIN:
3664 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3665 continue;
3666 break;
3667 case FUNCTIONS_DOMAIN:
3668 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3669 continue;
3670 break;
3671 case TYPES_DOMAIN:
3672 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3673 continue;
3674 break;
3675 default:
3676 break;
3677 }
3678 }
3679
3680 /* Don't crash on bad data. */
3681 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3682 + dwarf2_per_objfile->n_type_units))
3683 {
3684 complaint (&symfile_complaints,
3685 _(".gdb_index entry has bad CU index"
3686 " [in module %s]"), objfile->name);
3687 continue;
3688 }
3689
3690 per_cu = dw2_get_cu (cu_index);
3691 if (file_matcher == NULL || per_cu->v.quick->mark)
3692 dw2_instantiate_symtab (per_cu);
3693 }
3694 }
3695 }
3696
3697 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3698 symtab. */
3699
3700 static struct symtab *
3701 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3702 {
3703 int i;
3704
3705 if (BLOCKVECTOR (symtab) != NULL
3706 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3707 return symtab;
3708
3709 if (symtab->includes == NULL)
3710 return NULL;
3711
3712 for (i = 0; symtab->includes[i]; ++i)
3713 {
3714 struct symtab *s = symtab->includes[i];
3715
3716 s = recursively_find_pc_sect_symtab (s, pc);
3717 if (s != NULL)
3718 return s;
3719 }
3720
3721 return NULL;
3722 }
3723
3724 static struct symtab *
3725 dw2_find_pc_sect_symtab (struct objfile *objfile,
3726 struct minimal_symbol *msymbol,
3727 CORE_ADDR pc,
3728 struct obj_section *section,
3729 int warn_if_readin)
3730 {
3731 struct dwarf2_per_cu_data *data;
3732 struct symtab *result;
3733
3734 dw2_setup (objfile);
3735
3736 if (!objfile->psymtabs_addrmap)
3737 return NULL;
3738
3739 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3740 if (!data)
3741 return NULL;
3742
3743 if (warn_if_readin && data->v.quick->symtab)
3744 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3745 paddress (get_objfile_arch (objfile), pc));
3746
3747 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3748 gdb_assert (result != NULL);
3749 return result;
3750 }
3751
3752 static void
3753 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3754 void *data, int need_fullname)
3755 {
3756 int i;
3757 struct cleanup *cleanup;
3758 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3759 NULL, xcalloc, xfree);
3760
3761 cleanup = make_cleanup_htab_delete (visited);
3762 dw2_setup (objfile);
3763
3764 /* The rule is CUs specify all the files, including those used by
3765 any TU, so there's no need to scan TUs here.
3766 We can ignore file names coming from already-expanded CUs. */
3767
3768 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3769 {
3770 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3771
3772 if (per_cu->v.quick->symtab)
3773 {
3774 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3775 INSERT);
3776
3777 *slot = per_cu->v.quick->file_names;
3778 }
3779 }
3780
3781 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3782 {
3783 int j;
3784 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3785 struct quick_file_names *file_data;
3786 void **slot;
3787
3788 /* We only need to look at symtabs not already expanded. */
3789 if (per_cu->v.quick->symtab)
3790 continue;
3791
3792 file_data = dw2_get_file_names (per_cu);
3793 if (file_data == NULL)
3794 continue;
3795
3796 slot = htab_find_slot (visited, file_data, INSERT);
3797 if (*slot)
3798 {
3799 /* Already visited. */
3800 continue;
3801 }
3802 *slot = file_data;
3803
3804 for (j = 0; j < file_data->num_file_names; ++j)
3805 {
3806 const char *this_real_name;
3807
3808 if (need_fullname)
3809 this_real_name = dw2_get_real_path (objfile, file_data, j);
3810 else
3811 this_real_name = NULL;
3812 (*fun) (file_data->file_names[j], this_real_name, data);
3813 }
3814 }
3815
3816 do_cleanups (cleanup);
3817 }
3818
3819 static int
3820 dw2_has_symbols (struct objfile *objfile)
3821 {
3822 return 1;
3823 }
3824
3825 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3826 {
3827 dw2_has_symbols,
3828 dw2_find_last_source_symtab,
3829 dw2_forget_cached_source_info,
3830 dw2_map_symtabs_matching_filename,
3831 dw2_lookup_symbol,
3832 dw2_print_stats,
3833 dw2_dump,
3834 dw2_relocate,
3835 dw2_expand_symtabs_for_function,
3836 dw2_expand_all_symtabs,
3837 dw2_expand_symtabs_with_fullname,
3838 dw2_find_symbol_file,
3839 dw2_map_matching_symbols,
3840 dw2_expand_symtabs_matching,
3841 dw2_find_pc_sect_symtab,
3842 dw2_map_symbol_filenames
3843 };
3844
3845 /* Initialize for reading DWARF for this objfile. Return 0 if this
3846 file will use psymtabs, or 1 if using the GNU index. */
3847
3848 int
3849 dwarf2_initialize_objfile (struct objfile *objfile)
3850 {
3851 /* If we're about to read full symbols, don't bother with the
3852 indices. In this case we also don't care if some other debug
3853 format is making psymtabs, because they are all about to be
3854 expanded anyway. */
3855 if ((objfile->flags & OBJF_READNOW))
3856 {
3857 int i;
3858
3859 dwarf2_per_objfile->using_index = 1;
3860 create_all_comp_units (objfile);
3861 create_all_type_units (objfile);
3862 dwarf2_per_objfile->quick_file_names_table =
3863 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3864
3865 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3866 + dwarf2_per_objfile->n_type_units); ++i)
3867 {
3868 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3869
3870 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3871 struct dwarf2_per_cu_quick_data);
3872 }
3873
3874 /* Return 1 so that gdb sees the "quick" functions. However,
3875 these functions will be no-ops because we will have expanded
3876 all symtabs. */
3877 return 1;
3878 }
3879
3880 if (dwarf2_read_index (objfile))
3881 return 1;
3882
3883 return 0;
3884 }
3885
3886 \f
3887
3888 /* Build a partial symbol table. */
3889
3890 void
3891 dwarf2_build_psymtabs (struct objfile *objfile)
3892 {
3893 volatile struct gdb_exception except;
3894
3895 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3896 {
3897 init_psymbol_list (objfile, 1024);
3898 }
3899
3900 TRY_CATCH (except, RETURN_MASK_ERROR)
3901 {
3902 /* This isn't really ideal: all the data we allocate on the
3903 objfile's obstack is still uselessly kept around. However,
3904 freeing it seems unsafe. */
3905 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3906
3907 dwarf2_build_psymtabs_hard (objfile);
3908 discard_cleanups (cleanups);
3909 }
3910 if (except.reason < 0)
3911 exception_print (gdb_stderr, except);
3912 }
3913
3914 /* Return the total length of the CU described by HEADER. */
3915
3916 static unsigned int
3917 get_cu_length (const struct comp_unit_head *header)
3918 {
3919 return header->initial_length_size + header->length;
3920 }
3921
3922 /* Return TRUE if OFFSET is within CU_HEADER. */
3923
3924 static inline int
3925 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3926 {
3927 sect_offset bottom = { cu_header->offset.sect_off };
3928 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3929
3930 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3931 }
3932
3933 /* Find the base address of the compilation unit for range lists and
3934 location lists. It will normally be specified by DW_AT_low_pc.
3935 In DWARF-3 draft 4, the base address could be overridden by
3936 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3937 compilation units with discontinuous ranges. */
3938
3939 static void
3940 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3941 {
3942 struct attribute *attr;
3943
3944 cu->base_known = 0;
3945 cu->base_address = 0;
3946
3947 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3948 if (attr)
3949 {
3950 cu->base_address = DW_ADDR (attr);
3951 cu->base_known = 1;
3952 }
3953 else
3954 {
3955 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3956 if (attr)
3957 {
3958 cu->base_address = DW_ADDR (attr);
3959 cu->base_known = 1;
3960 }
3961 }
3962 }
3963
3964 /* Read in the comp unit header information from the debug_info at info_ptr.
3965 NOTE: This leaves members offset, first_die_offset to be filled in
3966 by the caller. */
3967
3968 static const gdb_byte *
3969 read_comp_unit_head (struct comp_unit_head *cu_header,
3970 const gdb_byte *info_ptr, bfd *abfd)
3971 {
3972 int signed_addr;
3973 unsigned int bytes_read;
3974
3975 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3976 cu_header->initial_length_size = bytes_read;
3977 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3978 info_ptr += bytes_read;
3979 cu_header->version = read_2_bytes (abfd, info_ptr);
3980 info_ptr += 2;
3981 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3982 &bytes_read);
3983 info_ptr += bytes_read;
3984 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3985 info_ptr += 1;
3986 signed_addr = bfd_get_sign_extend_vma (abfd);
3987 if (signed_addr < 0)
3988 internal_error (__FILE__, __LINE__,
3989 _("read_comp_unit_head: dwarf from non elf file"));
3990 cu_header->signed_addr_p = signed_addr;
3991
3992 return info_ptr;
3993 }
3994
3995 /* Helper function that returns the proper abbrev section for
3996 THIS_CU. */
3997
3998 static struct dwarf2_section_info *
3999 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4000 {
4001 struct dwarf2_section_info *abbrev;
4002
4003 if (this_cu->is_dwz)
4004 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4005 else
4006 abbrev = &dwarf2_per_objfile->abbrev;
4007
4008 return abbrev;
4009 }
4010
4011 /* Subroutine of read_and_check_comp_unit_head and
4012 read_and_check_type_unit_head to simplify them.
4013 Perform various error checking on the header. */
4014
4015 static void
4016 error_check_comp_unit_head (struct comp_unit_head *header,
4017 struct dwarf2_section_info *section,
4018 struct dwarf2_section_info *abbrev_section)
4019 {
4020 bfd *abfd = section->asection->owner;
4021 const char *filename = bfd_get_filename (abfd);
4022
4023 if (header->version != 2 && header->version != 3 && header->version != 4)
4024 error (_("Dwarf Error: wrong version in compilation unit header "
4025 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4026 filename);
4027
4028 if (header->abbrev_offset.sect_off
4029 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4030 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4031 "(offset 0x%lx + 6) [in module %s]"),
4032 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4033 filename);
4034
4035 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4036 avoid potential 32-bit overflow. */
4037 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4038 > section->size)
4039 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4040 "(offset 0x%lx + 0) [in module %s]"),
4041 (long) header->length, (long) header->offset.sect_off,
4042 filename);
4043 }
4044
4045 /* Read in a CU/TU header and perform some basic error checking.
4046 The contents of the header are stored in HEADER.
4047 The result is a pointer to the start of the first DIE. */
4048
4049 static const gdb_byte *
4050 read_and_check_comp_unit_head (struct comp_unit_head *header,
4051 struct dwarf2_section_info *section,
4052 struct dwarf2_section_info *abbrev_section,
4053 const gdb_byte *info_ptr,
4054 int is_debug_types_section)
4055 {
4056 const gdb_byte *beg_of_comp_unit = info_ptr;
4057 bfd *abfd = section->asection->owner;
4058
4059 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4060
4061 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4062
4063 /* If we're reading a type unit, skip over the signature and
4064 type_offset fields. */
4065 if (is_debug_types_section)
4066 info_ptr += 8 /*signature*/ + header->offset_size;
4067
4068 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4069
4070 error_check_comp_unit_head (header, section, abbrev_section);
4071
4072 return info_ptr;
4073 }
4074
4075 /* Read in the types comp unit header information from .debug_types entry at
4076 types_ptr. The result is a pointer to one past the end of the header. */
4077
4078 static const gdb_byte *
4079 read_and_check_type_unit_head (struct comp_unit_head *header,
4080 struct dwarf2_section_info *section,
4081 struct dwarf2_section_info *abbrev_section,
4082 const gdb_byte *info_ptr,
4083 ULONGEST *signature,
4084 cu_offset *type_offset_in_tu)
4085 {
4086 const gdb_byte *beg_of_comp_unit = info_ptr;
4087 bfd *abfd = section->asection->owner;
4088
4089 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4090
4091 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4092
4093 /* If we're reading a type unit, skip over the signature and
4094 type_offset fields. */
4095 if (signature != NULL)
4096 *signature = read_8_bytes (abfd, info_ptr);
4097 info_ptr += 8;
4098 if (type_offset_in_tu != NULL)
4099 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4100 header->offset_size);
4101 info_ptr += header->offset_size;
4102
4103 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4104
4105 error_check_comp_unit_head (header, section, abbrev_section);
4106
4107 return info_ptr;
4108 }
4109
4110 /* Fetch the abbreviation table offset from a comp or type unit header. */
4111
4112 static sect_offset
4113 read_abbrev_offset (struct dwarf2_section_info *section,
4114 sect_offset offset)
4115 {
4116 bfd *abfd = section->asection->owner;
4117 const gdb_byte *info_ptr;
4118 unsigned int length, initial_length_size, offset_size;
4119 sect_offset abbrev_offset;
4120
4121 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4122 info_ptr = section->buffer + offset.sect_off;
4123 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4124 offset_size = initial_length_size == 4 ? 4 : 8;
4125 info_ptr += initial_length_size + 2 /*version*/;
4126 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4127 return abbrev_offset;
4128 }
4129
4130 /* Allocate a new partial symtab for file named NAME and mark this new
4131 partial symtab as being an include of PST. */
4132
4133 static void
4134 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4135 struct objfile *objfile)
4136 {
4137 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4138
4139 if (!IS_ABSOLUTE_PATH (subpst->filename))
4140 {
4141 /* It shares objfile->objfile_obstack. */
4142 subpst->dirname = pst->dirname;
4143 }
4144
4145 subpst->section_offsets = pst->section_offsets;
4146 subpst->textlow = 0;
4147 subpst->texthigh = 0;
4148
4149 subpst->dependencies = (struct partial_symtab **)
4150 obstack_alloc (&objfile->objfile_obstack,
4151 sizeof (struct partial_symtab *));
4152 subpst->dependencies[0] = pst;
4153 subpst->number_of_dependencies = 1;
4154
4155 subpst->globals_offset = 0;
4156 subpst->n_global_syms = 0;
4157 subpst->statics_offset = 0;
4158 subpst->n_static_syms = 0;
4159 subpst->symtab = NULL;
4160 subpst->read_symtab = pst->read_symtab;
4161 subpst->readin = 0;
4162
4163 /* No private part is necessary for include psymtabs. This property
4164 can be used to differentiate between such include psymtabs and
4165 the regular ones. */
4166 subpst->read_symtab_private = NULL;
4167 }
4168
4169 /* Read the Line Number Program data and extract the list of files
4170 included by the source file represented by PST. Build an include
4171 partial symtab for each of these included files. */
4172
4173 static void
4174 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4175 struct die_info *die,
4176 struct partial_symtab *pst)
4177 {
4178 struct line_header *lh = NULL;
4179 struct attribute *attr;
4180
4181 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4182 if (attr)
4183 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4184 if (lh == NULL)
4185 return; /* No linetable, so no includes. */
4186
4187 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4188 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4189
4190 free_line_header (lh);
4191 }
4192
4193 static hashval_t
4194 hash_signatured_type (const void *item)
4195 {
4196 const struct signatured_type *sig_type = item;
4197
4198 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4199 return sig_type->signature;
4200 }
4201
4202 static int
4203 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4204 {
4205 const struct signatured_type *lhs = item_lhs;
4206 const struct signatured_type *rhs = item_rhs;
4207
4208 return lhs->signature == rhs->signature;
4209 }
4210
4211 /* Allocate a hash table for signatured types. */
4212
4213 static htab_t
4214 allocate_signatured_type_table (struct objfile *objfile)
4215 {
4216 return htab_create_alloc_ex (41,
4217 hash_signatured_type,
4218 eq_signatured_type,
4219 NULL,
4220 &objfile->objfile_obstack,
4221 hashtab_obstack_allocate,
4222 dummy_obstack_deallocate);
4223 }
4224
4225 /* A helper function to add a signatured type CU to a table. */
4226
4227 static int
4228 add_signatured_type_cu_to_table (void **slot, void *datum)
4229 {
4230 struct signatured_type *sigt = *slot;
4231 struct signatured_type ***datap = datum;
4232
4233 **datap = sigt;
4234 ++*datap;
4235
4236 return 1;
4237 }
4238
4239 /* Create the hash table of all entries in the .debug_types
4240 (or .debug_types.dwo) section(s).
4241 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4242 otherwise it is NULL.
4243
4244 The result is a pointer to the hash table or NULL if there are no types.
4245
4246 Note: This function processes DWO files only, not DWP files. */
4247
4248 static htab_t
4249 create_debug_types_hash_table (struct dwo_file *dwo_file,
4250 VEC (dwarf2_section_info_def) *types)
4251 {
4252 struct objfile *objfile = dwarf2_per_objfile->objfile;
4253 htab_t types_htab = NULL;
4254 int ix;
4255 struct dwarf2_section_info *section;
4256 struct dwarf2_section_info *abbrev_section;
4257
4258 if (VEC_empty (dwarf2_section_info_def, types))
4259 return NULL;
4260
4261 abbrev_section = (dwo_file != NULL
4262 ? &dwo_file->sections.abbrev
4263 : &dwarf2_per_objfile->abbrev);
4264
4265 if (dwarf2_read_debug)
4266 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4267 dwo_file ? ".dwo" : "",
4268 bfd_get_filename (abbrev_section->asection->owner));
4269
4270 for (ix = 0;
4271 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4272 ++ix)
4273 {
4274 bfd *abfd;
4275 const gdb_byte *info_ptr, *end_ptr;
4276 struct dwarf2_section_info *abbrev_section;
4277
4278 dwarf2_read_section (objfile, section);
4279 info_ptr = section->buffer;
4280
4281 if (info_ptr == NULL)
4282 continue;
4283
4284 /* We can't set abfd until now because the section may be empty or
4285 not present, in which case section->asection will be NULL. */
4286 abfd = section->asection->owner;
4287
4288 if (dwo_file)
4289 abbrev_section = &dwo_file->sections.abbrev;
4290 else
4291 abbrev_section = &dwarf2_per_objfile->abbrev;
4292
4293 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4294 because we don't need to read any dies: the signature is in the
4295 header. */
4296
4297 end_ptr = info_ptr + section->size;
4298 while (info_ptr < end_ptr)
4299 {
4300 sect_offset offset;
4301 cu_offset type_offset_in_tu;
4302 ULONGEST signature;
4303 struct signatured_type *sig_type;
4304 struct dwo_unit *dwo_tu;
4305 void **slot;
4306 const gdb_byte *ptr = info_ptr;
4307 struct comp_unit_head header;
4308 unsigned int length;
4309
4310 offset.sect_off = ptr - section->buffer;
4311
4312 /* We need to read the type's signature in order to build the hash
4313 table, but we don't need anything else just yet. */
4314
4315 ptr = read_and_check_type_unit_head (&header, section,
4316 abbrev_section, ptr,
4317 &signature, &type_offset_in_tu);
4318
4319 length = get_cu_length (&header);
4320
4321 /* Skip dummy type units. */
4322 if (ptr >= info_ptr + length
4323 || peek_abbrev_code (abfd, ptr) == 0)
4324 {
4325 info_ptr += length;
4326 continue;
4327 }
4328
4329 if (types_htab == NULL)
4330 {
4331 if (dwo_file)
4332 types_htab = allocate_dwo_unit_table (objfile);
4333 else
4334 types_htab = allocate_signatured_type_table (objfile);
4335 }
4336
4337 if (dwo_file)
4338 {
4339 sig_type = NULL;
4340 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4341 struct dwo_unit);
4342 dwo_tu->dwo_file = dwo_file;
4343 dwo_tu->signature = signature;
4344 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4345 dwo_tu->section = section;
4346 dwo_tu->offset = offset;
4347 dwo_tu->length = length;
4348 }
4349 else
4350 {
4351 /* N.B.: type_offset is not usable if this type uses a DWO file.
4352 The real type_offset is in the DWO file. */
4353 dwo_tu = NULL;
4354 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4355 struct signatured_type);
4356 sig_type->signature = signature;
4357 sig_type->type_offset_in_tu = type_offset_in_tu;
4358 sig_type->per_cu.objfile = objfile;
4359 sig_type->per_cu.is_debug_types = 1;
4360 sig_type->per_cu.section = section;
4361 sig_type->per_cu.offset = offset;
4362 sig_type->per_cu.length = length;
4363 }
4364
4365 slot = htab_find_slot (types_htab,
4366 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4367 INSERT);
4368 gdb_assert (slot != NULL);
4369 if (*slot != NULL)
4370 {
4371 sect_offset dup_offset;
4372
4373 if (dwo_file)
4374 {
4375 const struct dwo_unit *dup_tu = *slot;
4376
4377 dup_offset = dup_tu->offset;
4378 }
4379 else
4380 {
4381 const struct signatured_type *dup_tu = *slot;
4382
4383 dup_offset = dup_tu->per_cu.offset;
4384 }
4385
4386 complaint (&symfile_complaints,
4387 _("debug type entry at offset 0x%x is duplicate to"
4388 " the entry at offset 0x%x, signature %s"),
4389 offset.sect_off, dup_offset.sect_off,
4390 hex_string (signature));
4391 }
4392 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4393
4394 if (dwarf2_read_debug)
4395 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4396 offset.sect_off,
4397 hex_string (signature));
4398
4399 info_ptr += length;
4400 }
4401 }
4402
4403 return types_htab;
4404 }
4405
4406 /* Create the hash table of all entries in the .debug_types section,
4407 and initialize all_type_units.
4408 The result is zero if there is an error (e.g. missing .debug_types section),
4409 otherwise non-zero. */
4410
4411 static int
4412 create_all_type_units (struct objfile *objfile)
4413 {
4414 htab_t types_htab;
4415 struct signatured_type **iter;
4416
4417 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4418 if (types_htab == NULL)
4419 {
4420 dwarf2_per_objfile->signatured_types = NULL;
4421 return 0;
4422 }
4423
4424 dwarf2_per_objfile->signatured_types = types_htab;
4425
4426 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4427 dwarf2_per_objfile->all_type_units
4428 = xmalloc (dwarf2_per_objfile->n_type_units
4429 * sizeof (struct signatured_type *));
4430 iter = &dwarf2_per_objfile->all_type_units[0];
4431 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4432 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4433 == dwarf2_per_objfile->n_type_units);
4434
4435 return 1;
4436 }
4437
4438 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4439 Fill in SIG_ENTRY with DWO_ENTRY. */
4440
4441 static void
4442 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4443 struct signatured_type *sig_entry,
4444 struct dwo_unit *dwo_entry)
4445 {
4446 sig_entry->per_cu.section = dwo_entry->section;
4447 sig_entry->per_cu.offset = dwo_entry->offset;
4448 sig_entry->per_cu.length = dwo_entry->length;
4449 sig_entry->per_cu.reading_dwo_directly = 1;
4450 sig_entry->per_cu.objfile = objfile;
4451 gdb_assert (! sig_entry->per_cu.queued);
4452 gdb_assert (sig_entry->per_cu.cu == NULL);
4453 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4454 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4455 gdb_assert (sig_entry->signature == dwo_entry->signature);
4456 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4457 gdb_assert (sig_entry->type_unit_group == NULL);
4458 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4459 sig_entry->dwo_unit = dwo_entry;
4460 }
4461
4462 /* Subroutine of lookup_signatured_type.
4463 Create the signatured_type data structure for a TU to be read in
4464 directly from a DWO file, bypassing the stub.
4465 We do this for the case where there is no DWP file and we're using
4466 .gdb_index: When reading a CU we want to stay in the DWO file containing
4467 that CU. Otherwise we could end up reading several other DWO files (due
4468 to comdat folding) to process the transitive closure of all the mentioned
4469 TUs, and that can be slow. The current DWO file will have every type
4470 signature that it needs.
4471 We only do this for .gdb_index because in the psymtab case we already have
4472 to read all the DWOs to build the type unit groups. */
4473
4474 static struct signatured_type *
4475 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4476 {
4477 struct objfile *objfile = dwarf2_per_objfile->objfile;
4478 struct dwo_file *dwo_file;
4479 struct dwo_unit find_dwo_entry, *dwo_entry;
4480 struct signatured_type find_sig_entry, *sig_entry;
4481
4482 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4483
4484 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4485 dwo_unit of the TU itself. */
4486 dwo_file = cu->dwo_unit->dwo_file;
4487
4488 /* We only ever need to read in one copy of a signatured type.
4489 Just use the global signatured_types array. If this is the first time
4490 we're reading this type, replace the recorded data from .gdb_index with
4491 this TU. */
4492
4493 if (dwarf2_per_objfile->signatured_types == NULL)
4494 return NULL;
4495 find_sig_entry.signature = sig;
4496 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4497 if (sig_entry == NULL)
4498 return NULL;
4499 /* Have we already tried to read this TU? */
4500 if (sig_entry->dwo_unit != NULL)
4501 return sig_entry;
4502
4503 /* Ok, this is the first time we're reading this TU. */
4504 if (dwo_file->tus == NULL)
4505 return NULL;
4506 find_dwo_entry.signature = sig;
4507 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4508 if (dwo_entry == NULL)
4509 return NULL;
4510
4511 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4512 return sig_entry;
4513 }
4514
4515 /* Subroutine of lookup_dwp_signatured_type.
4516 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4517
4518 static struct signatured_type *
4519 add_type_unit (ULONGEST sig)
4520 {
4521 struct objfile *objfile = dwarf2_per_objfile->objfile;
4522 int n_type_units = dwarf2_per_objfile->n_type_units;
4523 struct signatured_type *sig_type;
4524 void **slot;
4525
4526 ++n_type_units;
4527 dwarf2_per_objfile->all_type_units =
4528 xrealloc (dwarf2_per_objfile->all_type_units,
4529 n_type_units * sizeof (struct signatured_type *));
4530 dwarf2_per_objfile->n_type_units = n_type_units;
4531 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4532 struct signatured_type);
4533 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4534 sig_type->signature = sig;
4535 sig_type->per_cu.is_debug_types = 1;
4536 sig_type->per_cu.v.quick =
4537 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4538 struct dwarf2_per_cu_quick_data);
4539 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4540 sig_type, INSERT);
4541 gdb_assert (*slot == NULL);
4542 *slot = sig_type;
4543 /* The rest of sig_type must be filled in by the caller. */
4544 return sig_type;
4545 }
4546
4547 /* Subroutine of lookup_signatured_type.
4548 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4549 then try the DWP file.
4550 Normally this "can't happen", but if there's a bug in signature
4551 generation and/or the DWP file is built incorrectly, it can happen.
4552 Using the type directly from the DWP file means we don't have the stub
4553 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4554 not critical. [Eventually the stub may go away for type units anyway.] */
4555
4556 static struct signatured_type *
4557 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4558 {
4559 struct objfile *objfile = dwarf2_per_objfile->objfile;
4560 struct dwp_file *dwp_file = get_dwp_file ();
4561 struct dwo_unit *dwo_entry;
4562 struct signatured_type find_sig_entry, *sig_entry;
4563
4564 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4565 gdb_assert (dwp_file != NULL);
4566
4567 if (dwarf2_per_objfile->signatured_types != NULL)
4568 {
4569 find_sig_entry.signature = sig;
4570 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4571 &find_sig_entry);
4572 if (sig_entry != NULL)
4573 return sig_entry;
4574 }
4575
4576 /* This is the "shouldn't happen" case.
4577 Try the DWP file and hope for the best. */
4578 if (dwp_file->tus == NULL)
4579 return NULL;
4580 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4581 sig, 1 /* is_debug_types */);
4582 if (dwo_entry == NULL)
4583 return NULL;
4584
4585 sig_entry = add_type_unit (sig);
4586 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4587
4588 /* The caller will signal a complaint if we return NULL.
4589 Here we don't return NULL but we still want to complain. */
4590 complaint (&symfile_complaints,
4591 _("Bad type signature %s referenced by %s at 0x%x,"
4592 " coping by using copy in DWP [in module %s]"),
4593 hex_string (sig),
4594 cu->per_cu->is_debug_types ? "TU" : "CU",
4595 cu->per_cu->offset.sect_off,
4596 objfile->name);
4597
4598 return sig_entry;
4599 }
4600
4601 /* Lookup a signature based type for DW_FORM_ref_sig8.
4602 Returns NULL if signature SIG is not present in the table.
4603 It is up to the caller to complain about this. */
4604
4605 static struct signatured_type *
4606 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4607 {
4608 if (cu->dwo_unit
4609 && dwarf2_per_objfile->using_index)
4610 {
4611 /* We're in a DWO/DWP file, and we're using .gdb_index.
4612 These cases require special processing. */
4613 if (get_dwp_file () == NULL)
4614 return lookup_dwo_signatured_type (cu, sig);
4615 else
4616 return lookup_dwp_signatured_type (cu, sig);
4617 }
4618 else
4619 {
4620 struct signatured_type find_entry, *entry;
4621
4622 if (dwarf2_per_objfile->signatured_types == NULL)
4623 return NULL;
4624 find_entry.signature = sig;
4625 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4626 return entry;
4627 }
4628 }
4629 \f
4630 /* Low level DIE reading support. */
4631
4632 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4633
4634 static void
4635 init_cu_die_reader (struct die_reader_specs *reader,
4636 struct dwarf2_cu *cu,
4637 struct dwarf2_section_info *section,
4638 struct dwo_file *dwo_file)
4639 {
4640 gdb_assert (section->readin && section->buffer != NULL);
4641 reader->abfd = section->asection->owner;
4642 reader->cu = cu;
4643 reader->dwo_file = dwo_file;
4644 reader->die_section = section;
4645 reader->buffer = section->buffer;
4646 reader->buffer_end = section->buffer + section->size;
4647 reader->comp_dir = NULL;
4648 }
4649
4650 /* Subroutine of init_cutu_and_read_dies to simplify it.
4651 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4652 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4653 already.
4654
4655 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4656 from it to the DIE in the DWO. If NULL we are skipping the stub.
4657 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4658 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4659 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4660 COMP_DIR must be non-NULL.
4661 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4662 are filled in with the info of the DIE from the DWO file.
4663 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4664 provided an abbrev table to use.
4665 The result is non-zero if a valid (non-dummy) DIE was found. */
4666
4667 static int
4668 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4669 struct dwo_unit *dwo_unit,
4670 int abbrev_table_provided,
4671 struct die_info *stub_comp_unit_die,
4672 const char *stub_comp_dir,
4673 struct die_reader_specs *result_reader,
4674 const gdb_byte **result_info_ptr,
4675 struct die_info **result_comp_unit_die,
4676 int *result_has_children)
4677 {
4678 struct objfile *objfile = dwarf2_per_objfile->objfile;
4679 struct dwarf2_cu *cu = this_cu->cu;
4680 struct dwarf2_section_info *section;
4681 bfd *abfd;
4682 const gdb_byte *begin_info_ptr, *info_ptr;
4683 const char *comp_dir_string;
4684 ULONGEST signature; /* Or dwo_id. */
4685 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4686 int i,num_extra_attrs;
4687 struct dwarf2_section_info *dwo_abbrev_section;
4688 struct attribute *attr;
4689 struct attribute comp_dir_attr;
4690 struct die_info *comp_unit_die;
4691
4692 /* Both can't be provided. */
4693 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4694
4695 /* These attributes aren't processed until later:
4696 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4697 However, the attribute is found in the stub which we won't have later.
4698 In order to not impose this complication on the rest of the code,
4699 we read them here and copy them to the DWO CU/TU die. */
4700
4701 stmt_list = NULL;
4702 low_pc = NULL;
4703 high_pc = NULL;
4704 ranges = NULL;
4705 comp_dir = NULL;
4706
4707 if (stub_comp_unit_die != NULL)
4708 {
4709 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4710 DWO file. */
4711 if (! this_cu->is_debug_types)
4712 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4713 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4714 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4715 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4716 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4717
4718 /* There should be a DW_AT_addr_base attribute here (if needed).
4719 We need the value before we can process DW_FORM_GNU_addr_index. */
4720 cu->addr_base = 0;
4721 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4722 if (attr)
4723 cu->addr_base = DW_UNSND (attr);
4724
4725 /* There should be a DW_AT_ranges_base attribute here (if needed).
4726 We need the value before we can process DW_AT_ranges. */
4727 cu->ranges_base = 0;
4728 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4729 if (attr)
4730 cu->ranges_base = DW_UNSND (attr);
4731 }
4732 else if (stub_comp_dir != NULL)
4733 {
4734 /* Reconstruct the comp_dir attribute to simplify the code below. */
4735 comp_dir = (struct attribute *)
4736 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4737 comp_dir->name = DW_AT_comp_dir;
4738 comp_dir->form = DW_FORM_string;
4739 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4740 DW_STRING (comp_dir) = stub_comp_dir;
4741 }
4742
4743 /* Set up for reading the DWO CU/TU. */
4744 cu->dwo_unit = dwo_unit;
4745 section = dwo_unit->section;
4746 dwarf2_read_section (objfile, section);
4747 abfd = section->asection->owner;
4748 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4749 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4750 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4751
4752 if (this_cu->is_debug_types)
4753 {
4754 ULONGEST header_signature;
4755 cu_offset type_offset_in_tu;
4756 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4757
4758 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4759 dwo_abbrev_section,
4760 info_ptr,
4761 &header_signature,
4762 &type_offset_in_tu);
4763 /* This is not an assert because it can be caused by bad debug info. */
4764 if (sig_type->signature != header_signature)
4765 {
4766 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4767 " TU at offset 0x%x [in module %s]"),
4768 hex_string (sig_type->signature),
4769 hex_string (header_signature),
4770 dwo_unit->offset.sect_off,
4771 bfd_get_filename (abfd));
4772 }
4773 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4774 /* For DWOs coming from DWP files, we don't know the CU length
4775 nor the type's offset in the TU until now. */
4776 dwo_unit->length = get_cu_length (&cu->header);
4777 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4778
4779 /* Establish the type offset that can be used to lookup the type.
4780 For DWO files, we don't know it until now. */
4781 sig_type->type_offset_in_section.sect_off =
4782 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4783 }
4784 else
4785 {
4786 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4787 dwo_abbrev_section,
4788 info_ptr, 0);
4789 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4790 /* For DWOs coming from DWP files, we don't know the CU length
4791 until now. */
4792 dwo_unit->length = get_cu_length (&cu->header);
4793 }
4794
4795 /* Replace the CU's original abbrev table with the DWO's.
4796 Reminder: We can't read the abbrev table until we've read the header. */
4797 if (abbrev_table_provided)
4798 {
4799 /* Don't free the provided abbrev table, the caller of
4800 init_cutu_and_read_dies owns it. */
4801 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4802 /* Ensure the DWO abbrev table gets freed. */
4803 make_cleanup (dwarf2_free_abbrev_table, cu);
4804 }
4805 else
4806 {
4807 dwarf2_free_abbrev_table (cu);
4808 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4809 /* Leave any existing abbrev table cleanup as is. */
4810 }
4811
4812 /* Read in the die, but leave space to copy over the attributes
4813 from the stub. This has the benefit of simplifying the rest of
4814 the code - all the work to maintain the illusion of a single
4815 DW_TAG_{compile,type}_unit DIE is done here. */
4816 num_extra_attrs = ((stmt_list != NULL)
4817 + (low_pc != NULL)
4818 + (high_pc != NULL)
4819 + (ranges != NULL)
4820 + (comp_dir != NULL));
4821 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4822 result_has_children, num_extra_attrs);
4823
4824 /* Copy over the attributes from the stub to the DIE we just read in. */
4825 comp_unit_die = *result_comp_unit_die;
4826 i = comp_unit_die->num_attrs;
4827 if (stmt_list != NULL)
4828 comp_unit_die->attrs[i++] = *stmt_list;
4829 if (low_pc != NULL)
4830 comp_unit_die->attrs[i++] = *low_pc;
4831 if (high_pc != NULL)
4832 comp_unit_die->attrs[i++] = *high_pc;
4833 if (ranges != NULL)
4834 comp_unit_die->attrs[i++] = *ranges;
4835 if (comp_dir != NULL)
4836 comp_unit_die->attrs[i++] = *comp_dir;
4837 comp_unit_die->num_attrs += num_extra_attrs;
4838
4839 if (dwarf2_die_debug)
4840 {
4841 fprintf_unfiltered (gdb_stdlog,
4842 "Read die from %s@0x%x of %s:\n",
4843 bfd_section_name (abfd, section->asection),
4844 (unsigned) (begin_info_ptr - section->buffer),
4845 bfd_get_filename (abfd));
4846 dump_die (comp_unit_die, dwarf2_die_debug);
4847 }
4848
4849 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4850 TUs by skipping the stub and going directly to the entry in the DWO file.
4851 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4852 to get it via circuitous means. Blech. */
4853 if (comp_dir != NULL)
4854 result_reader->comp_dir = DW_STRING (comp_dir);
4855
4856 /* Skip dummy compilation units. */
4857 if (info_ptr >= begin_info_ptr + dwo_unit->length
4858 || peek_abbrev_code (abfd, info_ptr) == 0)
4859 return 0;
4860
4861 *result_info_ptr = info_ptr;
4862 return 1;
4863 }
4864
4865 /* Subroutine of init_cutu_and_read_dies to simplify it.
4866 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4867 Returns NULL if the specified DWO unit cannot be found. */
4868
4869 static struct dwo_unit *
4870 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4871 struct die_info *comp_unit_die)
4872 {
4873 struct dwarf2_cu *cu = this_cu->cu;
4874 struct attribute *attr;
4875 ULONGEST signature;
4876 struct dwo_unit *dwo_unit;
4877 const char *comp_dir, *dwo_name;
4878
4879 gdb_assert (cu != NULL);
4880
4881 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4882 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4883 gdb_assert (attr != NULL);
4884 dwo_name = DW_STRING (attr);
4885 comp_dir = NULL;
4886 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4887 if (attr)
4888 comp_dir = DW_STRING (attr);
4889
4890 if (this_cu->is_debug_types)
4891 {
4892 struct signatured_type *sig_type;
4893
4894 /* Since this_cu is the first member of struct signatured_type,
4895 we can go from a pointer to one to a pointer to the other. */
4896 sig_type = (struct signatured_type *) this_cu;
4897 signature = sig_type->signature;
4898 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4899 }
4900 else
4901 {
4902 struct attribute *attr;
4903
4904 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4905 if (! attr)
4906 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4907 " [in module %s]"),
4908 dwo_name, this_cu->objfile->name);
4909 signature = DW_UNSND (attr);
4910 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4911 signature);
4912 }
4913
4914 return dwo_unit;
4915 }
4916
4917 /* Subroutine of init_cutu_and_read_dies to simplify it.
4918 Read a TU directly from a DWO file, bypassing the stub. */
4919
4920 static void
4921 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4922 die_reader_func_ftype *die_reader_func,
4923 void *data)
4924 {
4925 struct dwarf2_cu *cu;
4926 struct signatured_type *sig_type;
4927 struct cleanup *cleanups, *free_cu_cleanup;
4928 struct die_reader_specs reader;
4929 const gdb_byte *info_ptr;
4930 struct die_info *comp_unit_die;
4931 int has_children;
4932
4933 /* Verify we can do the following downcast, and that we have the
4934 data we need. */
4935 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4936 sig_type = (struct signatured_type *) this_cu;
4937 gdb_assert (sig_type->dwo_unit != NULL);
4938
4939 cleanups = make_cleanup (null_cleanup, NULL);
4940
4941 gdb_assert (this_cu->cu == NULL);
4942 cu = xmalloc (sizeof (*cu));
4943 init_one_comp_unit (cu, this_cu);
4944 /* If an error occurs while loading, release our storage. */
4945 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4946
4947 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4948 0 /* abbrev_table_provided */,
4949 NULL /* stub_comp_unit_die */,
4950 sig_type->dwo_unit->dwo_file->comp_dir,
4951 &reader, &info_ptr,
4952 &comp_unit_die, &has_children) == 0)
4953 {
4954 /* Dummy die. */
4955 do_cleanups (cleanups);
4956 return;
4957 }
4958
4959 /* All the "real" work is done here. */
4960 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4961
4962 /* This duplicates some code in init_cutu_and_read_dies,
4963 but the alternative is making the latter more complex.
4964 This function is only for the special case of using DWO files directly:
4965 no point in overly complicating the general case just to handle this. */
4966 if (keep)
4967 {
4968 /* We've successfully allocated this compilation unit. Let our
4969 caller clean it up when finished with it. */
4970 discard_cleanups (free_cu_cleanup);
4971
4972 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4973 So we have to manually free the abbrev table. */
4974 dwarf2_free_abbrev_table (cu);
4975
4976 /* Link this CU into read_in_chain. */
4977 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4978 dwarf2_per_objfile->read_in_chain = this_cu;
4979 }
4980 else
4981 do_cleanups (free_cu_cleanup);
4982
4983 do_cleanups (cleanups);
4984 }
4985
4986 /* Initialize a CU (or TU) and read its DIEs.
4987 If the CU defers to a DWO file, read the DWO file as well.
4988
4989 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4990 Otherwise the table specified in the comp unit header is read in and used.
4991 This is an optimization for when we already have the abbrev table.
4992
4993 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4994 Otherwise, a new CU is allocated with xmalloc.
4995
4996 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4997 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4998
4999 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5000 linker) then DIE_READER_FUNC will not get called. */
5001
5002 static void
5003 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5004 struct abbrev_table *abbrev_table,
5005 int use_existing_cu, int keep,
5006 die_reader_func_ftype *die_reader_func,
5007 void *data)
5008 {
5009 struct objfile *objfile = dwarf2_per_objfile->objfile;
5010 struct dwarf2_section_info *section = this_cu->section;
5011 bfd *abfd = section->asection->owner;
5012 struct dwarf2_cu *cu;
5013 const gdb_byte *begin_info_ptr, *info_ptr;
5014 struct die_reader_specs reader;
5015 struct die_info *comp_unit_die;
5016 int has_children;
5017 struct attribute *attr;
5018 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5019 struct signatured_type *sig_type = NULL;
5020 struct dwarf2_section_info *abbrev_section;
5021 /* Non-zero if CU currently points to a DWO file and we need to
5022 reread it. When this happens we need to reread the skeleton die
5023 before we can reread the DWO file (this only applies to CUs, not TUs). */
5024 int rereading_dwo_cu = 0;
5025
5026 if (dwarf2_die_debug)
5027 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5028 this_cu->is_debug_types ? "type" : "comp",
5029 this_cu->offset.sect_off);
5030
5031 if (use_existing_cu)
5032 gdb_assert (keep);
5033
5034 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5035 file (instead of going through the stub), short-circuit all of this. */
5036 if (this_cu->reading_dwo_directly)
5037 {
5038 /* Narrow down the scope of possibilities to have to understand. */
5039 gdb_assert (this_cu->is_debug_types);
5040 gdb_assert (abbrev_table == NULL);
5041 gdb_assert (!use_existing_cu);
5042 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5043 return;
5044 }
5045
5046 cleanups = make_cleanup (null_cleanup, NULL);
5047
5048 /* This is cheap if the section is already read in. */
5049 dwarf2_read_section (objfile, section);
5050
5051 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5052
5053 abbrev_section = get_abbrev_section_for_cu (this_cu);
5054
5055 if (use_existing_cu && this_cu->cu != NULL)
5056 {
5057 cu = this_cu->cu;
5058
5059 /* If this CU is from a DWO file we need to start over, we need to
5060 refetch the attributes from the skeleton CU.
5061 This could be optimized by retrieving those attributes from when we
5062 were here the first time: the previous comp_unit_die was stored in
5063 comp_unit_obstack. But there's no data yet that we need this
5064 optimization. */
5065 if (cu->dwo_unit != NULL)
5066 rereading_dwo_cu = 1;
5067 }
5068 else
5069 {
5070 /* If !use_existing_cu, this_cu->cu must be NULL. */
5071 gdb_assert (this_cu->cu == NULL);
5072
5073 cu = xmalloc (sizeof (*cu));
5074 init_one_comp_unit (cu, this_cu);
5075
5076 /* If an error occurs while loading, release our storage. */
5077 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5078 }
5079
5080 /* Get the header. */
5081 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5082 {
5083 /* We already have the header, there's no need to read it in again. */
5084 info_ptr += cu->header.first_die_offset.cu_off;
5085 }
5086 else
5087 {
5088 if (this_cu->is_debug_types)
5089 {
5090 ULONGEST signature;
5091 cu_offset type_offset_in_tu;
5092
5093 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5094 abbrev_section, info_ptr,
5095 &signature,
5096 &type_offset_in_tu);
5097
5098 /* Since per_cu is the first member of struct signatured_type,
5099 we can go from a pointer to one to a pointer to the other. */
5100 sig_type = (struct signatured_type *) this_cu;
5101 gdb_assert (sig_type->signature == signature);
5102 gdb_assert (sig_type->type_offset_in_tu.cu_off
5103 == type_offset_in_tu.cu_off);
5104 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5105
5106 /* LENGTH has not been set yet for type units if we're
5107 using .gdb_index. */
5108 this_cu->length = get_cu_length (&cu->header);
5109
5110 /* Establish the type offset that can be used to lookup the type. */
5111 sig_type->type_offset_in_section.sect_off =
5112 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5113 }
5114 else
5115 {
5116 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5117 abbrev_section,
5118 info_ptr, 0);
5119
5120 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5121 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5122 }
5123 }
5124
5125 /* Skip dummy compilation units. */
5126 if (info_ptr >= begin_info_ptr + this_cu->length
5127 || peek_abbrev_code (abfd, info_ptr) == 0)
5128 {
5129 do_cleanups (cleanups);
5130 return;
5131 }
5132
5133 /* If we don't have them yet, read the abbrevs for this compilation unit.
5134 And if we need to read them now, make sure they're freed when we're
5135 done. Note that it's important that if the CU had an abbrev table
5136 on entry we don't free it when we're done: Somewhere up the call stack
5137 it may be in use. */
5138 if (abbrev_table != NULL)
5139 {
5140 gdb_assert (cu->abbrev_table == NULL);
5141 gdb_assert (cu->header.abbrev_offset.sect_off
5142 == abbrev_table->offset.sect_off);
5143 cu->abbrev_table = abbrev_table;
5144 }
5145 else if (cu->abbrev_table == NULL)
5146 {
5147 dwarf2_read_abbrevs (cu, abbrev_section);
5148 make_cleanup (dwarf2_free_abbrev_table, cu);
5149 }
5150 else if (rereading_dwo_cu)
5151 {
5152 dwarf2_free_abbrev_table (cu);
5153 dwarf2_read_abbrevs (cu, abbrev_section);
5154 }
5155
5156 /* Read the top level CU/TU die. */
5157 init_cu_die_reader (&reader, cu, section, NULL);
5158 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5159
5160 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5161 from the DWO file.
5162 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5163 DWO CU, that this test will fail (the attribute will not be present). */
5164 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5165 if (attr)
5166 {
5167 struct dwo_unit *dwo_unit;
5168 struct die_info *dwo_comp_unit_die;
5169
5170 if (has_children)
5171 {
5172 complaint (&symfile_complaints,
5173 _("compilation unit with DW_AT_GNU_dwo_name"
5174 " has children (offset 0x%x) [in module %s]"),
5175 this_cu->offset.sect_off, bfd_get_filename (abfd));
5176 }
5177 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5178 if (dwo_unit != NULL)
5179 {
5180 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5181 abbrev_table != NULL,
5182 comp_unit_die, NULL,
5183 &reader, &info_ptr,
5184 &dwo_comp_unit_die, &has_children) == 0)
5185 {
5186 /* Dummy die. */
5187 do_cleanups (cleanups);
5188 return;
5189 }
5190 comp_unit_die = dwo_comp_unit_die;
5191 }
5192 else
5193 {
5194 /* Yikes, we couldn't find the rest of the DIE, we only have
5195 the stub. A complaint has already been logged. There's
5196 not much more we can do except pass on the stub DIE to
5197 die_reader_func. We don't want to throw an error on bad
5198 debug info. */
5199 }
5200 }
5201
5202 /* All of the above is setup for this call. Yikes. */
5203 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5204
5205 /* Done, clean up. */
5206 if (free_cu_cleanup != NULL)
5207 {
5208 if (keep)
5209 {
5210 /* We've successfully allocated this compilation unit. Let our
5211 caller clean it up when finished with it. */
5212 discard_cleanups (free_cu_cleanup);
5213
5214 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5215 So we have to manually free the abbrev table. */
5216 dwarf2_free_abbrev_table (cu);
5217
5218 /* Link this CU into read_in_chain. */
5219 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5220 dwarf2_per_objfile->read_in_chain = this_cu;
5221 }
5222 else
5223 do_cleanups (free_cu_cleanup);
5224 }
5225
5226 do_cleanups (cleanups);
5227 }
5228
5229 /* Read CU/TU THIS_CU in section SECTION,
5230 but do not follow DW_AT_GNU_dwo_name if present.
5231 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5232 to have already done the lookup to find the DWO/DWP file).
5233
5234 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5235 THIS_CU->is_debug_types, but nothing else.
5236
5237 We fill in THIS_CU->length.
5238
5239 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5240 linker) then DIE_READER_FUNC will not get called.
5241
5242 THIS_CU->cu is always freed when done.
5243 This is done in order to not leave THIS_CU->cu in a state where we have
5244 to care whether it refers to the "main" CU or the DWO CU. */
5245
5246 static void
5247 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5248 struct dwarf2_section_info *abbrev_section,
5249 struct dwo_file *dwo_file,
5250 die_reader_func_ftype *die_reader_func,
5251 void *data)
5252 {
5253 struct objfile *objfile = dwarf2_per_objfile->objfile;
5254 struct dwarf2_section_info *section = this_cu->section;
5255 bfd *abfd = section->asection->owner;
5256 struct dwarf2_cu cu;
5257 const gdb_byte *begin_info_ptr, *info_ptr;
5258 struct die_reader_specs reader;
5259 struct cleanup *cleanups;
5260 struct die_info *comp_unit_die;
5261 int has_children;
5262
5263 if (dwarf2_die_debug)
5264 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5265 this_cu->is_debug_types ? "type" : "comp",
5266 this_cu->offset.sect_off);
5267
5268 gdb_assert (this_cu->cu == NULL);
5269
5270 /* This is cheap if the section is already read in. */
5271 dwarf2_read_section (objfile, section);
5272
5273 init_one_comp_unit (&cu, this_cu);
5274
5275 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5276
5277 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5278 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5279 abbrev_section, info_ptr,
5280 this_cu->is_debug_types);
5281
5282 this_cu->length = get_cu_length (&cu.header);
5283
5284 /* Skip dummy compilation units. */
5285 if (info_ptr >= begin_info_ptr + this_cu->length
5286 || peek_abbrev_code (abfd, info_ptr) == 0)
5287 {
5288 do_cleanups (cleanups);
5289 return;
5290 }
5291
5292 dwarf2_read_abbrevs (&cu, abbrev_section);
5293 make_cleanup (dwarf2_free_abbrev_table, &cu);
5294
5295 init_cu_die_reader (&reader, &cu, section, dwo_file);
5296 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5297
5298 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5299
5300 do_cleanups (cleanups);
5301 }
5302
5303 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5304 does not lookup the specified DWO file.
5305 This cannot be used to read DWO files.
5306
5307 THIS_CU->cu is always freed when done.
5308 This is done in order to not leave THIS_CU->cu in a state where we have
5309 to care whether it refers to the "main" CU or the DWO CU.
5310 We can revisit this if the data shows there's a performance issue. */
5311
5312 static void
5313 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5314 die_reader_func_ftype *die_reader_func,
5315 void *data)
5316 {
5317 init_cutu_and_read_dies_no_follow (this_cu,
5318 get_abbrev_section_for_cu (this_cu),
5319 NULL,
5320 die_reader_func, data);
5321 }
5322 \f
5323 /* Type Unit Groups.
5324
5325 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5326 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5327 so that all types coming from the same compilation (.o file) are grouped
5328 together. A future step could be to put the types in the same symtab as
5329 the CU the types ultimately came from. */
5330
5331 static hashval_t
5332 hash_type_unit_group (const void *item)
5333 {
5334 const struct type_unit_group *tu_group = item;
5335
5336 return hash_stmt_list_entry (&tu_group->hash);
5337 }
5338
5339 static int
5340 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5341 {
5342 const struct type_unit_group *lhs = item_lhs;
5343 const struct type_unit_group *rhs = item_rhs;
5344
5345 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5346 }
5347
5348 /* Allocate a hash table for type unit groups. */
5349
5350 static htab_t
5351 allocate_type_unit_groups_table (void)
5352 {
5353 return htab_create_alloc_ex (3,
5354 hash_type_unit_group,
5355 eq_type_unit_group,
5356 NULL,
5357 &dwarf2_per_objfile->objfile->objfile_obstack,
5358 hashtab_obstack_allocate,
5359 dummy_obstack_deallocate);
5360 }
5361
5362 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5363 partial symtabs. We combine several TUs per psymtab to not let the size
5364 of any one psymtab grow too big. */
5365 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5366 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5367
5368 /* Helper routine for get_type_unit_group.
5369 Create the type_unit_group object used to hold one or more TUs. */
5370
5371 static struct type_unit_group *
5372 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5373 {
5374 struct objfile *objfile = dwarf2_per_objfile->objfile;
5375 struct dwarf2_per_cu_data *per_cu;
5376 struct type_unit_group *tu_group;
5377
5378 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5379 struct type_unit_group);
5380 per_cu = &tu_group->per_cu;
5381 per_cu->objfile = objfile;
5382
5383 if (dwarf2_per_objfile->using_index)
5384 {
5385 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5386 struct dwarf2_per_cu_quick_data);
5387 }
5388 else
5389 {
5390 unsigned int line_offset = line_offset_struct.sect_off;
5391 struct partial_symtab *pst;
5392 char *name;
5393
5394 /* Give the symtab a useful name for debug purposes. */
5395 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5396 name = xstrprintf ("<type_units_%d>",
5397 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5398 else
5399 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5400
5401 pst = create_partial_symtab (per_cu, name);
5402 pst->anonymous = 1;
5403
5404 xfree (name);
5405 }
5406
5407 tu_group->hash.dwo_unit = cu->dwo_unit;
5408 tu_group->hash.line_offset = line_offset_struct;
5409
5410 return tu_group;
5411 }
5412
5413 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5414 STMT_LIST is a DW_AT_stmt_list attribute. */
5415
5416 static struct type_unit_group *
5417 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5418 {
5419 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5420 struct type_unit_group *tu_group;
5421 void **slot;
5422 unsigned int line_offset;
5423 struct type_unit_group type_unit_group_for_lookup;
5424
5425 if (dwarf2_per_objfile->type_unit_groups == NULL)
5426 {
5427 dwarf2_per_objfile->type_unit_groups =
5428 allocate_type_unit_groups_table ();
5429 }
5430
5431 /* Do we need to create a new group, or can we use an existing one? */
5432
5433 if (stmt_list)
5434 {
5435 line_offset = DW_UNSND (stmt_list);
5436 ++tu_stats->nr_symtab_sharers;
5437 }
5438 else
5439 {
5440 /* Ugh, no stmt_list. Rare, but we have to handle it.
5441 We can do various things here like create one group per TU or
5442 spread them over multiple groups to split up the expansion work.
5443 To avoid worst case scenarios (too many groups or too large groups)
5444 we, umm, group them in bunches. */
5445 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5446 | (tu_stats->nr_stmt_less_type_units
5447 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5448 ++tu_stats->nr_stmt_less_type_units;
5449 }
5450
5451 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5452 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5453 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5454 &type_unit_group_for_lookup, INSERT);
5455 if (*slot != NULL)
5456 {
5457 tu_group = *slot;
5458 gdb_assert (tu_group != NULL);
5459 }
5460 else
5461 {
5462 sect_offset line_offset_struct;
5463
5464 line_offset_struct.sect_off = line_offset;
5465 tu_group = create_type_unit_group (cu, line_offset_struct);
5466 *slot = tu_group;
5467 ++tu_stats->nr_symtabs;
5468 }
5469
5470 return tu_group;
5471 }
5472
5473 /* Struct used to sort TUs by their abbreviation table offset. */
5474
5475 struct tu_abbrev_offset
5476 {
5477 struct signatured_type *sig_type;
5478 sect_offset abbrev_offset;
5479 };
5480
5481 /* Helper routine for build_type_unit_groups, passed to qsort. */
5482
5483 static int
5484 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5485 {
5486 const struct tu_abbrev_offset * const *a = ap;
5487 const struct tu_abbrev_offset * const *b = bp;
5488 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5489 unsigned int boff = (*b)->abbrev_offset.sect_off;
5490
5491 return (aoff > boff) - (aoff < boff);
5492 }
5493
5494 /* A helper function to add a type_unit_group to a table. */
5495
5496 static int
5497 add_type_unit_group_to_table (void **slot, void *datum)
5498 {
5499 struct type_unit_group *tu_group = *slot;
5500 struct type_unit_group ***datap = datum;
5501
5502 **datap = tu_group;
5503 ++*datap;
5504
5505 return 1;
5506 }
5507
5508 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5509 each one passing FUNC,DATA.
5510
5511 The efficiency is because we sort TUs by the abbrev table they use and
5512 only read each abbrev table once. In one program there are 200K TUs
5513 sharing 8K abbrev tables.
5514
5515 The main purpose of this function is to support building the
5516 dwarf2_per_objfile->type_unit_groups table.
5517 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5518 can collapse the search space by grouping them by stmt_list.
5519 The savings can be significant, in the same program from above the 200K TUs
5520 share 8K stmt_list tables.
5521
5522 FUNC is expected to call get_type_unit_group, which will create the
5523 struct type_unit_group if necessary and add it to
5524 dwarf2_per_objfile->type_unit_groups. */
5525
5526 static void
5527 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5528 {
5529 struct objfile *objfile = dwarf2_per_objfile->objfile;
5530 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5531 struct cleanup *cleanups;
5532 struct abbrev_table *abbrev_table;
5533 sect_offset abbrev_offset;
5534 struct tu_abbrev_offset *sorted_by_abbrev;
5535 struct type_unit_group **iter;
5536 int i;
5537
5538 /* It's up to the caller to not call us multiple times. */
5539 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5540
5541 if (dwarf2_per_objfile->n_type_units == 0)
5542 return;
5543
5544 /* TUs typically share abbrev tables, and there can be way more TUs than
5545 abbrev tables. Sort by abbrev table to reduce the number of times we
5546 read each abbrev table in.
5547 Alternatives are to punt or to maintain a cache of abbrev tables.
5548 This is simpler and efficient enough for now.
5549
5550 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5551 symtab to use). Typically TUs with the same abbrev offset have the same
5552 stmt_list value too so in practice this should work well.
5553
5554 The basic algorithm here is:
5555
5556 sort TUs by abbrev table
5557 for each TU with same abbrev table:
5558 read abbrev table if first user
5559 read TU top level DIE
5560 [IWBN if DWO skeletons had DW_AT_stmt_list]
5561 call FUNC */
5562
5563 if (dwarf2_read_debug)
5564 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5565
5566 /* Sort in a separate table to maintain the order of all_type_units
5567 for .gdb_index: TU indices directly index all_type_units. */
5568 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5569 dwarf2_per_objfile->n_type_units);
5570 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5571 {
5572 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5573
5574 sorted_by_abbrev[i].sig_type = sig_type;
5575 sorted_by_abbrev[i].abbrev_offset =
5576 read_abbrev_offset (sig_type->per_cu.section,
5577 sig_type->per_cu.offset);
5578 }
5579 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5580 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5581 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5582
5583 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5584 called any number of times, so we don't reset tu_stats here. */
5585
5586 abbrev_offset.sect_off = ~(unsigned) 0;
5587 abbrev_table = NULL;
5588 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5589
5590 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5591 {
5592 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5593
5594 /* Switch to the next abbrev table if necessary. */
5595 if (abbrev_table == NULL
5596 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5597 {
5598 if (abbrev_table != NULL)
5599 {
5600 abbrev_table_free (abbrev_table);
5601 /* Reset to NULL in case abbrev_table_read_table throws
5602 an error: abbrev_table_free_cleanup will get called. */
5603 abbrev_table = NULL;
5604 }
5605 abbrev_offset = tu->abbrev_offset;
5606 abbrev_table =
5607 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5608 abbrev_offset);
5609 ++tu_stats->nr_uniq_abbrev_tables;
5610 }
5611
5612 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5613 func, data);
5614 }
5615
5616 /* type_unit_groups can be NULL if there is an error in the debug info.
5617 Just create an empty table so the rest of gdb doesn't have to watch
5618 for this error case. */
5619 if (dwarf2_per_objfile->type_unit_groups == NULL)
5620 {
5621 dwarf2_per_objfile->type_unit_groups =
5622 allocate_type_unit_groups_table ();
5623 dwarf2_per_objfile->n_type_unit_groups = 0;
5624 }
5625
5626 /* Create a vector of pointers to primary type units to make it easy to
5627 iterate over them and CUs. See dw2_get_primary_cu. */
5628 dwarf2_per_objfile->n_type_unit_groups =
5629 htab_elements (dwarf2_per_objfile->type_unit_groups);
5630 dwarf2_per_objfile->all_type_unit_groups =
5631 obstack_alloc (&objfile->objfile_obstack,
5632 dwarf2_per_objfile->n_type_unit_groups
5633 * sizeof (struct type_unit_group *));
5634 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5635 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5636 add_type_unit_group_to_table, &iter);
5637 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5638 == dwarf2_per_objfile->n_type_unit_groups);
5639
5640 do_cleanups (cleanups);
5641
5642 if (dwarf2_read_debug)
5643 {
5644 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5645 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5646 dwarf2_per_objfile->n_type_units);
5647 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5648 tu_stats->nr_uniq_abbrev_tables);
5649 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5650 tu_stats->nr_symtabs);
5651 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5652 tu_stats->nr_symtab_sharers);
5653 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5654 tu_stats->nr_stmt_less_type_units);
5655 }
5656 }
5657 \f
5658 /* Partial symbol tables. */
5659
5660 /* Create a psymtab named NAME and assign it to PER_CU.
5661
5662 The caller must fill in the following details:
5663 dirname, textlow, texthigh. */
5664
5665 static struct partial_symtab *
5666 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5667 {
5668 struct objfile *objfile = per_cu->objfile;
5669 struct partial_symtab *pst;
5670
5671 pst = start_psymtab_common (objfile, objfile->section_offsets,
5672 name, 0,
5673 objfile->global_psymbols.next,
5674 objfile->static_psymbols.next);
5675
5676 pst->psymtabs_addrmap_supported = 1;
5677
5678 /* This is the glue that links PST into GDB's symbol API. */
5679 pst->read_symtab_private = per_cu;
5680 pst->read_symtab = dwarf2_read_symtab;
5681 per_cu->v.psymtab = pst;
5682
5683 return pst;
5684 }
5685
5686 /* die_reader_func for process_psymtab_comp_unit. */
5687
5688 static void
5689 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5690 const gdb_byte *info_ptr,
5691 struct die_info *comp_unit_die,
5692 int has_children,
5693 void *data)
5694 {
5695 struct dwarf2_cu *cu = reader->cu;
5696 struct objfile *objfile = cu->objfile;
5697 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5698 struct attribute *attr;
5699 CORE_ADDR baseaddr;
5700 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5701 struct partial_symtab *pst;
5702 int has_pc_info;
5703 const char *filename;
5704 int *want_partial_unit_ptr = data;
5705
5706 if (comp_unit_die->tag == DW_TAG_partial_unit
5707 && (want_partial_unit_ptr == NULL
5708 || !*want_partial_unit_ptr))
5709 return;
5710
5711 gdb_assert (! per_cu->is_debug_types);
5712
5713 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5714
5715 cu->list_in_scope = &file_symbols;
5716
5717 /* Allocate a new partial symbol table structure. */
5718 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5719 if (attr == NULL || !DW_STRING (attr))
5720 filename = "";
5721 else
5722 filename = DW_STRING (attr);
5723
5724 pst = create_partial_symtab (per_cu, filename);
5725
5726 /* This must be done before calling dwarf2_build_include_psymtabs. */
5727 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5728 if (attr != NULL)
5729 pst->dirname = DW_STRING (attr);
5730
5731 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5732
5733 dwarf2_find_base_address (comp_unit_die, cu);
5734
5735 /* Possibly set the default values of LOWPC and HIGHPC from
5736 `DW_AT_ranges'. */
5737 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5738 &best_highpc, cu, pst);
5739 if (has_pc_info == 1 && best_lowpc < best_highpc)
5740 /* Store the contiguous range if it is not empty; it can be empty for
5741 CUs with no code. */
5742 addrmap_set_empty (objfile->psymtabs_addrmap,
5743 best_lowpc + baseaddr,
5744 best_highpc + baseaddr - 1, pst);
5745
5746 /* Check if comp unit has_children.
5747 If so, read the rest of the partial symbols from this comp unit.
5748 If not, there's no more debug_info for this comp unit. */
5749 if (has_children)
5750 {
5751 struct partial_die_info *first_die;
5752 CORE_ADDR lowpc, highpc;
5753
5754 lowpc = ((CORE_ADDR) -1);
5755 highpc = ((CORE_ADDR) 0);
5756
5757 first_die = load_partial_dies (reader, info_ptr, 1);
5758
5759 scan_partial_symbols (first_die, &lowpc, &highpc,
5760 ! has_pc_info, cu);
5761
5762 /* If we didn't find a lowpc, set it to highpc to avoid
5763 complaints from `maint check'. */
5764 if (lowpc == ((CORE_ADDR) -1))
5765 lowpc = highpc;
5766
5767 /* If the compilation unit didn't have an explicit address range,
5768 then use the information extracted from its child dies. */
5769 if (! has_pc_info)
5770 {
5771 best_lowpc = lowpc;
5772 best_highpc = highpc;
5773 }
5774 }
5775 pst->textlow = best_lowpc + baseaddr;
5776 pst->texthigh = best_highpc + baseaddr;
5777
5778 pst->n_global_syms = objfile->global_psymbols.next -
5779 (objfile->global_psymbols.list + pst->globals_offset);
5780 pst->n_static_syms = objfile->static_psymbols.next -
5781 (objfile->static_psymbols.list + pst->statics_offset);
5782 sort_pst_symbols (objfile, pst);
5783
5784 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5785 {
5786 int i;
5787 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5788 struct dwarf2_per_cu_data *iter;
5789
5790 /* Fill in 'dependencies' here; we fill in 'users' in a
5791 post-pass. */
5792 pst->number_of_dependencies = len;
5793 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5794 len * sizeof (struct symtab *));
5795 for (i = 0;
5796 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5797 i, iter);
5798 ++i)
5799 pst->dependencies[i] = iter->v.psymtab;
5800
5801 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5802 }
5803
5804 /* Get the list of files included in the current compilation unit,
5805 and build a psymtab for each of them. */
5806 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5807
5808 if (dwarf2_read_debug)
5809 {
5810 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5811
5812 fprintf_unfiltered (gdb_stdlog,
5813 "Psymtab for %s unit @0x%x: %s - %s"
5814 ", %d global, %d static syms\n",
5815 per_cu->is_debug_types ? "type" : "comp",
5816 per_cu->offset.sect_off,
5817 paddress (gdbarch, pst->textlow),
5818 paddress (gdbarch, pst->texthigh),
5819 pst->n_global_syms, pst->n_static_syms);
5820 }
5821 }
5822
5823 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5824 Process compilation unit THIS_CU for a psymtab. */
5825
5826 static void
5827 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5828 int want_partial_unit)
5829 {
5830 /* If this compilation unit was already read in, free the
5831 cached copy in order to read it in again. This is
5832 necessary because we skipped some symbols when we first
5833 read in the compilation unit (see load_partial_dies).
