* dwarf2read.c (read_file_scope): Add a comment.
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support.
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27
28 #include "defs.h"
29 #include "bfd.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "objfiles.h"
33 #include "elf/dwarf2.h"
34 #include "buildsym.h"
35 #include "demangle.h"
36 #include "expression.h"
37 #include "filenames.h" /* for DOSish file names */
38 #include "macrotab.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "bcache.h"
42 #include "dwarf2expr.h"
43 #include "dwarf2loc.h"
44 #include "cp-support.h"
45 #include "hashtab.h"
46 #include "command.h"
47 #include "gdbcmd.h"
48
49 #include <fcntl.h>
50 #include "gdb_string.h"
51 #include "gdb_assert.h"
52 #include <sys/types.h>
53
54 /* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
68 #if 0
69 /* .debug_info header for a compilation unit
70 Because of alignment constraints, this structure has padding and cannot
71 be mapped directly onto the beginning of the .debug_info section. */
72 typedef struct comp_unit_header
73 {
74 unsigned int length; /* length of the .debug_info
75 contribution */
76 unsigned short version; /* version number -- 2 for DWARF
77 version 2 */
78 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
79 unsigned char addr_size; /* byte size of an address -- 4 */
80 }
81 _COMP_UNIT_HEADER;
82 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
83 #endif
84
85 /* .debug_pubnames header
86 Because of alignment constraints, this structure has padding and cannot
87 be mapped directly onto the beginning of the .debug_info section. */
88 typedef struct pubnames_header
89 {
90 unsigned int length; /* length of the .debug_pubnames
91 contribution */
92 unsigned char version; /* version number -- 2 for DWARF
93 version 2 */
94 unsigned int info_offset; /* offset into .debug_info section */
95 unsigned int info_size; /* byte size of .debug_info section
96 portion */
97 }
98 _PUBNAMES_HEADER;
99 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
100
101 /* .debug_pubnames header
102 Because of alignment constraints, this structure has padding and cannot
103 be mapped directly onto the beginning of the .debug_info section. */
104 typedef struct aranges_header
105 {
106 unsigned int length; /* byte len of the .debug_aranges
107 contribution */
108 unsigned short version; /* version number -- 2 for DWARF
109 version 2 */
110 unsigned int info_offset; /* offset into .debug_info section */
111 unsigned char addr_size; /* byte size of an address */
112 unsigned char seg_size; /* byte size of segment descriptor */
113 }
114 _ARANGES_HEADER;
115 #define _ACTUAL_ARANGES_HEADER_SIZE 12
116
117 /* .debug_line statement program prologue
118 Because of alignment constraints, this structure has padding and cannot
119 be mapped directly onto the beginning of the .debug_info section. */
120 typedef struct statement_prologue
121 {
122 unsigned int total_length; /* byte length of the statement
123 information */
124 unsigned short version; /* version number -- 2 for DWARF
125 version 2 */
126 unsigned int prologue_length; /* # bytes between prologue &
127 stmt program */
128 unsigned char minimum_instruction_length; /* byte size of
129 smallest instr */
130 unsigned char default_is_stmt; /* initial value of is_stmt
131 register */
132 char line_base;
133 unsigned char line_range;
134 unsigned char opcode_base; /* number assigned to first special
135 opcode */
136 unsigned char *standard_opcode_lengths;
137 }
138 _STATEMENT_PROLOGUE;
139
140 static const struct objfile_data *dwarf2_objfile_data_key;
141
142 struct dwarf2_per_objfile
143 {
144 /* Sizes of debugging sections. */
145 unsigned int info_size;
146 unsigned int abbrev_size;
147 unsigned int line_size;
148 unsigned int pubnames_size;
149 unsigned int aranges_size;
150 unsigned int loc_size;
151 unsigned int macinfo_size;
152 unsigned int str_size;
153 unsigned int ranges_size;
154 unsigned int frame_size;
155 unsigned int eh_frame_size;
156
157 /* Loaded data from the sections. */
158 gdb_byte *info_buffer;
159 gdb_byte *abbrev_buffer;
160 gdb_byte *line_buffer;
161 gdb_byte *str_buffer;
162 gdb_byte *macinfo_buffer;
163 gdb_byte *ranges_buffer;
164 gdb_byte *loc_buffer;
165
166 /* A list of all the compilation units. This is used to locate
167 the target compilation unit of a particular reference. */
168 struct dwarf2_per_cu_data **all_comp_units;
169
170 /* The number of compilation units in ALL_COMP_UNITS. */
171 int n_comp_units;
172
173 /* A chain of compilation units that are currently read in, so that
174 they can be freed later. */
175 struct dwarf2_per_cu_data *read_in_chain;
176
177 /* A flag indicating wether this objfile has a section loaded at a
178 VMA of 0. */
179 int has_section_at_zero;
180 };
181
182 static struct dwarf2_per_objfile *dwarf2_per_objfile;
183
184 static asection *dwarf_info_section;
185 static asection *dwarf_abbrev_section;
186 static asection *dwarf_line_section;
187 static asection *dwarf_pubnames_section;
188 static asection *dwarf_aranges_section;
189 static asection *dwarf_loc_section;
190 static asection *dwarf_macinfo_section;
191 static asection *dwarf_str_section;
192 static asection *dwarf_ranges_section;
193 asection *dwarf_frame_section;
194 asection *dwarf_eh_frame_section;
195
196 /* names of the debugging sections */
197
198 #define INFO_SECTION ".debug_info"
199 #define ABBREV_SECTION ".debug_abbrev"
200 #define LINE_SECTION ".debug_line"
201 #define PUBNAMES_SECTION ".debug_pubnames"
202 #define ARANGES_SECTION ".debug_aranges"
203 #define LOC_SECTION ".debug_loc"
204 #define MACINFO_SECTION ".debug_macinfo"
205 #define STR_SECTION ".debug_str"
206 #define RANGES_SECTION ".debug_ranges"
207 #define FRAME_SECTION ".debug_frame"
208 #define EH_FRAME_SECTION ".eh_frame"
209
210 /* local data types */
211
212 /* We hold several abbreviation tables in memory at the same time. */
213 #ifndef ABBREV_HASH_SIZE
214 #define ABBREV_HASH_SIZE 121
215 #endif
216
217 /* The data in a compilation unit header, after target2host
218 translation, looks like this. */
219 struct comp_unit_head
220 {
221 unsigned long length;
222 short version;
223 unsigned int abbrev_offset;
224 unsigned char addr_size;
225 unsigned char signed_addr_p;
226
227 /* Size of file offsets; either 4 or 8. */
228 unsigned int offset_size;
229
230 /* Size of the length field; either 4 or 12. */
231 unsigned int initial_length_size;
232
233 /* Offset to the first byte of this compilation unit header in the
234 .debug_info section, for resolving relative reference dies. */
235 unsigned int offset;
236
237 /* Pointer to this compilation unit header in the .debug_info
238 section. */
239 gdb_byte *cu_head_ptr;
240
241 /* Pointer to the first die of this compilation unit. This will be
242 the first byte following the compilation unit header. */
243 gdb_byte *first_die_ptr;
244
245 /* Pointer to the next compilation unit header in the program. */
246 struct comp_unit_head *next;
247
248 /* Base address of this compilation unit. */
249 CORE_ADDR base_address;
250
251 /* Non-zero if base_address has been set. */
252 int base_known;
253 };
254
255 /* Fixed size for the DIE hash table. */
256 #ifndef REF_HASH_SIZE
257 #define REF_HASH_SIZE 1021
258 #endif
259
260 /* Internal state when decoding a particular compilation unit. */
261 struct dwarf2_cu
262 {
263 /* The objfile containing this compilation unit. */
264 struct objfile *objfile;
265
266 /* The header of the compilation unit.
267
268 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
269 should logically be moved to the dwarf2_cu structure. */
270 struct comp_unit_head header;
271
272 struct function_range *first_fn, *last_fn, *cached_fn;
273
274 /* The language we are debugging. */
275 enum language language;
276 const struct language_defn *language_defn;
277
278 const char *producer;
279
280 /* The generic symbol table building routines have separate lists for
281 file scope symbols and all all other scopes (local scopes). So
282 we need to select the right one to pass to add_symbol_to_list().
283 We do it by keeping a pointer to the correct list in list_in_scope.
284
285 FIXME: The original dwarf code just treated the file scope as the
286 first local scope, and all other local scopes as nested local
287 scopes, and worked fine. Check to see if we really need to
288 distinguish these in buildsym.c. */
289 struct pending **list_in_scope;
290
291 /* Maintain an array of referenced fundamental types for the current
292 compilation unit being read. For DWARF version 1, we have to construct
293 the fundamental types on the fly, since no information about the
294 fundamental types is supplied. Each such fundamental type is created by
295 calling a language dependent routine to create the type, and then a
296 pointer to that type is then placed in the array at the index specified
297 by it's FT_<TYPENAME> value. The array has a fixed size set by the
298 FT_NUM_MEMBERS compile time constant, which is the number of predefined
299 fundamental types gdb knows how to construct. */
300 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
301
302 /* DWARF abbreviation table associated with this compilation unit. */
303 struct abbrev_info **dwarf2_abbrevs;
304
305 /* Storage for the abbrev table. */
306 struct obstack abbrev_obstack;
307
308 /* Hash table holding all the loaded partial DIEs. */
309 htab_t partial_dies;
310
311 /* Storage for things with the same lifetime as this read-in compilation
312 unit, including partial DIEs. */
313 struct obstack comp_unit_obstack;
314
315 /* When multiple dwarf2_cu structures are living in memory, this field
316 chains them all together, so that they can be released efficiently.
317 We will probably also want a generation counter so that most-recently-used
318 compilation units are cached... */
319 struct dwarf2_per_cu_data *read_in_chain;
320
321 /* Backchain to our per_cu entry if the tree has been built. */
322 struct dwarf2_per_cu_data *per_cu;
323
324 /* How many compilation units ago was this CU last referenced? */
325 int last_used;
326
327 /* A hash table of die offsets for following references. */
328 struct die_info *die_ref_table[REF_HASH_SIZE];
329
330 /* Full DIEs if read in. */
331 struct die_info *dies;
332
333 /* A set of pointers to dwarf2_per_cu_data objects for compilation
334 units referenced by this one. Only set during full symbol processing;
335 partial symbol tables do not have dependencies. */
336 htab_t dependencies;
337
338 /* Header data from the line table, during full symbol processing. */
339 struct line_header *line_header;
340
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
353 };
354
355 /* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
361 struct dwarf2_per_cu_data
362 {
363 /* The start offset and length of this compilation unit. 2**30-1
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
367 unsigned long length : 30;
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
373 /* This flag will be set if we need to load absolutely all DIEs
374 for this compilation unit, instead of just the ones we think
375 are interesting. It gets set if we look for a DIE in the
376 hash table and don't find it. */
377 unsigned int load_all_dies : 1;
378
379 /* Set iff currently read in. */
380 struct dwarf2_cu *cu;
381
382 /* If full symbols for this CU have been read in, then this field
383 holds a map of DIE offsets to types. It isn't always possible
384 to reconstruct this information later, so we have to preserve
385 it. */
386 htab_t type_hash;
387
388 /* The partial symbol table associated with this compilation unit,
389 or NULL for partial units (which do not have an associated
390 symtab). */
391 struct partial_symtab *psymtab;
392 };
393
394 /* The line number information for a compilation unit (found in the
395 .debug_line section) begins with a "statement program header",
396 which contains the following information. */
397 struct line_header
398 {
399 unsigned int total_length;
400 unsigned short version;
401 unsigned int header_length;
402 unsigned char minimum_instruction_length;
403 unsigned char default_is_stmt;
404 int line_base;
405 unsigned char line_range;
406 unsigned char opcode_base;
407
408 /* standard_opcode_lengths[i] is the number of operands for the
409 standard opcode whose value is i. This means that
410 standard_opcode_lengths[0] is unused, and the last meaningful
411 element is standard_opcode_lengths[opcode_base - 1]. */
412 unsigned char *standard_opcode_lengths;
413
414 /* The include_directories table. NOTE! These strings are not
415 allocated with xmalloc; instead, they are pointers into
416 debug_line_buffer. If you try to free them, `free' will get
417 indigestion. */
418 unsigned int num_include_dirs, include_dirs_size;
419 char **include_dirs;
420
421 /* The file_names table. NOTE! These strings are not allocated
422 with xmalloc; instead, they are pointers into debug_line_buffer.
423 Don't try to free them directly. */
424 unsigned int num_file_names, file_names_size;
425 struct file_entry
426 {
427 char *name;
428 unsigned int dir_index;
429 unsigned int mod_time;
430 unsigned int length;
431 int included_p; /* Non-zero if referenced by the Line Number Program. */
432 struct symtab *symtab; /* The associated symbol table, if any. */
433 } *file_names;
434
435 /* The start and end of the statement program following this
436 header. These point into dwarf2_per_objfile->line_buffer. */
437 gdb_byte *statement_program_start, *statement_program_end;
438 };
439
440 /* When we construct a partial symbol table entry we only
441 need this much information. */
442 struct partial_die_info
443 {
444 /* Offset of this DIE. */
445 unsigned int offset;
446
447 /* DWARF-2 tag for this DIE. */
448 ENUM_BITFIELD(dwarf_tag) tag : 16;
449
450 /* Language code associated with this DIE. This is only used
451 for the compilation unit DIE. */
452 unsigned int language : 8;
453
454 /* Assorted flags describing the data found in this DIE. */
455 unsigned int has_children : 1;
456 unsigned int is_external : 1;
457 unsigned int is_declaration : 1;
458 unsigned int has_type : 1;
459 unsigned int has_specification : 1;
460 unsigned int has_stmt_list : 1;
461 unsigned int has_pc_info : 1;
462
463 /* Flag set if the SCOPE field of this structure has been
464 computed. */
465 unsigned int scope_set : 1;
466
467 /* Flag set if the DIE has a byte_size attribute. */
468 unsigned int has_byte_size : 1;
469
470 /* The name of this DIE. Normally the value of DW_AT_name, but
471 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
472 other fashion. */
473 char *name;
474 char *dirname;
475
476 /* The scope to prepend to our children. This is generally
477 allocated on the comp_unit_obstack, so will disappear
478 when this compilation unit leaves the cache. */
479 char *scope;
480
481 /* The location description associated with this DIE, if any. */
482 struct dwarf_block *locdesc;
483
484 /* If HAS_PC_INFO, the PC range associated with this DIE. */
485 CORE_ADDR lowpc;
486 CORE_ADDR highpc;
487
488 /* Pointer into the info_buffer pointing at the target of
489 DW_AT_sibling, if any. */
490 gdb_byte *sibling;
491
492 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
493 DW_AT_specification (or DW_AT_abstract_origin or
494 DW_AT_extension). */
495 unsigned int spec_offset;
496
497 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
498 unsigned int line_offset;
499
500 /* Pointers to this DIE's parent, first child, and next sibling,
501 if any. */
502 struct partial_die_info *die_parent, *die_child, *die_sibling;
503 };
504
505 /* This data structure holds the information of an abbrev. */
506 struct abbrev_info
507 {
508 unsigned int number; /* number identifying abbrev */
509 enum dwarf_tag tag; /* dwarf tag */
510 unsigned short has_children; /* boolean */
511 unsigned short num_attrs; /* number of attributes */
512 struct attr_abbrev *attrs; /* an array of attribute descriptions */
513 struct abbrev_info *next; /* next in chain */
514 };
515
516 struct attr_abbrev
517 {
518 enum dwarf_attribute name;
519 enum dwarf_form form;
520 };
521
522 /* This data structure holds a complete die structure. */
523 struct die_info
524 {
525 enum dwarf_tag tag; /* Tag indicating type of die */
526 unsigned int abbrev; /* Abbrev number */
527 unsigned int offset; /* Offset in .debug_info section */
528 unsigned int num_attrs; /* Number of attributes */
529 struct attribute *attrs; /* An array of attributes */
530 struct die_info *next_ref; /* Next die in ref hash table */
531
532 /* The dies in a compilation unit form an n-ary tree. PARENT
533 points to this die's parent; CHILD points to the first child of
534 this node; and all the children of a given node are chained
535 together via their SIBLING fields, terminated by a die whose
536 tag is zero. */
537 struct die_info *child; /* Its first child, if any. */
538 struct die_info *sibling; /* Its next sibling, if any. */
539 struct die_info *parent; /* Its parent, if any. */
540
541 struct type *type; /* Cached type information */
542 };
543
544 /* Attributes have a name and a value */
545 struct attribute
546 {
547 enum dwarf_attribute name;
548 enum dwarf_form form;
549 union
550 {
551 char *str;
552 struct dwarf_block *blk;
553 unsigned long unsnd;
554 long int snd;
555 CORE_ADDR addr;
556 }
557 u;
558 };
559
560 struct function_range
561 {
562 const char *name;
563 CORE_ADDR lowpc, highpc;
564 int seen_line;
565 struct function_range *next;
566 };
567
568 /* Get at parts of an attribute structure */
569
570 #define DW_STRING(attr) ((attr)->u.str)
571 #define DW_UNSND(attr) ((attr)->u.unsnd)
572 #define DW_BLOCK(attr) ((attr)->u.blk)
573 #define DW_SND(attr) ((attr)->u.snd)
574 #define DW_ADDR(attr) ((attr)->u.addr)
575
576 /* Blocks are a bunch of untyped bytes. */
577 struct dwarf_block
578 {
579 unsigned int size;
580 gdb_byte *data;
581 };
582
583 #ifndef ATTR_ALLOC_CHUNK
584 #define ATTR_ALLOC_CHUNK 4
585 #endif
586
587 /* Allocate fields for structs, unions and enums in this size. */
588 #ifndef DW_FIELD_ALLOC_CHUNK
589 #define DW_FIELD_ALLOC_CHUNK 4
590 #endif
591
592 /* A zeroed version of a partial die for initialization purposes. */
593 static struct partial_die_info zeroed_partial_die;
594
595 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
596 but this would require a corresponding change in unpack_field_as_long
597 and friends. */
598 static int bits_per_byte = 8;
599
600 /* The routines that read and process dies for a C struct or C++ class
601 pass lists of data member fields and lists of member function fields
602 in an instance of a field_info structure, as defined below. */
603 struct field_info
604 {
605 /* List of data member and baseclasses fields. */
606 struct nextfield
607 {
608 struct nextfield *next;
609 int accessibility;
610 int virtuality;
611 struct field field;
612 }
613 *fields;
614
615 /* Number of fields. */
616 int nfields;
617
618 /* Number of baseclasses. */
619 int nbaseclasses;
620
621 /* Set if the accesibility of one of the fields is not public. */
622 int non_public_fields;
623
624 /* Member function fields array, entries are allocated in the order they
625 are encountered in the object file. */
626 struct nextfnfield
627 {
628 struct nextfnfield *next;
629 struct fn_field fnfield;
630 }
631 *fnfields;
632
633 /* Member function fieldlist array, contains name of possibly overloaded
634 member function, number of overloaded member functions and a pointer
635 to the head of the member function field chain. */
636 struct fnfieldlist
637 {
638 char *name;
639 int length;
640 struct nextfnfield *head;
641 }
642 *fnfieldlists;
643
644 /* Number of entries in the fnfieldlists array. */
645 int nfnfields;
646 };
647
648 /* One item on the queue of compilation units to read in full symbols
649 for. */
650 struct dwarf2_queue_item
651 {
652 struct dwarf2_per_cu_data *per_cu;
653 struct dwarf2_queue_item *next;
654 };
655
656 /* The current queue. */
657 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
658
659 /* Loaded secondary compilation units are kept in memory until they
660 have not been referenced for the processing of this many
661 compilation units. Set this to zero to disable caching. Cache
662 sizes of up to at least twenty will improve startup time for
663 typical inter-CU-reference binaries, at an obvious memory cost. */
664 static int dwarf2_max_cache_age = 5;
665 static void
666 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
667 struct cmd_list_element *c, const char *value)
668 {
669 fprintf_filtered (file, _("\
670 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
671 value);
672 }
673
674
675 /* Various complaints about symbol reading that don't abort the process */
676
677 static void
678 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
679 {
680 complaint (&symfile_complaints,
681 _("statement list doesn't fit in .debug_line section"));
682 }
683
684 static void
685 dwarf2_debug_line_missing_file_complaint (void)
686 {
687 complaint (&symfile_complaints,
688 _(".debug_line section has line data without a file"));
689 }
690
691 static void
692 dwarf2_complex_location_expr_complaint (void)
693 {
694 complaint (&symfile_complaints, _("location expression too complex"));
695 }
696
697 static void
698 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
699 int arg3)
700 {
701 complaint (&symfile_complaints,
702 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
703 arg2, arg3);
704 }
705
706 static void
707 dwarf2_macros_too_long_complaint (void)
708 {
709 complaint (&symfile_complaints,
710 _("macro info runs off end of `.debug_macinfo' section"));
711 }
712
713 static void
714 dwarf2_macro_malformed_definition_complaint (const char *arg1)
715 {
716 complaint (&symfile_complaints,
717 _("macro debug info contains a malformed macro definition:\n`%s'"),
718 arg1);
719 }
720
721 static void
722 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
723 {
724 complaint (&symfile_complaints,
725 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
726 }
727
728 /* local function prototypes */
729
730 static void dwarf2_locate_sections (bfd *, asection *, void *);
731
732 #if 0
733 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
734 #endif
735
736 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
737 struct objfile *);
738
739 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
740 struct partial_die_info *,
741 struct partial_symtab *);
742
743 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
744
745 static void scan_partial_symbols (struct partial_die_info *,
746 CORE_ADDR *, CORE_ADDR *,
747 struct dwarf2_cu *);
748
749 static void add_partial_symbol (struct partial_die_info *,
750 struct dwarf2_cu *);
751
752 static int pdi_needs_namespace (enum dwarf_tag tag);
753
754 static void add_partial_namespace (struct partial_die_info *pdi,
755 CORE_ADDR *lowpc, CORE_ADDR *highpc,
756 struct dwarf2_cu *cu);
757
758 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
759 struct dwarf2_cu *cu);
760
761 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
762 gdb_byte *info_ptr,
763 bfd *abfd,
764 struct dwarf2_cu *cu);
765
766 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
767
768 static void psymtab_to_symtab_1 (struct partial_symtab *);
769
770 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
771
772 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
773
774 static void dwarf2_free_abbrev_table (void *);
775
776 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
777 struct dwarf2_cu *);
778
779 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
780 struct dwarf2_cu *);
781
782 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
783 struct dwarf2_cu *);
784
785 static gdb_byte *read_partial_die (struct partial_die_info *,
786 struct abbrev_info *abbrev, unsigned int,
787 bfd *, gdb_byte *, struct dwarf2_cu *);
788
789 static struct partial_die_info *find_partial_die (unsigned long,
790 struct dwarf2_cu *);
791
792 static void fixup_partial_die (struct partial_die_info *,
793 struct dwarf2_cu *);
794
795 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
796 struct dwarf2_cu *, int *);
797
798 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
799 bfd *, gdb_byte *, struct dwarf2_cu *);
800
801 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
802 bfd *, gdb_byte *, struct dwarf2_cu *);
803
804 static unsigned int read_1_byte (bfd *, gdb_byte *);
805
806 static int read_1_signed_byte (bfd *, gdb_byte *);
807
808 static unsigned int read_2_bytes (bfd *, gdb_byte *);
809
810 static unsigned int read_4_bytes (bfd *, gdb_byte *);
811
812 static unsigned long read_8_bytes (bfd *, gdb_byte *);
813
814 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
815 unsigned int *);
816
817 static LONGEST read_initial_length (bfd *, gdb_byte *,
818 struct comp_unit_head *, unsigned int *);
819
820 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
821 unsigned int *);
822
823 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
824
825 static char *read_string (bfd *, gdb_byte *, unsigned int *);
826
827 static char *read_indirect_string (bfd *, gdb_byte *,
828 const struct comp_unit_head *,
829 unsigned int *);
830
831 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
832
833 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
834
835 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
836
837 static void set_cu_language (unsigned int, struct dwarf2_cu *);
838
839 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
840 struct dwarf2_cu *);
841
842 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
843 struct dwarf2_cu *cu);
844
845 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
846
847 static struct die_info *die_specification (struct die_info *die,
848 struct dwarf2_cu *);
849
850 static void free_line_header (struct line_header *lh);
851
852 static void add_file_name (struct line_header *, char *, unsigned int,
853 unsigned int, unsigned int);
854
855 static struct line_header *(dwarf_decode_line_header
856 (unsigned int offset,
857 bfd *abfd, struct dwarf2_cu *cu));
858
859 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
860 struct dwarf2_cu *, struct partial_symtab *);
861
862 static void dwarf2_start_subfile (char *, char *, char *);
863
864 static struct symbol *new_symbol (struct die_info *, struct type *,
865 struct dwarf2_cu *);
866
867 static void dwarf2_const_value (struct attribute *, struct symbol *,
868 struct dwarf2_cu *);
869
870 static void dwarf2_const_value_data (struct attribute *attr,
871 struct symbol *sym,
872 int bits);
873
874 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
875
876 static struct type *die_containing_type (struct die_info *,
877 struct dwarf2_cu *);
878
879 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
880
881 static void read_type_die (struct die_info *, struct dwarf2_cu *);
882
883 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
884
885 static char *typename_concat (struct obstack *,
886 const char *prefix,
887 const char *suffix,
888 struct dwarf2_cu *);
889
890 static void read_typedef (struct die_info *, struct dwarf2_cu *);
891
892 static void read_base_type (struct die_info *, struct dwarf2_cu *);
893
894 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
895
896 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
897
898 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
899
900 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
901
902 static int dwarf2_get_pc_bounds (struct die_info *,
903 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
904
905 static void get_scope_pc_bounds (struct die_info *,
906 CORE_ADDR *, CORE_ADDR *,
907 struct dwarf2_cu *);
908
909 static void dwarf2_add_field (struct field_info *, struct die_info *,
910 struct dwarf2_cu *);
911
912 static void dwarf2_attach_fields_to_type (struct field_info *,
913 struct type *, struct dwarf2_cu *);
914
915 static void dwarf2_add_member_fn (struct field_info *,
916 struct die_info *, struct type *,
917 struct dwarf2_cu *);
918
919 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
920 struct type *, struct dwarf2_cu *);
921
922 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
923
924 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
925
926 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
927
928 static void read_common_block (struct die_info *, struct dwarf2_cu *);
929
930 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
931
932 static const char *namespace_name (struct die_info *die,
933 int *is_anonymous, struct dwarf2_cu *);
934
935 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
936
937 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
938
939 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
940
941 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
942
943 static void read_array_type (struct die_info *, struct dwarf2_cu *);
944
945 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
946 struct dwarf2_cu *);
947
948 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
949
950 static void read_tag_ptr_to_member_type (struct die_info *,
951 struct dwarf2_cu *);
952
953 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
954
955 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
956
957 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
958
959 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
960
961 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
962
963 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
964
965 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
966 struct dwarf2_cu *,
967 gdb_byte **new_info_ptr,
968 struct die_info *parent);
969
970 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
971 struct dwarf2_cu *,
972 gdb_byte **new_info_ptr,
973 struct die_info *parent);
974
975 static void free_die_list (struct die_info *);
976
977 static void process_die (struct die_info *, struct dwarf2_cu *);
978
979 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
980
981 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
982
983 static struct die_info *dwarf2_extension (struct die_info *die,
984 struct dwarf2_cu *);
985
986 static char *dwarf_tag_name (unsigned int);
987
988 static char *dwarf_attr_name (unsigned int);
989
990 static char *dwarf_form_name (unsigned int);
991
992 static char *dwarf_stack_op_name (unsigned int);
993
994 static char *dwarf_bool_name (unsigned int);
995
996 static char *dwarf_type_encoding_name (unsigned int);
997
998 #if 0
999 static char *dwarf_cfi_name (unsigned int);
1000
1001 struct die_info *copy_die (struct die_info *);
1002 #endif
1003
1004 static struct die_info *sibling_die (struct die_info *);
1005
1006 static void dump_die (struct die_info *);
1007
1008 static void dump_die_list (struct die_info *);
1009
1010 static void store_in_ref_table (unsigned int, struct die_info *,
1011 struct dwarf2_cu *);
1012
1013 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1014 struct dwarf2_cu *);
1015
1016 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1017
1018 static struct die_info *follow_die_ref (struct die_info *,
1019 struct attribute *,
1020 struct dwarf2_cu *);
1021
1022 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1023 struct dwarf2_cu *);
1024
1025 /* memory allocation interface */
1026
1027 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1028
1029 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1030
1031 static struct die_info *dwarf_alloc_die (void);
1032
1033 static void initialize_cu_func_list (struct dwarf2_cu *);
1034
1035 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1036 struct dwarf2_cu *);
1037
1038 static void dwarf_decode_macros (struct line_header *, unsigned int,
1039 char *, bfd *, struct dwarf2_cu *);
1040
1041 static int attr_form_is_block (struct attribute *);
1042
1043 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1044 struct symbol *sym,
1045 struct dwarf2_cu *cu);
1046
1047 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1048 struct dwarf2_cu *cu);
1049
1050 static void free_stack_comp_unit (void *);
1051
1052 static hashval_t partial_die_hash (const void *item);
1053
1054 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1055
1056 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1057 (unsigned long offset, struct objfile *objfile);
1058
1059 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1060 (unsigned long offset, struct objfile *objfile);
1061
1062 static void free_one_comp_unit (void *);
1063
1064 static void free_cached_comp_units (void *);
1065
1066 static void age_cached_comp_units (void);
1067
1068 static void free_one_cached_comp_unit (void *);
1069
1070 static void set_die_type (struct die_info *, struct type *,
1071 struct dwarf2_cu *);
1072
1073 static void reset_die_and_siblings_types (struct die_info *,
1074 struct dwarf2_cu *);
1075
1076 static void create_all_comp_units (struct objfile *);
1077
1078 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1079 struct objfile *);
1080
1081 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1082
1083 static void dwarf2_add_dependence (struct dwarf2_cu *,
1084 struct dwarf2_per_cu_data *);
1085
1086 static void dwarf2_mark (struct dwarf2_cu *);
1087
1088 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1089
1090 static void read_set_type (struct die_info *, struct dwarf2_cu *);
1091
1092
1093 /* Try to locate the sections we need for DWARF 2 debugging
1094 information and return true if we have enough to do something. */
1095
1096 int
1097 dwarf2_has_info (struct objfile *objfile)
1098 {
1099 struct dwarf2_per_objfile *data;
1100
1101 /* Initialize per-objfile state. */
1102 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1103 memset (data, 0, sizeof (*data));
1104 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1105 dwarf2_per_objfile = data;
1106
1107 dwarf_info_section = 0;
1108 dwarf_abbrev_section = 0;
1109 dwarf_line_section = 0;
1110 dwarf_str_section = 0;
1111 dwarf_macinfo_section = 0;
1112 dwarf_frame_section = 0;
1113 dwarf_eh_frame_section = 0;
1114 dwarf_ranges_section = 0;
1115 dwarf_loc_section = 0;
1116
1117 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1118 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1119 }
1120
1121 /* This function is mapped across the sections and remembers the
1122 offset and size of each of the debugging sections we are interested
1123 in. */
1124
1125 static void
1126 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1127 {
1128 if (strcmp (sectp->name, INFO_SECTION) == 0)
1129 {
1130 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1131 dwarf_info_section = sectp;
1132 }
1133 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1134 {
1135 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1136 dwarf_abbrev_section = sectp;
1137 }
1138 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1139 {
1140 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1141 dwarf_line_section = sectp;
1142 }
1143 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1144 {
1145 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1146 dwarf_pubnames_section = sectp;
1147 }
1148 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1149 {
1150 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1151 dwarf_aranges_section = sectp;
1152 }
1153 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1154 {
1155 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1156 dwarf_loc_section = sectp;
1157 }
1158 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1159 {
1160 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1161 dwarf_macinfo_section = sectp;
1162 }
1163 else if (strcmp (sectp->name, STR_SECTION) == 0)
1164 {
1165 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1166 dwarf_str_section = sectp;
1167 }
1168 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1169 {
1170 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1171 dwarf_frame_section = sectp;
1172 }
1173 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1174 {
1175 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1176 if (aflag & SEC_HAS_CONTENTS)
1177 {
1178 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1179 dwarf_eh_frame_section = sectp;
1180 }
1181 }
1182 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1183 {
1184 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1185 dwarf_ranges_section = sectp;
1186 }
1187
1188 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1189 && bfd_section_vma (abfd, sectp) == 0)
1190 dwarf2_per_objfile->has_section_at_zero = 1;
1191 }
1192
1193 /* Build a partial symbol table. */
1194
1195 void
1196 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1197 {
1198 /* We definitely need the .debug_info and .debug_abbrev sections */
1199
1200 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1201 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1202
1203 if (dwarf_line_section)
1204 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1205 else
1206 dwarf2_per_objfile->line_buffer = NULL;
1207
1208 if (dwarf_str_section)
1209 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1210 else
1211 dwarf2_per_objfile->str_buffer = NULL;
1212
1213 if (dwarf_macinfo_section)
1214 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1215 dwarf_macinfo_section);
1216 else
1217 dwarf2_per_objfile->macinfo_buffer = NULL;
1218
1219 if (dwarf_ranges_section)
1220 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1221 else
1222 dwarf2_per_objfile->ranges_buffer = NULL;
1223
1224 if (dwarf_loc_section)
1225 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1226 else
1227 dwarf2_per_objfile->loc_buffer = NULL;
1228
1229 if (mainline
1230 || (objfile->global_psymbols.size == 0
1231 && objfile->static_psymbols.size == 0))
1232 {
1233 init_psymbol_list (objfile, 1024);
1234 }
1235
1236 #if 0
1237 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1238 {
1239 /* Things are significantly easier if we have .debug_aranges and
1240 .debug_pubnames sections */
1241
1242 dwarf2_build_psymtabs_easy (objfile, mainline);
1243 }
1244 else
1245 #endif
1246 /* only test this case for now */
1247 {
1248 /* In this case we have to work a bit harder */
1249 dwarf2_build_psymtabs_hard (objfile, mainline);
1250 }
1251 }
1252
1253 #if 0
1254 /* Build the partial symbol table from the information in the
1255 .debug_pubnames and .debug_aranges sections. */
1256
1257 static void
1258 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1259 {
1260 bfd *abfd = objfile->obfd;
1261 char *aranges_buffer, *pubnames_buffer;
1262 char *aranges_ptr, *pubnames_ptr;
1263 unsigned int entry_length, version, info_offset, info_size;
1264
1265 pubnames_buffer = dwarf2_read_section (objfile,
1266 dwarf_pubnames_section);
1267 pubnames_ptr = pubnames_buffer;
1268 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1269 {
1270 struct comp_unit_head cu_header;
1271 unsigned int bytes_read;
1272
1273 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1274 &bytes_read);
1275 pubnames_ptr += bytes_read;
1276 version = read_1_byte (abfd, pubnames_ptr);
1277 pubnames_ptr += 1;
1278 info_offset = read_4_bytes (abfd, pubnames_ptr);
1279 pubnames_ptr += 4;
1280 info_size = read_4_bytes (abfd, pubnames_ptr);
1281 pubnames_ptr += 4;
1282 }
1283
1284 aranges_buffer = dwarf2_read_section (objfile,
1285 dwarf_aranges_section);
1286
1287 }
1288 #endif
1289
1290 /* Read in the comp unit header information from the debug_info at
1291 info_ptr. */
1292
1293 static gdb_byte *
1294 read_comp_unit_head (struct comp_unit_head *cu_header,
1295 gdb_byte *info_ptr, bfd *abfd)
1296 {
1297 int signed_addr;
1298 unsigned int bytes_read;
1299 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1300 &bytes_read);
1301 info_ptr += bytes_read;
1302 cu_header->version = read_2_bytes (abfd, info_ptr);
1303 info_ptr += 2;
1304 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1305 &bytes_read);
1306 info_ptr += bytes_read;
1307 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1308 info_ptr += 1;
1309 signed_addr = bfd_get_sign_extend_vma (abfd);
1310 if (signed_addr < 0)
1311 internal_error (__FILE__, __LINE__,
1312 _("read_comp_unit_head: dwarf from non elf file"));
1313 cu_header->signed_addr_p = signed_addr;
1314 return info_ptr;
1315 }
1316
1317 static gdb_byte *
1318 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1319 bfd *abfd)
1320 {
1321 gdb_byte *beg_of_comp_unit = info_ptr;
1322
1323 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1324
1325 if (header->version != 2 && header->version != 3)
1326 error (_("Dwarf Error: wrong version in compilation unit header "
1327 "(is %d, should be %d) [in module %s]"), header->version,
1328 2, bfd_get_filename (abfd));
1329
1330 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1331 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1332 "(offset 0x%lx + 6) [in module %s]"),
1333 (long) header->abbrev_offset,
1334 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1335 bfd_get_filename (abfd));
1336
1337 if (beg_of_comp_unit + header->length + header->initial_length_size
1338 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1339 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1340 "(offset 0x%lx + 0) [in module %s]"),
1341 (long) header->length,
1342 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1343 bfd_get_filename (abfd));
1344
1345 return info_ptr;
1346 }
1347
1348 /* Allocate a new partial symtab for file named NAME and mark this new
1349 partial symtab as being an include of PST. */
1350
1351 static void
1352 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1353 struct objfile *objfile)
1354 {
1355 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1356
1357 subpst->section_offsets = pst->section_offsets;
1358 subpst->textlow = 0;
1359 subpst->texthigh = 0;
1360
1361 subpst->dependencies = (struct partial_symtab **)
1362 obstack_alloc (&objfile->objfile_obstack,
1363 sizeof (struct partial_symtab *));
1364 subpst->dependencies[0] = pst;
1365 subpst->number_of_dependencies = 1;
1366
1367 subpst->globals_offset = 0;
1368 subpst->n_global_syms = 0;
1369 subpst->statics_offset = 0;
1370 subpst->n_static_syms = 0;
1371 subpst->symtab = NULL;
1372 subpst->read_symtab = pst->read_symtab;
1373 subpst->readin = 0;
1374
1375 /* No private part is necessary for include psymtabs. This property
1376 can be used to differentiate between such include psymtabs and
1377 the regular ones. */
1378 subpst->read_symtab_private = NULL;
1379 }
1380
1381 /* Read the Line Number Program data and extract the list of files
1382 included by the source file represented by PST. Build an include
1383 partial symtab for each of these included files.
