2004-06-17 Michael Chastain <mec.gnu@mindspring.com>
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004
4 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support in dwarfread.c
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or (at
18 your option) any later version.
19
20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 59 Temple Place - Suite 330,
28 Boston, MA 02111-1307, USA. */
29
30 #include "defs.h"
31 #include "bfd.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "elf/dwarf2.h"
36 #include "buildsym.h"
37 #include "demangle.h"
38 #include "expression.h"
39 #include "filenames.h" /* for DOSish file names */
40 #include "macrotab.h"
41 #include "language.h"
42 #include "complaints.h"
43 #include "bcache.h"
44 #include "dwarf2expr.h"
45 #include "dwarf2loc.h"
46 #include "cp-support.h"
47 #include "hashtab.h"
48
49 #include <fcntl.h>
50 #include "gdb_string.h"
51 #include "gdb_assert.h"
52 #include <sys/types.h>
53
54 /* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
68 #ifndef DWARF2_REG_TO_REGNUM
69 #define DWARF2_REG_TO_REGNUM(REG) (REG)
70 #endif
71
72 #if 0
73 /* .debug_info header for a compilation unit
74 Because of alignment constraints, this structure has padding and cannot
75 be mapped directly onto the beginning of the .debug_info section. */
76 typedef struct comp_unit_header
77 {
78 unsigned int length; /* length of the .debug_info
79 contribution */
80 unsigned short version; /* version number -- 2 for DWARF
81 version 2 */
82 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
83 unsigned char addr_size; /* byte size of an address -- 4 */
84 }
85 _COMP_UNIT_HEADER;
86 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
87 #endif
88
89 /* .debug_pubnames header
90 Because of alignment constraints, this structure has padding and cannot
91 be mapped directly onto the beginning of the .debug_info section. */
92 typedef struct pubnames_header
93 {
94 unsigned int length; /* length of the .debug_pubnames
95 contribution */
96 unsigned char version; /* version number -- 2 for DWARF
97 version 2 */
98 unsigned int info_offset; /* offset into .debug_info section */
99 unsigned int info_size; /* byte size of .debug_info section
100 portion */
101 }
102 _PUBNAMES_HEADER;
103 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
104
105 /* .debug_pubnames header
106 Because of alignment constraints, this structure has padding and cannot
107 be mapped directly onto the beginning of the .debug_info section. */
108 typedef struct aranges_header
109 {
110 unsigned int length; /* byte len of the .debug_aranges
111 contribution */
112 unsigned short version; /* version number -- 2 for DWARF
113 version 2 */
114 unsigned int info_offset; /* offset into .debug_info section */
115 unsigned char addr_size; /* byte size of an address */
116 unsigned char seg_size; /* byte size of segment descriptor */
117 }
118 _ARANGES_HEADER;
119 #define _ACTUAL_ARANGES_HEADER_SIZE 12
120
121 /* .debug_line statement program prologue
122 Because of alignment constraints, this structure has padding and cannot
123 be mapped directly onto the beginning of the .debug_info section. */
124 typedef struct statement_prologue
125 {
126 unsigned int total_length; /* byte length of the statement
127 information */
128 unsigned short version; /* version number -- 2 for DWARF
129 version 2 */
130 unsigned int prologue_length; /* # bytes between prologue &
131 stmt program */
132 unsigned char minimum_instruction_length; /* byte size of
133 smallest instr */
134 unsigned char default_is_stmt; /* initial value of is_stmt
135 register */
136 char line_base;
137 unsigned char line_range;
138 unsigned char opcode_base; /* number assigned to first special
139 opcode */
140 unsigned char *standard_opcode_lengths;
141 }
142 _STATEMENT_PROLOGUE;
143
144 static const struct objfile_data *dwarf2_objfile_data_key;
145
146 struct dwarf2_per_objfile
147 {
148 /* Sizes of debugging sections. */
149 unsigned int info_size;
150 unsigned int abbrev_size;
151 unsigned int line_size;
152 unsigned int pubnames_size;
153 unsigned int aranges_size;
154 unsigned int loc_size;
155 unsigned int macinfo_size;
156 unsigned int str_size;
157 unsigned int ranges_size;
158 unsigned int frame_size;
159 unsigned int eh_frame_size;
160
161 /* Loaded data from the sections. */
162 char *info_buffer;
163 char *abbrev_buffer;
164 char *line_buffer;
165 char *str_buffer;
166 char *macinfo_buffer;
167 char *ranges_buffer;
168 char *loc_buffer;
169 };
170
171 static struct dwarf2_per_objfile *dwarf2_per_objfile;
172
173 static asection *dwarf_info_section;
174 static asection *dwarf_abbrev_section;
175 static asection *dwarf_line_section;
176 static asection *dwarf_pubnames_section;
177 static asection *dwarf_aranges_section;
178 static asection *dwarf_loc_section;
179 static asection *dwarf_macinfo_section;
180 static asection *dwarf_str_section;
181 static asection *dwarf_ranges_section;
182 asection *dwarf_frame_section;
183 asection *dwarf_eh_frame_section;
184
185 /* names of the debugging sections */
186
187 #define INFO_SECTION ".debug_info"
188 #define ABBREV_SECTION ".debug_abbrev"
189 #define LINE_SECTION ".debug_line"
190 #define PUBNAMES_SECTION ".debug_pubnames"
191 #define ARANGES_SECTION ".debug_aranges"
192 #define LOC_SECTION ".debug_loc"
193 #define MACINFO_SECTION ".debug_macinfo"
194 #define STR_SECTION ".debug_str"
195 #define RANGES_SECTION ".debug_ranges"
196 #define FRAME_SECTION ".debug_frame"
197 #define EH_FRAME_SECTION ".eh_frame"
198
199 /* local data types */
200
201 /* We hold several abbreviation tables in memory at the same time. */
202 #ifndef ABBREV_HASH_SIZE
203 #define ABBREV_HASH_SIZE 121
204 #endif
205
206 /* The data in a compilation unit header, after target2host
207 translation, looks like this. */
208 struct comp_unit_head
209 {
210 unsigned long length;
211 short version;
212 unsigned int abbrev_offset;
213 unsigned char addr_size;
214 unsigned char signed_addr_p;
215 unsigned int offset_size; /* size of file offsets; either 4 or 8 */
216 unsigned int initial_length_size; /* size of the length field; either
217 4 or 12 */
218
219 /* Offset to the first byte of this compilation unit header in the
220 * .debug_info section, for resolving relative reference dies. */
221
222 unsigned int offset;
223
224 /* Pointer to this compilation unit header in the .debug_info
225 * section */
226
227 char *cu_head_ptr;
228
229 /* Pointer to the first die of this compilatio unit. This will
230 * be the first byte following the compilation unit header. */
231
232 char *first_die_ptr;
233
234 /* Pointer to the next compilation unit header in the program. */
235
236 struct comp_unit_head *next;
237
238 /* Base address of this compilation unit. */
239
240 CORE_ADDR base_address;
241
242 /* Non-zero if base_address has been set. */
243
244 int base_known;
245 };
246
247 /* Internal state when decoding a particular compilation unit. */
248 struct dwarf2_cu
249 {
250 /* The objfile containing this compilation unit. */
251 struct objfile *objfile;
252
253 /* The header of the compilation unit.
254
255 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
256 should logically be moved to the dwarf2_cu structure. */
257 struct comp_unit_head header;
258
259 struct function_range *first_fn, *last_fn, *cached_fn;
260
261 /* The language we are debugging. */
262 enum language language;
263 const struct language_defn *language_defn;
264
265 /* The generic symbol table building routines have separate lists for
266 file scope symbols and all all other scopes (local scopes). So
267 we need to select the right one to pass to add_symbol_to_list().
268 We do it by keeping a pointer to the correct list in list_in_scope.
269
270 FIXME: The original dwarf code just treated the file scope as the
271 first local scope, and all other local scopes as nested local
272 scopes, and worked fine. Check to see if we really need to
273 distinguish these in buildsym.c. */
274 struct pending **list_in_scope;
275
276 /* Maintain an array of referenced fundamental types for the current
277 compilation unit being read. For DWARF version 1, we have to construct
278 the fundamental types on the fly, since no information about the
279 fundamental types is supplied. Each such fundamental type is created by
280 calling a language dependent routine to create the type, and then a
281 pointer to that type is then placed in the array at the index specified
282 by it's FT_<TYPENAME> value. The array has a fixed size set by the
283 FT_NUM_MEMBERS compile time constant, which is the number of predefined
284 fundamental types gdb knows how to construct. */
285 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
286
287 /* DWARF abbreviation table associated with this compilation unit. */
288 struct abbrev_info **dwarf2_abbrevs;
289
290 /* Storage for the abbrev table. */
291 struct obstack abbrev_obstack;
292
293 /* Hash table holding all the loaded partial DIEs. */
294 htab_t partial_dies;
295
296 /* Storage for things with the same lifetime as this read-in compilation
297 unit, including partial DIEs. */
298 struct obstack comp_unit_obstack;
299
300 /* This flag will be set if this compilation unit includes any
301 DW_TAG_namespace DIEs. If we know that there are explicit
302 DIEs for namespaces, we don't need to try to infer them
303 from mangled names. */
304 unsigned int has_namespace_info : 1;
305 };
306
307 /* The line number information for a compilation unit (found in the
308 .debug_line section) begins with a "statement program header",
309 which contains the following information. */
310 struct line_header
311 {
312 unsigned int total_length;
313 unsigned short version;
314 unsigned int header_length;
315 unsigned char minimum_instruction_length;
316 unsigned char default_is_stmt;
317 int line_base;
318 unsigned char line_range;
319 unsigned char opcode_base;
320
321 /* standard_opcode_lengths[i] is the number of operands for the
322 standard opcode whose value is i. This means that
323 standard_opcode_lengths[0] is unused, and the last meaningful
324 element is standard_opcode_lengths[opcode_base - 1]. */
325 unsigned char *standard_opcode_lengths;
326
327 /* The include_directories table. NOTE! These strings are not
328 allocated with xmalloc; instead, they are pointers into
329 debug_line_buffer. If you try to free them, `free' will get
330 indigestion. */
331 unsigned int num_include_dirs, include_dirs_size;
332 char **include_dirs;
333
334 /* The file_names table. NOTE! These strings are not allocated
335 with xmalloc; instead, they are pointers into debug_line_buffer.
336 Don't try to free them directly. */
337 unsigned int num_file_names, file_names_size;
338 struct file_entry
339 {
340 char *name;
341 unsigned int dir_index;
342 unsigned int mod_time;
343 unsigned int length;
344 int included_p; /* Non-zero if referenced by the Line Number Program. */
345 } *file_names;
346
347 /* The start and end of the statement program following this
348 header. These point into dwarf2_per_objfile->line_buffer. */
349 char *statement_program_start, *statement_program_end;
350 };
351
352 /* When we construct a partial symbol table entry we only
353 need this much information. */
354 struct partial_die_info
355 {
356 /* Offset of this DIE. */
357 unsigned int offset;
358
359 /* DWARF-2 tag for this DIE. */
360 ENUM_BITFIELD(dwarf_tag) tag : 16;
361
362 /* Language code associated with this DIE. This is only used
363 for the compilation unit DIE. */
364 unsigned int language : 8;
365
366 /* Assorted flags describing the data found in this DIE. */
367 unsigned int has_children : 1;
368 unsigned int is_external : 1;
369 unsigned int is_declaration : 1;
370 unsigned int has_type : 1;
371 unsigned int has_specification : 1;
372 unsigned int has_stmt_list : 1;
373 unsigned int has_pc_info : 1;
374
375 /* Flag set if the SCOPE field of this structure has been
376 computed. */
377 unsigned int scope_set : 1;
378
379 /* The name of this DIE. Normally the value of DW_AT_name, but
380 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
381 other fashion. */
382 char *name;
383 char *dirname;
384
385 /* The scope to prepend to our children. This is generally
386 allocated on the comp_unit_obstack, so will disappear
387 when this compilation unit leaves the cache. */
388 char *scope;
389
390 /* The location description associated with this DIE, if any. */
391 struct dwarf_block *locdesc;
392
393 /* If HAS_PC_INFO, the PC range associated with this DIE. */
394 CORE_ADDR lowpc;
395 CORE_ADDR highpc;
396
397 /* Pointer into the info_buffer pointing at the target of
398 DW_AT_sibling, if any. */
399 char *sibling;
400
401 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
402 DW_AT_specification (or DW_AT_abstract_origin or
403 DW_AT_extension). */
404 unsigned int spec_offset;
405
406 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
407 unsigned int line_offset;
408
409 /* Pointers to this DIE's parent, first child, and next sibling,
410 if any. */
411 struct partial_die_info *die_parent, *die_child, *die_sibling;
412 };
413
414 /* This data structure holds the information of an abbrev. */
415 struct abbrev_info
416 {
417 unsigned int number; /* number identifying abbrev */
418 enum dwarf_tag tag; /* dwarf tag */
419 unsigned short has_children; /* boolean */
420 unsigned short num_attrs; /* number of attributes */
421 struct attr_abbrev *attrs; /* an array of attribute descriptions */
422 struct abbrev_info *next; /* next in chain */
423 };
424
425 struct attr_abbrev
426 {
427 enum dwarf_attribute name;
428 enum dwarf_form form;
429 };
430
431 /* This data structure holds a complete die structure. */
432 struct die_info
433 {
434 enum dwarf_tag tag; /* Tag indicating type of die */
435 unsigned int abbrev; /* Abbrev number */
436 unsigned int offset; /* Offset in .debug_info section */
437 unsigned int num_attrs; /* Number of attributes */
438 struct attribute *attrs; /* An array of attributes */
439 struct die_info *next_ref; /* Next die in ref hash table */
440
441 /* The dies in a compilation unit form an n-ary tree. PARENT
442 points to this die's parent; CHILD points to the first child of
443 this node; and all the children of a given node are chained
444 together via their SIBLING fields, terminated by a die whose
445 tag is zero. */
446 struct die_info *child; /* Its first child, if any. */
447 struct die_info *sibling; /* Its next sibling, if any. */
448 struct die_info *parent; /* Its parent, if any. */
449
450 struct type *type; /* Cached type information */
451 };
452
453 /* Attributes have a name and a value */
454 struct attribute
455 {
456 enum dwarf_attribute name;
457 enum dwarf_form form;
458 union
459 {
460 char *str;
461 struct dwarf_block *blk;
462 unsigned long unsnd;
463 long int snd;
464 CORE_ADDR addr;
465 }
466 u;
467 };
468
469 struct function_range
470 {
471 const char *name;
472 CORE_ADDR lowpc, highpc;
473 int seen_line;
474 struct function_range *next;
475 };
476
477 /* Get at parts of an attribute structure */
478
479 #define DW_STRING(attr) ((attr)->u.str)
480 #define DW_UNSND(attr) ((attr)->u.unsnd)
481 #define DW_BLOCK(attr) ((attr)->u.blk)
482 #define DW_SND(attr) ((attr)->u.snd)
483 #define DW_ADDR(attr) ((attr)->u.addr)
484
485 /* Blocks are a bunch of untyped bytes. */
486 struct dwarf_block
487 {
488 unsigned int size;
489 char *data;
490 };
491
492 #ifndef ATTR_ALLOC_CHUNK
493 #define ATTR_ALLOC_CHUNK 4
494 #endif
495
496 /* A hash table of die offsets for following references. */
497 #ifndef REF_HASH_SIZE
498 #define REF_HASH_SIZE 1021
499 #endif
500
501 static struct die_info *die_ref_table[REF_HASH_SIZE];
502
503 /* Allocate fields for structs, unions and enums in this size. */
504 #ifndef DW_FIELD_ALLOC_CHUNK
505 #define DW_FIELD_ALLOC_CHUNK 4
506 #endif
507
508 /* A zeroed version of a partial die for initialization purposes. */
509 static struct partial_die_info zeroed_partial_die;
510
511 /* FIXME: decode_locdesc sets these variables to describe the location
512 to the caller. These ought to be a structure or something. If
513 none of the flags are set, the object lives at the address returned
514 by decode_locdesc. */
515
516 static int isreg; /* Object lives in register.
517 decode_locdesc's return value is
518 the register number. */
519
520 /* We put a pointer to this structure in the read_symtab_private field
521 of the psymtab. */
522
523 struct dwarf2_pinfo
524 {
525 /* Offset in .debug_info for this compilation unit. */
526
527 unsigned long dwarf_info_offset;
528 };
529
530 #define PST_PRIVATE(p) ((struct dwarf2_pinfo *)(p)->read_symtab_private)
531 #define DWARF_INFO_OFFSET(p) (PST_PRIVATE(p)->dwarf_info_offset)
532
533 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
534 but this would require a corresponding change in unpack_field_as_long
535 and friends. */
536 static int bits_per_byte = 8;
537
538 /* The routines that read and process dies for a C struct or C++ class
539 pass lists of data member fields and lists of member function fields
540 in an instance of a field_info structure, as defined below. */
541 struct field_info
542 {
543 /* List of data member and baseclasses fields. */
544 struct nextfield
545 {
546 struct nextfield *next;
547 int accessibility;
548 int virtuality;
549 struct field field;
550 }
551 *fields;
552
553 /* Number of fields. */
554 int nfields;
555
556 /* Number of baseclasses. */
557 int nbaseclasses;
558
559 /* Set if the accesibility of one of the fields is not public. */
560 int non_public_fields;
561
562 /* Member function fields array, entries are allocated in the order they
563 are encountered in the object file. */
564 struct nextfnfield
565 {
566 struct nextfnfield *next;
567 struct fn_field fnfield;
568 }
569 *fnfields;
570
571 /* Member function fieldlist array, contains name of possibly overloaded
572 member function, number of overloaded member functions and a pointer
573 to the head of the member function field chain. */
574 struct fnfieldlist
575 {
576 char *name;
577 int length;
578 struct nextfnfield *head;
579 }
580 *fnfieldlists;
581
582 /* Number of entries in the fnfieldlists array. */
583 int nfnfields;
584 };
585
586 /* Various complaints about symbol reading that don't abort the process */
587
588 static void
589 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
590 {
591 complaint (&symfile_complaints,
592 "statement list doesn't fit in .debug_line section");
593 }
594
595 static void
596 dwarf2_complex_location_expr_complaint (void)
597 {
598 complaint (&symfile_complaints, "location expression too complex");
599 }
600
601 static void
602 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
603 int arg3)
604 {
605 complaint (&symfile_complaints,
606 "const value length mismatch for '%s', got %d, expected %d", arg1,
607 arg2, arg3);
608 }
609
610 static void
611 dwarf2_macros_too_long_complaint (void)
612 {
613 complaint (&symfile_complaints,
614 "macro info runs off end of `.debug_macinfo' section");
615 }
616
617 static void
618 dwarf2_macro_malformed_definition_complaint (const char *arg1)
619 {
620 complaint (&symfile_complaints,
621 "macro debug info contains a malformed macro definition:\n`%s'",
622 arg1);
623 }
624
625 static void
626 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
627 {
628 complaint (&symfile_complaints,
629 "invalid attribute class or form for '%s' in '%s'", arg1, arg2);
630 }
631
632 /* local function prototypes */
633
634 static void dwarf2_locate_sections (bfd *, asection *, void *);
635
636 #if 0
637 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
638 #endif
639
640 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
641 struct objfile *);
642
643 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
644 struct partial_die_info *,
645 struct partial_symtab *);
646
647 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
648
649 static void scan_partial_symbols (struct partial_die_info *,
650 CORE_ADDR *, CORE_ADDR *,
651 struct dwarf2_cu *);
652
653 static void add_partial_symbol (struct partial_die_info *,
654 struct dwarf2_cu *);
655
656 static int pdi_needs_namespace (enum dwarf_tag tag);
657
658 static void add_partial_namespace (struct partial_die_info *pdi,
659 CORE_ADDR *lowpc, CORE_ADDR *highpc,
660 struct dwarf2_cu *cu);
661
662 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
663 struct dwarf2_cu *cu);
664
665 static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
666 char *info_ptr,
667 bfd *abfd,
668 struct dwarf2_cu *cu);
669
670 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
671
672 static void psymtab_to_symtab_1 (struct partial_symtab *);
673
674 char *dwarf2_read_section (struct objfile *, asection *);
675
676 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
677
678 static void dwarf2_free_abbrev_table (void *);
679
680 static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
681
682 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
683 struct dwarf2_cu *);
684
685 static struct partial_die_info *load_partial_dies (bfd *, char *, int,
686 struct dwarf2_cu *);
687
688 static char *read_partial_die (struct partial_die_info *,
689 struct abbrev_info *abbrev, unsigned int,
690 bfd *, char *, struct dwarf2_cu *);
691
692 static struct partial_die_info *find_partial_die (unsigned long,
693 struct dwarf2_cu *,
694 struct dwarf2_cu **);
695
696 static void fixup_partial_die (struct partial_die_info *,
697 struct dwarf2_cu *);
698
699 static char *read_full_die (struct die_info **, bfd *, char *,
700 struct dwarf2_cu *, int *);
701
702 static char *read_attribute (struct attribute *, struct attr_abbrev *,
703 bfd *, char *, struct dwarf2_cu *);
704
705 static char *read_attribute_value (struct attribute *, unsigned,
706 bfd *, char *, struct dwarf2_cu *);
707
708 static unsigned int read_1_byte (bfd *, char *);
709
710 static int read_1_signed_byte (bfd *, char *);
711
712 static unsigned int read_2_bytes (bfd *, char *);
713
714 static unsigned int read_4_bytes (bfd *, char *);
715
716 static unsigned long read_8_bytes (bfd *, char *);
717
718 static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
719 int *bytes_read);
720
721 static LONGEST read_initial_length (bfd *, char *,
722 struct comp_unit_head *, int *bytes_read);
723
724 static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
725 int *bytes_read);
726
727 static char *read_n_bytes (bfd *, char *, unsigned int);
728
729 static char *read_string (bfd *, char *, unsigned int *);
730
731 static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
732 unsigned int *);
733
734 static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
735
736 static long read_signed_leb128 (bfd *, char *, unsigned int *);
737
738 static char *skip_leb128 (bfd *, char *);
739
740 static void set_cu_language (unsigned int, struct dwarf2_cu *);
741
742 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
743 struct dwarf2_cu *);
744
745 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
746 struct dwarf2_cu *cu);
747
748 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
749
750 static struct die_info *die_specification (struct die_info *die,
751 struct dwarf2_cu *);
752
753 static void free_line_header (struct line_header *lh);
754
755 static void add_file_name (struct line_header *, char *, unsigned int,
756 unsigned int, unsigned int);
757
758 static struct line_header *(dwarf_decode_line_header
759 (unsigned int offset,
760 bfd *abfd, struct dwarf2_cu *cu));
761
762 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
763 struct dwarf2_cu *, struct partial_symtab *);
764
765 static void dwarf2_start_subfile (char *, char *);
766
767 static struct symbol *new_symbol (struct die_info *, struct type *,
768 struct dwarf2_cu *);
769
770 static void dwarf2_const_value (struct attribute *, struct symbol *,
771 struct dwarf2_cu *);
772
773 static void dwarf2_const_value_data (struct attribute *attr,
774 struct symbol *sym,
775 int bits);
776
777 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
778
779 static struct type *die_containing_type (struct die_info *,
780 struct dwarf2_cu *);
781
782 #if 0
783 static struct type *type_at_offset (unsigned int, struct objfile *);
784 #endif
785
786 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
787
788 static void read_type_die (struct die_info *, struct dwarf2_cu *);
789
790 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
791
792 static char *typename_concat (const char *prefix, const char *suffix);
793
794 static void read_typedef (struct die_info *, struct dwarf2_cu *);
795
796 static void read_base_type (struct die_info *, struct dwarf2_cu *);
797
798 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
799
800 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
801
802 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
803
804 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
805
806 static int dwarf2_get_pc_bounds (struct die_info *,
807 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
808
809 static void get_scope_pc_bounds (struct die_info *,
810 CORE_ADDR *, CORE_ADDR *,
811 struct dwarf2_cu *);
812
813 static void dwarf2_add_field (struct field_info *, struct die_info *,
814 struct dwarf2_cu *);
815
816 static void dwarf2_attach_fields_to_type (struct field_info *,
817 struct type *, struct dwarf2_cu *);
818
819 static void dwarf2_add_member_fn (struct field_info *,
820 struct die_info *, struct type *,
821 struct dwarf2_cu *);
822
823 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
824 struct type *, struct dwarf2_cu *);
825
826 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
827
828 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
829
830 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
831
832 static void read_common_block (struct die_info *, struct dwarf2_cu *);
833
834 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
835
836 static const char *namespace_name (struct die_info *die,
837 int *is_anonymous, struct dwarf2_cu *);
838
839 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
840
841 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
842
843 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
844
845 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
846
847 static void read_array_type (struct die_info *, struct dwarf2_cu *);
848
849 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
850
851 static void read_tag_ptr_to_member_type (struct die_info *,
852 struct dwarf2_cu *);
853
854 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
855
856 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
857
858 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
859
860 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
861
862 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
863
864 static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
865
866 static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
867 struct dwarf2_cu *,
868 char **new_info_ptr,
869 struct die_info *parent);
870
871 static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
872 struct dwarf2_cu *,
873 char **new_info_ptr,
874 struct die_info *parent);
875
876 static void free_die_list (struct die_info *);
877
878 static struct cleanup *make_cleanup_free_die_list (struct die_info *);
879
880 static void process_die (struct die_info *, struct dwarf2_cu *);
881
882 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
883
884 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
885
886 static struct die_info *dwarf2_extension (struct die_info *die,
887 struct dwarf2_cu *);
888
889 static char *dwarf_tag_name (unsigned int);
890
891 static char *dwarf_attr_name (unsigned int);
892
893 static char *dwarf_form_name (unsigned int);
894
895 static char *dwarf_stack_op_name (unsigned int);
896
897 static char *dwarf_bool_name (unsigned int);
898
899 static char *dwarf_type_encoding_name (unsigned int);
900
901 #if 0
902 static char *dwarf_cfi_name (unsigned int);
903
904 struct die_info *copy_die (struct die_info *);
905 #endif
906
907 static struct die_info *sibling_die (struct die_info *);
908
909 static void dump_die (struct die_info *);
910
911 static void dump_die_list (struct die_info *);
912
913 static void store_in_ref_table (unsigned int, struct die_info *);
914
915 static void dwarf2_empty_hash_tables (void);
916
917 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
918 struct dwarf2_cu *);
919
920 static int dwarf2_get_attr_constant_value (struct attribute *, int);
921
922 static struct die_info *follow_die_ref (unsigned int);
923
924 static struct type *dwarf2_fundamental_type (struct objfile *, int,
925 struct dwarf2_cu *);
926
927 /* memory allocation interface */
928
929 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
930
931 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
932
933 static struct die_info *dwarf_alloc_die (void);
934
935 static void initialize_cu_func_list (struct dwarf2_cu *);
936
937 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
938 struct dwarf2_cu *);
939
940 static void dwarf_decode_macros (struct line_header *, unsigned int,
941 char *, bfd *, struct dwarf2_cu *);
942
943 static int attr_form_is_block (struct attribute *);
944
945 static void
946 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
947 struct dwarf2_cu *cu);
948
949 static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
950 struct dwarf2_cu *cu);
951
952 static void free_stack_comp_unit (void *);
953
954 static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
955
956 static void dummy_obstack_deallocate (void *object, void *data);
957
958 static hashval_t partial_die_hash (const void *item);
959
960 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
961
962 /* Try to locate the sections we need for DWARF 2 debugging
963 information and return true if we have enough to do something. */
964
965 int
966 dwarf2_has_info (struct objfile *objfile)
967 {
968 struct dwarf2_per_objfile *data;
969
970 /* Initialize per-objfile state. */
971 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
972 memset (data, 0, sizeof (*data));
973 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
974 dwarf2_per_objfile = data;
975
976 dwarf_info_section = 0;
977 dwarf_abbrev_section = 0;
978 dwarf_line_section = 0;
979 dwarf_str_section = 0;
980 dwarf_macinfo_section = 0;
981 dwarf_frame_section = 0;
982 dwarf_eh_frame_section = 0;
983 dwarf_ranges_section = 0;
984 dwarf_loc_section = 0;
985
986 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
987 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
988 }
989
990 /* This function is mapped across the sections and remembers the
991 offset and size of each of the debugging sections we are interested
992 in. */
993
994 static void
995 dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
996 {
997 if (strcmp (sectp->name, INFO_SECTION) == 0)
998 {
999 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1000 dwarf_info_section = sectp;
1001 }
1002 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1003 {
1004 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1005 dwarf_abbrev_section = sectp;
1006 }
1007 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1008 {
1009 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1010 dwarf_line_section = sectp;
1011 }
1012 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1013 {
1014 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1015 dwarf_pubnames_section = sectp;
1016 }
1017 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1018 {
1019 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1020 dwarf_aranges_section = sectp;
1021 }
1022 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1023 {
1024 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1025 dwarf_loc_section = sectp;
1026 }
1027 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1028 {
1029 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1030 dwarf_macinfo_section = sectp;
1031 }
1032 else if (strcmp (sectp->name, STR_SECTION) == 0)
1033 {
1034 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1035 dwarf_str_section = sectp;
1036 }
1037 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1038 {
1039 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1040 dwarf_frame_section = sectp;
1041 }
1042 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1043 {
1044 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1045 if (aflag & SEC_HAS_CONTENTS)
1046 {
1047 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1048 dwarf_eh_frame_section = sectp;
1049 }
1050 }
1051 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1052 {
1053 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1054 dwarf_ranges_section = sectp;
1055 }
1056 }
1057
1058 /* Build a partial symbol table. */
1059
1060 void
1061 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1062 {
1063 /* We definitely need the .debug_info and .debug_abbrev sections */
1064
1065 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1066 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1067
1068 if (dwarf_line_section)
1069 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1070 else
1071 dwarf2_per_objfile->line_buffer = NULL;
1072
1073 if (dwarf_str_section)
1074 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1075 else
1076 dwarf2_per_objfile->str_buffer = NULL;
1077
1078 if (dwarf_macinfo_section)
1079 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1080 dwarf_macinfo_section);
1081 else
1082 dwarf2_per_objfile->macinfo_buffer = NULL;
1083
1084 if (dwarf_ranges_section)
1085 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1086 else
1087 dwarf2_per_objfile->ranges_buffer = NULL;
1088
1089 if (dwarf_loc_section)
1090 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1091 else
1092 dwarf2_per_objfile->loc_buffer = NULL;
1093
1094 if (mainline
1095 || (objfile->global_psymbols.size == 0
1096 && objfile->static_psymbols.size == 0))
1097 {
1098 init_psymbol_list (objfile, 1024);
1099 }
1100
1101 #if 0
1102 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1103 {
1104 /* Things are significantly easier if we have .debug_aranges and
1105 .debug_pubnames sections */
1106
1107 dwarf2_build_psymtabs_easy (objfile, mainline);
1108 }
1109 else
1110 #endif
1111 /* only test this case for now */
1112 {
1113 /* In this case we have to work a bit harder */
1114 dwarf2_build_psymtabs_hard (objfile, mainline);
1115 }
1116 }
1117
1118 #if 0
1119 /* Build the partial symbol table from the information in the
1120 .debug_pubnames and .debug_aranges sections. */
1121
1122 static void
1123 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1124 {
1125 bfd *abfd = objfile->obfd;
1126 char *aranges_buffer, *pubnames_buffer;
1127 char *aranges_ptr, *pubnames_ptr;
1128 unsigned int entry_length, version, info_offset, info_size;
1129
1130 pubnames_buffer = dwarf2_read_section (objfile,
1131 dwarf_pubnames_section);
1132 pubnames_ptr = pubnames_buffer;
1133 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1134 {
1135 struct comp_unit_head cu_header;
1136 int bytes_read;
1137
1138 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1139 &bytes_read);
1140 pubnames_ptr += bytes_read;
1141 version = read_1_byte (abfd, pubnames_ptr);
1142 pubnames_ptr += 1;
1143 info_offset = read_4_bytes (abfd, pubnames_ptr);
1144 pubnames_ptr += 4;
1145 info_size = read_4_bytes (abfd, pubnames_ptr);
1146 pubnames_ptr += 4;
1147 }
1148
1149 aranges_buffer = dwarf2_read_section (objfile,
1150 dwarf_aranges_section);
1151
1152 }
1153 #endif
1154
1155 /* Read in the comp unit header information from the debug_info at
1156 info_ptr. */
1157
1158 static char *
1159 read_comp_unit_head (struct comp_unit_head *cu_header,
1160 char *info_ptr, bfd *abfd)
1161 {
1162 int signed_addr;
1163 int bytes_read;
1164 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1165 &bytes_read);
1166 info_ptr += bytes_read;
1167 cu_header->version = read_2_bytes (abfd, info_ptr);
1168 info_ptr += 2;
1169 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1170 &bytes_read);
1171 info_ptr += bytes_read;
1172 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1173 info_ptr += 1;
1174 signed_addr = bfd_get_sign_extend_vma (abfd);
1175 if (signed_addr < 0)
1176 internal_error (__FILE__, __LINE__,
1177 "read_comp_unit_head: dwarf from non elf file");
1178 cu_header->signed_addr_p = signed_addr;
1179 return info_ptr;
1180 }
1181
1182 static char *
1183 partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1184 bfd *abfd)
1185 {
1186 char *beg_of_comp_unit = info_ptr;
1187
1188 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1189
1190 if (header->version != 2)
1191 error ("Dwarf Error: wrong version in compilation unit header "
1192 "(is %d, should be %d) [in module %s]", header->version,
1193 2, bfd_get_filename (abfd));
1194
1195 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1196 error ("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1197 "(offset 0x%lx + 6) [in module %s]",
1198 (long) header->abbrev_offset,
1199 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1200 bfd_get_filename (abfd));
1201
1202 if (beg_of_comp_unit + header->length + header->initial_length_size
1203 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1204 error ("Dwarf Error: bad length (0x%lx) in compilation unit header "
1205 "(offset 0x%lx + 0) [in module %s]",
1206 (long) header->length,
1207 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1208 bfd_get_filename (abfd));
1209
1210 return info_ptr;
1211 }
1212
1213 /* Allocate a new partial symtab for file named NAME and mark this new
1214 partial symtab as being an include of PST. */
1215
1216 static void
1217 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1218 struct objfile *objfile)
1219 {
1220 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1221
1222 subpst->section_offsets = pst->section_offsets;
1223 subpst->textlow = 0;
1224 subpst->texthigh = 0;
1225
1226 subpst->dependencies = (struct partial_symtab **)
1227 obstack_alloc (&objfile->objfile_obstack,
1228 sizeof (struct partial_symtab *));
1229 subpst->dependencies[0] = pst;
1230 subpst->number_of_dependencies = 1;
1231
1232 subpst->globals_offset = 0;
1233 subpst->n_global_syms = 0;
1234 subpst->statics_offset = 0;
1235 subpst->n_static_syms = 0;
1236 subpst->symtab = NULL;
1237 subpst->read_symtab = pst->read_symtab;
1238 subpst->readin = 0;
1239
1240 /* No private part is necessary for include psymtabs. This property
1241 can be used to differentiate between such include psymtabs and
1242 the regular ones. If it ever happens that a regular psymtab can
1243 legitimally have a NULL private part, then we'll have to add a
1244 dedicated field for that in the dwarf2_pinfo structure. */
1245 subpst->read_symtab_private = NULL;
1246 }
1247
1248 /* Read the Line Number Program data and extract the list of files
1249 included by the source file represented by PST. Build an include
1250 partial symtab for each of these included files.