5834 This problem could be avoided, but the benefit is unclear. */
5835 if (this_cu->cu != NULL)
5836 free_one_cached_comp_unit (this_cu);
5837
5838 gdb_assert (! this_cu->is_debug_types);
5839 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5840 process_psymtab_comp_unit_reader,
5841 &want_partial_unit);
5842
5843 /* Age out any secondary CUs. */
5844 age_cached_comp_units ();
5845 }
5846
5847 /* Reader function for build_type_psymtabs. */
5848
5849 static void
5850 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5851 const gdb_byte *info_ptr,
5852 struct die_info *type_unit_die,
5853 int has_children,
5854 void *data)
5855 {
5856 struct objfile *objfile = dwarf2_per_objfile->objfile;
5857 struct dwarf2_cu *cu = reader->cu;
5858 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5859 struct signatured_type *sig_type;
5860 struct type_unit_group *tu_group;
5861 struct attribute *attr;
5862 struct partial_die_info *first_die;
5863 CORE_ADDR lowpc, highpc;
5864 struct partial_symtab *pst;
5865
5866 gdb_assert (data == NULL);
5867 gdb_assert (per_cu->is_debug_types);
5868 sig_type = (struct signatured_type *) per_cu;
5869
5870 if (! has_children)
5871 return;
5872
5873 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5874 tu_group = get_type_unit_group (cu, attr);
5875
5876 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5877
5878 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5879 cu->list_in_scope = &file_symbols;
5880 pst = create_partial_symtab (per_cu, "");
5881 pst->anonymous = 1;
5882
5883 first_die = load_partial_dies (reader, info_ptr, 1);
5884
5885 lowpc = (CORE_ADDR) -1;
5886 highpc = (CORE_ADDR) 0;
5887 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5888
5889 pst->n_global_syms = objfile->global_psymbols.next -
5890 (objfile->global_psymbols.list + pst->globals_offset);
5891 pst->n_static_syms = objfile->static_psymbols.next -
5892 (objfile->static_psymbols.list + pst->statics_offset);
5893 sort_pst_symbols (objfile, pst);
5894 }
5895
5896 /* Traversal function for build_type_psymtabs. */
5897
5898 static int
5899 build_type_psymtab_dependencies (void **slot, void *info)
5900 {
5901 struct objfile *objfile = dwarf2_per_objfile->objfile;
5902 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5903 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5904 struct partial_symtab *pst = per_cu->v.psymtab;
5905 int len = VEC_length (sig_type_ptr, tu_group->tus);
5906 struct signatured_type *iter;
5907 int i;
5908
5909 gdb_assert (len > 0);
5910 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5911
5912 pst->number_of_dependencies = len;
5913 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5914 len * sizeof (struct psymtab *));
5915 for (i = 0;
5916 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5917 ++i)
5918 {
5919 gdb_assert (iter->per_cu.is_debug_types);
5920 pst->dependencies[i] = iter->per_cu.v.psymtab;
5921 iter->type_unit_group = tu_group;
5922 }
5923
5924 VEC_free (sig_type_ptr, tu_group->tus);
5925
5926 return 1;
5927 }
5928
5929 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5930 Build partial symbol tables for the .debug_types comp-units. */
5931
5932 static void
5933 build_type_psymtabs (struct objfile *objfile)
5934 {
5935 if (! create_all_type_units (objfile))
5936 return;
5937
5938 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5939
5940 /* Now that all TUs have been processed we can fill in the dependencies. */
5941 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5942 build_type_psymtab_dependencies, NULL);
5943 }
5944
5945 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5946
5947 static void
5948 psymtabs_addrmap_cleanup (void *o)
5949 {
5950 struct objfile *objfile = o;
5951
5952 objfile->psymtabs_addrmap = NULL;
5953 }
5954
5955 /* Compute the 'user' field for each psymtab in OBJFILE. */
5956
5957 static void
5958 set_partial_user (struct objfile *objfile)
5959 {
5960 int i;
5961
5962 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5963 {
5964 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5965 struct partial_symtab *pst = per_cu->v.psymtab;
5966 int j;
5967
5968 if (pst == NULL)
5969 continue;
5970
5971 for (j = 0; j < pst->number_of_dependencies; ++j)
5972 {
5973 /* Set the 'user' field only if it is not already set. */
5974 if (pst->dependencies[j]->user == NULL)
5975 pst->dependencies[j]->user = pst;
5976 }
5977 }
5978 }
5979
5980 /* Build the partial symbol table by doing a quick pass through the
5981 .debug_info and .debug_abbrev sections. */
5982
5983 static void
5984 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5985 {
5986 struct cleanup *back_to, *addrmap_cleanup;
5987 struct obstack temp_obstack;
5988 int i;
5989
5990 if (dwarf2_read_debug)
5991 {
5992 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5993 objfile->name);
5994 }
5995
5996 dwarf2_per_objfile->reading_partial_symbols = 1;
5997
5998 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5999
6000 /* Any cached compilation units will be linked by the per-objfile
6001 read_in_chain. Make sure to free them when we're done. */
6002 back_to = make_cleanup (free_cached_comp_units, NULL);
6003
6004 build_type_psymtabs (objfile);
6005
6006 create_all_comp_units (objfile);
6007
6008 /* Create a temporary address map on a temporary obstack. We later
6009 copy this to the final obstack. */
6010 obstack_init (&temp_obstack);
6011 make_cleanup_obstack_free (&temp_obstack);
6012 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6013 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6014
6015 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6016 {
6017 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6018
6019 process_psymtab_comp_unit (per_cu, 0);
6020 }
6021
6022 set_partial_user (objfile);
6023
6024 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6025 &objfile->objfile_obstack);
6026 discard_cleanups (addrmap_cleanup);
6027
6028 do_cleanups (back_to);
6029
6030 if (dwarf2_read_debug)
6031 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6032 objfile->name);
6033 }
6034
6035 /* die_reader_func for load_partial_comp_unit. */
6036
6037 static void
6038 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6039 const gdb_byte *info_ptr,
6040 struct die_info *comp_unit_die,
6041 int has_children,
6042 void *data)
6043 {
6044 struct dwarf2_cu *cu = reader->cu;
6045
6046 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6047
6048 /* Check if comp unit has_children.
6049 If so, read the rest of the partial symbols from this comp unit.
6050 If not, there's no more debug_info for this comp unit. */
6051 if (has_children)
6052 load_partial_dies (reader, info_ptr, 0);
6053 }
6054
6055 /* Load the partial DIEs for a secondary CU into memory.
6056 This is also used when rereading a primary CU with load_all_dies. */
6057
6058 static void
6059 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6060 {
6061 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6062 load_partial_comp_unit_reader, NULL);
6063 }
6064
6065 static void
6066 read_comp_units_from_section (struct objfile *objfile,
6067 struct dwarf2_section_info *section,
6068 unsigned int is_dwz,
6069 int *n_allocated,
6070 int *n_comp_units,
6071 struct dwarf2_per_cu_data ***all_comp_units)
6072 {
6073 const gdb_byte *info_ptr;
6074 bfd *abfd = section->asection->owner;
6075
6076 if (dwarf2_read_debug)
6077 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6078 section->asection->name, bfd_get_filename (abfd));
6079
6080 dwarf2_read_section (objfile, section);
6081
6082 info_ptr = section->buffer;
6083
6084 while (info_ptr < section->buffer + section->size)
6085 {
6086 unsigned int length, initial_length_size;
6087 struct dwarf2_per_cu_data *this_cu;
6088 sect_offset offset;
6089
6090 offset.sect_off = info_ptr - section->buffer;
6091
6092 /* Read just enough information to find out where the next
6093 compilation unit is. */
6094 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6095
6096 /* Save the compilation unit for later lookup. */
6097 this_cu = obstack_alloc (&objfile->objfile_obstack,
6098 sizeof (struct dwarf2_per_cu_data));
6099 memset (this_cu, 0, sizeof (*this_cu));
6100 this_cu->offset = offset;
6101 this_cu->length = length + initial_length_size;
6102 this_cu->is_dwz = is_dwz;
6103 this_cu->objfile = objfile;
6104 this_cu->section = section;
6105
6106 if (*n_comp_units == *n_allocated)
6107 {
6108 *n_allocated *= 2;
6109 *all_comp_units = xrealloc (*all_comp_units,
6110 *n_allocated
6111 * sizeof (struct dwarf2_per_cu_data *));
6112 }
6113 (*all_comp_units)[*n_comp_units] = this_cu;
6114 ++*n_comp_units;
6115
6116 info_ptr = info_ptr + this_cu->length;
6117 }
6118 }
6119
6120 /* Create a list of all compilation units in OBJFILE.
6121 This is only done for -readnow and building partial symtabs. */
6122
6123 static void
6124 create_all_comp_units (struct objfile *objfile)
6125 {
6126 int n_allocated;
6127 int n_comp_units;
6128 struct dwarf2_per_cu_data **all_comp_units;
6129 struct dwz_file *dwz;
6130
6131 n_comp_units = 0;
6132 n_allocated = 10;
6133 all_comp_units = xmalloc (n_allocated
6134 * sizeof (struct dwarf2_per_cu_data *));
6135
6136 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6137 &n_allocated, &n_comp_units, &all_comp_units);
6138
6139 dwz = dwarf2_get_dwz_file ();
6140 if (dwz != NULL)
6141 read_comp_units_from_section (objfile, &dwz->info, 1,
6142 &n_allocated, &n_comp_units,
6143 &all_comp_units);
6144
6145 dwarf2_per_objfile->all_comp_units
6146 = obstack_alloc (&objfile->objfile_obstack,
6147 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6148 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6149 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6150 xfree (all_comp_units);
6151 dwarf2_per_objfile->n_comp_units = n_comp_units;
6152 }
6153
6154 /* Process all loaded DIEs for compilation unit CU, starting at
6155 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6156 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6157 DW_AT_ranges). If NEED_PC is set, then this function will set
6158 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6159 and record the covered ranges in the addrmap. */
6160
6161 static void
6162 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6163 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6164 {
6165 struct partial_die_info *pdi;
6166
6167 /* Now, march along the PDI's, descending into ones which have
6168 interesting children but skipping the children of the other ones,
6169 until we reach the end of the compilation unit. */
6170
6171 pdi = first_die;
6172
6173 while (pdi != NULL)
6174 {
6175 fixup_partial_die (pdi, cu);
6176
6177 /* Anonymous namespaces or modules have no name but have interesting
6178 children, so we need to look at them. Ditto for anonymous
6179 enums. */
6180
6181 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6182 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6183 || pdi->tag == DW_TAG_imported_unit)
6184 {
6185 switch (pdi->tag)
6186 {
6187 case DW_TAG_subprogram:
6188 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6189 break;
6190 case DW_TAG_constant:
6191 case DW_TAG_variable:
6192 case DW_TAG_typedef:
6193 case DW_TAG_union_type:
6194 if (!pdi->is_declaration)
6195 {
6196 add_partial_symbol (pdi, cu);
6197 }
6198 break;
6199 case DW_TAG_class_type:
6200 case DW_TAG_interface_type:
6201 case DW_TAG_structure_type:
6202 if (!pdi->is_declaration)
6203 {
6204 add_partial_symbol (pdi, cu);
6205 }
6206 break;
6207 case DW_TAG_enumeration_type:
6208 if (!pdi->is_declaration)
6209 add_partial_enumeration (pdi, cu);
6210 break;
6211 case DW_TAG_base_type:
6212 case DW_TAG_subrange_type:
6213 /* File scope base type definitions are added to the partial
6214 symbol table. */
6215 add_partial_symbol (pdi, cu);
6216 break;
6217 case DW_TAG_namespace:
6218 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6219 break;
6220 case DW_TAG_module:
6221 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6222 break;
6223 case DW_TAG_imported_unit:
6224 {
6225 struct dwarf2_per_cu_data *per_cu;
6226
6227 /* For now we don't handle imported units in type units. */
6228 if (cu->per_cu->is_debug_types)
6229 {
6230 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6231 " supported in type units [in module %s]"),
6232 cu->objfile->name);
6233 }
6234
6235 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6236 pdi->is_dwz,
6237 cu->objfile);
6238
6239 /* Go read the partial unit, if needed. */
6240 if (per_cu->v.psymtab == NULL)
6241 process_psymtab_comp_unit (per_cu, 1);
6242
6243 VEC_safe_push (dwarf2_per_cu_ptr,
6244 cu->per_cu->imported_symtabs, per_cu);
6245 }
6246 break;
6247 default:
6248 break;
6249 }
6250 }
6251
6252 /* If the die has a sibling, skip to the sibling. */
6253
6254 pdi = pdi->die_sibling;
6255 }
6256 }
6257
6258 /* Functions used to compute the fully scoped name of a partial DIE.
6259
6260 Normally, this is simple. For C++, the parent DIE's fully scoped
6261 name is concatenated with "::" and the partial DIE's name. For
6262 Java, the same thing occurs except that "." is used instead of "::".
6263 Enumerators are an exception; they use the scope of their parent
6264 enumeration type, i.e. the name of the enumeration type is not
6265 prepended to the enumerator.
6266
6267 There are two complexities. One is DW_AT_specification; in this
6268 case "parent" means the parent of the target of the specification,
6269 instead of the direct parent of the DIE. The other is compilers
6270 which do not emit DW_TAG_namespace; in this case we try to guess
6271 the fully qualified name of structure types from their members'
6272 linkage names. This must be done using the DIE's children rather
6273 than the children of any DW_AT_specification target. We only need
6274 to do this for structures at the top level, i.e. if the target of
6275 any DW_AT_specification (if any; otherwise the DIE itself) does not
6276 have a parent. */
6277
6278 /* Compute the scope prefix associated with PDI's parent, in
6279 compilation unit CU. The result will be allocated on CU's
6280 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6281 field. NULL is returned if no prefix is necessary. */
6282 static const char *
6283 partial_die_parent_scope (struct partial_die_info *pdi,
6284 struct dwarf2_cu *cu)
6285 {
6286 const char *grandparent_scope;
6287 struct partial_die_info *parent, *real_pdi;
6288
6289 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6290 then this means the parent of the specification DIE. */
6291
6292 real_pdi = pdi;
6293 while (real_pdi->has_specification)
6294 real_pdi = find_partial_die (real_pdi->spec_offset,
6295 real_pdi->spec_is_dwz, cu);
6296
6297 parent = real_pdi->die_parent;
6298 if (parent == NULL)
6299 return NULL;
6300
6301 if (parent->scope_set)
6302 return parent->scope;
6303
6304 fixup_partial_die (parent, cu);
6305
6306 grandparent_scope = partial_die_parent_scope (parent, cu);
6307
6308 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6309 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6310 Work around this problem here. */
6311 if (cu->language == language_cplus
6312 && parent->tag == DW_TAG_namespace
6313 && strcmp (parent->name, "::") == 0
6314 && grandparent_scope == NULL)
6315 {
6316 parent->scope = NULL;
6317 parent->scope_set = 1;
6318 return NULL;
6319 }
6320
6321 if (pdi->tag == DW_TAG_enumerator)
6322 /* Enumerators should not get the name of the enumeration as a prefix. */
6323 parent->scope = grandparent_scope;
6324 else if (parent->tag == DW_TAG_namespace
6325 || parent->tag == DW_TAG_module
6326 || parent->tag == DW_TAG_structure_type
6327 || parent->tag == DW_TAG_class_type
6328 || parent->tag == DW_TAG_interface_type
6329 || parent->tag == DW_TAG_union_type
6330 || parent->tag == DW_TAG_enumeration_type)
6331 {
6332 if (grandparent_scope == NULL)
6333 parent->scope = parent->name;
6334 else
6335 parent->scope = typename_concat (&cu->comp_unit_obstack,
6336 grandparent_scope,
6337 parent->name, 0, cu);
6338 }
6339 else
6340 {
6341 /* FIXME drow/2004-04-01: What should we be doing with
6342 function-local names? For partial symbols, we should probably be
6343 ignoring them. */
6344 complaint (&symfile_complaints,
6345 _("unhandled containing DIE tag %d for DIE at %d"),
6346 parent->tag, pdi->offset.sect_off);
6347 parent->scope = grandparent_scope;
6348 }
6349
6350 parent->scope_set = 1;
6351 return parent->scope;
6352 }
6353
6354 /* Return the fully scoped name associated with PDI, from compilation unit
6355 CU. The result will be allocated with malloc. */
6356
6357 static char *
6358 partial_die_full_name (struct partial_die_info *pdi,
6359 struct dwarf2_cu *cu)
6360 {
6361 const char *parent_scope;
6362
6363 /* If this is a template instantiation, we can not work out the
6364 template arguments from partial DIEs. So, unfortunately, we have
6365 to go through the full DIEs. At least any work we do building
6366 types here will be reused if full symbols are loaded later. */
6367 if (pdi->has_template_arguments)
6368 {
6369 fixup_partial_die (pdi, cu);
6370
6371 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6372 {
6373 struct die_info *die;
6374 struct attribute attr;
6375 struct dwarf2_cu *ref_cu = cu;
6376
6377 /* DW_FORM_ref_addr is using section offset. */
6378 attr.name = 0;
6379 attr.form = DW_FORM_ref_addr;
6380 attr.u.unsnd = pdi->offset.sect_off;
6381 die = follow_die_ref (NULL, &attr, &ref_cu);
6382
6383 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6384 }
6385 }
6386
6387 parent_scope = partial_die_parent_scope (pdi, cu);
6388 if (parent_scope == NULL)
6389 return NULL;
6390 else
6391 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6392 }
6393
6394 static void
6395 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6396 {
6397 struct objfile *objfile = cu->objfile;
6398 CORE_ADDR addr = 0;
6399 const char *actual_name = NULL;
6400 CORE_ADDR baseaddr;
6401 char *built_actual_name;
6402
6403 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6404
6405 built_actual_name = partial_die_full_name (pdi, cu);
6406 if (built_actual_name != NULL)
6407 actual_name = built_actual_name;
6408
6409 if (actual_name == NULL)
6410 actual_name = pdi->name;
6411
6412 switch (pdi->tag)
6413 {
6414 case DW_TAG_subprogram:
6415 if (pdi->is_external || cu->language == language_ada)
6416 {
6417 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6418 of the global scope. But in Ada, we want to be able to access
6419 nested procedures globally. So all Ada subprograms are stored
6420 in the global scope. */
6421 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6422 mst_text, objfile); */
6423 add_psymbol_to_list (actual_name, strlen (actual_name),
6424 built_actual_name != NULL,
6425 VAR_DOMAIN, LOC_BLOCK,
6426 &objfile->global_psymbols,
6427 0, pdi->lowpc + baseaddr,
6428 cu->language, objfile);
6429 }
6430 else
6431 {
6432 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6433 mst_file_text, objfile); */
6434 add_psymbol_to_list (actual_name, strlen (actual_name),
6435 built_actual_name != NULL,
6436 VAR_DOMAIN, LOC_BLOCK,
6437 &objfile->static_psymbols,
6438 0, pdi->lowpc + baseaddr,
6439 cu->language, objfile);
6440 }
6441 break;
6442 case DW_TAG_constant:
6443 {
6444 struct psymbol_allocation_list *list;
6445
6446 if (pdi->is_external)
6447 list = &objfile->global_psymbols;
6448 else
6449 list = &objfile->static_psymbols;
6450 add_psymbol_to_list (actual_name, strlen (actual_name),
6451 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6452 list, 0, 0, cu->language, objfile);
6453 }
6454 break;
6455 case DW_TAG_variable:
6456 if (pdi->d.locdesc)
6457 addr = decode_locdesc (pdi->d.locdesc, cu);
6458
6459 if (pdi->d.locdesc
6460 && addr == 0
6461 && !dwarf2_per_objfile->has_section_at_zero)
6462 {
6463 /* A global or static variable may also have been stripped
6464 out by the linker if unused, in which case its address
6465 will be nullified; do not add such variables into partial
6466 symbol table then. */
6467 }
6468 else if (pdi->is_external)
6469 {
6470 /* Global Variable.
6471 Don't enter into the minimal symbol tables as there is
6472 a minimal symbol table entry from the ELF symbols already.
6473 Enter into partial symbol table if it has a location
6474 descriptor or a type.
6475 If the location descriptor is missing, new_symbol will create
6476 a LOC_UNRESOLVED symbol, the address of the variable will then
6477 be determined from the minimal symbol table whenever the variable
6478 is referenced.
6479 The address for the partial symbol table entry is not
6480 used by GDB, but it comes in handy for debugging partial symbol
6481 table building. */
6482
6483 if (pdi->d.locdesc || pdi->has_type)
6484 add_psymbol_to_list (actual_name, strlen (actual_name),
6485 built_actual_name != NULL,
6486 VAR_DOMAIN, LOC_STATIC,
6487 &objfile->global_psymbols,
6488 0, addr + baseaddr,
6489 cu->language, objfile);
6490 }
6491 else
6492 {
6493 /* Static Variable. Skip symbols without location descriptors. */
6494 if (pdi->d.locdesc == NULL)
6495 {
6496 xfree (built_actual_name);
6497 return;
6498 }
6499 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6500 mst_file_data, objfile); */
6501 add_psymbol_to_list (actual_name, strlen (actual_name),
6502 built_actual_name != NULL,
6503 VAR_DOMAIN, LOC_STATIC,
6504 &objfile->static_psymbols,
6505 0, addr + baseaddr,
6506 cu->language, objfile);
6507 }
6508 break;
6509 case DW_TAG_typedef:
6510 case DW_TAG_base_type:
6511 case DW_TAG_subrange_type:
6512 add_psymbol_to_list (actual_name, strlen (actual_name),
6513 built_actual_name != NULL,
6514 VAR_DOMAIN, LOC_TYPEDEF,
6515 &objfile->static_psymbols,
6516 0, (CORE_ADDR) 0, cu->language, objfile);
6517 break;
6518 case DW_TAG_namespace:
6519 add_psymbol_to_list (actual_name, strlen (actual_name),
6520 built_actual_name != NULL,
6521 VAR_DOMAIN, LOC_TYPEDEF,
6522 &objfile->global_psymbols,
6523 0, (CORE_ADDR) 0, cu->language, objfile);
6524 break;
6525 case DW_TAG_class_type:
6526 case DW_TAG_interface_type:
6527 case DW_TAG_structure_type:
6528 case DW_TAG_union_type:
6529 case DW_TAG_enumeration_type:
6530 /* Skip external references. The DWARF standard says in the section
6531 about "Structure, Union, and Class Type Entries": "An incomplete
6532 structure, union or class type is represented by a structure,
6533 union or class entry that does not have a byte size attribute
6534 and that has a DW_AT_declaration attribute." */
6535 if (!pdi->has_byte_size && pdi->is_declaration)
6536 {
6537 xfree (built_actual_name);
6538 return;
6539 }
6540
6541 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6542 static vs. global. */
6543 add_psymbol_to_list (actual_name, strlen (actual_name),
6544 built_actual_name != NULL,
6545 STRUCT_DOMAIN, LOC_TYPEDEF,
6546 (cu->language == language_cplus
6547 || cu->language == language_java)
6548 ? &objfile->global_psymbols
6549 : &objfile->static_psymbols,
6550 0, (CORE_ADDR) 0, cu->language, objfile);
6551
6552 break;
6553 case DW_TAG_enumerator:
6554 add_psymbol_to_list (actual_name, strlen (actual_name),
6555 built_actual_name != NULL,
6556 VAR_DOMAIN, LOC_CONST,
6557 (cu->language == language_cplus
6558 || cu->language == language_java)
6559 ? &objfile->global_psymbols
6560 : &objfile->static_psymbols,
6561 0, (CORE_ADDR) 0, cu->language, objfile);
6562 break;
6563 default:
6564 break;
6565 }
6566
6567 xfree (built_actual_name);
6568 }
6569
6570 /* Read a partial die corresponding to a namespace; also, add a symbol
6571 corresponding to that namespace to the symbol table. NAMESPACE is
6572 the name of the enclosing namespace. */
6573
6574 static void
6575 add_partial_namespace (struct partial_die_info *pdi,
6576 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6577 int need_pc, struct dwarf2_cu *cu)
6578 {
6579 /* Add a symbol for the namespace. */
6580
6581 add_partial_symbol (pdi, cu);
6582
6583 /* Now scan partial symbols in that namespace. */
6584
6585 if (pdi->has_children)
6586 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6587 }
6588
6589 /* Read a partial die corresponding to a Fortran module. */
6590
6591 static void
6592 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6593 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6594 {
6595 /* Now scan partial symbols in that module. */
6596
6597 if (pdi->has_children)
6598 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6599 }
6600
6601 /* Read a partial die corresponding to a subprogram and create a partial
6602 symbol for that subprogram. When the CU language allows it, this
6603 routine also defines a partial symbol for each nested subprogram
6604 that this subprogram contains.
6605
6606 DIE my also be a lexical block, in which case we simply search
6607 recursively for suprograms defined inside that lexical block.
6608 Again, this is only performed when the CU language allows this
6609 type of definitions. */
6610
6611 static void
6612 add_partial_subprogram (struct partial_die_info *pdi,
6613 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6614 int need_pc, struct dwarf2_cu *cu)
6615 {
6616 if (pdi->tag == DW_TAG_subprogram)
6617 {
6618 if (pdi->has_pc_info)
6619 {
6620 if (pdi->lowpc < *lowpc)
6621 *lowpc = pdi->lowpc;
6622 if (pdi->highpc > *highpc)
6623 *highpc = pdi->highpc;
6624 if (need_pc)
6625 {
6626 CORE_ADDR baseaddr;
6627 struct objfile *objfile = cu->objfile;
6628
6629 baseaddr = ANOFFSET (objfile->section_offsets,
6630 SECT_OFF_TEXT (objfile));
6631 addrmap_set_empty (objfile->psymtabs_addrmap,
6632 pdi->lowpc + baseaddr,
6633 pdi->highpc - 1 + baseaddr,
6634 cu->per_cu->v.psymtab);
6635 }
6636 }
6637
6638 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6639 {
6640 if (!pdi->is_declaration)
6641 /* Ignore subprogram DIEs that do not have a name, they are
6642 illegal. Do not emit a complaint at this point, we will
6643 do so when we convert this psymtab into a symtab. */
6644 if (pdi->name)
6645 add_partial_symbol (pdi, cu);
6646 }
6647 }
6648
6649 if (! pdi->has_children)
6650 return;
6651
6652 if (cu->language == language_ada)
6653 {
6654 pdi = pdi->die_child;
6655 while (pdi != NULL)
6656 {
6657 fixup_partial_die (pdi, cu);
6658 if (pdi->tag == DW_TAG_subprogram
6659 || pdi->tag == DW_TAG_lexical_block)
6660 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6661 pdi = pdi->die_sibling;
6662 }
6663 }
6664 }
6665
6666 /* Read a partial die corresponding to an enumeration type. */
6667
6668 static void
6669 add_partial_enumeration (struct partial_die_info *enum_pdi,
6670 struct dwarf2_cu *cu)
6671 {
6672 struct partial_die_info *pdi;
6673
6674 if (enum_pdi->name != NULL)
6675 add_partial_symbol (enum_pdi, cu);
6676
6677 pdi = enum_pdi->die_child;
6678 while (pdi)
6679 {
6680 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6681 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6682 else
6683 add_partial_symbol (pdi, cu);
6684 pdi = pdi->die_sibling;
6685 }
6686 }
6687
6688 /* Return the initial uleb128 in the die at INFO_PTR. */
6689
6690 static unsigned int
6691 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6692 {
6693 unsigned int bytes_read;
6694
6695 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6696 }
6697
6698 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6699 Return the corresponding abbrev, or NULL if the number is zero (indicating
6700 an empty DIE). In either case *BYTES_READ will be set to the length of
6701 the initial number. */
6702
6703 static struct abbrev_info *
6704 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6705 struct dwarf2_cu *cu)
6706 {
6707 bfd *abfd = cu->objfile->obfd;
6708 unsigned int abbrev_number;
6709 struct abbrev_info *abbrev;
6710
6711 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6712
6713 if (abbrev_number == 0)
6714 return NULL;
6715
6716 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6717 if (!abbrev)
6718 {
6719 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6720 abbrev_number, bfd_get_filename (abfd));
6721 }
6722
6723 return abbrev;
6724 }
6725
6726 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6727 Returns a pointer to the end of a series of DIEs, terminated by an empty
6728 DIE. Any children of the skipped DIEs will also be skipped. */
6729
6730 static const gdb_byte *
6731 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6732 {
6733 struct dwarf2_cu *cu = reader->cu;
6734 struct abbrev_info *abbrev;
6735 unsigned int bytes_read;
6736
6737 while (1)
6738 {
6739 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6740 if (abbrev == NULL)
6741 return info_ptr + bytes_read;
6742 else
6743 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6744 }
6745 }
6746
6747 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6748 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6749 abbrev corresponding to that skipped uleb128 should be passed in
6750 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6751 children. */
6752
6753 static const gdb_byte *
6754 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6755 struct abbrev_info *abbrev)
6756 {
6757 unsigned int bytes_read;
6758 struct attribute attr;
6759 bfd *abfd = reader->abfd;
6760 struct dwarf2_cu *cu = reader->cu;
6761 const gdb_byte *buffer = reader->buffer;
6762 const gdb_byte *buffer_end = reader->buffer_end;
6763 const gdb_byte *start_info_ptr = info_ptr;
6764 unsigned int form, i;
6765
6766 for (i = 0; i < abbrev->num_attrs; i++)
6767 {
6768 /* The only abbrev we care about is DW_AT_sibling. */
6769 if (abbrev->attrs[i].name == DW_AT_sibling)
6770 {
6771 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6772 if (attr.form == DW_FORM_ref_addr)
6773 complaint (&symfile_complaints,
6774 _("ignoring absolute DW_AT_sibling"));
6775 else
6776 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6777 }
6778
6779 /* If it isn't DW_AT_sibling, skip this attribute. */
6780 form = abbrev->attrs[i].form;
6781 skip_attribute:
6782 switch (form)
6783 {
6784 case DW_FORM_ref_addr:
6785 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6786 and later it is offset sized. */
6787 if (cu->header.version == 2)
6788 info_ptr += cu->header.addr_size;
6789 else
6790 info_ptr += cu->header.offset_size;
6791 break;
6792 case DW_FORM_GNU_ref_alt:
6793 info_ptr += cu->header.offset_size;
6794 break;
6795 case DW_FORM_addr:
6796 info_ptr += cu->header.addr_size;
6797 break;
6798 case DW_FORM_data1:
6799 case DW_FORM_ref1:
6800 case DW_FORM_flag:
6801 info_ptr += 1;
6802 break;
6803 case DW_FORM_flag_present:
6804 break;
6805 case DW_FORM_data2:
6806 case DW_FORM_ref2:
6807 info_ptr += 2;
6808 break;
6809 case DW_FORM_data4:
6810 case DW_FORM_ref4:
6811 info_ptr += 4;
6812 break;
6813 case DW_FORM_data8:
6814 case DW_FORM_ref8:
6815 case DW_FORM_ref_sig8:
6816 info_ptr += 8;
6817 break;
6818 case DW_FORM_string:
6819 read_direct_string (abfd, info_ptr, &bytes_read);
6820 info_ptr += bytes_read;
6821 break;
6822 case DW_FORM_sec_offset:
6823 case DW_FORM_strp:
6824 case DW_FORM_GNU_strp_alt:
6825 info_ptr += cu->header.offset_size;
6826 break;
6827 case DW_FORM_exprloc:
6828 case DW_FORM_block:
6829 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6830 info_ptr += bytes_read;
6831 break;
6832 case DW_FORM_block1:
6833 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6834 break;
6835 case DW_FORM_block2:
6836 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6837 break;
6838 case DW_FORM_block4:
6839 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6840 break;
6841 case DW_FORM_sdata:
6842 case DW_FORM_udata:
6843 case DW_FORM_ref_udata:
6844 case DW_FORM_GNU_addr_index:
6845 case DW_FORM_GNU_str_index:
6846 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6847 break;
6848 case DW_FORM_indirect:
6849 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6850 info_ptr += bytes_read;
6851 /* We need to continue parsing from here, so just go back to
6852 the top. */
6853 goto skip_attribute;
6854
6855 default:
6856 error (_("Dwarf Error: Cannot handle %s "
6857 "in DWARF reader [in module %s]"),
6858 dwarf_form_name (form),
6859 bfd_get_filename (abfd));
6860 }
6861 }
6862
6863 if (abbrev->has_children)
6864 return skip_children (reader, info_ptr);
6865 else
6866 return info_ptr;
6867 }
6868
6869 /* Locate ORIG_PDI's sibling.
6870 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6871
6872 static const gdb_byte *
6873 locate_pdi_sibling (const struct die_reader_specs *reader,
6874 struct partial_die_info *orig_pdi,
6875 const gdb_byte *info_ptr)
6876 {
6877 /* Do we know the sibling already? */
6878
6879 if (orig_pdi->sibling)
6880 return orig_pdi->sibling;
6881
6882 /* Are there any children to deal with? */
6883
6884 if (!orig_pdi->has_children)
6885 return info_ptr;
6886
6887 /* Skip the children the long way. */
6888
6889 return skip_children (reader, info_ptr);
6890 }
6891
6892 /* Expand this partial symbol table into a full symbol table. SELF is
6893 not NULL. */
6894
6895 static void
6896 dwarf2_read_symtab (struct partial_symtab *self,
6897 struct objfile *objfile)
6898 {
6899 if (self->readin)
6900 {
6901 warning (_("bug: psymtab for %s is already read in."),
6902 self->filename);
6903 }
6904 else
6905 {
6906 if (info_verbose)
6907 {
6908 printf_filtered (_("Reading in symbols for %s..."),
6909 self->filename);
6910 gdb_flush (gdb_stdout);
6911 }
6912
6913 /* Restore our global data. */
6914 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6915
6916 /* If this psymtab is constructed from a debug-only objfile, the
6917 has_section_at_zero flag will not necessarily be correct. We
6918 can get the correct value for this flag by looking at the data
6919 associated with the (presumably stripped) associated objfile. */
6920 if (objfile->separate_debug_objfile_backlink)
6921 {
6922 struct dwarf2_per_objfile *dpo_backlink
6923 = objfile_data (objfile->separate_debug_objfile_backlink,
6924 dwarf2_objfile_data_key);
6925
6926 dwarf2_per_objfile->has_section_at_zero
6927 = dpo_backlink->has_section_at_zero;
6928 }
6929
6930 dwarf2_per_objfile->reading_partial_symbols = 0;
6931
6932 psymtab_to_symtab_1 (self);
6933
6934 /* Finish up the debug error message. */
6935 if (info_verbose)
6936 printf_filtered (_("done.\n"));
6937 }
6938
6939 process_cu_includes ();
6940 }
6941 \f
6942 /* Reading in full CUs. */
6943
6944 /* Add PER_CU to the queue. */
6945
6946 static void
6947 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6948 enum language pretend_language)
6949 {
6950 struct dwarf2_queue_item *item;
6951
6952 per_cu->queued = 1;
6953 item = xmalloc (sizeof (*item));
6954 item->per_cu = per_cu;
6955 item->pretend_language = pretend_language;
6956 item->next = NULL;
6957
6958 if (dwarf2_queue == NULL)
6959 dwarf2_queue = item;
6960 else
6961 dwarf2_queue_tail->next = item;
6962
6963 dwarf2_queue_tail = item;
6964 }
6965
6966 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6967 unit and add it to our queue.
6968 The result is non-zero if PER_CU was queued, otherwise the result is zero
6969 meaning either PER_CU is already queued or it is already loaded. */
6970
6971 static int
6972 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6973 struct dwarf2_per_cu_data *per_cu,
6974 enum language pretend_language)
6975 {
6976 /* We may arrive here during partial symbol reading, if we need full
6977 DIEs to process an unusual case (e.g. template arguments). Do
6978 not queue PER_CU, just tell our caller to load its DIEs. */
6979 if (dwarf2_per_objfile->reading_partial_symbols)
6980 {
6981 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6982 return 1;
6983 return 0;
6984 }
6985
6986 /* Mark the dependence relation so that we don't flush PER_CU
6987 too early. */
6988 dwarf2_add_dependence (this_cu, per_cu);
6989
6990 /* If it's already on the queue, we have nothing to do. */
6991 if (per_cu->queued)
6992 return 0;
6993
6994 /* If the compilation unit is already loaded, just mark it as
6995 used. */
6996 if (per_cu->cu != NULL)
6997 {
6998 per_cu->cu->last_used = 0;
6999 return 0;
7000 }
7001
7002 /* Add it to the queue. */
7003 queue_comp_unit (per_cu, pretend_language);
7004
7005 return 1;
7006 }
7007
7008 /* Process the queue. */
7009
7010 static void
7011 process_queue (void)
7012 {
7013 struct dwarf2_queue_item *item, *next_item;
7014
7015 if (dwarf2_read_debug)
7016 {
7017 fprintf_unfiltered (gdb_stdlog,
7018 "Expanding one or more symtabs of objfile %s ...\n",
7019 dwarf2_per_objfile->objfile->name);
7020 }
7021
7022 /* The queue starts out with one item, but following a DIE reference
7023 may load a new CU, adding it to the end of the queue. */
7024 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7025 {
7026 if (dwarf2_per_objfile->using_index
7027 ? !item->per_cu->v.quick->symtab
7028 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7029 {
7030 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7031
7032 if (dwarf2_read_debug)
7033 {
7034 fprintf_unfiltered (gdb_stdlog,
7035 "Expanding symtab of %s at offset 0x%x\n",
7036 per_cu->is_debug_types ? "TU" : "CU",
7037 per_cu->offset.sect_off);
7038 }
7039
7040 if (per_cu->is_debug_types)
7041 process_full_type_unit (per_cu, item->pretend_language);
7042 else
7043 process_full_comp_unit (per_cu, item->pretend_language);
7044
7045 if (dwarf2_read_debug)
7046 {
7047 fprintf_unfiltered (gdb_stdlog,
7048 "Done expanding %s at offset 0x%x\n",
7049 per_cu->is_debug_types ? "TU" : "CU",
7050 per_cu->offset.sect_off);
7051 }
7052 }
7053
7054 item->per_cu->queued = 0;
7055 next_item = item->next;
7056 xfree (item);
7057 }
7058
7059 dwarf2_queue_tail = NULL;
7060
7061 if (dwarf2_read_debug)
7062 {
7063 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7064 dwarf2_per_objfile->objfile->name);
7065 }
7066 }
7067
7068 /* Free all allocated queue entries. This function only releases anything if
7069 an error was thrown; if the queue was processed then it would have been
7070 freed as we went along. */
7071
7072 static void
7073 dwarf2_release_queue (void *dummy)
7074 {
7075 struct dwarf2_queue_item *item, *last;
7076
7077 item = dwarf2_queue;
7078 while (item)
7079 {
7080 /* Anything still marked queued is likely to be in an
7081 inconsistent state, so discard it. */
7082 if (item->per_cu->queued)
7083 {
7084 if (item->per_cu->cu != NULL)
7085 free_one_cached_comp_unit (item->per_cu);
7086 item->per_cu->queued = 0;
7087 }
7088
7089 last = item;
7090 item = item->next;
7091 xfree (last);
7092 }
7093
7094 dwarf2_queue = dwarf2_queue_tail = NULL;
7095 }
7096
7097 /* Read in full symbols for PST, and anything it depends on. */
7098
7099 static void
7100 psymtab_to_symtab_1 (struct partial_symtab *pst)
7101 {
7102 struct dwarf2_per_cu_data *per_cu;
7103 int i;
7104
7105 if (pst->readin)
7106 return;
7107
7108 for (i = 0; i < pst->number_of_dependencies; i++)
7109 if (!pst->dependencies[i]->readin
7110 && pst->dependencies[i]->user == NULL)
7111 {
7112 /* Inform about additional files that need to be read in. */
7113 if (info_verbose)
7114 {
7115 /* FIXME: i18n: Need to make this a single string. */
7116 fputs_filtered (" ", gdb_stdout);
7117 wrap_here ("");
7118 fputs_filtered ("and ", gdb_stdout);
7119 wrap_here ("");
7120 printf_filtered ("%s...", pst->dependencies[i]->filename);
7121 wrap_here (""); /* Flush output. */
7122 gdb_flush (gdb_stdout);
7123 }
7124 psymtab_to_symtab_1 (pst->dependencies[i]);
7125 }
7126
7127 per_cu = pst->read_symtab_private;
7128
7129 if (per_cu == NULL)
7130 {
7131 /* It's an include file, no symbols to read for it.
7132 Everything is in the parent symtab. */
7133 pst->readin = 1;
7134 return;
7135 }
7136
7137 dw2_do_instantiate_symtab (per_cu);
7138 }
7139
7140 /* Trivial hash function for die_info: the hash value of a DIE
7141 is its offset in .debug_info for this objfile. */
7142
7143 static hashval_t
7144 die_hash (const void *item)
7145 {
7146 const struct die_info *die = item;
7147
7148 return die->offset.sect_off;
7149 }
7150
7151 /* Trivial comparison function for die_info structures: two DIEs
7152 are equal if they have the same offset. */
7153
7154 static int
7155 die_eq (const void *item_lhs, const void *item_rhs)
7156 {
7157 const struct die_info *die_lhs = item_lhs;
7158 const struct die_info *die_rhs = item_rhs;
7159
7160 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7161 }
7162
7163 /* die_reader_func for load_full_comp_unit.
7164 This is identical to read_signatured_type_reader,
7165 but is kept separate for now. */
7166
7167 static void
7168 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7169 const gdb_byte *info_ptr,
7170 struct die_info *comp_unit_die,
7171 int has_children,
7172 void *data)
7173 {
7174 struct dwarf2_cu *cu = reader->cu;
7175 enum language *language_ptr = data;
7176
7177 gdb_assert (cu->die_hash == NULL);
7178 cu->die_hash =
7179 htab_create_alloc_ex (cu->header.length / 12,
7180 die_hash,
7181 die_eq,
7182 NULL,
7183 &cu->comp_unit_obstack,
7184 hashtab_obstack_allocate,
7185 dummy_obstack_deallocate);
7186
7187 if (has_children)
7188 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7189 &info_ptr, comp_unit_die);
7190 cu->dies = comp_unit_die;
7191 /* comp_unit_die is not stored in die_hash, no need. */
7192
7193 /* We try not to read any attributes in this function, because not
7194 all CUs needed for references have been loaded yet, and symbol
7195 table processing isn't initialized. But we have to set the CU language,
7196 or we won't be able to build types correctly.
7197 Similarly, if we do not read the producer, we can not apply
7198 producer-specific interpretation. */
7199 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7200 }
7201
7202 /* Load the DIEs associated with PER_CU into memory. */
7203
7204 static void
7205 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7206 enum language pretend_language)
7207 {
7208 gdb_assert (! this_cu->is_debug_types);
7209
7210 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7211 load_full_comp_unit_reader, &pretend_language);
7212 }
7213
7214 /* Add a DIE to the delayed physname list. */
7215
7216 static void
7217 add_to_method_list (struct type *type, int fnfield_index, int index,
7218 const char *name, struct die_info *die,
7219 struct dwarf2_cu *cu)
7220 {
7221 struct delayed_method_info mi;
7222 mi.type = type;
7223 mi.fnfield_index = fnfield_index;
7224 mi.index = index;
7225 mi.name = name;
7226 mi.die = die;
7227 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7228 }
7229
7230 /* A cleanup for freeing the delayed method list. */
7231
7232 static void
7233 free_delayed_list (void *ptr)
7234 {
7235 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7236 if (cu->method_list != NULL)
7237 {
7238 VEC_free (delayed_method_info, cu->method_list);
7239 cu->method_list = NULL;
7240 }
7241 }
7242
7243 /* Compute the physnames of any methods on the CU's method list.
7244
7245 The computation of method physnames is delayed in order to avoid the
7246 (bad) condition that one of the method's formal parameters is of an as yet
7247 incomplete type. */
7248
7249 static void
7250 compute_delayed_physnames (struct dwarf2_cu *cu)
7251 {
7252 int i;
7253 struct delayed_method_info *mi;
7254 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7255 {
7256 const char *physname;
7257 struct fn_fieldlist *fn_flp
7258 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7259 physname = dwarf2_physname (mi->name, mi->die, cu);
7260 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7261 }
7262 }
7263
7264 /* Go objects should be embedded in a DW_TAG_module DIE,
7265 and it's not clear if/how imported objects will appear.
7266 To keep Go support simple until that's worked out,
7267 go back through what we've read and create something usable.
7268 We could do this while processing each DIE, and feels kinda cleaner,
7269 but that way is more invasive.
7270 This is to, for example, allow the user to type "p var" or "b main"
7271 without having to specify the package name, and allow lookups
7272 of module.object to work in contexts that use the expression
7273 parser. */
7274
7275 static void
7276 fixup_go_packaging (struct dwarf2_cu *cu)
7277 {
7278 char *package_name = NULL;
7279 struct pending *list;
7280 int i;
7281
7282 for (list = global_symbols; list != NULL; list = list->next)
7283 {
7284 for (i = 0; i < list->nsyms; ++i)
7285 {
7286 struct symbol *sym = list->symbol[i];
7287
7288 if (SYMBOL_LANGUAGE (sym) == language_go
7289 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7290 {
7291 char *this_package_name = go_symbol_package_name (sym);
7292
7293 if (this_package_name == NULL)
7294 continue;
7295 if (package_name == NULL)
7296 package_name = this_package_name;
7297 else
7298 {
7299 if (strcmp (package_name, this_package_name) != 0)
7300 complaint (&symfile_complaints,
7301 _("Symtab %s has objects from two different Go packages: %s and %s"),
7302 (SYMBOL_SYMTAB (sym)
7303 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7304 : cu->objfile->name),
7305 this_package_name, package_name);
7306 xfree (this_package_name);
7307 }
7308 }
7309 }
7310 }
7311
7312 if (package_name != NULL)
7313 {
7314 struct objfile *objfile = cu->objfile;
7315 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7316 package_name,
7317 strlen (package_name));
7318 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7319 saved_package_name, objfile);
7320 struct symbol *sym;
7321
7322 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7323
7324 sym = allocate_symbol (objfile);
7325 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7326 SYMBOL_SET_NAMES (sym, saved_package_name,
7327 strlen (saved_package_name), 0, objfile);
7328 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7329 e.g., "main" finds the "main" module and not C's main(). */
7330 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7331 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7332 SYMBOL_TYPE (sym) = type;
7333
7334 add_symbol_to_list (sym, &global_symbols);
7335
7336 xfree (package_name);
7337 }
7338 }
7339
7340 /* Return the symtab for PER_CU. This works properly regardless of
7341 whether we're using the index or psymtabs. */
7342
7343 static struct symtab *
7344 get_symtab (struct dwarf2_per_cu_data *per_cu)
7345 {
7346 return (dwarf2_per_objfile->using_index
7347 ? per_cu->v.quick->symtab
7348 : per_cu->v.psymtab->symtab);
7349 }
7350
7351 /* A helper function for computing the list of all symbol tables
7352 included by PER_CU. */
7353
7354 static void
7355 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
7356 htab_t all_children,
7357 struct dwarf2_per_cu_data *per_cu)
7358 {
7359 void **slot;
7360 int ix;
7361 struct dwarf2_per_cu_data *iter;
7362
7363 slot = htab_find_slot (all_children, per_cu, INSERT);
7364 if (*slot != NULL)
7365 {
7366 /* This inclusion and its children have been processed. */
7367 return;
7368 }
7369
7370 *slot = per_cu;
7371 /* Only add a CU if it has a symbol table. */
7372 if (get_symtab (per_cu) != NULL)
7373 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
7374
7375 for (ix = 0;
7376 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7377 ++ix)
7378 recursively_compute_inclusions (result, all_children, iter);
7379 }
7380
7381 /* Compute the symtab 'includes' fields for the symtab related to
7382 PER_CU. */
7383
7384 static void
7385 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7386 {
7387 gdb_assert (! per_cu->is_debug_types);
7388
7389 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7390 {
7391 int ix, len;
7392 struct dwarf2_per_cu_data *iter;
7393 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7394 htab_t all_children;
7395 struct symtab *symtab = get_symtab (per_cu);
7396
7397 /* If we don't have a symtab, we can just skip this case. */
7398 if (symtab == NULL)
7399 return;
7400
7401 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7402 NULL, xcalloc, xfree);
7403
7404 for (ix = 0;
7405 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7406 ix, iter);
7407 ++ix)
7408 recursively_compute_inclusions (&result_children, all_children, iter);
7409
7410 /* Now we have a transitive closure of all the included CUs, and
7411 for .gdb_index version 7 the included TUs, so we can convert it
7412 to a list of symtabs. */
7413 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7414 symtab->includes
7415 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7416 (len + 1) * sizeof (struct symtab *));
7417 for (ix = 0;
7418 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7419 ++ix)
7420 symtab->includes[ix] = get_symtab (iter);
7421 symtab->includes[len] = NULL;
7422
7423 VEC_free (dwarf2_per_cu_ptr, result_children);
7424 htab_delete (all_children);
7425 }
7426 }
7427
7428 /* Compute the 'includes' field for the symtabs of all the CUs we just
7429 read. */
7430
7431 static void
7432 process_cu_includes (void)
7433 {
7434 int ix;
7435 struct dwarf2_per_cu_data *iter;
7436
7437 for (ix = 0;
7438 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7439 ix, iter);
7440 ++ix)
7441 {
7442 if (! iter->is_debug_types)
7443 compute_symtab_includes (iter);
7444 }
7445
7446 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7447 }
7448
7449 /* Generate full symbol information for PER_CU, whose DIEs have
7450 already been loaded into memory. */
7451
7452 static void
7453 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7454 enum language pretend_language)
7455 {
7456 struct dwarf2_cu *cu = per_cu->cu;
7457 struct objfile *objfile = per_cu->objfile;
7458 CORE_ADDR lowpc, highpc;
7459 struct symtab *symtab;
7460 struct cleanup *back_to, *delayed_list_cleanup;
7461 CORE_ADDR baseaddr;
7462 struct block *static_block;
7463
7464 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7465
7466 buildsym_init ();
7467 back_to = make_cleanup (really_free_pendings, NULL);
7468 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7469
7470 cu->list_in_scope = &file_symbols;
7471
7472 cu->language = pretend_language;
7473 cu->language_defn = language_def (cu->language);
7474
7475 /* Do line number decoding in read_file_scope () */
7476 process_die (cu->dies, cu);
7477
7478 /* For now fudge the Go package. */
7479 if (cu->language == language_go)
7480 fixup_go_packaging (cu);
7481
7482 /* Now that we have processed all the DIEs in the CU, all the types
7483 should be complete, and it should now be safe to compute all of the
7484 physnames. */
7485 compute_delayed_physnames (cu);
7486 do_cleanups (delayed_list_cleanup);
7487
7488 /* Some compilers don't define a DW_AT_high_pc attribute for the
7489 compilation unit. If the DW_AT_high_pc is missing, synthesize
7490 it, by scanning the DIE's below the compilation unit. */
7491 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7492
7493 static_block
7494 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7495
7496 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7497 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7498 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7499 addrmap to help ensure it has an accurate map of pc values belonging to
7500 this comp unit. */
7501 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7502
7503 symtab = end_symtab_from_static_block (static_block, objfile,
7504 SECT_OFF_TEXT (objfile), 0);
7505
7506 if (symtab != NULL)
7507 {
7508 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7509
7510 /* Set symtab language to language from DW_AT_language. If the
7511 compilation is from a C file generated by language preprocessors, do
7512 not set the language if it was already deduced by start_subfile. */
7513 if (!(cu->language == language_c && symtab->language != language_c))
7514 symtab->language = cu->language;
7515
7516 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7517 produce DW_AT_location with location lists but it can be possibly
7518 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7519 there were bugs in prologue debug info, fixed later in GCC-4.5
7520 by "unwind info for epilogues" patch (which is not directly related).
7521
7522 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7523 needed, it would be wrong due to missing DW_AT_producer there.
7524
7525 Still one can confuse GDB by using non-standard GCC compilation
7526 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7527 */
7528 if (cu->has_loclist && gcc_4_minor >= 5)
7529 symtab->locations_valid = 1;
7530
7531 if (gcc_4_minor >= 5)
7532 symtab->epilogue_unwind_valid = 1;
7533
7534 symtab->call_site_htab = cu->call_site_htab;
7535 }
7536
7537 if (dwarf2_per_objfile->using_index)
7538 per_cu->v.quick->symtab = symtab;
7539 else
7540 {
7541 struct partial_symtab *pst = per_cu->v.psymtab;
7542 pst->symtab = symtab;
7543 pst->readin = 1;
7544 }
7545
7546 /* Push it for inclusion processing later. */
7547 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7548
7549 do_cleanups (back_to);
7550 }
7551
7552 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7553 already been loaded into memory. */
7554
7555 static void
7556 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7557 enum language pretend_language)
7558 {
7559 struct dwarf2_cu *cu = per_cu->cu;
7560 struct objfile *objfile = per_cu->objfile;
7561 struct symtab *symtab;
7562 struct cleanup *back_to, *delayed_list_cleanup;
7563 struct signatured_type *sig_type;
7564
7565 gdb_assert (per_cu->is_debug_types);
7566 sig_type = (struct signatured_type *) per_cu;
7567
7568 buildsym_init ();
7569 back_to = make_cleanup (really_free_pendings, NULL);
7570 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7571
7572 cu->list_in_scope = &file_symbols;
7573
7574 cu->language = pretend_language;
7575 cu->language_defn = language_def (cu->language);
7576
7577 /* The symbol tables are set up in read_type_unit_scope. */
7578 process_die (cu->dies, cu);
7579
7580 /* For now fudge the Go package. */
7581 if (cu->language == language_go)
7582 fixup_go_packaging (cu);
7583
7584 /* Now that we have processed all the DIEs in the CU, all the types
7585 should be complete, and it should now be safe to compute all of the
7586 physnames. */
7587 compute_delayed_physnames (cu);
7588 do_cleanups (delayed_list_cleanup);
7589
7590 /* TUs share symbol tables.
7591 If this is the first TU to use this symtab, complete the construction
7592 of it with end_expandable_symtab. Otherwise, complete the addition of
7593 this TU's symbols to the existing symtab. */
7594 if (sig_type->type_unit_group->primary_symtab == NULL)
7595 {
7596 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7597 sig_type->type_unit_group->primary_symtab = symtab;
7598
7599 if (symtab != NULL)
7600 {
7601 /* Set symtab language to language from DW_AT_language. If the
7602 compilation is from a C file generated by language preprocessors,
7603 do not set the language if it was already deduced by
7604 start_subfile. */
7605 if (!(cu->language == language_c && symtab->language != language_c))
7606 symtab->language = cu->language;
7607 }
7608 }
7609 else
7610 {
7611 augment_type_symtab (objfile,
7612 sig_type->type_unit_group->primary_symtab);
7613 symtab = sig_type->type_unit_group->primary_symtab;
7614 }
7615
7616 if (dwarf2_per_objfile->using_index)
7617 per_cu->v.quick->symtab = symtab;
7618 else
7619 {
7620 struct partial_symtab *pst = per_cu->v.psymtab;
7621 pst->symtab = symtab;
7622 pst->readin = 1;
7623 }
7624
7625 do_cleanups (back_to);
7626 }
7627
7628 /* Process an imported unit DIE. */
7629
7630 static void
7631 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7632 {
7633 struct attribute *attr;
7634
7635 /* For now we don't handle imported units in type units. */
7636 if (cu->per_cu->is_debug_types)
7637 {
7638 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7639 " supported in type units [in module %s]"),
7640 cu->objfile->name);
7641 }
7642
7643 attr = dwarf2_attr (die, DW_AT_import, cu);
7644 if (attr != NULL)
7645 {
7646 struct dwarf2_per_cu_data *per_cu;
7647 struct symtab *imported_symtab;
7648 sect_offset offset;
7649 int is_dwz;
7650
7651 offset = dwarf2_get_ref_die_offset (attr);
7652 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7653 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7654
7655 /* Queue the unit, if needed. */
7656 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7657 load_full_comp_unit (per_cu, cu->language);
7658
7659 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7660 per_cu);
7661 }
7662 }
7663
7664 /* Process a die and its children. */
7665
7666 static void
7667 process_die (struct die_info *die, struct dwarf2_cu *cu)
7668 {
7669 switch (die->tag)
7670 {
7671 case DW_TAG_padding:
7672 break;
7673 case DW_TAG_compile_unit:
7674 case DW_TAG_partial_unit:
7675 read_file_scope (die, cu);
7676 break;
7677 case DW_TAG_type_unit:
7678 read_type_unit_scope (die, cu);
7679 break;
7680 case DW_TAG_subprogram:
7681 case DW_TAG_inlined_subroutine:
7682 read_func_scope (die, cu);
7683 break;
7684 case DW_TAG_lexical_block:
7685 case DW_TAG_try_block:
7686 case DW_TAG_catch_block:
7687 read_lexical_block_scope (die, cu);
7688 break;
7689 case DW_TAG_GNU_call_site:
7690 read_call_site_scope (die, cu);
7691 break;
7692 case DW_TAG_class_type:
7693 case DW_TAG_interface_type:
7694 case DW_TAG_structure_type:
7695 case DW_TAG_union_type:
7696 process_structure_scope (die, cu);
7697 break;
7698 case DW_TAG_enumeration_type:
7699 process_enumeration_scope (die, cu);
7700 break;
7701
7702 /* These dies have a type, but processing them does not create
7703 a symbol or recurse to process the children. Therefore we can
7704 read them on-demand through read_type_die. */
7705 case DW_TAG_subroutine_type:
7706 case DW_TAG_set_type:
7707 case DW_TAG_array_type:
7708 case DW_TAG_pointer_type:
7709 case DW_TAG_ptr_to_member_type:
7710 case DW_TAG_reference_type:
7711 case DW_TAG_string_type:
7712 break;
7713
7714 case DW_TAG_base_type:
7715 case DW_TAG_subrange_type:
7716 case DW_TAG_typedef:
7717 /* Add a typedef symbol for the type definition, if it has a
7718 DW_AT_name. */
7719 new_symbol (die, read_type_die (die, cu), cu);
7720 break;
7721 case DW_TAG_common_block:
7722 read_common_block (die, cu);
7723 break;
7724 case DW_TAG_common_inclusion:
7725 break;
7726 case DW_TAG_namespace:
7727 cu->processing_has_namespace_info = 1;
7728 read_namespace (die, cu);
7729 break;
7730 case DW_TAG_module:
7731 cu->processing_has_namespace_info = 1;
7732 read_module (die, cu);
7733 break;
7734 case DW_TAG_imported_declaration:
7735 case DW_TAG_imported_module:
7736 cu->processing_has_namespace_info = 1;
7737 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7738 || cu->language != language_fortran))
7739 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7740 dwarf_tag_name (die->tag));
7741 read_import_statement (die, cu);
7742 break;
7743
7744 case DW_TAG_imported_unit:
7745 process_imported_unit_die (die, cu);
7746 break;
7747
7748 default:
7749 new_symbol (die, NULL, cu);
7750 break;
7751 }
7752 }
7753 \f
7754 /* DWARF name computation. */
7755
7756 /* A helper function for dwarf2_compute_name which determines whether DIE
7757 needs to have the name of the scope prepended to the name listed in the
7758 die. */
7759
7760 static int
7761 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7762 {
7763 struct attribute *attr;
7764
7765 switch (die->tag)
7766 {
7767 case DW_TAG_namespace:
7768 case DW_TAG_typedef:
7769 case DW_TAG_class_type:
7770 case DW_TAG_interface_type:
7771 case DW_TAG_structure_type:
7772 case DW_TAG_union_type:
7773 case DW_TAG_enumeration_type:
7774 case DW_TAG_enumerator:
7775 case DW_TAG_subprogram:
7776 case DW_TAG_member:
7777 return 1;
7778
7779 case DW_TAG_variable:
7780 case DW_TAG_constant:
7781 /* We only need to prefix "globally" visible variables. These include
7782 any variable marked with DW_AT_external or any variable that
7783 lives in a namespace. [Variables in anonymous namespaces
7784 require prefixing, but they are not DW_AT_external.] */
7785
7786 if (dwarf2_attr (die, DW_AT_specification, cu))
7787 {
7788 struct dwarf2_cu *spec_cu = cu;
7789
7790 return die_needs_namespace (die_specification (die, &spec_cu),
7791 spec_cu);
7792 }
7793
7794 attr = dwarf2_attr (die, DW_AT_external, cu);
7795 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7796 && die->parent->tag != DW_TAG_module)
7797 return 0;
7798 /* A variable in a lexical block of some kind does not need a
7799 namespace, even though in C++ such variables may be external
7800 and have a mangled name. */
7801 if (die->parent->tag == DW_TAG_lexical_block
7802 || die->parent->tag == DW_TAG_try_block
7803 || die->parent->tag == DW_TAG_catch_block
7804 || die->parent->tag == DW_TAG_subprogram)
7805 return 0;
7806 return 1;
7807
7808 default:
7809 return 0;
7810 }
7811 }
7812
7813 /* Retrieve the last character from a mem_file. */
7814
7815 static void
7816 do_ui_file_peek_last (void *object, const char *buffer, long length)
7817 {
7818 char *last_char_p = (char *) object;
7819
7820 if (length > 0)
7821 *last_char_p = buffer[length - 1];
7822 }
7823
7824 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7825 compute the physname for the object, which include a method's:
7826 - formal parameters (C++/Java),
7827 - receiver type (Go),
7828 - return type (Java).
7829
7830 The term "physname" is a bit confusing.
7831 For C++, for example, it is the demangled name.
7832 For Go, for example, it's the mangled name.
7833
7834 For Ada, return the DIE's linkage name rather than the fully qualified
7835 name. PHYSNAME is ignored..
7836
7837 The result is allocated on the objfile_obstack and canonicalized. */
7838
7839 static const char *
7840 dwarf2_compute_name (const char *name,
7841 struct die_info *die, struct dwarf2_cu *cu,
7842 int physname)
7843 {
7844 struct objfile *objfile = cu->objfile;
7845
7846 if (name == NULL)
7847 name = dwarf2_name (die, cu);
7848
7849 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7850 compute it by typename_concat inside GDB. */
7851 if (cu->language == language_ada
7852 || (cu->language == language_fortran && physname))
7853 {
7854 /* For Ada unit, we prefer the linkage name over the name, as
7855 the former contains the exported name, which the user expects
7856 to be able to reference. Ideally, we want the user to be able
7857 to reference this entity using either natural or linkage name,
7858 but we haven't started looking at this enhancement yet. */
7859 struct attribute *attr;
7860
7861 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7862 if (attr == NULL)
7863 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7864 if (attr && DW_STRING (attr))
7865 return DW_STRING (attr);
7866 }
7867
7868 /* These are the only languages we know how to qualify names in. */
7869 if (name != NULL
7870 && (cu->language == language_cplus || cu->language == language_java
7871 || cu->language == language_fortran))
7872 {
7873 if (die_needs_namespace (die, cu))
7874 {
7875 long length;
7876 const char *prefix;
7877 struct ui_file *buf;
7878
7879 prefix = determine_prefix (die, cu);
7880 buf = mem_fileopen ();
7881 if (*prefix != '\0')
7882 {
7883 char *prefixed_name = typename_concat (NULL, prefix, name,
7884 physname, cu);
7885
7886 fputs_unfiltered (prefixed_name, buf);
7887 xfree (prefixed_name);
7888 }
7889 else
7890 fputs_unfiltered (name, buf);
7891
7892 /* Template parameters may be specified in the DIE's DW_AT_name, or
7893 as children with DW_TAG_template_type_param or
7894 DW_TAG_value_type_param. If the latter, add them to the name
7895 here. If the name already has template parameters, then
7896 skip this step; some versions of GCC emit both, and
7897 it is more efficient to use the pre-computed name.
7898
7899 Something to keep in mind about this process: it is very
7900 unlikely, or in some cases downright impossible, to produce
7901 something that will match the mangled name of a function.
7902 If the definition of the function has the same debug info,
7903 we should be able to match up with it anyway. But fallbacks
7904 using the minimal symbol, for instance to find a method
7905 implemented in a stripped copy of libstdc++, will not work.
7906 If we do not have debug info for the definition, we will have to
7907 match them up some other way.
7908
7909 When we do name matching there is a related problem with function
7910 templates; two instantiated function templates are allowed to
7911 differ only by their return types, which we do not add here. */
7912
7913 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7914 {
7915 struct attribute *attr;
7916 struct die_info *child;
7917 int first = 1;
7918
7919 die->building_fullname = 1;
7920
7921 for (child = die->child; child != NULL; child = child->sibling)
7922 {
7923 struct type *type;
7924 LONGEST value;
7925 const gdb_byte *bytes;
7926 struct dwarf2_locexpr_baton *baton;
7927 struct value *v;
7928
7929 if (child->tag != DW_TAG_template_type_param
7930 && child->tag != DW_TAG_template_value_param)
7931 continue;
7932
7933 if (first)
7934 {
7935 fputs_unfiltered ("<", buf);
7936 first = 0;
7937 }
7938 else
7939 fputs_unfiltered (", ", buf);
7940
7941 attr = dwarf2_attr (child, DW_AT_type, cu);
7942 if (attr == NULL)
7943 {
7944 complaint (&symfile_complaints,
7945 _("template parameter missing DW_AT_type"));
7946 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7947 continue;
7948 }
7949 type = die_type (child, cu);
7950
7951 if (child->tag == DW_TAG_template_type_param)
7952 {
7953 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7954 continue;
7955 }
7956
7957 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7958 if (attr == NULL)
7959 {
7960 complaint (&symfile_complaints,
7961 _("template parameter missing "
7962 "DW_AT_const_value"));
7963 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7964 continue;
7965 }
7966
7967 dwarf2_const_value_attr (attr, type, name,
7968 &cu->comp_unit_obstack, cu,
7969 &value, &bytes, &baton);
7970
7971 if (TYPE_NOSIGN (type))
7972 /* GDB prints characters as NUMBER 'CHAR'. If that's
7973 changed, this can use value_print instead. */
7974 c_printchar (value, type, buf);
7975 else
7976 {
7977 struct value_print_options opts;
7978
7979 if (baton != NULL)
7980 v = dwarf2_evaluate_loc_desc (type, NULL,
7981 baton->data,
7982 baton->size,
7983 baton->per_cu);
7984 else if (bytes != NULL)
7985 {
7986 v = allocate_value (type);
7987 memcpy (value_contents_writeable (v), bytes,
7988 TYPE_LENGTH (type));
7989 }
7990 else
7991 v = value_from_longest (type, value);
7992
7993 /* Specify decimal so that we do not depend on
7994 the radix. */
7995 get_formatted_print_options (&opts, 'd');
7996 opts.raw = 1;
7997 value_print (v, buf, &opts);
7998 release_value (v);
7999 value_free (v);
8000 }
8001 }
8002
8003 die->building_fullname = 0;
8004
8005 if (!first)
8006 {
8007 /* Close the argument list, with a space if necessary
8008 (nested templates). */
8009 char last_char = '\0';
8010 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8011 if (last_char == '>')
8012 fputs_unfiltered (" >", buf);
8013 else
8014 fputs_unfiltered (">", buf);
8015 }
8016 }
8017
8018 /* For Java and C++ methods, append formal parameter type
8019 information, if PHYSNAME. */
8020
8021 if (physname && die->tag == DW_TAG_subprogram
8022 && (cu->language == language_cplus
8023 || cu->language == language_java))
8024 {
8025 struct type *type = read_type_die (die, cu);
8026
8027 c_type_print_args (type, buf, 1, cu->language,
8028 &type_print_raw_options);
8029
8030 if (cu->language == language_java)
8031 {
8032 /* For java, we must append the return type to method
8033 names. */
8034 if (die->tag == DW_TAG_subprogram)
8035 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8036 0, 0, &type_print_raw_options);
8037 }
8038 else if (cu->language == language_cplus)
8039 {
8040 /* Assume that an artificial first parameter is
8041 "this", but do not crash if it is not. RealView
8042 marks unnamed (and thus unused) parameters as
8043 artificial; there is no way to differentiate
8044 the two cases. */
8045 if (TYPE_NFIELDS (type) > 0
8046 && TYPE_FIELD_ARTIFICIAL (type, 0)
8047 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8048 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8049 0))))
8050 fputs_unfiltered (" const", buf);
8051 }
8052 }
8053
8054 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8055 &length);
8056 ui_file_delete (buf);
8057
8058 if (cu->language == language_cplus)
8059 {
8060 const char *cname
8061 = dwarf2_canonicalize_name (name, cu,
8062 &objfile->objfile_obstack);
8063
8064 if (cname != NULL)
8065 name = cname;
8066 }
8067 }
8068 }
8069
8070 return name;
8071 }
8072
8073 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8074 If scope qualifiers are appropriate they will be added. The result
8075 will be allocated on the objfile_obstack, or NULL if the DIE does
8076 not have a name. NAME may either be from a previous call to
8077 dwarf2_name or NULL.