1384
1385 This procedure assumes that there *is* a Line Number Program in
1386 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1387 before calling this procedure. */
1388
1389 static void
1390 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1391 struct partial_die_info *pdi,
1392 struct partial_symtab *pst)
1393 {
1394 struct objfile *objfile = cu->objfile;
1395 bfd *abfd = objfile->obfd;
1396 struct line_header *lh;
1397
1398 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1399 if (lh == NULL)
1400 return; /* No linetable, so no includes. */
1401
1402 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1403
1404 free_line_header (lh);
1405 }
1406
1407
1408 /* Build the partial symbol table by doing a quick pass through the
1409 .debug_info and .debug_abbrev sections. */
1410
1411 static void
1412 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1413 {
1414 /* Instead of reading this into a big buffer, we should probably use
1415 mmap() on architectures that support it. (FIXME) */
1416 bfd *abfd = objfile->obfd;
1417 gdb_byte *info_ptr;
1418 gdb_byte *beg_of_comp_unit;
1419 struct partial_die_info comp_unit_die;
1420 struct partial_symtab *pst;
1421 struct cleanup *back_to;
1422 CORE_ADDR lowpc, highpc, baseaddr;
1423
1424 info_ptr = dwarf2_per_objfile->info_buffer;
1425
1426 /* Any cached compilation units will be linked by the per-objfile
1427 read_in_chain. Make sure to free them when we're done. */
1428 back_to = make_cleanup (free_cached_comp_units, NULL);
1429
1430 create_all_comp_units (objfile);
1431
1432 /* Since the objects we're extracting from .debug_info vary in
1433 length, only the individual functions to extract them (like
1434 read_comp_unit_head and load_partial_die) can really know whether
1435 the buffer is large enough to hold another complete object.
1436
1437 At the moment, they don't actually check that. If .debug_info
1438 holds just one extra byte after the last compilation unit's dies,
1439 then read_comp_unit_head will happily read off the end of the
1440 buffer. read_partial_die is similarly casual. Those functions
1441 should be fixed.
1442
1443 For this loop condition, simply checking whether there's any data
1444 left at all should be sufficient. */
1445 while (info_ptr < (dwarf2_per_objfile->info_buffer
1446 + dwarf2_per_objfile->info_size))
1447 {
1448 struct cleanup *back_to_inner;
1449 struct dwarf2_cu cu;
1450 struct abbrev_info *abbrev;
1451 unsigned int bytes_read;
1452 struct dwarf2_per_cu_data *this_cu;
1453
1454 beg_of_comp_unit = info_ptr;
1455
1456 memset (&cu, 0, sizeof (cu));
1457
1458 obstack_init (&cu.comp_unit_obstack);
1459
1460 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1461
1462 cu.objfile = objfile;
1463 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1464
1465 /* Complete the cu_header */
1466 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1467 cu.header.first_die_ptr = info_ptr;
1468 cu.header.cu_head_ptr = beg_of_comp_unit;
1469
1470 cu.list_in_scope = &file_symbols;
1471
1472 /* Read the abbrevs for this compilation unit into a table */
1473 dwarf2_read_abbrevs (abfd, &cu);
1474 make_cleanup (dwarf2_free_abbrev_table, &cu);
1475
1476 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1477
1478 /* Read the compilation unit die */
1479 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1480 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1481 abfd, info_ptr, &cu);
1482
1483 if (comp_unit_die.tag == DW_TAG_partial_unit)
1484 {
1485 info_ptr = (beg_of_comp_unit + cu.header.length
1486 + cu.header.initial_length_size);
1487 do_cleanups (back_to_inner);
1488 continue;
1489 }
1490
1491 /* Set the language we're debugging */
1492 set_cu_language (comp_unit_die.language, &cu);
1493
1494 /* Allocate a new partial symbol table structure */
1495 pst = start_psymtab_common (objfile, objfile->section_offsets,
1496 comp_unit_die.name ? comp_unit_die.name : "",
1497 comp_unit_die.lowpc,
1498 objfile->global_psymbols.next,
1499 objfile->static_psymbols.next);
1500
1501 if (comp_unit_die.dirname)
1502 pst->dirname = xstrdup (comp_unit_die.dirname);
1503
1504 pst->read_symtab_private = (char *) this_cu;
1505
1506 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1507
1508 /* Store the function that reads in the rest of the symbol table */
1509 pst->read_symtab = dwarf2_psymtab_to_symtab;
1510
1511 /* If this compilation unit was already read in, free the
1512 cached copy in order to read it in again. This is
1513 necessary because we skipped some symbols when we first
1514 read in the compilation unit (see load_partial_dies).
1515 This problem could be avoided, but the benefit is
1516 unclear. */
1517 if (this_cu->cu != NULL)
1518 free_one_cached_comp_unit (this_cu->cu);
1519
1520 cu.per_cu = this_cu;
1521
1522 /* Note that this is a pointer to our stack frame, being
1523 added to a global data structure. It will be cleaned up
1524 in free_stack_comp_unit when we finish with this
1525 compilation unit. */
1526 this_cu->cu = &cu;
1527
1528 this_cu->psymtab = pst;
1529
1530 /* Check if comp unit has_children.
1531 If so, read the rest of the partial symbols from this comp unit.
1532 If not, there's no more debug_info for this comp unit. */
1533 if (comp_unit_die.has_children)
1534 {
1535 struct partial_die_info *first_die;
1536
1537 lowpc = ((CORE_ADDR) -1);
1538 highpc = ((CORE_ADDR) 0);
1539
1540 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1541
1542 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1543
1544 /* If we didn't find a lowpc, set it to highpc to avoid
1545 complaints from `maint check'. */
1546 if (lowpc == ((CORE_ADDR) -1))
1547 lowpc = highpc;
1548
1549 /* If the compilation unit didn't have an explicit address range,
1550 then use the information extracted from its child dies. */
1551 if (! comp_unit_die.has_pc_info)
1552 {
1553 comp_unit_die.lowpc = lowpc;
1554 comp_unit_die.highpc = highpc;
1555 }
1556 }
1557 pst->textlow = comp_unit_die.lowpc + baseaddr;
1558 pst->texthigh = comp_unit_die.highpc + baseaddr;
1559
1560 pst->n_global_syms = objfile->global_psymbols.next -
1561 (objfile->global_psymbols.list + pst->globals_offset);
1562 pst->n_static_syms = objfile->static_psymbols.next -
1563 (objfile->static_psymbols.list + pst->statics_offset);
1564 sort_pst_symbols (pst);
1565
1566 /* If there is already a psymtab or symtab for a file of this
1567 name, remove it. (If there is a symtab, more drastic things
1568 also happen.) This happens in VxWorks. */
1569 free_named_symtabs (pst->filename);
1570
1571 info_ptr = beg_of_comp_unit + cu.header.length
1572 + cu.header.initial_length_size;
1573
1574 if (comp_unit_die.has_stmt_list)
1575 {
1576 /* Get the list of files included in the current compilation unit,
1577 and build a psymtab for each of them. */
1578 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1579 }
1580
1581 do_cleanups (back_to_inner);
1582 }
1583 do_cleanups (back_to);
1584 }
1585
1586 /* Load the DIEs for a secondary CU into memory. */
1587
1588 static void
1589 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1590 {
1591 bfd *abfd = objfile->obfd;
1592 gdb_byte *info_ptr, *beg_of_comp_unit;
1593 struct partial_die_info comp_unit_die;
1594 struct dwarf2_cu *cu;
1595 struct abbrev_info *abbrev;
1596 unsigned int bytes_read;
1597 struct cleanup *back_to;
1598
1599 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1600 beg_of_comp_unit = info_ptr;
1601
1602 cu = xmalloc (sizeof (struct dwarf2_cu));
1603 memset (cu, 0, sizeof (struct dwarf2_cu));
1604
1605 obstack_init (&cu->comp_unit_obstack);
1606
1607 cu->objfile = objfile;
1608 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1609
1610 /* Complete the cu_header. */
1611 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1612 cu->header.first_die_ptr = info_ptr;
1613 cu->header.cu_head_ptr = beg_of_comp_unit;
1614
1615 /* Read the abbrevs for this compilation unit into a table. */
1616 dwarf2_read_abbrevs (abfd, cu);
1617 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1618
1619 /* Read the compilation unit die. */
1620 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1621 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1622 abfd, info_ptr, cu);
1623
1624 /* Set the language we're debugging. */
1625 set_cu_language (comp_unit_die.language, cu);
1626
1627 /* Link this compilation unit into the compilation unit tree. */
1628 this_cu->cu = cu;
1629 cu->per_cu = this_cu;
1630
1631 /* Check if comp unit has_children.
1632 If so, read the rest of the partial symbols from this comp unit.
1633 If not, there's no more debug_info for this comp unit. */
1634 if (comp_unit_die.has_children)
1635 load_partial_dies (abfd, info_ptr, 0, cu);
1636
1637 do_cleanups (back_to);
1638 }
1639
1640 /* Create a list of all compilation units in OBJFILE. We do this only
1641 if an inter-comp-unit reference is found; presumably if there is one,
1642 there will be many, and one will occur early in the .debug_info section.
1643 So there's no point in building this list incrementally. */
1644
1645 static void
1646 create_all_comp_units (struct objfile *objfile)
1647 {
1648 int n_allocated;
1649 int n_comp_units;
1650 struct dwarf2_per_cu_data **all_comp_units;
1651 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1652
1653 n_comp_units = 0;
1654 n_allocated = 10;
1655 all_comp_units = xmalloc (n_allocated
1656 * sizeof (struct dwarf2_per_cu_data *));
1657
1658 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1659 {
1660 struct comp_unit_head cu_header;
1661 gdb_byte *beg_of_comp_unit;
1662 struct dwarf2_per_cu_data *this_cu;
1663 unsigned long offset;
1664 unsigned int bytes_read;
1665
1666 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1667
1668 /* Read just enough information to find out where the next
1669 compilation unit is. */
1670 cu_header.initial_length_size = 0;
1671 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1672 &cu_header, &bytes_read);
1673
1674 /* Save the compilation unit for later lookup. */
1675 this_cu = obstack_alloc (&objfile->objfile_obstack,
1676 sizeof (struct dwarf2_per_cu_data));
1677 memset (this_cu, 0, sizeof (*this_cu));
1678 this_cu->offset = offset;
1679 this_cu->length = cu_header.length + cu_header.initial_length_size;
1680
1681 if (n_comp_units == n_allocated)
1682 {
1683 n_allocated *= 2;
1684 all_comp_units = xrealloc (all_comp_units,
1685 n_allocated
1686 * sizeof (struct dwarf2_per_cu_data *));
1687 }
1688 all_comp_units[n_comp_units++] = this_cu;
1689
1690 info_ptr = info_ptr + this_cu->length;
1691 }
1692
1693 dwarf2_per_objfile->all_comp_units
1694 = obstack_alloc (&objfile->objfile_obstack,
1695 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1696 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1697 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1698 xfree (all_comp_units);
1699 dwarf2_per_objfile->n_comp_units = n_comp_units;
1700 }
1701
1702 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1703 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1704 in CU. */
1705
1706 static void
1707 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1708 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1709 {
1710 struct objfile *objfile = cu->objfile;
1711 bfd *abfd = objfile->obfd;
1712 struct partial_die_info *pdi;
1713
1714 /* Now, march along the PDI's, descending into ones which have
1715 interesting children but skipping the children of the other ones,
1716 until we reach the end of the compilation unit. */
1717
1718 pdi = first_die;
1719
1720 while (pdi != NULL)
1721 {
1722 fixup_partial_die (pdi, cu);
1723
1724 /* Anonymous namespaces have no name but have interesting
1725 children, so we need to look at them. Ditto for anonymous
1726 enums. */
1727
1728 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1729 || pdi->tag == DW_TAG_enumeration_type)
1730 {
1731 switch (pdi->tag)
1732 {
1733 case DW_TAG_subprogram:
1734 if (pdi->has_pc_info)
1735 {
1736 if (pdi->lowpc < *lowpc)
1737 {
1738 *lowpc = pdi->lowpc;
1739 }
1740 if (pdi->highpc > *highpc)
1741 {
1742 *highpc = pdi->highpc;
1743 }
1744 if (!pdi->is_declaration)
1745 {
1746 add_partial_symbol (pdi, cu);
1747 }
1748 }
1749 break;
1750 case DW_TAG_variable:
1751 case DW_TAG_typedef:
1752 case DW_TAG_union_type:
1753 if (!pdi->is_declaration)
1754 {
1755 add_partial_symbol (pdi, cu);
1756 }
1757 break;
1758 case DW_TAG_class_type:
1759 case DW_TAG_structure_type:
1760 if (!pdi->is_declaration)
1761 {
1762 add_partial_symbol (pdi, cu);
1763 }
1764 break;
1765 case DW_TAG_enumeration_type:
1766 if (!pdi->is_declaration)
1767 add_partial_enumeration (pdi, cu);
1768 break;
1769 case DW_TAG_base_type:
1770 case DW_TAG_subrange_type:
1771 /* File scope base type definitions are added to the partial
1772 symbol table. */
1773 add_partial_symbol (pdi, cu);
1774 break;
1775 case DW_TAG_namespace:
1776 add_partial_namespace (pdi, lowpc, highpc, cu);
1777 break;
1778 default:
1779 break;
1780 }
1781 }
1782
1783 /* If the die has a sibling, skip to the sibling. */
1784
1785 pdi = pdi->die_sibling;
1786 }
1787 }
1788
1789 /* Functions used to compute the fully scoped name of a partial DIE.
1790
1791 Normally, this is simple. For C++, the parent DIE's fully scoped
1792 name is concatenated with "::" and the partial DIE's name. For
1793 Java, the same thing occurs except that "." is used instead of "::".
1794 Enumerators are an exception; they use the scope of their parent
1795 enumeration type, i.e. the name of the enumeration type is not
1796 prepended to the enumerator.
1797
1798 There are two complexities. One is DW_AT_specification; in this
1799 case "parent" means the parent of the target of the specification,
1800 instead of the direct parent of the DIE. The other is compilers
1801 which do not emit DW_TAG_namespace; in this case we try to guess
1802 the fully qualified name of structure types from their members'
1803 linkage names. This must be done using the DIE's children rather
1804 than the children of any DW_AT_specification target. We only need
1805 to do this for structures at the top level, i.e. if the target of
1806 any DW_AT_specification (if any; otherwise the DIE itself) does not
1807 have a parent. */
1808
1809 /* Compute the scope prefix associated with PDI's parent, in
1810 compilation unit CU. The result will be allocated on CU's
1811 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1812 field. NULL is returned if no prefix is necessary. */
1813 static char *
1814 partial_die_parent_scope (struct partial_die_info *pdi,
1815 struct dwarf2_cu *cu)
1816 {
1817 char *grandparent_scope;
1818 struct partial_die_info *parent, *real_pdi;
1819
1820 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1821 then this means the parent of the specification DIE. */
1822
1823 real_pdi = pdi;
1824 while (real_pdi->has_specification)
1825 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1826
1827 parent = real_pdi->die_parent;
1828 if (parent == NULL)
1829 return NULL;
1830
1831 if (parent->scope_set)
1832 return parent->scope;
1833
1834 fixup_partial_die (parent, cu);
1835
1836 grandparent_scope = partial_die_parent_scope (parent, cu);
1837
1838 if (parent->tag == DW_TAG_namespace
1839 || parent->tag == DW_TAG_structure_type
1840 || parent->tag == DW_TAG_class_type
1841 || parent->tag == DW_TAG_union_type)
1842 {
1843 if (grandparent_scope == NULL)
1844 parent->scope = parent->name;
1845 else
1846 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1847 parent->name, cu);
1848 }
1849 else if (parent->tag == DW_TAG_enumeration_type)
1850 /* Enumerators should not get the name of the enumeration as a prefix. */
1851 parent->scope = grandparent_scope;
1852 else
1853 {
1854 /* FIXME drow/2004-04-01: What should we be doing with
1855 function-local names? For partial symbols, we should probably be
1856 ignoring them. */
1857 complaint (&symfile_complaints,
1858 _("unhandled containing DIE tag %d for DIE at %d"),
1859 parent->tag, pdi->offset);
1860 parent->scope = grandparent_scope;
1861 }
1862
1863 parent->scope_set = 1;
1864 return parent->scope;
1865 }
1866
1867 /* Return the fully scoped name associated with PDI, from compilation unit
1868 CU. The result will be allocated with malloc. */
1869 static char *
1870 partial_die_full_name (struct partial_die_info *pdi,
1871 struct dwarf2_cu *cu)
1872 {
1873 char *parent_scope;
1874
1875 parent_scope = partial_die_parent_scope (pdi, cu);
1876 if (parent_scope == NULL)
1877 return NULL;
1878 else
1879 return typename_concat (NULL, parent_scope, pdi->name, cu);
1880 }
1881
1882 static void
1883 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1884 {
1885 struct objfile *objfile = cu->objfile;
1886 CORE_ADDR addr = 0;
1887 char *actual_name = NULL;
1888 const char *my_prefix;
1889 const struct partial_symbol *psym = NULL;
1890 CORE_ADDR baseaddr;
1891 int built_actual_name = 0;
1892
1893 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1894
1895 if (pdi_needs_namespace (pdi->tag))
1896 {
1897 actual_name = partial_die_full_name (pdi, cu);
1898 if (actual_name)
1899 built_actual_name = 1;
1900 }
1901
1902 if (actual_name == NULL)
1903 actual_name = pdi->name;
1904
1905 switch (pdi->tag)
1906 {
1907 case DW_TAG_subprogram:
1908 if (pdi->is_external)
1909 {
1910 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1911 mst_text, objfile); */
1912 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1913 VAR_DOMAIN, LOC_BLOCK,
1914 &objfile->global_psymbols,
1915 0, pdi->lowpc + baseaddr,
1916 cu->language, objfile);
1917 }
1918 else
1919 {
1920 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1921 mst_file_text, objfile); */
1922 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1923 VAR_DOMAIN, LOC_BLOCK,
1924 &objfile->static_psymbols,
1925 0, pdi->lowpc + baseaddr,
1926 cu->language, objfile);
1927 }
1928 break;
1929 case DW_TAG_variable:
1930 if (pdi->is_external)
1931 {
1932 /* Global Variable.
1933 Don't enter into the minimal symbol tables as there is
1934 a minimal symbol table entry from the ELF symbols already.
1935 Enter into partial symbol table if it has a location
1936 descriptor or a type.
1937 If the location descriptor is missing, new_symbol will create
1938 a LOC_UNRESOLVED symbol, the address of the variable will then
1939 be determined from the minimal symbol table whenever the variable
1940 is referenced.
1941 The address for the partial symbol table entry is not
1942 used by GDB, but it comes in handy for debugging partial symbol
1943 table building. */
1944
1945 if (pdi->locdesc)
1946 addr = decode_locdesc (pdi->locdesc, cu);
1947 if (pdi->locdesc || pdi->has_type)
1948 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1949 VAR_DOMAIN, LOC_STATIC,
1950 &objfile->global_psymbols,
1951 0, addr + baseaddr,
1952 cu->language, objfile);
1953 }
1954 else
1955 {
1956 /* Static Variable. Skip symbols without location descriptors. */
1957 if (pdi->locdesc == NULL)
1958 {
1959 if (built_actual_name)
1960 xfree (actual_name);
1961 return;
1962 }
1963 addr = decode_locdesc (pdi->locdesc, cu);
1964 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1965 mst_file_data, objfile); */
1966 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1967 VAR_DOMAIN, LOC_STATIC,
1968 &objfile->static_psymbols,
1969 0, addr + baseaddr,
1970 cu->language, objfile);
1971 }
1972 break;
1973 case DW_TAG_typedef:
1974 case DW_TAG_base_type:
1975 case DW_TAG_subrange_type:
1976 add_psymbol_to_list (actual_name, strlen (actual_name),
1977 VAR_DOMAIN, LOC_TYPEDEF,
1978 &objfile->static_psymbols,
1979 0, (CORE_ADDR) 0, cu->language, objfile);
1980 break;
1981 case DW_TAG_namespace:
1982 add_psymbol_to_list (actual_name, strlen (actual_name),
1983 VAR_DOMAIN, LOC_TYPEDEF,
1984 &objfile->global_psymbols,
1985 0, (CORE_ADDR) 0, cu->language, objfile);
1986 break;
1987 case DW_TAG_class_type:
1988 case DW_TAG_structure_type:
1989 case DW_TAG_union_type:
1990 case DW_TAG_enumeration_type:
1991 /* Skip external references. The DWARF standard says in the section
1992 about "Structure, Union, and Class Type Entries": "An incomplete
1993 structure, union or class type is represented by a structure,
1994 union or class entry that does not have a byte size attribute
1995 and that has a DW_AT_declaration attribute." */
1996 if (!pdi->has_byte_size && pdi->is_declaration)
1997 {
1998 if (built_actual_name)
1999 xfree (actual_name);
2000 return;
2001 }
2002
2003 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2004 static vs. global. */
2005 add_psymbol_to_list (actual_name, strlen (actual_name),
2006 STRUCT_DOMAIN, LOC_TYPEDEF,
2007 (cu->language == language_cplus
2008 || cu->language == language_java)
2009 ? &objfile->global_psymbols
2010 : &objfile->static_psymbols,
2011 0, (CORE_ADDR) 0, cu->language, objfile);
2012
2013 if (cu->language == language_cplus
2014 || cu->language == language_java
2015 || cu->language == language_ada)
2016 {
2017 /* For C++ and Java, these implicitly act as typedefs as well. */
2018 add_psymbol_to_list (actual_name, strlen (actual_name),
2019 VAR_DOMAIN, LOC_TYPEDEF,
2020 &objfile->global_psymbols,
2021 0, (CORE_ADDR) 0, cu->language, objfile);
2022 }
2023 break;
2024 case DW_TAG_enumerator:
2025 add_psymbol_to_list (actual_name, strlen (actual_name),
2026 VAR_DOMAIN, LOC_CONST,
2027 (cu->language == language_cplus
2028 || cu->language == language_java)
2029 ? &objfile->global_psymbols
2030 : &objfile->static_psymbols,
2031 0, (CORE_ADDR) 0, cu->language, objfile);
2032 break;
2033 default:
2034 break;
2035 }
2036
2037 /* Check to see if we should scan the name for possible namespace
2038 info. Only do this if this is C++, if we don't have namespace
2039 debugging info in the file, if the psym is of an appropriate type
2040 (otherwise we'll have psym == NULL), and if we actually had a
2041 mangled name to begin with. */
2042
2043 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2044 cases which do not set PSYM above? */
2045
2046 if (cu->language == language_cplus
2047 && cu->has_namespace_info == 0
2048 && psym != NULL
2049 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2050 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2051 objfile);
2052
2053 if (built_actual_name)
2054 xfree (actual_name);
2055 }
2056
2057 /* Determine whether a die of type TAG living in a C++ class or
2058 namespace needs to have the name of the scope prepended to the
2059 name listed in the die. */
2060
2061 static int
2062 pdi_needs_namespace (enum dwarf_tag tag)
2063 {
2064 switch (tag)
2065 {
2066 case DW_TAG_namespace:
2067 case DW_TAG_typedef:
2068 case DW_TAG_class_type:
2069 case DW_TAG_structure_type:
2070 case DW_TAG_union_type:
2071 case DW_TAG_enumeration_type:
2072 case DW_TAG_enumerator:
2073 return 1;
2074 default:
2075 return 0;
2076 }
2077 }
2078
2079 /* Read a partial die corresponding to a namespace; also, add a symbol
2080 corresponding to that namespace to the symbol table. NAMESPACE is
2081 the name of the enclosing namespace. */
2082
2083 static void
2084 add_partial_namespace (struct partial_die_info *pdi,
2085 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2086 struct dwarf2_cu *cu)
2087 {
2088 struct objfile *objfile = cu->objfile;
2089
2090 /* Add a symbol for the namespace. */
2091
2092 add_partial_symbol (pdi, cu);
2093
2094 /* Now scan partial symbols in that namespace. */
2095
2096 if (pdi->has_children)
2097 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2098 }
2099
2100 /* See if we can figure out if the class lives in a namespace. We do
2101 this by looking for a member function; its demangled name will
2102 contain namespace info, if there is any. */
2103
2104 static void
2105 guess_structure_name (struct partial_die_info *struct_pdi,
2106 struct dwarf2_cu *cu)
2107 {
2108 if ((cu->language == language_cplus
2109 || cu->language == language_java)
2110 && cu->has_namespace_info == 0
2111 && struct_pdi->has_children)
2112 {
2113 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2114 what template types look like, because the demangler
2115 frequently doesn't give the same name as the debug info. We
2116 could fix this by only using the demangled name to get the
2117 prefix (but see comment in read_structure_type). */
2118
2119 struct partial_die_info *child_pdi = struct_pdi->die_child;
2120 struct partial_die_info *real_pdi;
2121
2122 /* If this DIE (this DIE's specification, if any) has a parent, then
2123 we should not do this. We'll prepend the parent's fully qualified
2124 name when we create the partial symbol. */
2125
2126 real_pdi = struct_pdi;
2127 while (real_pdi->has_specification)
2128 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2129
2130 if (real_pdi->die_parent != NULL)
2131 return;
2132
2133 while (child_pdi != NULL)
2134 {
2135 if (child_pdi->tag == DW_TAG_subprogram)
2136 {
2137 char *actual_class_name
2138 = language_class_name_from_physname (cu->language_defn,
2139 child_pdi->name);
2140 if (actual_class_name != NULL)
2141 {
2142 struct_pdi->name
2143 = obsavestring (actual_class_name,
2144 strlen (actual_class_name),
2145 &cu->comp_unit_obstack);
2146 xfree (actual_class_name);
2147 }
2148 break;
2149 }
2150
2151 child_pdi = child_pdi->die_sibling;
2152 }
2153 }
2154 }
2155
2156 /* Read a partial die corresponding to an enumeration type. */
2157
2158 static void
2159 add_partial_enumeration (struct partial_die_info *enum_pdi,
2160 struct dwarf2_cu *cu)
2161 {
2162 struct objfile *objfile = cu->objfile;
2163 bfd *abfd = objfile->obfd;
2164 struct partial_die_info *pdi;
2165
2166 if (enum_pdi->name != NULL)
2167 add_partial_symbol (enum_pdi, cu);
2168
2169 pdi = enum_pdi->die_child;
2170 while (pdi)
2171 {
2172 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2173 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2174 else
2175 add_partial_symbol (pdi, cu);
2176 pdi = pdi->die_sibling;
2177 }
2178 }
2179
2180 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2181 Return the corresponding abbrev, or NULL if the number is zero (indicating
2182 an empty DIE). In either case *BYTES_READ will be set to the length of
2183 the initial number. */
2184
2185 static struct abbrev_info *
2186 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2187 struct dwarf2_cu *cu)
2188 {
2189 bfd *abfd = cu->objfile->obfd;
2190 unsigned int abbrev_number;
2191 struct abbrev_info *abbrev;
2192
2193 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2194
2195 if (abbrev_number == 0)
2196 return NULL;
2197
2198 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2199 if (!abbrev)
2200 {
2201 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2202 bfd_get_filename (abfd));
2203 }
2204
2205 return abbrev;
2206 }
2207
2208 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2209 pointer to the end of a series of DIEs, terminated by an empty
2210 DIE. Any children of the skipped DIEs will also be skipped. */
2211
2212 static gdb_byte *
2213 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2214 {
2215 struct abbrev_info *abbrev;
2216 unsigned int bytes_read;
2217
2218 while (1)
2219 {
2220 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2221 if (abbrev == NULL)
2222 return info_ptr + bytes_read;
2223 else
2224 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2225 }
2226 }
2227
2228 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2229 should point just after the initial uleb128 of a DIE, and the
2230 abbrev corresponding to that skipped uleb128 should be passed in
2231 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2232 children. */
2233
2234 static gdb_byte *
2235 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2236 struct dwarf2_cu *cu)
2237 {
2238 unsigned int bytes_read;
2239 struct attribute attr;
2240 bfd *abfd = cu->objfile->obfd;
2241 unsigned int form, i;
2242
2243 for (i = 0; i < abbrev->num_attrs; i++)
2244 {
2245 /* The only abbrev we care about is DW_AT_sibling. */
2246 if (abbrev->attrs[i].name == DW_AT_sibling)
2247 {
2248 read_attribute (&attr, &abbrev->attrs[i],
2249 abfd, info_ptr, cu);
2250 if (attr.form == DW_FORM_ref_addr)
2251 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2252 else
2253 return dwarf2_per_objfile->info_buffer
2254 + dwarf2_get_ref_die_offset (&attr, cu);
2255 }
2256
2257 /* If it isn't DW_AT_sibling, skip this attribute. */
2258 form = abbrev->attrs[i].form;
2259 skip_attribute:
2260 switch (form)
2261 {
2262 case DW_FORM_addr:
2263 case DW_FORM_ref_addr:
2264 info_ptr += cu->header.addr_size;
2265 break;
2266 case DW_FORM_data1:
2267 case DW_FORM_ref1:
2268 case DW_FORM_flag:
2269 info_ptr += 1;
2270 break;
2271 case DW_FORM_data2:
2272 case DW_FORM_ref2:
2273 info_ptr += 2;
2274 break;
2275 case DW_FORM_data4:
2276 case DW_FORM_ref4:
2277 info_ptr += 4;
2278 break;
2279 case DW_FORM_data8:
2280 case DW_FORM_ref8:
2281 info_ptr += 8;
2282 break;
2283 case DW_FORM_string:
2284 read_string (abfd, info_ptr, &bytes_read);
2285 info_ptr += bytes_read;
2286 break;
2287 case DW_FORM_strp:
2288 info_ptr += cu->header.offset_size;
2289 break;
2290 case DW_FORM_block:
2291 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2292 info_ptr += bytes_read;
2293 break;
2294 case DW_FORM_block1:
2295 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2296 break;
2297 case DW_FORM_block2:
2298 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2299 break;
2300 case DW_FORM_block4:
2301 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2302 break;
2303 case DW_FORM_sdata:
2304 case DW_FORM_udata:
2305 case DW_FORM_ref_udata:
2306 info_ptr = skip_leb128 (abfd, info_ptr);
2307 break;
2308 case DW_FORM_indirect:
2309 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2310 info_ptr += bytes_read;
2311 /* We need to continue parsing from here, so just go back to
2312 the top. */
2313 goto skip_attribute;
2314
2315 default:
2316 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2317 dwarf_form_name (form),
2318 bfd_get_filename (abfd));
2319 }
2320 }
2321
2322 if (abbrev->has_children)
2323 return skip_children (info_ptr, cu);
2324 else
2325 return info_ptr;
2326 }
2327
2328 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2329 the next DIE after ORIG_PDI. */
2330
2331 static gdb_byte *
2332 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2333 bfd *abfd, struct dwarf2_cu *cu)
2334 {
2335 /* Do we know the sibling already? */
2336
2337 if (orig_pdi->sibling)
2338 return orig_pdi->sibling;
2339
2340 /* Are there any children to deal with? */
2341
2342 if (!orig_pdi->has_children)
2343 return info_ptr;
2344
2345 /* Skip the children the long way. */
2346
2347 return skip_children (info_ptr, cu);
2348 }
2349
2350 /* Expand this partial symbol table into a full symbol table. */
2351
2352 static void
2353 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2354 {
2355 /* FIXME: This is barely more than a stub. */
2356 if (pst != NULL)
2357 {
2358 if (pst->readin)
2359 {
2360 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2361 }
2362 else
2363 {
2364 if (info_verbose)
2365 {
2366 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2367 gdb_flush (gdb_stdout);
2368 }
2369
2370 /* Restore our global data. */
2371 dwarf2_per_objfile = objfile_data (pst->objfile,
2372 dwarf2_objfile_data_key);
2373
2374 psymtab_to_symtab_1 (pst);
2375
2376 /* Finish up the debug error message. */
2377 if (info_verbose)
2378 printf_filtered (_("done.\n"));
2379 }
2380 }
2381 }
2382
2383 /* Add PER_CU to the queue. */
2384
2385 static void
2386 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2387 {
2388 struct dwarf2_queue_item *item;
2389
2390 per_cu->queued = 1;
2391 item = xmalloc (sizeof (*item));
2392 item->per_cu = per_cu;
2393 item->next = NULL;
2394
2395 if (dwarf2_queue == NULL)
2396 dwarf2_queue = item;
2397 else
2398 dwarf2_queue_tail->next = item;
2399
2400 dwarf2_queue_tail = item;
2401 }
2402
2403 /* Process the queue. */
2404
2405 static void
2406 process_queue (struct objfile *objfile)
2407 {
2408 struct dwarf2_queue_item *item, *next_item;
2409
2410 /* Initially, there is just one item on the queue. Load its DIEs,
2411 and the DIEs of any other compilation units it requires,
2412 transitively. */
2413
2414 for (item = dwarf2_queue; item != NULL; item = item->next)
2415 {
2416 /* Read in this compilation unit. This may add new items to
2417 the end of the queue. */
2418 load_full_comp_unit (item->per_cu, objfile);
2419
2420 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2421 dwarf2_per_objfile->read_in_chain = item->per_cu;
2422
2423 /* If this compilation unit has already had full symbols created,
2424 reset the TYPE fields in each DIE. */
2425 if (item->per_cu->type_hash)
2426 reset_die_and_siblings_types (item->per_cu->cu->dies,
2427 item->per_cu->cu);
2428 }
2429
2430 /* Now everything left on the queue needs to be read in. Process
2431 them, one at a time, removing from the queue as we finish. */
2432 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2433 {
2434 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2435 process_full_comp_unit (item->per_cu);
2436
2437 item->per_cu->queued = 0;
2438 next_item = item->next;
2439 xfree (item);
2440 }
2441
2442 dwarf2_queue_tail = NULL;
2443 }
2444
2445 /* Free all allocated queue entries. This function only releases anything if
2446 an error was thrown; if the queue was processed then it would have been
2447 freed as we went along. */
2448
2449 static void
2450 dwarf2_release_queue (void *dummy)
2451 {
2452 struct dwarf2_queue_item *item, *last;
2453
2454 item = dwarf2_queue;
2455 while (item)
2456 {
2457 /* Anything still marked queued is likely to be in an
2458 inconsistent state, so discard it. */
2459 if (item->per_cu->queued)
2460 {
2461 if (item->per_cu->cu != NULL)
2462 free_one_cached_comp_unit (item->per_cu->cu);
2463 item->per_cu->queued = 0;
2464 }
2465
2466 last = item;
2467 item = item->next;
2468 xfree (last);
2469 }
2470
2471 dwarf2_queue = dwarf2_queue_tail = NULL;
2472 }
2473
2474 /* Read in full symbols for PST, and anything it depends on. */
2475
2476 static void
2477 psymtab_to_symtab_1 (struct partial_symtab *pst)
2478 {
2479 struct dwarf2_per_cu_data *per_cu;
2480 struct cleanup *back_to;
2481 int i;
2482
2483 for (i = 0; i < pst->number_of_dependencies; i++)
2484 if (!pst->dependencies[i]->readin)
2485 {
2486 /* Inform about additional files that need to be read in. */
2487 if (info_verbose)
2488 {
2489 /* FIXME: i18n: Need to make this a single string. */
2490 fputs_filtered (" ", gdb_stdout);
2491 wrap_here ("");
2492 fputs_filtered ("and ", gdb_stdout);
2493 wrap_here ("");
2494 printf_filtered ("%s...", pst->dependencies[i]->filename);
2495 wrap_here (""); /* Flush output */
2496 gdb_flush (gdb_stdout);
2497 }
2498 psymtab_to_symtab_1 (pst->dependencies[i]);
2499 }
2500
2501 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2502
2503 if (per_cu == NULL)
2504 {
2505 /* It's an include file, no symbols to read for it.
2506 Everything is in the parent symtab. */
2507 pst->readin = 1;
2508 return;
2509 }
2510
2511 back_to = make_cleanup (dwarf2_release_queue, NULL);
2512
2513 queue_comp_unit (per_cu);
2514
2515 process_queue (pst->objfile);
2516
2517 /* Age the cache, releasing compilation units that have not
2518 been used recently. */
2519 age_cached_comp_units ();
2520
2521 do_cleanups (back_to);
2522 }
2523
2524 /* Load the DIEs associated with PST and PER_CU into memory. */
2525
2526 static struct dwarf2_cu *
2527 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2528 {
2529 bfd *abfd = objfile->obfd;
2530 struct dwarf2_cu *cu;
2531 unsigned long offset;
2532 gdb_byte *info_ptr;
2533 struct cleanup *back_to, *free_cu_cleanup;
2534 struct attribute *attr;
2535 CORE_ADDR baseaddr;
2536
2537 /* Set local variables from the partial symbol table info. */
2538 offset = per_cu->offset;
2539
2540 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2541
2542 cu = xmalloc (sizeof (struct dwarf2_cu));
2543 memset (cu, 0, sizeof (struct dwarf2_cu));
2544
2545 /* If an error occurs while loading, release our storage. */
2546 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2547
2548 cu->objfile = objfile;
2549
2550 /* read in the comp_unit header */
2551 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2552
2553 /* Read the abbrevs for this compilation unit */
2554 dwarf2_read_abbrevs (abfd, cu);
2555 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2556
2557 cu->header.offset = offset;
2558
2559 cu->per_cu = per_cu;
2560 per_cu->cu = cu;
2561
2562 /* We use this obstack for block values in dwarf_alloc_block. */
2563 obstack_init (&cu->comp_unit_obstack);
2564
2565 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2566
2567 /* We try not to read any attributes in this function, because not
2568 all objfiles needed for references have been loaded yet, and symbol
2569 table processing isn't initialized. But we have to set the CU language,
2570 or we won't be able to build types correctly. */
2571 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2572 if (attr)
2573 set_cu_language (DW_UNSND (attr), cu);
2574 else
2575 set_cu_language (language_minimal, cu);
2576
2577 do_cleanups (back_to);
2578
2579 /* We've successfully allocated this compilation unit. Let our caller
2580 clean it up when finished with it. */
2581 discard_cleanups (free_cu_cleanup);
2582
2583 return cu;
2584 }
2585
2586 /* Generate full symbol information for PST and CU, whose DIEs have
2587 already been loaded into memory. */
2588
2589 static void
2590 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2591 {
2592 struct partial_symtab *pst = per_cu->psymtab;
2593 struct dwarf2_cu *cu = per_cu->cu;
2594 struct objfile *objfile = pst->objfile;
2595 bfd *abfd = objfile->obfd;
2596 CORE_ADDR lowpc, highpc;
2597 struct symtab *symtab;
2598 struct cleanup *back_to;
2599 struct attribute *attr;
2600 CORE_ADDR baseaddr;
2601
2602 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2603
2604 /* We're in the global namespace. */
2605 processing_current_prefix = "";
2606
2607 buildsym_init ();
2608 back_to = make_cleanup (really_free_pendings, NULL);
2609
2610 cu->list_in_scope = &file_symbols;
2611
2612 /* Find the base address of the compilation unit for range lists and
2613 location lists. It will normally be specified by DW_AT_low_pc.