1251
1252 This procedure assumes that there *is* a Line Number Program in
1253 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1254 before calling this procedure. */
1255
1256 static void
1257 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1258 struct partial_die_info *pdi,
1259 struct partial_symtab *pst)
1260 {
1261 struct objfile *objfile = cu->objfile;
1262 bfd *abfd = objfile->obfd;
1263 struct line_header *lh;
1264
1265 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1266 if (lh == NULL)
1267 return; /* No linetable, so no includes. */
1268
1269 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1270
1271 free_line_header (lh);
1272 }
1273
1274
1275 /* Build the partial symbol table by doing a quick pass through the
1276 .debug_info and .debug_abbrev sections. */
1277
1278 static void
1279 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1280 {
1281 /* Instead of reading this into a big buffer, we should probably use
1282 mmap() on architectures that support it. (FIXME) */
1283 bfd *abfd = objfile->obfd;
1284 char *info_ptr;
1285 char *beg_of_comp_unit;
1286 struct partial_die_info comp_unit_die;
1287 struct partial_symtab *pst;
1288 CORE_ADDR lowpc, highpc, baseaddr;
1289
1290 info_ptr = dwarf2_per_objfile->info_buffer;
1291
1292 /* Since the objects we're extracting from .debug_info vary in
1293 length, only the individual functions to extract them (like
1294 read_comp_unit_head and load_partial_die) can really know whether
1295 the buffer is large enough to hold another complete object.
1296
1297 At the moment, they don't actually check that. If .debug_info
1298 holds just one extra byte after the last compilation unit's dies,
1299 then read_comp_unit_head will happily read off the end of the
1300 buffer. read_partial_die is similarly casual. Those functions
1301 should be fixed.
1302
1303 For this loop condition, simply checking whether there's any data
1304 left at all should be sufficient. */
1305 while (info_ptr < (dwarf2_per_objfile->info_buffer
1306 + dwarf2_per_objfile->info_size))
1307 {
1308 struct cleanup *back_to_inner;
1309 struct dwarf2_cu cu;
1310 struct abbrev_info *abbrev;
1311 unsigned int bytes_read;
1312 struct dwarf2_per_cu_data *this_cu;
1313
1314 beg_of_comp_unit = info_ptr;
1315
1316 memset (&cu, 0, sizeof (cu));
1317
1318 obstack_init (&cu.comp_unit_obstack);
1319
1320 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1321
1322 cu.objfile = objfile;
1323 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1324
1325 /* Complete the cu_header */
1326 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1327 cu.header.first_die_ptr = info_ptr;
1328 cu.header.cu_head_ptr = beg_of_comp_unit;
1329
1330 cu.list_in_scope = &file_symbols;
1331
1332 cu.partial_dies = NULL;
1333
1334 /* Read the abbrevs for this compilation unit into a table */
1335 dwarf2_read_abbrevs (abfd, &cu);
1336 make_cleanup (dwarf2_free_abbrev_table, &cu);
1337
1338 /* Read the compilation unit die */
1339 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1340 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1341 abfd, info_ptr, &cu);
1342
1343 /* Set the language we're debugging */
1344 set_cu_language (comp_unit_die.language, &cu);
1345
1346 /* Allocate a new partial symbol table structure */
1347 pst = start_psymtab_common (objfile, objfile->section_offsets,
1348 comp_unit_die.name ? comp_unit_die.name : "",
1349 comp_unit_die.lowpc,
1350 objfile->global_psymbols.next,
1351 objfile->static_psymbols.next);
1352
1353 if (comp_unit_die.dirname)
1354 pst->dirname = xstrdup (comp_unit_die.dirname);
1355
1356 pst->read_symtab_private = (char *)
1357 obstack_alloc (&objfile->objfile_obstack, sizeof (struct dwarf2_pinfo));
1358 DWARF_INFO_OFFSET (pst) = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1359 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1360
1361 /* Store the function that reads in the rest of the symbol table */
1362 pst->read_symtab = dwarf2_psymtab_to_symtab;
1363
1364 /* Check if comp unit has_children.
1365 If so, read the rest of the partial symbols from this comp unit.
1366 If not, there's no more debug_info for this comp unit. */
1367 if (comp_unit_die.has_children)
1368 {
1369 struct partial_die_info *first_die;
1370
1371 lowpc = ((CORE_ADDR) -1);
1372 highpc = ((CORE_ADDR) 0);
1373
1374 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1375
1376 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1377
1378 /* If we didn't find a lowpc, set it to highpc to avoid
1379 complaints from `maint check'. */
1380 if (lowpc == ((CORE_ADDR) -1))
1381 lowpc = highpc;
1382
1383 /* If the compilation unit didn't have an explicit address range,
1384 then use the information extracted from its child dies. */
1385 if (! comp_unit_die.has_pc_info)
1386 {
1387 comp_unit_die.lowpc = lowpc;
1388 comp_unit_die.highpc = highpc;
1389 }
1390 }
1391 pst->textlow = comp_unit_die.lowpc + baseaddr;
1392 pst->texthigh = comp_unit_die.highpc + baseaddr;
1393
1394 pst->n_global_syms = objfile->global_psymbols.next -
1395 (objfile->global_psymbols.list + pst->globals_offset);
1396 pst->n_static_syms = objfile->static_psymbols.next -
1397 (objfile->static_psymbols.list + pst->statics_offset);
1398 sort_pst_symbols (pst);
1399
1400 /* If there is already a psymtab or symtab for a file of this
1401 name, remove it. (If there is a symtab, more drastic things
1402 also happen.) This happens in VxWorks. */
1403 free_named_symtabs (pst->filename);
1404
1405 if (comp_unit_die.has_stmt_list)
1406 {
1407 /* Get the list of files included in the current compilation unit,
1408 and build a psymtab for each of them. */
1409 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1410 }
1411
1412 info_ptr = beg_of_comp_unit + cu.header.length
1413 + cu.header.initial_length_size;
1414
1415 do_cleanups (back_to_inner);
1416 }
1417 }
1418
1419 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1420 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1421 in CU. */
1422
1423 static void
1424 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1425 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1426 {
1427 struct objfile *objfile = cu->objfile;
1428 bfd *abfd = objfile->obfd;
1429 struct partial_die_info *pdi;
1430
1431 /* Now, march along the PDI's, descending into ones which have
1432 interesting children but skipping the children of the other ones,
1433 until we reach the end of the compilation unit. */
1434
1435 pdi = first_die;
1436
1437 while (pdi != NULL)
1438 {
1439 fixup_partial_die (pdi, cu);
1440
1441 /* Anonymous namespaces have no name but have interesting
1442 children, so we need to look at them. Ditto for anonymous
1443 enums. */
1444
1445 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1446 || pdi->tag == DW_TAG_enumeration_type)
1447 {
1448 switch (pdi->tag)
1449 {
1450 case DW_TAG_subprogram:
1451 if (pdi->has_pc_info)
1452 {
1453 if (pdi->lowpc < *lowpc)
1454 {
1455 *lowpc = pdi->lowpc;
1456 }
1457 if (pdi->highpc > *highpc)
1458 {
1459 *highpc = pdi->highpc;
1460 }
1461 if (!pdi->is_declaration)
1462 {
1463 add_partial_symbol (pdi, cu);
1464 }
1465 }
1466 break;
1467 case DW_TAG_variable:
1468 case DW_TAG_typedef:
1469 case DW_TAG_union_type:
1470 if (!pdi->is_declaration)
1471 {
1472 add_partial_symbol (pdi, cu);
1473 }
1474 break;
1475 case DW_TAG_class_type:
1476 case DW_TAG_structure_type:
1477 if (!pdi->is_declaration)
1478 {
1479 add_partial_symbol (pdi, cu);
1480 }
1481 break;
1482 case DW_TAG_enumeration_type:
1483 if (!pdi->is_declaration)
1484 add_partial_enumeration (pdi, cu);
1485 break;
1486 case DW_TAG_base_type:
1487 case DW_TAG_subrange_type:
1488 /* File scope base type definitions are added to the partial
1489 symbol table. */
1490 add_partial_symbol (pdi, cu);
1491 break;
1492 case DW_TAG_namespace:
1493 add_partial_namespace (pdi, lowpc, highpc, cu);
1494 break;
1495 default:
1496 break;
1497 }
1498 }
1499
1500 /* If the die has a sibling, skip to the sibling. */
1501
1502 pdi = pdi->die_sibling;
1503 }
1504 }
1505
1506 /* Functions used to compute the fully scoped name of a partial DIE.
1507
1508 Normally, this is simple. For C++, the parent DIE's fully scoped
1509 name is concatenated with "::" and the partial DIE's name.
1510 Enumerators are an exception; they use the scope of their parent
1511 enumeration type, i.e. the name of the enumeration type is not
1512 prepended to the enumerator.
1513
1514 There are two complexities. One is DW_AT_specification; in this
1515 case "parent" means the parent of the target of the specification,
1516 instead of the direct parent of the DIE. The other is compilers
1517 which do not emit DW_TAG_namespace; in this case we try to guess
1518 the fully qualified name of structure types from their members'
1519 linkage names. This must be done using the DIE's children rather
1520 than the children of any DW_AT_specification target. We only need
1521 to do this for structures at the top level, i.e. if the target of
1522 any DW_AT_specification (if any; otherwise the DIE itself) does not
1523 have a parent. */
1524
1525 /* Compute the scope prefix associated with PDI's parent, in
1526 compilation unit CU. The result will be allocated on CU's
1527 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1528 field. NULL is returned if no prefix is necessary. */
1529 static char *
1530 partial_die_parent_scope (struct partial_die_info *pdi,
1531 struct dwarf2_cu *cu)
1532 {
1533 char *grandparent_scope;
1534 struct partial_die_info *parent, *real_pdi;
1535 struct dwarf2_cu *spec_cu;
1536
1537 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1538 then this means the parent of the specification DIE. */
1539
1540 real_pdi = pdi;
1541 spec_cu = cu;
1542 while (real_pdi->has_specification)
1543 real_pdi = find_partial_die (real_pdi->spec_offset, spec_cu, &spec_cu);
1544
1545 parent = real_pdi->die_parent;
1546 if (parent == NULL)
1547 return NULL;
1548
1549 if (parent->scope_set)
1550 return parent->scope;
1551
1552 fixup_partial_die (parent, cu);
1553
1554 grandparent_scope = partial_die_parent_scope (parent, spec_cu);
1555
1556 if (parent->tag == DW_TAG_namespace
1557 || parent->tag == DW_TAG_structure_type
1558 || parent->tag == DW_TAG_class_type
1559 || parent->tag == DW_TAG_union_type)
1560 {
1561 if (grandparent_scope == NULL)
1562 parent->scope = parent->name;
1563 else
1564 parent->scope = obconcat (&cu->comp_unit_obstack, grandparent_scope,
1565 "::", parent->name);
1566 }
1567 else if (parent->tag == DW_TAG_enumeration_type)
1568 /* Enumerators should not get the name of the enumeration as a prefix. */
1569 parent->scope = grandparent_scope;
1570 else
1571 {
1572 /* FIXME drow/2004-04-01: What should we be doing with
1573 function-local names? For partial symbols, we should probably be
1574 ignoring them. */
1575 complaint (&symfile_complaints,
1576 "unhandled containing DIE tag %d for DIE at %d",
1577 parent->tag, pdi->offset);
1578 parent->scope = grandparent_scope;
1579 }
1580
1581 parent->scope_set = 1;
1582 return parent->scope;
1583 }
1584
1585 /* Return the fully scoped name associated with PDI, from compilation unit
1586 CU. The result will be allocated with malloc. */
1587 static char *
1588 partial_die_full_name (struct partial_die_info *pdi,
1589 struct dwarf2_cu *cu)
1590 {
1591 char *parent_scope;
1592
1593 parent_scope = partial_die_parent_scope (pdi, cu);
1594 if (parent_scope == NULL)
1595 return NULL;
1596 else
1597 return concat (parent_scope, "::", pdi->name, NULL);
1598 }
1599
1600 static void
1601 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1602 {
1603 struct objfile *objfile = cu->objfile;
1604 CORE_ADDR addr = 0;
1605 char *actual_name;
1606 const char *my_prefix;
1607 const struct partial_symbol *psym = NULL;
1608 CORE_ADDR baseaddr;
1609 int built_actual_name = 0;
1610
1611 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1612
1613 actual_name = NULL;
1614
1615 if (pdi_needs_namespace (pdi->tag))
1616 {
1617 actual_name = partial_die_full_name (pdi, cu);
1618 if (actual_name)
1619 built_actual_name = 1;
1620 }
1621
1622 if (actual_name == NULL)
1623 actual_name = pdi->name;
1624
1625 switch (pdi->tag)
1626 {
1627 case DW_TAG_subprogram:
1628 if (pdi->is_external)
1629 {
1630 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1631 mst_text, objfile); */
1632 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1633 VAR_DOMAIN, LOC_BLOCK,
1634 &objfile->global_psymbols,
1635 0, pdi->lowpc + baseaddr,
1636 cu->language, objfile);
1637 }
1638 else
1639 {
1640 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1641 mst_file_text, objfile); */
1642 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1643 VAR_DOMAIN, LOC_BLOCK,
1644 &objfile->static_psymbols,
1645 0, pdi->lowpc + baseaddr,
1646 cu->language, objfile);
1647 }
1648 break;
1649 case DW_TAG_variable:
1650 if (pdi->is_external)
1651 {
1652 /* Global Variable.
1653 Don't enter into the minimal symbol tables as there is
1654 a minimal symbol table entry from the ELF symbols already.
1655 Enter into partial symbol table if it has a location
1656 descriptor or a type.
1657 If the location descriptor is missing, new_symbol will create
1658 a LOC_UNRESOLVED symbol, the address of the variable will then
1659 be determined from the minimal symbol table whenever the variable
1660 is referenced.
1661 The address for the partial symbol table entry is not
1662 used by GDB, but it comes in handy for debugging partial symbol
1663 table building. */
1664
1665 if (pdi->locdesc)
1666 addr = decode_locdesc (pdi->locdesc, cu);
1667 if (pdi->locdesc || pdi->has_type)
1668 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1669 VAR_DOMAIN, LOC_STATIC,
1670 &objfile->global_psymbols,
1671 0, addr + baseaddr,
1672 cu->language, objfile);
1673 }
1674 else
1675 {
1676 /* Static Variable. Skip symbols without location descriptors. */
1677 if (pdi->locdesc == NULL)
1678 return;
1679 addr = decode_locdesc (pdi->locdesc, cu);
1680 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1681 mst_file_data, objfile); */
1682 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1683 VAR_DOMAIN, LOC_STATIC,
1684 &objfile->static_psymbols,
1685 0, addr + baseaddr,
1686 cu->language, objfile);
1687 }
1688 break;
1689 case DW_TAG_typedef:
1690 case DW_TAG_base_type:
1691 case DW_TAG_subrange_type:
1692 add_psymbol_to_list (actual_name, strlen (actual_name),
1693 VAR_DOMAIN, LOC_TYPEDEF,
1694 &objfile->static_psymbols,
1695 0, (CORE_ADDR) 0, cu->language, objfile);
1696 break;
1697 case DW_TAG_namespace:
1698 add_psymbol_to_list (actual_name, strlen (actual_name),
1699 VAR_DOMAIN, LOC_TYPEDEF,
1700 &objfile->global_psymbols,
1701 0, (CORE_ADDR) 0, cu->language, objfile);
1702 break;
1703 case DW_TAG_class_type:
1704 case DW_TAG_structure_type:
1705 case DW_TAG_union_type:
1706 case DW_TAG_enumeration_type:
1707 /* Skip aggregate types without children, these are external
1708 references. */
1709 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1710 static vs. global. */
1711 if (pdi->has_children == 0)
1712 return;
1713 add_psymbol_to_list (actual_name, strlen (actual_name),
1714 STRUCT_DOMAIN, LOC_TYPEDEF,
1715 cu->language == language_cplus
1716 ? &objfile->global_psymbols
1717 : &objfile->static_psymbols,
1718 0, (CORE_ADDR) 0, cu->language, objfile);
1719
1720 if (cu->language == language_cplus)
1721 {
1722 /* For C++, these implicitly act as typedefs as well. */
1723 add_psymbol_to_list (actual_name, strlen (actual_name),
1724 VAR_DOMAIN, LOC_TYPEDEF,
1725 &objfile->global_psymbols,
1726 0, (CORE_ADDR) 0, cu->language, objfile);
1727 }
1728 break;
1729 case DW_TAG_enumerator:
1730 add_psymbol_to_list (actual_name, strlen (actual_name),
1731 VAR_DOMAIN, LOC_CONST,
1732 cu->language == language_cplus
1733 ? &objfile->global_psymbols
1734 : &objfile->static_psymbols,
1735 0, (CORE_ADDR) 0, cu->language, objfile);
1736 break;
1737 default:
1738 break;
1739 }
1740
1741 /* Check to see if we should scan the name for possible namespace
1742 info. Only do this if this is C++, if we don't have namespace
1743 debugging info in the file, if the psym is of an appropriate type
1744 (otherwise we'll have psym == NULL), and if we actually had a
1745 mangled name to begin with. */
1746
1747 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
1748 cases which do not set PSYM above? */
1749
1750 if (cu->language == language_cplus
1751 && cu->has_namespace_info == 0
1752 && psym != NULL
1753 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
1754 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
1755 objfile);
1756
1757 if (built_actual_name)
1758 xfree (actual_name);
1759 }
1760
1761 /* Determine whether a die of type TAG living in a C++ class or
1762 namespace needs to have the name of the scope prepended to the
1763 name listed in the die. */
1764
1765 static int
1766 pdi_needs_namespace (enum dwarf_tag tag)
1767 {
1768 switch (tag)
1769 {
1770 case DW_TAG_namespace:
1771 case DW_TAG_typedef:
1772 case DW_TAG_class_type:
1773 case DW_TAG_structure_type:
1774 case DW_TAG_union_type:
1775 case DW_TAG_enumeration_type:
1776 case DW_TAG_enumerator:
1777 return 1;
1778 default:
1779 return 0;
1780 }
1781 }
1782
1783 /* Read a partial die corresponding to a namespace; also, add a symbol
1784 corresponding to that namespace to the symbol table. NAMESPACE is
1785 the name of the enclosing namespace. */
1786
1787 static void
1788 add_partial_namespace (struct partial_die_info *pdi,
1789 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1790 struct dwarf2_cu *cu)
1791 {
1792 struct objfile *objfile = cu->objfile;
1793
1794 /* Add a symbol for the namespace. */
1795
1796 add_partial_symbol (pdi, cu);
1797
1798 /* Now scan partial symbols in that namespace. */
1799
1800 if (pdi->has_children)
1801 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
1802 }
1803
1804 /* See if we can figure out if the class lives in a namespace. We do
1805 this by looking for a member function; its demangled name will
1806 contain namespace info, if there is any. */
1807
1808 static void
1809 guess_structure_name (struct partial_die_info *struct_pdi,
1810 struct dwarf2_cu *cu)
1811 {
1812 if (cu->language == language_cplus
1813 && cu->has_namespace_info == 0
1814 && struct_pdi->has_children)
1815 {
1816 /* NOTE: carlton/2003-10-07: Getting the info this way changes
1817 what template types look like, because the demangler
1818 frequently doesn't give the same name as the debug info. We
1819 could fix this by only using the demangled name to get the
1820 prefix (but see comment in read_structure_type). */
1821
1822 struct partial_die_info *child_pdi = struct_pdi->die_child;
1823 struct partial_die_info *real_pdi;
1824 struct dwarf2_cu *spec_cu;
1825
1826 /* If this DIE (this DIE's specification, if any) has a parent, then
1827 we should not do this. We'll prepend the parent's fully qualified
1828 name when we create the partial symbol. */
1829
1830 real_pdi = struct_pdi;
1831 spec_cu = cu;
1832 while (real_pdi->has_specification)
1833 real_pdi = find_partial_die (real_pdi->spec_offset, spec_cu, &spec_cu);
1834
1835 if (real_pdi->die_parent != NULL)
1836 return;
1837
1838 while (child_pdi != NULL)
1839 {
1840 if (child_pdi->tag == DW_TAG_subprogram)
1841 {
1842 char *actual_class_name
1843 = class_name_from_physname (child_pdi->name);
1844 if (actual_class_name != NULL)
1845 {
1846 struct_pdi->name
1847 = obsavestring (actual_class_name,
1848 strlen (actual_class_name),
1849 &cu->comp_unit_obstack);
1850 xfree (actual_class_name);
1851 }
1852 break;
1853 }
1854
1855 child_pdi = child_pdi->die_sibling;
1856 }
1857 }
1858 }
1859
1860 /* Read a partial die corresponding to an enumeration type. */
1861
1862 static void
1863 add_partial_enumeration (struct partial_die_info *enum_pdi,
1864 struct dwarf2_cu *cu)
1865 {
1866 struct objfile *objfile = cu->objfile;
1867 bfd *abfd = objfile->obfd;
1868 struct partial_die_info *pdi;
1869
1870 if (enum_pdi->name != NULL)
1871 add_partial_symbol (enum_pdi, cu);
1872
1873 pdi = enum_pdi->die_child;
1874 while (pdi)
1875 {
1876 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
1877 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
1878 else
1879 add_partial_symbol (pdi, cu);
1880 pdi = pdi->die_sibling;
1881 }
1882 }
1883
1884 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
1885 Return the corresponding abbrev, or NULL if the number is zero (indicating
1886 an empty DIE). In either case *BYTES_READ will be set to the length of
1887 the initial number. */
1888
1889 static struct abbrev_info *
1890 peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
1891 {
1892 bfd *abfd = cu->objfile->obfd;
1893 unsigned int abbrev_number;
1894 struct abbrev_info *abbrev;
1895
1896 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
1897
1898 if (abbrev_number == 0)
1899 return NULL;
1900
1901 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
1902 if (!abbrev)
1903 {
1904 error ("Dwarf Error: Could not find abbrev number %d [in module %s]", abbrev_number,
1905 bfd_get_filename (abfd));
1906 }
1907
1908 return abbrev;
1909 }
1910
1911 /* Scan the debug information for CU starting at INFO_PTR. Returns a
1912 pointer to the end of a series of DIEs, terminated by an empty
1913 DIE. Any children of the skipped DIEs will also be skipped. */
1914
1915 static char *
1916 skip_children (char *info_ptr, struct dwarf2_cu *cu)
1917 {
1918 struct abbrev_info *abbrev;
1919 unsigned int bytes_read;
1920
1921 while (1)
1922 {
1923 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1924 if (abbrev == NULL)
1925 return info_ptr + bytes_read;
1926 else
1927 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
1928 }
1929 }
1930
1931 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
1932 should point just after the initial uleb128 of a DIE, and the
1933 abbrev corresponding to that skipped uleb128 should be passed in
1934 ABBREV. Returns a pointer to this DIE's sibling, skipping any
1935 children. */
1936
1937 static char *
1938 skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1939 struct dwarf2_cu *cu)
1940 {
1941 unsigned int bytes_read;
1942 struct attribute attr;
1943 bfd *abfd = cu->objfile->obfd;
1944 unsigned int form, i;
1945
1946 for (i = 0; i < abbrev->num_attrs; i++)
1947 {
1948 /* The only abbrev we care about is DW_AT_sibling. */
1949 if (abbrev->attrs[i].name == DW_AT_sibling)
1950 {
1951 read_attribute (&attr, &abbrev->attrs[i],
1952 abfd, info_ptr, cu);
1953 if (attr.form == DW_FORM_ref_addr)
1954 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
1955 else
1956 return dwarf2_per_objfile->info_buffer
1957 + dwarf2_get_ref_die_offset (&attr, cu);
1958 }
1959
1960 /* If it isn't DW_AT_sibling, skip this attribute. */
1961 form = abbrev->attrs[i].form;
1962 skip_attribute:
1963 switch (form)
1964 {
1965 case DW_FORM_addr:
1966 case DW_FORM_ref_addr:
1967 info_ptr += cu->header.addr_size;
1968 break;
1969 case DW_FORM_data1:
1970 case DW_FORM_ref1:
1971 case DW_FORM_flag:
1972 info_ptr += 1;
1973 break;
1974 case DW_FORM_data2:
1975 case DW_FORM_ref2:
1976 info_ptr += 2;
1977 break;
1978 case DW_FORM_data4:
1979 case DW_FORM_ref4:
1980 info_ptr += 4;
1981 break;
1982 case DW_FORM_data8:
1983 case DW_FORM_ref8:
1984 info_ptr += 8;
1985 break;
1986 case DW_FORM_string:
1987 read_string (abfd, info_ptr, &bytes_read);
1988 info_ptr += bytes_read;
1989 break;
1990 case DW_FORM_strp:
1991 info_ptr += cu->header.offset_size;
1992 break;
1993 case DW_FORM_block:
1994 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
1995 info_ptr += bytes_read;
1996 break;
1997 case DW_FORM_block1:
1998 info_ptr += 1 + read_1_byte (abfd, info_ptr);
1999 break;
2000 case DW_FORM_block2:
2001 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2002 break;
2003 case DW_FORM_block4:
2004 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2005 break;
2006 case DW_FORM_sdata:
2007 case DW_FORM_udata:
2008 case DW_FORM_ref_udata:
2009 info_ptr = skip_leb128 (abfd, info_ptr);
2010 break;
2011 case DW_FORM_indirect:
2012 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2013 info_ptr += bytes_read;
2014 /* We need to continue parsing from here, so just go back to
2015 the top. */
2016 goto skip_attribute;
2017
2018 default:
2019 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
2020 dwarf_form_name (form),
2021 bfd_get_filename (abfd));
2022 }
2023 }
2024
2025 if (abbrev->has_children)
2026 return skip_children (info_ptr, cu);
2027 else
2028 return info_ptr;
2029 }
2030
2031 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2032 the next DIE after ORIG_PDI. */
2033
2034 static char *
2035 locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
2036 bfd *abfd, struct dwarf2_cu *cu)
2037 {
2038 /* Do we know the sibling already? */
2039
2040 if (orig_pdi->sibling)
2041 return orig_pdi->sibling;
2042
2043 /* Are there any children to deal with? */
2044
2045 if (!orig_pdi->has_children)
2046 return info_ptr;
2047
2048 /* Skip the children the long way. */
2049
2050 return skip_children (info_ptr, cu);
2051 }
2052
2053 /* Expand this partial symbol table into a full symbol table. */
2054
2055 static void
2056 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2057 {
2058 /* FIXME: This is barely more than a stub. */
2059 if (pst != NULL)
2060 {
2061 if (pst->readin)
2062 {
2063 warning ("bug: psymtab for %s is already read in.", pst->filename);
2064 }
2065 else
2066 {
2067 if (info_verbose)
2068 {
2069 printf_filtered ("Reading in symbols for %s...", pst->filename);
2070 gdb_flush (gdb_stdout);
2071 }
2072
2073 psymtab_to_symtab_1 (pst);
2074
2075 /* Finish up the debug error message. */
2076 if (info_verbose)
2077 printf_filtered ("done.\n");
2078 }
2079 }
2080 }
2081
2082 static void
2083 psymtab_to_symtab_1 (struct partial_symtab *pst)
2084 {
2085 struct objfile *objfile = pst->objfile;
2086 bfd *abfd = objfile->obfd;
2087 struct dwarf2_cu cu;
2088 struct die_info *dies;
2089 unsigned long offset;
2090 CORE_ADDR lowpc, highpc;
2091 struct die_info *child_die;
2092 char *info_ptr;
2093 struct symtab *symtab;
2094 struct cleanup *back_to;
2095 struct attribute *attr;
2096 CORE_ADDR baseaddr;
2097 int i;
2098
2099 for (i = 0; i < pst->number_of_dependencies; i++)
2100 if (!pst->dependencies[i]->readin)
2101 {
2102 /* Inform about additional files that need to be read in. */
2103 if (info_verbose)
2104 {
2105 fputs_filtered (" ", gdb_stdout);
2106 wrap_here ("");
2107 fputs_filtered ("and ", gdb_stdout);
2108 wrap_here ("");
2109 printf_filtered ("%s...", pst->dependencies[i]->filename);
2110 wrap_here (""); /* Flush output */
2111 gdb_flush (gdb_stdout);
2112 }
2113 psymtab_to_symtab_1 (pst->dependencies[i]);
2114 }
2115
2116 if (pst->read_symtab_private == NULL)
2117 {
2118 /* It's an include file, no symbols to read for it.
2119 Everything is in the parent symtab. */
2120 pst->readin = 1;
2121 return;
2122 }
2123
2124 dwarf2_per_objfile = objfile_data (pst->objfile, dwarf2_objfile_data_key);
2125
2126 /* Set local variables from the partial symbol table info. */
2127 offset = DWARF_INFO_OFFSET (pst);
2128
2129 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2130 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2131
2132 /* We're in the global namespace. */
2133 processing_current_prefix = "";
2134
2135 obstack_init (&cu.comp_unit_obstack);
2136 back_to = make_cleanup (free_stack_comp_unit, &cu);
2137
2138 buildsym_init ();
2139 make_cleanup (really_free_pendings, NULL);
2140
2141 cu.objfile = objfile;
2142
2143 /* read in the comp_unit header */
2144 info_ptr = read_comp_unit_head (&cu.header, info_ptr, abfd);
2145
2146 /* Read the abbrevs for this compilation unit */
2147 dwarf2_read_abbrevs (abfd, &cu);
2148 make_cleanup (dwarf2_free_abbrev_table, &cu);
2149
2150 cu.header.offset = offset;
2151
2152 cu.list_in_scope = &file_symbols;
2153
2154 dies = read_comp_unit (info_ptr, abfd, &cu);
2155
2156 make_cleanup_free_die_list (dies);
2157
2158 /* Find the base address of the compilation unit for range lists and
2159 location lists. It will normally be specified by DW_AT_low_pc.
2160 In DWARF-3 draft 4, the base address could be overridden by
2161 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2162 compilation units with discontinuous ranges. */
2163
2164 cu.header.base_known = 0;
2165 cu.header.base_address = 0;
2166
2167 attr = dwarf2_attr (dies, DW_AT_entry_pc, &cu);
2168 if (attr)
2169 {
2170 cu.header.base_address = DW_ADDR (attr);
2171 cu.header.base_known = 1;
2172 }
2173 else
2174 {
2175 attr = dwarf2_attr (dies, DW_AT_low_pc, &cu);
2176 if (attr)
2177 {
2178 cu.header.base_address = DW_ADDR (attr);
2179 cu.header.base_known = 1;
2180 }
2181 }
2182
2183 /* Do line number decoding in read_file_scope () */
2184 process_die (dies, &cu);
2185
2186 /* Some compilers don't define a DW_AT_high_pc attribute for the
2187 compilation unit. If the DW_AT_high_pc is missing, synthesize
2188 it, by scanning the DIE's below the compilation unit. */
2189 get_scope_pc_bounds (dies, &lowpc, &highpc, &cu);
2190
2191 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2192
2193 /* Set symtab language to language from DW_AT_language.
2194 If the compilation is from a C file generated by language preprocessors,
2195 do not set the language if it was already deduced by start_subfile. */
2196 if (symtab != NULL
2197 && !(cu.language == language_c && symtab->language != language_c))
2198 {
2199 symtab->language = cu.language;
2200 }
2201 pst->symtab = symtab;
2202 pst->readin = 1;
2203
2204 do_cleanups (back_to);
2205 }
2206
2207 /* Process a die and its children. */
2208
2209 static void
2210 process_die (struct die_info *die, struct dwarf2_cu *cu)
2211 {
2212 switch (die->tag)
2213 {
2214 case DW_TAG_padding:
2215 break;
2216 case DW_TAG_compile_unit:
2217 read_file_scope (die, cu);
2218 break;
2219 case DW_TAG_subprogram:
2220 read_subroutine_type (die, cu);
2221 read_func_scope (die, cu);
2222 break;
2223 case DW_TAG_inlined_subroutine:
2224 /* FIXME: These are ignored for now.