8078
8079 The output string will be canonicalized (if C++/Java). */
8080
8081 static const char *
8082 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8083 {
8084 return dwarf2_compute_name (name, die, cu, 0);
8085 }
8086
8087 /* Construct a physname for the given DIE in CU. NAME may either be
8088 from a previous call to dwarf2_name or NULL. The result will be
8089 allocated on the objfile_objstack or NULL if the DIE does not have a
8090 name.
8091
8092 The output string will be canonicalized (if C++/Java). */
8093
8094 static const char *
8095 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8096 {
8097 struct objfile *objfile = cu->objfile;
8098 struct attribute *attr;
8099 const char *retval, *mangled = NULL, *canon = NULL;
8100 struct cleanup *back_to;
8101 int need_copy = 1;
8102
8103 /* In this case dwarf2_compute_name is just a shortcut not building anything
8104 on its own. */
8105 if (!die_needs_namespace (die, cu))
8106 return dwarf2_compute_name (name, die, cu, 1);
8107
8108 back_to = make_cleanup (null_cleanup, NULL);
8109
8110 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8111 if (!attr)
8112 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8113
8114 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8115 has computed. */
8116 if (attr && DW_STRING (attr))
8117 {
8118 char *demangled;
8119
8120 mangled = DW_STRING (attr);
8121
8122 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8123 type. It is easier for GDB users to search for such functions as
8124 `name(params)' than `long name(params)'. In such case the minimal
8125 symbol names do not match the full symbol names but for template
8126 functions there is never a need to look up their definition from their
8127 declaration so the only disadvantage remains the minimal symbol
8128 variant `long name(params)' does not have the proper inferior type.
8129 */
8130
8131 if (cu->language == language_go)
8132 {
8133 /* This is a lie, but we already lie to the caller new_symbol_full.
8134 new_symbol_full assumes we return the mangled name.
8135 This just undoes that lie until things are cleaned up. */
8136 demangled = NULL;
8137 }
8138 else
8139 {
8140 demangled = gdb_demangle (mangled,
8141 (DMGL_PARAMS | DMGL_ANSI
8142 | (cu->language == language_java
8143 ? DMGL_JAVA | DMGL_RET_POSTFIX
8144 : DMGL_RET_DROP)));
8145 }
8146 if (demangled)
8147 {
8148 make_cleanup (xfree, demangled);
8149 canon = demangled;
8150 }
8151 else
8152 {
8153 canon = mangled;
8154 need_copy = 0;
8155 }
8156 }
8157
8158 if (canon == NULL || check_physname)
8159 {
8160 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8161
8162 if (canon != NULL && strcmp (physname, canon) != 0)
8163 {
8164 /* It may not mean a bug in GDB. The compiler could also
8165 compute DW_AT_linkage_name incorrectly. But in such case
8166 GDB would need to be bug-to-bug compatible. */
8167
8168 complaint (&symfile_complaints,
8169 _("Computed physname <%s> does not match demangled <%s> "
8170 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8171 physname, canon, mangled, die->offset.sect_off, objfile->name);
8172
8173 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8174 is available here - over computed PHYSNAME. It is safer
8175 against both buggy GDB and buggy compilers. */
8176
8177 retval = canon;
8178 }
8179 else
8180 {
8181 retval = physname;
8182 need_copy = 0;
8183 }
8184 }
8185 else
8186 retval = canon;
8187
8188 if (need_copy)
8189 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8190
8191 do_cleanups (back_to);
8192 return retval;
8193 }
8194
8195 /* Read the import statement specified by the given die and record it. */
8196
8197 static void
8198 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8199 {
8200 struct objfile *objfile = cu->objfile;
8201 struct attribute *import_attr;
8202 struct die_info *imported_die, *child_die;
8203 struct dwarf2_cu *imported_cu;
8204 const char *imported_name;
8205 const char *imported_name_prefix;
8206 const char *canonical_name;
8207 const char *import_alias;
8208 const char *imported_declaration = NULL;
8209 const char *import_prefix;
8210 VEC (const_char_ptr) *excludes = NULL;
8211 struct cleanup *cleanups;
8212
8213 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8214 if (import_attr == NULL)
8215 {
8216 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8217 dwarf_tag_name (die->tag));
8218 return;
8219 }
8220
8221 imported_cu = cu;
8222 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8223 imported_name = dwarf2_name (imported_die, imported_cu);
8224 if (imported_name == NULL)
8225 {
8226 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8227
8228 The import in the following code:
8229 namespace A
8230 {
8231 typedef int B;
8232 }
8233
8234 int main ()
8235 {
8236 using A::B;
8237 B b;
8238 return b;
8239 }
8240
8241 ...
8242 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8243 <52> DW_AT_decl_file : 1
8244 <53> DW_AT_decl_line : 6
8245 <54> DW_AT_import : <0x75>
8246 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8247 <59> DW_AT_name : B
8248 <5b> DW_AT_decl_file : 1
8249 <5c> DW_AT_decl_line : 2
8250 <5d> DW_AT_type : <0x6e>
8251 ...
8252 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8253 <76> DW_AT_byte_size : 4
8254 <77> DW_AT_encoding : 5 (signed)
8255
8256 imports the wrong die ( 0x75 instead of 0x58 ).
8257 This case will be ignored until the gcc bug is fixed. */
8258 return;
8259 }
8260
8261 /* Figure out the local name after import. */
8262 import_alias = dwarf2_name (die, cu);
8263
8264 /* Figure out where the statement is being imported to. */
8265 import_prefix = determine_prefix (die, cu);
8266
8267 /* Figure out what the scope of the imported die is and prepend it
8268 to the name of the imported die. */
8269 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8270
8271 if (imported_die->tag != DW_TAG_namespace
8272 && imported_die->tag != DW_TAG_module)
8273 {
8274 imported_declaration = imported_name;
8275 canonical_name = imported_name_prefix;
8276 }
8277 else if (strlen (imported_name_prefix) > 0)
8278 canonical_name = obconcat (&objfile->objfile_obstack,
8279 imported_name_prefix, "::", imported_name,
8280 (char *) NULL);
8281 else
8282 canonical_name = imported_name;
8283
8284 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8285
8286 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8287 for (child_die = die->child; child_die && child_die->tag;
8288 child_die = sibling_die (child_die))
8289 {
8290 /* DWARF-4: A Fortran use statement with a “rename list” may be
8291 represented by an imported module entry with an import attribute
8292 referring to the module and owned entries corresponding to those
8293 entities that are renamed as part of being imported. */
8294
8295 if (child_die->tag != DW_TAG_imported_declaration)
8296 {
8297 complaint (&symfile_complaints,
8298 _("child DW_TAG_imported_declaration expected "
8299 "- DIE at 0x%x [in module %s]"),
8300 child_die->offset.sect_off, objfile->name);
8301 continue;
8302 }
8303
8304 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8305 if (import_attr == NULL)
8306 {
8307 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8308 dwarf_tag_name (child_die->tag));
8309 continue;
8310 }
8311
8312 imported_cu = cu;
8313 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8314 &imported_cu);
8315 imported_name = dwarf2_name (imported_die, imported_cu);
8316 if (imported_name == NULL)
8317 {
8318 complaint (&symfile_complaints,
8319 _("child DW_TAG_imported_declaration has unknown "
8320 "imported name - DIE at 0x%x [in module %s]"),
8321 child_die->offset.sect_off, objfile->name);
8322 continue;
8323 }
8324
8325 VEC_safe_push (const_char_ptr, excludes, imported_name);
8326
8327 process_die (child_die, cu);
8328 }
8329
8330 cp_add_using_directive (import_prefix,
8331 canonical_name,
8332 import_alias,
8333 imported_declaration,
8334 excludes,
8335 0,
8336 &objfile->objfile_obstack);
8337
8338 do_cleanups (cleanups);
8339 }
8340
8341 /* Cleanup function for handle_DW_AT_stmt_list. */
8342
8343 static void
8344 free_cu_line_header (void *arg)
8345 {
8346 struct dwarf2_cu *cu = arg;
8347
8348 free_line_header (cu->line_header);
8349 cu->line_header = NULL;
8350 }
8351
8352 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8353 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8354 this, it was first present in GCC release 4.3.0. */
8355
8356 static int
8357 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8358 {
8359 if (!cu->checked_producer)
8360 check_producer (cu);
8361
8362 return cu->producer_is_gcc_lt_4_3;
8363 }
8364
8365 static void
8366 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8367 const char **name, const char **comp_dir)
8368 {
8369 struct attribute *attr;
8370
8371 *name = NULL;
8372 *comp_dir = NULL;
8373
8374 /* Find the filename. Do not use dwarf2_name here, since the filename
8375 is not a source language identifier. */
8376 attr = dwarf2_attr (die, DW_AT_name, cu);
8377 if (attr)
8378 {
8379 *name = DW_STRING (attr);
8380 }
8381
8382 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8383 if (attr)
8384 *comp_dir = DW_STRING (attr);
8385 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8386 && IS_ABSOLUTE_PATH (*name))
8387 {
8388 char *d = ldirname (*name);
8389
8390 *comp_dir = d;
8391 if (d != NULL)
8392 make_cleanup (xfree, d);
8393 }
8394 if (*comp_dir != NULL)
8395 {
8396 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8397 directory, get rid of it. */
8398 char *cp = strchr (*comp_dir, ':');
8399
8400 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8401 *comp_dir = cp + 1;
8402 }
8403
8404 if (*name == NULL)
8405 *name = "<unknown>";
8406 }
8407
8408 /* Handle DW_AT_stmt_list for a compilation unit.
8409 DIE is the DW_TAG_compile_unit die for CU.
8410 COMP_DIR is the compilation directory.
8411 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8412
8413 static void
8414 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8415 const char *comp_dir) /* ARI: editCase function */
8416 {
8417 struct attribute *attr;
8418
8419 gdb_assert (! cu->per_cu->is_debug_types);
8420
8421 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8422 if (attr)
8423 {
8424 unsigned int line_offset = DW_UNSND (attr);
8425 struct line_header *line_header
8426 = dwarf_decode_line_header (line_offset, cu);
8427
8428 if (line_header)
8429 {
8430 cu->line_header = line_header;
8431 make_cleanup (free_cu_line_header, cu);
8432 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8433 }
8434 }
8435 }
8436
8437 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8438
8439 static void
8440 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8441 {
8442 struct objfile *objfile = dwarf2_per_objfile->objfile;
8443 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8444 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8445 CORE_ADDR highpc = ((CORE_ADDR) 0);
8446 struct attribute *attr;
8447 const char *name = NULL;
8448 const char *comp_dir = NULL;
8449 struct die_info *child_die;
8450 bfd *abfd = objfile->obfd;
8451 CORE_ADDR baseaddr;
8452
8453 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8454
8455 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8456
8457 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8458 from finish_block. */
8459 if (lowpc == ((CORE_ADDR) -1))
8460 lowpc = highpc;
8461 lowpc += baseaddr;
8462 highpc += baseaddr;
8463
8464 find_file_and_directory (die, cu, &name, &comp_dir);
8465
8466 prepare_one_comp_unit (cu, die, cu->language);
8467
8468 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8469 standardised yet. As a workaround for the language detection we fall
8470 back to the DW_AT_producer string. */
8471 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8472 cu->language = language_opencl;
8473
8474 /* Similar hack for Go. */
8475 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8476 set_cu_language (DW_LANG_Go, cu);
8477
8478 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8479
8480 /* Decode line number information if present. We do this before
8481 processing child DIEs, so that the line header table is available
8482 for DW_AT_decl_file. */
8483 handle_DW_AT_stmt_list (die, cu, comp_dir);
8484
8485 /* Process all dies in compilation unit. */
8486 if (die->child != NULL)
8487 {
8488 child_die = die->child;
8489 while (child_die && child_die->tag)
8490 {
8491 process_die (child_die, cu);
8492 child_die = sibling_die (child_die);
8493 }
8494 }
8495
8496 /* Decode macro information, if present. Dwarf 2 macro information
8497 refers to information in the line number info statement program
8498 header, so we can only read it if we've read the header
8499 successfully. */
8500 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8501 if (attr && cu->line_header)
8502 {
8503 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8504 complaint (&symfile_complaints,
8505 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8506
8507 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8508 }
8509 else
8510 {
8511 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8512 if (attr && cu->line_header)
8513 {
8514 unsigned int macro_offset = DW_UNSND (attr);
8515
8516 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8517 }
8518 }
8519
8520 do_cleanups (back_to);
8521 }
8522
8523 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8524 Create the set of symtabs used by this TU, or if this TU is sharing
8525 symtabs with another TU and the symtabs have already been created
8526 then restore those symtabs in the line header.
8527 We don't need the pc/line-number mapping for type units. */
8528
8529 static void
8530 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8531 {
8532 struct objfile *objfile = dwarf2_per_objfile->objfile;
8533 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8534 struct type_unit_group *tu_group;
8535 int first_time;
8536 struct line_header *lh;
8537 struct attribute *attr;
8538 unsigned int i, line_offset;
8539 struct signatured_type *sig_type;
8540
8541 gdb_assert (per_cu->is_debug_types);
8542 sig_type = (struct signatured_type *) per_cu;
8543
8544 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8545
8546 /* If we're using .gdb_index (includes -readnow) then
8547 per_cu->type_unit_group may not have been set up yet. */
8548 if (sig_type->type_unit_group == NULL)
8549 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8550 tu_group = sig_type->type_unit_group;
8551
8552 /* If we've already processed this stmt_list there's no real need to
8553 do it again, we could fake it and just recreate the part we need
8554 (file name,index -> symtab mapping). If data shows this optimization
8555 is useful we can do it then. */
8556 first_time = tu_group->primary_symtab == NULL;
8557
8558 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8559 debug info. */
8560 lh = NULL;
8561 if (attr != NULL)
8562 {
8563 line_offset = DW_UNSND (attr);
8564 lh = dwarf_decode_line_header (line_offset, cu);
8565 }
8566 if (lh == NULL)
8567 {
8568 if (first_time)
8569 dwarf2_start_symtab (cu, "", NULL, 0);
8570 else
8571 {
8572 gdb_assert (tu_group->symtabs == NULL);
8573 restart_symtab (0);
8574 }
8575 /* Note: The primary symtab will get allocated at the end. */
8576 return;
8577 }
8578
8579 cu->line_header = lh;
8580 make_cleanup (free_cu_line_header, cu);
8581
8582 if (first_time)
8583 {
8584 dwarf2_start_symtab (cu, "", NULL, 0);
8585
8586 tu_group->num_symtabs = lh->num_file_names;
8587 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8588
8589 for (i = 0; i < lh->num_file_names; ++i)
8590 {
8591 const char *dir = NULL;
8592 struct file_entry *fe = &lh->file_names[i];
8593
8594 if (fe->dir_index)
8595 dir = lh->include_dirs[fe->dir_index - 1];
8596 dwarf2_start_subfile (fe->name, dir, NULL);
8597
8598 /* Note: We don't have to watch for the main subfile here, type units
8599 don't have DW_AT_name. */
8600
8601 if (current_subfile->symtab == NULL)
8602 {
8603 /* NOTE: start_subfile will recognize when it's been passed
8604 a file it has already seen. So we can't assume there's a
8605 simple mapping from lh->file_names to subfiles,
8606 lh->file_names may contain dups. */
8607 current_subfile->symtab = allocate_symtab (current_subfile->name,
8608 objfile);
8609 }
8610
8611 fe->symtab = current_subfile->symtab;
8612 tu_group->symtabs[i] = fe->symtab;
8613 }
8614 }
8615 else
8616 {
8617 restart_symtab (0);
8618
8619 for (i = 0; i < lh->num_file_names; ++i)
8620 {
8621 struct file_entry *fe = &lh->file_names[i];
8622
8623 fe->symtab = tu_group->symtabs[i];
8624 }
8625 }
8626
8627 /* The main symtab is allocated last. Type units don't have DW_AT_name
8628 so they don't have a "real" (so to speak) symtab anyway.
8629 There is later code that will assign the main symtab to all symbols
8630 that don't have one. We need to handle the case of a symbol with a
8631 missing symtab (DW_AT_decl_file) anyway. */
8632 }
8633
8634 /* Process DW_TAG_type_unit.
8635 For TUs we want to skip the first top level sibling if it's not the
8636 actual type being defined by this TU. In this case the first top
8637 level sibling is there to provide context only. */
8638
8639 static void
8640 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8641 {
8642 struct die_info *child_die;
8643
8644 prepare_one_comp_unit (cu, die, language_minimal);
8645
8646 /* Initialize (or reinitialize) the machinery for building symtabs.
8647 We do this before processing child DIEs, so that the line header table
8648 is available for DW_AT_decl_file. */
8649 setup_type_unit_groups (die, cu);
8650
8651 if (die->child != NULL)
8652 {
8653 child_die = die->child;
8654 while (child_die && child_die->tag)
8655 {
8656 process_die (child_die, cu);
8657 child_die = sibling_die (child_die);
8658 }
8659 }
8660 }
8661 \f
8662 /* DWO/DWP files.
8663
8664 http://gcc.gnu.org/wiki/DebugFission
8665 http://gcc.gnu.org/wiki/DebugFissionDWP
8666
8667 To simplify handling of both DWO files ("object" files with the DWARF info)
8668 and DWP files (a file with the DWOs packaged up into one file), we treat
8669 DWP files as having a collection of virtual DWO files. */
8670
8671 static hashval_t
8672 hash_dwo_file (const void *item)
8673 {
8674 const struct dwo_file *dwo_file = item;
8675 hashval_t hash;
8676
8677 hash = htab_hash_string (dwo_file->dwo_name);
8678 if (dwo_file->comp_dir != NULL)
8679 hash += htab_hash_string (dwo_file->comp_dir);
8680 return hash;
8681 }
8682
8683 static int
8684 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8685 {
8686 const struct dwo_file *lhs = item_lhs;
8687 const struct dwo_file *rhs = item_rhs;
8688
8689 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8690 return 0;
8691 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8692 return lhs->comp_dir == rhs->comp_dir;
8693 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8694 }
8695
8696 /* Allocate a hash table for DWO files. */
8697
8698 static htab_t
8699 allocate_dwo_file_hash_table (void)
8700 {
8701 struct objfile *objfile = dwarf2_per_objfile->objfile;
8702
8703 return htab_create_alloc_ex (41,
8704 hash_dwo_file,
8705 eq_dwo_file,
8706 NULL,
8707 &objfile->objfile_obstack,
8708 hashtab_obstack_allocate,
8709 dummy_obstack_deallocate);
8710 }
8711
8712 /* Lookup DWO file DWO_NAME. */
8713
8714 static void **
8715 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8716 {
8717 struct dwo_file find_entry;
8718 void **slot;
8719
8720 if (dwarf2_per_objfile->dwo_files == NULL)
8721 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8722
8723 memset (&find_entry, 0, sizeof (find_entry));
8724 find_entry.dwo_name = dwo_name;
8725 find_entry.comp_dir = comp_dir;
8726 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8727
8728 return slot;
8729 }
8730
8731 static hashval_t
8732 hash_dwo_unit (const void *item)
8733 {
8734 const struct dwo_unit *dwo_unit = item;
8735
8736 /* This drops the top 32 bits of the id, but is ok for a hash. */
8737 return dwo_unit->signature;
8738 }
8739
8740 static int
8741 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8742 {
8743 const struct dwo_unit *lhs = item_lhs;
8744 const struct dwo_unit *rhs = item_rhs;
8745
8746 /* The signature is assumed to be unique within the DWO file.
8747 So while object file CU dwo_id's always have the value zero,
8748 that's OK, assuming each object file DWO file has only one CU,
8749 and that's the rule for now. */
8750 return lhs->signature == rhs->signature;
8751 }
8752
8753 /* Allocate a hash table for DWO CUs,TUs.
8754 There is one of these tables for each of CUs,TUs for each DWO file. */
8755
8756 static htab_t
8757 allocate_dwo_unit_table (struct objfile *objfile)
8758 {
8759 /* Start out with a pretty small number.
8760 Generally DWO files contain only one CU and maybe some TUs. */
8761 return htab_create_alloc_ex (3,
8762 hash_dwo_unit,
8763 eq_dwo_unit,
8764 NULL,
8765 &objfile->objfile_obstack,
8766 hashtab_obstack_allocate,
8767 dummy_obstack_deallocate);
8768 }
8769
8770 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8771
8772 struct create_dwo_cu_data
8773 {
8774 struct dwo_file *dwo_file;
8775 struct dwo_unit dwo_unit;
8776 };
8777
8778 /* die_reader_func for create_dwo_cu. */
8779
8780 static void
8781 create_dwo_cu_reader (const struct die_reader_specs *reader,
8782 const gdb_byte *info_ptr,
8783 struct die_info *comp_unit_die,
8784 int has_children,
8785 void *datap)
8786 {
8787 struct dwarf2_cu *cu = reader->cu;
8788 struct objfile *objfile = dwarf2_per_objfile->objfile;
8789 sect_offset offset = cu->per_cu->offset;
8790 struct dwarf2_section_info *section = cu->per_cu->section;
8791 struct create_dwo_cu_data *data = datap;
8792 struct dwo_file *dwo_file = data->dwo_file;
8793 struct dwo_unit *dwo_unit = &data->dwo_unit;
8794 struct attribute *attr;
8795
8796 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8797 if (attr == NULL)
8798 {
8799 complaint (&symfile_complaints,
8800 _("Dwarf Error: debug entry at offset 0x%x is missing"
8801 " its dwo_id [in module %s]"),
8802 offset.sect_off, dwo_file->dwo_name);
8803 return;
8804 }
8805
8806 dwo_unit->dwo_file = dwo_file;
8807 dwo_unit->signature = DW_UNSND (attr);
8808 dwo_unit->section = section;
8809 dwo_unit->offset = offset;
8810 dwo_unit->length = cu->per_cu->length;
8811
8812 if (dwarf2_read_debug)
8813 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8814 offset.sect_off, hex_string (dwo_unit->signature));
8815 }
8816
8817 /* Create the dwo_unit for the lone CU in DWO_FILE.
8818 Note: This function processes DWO files only, not DWP files. */
8819
8820 static struct dwo_unit *
8821 create_dwo_cu (struct dwo_file *dwo_file)
8822 {
8823 struct objfile *objfile = dwarf2_per_objfile->objfile;
8824 struct dwarf2_section_info *section = &dwo_file->sections.info;
8825 bfd *abfd;
8826 htab_t cu_htab;
8827 const gdb_byte *info_ptr, *end_ptr;
8828 struct create_dwo_cu_data create_dwo_cu_data;
8829 struct dwo_unit *dwo_unit;
8830
8831 dwarf2_read_section (objfile, section);
8832 info_ptr = section->buffer;
8833
8834 if (info_ptr == NULL)
8835 return NULL;
8836
8837 /* We can't set abfd until now because the section may be empty or
8838 not present, in which case section->asection will be NULL. */
8839 abfd = section->asection->owner;
8840
8841 if (dwarf2_read_debug)
8842 {
8843 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8844 bfd_section_name (abfd, section->asection),
8845 bfd_get_filename (abfd));
8846 }
8847
8848 create_dwo_cu_data.dwo_file = dwo_file;
8849 dwo_unit = NULL;
8850
8851 end_ptr = info_ptr + section->size;
8852 while (info_ptr < end_ptr)
8853 {
8854 struct dwarf2_per_cu_data per_cu;
8855
8856 memset (&create_dwo_cu_data.dwo_unit, 0,
8857 sizeof (create_dwo_cu_data.dwo_unit));
8858 memset (&per_cu, 0, sizeof (per_cu));
8859 per_cu.objfile = objfile;
8860 per_cu.is_debug_types = 0;
8861 per_cu.offset.sect_off = info_ptr - section->buffer;
8862 per_cu.section = section;
8863
8864 init_cutu_and_read_dies_no_follow (&per_cu,
8865 &dwo_file->sections.abbrev,
8866 dwo_file,
8867 create_dwo_cu_reader,
8868 &create_dwo_cu_data);
8869
8870 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8871 {
8872 /* If we've already found one, complain. We only support one
8873 because having more than one requires hacking the dwo_name of
8874 each to match, which is highly unlikely to happen. */
8875 if (dwo_unit != NULL)
8876 {
8877 complaint (&symfile_complaints,
8878 _("Multiple CUs in DWO file %s [in module %s]"),
8879 dwo_file->dwo_name, objfile->name);
8880 break;
8881 }
8882
8883 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8884 *dwo_unit = create_dwo_cu_data.dwo_unit;
8885 }
8886
8887 info_ptr += per_cu.length;
8888 }
8889
8890 return dwo_unit;
8891 }
8892
8893 /* DWP file .debug_{cu,tu}_index section format:
8894 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8895
8896 DWP Version 1:
8897
8898 Both index sections have the same format, and serve to map a 64-bit
8899 signature to a set of section numbers. Each section begins with a header,
8900 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8901 indexes, and a pool of 32-bit section numbers. The index sections will be
8902 aligned at 8-byte boundaries in the file.
8903
8904 The index section header consists of:
8905
8906 V, 32 bit version number
8907 -, 32 bits unused
8908 N, 32 bit number of compilation units or type units in the index
8909 M, 32 bit number of slots in the hash table
8910
8911 Numbers are recorded using the byte order of the application binary.
8912
8913 We assume that N and M will not exceed 2^32 - 1.
8914
8915 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8916
8917 The hash table begins at offset 16 in the section, and consists of an array
8918 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8919 order of the application binary). Unused slots in the hash table are 0.
8920 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8921
8922 The parallel table begins immediately after the hash table
8923 (at offset 16 + 8 * M from the beginning of the section), and consists of an
8924 array of 32-bit indexes (using the byte order of the application binary),
8925 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8926 table contains a 32-bit index into the pool of section numbers. For unused
8927 hash table slots, the corresponding entry in the parallel table will be 0.
8928
8929 Given a 64-bit compilation unit signature or a type signature S, an entry
8930 in the hash table is located as follows:
8931
8932 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8933 the low-order k bits all set to 1.
8934
8935 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8936
8937 3) If the hash table entry at index H matches the signature, use that
8938 entry. If the hash table entry at index H is unused (all zeroes),
8939 terminate the search: the signature is not present in the table.
8940
8941 4) Let H = (H + H') modulo M. Repeat at Step 3.
8942
8943 Because M > N and H' and M are relatively prime, the search is guaranteed
8944 to stop at an unused slot or find the match.
8945
8946 The pool of section numbers begins immediately following the hash table
8947 (at offset 16 + 12 * M from the beginning of the section). The pool of
8948 section numbers consists of an array of 32-bit words (using the byte order
8949 of the application binary). Each item in the array is indexed starting
8950 from 0. The hash table entry provides the index of the first section
8951 number in the set. Additional section numbers in the set follow, and the
8952 set is terminated by a 0 entry (section number 0 is not used in ELF).
8953
8954 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8955 section must be the first entry in the set, and the .debug_abbrev.dwo must
8956 be the second entry. Other members of the set may follow in any order. */
8957
8958 /* Create a hash table to map DWO IDs to their CU/TU entry in
8959 .debug_{info,types}.dwo in DWP_FILE.
8960 Returns NULL if there isn't one.
8961 Note: This function processes DWP files only, not DWO files. */
8962
8963 static struct dwp_hash_table *
8964 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8965 {
8966 struct objfile *objfile = dwarf2_per_objfile->objfile;
8967 bfd *dbfd = dwp_file->dbfd;
8968 const gdb_byte *index_ptr, *index_end;
8969 struct dwarf2_section_info *index;
8970 uint32_t version, nr_units, nr_slots;
8971 struct dwp_hash_table *htab;
8972
8973 if (is_debug_types)
8974 index = &dwp_file->sections.tu_index;
8975 else
8976 index = &dwp_file->sections.cu_index;
8977
8978 if (dwarf2_section_empty_p (index))
8979 return NULL;
8980 dwarf2_read_section (objfile, index);
8981
8982 index_ptr = index->buffer;
8983 index_end = index_ptr + index->size;
8984
8985 version = read_4_bytes (dbfd, index_ptr);
8986 index_ptr += 8; /* Skip the unused word. */
8987 nr_units = read_4_bytes (dbfd, index_ptr);
8988 index_ptr += 4;
8989 nr_slots = read_4_bytes (dbfd, index_ptr);
8990 index_ptr += 4;
8991
8992 if (version != 1)
8993 {
8994 error (_("Dwarf Error: unsupported DWP file version (%s)"
8995 " [in module %s]"),
8996 pulongest (version), dwp_file->name);
8997 }
8998 if (nr_slots != (nr_slots & -nr_slots))
8999 {
9000 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9001 " is not power of 2 [in module %s]"),
9002 pulongest (nr_slots), dwp_file->name);
9003 }
9004
9005 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9006 htab->nr_units = nr_units;
9007 htab->nr_slots = nr_slots;
9008 htab->hash_table = index_ptr;
9009 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9010 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
9011
9012 return htab;
9013 }
9014
9015 /* Update SECTIONS with the data from SECTP.
9016
9017 This function is like the other "locate" section routines that are
9018 passed to bfd_map_over_sections, but in this context the sections to
9019 read comes from the DWP hash table, not the full ELF section table.
9020
9021 The result is non-zero for success, or zero if an error was found. */
9022
9023 static int
9024 locate_virtual_dwo_sections (asection *sectp,
9025 struct virtual_dwo_sections *sections)
9026 {
9027 const struct dwop_section_names *names = &dwop_section_names;
9028
9029 if (section_is_p (sectp->name, &names->abbrev_dwo))
9030 {
9031 /* There can be only one. */
9032 if (sections->abbrev.asection != NULL)
9033 return 0;
9034 sections->abbrev.asection = sectp;
9035 sections->abbrev.size = bfd_get_section_size (sectp);
9036 }
9037 else if (section_is_p (sectp->name, &names->info_dwo)
9038 || section_is_p (sectp->name, &names->types_dwo))
9039 {
9040 /* There can be only one. */
9041 if (sections->info_or_types.asection != NULL)
9042 return 0;
9043 sections->info_or_types.asection = sectp;
9044 sections->info_or_types.size = bfd_get_section_size (sectp);
9045 }
9046 else if (section_is_p (sectp->name, &names->line_dwo))
9047 {
9048 /* There can be only one. */
9049 if (sections->line.asection != NULL)
9050 return 0;
9051 sections->line.asection = sectp;
9052 sections->line.size = bfd_get_section_size (sectp);
9053 }
9054 else if (section_is_p (sectp->name, &names->loc_dwo))
9055 {
9056 /* There can be only one. */
9057 if (sections->loc.asection != NULL)
9058 return 0;
9059 sections->loc.asection = sectp;
9060 sections->loc.size = bfd_get_section_size (sectp);
9061 }
9062 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9063 {
9064 /* There can be only one. */
9065 if (sections->macinfo.asection != NULL)
9066 return 0;
9067 sections->macinfo.asection = sectp;
9068 sections->macinfo.size = bfd_get_section_size (sectp);
9069 }
9070 else if (section_is_p (sectp->name, &names->macro_dwo))
9071 {
9072 /* There can be only one. */
9073 if (sections->macro.asection != NULL)
9074 return 0;
9075 sections->macro.asection = sectp;
9076 sections->macro.size = bfd_get_section_size (sectp);
9077 }
9078 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9079 {
9080 /* There can be only one. */
9081 if (sections->str_offsets.asection != NULL)
9082 return 0;
9083 sections->str_offsets.asection = sectp;
9084 sections->str_offsets.size = bfd_get_section_size (sectp);
9085 }
9086 else
9087 {
9088 /* No other kind of section is valid. */
9089 return 0;
9090 }
9091
9092 return 1;
9093 }
9094
9095 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
9096 HTAB is the hash table from the DWP file.
9097 SECTION_INDEX is the index of the DWO in HTAB.
9098 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
9099
9100 static struct dwo_unit *
9101 create_dwo_in_dwp (struct dwp_file *dwp_file,
9102 const struct dwp_hash_table *htab,
9103 uint32_t section_index,
9104 const char *comp_dir,
9105 ULONGEST signature, int is_debug_types)
9106 {
9107 struct objfile *objfile = dwarf2_per_objfile->objfile;
9108 bfd *dbfd = dwp_file->dbfd;
9109 const char *kind = is_debug_types ? "TU" : "CU";
9110 struct dwo_file *dwo_file;
9111 struct dwo_unit *dwo_unit;
9112 struct virtual_dwo_sections sections;
9113 void **dwo_file_slot;
9114 char *virtual_dwo_name;
9115 struct dwarf2_section_info *cutu;
9116 struct cleanup *cleanups;
9117 int i;
9118
9119 if (dwarf2_read_debug)
9120 {
9121 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
9122 kind,
9123 pulongest (section_index), hex_string (signature),
9124 dwp_file->name);
9125 }
9126
9127 /* Fetch the sections of this DWO.
9128 Put a limit on the number of sections we look for so that bad data
9129 doesn't cause us to loop forever. */
9130
9131 #define MAX_NR_DWO_SECTIONS \
9132 (1 /* .debug_info or .debug_types */ \
9133 + 1 /* .debug_abbrev */ \
9134 + 1 /* .debug_line */ \
9135 + 1 /* .debug_loc */ \
9136 + 1 /* .debug_str_offsets */ \
9137 + 1 /* .debug_macro */ \
9138 + 1 /* .debug_macinfo */ \
9139 + 1 /* trailing zero */)
9140
9141 memset (&sections, 0, sizeof (sections));
9142 cleanups = make_cleanup (null_cleanup, 0);
9143
9144 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9145 {
9146 asection *sectp;
9147 uint32_t section_nr =
9148 read_4_bytes (dbfd,
9149 htab->section_pool
9150 + (section_index + i) * sizeof (uint32_t));
9151
9152 if (section_nr == 0)
9153 break;
9154 if (section_nr >= dwp_file->num_sections)
9155 {
9156 error (_("Dwarf Error: bad DWP hash table, section number too large"
9157 " [in module %s]"),
9158 dwp_file->name);
9159 }
9160
9161 sectp = dwp_file->elf_sections[section_nr];
9162 if (! locate_virtual_dwo_sections (sectp, &sections))
9163 {
9164 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9165 " [in module %s]"),
9166 dwp_file->name);
9167 }
9168 }
9169
9170 if (i < 2
9171 || sections.info_or_types.asection == NULL
9172 || sections.abbrev.asection == NULL)
9173 {
9174 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9175 " [in module %s]"),
9176 dwp_file->name);
9177 }
9178 if (i == MAX_NR_DWO_SECTIONS)
9179 {
9180 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9181 " [in module %s]"),
9182 dwp_file->name);
9183 }
9184
9185 /* It's easier for the rest of the code if we fake a struct dwo_file and
9186 have dwo_unit "live" in that. At least for now.
9187
9188 The DWP file can be made up of a random collection of CUs and TUs.
9189 However, for each CU + set of TUs that came from the same original DWO
9190 file, we want to combine them back into a virtual DWO file to save space
9191 (fewer struct dwo_file objects to allocated). Remember that for really
9192 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9193
9194 virtual_dwo_name =
9195 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9196 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9197 sections.line.asection ? sections.line.asection->id : 0,
9198 sections.loc.asection ? sections.loc.asection->id : 0,
9199 (sections.str_offsets.asection
9200 ? sections.str_offsets.asection->id
9201 : 0));
9202 make_cleanup (xfree, virtual_dwo_name);
9203 /* Can we use an existing virtual DWO file? */
9204 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9205 /* Create one if necessary. */
9206 if (*dwo_file_slot == NULL)
9207 {
9208 if (dwarf2_read_debug)
9209 {
9210 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9211 virtual_dwo_name);
9212 }
9213 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9214 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9215 virtual_dwo_name,
9216 strlen (virtual_dwo_name));
9217 dwo_file->comp_dir = comp_dir;
9218 dwo_file->sections.abbrev = sections.abbrev;
9219 dwo_file->sections.line = sections.line;
9220 dwo_file->sections.loc = sections.loc;
9221 dwo_file->sections.macinfo = sections.macinfo;
9222 dwo_file->sections.macro = sections.macro;
9223 dwo_file->sections.str_offsets = sections.str_offsets;
9224 /* The "str" section is global to the entire DWP file. */
9225 dwo_file->sections.str = dwp_file->sections.str;
9226 /* The info or types section is assigned later to dwo_unit,
9227 there's no need to record it in dwo_file.
9228 Also, we can't simply record type sections in dwo_file because
9229 we record a pointer into the vector in dwo_unit. As we collect more
9230 types we'll grow the vector and eventually have to reallocate space
9231 for it, invalidating all the pointers into the current copy. */
9232 *dwo_file_slot = dwo_file;
9233 }
9234 else
9235 {
9236 if (dwarf2_read_debug)
9237 {
9238 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9239 virtual_dwo_name);
9240 }
9241 dwo_file = *dwo_file_slot;
9242 }
9243 do_cleanups (cleanups);
9244
9245 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9246 dwo_unit->dwo_file = dwo_file;
9247 dwo_unit->signature = signature;
9248 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9249 sizeof (struct dwarf2_section_info));
9250 *dwo_unit->section = sections.info_or_types;
9251 /* offset, length, type_offset_in_tu are set later. */
9252
9253 return dwo_unit;
9254 }
9255
9256 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
9257
9258 static struct dwo_unit *
9259 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9260 const struct dwp_hash_table *htab,
9261 const char *comp_dir,
9262 ULONGEST signature, int is_debug_types)
9263 {
9264 bfd *dbfd = dwp_file->dbfd;
9265 uint32_t mask = htab->nr_slots - 1;
9266 uint32_t hash = signature & mask;
9267 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9268 unsigned int i;
9269 void **slot;
9270 struct dwo_unit find_dwo_cu, *dwo_cu;
9271
9272 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9273 find_dwo_cu.signature = signature;
9274 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9275
9276 if (*slot != NULL)
9277 return *slot;
9278
9279 /* Use a for loop so that we don't loop forever on bad debug info. */
9280 for (i = 0; i < htab->nr_slots; ++i)
9281 {
9282 ULONGEST signature_in_table;
9283
9284 signature_in_table =
9285 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9286 if (signature_in_table == signature)
9287 {
9288 uint32_t section_index =
9289 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9290
9291 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
9292 comp_dir, signature, is_debug_types);
9293 return *slot;
9294 }
9295 if (signature_in_table == 0)
9296 return NULL;
9297 hash = (hash + hash2) & mask;
9298 }
9299
9300 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9301 " [in module %s]"),
9302 dwp_file->name);
9303 }
9304
9305 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
9306 Open the file specified by FILE_NAME and hand it off to BFD for
9307 preliminary analysis. Return a newly initialized bfd *, which
9308 includes a canonicalized copy of FILE_NAME.
9309 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
9310 SEARCH_CWD is true if the current directory is to be searched.
9311 It will be searched before debug-file-directory.
9312 If unable to find/open the file, return NULL.
9313 NOTE: This function is derived from symfile_bfd_open. */
9314
9315 static bfd *
9316 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
9317 {
9318 bfd *sym_bfd;
9319 int desc, flags;
9320 char *absolute_name;
9321 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9322 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9323 to debug_file_directory. */
9324 char *search_path;
9325 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9326
9327 if (search_cwd)
9328 {
9329 if (*debug_file_directory != '\0')
9330 search_path = concat (".", dirname_separator_string,
9331 debug_file_directory, NULL);
9332 else
9333 search_path = xstrdup (".");
9334 }
9335 else
9336 search_path = xstrdup (debug_file_directory);
9337
9338 flags = 0;
9339 if (is_dwp)
9340 flags |= OPF_SEARCH_IN_PATH;
9341 desc = openp (search_path, flags, file_name,
9342 O_RDONLY | O_BINARY, &absolute_name);
9343 xfree (search_path);
9344 if (desc < 0)
9345 return NULL;
9346
9347 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
9348 xfree (absolute_name);
9349 if (sym_bfd == NULL)
9350 return NULL;
9351 bfd_set_cacheable (sym_bfd, 1);
9352
9353 if (!bfd_check_format (sym_bfd, bfd_object))
9354 {
9355 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
9356 return NULL;
9357 }
9358
9359 return sym_bfd;
9360 }
9361
9362 /* Try to open DWO file FILE_NAME.
9363 COMP_DIR is the DW_AT_comp_dir attribute.
9364 The result is the bfd handle of the file.
9365 If there is a problem finding or opening the file, return NULL.
9366 Upon success, the canonicalized path of the file is stored in the bfd,
9367 same as symfile_bfd_open. */
9368
9369 static bfd *
9370 open_dwo_file (const char *file_name, const char *comp_dir)
9371 {
9372 bfd *abfd;
9373
9374 if (IS_ABSOLUTE_PATH (file_name))
9375 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
9376
9377 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9378
9379 if (comp_dir != NULL)
9380 {
9381 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
9382
9383 /* NOTE: If comp_dir is a relative path, this will also try the
9384 search path, which seems useful. */
9385 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
9386 xfree (path_to_try);
9387 if (abfd != NULL)
9388 return abfd;
9389 }
9390
9391 /* That didn't work, try debug-file-directory, which, despite its name,
9392 is a list of paths. */
9393
9394 if (*debug_file_directory == '\0')
9395 return NULL;
9396
9397 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
9398 }
9399
9400 /* This function is mapped across the sections and remembers the offset and
9401 size of each of the DWO debugging sections we are interested in. */
9402
9403 static void
9404 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9405 {
9406 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9407 const struct dwop_section_names *names = &dwop_section_names;
9408
9409 if (section_is_p (sectp->name, &names->abbrev_dwo))
9410 {
9411 dwo_sections->abbrev.asection = sectp;
9412 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9413 }
9414 else if (section_is_p (sectp->name, &names->info_dwo))
9415 {
9416 dwo_sections->info.asection = sectp;
9417 dwo_sections->info.size = bfd_get_section_size (sectp);
9418 }
9419 else if (section_is_p (sectp->name, &names->line_dwo))
9420 {
9421 dwo_sections->line.asection = sectp;
9422 dwo_sections->line.size = bfd_get_section_size (sectp);
9423 }
9424 else if (section_is_p (sectp->name, &names->loc_dwo))
9425 {
9426 dwo_sections->loc.asection = sectp;
9427 dwo_sections->loc.size = bfd_get_section_size (sectp);
9428 }
9429 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9430 {
9431 dwo_sections->macinfo.asection = sectp;
9432 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9433 }
9434 else if (section_is_p (sectp->name, &names->macro_dwo))
9435 {
9436 dwo_sections->macro.asection = sectp;
9437 dwo_sections->macro.size = bfd_get_section_size (sectp);
9438 }
9439 else if (section_is_p (sectp->name, &names->str_dwo))
9440 {
9441 dwo_sections->str.asection = sectp;
9442 dwo_sections->str.size = bfd_get_section_size (sectp);
9443 }
9444 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9445 {
9446 dwo_sections->str_offsets.asection = sectp;
9447 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9448 }
9449 else if (section_is_p (sectp->name, &names->types_dwo))
9450 {
9451 struct dwarf2_section_info type_section;
9452
9453 memset (&type_section, 0, sizeof (type_section));
9454 type_section.asection = sectp;
9455 type_section.size = bfd_get_section_size (sectp);
9456 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9457 &type_section);
9458 }
9459 }
9460
9461 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9462 by PER_CU. This is for the non-DWP case.
9463 The result is NULL if DWO_NAME can't be found. */
9464
9465 static struct dwo_file *
9466 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9467 const char *dwo_name, const char *comp_dir)
9468 {
9469 struct objfile *objfile = dwarf2_per_objfile->objfile;
9470 struct dwo_file *dwo_file;
9471 bfd *dbfd;
9472 struct cleanup *cleanups;
9473
9474 dbfd = open_dwo_file (dwo_name, comp_dir);
9475 if (dbfd == NULL)
9476 {
9477 if (dwarf2_read_debug)
9478 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9479 return NULL;
9480 }
9481 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9482 dwo_file->dwo_name = dwo_name;
9483 dwo_file->comp_dir = comp_dir;
9484 dwo_file->dbfd = dbfd;
9485
9486 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9487
9488 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9489
9490 dwo_file->cu = create_dwo_cu (dwo_file);
9491
9492 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9493 dwo_file->sections.types);
9494
9495 discard_cleanups (cleanups);
9496
9497 if (dwarf2_read_debug)
9498 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9499
9500 return dwo_file;
9501 }
9502
9503 /* This function is mapped across the sections and remembers the offset and
9504 size of each of the DWP debugging sections we are interested in. */
9505
9506 static void
9507 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9508 {
9509 struct dwp_file *dwp_file = dwp_file_ptr;
9510 const struct dwop_section_names *names = &dwop_section_names;
9511 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9512
9513 /* Record the ELF section number for later lookup: this is what the
9514 .debug_cu_index,.debug_tu_index tables use. */
9515 gdb_assert (elf_section_nr < dwp_file->num_sections);
9516 dwp_file->elf_sections[elf_section_nr] = sectp;
9517
9518 /* Look for specific sections that we need. */
9519 if (section_is_p (sectp->name, &names->str_dwo))
9520 {
9521 dwp_file->sections.str.asection = sectp;
9522 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9523 }
9524 else if (section_is_p (sectp->name, &names->cu_index))
9525 {
9526 dwp_file->sections.cu_index.asection = sectp;
9527 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9528 }
9529 else if (section_is_p (sectp->name, &names->tu_index))
9530 {
9531 dwp_file->sections.tu_index.asection = sectp;
9532 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9533 }
9534 }
9535
9536 /* Hash function for dwp_file loaded CUs/TUs. */
9537
9538 static hashval_t
9539 hash_dwp_loaded_cutus (const void *item)
9540 {
9541 const struct dwo_unit *dwo_unit = item;
9542
9543 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9544 return dwo_unit->signature;
9545 }
9546
9547 /* Equality function for dwp_file loaded CUs/TUs. */
9548
9549 static int
9550 eq_dwp_loaded_cutus (const void *a, const void *b)
9551 {
9552 const struct dwo_unit *dua = a;
9553 const struct dwo_unit *dub = b;
9554
9555 return dua->signature == dub->signature;
9556 }
9557
9558 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9559
9560 static htab_t
9561 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9562 {
9563 return htab_create_alloc_ex (3,
9564 hash_dwp_loaded_cutus,
9565 eq_dwp_loaded_cutus,
9566 NULL,
9567 &objfile->objfile_obstack,
9568 hashtab_obstack_allocate,
9569 dummy_obstack_deallocate);
9570 }
9571
9572 /* Try to open DWP file FILE_NAME.
9573 The result is the bfd handle of the file.
9574 If there is a problem finding or opening the file, return NULL.
9575 Upon success, the canonicalized path of the file is stored in the bfd,
9576 same as symfile_bfd_open. */
9577
9578 static bfd *
9579 open_dwp_file (const char *file_name)
9580 {
9581 bfd *abfd;
9582
9583 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
9584 if (abfd != NULL)
9585 return abfd;
9586
9587 /* Work around upstream bug 15652.
9588 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
9589 [Whether that's a "bug" is debatable, but it is getting in our way.]
9590 We have no real idea where the dwp file is, because gdb's realpath-ing
9591 of the executable's path may have discarded the needed info.
9592 [IWBN if the dwp file name was recorded in the executable, akin to
9593 .gnu_debuglink, but that doesn't exist yet.]
9594 Strip the directory from FILE_NAME and search again. */
9595 if (*debug_file_directory != '\0')
9596 {
9597 /* Don't implicitly search the current directory here.
9598 If the user wants to search "." to handle this case,
9599 it must be added to debug-file-directory. */
9600 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
9601 0 /*search_cwd*/);
9602 }
9603
9604 return NULL;
9605 }
9606
9607 /* Initialize the use of the DWP file for the current objfile.
9608 By convention the name of the DWP file is ${objfile}.dwp.
9609 The result is NULL if it can't be found. */
9610
9611 static struct dwp_file *
9612 open_and_init_dwp_file (void)
9613 {
9614 struct objfile *objfile = dwarf2_per_objfile->objfile;
9615 struct dwp_file *dwp_file;
9616 char *dwp_name;
9617 bfd *dbfd;
9618 struct cleanup *cleanups;
9619
9620 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9621 cleanups = make_cleanup (xfree, dwp_name);
9622
9623 dbfd = open_dwp_file (dwp_name);
9624 if (dbfd == NULL)
9625 {
9626 if (dwarf2_read_debug)
9627 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9628 do_cleanups (cleanups);
9629 return NULL;
9630 }
9631 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9632 dwp_file->name = bfd_get_filename (dbfd);
9633 dwp_file->dbfd = dbfd;
9634 do_cleanups (cleanups);
9635
9636 /* +1: section 0 is unused */
9637 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9638 dwp_file->elf_sections =
9639 OBSTACK_CALLOC (&objfile->objfile_obstack,
9640 dwp_file->num_sections, asection *);
9641
9642 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9643
9644 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9645
9646 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9647
9648 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9649
9650 if (dwarf2_read_debug)
9651 {
9652 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9653 fprintf_unfiltered (gdb_stdlog,
9654 " %s CUs, %s TUs\n",
9655 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9656 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
9657 }
9658
9659 return dwp_file;
9660 }
9661
9662 /* Wrapper around open_and_init_dwp_file, only open it once. */
9663
9664 static struct dwp_file *
9665 get_dwp_file (void)
9666 {
9667 if (! dwarf2_per_objfile->dwp_checked)
9668 {
9669 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9670 dwarf2_per_objfile->dwp_checked = 1;
9671 }
9672 return dwarf2_per_objfile->dwp_file;
9673 }
9674
9675 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9676 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9677 or in the DWP file for the objfile, referenced by THIS_UNIT.
9678 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9679 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9680
9681 This is called, for example, when wanting to read a variable with a
9682 complex location. Therefore we don't want to do file i/o for every call.
9683 Therefore we don't want to look for a DWO file on every call.
9684 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9685 then we check if we've already seen DWO_NAME, and only THEN do we check
9686 for a DWO file.
9687
9688 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9689 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9690
9691 static struct dwo_unit *
9692 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9693 const char *dwo_name, const char *comp_dir,
9694 ULONGEST signature, int is_debug_types)
9695 {
9696 struct objfile *objfile = dwarf2_per_objfile->objfile;
9697 const char *kind = is_debug_types ? "TU" : "CU";
9698 void **dwo_file_slot;
9699 struct dwo_file *dwo_file;
9700 struct dwp_file *dwp_file;
9701
9702 /* First see if there's a DWP file.
9703 If we have a DWP file but didn't find the DWO inside it, don't
9704 look for the original DWO file. It makes gdb behave differently
9705 depending on whether one is debugging in the build tree. */
9706
9707 dwp_file = get_dwp_file ();
9708 if (dwp_file != NULL)
9709 {
9710 const struct dwp_hash_table *dwp_htab =
9711 is_debug_types ? dwp_file->tus : dwp_file->cus;
9712
9713 if (dwp_htab != NULL)
9714 {
9715 struct dwo_unit *dwo_cutu =
9716 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9717 signature, is_debug_types);
9718
9719 if (dwo_cutu != NULL)
9720 {
9721 if (dwarf2_read_debug)
9722 {
9723 fprintf_unfiltered (gdb_stdlog,
9724 "Virtual DWO %s %s found: @%s\n",
9725 kind, hex_string (signature),
9726 host_address_to_string (dwo_cutu));
9727 }
9728 return dwo_cutu;
9729 }
9730 }
9731 }
9732 else
9733 {
9734 /* No DWP file, look for the DWO file. */
9735
9736 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9737 if (*dwo_file_slot == NULL)
9738 {
9739 /* Read in the file and build a table of the CUs/TUs it contains. */
9740 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9741 }
9742 /* NOTE: This will be NULL if unable to open the file. */
9743 dwo_file = *dwo_file_slot;
9744
9745 if (dwo_file != NULL)
9746 {
9747 struct dwo_unit *dwo_cutu = NULL;
9748
9749 if (is_debug_types && dwo_file->tus)
9750 {
9751 struct dwo_unit find_dwo_cutu;
9752
9753 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9754 find_dwo_cutu.signature = signature;
9755 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9756 }
9757 else if (!is_debug_types && dwo_file->cu)
9758 {
9759 if (signature == dwo_file->cu->signature)
9760 dwo_cutu = dwo_file->cu;
9761 }
9762
9763 if (dwo_cutu != NULL)
9764 {
9765 if (dwarf2_read_debug)
9766 {
9767 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9768 kind, dwo_name, hex_string (signature),
9769 host_address_to_string (dwo_cutu));
9770 }
9771 return dwo_cutu;
9772 }
9773 }
9774 }
9775
9776 /* We didn't find it. This could mean a dwo_id mismatch, or
9777 someone deleted the DWO/DWP file, or the search path isn't set up
9778 correctly to find the file. */
9779
9780 if (dwarf2_read_debug)
9781 {
9782 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9783 kind, dwo_name, hex_string (signature));
9784 }
9785
9786 complaint (&symfile_complaints,
9787 _("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9788 " [in module %s]"),
9789 kind, dwo_name, hex_string (signature),
9790 this_unit->is_debug_types ? "TU" : "CU",
9791 this_unit->offset.sect_off, objfile->name);
9792 return NULL;
9793 }
9794
9795 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9796 See lookup_dwo_cutu_unit for details. */
9797
9798 static struct dwo_unit *
9799 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9800 const char *dwo_name, const char *comp_dir,
9801 ULONGEST signature)
9802 {
9803 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9804 }
9805
9806 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9807 See lookup_dwo_cutu_unit for details. */
9808
9809 static struct dwo_unit *
9810 lookup_dwo_type_unit (struct signatured_type *this_tu,
9811 const char *dwo_name, const char *comp_dir)
9812 {
9813 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9814 }
9815
9816 /* Free all resources associated with DWO_FILE.
9817 Close the DWO file and munmap the sections.
9818 All memory should be on the objfile obstack. */
9819
9820 static void
9821 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9822 {
9823 int ix;
9824 struct dwarf2_section_info *section;
9825
9826 /* Note: dbfd is NULL for virtual DWO files. */
9827 gdb_bfd_unref (dwo_file->dbfd);
9828
9829 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9830 }
9831
9832 /* Wrapper for free_dwo_file for use in cleanups. */
9833
9834 static void
9835 free_dwo_file_cleanup (void *arg)
9836 {
9837 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9838 struct objfile *objfile = dwarf2_per_objfile->objfile;
9839
9840 free_dwo_file (dwo_file, objfile);
9841 }
9842
9843 /* Traversal function for free_dwo_files. */
9844
9845 static int
9846 free_dwo_file_from_slot (void **slot, void *info)
9847 {
9848 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9849 struct objfile *objfile = (struct objfile *) info;
9850
9851 free_dwo_file (dwo_file, objfile);
9852
9853 return 1;
9854 }
9855
9856 /* Free all resources associated with DWO_FILES. */
9857
9858 static void
9859 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9860 {
9861 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9862 }
9863 \f
9864 /* Read in various DIEs. */
9865
9866 /* qsort helper for inherit_abstract_dies. */
9867
9868 static int
9869 unsigned_int_compar (const void *ap, const void *bp)
9870 {
9871 unsigned int a = *(unsigned int *) ap;
9872 unsigned int b = *(unsigned int *) bp;
9873
9874 return (a > b) - (b > a);
9875 }
9876
9877 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9878 Inherit only the children of the DW_AT_abstract_origin DIE not being
9879 already referenced by DW_AT_abstract_origin from the children of the
9880 current DIE. */
9881
9882 static void
9883 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9884 {
9885 struct die_info *child_die;
9886 unsigned die_children_count;
9887 /* CU offsets which were referenced by children of the current DIE. */
9888 sect_offset *offsets;
9889 sect_offset *offsets_end, *offsetp;
9890 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9891 struct die_info *origin_die;
9892 /* Iterator of the ORIGIN_DIE children. */
9893 struct die_info *origin_child_die;
9894 struct cleanup *cleanups;
9895 struct attribute *attr;
9896 struct dwarf2_cu *origin_cu;
9897 struct pending **origin_previous_list_in_scope;
9898
9899 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9900 if (!attr)
9901 return;
9902
9903 /* Note that following die references may follow to a die in a
9904 different cu. */
9905
9906 origin_cu = cu;
9907 origin_die = follow_die_ref (die, attr, &origin_cu);
9908
9909 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9910 symbols in. */
9911 origin_previous_list_in_scope = origin_cu->list_in_scope;
9912 origin_cu->list_in_scope = cu->list_in_scope;
9913
9914 if (die->tag != origin_die->tag
9915 && !(die->tag == DW_TAG_inlined_subroutine
9916 && origin_die->tag == DW_TAG_subprogram))
9917 complaint (&symfile_complaints,
9918 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9919 die->offset.sect_off, origin_die->offset.sect_off);
9920
9921 child_die = die->child;
9922 die_children_count = 0;
9923 while (child_die && child_die->tag)
9924 {
9925 child_die = sibling_die (child_die);
9926 die_children_count++;
9927 }
9928 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9929 cleanups = make_cleanup (xfree, offsets);
9930
9931 offsets_end = offsets;
9932 child_die = die->child;
9933 while (child_die && child_die->tag)
9934 {
9935 /* For each CHILD_DIE, find the corresponding child of
9936 ORIGIN_DIE. If there is more than one layer of
9937 DW_AT_abstract_origin, follow them all; there shouldn't be,
9938 but GCC versions at least through 4.4 generate this (GCC PR
9939 40573). */
9940 struct die_info *child_origin_die = child_die;
9941 struct dwarf2_cu *child_origin_cu = cu;
9942
9943 while (1)
9944 {
9945 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9946 child_origin_cu);
9947 if (attr == NULL)
9948 break;
9949 child_origin_die = follow_die_ref (child_origin_die, attr,
9950 &child_origin_cu);
9951 }
9952
9953 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9954 counterpart may exist. */
9955 if (child_origin_die != child_die)
9956 {
9957 if (child_die->tag != child_origin_die->tag
9958 && !(child_die->tag == DW_TAG_inlined_subroutine
9959 && child_origin_die->tag == DW_TAG_subprogram))
9960 complaint (&symfile_complaints,
9961 _("Child DIE 0x%x and its abstract origin 0x%x have "
9962 "different tags"), child_die->offset.sect_off,
9963 child_origin_die->offset.sect_off);
9964 if (child_origin_die->parent != origin_die)
9965 complaint (&symfile_complaints,
9966 _("Child DIE 0x%x and its abstract origin 0x%x have "
9967 "different parents"), child_die->offset.sect_off,
9968 child_origin_die->offset.sect_off);
9969 else
9970 *offsets_end++ = child_origin_die->offset;
9971 }
9972 child_die = sibling_die (child_die);
9973 }
9974 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9975 unsigned_int_compar);
9976 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9977 if (offsetp[-1].sect_off == offsetp->sect_off)
9978 complaint (&symfile_complaints,
9979 _("Multiple children of DIE 0x%x refer "
9980 "to DIE 0x%x as their abstract origin"),
9981 die->offset.sect_off, offsetp->sect_off);
9982
9983 offsetp = offsets;
9984 origin_child_die = origin_die->child;
9985 while (origin_child_die && origin_child_die->tag)
9986 {
9987 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9988 while (offsetp < offsets_end
9989 && offsetp->sect_off < origin_child_die->offset.sect_off)
9990 offsetp++;
9991 if (offsetp >= offsets_end
9992 || offsetp->sect_off > origin_child_die->offset.sect_off)
9993 {
9994 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9995 process_die (origin_child_die, origin_cu);
9996 }
9997 origin_child_die = sibling_die (origin_child_die);
9998 }
9999 origin_cu->list_in_scope = origin_previous_list_in_scope;
10000
10001 do_cleanups (cleanups);
10002 }
10003
10004 static void
10005 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10006 {
10007 struct objfile *objfile = cu->objfile;
10008 struct context_stack *new;
10009 CORE_ADDR lowpc;
10010 CORE_ADDR highpc;
10011 struct die_info *child_die;
10012 struct attribute *attr, *call_line, *call_file;
10013 const char *name;
10014 CORE_ADDR baseaddr;
10015 struct block *block;
10016 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10017 VEC (symbolp) *template_args = NULL;
10018 struct template_symbol *templ_func = NULL;
10019
10020 if (inlined_func)
10021 {
10022 /* If we do not have call site information, we can't show the
10023 caller of this inlined function. That's too confusing, so
10024 only use the scope for local variables. */
10025 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10026 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10027 if (call_line == NULL || call_file == NULL)
10028 {
10029 read_lexical_block_scope (die, cu);
10030 return;
10031 }
10032 }
10033
10034 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10035
10036 name = dwarf2_name (die, cu);
10037
10038 /* Ignore functions with missing or empty names. These are actually
10039 illegal according to the DWARF standard. */
10040 if (name == NULL)
10041 {
10042 complaint (&symfile_complaints,
10043 _("missing name for subprogram DIE at %d"),
10044 die->offset.sect_off);
10045 return;
10046 }
10047
10048 /* Ignore functions with missing or invalid low and high pc attributes. */
10049 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10050 {
10051 attr = dwarf2_attr (die, DW_AT_external, cu);
10052 if (!attr || !DW_UNSND (attr))
10053 complaint (&symfile_complaints,
10054 _("cannot get low and high bounds "
10055 "for subprogram DIE at %d"),
10056 die->offset.sect_off);
10057 return;
10058 }
10059
10060 lowpc += baseaddr;
10061 highpc += baseaddr;
10062
10063 /* If we have any template arguments, then we must allocate a
10064 different sort of symbol. */
10065 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10066 {
10067 if (child_die->tag == DW_TAG_template_type_param
10068 || child_die->tag == DW_TAG_template_value_param)
10069 {
10070 templ_func = allocate_template_symbol (objfile);
10071 templ_func->base.is_cplus_template_function = 1;
10072 break;
10073 }
10074 }
10075
10076 new = push_context (0, lowpc);
10077 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10078 (struct symbol *) templ_func);
10079
10080 /* If there is a location expression for DW_AT_frame_base, record
10081 it. */
10082 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10083 if (attr)
10084 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10085
10086 cu->list_in_scope = &local_symbols;
10087
10088 if (die->child != NULL)
10089 {
10090 child_die = die->child;
10091 while (child_die && child_die->tag)
10092 {
10093 if (child_die->tag == DW_TAG_template_type_param
10094 || child_die->tag == DW_TAG_template_value_param)
10095 {
10096 struct symbol *arg = new_symbol (child_die, NULL, cu);
10097
10098 if (arg != NULL)
10099 VEC_safe_push (symbolp, template_args, arg);
10100 }
10101 else
10102 process_die (child_die, cu);
10103 child_die = sibling_die (child_die);
10104 }
10105 }
10106
10107 inherit_abstract_dies (die, cu);
10108
10109 /* If we have a DW_AT_specification, we might need to import using
10110 directives from the context of the specification DIE. See the
10111 comment in determine_prefix. */
10112 if (cu->language == language_cplus
10113 && dwarf2_attr (die, DW_AT_specification, cu))
10114 {
10115 struct dwarf2_cu *spec_cu = cu;
10116 struct die_info *spec_die = die_specification (die, &spec_cu);
10117
10118 while (spec_die)
10119 {
10120 child_die = spec_die->child;
10121 while (child_die && child_die->tag)
10122 {
10123 if (child_die->tag == DW_TAG_imported_module)
10124 process_die (child_die, spec_cu);
10125 child_die = sibling_die (child_die);
10126 }
10127
10128 /* In some cases, GCC generates specification DIEs that
10129 themselves contain DW_AT_specification attributes. */
10130 spec_die = die_specification (spec_die, &spec_cu);
10131 }
10132 }
10133
10134 new = pop_context ();
10135 /* Make a block for the local symbols within. */
10136 block = finish_block (new->name, &local_symbols, new->old_blocks,
10137 lowpc, highpc, objfile);
10138
10139 /* For C++, set the block's scope. */
10140 if ((cu->language == language_cplus || cu->language == language_fortran)
10141 && cu->processing_has_namespace_info)
10142 block_set_scope (block, determine_prefix (die, cu),
10143 &objfile->objfile_obstack);
10144
10145 /* If we have address ranges, record them. */
10146 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10147
10148 /* Attach template arguments to function. */
10149 if (! VEC_empty (symbolp, template_args))
10150 {
10151 gdb_assert (templ_func != NULL);
10152
10153 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10154 templ_func->template_arguments
10155 = obstack_alloc (&objfile->objfile_obstack,
10156 (templ_func->n_template_arguments
10157 * sizeof (struct symbol *)));
10158 memcpy (templ_func->template_arguments,
10159 VEC_address (symbolp, template_args),
10160 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10161 VEC_free (symbolp, template_args);
10162 }
10163
10164 /* In C++, we can have functions nested inside functions (e.g., when
10165 a function declares a class that has methods). This means that
10166 when we finish processing a function scope, we may need to go
10167 back to building a containing block's symbol lists. */
10168 local_symbols = new->locals;
10169 using_directives = new->using_directives;
10170
10171 /* If we've finished processing a top-level function, subsequent
10172 symbols go in the file symbol list. */
10173 if (outermost_context_p ())
10174 cu->list_in_scope = &file_symbols;
10175 }
10176
10177 /* Process all the DIES contained within a lexical block scope. Start
10178 a new scope, process the dies, and then close the scope. */
10179
10180 static void
10181 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
10182 {
10183 struct objfile *objfile = cu->objfile;
10184 struct context_stack *new;
10185 CORE_ADDR lowpc, highpc;
10186 struct die_info *child_die;
10187 CORE_ADDR baseaddr;
10188
10189 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10190
10191 /* Ignore blocks with missing or invalid low and high pc attributes. */
10192 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10193 as multiple lexical blocks? Handling children in a sane way would
10194 be nasty. Might be easier to properly extend generic blocks to
10195 describe ranges. */
10196 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10197 return;
10198 lowpc += baseaddr;
10199 highpc += baseaddr;
10200
10201 push_context (0, lowpc);
10202 if (die->child != NULL)
10203 {
10204 child_die = die->child;
10205 while (child_die && child_die->tag)
10206 {
10207 process_die (child_die, cu);
10208 child_die = sibling_die (child_die);
10209 }
10210 }
10211 new = pop_context ();
10212
10213 if (local_symbols != NULL || using_directives != NULL)
10214 {
10215 struct block *block
10216 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10217 highpc, objfile);
10218
10219 /* Note that recording ranges after traversing children, as we
10220 do here, means that recording a parent's ranges entails
10221 walking across all its children's ranges as they appear in
10222 the address map, which is quadratic behavior.