2614 In DWARF-3 draft 4, the base address could be overridden by
2615 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2616 compilation units with discontinuous ranges. */
2617
2618 cu->header.base_known = 0;
2619 cu->header.base_address = 0;
2620
2621 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2622 if (attr)
2623 {
2624 cu->header.base_address = DW_ADDR (attr);
2625 cu->header.base_known = 1;
2626 }
2627 else
2628 {
2629 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2630 if (attr)
2631 {
2632 cu->header.base_address = DW_ADDR (attr);
2633 cu->header.base_known = 1;
2634 }
2635 }
2636
2637 /* Do line number decoding in read_file_scope () */
2638 process_die (cu->dies, cu);
2639
2640 /* Some compilers don't define a DW_AT_high_pc attribute for the
2641 compilation unit. If the DW_AT_high_pc is missing, synthesize
2642 it, by scanning the DIE's below the compilation unit. */
2643 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2644
2645 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2646
2647 /* Set symtab language to language from DW_AT_language.
2648 If the compilation is from a C file generated by language preprocessors,
2649 do not set the language if it was already deduced by start_subfile. */
2650 if (symtab != NULL
2651 && !(cu->language == language_c && symtab->language != language_c))
2652 {
2653 symtab->language = cu->language;
2654 }
2655 pst->symtab = symtab;
2656 pst->readin = 1;
2657
2658 do_cleanups (back_to);
2659 }
2660
2661 /* Process a die and its children. */
2662
2663 static void
2664 process_die (struct die_info *die, struct dwarf2_cu *cu)
2665 {
2666 switch (die->tag)
2667 {
2668 case DW_TAG_padding:
2669 break;
2670 case DW_TAG_compile_unit:
2671 read_file_scope (die, cu);
2672 break;
2673 case DW_TAG_subprogram:
2674 read_subroutine_type (die, cu);
2675 read_func_scope (die, cu);
2676 break;
2677 case DW_TAG_inlined_subroutine:
2678 /* FIXME: These are ignored for now.
2679 They could be used to set breakpoints on all inlined instances
2680 of a function and make GDB `next' properly over inlined functions. */
2681 break;
2682 case DW_TAG_lexical_block:
2683 case DW_TAG_try_block:
2684 case DW_TAG_catch_block:
2685 read_lexical_block_scope (die, cu);
2686 break;
2687 case DW_TAG_class_type:
2688 case DW_TAG_structure_type:
2689 case DW_TAG_union_type:
2690 read_structure_type (die, cu);
2691 process_structure_scope (die, cu);
2692 break;
2693 case DW_TAG_enumeration_type:
2694 read_enumeration_type (die, cu);
2695 process_enumeration_scope (die, cu);
2696 break;
2697
2698 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2699 a symbol or process any children. Therefore it doesn't do anything
2700 that won't be done on-demand by read_type_die. */
2701 case DW_TAG_subroutine_type:
2702 read_subroutine_type (die, cu);
2703 break;
2704 case DW_TAG_set_type:
2705 read_set_type (die, cu);
2706 break;
2707 case DW_TAG_array_type:
2708 read_array_type (die, cu);
2709 break;
2710 case DW_TAG_pointer_type:
2711 read_tag_pointer_type (die, cu);
2712 break;
2713 case DW_TAG_ptr_to_member_type:
2714 read_tag_ptr_to_member_type (die, cu);
2715 break;
2716 case DW_TAG_reference_type:
2717 read_tag_reference_type (die, cu);
2718 break;
2719 case DW_TAG_string_type:
2720 read_tag_string_type (die, cu);
2721 break;
2722 /* END FIXME */
2723
2724 case DW_TAG_base_type:
2725 read_base_type (die, cu);
2726 /* Add a typedef symbol for the type definition, if it has a
2727 DW_AT_name. */
2728 new_symbol (die, die->type, cu);
2729 break;
2730 case DW_TAG_subrange_type:
2731 read_subrange_type (die, cu);
2732 /* Add a typedef symbol for the type definition, if it has a
2733 DW_AT_name. */
2734 new_symbol (die, die->type, cu);
2735 break;
2736 case DW_TAG_common_block:
2737 read_common_block (die, cu);
2738 break;
2739 case DW_TAG_common_inclusion:
2740 break;
2741 case DW_TAG_namespace:
2742 processing_has_namespace_info = 1;
2743 read_namespace (die, cu);
2744 break;
2745 case DW_TAG_imported_declaration:
2746 case DW_TAG_imported_module:
2747 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2748 information contained in these. DW_TAG_imported_declaration
2749 dies shouldn't have children; DW_TAG_imported_module dies
2750 shouldn't in the C++ case, but conceivably could in the
2751 Fortran case, so we'll have to replace this gdb_assert if
2752 Fortran compilers start generating that info. */
2753 processing_has_namespace_info = 1;
2754 gdb_assert (die->child == NULL);
2755 break;
2756 default:
2757 new_symbol (die, NULL, cu);
2758 break;
2759 }
2760 }
2761
2762 static void
2763 initialize_cu_func_list (struct dwarf2_cu *cu)
2764 {
2765 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2766 }
2767
2768 static void
2769 free_cu_line_header (void *arg)
2770 {
2771 struct dwarf2_cu *cu = arg;
2772
2773 free_line_header (cu->line_header);
2774 cu->line_header = NULL;
2775 }
2776
2777 static void
2778 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2779 {
2780 struct objfile *objfile = cu->objfile;
2781 struct comp_unit_head *cu_header = &cu->header;
2782 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2783 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2784 CORE_ADDR highpc = ((CORE_ADDR) 0);
2785 struct attribute *attr;
2786 char *name = NULL;
2787 char *comp_dir = NULL;
2788 struct die_info *child_die;
2789 bfd *abfd = objfile->obfd;
2790 struct line_header *line_header = 0;
2791 CORE_ADDR baseaddr;
2792
2793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2794
2795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2796
2797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2798 from finish_block. */
2799 if (lowpc == ((CORE_ADDR) -1))
2800 lowpc = highpc;
2801 lowpc += baseaddr;
2802 highpc += baseaddr;
2803
2804 /* Find the filename. Do not use dwarf2_name here, since the filename
2805 is not a source language identifier. */
2806 attr = dwarf2_attr (die, DW_AT_name, cu);
2807 if (attr)
2808 {
2809 name = DW_STRING (attr);
2810 }
2811
2812 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2813 if (attr)
2814 comp_dir = DW_STRING (attr);
2815 else if (name != NULL && IS_ABSOLUTE_PATH (name))
2816 {
2817 comp_dir = ldirname (name);
2818 if (comp_dir != NULL)
2819 make_cleanup (xfree, comp_dir);
2820 }
2821 if (comp_dir != NULL)
2822 {
2823 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2824 directory, get rid of it. */
2825 char *cp = strchr (comp_dir, ':');
2826
2827 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2828 comp_dir = cp + 1;
2829 }
2830
2831 if (name == NULL)
2832 name = "<unknown>";
2833
2834 attr = dwarf2_attr (die, DW_AT_language, cu);
2835 if (attr)
2836 {
2837 set_cu_language (DW_UNSND (attr), cu);
2838 }
2839
2840 attr = dwarf2_attr (die, DW_AT_producer, cu);
2841 if (attr)
2842 cu->producer = DW_STRING (attr);
2843
2844 /* We assume that we're processing GCC output. */
2845 processing_gcc_compilation = 2;
2846
2847 /* The compilation unit may be in a different language or objfile,
2848 zero out all remembered fundamental types. */
2849 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2850
2851 start_symtab (name, comp_dir, lowpc);
2852 record_debugformat ("DWARF 2");
2853 record_producer (cu->producer);
2854
2855 initialize_cu_func_list (cu);
2856
2857 /* Decode line number information if present. We do this before
2858 processing child DIEs, so that the line header table is available
2859 for DW_AT_decl_file. */
2860 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2861 if (attr)
2862 {
2863 unsigned int line_offset = DW_UNSND (attr);
2864 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2865 if (line_header)
2866 {
2867 cu->line_header = line_header;
2868 make_cleanup (free_cu_line_header, cu);
2869 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2870 }
2871 }
2872
2873 /* Process all dies in compilation unit. */
2874 if (die->child != NULL)
2875 {
2876 child_die = die->child;
2877 while (child_die && child_die->tag)
2878 {
2879 process_die (child_die, cu);
2880 child_die = sibling_die (child_die);
2881 }
2882 }
2883
2884 /* Decode macro information, if present. Dwarf 2 macro information
2885 refers to information in the line number info statement program
2886 header, so we can only read it if we've read the header
2887 successfully. */
2888 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2889 if (attr && line_header)
2890 {
2891 unsigned int macro_offset = DW_UNSND (attr);
2892 dwarf_decode_macros (line_header, macro_offset,
2893 comp_dir, abfd, cu);
2894 }
2895 do_cleanups (back_to);
2896 }
2897
2898 static void
2899 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2900 struct dwarf2_cu *cu)
2901 {
2902 struct function_range *thisfn;
2903
2904 thisfn = (struct function_range *)
2905 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2906 thisfn->name = name;
2907 thisfn->lowpc = lowpc;
2908 thisfn->highpc = highpc;
2909 thisfn->seen_line = 0;
2910 thisfn->next = NULL;
2911
2912 if (cu->last_fn == NULL)
2913 cu->first_fn = thisfn;
2914 else
2915 cu->last_fn->next = thisfn;
2916
2917 cu->last_fn = thisfn;
2918 }
2919
2920 static void
2921 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2922 {
2923 struct objfile *objfile = cu->objfile;
2924 struct context_stack *new;
2925 CORE_ADDR lowpc;
2926 CORE_ADDR highpc;
2927 struct die_info *child_die;
2928 struct attribute *attr;
2929 char *name;
2930 const char *previous_prefix = processing_current_prefix;
2931 struct cleanup *back_to = NULL;
2932 CORE_ADDR baseaddr;
2933
2934 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2935
2936 name = dwarf2_linkage_name (die, cu);
2937
2938 /* Ignore functions with missing or empty names and functions with
2939 missing or invalid low and high pc attributes. */
2940 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2941 return;
2942
2943 if (cu->language == language_cplus
2944 || cu->language == language_java)
2945 {
2946 struct die_info *spec_die = die_specification (die, cu);
2947
2948 /* NOTE: carlton/2004-01-23: We have to be careful in the
2949 presence of DW_AT_specification. For example, with GCC 3.4,
2950 given the code
2951
2952 namespace N {
2953 void foo() {
2954 // Definition of N::foo.
2955 }
2956 }
2957
2958 then we'll have a tree of DIEs like this:
2959
2960 1: DW_TAG_compile_unit
2961 2: DW_TAG_namespace // N
2962 3: DW_TAG_subprogram // declaration of N::foo
2963 4: DW_TAG_subprogram // definition of N::foo
2964 DW_AT_specification // refers to die #3
2965
2966 Thus, when processing die #4, we have to pretend that we're
2967 in the context of its DW_AT_specification, namely the contex
2968 of die #3. */
2969
2970 if (spec_die != NULL)
2971 {
2972 char *specification_prefix = determine_prefix (spec_die, cu);
2973 processing_current_prefix = specification_prefix;
2974 back_to = make_cleanup (xfree, specification_prefix);
2975 }
2976 }
2977
2978 lowpc += baseaddr;
2979 highpc += baseaddr;
2980
2981 /* Record the function range for dwarf_decode_lines. */
2982 add_to_cu_func_list (name, lowpc, highpc, cu);
2983
2984 new = push_context (0, lowpc);
2985 new->name = new_symbol (die, die->type, cu);
2986
2987 /* If there is a location expression for DW_AT_frame_base, record
2988 it. */
2989 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2990 if (attr)
2991 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2992 expression is being recorded directly in the function's symbol
2993 and not in a separate frame-base object. I guess this hack is
2994 to avoid adding some sort of frame-base adjunct/annex to the
2995 function's symbol :-(. The problem with doing this is that it
2996 results in a function symbol with a location expression that
2997 has nothing to do with the location of the function, ouch! The
2998 relationship should be: a function's symbol has-a frame base; a
2999 frame-base has-a location expression. */
3000 dwarf2_symbol_mark_computed (attr, new->name, cu);
3001
3002 cu->list_in_scope = &local_symbols;
3003
3004 if (die->child != NULL)
3005 {
3006 child_die = die->child;
3007 while (child_die && child_die->tag)
3008 {
3009 process_die (child_die, cu);
3010 child_die = sibling_die (child_die);
3011 }
3012 }
3013
3014 new = pop_context ();
3015 /* Make a block for the local symbols within. */
3016 finish_block (new->name, &local_symbols, new->old_blocks,
3017 lowpc, highpc, objfile);
3018
3019 /* In C++, we can have functions nested inside functions (e.g., when
3020 a function declares a class that has methods). This means that
3021 when we finish processing a function scope, we may need to go
3022 back to building a containing block's symbol lists. */
3023 local_symbols = new->locals;
3024 param_symbols = new->params;
3025
3026 /* If we've finished processing a top-level function, subsequent
3027 symbols go in the file symbol list. */
3028 if (outermost_context_p ())
3029 cu->list_in_scope = &file_symbols;
3030
3031 processing_current_prefix = previous_prefix;
3032 if (back_to != NULL)
3033 do_cleanups (back_to);
3034 }
3035
3036 /* Process all the DIES contained within a lexical block scope. Start
3037 a new scope, process the dies, and then close the scope. */
3038
3039 static void
3040 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3041 {
3042 struct objfile *objfile = cu->objfile;
3043 struct context_stack *new;
3044 CORE_ADDR lowpc, highpc;
3045 struct die_info *child_die;
3046 CORE_ADDR baseaddr;
3047
3048 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3049
3050 /* Ignore blocks with missing or invalid low and high pc attributes. */
3051 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3052 as multiple lexical blocks? Handling children in a sane way would
3053 be nasty. Might be easier to properly extend generic blocks to
3054 describe ranges. */
3055 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3056 return;
3057 lowpc += baseaddr;
3058 highpc += baseaddr;
3059
3060 push_context (0, lowpc);
3061 if (die->child != NULL)
3062 {
3063 child_die = die->child;
3064 while (child_die && child_die->tag)
3065 {
3066 process_die (child_die, cu);
3067 child_die = sibling_die (child_die);
3068 }
3069 }
3070 new = pop_context ();
3071
3072 if (local_symbols != NULL)
3073 {
3074 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3075 highpc, objfile);
3076 }
3077 local_symbols = new->locals;
3078 }
3079
3080 /* Get low and high pc attributes from a die. Return 1 if the attributes
3081 are present and valid, otherwise, return 0. Return -1 if the range is
3082 discontinuous, i.e. derived from DW_AT_ranges information. */
3083 static int
3084 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3085 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3086 {
3087 struct objfile *objfile = cu->objfile;
3088 struct comp_unit_head *cu_header = &cu->header;
3089 struct attribute *attr;
3090 bfd *obfd = objfile->obfd;
3091 CORE_ADDR low = 0;
3092 CORE_ADDR high = 0;
3093 int ret = 0;
3094
3095 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3096 if (attr)
3097 {
3098 high = DW_ADDR (attr);
3099 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3100 if (attr)
3101 low = DW_ADDR (attr);
3102 else
3103 /* Found high w/o low attribute. */
3104 return 0;
3105
3106 /* Found consecutive range of addresses. */
3107 ret = 1;
3108 }
3109 else
3110 {
3111 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3112 if (attr != NULL)
3113 {
3114 unsigned int addr_size = cu_header->addr_size;
3115 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3116 /* Value of the DW_AT_ranges attribute is the offset in the
3117 .debug_ranges section. */
3118 unsigned int offset = DW_UNSND (attr);
3119 /* Base address selection entry. */
3120 CORE_ADDR base;
3121 int found_base;
3122 unsigned int dummy;
3123 gdb_byte *buffer;
3124 CORE_ADDR marker;
3125 int low_set;
3126
3127 found_base = cu_header->base_known;
3128 base = cu_header->base_address;
3129
3130 if (offset >= dwarf2_per_objfile->ranges_size)
3131 {
3132 complaint (&symfile_complaints,
3133 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3134 offset);
3135 return 0;
3136 }
3137 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3138
3139 /* Read in the largest possible address. */
3140 marker = read_address (obfd, buffer, cu, &dummy);
3141 if ((marker & mask) == mask)
3142 {
3143 /* If we found the largest possible address, then
3144 read the base address. */
3145 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3146 buffer += 2 * addr_size;
3147 offset += 2 * addr_size;
3148 found_base = 1;
3149 }
3150
3151 low_set = 0;
3152
3153 while (1)
3154 {
3155 CORE_ADDR range_beginning, range_end;
3156
3157 range_beginning = read_address (obfd, buffer, cu, &dummy);
3158 buffer += addr_size;
3159 range_end = read_address (obfd, buffer, cu, &dummy);
3160 buffer += addr_size;
3161 offset += 2 * addr_size;
3162
3163 /* An end of list marker is a pair of zero addresses. */
3164 if (range_beginning == 0 && range_end == 0)
3165 /* Found the end of list entry. */
3166 break;
3167
3168 /* Each base address selection entry is a pair of 2 values.
3169 The first is the largest possible address, the second is
3170 the base address. Check for a base address here. */
3171 if ((range_beginning & mask) == mask)
3172 {
3173 /* If we found the largest possible address, then
3174 read the base address. */
3175 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3176 found_base = 1;
3177 continue;
3178 }
3179
3180 if (!found_base)
3181 {
3182 /* We have no valid base address for the ranges
3183 data. */
3184 complaint (&symfile_complaints,
3185 _("Invalid .debug_ranges data (no base address)"));
3186 return 0;
3187 }
3188
3189 range_beginning += base;
3190 range_end += base;
3191
3192 /* FIXME: This is recording everything as a low-high
3193 segment of consecutive addresses. We should have a
3194 data structure for discontiguous block ranges
3195 instead. */
3196 if (! low_set)
3197 {
3198 low = range_beginning;
3199 high = range_end;
3200 low_set = 1;
3201 }
3202 else
3203 {
3204 if (range_beginning < low)
3205 low = range_beginning;
3206 if (range_end > high)
3207 high = range_end;
3208 }
3209 }
3210
3211 if (! low_set)
3212 /* If the first entry is an end-of-list marker, the range
3213 describes an empty scope, i.e. no instructions. */
3214 return 0;
3215
3216 ret = -1;
3217 }
3218 }
3219
3220 if (high < low)
3221 return 0;
3222
3223 /* When using the GNU linker, .gnu.linkonce. sections are used to
3224 eliminate duplicate copies of functions and vtables and such.
3225 The linker will arbitrarily choose one and discard the others.
3226 The AT_*_pc values for such functions refer to local labels in
3227 these sections. If the section from that file was discarded, the
3228 labels are not in the output, so the relocs get a value of 0.
3229 If this is a discarded function, mark the pc bounds as invalid,
3230 so that GDB will ignore it. */
3231 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3232 return 0;
3233
3234 *lowpc = low;
3235 *highpc = high;
3236 return ret;
3237 }
3238
3239 /* Get the low and high pc's represented by the scope DIE, and store
3240 them in *LOWPC and *HIGHPC. If the correct values can't be
3241 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3242
3243 static void
3244 get_scope_pc_bounds (struct die_info *die,
3245 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3246 struct dwarf2_cu *cu)
3247 {
3248 CORE_ADDR best_low = (CORE_ADDR) -1;
3249 CORE_ADDR best_high = (CORE_ADDR) 0;
3250 CORE_ADDR current_low, current_high;
3251
3252 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3253 {
3254 best_low = current_low;
3255 best_high = current_high;
3256 }
3257 else
3258 {
3259 struct die_info *child = die->child;
3260
3261 while (child && child->tag)
3262 {
3263 switch (child->tag) {
3264 case DW_TAG_subprogram:
3265 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3266 {
3267 best_low = min (best_low, current_low);
3268 best_high = max (best_high, current_high);
3269 }
3270 break;
3271 case DW_TAG_namespace:
3272 /* FIXME: carlton/2004-01-16: Should we do this for
3273 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3274 that current GCC's always emit the DIEs corresponding
3275 to definitions of methods of classes as children of a
3276 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3277 the DIEs giving the declarations, which could be
3278 anywhere). But I don't see any reason why the
3279 standards says that they have to be there. */
3280 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3281
3282 if (current_low != ((CORE_ADDR) -1))
3283 {
3284 best_low = min (best_low, current_low);
3285 best_high = max (best_high, current_high);
3286 }
3287 break;
3288 default:
3289 /* Ignore. */
3290 break;
3291 }
3292
3293 child = sibling_die (child);
3294 }
3295 }
3296
3297 *lowpc = best_low;
3298 *highpc = best_high;
3299 }
3300
3301 /* Add an aggregate field to the field list. */
3302
3303 static void
3304 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3305 struct dwarf2_cu *cu)
3306 {
3307 struct objfile *objfile = cu->objfile;
3308 struct nextfield *new_field;
3309 struct attribute *attr;
3310 struct field *fp;
3311 char *fieldname = "";
3312
3313 /* Allocate a new field list entry and link it in. */
3314 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3315 make_cleanup (xfree, new_field);
3316 memset (new_field, 0, sizeof (struct nextfield));
3317 new_field->next = fip->fields;
3318 fip->fields = new_field;
3319 fip->nfields++;
3320
3321 /* Handle accessibility and virtuality of field.
3322 The default accessibility for members is public, the default
3323 accessibility for inheritance is private. */
3324 if (die->tag != DW_TAG_inheritance)
3325 new_field->accessibility = DW_ACCESS_public;
3326 else
3327 new_field->accessibility = DW_ACCESS_private;
3328 new_field->virtuality = DW_VIRTUALITY_none;
3329
3330 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3331 if (attr)
3332 new_field->accessibility = DW_UNSND (attr);
3333 if (new_field->accessibility != DW_ACCESS_public)
3334 fip->non_public_fields = 1;
3335 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3336 if (attr)
3337 new_field->virtuality = DW_UNSND (attr);
3338
3339 fp = &new_field->field;
3340
3341 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3342 {
3343 /* Data member other than a C++ static data member. */
3344
3345 /* Get type of field. */
3346 fp->type = die_type (die, cu);
3347
3348 FIELD_STATIC_KIND (*fp) = 0;
3349
3350 /* Get bit size of field (zero if none). */
3351 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3352 if (attr)
3353 {
3354 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3355 }
3356 else
3357 {
3358 FIELD_BITSIZE (*fp) = 0;
3359 }
3360
3361 /* Get bit offset of field. */
3362 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3363 if (attr)
3364 {
3365 FIELD_BITPOS (*fp) =
3366 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3367 }
3368 else
3369 FIELD_BITPOS (*fp) = 0;
3370 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3371 if (attr)
3372 {
3373 if (BITS_BIG_ENDIAN)
3374 {
3375 /* For big endian bits, the DW_AT_bit_offset gives the
3376 additional bit offset from the MSB of the containing
3377 anonymous object to the MSB of the field. We don't
3378 have to do anything special since we don't need to
3379 know the size of the anonymous object. */
3380 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3381 }
3382 else
3383 {
3384 /* For little endian bits, compute the bit offset to the
3385 MSB of the anonymous object, subtract off the number of
3386 bits from the MSB of the field to the MSB of the
3387 object, and then subtract off the number of bits of
3388 the field itself. The result is the bit offset of
3389 the LSB of the field. */
3390 int anonymous_size;
3391 int bit_offset = DW_UNSND (attr);
3392
3393 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3394 if (attr)
3395 {
3396 /* The size of the anonymous object containing
3397 the bit field is explicit, so use the
3398 indicated size (in bytes). */
3399 anonymous_size = DW_UNSND (attr);
3400 }
3401 else
3402 {
3403 /* The size of the anonymous object containing
3404 the bit field must be inferred from the type
3405 attribute of the data member containing the
3406 bit field. */
3407 anonymous_size = TYPE_LENGTH (fp->type);
3408 }
3409 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3410 - bit_offset - FIELD_BITSIZE (*fp);
3411 }
3412 }
3413
3414 /* Get name of field. */
3415 fieldname = dwarf2_name (die, cu);
3416 if (fieldname == NULL)
3417 fieldname = "";
3418
3419 /* The name is already allocated along with this objfile, so we don't
3420 need to duplicate it for the type. */
3421 fp->name = fieldname;
3422
3423 /* Change accessibility for artificial fields (e.g. virtual table
3424 pointer or virtual base class pointer) to private. */
3425 if (dwarf2_attr (die, DW_AT_artificial, cu))
3426 {
3427 new_field->accessibility = DW_ACCESS_private;
3428 fip->non_public_fields = 1;
3429 }
3430 }
3431 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3432 {
3433 /* C++ static member. */
3434
3435 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3436 is a declaration, but all versions of G++ as of this writing
3437 (so through at least 3.2.1) incorrectly generate
3438 DW_TAG_variable tags. */
3439
3440 char *physname;
3441
3442 /* Get name of field. */
3443 fieldname = dwarf2_name (die, cu);
3444 if (fieldname == NULL)
3445 return;
3446
3447 /* Get physical name. */
3448 physname = dwarf2_linkage_name (die, cu);
3449
3450 /* The name is already allocated along with this objfile, so we don't
3451 need to duplicate it for the type. */
3452 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3453 FIELD_TYPE (*fp) = die_type (die, cu);
3454 FIELD_NAME (*fp) = fieldname;
3455 }
3456 else if (die->tag == DW_TAG_inheritance)
3457 {
3458 /* C++ base class field. */
3459 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3460 if (attr)
3461 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3462 * bits_per_byte);
3463 FIELD_BITSIZE (*fp) = 0;
3464 FIELD_STATIC_KIND (*fp) = 0;
3465 FIELD_TYPE (*fp) = die_type (die, cu);
3466 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3467 fip->nbaseclasses++;
3468 }
3469 }
3470
3471 /* Create the vector of fields, and attach it to the type. */
3472
3473 static void
3474 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3475 struct dwarf2_cu *cu)
3476 {
3477 int nfields = fip->nfields;
3478
3479 /* Record the field count, allocate space for the array of fields,
3480 and create blank accessibility bitfields if necessary. */
3481 TYPE_NFIELDS (type) = nfields;
3482 TYPE_FIELDS (type) = (struct field *)
3483 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3484 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3485
3486 if (fip->non_public_fields)
3487 {
3488 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3489
3490 TYPE_FIELD_PRIVATE_BITS (type) =
3491 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3492 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3493
3494 TYPE_FIELD_PROTECTED_BITS (type) =
3495 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3496 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3497
3498 TYPE_FIELD_IGNORE_BITS (type) =
3499 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3500 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3501 }
3502
3503 /* If the type has baseclasses, allocate and clear a bit vector for
3504 TYPE_FIELD_VIRTUAL_BITS. */
3505 if (fip->nbaseclasses)
3506 {
3507 int num_bytes = B_BYTES (fip->nbaseclasses);
3508 unsigned char *pointer;
3509
3510 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3511 pointer = TYPE_ALLOC (type, num_bytes);
3512 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3513 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3514 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3515 }
3516
3517 /* Copy the saved-up fields into the field vector. Start from the head
3518 of the list, adding to the tail of the field array, so that they end
3519 up in the same order in the array in which they were added to the list. */
3520 while (nfields-- > 0)
3521 {
3522 TYPE_FIELD (type, nfields) = fip->fields->field;
3523 switch (fip->fields->accessibility)
3524 {
3525 case DW_ACCESS_private:
3526 SET_TYPE_FIELD_PRIVATE (type, nfields);
3527 break;
3528
3529 case DW_ACCESS_protected:
3530 SET_TYPE_FIELD_PROTECTED (type, nfields);
3531 break;
3532
3533 case DW_ACCESS_public:
3534 break;
3535
3536 default:
3537 /* Unknown accessibility. Complain and treat it as public. */
3538 {
3539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3540 fip->fields->accessibility);
3541 }
3542 break;
3543 }
3544 if (nfields < fip->nbaseclasses)
3545 {
3546 switch (fip->fields->virtuality)
3547 {
3548 case DW_VIRTUALITY_virtual:
3549 case DW_VIRTUALITY_pure_virtual:
3550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3551 break;
3552 }
3553 }
3554 fip->fields = fip->fields->next;
3555 }
3556 }
3557
3558 /* Add a member function to the proper fieldlist. */
3559
3560 static void
3561 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3562 struct type *type, struct dwarf2_cu *cu)
3563 {
3564 struct objfile *objfile = cu->objfile;
3565 struct attribute *attr;
3566 struct fnfieldlist *flp;
3567 int i;
3568 struct fn_field *fnp;
3569 char *fieldname;
3570 char *physname;
3571 struct nextfnfield *new_fnfield;
3572
3573 /* Get name of member function. */
3574 fieldname = dwarf2_name (die, cu);
3575 if (fieldname == NULL)
3576 return;
3577
3578 /* Get the mangled name. */
3579 physname = dwarf2_linkage_name (die, cu);
3580
3581 /* Look up member function name in fieldlist. */
3582 for (i = 0; i < fip->nfnfields; i++)
3583 {
3584 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3585 break;
3586 }
3587
3588 /* Create new list element if necessary. */
3589 if (i < fip->nfnfields)
3590 flp = &fip->fnfieldlists[i];
3591 else
3592 {
3593 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3594 {
3595 fip->fnfieldlists = (struct fnfieldlist *)
3596 xrealloc (fip->fnfieldlists,
3597 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3598 * sizeof (struct fnfieldlist));
3599 if (fip->nfnfields == 0)
3600 make_cleanup (free_current_contents, &fip->fnfieldlists);
3601 }
3602 flp = &fip->fnfieldlists[fip->nfnfields];
3603 flp->name = fieldname;
3604 flp->length = 0;
3605 flp->head = NULL;
3606 fip->nfnfields++;
3607 }
3608
3609 /* Create a new member function field and chain it to the field list
3610 entry. */
3611 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3612 make_cleanup (xfree, new_fnfield);
3613 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3614 new_fnfield->next = flp->head;
3615 flp->head = new_fnfield;
3616 flp->length++;
3617
3618 /* Fill in the member function field info. */
3619 fnp = &new_fnfield->fnfield;
3620 /* The name is already allocated along with this objfile, so we don't
3621 need to duplicate it for the type. */
3622 fnp->physname = physname ? physname : "";
3623 fnp->type = alloc_type (objfile);
3624 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3625 {
3626 int nparams = TYPE_NFIELDS (die->type);
3627
3628 /* TYPE is the domain of this method, and DIE->TYPE is the type
3629 of the method itself (TYPE_CODE_METHOD). */
3630 smash_to_method_type (fnp->type, type,
3631 TYPE_TARGET_TYPE (die->type),
3632 TYPE_FIELDS (die->type),
3633 TYPE_NFIELDS (die->type),
3634 TYPE_VARARGS (die->type));
3635
3636 /* Handle static member functions.
3637 Dwarf2 has no clean way to discern C++ static and non-static
3638 member functions. G++ helps GDB by marking the first
3639 parameter for non-static member functions (which is the
3640 this pointer) as artificial. We obtain this information
3641 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3642 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3643 fnp->voffset = VOFFSET_STATIC;
3644 }
3645 else
3646 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3647 physname);
3648
3649 /* Get fcontext from DW_AT_containing_type if present. */
3650 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3651 fnp->fcontext = die_containing_type (die, cu);
3652
3653 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3654 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3655
3656 /* Get accessibility. */
3657 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3658 if (attr)
3659 {
3660 switch (DW_UNSND (attr))
3661 {
3662 case DW_ACCESS_private:
3663 fnp->is_private = 1;
3664 break;
3665 case DW_ACCESS_protected:
3666 fnp->is_protected = 1;
3667 break;
3668 }
3669 }
3670
3671 /* Check for artificial methods. */
3672 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3673 if (attr && DW_UNSND (attr) != 0)
3674 fnp->is_artificial = 1;
3675
3676 /* Get index in virtual function table if it is a virtual member function. */
3677 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3678 if (attr)
3679 {
3680 /* Support the .debug_loc offsets */
3681 if (attr_form_is_block (attr))
3682 {
3683 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3684 }
3685 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3686 {
3687 dwarf2_complex_location_expr_complaint ();
3688 }
3689 else
3690 {
3691 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3692 fieldname);
3693 }
3694 }
3695 }
3696
3697 /* Create the vector of member function fields, and attach it to the type. */
3698
3699 static void
3700 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3701 struct dwarf2_cu *cu)
3702 {
3703 struct fnfieldlist *flp;
3704 int total_length = 0;
3705 int i;
3706
3707 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3708 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3709 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3710
3711 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3712 {
3713 struct nextfnfield *nfp = flp->head;
3714 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3715 int k;
3716
3717 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3718 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3719 fn_flp->fn_fields = (struct fn_field *)
3720 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3721 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3722 fn_flp->fn_fields[k] = nfp->fnfield;
3723
3724 total_length += flp->length;
3725 }
3726
3727 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3728 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3729 }
3730
3731 /* Returns non-zero if NAME is the name of a vtable member in CU's
3732 language, zero otherwise. */
3733 static int
3734 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3735 {
3736 static const char vptr[] = "_vptr";
3737 static const char vtable[] = "vtable";
3738
3739 /* Look for the C++ and Java forms of the vtable. */
3740 if ((cu->language == language_java
3741 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3742 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3743 && is_cplus_marker (name[sizeof (vptr) - 1])))
3744 return 1;
3745
3746 return 0;
3747 }
3748
3749 /* GCC outputs unnamed structures that are really pointers to member
3750 functions, with the ABI-specified layout. If DIE (from CU) describes
3751 such a structure, set its type, and return nonzero. Otherwise return
3752 zero.
3753
3754 GCC shouldn't do this; it should just output pointer to member DIEs.
3755 This is GCC PR debug/28767. */
3756
3757 static int
3758 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3759 {
3760 struct objfile *objfile = cu->objfile;
3761 struct type *type;
3762 struct die_info *pfn_die, *delta_die;
3763 struct attribute *pfn_name, *delta_name;
3764 struct type *pfn_type, *domain_type;
3765
3766 /* Check for a structure with no name and two children. */
3767 if (die->tag != DW_TAG_structure_type
3768 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3769 || die->child == NULL
3770 || die->child->sibling == NULL
3771 || (die->child->sibling->sibling != NULL
3772 && die->child->sibling->sibling->tag != DW_TAG_padding))
3773 return 0;
3774
3775 /* Check for __pfn and __delta members. */
3776 pfn_die = die->child;
3777 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3778 if (pfn_die->tag != DW_TAG_member
3779 || pfn_name == NULL
3780 || DW_STRING (pfn_name) == NULL
3781 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3782 return 0;
3783
3784 delta_die = pfn_die->sibling;
3785 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3786 if (delta_die->tag != DW_TAG_member
3787 || delta_name == NULL
3788 || DW_STRING (delta_name) == NULL
3789 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3790 return 0;
3791
3792 /* Find the type of the method. */
3793 pfn_type = die_type (pfn_die, cu);
3794 if (pfn_type == NULL
3795 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3796 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3797 return 0;
3798
3799 /* Look for the "this" argument. */
3800 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3801 if (TYPE_NFIELDS (pfn_type) == 0
3802 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3803 return 0;
3804
3805 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3806 type = alloc_type (objfile);
3807 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3808 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3809 TYPE_VARARGS (pfn_type));
3810 type = lookup_methodptr_type (type);
3811 set_die_type (die, type, cu);
3812
3813 return 1;
3814 }
3815
3816 /* Called when we find the DIE that starts a structure or union scope
3817 (definition) to process all dies that define the members of the
3818 structure or union.
3819
3820 NOTE: we need to call struct_type regardless of whether or not the
3821 DIE has an at_name attribute, since it might be an anonymous
3822 structure or union. This gets the type entered into our set of
3823 user defined types.