2225 They could be used to set breakpoints on all inlined instances
2226 of a function and make GDB `next' properly over inlined functions. */
2227 break;
2228 case DW_TAG_lexical_block:
2229 case DW_TAG_try_block:
2230 case DW_TAG_catch_block:
2231 read_lexical_block_scope (die, cu);
2232 break;
2233 case DW_TAG_class_type:
2234 case DW_TAG_structure_type:
2235 case DW_TAG_union_type:
2236 read_structure_type (die, cu);
2237 process_structure_scope (die, cu);
2238 break;
2239 case DW_TAG_enumeration_type:
2240 read_enumeration_type (die, cu);
2241 process_enumeration_scope (die, cu);
2242 break;
2243
2244 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2245 a symbol or process any children. Therefore it doesn't do anything
2246 that won't be done on-demand by read_type_die. */
2247 case DW_TAG_subroutine_type:
2248 read_subroutine_type (die, cu);
2249 break;
2250 case DW_TAG_array_type:
2251 read_array_type (die, cu);
2252 break;
2253 case DW_TAG_pointer_type:
2254 read_tag_pointer_type (die, cu);
2255 break;
2256 case DW_TAG_ptr_to_member_type:
2257 read_tag_ptr_to_member_type (die, cu);
2258 break;
2259 case DW_TAG_reference_type:
2260 read_tag_reference_type (die, cu);
2261 break;
2262 case DW_TAG_string_type:
2263 read_tag_string_type (die, cu);
2264 break;
2265 /* END FIXME */
2266
2267 case DW_TAG_base_type:
2268 read_base_type (die, cu);
2269 /* Add a typedef symbol for the type definition, if it has a
2270 DW_AT_name. */
2271 new_symbol (die, die->type, cu);
2272 break;
2273 case DW_TAG_subrange_type:
2274 read_subrange_type (die, cu);
2275 /* Add a typedef symbol for the type definition, if it has a
2276 DW_AT_name. */
2277 new_symbol (die, die->type, cu);
2278 break;
2279 case DW_TAG_common_block:
2280 read_common_block (die, cu);
2281 break;
2282 case DW_TAG_common_inclusion:
2283 break;
2284 case DW_TAG_namespace:
2285 processing_has_namespace_info = 1;
2286 read_namespace (die, cu);
2287 break;
2288 case DW_TAG_imported_declaration:
2289 case DW_TAG_imported_module:
2290 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2291 information contained in these. DW_TAG_imported_declaration
2292 dies shouldn't have children; DW_TAG_imported_module dies
2293 shouldn't in the C++ case, but conceivably could in the
2294 Fortran case, so we'll have to replace this gdb_assert if
2295 Fortran compilers start generating that info. */
2296 processing_has_namespace_info = 1;
2297 gdb_assert (die->child == NULL);
2298 break;
2299 default:
2300 new_symbol (die, NULL, cu);
2301 break;
2302 }
2303 }
2304
2305 static void
2306 initialize_cu_func_list (struct dwarf2_cu *cu)
2307 {
2308 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2309 }
2310
2311 static void
2312 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2313 {
2314 struct objfile *objfile = cu->objfile;
2315 struct comp_unit_head *cu_header = &cu->header;
2316 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2317 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2318 CORE_ADDR highpc = ((CORE_ADDR) 0);
2319 struct attribute *attr;
2320 char *name = "<unknown>";
2321 char *comp_dir = NULL;
2322 struct die_info *child_die;
2323 bfd *abfd = objfile->obfd;
2324 struct line_header *line_header = 0;
2325 CORE_ADDR baseaddr;
2326
2327 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2328
2329 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2330
2331 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2332 from finish_block. */
2333 if (lowpc == ((CORE_ADDR) -1))
2334 lowpc = highpc;
2335 lowpc += baseaddr;
2336 highpc += baseaddr;
2337
2338 attr = dwarf2_attr (die, DW_AT_name, cu);
2339 if (attr)
2340 {
2341 name = DW_STRING (attr);
2342 }
2343 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2344 if (attr)
2345 {
2346 comp_dir = DW_STRING (attr);
2347 if (comp_dir)
2348 {
2349 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2350 directory, get rid of it. */
2351 char *cp = strchr (comp_dir, ':');
2352
2353 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2354 comp_dir = cp + 1;
2355 }
2356 }
2357
2358 attr = dwarf2_attr (die, DW_AT_language, cu);
2359 if (attr)
2360 {
2361 set_cu_language (DW_UNSND (attr), cu);
2362 }
2363
2364 /* We assume that we're processing GCC output. */
2365 processing_gcc_compilation = 2;
2366 #if 0
2367 /* FIXME:Do something here. */
2368 if (dip->at_producer != NULL)
2369 {
2370 handle_producer (dip->at_producer);
2371 }
2372 #endif
2373
2374 /* The compilation unit may be in a different language or objfile,
2375 zero out all remembered fundamental types. */
2376 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2377
2378 start_symtab (name, comp_dir, lowpc);
2379 record_debugformat ("DWARF 2");
2380
2381 initialize_cu_func_list (cu);
2382
2383 /* Process all dies in compilation unit. */
2384 if (die->child != NULL)
2385 {
2386 child_die = die->child;
2387 while (child_die && child_die->tag)
2388 {
2389 process_die (child_die, cu);
2390 child_die = sibling_die (child_die);
2391 }
2392 }
2393
2394 /* Decode line number information if present. */
2395 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2396 if (attr)
2397 {
2398 unsigned int line_offset = DW_UNSND (attr);
2399 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2400 if (line_header)
2401 {
2402 make_cleanup ((make_cleanup_ftype *) free_line_header,
2403 (void *) line_header);
2404 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2405 }
2406 }
2407
2408 /* Decode macro information, if present. Dwarf 2 macro information
2409 refers to information in the line number info statement program
2410 header, so we can only read it if we've read the header
2411 successfully. */
2412 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2413 if (attr && line_header)
2414 {
2415 unsigned int macro_offset = DW_UNSND (attr);
2416 dwarf_decode_macros (line_header, macro_offset,
2417 comp_dir, abfd, cu);
2418 }
2419 do_cleanups (back_to);
2420 }
2421
2422 static void
2423 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2424 struct dwarf2_cu *cu)
2425 {
2426 struct function_range *thisfn;
2427
2428 thisfn = (struct function_range *)
2429 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2430 thisfn->name = name;
2431 thisfn->lowpc = lowpc;
2432 thisfn->highpc = highpc;
2433 thisfn->seen_line = 0;
2434 thisfn->next = NULL;
2435
2436 if (cu->last_fn == NULL)
2437 cu->first_fn = thisfn;
2438 else
2439 cu->last_fn->next = thisfn;
2440
2441 cu->last_fn = thisfn;
2442 }
2443
2444 static void
2445 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2446 {
2447 struct objfile *objfile = cu->objfile;
2448 struct context_stack *new;
2449 CORE_ADDR lowpc;
2450 CORE_ADDR highpc;
2451 struct die_info *child_die;
2452 struct attribute *attr;
2453 char *name;
2454 const char *previous_prefix = processing_current_prefix;
2455 struct cleanup *back_to = NULL;
2456 CORE_ADDR baseaddr;
2457
2458 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2459
2460 name = dwarf2_linkage_name (die, cu);
2461
2462 /* Ignore functions with missing or empty names and functions with
2463 missing or invalid low and high pc attributes. */
2464 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2465 return;
2466
2467 if (cu->language == language_cplus)
2468 {
2469 struct die_info *spec_die = die_specification (die, cu);
2470
2471 /* NOTE: carlton/2004-01-23: We have to be careful in the
2472 presence of DW_AT_specification. For example, with GCC 3.4,
2473 given the code
2474
2475 namespace N {
2476 void foo() {
2477 // Definition of N::foo.
2478 }
2479 }
2480
2481 then we'll have a tree of DIEs like this:
2482
2483 1: DW_TAG_compile_unit
2484 2: DW_TAG_namespace // N
2485 3: DW_TAG_subprogram // declaration of N::foo
2486 4: DW_TAG_subprogram // definition of N::foo
2487 DW_AT_specification // refers to die #3
2488
2489 Thus, when processing die #4, we have to pretend that we're
2490 in the context of its DW_AT_specification, namely the contex
2491 of die #3. */
2492
2493 if (spec_die != NULL)
2494 {
2495 char *specification_prefix = determine_prefix (spec_die, cu);
2496 processing_current_prefix = specification_prefix;
2497 back_to = make_cleanup (xfree, specification_prefix);
2498 }
2499 }
2500
2501 lowpc += baseaddr;
2502 highpc += baseaddr;
2503
2504 /* Record the function range for dwarf_decode_lines. */
2505 add_to_cu_func_list (name, lowpc, highpc, cu);
2506
2507 if (objfile->ei.entry_point >= lowpc &&
2508 objfile->ei.entry_point < highpc)
2509 {
2510 objfile->ei.entry_func_lowpc = lowpc;
2511 objfile->ei.entry_func_highpc = highpc;
2512 }
2513
2514 new = push_context (0, lowpc);
2515 new->name = new_symbol (die, die->type, cu);
2516
2517 /* If there is a location expression for DW_AT_frame_base, record
2518 it. */
2519 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2520 if (attr)
2521 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2522 expression is being recorded directly in the function's symbol
2523 and not in a separate frame-base object. I guess this hack is
2524 to avoid adding some sort of frame-base adjunct/annex to the
2525 function's symbol :-(. The problem with doing this is that it
2526 results in a function symbol with a location expression that
2527 has nothing to do with the location of the function, ouch! The
2528 relationship should be: a function's symbol has-a frame base; a
2529 frame-base has-a location expression. */
2530 dwarf2_symbol_mark_computed (attr, new->name, cu);
2531
2532 cu->list_in_scope = &local_symbols;
2533
2534 if (die->child != NULL)
2535 {
2536 child_die = die->child;
2537 while (child_die && child_die->tag)
2538 {
2539 process_die (child_die, cu);
2540 child_die = sibling_die (child_die);
2541 }
2542 }
2543
2544 new = pop_context ();
2545 /* Make a block for the local symbols within. */
2546 finish_block (new->name, &local_symbols, new->old_blocks,
2547 lowpc, highpc, objfile);
2548
2549 /* In C++, we can have functions nested inside functions (e.g., when
2550 a function declares a class that has methods). This means that
2551 when we finish processing a function scope, we may need to go
2552 back to building a containing block's symbol lists. */
2553 local_symbols = new->locals;
2554 param_symbols = new->params;
2555
2556 /* If we've finished processing a top-level function, subsequent
2557 symbols go in the file symbol list. */
2558 if (outermost_context_p ())
2559 cu->list_in_scope = &file_symbols;
2560
2561 processing_current_prefix = previous_prefix;
2562 if (back_to != NULL)
2563 do_cleanups (back_to);
2564 }
2565
2566 /* Process all the DIES contained within a lexical block scope. Start
2567 a new scope, process the dies, and then close the scope. */
2568
2569 static void
2570 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2571 {
2572 struct objfile *objfile = cu->objfile;
2573 struct context_stack *new;
2574 CORE_ADDR lowpc, highpc;
2575 struct die_info *child_die;
2576 CORE_ADDR baseaddr;
2577
2578 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2579
2580 /* Ignore blocks with missing or invalid low and high pc attributes. */
2581 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2582 as multiple lexical blocks? Handling children in a sane way would
2583 be nasty. Might be easier to properly extend generic blocks to
2584 describe ranges. */
2585 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2586 return;
2587 lowpc += baseaddr;
2588 highpc += baseaddr;
2589
2590 push_context (0, lowpc);
2591 if (die->child != NULL)
2592 {
2593 child_die = die->child;
2594 while (child_die && child_die->tag)
2595 {
2596 process_die (child_die, cu);
2597 child_die = sibling_die (child_die);
2598 }
2599 }
2600 new = pop_context ();
2601
2602 if (local_symbols != NULL)
2603 {
2604 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
2605 highpc, objfile);
2606 }
2607 local_symbols = new->locals;
2608 }
2609
2610 /* Get low and high pc attributes from a die. Return 1 if the attributes
2611 are present and valid, otherwise, return 0. Return -1 if the range is
2612 discontinuous, i.e. derived from DW_AT_ranges information. */
2613 static int
2614 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
2615 CORE_ADDR *highpc, struct dwarf2_cu *cu)
2616 {
2617 struct objfile *objfile = cu->objfile;
2618 struct comp_unit_head *cu_header = &cu->header;
2619 struct attribute *attr;
2620 bfd *obfd = objfile->obfd;
2621 CORE_ADDR low = 0;
2622 CORE_ADDR high = 0;
2623 int ret = 0;
2624
2625 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
2626 if (attr)
2627 {
2628 high = DW_ADDR (attr);
2629 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
2630 if (attr)
2631 low = DW_ADDR (attr);
2632 else
2633 /* Found high w/o low attribute. */
2634 return 0;
2635
2636 /* Found consecutive range of addresses. */
2637 ret = 1;
2638 }
2639 else
2640 {
2641 attr = dwarf2_attr (die, DW_AT_ranges, cu);
2642 if (attr != NULL)
2643 {
2644 unsigned int addr_size = cu_header->addr_size;
2645 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
2646 /* Value of the DW_AT_ranges attribute is the offset in the
2647 .debug_ranges section. */
2648 unsigned int offset = DW_UNSND (attr);
2649 /* Base address selection entry. */
2650 CORE_ADDR base;
2651 int found_base;
2652 int dummy;
2653 char *buffer;
2654 CORE_ADDR marker;
2655 int low_set;
2656
2657 found_base = cu_header->base_known;
2658 base = cu_header->base_address;
2659
2660 if (offset >= dwarf2_per_objfile->ranges_size)
2661 {
2662 complaint (&symfile_complaints,
2663 "Offset %d out of bounds for DW_AT_ranges attribute",
2664 offset);
2665 return 0;
2666 }
2667 buffer = dwarf2_per_objfile->ranges_buffer + offset;
2668
2669 /* Read in the largest possible address. */
2670 marker = read_address (obfd, buffer, cu, &dummy);
2671 if ((marker & mask) == mask)
2672 {
2673 /* If we found the largest possible address, then
2674 read the base address. */
2675 base = read_address (obfd, buffer + addr_size, cu, &dummy);
2676 buffer += 2 * addr_size;
2677 offset += 2 * addr_size;
2678 found_base = 1;
2679 }
2680
2681 low_set = 0;
2682
2683 while (1)
2684 {
2685 CORE_ADDR range_beginning, range_end;
2686
2687 range_beginning = read_address (obfd, buffer, cu, &dummy);
2688 buffer += addr_size;
2689 range_end = read_address (obfd, buffer, cu, &dummy);
2690 buffer += addr_size;
2691 offset += 2 * addr_size;
2692
2693 /* An end of list marker is a pair of zero addresses. */
2694 if (range_beginning == 0 && range_end == 0)
2695 /* Found the end of list entry. */
2696 break;
2697
2698 /* Each base address selection entry is a pair of 2 values.
2699 The first is the largest possible address, the second is
2700 the base address. Check for a base address here. */
2701 if ((range_beginning & mask) == mask)
2702 {
2703 /* If we found the largest possible address, then
2704 read the base address. */
2705 base = read_address (obfd, buffer + addr_size, cu, &dummy);
2706 found_base = 1;
2707 continue;
2708 }
2709
2710 if (!found_base)
2711 {
2712 /* We have no valid base address for the ranges
2713 data. */
2714 complaint (&symfile_complaints,
2715 "Invalid .debug_ranges data (no base address)");
2716 return 0;
2717 }
2718
2719 range_beginning += base;
2720 range_end += base;
2721
2722 /* FIXME: This is recording everything as a low-high
2723 segment of consecutive addresses. We should have a
2724 data structure for discontiguous block ranges
2725 instead. */
2726 if (! low_set)
2727 {
2728 low = range_beginning;
2729 high = range_end;
2730 low_set = 1;
2731 }
2732 else
2733 {
2734 if (range_beginning < low)
2735 low = range_beginning;
2736 if (range_end > high)
2737 high = range_end;
2738 }
2739 }
2740
2741 if (! low_set)
2742 /* If the first entry is an end-of-list marker, the range
2743 describes an empty scope, i.e. no instructions. */
2744 return 0;
2745
2746 ret = -1;
2747 }
2748 }
2749
2750 if (high < low)
2751 return 0;
2752
2753 /* When using the GNU linker, .gnu.linkonce. sections are used to
2754 eliminate duplicate copies of functions and vtables and such.
2755 The linker will arbitrarily choose one and discard the others.
2756 The AT_*_pc values for such functions refer to local labels in
2757 these sections. If the section from that file was discarded, the
2758 labels are not in the output, so the relocs get a value of 0.
2759 If this is a discarded function, mark the pc bounds as invalid,
2760 so that GDB will ignore it. */
2761 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
2762 return 0;
2763
2764 *lowpc = low;
2765 *highpc = high;
2766 return ret;
2767 }
2768
2769 /* Get the low and high pc's represented by the scope DIE, and store
2770 them in *LOWPC and *HIGHPC. If the correct values can't be
2771 determined, set *LOWPC to -1 and *HIGHPC to 0. */
2772
2773 static void
2774 get_scope_pc_bounds (struct die_info *die,
2775 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2776 struct dwarf2_cu *cu)
2777 {
2778 CORE_ADDR best_low = (CORE_ADDR) -1;
2779 CORE_ADDR best_high = (CORE_ADDR) 0;
2780 CORE_ADDR current_low, current_high;
2781
2782 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
2783 {
2784 best_low = current_low;
2785 best_high = current_high;
2786 }
2787 else
2788 {
2789 struct die_info *child = die->child;
2790
2791 while (child && child->tag)
2792 {
2793 switch (child->tag) {
2794 case DW_TAG_subprogram:
2795 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
2796 {
2797 best_low = min (best_low, current_low);
2798 best_high = max (best_high, current_high);
2799 }
2800 break;
2801 case DW_TAG_namespace:
2802 /* FIXME: carlton/2004-01-16: Should we do this for
2803 DW_TAG_class_type/DW_TAG_structure_type, too? I think
2804 that current GCC's always emit the DIEs corresponding
2805 to definitions of methods of classes as children of a
2806 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
2807 the DIEs giving the declarations, which could be
2808 anywhere). But I don't see any reason why the
2809 standards says that they have to be there. */
2810 get_scope_pc_bounds (child, &current_low, &current_high, cu);
2811
2812 if (current_low != ((CORE_ADDR) -1))
2813 {
2814 best_low = min (best_low, current_low);
2815 best_high = max (best_high, current_high);
2816 }
2817 break;
2818 default:
2819 /* Ignore. */
2820 break;
2821 }
2822
2823 child = sibling_die (child);
2824 }
2825 }
2826
2827 *lowpc = best_low;
2828 *highpc = best_high;
2829 }
2830
2831 /* Add an aggregate field to the field list. */
2832
2833 static void
2834 dwarf2_add_field (struct field_info *fip, struct die_info *die,
2835 struct dwarf2_cu *cu)
2836 {
2837 struct objfile *objfile = cu->objfile;
2838 struct nextfield *new_field;
2839 struct attribute *attr;
2840 struct field *fp;
2841 char *fieldname = "";
2842
2843 /* Allocate a new field list entry and link it in. */
2844 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2845 make_cleanup (xfree, new_field);
2846 memset (new_field, 0, sizeof (struct nextfield));
2847 new_field->next = fip->fields;
2848 fip->fields = new_field;
2849 fip->nfields++;
2850
2851 /* Handle accessibility and virtuality of field.
2852 The default accessibility for members is public, the default
2853 accessibility for inheritance is private. */
2854 if (die->tag != DW_TAG_inheritance)
2855 new_field->accessibility = DW_ACCESS_public;
2856 else
2857 new_field->accessibility = DW_ACCESS_private;
2858 new_field->virtuality = DW_VIRTUALITY_none;
2859
2860 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
2861 if (attr)
2862 new_field->accessibility = DW_UNSND (attr);
2863 if (new_field->accessibility != DW_ACCESS_public)
2864 fip->non_public_fields = 1;
2865 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
2866 if (attr)
2867 new_field->virtuality = DW_UNSND (attr);
2868
2869 fp = &new_field->field;
2870
2871 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
2872 {
2873 /* Data member other than a C++ static data member. */
2874
2875 /* Get type of field. */
2876 fp->type = die_type (die, cu);
2877
2878 FIELD_STATIC_KIND (*fp) = 0;
2879
2880 /* Get bit size of field (zero if none). */
2881 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
2882 if (attr)
2883 {
2884 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
2885 }
2886 else
2887 {
2888 FIELD_BITSIZE (*fp) = 0;
2889 }
2890
2891 /* Get bit offset of field. */
2892 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
2893 if (attr)
2894 {
2895 FIELD_BITPOS (*fp) =
2896 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
2897 }
2898 else
2899 FIELD_BITPOS (*fp) = 0;
2900 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
2901 if (attr)
2902 {
2903 if (BITS_BIG_ENDIAN)
2904 {
2905 /* For big endian bits, the DW_AT_bit_offset gives the
2906 additional bit offset from the MSB of the containing
2907 anonymous object to the MSB of the field. We don't
2908 have to do anything special since we don't need to
2909 know the size of the anonymous object. */
2910 FIELD_BITPOS (*fp) += DW_UNSND (attr);
2911 }
2912 else
2913 {
2914 /* For little endian bits, compute the bit offset to the
2915 MSB of the anonymous object, subtract off the number of
2916 bits from the MSB of the field to the MSB of the
2917 object, and then subtract off the number of bits of
2918 the field itself. The result is the bit offset of
2919 the LSB of the field. */
2920 int anonymous_size;
2921 int bit_offset = DW_UNSND (attr);
2922
2923 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
2924 if (attr)
2925 {
2926 /* The size of the anonymous object containing
2927 the bit field is explicit, so use the
2928 indicated size (in bytes). */
2929 anonymous_size = DW_UNSND (attr);
2930 }
2931 else
2932 {
2933 /* The size of the anonymous object containing
2934 the bit field must be inferred from the type
2935 attribute of the data member containing the
2936 bit field. */
2937 anonymous_size = TYPE_LENGTH (fp->type);
2938 }
2939 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
2940 - bit_offset - FIELD_BITSIZE (*fp);
2941 }
2942 }
2943
2944 /* Get name of field. */
2945 attr = dwarf2_attr (die, DW_AT_name, cu);
2946 if (attr && DW_STRING (attr))
2947 fieldname = DW_STRING (attr);
2948
2949 /* The name is already allocated along with this objfile, so we don't
2950 need to duplicate it for the type. */
2951 fp->name = fieldname;
2952
2953 /* Change accessibility for artificial fields (e.g. virtual table
2954 pointer or virtual base class pointer) to private. */
2955 if (dwarf2_attr (die, DW_AT_artificial, cu))
2956 {
2957 new_field->accessibility = DW_ACCESS_private;
2958 fip->non_public_fields = 1;
2959 }
2960 }
2961 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
2962 {
2963 /* C++ static member. */
2964
2965 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
2966 is a declaration, but all versions of G++ as of this writing
2967 (so through at least 3.2.1) incorrectly generate
2968 DW_TAG_variable tags. */
2969
2970 char *physname;
2971
2972 /* Get name of field. */
2973 attr = dwarf2_attr (die, DW_AT_name, cu);
2974 if (attr && DW_STRING (attr))
2975 fieldname = DW_STRING (attr);
2976 else
2977 return;
2978
2979 /* Get physical name. */
2980 physname = dwarf2_linkage_name (die, cu);
2981
2982 /* The name is already allocated along with this objfile, so we don't
2983 need to duplicate it for the type. */
2984 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
2985 FIELD_TYPE (*fp) = die_type (die, cu);
2986 FIELD_NAME (*fp) = fieldname;
2987 }
2988 else if (die->tag == DW_TAG_inheritance)
2989 {
2990 /* C++ base class field. */
2991 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
2992 if (attr)
2993 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
2994 * bits_per_byte);
2995 FIELD_BITSIZE (*fp) = 0;
2996 FIELD_STATIC_KIND (*fp) = 0;
2997 FIELD_TYPE (*fp) = die_type (die, cu);
2998 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
2999 fip->nbaseclasses++;
3000 }
3001 }
3002
3003 /* Create the vector of fields, and attach it to the type. */
3004
3005 static void
3006 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3007 struct dwarf2_cu *cu)
3008 {
3009 int nfields = fip->nfields;
3010
3011 /* Record the field count, allocate space for the array of fields,
3012 and create blank accessibility bitfields if necessary. */
3013 TYPE_NFIELDS (type) = nfields;
3014 TYPE_FIELDS (type) = (struct field *)
3015 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3016 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3017
3018 if (fip->non_public_fields)
3019 {
3020 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3021
3022 TYPE_FIELD_PRIVATE_BITS (type) =
3023 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3024 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3025
3026 TYPE_FIELD_PROTECTED_BITS (type) =
3027 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3028 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3029
3030 TYPE_FIELD_IGNORE_BITS (type) =
3031 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3032 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3033 }
3034
3035 /* If the type has baseclasses, allocate and clear a bit vector for
3036 TYPE_FIELD_VIRTUAL_BITS. */
3037 if (fip->nbaseclasses)
3038 {
3039 int num_bytes = B_BYTES (fip->nbaseclasses);
3040 char *pointer;
3041
3042 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3043 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3044 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3045 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3046 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3047 }
3048
3049 /* Copy the saved-up fields into the field vector. Start from the head
3050 of the list, adding to the tail of the field array, so that they end
3051 up in the same order in the array in which they were added to the list. */
3052 while (nfields-- > 0)
3053 {
3054 TYPE_FIELD (type, nfields) = fip->fields->field;
3055 switch (fip->fields->accessibility)
3056 {
3057 case DW_ACCESS_private:
3058 SET_TYPE_FIELD_PRIVATE (type, nfields);
3059 break;
3060
3061 case DW_ACCESS_protected:
3062 SET_TYPE_FIELD_PROTECTED (type, nfields);
3063 break;
3064
3065 case DW_ACCESS_public:
3066 break;
3067
3068 default:
3069 /* Unknown accessibility. Complain and treat it as public. */
3070 {
3071 complaint (&symfile_complaints, "unsupported accessibility %d",
3072 fip->fields->accessibility);
3073 }
3074 break;
3075 }
3076 if (nfields < fip->nbaseclasses)
3077 {
3078 switch (fip->fields->virtuality)
3079 {
3080 case DW_VIRTUALITY_virtual:
3081 case DW_VIRTUALITY_pure_virtual:
3082 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3083 break;
3084 }
3085 }
3086 fip->fields = fip->fields->next;
3087 }
3088 }
3089
3090 /* Add a member function to the proper fieldlist. */
3091
3092 static void
3093 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3094 struct type *type, struct dwarf2_cu *cu)
3095 {
3096 struct objfile *objfile = cu->objfile;
3097 struct attribute *attr;
3098 struct fnfieldlist *flp;
3099 int i;
3100 struct fn_field *fnp;
3101 char *fieldname;
3102 char *physname;
3103 struct nextfnfield *new_fnfield;
3104
3105 /* Get name of member function. */
3106 attr = dwarf2_attr (die, DW_AT_name, cu);
3107 if (attr && DW_STRING (attr))
3108 fieldname = DW_STRING (attr);
3109 else
3110 return;
3111
3112 /* Get the mangled name. */
3113 physname = dwarf2_linkage_name (die, cu);
3114
3115 /* Look up member function name in fieldlist. */
3116 for (i = 0; i < fip->nfnfields; i++)
3117 {
3118 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3119 break;
3120 }
3121
3122 /* Create new list element if necessary. */
3123 if (i < fip->nfnfields)
3124 flp = &fip->fnfieldlists[i];
3125 else
3126 {
3127 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3128 {
3129 fip->fnfieldlists = (struct fnfieldlist *)
3130 xrealloc (fip->fnfieldlists,
3131 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3132 * sizeof (struct fnfieldlist));
3133 if (fip->nfnfields == 0)
3134 make_cleanup (free_current_contents, &fip->fnfieldlists);
3135 }
3136 flp = &fip->fnfieldlists[fip->nfnfields];
3137 flp->name = fieldname;
3138 flp->length = 0;
3139 flp->head = NULL;
3140 fip->nfnfields++;
3141 }
3142
3143 /* Create a new member function field and chain it to the field list
3144 entry. */
3145 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3146 make_cleanup (xfree, new_fnfield);
3147 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3148 new_fnfield->next = flp->head;
3149 flp->head = new_fnfield;
3150 flp->length++;
3151
3152 /* Fill in the member function field info. */
3153 fnp = &new_fnfield->fnfield;
3154 /* The name is already allocated along with this objfile, so we don't
3155 need to duplicate it for the type. */
3156 fnp->physname = physname ? physname : "";
3157 fnp->type = alloc_type (objfile);
3158 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3159 {
3160 int nparams = TYPE_NFIELDS (die->type);
3161
3162 /* TYPE is the domain of this method, and DIE->TYPE is the type
3163 of the method itself (TYPE_CODE_METHOD). */
3164 smash_to_method_type (fnp->type, type,
3165 TYPE_TARGET_TYPE (die->type),
3166 TYPE_FIELDS (die->type),
3167 TYPE_NFIELDS (die->type),
3168 TYPE_VARARGS (die->type));
3169
3170 /* Handle static member functions.
3171 Dwarf2 has no clean way to discern C++ static and non-static
3172 member functions. G++ helps GDB by marking the first
3173 parameter for non-static member functions (which is the
3174 this pointer) as artificial. We obtain this information
3175 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3176 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3177 fnp->voffset = VOFFSET_STATIC;
3178 }
3179 else
3180 complaint (&symfile_complaints, "member function type missing for '%s'",
3181 physname);
3182
3183 /* Get fcontext from DW_AT_containing_type if present. */
3184 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3185 fnp->fcontext = die_containing_type (die, cu);
3186
3187 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3188 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3189
3190 /* Get accessibility. */
3191 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3192 if (attr)
3193 {
3194 switch (DW_UNSND (attr))
3195 {
3196 case DW_ACCESS_private:
3197 fnp->is_private = 1;
3198 break;
3199 case DW_ACCESS_protected:
3200 fnp->is_protected = 1;
3201 break;
3202 }
3203 }
3204
3205 /* Check for artificial methods. */
3206 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3207 if (attr && DW_UNSND (attr) != 0)
3208 fnp->is_artificial = 1;
3209
3210 /* Get index in virtual function table if it is a virtual member function. */
3211 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3212 if (attr)
3213 {
3214 /* Support the .debug_loc offsets */
3215 if (attr_form_is_block (attr))
3216 {
3217 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3218 }
3219 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3220 {
3221 dwarf2_complex_location_expr_complaint ();
3222 }
3223 else
3224 {
3225 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3226 fieldname);
3227 }
3228 }
3229 }
3230
3231 /* Create the vector of member function fields, and attach it to the type. */
3232
3233 static void
3234 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3235 struct dwarf2_cu *cu)
3236 {
3237 struct fnfieldlist *flp;
3238 int total_length = 0;
3239 int i;
3240
3241 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3242 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3243 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3244
3245 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3246 {
3247 struct nextfnfield *nfp = flp->head;
3248 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3249 int k;
3250
3251 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3252 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3253 fn_flp->fn_fields = (struct fn_field *)
3254 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3255 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3256 fn_flp->fn_fields[k] = nfp->fnfield;
3257
3258 total_length += flp->length;
3259 }
3260
3261 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3262 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3263 }
3264
3265 /* Called when we find the DIE that starts a structure or union scope
3266 (definition) to process all dies that define the members of the
3267 structure or union.
3268
3269 NOTE: we need to call struct_type regardless of whether or not the
3270 DIE has an at_name attribute, since it might be an anonymous
3271 structure or union. This gets the type entered into our set of
3272 user defined types.
