d7f893d5369b3c7dc3110337e3cb05dbc5b7c157
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
240 struct signatured_type **all_type_units;
241
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
252
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
288
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
291 unsigned char using_index;
292
293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
294 struct mapped_index *index_table;
295
296 /* When using index_table, this keeps track of all quick_file_names entries.
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
303 htab_t quick_file_names_table;
304
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
308
309 /* Table mapping type DIEs to their struct type *.
310 This is NULL if not allocated yet.
311 The mapping is done via (CU/TU + DIE offset) -> type. */
312 htab_t die_type_hash;
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The primary symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
726 struct symtab *primary_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 /* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030 struct line_header
1031 {
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
1036 unsigned char maximum_ops_per_instruction;
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
1053 const char **include_dirs;
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
1060 {
1061 const char *name;
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
1066 struct symtab *symtab; /* The associated symbol table, if any. */
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
1070 header. These point into dwarf2_per_objfile->line_buffer. */
1071 const gdb_byte *statement_program_start, *statement_program_end;
1072 };
1073
1074 /* When we construct a partial symbol table entry we only
1075 need this much information. */
1076 struct partial_die_info
1077 {
1078 /* Offset of this DIE. */
1079 sect_offset offset;
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
1091 unsigned int may_be_inlined : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
1112 /* The name of this DIE. Normally the value of DW_AT_name, but
1113 sometimes a default name for unnamed DIEs. */
1114 const char *name;
1115
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
1122 const char *scope;
1123
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
1137
1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1139 DW_AT_sibling, if any. */
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
1142 const gdb_byte *sibling;
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
1147 sect_offset spec_offset;
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
1152 };
1153
1154 /* This data structure holds the information of an abbrev. */
1155 struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165 struct attr_abbrev
1166 {
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
1169 };
1170
1171 /* Size of abbrev_table.abbrev_hash_table. */
1172 #define ABBREV_HASH_SIZE 121
1173
1174 /* Top level data structure to contain an abbreviation table. */
1175
1176 struct abbrev_table
1177 {
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190 };
1191
1192 /* Attributes have a name and a value. */
1193 struct attribute
1194 {
1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
1203 union
1204 {
1205 const char *str;
1206 struct dwarf_block *blk;
1207 ULONGEST unsnd;
1208 LONGEST snd;
1209 CORE_ADDR addr;
1210 ULONGEST signature;
1211 }
1212 u;
1213 };
1214
1215 /* This data structure holds a complete die structure. */
1216 struct die_info
1217 {
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
1227
1228 /* True if this die is in process. PR 16581. */
1229 unsigned char in_process : 1;
1230
1231 /* Abbrev number */
1232 unsigned int abbrev;
1233
1234 /* Offset in .debug_info or .debug_types section. */
1235 sect_offset offset;
1236
1237 /* The dies in a compilation unit form an n-ary tree. PARENT
1238 points to this die's parent; CHILD points to the first child of
1239 this node; and all the children of a given node are chained
1240 together via their SIBLING fields. */
1241 struct die_info *child; /* Its first child, if any. */
1242 struct die_info *sibling; /* Its next sibling, if any. */
1243 struct die_info *parent; /* Its parent, if any. */
1244
1245 /* An array of attributes, with NUM_ATTRS elements. There may be
1246 zero, but it's not common and zero-sized arrays are not
1247 sufficiently portable C. */
1248 struct attribute attrs[1];
1249 };
1250
1251 /* Get at parts of an attribute structure. */
1252
1253 #define DW_STRING(attr) ((attr)->u.str)
1254 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1255 #define DW_UNSND(attr) ((attr)->u.unsnd)
1256 #define DW_BLOCK(attr) ((attr)->u.blk)
1257 #define DW_SND(attr) ((attr)->u.snd)
1258 #define DW_ADDR(attr) ((attr)->u.addr)
1259 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1260
1261 /* Blocks are a bunch of untyped bytes. */
1262 struct dwarf_block
1263 {
1264 size_t size;
1265
1266 /* Valid only if SIZE is not zero. */
1267 const gdb_byte *data;
1268 };
1269
1270 #ifndef ATTR_ALLOC_CHUNK
1271 #define ATTR_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* Allocate fields for structs, unions and enums in this size. */
1275 #ifndef DW_FIELD_ALLOC_CHUNK
1276 #define DW_FIELD_ALLOC_CHUNK 4
1277 #endif
1278
1279 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1280 but this would require a corresponding change in unpack_field_as_long
1281 and friends. */
1282 static int bits_per_byte = 8;
1283
1284 /* The routines that read and process dies for a C struct or C++ class
1285 pass lists of data member fields and lists of member function fields
1286 in an instance of a field_info structure, as defined below. */
1287 struct field_info
1288 {
1289 /* List of data member and baseclasses fields. */
1290 struct nextfield
1291 {
1292 struct nextfield *next;
1293 int accessibility;
1294 int virtuality;
1295 struct field field;
1296 }
1297 *fields, *baseclasses;
1298
1299 /* Number of fields (including baseclasses). */
1300 int nfields;
1301
1302 /* Number of baseclasses. */
1303 int nbaseclasses;
1304
1305 /* Set if the accesibility of one of the fields is not public. */
1306 int non_public_fields;
1307
1308 /* Member function fields array, entries are allocated in the order they
1309 are encountered in the object file. */
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 }
1315 *fnfields;
1316
1317 /* Member function fieldlist array, contains name of possibly overloaded
1318 member function, number of overloaded member functions and a pointer
1319 to the head of the member function field chain. */
1320 struct fnfieldlist
1321 {
1322 const char *name;
1323 int length;
1324 struct nextfnfield *head;
1325 }
1326 *fnfieldlists;
1327
1328 /* Number of entries in the fnfieldlists array. */
1329 int nfnfields;
1330
1331 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1332 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1333 struct typedef_field_list
1334 {
1335 struct typedef_field field;
1336 struct typedef_field_list *next;
1337 }
1338 *typedef_field_list;
1339 unsigned typedef_field_list_count;
1340 };
1341
1342 /* One item on the queue of compilation units to read in full symbols
1343 for. */
1344 struct dwarf2_queue_item
1345 {
1346 struct dwarf2_per_cu_data *per_cu;
1347 enum language pretend_language;
1348 struct dwarf2_queue_item *next;
1349 };
1350
1351 /* The current queue. */
1352 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1353
1354 /* Loaded secondary compilation units are kept in memory until they
1355 have not been referenced for the processing of this many
1356 compilation units. Set this to zero to disable caching. Cache
1357 sizes of up to at least twenty will improve startup time for
1358 typical inter-CU-reference binaries, at an obvious memory cost. */
1359 static int dwarf2_max_cache_age = 5;
1360 static void
1361 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1362 struct cmd_list_element *c, const char *value)
1363 {
1364 fprintf_filtered (file, _("The upper bound on the age of cached "
1365 "dwarf2 compilation units is %s.\n"),
1366 value);
1367 }
1368 \f
1369 /* local function prototypes */
1370
1371 static const char *get_section_name (const struct dwarf2_section_info *);
1372
1373 static const char *get_section_file_name (const struct dwarf2_section_info *);
1374
1375 static void dwarf2_locate_sections (bfd *, asection *, void *);
1376
1377 static void dwarf2_find_base_address (struct die_info *die,
1378 struct dwarf2_cu *cu);
1379
1380 static struct partial_symtab *create_partial_symtab
1381 (struct dwarf2_per_cu_data *per_cu, const char *name);
1382
1383 static void dwarf2_build_psymtabs_hard (struct objfile *);
1384
1385 static void scan_partial_symbols (struct partial_die_info *,
1386 CORE_ADDR *, CORE_ADDR *,
1387 int, struct dwarf2_cu *);
1388
1389 static void add_partial_symbol (struct partial_die_info *,
1390 struct dwarf2_cu *);
1391
1392 static void add_partial_namespace (struct partial_die_info *pdi,
1393 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1394 int need_pc, struct dwarf2_cu *cu);
1395
1396 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1397 CORE_ADDR *highpc, int need_pc,
1398 struct dwarf2_cu *cu);
1399
1400 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1401 struct dwarf2_cu *cu);
1402
1403 static void add_partial_subprogram (struct partial_die_info *pdi,
1404 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1405 int need_pc, struct dwarf2_cu *cu);
1406
1407 static void dwarf2_read_symtab (struct partial_symtab *,
1408 struct objfile *);
1409
1410 static void psymtab_to_symtab_1 (struct partial_symtab *);
1411
1412 static struct abbrev_info *abbrev_table_lookup_abbrev
1413 (const struct abbrev_table *, unsigned int);
1414
1415 static struct abbrev_table *abbrev_table_read_table
1416 (struct dwarf2_section_info *, sect_offset);
1417
1418 static void abbrev_table_free (struct abbrev_table *);
1419
1420 static void abbrev_table_free_cleanup (void *);
1421
1422 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1423 struct dwarf2_section_info *);
1424
1425 static void dwarf2_free_abbrev_table (void *);
1426
1427 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1428
1429 static struct partial_die_info *load_partial_dies
1430 (const struct die_reader_specs *, const gdb_byte *, int);
1431
1432 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1433 struct partial_die_info *,
1434 struct abbrev_info *,
1435 unsigned int,
1436 const gdb_byte *);
1437
1438 static struct partial_die_info *find_partial_die (sect_offset, int,
1439 struct dwarf2_cu *);
1440
1441 static void fixup_partial_die (struct partial_die_info *,
1442 struct dwarf2_cu *);
1443
1444 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1445 struct attribute *, struct attr_abbrev *,
1446 const gdb_byte *);
1447
1448 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1449
1450 static int read_1_signed_byte (bfd *, const gdb_byte *);
1451
1452 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1453
1454 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1455
1456 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1457
1458 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1459 unsigned int *);
1460
1461 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1462
1463 static LONGEST read_checked_initial_length_and_offset
1464 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1465 unsigned int *, unsigned int *);
1466
1467 static LONGEST read_offset (bfd *, const gdb_byte *,
1468 const struct comp_unit_head *,
1469 unsigned int *);
1470
1471 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1472
1473 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1474 sect_offset);
1475
1476 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1477
1478 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1479
1480 static const char *read_indirect_string (bfd *, const gdb_byte *,
1481 const struct comp_unit_head *,
1482 unsigned int *);
1483
1484 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1485
1486 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1487
1488 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1489
1490 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1491 const gdb_byte *,
1492 unsigned int *);
1493
1494 static const char *read_str_index (const struct die_reader_specs *reader,
1495 struct dwarf2_cu *cu, ULONGEST str_index);
1496
1497 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1498
1499 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1500 struct dwarf2_cu *);
1501
1502 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1503 unsigned int);
1504
1505 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1506 struct dwarf2_cu *cu);
1507
1508 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1509
1510 static struct die_info *die_specification (struct die_info *die,
1511 struct dwarf2_cu **);
1512
1513 static void free_line_header (struct line_header *lh);
1514
1515 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1516 struct dwarf2_cu *cu);
1517
1518 static void dwarf_decode_lines (struct line_header *, const char *,
1519 struct dwarf2_cu *, struct partial_symtab *,
1520 int);
1521
1522 static void dwarf2_start_subfile (const char *, const char *, const char *);
1523
1524 static void dwarf2_start_symtab (struct dwarf2_cu *,
1525 const char *, const char *, CORE_ADDR);
1526
1527 static struct symbol *new_symbol (struct die_info *, struct type *,
1528 struct dwarf2_cu *);
1529
1530 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1531 struct dwarf2_cu *, struct symbol *);
1532
1533 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1534 struct dwarf2_cu *);
1535
1536 static void dwarf2_const_value_attr (const struct attribute *attr,
1537 struct type *type,
1538 const char *name,
1539 struct obstack *obstack,
1540 struct dwarf2_cu *cu, LONGEST *value,
1541 const gdb_byte **bytes,
1542 struct dwarf2_locexpr_baton **baton);
1543
1544 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1545
1546 static int need_gnat_info (struct dwarf2_cu *);
1547
1548 static struct type *die_descriptive_type (struct die_info *,
1549 struct dwarf2_cu *);
1550
1551 static void set_descriptive_type (struct type *, struct die_info *,
1552 struct dwarf2_cu *);
1553
1554 static struct type *die_containing_type (struct die_info *,
1555 struct dwarf2_cu *);
1556
1557 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1558 struct dwarf2_cu *);
1559
1560 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1561
1562 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1563
1564 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1565
1566 static char *typename_concat (struct obstack *obs, const char *prefix,
1567 const char *suffix, int physname,
1568 struct dwarf2_cu *cu);
1569
1570 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1571
1572 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1573
1574 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1575
1576 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1577
1578 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1579
1580 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1581 struct dwarf2_cu *, struct partial_symtab *);
1582
1583 static int dwarf2_get_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1585 struct partial_symtab *);
1586
1587 static void get_scope_pc_bounds (struct die_info *,
1588 CORE_ADDR *, CORE_ADDR *,
1589 struct dwarf2_cu *);
1590
1591 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1592 CORE_ADDR, struct dwarf2_cu *);
1593
1594 static void dwarf2_add_field (struct field_info *, struct die_info *,
1595 struct dwarf2_cu *);
1596
1597 static void dwarf2_attach_fields_to_type (struct field_info *,
1598 struct type *, struct dwarf2_cu *);
1599
1600 static void dwarf2_add_member_fn (struct field_info *,
1601 struct die_info *, struct type *,
1602 struct dwarf2_cu *);
1603
1604 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1605 struct type *,
1606 struct dwarf2_cu *);
1607
1608 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1611
1612 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1613
1614 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1615
1616 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1617
1618 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1619
1620 static struct type *read_module_type (struct die_info *die,
1621 struct dwarf2_cu *cu);
1622
1623 static const char *namespace_name (struct die_info *die,
1624 int *is_anonymous, struct dwarf2_cu *);
1625
1626 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1627
1628 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1629
1630 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1631 struct dwarf2_cu *);
1632
1633 static struct die_info *read_die_and_siblings_1
1634 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1635 struct die_info *);
1636
1637 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1638 const gdb_byte *info_ptr,
1639 const gdb_byte **new_info_ptr,
1640 struct die_info *parent);
1641
1642 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *, int);
1645
1646 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1647 struct die_info **, const gdb_byte *,
1648 int *);
1649
1650 static void process_die (struct die_info *, struct dwarf2_cu *);
1651
1652 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1653 struct obstack *);
1654
1655 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1656
1657 static const char *dwarf2_full_name (const char *name,
1658 struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
1661 static const char *dwarf2_physname (const char *name, struct die_info *die,
1662 struct dwarf2_cu *cu);
1663
1664 static struct die_info *dwarf2_extension (struct die_info *die,
1665 struct dwarf2_cu **);
1666
1667 static const char *dwarf_tag_name (unsigned int);
1668
1669 static const char *dwarf_attr_name (unsigned int);
1670
1671 static const char *dwarf_form_name (unsigned int);
1672
1673 static char *dwarf_bool_name (unsigned int);
1674
1675 static const char *dwarf_type_encoding_name (unsigned int);
1676
1677 static struct die_info *sibling_die (struct die_info *);
1678
1679 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1680
1681 static void dump_die_for_error (struct die_info *);
1682
1683 static void dump_die_1 (struct ui_file *, int level, int max_level,
1684 struct die_info *);
1685
1686 /*static*/ void dump_die (struct die_info *, int max_level);
1687
1688 static void store_in_ref_table (struct die_info *,
1689 struct dwarf2_cu *);
1690
1691 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1692
1693 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1694
1695 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1696 const struct attribute *,
1697 struct dwarf2_cu **);
1698
1699 static struct die_info *follow_die_ref (struct die_info *,
1700 const struct attribute *,
1701 struct dwarf2_cu **);
1702
1703 static struct die_info *follow_die_sig (struct die_info *,
1704 const struct attribute *,
1705 struct dwarf2_cu **);
1706
1707 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1708 struct dwarf2_cu *);
1709
1710 static struct type *get_DW_AT_signature_type (struct die_info *,
1711 const struct attribute *,
1712 struct dwarf2_cu *);
1713
1714 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1715
1716 static void read_signatured_type (struct signatured_type *);
1717
1718 static struct type_unit_group *get_type_unit_group
1719 (struct dwarf2_cu *, const struct attribute *);
1720
1721 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1722
1723 /* memory allocation interface */
1724
1725 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1726
1727 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1728
1729 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1730 const char *, int);
1731
1732 static int attr_form_is_block (const struct attribute *);
1733
1734 static int attr_form_is_section_offset (const struct attribute *);
1735
1736 static int attr_form_is_constant (const struct attribute *);
1737
1738 static int attr_form_is_ref (const struct attribute *);
1739
1740 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1741 struct dwarf2_loclist_baton *baton,
1742 const struct attribute *attr);
1743
1744 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1745 struct symbol *sym,
1746 struct dwarf2_cu *cu,
1747 int is_block);
1748
1749 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1750 const gdb_byte *info_ptr,
1751 struct abbrev_info *abbrev);
1752
1753 static void free_stack_comp_unit (void *);
1754
1755 static hashval_t partial_die_hash (const void *item);
1756
1757 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1758
1759 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1760 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1761
1762 static void init_one_comp_unit (struct dwarf2_cu *cu,
1763 struct dwarf2_per_cu_data *per_cu);
1764
1765 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1766 struct die_info *comp_unit_die,
1767 enum language pretend_language);
1768
1769 static void free_heap_comp_unit (void *);
1770
1771 static void free_cached_comp_units (void *);
1772
1773 static void age_cached_comp_units (void);
1774
1775 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1776
1777 static struct type *set_die_type (struct die_info *, struct type *,
1778 struct dwarf2_cu *);
1779
1780 static void create_all_comp_units (struct objfile *);
1781
1782 static int create_all_type_units (struct objfile *);
1783
1784 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
1786
1787 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1788 enum language);
1789
1790 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1791 enum language);
1792
1793 static void dwarf2_add_dependence (struct dwarf2_cu *,
1794 struct dwarf2_per_cu_data *);
1795
1796 static void dwarf2_mark (struct dwarf2_cu *);
1797
1798 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1799
1800 static struct type *get_die_type_at_offset (sect_offset,
1801 struct dwarf2_per_cu_data *);
1802
1803 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1804
1805 static void dwarf2_release_queue (void *dummy);
1806
1807 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1808 enum language pretend_language);
1809
1810 static void process_queue (void);
1811
1812 static void find_file_and_directory (struct die_info *die,
1813 struct dwarf2_cu *cu,
1814 const char **name, const char **comp_dir);
1815
1816 static char *file_full_name (int file, struct line_header *lh,
1817 const char *comp_dir);
1818
1819 static const gdb_byte *read_and_check_comp_unit_head
1820 (struct comp_unit_head *header,
1821 struct dwarf2_section_info *section,
1822 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1823 int is_debug_types_section);
1824
1825 static void init_cutu_and_read_dies
1826 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1827 int use_existing_cu, int keep,
1828 die_reader_func_ftype *die_reader_func, void *data);
1829
1830 static void init_cutu_and_read_dies_simple
1831 (struct dwarf2_per_cu_data *this_cu,
1832 die_reader_func_ftype *die_reader_func, void *data);
1833
1834 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1835
1836 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1837
1838 static struct dwo_unit *lookup_dwo_unit_in_dwp
1839 (struct dwp_file *dwp_file, const char *comp_dir,
1840 ULONGEST signature, int is_debug_types);
1841
1842 static struct dwp_file *get_dwp_file (void);
1843
1844 static struct dwo_unit *lookup_dwo_comp_unit
1845 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1846
1847 static struct dwo_unit *lookup_dwo_type_unit
1848 (struct signatured_type *, const char *, const char *);
1849
1850 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1851
1852 static void free_dwo_file_cleanup (void *);
1853
1854 static void process_cu_includes (void);
1855
1856 static void check_producer (struct dwarf2_cu *cu);
1857 \f
1858 /* Various complaints about symbol reading that don't abort the process. */
1859
1860 static void
1861 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1862 {
1863 complaint (&symfile_complaints,
1864 _("statement list doesn't fit in .debug_line section"));
1865 }
1866
1867 static void
1868 dwarf2_debug_line_missing_file_complaint (void)
1869 {
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line data without a file"));
1872 }
1873
1874 static void
1875 dwarf2_debug_line_missing_end_sequence_complaint (void)
1876 {
1877 complaint (&symfile_complaints,
1878 _(".debug_line section has line "
1879 "program sequence without an end"));
1880 }
1881
1882 static void
1883 dwarf2_complex_location_expr_complaint (void)
1884 {
1885 complaint (&symfile_complaints, _("location expression too complex"));
1886 }
1887
1888 static void
1889 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1890 int arg3)
1891 {
1892 complaint (&symfile_complaints,
1893 _("const value length mismatch for '%s', got %d, expected %d"),
1894 arg1, arg2, arg3);
1895 }
1896
1897 static void
1898 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1899 {
1900 complaint (&symfile_complaints,
1901 _("debug info runs off end of %s section"
1902 " [in module %s]"),
1903 get_section_name (section),
1904 get_section_file_name (section));
1905 }
1906
1907 static void
1908 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1909 {
1910 complaint (&symfile_complaints,
1911 _("macro debug info contains a "
1912 "malformed macro definition:\n`%s'"),
1913 arg1);
1914 }
1915
1916 static void
1917 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1918 {
1919 complaint (&symfile_complaints,
1920 _("invalid attribute class or form for '%s' in '%s'"),
1921 arg1, arg2);
1922 }
1923 \f
1924 #if WORDS_BIGENDIAN
1925
1926 /* Convert VALUE between big- and little-endian. */
1927 static offset_type
1928 byte_swap (offset_type value)
1929 {
1930 offset_type result;
1931
1932 result = (value & 0xff) << 24;
1933 result |= (value & 0xff00) << 8;
1934 result |= (value & 0xff0000) >> 8;
1935 result |= (value & 0xff000000) >> 24;
1936 return result;
1937 }
1938
1939 #define MAYBE_SWAP(V) byte_swap (V)
1940
1941 #else
1942 #define MAYBE_SWAP(V) (V)
1943 #endif /* WORDS_BIGENDIAN */
1944
1945 /* The suffix for an index file. */
1946 #define INDEX_SUFFIX ".gdb-index"
1947
1948 /* Try to locate the sections we need for DWARF 2 debugging
1949 information and return true if we have enough to do something.
1950 NAMES points to the dwarf2 section names, or is NULL if the standard
1951 ELF names are used. */
1952
1953 int
1954 dwarf2_has_info (struct objfile *objfile,
1955 const struct dwarf2_debug_sections *names)
1956 {
1957 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1958 if (!dwarf2_per_objfile)
1959 {
1960 /* Initialize per-objfile state. */
1961 struct dwarf2_per_objfile *data
1962 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1963
1964 memset (data, 0, sizeof (*data));
1965 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1966 dwarf2_per_objfile = data;
1967
1968 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1969 (void *) names);
1970 dwarf2_per_objfile->objfile = objfile;
1971 }
1972 return (!dwarf2_per_objfile->info.is_virtual
1973 && dwarf2_per_objfile->info.s.asection != NULL
1974 && !dwarf2_per_objfile->abbrev.is_virtual
1975 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1976 }
1977
1978 /* Return the containing section of virtual section SECTION. */
1979
1980 static struct dwarf2_section_info *
1981 get_containing_section (const struct dwarf2_section_info *section)
1982 {
1983 gdb_assert (section->is_virtual);
1984 return section->s.containing_section;
1985 }
1986
1987 /* Return the bfd owner of SECTION. */
1988
1989 static struct bfd *
1990 get_section_bfd_owner (const struct dwarf2_section_info *section)
1991 {
1992 if (section->is_virtual)
1993 {
1994 section = get_containing_section (section);
1995 gdb_assert (!section->is_virtual);
1996 }
1997 return section->s.asection->owner;
1998 }
1999
2000 /* Return the bfd section of SECTION.
2001 Returns NULL if the section is not present. */
2002
2003 static asection *
2004 get_section_bfd_section (const struct dwarf2_section_info *section)
2005 {
2006 if (section->is_virtual)
2007 {
2008 section = get_containing_section (section);
2009 gdb_assert (!section->is_virtual);
2010 }
2011 return section->s.asection;
2012 }
2013
2014 /* Return the name of SECTION. */
2015
2016 static const char *
2017 get_section_name (const struct dwarf2_section_info *section)
2018 {
2019 asection *sectp = get_section_bfd_section (section);
2020
2021 gdb_assert (sectp != NULL);
2022 return bfd_section_name (get_section_bfd_owner (section), sectp);
2023 }
2024
2025 /* Return the name of the file SECTION is in. */
2026
2027 static const char *
2028 get_section_file_name (const struct dwarf2_section_info *section)
2029 {
2030 bfd *abfd = get_section_bfd_owner (section);
2031
2032 return bfd_get_filename (abfd);
2033 }
2034
2035 /* Return the id of SECTION.
2036 Returns 0 if SECTION doesn't exist. */
2037
2038 static int
2039 get_section_id (const struct dwarf2_section_info *section)
2040 {
2041 asection *sectp = get_section_bfd_section (section);
2042
2043 if (sectp == NULL)
2044 return 0;
2045 return sectp->id;
2046 }
2047
2048 /* Return the flags of SECTION.
2049 SECTION (or containing section if this is a virtual section) must exist. */
2050
2051 static int
2052 get_section_flags (const struct dwarf2_section_info *section)
2053 {
2054 asection *sectp = get_section_bfd_section (section);
2055
2056 gdb_assert (sectp != NULL);
2057 return bfd_get_section_flags (sectp->owner, sectp);
2058 }
2059
2060 /* When loading sections, we look either for uncompressed section or for
2061 compressed section names. */
2062
2063 static int
2064 section_is_p (const char *section_name,
2065 const struct dwarf2_section_names *names)
2066 {
2067 if (names->normal != NULL
2068 && strcmp (section_name, names->normal) == 0)
2069 return 1;
2070 if (names->compressed != NULL
2071 && strcmp (section_name, names->compressed) == 0)
2072 return 1;
2073 return 0;
2074 }
2075
2076 /* This function is mapped across the sections and remembers the
2077 offset and size of each of the debugging sections we are interested
2078 in. */
2079
2080 static void
2081 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2082 {
2083 const struct dwarf2_debug_sections *names;
2084 flagword aflag = bfd_get_section_flags (abfd, sectp);
2085
2086 if (vnames == NULL)
2087 names = &dwarf2_elf_names;
2088 else
2089 names = (const struct dwarf2_debug_sections *) vnames;
2090
2091 if ((aflag & SEC_HAS_CONTENTS) == 0)
2092 {
2093 }
2094 else if (section_is_p (sectp->name, &names->info))
2095 {
2096 dwarf2_per_objfile->info.s.asection = sectp;
2097 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2098 }
2099 else if (section_is_p (sectp->name, &names->abbrev))
2100 {
2101 dwarf2_per_objfile->abbrev.s.asection = sectp;
2102 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2103 }
2104 else if (section_is_p (sectp->name, &names->line))
2105 {
2106 dwarf2_per_objfile->line.s.asection = sectp;
2107 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2108 }
2109 else if (section_is_p (sectp->name, &names->loc))
2110 {
2111 dwarf2_per_objfile->loc.s.asection = sectp;
2112 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2113 }
2114 else if (section_is_p (sectp->name, &names->macinfo))
2115 {
2116 dwarf2_per_objfile->macinfo.s.asection = sectp;
2117 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2118 }
2119 else if (section_is_p (sectp->name, &names->macro))
2120 {
2121 dwarf2_per_objfile->macro.s.asection = sectp;
2122 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2123 }
2124 else if (section_is_p (sectp->name, &names->str))
2125 {
2126 dwarf2_per_objfile->str.s.asection = sectp;
2127 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->addr))
2130 {
2131 dwarf2_per_objfile->addr.s.asection = sectp;
2132 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->frame))
2135 {
2136 dwarf2_per_objfile->frame.s.asection = sectp;
2137 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->eh_frame))
2140 {
2141 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2142 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->ranges))
2145 {
2146 dwarf2_per_objfile->ranges.s.asection = sectp;
2147 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->types))
2150 {
2151 struct dwarf2_section_info type_section;
2152
2153 memset (&type_section, 0, sizeof (type_section));
2154 type_section.s.asection = sectp;
2155 type_section.size = bfd_get_section_size (sectp);
2156
2157 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2158 &type_section);
2159 }
2160 else if (section_is_p (sectp->name, &names->gdb_index))
2161 {
2162 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2163 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2164 }
2165
2166 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2167 && bfd_section_vma (abfd, sectp) == 0)
2168 dwarf2_per_objfile->has_section_at_zero = 1;
2169 }
2170
2171 /* A helper function that decides whether a section is empty,
2172 or not present. */
2173
2174 static int
2175 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2176 {
2177 if (section->is_virtual)
2178 return section->size == 0;
2179 return section->s.asection == NULL || section->size == 0;
2180 }
2181
2182 /* Read the contents of the section INFO.
2183 OBJFILE is the main object file, but not necessarily the file where
2184 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2185 of the DWO file.
2186 If the section is compressed, uncompress it before returning. */
2187
2188 static void
2189 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2190 {
2191 asection *sectp;
2192 bfd *abfd;
2193 gdb_byte *buf, *retbuf;
2194
2195 if (info->readin)
2196 return;
2197 info->buffer = NULL;
2198 info->readin = 1;
2199
2200 if (dwarf2_section_empty_p (info))
2201 return;
2202
2203 sectp = get_section_bfd_section (info);
2204
2205 /* If this is a virtual section we need to read in the real one first. */
2206 if (info->is_virtual)
2207 {
2208 struct dwarf2_section_info *containing_section =
2209 get_containing_section (info);
2210
2211 gdb_assert (sectp != NULL);
2212 if ((sectp->flags & SEC_RELOC) != 0)
2213 {
2214 error (_("Dwarf Error: DWP format V2 with relocations is not"
2215 " supported in section %s [in module %s]"),
2216 get_section_name (info), get_section_file_name (info));
2217 }
2218 dwarf2_read_section (objfile, containing_section);
2219 /* Other code should have already caught virtual sections that don't
2220 fit. */
2221 gdb_assert (info->virtual_offset + info->size
2222 <= containing_section->size);
2223 /* If the real section is empty or there was a problem reading the
2224 section we shouldn't get here. */
2225 gdb_assert (containing_section->buffer != NULL);
2226 info->buffer = containing_section->buffer + info->virtual_offset;
2227 return;
2228 }
2229
2230 /* If the section has relocations, we must read it ourselves.
2231 Otherwise we attach it to the BFD. */
2232 if ((sectp->flags & SEC_RELOC) == 0)
2233 {
2234 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2235 return;
2236 }
2237
2238 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2239 info->buffer = buf;
2240
2241 /* When debugging .o files, we may need to apply relocations; see
2242 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2243 We never compress sections in .o files, so we only need to
2244 try this when the section is not compressed. */
2245 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2246 if (retbuf != NULL)
2247 {
2248 info->buffer = retbuf;
2249 return;
2250 }
2251
2252 abfd = get_section_bfd_owner (info);
2253 gdb_assert (abfd != NULL);
2254
2255 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2256 || bfd_bread (buf, info->size, abfd) != info->size)
2257 {
2258 error (_("Dwarf Error: Can't read DWARF data"
2259 " in section %s [in module %s]"),
2260 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2261 }
2262 }
2263
2264 /* A helper function that returns the size of a section in a safe way.
2265 If you are positive that the section has been read before using the
2266 size, then it is safe to refer to the dwarf2_section_info object's
2267 "size" field directly. In other cases, you must call this
2268 function, because for compressed sections the size field is not set
2269 correctly until the section has been read. */
2270
2271 static bfd_size_type
2272 dwarf2_section_size (struct objfile *objfile,
2273 struct dwarf2_section_info *info)
2274 {
2275 if (!info->readin)
2276 dwarf2_read_section (objfile, info);
2277 return info->size;
2278 }
2279
2280 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2281 SECTION_NAME. */
2282
2283 void
2284 dwarf2_get_section_info (struct objfile *objfile,
2285 enum dwarf2_section_enum sect,
2286 asection **sectp, const gdb_byte **bufp,
2287 bfd_size_type *sizep)
2288 {
2289 struct dwarf2_per_objfile *data
2290 = objfile_data (objfile, dwarf2_objfile_data_key);
2291 struct dwarf2_section_info *info;
2292
2293 /* We may see an objfile without any DWARF, in which case we just
2294 return nothing. */
2295 if (data == NULL)
2296 {
2297 *sectp = NULL;
2298 *bufp = NULL;
2299 *sizep = 0;
2300 return;
2301 }
2302 switch (sect)
2303 {
2304 case DWARF2_DEBUG_FRAME:
2305 info = &data->frame;
2306 break;
2307 case DWARF2_EH_FRAME:
2308 info = &data->eh_frame;
2309 break;
2310 default:
2311 gdb_assert_not_reached ("unexpected section");
2312 }
2313
2314 dwarf2_read_section (objfile, info);
2315
2316 *sectp = get_section_bfd_section (info);
2317 *bufp = info->buffer;
2318 *sizep = info->size;
2319 }
2320
2321 /* A helper function to find the sections for a .dwz file. */
2322
2323 static void
2324 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2325 {
2326 struct dwz_file *dwz_file = arg;
2327
2328 /* Note that we only support the standard ELF names, because .dwz
2329 is ELF-only (at the time of writing). */
2330 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2331 {
2332 dwz_file->abbrev.s.asection = sectp;
2333 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2334 }
2335 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2336 {
2337 dwz_file->info.s.asection = sectp;
2338 dwz_file->info.size = bfd_get_section_size (sectp);
2339 }
2340 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2341 {
2342 dwz_file->str.s.asection = sectp;
2343 dwz_file->str.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2346 {
2347 dwz_file->line.s.asection = sectp;
2348 dwz_file->line.size = bfd_get_section_size (sectp);
2349 }
2350 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2351 {
2352 dwz_file->macro.s.asection = sectp;
2353 dwz_file->macro.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2356 {
2357 dwz_file->gdb_index.s.asection = sectp;
2358 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2359 }
2360 }
2361
2362 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2363 there is no .gnu_debugaltlink section in the file. Error if there
2364 is such a section but the file cannot be found. */
2365
2366 static struct dwz_file *
2367 dwarf2_get_dwz_file (void)
2368 {
2369 bfd *dwz_bfd;
2370 char *data;
2371 struct cleanup *cleanup;
2372 const char *filename;
2373 struct dwz_file *result;
2374 bfd_size_type buildid_len_arg;
2375 size_t buildid_len;
2376 bfd_byte *buildid;
2377
2378 if (dwarf2_per_objfile->dwz_file != NULL)
2379 return dwarf2_per_objfile->dwz_file;
2380
2381 bfd_set_error (bfd_error_no_error);
2382 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2383 &buildid_len_arg, &buildid);
2384 if (data == NULL)
2385 {
2386 if (bfd_get_error () == bfd_error_no_error)
2387 return NULL;
2388 error (_("could not read '.gnu_debugaltlink' section: %s"),
2389 bfd_errmsg (bfd_get_error ()));
2390 }
2391 cleanup = make_cleanup (xfree, data);
2392 make_cleanup (xfree, buildid);
2393
2394 buildid_len = (size_t) buildid_len_arg;
2395
2396 filename = (const char *) data;
2397 if (!IS_ABSOLUTE_PATH (filename))
2398 {
2399 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2400 char *rel;
2401
2402 make_cleanup (xfree, abs);
2403 abs = ldirname (abs);
2404 make_cleanup (xfree, abs);
2405
2406 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2407 make_cleanup (xfree, rel);
2408 filename = rel;
2409 }
2410
2411 /* First try the file name given in the section. If that doesn't
2412 work, try to use the build-id instead. */
2413 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2414 if (dwz_bfd != NULL)
2415 {
2416 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2417 {
2418 gdb_bfd_unref (dwz_bfd);
2419 dwz_bfd = NULL;
2420 }
2421 }
2422
2423 if (dwz_bfd == NULL)
2424 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2425
2426 if (dwz_bfd == NULL)
2427 error (_("could not find '.gnu_debugaltlink' file for %s"),
2428 objfile_name (dwarf2_per_objfile->objfile));
2429
2430 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2431 struct dwz_file);
2432 result->dwz_bfd = dwz_bfd;
2433
2434 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2435
2436 do_cleanups (cleanup);
2437
2438 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2439 dwarf2_per_objfile->dwz_file = result;
2440 return result;
2441 }
2442 \f
2443 /* DWARF quick_symbols_functions support. */
2444
2445 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2446 unique line tables, so we maintain a separate table of all .debug_line
2447 derived entries to support the sharing.
2448 All the quick functions need is the list of file names. We discard the
2449 line_header when we're done and don't need to record it here. */
2450 struct quick_file_names
2451 {
2452 /* The data used to construct the hash key. */
2453 struct stmt_list_hash hash;
2454
2455 /* The number of entries in file_names, real_names. */
2456 unsigned int num_file_names;
2457
2458 /* The file names from the line table, after being run through
2459 file_full_name. */
2460 const char **file_names;
2461
2462 /* The file names from the line table after being run through
2463 gdb_realpath. These are computed lazily. */
2464 const char **real_names;
2465 };
2466
2467 /* When using the index (and thus not using psymtabs), each CU has an
2468 object of this type. This is used to hold information needed by
2469 the various "quick" methods. */
2470 struct dwarf2_per_cu_quick_data
2471 {
2472 /* The file table. This can be NULL if there was no file table
2473 or it's currently not read in.
2474 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2475 struct quick_file_names *file_names;
2476
2477 /* The corresponding symbol table. This is NULL if symbols for this
2478 CU have not yet been read. */
2479 struct symtab *symtab;
2480
2481 /* A temporary mark bit used when iterating over all CUs in
2482 expand_symtabs_matching. */
2483 unsigned int mark : 1;
2484
2485 /* True if we've tried to read the file table and found there isn't one.
2486 There will be no point in trying to read it again next time. */
2487 unsigned int no_file_data : 1;
2488 };
2489
2490 /* Utility hash function for a stmt_list_hash. */
2491
2492 static hashval_t
2493 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2494 {
2495 hashval_t v = 0;
2496
2497 if (stmt_list_hash->dwo_unit != NULL)
2498 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2499 v += stmt_list_hash->line_offset.sect_off;
2500 return v;
2501 }
2502
2503 /* Utility equality function for a stmt_list_hash. */
2504
2505 static int
2506 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2507 const struct stmt_list_hash *rhs)
2508 {
2509 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2510 return 0;
2511 if (lhs->dwo_unit != NULL
2512 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2513 return 0;
2514
2515 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2516 }
2517
2518 /* Hash function for a quick_file_names. */
2519
2520 static hashval_t
2521 hash_file_name_entry (const void *e)
2522 {
2523 const struct quick_file_names *file_data = e;
2524
2525 return hash_stmt_list_entry (&file_data->hash);
2526 }
2527
2528 /* Equality function for a quick_file_names. */
2529
2530 static int
2531 eq_file_name_entry (const void *a, const void *b)
2532 {
2533 const struct quick_file_names *ea = a;
2534 const struct quick_file_names *eb = b;
2535
2536 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2537 }
2538
2539 /* Delete function for a quick_file_names. */
2540
2541 static void
2542 delete_file_name_entry (void *e)
2543 {
2544 struct quick_file_names *file_data = e;
2545 int i;
2546
2547 for (i = 0; i < file_data->num_file_names; ++i)
2548 {
2549 xfree ((void*) file_data->file_names[i]);
2550 if (file_data->real_names)
2551 xfree ((void*) file_data->real_names[i]);
2552 }
2553
2554 /* The space for the struct itself lives on objfile_obstack,
2555 so we don't free it here. */
2556 }
2557
2558 /* Create a quick_file_names hash table. */
2559
2560 static htab_t
2561 create_quick_file_names_table (unsigned int nr_initial_entries)
2562 {
2563 return htab_create_alloc (nr_initial_entries,
2564 hash_file_name_entry, eq_file_name_entry,
2565 delete_file_name_entry, xcalloc, xfree);
2566 }
2567
2568 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2569 have to be created afterwards. You should call age_cached_comp_units after
2570 processing PER_CU->CU. dw2_setup must have been already called. */
2571
2572 static void
2573 load_cu (struct dwarf2_per_cu_data *per_cu)
2574 {
2575 if (per_cu->is_debug_types)
2576 load_full_type_unit (per_cu);
2577 else
2578 load_full_comp_unit (per_cu, language_minimal);
2579
2580 gdb_assert (per_cu->cu != NULL);
2581
2582 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2583 }
2584
2585 /* Read in the symbols for PER_CU. */
2586
2587 static void
2588 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2589 {
2590 struct cleanup *back_to;
2591
2592 /* Skip type_unit_groups, reading the type units they contain
2593 is handled elsewhere. */
2594 if (IS_TYPE_UNIT_GROUP (per_cu))
2595 return;
2596
2597 back_to = make_cleanup (dwarf2_release_queue, NULL);
2598
2599 if (dwarf2_per_objfile->using_index
2600 ? per_cu->v.quick->symtab == NULL
2601 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2602 {
2603 queue_comp_unit (per_cu, language_minimal);
2604 load_cu (per_cu);
2605
2606 /* If we just loaded a CU from a DWO, and we're working with an index
2607 that may badly handle TUs, load all the TUs in that DWO as well.
2608 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2609 if (!per_cu->is_debug_types
2610 && per_cu->cu->dwo_unit != NULL
2611 && dwarf2_per_objfile->index_table != NULL
2612 && dwarf2_per_objfile->index_table->version <= 7
2613 /* DWP files aren't supported yet. */
2614 && get_dwp_file () == NULL)
2615 queue_and_load_all_dwo_tus (per_cu);
2616 }
2617
2618 process_queue ();
2619
2620 /* Age the cache, releasing compilation units that have not
2621 been used recently. */
2622 age_cached_comp_units ();
2623
2624 do_cleanups (back_to);
2625 }
2626
2627 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2628 the objfile from which this CU came. Returns the resulting symbol
2629 table. */
2630
2631 static struct symtab *
2632 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2633 {
2634 gdb_assert (dwarf2_per_objfile->using_index);
2635 if (!per_cu->v.quick->symtab)
2636 {
2637 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2638 increment_reading_symtab ();
2639 dw2_do_instantiate_symtab (per_cu);
2640 process_cu_includes ();
2641 do_cleanups (back_to);
2642 }
2643 return per_cu->v.quick->symtab;
2644 }
2645
2646 /* Return the CU given its index.
2647
2648 This is intended for loops like:
2649
2650 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2651 + dwarf2_per_objfile->n_type_units); ++i)
2652 {
2653 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2654
2655 ...;
2656 }
2657 */
2658
2659 static struct dwarf2_per_cu_data *
2660 dw2_get_cu (int index)
2661 {
2662 if (index >= dwarf2_per_objfile->n_comp_units)
2663 {
2664 index -= dwarf2_per_objfile->n_comp_units;
2665 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2666 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2667 }
2668
2669 return dwarf2_per_objfile->all_comp_units[index];
2670 }
2671
2672 /* Return the primary CU given its index.
2673 The difference between this function and dw2_get_cu is in the handling
2674 of type units (TUs). Here we return the type_unit_group object.
2675
2676 This is intended for loops like:
2677
2678 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2679 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2680 {
2681 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2682
2683 ...;
2684 }
2685 */
2686
2687 static struct dwarf2_per_cu_data *
2688 dw2_get_primary_cu (int index)
2689 {
2690 if (index >= dwarf2_per_objfile->n_comp_units)
2691 {
2692 index -= dwarf2_per_objfile->n_comp_units;
2693 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2694 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2695 }
2696
2697 return dwarf2_per_objfile->all_comp_units[index];
2698 }
2699
2700 /* A helper for create_cus_from_index that handles a given list of
2701 CUs. */
2702
2703 static void
2704 create_cus_from_index_list (struct objfile *objfile,
2705 const gdb_byte *cu_list, offset_type n_elements,
2706 struct dwarf2_section_info *section,
2707 int is_dwz,
2708 int base_offset)
2709 {
2710 offset_type i;
2711
2712 for (i = 0; i < n_elements; i += 2)
2713 {
2714 struct dwarf2_per_cu_data *the_cu;
2715 ULONGEST offset, length;
2716
2717 gdb_static_assert (sizeof (ULONGEST) >= 8);
2718 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2719 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2720 cu_list += 2 * 8;
2721
2722 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2723 struct dwarf2_per_cu_data);
2724 the_cu->offset.sect_off = offset;
2725 the_cu->length = length;
2726 the_cu->objfile = objfile;
2727 the_cu->section = section;
2728 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2729 struct dwarf2_per_cu_quick_data);
2730 the_cu->is_dwz = is_dwz;
2731 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2732 }
2733 }
2734
2735 /* Read the CU list from the mapped index, and use it to create all
2736 the CU objects for this objfile. */
2737
2738 static void
2739 create_cus_from_index (struct objfile *objfile,
2740 const gdb_byte *cu_list, offset_type cu_list_elements,
2741 const gdb_byte *dwz_list, offset_type dwz_elements)
2742 {
2743 struct dwz_file *dwz;
2744
2745 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2746 dwarf2_per_objfile->all_comp_units
2747 = obstack_alloc (&objfile->objfile_obstack,
2748 dwarf2_per_objfile->n_comp_units
2749 * sizeof (struct dwarf2_per_cu_data *));
2750
2751 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2752 &dwarf2_per_objfile->info, 0, 0);
2753
2754 if (dwz_elements == 0)
2755 return;
2756
2757 dwz = dwarf2_get_dwz_file ();
2758 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2759 cu_list_elements / 2);
2760 }
2761
2762 /* Create the signatured type hash table from the index. */
2763
2764 static void
2765 create_signatured_type_table_from_index (struct objfile *objfile,
2766 struct dwarf2_section_info *section,
2767 const gdb_byte *bytes,
2768 offset_type elements)
2769 {
2770 offset_type i;
2771 htab_t sig_types_hash;
2772
2773 dwarf2_per_objfile->n_type_units = elements / 3;
2774 dwarf2_per_objfile->all_type_units
2775 = xmalloc (dwarf2_per_objfile->n_type_units
2776 * sizeof (struct signatured_type *));
2777
2778 sig_types_hash = allocate_signatured_type_table (objfile);
2779
2780 for (i = 0; i < elements; i += 3)
2781 {
2782 struct signatured_type *sig_type;
2783 ULONGEST offset, type_offset_in_tu, signature;
2784 void **slot;
2785
2786 gdb_static_assert (sizeof (ULONGEST) >= 8);
2787 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2788 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2789 BFD_ENDIAN_LITTLE);
2790 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2791 bytes += 3 * 8;
2792
2793 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2794 struct signatured_type);
2795 sig_type->signature = signature;
2796 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2797 sig_type->per_cu.is_debug_types = 1;
2798 sig_type->per_cu.section = section;
2799 sig_type->per_cu.offset.sect_off = offset;
2800 sig_type->per_cu.objfile = objfile;
2801 sig_type->per_cu.v.quick
2802 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2803 struct dwarf2_per_cu_quick_data);
2804
2805 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2806 *slot = sig_type;
2807
2808 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2809 }
2810
2811 dwarf2_per_objfile->signatured_types = sig_types_hash;
2812 }
2813
2814 /* Read the address map data from the mapped index, and use it to
2815 populate the objfile's psymtabs_addrmap. */
2816
2817 static void
2818 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2819 {
2820 const gdb_byte *iter, *end;
2821 struct obstack temp_obstack;
2822 struct addrmap *mutable_map;
2823 struct cleanup *cleanup;
2824 CORE_ADDR baseaddr;
2825
2826 obstack_init (&temp_obstack);
2827 cleanup = make_cleanup_obstack_free (&temp_obstack);
2828 mutable_map = addrmap_create_mutable (&temp_obstack);
2829
2830 iter = index->address_table;
2831 end = iter + index->address_table_size;
2832
2833 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2834
2835 while (iter < end)
2836 {
2837 ULONGEST hi, lo, cu_index;
2838 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2839 iter += 8;
2840 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2841 iter += 8;
2842 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2843 iter += 4;
2844
2845 if (lo > hi)
2846 {
2847 complaint (&symfile_complaints,
2848 _(".gdb_index address table has invalid range (%s - %s)"),
2849 hex_string (lo), hex_string (hi));
2850 continue;
2851 }
2852
2853 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2854 {
2855 complaint (&symfile_complaints,
2856 _(".gdb_index address table has invalid CU number %u"),
2857 (unsigned) cu_index);
2858 continue;
2859 }
2860
2861 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2862 dw2_get_cu (cu_index));
2863 }
2864
2865 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2866 &objfile->objfile_obstack);
2867 do_cleanups (cleanup);
2868 }
2869
2870 /* The hash function for strings in the mapped index. This is the same as
2871 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2872 implementation. This is necessary because the hash function is tied to the
2873 format of the mapped index file. The hash values do not have to match with
2874 SYMBOL_HASH_NEXT.
2875
2876 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2877
2878 static hashval_t
2879 mapped_index_string_hash (int index_version, const void *p)
2880 {
2881 const unsigned char *str = (const unsigned char *) p;
2882 hashval_t r = 0;
2883 unsigned char c;
2884
2885 while ((c = *str++) != 0)
2886 {
2887 if (index_version >= 5)
2888 c = tolower (c);
2889 r = r * 67 + c - 113;
2890 }
2891
2892 return r;
2893 }
2894
2895 /* Find a slot in the mapped index INDEX for the object named NAME.
2896 If NAME is found, set *VEC_OUT to point to the CU vector in the
2897 constant pool and return 1. If NAME cannot be found, return 0. */
2898
2899 static int
2900 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2901 offset_type **vec_out)
2902 {
2903 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2904 offset_type hash;
2905 offset_type slot, step;
2906 int (*cmp) (const char *, const char *);
2907
2908 if (current_language->la_language == language_cplus
2909 || current_language->la_language == language_java
2910 || current_language->la_language == language_fortran)
2911 {
2912 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2913 not contain any. */
2914 const char *paren = strchr (name, '(');
2915
2916 if (paren)
2917 {
2918 char *dup;
2919
2920 dup = xmalloc (paren - name + 1);
2921 memcpy (dup, name, paren - name);
2922 dup[paren - name] = 0;
2923
2924 make_cleanup (xfree, dup);
2925 name = dup;
2926 }
2927 }
2928
2929 /* Index version 4 did not support case insensitive searches. But the
2930 indices for case insensitive languages are built in lowercase, therefore
2931 simulate our NAME being searched is also lowercased. */
2932 hash = mapped_index_string_hash ((index->version == 4
2933 && case_sensitivity == case_sensitive_off
2934 ? 5 : index->version),
2935 name);
2936
2937 slot = hash & (index->symbol_table_slots - 1);
2938 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2939 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2940
2941 for (;;)
2942 {
2943 /* Convert a slot number to an offset into the table. */
2944 offset_type i = 2 * slot;
2945 const char *str;
2946 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2947 {
2948 do_cleanups (back_to);
2949 return 0;
2950 }
2951
2952 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2953 if (!cmp (name, str))
2954 {
2955 *vec_out = (offset_type *) (index->constant_pool
2956 + MAYBE_SWAP (index->symbol_table[i + 1]));
2957 do_cleanups (back_to);
2958 return 1;
2959 }
2960
2961 slot = (slot + step) & (index->symbol_table_slots - 1);
2962 }
2963 }
2964
2965 /* A helper function that reads the .gdb_index from SECTION and fills
2966 in MAP. FILENAME is the name of the file containing the section;
2967 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2968 ok to use deprecated sections.
2969
2970 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2971 out parameters that are filled in with information about the CU and
2972 TU lists in the section.
2973
2974 Returns 1 if all went well, 0 otherwise. */
2975
2976 static int
2977 read_index_from_section (struct objfile *objfile,
2978 const char *filename,
2979 int deprecated_ok,
2980 struct dwarf2_section_info *section,
2981 struct mapped_index *map,
2982 const gdb_byte **cu_list,
2983 offset_type *cu_list_elements,
2984 const gdb_byte **types_list,
2985 offset_type *types_list_elements)
2986 {
2987 const gdb_byte *addr;
2988 offset_type version;
2989 offset_type *metadata;
2990 int i;
2991
2992 if (dwarf2_section_empty_p (section))
2993 return 0;
2994
2995 /* Older elfutils strip versions could keep the section in the main
2996 executable while splitting it for the separate debug info file. */
2997 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
2998 return 0;
2999
3000 dwarf2_read_section (objfile, section);
3001
3002 addr = section->buffer;
3003 /* Version check. */
3004 version = MAYBE_SWAP (*(offset_type *) addr);
3005 /* Versions earlier than 3 emitted every copy of a psymbol. This
3006 causes the index to behave very poorly for certain requests. Version 3
3007 contained incomplete addrmap. So, it seems better to just ignore such
3008 indices. */
3009 if (version < 4)
3010 {
3011 static int warning_printed = 0;
3012 if (!warning_printed)
3013 {
3014 warning (_("Skipping obsolete .gdb_index section in %s."),
3015 filename);
3016 warning_printed = 1;
3017 }
3018 return 0;
3019 }
3020 /* Index version 4 uses a different hash function than index version
3021 5 and later.
3022
3023 Versions earlier than 6 did not emit psymbols for inlined
3024 functions. Using these files will cause GDB not to be able to
3025 set breakpoints on inlined functions by name, so we ignore these
3026 indices unless the user has done
3027 "set use-deprecated-index-sections on". */
3028 if (version < 6 && !deprecated_ok)
3029 {
3030 static int warning_printed = 0;
3031 if (!warning_printed)
3032 {
3033 warning (_("\
3034 Skipping deprecated .gdb_index section in %s.\n\
3035 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3036 to use the section anyway."),
3037 filename);
3038 warning_printed = 1;
3039 }
3040 return 0;
3041 }
3042 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3043 of the TU (for symbols coming from TUs),
3044 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3045 Plus gold-generated indices can have duplicate entries for global symbols,
3046 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3047 These are just performance bugs, and we can't distinguish gdb-generated
3048 indices from gold-generated ones, so issue no warning here. */
3049
3050 /* Indexes with higher version than the one supported by GDB may be no
3051 longer backward compatible. */
3052 if (version > 8)
3053 return 0;
3054
3055 map->version = version;
3056 map->total_size = section->size;
3057
3058 metadata = (offset_type *) (addr + sizeof (offset_type));
3059
3060 i = 0;
3061 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3062 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3063 / 8);
3064 ++i;
3065
3066 *types_list = addr + MAYBE_SWAP (metadata[i]);
3067 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3068 - MAYBE_SWAP (metadata[i]))
3069 / 8);
3070 ++i;
3071
3072 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3073 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3074 - MAYBE_SWAP (metadata[i]));
3075 ++i;
3076
3077 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3078 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3079 - MAYBE_SWAP (metadata[i]))
3080 / (2 * sizeof (offset_type)));
3081 ++i;
3082
3083 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3084
3085 return 1;
3086 }
3087
3088
3089 /* Read the index file. If everything went ok, initialize the "quick"
3090 elements of all the CUs and return 1. Otherwise, return 0. */
3091
3092 static int
3093 dwarf2_read_index (struct objfile *objfile)
3094 {
3095 struct mapped_index local_map, *map;
3096 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3097 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3098 struct dwz_file *dwz;
3099
3100 if (!read_index_from_section (objfile, objfile_name (objfile),
3101 use_deprecated_index_sections,
3102 &dwarf2_per_objfile->gdb_index, &local_map,
3103 &cu_list, &cu_list_elements,
3104 &types_list, &types_list_elements))
3105 return 0;
3106
3107 /* Don't use the index if it's empty. */
3108 if (local_map.symbol_table_slots == 0)
3109 return 0;
3110
3111 /* If there is a .dwz file, read it so we can get its CU list as
3112 well. */
3113 dwz = dwarf2_get_dwz_file ();
3114 if (dwz != NULL)
3115 {
3116 struct mapped_index dwz_map;
3117 const gdb_byte *dwz_types_ignore;
3118 offset_type dwz_types_elements_ignore;
3119
3120 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3121 1,
3122 &dwz->gdb_index, &dwz_map,
3123 &dwz_list, &dwz_list_elements,
3124 &dwz_types_ignore,
3125 &dwz_types_elements_ignore))
3126 {
3127 warning (_("could not read '.gdb_index' section from %s; skipping"),
3128 bfd_get_filename (dwz->dwz_bfd));
3129 return 0;
3130 }
3131 }
3132
3133 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3134 dwz_list_elements);
3135
3136 if (types_list_elements)
3137 {
3138 struct dwarf2_section_info *section;
3139
3140 /* We can only handle a single .debug_types when we have an
3141 index. */
3142 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3143 return 0;
3144
3145 section = VEC_index (dwarf2_section_info_def,
3146 dwarf2_per_objfile->types, 0);
3147
3148 create_signatured_type_table_from_index (objfile, section, types_list,
3149 types_list_elements);
3150 }
3151
3152 create_addrmap_from_index (objfile, &local_map);
3153
3154 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3155 *map = local_map;
3156
3157 dwarf2_per_objfile->index_table = map;
3158 dwarf2_per_objfile->using_index = 1;
3159 dwarf2_per_objfile->quick_file_names_table =
3160 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3161
3162 return 1;
3163 }
3164
3165 /* A helper for the "quick" functions which sets the global
3166 dwarf2_per_objfile according to OBJFILE. */
3167
3168 static void
3169 dw2_setup (struct objfile *objfile)
3170 {
3171 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3172 gdb_assert (dwarf2_per_objfile);
3173 }
3174
3175 /* die_reader_func for dw2_get_file_names. */
3176
3177 static void
3178 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3179 const gdb_byte *info_ptr,
3180 struct die_info *comp_unit_die,
3181 int has_children,
3182 void *data)
3183 {
3184 struct dwarf2_cu *cu = reader->cu;
3185 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3186 struct objfile *objfile = dwarf2_per_objfile->objfile;
3187 struct dwarf2_per_cu_data *lh_cu;
3188 struct line_header *lh;
3189 struct attribute *attr;
3190 int i;
3191 const char *name, *comp_dir;
3192 void **slot;
3193 struct quick_file_names *qfn;
3194 unsigned int line_offset;
3195
3196 gdb_assert (! this_cu->is_debug_types);
3197
3198 /* Our callers never want to match partial units -- instead they
3199 will match the enclosing full CU. */
3200 if (comp_unit_die->tag == DW_TAG_partial_unit)
3201 {
3202 this_cu->v.quick->no_file_data = 1;
3203 return;
3204 }
3205
3206 lh_cu = this_cu;
3207 lh = NULL;
3208 slot = NULL;
3209 line_offset = 0;
3210
3211 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3212 if (attr)
3213 {
3214 struct quick_file_names find_entry;
3215
3216 line_offset = DW_UNSND (attr);
3217
3218 /* We may have already read in this line header (TU line header sharing).
3219 If we have we're done. */
3220 find_entry.hash.dwo_unit = cu->dwo_unit;
3221 find_entry.hash.line_offset.sect_off = line_offset;
3222 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3223 &find_entry, INSERT);
3224 if (*slot != NULL)
3225 {
3226 lh_cu->v.quick->file_names = *slot;
3227 return;
3228 }
3229
3230 lh = dwarf_decode_line_header (line_offset, cu);
3231 }
3232 if (lh == NULL)
3233 {
3234 lh_cu->v.quick->no_file_data = 1;
3235 return;
3236 }
3237
3238 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3239 qfn->hash.dwo_unit = cu->dwo_unit;
3240 qfn->hash.line_offset.sect_off = line_offset;
3241 gdb_assert (slot != NULL);
3242 *slot = qfn;
3243
3244 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3245
3246 qfn->num_file_names = lh->num_file_names;
3247 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3248 lh->num_file_names * sizeof (char *));
3249 for (i = 0; i < lh->num_file_names; ++i)
3250 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3251 qfn->real_names = NULL;
3252
3253 free_line_header (lh);
3254
3255 lh_cu->v.quick->file_names = qfn;
3256 }
3257
3258 /* A helper for the "quick" functions which attempts to read the line
3259 table for THIS_CU. */
3260
3261 static struct quick_file_names *
3262 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3263 {
3264 /* This should never be called for TUs. */
3265 gdb_assert (! this_cu->is_debug_types);
3266 /* Nor type unit groups. */
3267 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3268
3269 if (this_cu->v.quick->file_names != NULL)
3270 return this_cu->v.quick->file_names;
3271 /* If we know there is no line data, no point in looking again. */
3272 if (this_cu->v.quick->no_file_data)
3273 return NULL;
3274
3275 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3276
3277 if (this_cu->v.quick->no_file_data)
3278 return NULL;
3279 return this_cu->v.quick->file_names;
3280 }
3281
3282 /* A helper for the "quick" functions which computes and caches the
3283 real path for a given file name from the line table. */
3284
3285 static const char *
3286 dw2_get_real_path (struct objfile *objfile,
3287 struct quick_file_names *qfn, int index)
3288 {
3289 if (qfn->real_names == NULL)
3290 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3291 qfn->num_file_names, char *);
3292
3293 if (qfn->real_names[index] == NULL)
3294 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3295
3296 return qfn->real_names[index];
3297 }
3298
3299 static struct symtab *
3300 dw2_find_last_source_symtab (struct objfile *objfile)
3301 {
3302 int index;
3303
3304 dw2_setup (objfile);
3305 index = dwarf2_per_objfile->n_comp_units - 1;
3306 return dw2_instantiate_symtab (dw2_get_cu (index));
3307 }
3308
3309 /* Traversal function for dw2_forget_cached_source_info. */
3310
3311 static int
3312 dw2_free_cached_file_names (void **slot, void *info)
3313 {
3314 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3315
3316 if (file_data->real_names)
3317 {
3318 int i;
3319
3320 for (i = 0; i < file_data->num_file_names; ++i)
3321 {
3322 xfree ((void*) file_data->real_names[i]);
3323 file_data->real_names[i] = NULL;
3324 }
3325 }
3326
3327 return 1;
3328 }
3329
3330 static void
3331 dw2_forget_cached_source_info (struct objfile *objfile)
3332 {
3333 dw2_setup (objfile);
3334
3335 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3336 dw2_free_cached_file_names, NULL);
3337 }
3338
3339 /* Helper function for dw2_map_symtabs_matching_filename that expands
3340 the symtabs and calls the iterator. */
3341
3342 static int
3343 dw2_map_expand_apply (struct objfile *objfile,
3344 struct dwarf2_per_cu_data *per_cu,
3345 const char *name, const char *real_path,
3346 int (*callback) (struct symtab *, void *),
3347 void *data)
3348 {
3349 struct symtab *last_made = objfile->symtabs;
3350
3351 /* Don't visit already-expanded CUs. */
3352 if (per_cu->v.quick->symtab)
3353 return 0;
3354
3355 /* This may expand more than one symtab, and we want to iterate over
3356 all of them. */
3357 dw2_instantiate_symtab (per_cu);
3358
3359 return iterate_over_some_symtabs (name, real_path, callback, data,
3360 objfile->symtabs, last_made);
3361 }
3362
3363 /* Implementation of the map_symtabs_matching_filename method. */
3364
3365 static int
3366 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3367 const char *real_path,
3368 int (*callback) (struct symtab *, void *),
3369 void *data)
3370 {
3371 int i;
3372 const char *name_basename = lbasename (name);
3373
3374 dw2_setup (objfile);
3375
3376 /* The rule is CUs specify all the files, including those used by
3377 any TU, so there's no need to scan TUs here. */
3378
3379 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3380 {
3381 int j;
3382 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3383 struct quick_file_names *file_data;
3384
3385 /* We only need to look at symtabs not already expanded. */
3386 if (per_cu->v.quick->symtab)
3387 continue;
3388
3389 file_data = dw2_get_file_names (per_cu);
3390 if (file_data == NULL)
3391 continue;
3392
3393 for (j = 0; j < file_data->num_file_names; ++j)
3394 {
3395 const char *this_name = file_data->file_names[j];
3396 const char *this_real_name;
3397
3398 if (compare_filenames_for_search (this_name, name))
3399 {
3400 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3401 callback, data))
3402 return 1;
3403 continue;
3404 }
3405
3406 /* Before we invoke realpath, which can get expensive when many
3407 files are involved, do a quick comparison of the basenames. */
3408 if (! basenames_may_differ
3409 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3410 continue;
3411
3412 this_real_name = dw2_get_real_path (objfile, file_data, j);
3413 if (compare_filenames_for_search (this_real_name, name))
3414 {
3415 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3416 callback, data))
3417 return 1;
3418 continue;
3419 }
3420
3421 if (real_path != NULL)
3422 {
3423 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3424 gdb_assert (IS_ABSOLUTE_PATH (name));
3425 if (this_real_name != NULL
3426 && FILENAME_CMP (real_path, this_real_name) == 0)
3427 {
3428 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3429 callback, data))
3430 return 1;
3431 continue;
3432 }
3433 }
3434 }
3435 }
3436
3437 return 0;
3438 }
3439
3440 /* Struct used to manage iterating over all CUs looking for a symbol. */
3441
3442 struct dw2_symtab_iterator
3443 {
3444 /* The internalized form of .gdb_index. */
3445 struct mapped_index *index;
3446 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3447 int want_specific_block;
3448 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3449 Unused if !WANT_SPECIFIC_BLOCK. */
3450 int block_index;
3451 /* The kind of symbol we're looking for. */
3452 domain_enum domain;
3453 /* The list of CUs from the index entry of the symbol,
3454 or NULL if not found. */
3455 offset_type *vec;
3456 /* The next element in VEC to look at. */
3457 int next;
3458 /* The number of elements in VEC, or zero if there is no match. */
3459 int length;
3460 /* Have we seen a global version of the symbol?
3461 If so we can ignore all further global instances.
3462 This is to work around gold/15646, inefficient gold-generated
3463 indices. */
3464 int global_seen;
3465 };
3466
3467 /* Initialize the index symtab iterator ITER.
3468 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3469 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3470
3471 static void
3472 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3473 struct mapped_index *index,
3474 int want_specific_block,
3475 int block_index,
3476 domain_enum domain,
3477 const char *name)
3478 {
3479 iter->index = index;
3480 iter->want_specific_block = want_specific_block;
3481 iter->block_index = block_index;
3482 iter->domain = domain;
3483 iter->next = 0;
3484 iter->global_seen = 0;
3485
3486 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3487 iter->length = MAYBE_SWAP (*iter->vec);
3488 else
3489 {
3490 iter->vec = NULL;
3491 iter->length = 0;
3492 }
3493 }
3494
3495 /* Return the next matching CU or NULL if there are no more. */
3496
3497 static struct dwarf2_per_cu_data *
3498 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3499 {
3500 for ( ; iter->next < iter->length; ++iter->next)
3501 {
3502 offset_type cu_index_and_attrs =
3503 MAYBE_SWAP (iter->vec[iter->next + 1]);
3504 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3505 struct dwarf2_per_cu_data *per_cu;
3506 int want_static = iter->block_index != GLOBAL_BLOCK;
3507 /* This value is only valid for index versions >= 7. */
3508 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3509 gdb_index_symbol_kind symbol_kind =
3510 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3511 /* Only check the symbol attributes if they're present.
3512 Indices prior to version 7 don't record them,
3513 and indices >= 7 may elide them for certain symbols
3514 (gold does this). */
3515 int attrs_valid =
3516 (iter->index->version >= 7
3517 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3518
3519 /* Don't crash on bad data. */
3520 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3521 + dwarf2_per_objfile->n_type_units))
3522 {
3523 complaint (&symfile_complaints,
3524 _(".gdb_index entry has bad CU index"
3525 " [in module %s]"),
3526 objfile_name (dwarf2_per_objfile->objfile));
3527 continue;
3528 }
3529
3530 per_cu = dw2_get_cu (cu_index);
3531
3532 /* Skip if already read in. */
3533 if (per_cu->v.quick->symtab)
3534 continue;
3535
3536 /* Check static vs global. */
3537 if (attrs_valid)
3538 {
3539 if (iter->want_specific_block
3540 && want_static != is_static)
3541 continue;
3542 /* Work around gold/15646. */
3543 if (!is_static && iter->global_seen)
3544 continue;
3545 if (!is_static)
3546 iter->global_seen = 1;
3547 }
3548
3549 /* Only check the symbol's kind if it has one. */
3550 if (attrs_valid)
3551 {
3552 switch (iter->domain)
3553 {
3554 case VAR_DOMAIN:
3555 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3556 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3557 /* Some types are also in VAR_DOMAIN. */
3558 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3559 continue;
3560 break;
3561 case STRUCT_DOMAIN:
3562 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3563 continue;
3564 break;
3565 case LABEL_DOMAIN:
3566 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3567 continue;
3568 break;
3569 default:
3570 break;
3571 }
3572 }
3573
3574 ++iter->next;
3575 return per_cu;
3576 }
3577
3578 return NULL;
3579 }
3580
3581 static struct symtab *
3582 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3583 const char *name, domain_enum domain)
3584 {
3585 struct symtab *stab_best = NULL;
3586 struct mapped_index *index;
3587
3588 dw2_setup (objfile);
3589
3590 index = dwarf2_per_objfile->index_table;
3591
3592 /* index is NULL if OBJF_READNOW. */
3593 if (index)
3594 {
3595 struct dw2_symtab_iterator iter;
3596 struct dwarf2_per_cu_data *per_cu;
3597
3598 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3599
3600 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3601 {
3602 struct symbol *sym = NULL;
3603 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3604
3605 /* Some caution must be observed with overloaded functions
3606 and methods, since the index will not contain any overload
3607 information (but NAME might contain it). */
3608 if (stab->primary)
3609 {
3610 struct blockvector *bv = BLOCKVECTOR (stab);
3611 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3612
3613 sym = lookup_block_symbol (block, name, domain);
3614 }
3615
3616 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3617 {
3618 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3619 return stab;
3620
3621 stab_best = stab;
3622 }
3623
3624 /* Keep looking through other CUs. */
3625 }
3626 }
3627
3628 return stab_best;
3629 }
3630
3631 static void
3632 dw2_print_stats (struct objfile *objfile)
3633 {
3634 int i, total, count;
3635
3636 dw2_setup (objfile);
3637 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3638 count = 0;
3639 for (i = 0; i < total; ++i)
3640 {
3641 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3642
3643 if (!per_cu->v.quick->symtab)
3644 ++count;
3645 }
3646 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3647 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3648 }
3649
3650 /* This dumps minimal information about the index.
3651 It is called via "mt print objfiles".
3652 One use is to verify .gdb_index has been loaded by the
3653 gdb.dwarf2/gdb-index.exp testcase. */
3654
3655 static void
3656 dw2_dump (struct objfile *objfile)
3657 {
3658 dw2_setup (objfile);
3659 gdb_assert (dwarf2_per_objfile->using_index);
3660 printf_filtered (".gdb_index:");
3661 if (dwarf2_per_objfile->index_table != NULL)
3662 {
3663 printf_filtered (" version %d\n",
3664 dwarf2_per_objfile->index_table->version);
3665 }
3666 else
3667 printf_filtered (" faked for \"readnow\"\n");
3668 printf_filtered ("\n");
3669 }
3670
3671 static void
3672 dw2_relocate (struct objfile *objfile,
3673 const struct section_offsets *new_offsets,
3674 const struct section_offsets *delta)
3675 {
3676 /* There's nothing to relocate here. */
3677 }
3678
3679 static void
3680 dw2_expand_symtabs_for_function (struct objfile *objfile,
3681 const char *func_name)
3682 {
3683 struct mapped_index *index;
3684
3685 dw2_setup (objfile);
3686
3687 index = dwarf2_per_objfile->index_table;
3688
3689 /* index is NULL if OBJF_READNOW. */
3690 if (index)
3691 {
3692 struct dw2_symtab_iterator iter;
3693 struct dwarf2_per_cu_data *per_cu;
3694
3695 /* Note: It doesn't matter what we pass for block_index here. */
3696 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3697 func_name);
3698
3699 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3700 dw2_instantiate_symtab (per_cu);
3701 }
3702 }
3703
3704 static void
3705 dw2_expand_all_symtabs (struct objfile *objfile)
3706 {
3707 int i;
3708
3709 dw2_setup (objfile);
3710
3711 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3712 + dwarf2_per_objfile->n_type_units); ++i)
3713 {
3714 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3715
3716 dw2_instantiate_symtab (per_cu);
3717 }
3718 }
3719
3720 static void
3721 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3722 const char *fullname)
3723 {
3724 int i;
3725
3726 dw2_setup (objfile);
3727
3728 /* We don't need to consider type units here.