10223
10224 It would be nicer to record the parent's ranges before
10225 traversing its children, simply overriding whatever you find
10226 there. But since we don't even decide whether to create a
10227 block until after we've traversed its children, that's hard
10228 to do. */
10229 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10230 }
10231 local_symbols = new->locals;
10232 using_directives = new->using_directives;
10233 }
10234
10235 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10236
10237 static void
10238 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10239 {
10240 struct objfile *objfile = cu->objfile;
10241 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10242 CORE_ADDR pc, baseaddr;
10243 struct attribute *attr;
10244 struct call_site *call_site, call_site_local;
10245 void **slot;
10246 int nparams;
10247 struct die_info *child_die;
10248
10249 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10250
10251 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10252 if (!attr)
10253 {
10254 complaint (&symfile_complaints,
10255 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10256 "DIE 0x%x [in module %s]"),
10257 die->offset.sect_off, objfile->name);
10258 return;
10259 }
10260 pc = DW_ADDR (attr) + baseaddr;
10261
10262 if (cu->call_site_htab == NULL)
10263 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10264 NULL, &objfile->objfile_obstack,
10265 hashtab_obstack_allocate, NULL);
10266 call_site_local.pc = pc;
10267 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10268 if (*slot != NULL)
10269 {
10270 complaint (&symfile_complaints,
10271 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10272 "DIE 0x%x [in module %s]"),
10273 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
10274 return;
10275 }
10276
10277 /* Count parameters at the caller. */
10278
10279 nparams = 0;
10280 for (child_die = die->child; child_die && child_die->tag;
10281 child_die = sibling_die (child_die))
10282 {
10283 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10284 {
10285 complaint (&symfile_complaints,
10286 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10287 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10288 child_die->tag, child_die->offset.sect_off, objfile->name);
10289 continue;
10290 }
10291
10292 nparams++;
10293 }
10294
10295 call_site = obstack_alloc (&objfile->objfile_obstack,
10296 (sizeof (*call_site)
10297 + (sizeof (*call_site->parameter)
10298 * (nparams - 1))));
10299 *slot = call_site;
10300 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10301 call_site->pc = pc;
10302
10303 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10304 {
10305 struct die_info *func_die;
10306
10307 /* Skip also over DW_TAG_inlined_subroutine. */
10308 for (func_die = die->parent;
10309 func_die && func_die->tag != DW_TAG_subprogram
10310 && func_die->tag != DW_TAG_subroutine_type;
10311 func_die = func_die->parent);
10312
10313 /* DW_AT_GNU_all_call_sites is a superset
10314 of DW_AT_GNU_all_tail_call_sites. */
10315 if (func_die
10316 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10317 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10318 {
10319 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10320 not complete. But keep CALL_SITE for look ups via call_site_htab,
10321 both the initial caller containing the real return address PC and
10322 the final callee containing the current PC of a chain of tail
10323 calls do not need to have the tail call list complete. But any
10324 function candidate for a virtual tail call frame searched via
10325 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10326 determined unambiguously. */
10327 }
10328 else
10329 {
10330 struct type *func_type = NULL;
10331
10332 if (func_die)
10333 func_type = get_die_type (func_die, cu);
10334 if (func_type != NULL)
10335 {
10336 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10337
10338 /* Enlist this call site to the function. */
10339 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10340 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10341 }
10342 else
10343 complaint (&symfile_complaints,
10344 _("Cannot find function owning DW_TAG_GNU_call_site "
10345 "DIE 0x%x [in module %s]"),
10346 die->offset.sect_off, objfile->name);
10347 }
10348 }
10349
10350 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10351 if (attr == NULL)
10352 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10353 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10354 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10355 /* Keep NULL DWARF_BLOCK. */;
10356 else if (attr_form_is_block (attr))
10357 {
10358 struct dwarf2_locexpr_baton *dlbaton;
10359
10360 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10361 dlbaton->data = DW_BLOCK (attr)->data;
10362 dlbaton->size = DW_BLOCK (attr)->size;
10363 dlbaton->per_cu = cu->per_cu;
10364
10365 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10366 }
10367 else if (is_ref_attr (attr))
10368 {
10369 struct dwarf2_cu *target_cu = cu;
10370 struct die_info *target_die;
10371
10372 target_die = follow_die_ref (die, attr, &target_cu);
10373 gdb_assert (target_cu->objfile == objfile);
10374 if (die_is_declaration (target_die, target_cu))
10375 {
10376 const char *target_physname = NULL;
10377 struct attribute *target_attr;
10378
10379 /* Prefer the mangled name; otherwise compute the demangled one. */
10380 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10381 if (target_attr == NULL)
10382 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10383 target_cu);
10384 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10385 target_physname = DW_STRING (target_attr);
10386 else
10387 target_physname = dwarf2_physname (NULL, target_die, target_cu);
10388 if (target_physname == NULL)
10389 complaint (&symfile_complaints,
10390 _("DW_AT_GNU_call_site_target target DIE has invalid "
10391 "physname, for referencing DIE 0x%x [in module %s]"),
10392 die->offset.sect_off, objfile->name);
10393 else
10394 SET_FIELD_PHYSNAME (call_site->target, target_physname);
10395 }
10396 else
10397 {
10398 CORE_ADDR lowpc;
10399
10400 /* DW_AT_entry_pc should be preferred. */
10401 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10402 complaint (&symfile_complaints,
10403 _("DW_AT_GNU_call_site_target target DIE has invalid "
10404 "low pc, for referencing DIE 0x%x [in module %s]"),
10405 die->offset.sect_off, objfile->name);
10406 else
10407 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10408 }
10409 }
10410 else
10411 complaint (&symfile_complaints,
10412 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10413 "block nor reference, for DIE 0x%x [in module %s]"),
10414 die->offset.sect_off, objfile->name);
10415
10416 call_site->per_cu = cu->per_cu;
10417
10418 for (child_die = die->child;
10419 child_die && child_die->tag;
10420 child_die = sibling_die (child_die))
10421 {
10422 struct call_site_parameter *parameter;
10423 struct attribute *loc, *origin;
10424
10425 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10426 {
10427 /* Already printed the complaint above. */
10428 continue;
10429 }
10430
10431 gdb_assert (call_site->parameter_count < nparams);
10432 parameter = &call_site->parameter[call_site->parameter_count];
10433
10434 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10435 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10436 register is contained in DW_AT_GNU_call_site_value. */
10437
10438 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10439 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10440 if (loc == NULL && origin != NULL && is_ref_attr (origin))
10441 {
10442 sect_offset offset;
10443
10444 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10445 offset = dwarf2_get_ref_die_offset (origin);
10446 if (!offset_in_cu_p (&cu->header, offset))
10447 {
10448 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10449 binding can be done only inside one CU. Such referenced DIE
10450 therefore cannot be even moved to DW_TAG_partial_unit. */
10451 complaint (&symfile_complaints,
10452 _("DW_AT_abstract_origin offset is not in CU for "
10453 "DW_TAG_GNU_call_site child DIE 0x%x "
10454 "[in module %s]"),
10455 child_die->offset.sect_off, objfile->name);
10456 continue;
10457 }
10458 parameter->u.param_offset.cu_off = (offset.sect_off
10459 - cu->header.offset.sect_off);
10460 }
10461 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10462 {
10463 complaint (&symfile_complaints,
10464 _("No DW_FORM_block* DW_AT_location for "
10465 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10466 child_die->offset.sect_off, objfile->name);
10467 continue;
10468 }
10469 else
10470 {
10471 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10472 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10473 if (parameter->u.dwarf_reg != -1)
10474 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10475 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10476 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10477 &parameter->u.fb_offset))
10478 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10479 else
10480 {
10481 complaint (&symfile_complaints,
10482 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10483 "for DW_FORM_block* DW_AT_location is supported for "
10484 "DW_TAG_GNU_call_site child DIE 0x%x "
10485 "[in module %s]"),
10486 child_die->offset.sect_off, objfile->name);
10487 continue;
10488 }
10489 }
10490
10491 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10492 if (!attr_form_is_block (attr))
10493 {
10494 complaint (&symfile_complaints,
10495 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10496 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10497 child_die->offset.sect_off, objfile->name);
10498 continue;
10499 }
10500 parameter->value = DW_BLOCK (attr)->data;
10501 parameter->value_size = DW_BLOCK (attr)->size;
10502
10503 /* Parameters are not pre-cleared by memset above. */
10504 parameter->data_value = NULL;
10505 parameter->data_value_size = 0;
10506 call_site->parameter_count++;
10507
10508 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10509 if (attr)
10510 {
10511 if (!attr_form_is_block (attr))
10512 complaint (&symfile_complaints,
10513 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10514 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10515 child_die->offset.sect_off, objfile->name);
10516 else
10517 {
10518 parameter->data_value = DW_BLOCK (attr)->data;
10519 parameter->data_value_size = DW_BLOCK (attr)->size;
10520 }
10521 }
10522 }
10523 }
10524
10525 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10526 Return 1 if the attributes are present and valid, otherwise, return 0.
10527 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10528
10529 static int
10530 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10531 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10532 struct partial_symtab *ranges_pst)
10533 {
10534 struct objfile *objfile = cu->objfile;
10535 struct comp_unit_head *cu_header = &cu->header;
10536 bfd *obfd = objfile->obfd;
10537 unsigned int addr_size = cu_header->addr_size;
10538 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10539 /* Base address selection entry. */
10540 CORE_ADDR base;
10541 int found_base;
10542 unsigned int dummy;
10543 const gdb_byte *buffer;
10544 CORE_ADDR marker;
10545 int low_set;
10546 CORE_ADDR low = 0;
10547 CORE_ADDR high = 0;
10548 CORE_ADDR baseaddr;
10549
10550 found_base = cu->base_known;
10551 base = cu->base_address;
10552
10553 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10554 if (offset >= dwarf2_per_objfile->ranges.size)
10555 {
10556 complaint (&symfile_complaints,
10557 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10558 offset);
10559 return 0;
10560 }
10561 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10562
10563 /* Read in the largest possible address. */
10564 marker = read_address (obfd, buffer, cu, &dummy);
10565 if ((marker & mask) == mask)
10566 {
10567 /* If we found the largest possible address, then
10568 read the base address. */
10569 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10570 buffer += 2 * addr_size;
10571 offset += 2 * addr_size;
10572 found_base = 1;
10573 }
10574
10575 low_set = 0;
10576
10577 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10578
10579 while (1)
10580 {
10581 CORE_ADDR range_beginning, range_end;
10582
10583 range_beginning = read_address (obfd, buffer, cu, &dummy);
10584 buffer += addr_size;
10585 range_end = read_address (obfd, buffer, cu, &dummy);
10586 buffer += addr_size;
10587 offset += 2 * addr_size;
10588
10589 /* An end of list marker is a pair of zero addresses. */
10590 if (range_beginning == 0 && range_end == 0)
10591 /* Found the end of list entry. */
10592 break;
10593
10594 /* Each base address selection entry is a pair of 2 values.
10595 The first is the largest possible address, the second is
10596 the base address. Check for a base address here. */
10597 if ((range_beginning & mask) == mask)
10598 {
10599 /* If we found the largest possible address, then
10600 read the base address. */
10601 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10602 found_base = 1;
10603 continue;
10604 }
10605
10606 if (!found_base)
10607 {
10608 /* We have no valid base address for the ranges
10609 data. */
10610 complaint (&symfile_complaints,
10611 _("Invalid .debug_ranges data (no base address)"));
10612 return 0;
10613 }
10614
10615 if (range_beginning > range_end)
10616 {
10617 /* Inverted range entries are invalid. */
10618 complaint (&symfile_complaints,
10619 _("Invalid .debug_ranges data (inverted range)"));
10620 return 0;
10621 }
10622
10623 /* Empty range entries have no effect. */
10624 if (range_beginning == range_end)
10625 continue;
10626
10627 range_beginning += base;
10628 range_end += base;
10629
10630 /* A not-uncommon case of bad debug info.
10631 Don't pollute the addrmap with bad data. */
10632 if (range_beginning + baseaddr == 0
10633 && !dwarf2_per_objfile->has_section_at_zero)
10634 {
10635 complaint (&symfile_complaints,
10636 _(".debug_ranges entry has start address of zero"
10637 " [in module %s]"), objfile->name);
10638 continue;
10639 }
10640
10641 if (ranges_pst != NULL)
10642 addrmap_set_empty (objfile->psymtabs_addrmap,
10643 range_beginning + baseaddr,
10644 range_end - 1 + baseaddr,
10645 ranges_pst);
10646
10647 /* FIXME: This is recording everything as a low-high
10648 segment of consecutive addresses. We should have a
10649 data structure for discontiguous block ranges
10650 instead. */
10651 if (! low_set)
10652 {
10653 low = range_beginning;
10654 high = range_end;
10655 low_set = 1;
10656 }
10657 else
10658 {
10659 if (range_beginning < low)
10660 low = range_beginning;
10661 if (range_end > high)
10662 high = range_end;
10663 }
10664 }
10665
10666 if (! low_set)
10667 /* If the first entry is an end-of-list marker, the range
10668 describes an empty scope, i.e. no instructions. */
10669 return 0;
10670
10671 if (low_return)
10672 *low_return = low;
10673 if (high_return)
10674 *high_return = high;
10675 return 1;
10676 }
10677
10678 /* Get low and high pc attributes from a die. Return 1 if the attributes
10679 are present and valid, otherwise, return 0. Return -1 if the range is
10680 discontinuous, i.e. derived from DW_AT_ranges information. */
10681
10682 static int
10683 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10684 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10685 struct partial_symtab *pst)
10686 {
10687 struct attribute *attr;
10688 struct attribute *attr_high;
10689 CORE_ADDR low = 0;
10690 CORE_ADDR high = 0;
10691 int ret = 0;
10692
10693 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10694 if (attr_high)
10695 {
10696 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10697 if (attr)
10698 {
10699 low = DW_ADDR (attr);
10700 if (attr_high->form == DW_FORM_addr
10701 || attr_high->form == DW_FORM_GNU_addr_index)
10702 high = DW_ADDR (attr_high);
10703 else
10704 high = low + DW_UNSND (attr_high);
10705 }
10706 else
10707 /* Found high w/o low attribute. */
10708 return 0;
10709
10710 /* Found consecutive range of addresses. */
10711 ret = 1;
10712 }
10713 else
10714 {
10715 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10716 if (attr != NULL)
10717 {
10718 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10719 We take advantage of the fact that DW_AT_ranges does not appear
10720 in DW_TAG_compile_unit of DWO files. */
10721 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10722 unsigned int ranges_offset = (DW_UNSND (attr)
10723 + (need_ranges_base
10724 ? cu->ranges_base
10725 : 0));
10726
10727 /* Value of the DW_AT_ranges attribute is the offset in the
10728 .debug_ranges section. */
10729 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10730 return 0;
10731 /* Found discontinuous range of addresses. */
10732 ret = -1;
10733 }
10734 }
10735
10736 /* read_partial_die has also the strict LOW < HIGH requirement. */
10737 if (high <= low)
10738 return 0;
10739
10740 /* When using the GNU linker, .gnu.linkonce. sections are used to
10741 eliminate duplicate copies of functions and vtables and such.
10742 The linker will arbitrarily choose one and discard the others.
10743 The AT_*_pc values for such functions refer to local labels in
10744 these sections. If the section from that file was discarded, the
10745 labels are not in the output, so the relocs get a value of 0.
10746 If this is a discarded function, mark the pc bounds as invalid,
10747 so that GDB will ignore it. */
10748 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10749 return 0;
10750
10751 *lowpc = low;
10752 if (highpc)
10753 *highpc = high;
10754 return ret;
10755 }
10756
10757 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10758 its low and high PC addresses. Do nothing if these addresses could not
10759 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10760 and HIGHPC to the high address if greater than HIGHPC. */
10761
10762 static void
10763 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10764 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10765 struct dwarf2_cu *cu)
10766 {
10767 CORE_ADDR low, high;
10768 struct die_info *child = die->child;
10769
10770 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10771 {
10772 *lowpc = min (*lowpc, low);
10773 *highpc = max (*highpc, high);
10774 }
10775
10776 /* If the language does not allow nested subprograms (either inside
10777 subprograms or lexical blocks), we're done. */
10778 if (cu->language != language_ada)
10779 return;
10780
10781 /* Check all the children of the given DIE. If it contains nested
10782 subprograms, then check their pc bounds. Likewise, we need to
10783 check lexical blocks as well, as they may also contain subprogram
10784 definitions. */
10785 while (child && child->tag)
10786 {
10787 if (child->tag == DW_TAG_subprogram
10788 || child->tag == DW_TAG_lexical_block)
10789 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10790 child = sibling_die (child);
10791 }
10792 }
10793
10794 /* Get the low and high pc's represented by the scope DIE, and store
10795 them in *LOWPC and *HIGHPC. If the correct values can't be
10796 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10797
10798 static void
10799 get_scope_pc_bounds (struct die_info *die,
10800 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10801 struct dwarf2_cu *cu)
10802 {
10803 CORE_ADDR best_low = (CORE_ADDR) -1;
10804 CORE_ADDR best_high = (CORE_ADDR) 0;
10805 CORE_ADDR current_low, current_high;
10806
10807 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10808 {
10809 best_low = current_low;
10810 best_high = current_high;
10811 }
10812 else
10813 {
10814 struct die_info *child = die->child;
10815
10816 while (child && child->tag)
10817 {
10818 switch (child->tag) {
10819 case DW_TAG_subprogram:
10820 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10821 break;
10822 case DW_TAG_namespace:
10823 case DW_TAG_module:
10824 /* FIXME: carlton/2004-01-16: Should we do this for
10825 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10826 that current GCC's always emit the DIEs corresponding
10827 to definitions of methods of classes as children of a
10828 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10829 the DIEs giving the declarations, which could be
10830 anywhere). But I don't see any reason why the
10831 standards says that they have to be there. */
10832 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10833
10834 if (current_low != ((CORE_ADDR) -1))
10835 {
10836 best_low = min (best_low, current_low);
10837 best_high = max (best_high, current_high);
10838 }
10839 break;
10840 default:
10841 /* Ignore. */
10842 break;
10843 }
10844
10845 child = sibling_die (child);
10846 }
10847 }
10848
10849 *lowpc = best_low;
10850 *highpc = best_high;
10851 }
10852
10853 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10854 in DIE. */
10855
10856 static void
10857 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10858 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10859 {
10860 struct objfile *objfile = cu->objfile;
10861 struct attribute *attr;
10862 struct attribute *attr_high;
10863
10864 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10865 if (attr_high)
10866 {
10867 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10868 if (attr)
10869 {
10870 CORE_ADDR low = DW_ADDR (attr);
10871 CORE_ADDR high;
10872 if (attr_high->form == DW_FORM_addr
10873 || attr_high->form == DW_FORM_GNU_addr_index)
10874 high = DW_ADDR (attr_high);
10875 else
10876 high = low + DW_UNSND (attr_high);
10877
10878 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10879 }
10880 }
10881
10882 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10883 if (attr)
10884 {
10885 bfd *obfd = objfile->obfd;
10886 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10887 We take advantage of the fact that DW_AT_ranges does not appear
10888 in DW_TAG_compile_unit of DWO files. */
10889 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10890
10891 /* The value of the DW_AT_ranges attribute is the offset of the
10892 address range list in the .debug_ranges section. */
10893 unsigned long offset = (DW_UNSND (attr)
10894 + (need_ranges_base ? cu->ranges_base : 0));
10895 const gdb_byte *buffer;
10896
10897 /* For some target architectures, but not others, the
10898 read_address function sign-extends the addresses it returns.
10899 To recognize base address selection entries, we need a
10900 mask. */
10901 unsigned int addr_size = cu->header.addr_size;
10902 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10903
10904 /* The base address, to which the next pair is relative. Note
10905 that this 'base' is a DWARF concept: most entries in a range
10906 list are relative, to reduce the number of relocs against the
10907 debugging information. This is separate from this function's
10908 'baseaddr' argument, which GDB uses to relocate debugging
10909 information from a shared library based on the address at
10910 which the library was loaded. */
10911 CORE_ADDR base = cu->base_address;
10912 int base_known = cu->base_known;
10913
10914 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10915 if (offset >= dwarf2_per_objfile->ranges.size)
10916 {
10917 complaint (&symfile_complaints,
10918 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10919 offset);
10920 return;
10921 }
10922 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10923
10924 for (;;)
10925 {
10926 unsigned int bytes_read;
10927 CORE_ADDR start, end;
10928
10929 start = read_address (obfd, buffer, cu, &bytes_read);
10930 buffer += bytes_read;
10931 end = read_address (obfd, buffer, cu, &bytes_read);
10932 buffer += bytes_read;
10933
10934 /* Did we find the end of the range list? */
10935 if (start == 0 && end == 0)
10936 break;
10937
10938 /* Did we find a base address selection entry? */
10939 else if ((start & base_select_mask) == base_select_mask)
10940 {
10941 base = end;
10942 base_known = 1;
10943 }
10944
10945 /* We found an ordinary address range. */
10946 else
10947 {
10948 if (!base_known)
10949 {
10950 complaint (&symfile_complaints,
10951 _("Invalid .debug_ranges data "
10952 "(no base address)"));
10953 return;
10954 }
10955
10956 if (start > end)
10957 {
10958 /* Inverted range entries are invalid. */
10959 complaint (&symfile_complaints,
10960 _("Invalid .debug_ranges data "
10961 "(inverted range)"));
10962 return;
10963 }
10964
10965 /* Empty range entries have no effect. */
10966 if (start == end)
10967 continue;
10968
10969 start += base + baseaddr;
10970 end += base + baseaddr;
10971
10972 /* A not-uncommon case of bad debug info.
10973 Don't pollute the addrmap with bad data. */
10974 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10975 {
10976 complaint (&symfile_complaints,
10977 _(".debug_ranges entry has start address of zero"
10978 " [in module %s]"), objfile->name);
10979 continue;
10980 }
10981
10982 record_block_range (block, start, end - 1);
10983 }
10984 }
10985 }
10986 }
10987
10988 /* Check whether the producer field indicates either of GCC < 4.6, or the
10989 Intel C/C++ compiler, and cache the result in CU. */
10990
10991 static void
10992 check_producer (struct dwarf2_cu *cu)
10993 {
10994 const char *cs;
10995 int major, minor, release;
10996
10997 if (cu->producer == NULL)
10998 {
10999 /* For unknown compilers expect their behavior is DWARF version
11000 compliant.
11001
11002 GCC started to support .debug_types sections by -gdwarf-4 since
11003 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11004 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11005 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11006 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11007 }
11008 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11009 {
11010 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11011
11012 cs = &cu->producer[strlen ("GNU ")];
11013 while (*cs && !isdigit (*cs))
11014 cs++;
11015 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11016 {
11017 /* Not recognized as GCC. */
11018 }
11019 else
11020 {
11021 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11022 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11023 }
11024 }
11025 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11026 cu->producer_is_icc = 1;
11027 else
11028 {
11029 /* For other non-GCC compilers, expect their behavior is DWARF version
11030 compliant. */
11031 }
11032
11033 cu->checked_producer = 1;
11034 }
11035
11036 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11037 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11038 during 4.6.0 experimental. */
11039
11040 static int
11041 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11042 {
11043 if (!cu->checked_producer)
11044 check_producer (cu);
11045
11046 return cu->producer_is_gxx_lt_4_6;
11047 }
11048
11049 /* Return the default accessibility type if it is not overriden by
11050 DW_AT_accessibility. */
11051
11052 static enum dwarf_access_attribute
11053 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11054 {
11055 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11056 {
11057 /* The default DWARF 2 accessibility for members is public, the default
11058 accessibility for inheritance is private. */
11059
11060 if (die->tag != DW_TAG_inheritance)
11061 return DW_ACCESS_public;
11062 else
11063 return DW_ACCESS_private;
11064 }
11065 else
11066 {
11067 /* DWARF 3+ defines the default accessibility a different way. The same
11068 rules apply now for DW_TAG_inheritance as for the members and it only
11069 depends on the container kind. */
11070
11071 if (die->parent->tag == DW_TAG_class_type)
11072 return DW_ACCESS_private;
11073 else
11074 return DW_ACCESS_public;
11075 }
11076 }
11077
11078 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11079 offset. If the attribute was not found return 0, otherwise return
11080 1. If it was found but could not properly be handled, set *OFFSET
11081 to 0. */
11082
11083 static int
11084 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11085 LONGEST *offset)
11086 {
11087 struct attribute *attr;
11088
11089 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11090 if (attr != NULL)
11091 {
11092 *offset = 0;
11093
11094 /* Note that we do not check for a section offset first here.
11095 This is because DW_AT_data_member_location is new in DWARF 4,
11096 so if we see it, we can assume that a constant form is really
11097 a constant and not a section offset. */
11098 if (attr_form_is_constant (attr))
11099 *offset = dwarf2_get_attr_constant_value (attr, 0);
11100 else if (attr_form_is_section_offset (attr))
11101 dwarf2_complex_location_expr_complaint ();
11102 else if (attr_form_is_block (attr))
11103 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11104 else
11105 dwarf2_complex_location_expr_complaint ();
11106
11107 return 1;
11108 }
11109
11110 return 0;
11111 }
11112
11113 /* Add an aggregate field to the field list. */
11114
11115 static void
11116 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11117 struct dwarf2_cu *cu)
11118 {
11119 struct objfile *objfile = cu->objfile;
11120 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11121 struct nextfield *new_field;
11122 struct attribute *attr;
11123 struct field *fp;
11124 const char *fieldname = "";
11125
11126 /* Allocate a new field list entry and link it in. */
11127 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11128 make_cleanup (xfree, new_field);
11129 memset (new_field, 0, sizeof (struct nextfield));
11130
11131 if (die->tag == DW_TAG_inheritance)
11132 {
11133 new_field->next = fip->baseclasses;
11134 fip->baseclasses = new_field;
11135 }
11136 else
11137 {
11138 new_field->next = fip->fields;
11139 fip->fields = new_field;
11140 }
11141 fip->nfields++;
11142
11143 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11144 if (attr)
11145 new_field->accessibility = DW_UNSND (attr);
11146 else
11147 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11148 if (new_field->accessibility != DW_ACCESS_public)
11149 fip->non_public_fields = 1;
11150
11151 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11152 if (attr)
11153 new_field->virtuality = DW_UNSND (attr);
11154 else
11155 new_field->virtuality = DW_VIRTUALITY_none;
11156
11157 fp = &new_field->field;
11158
11159 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
11160 {
11161 LONGEST offset;
11162
11163 /* Data member other than a C++ static data member. */
11164
11165 /* Get type of field. */
11166 fp->type = die_type (die, cu);
11167
11168 SET_FIELD_BITPOS (*fp, 0);
11169
11170 /* Get bit size of field (zero if none). */
11171 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
11172 if (attr)
11173 {
11174 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11175 }
11176 else
11177 {
11178 FIELD_BITSIZE (*fp) = 0;
11179 }
11180
11181 /* Get bit offset of field. */
11182 if (handle_data_member_location (die, cu, &offset))
11183 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11184 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
11185 if (attr)
11186 {
11187 if (gdbarch_bits_big_endian (gdbarch))
11188 {
11189 /* For big endian bits, the DW_AT_bit_offset gives the
11190 additional bit offset from the MSB of the containing
11191 anonymous object to the MSB of the field. We don't
11192 have to do anything special since we don't need to
11193 know the size of the anonymous object. */
11194 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
11195 }
11196 else
11197 {
11198 /* For little endian bits, compute the bit offset to the
11199 MSB of the anonymous object, subtract off the number of
11200 bits from the MSB of the field to the MSB of the
11201 object, and then subtract off the number of bits of
11202 the field itself. The result is the bit offset of
11203 the LSB of the field. */
11204 int anonymous_size;
11205 int bit_offset = DW_UNSND (attr);
11206
11207 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11208 if (attr)
11209 {
11210 /* The size of the anonymous object containing
11211 the bit field is explicit, so use the
11212 indicated size (in bytes). */
11213 anonymous_size = DW_UNSND (attr);
11214 }
11215 else
11216 {
11217 /* The size of the anonymous object containing
11218 the bit field must be inferred from the type
11219 attribute of the data member containing the
11220 bit field. */
11221 anonymous_size = TYPE_LENGTH (fp->type);
11222 }
11223 SET_FIELD_BITPOS (*fp,
11224 (FIELD_BITPOS (*fp)
11225 + anonymous_size * bits_per_byte
11226 - bit_offset - FIELD_BITSIZE (*fp)));
11227 }
11228 }
11229
11230 /* Get name of field. */
11231 fieldname = dwarf2_name (die, cu);
11232 if (fieldname == NULL)
11233 fieldname = "";
11234
11235 /* The name is already allocated along with this objfile, so we don't
11236 need to duplicate it for the type. */
11237 fp->name = fieldname;
11238
11239 /* Change accessibility for artificial fields (e.g. virtual table
11240 pointer or virtual base class pointer) to private. */
11241 if (dwarf2_attr (die, DW_AT_artificial, cu))
11242 {
11243 FIELD_ARTIFICIAL (*fp) = 1;
11244 new_field->accessibility = DW_ACCESS_private;
11245 fip->non_public_fields = 1;
11246 }
11247 }
11248 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
11249 {
11250 /* C++ static member. */
11251
11252 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11253 is a declaration, but all versions of G++ as of this writing
11254 (so through at least 3.2.1) incorrectly generate
11255 DW_TAG_variable tags. */
11256
11257 const char *physname;
11258
11259 /* Get name of field. */
11260 fieldname = dwarf2_name (die, cu);
11261 if (fieldname == NULL)
11262 return;
11263
11264 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11265 if (attr
11266 /* Only create a symbol if this is an external value.
11267 new_symbol checks this and puts the value in the global symbol
11268 table, which we want. If it is not external, new_symbol
11269 will try to put the value in cu->list_in_scope which is wrong. */
11270 && dwarf2_flag_true_p (die, DW_AT_external, cu))
11271 {
11272 /* A static const member, not much different than an enum as far as
11273 we're concerned, except that we can support more types. */
11274 new_symbol (die, NULL, cu);
11275 }
11276
11277 /* Get physical name. */
11278 physname = dwarf2_physname (fieldname, die, cu);
11279
11280 /* The name is already allocated along with this objfile, so we don't
11281 need to duplicate it for the type. */
11282 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
11283 FIELD_TYPE (*fp) = die_type (die, cu);
11284 FIELD_NAME (*fp) = fieldname;
11285 }
11286 else if (die->tag == DW_TAG_inheritance)
11287 {
11288 LONGEST offset;
11289
11290 /* C++ base class field. */
11291 if (handle_data_member_location (die, cu, &offset))
11292 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11293 FIELD_BITSIZE (*fp) = 0;
11294 FIELD_TYPE (*fp) = die_type (die, cu);
11295 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11296 fip->nbaseclasses++;
11297 }
11298 }
11299
11300 /* Add a typedef defined in the scope of the FIP's class. */
11301
11302 static void
11303 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11304 struct dwarf2_cu *cu)
11305 {
11306 struct objfile *objfile = cu->objfile;
11307 struct typedef_field_list *new_field;
11308 struct attribute *attr;
11309 struct typedef_field *fp;
11310 char *fieldname = "";
11311
11312 /* Allocate a new field list entry and link it in. */
11313 new_field = xzalloc (sizeof (*new_field));
11314 make_cleanup (xfree, new_field);
11315
11316 gdb_assert (die->tag == DW_TAG_typedef);
11317
11318 fp = &new_field->field;
11319
11320 /* Get name of field. */
11321 fp->name = dwarf2_name (die, cu);
11322 if (fp->name == NULL)
11323 return;
11324
11325 fp->type = read_type_die (die, cu);
11326
11327 new_field->next = fip->typedef_field_list;
11328 fip->typedef_field_list = new_field;
11329 fip->typedef_field_list_count++;
11330 }
11331
11332 /* Create the vector of fields, and attach it to the type. */
11333
11334 static void
11335 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
11336 struct dwarf2_cu *cu)
11337 {
11338 int nfields = fip->nfields;
11339
11340 /* Record the field count, allocate space for the array of fields,
11341 and create blank accessibility bitfields if necessary. */
11342 TYPE_NFIELDS (type) = nfields;
11343 TYPE_FIELDS (type) = (struct field *)
11344 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11345 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11346
11347 if (fip->non_public_fields && cu->language != language_ada)
11348 {
11349 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11350
11351 TYPE_FIELD_PRIVATE_BITS (type) =
11352 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11353 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11354
11355 TYPE_FIELD_PROTECTED_BITS (type) =
11356 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11357 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11358
11359 TYPE_FIELD_IGNORE_BITS (type) =
11360 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11361 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
11362 }
11363
11364 /* If the type has baseclasses, allocate and clear a bit vector for
11365 TYPE_FIELD_VIRTUAL_BITS. */
11366 if (fip->nbaseclasses && cu->language != language_ada)
11367 {
11368 int num_bytes = B_BYTES (fip->nbaseclasses);
11369 unsigned char *pointer;
11370
11371 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11372 pointer = TYPE_ALLOC (type, num_bytes);
11373 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
11374 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11375 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11376 }
11377
11378 /* Copy the saved-up fields into the field vector. Start from the head of
11379 the list, adding to the tail of the field array, so that they end up in
11380 the same order in the array in which they were added to the list. */
11381 while (nfields-- > 0)
11382 {
11383 struct nextfield *fieldp;
11384
11385 if (fip->fields)
11386 {
11387 fieldp = fip->fields;
11388 fip->fields = fieldp->next;
11389 }
11390 else
11391 {
11392 fieldp = fip->baseclasses;
11393 fip->baseclasses = fieldp->next;
11394 }
11395
11396 TYPE_FIELD (type, nfields) = fieldp->field;
11397 switch (fieldp->accessibility)
11398 {
11399 case DW_ACCESS_private:
11400 if (cu->language != language_ada)
11401 SET_TYPE_FIELD_PRIVATE (type, nfields);
11402 break;
11403
11404 case DW_ACCESS_protected:
11405 if (cu->language != language_ada)
11406 SET_TYPE_FIELD_PROTECTED (type, nfields);
11407 break;
11408
11409 case DW_ACCESS_public:
11410 break;
11411
11412 default:
11413 /* Unknown accessibility. Complain and treat it as public. */
11414 {
11415 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11416 fieldp->accessibility);
11417 }
11418 break;
11419 }
11420 if (nfields < fip->nbaseclasses)
11421 {
11422 switch (fieldp->virtuality)
11423 {
11424 case DW_VIRTUALITY_virtual:
11425 case DW_VIRTUALITY_pure_virtual:
11426 if (cu->language == language_ada)
11427 error (_("unexpected virtuality in component of Ada type"));
11428 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11429 break;
11430 }
11431 }
11432 }
11433 }
11434
11435 /* Return true if this member function is a constructor, false
11436 otherwise. */
11437
11438 static int
11439 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11440 {
11441 const char *fieldname;
11442 const char *typename;
11443 int len;
11444
11445 if (die->parent == NULL)
11446 return 0;
11447
11448 if (die->parent->tag != DW_TAG_structure_type
11449 && die->parent->tag != DW_TAG_union_type
11450 && die->parent->tag != DW_TAG_class_type)
11451 return 0;
11452
11453 fieldname = dwarf2_name (die, cu);
11454 typename = dwarf2_name (die->parent, cu);
11455 if (fieldname == NULL || typename == NULL)
11456 return 0;
11457
11458 len = strlen (fieldname);
11459 return (strncmp (fieldname, typename, len) == 0
11460 && (typename[len] == '\0' || typename[len] == '<'));
11461 }
11462
11463 /* Add a member function to the proper fieldlist. */
11464
11465 static void
11466 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11467 struct type *type, struct dwarf2_cu *cu)
11468 {
11469 struct objfile *objfile = cu->objfile;
11470 struct attribute *attr;
11471 struct fnfieldlist *flp;
11472 int i;
11473 struct fn_field *fnp;
11474 const char *fieldname;
11475 struct nextfnfield *new_fnfield;
11476 struct type *this_type;
11477 enum dwarf_access_attribute accessibility;
11478
11479 if (cu->language == language_ada)
11480 error (_("unexpected member function in Ada type"));
11481
11482 /* Get name of member function. */
11483 fieldname = dwarf2_name (die, cu);
11484 if (fieldname == NULL)
11485 return;
11486
11487 /* Look up member function name in fieldlist. */
11488 for (i = 0; i < fip->nfnfields; i++)
11489 {
11490 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11491 break;
11492 }
11493
11494 /* Create new list element if necessary. */
11495 if (i < fip->nfnfields)
11496 flp = &fip->fnfieldlists[i];
11497 else
11498 {
11499 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11500 {
11501 fip->fnfieldlists = (struct fnfieldlist *)
11502 xrealloc (fip->fnfieldlists,
11503 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11504 * sizeof (struct fnfieldlist));
11505 if (fip->nfnfields == 0)
11506 make_cleanup (free_current_contents, &fip->fnfieldlists);
11507 }
11508 flp = &fip->fnfieldlists[fip->nfnfields];
11509 flp->name = fieldname;
11510 flp->length = 0;
11511 flp->head = NULL;
11512 i = fip->nfnfields++;
11513 }
11514
11515 /* Create a new member function field and chain it to the field list
11516 entry. */
11517 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11518 make_cleanup (xfree, new_fnfield);
11519 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11520 new_fnfield->next = flp->head;
11521 flp->head = new_fnfield;
11522 flp->length++;
11523
11524 /* Fill in the member function field info. */
11525 fnp = &new_fnfield->fnfield;
11526
11527 /* Delay processing of the physname until later. */
11528 if (cu->language == language_cplus || cu->language == language_java)
11529 {
11530 add_to_method_list (type, i, flp->length - 1, fieldname,
11531 die, cu);
11532 }
11533 else
11534 {
11535 const char *physname = dwarf2_physname (fieldname, die, cu);
11536 fnp->physname = physname ? physname : "";
11537 }
11538
11539 fnp->type = alloc_type (objfile);
11540 this_type = read_type_die (die, cu);
11541 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11542 {
11543 int nparams = TYPE_NFIELDS (this_type);
11544
11545 /* TYPE is the domain of this method, and THIS_TYPE is the type
11546 of the method itself (TYPE_CODE_METHOD). */
11547 smash_to_method_type (fnp->type, type,
11548 TYPE_TARGET_TYPE (this_type),
11549 TYPE_FIELDS (this_type),
11550 TYPE_NFIELDS (this_type),
11551 TYPE_VARARGS (this_type));
11552
11553 /* Handle static member functions.
11554 Dwarf2 has no clean way to discern C++ static and non-static
11555 member functions. G++ helps GDB by marking the first
11556 parameter for non-static member functions (which is the this
11557 pointer) as artificial. We obtain this information from
11558 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11559 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11560 fnp->voffset = VOFFSET_STATIC;
11561 }
11562 else
11563 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11564 dwarf2_full_name (fieldname, die, cu));
11565
11566 /* Get fcontext from DW_AT_containing_type if present. */
11567 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11568 fnp->fcontext = die_containing_type (die, cu);
11569
11570 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11571 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11572
11573 /* Get accessibility. */
11574 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11575 if (attr)
11576 accessibility = DW_UNSND (attr);
11577 else
11578 accessibility = dwarf2_default_access_attribute (die, cu);
11579 switch (accessibility)
11580 {
11581 case DW_ACCESS_private:
11582 fnp->is_private = 1;
11583 break;
11584 case DW_ACCESS_protected:
11585 fnp->is_protected = 1;
11586 break;
11587 }
11588
11589 /* Check for artificial methods. */
11590 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11591 if (attr && DW_UNSND (attr) != 0)
11592 fnp->is_artificial = 1;
11593
11594 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11595
11596 /* Get index in virtual function table if it is a virtual member
11597 function. For older versions of GCC, this is an offset in the
11598 appropriate virtual table, as specified by DW_AT_containing_type.
11599 For everyone else, it is an expression to be evaluated relative
11600 to the object address. */
11601
11602 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11603 if (attr)
11604 {
11605 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11606 {
11607 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11608 {
11609 /* Old-style GCC. */
11610 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11611 }
11612 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11613 || (DW_BLOCK (attr)->size > 1
11614 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11615 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11616 {
11617 struct dwarf_block blk;
11618 int offset;
11619
11620 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11621 ? 1 : 2);
11622 blk.size = DW_BLOCK (attr)->size - offset;
11623 blk.data = DW_BLOCK (attr)->data + offset;
11624 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11625 if ((fnp->voffset % cu->header.addr_size) != 0)
11626 dwarf2_complex_location_expr_complaint ();
11627 else
11628 fnp->voffset /= cu->header.addr_size;
11629 fnp->voffset += 2;
11630 }
11631 else
11632 dwarf2_complex_location_expr_complaint ();
11633
11634 if (!fnp->fcontext)
11635 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11636 }
11637 else if (attr_form_is_section_offset (attr))
11638 {
11639 dwarf2_complex_location_expr_complaint ();
11640 }
11641 else
11642 {
11643 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11644 fieldname);
11645 }
11646 }
11647 else
11648 {
11649 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11650 if (attr && DW_UNSND (attr))
11651 {
11652 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11653 complaint (&symfile_complaints,
11654 _("Member function \"%s\" (offset %d) is virtual "
11655 "but the vtable offset is not specified"),
11656 fieldname, die->offset.sect_off);
11657 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11658 TYPE_CPLUS_DYNAMIC (type) = 1;
11659 }
11660 }
11661 }
11662
11663 /* Create the vector of member function fields, and attach it to the type. */
11664
11665 static void
11666 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11667 struct dwarf2_cu *cu)
11668 {
11669 struct fnfieldlist *flp;
11670 int i;
11671
11672 if (cu->language == language_ada)
11673 error (_("unexpected member functions in Ada type"));
11674
11675 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11676 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11677 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11678
11679 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11680 {
11681 struct nextfnfield *nfp = flp->head;
11682 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11683 int k;
11684
11685 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11686 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11687 fn_flp->fn_fields = (struct fn_field *)
11688 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11689 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11690 fn_flp->fn_fields[k] = nfp->fnfield;
11691 }
11692
11693 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11694 }
11695
11696 /* Returns non-zero if NAME is the name of a vtable member in CU's
11697 language, zero otherwise. */
11698 static int
11699 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11700 {
11701 static const char vptr[] = "_vptr";
11702 static const char vtable[] = "vtable";
11703
11704 /* Look for the C++ and Java forms of the vtable. */
11705 if ((cu->language == language_java
11706 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11707 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11708 && is_cplus_marker (name[sizeof (vptr) - 1])))
11709 return 1;
11710
11711 return 0;
11712 }
11713
11714 /* GCC outputs unnamed structures that are really pointers to member
11715 functions, with the ABI-specified layout. If TYPE describes
11716 such a structure, smash it into a member function type.
11717
11718 GCC shouldn't do this; it should just output pointer to member DIEs.
11719 This is GCC PR debug/28767. */
11720
11721 static void
11722 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11723 {
11724 struct type *pfn_type, *domain_type, *new_type;
11725
11726 /* Check for a structure with no name and two children. */
11727 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11728 return;
11729
11730 /* Check for __pfn and __delta members. */
11731 if (TYPE_FIELD_NAME (type, 0) == NULL
11732 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11733 || TYPE_FIELD_NAME (type, 1) == NULL
11734 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11735 return;
11736
11737 /* Find the type of the method. */
11738 pfn_type = TYPE_FIELD_TYPE (type, 0);
11739 if (pfn_type == NULL
11740 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11741 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11742 return;
11743
11744 /* Look for the "this" argument. */
11745 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11746 if (TYPE_NFIELDS (pfn_type) == 0
11747 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11748 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11749 return;
11750
11751 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11752 new_type = alloc_type (objfile);
11753 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11754 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11755 TYPE_VARARGS (pfn_type));
11756 smash_to_methodptr_type (type, new_type);
11757 }
11758
11759 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11760 (icc). */
11761
11762 static int
11763 producer_is_icc (struct dwarf2_cu *cu)
11764 {
11765 if (!cu->checked_producer)
11766 check_producer (cu);
11767
11768 return cu->producer_is_icc;
11769 }
11770
11771 /* Called when we find the DIE that starts a structure or union scope
11772 (definition) to create a type for the structure or union. Fill in
11773 the type's name and general properties; the members will not be
11774 processed until process_structure_scope.
11775
11776 NOTE: we need to call these functions regardless of whether or not the
11777 DIE has a DW_AT_name attribute, since it might be an anonymous
11778 structure or union. This gets the type entered into our set of
11779 user defined types.
11780
11781 However, if the structure is incomplete (an opaque struct/union)
11782 then suppress creating a symbol table entry for it since gdb only
11783 wants to find the one with the complete definition. Note that if
11784 it is complete, we just call new_symbol, which does it's own
11785 checking about whether the struct/union is anonymous or not (and
11786 suppresses creating a symbol table entry itself). */
11787
11788 static struct type *
11789 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11790 {
11791 struct objfile *objfile = cu->objfile;
11792 struct type *type;
11793 struct attribute *attr;
11794 const char *name;
11795
11796 /* If the definition of this type lives in .debug_types, read that type.
11797 Don't follow DW_AT_specification though, that will take us back up
11798 the chain and we want to go down. */
11799 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11800 if (attr)
11801 {
11802 type = get_DW_AT_signature_type (die, attr, cu);
11803
11804 /* The type's CU may not be the same as CU.
11805 Ensure TYPE is recorded with CU in die_type_hash. */
11806 return set_die_type (die, type, cu);
11807 }
11808
11809 type = alloc_type (objfile);
11810 INIT_CPLUS_SPECIFIC (type);
11811
11812 name = dwarf2_name (die, cu);
11813 if (name != NULL)
11814 {
11815 if (cu->language == language_cplus
11816 || cu->language == language_java)
11817 {
11818 const char *full_name = dwarf2_full_name (name, die, cu);
11819
11820 /* dwarf2_full_name might have already finished building the DIE's
11821 type. If so, there is no need to continue. */
11822 if (get_die_type (die, cu) != NULL)
11823 return get_die_type (die, cu);
11824
11825 TYPE_TAG_NAME (type) = full_name;
11826 if (die->tag == DW_TAG_structure_type
11827 || die->tag == DW_TAG_class_type)
11828 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11829 }
11830 else
11831 {
11832 /* The name is already allocated along with this objfile, so
11833 we don't need to duplicate it for the type. */
11834 TYPE_TAG_NAME (type) = name;
11835 if (die->tag == DW_TAG_class_type)
11836 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11837 }
11838 }
11839
11840 if (die->tag == DW_TAG_structure_type)
11841 {
11842 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11843 }
11844 else if (die->tag == DW_TAG_union_type)
11845 {
11846 TYPE_CODE (type) = TYPE_CODE_UNION;
11847 }
11848 else
11849 {
11850 TYPE_CODE (type) = TYPE_CODE_CLASS;
11851 }
11852
11853 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11854 TYPE_DECLARED_CLASS (type) = 1;
11855
11856 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11857 if (attr)
11858 {
11859 TYPE_LENGTH (type) = DW_UNSND (attr);
11860 }
11861 else
11862 {
11863 TYPE_LENGTH (type) = 0;
11864 }
11865
11866 if (producer_is_icc (cu))
11867 {
11868 /* ICC does not output the required DW_AT_declaration
11869 on incomplete types, but gives them a size of zero. */
11870 }
11871 else
11872 TYPE_STUB_SUPPORTED (type) = 1;
11873
11874 if (die_is_declaration (die, cu))
11875 TYPE_STUB (type) = 1;
11876 else if (attr == NULL && die->child == NULL
11877 && producer_is_realview (cu->producer))
11878 /* RealView does not output the required DW_AT_declaration
11879 on incomplete types. */
11880 TYPE_STUB (type) = 1;
11881
11882 /* We need to add the type field to the die immediately so we don't
11883 infinitely recurse when dealing with pointers to the structure
11884 type within the structure itself. */
11885 set_die_type (die, type, cu);
11886
11887 /* set_die_type should be already done. */
11888 set_descriptive_type (type, die, cu);
11889
11890 return type;
11891 }
11892
11893 /* Finish creating a structure or union type, including filling in
11894 its members and creating a symbol for it. */
11895
11896 static void
11897 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11898 {
11899 struct objfile *objfile = cu->objfile;
11900 struct die_info *child_die = die->child;
11901 struct type *type;
11902
11903 type = get_die_type (die, cu);
11904 if (type == NULL)
11905 type = read_structure_type (die, cu);
11906
11907 if (die->child != NULL && ! die_is_declaration (die, cu))
11908 {
11909 struct field_info fi;
11910 struct die_info *child_die;
11911 VEC (symbolp) *template_args = NULL;
11912 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11913
11914 memset (&fi, 0, sizeof (struct field_info));
11915
11916 child_die = die->child;
11917
11918 while (child_die && child_die->tag)
11919 {
11920 if (child_die->tag == DW_TAG_member
11921 || child_die->tag == DW_TAG_variable)
11922 {
11923 /* NOTE: carlton/2002-11-05: A C++ static data member
11924 should be a DW_TAG_member that is a declaration, but
11925 all versions of G++ as of this writing (so through at
11926 least 3.2.1) incorrectly generate DW_TAG_variable
11927 tags for them instead. */
11928 dwarf2_add_field (&fi, child_die, cu);
11929 }
11930 else if (child_die->tag == DW_TAG_subprogram)
11931 {
11932 /* C++ member function. */
11933 dwarf2_add_member_fn (&fi, child_die, type, cu);
11934 }
11935 else if (child_die->tag == DW_TAG_inheritance)
11936 {
11937 /* C++ base class field. */
11938 dwarf2_add_field (&fi, child_die, cu);
11939 }
11940 else if (child_die->tag == DW_TAG_typedef)
11941 dwarf2_add_typedef (&fi, child_die, cu);
11942 else if (child_die->tag == DW_TAG_template_type_param
11943 || child_die->tag == DW_TAG_template_value_param)
11944 {
11945 struct symbol *arg = new_symbol (child_die, NULL, cu);
11946
11947 if (arg != NULL)
11948 VEC_safe_push (symbolp, template_args, arg);
11949 }
11950
11951 child_die = sibling_die (child_die);
11952 }
11953
11954 /* Attach template arguments to type. */
11955 if (! VEC_empty (symbolp, template_args))
11956 {
11957 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11958 TYPE_N_TEMPLATE_ARGUMENTS (type)
11959 = VEC_length (symbolp, template_args);
11960 TYPE_TEMPLATE_ARGUMENTS (type)
11961 = obstack_alloc (&objfile->objfile_obstack,
11962 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11963 * sizeof (struct symbol *)));
11964 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11965 VEC_address (symbolp, template_args),
11966 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11967 * sizeof (struct symbol *)));
11968 VEC_free (symbolp, template_args);
11969 }
11970
11971 /* Attach fields and member functions to the type. */
11972 if (fi.nfields)
11973 dwarf2_attach_fields_to_type (&fi, type, cu);
11974 if (fi.nfnfields)
11975 {
11976 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11977
11978 /* Get the type which refers to the base class (possibly this
11979 class itself) which contains the vtable pointer for the current
11980 class from the DW_AT_containing_type attribute. This use of
11981 DW_AT_containing_type is a GNU extension. */
11982
11983 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11984 {
11985 struct type *t = die_containing_type (die, cu);
11986
11987 TYPE_VPTR_BASETYPE (type) = t;
11988 if (type == t)
11989 {
11990 int i;
11991
11992 /* Our own class provides vtbl ptr. */
11993 for (i = TYPE_NFIELDS (t) - 1;
11994 i >= TYPE_N_BASECLASSES (t);
11995 --i)
11996 {
11997 const char *fieldname = TYPE_FIELD_NAME (t, i);
11998
11999 if (is_vtable_name (fieldname, cu))
12000 {
12001 TYPE_VPTR_FIELDNO (type) = i;
12002 break;
12003 }
12004 }
12005
12006 /* Complain if virtual function table field not found. */
12007 if (i < TYPE_N_BASECLASSES (t))
12008 complaint (&symfile_complaints,
12009 _("virtual function table pointer "
12010 "not found when defining class '%s'"),
12011 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12012 "");
12013 }
12014 else
12015 {
12016 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12017 }
12018 }
12019 else if (cu->producer
12020 && strncmp (cu->producer,
12021 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12022 {
12023 /* The IBM XLC compiler does not provide direct indication
12024 of the containing type, but the vtable pointer is
12025 always named __vfp. */
12026
12027 int i;
12028
12029 for (i = TYPE_NFIELDS (type) - 1;
12030 i >= TYPE_N_BASECLASSES (type);
12031 --i)
12032 {
12033 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12034 {
12035 TYPE_VPTR_FIELDNO (type) = i;
12036 TYPE_VPTR_BASETYPE (type) = type;
12037 break;
12038 }
12039 }
12040 }
12041 }
12042
12043 /* Copy fi.typedef_field_list linked list elements content into the
12044 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12045 if (fi.typedef_field_list)
12046 {
12047 int i = fi.typedef_field_list_count;
12048
12049 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12050 TYPE_TYPEDEF_FIELD_ARRAY (type)
12051 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12052 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12053
12054 /* Reverse the list order to keep the debug info elements order. */
12055 while (--i >= 0)
12056 {
12057 struct typedef_field *dest, *src;
12058
12059 dest = &TYPE_TYPEDEF_FIELD (type, i);
12060 src = &fi.typedef_field_list->field;
12061 fi.typedef_field_list = fi.typedef_field_list->next;
12062 *dest = *src;
12063 }
12064 }
12065
12066 do_cleanups (back_to);
12067
12068 if (HAVE_CPLUS_STRUCT (type))
12069 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12070 }
12071
12072 quirk_gcc_member_function_pointer (type, objfile);
12073
12074 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12075 snapshots) has been known to create a die giving a declaration
12076 for a class that has, as a child, a die giving a definition for a
12077 nested class. So we have to process our children even if the
12078 current die is a declaration. Normally, of course, a declaration
12079 won't have any children at all. */
12080
12081 while (child_die != NULL && child_die->tag)
12082 {
12083 if (child_die->tag == DW_TAG_member
12084 || child_die->tag == DW_TAG_variable
12085 || child_die->tag == DW_TAG_inheritance
12086 || child_die->tag == DW_TAG_template_value_param
12087 || child_die->tag == DW_TAG_template_type_param)
12088 {
12089 /* Do nothing. */
12090 }
12091 else
12092 process_die (child_die, cu);
12093
12094 child_die = sibling_die (child_die);
12095 }
12096
12097 /* Do not consider external references. According to the DWARF standard,
12098 these DIEs are identified by the fact that they have no byte_size
12099 attribute, and a declaration attribute. */
12100 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12101 || !die_is_declaration (die, cu))
12102 new_symbol (die, type, cu);
12103 }
12104
12105 /* Given a DW_AT_enumeration_type die, set its type. We do not
12106 complete the type's fields yet, or create any symbols. */
12107
12108 static struct type *
12109 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12110 {
12111 struct objfile *objfile = cu->objfile;
12112 struct type *type;
12113 struct attribute *attr;
12114 const char *name;
12115
12116 /* If the definition of this type lives in .debug_types, read that type.
12117 Don't follow DW_AT_specification though, that will take us back up
12118 the chain and we want to go down. */
12119 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12120 if (attr)
12121 {
12122 type = get_DW_AT_signature_type (die, attr, cu);
12123
12124 /* The type's CU may not be the same as CU.
12125 Ensure TYPE is recorded with CU in die_type_hash. */
12126 return set_die_type (die, type, cu);
12127 }
12128
12129 type = alloc_type (objfile);
12130
12131 TYPE_CODE (type) = TYPE_CODE_ENUM;
12132 name = dwarf2_full_name (NULL, die, cu);
12133 if (name != NULL)
12134 TYPE_TAG_NAME (type) = name;
12135
12136 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12137 if (attr)
12138 {
12139 TYPE_LENGTH (type) = DW_UNSND (attr);
12140 }
12141 else
12142 {
12143 TYPE_LENGTH (type) = 0;
12144 }
12145
12146 /* The enumeration DIE can be incomplete. In Ada, any type can be
12147 declared as private in the package spec, and then defined only
12148 inside the package body. Such types are known as Taft Amendment
12149 Types. When another package uses such a type, an incomplete DIE
12150 may be generated by the compiler. */
12151 if (die_is_declaration (die, cu))
12152 TYPE_STUB (type) = 1;
12153
12154 return set_die_type (die, type, cu);
12155 }
12156
12157 /* Given a pointer to a die which begins an enumeration, process all
12158 the dies that define the members of the enumeration, and create the
12159 symbol for the enumeration type.
12160
12161 NOTE: We reverse the order of the element list. */
12162
12163 static void
12164 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12165 {
12166 struct type *this_type;
12167
12168 this_type = get_die_type (die, cu);
12169 if (this_type == NULL)
12170 this_type = read_enumeration_type (die, cu);
12171
12172 if (die->child != NULL)
12173 {
12174 struct die_info *child_die;
12175 struct symbol *sym;
12176 struct field *fields = NULL;
12177 int num_fields = 0;
12178 int unsigned_enum = 1;
12179 const char *name;
12180 int flag_enum = 1;
12181 ULONGEST mask = 0;
12182
12183 child_die = die->child;
12184 while (child_die && child_die->tag)
12185 {
12186 if (child_die->tag != DW_TAG_enumerator)
12187 {
12188 process_die (child_die, cu);
12189 }
12190 else
12191 {
12192 name = dwarf2_name (child_die, cu);
12193 if (name)
12194 {
12195 sym = new_symbol (child_die, this_type, cu);
12196 if (SYMBOL_VALUE (sym) < 0)
12197 {
12198 unsigned_enum = 0;
12199 flag_enum = 0;
12200 }
12201 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12202 flag_enum = 0;
12203 else
12204 mask |= SYMBOL_VALUE (sym);
12205
12206 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12207 {
12208 fields = (struct field *)
12209 xrealloc (fields,
12210 (num_fields + DW_FIELD_ALLOC_CHUNK)
12211 * sizeof (struct field));
12212 }
12213
12214 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
12215 FIELD_TYPE (fields[num_fields]) = NULL;
12216 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
12217 FIELD_BITSIZE (fields[num_fields]) = 0;
12218
12219 num_fields++;
12220 }
12221 }
12222
12223 child_die = sibling_die (child_die);
12224 }
12225
12226 if (num_fields)
12227 {
12228 TYPE_NFIELDS (this_type) = num_fields;
12229 TYPE_FIELDS (this_type) = (struct field *)
12230 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12231 memcpy (TYPE_FIELDS (this_type), fields,
12232 sizeof (struct field) * num_fields);
12233 xfree (fields);
12234 }
12235 if (unsigned_enum)
12236 TYPE_UNSIGNED (this_type) = 1;
12237 if (flag_enum)
12238 TYPE_FLAG_ENUM (this_type) = 1;
12239 }
12240
12241 /* If we are reading an enum from a .debug_types unit, and the enum
12242 is a declaration, and the enum is not the signatured type in the
12243 unit, then we do not want to add a symbol for it. Adding a
12244 symbol would in some cases obscure the true definition of the
12245 enum, giving users an incomplete type when the definition is
12246 actually available. Note that we do not want to do this for all
12247 enums which are just declarations, because C++0x allows forward
12248 enum declarations. */
12249 if (cu->per_cu->is_debug_types
12250 && die_is_declaration (die, cu))
12251 {
12252 struct signatured_type *sig_type;
12253
12254 sig_type = (struct signatured_type *) cu->per_cu;
12255 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12256 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
12257 return;
12258 }
12259
12260 new_symbol (die, this_type, cu);
12261 }
12262
12263 /* Extract all information from a DW_TAG_array_type DIE and put it in
12264 the DIE's type field. For now, this only handles one dimensional
12265 arrays. */
12266
12267 static struct type *
12268 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
12269 {
12270 struct objfile *objfile = cu->objfile;
12271 struct die_info *child_die;
12272 struct type *type;
12273 struct type *element_type, *range_type, *index_type;
12274 struct type **range_types = NULL;
12275 struct attribute *attr;
12276 int ndim = 0;
12277 struct cleanup *back_to;
12278 const char *name;
12279
12280 element_type = die_type (die, cu);
12281
12282 /* The die_type call above may have already set the type for this DIE. */
12283 type = get_die_type (die, cu);
12284 if (type)
12285 return type;
12286
12287 /* Irix 6.2 native cc creates array types without children for
12288 arrays with unspecified length. */
12289 if (die->child == NULL)
12290 {
12291 index_type = objfile_type (objfile)->builtin_int;
12292 range_type = create_range_type (NULL, index_type, 0, -1);
12293 type = create_array_type (NULL, element_type, range_type);
12294 return set_die_type (die, type, cu);
12295 }
12296
12297 back_to = make_cleanup (null_cleanup, NULL);
12298 child_die = die->child;
12299 while (child_die && child_die->tag)
12300 {
12301 if (child_die->tag == DW_TAG_subrange_type)
12302 {
12303 struct type *child_type = read_type_die (child_die, cu);
12304
12305 if (child_type != NULL)
12306 {
12307 /* The range type was succesfully read. Save it for the
12308 array type creation. */
12309 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12310 {
12311 range_types = (struct type **)
12312 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12313 * sizeof (struct type *));
12314 if (ndim == 0)
12315 make_cleanup (free_current_contents, &range_types);
12316 }
12317 range_types[ndim++] = child_type;
12318 }
12319 }
12320 child_die = sibling_die (child_die);
12321 }
12322
12323 /* Dwarf2 dimensions are output from left to right, create the
12324 necessary array types in backwards order. */
12325
12326 type = element_type;
12327
12328 if (read_array_order (die, cu) == DW_ORD_col_major)
12329 {
12330 int i = 0;
12331
12332 while (i < ndim)
12333 type = create_array_type (NULL, type, range_types[i++]);
12334 }
12335 else
12336 {
12337 while (ndim-- > 0)
12338 type = create_array_type (NULL, type, range_types[ndim]);
12339 }
12340
12341 /* Understand Dwarf2 support for vector types (like they occur on
12342 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12343 array type. This is not part of the Dwarf2/3 standard yet, but a
12344 custom vendor extension. The main difference between a regular
12345 array and the vector variant is that vectors are passed by value
12346 to functions. */
12347 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
12348 if (attr)
12349 make_vector_type (type);
12350
12351 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12352 implementation may choose to implement triple vectors using this
12353 attribute. */
12354 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12355 if (attr)
12356 {
12357 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12358 TYPE_LENGTH (type) = DW_UNSND (attr);
12359 else
12360 complaint (&symfile_complaints,
12361 _("DW_AT_byte_size for array type smaller "
12362 "than the total size of elements"));
12363 }
12364
12365 name = dwarf2_name (die, cu);
12366 if (name)
12367 TYPE_NAME (type) = name;
12368
12369 /* Install the type in the die. */
12370 set_die_type (die, type, cu);
12371
12372 /* set_die_type should be already done. */
12373 set_descriptive_type (type, die, cu);
12374
12375 do_cleanups (back_to);
12376
12377 return type;
12378 }
12379
12380 static enum dwarf_array_dim_ordering
12381 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
12382 {
12383 struct attribute *attr;
12384
12385 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12386
12387 if (attr) return DW_SND (attr);
12388
12389 /* GNU F77 is a special case, as at 08/2004 array type info is the
12390 opposite order to the dwarf2 specification, but data is still
12391 laid out as per normal fortran.
12392
12393 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12394 version checking. */
12395
12396 if (cu->language == language_fortran
12397 && cu->producer && strstr (cu->producer, "GNU F77"))
12398 {
12399 return DW_ORD_row_major;
12400 }
12401
12402 switch (cu->language_defn->la_array_ordering)
12403 {
12404 case array_column_major:
12405 return DW_ORD_col_major;
12406 case array_row_major:
12407 default:
12408 return DW_ORD_row_major;
12409 };
12410 }
12411
12412 /* Extract all information from a DW_TAG_set_type DIE and put it in
12413 the DIE's type field. */
12414
12415 static struct type *
12416 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12417 {
12418 struct type *domain_type, *set_type;
12419 struct attribute *attr;
12420
12421 domain_type = die_type (die, cu);
12422
12423 /* The die_type call above may have already set the type for this DIE. */
12424 set_type = get_die_type (die, cu);
12425 if (set_type)
12426 return set_type;
12427
12428 set_type = create_set_type (NULL, domain_type);
12429
12430 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12431 if (attr)
12432 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12433
12434 return set_die_type (die, set_type, cu);
12435 }
12436
12437 /* A helper for read_common_block that creates a locexpr baton.
12438 SYM is the symbol which we are marking as computed.
12439 COMMON_DIE is the DIE for the common block.
12440 COMMON_LOC is the location expression attribute for the common
12441 block itself.
12442 MEMBER_LOC is the location expression attribute for the particular
12443 member of the common block that we are processing.
12444 CU is the CU from which the above come. */
12445
12446 static void
12447 mark_common_block_symbol_computed (struct symbol *sym,
12448 struct die_info *common_die,
12449 struct attribute *common_loc,
12450 struct attribute *member_loc,
12451 struct dwarf2_cu *cu)
12452 {
12453 struct objfile *objfile = dwarf2_per_objfile->objfile;
12454 struct dwarf2_locexpr_baton *baton;
12455 gdb_byte *ptr;
12456 unsigned int cu_off;
12457 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12458 LONGEST offset = 0;
12459
12460 gdb_assert (common_loc && member_loc);
12461 gdb_assert (attr_form_is_block (common_loc));
12462 gdb_assert (attr_form_is_block (member_loc)
12463 || attr_form_is_constant (member_loc));
12464
12465 baton = obstack_alloc (&objfile->objfile_obstack,
12466 sizeof (struct dwarf2_locexpr_baton));
12467 baton->per_cu = cu->per_cu;
12468 gdb_assert (baton->per_cu);
12469
12470 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12471
12472 if (attr_form_is_constant (member_loc))
12473 {
12474 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12475 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12476 }
12477 else
12478 baton->size += DW_BLOCK (member_loc)->size;
12479
12480 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12481 baton->data = ptr;
12482
12483 *ptr++ = DW_OP_call4;
12484 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12485 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12486 ptr += 4;
12487
12488 if (attr_form_is_constant (member_loc))
12489 {
12490 *ptr++ = DW_OP_addr;
12491 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12492 ptr += cu->header.addr_size;
12493 }
12494 else
12495 {
12496 /* We have to copy the data here, because DW_OP_call4 will only
12497 use a DW_AT_location attribute. */
12498 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12499 ptr += DW_BLOCK (member_loc)->size;
12500 }
12501
12502 *ptr++ = DW_OP_plus;
12503 gdb_assert (ptr - baton->data == baton->size);
12504
12505 SYMBOL_LOCATION_BATON (sym) = baton;
12506 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12507 }
12508
12509 /* Create appropriate locally-scoped variables for all the
12510 DW_TAG_common_block entries. Also create a struct common_block
12511 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12512 is used to sepate the common blocks name namespace from regular
12513 variable names. */
12514
12515 static void
12516 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12517 {
12518 struct attribute *attr;
12519
12520 attr = dwarf2_attr (die, DW_AT_location, cu);
12521 if (attr)
12522 {
12523 /* Support the .debug_loc offsets. */
12524 if (attr_form_is_block (attr))
12525 {
12526 /* Ok. */
12527 }
12528 else if (attr_form_is_section_offset (attr))
12529 {
12530 dwarf2_complex_location_expr_complaint ();
12531 attr = NULL;
12532 }
12533 else
12534 {
12535 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12536 "common block member");
12537 attr = NULL;
12538 }
12539 }
12540
12541 if (die->child != NULL)
12542 {
12543 struct objfile *objfile = cu->objfile;
12544 struct die_info *child_die;
12545 size_t n_entries = 0, size;
12546 struct common_block *common_block;
12547 struct symbol *sym;
12548
12549 for (child_die = die->child;
12550 child_die && child_die->tag;
12551 child_die = sibling_die (child_die))
12552 ++n_entries;
12553
12554 size = (sizeof (struct common_block)
12555 + (n_entries - 1) * sizeof (struct symbol *));
12556 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12557 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12558 common_block->n_entries = 0;
12559
12560 for (child_die = die->child;
12561 child_die && child_die->tag;
12562 child_die = sibling_die (child_die))
12563 {
12564 /* Create the symbol in the DW_TAG_common_block block in the current
12565 symbol scope. */
12566 sym = new_symbol (child_die, NULL, cu);
12567 if (sym != NULL)
12568 {
12569 struct attribute *member_loc;
12570
12571 common_block->contents[common_block->n_entries++] = sym;
12572
12573 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12574 cu);
12575 if (member_loc)
12576 {
12577 /* GDB has handled this for a long time, but it is
12578 not specified by DWARF. It seems to have been
12579 emitted by gfortran at least as recently as:
12580 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12581 complaint (&symfile_complaints,
12582 _("Variable in common block has "
12583 "DW_AT_data_member_location "
12584 "- DIE at 0x%x [in module %s]"),
12585 child_die->offset.sect_off, cu->objfile->name);
12586
12587 if (attr_form_is_section_offset (member_loc))
12588 dwarf2_complex_location_expr_complaint ();
12589 else if (attr_form_is_constant (member_loc)
12590 || attr_form_is_block (member_loc))
12591 {
12592 if (attr)
12593 mark_common_block_symbol_computed (sym, die, attr,
12594 member_loc, cu);
12595 }
12596 else
12597 dwarf2_complex_location_expr_complaint ();
12598 }
12599 }
12600 }
12601
12602 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12603 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12604 }
12605 }
12606
12607 /* Create a type for a C++ namespace. */
12608
12609 static struct type *
12610 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12611 {
12612 struct objfile *objfile = cu->objfile;
12613 const char *previous_prefix, *name;
12614 int is_anonymous;
12615 struct type *type;
12616
12617 /* For extensions, reuse the type of the original namespace. */
12618 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12619 {
12620 struct die_info *ext_die;
12621 struct dwarf2_cu *ext_cu = cu;
12622
12623 ext_die = dwarf2_extension (die, &ext_cu);
12624 type = read_type_die (ext_die, ext_cu);
12625
12626 /* EXT_CU may not be the same as CU.