3273
3274 However, if the structure is incomplete (an opaque struct/union)
3275 then suppress creating a symbol table entry for it since gdb only
3276 wants to find the one with the complete definition. Note that if
3277 it is complete, we just call new_symbol, which does it's own
3278 checking about whether the struct/union is anonymous or not (and
3279 suppresses creating a symbol table entry itself). */
3280
3281 static void
3282 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3283 {
3284 struct objfile *objfile = cu->objfile;
3285 struct type *type;
3286 struct attribute *attr;
3287 const char *previous_prefix = processing_current_prefix;
3288 struct cleanup *back_to = NULL;
3289
3290 if (die->type)
3291 return;
3292
3293 type = alloc_type (objfile);
3294
3295 INIT_CPLUS_SPECIFIC (type);
3296 attr = dwarf2_attr (die, DW_AT_name, cu);
3297 if (attr && DW_STRING (attr))
3298 {
3299 if (cu->language == language_cplus)
3300 {
3301 char *new_prefix = determine_class_name (die, cu);
3302 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3303 strlen (new_prefix),
3304 &objfile->objfile_obstack);
3305 back_to = make_cleanup (xfree, new_prefix);
3306 processing_current_prefix = new_prefix;
3307 }
3308 else
3309 {
3310 /* The name is already allocated along with this objfile, so
3311 we don't need to duplicate it for the type. */
3312 TYPE_TAG_NAME (type) = DW_STRING (attr);
3313 }
3314 }
3315
3316 if (die->tag == DW_TAG_structure_type)
3317 {
3318 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3319 }
3320 else if (die->tag == DW_TAG_union_type)
3321 {
3322 TYPE_CODE (type) = TYPE_CODE_UNION;
3323 }
3324 else
3325 {
3326 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3327 in gdbtypes.h. */
3328 TYPE_CODE (type) = TYPE_CODE_CLASS;
3329 }
3330
3331 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3332 if (attr)
3333 {
3334 TYPE_LENGTH (type) = DW_UNSND (attr);
3335 }
3336 else
3337 {
3338 TYPE_LENGTH (type) = 0;
3339 }
3340
3341 if (die_is_declaration (die, cu))
3342 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3343
3344 /* We need to add the type field to the die immediately so we don't
3345 infinitely recurse when dealing with pointers to the structure
3346 type within the structure itself. */
3347 die->type = type;
3348
3349 if (die->child != NULL && ! die_is_declaration (die, cu))
3350 {
3351 struct field_info fi;
3352 struct die_info *child_die;
3353 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3354
3355 memset (&fi, 0, sizeof (struct field_info));
3356
3357 child_die = die->child;
3358
3359 while (child_die && child_die->tag)
3360 {
3361 if (child_die->tag == DW_TAG_member
3362 || child_die->tag == DW_TAG_variable)
3363 {
3364 /* NOTE: carlton/2002-11-05: A C++ static data member
3365 should be a DW_TAG_member that is a declaration, but
3366 all versions of G++ as of this writing (so through at
3367 least 3.2.1) incorrectly generate DW_TAG_variable
3368 tags for them instead. */
3369 dwarf2_add_field (&fi, child_die, cu);
3370 }
3371 else if (child_die->tag == DW_TAG_subprogram)
3372 {
3373 /* C++ member function. */
3374 read_type_die (child_die, cu);
3375 dwarf2_add_member_fn (&fi, child_die, type, cu);
3376 }
3377 else if (child_die->tag == DW_TAG_inheritance)
3378 {
3379 /* C++ base class field. */
3380 dwarf2_add_field (&fi, child_die, cu);
3381 }
3382 child_die = sibling_die (child_die);
3383 }
3384
3385 /* Attach fields and member functions to the type. */
3386 if (fi.nfields)
3387 dwarf2_attach_fields_to_type (&fi, type, cu);
3388 if (fi.nfnfields)
3389 {
3390 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3391
3392 /* Get the type which refers to the base class (possibly this
3393 class itself) which contains the vtable pointer for the current
3394 class from the DW_AT_containing_type attribute. */
3395
3396 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3397 {
3398 struct type *t = die_containing_type (die, cu);
3399
3400 TYPE_VPTR_BASETYPE (type) = t;
3401 if (type == t)
3402 {
3403 static const char vptr_name[] =
3404 {'_', 'v', 'p', 't', 'r', '\0'};
3405 int i;
3406
3407 /* Our own class provides vtbl ptr. */
3408 for (i = TYPE_NFIELDS (t) - 1;
3409 i >= TYPE_N_BASECLASSES (t);
3410 --i)
3411 {
3412 char *fieldname = TYPE_FIELD_NAME (t, i);
3413
3414 if ((strncmp (fieldname, vptr_name,
3415 strlen (vptr_name) - 1)
3416 == 0)
3417 && is_cplus_marker (fieldname[strlen (vptr_name)]))
3418 {
3419 TYPE_VPTR_FIELDNO (type) = i;
3420 break;
3421 }
3422 }
3423
3424 /* Complain if virtual function table field not found. */
3425 if (i < TYPE_N_BASECLASSES (t))
3426 complaint (&symfile_complaints,
3427 "virtual function table pointer not found when defining class '%s'",
3428 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3429 "");
3430 }
3431 else
3432 {
3433 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3434 }
3435 }
3436 }
3437
3438 do_cleanups (back_to);
3439 }
3440
3441 processing_current_prefix = previous_prefix;
3442 if (back_to != NULL)
3443 do_cleanups (back_to);
3444 }
3445
3446 static void
3447 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3448 {
3449 struct objfile *objfile = cu->objfile;
3450 const char *previous_prefix = processing_current_prefix;
3451 struct die_info *child_die = die->child;
3452
3453 if (TYPE_TAG_NAME (die->type) != NULL)
3454 processing_current_prefix = TYPE_TAG_NAME (die->type);
3455
3456 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3457 snapshots) has been known to create a die giving a declaration
3458 for a class that has, as a child, a die giving a definition for a
3459 nested class. So we have to process our children even if the
3460 current die is a declaration. Normally, of course, a declaration
3461 won't have any children at all. */
3462
3463 while (child_die != NULL && child_die->tag)
3464 {
3465 if (child_die->tag == DW_TAG_member
3466 || child_die->tag == DW_TAG_variable
3467 || child_die->tag == DW_TAG_inheritance)
3468 {
3469 /* Do nothing. */
3470 }
3471 else
3472 process_die (child_die, cu);
3473
3474 child_die = sibling_die (child_die);
3475 }
3476
3477 if (die->child != NULL && ! die_is_declaration (die, cu))
3478 new_symbol (die, die->type, cu);
3479
3480 processing_current_prefix = previous_prefix;
3481 }
3482
3483 /* Given a DW_AT_enumeration_type die, set its type. We do not
3484 complete the type's fields yet, or create any symbols. */
3485
3486 static void
3487 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3488 {
3489 struct objfile *objfile = cu->objfile;
3490 struct type *type;
3491 struct attribute *attr;
3492
3493 if (die->type)
3494 return;
3495
3496 type = alloc_type (objfile);
3497
3498 TYPE_CODE (type) = TYPE_CODE_ENUM;
3499 attr = dwarf2_attr (die, DW_AT_name, cu);
3500 if (attr && DW_STRING (attr))
3501 {
3502 char *name = DW_STRING (attr);
3503
3504 if (processing_has_namespace_info)
3505 {
3506 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
3507 processing_current_prefix,
3508 processing_current_prefix[0] == '\0'
3509 ? "" : "::",
3510 name);
3511 }
3512 else
3513 {
3514 /* The name is already allocated along with this objfile, so
3515 we don't need to duplicate it for the type. */
3516 TYPE_TAG_NAME (type) = name;
3517 }
3518 }
3519
3520 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3521 if (attr)
3522 {
3523 TYPE_LENGTH (type) = DW_UNSND (attr);
3524 }
3525 else
3526 {
3527 TYPE_LENGTH (type) = 0;
3528 }
3529
3530 die->type = type;
3531 }
3532
3533 /* Determine the name of the type represented by DIE, which should be
3534 a named C++ compound type. Return the name in question; the caller
3535 is responsible for xfree()'ing it. */
3536
3537 static char *
3538 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3539 {
3540 struct cleanup *back_to = NULL;
3541 struct die_info *spec_die = die_specification (die, cu);
3542 char *new_prefix = NULL;
3543
3544 /* If this is the definition of a class that is declared by another
3545 die, then processing_current_prefix may not be accurate; see
3546 read_func_scope for a similar example. */
3547 if (spec_die != NULL)
3548 {
3549 char *specification_prefix = determine_prefix (spec_die, cu);
3550 processing_current_prefix = specification_prefix;
3551 back_to = make_cleanup (xfree, specification_prefix);
3552 }
3553
3554 /* If we don't have namespace debug info, guess the name by trying
3555 to demangle the names of members, just like we did in
3556 guess_structure_name. */
3557 if (!processing_has_namespace_info)
3558 {
3559 struct die_info *child;
3560
3561 for (child = die->child;
3562 child != NULL && child->tag != 0;
3563 child = sibling_die (child))
3564 {
3565 if (child->tag == DW_TAG_subprogram)
3566 {
3567 new_prefix = class_name_from_physname (dwarf2_linkage_name
3568 (child, cu));
3569
3570 if (new_prefix != NULL)
3571 break;
3572 }
3573 }
3574 }
3575
3576 if (new_prefix == NULL)
3577 {
3578 const char *name = dwarf2_name (die, cu);
3579 new_prefix = typename_concat (processing_current_prefix,
3580 name ? name : "<<anonymous>>");
3581 }
3582
3583 if (back_to != NULL)
3584 do_cleanups (back_to);
3585
3586 return new_prefix;
3587 }
3588
3589 /* Given a pointer to a die which begins an enumeration, process all
3590 the dies that define the members of the enumeration, and create the
3591 symbol for the enumeration type.
3592
3593 NOTE: We reverse the order of the element list. */
3594
3595 static void
3596 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
3597 {
3598 struct objfile *objfile = cu->objfile;
3599 struct die_info *child_die;
3600 struct field *fields;
3601 struct attribute *attr;
3602 struct symbol *sym;
3603 int num_fields;
3604 int unsigned_enum = 1;
3605
3606 num_fields = 0;
3607 fields = NULL;
3608 if (die->child != NULL)
3609 {
3610 child_die = die->child;
3611 while (child_die && child_die->tag)
3612 {
3613 if (child_die->tag != DW_TAG_enumerator)
3614 {
3615 process_die (child_die, cu);
3616 }
3617 else
3618 {
3619 attr = dwarf2_attr (child_die, DW_AT_name, cu);
3620 if (attr)
3621 {
3622 sym = new_symbol (child_die, die->type, cu);
3623 if (SYMBOL_VALUE (sym) < 0)
3624 unsigned_enum = 0;
3625
3626 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
3627 {
3628 fields = (struct field *)
3629 xrealloc (fields,
3630 (num_fields + DW_FIELD_ALLOC_CHUNK)
3631 * sizeof (struct field));
3632 }
3633
3634 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
3635 FIELD_TYPE (fields[num_fields]) = NULL;
3636 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
3637 FIELD_BITSIZE (fields[num_fields]) = 0;
3638 FIELD_STATIC_KIND (fields[num_fields]) = 0;
3639
3640 num_fields++;
3641 }
3642 }
3643
3644 child_die = sibling_die (child_die);
3645 }
3646
3647 if (num_fields)
3648 {
3649 TYPE_NFIELDS (die->type) = num_fields;
3650 TYPE_FIELDS (die->type) = (struct field *)
3651 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
3652 memcpy (TYPE_FIELDS (die->type), fields,
3653 sizeof (struct field) * num_fields);
3654 xfree (fields);
3655 }
3656 if (unsigned_enum)
3657 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
3658 }
3659
3660 new_symbol (die, die->type, cu);
3661 }
3662
3663 /* Extract all information from a DW_TAG_array_type DIE and put it in
3664 the DIE's type field. For now, this only handles one dimensional
3665 arrays. */
3666
3667 static void
3668 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
3669 {
3670 struct objfile *objfile = cu->objfile;
3671 struct die_info *child_die;
3672 struct type *type = NULL;
3673 struct type *element_type, *range_type, *index_type;
3674 struct type **range_types = NULL;
3675 struct attribute *attr;
3676 int ndim = 0;
3677 struct cleanup *back_to;
3678
3679 /* Return if we've already decoded this type. */
3680 if (die->type)
3681 {
3682 return;
3683 }
3684
3685 element_type = die_type (die, cu);
3686
3687 /* Irix 6.2 native cc creates array types without children for
3688 arrays with unspecified length. */
3689 if (die->child == NULL)
3690 {
3691 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
3692 range_type = create_range_type (NULL, index_type, 0, -1);
3693 die->type = create_array_type (NULL, element_type, range_type);
3694 return;
3695 }
3696
3697 back_to = make_cleanup (null_cleanup, NULL);
3698 child_die = die->child;
3699 while (child_die && child_die->tag)
3700 {
3701 if (child_die->tag == DW_TAG_subrange_type)
3702 {
3703 read_subrange_type (child_die, cu);
3704
3705 if (child_die->type != NULL)
3706 {
3707 /* The range type was succesfully read. Save it for
3708 the array type creation. */
3709 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
3710 {
3711 range_types = (struct type **)
3712 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
3713 * sizeof (struct type *));
3714 if (ndim == 0)
3715 make_cleanup (free_current_contents, &range_types);
3716 }
3717 range_types[ndim++] = child_die->type;
3718 }
3719 }
3720 child_die = sibling_die (child_die);
3721 }
3722
3723 /* Dwarf2 dimensions are output from left to right, create the
3724 necessary array types in backwards order. */
3725 type = element_type;
3726 while (ndim-- > 0)
3727 type = create_array_type (NULL, type, range_types[ndim]);
3728
3729 /* Understand Dwarf2 support for vector types (like they occur on
3730 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
3731 array type. This is not part of the Dwarf2/3 standard yet, but a
3732 custom vendor extension. The main difference between a regular
3733 array and the vector variant is that vectors are passed by value
3734 to functions. */
3735 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
3736 if (attr)
3737 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
3738
3739 do_cleanups (back_to);
3740
3741 /* Install the type in the die. */
3742 die->type = type;
3743 }
3744
3745 /* First cut: install each common block member as a global variable. */
3746
3747 static void
3748 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
3749 {
3750 struct die_info *child_die;
3751 struct attribute *attr;
3752 struct symbol *sym;
3753 CORE_ADDR base = (CORE_ADDR) 0;
3754
3755 attr = dwarf2_attr (die, DW_AT_location, cu);
3756 if (attr)
3757 {
3758 /* Support the .debug_loc offsets */
3759 if (attr_form_is_block (attr))
3760 {
3761 base = decode_locdesc (DW_BLOCK (attr), cu);
3762 }
3763 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3764 {
3765 dwarf2_complex_location_expr_complaint ();
3766 }
3767 else
3768 {
3769 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
3770 "common block member");
3771 }
3772 }
3773 if (die->child != NULL)
3774 {
3775 child_die = die->child;
3776 while (child_die && child_die->tag)
3777 {
3778 sym = new_symbol (child_die, NULL, cu);
3779 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
3780 if (attr)
3781 {
3782 SYMBOL_VALUE_ADDRESS (sym) =
3783 base + decode_locdesc (DW_BLOCK (attr), cu);
3784 add_symbol_to_list (sym, &global_symbols);
3785 }
3786 child_die = sibling_die (child_die);
3787 }
3788 }
3789 }
3790
3791 /* Read a C++ namespace. */
3792
3793 static void
3794 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
3795 {
3796 struct objfile *objfile = cu->objfile;
3797 const char *previous_prefix = processing_current_prefix;
3798 const char *name;
3799 int is_anonymous;
3800 struct die_info *current_die;
3801
3802 name = namespace_name (die, &is_anonymous, cu);
3803
3804 /* Now build the name of the current namespace. */
3805
3806 if (previous_prefix[0] == '\0')
3807 {
3808 processing_current_prefix = name;
3809 }
3810 else
3811 {
3812 /* We need temp_name around because processing_current_prefix
3813 is a const char *. */
3814 char *temp_name = alloca (strlen (previous_prefix)
3815 + 2 + strlen(name) + 1);
3816 strcpy (temp_name, previous_prefix);
3817 strcat (temp_name, "::");
3818 strcat (temp_name, name);
3819
3820 processing_current_prefix = temp_name;
3821 }
3822
3823 /* Add a symbol associated to this if we haven't seen the namespace
3824 before. Also, add a using directive if it's an anonymous
3825 namespace. */
3826
3827 if (dwarf2_extension (die, cu) == NULL)
3828 {
3829 struct type *type;
3830
3831 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
3832 this cast will hopefully become unnecessary. */
3833 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
3834 (char *) processing_current_prefix,
3835 objfile);
3836 TYPE_TAG_NAME (type) = TYPE_NAME (type);
3837
3838 new_symbol (die, type, cu);
3839 die->type = type;
3840
3841 if (is_anonymous)
3842 cp_add_using_directive (processing_current_prefix,
3843 strlen (previous_prefix),
3844 strlen (processing_current_prefix));
3845 }
3846
3847 if (die->child != NULL)
3848 {
3849 struct die_info *child_die = die->child;
3850
3851 while (child_die && child_die->tag)
3852 {
3853 process_die (child_die, cu);
3854 child_die = sibling_die (child_die);
3855 }
3856 }
3857
3858 processing_current_prefix = previous_prefix;
3859 }
3860
3861 /* Return the name of the namespace represented by DIE. Set
3862 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
3863 namespace. */
3864
3865 static const char *
3866 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
3867 {
3868 struct die_info *current_die;
3869 const char *name = NULL;
3870
3871 /* Loop through the extensions until we find a name. */
3872
3873 for (current_die = die;
3874 current_die != NULL;
3875 current_die = dwarf2_extension (die, cu))
3876 {
3877 name = dwarf2_name (current_die, cu);
3878 if (name != NULL)
3879 break;
3880 }
3881
3882 /* Is it an anonymous namespace? */
3883
3884 *is_anonymous = (name == NULL);
3885 if (*is_anonymous)
3886 name = "(anonymous namespace)";
3887
3888 return name;
3889 }
3890
3891 /* Extract all information from a DW_TAG_pointer_type DIE and add to
3892 the user defined type vector. */
3893
3894 static void
3895 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
3896 {
3897 struct comp_unit_head *cu_header = &cu->header;
3898 struct type *type;
3899 struct attribute *attr_byte_size;
3900 struct attribute *attr_address_class;
3901 int byte_size, addr_class;
3902
3903 if (die->type)
3904 {
3905 return;
3906 }
3907
3908 type = lookup_pointer_type (die_type (die, cu));
3909
3910 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
3911 if (attr_byte_size)
3912 byte_size = DW_UNSND (attr_byte_size);
3913 else
3914 byte_size = cu_header->addr_size;
3915
3916 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
3917 if (attr_address_class)
3918 addr_class = DW_UNSND (attr_address_class);
3919 else
3920 addr_class = DW_ADDR_none;
3921
3922 /* If the pointer size or address class is different than the
3923 default, create a type variant marked as such and set the
3924 length accordingly. */
3925 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
3926 {
3927 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
3928 {
3929 int type_flags;
3930
3931 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
3932 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
3933 type = make_type_with_address_space (type, type_flags);
3934 }
3935 else if (TYPE_LENGTH (type) != byte_size)
3936 {
3937 complaint (&symfile_complaints, "invalid pointer size %d", byte_size);
3938 }
3939 else {
3940 /* Should we also complain about unhandled address classes? */
3941 }
3942 }
3943
3944 TYPE_LENGTH (type) = byte_size;
3945 die->type = type;
3946 }
3947
3948 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
3949 the user defined type vector. */
3950
3951 static void
3952 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
3953 {
3954 struct objfile *objfile = cu->objfile;
3955 struct type *type;
3956 struct type *to_type;
3957 struct type *domain;
3958
3959 if (die->type)
3960 {
3961 return;
3962 }
3963
3964 type = alloc_type (objfile);
3965 to_type = die_type (die, cu);
3966 domain = die_containing_type (die, cu);
3967 smash_to_member_type (type, domain, to_type);
3968
3969 die->type = type;
3970 }
3971
3972 /* Extract all information from a DW_TAG_reference_type DIE and add to
3973 the user defined type vector. */
3974
3975 static void
3976 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
3977 {
3978 struct comp_unit_head *cu_header = &cu->header;
3979 struct type *type;
3980 struct attribute *attr;
3981
3982 if (die->type)
3983 {
3984 return;
3985 }
3986
3987 type = lookup_reference_type (die_type (die, cu));
3988 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3989 if (attr)
3990 {
3991 TYPE_LENGTH (type) = DW_UNSND (attr);
3992 }
3993 else
3994 {
3995 TYPE_LENGTH (type) = cu_header->addr_size;
3996 }
3997 die->type = type;
3998 }
3999
4000 static void
4001 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4002 {
4003 struct type *base_type;
4004
4005 if (die->type)
4006 {
4007 return;
4008 }
4009
4010 base_type = die_type (die, cu);
4011 die->type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
4012 }
4013
4014 static void
4015 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4016 {
4017 struct type *base_type;
4018
4019 if (die->type)
4020 {
4021 return;
4022 }
4023
4024 base_type = die_type (die, cu);
4025 die->type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
4026 }
4027
4028 /* Extract all information from a DW_TAG_string_type DIE and add to
4029 the user defined type vector. It isn't really a user defined type,
4030 but it behaves like one, with other DIE's using an AT_user_def_type
4031 attribute to reference it. */
4032
4033 static void
4034 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4035 {
4036 struct objfile *objfile = cu->objfile;
4037 struct type *type, *range_type, *index_type, *char_type;
4038 struct attribute *attr;
4039 unsigned int length;
4040
4041 if (die->type)
4042 {
4043 return;
4044 }
4045
4046 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4047 if (attr)
4048 {
4049 length = DW_UNSND (attr);
4050 }
4051 else
4052 {
4053 /* check for the DW_AT_byte_size attribute */
4054 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4055 if (attr)
4056 {
4057 length = DW_UNSND (attr);
4058 }
4059 else
4060 {
4061 length = 1;
4062 }
4063 }
4064 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4065 range_type = create_range_type (NULL, index_type, 1, length);
4066 if (cu->language == language_fortran)
4067 {
4068 /* Need to create a unique string type for bounds
4069 information */
4070 type = create_string_type (0, range_type);
4071 }
4072 else
4073 {
4074 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4075 type = create_string_type (char_type, range_type);
4076 }
4077 die->type = type;
4078 }
4079
4080 /* Handle DIES due to C code like:
4081
4082 struct foo
4083 {
4084 int (*funcp)(int a, long l);
4085 int b;
4086 };
4087
4088 ('funcp' generates a DW_TAG_subroutine_type DIE)
4089 */
4090
4091 static void
4092 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4093 {
4094 struct type *type; /* Type that this function returns */
4095 struct type *ftype; /* Function that returns above type */
4096 struct attribute *attr;
4097
4098 /* Decode the type that this subroutine returns */
4099 if (die->type)
4100 {
4101 return;
4102 }
4103 type = die_type (die, cu);
4104 ftype = lookup_function_type (type);
4105
4106 /* All functions in C++ have prototypes. */
4107 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4108 if ((attr && (DW_UNSND (attr) != 0))
4109 || cu->language == language_cplus)
4110 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4111
4112 if (die->child != NULL)
4113 {
4114 struct die_info *child_die;
4115 int nparams = 0;
4116 int iparams = 0;
4117
4118 /* Count the number of parameters.
4119 FIXME: GDB currently ignores vararg functions, but knows about
4120 vararg member functions. */
4121 child_die = die->child;
4122 while (child_die && child_die->tag)
4123 {
4124 if (child_die->tag == DW_TAG_formal_parameter)
4125 nparams++;
4126 else if (child_die->tag == DW_TAG_unspecified_parameters)
4127 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4128 child_die = sibling_die (child_die);
4129 }
4130
4131 /* Allocate storage for parameters and fill them in. */
4132 TYPE_NFIELDS (ftype) = nparams;
4133 TYPE_FIELDS (ftype) = (struct field *)
4134 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
4135
4136 child_die = die->child;
4137 while (child_die && child_die->tag)
4138 {
4139 if (child_die->tag == DW_TAG_formal_parameter)
4140 {
4141 /* Dwarf2 has no clean way to discern C++ static and non-static
4142 member functions. G++ helps GDB by marking the first
4143 parameter for non-static member functions (which is the
4144 this pointer) as artificial. We pass this information
4145 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4146 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4147 if (attr)
4148 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4149 else
4150 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4151 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4152 iparams++;
4153 }
4154 child_die = sibling_die (child_die);
4155 }
4156 }
4157
4158 die->type = ftype;
4159 }
4160
4161 static void
4162 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4163 {
4164 struct objfile *objfile = cu->objfile;
4165 struct attribute *attr;
4166 char *name = NULL;
4167
4168 if (!die->type)
4169 {
4170 attr = dwarf2_attr (die, DW_AT_name, cu);
4171 if (attr && DW_STRING (attr))
4172 {
4173 name = DW_STRING (attr);
4174 }
4175 die->type = init_type (TYPE_CODE_TYPEDEF, 0, TYPE_FLAG_TARGET_STUB, name, objfile);
4176 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4177 }
4178 }
4179
4180 /* Find a representation of a given base type and install
4181 it in the TYPE field of the die. */
4182
4183 static void
4184 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4185 {
4186 struct objfile *objfile = cu->objfile;
4187 struct type *type;
4188 struct attribute *attr;
4189 int encoding = 0, size = 0;
4190
4191 /* If we've already decoded this die, this is a no-op. */
4192 if (die->type)
4193 {
4194 return;
4195 }
4196
4197 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4198 if (attr)
4199 {
4200 encoding = DW_UNSND (attr);
4201 }
4202 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4203 if (attr)
4204 {
4205 size = DW_UNSND (attr);
4206 }
4207 attr = dwarf2_attr (die, DW_AT_name, cu);
4208 if (attr && DW_STRING (attr))
4209 {
4210 enum type_code code = TYPE_CODE_INT;
4211 int type_flags = 0;
4212
4213 switch (encoding)
4214 {
4215 case DW_ATE_address:
4216 /* Turn DW_ATE_address into a void * pointer. */
4217 code = TYPE_CODE_PTR;
4218 type_flags |= TYPE_FLAG_UNSIGNED;
4219 break;
4220 case DW_ATE_boolean:
4221 code = TYPE_CODE_BOOL;
4222 type_flags |= TYPE_FLAG_UNSIGNED;
4223 break;
4224 case DW_ATE_complex_float:
4225 code = TYPE_CODE_COMPLEX;
4226 break;
4227 case DW_ATE_float:
4228 code = TYPE_CODE_FLT;
4229 break;
4230 case DW_ATE_signed:
4231 case DW_ATE_signed_char:
4232 break;
4233 case DW_ATE_unsigned:
4234 case DW_ATE_unsigned_char:
4235 type_flags |= TYPE_FLAG_UNSIGNED;
4236 break;
4237 default:
4238 complaint (&symfile_complaints, "unsupported DW_AT_encoding: '%s'",
4239 dwarf_type_encoding_name (encoding));
4240 break;
4241 }
4242 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4243 if (encoding == DW_ATE_address)
4244 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4245 cu);
4246 else if (encoding == DW_ATE_complex_float)
4247 {
4248 if (size == 32)
4249 TYPE_TARGET_TYPE (type)
4250 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4251 else if (size == 16)
4252 TYPE_TARGET_TYPE (type)
4253 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4254 else if (size == 8)
4255 TYPE_TARGET_TYPE (type)
4256 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4257 }
4258 }
4259 else
4260 {
4261 type = dwarf_base_type (encoding, size, cu);
4262 }
4263 die->type = type;
4264 }
4265
4266 /* Read the given DW_AT_subrange DIE. */
4267
4268 static void
4269 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4270 {
4271 struct type *base_type;
4272 struct type *range_type;
4273 struct attribute *attr;
4274 int low = 0;
4275 int high = -1;
4276
4277 /* If we have already decoded this die, then nothing more to do. */
4278 if (die->type)
4279 return;
4280
4281 base_type = die_type (die, cu);
4282 if (base_type == NULL)
4283 {
4284 complaint (&symfile_complaints,
4285 "DW_AT_type missing from DW_TAG_subrange_type");
4286 return;
4287 }
4288
4289 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4290 base_type = alloc_type (NULL);
4291
4292 if (cu->language == language_fortran)
4293 {
4294 /* FORTRAN implies a lower bound of 1, if not given. */
4295 low = 1;
4296 }
4297
4298 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4299 if (attr)
4300 low = dwarf2_get_attr_constant_value (attr, 0);
4301
4302 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4303 if (attr)
4304 {
4305 if (attr->form == DW_FORM_block1)
4306 {
4307 /* GCC encodes arrays with unspecified or dynamic length
4308 with a DW_FORM_block1 attribute.
4309 FIXME: GDB does not yet know how to handle dynamic
4310 arrays properly, treat them as arrays with unspecified
4311 length for now.
4312
4313 FIXME: jimb/2003-09-22: GDB does not really know
4314 how to handle arrays of unspecified length
4315 either; we just represent them as zero-length
4316 arrays. Choose an appropriate upper bound given
4317 the lower bound we've computed above. */
4318 high = low - 1;
4319 }
4320 else
4321 high = dwarf2_get_attr_constant_value (attr, 1);
4322 }
4323
4324 range_type = create_range_type (NULL, base_type, low, high);
4325
4326 attr = dwarf2_attr (die, DW_AT_name, cu);
4327 if (attr && DW_STRING (attr))
4328 TYPE_NAME (range_type) = DW_STRING (attr);
4329
4330 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4331 if (attr)
4332 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4333
4334 die->type = range_type;
4335 }
4336
4337
4338 /* Read a whole compilation unit into a linked list of dies. */
4339
4340 static struct die_info *
4341 read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4342 {
4343 /* Reset die reference table; we are
4344 building new ones now. */
4345 dwarf2_empty_hash_tables ();
4346
4347 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4348 }
4349
4350 /* Read a single die and all its descendents. Set the die's sibling
4351 field to NULL; set other fields in the die correctly, and set all
4352 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4353 location of the info_ptr after reading all of those dies. PARENT
4354 is the parent of the die in question. */
4355
4356 static struct die_info *
4357 read_die_and_children (char *info_ptr, bfd *abfd,
4358 struct dwarf2_cu *cu,
4359 char **new_info_ptr,
4360 struct die_info *parent)
4361 {
4362 struct die_info *die;
4363 char *cur_ptr;
4364 int has_children;
4365
4366 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4367 store_in_ref_table (die->offset, die);
4368
4369 if (has_children)
4370 {
4371 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4372 new_info_ptr, die);
4373 }
4374 else
4375 {
4376 die->child = NULL;
4377 *new_info_ptr = cur_ptr;
4378 }
4379
4380 die->sibling = NULL;
4381 die->parent = parent;
4382 return die;
4383 }
4384
4385 /* Read a die, all of its descendents, and all of its siblings; set
4386 all of the fields of all of the dies correctly. Arguments are as
4387 in read_die_and_children. */
4388
4389 static struct die_info *
4390 read_die_and_siblings (char *info_ptr, bfd *abfd,
4391 struct dwarf2_cu *cu,
4392 char **new_info_ptr,
4393 struct die_info *parent)
4394 {
4395 struct die_info *first_die, *last_sibling;
4396 char *cur_ptr;
4397
4398 cur_ptr = info_ptr;
4399 first_die = last_sibling = NULL;
4400
4401 while (1)
4402 {
4403 struct die_info *die
4404 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4405
4406 if (!first_die)
4407 {
4408 first_die = die;
4409 }
4410 else
4411 {
4412 last_sibling->sibling = die;
4413 }
4414
4415 if (die->tag == 0)
4416 {
4417 *new_info_ptr = cur_ptr;
4418 return first_die;
4419 }
4420 else
4421 {
4422 last_sibling = die;
4423 }
4424 }
4425 }
4426
4427 /* Free a linked list of dies. */
4428
4429 static void
4430 free_die_list (struct die_info *dies)
4431 {
4432 struct die_info *die, *next;
4433
4434 die = dies;
4435 while (die)
4436 {
4437 if (die->child != NULL)
4438 free_die_list (die->child);
4439 next = die->sibling;
4440 xfree (die->attrs);
4441 xfree (die);
4442 die = next;
4443 }
4444 }
4445
4446 static void
4447 do_free_die_list_cleanup (void *dies)
4448 {
4449 free_die_list (dies);
4450 }
4451
4452 static struct cleanup *
4453 make_cleanup_free_die_list (struct die_info *dies)
4454 {
4455 return make_cleanup (do_free_die_list_cleanup, dies);
4456 }
4457
4458
4459 /* Read the contents of the section at OFFSET and of size SIZE from the
4460 object file specified by OBJFILE into the objfile_obstack and return it. */
4461
4462 char *
4463 dwarf2_read_section (struct objfile *objfile, asection *sectp)
4464 {
4465 bfd *abfd = objfile->obfd;
4466 char *buf, *retbuf;
4467 bfd_size_type size = bfd_get_section_size (sectp);
4468
4469 if (size == 0)
4470 return NULL;
4471
4472 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size);
4473 retbuf
4474 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4475 if (retbuf != NULL)
4476 return retbuf;
4477
4478 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4479 || bfd_bread (buf, size, abfd) != size)
4480 error ("Dwarf Error: Can't read DWARF data from '%s'",
4481 bfd_get_filename (abfd));
4482
4483 return buf;
4484 }
4485
4486 /* In DWARF version 2, the description of the debugging information is
4487 stored in a separate .debug_abbrev section. Before we read any
4488 dies from a section we read in all abbreviations and install them
4489 in a hash table. This function also sets flags in CU describing
4490 the data found in the abbrev table. */
4491
4492 static void
4493 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
4494 {
4495 struct comp_unit_head *cu_header = &cu->header;
4496 char *abbrev_ptr;
4497 struct abbrev_info *cur_abbrev;
4498 unsigned int abbrev_number, bytes_read, abbrev_name;
4499 unsigned int abbrev_form, hash_number;
4500 struct attr_abbrev *cur_attrs;
4501 unsigned int allocated_attrs;
4502
4503 /* Initialize dwarf2 abbrevs */
4504 obstack_init (&cu->abbrev_obstack);
4505 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4506 (ABBREV_HASH_SIZE
4507 * sizeof (struct abbrev_info *)));
4508 memset (cu->dwarf2_abbrevs, 0,
4509 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
4510
4511 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
4512 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4513 abbrev_ptr += bytes_read;
4514
4515 allocated_attrs = ATTR_ALLOC_CHUNK;
4516 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4517
4518 /* loop until we reach an abbrev number of 0 */
4519 while (abbrev_number)
4520 {
4521 cur_abbrev = dwarf_alloc_abbrev (cu);
4522
4523 /* read in abbrev header */
4524 cur_abbrev->number = abbrev_number;
4525 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4526 abbrev_ptr += bytes_read;
4527 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
4528 abbrev_ptr += 1;
4529
4530 if (cur_abbrev->tag == DW_TAG_namespace)
4531 cu->has_namespace_info = 1;
4532
4533 /* now read in declarations */
4534 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4535 abbrev_ptr += bytes_read;
4536 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4537 abbrev_ptr += bytes_read;
4538 while (abbrev_name)
4539 {
4540 if (cur_abbrev->num_attrs == allocated_attrs)
4541 {
4542 allocated_attrs += ATTR_ALLOC_CHUNK;
4543 cur_attrs
4544 = xrealloc (cur_attrs, (allocated_attrs
4545 * sizeof (struct attr_abbrev)));
4546 }
4547 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
4548 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
4549 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4550 abbrev_ptr += bytes_read;
4551 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4552 abbrev_ptr += bytes_read;
4553 }
4554
4555 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
4556 (cur_abbrev->num_attrs
4557 * sizeof (struct attr_abbrev)));
4558 memcpy (cur_abbrev->attrs, cur_attrs,
4559 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
4560
4561 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4562 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
4563 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
4564
4565 /* Get next abbreviation.