3729 This is only called for examining code, e.g. expand_line_sal.
3730 There can be an order of magnitude (or more) more type units
3731 than comp units, and we avoid them if we can. */
3732
3733 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3734 {
3735 int j;
3736 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3737 struct quick_file_names *file_data;
3738
3739 /* We only need to look at symtabs not already expanded. */
3740 if (per_cu->v.quick->symtab)
3741 continue;
3742
3743 file_data = dw2_get_file_names (per_cu);
3744 if (file_data == NULL)
3745 continue;
3746
3747 for (j = 0; j < file_data->num_file_names; ++j)
3748 {
3749 const char *this_fullname = file_data->file_names[j];
3750
3751 if (filename_cmp (this_fullname, fullname) == 0)
3752 {
3753 dw2_instantiate_symtab (per_cu);
3754 break;
3755 }
3756 }
3757 }
3758 }
3759
3760 static void
3761 dw2_map_matching_symbols (struct objfile *objfile,
3762 const char * name, domain_enum namespace,
3763 int global,
3764 int (*callback) (struct block *,
3765 struct symbol *, void *),
3766 void *data, symbol_compare_ftype *match,
3767 symbol_compare_ftype *ordered_compare)
3768 {
3769 /* Currently unimplemented; used for Ada. The function can be called if the
3770 current language is Ada for a non-Ada objfile using GNU index. As Ada
3771 does not look for non-Ada symbols this function should just return. */
3772 }
3773
3774 static void
3775 dw2_expand_symtabs_matching
3776 (struct objfile *objfile,
3777 expand_symtabs_file_matcher_ftype *file_matcher,
3778 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3779 enum search_domain kind,
3780 void *data)
3781 {
3782 int i;
3783 offset_type iter;
3784 struct mapped_index *index;
3785
3786 dw2_setup (objfile);
3787
3788 /* index_table is NULL if OBJF_READNOW. */
3789 if (!dwarf2_per_objfile->index_table)
3790 return;
3791 index = dwarf2_per_objfile->index_table;
3792
3793 if (file_matcher != NULL)
3794 {
3795 struct cleanup *cleanup;
3796 htab_t visited_found, visited_not_found;
3797
3798 visited_found = htab_create_alloc (10,
3799 htab_hash_pointer, htab_eq_pointer,
3800 NULL, xcalloc, xfree);
3801 cleanup = make_cleanup_htab_delete (visited_found);
3802 visited_not_found = htab_create_alloc (10,
3803 htab_hash_pointer, htab_eq_pointer,
3804 NULL, xcalloc, xfree);
3805 make_cleanup_htab_delete (visited_not_found);
3806
3807 /* The rule is CUs specify all the files, including those used by
3808 any TU, so there's no need to scan TUs here. */
3809
3810 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3811 {
3812 int j;
3813 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3814 struct quick_file_names *file_data;
3815 void **slot;
3816
3817 per_cu->v.quick->mark = 0;
3818
3819 /* We only need to look at symtabs not already expanded. */
3820 if (per_cu->v.quick->symtab)
3821 continue;
3822
3823 file_data = dw2_get_file_names (per_cu);
3824 if (file_data == NULL)
3825 continue;
3826
3827 if (htab_find (visited_not_found, file_data) != NULL)
3828 continue;
3829 else if (htab_find (visited_found, file_data) != NULL)
3830 {
3831 per_cu->v.quick->mark = 1;
3832 continue;
3833 }
3834
3835 for (j = 0; j < file_data->num_file_names; ++j)
3836 {
3837 const char *this_real_name;
3838
3839 if (file_matcher (file_data->file_names[j], data, 0))
3840 {
3841 per_cu->v.quick->mark = 1;
3842 break;
3843 }
3844
3845 /* Before we invoke realpath, which can get expensive when many
3846 files are involved, do a quick comparison of the basenames. */
3847 if (!basenames_may_differ
3848 && !file_matcher (lbasename (file_data->file_names[j]),
3849 data, 1))
3850 continue;
3851
3852 this_real_name = dw2_get_real_path (objfile, file_data, j);
3853 if (file_matcher (this_real_name, data, 0))
3854 {
3855 per_cu->v.quick->mark = 1;
3856 break;
3857 }
3858 }
3859
3860 slot = htab_find_slot (per_cu->v.quick->mark
3861 ? visited_found
3862 : visited_not_found,
3863 file_data, INSERT);
3864 *slot = file_data;
3865 }
3866
3867 do_cleanups (cleanup);
3868 }
3869
3870 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3871 {
3872 offset_type idx = 2 * iter;
3873 const char *name;
3874 offset_type *vec, vec_len, vec_idx;
3875 int global_seen = 0;
3876
3877 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3878 continue;
3879
3880 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3881
3882 if (! (*symbol_matcher) (name, data))
3883 continue;
3884
3885 /* The name was matched, now expand corresponding CUs that were
3886 marked. */
3887 vec = (offset_type *) (index->constant_pool
3888 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3889 vec_len = MAYBE_SWAP (vec[0]);
3890 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3891 {
3892 struct dwarf2_per_cu_data *per_cu;
3893 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3894 /* This value is only valid for index versions >= 7. */
3895 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3896 gdb_index_symbol_kind symbol_kind =
3897 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3898 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3899 /* Only check the symbol attributes if they're present.
3900 Indices prior to version 7 don't record them,
3901 and indices >= 7 may elide them for certain symbols
3902 (gold does this). */
3903 int attrs_valid =
3904 (index->version >= 7
3905 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3906
3907 /* Work around gold/15646. */
3908 if (attrs_valid)
3909 {
3910 if (!is_static && global_seen)
3911 continue;
3912 if (!is_static)
3913 global_seen = 1;
3914 }
3915
3916 /* Only check the symbol's kind if it has one. */
3917 if (attrs_valid)
3918 {
3919 switch (kind)
3920 {
3921 case VARIABLES_DOMAIN:
3922 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3923 continue;
3924 break;
3925 case FUNCTIONS_DOMAIN:
3926 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3927 continue;
3928 break;
3929 case TYPES_DOMAIN:
3930 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3931 continue;
3932 break;
3933 default:
3934 break;
3935 }
3936 }
3937
3938 /* Don't crash on bad data. */
3939 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3940 + dwarf2_per_objfile->n_type_units))
3941 {
3942 complaint (&symfile_complaints,
3943 _(".gdb_index entry has bad CU index"
3944 " [in module %s]"), objfile_name (objfile));
3945 continue;
3946 }
3947
3948 per_cu = dw2_get_cu (cu_index);
3949 if (file_matcher == NULL || per_cu->v.quick->mark)
3950 dw2_instantiate_symtab (per_cu);
3951 }
3952 }
3953 }
3954
3955 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3956 symtab. */
3957
3958 static struct symtab *
3959 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3960 {
3961 int i;
3962
3963 if (BLOCKVECTOR (symtab) != NULL
3964 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3965 return symtab;
3966
3967 if (symtab->includes == NULL)
3968 return NULL;
3969
3970 for (i = 0; symtab->includes[i]; ++i)
3971 {
3972 struct symtab *s = symtab->includes[i];
3973
3974 s = recursively_find_pc_sect_symtab (s, pc);
3975 if (s != NULL)
3976 return s;
3977 }
3978
3979 return NULL;
3980 }
3981
3982 static struct symtab *
3983 dw2_find_pc_sect_symtab (struct objfile *objfile,
3984 struct minimal_symbol *msymbol,
3985 CORE_ADDR pc,
3986 struct obj_section *section,
3987 int warn_if_readin)
3988 {
3989 struct dwarf2_per_cu_data *data;
3990 struct symtab *result;
3991
3992 dw2_setup (objfile);
3993
3994 if (!objfile->psymtabs_addrmap)
3995 return NULL;
3996
3997 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3998 if (!data)
3999 return NULL;
4000
4001 if (warn_if_readin && data->v.quick->symtab)
4002 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4003 paddress (get_objfile_arch (objfile), pc));
4004
4005 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4006 gdb_assert (result != NULL);
4007 return result;
4008 }
4009
4010 static void
4011 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4012 void *data, int need_fullname)
4013 {
4014 int i;
4015 struct cleanup *cleanup;
4016 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4017 NULL, xcalloc, xfree);
4018
4019 cleanup = make_cleanup_htab_delete (visited);
4020 dw2_setup (objfile);
4021
4022 /* The rule is CUs specify all the files, including those used by
4023 any TU, so there's no need to scan TUs here.
4024 We can ignore file names coming from already-expanded CUs. */
4025
4026 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4027 {
4028 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4029
4030 if (per_cu->v.quick->symtab)
4031 {
4032 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4033 INSERT);
4034
4035 *slot = per_cu->v.quick->file_names;
4036 }
4037 }
4038
4039 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4040 {
4041 int j;
4042 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
4043 struct quick_file_names *file_data;
4044 void **slot;
4045
4046 /* We only need to look at symtabs not already expanded. */
4047 if (per_cu->v.quick->symtab)
4048 continue;
4049
4050 file_data = dw2_get_file_names (per_cu);
4051 if (file_data == NULL)
4052 continue;
4053
4054 slot = htab_find_slot (visited, file_data, INSERT);
4055 if (*slot)
4056 {
4057 /* Already visited. */
4058 continue;
4059 }
4060 *slot = file_data;
4061
4062 for (j = 0; j < file_data->num_file_names; ++j)
4063 {
4064 const char *this_real_name;
4065
4066 if (need_fullname)
4067 this_real_name = dw2_get_real_path (objfile, file_data, j);
4068 else
4069 this_real_name = NULL;
4070 (*fun) (file_data->file_names[j], this_real_name, data);
4071 }
4072 }
4073
4074 do_cleanups (cleanup);
4075 }
4076
4077 static int
4078 dw2_has_symbols (struct objfile *objfile)
4079 {
4080 return 1;
4081 }
4082
4083 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4084 {
4085 dw2_has_symbols,
4086 dw2_find_last_source_symtab,
4087 dw2_forget_cached_source_info,
4088 dw2_map_symtabs_matching_filename,
4089 dw2_lookup_symbol,
4090 dw2_print_stats,
4091 dw2_dump,
4092 dw2_relocate,
4093 dw2_expand_symtabs_for_function,
4094 dw2_expand_all_symtabs,
4095 dw2_expand_symtabs_with_fullname,
4096 dw2_map_matching_symbols,
4097 dw2_expand_symtabs_matching,
4098 dw2_find_pc_sect_symtab,
4099 dw2_map_symbol_filenames
4100 };
4101
4102 /* Initialize for reading DWARF for this objfile. Return 0 if this
4103 file will use psymtabs, or 1 if using the GNU index. */
4104
4105 int
4106 dwarf2_initialize_objfile (struct objfile *objfile)
4107 {
4108 /* If we're about to read full symbols, don't bother with the
4109 indices. In this case we also don't care if some other debug
4110 format is making psymtabs, because they are all about to be
4111 expanded anyway. */
4112 if ((objfile->flags & OBJF_READNOW))
4113 {
4114 int i;
4115
4116 dwarf2_per_objfile->using_index = 1;
4117 create_all_comp_units (objfile);
4118 create_all_type_units (objfile);
4119 dwarf2_per_objfile->quick_file_names_table =
4120 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4121
4122 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4123 + dwarf2_per_objfile->n_type_units); ++i)
4124 {
4125 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4126
4127 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4128 struct dwarf2_per_cu_quick_data);
4129 }
4130
4131 /* Return 1 so that gdb sees the "quick" functions. However,
4132 these functions will be no-ops because we will have expanded
4133 all symtabs. */
4134 return 1;
4135 }
4136
4137 if (dwarf2_read_index (objfile))
4138 return 1;
4139
4140 return 0;
4141 }
4142
4143 \f
4144
4145 /* Build a partial symbol table. */
4146
4147 void
4148 dwarf2_build_psymtabs (struct objfile *objfile)
4149 {
4150 volatile struct gdb_exception except;
4151
4152 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4153 {
4154 init_psymbol_list (objfile, 1024);
4155 }
4156
4157 TRY_CATCH (except, RETURN_MASK_ERROR)
4158 {
4159 /* This isn't really ideal: all the data we allocate on the
4160 objfile's obstack is still uselessly kept around. However,
4161 freeing it seems unsafe. */
4162 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4163
4164 dwarf2_build_psymtabs_hard (objfile);
4165 discard_cleanups (cleanups);
4166 }
4167 if (except.reason < 0)
4168 exception_print (gdb_stderr, except);
4169 }
4170
4171 /* Return the total length of the CU described by HEADER. */
4172
4173 static unsigned int
4174 get_cu_length (const struct comp_unit_head *header)
4175 {
4176 return header->initial_length_size + header->length;
4177 }
4178
4179 /* Return TRUE if OFFSET is within CU_HEADER. */
4180
4181 static inline int
4182 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4183 {
4184 sect_offset bottom = { cu_header->offset.sect_off };
4185 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4186
4187 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4188 }
4189
4190 /* Find the base address of the compilation unit for range lists and
4191 location lists. It will normally be specified by DW_AT_low_pc.
4192 In DWARF-3 draft 4, the base address could be overridden by
4193 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4194 compilation units with discontinuous ranges. */
4195
4196 static void
4197 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4198 {
4199 struct attribute *attr;
4200
4201 cu->base_known = 0;
4202 cu->base_address = 0;
4203
4204 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4205 if (attr)
4206 {
4207 cu->base_address = DW_ADDR (attr);
4208 cu->base_known = 1;
4209 }
4210 else
4211 {
4212 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4213 if (attr)
4214 {
4215 cu->base_address = DW_ADDR (attr);
4216 cu->base_known = 1;
4217 }
4218 }
4219 }
4220
4221 /* Read in the comp unit header information from the debug_info at info_ptr.
4222 NOTE: This leaves members offset, first_die_offset to be filled in
4223 by the caller. */
4224
4225 static const gdb_byte *
4226 read_comp_unit_head (struct comp_unit_head *cu_header,
4227 const gdb_byte *info_ptr, bfd *abfd)
4228 {
4229 int signed_addr;
4230 unsigned int bytes_read;
4231
4232 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4233 cu_header->initial_length_size = bytes_read;
4234 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4235 info_ptr += bytes_read;
4236 cu_header->version = read_2_bytes (abfd, info_ptr);
4237 info_ptr += 2;
4238 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4239 &bytes_read);
4240 info_ptr += bytes_read;
4241 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4242 info_ptr += 1;
4243 signed_addr = bfd_get_sign_extend_vma (abfd);
4244 if (signed_addr < 0)
4245 internal_error (__FILE__, __LINE__,
4246 _("read_comp_unit_head: dwarf from non elf file"));
4247 cu_header->signed_addr_p = signed_addr;
4248
4249 return info_ptr;
4250 }
4251
4252 /* Helper function that returns the proper abbrev section for
4253 THIS_CU. */
4254
4255 static struct dwarf2_section_info *
4256 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4257 {
4258 struct dwarf2_section_info *abbrev;
4259
4260 if (this_cu->is_dwz)
4261 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4262 else
4263 abbrev = &dwarf2_per_objfile->abbrev;
4264
4265 return abbrev;
4266 }
4267
4268 /* Subroutine of read_and_check_comp_unit_head and
4269 read_and_check_type_unit_head to simplify them.
4270 Perform various error checking on the header. */
4271
4272 static void
4273 error_check_comp_unit_head (struct comp_unit_head *header,
4274 struct dwarf2_section_info *section,
4275 struct dwarf2_section_info *abbrev_section)
4276 {
4277 bfd *abfd = get_section_bfd_owner (section);
4278 const char *filename = get_section_file_name (section);
4279
4280 if (header->version != 2 && header->version != 3 && header->version != 4)
4281 error (_("Dwarf Error: wrong version in compilation unit header "
4282 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4283 filename);
4284
4285 if (header->abbrev_offset.sect_off
4286 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4287 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4288 "(offset 0x%lx + 6) [in module %s]"),
4289 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4290 filename);
4291
4292 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4293 avoid potential 32-bit overflow. */
4294 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4295 > section->size)
4296 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4297 "(offset 0x%lx + 0) [in module %s]"),
4298 (long) header->length, (long) header->offset.sect_off,
4299 filename);
4300 }
4301
4302 /* Read in a CU/TU header and perform some basic error checking.
4303 The contents of the header are stored in HEADER.
4304 The result is a pointer to the start of the first DIE. */
4305
4306 static const gdb_byte *
4307 read_and_check_comp_unit_head (struct comp_unit_head *header,
4308 struct dwarf2_section_info *section,
4309 struct dwarf2_section_info *abbrev_section,
4310 const gdb_byte *info_ptr,
4311 int is_debug_types_section)
4312 {
4313 const gdb_byte *beg_of_comp_unit = info_ptr;
4314 bfd *abfd = get_section_bfd_owner (section);
4315
4316 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4317
4318 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4319
4320 /* If we're reading a type unit, skip over the signature and
4321 type_offset fields. */
4322 if (is_debug_types_section)
4323 info_ptr += 8 /*signature*/ + header->offset_size;
4324
4325 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4326
4327 error_check_comp_unit_head (header, section, abbrev_section);
4328
4329 return info_ptr;
4330 }
4331
4332 /* Read in the types comp unit header information from .debug_types entry at
4333 types_ptr. The result is a pointer to one past the end of the header. */
4334
4335 static const gdb_byte *
4336 read_and_check_type_unit_head (struct comp_unit_head *header,
4337 struct dwarf2_section_info *section,
4338 struct dwarf2_section_info *abbrev_section,
4339 const gdb_byte *info_ptr,
4340 ULONGEST *signature,
4341 cu_offset *type_offset_in_tu)
4342 {
4343 const gdb_byte *beg_of_comp_unit = info_ptr;
4344 bfd *abfd = get_section_bfd_owner (section);
4345
4346 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4347
4348 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4349
4350 /* If we're reading a type unit, skip over the signature and
4351 type_offset fields. */
4352 if (signature != NULL)
4353 *signature = read_8_bytes (abfd, info_ptr);
4354 info_ptr += 8;
4355 if (type_offset_in_tu != NULL)
4356 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4357 header->offset_size);
4358 info_ptr += header->offset_size;
4359
4360 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4361
4362 error_check_comp_unit_head (header, section, abbrev_section);
4363
4364 return info_ptr;
4365 }
4366
4367 /* Fetch the abbreviation table offset from a comp or type unit header. */
4368
4369 static sect_offset
4370 read_abbrev_offset (struct dwarf2_section_info *section,
4371 sect_offset offset)
4372 {
4373 bfd *abfd = get_section_bfd_owner (section);
4374 const gdb_byte *info_ptr;
4375 unsigned int length, initial_length_size, offset_size;
4376 sect_offset abbrev_offset;
4377
4378 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4379 info_ptr = section->buffer + offset.sect_off;
4380 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4381 offset_size = initial_length_size == 4 ? 4 : 8;
4382 info_ptr += initial_length_size + 2 /*version*/;
4383 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4384 return abbrev_offset;
4385 }
4386
4387 /* Allocate a new partial symtab for file named NAME and mark this new
4388 partial symtab as being an include of PST. */
4389
4390 static void
4391 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4392 struct objfile *objfile)
4393 {
4394 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4395
4396 if (!IS_ABSOLUTE_PATH (subpst->filename))
4397 {
4398 /* It shares objfile->objfile_obstack. */
4399 subpst->dirname = pst->dirname;
4400 }
4401
4402 subpst->section_offsets = pst->section_offsets;
4403 subpst->textlow = 0;
4404 subpst->texthigh = 0;
4405
4406 subpst->dependencies = (struct partial_symtab **)
4407 obstack_alloc (&objfile->objfile_obstack,
4408 sizeof (struct partial_symtab *));
4409 subpst->dependencies[0] = pst;
4410 subpst->number_of_dependencies = 1;
4411
4412 subpst->globals_offset = 0;
4413 subpst->n_global_syms = 0;
4414 subpst->statics_offset = 0;
4415 subpst->n_static_syms = 0;
4416 subpst->symtab = NULL;
4417 subpst->read_symtab = pst->read_symtab;
4418 subpst->readin = 0;
4419
4420 /* No private part is necessary for include psymtabs. This property
4421 can be used to differentiate between such include psymtabs and
4422 the regular ones. */
4423 subpst->read_symtab_private = NULL;
4424 }
4425
4426 /* Read the Line Number Program data and extract the list of files
4427 included by the source file represented by PST. Build an include
4428 partial symtab for each of these included files. */
4429
4430 static void
4431 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4432 struct die_info *die,
4433 struct partial_symtab *pst)
4434 {
4435 struct line_header *lh = NULL;
4436 struct attribute *attr;
4437
4438 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4439 if (attr)
4440 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4441 if (lh == NULL)
4442 return; /* No linetable, so no includes. */
4443
4444 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4445 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4446
4447 free_line_header (lh);
4448 }
4449
4450 static hashval_t
4451 hash_signatured_type (const void *item)
4452 {
4453 const struct signatured_type *sig_type = item;
4454
4455 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4456 return sig_type->signature;
4457 }
4458
4459 static int
4460 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4461 {
4462 const struct signatured_type *lhs = item_lhs;
4463 const struct signatured_type *rhs = item_rhs;
4464
4465 return lhs->signature == rhs->signature;
4466 }
4467
4468 /* Allocate a hash table for signatured types. */
4469
4470 static htab_t
4471 allocate_signatured_type_table (struct objfile *objfile)
4472 {
4473 return htab_create_alloc_ex (41,
4474 hash_signatured_type,
4475 eq_signatured_type,
4476 NULL,
4477 &objfile->objfile_obstack,
4478 hashtab_obstack_allocate,
4479 dummy_obstack_deallocate);
4480 }
4481
4482 /* A helper function to add a signatured type CU to a table. */
4483
4484 static int
4485 add_signatured_type_cu_to_table (void **slot, void *datum)
4486 {
4487 struct signatured_type *sigt = *slot;
4488 struct signatured_type ***datap = datum;
4489
4490 **datap = sigt;
4491 ++*datap;
4492
4493 return 1;
4494 }
4495
4496 /* Create the hash table of all entries in the .debug_types
4497 (or .debug_types.dwo) section(s).
4498 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4499 otherwise it is NULL.
4500
4501 The result is a pointer to the hash table or NULL if there are no types.
4502
4503 Note: This function processes DWO files only, not DWP files. */
4504
4505 static htab_t
4506 create_debug_types_hash_table (struct dwo_file *dwo_file,
4507 VEC (dwarf2_section_info_def) *types)
4508 {
4509 struct objfile *objfile = dwarf2_per_objfile->objfile;
4510 htab_t types_htab = NULL;
4511 int ix;
4512 struct dwarf2_section_info *section;
4513 struct dwarf2_section_info *abbrev_section;
4514
4515 if (VEC_empty (dwarf2_section_info_def, types))
4516 return NULL;
4517
4518 abbrev_section = (dwo_file != NULL
4519 ? &dwo_file->sections.abbrev
4520 : &dwarf2_per_objfile->abbrev);
4521
4522 if (dwarf2_read_debug)
4523 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4524 dwo_file ? ".dwo" : "",
4525 get_section_file_name (abbrev_section));
4526
4527 for (ix = 0;
4528 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4529 ++ix)
4530 {
4531 bfd *abfd;
4532 const gdb_byte *info_ptr, *end_ptr;
4533
4534 dwarf2_read_section (objfile, section);
4535 info_ptr = section->buffer;
4536
4537 if (info_ptr == NULL)
4538 continue;
4539
4540 /* We can't set abfd until now because the section may be empty or
4541 not present, in which case the bfd is unknown. */
4542 abfd = get_section_bfd_owner (section);
4543
4544 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4545 because we don't need to read any dies: the signature is in the
4546 header. */
4547
4548 end_ptr = info_ptr + section->size;
4549 while (info_ptr < end_ptr)
4550 {
4551 sect_offset offset;
4552 cu_offset type_offset_in_tu;
4553 ULONGEST signature;
4554 struct signatured_type *sig_type;
4555 struct dwo_unit *dwo_tu;
4556 void **slot;
4557 const gdb_byte *ptr = info_ptr;
4558 struct comp_unit_head header;
4559 unsigned int length;
4560
4561 offset.sect_off = ptr - section->buffer;
4562
4563 /* We need to read the type's signature in order to build the hash
4564 table, but we don't need anything else just yet. */
4565
4566 ptr = read_and_check_type_unit_head (&header, section,
4567 abbrev_section, ptr,
4568 &signature, &type_offset_in_tu);
4569
4570 length = get_cu_length (&header);
4571
4572 /* Skip dummy type units. */
4573 if (ptr >= info_ptr + length
4574 || peek_abbrev_code (abfd, ptr) == 0)
4575 {
4576 info_ptr += length;
4577 continue;
4578 }
4579
4580 if (types_htab == NULL)
4581 {
4582 if (dwo_file)
4583 types_htab = allocate_dwo_unit_table (objfile);
4584 else
4585 types_htab = allocate_signatured_type_table (objfile);
4586 }
4587
4588 if (dwo_file)
4589 {
4590 sig_type = NULL;
4591 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4592 struct dwo_unit);
4593 dwo_tu->dwo_file = dwo_file;
4594 dwo_tu->signature = signature;
4595 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4596 dwo_tu->section = section;
4597 dwo_tu->offset = offset;
4598 dwo_tu->length = length;
4599 }
4600 else
4601 {
4602 /* N.B.: type_offset is not usable if this type uses a DWO file.
4603 The real type_offset is in the DWO file. */
4604 dwo_tu = NULL;
4605 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4606 struct signatured_type);
4607 sig_type->signature = signature;
4608 sig_type->type_offset_in_tu = type_offset_in_tu;
4609 sig_type->per_cu.objfile = objfile;
4610 sig_type->per_cu.is_debug_types = 1;
4611 sig_type->per_cu.section = section;
4612 sig_type->per_cu.offset = offset;
4613 sig_type->per_cu.length = length;
4614 }
4615
4616 slot = htab_find_slot (types_htab,
4617 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4618 INSERT);
4619 gdb_assert (slot != NULL);
4620 if (*slot != NULL)
4621 {
4622 sect_offset dup_offset;
4623
4624 if (dwo_file)
4625 {
4626 const struct dwo_unit *dup_tu = *slot;
4627
4628 dup_offset = dup_tu->offset;
4629 }
4630 else
4631 {
4632 const struct signatured_type *dup_tu = *slot;
4633
4634 dup_offset = dup_tu->per_cu.offset;
4635 }
4636
4637 complaint (&symfile_complaints,
4638 _("debug type entry at offset 0x%x is duplicate to"
4639 " the entry at offset 0x%x, signature %s"),
4640 offset.sect_off, dup_offset.sect_off,
4641 hex_string (signature));
4642 }
4643 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4644
4645 if (dwarf2_read_debug > 1)
4646 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4647 offset.sect_off,
4648 hex_string (signature));
4649
4650 info_ptr += length;
4651 }
4652 }
4653
4654 return types_htab;
4655 }
4656
4657 /* Create the hash table of all entries in the .debug_types section,
4658 and initialize all_type_units.
4659 The result is zero if there is an error (e.g. missing .debug_types section),
4660 otherwise non-zero. */
4661
4662 static int
4663 create_all_type_units (struct objfile *objfile)
4664 {
4665 htab_t types_htab;
4666 struct signatured_type **iter;
4667
4668 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4669 if (types_htab == NULL)
4670 {
4671 dwarf2_per_objfile->signatured_types = NULL;
4672 return 0;
4673 }
4674
4675 dwarf2_per_objfile->signatured_types = types_htab;
4676
4677 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4678 dwarf2_per_objfile->all_type_units
4679 = xmalloc (dwarf2_per_objfile->n_type_units
4680 * sizeof (struct signatured_type *));
4681 iter = &dwarf2_per_objfile->all_type_units[0];
4682 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4683 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4684 == dwarf2_per_objfile->n_type_units);
4685
4686 return 1;
4687 }
4688
4689 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4690 Fill in SIG_ENTRY with DWO_ENTRY. */
4691
4692 static void
4693 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4694 struct signatured_type *sig_entry,
4695 struct dwo_unit *dwo_entry)
4696 {
4697 /* Make sure we're not clobbering something we don't expect to. */
4698 gdb_assert (! sig_entry->per_cu.queued);
4699 gdb_assert (sig_entry->per_cu.cu == NULL);
4700 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4701 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4702 gdb_assert (sig_entry->signature == dwo_entry->signature);
4703 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4704 gdb_assert (sig_entry->type_unit_group == NULL);
4705 gdb_assert (sig_entry->dwo_unit == NULL);
4706
4707 sig_entry->per_cu.section = dwo_entry->section;
4708 sig_entry->per_cu.offset = dwo_entry->offset;
4709 sig_entry->per_cu.length = dwo_entry->length;
4710 sig_entry->per_cu.reading_dwo_directly = 1;
4711 sig_entry->per_cu.objfile = objfile;
4712 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4713 sig_entry->dwo_unit = dwo_entry;
4714 }
4715
4716 /* Subroutine of lookup_signatured_type.
4717 If we haven't read the TU yet, create the signatured_type data structure
4718 for a TU to be read in directly from a DWO file, bypassing the stub.
4719 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4720 using .gdb_index, then when reading a CU we want to stay in the DWO file
4721 containing that CU. Otherwise we could end up reading several other DWO
4722 files (due to comdat folding) to process the transitive closure of all the
4723 mentioned TUs, and that can be slow. The current DWO file will have every
4724 type signature that it needs.
4725 We only do this for .gdb_index because in the psymtab case we already have
4726 to read all the DWOs to build the type unit groups. */
4727
4728 static struct signatured_type *
4729 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4730 {
4731 struct objfile *objfile = dwarf2_per_objfile->objfile;
4732 struct dwo_file *dwo_file;
4733 struct dwo_unit find_dwo_entry, *dwo_entry;
4734 struct signatured_type find_sig_entry, *sig_entry;
4735
4736 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4737
4738 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4739 dwo_unit of the TU itself. */
4740 dwo_file = cu->dwo_unit->dwo_file;
4741
4742 /* We only ever need to read in one copy of a signatured type.
4743 Just use the global signatured_types array. If this is the first time
4744 we're reading this type, replace the recorded data from .gdb_index with
4745 this TU. */
4746
4747 if (dwarf2_per_objfile->signatured_types == NULL)
4748 return NULL;
4749 find_sig_entry.signature = sig;
4750 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4751 if (sig_entry == NULL)
4752 return NULL;
4753
4754 /* We can get here with the TU already read, *or* in the process of being
4755 read. Don't reassign it if that's the case. Also note that if the TU is
4756 already being read, it may not have come from a DWO, the program may be
4757 a mix of Fission-compiled code and non-Fission-compiled code. */
4758 /* Have we already tried to read this TU? */
4759 if (sig_entry->per_cu.tu_read)
4760 return sig_entry;
4761
4762 /* Ok, this is the first time we're reading this TU. */
4763 if (dwo_file->tus == NULL)
4764 return NULL;
4765 find_dwo_entry.signature = sig;
4766 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4767 if (dwo_entry == NULL)
4768 return NULL;
4769
4770 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4771 sig_entry->per_cu.tu_read = 1;
4772 return sig_entry;
4773 }
4774
4775 /* Subroutine of lookup_dwp_signatured_type.
4776 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4777
4778 static struct signatured_type *
4779 add_type_unit (ULONGEST sig)
4780 {
4781 struct objfile *objfile = dwarf2_per_objfile->objfile;
4782 int n_type_units = dwarf2_per_objfile->n_type_units;
4783 struct signatured_type *sig_type;
4784 void **slot;
4785
4786 ++n_type_units;
4787 dwarf2_per_objfile->all_type_units =
4788 xrealloc (dwarf2_per_objfile->all_type_units,
4789 n_type_units * sizeof (struct signatured_type *));
4790 dwarf2_per_objfile->n_type_units = n_type_units;
4791 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4792 struct signatured_type);
4793 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4794 sig_type->signature = sig;
4795 sig_type->per_cu.is_debug_types = 1;
4796 sig_type->per_cu.v.quick =
4797 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4798 struct dwarf2_per_cu_quick_data);
4799 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4800 sig_type, INSERT);
4801 gdb_assert (*slot == NULL);
4802 *slot = sig_type;
4803 /* The rest of sig_type must be filled in by the caller. */
4804 return sig_type;
4805 }
4806
4807 /* Subroutine of lookup_signatured_type.
4808 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4809 then try the DWP file.
4810 Normally this "can't happen", but if there's a bug in signature
4811 generation and/or the DWP file is built incorrectly, it can happen.
4812 Using the type directly from the DWP file means we don't have the stub
4813 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4814 not critical. [Eventually the stub may go away for type units anyway.] */
4815
4816 static struct signatured_type *
4817 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4818 {
4819 struct objfile *objfile = dwarf2_per_objfile->objfile;
4820 struct dwp_file *dwp_file = get_dwp_file ();
4821 struct dwo_unit *dwo_entry;
4822 struct signatured_type find_sig_entry, *sig_entry;
4823
4824 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4825 gdb_assert (dwp_file != NULL);
4826
4827 if (dwarf2_per_objfile->signatured_types != NULL)
4828 {
4829 find_sig_entry.signature = sig;
4830 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4831 &find_sig_entry);
4832 if (sig_entry != NULL)
4833 return sig_entry;
4834 }
4835
4836 /* This is the "shouldn't happen" case.
4837 Try the DWP file and hope for the best. */
4838 if (dwp_file->tus == NULL)
4839 return NULL;
4840 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4841 sig, 1 /* is_debug_types */);
4842 if (dwo_entry == NULL)
4843 return NULL;
4844
4845 sig_entry = add_type_unit (sig);
4846 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4847
4848 /* The caller will signal a complaint if we return NULL.
4849 Here we don't return NULL but we still want to complain. */
4850 complaint (&symfile_complaints,
4851 _("Bad type signature %s referenced by %s at 0x%x,"
4852 " coping by using copy in DWP [in module %s]"),
4853 hex_string (sig),
4854 cu->per_cu->is_debug_types ? "TU" : "CU",
4855 cu->per_cu->offset.sect_off,
4856 objfile_name (objfile));
4857
4858 return sig_entry;
4859 }
4860
4861 /* Lookup a signature based type for DW_FORM_ref_sig8.
4862 Returns NULL if signature SIG is not present in the table.
4863 It is up to the caller to complain about this. */
4864
4865 static struct signatured_type *
4866 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4867 {
4868 if (cu->dwo_unit
4869 && dwarf2_per_objfile->using_index)
4870 {
4871 /* We're in a DWO/DWP file, and we're using .gdb_index.
4872 These cases require special processing. */
4873 if (get_dwp_file () == NULL)
4874 return lookup_dwo_signatured_type (cu, sig);
4875 else
4876 return lookup_dwp_signatured_type (cu, sig);
4877 }
4878 else
4879 {
4880 struct signatured_type find_entry, *entry;
4881
4882 if (dwarf2_per_objfile->signatured_types == NULL)
4883 return NULL;
4884 find_entry.signature = sig;
4885 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4886 return entry;
4887 }
4888 }
4889 \f
4890 /* Low level DIE reading support. */
4891
4892 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4893
4894 static void
4895 init_cu_die_reader (struct die_reader_specs *reader,
4896 struct dwarf2_cu *cu,
4897 struct dwarf2_section_info *section,
4898 struct dwo_file *dwo_file)
4899 {
4900 gdb_assert (section->readin && section->buffer != NULL);
4901 reader->abfd = get_section_bfd_owner (section);
4902 reader->cu = cu;
4903 reader->dwo_file = dwo_file;
4904 reader->die_section = section;
4905 reader->buffer = section->buffer;
4906 reader->buffer_end = section->buffer + section->size;
4907 reader->comp_dir = NULL;
4908 }
4909
4910 /* Subroutine of init_cutu_and_read_dies to simplify it.
4911 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4912 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4913 already.
4914
4915 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4916 from it to the DIE in the DWO. If NULL we are skipping the stub.
4917 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4918 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4919 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4920 COMP_DIR must be non-NULL.
4921 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4922 are filled in with the info of the DIE from the DWO file.
4923 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4924 provided an abbrev table to use.
4925 The result is non-zero if a valid (non-dummy) DIE was found. */
4926
4927 static int
4928 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4929 struct dwo_unit *dwo_unit,
4930 int abbrev_table_provided,
4931 struct die_info *stub_comp_unit_die,
4932 const char *stub_comp_dir,
4933 struct die_reader_specs *result_reader,
4934 const gdb_byte **result_info_ptr,
4935 struct die_info **result_comp_unit_die,
4936 int *result_has_children)
4937 {
4938 struct objfile *objfile = dwarf2_per_objfile->objfile;
4939 struct dwarf2_cu *cu = this_cu->cu;
4940 struct dwarf2_section_info *section;
4941 bfd *abfd;
4942 const gdb_byte *begin_info_ptr, *info_ptr;
4943 const char *comp_dir_string;
4944 ULONGEST signature; /* Or dwo_id. */
4945 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4946 int i,num_extra_attrs;
4947 struct dwarf2_section_info *dwo_abbrev_section;
4948 struct attribute *attr;
4949 struct attribute comp_dir_attr;
4950 struct die_info *comp_unit_die;
4951
4952 /* Both can't be provided. */
4953 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4954
4955 /* These attributes aren't processed until later:
4956 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4957 However, the attribute is found in the stub which we won't have later.
4958 In order to not impose this complication on the rest of the code,
4959 we read them here and copy them to the DWO CU/TU die. */
4960
4961 stmt_list = NULL;
4962 low_pc = NULL;
4963 high_pc = NULL;
4964 ranges = NULL;
4965 comp_dir = NULL;
4966
4967 if (stub_comp_unit_die != NULL)
4968 {
4969 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4970 DWO file. */
4971 if (! this_cu->is_debug_types)
4972 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4973 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4974 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4975 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4976 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4977
4978 /* There should be a DW_AT_addr_base attribute here (if needed).
4979 We need the value before we can process DW_FORM_GNU_addr_index. */
4980 cu->addr_base = 0;
4981 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4982 if (attr)
4983 cu->addr_base = DW_UNSND (attr);
4984
4985 /* There should be a DW_AT_ranges_base attribute here (if needed).
4986 We need the value before we can process DW_AT_ranges. */
4987 cu->ranges_base = 0;
4988 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4989 if (attr)
4990 cu->ranges_base = DW_UNSND (attr);
4991 }
4992 else if (stub_comp_dir != NULL)
4993 {
4994 /* Reconstruct the comp_dir attribute to simplify the code below. */
4995 comp_dir = (struct attribute *)
4996 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4997 comp_dir->name = DW_AT_comp_dir;
4998 comp_dir->form = DW_FORM_string;
4999 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5000 DW_STRING (comp_dir) = stub_comp_dir;
5001 }
5002
5003 /* Set up for reading the DWO CU/TU. */
5004 cu->dwo_unit = dwo_unit;
5005 section = dwo_unit->section;
5006 dwarf2_read_section (objfile, section);
5007 abfd = get_section_bfd_owner (section);
5008 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5009 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5010 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5011
5012 if (this_cu->is_debug_types)
5013 {
5014 ULONGEST header_signature;
5015 cu_offset type_offset_in_tu;
5016 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5017
5018 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5019 dwo_abbrev_section,
5020 info_ptr,
5021 &header_signature,
5022 &type_offset_in_tu);
5023 /* This is not an assert because it can be caused by bad debug info. */
5024 if (sig_type->signature != header_signature)
5025 {
5026 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5027 " TU at offset 0x%x [in module %s]"),
5028 hex_string (sig_type->signature),
5029 hex_string (header_signature),
5030 dwo_unit->offset.sect_off,
5031 bfd_get_filename (abfd));
5032 }
5033 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5034 /* For DWOs coming from DWP files, we don't know the CU length
5035 nor the type's offset in the TU until now. */
5036 dwo_unit->length = get_cu_length (&cu->header);
5037 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5038
5039 /* Establish the type offset that can be used to lookup the type.
5040 For DWO files, we don't know it until now. */
5041 sig_type->type_offset_in_section.sect_off =
5042 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5043 }
5044 else
5045 {
5046 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5047 dwo_abbrev_section,
5048 info_ptr, 0);
5049 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5050 /* For DWOs coming from DWP files, we don't know the CU length
5051 until now. */
5052 dwo_unit->length = get_cu_length (&cu->header);
5053 }
5054
5055 /* Replace the CU's original abbrev table with the DWO's.
5056 Reminder: We can't read the abbrev table until we've read the header. */
5057 if (abbrev_table_provided)
5058 {
5059 /* Don't free the provided abbrev table, the caller of
5060 init_cutu_and_read_dies owns it. */
5061 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5062 /* Ensure the DWO abbrev table gets freed. */
5063 make_cleanup (dwarf2_free_abbrev_table, cu);
5064 }
5065 else
5066 {
5067 dwarf2_free_abbrev_table (cu);
5068 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5069 /* Leave any existing abbrev table cleanup as is. */
5070 }
5071
5072 /* Read in the die, but leave space to copy over the attributes
5073 from the stub. This has the benefit of simplifying the rest of
5074 the code - all the work to maintain the illusion of a single
5075 DW_TAG_{compile,type}_unit DIE is done here. */
5076 num_extra_attrs = ((stmt_list != NULL)
5077 + (low_pc != NULL)
5078 + (high_pc != NULL)
5079 + (ranges != NULL)
5080 + (comp_dir != NULL));
5081 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5082 result_has_children, num_extra_attrs);
5083
5084 /* Copy over the attributes from the stub to the DIE we just read in. */
5085 comp_unit_die = *result_comp_unit_die;
5086 i = comp_unit_die->num_attrs;
5087 if (stmt_list != NULL)
5088 comp_unit_die->attrs[i++] = *stmt_list;
5089 if (low_pc != NULL)
5090 comp_unit_die->attrs[i++] = *low_pc;
5091 if (high_pc != NULL)
5092 comp_unit_die->attrs[i++] = *high_pc;
5093 if (ranges != NULL)
5094 comp_unit_die->attrs[i++] = *ranges;
5095 if (comp_dir != NULL)
5096 comp_unit_die->attrs[i++] = *comp_dir;
5097 comp_unit_die->num_attrs += num_extra_attrs;
5098
5099 if (dwarf2_die_debug)
5100 {
5101 fprintf_unfiltered (gdb_stdlog,
5102 "Read die from %s@0x%x of %s:\n",
5103 get_section_name (section),
5104 (unsigned) (begin_info_ptr - section->buffer),
5105 bfd_get_filename (abfd));
5106 dump_die (comp_unit_die, dwarf2_die_debug);
5107 }
5108
5109 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5110 TUs by skipping the stub and going directly to the entry in the DWO file.
5111 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5112 to get it via circuitous means. Blech. */
5113 if (comp_dir != NULL)
5114 result_reader->comp_dir = DW_STRING (comp_dir);
5115
5116 /* Skip dummy compilation units. */
5117 if (info_ptr >= begin_info_ptr + dwo_unit->length
5118 || peek_abbrev_code (abfd, info_ptr) == 0)
5119 return 0;
5120
5121 *result_info_ptr = info_ptr;
5122 return 1;
5123 }
5124
5125 /* Subroutine of init_cutu_and_read_dies to simplify it.
5126 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5127 Returns NULL if the specified DWO unit cannot be found. */
5128
5129 static struct dwo_unit *
5130 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5131 struct die_info *comp_unit_die)
5132 {
5133 struct dwarf2_cu *cu = this_cu->cu;
5134 struct attribute *attr;
5135 ULONGEST signature;
5136 struct dwo_unit *dwo_unit;
5137 const char *comp_dir, *dwo_name;
5138
5139 gdb_assert (cu != NULL);
5140
5141 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5142 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5143 gdb_assert (attr != NULL);
5144 dwo_name = DW_STRING (attr);
5145 comp_dir = NULL;
5146 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5147 if (attr)
5148 comp_dir = DW_STRING (attr);
5149
5150 if (this_cu->is_debug_types)
5151 {
5152 struct signatured_type *sig_type;
5153
5154 /* Since this_cu is the first member of struct signatured_type,
5155 we can go from a pointer to one to a pointer to the other. */
5156 sig_type = (struct signatured_type *) this_cu;
5157 signature = sig_type->signature;
5158 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5159 }
5160 else
5161 {
5162 struct attribute *attr;
5163
5164 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5165 if (! attr)
5166 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5167 " [in module %s]"),
5168 dwo_name, objfile_name (this_cu->objfile));
5169 signature = DW_UNSND (attr);
5170 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5171 signature);
5172 }
5173
5174 return dwo_unit;
5175 }
5176
5177 /* Subroutine of init_cutu_and_read_dies to simplify it.
5178 Read a TU directly from a DWO file, bypassing the stub. */
5179
5180 static void
5181 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5182 die_reader_func_ftype *die_reader_func,
5183 void *data)
5184 {
5185 struct dwarf2_cu *cu;
5186 struct signatured_type *sig_type;
5187 struct cleanup *cleanups, *free_cu_cleanup;
5188 struct die_reader_specs reader;
5189 const gdb_byte *info_ptr;
5190 struct die_info *comp_unit_die;
5191 int has_children;
5192
5193 /* Verify we can do the following downcast, and that we have the
5194 data we need. */
5195 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5196 sig_type = (struct signatured_type *) this_cu;
5197 gdb_assert (sig_type->dwo_unit != NULL);
5198
5199 cleanups = make_cleanup (null_cleanup, NULL);
5200
5201 gdb_assert (this_cu->cu == NULL);
5202 cu = xmalloc (sizeof (*cu));
5203 init_one_comp_unit (cu, this_cu);
5204 /* If an error occurs while loading, release our storage. */
5205 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5206
5207 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5208 0 /* abbrev_table_provided */,
5209 NULL /* stub_comp_unit_die */,
5210 sig_type->dwo_unit->dwo_file->comp_dir,
5211 &reader, &info_ptr,
5212 &comp_unit_die, &has_children) == 0)
5213 {
5214 /* Dummy die. */
5215 do_cleanups (cleanups);
5216 return;
5217 }
5218
5219 /* All the "real" work is done here. */
5220 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5221
5222 /* This duplicates some code in init_cutu_and_read_dies,
5223 but the alternative is making the latter more complex.
5224 This function is only for the special case of using DWO files directly:
5225 no point in overly complicating the general case just to handle this. */
5226 if (keep)
5227 {
5228 /* We've successfully allocated this compilation unit. Let our
5229 caller clean it up when finished with it. */
5230 discard_cleanups (free_cu_cleanup);
5231
5232 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5233 So we have to manually free the abbrev table. */
5234 dwarf2_free_abbrev_table (cu);
5235
5236 /* Link this CU into read_in_chain. */
5237 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5238 dwarf2_per_objfile->read_in_chain = this_cu;
5239 }
5240 else
5241 do_cleanups (free_cu_cleanup);
5242
5243 do_cleanups (cleanups);
5244 }
5245
5246 /* Initialize a CU (or TU) and read its DIEs.
5247 If the CU defers to a DWO file, read the DWO file as well.
5248
5249 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5250 Otherwise the table specified in the comp unit header is read in and used.
5251 This is an optimization for when we already have the abbrev table.
5252
5253 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5254 Otherwise, a new CU is allocated with xmalloc.
5255
5256 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5257 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5258
5259 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5260 linker) then DIE_READER_FUNC will not get called. */
5261
5262 static void
5263 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5264 struct abbrev_table *abbrev_table,
5265 int use_existing_cu, int keep,
5266 die_reader_func_ftype *die_reader_func,
5267 void *data)
5268 {
5269 struct objfile *objfile = dwarf2_per_objfile->objfile;
5270 struct dwarf2_section_info *section = this_cu->section;
5271 bfd *abfd = get_section_bfd_owner (section);
5272 struct dwarf2_cu *cu;
5273 const gdb_byte *begin_info_ptr, *info_ptr;
5274 struct die_reader_specs reader;
5275 struct die_info *comp_unit_die;
5276 int has_children;
5277 struct attribute *attr;
5278 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5279 struct signatured_type *sig_type = NULL;
5280 struct dwarf2_section_info *abbrev_section;
5281 /* Non-zero if CU currently points to a DWO file and we need to
5282 reread it. When this happens we need to reread the skeleton die
5283 before we can reread the DWO file (this only applies to CUs, not TUs). */
5284 int rereading_dwo_cu = 0;
5285
5286 if (dwarf2_die_debug)
5287 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5288 this_cu->is_debug_types ? "type" : "comp",
5289 this_cu->offset.sect_off);
5290
5291 if (use_existing_cu)
5292 gdb_assert (keep);
5293
5294 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5295 file (instead of going through the stub), short-circuit all of this. */
5296 if (this_cu->reading_dwo_directly)
5297 {
5298 /* Narrow down the scope of possibilities to have to understand. */
5299 gdb_assert (this_cu->is_debug_types);
5300 gdb_assert (abbrev_table == NULL);
5301 gdb_assert (!use_existing_cu);
5302 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5303 return;
5304 }
5305
5306 cleanups = make_cleanup (null_cleanup, NULL);
5307
5308 /* This is cheap if the section is already read in. */
5309 dwarf2_read_section (objfile, section);
5310
5311 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5312
5313 abbrev_section = get_abbrev_section_for_cu (this_cu);
5314
5315 if (use_existing_cu && this_cu->cu != NULL)
5316 {
5317 cu = this_cu->cu;
5318
5319 /* If this CU is from a DWO file we need to start over, we need to
5320 refetch the attributes from the skeleton CU.
5321 This could be optimized by retrieving those attributes from when we
5322 were here the first time: the previous comp_unit_die was stored in
5323 comp_unit_obstack. But there's no data yet that we need this
5324 optimization. */
5325 if (cu->dwo_unit != NULL)
5326 rereading_dwo_cu = 1;
5327 }
5328 else
5329 {
5330 /* If !use_existing_cu, this_cu->cu must be NULL. */
5331 gdb_assert (this_cu->cu == NULL);
5332
5333 cu = xmalloc (sizeof (*cu));
5334 init_one_comp_unit (cu, this_cu);
5335
5336 /* If an error occurs while loading, release our storage. */
5337 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5338 }
5339
5340 /* Get the header. */
5341 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5342 {
5343 /* We already have the header, there's no need to read it in again. */
5344 info_ptr += cu->header.first_die_offset.cu_off;
5345 }
5346 else
5347 {
5348 if (this_cu->is_debug_types)
5349 {
5350 ULONGEST signature;
5351 cu_offset type_offset_in_tu;
5352
5353 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5354 abbrev_section, info_ptr,
5355 &signature,
5356 &type_offset_in_tu);
5357
5358 /* Since per_cu is the first member of struct signatured_type,
5359 we can go from a pointer to one to a pointer to the other. */
5360 sig_type = (struct signatured_type *) this_cu;
5361 gdb_assert (sig_type->signature == signature);
5362 gdb_assert (sig_type->type_offset_in_tu.cu_off
5363 == type_offset_in_tu.cu_off);
5364 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5365
5366 /* LENGTH has not been set yet for type units if we're
5367 using .gdb_index. */
5368 this_cu->length = get_cu_length (&cu->header);
5369
5370 /* Establish the type offset that can be used to lookup the type. */
5371 sig_type->type_offset_in_section.sect_off =
5372 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5373 }
5374 else
5375 {
5376 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5377 abbrev_section,
5378 info_ptr, 0);
5379
5380 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5381 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5382 }
5383 }
5384
5385 /* Skip dummy compilation units. */
5386 if (info_ptr >= begin_info_ptr + this_cu->length
5387 || peek_abbrev_code (abfd, info_ptr) == 0)
5388 {
5389 do_cleanups (cleanups);
5390 return;
5391 }
5392
5393 /* If we don't have them yet, read the abbrevs for this compilation unit.
5394 And if we need to read them now, make sure they're freed when we're
5395 done. Note that it's important that if the CU had an abbrev table
5396 on entry we don't free it when we're done: Somewhere up the call stack
5397 it may be in use. */
5398 if (abbrev_table != NULL)
5399 {
5400 gdb_assert (cu->abbrev_table == NULL);
5401 gdb_assert (cu->header.abbrev_offset.sect_off
5402 == abbrev_table->offset.sect_off);
5403 cu->abbrev_table = abbrev_table;
5404 }
5405 else if (cu->abbrev_table == NULL)
5406 {
5407 dwarf2_read_abbrevs (cu, abbrev_section);
5408 make_cleanup (dwarf2_free_abbrev_table, cu);
5409 }
5410 else if (rereading_dwo_cu)
5411 {
5412 dwarf2_free_abbrev_table (cu);
5413 dwarf2_read_abbrevs (cu, abbrev_section);
5414 }
5415
5416 /* Read the top level CU/TU die. */
5417 init_cu_die_reader (&reader, cu, section, NULL);
5418 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5419
5420 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5421 from the DWO file.
5422 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5423 DWO CU, that this test will fail (the attribute will not be present). */
5424 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5425 if (attr)
5426 {
5427 struct dwo_unit *dwo_unit;
5428 struct die_info *dwo_comp_unit_die;
5429
5430 if (has_children)
5431 {
5432 complaint (&symfile_complaints,
5433 _("compilation unit with DW_AT_GNU_dwo_name"
5434 " has children (offset 0x%x) [in module %s]"),
5435 this_cu->offset.sect_off, bfd_get_filename (abfd));
5436 }
5437 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5438 if (dwo_unit != NULL)
5439 {
5440 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5441 abbrev_table != NULL,
5442 comp_unit_die, NULL,
5443 &reader, &info_ptr,
5444 &dwo_comp_unit_die, &has_children) == 0)
5445 {
5446 /* Dummy die. */
5447 do_cleanups (cleanups);
5448 return;
5449 }
5450 comp_unit_die = dwo_comp_unit_die;
5451 }
5452 else
5453 {
5454 /* Yikes, we couldn't find the rest of the DIE, we only have
5455 the stub. A complaint has already been logged. There's
5456 not much more we can do except pass on the stub DIE to
5457 die_reader_func. We don't want to throw an error on bad
5458 debug info. */
5459 }
5460 }
5461
5462 /* All of the above is setup for this call. Yikes. */
5463 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5464
5465 /* Done, clean up. */
5466 if (free_cu_cleanup != NULL)
5467 {
5468 if (keep)
5469 {
5470 /* We've successfully allocated this compilation unit. Let our
5471 caller clean it up when finished with it. */
5472 discard_cleanups (free_cu_cleanup);
5473
5474 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5475 So we have to manually free the abbrev table. */
5476 dwarf2_free_abbrev_table (cu);
5477
5478 /* Link this CU into read_in_chain. */
5479 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5480 dwarf2_per_objfile->read_in_chain = this_cu;
5481 }
5482 else
5483 do_cleanups (free_cu_cleanup);
5484 }
5485
5486 do_cleanups (cleanups);
5487 }
5488
5489 /* Read CU/TU THIS_CU in section SECTION,
5490 but do not follow DW_AT_GNU_dwo_name if present.
5491 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5492 to have already done the lookup to find the DWO/DWP file).
5493
5494 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5495 THIS_CU->is_debug_types, but nothing else.
5496
5497 We fill in THIS_CU->length.
5498
5499 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5500 linker) then DIE_READER_FUNC will not get called.
5501
5502 THIS_CU->cu is always freed when done.
5503 This is done in order to not leave THIS_CU->cu in a state where we have
5504 to care whether it refers to the "main" CU or the DWO CU. */
5505
5506 static void
5507 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5508 struct dwarf2_section_info *abbrev_section,
5509 struct dwo_file *dwo_file,
5510 die_reader_func_ftype *die_reader_func,
5511 void *data)
5512 {
5513 struct objfile *objfile = dwarf2_per_objfile->objfile;
5514 struct dwarf2_section_info *section = this_cu->section;
5515 bfd *abfd = get_section_bfd_owner (section);
5516 struct dwarf2_cu cu;
5517 const gdb_byte *begin_info_ptr, *info_ptr;
5518 struct die_reader_specs reader;
5519 struct cleanup *cleanups;
5520 struct die_info *comp_unit_die;
5521 int has_children;
5522
5523 if (dwarf2_die_debug)
5524 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5525 this_cu->is_debug_types ? "type" : "comp",
5526 this_cu->offset.sect_off);
5527
5528 gdb_assert (this_cu->cu == NULL);
5529
5530 /* This is cheap if the section is already read in. */
5531 dwarf2_read_section (objfile, section);
5532
5533 init_one_comp_unit (&cu, this_cu);
5534
5535 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5536
5537 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5538 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5539 abbrev_section, info_ptr,
5540 this_cu->is_debug_types);
5541
5542 this_cu->length = get_cu_length (&cu.header);
5543
5544 /* Skip dummy compilation units. */
5545 if (info_ptr >= begin_info_ptr + this_cu->length
5546 || peek_abbrev_code (abfd, info_ptr) == 0)
5547 {
5548 do_cleanups (cleanups);
5549 return;
5550 }
5551
5552 dwarf2_read_abbrevs (&cu, abbrev_section);
5553 make_cleanup (dwarf2_free_abbrev_table, &cu);
5554
5555 init_cu_die_reader (&reader, &cu, section, dwo_file);
5556 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5557
5558 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5559
5560 do_cleanups (cleanups);
5561 }
5562
5563 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5564 does not lookup the specified DWO file.
5565 This cannot be used to read DWO files.
5566
5567 THIS_CU->cu is always freed when done.
5568 This is done in order to not leave THIS_CU->cu in a state where we have
5569 to care whether it refers to the "main" CU or the DWO CU.
5570 We can revisit this if the data shows there's a performance issue. */
5571
5572 static void
5573 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5574 die_reader_func_ftype *die_reader_func,
5575 void *data)
5576 {
5577 init_cutu_and_read_dies_no_follow (this_cu,
5578 get_abbrev_section_for_cu (this_cu),
5579 NULL,
5580 die_reader_func, data);
5581 }
5582 \f
5583 /* Type Unit Groups.
5584
5585 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5586 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5587 so that all types coming from the same compilation (.o file) are grouped
5588 together. A future step could be to put the types in the same symtab as
5589 the CU the types ultimately came from. */
5590
5591 static hashval_t
5592 hash_type_unit_group (const void *item)
5593 {
5594 const struct type_unit_group *tu_group = item;
5595
5596 return hash_stmt_list_entry (&tu_group->hash);
5597 }
5598
5599 static int
5600 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5601 {
5602 const struct type_unit_group *lhs = item_lhs;
5603 const struct type_unit_group *rhs = item_rhs;
5604
5605 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5606 }
5607
5608 /* Allocate a hash table for type unit groups. */
5609
5610 static htab_t
5611 allocate_type_unit_groups_table (void)
5612 {
5613 return htab_create_alloc_ex (3,
5614 hash_type_unit_group,
5615 eq_type_unit_group,
5616 NULL,
5617 &dwarf2_per_objfile->objfile->objfile_obstack,
5618 hashtab_obstack_allocate,
5619 dummy_obstack_deallocate);
5620 }
5621
5622 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5623 partial symtabs. We combine several TUs per psymtab to not let the size
5624 of any one psymtab grow too big. */
5625 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5626 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5627
5628 /* Helper routine for get_type_unit_group.
5629 Create the type_unit_group object used to hold one or more TUs. */
5630
5631 static struct type_unit_group *
5632 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5633 {
5634 struct objfile *objfile = dwarf2_per_objfile->objfile;
5635 struct dwarf2_per_cu_data *per_cu;
5636 struct type_unit_group *tu_group;
5637
5638 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5639 struct type_unit_group);
5640 per_cu = &tu_group->per_cu;
5641 per_cu->objfile = objfile;
5642
5643 if (dwarf2_per_objfile->using_index)
5644 {
5645 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5646 struct dwarf2_per_cu_quick_data);
5647 }
5648 else
5649 {
5650 unsigned int line_offset = line_offset_struct.sect_off;
5651 struct partial_symtab *pst;
5652 char *name;
5653
5654 /* Give the symtab a useful name for debug purposes. */
5655 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5656 name = xstrprintf ("<type_units_%d>",
5657 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5658 else
5659 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5660
5661 pst = create_partial_symtab (per_cu, name);
5662 pst->anonymous = 1;
5663
5664 xfree (name);
5665 }
5666
5667 tu_group->hash.dwo_unit = cu->dwo_unit;
5668 tu_group->hash.line_offset = line_offset_struct;
5669
5670 return tu_group;
5671 }
5672
5673 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5674 STMT_LIST is a DW_AT_stmt_list attribute. */
5675
5676 static struct type_unit_group *
5677 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5678 {
5679 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5680 struct type_unit_group *tu_group;
5681 void **slot;
5682 unsigned int line_offset;
5683 struct type_unit_group type_unit_group_for_lookup;
5684
5685 if (dwarf2_per_objfile->type_unit_groups == NULL)
5686 {
5687 dwarf2_per_objfile->type_unit_groups =
5688 allocate_type_unit_groups_table ();
5689 }
5690
5691 /* Do we need to create a new group, or can we use an existing one? */
5692
5693 if (stmt_list)
5694 {
5695 line_offset = DW_UNSND (stmt_list);
5696 ++tu_stats->nr_symtab_sharers;
5697 }
5698 else
5699 {
5700 /* Ugh, no stmt_list. Rare, but we have to handle it.
5701 We can do various things here like create one group per TU or
5702 spread them over multiple groups to split up the expansion work.
5703 To avoid worst case scenarios (too many groups or too large groups)
5704 we, umm, group them in bunches. */
5705 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5706 | (tu_stats->nr_stmt_less_type_units
5707 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5708 ++tu_stats->nr_stmt_less_type_units;
5709 }
5710
5711 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5712 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5713 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5714 &type_unit_group_for_lookup, INSERT);
5715 if (*slot != NULL)
5716 {
5717 tu_group = *slot;
5718 gdb_assert (tu_group != NULL);
5719 }
5720 else
5721 {
5722 sect_offset line_offset_struct;
5723
5724 line_offset_struct.sect_off = line_offset;
5725 tu_group = create_type_unit_group (cu, line_offset_struct);
5726 *slot = tu_group;
5727 ++tu_stats->nr_symtabs;
5728 }
5729
5730 return tu_group;
5731 }
5732
5733 /* Struct used to sort TUs by their abbreviation table offset. */
5734
5735 struct tu_abbrev_offset
5736 {
5737 struct signatured_type *sig_type;
5738 sect_offset abbrev_offset;
5739 };
5740
5741 /* Helper routine for build_type_unit_groups, passed to qsort. */
5742
5743 static int
5744 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5745 {
5746 const struct tu_abbrev_offset * const *a = ap;
5747 const struct tu_abbrev_offset * const *b = bp;
5748 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5749 unsigned int boff = (*b)->abbrev_offset.sect_off;
5750
5751 return (aoff > boff) - (aoff < boff);
5752 }
5753
5754 /* A helper function to add a type_unit_group to a table. */
5755
5756 static int
5757 add_type_unit_group_to_table (void **slot, void *datum)
5758 {
5759 struct type_unit_group *tu_group = *slot;
5760 struct type_unit_group ***datap = datum;
5761
5762 **datap = tu_group;
5763 ++*datap;
5764
5765 return 1;
5766 }
5767
5768 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5769 each one passing FUNC,DATA.
5770
5771 The efficiency is because we sort TUs by the abbrev table they use and
5772 only read each abbrev table once. In one program there are 200K TUs
5773 sharing 8K abbrev tables.
5774
5775 The main purpose of this function is to support building the
5776 dwarf2_per_objfile->type_unit_groups table.
5777 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5778 can collapse the search space by grouping them by stmt_list.
5779 The savings can be significant, in the same program from above the 200K TUs
5780 share 8K stmt_list tables.
5781
5782 FUNC is expected to call get_type_unit_group, which will create the
5783 struct type_unit_group if necessary and add it to
5784 dwarf2_per_objfile->type_unit_groups. */
5785
5786 static void
5787 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5788 {
5789 struct objfile *objfile = dwarf2_per_objfile->objfile;
5790 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5791 struct cleanup *cleanups;
5792 struct abbrev_table *abbrev_table;
5793 sect_offset abbrev_offset;
5794 struct tu_abbrev_offset *sorted_by_abbrev;
5795 struct type_unit_group **iter;
5796 int i;
5797
5798 /* It's up to the caller to not call us multiple times. */
5799 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5800
5801 if (dwarf2_per_objfile->n_type_units == 0)
5802 return;
5803
5804 /* TUs typically share abbrev tables, and there can be way more TUs than
5805 abbrev tables. Sort by abbrev table to reduce the number of times we
5806 read each abbrev table in.
5807 Alternatives are to punt or to maintain a cache of abbrev tables.
5808 This is simpler and efficient enough for now.
5809
5810 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5811 symtab to use). Typically TUs with the same abbrev offset have the same
5812 stmt_list value too so in practice this should work well.
5813
5814 The basic algorithm here is:
5815
5816 sort TUs by abbrev table
5817 for each TU with same abbrev table:
5818 read abbrev table if first user
5819 read TU top level DIE
5820 [IWBN if DWO skeletons had DW_AT_stmt_list]
5821 call FUNC */
5822
5823 if (dwarf2_read_debug)
5824 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5825
5826 /* Sort in a separate table to maintain the order of all_type_units
5827 for .gdb_index: TU indices directly index all_type_units. */
5828 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5829 dwarf2_per_objfile->n_type_units);
5830 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5831 {
5832 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5833
5834 sorted_by_abbrev[i].sig_type = sig_type;
5835 sorted_by_abbrev[i].abbrev_offset =
5836 read_abbrev_offset (sig_type->per_cu.section,
5837 sig_type->per_cu.offset);
5838 }
5839 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5840 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5841 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5842
5843 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5844 called any number of times, so we don't reset tu_stats here. */
5845
5846 abbrev_offset.sect_off = ~(unsigned) 0;
5847 abbrev_table = NULL;
5848 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5849
5850 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5851 {
5852 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5853
5854 /* Switch to the next abbrev table if necessary. */
5855 if (abbrev_table == NULL
5856 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5857 {
5858 if (abbrev_table != NULL)
5859 {
5860 abbrev_table_free (abbrev_table);
5861 /* Reset to NULL in case abbrev_table_read_table throws
5862 an error: abbrev_table_free_cleanup will get called. */
5863 abbrev_table = NULL;
5864 }
5865 abbrev_offset = tu->abbrev_offset;
5866 abbrev_table =
5867 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5868 abbrev_offset);
5869 ++tu_stats->nr_uniq_abbrev_tables;
5870 }
5871
5872 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5873 func, data);
5874 }
5875
5876 /* type_unit_groups can be NULL if there is an error in the debug info.
5877 Just create an empty table so the rest of gdb doesn't have to watch
5878 for this error case. */
5879 if (dwarf2_per_objfile->type_unit_groups == NULL)
5880 {
5881 dwarf2_per_objfile->type_unit_groups =
5882 allocate_type_unit_groups_table ();
5883 dwarf2_per_objfile->n_type_unit_groups = 0;
5884 }
5885
5886 /* Create a vector of pointers to primary type units to make it easy to
5887 iterate over them and CUs. See dw2_get_primary_cu. */
5888 dwarf2_per_objfile->n_type_unit_groups =
5889 htab_elements (dwarf2_per_objfile->type_unit_groups);
5890 dwarf2_per_objfile->all_type_unit_groups =
5891 obstack_alloc (&objfile->objfile_obstack,
5892 dwarf2_per_objfile->n_type_unit_groups
5893 * sizeof (struct type_unit_group *));
5894 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5895 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5896 add_type_unit_group_to_table, &iter);
5897 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5898 == dwarf2_per_objfile->n_type_unit_groups);
5899
5900 do_cleanups (cleanups);
5901
5902 if (dwarf2_read_debug)
5903 {
5904 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5905 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5906 dwarf2_per_objfile->n_type_units);
5907 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5908 tu_stats->nr_uniq_abbrev_tables);
5909 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5910 tu_stats->nr_symtabs);
5911 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5912 tu_stats->nr_symtab_sharers);
5913 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5914 tu_stats->nr_stmt_less_type_units);
5915 }
5916 }
5917 \f
5918 /* Partial symbol tables. */
5919
5920 /* Create a psymtab named NAME and assign it to PER_CU.
5921
5922 The caller must fill in the following details:
5923 dirname, textlow, texthigh. */
5924
5925 static struct partial_symtab *
5926 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5927 {
5928 struct objfile *objfile = per_cu->objfile;
5929 struct partial_symtab *pst;
5930
5931 pst = start_psymtab_common (objfile, objfile->section_offsets,
5932 name, 0,
5933 objfile->global_psymbols.next,
5934 objfile->static_psymbols.next);
5935
5936 pst->psymtabs_addrmap_supported = 1;
5937
5938 /* This is the glue that links PST into GDB's symbol API. */
5939 pst->read_symtab_private = per_cu;
5940 pst->read_symtab = dwarf2_read_symtab;
5941 per_cu->v.psymtab = pst;
5942
5943 return pst;
5944 }
5945
5946 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5947 type. */
5948
5949 struct process_psymtab_comp_unit_data
5950 {
5951 /* True if we are reading a DW_TAG_partial_unit. */
5952
5953 int want_partial_unit;
5954
5955 /* The "pretend" language that is used if the CU doesn't declare a
5956 language. */
5957
5958 enum language pretend_language;
5959 };
5960
5961 /* die_reader_func for process_psymtab_comp_unit. */
5962
5963 static void
5964 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5965 const gdb_byte *info_ptr,
5966 struct die_info *comp_unit_die,
5967 int has_children,
5968 void *data)
5969 {
5970 struct dwarf2_cu *cu = reader->cu;
5971 struct objfile *objfile = cu->objfile;
5972 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5973 struct attribute *attr;
5974 CORE_ADDR baseaddr;
5975 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5976 struct partial_symtab *pst;
5977 int has_pc_info;
5978 const char *filename;
5979 struct process_psymtab_comp_unit_data *info = data;
5980
5981 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5982 return;
5983
5984 gdb_assert (! per_cu->is_debug_types);
5985
5986 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5987
5988 cu->list_in_scope = &file_symbols;
5989
5990 /* Allocate a new partial symbol table structure. */
5991 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5992 if (attr == NULL || !DW_STRING (attr))
5993 filename = "";
5994 else
5995 filename = DW_STRING (attr);
5996
5997 pst = create_partial_symtab (per_cu, filename);
5998
5999 /* This must be done before calling dwarf2_build_include_psymtabs. */
6000 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
6001 if (attr != NULL)
6002 pst->dirname = DW_STRING (attr);
6003
6004 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6005
6006 dwarf2_find_base_address (comp_unit_die, cu);
6007
6008 /* Possibly set the default values of LOWPC and HIGHPC from
6009 `DW_AT_ranges'. */
6010 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6011 &best_highpc, cu, pst);
6012 if (has_pc_info == 1 && best_lowpc < best_highpc)
6013 /* Store the contiguous range if it is not empty; it can be empty for
6014 CUs with no code. */
6015 addrmap_set_empty (objfile->psymtabs_addrmap,
6016 best_lowpc + baseaddr,
6017 best_highpc + baseaddr - 1, pst);
6018
6019 /* Check if comp unit has_children.
6020 If so, read the rest of the partial symbols from this comp unit.
6021 If not, there's no more debug_info for this comp unit. */
6022 if (has_children)
6023 {
6024 struct partial_die_info *first_die;
6025 CORE_ADDR lowpc, highpc;
6026
6027 lowpc = ((CORE_ADDR) -1);
6028 highpc = ((CORE_ADDR) 0);
6029
6030 first_die = load_partial_dies (reader, info_ptr, 1);
6031
6032 scan_partial_symbols (first_die, &lowpc, &highpc,
6033 ! has_pc_info, cu);
6034
6035 /* If we didn't find a lowpc, set it to highpc to avoid
6036 complaints from `maint check'. */
6037 if (lowpc == ((CORE_ADDR) -1))
6038 lowpc = highpc;
6039
6040 /* If the compilation unit didn't have an explicit address range,
6041 then use the information extracted from its child dies. */
6042 if (! has_pc_info)
6043 {
6044 best_lowpc = lowpc;
6045 best_highpc = highpc;
6046 }
6047 }
6048 pst->textlow = best_lowpc + baseaddr;
6049 pst->texthigh = best_highpc + baseaddr;
6050
6051 pst->n_global_syms = objfile->global_psymbols.next -
6052 (objfile->global_psymbols.list + pst->globals_offset);
6053 pst->n_static_syms = objfile->static_psymbols.next -
6054 (objfile->static_psymbols.list + pst->statics_offset);
6055 sort_pst_symbols (objfile, pst);
6056
6057 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6058 {
6059 int i;
6060 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6061 struct dwarf2_per_cu_data *iter;
6062
6063 /* Fill in 'dependencies' here; we fill in 'users' in a
6064 post-pass. */
6065 pst->number_of_dependencies = len;
6066 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6067 len * sizeof (struct symtab *));
6068 for (i = 0;
6069 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6070 i, iter);
6071 ++i)
6072 pst->dependencies[i] = iter->v.psymtab;
6073
6074 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6075 }
6076
6077 /* Get the list of files included in the current compilation unit,
6078 and build a psymtab for each of them. */
6079 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6080
6081 if (dwarf2_read_debug)
6082 {
6083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6084
6085 fprintf_unfiltered (gdb_stdlog,
6086 "Psymtab for %s unit @0x%x: %s - %s"
6087 ", %d global, %d static syms\n",
6088 per_cu->is_debug_types ? "type" : "comp",
6089 per_cu->offset.sect_off,
6090 paddress (gdbarch, pst->textlow),
6091 paddress (gdbarch, pst->texthigh),
6092 pst->n_global_syms, pst->n_static_syms);
6093 }
6094 }
6095
6096 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6097 Process compilation unit THIS_CU for a psymtab. */
6098
6099 static void
6100 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6101 int want_partial_unit,
6102 enum language pretend_language)
6103 {
6104 struct process_psymtab_comp_unit_data info;
6105
6106 /* If this compilation unit was already read in, free the
6107 cached copy in order to read it in again. This is
6108 necessary because we skipped some symbols when we first
6109 read in the compilation unit (see load_partial_dies).