12627 Ensure TYPE is recorded with CU in die_type_hash. */
12628 return set_die_type (die, type, cu);
12629 }
12630
12631 name = namespace_name (die, &is_anonymous, cu);
12632
12633 /* Now build the name of the current namespace. */
12634
12635 previous_prefix = determine_prefix (die, cu);
12636 if (previous_prefix[0] != '\0')
12637 name = typename_concat (&objfile->objfile_obstack,
12638 previous_prefix, name, 0, cu);
12639
12640 /* Create the type. */
12641 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12642 objfile);
12643 TYPE_NAME (type) = name;
12644 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12645
12646 return set_die_type (die, type, cu);
12647 }
12648
12649 /* Read a C++ namespace. */
12650
12651 static void
12652 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12653 {
12654 struct objfile *objfile = cu->objfile;
12655 int is_anonymous;
12656
12657 /* Add a symbol associated to this if we haven't seen the namespace
12658 before. Also, add a using directive if it's an anonymous
12659 namespace. */
12660
12661 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12662 {
12663 struct type *type;
12664
12665 type = read_type_die (die, cu);
12666 new_symbol (die, type, cu);
12667
12668 namespace_name (die, &is_anonymous, cu);
12669 if (is_anonymous)
12670 {
12671 const char *previous_prefix = determine_prefix (die, cu);
12672
12673 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12674 NULL, NULL, 0, &objfile->objfile_obstack);
12675 }
12676 }
12677
12678 if (die->child != NULL)
12679 {
12680 struct die_info *child_die = die->child;
12681
12682 while (child_die && child_die->tag)
12683 {
12684 process_die (child_die, cu);
12685 child_die = sibling_die (child_die);
12686 }
12687 }
12688 }
12689
12690 /* Read a Fortran module as type. This DIE can be only a declaration used for
12691 imported module. Still we need that type as local Fortran "use ... only"
12692 declaration imports depend on the created type in determine_prefix. */
12693
12694 static struct type *
12695 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12696 {
12697 struct objfile *objfile = cu->objfile;
12698 const char *module_name;
12699 struct type *type;
12700
12701 module_name = dwarf2_name (die, cu);
12702 if (!module_name)
12703 complaint (&symfile_complaints,
12704 _("DW_TAG_module has no name, offset 0x%x"),
12705 die->offset.sect_off);
12706 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12707
12708 /* determine_prefix uses TYPE_TAG_NAME. */
12709 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12710
12711 return set_die_type (die, type, cu);
12712 }
12713
12714 /* Read a Fortran module. */
12715
12716 static void
12717 read_module (struct die_info *die, struct dwarf2_cu *cu)
12718 {
12719 struct die_info *child_die = die->child;
12720
12721 while (child_die && child_die->tag)
12722 {
12723 process_die (child_die, cu);
12724 child_die = sibling_die (child_die);
12725 }
12726 }
12727
12728 /* Return the name of the namespace represented by DIE. Set
12729 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12730 namespace. */
12731
12732 static const char *
12733 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12734 {
12735 struct die_info *current_die;
12736 const char *name = NULL;
12737
12738 /* Loop through the extensions until we find a name. */
12739
12740 for (current_die = die;
12741 current_die != NULL;
12742 current_die = dwarf2_extension (die, &cu))
12743 {
12744 name = dwarf2_name (current_die, cu);
12745 if (name != NULL)
12746 break;
12747 }
12748
12749 /* Is it an anonymous namespace? */
12750
12751 *is_anonymous = (name == NULL);
12752 if (*is_anonymous)
12753 name = CP_ANONYMOUS_NAMESPACE_STR;
12754
12755 return name;
12756 }
12757
12758 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12759 the user defined type vector. */
12760
12761 static struct type *
12762 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12763 {
12764 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12765 struct comp_unit_head *cu_header = &cu->header;
12766 struct type *type;
12767 struct attribute *attr_byte_size;
12768 struct attribute *attr_address_class;
12769 int byte_size, addr_class;
12770 struct type *target_type;
12771
12772 target_type = die_type (die, cu);
12773
12774 /* The die_type call above may have already set the type for this DIE. */
12775 type = get_die_type (die, cu);
12776 if (type)
12777 return type;
12778
12779 type = lookup_pointer_type (target_type);
12780
12781 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12782 if (attr_byte_size)
12783 byte_size = DW_UNSND (attr_byte_size);
12784 else
12785 byte_size = cu_header->addr_size;
12786
12787 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12788 if (attr_address_class)
12789 addr_class = DW_UNSND (attr_address_class);
12790 else
12791 addr_class = DW_ADDR_none;
12792
12793 /* If the pointer size or address class is different than the
12794 default, create a type variant marked as such and set the
12795 length accordingly. */
12796 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12797 {
12798 if (gdbarch_address_class_type_flags_p (gdbarch))
12799 {
12800 int type_flags;
12801
12802 type_flags = gdbarch_address_class_type_flags
12803 (gdbarch, byte_size, addr_class);
12804 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12805 == 0);
12806 type = make_type_with_address_space (type, type_flags);
12807 }
12808 else if (TYPE_LENGTH (type) != byte_size)
12809 {
12810 complaint (&symfile_complaints,
12811 _("invalid pointer size %d"), byte_size);
12812 }
12813 else
12814 {
12815 /* Should we also complain about unhandled address classes? */
12816 }
12817 }
12818
12819 TYPE_LENGTH (type) = byte_size;
12820 return set_die_type (die, type, cu);
12821 }
12822
12823 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12824 the user defined type vector. */
12825
12826 static struct type *
12827 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12828 {
12829 struct type *type;
12830 struct type *to_type;
12831 struct type *domain;
12832
12833 to_type = die_type (die, cu);
12834 domain = die_containing_type (die, cu);
12835
12836 /* The calls above may have already set the type for this DIE. */
12837 type = get_die_type (die, cu);
12838 if (type)
12839 return type;
12840
12841 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12842 type = lookup_methodptr_type (to_type);
12843 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12844 {
12845 struct type *new_type = alloc_type (cu->objfile);
12846
12847 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12848 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12849 TYPE_VARARGS (to_type));
12850 type = lookup_methodptr_type (new_type);
12851 }
12852 else
12853 type = lookup_memberptr_type (to_type, domain);
12854
12855 return set_die_type (die, type, cu);
12856 }
12857
12858 /* Extract all information from a DW_TAG_reference_type DIE and add to
12859 the user defined type vector. */
12860
12861 static struct type *
12862 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12863 {
12864 struct comp_unit_head *cu_header = &cu->header;
12865 struct type *type, *target_type;
12866 struct attribute *attr;
12867
12868 target_type = die_type (die, cu);
12869
12870 /* The die_type call above may have already set the type for this DIE. */
12871 type = get_die_type (die, cu);
12872 if (type)
12873 return type;
12874
12875 type = lookup_reference_type (target_type);
12876 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12877 if (attr)
12878 {
12879 TYPE_LENGTH (type) = DW_UNSND (attr);
12880 }
12881 else
12882 {
12883 TYPE_LENGTH (type) = cu_header->addr_size;
12884 }
12885 return set_die_type (die, type, cu);
12886 }
12887
12888 static struct type *
12889 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12890 {
12891 struct type *base_type, *cv_type;
12892
12893 base_type = die_type (die, cu);
12894
12895 /* The die_type call above may have already set the type for this DIE. */
12896 cv_type = get_die_type (die, cu);
12897 if (cv_type)
12898 return cv_type;
12899
12900 /* In case the const qualifier is applied to an array type, the element type
12901 is so qualified, not the array type (section 6.7.3 of C99). */
12902 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12903 {
12904 struct type *el_type, *inner_array;
12905
12906 base_type = copy_type (base_type);
12907 inner_array = base_type;
12908
12909 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12910 {
12911 TYPE_TARGET_TYPE (inner_array) =
12912 copy_type (TYPE_TARGET_TYPE (inner_array));
12913 inner_array = TYPE_TARGET_TYPE (inner_array);
12914 }
12915
12916 el_type = TYPE_TARGET_TYPE (inner_array);
12917 TYPE_TARGET_TYPE (inner_array) =
12918 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12919
12920 return set_die_type (die, base_type, cu);
12921 }
12922
12923 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12924 return set_die_type (die, cv_type, cu);
12925 }
12926
12927 static struct type *
12928 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12929 {
12930 struct type *base_type, *cv_type;
12931
12932 base_type = die_type (die, cu);
12933
12934 /* The die_type call above may have already set the type for this DIE. */
12935 cv_type = get_die_type (die, cu);
12936 if (cv_type)
12937 return cv_type;
12938
12939 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12940 return set_die_type (die, cv_type, cu);
12941 }
12942
12943 /* Handle DW_TAG_restrict_type. */
12944
12945 static struct type *
12946 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12947 {
12948 struct type *base_type, *cv_type;
12949
12950 base_type = die_type (die, cu);
12951
12952 /* The die_type call above may have already set the type for this DIE. */
12953 cv_type = get_die_type (die, cu);
12954 if (cv_type)
12955 return cv_type;
12956
12957 cv_type = make_restrict_type (base_type);
12958 return set_die_type (die, cv_type, cu);
12959 }
12960
12961 /* Extract all information from a DW_TAG_string_type DIE and add to
12962 the user defined type vector. It isn't really a user defined type,
12963 but it behaves like one, with other DIE's using an AT_user_def_type
12964 attribute to reference it. */
12965
12966 static struct type *
12967 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12968 {
12969 struct objfile *objfile = cu->objfile;
12970 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12971 struct type *type, *range_type, *index_type, *char_type;
12972 struct attribute *attr;
12973 unsigned int length;
12974
12975 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12976 if (attr)
12977 {
12978 length = DW_UNSND (attr);
12979 }
12980 else
12981 {
12982 /* Check for the DW_AT_byte_size attribute. */
12983 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12984 if (attr)
12985 {
12986 length = DW_UNSND (attr);
12987 }
12988 else
12989 {
12990 length = 1;
12991 }
12992 }
12993
12994 index_type = objfile_type (objfile)->builtin_int;
12995 range_type = create_range_type (NULL, index_type, 1, length);
12996 char_type = language_string_char_type (cu->language_defn, gdbarch);
12997 type = create_string_type (NULL, char_type, range_type);
12998
12999 return set_die_type (die, type, cu);
13000 }
13001
13002 /* Assuming that DIE corresponds to a function, returns nonzero
13003 if the function is prototyped. */
13004
13005 static int
13006 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13007 {
13008 struct attribute *attr;
13009
13010 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13011 if (attr && (DW_UNSND (attr) != 0))
13012 return 1;
13013
13014 /* The DWARF standard implies that the DW_AT_prototyped attribute
13015 is only meaninful for C, but the concept also extends to other
13016 languages that allow unprototyped functions (Eg: Objective C).
13017 For all other languages, assume that functions are always
13018 prototyped. */
13019 if (cu->language != language_c
13020 && cu->language != language_objc
13021 && cu->language != language_opencl)
13022 return 1;
13023
13024 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13025 prototyped and unprototyped functions; default to prototyped,
13026 since that is more common in modern code (and RealView warns
13027 about unprototyped functions). */
13028 if (producer_is_realview (cu->producer))
13029 return 1;
13030
13031 return 0;
13032 }
13033
13034 /* Handle DIES due to C code like:
13035
13036 struct foo
13037 {
13038 int (*funcp)(int a, long l);
13039 int b;
13040 };
13041
13042 ('funcp' generates a DW_TAG_subroutine_type DIE). */
13043
13044 static struct type *
13045 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
13046 {
13047 struct objfile *objfile = cu->objfile;
13048 struct type *type; /* Type that this function returns. */
13049 struct type *ftype; /* Function that returns above type. */
13050 struct attribute *attr;
13051
13052 type = die_type (die, cu);
13053
13054 /* The die_type call above may have already set the type for this DIE. */
13055 ftype = get_die_type (die, cu);
13056 if (ftype)
13057 return ftype;
13058
13059 ftype = lookup_function_type (type);
13060
13061 if (prototyped_function_p (die, cu))
13062 TYPE_PROTOTYPED (ftype) = 1;
13063
13064 /* Store the calling convention in the type if it's available in
13065 the subroutine die. Otherwise set the calling convention to
13066 the default value DW_CC_normal. */
13067 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
13068 if (attr)
13069 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13070 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13071 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13072 else
13073 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13074
13075 /* We need to add the subroutine type to the die immediately so
13076 we don't infinitely recurse when dealing with parameters
13077 declared as the same subroutine type. */
13078 set_die_type (die, ftype, cu);
13079
13080 if (die->child != NULL)
13081 {
13082 struct type *void_type = objfile_type (objfile)->builtin_void;
13083 struct die_info *child_die;
13084 int nparams, iparams;
13085
13086 /* Count the number of parameters.
13087 FIXME: GDB currently ignores vararg functions, but knows about
13088 vararg member functions. */
13089 nparams = 0;
13090 child_die = die->child;
13091 while (child_die && child_die->tag)
13092 {
13093 if (child_die->tag == DW_TAG_formal_parameter)
13094 nparams++;
13095 else if (child_die->tag == DW_TAG_unspecified_parameters)
13096 TYPE_VARARGS (ftype) = 1;
13097 child_die = sibling_die (child_die);
13098 }
13099
13100 /* Allocate storage for parameters and fill them in. */
13101 TYPE_NFIELDS (ftype) = nparams;
13102 TYPE_FIELDS (ftype) = (struct field *)
13103 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13104
13105 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13106 even if we error out during the parameters reading below. */
13107 for (iparams = 0; iparams < nparams; iparams++)
13108 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13109
13110 iparams = 0;
13111 child_die = die->child;
13112 while (child_die && child_die->tag)
13113 {
13114 if (child_die->tag == DW_TAG_formal_parameter)
13115 {
13116 struct type *arg_type;
13117
13118 /* DWARF version 2 has no clean way to discern C++
13119 static and non-static member functions. G++ helps
13120 GDB by marking the first parameter for non-static
13121 member functions (which is the this pointer) as
13122 artificial. We pass this information to
13123 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13124
13125 DWARF version 3 added DW_AT_object_pointer, which GCC
13126 4.5 does not yet generate. */
13127 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13128 if (attr)
13129 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13130 else
13131 {
13132 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13133
13134 /* GCC/43521: In java, the formal parameter
13135 "this" is sometimes not marked with DW_AT_artificial. */
13136 if (cu->language == language_java)
13137 {
13138 const char *name = dwarf2_name (child_die, cu);
13139
13140 if (name && !strcmp (name, "this"))
13141 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13142 }
13143 }
13144 arg_type = die_type (child_die, cu);
13145
13146 /* RealView does not mark THIS as const, which the testsuite
13147 expects. GCC marks THIS as const in method definitions,
13148 but not in the class specifications (GCC PR 43053). */
13149 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13150 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13151 {
13152 int is_this = 0;
13153 struct dwarf2_cu *arg_cu = cu;
13154 const char *name = dwarf2_name (child_die, cu);
13155
13156 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13157 if (attr)
13158 {
13159 /* If the compiler emits this, use it. */
13160 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13161 is_this = 1;
13162 }
13163 else if (name && strcmp (name, "this") == 0)
13164 /* Function definitions will have the argument names. */
13165 is_this = 1;
13166 else if (name == NULL && iparams == 0)
13167 /* Declarations may not have the names, so like
13168 elsewhere in GDB, assume an artificial first
13169 argument is "this". */
13170 is_this = 1;
13171
13172 if (is_this)
13173 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13174 arg_type, 0);
13175 }
13176
13177 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
13178 iparams++;
13179 }
13180 child_die = sibling_die (child_die);
13181 }
13182 }
13183
13184 return ftype;
13185 }
13186
13187 static struct type *
13188 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
13189 {
13190 struct objfile *objfile = cu->objfile;
13191 const char *name = NULL;
13192 struct type *this_type, *target_type;
13193
13194 name = dwarf2_full_name (NULL, die, cu);
13195 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
13196 TYPE_FLAG_TARGET_STUB, NULL, objfile);
13197 TYPE_NAME (this_type) = name;
13198 set_die_type (die, this_type, cu);
13199 target_type = die_type (die, cu);
13200 if (target_type != this_type)
13201 TYPE_TARGET_TYPE (this_type) = target_type;
13202 else
13203 {
13204 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13205 spec and cause infinite loops in GDB. */
13206 complaint (&symfile_complaints,
13207 _("Self-referential DW_TAG_typedef "
13208 "- DIE at 0x%x [in module %s]"),
13209 die->offset.sect_off, objfile->name);
13210 TYPE_TARGET_TYPE (this_type) = NULL;
13211 }
13212 return this_type;
13213 }
13214
13215 /* Find a representation of a given base type and install
13216 it in the TYPE field of the die. */
13217
13218 static struct type *
13219 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
13220 {
13221 struct objfile *objfile = cu->objfile;
13222 struct type *type;
13223 struct attribute *attr;
13224 int encoding = 0, size = 0;
13225 const char *name;
13226 enum type_code code = TYPE_CODE_INT;
13227 int type_flags = 0;
13228 struct type *target_type = NULL;
13229
13230 attr = dwarf2_attr (die, DW_AT_encoding, cu);
13231 if (attr)
13232 {
13233 encoding = DW_UNSND (attr);
13234 }
13235 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13236 if (attr)
13237 {
13238 size = DW_UNSND (attr);
13239 }
13240 name = dwarf2_name (die, cu);
13241 if (!name)
13242 {
13243 complaint (&symfile_complaints,
13244 _("DW_AT_name missing from DW_TAG_base_type"));
13245 }
13246
13247 switch (encoding)
13248 {
13249 case DW_ATE_address:
13250 /* Turn DW_ATE_address into a void * pointer. */
13251 code = TYPE_CODE_PTR;
13252 type_flags |= TYPE_FLAG_UNSIGNED;
13253 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13254 break;
13255 case DW_ATE_boolean:
13256 code = TYPE_CODE_BOOL;
13257 type_flags |= TYPE_FLAG_UNSIGNED;
13258 break;
13259 case DW_ATE_complex_float:
13260 code = TYPE_CODE_COMPLEX;
13261 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13262 break;
13263 case DW_ATE_decimal_float:
13264 code = TYPE_CODE_DECFLOAT;
13265 break;
13266 case DW_ATE_float:
13267 code = TYPE_CODE_FLT;
13268 break;
13269 case DW_ATE_signed:
13270 break;
13271 case DW_ATE_unsigned:
13272 type_flags |= TYPE_FLAG_UNSIGNED;
13273 if (cu->language == language_fortran
13274 && name
13275 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13276 code = TYPE_CODE_CHAR;
13277 break;
13278 case DW_ATE_signed_char:
13279 if (cu->language == language_ada || cu->language == language_m2
13280 || cu->language == language_pascal
13281 || cu->language == language_fortran)
13282 code = TYPE_CODE_CHAR;
13283 break;
13284 case DW_ATE_unsigned_char:
13285 if (cu->language == language_ada || cu->language == language_m2
13286 || cu->language == language_pascal
13287 || cu->language == language_fortran)
13288 code = TYPE_CODE_CHAR;
13289 type_flags |= TYPE_FLAG_UNSIGNED;
13290 break;
13291 case DW_ATE_UTF:
13292 /* We just treat this as an integer and then recognize the
13293 type by name elsewhere. */
13294 break;
13295
13296 default:
13297 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13298 dwarf_type_encoding_name (encoding));
13299 break;
13300 }
13301
13302 type = init_type (code, size, type_flags, NULL, objfile);
13303 TYPE_NAME (type) = name;
13304 TYPE_TARGET_TYPE (type) = target_type;
13305
13306 if (name && strcmp (name, "char") == 0)
13307 TYPE_NOSIGN (type) = 1;
13308
13309 return set_die_type (die, type, cu);
13310 }
13311
13312 /* Read the given DW_AT_subrange DIE. */
13313
13314 static struct type *
13315 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13316 {
13317 struct type *base_type, *orig_base_type;
13318 struct type *range_type;
13319 struct attribute *attr;
13320 LONGEST low, high;
13321 int low_default_is_valid;
13322 const char *name;
13323 LONGEST negative_mask;
13324
13325 orig_base_type = die_type (die, cu);
13326 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13327 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13328 creating the range type, but we use the result of check_typedef
13329 when examining properties of the type. */
13330 base_type = check_typedef (orig_base_type);
13331
13332 /* The die_type call above may have already set the type for this DIE. */
13333 range_type = get_die_type (die, cu);
13334 if (range_type)
13335 return range_type;
13336
13337 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13338 omitting DW_AT_lower_bound. */
13339 switch (cu->language)
13340 {
13341 case language_c:
13342 case language_cplus:
13343 low = 0;
13344 low_default_is_valid = 1;
13345 break;
13346 case language_fortran:
13347 low = 1;
13348 low_default_is_valid = 1;
13349 break;
13350 case language_d:
13351 case language_java:
13352 case language_objc:
13353 low = 0;
13354 low_default_is_valid = (cu->header.version >= 4);
13355 break;
13356 case language_ada:
13357 case language_m2:
13358 case language_pascal:
13359 low = 1;
13360 low_default_is_valid = (cu->header.version >= 4);
13361 break;
13362 default:
13363 low = 0;
13364 low_default_is_valid = 0;
13365 break;
13366 }
13367
13368 /* FIXME: For variable sized arrays either of these could be
13369 a variable rather than a constant value. We'll allow it,
13370 but we don't know how to handle it. */
13371 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
13372 if (attr)
13373 low = dwarf2_get_attr_constant_value (attr, low);
13374 else if (!low_default_is_valid)
13375 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13376 "- DIE at 0x%x [in module %s]"),
13377 die->offset.sect_off, cu->objfile->name);
13378
13379 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
13380 if (attr)
13381 {
13382 if (attr_form_is_block (attr) || is_ref_attr (attr))
13383 {
13384 /* GCC encodes arrays with unspecified or dynamic length
13385 with a DW_FORM_block1 attribute or a reference attribute.
13386 FIXME: GDB does not yet know how to handle dynamic
13387 arrays properly, treat them as arrays with unspecified
13388 length for now.
13389
13390 FIXME: jimb/2003-09-22: GDB does not really know
13391 how to handle arrays of unspecified length
13392 either; we just represent them as zero-length
13393 arrays. Choose an appropriate upper bound given
13394 the lower bound we've computed above. */
13395 high = low - 1;
13396 }
13397 else
13398 high = dwarf2_get_attr_constant_value (attr, 1);
13399 }
13400 else
13401 {
13402 attr = dwarf2_attr (die, DW_AT_count, cu);
13403 if (attr)
13404 {
13405 int count = dwarf2_get_attr_constant_value (attr, 1);
13406 high = low + count - 1;
13407 }
13408 else
13409 {
13410 /* Unspecified array length. */
13411 high = low - 1;
13412 }
13413 }
13414
13415 /* Dwarf-2 specifications explicitly allows to create subrange types
13416 without specifying a base type.
13417 In that case, the base type must be set to the type of
13418 the lower bound, upper bound or count, in that order, if any of these
13419 three attributes references an object that has a type.
13420 If no base type is found, the Dwarf-2 specifications say that
13421 a signed integer type of size equal to the size of an address should
13422 be used.
13423 For the following C code: `extern char gdb_int [];'
13424 GCC produces an empty range DIE.
13425 FIXME: muller/2010-05-28: Possible references to object for low bound,
13426 high bound or count are not yet handled by this code. */
13427 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13428 {
13429 struct objfile *objfile = cu->objfile;
13430 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13431 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13432 struct type *int_type = objfile_type (objfile)->builtin_int;
13433
13434 /* Test "int", "long int", and "long long int" objfile types,
13435 and select the first one having a size above or equal to the
13436 architecture address size. */
13437 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13438 base_type = int_type;
13439 else
13440 {
13441 int_type = objfile_type (objfile)->builtin_long;
13442 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13443 base_type = int_type;
13444 else
13445 {
13446 int_type = objfile_type (objfile)->builtin_long_long;
13447 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13448 base_type = int_type;
13449 }
13450 }
13451 }
13452
13453 negative_mask =
13454 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13455 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13456 low |= negative_mask;
13457 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13458 high |= negative_mask;
13459
13460 range_type = create_range_type (NULL, orig_base_type, low, high);
13461
13462 /* Mark arrays with dynamic length at least as an array of unspecified
13463 length. GDB could check the boundary but before it gets implemented at
13464 least allow accessing the array elements. */
13465 if (attr && attr_form_is_block (attr))
13466 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13467
13468 /* Ada expects an empty array on no boundary attributes. */
13469 if (attr == NULL && cu->language != language_ada)
13470 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13471
13472 name = dwarf2_name (die, cu);
13473 if (name)
13474 TYPE_NAME (range_type) = name;
13475
13476 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13477 if (attr)
13478 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13479
13480 set_die_type (die, range_type, cu);
13481
13482 /* set_die_type should be already done. */
13483 set_descriptive_type (range_type, die, cu);
13484
13485 return range_type;
13486 }
13487
13488 static struct type *
13489 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13490 {
13491 struct type *type;
13492
13493 /* For now, we only support the C meaning of an unspecified type: void. */
13494
13495 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13496 TYPE_NAME (type) = dwarf2_name (die, cu);
13497
13498 return set_die_type (die, type, cu);
13499 }
13500
13501 /* Read a single die and all its descendents. Set the die's sibling
13502 field to NULL; set other fields in the die correctly, and set all
13503 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13504 location of the info_ptr after reading all of those dies. PARENT
13505 is the parent of the die in question. */
13506
13507 static struct die_info *
13508 read_die_and_children (const struct die_reader_specs *reader,
13509 const gdb_byte *info_ptr,
13510 const gdb_byte **new_info_ptr,
13511 struct die_info *parent)
13512 {
13513 struct die_info *die;
13514 const gdb_byte *cur_ptr;
13515 int has_children;
13516
13517 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13518 if (die == NULL)
13519 {
13520 *new_info_ptr = cur_ptr;
13521 return NULL;
13522 }
13523 store_in_ref_table (die, reader->cu);
13524
13525 if (has_children)
13526 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13527 else
13528 {
13529 die->child = NULL;
13530 *new_info_ptr = cur_ptr;
13531 }
13532
13533 die->sibling = NULL;
13534 die->parent = parent;
13535 return die;
13536 }
13537
13538 /* Read a die, all of its descendents, and all of its siblings; set
13539 all of the fields of all of the dies correctly. Arguments are as
13540 in read_die_and_children. */
13541
13542 static struct die_info *
13543 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13544 const gdb_byte *info_ptr,
13545 const gdb_byte **new_info_ptr,
13546 struct die_info *parent)
13547 {
13548 struct die_info *first_die, *last_sibling;
13549 const gdb_byte *cur_ptr;
13550
13551 cur_ptr = info_ptr;
13552 first_die = last_sibling = NULL;
13553
13554 while (1)
13555 {
13556 struct die_info *die
13557 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13558
13559 if (die == NULL)
13560 {
13561 *new_info_ptr = cur_ptr;
13562 return first_die;
13563 }
13564
13565 if (!first_die)
13566 first_die = die;
13567 else
13568 last_sibling->sibling = die;
13569
13570 last_sibling = die;
13571 }
13572 }
13573
13574 /* Read a die, all of its descendents, and all of its siblings; set
13575 all of the fields of all of the dies correctly. Arguments are as
13576 in read_die_and_children.
13577 This the main entry point for reading a DIE and all its children. */
13578
13579 static struct die_info *
13580 read_die_and_siblings (const struct die_reader_specs *reader,
13581 const gdb_byte *info_ptr,
13582 const gdb_byte **new_info_ptr,
13583 struct die_info *parent)
13584 {
13585 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13586 new_info_ptr, parent);
13587
13588 if (dwarf2_die_debug)
13589 {
13590 fprintf_unfiltered (gdb_stdlog,
13591 "Read die from %s@0x%x of %s:\n",
13592 bfd_section_name (reader->abfd,
13593 reader->die_section->asection),
13594 (unsigned) (info_ptr - reader->die_section->buffer),
13595 bfd_get_filename (reader->abfd));
13596 dump_die (die, dwarf2_die_debug);
13597 }
13598
13599 return die;
13600 }
13601
13602 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13603 attributes.
13604 The caller is responsible for filling in the extra attributes
13605 and updating (*DIEP)->num_attrs.
13606 Set DIEP to point to a newly allocated die with its information,
13607 except for its child, sibling, and parent fields.
13608 Set HAS_CHILDREN to tell whether the die has children or not. */
13609
13610 static const gdb_byte *
13611 read_full_die_1 (const struct die_reader_specs *reader,
13612 struct die_info **diep, const gdb_byte *info_ptr,
13613 int *has_children, int num_extra_attrs)
13614 {
13615 unsigned int abbrev_number, bytes_read, i;
13616 sect_offset offset;
13617 struct abbrev_info *abbrev;
13618 struct die_info *die;
13619 struct dwarf2_cu *cu = reader->cu;
13620 bfd *abfd = reader->abfd;
13621
13622 offset.sect_off = info_ptr - reader->buffer;
13623 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13624 info_ptr += bytes_read;
13625 if (!abbrev_number)
13626 {
13627 *diep = NULL;
13628 *has_children = 0;
13629 return info_ptr;
13630 }
13631
13632 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13633 if (!abbrev)
13634 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13635 abbrev_number,
13636 bfd_get_filename (abfd));
13637
13638 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13639 die->offset = offset;
13640 die->tag = abbrev->tag;
13641 die->abbrev = abbrev_number;
13642
13643 /* Make the result usable.
13644 The caller needs to update num_attrs after adding the extra
13645 attributes. */
13646 die->num_attrs = abbrev->num_attrs;
13647
13648 for (i = 0; i < abbrev->num_attrs; ++i)
13649 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13650 info_ptr);
13651
13652 *diep = die;
13653 *has_children = abbrev->has_children;
13654 return info_ptr;
13655 }
13656
13657 /* Read a die and all its attributes.
13658 Set DIEP to point to a newly allocated die with its information,
13659 except for its child, sibling, and parent fields.
13660 Set HAS_CHILDREN to tell whether the die has children or not. */
13661
13662 static const gdb_byte *
13663 read_full_die (const struct die_reader_specs *reader,
13664 struct die_info **diep, const gdb_byte *info_ptr,
13665 int *has_children)
13666 {
13667 const gdb_byte *result;
13668
13669 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13670
13671 if (dwarf2_die_debug)
13672 {
13673 fprintf_unfiltered (gdb_stdlog,
13674 "Read die from %s@0x%x of %s:\n",
13675 bfd_section_name (reader->abfd,
13676 reader->die_section->asection),
13677 (unsigned) (info_ptr - reader->die_section->buffer),
13678 bfd_get_filename (reader->abfd));
13679 dump_die (*diep, dwarf2_die_debug);
13680 }
13681
13682 return result;
13683 }
13684 \f
13685 /* Abbreviation tables.
13686
13687 In DWARF version 2, the description of the debugging information is
13688 stored in a separate .debug_abbrev section. Before we read any
13689 dies from a section we read in all abbreviations and install them
13690 in a hash table. */
13691
13692 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13693
13694 static struct abbrev_info *
13695 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13696 {
13697 struct abbrev_info *abbrev;
13698
13699 abbrev = (struct abbrev_info *)
13700 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13701 memset (abbrev, 0, sizeof (struct abbrev_info));
13702 return abbrev;
13703 }
13704
13705 /* Add an abbreviation to the table. */
13706
13707 static void
13708 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13709 unsigned int abbrev_number,
13710 struct abbrev_info *abbrev)
13711 {
13712 unsigned int hash_number;
13713
13714 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13715 abbrev->next = abbrev_table->abbrevs[hash_number];
13716 abbrev_table->abbrevs[hash_number] = abbrev;
13717 }
13718
13719 /* Look up an abbrev in the table.
13720 Returns NULL if the abbrev is not found. */
13721
13722 static struct abbrev_info *
13723 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13724 unsigned int abbrev_number)
13725 {
13726 unsigned int hash_number;
13727 struct abbrev_info *abbrev;
13728
13729 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13730 abbrev = abbrev_table->abbrevs[hash_number];
13731
13732 while (abbrev)
13733 {
13734 if (abbrev->number == abbrev_number)
13735 return abbrev;
13736 abbrev = abbrev->next;
13737 }
13738 return NULL;
13739 }
13740
13741 /* Read in an abbrev table. */
13742
13743 static struct abbrev_table *
13744 abbrev_table_read_table (struct dwarf2_section_info *section,
13745 sect_offset offset)
13746 {
13747 struct objfile *objfile = dwarf2_per_objfile->objfile;
13748 bfd *abfd = section->asection->owner;
13749 struct abbrev_table *abbrev_table;
13750 const gdb_byte *abbrev_ptr;
13751 struct abbrev_info *cur_abbrev;
13752 unsigned int abbrev_number, bytes_read, abbrev_name;
13753 unsigned int abbrev_form;
13754 struct attr_abbrev *cur_attrs;
13755 unsigned int allocated_attrs;
13756
13757 abbrev_table = XMALLOC (struct abbrev_table);
13758 abbrev_table->offset = offset;
13759 obstack_init (&abbrev_table->abbrev_obstack);
13760 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13761 (ABBREV_HASH_SIZE
13762 * sizeof (struct abbrev_info *)));
13763 memset (abbrev_table->abbrevs, 0,
13764 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13765
13766 dwarf2_read_section (objfile, section);
13767 abbrev_ptr = section->buffer + offset.sect_off;
13768 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13769 abbrev_ptr += bytes_read;
13770
13771 allocated_attrs = ATTR_ALLOC_CHUNK;
13772 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13773
13774 /* Loop until we reach an abbrev number of 0. */
13775 while (abbrev_number)
13776 {
13777 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13778
13779 /* read in abbrev header */
13780 cur_abbrev->number = abbrev_number;
13781 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13782 abbrev_ptr += bytes_read;
13783 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13784 abbrev_ptr += 1;
13785
13786 /* now read in declarations */
13787 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13788 abbrev_ptr += bytes_read;
13789 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13790 abbrev_ptr += bytes_read;
13791 while (abbrev_name)
13792 {
13793 if (cur_abbrev->num_attrs == allocated_attrs)
13794 {
13795 allocated_attrs += ATTR_ALLOC_CHUNK;
13796 cur_attrs
13797 = xrealloc (cur_attrs, (allocated_attrs
13798 * sizeof (struct attr_abbrev)));
13799 }
13800
13801 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13802 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13803 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13804 abbrev_ptr += bytes_read;
13805 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13806 abbrev_ptr += bytes_read;
13807 }
13808
13809 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13810 (cur_abbrev->num_attrs
13811 * sizeof (struct attr_abbrev)));
13812 memcpy (cur_abbrev->attrs, cur_attrs,
13813 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13814
13815 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13816
13817 /* Get next abbreviation.
13818 Under Irix6 the abbreviations for a compilation unit are not
13819 always properly terminated with an abbrev number of 0.
13820 Exit loop if we encounter an abbreviation which we have
13821 already read (which means we are about to read the abbreviations
13822 for the next compile unit) or if the end of the abbreviation
13823 table is reached. */
13824 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13825 break;
13826 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13827 abbrev_ptr += bytes_read;
13828 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13829 break;
13830 }
13831
13832 xfree (cur_attrs);
13833 return abbrev_table;
13834 }
13835
13836 /* Free the resources held by ABBREV_TABLE. */
13837
13838 static void
13839 abbrev_table_free (struct abbrev_table *abbrev_table)
13840 {
13841 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13842 xfree (abbrev_table);
13843 }
13844
13845 /* Same as abbrev_table_free but as a cleanup.
13846 We pass in a pointer to the pointer to the table so that we can
13847 set the pointer to NULL when we're done. It also simplifies
13848 build_type_unit_groups. */
13849
13850 static void
13851 abbrev_table_free_cleanup (void *table_ptr)
13852 {
13853 struct abbrev_table **abbrev_table_ptr = table_ptr;
13854
13855 if (*abbrev_table_ptr != NULL)
13856 abbrev_table_free (*abbrev_table_ptr);
13857 *abbrev_table_ptr = NULL;
13858 }
13859
13860 /* Read the abbrev table for CU from ABBREV_SECTION. */
13861
13862 static void
13863 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13864 struct dwarf2_section_info *abbrev_section)
13865 {
13866 cu->abbrev_table =
13867 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13868 }
13869
13870 /* Release the memory used by the abbrev table for a compilation unit. */
13871
13872 static void
13873 dwarf2_free_abbrev_table (void *ptr_to_cu)
13874 {
13875 struct dwarf2_cu *cu = ptr_to_cu;
13876
13877 if (cu->abbrev_table != NULL)
13878 abbrev_table_free (cu->abbrev_table);
13879 /* Set this to NULL so that we SEGV if we try to read it later,
13880 and also because free_comp_unit verifies this is NULL. */
13881 cu->abbrev_table = NULL;
13882 }
13883 \f
13884 /* Returns nonzero if TAG represents a type that we might generate a partial
13885 symbol for. */
13886
13887 static int
13888 is_type_tag_for_partial (int tag)
13889 {
13890 switch (tag)
13891 {
13892 #if 0
13893 /* Some types that would be reasonable to generate partial symbols for,
13894 that we don't at present. */
13895 case DW_TAG_array_type:
13896 case DW_TAG_file_type:
13897 case DW_TAG_ptr_to_member_type:
13898 case DW_TAG_set_type:
13899 case DW_TAG_string_type:
13900 case DW_TAG_subroutine_type:
13901 #endif
13902 case DW_TAG_base_type:
13903 case DW_TAG_class_type:
13904 case DW_TAG_interface_type:
13905 case DW_TAG_enumeration_type:
13906 case DW_TAG_structure_type:
13907 case DW_TAG_subrange_type:
13908 case DW_TAG_typedef:
13909 case DW_TAG_union_type:
13910 return 1;
13911 default:
13912 return 0;
13913 }
13914 }
13915
13916 /* Load all DIEs that are interesting for partial symbols into memory. */
13917
13918 static struct partial_die_info *
13919 load_partial_dies (const struct die_reader_specs *reader,
13920 const gdb_byte *info_ptr, int building_psymtab)
13921 {
13922 struct dwarf2_cu *cu = reader->cu;
13923 struct objfile *objfile = cu->objfile;
13924 struct partial_die_info *part_die;
13925 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13926 struct abbrev_info *abbrev;
13927 unsigned int bytes_read;
13928 unsigned int load_all = 0;
13929 int nesting_level = 1;
13930
13931 parent_die = NULL;
13932 last_die = NULL;
13933
13934 gdb_assert (cu->per_cu != NULL);
13935 if (cu->per_cu->load_all_dies)
13936 load_all = 1;
13937
13938 cu->partial_dies
13939 = htab_create_alloc_ex (cu->header.length / 12,
13940 partial_die_hash,
13941 partial_die_eq,
13942 NULL,
13943 &cu->comp_unit_obstack,
13944 hashtab_obstack_allocate,
13945 dummy_obstack_deallocate);
13946
13947 part_die = obstack_alloc (&cu->comp_unit_obstack,
13948 sizeof (struct partial_die_info));
13949
13950 while (1)
13951 {
13952 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13953
13954 /* A NULL abbrev means the end of a series of children. */
13955 if (abbrev == NULL)
13956 {
13957 if (--nesting_level == 0)
13958 {
13959 /* PART_DIE was probably the last thing allocated on the
13960 comp_unit_obstack, so we could call obstack_free
13961 here. We don't do that because the waste is small,
13962 and will be cleaned up when we're done with this
13963 compilation unit. This way, we're also more robust
13964 against other users of the comp_unit_obstack. */
13965 return first_die;
13966 }
13967 info_ptr += bytes_read;
13968 last_die = parent_die;
13969 parent_die = parent_die->die_parent;
13970 continue;
13971 }
13972
13973 /* Check for template arguments. We never save these; if
13974 they're seen, we just mark the parent, and go on our way. */
13975 if (parent_die != NULL
13976 && cu->language == language_cplus
13977 && (abbrev->tag == DW_TAG_template_type_param
13978 || abbrev->tag == DW_TAG_template_value_param))
13979 {
13980 parent_die->has_template_arguments = 1;
13981
13982 if (!load_all)
13983 {
13984 /* We don't need a partial DIE for the template argument. */
13985 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13986 continue;
13987 }
13988 }
13989
13990 /* We only recurse into c++ subprograms looking for template arguments.
13991 Skip their other children. */
13992 if (!load_all
13993 && cu->language == language_cplus
13994 && parent_die != NULL
13995 && parent_die->tag == DW_TAG_subprogram)
13996 {
13997 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13998 continue;
13999 }
14000
14001 /* Check whether this DIE is interesting enough to save. Normally
14002 we would not be interested in members here, but there may be
14003 later variables referencing them via DW_AT_specification (for
14004 static members). */
14005 if (!load_all
14006 && !is_type_tag_for_partial (abbrev->tag)
14007 && abbrev->tag != DW_TAG_constant
14008 && abbrev->tag != DW_TAG_enumerator
14009 && abbrev->tag != DW_TAG_subprogram
14010 && abbrev->tag != DW_TAG_lexical_block
14011 && abbrev->tag != DW_TAG_variable
14012 && abbrev->tag != DW_TAG_namespace
14013 && abbrev->tag != DW_TAG_module
14014 && abbrev->tag != DW_TAG_member
14015 && abbrev->tag != DW_TAG_imported_unit)
14016 {
14017 /* Otherwise we skip to the next sibling, if any. */
14018 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14019 continue;
14020 }
14021
14022 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14023 info_ptr);
14024
14025 /* This two-pass algorithm for processing partial symbols has a
14026 high cost in cache pressure. Thus, handle some simple cases
14027 here which cover the majority of C partial symbols. DIEs
14028 which neither have specification tags in them, nor could have
14029 specification tags elsewhere pointing at them, can simply be
14030 processed and discarded.
14031
14032 This segment is also optional; scan_partial_symbols and
14033 add_partial_symbol will handle these DIEs if we chain
14034 them in normally. When compilers which do not emit large
14035 quantities of duplicate debug information are more common,
14036 this code can probably be removed. */
14037
14038 /* Any complete simple types at the top level (pretty much all
14039 of them, for a language without namespaces), can be processed
14040 directly. */
14041 if (parent_die == NULL
14042 && part_die->has_specification == 0
14043 && part_die->is_declaration == 0
14044 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
14045 || part_die->tag == DW_TAG_base_type
14046 || part_die->tag == DW_TAG_subrange_type))
14047 {
14048 if (building_psymtab && part_die->name != NULL)
14049 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14050 VAR_DOMAIN, LOC_TYPEDEF,
14051 &objfile->static_psymbols,
14052 0, (CORE_ADDR) 0, cu->language, objfile);
14053 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14054 continue;
14055 }
14056
14057 /* The exception for DW_TAG_typedef with has_children above is
14058 a workaround of GCC PR debug/47510. In the case of this complaint
14059 type_name_no_tag_or_error will error on such types later.
14060
14061 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14062 it could not find the child DIEs referenced later, this is checked
14063 above. In correct DWARF DW_TAG_typedef should have no children. */
14064
14065 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14066 complaint (&symfile_complaints,
14067 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14068 "- DIE at 0x%x [in module %s]"),
14069 part_die->offset.sect_off, objfile->name);
14070
14071 /* If we're at the second level, and we're an enumerator, and
14072 our parent has no specification (meaning possibly lives in a
14073 namespace elsewhere), then we can add the partial symbol now
14074 instead of queueing it. */
14075 if (part_die->tag == DW_TAG_enumerator
14076 && parent_die != NULL
14077 && parent_die->die_parent == NULL
14078 && parent_die->tag == DW_TAG_enumeration_type
14079 && parent_die->has_specification == 0)
14080 {
14081 if (part_die->name == NULL)
14082 complaint (&symfile_complaints,
14083 _("malformed enumerator DIE ignored"));
14084 else if (building_psymtab)
14085 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14086 VAR_DOMAIN, LOC_CONST,
14087 (cu->language == language_cplus
14088 || cu->language == language_java)
14089 ? &objfile->global_psymbols
14090 : &objfile->static_psymbols,
14091 0, (CORE_ADDR) 0, cu->language, objfile);
14092
14093 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14094 continue;
14095 }
14096
14097 /* We'll save this DIE so link it in. */
14098 part_die->die_parent = parent_die;
14099 part_die->die_sibling = NULL;
14100 part_die->die_child = NULL;
14101
14102 if (last_die && last_die == parent_die)
14103 last_die->die_child = part_die;
14104 else if (last_die)
14105 last_die->die_sibling = part_die;
14106
14107 last_die = part_die;
14108
14109 if (first_die == NULL)
14110 first_die = part_die;
14111
14112 /* Maybe add the DIE to the hash table. Not all DIEs that we
14113 find interesting need to be in the hash table, because we
14114 also have the parent/sibling/child chains; only those that we
14115 might refer to by offset later during partial symbol reading.
14116
14117 For now this means things that might have be the target of a
14118 DW_AT_specification, DW_AT_abstract_origin, or
14119 DW_AT_extension. DW_AT_extension will refer only to
14120 namespaces; DW_AT_abstract_origin refers to functions (and
14121 many things under the function DIE, but we do not recurse
14122 into function DIEs during partial symbol reading) and
14123 possibly variables as well; DW_AT_specification refers to
14124 declarations. Declarations ought to have the DW_AT_declaration
14125 flag. It happens that GCC forgets to put it in sometimes, but
14126 only for functions, not for types.
14127
14128 Adding more things than necessary to the hash table is harmless
14129 except for the performance cost. Adding too few will result in
14130 wasted time in find_partial_die, when we reread the compilation
14131 unit with load_all_dies set. */
14132
14133 if (load_all
14134 || abbrev->tag == DW_TAG_constant
14135 || abbrev->tag == DW_TAG_subprogram
14136 || abbrev->tag == DW_TAG_variable
14137 || abbrev->tag == DW_TAG_namespace
14138 || part_die->is_declaration)
14139 {
14140 void **slot;
14141
14142 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14143 part_die->offset.sect_off, INSERT);
14144 *slot = part_die;
14145 }
14146
14147 part_die = obstack_alloc (&cu->comp_unit_obstack,
14148 sizeof (struct partial_die_info));
14149
14150 /* For some DIEs we want to follow their children (if any). For C
14151 we have no reason to follow the children of structures; for other
14152 languages we have to, so that we can get at method physnames
14153 to infer fully qualified class names, for DW_AT_specification,
14154 and for C++ template arguments. For C++, we also look one level
14155 inside functions to find template arguments (if the name of the
14156 function does not already contain the template arguments).
14157
14158 For Ada, we need to scan the children of subprograms and lexical
14159 blocks as well because Ada allows the definition of nested
14160 entities that could be interesting for the debugger, such as
14161 nested subprograms for instance. */
14162 if (last_die->has_children
14163 && (load_all
14164 || last_die->tag == DW_TAG_namespace
14165 || last_die->tag == DW_TAG_module
14166 || last_die->tag == DW_TAG_enumeration_type
14167 || (cu->language == language_cplus
14168 && last_die->tag == DW_TAG_subprogram
14169 && (last_die->name == NULL
14170 || strchr (last_die->name, '<') == NULL))
14171 || (cu->language != language_c
14172 && (last_die->tag == DW_TAG_class_type
14173 || last_die->tag == DW_TAG_interface_type
14174 || last_die->tag == DW_TAG_structure_type
14175 || last_die->tag == DW_TAG_union_type))
14176 || (cu->language == language_ada
14177 && (last_die->tag == DW_TAG_subprogram
14178 || last_die->tag == DW_TAG_lexical_block))))
14179 {
14180 nesting_level++;
14181 parent_die = last_die;
14182 continue;
14183 }
14184
14185 /* Otherwise we skip to the next sibling, if any. */
14186 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
14187
14188 /* Back to the top, do it again. */
14189 }
14190 }
14191
14192 /* Read a minimal amount of information into the minimal die structure. */
14193
14194 static const gdb_byte *
14195 read_partial_die (const struct die_reader_specs *reader,
14196 struct partial_die_info *part_die,
14197 struct abbrev_info *abbrev, unsigned int abbrev_len,
14198 const gdb_byte *info_ptr)
14199 {
14200 struct dwarf2_cu *cu = reader->cu;
14201 struct objfile *objfile = cu->objfile;
14202 const gdb_byte *buffer = reader->buffer;
14203 unsigned int i;
14204 struct attribute attr;
14205 int has_low_pc_attr = 0;
14206 int has_high_pc_attr = 0;
14207 int high_pc_relative = 0;
14208
14209 memset (part_die, 0, sizeof (struct partial_die_info));
14210
14211 part_die->offset.sect_off = info_ptr - buffer;
14212
14213 info_ptr += abbrev_len;
14214
14215 if (abbrev == NULL)
14216 return info_ptr;
14217
14218 part_die->tag = abbrev->tag;
14219 part_die->has_children = abbrev->has_children;
14220
14221 for (i = 0; i < abbrev->num_attrs; ++i)
14222 {
14223 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
14224
14225 /* Store the data if it is of an attribute we want to keep in a
14226 partial symbol table. */
14227 switch (attr.name)
14228 {
14229 case DW_AT_name:
14230 switch (part_die->tag)
14231 {
14232 case DW_TAG_compile_unit:
14233 case DW_TAG_partial_unit:
14234 case DW_TAG_type_unit:
14235 /* Compilation units have a DW_AT_name that is a filename, not
14236 a source language identifier. */
14237 case DW_TAG_enumeration_type:
14238 case DW_TAG_enumerator:
14239 /* These tags always have simple identifiers already; no need
14240 to canonicalize them. */
14241 part_die->name = DW_STRING (&attr);
14242 break;
14243 default:
14244 part_die->name
14245 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
14246 &objfile->objfile_obstack);
14247 break;
14248 }
14249 break;
14250 case DW_AT_linkage_name:
14251 case DW_AT_MIPS_linkage_name:
14252 /* Note that both forms of linkage name might appear. We
14253 assume they will be the same, and we only store the last
14254 one we see. */
14255 if (cu->language == language_ada)
14256 part_die->name = DW_STRING (&attr);
14257 part_die->linkage_name = DW_STRING (&attr);
14258 break;
14259 case DW_AT_low_pc:
14260 has_low_pc_attr = 1;
14261 part_die->lowpc = DW_ADDR (&attr);
14262 break;
14263 case DW_AT_high_pc:
14264 has_high_pc_attr = 1;
14265 if (attr.form == DW_FORM_addr
14266 || attr.form == DW_FORM_GNU_addr_index)
14267 part_die->highpc = DW_ADDR (&attr);
14268 else
14269 {
14270 high_pc_relative = 1;
14271 part_die->highpc = DW_UNSND (&attr);
14272 }
14273 break;
14274 case DW_AT_location:
14275 /* Support the .debug_loc offsets. */
14276 if (attr_form_is_block (&attr))
14277 {
14278 part_die->d.locdesc = DW_BLOCK (&attr);
14279 }
14280 else if (attr_form_is_section_offset (&attr))
14281 {
14282 dwarf2_complex_location_expr_complaint ();
14283 }
14284 else
14285 {
14286 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14287 "partial symbol information");
14288 }
14289 break;
14290 case DW_AT_external:
14291 part_die->is_external = DW_UNSND (&attr);
14292 break;
14293 case DW_AT_declaration:
14294 part_die->is_declaration = DW_UNSND (&attr);
14295 break;
14296 case DW_AT_type:
14297 part_die->has_type = 1;
14298 break;
14299 case DW_AT_abstract_origin:
14300 case DW_AT_specification:
14301 case DW_AT_extension:
14302 part_die->has_specification = 1;
14303 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
14304 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14305 || cu->per_cu->is_dwz);
14306 break;
14307 case DW_AT_sibling:
14308 /* Ignore absolute siblings, they might point outside of
14309 the current compile unit. */
14310 if (attr.form == DW_FORM_ref_addr)
14311 complaint (&symfile_complaints,
14312 _("ignoring absolute DW_AT_sibling"));
14313 else
14314 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
14315 break;
14316 case DW_AT_byte_size:
14317 part_die->has_byte_size = 1;
14318 break;
14319 case DW_AT_calling_convention:
14320 /* DWARF doesn't provide a way to identify a program's source-level
14321 entry point. DW_AT_calling_convention attributes are only meant
14322 to describe functions' calling conventions.
14323
14324 However, because it's a necessary piece of information in
14325 Fortran, and because DW_CC_program is the only piece of debugging
14326 information whose definition refers to a 'main program' at all,
14327 several compilers have begun marking Fortran main programs with
14328 DW_CC_program --- even when those functions use the standard
14329 calling conventions.
14330
14331 So until DWARF specifies a way to provide this information and
14332 compilers pick up the new representation, we'll support this
14333 practice. */
14334 if (DW_UNSND (&attr) == DW_CC_program
14335 && cu->language == language_fortran)
14336 {
14337 set_main_name (part_die->name);
14338
14339 /* As this DIE has a static linkage the name would be difficult
14340 to look up later. */
14341 language_of_main = language_fortran;
14342 }
14343 break;
14344 case DW_AT_inline:
14345 if (DW_UNSND (&attr) == DW_INL_inlined
14346 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14347 part_die->may_be_inlined = 1;
14348 break;
14349
14350 case DW_AT_import:
14351 if (part_die->tag == DW_TAG_imported_unit)
14352 {
14353 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14354 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14355 || cu->per_cu->is_dwz);
14356 }
14357 break;
14358
14359 default:
14360 break;
14361 }
14362 }
14363
14364 if (high_pc_relative)
14365 part_die->highpc += part_die->lowpc;
14366
14367 if (has_low_pc_attr && has_high_pc_attr)
14368 {
14369 /* When using the GNU linker, .gnu.linkonce. sections are used to
14370 eliminate duplicate copies of functions and vtables and such.
14371 The linker will arbitrarily choose one and discard the others.
14372 The AT_*_pc values for such functions refer to local labels in
14373 these sections. If the section from that file was discarded, the
14374 labels are not in the output, so the relocs get a value of 0.
14375 If this is a discarded function, mark the pc bounds as invalid,
14376 so that GDB will ignore it. */
14377 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14378 {
14379 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14380
14381 complaint (&symfile_complaints,
14382 _("DW_AT_low_pc %s is zero "
14383 "for DIE at 0x%x [in module %s]"),
14384 paddress (gdbarch, part_die->lowpc),
14385 part_die->offset.sect_off, objfile->name);
14386 }
14387 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14388 else if (part_die->lowpc >= part_die->highpc)
14389 {
14390 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14391
14392 complaint (&symfile_complaints,
14393 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14394 "for DIE at 0x%x [in module %s]"),
14395 paddress (gdbarch, part_die->lowpc),
14396 paddress (gdbarch, part_die->highpc),
14397 part_die->offset.sect_off, objfile->name);
14398 }
14399 else
14400 part_die->has_pc_info = 1;
14401 }
14402
14403 return info_ptr;
14404 }
14405
14406 /* Find a cached partial DIE at OFFSET in CU. */
14407
14408 static struct partial_die_info *
14409 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
14410 {
14411 struct partial_die_info *lookup_die = NULL;
14412 struct partial_die_info part_die;
14413
14414 part_die.offset = offset;
14415 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14416 offset.sect_off);
14417
14418 return lookup_die;
14419 }
14420
14421 /* Find a partial DIE at OFFSET, which may or may not be in CU,
14422 except in the case of .debug_types DIEs which do not reference
14423 outside their CU (they do however referencing other types via
14424 DW_FORM_ref_sig8). */
14425
14426 static struct partial_die_info *
14427 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
14428 {
14429 struct objfile *objfile = cu->objfile;
14430 struct dwarf2_per_cu_data *per_cu = NULL;
14431 struct partial_die_info *pd = NULL;
14432
14433 if (offset_in_dwz == cu->per_cu->is_dwz
14434 && offset_in_cu_p (&cu->header, offset))
14435 {
14436 pd = find_partial_die_in_comp_unit (offset, cu);
14437 if (pd != NULL)
14438 return pd;
14439 /* We missed recording what we needed.
14440 Load all dies and try again. */
14441 per_cu = cu->per_cu;
14442 }
14443 else
14444 {
14445 /* TUs don't reference other CUs/TUs (except via type signatures). */
14446 if (cu->per_cu->is_debug_types)
14447 {
14448 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14449 " external reference to offset 0x%lx [in module %s].\n"),
14450 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14451 bfd_get_filename (objfile->obfd));
14452 }
14453 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14454 objfile);
14455
14456 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14457 load_partial_comp_unit (per_cu);
14458
14459 per_cu->cu->last_used = 0;
14460 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14461 }
14462
14463 /* If we didn't find it, and not all dies have been loaded,
14464 load them all and try again. */
14465
14466 if (pd == NULL && per_cu->load_all_dies == 0)
14467 {
14468 per_cu->load_all_dies = 1;
14469
14470 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14471 THIS_CU->cu may already be in use. So we can't just free it and
14472 replace its DIEs with the ones we read in. Instead, we leave those
14473 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14474 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14475 set. */
14476 load_partial_comp_unit (per_cu);
14477
14478 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14479 }
14480
14481 if (pd == NULL)
14482 internal_error (__FILE__, __LINE__,
14483 _("could not find partial DIE 0x%x "
14484 "in cache [from module %s]\n"),
14485 offset.sect_off, bfd_get_filename (objfile->obfd));
14486 return pd;
14487 }
14488
14489 /* See if we can figure out if the class lives in a namespace. We do
14490 this by looking for a member function; its demangled name will
14491 contain namespace info, if there is any. */
14492
14493 static void
14494 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14495 struct dwarf2_cu *cu)
14496 {
14497 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14498 what template types look like, because the demangler
14499 frequently doesn't give the same name as the debug info. We
14500 could fix this by only using the demangled name to get the
14501 prefix (but see comment in read_structure_type). */
14502
14503 struct partial_die_info *real_pdi;
14504 struct partial_die_info *child_pdi;
14505
14506 /* If this DIE (this DIE's specification, if any) has a parent, then
14507 we should not do this. We'll prepend the parent's fully qualified
14508 name when we create the partial symbol. */
14509
14510 real_pdi = struct_pdi;
14511 while (real_pdi->has_specification)
14512 real_pdi = find_partial_die (real_pdi->spec_offset,
14513 real_pdi->spec_is_dwz, cu);
14514
14515 if (real_pdi->die_parent != NULL)
14516 return;
14517
14518 for (child_pdi = struct_pdi->die_child;
14519 child_pdi != NULL;
14520 child_pdi = child_pdi->die_sibling)
14521 {
14522 if (child_pdi->tag == DW_TAG_subprogram
14523 && child_pdi->linkage_name != NULL)
14524 {
14525 char *actual_class_name
14526 = language_class_name_from_physname (cu->language_defn,
14527 child_pdi->linkage_name);
14528 if (actual_class_name != NULL)
14529 {
14530 struct_pdi->name
14531 = obstack_copy0 (&cu->objfile->objfile_obstack,
14532 actual_class_name,
14533 strlen (actual_class_name));
14534 xfree (actual_class_name);
14535 }
14536 break;
14537 }
14538 }
14539 }
14540
14541 /* Adjust PART_DIE before generating a symbol for it. This function
14542 may set the is_external flag or change the DIE's name. */
14543
14544 static void
14545 fixup_partial_die (struct partial_die_info *part_die,
14546 struct dwarf2_cu *cu)
14547 {
14548 /* Once we've fixed up a die, there's no point in doing so again.
14549 This also avoids a memory leak if we were to call
14550 guess_partial_die_structure_name multiple times. */
14551 if (part_die->fixup_called)
14552 return;
14553
14554 /* If we found a reference attribute and the DIE has no name, try
14555 to find a name in the referred to DIE. */
14556
14557 if (part_die->name == NULL && part_die->has_specification)
14558 {
14559 struct partial_die_info *spec_die;
14560
14561 spec_die = find_partial_die (part_die->spec_offset,
14562 part_die->spec_is_dwz, cu);
14563
14564 fixup_partial_die (spec_die, cu);
14565
14566 if (spec_die->name)
14567 {
14568 part_die->name = spec_die->name;
14569
14570 /* Copy DW_AT_external attribute if it is set. */
14571 if (spec_die->is_external)
14572 part_die->is_external = spec_die->is_external;
14573 }
14574 }
14575
14576 /* Set default names for some unnamed DIEs. */
14577
14578 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14579 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14580
14581 /* If there is no parent die to provide a namespace, and there are
14582 children, see if we can determine the namespace from their linkage
14583 name. */
14584 if (cu->language == language_cplus
14585 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14586 && part_die->die_parent == NULL
14587 && part_die->has_children
14588 && (part_die->tag == DW_TAG_class_type
14589 || part_die->tag == DW_TAG_structure_type
14590 || part_die->tag == DW_TAG_union_type))
14591 guess_partial_die_structure_name (part_die, cu);
14592
14593 /* GCC might emit a nameless struct or union that has a linkage
14594 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14595 if (part_die->name == NULL
14596 && (part_die->tag == DW_TAG_class_type
14597 || part_die->tag == DW_TAG_interface_type
14598 || part_die->tag == DW_TAG_structure_type
14599 || part_die->tag == DW_TAG_union_type)
14600 && part_die->linkage_name != NULL)
14601 {
14602 char *demangled;
14603
14604 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14605 if (demangled)
14606 {
14607 const char *base;
14608
14609 /* Strip any leading namespaces/classes, keep only the base name.
14610 DW_AT_name for named DIEs does not contain the prefixes. */
14611 base = strrchr (demangled, ':');
14612 if (base && base > demangled && base[-1] == ':')
14613 base++;
14614 else
14615 base = demangled;
14616
14617 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14618 base, strlen (base));
14619 xfree (demangled);
14620 }
14621 }
14622
14623 part_die->fixup_called = 1;
14624 }
14625
14626 /* Read an attribute value described by an attribute form. */
14627
14628 static const gdb_byte *
14629 read_attribute_value (const struct die_reader_specs *reader,
14630 struct attribute *attr, unsigned form,
14631 const gdb_byte *info_ptr)
14632 {
14633 struct dwarf2_cu *cu = reader->cu;
14634 bfd *abfd = reader->abfd;
14635 struct comp_unit_head *cu_header = &cu->header;
14636 unsigned int bytes_read;
14637 struct dwarf_block *blk;
14638
14639 attr->form = form;
14640 switch (form)
14641 {
14642 case DW_FORM_ref_addr:
14643 if (cu->header.version == 2)
14644 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14645 else
14646 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14647 &cu->header, &bytes_read);
14648 info_ptr += bytes_read;
14649 break;
14650 case DW_FORM_GNU_ref_alt:
14651 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14652 info_ptr += bytes_read;
14653 break;
14654 case DW_FORM_addr:
14655 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14656 info_ptr += bytes_read;
14657 break;
14658 case DW_FORM_block2:
14659 blk = dwarf_alloc_block (cu);
14660 blk->size = read_2_bytes (abfd, info_ptr);
14661 info_ptr += 2;
14662 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14663 info_ptr += blk->size;
14664 DW_BLOCK (attr) = blk;
14665 break;
14666 case DW_FORM_block4:
14667 blk = dwarf_alloc_block (cu);
14668 blk->size = read_4_bytes (abfd, info_ptr);
14669 info_ptr += 4;
14670 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14671 info_ptr += blk->size;
14672 DW_BLOCK (attr) = blk;
14673 break;
14674 case DW_FORM_data2:
14675 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14676 info_ptr += 2;
14677 break;
14678 case DW_FORM_data4:
14679 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14680 info_ptr += 4;
14681 break;
14682 case DW_FORM_data8:
14683 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14684 info_ptr += 8;
14685 break;
14686 case DW_FORM_sec_offset:
14687 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14688 info_ptr += bytes_read;
14689 break;
14690 case DW_FORM_string:
14691 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14692 DW_STRING_IS_CANONICAL (attr) = 0;
14693 info_ptr += bytes_read;
14694 break;
14695 case DW_FORM_strp:
14696 if (!cu->per_cu->is_dwz)
14697 {
14698 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14699 &bytes_read);
14700 DW_STRING_IS_CANONICAL (attr) = 0;
14701 info_ptr += bytes_read;
14702 break;
14703 }
14704 /* FALLTHROUGH */
14705 case DW_FORM_GNU_strp_alt:
14706 {
14707 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14708 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14709 &bytes_read);
14710
14711 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14712 DW_STRING_IS_CANONICAL (attr) = 0;
14713 info_ptr += bytes_read;
14714 }
14715 break;
14716 case DW_FORM_exprloc:
14717 case DW_FORM_block:
14718 blk = dwarf_alloc_block (cu);
14719 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14720 info_ptr += bytes_read;
14721 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14722 info_ptr += blk->size;
14723 DW_BLOCK (attr) = blk;
14724 break;
14725 case DW_FORM_block1:
14726 blk = dwarf_alloc_block (cu);
14727 blk->size = read_1_byte (abfd, info_ptr);
14728 info_ptr += 1;
14729 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14730 info_ptr += blk->size;
14731 DW_BLOCK (attr) = blk;
14732 break;
14733 case DW_FORM_data1:
14734 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14735 info_ptr += 1;
14736 break;
14737 case DW_FORM_flag:
14738 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14739 info_ptr += 1;
14740 break;
14741 case DW_FORM_flag_present:
14742 DW_UNSND (attr) = 1;
14743 break;
14744 case DW_FORM_sdata:
14745 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14746 info_ptr += bytes_read;
14747 break;
14748 case DW_FORM_udata:
14749 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14750 info_ptr += bytes_read;
14751 break;
14752 case DW_FORM_ref1:
14753 DW_UNSND (attr) = (cu->header.offset.sect_off
14754 + read_1_byte (abfd, info_ptr));
14755 info_ptr += 1;
14756 break;
14757 case DW_FORM_ref2:
14758 DW_UNSND (attr) = (cu->header.offset.sect_off
14759 + read_2_bytes (abfd, info_ptr));
14760 info_ptr += 2;
14761 break;
14762 case DW_FORM_ref4:
14763 DW_UNSND (attr) = (cu->header.offset.sect_off
14764 + read_4_bytes (abfd, info_ptr));
14765 info_ptr += 4;
14766 break;
14767 case DW_FORM_ref8:
14768 DW_UNSND (attr) = (cu->header.offset.sect_off
14769 + read_8_bytes (abfd, info_ptr));
14770 info_ptr += 8;
14771 break;
14772 case DW_FORM_ref_sig8:
14773 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14774 info_ptr += 8;
14775 break;
14776 case DW_FORM_ref_udata:
14777 DW_UNSND (attr) = (cu->header.offset.sect_off
14778 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14779 info_ptr += bytes_read;
14780 break;
14781 case DW_FORM_indirect:
14782 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14783 info_ptr += bytes_read;
14784 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14785 break;
14786 case DW_FORM_GNU_addr_index:
14787 if (reader->dwo_file == NULL)
14788 {
14789 /* For now flag a hard error.
14790 Later we can turn this into a complaint. */
14791 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14792 dwarf_form_name (form),
14793 bfd_get_filename (abfd));
14794 }
14795 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14796 info_ptr += bytes_read;
14797 break;
14798 case DW_FORM_GNU_str_index:
14799 if (reader->dwo_file == NULL)
14800 {
14801 /* For now flag a hard error.