3824
3825 However, if the structure is incomplete (an opaque struct/union)
3826 then suppress creating a symbol table entry for it since gdb only
3827 wants to find the one with the complete definition. Note that if
3828 it is complete, we just call new_symbol, which does it's own
3829 checking about whether the struct/union is anonymous or not (and
3830 suppresses creating a symbol table entry itself). */
3831
3832 static void
3833 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3834 {
3835 struct objfile *objfile = cu->objfile;
3836 struct type *type;
3837 struct attribute *attr;
3838 const char *previous_prefix = processing_current_prefix;
3839 struct cleanup *back_to = NULL;
3840 char *name;
3841
3842 if (die->type)
3843 return;
3844
3845 if (quirk_gcc_member_function_pointer (die, cu))
3846 return;
3847
3848 type = alloc_type (objfile);
3849 INIT_CPLUS_SPECIFIC (type);
3850 name = dwarf2_name (die, cu);
3851 if (name != NULL)
3852 {
3853 if (cu->language == language_cplus
3854 || cu->language == language_java)
3855 {
3856 char *new_prefix = determine_class_name (die, cu);
3857 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3858 strlen (new_prefix),
3859 &objfile->objfile_obstack);
3860 back_to = make_cleanup (xfree, new_prefix);
3861 processing_current_prefix = new_prefix;
3862 }
3863 else
3864 {
3865 /* The name is already allocated along with this objfile, so
3866 we don't need to duplicate it for the type. */
3867 TYPE_TAG_NAME (type) = name;
3868 }
3869 }
3870
3871 if (die->tag == DW_TAG_structure_type)
3872 {
3873 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3874 }
3875 else if (die->tag == DW_TAG_union_type)
3876 {
3877 TYPE_CODE (type) = TYPE_CODE_UNION;
3878 }
3879 else
3880 {
3881 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3882 in gdbtypes.h. */
3883 TYPE_CODE (type) = TYPE_CODE_CLASS;
3884 }
3885
3886 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3887 if (attr)
3888 {
3889 TYPE_LENGTH (type) = DW_UNSND (attr);
3890 }
3891 else
3892 {
3893 TYPE_LENGTH (type) = 0;
3894 }
3895
3896 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
3897 if (die_is_declaration (die, cu))
3898 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3899
3900 /* We need to add the type field to the die immediately so we don't
3901 infinitely recurse when dealing with pointers to the structure
3902 type within the structure itself. */
3903 set_die_type (die, type, cu);
3904
3905 if (die->child != NULL && ! die_is_declaration (die, cu))
3906 {
3907 struct field_info fi;
3908 struct die_info *child_die;
3909 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3910
3911 memset (&fi, 0, sizeof (struct field_info));
3912
3913 child_die = die->child;
3914
3915 while (child_die && child_die->tag)
3916 {
3917 if (child_die->tag == DW_TAG_member
3918 || child_die->tag == DW_TAG_variable)
3919 {
3920 /* NOTE: carlton/2002-11-05: A C++ static data member
3921 should be a DW_TAG_member that is a declaration, but
3922 all versions of G++ as of this writing (so through at
3923 least 3.2.1) incorrectly generate DW_TAG_variable
3924 tags for them instead. */
3925 dwarf2_add_field (&fi, child_die, cu);
3926 }
3927 else if (child_die->tag == DW_TAG_subprogram)
3928 {
3929 /* C++ member function. */
3930 read_type_die (child_die, cu);
3931 dwarf2_add_member_fn (&fi, child_die, type, cu);
3932 }
3933 else if (child_die->tag == DW_TAG_inheritance)
3934 {
3935 /* C++ base class field. */
3936 dwarf2_add_field (&fi, child_die, cu);
3937 }
3938 child_die = sibling_die (child_die);
3939 }
3940
3941 /* Attach fields and member functions to the type. */
3942 if (fi.nfields)
3943 dwarf2_attach_fields_to_type (&fi, type, cu);
3944 if (fi.nfnfields)
3945 {
3946 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3947
3948 /* Get the type which refers to the base class (possibly this
3949 class itself) which contains the vtable pointer for the current
3950 class from the DW_AT_containing_type attribute. */
3951
3952 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3953 {
3954 struct type *t = die_containing_type (die, cu);
3955
3956 TYPE_VPTR_BASETYPE (type) = t;
3957 if (type == t)
3958 {
3959 int i;
3960
3961 /* Our own class provides vtbl ptr. */
3962 for (i = TYPE_NFIELDS (t) - 1;
3963 i >= TYPE_N_BASECLASSES (t);
3964 --i)
3965 {
3966 char *fieldname = TYPE_FIELD_NAME (t, i);
3967
3968 if (is_vtable_name (fieldname, cu))
3969 {
3970 TYPE_VPTR_FIELDNO (type) = i;
3971 break;
3972 }
3973 }
3974
3975 /* Complain if virtual function table field not found. */
3976 if (i < TYPE_N_BASECLASSES (t))
3977 complaint (&symfile_complaints,
3978 _("virtual function table pointer not found when defining class '%s'"),
3979 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3980 "");
3981 }
3982 else
3983 {
3984 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3985 }
3986 }
3987 else if (cu->producer
3988 && strncmp (cu->producer,
3989 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3990 {
3991 /* The IBM XLC compiler does not provide direct indication
3992 of the containing type, but the vtable pointer is
3993 always named __vfp. */
3994
3995 int i;
3996
3997 for (i = TYPE_NFIELDS (type) - 1;
3998 i >= TYPE_N_BASECLASSES (type);
3999 --i)
4000 {
4001 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4002 {
4003 TYPE_VPTR_FIELDNO (type) = i;
4004 TYPE_VPTR_BASETYPE (type) = type;
4005 break;
4006 }
4007 }
4008 }
4009 }
4010
4011 do_cleanups (back_to);
4012 }
4013
4014 processing_current_prefix = previous_prefix;
4015 if (back_to != NULL)
4016 do_cleanups (back_to);
4017 }
4018
4019 static void
4020 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4021 {
4022 struct objfile *objfile = cu->objfile;
4023 const char *previous_prefix = processing_current_prefix;
4024 struct die_info *child_die = die->child;
4025
4026 if (TYPE_TAG_NAME (die->type) != NULL)
4027 processing_current_prefix = TYPE_TAG_NAME (die->type);
4028
4029 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4030 snapshots) has been known to create a die giving a declaration
4031 for a class that has, as a child, a die giving a definition for a
4032 nested class. So we have to process our children even if the
4033 current die is a declaration. Normally, of course, a declaration
4034 won't have any children at all. */
4035
4036 while (child_die != NULL && child_die->tag)
4037 {
4038 if (child_die->tag == DW_TAG_member
4039 || child_die->tag == DW_TAG_variable
4040 || child_die->tag == DW_TAG_inheritance)
4041 {
4042 /* Do nothing. */
4043 }
4044 else
4045 process_die (child_die, cu);
4046
4047 child_die = sibling_die (child_die);
4048 }
4049
4050 /* Do not consider external references. According to the DWARF standard,
4051 these DIEs are identified by the fact that they have no byte_size
4052 attribute, and a declaration attribute. */
4053 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4054 || !die_is_declaration (die, cu))
4055 new_symbol (die, die->type, cu);
4056
4057 processing_current_prefix = previous_prefix;
4058 }
4059
4060 /* Given a DW_AT_enumeration_type die, set its type. We do not
4061 complete the type's fields yet, or create any symbols. */
4062
4063 static void
4064 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
4065 {
4066 struct objfile *objfile = cu->objfile;
4067 struct type *type;
4068 struct attribute *attr;
4069 char *name;
4070
4071 if (die->type)
4072 return;
4073
4074 type = alloc_type (objfile);
4075
4076 TYPE_CODE (type) = TYPE_CODE_ENUM;
4077 name = dwarf2_name (die, cu);
4078 if (name != NULL)
4079 {
4080 if (processing_has_namespace_info)
4081 {
4082 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4083 processing_current_prefix,
4084 name, cu);
4085 }
4086 else
4087 {
4088 /* The name is already allocated along with this objfile, so
4089 we don't need to duplicate it for the type. */
4090 TYPE_TAG_NAME (type) = name;
4091 }
4092 }
4093
4094 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4095 if (attr)
4096 {
4097 TYPE_LENGTH (type) = DW_UNSND (attr);
4098 }
4099 else
4100 {
4101 TYPE_LENGTH (type) = 0;
4102 }
4103
4104 set_die_type (die, type, cu);
4105 }
4106
4107 /* Determine the name of the type represented by DIE, which should be
4108 a named C++ or Java compound type. Return the name in question; the caller
4109 is responsible for xfree()'ing it. */
4110
4111 static char *
4112 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4113 {
4114 struct cleanup *back_to = NULL;
4115 struct die_info *spec_die = die_specification (die, cu);
4116 char *new_prefix = NULL;
4117
4118 /* If this is the definition of a class that is declared by another
4119 die, then processing_current_prefix may not be accurate; see
4120 read_func_scope for a similar example. */
4121 if (spec_die != NULL)
4122 {
4123 char *specification_prefix = determine_prefix (spec_die, cu);
4124 processing_current_prefix = specification_prefix;
4125 back_to = make_cleanup (xfree, specification_prefix);
4126 }
4127
4128 /* If we don't have namespace debug info, guess the name by trying
4129 to demangle the names of members, just like we did in
4130 guess_structure_name. */
4131 if (!processing_has_namespace_info)
4132 {
4133 struct die_info *child;
4134
4135 for (child = die->child;
4136 child != NULL && child->tag != 0;
4137 child = sibling_die (child))
4138 {
4139 if (child->tag == DW_TAG_subprogram)
4140 {
4141 new_prefix
4142 = language_class_name_from_physname (cu->language_defn,
4143 dwarf2_linkage_name
4144 (child, cu));
4145
4146 if (new_prefix != NULL)
4147 break;
4148 }
4149 }
4150 }
4151
4152 if (new_prefix == NULL)
4153 {
4154 const char *name = dwarf2_name (die, cu);
4155 new_prefix = typename_concat (NULL, processing_current_prefix,
4156 name ? name : "<<anonymous>>",
4157 cu);
4158 }
4159
4160 if (back_to != NULL)
4161 do_cleanups (back_to);
4162
4163 return new_prefix;
4164 }
4165
4166 /* Given a pointer to a die which begins an enumeration, process all
4167 the dies that define the members of the enumeration, and create the
4168 symbol for the enumeration type.
4169
4170 NOTE: We reverse the order of the element list. */
4171
4172 static void
4173 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4174 {
4175 struct objfile *objfile = cu->objfile;
4176 struct die_info *child_die;
4177 struct field *fields;
4178 struct symbol *sym;
4179 int num_fields;
4180 int unsigned_enum = 1;
4181 char *name;
4182
4183 num_fields = 0;
4184 fields = NULL;
4185 if (die->child != NULL)
4186 {
4187 child_die = die->child;
4188 while (child_die && child_die->tag)
4189 {
4190 if (child_die->tag != DW_TAG_enumerator)
4191 {
4192 process_die (child_die, cu);
4193 }
4194 else
4195 {
4196 name = dwarf2_name (child_die, cu);
4197 if (name)
4198 {
4199 sym = new_symbol (child_die, die->type, cu);
4200 if (SYMBOL_VALUE (sym) < 0)
4201 unsigned_enum = 0;
4202
4203 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4204 {
4205 fields = (struct field *)
4206 xrealloc (fields,
4207 (num_fields + DW_FIELD_ALLOC_CHUNK)
4208 * sizeof (struct field));
4209 }
4210
4211 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4212 FIELD_TYPE (fields[num_fields]) = NULL;
4213 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4214 FIELD_BITSIZE (fields[num_fields]) = 0;
4215 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4216
4217 num_fields++;
4218 }
4219 }
4220
4221 child_die = sibling_die (child_die);
4222 }
4223
4224 if (num_fields)
4225 {
4226 TYPE_NFIELDS (die->type) = num_fields;
4227 TYPE_FIELDS (die->type) = (struct field *)
4228 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4229 memcpy (TYPE_FIELDS (die->type), fields,
4230 sizeof (struct field) * num_fields);
4231 xfree (fields);
4232 }
4233 if (unsigned_enum)
4234 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4235 }
4236
4237 new_symbol (die, die->type, cu);
4238 }
4239
4240 /* Extract all information from a DW_TAG_array_type DIE and put it in
4241 the DIE's type field. For now, this only handles one dimensional
4242 arrays. */
4243
4244 static void
4245 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4246 {
4247 struct objfile *objfile = cu->objfile;
4248 struct die_info *child_die;
4249 struct type *type = NULL;
4250 struct type *element_type, *range_type, *index_type;
4251 struct type **range_types = NULL;
4252 struct attribute *attr;
4253 int ndim = 0;
4254 struct cleanup *back_to;
4255 char *name;
4256
4257 /* Return if we've already decoded this type. */
4258 if (die->type)
4259 {
4260 return;
4261 }
4262
4263 element_type = die_type (die, cu);
4264
4265 /* Irix 6.2 native cc creates array types without children for
4266 arrays with unspecified length. */
4267 if (die->child == NULL)
4268 {
4269 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4270 range_type = create_range_type (NULL, index_type, 0, -1);
4271 set_die_type (die, create_array_type (NULL, element_type, range_type),
4272 cu);
4273 return;
4274 }
4275
4276 back_to = make_cleanup (null_cleanup, NULL);
4277 child_die = die->child;
4278 while (child_die && child_die->tag)
4279 {
4280 if (child_die->tag == DW_TAG_subrange_type)
4281 {
4282 read_subrange_type (child_die, cu);
4283
4284 if (child_die->type != NULL)
4285 {
4286 /* The range type was succesfully read. Save it for
4287 the array type creation. */
4288 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4289 {
4290 range_types = (struct type **)
4291 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4292 * sizeof (struct type *));
4293 if (ndim == 0)
4294 make_cleanup (free_current_contents, &range_types);
4295 }
4296 range_types[ndim++] = child_die->type;
4297 }
4298 }
4299 child_die = sibling_die (child_die);
4300 }
4301
4302 /* Dwarf2 dimensions are output from left to right, create the
4303 necessary array types in backwards order. */
4304
4305 type = element_type;
4306
4307 if (read_array_order (die, cu) == DW_ORD_col_major)
4308 {
4309 int i = 0;
4310 while (i < ndim)
4311 type = create_array_type (NULL, type, range_types[i++]);
4312 }
4313 else
4314 {
4315 while (ndim-- > 0)
4316 type = create_array_type (NULL, type, range_types[ndim]);
4317 }
4318
4319 /* Understand Dwarf2 support for vector types (like they occur on
4320 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4321 array type. This is not part of the Dwarf2/3 standard yet, but a
4322 custom vendor extension. The main difference between a regular
4323 array and the vector variant is that vectors are passed by value
4324 to functions. */
4325 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4326 if (attr)
4327 make_vector_type (type);
4328
4329 name = dwarf2_name (die, cu);
4330 if (name)
4331 TYPE_NAME (type) = name;
4332
4333 do_cleanups (back_to);
4334
4335 /* Install the type in the die. */
4336 set_die_type (die, type, cu);
4337 }
4338
4339 static enum dwarf_array_dim_ordering
4340 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4341 {
4342 struct attribute *attr;
4343
4344 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4345
4346 if (attr) return DW_SND (attr);
4347
4348 /*
4349 GNU F77 is a special case, as at 08/2004 array type info is the
4350 opposite order to the dwarf2 specification, but data is still
4351 laid out as per normal fortran.
4352
4353 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4354 version checking.
4355 */
4356
4357 if (cu->language == language_fortran &&
4358 cu->producer && strstr (cu->producer, "GNU F77"))
4359 {
4360 return DW_ORD_row_major;
4361 }
4362
4363 switch (cu->language_defn->la_array_ordering)
4364 {
4365 case array_column_major:
4366 return DW_ORD_col_major;
4367 case array_row_major:
4368 default:
4369 return DW_ORD_row_major;
4370 };
4371 }
4372
4373 /* Extract all information from a DW_TAG_set_type DIE and put it in
4374 the DIE's type field. */
4375
4376 static void
4377 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4378 {
4379 if (die->type == NULL)
4380 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4381 }
4382
4383 /* First cut: install each common block member as a global variable. */
4384
4385 static void
4386 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4387 {
4388 struct die_info *child_die;
4389 struct attribute *attr;
4390 struct symbol *sym;
4391 CORE_ADDR base = (CORE_ADDR) 0;
4392
4393 attr = dwarf2_attr (die, DW_AT_location, cu);
4394 if (attr)
4395 {
4396 /* Support the .debug_loc offsets */
4397 if (attr_form_is_block (attr))
4398 {
4399 base = decode_locdesc (DW_BLOCK (attr), cu);
4400 }
4401 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4402 {
4403 dwarf2_complex_location_expr_complaint ();
4404 }
4405 else
4406 {
4407 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4408 "common block member");
4409 }
4410 }
4411 if (die->child != NULL)
4412 {
4413 child_die = die->child;
4414 while (child_die && child_die->tag)
4415 {
4416 sym = new_symbol (child_die, NULL, cu);
4417 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4418 if (attr)
4419 {
4420 SYMBOL_VALUE_ADDRESS (sym) =
4421 base + decode_locdesc (DW_BLOCK (attr), cu);
4422 add_symbol_to_list (sym, &global_symbols);
4423 }
4424 child_die = sibling_die (child_die);
4425 }
4426 }
4427 }
4428
4429 /* Read a C++ namespace. */
4430
4431 static void
4432 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4433 {
4434 struct objfile *objfile = cu->objfile;
4435 const char *previous_prefix = processing_current_prefix;
4436 const char *name;
4437 int is_anonymous;
4438 struct die_info *current_die;
4439 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4440
4441 name = namespace_name (die, &is_anonymous, cu);
4442
4443 /* Now build the name of the current namespace. */
4444
4445 if (previous_prefix[0] == '\0')
4446 {
4447 processing_current_prefix = name;
4448 }
4449 else
4450 {
4451 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4452 make_cleanup (xfree, temp_name);
4453 processing_current_prefix = temp_name;
4454 }
4455
4456 /* Add a symbol associated to this if we haven't seen the namespace
4457 before. Also, add a using directive if it's an anonymous
4458 namespace. */
4459
4460 if (dwarf2_extension (die, cu) == NULL)
4461 {
4462 struct type *type;
4463
4464 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4465 this cast will hopefully become unnecessary. */
4466 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4467 (char *) processing_current_prefix,
4468 objfile);
4469 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4470
4471 new_symbol (die, type, cu);
4472 set_die_type (die, type, cu);
4473
4474 if (is_anonymous)
4475 cp_add_using_directive (processing_current_prefix,
4476 strlen (previous_prefix),
4477 strlen (processing_current_prefix));
4478 }
4479
4480 if (die->child != NULL)
4481 {
4482 struct die_info *child_die = die->child;
4483
4484 while (child_die && child_die->tag)
4485 {
4486 process_die (child_die, cu);
4487 child_die = sibling_die (child_die);
4488 }
4489 }
4490
4491 processing_current_prefix = previous_prefix;
4492 do_cleanups (back_to);
4493 }
4494
4495 /* Return the name of the namespace represented by DIE. Set
4496 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4497 namespace. */
4498
4499 static const char *
4500 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4501 {
4502 struct die_info *current_die;
4503 const char *name = NULL;
4504
4505 /* Loop through the extensions until we find a name. */
4506
4507 for (current_die = die;
4508 current_die != NULL;
4509 current_die = dwarf2_extension (die, cu))
4510 {
4511 name = dwarf2_name (current_die, cu);
4512 if (name != NULL)
4513 break;
4514 }
4515
4516 /* Is it an anonymous namespace? */
4517
4518 *is_anonymous = (name == NULL);
4519 if (*is_anonymous)
4520 name = "(anonymous namespace)";
4521
4522 return name;
4523 }
4524
4525 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4526 the user defined type vector. */
4527
4528 static void
4529 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4530 {
4531 struct comp_unit_head *cu_header = &cu->header;
4532 struct type *type;
4533 struct attribute *attr_byte_size;
4534 struct attribute *attr_address_class;
4535 int byte_size, addr_class;
4536
4537 if (die->type)
4538 {
4539 return;
4540 }
4541
4542 type = lookup_pointer_type (die_type (die, cu));
4543
4544 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4545 if (attr_byte_size)
4546 byte_size = DW_UNSND (attr_byte_size);
4547 else
4548 byte_size = cu_header->addr_size;
4549
4550 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4551 if (attr_address_class)
4552 addr_class = DW_UNSND (attr_address_class);
4553 else
4554 addr_class = DW_ADDR_none;
4555
4556 /* If the pointer size or address class is different than the
4557 default, create a type variant marked as such and set the
4558 length accordingly. */
4559 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4560 {
4561 if (gdbarch_address_class_type_flags_p (current_gdbarch))
4562 {
4563 int type_flags;
4564
4565 type_flags = gdbarch_address_class_type_flags
4566 (current_gdbarch, byte_size, addr_class);
4567 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4568 type = make_type_with_address_space (type, type_flags);
4569 }
4570 else if (TYPE_LENGTH (type) != byte_size)
4571 {
4572 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4573 }
4574 else {
4575 /* Should we also complain about unhandled address classes? */
4576 }
4577 }
4578
4579 TYPE_LENGTH (type) = byte_size;
4580 set_die_type (die, type, cu);
4581 }
4582
4583 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4584 the user defined type vector. */
4585
4586 static void
4587 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4588 {
4589 struct objfile *objfile = cu->objfile;
4590 struct type *type;
4591 struct type *to_type;
4592 struct type *domain;
4593
4594 if (die->type)
4595 {
4596 return;
4597 }
4598
4599 to_type = die_type (die, cu);
4600 domain = die_containing_type (die, cu);
4601
4602 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4603 type = lookup_methodptr_type (to_type);
4604 else
4605 type = lookup_memberptr_type (to_type, domain);
4606
4607 set_die_type (die, type, cu);
4608 }
4609
4610 /* Extract all information from a DW_TAG_reference_type DIE and add to
4611 the user defined type vector. */
4612
4613 static void
4614 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4615 {
4616 struct comp_unit_head *cu_header = &cu->header;
4617 struct type *type;
4618 struct attribute *attr;
4619
4620 if (die->type)
4621 {
4622 return;
4623 }
4624
4625 type = lookup_reference_type (die_type (die, cu));
4626 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4627 if (attr)
4628 {
4629 TYPE_LENGTH (type) = DW_UNSND (attr);
4630 }
4631 else
4632 {
4633 TYPE_LENGTH (type) = cu_header->addr_size;
4634 }
4635 set_die_type (die, type, cu);
4636 }
4637
4638 static void
4639 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4640 {
4641 struct type *base_type;
4642
4643 if (die->type)
4644 {
4645 return;
4646 }
4647
4648 base_type = die_type (die, cu);
4649 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4650 cu);
4651 }
4652
4653 static void
4654 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4655 {
4656 struct type *base_type;
4657
4658 if (die->type)
4659 {
4660 return;
4661 }
4662
4663 base_type = die_type (die, cu);
4664 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4665 cu);
4666 }
4667
4668 /* Extract all information from a DW_TAG_string_type DIE and add to
4669 the user defined type vector. It isn't really a user defined type,
4670 but it behaves like one, with other DIE's using an AT_user_def_type
4671 attribute to reference it. */
4672
4673 static void
4674 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4675 {
4676 struct objfile *objfile = cu->objfile;
4677 struct type *type, *range_type, *index_type, *char_type;
4678 struct attribute *attr;
4679 unsigned int length;
4680
4681 if (die->type)
4682 {
4683 return;
4684 }
4685
4686 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4687 if (attr)
4688 {
4689 length = DW_UNSND (attr);
4690 }
4691 else
4692 {
4693 /* check for the DW_AT_byte_size attribute */
4694 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4695 if (attr)
4696 {
4697 length = DW_UNSND (attr);
4698 }
4699 else
4700 {
4701 length = 1;
4702 }
4703 }
4704 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4705 range_type = create_range_type (NULL, index_type, 1, length);
4706 if (cu->language == language_fortran)
4707 {
4708 /* Need to create a unique string type for bounds
4709 information */
4710 type = create_string_type (0, range_type);
4711 }
4712 else
4713 {
4714 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4715 type = create_string_type (char_type, range_type);
4716 }
4717 set_die_type (die, type, cu);
4718 }
4719
4720 /* Handle DIES due to C code like:
4721
4722 struct foo
4723 {
4724 int (*funcp)(int a, long l);
4725 int b;
4726 };
4727
4728 ('funcp' generates a DW_TAG_subroutine_type DIE)
4729 */
4730
4731 static void
4732 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4733 {
4734 struct type *type; /* Type that this function returns */
4735 struct type *ftype; /* Function that returns above type */
4736 struct attribute *attr;
4737
4738 /* Decode the type that this subroutine returns */
4739 if (die->type)
4740 {
4741 return;
4742 }
4743 type = die_type (die, cu);
4744 ftype = make_function_type (type, (struct type **) 0);
4745
4746 /* All functions in C++, Pascal and Java have prototypes. */
4747 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4748 if ((attr && (DW_UNSND (attr) != 0))
4749 || cu->language == language_cplus
4750 || cu->language == language_java
4751 || cu->language == language_pascal)
4752 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4753
4754 if (die->child != NULL)
4755 {
4756 struct die_info *child_die;
4757 int nparams = 0;
4758 int iparams = 0;
4759
4760 /* Count the number of parameters.
4761 FIXME: GDB currently ignores vararg functions, but knows about
4762 vararg member functions. */
4763 child_die = die->child;
4764 while (child_die && child_die->tag)
4765 {
4766 if (child_die->tag == DW_TAG_formal_parameter)
4767 nparams++;
4768 else if (child_die->tag == DW_TAG_unspecified_parameters)
4769 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4770 child_die = sibling_die (child_die);
4771 }
4772
4773 /* Allocate storage for parameters and fill them in. */
4774 TYPE_NFIELDS (ftype) = nparams;
4775 TYPE_FIELDS (ftype) = (struct field *)
4776 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4777
4778 child_die = die->child;
4779 while (child_die && child_die->tag)
4780 {
4781 if (child_die->tag == DW_TAG_formal_parameter)
4782 {
4783 /* Dwarf2 has no clean way to discern C++ static and non-static
4784 member functions. G++ helps GDB by marking the first
4785 parameter for non-static member functions (which is the
4786 this pointer) as artificial. We pass this information
4787 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4788 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4789 if (attr)
4790 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4791 else
4792 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4793 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4794 iparams++;
4795 }
4796 child_die = sibling_die (child_die);
4797 }
4798 }
4799
4800 set_die_type (die, ftype, cu);
4801 }
4802
4803 static void
4804 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4805 {
4806 struct objfile *objfile = cu->objfile;
4807 struct attribute *attr;
4808 char *name = NULL;
4809
4810 if (!die->type)
4811 {
4812 name = dwarf2_name (die, cu);
4813 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4814 TYPE_FLAG_TARGET_STUB, name, objfile),
4815 cu);
4816 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4817 }
4818 }
4819
4820 /* Find a representation of a given base type and install
4821 it in the TYPE field of the die. */
4822
4823 static void
4824 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4825 {
4826 struct objfile *objfile = cu->objfile;
4827 struct type *type;
4828 struct attribute *attr;
4829 int encoding = 0, size = 0;
4830 char *name;
4831
4832 /* If we've already decoded this die, this is a no-op. */
4833 if (die->type)
4834 {
4835 return;
4836 }
4837
4838 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4839 if (attr)
4840 {
4841 encoding = DW_UNSND (attr);
4842 }
4843 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4844 if (attr)
4845 {
4846 size = DW_UNSND (attr);
4847 }
4848 name = dwarf2_name (die, cu);
4849 if (name)
4850 {
4851 enum type_code code = TYPE_CODE_INT;
4852 int type_flags = 0;
4853
4854 switch (encoding)
4855 {
4856 case DW_ATE_address:
4857 /* Turn DW_ATE_address into a void * pointer. */
4858 code = TYPE_CODE_PTR;
4859 type_flags |= TYPE_FLAG_UNSIGNED;
4860 break;
4861 case DW_ATE_boolean:
4862 code = TYPE_CODE_BOOL;
4863 type_flags |= TYPE_FLAG_UNSIGNED;
4864 break;
4865 case DW_ATE_complex_float:
4866 code = TYPE_CODE_COMPLEX;
4867 break;
4868 case DW_ATE_float:
4869 code = TYPE_CODE_FLT;
4870 break;
4871 case DW_ATE_signed:
4872 break;
4873 case DW_ATE_unsigned:
4874 type_flags |= TYPE_FLAG_UNSIGNED;
4875 break;
4876 case DW_ATE_signed_char:
4877 if (cu->language == language_m2)
4878 code = TYPE_CODE_CHAR;
4879 break;
4880 case DW_ATE_unsigned_char:
4881 if (cu->language == language_m2)
4882 code = TYPE_CODE_CHAR;
4883 type_flags |= TYPE_FLAG_UNSIGNED;
4884 break;
4885 default:
4886 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4887 dwarf_type_encoding_name (encoding));
4888 break;
4889 }
4890 type = init_type (code, size, type_flags, name, objfile);
4891 if (encoding == DW_ATE_address)
4892 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4893 cu);
4894 else if (encoding == DW_ATE_complex_float)
4895 {
4896 if (size == 32)
4897 TYPE_TARGET_TYPE (type)
4898 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4899 else if (size == 16)
4900 TYPE_TARGET_TYPE (type)
4901 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4902 else if (size == 8)
4903 TYPE_TARGET_TYPE (type)
4904 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4905 }
4906 }
4907 else
4908 {
4909 type = dwarf_base_type (encoding, size, cu);
4910 }
4911 set_die_type (die, type, cu);
4912 }
4913
4914 /* Read the given DW_AT_subrange DIE. */
4915
4916 static void
4917 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4918 {
4919 struct type *base_type;
4920 struct type *range_type;
4921 struct attribute *attr;
4922 int low = 0;
4923 int high = -1;
4924 char *name;
4925
4926 /* If we have already decoded this die, then nothing more to do. */
4927 if (die->type)
4928 return;
4929
4930 base_type = die_type (die, cu);
4931 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4932 {
4933 complaint (&symfile_complaints,
4934 _("DW_AT_type missing from DW_TAG_subrange_type"));
4935 base_type
4936 = dwarf_base_type (DW_ATE_signed,
4937 gdbarch_addr_bit (current_gdbarch) / 8, cu);
4938 }
4939
4940 if (cu->language == language_fortran)
4941 {
4942 /* FORTRAN implies a lower bound of 1, if not given. */
4943 low = 1;
4944 }
4945
4946 /* FIXME: For variable sized arrays either of these could be
4947 a variable rather than a constant value. We'll allow it,
4948 but we don't know how to handle it. */
4949 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4950 if (attr)
4951 low = dwarf2_get_attr_constant_value (attr, 0);
4952
4953 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4954 if (attr)
4955 {
4956 if (attr->form == DW_FORM_block1)
4957 {
4958 /* GCC encodes arrays with unspecified or dynamic length
4959 with a DW_FORM_block1 attribute.
4960 FIXME: GDB does not yet know how to handle dynamic
4961 arrays properly, treat them as arrays with unspecified
4962 length for now.
4963
4964 FIXME: jimb/2003-09-22: GDB does not really know
4965 how to handle arrays of unspecified length
4966 either; we just represent them as zero-length
4967 arrays. Choose an appropriate upper bound given
4968 the lower bound we've computed above. */
4969 high = low - 1;
4970 }
4971 else
4972 high = dwarf2_get_attr_constant_value (attr, 1);
4973 }
4974
4975 range_type = create_range_type (NULL, base_type, low, high);
4976
4977 name = dwarf2_name (die, cu);
4978 if (name)
4979 TYPE_NAME (range_type) = name;
4980
4981 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4982 if (attr)
4983 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4984
4985 set_die_type (die, range_type, cu);
4986 }
4987
4988 static void
4989 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4990 {
4991 struct type *type;
4992
4993 if (die->type)
4994 return;
4995
4996 /* For now, we only support the C meaning of an unspecified type: void. */
4997
4998 type = init_type (TYPE_CODE_VOID, 0, 0, dwarf2_name (die, cu),
4999 cu->objfile);
5000
5001 set_die_type (die, type, cu);
5002 }
5003
5004 /* Read a whole compilation unit into a linked list of dies. */
5005
5006 static struct die_info *
5007 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
5008 {
5009 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
5010 }
5011
5012 /* Read a single die and all its descendents. Set the die's sibling
5013 field to NULL; set other fields in the die correctly, and set all
5014 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5015 location of the info_ptr after reading all of those dies. PARENT
5016 is the parent of the die in question. */
5017
5018 static struct die_info *
5019 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
5020 struct dwarf2_cu *cu,
5021 gdb_byte **new_info_ptr,
5022 struct die_info *parent)
5023 {
5024 struct die_info *die;
5025 gdb_byte *cur_ptr;
5026 int has_children;
5027
5028 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
5029 store_in_ref_table (die->offset, die, cu);
5030
5031 if (has_children)
5032 {
5033 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
5034 new_info_ptr, die);
5035 }
5036 else
5037 {
5038 die->child = NULL;
5039 *new_info_ptr = cur_ptr;
5040 }
5041
5042 die->sibling = NULL;
5043 die->parent = parent;
5044 return die;
5045 }
5046
5047 /* Read a die, all of its descendents, and all of its siblings; set
5048 all of the fields of all of the dies correctly. Arguments are as
5049 in read_die_and_children. */
5050
5051 static struct die_info *
5052 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
5053 struct dwarf2_cu *cu,
5054 gdb_byte **new_info_ptr,
5055 struct die_info *parent)
5056 {
5057 struct die_info *first_die, *last_sibling;
5058 gdb_byte *cur_ptr;
5059
5060 cur_ptr = info_ptr;
5061 first_die = last_sibling = NULL;
5062
5063 while (1)
5064 {
5065 struct die_info *die
5066 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
5067
5068 if (!first_die)
5069 {
5070 first_die = die;
5071 }
5072 else
5073 {
5074 last_sibling->sibling = die;
5075 }
5076
5077 if (die->tag == 0)
5078 {
5079 *new_info_ptr = cur_ptr;
5080 return first_die;
5081 }
5082 else
5083 {
5084 last_sibling = die;
5085 }
5086 }
5087 }
5088
5089 /* Free a linked list of dies. */
5090
5091 static void
5092 free_die_list (struct die_info *dies)
5093 {
5094 struct die_info *die, *next;
5095
5096 die = dies;
5097 while (die)
5098 {
5099 if (die->child != NULL)
5100 free_die_list (die->child);
5101 next = die->sibling;
5102 xfree (die->attrs);
5103 xfree (die);
5104 die = next;
5105 }
5106 }
5107
5108 /* Read the contents of the section at OFFSET and of size SIZE from the
5109 object file specified by OBJFILE into the objfile_obstack and return it. */
5110
5111 gdb_byte *
5112 dwarf2_read_section (struct objfile *objfile, asection *sectp)
5113 {
5114 bfd *abfd = objfile->obfd;
5115 gdb_byte *buf, *retbuf;
5116 bfd_size_type size = bfd_get_section_size (sectp);
5117
5118 if (size == 0)
5119 return NULL;
5120
5121 buf = obstack_alloc (&objfile->objfile_obstack, size);
5122 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5123 if (retbuf != NULL)
5124 return retbuf;
5125
5126 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5127 || bfd_bread (buf, size, abfd) != size)
5128 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5129 bfd_get_filename (abfd));
5130
5131 return buf;
5132 }
5133
5134 /* In DWARF version 2, the description of the debugging information is
5135 stored in a separate .debug_abbrev section. Before we read any
5136 dies from a section we read in all abbreviations and install them
5137 in a hash table. This function also sets flags in CU describing
5138 the data found in the abbrev table. */
5139
5140 static void
5141 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5142 {
5143 struct comp_unit_head *cu_header = &cu->header;
5144 gdb_byte *abbrev_ptr;
5145 struct abbrev_info *cur_abbrev;
5146 unsigned int abbrev_number, bytes_read, abbrev_name;
5147 unsigned int abbrev_form, hash_number;
5148 struct attr_abbrev *cur_attrs;
5149 unsigned int allocated_attrs;
5150
5151 /* Initialize dwarf2 abbrevs */
5152 obstack_init (&cu->abbrev_obstack);
5153 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5154 (ABBREV_HASH_SIZE
5155 * sizeof (struct abbrev_info *)));
5156 memset (cu->dwarf2_abbrevs, 0,
5157 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5158
5159 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5160 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5161 abbrev_ptr += bytes_read;
5162
5163 allocated_attrs = ATTR_ALLOC_CHUNK;
5164 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5165
5166 /* loop until we reach an abbrev number of 0 */
5167 while (abbrev_number)
5168 {
5169 cur_abbrev = dwarf_alloc_abbrev (cu);
5170
5171 /* read in abbrev header */
5172 cur_abbrev->number = abbrev_number;
5173 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5174 abbrev_ptr += bytes_read;
5175 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5176 abbrev_ptr += 1;
5177
5178 if (cur_abbrev->tag == DW_TAG_namespace)
5179 cu->has_namespace_info = 1;
5180
5181 /* now read in declarations */
5182 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5183 abbrev_ptr += bytes_read;
5184 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5185 abbrev_ptr += bytes_read;
5186 while (abbrev_name)
5187 {
5188 if (cur_abbrev->num_attrs == allocated_attrs)
5189 {
5190 allocated_attrs += ATTR_ALLOC_CHUNK;
5191 cur_attrs
5192 = xrealloc (cur_attrs, (allocated_attrs
5193 * sizeof (struct attr_abbrev)));
5194 }
5195
5196 /* Record whether this compilation unit might have
5197 inter-compilation-unit references. If we don't know what form
5198 this attribute will have, then it might potentially be a
5199 DW_FORM_ref_addr, so we conservatively expect inter-CU
5200 references. */
5201
5202 if (abbrev_form == DW_FORM_ref_addr
5203 || abbrev_form == DW_FORM_indirect)
5204 cu->has_form_ref_addr = 1;
5205
5206 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5207 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5208 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5209 abbrev_ptr += bytes_read;
5210 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5211 abbrev_ptr += bytes_read;
5212 }
5213
5214 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5215 (cur_abbrev->num_attrs
5216 * sizeof (struct attr_abbrev)));
5217 memcpy (cur_abbrev->attrs, cur_attrs,
5218 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5219
5220 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5221 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5222 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5223
5224 /* Get next abbreviation.
5225 Under Irix6 the abbreviations for a compilation unit are not
5226 always properly terminated with an abbrev number of 0.