6110 This problem could be avoided, but the benefit is unclear. */
6111 if (this_cu->cu != NULL)
6112 free_one_cached_comp_unit (this_cu);
6113
6114 gdb_assert (! this_cu->is_debug_types);
6115 info.want_partial_unit = want_partial_unit;
6116 info.pretend_language = pretend_language;
6117 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6118 process_psymtab_comp_unit_reader,
6119 &info);
6120
6121 /* Age out any secondary CUs. */
6122 age_cached_comp_units ();
6123 }
6124
6125 /* Reader function for build_type_psymtabs. */
6126
6127 static void
6128 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6129 const gdb_byte *info_ptr,
6130 struct die_info *type_unit_die,
6131 int has_children,
6132 void *data)
6133 {
6134 struct objfile *objfile = dwarf2_per_objfile->objfile;
6135 struct dwarf2_cu *cu = reader->cu;
6136 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6137 struct signatured_type *sig_type;
6138 struct type_unit_group *tu_group;
6139 struct attribute *attr;
6140 struct partial_die_info *first_die;
6141 CORE_ADDR lowpc, highpc;
6142 struct partial_symtab *pst;
6143
6144 gdb_assert (data == NULL);
6145 gdb_assert (per_cu->is_debug_types);
6146 sig_type = (struct signatured_type *) per_cu;
6147
6148 if (! has_children)
6149 return;
6150
6151 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6152 tu_group = get_type_unit_group (cu, attr);
6153
6154 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6155
6156 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6157 cu->list_in_scope = &file_symbols;
6158 pst = create_partial_symtab (per_cu, "");
6159 pst->anonymous = 1;
6160
6161 first_die = load_partial_dies (reader, info_ptr, 1);
6162
6163 lowpc = (CORE_ADDR) -1;
6164 highpc = (CORE_ADDR) 0;
6165 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6166
6167 pst->n_global_syms = objfile->global_psymbols.next -
6168 (objfile->global_psymbols.list + pst->globals_offset);
6169 pst->n_static_syms = objfile->static_psymbols.next -
6170 (objfile->static_psymbols.list + pst->statics_offset);
6171 sort_pst_symbols (objfile, pst);
6172 }
6173
6174 /* Traversal function for build_type_psymtabs. */
6175
6176 static int
6177 build_type_psymtab_dependencies (void **slot, void *info)
6178 {
6179 struct objfile *objfile = dwarf2_per_objfile->objfile;
6180 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6181 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6182 struct partial_symtab *pst = per_cu->v.psymtab;
6183 int len = VEC_length (sig_type_ptr, tu_group->tus);
6184 struct signatured_type *iter;
6185 int i;
6186
6187 gdb_assert (len > 0);
6188 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6189
6190 pst->number_of_dependencies = len;
6191 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6192 len * sizeof (struct psymtab *));
6193 for (i = 0;
6194 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6195 ++i)
6196 {
6197 gdb_assert (iter->per_cu.is_debug_types);
6198 pst->dependencies[i] = iter->per_cu.v.psymtab;
6199 iter->type_unit_group = tu_group;
6200 }
6201
6202 VEC_free (sig_type_ptr, tu_group->tus);
6203
6204 return 1;
6205 }
6206
6207 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6208 Build partial symbol tables for the .debug_types comp-units. */
6209
6210 static void
6211 build_type_psymtabs (struct objfile *objfile)
6212 {
6213 if (! create_all_type_units (objfile))
6214 return;
6215
6216 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6217
6218 /* Now that all TUs have been processed we can fill in the dependencies. */
6219 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6220 build_type_psymtab_dependencies, NULL);
6221 }
6222
6223 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6224
6225 static void
6226 psymtabs_addrmap_cleanup (void *o)
6227 {
6228 struct objfile *objfile = o;
6229
6230 objfile->psymtabs_addrmap = NULL;
6231 }
6232
6233 /* Compute the 'user' field for each psymtab in OBJFILE. */
6234
6235 static void
6236 set_partial_user (struct objfile *objfile)
6237 {
6238 int i;
6239
6240 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6241 {
6242 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6243 struct partial_symtab *pst = per_cu->v.psymtab;
6244 int j;
6245
6246 if (pst == NULL)
6247 continue;
6248
6249 for (j = 0; j < pst->number_of_dependencies; ++j)
6250 {
6251 /* Set the 'user' field only if it is not already set. */
6252 if (pst->dependencies[j]->user == NULL)
6253 pst->dependencies[j]->user = pst;
6254 }
6255 }
6256 }
6257
6258 /* Build the partial symbol table by doing a quick pass through the
6259 .debug_info and .debug_abbrev sections. */
6260
6261 static void
6262 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6263 {
6264 struct cleanup *back_to, *addrmap_cleanup;
6265 struct obstack temp_obstack;
6266 int i;
6267
6268 if (dwarf2_read_debug)
6269 {
6270 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6271 objfile_name (objfile));
6272 }
6273
6274 dwarf2_per_objfile->reading_partial_symbols = 1;
6275
6276 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6277
6278 /* Any cached compilation units will be linked by the per-objfile
6279 read_in_chain. Make sure to free them when we're done. */
6280 back_to = make_cleanup (free_cached_comp_units, NULL);
6281
6282 build_type_psymtabs (objfile);
6283
6284 create_all_comp_units (objfile);
6285
6286 /* Create a temporary address map on a temporary obstack. We later
6287 copy this to the final obstack. */
6288 obstack_init (&temp_obstack);
6289 make_cleanup_obstack_free (&temp_obstack);
6290 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6291 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6292
6293 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6294 {
6295 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6296
6297 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6298 }
6299
6300 set_partial_user (objfile);
6301
6302 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6303 &objfile->objfile_obstack);
6304 discard_cleanups (addrmap_cleanup);
6305
6306 do_cleanups (back_to);
6307
6308 if (dwarf2_read_debug)
6309 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6310 objfile_name (objfile));
6311 }
6312
6313 /* die_reader_func for load_partial_comp_unit. */
6314
6315 static void
6316 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6317 const gdb_byte *info_ptr,
6318 struct die_info *comp_unit_die,
6319 int has_children,
6320 void *data)
6321 {
6322 struct dwarf2_cu *cu = reader->cu;
6323
6324 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6325
6326 /* Check if comp unit has_children.
6327 If so, read the rest of the partial symbols from this comp unit.
6328 If not, there's no more debug_info for this comp unit. */
6329 if (has_children)
6330 load_partial_dies (reader, info_ptr, 0);
6331 }
6332
6333 /* Load the partial DIEs for a secondary CU into memory.
6334 This is also used when rereading a primary CU with load_all_dies. */
6335
6336 static void
6337 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6338 {
6339 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6340 load_partial_comp_unit_reader, NULL);
6341 }
6342
6343 static void
6344 read_comp_units_from_section (struct objfile *objfile,
6345 struct dwarf2_section_info *section,
6346 unsigned int is_dwz,
6347 int *n_allocated,
6348 int *n_comp_units,
6349 struct dwarf2_per_cu_data ***all_comp_units)
6350 {
6351 const gdb_byte *info_ptr;
6352 bfd *abfd = get_section_bfd_owner (section);
6353
6354 if (dwarf2_read_debug)
6355 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6356 get_section_name (section),
6357 get_section_file_name (section));
6358
6359 dwarf2_read_section (objfile, section);
6360
6361 info_ptr = section->buffer;
6362
6363 while (info_ptr < section->buffer + section->size)
6364 {
6365 unsigned int length, initial_length_size;
6366 struct dwarf2_per_cu_data *this_cu;
6367 sect_offset offset;
6368
6369 offset.sect_off = info_ptr - section->buffer;
6370
6371 /* Read just enough information to find out where the next
6372 compilation unit is. */
6373 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6374
6375 /* Save the compilation unit for later lookup. */
6376 this_cu = obstack_alloc (&objfile->objfile_obstack,
6377 sizeof (struct dwarf2_per_cu_data));
6378 memset (this_cu, 0, sizeof (*this_cu));
6379 this_cu->offset = offset;
6380 this_cu->length = length + initial_length_size;
6381 this_cu->is_dwz = is_dwz;
6382 this_cu->objfile = objfile;
6383 this_cu->section = section;
6384
6385 if (*n_comp_units == *n_allocated)
6386 {
6387 *n_allocated *= 2;
6388 *all_comp_units = xrealloc (*all_comp_units,
6389 *n_allocated
6390 * sizeof (struct dwarf2_per_cu_data *));
6391 }
6392 (*all_comp_units)[*n_comp_units] = this_cu;
6393 ++*n_comp_units;
6394
6395 info_ptr = info_ptr + this_cu->length;
6396 }
6397 }
6398
6399 /* Create a list of all compilation units in OBJFILE.
6400 This is only done for -readnow and building partial symtabs. */
6401
6402 static void
6403 create_all_comp_units (struct objfile *objfile)
6404 {
6405 int n_allocated;
6406 int n_comp_units;
6407 struct dwarf2_per_cu_data **all_comp_units;
6408 struct dwz_file *dwz;
6409
6410 n_comp_units = 0;
6411 n_allocated = 10;
6412 all_comp_units = xmalloc (n_allocated
6413 * sizeof (struct dwarf2_per_cu_data *));
6414
6415 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6416 &n_allocated, &n_comp_units, &all_comp_units);
6417
6418 dwz = dwarf2_get_dwz_file ();
6419 if (dwz != NULL)
6420 read_comp_units_from_section (objfile, &dwz->info, 1,
6421 &n_allocated, &n_comp_units,
6422 &all_comp_units);
6423
6424 dwarf2_per_objfile->all_comp_units
6425 = obstack_alloc (&objfile->objfile_obstack,
6426 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6427 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6428 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6429 xfree (all_comp_units);
6430 dwarf2_per_objfile->n_comp_units = n_comp_units;
6431 }
6432
6433 /* Process all loaded DIEs for compilation unit CU, starting at
6434 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6435 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6436 DW_AT_ranges). If NEED_PC is set, then this function will set
6437 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6438 and record the covered ranges in the addrmap. */
6439
6440 static void
6441 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6442 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6443 {
6444 struct partial_die_info *pdi;
6445
6446 /* Now, march along the PDI's, descending into ones which have
6447 interesting children but skipping the children of the other ones,
6448 until we reach the end of the compilation unit. */
6449
6450 pdi = first_die;
6451
6452 while (pdi != NULL)
6453 {
6454 fixup_partial_die (pdi, cu);
6455
6456 /* Anonymous namespaces or modules have no name but have interesting
6457 children, so we need to look at them. Ditto for anonymous
6458 enums. */
6459
6460 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6461 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6462 || pdi->tag == DW_TAG_imported_unit)
6463 {
6464 switch (pdi->tag)
6465 {
6466 case DW_TAG_subprogram:
6467 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6468 break;
6469 case DW_TAG_constant:
6470 case DW_TAG_variable:
6471 case DW_TAG_typedef:
6472 case DW_TAG_union_type:
6473 if (!pdi->is_declaration)
6474 {
6475 add_partial_symbol (pdi, cu);
6476 }
6477 break;
6478 case DW_TAG_class_type:
6479 case DW_TAG_interface_type:
6480 case DW_TAG_structure_type:
6481 if (!pdi->is_declaration)
6482 {
6483 add_partial_symbol (pdi, cu);
6484 }
6485 break;
6486 case DW_TAG_enumeration_type:
6487 if (!pdi->is_declaration)
6488 add_partial_enumeration (pdi, cu);
6489 break;
6490 case DW_TAG_base_type:
6491 case DW_TAG_subrange_type:
6492 /* File scope base type definitions are added to the partial
6493 symbol table. */
6494 add_partial_symbol (pdi, cu);
6495 break;
6496 case DW_TAG_namespace:
6497 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6498 break;
6499 case DW_TAG_module:
6500 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6501 break;
6502 case DW_TAG_imported_unit:
6503 {
6504 struct dwarf2_per_cu_data *per_cu;
6505
6506 /* For now we don't handle imported units in type units. */
6507 if (cu->per_cu->is_debug_types)
6508 {
6509 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6510 " supported in type units [in module %s]"),
6511 objfile_name (cu->objfile));
6512 }
6513
6514 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6515 pdi->is_dwz,
6516 cu->objfile);
6517
6518 /* Go read the partial unit, if needed. */
6519 if (per_cu->v.psymtab == NULL)
6520 process_psymtab_comp_unit (per_cu, 1, cu->language);
6521
6522 VEC_safe_push (dwarf2_per_cu_ptr,
6523 cu->per_cu->imported_symtabs, per_cu);
6524 }
6525 break;
6526 case DW_TAG_imported_declaration:
6527 add_partial_symbol (pdi, cu);
6528 break;
6529 default:
6530 break;
6531 }
6532 }
6533
6534 /* If the die has a sibling, skip to the sibling. */
6535
6536 pdi = pdi->die_sibling;
6537 }
6538 }
6539
6540 /* Functions used to compute the fully scoped name of a partial DIE.
6541
6542 Normally, this is simple. For C++, the parent DIE's fully scoped
6543 name is concatenated with "::" and the partial DIE's name. For
6544 Java, the same thing occurs except that "." is used instead of "::".
6545 Enumerators are an exception; they use the scope of their parent
6546 enumeration type, i.e. the name of the enumeration type is not
6547 prepended to the enumerator.
6548
6549 There are two complexities. One is DW_AT_specification; in this
6550 case "parent" means the parent of the target of the specification,
6551 instead of the direct parent of the DIE. The other is compilers
6552 which do not emit DW_TAG_namespace; in this case we try to guess
6553 the fully qualified name of structure types from their members'
6554 linkage names. This must be done using the DIE's children rather
6555 than the children of any DW_AT_specification target. We only need
6556 to do this for structures at the top level, i.e. if the target of
6557 any DW_AT_specification (if any; otherwise the DIE itself) does not
6558 have a parent. */
6559
6560 /* Compute the scope prefix associated with PDI's parent, in
6561 compilation unit CU. The result will be allocated on CU's
6562 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6563 field. NULL is returned if no prefix is necessary. */
6564 static const char *
6565 partial_die_parent_scope (struct partial_die_info *pdi,
6566 struct dwarf2_cu *cu)
6567 {
6568 const char *grandparent_scope;
6569 struct partial_die_info *parent, *real_pdi;
6570
6571 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6572 then this means the parent of the specification DIE. */
6573
6574 real_pdi = pdi;
6575 while (real_pdi->has_specification)
6576 real_pdi = find_partial_die (real_pdi->spec_offset,
6577 real_pdi->spec_is_dwz, cu);
6578
6579 parent = real_pdi->die_parent;
6580 if (parent == NULL)
6581 return NULL;
6582
6583 if (parent->scope_set)
6584 return parent->scope;
6585
6586 fixup_partial_die (parent, cu);
6587
6588 grandparent_scope = partial_die_parent_scope (parent, cu);
6589
6590 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6591 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6592 Work around this problem here. */
6593 if (cu->language == language_cplus
6594 && parent->tag == DW_TAG_namespace
6595 && strcmp (parent->name, "::") == 0
6596 && grandparent_scope == NULL)
6597 {
6598 parent->scope = NULL;
6599 parent->scope_set = 1;
6600 return NULL;
6601 }
6602
6603 if (pdi->tag == DW_TAG_enumerator)
6604 /* Enumerators should not get the name of the enumeration as a prefix. */
6605 parent->scope = grandparent_scope;
6606 else if (parent->tag == DW_TAG_namespace
6607 || parent->tag == DW_TAG_module
6608 || parent->tag == DW_TAG_structure_type
6609 || parent->tag == DW_TAG_class_type
6610 || parent->tag == DW_TAG_interface_type
6611 || parent->tag == DW_TAG_union_type
6612 || parent->tag == DW_TAG_enumeration_type)
6613 {
6614 if (grandparent_scope == NULL)
6615 parent->scope = parent->name;
6616 else
6617 parent->scope = typename_concat (&cu->comp_unit_obstack,
6618 grandparent_scope,
6619 parent->name, 0, cu);
6620 }
6621 else
6622 {
6623 /* FIXME drow/2004-04-01: What should we be doing with
6624 function-local names? For partial symbols, we should probably be
6625 ignoring them. */
6626 complaint (&symfile_complaints,
6627 _("unhandled containing DIE tag %d for DIE at %d"),
6628 parent->tag, pdi->offset.sect_off);
6629 parent->scope = grandparent_scope;
6630 }
6631
6632 parent->scope_set = 1;
6633 return parent->scope;
6634 }
6635
6636 /* Return the fully scoped name associated with PDI, from compilation unit
6637 CU. The result will be allocated with malloc. */
6638
6639 static char *
6640 partial_die_full_name (struct partial_die_info *pdi,
6641 struct dwarf2_cu *cu)
6642 {
6643 const char *parent_scope;
6644
6645 /* If this is a template instantiation, we can not work out the
6646 template arguments from partial DIEs. So, unfortunately, we have
6647 to go through the full DIEs. At least any work we do building
6648 types here will be reused if full symbols are loaded later. */
6649 if (pdi->has_template_arguments)
6650 {
6651 fixup_partial_die (pdi, cu);
6652
6653 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6654 {
6655 struct die_info *die;
6656 struct attribute attr;
6657 struct dwarf2_cu *ref_cu = cu;
6658
6659 /* DW_FORM_ref_addr is using section offset. */
6660 attr.name = 0;
6661 attr.form = DW_FORM_ref_addr;
6662 attr.u.unsnd = pdi->offset.sect_off;
6663 die = follow_die_ref (NULL, &attr, &ref_cu);
6664
6665 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6666 }
6667 }
6668
6669 parent_scope = partial_die_parent_scope (pdi, cu);
6670 if (parent_scope == NULL)
6671 return NULL;
6672 else
6673 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6674 }
6675
6676 static void
6677 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6678 {
6679 struct objfile *objfile = cu->objfile;
6680 CORE_ADDR addr = 0;
6681 const char *actual_name = NULL;
6682 CORE_ADDR baseaddr;
6683 char *built_actual_name;
6684
6685 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6686
6687 built_actual_name = partial_die_full_name (pdi, cu);
6688 if (built_actual_name != NULL)
6689 actual_name = built_actual_name;
6690
6691 if (actual_name == NULL)
6692 actual_name = pdi->name;
6693
6694 switch (pdi->tag)
6695 {
6696 case DW_TAG_subprogram:
6697 if (pdi->is_external || cu->language == language_ada)
6698 {
6699 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6700 of the global scope. But in Ada, we want to be able to access
6701 nested procedures globally. So all Ada subprograms are stored
6702 in the global scope. */
6703 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6704 mst_text, objfile); */
6705 add_psymbol_to_list (actual_name, strlen (actual_name),
6706 built_actual_name != NULL,
6707 VAR_DOMAIN, LOC_BLOCK,
6708 &objfile->global_psymbols,
6709 0, pdi->lowpc + baseaddr,
6710 cu->language, objfile);
6711 }
6712 else
6713 {
6714 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6715 mst_file_text, objfile); */
6716 add_psymbol_to_list (actual_name, strlen (actual_name),
6717 built_actual_name != NULL,
6718 VAR_DOMAIN, LOC_BLOCK,
6719 &objfile->static_psymbols,
6720 0, pdi->lowpc + baseaddr,
6721 cu->language, objfile);
6722 }
6723 break;
6724 case DW_TAG_constant:
6725 {
6726 struct psymbol_allocation_list *list;
6727
6728 if (pdi->is_external)
6729 list = &objfile->global_psymbols;
6730 else
6731 list = &objfile->static_psymbols;
6732 add_psymbol_to_list (actual_name, strlen (actual_name),
6733 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6734 list, 0, 0, cu->language, objfile);
6735 }
6736 break;
6737 case DW_TAG_variable:
6738 if (pdi->d.locdesc)
6739 addr = decode_locdesc (pdi->d.locdesc, cu);
6740
6741 if (pdi->d.locdesc
6742 && addr == 0
6743 && !dwarf2_per_objfile->has_section_at_zero)
6744 {
6745 /* A global or static variable may also have been stripped
6746 out by the linker if unused, in which case its address
6747 will be nullified; do not add such variables into partial
6748 symbol table then. */
6749 }
6750 else if (pdi->is_external)
6751 {
6752 /* Global Variable.
6753 Don't enter into the minimal symbol tables as there is
6754 a minimal symbol table entry from the ELF symbols already.
6755 Enter into partial symbol table if it has a location
6756 descriptor or a type.
6757 If the location descriptor is missing, new_symbol will create
6758 a LOC_UNRESOLVED symbol, the address of the variable will then
6759 be determined from the minimal symbol table whenever the variable
6760 is referenced.
6761 The address for the partial symbol table entry is not
6762 used by GDB, but it comes in handy for debugging partial symbol
6763 table building. */
6764
6765 if (pdi->d.locdesc || pdi->has_type)
6766 add_psymbol_to_list (actual_name, strlen (actual_name),
6767 built_actual_name != NULL,
6768 VAR_DOMAIN, LOC_STATIC,
6769 &objfile->global_psymbols,
6770 0, addr + baseaddr,
6771 cu->language, objfile);
6772 }
6773 else
6774 {
6775 /* Static Variable. Skip symbols without location descriptors. */
6776 if (pdi->d.locdesc == NULL)
6777 {
6778 xfree (built_actual_name);
6779 return;
6780 }
6781 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6782 mst_file_data, objfile); */
6783 add_psymbol_to_list (actual_name, strlen (actual_name),
6784 built_actual_name != NULL,
6785 VAR_DOMAIN, LOC_STATIC,
6786 &objfile->static_psymbols,
6787 0, addr + baseaddr,
6788 cu->language, objfile);
6789 }
6790 break;
6791 case DW_TAG_typedef:
6792 case DW_TAG_base_type:
6793 case DW_TAG_subrange_type:
6794 add_psymbol_to_list (actual_name, strlen (actual_name),
6795 built_actual_name != NULL,
6796 VAR_DOMAIN, LOC_TYPEDEF,
6797 &objfile->static_psymbols,
6798 0, (CORE_ADDR) 0, cu->language, objfile);
6799 break;
6800 case DW_TAG_imported_declaration:
6801 case DW_TAG_namespace:
6802 add_psymbol_to_list (actual_name, strlen (actual_name),
6803 built_actual_name != NULL,
6804 VAR_DOMAIN, LOC_TYPEDEF,
6805 &objfile->global_psymbols,
6806 0, (CORE_ADDR) 0, cu->language, objfile);
6807 break;
6808 case DW_TAG_module:
6809 add_psymbol_to_list (actual_name, strlen (actual_name),
6810 built_actual_name != NULL,
6811 MODULE_DOMAIN, LOC_TYPEDEF,
6812 &objfile->global_psymbols,
6813 0, (CORE_ADDR) 0, cu->language, objfile);
6814 break;
6815 case DW_TAG_class_type:
6816 case DW_TAG_interface_type:
6817 case DW_TAG_structure_type:
6818 case DW_TAG_union_type:
6819 case DW_TAG_enumeration_type:
6820 /* Skip external references. The DWARF standard says in the section
6821 about "Structure, Union, and Class Type Entries": "An incomplete
6822 structure, union or class type is represented by a structure,
6823 union or class entry that does not have a byte size attribute
6824 and that has a DW_AT_declaration attribute." */
6825 if (!pdi->has_byte_size && pdi->is_declaration)
6826 {
6827 xfree (built_actual_name);
6828 return;
6829 }
6830
6831 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6832 static vs. global. */
6833 add_psymbol_to_list (actual_name, strlen (actual_name),
6834 built_actual_name != NULL,
6835 STRUCT_DOMAIN, LOC_TYPEDEF,
6836 (cu->language == language_cplus
6837 || cu->language == language_java)
6838 ? &objfile->global_psymbols
6839 : &objfile->static_psymbols,
6840 0, (CORE_ADDR) 0, cu->language, objfile);
6841
6842 break;
6843 case DW_TAG_enumerator:
6844 add_psymbol_to_list (actual_name, strlen (actual_name),
6845 built_actual_name != NULL,
6846 VAR_DOMAIN, LOC_CONST,
6847 (cu->language == language_cplus
6848 || cu->language == language_java)
6849 ? &objfile->global_psymbols
6850 : &objfile->static_psymbols,
6851 0, (CORE_ADDR) 0, cu->language, objfile);
6852 break;
6853 default:
6854 break;
6855 }
6856
6857 xfree (built_actual_name);
6858 }
6859
6860 /* Read a partial die corresponding to a namespace; also, add a symbol
6861 corresponding to that namespace to the symbol table. NAMESPACE is
6862 the name of the enclosing namespace. */
6863
6864 static void
6865 add_partial_namespace (struct partial_die_info *pdi,
6866 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6867 int need_pc, struct dwarf2_cu *cu)
6868 {
6869 /* Add a symbol for the namespace. */
6870
6871 add_partial_symbol (pdi, cu);
6872
6873 /* Now scan partial symbols in that namespace. */
6874
6875 if (pdi->has_children)
6876 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6877 }
6878
6879 /* Read a partial die corresponding to a Fortran module. */
6880
6881 static void
6882 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6883 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6884 {
6885 /* Add a symbol for the namespace. */
6886
6887 add_partial_symbol (pdi, cu);
6888
6889 /* Now scan partial symbols in that module. */
6890
6891 if (pdi->has_children)
6892 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6893 }
6894
6895 /* Read a partial die corresponding to a subprogram and create a partial
6896 symbol for that subprogram. When the CU language allows it, this
6897 routine also defines a partial symbol for each nested subprogram
6898 that this subprogram contains.
6899
6900 DIE my also be a lexical block, in which case we simply search
6901 recursively for suprograms defined inside that lexical block.
6902 Again, this is only performed when the CU language allows this
6903 type of definitions. */
6904
6905 static void
6906 add_partial_subprogram (struct partial_die_info *pdi,
6907 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6908 int need_pc, struct dwarf2_cu *cu)
6909 {
6910 if (pdi->tag == DW_TAG_subprogram)
6911 {
6912 if (pdi->has_pc_info)
6913 {
6914 if (pdi->lowpc < *lowpc)
6915 *lowpc = pdi->lowpc;
6916 if (pdi->highpc > *highpc)
6917 *highpc = pdi->highpc;
6918 if (need_pc)
6919 {
6920 CORE_ADDR baseaddr;
6921 struct objfile *objfile = cu->objfile;
6922
6923 baseaddr = ANOFFSET (objfile->section_offsets,
6924 SECT_OFF_TEXT (objfile));
6925 addrmap_set_empty (objfile->psymtabs_addrmap,
6926 pdi->lowpc + baseaddr,
6927 pdi->highpc - 1 + baseaddr,
6928 cu->per_cu->v.psymtab);
6929 }
6930 }
6931
6932 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6933 {
6934 if (!pdi->is_declaration)
6935 /* Ignore subprogram DIEs that do not have a name, they are
6936 illegal. Do not emit a complaint at this point, we will
6937 do so when we convert this psymtab into a symtab. */
6938 if (pdi->name)
6939 add_partial_symbol (pdi, cu);
6940 }
6941 }
6942
6943 if (! pdi->has_children)
6944 return;
6945
6946 if (cu->language == language_ada)
6947 {
6948 pdi = pdi->die_child;
6949 while (pdi != NULL)
6950 {
6951 fixup_partial_die (pdi, cu);
6952 if (pdi->tag == DW_TAG_subprogram
6953 || pdi->tag == DW_TAG_lexical_block)
6954 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6955 pdi = pdi->die_sibling;
6956 }
6957 }
6958 }
6959
6960 /* Read a partial die corresponding to an enumeration type. */
6961
6962 static void
6963 add_partial_enumeration (struct partial_die_info *enum_pdi,
6964 struct dwarf2_cu *cu)
6965 {
6966 struct partial_die_info *pdi;
6967
6968 if (enum_pdi->name != NULL)
6969 add_partial_symbol (enum_pdi, cu);
6970
6971 pdi = enum_pdi->die_child;
6972 while (pdi)
6973 {
6974 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6975 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6976 else
6977 add_partial_symbol (pdi, cu);
6978 pdi = pdi->die_sibling;
6979 }
6980 }
6981
6982 /* Return the initial uleb128 in the die at INFO_PTR. */
6983
6984 static unsigned int
6985 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6986 {
6987 unsigned int bytes_read;
6988
6989 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6990 }
6991
6992 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6993 Return the corresponding abbrev, or NULL if the number is zero (indicating
6994 an empty DIE). In either case *BYTES_READ will be set to the length of
6995 the initial number. */
6996
6997 static struct abbrev_info *
6998 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6999 struct dwarf2_cu *cu)
7000 {
7001 bfd *abfd = cu->objfile->obfd;
7002 unsigned int abbrev_number;
7003 struct abbrev_info *abbrev;
7004
7005 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7006
7007 if (abbrev_number == 0)
7008 return NULL;
7009
7010 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7011 if (!abbrev)
7012 {
7013 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7014 abbrev_number, bfd_get_filename (abfd));
7015 }
7016
7017 return abbrev;
7018 }
7019
7020 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7021 Returns a pointer to the end of a series of DIEs, terminated by an empty
7022 DIE. Any children of the skipped DIEs will also be skipped. */
7023
7024 static const gdb_byte *
7025 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7026 {
7027 struct dwarf2_cu *cu = reader->cu;
7028 struct abbrev_info *abbrev;
7029 unsigned int bytes_read;
7030
7031 while (1)
7032 {
7033 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7034 if (abbrev == NULL)
7035 return info_ptr + bytes_read;
7036 else
7037 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7038 }
7039 }
7040
7041 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7042 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7043 abbrev corresponding to that skipped uleb128 should be passed in
7044 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7045 children. */
7046
7047 static const gdb_byte *
7048 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7049 struct abbrev_info *abbrev)
7050 {
7051 unsigned int bytes_read;
7052 struct attribute attr;
7053 bfd *abfd = reader->abfd;
7054 struct dwarf2_cu *cu = reader->cu;
7055 const gdb_byte *buffer = reader->buffer;
7056 const gdb_byte *buffer_end = reader->buffer_end;
7057 const gdb_byte *start_info_ptr = info_ptr;
7058 unsigned int form, i;
7059
7060 for (i = 0; i < abbrev->num_attrs; i++)
7061 {
7062 /* The only abbrev we care about is DW_AT_sibling. */
7063 if (abbrev->attrs[i].name == DW_AT_sibling)
7064 {
7065 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7066 if (attr.form == DW_FORM_ref_addr)
7067 complaint (&symfile_complaints,
7068 _("ignoring absolute DW_AT_sibling"));
7069 else
7070 {
7071 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7072 const gdb_byte *sibling_ptr = buffer + off;
7073
7074 if (sibling_ptr < info_ptr)
7075 complaint (&symfile_complaints,
7076 _("DW_AT_sibling points backwards"));
7077 else
7078 return sibling_ptr;
7079 }
7080 }
7081
7082 /* If it isn't DW_AT_sibling, skip this attribute. */
7083 form = abbrev->attrs[i].form;
7084 skip_attribute:
7085 switch (form)
7086 {
7087 case DW_FORM_ref_addr:
7088 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7089 and later it is offset sized. */
7090 if (cu->header.version == 2)
7091 info_ptr += cu->header.addr_size;
7092 else
7093 info_ptr += cu->header.offset_size;
7094 break;
7095 case DW_FORM_GNU_ref_alt:
7096 info_ptr += cu->header.offset_size;
7097 break;
7098 case DW_FORM_addr:
7099 info_ptr += cu->header.addr_size;
7100 break;
7101 case DW_FORM_data1:
7102 case DW_FORM_ref1:
7103 case DW_FORM_flag:
7104 info_ptr += 1;
7105 break;
7106 case DW_FORM_flag_present:
7107 break;
7108 case DW_FORM_data2:
7109 case DW_FORM_ref2:
7110 info_ptr += 2;
7111 break;
7112 case DW_FORM_data4:
7113 case DW_FORM_ref4:
7114 info_ptr += 4;
7115 break;
7116 case DW_FORM_data8:
7117 case DW_FORM_ref8:
7118 case DW_FORM_ref_sig8:
7119 info_ptr += 8;
7120 break;
7121 case DW_FORM_string:
7122 read_direct_string (abfd, info_ptr, &bytes_read);
7123 info_ptr += bytes_read;
7124 break;
7125 case DW_FORM_sec_offset:
7126 case DW_FORM_strp:
7127 case DW_FORM_GNU_strp_alt:
7128 info_ptr += cu->header.offset_size;
7129 break;
7130 case DW_FORM_exprloc:
7131 case DW_FORM_block:
7132 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7133 info_ptr += bytes_read;
7134 break;
7135 case DW_FORM_block1:
7136 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7137 break;
7138 case DW_FORM_block2:
7139 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7140 break;
7141 case DW_FORM_block4:
7142 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7143 break;
7144 case DW_FORM_sdata:
7145 case DW_FORM_udata:
7146 case DW_FORM_ref_udata:
7147 case DW_FORM_GNU_addr_index:
7148 case DW_FORM_GNU_str_index:
7149 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7150 break;
7151 case DW_FORM_indirect:
7152 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7153 info_ptr += bytes_read;
7154 /* We need to continue parsing from here, so just go back to
7155 the top. */
7156 goto skip_attribute;
7157
7158 default:
7159 error (_("Dwarf Error: Cannot handle %s "
7160 "in DWARF reader [in module %s]"),
7161 dwarf_form_name (form),
7162 bfd_get_filename (abfd));
7163 }
7164 }
7165
7166 if (abbrev->has_children)
7167 return skip_children (reader, info_ptr);
7168 else
7169 return info_ptr;
7170 }
7171
7172 /* Locate ORIG_PDI's sibling.
7173 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7174
7175 static const gdb_byte *
7176 locate_pdi_sibling (const struct die_reader_specs *reader,
7177 struct partial_die_info *orig_pdi,
7178 const gdb_byte *info_ptr)
7179 {
7180 /* Do we know the sibling already? */
7181
7182 if (orig_pdi->sibling)
7183 return orig_pdi->sibling;
7184
7185 /* Are there any children to deal with? */
7186
7187 if (!orig_pdi->has_children)
7188 return info_ptr;
7189
7190 /* Skip the children the long way. */
7191
7192 return skip_children (reader, info_ptr);
7193 }
7194
7195 /* Expand this partial symbol table into a full symbol table. SELF is
7196 not NULL. */
7197
7198 static void
7199 dwarf2_read_symtab (struct partial_symtab *self,
7200 struct objfile *objfile)
7201 {
7202 if (self->readin)
7203 {
7204 warning (_("bug: psymtab for %s is already read in."),
7205 self->filename);
7206 }
7207 else
7208 {
7209 if (info_verbose)
7210 {
7211 printf_filtered (_("Reading in symbols for %s..."),
7212 self->filename);
7213 gdb_flush (gdb_stdout);
7214 }
7215
7216 /* Restore our global data. */
7217 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7218
7219 /* If this psymtab is constructed from a debug-only objfile, the
7220 has_section_at_zero flag will not necessarily be correct. We
7221 can get the correct value for this flag by looking at the data
7222 associated with the (presumably stripped) associated objfile. */
7223 if (objfile->separate_debug_objfile_backlink)
7224 {
7225 struct dwarf2_per_objfile *dpo_backlink
7226 = objfile_data (objfile->separate_debug_objfile_backlink,
7227 dwarf2_objfile_data_key);
7228
7229 dwarf2_per_objfile->has_section_at_zero
7230 = dpo_backlink->has_section_at_zero;
7231 }
7232
7233 dwarf2_per_objfile->reading_partial_symbols = 0;
7234
7235 psymtab_to_symtab_1 (self);
7236
7237 /* Finish up the debug error message. */
7238 if (info_verbose)
7239 printf_filtered (_("done.\n"));
7240 }
7241
7242 process_cu_includes ();
7243 }
7244 \f
7245 /* Reading in full CUs. */
7246
7247 /* Add PER_CU to the queue. */
7248
7249 static void
7250 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7251 enum language pretend_language)
7252 {
7253 struct dwarf2_queue_item *item;
7254
7255 per_cu->queued = 1;
7256 item = xmalloc (sizeof (*item));
7257 item->per_cu = per_cu;
7258 item->pretend_language = pretend_language;
7259 item->next = NULL;
7260
7261 if (dwarf2_queue == NULL)
7262 dwarf2_queue = item;
7263 else
7264 dwarf2_queue_tail->next = item;
7265
7266 dwarf2_queue_tail = item;
7267 }
7268
7269 /* If PER_CU is not yet queued, add it to the queue.
7270 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7271 dependency.
7272 The result is non-zero if PER_CU was queued, otherwise the result is zero
7273 meaning either PER_CU is already queued or it is already loaded.
7274
7275 N.B. There is an invariant here that if a CU is queued then it is loaded.
7276 The caller is required to load PER_CU if we return non-zero. */
7277
7278 static int
7279 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7280 struct dwarf2_per_cu_data *per_cu,
7281 enum language pretend_language)
7282 {
7283 /* We may arrive here during partial symbol reading, if we need full
7284 DIEs to process an unusual case (e.g. template arguments). Do
7285 not queue PER_CU, just tell our caller to load its DIEs. */
7286 if (dwarf2_per_objfile->reading_partial_symbols)
7287 {
7288 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7289 return 1;
7290 return 0;
7291 }
7292
7293 /* Mark the dependence relation so that we don't flush PER_CU
7294 too early. */
7295 if (dependent_cu != NULL)
7296 dwarf2_add_dependence (dependent_cu, per_cu);
7297
7298 /* If it's already on the queue, we have nothing to do. */
7299 if (per_cu->queued)
7300 return 0;
7301
7302 /* If the compilation unit is already loaded, just mark it as
7303 used. */
7304 if (per_cu->cu != NULL)
7305 {
7306 per_cu->cu->last_used = 0;
7307 return 0;
7308 }
7309
7310 /* Add it to the queue. */
7311 queue_comp_unit (per_cu, pretend_language);
7312
7313 return 1;
7314 }
7315
7316 /* Process the queue. */
7317
7318 static void
7319 process_queue (void)
7320 {
7321 struct dwarf2_queue_item *item, *next_item;
7322
7323 if (dwarf2_read_debug)
7324 {
7325 fprintf_unfiltered (gdb_stdlog,
7326 "Expanding one or more symtabs of objfile %s ...\n",
7327 objfile_name (dwarf2_per_objfile->objfile));
7328 }
7329
7330 /* The queue starts out with one item, but following a DIE reference
7331 may load a new CU, adding it to the end of the queue. */
7332 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7333 {
7334 if (dwarf2_per_objfile->using_index
7335 ? !item->per_cu->v.quick->symtab
7336 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7337 {
7338 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7339 unsigned int debug_print_threshold;
7340 char buf[100];
7341
7342 if (per_cu->is_debug_types)
7343 {
7344 struct signatured_type *sig_type =
7345 (struct signatured_type *) per_cu;
7346
7347 sprintf (buf, "TU %s at offset 0x%x",
7348 hex_string (sig_type->signature),
7349 per_cu->offset.sect_off);
7350 /* There can be 100s of TUs.
7351 Only print them in verbose mode. */
7352 debug_print_threshold = 2;
7353 }
7354 else
7355 {
7356 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7357 debug_print_threshold = 1;
7358 }
7359
7360 if (dwarf2_read_debug >= debug_print_threshold)
7361 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7362
7363 if (per_cu->is_debug_types)
7364 process_full_type_unit (per_cu, item->pretend_language);
7365 else
7366 process_full_comp_unit (per_cu, item->pretend_language);
7367
7368 if (dwarf2_read_debug >= debug_print_threshold)
7369 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7370 }
7371
7372 item->per_cu->queued = 0;
7373 next_item = item->next;
7374 xfree (item);
7375 }
7376
7377 dwarf2_queue_tail = NULL;
7378
7379 if (dwarf2_read_debug)
7380 {
7381 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7382 objfile_name (dwarf2_per_objfile->objfile));
7383 }
7384 }
7385
7386 /* Free all allocated queue entries. This function only releases anything if
7387 an error was thrown; if the queue was processed then it would have been
7388 freed as we went along. */
7389
7390 static void
7391 dwarf2_release_queue (void *dummy)
7392 {
7393 struct dwarf2_queue_item *item, *last;
7394
7395 item = dwarf2_queue;
7396 while (item)
7397 {
7398 /* Anything still marked queued is likely to be in an
7399 inconsistent state, so discard it. */
7400 if (item->per_cu->queued)
7401 {
7402 if (item->per_cu->cu != NULL)
7403 free_one_cached_comp_unit (item->per_cu);
7404 item->per_cu->queued = 0;
7405 }
7406
7407 last = item;
7408 item = item->next;
7409 xfree (last);
7410 }
7411
7412 dwarf2_queue = dwarf2_queue_tail = NULL;
7413 }
7414
7415 /* Read in full symbols for PST, and anything it depends on. */
7416
7417 static void
7418 psymtab_to_symtab_1 (struct partial_symtab *pst)
7419 {
7420 struct dwarf2_per_cu_data *per_cu;
7421 int i;
7422
7423 if (pst->readin)
7424 return;
7425
7426 for (i = 0; i < pst->number_of_dependencies; i++)
7427 if (!pst->dependencies[i]->readin
7428 && pst->dependencies[i]->user == NULL)
7429 {
7430 /* Inform about additional files that need to be read in. */
7431 if (info_verbose)
7432 {
7433 /* FIXME: i18n: Need to make this a single string. */
7434 fputs_filtered (" ", gdb_stdout);
7435 wrap_here ("");
7436 fputs_filtered ("and ", gdb_stdout);
7437 wrap_here ("");
7438 printf_filtered ("%s...", pst->dependencies[i]->filename);
7439 wrap_here (""); /* Flush output. */
7440 gdb_flush (gdb_stdout);
7441 }
7442 psymtab_to_symtab_1 (pst->dependencies[i]);
7443 }
7444
7445 per_cu = pst->read_symtab_private;
7446
7447 if (per_cu == NULL)
7448 {
7449 /* It's an include file, no symbols to read for it.
7450 Everything is in the parent symtab. */
7451 pst->readin = 1;
7452 return;
7453 }
7454
7455 dw2_do_instantiate_symtab (per_cu);
7456 }
7457
7458 /* Trivial hash function for die_info: the hash value of a DIE
7459 is its offset in .debug_info for this objfile. */
7460
7461 static hashval_t
7462 die_hash (const void *item)
7463 {
7464 const struct die_info *die = item;
7465
7466 return die->offset.sect_off;
7467 }
7468
7469 /* Trivial comparison function for die_info structures: two DIEs
7470 are equal if they have the same offset. */
7471
7472 static int
7473 die_eq (const void *item_lhs, const void *item_rhs)
7474 {
7475 const struct die_info *die_lhs = item_lhs;
7476 const struct die_info *die_rhs = item_rhs;
7477
7478 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7479 }
7480
7481 /* die_reader_func for load_full_comp_unit.
7482 This is identical to read_signatured_type_reader,
7483 but is kept separate for now. */
7484
7485 static void
7486 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7487 const gdb_byte *info_ptr,
7488 struct die_info *comp_unit_die,
7489 int has_children,
7490 void *data)
7491 {
7492 struct dwarf2_cu *cu = reader->cu;
7493 enum language *language_ptr = data;
7494
7495 gdb_assert (cu->die_hash == NULL);
7496 cu->die_hash =
7497 htab_create_alloc_ex (cu->header.length / 12,
7498 die_hash,
7499 die_eq,
7500 NULL,
7501 &cu->comp_unit_obstack,
7502 hashtab_obstack_allocate,
7503 dummy_obstack_deallocate);
7504
7505 if (has_children)
7506 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7507 &info_ptr, comp_unit_die);
7508 cu->dies = comp_unit_die;
7509 /* comp_unit_die is not stored in die_hash, no need. */
7510
7511 /* We try not to read any attributes in this function, because not
7512 all CUs needed for references have been loaded yet, and symbol
7513 table processing isn't initialized. But we have to set the CU language,
7514 or we won't be able to build types correctly.
7515 Similarly, if we do not read the producer, we can not apply
7516 producer-specific interpretation. */
7517 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7518 }
7519
7520 /* Load the DIEs associated with PER_CU into memory. */
7521
7522 static void
7523 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7524 enum language pretend_language)
7525 {
7526 gdb_assert (! this_cu->is_debug_types);
7527
7528 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7529 load_full_comp_unit_reader, &pretend_language);
7530 }
7531
7532 /* Add a DIE to the delayed physname list. */
7533
7534 static void
7535 add_to_method_list (struct type *type, int fnfield_index, int index,
7536 const char *name, struct die_info *die,
7537 struct dwarf2_cu *cu)
7538 {
7539 struct delayed_method_info mi;
7540 mi.type = type;
7541 mi.fnfield_index = fnfield_index;
7542 mi.index = index;
7543 mi.name = name;
7544 mi.die = die;
7545 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7546 }
7547
7548 /* A cleanup for freeing the delayed method list. */
7549
7550 static void
7551 free_delayed_list (void *ptr)
7552 {
7553 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7554 if (cu->method_list != NULL)
7555 {
7556 VEC_free (delayed_method_info, cu->method_list);
7557 cu->method_list = NULL;
7558 }
7559 }
7560
7561 /* Compute the physnames of any methods on the CU's method list.
7562
7563 The computation of method physnames is delayed in order to avoid the
7564 (bad) condition that one of the method's formal parameters is of an as yet
7565 incomplete type. */
7566
7567 static void
7568 compute_delayed_physnames (struct dwarf2_cu *cu)
7569 {
7570 int i;
7571 struct delayed_method_info *mi;
7572 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7573 {
7574 const char *physname;
7575 struct fn_fieldlist *fn_flp
7576 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7577 physname = dwarf2_physname (mi->name, mi->die, cu);
7578 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7579 }
7580 }
7581
7582 /* Go objects should be embedded in a DW_TAG_module DIE,
7583 and it's not clear if/how imported objects will appear.
7584 To keep Go support simple until that's worked out,
7585 go back through what we've read and create something usable.
7586 We could do this while processing each DIE, and feels kinda cleaner,
7587 but that way is more invasive.
7588 This is to, for example, allow the user to type "p var" or "b main"
7589 without having to specify the package name, and allow lookups
7590 of module.object to work in contexts that use the expression
7591 parser. */
7592
7593 static void
7594 fixup_go_packaging (struct dwarf2_cu *cu)
7595 {
7596 char *package_name = NULL;
7597 struct pending *list;
7598 int i;
7599
7600 for (list = global_symbols; list != NULL; list = list->next)
7601 {
7602 for (i = 0; i < list->nsyms; ++i)
7603 {
7604 struct symbol *sym = list->symbol[i];
7605
7606 if (SYMBOL_LANGUAGE (sym) == language_go
7607 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7608 {
7609 char *this_package_name = go_symbol_package_name (sym);
7610
7611 if (this_package_name == NULL)
7612 continue;
7613 if (package_name == NULL)
7614 package_name = this_package_name;
7615 else
7616 {
7617 if (strcmp (package_name, this_package_name) != 0)
7618 complaint (&symfile_complaints,
7619 _("Symtab %s has objects from two different Go packages: %s and %s"),
7620 (SYMBOL_SYMTAB (sym)
7621 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7622 : objfile_name (cu->objfile)),
7623 this_package_name, package_name);
7624 xfree (this_package_name);
7625 }
7626 }
7627 }
7628 }
7629
7630 if (package_name != NULL)
7631 {
7632 struct objfile *objfile = cu->objfile;
7633 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7634 package_name,
7635 strlen (package_name));
7636 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7637 saved_package_name, objfile);
7638 struct symbol *sym;
7639
7640 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7641
7642 sym = allocate_symbol (objfile);
7643 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7644 SYMBOL_SET_NAMES (sym, saved_package_name,
7645 strlen (saved_package_name), 0, objfile);
7646 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7647 e.g., "main" finds the "main" module and not C's main(). */
7648 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7649 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7650 SYMBOL_TYPE (sym) = type;
7651
7652 add_symbol_to_list (sym, &global_symbols);
7653
7654 xfree (package_name);
7655 }
7656 }
7657
7658 /* Return the symtab for PER_CU. This works properly regardless of
7659 whether we're using the index or psymtabs. */
7660
7661 static struct symtab *
7662 get_symtab (struct dwarf2_per_cu_data *per_cu)
7663 {
7664 return (dwarf2_per_objfile->using_index
7665 ? per_cu->v.quick->symtab
7666 : per_cu->v.psymtab->symtab);
7667 }
7668
7669 /* A helper function for computing the list of all symbol tables
7670 included by PER_CU. */
7671
7672 static void
7673 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7674 htab_t all_children, htab_t all_type_symtabs,
7675 struct dwarf2_per_cu_data *per_cu,
7676 struct symtab *immediate_parent)
7677 {
7678 void **slot;
7679 int ix;
7680 struct symtab *symtab;
7681 struct dwarf2_per_cu_data *iter;
7682
7683 slot = htab_find_slot (all_children, per_cu, INSERT);
7684 if (*slot != NULL)
7685 {
7686 /* This inclusion and its children have been processed. */
7687 return;
7688 }
7689
7690 *slot = per_cu;
7691 /* Only add a CU if it has a symbol table. */
7692 symtab = get_symtab (per_cu);
7693 if (symtab != NULL)
7694 {
7695 /* If this is a type unit only add its symbol table if we haven't
7696 seen it yet (type unit per_cu's can share symtabs). */
7697 if (per_cu->is_debug_types)
7698 {
7699 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7700 if (*slot == NULL)
7701 {
7702 *slot = symtab;
7703 VEC_safe_push (symtab_ptr, *result, symtab);
7704 if (symtab->user == NULL)
7705 symtab->user = immediate_parent;
7706 }
7707 }
7708 else
7709 {
7710 VEC_safe_push (symtab_ptr, *result, symtab);
7711 if (symtab->user == NULL)
7712 symtab->user = immediate_parent;
7713 }
7714 }
7715
7716 for (ix = 0;
7717 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7718 ++ix)
7719 {
7720 recursively_compute_inclusions (result, all_children,
7721 all_type_symtabs, iter, symtab);
7722 }
7723 }
7724
7725 /* Compute the symtab 'includes' fields for the symtab related to
7726 PER_CU. */
7727
7728 static void
7729 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7730 {
7731 gdb_assert (! per_cu->is_debug_types);
7732
7733 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7734 {
7735 int ix, len;
7736 struct dwarf2_per_cu_data *per_cu_iter;
7737 struct symtab *symtab_iter;
7738 VEC (symtab_ptr) *result_symtabs = NULL;
7739 htab_t all_children, all_type_symtabs;
7740 struct symtab *symtab = get_symtab (per_cu);
7741
7742 /* If we don't have a symtab, we can just skip this case. */
7743 if (symtab == NULL)
7744 return;
7745
7746 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7747 NULL, xcalloc, xfree);
7748 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7749 NULL, xcalloc, xfree);
7750
7751 for (ix = 0;
7752 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7753 ix, per_cu_iter);
7754 ++ix)
7755 {
7756 recursively_compute_inclusions (&result_symtabs, all_children,
7757 all_type_symtabs, per_cu_iter,
7758 symtab);
7759 }
7760
7761 /* Now we have a transitive closure of all the included symtabs. */
7762 len = VEC_length (symtab_ptr, result_symtabs);
7763 symtab->includes
7764 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7765 (len + 1) * sizeof (struct symtab *));
7766 for (ix = 0;
7767 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7768 ++ix)
7769 symtab->includes[ix] = symtab_iter;
7770 symtab->includes[len] = NULL;
7771
7772 VEC_free (symtab_ptr, result_symtabs);
7773 htab_delete (all_children);
7774 htab_delete (all_type_symtabs);
7775 }
7776 }
7777
7778 /* Compute the 'includes' field for the symtabs of all the CUs we just
7779 read. */
7780
7781 static void
7782 process_cu_includes (void)
7783 {
7784 int ix;
7785 struct dwarf2_per_cu_data *iter;
7786
7787 for (ix = 0;
7788 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7789 ix, iter);
7790 ++ix)
7791 {
7792 if (! iter->is_debug_types)
7793 compute_symtab_includes (iter);
7794 }
7795
7796 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7797 }
7798
7799 /* Generate full symbol information for PER_CU, whose DIEs have
7800 already been loaded into memory. */
7801
7802 static void
7803 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7804 enum language pretend_language)
7805 {
7806 struct dwarf2_cu *cu = per_cu->cu;
7807 struct objfile *objfile = per_cu->objfile;
7808 CORE_ADDR lowpc, highpc;
7809 struct symtab *symtab;
7810 struct cleanup *back_to, *delayed_list_cleanup;
7811 CORE_ADDR baseaddr;
7812 struct block *static_block;
7813
7814 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7815
7816 buildsym_init ();
7817 back_to = make_cleanup (really_free_pendings, NULL);
7818 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7819
7820 cu->list_in_scope = &file_symbols;
7821
7822 cu->language = pretend_language;
7823 cu->language_defn = language_def (cu->language);
7824
7825 /* Do line number decoding in read_file_scope () */
7826 process_die (cu->dies, cu);
7827
7828 /* For now fudge the Go package. */
7829 if (cu->language == language_go)
7830 fixup_go_packaging (cu);
7831
7832 /* Now that we have processed all the DIEs in the CU, all the types
7833 should be complete, and it should now be safe to compute all of the
7834 physnames. */
7835 compute_delayed_physnames (cu);
7836 do_cleanups (delayed_list_cleanup);
7837
7838 /* Some compilers don't define a DW_AT_high_pc attribute for the
7839 compilation unit. If the DW_AT_high_pc is missing, synthesize
7840 it, by scanning the DIE's below the compilation unit. */
7841 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7842
7843 static_block
7844 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7845
7846 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7847 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7848 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7849 addrmap to help ensure it has an accurate map of pc values belonging to
7850 this comp unit. */
7851 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7852
7853 symtab = end_symtab_from_static_block (static_block, objfile,
7854 SECT_OFF_TEXT (objfile), 0);
7855
7856 if (symtab != NULL)
7857 {
7858 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7859
7860 /* Set symtab language to language from DW_AT_language. If the
7861 compilation is from a C file generated by language preprocessors, do
7862 not set the language if it was already deduced by start_subfile. */
7863 if (!(cu->language == language_c && symtab->language != language_c))
7864 symtab->language = cu->language;
7865
7866 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7867 produce DW_AT_location with location lists but it can be possibly
7868 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7869 there were bugs in prologue debug info, fixed later in GCC-4.5
7870 by "unwind info for epilogues" patch (which is not directly related).
7871
7872 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7873 needed, it would be wrong due to missing DW_AT_producer there.
7874
7875 Still one can confuse GDB by using non-standard GCC compilation
7876 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7877 */
7878 if (cu->has_loclist && gcc_4_minor >= 5)
7879 symtab->locations_valid = 1;
7880
7881 if (gcc_4_minor >= 5)
7882 symtab->epilogue_unwind_valid = 1;
7883
7884 symtab->call_site_htab = cu->call_site_htab;
7885 }
7886
7887 if (dwarf2_per_objfile->using_index)
7888 per_cu->v.quick->symtab = symtab;
7889 else
7890 {
7891 struct partial_symtab *pst = per_cu->v.psymtab;
7892 pst->symtab = symtab;
7893 pst->readin = 1;
7894 }
7895
7896 /* Push it for inclusion processing later. */
7897 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7898
7899 do_cleanups (back_to);
7900 }
7901
7902 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7903 already been loaded into memory. */
7904
7905 static void
7906 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7907 enum language pretend_language)
7908 {
7909 struct dwarf2_cu *cu = per_cu->cu;
7910 struct objfile *objfile = per_cu->objfile;
7911 struct symtab *symtab;
7912 struct cleanup *back_to, *delayed_list_cleanup;
7913 struct signatured_type *sig_type;
7914
7915 gdb_assert (per_cu->is_debug_types);
7916 sig_type = (struct signatured_type *) per_cu;
7917
7918 buildsym_init ();
7919 back_to = make_cleanup (really_free_pendings, NULL);
7920 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7921
7922 cu->list_in_scope = &file_symbols;
7923
7924 cu->language = pretend_language;
7925 cu->language_defn = language_def (cu->language);
7926
7927 /* The symbol tables are set up in read_type_unit_scope. */
7928 process_die (cu->dies, cu);
7929
7930 /* For now fudge the Go package. */
7931 if (cu->language == language_go)
7932 fixup_go_packaging (cu);
7933
7934 /* Now that we have processed all the DIEs in the CU, all the types
7935 should be complete, and it should now be safe to compute all of the
7936 physnames. */
7937 compute_delayed_physnames (cu);
7938 do_cleanups (delayed_list_cleanup);
7939
7940 /* TUs share symbol tables.
7941 If this is the first TU to use this symtab, complete the construction
7942 of it with end_expandable_symtab. Otherwise, complete the addition of
7943 this TU's symbols to the existing symtab. */
7944 if (sig_type->type_unit_group->primary_symtab == NULL)
7945 {
7946 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7947 sig_type->type_unit_group->primary_symtab = symtab;
7948
7949 if (symtab != NULL)
7950 {
7951 /* Set symtab language to language from DW_AT_language. If the
7952 compilation is from a C file generated by language preprocessors,
7953 do not set the language if it was already deduced by
7954 start_subfile. */
7955 if (!(cu->language == language_c && symtab->language != language_c))
7956 symtab->language = cu->language;
7957 }
7958 }
7959 else
7960 {
7961 augment_type_symtab (objfile,
7962 sig_type->type_unit_group->primary_symtab);
7963 symtab = sig_type->type_unit_group->primary_symtab;
7964 }
7965
7966 if (dwarf2_per_objfile->using_index)
7967 per_cu->v.quick->symtab = symtab;
7968 else
7969 {
7970 struct partial_symtab *pst = per_cu->v.psymtab;
7971 pst->symtab = symtab;
7972 pst->readin = 1;
7973 }
7974
7975 do_cleanups (back_to);
7976 }
7977
7978 /* Process an imported unit DIE. */
7979
7980 static void
7981 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7982 {
7983 struct attribute *attr;
7984
7985 /* For now we don't handle imported units in type units. */
7986 if (cu->per_cu->is_debug_types)
7987 {
7988 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7989 " supported in type units [in module %s]"),
7990 objfile_name (cu->objfile));
7991 }
7992
7993 attr = dwarf2_attr (die, DW_AT_import, cu);
7994 if (attr != NULL)
7995 {
7996 struct dwarf2_per_cu_data *per_cu;
7997 struct symtab *imported_symtab;
7998 sect_offset offset;
7999 int is_dwz;
8000
8001 offset = dwarf2_get_ref_die_offset (attr);
8002 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8003 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8004
8005 /* If necessary, add it to the queue and load its DIEs. */
8006 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8007 load_full_comp_unit (per_cu, cu->language);
8008
8009 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8010 per_cu);
8011 }
8012 }
8013
8014 /* Reset the in_process bit of a die. */
8015
8016 static void
8017 reset_die_in_process (void *arg)
8018 {
8019 struct die_info *die = arg;
8020 die->in_process = 0;
8021 }
8022
8023 /* Process a die and its children. */
8024
8025 static void
8026 process_die (struct die_info *die, struct dwarf2_cu *cu)
8027 {
8028 struct cleanup *in_process;
8029
8030 /* We should only be processing those not already in process. */
8031 gdb_assert (!die->in_process);
8032
8033 die->in_process = 1;
8034 in_process = make_cleanup (reset_die_in_process,die);
8035
8036 switch (die->tag)
8037 {
8038 case DW_TAG_padding:
8039 break;
8040 case DW_TAG_compile_unit:
8041 case DW_TAG_partial_unit:
8042 read_file_scope (die, cu);
8043 break;
8044 case DW_TAG_type_unit:
8045 read_type_unit_scope (die, cu);
8046 break;
8047 case DW_TAG_subprogram:
8048 case DW_TAG_inlined_subroutine:
8049 read_func_scope (die, cu);
8050 break;
8051 case DW_TAG_lexical_block:
8052 case DW_TAG_try_block:
8053 case DW_TAG_catch_block:
8054 read_lexical_block_scope (die, cu);
8055 break;
8056 case DW_TAG_GNU_call_site:
8057 read_call_site_scope (die, cu);
8058 break;
8059 case DW_TAG_class_type:
8060 case DW_TAG_interface_type:
8061 case DW_TAG_structure_type:
8062 case DW_TAG_union_type:
8063 process_structure_scope (die, cu);
8064 break;
8065 case DW_TAG_enumeration_type:
8066 process_enumeration_scope (die, cu);
8067 break;
8068
8069 /* These dies have a type, but processing them does not create
8070 a symbol or recurse to process the children. Therefore we can
8071 read them on-demand through read_type_die. */
8072 case DW_TAG_subroutine_type:
8073 case DW_TAG_set_type:
8074 case DW_TAG_array_type:
8075 case DW_TAG_pointer_type:
8076 case DW_TAG_ptr_to_member_type:
8077 case DW_TAG_reference_type:
8078 case DW_TAG_string_type:
8079 break;
8080
8081 case DW_TAG_base_type:
8082 case DW_TAG_subrange_type:
8083 case DW_TAG_typedef:
8084 /* Add a typedef symbol for the type definition, if it has a
8085 DW_AT_name. */
8086 new_symbol (die, read_type_die (die, cu), cu);
8087 break;
8088 case DW_TAG_common_block:
8089 read_common_block (die, cu);
8090 break;
8091 case DW_TAG_common_inclusion:
8092 break;
8093 case DW_TAG_namespace:
8094 cu->processing_has_namespace_info = 1;
8095 read_namespace (die, cu);
8096 break;
8097 case DW_TAG_module:
8098 cu->processing_has_namespace_info = 1;
8099 read_module (die, cu);
8100 break;
8101 case DW_TAG_imported_declaration:
8102 cu->processing_has_namespace_info = 1;
8103 if (read_namespace_alias (die, cu))
8104 break;
8105 /* The declaration is not a global namespace alias: fall through. */
8106 case DW_TAG_imported_module:
8107 cu->processing_has_namespace_info = 1;
8108 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8109 || cu->language != language_fortran))
8110 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8111 dwarf_tag_name (die->tag));
8112 read_import_statement (die, cu);
8113 break;
8114
8115 case DW_TAG_imported_unit:
8116 process_imported_unit_die (die, cu);
8117 break;
8118
8119 default:
8120 new_symbol (die, NULL, cu);
8121 break;
8122 }
8123
8124 do_cleanups (in_process);
8125 }
8126 \f
8127 /* DWARF name computation. */
8128
8129 /* A helper function for dwarf2_compute_name which determines whether DIE
8130 needs to have the name of the scope prepended to the name listed in the
8131 die. */
8132
8133 static int
8134 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8135 {
8136 struct attribute *attr;
8137
8138 switch (die->tag)
8139 {
8140 case DW_TAG_namespace:
8141 case DW_TAG_typedef:
8142 case DW_TAG_class_type:
8143 case DW_TAG_interface_type:
8144 case DW_TAG_structure_type:
8145 case DW_TAG_union_type:
8146 case DW_TAG_enumeration_type:
8147 case DW_TAG_enumerator:
8148 case DW_TAG_subprogram:
8149 case DW_TAG_member:
8150 case DW_TAG_imported_declaration:
8151 return 1;
8152
8153 case DW_TAG_variable:
8154 case DW_TAG_constant:
8155 /* We only need to prefix "globally" visible variables. These include
8156 any variable marked with DW_AT_external or any variable that
8157 lives in a namespace. [Variables in anonymous namespaces
8158 require prefixing, but they are not DW_AT_external.] */
8159
8160 if (dwarf2_attr (die, DW_AT_specification, cu))
8161 {
8162 struct dwarf2_cu *spec_cu = cu;
8163
8164 return die_needs_namespace (die_specification (die, &spec_cu),
8165 spec_cu);
8166 }
8167
8168 attr = dwarf2_attr (die, DW_AT_external, cu);
8169 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8170 && die->parent->tag != DW_TAG_module)
8171 return 0;
8172 /* A variable in a lexical block of some kind does not need a
8173 namespace, even though in C++ such variables may be external
8174 and have a mangled name. */
8175 if (die->parent->tag == DW_TAG_lexical_block
8176 || die->parent->tag == DW_TAG_try_block
8177 || die->parent->tag == DW_TAG_catch_block
8178 || die->parent->tag == DW_TAG_subprogram)
8179 return 0;
8180 return 1;
8181
8182 default:
8183 return 0;
8184 }
8185 }
8186
8187 /* Retrieve the last character from a mem_file. */
8188
8189 static void
8190 do_ui_file_peek_last (void *object, const char *buffer, long length)
8191 {
8192 char *last_char_p = (char *) object;
8193
8194 if (length > 0)
8195 *last_char_p = buffer[length - 1];
8196 }
8197
8198 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8199 compute the physname for the object, which include a method's:
8200 - formal parameters (C++/Java),
8201 - receiver type (Go),
8202 - return type (Java).
8203
8204 The term "physname" is a bit confusing.
8205 For C++, for example, it is the demangled name.
8206 For Go, for example, it's the mangled name.
8207
8208 For Ada, return the DIE's linkage name rather than the fully qualified
8209 name. PHYSNAME is ignored..
8210
8211 The result is allocated on the objfile_obstack and canonicalized. */
8212
8213 static const char *
8214 dwarf2_compute_name (const char *name,
8215 struct die_info *die, struct dwarf2_cu *cu,
8216 int physname)
8217 {
8218 struct objfile *objfile = cu->objfile;
8219
8220 if (name == NULL)
8221 name = dwarf2_name (die, cu);
8222
8223 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8224 compute it by typename_concat inside GDB. */
8225 if (cu->language == language_ada
8226 || (cu->language == language_fortran && physname))
8227 {
8228 /* For Ada unit, we prefer the linkage name over the name, as
8229 the former contains the exported name, which the user expects
8230 to be able to reference. Ideally, we want the user to be able
8231 to reference this entity using either natural or linkage name,
8232 but we haven't started looking at this enhancement yet. */
8233 struct attribute *attr;
8234
8235 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8236 if (attr == NULL)
8237 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8238 if (attr && DW_STRING (attr))
8239 return DW_STRING (attr);
8240 }
8241
8242 /* These are the only languages we know how to qualify names in. */
8243 if (name != NULL
8244 && (cu->language == language_cplus || cu->language == language_java
8245 || cu->language == language_fortran))
8246 {
8247 if (die_needs_namespace (die, cu))
8248 {
8249 long length;
8250 const char *prefix;
8251 struct ui_file *buf;
8252
8253 prefix = determine_prefix (die, cu);
8254 buf = mem_fileopen ();
8255 if (*prefix != '\0')
8256 {
8257 char *prefixed_name = typename_concat (NULL, prefix, name,
8258 physname, cu);
8259
8260 fputs_unfiltered (prefixed_name, buf);
8261 xfree (prefixed_name);
8262 }
8263 else
8264 fputs_unfiltered (name, buf);
8265
8266 /* Template parameters may be specified in the DIE's DW_AT_name, or
8267 as children with DW_TAG_template_type_param or
8268 DW_TAG_value_type_param. If the latter, add them to the name
8269 here. If the name already has template parameters, then
8270 skip this step; some versions of GCC emit both, and
8271 it is more efficient to use the pre-computed name.
8272
8273 Something to keep in mind about this process: it is very
8274 unlikely, or in some cases downright impossible, to produce
8275 something that will match the mangled name of a function.
8276 If the definition of the function has the same debug info,
8277 we should be able to match up with it anyway. But fallbacks
8278 using the minimal symbol, for instance to find a method
8279 implemented in a stripped copy of libstdc++, will not work.
8280 If we do not have debug info for the definition, we will have to
8281 match them up some other way.
8282
8283 When we do name matching there is a related problem with function
8284 templates; two instantiated function templates are allowed to
8285 differ only by their return types, which we do not add here. */
8286
8287 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8288 {
8289 struct attribute *attr;
8290 struct die_info *child;
8291 int first = 1;
8292
8293 die->building_fullname = 1;
8294
8295 for (child = die->child; child != NULL; child = child->sibling)
8296 {
8297 struct type *type;
8298 LONGEST value;
8299 const gdb_byte *bytes;
8300 struct dwarf2_locexpr_baton *baton;
8301 struct value *v;
8302
8303 if (child->tag != DW_TAG_template_type_param
8304 && child->tag != DW_TAG_template_value_param)
8305 continue;
8306
8307 if (first)
8308 {
8309 fputs_unfiltered ("<", buf);
8310 first = 0;
8311 }
8312 else
8313 fputs_unfiltered (", ", buf);
8314
8315 attr = dwarf2_attr (child, DW_AT_type, cu);
8316 if (attr == NULL)
8317 {
8318 complaint (&symfile_complaints,
8319 _("template parameter missing DW_AT_type"));
8320 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8321 continue;
8322 }
8323 type = die_type (child, cu);
8324
8325 if (child->tag == DW_TAG_template_type_param)
8326 {
8327 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8328 continue;
8329 }
8330
8331 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8332 if (attr == NULL)
8333 {
8334 complaint (&symfile_complaints,
8335 _("template parameter missing "
8336 "DW_AT_const_value"));
8337 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8338 continue;
8339 }
8340
8341 dwarf2_const_value_attr (attr, type, name,
8342 &cu->comp_unit_obstack, cu,
8343 &value, &bytes, &baton);
8344
8345 if (TYPE_NOSIGN (type))
8346 /* GDB prints characters as NUMBER 'CHAR'. If that's
8347 changed, this can use value_print instead. */
8348 c_printchar (value, type, buf);
8349 else
8350 {
8351 struct value_print_options opts;
8352
8353 if (baton != NULL)
8354 v = dwarf2_evaluate_loc_desc (type, NULL,
8355 baton->data,
8356 baton->size,
8357 baton->per_cu);
8358 else if (bytes != NULL)
8359 {
8360 v = allocate_value (type);
8361 memcpy (value_contents_writeable (v), bytes,
8362 TYPE_LENGTH (type));
8363 }
8364 else
8365 v = value_from_longest (type, value);
8366
8367 /* Specify decimal so that we do not depend on
8368 the radix. */
8369 get_formatted_print_options (&opts, 'd');
8370 opts.raw = 1;
8371 value_print (v, buf, &opts);
8372 release_value (v);
8373 value_free (v);
8374 }
8375 }
8376
8377 die->building_fullname = 0;
8378
8379 if (!first)
8380 {
8381 /* Close the argument list, with a space if necessary
8382 (nested templates). */
8383 char last_char = '\0';
8384 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8385 if (last_char == '>')
8386 fputs_unfiltered (" >", buf);
8387 else
8388 fputs_unfiltered (">", buf);
8389 }
8390 }
8391
8392 /* For Java and C++ methods, append formal parameter type
8393 information, if PHYSNAME. */
8394
8395 if (physname && die->tag == DW_TAG_subprogram
8396 && (cu->language == language_cplus
8397 || cu->language == language_java))
8398 {
8399 struct type *type = read_type_die (die, cu);
8400
8401 c_type_print_args (type, buf, 1, cu->language,
8402 &type_print_raw_options);
8403
8404 if (cu->language == language_java)
8405 {
8406 /* For java, we must append the return type to method
8407 names. */
8408 if (die->tag == DW_TAG_subprogram)
8409 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8410 0, 0, &type_print_raw_options);
8411 }
8412 else if (cu->language == language_cplus)
8413 {
8414 /* Assume that an artificial first parameter is
8415 "this", but do not crash if it is not. RealView
8416 marks unnamed (and thus unused) parameters as
8417 artificial; there is no way to differentiate
8418 the two cases. */
8419 if (TYPE_NFIELDS (type) > 0
8420 && TYPE_FIELD_ARTIFICIAL (type, 0)
8421 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8422 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8423 0))))
8424 fputs_unfiltered (" const", buf);
8425 }
8426 }
8427
8428 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8429 &length);
8430 ui_file_delete (buf);
8431
8432 if (cu->language == language_cplus)
8433 {
8434 const char *cname
8435 = dwarf2_canonicalize_name (name, cu,
8436 &objfile->objfile_obstack);
8437
8438 if (cname != NULL)
8439 name = cname;
8440 }
8441 }
8442 }
8443
8444 return name;
8445 }
8446
8447 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8448 If scope qualifiers are appropriate they will be added. The result
8449 will be allocated on the objfile_obstack, or NULL if the DIE does
8450 not have a name. NAME may either be from a previous call to
8451 dwarf2_name or NULL.