14802 Later we can turn this into a complaint if warranted. */
14803 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14804 dwarf_form_name (form),
14805 bfd_get_filename (abfd));
14806 }
14807 {
14808 ULONGEST str_index =
14809 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14810
14811 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14812 DW_STRING_IS_CANONICAL (attr) = 0;
14813 info_ptr += bytes_read;
14814 }
14815 break;
14816 default:
14817 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14818 dwarf_form_name (form),
14819 bfd_get_filename (abfd));
14820 }
14821
14822 /* Super hack. */
14823 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14824 attr->form = DW_FORM_GNU_ref_alt;
14825
14826 /* We have seen instances where the compiler tried to emit a byte
14827 size attribute of -1 which ended up being encoded as an unsigned
14828 0xffffffff. Although 0xffffffff is technically a valid size value,
14829 an object of this size seems pretty unlikely so we can relatively
14830 safely treat these cases as if the size attribute was invalid and
14831 treat them as zero by default. */
14832 if (attr->name == DW_AT_byte_size
14833 && form == DW_FORM_data4
14834 && DW_UNSND (attr) >= 0xffffffff)
14835 {
14836 complaint
14837 (&symfile_complaints,
14838 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14839 hex_string (DW_UNSND (attr)));
14840 DW_UNSND (attr) = 0;
14841 }
14842
14843 return info_ptr;
14844 }
14845
14846 /* Read an attribute described by an abbreviated attribute. */
14847
14848 static const gdb_byte *
14849 read_attribute (const struct die_reader_specs *reader,
14850 struct attribute *attr, struct attr_abbrev *abbrev,
14851 const gdb_byte *info_ptr)
14852 {
14853 attr->name = abbrev->name;
14854 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14855 }
14856
14857 /* Read dwarf information from a buffer. */
14858
14859 static unsigned int
14860 read_1_byte (bfd *abfd, const gdb_byte *buf)
14861 {
14862 return bfd_get_8 (abfd, buf);
14863 }
14864
14865 static int
14866 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14867 {
14868 return bfd_get_signed_8 (abfd, buf);
14869 }
14870
14871 static unsigned int
14872 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14873 {
14874 return bfd_get_16 (abfd, buf);
14875 }
14876
14877 static int
14878 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14879 {
14880 return bfd_get_signed_16 (abfd, buf);
14881 }
14882
14883 static unsigned int
14884 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14885 {
14886 return bfd_get_32 (abfd, buf);
14887 }
14888
14889 static int
14890 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14891 {
14892 return bfd_get_signed_32 (abfd, buf);
14893 }
14894
14895 static ULONGEST
14896 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14897 {
14898 return bfd_get_64 (abfd, buf);
14899 }
14900
14901 static CORE_ADDR
14902 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14903 unsigned int *bytes_read)
14904 {
14905 struct comp_unit_head *cu_header = &cu->header;
14906 CORE_ADDR retval = 0;
14907
14908 if (cu_header->signed_addr_p)
14909 {
14910 switch (cu_header->addr_size)
14911 {
14912 case 2:
14913 retval = bfd_get_signed_16 (abfd, buf);
14914 break;
14915 case 4:
14916 retval = bfd_get_signed_32 (abfd, buf);
14917 break;
14918 case 8:
14919 retval = bfd_get_signed_64 (abfd, buf);
14920 break;
14921 default:
14922 internal_error (__FILE__, __LINE__,
14923 _("read_address: bad switch, signed [in module %s]"),
14924 bfd_get_filename (abfd));
14925 }
14926 }
14927 else
14928 {
14929 switch (cu_header->addr_size)
14930 {
14931 case 2:
14932 retval = bfd_get_16 (abfd, buf);
14933 break;
14934 case 4:
14935 retval = bfd_get_32 (abfd, buf);
14936 break;
14937 case 8:
14938 retval = bfd_get_64 (abfd, buf);
14939 break;
14940 default:
14941 internal_error (__FILE__, __LINE__,
14942 _("read_address: bad switch, "
14943 "unsigned [in module %s]"),
14944 bfd_get_filename (abfd));
14945 }
14946 }
14947
14948 *bytes_read = cu_header->addr_size;
14949 return retval;
14950 }
14951
14952 /* Read the initial length from a section. The (draft) DWARF 3
14953 specification allows the initial length to take up either 4 bytes
14954 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14955 bytes describe the length and all offsets will be 8 bytes in length
14956 instead of 4.
14957
14958 An older, non-standard 64-bit format is also handled by this
14959 function. The older format in question stores the initial length
14960 as an 8-byte quantity without an escape value. Lengths greater
14961 than 2^32 aren't very common which means that the initial 4 bytes
14962 is almost always zero. Since a length value of zero doesn't make
14963 sense for the 32-bit format, this initial zero can be considered to
14964 be an escape value which indicates the presence of the older 64-bit
14965 format. As written, the code can't detect (old format) lengths
14966 greater than 4GB. If it becomes necessary to handle lengths
14967 somewhat larger than 4GB, we could allow other small values (such
14968 as the non-sensical values of 1, 2, and 3) to also be used as
14969 escape values indicating the presence of the old format.
14970
14971 The value returned via bytes_read should be used to increment the
14972 relevant pointer after calling read_initial_length().
14973
14974 [ Note: read_initial_length() and read_offset() are based on the
14975 document entitled "DWARF Debugging Information Format", revision
14976 3, draft 8, dated November 19, 2001. This document was obtained
14977 from:
14978
14979 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14980
14981 This document is only a draft and is subject to change. (So beware.)
14982
14983 Details regarding the older, non-standard 64-bit format were
14984 determined empirically by examining 64-bit ELF files produced by
14985 the SGI toolchain on an IRIX 6.5 machine.
14986
14987 - Kevin, July 16, 2002
14988 ] */
14989
14990 static LONGEST
14991 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
14992 {
14993 LONGEST length = bfd_get_32 (abfd, buf);
14994
14995 if (length == 0xffffffff)
14996 {
14997 length = bfd_get_64 (abfd, buf + 4);
14998 *bytes_read = 12;
14999 }
15000 else if (length == 0)
15001 {
15002 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15003 length = bfd_get_64 (abfd, buf);
15004 *bytes_read = 8;
15005 }
15006 else
15007 {
15008 *bytes_read = 4;
15009 }
15010
15011 return length;
15012 }
15013
15014 /* Cover function for read_initial_length.
15015 Returns the length of the object at BUF, and stores the size of the
15016 initial length in *BYTES_READ and stores the size that offsets will be in
15017 *OFFSET_SIZE.
15018 If the initial length size is not equivalent to that specified in
15019 CU_HEADER then issue a complaint.
15020 This is useful when reading non-comp-unit headers. */
15021
15022 static LONGEST
15023 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
15024 const struct comp_unit_head *cu_header,
15025 unsigned int *bytes_read,
15026 unsigned int *offset_size)
15027 {
15028 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15029
15030 gdb_assert (cu_header->initial_length_size == 4
15031 || cu_header->initial_length_size == 8
15032 || cu_header->initial_length_size == 12);
15033
15034 if (cu_header->initial_length_size != *bytes_read)
15035 complaint (&symfile_complaints,
15036 _("intermixed 32-bit and 64-bit DWARF sections"));
15037
15038 *offset_size = (*bytes_read == 4) ? 4 : 8;
15039 return length;
15040 }
15041
15042 /* Read an offset from the data stream. The size of the offset is
15043 given by cu_header->offset_size. */
15044
15045 static LONGEST
15046 read_offset (bfd *abfd, const gdb_byte *buf,
15047 const struct comp_unit_head *cu_header,
15048 unsigned int *bytes_read)
15049 {
15050 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
15051
15052 *bytes_read = cu_header->offset_size;
15053 return offset;
15054 }
15055
15056 /* Read an offset from the data stream. */
15057
15058 static LONGEST
15059 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
15060 {
15061 LONGEST retval = 0;
15062
15063 switch (offset_size)
15064 {
15065 case 4:
15066 retval = bfd_get_32 (abfd, buf);
15067 break;
15068 case 8:
15069 retval = bfd_get_64 (abfd, buf);
15070 break;
15071 default:
15072 internal_error (__FILE__, __LINE__,
15073 _("read_offset_1: bad switch [in module %s]"),
15074 bfd_get_filename (abfd));
15075 }
15076
15077 return retval;
15078 }
15079
15080 static const gdb_byte *
15081 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15082 {
15083 /* If the size of a host char is 8 bits, we can return a pointer
15084 to the buffer, otherwise we have to copy the data to a buffer
15085 allocated on the temporary obstack. */
15086 gdb_assert (HOST_CHAR_BIT == 8);
15087 return buf;
15088 }
15089
15090 static const char *
15091 read_direct_string (bfd *abfd, const gdb_byte *buf,
15092 unsigned int *bytes_read_ptr)
15093 {
15094 /* If the size of a host char is 8 bits, we can return a pointer
15095 to the string, otherwise we have to copy the string to a buffer
15096 allocated on the temporary obstack. */
15097 gdb_assert (HOST_CHAR_BIT == 8);
15098 if (*buf == '\0')
15099 {
15100 *bytes_read_ptr = 1;
15101 return NULL;
15102 }
15103 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15104 return (const char *) buf;
15105 }
15106
15107 static const char *
15108 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15109 {
15110 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15111 if (dwarf2_per_objfile->str.buffer == NULL)
15112 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15113 bfd_get_filename (abfd));
15114 if (str_offset >= dwarf2_per_objfile->str.size)
15115 error (_("DW_FORM_strp pointing outside of "
15116 ".debug_str section [in module %s]"),
15117 bfd_get_filename (abfd));
15118 gdb_assert (HOST_CHAR_BIT == 8);
15119 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15120 return NULL;
15121 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15122 }
15123
15124 /* Read a string at offset STR_OFFSET in the .debug_str section from
15125 the .dwz file DWZ. Throw an error if the offset is too large. If
15126 the string consists of a single NUL byte, return NULL; otherwise
15127 return a pointer to the string. */
15128
15129 static const char *
15130 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15131 {
15132 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15133
15134 if (dwz->str.buffer == NULL)
15135 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15136 "section [in module %s]"),
15137 bfd_get_filename (dwz->dwz_bfd));
15138 if (str_offset >= dwz->str.size)
15139 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15140 ".debug_str section [in module %s]"),
15141 bfd_get_filename (dwz->dwz_bfd));
15142 gdb_assert (HOST_CHAR_BIT == 8);
15143 if (dwz->str.buffer[str_offset] == '\0')
15144 return NULL;
15145 return (const char *) (dwz->str.buffer + str_offset);
15146 }
15147
15148 static const char *
15149 read_indirect_string (bfd *abfd, const gdb_byte *buf,
15150 const struct comp_unit_head *cu_header,
15151 unsigned int *bytes_read_ptr)
15152 {
15153 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15154
15155 return read_indirect_string_at_offset (abfd, str_offset);
15156 }
15157
15158 static ULONGEST
15159 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15160 unsigned int *bytes_read_ptr)
15161 {
15162 ULONGEST result;
15163 unsigned int num_read;
15164 int i, shift;
15165 unsigned char byte;
15166
15167 result = 0;
15168 shift = 0;
15169 num_read = 0;
15170 i = 0;
15171 while (1)
15172 {
15173 byte = bfd_get_8 (abfd, buf);
15174 buf++;
15175 num_read++;
15176 result |= ((ULONGEST) (byte & 127) << shift);
15177 if ((byte & 128) == 0)
15178 {
15179 break;
15180 }
15181 shift += 7;
15182 }
15183 *bytes_read_ptr = num_read;
15184 return result;
15185 }
15186
15187 static LONGEST
15188 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15189 unsigned int *bytes_read_ptr)
15190 {
15191 LONGEST result;
15192 int i, shift, num_read;
15193 unsigned char byte;
15194
15195 result = 0;
15196 shift = 0;
15197 num_read = 0;
15198 i = 0;
15199 while (1)
15200 {
15201 byte = bfd_get_8 (abfd, buf);
15202 buf++;
15203 num_read++;
15204 result |= ((LONGEST) (byte & 127) << shift);
15205 shift += 7;
15206 if ((byte & 128) == 0)
15207 {
15208 break;
15209 }
15210 }
15211 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
15212 result |= -(((LONGEST) 1) << shift);
15213 *bytes_read_ptr = num_read;
15214 return result;
15215 }
15216
15217 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
15218 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15219 ADDR_SIZE is the size of addresses from the CU header. */
15220
15221 static CORE_ADDR
15222 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15223 {
15224 struct objfile *objfile = dwarf2_per_objfile->objfile;
15225 bfd *abfd = objfile->obfd;
15226 const gdb_byte *info_ptr;
15227
15228 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15229 if (dwarf2_per_objfile->addr.buffer == NULL)
15230 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15231 objfile->name);
15232 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15233 error (_("DW_FORM_addr_index pointing outside of "
15234 ".debug_addr section [in module %s]"),
15235 objfile->name);
15236 info_ptr = (dwarf2_per_objfile->addr.buffer
15237 + addr_base + addr_index * addr_size);
15238 if (addr_size == 4)
15239 return bfd_get_32 (abfd, info_ptr);
15240 else
15241 return bfd_get_64 (abfd, info_ptr);
15242 }
15243
15244 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15245
15246 static CORE_ADDR
15247 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15248 {
15249 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15250 }
15251
15252 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15253
15254 static CORE_ADDR
15255 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
15256 unsigned int *bytes_read)
15257 {
15258 bfd *abfd = cu->objfile->obfd;
15259 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15260
15261 return read_addr_index (cu, addr_index);
15262 }
15263
15264 /* Data structure to pass results from dwarf2_read_addr_index_reader
15265 back to dwarf2_read_addr_index. */
15266
15267 struct dwarf2_read_addr_index_data
15268 {
15269 ULONGEST addr_base;
15270 int addr_size;
15271 };
15272
15273 /* die_reader_func for dwarf2_read_addr_index. */
15274
15275 static void
15276 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
15277 const gdb_byte *info_ptr,
15278 struct die_info *comp_unit_die,
15279 int has_children,
15280 void *data)
15281 {
15282 struct dwarf2_cu *cu = reader->cu;
15283 struct dwarf2_read_addr_index_data *aidata =
15284 (struct dwarf2_read_addr_index_data *) data;
15285
15286 aidata->addr_base = cu->addr_base;
15287 aidata->addr_size = cu->header.addr_size;
15288 }
15289
15290 /* Given an index in .debug_addr, fetch the value.
15291 NOTE: This can be called during dwarf expression evaluation,
15292 long after the debug information has been read, and thus per_cu->cu
15293 may no longer exist. */
15294
15295 CORE_ADDR
15296 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15297 unsigned int addr_index)
15298 {
15299 struct objfile *objfile = per_cu->objfile;
15300 struct dwarf2_cu *cu = per_cu->cu;
15301 ULONGEST addr_base;
15302 int addr_size;
15303
15304 /* This is intended to be called from outside this file. */
15305 dw2_setup (objfile);
15306
15307 /* We need addr_base and addr_size.
15308 If we don't have PER_CU->cu, we have to get it.
15309 Nasty, but the alternative is storing the needed info in PER_CU,
15310 which at this point doesn't seem justified: it's not clear how frequently
15311 it would get used and it would increase the size of every PER_CU.
15312 Entry points like dwarf2_per_cu_addr_size do a similar thing
15313 so we're not in uncharted territory here.
15314 Alas we need to be a bit more complicated as addr_base is contained
15315 in the DIE.
15316
15317 We don't need to read the entire CU(/TU).
15318 We just need the header and top level die.
15319
15320 IWBN to use the aging mechanism to let us lazily later discard the CU.
15321 For now we skip this optimization. */
15322
15323 if (cu != NULL)
15324 {
15325 addr_base = cu->addr_base;
15326 addr_size = cu->header.addr_size;
15327 }
15328 else
15329 {
15330 struct dwarf2_read_addr_index_data aidata;
15331
15332 /* Note: We can't use init_cutu_and_read_dies_simple here,
15333 we need addr_base. */
15334 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15335 dwarf2_read_addr_index_reader, &aidata);
15336 addr_base = aidata.addr_base;
15337 addr_size = aidata.addr_size;
15338 }
15339
15340 return read_addr_index_1 (addr_index, addr_base, addr_size);
15341 }
15342
15343 /* Given a DW_AT_str_index, fetch the string. */
15344
15345 static const char *
15346 read_str_index (const struct die_reader_specs *reader,
15347 struct dwarf2_cu *cu, ULONGEST str_index)
15348 {
15349 struct objfile *objfile = dwarf2_per_objfile->objfile;
15350 const char *dwo_name = objfile->name;
15351 bfd *abfd = objfile->obfd;
15352 struct dwo_sections *sections = &reader->dwo_file->sections;
15353 const gdb_byte *info_ptr;
15354 ULONGEST str_offset;
15355
15356 dwarf2_read_section (objfile, &sections->str);
15357 dwarf2_read_section (objfile, &sections->str_offsets);
15358 if (sections->str.buffer == NULL)
15359 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15360 " in CU at offset 0x%lx [in module %s]"),
15361 (long) cu->header.offset.sect_off, dwo_name);
15362 if (sections->str_offsets.buffer == NULL)
15363 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15364 " in CU at offset 0x%lx [in module %s]"),
15365 (long) cu->header.offset.sect_off, dwo_name);
15366 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15367 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15368 " section in CU at offset 0x%lx [in module %s]"),
15369 (long) cu->header.offset.sect_off, dwo_name);
15370 info_ptr = (sections->str_offsets.buffer
15371 + str_index * cu->header.offset_size);
15372 if (cu->header.offset_size == 4)
15373 str_offset = bfd_get_32 (abfd, info_ptr);
15374 else
15375 str_offset = bfd_get_64 (abfd, info_ptr);
15376 if (str_offset >= sections->str.size)
15377 error (_("Offset from DW_FORM_str_index pointing outside of"
15378 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15379 (long) cu->header.offset.sect_off, dwo_name);
15380 return (const char *) (sections->str.buffer + str_offset);
15381 }
15382
15383 /* Return the length of an LEB128 number in BUF. */
15384
15385 static int
15386 leb128_size (const gdb_byte *buf)
15387 {
15388 const gdb_byte *begin = buf;
15389 gdb_byte byte;
15390
15391 while (1)
15392 {
15393 byte = *buf++;
15394 if ((byte & 128) == 0)
15395 return buf - begin;
15396 }
15397 }
15398
15399 static void
15400 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
15401 {
15402 switch (lang)
15403 {
15404 case DW_LANG_C89:
15405 case DW_LANG_C99:
15406 case DW_LANG_C:
15407 case DW_LANG_UPC:
15408 cu->language = language_c;
15409 break;
15410 case DW_LANG_C_plus_plus:
15411 cu->language = language_cplus;
15412 break;
15413 case DW_LANG_D:
15414 cu->language = language_d;
15415 break;
15416 case DW_LANG_Fortran77:
15417 case DW_LANG_Fortran90:
15418 case DW_LANG_Fortran95:
15419 cu->language = language_fortran;
15420 break;
15421 case DW_LANG_Go:
15422 cu->language = language_go;
15423 break;
15424 case DW_LANG_Mips_Assembler:
15425 cu->language = language_asm;
15426 break;
15427 case DW_LANG_Java:
15428 cu->language = language_java;
15429 break;
15430 case DW_LANG_Ada83:
15431 case DW_LANG_Ada95:
15432 cu->language = language_ada;
15433 break;
15434 case DW_LANG_Modula2:
15435 cu->language = language_m2;
15436 break;
15437 case DW_LANG_Pascal83:
15438 cu->language = language_pascal;
15439 break;
15440 case DW_LANG_ObjC:
15441 cu->language = language_objc;
15442 break;
15443 case DW_LANG_Cobol74:
15444 case DW_LANG_Cobol85:
15445 default:
15446 cu->language = language_minimal;
15447 break;
15448 }
15449 cu->language_defn = language_def (cu->language);
15450 }
15451
15452 /* Return the named attribute or NULL if not there. */
15453
15454 static struct attribute *
15455 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15456 {
15457 for (;;)
15458 {
15459 unsigned int i;
15460 struct attribute *spec = NULL;
15461
15462 for (i = 0; i < die->num_attrs; ++i)
15463 {
15464 if (die->attrs[i].name == name)
15465 return &die->attrs[i];
15466 if (die->attrs[i].name == DW_AT_specification
15467 || die->attrs[i].name == DW_AT_abstract_origin)
15468 spec = &die->attrs[i];
15469 }
15470
15471 if (!spec)
15472 break;
15473
15474 die = follow_die_ref (die, spec, &cu);
15475 }
15476
15477 return NULL;
15478 }
15479
15480 /* Return the named attribute or NULL if not there,
15481 but do not follow DW_AT_specification, etc.
15482 This is for use in contexts where we're reading .debug_types dies.
15483 Following DW_AT_specification, DW_AT_abstract_origin will take us
15484 back up the chain, and we want to go down. */
15485
15486 static struct attribute *
15487 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15488 {
15489 unsigned int i;
15490
15491 for (i = 0; i < die->num_attrs; ++i)
15492 if (die->attrs[i].name == name)
15493 return &die->attrs[i];
15494
15495 return NULL;
15496 }
15497
15498 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15499 and holds a non-zero value. This function should only be used for
15500 DW_FORM_flag or DW_FORM_flag_present attributes. */
15501
15502 static int
15503 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15504 {
15505 struct attribute *attr = dwarf2_attr (die, name, cu);
15506
15507 return (attr && DW_UNSND (attr));
15508 }
15509
15510 static int
15511 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15512 {
15513 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15514 which value is non-zero. However, we have to be careful with
15515 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15516 (via dwarf2_flag_true_p) follows this attribute. So we may
15517 end up accidently finding a declaration attribute that belongs
15518 to a different DIE referenced by the specification attribute,
15519 even though the given DIE does not have a declaration attribute. */
15520 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15521 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15522 }
15523
15524 /* Return the die giving the specification for DIE, if there is
15525 one. *SPEC_CU is the CU containing DIE on input, and the CU
15526 containing the return value on output. If there is no
15527 specification, but there is an abstract origin, that is
15528 returned. */
15529
15530 static struct die_info *
15531 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15532 {
15533 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15534 *spec_cu);
15535
15536 if (spec_attr == NULL)
15537 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15538
15539 if (spec_attr == NULL)
15540 return NULL;
15541 else
15542 return follow_die_ref (die, spec_attr, spec_cu);
15543 }
15544
15545 /* Free the line_header structure *LH, and any arrays and strings it
15546 refers to.
15547 NOTE: This is also used as a "cleanup" function. */
15548
15549 static void
15550 free_line_header (struct line_header *lh)
15551 {
15552 if (lh->standard_opcode_lengths)
15553 xfree (lh->standard_opcode_lengths);
15554
15555 /* Remember that all the lh->file_names[i].name pointers are
15556 pointers into debug_line_buffer, and don't need to be freed. */
15557 if (lh->file_names)
15558 xfree (lh->file_names);
15559
15560 /* Similarly for the include directory names. */
15561 if (lh->include_dirs)
15562 xfree (lh->include_dirs);
15563
15564 xfree (lh);
15565 }
15566
15567 /* Add an entry to LH's include directory table. */
15568
15569 static void
15570 add_include_dir (struct line_header *lh, const char *include_dir)
15571 {
15572 /* Grow the array if necessary. */
15573 if (lh->include_dirs_size == 0)
15574 {
15575 lh->include_dirs_size = 1; /* for testing */
15576 lh->include_dirs = xmalloc (lh->include_dirs_size
15577 * sizeof (*lh->include_dirs));
15578 }
15579 else if (lh->num_include_dirs >= lh->include_dirs_size)
15580 {
15581 lh->include_dirs_size *= 2;
15582 lh->include_dirs = xrealloc (lh->include_dirs,
15583 (lh->include_dirs_size
15584 * sizeof (*lh->include_dirs)));
15585 }
15586
15587 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15588 }
15589
15590 /* Add an entry to LH's file name table. */
15591
15592 static void
15593 add_file_name (struct line_header *lh,
15594 const char *name,
15595 unsigned int dir_index,
15596 unsigned int mod_time,
15597 unsigned int length)
15598 {
15599 struct file_entry *fe;
15600
15601 /* Grow the array if necessary. */
15602 if (lh->file_names_size == 0)
15603 {
15604 lh->file_names_size = 1; /* for testing */
15605 lh->file_names = xmalloc (lh->file_names_size
15606 * sizeof (*lh->file_names));
15607 }
15608 else if (lh->num_file_names >= lh->file_names_size)
15609 {
15610 lh->file_names_size *= 2;
15611 lh->file_names = xrealloc (lh->file_names,
15612 (lh->file_names_size
15613 * sizeof (*lh->file_names)));
15614 }
15615
15616 fe = &lh->file_names[lh->num_file_names++];
15617 fe->name = name;
15618 fe->dir_index = dir_index;
15619 fe->mod_time = mod_time;
15620 fe->length = length;
15621 fe->included_p = 0;
15622 fe->symtab = NULL;
15623 }
15624
15625 /* A convenience function to find the proper .debug_line section for a
15626 CU. */
15627
15628 static struct dwarf2_section_info *
15629 get_debug_line_section (struct dwarf2_cu *cu)
15630 {
15631 struct dwarf2_section_info *section;
15632
15633 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15634 DWO file. */
15635 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15636 section = &cu->dwo_unit->dwo_file->sections.line;
15637 else if (cu->per_cu->is_dwz)
15638 {
15639 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15640
15641 section = &dwz->line;
15642 }
15643 else
15644 section = &dwarf2_per_objfile->line;
15645
15646 return section;
15647 }
15648
15649 /* Read the statement program header starting at OFFSET in
15650 .debug_line, or .debug_line.dwo. Return a pointer
15651 to a struct line_header, allocated using xmalloc.
15652
15653 NOTE: the strings in the include directory and file name tables of
15654 the returned object point into the dwarf line section buffer,
15655 and must not be freed. */
15656
15657 static struct line_header *
15658 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15659 {
15660 struct cleanup *back_to;
15661 struct line_header *lh;
15662 const gdb_byte *line_ptr;
15663 unsigned int bytes_read, offset_size;
15664 int i;
15665 const char *cur_dir, *cur_file;
15666 struct dwarf2_section_info *section;
15667 bfd *abfd;
15668
15669 section = get_debug_line_section (cu);
15670 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15671 if (section->buffer == NULL)
15672 {
15673 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15674 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15675 else
15676 complaint (&symfile_complaints, _("missing .debug_line section"));
15677 return 0;
15678 }
15679
15680 /* We can't do this until we know the section is non-empty.
15681 Only then do we know we have such a section. */
15682 abfd = section->asection->owner;
15683
15684 /* Make sure that at least there's room for the total_length field.
15685 That could be 12 bytes long, but we're just going to fudge that. */
15686 if (offset + 4 >= section->size)
15687 {
15688 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15689 return 0;
15690 }
15691
15692 lh = xmalloc (sizeof (*lh));
15693 memset (lh, 0, sizeof (*lh));
15694 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15695 (void *) lh);
15696
15697 line_ptr = section->buffer + offset;
15698
15699 /* Read in the header. */
15700 lh->total_length =
15701 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15702 &bytes_read, &offset_size);
15703 line_ptr += bytes_read;
15704 if (line_ptr + lh->total_length > (section->buffer + section->size))
15705 {
15706 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15707 do_cleanups (back_to);
15708 return 0;
15709 }
15710 lh->statement_program_end = line_ptr + lh->total_length;
15711 lh->version = read_2_bytes (abfd, line_ptr);
15712 line_ptr += 2;
15713 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15714 line_ptr += offset_size;
15715 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15716 line_ptr += 1;
15717 if (lh->version >= 4)
15718 {
15719 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15720 line_ptr += 1;
15721 }
15722 else
15723 lh->maximum_ops_per_instruction = 1;
15724
15725 if (lh->maximum_ops_per_instruction == 0)
15726 {
15727 lh->maximum_ops_per_instruction = 1;
15728 complaint (&symfile_complaints,
15729 _("invalid maximum_ops_per_instruction "
15730 "in `.debug_line' section"));
15731 }
15732
15733 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15734 line_ptr += 1;
15735 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15736 line_ptr += 1;
15737 lh->line_range = read_1_byte (abfd, line_ptr);
15738 line_ptr += 1;
15739 lh->opcode_base = read_1_byte (abfd, line_ptr);
15740 line_ptr += 1;
15741 lh->standard_opcode_lengths
15742 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15743
15744 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15745 for (i = 1; i < lh->opcode_base; ++i)
15746 {
15747 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15748 line_ptr += 1;
15749 }
15750
15751 /* Read directory table. */
15752 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15753 {
15754 line_ptr += bytes_read;
15755 add_include_dir (lh, cur_dir);
15756 }
15757 line_ptr += bytes_read;
15758
15759 /* Read file name table. */
15760 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15761 {
15762 unsigned int dir_index, mod_time, length;
15763
15764 line_ptr += bytes_read;
15765 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15766 line_ptr += bytes_read;
15767 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15768 line_ptr += bytes_read;
15769 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15770 line_ptr += bytes_read;
15771
15772 add_file_name (lh, cur_file, dir_index, mod_time, length);
15773 }
15774 line_ptr += bytes_read;
15775 lh->statement_program_start = line_ptr;
15776
15777 if (line_ptr > (section->buffer + section->size))
15778 complaint (&symfile_complaints,
15779 _("line number info header doesn't "
15780 "fit in `.debug_line' section"));
15781
15782 discard_cleanups (back_to);
15783 return lh;
15784 }
15785
15786 /* Subroutine of dwarf_decode_lines to simplify it.
15787 Return the file name of the psymtab for included file FILE_INDEX
15788 in line header LH of PST.
15789 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15790 If space for the result is malloc'd, it will be freed by a cleanup.
15791 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15792
15793 The function creates dangling cleanup registration. */
15794
15795 static const char *
15796 psymtab_include_file_name (const struct line_header *lh, int file_index,
15797 const struct partial_symtab *pst,
15798 const char *comp_dir)
15799 {
15800 const struct file_entry fe = lh->file_names [file_index];
15801 const char *include_name = fe.name;
15802 const char *include_name_to_compare = include_name;
15803 const char *dir_name = NULL;
15804 const char *pst_filename;
15805 char *copied_name = NULL;
15806 int file_is_pst;
15807
15808 if (fe.dir_index)
15809 dir_name = lh->include_dirs[fe.dir_index - 1];
15810
15811 if (!IS_ABSOLUTE_PATH (include_name)
15812 && (dir_name != NULL || comp_dir != NULL))
15813 {
15814 /* Avoid creating a duplicate psymtab for PST.
15815 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15816 Before we do the comparison, however, we need to account
15817 for DIR_NAME and COMP_DIR.
15818 First prepend dir_name (if non-NULL). If we still don't
15819 have an absolute path prepend comp_dir (if non-NULL).
15820 However, the directory we record in the include-file's
15821 psymtab does not contain COMP_DIR (to match the
15822 corresponding symtab(s)).
15823
15824 Example:
15825
15826 bash$ cd /tmp
15827 bash$ gcc -g ./hello.c
15828 include_name = "hello.c"
15829 dir_name = "."
15830 DW_AT_comp_dir = comp_dir = "/tmp"
15831 DW_AT_name = "./hello.c" */
15832
15833 if (dir_name != NULL)
15834 {
15835 char *tem = concat (dir_name, SLASH_STRING,
15836 include_name, (char *)NULL);
15837
15838 make_cleanup (xfree, tem);
15839 include_name = tem;
15840 include_name_to_compare = include_name;
15841 }
15842 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15843 {
15844 char *tem = concat (comp_dir, SLASH_STRING,
15845 include_name, (char *)NULL);
15846
15847 make_cleanup (xfree, tem);
15848 include_name_to_compare = tem;
15849 }
15850 }
15851
15852 pst_filename = pst->filename;
15853 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15854 {
15855 copied_name = concat (pst->dirname, SLASH_STRING,
15856 pst_filename, (char *)NULL);
15857 pst_filename = copied_name;
15858 }
15859
15860 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15861
15862 if (copied_name != NULL)
15863 xfree (copied_name);
15864
15865 if (file_is_pst)
15866 return NULL;
15867 return include_name;
15868 }
15869
15870 /* Ignore this record_line request. */
15871
15872 static void
15873 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15874 {
15875 return;
15876 }
15877
15878 /* Subroutine of dwarf_decode_lines to simplify it.
15879 Process the line number information in LH. */
15880
15881 static void
15882 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15883 struct dwarf2_cu *cu, struct partial_symtab *pst)
15884 {
15885 const gdb_byte *line_ptr, *extended_end;
15886 const gdb_byte *line_end;
15887 unsigned int bytes_read, extended_len;
15888 unsigned char op_code, extended_op, adj_opcode;
15889 CORE_ADDR baseaddr;
15890 struct objfile *objfile = cu->objfile;
15891 bfd *abfd = objfile->obfd;
15892 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15893 const int decode_for_pst_p = (pst != NULL);
15894 struct subfile *last_subfile = NULL;
15895 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15896 = record_line;
15897
15898 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15899
15900 line_ptr = lh->statement_program_start;
15901 line_end = lh->statement_program_end;
15902
15903 /* Read the statement sequences until there's nothing left. */
15904 while (line_ptr < line_end)
15905 {
15906 /* state machine registers */
15907 CORE_ADDR address = 0;
15908 unsigned int file = 1;
15909 unsigned int line = 1;
15910 unsigned int column = 0;
15911 int is_stmt = lh->default_is_stmt;
15912 int basic_block = 0;
15913 int end_sequence = 0;
15914 CORE_ADDR addr;
15915 unsigned char op_index = 0;
15916
15917 if (!decode_for_pst_p && lh->num_file_names >= file)
15918 {
15919 /* Start a subfile for the current file of the state machine. */
15920 /* lh->include_dirs and lh->file_names are 0-based, but the
15921 directory and file name numbers in the statement program
15922 are 1-based. */
15923 struct file_entry *fe = &lh->file_names[file - 1];
15924 const char *dir = NULL;
15925
15926 if (fe->dir_index)
15927 dir = lh->include_dirs[fe->dir_index - 1];
15928
15929 dwarf2_start_subfile (fe->name, dir, comp_dir);
15930 }
15931
15932 /* Decode the table. */
15933 while (!end_sequence)
15934 {
15935 op_code = read_1_byte (abfd, line_ptr);
15936 line_ptr += 1;
15937 if (line_ptr > line_end)
15938 {
15939 dwarf2_debug_line_missing_end_sequence_complaint ();
15940 break;
15941 }
15942
15943 if (op_code >= lh->opcode_base)
15944 {
15945 /* Special operand. */
15946 adj_opcode = op_code - lh->opcode_base;
15947 address += (((op_index + (adj_opcode / lh->line_range))
15948 / lh->maximum_ops_per_instruction)
15949 * lh->minimum_instruction_length);
15950 op_index = ((op_index + (adj_opcode / lh->line_range))
15951 % lh->maximum_ops_per_instruction);
15952 line += lh->line_base + (adj_opcode % lh->line_range);
15953 if (lh->num_file_names < file || file == 0)
15954 dwarf2_debug_line_missing_file_complaint ();
15955 /* For now we ignore lines not starting on an
15956 instruction boundary. */
15957 else if (op_index == 0)
15958 {
15959 lh->file_names[file - 1].included_p = 1;
15960 if (!decode_for_pst_p && is_stmt)
15961 {
15962 if (last_subfile != current_subfile)
15963 {
15964 addr = gdbarch_addr_bits_remove (gdbarch, address);
15965 if (last_subfile)
15966 (*p_record_line) (last_subfile, 0, addr);
15967 last_subfile = current_subfile;
15968 }
15969 /* Append row to matrix using current values. */
15970 addr = gdbarch_addr_bits_remove (gdbarch, address);
15971 (*p_record_line) (current_subfile, line, addr);
15972 }
15973 }
15974 basic_block = 0;
15975 }
15976 else switch (op_code)
15977 {
15978 case DW_LNS_extended_op:
15979 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15980 &bytes_read);
15981 line_ptr += bytes_read;
15982 extended_end = line_ptr + extended_len;
15983 extended_op = read_1_byte (abfd, line_ptr);
15984 line_ptr += 1;
15985 switch (extended_op)
15986 {
15987 case DW_LNE_end_sequence:
15988 p_record_line = record_line;
15989 end_sequence = 1;
15990 break;
15991 case DW_LNE_set_address:
15992 address = read_address (abfd, line_ptr, cu, &bytes_read);
15993
15994 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15995 {
15996 /* This line table is for a function which has been
15997 GCd by the linker. Ignore it. PR gdb/12528 */
15998
15999 long line_offset
16000 = line_ptr - get_debug_line_section (cu)->buffer;
16001
16002 complaint (&symfile_complaints,
16003 _(".debug_line address at offset 0x%lx is 0 "
16004 "[in module %s]"),
16005 line_offset, objfile->name);
16006 p_record_line = noop_record_line;
16007 }
16008
16009 op_index = 0;
16010 line_ptr += bytes_read;
16011 address += baseaddr;
16012 break;
16013 case DW_LNE_define_file:
16014 {
16015 const char *cur_file;
16016 unsigned int dir_index, mod_time, length;
16017
16018 cur_file = read_direct_string (abfd, line_ptr,
16019 &bytes_read);
16020 line_ptr += bytes_read;
16021 dir_index =
16022 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16023 line_ptr += bytes_read;
16024 mod_time =
16025 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16026 line_ptr += bytes_read;
16027 length =
16028 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16029 line_ptr += bytes_read;
16030 add_file_name (lh, cur_file, dir_index, mod_time, length);
16031 }
16032 break;
16033 case DW_LNE_set_discriminator:
16034 /* The discriminator is not interesting to the debugger;
16035 just ignore it. */
16036 line_ptr = extended_end;
16037 break;
16038 default:
16039 complaint (&symfile_complaints,
16040 _("mangled .debug_line section"));
16041 return;
16042 }
16043 /* Make sure that we parsed the extended op correctly. If e.g.
16044 we expected a different address size than the producer used,
16045 we may have read the wrong number of bytes. */
16046 if (line_ptr != extended_end)
16047 {
16048 complaint (&symfile_complaints,
16049 _("mangled .debug_line section"));
16050 return;
16051 }
16052 break;
16053 case DW_LNS_copy:
16054 if (lh->num_file_names < file || file == 0)
16055 dwarf2_debug_line_missing_file_complaint ();
16056 else
16057 {
16058 lh->file_names[file - 1].included_p = 1;
16059 if (!decode_for_pst_p && is_stmt)
16060 {
16061 if (last_subfile != current_subfile)
16062 {
16063 addr = gdbarch_addr_bits_remove (gdbarch, address);
16064 if (last_subfile)
16065 (*p_record_line) (last_subfile, 0, addr);
16066 last_subfile = current_subfile;
16067 }
16068 addr = gdbarch_addr_bits_remove (gdbarch, address);
16069 (*p_record_line) (current_subfile, line, addr);
16070 }
16071 }
16072 basic_block = 0;
16073 break;
16074 case DW_LNS_advance_pc:
16075 {
16076 CORE_ADDR adjust
16077 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16078
16079 address += (((op_index + adjust)
16080 / lh->maximum_ops_per_instruction)
16081 * lh->minimum_instruction_length);
16082 op_index = ((op_index + adjust)
16083 % lh->maximum_ops_per_instruction);
16084 line_ptr += bytes_read;
16085 }
16086 break;
16087 case DW_LNS_advance_line:
16088 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16089 line_ptr += bytes_read;
16090 break;
16091 case DW_LNS_set_file:
16092 {
16093 /* The arrays lh->include_dirs and lh->file_names are
16094 0-based, but the directory and file name numbers in
16095 the statement program are 1-based. */
16096 struct file_entry *fe;
16097 const char *dir = NULL;
16098
16099 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16100 line_ptr += bytes_read;
16101 if (lh->num_file_names < file || file == 0)
16102 dwarf2_debug_line_missing_file_complaint ();
16103 else
16104 {
16105 fe = &lh->file_names[file - 1];
16106 if (fe->dir_index)
16107 dir = lh->include_dirs[fe->dir_index - 1];
16108 if (!decode_for_pst_p)
16109 {
16110 last_subfile = current_subfile;
16111 dwarf2_start_subfile (fe->name, dir, comp_dir);
16112 }
16113 }
16114 }
16115 break;
16116 case DW_LNS_set_column:
16117 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16118 line_ptr += bytes_read;
16119 break;
16120 case DW_LNS_negate_stmt:
16121 is_stmt = (!is_stmt);
16122 break;
16123 case DW_LNS_set_basic_block:
16124 basic_block = 1;
16125 break;
16126 /* Add to the address register of the state machine the
16127 address increment value corresponding to special opcode
16128 255. I.e., this value is scaled by the minimum
16129 instruction length since special opcode 255 would have
16130 scaled the increment. */
16131 case DW_LNS_const_add_pc:
16132 {
16133 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16134
16135 address += (((op_index + adjust)
16136 / lh->maximum_ops_per_instruction)
16137 * lh->minimum_instruction_length);
16138 op_index = ((op_index + adjust)
16139 % lh->maximum_ops_per_instruction);
16140 }
16141 break;
16142 case DW_LNS_fixed_advance_pc:
16143 address += read_2_bytes (abfd, line_ptr);
16144 op_index = 0;
16145 line_ptr += 2;
16146 break;
16147 default:
16148 {
16149 /* Unknown standard opcode, ignore it. */
16150 int i;
16151
16152 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
16153 {
16154 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16155 line_ptr += bytes_read;
16156 }
16157 }
16158 }
16159 }
16160 if (lh->num_file_names < file || file == 0)
16161 dwarf2_debug_line_missing_file_complaint ();
16162 else
16163 {
16164 lh->file_names[file - 1].included_p = 1;
16165 if (!decode_for_pst_p)
16166 {
16167 addr = gdbarch_addr_bits_remove (gdbarch, address);
16168 (*p_record_line) (current_subfile, 0, addr);
16169 }
16170 }
16171 }
16172 }
16173
16174 /* Decode the Line Number Program (LNP) for the given line_header
16175 structure and CU. The actual information extracted and the type
16176 of structures created from the LNP depends on the value of PST.
16177
16178 1. If PST is NULL, then this procedure uses the data from the program
16179 to create all necessary symbol tables, and their linetables.
16180
16181 2. If PST is not NULL, this procedure reads the program to determine
16182 the list of files included by the unit represented by PST, and
16183 builds all the associated partial symbol tables.
16184
16185 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16186 It is used for relative paths in the line table.
16187 NOTE: When processing partial symtabs (pst != NULL),
16188 comp_dir == pst->dirname.
16189
16190 NOTE: It is important that psymtabs have the same file name (via strcmp)
16191 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16192 symtab we don't use it in the name of the psymtabs we create.
16193 E.g. expand_line_sal requires this when finding psymtabs to expand.
16194 A good testcase for this is mb-inline.exp. */
16195
16196 static void
16197 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16198 struct dwarf2_cu *cu, struct partial_symtab *pst,
16199 int want_line_info)
16200 {
16201 struct objfile *objfile = cu->objfile;
16202 const int decode_for_pst_p = (pst != NULL);
16203 struct subfile *first_subfile = current_subfile;
16204
16205 if (want_line_info)
16206 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
16207
16208 if (decode_for_pst_p)
16209 {
16210 int file_index;
16211
16212 /* Now that we're done scanning the Line Header Program, we can
16213 create the psymtab of each included file. */
16214 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16215 if (lh->file_names[file_index].included_p == 1)
16216 {
16217 const char *include_name =
16218 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16219 if (include_name != NULL)
16220 dwarf2_create_include_psymtab (include_name, pst, objfile);
16221 }
16222 }
16223 else
16224 {
16225 /* Make sure a symtab is created for every file, even files
16226 which contain only variables (i.e. no code with associated
16227 line numbers). */
16228 int i;
16229
16230 for (i = 0; i < lh->num_file_names; i++)
16231 {
16232 const char *dir = NULL;
16233 struct file_entry *fe;
16234
16235 fe = &lh->file_names[i];
16236 if (fe->dir_index)
16237 dir = lh->include_dirs[fe->dir_index - 1];
16238 dwarf2_start_subfile (fe->name, dir, comp_dir);
16239
16240 /* Skip the main file; we don't need it, and it must be
16241 allocated last, so that it will show up before the
16242 non-primary symtabs in the objfile's symtab list. */
16243 if (current_subfile == first_subfile)
16244 continue;
16245
16246 if (current_subfile->symtab == NULL)
16247 current_subfile->symtab = allocate_symtab (current_subfile->name,
16248 objfile);
16249 fe->symtab = current_subfile->symtab;
16250 }
16251 }
16252 }
16253
16254 /* Start a subfile for DWARF. FILENAME is the name of the file and
16255 DIRNAME the name of the source directory which contains FILENAME
16256 or NULL if not known. COMP_DIR is the compilation directory for the
16257 linetable's compilation unit or NULL if not known.
16258 This routine tries to keep line numbers from identical absolute and
16259 relative file names in a common subfile.
16260
16261 Using the `list' example from the GDB testsuite, which resides in
16262 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16263 of /srcdir/list0.c yields the following debugging information for list0.c:
16264
16265 DW_AT_name: /srcdir/list0.c
16266 DW_AT_comp_dir: /compdir
16267 files.files[0].name: list0.h
16268 files.files[0].dir: /srcdir
16269 files.files[1].name: list0.c
16270 files.files[1].dir: /srcdir
16271
16272 The line number information for list0.c has to end up in a single
16273 subfile, so that `break /srcdir/list0.c:1' works as expected.
16274 start_subfile will ensure that this happens provided that we pass the
16275 concatenation of files.files[1].dir and files.files[1].name as the
16276 subfile's name. */
16277
16278 static void
16279 dwarf2_start_subfile (const char *filename, const char *dirname,
16280 const char *comp_dir)
16281 {
16282 char *copy = NULL;
16283
16284 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16285 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16286 second argument to start_subfile. To be consistent, we do the
16287 same here. In order not to lose the line information directory,
16288 we concatenate it to the filename when it makes sense.
16289 Note that the Dwarf3 standard says (speaking of filenames in line
16290 information): ``The directory index is ignored for file names
16291 that represent full path names''. Thus ignoring dirname in the
16292 `else' branch below isn't an issue. */
16293
16294 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
16295 {
16296 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16297 filename = copy;
16298 }
16299
16300 start_subfile (filename, comp_dir);
16301
16302 if (copy != NULL)
16303 xfree (copy);
16304 }
16305
16306 /* Start a symtab for DWARF.
16307 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16308
16309 static void
16310 dwarf2_start_symtab (struct dwarf2_cu *cu,
16311 const char *name, const char *comp_dir, CORE_ADDR low_pc)
16312 {
16313 start_symtab (name, comp_dir, low_pc);
16314 record_debugformat ("DWARF 2");
16315 record_producer (cu->producer);
16316
16317 /* We assume that we're processing GCC output. */
16318 processing_gcc_compilation = 2;
16319
16320 cu->processing_has_namespace_info = 0;
16321 }
16322
16323 static void
16324 var_decode_location (struct attribute *attr, struct symbol *sym,
16325 struct dwarf2_cu *cu)
16326 {
16327 struct objfile *objfile = cu->objfile;
16328 struct comp_unit_head *cu_header = &cu->header;
16329
16330 /* NOTE drow/2003-01-30: There used to be a comment and some special
16331 code here to turn a symbol with DW_AT_external and a
16332 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16333 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16334 with some versions of binutils) where shared libraries could have
16335 relocations against symbols in their debug information - the
16336 minimal symbol would have the right address, but the debug info
16337 would not. It's no longer necessary, because we will explicitly
16338 apply relocations when we read in the debug information now. */
16339
16340 /* A DW_AT_location attribute with no contents indicates that a
16341 variable has been optimized away. */
16342 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16343 {
16344 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16345 return;
16346 }
16347
16348 /* Handle one degenerate form of location expression specially, to
16349 preserve GDB's previous behavior when section offsets are
16350 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16351 then mark this symbol as LOC_STATIC. */
16352
16353 if (attr_form_is_block (attr)
16354 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16355 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16356 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16357 && (DW_BLOCK (attr)->size
16358 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
16359 {
16360 unsigned int dummy;
16361
16362 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16363 SYMBOL_VALUE_ADDRESS (sym) =
16364 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16365 else
16366 SYMBOL_VALUE_ADDRESS (sym) =
16367 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
16368 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
16369 fixup_symbol_section (sym, objfile);
16370 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16371 SYMBOL_SECTION (sym));
16372 return;
16373 }
16374
16375 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16376 expression evaluator, and use LOC_COMPUTED only when necessary
16377 (i.e. when the value of a register or memory location is
16378 referenced, or a thread-local block, etc.). Then again, it might
16379 not be worthwhile. I'm assuming that it isn't unless performance
16380 or memory numbers show me otherwise. */
16381
16382 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
16383
16384 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
16385 cu->has_loclist = 1;
16386 }
16387
16388 /* Given a pointer to a DWARF information entry, figure out if we need
16389 to make a symbol table entry for it, and if so, create a new entry
16390 and return a pointer to it.
16391 If TYPE is NULL, determine symbol type from the die, otherwise
16392 used the passed type.
16393 If SPACE is not NULL, use it to hold the new symbol. If it is
16394 NULL, allocate a new symbol on the objfile's obstack. */
16395
16396 static struct symbol *
16397 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16398 struct symbol *space)
16399 {
16400 struct objfile *objfile = cu->objfile;
16401 struct symbol *sym = NULL;
16402 const char *name;
16403 struct attribute *attr = NULL;
16404 struct attribute *attr2 = NULL;
16405 CORE_ADDR baseaddr;
16406 struct pending **list_to_add = NULL;
16407
16408 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
16409
16410 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16411
16412 name = dwarf2_name (die, cu);
16413 if (name)
16414 {
16415 const char *linkagename;
16416 int suppress_add = 0;
16417
16418 if (space)
16419 sym = space;
16420 else
16421 sym = allocate_symbol (objfile);
16422 OBJSTAT (objfile, n_syms++);
16423
16424 /* Cache this symbol's name and the name's demangled form (if any). */
16425 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
16426 linkagename = dwarf2_physname (name, die, cu);
16427 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
16428
16429 /* Fortran does not have mangling standard and the mangling does differ
16430 between gfortran, iFort etc. */
16431 if (cu->language == language_fortran
16432 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
16433 symbol_set_demangled_name (&(sym->ginfo),
16434 dwarf2_full_name (name, die, cu),
16435 NULL);
16436
16437 /* Default assumptions.
16438 Use the passed type or decode it from the die. */
16439 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16440 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16441 if (type != NULL)
16442 SYMBOL_TYPE (sym) = type;
16443 else
16444 SYMBOL_TYPE (sym) = die_type (die, cu);
16445 attr = dwarf2_attr (die,
16446 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16447 cu);
16448 if (attr)
16449 {
16450 SYMBOL_LINE (sym) = DW_UNSND (attr);
16451 }
16452
16453 attr = dwarf2_attr (die,
16454 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16455 cu);
16456 if (attr)
16457 {
16458 int file_index = DW_UNSND (attr);
16459
16460 if (cu->line_header == NULL
16461 || file_index > cu->line_header->num_file_names)
16462 complaint (&symfile_complaints,
16463 _("file index out of range"));
16464 else if (file_index > 0)
16465 {
16466 struct file_entry *fe;
16467
16468 fe = &cu->line_header->file_names[file_index - 1];
16469 SYMBOL_SYMTAB (sym) = fe->symtab;
16470 }
16471 }
16472
16473 switch (die->tag)
16474 {
16475 case DW_TAG_label:
16476 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16477 if (attr)
16478 {
16479 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16480 }
16481 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16482 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16483 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16484 add_symbol_to_list (sym, cu->list_in_scope);
16485 break;
16486 case DW_TAG_subprogram:
16487 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16488 finish_block. */
16489 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16490 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16491 if ((attr2 && (DW_UNSND (attr2) != 0))
16492 || cu->language == language_ada)
16493 {
16494 /* Subprograms marked external are stored as a global symbol.
16495 Ada subprograms, whether marked external or not, are always
16496 stored as a global symbol, because we want to be able to
16497 access them globally. For instance, we want to be able
16498 to break on a nested subprogram without having to
16499 specify the context. */
16500 list_to_add = &global_symbols;
16501 }
16502 else
16503 {
16504 list_to_add = cu->list_in_scope;
16505 }
16506 break;
16507 case DW_TAG_inlined_subroutine:
16508 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16509 finish_block. */
16510 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16511 SYMBOL_INLINED (sym) = 1;
16512 list_to_add = cu->list_in_scope;
16513 break;
16514 case DW_TAG_template_value_param:
16515 suppress_add = 1;
16516 /* Fall through. */
16517 case DW_TAG_constant:
16518 case DW_TAG_variable:
16519 case DW_TAG_member:
16520 /* Compilation with minimal debug info may result in
16521 variables with missing type entries. Change the
16522 misleading `void' type to something sensible. */
16523 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16524 SYMBOL_TYPE (sym)
16525 = objfile_type (objfile)->nodebug_data_symbol;
16526
16527 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16528 /* In the case of DW_TAG_member, we should only be called for
16529 static const members. */
16530 if (die->tag == DW_TAG_member)
16531 {
16532 /* dwarf2_add_field uses die_is_declaration,
16533 so we do the same. */
16534 gdb_assert (die_is_declaration (die, cu));
16535 gdb_assert (attr);
16536 }
16537 if (attr)
16538 {
16539 dwarf2_const_value (attr, sym, cu);
16540 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16541 if (!suppress_add)
16542 {
16543 if (attr2 && (DW_UNSND (attr2) != 0))
16544 list_to_add = &global_symbols;
16545 else
16546 list_to_add = cu->list_in_scope;
16547 }
16548 break;
16549 }
16550 attr = dwarf2_attr (die, DW_AT_location, cu);
16551 if (attr)
16552 {
16553 var_decode_location (attr, sym, cu);
16554 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16555
16556 /* Fortran explicitly imports any global symbols to the local
16557 scope by DW_TAG_common_block. */
16558 if (cu->language == language_fortran && die->parent
16559 && die->parent->tag == DW_TAG_common_block)
16560 attr2 = NULL;
16561
16562 if (SYMBOL_CLASS (sym) == LOC_STATIC
16563 && SYMBOL_VALUE_ADDRESS (sym) == 0
16564 && !dwarf2_per_objfile->has_section_at_zero)
16565 {
16566 /* When a static variable is eliminated by the linker,
16567 the corresponding debug information is not stripped
16568 out, but the variable address is set to null;
16569 do not add such variables into symbol table. */
16570 }
16571 else if (attr2 && (DW_UNSND (attr2) != 0))
16572 {
16573 /* Workaround gfortran PR debug/40040 - it uses
16574 DW_AT_location for variables in -fPIC libraries which may
16575 get overriden by other libraries/executable and get
16576 a different address. Resolve it by the minimal symbol
16577 which may come from inferior's executable using copy
16578 relocation. Make this workaround only for gfortran as for
16579 other compilers GDB cannot guess the minimal symbol
16580 Fortran mangling kind. */
16581 if (cu->language == language_fortran && die->parent
16582 && die->parent->tag == DW_TAG_module
16583 && cu->producer
16584 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16585 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16586
16587 /* A variable with DW_AT_external is never static,
16588 but it may be block-scoped. */
16589 list_to_add = (cu->list_in_scope == &file_symbols
16590 ? &global_symbols : cu->list_in_scope);
16591 }
16592 else
16593 list_to_add = cu->list_in_scope;
16594 }
16595 else
16596 {
16597 /* We do not know the address of this symbol.
16598 If it is an external symbol and we have type information
16599 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16600 The address of the variable will then be determined from
16601 the minimal symbol table whenever the variable is
16602 referenced. */
16603 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16604
16605 /* Fortran explicitly imports any global symbols to the local
16606 scope by DW_TAG_common_block. */
16607 if (cu->language == language_fortran && die->parent
16608 && die->parent->tag == DW_TAG_common_block)
16609 {
16610 /* SYMBOL_CLASS doesn't matter here because
16611 read_common_block is going to reset it. */
16612 if (!suppress_add)
16613 list_to_add = cu->list_in_scope;
16614 }
16615 else if (attr2 && (DW_UNSND (attr2) != 0)
16616 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16617 {
16618 /* A variable with DW_AT_external is never static, but it
16619 may be block-scoped. */
16620 list_to_add = (cu->list_in_scope == &file_symbols
16621 ? &global_symbols : cu->list_in_scope);
16622
16623 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16624 }
16625 else if (!die_is_declaration (die, cu))
16626 {
16627 /* Use the default LOC_OPTIMIZED_OUT class. */
16628 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16629 if (!suppress_add)
16630 list_to_add = cu->list_in_scope;
16631 }
16632 }
16633 break;
16634 case DW_TAG_formal_parameter:
16635 /* If we are inside a function, mark this as an argument. If
16636 not, we might be looking at an argument to an inlined function
16637 when we do not have enough information to show inlined frames;
16638 pretend it's a local variable in that case so that the user can
16639 still see it. */
16640 if (context_stack_depth > 0
16641 && context_stack[context_stack_depth - 1].name != NULL)
16642 SYMBOL_IS_ARGUMENT (sym) = 1;
16643 attr = dwarf2_attr (die, DW_AT_location, cu);
16644 if (attr)
16645 {
16646 var_decode_location (attr, sym, cu);
16647 }
16648 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16649 if (attr)
16650 {
16651 dwarf2_const_value (attr, sym, cu);
16652 }
16653
16654 list_to_add = cu->list_in_scope;
16655 break;
16656 case DW_TAG_unspecified_parameters:
16657 /* From varargs functions; gdb doesn't seem to have any
16658 interest in this information, so just ignore it for now.
16659 (FIXME?) */
16660 break;
16661 case DW_TAG_template_type_param:
16662 suppress_add = 1;
16663 /* Fall through. */
16664 case DW_TAG_class_type:
16665 case DW_TAG_interface_type:
16666 case DW_TAG_structure_type:
16667 case DW_TAG_union_type:
16668 case DW_TAG_set_type:
16669 case DW_TAG_enumeration_type:
16670 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16671 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16672
16673 {
16674 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16675 really ever be static objects: otherwise, if you try
16676 to, say, break of a class's method and you're in a file
16677 which doesn't mention that class, it won't work unless
16678 the check for all static symbols in lookup_symbol_aux
16679 saves you. See the OtherFileClass tests in
16680 gdb.c++/namespace.exp. */
16681
16682 if (!suppress_add)
16683 {
16684 list_to_add = (cu->list_in_scope == &file_symbols
16685 && (cu->language == language_cplus
16686 || cu->language == language_java)
16687 ? &global_symbols : cu->list_in_scope);
16688
16689 /* The semantics of C++ state that "struct foo {
16690 ... }" also defines a typedef for "foo". A Java
16691 class declaration also defines a typedef for the
16692 class. */
16693 if (cu->language == language_cplus
16694 || cu->language == language_java
16695 || cu->language == language_ada)
16696 {
16697 /* The symbol's name is already allocated along
16698 with this objfile, so we don't need to
16699 duplicate it for the type. */
16700 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16701 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16702 }
16703 }
16704 }
16705 break;
16706 case DW_TAG_typedef:
16707 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16708 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16709 list_to_add = cu->list_in_scope;
16710 break;
16711 case DW_TAG_base_type:
16712 case DW_TAG_subrange_type:
16713 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16714 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16715 list_to_add = cu->list_in_scope;
16716 break;
16717 case DW_TAG_enumerator:
16718 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16719 if (attr)
16720 {
16721 dwarf2_const_value (attr, sym, cu);
16722 }
16723 {
16724 /* NOTE: carlton/2003-11-10: See comment above in the
16725 DW_TAG_class_type, etc. block. */
16726
16727 list_to_add = (cu->list_in_scope == &file_symbols
16728 && (cu->language == language_cplus
16729 || cu->language == language_java)
16730 ? &global_symbols : cu->list_in_scope);
16731 }
16732 break;
16733 case DW_TAG_namespace:
16734 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16735 list_to_add = &global_symbols;
16736 break;
16737 case DW_TAG_common_block:
16738 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16739 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16740 add_symbol_to_list (sym, cu->list_in_scope);
16741 break;
16742 default:
16743 /* Not a tag we recognize. Hopefully we aren't processing
16744 trash data, but since we must specifically ignore things
16745 we don't recognize, there is nothing else we should do at
16746 this point. */
16747 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16748 dwarf_tag_name (die->tag));
16749 break;
16750 }
16751
16752 if (suppress_add)
16753 {
16754 sym->hash_next = objfile->template_symbols;
16755 objfile->template_symbols = sym;
16756 list_to_add = NULL;
16757 }
16758
16759 if (list_to_add != NULL)
16760 add_symbol_to_list (sym, list_to_add);
16761
16762 /* For the benefit of old versions of GCC, check for anonymous
16763 namespaces based on the demangled name. */
16764 if (!cu->processing_has_namespace_info
16765 && cu->language == language_cplus)
16766 cp_scan_for_anonymous_namespaces (sym, objfile);
16767 }
16768 return (sym);
16769 }
16770
16771 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16772
16773 static struct symbol *
16774 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16775 {
16776 return new_symbol_full (die, type, cu, NULL);
16777 }
16778
16779 /* Given an attr with a DW_FORM_dataN value in host byte order,
16780 zero-extend it as appropriate for the symbol's type. The DWARF
16781 standard (v4) is not entirely clear about the meaning of using
16782 DW_FORM_dataN for a constant with a signed type, where the type is
16783 wider than the data. The conclusion of a discussion on the DWARF
16784 list was that this is unspecified. We choose to always zero-extend
16785 because that is the interpretation long in use by GCC. */
16786
16787 static gdb_byte *
16788 dwarf2_const_value_data (struct attribute *attr, struct obstack *obstack,
16789 struct dwarf2_cu *cu, LONGEST *value, int bits)
16790 {
16791 struct objfile *objfile = cu->objfile;
16792 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16793 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16794 LONGEST l = DW_UNSND (attr);
16795
16796 if (bits < sizeof (*value) * 8)
16797 {
16798 l &= ((LONGEST) 1 << bits) - 1;
16799 *value = l;
16800 }
16801 else if (bits == sizeof (*value) * 8)
16802 *value = l;
16803 else
16804 {
16805 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16806 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16807 return bytes;
16808 }
16809
16810 return NULL;
16811 }
16812
16813 /* Read a constant value from an attribute. Either set *VALUE, or if
16814 the value does not fit in *VALUE, set *BYTES - either already
16815 allocated on the objfile obstack, or newly allocated on OBSTACK,
16816 or, set *BATON, if we translated the constant to a location
16817 expression. */
16818
16819 static void
16820 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16821 const char *name, struct obstack *obstack,
16822 struct dwarf2_cu *cu,
16823 LONGEST *value, const gdb_byte **bytes,
16824 struct dwarf2_locexpr_baton **baton)
16825 {
16826 struct objfile *objfile = cu->objfile;
16827 struct comp_unit_head *cu_header = &cu->header;
16828 struct dwarf_block *blk;
16829 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16830 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16831
16832 *value = 0;
16833 *bytes = NULL;
16834 *baton = NULL;
16835
16836 switch (attr->form)
16837 {
16838 case DW_FORM_addr:
16839 case DW_FORM_GNU_addr_index:
16840 {
16841 gdb_byte *data;
16842
16843 if (TYPE_LENGTH (type) != cu_header->addr_size)
16844 dwarf2_const_value_length_mismatch_complaint (name,
16845 cu_header->addr_size,
16846 TYPE_LENGTH (type));
16847 /* Symbols of this form are reasonably rare, so we just
16848 piggyback on the existing location code rather than writing
16849 a new implementation of symbol_computed_ops. */
16850 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
16851 (*baton)->per_cu = cu->per_cu;
16852 gdb_assert ((*baton)->per_cu);
16853
16854 (*baton)->size = 2 + cu_header->addr_size;
16855 data = obstack_alloc (obstack, (*baton)->size);
16856 (*baton)->data = data;
16857
16858 data[0] = DW_OP_addr;
16859 store_unsigned_integer (&data[1], cu_header->addr_size,
16860 byte_order, DW_ADDR (attr));
16861 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16862 }
16863 break;
16864 case DW_FORM_string:
16865 case DW_FORM_strp:
16866 case DW_FORM_GNU_str_index:
16867 case DW_FORM_GNU_strp_alt:
16868 /* DW_STRING is already allocated on the objfile obstack, point
16869 directly to it. */
16870 *bytes = (const gdb_byte *) DW_STRING (attr);
16871 break;
16872 case DW_FORM_block1:
16873 case DW_FORM_block2:
16874 case DW_FORM_block4:
16875 case DW_FORM_block:
16876 case DW_FORM_exprloc:
16877 blk = DW_BLOCK (attr);
16878 if (TYPE_LENGTH (type) != blk->size)
16879 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16880 TYPE_LENGTH (type));
16881 *bytes = blk->data;
16882 break;
16883
16884 /* The DW_AT_const_value attributes are supposed to carry the
16885 symbol's value "represented as it would be on the target
16886 architecture." By the time we get here, it's already been
16887 converted to host endianness, so we just need to sign- or
16888 zero-extend it as appropriate. */
16889 case DW_FORM_data1:
16890 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
16891 break;
16892 case DW_FORM_data2:
16893 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
16894 break;
16895 case DW_FORM_data4:
16896 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
16897 break;
16898 case DW_FORM_data8:
16899 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
16900 break;
16901
16902 case DW_FORM_sdata:
16903 *value = DW_SND (attr);
16904 break;
16905
16906 case DW_FORM_udata:
16907 *value = DW_UNSND (attr);
16908 break;
16909
16910 default:
16911 complaint (&symfile_complaints,
16912 _("unsupported const value attribute form: '%s'"),
16913 dwarf_form_name (attr->form));
16914 *value = 0;
16915 break;
16916 }
16917 }
16918
16919
16920 /* Copy constant value from an attribute to a symbol. */
16921
16922 static void
16923 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16924 struct dwarf2_cu *cu)
16925 {
16926 struct objfile *objfile = cu->objfile;
16927 struct comp_unit_head *cu_header = &cu->header;
16928 LONGEST value;
16929 const gdb_byte *bytes;
16930 struct dwarf2_locexpr_baton *baton;
16931
16932 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16933 SYMBOL_PRINT_NAME (sym),
16934 &objfile->objfile_obstack, cu,
16935 &value, &bytes, &baton);
16936
16937 if (baton != NULL)
16938 {
16939 SYMBOL_LOCATION_BATON (sym) = baton;
16940 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16941 }
16942 else if (bytes != NULL)
16943 {
16944 SYMBOL_VALUE_BYTES (sym) = bytes;
16945 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16946 }
16947 else
16948 {
16949 SYMBOL_VALUE (sym) = value;
16950 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16951 }
16952 }
16953
16954 /* Return the type of the die in question using its DW_AT_type attribute. */
16955
16956 static struct type *
16957 die_type (struct die_info *die, struct dwarf2_cu *cu)
16958 {
16959 struct attribute *type_attr;
16960
16961 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16962 if (!type_attr)
16963 {
16964 /* A missing DW_AT_type represents a void type. */
16965 return objfile_type (cu->objfile)->builtin_void;
16966 }
16967
16968 return lookup_die_type (die, type_attr, cu);
16969 }
16970
16971 /* True iff CU's producer generates GNAT Ada auxiliary information
16972 that allows to find parallel types through that information instead
16973 of having to do expensive parallel lookups by type name. */
16974
16975 static int
16976 need_gnat_info (struct dwarf2_cu *cu)
16977 {
16978 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16979 of GNAT produces this auxiliary information, without any indication
16980 that it is produced. Part of enhancing the FSF version of GNAT
16981 to produce that information will be to put in place an indicator
16982 that we can use in order to determine whether the descriptive type
16983 info is available or not. One suggestion that has been made is
16984 to use a new attribute, attached to the CU die. For now, assume
16985 that the descriptive type info is not available. */
16986 return 0;
16987 }
16988
16989 /* Return the auxiliary type of the die in question using its
16990 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16991 attribute is not present. */
16992
16993 static struct type *
16994 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16995 {
16996 struct attribute *type_attr;
16997
16998 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16999 if (!type_attr)
17000 return NULL;
17001
17002 return lookup_die_type (die, type_attr, cu);
17003 }
17004
17005 /* If DIE has a descriptive_type attribute, then set the TYPE's
17006 descriptive type accordingly. */
17007
17008 static void
17009 set_descriptive_type (struct type *type, struct die_info *die,
17010 struct dwarf2_cu *cu)
17011 {
17012 struct type *descriptive_type = die_descriptive_type (die, cu);
17013
17014 if (descriptive_type)
17015 {
17016 ALLOCATE_GNAT_AUX_TYPE (type);
17017 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17018 }
17019 }
17020
17021 /* Return the containing type of the die in question using its
17022 DW_AT_containing_type attribute. */
17023
17024 static struct type *
17025 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
17026 {
17027 struct attribute *type_attr;
17028
17029 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
17030 if (!type_attr)
17031 error (_("Dwarf Error: Problem turning containing type into gdb type "
17032 "[in module %s]"), cu->objfile->name);
17033
17034 return lookup_die_type (die, type_attr, cu);
17035 }
17036
17037 /* Return an error marker type to use for the ill formed type in DIE/CU. */
17038
17039 static struct type *
17040 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17041 {
17042 struct objfile *objfile = dwarf2_per_objfile->objfile;
17043 char *message, *saved;
17044
17045 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17046 objfile->name,
17047 cu->header.offset.sect_off,
17048 die->offset.sect_off);
17049 saved = obstack_copy0 (&objfile->objfile_obstack,
17050 message, strlen (message));
17051 xfree (message);
17052
17053 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17054 }
17055
17056 /* Look up the type of DIE in CU using its type attribute ATTR.
17057 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17058 DW_AT_containing_type.