4566 Under Irix6 the abbreviations for a compilation unit are not
4567 always properly terminated with an abbrev number of 0.
4568 Exit loop if we encounter an abbreviation which we have
4569 already read (which means we are about to read the abbreviations
4570 for the next compile unit) or if the end of the abbreviation
4571 table is reached. */
4572 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
4573 >= dwarf2_per_objfile->abbrev_size)
4574 break;
4575 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4576 abbrev_ptr += bytes_read;
4577 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
4578 break;
4579 }
4580
4581 xfree (cur_attrs);
4582 }
4583
4584 /* Release the memory used by the abbrev table for a compilation unit. */
4585
4586 static void
4587 dwarf2_free_abbrev_table (void *ptr_to_cu)
4588 {
4589 struct dwarf2_cu *cu = ptr_to_cu;
4590
4591 obstack_free (&cu->abbrev_obstack, NULL);
4592 cu->dwarf2_abbrevs = NULL;
4593 }
4594
4595 /* Lookup an abbrev_info structure in the abbrev hash table. */
4596
4597 static struct abbrev_info *
4598 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
4599 {
4600 unsigned int hash_number;
4601 struct abbrev_info *abbrev;
4602
4603 hash_number = number % ABBREV_HASH_SIZE;
4604 abbrev = cu->dwarf2_abbrevs[hash_number];
4605
4606 while (abbrev)
4607 {
4608 if (abbrev->number == number)
4609 return abbrev;
4610 else
4611 abbrev = abbrev->next;
4612 }
4613 return NULL;
4614 }
4615
4616 /* Returns nonzero if TAG represents a type that we might generate a partial
4617 symbol for. */
4618
4619 static int
4620 is_type_tag_for_partial (int tag)
4621 {
4622 switch (tag)
4623 {
4624 #if 0
4625 /* Some types that would be reasonable to generate partial symbols for,
4626 that we don't at present. */
4627 case DW_TAG_array_type:
4628 case DW_TAG_file_type:
4629 case DW_TAG_ptr_to_member_type:
4630 case DW_TAG_set_type:
4631 case DW_TAG_string_type:
4632 case DW_TAG_subroutine_type:
4633 #endif
4634 case DW_TAG_base_type:
4635 case DW_TAG_class_type:
4636 case DW_TAG_enumeration_type:
4637 case DW_TAG_structure_type:
4638 case DW_TAG_subrange_type:
4639 case DW_TAG_typedef:
4640 case DW_TAG_union_type:
4641 return 1;
4642 default:
4643 return 0;
4644 }
4645 }
4646
4647 /* Load all DIEs that are interesting for partial symbols into memory. */
4648
4649 static struct partial_die_info *
4650 load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
4651 struct dwarf2_cu *cu)
4652 {
4653 struct partial_die_info *part_die;
4654 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
4655 struct abbrev_info *abbrev;
4656 unsigned int bytes_read;
4657
4658 int nesting_level = 1;
4659
4660 parent_die = NULL;
4661 last_die = NULL;
4662
4663 cu->partial_dies
4664 = htab_create_alloc_ex (cu->header.length / 12,
4665 partial_die_hash,
4666 partial_die_eq,
4667 NULL,
4668 &cu->comp_unit_obstack,
4669 hashtab_obstack_allocate,
4670 dummy_obstack_deallocate);
4671
4672 part_die = obstack_alloc (&cu->comp_unit_obstack,
4673 sizeof (struct partial_die_info));
4674
4675 while (1)
4676 {
4677 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4678
4679 /* A NULL abbrev means the end of a series of children. */
4680 if (abbrev == NULL)
4681 {
4682 if (--nesting_level == 0)
4683 {
4684 /* PART_DIE was probably the last thing allocated on the
4685 comp_unit_obstack, so we could call obstack_free
4686 here. We don't do that because the waste is small,
4687 and will be cleaned up when we're done with this
4688 compilation unit. This way, we're also more robust
4689 against other users of the comp_unit_obstack. */
4690 return first_die;
4691 }
4692 info_ptr += bytes_read;
4693 last_die = parent_die;
4694 parent_die = parent_die->die_parent;
4695 continue;
4696 }
4697
4698 /* Check whether this DIE is interesting enough to save. */
4699 if (!is_type_tag_for_partial (abbrev->tag)
4700 && abbrev->tag != DW_TAG_enumerator
4701 && abbrev->tag != DW_TAG_subprogram
4702 && abbrev->tag != DW_TAG_variable
4703 && abbrev->tag != DW_TAG_namespace)
4704 {
4705 /* Otherwise we skip to the next sibling, if any. */
4706 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
4707 continue;
4708 }
4709
4710 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
4711 abfd, info_ptr, cu);
4712
4713 /* This two-pass algorithm for processing partial symbols has a
4714 high cost in cache pressure. Thus, handle some simple cases
4715 here which cover the majority of C partial symbols. DIEs
4716 which neither have specification tags in them, nor could have
4717 specification tags elsewhere pointing at them, can simply be
4718 processed and discarded.
4719
4720 This segment is also optional; scan_partial_symbols and
4721 add_partial_symbol will handle these DIEs if we chain
4722 them in normally. When compilers which do not emit large
4723 quantities of duplicate debug information are more common,
4724 this code can probably be removed. */
4725
4726 /* Any complete simple types at the top level (pretty much all
4727 of them, for a language without namespaces), can be processed
4728 directly. */
4729 if (parent_die == NULL
4730 && part_die->has_specification == 0
4731 && part_die->is_declaration == 0
4732 && (part_die->tag == DW_TAG_typedef
4733 || part_die->tag == DW_TAG_base_type
4734 || part_die->tag == DW_TAG_subrange_type))
4735 {
4736 if (building_psymtab && part_die->name != NULL)
4737 add_psymbol_to_list (part_die->name, strlen (part_die->name),
4738 VAR_DOMAIN, LOC_TYPEDEF,
4739 &cu->objfile->static_psymbols,
4740 0, (CORE_ADDR) 0, cu->language, cu->objfile);
4741 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
4742 continue;
4743 }
4744
4745 /* If we're at the second level, and we're an enumerator, and
4746 our parent has no specification (meaning possibly lives in a
4747 namespace elsewhere), then we can add the partial symbol now
4748 instead of queueing it. */
4749 if (part_die->tag == DW_TAG_enumerator
4750 && parent_die != NULL
4751 && parent_die->die_parent == NULL
4752 && parent_die->tag == DW_TAG_enumeration_type
4753 && parent_die->has_specification == 0)
4754 {
4755 if (part_die->name == NULL)
4756 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
4757 else if (building_psymtab)
4758 add_psymbol_to_list (part_die->name, strlen (part_die->name),
4759 VAR_DOMAIN, LOC_CONST,
4760 cu->language == language_cplus
4761 ? &cu->objfile->global_psymbols
4762 : &cu->objfile->static_psymbols,
4763 0, (CORE_ADDR) 0, cu->language, cu->objfile);
4764
4765 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
4766 continue;
4767 }
4768
4769 /* We'll save this DIE so link it in. */
4770 part_die->die_parent = parent_die;
4771 part_die->die_sibling = NULL;
4772 part_die->die_child = NULL;
4773
4774 if (last_die && last_die == parent_die)
4775 last_die->die_child = part_die;
4776 else if (last_die)
4777 last_die->die_sibling = part_die;
4778
4779 last_die = part_die;
4780
4781 if (first_die == NULL)
4782 first_die = part_die;
4783
4784 /* Maybe add the DIE to the hash table. Not all DIEs that we
4785 find interesting need to be in the hash table, because we
4786 also have the parent/sibling/child chains; only those that we
4787 might refer to by offset later during partial symbol reading.
4788
4789 For now this means things that might have be the target of a
4790 DW_AT_specification, DW_AT_abstract_origin, or
4791 DW_AT_extension. DW_AT_extension will refer only to
4792 namespaces; DW_AT_abstract_origin refers to functions (and
4793 many things under the function DIE, but we do not recurse
4794 into function DIEs during partial symbol reading) and
4795 possibly variables as well; DW_AT_specification refers to
4796 declarations. Declarations ought to have the DW_AT_declaration
4797 flag. It happens that GCC forgets to put it in sometimes, but
4798 only for functions, not for types.
4799
4800 Adding more things than necessary to the hash table is harmless
4801 except for the performance cost. Adding too few will result in
4802 internal errors in find_partial_die. */
4803
4804 if (abbrev->tag == DW_TAG_subprogram
4805 || abbrev->tag == DW_TAG_variable
4806 || abbrev->tag == DW_TAG_namespace
4807 || part_die->is_declaration)
4808 {
4809 void **slot;
4810
4811 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
4812 part_die->offset, INSERT);
4813 *slot = part_die;
4814 }
4815
4816 part_die = obstack_alloc (&cu->comp_unit_obstack,
4817 sizeof (struct partial_die_info));
4818
4819 /* For some DIEs we want to follow their children (if any). For C
4820 we have no reason to follow the children of structures; for other
4821 languages we have to, both so that we can get at method physnames
4822 to infer fully qualified class names, and for DW_AT_specification. */
4823 if (last_die->has_children
4824 && (last_die->tag == DW_TAG_namespace
4825 || last_die->tag == DW_TAG_enumeration_type
4826 || (cu->language != language_c
4827 && (last_die->tag == DW_TAG_class_type
4828 || last_die->tag == DW_TAG_structure_type
4829 || last_die->tag == DW_TAG_union_type))))
4830 {
4831 nesting_level++;
4832 parent_die = last_die;
4833 continue;
4834 }
4835
4836 /* Otherwise we skip to the next sibling, if any. */
4837 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
4838
4839 /* Back to the top, do it again. */
4840 }
4841 }
4842
4843 /* Read a minimal amount of information into the minimal die structure. */
4844
4845 static char *
4846 read_partial_die (struct partial_die_info *part_die,
4847 struct abbrev_info *abbrev,
4848 unsigned int abbrev_len, bfd *abfd,
4849 char *info_ptr, struct dwarf2_cu *cu)
4850 {
4851 unsigned int bytes_read, i;
4852 struct attribute attr;
4853 int has_low_pc_attr = 0;
4854 int has_high_pc_attr = 0;
4855
4856 memset (part_die, 0, sizeof (struct partial_die_info));
4857
4858 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
4859
4860 info_ptr += abbrev_len;
4861
4862 if (abbrev == NULL)
4863 return info_ptr;
4864
4865 part_die->tag = abbrev->tag;
4866 part_die->has_children = abbrev->has_children;
4867
4868 for (i = 0; i < abbrev->num_attrs; ++i)
4869 {
4870 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
4871
4872 /* Store the data if it is of an attribute we want to keep in a
4873 partial symbol table. */
4874 switch (attr.name)
4875 {
4876 case DW_AT_name:
4877
4878 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
4879 if (part_die->name == NULL)
4880 part_die->name = DW_STRING (&attr);
4881 break;
4882 case DW_AT_comp_dir:
4883 if (part_die->dirname == NULL)
4884 part_die->dirname = DW_STRING (&attr);
4885 break;
4886 case DW_AT_MIPS_linkage_name:
4887 part_die->name = DW_STRING (&attr);
4888 break;
4889 case DW_AT_low_pc:
4890 has_low_pc_attr = 1;
4891 part_die->lowpc = DW_ADDR (&attr);
4892 break;
4893 case DW_AT_high_pc:
4894 has_high_pc_attr = 1;
4895 part_die->highpc = DW_ADDR (&attr);
4896 break;
4897 case DW_AT_location:
4898 /* Support the .debug_loc offsets */
4899 if (attr_form_is_block (&attr))
4900 {
4901 part_die->locdesc = DW_BLOCK (&attr);
4902 }
4903 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
4904 {
4905 dwarf2_complex_location_expr_complaint ();
4906 }
4907 else
4908 {
4909 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4910 "partial symbol information");
4911 }
4912 break;
4913 case DW_AT_language:
4914 part_die->language = DW_UNSND (&attr);
4915 break;
4916 case DW_AT_external:
4917 part_die->is_external = DW_UNSND (&attr);
4918 break;
4919 case DW_AT_declaration:
4920 part_die->is_declaration = DW_UNSND (&attr);
4921 break;
4922 case DW_AT_type:
4923 part_die->has_type = 1;
4924 break;
4925 case DW_AT_abstract_origin:
4926 case DW_AT_specification:
4927 case DW_AT_extension:
4928 part_die->has_specification = 1;
4929 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
4930 break;
4931 case DW_AT_sibling:
4932 /* Ignore absolute siblings, they might point outside of
4933 the current compile unit. */
4934 if (attr.form == DW_FORM_ref_addr)
4935 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
4936 else
4937 part_die->sibling = dwarf2_per_objfile->info_buffer
4938 + dwarf2_get_ref_die_offset (&attr, cu);
4939 break;
4940 case DW_AT_stmt_list:
4941 part_die->has_stmt_list = 1;
4942 part_die->line_offset = DW_UNSND (&attr);
4943 break;
4944 default:
4945 break;
4946 }
4947 }
4948
4949 /* When using the GNU linker, .gnu.linkonce. sections are used to
4950 eliminate duplicate copies of functions and vtables and such.
4951 The linker will arbitrarily choose one and discard the others.
4952 The AT_*_pc values for such functions refer to local labels in
4953 these sections. If the section from that file was discarded, the
4954 labels are not in the output, so the relocs get a value of 0.
4955 If this is a discarded function, mark the pc bounds as invalid,
4956 so that GDB will ignore it. */
4957 if (has_low_pc_attr && has_high_pc_attr
4958 && part_die->lowpc < part_die->highpc
4959 && (part_die->lowpc != 0
4960 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
4961 part_die->has_pc_info = 1;
4962 return info_ptr;
4963 }
4964
4965 /* Find a cached partial DIE at OFFSET in CU. */
4966
4967 static struct partial_die_info *
4968 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
4969 {
4970 struct partial_die_info *lookup_die = NULL;
4971 struct partial_die_info part_die;
4972
4973 part_die.offset = offset;
4974 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
4975
4976 if (lookup_die == NULL)
4977 internal_error (__FILE__, __LINE__,
4978 "could not find partial DIE in cache\n");
4979
4980 return lookup_die;
4981 }
4982
4983 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
4984
4985 static struct partial_die_info *
4986 find_partial_die (unsigned long offset, struct dwarf2_cu *cu,
4987 struct dwarf2_cu **target_cu)
4988 {
4989 struct dwarf2_per_cu_data *per_cu;
4990
4991 if (offset >= cu->header.offset
4992 && offset < cu->header.offset + cu->header.length)
4993 {
4994 *target_cu = cu;
4995 return find_partial_die_in_comp_unit (offset, cu);
4996 }
4997
4998 internal_error (__FILE__, __LINE__,
4999 "unsupported inter-compilation-unit reference");
5000 }
5001
5002 /* Adjust PART_DIE before generating a symbol for it. This function
5003 may set the is_external flag or change the DIE's name. */
5004
5005 static void
5006 fixup_partial_die (struct partial_die_info *part_die,
5007 struct dwarf2_cu *cu)
5008 {
5009 /* If we found a reference attribute and the DIE has no name, try
5010 to find a name in the referred to DIE. */
5011
5012 if (part_die->name == NULL && part_die->has_specification)
5013 {
5014 struct partial_die_info *spec_die;
5015 struct dwarf2_cu *spec_cu;
5016
5017 spec_die = find_partial_die (part_die->spec_offset, cu, &spec_cu);
5018
5019 fixup_partial_die (spec_die, spec_cu);
5020
5021 if (spec_die->name)
5022 {
5023 part_die->name = spec_die->name;
5024
5025 /* Copy DW_AT_external attribute if it is set. */
5026 if (spec_die->is_external)
5027 part_die->is_external = spec_die->is_external;
5028 }
5029 }
5030
5031 /* Set default names for some unnamed DIEs. */
5032 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5033 || part_die->tag == DW_TAG_class_type))
5034 part_die->name = "(anonymous class)";
5035
5036 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5037 part_die->name = "(anonymous namespace)";
5038
5039 if (part_die->tag == DW_TAG_structure_type
5040 || part_die->tag == DW_TAG_class_type
5041 || part_die->tag == DW_TAG_union_type)
5042 guess_structure_name (part_die, cu);
5043 }
5044
5045 /* Read the die from the .debug_info section buffer. Set DIEP to
5046 point to a newly allocated die with its information, except for its
5047 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5048 whether the die has children or not. */
5049
5050 static char *
5051 read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
5052 struct dwarf2_cu *cu, int *has_children)
5053 {
5054 unsigned int abbrev_number, bytes_read, i, offset;
5055 struct abbrev_info *abbrev;
5056 struct die_info *die;
5057
5058 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5059 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5060 info_ptr += bytes_read;
5061 if (!abbrev_number)
5062 {
5063 die = dwarf_alloc_die ();
5064 die->tag = 0;
5065 die->abbrev = abbrev_number;
5066 die->type = NULL;
5067 *diep = die;
5068 *has_children = 0;
5069 return info_ptr;
5070 }
5071
5072 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5073 if (!abbrev)
5074 {
5075 error ("Dwarf Error: could not find abbrev number %d [in module %s]",
5076 abbrev_number,
5077 bfd_get_filename (abfd));
5078 }
5079 die = dwarf_alloc_die ();
5080 die->offset = offset;
5081 die->tag = abbrev->tag;
5082 die->abbrev = abbrev_number;
5083 die->type = NULL;
5084
5085 die->num_attrs = abbrev->num_attrs;
5086 die->attrs = (struct attribute *)
5087 xmalloc (die->num_attrs * sizeof (struct attribute));
5088
5089 for (i = 0; i < abbrev->num_attrs; ++i)
5090 {
5091 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5092 abfd, info_ptr, cu);
5093 }
5094
5095 *diep = die;
5096 *has_children = abbrev->has_children;
5097 return info_ptr;
5098 }
5099
5100 /* Read an attribute value described by an attribute form. */
5101
5102 static char *
5103 read_attribute_value (struct attribute *attr, unsigned form,
5104 bfd *abfd, char *info_ptr,
5105 struct dwarf2_cu *cu)
5106 {
5107 struct comp_unit_head *cu_header = &cu->header;
5108 unsigned int bytes_read;
5109 struct dwarf_block *blk;
5110
5111 attr->form = form;
5112 switch (form)
5113 {
5114 case DW_FORM_addr:
5115 case DW_FORM_ref_addr:
5116 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5117 info_ptr += bytes_read;
5118 break;
5119 case DW_FORM_block2:
5120 blk = dwarf_alloc_block (cu);
5121 blk->size = read_2_bytes (abfd, info_ptr);
5122 info_ptr += 2;
5123 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5124 info_ptr += blk->size;
5125 DW_BLOCK (attr) = blk;
5126 break;
5127 case DW_FORM_block4:
5128 blk = dwarf_alloc_block (cu);
5129 blk->size = read_4_bytes (abfd, info_ptr);
5130 info_ptr += 4;
5131 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5132 info_ptr += blk->size;
5133 DW_BLOCK (attr) = blk;
5134 break;
5135 case DW_FORM_data2:
5136 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5137 info_ptr += 2;
5138 break;
5139 case DW_FORM_data4:
5140 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5141 info_ptr += 4;
5142 break;
5143 case DW_FORM_data8:
5144 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5145 info_ptr += 8;
5146 break;
5147 case DW_FORM_string:
5148 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5149 info_ptr += bytes_read;
5150 break;
5151 case DW_FORM_strp:
5152 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5153 &bytes_read);
5154 info_ptr += bytes_read;
5155 break;
5156 case DW_FORM_block:
5157 blk = dwarf_alloc_block (cu);
5158 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5159 info_ptr += bytes_read;
5160 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5161 info_ptr += blk->size;
5162 DW_BLOCK (attr) = blk;
5163 break;
5164 case DW_FORM_block1:
5165 blk = dwarf_alloc_block (cu);
5166 blk->size = read_1_byte (abfd, info_ptr);
5167 info_ptr += 1;
5168 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5169 info_ptr += blk->size;
5170 DW_BLOCK (attr) = blk;
5171 break;
5172 case DW_FORM_data1:
5173 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5174 info_ptr += 1;
5175 break;
5176 case DW_FORM_flag:
5177 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5178 info_ptr += 1;
5179 break;
5180 case DW_FORM_sdata:
5181 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5182 info_ptr += bytes_read;
5183 break;
5184 case DW_FORM_udata:
5185 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5186 info_ptr += bytes_read;
5187 break;
5188 case DW_FORM_ref1:
5189 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5190 info_ptr += 1;
5191 break;
5192 case DW_FORM_ref2:
5193 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5194 info_ptr += 2;
5195 break;
5196 case DW_FORM_ref4:
5197 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5198 info_ptr += 4;
5199 break;
5200 case DW_FORM_ref8:
5201 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5202 info_ptr += 8;
5203 break;
5204 case DW_FORM_ref_udata:
5205 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5206 info_ptr += bytes_read;
5207 break;
5208 case DW_FORM_indirect:
5209 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5210 info_ptr += bytes_read;
5211 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5212 break;
5213 default:
5214 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
5215 dwarf_form_name (form),
5216 bfd_get_filename (abfd));
5217 }
5218 return info_ptr;
5219 }
5220
5221 /* Read an attribute described by an abbreviated attribute. */
5222
5223 static char *
5224 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5225 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
5226 {
5227 attr->name = abbrev->name;
5228 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5229 }
5230
5231 /* read dwarf information from a buffer */
5232
5233 static unsigned int
5234 read_1_byte (bfd *abfd, char *buf)
5235 {
5236 return bfd_get_8 (abfd, (bfd_byte *) buf);
5237 }
5238
5239 static int
5240 read_1_signed_byte (bfd *abfd, char *buf)
5241 {
5242 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
5243 }
5244
5245 static unsigned int
5246 read_2_bytes (bfd *abfd, char *buf)
5247 {
5248 return bfd_get_16 (abfd, (bfd_byte *) buf);
5249 }
5250
5251 static int
5252 read_2_signed_bytes (bfd *abfd, char *buf)
5253 {
5254 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5255 }
5256
5257 static unsigned int
5258 read_4_bytes (bfd *abfd, char *buf)
5259 {
5260 return bfd_get_32 (abfd, (bfd_byte *) buf);
5261 }
5262
5263 static int
5264 read_4_signed_bytes (bfd *abfd, char *buf)
5265 {
5266 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5267 }
5268
5269 static unsigned long
5270 read_8_bytes (bfd *abfd, char *buf)
5271 {
5272 return bfd_get_64 (abfd, (bfd_byte *) buf);
5273 }
5274
5275 static CORE_ADDR
5276 read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
5277 {
5278 struct comp_unit_head *cu_header = &cu->header;
5279 CORE_ADDR retval = 0;
5280
5281 if (cu_header->signed_addr_p)
5282 {
5283 switch (cu_header->addr_size)
5284 {
5285 case 2:
5286 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5287 break;
5288 case 4:
5289 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5290 break;
5291 case 8:
5292 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
5293 break;
5294 default:
5295 internal_error (__FILE__, __LINE__,
5296 "read_address: bad switch, signed [in module %s]",
5297 bfd_get_filename (abfd));
5298 }
5299 }
5300 else
5301 {
5302 switch (cu_header->addr_size)
5303 {
5304 case 2:
5305 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
5306 break;
5307 case 4:
5308 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5309 break;
5310 case 8:
5311 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5312 break;
5313 default:
5314 internal_error (__FILE__, __LINE__,
5315 "read_address: bad switch, unsigned [in module %s]",
5316 bfd_get_filename (abfd));
5317 }
5318 }
5319
5320 *bytes_read = cu_header->addr_size;
5321 return retval;
5322 }
5323
5324 /* Read the initial length from a section. The (draft) DWARF 3
5325 specification allows the initial length to take up either 4 bytes
5326 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5327 bytes describe the length and all offsets will be 8 bytes in length
5328 instead of 4.
5329
5330 An older, non-standard 64-bit format is also handled by this
5331 function. The older format in question stores the initial length
5332 as an 8-byte quantity without an escape value. Lengths greater
5333 than 2^32 aren't very common which means that the initial 4 bytes
5334 is almost always zero. Since a length value of zero doesn't make
5335 sense for the 32-bit format, this initial zero can be considered to
5336 be an escape value which indicates the presence of the older 64-bit
5337 format. As written, the code can't detect (old format) lengths
5338 greater than 4GB. If it becomes necessary to handle lengths somewhat
5339 larger than 4GB, we could allow other small values (such as the
5340 non-sensical values of 1, 2, and 3) to also be used as escape values
5341 indicating the presence of the old format.
5342
5343 The value returned via bytes_read should be used to increment
5344 the relevant pointer after calling read_initial_length().
5345
5346 As a side effect, this function sets the fields initial_length_size
5347 and offset_size in cu_header to the values appropriate for the
5348 length field. (The format of the initial length field determines
5349 the width of file offsets to be fetched later with fetch_offset().)
5350
5351 [ Note: read_initial_length() and read_offset() are based on the
5352 document entitled "DWARF Debugging Information Format", revision
5353 3, draft 8, dated November 19, 2001. This document was obtained
5354 from:
5355
5356 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5357
5358 This document is only a draft and is subject to change. (So beware.)
5359
5360 Details regarding the older, non-standard 64-bit format were
5361 determined empirically by examining 64-bit ELF files produced
5362 by the SGI toolchain on an IRIX 6.5 machine.
5363
5364 - Kevin, July 16, 2002
5365 ] */
5366
5367 static LONGEST
5368 read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5369 int *bytes_read)
5370 {
5371 LONGEST retval = 0;
5372
5373 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5374
5375 if (retval == 0xffffffff)
5376 {
5377 retval = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
5378 *bytes_read = 12;
5379 if (cu_header != NULL)
5380 {
5381 cu_header->initial_length_size = 12;
5382 cu_header->offset_size = 8;
5383 }
5384 }
5385 else if (retval == 0)
5386 {
5387 /* Handle (non-standard) 64-bit DWARF2 formats such as that used
5388 by IRIX. */
5389 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5390 *bytes_read = 8;
5391 if (cu_header != NULL)
5392 {
5393 cu_header->initial_length_size = 8;
5394 cu_header->offset_size = 8;
5395 }
5396 }
5397 else
5398 {
5399 *bytes_read = 4;
5400 if (cu_header != NULL)
5401 {
5402 cu_header->initial_length_size = 4;
5403 cu_header->offset_size = 4;
5404 }
5405 }
5406
5407 return retval;
5408 }
5409
5410 /* Read an offset from the data stream. The size of the offset is
5411 given by cu_header->offset_size. */
5412
5413 static LONGEST
5414 read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5415 int *bytes_read)
5416 {
5417 LONGEST retval = 0;
5418
5419 switch (cu_header->offset_size)
5420 {
5421 case 4:
5422 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5423 *bytes_read = 4;
5424 break;
5425 case 8:
5426 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5427 *bytes_read = 8;
5428 break;
5429 default:
5430 internal_error (__FILE__, __LINE__,
5431 "read_offset: bad switch [in module %s]",
5432 bfd_get_filename (abfd));
5433 }
5434
5435 return retval;
5436 }
5437
5438 static char *
5439 read_n_bytes (bfd *abfd, char *buf, unsigned int size)
5440 {
5441 /* If the size of a host char is 8 bits, we can return a pointer
5442 to the buffer, otherwise we have to copy the data to a buffer
5443 allocated on the temporary obstack. */
5444 gdb_assert (HOST_CHAR_BIT == 8);
5445 return buf;
5446 }
5447
5448 static char *
5449 read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5450 {
5451 /* If the size of a host char is 8 bits, we can return a pointer
5452 to the string, otherwise we have to copy the string to a buffer
5453 allocated on the temporary obstack. */
5454 gdb_assert (HOST_CHAR_BIT == 8);
5455 if (*buf == '\0')
5456 {
5457 *bytes_read_ptr = 1;
5458 return NULL;
5459 }
5460 *bytes_read_ptr = strlen (buf) + 1;
5461 return buf;
5462 }
5463
5464 static char *
5465 read_indirect_string (bfd *abfd, char *buf,
5466 const struct comp_unit_head *cu_header,
5467 unsigned int *bytes_read_ptr)
5468 {
5469 LONGEST str_offset = read_offset (abfd, buf, cu_header,
5470 (int *) bytes_read_ptr);
5471
5472 if (dwarf2_per_objfile->str_buffer == NULL)
5473 {
5474 error ("DW_FORM_strp used without .debug_str section [in module %s]",
5475 bfd_get_filename (abfd));
5476 return NULL;
5477 }
5478 if (str_offset >= dwarf2_per_objfile->str_size)
5479 {
5480 error ("DW_FORM_strp pointing outside of .debug_str section [in module %s]",
5481 bfd_get_filename (abfd));
5482 return NULL;
5483 }
5484 gdb_assert (HOST_CHAR_BIT == 8);
5485 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
5486 return NULL;
5487 return dwarf2_per_objfile->str_buffer + str_offset;
5488 }
5489
5490 static unsigned long
5491 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5492 {
5493 unsigned long result;
5494 unsigned int num_read;
5495 int i, shift;
5496 unsigned char byte;
5497
5498 result = 0;
5499 shift = 0;
5500 num_read = 0;
5501 i = 0;
5502 while (1)
5503 {
5504 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
5505 buf++;
5506 num_read++;
5507 result |= ((unsigned long)(byte & 127) << shift);
5508 if ((byte & 128) == 0)
5509 {
5510 break;
5511 }
5512 shift += 7;
5513 }
5514 *bytes_read_ptr = num_read;
5515 return result;
5516 }
5517
5518 static long
5519 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5520 {
5521 long result;
5522 int i, shift, size, num_read;
5523 unsigned char byte;
5524
5525 result = 0;
5526 shift = 0;
5527 size = 32;
5528 num_read = 0;
5529 i = 0;
5530 while (1)
5531 {
5532 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
5533 buf++;
5534 num_read++;
5535 result |= ((long)(byte & 127) << shift);
5536 shift += 7;
5537 if ((byte & 128) == 0)
5538 {
5539 break;
5540 }
5541 }
5542 if ((shift < size) && (byte & 0x40))
5543 {
5544 result |= -(1 << shift);
5545 }
5546 *bytes_read_ptr = num_read;
5547 return result;
5548 }
5549
5550 /* Return a pointer to just past the end of an LEB128 number in BUF. */
5551
5552 static char *
5553 skip_leb128 (bfd *abfd, char *buf)
5554 {
5555 int byte;
5556
5557 while (1)
5558 {
5559 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
5560 buf++;
5561 if ((byte & 128) == 0)
5562 return buf;
5563 }
5564 }
5565
5566 static void
5567 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
5568 {
5569 switch (lang)
5570 {
5571 case DW_LANG_C89:
5572 case DW_LANG_C:
5573 cu->language = language_c;
5574 break;
5575 case DW_LANG_C_plus_plus:
5576 cu->language = language_cplus;
5577 break;
5578 case DW_LANG_Fortran77:
5579 case DW_LANG_Fortran90:
5580 case DW_LANG_Fortran95:
5581 cu->language = language_fortran;
5582 break;
5583 case DW_LANG_Mips_Assembler:
5584 cu->language = language_asm;
5585 break;
5586 case DW_LANG_Java:
5587 cu->language = language_java;
5588 break;
5589 case DW_LANG_Ada83:
5590 case DW_LANG_Ada95:
5591 case DW_LANG_Cobol74:
5592 case DW_LANG_Cobol85:
5593 case DW_LANG_Pascal83:
5594 case DW_LANG_Modula2:
5595 default:
5596 cu->language = language_minimal;
5597 break;
5598 }
5599 cu->language_defn = language_def (cu->language);
5600 }
5601
5602 /* Return the named attribute or NULL if not there. */
5603
5604 static struct attribute *
5605 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
5606 {
5607 unsigned int i;
5608 struct attribute *spec = NULL;
5609
5610 for (i = 0; i < die->num_attrs; ++i)
5611 {
5612 if (die->attrs[i].name == name)
5613 {
5614 return &die->attrs[i];
5615 }
5616 if (die->attrs[i].name == DW_AT_specification
5617 || die->attrs[i].name == DW_AT_abstract_origin)
5618 spec = &die->attrs[i];
5619 }
5620 if (spec)
5621 {
5622 struct die_info *ref_die =
5623 follow_die_ref (dwarf2_get_ref_die_offset (spec, cu));
5624
5625 if (ref_die)
5626 return dwarf2_attr (ref_die, name, cu);
5627 }
5628
5629 return NULL;
5630 }
5631
5632 /* Return non-zero iff the attribute NAME is defined for the given DIE,
5633 and holds a non-zero value. This function should only be used for
5634 DW_FORM_flag attributes. */
5635
5636 static int
5637 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
5638 {
5639 struct attribute *attr = dwarf2_attr (die, name, cu);
5640
5641 return (attr && DW_UNSND (attr));
5642 }
5643
5644 static int
5645 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
5646 {
5647 /* A DIE is a declaration if it has a DW_AT_declaration attribute
5648 which value is non-zero. However, we have to be careful with
5649 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
5650 (via dwarf2_flag_true_p) follows this attribute. So we may
5651 end up accidently finding a declaration attribute that belongs
5652 to a different DIE referenced by the specification attribute,
5653 even though the given DIE does not have a declaration attribute. */
5654 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
5655 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
5656 }
5657
5658 /* Return the die giving the specification for DIE, if there is
5659 one. */
5660
5661 static struct die_info *
5662 die_specification (struct die_info *die, struct dwarf2_cu *cu)
5663 {
5664 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
5665
5666 if (spec_attr == NULL)
5667 return NULL;
5668 else
5669 return follow_die_ref (dwarf2_get_ref_die_offset (spec_attr, cu));
5670 }
5671
5672 /* Free the line_header structure *LH, and any arrays and strings it
5673 refers to. */
5674 static void
5675 free_line_header (struct line_header *lh)
5676 {
5677 if (lh->standard_opcode_lengths)
5678 xfree (lh->standard_opcode_lengths);
5679
5680 /* Remember that all the lh->file_names[i].name pointers are
5681 pointers into debug_line_buffer, and don't need to be freed. */
5682 if (lh->file_names)
5683 xfree (lh->file_names);
5684
5685 /* Similarly for the include directory names. */
5686 if (lh->include_dirs)
5687 xfree (lh->include_dirs);
5688
5689 xfree (lh);
5690 }
5691
5692
5693 /* Add an entry to LH's include directory table. */
5694 static void
5695 add_include_dir (struct line_header *lh, char *include_dir)
5696 {
5697 /* Grow the array if necessary. */
5698 if (lh->include_dirs_size == 0)
5699 {
5700 lh->include_dirs_size = 1; /* for testing */
5701 lh->include_dirs = xmalloc (lh->include_dirs_size
5702 * sizeof (*lh->include_dirs));
5703 }
5704 else if (lh->num_include_dirs >= lh->include_dirs_size)
5705 {
5706 lh->include_dirs_size *= 2;
5707 lh->include_dirs = xrealloc (lh->include_dirs,
5708 (lh->include_dirs_size
5709 * sizeof (*lh->include_dirs)));
5710 }
5711
5712 lh->include_dirs[lh->num_include_dirs++] = include_dir;
5713 }
5714
5715
5716 /* Add an entry to LH's file name table. */
5717 static void
5718 add_file_name (struct line_header *lh,
5719 char *name,
5720 unsigned int dir_index,
5721 unsigned int mod_time,
5722 unsigned int length)
5723 {
5724 struct file_entry *fe;
5725
5726 /* Grow the array if necessary. */
5727 if (lh->file_names_size == 0)
5728 {
5729 lh->file_names_size = 1; /* for testing */
5730 lh->file_names = xmalloc (lh->file_names_size
5731 * sizeof (*lh->file_names));
5732 }
5733 else if (lh->num_file_names >= lh->file_names_size)
5734 {
5735 lh->file_names_size *= 2;
5736 lh->file_names = xrealloc (lh->file_names,
5737 (lh->file_names_size
5738 * sizeof (*lh->file_names)));
5739 }
5740
5741 fe = &lh->file_names[lh->num_file_names++];
5742 fe->name = name;
5743 fe->dir_index = dir_index;
5744 fe->mod_time = mod_time;
5745 fe->length = length;
5746 fe->included_p = 0;
5747 }
5748
5749
5750 /* Read the statement program header starting at OFFSET in
5751 .debug_line, according to the endianness of ABFD. Return a pointer
5752 to a struct line_header, allocated using xmalloc.