8452
8453 The output string will be canonicalized (if C++/Java). */
8454
8455 static const char *
8456 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8457 {
8458 return dwarf2_compute_name (name, die, cu, 0);
8459 }
8460
8461 /* Construct a physname for the given DIE in CU. NAME may either be
8462 from a previous call to dwarf2_name or NULL. The result will be
8463 allocated on the objfile_objstack or NULL if the DIE does not have a
8464 name.
8465
8466 The output string will be canonicalized (if C++/Java). */
8467
8468 static const char *
8469 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8470 {
8471 struct objfile *objfile = cu->objfile;
8472 struct attribute *attr;
8473 const char *retval, *mangled = NULL, *canon = NULL;
8474 struct cleanup *back_to;
8475 int need_copy = 1;
8476
8477 /* In this case dwarf2_compute_name is just a shortcut not building anything
8478 on its own. */
8479 if (!die_needs_namespace (die, cu))
8480 return dwarf2_compute_name (name, die, cu, 1);
8481
8482 back_to = make_cleanup (null_cleanup, NULL);
8483
8484 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8485 if (!attr)
8486 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8487
8488 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8489 has computed. */
8490 if (attr && DW_STRING (attr))
8491 {
8492 char *demangled;
8493
8494 mangled = DW_STRING (attr);
8495
8496 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8497 type. It is easier for GDB users to search for such functions as
8498 `name(params)' than `long name(params)'. In such case the minimal
8499 symbol names do not match the full symbol names but for template
8500 functions there is never a need to look up their definition from their
8501 declaration so the only disadvantage remains the minimal symbol
8502 variant `long name(params)' does not have the proper inferior type.
8503 */
8504
8505 if (cu->language == language_go)
8506 {
8507 /* This is a lie, but we already lie to the caller new_symbol_full.
8508 new_symbol_full assumes we return the mangled name.
8509 This just undoes that lie until things are cleaned up. */
8510 demangled = NULL;
8511 }
8512 else
8513 {
8514 demangled = gdb_demangle (mangled,
8515 (DMGL_PARAMS | DMGL_ANSI
8516 | (cu->language == language_java
8517 ? DMGL_JAVA | DMGL_RET_POSTFIX
8518 : DMGL_RET_DROP)));
8519 }
8520 if (demangled)
8521 {
8522 make_cleanup (xfree, demangled);
8523 canon = demangled;
8524 }
8525 else
8526 {
8527 canon = mangled;
8528 need_copy = 0;
8529 }
8530 }
8531
8532 if (canon == NULL || check_physname)
8533 {
8534 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8535
8536 if (canon != NULL && strcmp (physname, canon) != 0)
8537 {
8538 /* It may not mean a bug in GDB. The compiler could also
8539 compute DW_AT_linkage_name incorrectly. But in such case
8540 GDB would need to be bug-to-bug compatible. */
8541
8542 complaint (&symfile_complaints,
8543 _("Computed physname <%s> does not match demangled <%s> "
8544 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8545 physname, canon, mangled, die->offset.sect_off,
8546 objfile_name (objfile));
8547
8548 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8549 is available here - over computed PHYSNAME. It is safer
8550 against both buggy GDB and buggy compilers. */
8551
8552 retval = canon;
8553 }
8554 else
8555 {
8556 retval = physname;
8557 need_copy = 0;
8558 }
8559 }
8560 else
8561 retval = canon;
8562
8563 if (need_copy)
8564 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8565
8566 do_cleanups (back_to);
8567 return retval;
8568 }
8569
8570 /* Inspect DIE in CU for a namespace alias. If one exists, record
8571 a new symbol for it.
8572
8573 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8574
8575 static int
8576 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8577 {
8578 struct attribute *attr;
8579
8580 /* If the die does not have a name, this is not a namespace
8581 alias. */
8582 attr = dwarf2_attr (die, DW_AT_name, cu);
8583 if (attr != NULL)
8584 {
8585 int num;
8586 struct die_info *d = die;
8587 struct dwarf2_cu *imported_cu = cu;
8588
8589 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8590 keep inspecting DIEs until we hit the underlying import. */
8591 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8592 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8593 {
8594 attr = dwarf2_attr (d, DW_AT_import, cu);
8595 if (attr == NULL)
8596 break;
8597
8598 d = follow_die_ref (d, attr, &imported_cu);
8599 if (d->tag != DW_TAG_imported_declaration)
8600 break;
8601 }
8602
8603 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8604 {
8605 complaint (&symfile_complaints,
8606 _("DIE at 0x%x has too many recursively imported "
8607 "declarations"), d->offset.sect_off);
8608 return 0;
8609 }
8610
8611 if (attr != NULL)
8612 {
8613 struct type *type;
8614 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8615
8616 type = get_die_type_at_offset (offset, cu->per_cu);
8617 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8618 {
8619 /* This declaration is a global namespace alias. Add
8620 a symbol for it whose type is the aliased namespace. */
8621 new_symbol (die, type, cu);
8622 return 1;
8623 }
8624 }
8625 }
8626
8627 return 0;
8628 }
8629
8630 /* Read the import statement specified by the given die and record it. */
8631
8632 static void
8633 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8634 {
8635 struct objfile *objfile = cu->objfile;
8636 struct attribute *import_attr;
8637 struct die_info *imported_die, *child_die;
8638 struct dwarf2_cu *imported_cu;
8639 const char *imported_name;
8640 const char *imported_name_prefix;
8641 const char *canonical_name;
8642 const char *import_alias;
8643 const char *imported_declaration = NULL;
8644 const char *import_prefix;
8645 VEC (const_char_ptr) *excludes = NULL;
8646 struct cleanup *cleanups;
8647
8648 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8649 if (import_attr == NULL)
8650 {
8651 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8652 dwarf_tag_name (die->tag));
8653 return;
8654 }
8655
8656 imported_cu = cu;
8657 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8658 imported_name = dwarf2_name (imported_die, imported_cu);
8659 if (imported_name == NULL)
8660 {
8661 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8662
8663 The import in the following code:
8664 namespace A
8665 {
8666 typedef int B;
8667 }
8668
8669 int main ()
8670 {
8671 using A::B;
8672 B b;
8673 return b;
8674 }
8675
8676 ...
8677 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8678 <52> DW_AT_decl_file : 1
8679 <53> DW_AT_decl_line : 6
8680 <54> DW_AT_import : <0x75>
8681 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8682 <59> DW_AT_name : B
8683 <5b> DW_AT_decl_file : 1
8684 <5c> DW_AT_decl_line : 2
8685 <5d> DW_AT_type : <0x6e>
8686 ...
8687 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8688 <76> DW_AT_byte_size : 4
8689 <77> DW_AT_encoding : 5 (signed)
8690
8691 imports the wrong die ( 0x75 instead of 0x58 ).
8692 This case will be ignored until the gcc bug is fixed. */
8693 return;
8694 }
8695
8696 /* Figure out the local name after import. */
8697 import_alias = dwarf2_name (die, cu);
8698
8699 /* Figure out where the statement is being imported to. */
8700 import_prefix = determine_prefix (die, cu);
8701
8702 /* Figure out what the scope of the imported die is and prepend it
8703 to the name of the imported die. */
8704 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8705
8706 if (imported_die->tag != DW_TAG_namespace
8707 && imported_die->tag != DW_TAG_module)
8708 {
8709 imported_declaration = imported_name;
8710 canonical_name = imported_name_prefix;
8711 }
8712 else if (strlen (imported_name_prefix) > 0)
8713 canonical_name = obconcat (&objfile->objfile_obstack,
8714 imported_name_prefix, "::", imported_name,
8715 (char *) NULL);
8716 else
8717 canonical_name = imported_name;
8718
8719 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8720
8721 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8722 for (child_die = die->child; child_die && child_die->tag;
8723 child_die = sibling_die (child_die))
8724 {
8725 /* DWARF-4: A Fortran use statement with a “rename list” may be
8726 represented by an imported module entry with an import attribute
8727 referring to the module and owned entries corresponding to those
8728 entities that are renamed as part of being imported. */
8729
8730 if (child_die->tag != DW_TAG_imported_declaration)
8731 {
8732 complaint (&symfile_complaints,
8733 _("child DW_TAG_imported_declaration expected "
8734 "- DIE at 0x%x [in module %s]"),
8735 child_die->offset.sect_off, objfile_name (objfile));
8736 continue;
8737 }
8738
8739 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8740 if (import_attr == NULL)
8741 {
8742 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8743 dwarf_tag_name (child_die->tag));
8744 continue;
8745 }
8746
8747 imported_cu = cu;
8748 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8749 &imported_cu);
8750 imported_name = dwarf2_name (imported_die, imported_cu);
8751 if (imported_name == NULL)
8752 {
8753 complaint (&symfile_complaints,
8754 _("child DW_TAG_imported_declaration has unknown "
8755 "imported name - DIE at 0x%x [in module %s]"),
8756 child_die->offset.sect_off, objfile_name (objfile));
8757 continue;
8758 }
8759
8760 VEC_safe_push (const_char_ptr, excludes, imported_name);
8761
8762 process_die (child_die, cu);
8763 }
8764
8765 cp_add_using_directive (import_prefix,
8766 canonical_name,
8767 import_alias,
8768 imported_declaration,
8769 excludes,
8770 0,
8771 &objfile->objfile_obstack);
8772
8773 do_cleanups (cleanups);
8774 }
8775
8776 /* Cleanup function for handle_DW_AT_stmt_list. */
8777
8778 static void
8779 free_cu_line_header (void *arg)
8780 {
8781 struct dwarf2_cu *cu = arg;
8782
8783 free_line_header (cu->line_header);
8784 cu->line_header = NULL;
8785 }
8786
8787 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8788 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8789 this, it was first present in GCC release 4.3.0. */
8790
8791 static int
8792 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8793 {
8794 if (!cu->checked_producer)
8795 check_producer (cu);
8796
8797 return cu->producer_is_gcc_lt_4_3;
8798 }
8799
8800 static void
8801 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8802 const char **name, const char **comp_dir)
8803 {
8804 struct attribute *attr;
8805
8806 *name = NULL;
8807 *comp_dir = NULL;
8808
8809 /* Find the filename. Do not use dwarf2_name here, since the filename
8810 is not a source language identifier. */
8811 attr = dwarf2_attr (die, DW_AT_name, cu);
8812 if (attr)
8813 {
8814 *name = DW_STRING (attr);
8815 }
8816
8817 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8818 if (attr)
8819 *comp_dir = DW_STRING (attr);
8820 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8821 && IS_ABSOLUTE_PATH (*name))
8822 {
8823 char *d = ldirname (*name);
8824
8825 *comp_dir = d;
8826 if (d != NULL)
8827 make_cleanup (xfree, d);
8828 }
8829 if (*comp_dir != NULL)
8830 {
8831 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8832 directory, get rid of it. */
8833 char *cp = strchr (*comp_dir, ':');
8834
8835 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8836 *comp_dir = cp + 1;
8837 }
8838
8839 if (*name == NULL)
8840 *name = "<unknown>";
8841 }
8842
8843 /* Handle DW_AT_stmt_list for a compilation unit.
8844 DIE is the DW_TAG_compile_unit die for CU.
8845 COMP_DIR is the compilation directory.
8846 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8847
8848 static void
8849 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8850 const char *comp_dir) /* ARI: editCase function */
8851 {
8852 struct attribute *attr;
8853
8854 gdb_assert (! cu->per_cu->is_debug_types);
8855
8856 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8857 if (attr)
8858 {
8859 unsigned int line_offset = DW_UNSND (attr);
8860 struct line_header *line_header
8861 = dwarf_decode_line_header (line_offset, cu);
8862
8863 if (line_header)
8864 {
8865 cu->line_header = line_header;
8866 make_cleanup (free_cu_line_header, cu);
8867 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8868 }
8869 }
8870 }
8871
8872 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8873
8874 static void
8875 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8876 {
8877 struct objfile *objfile = dwarf2_per_objfile->objfile;
8878 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8879 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8880 CORE_ADDR highpc = ((CORE_ADDR) 0);
8881 struct attribute *attr;
8882 const char *name = NULL;
8883 const char *comp_dir = NULL;
8884 struct die_info *child_die;
8885 bfd *abfd = objfile->obfd;
8886 CORE_ADDR baseaddr;
8887
8888 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8889
8890 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8891
8892 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8893 from finish_block. */
8894 if (lowpc == ((CORE_ADDR) -1))
8895 lowpc = highpc;
8896 lowpc += baseaddr;
8897 highpc += baseaddr;
8898
8899 find_file_and_directory (die, cu, &name, &comp_dir);
8900
8901 prepare_one_comp_unit (cu, die, cu->language);
8902
8903 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8904 standardised yet. As a workaround for the language detection we fall
8905 back to the DW_AT_producer string. */
8906 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8907 cu->language = language_opencl;
8908
8909 /* Similar hack for Go. */
8910 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8911 set_cu_language (DW_LANG_Go, cu);
8912
8913 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8914
8915 /* Decode line number information if present. We do this before
8916 processing child DIEs, so that the line header table is available
8917 for DW_AT_decl_file. */
8918 handle_DW_AT_stmt_list (die, cu, comp_dir);
8919
8920 /* Process all dies in compilation unit. */
8921 if (die->child != NULL)
8922 {
8923 child_die = die->child;
8924 while (child_die && child_die->tag)
8925 {
8926 process_die (child_die, cu);
8927 child_die = sibling_die (child_die);
8928 }
8929 }
8930
8931 /* Decode macro information, if present. Dwarf 2 macro information
8932 refers to information in the line number info statement program
8933 header, so we can only read it if we've read the header
8934 successfully. */
8935 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8936 if (attr && cu->line_header)
8937 {
8938 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8939 complaint (&symfile_complaints,
8940 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8941
8942 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8943 }
8944 else
8945 {
8946 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8947 if (attr && cu->line_header)
8948 {
8949 unsigned int macro_offset = DW_UNSND (attr);
8950
8951 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8952 }
8953 }
8954
8955 do_cleanups (back_to);
8956 }
8957
8958 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8959 Create the set of symtabs used by this TU, or if this TU is sharing
8960 symtabs with another TU and the symtabs have already been created
8961 then restore those symtabs in the line header.
8962 We don't need the pc/line-number mapping for type units. */
8963
8964 static void
8965 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8966 {
8967 struct objfile *objfile = dwarf2_per_objfile->objfile;
8968 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8969 struct type_unit_group *tu_group;
8970 int first_time;
8971 struct line_header *lh;
8972 struct attribute *attr;
8973 unsigned int i, line_offset;
8974 struct signatured_type *sig_type;
8975
8976 gdb_assert (per_cu->is_debug_types);
8977 sig_type = (struct signatured_type *) per_cu;
8978
8979 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8980
8981 /* If we're using .gdb_index (includes -readnow) then
8982 per_cu->type_unit_group may not have been set up yet. */
8983 if (sig_type->type_unit_group == NULL)
8984 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8985 tu_group = sig_type->type_unit_group;
8986
8987 /* If we've already processed this stmt_list there's no real need to
8988 do it again, we could fake it and just recreate the part we need
8989 (file name,index -> symtab mapping). If data shows this optimization
8990 is useful we can do it then. */
8991 first_time = tu_group->primary_symtab == NULL;
8992
8993 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8994 debug info. */
8995 lh = NULL;
8996 if (attr != NULL)
8997 {
8998 line_offset = DW_UNSND (attr);
8999 lh = dwarf_decode_line_header (line_offset, cu);
9000 }
9001 if (lh == NULL)
9002 {
9003 if (first_time)
9004 dwarf2_start_symtab (cu, "", NULL, 0);
9005 else
9006 {
9007 gdb_assert (tu_group->symtabs == NULL);
9008 restart_symtab (0);
9009 }
9010 /* Note: The primary symtab will get allocated at the end. */
9011 return;
9012 }
9013
9014 cu->line_header = lh;
9015 make_cleanup (free_cu_line_header, cu);
9016
9017 if (first_time)
9018 {
9019 dwarf2_start_symtab (cu, "", NULL, 0);
9020
9021 tu_group->num_symtabs = lh->num_file_names;
9022 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9023
9024 for (i = 0; i < lh->num_file_names; ++i)
9025 {
9026 const char *dir = NULL;
9027 struct file_entry *fe = &lh->file_names[i];
9028
9029 if (fe->dir_index)
9030 dir = lh->include_dirs[fe->dir_index - 1];
9031 dwarf2_start_subfile (fe->name, dir, NULL);
9032
9033 /* Note: We don't have to watch for the main subfile here, type units
9034 don't have DW_AT_name. */
9035
9036 if (current_subfile->symtab == NULL)
9037 {
9038 /* NOTE: start_subfile will recognize when it's been passed
9039 a file it has already seen. So we can't assume there's a
9040 simple mapping from lh->file_names to subfiles,
9041 lh->file_names may contain dups. */
9042 current_subfile->symtab = allocate_symtab (current_subfile->name,
9043 objfile);
9044 }
9045
9046 fe->symtab = current_subfile->symtab;
9047 tu_group->symtabs[i] = fe->symtab;
9048 }
9049 }
9050 else
9051 {
9052 restart_symtab (0);
9053
9054 for (i = 0; i < lh->num_file_names; ++i)
9055 {
9056 struct file_entry *fe = &lh->file_names[i];
9057
9058 fe->symtab = tu_group->symtabs[i];
9059 }
9060 }
9061
9062 /* The main symtab is allocated last. Type units don't have DW_AT_name
9063 so they don't have a "real" (so to speak) symtab anyway.
9064 There is later code that will assign the main symtab to all symbols
9065 that don't have one. We need to handle the case of a symbol with a
9066 missing symtab (DW_AT_decl_file) anyway. */
9067 }
9068
9069 /* Process DW_TAG_type_unit.
9070 For TUs we want to skip the first top level sibling if it's not the
9071 actual type being defined by this TU. In this case the first top
9072 level sibling is there to provide context only. */
9073
9074 static void
9075 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9076 {
9077 struct die_info *child_die;
9078
9079 prepare_one_comp_unit (cu, die, language_minimal);
9080
9081 /* Initialize (or reinitialize) the machinery for building symtabs.
9082 We do this before processing child DIEs, so that the line header table
9083 is available for DW_AT_decl_file. */
9084 setup_type_unit_groups (die, cu);
9085
9086 if (die->child != NULL)
9087 {
9088 child_die = die->child;
9089 while (child_die && child_die->tag)
9090 {
9091 process_die (child_die, cu);
9092 child_die = sibling_die (child_die);
9093 }
9094 }
9095 }
9096 \f
9097 /* DWO/DWP files.
9098
9099 http://gcc.gnu.org/wiki/DebugFission
9100 http://gcc.gnu.org/wiki/DebugFissionDWP
9101
9102 To simplify handling of both DWO files ("object" files with the DWARF info)
9103 and DWP files (a file with the DWOs packaged up into one file), we treat
9104 DWP files as having a collection of virtual DWO files. */
9105
9106 static hashval_t
9107 hash_dwo_file (const void *item)
9108 {
9109 const struct dwo_file *dwo_file = item;
9110 hashval_t hash;
9111
9112 hash = htab_hash_string (dwo_file->dwo_name);
9113 if (dwo_file->comp_dir != NULL)
9114 hash += htab_hash_string (dwo_file->comp_dir);
9115 return hash;
9116 }
9117
9118 static int
9119 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9120 {
9121 const struct dwo_file *lhs = item_lhs;
9122 const struct dwo_file *rhs = item_rhs;
9123
9124 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9125 return 0;
9126 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9127 return lhs->comp_dir == rhs->comp_dir;
9128 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9129 }
9130
9131 /* Allocate a hash table for DWO files. */
9132
9133 static htab_t
9134 allocate_dwo_file_hash_table (void)
9135 {
9136 struct objfile *objfile = dwarf2_per_objfile->objfile;
9137
9138 return htab_create_alloc_ex (41,
9139 hash_dwo_file,
9140 eq_dwo_file,
9141 NULL,
9142 &objfile->objfile_obstack,
9143 hashtab_obstack_allocate,
9144 dummy_obstack_deallocate);
9145 }
9146
9147 /* Lookup DWO file DWO_NAME. */
9148
9149 static void **
9150 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9151 {
9152 struct dwo_file find_entry;
9153 void **slot;
9154
9155 if (dwarf2_per_objfile->dwo_files == NULL)
9156 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9157
9158 memset (&find_entry, 0, sizeof (find_entry));
9159 find_entry.dwo_name = dwo_name;
9160 find_entry.comp_dir = comp_dir;
9161 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9162
9163 return slot;
9164 }
9165
9166 static hashval_t
9167 hash_dwo_unit (const void *item)
9168 {
9169 const struct dwo_unit *dwo_unit = item;
9170
9171 /* This drops the top 32 bits of the id, but is ok for a hash. */
9172 return dwo_unit->signature;
9173 }
9174
9175 static int
9176 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9177 {
9178 const struct dwo_unit *lhs = item_lhs;
9179 const struct dwo_unit *rhs = item_rhs;
9180
9181 /* The signature is assumed to be unique within the DWO file.
9182 So while object file CU dwo_id's always have the value zero,
9183 that's OK, assuming each object file DWO file has only one CU,
9184 and that's the rule for now. */
9185 return lhs->signature == rhs->signature;
9186 }
9187
9188 /* Allocate a hash table for DWO CUs,TUs.
9189 There is one of these tables for each of CUs,TUs for each DWO file. */
9190
9191 static htab_t
9192 allocate_dwo_unit_table (struct objfile *objfile)
9193 {
9194 /* Start out with a pretty small number.
9195 Generally DWO files contain only one CU and maybe some TUs. */
9196 return htab_create_alloc_ex (3,
9197 hash_dwo_unit,
9198 eq_dwo_unit,
9199 NULL,
9200 &objfile->objfile_obstack,
9201 hashtab_obstack_allocate,
9202 dummy_obstack_deallocate);
9203 }
9204
9205 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9206
9207 struct create_dwo_cu_data
9208 {
9209 struct dwo_file *dwo_file;
9210 struct dwo_unit dwo_unit;
9211 };
9212
9213 /* die_reader_func for create_dwo_cu. */
9214
9215 static void
9216 create_dwo_cu_reader (const struct die_reader_specs *reader,
9217 const gdb_byte *info_ptr,
9218 struct die_info *comp_unit_die,
9219 int has_children,
9220 void *datap)
9221 {
9222 struct dwarf2_cu *cu = reader->cu;
9223 struct objfile *objfile = dwarf2_per_objfile->objfile;
9224 sect_offset offset = cu->per_cu->offset;
9225 struct dwarf2_section_info *section = cu->per_cu->section;
9226 struct create_dwo_cu_data *data = datap;
9227 struct dwo_file *dwo_file = data->dwo_file;
9228 struct dwo_unit *dwo_unit = &data->dwo_unit;
9229 struct attribute *attr;
9230
9231 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9232 if (attr == NULL)
9233 {
9234 complaint (&symfile_complaints,
9235 _("Dwarf Error: debug entry at offset 0x%x is missing"
9236 " its dwo_id [in module %s]"),
9237 offset.sect_off, dwo_file->dwo_name);
9238 return;
9239 }
9240
9241 dwo_unit->dwo_file = dwo_file;
9242 dwo_unit->signature = DW_UNSND (attr);
9243 dwo_unit->section = section;
9244 dwo_unit->offset = offset;
9245 dwo_unit->length = cu->per_cu->length;
9246
9247 if (dwarf2_read_debug)
9248 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9249 offset.sect_off, hex_string (dwo_unit->signature));
9250 }
9251
9252 /* Create the dwo_unit for the lone CU in DWO_FILE.
9253 Note: This function processes DWO files only, not DWP files. */
9254
9255 static struct dwo_unit *
9256 create_dwo_cu (struct dwo_file *dwo_file)
9257 {
9258 struct objfile *objfile = dwarf2_per_objfile->objfile;
9259 struct dwarf2_section_info *section = &dwo_file->sections.info;
9260 bfd *abfd;
9261 htab_t cu_htab;
9262 const gdb_byte *info_ptr, *end_ptr;
9263 struct create_dwo_cu_data create_dwo_cu_data;
9264 struct dwo_unit *dwo_unit;
9265
9266 dwarf2_read_section (objfile, section);
9267 info_ptr = section->buffer;
9268
9269 if (info_ptr == NULL)
9270 return NULL;
9271
9272 /* We can't set abfd until now because the section may be empty or
9273 not present, in which case section->asection will be NULL. */
9274 abfd = get_section_bfd_owner (section);
9275
9276 if (dwarf2_read_debug)
9277 {
9278 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9279 get_section_name (section),
9280 get_section_file_name (section));
9281 }
9282
9283 create_dwo_cu_data.dwo_file = dwo_file;
9284 dwo_unit = NULL;
9285
9286 end_ptr = info_ptr + section->size;
9287 while (info_ptr < end_ptr)
9288 {
9289 struct dwarf2_per_cu_data per_cu;
9290
9291 memset (&create_dwo_cu_data.dwo_unit, 0,
9292 sizeof (create_dwo_cu_data.dwo_unit));
9293 memset (&per_cu, 0, sizeof (per_cu));
9294 per_cu.objfile = objfile;
9295 per_cu.is_debug_types = 0;
9296 per_cu.offset.sect_off = info_ptr - section->buffer;
9297 per_cu.section = section;
9298
9299 init_cutu_and_read_dies_no_follow (&per_cu,
9300 &dwo_file->sections.abbrev,
9301 dwo_file,
9302 create_dwo_cu_reader,
9303 &create_dwo_cu_data);
9304
9305 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9306 {
9307 /* If we've already found one, complain. We only support one
9308 because having more than one requires hacking the dwo_name of
9309 each to match, which is highly unlikely to happen. */
9310 if (dwo_unit != NULL)
9311 {
9312 complaint (&symfile_complaints,
9313 _("Multiple CUs in DWO file %s [in module %s]"),
9314 dwo_file->dwo_name, objfile_name (objfile));
9315 break;
9316 }
9317
9318 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9319 *dwo_unit = create_dwo_cu_data.dwo_unit;
9320 }
9321
9322 info_ptr += per_cu.length;
9323 }
9324
9325 return dwo_unit;
9326 }
9327
9328 /* DWP file .debug_{cu,tu}_index section format:
9329 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9330
9331 DWP Version 1:
9332
9333 Both index sections have the same format, and serve to map a 64-bit
9334 signature to a set of section numbers. Each section begins with a header,
9335 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9336 indexes, and a pool of 32-bit section numbers. The index sections will be
9337 aligned at 8-byte boundaries in the file.
9338
9339 The index section header consists of:
9340
9341 V, 32 bit version number
9342 -, 32 bits unused
9343 N, 32 bit number of compilation units or type units in the index
9344 M, 32 bit number of slots in the hash table
9345
9346 Numbers are recorded using the byte order of the application binary.
9347
9348 The hash table begins at offset 16 in the section, and consists of an array
9349 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9350 order of the application binary). Unused slots in the hash table are 0.
9351 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9352
9353 The parallel table begins immediately after the hash table
9354 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9355 array of 32-bit indexes (using the byte order of the application binary),
9356 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9357 table contains a 32-bit index into the pool of section numbers. For unused
9358 hash table slots, the corresponding entry in the parallel table will be 0.
9359
9360 The pool of section numbers begins immediately following the hash table
9361 (at offset 16 + 12 * M from the beginning of the section). The pool of
9362 section numbers consists of an array of 32-bit words (using the byte order
9363 of the application binary). Each item in the array is indexed starting
9364 from 0. The hash table entry provides the index of the first section
9365 number in the set. Additional section numbers in the set follow, and the
9366 set is terminated by a 0 entry (section number 0 is not used in ELF).
9367
9368 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9369 section must be the first entry in the set, and the .debug_abbrev.dwo must
9370 be the second entry. Other members of the set may follow in any order.
9371
9372 ---
9373
9374 DWP Version 2:
9375
9376 DWP Version 2 combines all the .debug_info, etc. sections into one,
9377 and the entries in the index tables are now offsets into these sections.
9378 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9379 section.
9380
9381 Index Section Contents:
9382 Header
9383 Hash Table of Signatures dwp_hash_table.hash_table
9384 Parallel Table of Indices dwp_hash_table.unit_table
9385 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9386 Table of Section Sizes dwp_hash_table.v2.sizes
9387
9388 The index section header consists of:
9389
9390 V, 32 bit version number
9391 L, 32 bit number of columns in the table of section offsets
9392 N, 32 bit number of compilation units or type units in the index
9393 M, 32 bit number of slots in the hash table
9394
9395 Numbers are recorded using the byte order of the application binary.
9396
9397 The hash table has the same format as version 1.
9398 The parallel table of indices has the same format as version 1,
9399 except that the entries are origin-1 indices into the table of sections
9400 offsets and the table of section sizes.
9401
9402 The table of offsets begins immediately following the parallel table
9403 (at offset 16 + 12 * M from the beginning of the section). The table is
9404 a two-dimensional array of 32-bit words (using the byte order of the
9405 application binary), with L columns and N+1 rows, in row-major order.
9406 Each row in the array is indexed starting from 0. The first row provides
9407 a key to the remaining rows: each column in this row provides an identifier
9408 for a debug section, and the offsets in the same column of subsequent rows
9409 refer to that section. The section identifiers are:
9410
9411 DW_SECT_INFO 1 .debug_info.dwo
9412 DW_SECT_TYPES 2 .debug_types.dwo
9413 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9414 DW_SECT_LINE 4 .debug_line.dwo
9415 DW_SECT_LOC 5 .debug_loc.dwo
9416 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9417 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9418 DW_SECT_MACRO 8 .debug_macro.dwo
9419
9420 The offsets provided by the CU and TU index sections are the base offsets
9421 for the contributions made by each CU or TU to the corresponding section
9422 in the package file. Each CU and TU header contains an abbrev_offset
9423 field, used to find the abbreviations table for that CU or TU within the
9424 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9425 be interpreted as relative to the base offset given in the index section.
9426 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9427 should be interpreted as relative to the base offset for .debug_line.dwo,
9428 and offsets into other debug sections obtained from DWARF attributes should
9429 also be interpreted as relative to the corresponding base offset.
9430
9431 The table of sizes begins immediately following the table of offsets.
9432 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9433 with L columns and N rows, in row-major order. Each row in the array is
9434 indexed starting from 1 (row 0 is shared by the two tables).
9435
9436 ---
9437
9438 Hash table lookup is handled the same in version 1 and 2:
9439
9440 We assume that N and M will not exceed 2^32 - 1.
9441 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9442
9443 Given a 64-bit compilation unit signature or a type signature S, an entry
9444 in the hash table is located as follows:
9445
9446 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9447 the low-order k bits all set to 1.
9448
9449 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9450
9451 3) If the hash table entry at index H matches the signature, use that
9452 entry. If the hash table entry at index H is unused (all zeroes),
9453 terminate the search: the signature is not present in the table.
9454
9455 4) Let H = (H + H') modulo M. Repeat at Step 3.
9456
9457 Because M > N and H' and M are relatively prime, the search is guaranteed
9458 to stop at an unused slot or find the match. */
9459
9460 /* Create a hash table to map DWO IDs to their CU/TU entry in
9461 .debug_{info,types}.dwo in DWP_FILE.
9462 Returns NULL if there isn't one.
9463 Note: This function processes DWP files only, not DWO files. */
9464
9465 static struct dwp_hash_table *
9466 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9467 {
9468 struct objfile *objfile = dwarf2_per_objfile->objfile;
9469 bfd *dbfd = dwp_file->dbfd;
9470 const gdb_byte *index_ptr, *index_end;
9471 struct dwarf2_section_info *index;
9472 uint32_t version, nr_columns, nr_units, nr_slots;
9473 struct dwp_hash_table *htab;
9474
9475 if (is_debug_types)
9476 index = &dwp_file->sections.tu_index;
9477 else
9478 index = &dwp_file->sections.cu_index;
9479
9480 if (dwarf2_section_empty_p (index))
9481 return NULL;
9482 dwarf2_read_section (objfile, index);
9483
9484 index_ptr = index->buffer;
9485 index_end = index_ptr + index->size;
9486
9487 version = read_4_bytes (dbfd, index_ptr);
9488 index_ptr += 4;
9489 if (version == 2)
9490 nr_columns = read_4_bytes (dbfd, index_ptr);
9491 else
9492 nr_columns = 0;
9493 index_ptr += 4;
9494 nr_units = read_4_bytes (dbfd, index_ptr);
9495 index_ptr += 4;
9496 nr_slots = read_4_bytes (dbfd, index_ptr);
9497 index_ptr += 4;
9498
9499 if (version != 1 && version != 2)
9500 {
9501 error (_("Dwarf Error: unsupported DWP file version (%s)"
9502 " [in module %s]"),
9503 pulongest (version), dwp_file->name);
9504 }
9505 if (nr_slots != (nr_slots & -nr_slots))
9506 {
9507 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9508 " is not power of 2 [in module %s]"),
9509 pulongest (nr_slots), dwp_file->name);
9510 }
9511
9512 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9513 htab->version = version;
9514 htab->nr_columns = nr_columns;
9515 htab->nr_units = nr_units;
9516 htab->nr_slots = nr_slots;
9517 htab->hash_table = index_ptr;
9518 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9519
9520 /* Exit early if the table is empty. */
9521 if (nr_slots == 0 || nr_units == 0
9522 || (version == 2 && nr_columns == 0))
9523 {
9524 /* All must be zero. */
9525 if (nr_slots != 0 || nr_units != 0
9526 || (version == 2 && nr_columns != 0))
9527 {
9528 complaint (&symfile_complaints,
9529 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9530 " all zero [in modules %s]"),
9531 dwp_file->name);
9532 }
9533 return htab;
9534 }
9535
9536 if (version == 1)
9537 {
9538 htab->section_pool.v1.indices =
9539 htab->unit_table + sizeof (uint32_t) * nr_slots;
9540 /* It's harder to decide whether the section is too small in v1.
9541 V1 is deprecated anyway so we punt. */
9542 }
9543 else
9544 {
9545 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9546 int *ids = htab->section_pool.v2.section_ids;
9547 /* Reverse map for error checking. */
9548 int ids_seen[DW_SECT_MAX + 1];
9549 int i;
9550
9551 if (nr_columns < 2)
9552 {
9553 error (_("Dwarf Error: bad DWP hash table, too few columns"
9554 " in section table [in module %s]"),
9555 dwp_file->name);
9556 }
9557 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9558 {
9559 error (_("Dwarf Error: bad DWP hash table, too many columns"
9560 " in section table [in module %s]"),
9561 dwp_file->name);
9562 }
9563 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9564 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9565 for (i = 0; i < nr_columns; ++i)
9566 {
9567 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9568
9569 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9570 {
9571 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9572 " in section table [in module %s]"),
9573 id, dwp_file->name);
9574 }
9575 if (ids_seen[id] != -1)
9576 {
9577 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9578 " id %d in section table [in module %s]"),
9579 id, dwp_file->name);
9580 }
9581 ids_seen[id] = i;
9582 ids[i] = id;
9583 }
9584 /* Must have exactly one info or types section. */
9585 if (((ids_seen[DW_SECT_INFO] != -1)
9586 + (ids_seen[DW_SECT_TYPES] != -1))
9587 != 1)
9588 {
9589 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9590 " DWO info/types section [in module %s]"),
9591 dwp_file->name);
9592 }
9593 /* Must have an abbrev section. */
9594 if (ids_seen[DW_SECT_ABBREV] == -1)
9595 {
9596 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9597 " section [in module %s]"),
9598 dwp_file->name);
9599 }
9600 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9601 htab->section_pool.v2.sizes =
9602 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9603 * nr_units * nr_columns);
9604 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9605 * nr_units * nr_columns))
9606 > index_end)
9607 {
9608 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9609 " [in module %s]"),
9610 dwp_file->name);
9611 }
9612 }
9613
9614 return htab;
9615 }
9616
9617 /* Update SECTIONS with the data from SECTP.
9618
9619 This function is like the other "locate" section routines that are
9620 passed to bfd_map_over_sections, but in this context the sections to
9621 read comes from the DWP V1 hash table, not the full ELF section table.
9622
9623 The result is non-zero for success, or zero if an error was found. */
9624
9625 static int
9626 locate_v1_virtual_dwo_sections (asection *sectp,
9627 struct virtual_v1_dwo_sections *sections)
9628 {
9629 const struct dwop_section_names *names = &dwop_section_names;
9630
9631 if (section_is_p (sectp->name, &names->abbrev_dwo))
9632 {
9633 /* There can be only one. */
9634 if (sections->abbrev.s.asection != NULL)
9635 return 0;
9636 sections->abbrev.s.asection = sectp;
9637 sections->abbrev.size = bfd_get_section_size (sectp);
9638 }
9639 else if (section_is_p (sectp->name, &names->info_dwo)
9640 || section_is_p (sectp->name, &names->types_dwo))
9641 {
9642 /* There can be only one. */
9643 if (sections->info_or_types.s.asection != NULL)
9644 return 0;
9645 sections->info_or_types.s.asection = sectp;
9646 sections->info_or_types.size = bfd_get_section_size (sectp);
9647 }
9648 else if (section_is_p (sectp->name, &names->line_dwo))
9649 {
9650 /* There can be only one. */
9651 if (sections->line.s.asection != NULL)
9652 return 0;
9653 sections->line.s.asection = sectp;
9654 sections->line.size = bfd_get_section_size (sectp);
9655 }
9656 else if (section_is_p (sectp->name, &names->loc_dwo))
9657 {
9658 /* There can be only one. */
9659 if (sections->loc.s.asection != NULL)
9660 return 0;
9661 sections->loc.s.asection = sectp;
9662 sections->loc.size = bfd_get_section_size (sectp);
9663 }
9664 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9665 {
9666 /* There can be only one. */
9667 if (sections->macinfo.s.asection != NULL)
9668 return 0;
9669 sections->macinfo.s.asection = sectp;
9670 sections->macinfo.size = bfd_get_section_size (sectp);
9671 }
9672 else if (section_is_p (sectp->name, &names->macro_dwo))
9673 {
9674 /* There can be only one. */
9675 if (sections->macro.s.asection != NULL)
9676 return 0;
9677 sections->macro.s.asection = sectp;
9678 sections->macro.size = bfd_get_section_size (sectp);
9679 }
9680 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9681 {
9682 /* There can be only one. */
9683 if (sections->str_offsets.s.asection != NULL)
9684 return 0;
9685 sections->str_offsets.s.asection = sectp;
9686 sections->str_offsets.size = bfd_get_section_size (sectp);
9687 }
9688 else
9689 {
9690 /* No other kind of section is valid. */
9691 return 0;
9692 }
9693
9694 return 1;
9695 }
9696
9697 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9698 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9699 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9700 This is for DWP version 1 files. */
9701
9702 static struct dwo_unit *
9703 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9704 uint32_t unit_index,
9705 const char *comp_dir,
9706 ULONGEST signature, int is_debug_types)
9707 {
9708 struct objfile *objfile = dwarf2_per_objfile->objfile;
9709 const struct dwp_hash_table *dwp_htab =
9710 is_debug_types ? dwp_file->tus : dwp_file->cus;
9711 bfd *dbfd = dwp_file->dbfd;
9712 const char *kind = is_debug_types ? "TU" : "CU";
9713 struct dwo_file *dwo_file;
9714 struct dwo_unit *dwo_unit;
9715 struct virtual_v1_dwo_sections sections;
9716 void **dwo_file_slot;
9717 char *virtual_dwo_name;
9718 struct dwarf2_section_info *cutu;
9719 struct cleanup *cleanups;
9720 int i;
9721
9722 gdb_assert (dwp_file->version == 1);
9723
9724 if (dwarf2_read_debug)
9725 {
9726 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9727 kind,
9728 pulongest (unit_index), hex_string (signature),
9729 dwp_file->name);
9730 }
9731
9732 /* Fetch the sections of this DWO unit.
9733 Put a limit on the number of sections we look for so that bad data
9734 doesn't cause us to loop forever. */
9735
9736 #define MAX_NR_V1_DWO_SECTIONS \
9737 (1 /* .debug_info or .debug_types */ \
9738 + 1 /* .debug_abbrev */ \
9739 + 1 /* .debug_line */ \
9740 + 1 /* .debug_loc */ \
9741 + 1 /* .debug_str_offsets */ \
9742 + 1 /* .debug_macro or .debug_macinfo */ \
9743 + 1 /* trailing zero */)
9744
9745 memset (&sections, 0, sizeof (sections));
9746 cleanups = make_cleanup (null_cleanup, 0);
9747
9748 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9749 {
9750 asection *sectp;
9751 uint32_t section_nr =
9752 read_4_bytes (dbfd,
9753 dwp_htab->section_pool.v1.indices
9754 + (unit_index + i) * sizeof (uint32_t));
9755
9756 if (section_nr == 0)
9757 break;
9758 if (section_nr >= dwp_file->num_sections)
9759 {
9760 error (_("Dwarf Error: bad DWP hash table, section number too large"
9761 " [in module %s]"),
9762 dwp_file->name);
9763 }
9764
9765 sectp = dwp_file->elf_sections[section_nr];
9766 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9767 {
9768 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9769 " [in module %s]"),
9770 dwp_file->name);
9771 }
9772 }
9773
9774 if (i < 2
9775 || dwarf2_section_empty_p (&sections.info_or_types)
9776 || dwarf2_section_empty_p (&sections.abbrev))
9777 {
9778 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9779 " [in module %s]"),
9780 dwp_file->name);
9781 }
9782 if (i == MAX_NR_V1_DWO_SECTIONS)
9783 {
9784 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9785 " [in module %s]"),
9786 dwp_file->name);
9787 }
9788
9789 /* It's easier for the rest of the code if we fake a struct dwo_file and
9790 have dwo_unit "live" in that. At least for now.
9791
9792 The DWP file can be made up of a random collection of CUs and TUs.
9793 However, for each CU + set of TUs that came from the same original DWO
9794 file, we can combine them back into a virtual DWO file to save space
9795 (fewer struct dwo_file objects to allocate). Remember that for really
9796 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9797
9798 virtual_dwo_name =
9799 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9800 get_section_id (&sections.abbrev),
9801 get_section_id (&sections.line),
9802 get_section_id (&sections.loc),
9803 get_section_id (&sections.str_offsets));
9804 make_cleanup (xfree, virtual_dwo_name);
9805 /* Can we use an existing virtual DWO file? */
9806 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9807 /* Create one if necessary. */
9808 if (*dwo_file_slot == NULL)
9809 {
9810 if (dwarf2_read_debug)
9811 {
9812 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9813 virtual_dwo_name);
9814 }
9815 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9816 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9817 virtual_dwo_name,
9818 strlen (virtual_dwo_name));
9819 dwo_file->comp_dir = comp_dir;
9820 dwo_file->sections.abbrev = sections.abbrev;
9821 dwo_file->sections.line = sections.line;
9822 dwo_file->sections.loc = sections.loc;
9823 dwo_file->sections.macinfo = sections.macinfo;
9824 dwo_file->sections.macro = sections.macro;
9825 dwo_file->sections.str_offsets = sections.str_offsets;
9826 /* The "str" section is global to the entire DWP file. */
9827 dwo_file->sections.str = dwp_file->sections.str;
9828 /* The info or types section is assigned below to dwo_unit,
9829 there's no need to record it in dwo_file.
9830 Also, we can't simply record type sections in dwo_file because
9831 we record a pointer into the vector in dwo_unit. As we collect more
9832 types we'll grow the vector and eventually have to reallocate space
9833 for it, invalidating all copies of pointers into the previous
9834 contents. */
9835 *dwo_file_slot = dwo_file;
9836 }
9837 else
9838 {
9839 if (dwarf2_read_debug)
9840 {
9841 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9842 virtual_dwo_name);
9843 }
9844 dwo_file = *dwo_file_slot;
9845 }
9846 do_cleanups (cleanups);
9847
9848 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9849 dwo_unit->dwo_file = dwo_file;
9850 dwo_unit->signature = signature;
9851 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9852 sizeof (struct dwarf2_section_info));
9853 *dwo_unit->section = sections.info_or_types;
9854 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9855
9856 return dwo_unit;
9857 }
9858
9859 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9860 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9861 piece within that section used by a TU/CU, return a virtual section
9862 of just that piece. */
9863
9864 static struct dwarf2_section_info
9865 create_dwp_v2_section (struct dwarf2_section_info *section,
9866 bfd_size_type offset, bfd_size_type size)
9867 {
9868 struct dwarf2_section_info result;
9869 asection *sectp;
9870
9871 gdb_assert (section != NULL);
9872 gdb_assert (!section->is_virtual);
9873
9874 memset (&result, 0, sizeof (result));
9875 result.s.containing_section = section;
9876 result.is_virtual = 1;
9877
9878 if (size == 0)
9879 return result;
9880
9881 sectp = get_section_bfd_section (section);
9882
9883 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9884 bounds of the real section. This is a pretty-rare event, so just
9885 flag an error (easier) instead of a warning and trying to cope. */
9886 if (sectp == NULL
9887 || offset + size > bfd_get_section_size (sectp))
9888 {
9889 bfd *abfd = sectp->owner;
9890
9891 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9892 " in section %s [in module %s]"),
9893 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9894 objfile_name (dwarf2_per_objfile->objfile));
9895 }
9896
9897 result.virtual_offset = offset;
9898 result.size = size;
9899 return result;
9900 }
9901
9902 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9903 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9904 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9905 This is for DWP version 2 files. */
9906
9907 static struct dwo_unit *
9908 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9909 uint32_t unit_index,
9910 const char *comp_dir,
9911 ULONGEST signature, int is_debug_types)
9912 {
9913 struct objfile *objfile = dwarf2_per_objfile->objfile;
9914 const struct dwp_hash_table *dwp_htab =
9915 is_debug_types ? dwp_file->tus : dwp_file->cus;
9916 bfd *dbfd = dwp_file->dbfd;
9917 const char *kind = is_debug_types ? "TU" : "CU";
9918 struct dwo_file *dwo_file;
9919 struct dwo_unit *dwo_unit;
9920 struct virtual_v2_dwo_sections sections;
9921 void **dwo_file_slot;
9922 char *virtual_dwo_name;
9923 struct dwarf2_section_info *cutu;
9924 struct cleanup *cleanups;
9925 int i;
9926
9927 gdb_assert (dwp_file->version == 2);
9928
9929 if (dwarf2_read_debug)
9930 {
9931 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9932 kind,
9933 pulongest (unit_index), hex_string (signature),
9934 dwp_file->name);
9935 }
9936
9937 /* Fetch the section offsets of this DWO unit. */
9938
9939 memset (&sections, 0, sizeof (sections));
9940 cleanups = make_cleanup (null_cleanup, 0);
9941
9942 for (i = 0; i < dwp_htab->nr_columns; ++i)
9943 {
9944 uint32_t offset = read_4_bytes (dbfd,
9945 dwp_htab->section_pool.v2.offsets
9946 + (((unit_index - 1) * dwp_htab->nr_columns
9947 + i)
9948 * sizeof (uint32_t)));
9949 uint32_t size = read_4_bytes (dbfd,
9950 dwp_htab->section_pool.v2.sizes
9951 + (((unit_index - 1) * dwp_htab->nr_columns
9952 + i)
9953 * sizeof (uint32_t)));
9954
9955 switch (dwp_htab->section_pool.v2.section_ids[i])
9956 {
9957 case DW_SECT_INFO:
9958 case DW_SECT_TYPES:
9959 sections.info_or_types_offset = offset;
9960 sections.info_or_types_size = size;
9961 break;
9962 case DW_SECT_ABBREV:
9963 sections.abbrev_offset = offset;
9964 sections.abbrev_size = size;
9965 break;
9966 case DW_SECT_LINE:
9967 sections.line_offset = offset;
9968 sections.line_size = size;
9969 break;
9970 case DW_SECT_LOC:
9971 sections.loc_offset = offset;
9972 sections.loc_size = size;
9973 break;
9974 case DW_SECT_STR_OFFSETS:
9975 sections.str_offsets_offset = offset;
9976 sections.str_offsets_size = size;
9977 break;
9978 case DW_SECT_MACINFO:
9979 sections.macinfo_offset = offset;
9980 sections.macinfo_size = size;
9981 break;
9982 case DW_SECT_MACRO:
9983 sections.macro_offset = offset;
9984 sections.macro_size = size;
9985 break;
9986 }
9987 }
9988
9989 /* It's easier for the rest of the code if we fake a struct dwo_file and
9990 have dwo_unit "live" in that. At least for now.
9991
9992 The DWP file can be made up of a random collection of CUs and TUs.
9993 However, for each CU + set of TUs that came from the same original DWO
9994 file, we can combine them back into a virtual DWO file to save space
9995 (fewer struct dwo_file objects to allocate). Remember that for really
9996 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9997
9998 virtual_dwo_name =
9999 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10000 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10001 (long) (sections.line_size ? sections.line_offset : 0),
10002 (long) (sections.loc_size ? sections.loc_offset : 0),
10003 (long) (sections.str_offsets_size
10004 ? sections.str_offsets_offset : 0));
10005 make_cleanup (xfree, virtual_dwo_name);
10006 /* Can we use an existing virtual DWO file? */
10007 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10008 /* Create one if necessary. */
10009 if (*dwo_file_slot == NULL)
10010 {
10011 if (dwarf2_read_debug)
10012 {
10013 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10014 virtual_dwo_name);
10015 }
10016 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10017 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10018 virtual_dwo_name,
10019 strlen (virtual_dwo_name));
10020 dwo_file->comp_dir = comp_dir;
10021 dwo_file->sections.abbrev =
10022 create_dwp_v2_section (&dwp_file->sections.abbrev,
10023 sections.abbrev_offset, sections.abbrev_size);
10024 dwo_file->sections.line =
10025 create_dwp_v2_section (&dwp_file->sections.line,
10026 sections.line_offset, sections.line_size);
10027 dwo_file->sections.loc =
10028 create_dwp_v2_section (&dwp_file->sections.loc,
10029 sections.loc_offset, sections.loc_size);
10030 dwo_file->sections.macinfo =
10031 create_dwp_v2_section (&dwp_file->sections.macinfo,
10032 sections.macinfo_offset, sections.macinfo_size);
10033 dwo_file->sections.macro =
10034 create_dwp_v2_section (&dwp_file->sections.macro,
10035 sections.macro_offset, sections.macro_size);
10036 dwo_file->sections.str_offsets =
10037 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10038 sections.str_offsets_offset,
10039 sections.str_offsets_size);
10040 /* The "str" section is global to the entire DWP file. */
10041 dwo_file->sections.str = dwp_file->sections.str;
10042 /* The info or types section is assigned below to dwo_unit,
10043 there's no need to record it in dwo_file.
10044 Also, we can't simply record type sections in dwo_file because
10045 we record a pointer into the vector in dwo_unit. As we collect more
10046 types we'll grow the vector and eventually have to reallocate space
10047 for it, invalidating all copies of pointers into the previous
10048 contents. */
10049 *dwo_file_slot = dwo_file;
10050 }
10051 else
10052 {
10053 if (dwarf2_read_debug)
10054 {
10055 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10056 virtual_dwo_name);
10057 }
10058 dwo_file = *dwo_file_slot;
10059 }
10060 do_cleanups (cleanups);
10061
10062 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10063 dwo_unit->dwo_file = dwo_file;
10064 dwo_unit->signature = signature;
10065 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10066 sizeof (struct dwarf2_section_info));
10067 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10068 ? &dwp_file->sections.types
10069 : &dwp_file->sections.info,
10070 sections.info_or_types_offset,
10071 sections.info_or_types_size);
10072 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10073
10074 return dwo_unit;
10075 }
10076
10077 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10078 Returns NULL if the signature isn't found. */
10079
10080 static struct dwo_unit *
10081 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10082 ULONGEST signature, int is_debug_types)
10083 {
10084 const struct dwp_hash_table *dwp_htab =
10085 is_debug_types ? dwp_file->tus : dwp_file->cus;
10086 bfd *dbfd = dwp_file->dbfd;
10087 uint32_t mask = dwp_htab->nr_slots - 1;
10088 uint32_t hash = signature & mask;
10089 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10090 unsigned int i;
10091 void **slot;
10092 struct dwo_unit find_dwo_cu, *dwo_cu;
10093
10094 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10095 find_dwo_cu.signature = signature;
10096 slot = htab_find_slot (is_debug_types
10097 ? dwp_file->loaded_tus
10098 : dwp_file->loaded_cus,
10099 &find_dwo_cu, INSERT);
10100
10101 if (*slot != NULL)
10102 return *slot;
10103
10104 /* Use a for loop so that we don't loop forever on bad debug info. */
10105 for (i = 0; i < dwp_htab->nr_slots; ++i)
10106 {
10107 ULONGEST signature_in_table;
10108
10109 signature_in_table =
10110 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10111 if (signature_in_table == signature)
10112 {
10113 uint32_t unit_index =
10114 read_4_bytes (dbfd,
10115 dwp_htab->unit_table + hash * sizeof (uint32_t));
10116
10117 if (dwp_file->version == 1)
10118 {
10119 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10120 comp_dir, signature,
10121 is_debug_types);
10122 }
10123 else
10124 {
10125 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10126 comp_dir, signature,
10127 is_debug_types);
10128 }
10129 return *slot;
10130 }
10131 if (signature_in_table == 0)
10132 return NULL;
10133 hash = (hash + hash2) & mask;
10134 }
10135
10136 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10137 " [in module %s]"),
10138 dwp_file->name);
10139 }
10140
10141 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10142 Open the file specified by FILE_NAME and hand it off to BFD for
10143 preliminary analysis. Return a newly initialized bfd *, which
10144 includes a canonicalized copy of FILE_NAME.
10145 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10146 SEARCH_CWD is true if the current directory is to be searched.
10147 It will be searched before debug-file-directory.
10148 If successful, the file is added to the bfd include table of the
10149 objfile's bfd (see gdb_bfd_record_inclusion).
10150 If unable to find/open the file, return NULL.
10151 NOTE: This function is derived from symfile_bfd_open. */
10152
10153 static bfd *
10154 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10155 {
10156 bfd *sym_bfd;
10157 int desc, flags;
10158 char *absolute_name;
10159 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10160 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10161 to debug_file_directory. */
10162 char *search_path;
10163 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10164
10165 if (search_cwd)
10166 {
10167 if (*debug_file_directory != '\0')
10168 search_path = concat (".", dirname_separator_string,
10169 debug_file_directory, NULL);
10170 else
10171 search_path = xstrdup (".");
10172 }
10173 else
10174 search_path = xstrdup (debug_file_directory);
10175
10176 flags = OPF_RETURN_REALPATH;
10177 if (is_dwp)
10178 flags |= OPF_SEARCH_IN_PATH;
10179 desc = openp (search_path, flags, file_name,
10180 O_RDONLY | O_BINARY, &absolute_name);
10181 xfree (search_path);
10182 if (desc < 0)
10183 return NULL;
10184
10185 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10186 xfree (absolute_name);
10187 if (sym_bfd == NULL)
10188 return NULL;
10189 bfd_set_cacheable (sym_bfd, 1);
10190
10191 if (!bfd_check_format (sym_bfd, bfd_object))
10192 {
10193 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10194 return NULL;
10195 }
10196
10197 /* Success. Record the bfd as having been included by the objfile's bfd.
10198 This is important because things like demangled_names_hash lives in the
10199 objfile's per_bfd space and may have references to things like symbol
10200 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10201 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10202
10203 return sym_bfd;
10204 }
10205
10206 /* Try to open DWO file FILE_NAME.
10207 COMP_DIR is the DW_AT_comp_dir attribute.
10208 The result is the bfd handle of the file.
10209 If there is a problem finding or opening the file, return NULL.
10210 Upon success, the canonicalized path of the file is stored in the bfd,
10211 same as symfile_bfd_open. */
10212
10213 static bfd *
10214 open_dwo_file (const char *file_name, const char *comp_dir)
10215 {
10216 bfd *abfd;
10217
10218 if (IS_ABSOLUTE_PATH (file_name))
10219 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10220
10221 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10222
10223 if (comp_dir != NULL)
10224 {
10225 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10226
10227 /* NOTE: If comp_dir is a relative path, this will also try the
10228 search path, which seems useful. */
10229 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10230 xfree (path_to_try);
10231 if (abfd != NULL)
10232 return abfd;
10233 }
10234
10235 /* That didn't work, try debug-file-directory, which, despite its name,
10236 is a list of paths. */
10237
10238 if (*debug_file_directory == '\0')
10239 return NULL;
10240
10241 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10242 }
10243
10244 /* This function is mapped across the sections and remembers the offset and
10245 size of each of the DWO debugging sections we are interested in. */
10246
10247 static void
10248 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10249 {
10250 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10251 const struct dwop_section_names *names = &dwop_section_names;
10252
10253 if (section_is_p (sectp->name, &names->abbrev_dwo))
10254 {
10255 dwo_sections->abbrev.s.asection = sectp;
10256 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10257 }
10258 else if (section_is_p (sectp->name, &names->info_dwo))
10259 {
10260 dwo_sections->info.s.asection = sectp;
10261 dwo_sections->info.size = bfd_get_section_size (sectp);
10262 }
10263 else if (section_is_p (sectp->name, &names->line_dwo))
10264 {
10265 dwo_sections->line.s.asection = sectp;
10266 dwo_sections->line.size = bfd_get_section_size (sectp);
10267 }
10268 else if (section_is_p (sectp->name, &names->loc_dwo))
10269 {
10270 dwo_sections->loc.s.asection = sectp;
10271 dwo_sections->loc.size = bfd_get_section_size (sectp);
10272 }
10273 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10274 {
10275 dwo_sections->macinfo.s.asection = sectp;
10276 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10277 }
10278 else if (section_is_p (sectp->name, &names->macro_dwo))
10279 {
10280 dwo_sections->macro.s.asection = sectp;
10281 dwo_sections->macro.size = bfd_get_section_size (sectp);
10282 }
10283 else if (section_is_p (sectp->name, &names->str_dwo))
10284 {
10285 dwo_sections->str.s.asection = sectp;
10286 dwo_sections->str.size = bfd_get_section_size (sectp);
10287 }
10288 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10289 {
10290 dwo_sections->str_offsets.s.asection = sectp;
10291 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10292 }
10293 else if (section_is_p (sectp->name, &names->types_dwo))
10294 {
10295 struct dwarf2_section_info type_section;
10296
10297 memset (&type_section, 0, sizeof (type_section));
10298 type_section.s.asection = sectp;
10299 type_section.size = bfd_get_section_size (sectp);
10300 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10301 &type_section);
10302 }
10303 }
10304
10305 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10306 by PER_CU. This is for the non-DWP case.
10307 The result is NULL if DWO_NAME can't be found. */
10308
10309 static struct dwo_file *
10310 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10311 const char *dwo_name, const char *comp_dir)
10312 {
10313 struct objfile *objfile = dwarf2_per_objfile->objfile;
10314 struct dwo_file *dwo_file;
10315 bfd *dbfd;
10316 struct cleanup *cleanups;
10317
10318 dbfd = open_dwo_file (dwo_name, comp_dir);
10319 if (dbfd == NULL)
10320 {
10321 if (dwarf2_read_debug)
10322 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10323 return NULL;
10324 }
10325 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10326 dwo_file->dwo_name = dwo_name;
10327 dwo_file->comp_dir = comp_dir;
10328 dwo_file->dbfd = dbfd;
10329
10330 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10331
10332 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10333
10334 dwo_file->cu = create_dwo_cu (dwo_file);
10335
10336 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10337 dwo_file->sections.types);
10338
10339 discard_cleanups (cleanups);
10340
10341 if (dwarf2_read_debug)
10342 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10343
10344 return dwo_file;
10345 }
10346
10347 /* This function is mapped across the sections and remembers the offset and
10348 size of each of the DWP debugging sections common to version 1 and 2 that
10349 we are interested in. */
10350
10351 static void
10352 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10353 void *dwp_file_ptr)
10354 {
10355 struct dwp_file *dwp_file = dwp_file_ptr;
10356 const struct dwop_section_names *names = &dwop_section_names;
10357 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10358
10359 /* Record the ELF section number for later lookup: this is what the
10360 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10361 gdb_assert (elf_section_nr < dwp_file->num_sections);
10362 dwp_file->elf_sections[elf_section_nr] = sectp;
10363
10364 /* Look for specific sections that we need. */
10365 if (section_is_p (sectp->name, &names->str_dwo))
10366 {
10367 dwp_file->sections.str.s.asection = sectp;
10368 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10369 }
10370 else if (section_is_p (sectp->name, &names->cu_index))
10371 {
10372 dwp_file->sections.cu_index.s.asection = sectp;
10373 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10374 }
10375 else if (section_is_p (sectp->name, &names->tu_index))
10376 {
10377 dwp_file->sections.tu_index.s.asection = sectp;
10378 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10379 }
10380 }
10381
10382 /* This function is mapped across the sections and remembers the offset and
10383 size of each of the DWP version 2 debugging sections that we are interested
10384 in. This is split into a separate function because we don't know if we
10385 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10386
10387 static void
10388 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10389 {
10390 struct dwp_file *dwp_file = dwp_file_ptr;
10391 const struct dwop_section_names *names = &dwop_section_names;
10392 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10393
10394 /* Record the ELF section number for later lookup: this is what the
10395 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10396 gdb_assert (elf_section_nr < dwp_file->num_sections);
10397 dwp_file->elf_sections[elf_section_nr] = sectp;
10398
10399 /* Look for specific sections that we need. */
10400 if (section_is_p (sectp->name, &names->abbrev_dwo))
10401 {
10402 dwp_file->sections.abbrev.s.asection = sectp;
10403 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10404 }
10405 else if (section_is_p (sectp->name, &names->info_dwo))
10406 {
10407 dwp_file->sections.info.s.asection = sectp;
10408 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10409 }
10410 else if (section_is_p (sectp->name, &names->line_dwo))
10411 {
10412 dwp_file->sections.line.s.asection = sectp;
10413 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10414 }
10415 else if (section_is_p (sectp->name, &names->loc_dwo))
10416 {
10417 dwp_file->sections.loc.s.asection = sectp;
10418 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10419 }
10420 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10421 {
10422 dwp_file->sections.macinfo.s.asection = sectp;
10423 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10424 }
10425 else if (section_is_p (sectp->name, &names->macro_dwo))
10426 {
10427 dwp_file->sections.macro.s.asection = sectp;
10428 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10429 }
10430 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10431 {
10432 dwp_file->sections.str_offsets.s.asection = sectp;
10433 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10434 }
10435 else if (section_is_p (sectp->name, &names->types_dwo))
10436 {
10437 dwp_file->sections.types.s.asection = sectp;
10438 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10439 }
10440 }
10441
10442 /* Hash function for dwp_file loaded CUs/TUs. */
10443
10444 static hashval_t
10445 hash_dwp_loaded_cutus (const void *item)
10446 {
10447 const struct dwo_unit *dwo_unit = item;
10448
10449 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10450 return dwo_unit->signature;
10451 }
10452
10453 /* Equality function for dwp_file loaded CUs/TUs. */
10454
10455 static int
10456 eq_dwp_loaded_cutus (const void *a, const void *b)
10457 {
10458 const struct dwo_unit *dua = a;
10459 const struct dwo_unit *dub = b;
10460
10461 return dua->signature == dub->signature;
10462 }
10463
10464 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10465
10466 static htab_t
10467 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10468 {
10469 return htab_create_alloc_ex (3,
10470 hash_dwp_loaded_cutus,
10471 eq_dwp_loaded_cutus,
10472 NULL,
10473 &objfile->objfile_obstack,
10474 hashtab_obstack_allocate,
10475 dummy_obstack_deallocate);
10476 }
10477
10478 /* Try to open DWP file FILE_NAME.
10479 The result is the bfd handle of the file.
10480 If there is a problem finding or opening the file, return NULL.
10481 Upon success, the canonicalized path of the file is stored in the bfd,
10482 same as symfile_bfd_open. */
10483
10484 static bfd *
10485 open_dwp_file (const char *file_name)
10486 {
10487 bfd *abfd;
10488
10489 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10490 if (abfd != NULL)
10491 return abfd;
10492
10493 /* Work around upstream bug 15652.
10494 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10495 [Whether that's a "bug" is debatable, but it is getting in our way.]
10496 We have no real idea where the dwp file is, because gdb's realpath-ing
10497 of the executable's path may have discarded the needed info.
10498 [IWBN if the dwp file name was recorded in the executable, akin to
10499 .gnu_debuglink, but that doesn't exist yet.]
10500 Strip the directory from FILE_NAME and search again. */
10501 if (*debug_file_directory != '\0')
10502 {
10503 /* Don't implicitly search the current directory here.
10504 If the user wants to search "." to handle this case,
10505 it must be added to debug-file-directory. */
10506 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10507 0 /*search_cwd*/);
10508 }
10509
10510 return NULL;
10511 }
10512
10513 /* Initialize the use of the DWP file for the current objfile.
10514 By convention the name of the DWP file is ${objfile}.dwp.
10515 The result is NULL if it can't be found. */
10516
10517 static struct dwp_file *
10518 open_and_init_dwp_file (void)
10519 {
10520 struct objfile *objfile = dwarf2_per_objfile->objfile;
10521 struct dwp_file *dwp_file;
10522 char *dwp_name;
10523 bfd *dbfd;
10524 struct cleanup *cleanups;
10525
10526 /* Try to find first .dwp for the binary file before any symbolic links
10527 resolving. */
10528 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10529 cleanups = make_cleanup (xfree, dwp_name);
10530
10531 dbfd = open_dwp_file (dwp_name);
10532 if (dbfd == NULL
10533 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10534 {
10535 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10536 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10537 make_cleanup (xfree, dwp_name);
10538 dbfd = open_dwp_file (dwp_name);
10539 }
10540
10541 if (dbfd == NULL)
10542 {
10543 if (dwarf2_read_debug)
10544 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10545 do_cleanups (cleanups);
10546 return NULL;
10547 }
10548 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10549 dwp_file->name = bfd_get_filename (dbfd);
10550 dwp_file->dbfd = dbfd;
10551 do_cleanups (cleanups);
10552
10553 /* +1: section 0 is unused */
10554 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10555 dwp_file->elf_sections =
10556 OBSTACK_CALLOC (&objfile->objfile_obstack,
10557 dwp_file->num_sections, asection *);
10558
10559 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10560
10561 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10562
10563 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10564
10565 /* The DWP file version is stored in the hash table. Oh well. */
10566 if (dwp_file->cus->version != dwp_file->tus->version)
10567 {
10568 /* Technically speaking, we should try to limp along, but this is
10569 pretty bizarre. We use pulongest here because that's the established
10570 portability solution (e.g, we cannot use %u for uint32_t). */
10571 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10572 " TU version %s [in DWP file %s]"),
10573 pulongest (dwp_file->cus->version),
10574 pulongest (dwp_file->tus->version), dwp_name);
10575 }
10576 dwp_file->version = dwp_file->cus->version;
10577
10578 if (dwp_file->version == 2)
10579 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10580
10581 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10582 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10583
10584 if (dwarf2_read_debug)
10585 {
10586 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10587 fprintf_unfiltered (gdb_stdlog,
10588 " %s CUs, %s TUs\n",
10589 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10590 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10591 }
10592
10593 return dwp_file;
10594 }
10595
10596 /* Wrapper around open_and_init_dwp_file, only open it once. */
10597
10598 static struct dwp_file *
10599 get_dwp_file (void)
10600 {
10601 if (! dwarf2_per_objfile->dwp_checked)
10602 {
10603 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10604 dwarf2_per_objfile->dwp_checked = 1;
10605 }
10606 return dwarf2_per_objfile->dwp_file;
10607 }
10608
10609 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10610 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10611 or in the DWP file for the objfile, referenced by THIS_UNIT.
10612 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10613 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10614
10615 This is called, for example, when wanting to read a variable with a
10616 complex location. Therefore we don't want to do file i/o for every call.
10617 Therefore we don't want to look for a DWO file on every call.
10618 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10619 then we check if we've already seen DWO_NAME, and only THEN do we check
10620 for a DWO file.
10621
10622 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10623 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10624
10625 static struct dwo_unit *
10626 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10627 const char *dwo_name, const char *comp_dir,
10628 ULONGEST signature, int is_debug_types)
10629 {
10630 struct objfile *objfile = dwarf2_per_objfile->objfile;
10631 const char *kind = is_debug_types ? "TU" : "CU";
10632 void **dwo_file_slot;
10633 struct dwo_file *dwo_file;
10634 struct dwp_file *dwp_file;
10635
10636 /* First see if there's a DWP file.
10637 If we have a DWP file but didn't find the DWO inside it, don't
10638 look for the original DWO file. It makes gdb behave differently
10639 depending on whether one is debugging in the build tree. */
10640
10641 dwp_file = get_dwp_file ();
10642 if (dwp_file != NULL)
10643 {
10644 const struct dwp_hash_table *dwp_htab =
10645 is_debug_types ? dwp_file->tus : dwp_file->cus;
10646
10647 if (dwp_htab != NULL)
10648 {
10649 struct dwo_unit *dwo_cutu =
10650 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10651 signature, is_debug_types);
10652
10653 if (dwo_cutu != NULL)
10654 {
10655 if (dwarf2_read_debug)
10656 {
10657 fprintf_unfiltered (gdb_stdlog,
10658 "Virtual DWO %s %s found: @%s\n",
10659 kind, hex_string (signature),
10660 host_address_to_string (dwo_cutu));
10661 }
10662 return dwo_cutu;
10663 }
10664 }
10665 }
10666 else
10667 {
10668 /* No DWP file, look for the DWO file. */
10669
10670 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10671 if (*dwo_file_slot == NULL)
10672 {
10673 /* Read in the file and build a table of the CUs/TUs it contains. */
10674 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10675 }
10676 /* NOTE: This will be NULL if unable to open the file. */
10677 dwo_file = *dwo_file_slot;
10678
10679 if (dwo_file != NULL)
10680 {
10681 struct dwo_unit *dwo_cutu = NULL;
10682
10683 if (is_debug_types && dwo_file->tus)
10684 {
10685 struct dwo_unit find_dwo_cutu;
10686
10687 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10688 find_dwo_cutu.signature = signature;
10689 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10690 }
10691 else if (!is_debug_types && dwo_file->cu)
10692 {
10693 if (signature == dwo_file->cu->signature)
10694 dwo_cutu = dwo_file->cu;
10695 }
10696
10697 if (dwo_cutu != NULL)
10698 {
10699 if (dwarf2_read_debug)
10700 {
10701 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10702 kind, dwo_name, hex_string (signature),
10703 host_address_to_string (dwo_cutu));
10704 }
10705 return dwo_cutu;
10706 }
10707 }
10708 }
10709
10710 /* We didn't find it. This could mean a dwo_id mismatch, or
10711 someone deleted the DWO/DWP file, or the search path isn't set up
10712 correctly to find the file. */
10713
10714 if (dwarf2_read_debug)
10715 {
10716 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10717 kind, dwo_name, hex_string (signature));
10718 }
10719
10720 /* This is a warning and not a complaint because it can be caused by
10721 pilot error (e.g., user accidentally deleting the DWO). */
10722 {
10723 /* Print the name of the DWP file if we looked there, helps the user
10724 better diagnose the problem. */
10725 char *dwp_text = NULL;
10726 struct cleanup *cleanups;
10727
10728 if (dwp_file != NULL)
10729 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10730 cleanups = make_cleanup (xfree, dwp_text);
10731
10732 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10733 " [in module %s]"),
10734 kind, dwo_name, hex_string (signature),
10735 dwp_text != NULL ? dwp_text : "",
10736 this_unit->is_debug_types ? "TU" : "CU",
10737 this_unit->offset.sect_off, objfile_name (objfile));
10738
10739 do_cleanups (cleanups);
10740 }
10741 return NULL;
10742 }
10743
10744 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10745 See lookup_dwo_cutu_unit for details. */
10746
10747 static struct dwo_unit *
10748 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10749 const char *dwo_name, const char *comp_dir,
10750 ULONGEST signature)
10751 {
10752 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10753 }
10754
10755 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10756 See lookup_dwo_cutu_unit for details. */
10757
10758 static struct dwo_unit *
10759 lookup_dwo_type_unit (struct signatured_type *this_tu,
10760 const char *dwo_name, const char *comp_dir)
10761 {
10762 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10763 }
10764
10765 /* Traversal function for queue_and_load_all_dwo_tus. */
10766
10767 static int
10768 queue_and_load_dwo_tu (void **slot, void *info)
10769 {
10770 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10771 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10772 ULONGEST signature = dwo_unit->signature;
10773 struct signatured_type *sig_type =
10774 lookup_dwo_signatured_type (per_cu->cu, signature);
10775
10776 if (sig_type != NULL)
10777 {
10778 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10779
10780 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10781 a real dependency of PER_CU on SIG_TYPE. That is detected later
10782 while processing PER_CU. */
10783 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10784 load_full_type_unit (sig_cu);
10785 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10786 }
10787
10788 return 1;
10789 }
10790
10791 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10792 The DWO may have the only definition of the type, though it may not be
10793 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10794 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10795
10796 static void
10797 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10798 {
10799 struct dwo_unit *dwo_unit;
10800 struct dwo_file *dwo_file;
10801
10802 gdb_assert (!per_cu->is_debug_types);
10803 gdb_assert (get_dwp_file () == NULL);
10804 gdb_assert (per_cu->cu != NULL);
10805
10806 dwo_unit = per_cu->cu->dwo_unit;
10807 gdb_assert (dwo_unit != NULL);
10808
10809 dwo_file = dwo_unit->dwo_file;
10810 if (dwo_file->tus != NULL)
10811 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10812 }
10813
10814 /* Free all resources associated with DWO_FILE.