17059 If there is no type substitute an error marker. */
17060
17061 static struct type *
17062 lookup_die_type (struct die_info *die, struct attribute *attr,
17063 struct dwarf2_cu *cu)
17064 {
17065 struct objfile *objfile = cu->objfile;
17066 struct type *this_type;
17067
17068 gdb_assert (attr->name == DW_AT_type
17069 || attr->name == DW_AT_GNAT_descriptive_type
17070 || attr->name == DW_AT_containing_type);
17071
17072 /* First see if we have it cached. */
17073
17074 if (attr->form == DW_FORM_GNU_ref_alt)
17075 {
17076 struct dwarf2_per_cu_data *per_cu;
17077 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17078
17079 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17080 this_type = get_die_type_at_offset (offset, per_cu);
17081 }
17082 else if (is_ref_attr (attr))
17083 {
17084 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17085
17086 this_type = get_die_type_at_offset (offset, cu->per_cu);
17087 }
17088 else if (attr->form == DW_FORM_ref_sig8)
17089 {
17090 ULONGEST signature = DW_SIGNATURE (attr);
17091
17092 return get_signatured_type (die, signature, cu);
17093 }
17094 else
17095 {
17096 complaint (&symfile_complaints,
17097 _("Dwarf Error: Bad type attribute %s in DIE"
17098 " at 0x%x [in module %s]"),
17099 dwarf_attr_name (attr->name), die->offset.sect_off,
17100 objfile->name);
17101 return build_error_marker_type (cu, die);
17102 }
17103
17104 /* If not cached we need to read it in. */
17105
17106 if (this_type == NULL)
17107 {
17108 struct die_info *type_die = NULL;
17109 struct dwarf2_cu *type_cu = cu;
17110
17111 if (is_ref_attr (attr))
17112 type_die = follow_die_ref (die, attr, &type_cu);
17113 if (type_die == NULL)
17114 return build_error_marker_type (cu, die);
17115 /* If we find the type now, it's probably because the type came
17116 from an inter-CU reference and the type's CU got expanded before
17117 ours. */
17118 this_type = read_type_die (type_die, type_cu);
17119 }
17120
17121 /* If we still don't have a type use an error marker. */
17122
17123 if (this_type == NULL)
17124 return build_error_marker_type (cu, die);
17125
17126 return this_type;
17127 }
17128
17129 /* Return the type in DIE, CU.
17130 Returns NULL for invalid types.
17131
17132 This first does a lookup in die_type_hash,
17133 and only reads the die in if necessary.
17134
17135 NOTE: This can be called when reading in partial or full symbols. */
17136
17137 static struct type *
17138 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17139 {
17140 struct type *this_type;
17141
17142 this_type = get_die_type (die, cu);
17143 if (this_type)
17144 return this_type;
17145
17146 return read_type_die_1 (die, cu);
17147 }
17148
17149 /* Read the type in DIE, CU.
17150 Returns NULL for invalid types. */
17151
17152 static struct type *
17153 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17154 {
17155 struct type *this_type = NULL;
17156
17157 switch (die->tag)
17158 {
17159 case DW_TAG_class_type:
17160 case DW_TAG_interface_type:
17161 case DW_TAG_structure_type:
17162 case DW_TAG_union_type:
17163 this_type = read_structure_type (die, cu);
17164 break;
17165 case DW_TAG_enumeration_type:
17166 this_type = read_enumeration_type (die, cu);
17167 break;
17168 case DW_TAG_subprogram:
17169 case DW_TAG_subroutine_type:
17170 case DW_TAG_inlined_subroutine:
17171 this_type = read_subroutine_type (die, cu);
17172 break;
17173 case DW_TAG_array_type:
17174 this_type = read_array_type (die, cu);
17175 break;
17176 case DW_TAG_set_type:
17177 this_type = read_set_type (die, cu);
17178 break;
17179 case DW_TAG_pointer_type:
17180 this_type = read_tag_pointer_type (die, cu);
17181 break;
17182 case DW_TAG_ptr_to_member_type:
17183 this_type = read_tag_ptr_to_member_type (die, cu);
17184 break;
17185 case DW_TAG_reference_type:
17186 this_type = read_tag_reference_type (die, cu);
17187 break;
17188 case DW_TAG_const_type:
17189 this_type = read_tag_const_type (die, cu);
17190 break;
17191 case DW_TAG_volatile_type:
17192 this_type = read_tag_volatile_type (die, cu);
17193 break;
17194 case DW_TAG_restrict_type:
17195 this_type = read_tag_restrict_type (die, cu);
17196 break;
17197 case DW_TAG_string_type:
17198 this_type = read_tag_string_type (die, cu);
17199 break;
17200 case DW_TAG_typedef:
17201 this_type = read_typedef (die, cu);
17202 break;
17203 case DW_TAG_subrange_type:
17204 this_type = read_subrange_type (die, cu);
17205 break;
17206 case DW_TAG_base_type:
17207 this_type = read_base_type (die, cu);
17208 break;
17209 case DW_TAG_unspecified_type:
17210 this_type = read_unspecified_type (die, cu);
17211 break;
17212 case DW_TAG_namespace:
17213 this_type = read_namespace_type (die, cu);
17214 break;
17215 case DW_TAG_module:
17216 this_type = read_module_type (die, cu);
17217 break;
17218 default:
17219 complaint (&symfile_complaints,
17220 _("unexpected tag in read_type_die: '%s'"),
17221 dwarf_tag_name (die->tag));
17222 break;
17223 }
17224
17225 return this_type;
17226 }
17227
17228 /* See if we can figure out if the class lives in a namespace. We do
17229 this by looking for a member function; its demangled name will
17230 contain namespace info, if there is any.
17231 Return the computed name or NULL.
17232 Space for the result is allocated on the objfile's obstack.
17233 This is the full-die version of guess_partial_die_structure_name.
17234 In this case we know DIE has no useful parent. */
17235
17236 static char *
17237 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17238 {
17239 struct die_info *spec_die;
17240 struct dwarf2_cu *spec_cu;
17241 struct die_info *child;
17242
17243 spec_cu = cu;
17244 spec_die = die_specification (die, &spec_cu);
17245 if (spec_die != NULL)
17246 {
17247 die = spec_die;
17248 cu = spec_cu;
17249 }
17250
17251 for (child = die->child;
17252 child != NULL;
17253 child = child->sibling)
17254 {
17255 if (child->tag == DW_TAG_subprogram)
17256 {
17257 struct attribute *attr;
17258
17259 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17260 if (attr == NULL)
17261 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17262 if (attr != NULL)
17263 {
17264 char *actual_name
17265 = language_class_name_from_physname (cu->language_defn,
17266 DW_STRING (attr));
17267 char *name = NULL;
17268
17269 if (actual_name != NULL)
17270 {
17271 const char *die_name = dwarf2_name (die, cu);
17272
17273 if (die_name != NULL
17274 && strcmp (die_name, actual_name) != 0)
17275 {
17276 /* Strip off the class name from the full name.
17277 We want the prefix. */
17278 int die_name_len = strlen (die_name);
17279 int actual_name_len = strlen (actual_name);
17280
17281 /* Test for '::' as a sanity check. */
17282 if (actual_name_len > die_name_len + 2
17283 && actual_name[actual_name_len
17284 - die_name_len - 1] == ':')
17285 name =
17286 obstack_copy0 (&cu->objfile->objfile_obstack,
17287 actual_name,
17288 actual_name_len - die_name_len - 2);
17289 }
17290 }
17291 xfree (actual_name);
17292 return name;
17293 }
17294 }
17295 }
17296
17297 return NULL;
17298 }
17299
17300 /* GCC might emit a nameless typedef that has a linkage name. Determine the
17301 prefix part in such case. See
17302 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17303
17304 static char *
17305 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17306 {
17307 struct attribute *attr;
17308 char *base;
17309
17310 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17311 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17312 return NULL;
17313
17314 attr = dwarf2_attr (die, DW_AT_name, cu);
17315 if (attr != NULL && DW_STRING (attr) != NULL)
17316 return NULL;
17317
17318 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17319 if (attr == NULL)
17320 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17321 if (attr == NULL || DW_STRING (attr) == NULL)
17322 return NULL;
17323
17324 /* dwarf2_name had to be already called. */
17325 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17326
17327 /* Strip the base name, keep any leading namespaces/classes. */
17328 base = strrchr (DW_STRING (attr), ':');
17329 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17330 return "";
17331
17332 return obstack_copy0 (&cu->objfile->objfile_obstack,
17333 DW_STRING (attr), &base[-1] - DW_STRING (attr));
17334 }
17335
17336 /* Return the name of the namespace/class that DIE is defined within,
17337 or "" if we can't tell. The caller should not xfree the result.
17338
17339 For example, if we're within the method foo() in the following
17340 code:
17341
17342 namespace N {
17343 class C {
17344 void foo () {
17345 }
17346 };
17347 }
17348
17349 then determine_prefix on foo's die will return "N::C". */
17350
17351 static const char *
17352 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
17353 {
17354 struct die_info *parent, *spec_die;
17355 struct dwarf2_cu *spec_cu;
17356 struct type *parent_type;
17357 char *retval;
17358
17359 if (cu->language != language_cplus && cu->language != language_java
17360 && cu->language != language_fortran)
17361 return "";
17362
17363 retval = anonymous_struct_prefix (die, cu);
17364 if (retval)
17365 return retval;
17366
17367 /* We have to be careful in the presence of DW_AT_specification.
17368 For example, with GCC 3.4, given the code
17369
17370 namespace N {
17371 void foo() {
17372 // Definition of N::foo.
17373 }
17374 }
17375
17376 then we'll have a tree of DIEs like this:
17377
17378 1: DW_TAG_compile_unit
17379 2: DW_TAG_namespace // N
17380 3: DW_TAG_subprogram // declaration of N::foo
17381 4: DW_TAG_subprogram // definition of N::foo
17382 DW_AT_specification // refers to die #3
17383
17384 Thus, when processing die #4, we have to pretend that we're in
17385 the context of its DW_AT_specification, namely the contex of die
17386 #3. */
17387 spec_cu = cu;
17388 spec_die = die_specification (die, &spec_cu);
17389 if (spec_die == NULL)
17390 parent = die->parent;
17391 else
17392 {
17393 parent = spec_die->parent;
17394 cu = spec_cu;
17395 }
17396
17397 if (parent == NULL)
17398 return "";
17399 else if (parent->building_fullname)
17400 {
17401 const char *name;
17402 const char *parent_name;
17403
17404 /* It has been seen on RealView 2.2 built binaries,
17405 DW_TAG_template_type_param types actually _defined_ as
17406 children of the parent class:
17407
17408 enum E {};
17409 template class <class Enum> Class{};
17410 Class<enum E> class_e;
17411
17412 1: DW_TAG_class_type (Class)
17413 2: DW_TAG_enumeration_type (E)
17414 3: DW_TAG_enumerator (enum1:0)
17415 3: DW_TAG_enumerator (enum2:1)
17416 ...
17417 2: DW_TAG_template_type_param
17418 DW_AT_type DW_FORM_ref_udata (E)
17419
17420 Besides being broken debug info, it can put GDB into an
17421 infinite loop. Consider:
17422
17423 When we're building the full name for Class<E>, we'll start
17424 at Class, and go look over its template type parameters,
17425 finding E. We'll then try to build the full name of E, and
17426 reach here. We're now trying to build the full name of E,
17427 and look over the parent DIE for containing scope. In the
17428 broken case, if we followed the parent DIE of E, we'd again
17429 find Class, and once again go look at its template type
17430 arguments, etc., etc. Simply don't consider such parent die
17431 as source-level parent of this die (it can't be, the language
17432 doesn't allow it), and break the loop here. */
17433 name = dwarf2_name (die, cu);
17434 parent_name = dwarf2_name (parent, cu);
17435 complaint (&symfile_complaints,
17436 _("template param type '%s' defined within parent '%s'"),
17437 name ? name : "<unknown>",
17438 parent_name ? parent_name : "<unknown>");
17439 return "";
17440 }
17441 else
17442 switch (parent->tag)
17443 {
17444 case DW_TAG_namespace:
17445 parent_type = read_type_die (parent, cu);
17446 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17447 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17448 Work around this problem here. */
17449 if (cu->language == language_cplus
17450 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17451 return "";
17452 /* We give a name to even anonymous namespaces. */
17453 return TYPE_TAG_NAME (parent_type);
17454 case DW_TAG_class_type:
17455 case DW_TAG_interface_type:
17456 case DW_TAG_structure_type:
17457 case DW_TAG_union_type:
17458 case DW_TAG_module:
17459 parent_type = read_type_die (parent, cu);
17460 if (TYPE_TAG_NAME (parent_type) != NULL)
17461 return TYPE_TAG_NAME (parent_type);
17462 else
17463 /* An anonymous structure is only allowed non-static data
17464 members; no typedefs, no member functions, et cetera.
17465 So it does not need a prefix. */
17466 return "";
17467 case DW_TAG_compile_unit:
17468 case DW_TAG_partial_unit:
17469 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17470 if (cu->language == language_cplus
17471 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17472 && die->child != NULL
17473 && (die->tag == DW_TAG_class_type
17474 || die->tag == DW_TAG_structure_type
17475 || die->tag == DW_TAG_union_type))
17476 {
17477 char *name = guess_full_die_structure_name (die, cu);
17478 if (name != NULL)
17479 return name;
17480 }
17481 return "";
17482 default:
17483 return determine_prefix (parent, cu);
17484 }
17485 }
17486
17487 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17488 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17489 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17490 an obconcat, otherwise allocate storage for the result. The CU argument is
17491 used to determine the language and hence, the appropriate separator. */
17492
17493 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17494
17495 static char *
17496 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17497 int physname, struct dwarf2_cu *cu)
17498 {
17499 const char *lead = "";
17500 const char *sep;
17501
17502 if (suffix == NULL || suffix[0] == '\0'
17503 || prefix == NULL || prefix[0] == '\0')
17504 sep = "";
17505 else if (cu->language == language_java)
17506 sep = ".";
17507 else if (cu->language == language_fortran && physname)
17508 {
17509 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17510 DW_AT_MIPS_linkage_name is preferred and used instead. */
17511
17512 lead = "__";
17513 sep = "_MOD_";
17514 }
17515 else
17516 sep = "::";
17517
17518 if (prefix == NULL)
17519 prefix = "";
17520 if (suffix == NULL)
17521 suffix = "";
17522
17523 if (obs == NULL)
17524 {
17525 char *retval
17526 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17527
17528 strcpy (retval, lead);
17529 strcat (retval, prefix);
17530 strcat (retval, sep);
17531 strcat (retval, suffix);
17532 return retval;
17533 }
17534 else
17535 {
17536 /* We have an obstack. */
17537 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17538 }
17539 }
17540
17541 /* Return sibling of die, NULL if no sibling. */
17542
17543 static struct die_info *
17544 sibling_die (struct die_info *die)
17545 {
17546 return die->sibling;
17547 }
17548
17549 /* Get name of a die, return NULL if not found. */
17550
17551 static const char *
17552 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17553 struct obstack *obstack)
17554 {
17555 if (name && cu->language == language_cplus)
17556 {
17557 char *canon_name = cp_canonicalize_string (name);
17558
17559 if (canon_name != NULL)
17560 {
17561 if (strcmp (canon_name, name) != 0)
17562 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17563 xfree (canon_name);
17564 }
17565 }
17566
17567 return name;
17568 }
17569
17570 /* Get name of a die, return NULL if not found. */
17571
17572 static const char *
17573 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17574 {
17575 struct attribute *attr;
17576
17577 attr = dwarf2_attr (die, DW_AT_name, cu);
17578 if ((!attr || !DW_STRING (attr))
17579 && die->tag != DW_TAG_class_type
17580 && die->tag != DW_TAG_interface_type
17581 && die->tag != DW_TAG_structure_type
17582 && die->tag != DW_TAG_union_type)
17583 return NULL;
17584
17585 switch (die->tag)
17586 {
17587 case DW_TAG_compile_unit:
17588 case DW_TAG_partial_unit:
17589 /* Compilation units have a DW_AT_name that is a filename, not
17590 a source language identifier. */
17591 case DW_TAG_enumeration_type:
17592 case DW_TAG_enumerator:
17593 /* These tags always have simple identifiers already; no need
17594 to canonicalize them. */
17595 return DW_STRING (attr);
17596
17597 case DW_TAG_subprogram:
17598 /* Java constructors will all be named "<init>", so return
17599 the class name when we see this special case. */
17600 if (cu->language == language_java
17601 && DW_STRING (attr) != NULL
17602 && strcmp (DW_STRING (attr), "<init>") == 0)
17603 {
17604 struct dwarf2_cu *spec_cu = cu;
17605 struct die_info *spec_die;
17606
17607 /* GCJ will output '<init>' for Java constructor names.
17608 For this special case, return the name of the parent class. */
17609
17610 /* GCJ may output suprogram DIEs with AT_specification set.
17611 If so, use the name of the specified DIE. */
17612 spec_die = die_specification (die, &spec_cu);
17613 if (spec_die != NULL)
17614 return dwarf2_name (spec_die, spec_cu);
17615
17616 do
17617 {
17618 die = die->parent;
17619 if (die->tag == DW_TAG_class_type)
17620 return dwarf2_name (die, cu);
17621 }
17622 while (die->tag != DW_TAG_compile_unit
17623 && die->tag != DW_TAG_partial_unit);
17624 }
17625 break;
17626
17627 case DW_TAG_class_type:
17628 case DW_TAG_interface_type:
17629 case DW_TAG_structure_type:
17630 case DW_TAG_union_type:
17631 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17632 structures or unions. These were of the form "._%d" in GCC 4.1,
17633 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17634 and GCC 4.4. We work around this problem by ignoring these. */
17635 if (attr && DW_STRING (attr)
17636 && (strncmp (DW_STRING (attr), "._", 2) == 0
17637 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17638 return NULL;
17639
17640 /* GCC might emit a nameless typedef that has a linkage name. See
17641 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17642 if (!attr || DW_STRING (attr) == NULL)
17643 {
17644 char *demangled = NULL;
17645
17646 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17647 if (attr == NULL)
17648 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17649
17650 if (attr == NULL || DW_STRING (attr) == NULL)
17651 return NULL;
17652
17653 /* Avoid demangling DW_STRING (attr) the second time on a second
17654 call for the same DIE. */
17655 if (!DW_STRING_IS_CANONICAL (attr))
17656 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17657
17658 if (demangled)
17659 {
17660 char *base;
17661
17662 /* FIXME: we already did this for the partial symbol... */
17663 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17664 demangled, strlen (demangled));
17665 DW_STRING_IS_CANONICAL (attr) = 1;
17666 xfree (demangled);
17667
17668 /* Strip any leading namespaces/classes, keep only the base name.
17669 DW_AT_name for named DIEs does not contain the prefixes. */
17670 base = strrchr (DW_STRING (attr), ':');
17671 if (base && base > DW_STRING (attr) && base[-1] == ':')
17672 return &base[1];
17673 else
17674 return DW_STRING (attr);
17675 }
17676 }
17677 break;
17678
17679 default:
17680 break;
17681 }
17682
17683 if (!DW_STRING_IS_CANONICAL (attr))
17684 {
17685 DW_STRING (attr)
17686 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17687 &cu->objfile->objfile_obstack);
17688 DW_STRING_IS_CANONICAL (attr) = 1;
17689 }
17690 return DW_STRING (attr);
17691 }
17692
17693 /* Return the die that this die in an extension of, or NULL if there
17694 is none. *EXT_CU is the CU containing DIE on input, and the CU
17695 containing the return value on output. */
17696
17697 static struct die_info *
17698 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17699 {
17700 struct attribute *attr;
17701
17702 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17703 if (attr == NULL)
17704 return NULL;
17705
17706 return follow_die_ref (die, attr, ext_cu);
17707 }
17708
17709 /* Convert a DIE tag into its string name. */
17710
17711 static const char *
17712 dwarf_tag_name (unsigned tag)
17713 {
17714 const char *name = get_DW_TAG_name (tag);
17715
17716 if (name == NULL)
17717 return "DW_TAG_<unknown>";
17718
17719 return name;
17720 }
17721
17722 /* Convert a DWARF attribute code into its string name. */
17723
17724 static const char *
17725 dwarf_attr_name (unsigned attr)
17726 {
17727 const char *name;
17728
17729 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17730 if (attr == DW_AT_MIPS_fde)
17731 return "DW_AT_MIPS_fde";
17732 #else
17733 if (attr == DW_AT_HP_block_index)
17734 return "DW_AT_HP_block_index";
17735 #endif
17736
17737 name = get_DW_AT_name (attr);
17738
17739 if (name == NULL)
17740 return "DW_AT_<unknown>";
17741
17742 return name;
17743 }
17744
17745 /* Convert a DWARF value form code into its string name. */
17746
17747 static const char *
17748 dwarf_form_name (unsigned form)
17749 {
17750 const char *name = get_DW_FORM_name (form);
17751
17752 if (name == NULL)
17753 return "DW_FORM_<unknown>";
17754
17755 return name;
17756 }
17757
17758 static char *
17759 dwarf_bool_name (unsigned mybool)
17760 {
17761 if (mybool)
17762 return "TRUE";
17763 else
17764 return "FALSE";
17765 }
17766
17767 /* Convert a DWARF type code into its string name. */
17768
17769 static const char *
17770 dwarf_type_encoding_name (unsigned enc)
17771 {
17772 const char *name = get_DW_ATE_name (enc);
17773
17774 if (name == NULL)
17775 return "DW_ATE_<unknown>";
17776
17777 return name;
17778 }
17779
17780 static void
17781 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17782 {
17783 unsigned int i;
17784
17785 print_spaces (indent, f);
17786 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17787 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17788
17789 if (die->parent != NULL)
17790 {
17791 print_spaces (indent, f);
17792 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17793 die->parent->offset.sect_off);
17794 }
17795
17796 print_spaces (indent, f);
17797 fprintf_unfiltered (f, " has children: %s\n",
17798 dwarf_bool_name (die->child != NULL));
17799
17800 print_spaces (indent, f);
17801 fprintf_unfiltered (f, " attributes:\n");
17802
17803 for (i = 0; i < die->num_attrs; ++i)
17804 {
17805 print_spaces (indent, f);
17806 fprintf_unfiltered (f, " %s (%s) ",
17807 dwarf_attr_name (die->attrs[i].name),
17808 dwarf_form_name (die->attrs[i].form));
17809
17810 switch (die->attrs[i].form)
17811 {
17812 case DW_FORM_addr:
17813 case DW_FORM_GNU_addr_index:
17814 fprintf_unfiltered (f, "address: ");
17815 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17816 break;
17817 case DW_FORM_block2:
17818 case DW_FORM_block4:
17819 case DW_FORM_block:
17820 case DW_FORM_block1:
17821 fprintf_unfiltered (f, "block: size %s",
17822 pulongest (DW_BLOCK (&die->attrs[i])->size));
17823 break;
17824 case DW_FORM_exprloc:
17825 fprintf_unfiltered (f, "expression: size %s",
17826 pulongest (DW_BLOCK (&die->attrs[i])->size));
17827 break;
17828 case DW_FORM_ref_addr:
17829 fprintf_unfiltered (f, "ref address: ");
17830 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17831 break;
17832 case DW_FORM_GNU_ref_alt:
17833 fprintf_unfiltered (f, "alt ref address: ");
17834 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17835 break;
17836 case DW_FORM_ref1:
17837 case DW_FORM_ref2:
17838 case DW_FORM_ref4:
17839 case DW_FORM_ref8:
17840 case DW_FORM_ref_udata:
17841 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17842 (long) (DW_UNSND (&die->attrs[i])));
17843 break;
17844 case DW_FORM_data1:
17845 case DW_FORM_data2:
17846 case DW_FORM_data4:
17847 case DW_FORM_data8:
17848 case DW_FORM_udata:
17849 case DW_FORM_sdata:
17850 fprintf_unfiltered (f, "constant: %s",
17851 pulongest (DW_UNSND (&die->attrs[i])));
17852 break;
17853 case DW_FORM_sec_offset:
17854 fprintf_unfiltered (f, "section offset: %s",
17855 pulongest (DW_UNSND (&die->attrs[i])));
17856 break;
17857 case DW_FORM_ref_sig8:
17858 fprintf_unfiltered (f, "signature: %s",
17859 hex_string (DW_SIGNATURE (&die->attrs[i])));
17860 break;
17861 case DW_FORM_string:
17862 case DW_FORM_strp:
17863 case DW_FORM_GNU_str_index:
17864 case DW_FORM_GNU_strp_alt:
17865 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17866 DW_STRING (&die->attrs[i])
17867 ? DW_STRING (&die->attrs[i]) : "",
17868 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17869 break;
17870 case DW_FORM_flag:
17871 if (DW_UNSND (&die->attrs[i]))
17872 fprintf_unfiltered (f, "flag: TRUE");
17873 else
17874 fprintf_unfiltered (f, "flag: FALSE");
17875 break;
17876 case DW_FORM_flag_present:
17877 fprintf_unfiltered (f, "flag: TRUE");
17878 break;
17879 case DW_FORM_indirect:
17880 /* The reader will have reduced the indirect form to
17881 the "base form" so this form should not occur. */
17882 fprintf_unfiltered (f,
17883 "unexpected attribute form: DW_FORM_indirect");
17884 break;
17885 default:
17886 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17887 die->attrs[i].form);
17888 break;
17889 }
17890 fprintf_unfiltered (f, "\n");
17891 }
17892 }
17893
17894 static void
17895 dump_die_for_error (struct die_info *die)
17896 {
17897 dump_die_shallow (gdb_stderr, 0, die);
17898 }
17899
17900 static void
17901 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17902 {
17903 int indent = level * 4;
17904
17905 gdb_assert (die != NULL);
17906
17907 if (level >= max_level)
17908 return;
17909
17910 dump_die_shallow (f, indent, die);
17911
17912 if (die->child != NULL)
17913 {
17914 print_spaces (indent, f);
17915 fprintf_unfiltered (f, " Children:");
17916 if (level + 1 < max_level)
17917 {
17918 fprintf_unfiltered (f, "\n");
17919 dump_die_1 (f, level + 1, max_level, die->child);
17920 }
17921 else
17922 {
17923 fprintf_unfiltered (f,
17924 " [not printed, max nesting level reached]\n");
17925 }
17926 }
17927
17928 if (die->sibling != NULL && level > 0)
17929 {
17930 dump_die_1 (f, level, max_level, die->sibling);
17931 }
17932 }
17933
17934 /* This is called from the pdie macro in gdbinit.in.
17935 It's not static so gcc will keep a copy callable from gdb. */
17936
17937 void
17938 dump_die (struct die_info *die, int max_level)
17939 {
17940 dump_die_1 (gdb_stdlog, 0, max_level, die);
17941 }
17942
17943 static void
17944 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17945 {
17946 void **slot;
17947
17948 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17949 INSERT);
17950
17951 *slot = die;
17952 }
17953
17954 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17955 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17956
17957 static int
17958 is_ref_attr (struct attribute *attr)
17959 {
17960 switch (attr->form)
17961 {
17962 case DW_FORM_ref_addr:
17963 case DW_FORM_ref1:
17964 case DW_FORM_ref2:
17965 case DW_FORM_ref4:
17966 case DW_FORM_ref8:
17967 case DW_FORM_ref_udata:
17968 case DW_FORM_GNU_ref_alt:
17969 return 1;
17970 default:
17971 return 0;
17972 }
17973 }
17974
17975 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17976 required kind. */
17977
17978 static sect_offset
17979 dwarf2_get_ref_die_offset (struct attribute *attr)
17980 {
17981 sect_offset retval = { DW_UNSND (attr) };
17982
17983 if (is_ref_attr (attr))
17984 return retval;
17985
17986 retval.sect_off = 0;
17987 complaint (&symfile_complaints,
17988 _("unsupported die ref attribute form: '%s'"),
17989 dwarf_form_name (attr->form));
17990 return retval;
17991 }
17992
17993 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17994 * the value held by the attribute is not constant. */
17995
17996 static LONGEST
17997 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17998 {
17999 if (attr->form == DW_FORM_sdata)
18000 return DW_SND (attr);
18001 else if (attr->form == DW_FORM_udata
18002 || attr->form == DW_FORM_data1
18003 || attr->form == DW_FORM_data2
18004 || attr->form == DW_FORM_data4
18005 || attr->form == DW_FORM_data8)
18006 return DW_UNSND (attr);
18007 else
18008 {
18009 complaint (&symfile_complaints,
18010 _("Attribute value is not a constant (%s)"),
18011 dwarf_form_name (attr->form));
18012 return default_value;
18013 }
18014 }
18015
18016 /* Follow reference or signature attribute ATTR of SRC_DIE.
18017 On entry *REF_CU is the CU of SRC_DIE.
18018 On exit *REF_CU is the CU of the result. */
18019
18020 static struct die_info *
18021 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
18022 struct dwarf2_cu **ref_cu)
18023 {
18024 struct die_info *die;
18025
18026 if (is_ref_attr (attr))
18027 die = follow_die_ref (src_die, attr, ref_cu);
18028 else if (attr->form == DW_FORM_ref_sig8)
18029 die = follow_die_sig (src_die, attr, ref_cu);
18030 else
18031 {
18032 dump_die_for_error (src_die);
18033 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18034 (*ref_cu)->objfile->name);
18035 }
18036
18037 return die;
18038 }
18039
18040 /* Follow reference OFFSET.
18041 On entry *REF_CU is the CU of the source die referencing OFFSET.
18042 On exit *REF_CU is the CU of the result.
18043 Returns NULL if OFFSET is invalid. */
18044
18045 static struct die_info *
18046 follow_die_offset (sect_offset offset, int offset_in_dwz,
18047 struct dwarf2_cu **ref_cu)
18048 {
18049 struct die_info temp_die;
18050 struct dwarf2_cu *target_cu, *cu = *ref_cu;
18051
18052 gdb_assert (cu->per_cu != NULL);
18053
18054 target_cu = cu;
18055
18056 if (cu->per_cu->is_debug_types)
18057 {
18058 /* .debug_types CUs cannot reference anything outside their CU.
18059 If they need to, they have to reference a signatured type via
18060 DW_FORM_ref_sig8. */
18061 if (! offset_in_cu_p (&cu->header, offset))
18062 return NULL;
18063 }
18064 else if (offset_in_dwz != cu->per_cu->is_dwz
18065 || ! offset_in_cu_p (&cu->header, offset))
18066 {
18067 struct dwarf2_per_cu_data *per_cu;
18068
18069 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18070 cu->objfile);
18071
18072 /* If necessary, add it to the queue and load its DIEs. */
18073 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18074 load_full_comp_unit (per_cu, cu->language);
18075
18076 target_cu = per_cu->cu;
18077 }
18078 else if (cu->dies == NULL)
18079 {
18080 /* We're loading full DIEs during partial symbol reading. */
18081 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18082 load_full_comp_unit (cu->per_cu, language_minimal);
18083 }
18084
18085 *ref_cu = target_cu;
18086 temp_die.offset = offset;
18087 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18088 }
18089
18090 /* Follow reference attribute ATTR of SRC_DIE.
18091 On entry *REF_CU is the CU of SRC_DIE.
18092 On exit *REF_CU is the CU of the result. */
18093
18094 static struct die_info *
18095 follow_die_ref (struct die_info *src_die, struct attribute *attr,
18096 struct dwarf2_cu **ref_cu)
18097 {
18098 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18099 struct dwarf2_cu *cu = *ref_cu;
18100 struct die_info *die;
18101
18102 die = follow_die_offset (offset,
18103 (attr->form == DW_FORM_GNU_ref_alt
18104 || cu->per_cu->is_dwz),
18105 ref_cu);
18106 if (!die)
18107 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18108 "at 0x%x [in module %s]"),
18109 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
18110
18111 return die;
18112 }
18113
18114 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18115 Returned value is intended for DW_OP_call*. Returned
18116 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18117
18118 struct dwarf2_locexpr_baton
18119 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18120 struct dwarf2_per_cu_data *per_cu,
18121 CORE_ADDR (*get_frame_pc) (void *baton),
18122 void *baton)
18123 {
18124 struct dwarf2_cu *cu;
18125 struct die_info *die;
18126 struct attribute *attr;
18127 struct dwarf2_locexpr_baton retval;
18128
18129 dw2_setup (per_cu->objfile);
18130
18131 if (per_cu->cu == NULL)
18132 load_cu (per_cu);
18133 cu = per_cu->cu;
18134
18135 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18136 if (!die)
18137 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18138 offset.sect_off, per_cu->objfile->name);
18139
18140 attr = dwarf2_attr (die, DW_AT_location, cu);
18141 if (!attr)
18142 {
18143 /* DWARF: "If there is no such attribute, then there is no effect.".
18144 DATA is ignored if SIZE is 0. */
18145
18146 retval.data = NULL;
18147 retval.size = 0;
18148 }
18149 else if (attr_form_is_section_offset (attr))
18150 {
18151 struct dwarf2_loclist_baton loclist_baton;
18152 CORE_ADDR pc = (*get_frame_pc) (baton);
18153 size_t size;
18154
18155 fill_in_loclist_baton (cu, &loclist_baton, attr);
18156
18157 retval.data = dwarf2_find_location_expression (&loclist_baton,
18158 &size, pc);
18159 retval.size = size;
18160 }
18161 else
18162 {
18163 if (!attr_form_is_block (attr))
18164 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18165 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
18166 offset.sect_off, per_cu->objfile->name);
18167
18168 retval.data = DW_BLOCK (attr)->data;
18169 retval.size = DW_BLOCK (attr)->size;
18170 }
18171 retval.per_cu = cu->per_cu;
18172
18173 age_cached_comp_units ();
18174
18175 return retval;
18176 }
18177
18178 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18179 offset. */
18180
18181 struct dwarf2_locexpr_baton
18182 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18183 struct dwarf2_per_cu_data *per_cu,
18184 CORE_ADDR (*get_frame_pc) (void *baton),
18185 void *baton)
18186 {
18187 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18188
18189 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18190 }
18191
18192 /* Write a constant of a given type as target-ordered bytes into
18193 OBSTACK. */
18194
18195 static const gdb_byte *
18196 write_constant_as_bytes (struct obstack *obstack,
18197 enum bfd_endian byte_order,
18198 struct type *type,
18199 ULONGEST value,
18200 LONGEST *len)
18201 {
18202 gdb_byte *result;
18203
18204 *len = TYPE_LENGTH (type);
18205 result = obstack_alloc (obstack, *len);
18206 store_unsigned_integer (result, *len, byte_order, value);
18207
18208 return result;
18209 }
18210
18211 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18212 pointer to the constant bytes and set LEN to the length of the
18213 data. If memory is needed, allocate it on OBSTACK. If the DIE
18214 does not have a DW_AT_const_value, return NULL. */
18215
18216 const gdb_byte *
18217 dwarf2_fetch_constant_bytes (sect_offset offset,
18218 struct dwarf2_per_cu_data *per_cu,
18219 struct obstack *obstack,
18220 LONGEST *len)
18221 {
18222 struct dwarf2_cu *cu;
18223 struct die_info *die;
18224 struct attribute *attr;
18225 const gdb_byte *result = NULL;
18226 struct type *type;
18227 LONGEST value;
18228 enum bfd_endian byte_order;
18229
18230 dw2_setup (per_cu->objfile);
18231
18232 if (per_cu->cu == NULL)
18233 load_cu (per_cu);
18234 cu = per_cu->cu;
18235
18236 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18237 if (!die)
18238 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18239 offset.sect_off, per_cu->objfile->name);
18240
18241
18242 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18243 if (attr == NULL)
18244 return NULL;
18245
18246 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18247 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18248
18249 switch (attr->form)
18250 {
18251 case DW_FORM_addr:
18252 case DW_FORM_GNU_addr_index:
18253 {
18254 gdb_byte *tem;
18255
18256 *len = cu->header.addr_size;
18257 tem = obstack_alloc (obstack, *len);
18258 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18259 result = tem;
18260 }
18261 break;
18262 case DW_FORM_string:
18263 case DW_FORM_strp:
18264 case DW_FORM_GNU_str_index:
18265 case DW_FORM_GNU_strp_alt:
18266 /* DW_STRING is already allocated on the objfile obstack, point
18267 directly to it. */
18268 result = (const gdb_byte *) DW_STRING (attr);
18269 *len = strlen (DW_STRING (attr));
18270 break;
18271 case DW_FORM_block1:
18272 case DW_FORM_block2:
18273 case DW_FORM_block4:
18274 case DW_FORM_block:
18275 case DW_FORM_exprloc:
18276 result = DW_BLOCK (attr)->data;
18277 *len = DW_BLOCK (attr)->size;
18278 break;
18279
18280 /* The DW_AT_const_value attributes are supposed to carry the
18281 symbol's value "represented as it would be on the target
18282 architecture." By the time we get here, it's already been
18283 converted to host endianness, so we just need to sign- or
18284 zero-extend it as appropriate. */
18285 case DW_FORM_data1:
18286 type = die_type (die, cu);
18287 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18288 if (result == NULL)
18289 result = write_constant_as_bytes (obstack, byte_order,
18290 type, value, len);
18291 break;
18292 case DW_FORM_data2:
18293 type = die_type (die, cu);
18294 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18295 if (result == NULL)
18296 result = write_constant_as_bytes (obstack, byte_order,
18297 type, value, len);
18298 break;
18299 case DW_FORM_data4:
18300 type = die_type (die, cu);
18301 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18302 if (result == NULL)
18303 result = write_constant_as_bytes (obstack, byte_order,
18304 type, value, len);
18305 break;
18306 case DW_FORM_data8:
18307 type = die_type (die, cu);
18308 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18309 if (result == NULL)
18310 result = write_constant_as_bytes (obstack, byte_order,
18311 type, value, len);
18312 break;
18313
18314 case DW_FORM_sdata:
18315 type = die_type (die, cu);
18316 result = write_constant_as_bytes (obstack, byte_order,
18317 type, DW_SND (attr), len);
18318 break;
18319
18320 case DW_FORM_udata:
18321 type = die_type (die, cu);
18322 result = write_constant_as_bytes (obstack, byte_order,
18323 type, DW_UNSND (attr), len);
18324 break;
18325
18326 default:
18327 complaint (&symfile_complaints,
18328 _("unsupported const value attribute form: '%s'"),
18329 dwarf_form_name (attr->form));
18330 break;
18331 }
18332
18333 return result;
18334 }
18335
18336 /* Return the type of the DIE at DIE_OFFSET in the CU named by
18337 PER_CU. */
18338
18339 struct type *
18340 dwarf2_get_die_type (cu_offset die_offset,
18341 struct dwarf2_per_cu_data *per_cu)
18342 {
18343 sect_offset die_offset_sect;
18344
18345 dw2_setup (per_cu->objfile);
18346
18347 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18348 return get_die_type_at_offset (die_offset_sect, per_cu);
18349 }
18350
18351 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
18352 On entry *REF_CU is the CU of SRC_DIE.
18353 On exit *REF_CU is the CU of the result.
18354 Returns NULL if the referenced DIE isn't found. */
18355
18356 static struct die_info *
18357 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18358 struct dwarf2_cu **ref_cu)
18359 {
18360 struct objfile *objfile = (*ref_cu)->objfile;
18361 struct die_info temp_die;
18362 struct dwarf2_cu *sig_cu;
18363 struct die_info *die;
18364
18365 /* While it might be nice to assert sig_type->type == NULL here,
18366 we can get here for DW_AT_imported_declaration where we need
18367 the DIE not the type. */
18368
18369 /* If necessary, add it to the queue and load its DIEs. */
18370
18371 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
18372 read_signatured_type (sig_type);
18373
18374 gdb_assert (sig_type->per_cu.cu != NULL);
18375
18376 sig_cu = sig_type->per_cu.cu;
18377 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18378 temp_die.offset = sig_type->type_offset_in_section;
18379 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18380 temp_die.offset.sect_off);
18381 if (die)
18382 {
18383 /* For .gdb_index version 7 keep track of included TUs.
18384 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18385 if (dwarf2_per_objfile->index_table != NULL
18386 && dwarf2_per_objfile->index_table->version <= 7)
18387 {
18388 VEC_safe_push (dwarf2_per_cu_ptr,
18389 (*ref_cu)->per_cu->imported_symtabs,
18390 sig_cu->per_cu);
18391 }
18392
18393 *ref_cu = sig_cu;
18394 return die;
18395 }
18396
18397 return NULL;
18398 }
18399
18400 /* Follow signatured type referenced by ATTR in SRC_DIE.
18401 On entry *REF_CU is the CU of SRC_DIE.
18402 On exit *REF_CU is the CU of the result.
18403 The result is the DIE of the type.
18404 If the referenced type cannot be found an error is thrown. */
18405
18406 static struct die_info *
18407 follow_die_sig (struct die_info *src_die, struct attribute *attr,
18408 struct dwarf2_cu **ref_cu)
18409 {
18410 ULONGEST signature = DW_SIGNATURE (attr);
18411 struct signatured_type *sig_type;
18412 struct die_info *die;
18413
18414 gdb_assert (attr->form == DW_FORM_ref_sig8);
18415
18416 sig_type = lookup_signatured_type (*ref_cu, signature);
18417 /* sig_type will be NULL if the signatured type is missing from
18418 the debug info. */
18419 if (sig_type == NULL)
18420 {
18421 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18422 " from DIE at 0x%x [in module %s]"),
18423 hex_string (signature), src_die->offset.sect_off,
18424 (*ref_cu)->objfile->name);
18425 }
18426
18427 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18428 if (die == NULL)
18429 {
18430 dump_die_for_error (src_die);
18431 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18432 " from DIE at 0x%x [in module %s]"),
18433 hex_string (signature), src_die->offset.sect_off,
18434 (*ref_cu)->objfile->name);
18435 }
18436
18437 return die;
18438 }
18439
18440 /* Get the type specified by SIGNATURE referenced in DIE/CU,
18441 reading in and processing the type unit if necessary. */
18442
18443 static struct type *
18444 get_signatured_type (struct die_info *die, ULONGEST signature,
18445 struct dwarf2_cu *cu)
18446 {
18447 struct signatured_type *sig_type;
18448 struct dwarf2_cu *type_cu;
18449 struct die_info *type_die;
18450 struct type *type;
18451
18452 sig_type = lookup_signatured_type (cu, signature);
18453 /* sig_type will be NULL if the signatured type is missing from
18454 the debug info. */
18455 if (sig_type == NULL)
18456 {
18457 complaint (&symfile_complaints,
18458 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18459 " from DIE at 0x%x [in module %s]"),
18460 hex_string (signature), die->offset.sect_off,
18461 dwarf2_per_objfile->objfile->name);
18462 return build_error_marker_type (cu, die);
18463 }
18464
18465 /* If we already know the type we're done. */
18466 if (sig_type->type != NULL)
18467 return sig_type->type;
18468
18469 type_cu = cu;
18470 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18471 if (type_die != NULL)
18472 {
18473 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18474 is created. This is important, for example, because for c++ classes
18475 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18476 type = read_type_die (type_die, type_cu);
18477 if (type == NULL)
18478 {
18479 complaint (&symfile_complaints,
18480 _("Dwarf Error: Cannot build signatured type %s"
18481 " referenced from DIE at 0x%x [in module %s]"),
18482 hex_string (signature), die->offset.sect_off,
18483 dwarf2_per_objfile->objfile->name);
18484 type = build_error_marker_type (cu, die);
18485 }
18486 }
18487 else
18488 {
18489 complaint (&symfile_complaints,
18490 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18491 " from DIE at 0x%x [in module %s]"),
18492 hex_string (signature), die->offset.sect_off,
18493 dwarf2_per_objfile->objfile->name);
18494 type = build_error_marker_type (cu, die);
18495 }
18496 sig_type->type = type;
18497
18498 return type;
18499 }
18500
18501 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18502 reading in and processing the type unit if necessary. */
18503
18504 static struct type *
18505 get_DW_AT_signature_type (struct die_info *die, struct attribute *attr,
18506 struct dwarf2_cu *cu) /* ARI: editCase function */
18507 {
18508 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18509 if (is_ref_attr (attr))
18510 {
18511 struct dwarf2_cu *type_cu = cu;
18512 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18513
18514 return read_type_die (type_die, type_cu);
18515 }
18516 else if (attr->form == DW_FORM_ref_sig8)
18517 {
18518 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18519 }
18520 else
18521 {
18522 complaint (&symfile_complaints,
18523 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18524 " at 0x%x [in module %s]"),
18525 dwarf_form_name (attr->form), die->offset.sect_off,
18526 dwarf2_per_objfile->objfile->name);
18527 return build_error_marker_type (cu, die);
18528 }
18529 }
18530
18531 /* Load the DIEs associated with type unit PER_CU into memory. */
18532
18533 static void
18534 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
18535 {
18536 struct signatured_type *sig_type;
18537
18538 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18539 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18540
18541 /* We have the per_cu, but we need the signatured_type.
18542 Fortunately this is an easy translation. */
18543 gdb_assert (per_cu->is_debug_types);
18544 sig_type = (struct signatured_type *) per_cu;
18545
18546 gdb_assert (per_cu->cu == NULL);
18547
18548 read_signatured_type (sig_type);
18549
18550 gdb_assert (per_cu->cu != NULL);
18551 }
18552
18553 /* die_reader_func for read_signatured_type.
18554 This is identical to load_full_comp_unit_reader,
18555 but is kept separate for now. */
18556
18557 static void
18558 read_signatured_type_reader (const struct die_reader_specs *reader,
18559 const gdb_byte *info_ptr,
18560 struct die_info *comp_unit_die,
18561 int has_children,
18562 void *data)
18563 {
18564 struct dwarf2_cu *cu = reader->cu;
18565
18566 gdb_assert (cu->die_hash == NULL);
18567 cu->die_hash =
18568 htab_create_alloc_ex (cu->header.length / 12,
18569 die_hash,
18570 die_eq,
18571 NULL,
18572 &cu->comp_unit_obstack,
18573 hashtab_obstack_allocate,
18574 dummy_obstack_deallocate);
18575
18576 if (has_children)
18577 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18578 &info_ptr, comp_unit_die);
18579 cu->dies = comp_unit_die;
18580 /* comp_unit_die is not stored in die_hash, no need. */
18581
18582 /* We try not to read any attributes in this function, because not
18583 all CUs needed for references have been loaded yet, and symbol
18584 table processing isn't initialized. But we have to set the CU language,
18585 or we won't be able to build types correctly.
18586 Similarly, if we do not read the producer, we can not apply
18587 producer-specific interpretation. */
18588 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18589 }
18590
18591 /* Read in a signatured type and build its CU and DIEs.
18592 If the type is a stub for the real type in a DWO file,
18593 read in the real type from the DWO file as well. */
18594
18595 static void
18596 read_signatured_type (struct signatured_type *sig_type)
18597 {
18598 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18599
18600 gdb_assert (per_cu->is_debug_types);
18601 gdb_assert (per_cu->cu == NULL);
18602
18603 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18604 read_signatured_type_reader, NULL);
18605 }
18606
18607 /* Decode simple location descriptions.
18608 Given a pointer to a dwarf block that defines a location, compute
18609 the location and return the value.
18610
18611 NOTE drow/2003-11-18: This function is called in two situations
18612 now: for the address of static or global variables (partial symbols
18613 only) and for offsets into structures which are expected to be
18614 (more or less) constant. The partial symbol case should go away,
18615 and only the constant case should remain. That will let this
18616 function complain more accurately. A few special modes are allowed
18617 without complaint for global variables (for instance, global
18618 register values and thread-local values).
18619
18620 A location description containing no operations indicates that the
18621 object is optimized out. The return value is 0 for that case.
18622 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18623 callers will only want a very basic result and this can become a
18624 complaint.
18625
18626 Note that stack[0] is unused except as a default error return. */
18627
18628 static CORE_ADDR
18629 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18630 {
18631 struct objfile *objfile = cu->objfile;
18632 size_t i;
18633 size_t size = blk->size;
18634 const gdb_byte *data = blk->data;
18635 CORE_ADDR stack[64];
18636 int stacki;
18637 unsigned int bytes_read, unsnd;
18638 gdb_byte op;
18639
18640 i = 0;
18641 stacki = 0;
18642 stack[stacki] = 0;
18643 stack[++stacki] = 0;
18644
18645 while (i < size)
18646 {
18647 op = data[i++];
18648 switch (op)
18649 {
18650 case DW_OP_lit0:
18651 case DW_OP_lit1:
18652 case DW_OP_lit2:
18653 case DW_OP_lit3:
18654 case DW_OP_lit4:
18655 case DW_OP_lit5:
18656 case DW_OP_lit6:
18657 case DW_OP_lit7:
18658 case DW_OP_lit8:
18659 case DW_OP_lit9:
18660 case DW_OP_lit10:
18661 case DW_OP_lit11:
18662 case DW_OP_lit12:
18663 case DW_OP_lit13:
18664 case DW_OP_lit14:
18665 case DW_OP_lit15:
18666 case DW_OP_lit16:
18667 case DW_OP_lit17:
18668 case DW_OP_lit18:
18669 case DW_OP_lit19:
18670 case DW_OP_lit20:
18671 case DW_OP_lit21:
18672 case DW_OP_lit22:
18673 case DW_OP_lit23:
18674 case DW_OP_lit24:
18675 case DW_OP_lit25:
18676 case DW_OP_lit26:
18677 case DW_OP_lit27:
18678 case DW_OP_lit28:
18679 case DW_OP_lit29:
18680 case DW_OP_lit30:
18681 case DW_OP_lit31:
18682 stack[++stacki] = op - DW_OP_lit0;
18683 break;
18684
18685 case DW_OP_reg0:
18686 case DW_OP_reg1:
18687 case DW_OP_reg2:
18688 case DW_OP_reg3:
18689 case DW_OP_reg4:
18690 case DW_OP_reg5:
18691 case DW_OP_reg6:
18692 case DW_OP_reg7:
18693 case DW_OP_reg8:
18694 case DW_OP_reg9:
18695 case DW_OP_reg10:
18696 case DW_OP_reg11:
18697 case DW_OP_reg12:
18698 case DW_OP_reg13:
18699 case DW_OP_reg14:
18700 case DW_OP_reg15:
18701 case DW_OP_reg16:
18702 case DW_OP_reg17:
18703 case DW_OP_reg18:
18704 case DW_OP_reg19:
18705 case DW_OP_reg20:
18706 case DW_OP_reg21:
18707 case DW_OP_reg22:
18708 case DW_OP_reg23:
18709 case DW_OP_reg24:
18710 case DW_OP_reg25:
18711 case DW_OP_reg26:
18712 case DW_OP_reg27:
18713 case DW_OP_reg28:
18714 case DW_OP_reg29:
18715 case DW_OP_reg30:
18716 case DW_OP_reg31:
18717 stack[++stacki] = op - DW_OP_reg0;
18718 if (i < size)
18719 dwarf2_complex_location_expr_complaint ();
18720 break;
18721
18722 case DW_OP_regx:
18723 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18724 i += bytes_read;
18725 stack[++stacki] = unsnd;
18726 if (i < size)
18727 dwarf2_complex_location_expr_complaint ();
18728 break;
18729
18730 case DW_OP_addr:
18731 stack[++stacki] = read_address (objfile->obfd, &data[i],
18732 cu, &bytes_read);
18733 i += bytes_read;
18734 break;
18735
18736 case DW_OP_const1u:
18737 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18738 i += 1;
18739 break;
18740
18741 case DW_OP_const1s:
18742 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18743 i += 1;
18744 break;
18745
18746 case DW_OP_const2u:
18747 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18748 i += 2;
18749 break;
18750
18751 case DW_OP_const2s:
18752 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18753 i += 2;
18754 break;
18755
18756 case DW_OP_const4u:
18757 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18758 i += 4;
18759 break;
18760
18761 case DW_OP_const4s:
18762 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18763 i += 4;
18764 break;
18765
18766 case DW_OP_const8u:
18767 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18768 i += 8;
18769 break;
18770
18771 case DW_OP_constu:
18772 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18773 &bytes_read);
18774 i += bytes_read;
18775 break;
18776
18777 case DW_OP_consts:
18778 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18779 i += bytes_read;
18780 break;
18781
18782 case DW_OP_dup:
18783 stack[stacki + 1] = stack[stacki];
18784 stacki++;
18785 break;
18786
18787 case DW_OP_plus:
18788 stack[stacki - 1] += stack[stacki];
18789 stacki--;
18790 break;
18791
18792 case DW_OP_plus_uconst:
18793 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18794 &bytes_read);
18795 i += bytes_read;
18796 break;
18797
18798 case DW_OP_minus:
18799 stack[stacki - 1] -= stack[stacki];
18800 stacki--;
18801 break;
18802
18803 case DW_OP_deref:
18804 /* If we're not the last op, then we definitely can't encode
18805 this using GDB's address_class enum. This is valid for partial
18806 global symbols, although the variable's address will be bogus
18807 in the psymtab. */
18808 if (i < size)
18809 dwarf2_complex_location_expr_complaint ();
18810 break;
18811
18812 case DW_OP_GNU_push_tls_address:
18813 /* The top of the stack has the offset from the beginning
18814 of the thread control block at which the variable is located. */
18815 /* Nothing should follow this operator, so the top of stack would
18816 be returned. */
18817 /* This is valid for partial global symbols, but the variable's
18818 address will be bogus in the psymtab. Make it always at least
18819 non-zero to not look as a variable garbage collected by linker
18820 which have DW_OP_addr 0. */
18821 if (i < size)
18822 dwarf2_complex_location_expr_complaint ();
18823 stack[stacki]++;
18824 break;
18825
18826 case DW_OP_GNU_uninit:
18827 break;
18828
18829 case DW_OP_GNU_addr_index:
18830 case DW_OP_GNU_const_index:
18831 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18832 &bytes_read);
18833 i += bytes_read;
18834 break;
18835
18836 default:
18837 {
18838 const char *name = get_DW_OP_name (op);
18839
18840 if (name)
18841 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18842 name);
18843 else
18844 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18845 op);
18846 }
18847
18848 return (stack[stacki]);
18849 }
18850
18851 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18852 outside of the allocated space. Also enforce minimum>0. */
18853 if (stacki >= ARRAY_SIZE (stack) - 1)
18854 {
18855 complaint (&symfile_complaints,
18856 _("location description stack overflow"));
18857 return 0;
18858 }
18859
18860 if (stacki <= 0)
18861 {
18862 complaint (&symfile_complaints,
18863 _("location description stack underflow"));
18864 return 0;
18865 }
18866 }
18867 return (stack[stacki]);
18868 }
18869
18870 /* memory allocation interface */
18871
18872 static struct dwarf_block *
18873 dwarf_alloc_block (struct dwarf2_cu *cu)
18874 {
18875 struct dwarf_block *blk;
18876
18877 blk = (struct dwarf_block *)
18878 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18879 return (blk);
18880 }
18881
18882 static struct die_info *
18883 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18884 {
18885 struct die_info *die;
18886 size_t size = sizeof (struct die_info);
18887
18888 if (num_attrs > 1)
18889 size += (num_attrs - 1) * sizeof (struct attribute);
18890
18891 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18892 memset (die, 0, sizeof (struct die_info));
18893 return (die);
18894 }
18895
18896 \f
18897 /* Macro support. */
18898
18899 /* Return file name relative to the compilation directory of file number I in
18900 *LH's file name table. The result is allocated using xmalloc; the caller is
18901 responsible for freeing it. */
18902
18903 static char *
18904 file_file_name (int file, struct line_header *lh)
18905 {
18906 /* Is the file number a valid index into the line header's file name
18907 table? Remember that file numbers start with one, not zero. */
18908 if (1 <= file && file <= lh->num_file_names)
18909 {
18910 struct file_entry *fe = &lh->file_names[file - 1];
18911
18912 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18913 return xstrdup (fe->name);
18914 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18915 fe->name, NULL);
18916 }
18917 else
18918 {
18919 /* The compiler produced a bogus file number. We can at least
18920 record the macro definitions made in the file, even if we
18921 won't be able to find the file by name. */
18922 char fake_name[80];
18923
18924 xsnprintf (fake_name, sizeof (fake_name),
18925 "<bad macro file number %d>", file);
18926
18927 complaint (&symfile_complaints,
18928 _("bad file number in macro information (%d)"),
18929 file);
18930
18931 return xstrdup (fake_name);
18932 }
18933 }
18934
18935 /* Return the full name of file number I in *LH's file name table.
18936 Use COMP_DIR as the name of the current directory of the
18937 compilation. The result is allocated using xmalloc; the caller is
18938 responsible for freeing it. */
18939 static char *
18940 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18941 {
18942 /* Is the file number a valid index into the line header's file name
18943 table? Remember that file numbers start with one, not zero. */
18944 if (1 <= file && file <= lh->num_file_names)
18945 {
18946 char *relative = file_file_name (file, lh);
18947
18948 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18949 return relative;
18950 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18951 }
18952 else
18953 return file_file_name (file, lh);
18954 }
18955
18956
18957 static struct macro_source_file *
18958 macro_start_file (int file, int line,
18959 struct macro_source_file *current_file,
18960 const char *comp_dir,
18961 struct line_header *lh, struct objfile *objfile)
18962 {
18963 /* File name relative to the compilation directory of this source file. */
18964 char *file_name = file_file_name (file, lh);
18965
18966 /* We don't create a macro table for this compilation unit
18967 at all until we actually get a filename. */
18968 if (! pending_macros)
18969 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18970 objfile->per_bfd->macro_cache,
18971 comp_dir);
18972
18973 if (! current_file)
18974 {
18975 /* If we have no current file, then this must be the start_file
18976 directive for the compilation unit's main source file. */
18977 current_file = macro_set_main (pending_macros, file_name);
18978 macro_define_special (pending_macros);
18979 }
18980 else
18981 current_file = macro_include (current_file, line, file_name);
18982
18983 xfree (file_name);
18984
18985 return current_file;
18986 }
18987
18988
18989 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18990 followed by a null byte. */
18991 static char *
18992 copy_string (const char *buf, int len)
18993 {
18994 char *s = xmalloc (len + 1);
18995
18996 memcpy (s, buf, len);
18997 s[len] = '\0';
18998 return s;
18999 }
19000
19001
19002 static const char *
19003 consume_improper_spaces (const char *p, const char *body)
19004 {
19005 if (*p == ' ')
19006 {
19007 complaint (&symfile_complaints,
19008 _("macro definition contains spaces "
19009 "in formal argument list:\n`%s'"),
19010 body);
19011
19012 while (*p == ' ')
19013 p++;
19014 }
19015
19016 return p;
19017 }
19018
19019
19020 static void
19021 parse_macro_definition (struct macro_source_file *file, int line,
19022 const char *body)
19023 {
19024 const char *p;
19025
19026 /* The body string takes one of two forms. For object-like macro
19027 definitions, it should be:
19028
19029 <macro name> " " <definition>
19030
19031 For function-like macro definitions, it should be:
19032
19033 <macro name> "() " <definition>
19034 or
19035 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19036
19037 Spaces may appear only where explicitly indicated, and in the
19038 <definition>.
19039
19040 The Dwarf 2 spec says that an object-like macro's name is always
19041 followed by a space, but versions of GCC around March 2002 omit
19042 the space when the macro's definition is the empty string.
19043
19044 The Dwarf 2 spec says that there should be no spaces between the
19045 formal arguments in a function-like macro's formal argument list,
19046 but versions of GCC around March 2002 include spaces after the
19047 commas. */
19048
19049
19050 /* Find the extent of the macro name. The macro name is terminated
19051 by either a space or null character (for an object-like macro) or
19052 an opening paren (for a function-like macro). */
19053 for (p = body; *p; p++)
19054 if (*p == ' ' || *p == '(')
19055 break;
19056
19057 if (*p == ' ' || *p == '\0')
19058 {
19059 /* It's an object-like macro. */
19060 int name_len = p - body;
19061 char *name = copy_string (body, name_len);
19062 const char *replacement;
19063
19064 if (*p == ' ')
19065 replacement = body + name_len + 1;
19066 else
19067 {
19068 dwarf2_macro_malformed_definition_complaint (body);
19069 replacement = body + name_len;
19070 }
19071
19072 macro_define_object (file, line, name, replacement);
19073
19074 xfree (name);
19075 }
19076 else if (*p == '(')
19077 {
19078 /* It's a function-like macro. */
19079 char *name = copy_string (body, p - body);
19080 int argc = 0;
19081 int argv_size = 1;
19082 char **argv = xmalloc (argv_size * sizeof (*argv));
19083
19084 p++;
19085
19086 p = consume_improper_spaces (p, body);
19087
19088 /* Parse the formal argument list. */
19089 while (*p && *p != ')')
19090 {
19091 /* Find the extent of the current argument name. */
19092 const char *arg_start = p;
19093
19094 while (*p && *p != ',' && *p != ')' && *p != ' ')
19095 p++;
19096
19097 if (! *p || p == arg_start)
19098 dwarf2_macro_malformed_definition_complaint (body);
19099 else
19100 {
19101 /* Make sure argv has room for the new argument. */
19102 if (argc >= argv_size)
19103 {
19104 argv_size *= 2;
19105 argv = xrealloc (argv, argv_size * sizeof (*argv));
19106 }
19107
19108 argv[argc++] = copy_string (arg_start, p - arg_start);
19109 }
19110
19111 p = consume_improper_spaces (p, body);
19112
19113 /* Consume the comma, if present. */
19114 if (*p == ',')
19115 {
19116 p++;
19117
19118 p = consume_improper_spaces (p, body);
19119 }
19120 }
19121
19122 if (*p == ')')
19123 {
19124 p++;
19125
19126 if (*p == ' ')
19127 /* Perfectly formed definition, no complaints. */
19128 macro_define_function (file, line, name,
19129 argc, (const char **) argv,
19130 p + 1);
19131 else if (*p == '\0')
19132 {
19133 /* Complain, but do define it. */
19134 dwarf2_macro_malformed_definition_complaint (body);
19135 macro_define_function (file, line, name,
19136 argc, (const char **) argv,
19137 p);
19138 }
19139 else
19140 /* Just complain. */
19141 dwarf2_macro_malformed_definition_complaint (body);
19142 }
19143 else
19144 /* Just complain. */
19145 dwarf2_macro_malformed_definition_complaint (body);
19146
19147 xfree (name);
19148 {
19149 int i;
19150
19151 for (i = 0; i < argc; i++)
19152 xfree (argv[i]);
19153 }
19154 xfree (argv);
19155 }
19156 else
19157 dwarf2_macro_malformed_definition_complaint (body);
19158 }
19159
19160 /* Skip some bytes from BYTES according to the form given in FORM.
19161 Returns the new pointer. */
19162
19163 static const gdb_byte *
19164 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19165 enum dwarf_form form,
19166 unsigned int offset_size,
19167 struct dwarf2_section_info *section)
19168 {
19169 unsigned int bytes_read;
19170
19171 switch (form)
19172 {
19173 case DW_FORM_data1:
19174 case DW_FORM_flag:
19175 ++bytes;
19176 break;
19177
19178 case DW_FORM_data2:
19179 bytes += 2;
19180 break;
19181
19182 case DW_FORM_data4:
19183 bytes += 4;
19184 break;
19185
19186 case DW_FORM_data8:
19187 bytes += 8;
19188 break;
19189
19190 case DW_FORM_string:
19191 read_direct_string (abfd, bytes, &bytes_read);
19192 bytes += bytes_read;
19193 break;
19194
19195 case DW_FORM_sec_offset:
19196 case DW_FORM_strp:
19197 case DW_FORM_GNU_strp_alt:
19198 bytes += offset_size;
19199 break;
19200
19201 case DW_FORM_block:
19202 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19203 bytes += bytes_read;
19204 break;
19205
19206 case DW_FORM_block1:
19207 bytes += 1 + read_1_byte (abfd, bytes);
19208 break;
19209 case DW_FORM_block2:
19210 bytes += 2 + read_2_bytes (abfd, bytes);
19211 break;
19212 case DW_FORM_block4:
19213 bytes += 4 + read_4_bytes (abfd, bytes);
19214 break;
19215
19216 case DW_FORM_sdata:
19217 case DW_FORM_udata:
19218 case DW_FORM_GNU_addr_index:
19219 case DW_FORM_GNU_str_index:
19220 bytes = gdb_skip_leb128 (bytes, buffer_end);
19221 if (bytes == NULL)
19222 {
19223 dwarf2_section_buffer_overflow_complaint (section);
19224 return NULL;
19225 }
19226 break;
19227
19228 default:
19229 {
19230 complain:
19231 complaint (&symfile_complaints,
19232 _("invalid form 0x%x in `%s'"),
19233 form,
19234 section->asection->name);
19235 return NULL;
19236 }
19237 }
19238
19239 return bytes;
19240 }
19241
19242 /* A helper for dwarf_decode_macros that handles skipping an unknown
19243 opcode. Returns an updated pointer to the macro data buffer; or,
19244 on error, issues a complaint and returns NULL. */
19245
19246 static const gdb_byte *
19247 skip_unknown_opcode (unsigned int opcode,
19248 const gdb_byte **opcode_definitions,
19249 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19250 bfd *abfd,
19251 unsigned int offset_size,
19252 struct dwarf2_section_info *section)
19253 {
19254 unsigned int bytes_read, i;
19255 unsigned long arg;
19256 const gdb_byte *defn;
19257
19258 if (opcode_definitions[opcode] == NULL)
19259 {
19260 complaint (&symfile_complaints,
19261 _("unrecognized DW_MACFINO opcode 0x%x"),
19262 opcode);
19263 return NULL;
19264 }
19265
19266 defn = opcode_definitions[opcode];
19267 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19268 defn += bytes_read;
19269
19270 for (i = 0; i < arg; ++i)
19271 {
19272 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19273 section);
19274 if (mac_ptr == NULL)
19275 {
19276 /* skip_form_bytes already issued the complaint. */
19277 return NULL;
19278 }
19279 }
19280
19281 return mac_ptr;
19282 }
19283
19284 /* A helper function which parses the header of a macro section.