5227 Exit loop if we encounter an abbreviation which we have
5228 already read (which means we are about to read the abbreviations
5229 for the next compile unit) or if the end of the abbreviation
5230 table is reached. */
5231 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5232 >= dwarf2_per_objfile->abbrev_size)
5233 break;
5234 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5235 abbrev_ptr += bytes_read;
5236 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5237 break;
5238 }
5239
5240 xfree (cur_attrs);
5241 }
5242
5243 /* Release the memory used by the abbrev table for a compilation unit. */
5244
5245 static void
5246 dwarf2_free_abbrev_table (void *ptr_to_cu)
5247 {
5248 struct dwarf2_cu *cu = ptr_to_cu;
5249
5250 obstack_free (&cu->abbrev_obstack, NULL);
5251 cu->dwarf2_abbrevs = NULL;
5252 }
5253
5254 /* Lookup an abbrev_info structure in the abbrev hash table. */
5255
5256 static struct abbrev_info *
5257 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5258 {
5259 unsigned int hash_number;
5260 struct abbrev_info *abbrev;
5261
5262 hash_number = number % ABBREV_HASH_SIZE;
5263 abbrev = cu->dwarf2_abbrevs[hash_number];
5264
5265 while (abbrev)
5266 {
5267 if (abbrev->number == number)
5268 return abbrev;
5269 else
5270 abbrev = abbrev->next;
5271 }
5272 return NULL;
5273 }
5274
5275 /* Returns nonzero if TAG represents a type that we might generate a partial
5276 symbol for. */
5277
5278 static int
5279 is_type_tag_for_partial (int tag)
5280 {
5281 switch (tag)
5282 {
5283 #if 0
5284 /* Some types that would be reasonable to generate partial symbols for,
5285 that we don't at present. */
5286 case DW_TAG_array_type:
5287 case DW_TAG_file_type:
5288 case DW_TAG_ptr_to_member_type:
5289 case DW_TAG_set_type:
5290 case DW_TAG_string_type:
5291 case DW_TAG_subroutine_type:
5292 #endif
5293 case DW_TAG_base_type:
5294 case DW_TAG_class_type:
5295 case DW_TAG_enumeration_type:
5296 case DW_TAG_structure_type:
5297 case DW_TAG_subrange_type:
5298 case DW_TAG_typedef:
5299 case DW_TAG_union_type:
5300 return 1;
5301 default:
5302 return 0;
5303 }
5304 }
5305
5306 /* Load all DIEs that are interesting for partial symbols into memory. */
5307
5308 static struct partial_die_info *
5309 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5310 struct dwarf2_cu *cu)
5311 {
5312 struct partial_die_info *part_die;
5313 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5314 struct abbrev_info *abbrev;
5315 unsigned int bytes_read;
5316 unsigned int load_all = 0;
5317
5318 int nesting_level = 1;
5319
5320 parent_die = NULL;
5321 last_die = NULL;
5322
5323 if (cu->per_cu && cu->per_cu->load_all_dies)
5324 load_all = 1;
5325
5326 cu->partial_dies
5327 = htab_create_alloc_ex (cu->header.length / 12,
5328 partial_die_hash,
5329 partial_die_eq,
5330 NULL,
5331 &cu->comp_unit_obstack,
5332 hashtab_obstack_allocate,
5333 dummy_obstack_deallocate);
5334
5335 part_die = obstack_alloc (&cu->comp_unit_obstack,
5336 sizeof (struct partial_die_info));
5337
5338 while (1)
5339 {
5340 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5341
5342 /* A NULL abbrev means the end of a series of children. */
5343 if (abbrev == NULL)
5344 {
5345 if (--nesting_level == 0)
5346 {
5347 /* PART_DIE was probably the last thing allocated on the
5348 comp_unit_obstack, so we could call obstack_free
5349 here. We don't do that because the waste is small,
5350 and will be cleaned up when we're done with this
5351 compilation unit. This way, we're also more robust
5352 against other users of the comp_unit_obstack. */
5353 return first_die;
5354 }
5355 info_ptr += bytes_read;
5356 last_die = parent_die;
5357 parent_die = parent_die->die_parent;
5358 continue;
5359 }
5360
5361 /* Check whether this DIE is interesting enough to save. Normally
5362 we would not be interested in members here, but there may be
5363 later variables referencing them via DW_AT_specification (for
5364 static members). */
5365 if (!load_all
5366 && !is_type_tag_for_partial (abbrev->tag)
5367 && abbrev->tag != DW_TAG_enumerator
5368 && abbrev->tag != DW_TAG_subprogram
5369 && abbrev->tag != DW_TAG_variable
5370 && abbrev->tag != DW_TAG_namespace
5371 && abbrev->tag != DW_TAG_member)
5372 {
5373 /* Otherwise we skip to the next sibling, if any. */
5374 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5375 continue;
5376 }
5377
5378 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5379 abfd, info_ptr, cu);
5380
5381 /* This two-pass algorithm for processing partial symbols has a
5382 high cost in cache pressure. Thus, handle some simple cases
5383 here which cover the majority of C partial symbols. DIEs
5384 which neither have specification tags in them, nor could have
5385 specification tags elsewhere pointing at them, can simply be
5386 processed and discarded.
5387
5388 This segment is also optional; scan_partial_symbols and
5389 add_partial_symbol will handle these DIEs if we chain
5390 them in normally. When compilers which do not emit large
5391 quantities of duplicate debug information are more common,
5392 this code can probably be removed. */
5393
5394 /* Any complete simple types at the top level (pretty much all
5395 of them, for a language without namespaces), can be processed
5396 directly. */
5397 if (parent_die == NULL
5398 && part_die->has_specification == 0
5399 && part_die->is_declaration == 0
5400 && (part_die->tag == DW_TAG_typedef
5401 || part_die->tag == DW_TAG_base_type
5402 || part_die->tag == DW_TAG_subrange_type))
5403 {
5404 if (building_psymtab && part_die->name != NULL)
5405 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5406 VAR_DOMAIN, LOC_TYPEDEF,
5407 &cu->objfile->static_psymbols,
5408 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5409 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5410 continue;
5411 }
5412
5413 /* If we're at the second level, and we're an enumerator, and
5414 our parent has no specification (meaning possibly lives in a
5415 namespace elsewhere), then we can add the partial symbol now
5416 instead of queueing it. */
5417 if (part_die->tag == DW_TAG_enumerator
5418 && parent_die != NULL
5419 && parent_die->die_parent == NULL
5420 && parent_die->tag == DW_TAG_enumeration_type
5421 && parent_die->has_specification == 0)
5422 {
5423 if (part_die->name == NULL)
5424 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5425 else if (building_psymtab)
5426 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5427 VAR_DOMAIN, LOC_CONST,
5428 (cu->language == language_cplus
5429 || cu->language == language_java)
5430 ? &cu->objfile->global_psymbols
5431 : &cu->objfile->static_psymbols,
5432 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5433
5434 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5435 continue;
5436 }
5437
5438 /* We'll save this DIE so link it in. */
5439 part_die->die_parent = parent_die;
5440 part_die->die_sibling = NULL;
5441 part_die->die_child = NULL;
5442
5443 if (last_die && last_die == parent_die)
5444 last_die->die_child = part_die;
5445 else if (last_die)
5446 last_die->die_sibling = part_die;
5447
5448 last_die = part_die;
5449
5450 if (first_die == NULL)
5451 first_die = part_die;
5452
5453 /* Maybe add the DIE to the hash table. Not all DIEs that we
5454 find interesting need to be in the hash table, because we
5455 also have the parent/sibling/child chains; only those that we
5456 might refer to by offset later during partial symbol reading.
5457
5458 For now this means things that might have be the target of a
5459 DW_AT_specification, DW_AT_abstract_origin, or
5460 DW_AT_extension. DW_AT_extension will refer only to
5461 namespaces; DW_AT_abstract_origin refers to functions (and
5462 many things under the function DIE, but we do not recurse
5463 into function DIEs during partial symbol reading) and
5464 possibly variables as well; DW_AT_specification refers to
5465 declarations. Declarations ought to have the DW_AT_declaration
5466 flag. It happens that GCC forgets to put it in sometimes, but
5467 only for functions, not for types.
5468
5469 Adding more things than necessary to the hash table is harmless
5470 except for the performance cost. Adding too few will result in
5471 wasted time in find_partial_die, when we reread the compilation
5472 unit with load_all_dies set. */
5473
5474 if (load_all
5475 || abbrev->tag == DW_TAG_subprogram
5476 || abbrev->tag == DW_TAG_variable
5477 || abbrev->tag == DW_TAG_namespace
5478 || part_die->is_declaration)
5479 {
5480 void **slot;
5481
5482 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5483 part_die->offset, INSERT);
5484 *slot = part_die;
5485 }
5486
5487 part_die = obstack_alloc (&cu->comp_unit_obstack,
5488 sizeof (struct partial_die_info));
5489
5490 /* For some DIEs we want to follow their children (if any). For C
5491 we have no reason to follow the children of structures; for other
5492 languages we have to, both so that we can get at method physnames
5493 to infer fully qualified class names, and for DW_AT_specification. */
5494 if (last_die->has_children
5495 && (load_all
5496 || last_die->tag == DW_TAG_namespace
5497 || last_die->tag == DW_TAG_enumeration_type
5498 || (cu->language != language_c
5499 && (last_die->tag == DW_TAG_class_type
5500 || last_die->tag == DW_TAG_structure_type
5501 || last_die->tag == DW_TAG_union_type))))
5502 {
5503 nesting_level++;
5504 parent_die = last_die;
5505 continue;
5506 }
5507
5508 /* Otherwise we skip to the next sibling, if any. */
5509 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5510
5511 /* Back to the top, do it again. */
5512 }
5513 }
5514
5515 /* Read a minimal amount of information into the minimal die structure. */
5516
5517 static gdb_byte *
5518 read_partial_die (struct partial_die_info *part_die,
5519 struct abbrev_info *abbrev,
5520 unsigned int abbrev_len, bfd *abfd,
5521 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5522 {
5523 unsigned int bytes_read, i;
5524 struct attribute attr;
5525 int has_low_pc_attr = 0;
5526 int has_high_pc_attr = 0;
5527
5528 memset (part_die, 0, sizeof (struct partial_die_info));
5529
5530 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5531
5532 info_ptr += abbrev_len;
5533
5534 if (abbrev == NULL)
5535 return info_ptr;
5536
5537 part_die->tag = abbrev->tag;
5538 part_die->has_children = abbrev->has_children;
5539
5540 for (i = 0; i < abbrev->num_attrs; ++i)
5541 {
5542 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5543
5544 /* Store the data if it is of an attribute we want to keep in a
5545 partial symbol table. */
5546 switch (attr.name)
5547 {
5548 case DW_AT_name:
5549
5550 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5551 if (part_die->name == NULL)
5552 part_die->name = DW_STRING (&attr);
5553 break;
5554 case DW_AT_comp_dir:
5555 if (part_die->dirname == NULL)
5556 part_die->dirname = DW_STRING (&attr);
5557 break;
5558 case DW_AT_MIPS_linkage_name:
5559 part_die->name = DW_STRING (&attr);
5560 break;
5561 case DW_AT_low_pc:
5562 has_low_pc_attr = 1;
5563 part_die->lowpc = DW_ADDR (&attr);
5564 break;
5565 case DW_AT_high_pc:
5566 has_high_pc_attr = 1;
5567 part_die->highpc = DW_ADDR (&attr);
5568 break;
5569 case DW_AT_location:
5570 /* Support the .debug_loc offsets */
5571 if (attr_form_is_block (&attr))
5572 {
5573 part_die->locdesc = DW_BLOCK (&attr);
5574 }
5575 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5576 {
5577 dwarf2_complex_location_expr_complaint ();
5578 }
5579 else
5580 {
5581 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5582 "partial symbol information");
5583 }
5584 break;
5585 case DW_AT_language:
5586 part_die->language = DW_UNSND (&attr);
5587 break;
5588 case DW_AT_external:
5589 part_die->is_external = DW_UNSND (&attr);
5590 break;
5591 case DW_AT_declaration:
5592 part_die->is_declaration = DW_UNSND (&attr);
5593 break;
5594 case DW_AT_type:
5595 part_die->has_type = 1;
5596 break;
5597 case DW_AT_abstract_origin:
5598 case DW_AT_specification:
5599 case DW_AT_extension:
5600 part_die->has_specification = 1;
5601 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5602 break;
5603 case DW_AT_sibling:
5604 /* Ignore absolute siblings, they might point outside of
5605 the current compile unit. */
5606 if (attr.form == DW_FORM_ref_addr)
5607 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5608 else
5609 part_die->sibling = dwarf2_per_objfile->info_buffer
5610 + dwarf2_get_ref_die_offset (&attr, cu);
5611 break;
5612 case DW_AT_stmt_list:
5613 part_die->has_stmt_list = 1;
5614 part_die->line_offset = DW_UNSND (&attr);
5615 break;
5616 case DW_AT_byte_size:
5617 part_die->has_byte_size = 1;
5618 break;
5619 default:
5620 break;
5621 }
5622 }
5623
5624 /* When using the GNU linker, .gnu.linkonce. sections are used to
5625 eliminate duplicate copies of functions and vtables and such.
5626 The linker will arbitrarily choose one and discard the others.
5627 The AT_*_pc values for such functions refer to local labels in
5628 these sections. If the section from that file was discarded, the
5629 labels are not in the output, so the relocs get a value of 0.
5630 If this is a discarded function, mark the pc bounds as invalid,
5631 so that GDB will ignore it. */
5632 if (has_low_pc_attr && has_high_pc_attr
5633 && part_die->lowpc < part_die->highpc
5634 && (part_die->lowpc != 0
5635 || dwarf2_per_objfile->has_section_at_zero))
5636 part_die->has_pc_info = 1;
5637 return info_ptr;
5638 }
5639
5640 /* Find a cached partial DIE at OFFSET in CU. */
5641
5642 static struct partial_die_info *
5643 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5644 {
5645 struct partial_die_info *lookup_die = NULL;
5646 struct partial_die_info part_die;
5647
5648 part_die.offset = offset;
5649 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5650
5651 return lookup_die;
5652 }
5653
5654 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5655
5656 static struct partial_die_info *
5657 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5658 {
5659 struct dwarf2_per_cu_data *per_cu = NULL;
5660 struct partial_die_info *pd = NULL;
5661
5662 if (offset >= cu->header.offset
5663 && offset < cu->header.offset + cu->header.length)
5664 {
5665 pd = find_partial_die_in_comp_unit (offset, cu);
5666 if (pd != NULL)
5667 return pd;
5668 }
5669
5670 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5671
5672 if (per_cu->cu == NULL)
5673 {
5674 load_comp_unit (per_cu, cu->objfile);
5675 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5676 dwarf2_per_objfile->read_in_chain = per_cu;
5677 }
5678
5679 per_cu->cu->last_used = 0;
5680 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5681
5682 if (pd == NULL && per_cu->load_all_dies == 0)
5683 {
5684 struct cleanup *back_to;
5685 struct partial_die_info comp_unit_die;
5686 struct abbrev_info *abbrev;
5687 unsigned int bytes_read;
5688 char *info_ptr;
5689
5690 per_cu->load_all_dies = 1;
5691
5692 /* Re-read the DIEs. */
5693 back_to = make_cleanup (null_cleanup, 0);
5694 if (per_cu->cu->dwarf2_abbrevs == NULL)
5695 {
5696 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5697 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5698 }
5699 info_ptr = per_cu->cu->header.first_die_ptr;
5700 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5701 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5702 per_cu->cu->objfile->obfd, info_ptr,
5703 per_cu->cu);
5704 if (comp_unit_die.has_children)
5705 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5706 do_cleanups (back_to);
5707
5708 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5709 }
5710
5711 if (pd == NULL)
5712 internal_error (__FILE__, __LINE__,
5713 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5714 offset, bfd_get_filename (cu->objfile->obfd));
5715 return pd;
5716 }
5717
5718 /* Adjust PART_DIE before generating a symbol for it. This function
5719 may set the is_external flag or change the DIE's name. */
5720
5721 static void
5722 fixup_partial_die (struct partial_die_info *part_die,
5723 struct dwarf2_cu *cu)
5724 {
5725 /* If we found a reference attribute and the DIE has no name, try
5726 to find a name in the referred to DIE. */
5727
5728 if (part_die->name == NULL && part_die->has_specification)
5729 {
5730 struct partial_die_info *spec_die;
5731
5732 spec_die = find_partial_die (part_die->spec_offset, cu);
5733
5734 fixup_partial_die (spec_die, cu);
5735
5736 if (spec_die->name)
5737 {
5738 part_die->name = spec_die->name;
5739
5740 /* Copy DW_AT_external attribute if it is set. */
5741 if (spec_die->is_external)
5742 part_die->is_external = spec_die->is_external;
5743 }
5744 }
5745
5746 /* Set default names for some unnamed DIEs. */
5747 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5748 || part_die->tag == DW_TAG_class_type))
5749 part_die->name = "(anonymous class)";
5750
5751 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5752 part_die->name = "(anonymous namespace)";
5753
5754 if (part_die->tag == DW_TAG_structure_type
5755 || part_die->tag == DW_TAG_class_type
5756 || part_die->tag == DW_TAG_union_type)
5757 guess_structure_name (part_die, cu);
5758 }
5759
5760 /* Read the die from the .debug_info section buffer. Set DIEP to
5761 point to a newly allocated die with its information, except for its
5762 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5763 whether the die has children or not. */
5764
5765 static gdb_byte *
5766 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5767 struct dwarf2_cu *cu, int *has_children)
5768 {
5769 unsigned int abbrev_number, bytes_read, i, offset;
5770 struct abbrev_info *abbrev;
5771 struct die_info *die;
5772
5773 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5774 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5775 info_ptr += bytes_read;
5776 if (!abbrev_number)
5777 {
5778 die = dwarf_alloc_die ();
5779 die->tag = 0;
5780 die->abbrev = abbrev_number;
5781 die->type = NULL;
5782 *diep = die;
5783 *has_children = 0;
5784 return info_ptr;
5785 }
5786
5787 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5788 if (!abbrev)
5789 {
5790 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5791 abbrev_number,
5792 bfd_get_filename (abfd));
5793 }
5794 die = dwarf_alloc_die ();
5795 die->offset = offset;
5796 die->tag = abbrev->tag;
5797 die->abbrev = abbrev_number;
5798 die->type = NULL;
5799
5800 die->num_attrs = abbrev->num_attrs;
5801 die->attrs = (struct attribute *)
5802 xmalloc (die->num_attrs * sizeof (struct attribute));
5803
5804 for (i = 0; i < abbrev->num_attrs; ++i)
5805 {
5806 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5807 abfd, info_ptr, cu);
5808
5809 /* If this attribute is an absolute reference to a different
5810 compilation unit, make sure that compilation unit is loaded
5811 also. */
5812 if (die->attrs[i].form == DW_FORM_ref_addr
5813 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5814 || (DW_ADDR (&die->attrs[i])
5815 >= cu->header.offset + cu->header.length)))
5816 {
5817 struct dwarf2_per_cu_data *per_cu;
5818 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5819 cu->objfile);
5820
5821 /* Mark the dependence relation so that we don't flush PER_CU
5822 too early. */
5823 dwarf2_add_dependence (cu, per_cu);
5824
5825 /* If it's already on the queue, we have nothing to do. */
5826 if (per_cu->queued)
5827 continue;
5828
5829 /* If the compilation unit is already loaded, just mark it as
5830 used. */
5831 if (per_cu->cu != NULL)
5832 {
5833 per_cu->cu->last_used = 0;
5834 continue;
5835 }
5836
5837 /* Add it to the queue. */
5838 queue_comp_unit (per_cu);
5839 }
5840 }
5841
5842 *diep = die;
5843 *has_children = abbrev->has_children;
5844 return info_ptr;
5845 }
5846
5847 /* Read an attribute value described by an attribute form. */
5848
5849 static gdb_byte *
5850 read_attribute_value (struct attribute *attr, unsigned form,
5851 bfd *abfd, gdb_byte *info_ptr,
5852 struct dwarf2_cu *cu)
5853 {
5854 struct comp_unit_head *cu_header = &cu->header;
5855 unsigned int bytes_read;
5856 struct dwarf_block *blk;
5857
5858 attr->form = form;
5859 switch (form)
5860 {
5861 case DW_FORM_addr:
5862 case DW_FORM_ref_addr:
5863 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5864 info_ptr += bytes_read;
5865 break;
5866 case DW_FORM_block2:
5867 blk = dwarf_alloc_block (cu);
5868 blk->size = read_2_bytes (abfd, info_ptr);
5869 info_ptr += 2;
5870 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5871 info_ptr += blk->size;
5872 DW_BLOCK (attr) = blk;
5873 break;
5874 case DW_FORM_block4:
5875 blk = dwarf_alloc_block (cu);
5876 blk->size = read_4_bytes (abfd, info_ptr);
5877 info_ptr += 4;
5878 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5879 info_ptr += blk->size;
5880 DW_BLOCK (attr) = blk;
5881 break;
5882 case DW_FORM_data2:
5883 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5884 info_ptr += 2;
5885 break;
5886 case DW_FORM_data4:
5887 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5888 info_ptr += 4;
5889 break;
5890 case DW_FORM_data8:
5891 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5892 info_ptr += 8;
5893 break;
5894 case DW_FORM_string:
5895 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5896 info_ptr += bytes_read;
5897 break;
5898 case DW_FORM_strp:
5899 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5900 &bytes_read);
5901 info_ptr += bytes_read;
5902 break;
5903 case DW_FORM_block:
5904 blk = dwarf_alloc_block (cu);
5905 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5906 info_ptr += bytes_read;
5907 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5908 info_ptr += blk->size;
5909 DW_BLOCK (attr) = blk;
5910 break;
5911 case DW_FORM_block1:
5912 blk = dwarf_alloc_block (cu);
5913 blk->size = read_1_byte (abfd, info_ptr);
5914 info_ptr += 1;
5915 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5916 info_ptr += blk->size;
5917 DW_BLOCK (attr) = blk;
5918 break;
5919 case DW_FORM_data1:
5920 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5921 info_ptr += 1;
5922 break;
5923 case DW_FORM_flag:
5924 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5925 info_ptr += 1;
5926 break;
5927 case DW_FORM_sdata:
5928 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5929 info_ptr += bytes_read;
5930 break;
5931 case DW_FORM_udata:
5932 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5933 info_ptr += bytes_read;
5934 break;
5935 case DW_FORM_ref1:
5936 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5937 info_ptr += 1;
5938 break;
5939 case DW_FORM_ref2:
5940 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5941 info_ptr += 2;
5942 break;
5943 case DW_FORM_ref4:
5944 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5945 info_ptr += 4;
5946 break;
5947 case DW_FORM_ref8:
5948 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5949 info_ptr += 8;
5950 break;
5951 case DW_FORM_ref_udata:
5952 DW_ADDR (attr) = (cu->header.offset
5953 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5954 info_ptr += bytes_read;
5955 break;
5956 case DW_FORM_indirect:
5957 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5958 info_ptr += bytes_read;
5959 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5960 break;
5961 default:
5962 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5963 dwarf_form_name (form),
5964 bfd_get_filename (abfd));
5965 }
5966 return info_ptr;
5967 }
5968
5969 /* Read an attribute described by an abbreviated attribute. */
5970
5971 static gdb_byte *
5972 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5973 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
5974 {
5975 attr->name = abbrev->name;
5976 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5977 }
5978
5979 /* read dwarf information from a buffer */
5980
5981 static unsigned int
5982 read_1_byte (bfd *abfd, gdb_byte *buf)
5983 {
5984 return bfd_get_8 (abfd, buf);
5985 }
5986
5987 static int
5988 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
5989 {
5990 return bfd_get_signed_8 (abfd, buf);
5991 }
5992
5993 static unsigned int
5994 read_2_bytes (bfd *abfd, gdb_byte *buf)
5995 {
5996 return bfd_get_16 (abfd, buf);
5997 }
5998
5999 static int
6000 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
6001 {
6002 return bfd_get_signed_16 (abfd, buf);
6003 }
6004
6005 static unsigned int
6006 read_4_bytes (bfd *abfd, gdb_byte *buf)
6007 {
6008 return bfd_get_32 (abfd, buf);
6009 }
6010
6011 static int
6012 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
6013 {
6014 return bfd_get_signed_32 (abfd, buf);
6015 }
6016
6017 static unsigned long
6018 read_8_bytes (bfd *abfd, gdb_byte *buf)
6019 {
6020 return bfd_get_64 (abfd, buf);
6021 }
6022
6023 static CORE_ADDR
6024 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
6025 unsigned int *bytes_read)
6026 {
6027 struct comp_unit_head *cu_header = &cu->header;
6028 CORE_ADDR retval = 0;
6029
6030 if (cu_header->signed_addr_p)
6031 {
6032 switch (cu_header->addr_size)
6033 {
6034 case 2:
6035 retval = bfd_get_signed_16 (abfd, buf);
6036 break;
6037 case 4:
6038 retval = bfd_get_signed_32 (abfd, buf);
6039 break;
6040 case 8:
6041 retval = bfd_get_signed_64 (abfd, buf);
6042 break;
6043 default:
6044 internal_error (__FILE__, __LINE__,
6045 _("read_address: bad switch, signed [in module %s]"),
6046 bfd_get_filename (abfd));
6047 }
6048 }
6049 else
6050 {
6051 switch (cu_header->addr_size)
6052 {
6053 case 2:
6054 retval = bfd_get_16 (abfd, buf);
6055 break;
6056 case 4:
6057 retval = bfd_get_32 (abfd, buf);
6058 break;
6059 case 8:
6060 retval = bfd_get_64 (abfd, buf);
6061 break;
6062 default:
6063 internal_error (__FILE__, __LINE__,
6064 _("read_address: bad switch, unsigned [in module %s]"),
6065 bfd_get_filename (abfd));
6066 }
6067 }
6068
6069 *bytes_read = cu_header->addr_size;
6070 return retval;
6071 }
6072
6073 /* Read the initial length from a section. The (draft) DWARF 3
6074 specification allows the initial length to take up either 4 bytes
6075 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6076 bytes describe the length and all offsets will be 8 bytes in length
6077 instead of 4.
6078
6079 An older, non-standard 64-bit format is also handled by this
6080 function. The older format in question stores the initial length
6081 as an 8-byte quantity without an escape value. Lengths greater
6082 than 2^32 aren't very common which means that the initial 4 bytes
6083 is almost always zero. Since a length value of zero doesn't make
6084 sense for the 32-bit format, this initial zero can be considered to
6085 be an escape value which indicates the presence of the older 64-bit
6086 format. As written, the code can't detect (old format) lengths
6087 greater than 4GB. If it becomes necessary to handle lengths
6088 somewhat larger than 4GB, we could allow other small values (such
6089 as the non-sensical values of 1, 2, and 3) to also be used as
6090 escape values indicating the presence of the old format.
6091
6092 The value returned via bytes_read should be used to increment the
6093 relevant pointer after calling read_initial_length().
6094
6095 As a side effect, this function sets the fields initial_length_size
6096 and offset_size in cu_header to the values appropriate for the
6097 length field. (The format of the initial length field determines
6098 the width of file offsets to be fetched later with read_offset().)
6099
6100 [ Note: read_initial_length() and read_offset() are based on the
6101 document entitled "DWARF Debugging Information Format", revision
6102 3, draft 8, dated November 19, 2001. This document was obtained
6103 from:
6104
6105 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6106
6107 This document is only a draft and is subject to change. (So beware.)
6108
6109 Details regarding the older, non-standard 64-bit format were
6110 determined empirically by examining 64-bit ELF files produced by
6111 the SGI toolchain on an IRIX 6.5 machine.
6112
6113 - Kevin, July 16, 2002
6114 ] */
6115
6116 static LONGEST
6117 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
6118 unsigned int *bytes_read)
6119 {
6120 LONGEST length = bfd_get_32 (abfd, buf);
6121
6122 if (length == 0xffffffff)
6123 {
6124 length = bfd_get_64 (abfd, buf + 4);
6125 *bytes_read = 12;
6126 }
6127 else if (length == 0)
6128 {
6129 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6130 length = bfd_get_64 (abfd, buf);
6131 *bytes_read = 8;
6132 }
6133 else
6134 {
6135 *bytes_read = 4;
6136 }
6137
6138 if (cu_header)
6139 {
6140 gdb_assert (cu_header->initial_length_size == 0
6141 || cu_header->initial_length_size == 4
6142 || cu_header->initial_length_size == 8
6143 || cu_header->initial_length_size == 12);
6144
6145 if (cu_header->initial_length_size != 0
6146 && cu_header->initial_length_size != *bytes_read)
6147 complaint (&symfile_complaints,
6148 _("intermixed 32-bit and 64-bit DWARF sections"));
6149
6150 cu_header->initial_length_size = *bytes_read;
6151 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6152 }
6153
6154 return length;
6155 }
6156
6157 /* Read an offset from the data stream. The size of the offset is
6158 given by cu_header->offset_size. */
6159
6160 static LONGEST
6161 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6162 unsigned int *bytes_read)
6163 {
6164 LONGEST retval = 0;
6165
6166 switch (cu_header->offset_size)
6167 {
6168 case 4:
6169 retval = bfd_get_32 (abfd, buf);
6170 *bytes_read = 4;
6171 break;
6172 case 8:
6173 retval = bfd_get_64 (abfd, buf);
6174 *bytes_read = 8;
6175 break;
6176 default:
6177 internal_error (__FILE__, __LINE__,
6178 _("read_offset: bad switch [in module %s]"),
6179 bfd_get_filename (abfd));
6180 }
6181
6182 return retval;
6183 }
6184
6185 static gdb_byte *
6186 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6187 {
6188 /* If the size of a host char is 8 bits, we can return a pointer
6189 to the buffer, otherwise we have to copy the data to a buffer
6190 allocated on the temporary obstack. */
6191 gdb_assert (HOST_CHAR_BIT == 8);
6192 return buf;
6193 }
6194
6195 static char *
6196 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6197 {
6198 /* If the size of a host char is 8 bits, we can return a pointer
6199 to the string, otherwise we have to copy the string to a buffer
6200 allocated on the temporary obstack. */
6201 gdb_assert (HOST_CHAR_BIT == 8);
6202 if (*buf == '\0')
6203 {
6204 *bytes_read_ptr = 1;
6205 return NULL;
6206 }
6207 *bytes_read_ptr = strlen ((char *) buf) + 1;
6208 return (char *) buf;
6209 }
6210
6211 static char *
6212 read_indirect_string (bfd *abfd, gdb_byte *buf,
6213 const struct comp_unit_head *cu_header,
6214 unsigned int *bytes_read_ptr)
6215 {
6216 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6217 bytes_read_ptr);
6218
6219 if (dwarf2_per_objfile->str_buffer == NULL)
6220 {
6221 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6222 bfd_get_filename (abfd));
6223 return NULL;
6224 }
6225 if (str_offset >= dwarf2_per_objfile->str_size)
6226 {
6227 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6228 bfd_get_filename (abfd));
6229 return NULL;
6230 }
6231 gdb_assert (HOST_CHAR_BIT == 8);
6232 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6233 return NULL;
6234 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6235 }
6236
6237 static unsigned long
6238 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6239 {
6240 unsigned long result;
6241 unsigned int num_read;
6242 int i, shift;
6243 unsigned char byte;
6244
6245 result = 0;
6246 shift = 0;
6247 num_read = 0;
6248 i = 0;
6249 while (1)
6250 {
6251 byte = bfd_get_8 (abfd, buf);
6252 buf++;
6253 num_read++;
6254 result |= ((unsigned long)(byte & 127) << shift);
6255 if ((byte & 128) == 0)
6256 {
6257 break;
6258 }
6259 shift += 7;
6260 }
6261 *bytes_read_ptr = num_read;
6262 return result;
6263 }
6264
6265 static long
6266 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6267 {
6268 long result;
6269 int i, shift, num_read;
6270 unsigned char byte;
6271
6272 result = 0;
6273 shift = 0;
6274 num_read = 0;
6275 i = 0;
6276 while (1)
6277 {
6278 byte = bfd_get_8 (abfd, buf);
6279 buf++;
6280 num_read++;
6281 result |= ((long)(byte & 127) << shift);
6282 shift += 7;
6283 if ((byte & 128) == 0)
6284 {
6285 break;
6286 }
6287 }
6288 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6289 result |= -(((long)1) << shift);
6290 *bytes_read_ptr = num_read;
6291 return result;
6292 }
6293
6294 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6295
6296 static gdb_byte *
6297 skip_leb128 (bfd *abfd, gdb_byte *buf)
6298 {
6299 int byte;
6300
6301 while (1)
6302 {
6303 byte = bfd_get_8 (abfd, buf);
6304 buf++;
6305 if ((byte & 128) == 0)
6306 return buf;
6307 }
6308 }
6309
6310 static void
6311 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6312 {
6313 switch (lang)
6314 {
6315 case DW_LANG_C89:
6316 case DW_LANG_C:
6317 cu->language = language_c;
6318 break;
6319 case DW_LANG_C_plus_plus:
6320 cu->language = language_cplus;
6321 break;
6322 case DW_LANG_Fortran77:
6323 case DW_LANG_Fortran90:
6324 case DW_LANG_Fortran95:
6325 cu->language = language_fortran;
6326 break;
6327 case DW_LANG_Mips_Assembler:
6328 cu->language = language_asm;
6329 break;
6330 case DW_LANG_Java:
6331 cu->language = language_java;
6332 break;
6333 case DW_LANG_Ada83:
6334 case DW_LANG_Ada95:
6335 cu->language = language_ada;
6336 break;
6337 case DW_LANG_Modula2:
6338 cu->language = language_m2;
6339 break;
6340 case DW_LANG_Pascal83:
6341 cu->language = language_pascal;
6342 break;
6343 case DW_LANG_Cobol74:
6344 case DW_LANG_Cobol85:
6345 default:
6346 cu->language = language_minimal;
6347 break;
6348 }
6349 cu->language_defn = language_def (cu->language);
6350 }
6351
6352 /* Return the named attribute or NULL if not there. */
6353
6354 static struct attribute *
6355 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6356 {
6357 unsigned int i;
6358 struct attribute *spec = NULL;
6359
6360 for (i = 0; i < die->num_attrs; ++i)
6361 {
6362 if (die->attrs[i].name == name)
6363 return &die->attrs[i];
6364 if (die->attrs[i].name == DW_AT_specification
6365 || die->attrs[i].name == DW_AT_abstract_origin)
6366 spec = &die->attrs[i];
6367 }
6368
6369 if (spec)
6370 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6371
6372 return NULL;
6373 }
6374
6375 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6376 and holds a non-zero value. This function should only be used for
6377 DW_FORM_flag attributes. */
6378
6379 static int
6380 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6381 {
6382 struct attribute *attr = dwarf2_attr (die, name, cu);
6383
6384 return (attr && DW_UNSND (attr));
6385 }
6386
6387 static int
6388 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6389 {
6390 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6391 which value is non-zero. However, we have to be careful with
6392 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6393 (via dwarf2_flag_true_p) follows this attribute. So we may
6394 end up accidently finding a declaration attribute that belongs
6395 to a different DIE referenced by the specification attribute,
6396 even though the given DIE does not have a declaration attribute. */
6397 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6398 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6399 }
6400
6401 /* Return the die giving the specification for DIE, if there is
6402 one. */
6403
6404 static struct die_info *
6405 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6406 {
6407 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6408
6409 if (spec_attr == NULL)
6410 return NULL;
6411 else
6412 return follow_die_ref (die, spec_attr, cu);
6413 }
6414
6415 /* Free the line_header structure *LH, and any arrays and strings it
6416 refers to. */
6417 static void
6418 free_line_header (struct line_header *lh)
6419 {
6420 if (lh->standard_opcode_lengths)
6421 xfree (lh->standard_opcode_lengths);
6422
6423 /* Remember that all the lh->file_names[i].name pointers are
6424 pointers into debug_line_buffer, and don't need to be freed. */
6425 if (lh->file_names)
6426 xfree (lh->file_names);
6427
6428 /* Similarly for the include directory names. */
6429 if (lh->include_dirs)
6430 xfree (lh->include_dirs);
6431
6432 xfree (lh);
6433 }
6434
6435
6436 /* Add an entry to LH's include directory table. */
6437 static void
6438 add_include_dir (struct line_header *lh, char *include_dir)
6439 {
6440 /* Grow the array if necessary. */
6441 if (lh->include_dirs_size == 0)
6442 {
6443 lh->include_dirs_size = 1; /* for testing */
6444 lh->include_dirs = xmalloc (lh->include_dirs_size
6445 * sizeof (*lh->include_dirs));
6446 }
6447 else if (lh->num_include_dirs >= lh->include_dirs_size)
6448 {
6449 lh->include_dirs_size *= 2;
6450 lh->include_dirs = xrealloc (lh->include_dirs,
6451 (lh->include_dirs_size
6452 * sizeof (*lh->include_dirs)));
6453 }
6454
6455 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6456 }
6457
6458
6459 /* Add an entry to LH's file name table. */
6460 static void
6461 add_file_name (struct line_header *lh,
6462 char *name,
6463 unsigned int dir_index,
6464 unsigned int mod_time,
6465 unsigned int length)
6466 {
6467 struct file_entry *fe;
6468
6469 /* Grow the array if necessary. */
6470 if (lh->file_names_size == 0)
6471 {
6472 lh->file_names_size = 1; /* for testing */
6473 lh->file_names = xmalloc (lh->file_names_size
6474 * sizeof (*lh->file_names));
6475 }
6476 else if (lh->num_file_names >= lh->file_names_size)
6477 {
6478 lh->file_names_size *= 2;
6479 lh->file_names = xrealloc (lh->file_names,
6480 (lh->file_names_size
6481 * sizeof (*lh->file_names)));
6482 }
6483
6484 fe = &lh->file_names[lh->num_file_names++];
6485 fe->name = name;
6486 fe->dir_index = dir_index;
6487 fe->mod_time = mod_time;
6488 fe->length = length;
6489 fe->included_p = 0;
6490 fe->symtab = NULL;
6491 }
6492
6493
6494 /* Read the statement program header starting at OFFSET in
6495 .debug_line, according to the endianness of ABFD. Return a pointer
6496 to a struct line_header, allocated using xmalloc.
6497
6498 NOTE: the strings in the include directory and file name tables of
6499 the returned object point into debug_line_buffer, and must not be
6500 freed. */
6501 static struct line_header *
6502 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6503 struct dwarf2_cu *cu)
6504 {
6505 struct cleanup *back_to;
6506 struct line_header *lh;
6507 gdb_byte *line_ptr;
6508 unsigned int bytes_read;
6509 int i;
6510 char *cur_dir, *cur_file;
6511
6512 if (dwarf2_per_objfile->line_buffer == NULL)
6513 {
6514 complaint (&symfile_complaints, _("missing .debug_line section"));
6515 return 0;
6516 }
6517
6518 /* Make sure that at least there's room for the total_length field.