5753
5754 NOTE: the strings in the include directory and file name tables of
5755 the returned object point into debug_line_buffer, and must not be
5756 freed. */
5757 static struct line_header *
5758 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
5759 struct dwarf2_cu *cu)
5760 {
5761 struct cleanup *back_to;
5762 struct line_header *lh;
5763 char *line_ptr;
5764 int bytes_read;
5765 int i;
5766 char *cur_dir, *cur_file;
5767
5768 if (dwarf2_per_objfile->line_buffer == NULL)
5769 {
5770 complaint (&symfile_complaints, "missing .debug_line section");
5771 return 0;
5772 }
5773
5774 /* Make sure that at least there's room for the total_length field. That
5775 could be 12 bytes long, but we're just going to fudge that. */
5776 if (offset + 4 >= dwarf2_per_objfile->line_size)
5777 {
5778 dwarf2_statement_list_fits_in_line_number_section_complaint ();
5779 return 0;
5780 }
5781
5782 lh = xmalloc (sizeof (*lh));
5783 memset (lh, 0, sizeof (*lh));
5784 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
5785 (void *) lh);
5786
5787 line_ptr = dwarf2_per_objfile->line_buffer + offset;
5788
5789 /* read in the header */
5790 lh->total_length = read_initial_length (abfd, line_ptr, NULL, &bytes_read);
5791 line_ptr += bytes_read;
5792 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
5793 + dwarf2_per_objfile->line_size))
5794 {
5795 dwarf2_statement_list_fits_in_line_number_section_complaint ();
5796 return 0;
5797 }
5798 lh->statement_program_end = line_ptr + lh->total_length;
5799 lh->version = read_2_bytes (abfd, line_ptr);
5800 line_ptr += 2;
5801 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
5802 line_ptr += bytes_read;
5803 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
5804 line_ptr += 1;
5805 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
5806 line_ptr += 1;
5807 lh->line_base = read_1_signed_byte (abfd, line_ptr);
5808 line_ptr += 1;
5809 lh->line_range = read_1_byte (abfd, line_ptr);
5810 line_ptr += 1;
5811 lh->opcode_base = read_1_byte (abfd, line_ptr);
5812 line_ptr += 1;
5813 lh->standard_opcode_lengths
5814 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
5815
5816 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
5817 for (i = 1; i < lh->opcode_base; ++i)
5818 {
5819 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
5820 line_ptr += 1;
5821 }
5822
5823 /* Read directory table */
5824 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
5825 {
5826 line_ptr += bytes_read;
5827 add_include_dir (lh, cur_dir);
5828 }
5829 line_ptr += bytes_read;
5830
5831 /* Read file name table */
5832 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
5833 {
5834 unsigned int dir_index, mod_time, length;
5835
5836 line_ptr += bytes_read;
5837 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5838 line_ptr += bytes_read;
5839 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5840 line_ptr += bytes_read;
5841 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5842 line_ptr += bytes_read;
5843
5844 add_file_name (lh, cur_file, dir_index, mod_time, length);
5845 }
5846 line_ptr += bytes_read;
5847 lh->statement_program_start = line_ptr;
5848
5849 if (line_ptr > (dwarf2_per_objfile->line_buffer
5850 + dwarf2_per_objfile->line_size))
5851 complaint (&symfile_complaints,
5852 "line number info header doesn't fit in `.debug_line' section");
5853
5854 discard_cleanups (back_to);
5855 return lh;
5856 }
5857
5858 /* This function exists to work around a bug in certain compilers
5859 (particularly GCC 2.95), in which the first line number marker of a
5860 function does not show up until after the prologue, right before
5861 the second line number marker. This function shifts ADDRESS down
5862 to the beginning of the function if necessary, and is called on
5863 addresses passed to record_line. */
5864
5865 static CORE_ADDR
5866 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5867 {
5868 struct function_range *fn;
5869
5870 /* Find the function_range containing address. */
5871 if (!cu->first_fn)
5872 return address;
5873
5874 if (!cu->cached_fn)
5875 cu->cached_fn = cu->first_fn;
5876
5877 fn = cu->cached_fn;
5878 while (fn)
5879 if (fn->lowpc <= address && fn->highpc > address)
5880 goto found;
5881 else
5882 fn = fn->next;
5883
5884 fn = cu->first_fn;
5885 while (fn && fn != cu->cached_fn)
5886 if (fn->lowpc <= address && fn->highpc > address)
5887 goto found;
5888 else
5889 fn = fn->next;
5890
5891 return address;
5892
5893 found:
5894 if (fn->seen_line)
5895 return address;
5896 if (address != fn->lowpc)
5897 complaint (&symfile_complaints,
5898 "misplaced first line number at 0x%lx for '%s'",
5899 (unsigned long) address, fn->name);
5900 fn->seen_line = 1;
5901 return fn->lowpc;
5902 }
5903
5904 /* Decode the Line Number Program (LNP) for the given line_header
5905 structure and CU. The actual information extracted and the type
5906 of structures created from the LNP depends on the value of PST.
5907
5908 1. If PST is NULL, then this procedure uses the data from the program
5909 to create all necessary symbol tables, and their linetables.
5910 The compilation directory of the file is passed in COMP_DIR,
5911 and must not be NULL.
5912
5913 2. If PST is not NULL, this procedure reads the program to determine
5914 the list of files included by the unit represented by PST, and
5915 builds all the associated partial symbol tables. In this case,
5916 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
5917 is not used to compute the full name of the symtab, and therefore
5918 omitting it when building the partial symtab does not introduce
5919 the potential for inconsistency - a partial symtab and its associated
5920 symbtab having a different fullname -). */
5921
5922 static void
5923 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
5924 struct dwarf2_cu *cu, struct partial_symtab *pst)
5925 {
5926 char *line_ptr;
5927 char *line_end;
5928 unsigned int bytes_read;
5929 unsigned char op_code, extended_op, adj_opcode;
5930 CORE_ADDR baseaddr;
5931 struct objfile *objfile = cu->objfile;
5932 const int decode_for_pst_p = (pst != NULL);
5933
5934 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5935
5936 line_ptr = lh->statement_program_start;
5937 line_end = lh->statement_program_end;
5938
5939 /* Read the statement sequences until there's nothing left. */
5940 while (line_ptr < line_end)
5941 {
5942 /* state machine registers */
5943 CORE_ADDR address = 0;
5944 unsigned int file = 1;
5945 unsigned int line = 1;
5946 unsigned int column = 0;
5947 int is_stmt = lh->default_is_stmt;
5948 int basic_block = 0;
5949 int end_sequence = 0;
5950
5951 if (!decode_for_pst_p && lh->num_file_names >= file)
5952 {
5953 /* Start a subfile for the current file of the state machine. */
5954 /* lh->include_dirs and lh->file_names are 0-based, but the
5955 directory and file name numbers in the statement program
5956 are 1-based. */
5957 struct file_entry *fe = &lh->file_names[file - 1];
5958 char *dir;
5959 if (fe->dir_index)
5960 dir = lh->include_dirs[fe->dir_index - 1];
5961 else
5962 dir = comp_dir;
5963 dwarf2_start_subfile (fe->name, dir);
5964 }
5965
5966 /* Decode the table. */
5967 while (!end_sequence)
5968 {
5969 op_code = read_1_byte (abfd, line_ptr);
5970 line_ptr += 1;
5971
5972 if (op_code >= lh->opcode_base)
5973 { /* Special operand. */
5974 adj_opcode = op_code - lh->opcode_base;
5975 address += (adj_opcode / lh->line_range)
5976 * lh->minimum_instruction_length;
5977 line += lh->line_base + (adj_opcode % lh->line_range);
5978 if (!decode_for_pst_p)
5979 {
5980 /* append row to matrix using current values */
5981 record_line (current_subfile, line,
5982 check_cu_functions (address, cu));
5983 }
5984 basic_block = 1;
5985 }
5986 else switch (op_code)
5987 {
5988 case DW_LNS_extended_op:
5989 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5990 line_ptr += bytes_read;
5991 extended_op = read_1_byte (abfd, line_ptr);
5992 line_ptr += 1;
5993 switch (extended_op)
5994 {
5995 case DW_LNE_end_sequence:
5996 end_sequence = 1;
5997 if (!decode_for_pst_p)
5998 record_line (current_subfile, 0, address);
5999 break;
6000 case DW_LNE_set_address:
6001 address = read_address (abfd, line_ptr, cu, &bytes_read);
6002 line_ptr += bytes_read;
6003 address += baseaddr;
6004 break;
6005 case DW_LNE_define_file:
6006 {
6007 char *cur_file;
6008 unsigned int dir_index, mod_time, length;
6009
6010 cur_file = read_string (abfd, line_ptr, &bytes_read);
6011 line_ptr += bytes_read;
6012 dir_index =
6013 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6014 line_ptr += bytes_read;
6015 mod_time =
6016 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6017 line_ptr += bytes_read;
6018 length =
6019 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6020 line_ptr += bytes_read;
6021 add_file_name (lh, cur_file, dir_index, mod_time, length);
6022 }
6023 break;
6024 default:
6025 complaint (&symfile_complaints,
6026 "mangled .debug_line section");
6027 return;
6028 }
6029 break;
6030 case DW_LNS_copy:
6031 if (!decode_for_pst_p)
6032 record_line (current_subfile, line,
6033 check_cu_functions (address, cu));
6034 basic_block = 0;
6035 break;
6036 case DW_LNS_advance_pc:
6037 address += lh->minimum_instruction_length
6038 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6039 line_ptr += bytes_read;
6040 break;
6041 case DW_LNS_advance_line:
6042 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6043 line_ptr += bytes_read;
6044 break;
6045 case DW_LNS_set_file:
6046 {
6047 /* lh->include_dirs and lh->file_names are 0-based,
6048 but the directory and file name numbers in the
6049 statement program are 1-based. */
6050 struct file_entry *fe;
6051 char *dir;
6052 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6053 line_ptr += bytes_read;
6054 fe = &lh->file_names[file - 1];
6055 fe->included_p = 1;
6056 if (fe->dir_index)
6057 dir = lh->include_dirs[fe->dir_index - 1];
6058 else
6059 dir = comp_dir;
6060 if (!decode_for_pst_p)
6061 dwarf2_start_subfile (fe->name, dir);
6062 }
6063 break;
6064 case DW_LNS_set_column:
6065 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6066 line_ptr += bytes_read;
6067 break;
6068 case DW_LNS_negate_stmt:
6069 is_stmt = (!is_stmt);
6070 break;
6071 case DW_LNS_set_basic_block:
6072 basic_block = 1;
6073 break;
6074 /* Add to the address register of the state machine the
6075 address increment value corresponding to special opcode
6076 255. Ie, this value is scaled by the minimum instruction
6077 length since special opcode 255 would have scaled the
6078 the increment. */
6079 case DW_LNS_const_add_pc:
6080 address += (lh->minimum_instruction_length
6081 * ((255 - lh->opcode_base) / lh->line_range));
6082 break;
6083 case DW_LNS_fixed_advance_pc:
6084 address += read_2_bytes (abfd, line_ptr);
6085 line_ptr += 2;
6086 break;
6087 default:
6088 { /* Unknown standard opcode, ignore it. */
6089 int i;
6090 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6091 {
6092 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6093 line_ptr += bytes_read;
6094 }
6095 }
6096 }
6097 }
6098 }
6099
6100 if (decode_for_pst_p)
6101 {
6102 int file_index;
6103
6104 /* Now that we're done scanning the Line Header Program, we can
6105 create the psymtab of each included file. */
6106 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6107 if (lh->file_names[file_index].included_p == 1)
6108 {
6109 char *include_name = lh->file_names [file_index].name;
6110
6111 if (strcmp (include_name, pst->filename) != 0)
6112 dwarf2_create_include_psymtab (include_name, pst, objfile);
6113 }
6114 }
6115 }
6116
6117 /* Start a subfile for DWARF. FILENAME is the name of the file and
6118 DIRNAME the name of the source directory which contains FILENAME
6119 or NULL if not known.
6120 This routine tries to keep line numbers from identical absolute and
6121 relative file names in a common subfile.
6122
6123 Using the `list' example from the GDB testsuite, which resides in
6124 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6125 of /srcdir/list0.c yields the following debugging information for list0.c:
6126
6127 DW_AT_name: /srcdir/list0.c
6128 DW_AT_comp_dir: /compdir
6129 files.files[0].name: list0.h
6130 files.files[0].dir: /srcdir
6131 files.files[1].name: list0.c
6132 files.files[1].dir: /srcdir
6133
6134 The line number information for list0.c has to end up in a single
6135 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6136
6137 static void
6138 dwarf2_start_subfile (char *filename, char *dirname)
6139 {
6140 /* If the filename isn't absolute, try to match an existing subfile
6141 with the full pathname. */
6142
6143 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6144 {
6145 struct subfile *subfile;
6146 char *fullname = concat (dirname, "/", filename, NULL);
6147
6148 for (subfile = subfiles; subfile; subfile = subfile->next)
6149 {
6150 if (FILENAME_CMP (subfile->name, fullname) == 0)
6151 {
6152 current_subfile = subfile;
6153 xfree (fullname);
6154 return;
6155 }
6156 }
6157 xfree (fullname);
6158 }
6159 start_subfile (filename, dirname);
6160 }
6161
6162 static void
6163 var_decode_location (struct attribute *attr, struct symbol *sym,
6164 struct dwarf2_cu *cu)
6165 {
6166 struct objfile *objfile = cu->objfile;
6167 struct comp_unit_head *cu_header = &cu->header;
6168
6169 /* NOTE drow/2003-01-30: There used to be a comment and some special
6170 code here to turn a symbol with DW_AT_external and a
6171 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6172 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6173 with some versions of binutils) where shared libraries could have
6174 relocations against symbols in their debug information - the
6175 minimal symbol would have the right address, but the debug info
6176 would not. It's no longer necessary, because we will explicitly
6177 apply relocations when we read in the debug information now. */
6178
6179 /* A DW_AT_location attribute with no contents indicates that a
6180 variable has been optimized away. */
6181 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6182 {
6183 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6184 return;
6185 }
6186
6187 /* Handle one degenerate form of location expression specially, to
6188 preserve GDB's previous behavior when section offsets are
6189 specified. If this is just a DW_OP_addr then mark this symbol
6190 as LOC_STATIC. */
6191
6192 if (attr_form_is_block (attr)
6193 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6194 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6195 {
6196 int dummy;
6197
6198 SYMBOL_VALUE_ADDRESS (sym) =
6199 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6200 fixup_symbol_section (sym, objfile);
6201 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6202 SYMBOL_SECTION (sym));
6203 SYMBOL_CLASS (sym) = LOC_STATIC;
6204 return;
6205 }
6206
6207 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6208 expression evaluator, and use LOC_COMPUTED only when necessary
6209 (i.e. when the value of a register or memory location is
6210 referenced, or a thread-local block, etc.). Then again, it might
6211 not be worthwhile. I'm assuming that it isn't unless performance
6212 or memory numbers show me otherwise. */
6213
6214 dwarf2_symbol_mark_computed (attr, sym, cu);
6215 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6216 }
6217
6218 /* Given a pointer to a DWARF information entry, figure out if we need
6219 to make a symbol table entry for it, and if so, create a new entry
6220 and return a pointer to it.
6221 If TYPE is NULL, determine symbol type from the die, otherwise
6222 used the passed type. */
6223
6224 static struct symbol *
6225 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6226 {
6227 struct objfile *objfile = cu->objfile;
6228 struct symbol *sym = NULL;
6229 char *name;
6230 struct attribute *attr = NULL;
6231 struct attribute *attr2 = NULL;
6232 CORE_ADDR baseaddr;
6233
6234 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6235
6236 if (die->tag != DW_TAG_namespace)
6237 name = dwarf2_linkage_name (die, cu);
6238 else
6239 name = TYPE_NAME (type);
6240
6241 if (name)
6242 {
6243 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6244 sizeof (struct symbol));
6245 OBJSTAT (objfile, n_syms++);
6246 memset (sym, 0, sizeof (struct symbol));
6247
6248 /* Cache this symbol's name and the name's demangled form (if any). */
6249 SYMBOL_LANGUAGE (sym) = cu->language;
6250 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
6251
6252 /* Default assumptions.
6253 Use the passed type or decode it from the die. */
6254 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6255 SYMBOL_CLASS (sym) = LOC_STATIC;
6256 if (type != NULL)
6257 SYMBOL_TYPE (sym) = type;
6258 else
6259 SYMBOL_TYPE (sym) = die_type (die, cu);
6260 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
6261 if (attr)
6262 {
6263 SYMBOL_LINE (sym) = DW_UNSND (attr);
6264 }
6265 switch (die->tag)
6266 {
6267 case DW_TAG_label:
6268 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6269 if (attr)
6270 {
6271 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6272 }
6273 SYMBOL_CLASS (sym) = LOC_LABEL;
6274 break;
6275 case DW_TAG_subprogram:
6276 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6277 finish_block. */
6278 SYMBOL_CLASS (sym) = LOC_BLOCK;
6279 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6280 if (attr2 && (DW_UNSND (attr2) != 0))
6281 {
6282 add_symbol_to_list (sym, &global_symbols);
6283 }
6284 else
6285 {
6286 add_symbol_to_list (sym, cu->list_in_scope);
6287 }
6288 break;
6289 case DW_TAG_variable:
6290 /* Compilation with minimal debug info may result in variables
6291 with missing type entries. Change the misleading `void' type
6292 to something sensible. */
6293 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6294 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6295 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6296 "<variable, no debug info>",
6297 objfile);
6298 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6299 if (attr)
6300 {
6301 dwarf2_const_value (attr, sym, cu);
6302 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6303 if (attr2 && (DW_UNSND (attr2) != 0))
6304 add_symbol_to_list (sym, &global_symbols);
6305 else
6306 add_symbol_to_list (sym, cu->list_in_scope);
6307 break;
6308 }
6309 attr = dwarf2_attr (die, DW_AT_location, cu);
6310 if (attr)
6311 {
6312 var_decode_location (attr, sym, cu);
6313 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6314 if (attr2 && (DW_UNSND (attr2) != 0))
6315 add_symbol_to_list (sym, &global_symbols);
6316 else
6317 add_symbol_to_list (sym, cu->list_in_scope);
6318 }
6319 else
6320 {
6321 /* We do not know the address of this symbol.
6322 If it is an external symbol and we have type information
6323 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6324 The address of the variable will then be determined from
6325 the minimal symbol table whenever the variable is
6326 referenced. */
6327 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6328 if (attr2 && (DW_UNSND (attr2) != 0)
6329 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
6330 {
6331 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6332 add_symbol_to_list (sym, &global_symbols);
6333 }
6334 }
6335 break;
6336 case DW_TAG_formal_parameter:
6337 attr = dwarf2_attr (die, DW_AT_location, cu);
6338 if (attr)
6339 {
6340 var_decode_location (attr, sym, cu);
6341 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6342 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6343 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
6344 }
6345 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6346 if (attr)
6347 {
6348 dwarf2_const_value (attr, sym, cu);
6349 }
6350 add_symbol_to_list (sym, cu->list_in_scope);
6351 break;
6352 case DW_TAG_unspecified_parameters:
6353 /* From varargs functions; gdb doesn't seem to have any
6354 interest in this information, so just ignore it for now.
6355 (FIXME?) */
6356 break;
6357 case DW_TAG_class_type:
6358 case DW_TAG_structure_type:
6359 case DW_TAG_union_type:
6360 case DW_TAG_enumeration_type:
6361 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6362 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6363
6364 /* Make sure that the symbol includes appropriate enclosing
6365 classes/namespaces in its name. These are calculated in
6366 read_structure_type, and the correct name is saved in
6367 the type. */
6368
6369 if (cu->language == language_cplus)
6370 {
6371 struct type *type = SYMBOL_TYPE (sym);
6372
6373 if (TYPE_TAG_NAME (type) != NULL)
6374 {
6375 /* FIXME: carlton/2003-11-10: Should this use
6376 SYMBOL_SET_NAMES instead? (The same problem also
6377 arises further down in this function.) */
6378 /* The type's name is already allocated along with
6379 this objfile, so we don't need to duplicate it
6380 for the symbol. */
6381 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
6382 }
6383 }
6384
6385 {
6386 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
6387 really ever be static objects: otherwise, if you try
6388 to, say, break of a class's method and you're in a file
6389 which doesn't mention that class, it won't work unless
6390 the check for all static symbols in lookup_symbol_aux
6391 saves you. See the OtherFileClass tests in
6392 gdb.c++/namespace.exp. */
6393
6394 struct pending **list_to_add;
6395
6396 list_to_add = (cu->list_in_scope == &file_symbols
6397 && cu->language == language_cplus
6398 ? &global_symbols : cu->list_in_scope);
6399
6400 add_symbol_to_list (sym, list_to_add);
6401
6402 /* The semantics of C++ state that "struct foo { ... }" also
6403 defines a typedef for "foo". Synthesize a typedef symbol so
6404 that "ptype foo" works as expected. */
6405 if (cu->language == language_cplus)
6406 {
6407 struct symbol *typedef_sym = (struct symbol *)
6408 obstack_alloc (&objfile->objfile_obstack,
6409 sizeof (struct symbol));
6410 *typedef_sym = *sym;
6411 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
6412 /* The symbol's name is already allocated along with
6413 this objfile, so we don't need to duplicate it for
6414 the type. */
6415 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
6416 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NATURAL_NAME (sym);
6417 add_symbol_to_list (typedef_sym, list_to_add);
6418 }
6419 }
6420 break;
6421 case DW_TAG_typedef:
6422 if (processing_has_namespace_info
6423 && processing_current_prefix[0] != '\0')
6424 {
6425 SYMBOL_LINKAGE_NAME (sym) = obconcat (&objfile->objfile_obstack,
6426 processing_current_prefix,
6427 "::",
6428 name);
6429 }
6430 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6431 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6432 add_symbol_to_list (sym, cu->list_in_scope);
6433 break;
6434 case DW_TAG_base_type:
6435 case DW_TAG_subrange_type:
6436 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6437 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6438 add_symbol_to_list (sym, cu->list_in_scope);
6439 break;
6440 case DW_TAG_enumerator:
6441 if (processing_has_namespace_info
6442 && processing_current_prefix[0] != '\0')
6443 {
6444 SYMBOL_LINKAGE_NAME (sym) = obconcat (&objfile->objfile_obstack,
6445 processing_current_prefix,
6446 "::",
6447 name);
6448 }
6449 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6450 if (attr)
6451 {
6452 dwarf2_const_value (attr, sym, cu);
6453 }
6454 {
6455 /* NOTE: carlton/2003-11-10: See comment above in the
6456 DW_TAG_class_type, etc. block. */
6457
6458 struct pending **list_to_add;
6459
6460 list_to_add = (cu->list_in_scope == &file_symbols
6461 && cu->language == language_cplus
6462 ? &global_symbols : cu->list_in_scope);
6463
6464 add_symbol_to_list (sym, list_to_add);
6465 }
6466 break;
6467 case DW_TAG_namespace:
6468 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6469 add_symbol_to_list (sym, &global_symbols);
6470 break;
6471 default:
6472 /* Not a tag we recognize. Hopefully we aren't processing
6473 trash data, but since we must specifically ignore things
6474 we don't recognize, there is nothing else we should do at
6475 this point. */
6476 complaint (&symfile_complaints, "unsupported tag: '%s'",
6477 dwarf_tag_name (die->tag));
6478 break;
6479 }
6480 }
6481 return (sym);
6482 }
6483
6484 /* Copy constant value from an attribute to a symbol. */
6485
6486 static void
6487 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
6488 struct dwarf2_cu *cu)
6489 {
6490 struct objfile *objfile = cu->objfile;
6491 struct comp_unit_head *cu_header = &cu->header;
6492 struct dwarf_block *blk;
6493
6494 switch (attr->form)
6495 {
6496 case DW_FORM_addr:
6497 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
6498 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
6499 cu_header->addr_size,
6500 TYPE_LENGTH (SYMBOL_TYPE
6501 (sym)));
6502 SYMBOL_VALUE_BYTES (sym) = (char *)
6503 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
6504 /* NOTE: cagney/2003-05-09: In-lined store_address call with
6505 it's body - store_unsigned_integer. */
6506 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
6507 DW_ADDR (attr));
6508 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
6509 break;
6510 case DW_FORM_block1:
6511 case DW_FORM_block2:
6512 case DW_FORM_block4:
6513 case DW_FORM_block:
6514 blk = DW_BLOCK (attr);
6515 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
6516 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
6517 blk->size,
6518 TYPE_LENGTH (SYMBOL_TYPE
6519 (sym)));
6520 SYMBOL_VALUE_BYTES (sym) = (char *)
6521 obstack_alloc (&objfile->objfile_obstack, blk->size);
6522 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
6523 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
6524 break;
6525
6526 /* The DW_AT_const_value attributes are supposed to carry the
6527 symbol's value "represented as it would be on the target
6528 architecture." By the time we get here, it's already been
6529 converted to host endianness, so we just need to sign- or
6530 zero-extend it as appropriate. */
6531 case DW_FORM_data1:
6532 dwarf2_const_value_data (attr, sym, 8);
6533 break;
6534 case DW_FORM_data2:
6535 dwarf2_const_value_data (attr, sym, 16);
6536 break;
6537 case DW_FORM_data4:
6538 dwarf2_const_value_data (attr, sym, 32);
6539 break;
6540 case DW_FORM_data8:
6541 dwarf2_const_value_data (attr, sym, 64);
6542 break;
6543
6544 case DW_FORM_sdata:
6545 SYMBOL_VALUE (sym) = DW_SND (attr);
6546 SYMBOL_CLASS (sym) = LOC_CONST;
6547 break;
6548
6549 case DW_FORM_udata:
6550 SYMBOL_VALUE (sym) = DW_UNSND (attr);
6551 SYMBOL_CLASS (sym) = LOC_CONST;
6552 break;
6553
6554 default:
6555 complaint (&symfile_complaints,
6556 "unsupported const value attribute form: '%s'",
6557 dwarf_form_name (attr->form));
6558 SYMBOL_VALUE (sym) = 0;
6559 SYMBOL_CLASS (sym) = LOC_CONST;
6560 break;
6561 }
6562 }
6563
6564
6565 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
6566 or zero-extend it as appropriate for the symbol's type. */
6567 static void
6568 dwarf2_const_value_data (struct attribute *attr,
6569 struct symbol *sym,
6570 int bits)
6571 {
6572 LONGEST l = DW_UNSND (attr);
6573
6574 if (bits < sizeof (l) * 8)
6575 {
6576 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
6577 l &= ((LONGEST) 1 << bits) - 1;
6578 else
6579 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
6580 }
6581
6582 SYMBOL_VALUE (sym) = l;
6583 SYMBOL_CLASS (sym) = LOC_CONST;
6584 }
6585
6586
6587 /* Return the type of the die in question using its DW_AT_type attribute. */
6588
6589 static struct type *
6590 die_type (struct die_info *die, struct dwarf2_cu *cu)
6591 {
6592 struct type *type;
6593 struct attribute *type_attr;
6594 struct die_info *type_die;
6595 unsigned int ref;
6596
6597 type_attr = dwarf2_attr (die, DW_AT_type, cu);
6598 if (!type_attr)
6599 {
6600 /* A missing DW_AT_type represents a void type. */
6601 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
6602 }
6603 else
6604 {
6605 ref = dwarf2_get_ref_die_offset (type_attr, cu);
6606 type_die = follow_die_ref (ref);
6607 if (!type_die)
6608 {
6609 error ("Dwarf Error: Cannot find referent at offset %d [in module %s]",
6610 ref, cu->objfile->name);
6611 return NULL;
6612 }
6613 }
6614 type = tag_type_to_type (type_die, cu);
6615 if (!type)
6616 {
6617 dump_die (type_die);
6618 error ("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]",
6619 cu->objfile->name);
6620 }
6621 return type;
6622 }
6623
6624 /* Return the containing type of the die in question using its
6625 DW_AT_containing_type attribute. */
6626
6627 static struct type *
6628 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
6629 {
6630 struct type *type = NULL;
6631 struct attribute *type_attr;
6632 struct die_info *type_die = NULL;
6633 unsigned int ref;
6634
6635 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
6636 if (type_attr)
6637 {