10815 Close the DWO file and munmap the sections.
10816 All memory should be on the objfile obstack. */
10817
10818 static void
10819 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10820 {
10821 int ix;
10822 struct dwarf2_section_info *section;
10823
10824 /* Note: dbfd is NULL for virtual DWO files. */
10825 gdb_bfd_unref (dwo_file->dbfd);
10826
10827 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10828 }
10829
10830 /* Wrapper for free_dwo_file for use in cleanups. */
10831
10832 static void
10833 free_dwo_file_cleanup (void *arg)
10834 {
10835 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10836 struct objfile *objfile = dwarf2_per_objfile->objfile;
10837
10838 free_dwo_file (dwo_file, objfile);
10839 }
10840
10841 /* Traversal function for free_dwo_files. */
10842
10843 static int
10844 free_dwo_file_from_slot (void **slot, void *info)
10845 {
10846 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10847 struct objfile *objfile = (struct objfile *) info;
10848
10849 free_dwo_file (dwo_file, objfile);
10850
10851 return 1;
10852 }
10853
10854 /* Free all resources associated with DWO_FILES. */
10855
10856 static void
10857 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10858 {
10859 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10860 }
10861 \f
10862 /* Read in various DIEs. */
10863
10864 /* qsort helper for inherit_abstract_dies. */
10865
10866 static int
10867 unsigned_int_compar (const void *ap, const void *bp)
10868 {
10869 unsigned int a = *(unsigned int *) ap;
10870 unsigned int b = *(unsigned int *) bp;
10871
10872 return (a > b) - (b > a);
10873 }
10874
10875 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10876 Inherit only the children of the DW_AT_abstract_origin DIE not being
10877 already referenced by DW_AT_abstract_origin from the children of the
10878 current DIE. */
10879
10880 static void
10881 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10882 {
10883 struct die_info *child_die;
10884 unsigned die_children_count;
10885 /* CU offsets which were referenced by children of the current DIE. */
10886 sect_offset *offsets;
10887 sect_offset *offsets_end, *offsetp;
10888 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10889 struct die_info *origin_die;
10890 /* Iterator of the ORIGIN_DIE children. */
10891 struct die_info *origin_child_die;
10892 struct cleanup *cleanups;
10893 struct attribute *attr;
10894 struct dwarf2_cu *origin_cu;
10895 struct pending **origin_previous_list_in_scope;
10896
10897 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10898 if (!attr)
10899 return;
10900
10901 /* Note that following die references may follow to a die in a
10902 different cu. */
10903
10904 origin_cu = cu;
10905 origin_die = follow_die_ref (die, attr, &origin_cu);
10906
10907 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10908 symbols in. */
10909 origin_previous_list_in_scope = origin_cu->list_in_scope;
10910 origin_cu->list_in_scope = cu->list_in_scope;
10911
10912 if (die->tag != origin_die->tag
10913 && !(die->tag == DW_TAG_inlined_subroutine
10914 && origin_die->tag == DW_TAG_subprogram))
10915 complaint (&symfile_complaints,
10916 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10917 die->offset.sect_off, origin_die->offset.sect_off);
10918
10919 child_die = die->child;
10920 die_children_count = 0;
10921 while (child_die && child_die->tag)
10922 {
10923 child_die = sibling_die (child_die);
10924 die_children_count++;
10925 }
10926 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10927 cleanups = make_cleanup (xfree, offsets);
10928
10929 offsets_end = offsets;
10930 child_die = die->child;
10931 while (child_die && child_die->tag)
10932 {
10933 /* For each CHILD_DIE, find the corresponding child of
10934 ORIGIN_DIE. If there is more than one layer of
10935 DW_AT_abstract_origin, follow them all; there shouldn't be,
10936 but GCC versions at least through 4.4 generate this (GCC PR
10937 40573). */
10938 struct die_info *child_origin_die = child_die;
10939 struct dwarf2_cu *child_origin_cu = cu;
10940
10941 while (1)
10942 {
10943 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10944 child_origin_cu);
10945 if (attr == NULL)
10946 break;
10947 child_origin_die = follow_die_ref (child_origin_die, attr,
10948 &child_origin_cu);
10949 }
10950
10951 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10952 counterpart may exist. */
10953 if (child_origin_die != child_die)
10954 {
10955 if (child_die->tag != child_origin_die->tag
10956 && !(child_die->tag == DW_TAG_inlined_subroutine
10957 && child_origin_die->tag == DW_TAG_subprogram))
10958 complaint (&symfile_complaints,
10959 _("Child DIE 0x%x and its abstract origin 0x%x have "
10960 "different tags"), child_die->offset.sect_off,
10961 child_origin_die->offset.sect_off);
10962 if (child_origin_die->parent != origin_die)
10963 complaint (&symfile_complaints,
10964 _("Child DIE 0x%x and its abstract origin 0x%x have "
10965 "different parents"), child_die->offset.sect_off,
10966 child_origin_die->offset.sect_off);
10967 else
10968 *offsets_end++ = child_origin_die->offset;
10969 }
10970 child_die = sibling_die (child_die);
10971 }
10972 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10973 unsigned_int_compar);
10974 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10975 if (offsetp[-1].sect_off == offsetp->sect_off)
10976 complaint (&symfile_complaints,
10977 _("Multiple children of DIE 0x%x refer "
10978 "to DIE 0x%x as their abstract origin"),
10979 die->offset.sect_off, offsetp->sect_off);
10980
10981 offsetp = offsets;
10982 origin_child_die = origin_die->child;
10983 while (origin_child_die && origin_child_die->tag)
10984 {
10985 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10986 while (offsetp < offsets_end
10987 && offsetp->sect_off < origin_child_die->offset.sect_off)
10988 offsetp++;
10989 if (offsetp >= offsets_end
10990 || offsetp->sect_off > origin_child_die->offset.sect_off)
10991 {
10992 /* Found that ORIGIN_CHILD_DIE is really not referenced.
10993 Check whether we're already processing ORIGIN_CHILD_DIE.
10994 This can happen with mutually referenced abstract_origins.
10995 PR 16581. */
10996 if (!origin_child_die->in_process)
10997 process_die (origin_child_die, origin_cu);
10998 }
10999 origin_child_die = sibling_die (origin_child_die);
11000 }
11001 origin_cu->list_in_scope = origin_previous_list_in_scope;
11002
11003 do_cleanups (cleanups);
11004 }
11005
11006 static void
11007 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11008 {
11009 struct objfile *objfile = cu->objfile;
11010 struct context_stack *new;
11011 CORE_ADDR lowpc;
11012 CORE_ADDR highpc;
11013 struct die_info *child_die;
11014 struct attribute *attr, *call_line, *call_file;
11015 const char *name;
11016 CORE_ADDR baseaddr;
11017 struct block *block;
11018 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11019 VEC (symbolp) *template_args = NULL;
11020 struct template_symbol *templ_func = NULL;
11021
11022 if (inlined_func)
11023 {
11024 /* If we do not have call site information, we can't show the
11025 caller of this inlined function. That's too confusing, so
11026 only use the scope for local variables. */
11027 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11028 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11029 if (call_line == NULL || call_file == NULL)
11030 {
11031 read_lexical_block_scope (die, cu);
11032 return;
11033 }
11034 }
11035
11036 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11037
11038 name = dwarf2_name (die, cu);
11039
11040 /* Ignore functions with missing or empty names. These are actually
11041 illegal according to the DWARF standard. */
11042 if (name == NULL)
11043 {
11044 complaint (&symfile_complaints,
11045 _("missing name for subprogram DIE at %d"),
11046 die->offset.sect_off);
11047 return;
11048 }
11049
11050 /* Ignore functions with missing or invalid low and high pc attributes. */
11051 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11052 {
11053 attr = dwarf2_attr (die, DW_AT_external, cu);
11054 if (!attr || !DW_UNSND (attr))
11055 complaint (&symfile_complaints,
11056 _("cannot get low and high bounds "
11057 "for subprogram DIE at %d"),
11058 die->offset.sect_off);
11059 return;
11060 }
11061
11062 lowpc += baseaddr;
11063 highpc += baseaddr;
11064
11065 /* If we have any template arguments, then we must allocate a
11066 different sort of symbol. */
11067 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11068 {
11069 if (child_die->tag == DW_TAG_template_type_param
11070 || child_die->tag == DW_TAG_template_value_param)
11071 {
11072 templ_func = allocate_template_symbol (objfile);
11073 templ_func->base.is_cplus_template_function = 1;
11074 break;
11075 }
11076 }
11077
11078 new = push_context (0, lowpc);
11079 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11080 (struct symbol *) templ_func);
11081
11082 /* If there is a location expression for DW_AT_frame_base, record
11083 it. */
11084 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11085 if (attr)
11086 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11087
11088 cu->list_in_scope = &local_symbols;
11089
11090 if (die->child != NULL)
11091 {
11092 child_die = die->child;
11093 while (child_die && child_die->tag)
11094 {
11095 if (child_die->tag == DW_TAG_template_type_param
11096 || child_die->tag == DW_TAG_template_value_param)
11097 {
11098 struct symbol *arg = new_symbol (child_die, NULL, cu);
11099
11100 if (arg != NULL)
11101 VEC_safe_push (symbolp, template_args, arg);
11102 }
11103 else
11104 process_die (child_die, cu);
11105 child_die = sibling_die (child_die);
11106 }
11107 }
11108
11109 inherit_abstract_dies (die, cu);
11110
11111 /* If we have a DW_AT_specification, we might need to import using
11112 directives from the context of the specification DIE. See the
11113 comment in determine_prefix. */
11114 if (cu->language == language_cplus
11115 && dwarf2_attr (die, DW_AT_specification, cu))
11116 {
11117 struct dwarf2_cu *spec_cu = cu;
11118 struct die_info *spec_die = die_specification (die, &spec_cu);
11119
11120 while (spec_die)
11121 {
11122 child_die = spec_die->child;
11123 while (child_die && child_die->tag)
11124 {
11125 if (child_die->tag == DW_TAG_imported_module)
11126 process_die (child_die, spec_cu);
11127 child_die = sibling_die (child_die);
11128 }
11129
11130 /* In some cases, GCC generates specification DIEs that
11131 themselves contain DW_AT_specification attributes. */
11132 spec_die = die_specification (spec_die, &spec_cu);
11133 }
11134 }
11135
11136 new = pop_context ();
11137 /* Make a block for the local symbols within. */
11138 block = finish_block (new->name, &local_symbols, new->old_blocks,
11139 lowpc, highpc, objfile);
11140
11141 /* For C++, set the block's scope. */
11142 if ((cu->language == language_cplus || cu->language == language_fortran)
11143 && cu->processing_has_namespace_info)
11144 block_set_scope (block, determine_prefix (die, cu),
11145 &objfile->objfile_obstack);
11146
11147 /* If we have address ranges, record them. */
11148 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11149
11150 /* Attach template arguments to function. */
11151 if (! VEC_empty (symbolp, template_args))
11152 {
11153 gdb_assert (templ_func != NULL);
11154
11155 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11156 templ_func->template_arguments
11157 = obstack_alloc (&objfile->objfile_obstack,
11158 (templ_func->n_template_arguments
11159 * sizeof (struct symbol *)));
11160 memcpy (templ_func->template_arguments,
11161 VEC_address (symbolp, template_args),
11162 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11163 VEC_free (symbolp, template_args);
11164 }
11165
11166 /* In C++, we can have functions nested inside functions (e.g., when
11167 a function declares a class that has methods). This means that
11168 when we finish processing a function scope, we may need to go
11169 back to building a containing block's symbol lists. */
11170 local_symbols = new->locals;
11171 using_directives = new->using_directives;
11172
11173 /* If we've finished processing a top-level function, subsequent
11174 symbols go in the file symbol list. */
11175 if (outermost_context_p ())
11176 cu->list_in_scope = &file_symbols;
11177 }
11178
11179 /* Process all the DIES contained within a lexical block scope. Start
11180 a new scope, process the dies, and then close the scope. */
11181
11182 static void
11183 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11184 {
11185 struct objfile *objfile = cu->objfile;
11186 struct context_stack *new;
11187 CORE_ADDR lowpc, highpc;
11188 struct die_info *child_die;
11189 CORE_ADDR baseaddr;
11190
11191 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11192
11193 /* Ignore blocks with missing or invalid low and high pc attributes. */
11194 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11195 as multiple lexical blocks? Handling children in a sane way would
11196 be nasty. Might be easier to properly extend generic blocks to
11197 describe ranges. */
11198 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11199 return;
11200 lowpc += baseaddr;
11201 highpc += baseaddr;
11202
11203 push_context (0, lowpc);
11204 if (die->child != NULL)
11205 {
11206 child_die = die->child;
11207 while (child_die && child_die->tag)
11208 {
11209 process_die (child_die, cu);
11210 child_die = sibling_die (child_die);
11211 }
11212 }
11213 new = pop_context ();
11214
11215 if (local_symbols != NULL || using_directives != NULL)
11216 {
11217 struct block *block
11218 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11219 highpc, objfile);
11220
11221 /* Note that recording ranges after traversing children, as we
11222 do here, means that recording a parent's ranges entails
11223 walking across all its children's ranges as they appear in
11224 the address map, which is quadratic behavior.
11225
11226 It would be nicer to record the parent's ranges before
11227 traversing its children, simply overriding whatever you find
11228 there. But since we don't even decide whether to create a
11229 block until after we've traversed its children, that's hard
11230 to do. */
11231 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11232 }
11233 local_symbols = new->locals;
11234 using_directives = new->using_directives;
11235 }
11236
11237 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11238
11239 static void
11240 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11241 {
11242 struct objfile *objfile = cu->objfile;
11243 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11244 CORE_ADDR pc, baseaddr;
11245 struct attribute *attr;
11246 struct call_site *call_site, call_site_local;
11247 void **slot;
11248 int nparams;
11249 struct die_info *child_die;
11250
11251 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11252
11253 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11254 if (!attr)
11255 {
11256 complaint (&symfile_complaints,
11257 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11258 "DIE 0x%x [in module %s]"),
11259 die->offset.sect_off, objfile_name (objfile));
11260 return;
11261 }
11262 pc = DW_ADDR (attr) + baseaddr;
11263
11264 if (cu->call_site_htab == NULL)
11265 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11266 NULL, &objfile->objfile_obstack,
11267 hashtab_obstack_allocate, NULL);
11268 call_site_local.pc = pc;
11269 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11270 if (*slot != NULL)
11271 {
11272 complaint (&symfile_complaints,
11273 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11274 "DIE 0x%x [in module %s]"),
11275 paddress (gdbarch, pc), die->offset.sect_off,
11276 objfile_name (objfile));
11277 return;
11278 }
11279
11280 /* Count parameters at the caller. */
11281
11282 nparams = 0;
11283 for (child_die = die->child; child_die && child_die->tag;
11284 child_die = sibling_die (child_die))
11285 {
11286 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11287 {
11288 complaint (&symfile_complaints,
11289 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11290 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11291 child_die->tag, child_die->offset.sect_off,
11292 objfile_name (objfile));
11293 continue;
11294 }
11295
11296 nparams++;
11297 }
11298
11299 call_site = obstack_alloc (&objfile->objfile_obstack,
11300 (sizeof (*call_site)
11301 + (sizeof (*call_site->parameter)
11302 * (nparams - 1))));
11303 *slot = call_site;
11304 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11305 call_site->pc = pc;
11306
11307 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11308 {
11309 struct die_info *func_die;
11310
11311 /* Skip also over DW_TAG_inlined_subroutine. */
11312 for (func_die = die->parent;
11313 func_die && func_die->tag != DW_TAG_subprogram
11314 && func_die->tag != DW_TAG_subroutine_type;
11315 func_die = func_die->parent);
11316
11317 /* DW_AT_GNU_all_call_sites is a superset
11318 of DW_AT_GNU_all_tail_call_sites. */
11319 if (func_die
11320 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11321 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11322 {
11323 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11324 not complete. But keep CALL_SITE for look ups via call_site_htab,
11325 both the initial caller containing the real return address PC and
11326 the final callee containing the current PC of a chain of tail
11327 calls do not need to have the tail call list complete. But any
11328 function candidate for a virtual tail call frame searched via
11329 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11330 determined unambiguously. */
11331 }
11332 else
11333 {
11334 struct type *func_type = NULL;
11335
11336 if (func_die)
11337 func_type = get_die_type (func_die, cu);
11338 if (func_type != NULL)
11339 {
11340 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11341
11342 /* Enlist this call site to the function. */
11343 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11344 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11345 }
11346 else
11347 complaint (&symfile_complaints,
11348 _("Cannot find function owning DW_TAG_GNU_call_site "
11349 "DIE 0x%x [in module %s]"),
11350 die->offset.sect_off, objfile_name (objfile));
11351 }
11352 }
11353
11354 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11355 if (attr == NULL)
11356 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11357 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11358 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11359 /* Keep NULL DWARF_BLOCK. */;
11360 else if (attr_form_is_block (attr))
11361 {
11362 struct dwarf2_locexpr_baton *dlbaton;
11363
11364 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11365 dlbaton->data = DW_BLOCK (attr)->data;
11366 dlbaton->size = DW_BLOCK (attr)->size;
11367 dlbaton->per_cu = cu->per_cu;
11368
11369 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11370 }
11371 else if (attr_form_is_ref (attr))
11372 {
11373 struct dwarf2_cu *target_cu = cu;
11374 struct die_info *target_die;
11375
11376 target_die = follow_die_ref (die, attr, &target_cu);
11377 gdb_assert (target_cu->objfile == objfile);
11378 if (die_is_declaration (target_die, target_cu))
11379 {
11380 const char *target_physname = NULL;
11381 struct attribute *target_attr;
11382
11383 /* Prefer the mangled name; otherwise compute the demangled one. */
11384 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11385 if (target_attr == NULL)
11386 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11387 target_cu);
11388 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11389 target_physname = DW_STRING (target_attr);
11390 else
11391 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11392 if (target_physname == NULL)
11393 complaint (&symfile_complaints,
11394 _("DW_AT_GNU_call_site_target target DIE has invalid "
11395 "physname, for referencing DIE 0x%x [in module %s]"),
11396 die->offset.sect_off, objfile_name (objfile));
11397 else
11398 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11399 }
11400 else
11401 {
11402 CORE_ADDR lowpc;
11403
11404 /* DW_AT_entry_pc should be preferred. */
11405 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11406 complaint (&symfile_complaints,
11407 _("DW_AT_GNU_call_site_target target DIE has invalid "
11408 "low pc, for referencing DIE 0x%x [in module %s]"),
11409 die->offset.sect_off, objfile_name (objfile));
11410 else
11411 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11412 }
11413 }
11414 else
11415 complaint (&symfile_complaints,
11416 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11417 "block nor reference, for DIE 0x%x [in module %s]"),
11418 die->offset.sect_off, objfile_name (objfile));
11419
11420 call_site->per_cu = cu->per_cu;
11421
11422 for (child_die = die->child;
11423 child_die && child_die->tag;
11424 child_die = sibling_die (child_die))
11425 {
11426 struct call_site_parameter *parameter;
11427 struct attribute *loc, *origin;
11428
11429 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11430 {
11431 /* Already printed the complaint above. */
11432 continue;
11433 }
11434
11435 gdb_assert (call_site->parameter_count < nparams);
11436 parameter = &call_site->parameter[call_site->parameter_count];
11437
11438 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11439 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11440 register is contained in DW_AT_GNU_call_site_value. */
11441
11442 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11443 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11444 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11445 {
11446 sect_offset offset;
11447
11448 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11449 offset = dwarf2_get_ref_die_offset (origin);
11450 if (!offset_in_cu_p (&cu->header, offset))
11451 {
11452 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11453 binding can be done only inside one CU. Such referenced DIE
11454 therefore cannot be even moved to DW_TAG_partial_unit. */
11455 complaint (&symfile_complaints,
11456 _("DW_AT_abstract_origin offset is not in CU for "
11457 "DW_TAG_GNU_call_site child DIE 0x%x "
11458 "[in module %s]"),
11459 child_die->offset.sect_off, objfile_name (objfile));
11460 continue;
11461 }
11462 parameter->u.param_offset.cu_off = (offset.sect_off
11463 - cu->header.offset.sect_off);
11464 }
11465 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11466 {
11467 complaint (&symfile_complaints,
11468 _("No DW_FORM_block* DW_AT_location for "
11469 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11470 child_die->offset.sect_off, objfile_name (objfile));
11471 continue;
11472 }
11473 else
11474 {
11475 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11476 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11477 if (parameter->u.dwarf_reg != -1)
11478 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11479 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11480 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11481 &parameter->u.fb_offset))
11482 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11483 else
11484 {
11485 complaint (&symfile_complaints,
11486 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11487 "for DW_FORM_block* DW_AT_location is supported for "
11488 "DW_TAG_GNU_call_site child DIE 0x%x "
11489 "[in module %s]"),
11490 child_die->offset.sect_off, objfile_name (objfile));
11491 continue;
11492 }
11493 }
11494
11495 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11496 if (!attr_form_is_block (attr))
11497 {
11498 complaint (&symfile_complaints,
11499 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11500 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11501 child_die->offset.sect_off, objfile_name (objfile));
11502 continue;
11503 }
11504 parameter->value = DW_BLOCK (attr)->data;
11505 parameter->value_size = DW_BLOCK (attr)->size;
11506
11507 /* Parameters are not pre-cleared by memset above. */
11508 parameter->data_value = NULL;
11509 parameter->data_value_size = 0;
11510 call_site->parameter_count++;
11511
11512 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11513 if (attr)
11514 {
11515 if (!attr_form_is_block (attr))
11516 complaint (&symfile_complaints,
11517 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11518 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11519 child_die->offset.sect_off, objfile_name (objfile));
11520 else
11521 {
11522 parameter->data_value = DW_BLOCK (attr)->data;
11523 parameter->data_value_size = DW_BLOCK (attr)->size;
11524 }
11525 }
11526 }
11527 }
11528
11529 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11530 Return 1 if the attributes are present and valid, otherwise, return 0.
11531 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11532
11533 static int
11534 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11535 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11536 struct partial_symtab *ranges_pst)
11537 {
11538 struct objfile *objfile = cu->objfile;
11539 struct comp_unit_head *cu_header = &cu->header;
11540 bfd *obfd = objfile->obfd;
11541 unsigned int addr_size = cu_header->addr_size;
11542 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11543 /* Base address selection entry. */
11544 CORE_ADDR base;
11545 int found_base;
11546 unsigned int dummy;
11547 const gdb_byte *buffer;
11548 CORE_ADDR marker;
11549 int low_set;
11550 CORE_ADDR low = 0;
11551 CORE_ADDR high = 0;
11552 CORE_ADDR baseaddr;
11553
11554 found_base = cu->base_known;
11555 base = cu->base_address;
11556
11557 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11558 if (offset >= dwarf2_per_objfile->ranges.size)
11559 {
11560 complaint (&symfile_complaints,
11561 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11562 offset);
11563 return 0;
11564 }
11565 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11566
11567 /* Read in the largest possible address. */
11568 marker = read_address (obfd, buffer, cu, &dummy);
11569 if ((marker & mask) == mask)
11570 {
11571 /* If we found the largest possible address, then
11572 read the base address. */
11573 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11574 buffer += 2 * addr_size;
11575 offset += 2 * addr_size;
11576 found_base = 1;
11577 }
11578
11579 low_set = 0;
11580
11581 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11582
11583 while (1)
11584 {
11585 CORE_ADDR range_beginning, range_end;
11586
11587 range_beginning = read_address (obfd, buffer, cu, &dummy);
11588 buffer += addr_size;
11589 range_end = read_address (obfd, buffer, cu, &dummy);
11590 buffer += addr_size;
11591 offset += 2 * addr_size;
11592
11593 /* An end of list marker is a pair of zero addresses. */
11594 if (range_beginning == 0 && range_end == 0)
11595 /* Found the end of list entry. */
11596 break;
11597
11598 /* Each base address selection entry is a pair of 2 values.
11599 The first is the largest possible address, the second is
11600 the base address. Check for a base address here. */
11601 if ((range_beginning & mask) == mask)
11602 {
11603 /* If we found the largest possible address, then
11604 read the base address. */
11605 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11606 found_base = 1;
11607 continue;
11608 }
11609
11610 if (!found_base)
11611 {
11612 /* We have no valid base address for the ranges
11613 data. */
11614 complaint (&symfile_complaints,
11615 _("Invalid .debug_ranges data (no base address)"));
11616 return 0;
11617 }
11618
11619 if (range_beginning > range_end)
11620 {
11621 /* Inverted range entries are invalid. */
11622 complaint (&symfile_complaints,
11623 _("Invalid .debug_ranges data (inverted range)"));
11624 return 0;
11625 }
11626
11627 /* Empty range entries have no effect. */
11628 if (range_beginning == range_end)
11629 continue;
11630
11631 range_beginning += base;
11632 range_end += base;
11633
11634 /* A not-uncommon case of bad debug info.
11635 Don't pollute the addrmap with bad data. */
11636 if (range_beginning + baseaddr == 0
11637 && !dwarf2_per_objfile->has_section_at_zero)
11638 {
11639 complaint (&symfile_complaints,
11640 _(".debug_ranges entry has start address of zero"
11641 " [in module %s]"), objfile_name (objfile));
11642 continue;
11643 }
11644
11645 if (ranges_pst != NULL)
11646 addrmap_set_empty (objfile->psymtabs_addrmap,
11647 range_beginning + baseaddr,
11648 range_end - 1 + baseaddr,
11649 ranges_pst);
11650
11651 /* FIXME: This is recording everything as a low-high
11652 segment of consecutive addresses. We should have a
11653 data structure for discontiguous block ranges
11654 instead. */
11655 if (! low_set)
11656 {
11657 low = range_beginning;
11658 high = range_end;
11659 low_set = 1;
11660 }
11661 else
11662 {
11663 if (range_beginning < low)
11664 low = range_beginning;
11665 if (range_end > high)
11666 high = range_end;
11667 }
11668 }
11669
11670 if (! low_set)
11671 /* If the first entry is an end-of-list marker, the range
11672 describes an empty scope, i.e. no instructions. */
11673 return 0;
11674
11675 if (low_return)
11676 *low_return = low;
11677 if (high_return)
11678 *high_return = high;
11679 return 1;
11680 }
11681
11682 /* Get low and high pc attributes from a die. Return 1 if the attributes
11683 are present and valid, otherwise, return 0. Return -1 if the range is
11684 discontinuous, i.e. derived from DW_AT_ranges information. */
11685
11686 static int
11687 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11688 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11689 struct partial_symtab *pst)
11690 {
11691 struct attribute *attr;
11692 struct attribute *attr_high;
11693 CORE_ADDR low = 0;
11694 CORE_ADDR high = 0;
11695 int ret = 0;
11696
11697 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11698 if (attr_high)
11699 {
11700 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11701 if (attr)
11702 {
11703 low = DW_ADDR (attr);
11704 if (attr_high->form == DW_FORM_addr
11705 || attr_high->form == DW_FORM_GNU_addr_index)
11706 high = DW_ADDR (attr_high);
11707 else
11708 high = low + DW_UNSND (attr_high);
11709 }
11710 else
11711 /* Found high w/o low attribute. */
11712 return 0;
11713
11714 /* Found consecutive range of addresses. */
11715 ret = 1;
11716 }
11717 else
11718 {
11719 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11720 if (attr != NULL)
11721 {
11722 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11723 We take advantage of the fact that DW_AT_ranges does not appear
11724 in DW_TAG_compile_unit of DWO files. */
11725 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11726 unsigned int ranges_offset = (DW_UNSND (attr)
11727 + (need_ranges_base
11728 ? cu->ranges_base
11729 : 0));
11730
11731 /* Value of the DW_AT_ranges attribute is the offset in the
11732 .debug_ranges section. */
11733 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11734 return 0;
11735 /* Found discontinuous range of addresses. */
11736 ret = -1;
11737 }
11738 }
11739
11740 /* read_partial_die has also the strict LOW < HIGH requirement. */
11741 if (high <= low)
11742 return 0;
11743
11744 /* When using the GNU linker, .gnu.linkonce. sections are used to
11745 eliminate duplicate copies of functions and vtables and such.
11746 The linker will arbitrarily choose one and discard the others.
11747 The AT_*_pc values for such functions refer to local labels in
11748 these sections. If the section from that file was discarded, the
11749 labels are not in the output, so the relocs get a value of 0.
11750 If this is a discarded function, mark the pc bounds as invalid,
11751 so that GDB will ignore it. */
11752 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11753 return 0;
11754
11755 *lowpc = low;
11756 if (highpc)
11757 *highpc = high;
11758 return ret;
11759 }
11760
11761 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11762 its low and high PC addresses. Do nothing if these addresses could not
11763 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11764 and HIGHPC to the high address if greater than HIGHPC. */
11765
11766 static void
11767 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11768 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11769 struct dwarf2_cu *cu)
11770 {
11771 CORE_ADDR low, high;
11772 struct die_info *child = die->child;
11773
11774 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11775 {
11776 *lowpc = min (*lowpc, low);
11777 *highpc = max (*highpc, high);
11778 }
11779
11780 /* If the language does not allow nested subprograms (either inside
11781 subprograms or lexical blocks), we're done. */
11782 if (cu->language != language_ada)
11783 return;
11784
11785 /* Check all the children of the given DIE. If it contains nested
11786 subprograms, then check their pc bounds. Likewise, we need to
11787 check lexical blocks as well, as they may also contain subprogram
11788 definitions. */
11789 while (child && child->tag)
11790 {
11791 if (child->tag == DW_TAG_subprogram
11792 || child->tag == DW_TAG_lexical_block)
11793 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11794 child = sibling_die (child);
11795 }
11796 }
11797
11798 /* Get the low and high pc's represented by the scope DIE, and store
11799 them in *LOWPC and *HIGHPC. If the correct values can't be
11800 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11801
11802 static void
11803 get_scope_pc_bounds (struct die_info *die,
11804 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11805 struct dwarf2_cu *cu)
11806 {
11807 CORE_ADDR best_low = (CORE_ADDR) -1;
11808 CORE_ADDR best_high = (CORE_ADDR) 0;
11809 CORE_ADDR current_low, current_high;
11810
11811 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11812 {
11813 best_low = current_low;
11814 best_high = current_high;
11815 }
11816 else
11817 {
11818 struct die_info *child = die->child;
11819
11820 while (child && child->tag)
11821 {
11822 switch (child->tag) {
11823 case DW_TAG_subprogram:
11824 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11825 break;
11826 case DW_TAG_namespace:
11827 case DW_TAG_module:
11828 /* FIXME: carlton/2004-01-16: Should we do this for
11829 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11830 that current GCC's always emit the DIEs corresponding
11831 to definitions of methods of classes as children of a
11832 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11833 the DIEs giving the declarations, which could be
11834 anywhere). But I don't see any reason why the
11835 standards says that they have to be there. */
11836 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11837
11838 if (current_low != ((CORE_ADDR) -1))
11839 {
11840 best_low = min (best_low, current_low);
11841 best_high = max (best_high, current_high);
11842 }
11843 break;
11844 default:
11845 /* Ignore. */
11846 break;
11847 }
11848
11849 child = sibling_die (child);
11850 }
11851 }
11852
11853 *lowpc = best_low;
11854 *highpc = best_high;
11855 }
11856
11857 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11858 in DIE. */
11859
11860 static void
11861 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11862 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11863 {
11864 struct objfile *objfile = cu->objfile;
11865 struct attribute *attr;
11866 struct attribute *attr_high;
11867
11868 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11869 if (attr_high)
11870 {
11871 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11872 if (attr)
11873 {
11874 CORE_ADDR low = DW_ADDR (attr);
11875 CORE_ADDR high;
11876 if (attr_high->form == DW_FORM_addr
11877 || attr_high->form == DW_FORM_GNU_addr_index)
11878 high = DW_ADDR (attr_high);
11879 else
11880 high = low + DW_UNSND (attr_high);
11881
11882 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11883 }
11884 }
11885
11886 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11887 if (attr)
11888 {
11889 bfd *obfd = objfile->obfd;
11890 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11891 We take advantage of the fact that DW_AT_ranges does not appear
11892 in DW_TAG_compile_unit of DWO files. */
11893 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11894
11895 /* The value of the DW_AT_ranges attribute is the offset of the
11896 address range list in the .debug_ranges section. */
11897 unsigned long offset = (DW_UNSND (attr)
11898 + (need_ranges_base ? cu->ranges_base : 0));
11899 const gdb_byte *buffer;
11900
11901 /* For some target architectures, but not others, the
11902 read_address function sign-extends the addresses it returns.
11903 To recognize base address selection entries, we need a
11904 mask. */
11905 unsigned int addr_size = cu->header.addr_size;
11906 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11907
11908 /* The base address, to which the next pair is relative. Note
11909 that this 'base' is a DWARF concept: most entries in a range
11910 list are relative, to reduce the number of relocs against the
11911 debugging information. This is separate from this function's
11912 'baseaddr' argument, which GDB uses to relocate debugging
11913 information from a shared library based on the address at
11914 which the library was loaded. */
11915 CORE_ADDR base = cu->base_address;
11916 int base_known = cu->base_known;
11917
11918 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11919 if (offset >= dwarf2_per_objfile->ranges.size)
11920 {
11921 complaint (&symfile_complaints,
11922 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11923 offset);
11924 return;
11925 }
11926 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11927
11928 for (;;)
11929 {
11930 unsigned int bytes_read;
11931 CORE_ADDR start, end;
11932
11933 start = read_address (obfd, buffer, cu, &bytes_read);
11934 buffer += bytes_read;
11935 end = read_address (obfd, buffer, cu, &bytes_read);
11936 buffer += bytes_read;
11937
11938 /* Did we find the end of the range list? */
11939 if (start == 0 && end == 0)
11940 break;
11941
11942 /* Did we find a base address selection entry? */
11943 else if ((start & base_select_mask) == base_select_mask)
11944 {
11945 base = end;
11946 base_known = 1;
11947 }
11948
11949 /* We found an ordinary address range. */
11950 else
11951 {
11952 if (!base_known)
11953 {
11954 complaint (&symfile_complaints,
11955 _("Invalid .debug_ranges data "
11956 "(no base address)"));
11957 return;
11958 }
11959
11960 if (start > end)
11961 {
11962 /* Inverted range entries are invalid. */
11963 complaint (&symfile_complaints,
11964 _("Invalid .debug_ranges data "
11965 "(inverted range)"));
11966 return;
11967 }
11968
11969 /* Empty range entries have no effect. */
11970 if (start == end)
11971 continue;
11972
11973 start += base + baseaddr;
11974 end += base + baseaddr;
11975
11976 /* A not-uncommon case of bad debug info.
11977 Don't pollute the addrmap with bad data. */
11978 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11979 {
11980 complaint (&symfile_complaints,
11981 _(".debug_ranges entry has start address of zero"
11982 " [in module %s]"), objfile_name (objfile));
11983 continue;
11984 }
11985
11986 record_block_range (block, start, end - 1);
11987 }
11988 }
11989 }
11990 }
11991
11992 /* Check whether the producer field indicates either of GCC < 4.6, or the
11993 Intel C/C++ compiler, and cache the result in CU. */
11994
11995 static void
11996 check_producer (struct dwarf2_cu *cu)
11997 {
11998 const char *cs;
11999 int major, minor, release;
12000
12001 if (cu->producer == NULL)
12002 {
12003 /* For unknown compilers expect their behavior is DWARF version
12004 compliant.
12005
12006 GCC started to support .debug_types sections by -gdwarf-4 since
12007 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12008 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12009 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12010 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12011 }
12012 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12013 {
12014 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12015
12016 cs = &cu->producer[strlen ("GNU ")];
12017 while (*cs && !isdigit (*cs))
12018 cs++;
12019 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12020 {
12021 /* Not recognized as GCC. */
12022 }
12023 else
12024 {
12025 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12026 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12027 }
12028 }
12029 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12030 cu->producer_is_icc = 1;
12031 else
12032 {
12033 /* For other non-GCC compilers, expect their behavior is DWARF version
12034 compliant. */
12035 }
12036
12037 cu->checked_producer = 1;
12038 }
12039
12040 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12041 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12042 during 4.6.0 experimental. */
12043
12044 static int
12045 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12046 {
12047 if (!cu->checked_producer)
12048 check_producer (cu);
12049
12050 return cu->producer_is_gxx_lt_4_6;
12051 }
12052
12053 /* Return the default accessibility type if it is not overriden by
12054 DW_AT_accessibility. */
12055
12056 static enum dwarf_access_attribute
12057 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12058 {
12059 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12060 {
12061 /* The default DWARF 2 accessibility for members is public, the default
12062 accessibility for inheritance is private. */
12063
12064 if (die->tag != DW_TAG_inheritance)
12065 return DW_ACCESS_public;
12066 else
12067 return DW_ACCESS_private;
12068 }
12069 else
12070 {
12071 /* DWARF 3+ defines the default accessibility a different way. The same
12072 rules apply now for DW_TAG_inheritance as for the members and it only
12073 depends on the container kind. */
12074
12075 if (die->parent->tag == DW_TAG_class_type)
12076 return DW_ACCESS_private;
12077 else
12078 return DW_ACCESS_public;
12079 }
12080 }
12081
12082 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12083 offset. If the attribute was not found return 0, otherwise return
12084 1. If it was found but could not properly be handled, set *OFFSET
12085 to 0. */
12086
12087 static int
12088 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12089 LONGEST *offset)
12090 {
12091 struct attribute *attr;
12092
12093 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12094 if (attr != NULL)
12095 {
12096 *offset = 0;
12097
12098 /* Note that we do not check for a section offset first here.
12099 This is because DW_AT_data_member_location is new in DWARF 4,
12100 so if we see it, we can assume that a constant form is really
12101 a constant and not a section offset. */
12102 if (attr_form_is_constant (attr))
12103 *offset = dwarf2_get_attr_constant_value (attr, 0);
12104 else if (attr_form_is_section_offset (attr))
12105 dwarf2_complex_location_expr_complaint ();
12106 else if (attr_form_is_block (attr))
12107 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12108 else
12109 dwarf2_complex_location_expr_complaint ();
12110
12111 return 1;
12112 }
12113
12114 return 0;
12115 }
12116
12117 /* Add an aggregate field to the field list. */
12118
12119 static void
12120 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12121 struct dwarf2_cu *cu)
12122 {
12123 struct objfile *objfile = cu->objfile;
12124 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12125 struct nextfield *new_field;
12126 struct attribute *attr;
12127 struct field *fp;
12128 const char *fieldname = "";
12129
12130 /* Allocate a new field list entry and link it in. */
12131 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12132 make_cleanup (xfree, new_field);
12133 memset (new_field, 0, sizeof (struct nextfield));
12134
12135 if (die->tag == DW_TAG_inheritance)
12136 {
12137 new_field->next = fip->baseclasses;
12138 fip->baseclasses = new_field;
12139 }
12140 else
12141 {
12142 new_field->next = fip->fields;
12143 fip->fields = new_field;
12144 }
12145 fip->nfields++;
12146
12147 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12148 if (attr)
12149 new_field->accessibility = DW_UNSND (attr);
12150 else
12151 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12152 if (new_field->accessibility != DW_ACCESS_public)
12153 fip->non_public_fields = 1;
12154
12155 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12156 if (attr)
12157 new_field->virtuality = DW_UNSND (attr);
12158 else
12159 new_field->virtuality = DW_VIRTUALITY_none;
12160
12161 fp = &new_field->field;
12162
12163 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12164 {
12165 LONGEST offset;
12166
12167 /* Data member other than a C++ static data member. */
12168
12169 /* Get type of field. */
12170 fp->type = die_type (die, cu);
12171
12172 SET_FIELD_BITPOS (*fp, 0);
12173
12174 /* Get bit size of field (zero if none). */
12175 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12176 if (attr)
12177 {
12178 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12179 }
12180 else
12181 {
12182 FIELD_BITSIZE (*fp) = 0;
12183 }
12184
12185 /* Get bit offset of field. */
12186 if (handle_data_member_location (die, cu, &offset))
12187 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12188 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12189 if (attr)
12190 {
12191 if (gdbarch_bits_big_endian (gdbarch))
12192 {
12193 /* For big endian bits, the DW_AT_bit_offset gives the
12194 additional bit offset from the MSB of the containing
12195 anonymous object to the MSB of the field. We don't
12196 have to do anything special since we don't need to
12197 know the size of the anonymous object. */
12198 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12199 }
12200 else
12201 {
12202 /* For little endian bits, compute the bit offset to the
12203 MSB of the anonymous object, subtract off the number of
12204 bits from the MSB of the field to the MSB of the
12205 object, and then subtract off the number of bits of
12206 the field itself. The result is the bit offset of
12207 the LSB of the field. */
12208 int anonymous_size;
12209 int bit_offset = DW_UNSND (attr);
12210
12211 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12212 if (attr)
12213 {
12214 /* The size of the anonymous object containing
12215 the bit field is explicit, so use the
12216 indicated size (in bytes). */
12217 anonymous_size = DW_UNSND (attr);
12218 }
12219 else
12220 {
12221 /* The size of the anonymous object containing
12222 the bit field must be inferred from the type
12223 attribute of the data member containing the
12224 bit field. */
12225 anonymous_size = TYPE_LENGTH (fp->type);
12226 }
12227 SET_FIELD_BITPOS (*fp,
12228 (FIELD_BITPOS (*fp)
12229 + anonymous_size * bits_per_byte
12230 - bit_offset - FIELD_BITSIZE (*fp)));
12231 }
12232 }
12233
12234 /* Get name of field. */
12235 fieldname = dwarf2_name (die, cu);
12236 if (fieldname == NULL)
12237 fieldname = "";
12238
12239 /* The name is already allocated along with this objfile, so we don't
12240 need to duplicate it for the type. */
12241 fp->name = fieldname;
12242
12243 /* Change accessibility for artificial fields (e.g. virtual table
12244 pointer or virtual base class pointer) to private. */
12245 if (dwarf2_attr (die, DW_AT_artificial, cu))
12246 {
12247 FIELD_ARTIFICIAL (*fp) = 1;
12248 new_field->accessibility = DW_ACCESS_private;
12249 fip->non_public_fields = 1;
12250 }
12251 }
12252 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12253 {
12254 /* C++ static member. */
12255
12256 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12257 is a declaration, but all versions of G++ as of this writing
12258 (so through at least 3.2.1) incorrectly generate
12259 DW_TAG_variable tags. */
12260
12261 const char *physname;
12262
12263 /* Get name of field. */
12264 fieldname = dwarf2_name (die, cu);
12265 if (fieldname == NULL)
12266 return;
12267
12268 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12269 if (attr
12270 /* Only create a symbol if this is an external value.
12271 new_symbol checks this and puts the value in the global symbol
12272 table, which we want. If it is not external, new_symbol
12273 will try to put the value in cu->list_in_scope which is wrong. */
12274 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12275 {
12276 /* A static const member, not much different than an enum as far as
12277 we're concerned, except that we can support more types. */
12278 new_symbol (die, NULL, cu);
12279 }
12280
12281 /* Get physical name. */
12282 physname = dwarf2_physname (fieldname, die, cu);
12283
12284 /* The name is already allocated along with this objfile, so we don't
12285 need to duplicate it for the type. */
12286 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12287 FIELD_TYPE (*fp) = die_type (die, cu);
12288 FIELD_NAME (*fp) = fieldname;
12289 }
12290 else if (die->tag == DW_TAG_inheritance)
12291 {
12292 LONGEST offset;
12293
12294 /* C++ base class field. */
12295 if (handle_data_member_location (die, cu, &offset))
12296 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12297 FIELD_BITSIZE (*fp) = 0;
12298 FIELD_TYPE (*fp) = die_type (die, cu);
12299 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12300 fip->nbaseclasses++;
12301 }
12302 }
12303
12304 /* Add a typedef defined in the scope of the FIP's class. */
12305
12306 static void
12307 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12308 struct dwarf2_cu *cu)
12309 {
12310 struct objfile *objfile = cu->objfile;
12311 struct typedef_field_list *new_field;
12312 struct attribute *attr;
12313 struct typedef_field *fp;
12314 char *fieldname = "";
12315
12316 /* Allocate a new field list entry and link it in. */
12317 new_field = xzalloc (sizeof (*new_field));
12318 make_cleanup (xfree, new_field);
12319
12320 gdb_assert (die->tag == DW_TAG_typedef);
12321
12322 fp = &new_field->field;
12323
12324 /* Get name of field. */
12325 fp->name = dwarf2_name (die, cu);
12326 if (fp->name == NULL)
12327 return;
12328
12329 fp->type = read_type_die (die, cu);
12330
12331 new_field->next = fip->typedef_field_list;
12332 fip->typedef_field_list = new_field;
12333 fip->typedef_field_list_count++;
12334 }
12335
12336 /* Create the vector of fields, and attach it to the type. */
12337
12338 static void
12339 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12340 struct dwarf2_cu *cu)
12341 {
12342 int nfields = fip->nfields;
12343
12344 /* Record the field count, allocate space for the array of fields,
12345 and create blank accessibility bitfields if necessary. */
12346 TYPE_NFIELDS (type) = nfields;
12347 TYPE_FIELDS (type) = (struct field *)
12348 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12349 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12350
12351 if (fip->non_public_fields && cu->language != language_ada)
12352 {
12353 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12354
12355 TYPE_FIELD_PRIVATE_BITS (type) =
12356 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12357 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12358
12359 TYPE_FIELD_PROTECTED_BITS (type) =
12360 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12361 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12362
12363 TYPE_FIELD_IGNORE_BITS (type) =
12364 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12365 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12366 }
12367
12368 /* If the type has baseclasses, allocate and clear a bit vector for
12369 TYPE_FIELD_VIRTUAL_BITS. */
12370 if (fip->nbaseclasses && cu->language != language_ada)
12371 {
12372 int num_bytes = B_BYTES (fip->nbaseclasses);
12373 unsigned char *pointer;
12374
12375 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12376 pointer = TYPE_ALLOC (type, num_bytes);
12377 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12378 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12379 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12380 }
12381
12382 /* Copy the saved-up fields into the field vector. Start from the head of
12383 the list, adding to the tail of the field array, so that they end up in
12384 the same order in the array in which they were added to the list. */
12385 while (nfields-- > 0)
12386 {
12387 struct nextfield *fieldp;
12388
12389 if (fip->fields)
12390 {
12391 fieldp = fip->fields;
12392 fip->fields = fieldp->next;
12393 }
12394 else
12395 {
12396 fieldp = fip->baseclasses;
12397 fip->baseclasses = fieldp->next;
12398 }
12399
12400 TYPE_FIELD (type, nfields) = fieldp->field;
12401 switch (fieldp->accessibility)
12402 {
12403 case DW_ACCESS_private:
12404 if (cu->language != language_ada)
12405 SET_TYPE_FIELD_PRIVATE (type, nfields);
12406 break;
12407
12408 case DW_ACCESS_protected:
12409 if (cu->language != language_ada)
12410 SET_TYPE_FIELD_PROTECTED (type, nfields);
12411 break;
12412
12413 case DW_ACCESS_public:
12414 break;
12415
12416 default:
12417 /* Unknown accessibility. Complain and treat it as public. */
12418 {
12419 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12420 fieldp->accessibility);
12421 }
12422 break;
12423 }
12424 if (nfields < fip->nbaseclasses)
12425 {
12426 switch (fieldp->virtuality)
12427 {
12428 case DW_VIRTUALITY_virtual:
12429 case DW_VIRTUALITY_pure_virtual:
12430 if (cu->language == language_ada)
12431 error (_("unexpected virtuality in component of Ada type"));
12432 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12433 break;
12434 }
12435 }
12436 }
12437 }
12438
12439 /* Return true if this member function is a constructor, false
12440 otherwise. */
12441
12442 static int
12443 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12444 {
12445 const char *fieldname;
12446 const char *typename;
12447 int len;
12448
12449 if (die->parent == NULL)
12450 return 0;
12451
12452 if (die->parent->tag != DW_TAG_structure_type
12453 && die->parent->tag != DW_TAG_union_type
12454 && die->parent->tag != DW_TAG_class_type)
12455 return 0;
12456
12457 fieldname = dwarf2_name (die, cu);
12458 typename = dwarf2_name (die->parent, cu);
12459 if (fieldname == NULL || typename == NULL)
12460 return 0;
12461
12462 len = strlen (fieldname);
12463 return (strncmp (fieldname, typename, len) == 0
12464 && (typename[len] == '\0' || typename[len] == '<'));
12465 }
12466
12467 /* Add a member function to the proper fieldlist. */
12468
12469 static void
12470 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12471 struct type *type, struct dwarf2_cu *cu)
12472 {
12473 struct objfile *objfile = cu->objfile;
12474 struct attribute *attr;
12475 struct fnfieldlist *flp;
12476 int i;
12477 struct fn_field *fnp;
12478 const char *fieldname;
12479 struct nextfnfield *new_fnfield;
12480 struct type *this_type;
12481 enum dwarf_access_attribute accessibility;
12482
12483 if (cu->language == language_ada)
12484 error (_("unexpected member function in Ada type"));
12485
12486 /* Get name of member function. */
12487 fieldname = dwarf2_name (die, cu);
12488 if (fieldname == NULL)
12489 return;
12490
12491 /* Look up member function name in fieldlist. */
12492 for (i = 0; i < fip->nfnfields; i++)
12493 {
12494 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12495 break;
12496 }
12497
12498 /* Create new list element if necessary. */
12499 if (i < fip->nfnfields)
12500 flp = &fip->fnfieldlists[i];
12501 else
12502 {
12503 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12504 {
12505 fip->fnfieldlists = (struct fnfieldlist *)
12506 xrealloc (fip->fnfieldlists,
12507 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12508 * sizeof (struct fnfieldlist));
12509 if (fip->nfnfields == 0)
12510 make_cleanup (free_current_contents, &fip->fnfieldlists);
12511 }
12512 flp = &fip->fnfieldlists[fip->nfnfields];
12513 flp->name = fieldname;
12514 flp->length = 0;
12515 flp->head = NULL;
12516 i = fip->nfnfields++;
12517 }
12518
12519 /* Create a new member function field and chain it to the field list
12520 entry. */
12521 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12522 make_cleanup (xfree, new_fnfield);
12523 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12524 new_fnfield->next = flp->head;
12525 flp->head = new_fnfield;
12526 flp->length++;
12527
12528 /* Fill in the member function field info. */
12529 fnp = &new_fnfield->fnfield;
12530
12531 /* Delay processing of the physname until later. */
12532 if (cu->language == language_cplus || cu->language == language_java)
12533 {
12534 add_to_method_list (type, i, flp->length - 1, fieldname,
12535 die, cu);
12536 }
12537 else
12538 {
12539 const char *physname = dwarf2_physname (fieldname, die, cu);
12540 fnp->physname = physname ? physname : "";
12541 }
12542
12543 fnp->type = alloc_type (objfile);
12544 this_type = read_type_die (die, cu);
12545 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12546 {
12547 int nparams = TYPE_NFIELDS (this_type);
12548
12549 /* TYPE is the domain of this method, and THIS_TYPE is the type
12550 of the method itself (TYPE_CODE_METHOD). */
12551 smash_to_method_type (fnp->type, type,
12552 TYPE_TARGET_TYPE (this_type),
12553 TYPE_FIELDS (this_type),
12554 TYPE_NFIELDS (this_type),
12555 TYPE_VARARGS (this_type));
12556
12557 /* Handle static member functions.
12558 Dwarf2 has no clean way to discern C++ static and non-static
12559 member functions. G++ helps GDB by marking the first
12560 parameter for non-static member functions (which is the this
12561 pointer) as artificial. We obtain this information from
12562 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12563 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12564 fnp->voffset = VOFFSET_STATIC;
12565 }
12566 else
12567 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12568 dwarf2_full_name (fieldname, die, cu));
12569
12570 /* Get fcontext from DW_AT_containing_type if present. */
12571 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12572 fnp->fcontext = die_containing_type (die, cu);
12573
12574 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12575 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12576
12577 /* Get accessibility. */
12578 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12579 if (attr)
12580 accessibility = DW_UNSND (attr);
12581 else
12582 accessibility = dwarf2_default_access_attribute (die, cu);
12583 switch (accessibility)
12584 {
12585 case DW_ACCESS_private:
12586 fnp->is_private = 1;
12587 break;
12588 case DW_ACCESS_protected:
12589 fnp->is_protected = 1;
12590 break;
12591 }
12592
12593 /* Check for artificial methods. */
12594 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12595 if (attr && DW_UNSND (attr) != 0)
12596 fnp->is_artificial = 1;
12597
12598 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12599
12600 /* Get index in virtual function table if it is a virtual member
12601 function. For older versions of GCC, this is an offset in the
12602 appropriate virtual table, as specified by DW_AT_containing_type.
12603 For everyone else, it is an expression to be evaluated relative
12604 to the object address. */
12605
12606 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12607 if (attr)
12608 {
12609 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12610 {
12611 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12612 {
12613 /* Old-style GCC. */
12614 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12615 }
12616 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12617 || (DW_BLOCK (attr)->size > 1
12618 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12619 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12620 {
12621 struct dwarf_block blk;
12622 int offset;
12623
12624 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12625 ? 1 : 2);
12626 blk.size = DW_BLOCK (attr)->size - offset;
12627 blk.data = DW_BLOCK (attr)->data + offset;
12628 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12629 if ((fnp->voffset % cu->header.addr_size) != 0)
12630 dwarf2_complex_location_expr_complaint ();
12631 else
12632 fnp->voffset /= cu->header.addr_size;
12633 fnp->voffset += 2;
12634 }
12635 else
12636 dwarf2_complex_location_expr_complaint ();
12637
12638 if (!fnp->fcontext)
12639 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12640 }
12641 else if (attr_form_is_section_offset (attr))
12642 {
12643 dwarf2_complex_location_expr_complaint ();
12644 }
12645 else
12646 {
12647 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12648 fieldname);
12649 }
12650 }
12651 else
12652 {
12653 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12654 if (attr && DW_UNSND (attr))
12655 {
12656 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12657 complaint (&symfile_complaints,
12658 _("Member function \"%s\" (offset %d) is virtual "
12659 "but the vtable offset is not specified"),
12660 fieldname, die->offset.sect_off);
12661 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12662 TYPE_CPLUS_DYNAMIC (type) = 1;
12663 }
12664 }
12665 }
12666
12667 /* Create the vector of member function fields, and attach it to the type. */
12668
12669 static void
12670 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12671 struct dwarf2_cu *cu)
12672 {
12673 struct fnfieldlist *flp;
12674 int i;
12675
12676 if (cu->language == language_ada)
12677 error (_("unexpected member functions in Ada type"));
12678
12679 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12680 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12681 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12682
12683 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12684 {
12685 struct nextfnfield *nfp = flp->head;
12686 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12687 int k;
12688
12689 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12690 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12691 fn_flp->fn_fields = (struct fn_field *)
12692 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12693 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12694 fn_flp->fn_fields[k] = nfp->fnfield;
12695 }
12696
12697 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12698 }
12699
12700 /* Returns non-zero if NAME is the name of a vtable member in CU's
12701 language, zero otherwise. */
12702 static int
12703 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12704 {
12705 static const char vptr[] = "_vptr";
12706 static const char vtable[] = "vtable";
12707
12708 /* Look for the C++ and Java forms of the vtable. */
12709 if ((cu->language == language_java
12710 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12711 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12712 && is_cplus_marker (name[sizeof (vptr) - 1])))
12713 return 1;
12714
12715 return 0;
12716 }
12717
12718 /* GCC outputs unnamed structures that are really pointers to member
12719 functions, with the ABI-specified layout. If TYPE describes
12720 such a structure, smash it into a member function type.
12721
12722 GCC shouldn't do this; it should just output pointer to member DIEs.
12723 This is GCC PR debug/28767. */
12724
12725 static void
12726 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12727 {
12728 struct type *pfn_type, *domain_type, *new_type;
12729
12730 /* Check for a structure with no name and two children. */
12731 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12732 return;
12733
12734 /* Check for __pfn and __delta members. */
12735 if (TYPE_FIELD_NAME (type, 0) == NULL
12736 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12737 || TYPE_FIELD_NAME (type, 1) == NULL
12738 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12739 return;
12740
12741 /* Find the type of the method. */
12742 pfn_type = TYPE_FIELD_TYPE (type, 0);
12743 if (pfn_type == NULL
12744 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12745 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12746 return;
12747
12748 /* Look for the "this" argument. */
12749 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12750 if (TYPE_NFIELDS (pfn_type) == 0
12751 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12752 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12753 return;
12754
12755 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12756 new_type = alloc_type (objfile);
12757 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12758 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12759 TYPE_VARARGS (pfn_type));
12760 smash_to_methodptr_type (type, new_type);
12761 }
12762
12763 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12764 (icc). */
12765
12766 static int
12767 producer_is_icc (struct dwarf2_cu *cu)
12768 {
12769 if (!cu->checked_producer)
12770 check_producer (cu);
12771
12772 return cu->producer_is_icc;
12773 }
12774
12775 /* Called when we find the DIE that starts a structure or union scope
12776 (definition) to create a type for the structure or union. Fill in
12777 the type's name and general properties; the members will not be
12778 processed until process_structure_scope.
12779
12780 NOTE: we need to call these functions regardless of whether or not the
12781 DIE has a DW_AT_name attribute, since it might be an anonymous
12782 structure or union. This gets the type entered into our set of
12783 user defined types.
12784
12785 However, if the structure is incomplete (an opaque struct/union)
12786 then suppress creating a symbol table entry for it since gdb only
12787 wants to find the one with the complete definition. Note that if
12788 it is complete, we just call new_symbol, which does it's own
12789 checking about whether the struct/union is anonymous or not (and
12790 suppresses creating a symbol table entry itself). */
12791
12792 static struct type *
12793 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12794 {
12795 struct objfile *objfile = cu->objfile;
12796 struct type *type;
12797 struct attribute *attr;
12798 const char *name;
12799
12800 /* If the definition of this type lives in .debug_types, read that type.
12801 Don't follow DW_AT_specification though, that will take us back up
12802 the chain and we want to go down. */
12803 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12804 if (attr)
12805 {
12806 type = get_DW_AT_signature_type (die, attr, cu);
12807
12808 /* The type's CU may not be the same as CU.
12809 Ensure TYPE is recorded with CU in die_type_hash. */
12810 return set_die_type (die, type, cu);
12811 }
12812
12813 type = alloc_type (objfile);
12814 INIT_CPLUS_SPECIFIC (type);
12815
12816 name = dwarf2_name (die, cu);
12817 if (name != NULL)
12818 {
12819 if (cu->language == language_cplus
12820 || cu->language == language_java)
12821 {
12822 const char *full_name = dwarf2_full_name (name, die, cu);
12823
12824 /* dwarf2_full_name might have already finished building the DIE's
12825 type. If so, there is no need to continue. */
12826 if (get_die_type (die, cu) != NULL)
12827 return get_die_type (die, cu);
12828
12829 TYPE_TAG_NAME (type) = full_name;
12830 if (die->tag == DW_TAG_structure_type
12831 || die->tag == DW_TAG_class_type)
12832 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12833 }
12834 else
12835 {
12836 /* The name is already allocated along with this objfile, so
12837 we don't need to duplicate it for the type. */
12838 TYPE_TAG_NAME (type) = name;
12839 if (die->tag == DW_TAG_class_type)
12840 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12841 }
12842 }
12843
12844 if (die->tag == DW_TAG_structure_type)
12845 {
12846 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12847 }
12848 else if (die->tag == DW_TAG_union_type)
12849 {
12850 TYPE_CODE (type) = TYPE_CODE_UNION;
12851 }
12852 else
12853 {
12854 TYPE_CODE (type) = TYPE_CODE_CLASS;
12855 }
12856
12857 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12858 TYPE_DECLARED_CLASS (type) = 1;
12859
12860 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12861 if (attr)
12862 {
12863 TYPE_LENGTH (type) = DW_UNSND (attr);
12864 }
12865 else
12866 {
12867 TYPE_LENGTH (type) = 0;
12868 }
12869
12870 if (producer_is_icc (cu))
12871 {
12872 /* ICC does not output the required DW_AT_declaration
12873 on incomplete types, but gives them a size of zero. */
12874 }
12875 else
12876 TYPE_STUB_SUPPORTED (type) = 1;
12877
12878 if (die_is_declaration (die, cu))
12879 TYPE_STUB (type) = 1;
12880 else if (attr == NULL && die->child == NULL
12881 && producer_is_realview (cu->producer))
12882 /* RealView does not output the required DW_AT_declaration
12883 on incomplete types. */
12884 TYPE_STUB (type) = 1;
12885
12886 /* We need to add the type field to the die immediately so we don't
12887 infinitely recurse when dealing with pointers to the structure
12888 type within the structure itself. */
12889 set_die_type (die, type, cu);
12890
12891 /* set_die_type should be already done. */
12892 set_descriptive_type (type, die, cu);
12893
12894 return type;
12895 }
12896
12897 /* Finish creating a structure or union type, including filling in
12898 its members and creating a symbol for it. */
12899
12900 static void
12901 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12902 {
12903 struct objfile *objfile = cu->objfile;
12904 struct die_info *child_die = die->child;
12905 struct type *type;
12906
12907 type = get_die_type (die, cu);
12908 if (type == NULL)
12909 type = read_structure_type (die, cu);
12910
12911 if (die->child != NULL && ! die_is_declaration (die, cu))
12912 {
12913 struct field_info fi;
12914 struct die_info *child_die;
12915 VEC (symbolp) *template_args = NULL;
12916 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12917
12918 memset (&fi, 0, sizeof (struct field_info));
12919
12920 child_die = die->child;
12921
12922 while (child_die && child_die->tag)
12923 {
12924 if (child_die->tag == DW_TAG_member
12925 || child_die->tag == DW_TAG_variable)
12926 {
12927 /* NOTE: carlton/2002-11-05: A C++ static data member
12928 should be a DW_TAG_member that is a declaration, but
12929 all versions of G++ as of this writing (so through at
12930 least 3.2.1) incorrectly generate DW_TAG_variable
12931 tags for them instead. */
12932 dwarf2_add_field (&fi, child_die, cu);
12933 }
12934 else if (child_die->tag == DW_TAG_subprogram)
12935 {
12936 /* C++ member function. */
12937 dwarf2_add_member_fn (&fi, child_die, type, cu);
12938 }
12939 else if (child_die->tag == DW_TAG_inheritance)
12940 {
12941 /* C++ base class field. */
12942 dwarf2_add_field (&fi, child_die, cu);
12943 }
12944 else if (child_die->tag == DW_TAG_typedef)
12945 dwarf2_add_typedef (&fi, child_die, cu);
12946 else if (child_die->tag == DW_TAG_template_type_param
12947 || child_die->tag == DW_TAG_template_value_param)
12948 {
12949 struct symbol *arg = new_symbol (child_die, NULL, cu);
12950
12951 if (arg != NULL)
12952 VEC_safe_push (symbolp, template_args, arg);
12953 }
12954
12955 child_die = sibling_die (child_die);
12956 }
12957
12958 /* Attach template arguments to type. */
12959 if (! VEC_empty (symbolp, template_args))
12960 {
12961 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12962 TYPE_N_TEMPLATE_ARGUMENTS (type)
12963 = VEC_length (symbolp, template_args);
12964 TYPE_TEMPLATE_ARGUMENTS (type)
12965 = obstack_alloc (&objfile->objfile_obstack,
12966 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12967 * sizeof (struct symbol *)));
12968 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12969 VEC_address (symbolp, template_args),
12970 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12971 * sizeof (struct symbol *)));
12972 VEC_free (symbolp, template_args);
12973 }
12974
12975 /* Attach fields and member functions to the type. */
12976 if (fi.nfields)
12977 dwarf2_attach_fields_to_type (&fi, type, cu);
12978 if (fi.nfnfields)
12979 {
12980 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12981
12982 /* Get the type which refers to the base class (possibly this
12983 class itself) which contains the vtable pointer for the current
12984 class from the DW_AT_containing_type attribute. This use of
12985 DW_AT_containing_type is a GNU extension. */
12986
12987 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12988 {
12989 struct type *t = die_containing_type (die, cu);
12990
12991 TYPE_VPTR_BASETYPE (type) = t;
12992 if (type == t)
12993 {
12994 int i;
12995
12996 /* Our own class provides vtbl ptr. */
12997 for (i = TYPE_NFIELDS (t) - 1;
12998 i >= TYPE_N_BASECLASSES (t);
12999 --i)
13000 {
13001 const char *fieldname = TYPE_FIELD_NAME (t, i);
13002
13003 if (is_vtable_name (fieldname, cu))
13004 {
13005 TYPE_VPTR_FIELDNO (type) = i;
13006 break;
13007 }
13008 }
13009
13010 /* Complain if virtual function table field not found. */
13011 if (i < TYPE_N_BASECLASSES (t))
13012 complaint (&symfile_complaints,
13013 _("virtual function table pointer "
13014 "not found when defining class '%s'"),
13015 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13016 "");
13017 }
13018 else
13019 {
13020 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13021 }
13022 }
13023 else if (cu->producer
13024 && strncmp (cu->producer,
13025 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13026 {
13027 /* The IBM XLC compiler does not provide direct indication
13028 of the containing type, but the vtable pointer is
13029 always named __vfp. */
13030
13031 int i;
13032
13033 for (i = TYPE_NFIELDS (type) - 1;
13034 i >= TYPE_N_BASECLASSES (type);
13035 --i)
13036 {
13037 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13038 {
13039 TYPE_VPTR_FIELDNO (type) = i;
13040 TYPE_VPTR_BASETYPE (type) = type;
13041 break;
13042 }
13043 }
13044 }
13045 }
13046
13047 /* Copy fi.typedef_field_list linked list elements content into the
13048 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13049 if (fi.typedef_field_list)
13050 {
13051 int i = fi.typedef_field_list_count;
13052
13053 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13054 TYPE_TYPEDEF_FIELD_ARRAY (type)
13055 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13056 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13057
13058 /* Reverse the list order to keep the debug info elements order. */
13059 while (--i >= 0)
13060 {
13061 struct typedef_field *dest, *src;
13062
13063 dest = &TYPE_TYPEDEF_FIELD (type, i);
13064 src = &fi.typedef_field_list->field;
13065 fi.typedef_field_list = fi.typedef_field_list->next;
13066 *dest = *src;
13067 }
13068 }
13069
13070 do_cleanups (back_to);
13071
13072 if (HAVE_CPLUS_STRUCT (type))
13073 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13074 }
13075
13076 quirk_gcc_member_function_pointer (type, objfile);
13077
13078 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13079 snapshots) has been known to create a die giving a declaration
13080 for a class that has, as a child, a die giving a definition for a
13081 nested class. So we have to process our children even if the
13082 current die is a declaration. Normally, of course, a declaration
13083 won't have any children at all. */
13084
13085 while (child_die != NULL && child_die->tag)
13086 {
13087 if (child_die->tag == DW_TAG_member
13088 || child_die->tag == DW_TAG_variable
13089 || child_die->tag == DW_TAG_inheritance
13090 || child_die->tag == DW_TAG_template_value_param
13091 || child_die->tag == DW_TAG_template_type_param)
13092 {
13093 /* Do nothing. */
13094 }
13095 else
13096 process_die (child_die, cu);
13097
13098 child_die = sibling_die (child_die);
13099 }
13100
13101 /* Do not consider external references. According to the DWARF standard,
13102 these DIEs are identified by the fact that they have no byte_size
13103 attribute, and a declaration attribute. */
13104 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13105 || !die_is_declaration (die, cu))
13106 new_symbol (die, type, cu);
13107 }
13108
13109 /* Given a DW_AT_enumeration_type die, set its type. We do not
13110 complete the type's fields yet, or create any symbols. */
13111
13112 static struct type *
13113 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13114 {
13115 struct objfile *objfile = cu->objfile;
13116 struct type *type;
13117 struct attribute *attr;
13118 const char *name;
13119
13120 /* If the definition of this type lives in .debug_types, read that type.
13121 Don't follow DW_AT_specification though, that will take us back up
13122 the chain and we want to go down. */
13123 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13124 if (attr)
13125 {
13126 type = get_DW_AT_signature_type (die, attr, cu);
13127
13128 /* The type's CU may not be the same as CU.
13129 Ensure TYPE is recorded with CU in die_type_hash. */
13130 return set_die_type (die, type, cu);
13131 }
13132
13133 type = alloc_type (objfile);
13134
13135 TYPE_CODE (type) = TYPE_CODE_ENUM;
13136 name = dwarf2_full_name (NULL, die, cu);
13137 if (name != NULL)
13138 TYPE_TAG_NAME (type) = name;
13139
13140 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13141 if (attr)
13142 {
13143 TYPE_LENGTH (type) = DW_UNSND (attr);
13144 }
13145 else
13146 {
13147 TYPE_LENGTH (type) = 0;
13148 }
13149
13150 /* The enumeration DIE can be incomplete. In Ada, any type can be
13151 declared as private in the package spec, and then defined only
13152 inside the package body. Such types are known as Taft Amendment
13153 Types. When another package uses such a type, an incomplete DIE
13154 may be generated by the compiler. */
13155 if (die_is_declaration (die, cu))
13156 TYPE_STUB (type) = 1;
13157
13158 return set_die_type (die, type, cu);
13159 }
13160
13161 /* Given a pointer to a die which begins an enumeration, process all
13162 the dies that define the members of the enumeration, and create the
13163 symbol for the enumeration type.