6519 That could be 12 bytes long, but we're just going to fudge that. */
6520 if (offset + 4 >= dwarf2_per_objfile->line_size)
6521 {
6522 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6523 return 0;
6524 }
6525
6526 lh = xmalloc (sizeof (*lh));
6527 memset (lh, 0, sizeof (*lh));
6528 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6529 (void *) lh);
6530
6531 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6532
6533 /* Read in the header. */
6534 lh->total_length =
6535 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6536 line_ptr += bytes_read;
6537 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6538 + dwarf2_per_objfile->line_size))
6539 {
6540 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6541 return 0;
6542 }
6543 lh->statement_program_end = line_ptr + lh->total_length;
6544 lh->version = read_2_bytes (abfd, line_ptr);
6545 line_ptr += 2;
6546 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6547 line_ptr += bytes_read;
6548 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6549 line_ptr += 1;
6550 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6551 line_ptr += 1;
6552 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6553 line_ptr += 1;
6554 lh->line_range = read_1_byte (abfd, line_ptr);
6555 line_ptr += 1;
6556 lh->opcode_base = read_1_byte (abfd, line_ptr);
6557 line_ptr += 1;
6558 lh->standard_opcode_lengths
6559 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6560
6561 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6562 for (i = 1; i < lh->opcode_base; ++i)
6563 {
6564 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6565 line_ptr += 1;
6566 }
6567
6568 /* Read directory table. */
6569 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6570 {
6571 line_ptr += bytes_read;
6572 add_include_dir (lh, cur_dir);
6573 }
6574 line_ptr += bytes_read;
6575
6576 /* Read file name table. */
6577 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6578 {
6579 unsigned int dir_index, mod_time, length;
6580
6581 line_ptr += bytes_read;
6582 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6583 line_ptr += bytes_read;
6584 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6585 line_ptr += bytes_read;
6586 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6587 line_ptr += bytes_read;
6588
6589 add_file_name (lh, cur_file, dir_index, mod_time, length);
6590 }
6591 line_ptr += bytes_read;
6592 lh->statement_program_start = line_ptr;
6593
6594 if (line_ptr > (dwarf2_per_objfile->line_buffer
6595 + dwarf2_per_objfile->line_size))
6596 complaint (&symfile_complaints,
6597 _("line number info header doesn't fit in `.debug_line' section"));
6598
6599 discard_cleanups (back_to);
6600 return lh;
6601 }
6602
6603 /* This function exists to work around a bug in certain compilers
6604 (particularly GCC 2.95), in which the first line number marker of a
6605 function does not show up until after the prologue, right before
6606 the second line number marker. This function shifts ADDRESS down
6607 to the beginning of the function if necessary, and is called on
6608 addresses passed to record_line. */
6609
6610 static CORE_ADDR
6611 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6612 {
6613 struct function_range *fn;
6614
6615 /* Find the function_range containing address. */
6616 if (!cu->first_fn)
6617 return address;
6618
6619 if (!cu->cached_fn)
6620 cu->cached_fn = cu->first_fn;
6621
6622 fn = cu->cached_fn;
6623 while (fn)
6624 if (fn->lowpc <= address && fn->highpc > address)
6625 goto found;
6626 else
6627 fn = fn->next;
6628
6629 fn = cu->first_fn;
6630 while (fn && fn != cu->cached_fn)
6631 if (fn->lowpc <= address && fn->highpc > address)
6632 goto found;
6633 else
6634 fn = fn->next;
6635
6636 return address;
6637
6638 found:
6639 if (fn->seen_line)
6640 return address;
6641 if (address != fn->lowpc)
6642 complaint (&symfile_complaints,
6643 _("misplaced first line number at 0x%lx for '%s'"),
6644 (unsigned long) address, fn->name);
6645 fn->seen_line = 1;
6646 return fn->lowpc;
6647 }
6648
6649 /* Decode the Line Number Program (LNP) for the given line_header
6650 structure and CU. The actual information extracted and the type
6651 of structures created from the LNP depends on the value of PST.
6652
6653 1. If PST is NULL, then this procedure uses the data from the program
6654 to create all necessary symbol tables, and their linetables.
6655 The compilation directory of the file is passed in COMP_DIR,
6656 and must not be NULL.
6657
6658 2. If PST is not NULL, this procedure reads the program to determine
6659 the list of files included by the unit represented by PST, and
6660 builds all the associated partial symbol tables. In this case,
6661 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6662 is not used to compute the full name of the symtab, and therefore
6663 omitting it when building the partial symtab does not introduce
6664 the potential for inconsistency - a partial symtab and its associated
6665 symbtab having a different fullname -). */
6666
6667 static void
6668 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6669 struct dwarf2_cu *cu, struct partial_symtab *pst)
6670 {
6671 gdb_byte *line_ptr, *extended_end;
6672 gdb_byte *line_end;
6673 unsigned int bytes_read, extended_len;
6674 unsigned char op_code, extended_op, adj_opcode;
6675 CORE_ADDR baseaddr;
6676 struct objfile *objfile = cu->objfile;
6677 const int decode_for_pst_p = (pst != NULL);
6678 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
6679
6680 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6681
6682 line_ptr = lh->statement_program_start;
6683 line_end = lh->statement_program_end;
6684
6685 /* Read the statement sequences until there's nothing left. */
6686 while (line_ptr < line_end)
6687 {
6688 /* state machine registers */
6689 CORE_ADDR address = 0;
6690 unsigned int file = 1;
6691 unsigned int line = 1;
6692 unsigned int column = 0;
6693 int is_stmt = lh->default_is_stmt;
6694 int basic_block = 0;
6695 int end_sequence = 0;
6696
6697 if (!decode_for_pst_p && lh->num_file_names >= file)
6698 {
6699 /* Start a subfile for the current file of the state machine. */
6700 /* lh->include_dirs and lh->file_names are 0-based, but the
6701 directory and file name numbers in the statement program
6702 are 1-based. */
6703 struct file_entry *fe = &lh->file_names[file - 1];
6704 char *dir = NULL;
6705
6706 if (fe->dir_index)
6707 dir = lh->include_dirs[fe->dir_index - 1];
6708
6709 dwarf2_start_subfile (fe->name, dir, comp_dir);
6710 }
6711
6712 /* Decode the table. */
6713 while (!end_sequence)
6714 {
6715 op_code = read_1_byte (abfd, line_ptr);
6716 line_ptr += 1;
6717
6718 if (op_code >= lh->opcode_base)
6719 {
6720 /* Special operand. */
6721 adj_opcode = op_code - lh->opcode_base;
6722 address += (adj_opcode / lh->line_range)
6723 * lh->minimum_instruction_length;
6724 line += lh->line_base + (adj_opcode % lh->line_range);
6725 if (lh->num_file_names < file)
6726 dwarf2_debug_line_missing_file_complaint ();
6727 else
6728 {
6729 lh->file_names[file - 1].included_p = 1;
6730 if (!decode_for_pst_p)
6731 {
6732 if (last_subfile != current_subfile)
6733 {
6734 if (last_subfile)
6735 record_line (last_subfile, 0, address);
6736 last_subfile = current_subfile;
6737 }
6738 /* Append row to matrix using current values. */
6739 record_line (current_subfile, line,
6740 check_cu_functions (address, cu));
6741 }
6742 }
6743 basic_block = 1;
6744 }
6745 else switch (op_code)
6746 {
6747 case DW_LNS_extended_op:
6748 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6749 line_ptr += bytes_read;
6750 extended_end = line_ptr + extended_len;
6751 extended_op = read_1_byte (abfd, line_ptr);
6752 line_ptr += 1;
6753 switch (extended_op)
6754 {
6755 case DW_LNE_end_sequence:
6756 end_sequence = 1;
6757
6758 if (lh->num_file_names < file)
6759 dwarf2_debug_line_missing_file_complaint ();
6760 else
6761 {
6762 lh->file_names[file - 1].included_p = 1;
6763 if (!decode_for_pst_p)
6764 record_line (current_subfile, 0, address);
6765 }
6766 break;
6767 case DW_LNE_set_address:
6768 address = read_address (abfd, line_ptr, cu, &bytes_read);
6769 line_ptr += bytes_read;
6770 address += baseaddr;
6771 break;
6772 case DW_LNE_define_file:
6773 {
6774 char *cur_file;
6775 unsigned int dir_index, mod_time, length;
6776
6777 cur_file = read_string (abfd, line_ptr, &bytes_read);
6778 line_ptr += bytes_read;
6779 dir_index =
6780 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6781 line_ptr += bytes_read;
6782 mod_time =
6783 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6784 line_ptr += bytes_read;
6785 length =
6786 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6787 line_ptr += bytes_read;
6788 add_file_name (lh, cur_file, dir_index, mod_time, length);
6789 }
6790 break;
6791 default:
6792 complaint (&symfile_complaints,
6793 _("mangled .debug_line section"));
6794 return;
6795 }
6796 /* Make sure that we parsed the extended op correctly. If e.g.
6797 we expected a different address size than the producer used,
6798 we may have read the wrong number of bytes. */
6799 if (line_ptr != extended_end)
6800 {
6801 complaint (&symfile_complaints,
6802 _("mangled .debug_line section"));
6803 return;
6804 }
6805 break;
6806 case DW_LNS_copy:
6807 if (lh->num_file_names < file)
6808 dwarf2_debug_line_missing_file_complaint ();
6809 else
6810 {
6811 lh->file_names[file - 1].included_p = 1;
6812 if (!decode_for_pst_p)
6813 {
6814 if (last_subfile != current_subfile)
6815 {
6816 if (last_subfile)
6817 record_line (last_subfile, 0, address);
6818 last_subfile = current_subfile;
6819 }
6820 record_line (current_subfile, line,
6821 check_cu_functions (address, cu));
6822 }
6823 }
6824 basic_block = 0;
6825 break;
6826 case DW_LNS_advance_pc:
6827 address += lh->minimum_instruction_length
6828 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6829 line_ptr += bytes_read;
6830 break;
6831 case DW_LNS_advance_line:
6832 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6833 line_ptr += bytes_read;
6834 break;
6835 case DW_LNS_set_file:
6836 {
6837 /* The arrays lh->include_dirs and lh->file_names are
6838 0-based, but the directory and file name numbers in
6839 the statement program are 1-based. */
6840 struct file_entry *fe;
6841 char *dir = NULL;
6842
6843 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6844 line_ptr += bytes_read;
6845 if (lh->num_file_names < file)
6846 dwarf2_debug_line_missing_file_complaint ();
6847 else
6848 {
6849 fe = &lh->file_names[file - 1];
6850 if (fe->dir_index)
6851 dir = lh->include_dirs[fe->dir_index - 1];
6852 if (!decode_for_pst_p)
6853 {
6854 last_subfile = current_subfile;
6855 dwarf2_start_subfile (fe->name, dir, comp_dir);
6856 }
6857 }
6858 }
6859 break;
6860 case DW_LNS_set_column:
6861 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6862 line_ptr += bytes_read;
6863 break;
6864 case DW_LNS_negate_stmt:
6865 is_stmt = (!is_stmt);
6866 break;
6867 case DW_LNS_set_basic_block:
6868 basic_block = 1;
6869 break;
6870 /* Add to the address register of the state machine the
6871 address increment value corresponding to special opcode
6872 255. I.e., this value is scaled by the minimum
6873 instruction length since special opcode 255 would have
6874 scaled the the increment. */
6875 case DW_LNS_const_add_pc:
6876 address += (lh->minimum_instruction_length
6877 * ((255 - lh->opcode_base) / lh->line_range));
6878 break;
6879 case DW_LNS_fixed_advance_pc:
6880 address += read_2_bytes (abfd, line_ptr);
6881 line_ptr += 2;
6882 break;
6883 default:
6884 {
6885 /* Unknown standard opcode, ignore it. */
6886 int i;
6887
6888 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6889 {
6890 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6891 line_ptr += bytes_read;
6892 }
6893 }
6894 }
6895 }
6896 }
6897
6898 if (decode_for_pst_p)
6899 {
6900 int file_index;
6901
6902 /* Now that we're done scanning the Line Header Program, we can
6903 create the psymtab of each included file. */
6904 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6905 if (lh->file_names[file_index].included_p == 1)
6906 {
6907 const struct file_entry fe = lh->file_names [file_index];
6908 char *include_name = fe.name;
6909 char *dir_name = NULL;
6910 char *pst_filename = pst->filename;
6911
6912 if (fe.dir_index)
6913 dir_name = lh->include_dirs[fe.dir_index - 1];
6914
6915 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6916 {
6917 include_name = concat (dir_name, SLASH_STRING,
6918 include_name, (char *)NULL);
6919 make_cleanup (xfree, include_name);
6920 }
6921
6922 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6923 {
6924 pst_filename = concat (pst->dirname, SLASH_STRING,
6925 pst_filename, (char *)NULL);
6926 make_cleanup (xfree, pst_filename);
6927 }
6928
6929 if (strcmp (include_name, pst_filename) != 0)
6930 dwarf2_create_include_psymtab (include_name, pst, objfile);
6931 }
6932 }
6933 else
6934 {
6935 /* Make sure a symtab is created for every file, even files
6936 which contain only variables (i.e. no code with associated
6937 line numbers). */
6938
6939 int i;
6940 struct file_entry *fe;
6941
6942 for (i = 0; i < lh->num_file_names; i++)
6943 {
6944 char *dir = NULL;
6945 fe = &lh->file_names[i];
6946 if (fe->dir_index)
6947 dir = lh->include_dirs[fe->dir_index - 1];
6948 dwarf2_start_subfile (fe->name, dir, comp_dir);
6949
6950 /* Skip the main file; we don't need it, and it must be
6951 allocated last, so that it will show up before the
6952 non-primary symtabs in the objfile's symtab list. */
6953 if (current_subfile == first_subfile)
6954 continue;
6955
6956 if (current_subfile->symtab == NULL)
6957 current_subfile->symtab = allocate_symtab (current_subfile->name,
6958 cu->objfile);
6959 fe->symtab = current_subfile->symtab;
6960 }
6961 }
6962 }
6963
6964 /* Start a subfile for DWARF. FILENAME is the name of the file and
6965 DIRNAME the name of the source directory which contains FILENAME
6966 or NULL if not known. COMP_DIR is the compilation directory for the
6967 linetable's compilation unit or NULL if not known.
6968 This routine tries to keep line numbers from identical absolute and
6969 relative file names in a common subfile.
6970
6971 Using the `list' example from the GDB testsuite, which resides in
6972 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6973 of /srcdir/list0.c yields the following debugging information for list0.c:
6974
6975 DW_AT_name: /srcdir/list0.c
6976 DW_AT_comp_dir: /compdir
6977 files.files[0].name: list0.h
6978 files.files[0].dir: /srcdir
6979 files.files[1].name: list0.c
6980 files.files[1].dir: /srcdir
6981
6982 The line number information for list0.c has to end up in a single
6983 subfile, so that `break /srcdir/list0.c:1' works as expected.
6984 start_subfile will ensure that this happens provided that we pass the
6985 concatenation of files.files[1].dir and files.files[1].name as the
6986 subfile's name. */
6987
6988 static void
6989 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
6990 {
6991 char *fullname;
6992
6993 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6994 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6995 second argument to start_subfile. To be consistent, we do the
6996 same here. In order not to lose the line information directory,
6997 we concatenate it to the filename when it makes sense.
6998 Note that the Dwarf3 standard says (speaking of filenames in line
6999 information): ``The directory index is ignored for file names
7000 that represent full path names''. Thus ignoring dirname in the
7001 `else' branch below isn't an issue. */
7002
7003 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
7004 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7005 else
7006 fullname = filename;
7007
7008 start_subfile (fullname, comp_dir);
7009
7010 if (fullname != filename)
7011 xfree (fullname);
7012 }
7013
7014 static void
7015 var_decode_location (struct attribute *attr, struct symbol *sym,
7016 struct dwarf2_cu *cu)
7017 {
7018 struct objfile *objfile = cu->objfile;
7019 struct comp_unit_head *cu_header = &cu->header;
7020
7021 /* NOTE drow/2003-01-30: There used to be a comment and some special
7022 code here to turn a symbol with DW_AT_external and a
7023 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7024 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7025 with some versions of binutils) where shared libraries could have
7026 relocations against symbols in their debug information - the
7027 minimal symbol would have the right address, but the debug info
7028 would not. It's no longer necessary, because we will explicitly
7029 apply relocations when we read in the debug information now. */
7030
7031 /* A DW_AT_location attribute with no contents indicates that a
7032 variable has been optimized away. */
7033 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7034 {
7035 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7036 return;
7037 }
7038
7039 /* Handle one degenerate form of location expression specially, to
7040 preserve GDB's previous behavior when section offsets are
7041 specified. If this is just a DW_OP_addr then mark this symbol
7042 as LOC_STATIC. */
7043
7044 if (attr_form_is_block (attr)
7045 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7046 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7047 {
7048 unsigned int dummy;
7049
7050 SYMBOL_VALUE_ADDRESS (sym) =
7051 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
7052 fixup_symbol_section (sym, objfile);
7053 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7054 SYMBOL_SECTION (sym));
7055 SYMBOL_CLASS (sym) = LOC_STATIC;
7056 return;
7057 }
7058
7059 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7060 expression evaluator, and use LOC_COMPUTED only when necessary
7061 (i.e. when the value of a register or memory location is
7062 referenced, or a thread-local block, etc.). Then again, it might
7063 not be worthwhile. I'm assuming that it isn't unless performance
7064 or memory numbers show me otherwise. */
7065
7066 dwarf2_symbol_mark_computed (attr, sym, cu);
7067 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7068 }
7069
7070 /* Given a pointer to a DWARF information entry, figure out if we need
7071 to make a symbol table entry for it, and if so, create a new entry
7072 and return a pointer to it.
7073 If TYPE is NULL, determine symbol type from the die, otherwise
7074 used the passed type. */
7075
7076 static struct symbol *
7077 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
7078 {
7079 struct objfile *objfile = cu->objfile;
7080 struct symbol *sym = NULL;
7081 char *name;
7082 struct attribute *attr = NULL;
7083 struct attribute *attr2 = NULL;
7084 CORE_ADDR baseaddr;
7085
7086 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7087
7088 if (die->tag != DW_TAG_namespace)
7089 name = dwarf2_linkage_name (die, cu);
7090 else
7091 name = TYPE_NAME (type);
7092
7093 if (name)
7094 {
7095 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
7096 sizeof (struct symbol));
7097 OBJSTAT (objfile, n_syms++);
7098 memset (sym, 0, sizeof (struct symbol));
7099
7100 /* Cache this symbol's name and the name's demangled form (if any). */
7101 SYMBOL_LANGUAGE (sym) = cu->language;
7102 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
7103
7104 /* Default assumptions.
7105 Use the passed type or decode it from the die. */
7106 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7107 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7108 if (type != NULL)
7109 SYMBOL_TYPE (sym) = type;
7110 else
7111 SYMBOL_TYPE (sym) = die_type (die, cu);
7112 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
7113 if (attr)
7114 {
7115 SYMBOL_LINE (sym) = DW_UNSND (attr);
7116 }
7117
7118 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7119 if (attr)
7120 {
7121 int file_index = DW_UNSND (attr);
7122 if (cu->line_header == NULL
7123 || file_index > cu->line_header->num_file_names)
7124 complaint (&symfile_complaints,
7125 _("file index out of range"));
7126 else if (file_index > 0)
7127 {
7128 struct file_entry *fe;
7129 fe = &cu->line_header->file_names[file_index - 1];
7130 SYMBOL_SYMTAB (sym) = fe->symtab;
7131 }
7132 }
7133
7134 switch (die->tag)
7135 {
7136 case DW_TAG_label:
7137 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7138 if (attr)
7139 {
7140 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7141 }
7142 SYMBOL_CLASS (sym) = LOC_LABEL;
7143 break;
7144 case DW_TAG_subprogram:
7145 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7146 finish_block. */
7147 SYMBOL_CLASS (sym) = LOC_BLOCK;
7148 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7149 if (attr2 && (DW_UNSND (attr2) != 0))
7150 {
7151 add_symbol_to_list (sym, &global_symbols);
7152 }
7153 else
7154 {
7155 add_symbol_to_list (sym, cu->list_in_scope);
7156 }
7157 break;
7158 case DW_TAG_variable:
7159 /* Compilation with minimal debug info may result in variables
7160 with missing type entries. Change the misleading `void' type
7161 to something sensible. */
7162 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7163 SYMBOL_TYPE (sym)
7164 = builtin_type (current_gdbarch)->nodebug_data_symbol;
7165
7166 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7167 if (attr)
7168 {
7169 dwarf2_const_value (attr, sym, cu);
7170 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7171 if (attr2 && (DW_UNSND (attr2) != 0))
7172 add_symbol_to_list (sym, &global_symbols);
7173 else
7174 add_symbol_to_list (sym, cu->list_in_scope);
7175 break;
7176 }
7177 attr = dwarf2_attr (die, DW_AT_location, cu);
7178 if (attr)
7179 {
7180 var_decode_location (attr, sym, cu);
7181 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7182 if (attr2 && (DW_UNSND (attr2) != 0))
7183 add_symbol_to_list (sym, &global_symbols);
7184 else
7185 add_symbol_to_list (sym, cu->list_in_scope);
7186 }
7187 else
7188 {
7189 /* We do not know the address of this symbol.
7190 If it is an external symbol and we have type information
7191 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7192 The address of the variable will then be determined from
7193 the minimal symbol table whenever the variable is
7194 referenced. */
7195 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7196 if (attr2 && (DW_UNSND (attr2) != 0)
7197 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
7198 {
7199 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7200 add_symbol_to_list (sym, &global_symbols);
7201 }
7202 }
7203 break;
7204 case DW_TAG_formal_parameter:
7205 attr = dwarf2_attr (die, DW_AT_location, cu);
7206 if (attr)
7207 {
7208 var_decode_location (attr, sym, cu);
7209 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7210 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7211 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
7212 }
7213 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7214 if (attr)
7215 {
7216 dwarf2_const_value (attr, sym, cu);
7217 }
7218 add_symbol_to_list (sym, cu->list_in_scope);
7219 break;
7220 case DW_TAG_unspecified_parameters:
7221 /* From varargs functions; gdb doesn't seem to have any
7222 interest in this information, so just ignore it for now.
7223 (FIXME?) */
7224 break;
7225 case DW_TAG_class_type:
7226 case DW_TAG_structure_type:
7227 case DW_TAG_union_type:
7228 case DW_TAG_set_type:
7229 case DW_TAG_enumeration_type:
7230 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7231 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7232
7233 /* Make sure that the symbol includes appropriate enclosing
7234 classes/namespaces in its name. These are calculated in
7235 read_structure_type, and the correct name is saved in
7236 the type. */
7237
7238 if (cu->language == language_cplus
7239 || cu->language == language_java)
7240 {
7241 struct type *type = SYMBOL_TYPE (sym);
7242
7243 if (TYPE_TAG_NAME (type) != NULL)
7244 {
7245 /* FIXME: carlton/2003-11-10: Should this use
7246 SYMBOL_SET_NAMES instead? (The same problem also
7247 arises further down in this function.) */
7248 /* The type's name is already allocated along with
7249 this objfile, so we don't need to duplicate it
7250 for the symbol. */
7251 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7252 }
7253 }
7254
7255 {
7256 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7257 really ever be static objects: otherwise, if you try
7258 to, say, break of a class's method and you're in a file
7259 which doesn't mention that class, it won't work unless
7260 the check for all static symbols in lookup_symbol_aux
7261 saves you. See the OtherFileClass tests in
7262 gdb.c++/namespace.exp. */
7263
7264 struct pending **list_to_add;
7265
7266 list_to_add = (cu->list_in_scope == &file_symbols
7267 && (cu->language == language_cplus
7268 || cu->language == language_java)
7269 ? &global_symbols : cu->list_in_scope);
7270
7271 add_symbol_to_list (sym, list_to_add);
7272
7273 /* The semantics of C++ state that "struct foo { ... }" also
7274 defines a typedef for "foo". A Java class declaration also
7275 defines a typedef for the class. Synthesize a typedef symbol
7276 so that "ptype foo" works as expected. */
7277 if (cu->language == language_cplus
7278 || cu->language == language_java
7279 || cu->language == language_ada)
7280 {
7281 struct symbol *typedef_sym = (struct symbol *)
7282 obstack_alloc (&objfile->objfile_obstack,
7283 sizeof (struct symbol));
7284 *typedef_sym = *sym;
7285 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7286 /* The symbol's name is already allocated along with
7287 this objfile, so we don't need to duplicate it for
7288 the type. */
7289 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7290 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7291 add_symbol_to_list (typedef_sym, list_to_add);
7292 }
7293 }
7294 break;
7295 case DW_TAG_typedef:
7296 if (processing_has_namespace_info
7297 && processing_current_prefix[0] != '\0')
7298 {
7299 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7300 processing_current_prefix,
7301 name, cu);
7302 }
7303 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7304 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7305 add_symbol_to_list (sym, cu->list_in_scope);
7306 break;
7307 case DW_TAG_base_type:
7308 case DW_TAG_subrange_type:
7309 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7310 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7311 add_symbol_to_list (sym, cu->list_in_scope);
7312 break;
7313 case DW_TAG_enumerator:
7314 if (processing_has_namespace_info
7315 && processing_current_prefix[0] != '\0')
7316 {
7317 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7318 processing_current_prefix,
7319 name, cu);
7320 }
7321 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7322 if (attr)
7323 {
7324 dwarf2_const_value (attr, sym, cu);
7325 }
7326 {
7327 /* NOTE: carlton/2003-11-10: See comment above in the
7328 DW_TAG_class_type, etc. block. */
7329
7330 struct pending **list_to_add;
7331
7332 list_to_add = (cu->list_in_scope == &file_symbols
7333 && (cu->language == language_cplus
7334 || cu->language == language_java)
7335 ? &global_symbols : cu->list_in_scope);
7336
7337 add_symbol_to_list (sym, list_to_add);
7338 }
7339 break;
7340 case DW_TAG_namespace:
7341 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7342 add_symbol_to_list (sym, &global_symbols);
7343 break;
7344 default:
7345 /* Not a tag we recognize. Hopefully we aren't processing
7346 trash data, but since we must specifically ignore things
7347 we don't recognize, there is nothing else we should do at
7348 this point. */
7349 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7350 dwarf_tag_name (die->tag));
7351 break;
7352 }
7353 }
7354 return (sym);
7355 }
7356
7357 /* Copy constant value from an attribute to a symbol. */
7358
7359 static void
7360 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7361 struct dwarf2_cu *cu)
7362 {
7363 struct objfile *objfile = cu->objfile;
7364 struct comp_unit_head *cu_header = &cu->header;
7365 struct dwarf_block *blk;
7366
7367 switch (attr->form)
7368 {
7369 case DW_FORM_addr:
7370 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7371 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7372 cu_header->addr_size,
7373 TYPE_LENGTH (SYMBOL_TYPE
7374 (sym)));
7375 SYMBOL_VALUE_BYTES (sym) =
7376 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7377 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7378 it's body - store_unsigned_integer. */
7379 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7380 DW_ADDR (attr));
7381 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7382 break;
7383 case DW_FORM_block1:
7384 case DW_FORM_block2:
7385 case DW_FORM_block4:
7386 case DW_FORM_block:
7387 blk = DW_BLOCK (attr);
7388 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7389 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7390 blk->size,
7391 TYPE_LENGTH (SYMBOL_TYPE
7392 (sym)));
7393 SYMBOL_VALUE_BYTES (sym) =
7394 obstack_alloc (&objfile->objfile_obstack, blk->size);
7395 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7396 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7397 break;
7398
7399 /* The DW_AT_const_value attributes are supposed to carry the
7400 symbol's value "represented as it would be on the target
7401 architecture." By the time we get here, it's already been
7402 converted to host endianness, so we just need to sign- or
7403 zero-extend it as appropriate. */
7404 case DW_FORM_data1:
7405 dwarf2_const_value_data (attr, sym, 8);
7406 break;
7407 case DW_FORM_data2:
7408 dwarf2_const_value_data (attr, sym, 16);
7409 break;
7410 case DW_FORM_data4:
7411 dwarf2_const_value_data (attr, sym, 32);
7412 break;
7413 case DW_FORM_data8:
7414 dwarf2_const_value_data (attr, sym, 64);
7415 break;
7416
7417 case DW_FORM_sdata:
7418 SYMBOL_VALUE (sym) = DW_SND (attr);
7419 SYMBOL_CLASS (sym) = LOC_CONST;
7420 break;
7421
7422 case DW_FORM_udata:
7423 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7424 SYMBOL_CLASS (sym) = LOC_CONST;
7425 break;
7426
7427 default:
7428 complaint (&symfile_complaints,
7429 _("unsupported const value attribute form: '%s'"),
7430 dwarf_form_name (attr->form));
7431 SYMBOL_VALUE (sym) = 0;
7432 SYMBOL_CLASS (sym) = LOC_CONST;
7433 break;
7434 }
7435 }
7436
7437
7438 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7439 or zero-extend it as appropriate for the symbol's type. */
7440 static void
7441 dwarf2_const_value_data (struct attribute *attr,
7442 struct symbol *sym,
7443 int bits)
7444 {
7445 LONGEST l = DW_UNSND (attr);
7446
7447 if (bits < sizeof (l) * 8)
7448 {
7449 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7450 l &= ((LONGEST) 1 << bits) - 1;
7451 else
7452 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7453 }
7454
7455 SYMBOL_VALUE (sym) = l;
7456 SYMBOL_CLASS (sym) = LOC_CONST;
7457 }
7458
7459
7460 /* Return the type of the die in question using its DW_AT_type attribute. */
7461
7462 static struct type *
7463 die_type (struct die_info *die, struct dwarf2_cu *cu)
7464 {
7465 struct type *type;
7466 struct attribute *type_attr;
7467 struct die_info *type_die;
7468
7469 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7470 if (!type_attr)
7471 {
7472 /* A missing DW_AT_type represents a void type. */
7473 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7474 }
7475 else
7476 type_die = follow_die_ref (die, type_attr, cu);
7477
7478 type = tag_type_to_type (type_die, cu);
7479 if (!type)
7480 {
7481 dump_die (type_die);
7482 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7483 cu->objfile->name);
7484 }
7485 return type;
7486 }
7487
7488 /* Return the containing type of the die in question using its
7489 DW_AT_containing_type attribute. */
7490
7491 static struct type *
7492 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7493 {
7494 struct type *type = NULL;
7495 struct attribute *type_attr;
7496 struct die_info *type_die = NULL;
7497
7498 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7499 if (type_attr)
7500 {
7501 type_die = follow_die_ref (die, type_attr, cu);
7502 type = tag_type_to_type (type_die, cu);
7503 }
7504 if (!type)
7505 {
7506 if (type_die)
7507 dump_die (type_die);
7508 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7509 cu->objfile->name);
7510 }
7511 return type;
7512 }
7513
7514 static struct type *
7515 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7516 {
7517 if (die->type)
7518 {
7519 return die->type;
7520 }
7521 else
7522 {
7523 read_type_die (die, cu);
7524 if (!die->type)
7525 {
7526 dump_die (die);
7527 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7528 cu->objfile->name);
7529 }
7530 return die->type;
7531 }
7532 }
7533
7534 static void
7535 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7536 {
7537 char *prefix = determine_prefix (die, cu);
7538 const char *old_prefix = processing_current_prefix;
7539 struct cleanup *back_to = make_cleanup (xfree, prefix);
7540 processing_current_prefix = prefix;
7541
7542 switch (die->tag)
7543 {
7544 case DW_TAG_class_type:
7545 case DW_TAG_structure_type:
7546 case DW_TAG_union_type:
7547 read_structure_type (die, cu);
7548 break;
7549 case DW_TAG_enumeration_type:
7550 read_enumeration_type (die, cu);
7551 break;
7552 case DW_TAG_subprogram:
7553 case DW_TAG_subroutine_type:
7554 read_subroutine_type (die, cu);
7555 break;
7556 case DW_TAG_array_type:
7557 read_array_type (die, cu);
7558 break;
7559 case DW_TAG_set_type:
7560 read_set_type (die, cu);
7561 break;
7562 case DW_TAG_pointer_type:
7563 read_tag_pointer_type (die, cu);
7564 break;
7565 case DW_TAG_ptr_to_member_type:
7566 read_tag_ptr_to_member_type (die, cu);
7567 break;
7568 case DW_TAG_reference_type:
7569 read_tag_reference_type (die, cu);
7570 break;
7571 case DW_TAG_const_type:
7572 read_tag_const_type (die, cu);
7573 break;
7574 case DW_TAG_volatile_type:
7575 read_tag_volatile_type (die, cu);
7576 break;
7577 case DW_TAG_string_type:
7578 read_tag_string_type (die, cu);
7579 break;
7580 case DW_TAG_typedef:
7581 read_typedef (die, cu);
7582 break;
7583 case DW_TAG_subrange_type:
7584 read_subrange_type (die, cu);
7585 break;
7586 case DW_TAG_base_type:
7587 read_base_type (die, cu);
7588 break;
7589 case DW_TAG_unspecified_type:
7590 read_unspecified_type (die, cu);
7591 break;
7592 default:
7593 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7594 dwarf_tag_name (die->tag));
7595 break;
7596 }
7597
7598 processing_current_prefix = old_prefix;
7599 do_cleanups (back_to);
7600 }
7601
7602 /* Return the name of the namespace/class that DIE is defined within,
7603 or "" if we can't tell. The caller should xfree the result. */
7604
7605 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7606 therein) for an example of how to use this function to deal with
7607 DW_AT_specification. */
7608
7609 static char *
7610 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7611 {
7612 struct die_info *parent;
7613
7614 if (cu->language != language_cplus
7615 && cu->language != language_java)
7616 return NULL;
7617
7618 parent = die->parent;
7619
7620 if (parent == NULL)
7621 {
7622 return xstrdup ("");
7623 }
7624 else
7625 {
7626 switch (parent->tag) {
7627 case DW_TAG_namespace:
7628 {
7629 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7630 before doing this check? */
7631 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7632 {
7633 return xstrdup (TYPE_TAG_NAME (parent->type));
7634 }
7635 else
7636 {
7637 int dummy;
7638 char *parent_prefix = determine_prefix (parent, cu);
7639 char *retval = typename_concat (NULL, parent_prefix,
7640 namespace_name (parent, &dummy,
7641 cu),
7642 cu);
7643 xfree (parent_prefix);
7644 return retval;
7645 }
7646 }
7647 break;
7648 case DW_TAG_class_type:
7649 case DW_TAG_structure_type:
7650 {
7651 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7652 {
7653 return xstrdup (TYPE_TAG_NAME (parent->type));
7654 }
7655 else
7656 {
7657 const char *old_prefix = processing_current_prefix;
7658 char *new_prefix = determine_prefix (parent, cu);
7659 char *retval;
7660
7661 processing_current_prefix = new_prefix;
7662 retval = determine_class_name (parent, cu);
7663 processing_current_prefix = old_prefix;
7664
7665 xfree (new_prefix);
7666 return retval;
7667 }
7668 }
7669 default:
7670 return determine_prefix (parent, cu);
7671 }
7672 }
7673 }
7674
7675 /* Return a newly-allocated string formed by concatenating PREFIX and
7676 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7677 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7678 perform an obconcat, otherwise allocate storage for the result. The CU argument
7679 is used to determine the language and hence, the appropriate separator. */
7680
7681 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7682
7683 static char *
7684 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7685 struct dwarf2_cu *cu)
7686 {
7687 char *sep;
7688
7689 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7690 sep = "";
7691 else if (cu->language == language_java)
7692 sep = ".";
7693 else
7694 sep = "::";
7695
7696 if (obs == NULL)
7697 {
7698 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7699 retval[0] = '\0';
7700
7701 if (prefix)
7702 {
7703 strcpy (retval, prefix);
7704 strcat (retval, sep);
7705 }
7706 if (suffix)
7707 strcat (retval, suffix);
7708