6638 ref = dwarf2_get_ref_die_offset (type_attr, cu);
6639 type_die = follow_die_ref (ref);
6640 if (!type_die)
6641 {
6642 error ("Dwarf Error: Cannot find referent at offset %d [in module %s]", ref,
6643 cu->objfile->name);
6644 return NULL;
6645 }
6646 type = tag_type_to_type (type_die, cu);
6647 }
6648 if (!type)
6649 {
6650 if (type_die)
6651 dump_die (type_die);
6652 error ("Dwarf Error: Problem turning containing type into gdb type [in module %s]",
6653 cu->objfile->name);
6654 }
6655 return type;
6656 }
6657
6658 #if 0
6659 static struct type *
6660 type_at_offset (unsigned int offset, struct dwarf2_cu *cu)
6661 {
6662 struct die_info *die;
6663 struct type *type;
6664
6665 die = follow_die_ref (offset);
6666 if (!die)
6667 {
6668 error ("Dwarf Error: Cannot find type referent at offset %d.", offset);
6669 return NULL;
6670 }
6671 type = tag_type_to_type (die, cu);
6672 return type;
6673 }
6674 #endif
6675
6676 static struct type *
6677 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
6678 {
6679 if (die->type)
6680 {
6681 return die->type;
6682 }
6683 else
6684 {
6685 read_type_die (die, cu);
6686 if (!die->type)
6687 {
6688 dump_die (die);
6689 error ("Dwarf Error: Cannot find type of die [in module %s]",
6690 cu->objfile->name);
6691 }
6692 return die->type;
6693 }
6694 }
6695
6696 static void
6697 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
6698 {
6699 char *prefix = determine_prefix (die, cu);
6700 const char *old_prefix = processing_current_prefix;
6701 struct cleanup *back_to = make_cleanup (xfree, prefix);
6702 processing_current_prefix = prefix;
6703
6704 switch (die->tag)
6705 {
6706 case DW_TAG_class_type:
6707 case DW_TAG_structure_type:
6708 case DW_TAG_union_type:
6709 read_structure_type (die, cu);
6710 break;
6711 case DW_TAG_enumeration_type:
6712 read_enumeration_type (die, cu);
6713 break;
6714 case DW_TAG_subprogram:
6715 case DW_TAG_subroutine_type:
6716 read_subroutine_type (die, cu);
6717 break;
6718 case DW_TAG_array_type:
6719 read_array_type (die, cu);
6720 break;
6721 case DW_TAG_pointer_type:
6722 read_tag_pointer_type (die, cu);
6723 break;
6724 case DW_TAG_ptr_to_member_type:
6725 read_tag_ptr_to_member_type (die, cu);
6726 break;
6727 case DW_TAG_reference_type:
6728 read_tag_reference_type (die, cu);
6729 break;
6730 case DW_TAG_const_type:
6731 read_tag_const_type (die, cu);
6732 break;
6733 case DW_TAG_volatile_type:
6734 read_tag_volatile_type (die, cu);
6735 break;
6736 case DW_TAG_string_type:
6737 read_tag_string_type (die, cu);
6738 break;
6739 case DW_TAG_typedef:
6740 read_typedef (die, cu);
6741 break;
6742 case DW_TAG_subrange_type:
6743 read_subrange_type (die, cu);
6744 break;
6745 case DW_TAG_base_type:
6746 read_base_type (die, cu);
6747 break;
6748 default:
6749 complaint (&symfile_complaints, "unexepected tag in read_type_die: '%s'",
6750 dwarf_tag_name (die->tag));
6751 break;
6752 }
6753
6754 processing_current_prefix = old_prefix;
6755 do_cleanups (back_to);
6756 }
6757
6758 /* Return the name of the namespace/class that DIE is defined within,
6759 or "" if we can't tell. The caller should xfree the result. */
6760
6761 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
6762 therein) for an example of how to use this function to deal with
6763 DW_AT_specification. */
6764
6765 static char *
6766 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
6767 {
6768 struct die_info *parent;
6769
6770 if (cu->language != language_cplus)
6771 return NULL;
6772
6773 parent = die->parent;
6774
6775 if (parent == NULL)
6776 {
6777 return xstrdup ("");
6778 }
6779 else
6780 {
6781 switch (parent->tag) {
6782 case DW_TAG_namespace:
6783 {
6784 /* FIXME: carlton/2004-03-05: Should I follow extension dies
6785 before doing this check? */
6786 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
6787 {
6788 return xstrdup (TYPE_TAG_NAME (parent->type));
6789 }
6790 else
6791 {
6792 int dummy;
6793 char *parent_prefix = determine_prefix (parent, cu);
6794 char *retval = typename_concat (parent_prefix,
6795 namespace_name (parent, &dummy,
6796 cu));
6797 xfree (parent_prefix);
6798 return retval;
6799 }
6800 }
6801 break;
6802 case DW_TAG_class_type:
6803 case DW_TAG_structure_type:
6804 {
6805 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
6806 {
6807 return xstrdup (TYPE_TAG_NAME (parent->type));
6808 }
6809 else
6810 {
6811 const char *old_prefix = processing_current_prefix;
6812 char *new_prefix = determine_prefix (parent, cu);
6813 char *retval;
6814
6815 processing_current_prefix = new_prefix;
6816 retval = determine_class_name (parent, cu);
6817 processing_current_prefix = old_prefix;
6818
6819 xfree (new_prefix);
6820 return retval;
6821 }
6822 }
6823 default:
6824 return determine_prefix (parent, cu);
6825 }
6826 }
6827 }
6828
6829 /* Return a newly-allocated string formed by concatenating PREFIX,
6830 "::", and SUFFIX, except that if PREFIX is NULL or the empty
6831 string, just return a copy of SUFFIX. */
6832
6833 static char *
6834 typename_concat (const char *prefix, const char *suffix)
6835 {
6836 if (prefix == NULL || prefix[0] == '\0')
6837 return xstrdup (suffix);
6838 else
6839 {
6840 char *retval = xmalloc (strlen (prefix) + 2 + strlen (suffix) + 1);
6841
6842 strcpy (retval, prefix);
6843 strcat (retval, "::");
6844 strcat (retval, suffix);
6845
6846 return retval;
6847 }
6848 }
6849
6850 static struct type *
6851 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
6852 {
6853 struct objfile *objfile = cu->objfile;
6854
6855 /* FIXME - this should not produce a new (struct type *)
6856 every time. It should cache base types. */
6857 struct type *type;
6858 switch (encoding)
6859 {
6860 case DW_ATE_address:
6861 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
6862 return type;
6863 case DW_ATE_boolean:
6864 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
6865 return type;
6866 case DW_ATE_complex_float:
6867 if (size == 16)
6868 {
6869 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
6870 }
6871 else
6872 {
6873 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
6874 }
6875 return type;
6876 case DW_ATE_float:
6877 if (size == 8)
6878 {
6879 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
6880 }
6881 else
6882 {
6883 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
6884 }
6885 return type;
6886 case DW_ATE_signed:
6887 switch (size)
6888 {
6889 case 1:
6890 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
6891 break;
6892 case 2:
6893 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
6894 break;
6895 default:
6896 case 4:
6897 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
6898 break;
6899 }
6900 return type;
6901 case DW_ATE_signed_char:
6902 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
6903 return type;
6904 case DW_ATE_unsigned:
6905 switch (size)
6906 {
6907 case 1:
6908 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
6909 break;
6910 case 2:
6911 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
6912 break;
6913 default:
6914 case 4:
6915 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
6916 break;
6917 }
6918 return type;
6919 case DW_ATE_unsigned_char:
6920 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
6921 return type;
6922 default:
6923 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
6924 return type;
6925 }
6926 }
6927
6928 #if 0
6929 struct die_info *
6930 copy_die (struct die_info *old_die)
6931 {
6932 struct die_info *new_die;
6933 int i, num_attrs;
6934
6935 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
6936 memset (new_die, 0, sizeof (struct die_info));
6937
6938 new_die->tag = old_die->tag;
6939 new_die->has_children = old_die->has_children;
6940 new_die->abbrev = old_die->abbrev;
6941 new_die->offset = old_die->offset;
6942 new_die->type = NULL;
6943
6944 num_attrs = old_die->num_attrs;
6945 new_die->num_attrs = num_attrs;
6946 new_die->attrs = (struct attribute *)
6947 xmalloc (num_attrs * sizeof (struct attribute));
6948
6949 for (i = 0; i < old_die->num_attrs; ++i)
6950 {
6951 new_die->attrs[i].name = old_die->attrs[i].name;
6952 new_die->attrs[i].form = old_die->attrs[i].form;
6953 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
6954 }
6955
6956 new_die->next = NULL;
6957 return new_die;
6958 }
6959 #endif
6960
6961 /* Return sibling of die, NULL if no sibling. */
6962
6963 static struct die_info *
6964 sibling_die (struct die_info *die)
6965 {
6966 return die->sibling;
6967 }
6968
6969 /* Get linkage name of a die, return NULL if not found. */
6970
6971 static char *
6972 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
6973 {
6974 struct attribute *attr;
6975
6976 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
6977 if (attr && DW_STRING (attr))
6978 return DW_STRING (attr);
6979 attr = dwarf2_attr (die, DW_AT_name, cu);
6980 if (attr && DW_STRING (attr))
6981 return DW_STRING (attr);
6982 return NULL;
6983 }
6984
6985 /* Get name of a die, return NULL if not found. */
6986
6987 static char *
6988 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
6989 {
6990 struct attribute *attr;
6991
6992 attr = dwarf2_attr (die, DW_AT_name, cu);
6993 if (attr && DW_STRING (attr))
6994 return DW_STRING (attr);
6995 return NULL;
6996 }
6997
6998 /* Return the die that this die in an extension of, or NULL if there
6999 is none. */
7000
7001 static struct die_info *
7002 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7003 {
7004 struct attribute *attr;
7005 struct die_info *extension_die;
7006 unsigned int ref;
7007
7008 attr = dwarf2_attr (die, DW_AT_extension, cu);
7009 if (attr == NULL)
7010 return NULL;
7011
7012 ref = dwarf2_get_ref_die_offset (attr, cu);
7013 extension_die = follow_die_ref (ref);
7014 if (!extension_die)
7015 {
7016 error ("Dwarf Error: Cannot find referent at offset %d.", ref);
7017 }
7018
7019 return extension_die;
7020 }
7021
7022 /* Convert a DIE tag into its string name. */
7023
7024 static char *
7025 dwarf_tag_name (unsigned tag)
7026 {
7027 switch (tag)
7028 {
7029 case DW_TAG_padding:
7030 return "DW_TAG_padding";
7031 case DW_TAG_array_type:
7032 return "DW_TAG_array_type";
7033 case DW_TAG_class_type:
7034 return "DW_TAG_class_type";
7035 case DW_TAG_entry_point:
7036 return "DW_TAG_entry_point";
7037 case DW_TAG_enumeration_type:
7038 return "DW_TAG_enumeration_type";
7039 case DW_TAG_formal_parameter:
7040 return "DW_TAG_formal_parameter";
7041 case DW_TAG_imported_declaration:
7042 return "DW_TAG_imported_declaration";
7043 case DW_TAG_label:
7044 return "DW_TAG_label";
7045 case DW_TAG_lexical_block:
7046 return "DW_TAG_lexical_block";
7047 case DW_TAG_member:
7048 return "DW_TAG_member";
7049 case DW_TAG_pointer_type:
7050 return "DW_TAG_pointer_type";
7051 case DW_TAG_reference_type:
7052 return "DW_TAG_reference_type";
7053 case DW_TAG_compile_unit:
7054 return "DW_TAG_compile_unit";
7055 case DW_TAG_string_type:
7056 return "DW_TAG_string_type";
7057 case DW_TAG_structure_type:
7058 return "DW_TAG_structure_type";
7059 case DW_TAG_subroutine_type:
7060 return "DW_TAG_subroutine_type";
7061 case DW_TAG_typedef:
7062 return "DW_TAG_typedef";
7063 case DW_TAG_union_type:
7064 return "DW_TAG_union_type";
7065 case DW_TAG_unspecified_parameters:
7066 return "DW_TAG_unspecified_parameters";
7067 case DW_TAG_variant:
7068 return "DW_TAG_variant";
7069 case DW_TAG_common_block:
7070 return "DW_TAG_common_block";
7071 case DW_TAG_common_inclusion:
7072 return "DW_TAG_common_inclusion";
7073 case DW_TAG_inheritance:
7074 return "DW_TAG_inheritance";
7075 case DW_TAG_inlined_subroutine:
7076 return "DW_TAG_inlined_subroutine";
7077 case DW_TAG_module:
7078 return "DW_TAG_module";
7079 case DW_TAG_ptr_to_member_type:
7080 return "DW_TAG_ptr_to_member_type";
7081 case DW_TAG_set_type:
7082 return "DW_TAG_set_type";
7083 case DW_TAG_subrange_type:
7084 return "DW_TAG_subrange_type";
7085 case DW_TAG_with_stmt:
7086 return "DW_TAG_with_stmt";
7087 case DW_TAG_access_declaration:
7088 return "DW_TAG_access_declaration";
7089 case DW_TAG_base_type:
7090 return "DW_TAG_base_type";
7091 case DW_TAG_catch_block:
7092 return "DW_TAG_catch_block";
7093 case DW_TAG_const_type:
7094 return "DW_TAG_const_type";
7095 case DW_TAG_constant:
7096 return "DW_TAG_constant";
7097 case DW_TAG_enumerator:
7098 return "DW_TAG_enumerator";
7099 case DW_TAG_file_type:
7100 return "DW_TAG_file_type";
7101 case DW_TAG_friend:
7102 return "DW_TAG_friend";
7103 case DW_TAG_namelist:
7104 return "DW_TAG_namelist";
7105 case DW_TAG_namelist_item:
7106 return "DW_TAG_namelist_item";
7107 case DW_TAG_packed_type:
7108 return "DW_TAG_packed_type";
7109 case DW_TAG_subprogram:
7110 return "DW_TAG_subprogram";
7111 case DW_TAG_template_type_param:
7112 return "DW_TAG_template_type_param";
7113 case DW_TAG_template_value_param:
7114 return "DW_TAG_template_value_param";
7115 case DW_TAG_thrown_type:
7116 return "DW_TAG_thrown_type";
7117 case DW_TAG_try_block:
7118 return "DW_TAG_try_block";
7119 case DW_TAG_variant_part:
7120 return "DW_TAG_variant_part";
7121 case DW_TAG_variable:
7122 return "DW_TAG_variable";
7123 case DW_TAG_volatile_type:
7124 return "DW_TAG_volatile_type";
7125 case DW_TAG_dwarf_procedure:
7126 return "DW_TAG_dwarf_procedure";
7127 case DW_TAG_restrict_type:
7128 return "DW_TAG_restrict_type";
7129 case DW_TAG_interface_type:
7130 return "DW_TAG_interface_type";
7131 case DW_TAG_namespace:
7132 return "DW_TAG_namespace";
7133 case DW_TAG_imported_module:
7134 return "DW_TAG_imported_module";
7135 case DW_TAG_unspecified_type:
7136 return "DW_TAG_unspecified_type";
7137 case DW_TAG_partial_unit:
7138 return "DW_TAG_partial_unit";
7139 case DW_TAG_imported_unit:
7140 return "DW_TAG_imported_unit";
7141 case DW_TAG_MIPS_loop:
7142 return "DW_TAG_MIPS_loop";
7143 case DW_TAG_format_label:
7144 return "DW_TAG_format_label";
7145 case DW_TAG_function_template:
7146 return "DW_TAG_function_template";
7147 case DW_TAG_class_template:
7148 return "DW_TAG_class_template";
7149 default:
7150 return "DW_TAG_<unknown>";
7151 }
7152 }
7153
7154 /* Convert a DWARF attribute code into its string name. */
7155
7156 static char *
7157 dwarf_attr_name (unsigned attr)
7158 {
7159 switch (attr)
7160 {
7161 case DW_AT_sibling:
7162 return "DW_AT_sibling";
7163 case DW_AT_location:
7164 return "DW_AT_location";
7165 case DW_AT_name:
7166 return "DW_AT_name";
7167 case DW_AT_ordering:
7168 return "DW_AT_ordering";
7169 case DW_AT_subscr_data:
7170 return "DW_AT_subscr_data";
7171 case DW_AT_byte_size:
7172 return "DW_AT_byte_size";
7173 case DW_AT_bit_offset:
7174 return "DW_AT_bit_offset";
7175 case DW_AT_bit_size:
7176 return "DW_AT_bit_size";
7177 case DW_AT_element_list:
7178 return "DW_AT_element_list";
7179 case DW_AT_stmt_list:
7180 return "DW_AT_stmt_list";
7181 case DW_AT_low_pc:
7182 return "DW_AT_low_pc";
7183 case DW_AT_high_pc:
7184 return "DW_AT_high_pc";
7185 case DW_AT_language:
7186 return "DW_AT_language";
7187 case DW_AT_member:
7188 return "DW_AT_member";
7189 case DW_AT_discr:
7190 return "DW_AT_discr";
7191 case DW_AT_discr_value:
7192 return "DW_AT_discr_value";
7193 case DW_AT_visibility:
7194 return "DW_AT_visibility";
7195 case DW_AT_import:
7196 return "DW_AT_import";
7197 case DW_AT_string_length:
7198 return "DW_AT_string_length";
7199 case DW_AT_common_reference:
7200 return "DW_AT_common_reference";
7201 case DW_AT_comp_dir:
7202 return "DW_AT_comp_dir";
7203 case DW_AT_const_value:
7204 return "DW_AT_const_value";
7205 case DW_AT_containing_type:
7206 return "DW_AT_containing_type";
7207 case DW_AT_default_value:
7208 return "DW_AT_default_value";
7209 case DW_AT_inline:
7210 return "DW_AT_inline";
7211 case DW_AT_is_optional:
7212 return "DW_AT_is_optional";
7213 case DW_AT_lower_bound:
7214 return "DW_AT_lower_bound";
7215 case DW_AT_producer:
7216 return "DW_AT_producer";
7217 case DW_AT_prototyped:
7218 return "DW_AT_prototyped";
7219 case DW_AT_return_addr:
7220 return "DW_AT_return_addr";
7221 case DW_AT_start_scope:
7222 return "DW_AT_start_scope";
7223 case DW_AT_stride_size:
7224 return "DW_AT_stride_size";
7225 case DW_AT_upper_bound:
7226 return "DW_AT_upper_bound";
7227 case DW_AT_abstract_origin:
7228 return "DW_AT_abstract_origin";
7229 case DW_AT_accessibility:
7230 return "DW_AT_accessibility";
7231 case DW_AT_address_class:
7232 return "DW_AT_address_class";
7233 case DW_AT_artificial:
7234 return "DW_AT_artificial";
7235 case DW_AT_base_types:
7236 return "DW_AT_base_types";
7237 case DW_AT_calling_convention:
7238 return "DW_AT_calling_convention";
7239 case DW_AT_count:
7240 return "DW_AT_count";
7241 case DW_AT_data_member_location:
7242 return "DW_AT_data_member_location";
7243 case DW_AT_decl_column:
7244 return "DW_AT_decl_column";
7245 case DW_AT_decl_file:
7246 return "DW_AT_decl_file";
7247 case DW_AT_decl_line:
7248 return "DW_AT_decl_line";
7249 case DW_AT_declaration:
7250 return "DW_AT_declaration";
7251 case DW_AT_discr_list:
7252 return "DW_AT_discr_list";
7253 case DW_AT_encoding:
7254 return "DW_AT_encoding";
7255 case DW_AT_external:
7256 return "DW_AT_external";
7257 case DW_AT_frame_base:
7258 return "DW_AT_frame_base";
7259 case DW_AT_friend:
7260 return "DW_AT_friend";
7261 case DW_AT_identifier_case:
7262 return "DW_AT_identifier_case";
7263 case DW_AT_macro_info:
7264 return "DW_AT_macro_info";
7265 case DW_AT_namelist_items:
7266 return "DW_AT_namelist_items";
7267 case DW_AT_priority:
7268 return "DW_AT_priority";
7269 case DW_AT_segment:
7270 return "DW_AT_segment";
7271 case DW_AT_specification:
7272 return "DW_AT_specification";
7273 case DW_AT_static_link:
7274 return "DW_AT_static_link";
7275 case DW_AT_type:
7276 return "DW_AT_type";
7277 case DW_AT_use_location:
7278 return "DW_AT_use_location";
7279 case DW_AT_variable_parameter:
7280 return "DW_AT_variable_parameter";
7281 case DW_AT_virtuality:
7282 return "DW_AT_virtuality";
7283 case DW_AT_vtable_elem_location:
7284 return "DW_AT_vtable_elem_location";
7285 case DW_AT_allocated:
7286 return "DW_AT_allocated";
7287 case DW_AT_associated:
7288 return "DW_AT_associated";
7289 case DW_AT_data_location:
7290 return "DW_AT_data_location";
7291 case DW_AT_stride:
7292 return "DW_AT_stride";
7293 case DW_AT_entry_pc:
7294 return "DW_AT_entry_pc";
7295 case DW_AT_use_UTF8:
7296 return "DW_AT_use_UTF8";
7297 case DW_AT_extension:
7298 return "DW_AT_extension";
7299 case DW_AT_ranges:
7300 return "DW_AT_ranges";
7301 case DW_AT_trampoline:
7302 return "DW_AT_trampoline";
7303 case DW_AT_call_column:
7304 return "DW_AT_call_column";
7305 case DW_AT_call_file:
7306 return "DW_AT_call_file";
7307 case DW_AT_call_line:
7308 return "DW_AT_call_line";
7309 #ifdef MIPS
7310 case DW_AT_MIPS_fde:
7311 return "DW_AT_MIPS_fde";
7312 case DW_AT_MIPS_loop_begin:
7313 return "DW_AT_MIPS_loop_begin";
7314 case DW_AT_MIPS_tail_loop_begin:
7315 return "DW_AT_MIPS_tail_loop_begin";
7316 case DW_AT_MIPS_epilog_begin:
7317 return "DW_AT_MIPS_epilog_begin";
7318 case DW_AT_MIPS_loop_unroll_factor:
7319 return "DW_AT_MIPS_loop_unroll_factor";
7320 case DW_AT_MIPS_software_pipeline_depth:
7321 return "DW_AT_MIPS_software_pipeline_depth";
7322 #endif
7323 case DW_AT_MIPS_linkage_name:
7324 return "DW_AT_MIPS_linkage_name";
7325
7326 case DW_AT_sf_names:
7327 return "DW_AT_sf_names";
7328 case DW_AT_src_info:
7329 return "DW_AT_src_info";
7330 case DW_AT_mac_info:
7331 return "DW_AT_mac_info";
7332 case DW_AT_src_coords:
7333 return "DW_AT_src_coords";
7334 case DW_AT_body_begin:
7335 return "DW_AT_body_begin";
7336 case DW_AT_body_end:
7337 return "DW_AT_body_end";
7338 case DW_AT_GNU_vector:
7339 return "DW_AT_GNU_vector";
7340 default:
7341 return "DW_AT_<unknown>";
7342 }
7343 }
7344
7345 /* Convert a DWARF value form code into its string name. */
7346
7347 static char *
7348 dwarf_form_name (unsigned form)
7349 {
7350 switch (form)
7351 {
7352 case DW_FORM_addr:
7353 return "DW_FORM_addr";
7354 case DW_FORM_block2:
7355 return "DW_FORM_block2";
7356 case DW_FORM_block4:
7357 return "DW_FORM_block4";
7358 case DW_FORM_data2:
7359 return "DW_FORM_data2";
7360 case DW_FORM_data4:
7361 return "DW_FORM_data4";
7362 case DW_FORM_data8:
7363 return "DW_FORM_data8";
7364 case DW_FORM_string:
7365 return "DW_FORM_string";
7366 case DW_FORM_block:
7367 return "DW_FORM_block";
7368 case DW_FORM_block1:
7369 return "DW_FORM_block1";
7370 case DW_FORM_data1:
7371 return "DW_FORM_data1";
7372 case DW_FORM_flag:
7373 return "DW_FORM_flag";
7374 case DW_FORM_sdata:
7375 return "DW_FORM_sdata";
7376 case DW_FORM_strp:
7377 return "DW_FORM_strp";
7378 case DW_FORM_udata:
7379 return "DW_FORM_udata";
7380 case DW_FORM_ref_addr:
7381 return "DW_FORM_ref_addr";
7382 case DW_FORM_ref1:
7383 return "DW_FORM_ref1";
7384 case DW_FORM_ref2:
7385 return "DW_FORM_ref2";
7386 case DW_FORM_ref4:
7387 return "DW_FORM_ref4";
7388 case DW_FORM_ref8:
7389 return "DW_FORM_ref8";
7390 case DW_FORM_ref_udata:
7391 return "DW_FORM_ref_udata";
7392 case DW_FORM_indirect:
7393 return "DW_FORM_indirect";
7394 default:
7395 return "DW_FORM_<unknown>";
7396 }
7397 }
7398
7399 /* Convert a DWARF stack opcode into its string name. */
7400
7401 static char *
7402 dwarf_stack_op_name (unsigned op)
7403 {
7404 switch (op)
7405 {
7406 case DW_OP_addr:
7407 return "DW_OP_addr";
7408 case DW_OP_deref:
7409 return "DW_OP_deref";
7410 case DW_OP_const1u:
7411 return "DW_OP_const1u";
7412 case DW_OP_const1s:
7413 return "DW_OP_const1s";
7414 case DW_OP_const2u:
7415 return "DW_OP_const2u";
7416 case DW_OP_const2s:
7417 return "DW_OP_const2s";
7418 case DW_OP_const4u:
7419 return "DW_OP_const4u";
7420 case DW_OP_const4s:
7421 return "DW_OP_const4s";
7422 case DW_OP_const8u:
7423 return "DW_OP_const8u";
7424 case DW_OP_const8s:
7425 return "DW_OP_const8s";
7426 case DW_OP_constu:
7427 return "DW_OP_constu";
7428 case DW_OP_consts:
7429 return "DW_OP_consts";
7430 case DW_OP_dup:
7431 return "DW_OP_dup";
7432 case DW_OP_drop:
7433 return "DW_OP_drop";
7434 case DW_OP_over:
7435 return "DW_OP_over";
7436 case DW_OP_pick:
7437 return "DW_OP_pick";
7438 case DW_OP_swap:
7439 return "DW_OP_swap";
7440 case DW_OP_rot:
7441 return "DW_OP_rot";
7442 case DW_OP_xderef:
7443 return "DW_OP_xderef";
7444 case DW_OP_abs:
7445 return "DW_OP_abs";
7446 case DW_OP_and:
7447 return "DW_OP_and";
7448 case DW_OP_div:
7449 return "DW_OP_div";
7450 case DW_OP_minus:
7451 return "DW_OP_minus";
7452 case DW_OP_mod:
7453 return "DW_OP_mod";
7454 case DW_OP_mul:
7455 return "DW_OP_mul";
7456 case DW_OP_neg:
7457 return "DW_OP_neg";
7458 case DW_OP_not:
7459 return "DW_OP_not";
7460 case DW_OP_or:
7461 return "DW_OP_or";
7462 case DW_OP_plus:
7463 return "DW_OP_plus";
7464 case DW_OP_plus_uconst:
7465 return "DW_OP_plus_uconst";
7466 case DW_OP_shl:
7467 return "DW_OP_shl";
7468 case DW_OP_shr:
7469 return "DW_OP_shr";
7470 case DW_OP_shra:
7471 return "DW_OP_shra";
7472 case DW_OP_xor:
7473 return "DW_OP_xor";
7474 case DW_OP_bra:
7475 return "DW_OP_bra";
7476 case DW_OP_eq:
7477 return "DW_OP_eq";
7478 case DW_OP_ge:
7479 return "DW_OP_ge";
7480 case DW_OP_gt:
7481 return "DW_OP_gt";
7482 case DW_OP_le:
7483 return "DW_OP_le";
7484 case DW_OP_lt:
7485 return "DW_OP_lt";
7486 case DW_OP_ne:
7487 return "DW_OP_ne";
7488 case DW_OP_skip:
7489 return "DW_OP_skip";
7490 case DW_OP_lit0:
7491 return "DW_OP_lit0";
7492 case DW_OP_lit1:
7493 return "DW_OP_lit1";
7494 case DW_OP_lit2:
7495 return "DW_OP_lit2";
7496 case DW_OP_lit3:
7497 return "DW_OP_lit3";
7498 case DW_OP_lit4:
7499 return "DW_OP_lit4";
7500 case DW_OP_lit5:
7501 return "DW_OP_lit5";
7502 case DW_OP_lit6:
7503 return "DW_OP_lit6";
7504 case DW_OP_lit7:
7505 return "DW_OP_lit7";
7506 case DW_OP_lit8:
7507 return "DW_OP_lit8";
7508 case DW_OP_lit9:
7509 return "DW_OP_lit9";
7510 case DW_OP_lit10:
7511 return "DW_OP_lit10";
7512 case DW_OP_lit11:
7513 return "DW_OP_lit11";
7514 case DW_OP_lit12:
7515 return "DW_OP_lit12";
7516 case DW_OP_lit13:
7517 return "DW_OP_lit13";
7518 case DW_OP_lit14:
7519 return "DW_OP_lit14";
7520 case DW_OP_lit15:
7521 return "DW_OP_lit15";
7522 case DW_OP_lit16:
7523 return "DW_OP_lit16";
7524 case DW_OP_lit17:
7525 return "DW_OP_lit17";
7526 case DW_OP_lit18:
7527 return "DW_OP_lit18";
7528 case DW_OP_lit19:
7529 return "DW_OP_lit19";
7530 case DW_OP_lit20:
7531 return "DW_OP_lit20";
7532 case DW_OP_lit21:
7533 return "DW_OP_lit21";
7534 case DW_OP_lit22:
7535 return "DW_OP_lit22";
7536 case DW_OP_lit23:
7537 return "DW_OP_lit23";
7538 case DW_OP_lit24:
7539 return "DW_OP_lit24";
7540 case DW_OP_lit25:
7541 return "DW_OP_lit25";
7542 case DW_OP_lit26:
7543 return "DW_OP_lit26";
7544 case DW_OP_lit27:
7545 return "DW_OP_lit27";
7546 case DW_OP_lit28:
7547 return "DW_OP_lit28";
7548 case DW_OP_lit29:
7549 return "DW_OP_lit29";
7550 case DW_OP_lit30:
7551 return "DW_OP_lit30";
7552 case DW_OP_lit31:
7553 return "DW_OP_lit31";
7554 case DW_OP_reg0:
7555 return "DW_OP_reg0";
7556 case DW_OP_reg1:
7557 return "DW_OP_reg1";
7558 case DW_OP_reg2:
7559 return "DW_OP_reg2";
7560 case DW_OP_reg3:
7561 return "DW_OP_reg3";
7562 case DW_OP_reg4:
7563 return "DW_OP_reg4";
7564 case DW_OP_reg5:
7565 return "DW_OP_reg5";
7566 case DW_OP_reg6:
7567 return "DW_OP_reg6";
7568 case DW_OP_reg7:
7569 return "DW_OP_reg7";
7570 case DW_OP_reg8:
7571 return "DW_OP_reg8";
7572 case DW_OP_reg9:
7573 return "DW_OP_reg9";
7574 case DW_OP_reg10:
7575 return "DW_OP_reg10";
7576 case DW_OP_reg11:
7577 return "DW_OP_reg11";
7578 case DW_OP_reg12:
7579 return "DW_OP_reg12";
7580 case DW_OP_reg13:
7581 return "DW_OP_reg13";
7582 case DW_OP_reg14:
7583 return "DW_OP_reg14";
7584 case DW_OP_reg15:
7585 return "DW_OP_reg15";
7586 case DW_OP_reg16:
7587 return "DW_OP_reg16";
7588 case DW_OP_reg17:
7589 return "DW_OP_reg17";
7590 case DW_OP_reg18:
7591 return "DW_OP_reg18";
7592 case DW_OP_reg19:
7593 return "DW_OP_reg19";
7594 case DW_OP_reg20:
7595 return "DW_OP_reg20";
7596 case DW_OP_reg21:
7597 return "DW_OP_reg21";
7598 case DW_OP_reg22:
7599 return "DW_OP_reg22";
7600 case DW_OP_reg23:
7601 return "DW_OP_reg23";
7602 case DW_OP_reg24:
7603 return "DW_OP_reg24";
7604 case DW_OP_reg25:
7605 return "DW_OP_reg25";
7606 case DW_OP_reg26:
7607 return "DW_OP_reg26";
7608 case DW_OP_reg27:
7609 return "DW_OP_reg27";
7610 case DW_OP_reg28:
7611 return "DW_OP_reg28";
7612 case DW_OP_reg29:
7613 return "DW_OP_reg29";
7614 case DW_OP_reg30:
7615 return "DW_OP_reg30";
7616 case DW_OP_reg31:
7617 return "DW_OP_reg31";
7618 case DW_OP_breg0:
7619 return "DW_OP_breg0";
7620 case DW_OP_breg1:
7621 return "DW_OP_breg1";
7622 case DW_OP_breg2:
7623 return "DW_OP_breg2";
7624 case DW_OP_breg3:
7625 return "DW_OP_breg3";
7626 case DW_OP_breg4:
7627 return "DW_OP_breg4";
7628 case DW_OP_breg5:
7629 return "DW_OP_breg5";
7630 case DW_OP_breg6:
7631 return "DW_OP_breg6";
7632 case DW_OP_breg7:
7633 return "DW_OP_breg7";
7634 case DW_OP_breg8:
7635 return "DW_OP_breg8";
7636 case DW_OP_breg9:
7637 return "DW_OP_breg9";
7638 case DW_OP_breg10:
7639 return "DW_OP_breg10";
7640 case DW_OP_breg11:
7641 return "DW_OP_breg11";
7642 case DW_OP_breg12:
7643 return "DW_OP_breg12";
7644 case DW_OP_breg13:
7645 return "DW_OP_breg13";
7646 case DW_OP_breg14:
7647 return "DW_OP_breg14";
7648 case DW_OP_breg15:
7649 return "DW_OP_breg15";
7650 case DW_OP_breg16:
7651 return "DW_OP_breg16";
7652 case DW_OP_breg17:
7653 return "DW_OP_breg17";
7654 case DW_OP_breg18:
7655 return "DW_OP_breg18";
7656 case DW_OP_breg19:
7657 return "DW_OP_breg19";
7658 case DW_OP_breg20:
7659 return "DW_OP_breg20";
7660 case DW_OP_breg21:
7661 return "DW_OP_breg21";
7662 case DW_OP_breg22:
7663 return "DW_OP_breg22";
7664 case DW_OP_breg23:
7665 return "DW_OP_breg23";
7666 case DW_OP_breg24:
7667 return "DW_OP_breg24";
7668 case DW_OP_breg25:
7669 return "DW_OP_breg25";
7670 case DW_OP_breg26:
7671 return "DW_OP_breg26";
7672 case DW_OP_breg27:
7673 return "DW_OP_breg27";
7674 case DW_OP_breg28:
7675 return "DW_OP_breg28";
7676 case DW_OP_breg29:
7677 return "DW_OP_breg29";
7678 case DW_OP_breg30:
7679 return "DW_OP_breg30";
7680 case DW_OP_breg31:
7681 return "DW_OP_breg31";
7682 case DW_OP_regx:
7683 return "DW_OP_regx";
7684 case DW_OP_fbreg:
7685 return "DW_OP_fbreg";
7686 case DW_OP_bregx:
7687 return "DW_OP_bregx";
7688 case DW_OP_piece:
7689 return "DW_OP_piece";
7690 case DW_OP_deref_size:
7691 return "DW_OP_deref_size";
7692 case DW_OP_xderef_size:
7693 return "DW_OP_xderef_size";
7694 case DW_OP_nop:
7695 return "DW_OP_nop";
7696 /* DWARF 3 extensions. */
7697 case DW_OP_push_object_address:
7698 return "DW_OP_push_object_address";
7699 case DW_OP_call2:
7700 return "DW_OP_call2";
7701 case DW_OP_call4:
7702 return "DW_OP_call4";
7703 case DW_OP_call_ref:
7704 return "DW_OP_call_ref";
7705 /* GNU extensions. */
7706 case DW_OP_GNU_push_tls_address:
7707 return "DW_OP_GNU_push_tls_address";
7708 default:
7709 return "OP_<unknown>";
7710 }
7711 }
7712