13164
13165 NOTE: We reverse the order of the element list. */
13166
13167 static void
13168 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13169 {
13170 struct type *this_type;
13171
13172 this_type = get_die_type (die, cu);
13173 if (this_type == NULL)
13174 this_type = read_enumeration_type (die, cu);
13175
13176 if (die->child != NULL)
13177 {
13178 struct die_info *child_die;
13179 struct symbol *sym;
13180 struct field *fields = NULL;
13181 int num_fields = 0;
13182 int unsigned_enum = 1;
13183 const char *name;
13184 int flag_enum = 1;
13185 ULONGEST mask = 0;
13186
13187 child_die = die->child;
13188 while (child_die && child_die->tag)
13189 {
13190 if (child_die->tag != DW_TAG_enumerator)
13191 {
13192 process_die (child_die, cu);
13193 }
13194 else
13195 {
13196 name = dwarf2_name (child_die, cu);
13197 if (name)
13198 {
13199 sym = new_symbol (child_die, this_type, cu);
13200 if (SYMBOL_VALUE (sym) < 0)
13201 {
13202 unsigned_enum = 0;
13203 flag_enum = 0;
13204 }
13205 else if ((mask & SYMBOL_VALUE (sym)) != 0)
13206 flag_enum = 0;
13207 else
13208 mask |= SYMBOL_VALUE (sym);
13209
13210 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13211 {
13212 fields = (struct field *)
13213 xrealloc (fields,
13214 (num_fields + DW_FIELD_ALLOC_CHUNK)
13215 * sizeof (struct field));
13216 }
13217
13218 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13219 FIELD_TYPE (fields[num_fields]) = NULL;
13220 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13221 FIELD_BITSIZE (fields[num_fields]) = 0;
13222
13223 num_fields++;
13224 }
13225 }
13226
13227 child_die = sibling_die (child_die);
13228 }
13229
13230 if (num_fields)
13231 {
13232 TYPE_NFIELDS (this_type) = num_fields;
13233 TYPE_FIELDS (this_type) = (struct field *)
13234 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13235 memcpy (TYPE_FIELDS (this_type), fields,
13236 sizeof (struct field) * num_fields);
13237 xfree (fields);
13238 }
13239 if (unsigned_enum)
13240 TYPE_UNSIGNED (this_type) = 1;
13241 if (flag_enum)
13242 TYPE_FLAG_ENUM (this_type) = 1;
13243 }
13244
13245 /* If we are reading an enum from a .debug_types unit, and the enum
13246 is a declaration, and the enum is not the signatured type in the
13247 unit, then we do not want to add a symbol for it. Adding a
13248 symbol would in some cases obscure the true definition of the
13249 enum, giving users an incomplete type when the definition is
13250 actually available. Note that we do not want to do this for all
13251 enums which are just declarations, because C++0x allows forward
13252 enum declarations. */
13253 if (cu->per_cu->is_debug_types
13254 && die_is_declaration (die, cu))
13255 {
13256 struct signatured_type *sig_type;
13257
13258 sig_type = (struct signatured_type *) cu->per_cu;
13259 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13260 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13261 return;
13262 }
13263
13264 new_symbol (die, this_type, cu);
13265 }
13266
13267 /* Extract all information from a DW_TAG_array_type DIE and put it in
13268 the DIE's type field. For now, this only handles one dimensional
13269 arrays. */
13270
13271 static struct type *
13272 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13273 {
13274 struct objfile *objfile = cu->objfile;
13275 struct die_info *child_die;
13276 struct type *type;
13277 struct type *element_type, *range_type, *index_type;
13278 struct type **range_types = NULL;
13279 struct attribute *attr;
13280 int ndim = 0;
13281 struct cleanup *back_to;
13282 const char *name;
13283
13284 element_type = die_type (die, cu);
13285
13286 /* The die_type call above may have already set the type for this DIE. */
13287 type = get_die_type (die, cu);
13288 if (type)
13289 return type;
13290
13291 /* Irix 6.2 native cc creates array types without children for
13292 arrays with unspecified length. */
13293 if (die->child == NULL)
13294 {
13295 index_type = objfile_type (objfile)->builtin_int;
13296 range_type = create_range_type (NULL, index_type, 0, -1);
13297 type = create_array_type (NULL, element_type, range_type);
13298 return set_die_type (die, type, cu);
13299 }
13300
13301 back_to = make_cleanup (null_cleanup, NULL);
13302 child_die = die->child;
13303 while (child_die && child_die->tag)
13304 {
13305 if (child_die->tag == DW_TAG_subrange_type)
13306 {
13307 struct type *child_type = read_type_die (child_die, cu);
13308
13309 if (child_type != NULL)
13310 {
13311 /* The range type was succesfully read. Save it for the
13312 array type creation. */
13313 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13314 {
13315 range_types = (struct type **)
13316 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13317 * sizeof (struct type *));
13318 if (ndim == 0)
13319 make_cleanup (free_current_contents, &range_types);
13320 }
13321 range_types[ndim++] = child_type;
13322 }
13323 }
13324 child_die = sibling_die (child_die);
13325 }
13326
13327 /* Dwarf2 dimensions are output from left to right, create the
13328 necessary array types in backwards order. */
13329
13330 type = element_type;
13331
13332 if (read_array_order (die, cu) == DW_ORD_col_major)
13333 {
13334 int i = 0;
13335
13336 while (i < ndim)
13337 type = create_array_type (NULL, type, range_types[i++]);
13338 }
13339 else
13340 {
13341 while (ndim-- > 0)
13342 type = create_array_type (NULL, type, range_types[ndim]);
13343 }
13344
13345 /* Understand Dwarf2 support for vector types (like they occur on
13346 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13347 array type. This is not part of the Dwarf2/3 standard yet, but a
13348 custom vendor extension. The main difference between a regular
13349 array and the vector variant is that vectors are passed by value
13350 to functions. */
13351 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13352 if (attr)
13353 make_vector_type (type);
13354
13355 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13356 implementation may choose to implement triple vectors using this
13357 attribute. */
13358 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13359 if (attr)
13360 {
13361 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13362 TYPE_LENGTH (type) = DW_UNSND (attr);
13363 else
13364 complaint (&symfile_complaints,
13365 _("DW_AT_byte_size for array type smaller "
13366 "than the total size of elements"));
13367 }
13368
13369 name = dwarf2_name (die, cu);
13370 if (name)
13371 TYPE_NAME (type) = name;
13372
13373 /* Install the type in the die. */
13374 set_die_type (die, type, cu);
13375
13376 /* set_die_type should be already done. */
13377 set_descriptive_type (type, die, cu);
13378
13379 do_cleanups (back_to);
13380
13381 return type;
13382 }
13383
13384 static enum dwarf_array_dim_ordering
13385 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13386 {
13387 struct attribute *attr;
13388
13389 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13390
13391 if (attr) return DW_SND (attr);
13392
13393 /* GNU F77 is a special case, as at 08/2004 array type info is the
13394 opposite order to the dwarf2 specification, but data is still
13395 laid out as per normal fortran.
13396
13397 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13398 version checking. */
13399
13400 if (cu->language == language_fortran
13401 && cu->producer && strstr (cu->producer, "GNU F77"))
13402 {
13403 return DW_ORD_row_major;
13404 }
13405
13406 switch (cu->language_defn->la_array_ordering)
13407 {
13408 case array_column_major:
13409 return DW_ORD_col_major;
13410 case array_row_major:
13411 default:
13412 return DW_ORD_row_major;
13413 };
13414 }
13415
13416 /* Extract all information from a DW_TAG_set_type DIE and put it in
13417 the DIE's type field. */
13418
13419 static struct type *
13420 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13421 {
13422 struct type *domain_type, *set_type;
13423 struct attribute *attr;
13424
13425 domain_type = die_type (die, cu);
13426
13427 /* The die_type call above may have already set the type for this DIE. */
13428 set_type = get_die_type (die, cu);
13429 if (set_type)
13430 return set_type;
13431
13432 set_type = create_set_type (NULL, domain_type);
13433
13434 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13435 if (attr)
13436 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13437
13438 return set_die_type (die, set_type, cu);
13439 }
13440
13441 /* A helper for read_common_block that creates a locexpr baton.
13442 SYM is the symbol which we are marking as computed.
13443 COMMON_DIE is the DIE for the common block.
13444 COMMON_LOC is the location expression attribute for the common
13445 block itself.
13446 MEMBER_LOC is the location expression attribute for the particular
13447 member of the common block that we are processing.
13448 CU is the CU from which the above come. */
13449
13450 static void
13451 mark_common_block_symbol_computed (struct symbol *sym,
13452 struct die_info *common_die,
13453 struct attribute *common_loc,
13454 struct attribute *member_loc,
13455 struct dwarf2_cu *cu)
13456 {
13457 struct objfile *objfile = dwarf2_per_objfile->objfile;
13458 struct dwarf2_locexpr_baton *baton;
13459 gdb_byte *ptr;
13460 unsigned int cu_off;
13461 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13462 LONGEST offset = 0;
13463
13464 gdb_assert (common_loc && member_loc);
13465 gdb_assert (attr_form_is_block (common_loc));
13466 gdb_assert (attr_form_is_block (member_loc)
13467 || attr_form_is_constant (member_loc));
13468
13469 baton = obstack_alloc (&objfile->objfile_obstack,
13470 sizeof (struct dwarf2_locexpr_baton));
13471 baton->per_cu = cu->per_cu;
13472 gdb_assert (baton->per_cu);
13473
13474 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13475
13476 if (attr_form_is_constant (member_loc))
13477 {
13478 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13479 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13480 }
13481 else
13482 baton->size += DW_BLOCK (member_loc)->size;
13483
13484 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13485 baton->data = ptr;
13486
13487 *ptr++ = DW_OP_call4;
13488 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13489 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13490 ptr += 4;
13491
13492 if (attr_form_is_constant (member_loc))
13493 {
13494 *ptr++ = DW_OP_addr;
13495 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13496 ptr += cu->header.addr_size;
13497 }
13498 else
13499 {
13500 /* We have to copy the data here, because DW_OP_call4 will only
13501 use a DW_AT_location attribute. */
13502 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13503 ptr += DW_BLOCK (member_loc)->size;
13504 }
13505
13506 *ptr++ = DW_OP_plus;
13507 gdb_assert (ptr - baton->data == baton->size);
13508
13509 SYMBOL_LOCATION_BATON (sym) = baton;
13510 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13511 }
13512
13513 /* Create appropriate locally-scoped variables for all the
13514 DW_TAG_common_block entries. Also create a struct common_block
13515 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13516 is used to sepate the common blocks name namespace from regular
13517 variable names. */
13518
13519 static void
13520 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13521 {
13522 struct attribute *attr;
13523
13524 attr = dwarf2_attr (die, DW_AT_location, cu);
13525 if (attr)
13526 {
13527 /* Support the .debug_loc offsets. */
13528 if (attr_form_is_block (attr))
13529 {
13530 /* Ok. */
13531 }
13532 else if (attr_form_is_section_offset (attr))
13533 {
13534 dwarf2_complex_location_expr_complaint ();
13535 attr = NULL;
13536 }
13537 else
13538 {
13539 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13540 "common block member");
13541 attr = NULL;
13542 }
13543 }
13544
13545 if (die->child != NULL)
13546 {
13547 struct objfile *objfile = cu->objfile;
13548 struct die_info *child_die;
13549 size_t n_entries = 0, size;
13550 struct common_block *common_block;
13551 struct symbol *sym;
13552
13553 for (child_die = die->child;
13554 child_die && child_die->tag;
13555 child_die = sibling_die (child_die))
13556 ++n_entries;
13557
13558 size = (sizeof (struct common_block)
13559 + (n_entries - 1) * sizeof (struct symbol *));
13560 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13561 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13562 common_block->n_entries = 0;
13563
13564 for (child_die = die->child;
13565 child_die && child_die->tag;
13566 child_die = sibling_die (child_die))
13567 {
13568 /* Create the symbol in the DW_TAG_common_block block in the current
13569 symbol scope. */
13570 sym = new_symbol (child_die, NULL, cu);
13571 if (sym != NULL)
13572 {
13573 struct attribute *member_loc;
13574
13575 common_block->contents[common_block->n_entries++] = sym;
13576
13577 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13578 cu);
13579 if (member_loc)
13580 {
13581 /* GDB has handled this for a long time, but it is
13582 not specified by DWARF. It seems to have been
13583 emitted by gfortran at least as recently as:
13584 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13585 complaint (&symfile_complaints,
13586 _("Variable in common block has "
13587 "DW_AT_data_member_location "
13588 "- DIE at 0x%x [in module %s]"),
13589 child_die->offset.sect_off,
13590 objfile_name (cu->objfile));
13591
13592 if (attr_form_is_section_offset (member_loc))
13593 dwarf2_complex_location_expr_complaint ();
13594 else if (attr_form_is_constant (member_loc)
13595 || attr_form_is_block (member_loc))
13596 {
13597 if (attr)
13598 mark_common_block_symbol_computed (sym, die, attr,
13599 member_loc, cu);
13600 }
13601 else
13602 dwarf2_complex_location_expr_complaint ();
13603 }
13604 }
13605 }
13606
13607 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13608 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13609 }
13610 }
13611
13612 /* Create a type for a C++ namespace. */
13613
13614 static struct type *
13615 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13616 {
13617 struct objfile *objfile = cu->objfile;
13618 const char *previous_prefix, *name;
13619 int is_anonymous;
13620 struct type *type;
13621
13622 /* For extensions, reuse the type of the original namespace. */
13623 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13624 {
13625 struct die_info *ext_die;
13626 struct dwarf2_cu *ext_cu = cu;
13627
13628 ext_die = dwarf2_extension (die, &ext_cu);
13629 type = read_type_die (ext_die, ext_cu);
13630
13631 /* EXT_CU may not be the same as CU.
13632 Ensure TYPE is recorded with CU in die_type_hash. */
13633 return set_die_type (die, type, cu);
13634 }
13635
13636 name = namespace_name (die, &is_anonymous, cu);
13637
13638 /* Now build the name of the current namespace. */
13639
13640 previous_prefix = determine_prefix (die, cu);
13641 if (previous_prefix[0] != '\0')
13642 name = typename_concat (&objfile->objfile_obstack,
13643 previous_prefix, name, 0, cu);
13644
13645 /* Create the type. */
13646 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13647 objfile);
13648 TYPE_NAME (type) = name;
13649 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13650
13651 return set_die_type (die, type, cu);
13652 }
13653
13654 /* Read a C++ namespace. */
13655
13656 static void
13657 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13658 {
13659 struct objfile *objfile = cu->objfile;
13660 int is_anonymous;
13661
13662 /* Add a symbol associated to this if we haven't seen the namespace
13663 before. Also, add a using directive if it's an anonymous
13664 namespace. */
13665
13666 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13667 {
13668 struct type *type;
13669
13670 type = read_type_die (die, cu);
13671 new_symbol (die, type, cu);
13672
13673 namespace_name (die, &is_anonymous, cu);
13674 if (is_anonymous)
13675 {
13676 const char *previous_prefix = determine_prefix (die, cu);
13677
13678 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13679 NULL, NULL, 0, &objfile->objfile_obstack);
13680 }
13681 }
13682
13683 if (die->child != NULL)
13684 {
13685 struct die_info *child_die = die->child;
13686
13687 while (child_die && child_die->tag)
13688 {
13689 process_die (child_die, cu);
13690 child_die = sibling_die (child_die);
13691 }
13692 }
13693 }
13694
13695 /* Read a Fortran module as type. This DIE can be only a declaration used for
13696 imported module. Still we need that type as local Fortran "use ... only"
13697 declaration imports depend on the created type in determine_prefix. */
13698
13699 static struct type *
13700 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13701 {
13702 struct objfile *objfile = cu->objfile;
13703 const char *module_name;
13704 struct type *type;
13705
13706 module_name = dwarf2_name (die, cu);
13707 if (!module_name)
13708 complaint (&symfile_complaints,
13709 _("DW_TAG_module has no name, offset 0x%x"),
13710 die->offset.sect_off);
13711 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13712
13713 /* determine_prefix uses TYPE_TAG_NAME. */
13714 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13715
13716 return set_die_type (die, type, cu);
13717 }
13718
13719 /* Read a Fortran module. */
13720
13721 static void
13722 read_module (struct die_info *die, struct dwarf2_cu *cu)
13723 {
13724 struct die_info *child_die = die->child;
13725 struct type *type;
13726
13727 type = read_type_die (die, cu);
13728 new_symbol (die, type, cu);
13729
13730 while (child_die && child_die->tag)
13731 {
13732 process_die (child_die, cu);
13733 child_die = sibling_die (child_die);
13734 }
13735 }
13736
13737 /* Return the name of the namespace represented by DIE. Set
13738 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13739 namespace. */
13740
13741 static const char *
13742 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13743 {
13744 struct die_info *current_die;
13745 const char *name = NULL;
13746
13747 /* Loop through the extensions until we find a name. */
13748
13749 for (current_die = die;
13750 current_die != NULL;
13751 current_die = dwarf2_extension (die, &cu))
13752 {
13753 name = dwarf2_name (current_die, cu);
13754 if (name != NULL)
13755 break;
13756 }
13757
13758 /* Is it an anonymous namespace? */
13759
13760 *is_anonymous = (name == NULL);
13761 if (*is_anonymous)
13762 name = CP_ANONYMOUS_NAMESPACE_STR;
13763
13764 return name;
13765 }
13766
13767 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13768 the user defined type vector. */
13769
13770 static struct type *
13771 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13772 {
13773 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13774 struct comp_unit_head *cu_header = &cu->header;
13775 struct type *type;
13776 struct attribute *attr_byte_size;
13777 struct attribute *attr_address_class;
13778 int byte_size, addr_class;
13779 struct type *target_type;
13780
13781 target_type = die_type (die, cu);
13782
13783 /* The die_type call above may have already set the type for this DIE. */
13784 type = get_die_type (die, cu);
13785 if (type)
13786 return type;
13787
13788 type = lookup_pointer_type (target_type);
13789
13790 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13791 if (attr_byte_size)
13792 byte_size = DW_UNSND (attr_byte_size);
13793 else
13794 byte_size = cu_header->addr_size;
13795
13796 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13797 if (attr_address_class)
13798 addr_class = DW_UNSND (attr_address_class);
13799 else
13800 addr_class = DW_ADDR_none;
13801
13802 /* If the pointer size or address class is different than the
13803 default, create a type variant marked as such and set the
13804 length accordingly. */
13805 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13806 {
13807 if (gdbarch_address_class_type_flags_p (gdbarch))
13808 {
13809 int type_flags;
13810
13811 type_flags = gdbarch_address_class_type_flags
13812 (gdbarch, byte_size, addr_class);
13813 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13814 == 0);
13815 type = make_type_with_address_space (type, type_flags);
13816 }
13817 else if (TYPE_LENGTH (type) != byte_size)
13818 {
13819 complaint (&symfile_complaints,
13820 _("invalid pointer size %d"), byte_size);
13821 }
13822 else
13823 {
13824 /* Should we also complain about unhandled address classes? */
13825 }
13826 }
13827
13828 TYPE_LENGTH (type) = byte_size;
13829 return set_die_type (die, type, cu);
13830 }
13831
13832 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13833 the user defined type vector. */
13834
13835 static struct type *
13836 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13837 {
13838 struct type *type;
13839 struct type *to_type;
13840 struct type *domain;
13841
13842 to_type = die_type (die, cu);
13843 domain = die_containing_type (die, cu);
13844
13845 /* The calls above may have already set the type for this DIE. */
13846 type = get_die_type (die, cu);
13847 if (type)
13848 return type;
13849
13850 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13851 type = lookup_methodptr_type (to_type);
13852 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13853 {
13854 struct type *new_type = alloc_type (cu->objfile);
13855
13856 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13857 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13858 TYPE_VARARGS (to_type));
13859 type = lookup_methodptr_type (new_type);
13860 }
13861 else
13862 type = lookup_memberptr_type (to_type, domain);
13863
13864 return set_die_type (die, type, cu);
13865 }
13866
13867 /* Extract all information from a DW_TAG_reference_type DIE and add to
13868 the user defined type vector. */
13869
13870 static struct type *
13871 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13872 {
13873 struct comp_unit_head *cu_header = &cu->header;
13874 struct type *type, *target_type;
13875 struct attribute *attr;
13876
13877 target_type = die_type (die, cu);
13878
13879 /* The die_type call above may have already set the type for this DIE. */
13880 type = get_die_type (die, cu);
13881 if (type)
13882 return type;
13883
13884 type = lookup_reference_type (target_type);
13885 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13886 if (attr)
13887 {
13888 TYPE_LENGTH (type) = DW_UNSND (attr);
13889 }
13890 else
13891 {
13892 TYPE_LENGTH (type) = cu_header->addr_size;
13893 }
13894 return set_die_type (die, type, cu);
13895 }
13896
13897 static struct type *
13898 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13899 {
13900 struct type *base_type, *cv_type;
13901
13902 base_type = die_type (die, cu);
13903
13904 /* The die_type call above may have already set the type for this DIE. */
13905 cv_type = get_die_type (die, cu);
13906 if (cv_type)
13907 return cv_type;
13908
13909 /* In case the const qualifier is applied to an array type, the element type
13910 is so qualified, not the array type (section 6.7.3 of C99). */
13911 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13912 {
13913 struct type *el_type, *inner_array;
13914
13915 base_type = copy_type (base_type);
13916 inner_array = base_type;
13917
13918 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13919 {
13920 TYPE_TARGET_TYPE (inner_array) =
13921 copy_type (TYPE_TARGET_TYPE (inner_array));
13922 inner_array = TYPE_TARGET_TYPE (inner_array);
13923 }
13924
13925 el_type = TYPE_TARGET_TYPE (inner_array);
13926 TYPE_TARGET_TYPE (inner_array) =
13927 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13928
13929 return set_die_type (die, base_type, cu);
13930 }
13931
13932 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13933 return set_die_type (die, cv_type, cu);
13934 }
13935
13936 static struct type *
13937 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
13938 {
13939 struct type *base_type, *cv_type;
13940
13941 base_type = die_type (die, cu);
13942
13943 /* The die_type call above may have already set the type for this DIE. */
13944 cv_type = get_die_type (die, cu);
13945 if (cv_type)
13946 return cv_type;
13947
13948 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13949 return set_die_type (die, cv_type, cu);
13950 }
13951
13952 /* Handle DW_TAG_restrict_type. */
13953
13954 static struct type *
13955 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13956 {
13957 struct type *base_type, *cv_type;
13958
13959 base_type = die_type (die, cu);
13960
13961 /* The die_type call above may have already set the type for this DIE. */
13962 cv_type = get_die_type (die, cu);
13963 if (cv_type)
13964 return cv_type;
13965
13966 cv_type = make_restrict_type (base_type);
13967 return set_die_type (die, cv_type, cu);
13968 }
13969
13970 /* Extract all information from a DW_TAG_string_type DIE and add to
13971 the user defined type vector. It isn't really a user defined type,
13972 but it behaves like one, with other DIE's using an AT_user_def_type
13973 attribute to reference it. */
13974
13975 static struct type *
13976 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
13977 {
13978 struct objfile *objfile = cu->objfile;
13979 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13980 struct type *type, *range_type, *index_type, *char_type;
13981 struct attribute *attr;
13982 unsigned int length;
13983
13984 attr = dwarf2_attr (die, DW_AT_string_length, cu);
13985 if (attr)
13986 {
13987 length = DW_UNSND (attr);
13988 }
13989 else
13990 {
13991 /* Check for the DW_AT_byte_size attribute. */
13992 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13993 if (attr)
13994 {
13995 length = DW_UNSND (attr);
13996 }
13997 else
13998 {
13999 length = 1;
14000 }
14001 }
14002
14003 index_type = objfile_type (objfile)->builtin_int;
14004 range_type = create_range_type (NULL, index_type, 1, length);
14005 char_type = language_string_char_type (cu->language_defn, gdbarch);
14006 type = create_string_type (NULL, char_type, range_type);
14007
14008 return set_die_type (die, type, cu);
14009 }
14010
14011 /* Assuming that DIE corresponds to a function, returns nonzero
14012 if the function is prototyped. */
14013
14014 static int
14015 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14016 {
14017 struct attribute *attr;
14018
14019 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14020 if (attr && (DW_UNSND (attr) != 0))
14021 return 1;
14022
14023 /* The DWARF standard implies that the DW_AT_prototyped attribute
14024 is only meaninful for C, but the concept also extends to other
14025 languages that allow unprototyped functions (Eg: Objective C).
14026 For all other languages, assume that functions are always
14027 prototyped. */
14028 if (cu->language != language_c
14029 && cu->language != language_objc
14030 && cu->language != language_opencl)
14031 return 1;
14032
14033 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14034 prototyped and unprototyped functions; default to prototyped,
14035 since that is more common in modern code (and RealView warns
14036 about unprototyped functions). */
14037 if (producer_is_realview (cu->producer))
14038 return 1;
14039
14040 return 0;
14041 }
14042
14043 /* Handle DIES due to C code like:
14044
14045 struct foo
14046 {
14047 int (*funcp)(int a, long l);
14048 int b;
14049 };
14050
14051 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14052
14053 static struct type *
14054 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14055 {
14056 struct objfile *objfile = cu->objfile;
14057 struct type *type; /* Type that this function returns. */
14058 struct type *ftype; /* Function that returns above type. */
14059 struct attribute *attr;
14060
14061 type = die_type (die, cu);
14062
14063 /* The die_type call above may have already set the type for this DIE. */
14064 ftype = get_die_type (die, cu);
14065 if (ftype)
14066 return ftype;
14067
14068 ftype = lookup_function_type (type);
14069
14070 if (prototyped_function_p (die, cu))
14071 TYPE_PROTOTYPED (ftype) = 1;
14072
14073 /* Store the calling convention in the type if it's available in
14074 the subroutine die. Otherwise set the calling convention to
14075 the default value DW_CC_normal. */
14076 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14077 if (attr)
14078 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14079 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14080 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14081 else
14082 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14083
14084 /* We need to add the subroutine type to the die immediately so
14085 we don't infinitely recurse when dealing with parameters
14086 declared as the same subroutine type. */
14087 set_die_type (die, ftype, cu);
14088
14089 if (die->child != NULL)
14090 {
14091 struct type *void_type = objfile_type (objfile)->builtin_void;
14092 struct die_info *child_die;
14093 int nparams, iparams;
14094
14095 /* Count the number of parameters.
14096 FIXME: GDB currently ignores vararg functions, but knows about
14097 vararg member functions. */
14098 nparams = 0;
14099 child_die = die->child;
14100 while (child_die && child_die->tag)
14101 {
14102 if (child_die->tag == DW_TAG_formal_parameter)
14103 nparams++;
14104 else if (child_die->tag == DW_TAG_unspecified_parameters)
14105 TYPE_VARARGS (ftype) = 1;
14106 child_die = sibling_die (child_die);
14107 }
14108
14109 /* Allocate storage for parameters and fill them in. */
14110 TYPE_NFIELDS (ftype) = nparams;
14111 TYPE_FIELDS (ftype) = (struct field *)
14112 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14113
14114 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14115 even if we error out during the parameters reading below. */
14116 for (iparams = 0; iparams < nparams; iparams++)
14117 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14118
14119 iparams = 0;
14120 child_die = die->child;
14121 while (child_die && child_die->tag)
14122 {
14123 if (child_die->tag == DW_TAG_formal_parameter)
14124 {
14125 struct type *arg_type;
14126
14127 /* DWARF version 2 has no clean way to discern C++
14128 static and non-static member functions. G++ helps
14129 GDB by marking the first parameter for non-static
14130 member functions (which is the this pointer) as
14131 artificial. We pass this information to
14132 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14133
14134 DWARF version 3 added DW_AT_object_pointer, which GCC
14135 4.5 does not yet generate. */
14136 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14137 if (attr)
14138 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14139 else
14140 {
14141 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14142
14143 /* GCC/43521: In java, the formal parameter
14144 "this" is sometimes not marked with DW_AT_artificial. */
14145 if (cu->language == language_java)
14146 {
14147 const char *name = dwarf2_name (child_die, cu);
14148
14149 if (name && !strcmp (name, "this"))
14150 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14151 }
14152 }
14153 arg_type = die_type (child_die, cu);
14154
14155 /* RealView does not mark THIS as const, which the testsuite
14156 expects. GCC marks THIS as const in method definitions,
14157 but not in the class specifications (GCC PR 43053). */
14158 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14159 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14160 {
14161 int is_this = 0;
14162 struct dwarf2_cu *arg_cu = cu;
14163 const char *name = dwarf2_name (child_die, cu);
14164
14165 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14166 if (attr)
14167 {
14168 /* If the compiler emits this, use it. */
14169 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14170 is_this = 1;
14171 }
14172 else if (name && strcmp (name, "this") == 0)
14173 /* Function definitions will have the argument names. */
14174 is_this = 1;
14175 else if (name == NULL && iparams == 0)
14176 /* Declarations may not have the names, so like
14177 elsewhere in GDB, assume an artificial first
14178 argument is "this". */
14179 is_this = 1;
14180
14181 if (is_this)
14182 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14183 arg_type, 0);
14184 }
14185
14186 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14187 iparams++;
14188 }
14189 child_die = sibling_die (child_die);
14190 }
14191 }
14192
14193 return ftype;
14194 }
14195
14196 static struct type *
14197 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14198 {
14199 struct objfile *objfile = cu->objfile;
14200 const char *name = NULL;
14201 struct type *this_type, *target_type;
14202
14203 name = dwarf2_full_name (NULL, die, cu);
14204 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14205 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14206 TYPE_NAME (this_type) = name;
14207 set_die_type (die, this_type, cu);
14208 target_type = die_type (die, cu);
14209 if (target_type != this_type)
14210 TYPE_TARGET_TYPE (this_type) = target_type;
14211 else
14212 {
14213 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14214 spec and cause infinite loops in GDB. */
14215 complaint (&symfile_complaints,
14216 _("Self-referential DW_TAG_typedef "
14217 "- DIE at 0x%x [in module %s]"),
14218 die->offset.sect_off, objfile_name (objfile));
14219 TYPE_TARGET_TYPE (this_type) = NULL;
14220 }
14221 return this_type;
14222 }
14223
14224 /* Find a representation of a given base type and install
14225 it in the TYPE field of the die. */
14226
14227 static struct type *
14228 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14229 {
14230 struct objfile *objfile = cu->objfile;
14231 struct type *type;
14232 struct attribute *attr;
14233 int encoding = 0, size = 0;
14234 const char *name;
14235 enum type_code code = TYPE_CODE_INT;
14236 int type_flags = 0;
14237 struct type *target_type = NULL;
14238
14239 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14240 if (attr)
14241 {
14242 encoding = DW_UNSND (attr);
14243 }
14244 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14245 if (attr)
14246 {
14247 size = DW_UNSND (attr);
14248 }
14249 name = dwarf2_name (die, cu);
14250 if (!name)
14251 {
14252 complaint (&symfile_complaints,
14253 _("DW_AT_name missing from DW_TAG_base_type"));
14254 }
14255
14256 switch (encoding)
14257 {
14258 case DW_ATE_address:
14259 /* Turn DW_ATE_address into a void * pointer. */
14260 code = TYPE_CODE_PTR;
14261 type_flags |= TYPE_FLAG_UNSIGNED;
14262 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14263 break;
14264 case DW_ATE_boolean:
14265 code = TYPE_CODE_BOOL;
14266 type_flags |= TYPE_FLAG_UNSIGNED;
14267 break;
14268 case DW_ATE_complex_float:
14269 code = TYPE_CODE_COMPLEX;
14270 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14271 break;
14272 case DW_ATE_decimal_float:
14273 code = TYPE_CODE_DECFLOAT;
14274 break;
14275 case DW_ATE_float:
14276 code = TYPE_CODE_FLT;
14277 break;
14278 case DW_ATE_signed:
14279 break;
14280 case DW_ATE_unsigned:
14281 type_flags |= TYPE_FLAG_UNSIGNED;
14282 if (cu->language == language_fortran
14283 && name
14284 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14285 code = TYPE_CODE_CHAR;
14286 break;
14287 case DW_ATE_signed_char:
14288 if (cu->language == language_ada || cu->language == language_m2
14289 || cu->language == language_pascal
14290 || cu->language == language_fortran)
14291 code = TYPE_CODE_CHAR;
14292 break;
14293 case DW_ATE_unsigned_char:
14294 if (cu->language == language_ada || cu->language == language_m2
14295 || cu->language == language_pascal
14296 || cu->language == language_fortran)
14297 code = TYPE_CODE_CHAR;
14298 type_flags |= TYPE_FLAG_UNSIGNED;
14299 break;
14300 case DW_ATE_UTF:
14301 /* We just treat this as an integer and then recognize the
14302 type by name elsewhere. */
14303 break;
14304
14305 default:
14306 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14307 dwarf_type_encoding_name (encoding));
14308 break;
14309 }
14310
14311 type = init_type (code, size, type_flags, NULL, objfile);
14312 TYPE_NAME (type) = name;
14313 TYPE_TARGET_TYPE (type) = target_type;
14314
14315 if (name && strcmp (name, "char") == 0)
14316 TYPE_NOSIGN (type) = 1;
14317
14318 return set_die_type (die, type, cu);
14319 }
14320
14321 /* Read the given DW_AT_subrange DIE. */
14322
14323 static struct type *
14324 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14325 {
14326 struct type *base_type, *orig_base_type;
14327 struct type *range_type;
14328 struct attribute *attr;
14329 LONGEST low, high;
14330 int low_default_is_valid;
14331 const char *name;
14332 LONGEST negative_mask;
14333
14334 orig_base_type = die_type (die, cu);
14335 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14336 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14337 creating the range type, but we use the result of check_typedef
14338 when examining properties of the type. */
14339 base_type = check_typedef (orig_base_type);
14340
14341 /* The die_type call above may have already set the type for this DIE. */
14342 range_type = get_die_type (die, cu);
14343 if (range_type)
14344 return range_type;
14345
14346 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14347 omitting DW_AT_lower_bound. */
14348 switch (cu->language)
14349 {
14350 case language_c:
14351 case language_cplus:
14352 low = 0;
14353 low_default_is_valid = 1;
14354 break;
14355 case language_fortran:
14356 low = 1;
14357 low_default_is_valid = 1;
14358 break;
14359 case language_d:
14360 case language_java:
14361 case language_objc:
14362 low = 0;
14363 low_default_is_valid = (cu->header.version >= 4);
14364 break;
14365 case language_ada:
14366 case language_m2:
14367 case language_pascal:
14368 low = 1;
14369 low_default_is_valid = (cu->header.version >= 4);
14370 break;
14371 default:
14372 low = 0;
14373 low_default_is_valid = 0;
14374 break;
14375 }
14376
14377 /* FIXME: For variable sized arrays either of these could be
14378 a variable rather than a constant value. We'll allow it,
14379 but we don't know how to handle it. */
14380 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14381 if (attr)
14382 low = dwarf2_get_attr_constant_value (attr, low);
14383 else if (!low_default_is_valid)
14384 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14385 "- DIE at 0x%x [in module %s]"),
14386 die->offset.sect_off, objfile_name (cu->objfile));
14387
14388 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14389 if (attr)
14390 {
14391 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
14392 {
14393 /* GCC encodes arrays with unspecified or dynamic length
14394 with a DW_FORM_block1 attribute or a reference attribute.
14395 FIXME: GDB does not yet know how to handle dynamic
14396 arrays properly, treat them as arrays with unspecified
14397 length for now.
14398
14399 FIXME: jimb/2003-09-22: GDB does not really know
14400 how to handle arrays of unspecified length
14401 either; we just represent them as zero-length
14402 arrays. Choose an appropriate upper bound given
14403 the lower bound we've computed above. */
14404 high = low - 1;
14405 }
14406 else
14407 high = dwarf2_get_attr_constant_value (attr, 1);
14408 }
14409 else
14410 {
14411 attr = dwarf2_attr (die, DW_AT_count, cu);
14412 if (attr)
14413 {
14414 int count = dwarf2_get_attr_constant_value (attr, 1);
14415 high = low + count - 1;
14416 }
14417 else
14418 {
14419 /* Unspecified array length. */
14420 high = low - 1;
14421 }
14422 }
14423
14424 /* Dwarf-2 specifications explicitly allows to create subrange types
14425 without specifying a base type.
14426 In that case, the base type must be set to the type of
14427 the lower bound, upper bound or count, in that order, if any of these
14428 three attributes references an object that has a type.
14429 If no base type is found, the Dwarf-2 specifications say that
14430 a signed integer type of size equal to the size of an address should
14431 be used.
14432 For the following C code: `extern char gdb_int [];'
14433 GCC produces an empty range DIE.
14434 FIXME: muller/2010-05-28: Possible references to object for low bound,
14435 high bound or count are not yet handled by this code. */
14436 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14437 {
14438 struct objfile *objfile = cu->objfile;
14439 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14440 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14441 struct type *int_type = objfile_type (objfile)->builtin_int;
14442
14443 /* Test "int", "long int", and "long long int" objfile types,
14444 and select the first one having a size above or equal to the
14445 architecture address size. */
14446 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14447 base_type = int_type;
14448 else
14449 {
14450 int_type = objfile_type (objfile)->builtin_long;
14451 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14452 base_type = int_type;
14453 else
14454 {
14455 int_type = objfile_type (objfile)->builtin_long_long;
14456 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14457 base_type = int_type;
14458 }
14459 }
14460 }
14461
14462 negative_mask =
14463 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14464 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14465 low |= negative_mask;
14466 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14467 high |= negative_mask;
14468
14469 range_type = create_range_type (NULL, orig_base_type, low, high);
14470
14471 /* Mark arrays with dynamic length at least as an array of unspecified
14472 length. GDB could check the boundary but before it gets implemented at
14473 least allow accessing the array elements. */
14474 if (attr && attr_form_is_block (attr))
14475 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14476
14477 /* Ada expects an empty array on no boundary attributes. */
14478 if (attr == NULL && cu->language != language_ada)
14479 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14480
14481 name = dwarf2_name (die, cu);
14482 if (name)
14483 TYPE_NAME (range_type) = name;
14484
14485 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14486 if (attr)
14487 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14488
14489 set_die_type (die, range_type, cu);
14490
14491 /* set_die_type should be already done. */
14492 set_descriptive_type (range_type, die, cu);
14493
14494 return range_type;
14495 }
14496
14497 static struct type *
14498 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14499 {
14500 struct type *type;
14501
14502 /* For now, we only support the C meaning of an unspecified type: void. */
14503
14504 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14505 TYPE_NAME (type) = dwarf2_name (die, cu);
14506
14507 return set_die_type (die, type, cu);
14508 }
14509
14510 /* Read a single die and all its descendents. Set the die's sibling
14511 field to NULL; set other fields in the die correctly, and set all
14512 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14513 location of the info_ptr after reading all of those dies. PARENT
14514 is the parent of the die in question. */
14515
14516 static struct die_info *
14517 read_die_and_children (const struct die_reader_specs *reader,
14518 const gdb_byte *info_ptr,
14519 const gdb_byte **new_info_ptr,
14520 struct die_info *parent)
14521 {
14522 struct die_info *die;
14523 const gdb_byte *cur_ptr;
14524 int has_children;
14525
14526 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14527 if (die == NULL)
14528 {
14529 *new_info_ptr = cur_ptr;
14530 return NULL;
14531 }
14532 store_in_ref_table (die, reader->cu);
14533
14534 if (has_children)
14535 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14536 else
14537 {
14538 die->child = NULL;
14539 *new_info_ptr = cur_ptr;
14540 }
14541
14542 die->sibling = NULL;
14543 die->parent = parent;
14544 return die;
14545 }
14546
14547 /* Read a die, all of its descendents, and all of its siblings; set
14548 all of the fields of all of the dies correctly. Arguments are as
14549 in read_die_and_children. */
14550
14551 static struct die_info *
14552 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14553 const gdb_byte *info_ptr,
14554 const gdb_byte **new_info_ptr,
14555 struct die_info *parent)
14556 {
14557 struct die_info *first_die, *last_sibling;
14558 const gdb_byte *cur_ptr;
14559
14560 cur_ptr = info_ptr;
14561 first_die = last_sibling = NULL;
14562
14563 while (1)
14564 {
14565 struct die_info *die
14566 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14567
14568 if (die == NULL)
14569 {
14570 *new_info_ptr = cur_ptr;
14571 return first_die;
14572 }
14573
14574 if (!first_die)
14575 first_die = die;
14576 else
14577 last_sibling->sibling = die;
14578
14579 last_sibling = die;
14580 }
14581 }
14582
14583 /* Read a die, all of its descendents, and all of its siblings; set
14584 all of the fields of all of the dies correctly. Arguments are as
14585 in read_die_and_children.
14586 This the main entry point for reading a DIE and all its children. */
14587
14588 static struct die_info *
14589 read_die_and_siblings (const struct die_reader_specs *reader,
14590 const gdb_byte *info_ptr,
14591 const gdb_byte **new_info_ptr,
14592 struct die_info *parent)
14593 {
14594 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14595 new_info_ptr, parent);
14596
14597 if (dwarf2_die_debug)
14598 {
14599 fprintf_unfiltered (gdb_stdlog,
14600 "Read die from %s@0x%x of %s:\n",
14601 get_section_name (reader->die_section),
14602 (unsigned) (info_ptr - reader->die_section->buffer),
14603 bfd_get_filename (reader->abfd));
14604 dump_die (die, dwarf2_die_debug);
14605 }
14606
14607 return die;
14608 }
14609
14610 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14611 attributes.
14612 The caller is responsible for filling in the extra attributes
14613 and updating (*DIEP)->num_attrs.
14614 Set DIEP to point to a newly allocated die with its information,
14615 except for its child, sibling, and parent fields.
14616 Set HAS_CHILDREN to tell whether the die has children or not. */
14617
14618 static const gdb_byte *
14619 read_full_die_1 (const struct die_reader_specs *reader,
14620 struct die_info **diep, const gdb_byte *info_ptr,
14621 int *has_children, int num_extra_attrs)
14622 {
14623 unsigned int abbrev_number, bytes_read, i;
14624 sect_offset offset;
14625 struct abbrev_info *abbrev;
14626 struct die_info *die;
14627 struct dwarf2_cu *cu = reader->cu;
14628 bfd *abfd = reader->abfd;
14629
14630 offset.sect_off = info_ptr - reader->buffer;
14631 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14632 info_ptr += bytes_read;
14633 if (!abbrev_number)
14634 {
14635 *diep = NULL;
14636 *has_children = 0;
14637 return info_ptr;
14638 }
14639
14640 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14641 if (!abbrev)
14642 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14643 abbrev_number,
14644 bfd_get_filename (abfd));
14645
14646 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14647 die->offset = offset;
14648 die->tag = abbrev->tag;
14649 die->abbrev = abbrev_number;
14650
14651 /* Make the result usable.
14652 The caller needs to update num_attrs after adding the extra
14653 attributes. */
14654 die->num_attrs = abbrev->num_attrs;
14655
14656 for (i = 0; i < abbrev->num_attrs; ++i)
14657 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14658 info_ptr);
14659
14660 *diep = die;
14661 *has_children = abbrev->has_children;
14662 return info_ptr;
14663 }
14664
14665 /* Read a die and all its attributes.
14666 Set DIEP to point to a newly allocated die with its information,
14667 except for its child, sibling, and parent fields.
14668 Set HAS_CHILDREN to tell whether the die has children or not. */
14669
14670 static const gdb_byte *
14671 read_full_die (const struct die_reader_specs *reader,
14672 struct die_info **diep, const gdb_byte *info_ptr,
14673 int *has_children)
14674 {
14675 const gdb_byte *result;
14676
14677 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14678
14679 if (dwarf2_die_debug)
14680 {
14681 fprintf_unfiltered (gdb_stdlog,
14682 "Read die from %s@0x%x of %s:\n",
14683 get_section_name (reader->die_section),
14684 (unsigned) (info_ptr - reader->die_section->buffer),
14685 bfd_get_filename (reader->abfd));
14686 dump_die (*diep, dwarf2_die_debug);
14687 }
14688
14689 return result;
14690 }
14691 \f
14692 /* Abbreviation tables.
14693
14694 In DWARF version 2, the description of the debugging information is
14695 stored in a separate .debug_abbrev section. Before we read any
14696 dies from a section we read in all abbreviations and install them
14697 in a hash table. */
14698
14699 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14700
14701 static struct abbrev_info *
14702 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14703 {
14704 struct abbrev_info *abbrev;
14705
14706 abbrev = (struct abbrev_info *)
14707 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14708 memset (abbrev, 0, sizeof (struct abbrev_info));
14709 return abbrev;
14710 }
14711
14712 /* Add an abbreviation to the table. */
14713
14714 static void
14715 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14716 unsigned int abbrev_number,
14717 struct abbrev_info *abbrev)
14718 {
14719 unsigned int hash_number;
14720
14721 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14722 abbrev->next = abbrev_table->abbrevs[hash_number];
14723 abbrev_table->abbrevs[hash_number] = abbrev;
14724 }
14725
14726 /* Look up an abbrev in the table.
14727 Returns NULL if the abbrev is not found. */
14728
14729 static struct abbrev_info *
14730 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14731 unsigned int abbrev_number)
14732 {
14733 unsigned int hash_number;
14734 struct abbrev_info *abbrev;
14735
14736 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14737 abbrev = abbrev_table->abbrevs[hash_number];
14738
14739 while (abbrev)
14740 {
14741 if (abbrev->number == abbrev_number)
14742 return abbrev;
14743 abbrev = abbrev->next;
14744 }
14745 return NULL;
14746 }
14747
14748 /* Read in an abbrev table. */
14749
14750 static struct abbrev_table *
14751 abbrev_table_read_table (struct dwarf2_section_info *section,
14752 sect_offset offset)
14753 {
14754 struct objfile *objfile = dwarf2_per_objfile->objfile;
14755 bfd *abfd = get_section_bfd_owner (section);
14756 struct abbrev_table *abbrev_table;
14757 const gdb_byte *abbrev_ptr;
14758 struct abbrev_info *cur_abbrev;
14759 unsigned int abbrev_number, bytes_read, abbrev_name;
14760 unsigned int abbrev_form;
14761 struct attr_abbrev *cur_attrs;
14762 unsigned int allocated_attrs;
14763
14764 abbrev_table = XNEW (struct abbrev_table);
14765 abbrev_table->offset = offset;
14766 obstack_init (&abbrev_table->abbrev_obstack);
14767 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14768 (ABBREV_HASH_SIZE
14769 * sizeof (struct abbrev_info *)));
14770 memset (abbrev_table->abbrevs, 0,
14771 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
14772
14773 dwarf2_read_section (objfile, section);
14774 abbrev_ptr = section->buffer + offset.sect_off;
14775 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14776 abbrev_ptr += bytes_read;
14777
14778 allocated_attrs = ATTR_ALLOC_CHUNK;
14779 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
14780
14781 /* Loop until we reach an abbrev number of 0. */
14782 while (abbrev_number)
14783 {
14784 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
14785
14786 /* read in abbrev header */
14787 cur_abbrev->number = abbrev_number;
14788 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14789 abbrev_ptr += bytes_read;
14790 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14791 abbrev_ptr += 1;
14792
14793 /* now read in declarations */
14794 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14795 abbrev_ptr += bytes_read;
14796 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14797 abbrev_ptr += bytes_read;
14798 while (abbrev_name)
14799 {
14800 if (cur_abbrev->num_attrs == allocated_attrs)
14801 {
14802 allocated_attrs += ATTR_ALLOC_CHUNK;
14803 cur_attrs
14804 = xrealloc (cur_attrs, (allocated_attrs
14805 * sizeof (struct attr_abbrev)));
14806 }
14807
14808 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14809 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
14810 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14811 abbrev_ptr += bytes_read;
14812 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14813 abbrev_ptr += bytes_read;
14814 }
14815
14816 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
14817 (cur_abbrev->num_attrs
14818 * sizeof (struct attr_abbrev)));
14819 memcpy (cur_abbrev->attrs, cur_attrs,
14820 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14821
14822 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
14823
14824 /* Get next abbreviation.
14825 Under Irix6 the abbreviations for a compilation unit are not
14826 always properly terminated with an abbrev number of 0.
14827 Exit loop if we encounter an abbreviation which we have
14828 already read (which means we are about to read the abbreviations
14829 for the next compile unit) or if the end of the abbreviation
14830 table is reached. */
14831 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
14832 break;
14833 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14834 abbrev_ptr += bytes_read;
14835 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14836 break;
14837 }
14838
14839 xfree (cur_attrs);
14840 return abbrev_table;
14841 }
14842
14843 /* Free the resources held by ABBREV_TABLE. */
14844
14845 static void
14846 abbrev_table_free (struct abbrev_table *abbrev_table)
14847 {
14848 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14849 xfree (abbrev_table);
14850 }
14851
14852 /* Same as abbrev_table_free but as a cleanup.
14853 We pass in a pointer to the pointer to the table so that we can
14854 set the pointer to NULL when we're done. It also simplifies
14855 build_type_unit_groups. */
14856
14857 static void
14858 abbrev_table_free_cleanup (void *table_ptr)
14859 {
14860 struct abbrev_table **abbrev_table_ptr = table_ptr;
14861
14862 if (*abbrev_table_ptr != NULL)
14863 abbrev_table_free (*abbrev_table_ptr);
14864 *abbrev_table_ptr = NULL;
14865 }
14866
14867 /* Read the abbrev table for CU from ABBREV_SECTION. */
14868
14869 static void
14870 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14871 struct dwarf2_section_info *abbrev_section)
14872 {
14873 cu->abbrev_table =
14874 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14875 }
14876
14877 /* Release the memory used by the abbrev table for a compilation unit. */
14878
14879 static void
14880 dwarf2_free_abbrev_table (void *ptr_to_cu)
14881 {
14882 struct dwarf2_cu *cu = ptr_to_cu;
14883
14884 if (cu->abbrev_table != NULL)
14885 abbrev_table_free (cu->abbrev_table);
14886 /* Set this to NULL so that we SEGV if we try to read it later,
14887 and also because free_comp_unit verifies this is NULL. */
14888 cu->abbrev_table = NULL;
14889 }
14890 \f
14891 /* Returns nonzero if TAG represents a type that we might generate a partial
14892 symbol for. */
14893
14894 static int
14895 is_type_tag_for_partial (int tag)
14896 {
14897 switch (tag)
14898 {
14899 #if 0
14900 /* Some types that would be reasonable to generate partial symbols for,
14901 that we don't at present. */
14902 case DW_TAG_array_type:
14903 case DW_TAG_file_type:
14904 case DW_TAG_ptr_to_member_type:
14905 case DW_TAG_set_type:
14906 case DW_TAG_string_type:
14907 case DW_TAG_subroutine_type:
14908 #endif
14909 case DW_TAG_base_type:
14910 case DW_TAG_class_type:
14911 case DW_TAG_interface_type:
14912 case DW_TAG_enumeration_type:
14913 case DW_TAG_structure_type:
14914 case DW_TAG_subrange_type:
14915 case DW_TAG_typedef:
14916 case DW_TAG_union_type:
14917 return 1;
14918 default:
14919 return 0;
14920 }
14921 }
14922
14923 /* Load all DIEs that are interesting for partial symbols into memory. */
14924
14925 static struct partial_die_info *
14926 load_partial_dies (const struct die_reader_specs *reader,
14927 const gdb_byte *info_ptr, int building_psymtab)
14928 {
14929 struct dwarf2_cu *cu = reader->cu;
14930 struct objfile *objfile = cu->objfile;
14931 struct partial_die_info *part_die;
14932 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14933 struct abbrev_info *abbrev;
14934 unsigned int bytes_read;
14935 unsigned int load_all = 0;
14936 int nesting_level = 1;
14937
14938 parent_die = NULL;
14939 last_die = NULL;
14940
14941 gdb_assert (cu->per_cu != NULL);
14942 if (cu->per_cu->load_all_dies)
14943 load_all = 1;
14944
14945 cu->partial_dies
14946 = htab_create_alloc_ex (cu->header.length / 12,
14947 partial_die_hash,
14948 partial_die_eq,
14949 NULL,
14950 &cu->comp_unit_obstack,
14951 hashtab_obstack_allocate,
14952 dummy_obstack_deallocate);
14953
14954 part_die = obstack_alloc (&cu->comp_unit_obstack,
14955 sizeof (struct partial_die_info));
14956
14957 while (1)
14958 {
14959 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14960
14961 /* A NULL abbrev means the end of a series of children. */
14962 if (abbrev == NULL)
14963 {
14964 if (--nesting_level == 0)
14965 {
14966 /* PART_DIE was probably the last thing allocated on the
14967 comp_unit_obstack, so we could call obstack_free
14968 here. We don't do that because the waste is small,
14969 and will be cleaned up when we're done with this
14970 compilation unit. This way, we're also more robust
14971 against other users of the comp_unit_obstack. */
14972 return first_die;
14973 }
14974 info_ptr += bytes_read;
14975 last_die = parent_die;
14976 parent_die = parent_die->die_parent;
14977 continue;
14978 }
14979
14980 /* Check for template arguments. We never save these; if
14981 they're seen, we just mark the parent, and go on our way. */
14982 if (parent_die != NULL
14983 && cu->language == language_cplus
14984 && (abbrev->tag == DW_TAG_template_type_param
14985 || abbrev->tag == DW_TAG_template_value_param))
14986 {
14987 parent_die->has_template_arguments = 1;
14988
14989 if (!load_all)
14990 {
14991 /* We don't need a partial DIE for the template argument. */
14992 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14993 continue;
14994 }
14995 }
14996
14997 /* We only recurse into c++ subprograms looking for template arguments.
14998 Skip their other children. */
14999 if (!load_all
15000 && cu->language == language_cplus
15001 && parent_die != NULL
15002 && parent_die->tag == DW_TAG_subprogram)
15003 {
15004 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15005 continue;
15006 }
15007
15008 /* Check whether this DIE is interesting enough to save. Normally
15009 we would not be interested in members here, but there may be
15010 later variables referencing them via DW_AT_specification (for
15011 static members). */
15012 if (!load_all
15013 && !is_type_tag_for_partial (abbrev->tag)
15014 && abbrev->tag != DW_TAG_constant
15015 && abbrev->tag != DW_TAG_enumerator
15016 && abbrev->tag != DW_TAG_subprogram
15017 && abbrev->tag != DW_TAG_lexical_block
15018 && abbrev->tag != DW_TAG_variable
15019 && abbrev->tag != DW_TAG_namespace
15020 && abbrev->tag != DW_TAG_module
15021 && abbrev->tag != DW_TAG_member
15022 && abbrev->tag != DW_TAG_imported_unit
15023 && abbrev->tag != DW_TAG_imported_declaration)
15024 {
15025 /* Otherwise we skip to the next sibling, if any. */
15026 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15027 continue;
15028 }
15029
15030 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15031 info_ptr);
15032
15033 /* This two-pass algorithm for processing partial symbols has a
15034 high cost in cache pressure. Thus, handle some simple cases
15035 here which cover the majority of C partial symbols. DIEs
15036 which neither have specification tags in them, nor could have
15037 specification tags elsewhere pointing at them, can simply be
15038 processed and discarded.
15039
15040 This segment is also optional; scan_partial_symbols and
15041 add_partial_symbol will handle these DIEs if we chain
15042 them in normally. When compilers which do not emit large
15043 quantities of duplicate debug information are more common,
15044 this code can probably be removed. */
15045
15046 /* Any complete simple types at the top level (pretty much all
15047 of them, for a language without namespaces), can be processed
15048 directly. */
15049 if (parent_die == NULL
15050 && part_die->has_specification == 0
15051 && part_die->is_declaration == 0
15052 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15053 || part_die->tag == DW_TAG_base_type
15054 || part_die->tag == DW_TAG_subrange_type))
15055 {
15056 if (building_psymtab && part_die->name != NULL)
15057 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15058 VAR_DOMAIN, LOC_TYPEDEF,
15059 &objfile->static_psymbols,
15060 0, (CORE_ADDR) 0, cu->language, objfile);
15061 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15062 continue;
15063 }
15064
15065 /* The exception for DW_TAG_typedef with has_children above is
15066 a workaround of GCC PR debug/47510. In the case of this complaint
15067 type_name_no_tag_or_error will error on such types later.
15068
15069 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15070 it could not find the child DIEs referenced later, this is checked
15071 above. In correct DWARF DW_TAG_typedef should have no children. */
15072
15073 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15074 complaint (&symfile_complaints,
15075 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15076 "- DIE at 0x%x [in module %s]"),
15077 part_die->offset.sect_off, objfile_name (objfile));
15078
15079 /* If we're at the second level, and we're an enumerator, and
15080 our parent has no specification (meaning possibly lives in a
15081 namespace elsewhere), then we can add the partial symbol now
15082 instead of queueing it. */
15083 if (part_die->tag == DW_TAG_enumerator
15084 && parent_die != NULL
15085 && parent_die->die_parent == NULL
15086 && parent_die->tag == DW_TAG_enumeration_type
15087 && parent_die->has_specification == 0)
15088 {
15089 if (part_die->name == NULL)
15090 complaint (&symfile_complaints,
15091 _("malformed enumerator DIE ignored"));
15092 else if (building_psymtab)
15093 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15094 VAR_DOMAIN, LOC_CONST,
15095 (cu->language == language_cplus
15096 || cu->language == language_java)
15097 ? &objfile->global_psymbols
15098 : &objfile->static_psymbols,
15099 0, (CORE_ADDR) 0, cu->language, objfile);
15100
15101 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15102 continue;
15103 }
15104
15105 /* We'll save this DIE so link it in. */
15106 part_die->die_parent = parent_die;
15107 part_die->die_sibling = NULL;
15108 part_die->die_child = NULL;
15109
15110 if (last_die && last_die == parent_die)
15111 last_die->die_child = part_die;
15112 else if (last_die)
15113 last_die->die_sibling = part_die;
15114
15115 last_die = part_die;
15116
15117 if (first_die == NULL)
15118 first_die = part_die;
15119
15120 /* Maybe add the DIE to the hash table. Not all DIEs that we
15121 find interesting need to be in the hash table, because we
15122 also have the parent/sibling/child chains; only those that we
15123 might refer to by offset later during partial symbol reading.
15124
15125 For now this means things that might have be the target of a
15126 DW_AT_specification, DW_AT_abstract_origin, or
15127 DW_AT_extension. DW_AT_extension will refer only to
15128 namespaces; DW_AT_abstract_origin refers to functions (and
15129 many things under the function DIE, but we do not recurse
15130 into function DIEs during partial symbol reading) and
15131 possibly variables as well; DW_AT_specification refers to
15132 declarations. Declarations ought to have the DW_AT_declaration
15133 flag. It happens that GCC forgets to put it in sometimes, but
15134 only for functions, not for types.
15135
15136 Adding more things than necessary to the hash table is harmless
15137 except for the performance cost. Adding too few will result in
15138 wasted time in find_partial_die, when we reread the compilation
15139 unit with load_all_dies set. */
15140
15141 if (load_all
15142 || abbrev->tag == DW_TAG_constant
15143 || abbrev->tag == DW_TAG_subprogram
15144 || abbrev->tag == DW_TAG_variable
15145 || abbrev->tag == DW_TAG_namespace
15146 || part_die->is_declaration)
15147 {
15148 void **slot;
15149
15150 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15151 part_die->offset.sect_off, INSERT);
15152 *slot = part_die;
15153 }
15154
15155 part_die = obstack_alloc (&cu->comp_unit_obstack,
15156 sizeof (struct partial_die_info));
15157
15158 /* For some DIEs we want to follow their children (if any). For C
15159 we have no reason to follow the children of structures; for other
15160 languages we have to, so that we can get at method physnames
15161 to infer fully qualified class names, for DW_AT_specification,
15162 and for C++ template arguments. For C++, we also look one level
15163 inside functions to find template arguments (if the name of the
15164 function does not already contain the template arguments).
15165
15166 For Ada, we need to scan the children of subprograms and lexical
15167 blocks as well because Ada allows the definition of nested
15168 entities that could be interesting for the debugger, such as
15169 nested subprograms for instance. */
15170 if (last_die->has_children
15171 && (load_all
15172 || last_die->tag == DW_TAG_namespace
15173 || last_die->tag == DW_TAG_module
15174 || last_die->tag == DW_TAG_enumeration_type
15175 || (cu->language == language_cplus
15176 && last_die->tag == DW_TAG_subprogram
15177 && (last_die->name == NULL
15178 || strchr (last_die->name, '<') == NULL))
15179 || (cu->language != language_c
15180 && (last_die->tag == DW_TAG_class_type
15181 || last_die->tag == DW_TAG_interface_type
15182 || last_die->tag == DW_TAG_structure_type
15183 || last_die->tag == DW_TAG_union_type))
15184 || (cu->language == language_ada
15185 && (last_die->tag == DW_TAG_subprogram
15186 || last_die->tag == DW_TAG_lexical_block))))
15187 {
15188 nesting_level++;
15189 parent_die = last_die;
15190 continue;
15191 }
15192
15193 /* Otherwise we skip to the next sibling, if any. */
15194 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15195
15196 /* Back to the top, do it again. */
15197 }
15198 }
15199
15200 /* Read a minimal amount of information into the minimal die structure. */
15201
15202 static const gdb_byte *
15203 read_partial_die (const struct die_reader_specs *reader,
15204 struct partial_die_info *part_die,
15205 struct abbrev_info *abbrev, unsigned int abbrev_len,
15206 const gdb_byte *info_ptr)
15207 {
15208 struct dwarf2_cu *cu = reader->cu;
15209 struct objfile *objfile = cu->objfile;
15210 const gdb_byte *buffer = reader->buffer;
15211 unsigned int i;
15212 struct attribute attr;
15213 int has_low_pc_attr = 0;
15214 int has_high_pc_attr = 0;
15215 int high_pc_relative = 0;
15216
15217 memset (part_die, 0, sizeof (struct partial_die_info));
15218
15219 part_die->offset.sect_off = info_ptr - buffer;
15220
15221 info_ptr += abbrev_len;
15222
15223 if (abbrev == NULL)
15224 return info_ptr;
15225
15226 part_die->tag = abbrev->tag;
15227 part_die->has_children = abbrev->has_children;
15228
15229 for (i = 0; i < abbrev->num_attrs; ++i)
15230 {
15231 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15232
15233 /* Store the data if it is of an attribute we want to keep in a
15234 partial symbol table. */
15235 switch (attr.name)
15236 {
15237 case DW_AT_name:
15238 switch (part_die->tag)
15239 {
15240 case DW_TAG_compile_unit:
15241 case DW_TAG_partial_unit:
15242 case DW_TAG_type_unit:
15243 /* Compilation units have a DW_AT_name that is a filename, not
15244 a source language identifier. */
15245 case DW_TAG_enumeration_type:
15246 case DW_TAG_enumerator:
15247 /* These tags always have simple identifiers already; no need
15248 to canonicalize them. */
15249 part_die->name = DW_STRING (&attr);
15250 break;
15251 default:
15252 part_die->name
15253 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15254 &objfile->objfile_obstack);
15255 break;
15256 }
15257 break;
15258 case DW_AT_linkage_name:
15259 case DW_AT_MIPS_linkage_name:
15260 /* Note that both forms of linkage name might appear. We
15261 assume they will be the same, and we only store the last
15262 one we see. */
15263 if (cu->language == language_ada)
15264 part_die->name = DW_STRING (&attr);
15265 part_die->linkage_name = DW_STRING (&attr);
15266 break;
15267 case DW_AT_low_pc:
15268 has_low_pc_attr = 1;
15269 part_die->lowpc = DW_ADDR (&attr);
15270 break;
15271 case DW_AT_high_pc:
15272 has_high_pc_attr = 1;
15273 if (attr.form == DW_FORM_addr
15274 || attr.form == DW_FORM_GNU_addr_index)
15275 part_die->highpc = DW_ADDR (&attr);
15276 else
15277 {
15278 high_pc_relative = 1;
15279 part_die->highpc = DW_UNSND (&attr);
15280 }
15281 break;
15282 case DW_AT_location:
15283 /* Support the .debug_loc offsets. */
15284 if (attr_form_is_block (&attr))
15285 {
15286 part_die->d.locdesc = DW_BLOCK (&attr);
15287 }
15288 else if (attr_form_is_section_offset (&attr))
15289 {
15290 dwarf2_complex_location_expr_complaint ();
15291 }
15292 else
15293 {
15294 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15295 "partial symbol information");
15296 }
15297 break;
15298 case DW_AT_external:
15299 part_die->is_external = DW_UNSND (&attr);
15300 break;
15301 case DW_AT_declaration:
15302 part_die->is_declaration = DW_UNSND (&attr);
15303 break;
15304 case DW_AT_type:
15305 part_die->has_type = 1;
15306 break;
15307 case DW_AT_abstract_origin:
15308 case DW_AT_specification:
15309 case DW_AT_extension:
15310 part_die->has_specification = 1;
15311 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15312 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15313 || cu->per_cu->is_dwz);
15314 break;
15315 case DW_AT_sibling:
15316 /* Ignore absolute siblings, they might point outside of
15317 the current compile unit. */
15318 if (attr.form == DW_FORM_ref_addr)
15319 complaint (&symfile_complaints,
15320 _("ignoring absolute DW_AT_sibling"));
15321 else
15322 {
15323 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15324 const gdb_byte *sibling_ptr = buffer + off;
15325
15326 if (sibling_ptr < info_ptr)
15327 complaint (&symfile_complaints,
15328 _("DW_AT_sibling points backwards"));
15329 else
15330 part_die->sibling = sibling_ptr;
15331 }
15332 break;
15333 case DW_AT_byte_size:
15334 part_die->has_byte_size = 1;
15335 break;
15336 case DW_AT_calling_convention:
15337 /* DWARF doesn't provide a way to identify a program's source-level
15338 entry point. DW_AT_calling_convention attributes are only meant
15339 to describe functions' calling conventions.
15340
15341 However, because it's a necessary piece of information in
15342 Fortran, and because DW_CC_program is the only piece of debugging
15343 information whose definition refers to a 'main program' at all,
15344 several compilers have begun marking Fortran main programs with
15345 DW_CC_program --- even when those functions use the standard
15346 calling conventions.
15347
15348 So until DWARF specifies a way to provide this information and
15349 compilers pick up the new representation, we'll support this
15350 practice. */
15351 if (DW_UNSND (&attr) == DW_CC_program
15352 && cu->language == language_fortran)
15353 set_objfile_main_name (objfile, part_die->name, language_fortran);
15354 break;
15355 case DW_AT_inline:
15356 if (DW_UNSND (&attr) == DW_INL_inlined
15357 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15358 part_die->may_be_inlined = 1;
15359 break;
15360
15361 case DW_AT_import:
15362 if (part_die->tag == DW_TAG_imported_unit)
15363 {
15364 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15365 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15366 || cu->per_cu->is_dwz);
15367 }
15368 break;
15369
15370 default:
15371 break;
15372 }
15373 }
15374
15375 if (high_pc_relative)
15376 part_die->highpc += part_die->lowpc;
15377
15378 if (has_low_pc_attr && has_high_pc_attr)
15379 {
15380 /* When using the GNU linker, .gnu.linkonce. sections are used to
15381 eliminate duplicate copies of functions and vtables and such.
15382 The linker will arbitrarily choose one and discard the others.
15383 The AT_*_pc values for such functions refer to local labels in
15384 these sections. If the section from that file was discarded, the
15385 labels are not in the output, so the relocs get a value of 0.
15386 If this is a discarded function, mark the pc bounds as invalid,
15387 so that GDB will ignore it. */
15388 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15389 {
15390 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15391
15392 complaint (&symfile_complaints,
15393 _("DW_AT_low_pc %s is zero "
15394 "for DIE at 0x%x [in module %s]"),
15395 paddress (gdbarch, part_die->lowpc),
15396 part_die->offset.sect_off, objfile_name (objfile));
15397 }
15398 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15399 else if (part_die->lowpc >= part_die->highpc)
15400 {
15401 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15402
15403 complaint (&symfile_complaints,
15404 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15405 "for DIE at 0x%x [in module %s]"),
15406 paddress (gdbarch, part_die->lowpc),
15407 paddress (gdbarch, part_die->highpc),
15408 part_die->offset.sect_off, objfile_name (objfile));
15409 }
15410 else
15411 part_die->has_pc_info = 1;
15412 }
15413
15414 return info_ptr;
15415 }
15416
15417 /* Find a cached partial DIE at OFFSET in CU. */
15418
15419 static struct partial_die_info *
15420 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15421 {
15422 struct partial_die_info *lookup_die = NULL;
15423 struct partial_die_info part_die;
15424
15425 part_die.offset = offset;
15426 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15427 offset.sect_off);
15428
15429 return lookup_die;
15430 }
15431
15432 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15433 except in the case of .debug_types DIEs which do not reference
15434 outside their CU (they do however referencing other types via
15435 DW_FORM_ref_sig8). */
15436
15437 static struct partial_die_info *
15438 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15439 {
15440 struct objfile *objfile = cu->objfile;
15441 struct dwarf2_per_cu_data *per_cu = NULL;
15442 struct partial_die_info *pd = NULL;
15443
15444 if (offset_in_dwz == cu->per_cu->is_dwz
15445 && offset_in_cu_p (&cu->header, offset))
15446 {
15447 pd = find_partial_die_in_comp_unit (offset, cu);
15448 if (pd != NULL)
15449 return pd;
15450 /* We missed recording what we needed.
15451 Load all dies and try again. */
15452 per_cu = cu->per_cu;
15453 }
15454 else
15455 {
15456 /* TUs don't reference other CUs/TUs (except via type signatures). */
15457 if (cu->per_cu->is_debug_types)
15458 {
15459 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15460 " external reference to offset 0x%lx [in module %s].\n"),
15461 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15462 bfd_get_filename (objfile->obfd));
15463 }
15464 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15465 objfile);
15466
15467 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15468 load_partial_comp_unit (per_cu);
15469
15470 per_cu->cu->last_used = 0;
15471 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15472 }
15473
15474 /* If we didn't find it, and not all dies have been loaded,
15475 load them all and try again. */
15476
15477 if (pd == NULL && per_cu->load_all_dies == 0)
15478 {
15479 per_cu->load_all_dies = 1;
15480
15481 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15482 THIS_CU->cu may already be in use. So we can't just free it and
15483 replace its DIEs with the ones we read in. Instead, we leave those
15484 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15485 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15486 set. */
15487 load_partial_comp_unit (per_cu);
15488
15489 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15490 }
15491
15492 if (pd == NULL)
15493 internal_error (__FILE__, __LINE__,
15494 _("could not find partial DIE 0x%x "
15495 "in cache [from module %s]\n"),
15496 offset.sect_off, bfd_get_filename (objfile->obfd));
15497 return pd;
15498 }
15499
15500 /* See if we can figure out if the class lives in a namespace. We do
15501 this by looking for a member function; its demangled name will
15502 contain namespace info, if there is any. */
15503
15504 static void
15505 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15506 struct dwarf2_cu *cu)
15507 {
15508 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15509 what template types look like, because the demangler
15510 frequently doesn't give the same name as the debug info. We
15511 could fix this by only using the demangled name to get the
15512 prefix (but see comment in read_structure_type). */
15513
15514 struct partial_die_info *real_pdi;
15515 struct partial_die_info *child_pdi;
15516
15517 /* If this DIE (this DIE's specification, if any) has a parent, then
15518 we should not do this. We'll prepend the parent's fully qualified
15519 name when we create the partial symbol. */
15520
15521 real_pdi = struct_pdi;
15522 while (real_pdi->has_specification)
15523 real_pdi = find_partial_die (real_pdi->spec_offset,
15524 real_pdi->spec_is_dwz, cu);
15525
15526 if (real_pdi->die_parent != NULL)
15527 return;
15528
15529 for (child_pdi = struct_pdi->die_child;
15530 child_pdi != NULL;
15531 child_pdi = child_pdi->die_sibling)
15532 {
15533 if (child_pdi->tag == DW_TAG_subprogram
15534 && child_pdi->linkage_name != NULL)
15535 {
15536 char *actual_class_name
15537 = language_class_name_from_physname (cu->language_defn,
15538 child_pdi->linkage_name);
15539 if (actual_class_name != NULL)
15540 {
15541 struct_pdi->name
15542 = obstack_copy0 (&cu->objfile->objfile_obstack,
15543 actual_class_name,
15544 strlen (actual_class_name));
15545 xfree (actual_class_name);
15546 }
15547 break;
15548 }
15549 }
15550 }
15551
15552 /* Adjust PART_DIE before generating a symbol for it. This function
15553 may set the is_external flag or change the DIE's name. */
15554
15555 static void
15556 fixup_partial_die (struct partial_die_info *part_die,
15557 struct dwarf2_cu *cu)
15558 {
15559 /* Once we've fixed up a die, there's no point in doing so again.
15560 This also avoids a memory leak if we were to call
15561 guess_partial_die_structure_name multiple times. */
15562 if (part_die->fixup_called)
15563 return;
15564
15565 /* If we found a reference attribute and the DIE has no name, try
15566 to find a name in the referred to DIE. */
15567
15568 if (part_die->name == NULL && part_die->has_specification)
15569 {
15570 struct partial_die_info *spec_die;
15571
15572 spec_die = find_partial_die (part_die->spec_offset,
15573 part_die->spec_is_dwz, cu);
15574
15575 fixup_partial_die (spec_die, cu);
15576
15577 if (spec_die->name)
15578 {
15579 part_die->name = spec_die->name;
15580
15581 /* Copy DW_AT_external attribute if it is set. */
15582 if (spec_die->is_external)
15583 part_die->is_external = spec_die->is_external;
15584 }
15585 }
15586
15587 /* Set default names for some unnamed DIEs. */
15588
15589 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15590 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15591
15592 /* If there is no parent die to provide a namespace, and there are
15593 children, see if we can determine the namespace from their linkage
15594 name. */
15595 if (cu->language == language_cplus
15596 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15597 && part_die->die_parent == NULL
15598 && part_die->has_children
15599 && (part_die->tag == DW_TAG_class_type
15600 || part_die->tag == DW_TAG_structure_type
15601 || part_die->tag == DW_TAG_union_type))
15602 guess_partial_die_structure_name (part_die, cu);
15603
15604 /* GCC might emit a nameless struct or union that has a linkage
15605 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15606 if (part_die->name == NULL
15607 && (part_die->tag == DW_TAG_class_type
15608 || part_die->tag == DW_TAG_interface_type
15609 || part_die->tag == DW_TAG_structure_type
15610 || part_die->tag == DW_TAG_union_type)
15611 && part_die->linkage_name != NULL)
15612 {
15613 char *demangled;
15614
15615 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15616 if (demangled)
15617 {
15618 const char *base;
15619
15620 /* Strip any leading namespaces/classes, keep only the base name.