7709 return retval;
7710 }
7711 else
7712 {
7713 /* We have an obstack. */
7714 return obconcat (obs, prefix, sep, suffix);
7715 }
7716 }
7717
7718 static struct type *
7719 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7720 {
7721 struct objfile *objfile = cu->objfile;
7722
7723 /* FIXME - this should not produce a new (struct type *)
7724 every time. It should cache base types. */
7725 struct type *type;
7726 switch (encoding)
7727 {
7728 case DW_ATE_address:
7729 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7730 return type;
7731 case DW_ATE_boolean:
7732 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7733 return type;
7734 case DW_ATE_complex_float:
7735 if (size == 16)
7736 {
7737 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7738 }
7739 else
7740 {
7741 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7742 }
7743 return type;
7744 case DW_ATE_float:
7745 if (size == 8)
7746 {
7747 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7748 }
7749 else
7750 {
7751 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7752 }
7753 return type;
7754 case DW_ATE_signed:
7755 switch (size)
7756 {
7757 case 1:
7758 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7759 break;
7760 case 2:
7761 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7762 break;
7763 default:
7764 case 4:
7765 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7766 break;
7767 }
7768 return type;
7769 case DW_ATE_signed_char:
7770 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7771 return type;
7772 case DW_ATE_unsigned:
7773 switch (size)
7774 {
7775 case 1:
7776 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7777 break;
7778 case 2:
7779 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7780 break;
7781 default:
7782 case 4:
7783 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7784 break;
7785 }
7786 return type;
7787 case DW_ATE_unsigned_char:
7788 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7789 return type;
7790 default:
7791 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7792 return type;
7793 }
7794 }
7795
7796 #if 0
7797 struct die_info *
7798 copy_die (struct die_info *old_die)
7799 {
7800 struct die_info *new_die;
7801 int i, num_attrs;
7802
7803 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7804 memset (new_die, 0, sizeof (struct die_info));
7805
7806 new_die->tag = old_die->tag;
7807 new_die->has_children = old_die->has_children;
7808 new_die->abbrev = old_die->abbrev;
7809 new_die->offset = old_die->offset;
7810 new_die->type = NULL;
7811
7812 num_attrs = old_die->num_attrs;
7813 new_die->num_attrs = num_attrs;
7814 new_die->attrs = (struct attribute *)
7815 xmalloc (num_attrs * sizeof (struct attribute));
7816
7817 for (i = 0; i < old_die->num_attrs; ++i)
7818 {
7819 new_die->attrs[i].name = old_die->attrs[i].name;
7820 new_die->attrs[i].form = old_die->attrs[i].form;
7821 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7822 }
7823
7824 new_die->next = NULL;
7825 return new_die;
7826 }
7827 #endif
7828
7829 /* Return sibling of die, NULL if no sibling. */
7830
7831 static struct die_info *
7832 sibling_die (struct die_info *die)
7833 {
7834 return die->sibling;
7835 }
7836
7837 /* Get linkage name of a die, return NULL if not found. */
7838
7839 static char *
7840 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7841 {
7842 struct attribute *attr;
7843
7844 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7845 if (attr && DW_STRING (attr))
7846 return DW_STRING (attr);
7847 attr = dwarf2_attr (die, DW_AT_name, cu);
7848 if (attr && DW_STRING (attr))
7849 return DW_STRING (attr);
7850 return NULL;
7851 }
7852
7853 /* Get name of a die, return NULL if not found. */
7854
7855 static char *
7856 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7857 {
7858 struct attribute *attr;
7859
7860 attr = dwarf2_attr (die, DW_AT_name, cu);
7861 if (attr && DW_STRING (attr))
7862 return DW_STRING (attr);
7863 return NULL;
7864 }
7865
7866 /* Return the die that this die in an extension of, or NULL if there
7867 is none. */
7868
7869 static struct die_info *
7870 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7871 {
7872 struct attribute *attr;
7873
7874 attr = dwarf2_attr (die, DW_AT_extension, cu);
7875 if (attr == NULL)
7876 return NULL;
7877
7878 return follow_die_ref (die, attr, cu);
7879 }
7880
7881 /* Convert a DIE tag into its string name. */
7882
7883 static char *
7884 dwarf_tag_name (unsigned tag)
7885 {
7886 switch (tag)
7887 {
7888 case DW_TAG_padding:
7889 return "DW_TAG_padding";
7890 case DW_TAG_array_type:
7891 return "DW_TAG_array_type";
7892 case DW_TAG_class_type:
7893 return "DW_TAG_class_type";
7894 case DW_TAG_entry_point:
7895 return "DW_TAG_entry_point";
7896 case DW_TAG_enumeration_type:
7897 return "DW_TAG_enumeration_type";
7898 case DW_TAG_formal_parameter:
7899 return "DW_TAG_formal_parameter";
7900 case DW_TAG_imported_declaration:
7901 return "DW_TAG_imported_declaration";
7902 case DW_TAG_label:
7903 return "DW_TAG_label";
7904 case DW_TAG_lexical_block:
7905 return "DW_TAG_lexical_block";
7906 case DW_TAG_member:
7907 return "DW_TAG_member";
7908 case DW_TAG_pointer_type:
7909 return "DW_TAG_pointer_type";
7910 case DW_TAG_reference_type:
7911 return "DW_TAG_reference_type";
7912 case DW_TAG_compile_unit:
7913 return "DW_TAG_compile_unit";
7914 case DW_TAG_string_type:
7915 return "DW_TAG_string_type";
7916 case DW_TAG_structure_type:
7917 return "DW_TAG_structure_type";
7918 case DW_TAG_subroutine_type:
7919 return "DW_TAG_subroutine_type";
7920 case DW_TAG_typedef:
7921 return "DW_TAG_typedef";
7922 case DW_TAG_union_type:
7923 return "DW_TAG_union_type";
7924 case DW_TAG_unspecified_parameters:
7925 return "DW_TAG_unspecified_parameters";
7926 case DW_TAG_variant:
7927 return "DW_TAG_variant";
7928 case DW_TAG_common_block:
7929 return "DW_TAG_common_block";
7930 case DW_TAG_common_inclusion:
7931 return "DW_TAG_common_inclusion";
7932 case DW_TAG_inheritance:
7933 return "DW_TAG_inheritance";
7934 case DW_TAG_inlined_subroutine:
7935 return "DW_TAG_inlined_subroutine";
7936 case DW_TAG_module:
7937 return "DW_TAG_module";
7938 case DW_TAG_ptr_to_member_type:
7939 return "DW_TAG_ptr_to_member_type";
7940 case DW_TAG_set_type:
7941 return "DW_TAG_set_type";
7942 case DW_TAG_subrange_type:
7943 return "DW_TAG_subrange_type";
7944 case DW_TAG_with_stmt:
7945 return "DW_TAG_with_stmt";
7946 case DW_TAG_access_declaration:
7947 return "DW_TAG_access_declaration";
7948 case DW_TAG_base_type:
7949 return "DW_TAG_base_type";
7950 case DW_TAG_catch_block:
7951 return "DW_TAG_catch_block";
7952 case DW_TAG_const_type:
7953 return "DW_TAG_const_type";
7954 case DW_TAG_constant:
7955 return "DW_TAG_constant";
7956 case DW_TAG_enumerator:
7957 return "DW_TAG_enumerator";
7958 case DW_TAG_file_type:
7959 return "DW_TAG_file_type";
7960 case DW_TAG_friend:
7961 return "DW_TAG_friend";
7962 case DW_TAG_namelist:
7963 return "DW_TAG_namelist";
7964 case DW_TAG_namelist_item:
7965 return "DW_TAG_namelist_item";
7966 case DW_TAG_packed_type:
7967 return "DW_TAG_packed_type";
7968 case DW_TAG_subprogram:
7969 return "DW_TAG_subprogram";
7970 case DW_TAG_template_type_param:
7971 return "DW_TAG_template_type_param";
7972 case DW_TAG_template_value_param:
7973 return "DW_TAG_template_value_param";
7974 case DW_TAG_thrown_type:
7975 return "DW_TAG_thrown_type";
7976 case DW_TAG_try_block:
7977 return "DW_TAG_try_block";
7978 case DW_TAG_variant_part:
7979 return "DW_TAG_variant_part";
7980 case DW_TAG_variable:
7981 return "DW_TAG_variable";
7982 case DW_TAG_volatile_type:
7983 return "DW_TAG_volatile_type";
7984 case DW_TAG_dwarf_procedure:
7985 return "DW_TAG_dwarf_procedure";
7986 case DW_TAG_restrict_type:
7987 return "DW_TAG_restrict_type";
7988 case DW_TAG_interface_type:
7989 return "DW_TAG_interface_type";
7990 case DW_TAG_namespace:
7991 return "DW_TAG_namespace";
7992 case DW_TAG_imported_module:
7993 return "DW_TAG_imported_module";
7994 case DW_TAG_unspecified_type:
7995 return "DW_TAG_unspecified_type";
7996 case DW_TAG_partial_unit:
7997 return "DW_TAG_partial_unit";
7998 case DW_TAG_imported_unit:
7999 return "DW_TAG_imported_unit";
8000 case DW_TAG_condition:
8001 return "DW_TAG_condition";
8002 case DW_TAG_shared_type:
8003 return "DW_TAG_shared_type";
8004 case DW_TAG_MIPS_loop:
8005 return "DW_TAG_MIPS_loop";
8006 case DW_TAG_HP_array_descriptor:
8007 return "DW_TAG_HP_array_descriptor";
8008 case DW_TAG_format_label:
8009 return "DW_TAG_format_label";
8010 case DW_TAG_function_template:
8011 return "DW_TAG_function_template";
8012 case DW_TAG_class_template:
8013 return "DW_TAG_class_template";
8014 case DW_TAG_GNU_BINCL:
8015 return "DW_TAG_GNU_BINCL";
8016 case DW_TAG_GNU_EINCL:
8017 return "DW_TAG_GNU_EINCL";
8018 case DW_TAG_upc_shared_type:
8019 return "DW_TAG_upc_shared_type";
8020 case DW_TAG_upc_strict_type:
8021 return "DW_TAG_upc_strict_type";
8022 case DW_TAG_upc_relaxed_type:
8023 return "DW_TAG_upc_relaxed_type";
8024 case DW_TAG_PGI_kanji_type:
8025 return "DW_TAG_PGI_kanji_type";
8026 case DW_TAG_PGI_interface_block:
8027 return "DW_TAG_PGI_interface_block";
8028 default:
8029 return "DW_TAG_<unknown>";
8030 }
8031 }
8032
8033 /* Convert a DWARF attribute code into its string name. */
8034
8035 static char *
8036 dwarf_attr_name (unsigned attr)
8037 {
8038 switch (attr)
8039 {
8040 case DW_AT_sibling:
8041 return "DW_AT_sibling";
8042 case DW_AT_location:
8043 return "DW_AT_location";
8044 case DW_AT_name:
8045 return "DW_AT_name";
8046 case DW_AT_ordering:
8047 return "DW_AT_ordering";
8048 case DW_AT_subscr_data:
8049 return "DW_AT_subscr_data";
8050 case DW_AT_byte_size:
8051 return "DW_AT_byte_size";
8052 case DW_AT_bit_offset:
8053 return "DW_AT_bit_offset";
8054 case DW_AT_bit_size:
8055 return "DW_AT_bit_size";
8056 case DW_AT_element_list:
8057 return "DW_AT_element_list";
8058 case DW_AT_stmt_list:
8059 return "DW_AT_stmt_list";
8060 case DW_AT_low_pc:
8061 return "DW_AT_low_pc";
8062 case DW_AT_high_pc:
8063 return "DW_AT_high_pc";
8064 case DW_AT_language:
8065 return "DW_AT_language";
8066 case DW_AT_member:
8067 return "DW_AT_member";
8068 case DW_AT_discr:
8069 return "DW_AT_discr";
8070 case DW_AT_discr_value:
8071 return "DW_AT_discr_value";
8072 case DW_AT_visibility:
8073 return "DW_AT_visibility";
8074 case DW_AT_import:
8075 return "DW_AT_import";
8076 case DW_AT_string_length:
8077 return "DW_AT_string_length";
8078 case DW_AT_common_reference:
8079 return "DW_AT_common_reference";
8080 case DW_AT_comp_dir:
8081 return "DW_AT_comp_dir";
8082 case DW_AT_const_value:
8083 return "DW_AT_const_value";
8084 case DW_AT_containing_type:
8085 return "DW_AT_containing_type";
8086 case DW_AT_default_value:
8087 return "DW_AT_default_value";
8088 case DW_AT_inline:
8089 return "DW_AT_inline";
8090 case DW_AT_is_optional:
8091 return "DW_AT_is_optional";
8092 case DW_AT_lower_bound:
8093 return "DW_AT_lower_bound";
8094 case DW_AT_producer:
8095 return "DW_AT_producer";
8096 case DW_AT_prototyped:
8097 return "DW_AT_prototyped";
8098 case DW_AT_return_addr:
8099 return "DW_AT_return_addr";
8100 case DW_AT_start_scope:
8101 return "DW_AT_start_scope";
8102 case DW_AT_stride_size:
8103 return "DW_AT_stride_size";
8104 case DW_AT_upper_bound:
8105 return "DW_AT_upper_bound";
8106 case DW_AT_abstract_origin:
8107 return "DW_AT_abstract_origin";
8108 case DW_AT_accessibility:
8109 return "DW_AT_accessibility";
8110 case DW_AT_address_class:
8111 return "DW_AT_address_class";
8112 case DW_AT_artificial:
8113 return "DW_AT_artificial";
8114 case DW_AT_base_types:
8115 return "DW_AT_base_types";
8116 case DW_AT_calling_convention:
8117 return "DW_AT_calling_convention";
8118 case DW_AT_count:
8119 return "DW_AT_count";
8120 case DW_AT_data_member_location:
8121 return "DW_AT_data_member_location";
8122 case DW_AT_decl_column:
8123 return "DW_AT_decl_column";
8124 case DW_AT_decl_file:
8125 return "DW_AT_decl_file";
8126 case DW_AT_decl_line:
8127 return "DW_AT_decl_line";
8128 case DW_AT_declaration:
8129 return "DW_AT_declaration";
8130 case DW_AT_discr_list:
8131 return "DW_AT_discr_list";
8132 case DW_AT_encoding:
8133 return "DW_AT_encoding";
8134 case DW_AT_external:
8135 return "DW_AT_external";
8136 case DW_AT_frame_base:
8137 return "DW_AT_frame_base";
8138 case DW_AT_friend:
8139 return "DW_AT_friend";
8140 case DW_AT_identifier_case:
8141 return "DW_AT_identifier_case";
8142 case DW_AT_macro_info:
8143 return "DW_AT_macro_info";
8144 case DW_AT_namelist_items:
8145 return "DW_AT_namelist_items";
8146 case DW_AT_priority:
8147 return "DW_AT_priority";
8148 case DW_AT_segment:
8149 return "DW_AT_segment";
8150 case DW_AT_specification:
8151 return "DW_AT_specification";
8152 case DW_AT_static_link:
8153 return "DW_AT_static_link";
8154 case DW_AT_type:
8155 return "DW_AT_type";
8156 case DW_AT_use_location:
8157 return "DW_AT_use_location";
8158 case DW_AT_variable_parameter:
8159 return "DW_AT_variable_parameter";
8160 case DW_AT_virtuality:
8161 return "DW_AT_virtuality";
8162 case DW_AT_vtable_elem_location:
8163 return "DW_AT_vtable_elem_location";
8164 /* DWARF 3 values. */
8165 case DW_AT_allocated:
8166 return "DW_AT_allocated";
8167 case DW_AT_associated:
8168 return "DW_AT_associated";
8169 case DW_AT_data_location:
8170 return "DW_AT_data_location";
8171 case DW_AT_stride:
8172 return "DW_AT_stride";
8173 case DW_AT_entry_pc:
8174 return "DW_AT_entry_pc";
8175 case DW_AT_use_UTF8:
8176 return "DW_AT_use_UTF8";
8177 case DW_AT_extension:
8178 return "DW_AT_extension";
8179 case DW_AT_ranges:
8180 return "DW_AT_ranges";
8181 case DW_AT_trampoline:
8182 return "DW_AT_trampoline";
8183 case DW_AT_call_column:
8184 return "DW_AT_call_column";
8185 case DW_AT_call_file:
8186 return "DW_AT_call_file";
8187 case DW_AT_call_line:
8188 return "DW_AT_call_line";
8189 case DW_AT_description:
8190 return "DW_AT_description";
8191 case DW_AT_binary_scale:
8192 return "DW_AT_binary_scale";
8193 case DW_AT_decimal_scale:
8194 return "DW_AT_decimal_scale";
8195 case DW_AT_small:
8196 return "DW_AT_small";
8197 case DW_AT_decimal_sign:
8198 return "DW_AT_decimal_sign";
8199 case DW_AT_digit_count:
8200 return "DW_AT_digit_count";
8201 case DW_AT_picture_string:
8202 return "DW_AT_picture_string";
8203 case DW_AT_mutable:
8204 return "DW_AT_mutable";
8205 case DW_AT_threads_scaled:
8206 return "DW_AT_threads_scaled";
8207 case DW_AT_explicit:
8208 return "DW_AT_explicit";
8209 case DW_AT_object_pointer:
8210 return "DW_AT_object_pointer";
8211 case DW_AT_endianity:
8212 return "DW_AT_endianity";
8213 case DW_AT_elemental:
8214 return "DW_AT_elemental";
8215 case DW_AT_pure:
8216 return "DW_AT_pure";
8217 case DW_AT_recursive:
8218 return "DW_AT_recursive";
8219 #ifdef MIPS
8220 /* SGI/MIPS extensions. */
8221 case DW_AT_MIPS_fde:
8222 return "DW_AT_MIPS_fde";
8223 case DW_AT_MIPS_loop_begin:
8224 return "DW_AT_MIPS_loop_begin";
8225 case DW_AT_MIPS_tail_loop_begin:
8226 return "DW_AT_MIPS_tail_loop_begin";
8227 case DW_AT_MIPS_epilog_begin:
8228 return "DW_AT_MIPS_epilog_begin";
8229 case DW_AT_MIPS_loop_unroll_factor:
8230 return "DW_AT_MIPS_loop_unroll_factor";
8231 case DW_AT_MIPS_software_pipeline_depth:
8232 return "DW_AT_MIPS_software_pipeline_depth";
8233 case DW_AT_MIPS_linkage_name:
8234 return "DW_AT_MIPS_linkage_name";
8235 case DW_AT_MIPS_stride:
8236 return "DW_AT_MIPS_stride";
8237 case DW_AT_MIPS_abstract_name:
8238 return "DW_AT_MIPS_abstract_name";
8239 case DW_AT_MIPS_clone_origin:
8240 return "DW_AT_MIPS_clone_origin";
8241 case DW_AT_MIPS_has_inlines:
8242 return "DW_AT_MIPS_has_inlines";
8243 #endif
8244 /* HP extensions. */
8245 case DW_AT_HP_block_index:
8246 return "DW_AT_HP_block_index";
8247 case DW_AT_HP_unmodifiable:
8248 return "DW_AT_HP_unmodifiable";
8249 case DW_AT_HP_actuals_stmt_list:
8250 return "DW_AT_HP_actuals_stmt_list";
8251 case DW_AT_HP_proc_per_section:
8252 return "DW_AT_HP_proc_per_section";
8253 case DW_AT_HP_raw_data_ptr:
8254 return "DW_AT_HP_raw_data_ptr";
8255 case DW_AT_HP_pass_by_reference:
8256 return "DW_AT_HP_pass_by_reference";
8257 case DW_AT_HP_opt_level:
8258 return "DW_AT_HP_opt_level";
8259 case DW_AT_HP_prof_version_id:
8260 return "DW_AT_HP_prof_version_id";
8261 case DW_AT_HP_opt_flags:
8262 return "DW_AT_HP_opt_flags";
8263 case DW_AT_HP_cold_region_low_pc:
8264 return "DW_AT_HP_cold_region_low_pc";
8265 case DW_AT_HP_cold_region_high_pc:
8266 return "DW_AT_HP_cold_region_high_pc";
8267 case DW_AT_HP_all_variables_modifiable:
8268 return "DW_AT_HP_all_variables_modifiable";
8269 case DW_AT_HP_linkage_name:
8270 return "DW_AT_HP_linkage_name";
8271 case DW_AT_HP_prof_flags:
8272 return "DW_AT_HP_prof_flags";
8273 /* GNU extensions. */
8274 case DW_AT_sf_names:
8275 return "DW_AT_sf_names";
8276 case DW_AT_src_info:
8277 return "DW_AT_src_info";
8278 case DW_AT_mac_info:
8279 return "DW_AT_mac_info";
8280 case DW_AT_src_coords:
8281 return "DW_AT_src_coords";
8282 case DW_AT_body_begin:
8283 return "DW_AT_body_begin";
8284 case DW_AT_body_end:
8285 return "DW_AT_body_end";
8286 case DW_AT_GNU_vector:
8287 return "DW_AT_GNU_vector";
8288 /* VMS extensions. */
8289 case DW_AT_VMS_rtnbeg_pd_address:
8290 return "DW_AT_VMS_rtnbeg_pd_address";
8291 /* UPC extension. */
8292 case DW_AT_upc_threads_scaled:
8293 return "DW_AT_upc_threads_scaled";
8294 /* PGI (STMicroelectronics) extensions. */
8295 case DW_AT_PGI_lbase:
8296 return "DW_AT_PGI_lbase";
8297 case DW_AT_PGI_soffset:
8298 return "DW_AT_PGI_soffset";
8299 case DW_AT_PGI_lstride:
8300 return "DW_AT_PGI_lstride";
8301 default:
8302 return "DW_AT_<unknown>";
8303 }
8304 }
8305
8306 /* Convert a DWARF value form code into its string name. */
8307
8308 static char *
8309 dwarf_form_name (unsigned form)
8310 {
8311 switch (form)
8312 {
8313 case DW_FORM_addr:
8314 return "DW_FORM_addr";
8315 case DW_FORM_block2:
8316 return "DW_FORM_block2";
8317 case DW_FORM_block4:
8318 return "DW_FORM_block4";
8319 case DW_FORM_data2:
8320 return "DW_FORM_data2";
8321 case DW_FORM_data4:
8322 return "DW_FORM_data4";
8323 case DW_FORM_data8:
8324 return "DW_FORM_data8";
8325 case DW_FORM_string:
8326 return "DW_FORM_string";
8327 case DW_FORM_block:
8328 return "DW_FORM_block";
8329 case DW_FORM_block1:
8330 return "DW_FORM_block1";
8331 case DW_FORM_data1:
8332 return "DW_FORM_data1";
8333 case DW_FORM_flag:
8334 return "DW_FORM_flag";
8335 case DW_FORM_sdata:
8336 return "DW_FORM_sdata";
8337 case DW_FORM_strp:
8338 return "DW_FORM_strp";
8339 case DW_FORM_udata:
8340 return "DW_FORM_udata";
8341 case DW_FORM_ref_addr:
8342 return "DW_FORM_ref_addr";
8343 case DW_FORM_ref1:
8344 return "DW_FORM_ref1";
8345 case DW_FORM_ref2:
8346 return "DW_FORM_ref2";
8347 case DW_FORM_ref4:
8348 return "DW_FORM_ref4";
8349 case DW_FORM_ref8:
8350 return "DW_FORM_ref8";
8351 case DW_FORM_ref_udata:
8352 return "DW_FORM_ref_udata";
8353 case DW_FORM_indirect:
8354 return "DW_FORM_indirect";
8355 default:
8356 return "DW_FORM_<unknown>";
8357 }
8358 }
8359
8360 /* Convert a DWARF stack opcode into its string name. */
8361
8362 static char *
8363 dwarf_stack_op_name (unsigned op)
8364 {
8365 switch (op)
8366 {
8367 case DW_OP_addr:
8368 return "DW_OP_addr";
8369 case DW_OP_deref:
8370 return "DW_OP_deref";
8371 case DW_OP_const1u:
8372 return "DW_OP_const1u";
8373 case DW_OP_const1s:
8374 return "DW_OP_const1s";
8375 case DW_OP_const2u:
8376 return "DW_OP_const2u";
8377 case DW_OP_const2s:
8378 return "DW_OP_const2s";
8379 case DW_OP_const4u:
8380 return "DW_OP_const4u";
8381 case DW_OP_const4s:
8382 return "DW_OP_const4s";
8383 case DW_OP_const8u:
8384 return "DW_OP_const8u";
8385 case DW_OP_const8s:
8386 return "DW_OP_const8s";
8387 case DW_OP_constu:
8388 return "DW_OP_constu";
8389 case DW_OP_consts:
8390 return "DW_OP_consts";
8391 case DW_OP_dup:
8392 return "DW_OP_dup";
8393 case DW_OP_drop:
8394 return "DW_OP_drop";
8395 case DW_OP_over:
8396 return "DW_OP_over";
8397 case DW_OP_pick:
8398 return "DW_OP_pick";
8399 case DW_OP_swap:
8400 return "DW_OP_swap";
8401 case DW_OP_rot:
8402 return "DW_OP_rot";
8403 case DW_OP_xderef:
8404 return "DW_OP_xderef";
8405 case DW_OP_abs:
8406 return "DW_OP_abs";
8407 case DW_OP_and:
8408 return "DW_OP_and";
8409 case DW_OP_div:
8410 return "DW_OP_div";
8411 case DW_OP_minus:
8412 return "DW_OP_minus";
8413 case DW_OP_mod:
8414 return "DW_OP_mod";
8415 case DW_OP_mul:
8416 return "DW_OP_mul";
8417 case DW_OP_neg:
8418 return "DW_OP_neg";
8419 case DW_OP_not:
8420 return "DW_OP_not";
8421 case DW_OP_or:
8422 return "DW_OP_or";
8423 case DW_OP_plus:
8424 return "DW_OP_plus";
8425 case DW_OP_plus_uconst:
8426 return "DW_OP_plus_uconst";
8427 case DW_OP_shl:
8428 return "DW_OP_shl";
8429 case DW_OP_shr:
8430 return "DW_OP_shr";
8431 case DW_OP_shra:
8432 return "DW_OP_shra";
8433 case DW_OP_xor:
8434 return "DW_OP_xor";
8435 case DW_OP_bra:
8436 return "DW_OP_bra";
8437 case DW_OP_eq:
8438 return "DW_OP_eq";
8439 case DW_OP_ge:
8440 return "DW_OP_ge";
8441 case DW_OP_gt:
8442 return "DW_OP_gt";
8443 case DW_OP_le:
8444 return "DW_OP_le";
8445 case DW_OP_lt:
8446 return "DW_OP_lt";
8447 case DW_OP_ne:
8448 return "DW_OP_ne";
8449 case DW_OP_skip:
8450 return "DW_OP_skip";
8451 case DW_OP_lit0:
8452 return "DW_OP_lit0";
8453 case DW_OP_lit1:
8454 return "DW_OP_lit1";
8455 case DW_OP_lit2:
8456 return "DW_OP_lit2";
8457 case DW_OP_lit3:
8458 return "DW_OP_lit3";
8459 case DW_OP_lit4:
8460 return "DW_OP_lit4";
8461 case DW_OP_lit5:
8462 return "DW_OP_lit5";
8463 case DW_OP_lit6:
8464 return "DW_OP_lit6";
8465 case DW_OP_lit7:
8466 return "DW_OP_lit7";
8467 case DW_OP_lit8:
8468 return "DW_OP_lit8";
8469 case DW_OP_lit9:
8470 return "DW_OP_lit9";
8471 case DW_OP_lit10:
8472 return "DW_OP_lit10";
8473 case DW_OP_lit11:
8474 return "DW_OP_lit11";
8475 case DW_OP_lit12:
8476 return "DW_OP_lit12";
8477 case DW_OP_lit13:
8478 return "DW_OP_lit13";
8479 case DW_OP_lit14:
8480 return "DW_OP_lit14";
8481 case DW_OP_lit15:
8482 return "DW_OP_lit15";
8483 case DW_OP_lit16:
8484 return "DW_OP_lit16";
8485 case DW_OP_lit17:
8486 return "DW_OP_lit17";
8487 case DW_OP_lit18:
8488 return "DW_OP_lit18";
8489 case DW_OP_lit19:
8490 return "DW_OP_lit19";
8491 case DW_OP_lit20:
8492 return "DW_OP_lit20";
8493 case DW_OP_lit21:
8494 return "DW_OP_lit21";
8495 case DW_OP_lit22:
8496 return "DW_OP_lit22";
8497 case DW_OP_lit23:
8498 return "DW_OP_lit23";
8499 case DW_OP_lit24:
8500 return "DW_OP_lit24";
8501 case DW_OP_lit25:
8502 return "DW_OP_lit25";
8503 case DW_OP_lit26:
8504 return "DW_OP_lit26";
8505 case DW_OP_lit27:
8506 return "DW_OP_lit27";
8507 case DW_OP_lit28:
8508 return "DW_OP_lit28";
8509 case DW_OP_lit29:
8510 return "DW_OP_lit29";
8511 case DW_OP_lit30:
8512 return "DW_OP_lit30";
8513 case DW_OP_lit31:
8514 return "DW_OP_lit31";
8515 case DW_OP_reg0:
8516 return "DW_OP_reg0";
8517 case DW_OP_reg1:
8518 return "DW_OP_reg1";
8519 case DW_OP_reg2:
8520 return "DW_OP_reg2";
8521 case DW_OP_reg3:
8522 return "DW_OP_reg3";
8523 case DW_OP_reg4:
8524 return "DW_OP_reg4";
8525 case DW_OP_reg5:
8526 return "DW_OP_reg5";
8527 case DW_OP_reg6:
8528 return "DW_OP_reg6";
8529 case DW_OP_reg7:
8530 return "DW_OP_reg7";
8531 case DW_OP_reg8:
8532 return "DW_OP_reg8";
8533 case DW_OP_reg9:
8534 return "DW_OP_reg9";
8535 case DW_OP_reg10:
8536 return "DW_OP_reg10";
8537 case DW_OP_reg11:
8538 return "DW_OP_reg11";
8539 case DW_OP_reg12:
8540 return "DW_OP_reg12";
8541 case DW_OP_reg13:
8542 return "DW_OP_reg13";
8543 case DW_OP_reg14:
8544 return "DW_OP_reg14";
8545 case DW_OP_reg15:
8546 return "DW_OP_reg15";
8547 case DW_OP_reg16:
8548 return "DW_OP_reg16";
8549 case DW_OP_reg17:
8550 return "DW_OP_reg17";
8551 case DW_OP_reg18:
8552 return "DW_OP_reg18";
8553 case DW_OP_reg19:
8554 return "DW_OP_reg19";
8555 case DW_OP_reg20:
8556 return "DW_OP_reg20";
8557 case DW_OP_reg21:
8558 return "DW_OP_reg21";
8559 case DW_OP_reg22:
8560 return "DW_OP_reg22";
8561 case DW_OP_reg23:
8562 return "DW_OP_reg23";
8563 case DW_OP_reg24:
8564 return "DW_OP_reg24";
8565 case DW_OP_reg25:
8566 return "DW_OP_reg25";
8567 case DW_OP_reg26:
8568 return "DW_OP_reg26";
8569 case DW_OP_reg27:
8570 return "DW_OP_reg27";
8571 case DW_OP_reg28:
8572 return "DW_OP_reg28";
8573 case DW_OP_reg29:
8574 return "DW_OP_reg29";
8575 case DW_OP_reg30:
8576 return "DW_OP_reg30";
8577 case DW_OP_reg31:
8578 return "DW_OP_reg31";
8579 case DW_OP_breg0:
8580 return "DW_OP_breg0";
8581 case DW_OP_breg1:
8582 return "DW_OP_breg1";
8583 case DW_OP_breg2:
8584 return "DW_OP_breg2";
8585 case DW_OP_breg3:
8586 return "DW_OP_breg3";
8587 case DW_OP_breg4:
8588 return "DW_OP_breg4";
8589 case DW_OP_breg5:
8590 return "DW_OP_breg5";
8591 case DW_OP_breg6:
8592 return "DW_OP_breg6";
8593 case DW_OP_breg7:
8594 return "DW_OP_breg7";
8595 case DW_OP_breg8:
8596 return "DW_OP_breg8";
8597 case DW_OP_breg9:
8598 return "DW_OP_breg9";
8599 case DW_OP_breg10:
8600 return "DW_OP_breg10";
8601 case DW_OP_breg11:
8602 return "DW_OP_breg11";
8603 case DW_OP_breg12:
8604 return "DW_OP_breg12";
8605 case DW_OP_breg13:
8606 return "DW_OP_breg13";
8607 case DW_OP_breg14:
8608 return "DW_OP_breg14";
8609 case DW_OP_breg15:
8610 return "DW_OP_breg15";
8611 case DW_OP_breg16:
8612 return "DW_OP_breg16";
8613 case DW_OP_breg17:
8614 return "DW_OP_breg17";
8615 case DW_OP_breg18:
8616 return "DW_OP_breg18";
8617 case DW_OP_breg19:
8618 return "DW_OP_breg19";
8619 case DW_OP_breg20:
8620 return "DW_OP_breg20";
8621 case DW_OP_breg21:
8622 return "DW_OP_breg21";
8623 case DW_OP_breg22:
8624 return "DW_OP_breg22";
8625 case DW_OP_breg23:
8626 return "DW_OP_breg23";
8627 case DW_OP_breg24:
8628 return "DW_OP_breg24";
8629 case DW_OP_breg25:
8630 return "DW_OP_breg25";
8631 case DW_OP_breg26:
8632 return "DW_OP_breg26";
8633 case DW_OP_breg27:
8634 return "DW_OP_breg27";
8635 case DW_OP_breg28:
8636 return "DW_OP_breg28";
8637 case DW_OP_breg29:
8638 return "DW_OP_breg29";
8639 case DW_OP_breg30:
8640 return "DW_OP_breg30";
8641 case DW_OP_breg31:
8642 return "DW_OP_breg31";
8643 case DW_OP_regx:
8644 return "DW_OP_regx";
8645 case DW_OP_fbreg:
8646 return "DW_OP_fbreg";
8647 case DW_OP_bregx:
8648 return "DW_OP_bregx";
8649 case DW_OP_piece:
8650 return "DW_OP_piece";
8651 case DW_OP_deref_size:
8652 return "DW_OP_deref_size";
8653 case DW_OP_xderef_size:
8654 return "DW_OP_xderef_size";
8655 case DW_OP_nop:
8656 return "DW_OP_nop";
8657 /* DWARF 3 extensions. */
8658 case DW_OP_push_object_address:
8659 return "DW_OP_push_object_address";
8660 case DW_OP_call2:
8661 return "DW_OP_call2";
8662 case DW_OP_call4:
8663 return "DW_OP_call4";
8664 case DW_OP_call_ref:
8665 return "DW_OP_call_ref";
8666 /* GNU extensions. */
8667 case DW_OP_form_tls_address:
8668 return "DW_OP_form_tls_address";
8669 case DW_OP_call_frame_cfa:
8670 return "DW_OP_call_frame_cfa";
8671 case DW_OP_bit_piece:
8672 return "DW_OP_bit_piece";
8673 case DW_OP_GNU_push_tls_address:
8674 return "DW_OP_GNU_push_tls_address";
8675 case DW_OP_GNU_uninit:
8676 return "DW_OP_GNU_uninit";
8677 /* HP extensions. */
8678 case DW_OP_HP_is_value:
8679 return "DW_OP_HP_is_value";
8680 case DW_OP_HP_fltconst4:
8681 return "DW_OP_HP_fltconst4";
8682 case DW_OP_HP_fltconst8:
8683 return "DW_OP_HP_fltconst8";
8684 case DW_OP_HP_mod_range:
8685 return "DW_OP_HP_mod_range";
8686 case DW_OP_HP_unmod_range:
8687 return "DW_OP_HP_unmod_range";
8688 case DW_OP_HP_tls:
8689 return "DW_OP_HP_tls";
8690 default:
8691 return "OP_<unknown>";
8692 }
8693 }
8694
8695 static char *
8696 dwarf_bool_name (unsigned mybool)
8697 {
8698 if (mybool)
8699 return "TRUE";
8700 else
8701 return "FALSE";
8702 }
8703
8704 /* Convert a DWARF type code into its string name. */
8705
8706 static char *
8707 dwarf_type_encoding_name (unsigned enc)
8708 {
8709 switch (enc)
8710 {
8711 case DW_ATE_void:
8712 return "DW_ATE_void";
8713 case DW_ATE_address:
8714 return "DW_ATE_address";
8715 case DW_ATE_boolean:
8716 return "DW_ATE_boolean";
8717 case DW_ATE_complex_float:
8718 return "DW_ATE_complex_float";
8719 case DW_ATE_float:
8720 return "DW_ATE_float";
8721 case DW_ATE_signed:
8722 return "DW_ATE_signed";
8723 case DW_ATE_signed_char:
8724 return "DW_ATE_signed_char";
8725 case DW_ATE_unsigned:
8726 return "DW_ATE_unsigned";
8727 case DW_ATE_unsigned_char:
8728 return "DW_ATE_unsigned_char";
8729 /* DWARF 3. */
8730 case DW_ATE_imaginary_float:
8731 return "DW_ATE_imaginary_float";
8732 case DW_ATE_packed_decimal:
8733 return "DW_ATE_packed_decimal";
8734 case DW_ATE_numeric_string:
8735 return "DW_ATE_numeric_string";
8736 case DW_ATE_edited:
8737 return "DW_ATE_edited";
8738 case DW_ATE_signed_fixed:
8739 return "DW_ATE_signed_fixed";
8740 case DW_ATE_unsigned_fixed:
8741 return "DW_ATE_unsigned_fixed";
8742 case DW_ATE_decimal_float:
8743 return "DW_ATE_decimal_float";
8744 /* HP extensions. */
8745 case DW_ATE_HP_float80:
8746 return "DW_ATE_HP_float80";
8747 case DW_ATE_HP_complex_float80:
8748 return "DW_ATE_HP_complex_float80";
8749 case DW_ATE_HP_float128:
8750 return "DW_ATE_HP_float128";
8751 case DW_ATE_HP_complex_float128:
8752 return "DW_ATE_HP_complex_float128";
8753 case DW_ATE_HP_floathpintel:
8754 return "DW_ATE_HP_floathpintel";
8755 case DW_ATE_HP_imaginary_float80:
8756 return "DW_ATE_HP_imaginary_float80";
8757 case DW_ATE_HP_imaginary_float128:
8758 return "DW_ATE_HP_imaginary_float128";
8759 default:
8760 return "DW_ATE_<unknown>";
8761 }
8762 }
8763
8764 /* Convert a DWARF call frame info operation to its string name. */
8765
8766 #if 0
8767 static char *
8768 dwarf_cfi_name (unsigned cfi_opc)
8769 {
8770 switch (cfi_opc)
8771 {
8772 case DW_CFA_advance_loc:
8773 return "DW_CFA_advance_loc";
8774 case DW_CFA_offset:
8775 return "DW_CFA_offset";
8776 case DW_CFA_restore:
8777 return "DW_CFA_restore";
8778 case DW_CFA_nop:
8779 return "DW_CFA_nop";
8780 case DW_CFA_set_loc:
8781 return "DW_CFA_set_loc";
8782 case DW_CFA_advance_loc1:
8783 return "DW_CFA_advance_loc1";
8784 case DW_CFA_advance_loc2:
8785 return "DW_CFA_advance_loc2";
8786 case DW_CFA_advance_loc4:
8787 return "DW_CFA_advance_loc4";
8788 case DW_CFA_offset_extended:
8789 return "DW_CFA_offset_extended";
8790 case DW_CFA_restore_extended:
8791 return "DW_CFA_restore_extended";
8792 case DW_CFA_undefined:
8793 return "DW_CFA_undefined";
8794 case DW_CFA_same_value:
8795 return "DW_CFA_same_value";
8796 case DW_CFA_register:
8797 return "DW_CFA_register";
8798 case DW_CFA_remember_state:
8799 return "DW_CFA_remember_state";
8800 case DW_CFA_restore_state:
8801 return "DW_CFA_restore_state";
8802 case DW_CFA_def_cfa:
8803 return "DW_CFA_def_cfa";
8804 case DW_CFA_def_cfa_register:
8805 return "DW_CFA_def_cfa_register";
8806 case DW_CFA_def_cfa_offset:
8807 return "DW_CFA_def_cfa_offset";
8808 /* DWARF 3. */
8809 case DW_CFA_def_cfa_expression:
8810 return "DW_CFA_def_cfa_expression";
8811 case DW_CFA_expression:
8812 return "DW_CFA_expression";
8813 case DW_CFA_offset_extended_sf:
8814 return "DW_CFA_offset_extended_sf";
8815 case DW_CFA_def_cfa_sf:
8816 return "DW_CFA_def_cfa_sf";
8817 case DW_CFA_def_cfa_offset_sf:
8818 return "DW_CFA_def_cfa_offset_sf";
8819 case DW_CFA_val_offset:
8820 return "DW_CFA_val_offset";
8821 case DW_CFA_val_offset_sf:
8822 return "DW_CFA_val_offset_sf";
8823 case DW_CFA_val_expression:
8824 return "DW_CFA_val_expression";
8825 /* SGI/MIPS specific. */
8826 case DW_CFA_MIPS_advance_loc8:
8827 return "DW_CFA_MIPS_advance_loc8";
8828 /* GNU extensions. */
8829 case DW_CFA_GNU_window_save:
8830 return "DW_CFA_GNU_window_save";
8831 case DW_CFA_GNU_args_size:
8832 return "DW_CFA_GNU_args_size";
8833 case DW_CFA_GNU_negative_offset_extended:
8834 return "DW_CFA_GNU_negative_offset_extended";
8835 default:
8836 return "DW_CFA_<unknown>";
8837 }
8838 }
8839 #endif
8840
8841 static void
8842 dump_die (struct die_info *die)
8843 {
8844 unsigned int i;
8845
8846 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8847 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8848 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8849 dwarf_bool_name (die->child != NULL));
8850
8851 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8852 for (i = 0; i < die->num_attrs; ++i)
8853 {
8854 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8855 dwarf_attr_name (die->attrs[i].name),
8856 dwarf_form_name (die->attrs[i].form));
8857 switch (die->attrs[i].form)
8858 {
8859 case DW_FORM_ref_addr:
8860 case DW_FORM_addr:
8861 fprintf_unfiltered (gdb_stderr, "address: ");
8862 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8863 break;
8864 case DW_FORM_block2:
8865 case DW_FORM_block4:
8866 case DW_FORM_block:
8867 case DW_FORM_block1:
8868 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8869 break;
8870 case DW_FORM_ref1:
8871 case DW_FORM_ref2:
8872 case DW_FORM_ref4:
8873 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8874 (long) (DW_ADDR (&die->attrs[i])));
8875 break;
8876 case DW_FORM_data1:
8877 case DW_FORM_data2:
8878 case DW_FORM_data4:
8879 case DW_FORM_data8:
8880 case DW_FORM_udata:
8881 case DW_FORM_sdata:
8882 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8883 break;
8884 case DW_FORM_string:
8885 case DW_FORM_strp:
8886 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8887 DW_STRING (&die->attrs[i])
8888 ? DW_STRING (&die->attrs[i]) : "");
8889 break;
8890 case DW_FORM_flag:
8891 if (DW_UNSND (&die->attrs[i]))
8892 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8893 else
8894 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8895 break;
8896 case DW_FORM_indirect:
8897 /* the reader will have reduced the indirect form to
8898 the "base form" so this form should not occur */
8899 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8900 break;
8901 default:
8902 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8903 die->attrs[i].form);
8904 }
8905 fprintf_unfiltered (gdb_stderr, "\n");
8906 }
8907 }
8908
8909 static void
8910 dump_die_list (struct die_info *die)
8911 {
8912 while (die)
8913 {
8914 dump_die (die);
8915 if (die->child != NULL)
8916 dump_die_list (die->child);
8917 if (die->sibling != NULL)
8918 dump_die_list (die->sibling);
8919 }
8920 }
8921
8922 static void
8923 store_in_ref_table (unsigned int offset, struct die_info *die,
8924 struct dwarf2_cu *cu)
8925 {
8926 int h;
8927 struct die_info *old;
8928
8929 h = (offset % REF_HASH_SIZE);
8930 old = cu->die_ref_table[h];
8931 die->next_ref = old;
8932 cu->die_ref_table[h] = die;
8933 }
8934
8935 static unsigned int
8936 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8937 {
8938 unsigned int result = 0;
8939
8940 switch (attr->form)
8941 {
8942 case DW_FORM_ref_addr:
8943 case DW_FORM_ref1:
8944 case DW_FORM_ref2:
8945 case DW_FORM_ref4:
8946 case DW_FORM_ref8:
8947 case DW_FORM_ref_udata:
8948 result = DW_ADDR (attr);
8949 break;
8950 default:
8951 complaint (&symfile_complaints,
8952 _("unsupported die ref attribute form: '%s'"),
8953 dwarf_form_name (attr->form));
8954 }
8955 return result;
8956 }
8957
8958 /* Return the constant value held by the given attribute. Return -1
8959 if the value held by the attribute is not constant. */
8960
8961 static int
8962 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8963 {
8964 if (attr->form == DW_FORM_sdata)
8965 return DW_SND (attr);
8966 else if (attr->form == DW_FORM_udata
8967 || attr->form == DW_FORM_data1
8968 || attr->form == DW_FORM_data2
8969 || attr->form == DW_FORM_data4
8970 || attr->form == DW_FORM_data8)
8971 return DW_UNSND (attr);
8972 else
8973 {
8974 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8975 dwarf_form_name (attr->form));
8976 return default_value;
8977 }
8978 }
8979
8980 static struct die_info *
8981 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8982 struct dwarf2_cu *cu)
8983 {
8984 struct die_info *die;
8985 unsigned int offset;
8986 int h;
8987 struct die_info temp_die;
8988 struct dwarf2_cu *target_cu;
8989
8990 offset = dwarf2_get_ref_die_offset (attr, cu);
8991
8992 if (DW_ADDR (attr) < cu->header.offset
8993 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8994 {
8995 struct dwarf2_per_cu_data *per_cu;
8996 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8997 cu->objfile);
8998 target_cu = per_cu->cu;
8999 }
9000 else
9001 target_cu = cu;
9002
9003 h = (offset % REF_HASH_SIZE);
9004 die = target_cu->die_ref_table[h];
9005 while (die)
9006 {
9007 if (die->offset == offset)
9008 return die;
9009 die = die->next_ref;
9010 }
9011
9012 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9013 "at 0x%lx [in module %s]"),
9014 (long) src_die->offset, (long) offset, cu->objfile->name);
9015
9016 return NULL;
9017 }
9018
9019 static struct type *
9020 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
9021 struct dwarf2_cu *cu)
9022 {
9023 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
9024 {
9025 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
9026 typeid, objfile->name);
9027 }
9028
9029 /* Look for this particular type in the fundamental type vector. If
9030 one is not found, create and install one appropriate for the
9031 current language and the current target machine. */
9032
9033 if (cu->ftypes[typeid] == NULL)
9034 {
9035 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
9036 }
9037
9038 return (cu->ftypes[typeid]);
9039 }
9040
9041 /* Decode simple location descriptions.