7713 static char *
7714 dwarf_bool_name (unsigned mybool)
7715 {
7716 if (mybool)
7717 return "TRUE";
7718 else
7719 return "FALSE";
7720 }
7721
7722 /* Convert a DWARF type code into its string name. */
7723
7724 static char *
7725 dwarf_type_encoding_name (unsigned enc)
7726 {
7727 switch (enc)
7728 {
7729 case DW_ATE_address:
7730 return "DW_ATE_address";
7731 case DW_ATE_boolean:
7732 return "DW_ATE_boolean";
7733 case DW_ATE_complex_float:
7734 return "DW_ATE_complex_float";
7735 case DW_ATE_float:
7736 return "DW_ATE_float";
7737 case DW_ATE_signed:
7738 return "DW_ATE_signed";
7739 case DW_ATE_signed_char:
7740 return "DW_ATE_signed_char";
7741 case DW_ATE_unsigned:
7742 return "DW_ATE_unsigned";
7743 case DW_ATE_unsigned_char:
7744 return "DW_ATE_unsigned_char";
7745 case DW_ATE_imaginary_float:
7746 return "DW_ATE_imaginary_float";
7747 default:
7748 return "DW_ATE_<unknown>";
7749 }
7750 }
7751
7752 /* Convert a DWARF call frame info operation to its string name. */
7753
7754 #if 0
7755 static char *
7756 dwarf_cfi_name (unsigned cfi_opc)
7757 {
7758 switch (cfi_opc)
7759 {
7760 case DW_CFA_advance_loc:
7761 return "DW_CFA_advance_loc";
7762 case DW_CFA_offset:
7763 return "DW_CFA_offset";
7764 case DW_CFA_restore:
7765 return "DW_CFA_restore";
7766 case DW_CFA_nop:
7767 return "DW_CFA_nop";
7768 case DW_CFA_set_loc:
7769 return "DW_CFA_set_loc";
7770 case DW_CFA_advance_loc1:
7771 return "DW_CFA_advance_loc1";
7772 case DW_CFA_advance_loc2:
7773 return "DW_CFA_advance_loc2";
7774 case DW_CFA_advance_loc4:
7775 return "DW_CFA_advance_loc4";
7776 case DW_CFA_offset_extended:
7777 return "DW_CFA_offset_extended";
7778 case DW_CFA_restore_extended:
7779 return "DW_CFA_restore_extended";
7780 case DW_CFA_undefined:
7781 return "DW_CFA_undefined";
7782 case DW_CFA_same_value:
7783 return "DW_CFA_same_value";
7784 case DW_CFA_register:
7785 return "DW_CFA_register";
7786 case DW_CFA_remember_state:
7787 return "DW_CFA_remember_state";
7788 case DW_CFA_restore_state:
7789 return "DW_CFA_restore_state";
7790 case DW_CFA_def_cfa:
7791 return "DW_CFA_def_cfa";
7792 case DW_CFA_def_cfa_register:
7793 return "DW_CFA_def_cfa_register";
7794 case DW_CFA_def_cfa_offset:
7795 return "DW_CFA_def_cfa_offset";
7796
7797 /* DWARF 3 */
7798 case DW_CFA_def_cfa_expression:
7799 return "DW_CFA_def_cfa_expression";
7800 case DW_CFA_expression:
7801 return "DW_CFA_expression";
7802 case DW_CFA_offset_extended_sf:
7803 return "DW_CFA_offset_extended_sf";
7804 case DW_CFA_def_cfa_sf:
7805 return "DW_CFA_def_cfa_sf";
7806 case DW_CFA_def_cfa_offset_sf:
7807 return "DW_CFA_def_cfa_offset_sf";
7808
7809 /* SGI/MIPS specific */
7810 case DW_CFA_MIPS_advance_loc8:
7811 return "DW_CFA_MIPS_advance_loc8";
7812
7813 /* GNU extensions */
7814 case DW_CFA_GNU_window_save:
7815 return "DW_CFA_GNU_window_save";
7816 case DW_CFA_GNU_args_size:
7817 return "DW_CFA_GNU_args_size";
7818 case DW_CFA_GNU_negative_offset_extended:
7819 return "DW_CFA_GNU_negative_offset_extended";
7820
7821 default:
7822 return "DW_CFA_<unknown>";
7823 }
7824 }
7825 #endif
7826
7827 static void
7828 dump_die (struct die_info *die)
7829 {
7830 unsigned int i;
7831
7832 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
7833 dwarf_tag_name (die->tag), die->abbrev, die->offset);
7834 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
7835 dwarf_bool_name (die->child != NULL));
7836
7837 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
7838 for (i = 0; i < die->num_attrs; ++i)
7839 {
7840 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
7841 dwarf_attr_name (die->attrs[i].name),
7842 dwarf_form_name (die->attrs[i].form));
7843 switch (die->attrs[i].form)
7844 {
7845 case DW_FORM_ref_addr:
7846 case DW_FORM_addr:
7847 fprintf_unfiltered (gdb_stderr, "address: ");
7848 print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
7849 break;
7850 case DW_FORM_block2:
7851 case DW_FORM_block4:
7852 case DW_FORM_block:
7853 case DW_FORM_block1:
7854 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
7855 break;
7856 case DW_FORM_data1:
7857 case DW_FORM_data2:
7858 case DW_FORM_data4:
7859 case DW_FORM_data8:
7860 case DW_FORM_ref1:
7861 case DW_FORM_ref2:
7862 case DW_FORM_ref4:
7863 case DW_FORM_udata:
7864 case DW_FORM_sdata:
7865 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
7866 break;
7867 case DW_FORM_string:
7868 case DW_FORM_strp:
7869 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
7870 DW_STRING (&die->attrs[i])
7871 ? DW_STRING (&die->attrs[i]) : "");
7872 break;
7873 case DW_FORM_flag:
7874 if (DW_UNSND (&die->attrs[i]))
7875 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
7876 else
7877 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
7878 break;
7879 case DW_FORM_indirect:
7880 /* the reader will have reduced the indirect form to
7881 the "base form" so this form should not occur */
7882 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
7883 break;
7884 default:
7885 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
7886 die->attrs[i].form);
7887 }
7888 fprintf_unfiltered (gdb_stderr, "\n");
7889 }
7890 }
7891
7892 static void
7893 dump_die_list (struct die_info *die)
7894 {
7895 while (die)
7896 {
7897 dump_die (die);
7898 if (die->child != NULL)
7899 dump_die_list (die->child);
7900 if (die->sibling != NULL)
7901 dump_die_list (die->sibling);
7902 }
7903 }
7904
7905 static void
7906 store_in_ref_table (unsigned int offset, struct die_info *die)
7907 {
7908 int h;
7909 struct die_info *old;
7910
7911 h = (offset % REF_HASH_SIZE);
7912 old = die_ref_table[h];
7913 die->next_ref = old;
7914 die_ref_table[h] = die;
7915 }
7916
7917
7918 static void
7919 dwarf2_empty_hash_tables (void)
7920 {
7921 memset (die_ref_table, 0, sizeof (die_ref_table));
7922 }
7923
7924 static unsigned int
7925 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
7926 {
7927 unsigned int result = 0;
7928
7929 switch (attr->form)
7930 {
7931 case DW_FORM_ref_addr:
7932 result = DW_ADDR (attr);
7933 break;
7934 case DW_FORM_ref1:
7935 case DW_FORM_ref2:
7936 case DW_FORM_ref4:
7937 case DW_FORM_ref8:
7938 case DW_FORM_ref_udata:
7939 result = cu->header.offset + DW_UNSND (attr);
7940 break;
7941 default:
7942 complaint (&symfile_complaints,
7943 "unsupported die ref attribute form: '%s'",
7944 dwarf_form_name (attr->form));
7945 }
7946 return result;
7947 }
7948
7949 /* Return the constant value held by the given attribute. Return -1
7950 if the value held by the attribute is not constant. */
7951
7952 static int
7953 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
7954 {
7955 if (attr->form == DW_FORM_sdata)
7956 return DW_SND (attr);
7957 else if (attr->form == DW_FORM_udata
7958 || attr->form == DW_FORM_data1
7959 || attr->form == DW_FORM_data2
7960 || attr->form == DW_FORM_data4
7961 || attr->form == DW_FORM_data8)
7962 return DW_UNSND (attr);
7963 else
7964 {
7965 complaint (&symfile_complaints, "Attribute value is not a constant (%s)",
7966 dwarf_form_name (attr->form));
7967 return default_value;
7968 }
7969 }
7970
7971 static struct die_info *
7972 follow_die_ref (unsigned int offset)
7973 {
7974 struct die_info *die;
7975 int h;
7976
7977 h = (offset % REF_HASH_SIZE);
7978 die = die_ref_table[h];
7979 while (die)
7980 {
7981 if (die->offset == offset)
7982 {
7983 return die;
7984 }
7985 die = die->next_ref;
7986 }
7987 return NULL;
7988 }
7989
7990 static struct type *
7991 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
7992 struct dwarf2_cu *cu)
7993 {
7994 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
7995 {
7996 error ("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]",
7997 typeid, objfile->name);
7998 }
7999
8000 /* Look for this particular type in the fundamental type vector. If
8001 one is not found, create and install one appropriate for the
8002 current language and the current target machine. */
8003
8004 if (cu->ftypes[typeid] == NULL)
8005 {
8006 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8007 }
8008
8009 return (cu->ftypes[typeid]);
8010 }
8011
8012 /* Decode simple location descriptions.
8013 Given a pointer to a dwarf block that defines a location, compute
8014 the location and return the value.
8015
8016 NOTE drow/2003-11-18: This function is called in two situations
8017 now: for the address of static or global variables (partial symbols
8018 only) and for offsets into structures which are expected to be
8019 (more or less) constant. The partial symbol case should go away,
8020 and only the constant case should remain. That will let this
8021 function complain more accurately. A few special modes are allowed
8022 without complaint for global variables (for instance, global
8023 register values and thread-local values).
8024
8025 A location description containing no operations indicates that the
8026 object is optimized out. The return value is 0 for that case.
8027 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8028 callers will only want a very basic result and this can become a
8029 complaint.
8030
8031 When the result is a register number, the global isreg flag is set,
8032 otherwise it is cleared.
8033
8034 Note that stack[0] is unused except as a default error return.
8035 Note that stack overflow is not yet handled. */
8036
8037 static CORE_ADDR
8038 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8039 {
8040 struct objfile *objfile = cu->objfile;
8041 struct comp_unit_head *cu_header = &cu->header;
8042 int i;
8043 int size = blk->size;
8044 char *data = blk->data;
8045 CORE_ADDR stack[64];
8046 int stacki;
8047 unsigned int bytes_read, unsnd;
8048 unsigned char op;
8049
8050 i = 0;
8051 stacki = 0;
8052 stack[stacki] = 0;
8053 isreg = 0;
8054
8055 while (i < size)
8056 {
8057 op = data[i++];
8058 switch (op)
8059 {
8060 case DW_OP_lit0:
8061 case DW_OP_lit1:
8062 case DW_OP_lit2:
8063 case DW_OP_lit3:
8064 case DW_OP_lit4:
8065 case DW_OP_lit5:
8066 case DW_OP_lit6:
8067 case DW_OP_lit7:
8068 case DW_OP_lit8:
8069 case DW_OP_lit9:
8070 case DW_OP_lit10:
8071 case DW_OP_lit11:
8072 case DW_OP_lit12:
8073 case DW_OP_lit13:
8074 case DW_OP_lit14:
8075 case DW_OP_lit15:
8076 case DW_OP_lit16:
8077 case DW_OP_lit17:
8078 case DW_OP_lit18:
8079 case DW_OP_lit19:
8080 case DW_OP_lit20:
8081 case DW_OP_lit21:
8082 case DW_OP_lit22:
8083 case DW_OP_lit23:
8084 case DW_OP_lit24:
8085 case DW_OP_lit25:
8086 case DW_OP_lit26:
8087 case DW_OP_lit27:
8088 case DW_OP_lit28:
8089 case DW_OP_lit29:
8090 case DW_OP_lit30:
8091 case DW_OP_lit31:
8092 stack[++stacki] = op - DW_OP_lit0;
8093 break;
8094
8095 case DW_OP_reg0:
8096 case DW_OP_reg1:
8097 case DW_OP_reg2:
8098 case DW_OP_reg3:
8099 case DW_OP_reg4:
8100 case DW_OP_reg5:
8101 case DW_OP_reg6:
8102 case DW_OP_reg7:
8103 case DW_OP_reg8:
8104 case DW_OP_reg9:
8105 case DW_OP_reg10:
8106 case DW_OP_reg11:
8107 case DW_OP_reg12:
8108 case DW_OP_reg13:
8109 case DW_OP_reg14:
8110 case DW_OP_reg15:
8111 case DW_OP_reg16:
8112 case DW_OP_reg17:
8113 case DW_OP_reg18:
8114 case DW_OP_reg19:
8115 case DW_OP_reg20:
8116 case DW_OP_reg21:
8117 case DW_OP_reg22:
8118 case DW_OP_reg23:
8119 case DW_OP_reg24:
8120 case DW_OP_reg25:
8121 case DW_OP_reg26:
8122 case DW_OP_reg27:
8123 case DW_OP_reg28:
8124 case DW_OP_reg29:
8125 case DW_OP_reg30:
8126 case DW_OP_reg31:
8127 isreg = 1;
8128 stack[++stacki] = op - DW_OP_reg0;
8129 if (i < size)
8130 dwarf2_complex_location_expr_complaint ();
8131 break;
8132
8133 case DW_OP_regx:
8134 isreg = 1;
8135 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8136 i += bytes_read;
8137 stack[++stacki] = unsnd;
8138 if (i < size)
8139 dwarf2_complex_location_expr_complaint ();
8140 break;
8141
8142 case DW_OP_addr:
8143 stack[++stacki] = read_address (objfile->obfd, &data[i],
8144 cu, &bytes_read);
8145 i += bytes_read;
8146 break;
8147
8148 case DW_OP_const1u:
8149 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8150 i += 1;
8151 break;
8152
8153 case DW_OP_const1s:
8154 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8155 i += 1;
8156 break;
8157
8158 case DW_OP_const2u:
8159 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8160 i += 2;
8161 break;
8162
8163 case DW_OP_const2s:
8164 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8165 i += 2;
8166 break;
8167
8168 case DW_OP_const4u:
8169 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8170 i += 4;
8171 break;
8172
8173 case DW_OP_const4s:
8174 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8175 i += 4;
8176 break;
8177
8178 case DW_OP_constu:
8179 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
8180 &bytes_read);
8181 i += bytes_read;
8182 break;
8183
8184 case DW_OP_consts:
8185 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8186 i += bytes_read;
8187 break;
8188
8189 case DW_OP_dup:
8190 stack[stacki + 1] = stack[stacki];
8191 stacki++;
8192 break;
8193
8194 case DW_OP_plus:
8195 stack[stacki - 1] += stack[stacki];
8196 stacki--;
8197 break;
8198
8199 case DW_OP_plus_uconst:
8200 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8201 i += bytes_read;
8202 break;
8203
8204 case DW_OP_minus:
8205 stack[stacki - 1] -= stack[stacki];
8206 stacki--;
8207 break;
8208
8209 case DW_OP_deref:
8210 /* If we're not the last op, then we definitely can't encode
8211 this using GDB's address_class enum. This is valid for partial
8212 global symbols, although the variable's address will be bogus
8213 in the psymtab. */
8214 if (i < size)
8215 dwarf2_complex_location_expr_complaint ();
8216 break;
8217
8218 case DW_OP_GNU_push_tls_address:
8219 /* The top of the stack has the offset from the beginning
8220 of the thread control block at which the variable is located. */
8221 /* Nothing should follow this operator, so the top of stack would
8222 be returned. */
8223 /* This is valid for partial global symbols, but the variable's
8224 address will be bogus in the psymtab. */
8225 if (i < size)
8226 dwarf2_complex_location_expr_complaint ();
8227 break;
8228
8229 default:
8230 complaint (&symfile_complaints, "unsupported stack op: '%s'",
8231 dwarf_stack_op_name (op));
8232 return (stack[stacki]);
8233 }
8234 }
8235 return (stack[stacki]);
8236 }
8237
8238 /* memory allocation interface */
8239
8240 static struct dwarf_block *
8241 dwarf_alloc_block (struct dwarf2_cu *cu)
8242 {
8243 struct dwarf_block *blk;
8244
8245 blk = (struct dwarf_block *)
8246 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
8247 return (blk);
8248 }
8249
8250 static struct abbrev_info *
8251 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
8252 {
8253 struct abbrev_info *abbrev;
8254
8255 abbrev = (struct abbrev_info *)
8256 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
8257 memset (abbrev, 0, sizeof (struct abbrev_info));
8258 return (abbrev);
8259 }
8260
8261 static struct die_info *
8262 dwarf_alloc_die (void)
8263 {
8264 struct die_info *die;
8265
8266 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8267 memset (die, 0, sizeof (struct die_info));
8268 return (die);
8269 }
8270
8271 \f
8272 /* Macro support. */
8273
8274
8275 /* Return the full name of file number I in *LH's file name table.
8276 Use COMP_DIR as the name of the current directory of the
8277 compilation. The result is allocated using xmalloc; the caller is
8278 responsible for freeing it. */
8279 static char *
8280 file_full_name (int file, struct line_header *lh, const char *comp_dir)
8281 {
8282 struct file_entry *fe = &lh->file_names[file - 1];
8283
8284 if (IS_ABSOLUTE_PATH (fe->name))
8285 return xstrdup (fe->name);
8286 else
8287 {
8288 const char *dir;
8289 int dir_len;
8290 char *full_name;
8291
8292 if (fe->dir_index)
8293 dir = lh->include_dirs[fe->dir_index - 1];
8294 else
8295 dir = comp_dir;
8296
8297 if (dir)
8298 {
8299 dir_len = strlen (dir);
8300 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8301 strcpy (full_name, dir);
8302 full_name[dir_len] = '/';
8303 strcpy (full_name + dir_len + 1, fe->name);
8304 return full_name;
8305 }
8306 else
8307 return xstrdup (fe->name);
8308 }
8309 }
8310
8311
8312 static struct macro_source_file *
8313 macro_start_file (int file, int line,
8314 struct macro_source_file *current_file,
8315 const char *comp_dir,
8316 struct line_header *lh, struct objfile *objfile)
8317 {
8318 /* The full name of this source file. */
8319 char *full_name = file_full_name (file, lh, comp_dir);
8320
8321 /* We don't create a macro table for this compilation unit
8322 at all until we actually get a filename. */
8323 if (! pending_macros)
8324 pending_macros = new_macro_table (&objfile->objfile_obstack,
8325 objfile->macro_cache);
8326
8327 if (! current_file)
8328 /* If we have no current file, then this must be the start_file
8329 directive for the compilation unit's main source file. */
8330 current_file = macro_set_main (pending_macros, full_name);
8331 else
8332 current_file = macro_include (current_file, line, full_name);
8333
8334 xfree (full_name);
8335
8336 return current_file;
8337 }
8338
8339
8340 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8341 followed by a null byte. */
8342 static char *
8343 copy_string (const char *buf, int len)
8344 {
8345 char *s = xmalloc (len + 1);
8346 memcpy (s, buf, len);
8347 s[len] = '\0';
8348
8349 return s;
8350 }
8351
8352
8353 static const char *
8354 consume_improper_spaces (const char *p, const char *body)
8355 {
8356 if (*p == ' ')
8357 {
8358 complaint (&symfile_complaints,
8359 "macro definition contains spaces in formal argument list:\n`%s'",
8360 body);
8361
8362 while (*p == ' ')
8363 p++;
8364 }
8365
8366 return p;
8367 }
8368
8369
8370 static void
8371 parse_macro_definition (struct macro_source_file *file, int line,
8372 const char *body)
8373 {
8374 const char *p;
8375
8376 /* The body string takes one of two forms. For object-like macro
8377 definitions, it should be:
8378
8379 <macro name> " " <definition>
8380
8381 For function-like macro definitions, it should be:
8382
8383 <macro name> "() " <definition>
8384 or
8385 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8386
8387 Spaces may appear only where explicitly indicated, and in the
8388 <definition>.
8389
8390 The Dwarf 2 spec says that an object-like macro's name is always
8391 followed by a space, but versions of GCC around March 2002 omit
8392 the space when the macro's definition is the empty string.
8393
8394 The Dwarf 2 spec says that there should be no spaces between the
8395 formal arguments in a function-like macro's formal argument list,
8396 but versions of GCC around March 2002 include spaces after the
8397 commas. */
8398
8399
8400 /* Find the extent of the macro name. The macro name is terminated
8401 by either a space or null character (for an object-like macro) or
8402 an opening paren (for a function-like macro). */
8403 for (p = body; *p; p++)
8404 if (*p == ' ' || *p == '(')
8405 break;
8406
8407 if (*p == ' ' || *p == '\0')
8408 {
8409 /* It's an object-like macro. */
8410 int name_len = p - body;
8411 char *name = copy_string (body, name_len);
8412 const char *replacement;
8413
8414 if (*p == ' ')
8415 replacement = body + name_len + 1;
8416 else
8417 {
8418 dwarf2_macro_malformed_definition_complaint (body);
8419 replacement = body + name_len;
8420 }
8421
8422 macro_define_object (file, line, name, replacement);
8423
8424 xfree (name);
8425 }
8426 else if (*p == '(')
8427 {
8428 /* It's a function-like macro. */
8429 char *name = copy_string (body, p - body);
8430 int argc = 0;
8431 int argv_size = 1;
8432 char **argv = xmalloc (argv_size * sizeof (*argv));
8433
8434 p++;
8435
8436 p = consume_improper_spaces (p, body);
8437
8438 /* Parse the formal argument list. */
8439 while (*p && *p != ')')
8440 {
8441 /* Find the extent of the current argument name. */
8442 const char *arg_start = p;
8443
8444 while (*p && *p != ',' && *p != ')' && *p != ' ')
8445 p++;
8446
8447 if (! *p || p == arg_start)
8448 dwarf2_macro_malformed_definition_complaint (body);
8449 else
8450 {
8451 /* Make sure argv has room for the new argument. */
8452 if (argc >= argv_size)
8453 {
8454 argv_size *= 2;
8455 argv = xrealloc (argv, argv_size * sizeof (*argv));
8456 }
8457
8458 argv[argc++] = copy_string (arg_start, p - arg_start);
8459 }
8460
8461 p = consume_improper_spaces (p, body);
8462
8463 /* Consume the comma, if present. */
8464 if (*p == ',')
8465 {
8466 p++;
8467
8468 p = consume_improper_spaces (p, body);
8469 }
8470 }
8471
8472 if (*p == ')')
8473 {
8474 p++;
8475
8476 if (*p == ' ')
8477 /* Perfectly formed definition, no complaints. */
8478 macro_define_function (file, line, name,
8479 argc, (const char **) argv,
8480 p + 1);
8481 else if (*p == '\0')
8482 {
8483 /* Complain, but do define it. */
8484 dwarf2_macro_malformed_definition_complaint (body);
8485 macro_define_function (file, line, name,
8486 argc, (const char **) argv,
8487 p);
8488 }
8489 else
8490 /* Just complain. */
8491 dwarf2_macro_malformed_definition_complaint (body);
8492 }
8493 else
8494 /* Just complain. */
8495 dwarf2_macro_malformed_definition_complaint (body);
8496
8497 xfree (name);
8498 {
8499 int i;
8500
8501 for (i = 0; i < argc; i++)
8502 xfree (argv[i]);
8503 }
8504 xfree (argv);
8505 }
8506 else
8507 dwarf2_macro_malformed_definition_complaint (body);
8508 }
8509
8510
8511 static void
8512 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
8513 char *comp_dir, bfd *abfd,
8514 struct dwarf2_cu *cu)
8515 {
8516 char *mac_ptr, *mac_end;
8517 struct macro_source_file *current_file = 0;
8518
8519 if (dwarf2_per_objfile->macinfo_buffer == NULL)
8520 {
8521 complaint (&symfile_complaints, "missing .debug_macinfo section");
8522 return;
8523 }
8524
8525 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
8526 mac_end = dwarf2_per_objfile->macinfo_buffer
8527 + dwarf2_per_objfile->macinfo_size;
8528
8529 for (;;)
8530 {
8531 enum dwarf_macinfo_record_type macinfo_type;
8532
8533 /* Do we at least have room for a macinfo type byte? */
8534 if (mac_ptr >= mac_end)
8535 {
8536 dwarf2_macros_too_long_complaint ();
8537 return;
8538 }
8539
8540 macinfo_type = read_1_byte (abfd, mac_ptr);
8541 mac_ptr++;
8542
8543 switch (macinfo_type)
8544 {
8545 /* A zero macinfo type indicates the end of the macro
8546 information. */
8547 case 0:
8548 return;
8549
8550 case DW_MACINFO_define:
8551 case DW_MACINFO_undef:
8552 {
8553 int bytes_read;
8554 int line;
8555 char *body;
8556
8557 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8558 mac_ptr += bytes_read;
8559 body = read_string (abfd, mac_ptr, &bytes_read);
8560 mac_ptr += bytes_read;
8561
8562 if (! current_file)
8563 complaint (&symfile_complaints,
8564 "debug info gives macro %s outside of any file: %s",
8565 macinfo_type ==
8566 DW_MACINFO_define ? "definition" : macinfo_type ==
8567 DW_MACINFO_undef ? "undefinition" :
8568 "something-or-other", body);
8569 else
8570 {
8571 if (macinfo_type == DW_MACINFO_define)
8572 parse_macro_definition (current_file, line, body);
8573 else if (macinfo_type == DW_MACINFO_undef)
8574 macro_undef (current_file, line, body);
8575 }
8576 }
8577 break;
8578
8579 case DW_MACINFO_start_file:
8580 {
8581 int bytes_read;
8582 int line, file;
8583
8584 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8585 mac_ptr += bytes_read;
8586 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8587 mac_ptr += bytes_read;
8588
8589 current_file = macro_start_file (file, line,
8590 current_file, comp_dir,
8591 lh, cu->objfile);
8592 }
8593 break;
8594
8595 case DW_MACINFO_end_file:
8596 if (! current_file)
8597 complaint (&symfile_complaints,
8598 "macro debug info has an unmatched `close_file' directive");
8599 else
8600 {
8601 current_file = current_file->included_by;
8602 if (! current_file)
8603 {
8604 enum dwarf_macinfo_record_type next_type;
8605
8606 /* GCC circa March 2002 doesn't produce the zero
8607 type byte marking the end of the compilation
8608 unit. Complain if it's not there, but exit no
8609 matter what. */
8610
8611 /* Do we at least have room for a macinfo type byte? */
8612 if (mac_ptr >= mac_end)
8613 {
8614 dwarf2_macros_too_long_complaint ();
8615 return;
8616 }
8617
8618 /* We don't increment mac_ptr here, so this is just
8619 a look-ahead. */
8620 next_type = read_1_byte (abfd, mac_ptr);
8621 if (next_type != 0)
8622 complaint (&symfile_complaints,
8623 "no terminating 0-type entry for macros in `.debug_macinfo' section");
8624
8625 return;
8626 }
8627 }
8628 break;
8629
8630 case DW_MACINFO_vendor_ext:
8631 {
8632 int bytes_read;
8633 int constant;
8634 char *string;
8635
8636 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8637 mac_ptr += bytes_read;
8638 string = read_string (abfd, mac_ptr, &bytes_read);
8639 mac_ptr += bytes_read;
8640
8641 /* We don't recognize any vendor extensions. */
8642 }
8643 break;
8644 }
8645 }
8646 }
8647
8648 /* Check if the attribute's form is a DW_FORM_block*
8649 if so return true else false. */
8650 static int
8651 attr_form_is_block (struct attribute *attr)
8652 {
8653 return (attr == NULL ? 0 :
8654 attr->form == DW_FORM_block1
8655 || attr->form == DW_FORM_block2
8656 || attr->form == DW_FORM_block4
8657 || attr->form == DW_FORM_block);
8658 }
8659
8660 static void
8661 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
8662 struct dwarf2_cu *cu)
8663 {
8664 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
8665 {
8666 struct dwarf2_loclist_baton *baton;
8667
8668 baton = obstack_alloc (&cu->objfile->objfile_obstack,
8669 sizeof (struct dwarf2_loclist_baton));
8670 baton->objfile = cu->objfile;
8671
8672 /* We don't know how long the location list is, but make sure we
8673 don't run off the edge of the section. */
8674 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
8675 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
8676 baton->base_address = cu->header.base_address;
8677 if (cu->header.base_known == 0)
8678 complaint (&symfile_complaints,
8679 "Location list used without specifying the CU base address.");
8680
8681 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
8682 SYMBOL_LOCATION_BATON (sym) = baton;
8683 }
8684 else
8685 {
8686 struct dwarf2_locexpr_baton *baton;
8687
8688 baton = obstack_alloc (&cu->objfile->objfile_obstack,
8689 sizeof (struct dwarf2_locexpr_baton));
8690 baton->objfile = cu->objfile;
8691
8692 if (attr_form_is_block (attr))
8693 {
8694 /* Note that we're just copying the block's data pointer
8695 here, not the actual data. We're still pointing into the
8696 info_buffer for SYM's objfile; right now we never release
8697 that buffer, but when we do clean up properly this may
8698 need to change. */
8699 baton->size = DW_BLOCK (attr)->size;
8700 baton->data = DW_BLOCK (attr)->data;
8701 }
8702 else
8703 {
8704 dwarf2_invalid_attrib_class_complaint ("location description",
8705 SYMBOL_NATURAL_NAME (sym));
8706 baton->size = 0;
8707 baton->data = NULL;
8708 }
8709
8710 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
8711 SYMBOL_LOCATION_BATON (sym) = baton;
8712 }
8713 }
8714
8715 /* This cleanup function is passed the address of a dwarf2_cu on the stack
8716 when we're finished with it. We can't free the pointer itself, but
8717 release any associated storage.
8718
8719 Only used during partial symbol parsing. */
8720
8721 static void
8722 free_stack_comp_unit (void *data)
8723 {
8724 struct dwarf2_cu *cu = data;
8725
8726 obstack_free (&cu->comp_unit_obstack, NULL);
8727 cu->partial_dies = NULL;
8728 }
8729
8730 /* Allocation function for the libiberty hash table which uses an
8731 obstack. */
8732
8733 static void *
8734 hashtab_obstack_allocate (void *data, size_t size, size_t count)
8735 {
8736 unsigned int total = size * count;
8737 void *ptr = obstack_alloc ((struct obstack *) data, total);
8738 memset (ptr, 0, total);
8739 return ptr;
8740 }
8741
8742 /* Trivial deallocation function for the libiberty splay tree and hash
8743 table - don't deallocate anything. Rely on later deletion of the
8744 obstack. */
8745
8746 static void
8747 dummy_obstack_deallocate (void *object, void *data)
8748 {
8749 return;
8750 }
8751
8752 /* Trivial hash function for partial_die_info: the hash value of a DIE
8753 is its offset in .debug_info for this objfile. */
8754
8755 static hashval_t
8756 partial_die_hash (const void *item)
8757 {
8758 const struct partial_die_info *part_die = item;
8759 return part_die->offset;
8760 }
8761
8762 /* Trivial comparison function for partial_die_info structures: two DIEs
8763 are equal if they have the same offset. */
8764
8765 static int
8766 partial_die_eq (const void *item_lhs, const void *item_rhs)
8767 {
8768 const struct partial_die_info *part_die_lhs = item_lhs;
8769 const struct partial_die_info *part_die_rhs = item_rhs;
8770 return part_die_lhs->offset == part_die_rhs->offset;
8771 }
8772
8773 void _initialize_dwarf2_read (void);
8774
8775 void
8776 _initialize_dwarf2_read (void)
8777 {
8778 dwarf2_objfile_data_key = register_objfile_data ();
8779 }