15621 DW_AT_name for named DIEs does not contain the prefixes. */
15622 base = strrchr (demangled, ':');
15623 if (base && base > demangled && base[-1] == ':')
15624 base++;
15625 else
15626 base = demangled;
15627
15628 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15629 base, strlen (base));
15630 xfree (demangled);
15631 }
15632 }
15633
15634 part_die->fixup_called = 1;
15635 }
15636
15637 /* Read an attribute value described by an attribute form. */
15638
15639 static const gdb_byte *
15640 read_attribute_value (const struct die_reader_specs *reader,
15641 struct attribute *attr, unsigned form,
15642 const gdb_byte *info_ptr)
15643 {
15644 struct dwarf2_cu *cu = reader->cu;
15645 bfd *abfd = reader->abfd;
15646 struct comp_unit_head *cu_header = &cu->header;
15647 unsigned int bytes_read;
15648 struct dwarf_block *blk;
15649
15650 attr->form = form;
15651 switch (form)
15652 {
15653 case DW_FORM_ref_addr:
15654 if (cu->header.version == 2)
15655 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15656 else
15657 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15658 &cu->header, &bytes_read);
15659 info_ptr += bytes_read;
15660 break;
15661 case DW_FORM_GNU_ref_alt:
15662 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15663 info_ptr += bytes_read;
15664 break;
15665 case DW_FORM_addr:
15666 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15667 info_ptr += bytes_read;
15668 break;
15669 case DW_FORM_block2:
15670 blk = dwarf_alloc_block (cu);
15671 blk->size = read_2_bytes (abfd, info_ptr);
15672 info_ptr += 2;
15673 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15674 info_ptr += blk->size;
15675 DW_BLOCK (attr) = blk;
15676 break;
15677 case DW_FORM_block4:
15678 blk = dwarf_alloc_block (cu);
15679 blk->size = read_4_bytes (abfd, info_ptr);
15680 info_ptr += 4;
15681 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15682 info_ptr += blk->size;
15683 DW_BLOCK (attr) = blk;
15684 break;
15685 case DW_FORM_data2:
15686 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15687 info_ptr += 2;
15688 break;
15689 case DW_FORM_data4:
15690 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15691 info_ptr += 4;
15692 break;
15693 case DW_FORM_data8:
15694 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15695 info_ptr += 8;
15696 break;
15697 case DW_FORM_sec_offset:
15698 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15699 info_ptr += bytes_read;
15700 break;
15701 case DW_FORM_string:
15702 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15703 DW_STRING_IS_CANONICAL (attr) = 0;
15704 info_ptr += bytes_read;
15705 break;
15706 case DW_FORM_strp:
15707 if (!cu->per_cu->is_dwz)
15708 {
15709 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15710 &bytes_read);
15711 DW_STRING_IS_CANONICAL (attr) = 0;
15712 info_ptr += bytes_read;
15713 break;
15714 }
15715 /* FALLTHROUGH */
15716 case DW_FORM_GNU_strp_alt:
15717 {
15718 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15719 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15720 &bytes_read);
15721
15722 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15723 DW_STRING_IS_CANONICAL (attr) = 0;
15724 info_ptr += bytes_read;
15725 }
15726 break;
15727 case DW_FORM_exprloc:
15728 case DW_FORM_block:
15729 blk = dwarf_alloc_block (cu);
15730 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15731 info_ptr += bytes_read;
15732 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15733 info_ptr += blk->size;
15734 DW_BLOCK (attr) = blk;
15735 break;
15736 case DW_FORM_block1:
15737 blk = dwarf_alloc_block (cu);
15738 blk->size = read_1_byte (abfd, info_ptr);
15739 info_ptr += 1;
15740 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15741 info_ptr += blk->size;
15742 DW_BLOCK (attr) = blk;
15743 break;
15744 case DW_FORM_data1:
15745 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15746 info_ptr += 1;
15747 break;
15748 case DW_FORM_flag:
15749 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15750 info_ptr += 1;
15751 break;
15752 case DW_FORM_flag_present:
15753 DW_UNSND (attr) = 1;
15754 break;
15755 case DW_FORM_sdata:
15756 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15757 info_ptr += bytes_read;
15758 break;
15759 case DW_FORM_udata:
15760 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15761 info_ptr += bytes_read;
15762 break;
15763 case DW_FORM_ref1:
15764 DW_UNSND (attr) = (cu->header.offset.sect_off
15765 + read_1_byte (abfd, info_ptr));
15766 info_ptr += 1;
15767 break;
15768 case DW_FORM_ref2:
15769 DW_UNSND (attr) = (cu->header.offset.sect_off
15770 + read_2_bytes (abfd, info_ptr));
15771 info_ptr += 2;
15772 break;
15773 case DW_FORM_ref4:
15774 DW_UNSND (attr) = (cu->header.offset.sect_off
15775 + read_4_bytes (abfd, info_ptr));
15776 info_ptr += 4;
15777 break;
15778 case DW_FORM_ref8:
15779 DW_UNSND (attr) = (cu->header.offset.sect_off
15780 + read_8_bytes (abfd, info_ptr));
15781 info_ptr += 8;
15782 break;
15783 case DW_FORM_ref_sig8:
15784 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
15785 info_ptr += 8;
15786 break;
15787 case DW_FORM_ref_udata:
15788 DW_UNSND (attr) = (cu->header.offset.sect_off
15789 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
15790 info_ptr += bytes_read;
15791 break;
15792 case DW_FORM_indirect:
15793 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15794 info_ptr += bytes_read;
15795 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
15796 break;
15797 case DW_FORM_GNU_addr_index:
15798 if (reader->dwo_file == NULL)
15799 {
15800 /* For now flag a hard error.
15801 Later we can turn this into a complaint. */
15802 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15803 dwarf_form_name (form),
15804 bfd_get_filename (abfd));
15805 }
15806 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15807 info_ptr += bytes_read;
15808 break;
15809 case DW_FORM_GNU_str_index:
15810 if (reader->dwo_file == NULL)
15811 {
15812 /* For now flag a hard error.
15813 Later we can turn this into a complaint if warranted. */
15814 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15815 dwarf_form_name (form),
15816 bfd_get_filename (abfd));
15817 }
15818 {
15819 ULONGEST str_index =
15820 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15821
15822 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15823 DW_STRING_IS_CANONICAL (attr) = 0;
15824 info_ptr += bytes_read;
15825 }
15826 break;
15827 default:
15828 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
15829 dwarf_form_name (form),
15830 bfd_get_filename (abfd));
15831 }
15832
15833 /* Super hack. */
15834 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
15835 attr->form = DW_FORM_GNU_ref_alt;
15836
15837 /* We have seen instances where the compiler tried to emit a byte
15838 size attribute of -1 which ended up being encoded as an unsigned
15839 0xffffffff. Although 0xffffffff is technically a valid size value,
15840 an object of this size seems pretty unlikely so we can relatively
15841 safely treat these cases as if the size attribute was invalid and
15842 treat them as zero by default. */
15843 if (attr->name == DW_AT_byte_size
15844 && form == DW_FORM_data4
15845 && DW_UNSND (attr) >= 0xffffffff)
15846 {
15847 complaint
15848 (&symfile_complaints,
15849 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15850 hex_string (DW_UNSND (attr)));
15851 DW_UNSND (attr) = 0;
15852 }
15853
15854 return info_ptr;
15855 }
15856
15857 /* Read an attribute described by an abbreviated attribute. */
15858
15859 static const gdb_byte *
15860 read_attribute (const struct die_reader_specs *reader,
15861 struct attribute *attr, struct attr_abbrev *abbrev,
15862 const gdb_byte *info_ptr)
15863 {
15864 attr->name = abbrev->name;
15865 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15866 }
15867
15868 /* Read dwarf information from a buffer. */
15869
15870 static unsigned int
15871 read_1_byte (bfd *abfd, const gdb_byte *buf)
15872 {
15873 return bfd_get_8 (abfd, buf);
15874 }
15875
15876 static int
15877 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15878 {
15879 return bfd_get_signed_8 (abfd, buf);
15880 }
15881
15882 static unsigned int
15883 read_2_bytes (bfd *abfd, const gdb_byte *buf)
15884 {
15885 return bfd_get_16 (abfd, buf);
15886 }
15887
15888 static int
15889 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
15890 {
15891 return bfd_get_signed_16 (abfd, buf);
15892 }
15893
15894 static unsigned int
15895 read_4_bytes (bfd *abfd, const gdb_byte *buf)
15896 {
15897 return bfd_get_32 (abfd, buf);
15898 }
15899
15900 static int
15901 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
15902 {
15903 return bfd_get_signed_32 (abfd, buf);
15904 }
15905
15906 static ULONGEST
15907 read_8_bytes (bfd *abfd, const gdb_byte *buf)
15908 {
15909 return bfd_get_64 (abfd, buf);
15910 }
15911
15912 static CORE_ADDR
15913 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
15914 unsigned int *bytes_read)
15915 {
15916 struct comp_unit_head *cu_header = &cu->header;
15917 CORE_ADDR retval = 0;
15918
15919 if (cu_header->signed_addr_p)
15920 {
15921 switch (cu_header->addr_size)
15922 {
15923 case 2:
15924 retval = bfd_get_signed_16 (abfd, buf);
15925 break;
15926 case 4:
15927 retval = bfd_get_signed_32 (abfd, buf);
15928 break;
15929 case 8:
15930 retval = bfd_get_signed_64 (abfd, buf);
15931 break;
15932 default:
15933 internal_error (__FILE__, __LINE__,
15934 _("read_address: bad switch, signed [in module %s]"),
15935 bfd_get_filename (abfd));
15936 }
15937 }
15938 else
15939 {
15940 switch (cu_header->addr_size)
15941 {
15942 case 2:
15943 retval = bfd_get_16 (abfd, buf);
15944 break;
15945 case 4:
15946 retval = bfd_get_32 (abfd, buf);
15947 break;
15948 case 8:
15949 retval = bfd_get_64 (abfd, buf);
15950 break;
15951 default:
15952 internal_error (__FILE__, __LINE__,
15953 _("read_address: bad switch, "
15954 "unsigned [in module %s]"),
15955 bfd_get_filename (abfd));
15956 }
15957 }
15958
15959 *bytes_read = cu_header->addr_size;
15960 return retval;
15961 }
15962
15963 /* Read the initial length from a section. The (draft) DWARF 3
15964 specification allows the initial length to take up either 4 bytes
15965 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15966 bytes describe the length and all offsets will be 8 bytes in length
15967 instead of 4.
15968
15969 An older, non-standard 64-bit format is also handled by this
15970 function. The older format in question stores the initial length
15971 as an 8-byte quantity without an escape value. Lengths greater
15972 than 2^32 aren't very common which means that the initial 4 bytes
15973 is almost always zero. Since a length value of zero doesn't make
15974 sense for the 32-bit format, this initial zero can be considered to
15975 be an escape value which indicates the presence of the older 64-bit
15976 format. As written, the code can't detect (old format) lengths
15977 greater than 4GB. If it becomes necessary to handle lengths
15978 somewhat larger than 4GB, we could allow other small values (such
15979 as the non-sensical values of 1, 2, and 3) to also be used as
15980 escape values indicating the presence of the old format.
15981
15982 The value returned via bytes_read should be used to increment the
15983 relevant pointer after calling read_initial_length().
15984
15985 [ Note: read_initial_length() and read_offset() are based on the
15986 document entitled "DWARF Debugging Information Format", revision
15987 3, draft 8, dated November 19, 2001. This document was obtained
15988 from:
15989
15990 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
15991
15992 This document is only a draft and is subject to change. (So beware.)
15993
15994 Details regarding the older, non-standard 64-bit format were
15995 determined empirically by examining 64-bit ELF files produced by
15996 the SGI toolchain on an IRIX 6.5 machine.
15997
15998 - Kevin, July 16, 2002
15999 ] */
16000
16001 static LONGEST
16002 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16003 {
16004 LONGEST length = bfd_get_32 (abfd, buf);
16005
16006 if (length == 0xffffffff)
16007 {
16008 length = bfd_get_64 (abfd, buf + 4);
16009 *bytes_read = 12;
16010 }
16011 else if (length == 0)
16012 {
16013 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16014 length = bfd_get_64 (abfd, buf);
16015 *bytes_read = 8;
16016 }
16017 else
16018 {
16019 *bytes_read = 4;
16020 }
16021
16022 return length;
16023 }
16024
16025 /* Cover function for read_initial_length.
16026 Returns the length of the object at BUF, and stores the size of the
16027 initial length in *BYTES_READ and stores the size that offsets will be in
16028 *OFFSET_SIZE.
16029 If the initial length size is not equivalent to that specified in
16030 CU_HEADER then issue a complaint.
16031 This is useful when reading non-comp-unit headers. */
16032
16033 static LONGEST
16034 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16035 const struct comp_unit_head *cu_header,
16036 unsigned int *bytes_read,
16037 unsigned int *offset_size)
16038 {
16039 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16040
16041 gdb_assert (cu_header->initial_length_size == 4
16042 || cu_header->initial_length_size == 8
16043 || cu_header->initial_length_size == 12);
16044
16045 if (cu_header->initial_length_size != *bytes_read)
16046 complaint (&symfile_complaints,
16047 _("intermixed 32-bit and 64-bit DWARF sections"));
16048
16049 *offset_size = (*bytes_read == 4) ? 4 : 8;
16050 return length;
16051 }
16052
16053 /* Read an offset from the data stream. The size of the offset is
16054 given by cu_header->offset_size. */
16055
16056 static LONGEST
16057 read_offset (bfd *abfd, const gdb_byte *buf,
16058 const struct comp_unit_head *cu_header,
16059 unsigned int *bytes_read)
16060 {
16061 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16062
16063 *bytes_read = cu_header->offset_size;
16064 return offset;
16065 }
16066
16067 /* Read an offset from the data stream. */
16068
16069 static LONGEST
16070 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16071 {
16072 LONGEST retval = 0;
16073
16074 switch (offset_size)
16075 {
16076 case 4:
16077 retval = bfd_get_32 (abfd, buf);
16078 break;
16079 case 8:
16080 retval = bfd_get_64 (abfd, buf);
16081 break;
16082 default:
16083 internal_error (__FILE__, __LINE__,
16084 _("read_offset_1: bad switch [in module %s]"),
16085 bfd_get_filename (abfd));
16086 }
16087
16088 return retval;
16089 }
16090
16091 static const gdb_byte *
16092 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16093 {
16094 /* If the size of a host char is 8 bits, we can return a pointer
16095 to the buffer, otherwise we have to copy the data to a buffer
16096 allocated on the temporary obstack. */
16097 gdb_assert (HOST_CHAR_BIT == 8);
16098 return buf;
16099 }
16100
16101 static const char *
16102 read_direct_string (bfd *abfd, const gdb_byte *buf,
16103 unsigned int *bytes_read_ptr)
16104 {
16105 /* If the size of a host char is 8 bits, we can return a pointer
16106 to the string, otherwise we have to copy the string to a buffer
16107 allocated on the temporary obstack. */
16108 gdb_assert (HOST_CHAR_BIT == 8);
16109 if (*buf == '\0')
16110 {
16111 *bytes_read_ptr = 1;
16112 return NULL;
16113 }
16114 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16115 return (const char *) buf;
16116 }
16117
16118 static const char *
16119 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16120 {
16121 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16122 if (dwarf2_per_objfile->str.buffer == NULL)
16123 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16124 bfd_get_filename (abfd));
16125 if (str_offset >= dwarf2_per_objfile->str.size)
16126 error (_("DW_FORM_strp pointing outside of "
16127 ".debug_str section [in module %s]"),
16128 bfd_get_filename (abfd));
16129 gdb_assert (HOST_CHAR_BIT == 8);
16130 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16131 return NULL;
16132 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16133 }
16134
16135 /* Read a string at offset STR_OFFSET in the .debug_str section from
16136 the .dwz file DWZ. Throw an error if the offset is too large. If
16137 the string consists of a single NUL byte, return NULL; otherwise
16138 return a pointer to the string. */
16139
16140 static const char *
16141 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16142 {
16143 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16144
16145 if (dwz->str.buffer == NULL)
16146 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16147 "section [in module %s]"),
16148 bfd_get_filename (dwz->dwz_bfd));
16149 if (str_offset >= dwz->str.size)
16150 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16151 ".debug_str section [in module %s]"),
16152 bfd_get_filename (dwz->dwz_bfd));
16153 gdb_assert (HOST_CHAR_BIT == 8);
16154 if (dwz->str.buffer[str_offset] == '\0')
16155 return NULL;
16156 return (const char *) (dwz->str.buffer + str_offset);
16157 }
16158
16159 static const char *
16160 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16161 const struct comp_unit_head *cu_header,
16162 unsigned int *bytes_read_ptr)
16163 {
16164 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16165
16166 return read_indirect_string_at_offset (abfd, str_offset);
16167 }
16168
16169 static ULONGEST
16170 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16171 unsigned int *bytes_read_ptr)
16172 {
16173 ULONGEST result;
16174 unsigned int num_read;
16175 int i, shift;
16176 unsigned char byte;
16177
16178 result = 0;
16179 shift = 0;
16180 num_read = 0;
16181 i = 0;
16182 while (1)
16183 {
16184 byte = bfd_get_8 (abfd, buf);
16185 buf++;
16186 num_read++;
16187 result |= ((ULONGEST) (byte & 127) << shift);
16188 if ((byte & 128) == 0)
16189 {
16190 break;
16191 }
16192 shift += 7;
16193 }
16194 *bytes_read_ptr = num_read;
16195 return result;
16196 }
16197
16198 static LONGEST
16199 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16200 unsigned int *bytes_read_ptr)
16201 {
16202 LONGEST result;
16203 int i, shift, num_read;
16204 unsigned char byte;
16205
16206 result = 0;
16207 shift = 0;
16208 num_read = 0;
16209 i = 0;
16210 while (1)
16211 {
16212 byte = bfd_get_8 (abfd, buf);
16213 buf++;
16214 num_read++;
16215 result |= ((LONGEST) (byte & 127) << shift);
16216 shift += 7;
16217 if ((byte & 128) == 0)
16218 {
16219 break;
16220 }
16221 }
16222 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16223 result |= -(((LONGEST) 1) << shift);
16224 *bytes_read_ptr = num_read;
16225 return result;
16226 }
16227
16228 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16229 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16230 ADDR_SIZE is the size of addresses from the CU header. */
16231
16232 static CORE_ADDR
16233 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16234 {
16235 struct objfile *objfile = dwarf2_per_objfile->objfile;
16236 bfd *abfd = objfile->obfd;
16237 const gdb_byte *info_ptr;
16238
16239 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16240 if (dwarf2_per_objfile->addr.buffer == NULL)
16241 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16242 objfile_name (objfile));
16243 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16244 error (_("DW_FORM_addr_index pointing outside of "
16245 ".debug_addr section [in module %s]"),
16246 objfile_name (objfile));
16247 info_ptr = (dwarf2_per_objfile->addr.buffer
16248 + addr_base + addr_index * addr_size);
16249 if (addr_size == 4)
16250 return bfd_get_32 (abfd, info_ptr);
16251 else
16252 return bfd_get_64 (abfd, info_ptr);
16253 }
16254
16255 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16256
16257 static CORE_ADDR
16258 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16259 {
16260 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16261 }
16262
16263 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16264
16265 static CORE_ADDR
16266 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16267 unsigned int *bytes_read)
16268 {
16269 bfd *abfd = cu->objfile->obfd;
16270 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16271
16272 return read_addr_index (cu, addr_index);
16273 }
16274
16275 /* Data structure to pass results from dwarf2_read_addr_index_reader
16276 back to dwarf2_read_addr_index. */
16277
16278 struct dwarf2_read_addr_index_data
16279 {
16280 ULONGEST addr_base;
16281 int addr_size;
16282 };
16283
16284 /* die_reader_func for dwarf2_read_addr_index. */
16285
16286 static void
16287 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16288 const gdb_byte *info_ptr,
16289 struct die_info *comp_unit_die,
16290 int has_children,
16291 void *data)
16292 {
16293 struct dwarf2_cu *cu = reader->cu;
16294 struct dwarf2_read_addr_index_data *aidata =
16295 (struct dwarf2_read_addr_index_data *) data;
16296
16297 aidata->addr_base = cu->addr_base;
16298 aidata->addr_size = cu->header.addr_size;
16299 }
16300
16301 /* Given an index in .debug_addr, fetch the value.
16302 NOTE: This can be called during dwarf expression evaluation,
16303 long after the debug information has been read, and thus per_cu->cu
16304 may no longer exist. */
16305
16306 CORE_ADDR
16307 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16308 unsigned int addr_index)
16309 {
16310 struct objfile *objfile = per_cu->objfile;
16311 struct dwarf2_cu *cu = per_cu->cu;
16312 ULONGEST addr_base;
16313 int addr_size;
16314
16315 /* This is intended to be called from outside this file. */
16316 dw2_setup (objfile);
16317
16318 /* We need addr_base and addr_size.
16319 If we don't have PER_CU->cu, we have to get it.
16320 Nasty, but the alternative is storing the needed info in PER_CU,
16321 which at this point doesn't seem justified: it's not clear how frequently
16322 it would get used and it would increase the size of every PER_CU.
16323 Entry points like dwarf2_per_cu_addr_size do a similar thing
16324 so we're not in uncharted territory here.
16325 Alas we need to be a bit more complicated as addr_base is contained
16326 in the DIE.
16327
16328 We don't need to read the entire CU(/TU).
16329 We just need the header and top level die.
16330
16331 IWBN to use the aging mechanism to let us lazily later discard the CU.
16332 For now we skip this optimization. */
16333
16334 if (cu != NULL)
16335 {
16336 addr_base = cu->addr_base;
16337 addr_size = cu->header.addr_size;
16338 }
16339 else
16340 {
16341 struct dwarf2_read_addr_index_data aidata;
16342
16343 /* Note: We can't use init_cutu_and_read_dies_simple here,
16344 we need addr_base. */
16345 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16346 dwarf2_read_addr_index_reader, &aidata);
16347 addr_base = aidata.addr_base;
16348 addr_size = aidata.addr_size;
16349 }
16350
16351 return read_addr_index_1 (addr_index, addr_base, addr_size);
16352 }
16353
16354 /* Given a DW_FORM_GNU_str_index, fetch the string.
16355 This is only used by the Fission support. */
16356
16357 static const char *
16358 read_str_index (const struct die_reader_specs *reader,
16359 struct dwarf2_cu *cu, ULONGEST str_index)
16360 {
16361 struct objfile *objfile = dwarf2_per_objfile->objfile;
16362 const char *dwo_name = objfile_name (objfile);
16363 bfd *abfd = objfile->obfd;
16364 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16365 struct dwarf2_section_info *str_offsets_section =
16366 &reader->dwo_file->sections.str_offsets;
16367 const gdb_byte *info_ptr;
16368 ULONGEST str_offset;
16369 static const char form_name[] = "DW_FORM_GNU_str_index";
16370
16371 dwarf2_read_section (objfile, str_section);
16372 dwarf2_read_section (objfile, str_offsets_section);
16373 if (str_section->buffer == NULL)
16374 error (_("%s used without .debug_str.dwo section"
16375 " in CU at offset 0x%lx [in module %s]"),
16376 form_name, (long) cu->header.offset.sect_off, dwo_name);
16377 if (str_offsets_section->buffer == NULL)
16378 error (_("%s used without .debug_str_offsets.dwo section"
16379 " in CU at offset 0x%lx [in module %s]"),
16380 form_name, (long) cu->header.offset.sect_off, dwo_name);
16381 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16382 error (_("%s pointing outside of .debug_str_offsets.dwo"
16383 " section in CU at offset 0x%lx [in module %s]"),
16384 form_name, (long) cu->header.offset.sect_off, dwo_name);
16385 info_ptr = (str_offsets_section->buffer
16386 + str_index * cu->header.offset_size);
16387 if (cu->header.offset_size == 4)
16388 str_offset = bfd_get_32 (abfd, info_ptr);
16389 else
16390 str_offset = bfd_get_64 (abfd, info_ptr);
16391 if (str_offset >= str_section->size)
16392 error (_("Offset from %s pointing outside of"
16393 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16394 form_name, (long) cu->header.offset.sect_off, dwo_name);
16395 return (const char *) (str_section->buffer + str_offset);
16396 }
16397
16398 /* Return the length of an LEB128 number in BUF. */
16399
16400 static int
16401 leb128_size (const gdb_byte *buf)
16402 {
16403 const gdb_byte *begin = buf;
16404 gdb_byte byte;
16405
16406 while (1)
16407 {
16408 byte = *buf++;
16409 if ((byte & 128) == 0)
16410 return buf - begin;
16411 }
16412 }
16413
16414 static void
16415 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16416 {
16417 switch (lang)
16418 {
16419 case DW_LANG_C89:
16420 case DW_LANG_C99:
16421 case DW_LANG_C:
16422 case DW_LANG_UPC:
16423 cu->language = language_c;
16424 break;
16425 case DW_LANG_C_plus_plus:
16426 cu->language = language_cplus;
16427 break;
16428 case DW_LANG_D:
16429 cu->language = language_d;
16430 break;
16431 case DW_LANG_Fortran77:
16432 case DW_LANG_Fortran90:
16433 case DW_LANG_Fortran95:
16434 cu->language = language_fortran;
16435 break;
16436 case DW_LANG_Go:
16437 cu->language = language_go;
16438 break;
16439 case DW_LANG_Mips_Assembler:
16440 cu->language = language_asm;
16441 break;
16442 case DW_LANG_Java:
16443 cu->language = language_java;
16444 break;
16445 case DW_LANG_Ada83:
16446 case DW_LANG_Ada95:
16447 cu->language = language_ada;
16448 break;
16449 case DW_LANG_Modula2:
16450 cu->language = language_m2;
16451 break;
16452 case DW_LANG_Pascal83:
16453 cu->language = language_pascal;
16454 break;
16455 case DW_LANG_ObjC:
16456 cu->language = language_objc;
16457 break;
16458 case DW_LANG_Cobol74:
16459 case DW_LANG_Cobol85:
16460 default:
16461 cu->language = language_minimal;
16462 break;
16463 }
16464 cu->language_defn = language_def (cu->language);
16465 }
16466
16467 /* Return the named attribute or NULL if not there. */
16468
16469 static struct attribute *
16470 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16471 {
16472 for (;;)
16473 {
16474 unsigned int i;
16475 struct attribute *spec = NULL;
16476
16477 for (i = 0; i < die->num_attrs; ++i)
16478 {
16479 if (die->attrs[i].name == name)
16480 return &die->attrs[i];
16481 if (die->attrs[i].name == DW_AT_specification
16482 || die->attrs[i].name == DW_AT_abstract_origin)
16483 spec = &die->attrs[i];
16484 }
16485
16486 if (!spec)
16487 break;
16488
16489 die = follow_die_ref (die, spec, &cu);
16490 }
16491
16492 return NULL;
16493 }
16494
16495 /* Return the named attribute or NULL if not there,
16496 but do not follow DW_AT_specification, etc.
16497 This is for use in contexts where we're reading .debug_types dies.
16498 Following DW_AT_specification, DW_AT_abstract_origin will take us
16499 back up the chain, and we want to go down. */
16500
16501 static struct attribute *
16502 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16503 {
16504 unsigned int i;
16505
16506 for (i = 0; i < die->num_attrs; ++i)
16507 if (die->attrs[i].name == name)
16508 return &die->attrs[i];
16509
16510 return NULL;
16511 }
16512
16513 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16514 and holds a non-zero value. This function should only be used for
16515 DW_FORM_flag or DW_FORM_flag_present attributes. */
16516
16517 static int
16518 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16519 {
16520 struct attribute *attr = dwarf2_attr (die, name, cu);
16521
16522 return (attr && DW_UNSND (attr));
16523 }
16524
16525 static int
16526 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16527 {
16528 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16529 which value is non-zero. However, we have to be careful with
16530 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16531 (via dwarf2_flag_true_p) follows this attribute. So we may
16532 end up accidently finding a declaration attribute that belongs
16533 to a different DIE referenced by the specification attribute,
16534 even though the given DIE does not have a declaration attribute. */
16535 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16536 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16537 }
16538
16539 /* Return the die giving the specification for DIE, if there is
16540 one. *SPEC_CU is the CU containing DIE on input, and the CU
16541 containing the return value on output. If there is no
16542 specification, but there is an abstract origin, that is
16543 returned. */
16544
16545 static struct die_info *
16546 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16547 {
16548 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16549 *spec_cu);
16550
16551 if (spec_attr == NULL)
16552 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16553
16554 if (spec_attr == NULL)
16555 return NULL;
16556 else
16557 return follow_die_ref (die, spec_attr, spec_cu);
16558 }
16559
16560 /* Free the line_header structure *LH, and any arrays and strings it
16561 refers to.
16562 NOTE: This is also used as a "cleanup" function. */
16563
16564 static void
16565 free_line_header (struct line_header *lh)
16566 {
16567 if (lh->standard_opcode_lengths)
16568 xfree (lh->standard_opcode_lengths);
16569
16570 /* Remember that all the lh->file_names[i].name pointers are
16571 pointers into debug_line_buffer, and don't need to be freed. */
16572 if (lh->file_names)
16573 xfree (lh->file_names);
16574
16575 /* Similarly for the include directory names. */
16576 if (lh->include_dirs)
16577 xfree (lh->include_dirs);
16578
16579 xfree (lh);
16580 }
16581
16582 /* Add an entry to LH's include directory table. */
16583
16584 static void
16585 add_include_dir (struct line_header *lh, const char *include_dir)
16586 {
16587 /* Grow the array if necessary. */
16588 if (lh->include_dirs_size == 0)
16589 {
16590 lh->include_dirs_size = 1; /* for testing */
16591 lh->include_dirs = xmalloc (lh->include_dirs_size
16592 * sizeof (*lh->include_dirs));
16593 }
16594 else if (lh->num_include_dirs >= lh->include_dirs_size)
16595 {
16596 lh->include_dirs_size *= 2;
16597 lh->include_dirs = xrealloc (lh->include_dirs,
16598 (lh->include_dirs_size
16599 * sizeof (*lh->include_dirs)));
16600 }
16601
16602 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16603 }
16604
16605 /* Add an entry to LH's file name table. */
16606
16607 static void
16608 add_file_name (struct line_header *lh,
16609 const char *name,
16610 unsigned int dir_index,
16611 unsigned int mod_time,
16612 unsigned int length)
16613 {
16614 struct file_entry *fe;
16615
16616 /* Grow the array if necessary. */
16617 if (lh->file_names_size == 0)
16618 {
16619 lh->file_names_size = 1; /* for testing */
16620 lh->file_names = xmalloc (lh->file_names_size
16621 * sizeof (*lh->file_names));
16622 }
16623 else if (lh->num_file_names >= lh->file_names_size)
16624 {
16625 lh->file_names_size *= 2;
16626 lh->file_names = xrealloc (lh->file_names,
16627 (lh->file_names_size
16628 * sizeof (*lh->file_names)));
16629 }
16630
16631 fe = &lh->file_names[lh->num_file_names++];
16632 fe->name = name;
16633 fe->dir_index = dir_index;
16634 fe->mod_time = mod_time;
16635 fe->length = length;
16636 fe->included_p = 0;
16637 fe->symtab = NULL;
16638 }
16639
16640 /* A convenience function to find the proper .debug_line section for a
16641 CU. */
16642
16643 static struct dwarf2_section_info *
16644 get_debug_line_section (struct dwarf2_cu *cu)
16645 {
16646 struct dwarf2_section_info *section;
16647
16648 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16649 DWO file. */
16650 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16651 section = &cu->dwo_unit->dwo_file->sections.line;
16652 else if (cu->per_cu->is_dwz)
16653 {
16654 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16655
16656 section = &dwz->line;
16657 }
16658 else
16659 section = &dwarf2_per_objfile->line;
16660
16661 return section;
16662 }
16663
16664 /* Read the statement program header starting at OFFSET in
16665 .debug_line, or .debug_line.dwo. Return a pointer
16666 to a struct line_header, allocated using xmalloc.
16667
16668 NOTE: the strings in the include directory and file name tables of
16669 the returned object point into the dwarf line section buffer,
16670 and must not be freed. */
16671
16672 static struct line_header *
16673 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16674 {
16675 struct cleanup *back_to;
16676 struct line_header *lh;
16677 const gdb_byte *line_ptr;
16678 unsigned int bytes_read, offset_size;
16679 int i;
16680 const char *cur_dir, *cur_file;
16681 struct dwarf2_section_info *section;
16682 bfd *abfd;
16683
16684 section = get_debug_line_section (cu);
16685 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16686 if (section->buffer == NULL)
16687 {
16688 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16689 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16690 else
16691 complaint (&symfile_complaints, _("missing .debug_line section"));
16692 return 0;
16693 }
16694
16695 /* We can't do this until we know the section is non-empty.
16696 Only then do we know we have such a section. */
16697 abfd = get_section_bfd_owner (section);
16698
16699 /* Make sure that at least there's room for the total_length field.
16700 That could be 12 bytes long, but we're just going to fudge that. */
16701 if (offset + 4 >= section->size)
16702 {
16703 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16704 return 0;
16705 }
16706
16707 lh = xmalloc (sizeof (*lh));
16708 memset (lh, 0, sizeof (*lh));
16709 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16710 (void *) lh);
16711
16712 line_ptr = section->buffer + offset;
16713
16714 /* Read in the header. */
16715 lh->total_length =
16716 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16717 &bytes_read, &offset_size);
16718 line_ptr += bytes_read;
16719 if (line_ptr + lh->total_length > (section->buffer + section->size))
16720 {
16721 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16722 do_cleanups (back_to);
16723 return 0;
16724 }
16725 lh->statement_program_end = line_ptr + lh->total_length;
16726 lh->version = read_2_bytes (abfd, line_ptr);
16727 line_ptr += 2;
16728 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16729 line_ptr += offset_size;
16730 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16731 line_ptr += 1;
16732 if (lh->version >= 4)
16733 {
16734 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16735 line_ptr += 1;
16736 }
16737 else
16738 lh->maximum_ops_per_instruction = 1;
16739
16740 if (lh->maximum_ops_per_instruction == 0)
16741 {
16742 lh->maximum_ops_per_instruction = 1;
16743 complaint (&symfile_complaints,
16744 _("invalid maximum_ops_per_instruction "
16745 "in `.debug_line' section"));
16746 }
16747
16748 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16749 line_ptr += 1;
16750 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16751 line_ptr += 1;
16752 lh->line_range = read_1_byte (abfd, line_ptr);
16753 line_ptr += 1;
16754 lh->opcode_base = read_1_byte (abfd, line_ptr);
16755 line_ptr += 1;
16756 lh->standard_opcode_lengths
16757 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
16758
16759 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16760 for (i = 1; i < lh->opcode_base; ++i)
16761 {
16762 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16763 line_ptr += 1;
16764 }
16765
16766 /* Read directory table. */
16767 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16768 {
16769 line_ptr += bytes_read;
16770 add_include_dir (lh, cur_dir);
16771 }
16772 line_ptr += bytes_read;
16773
16774 /* Read file name table. */
16775 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16776 {
16777 unsigned int dir_index, mod_time, length;
16778
16779 line_ptr += bytes_read;
16780 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16781 line_ptr += bytes_read;
16782 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16783 line_ptr += bytes_read;
16784 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16785 line_ptr += bytes_read;
16786
16787 add_file_name (lh, cur_file, dir_index, mod_time, length);
16788 }
16789 line_ptr += bytes_read;
16790 lh->statement_program_start = line_ptr;
16791
16792 if (line_ptr > (section->buffer + section->size))
16793 complaint (&symfile_complaints,
16794 _("line number info header doesn't "
16795 "fit in `.debug_line' section"));
16796
16797 discard_cleanups (back_to);
16798 return lh;
16799 }
16800
16801 /* Subroutine of dwarf_decode_lines to simplify it.
16802 Return the file name of the psymtab for included file FILE_INDEX
16803 in line header LH of PST.
16804 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16805 If space for the result is malloc'd, it will be freed by a cleanup.
16806 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16807
16808 The function creates dangling cleanup registration. */
16809
16810 static const char *
16811 psymtab_include_file_name (const struct line_header *lh, int file_index,
16812 const struct partial_symtab *pst,
16813 const char *comp_dir)
16814 {
16815 const struct file_entry fe = lh->file_names [file_index];
16816 const char *include_name = fe.name;
16817 const char *include_name_to_compare = include_name;
16818 const char *dir_name = NULL;
16819 const char *pst_filename;
16820 char *copied_name = NULL;
16821 int file_is_pst;
16822
16823 if (fe.dir_index)
16824 dir_name = lh->include_dirs[fe.dir_index - 1];
16825
16826 if (!IS_ABSOLUTE_PATH (include_name)
16827 && (dir_name != NULL || comp_dir != NULL))
16828 {
16829 /* Avoid creating a duplicate psymtab for PST.
16830 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16831 Before we do the comparison, however, we need to account
16832 for DIR_NAME and COMP_DIR.
16833 First prepend dir_name (if non-NULL). If we still don't
16834 have an absolute path prepend comp_dir (if non-NULL).
16835 However, the directory we record in the include-file's
16836 psymtab does not contain COMP_DIR (to match the
16837 corresponding symtab(s)).
16838
16839 Example:
16840
16841 bash$ cd /tmp
16842 bash$ gcc -g ./hello.c
16843 include_name = "hello.c"
16844 dir_name = "."
16845 DW_AT_comp_dir = comp_dir = "/tmp"
16846 DW_AT_name = "./hello.c" */
16847
16848 if (dir_name != NULL)
16849 {
16850 char *tem = concat (dir_name, SLASH_STRING,
16851 include_name, (char *)NULL);
16852
16853 make_cleanup (xfree, tem);
16854 include_name = tem;
16855 include_name_to_compare = include_name;
16856 }
16857 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16858 {
16859 char *tem = concat (comp_dir, SLASH_STRING,
16860 include_name, (char *)NULL);
16861
16862 make_cleanup (xfree, tem);
16863 include_name_to_compare = tem;
16864 }
16865 }
16866
16867 pst_filename = pst->filename;
16868 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16869 {
16870 copied_name = concat (pst->dirname, SLASH_STRING,
16871 pst_filename, (char *)NULL);
16872 pst_filename = copied_name;
16873 }
16874
16875 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16876
16877 if (copied_name != NULL)
16878 xfree (copied_name);
16879
16880 if (file_is_pst)
16881 return NULL;
16882 return include_name;
16883 }
16884
16885 /* Ignore this record_line request. */
16886
16887 static void
16888 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16889 {
16890 return;
16891 }
16892
16893 /* Subroutine of dwarf_decode_lines to simplify it.
16894 Process the line number information in LH. */
16895
16896 static void
16897 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16898 struct dwarf2_cu *cu, struct partial_symtab *pst)
16899 {
16900 const gdb_byte *line_ptr, *extended_end;
16901 const gdb_byte *line_end;
16902 unsigned int bytes_read, extended_len;
16903 unsigned char op_code, extended_op, adj_opcode;
16904 CORE_ADDR baseaddr;
16905 struct objfile *objfile = cu->objfile;
16906 bfd *abfd = objfile->obfd;
16907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16908 const int decode_for_pst_p = (pst != NULL);
16909 struct subfile *last_subfile = NULL;
16910 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16911 = record_line;
16912
16913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16914
16915 line_ptr = lh->statement_program_start;
16916 line_end = lh->statement_program_end;
16917
16918 /* Read the statement sequences until there's nothing left. */
16919 while (line_ptr < line_end)
16920 {
16921 /* state machine registers */
16922 CORE_ADDR address = 0;
16923 unsigned int file = 1;
16924 unsigned int line = 1;
16925 unsigned int column = 0;
16926 int is_stmt = lh->default_is_stmt;
16927 int basic_block = 0;
16928 int end_sequence = 0;
16929 CORE_ADDR addr;
16930 unsigned char op_index = 0;
16931
16932 if (!decode_for_pst_p && lh->num_file_names >= file)
16933 {
16934 /* Start a subfile for the current file of the state machine. */
16935 /* lh->include_dirs and lh->file_names are 0-based, but the
16936 directory and file name numbers in the statement program
16937 are 1-based. */
16938 struct file_entry *fe = &lh->file_names[file - 1];
16939 const char *dir = NULL;
16940
16941 if (fe->dir_index)
16942 dir = lh->include_dirs[fe->dir_index - 1];
16943
16944 dwarf2_start_subfile (fe->name, dir, comp_dir);
16945 }
16946
16947 /* Decode the table. */
16948 while (!end_sequence)
16949 {
16950 op_code = read_1_byte (abfd, line_ptr);
16951 line_ptr += 1;
16952 if (line_ptr > line_end)
16953 {
16954 dwarf2_debug_line_missing_end_sequence_complaint ();
16955 break;
16956 }
16957
16958 if (op_code >= lh->opcode_base)
16959 {
16960 /* Special operand. */
16961 adj_opcode = op_code - lh->opcode_base;
16962 address += (((op_index + (adj_opcode / lh->line_range))
16963 / lh->maximum_ops_per_instruction)
16964 * lh->minimum_instruction_length);
16965 op_index = ((op_index + (adj_opcode / lh->line_range))
16966 % lh->maximum_ops_per_instruction);
16967 line += lh->line_base + (adj_opcode % lh->line_range);
16968 if (lh->num_file_names < file || file == 0)
16969 dwarf2_debug_line_missing_file_complaint ();
16970 /* For now we ignore lines not starting on an
16971 instruction boundary. */
16972 else if (op_index == 0)
16973 {
16974 lh->file_names[file - 1].included_p = 1;
16975 if (!decode_for_pst_p && is_stmt)
16976 {
16977 if (last_subfile != current_subfile)
16978 {
16979 addr = gdbarch_addr_bits_remove (gdbarch, address);
16980 if (last_subfile)
16981 (*p_record_line) (last_subfile, 0, addr);
16982 last_subfile = current_subfile;
16983 }
16984 /* Append row to matrix using current values. */
16985 addr = gdbarch_addr_bits_remove (gdbarch, address);
16986 (*p_record_line) (current_subfile, line, addr);
16987 }
16988 }
16989 basic_block = 0;
16990 }
16991 else switch (op_code)
16992 {
16993 case DW_LNS_extended_op:
16994 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16995 &bytes_read);
16996 line_ptr += bytes_read;
16997 extended_end = line_ptr + extended_len;
16998 extended_op = read_1_byte (abfd, line_ptr);
16999 line_ptr += 1;
17000 switch (extended_op)
17001 {
17002 case DW_LNE_end_sequence:
17003 p_record_line = record_line;
17004 end_sequence = 1;
17005 break;
17006 case DW_LNE_set_address:
17007 address = read_address (abfd, line_ptr, cu, &bytes_read);
17008
17009 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17010 {
17011 /* This line table is for a function which has been
17012 GCd by the linker. Ignore it. PR gdb/12528 */
17013
17014 long line_offset
17015 = line_ptr - get_debug_line_section (cu)->buffer;
17016
17017 complaint (&symfile_complaints,
17018 _(".debug_line address at offset 0x%lx is 0 "
17019 "[in module %s]"),
17020 line_offset, objfile_name (objfile));
17021 p_record_line = noop_record_line;
17022 }
17023
17024 op_index = 0;
17025 line_ptr += bytes_read;
17026 address += baseaddr;
17027 break;
17028 case DW_LNE_define_file:
17029 {
17030 const char *cur_file;
17031 unsigned int dir_index, mod_time, length;
17032
17033 cur_file = read_direct_string (abfd, line_ptr,
17034 &bytes_read);
17035 line_ptr += bytes_read;
17036 dir_index =
17037 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17038 line_ptr += bytes_read;
17039 mod_time =
17040 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17041 line_ptr += bytes_read;
17042 length =
17043 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17044 line_ptr += bytes_read;
17045 add_file_name (lh, cur_file, dir_index, mod_time, length);
17046 }
17047 break;
17048 case DW_LNE_set_discriminator:
17049 /* The discriminator is not interesting to the debugger;
17050 just ignore it. */
17051 line_ptr = extended_end;
17052 break;
17053 default:
17054 complaint (&symfile_complaints,
17055 _("mangled .debug_line section"));
17056 return;
17057 }
17058 /* Make sure that we parsed the extended op correctly. If e.g.
17059 we expected a different address size than the producer used,
17060 we may have read the wrong number of bytes. */
17061 if (line_ptr != extended_end)
17062 {
17063 complaint (&symfile_complaints,
17064 _("mangled .debug_line section"));
17065 return;
17066 }
17067 break;
17068 case DW_LNS_copy:
17069 if (lh->num_file_names < file || file == 0)
17070 dwarf2_debug_line_missing_file_complaint ();
17071 else
17072 {
17073 lh->file_names[file - 1].included_p = 1;
17074 if (!decode_for_pst_p && is_stmt)
17075 {
17076 if (last_subfile != current_subfile)
17077 {
17078 addr = gdbarch_addr_bits_remove (gdbarch, address);
17079 if (last_subfile)
17080 (*p_record_line) (last_subfile, 0, addr);
17081 last_subfile = current_subfile;
17082 }
17083 addr = gdbarch_addr_bits_remove (gdbarch, address);
17084 (*p_record_line) (current_subfile, line, addr);
17085 }
17086 }
17087 basic_block = 0;
17088 break;
17089 case DW_LNS_advance_pc:
17090 {
17091 CORE_ADDR adjust
17092 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17093
17094 address += (((op_index + adjust)
17095 / lh->maximum_ops_per_instruction)
17096 * lh->minimum_instruction_length);
17097 op_index = ((op_index + adjust)
17098 % lh->maximum_ops_per_instruction);
17099 line_ptr += bytes_read;
17100 }
17101 break;
17102 case DW_LNS_advance_line:
17103 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17104 line_ptr += bytes_read;
17105 break;
17106 case DW_LNS_set_file:
17107 {
17108 /* The arrays lh->include_dirs and lh->file_names are
17109 0-based, but the directory and file name numbers in
17110 the statement program are 1-based. */
17111 struct file_entry *fe;
17112 const char *dir = NULL;
17113
17114 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17115 line_ptr += bytes_read;
17116 if (lh->num_file_names < file || file == 0)
17117 dwarf2_debug_line_missing_file_complaint ();
17118 else
17119 {
17120 fe = &lh->file_names[file - 1];
17121 if (fe->dir_index)
17122 dir = lh->include_dirs[fe->dir_index - 1];
17123 if (!decode_for_pst_p)
17124 {
17125 last_subfile = current_subfile;
17126 dwarf2_start_subfile (fe->name, dir, comp_dir);
17127 }
17128 }
17129 }
17130 break;
17131 case DW_LNS_set_column:
17132 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17133 line_ptr += bytes_read;
17134 break;
17135 case DW_LNS_negate_stmt:
17136 is_stmt = (!is_stmt);
17137 break;
17138 case DW_LNS_set_basic_block:
17139 basic_block = 1;
17140 break;
17141 /* Add to the address register of the state machine the
17142 address increment value corresponding to special opcode
17143 255. I.e., this value is scaled by the minimum
17144 instruction length since special opcode 255 would have
17145 scaled the increment. */
17146 case DW_LNS_const_add_pc:
17147 {
17148 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17149
17150 address += (((op_index + adjust)
17151 / lh->maximum_ops_per_instruction)
17152 * lh->minimum_instruction_length);
17153 op_index = ((op_index + adjust)
17154 % lh->maximum_ops_per_instruction);
17155 }
17156 break;
17157 case DW_LNS_fixed_advance_pc:
17158 address += read_2_bytes (abfd, line_ptr);
17159 op_index = 0;
17160 line_ptr += 2;
17161 break;
17162 default:
17163 {
17164 /* Unknown standard opcode, ignore it. */
17165 int i;
17166
17167 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17168 {
17169 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17170 line_ptr += bytes_read;
17171 }
17172 }
17173 }
17174 }
17175 if (lh->num_file_names < file || file == 0)
17176 dwarf2_debug_line_missing_file_complaint ();
17177 else
17178 {
17179 lh->file_names[file - 1].included_p = 1;
17180 if (!decode_for_pst_p)
17181 {
17182 addr = gdbarch_addr_bits_remove (gdbarch, address);
17183 (*p_record_line) (current_subfile, 0, addr);
17184 }
17185 }
17186 }
17187 }
17188
17189 /* Decode the Line Number Program (LNP) for the given line_header
17190 structure and CU. The actual information extracted and the type
17191 of structures created from the LNP depends on the value of PST.
17192
17193 1. If PST is NULL, then this procedure uses the data from the program
17194 to create all necessary symbol tables, and their linetables.
17195
17196 2. If PST is not NULL, this procedure reads the program to determine
17197 the list of files included by the unit represented by PST, and
17198 builds all the associated partial symbol tables.
17199
17200 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17201 It is used for relative paths in the line table.
17202 NOTE: When processing partial symtabs (pst != NULL),
17203 comp_dir == pst->dirname.
17204
17205 NOTE: It is important that psymtabs have the same file name (via strcmp)
17206 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17207 symtab we don't use it in the name of the psymtabs we create.
17208 E.g. expand_line_sal requires this when finding psymtabs to expand.
17209 A good testcase for this is mb-inline.exp. */
17210
17211 static void
17212 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17213 struct dwarf2_cu *cu, struct partial_symtab *pst,
17214 int want_line_info)
17215 {
17216 struct objfile *objfile = cu->objfile;
17217 const int decode_for_pst_p = (pst != NULL);
17218 struct subfile *first_subfile = current_subfile;
17219
17220 if (want_line_info)
17221 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17222
17223 if (decode_for_pst_p)
17224 {
17225 int file_index;
17226
17227 /* Now that we're done scanning the Line Header Program, we can
17228 create the psymtab of each included file. */
17229 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17230 if (lh->file_names[file_index].included_p == 1)
17231 {
17232 const char *include_name =
17233 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17234 if (include_name != NULL)
17235 dwarf2_create_include_psymtab (include_name, pst, objfile);
17236 }
17237 }
17238 else
17239 {
17240 /* Make sure a symtab is created for every file, even files
17241 which contain only variables (i.e. no code with associated
17242 line numbers). */
17243 int i;
17244
17245 for (i = 0; i < lh->num_file_names; i++)
17246 {
17247 const char *dir = NULL;
17248 struct file_entry *fe;
17249
17250 fe = &lh->file_names[i];
17251 if (fe->dir_index)
17252 dir = lh->include_dirs[fe->dir_index - 1];
17253 dwarf2_start_subfile (fe->name, dir, comp_dir);
17254
17255 /* Skip the main file; we don't need it, and it must be
17256 allocated last, so that it will show up before the
17257 non-primary symtabs in the objfile's symtab list. */
17258 if (current_subfile == first_subfile)
17259 continue;
17260
17261 if (current_subfile->symtab == NULL)
17262 current_subfile->symtab = allocate_symtab (current_subfile->name,
17263 objfile);
17264 fe->symtab = current_subfile->symtab;
17265 }
17266 }
17267 }
17268
17269 /* Start a subfile for DWARF. FILENAME is the name of the file and
17270 DIRNAME the name of the source directory which contains FILENAME
17271 or NULL if not known. COMP_DIR is the compilation directory for the
17272 linetable's compilation unit or NULL if not known.
17273 This routine tries to keep line numbers from identical absolute and
17274 relative file names in a common subfile.
17275
17276 Using the `list' example from the GDB testsuite, which resides in
17277 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17278 of /srcdir/list0.c yields the following debugging information for list0.c:
17279
17280 DW_AT_name: /srcdir/list0.c
17281 DW_AT_comp_dir: /compdir
17282 files.files[0].name: list0.h
17283 files.files[0].dir: /srcdir
17284 files.files[1].name: list0.c
17285 files.files[1].dir: /srcdir
17286
17287 The line number information for list0.c has to end up in a single
17288 subfile, so that `break /srcdir/list0.c:1' works as expected.
17289 start_subfile will ensure that this happens provided that we pass the
17290 concatenation of files.files[1].dir and files.files[1].name as the
17291 subfile's name. */
17292
17293 static void
17294 dwarf2_start_subfile (const char *filename, const char *dirname,
17295 const char *comp_dir)
17296 {
17297 char *copy = NULL;
17298
17299 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17300 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17301 second argument to start_subfile. To be consistent, we do the
17302 same here. In order not to lose the line information directory,
17303 we concatenate it to the filename when it makes sense.
17304 Note that the Dwarf3 standard says (speaking of filenames in line
17305 information): ``The directory index is ignored for file names
17306 that represent full path names''. Thus ignoring dirname in the
17307 `else' branch below isn't an issue. */
17308
17309 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17310 {
17311 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17312 filename = copy;
17313 }
17314
17315 start_subfile (filename, comp_dir);
17316
17317 if (copy != NULL)
17318 xfree (copy);
17319 }
17320
17321 /* Start a symtab for DWARF.
17322 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17323
17324 static void
17325 dwarf2_start_symtab (struct dwarf2_cu *cu,
17326 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17327 {
17328 start_symtab (name, comp_dir, low_pc);
17329 record_debugformat ("DWARF 2");
17330 record_producer (cu->producer);
17331
17332 /* We assume that we're processing GCC output. */
17333 processing_gcc_compilation = 2;
17334
17335 cu->processing_has_namespace_info = 0;
17336 }
17337
17338 static void
17339 var_decode_location (struct attribute *attr, struct symbol *sym,
17340 struct dwarf2_cu *cu)
17341 {
17342 struct objfile *objfile = cu->objfile;
17343 struct comp_unit_head *cu_header = &cu->header;
17344
17345 /* NOTE drow/2003-01-30: There used to be a comment and some special
17346 code here to turn a symbol with DW_AT_external and a
17347 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17348 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17349 with some versions of binutils) where shared libraries could have
17350 relocations against symbols in their debug information - the
17351 minimal symbol would have the right address, but the debug info
17352 would not. It's no longer necessary, because we will explicitly
17353 apply relocations when we read in the debug information now. */
17354
17355 /* A DW_AT_location attribute with no contents indicates that a
17356 variable has been optimized away. */
17357 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17358 {
17359 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17360 return;
17361 }
17362
17363 /* Handle one degenerate form of location expression specially, to
17364 preserve GDB's previous behavior when section offsets are
17365 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17366 then mark this symbol as LOC_STATIC. */
17367
17368 if (attr_form_is_block (attr)
17369 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17370 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17371 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17372 && (DW_BLOCK (attr)->size
17373 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17374 {
17375 unsigned int dummy;
17376
17377 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17378 SYMBOL_VALUE_ADDRESS (sym) =
17379 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17380 else
17381 SYMBOL_VALUE_ADDRESS (sym) =
17382 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17383 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17384 fixup_symbol_section (sym, objfile);
17385 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17386 SYMBOL_SECTION (sym));
17387 return;
17388 }
17389
17390 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17391 expression evaluator, and use LOC_COMPUTED only when necessary
17392 (i.e. when the value of a register or memory location is
17393 referenced, or a thread-local block, etc.). Then again, it might
17394 not be worthwhile. I'm assuming that it isn't unless performance
17395 or memory numbers show me otherwise. */
17396
17397 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17398
17399 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17400 cu->has_loclist = 1;
17401 }
17402
17403 /* Given a pointer to a DWARF information entry, figure out if we need
17404 to make a symbol table entry for it, and if so, create a new entry
17405 and return a pointer to it.
17406 If TYPE is NULL, determine symbol type from the die, otherwise
17407 used the passed type.
17408 If SPACE is not NULL, use it to hold the new symbol. If it is
17409 NULL, allocate a new symbol on the objfile's obstack. */
17410
17411 static struct symbol *
17412 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17413 struct symbol *space)
17414 {
17415 struct objfile *objfile = cu->objfile;
17416 struct symbol *sym = NULL;
17417 const char *name;
17418 struct attribute *attr = NULL;
17419 struct attribute *attr2 = NULL;
17420 CORE_ADDR baseaddr;
17421 struct pending **list_to_add = NULL;
17422
17423 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17424
17425 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17426
17427 name = dwarf2_name (die, cu);
17428 if (name)
17429 {
17430 const char *linkagename;
17431 int suppress_add = 0;
17432
17433 if (space)
17434 sym = space;
17435 else
17436 sym = allocate_symbol (objfile);
17437 OBJSTAT (objfile, n_syms++);
17438
17439 /* Cache this symbol's name and the name's demangled form (if any). */
17440 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17441 linkagename = dwarf2_physname (name, die, cu);
17442 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17443
17444 /* Fortran does not have mangling standard and the mangling does differ
17445 between gfortran, iFort etc. */
17446 if (cu->language == language_fortran
17447 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17448 symbol_set_demangled_name (&(sym->ginfo),
17449 dwarf2_full_name (name, die, cu),
17450 NULL);
17451
17452 /* Default assumptions.
17453 Use the passed type or decode it from the die. */
17454 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17455 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17456 if (type != NULL)
17457 SYMBOL_TYPE (sym) = type;
17458 else
17459 SYMBOL_TYPE (sym) = die_type (die, cu);
17460 attr = dwarf2_attr (die,
17461 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17462 cu);
17463 if (attr)
17464 {
17465 SYMBOL_LINE (sym) = DW_UNSND (attr);
17466 }
17467
17468 attr = dwarf2_attr (die,
17469 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17470 cu);
17471 if (attr)
17472 {
17473 int file_index = DW_UNSND (attr);
17474
17475 if (cu->line_header == NULL
17476 || file_index > cu->line_header->num_file_names)
17477 complaint (&symfile_complaints,
17478 _("file index out of range"));
17479 else if (file_index > 0)
17480 {
17481 struct file_entry *fe;
17482
17483 fe = &cu->line_header->file_names[file_index - 1];
17484 SYMBOL_SYMTAB (sym) = fe->symtab;
17485 }
17486 }
17487
17488 switch (die->tag)
17489 {
17490 case DW_TAG_label:
17491 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17492 if (attr)
17493 {
17494 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
17495 }
17496 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17497 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17498 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17499 add_symbol_to_list (sym, cu->list_in_scope);
17500 break;
17501 case DW_TAG_subprogram:
17502 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17503 finish_block. */
17504 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17505 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17506 if ((attr2 && (DW_UNSND (attr2) != 0))
17507 || cu->language == language_ada)
17508 {
17509 /* Subprograms marked external are stored as a global symbol.
17510 Ada subprograms, whether marked external or not, are always
17511 stored as a global symbol, because we want to be able to
17512 access them globally. For instance, we want to be able
17513 to break on a nested subprogram without having to
17514 specify the context. */
17515 list_to_add = &global_symbols;
17516 }
17517 else
17518 {
17519 list_to_add = cu->list_in_scope;
17520 }
17521 break;
17522 case DW_TAG_inlined_subroutine:
17523 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17524 finish_block. */
17525 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17526 SYMBOL_INLINED (sym) = 1;
17527 list_to_add = cu->list_in_scope;
17528 break;
17529 case DW_TAG_template_value_param:
17530 suppress_add = 1;
17531 /* Fall through. */
17532 case DW_TAG_constant:
17533 case DW_TAG_variable:
17534 case DW_TAG_member:
17535 /* Compilation with minimal debug info may result in
17536 variables with missing type entries. Change the
17537 misleading `void' type to something sensible. */
17538 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17539 SYMBOL_TYPE (sym)
17540 = objfile_type (objfile)->nodebug_data_symbol;
17541
17542 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17543 /* In the case of DW_TAG_member, we should only be called for
17544 static const members. */
17545 if (die->tag == DW_TAG_member)
17546 {
17547 /* dwarf2_add_field uses die_is_declaration,
17548 so we do the same. */
17549 gdb_assert (die_is_declaration (die, cu));
17550 gdb_assert (attr);
17551 }
17552 if (attr)
17553 {
17554 dwarf2_const_value (attr, sym, cu);
17555 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17556 if (!suppress_add)
17557 {
17558 if (attr2 && (DW_UNSND (attr2) != 0))
17559 list_to_add = &global_symbols;
17560 else
17561 list_to_add = cu->list_in_scope;
17562 }
17563 break;
17564 }
17565 attr = dwarf2_attr (die, DW_AT_location, cu);
17566 if (attr)
17567 {
17568 var_decode_location (attr, sym, cu);
17569 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17570
17571 /* Fortran explicitly imports any global symbols to the local
17572 scope by DW_TAG_common_block. */
17573 if (cu->language == language_fortran && die->parent
17574 && die->parent->tag == DW_TAG_common_block)
17575 attr2 = NULL;
17576
17577 if (SYMBOL_CLASS (sym) == LOC_STATIC
17578 && SYMBOL_VALUE_ADDRESS (sym) == 0
17579 && !dwarf2_per_objfile->has_section_at_zero)
17580 {
17581 /* When a static variable is eliminated by the linker,
17582 the corresponding debug information is not stripped
17583 out, but the variable address is set to null;
17584 do not add such variables into symbol table. */
17585 }
17586 else if (attr2 && (DW_UNSND (attr2) != 0))
17587 {
17588 /* Workaround gfortran PR debug/40040 - it uses
17589 DW_AT_location for variables in -fPIC libraries which may
17590 get overriden by other libraries/executable and get
17591 a different address. Resolve it by the minimal symbol
17592 which may come from inferior's executable using copy
17593 relocation. Make this workaround only for gfortran as for
17594 other compilers GDB cannot guess the minimal symbol
17595 Fortran mangling kind. */
17596 if (cu->language == language_fortran && die->parent
17597 && die->parent->tag == DW_TAG_module
17598 && cu->producer
17599 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17600 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17601
17602 /* A variable with DW_AT_external is never static,
17603 but it may be block-scoped. */
17604 list_to_add = (cu->list_in_scope == &file_symbols
17605 ? &global_symbols : cu->list_in_scope);
17606 }
17607 else
17608 list_to_add = cu->list_in_scope;
17609 }
17610 else
17611 {
17612 /* We do not know the address of this symbol.
17613 If it is an external symbol and we have type information
17614 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17615 The address of the variable will then be determined from
17616 the minimal symbol table whenever the variable is
17617 referenced. */
17618 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17619
17620 /* Fortran explicitly imports any global symbols to the local
17621 scope by DW_TAG_common_block. */
17622 if (cu->language == language_fortran && die->parent
17623 && die->parent->tag == DW_TAG_common_block)
17624 {
17625 /* SYMBOL_CLASS doesn't matter here because
17626 read_common_block is going to reset it. */
17627 if (!suppress_add)
17628 list_to_add = cu->list_in_scope;
17629 }
17630 else if (attr2 && (DW_UNSND (attr2) != 0)
17631 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17632 {
17633 /* A variable with DW_AT_external is never static, but it
17634 may be block-scoped. */
17635 list_to_add = (cu->list_in_scope == &file_symbols
17636 ? &global_symbols : cu->list_in_scope);
17637
17638 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17639 }
17640 else if (!die_is_declaration (die, cu))
17641 {
17642 /* Use the default LOC_OPTIMIZED_OUT class. */
17643 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17644 if (!suppress_add)
17645 list_to_add = cu->list_in_scope;
17646 }
17647 }
17648 break;
17649 case DW_TAG_formal_parameter:
17650 /* If we are inside a function, mark this as an argument. If
17651 not, we might be looking at an argument to an inlined function
17652 when we do not have enough information to show inlined frames;
17653 pretend it's a local variable in that case so that the user can
17654 still see it. */
17655 if (context_stack_depth > 0
17656 && context_stack[context_stack_depth - 1].name != NULL)
17657 SYMBOL_IS_ARGUMENT (sym) = 1;
17658 attr = dwarf2_attr (die, DW_AT_location, cu);
17659 if (attr)
17660 {
17661 var_decode_location (attr, sym, cu);
17662 }
17663 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17664 if (attr)
17665 {
17666 dwarf2_const_value (attr, sym, cu);
17667 }
17668
17669 list_to_add = cu->list_in_scope;
17670 break;
17671 case DW_TAG_unspecified_parameters:
17672 /* From varargs functions; gdb doesn't seem to have any
17673 interest in this information, so just ignore it for now.
17674 (FIXME?) */
17675 break;
17676 case DW_TAG_template_type_param:
17677 suppress_add = 1;
17678 /* Fall through. */
17679 case DW_TAG_class_type:
17680 case DW_TAG_interface_type:
17681 case DW_TAG_structure_type:
17682 case DW_TAG_union_type:
17683 case DW_TAG_set_type:
17684 case DW_TAG_enumeration_type:
17685 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17686 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17687
17688 {
17689 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17690 really ever be static objects: otherwise, if you try
17691 to, say, break of a class's method and you're in a file
17692 which doesn't mention that class, it won't work unless
17693 the check for all static symbols in lookup_symbol_aux
17694 saves you. See the OtherFileClass tests in
17695 gdb.c++/namespace.exp. */
17696
17697 if (!suppress_add)
17698 {
17699 list_to_add = (cu->list_in_scope == &file_symbols
17700 && (cu->language == language_cplus
17701 || cu->language == language_java)
17702 ? &global_symbols : cu->list_in_scope);
17703
17704 /* The semantics of C++ state that "struct foo {
17705 ... }" also defines a typedef for "foo". A Java
17706 class declaration also defines a typedef for the
17707 class. */
17708 if (cu->language == language_cplus
17709 || cu->language == language_java
17710 || cu->language == language_ada)
17711 {
17712 /* The symbol's name is already allocated along
17713 with this objfile, so we don't need to
17714 duplicate it for the type. */
17715 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17716 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17717 }
17718 }
17719 }
17720 break;
17721 case DW_TAG_typedef:
17722 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17723 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17724 list_to_add = cu->list_in_scope;
17725 break;
17726 case DW_TAG_base_type:
17727 case DW_TAG_subrange_type:
17728 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17729 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17730 list_to_add = cu->list_in_scope;
17731 break;
17732 case DW_TAG_enumerator:
17733 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17734 if (attr)
17735 {
17736 dwarf2_const_value (attr, sym, cu);
17737 }
17738 {
17739 /* NOTE: carlton/2003-11-10: See comment above in the
17740 DW_TAG_class_type, etc. block. */
17741
17742 list_to_add = (cu->list_in_scope == &file_symbols
17743 && (cu->language == language_cplus
17744 || cu->language == language_java)
17745 ? &global_symbols : cu->list_in_scope);
17746 }
17747 break;
17748 case DW_TAG_imported_declaration:
17749 case DW_TAG_namespace:
17750 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17751 list_to_add = &global_symbols;
17752 break;
17753 case DW_TAG_module:
17754 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17755 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17756 list_to_add = &global_symbols;
17757 break;
17758 case DW_TAG_common_block:
17759 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
17760 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17761 add_symbol_to_list (sym, cu->list_in_scope);
17762 break;
17763 default:
17764 /* Not a tag we recognize. Hopefully we aren't processing
17765 trash data, but since we must specifically ignore things
17766 we don't recognize, there is nothing else we should do at
17767 this point. */
17768 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
17769 dwarf_tag_name (die->tag));
17770 break;
17771 }
17772
17773 if (suppress_add)
17774 {
17775 sym->hash_next = objfile->template_symbols;
17776 objfile->template_symbols = sym;
17777 list_to_add = NULL;
17778 }
17779
17780 if (list_to_add != NULL)
17781 add_symbol_to_list (sym, list_to_add);
17782
17783 /* For the benefit of old versions of GCC, check for anonymous
17784 namespaces based on the demangled name. */
17785 if (!cu->processing_has_namespace_info
17786 && cu->language == language_cplus)
17787 cp_scan_for_anonymous_namespaces (sym, objfile);
17788 }
17789 return (sym);
17790 }
17791
17792 /* A wrapper for new_symbol_full that always allocates a new symbol. */
17793
17794 static struct symbol *
17795 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17796 {
17797 return new_symbol_full (die, type, cu, NULL);
17798 }
17799
17800 /* Given an attr with a DW_FORM_dataN value in host byte order,
17801 zero-extend it as appropriate for the symbol's type. The DWARF
17802 standard (v4) is not entirely clear about the meaning of using
17803 DW_FORM_dataN for a constant with a signed type, where the type is
17804 wider than the data. The conclusion of a discussion on the DWARF
17805 list was that this is unspecified. We choose to always zero-extend
17806 because that is the interpretation long in use by GCC. */
17807
17808 static gdb_byte *
17809 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
17810 struct dwarf2_cu *cu, LONGEST *value, int bits)
17811 {
17812 struct objfile *objfile = cu->objfile;
17813 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17814 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
17815 LONGEST l = DW_UNSND (attr);
17816
17817 if (bits < sizeof (*value) * 8)
17818 {
17819 l &= ((LONGEST) 1 << bits) - 1;
17820 *value = l;
17821 }
17822 else if (bits == sizeof (*value) * 8)
17823 *value = l;
17824 else
17825 {
17826 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17827 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17828 return bytes;
17829 }
17830
17831 return NULL;
17832 }
17833
17834 /* Read a constant value from an attribute. Either set *VALUE, or if
17835 the value does not fit in *VALUE, set *BYTES - either already
17836 allocated on the objfile obstack, or newly allocated on OBSTACK,
17837 or, set *BATON, if we translated the constant to a location
17838 expression. */
17839
17840 static void
17841 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
17842 const char *name, struct obstack *obstack,
17843 struct dwarf2_cu *cu,
17844 LONGEST *value, const gdb_byte **bytes,
17845 struct dwarf2_locexpr_baton **baton)
17846 {
17847 struct objfile *objfile = cu->objfile;
17848 struct comp_unit_head *cu_header = &cu->header;
17849 struct dwarf_block *blk;
17850 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17851 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17852
17853 *value = 0;
17854 *bytes = NULL;
17855 *baton = NULL;
17856
17857 switch (attr->form)
17858 {
17859 case DW_FORM_addr:
17860 case DW_FORM_GNU_addr_index:
17861 {
17862 gdb_byte *data;
17863
17864 if (TYPE_LENGTH (type) != cu_header->addr_size)
17865 dwarf2_const_value_length_mismatch_complaint (name,
17866 cu_header->addr_size,
17867 TYPE_LENGTH (type));
17868 /* Symbols of this form are reasonably rare, so we just
17869 piggyback on the existing location code rather than writing
17870 a new implementation of symbol_computed_ops. */
17871 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17872 (*baton)->per_cu = cu->per_cu;
17873 gdb_assert ((*baton)->per_cu);
17874
17875 (*baton)->size = 2 + cu_header->addr_size;
17876 data = obstack_alloc (obstack, (*baton)->size);
17877 (*baton)->data = data;
17878
17879 data[0] = DW_OP_addr;
17880 store_unsigned_integer (&data[1], cu_header->addr_size,
17881 byte_order, DW_ADDR (attr));
17882 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17883 }
17884 break;
17885 case DW_FORM_string:
17886 case DW_FORM_strp:
17887 case DW_FORM_GNU_str_index:
17888 case DW_FORM_GNU_strp_alt:
17889 /* DW_STRING is already allocated on the objfile obstack, point
17890 directly to it. */
17891 *bytes = (const gdb_byte *) DW_STRING (attr);
17892 break;
17893 case DW_FORM_block1:
17894 case DW_FORM_block2:
17895 case DW_FORM_block4:
17896 case DW_FORM_block:
17897 case DW_FORM_exprloc:
17898 blk = DW_BLOCK (attr);
17899 if (TYPE_LENGTH (type) != blk->size)
17900 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17901 TYPE_LENGTH (type));
17902 *bytes = blk->data;
17903 break;
17904
17905 /* The DW_AT_const_value attributes are supposed to carry the
17906 symbol's value "represented as it would be on the target
17907 architecture." By the time we get here, it's already been
17908 converted to host endianness, so we just need to sign- or
17909 zero-extend it as appropriate. */
17910 case DW_FORM_data1:
17911 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
17912 break;
17913 case DW_FORM_data2:
17914 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
17915 break;
17916 case DW_FORM_data4:
17917 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
17918 break;
17919 case DW_FORM_data8:
17920 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
17921 break;
17922
17923 case DW_FORM_sdata:
17924 *value = DW_SND (attr);
17925 break;
17926
17927 case DW_FORM_udata:
17928 *value = DW_UNSND (attr);
17929 break;
17930
17931 default:
17932 complaint (&symfile_complaints,
17933 _("unsupported const value attribute form: '%s'"),
17934 dwarf_form_name (attr->form));
17935 *value = 0;
17936 break;
17937 }
17938 }
17939
17940
17941 /* Copy constant value from an attribute to a symbol. */
17942
17943 static void
17944 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
17945 struct dwarf2_cu *cu)
17946 {
17947 struct objfile *objfile = cu->objfile;
17948 struct comp_unit_head *cu_header = &cu->header;
17949 LONGEST value;
17950 const gdb_byte *bytes;
17951 struct dwarf2_locexpr_baton *baton;
17952
17953 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17954 SYMBOL_PRINT_NAME (sym),
17955 &objfile->objfile_obstack, cu,
17956 &value, &bytes, &baton);
17957
17958 if (baton != NULL)
17959 {
17960 SYMBOL_LOCATION_BATON (sym) = baton;
17961 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17962 }
17963 else if (bytes != NULL)
17964 {
17965 SYMBOL_VALUE_BYTES (sym) = bytes;
17966 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
17967 }
17968 else
17969 {
17970 SYMBOL_VALUE (sym) = value;
17971 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
17972 }
17973 }
17974
17975 /* Return the type of the die in question using its DW_AT_type attribute. */
17976
17977 static struct type *
17978 die_type (struct die_info *die, struct dwarf2_cu *cu)
17979 {
17980 struct attribute *type_attr;
17981
17982 type_attr = dwarf2_attr (die, DW_AT_type, cu);
17983 if (!type_attr)
17984 {
17985 /* A missing DW_AT_type represents a void type. */
17986 return objfile_type (cu->objfile)->builtin_void;
17987 }
17988
17989 return lookup_die_type (die, type_attr, cu);
17990 }
17991
17992 /* True iff CU's producer generates GNAT Ada auxiliary information
17993 that allows to find parallel types through that information instead
17994 of having to do expensive parallel lookups by type name. */
17995
17996 static int
17997 need_gnat_info (struct dwarf2_cu *cu)
17998 {
17999 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18000 of GNAT produces this auxiliary information, without any indication
18001 that it is produced. Part of enhancing the FSF version of GNAT
18002 to produce that information will be to put in place an indicator
18003 that we can use in order to determine whether the descriptive type
18004 info is available or not. One suggestion that has been made is
18005 to use a new attribute, attached to the CU die. For now, assume
18006 that the descriptive type info is not available. */
18007 return 0;
18008 }
18009
18010 /* Return the auxiliary type of the die in question using its
18011 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18012 attribute is not present. */
18013
18014 static struct type *
18015 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18016 {
18017 struct attribute *type_attr;
18018
18019 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18020 if (!type_attr)
18021 return NULL;
18022
18023 return lookup_die_type (die, type_attr, cu);
18024 }
18025
18026 /* If DIE has a descriptive_type attribute, then set the TYPE's
18027 descriptive type accordingly. */
18028
18029 static void
18030 set_descriptive_type (struct type *type, struct die_info *die,
18031 struct dwarf2_cu *cu)
18032 {
18033 struct type *descriptive_type = die_descriptive_type (die, cu);
18034
18035 if (descriptive_type)
18036 {
18037 ALLOCATE_GNAT_AUX_TYPE (type);
18038 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18039 }
18040 }
18041
18042 /* Return the containing type of the die in question using its
18043 DW_AT_containing_type attribute. */
18044
18045 static struct type *
18046 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18047 {
18048 struct attribute *type_attr;
18049
18050 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18051 if (!type_attr)
18052 error (_("Dwarf Error: Problem turning containing type into gdb type "
18053 "[in module %s]"), objfile_name (cu->objfile));
18054
18055 return lookup_die_type (die, type_attr, cu);
18056 }
18057
18058 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18059
18060 static struct type *
18061 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18062 {
18063 struct objfile *objfile = dwarf2_per_objfile->objfile;
18064 char *message, *saved;
18065
18066 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18067 objfile_name (objfile),
18068 cu->header.offset.sect_off,
18069 die->offset.sect_off);
18070 saved = obstack_copy0 (&objfile->objfile_obstack,
18071 message, strlen (message));
18072 xfree (message);
18073
18074 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18075 }
18076
18077 /* Look up the type of DIE in CU using its type attribute ATTR.