19285 If the macro section is the extended (for now called "GNU") type,
19286 then this updates *OFFSET_SIZE. Returns a pointer to just after
19287 the header, or issues a complaint and returns NULL on error. */
19288
19289 static const gdb_byte *
19290 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
19291 bfd *abfd,
19292 const gdb_byte *mac_ptr,
19293 unsigned int *offset_size,
19294 int section_is_gnu)
19295 {
19296 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
19297
19298 if (section_is_gnu)
19299 {
19300 unsigned int version, flags;
19301
19302 version = read_2_bytes (abfd, mac_ptr);
19303 if (version != 4)
19304 {
19305 complaint (&symfile_complaints,
19306 _("unrecognized version `%d' in .debug_macro section"),
19307 version);
19308 return NULL;
19309 }
19310 mac_ptr += 2;
19311
19312 flags = read_1_byte (abfd, mac_ptr);
19313 ++mac_ptr;
19314 *offset_size = (flags & 1) ? 8 : 4;
19315
19316 if ((flags & 2) != 0)
19317 /* We don't need the line table offset. */
19318 mac_ptr += *offset_size;
19319
19320 /* Vendor opcode descriptions. */
19321 if ((flags & 4) != 0)
19322 {
19323 unsigned int i, count;
19324
19325 count = read_1_byte (abfd, mac_ptr);
19326 ++mac_ptr;
19327 for (i = 0; i < count; ++i)
19328 {
19329 unsigned int opcode, bytes_read;
19330 unsigned long arg;
19331
19332 opcode = read_1_byte (abfd, mac_ptr);
19333 ++mac_ptr;
19334 opcode_definitions[opcode] = mac_ptr;
19335 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19336 mac_ptr += bytes_read;
19337 mac_ptr += arg;
19338 }
19339 }
19340 }
19341
19342 return mac_ptr;
19343 }
19344
19345 /* A helper for dwarf_decode_macros that handles the GNU extensions,
19346 including DW_MACRO_GNU_transparent_include. */
19347
19348 static void
19349 dwarf_decode_macro_bytes (bfd *abfd,
19350 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19351 struct macro_source_file *current_file,
19352 struct line_header *lh, const char *comp_dir,
19353 struct dwarf2_section_info *section,
19354 int section_is_gnu, int section_is_dwz,
19355 unsigned int offset_size,
19356 struct objfile *objfile,
19357 htab_t include_hash)
19358 {
19359 enum dwarf_macro_record_type macinfo_type;
19360 int at_commandline;
19361 const gdb_byte *opcode_definitions[256];
19362
19363 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19364 &offset_size, section_is_gnu);
19365 if (mac_ptr == NULL)
19366 {
19367 /* We already issued a complaint. */
19368 return;
19369 }
19370
19371 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19372 GDB is still reading the definitions from command line. First
19373 DW_MACINFO_start_file will need to be ignored as it was already executed
19374 to create CURRENT_FILE for the main source holding also the command line
19375 definitions. On first met DW_MACINFO_start_file this flag is reset to
19376 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19377
19378 at_commandline = 1;
19379
19380 do
19381 {
19382 /* Do we at least have room for a macinfo type byte? */
19383 if (mac_ptr >= mac_end)
19384 {
19385 dwarf2_section_buffer_overflow_complaint (section);
19386 break;
19387 }
19388
19389 macinfo_type = read_1_byte (abfd, mac_ptr);
19390 mac_ptr++;
19391
19392 /* Note that we rely on the fact that the corresponding GNU and
19393 DWARF constants are the same. */
19394 switch (macinfo_type)
19395 {
19396 /* A zero macinfo type indicates the end of the macro
19397 information. */
19398 case 0:
19399 break;
19400
19401 case DW_MACRO_GNU_define:
19402 case DW_MACRO_GNU_undef:
19403 case DW_MACRO_GNU_define_indirect:
19404 case DW_MACRO_GNU_undef_indirect:
19405 case DW_MACRO_GNU_define_indirect_alt:
19406 case DW_MACRO_GNU_undef_indirect_alt:
19407 {
19408 unsigned int bytes_read;
19409 int line;
19410 const char *body;
19411 int is_define;
19412
19413 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19414 mac_ptr += bytes_read;
19415
19416 if (macinfo_type == DW_MACRO_GNU_define
19417 || macinfo_type == DW_MACRO_GNU_undef)
19418 {
19419 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19420 mac_ptr += bytes_read;
19421 }
19422 else
19423 {
19424 LONGEST str_offset;
19425
19426 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19427 mac_ptr += offset_size;
19428
19429 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
19430 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19431 || section_is_dwz)
19432 {
19433 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19434
19435 body = read_indirect_string_from_dwz (dwz, str_offset);
19436 }
19437 else
19438 body = read_indirect_string_at_offset (abfd, str_offset);
19439 }
19440
19441 is_define = (macinfo_type == DW_MACRO_GNU_define
19442 || macinfo_type == DW_MACRO_GNU_define_indirect
19443 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
19444 if (! current_file)
19445 {
19446 /* DWARF violation as no main source is present. */
19447 complaint (&symfile_complaints,
19448 _("debug info with no main source gives macro %s "
19449 "on line %d: %s"),
19450 is_define ? _("definition") : _("undefinition"),
19451 line, body);
19452 break;
19453 }
19454 if ((line == 0 && !at_commandline)
19455 || (line != 0 && at_commandline))
19456 complaint (&symfile_complaints,
19457 _("debug info gives %s macro %s with %s line %d: %s"),
19458 at_commandline ? _("command-line") : _("in-file"),
19459 is_define ? _("definition") : _("undefinition"),
19460 line == 0 ? _("zero") : _("non-zero"), line, body);
19461
19462 if (is_define)
19463 parse_macro_definition (current_file, line, body);
19464 else
19465 {
19466 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
19467 || macinfo_type == DW_MACRO_GNU_undef_indirect
19468 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
19469 macro_undef (current_file, line, body);
19470 }
19471 }
19472 break;
19473
19474 case DW_MACRO_GNU_start_file:
19475 {
19476 unsigned int bytes_read;
19477 int line, file;
19478
19479 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19480 mac_ptr += bytes_read;
19481 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19482 mac_ptr += bytes_read;
19483
19484 if ((line == 0 && !at_commandline)
19485 || (line != 0 && at_commandline))
19486 complaint (&symfile_complaints,
19487 _("debug info gives source %d included "
19488 "from %s at %s line %d"),
19489 file, at_commandline ? _("command-line") : _("file"),
19490 line == 0 ? _("zero") : _("non-zero"), line);
19491
19492 if (at_commandline)
19493 {
19494 /* This DW_MACRO_GNU_start_file was executed in the
19495 pass one. */
19496 at_commandline = 0;
19497 }
19498 else
19499 current_file = macro_start_file (file, line,
19500 current_file, comp_dir,
19501 lh, objfile);
19502 }
19503 break;
19504
19505 case DW_MACRO_GNU_end_file:
19506 if (! current_file)
19507 complaint (&symfile_complaints,
19508 _("macro debug info has an unmatched "
19509 "`close_file' directive"));
19510 else
19511 {
19512 current_file = current_file->included_by;
19513 if (! current_file)
19514 {
19515 enum dwarf_macro_record_type next_type;
19516
19517 /* GCC circa March 2002 doesn't produce the zero
19518 type byte marking the end of the compilation
19519 unit. Complain if it's not there, but exit no
19520 matter what. */
19521
19522 /* Do we at least have room for a macinfo type byte? */
19523 if (mac_ptr >= mac_end)
19524 {
19525 dwarf2_section_buffer_overflow_complaint (section);
19526 return;
19527 }
19528
19529 /* We don't increment mac_ptr here, so this is just
19530 a look-ahead. */
19531 next_type = read_1_byte (abfd, mac_ptr);
19532 if (next_type != 0)
19533 complaint (&symfile_complaints,
19534 _("no terminating 0-type entry for "
19535 "macros in `.debug_macinfo' section"));
19536
19537 return;
19538 }
19539 }
19540 break;
19541
19542 case DW_MACRO_GNU_transparent_include:
19543 case DW_MACRO_GNU_transparent_include_alt:
19544 {
19545 LONGEST offset;
19546 void **slot;
19547 bfd *include_bfd = abfd;
19548 struct dwarf2_section_info *include_section = section;
19549 struct dwarf2_section_info alt_section;
19550 const gdb_byte *include_mac_end = mac_end;
19551 int is_dwz = section_is_dwz;
19552 const gdb_byte *new_mac_ptr;
19553
19554 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19555 mac_ptr += offset_size;
19556
19557 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19558 {
19559 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19560
19561 dwarf2_read_section (dwarf2_per_objfile->objfile,
19562 &dwz->macro);
19563
19564 include_bfd = dwz->macro.asection->owner;
19565 include_section = &dwz->macro;
19566 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19567 is_dwz = 1;
19568 }
19569
19570 new_mac_ptr = include_section->buffer + offset;
19571 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19572
19573 if (*slot != NULL)
19574 {
19575 /* This has actually happened; see
19576 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19577 complaint (&symfile_complaints,
19578 _("recursive DW_MACRO_GNU_transparent_include in "
19579 ".debug_macro section"));
19580 }
19581 else
19582 {
19583 *slot = (void *) new_mac_ptr;
19584
19585 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19586 include_mac_end, current_file,
19587 lh, comp_dir,
19588 section, section_is_gnu, is_dwz,
19589 offset_size, objfile, include_hash);
19590
19591 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19592 }
19593 }
19594 break;
19595
19596 case DW_MACINFO_vendor_ext:
19597 if (!section_is_gnu)
19598 {
19599 unsigned int bytes_read;
19600 int constant;
19601
19602 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19603 mac_ptr += bytes_read;
19604 read_direct_string (abfd, mac_ptr, &bytes_read);
19605 mac_ptr += bytes_read;
19606
19607 /* We don't recognize any vendor extensions. */
19608 break;
19609 }
19610 /* FALLTHROUGH */
19611
19612 default:
19613 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19614 mac_ptr, mac_end, abfd, offset_size,
19615 section);
19616 if (mac_ptr == NULL)
19617 return;
19618 break;
19619 }
19620 } while (macinfo_type != 0);
19621 }
19622
19623 static void
19624 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19625 const char *comp_dir, int section_is_gnu)
19626 {
19627 struct objfile *objfile = dwarf2_per_objfile->objfile;
19628 struct line_header *lh = cu->line_header;
19629 bfd *abfd;
19630 const gdb_byte *mac_ptr, *mac_end;
19631 struct macro_source_file *current_file = 0;
19632 enum dwarf_macro_record_type macinfo_type;
19633 unsigned int offset_size = cu->header.offset_size;
19634 const gdb_byte *opcode_definitions[256];
19635 struct cleanup *cleanup;
19636 htab_t include_hash;
19637 void **slot;
19638 struct dwarf2_section_info *section;
19639 const char *section_name;
19640
19641 if (cu->dwo_unit != NULL)
19642 {
19643 if (section_is_gnu)
19644 {
19645 section = &cu->dwo_unit->dwo_file->sections.macro;
19646 section_name = ".debug_macro.dwo";
19647 }
19648 else
19649 {
19650 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19651 section_name = ".debug_macinfo.dwo";
19652 }
19653 }
19654 else
19655 {
19656 if (section_is_gnu)
19657 {
19658 section = &dwarf2_per_objfile->macro;
19659 section_name = ".debug_macro";
19660 }
19661 else
19662 {
19663 section = &dwarf2_per_objfile->macinfo;
19664 section_name = ".debug_macinfo";
19665 }
19666 }
19667
19668 dwarf2_read_section (objfile, section);
19669 if (section->buffer == NULL)
19670 {
19671 complaint (&symfile_complaints, _("missing %s section"), section_name);
19672 return;
19673 }
19674 abfd = section->asection->owner;
19675
19676 /* First pass: Find the name of the base filename.
19677 This filename is needed in order to process all macros whose definition
19678 (or undefinition) comes from the command line. These macros are defined
19679 before the first DW_MACINFO_start_file entry, and yet still need to be
19680 associated to the base file.
19681
19682 To determine the base file name, we scan the macro definitions until we
19683 reach the first DW_MACINFO_start_file entry. We then initialize
19684 CURRENT_FILE accordingly so that any macro definition found before the
19685 first DW_MACINFO_start_file can still be associated to the base file. */
19686
19687 mac_ptr = section->buffer + offset;
19688 mac_end = section->buffer + section->size;
19689
19690 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19691 &offset_size, section_is_gnu);
19692 if (mac_ptr == NULL)
19693 {
19694 /* We already issued a complaint. */
19695 return;
19696 }
19697
19698 do
19699 {
19700 /* Do we at least have room for a macinfo type byte? */
19701 if (mac_ptr >= mac_end)
19702 {
19703 /* Complaint is printed during the second pass as GDB will probably
19704 stop the first pass earlier upon finding
19705 DW_MACINFO_start_file. */
19706 break;
19707 }
19708
19709 macinfo_type = read_1_byte (abfd, mac_ptr);
19710 mac_ptr++;
19711
19712 /* Note that we rely on the fact that the corresponding GNU and
19713 DWARF constants are the same. */
19714 switch (macinfo_type)
19715 {
19716 /* A zero macinfo type indicates the end of the macro
19717 information. */
19718 case 0:
19719 break;
19720
19721 case DW_MACRO_GNU_define:
19722 case DW_MACRO_GNU_undef:
19723 /* Only skip the data by MAC_PTR. */
19724 {
19725 unsigned int bytes_read;
19726
19727 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19728 mac_ptr += bytes_read;
19729 read_direct_string (abfd, mac_ptr, &bytes_read);
19730 mac_ptr += bytes_read;
19731 }
19732 break;
19733
19734 case DW_MACRO_GNU_start_file:
19735 {
19736 unsigned int bytes_read;
19737 int line, file;
19738
19739 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19740 mac_ptr += bytes_read;
19741 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19742 mac_ptr += bytes_read;
19743
19744 current_file = macro_start_file (file, line, current_file,
19745 comp_dir, lh, objfile);
19746 }
19747 break;
19748
19749 case DW_MACRO_GNU_end_file:
19750 /* No data to skip by MAC_PTR. */
19751 break;
19752
19753 case DW_MACRO_GNU_define_indirect:
19754 case DW_MACRO_GNU_undef_indirect:
19755 case DW_MACRO_GNU_define_indirect_alt:
19756 case DW_MACRO_GNU_undef_indirect_alt:
19757 {
19758 unsigned int bytes_read;
19759
19760 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19761 mac_ptr += bytes_read;
19762 mac_ptr += offset_size;
19763 }
19764 break;
19765
19766 case DW_MACRO_GNU_transparent_include:
19767 case DW_MACRO_GNU_transparent_include_alt:
19768 /* Note that, according to the spec, a transparent include
19769 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19770 skip this opcode. */
19771 mac_ptr += offset_size;
19772 break;
19773
19774 case DW_MACINFO_vendor_ext:
19775 /* Only skip the data by MAC_PTR. */
19776 if (!section_is_gnu)
19777 {
19778 unsigned int bytes_read;
19779
19780 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19781 mac_ptr += bytes_read;
19782 read_direct_string (abfd, mac_ptr, &bytes_read);
19783 mac_ptr += bytes_read;
19784 }
19785 /* FALLTHROUGH */
19786
19787 default:
19788 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19789 mac_ptr, mac_end, abfd, offset_size,
19790 section);
19791 if (mac_ptr == NULL)
19792 return;
19793 break;
19794 }
19795 } while (macinfo_type != 0 && current_file == NULL);
19796
19797 /* Second pass: Process all entries.
19798
19799 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19800 command-line macro definitions/undefinitions. This flag is unset when we
19801 reach the first DW_MACINFO_start_file entry. */
19802
19803 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19804 NULL, xcalloc, xfree);
19805 cleanup = make_cleanup_htab_delete (include_hash);
19806 mac_ptr = section->buffer + offset;
19807 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19808 *slot = (void *) mac_ptr;
19809 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19810 current_file, lh, comp_dir, section,
19811 section_is_gnu, 0,
19812 offset_size, objfile, include_hash);
19813 do_cleanups (cleanup);
19814 }
19815
19816 /* Check if the attribute's form is a DW_FORM_block*
19817 if so return true else false. */
19818
19819 static int
19820 attr_form_is_block (struct attribute *attr)
19821 {
19822 return (attr == NULL ? 0 :
19823 attr->form == DW_FORM_block1
19824 || attr->form == DW_FORM_block2
19825 || attr->form == DW_FORM_block4
19826 || attr->form == DW_FORM_block
19827 || attr->form == DW_FORM_exprloc);
19828 }
19829
19830 /* Return non-zero if ATTR's value is a section offset --- classes
19831 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19832 You may use DW_UNSND (attr) to retrieve such offsets.
19833
19834 Section 7.5.4, "Attribute Encodings", explains that no attribute
19835 may have a value that belongs to more than one of these classes; it
19836 would be ambiguous if we did, because we use the same forms for all
19837 of them. */
19838
19839 static int
19840 attr_form_is_section_offset (struct attribute *attr)
19841 {
19842 return (attr->form == DW_FORM_data4
19843 || attr->form == DW_FORM_data8
19844 || attr->form == DW_FORM_sec_offset);
19845 }
19846
19847 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19848 zero otherwise. When this function returns true, you can apply
19849 dwarf2_get_attr_constant_value to it.
19850
19851 However, note that for some attributes you must check
19852 attr_form_is_section_offset before using this test. DW_FORM_data4
19853 and DW_FORM_data8 are members of both the constant class, and of
19854 the classes that contain offsets into other debug sections
19855 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19856 that, if an attribute's can be either a constant or one of the
19857 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19858 taken as section offsets, not constants. */
19859
19860 static int
19861 attr_form_is_constant (struct attribute *attr)
19862 {
19863 switch (attr->form)
19864 {
19865 case DW_FORM_sdata:
19866 case DW_FORM_udata:
19867 case DW_FORM_data1:
19868 case DW_FORM_data2:
19869 case DW_FORM_data4:
19870 case DW_FORM_data8:
19871 return 1;
19872 default:
19873 return 0;
19874 }
19875 }
19876
19877 /* Return the .debug_loc section to use for CU.
19878 For DWO files use .debug_loc.dwo. */
19879
19880 static struct dwarf2_section_info *
19881 cu_debug_loc_section (struct dwarf2_cu *cu)
19882 {
19883 if (cu->dwo_unit)
19884 return &cu->dwo_unit->dwo_file->sections.loc;
19885 return &dwarf2_per_objfile->loc;
19886 }
19887
19888 /* A helper function that fills in a dwarf2_loclist_baton. */
19889
19890 static void
19891 fill_in_loclist_baton (struct dwarf2_cu *cu,
19892 struct dwarf2_loclist_baton *baton,
19893 struct attribute *attr)
19894 {
19895 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19896
19897 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19898
19899 baton->per_cu = cu->per_cu;
19900 gdb_assert (baton->per_cu);
19901 /* We don't know how long the location list is, but make sure we
19902 don't run off the edge of the section. */
19903 baton->size = section->size - DW_UNSND (attr);
19904 baton->data = section->buffer + DW_UNSND (attr);
19905 baton->base_address = cu->base_address;
19906 baton->from_dwo = cu->dwo_unit != NULL;
19907 }
19908
19909 static void
19910 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19911 struct dwarf2_cu *cu, int is_block)
19912 {
19913 struct objfile *objfile = dwarf2_per_objfile->objfile;
19914 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19915
19916 if (attr_form_is_section_offset (attr)
19917 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19918 the section. If so, fall through to the complaint in the
19919 other branch. */
19920 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19921 {
19922 struct dwarf2_loclist_baton *baton;
19923
19924 baton = obstack_alloc (&objfile->objfile_obstack,
19925 sizeof (struct dwarf2_loclist_baton));
19926
19927 fill_in_loclist_baton (cu, baton, attr);
19928
19929 if (cu->base_known == 0)
19930 complaint (&symfile_complaints,
19931 _("Location list used without "
19932 "specifying the CU base address."));
19933
19934 SYMBOL_ACLASS_INDEX (sym) = (is_block
19935 ? dwarf2_loclist_block_index
19936 : dwarf2_loclist_index);
19937 SYMBOL_LOCATION_BATON (sym) = baton;
19938 }
19939 else
19940 {
19941 struct dwarf2_locexpr_baton *baton;
19942
19943 baton = obstack_alloc (&objfile->objfile_obstack,
19944 sizeof (struct dwarf2_locexpr_baton));
19945 baton->per_cu = cu->per_cu;
19946 gdb_assert (baton->per_cu);
19947
19948 if (attr_form_is_block (attr))
19949 {
19950 /* Note that we're just copying the block's data pointer
19951 here, not the actual data. We're still pointing into the
19952 info_buffer for SYM's objfile; right now we never release
19953 that buffer, but when we do clean up properly this may
19954 need to change. */
19955 baton->size = DW_BLOCK (attr)->size;
19956 baton->data = DW_BLOCK (attr)->data;
19957 }
19958 else
19959 {
19960 dwarf2_invalid_attrib_class_complaint ("location description",
19961 SYMBOL_NATURAL_NAME (sym));
19962 baton->size = 0;
19963 }
19964
19965 SYMBOL_ACLASS_INDEX (sym) = (is_block
19966 ? dwarf2_locexpr_block_index
19967 : dwarf2_locexpr_index);
19968 SYMBOL_LOCATION_BATON (sym) = baton;
19969 }
19970 }
19971
19972 /* Return the OBJFILE associated with the compilation unit CU. If CU
19973 came from a separate debuginfo file, then the master objfile is
19974 returned. */
19975
19976 struct objfile *
19977 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19978 {
19979 struct objfile *objfile = per_cu->objfile;
19980
19981 /* Return the master objfile, so that we can report and look up the
19982 correct file containing this variable. */
19983 if (objfile->separate_debug_objfile_backlink)
19984 objfile = objfile->separate_debug_objfile_backlink;
19985
19986 return objfile;
19987 }
19988
19989 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19990 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19991 CU_HEADERP first. */
19992
19993 static const struct comp_unit_head *
19994 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19995 struct dwarf2_per_cu_data *per_cu)
19996 {
19997 const gdb_byte *info_ptr;
19998
19999 if (per_cu->cu)
20000 return &per_cu->cu->header;
20001
20002 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
20003
20004 memset (cu_headerp, 0, sizeof (*cu_headerp));
20005 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20006
20007 return cu_headerp;
20008 }
20009
20010 /* Return the address size given in the compilation unit header for CU. */
20011
20012 int
20013 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20014 {
20015 struct comp_unit_head cu_header_local;
20016 const struct comp_unit_head *cu_headerp;
20017
20018 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20019
20020 return cu_headerp->addr_size;
20021 }
20022
20023 /* Return the offset size given in the compilation unit header for CU. */
20024
20025 int
20026 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20027 {
20028 struct comp_unit_head cu_header_local;
20029 const struct comp_unit_head *cu_headerp;
20030
20031 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20032
20033 return cu_headerp->offset_size;
20034 }
20035
20036 /* See its dwarf2loc.h declaration. */
20037
20038 int
20039 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20040 {
20041 struct comp_unit_head cu_header_local;
20042 const struct comp_unit_head *cu_headerp;
20043
20044 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20045
20046 if (cu_headerp->version == 2)
20047 return cu_headerp->addr_size;
20048 else
20049 return cu_headerp->offset_size;
20050 }
20051
20052 /* Return the text offset of the CU. The returned offset comes from
20053 this CU's objfile. If this objfile came from a separate debuginfo
20054 file, then the offset may be different from the corresponding
20055 offset in the parent objfile. */
20056
20057 CORE_ADDR
20058 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20059 {
20060 struct objfile *objfile = per_cu->objfile;
20061
20062 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20063 }
20064
20065 /* Locate the .debug_info compilation unit from CU's objfile which contains
20066 the DIE at OFFSET. Raises an error on failure. */
20067
20068 static struct dwarf2_per_cu_data *
20069 dwarf2_find_containing_comp_unit (sect_offset offset,
20070 unsigned int offset_in_dwz,
20071 struct objfile *objfile)
20072 {
20073 struct dwarf2_per_cu_data *this_cu;
20074 int low, high;
20075 const sect_offset *cu_off;
20076
20077 low = 0;
20078 high = dwarf2_per_objfile->n_comp_units - 1;
20079 while (high > low)
20080 {
20081 struct dwarf2_per_cu_data *mid_cu;
20082 int mid = low + (high - low) / 2;
20083
20084 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20085 cu_off = &mid_cu->offset;
20086 if (mid_cu->is_dwz > offset_in_dwz
20087 || (mid_cu->is_dwz == offset_in_dwz
20088 && cu_off->sect_off >= offset.sect_off))
20089 high = mid;
20090 else
20091 low = mid + 1;
20092 }
20093 gdb_assert (low == high);
20094 this_cu = dwarf2_per_objfile->all_comp_units[low];
20095 cu_off = &this_cu->offset;
20096 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20097 {
20098 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20099 error (_("Dwarf Error: could not find partial DIE containing "
20100 "offset 0x%lx [in module %s]"),
20101 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20102
20103 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20104 <= offset.sect_off);
20105 return dwarf2_per_objfile->all_comp_units[low-1];
20106 }
20107 else
20108 {
20109 this_cu = dwarf2_per_objfile->all_comp_units[low];
20110 if (low == dwarf2_per_objfile->n_comp_units - 1
20111 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20112 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20113 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20114 return this_cu;
20115 }
20116 }
20117
20118 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20119
20120 static void
20121 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20122 {
20123 memset (cu, 0, sizeof (*cu));
20124 per_cu->cu = cu;
20125 cu->per_cu = per_cu;
20126 cu->objfile = per_cu->objfile;
20127 obstack_init (&cu->comp_unit_obstack);
20128 }
20129
20130 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20131
20132 static void
20133 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20134 enum language pretend_language)
20135 {
20136 struct attribute *attr;
20137
20138 /* Set the language we're debugging. */
20139 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20140 if (attr)
20141 set_cu_language (DW_UNSND (attr), cu);
20142 else
20143 {
20144 cu->language = pretend_language;
20145 cu->language_defn = language_def (cu->language);
20146 }
20147
20148 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20149 if (attr)
20150 cu->producer = DW_STRING (attr);
20151 }
20152
20153 /* Release one cached compilation unit, CU. We unlink it from the tree
20154 of compilation units, but we don't remove it from the read_in_chain;
20155 the caller is responsible for that.
20156 NOTE: DATA is a void * because this function is also used as a
20157 cleanup routine. */
20158
20159 static void
20160 free_heap_comp_unit (void *data)
20161 {
20162 struct dwarf2_cu *cu = data;
20163
20164 gdb_assert (cu->per_cu != NULL);
20165 cu->per_cu->cu = NULL;
20166 cu->per_cu = NULL;
20167
20168 obstack_free (&cu->comp_unit_obstack, NULL);
20169
20170 xfree (cu);
20171 }
20172
20173 /* This cleanup function is passed the address of a dwarf2_cu on the stack
20174 when we're finished with it. We can't free the pointer itself, but be
20175 sure to unlink it from the cache. Also release any associated storage. */
20176
20177 static void
20178 free_stack_comp_unit (void *data)
20179 {
20180 struct dwarf2_cu *cu = data;
20181
20182 gdb_assert (cu->per_cu != NULL);
20183 cu->per_cu->cu = NULL;
20184 cu->per_cu = NULL;
20185
20186 obstack_free (&cu->comp_unit_obstack, NULL);
20187 cu->partial_dies = NULL;
20188 }
20189
20190 /* Free all cached compilation units. */
20191
20192 static void
20193 free_cached_comp_units (void *data)
20194 {
20195 struct dwarf2_per_cu_data *per_cu, **last_chain;
20196
20197 per_cu = dwarf2_per_objfile->read_in_chain;
20198 last_chain = &dwarf2_per_objfile->read_in_chain;
20199 while (per_cu != NULL)
20200 {
20201 struct dwarf2_per_cu_data *next_cu;
20202
20203 next_cu = per_cu->cu->read_in_chain;
20204
20205 free_heap_comp_unit (per_cu->cu);
20206 *last_chain = next_cu;
20207
20208 per_cu = next_cu;
20209 }
20210 }
20211
20212 /* Increase the age counter on each cached compilation unit, and free
20213 any that are too old. */
20214
20215 static void
20216 age_cached_comp_units (void)
20217 {
20218 struct dwarf2_per_cu_data *per_cu, **last_chain;
20219
20220 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20221 per_cu = dwarf2_per_objfile->read_in_chain;
20222 while (per_cu != NULL)
20223 {
20224 per_cu->cu->last_used ++;
20225 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20226 dwarf2_mark (per_cu->cu);
20227 per_cu = per_cu->cu->read_in_chain;
20228 }
20229
20230 per_cu = dwarf2_per_objfile->read_in_chain;
20231 last_chain = &dwarf2_per_objfile->read_in_chain;
20232 while (per_cu != NULL)
20233 {
20234 struct dwarf2_per_cu_data *next_cu;
20235
20236 next_cu = per_cu->cu->read_in_chain;
20237
20238 if (!per_cu->cu->mark)
20239 {
20240 free_heap_comp_unit (per_cu->cu);
20241 *last_chain = next_cu;
20242 }
20243 else
20244 last_chain = &per_cu->cu->read_in_chain;
20245
20246 per_cu = next_cu;
20247 }
20248 }
20249
20250 /* Remove a single compilation unit from the cache. */
20251
20252 static void
20253 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
20254 {
20255 struct dwarf2_per_cu_data *per_cu, **last_chain;
20256
20257 per_cu = dwarf2_per_objfile->read_in_chain;
20258 last_chain = &dwarf2_per_objfile->read_in_chain;
20259 while (per_cu != NULL)
20260 {
20261 struct dwarf2_per_cu_data *next_cu;
20262
20263 next_cu = per_cu->cu->read_in_chain;
20264
20265 if (per_cu == target_per_cu)
20266 {
20267 free_heap_comp_unit (per_cu->cu);
20268 per_cu->cu = NULL;
20269 *last_chain = next_cu;
20270 break;
20271 }
20272 else
20273 last_chain = &per_cu->cu->read_in_chain;
20274
20275 per_cu = next_cu;
20276 }
20277 }
20278
20279 /* Release all extra memory associated with OBJFILE. */
20280
20281 void
20282 dwarf2_free_objfile (struct objfile *objfile)
20283 {
20284 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20285
20286 if (dwarf2_per_objfile == NULL)
20287 return;
20288
20289 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20290 free_cached_comp_units (NULL);
20291
20292 if (dwarf2_per_objfile->quick_file_names_table)
20293 htab_delete (dwarf2_per_objfile->quick_file_names_table);
20294
20295 /* Everything else should be on the objfile obstack. */
20296 }
20297
20298 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20299 We store these in a hash table separate from the DIEs, and preserve them
20300 when the DIEs are flushed out of cache.
20301
20302 The CU "per_cu" pointer is needed because offset alone is not enough to
20303 uniquely identify the type. A file may have multiple .debug_types sections,
20304 or the type may come from a DWO file. Furthermore, while it's more logical
20305 to use per_cu->section+offset, with Fission the section with the data is in
20306 the DWO file but we don't know that section at the point we need it.
20307 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20308 because we can enter the lookup routine, get_die_type_at_offset, from
20309 outside this file, and thus won't necessarily have PER_CU->cu.
20310 Fortunately, PER_CU is stable for the life of the objfile. */
20311
20312 struct dwarf2_per_cu_offset_and_type
20313 {
20314 const struct dwarf2_per_cu_data *per_cu;
20315 sect_offset offset;
20316 struct type *type;
20317 };
20318
20319 /* Hash function for a dwarf2_per_cu_offset_and_type. */
20320
20321 static hashval_t
20322 per_cu_offset_and_type_hash (const void *item)
20323 {
20324 const struct dwarf2_per_cu_offset_and_type *ofs = item;
20325
20326 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
20327 }
20328
20329 /* Equality function for a dwarf2_per_cu_offset_and_type. */
20330
20331 static int
20332 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
20333 {
20334 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20335 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
20336
20337 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20338 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
20339 }
20340
20341 /* Set the type associated with DIE to TYPE. Save it in CU's hash
20342 table if necessary. For convenience, return TYPE.
20343
20344 The DIEs reading must have careful ordering to:
20345 * Not cause infite loops trying to read in DIEs as a prerequisite for
20346 reading current DIE.
20347 * Not trying to dereference contents of still incompletely read in types
20348 while reading in other DIEs.
20349 * Enable referencing still incompletely read in types just by a pointer to
20350 the type without accessing its fields.
20351
20352 Therefore caller should follow these rules:
20353 * Try to fetch any prerequisite types we may need to build this DIE type
20354 before building the type and calling set_die_type.
20355 * After building type call set_die_type for current DIE as soon as
20356 possible before fetching more types to complete the current type.
20357 * Make the type as complete as possible before fetching more types. */
20358
20359 static struct type *
20360 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20361 {
20362 struct dwarf2_per_cu_offset_and_type **slot, ofs;
20363 struct objfile *objfile = cu->objfile;
20364
20365 /* For Ada types, make sure that the gnat-specific data is always
20366 initialized (if not already set). There are a few types where
20367 we should not be doing so, because the type-specific area is
20368 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20369 where the type-specific area is used to store the floatformat).
20370 But this is not a problem, because the gnat-specific information
20371 is actually not needed for these types. */
20372 if (need_gnat_info (cu)
20373 && TYPE_CODE (type) != TYPE_CODE_FUNC
20374 && TYPE_CODE (type) != TYPE_CODE_FLT
20375 && !HAVE_GNAT_AUX_INFO (type))
20376 INIT_GNAT_SPECIFIC (type);
20377
20378 if (dwarf2_per_objfile->die_type_hash == NULL)
20379 {
20380 dwarf2_per_objfile->die_type_hash =
20381 htab_create_alloc_ex (127,
20382 per_cu_offset_and_type_hash,
20383 per_cu_offset_and_type_eq,
20384 NULL,
20385 &objfile->objfile_obstack,
20386 hashtab_obstack_allocate,
20387 dummy_obstack_deallocate);
20388 }
20389
20390 ofs.per_cu = cu->per_cu;
20391 ofs.offset = die->offset;
20392 ofs.type = type;
20393 slot = (struct dwarf2_per_cu_offset_and_type **)
20394 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
20395 if (*slot)
20396 complaint (&symfile_complaints,
20397 _("A problem internal to GDB: DIE 0x%x has type already set"),
20398 die->offset.sect_off);
20399 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
20400 **slot = ofs;
20401 return type;
20402 }
20403
20404 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20405 or return NULL if the die does not have a saved type. */
20406
20407 static struct type *
20408 get_die_type_at_offset (sect_offset offset,
20409 struct dwarf2_per_cu_data *per_cu)
20410 {
20411 struct dwarf2_per_cu_offset_and_type *slot, ofs;
20412
20413 if (dwarf2_per_objfile->die_type_hash == NULL)
20414 return NULL;
20415
20416 ofs.per_cu = per_cu;
20417 ofs.offset = offset;
20418 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
20419 if (slot)
20420 return slot->type;
20421 else
20422 return NULL;
20423 }
20424
20425 /* Look up the type for DIE in CU in die_type_hash,
20426 or return NULL if DIE does not have a saved type. */
20427
20428 static struct type *
20429 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20430 {
20431 return get_die_type_at_offset (die->offset, cu->per_cu);
20432 }
20433
20434 /* Add a dependence relationship from CU to REF_PER_CU. */
20435
20436 static void
20437 dwarf2_add_dependence (struct dwarf2_cu *cu,
20438 struct dwarf2_per_cu_data *ref_per_cu)
20439 {
20440 void **slot;
20441
20442 if (cu->dependencies == NULL)
20443 cu->dependencies
20444 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20445 NULL, &cu->comp_unit_obstack,
20446 hashtab_obstack_allocate,
20447 dummy_obstack_deallocate);
20448
20449 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20450 if (*slot == NULL)
20451 *slot = ref_per_cu;
20452 }
20453
20454 /* Subroutine of dwarf2_mark to pass to htab_traverse.
20455 Set the mark field in every compilation unit in the
20456 cache that we must keep because we are keeping CU. */
20457
20458 static int
20459 dwarf2_mark_helper (void **slot, void *data)
20460 {
20461 struct dwarf2_per_cu_data *per_cu;
20462
20463 per_cu = (struct dwarf2_per_cu_data *) *slot;
20464
20465 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20466 reading of the chain. As such dependencies remain valid it is not much
20467 useful to track and undo them during QUIT cleanups. */
20468 if (per_cu->cu == NULL)
20469 return 1;
20470
20471 if (per_cu->cu->mark)
20472 return 1;
20473 per_cu->cu->mark = 1;
20474
20475 if (per_cu->cu->dependencies != NULL)
20476 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20477
20478 return 1;
20479 }
20480
20481 /* Set the mark field in CU and in every other compilation unit in the
20482 cache that we must keep because we are keeping CU. */
20483
20484 static void
20485 dwarf2_mark (struct dwarf2_cu *cu)
20486 {
20487 if (cu->mark)
20488 return;
20489 cu->mark = 1;
20490 if (cu->dependencies != NULL)
20491 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
20492 }
20493
20494 static void
20495 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20496 {
20497 while (per_cu)
20498 {
20499 per_cu->cu->mark = 0;
20500 per_cu = per_cu->cu->read_in_chain;
20501 }
20502 }
20503
20504 /* Trivial hash function for partial_die_info: the hash value of a DIE
20505 is its offset in .debug_info for this objfile. */
20506
20507 static hashval_t
20508 partial_die_hash (const void *item)
20509 {
20510 const struct partial_die_info *part_die = item;
20511
20512 return part_die->offset.sect_off;
20513 }
20514
20515 /* Trivial comparison function for partial_die_info structures: two DIEs
20516 are equal if they have the same offset. */
20517
20518 static int
20519 partial_die_eq (const void *item_lhs, const void *item_rhs)
20520 {
20521 const struct partial_die_info *part_die_lhs = item_lhs;
20522 const struct partial_die_info *part_die_rhs = item_rhs;
20523
20524 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
20525 }
20526
20527 static struct cmd_list_element *set_dwarf2_cmdlist;
20528 static struct cmd_list_element *show_dwarf2_cmdlist;
20529
20530 static void
20531 set_dwarf2_cmd (char *args, int from_tty)
20532 {
20533 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20534 }
20535
20536 static void
20537 show_dwarf2_cmd (char *args, int from_tty)
20538 {
20539 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20540 }
20541
20542 /* Free data associated with OBJFILE, if necessary. */
20543
20544 static void
20545 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
20546 {
20547 struct dwarf2_per_objfile *data = d;
20548 int ix;
20549
20550 /* Make sure we don't accidentally use dwarf2_per_objfile while
20551 cleaning up. */
20552 dwarf2_per_objfile = NULL;
20553
20554 for (ix = 0; ix < data->n_comp_units; ++ix)
20555 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
20556
20557 for (ix = 0; ix < data->n_type_units; ++ix)
20558 VEC_free (dwarf2_per_cu_ptr,
20559 data->all_type_units[ix]->per_cu.imported_symtabs);
20560 xfree (data->all_type_units);
20561
20562 VEC_free (dwarf2_section_info_def, data->types);
20563
20564 if (data->dwo_files)
20565 free_dwo_files (data->dwo_files, objfile);
20566 if (data->dwp_file)
20567 gdb_bfd_unref (data->dwp_file->dbfd);
20568
20569 if (data->dwz_file && data->dwz_file->dwz_bfd)
20570 gdb_bfd_unref (data->dwz_file->dwz_bfd);
20571 }
20572
20573 \f
20574 /* The "save gdb-index" command. */
20575
20576 /* The contents of the hash table we create when building the string
20577 table. */
20578 struct strtab_entry
20579 {
20580 offset_type offset;
20581 const char *str;
20582 };
20583
20584 /* Hash function for a strtab_entry.
20585
20586 Function is used only during write_hash_table so no index format backward
20587 compatibility is needed. */
20588
20589 static hashval_t
20590 hash_strtab_entry (const void *e)
20591 {
20592 const struct strtab_entry *entry = e;
20593 return mapped_index_string_hash (INT_MAX, entry->str);
20594 }
20595
20596 /* Equality function for a strtab_entry. */
20597
20598 static int
20599 eq_strtab_entry (const void *a, const void *b)
20600 {
20601 const struct strtab_entry *ea = a;
20602 const struct strtab_entry *eb = b;
20603 return !strcmp (ea->str, eb->str);
20604 }
20605
20606 /* Create a strtab_entry hash table. */
20607
20608 static htab_t
20609 create_strtab (void)
20610 {
20611 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20612 xfree, xcalloc, xfree);
20613 }
20614
20615 /* Add a string to the constant pool. Return the string's offset in
20616 host order. */
20617
20618 static offset_type
20619 add_string (htab_t table, struct obstack *cpool, const char *str)
20620 {
20621 void **slot;
20622 struct strtab_entry entry;
20623 struct strtab_entry *result;
20624
20625 entry.str = str;
20626 slot = htab_find_slot (table, &entry, INSERT);
20627 if (*slot)
20628 result = *slot;
20629 else
20630 {
20631 result = XNEW (struct strtab_entry);
20632 result->offset = obstack_object_size (cpool);
20633 result->str = str;
20634 obstack_grow_str0 (cpool, str);
20635 *slot = result;
20636 }
20637 return result->offset;
20638 }
20639
20640 /* An entry in the symbol table. */
20641 struct symtab_index_entry
20642 {
20643 /* The name of the symbol. */
20644 const char *name;
20645 /* The offset of the name in the constant pool. */
20646 offset_type index_offset;
20647 /* A sorted vector of the indices of all the CUs that hold an object
20648 of this name. */
20649 VEC (offset_type) *cu_indices;
20650 };
20651
20652 /* The symbol table. This is a power-of-2-sized hash table. */
20653 struct mapped_symtab
20654 {
20655 offset_type n_elements;
20656 offset_type size;
20657 struct symtab_index_entry **data;
20658 };
20659
20660 /* Hash function for a symtab_index_entry. */
20661
20662 static hashval_t
20663 hash_symtab_entry (const void *e)
20664 {
20665 const struct symtab_index_entry *entry = e;
20666 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20667 sizeof (offset_type) * VEC_length (offset_type,
20668 entry->cu_indices),
20669 0);
20670 }
20671
20672 /* Equality function for a symtab_index_entry. */
20673
20674 static int
20675 eq_symtab_entry (const void *a, const void *b)
20676 {
20677 const struct symtab_index_entry *ea = a;
20678 const struct symtab_index_entry *eb = b;
20679 int len = VEC_length (offset_type, ea->cu_indices);
20680 if (len != VEC_length (offset_type, eb->cu_indices))
20681 return 0;
20682 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20683 VEC_address (offset_type, eb->cu_indices),
20684 sizeof (offset_type) * len);
20685 }
20686
20687 /* Destroy a symtab_index_entry. */
20688
20689 static void
20690 delete_symtab_entry (void *p)
20691 {
20692 struct symtab_index_entry *entry = p;
20693 VEC_free (offset_type, entry->cu_indices);
20694 xfree (entry);
20695 }
20696
20697 /* Create a hash table holding symtab_index_entry objects. */
20698
20699 static htab_t
20700 create_symbol_hash_table (void)
20701 {
20702 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20703 delete_symtab_entry, xcalloc, xfree);
20704 }
20705
20706 /* Create a new mapped symtab object. */
20707
20708 static struct mapped_symtab *
20709 create_mapped_symtab (void)
20710 {
20711 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20712 symtab->n_elements = 0;
20713 symtab->size = 1024;
20714 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20715 return symtab;
20716 }
20717
20718 /* Destroy a mapped_symtab. */
20719
20720 static void
20721 cleanup_mapped_symtab (void *p)
20722 {
20723 struct mapped_symtab *symtab = p;
20724 /* The contents of the array are freed when the other hash table is
20725 destroyed. */
20726 xfree (symtab->data);
20727 xfree (symtab);
20728 }
20729
20730 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20731 the slot.
20732
20733 Function is used only during write_hash_table so no index format backward
20734 compatibility is needed. */
20735
20736 static struct symtab_index_entry **
20737 find_slot (struct mapped_symtab *symtab, const char *name)
20738 {
20739 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20740
20741 index = hash & (symtab->size - 1);
20742 step = ((hash * 17) & (symtab->size - 1)) | 1;
20743
20744 for (;;)
20745 {
20746 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20747 return &symtab->data[index];
20748 index = (index + step) & (symtab->size - 1);
20749 }
20750 }
20751
20752 /* Expand SYMTAB's hash table. */
20753
20754 static void
20755 hash_expand (struct mapped_symtab *symtab)
20756 {
20757 offset_type old_size = symtab->size;
20758 offset_type i;
20759 struct symtab_index_entry **old_entries = symtab->data;
20760
20761 symtab->size *= 2;
20762 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20763
20764 for (i = 0; i < old_size; ++i)
20765 {
20766 if (old_entries[i])
20767 {
20768 struct symtab_index_entry **slot = find_slot (symtab,
20769 old_entries[i]->name);
20770 *slot = old_entries[i];
20771 }
20772 }
20773
20774 xfree (old_entries);
20775 }
20776
20777 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20778 CU_INDEX is the index of the CU in which the symbol appears.
20779 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20780
20781 static void
20782 add_index_entry (struct mapped_symtab *symtab, const char *name,
20783 int is_static, gdb_index_symbol_kind kind,
20784 offset_type cu_index)
20785 {
20786 struct symtab_index_entry **slot;
20787 offset_type cu_index_and_attrs;
20788
20789 ++symtab->n_elements;
20790 if (4 * symtab->n_elements / 3 >= symtab->size)
20791 hash_expand (symtab);
20792
20793 slot = find_slot (symtab, name);
20794 if (!*slot)
20795 {
20796 *slot = XNEW (struct symtab_index_entry);
20797 (*slot)->name = name;
20798 /* index_offset is set later. */
20799 (*slot)->cu_indices = NULL;
20800 }
20801
20802 cu_index_and_attrs = 0;
20803 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20804 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20805 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20806
20807 /* We don't want to record an index value twice as we want to avoid the
20808 duplication.
20809 We process all global symbols and then all static symbols
20810 (which would allow us to avoid the duplication by only having to check
20811 the last entry pushed), but a symbol could have multiple kinds in one CU.
20812 To keep things simple we don't worry about the duplication here and
20813 sort and uniqufy the list after we've processed all symbols. */
20814 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20815 }
20816
20817 /* qsort helper routine for uniquify_cu_indices. */
20818
20819 static int
20820 offset_type_compare (const void *ap, const void *bp)
20821 {
20822 offset_type a = *(offset_type *) ap;
20823 offset_type b = *(offset_type *) bp;
20824
20825 return (a > b) - (b > a);
20826 }
20827
20828 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20829
20830 static void
20831 uniquify_cu_indices (struct mapped_symtab *symtab)
20832 {
20833 int i;
20834
20835 for (i = 0; i < symtab->size; ++i)
20836 {
20837 struct symtab_index_entry *entry = symtab->data[i];
20838
20839 if (entry
20840 && entry->cu_indices != NULL)
20841 {
20842 unsigned int next_to_insert, next_to_check;
20843 offset_type last_value;
20844
20845 qsort (VEC_address (offset_type, entry->cu_indices),
20846 VEC_length (offset_type, entry->cu_indices),
20847 sizeof (offset_type), offset_type_compare);
20848
20849 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20850 next_to_insert = 1;
20851 for (next_to_check = 1;
20852 next_to_check < VEC_length (offset_type, entry->cu_indices);
20853 ++next_to_check)
20854 {
20855 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20856 != last_value)
20857 {
20858 last_value = VEC_index (offset_type, entry->cu_indices,
20859 next_to_check);
20860 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20861 last_value);
20862 ++next_to_insert;
20863 }
20864 }
20865 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20866 }
20867 }
20868 }
20869
20870 /* Add a vector of indices to the constant pool. */
20871
20872 static offset_type
20873 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20874 struct symtab_index_entry *entry)
20875 {
20876 void **slot;
20877
20878 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20879 if (!*slot)
20880 {
20881 offset_type len = VEC_length (offset_type, entry->cu_indices);
20882 offset_type val = MAYBE_SWAP (len);
20883 offset_type iter;
20884 int i;
20885
20886 *slot = entry;
20887 entry->index_offset = obstack_object_size (cpool);
20888
20889 obstack_grow (cpool, &val, sizeof (val));
20890 for (i = 0;
20891 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20892 ++i)
20893 {
20894 val = MAYBE_SWAP (iter);
20895 obstack_grow (cpool, &val, sizeof (val));
20896 }
20897 }
20898 else
20899 {
20900 struct symtab_index_entry *old_entry = *slot;
20901 entry->index_offset = old_entry->index_offset;
20902 entry = old_entry;
20903 }
20904 return entry->index_offset;
20905 }
20906
20907 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20908 constant pool entries going into the obstack CPOOL. */
20909
20910 static void
20911 write_hash_table (struct mapped_symtab *symtab,
20912 struct obstack *output, struct obstack *cpool)
20913 {
20914 offset_type i;
20915 htab_t symbol_hash_table;
20916 htab_t str_table;
20917
20918 symbol_hash_table = create_symbol_hash_table ();
20919 str_table = create_strtab ();
20920
20921 /* We add all the index vectors to the constant pool first, to
20922 ensure alignment is ok. */
20923 for (i = 0; i < symtab->size; ++i)
20924 {
20925 if (symtab->data[i])
20926 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20927 }
20928
20929 /* Now write out the hash table. */
20930 for (i = 0; i < symtab->size; ++i)
20931 {
20932 offset_type str_off, vec_off;
20933
20934 if (symtab->data[i])
20935 {
20936 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20937 vec_off = symtab->data[i]->index_offset;
20938 }
20939 else
20940 {
20941 /* While 0 is a valid constant pool index, it is not valid
20942 to have 0 for both offsets. */
20943 str_off = 0;
20944 vec_off = 0;
20945 }
20946
20947 str_off = MAYBE_SWAP (str_off);
20948 vec_off = MAYBE_SWAP (vec_off);
20949
20950 obstack_grow (output, &str_off, sizeof (str_off));
20951 obstack_grow (output, &vec_off, sizeof (vec_off));
20952 }
20953
20954 htab_delete (str_table);
20955 htab_delete (symbol_hash_table);
20956 }
20957
20958 /* Struct to map psymtab to CU index in the index file. */
20959 struct psymtab_cu_index_map
20960 {
20961 struct partial_symtab *psymtab;
20962 unsigned int cu_index;
20963 };
20964
20965 static hashval_t
20966 hash_psymtab_cu_index (const void *item)
20967 {
20968 const struct psymtab_cu_index_map *map = item;
20969
20970 return htab_hash_pointer (map->psymtab);
20971 }
20972
20973 static int
20974 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20975 {
20976 const struct psymtab_cu_index_map *lhs = item_lhs;
20977 const struct psymtab_cu_index_map *rhs = item_rhs;
20978
20979 return lhs->psymtab == rhs->psymtab;
20980 }
20981
20982 /* Helper struct for building the address table. */
20983 struct addrmap_index_data
20984 {
20985 struct objfile *objfile;
20986 struct obstack *addr_obstack;
20987 htab_t cu_index_htab;
20988
20989 /* Non-zero if the previous_* fields are valid.
20990 We can't write an entry until we see the next entry (since it is only then
20991 that we know the end of the entry). */
20992 int previous_valid;
20993 /* Index of the CU in the table of all CUs in the index file. */
20994 unsigned int previous_cu_index;
20995 /* Start address of the CU. */
20996 CORE_ADDR previous_cu_start;
20997 };
20998
20999 /* Write an address entry to OBSTACK. */
21000
21001 static void
21002 add_address_entry (struct objfile *objfile, struct obstack *obstack,
21003 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
21004 {
21005 offset_type cu_index_to_write;
21006 gdb_byte addr[8];
21007 CORE_ADDR baseaddr;
21008
21009 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21010
21011 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21012 obstack_grow (obstack, addr, 8);
21013 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21014 obstack_grow (obstack, addr, 8);
21015 cu_index_to_write = MAYBE_SWAP (cu_index);
21016 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21017 }
21018
21019 /* Worker function for traversing an addrmap to build the address table. */
21020
21021 static int
21022 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21023 {
21024 struct addrmap_index_data *data = datap;
21025 struct partial_symtab *pst = obj;
21026
21027 if (data->previous_valid)
21028 add_address_entry (data->objfile, data->addr_obstack,
21029 data->previous_cu_start, start_addr,
21030 data->previous_cu_index);
21031
21032 data->previous_cu_start = start_addr;
21033 if (pst != NULL)
21034 {
21035 struct psymtab_cu_index_map find_map, *map;
21036 find_map.psymtab = pst;
21037 map = htab_find (data->cu_index_htab, &find_map);
21038 gdb_assert (map != NULL);
21039 data->previous_cu_index = map->cu_index;
21040 data->previous_valid = 1;
21041 }
21042 else
21043 data->previous_valid = 0;
21044
21045 return 0;
21046 }
21047
21048 /* Write OBJFILE's address map to OBSTACK.
21049 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21050 in the index file. */
21051
21052 static void
21053 write_address_map (struct objfile *objfile, struct obstack *obstack,
21054 htab_t cu_index_htab)
21055 {
21056 struct addrmap_index_data addrmap_index_data;
21057
21058 /* When writing the address table, we have to cope with the fact that
21059 the addrmap iterator only provides the start of a region; we have to
21060 wait until the next invocation to get the start of the next region. */
21061
21062 addrmap_index_data.objfile = objfile;
21063 addrmap_index_data.addr_obstack = obstack;
21064 addrmap_index_data.cu_index_htab = cu_index_htab;
21065 addrmap_index_data.previous_valid = 0;
21066
21067 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21068 &addrmap_index_data);
21069
21070 /* It's highly unlikely the last entry (end address = 0xff...ff)
21071 is valid, but we should still handle it.
21072 The end address is recorded as the start of the next region, but that
21073 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21074 anyway. */
21075 if (addrmap_index_data.previous_valid)
21076 add_address_entry (objfile, obstack,
21077 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21078 addrmap_index_data.previous_cu_index);
21079 }
21080
21081 /* Return the symbol kind of PSYM. */
21082
21083 static gdb_index_symbol_kind
21084 symbol_kind (struct partial_symbol *psym)
21085 {
21086 domain_enum domain = PSYMBOL_DOMAIN (psym);
21087 enum address_class aclass = PSYMBOL_CLASS (psym);
21088
21089 switch (domain)
21090 {
21091 case VAR_DOMAIN:
21092 switch (aclass)
21093 {
21094 case LOC_BLOCK:
21095 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21096 case LOC_TYPEDEF:
21097 return GDB_INDEX_SYMBOL_KIND_TYPE;
21098 case LOC_COMPUTED:
21099 case LOC_CONST_BYTES:
21100 case LOC_OPTIMIZED_OUT:
21101 case LOC_STATIC:
21102 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21103 case LOC_CONST:
21104 /* Note: It's currently impossible to recognize psyms as enum values
21105 short of reading the type info. For now punt. */
21106 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21107 default:
21108 /* There are other LOC_FOO values that one might want to classify
21109 as variables, but dwarf2read.c doesn't currently use them. */
21110 return GDB_INDEX_SYMBOL_KIND_OTHER;
21111 }
21112 case STRUCT_DOMAIN:
21113 return GDB_INDEX_SYMBOL_KIND_TYPE;
21114 default:
21115 return GDB_INDEX_SYMBOL_KIND_OTHER;
21116 }
21117 }
21118
21119 /* Add a list of partial symbols to SYMTAB. */
21120
21121 static void
21122 write_psymbols (struct mapped_symtab *symtab,
21123 htab_t psyms_seen,
21124 struct partial_symbol **psymp,
21125 int count,
21126 offset_type cu_index,
21127 int is_static)
21128 {
21129 for (; count-- > 0; ++psymp)
21130 {
21131 struct partial_symbol *psym = *psymp;
21132 void **slot;
21133
21134 if (SYMBOL_LANGUAGE (psym) == language_ada)
21135 error (_("Ada is not currently supported by the index"));
21136
21137 /* Only add a given psymbol once. */
21138 slot = htab_find_slot (psyms_seen, psym, INSERT);
21139 if (!*slot)
21140 {
21141 gdb_index_symbol_kind kind = symbol_kind (psym);
21142
21143 *slot = psym;
21144 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21145 is_static, kind, cu_index);
21146 }
21147 }
21148 }
21149
21150 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
21151 exception if there is an error. */
21152
21153 static void
21154 write_obstack (FILE *file, struct obstack *obstack)
21155 {
21156 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21157 file)
21158 != obstack_object_size (obstack))
21159 error (_("couldn't data write to file"));
21160 }
21161
21162 /* Unlink a file if the argument is not NULL. */
21163
21164 static void
21165 unlink_if_set (void *p)
21166 {
21167 char **filename = p;
21168 if (*filename)
21169 unlink (*filename);
21170 }
21171
21172 /* A helper struct used when iterating over debug_types. */
21173 struct signatured_type_index_data
21174 {
21175 struct objfile *objfile;
21176 struct mapped_symtab *symtab;
21177 struct obstack *types_list;
21178 htab_t psyms_seen;
21179 int cu_index;
21180 };
21181
21182 /* A helper function that writes a single signatured_type to an
21183 obstack. */
21184
21185 static int
21186 write_one_signatured_type (void **slot, void *d)
21187 {
21188 struct signatured_type_index_data *info = d;
21189 struct signatured_type *entry = (struct signatured_type *) *slot;
21190 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
21191 gdb_byte val[8];
21192
21193 write_psymbols (info->symtab,
21194 info->psyms_seen,
21195 info->objfile->global_psymbols.list
21196 + psymtab->globals_offset,
21197 psymtab->n_global_syms, info->cu_index,
21198 0);
21199 write_psymbols (info->symtab,
21200 info->psyms_seen,
21201 info->objfile->static_psymbols.list
21202 + psymtab->statics_offset,
21203 psymtab->n_static_syms, info->cu_index,
21204 1);
21205
21206 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21207 entry->per_cu.offset.sect_off);
21208 obstack_grow (info->types_list, val, 8);
21209 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21210 entry->type_offset_in_tu.cu_off);
21211 obstack_grow (info->types_list, val, 8);
21212 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21213 obstack_grow (info->types_list, val, 8);
21214
21215 ++info->cu_index;
21216
21217 return 1;
21218 }
21219
21220 /* Recurse into all "included" dependencies and write their symbols as
21221 if they appeared in this psymtab. */
21222
21223 static void
21224 recursively_write_psymbols (struct objfile *objfile,
21225 struct partial_symtab *psymtab,
21226 struct mapped_symtab *symtab,
21227 htab_t psyms_seen,
21228 offset_type cu_index)
21229 {
21230 int i;
21231
21232 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21233 if (psymtab->dependencies[i]->user != NULL)
21234 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21235 symtab, psyms_seen, cu_index);
21236
21237 write_psymbols (symtab,
21238 psyms_seen,
21239 objfile->global_psymbols.list + psymtab->globals_offset,
21240 psymtab->n_global_syms, cu_index,
21241 0);
21242 write_psymbols (symtab,
21243 psyms_seen,
21244 objfile->static_psymbols.list + psymtab->statics_offset,
21245 psymtab->n_static_syms, cu_index,
21246 1);
21247 }
21248
21249 /* Create an index file for OBJFILE in the directory DIR. */
21250
21251 static void
21252 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21253 {
21254 struct cleanup *cleanup;
21255 char *filename, *cleanup_filename;
21256 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21257 struct obstack cu_list, types_cu_list;
21258 int i;
21259 FILE *out_file;
21260 struct mapped_symtab *symtab;
21261 offset_type val, size_of_contents, total_len;
21262 struct stat st;
21263 htab_t psyms_seen;
21264 htab_t cu_index_htab;
21265 struct psymtab_cu_index_map *psymtab_cu_index_map;
21266
21267 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
21268 return;
21269
21270 if (dwarf2_per_objfile->using_index)
21271 error (_("Cannot use an index to create the index"));
21272
21273 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21274 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21275
21276 if (stat (objfile->name, &st) < 0)
21277 perror_with_name (objfile->name);
21278
21279 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21280 INDEX_SUFFIX, (char *) NULL);
21281 cleanup = make_cleanup (xfree, filename);
21282
21283 out_file = gdb_fopen_cloexec (filename, "wb");
21284 if (!out_file)
21285 error (_("Can't open `%s' for writing"), filename);
21286
21287 cleanup_filename = filename;
21288 make_cleanup (unlink_if_set, &cleanup_filename);
21289
21290 symtab = create_mapped_symtab ();
21291 make_cleanup (cleanup_mapped_symtab, symtab);
21292
21293 obstack_init (&addr_obstack);
21294 make_cleanup_obstack_free (&addr_obstack);
21295
21296 obstack_init (&cu_list);
21297 make_cleanup_obstack_free (&cu_list);
21298
21299 obstack_init (&types_cu_list);
21300 make_cleanup_obstack_free (&types_cu_list);
21301
21302 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21303 NULL, xcalloc, xfree);
21304 make_cleanup_htab_delete (psyms_seen);
21305
21306 /* While we're scanning CU's create a table that maps a psymtab pointer
21307 (which is what addrmap records) to its index (which is what is recorded
21308 in the index file). This will later be needed to write the address
21309 table. */
21310 cu_index_htab = htab_create_alloc (100,
21311 hash_psymtab_cu_index,
21312 eq_psymtab_cu_index,
21313 NULL, xcalloc, xfree);
21314 make_cleanup_htab_delete (cu_index_htab);
21315 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21316 xmalloc (sizeof (struct psymtab_cu_index_map)
21317 * dwarf2_per_objfile->n_comp_units);
21318 make_cleanup (xfree, psymtab_cu_index_map);
21319
21320 /* The CU list is already sorted, so we don't need to do additional
21321 work here. Also, the debug_types entries do not appear in
21322 all_comp_units, but only in their own hash table. */
21323 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21324 {
21325 struct dwarf2_per_cu_data *per_cu
21326 = dwarf2_per_objfile->all_comp_units[i];
21327 struct partial_symtab *psymtab = per_cu->v.psymtab;
21328 gdb_byte val[8];
21329 struct psymtab_cu_index_map *map;
21330 void **slot;
21331
21332 /* CU of a shared file from 'dwz -m' may be unused by this main file.
21333 It may be referenced from a local scope but in such case it does not
21334 need to be present in .gdb_index. */
21335 if (psymtab == NULL)
21336 continue;
21337
21338 if (psymtab->user == NULL)
21339 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
21340
21341 map = &psymtab_cu_index_map[i];
21342 map->psymtab = psymtab;
21343 map->cu_index = i;
21344 slot = htab_find_slot (cu_index_htab, map, INSERT);
21345 gdb_assert (slot != NULL);
21346 gdb_assert (*slot == NULL);
21347 *slot = map;
21348
21349 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21350 per_cu->offset.sect_off);
21351 obstack_grow (&cu_list, val, 8);
21352 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
21353 obstack_grow (&cu_list, val, 8);
21354 }
21355
21356 /* Dump the address map. */
21357 write_address_map (objfile, &addr_obstack, cu_index_htab);
21358
21359 /* Write out the .debug_type entries, if any. */
21360 if (dwarf2_per_objfile->signatured_types)
21361 {
21362 struct signatured_type_index_data sig_data;
21363
21364 sig_data.objfile = objfile;
21365 sig_data.symtab = symtab;
21366 sig_data.types_list = &types_cu_list;
21367 sig_data.psyms_seen = psyms_seen;
21368 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21369 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21370 write_one_signatured_type, &sig_data);
21371 }
21372
21373 /* Now that we've processed all symbols we can shrink their cu_indices
21374 lists. */
21375 uniquify_cu_indices (symtab);
21376
21377 obstack_init (&constant_pool);
21378 make_cleanup_obstack_free (&constant_pool);
21379 obstack_init (&symtab_obstack);
21380 make_cleanup_obstack_free (&symtab_obstack);
21381 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21382
21383 obstack_init (&contents);
21384 make_cleanup_obstack_free (&contents);
21385 size_of_contents = 6 * sizeof (offset_type);
21386 total_len = size_of_contents;
21387
21388 /* The version number. */
21389 val = MAYBE_SWAP (8);
21390 obstack_grow (&contents, &val, sizeof (val));
21391
21392 /* The offset of the CU list from the start of the file. */
21393 val = MAYBE_SWAP (total_len);
21394 obstack_grow (&contents, &val, sizeof (val));
21395 total_len += obstack_object_size (&cu_list);
21396
21397 /* The offset of the types CU list from the start of the file. */
21398 val = MAYBE_SWAP (total_len);
21399 obstack_grow (&contents, &val, sizeof (val));
21400 total_len += obstack_object_size (&types_cu_list);
21401
21402 /* The offset of the address table from the start of the file. */
21403 val = MAYBE_SWAP (total_len);
21404 obstack_grow (&contents, &val, sizeof (val));
21405 total_len += obstack_object_size (&addr_obstack);
21406
21407 /* The offset of the symbol table from the start of the file. */
21408 val = MAYBE_SWAP (total_len);
21409 obstack_grow (&contents, &val, sizeof (val));
21410 total_len += obstack_object_size (&symtab_obstack);
21411
21412 /* The offset of the constant pool from the start of the file. */
21413 val = MAYBE_SWAP (total_len);
21414 obstack_grow (&contents, &val, sizeof (val));
21415 total_len += obstack_object_size (&constant_pool);
21416
21417 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21418
21419 write_obstack (out_file, &contents);
21420 write_obstack (out_file, &cu_list);
21421 write_obstack (out_file, &types_cu_list);
21422 write_obstack (out_file, &addr_obstack);
21423 write_obstack (out_file, &symtab_obstack);
21424 write_obstack (out_file, &constant_pool);
21425
21426 fclose (out_file);
21427
21428 /* We want to keep the file, so we set cleanup_filename to NULL
21429 here. See unlink_if_set. */
21430 cleanup_filename = NULL;
21431
21432 do_cleanups (cleanup);
21433 }
21434
21435 /* Implementation of the `save gdb-index' command.
21436
21437 Note that the file format used by this command is documented in the
21438 GDB manual. Any changes here must be documented there. */
21439
21440 static void
21441 save_gdb_index_command (char *arg, int from_tty)
21442 {
21443 struct objfile *objfile;
21444
21445 if (!arg || !*arg)
21446 error (_("usage: save gdb-index DIRECTORY"));
21447
21448 ALL_OBJFILES (objfile)
21449 {
21450 struct stat st;
21451
21452 /* If the objfile does not correspond to an actual file, skip it. */
21453 if (stat (objfile->name, &st) < 0)
21454 continue;
21455
21456 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21457 if (dwarf2_per_objfile)
21458 {
21459 volatile struct gdb_exception except;
21460
21461 TRY_CATCH (except, RETURN_MASK_ERROR)
21462 {
21463 write_psymtabs_to_index (objfile, arg);
21464 }
21465 if (except.reason < 0)
21466 exception_fprintf (gdb_stderr, except,
21467 _("Error while writing index for `%s': "),
21468 objfile->name);
21469 }
21470 }
21471 }
21472
21473 \f
21474
21475 int dwarf2_always_disassemble;
21476
21477 static void
21478 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21479 struct cmd_list_element *c, const char *value)
21480 {
21481 fprintf_filtered (file,
21482 _("Whether to always disassemble "
21483 "DWARF expressions is %s.\n"),
21484 value);
21485 }
21486
21487 static void
21488 show_check_physname (struct ui_file *file, int from_tty,
21489 struct cmd_list_element *c, const char *value)
21490 {
21491 fprintf_filtered (file,
21492 _("Whether to check \"physname\" is %s.\n"),
21493 value);
21494 }
21495
21496 void _initialize_dwarf2_read (void);
21497
21498 void
21499 _initialize_dwarf2_read (void)
21500 {
21501 struct cmd_list_element *c;
21502
21503 dwarf2_objfile_data_key
21504 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
21505
21506 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21507 Set DWARF 2 specific variables.\n\
21508 Configure DWARF 2 variables such as the cache size"),
21509 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21510 0/*allow-unknown*/, &maintenance_set_cmdlist);
21511
21512 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21513 Show DWARF 2 specific variables\n\
21514 Show DWARF 2 variables such as the cache size"),
21515 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21516 0/*allow-unknown*/, &maintenance_show_cmdlist);
21517
21518 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
21519 &dwarf2_max_cache_age, _("\
21520 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21521 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21522 A higher limit means that cached compilation units will be stored\n\
21523 in memory longer, and more total memory will be used. Zero disables\n\
21524 caching, which can slow down startup."),
21525 NULL,
21526 show_dwarf2_max_cache_age,
21527 &set_dwarf2_cmdlist,
21528 &show_dwarf2_cmdlist);
21529
21530 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21531 &dwarf2_always_disassemble, _("\
21532 Set whether `info address' always disassembles DWARF expressions."), _("\
21533 Show whether `info address' always disassembles DWARF expressions."), _("\
21534 When enabled, DWARF expressions are always printed in an assembly-like\n\
21535 syntax. When disabled, expressions will be printed in a more\n\
21536 conversational style, when possible."),
21537 NULL,
21538 show_dwarf2_always_disassemble,
21539 &set_dwarf2_cmdlist,
21540 &show_dwarf2_cmdlist);
21541
21542 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21543 Set debugging of the dwarf2 reader."), _("\
21544 Show debugging of the dwarf2 reader."), _("\
21545 When enabled, debugging messages are printed during dwarf2 reading\n\
21546 and symtab expansion."),
21547 NULL,
21548 NULL,
21549 &setdebuglist, &showdebuglist);
21550
21551 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
21552 Set debugging of the dwarf2 DIE reader."), _("\
21553 Show debugging of the dwarf2 DIE reader."), _("\
21554 When enabled (non-zero), DIEs are dumped after they are read in.\n\
21555 The value is the maximum depth to print."),
21556 NULL,
21557 NULL,
21558 &setdebuglist, &showdebuglist);
21559
21560 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21561 Set cross-checking of \"physname\" code against demangler."), _("\
21562 Show cross-checking of \"physname\" code against demangler."), _("\
21563 When enabled, GDB's internal \"physname\" code is checked against\n\
21564 the demangler."),
21565 NULL, show_check_physname,
21566 &setdebuglist, &showdebuglist);
21567
21568 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21569 no_class, &use_deprecated_index_sections, _("\
21570 Set whether to use deprecated gdb_index sections."), _("\
21571 Show whether to use deprecated gdb_index sections."), _("\
21572 When enabled, deprecated .gdb_index sections are used anyway.\n\
21573 Normally they are ignored either because of a missing feature or\n\
21574 performance issue.\n\
21575 Warning: This option must be enabled before gdb reads the file."),
21576 NULL,
21577 NULL,
21578 &setlist, &showlist);
21579
21580 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
21581 _("\
21582 Save a gdb-index file.\n\
21583 Usage: save gdb-index DIRECTORY"),
21584 &save_cmdlist);
21585 set_cmd_completer (c, filename_completer);
21586
21587 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21588 &dwarf2_locexpr_funcs);
21589 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21590 &dwarf2_loclist_funcs);
21591
21592 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21593 &dwarf2_block_frame_base_locexpr_funcs);
21594 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21595 &dwarf2_block_frame_base_loclist_funcs);
21596 }