9042 Given a pointer to a dwarf block that defines a location, compute
9043 the location and return the value.
9044
9045 NOTE drow/2003-11-18: This function is called in two situations
9046 now: for the address of static or global variables (partial symbols
9047 only) and for offsets into structures which are expected to be
9048 (more or less) constant. The partial symbol case should go away,
9049 and only the constant case should remain. That will let this
9050 function complain more accurately. A few special modes are allowed
9051 without complaint for global variables (for instance, global
9052 register values and thread-local values).
9053
9054 A location description containing no operations indicates that the
9055 object is optimized out. The return value is 0 for that case.
9056 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9057 callers will only want a very basic result and this can become a
9058 complaint.
9059
9060 Note that stack[0] is unused except as a default error return.
9061 Note that stack overflow is not yet handled. */
9062
9063 static CORE_ADDR
9064 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
9065 {
9066 struct objfile *objfile = cu->objfile;
9067 struct comp_unit_head *cu_header = &cu->header;
9068 int i;
9069 int size = blk->size;
9070 gdb_byte *data = blk->data;
9071 CORE_ADDR stack[64];
9072 int stacki;
9073 unsigned int bytes_read, unsnd;
9074 gdb_byte op;
9075
9076 i = 0;
9077 stacki = 0;
9078 stack[stacki] = 0;
9079
9080 while (i < size)
9081 {
9082 op = data[i++];
9083 switch (op)
9084 {
9085 case DW_OP_lit0:
9086 case DW_OP_lit1:
9087 case DW_OP_lit2:
9088 case DW_OP_lit3:
9089 case DW_OP_lit4:
9090 case DW_OP_lit5:
9091 case DW_OP_lit6:
9092 case DW_OP_lit7:
9093 case DW_OP_lit8:
9094 case DW_OP_lit9:
9095 case DW_OP_lit10:
9096 case DW_OP_lit11:
9097 case DW_OP_lit12:
9098 case DW_OP_lit13:
9099 case DW_OP_lit14:
9100 case DW_OP_lit15:
9101 case DW_OP_lit16:
9102 case DW_OP_lit17:
9103 case DW_OP_lit18:
9104 case DW_OP_lit19:
9105 case DW_OP_lit20:
9106 case DW_OP_lit21:
9107 case DW_OP_lit22:
9108 case DW_OP_lit23:
9109 case DW_OP_lit24:
9110 case DW_OP_lit25:
9111 case DW_OP_lit26:
9112 case DW_OP_lit27:
9113 case DW_OP_lit28:
9114 case DW_OP_lit29:
9115 case DW_OP_lit30:
9116 case DW_OP_lit31:
9117 stack[++stacki] = op - DW_OP_lit0;
9118 break;
9119
9120 case DW_OP_reg0:
9121 case DW_OP_reg1:
9122 case DW_OP_reg2:
9123 case DW_OP_reg3:
9124 case DW_OP_reg4:
9125 case DW_OP_reg5:
9126 case DW_OP_reg6:
9127 case DW_OP_reg7:
9128 case DW_OP_reg8:
9129 case DW_OP_reg9:
9130 case DW_OP_reg10:
9131 case DW_OP_reg11:
9132 case DW_OP_reg12:
9133 case DW_OP_reg13:
9134 case DW_OP_reg14:
9135 case DW_OP_reg15:
9136 case DW_OP_reg16:
9137 case DW_OP_reg17:
9138 case DW_OP_reg18:
9139 case DW_OP_reg19:
9140 case DW_OP_reg20:
9141 case DW_OP_reg21:
9142 case DW_OP_reg22:
9143 case DW_OP_reg23:
9144 case DW_OP_reg24:
9145 case DW_OP_reg25:
9146 case DW_OP_reg26:
9147 case DW_OP_reg27:
9148 case DW_OP_reg28:
9149 case DW_OP_reg29:
9150 case DW_OP_reg30:
9151 case DW_OP_reg31:
9152 stack[++stacki] = op - DW_OP_reg0;
9153 if (i < size)
9154 dwarf2_complex_location_expr_complaint ();
9155 break;
9156
9157 case DW_OP_regx:
9158 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9159 i += bytes_read;
9160 stack[++stacki] = unsnd;
9161 if (i < size)
9162 dwarf2_complex_location_expr_complaint ();
9163 break;
9164
9165 case DW_OP_addr:
9166 stack[++stacki] = read_address (objfile->obfd, &data[i],
9167 cu, &bytes_read);
9168 i += bytes_read;
9169 break;
9170
9171 case DW_OP_const1u:
9172 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9173 i += 1;
9174 break;
9175
9176 case DW_OP_const1s:
9177 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9178 i += 1;
9179 break;
9180
9181 case DW_OP_const2u:
9182 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9183 i += 2;
9184 break;
9185
9186 case DW_OP_const2s:
9187 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9188 i += 2;
9189 break;
9190
9191 case DW_OP_const4u:
9192 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9193 i += 4;
9194 break;
9195
9196 case DW_OP_const4s:
9197 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9198 i += 4;
9199 break;
9200
9201 case DW_OP_constu:
9202 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
9203 &bytes_read);
9204 i += bytes_read;
9205 break;
9206
9207 case DW_OP_consts:
9208 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9209 i += bytes_read;
9210 break;
9211
9212 case DW_OP_dup:
9213 stack[stacki + 1] = stack[stacki];
9214 stacki++;
9215 break;
9216
9217 case DW_OP_plus:
9218 stack[stacki - 1] += stack[stacki];
9219 stacki--;
9220 break;
9221
9222 case DW_OP_plus_uconst:
9223 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9224 i += bytes_read;
9225 break;
9226
9227 case DW_OP_minus:
9228 stack[stacki - 1] -= stack[stacki];
9229 stacki--;
9230 break;
9231
9232 case DW_OP_deref:
9233 /* If we're not the last op, then we definitely can't encode
9234 this using GDB's address_class enum. This is valid for partial
9235 global symbols, although the variable's address will be bogus
9236 in the psymtab. */
9237 if (i < size)
9238 dwarf2_complex_location_expr_complaint ();
9239 break;
9240
9241 case DW_OP_GNU_push_tls_address:
9242 /* The top of the stack has the offset from the beginning
9243 of the thread control block at which the variable is located. */
9244 /* Nothing should follow this operator, so the top of stack would
9245 be returned. */
9246 /* This is valid for partial global symbols, but the variable's
9247 address will be bogus in the psymtab. */
9248 if (i < size)
9249 dwarf2_complex_location_expr_complaint ();
9250 break;
9251
9252 case DW_OP_GNU_uninit:
9253 break;
9254
9255 default:
9256 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9257 dwarf_stack_op_name (op));
9258 return (stack[stacki]);
9259 }
9260 }
9261 return (stack[stacki]);
9262 }
9263
9264 /* memory allocation interface */
9265
9266 static struct dwarf_block *
9267 dwarf_alloc_block (struct dwarf2_cu *cu)
9268 {
9269 struct dwarf_block *blk;
9270
9271 blk = (struct dwarf_block *)
9272 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
9273 return (blk);
9274 }
9275
9276 static struct abbrev_info *
9277 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
9278 {
9279 struct abbrev_info *abbrev;
9280
9281 abbrev = (struct abbrev_info *)
9282 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
9283 memset (abbrev, 0, sizeof (struct abbrev_info));
9284 return (abbrev);
9285 }
9286
9287 static struct die_info *
9288 dwarf_alloc_die (void)
9289 {
9290 struct die_info *die;
9291
9292 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9293 memset (die, 0, sizeof (struct die_info));
9294 return (die);
9295 }
9296
9297 \f
9298 /* Macro support. */
9299
9300
9301 /* Return the full name of file number I in *LH's file name table.
9302 Use COMP_DIR as the name of the current directory of the
9303 compilation. The result is allocated using xmalloc; the caller is
9304 responsible for freeing it. */
9305 static char *
9306 file_full_name (int file, struct line_header *lh, const char *comp_dir)
9307 {
9308 /* Is the file number a valid index into the line header's file name
9309 table? Remember that file numbers start with one, not zero. */
9310 if (1 <= file && file <= lh->num_file_names)
9311 {
9312 struct file_entry *fe = &lh->file_names[file - 1];
9313
9314 if (IS_ABSOLUTE_PATH (fe->name))
9315 return xstrdup (fe->name);
9316 else
9317 {
9318 const char *dir;
9319 int dir_len;
9320 char *full_name;
9321
9322 if (fe->dir_index)
9323 dir = lh->include_dirs[fe->dir_index - 1];
9324 else
9325 dir = comp_dir;
9326
9327 if (dir)
9328 {
9329 dir_len = strlen (dir);
9330 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9331 strcpy (full_name, dir);
9332 full_name[dir_len] = '/';
9333 strcpy (full_name + dir_len + 1, fe->name);
9334 return full_name;
9335 }
9336 else
9337 return xstrdup (fe->name);
9338 }
9339 }
9340 else
9341 {
9342 /* The compiler produced a bogus file number. We can at least
9343 record the macro definitions made in the file, even if we
9344 won't be able to find the file by name. */
9345 char fake_name[80];
9346 sprintf (fake_name, "<bad macro file number %d>", file);
9347
9348 complaint (&symfile_complaints,
9349 _("bad file number in macro information (%d)"),
9350 file);
9351
9352 return xstrdup (fake_name);
9353 }
9354 }
9355
9356
9357 static struct macro_source_file *
9358 macro_start_file (int file, int line,
9359 struct macro_source_file *current_file,
9360 const char *comp_dir,
9361 struct line_header *lh, struct objfile *objfile)
9362 {
9363 /* The full name of this source file. */
9364 char *full_name = file_full_name (file, lh, comp_dir);
9365
9366 /* We don't create a macro table for this compilation unit
9367 at all until we actually get a filename. */
9368 if (! pending_macros)
9369 pending_macros = new_macro_table (&objfile->objfile_obstack,
9370 objfile->macro_cache);
9371
9372 if (! current_file)
9373 /* If we have no current file, then this must be the start_file
9374 directive for the compilation unit's main source file. */
9375 current_file = macro_set_main (pending_macros, full_name);
9376 else
9377 current_file = macro_include (current_file, line, full_name);
9378
9379 xfree (full_name);
9380
9381 return current_file;
9382 }
9383
9384
9385 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9386 followed by a null byte. */
9387 static char *
9388 copy_string (const char *buf, int len)
9389 {
9390 char *s = xmalloc (len + 1);
9391 memcpy (s, buf, len);
9392 s[len] = '\0';
9393
9394 return s;
9395 }
9396
9397
9398 static const char *
9399 consume_improper_spaces (const char *p, const char *body)
9400 {
9401 if (*p == ' ')
9402 {
9403 complaint (&symfile_complaints,
9404 _("macro definition contains spaces in formal argument list:\n`%s'"),
9405 body);
9406
9407 while (*p == ' ')
9408 p++;
9409 }
9410
9411 return p;
9412 }
9413
9414
9415 static void
9416 parse_macro_definition (struct macro_source_file *file, int line,
9417 const char *body)
9418 {
9419 const char *p;
9420
9421 /* The body string takes one of two forms. For object-like macro
9422 definitions, it should be:
9423
9424 <macro name> " " <definition>
9425
9426 For function-like macro definitions, it should be:
9427
9428 <macro name> "() " <definition>
9429 or
9430 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9431
9432 Spaces may appear only where explicitly indicated, and in the
9433 <definition>.
9434
9435 The Dwarf 2 spec says that an object-like macro's name is always
9436 followed by a space, but versions of GCC around March 2002 omit
9437 the space when the macro's definition is the empty string.
9438
9439 The Dwarf 2 spec says that there should be no spaces between the
9440 formal arguments in a function-like macro's formal argument list,
9441 but versions of GCC around March 2002 include spaces after the
9442 commas. */
9443
9444
9445 /* Find the extent of the macro name. The macro name is terminated
9446 by either a space or null character (for an object-like macro) or
9447 an opening paren (for a function-like macro). */
9448 for (p = body; *p; p++)
9449 if (*p == ' ' || *p == '(')
9450 break;
9451
9452 if (*p == ' ' || *p == '\0')
9453 {
9454 /* It's an object-like macro. */
9455 int name_len = p - body;
9456 char *name = copy_string (body, name_len);
9457 const char *replacement;
9458
9459 if (*p == ' ')
9460 replacement = body + name_len + 1;
9461 else
9462 {
9463 dwarf2_macro_malformed_definition_complaint (body);
9464 replacement = body + name_len;
9465 }
9466
9467 macro_define_object (file, line, name, replacement);
9468
9469 xfree (name);
9470 }
9471 else if (*p == '(')
9472 {
9473 /* It's a function-like macro. */
9474 char *name = copy_string (body, p - body);
9475 int argc = 0;
9476 int argv_size = 1;
9477 char **argv = xmalloc (argv_size * sizeof (*argv));
9478
9479 p++;
9480
9481 p = consume_improper_spaces (p, body);
9482
9483 /* Parse the formal argument list. */
9484 while (*p && *p != ')')
9485 {
9486 /* Find the extent of the current argument name. */
9487 const char *arg_start = p;
9488
9489 while (*p && *p != ',' && *p != ')' && *p != ' ')
9490 p++;
9491
9492 if (! *p || p == arg_start)
9493 dwarf2_macro_malformed_definition_complaint (body);
9494 else
9495 {
9496 /* Make sure argv has room for the new argument. */
9497 if (argc >= argv_size)
9498 {
9499 argv_size *= 2;
9500 argv = xrealloc (argv, argv_size * sizeof (*argv));
9501 }
9502
9503 argv[argc++] = copy_string (arg_start, p - arg_start);
9504 }
9505
9506 p = consume_improper_spaces (p, body);
9507
9508 /* Consume the comma, if present. */
9509 if (*p == ',')
9510 {
9511 p++;
9512
9513 p = consume_improper_spaces (p, body);
9514 }
9515 }
9516
9517 if (*p == ')')
9518 {
9519 p++;
9520
9521 if (*p == ' ')
9522 /* Perfectly formed definition, no complaints. */
9523 macro_define_function (file, line, name,
9524 argc, (const char **) argv,
9525 p + 1);
9526 else if (*p == '\0')
9527 {
9528 /* Complain, but do define it. */
9529 dwarf2_macro_malformed_definition_complaint (body);
9530 macro_define_function (file, line, name,
9531 argc, (const char **) argv,
9532 p);
9533 }
9534 else
9535 /* Just complain. */
9536 dwarf2_macro_malformed_definition_complaint (body);
9537 }
9538 else
9539 /* Just complain. */
9540 dwarf2_macro_malformed_definition_complaint (body);
9541
9542 xfree (name);
9543 {
9544 int i;
9545
9546 for (i = 0; i < argc; i++)
9547 xfree (argv[i]);
9548 }
9549 xfree (argv);
9550 }
9551 else
9552 dwarf2_macro_malformed_definition_complaint (body);
9553 }
9554
9555
9556 static void
9557 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9558 char *comp_dir, bfd *abfd,
9559 struct dwarf2_cu *cu)
9560 {
9561 gdb_byte *mac_ptr, *mac_end;
9562 struct macro_source_file *current_file = 0;
9563
9564 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9565 {
9566 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9567 return;
9568 }
9569
9570 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9571 mac_end = dwarf2_per_objfile->macinfo_buffer
9572 + dwarf2_per_objfile->macinfo_size;
9573
9574 for (;;)
9575 {
9576 enum dwarf_macinfo_record_type macinfo_type;
9577
9578 /* Do we at least have room for a macinfo type byte? */
9579 if (mac_ptr >= mac_end)
9580 {
9581 dwarf2_macros_too_long_complaint ();
9582 return;
9583 }
9584
9585 macinfo_type = read_1_byte (abfd, mac_ptr);
9586 mac_ptr++;
9587
9588 switch (macinfo_type)
9589 {
9590 /* A zero macinfo type indicates the end of the macro
9591 information. */
9592 case 0:
9593 return;
9594
9595 case DW_MACINFO_define:
9596 case DW_MACINFO_undef:
9597 {
9598 unsigned int bytes_read;
9599 int line;
9600 char *body;
9601
9602 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9603 mac_ptr += bytes_read;
9604 body = read_string (abfd, mac_ptr, &bytes_read);
9605 mac_ptr += bytes_read;
9606
9607 if (! current_file)
9608 complaint (&symfile_complaints,
9609 _("debug info gives macro %s outside of any file: %s"),
9610 macinfo_type ==
9611 DW_MACINFO_define ? "definition" : macinfo_type ==
9612 DW_MACINFO_undef ? "undefinition" :
9613 "something-or-other", body);
9614 else
9615 {
9616 if (macinfo_type == DW_MACINFO_define)
9617 parse_macro_definition (current_file, line, body);
9618 else if (macinfo_type == DW_MACINFO_undef)
9619 macro_undef (current_file, line, body);
9620 }
9621 }
9622 break;
9623
9624 case DW_MACINFO_start_file:
9625 {
9626 unsigned int bytes_read;
9627 int line, file;
9628
9629 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9630 mac_ptr += bytes_read;
9631 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9632 mac_ptr += bytes_read;
9633
9634 current_file = macro_start_file (file, line,
9635 current_file, comp_dir,
9636 lh, cu->objfile);
9637 }
9638 break;
9639
9640 case DW_MACINFO_end_file:
9641 if (! current_file)
9642 complaint (&symfile_complaints,
9643 _("macro debug info has an unmatched `close_file' directive"));
9644 else
9645 {
9646 current_file = current_file->included_by;
9647 if (! current_file)
9648 {
9649 enum dwarf_macinfo_record_type next_type;
9650
9651 /* GCC circa March 2002 doesn't produce the zero
9652 type byte marking the end of the compilation
9653 unit. Complain if it's not there, but exit no
9654 matter what. */
9655
9656 /* Do we at least have room for a macinfo type byte? */
9657 if (mac_ptr >= mac_end)
9658 {
9659 dwarf2_macros_too_long_complaint ();
9660 return;
9661 }
9662
9663 /* We don't increment mac_ptr here, so this is just
9664 a look-ahead. */
9665 next_type = read_1_byte (abfd, mac_ptr);
9666 if (next_type != 0)
9667 complaint (&symfile_complaints,
9668 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9669
9670 return;
9671 }
9672 }
9673 break;
9674
9675 case DW_MACINFO_vendor_ext:
9676 {
9677 unsigned int bytes_read;
9678 int constant;
9679 char *string;
9680
9681 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9682 mac_ptr += bytes_read;
9683 string = read_string (abfd, mac_ptr, &bytes_read);
9684 mac_ptr += bytes_read;
9685
9686 /* We don't recognize any vendor extensions. */
9687 }
9688 break;
9689 }
9690 }
9691 }
9692
9693 /* Check if the attribute's form is a DW_FORM_block*
9694 if so return true else false. */
9695 static int
9696 attr_form_is_block (struct attribute *attr)
9697 {
9698 return (attr == NULL ? 0 :
9699 attr->form == DW_FORM_block1
9700 || attr->form == DW_FORM_block2
9701 || attr->form == DW_FORM_block4
9702 || attr->form == DW_FORM_block);
9703 }
9704
9705 static void
9706 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9707 struct dwarf2_cu *cu)
9708 {
9709 struct objfile *objfile = cu->objfile;
9710
9711 /* Save the master objfile, so that we can report and look up the
9712 correct file containing this variable. */
9713 if (objfile->separate_debug_objfile_backlink)
9714 objfile = objfile->separate_debug_objfile_backlink;
9715
9716 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9717 /* ".debug_loc" may not exist at all, or the offset may be outside
9718 the section. If so, fall through to the complaint in the
9719 other branch. */
9720 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9721 {
9722 struct dwarf2_loclist_baton *baton;
9723
9724 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9725 sizeof (struct dwarf2_loclist_baton));
9726 baton->objfile = objfile;
9727
9728 /* We don't know how long the location list is, but make sure we
9729 don't run off the edge of the section. */
9730 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9731 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9732 baton->base_address = cu->header.base_address;
9733 if (cu->header.base_known == 0)
9734 complaint (&symfile_complaints,
9735 _("Location list used without specifying the CU base address."));
9736
9737 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9738 SYMBOL_LOCATION_BATON (sym) = baton;
9739 }
9740 else
9741 {
9742 struct dwarf2_locexpr_baton *baton;
9743
9744 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9745 sizeof (struct dwarf2_locexpr_baton));
9746 baton->objfile = objfile;
9747
9748 if (attr_form_is_block (attr))
9749 {
9750 /* Note that we're just copying the block's data pointer
9751 here, not the actual data. We're still pointing into the
9752 info_buffer for SYM's objfile; right now we never release
9753 that buffer, but when we do clean up properly this may
9754 need to change. */
9755 baton->size = DW_BLOCK (attr)->size;
9756 baton->data = DW_BLOCK (attr)->data;
9757 }
9758 else
9759 {
9760 dwarf2_invalid_attrib_class_complaint ("location description",
9761 SYMBOL_NATURAL_NAME (sym));
9762 baton->size = 0;
9763 baton->data = NULL;
9764 }
9765
9766 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9767 SYMBOL_LOCATION_BATON (sym) = baton;
9768 }
9769 }
9770
9771 /* Locate the compilation unit from CU's objfile which contains the
9772 DIE at OFFSET. Raises an error on failure. */
9773
9774 static struct dwarf2_per_cu_data *
9775 dwarf2_find_containing_comp_unit (unsigned long offset,
9776 struct objfile *objfile)
9777 {
9778 struct dwarf2_per_cu_data *this_cu;
9779 int low, high;
9780
9781 low = 0;
9782 high = dwarf2_per_objfile->n_comp_units - 1;
9783 while (high > low)
9784 {
9785 int mid = low + (high - low) / 2;
9786 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9787 high = mid;
9788 else
9789 low = mid + 1;
9790 }
9791 gdb_assert (low == high);
9792 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9793 {
9794 if (low == 0)
9795 error (_("Dwarf Error: could not find partial DIE containing "
9796 "offset 0x%lx [in module %s]"),
9797 (long) offset, bfd_get_filename (objfile->obfd));
9798
9799 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9800 return dwarf2_per_objfile->all_comp_units[low-1];
9801 }
9802 else
9803 {
9804 this_cu = dwarf2_per_objfile->all_comp_units[low];
9805 if (low == dwarf2_per_objfile->n_comp_units - 1
9806 && offset >= this_cu->offset + this_cu->length)
9807 error (_("invalid dwarf2 offset %ld"), offset);
9808 gdb_assert (offset < this_cu->offset + this_cu->length);
9809 return this_cu;
9810 }
9811 }
9812
9813 /* Locate the compilation unit from OBJFILE which is located at exactly
9814 OFFSET. Raises an error on failure. */
9815
9816 static struct dwarf2_per_cu_data *
9817 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9818 {
9819 struct dwarf2_per_cu_data *this_cu;
9820 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9821 if (this_cu->offset != offset)
9822 error (_("no compilation unit with offset %ld."), offset);
9823 return this_cu;
9824 }
9825
9826 /* Release one cached compilation unit, CU. We unlink it from the tree
9827 of compilation units, but we don't remove it from the read_in_chain;
9828 the caller is responsible for that. */
9829
9830 static void
9831 free_one_comp_unit (void *data)
9832 {
9833 struct dwarf2_cu *cu = data;
9834
9835 if (cu->per_cu != NULL)
9836 cu->per_cu->cu = NULL;
9837 cu->per_cu = NULL;
9838
9839 obstack_free (&cu->comp_unit_obstack, NULL);
9840 if (cu->dies)
9841 free_die_list (cu->dies);
9842
9843 xfree (cu);
9844 }
9845
9846 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9847 when we're finished with it. We can't free the pointer itself, but be
9848 sure to unlink it from the cache. Also release any associated storage
9849 and perform cache maintenance.
9850
9851 Only used during partial symbol parsing. */
9852
9853 static void
9854 free_stack_comp_unit (void *data)
9855 {
9856 struct dwarf2_cu *cu = data;
9857
9858 obstack_free (&cu->comp_unit_obstack, NULL);
9859 cu->partial_dies = NULL;
9860
9861 if (cu->per_cu != NULL)
9862 {
9863 /* This compilation unit is on the stack in our caller, so we
9864 should not xfree it. Just unlink it. */
9865 cu->per_cu->cu = NULL;
9866 cu->per_cu = NULL;
9867
9868 /* If we had a per-cu pointer, then we may have other compilation
9869 units loaded, so age them now. */
9870 age_cached_comp_units ();
9871 }
9872 }
9873
9874 /* Free all cached compilation units. */
9875
9876 static void
9877 free_cached_comp_units (void *data)
9878 {
9879 struct dwarf2_per_cu_data *per_cu, **last_chain;
9880
9881 per_cu = dwarf2_per_objfile->read_in_chain;
9882 last_chain = &dwarf2_per_objfile->read_in_chain;
9883 while (per_cu != NULL)
9884 {
9885 struct dwarf2_per_cu_data *next_cu;
9886
9887 next_cu = per_cu->cu->read_in_chain;
9888
9889 free_one_comp_unit (per_cu->cu);
9890 *last_chain = next_cu;
9891
9892 per_cu = next_cu;
9893 }
9894 }
9895
9896 /* Increase the age counter on each cached compilation unit, and free
9897 any that are too old. */
9898
9899 static void
9900 age_cached_comp_units (void)
9901 {
9902 struct dwarf2_per_cu_data *per_cu, **last_chain;
9903
9904 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9905 per_cu = dwarf2_per_objfile->read_in_chain;
9906 while (per_cu != NULL)
9907 {
9908 per_cu->cu->last_used ++;
9909 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9910 dwarf2_mark (per_cu->cu);
9911 per_cu = per_cu->cu->read_in_chain;
9912 }
9913
9914 per_cu = dwarf2_per_objfile->read_in_chain;
9915 last_chain = &dwarf2_per_objfile->read_in_chain;
9916 while (per_cu != NULL)
9917 {
9918 struct dwarf2_per_cu_data *next_cu;
9919
9920 next_cu = per_cu->cu->read_in_chain;
9921
9922 if (!per_cu->cu->mark)
9923 {
9924 free_one_comp_unit (per_cu->cu);
9925 *last_chain = next_cu;
9926 }
9927 else
9928 last_chain = &per_cu->cu->read_in_chain;
9929
9930 per_cu = next_cu;
9931 }
9932 }
9933
9934 /* Remove a single compilation unit from the cache. */
9935
9936 static void
9937 free_one_cached_comp_unit (void *target_cu)
9938 {
9939 struct dwarf2_per_cu_data *per_cu, **last_chain;
9940
9941 per_cu = dwarf2_per_objfile->read_in_chain;
9942 last_chain = &dwarf2_per_objfile->read_in_chain;
9943 while (per_cu != NULL)
9944 {
9945 struct dwarf2_per_cu_data *next_cu;
9946
9947 next_cu = per_cu->cu->read_in_chain;
9948
9949 if (per_cu->cu == target_cu)
9950 {
9951 free_one_comp_unit (per_cu->cu);
9952 *last_chain = next_cu;
9953 break;
9954 }
9955 else
9956 last_chain = &per_cu->cu->read_in_chain;
9957
9958 per_cu = next_cu;
9959 }
9960 }
9961
9962 /* Release all extra memory associated with OBJFILE. */
9963
9964 void
9965 dwarf2_free_objfile (struct objfile *objfile)
9966 {
9967 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
9968
9969 if (dwarf2_per_objfile == NULL)
9970 return;
9971
9972 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
9973 free_cached_comp_units (NULL);
9974
9975 /* Everything else should be on the objfile obstack. */
9976 }
9977
9978 /* A pair of DIE offset and GDB type pointer. We store these
9979 in a hash table separate from the DIEs, and preserve them
9980 when the DIEs are flushed out of cache. */
9981
9982 struct dwarf2_offset_and_type
9983 {
9984 unsigned int offset;
9985 struct type *type;
9986 };
9987
9988 /* Hash function for a dwarf2_offset_and_type. */
9989
9990 static hashval_t
9991 offset_and_type_hash (const void *item)
9992 {
9993 const struct dwarf2_offset_and_type *ofs = item;
9994 return ofs->offset;
9995 }
9996
9997 /* Equality function for a dwarf2_offset_and_type. */
9998
9999 static int
10000 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
10001 {
10002 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
10003 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
10004 return ofs_lhs->offset == ofs_rhs->offset;
10005 }
10006
10007 /* Set the type associated with DIE to TYPE. Save it in CU's hash
10008 table if necessary. */
10009
10010 static void
10011 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10012 {
10013 struct dwarf2_offset_and_type **slot, ofs;
10014
10015 die->type = type;
10016
10017 if (cu->per_cu == NULL)
10018 return;
10019
10020 if (cu->per_cu->type_hash == NULL)
10021 cu->per_cu->type_hash
10022 = htab_create_alloc_ex (cu->header.length / 24,
10023 offset_and_type_hash,
10024 offset_and_type_eq,
10025 NULL,
10026 &cu->objfile->objfile_obstack,
10027 hashtab_obstack_allocate,
10028 dummy_obstack_deallocate);
10029
10030 ofs.offset = die->offset;
10031 ofs.type = type;
10032 slot = (struct dwarf2_offset_and_type **)
10033 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10034 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10035 **slot = ofs;
10036 }
10037
10038 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10039 have a saved type. */
10040
10041 static struct type *
10042 get_die_type (struct die_info *die, htab_t type_hash)
10043 {
10044 struct dwarf2_offset_and_type *slot, ofs;
10045
10046 ofs.offset = die->offset;
10047 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10048 if (slot)
10049 return slot->type;
10050 else
10051 return NULL;
10052 }
10053
10054 /* Restore the types of the DIE tree starting at START_DIE from the hash
10055 table saved in CU. */
10056
10057 static void
10058 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10059 {
10060 struct die_info *die;
10061
10062 if (cu->per_cu->type_hash == NULL)
10063 return;
10064
10065 for (die = start_die; die != NULL; die = die->sibling)
10066 {
10067 die->type = get_die_type (die, cu->per_cu->type_hash);
10068 if (die->child != NULL)
10069 reset_die_and_siblings_types (die->child, cu);
10070 }
10071 }
10072
10073 /* Set the mark field in CU and in every other compilation unit in the
10074 cache that we must keep because we are keeping CU. */
10075
10076 /* Add a dependence relationship from CU to REF_PER_CU. */
10077
10078 static void
10079 dwarf2_add_dependence (struct dwarf2_cu *cu,
10080 struct dwarf2_per_cu_data *ref_per_cu)
10081 {
10082 void **slot;
10083
10084 if (cu->dependencies == NULL)
10085 cu->dependencies
10086 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10087 NULL, &cu->comp_unit_obstack,
10088 hashtab_obstack_allocate,
10089 dummy_obstack_deallocate);
10090
10091 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10092 if (*slot == NULL)
10093 *slot = ref_per_cu;
10094 }
10095
10096 /* Set the mark field in CU and in every other compilation unit in the
10097 cache that we must keep because we are keeping CU. */
10098
10099 static int
10100 dwarf2_mark_helper (void **slot, void *data)
10101 {
10102 struct dwarf2_per_cu_data *per_cu;
10103
10104 per_cu = (struct dwarf2_per_cu_data *) *slot;
10105 if (per_cu->cu->mark)
10106 return 1;
10107 per_cu->cu->mark = 1;
10108
10109 if (per_cu->cu->dependencies != NULL)
10110 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10111
10112 return 1;
10113 }
10114
10115 static void
10116 dwarf2_mark (struct dwarf2_cu *cu)
10117 {
10118 if (cu->mark)
10119 return;
10120 cu->mark = 1;
10121 if (cu->dependencies != NULL)
10122 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
10123 }
10124
10125 static void
10126 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10127 {
10128 while (per_cu)
10129 {
10130 per_cu->cu->mark = 0;
10131 per_cu = per_cu->cu->read_in_chain;
10132 }
10133 }
10134
10135 /* Trivial hash function for partial_die_info: the hash value of a DIE
10136 is its offset in .debug_info for this objfile. */
10137
10138 static hashval_t
10139 partial_die_hash (const void *item)
10140 {
10141 const struct partial_die_info *part_die = item;
10142 return part_die->offset;
10143 }
10144
10145 /* Trivial comparison function for partial_die_info structures: two DIEs
10146 are equal if they have the same offset. */
10147
10148 static int
10149 partial_die_eq (const void *item_lhs, const void *item_rhs)
10150 {
10151 const struct partial_die_info *part_die_lhs = item_lhs;
10152 const struct partial_die_info *part_die_rhs = item_rhs;
10153 return part_die_lhs->offset == part_die_rhs->offset;
10154 }
10155
10156 static struct cmd_list_element *set_dwarf2_cmdlist;
10157 static struct cmd_list_element *show_dwarf2_cmdlist;
10158
10159 static void
10160 set_dwarf2_cmd (char *args, int from_tty)
10161 {
10162 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10163 }
10164
10165 static void
10166 show_dwarf2_cmd (char *args, int from_tty)
10167 {
10168 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10169 }
10170
10171 void _initialize_dwarf2_read (void);
10172
10173 void
10174 _initialize_dwarf2_read (void)
10175 {
10176 dwarf2_objfile_data_key = register_objfile_data ();
10177
10178 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10179 Set DWARF 2 specific variables.\n\
10180 Configure DWARF 2 variables such as the cache size"),
10181 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10182 0/*allow-unknown*/, &maintenance_set_cmdlist);
10183
10184 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10185 Show DWARF 2 specific variables\n\
10186 Show DWARF 2 variables such as the cache size"),
10187 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10188 0/*allow-unknown*/, &maintenance_show_cmdlist);
10189
10190 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
10191 &dwarf2_max_cache_age, _("\
10192 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10193 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10194 A higher limit means that cached compilation units will be stored\n\
10195 in memory longer, and more total memory will be used. Zero disables\n\
10196 caching, which can slow down startup."),
10197 NULL,
10198 show_dwarf2_max_cache_age,
10199 &set_dwarf2_cmdlist,
10200 &show_dwarf2_cmdlist);
10201 }