18078 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18079 DW_AT_containing_type.
18080 If there is no type substitute an error marker. */
18081
18082 static struct type *
18083 lookup_die_type (struct die_info *die, const struct attribute *attr,
18084 struct dwarf2_cu *cu)
18085 {
18086 struct objfile *objfile = cu->objfile;
18087 struct type *this_type;
18088
18089 gdb_assert (attr->name == DW_AT_type
18090 || attr->name == DW_AT_GNAT_descriptive_type
18091 || attr->name == DW_AT_containing_type);
18092
18093 /* First see if we have it cached. */
18094
18095 if (attr->form == DW_FORM_GNU_ref_alt)
18096 {
18097 struct dwarf2_per_cu_data *per_cu;
18098 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18099
18100 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18101 this_type = get_die_type_at_offset (offset, per_cu);
18102 }
18103 else if (attr_form_is_ref (attr))
18104 {
18105 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18106
18107 this_type = get_die_type_at_offset (offset, cu->per_cu);
18108 }
18109 else if (attr->form == DW_FORM_ref_sig8)
18110 {
18111 ULONGEST signature = DW_SIGNATURE (attr);
18112
18113 return get_signatured_type (die, signature, cu);
18114 }
18115 else
18116 {
18117 complaint (&symfile_complaints,
18118 _("Dwarf Error: Bad type attribute %s in DIE"
18119 " at 0x%x [in module %s]"),
18120 dwarf_attr_name (attr->name), die->offset.sect_off,
18121 objfile_name (objfile));
18122 return build_error_marker_type (cu, die);
18123 }
18124
18125 /* If not cached we need to read it in. */
18126
18127 if (this_type == NULL)
18128 {
18129 struct die_info *type_die = NULL;
18130 struct dwarf2_cu *type_cu = cu;
18131
18132 if (attr_form_is_ref (attr))
18133 type_die = follow_die_ref (die, attr, &type_cu);
18134 if (type_die == NULL)
18135 return build_error_marker_type (cu, die);
18136 /* If we find the type now, it's probably because the type came
18137 from an inter-CU reference and the type's CU got expanded before
18138 ours. */
18139 this_type = read_type_die (type_die, type_cu);
18140 }
18141
18142 /* If we still don't have a type use an error marker. */
18143
18144 if (this_type == NULL)
18145 return build_error_marker_type (cu, die);
18146
18147 return this_type;
18148 }
18149
18150 /* Return the type in DIE, CU.
18151 Returns NULL for invalid types.
18152
18153 This first does a lookup in die_type_hash,
18154 and only reads the die in if necessary.
18155
18156 NOTE: This can be called when reading in partial or full symbols. */
18157
18158 static struct type *
18159 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18160 {
18161 struct type *this_type;
18162
18163 this_type = get_die_type (die, cu);
18164 if (this_type)
18165 return this_type;
18166
18167 return read_type_die_1 (die, cu);
18168 }
18169
18170 /* Read the type in DIE, CU.
18171 Returns NULL for invalid types. */
18172
18173 static struct type *
18174 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18175 {
18176 struct type *this_type = NULL;
18177
18178 switch (die->tag)
18179 {
18180 case DW_TAG_class_type:
18181 case DW_TAG_interface_type:
18182 case DW_TAG_structure_type:
18183 case DW_TAG_union_type:
18184 this_type = read_structure_type (die, cu);
18185 break;
18186 case DW_TAG_enumeration_type:
18187 this_type = read_enumeration_type (die, cu);
18188 break;
18189 case DW_TAG_subprogram:
18190 case DW_TAG_subroutine_type:
18191 case DW_TAG_inlined_subroutine:
18192 this_type = read_subroutine_type (die, cu);
18193 break;
18194 case DW_TAG_array_type:
18195 this_type = read_array_type (die, cu);
18196 break;
18197 case DW_TAG_set_type:
18198 this_type = read_set_type (die, cu);
18199 break;
18200 case DW_TAG_pointer_type:
18201 this_type = read_tag_pointer_type (die, cu);
18202 break;
18203 case DW_TAG_ptr_to_member_type:
18204 this_type = read_tag_ptr_to_member_type (die, cu);
18205 break;
18206 case DW_TAG_reference_type:
18207 this_type = read_tag_reference_type (die, cu);
18208 break;
18209 case DW_TAG_const_type:
18210 this_type = read_tag_const_type (die, cu);
18211 break;
18212 case DW_TAG_volatile_type:
18213 this_type = read_tag_volatile_type (die, cu);
18214 break;
18215 case DW_TAG_restrict_type:
18216 this_type = read_tag_restrict_type (die, cu);
18217 break;
18218 case DW_TAG_string_type:
18219 this_type = read_tag_string_type (die, cu);
18220 break;
18221 case DW_TAG_typedef:
18222 this_type = read_typedef (die, cu);
18223 break;
18224 case DW_TAG_subrange_type:
18225 this_type = read_subrange_type (die, cu);
18226 break;
18227 case DW_TAG_base_type:
18228 this_type = read_base_type (die, cu);
18229 break;
18230 case DW_TAG_unspecified_type:
18231 this_type = read_unspecified_type (die, cu);
18232 break;
18233 case DW_TAG_namespace:
18234 this_type = read_namespace_type (die, cu);
18235 break;
18236 case DW_TAG_module:
18237 this_type = read_module_type (die, cu);
18238 break;
18239 default:
18240 complaint (&symfile_complaints,
18241 _("unexpected tag in read_type_die: '%s'"),
18242 dwarf_tag_name (die->tag));
18243 break;
18244 }
18245
18246 return this_type;
18247 }
18248
18249 /* See if we can figure out if the class lives in a namespace. We do
18250 this by looking for a member function; its demangled name will
18251 contain namespace info, if there is any.
18252 Return the computed name or NULL.
18253 Space for the result is allocated on the objfile's obstack.
18254 This is the full-die version of guess_partial_die_structure_name.
18255 In this case we know DIE has no useful parent. */
18256
18257 static char *
18258 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18259 {
18260 struct die_info *spec_die;
18261 struct dwarf2_cu *spec_cu;
18262 struct die_info *child;
18263
18264 spec_cu = cu;
18265 spec_die = die_specification (die, &spec_cu);
18266 if (spec_die != NULL)
18267 {
18268 die = spec_die;
18269 cu = spec_cu;
18270 }
18271
18272 for (child = die->child;
18273 child != NULL;
18274 child = child->sibling)
18275 {
18276 if (child->tag == DW_TAG_subprogram)
18277 {
18278 struct attribute *attr;
18279
18280 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18281 if (attr == NULL)
18282 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18283 if (attr != NULL)
18284 {
18285 char *actual_name
18286 = language_class_name_from_physname (cu->language_defn,
18287 DW_STRING (attr));
18288 char *name = NULL;
18289
18290 if (actual_name != NULL)
18291 {
18292 const char *die_name = dwarf2_name (die, cu);
18293
18294 if (die_name != NULL
18295 && strcmp (die_name, actual_name) != 0)
18296 {
18297 /* Strip off the class name from the full name.
18298 We want the prefix. */
18299 int die_name_len = strlen (die_name);
18300 int actual_name_len = strlen (actual_name);
18301
18302 /* Test for '::' as a sanity check. */
18303 if (actual_name_len > die_name_len + 2
18304 && actual_name[actual_name_len
18305 - die_name_len - 1] == ':')
18306 name =
18307 obstack_copy0 (&cu->objfile->objfile_obstack,
18308 actual_name,
18309 actual_name_len - die_name_len - 2);
18310 }
18311 }
18312 xfree (actual_name);
18313 return name;
18314 }
18315 }
18316 }
18317
18318 return NULL;
18319 }
18320
18321 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18322 prefix part in such case. See
18323 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18324
18325 static char *
18326 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18327 {
18328 struct attribute *attr;
18329 char *base;
18330
18331 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18332 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18333 return NULL;
18334
18335 attr = dwarf2_attr (die, DW_AT_name, cu);
18336 if (attr != NULL && DW_STRING (attr) != NULL)
18337 return NULL;
18338
18339 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18340 if (attr == NULL)
18341 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18342 if (attr == NULL || DW_STRING (attr) == NULL)
18343 return NULL;
18344
18345 /* dwarf2_name had to be already called. */
18346 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18347
18348 /* Strip the base name, keep any leading namespaces/classes. */
18349 base = strrchr (DW_STRING (attr), ':');
18350 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18351 return "";
18352
18353 return obstack_copy0 (&cu->objfile->objfile_obstack,
18354 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18355 }
18356
18357 /* Return the name of the namespace/class that DIE is defined within,
18358 or "" if we can't tell. The caller should not xfree the result.
18359
18360 For example, if we're within the method foo() in the following
18361 code:
18362
18363 namespace N {
18364 class C {
18365 void foo () {
18366 }
18367 };
18368 }
18369
18370 then determine_prefix on foo's die will return "N::C". */
18371
18372 static const char *
18373 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18374 {
18375 struct die_info *parent, *spec_die;
18376 struct dwarf2_cu *spec_cu;
18377 struct type *parent_type;
18378 char *retval;
18379
18380 if (cu->language != language_cplus && cu->language != language_java
18381 && cu->language != language_fortran)
18382 return "";
18383
18384 retval = anonymous_struct_prefix (die, cu);
18385 if (retval)
18386 return retval;
18387
18388 /* We have to be careful in the presence of DW_AT_specification.
18389 For example, with GCC 3.4, given the code
18390
18391 namespace N {
18392 void foo() {
18393 // Definition of N::foo.
18394 }
18395 }
18396
18397 then we'll have a tree of DIEs like this:
18398
18399 1: DW_TAG_compile_unit
18400 2: DW_TAG_namespace // N
18401 3: DW_TAG_subprogram // declaration of N::foo
18402 4: DW_TAG_subprogram // definition of N::foo
18403 DW_AT_specification // refers to die #3
18404
18405 Thus, when processing die #4, we have to pretend that we're in
18406 the context of its DW_AT_specification, namely the contex of die
18407 #3. */
18408 spec_cu = cu;
18409 spec_die = die_specification (die, &spec_cu);
18410 if (spec_die == NULL)
18411 parent = die->parent;
18412 else
18413 {
18414 parent = spec_die->parent;
18415 cu = spec_cu;
18416 }
18417
18418 if (parent == NULL)
18419 return "";
18420 else if (parent->building_fullname)
18421 {
18422 const char *name;
18423 const char *parent_name;
18424
18425 /* It has been seen on RealView 2.2 built binaries,
18426 DW_TAG_template_type_param types actually _defined_ as
18427 children of the parent class:
18428
18429 enum E {};
18430 template class <class Enum> Class{};
18431 Class<enum E> class_e;
18432
18433 1: DW_TAG_class_type (Class)
18434 2: DW_TAG_enumeration_type (E)
18435 3: DW_TAG_enumerator (enum1:0)
18436 3: DW_TAG_enumerator (enum2:1)
18437 ...
18438 2: DW_TAG_template_type_param
18439 DW_AT_type DW_FORM_ref_udata (E)
18440
18441 Besides being broken debug info, it can put GDB into an
18442 infinite loop. Consider:
18443
18444 When we're building the full name for Class<E>, we'll start
18445 at Class, and go look over its template type parameters,
18446 finding E. We'll then try to build the full name of E, and
18447 reach here. We're now trying to build the full name of E,
18448 and look over the parent DIE for containing scope. In the
18449 broken case, if we followed the parent DIE of E, we'd again
18450 find Class, and once again go look at its template type
18451 arguments, etc., etc. Simply don't consider such parent die
18452 as source-level parent of this die (it can't be, the language
18453 doesn't allow it), and break the loop here. */
18454 name = dwarf2_name (die, cu);
18455 parent_name = dwarf2_name (parent, cu);
18456 complaint (&symfile_complaints,
18457 _("template param type '%s' defined within parent '%s'"),
18458 name ? name : "<unknown>",
18459 parent_name ? parent_name : "<unknown>");
18460 return "";
18461 }
18462 else
18463 switch (parent->tag)
18464 {
18465 case DW_TAG_namespace:
18466 parent_type = read_type_die (parent, cu);
18467 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18468 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18469 Work around this problem here. */
18470 if (cu->language == language_cplus
18471 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18472 return "";
18473 /* We give a name to even anonymous namespaces. */
18474 return TYPE_TAG_NAME (parent_type);
18475 case DW_TAG_class_type:
18476 case DW_TAG_interface_type:
18477 case DW_TAG_structure_type:
18478 case DW_TAG_union_type:
18479 case DW_TAG_module:
18480 parent_type = read_type_die (parent, cu);
18481 if (TYPE_TAG_NAME (parent_type) != NULL)
18482 return TYPE_TAG_NAME (parent_type);
18483 else
18484 /* An anonymous structure is only allowed non-static data
18485 members; no typedefs, no member functions, et cetera.
18486 So it does not need a prefix. */
18487 return "";
18488 case DW_TAG_compile_unit:
18489 case DW_TAG_partial_unit:
18490 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18491 if (cu->language == language_cplus
18492 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18493 && die->child != NULL
18494 && (die->tag == DW_TAG_class_type
18495 || die->tag == DW_TAG_structure_type
18496 || die->tag == DW_TAG_union_type))
18497 {
18498 char *name = guess_full_die_structure_name (die, cu);
18499 if (name != NULL)
18500 return name;
18501 }
18502 return "";
18503 default:
18504 return determine_prefix (parent, cu);
18505 }
18506 }
18507
18508 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18509 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18510 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18511 an obconcat, otherwise allocate storage for the result. The CU argument is
18512 used to determine the language and hence, the appropriate separator. */
18513
18514 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18515
18516 static char *
18517 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18518 int physname, struct dwarf2_cu *cu)
18519 {
18520 const char *lead = "";
18521 const char *sep;
18522
18523 if (suffix == NULL || suffix[0] == '\0'
18524 || prefix == NULL || prefix[0] == '\0')
18525 sep = "";
18526 else if (cu->language == language_java)
18527 sep = ".";
18528 else if (cu->language == language_fortran && physname)
18529 {
18530 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18531 DW_AT_MIPS_linkage_name is preferred and used instead. */
18532
18533 lead = "__";
18534 sep = "_MOD_";
18535 }
18536 else
18537 sep = "::";
18538
18539 if (prefix == NULL)
18540 prefix = "";
18541 if (suffix == NULL)
18542 suffix = "";
18543
18544 if (obs == NULL)
18545 {
18546 char *retval
18547 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18548
18549 strcpy (retval, lead);
18550 strcat (retval, prefix);
18551 strcat (retval, sep);
18552 strcat (retval, suffix);
18553 return retval;
18554 }
18555 else
18556 {
18557 /* We have an obstack. */
18558 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18559 }
18560 }
18561
18562 /* Return sibling of die, NULL if no sibling. */
18563
18564 static struct die_info *
18565 sibling_die (struct die_info *die)
18566 {
18567 return die->sibling;
18568 }
18569
18570 /* Get name of a die, return NULL if not found. */
18571
18572 static const char *
18573 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18574 struct obstack *obstack)
18575 {
18576 if (name && cu->language == language_cplus)
18577 {
18578 char *canon_name = cp_canonicalize_string (name);
18579
18580 if (canon_name != NULL)
18581 {
18582 if (strcmp (canon_name, name) != 0)
18583 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18584 xfree (canon_name);
18585 }
18586 }
18587
18588 return name;
18589 }
18590
18591 /* Get name of a die, return NULL if not found. */
18592
18593 static const char *
18594 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18595 {
18596 struct attribute *attr;
18597
18598 attr = dwarf2_attr (die, DW_AT_name, cu);
18599 if ((!attr || !DW_STRING (attr))
18600 && die->tag != DW_TAG_class_type
18601 && die->tag != DW_TAG_interface_type
18602 && die->tag != DW_TAG_structure_type
18603 && die->tag != DW_TAG_union_type)
18604 return NULL;
18605
18606 switch (die->tag)
18607 {
18608 case DW_TAG_compile_unit:
18609 case DW_TAG_partial_unit:
18610 /* Compilation units have a DW_AT_name that is a filename, not
18611 a source language identifier. */
18612 case DW_TAG_enumeration_type:
18613 case DW_TAG_enumerator:
18614 /* These tags always have simple identifiers already; no need
18615 to canonicalize them. */
18616 return DW_STRING (attr);
18617
18618 case DW_TAG_subprogram:
18619 /* Java constructors will all be named "<init>", so return
18620 the class name when we see this special case. */
18621 if (cu->language == language_java
18622 && DW_STRING (attr) != NULL
18623 && strcmp (DW_STRING (attr), "<init>") == 0)
18624 {
18625 struct dwarf2_cu *spec_cu = cu;
18626 struct die_info *spec_die;
18627
18628 /* GCJ will output '<init>' for Java constructor names.
18629 For this special case, return the name of the parent class. */
18630
18631 /* GCJ may output suprogram DIEs with AT_specification set.
18632 If so, use the name of the specified DIE. */
18633 spec_die = die_specification (die, &spec_cu);
18634 if (spec_die != NULL)
18635 return dwarf2_name (spec_die, spec_cu);
18636
18637 do
18638 {
18639 die = die->parent;
18640 if (die->tag == DW_TAG_class_type)
18641 return dwarf2_name (die, cu);
18642 }
18643 while (die->tag != DW_TAG_compile_unit
18644 && die->tag != DW_TAG_partial_unit);
18645 }
18646 break;
18647
18648 case DW_TAG_class_type:
18649 case DW_TAG_interface_type:
18650 case DW_TAG_structure_type:
18651 case DW_TAG_union_type:
18652 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18653 structures or unions. These were of the form "._%d" in GCC 4.1,
18654 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18655 and GCC 4.4. We work around this problem by ignoring these. */
18656 if (attr && DW_STRING (attr)
18657 && (strncmp (DW_STRING (attr), "._", 2) == 0
18658 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18659 return NULL;
18660
18661 /* GCC might emit a nameless typedef that has a linkage name. See
18662 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18663 if (!attr || DW_STRING (attr) == NULL)
18664 {
18665 char *demangled = NULL;
18666
18667 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18668 if (attr == NULL)
18669 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18670
18671 if (attr == NULL || DW_STRING (attr) == NULL)
18672 return NULL;
18673
18674 /* Avoid demangling DW_STRING (attr) the second time on a second
18675 call for the same DIE. */
18676 if (!DW_STRING_IS_CANONICAL (attr))
18677 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18678
18679 if (demangled)
18680 {
18681 char *base;
18682
18683 /* FIXME: we already did this for the partial symbol... */
18684 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18685 demangled, strlen (demangled));
18686 DW_STRING_IS_CANONICAL (attr) = 1;
18687 xfree (demangled);
18688
18689 /* Strip any leading namespaces/classes, keep only the base name.
18690 DW_AT_name for named DIEs does not contain the prefixes. */
18691 base = strrchr (DW_STRING (attr), ':');
18692 if (base && base > DW_STRING (attr) && base[-1] == ':')
18693 return &base[1];
18694 else
18695 return DW_STRING (attr);
18696 }
18697 }
18698 break;
18699
18700 default:
18701 break;
18702 }
18703
18704 if (!DW_STRING_IS_CANONICAL (attr))
18705 {
18706 DW_STRING (attr)
18707 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18708 &cu->objfile->objfile_obstack);
18709 DW_STRING_IS_CANONICAL (attr) = 1;
18710 }
18711 return DW_STRING (attr);
18712 }
18713
18714 /* Return the die that this die in an extension of, or NULL if there
18715 is none. *EXT_CU is the CU containing DIE on input, and the CU
18716 containing the return value on output. */
18717
18718 static struct die_info *
18719 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18720 {
18721 struct attribute *attr;
18722
18723 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18724 if (attr == NULL)
18725 return NULL;
18726
18727 return follow_die_ref (die, attr, ext_cu);
18728 }
18729
18730 /* Convert a DIE tag into its string name. */
18731
18732 static const char *
18733 dwarf_tag_name (unsigned tag)
18734 {
18735 const char *name = get_DW_TAG_name (tag);
18736
18737 if (name == NULL)
18738 return "DW_TAG_<unknown>";
18739
18740 return name;
18741 }
18742
18743 /* Convert a DWARF attribute code into its string name. */
18744
18745 static const char *
18746 dwarf_attr_name (unsigned attr)
18747 {
18748 const char *name;
18749
18750 #ifdef MIPS /* collides with DW_AT_HP_block_index */
18751 if (attr == DW_AT_MIPS_fde)
18752 return "DW_AT_MIPS_fde";
18753 #else
18754 if (attr == DW_AT_HP_block_index)
18755 return "DW_AT_HP_block_index";
18756 #endif
18757
18758 name = get_DW_AT_name (attr);
18759
18760 if (name == NULL)
18761 return "DW_AT_<unknown>";
18762
18763 return name;
18764 }
18765
18766 /* Convert a DWARF value form code into its string name. */
18767
18768 static const char *
18769 dwarf_form_name (unsigned form)
18770 {
18771 const char *name = get_DW_FORM_name (form);
18772
18773 if (name == NULL)
18774 return "DW_FORM_<unknown>";
18775
18776 return name;
18777 }
18778
18779 static char *
18780 dwarf_bool_name (unsigned mybool)
18781 {
18782 if (mybool)
18783 return "TRUE";
18784 else
18785 return "FALSE";
18786 }
18787
18788 /* Convert a DWARF type code into its string name. */
18789
18790 static const char *
18791 dwarf_type_encoding_name (unsigned enc)
18792 {
18793 const char *name = get_DW_ATE_name (enc);
18794
18795 if (name == NULL)
18796 return "DW_ATE_<unknown>";
18797
18798 return name;
18799 }
18800
18801 static void
18802 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
18803 {
18804 unsigned int i;
18805
18806 print_spaces (indent, f);
18807 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
18808 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
18809
18810 if (die->parent != NULL)
18811 {
18812 print_spaces (indent, f);
18813 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
18814 die->parent->offset.sect_off);
18815 }
18816
18817 print_spaces (indent, f);
18818 fprintf_unfiltered (f, " has children: %s\n",
18819 dwarf_bool_name (die->child != NULL));
18820
18821 print_spaces (indent, f);
18822 fprintf_unfiltered (f, " attributes:\n");
18823
18824 for (i = 0; i < die->num_attrs; ++i)
18825 {
18826 print_spaces (indent, f);
18827 fprintf_unfiltered (f, " %s (%s) ",
18828 dwarf_attr_name (die->attrs[i].name),
18829 dwarf_form_name (die->attrs[i].form));
18830
18831 switch (die->attrs[i].form)
18832 {
18833 case DW_FORM_addr:
18834 case DW_FORM_GNU_addr_index:
18835 fprintf_unfiltered (f, "address: ");
18836 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
18837 break;
18838 case DW_FORM_block2:
18839 case DW_FORM_block4:
18840 case DW_FORM_block:
18841 case DW_FORM_block1:
18842 fprintf_unfiltered (f, "block: size %s",
18843 pulongest (DW_BLOCK (&die->attrs[i])->size));
18844 break;
18845 case DW_FORM_exprloc:
18846 fprintf_unfiltered (f, "expression: size %s",
18847 pulongest (DW_BLOCK (&die->attrs[i])->size));
18848 break;
18849 case DW_FORM_ref_addr:
18850 fprintf_unfiltered (f, "ref address: ");
18851 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18852 break;
18853 case DW_FORM_GNU_ref_alt:
18854 fprintf_unfiltered (f, "alt ref address: ");
18855 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18856 break;
18857 case DW_FORM_ref1:
18858 case DW_FORM_ref2:
18859 case DW_FORM_ref4:
18860 case DW_FORM_ref8:
18861 case DW_FORM_ref_udata:
18862 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18863 (long) (DW_UNSND (&die->attrs[i])));
18864 break;
18865 case DW_FORM_data1:
18866 case DW_FORM_data2:
18867 case DW_FORM_data4:
18868 case DW_FORM_data8:
18869 case DW_FORM_udata:
18870 case DW_FORM_sdata:
18871 fprintf_unfiltered (f, "constant: %s",
18872 pulongest (DW_UNSND (&die->attrs[i])));
18873 break;
18874 case DW_FORM_sec_offset:
18875 fprintf_unfiltered (f, "section offset: %s",
18876 pulongest (DW_UNSND (&die->attrs[i])));
18877 break;
18878 case DW_FORM_ref_sig8:
18879 fprintf_unfiltered (f, "signature: %s",
18880 hex_string (DW_SIGNATURE (&die->attrs[i])));
18881 break;
18882 case DW_FORM_string:
18883 case DW_FORM_strp:
18884 case DW_FORM_GNU_str_index:
18885 case DW_FORM_GNU_strp_alt:
18886 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
18887 DW_STRING (&die->attrs[i])
18888 ? DW_STRING (&die->attrs[i]) : "",
18889 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
18890 break;
18891 case DW_FORM_flag:
18892 if (DW_UNSND (&die->attrs[i]))
18893 fprintf_unfiltered (f, "flag: TRUE");
18894 else
18895 fprintf_unfiltered (f, "flag: FALSE");
18896 break;
18897 case DW_FORM_flag_present:
18898 fprintf_unfiltered (f, "flag: TRUE");
18899 break;
18900 case DW_FORM_indirect:
18901 /* The reader will have reduced the indirect form to
18902 the "base form" so this form should not occur. */
18903 fprintf_unfiltered (f,
18904 "unexpected attribute form: DW_FORM_indirect");
18905 break;
18906 default:
18907 fprintf_unfiltered (f, "unsupported attribute form: %d.",
18908 die->attrs[i].form);
18909 break;
18910 }
18911 fprintf_unfiltered (f, "\n");
18912 }
18913 }
18914
18915 static void
18916 dump_die_for_error (struct die_info *die)
18917 {
18918 dump_die_shallow (gdb_stderr, 0, die);
18919 }
18920
18921 static void
18922 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
18923 {
18924 int indent = level * 4;
18925
18926 gdb_assert (die != NULL);
18927
18928 if (level >= max_level)
18929 return;
18930
18931 dump_die_shallow (f, indent, die);
18932
18933 if (die->child != NULL)
18934 {
18935 print_spaces (indent, f);
18936 fprintf_unfiltered (f, " Children:");
18937 if (level + 1 < max_level)
18938 {
18939 fprintf_unfiltered (f, "\n");
18940 dump_die_1 (f, level + 1, max_level, die->child);
18941 }
18942 else
18943 {
18944 fprintf_unfiltered (f,
18945 " [not printed, max nesting level reached]\n");
18946 }
18947 }
18948
18949 if (die->sibling != NULL && level > 0)
18950 {
18951 dump_die_1 (f, level, max_level, die->sibling);
18952 }
18953 }
18954
18955 /* This is called from the pdie macro in gdbinit.in.
18956 It's not static so gcc will keep a copy callable from gdb. */
18957
18958 void
18959 dump_die (struct die_info *die, int max_level)
18960 {
18961 dump_die_1 (gdb_stdlog, 0, max_level, die);
18962 }
18963
18964 static void
18965 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
18966 {
18967 void **slot;
18968
18969 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18970 INSERT);
18971
18972 *slot = die;
18973 }
18974
18975 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18976 required kind. */
18977
18978 static sect_offset
18979 dwarf2_get_ref_die_offset (const struct attribute *attr)
18980 {
18981 sect_offset retval = { DW_UNSND (attr) };
18982
18983 if (attr_form_is_ref (attr))
18984 return retval;
18985
18986 retval.sect_off = 0;
18987 complaint (&symfile_complaints,
18988 _("unsupported die ref attribute form: '%s'"),
18989 dwarf_form_name (attr->form));
18990 return retval;
18991 }
18992
18993 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18994 * the value held by the attribute is not constant. */
18995
18996 static LONGEST
18997 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
18998 {
18999 if (attr->form == DW_FORM_sdata)
19000 return DW_SND (attr);
19001 else if (attr->form == DW_FORM_udata
19002 || attr->form == DW_FORM_data1
19003 || attr->form == DW_FORM_data2
19004 || attr->form == DW_FORM_data4
19005 || attr->form == DW_FORM_data8)
19006 return DW_UNSND (attr);
19007 else
19008 {
19009 complaint (&symfile_complaints,
19010 _("Attribute value is not a constant (%s)"),
19011 dwarf_form_name (attr->form));
19012 return default_value;
19013 }
19014 }
19015
19016 /* Follow reference or signature attribute ATTR of SRC_DIE.
19017 On entry *REF_CU is the CU of SRC_DIE.
19018 On exit *REF_CU is the CU of the result. */
19019
19020 static struct die_info *
19021 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19022 struct dwarf2_cu **ref_cu)
19023 {
19024 struct die_info *die;
19025
19026 if (attr_form_is_ref (attr))
19027 die = follow_die_ref (src_die, attr, ref_cu);
19028 else if (attr->form == DW_FORM_ref_sig8)
19029 die = follow_die_sig (src_die, attr, ref_cu);
19030 else
19031 {
19032 dump_die_for_error (src_die);
19033 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19034 objfile_name ((*ref_cu)->objfile));
19035 }
19036
19037 return die;
19038 }
19039
19040 /* Follow reference OFFSET.
19041 On entry *REF_CU is the CU of the source die referencing OFFSET.
19042 On exit *REF_CU is the CU of the result.
19043 Returns NULL if OFFSET is invalid. */
19044
19045 static struct die_info *
19046 follow_die_offset (sect_offset offset, int offset_in_dwz,
19047 struct dwarf2_cu **ref_cu)
19048 {
19049 struct die_info temp_die;
19050 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19051
19052 gdb_assert (cu->per_cu != NULL);
19053
19054 target_cu = cu;
19055
19056 if (cu->per_cu->is_debug_types)
19057 {
19058 /* .debug_types CUs cannot reference anything outside their CU.
19059 If they need to, they have to reference a signatured type via
19060 DW_FORM_ref_sig8. */
19061 if (! offset_in_cu_p (&cu->header, offset))
19062 return NULL;
19063 }
19064 else if (offset_in_dwz != cu->per_cu->is_dwz
19065 || ! offset_in_cu_p (&cu->header, offset))
19066 {
19067 struct dwarf2_per_cu_data *per_cu;
19068
19069 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19070 cu->objfile);
19071
19072 /* If necessary, add it to the queue and load its DIEs. */
19073 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19074 load_full_comp_unit (per_cu, cu->language);
19075
19076 target_cu = per_cu->cu;
19077 }
19078 else if (cu->dies == NULL)
19079 {
19080 /* We're loading full DIEs during partial symbol reading. */
19081 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19082 load_full_comp_unit (cu->per_cu, language_minimal);
19083 }
19084
19085 *ref_cu = target_cu;
19086 temp_die.offset = offset;
19087 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19088 }
19089
19090 /* Follow reference attribute ATTR of SRC_DIE.
19091 On entry *REF_CU is the CU of SRC_DIE.
19092 On exit *REF_CU is the CU of the result. */
19093
19094 static struct die_info *
19095 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19096 struct dwarf2_cu **ref_cu)
19097 {
19098 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19099 struct dwarf2_cu *cu = *ref_cu;
19100 struct die_info *die;
19101
19102 die = follow_die_offset (offset,
19103 (attr->form == DW_FORM_GNU_ref_alt
19104 || cu->per_cu->is_dwz),
19105 ref_cu);
19106 if (!die)
19107 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19108 "at 0x%x [in module %s]"),
19109 offset.sect_off, src_die->offset.sect_off,
19110 objfile_name (cu->objfile));
19111
19112 return die;
19113 }
19114
19115 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19116 Returned value is intended for DW_OP_call*. Returned
19117 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19118
19119 struct dwarf2_locexpr_baton
19120 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19121 struct dwarf2_per_cu_data *per_cu,
19122 CORE_ADDR (*get_frame_pc) (void *baton),
19123 void *baton)
19124 {
19125 struct dwarf2_cu *cu;
19126 struct die_info *die;
19127 struct attribute *attr;
19128 struct dwarf2_locexpr_baton retval;
19129
19130 dw2_setup (per_cu->objfile);
19131
19132 if (per_cu->cu == NULL)
19133 load_cu (per_cu);
19134 cu = per_cu->cu;
19135
19136 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19137 if (!die)
19138 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19139 offset.sect_off, objfile_name (per_cu->objfile));
19140
19141 attr = dwarf2_attr (die, DW_AT_location, cu);
19142 if (!attr)
19143 {
19144 /* DWARF: "If there is no such attribute, then there is no effect.".
19145 DATA is ignored if SIZE is 0. */
19146
19147 retval.data = NULL;
19148 retval.size = 0;
19149 }
19150 else if (attr_form_is_section_offset (attr))
19151 {
19152 struct dwarf2_loclist_baton loclist_baton;
19153 CORE_ADDR pc = (*get_frame_pc) (baton);
19154 size_t size;
19155
19156 fill_in_loclist_baton (cu, &loclist_baton, attr);
19157
19158 retval.data = dwarf2_find_location_expression (&loclist_baton,
19159 &size, pc);
19160 retval.size = size;
19161 }
19162 else
19163 {
19164 if (!attr_form_is_block (attr))
19165 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19166 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19167 offset.sect_off, objfile_name (per_cu->objfile));
19168
19169 retval.data = DW_BLOCK (attr)->data;
19170 retval.size = DW_BLOCK (attr)->size;
19171 }
19172 retval.per_cu = cu->per_cu;
19173
19174 age_cached_comp_units ();
19175
19176 return retval;
19177 }
19178
19179 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19180 offset. */
19181
19182 struct dwarf2_locexpr_baton
19183 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19184 struct dwarf2_per_cu_data *per_cu,
19185 CORE_ADDR (*get_frame_pc) (void *baton),
19186 void *baton)
19187 {
19188 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19189
19190 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19191 }
19192
19193 /* Write a constant of a given type as target-ordered bytes into
19194 OBSTACK. */
19195
19196 static const gdb_byte *
19197 write_constant_as_bytes (struct obstack *obstack,
19198 enum bfd_endian byte_order,
19199 struct type *type,
19200 ULONGEST value,
19201 LONGEST *len)
19202 {
19203 gdb_byte *result;
19204
19205 *len = TYPE_LENGTH (type);
19206 result = obstack_alloc (obstack, *len);
19207 store_unsigned_integer (result, *len, byte_order, value);
19208
19209 return result;
19210 }
19211
19212 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19213 pointer to the constant bytes and set LEN to the length of the
19214 data. If memory is needed, allocate it on OBSTACK. If the DIE
19215 does not have a DW_AT_const_value, return NULL. */
19216
19217 const gdb_byte *
19218 dwarf2_fetch_constant_bytes (sect_offset offset,
19219 struct dwarf2_per_cu_data *per_cu,
19220 struct obstack *obstack,
19221 LONGEST *len)
19222 {
19223 struct dwarf2_cu *cu;
19224 struct die_info *die;
19225 struct attribute *attr;
19226 const gdb_byte *result = NULL;
19227 struct type *type;
19228 LONGEST value;
19229 enum bfd_endian byte_order;
19230
19231 dw2_setup (per_cu->objfile);
19232
19233 if (per_cu->cu == NULL)
19234 load_cu (per_cu);
19235 cu = per_cu->cu;
19236
19237 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19238 if (!die)
19239 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19240 offset.sect_off, objfile_name (per_cu->objfile));
19241
19242
19243 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19244 if (attr == NULL)
19245 return NULL;
19246
19247 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19248 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19249
19250 switch (attr->form)
19251 {
19252 case DW_FORM_addr:
19253 case DW_FORM_GNU_addr_index:
19254 {
19255 gdb_byte *tem;
19256
19257 *len = cu->header.addr_size;
19258 tem = obstack_alloc (obstack, *len);
19259 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19260 result = tem;
19261 }
19262 break;
19263 case DW_FORM_string:
19264 case DW_FORM_strp:
19265 case DW_FORM_GNU_str_index:
19266 case DW_FORM_GNU_strp_alt:
19267 /* DW_STRING is already allocated on the objfile obstack, point
19268 directly to it. */
19269 result = (const gdb_byte *) DW_STRING (attr);
19270 *len = strlen (DW_STRING (attr));
19271 break;
19272 case DW_FORM_block1:
19273 case DW_FORM_block2:
19274 case DW_FORM_block4:
19275 case DW_FORM_block:
19276 case DW_FORM_exprloc:
19277 result = DW_BLOCK (attr)->data;
19278 *len = DW_BLOCK (attr)->size;
19279 break;
19280
19281 /* The DW_AT_const_value attributes are supposed to carry the
19282 symbol's value "represented as it would be on the target
19283 architecture." By the time we get here, it's already been
19284 converted to host endianness, so we just need to sign- or
19285 zero-extend it as appropriate. */
19286 case DW_FORM_data1:
19287 type = die_type (die, cu);
19288 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19289 if (result == NULL)
19290 result = write_constant_as_bytes (obstack, byte_order,
19291 type, value, len);
19292 break;
19293 case DW_FORM_data2:
19294 type = die_type (die, cu);
19295 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19296 if (result == NULL)
19297 result = write_constant_as_bytes (obstack, byte_order,
19298 type, value, len);
19299 break;
19300 case DW_FORM_data4:
19301 type = die_type (die, cu);
19302 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19303 if (result == NULL)
19304 result = write_constant_as_bytes (obstack, byte_order,
19305 type, value, len);
19306 break;
19307 case DW_FORM_data8:
19308 type = die_type (die, cu);
19309 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19310 if (result == NULL)
19311 result = write_constant_as_bytes (obstack, byte_order,
19312 type, value, len);
19313 break;
19314
19315 case DW_FORM_sdata:
19316 type = die_type (die, cu);
19317 result = write_constant_as_bytes (obstack, byte_order,
19318 type, DW_SND (attr), len);
19319 break;
19320
19321 case DW_FORM_udata:
19322 type = die_type (die, cu);
19323 result = write_constant_as_bytes (obstack, byte_order,
19324 type, DW_UNSND (attr), len);
19325 break;
19326
19327 default:
19328 complaint (&symfile_complaints,
19329 _("unsupported const value attribute form: '%s'"),
19330 dwarf_form_name (attr->form));
19331 break;
19332 }
19333
19334 return result;
19335 }
19336
19337 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19338 PER_CU. */
19339
19340 struct type *
19341 dwarf2_get_die_type (cu_offset die_offset,
19342 struct dwarf2_per_cu_data *per_cu)
19343 {
19344 sect_offset die_offset_sect;
19345
19346 dw2_setup (per_cu->objfile);
19347
19348 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19349 return get_die_type_at_offset (die_offset_sect, per_cu);
19350 }
19351
19352 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19353 On entry *REF_CU is the CU of SRC_DIE.
19354 On exit *REF_CU is the CU of the result.
19355 Returns NULL if the referenced DIE isn't found. */
19356
19357 static struct die_info *
19358 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19359 struct dwarf2_cu **ref_cu)
19360 {
19361 struct objfile *objfile = (*ref_cu)->objfile;
19362 struct die_info temp_die;
19363 struct dwarf2_cu *sig_cu;
19364 struct die_info *die;
19365
19366 /* While it might be nice to assert sig_type->type == NULL here,
19367 we can get here for DW_AT_imported_declaration where we need
19368 the DIE not the type. */
19369
19370 /* If necessary, add it to the queue and load its DIEs. */
19371
19372 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19373 read_signatured_type (sig_type);
19374
19375 sig_cu = sig_type->per_cu.cu;
19376 gdb_assert (sig_cu != NULL);
19377 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19378 temp_die.offset = sig_type->type_offset_in_section;
19379 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19380 temp_die.offset.sect_off);
19381 if (die)
19382 {
19383 /* For .gdb_index version 7 keep track of included TUs.
19384 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19385 if (dwarf2_per_objfile->index_table != NULL
19386 && dwarf2_per_objfile->index_table->version <= 7)
19387 {
19388 VEC_safe_push (dwarf2_per_cu_ptr,
19389 (*ref_cu)->per_cu->imported_symtabs,
19390 sig_cu->per_cu);
19391 }
19392
19393 *ref_cu = sig_cu;
19394 return die;
19395 }
19396
19397 return NULL;
19398 }
19399
19400 /* Follow signatured type referenced by ATTR in SRC_DIE.
19401 On entry *REF_CU is the CU of SRC_DIE.
19402 On exit *REF_CU is the CU of the result.
19403 The result is the DIE of the type.
19404 If the referenced type cannot be found an error is thrown. */
19405
19406 static struct die_info *
19407 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19408 struct dwarf2_cu **ref_cu)
19409 {
19410 ULONGEST signature = DW_SIGNATURE (attr);
19411 struct signatured_type *sig_type;
19412 struct die_info *die;
19413
19414 gdb_assert (attr->form == DW_FORM_ref_sig8);
19415
19416 sig_type = lookup_signatured_type (*ref_cu, signature);
19417 /* sig_type will be NULL if the signatured type is missing from
19418 the debug info. */
19419 if (sig_type == NULL)
19420 {
19421 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19422 " from DIE at 0x%x [in module %s]"),
19423 hex_string (signature), src_die->offset.sect_off,
19424 objfile_name ((*ref_cu)->objfile));
19425 }
19426
19427 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19428 if (die == NULL)
19429 {
19430 dump_die_for_error (src_die);
19431 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19432 " from DIE at 0x%x [in module %s]"),
19433 hex_string (signature), src_die->offset.sect_off,
19434 objfile_name ((*ref_cu)->objfile));
19435 }
19436
19437 return die;
19438 }
19439
19440 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19441 reading in and processing the type unit if necessary. */
19442
19443 static struct type *
19444 get_signatured_type (struct die_info *die, ULONGEST signature,
19445 struct dwarf2_cu *cu)
19446 {
19447 struct signatured_type *sig_type;
19448 struct dwarf2_cu *type_cu;
19449 struct die_info *type_die;
19450 struct type *type;
19451
19452 sig_type = lookup_signatured_type (cu, signature);
19453 /* sig_type will be NULL if the signatured type is missing from
19454 the debug info. */
19455 if (sig_type == NULL)
19456 {
19457 complaint (&symfile_complaints,
19458 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19459 " from DIE at 0x%x [in module %s]"),
19460 hex_string (signature), die->offset.sect_off,
19461 objfile_name (dwarf2_per_objfile->objfile));
19462 return build_error_marker_type (cu, die);
19463 }
19464
19465 /* If we already know the type we're done. */
19466 if (sig_type->type != NULL)
19467 return sig_type->type;
19468
19469 type_cu = cu;
19470 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19471 if (type_die != NULL)
19472 {
19473 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19474 is created. This is important, for example, because for c++ classes
19475 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19476 type = read_type_die (type_die, type_cu);
19477 if (type == NULL)
19478 {
19479 complaint (&symfile_complaints,
19480 _("Dwarf Error: Cannot build signatured type %s"
19481 " referenced from DIE at 0x%x [in module %s]"),
19482 hex_string (signature), die->offset.sect_off,
19483 objfile_name (dwarf2_per_objfile->objfile));
19484 type = build_error_marker_type (cu, die);
19485 }
19486 }
19487 else
19488 {
19489 complaint (&symfile_complaints,
19490 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19491 " from DIE at 0x%x [in module %s]"),
19492 hex_string (signature), die->offset.sect_off,
19493 objfile_name (dwarf2_per_objfile->objfile));
19494 type = build_error_marker_type (cu, die);
19495 }
19496 sig_type->type = type;
19497
19498 return type;
19499 }
19500
19501 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19502 reading in and processing the type unit if necessary. */
19503
19504 static struct type *
19505 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19506 struct dwarf2_cu *cu) /* ARI: editCase function */
19507 {
19508 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19509 if (attr_form_is_ref (attr))
19510 {
19511 struct dwarf2_cu *type_cu = cu;
19512 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19513
19514 return read_type_die (type_die, type_cu);
19515 }
19516 else if (attr->form == DW_FORM_ref_sig8)
19517 {
19518 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19519 }
19520 else
19521 {
19522 complaint (&symfile_complaints,
19523 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19524 " at 0x%x [in module %s]"),
19525 dwarf_form_name (attr->form), die->offset.sect_off,
19526 objfile_name (dwarf2_per_objfile->objfile));
19527 return build_error_marker_type (cu, die);
19528 }
19529 }
19530
19531 /* Load the DIEs associated with type unit PER_CU into memory. */
19532
19533 static void
19534 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19535 {
19536 struct signatured_type *sig_type;
19537
19538 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19539 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19540
19541 /* We have the per_cu, but we need the signatured_type.
19542 Fortunately this is an easy translation. */
19543 gdb_assert (per_cu->is_debug_types);
19544 sig_type = (struct signatured_type *) per_cu;
19545
19546 gdb_assert (per_cu->cu == NULL);
19547
19548 read_signatured_type (sig_type);
19549
19550 gdb_assert (per_cu->cu != NULL);
19551 }
19552
19553 /* die_reader_func for read_signatured_type.
19554 This is identical to load_full_comp_unit_reader,
19555 but is kept separate for now. */
19556
19557 static void
19558 read_signatured_type_reader (const struct die_reader_specs *reader,
19559 const gdb_byte *info_ptr,
19560 struct die_info *comp_unit_die,
19561 int has_children,
19562 void *data)
19563 {
19564 struct dwarf2_cu *cu = reader->cu;
19565
19566 gdb_assert (cu->die_hash == NULL);
19567 cu->die_hash =
19568 htab_create_alloc_ex (cu->header.length / 12,
19569 die_hash,
19570 die_eq,
19571 NULL,
19572 &cu->comp_unit_obstack,
19573 hashtab_obstack_allocate,
19574 dummy_obstack_deallocate);
19575
19576 if (has_children)
19577 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19578 &info_ptr, comp_unit_die);
19579 cu->dies = comp_unit_die;
19580 /* comp_unit_die is not stored in die_hash, no need. */
19581
19582 /* We try not to read any attributes in this function, because not
19583 all CUs needed for references have been loaded yet, and symbol
19584 table processing isn't initialized. But we have to set the CU language,
19585 or we won't be able to build types correctly.
19586 Similarly, if we do not read the producer, we can not apply
19587 producer-specific interpretation. */
19588 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19589 }
19590
19591 /* Read in a signatured type and build its CU and DIEs.
19592 If the type is a stub for the real type in a DWO file,
19593 read in the real type from the DWO file as well. */
19594
19595 static void
19596 read_signatured_type (struct signatured_type *sig_type)
19597 {
19598 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19599
19600 gdb_assert (per_cu->is_debug_types);
19601 gdb_assert (per_cu->cu == NULL);
19602
19603 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19604 read_signatured_type_reader, NULL);
19605 sig_type->per_cu.tu_read = 1;
19606 }
19607
19608 /* Decode simple location descriptions.
19609 Given a pointer to a dwarf block that defines a location, compute
19610 the location and return the value.
19611
19612 NOTE drow/2003-11-18: This function is called in two situations
19613 now: for the address of static or global variables (partial symbols
19614 only) and for offsets into structures which are expected to be
19615 (more or less) constant. The partial symbol case should go away,
19616 and only the constant case should remain. That will let this
19617 function complain more accurately. A few special modes are allowed
19618 without complaint for global variables (for instance, global
19619 register values and thread-local values).
19620
19621 A location description containing no operations indicates that the
19622 object is optimized out. The return value is 0 for that case.
19623 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19624 callers will only want a very basic result and this can become a
19625 complaint.
19626
19627 Note that stack[0] is unused except as a default error return. */
19628
19629 static CORE_ADDR
19630 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19631 {
19632 struct objfile *objfile = cu->objfile;
19633 size_t i;
19634 size_t size = blk->size;
19635 const gdb_byte *data = blk->data;
19636 CORE_ADDR stack[64];
19637 int stacki;
19638 unsigned int bytes_read, unsnd;
19639 gdb_byte op;
19640
19641 i = 0;
19642 stacki = 0;
19643 stack[stacki] = 0;
19644 stack[++stacki] = 0;
19645
19646 while (i < size)
19647 {
19648 op = data[i++];
19649 switch (op)
19650 {
19651 case DW_OP_lit0:
19652 case DW_OP_lit1:
19653 case DW_OP_lit2:
19654 case DW_OP_lit3:
19655 case DW_OP_lit4:
19656 case DW_OP_lit5:
19657 case DW_OP_lit6:
19658 case DW_OP_lit7:
19659 case DW_OP_lit8:
19660 case DW_OP_lit9:
19661 case DW_OP_lit10:
19662 case DW_OP_lit11:
19663 case DW_OP_lit12:
19664 case DW_OP_lit13:
19665 case DW_OP_lit14:
19666 case DW_OP_lit15:
19667 case DW_OP_lit16:
19668 case DW_OP_lit17:
19669 case DW_OP_lit18:
19670 case DW_OP_lit19:
19671 case DW_OP_lit20:
19672 case DW_OP_lit21:
19673 case DW_OP_lit22:
19674 case DW_OP_lit23:
19675 case DW_OP_lit24:
19676 case DW_OP_lit25:
19677 case DW_OP_lit26:
19678 case DW_OP_lit27:
19679 case DW_OP_lit28:
19680 case DW_OP_lit29:
19681 case DW_OP_lit30:
19682 case DW_OP_lit31:
19683 stack[++stacki] = op - DW_OP_lit0;
19684 break;
19685
19686 case DW_OP_reg0:
19687 case DW_OP_reg1:
19688 case DW_OP_reg2:
19689 case DW_OP_reg3:
19690 case DW_OP_reg4:
19691 case DW_OP_reg5:
19692 case DW_OP_reg6:
19693 case DW_OP_reg7:
19694 case DW_OP_reg8:
19695 case DW_OP_reg9:
19696 case DW_OP_reg10:
19697 case DW_OP_reg11:
19698 case DW_OP_reg12:
19699 case DW_OP_reg13:
19700 case DW_OP_reg14:
19701 case DW_OP_reg15:
19702 case DW_OP_reg16:
19703 case DW_OP_reg17:
19704 case DW_OP_reg18:
19705 case DW_OP_reg19:
19706 case DW_OP_reg20:
19707 case DW_OP_reg21:
19708 case DW_OP_reg22:
19709 case DW_OP_reg23:
19710 case DW_OP_reg24:
19711 case DW_OP_reg25:
19712 case DW_OP_reg26:
19713 case DW_OP_reg27:
19714 case DW_OP_reg28:
19715 case DW_OP_reg29:
19716 case DW_OP_reg30:
19717 case DW_OP_reg31:
19718 stack[++stacki] = op - DW_OP_reg0;
19719 if (i < size)
19720 dwarf2_complex_location_expr_complaint ();
19721 break;
19722
19723 case DW_OP_regx:
19724 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19725 i += bytes_read;
19726 stack[++stacki] = unsnd;
19727 if (i < size)
19728 dwarf2_complex_location_expr_complaint ();
19729 break;
19730
19731 case DW_OP_addr:
19732 stack[++stacki] = read_address (objfile->obfd, &data[i],
19733 cu, &bytes_read);
19734 i += bytes_read;
19735 break;
19736
19737 case DW_OP_const1u:
19738 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19739 i += 1;
19740 break;
19741
19742 case DW_OP_const1s:
19743 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19744 i += 1;
19745 break;
19746
19747 case DW_OP_const2u:
19748 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19749 i += 2;
19750 break;
19751
19752 case DW_OP_const2s:
19753 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19754 i += 2;
19755 break;
19756
19757 case DW_OP_const4u:
19758 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19759 i += 4;
19760 break;
19761
19762 case DW_OP_const4s:
19763 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19764 i += 4;
19765 break;
19766
19767 case DW_OP_const8u:
19768 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19769 i += 8;
19770 break;
19771
19772 case DW_OP_constu:
19773 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19774 &bytes_read);
19775 i += bytes_read;
19776 break;
19777
19778 case DW_OP_consts:
19779 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19780 i += bytes_read;
19781 break;
19782
19783 case DW_OP_dup:
19784 stack[stacki + 1] = stack[stacki];
19785 stacki++;
19786 break;
19787
19788 case DW_OP_plus:
19789 stack[stacki - 1] += stack[stacki];
19790 stacki--;
19791 break;
19792
19793 case DW_OP_plus_uconst:
19794 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19795 &bytes_read);
19796 i += bytes_read;
19797 break;
19798
19799 case DW_OP_minus:
19800 stack[stacki - 1] -= stack[stacki];
19801 stacki--;
19802 break;
19803
19804 case DW_OP_deref:
19805 /* If we're not the last op, then we definitely can't encode
19806 this using GDB's address_class enum. This is valid for partial
19807 global symbols, although the variable's address will be bogus
19808 in the psymtab. */
19809 if (i < size)
19810 dwarf2_complex_location_expr_complaint ();
19811 break;
19812
19813 case DW_OP_GNU_push_tls_address:
19814 /* The top of the stack has the offset from the beginning
19815 of the thread control block at which the variable is located. */
19816 /* Nothing should follow this operator, so the top of stack would
19817 be returned. */
19818 /* This is valid for partial global symbols, but the variable's
19819 address will be bogus in the psymtab. Make it always at least
19820 non-zero to not look as a variable garbage collected by linker
19821 which have DW_OP_addr 0. */
19822 if (i < size)
19823 dwarf2_complex_location_expr_complaint ();
19824 stack[stacki]++;
19825 break;
19826
19827 case DW_OP_GNU_uninit:
19828 break;
19829
19830 case DW_OP_GNU_addr_index:
19831 case DW_OP_GNU_const_index:
19832 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19833 &bytes_read);
19834 i += bytes_read;
19835 break;
19836
19837 default:
19838 {
19839 const char *name = get_DW_OP_name (op);
19840
19841 if (name)
19842 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19843 name);
19844 else
19845 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19846 op);
19847 }
19848
19849 return (stack[stacki]);
19850 }
19851
19852 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19853 outside of the allocated space. Also enforce minimum>0. */
19854 if (stacki >= ARRAY_SIZE (stack) - 1)
19855 {
19856 complaint (&symfile_complaints,
19857 _("location description stack overflow"));
19858 return 0;
19859 }
19860
19861 if (stacki <= 0)
19862 {
19863 complaint (&symfile_complaints,
19864 _("location description stack underflow"));
19865 return 0;
19866 }
19867 }
19868 return (stack[stacki]);
19869 }
19870
19871 /* memory allocation interface */
19872
19873 static struct dwarf_block *
19874 dwarf_alloc_block (struct dwarf2_cu *cu)
19875 {
19876 struct dwarf_block *blk;
19877
19878 blk = (struct dwarf_block *)
19879 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19880 return (blk);
19881 }
19882
19883 static struct die_info *
19884 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
19885 {
19886 struct die_info *die;
19887 size_t size = sizeof (struct die_info);
19888
19889 if (num_attrs > 1)
19890 size += (num_attrs - 1) * sizeof (struct attribute);
19891
19892 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
19893 memset (die, 0, sizeof (struct die_info));
19894 return (die);
19895 }
19896
19897 \f
19898 /* Macro support. */
19899
19900 /* Return file name relative to the compilation directory of file number I in
19901 *LH's file name table. The result is allocated using xmalloc; the caller is
19902 responsible for freeing it. */
19903
19904 static char *
19905 file_file_name (int file, struct line_header *lh)
19906 {
19907 /* Is the file number a valid index into the line header's file name
19908 table? Remember that file numbers start with one, not zero. */
19909 if (1 <= file && file <= lh->num_file_names)
19910 {
19911 struct file_entry *fe = &lh->file_names[file - 1];
19912
19913 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
19914 return xstrdup (fe->name);
19915 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
19916 fe->name, NULL);
19917 }
19918 else
19919 {
19920 /* The compiler produced a bogus file number. We can at least
19921 record the macro definitions made in the file, even if we
19922 won't be able to find the file by name. */
19923 char fake_name[80];
19924
19925 xsnprintf (fake_name, sizeof (fake_name),
19926 "<bad macro file number %d>", file);
19927
19928 complaint (&symfile_complaints,
19929 _("bad file number in macro information (%d)"),
19930 file);
19931
19932 return xstrdup (fake_name);
19933 }
19934 }
19935
19936 /* Return the full name of file number I in *LH's file name table.
19937 Use COMP_DIR as the name of the current directory of the
19938 compilation. The result is allocated using xmalloc; the caller is
19939 responsible for freeing it. */
19940 static char *
19941 file_full_name (int file, struct line_header *lh, const char *comp_dir)
19942 {
19943 /* Is the file number a valid index into the line header's file name
19944 table? Remember that file numbers start with one, not zero. */
19945 if (1 <= file && file <= lh->num_file_names)
19946 {
19947 char *relative = file_file_name (file, lh);
19948
19949 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19950 return relative;
19951 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19952 }
19953 else
19954 return file_file_name (file, lh);
19955 }
19956
19957
19958 static struct macro_source_file *
19959 macro_start_file (int file, int line,
19960 struct macro_source_file *current_file,
19961 const char *comp_dir,
19962 struct line_header *lh, struct objfile *objfile)
19963 {
19964 /* File name relative to the compilation directory of this source file. */
19965 char *file_name = file_file_name (file, lh);
19966
19967 if (! current_file)
19968 {
19969 /* Note: We don't create a macro table for this compilation unit
19970 at all until we actually get a filename. */
19971 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19972
19973 /* If we have no current file, then this must be the start_file
19974 directive for the compilation unit's main source file. */
19975 current_file = macro_set_main (macro_table, file_name);
19976 macro_define_special (macro_table);
19977 }
19978 else
19979 current_file = macro_include (current_file, line, file_name);
19980
19981 xfree (file_name);
19982
19983 return current_file;
19984 }
19985
19986
19987 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19988 followed by a null byte. */
19989 static char *
19990 copy_string (const char *buf, int len)
19991 {
19992 char *s = xmalloc (len + 1);
19993
19994 memcpy (s, buf, len);
19995 s[len] = '\0';
19996 return s;
19997 }
19998
19999
20000 static const char *
20001 consume_improper_spaces (const char *p, const char *body)
20002 {
20003 if (*p == ' ')
20004 {
20005 complaint (&symfile_complaints,
20006 _("macro definition contains spaces "
20007 "in formal argument list:\n`%s'"),
20008 body);
20009
20010 while (*p == ' ')
20011 p++;
20012 }
20013
20014 return p;
20015 }
20016
20017
20018 static void
20019 parse_macro_definition (struct macro_source_file *file, int line,
20020 const char *body)
20021 {
20022 const char *p;
20023
20024 /* The body string takes one of two forms. For object-like macro
20025 definitions, it should be:
20026
20027 <macro name> " " <definition>
20028
20029 For function-like macro definitions, it should be:
20030
20031 <macro name> "() " <definition>
20032 or
20033 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20034
20035 Spaces may appear only where explicitly indicated, and in the
20036 <definition>.
20037
20038 The Dwarf 2 spec says that an object-like macro's name is always
20039 followed by a space, but versions of GCC around March 2002 omit
20040 the space when the macro's definition is the empty string.
20041
20042 The Dwarf 2 spec says that there should be no spaces between the
20043 formal arguments in a function-like macro's formal argument list,
20044 but versions of GCC around March 2002 include spaces after the
20045 commas. */
20046
20047
20048 /* Find the extent of the macro name. The macro name is terminated
20049 by either a space or null character (for an object-like macro) or
20050 an opening paren (for a function-like macro). */
20051 for (p = body; *p; p++)
20052 if (*p == ' ' || *p == '(')
20053 break;
20054
20055 if (*p == ' ' || *p == '\0')
20056 {
20057 /* It's an object-like macro. */
20058 int name_len = p - body;
20059 char *name = copy_string (body, name_len);
20060 const char *replacement;
20061
20062 if (*p == ' ')
20063 replacement = body + name_len + 1;
20064 else
20065 {
20066 dwarf2_macro_malformed_definition_complaint (body);
20067 replacement = body + name_len;
20068 }
20069
20070 macro_define_object (file, line, name, replacement);
20071
20072 xfree (name);
20073 }
20074 else if (*p == '(')
20075 {
20076 /* It's a function-like macro. */
20077 char *name = copy_string (body, p - body);
20078 int argc = 0;
20079 int argv_size = 1;
20080 char **argv = xmalloc (argv_size * sizeof (*argv));
20081
20082 p++;
20083
20084 p = consume_improper_spaces (p, body);
20085
20086 /* Parse the formal argument list. */
20087 while (*p && *p != ')')
20088 {
20089 /* Find the extent of the current argument name. */
20090 const char *arg_start = p;
20091
20092 while (*p && *p != ',' && *p != ')' && *p != ' ')
20093 p++;
20094
20095 if (! *p || p == arg_start)
20096 dwarf2_macro_malformed_definition_complaint (body);
20097 else
20098 {
20099 /* Make sure argv has room for the new argument. */
20100 if (argc >= argv_size)
20101 {
20102 argv_size *= 2;
20103 argv = xrealloc (argv, argv_size * sizeof (*argv));
20104 }
20105
20106 argv[argc++] = copy_string (arg_start, p - arg_start);
20107 }
20108
20109 p = consume_improper_spaces (p, body);
20110
20111 /* Consume the comma, if present. */
20112 if (*p == ',')
20113 {
20114 p++;
20115
20116 p = consume_improper_spaces (p, body);
20117 }
20118 }
20119
20120 if (*p == ')')
20121 {
20122 p++;
20123
20124 if (*p == ' ')
20125 /* Perfectly formed definition, no complaints. */
20126 macro_define_function (file, line, name,
20127 argc, (const char **) argv,
20128 p + 1);
20129 else if (*p == '\0')
20130 {
20131 /* Complain, but do define it. */
20132 dwarf2_macro_malformed_definition_complaint (body);
20133 macro_define_function (file, line, name,
20134 argc, (const char **) argv,
20135 p);
20136 }
20137 else
20138 /* Just complain. */
20139 dwarf2_macro_malformed_definition_complaint (body);
20140 }
20141 else
20142 /* Just complain. */
20143 dwarf2_macro_malformed_definition_complaint (body);
20144
20145 xfree (name);
20146 {
20147 int i;
20148
20149 for (i = 0; i < argc; i++)
20150 xfree (argv[i]);
20151 }
20152 xfree (argv);
20153 }
20154 else
20155 dwarf2_macro_malformed_definition_complaint (body);
20156 }
20157
20158 /* Skip some bytes from BYTES according to the form given in FORM.
20159 Returns the new pointer. */
20160
20161 static const gdb_byte *
20162 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20163 enum dwarf_form form,
20164 unsigned int offset_size,
20165 struct dwarf2_section_info *section)
20166 {
20167 unsigned int bytes_read;
20168
20169 switch (form)
20170 {
20171 case DW_FORM_data1:
20172 case DW_FORM_flag:
20173 ++bytes;
20174 break;
20175
20176 case DW_FORM_data2:
20177 bytes += 2;
20178 break;
20179
20180 case DW_FORM_data4:
20181 bytes += 4;
20182 break;
20183
20184 case DW_FORM_data8:
20185 bytes += 8;
20186 break;
20187
20188 case DW_FORM_string:
20189 read_direct_string (abfd, bytes, &bytes_read);
20190 bytes += bytes_read;
20191 break;
20192
20193 case DW_FORM_sec_offset:
20194 case DW_FORM_strp:
20195 case DW_FORM_GNU_strp_alt:
20196 bytes += offset_size;
20197 break;
20198
20199 case DW_FORM_block:
20200 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20201 bytes += bytes_read;
20202 break;
20203
20204 case DW_FORM_block1:
20205 bytes += 1 + read_1_byte (abfd, bytes);
20206 break;
20207 case DW_FORM_block2:
20208 bytes += 2 + read_2_bytes (abfd, bytes);
20209 break;
20210 case DW_FORM_block4:
20211 bytes += 4 + read_4_bytes (abfd, bytes);
20212 break;
20213
20214 case DW_FORM_sdata:
20215 case DW_FORM_udata:
20216 case DW_FORM_GNU_addr_index:
20217 case DW_FORM_GNU_str_index:
20218 bytes = gdb_skip_leb128 (bytes, buffer_end);
20219 if (bytes == NULL)
20220 {
20221 dwarf2_section_buffer_overflow_complaint (section);
20222 return NULL;
20223 }
20224 break;
20225
20226 default:
20227 {
20228 complain:
20229 complaint (&symfile_complaints,
20230 _("invalid form 0x%x in `%s'"),
20231 form, get_section_name (section));
20232 return NULL;
20233 }
20234 }
20235
20236 return bytes;
20237 }
20238
20239 /* A helper for dwarf_decode_macros that handles skipping an unknown
20240 opcode. Returns an updated pointer to the macro data buffer; or,
20241 on error, issues a complaint and returns NULL. */
20242
20243 static const gdb_byte *
20244 skip_unknown_opcode (unsigned int opcode,
20245 const gdb_byte **opcode_definitions,
20246 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20247 bfd *abfd,
20248 unsigned int offset_size,
20249 struct dwarf2_section_info *section)
20250 {
20251 unsigned int bytes_read, i;
20252 unsigned long arg;
20253 const gdb_byte *defn;
20254
20255 if (opcode_definitions[opcode] == NULL)
20256 {
20257 complaint (&symfile_complaints,
20258 _("unrecognized DW_MACFINO opcode 0x%x"),
20259 opcode);
20260 return NULL;
20261 }
20262
20263 defn = opcode_definitions[opcode];
20264 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20265 defn += bytes_read;
20266
20267 for (i = 0; i < arg; ++i)
20268 {
20269 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20270 section);
20271 if (mac_ptr == NULL)
20272 {
20273 /* skip_form_bytes already issued the complaint. */
20274 return NULL;
20275 }
20276 }
20277
20278 return mac_ptr;
20279 }
20280
20281 /* A helper function which parses the header of a macro section.
20282 If the macro section is the extended (for now called "GNU") type,
20283 then this updates *OFFSET_SIZE. Returns a pointer to just after
20284 the header, or issues a complaint and returns NULL on error. */
20285
20286 static const gdb_byte *
20287 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20288 bfd *abfd,
20289 const gdb_byte *mac_ptr,
20290 unsigned int *offset_size,
20291 int section_is_gnu)
20292 {
20293 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20294
20295 if (section_is_gnu)
20296 {
20297 unsigned int version, flags;
20298
20299 version = read_2_bytes (abfd, mac_ptr);
20300 if (version != 4)
20301 {
20302 complaint (&symfile_complaints,
20303 _("unrecognized version `%d' in .debug_macro section"),
20304 version);
20305 return NULL;
20306 }
20307 mac_ptr += 2;
20308
20309 flags = read_1_byte (abfd, mac_ptr);
20310 ++mac_ptr;
20311 *offset_size = (flags & 1) ? 8 : 4;
20312
20313 if ((flags & 2) != 0)
20314 /* We don't need the line table offset. */
20315 mac_ptr += *offset_size;
20316
20317 /* Vendor opcode descriptions. */
20318 if ((flags & 4) != 0)
20319 {
20320 unsigned int i, count;
20321
20322 count = read_1_byte (abfd, mac_ptr);
20323 ++mac_ptr;
20324 for (i = 0; i < count; ++i)
20325 {
20326 unsigned int opcode, bytes_read;
20327 unsigned long arg;
20328
20329 opcode = read_1_byte (abfd, mac_ptr);
20330 ++mac_ptr;
20331 opcode_definitions[opcode] = mac_ptr;
20332 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20333 mac_ptr += bytes_read;
20334 mac_ptr += arg;
20335 }
20336 }
20337 }
20338
20339 return mac_ptr;
20340 }
20341
20342 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20343 including DW_MACRO_GNU_transparent_include. */
20344
20345 static void
20346 dwarf_decode_macro_bytes (bfd *abfd,
20347 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20348 struct macro_source_file *current_file,
20349 struct line_header *lh, const char *comp_dir,
20350 struct dwarf2_section_info *section,
20351 int section_is_gnu, int section_is_dwz,
20352 unsigned int offset_size,
20353 struct objfile *objfile,
20354 htab_t include_hash)
20355 {
20356 enum dwarf_macro_record_type macinfo_type;
20357 int at_commandline;
20358 const gdb_byte *opcode_definitions[256];
20359
20360 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20361 &offset_size, section_is_gnu);
20362 if (mac_ptr == NULL)
20363 {
20364 /* We already issued a complaint. */
20365 return;
20366 }
20367
20368 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20369 GDB is still reading the definitions from command line. First
20370 DW_MACINFO_start_file will need to be ignored as it was already executed
20371 to create CURRENT_FILE for the main source holding also the command line
20372 definitions. On first met DW_MACINFO_start_file this flag is reset to
20373 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20374
20375 at_commandline = 1;
20376
20377 do
20378 {
20379 /* Do we at least have room for a macinfo type byte? */
20380 if (mac_ptr >= mac_end)
20381 {
20382 dwarf2_section_buffer_overflow_complaint (section);
20383 break;
20384 }
20385
20386 macinfo_type = read_1_byte (abfd, mac_ptr);
20387 mac_ptr++;
20388
20389 /* Note that we rely on the fact that the corresponding GNU and
20390 DWARF constants are the same. */
20391 switch (macinfo_type)
20392 {
20393 /* A zero macinfo type indicates the end of the macro
20394 information. */
20395 case 0:
20396 break;
20397
20398 case DW_MACRO_GNU_define:
20399 case DW_MACRO_GNU_undef:
20400 case DW_MACRO_GNU_define_indirect:
20401 case DW_MACRO_GNU_undef_indirect:
20402 case DW_MACRO_GNU_define_indirect_alt:
20403 case DW_MACRO_GNU_undef_indirect_alt:
20404 {
20405 unsigned int bytes_read;
20406 int line;
20407 const char *body;
20408 int is_define;
20409
20410 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20411 mac_ptr += bytes_read;
20412
20413 if (macinfo_type == DW_MACRO_GNU_define
20414 || macinfo_type == DW_MACRO_GNU_undef)
20415 {
20416 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20417 mac_ptr += bytes_read;
20418 }
20419 else
20420 {
20421 LONGEST str_offset;
20422
20423 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20424 mac_ptr += offset_size;
20425
20426 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20427 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20428 || section_is_dwz)
20429 {
20430 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20431
20432 body = read_indirect_string_from_dwz (dwz, str_offset);
20433 }
20434 else
20435 body = read_indirect_string_at_offset (abfd, str_offset);
20436 }
20437
20438 is_define = (macinfo_type == DW_MACRO_GNU_define
20439 || macinfo_type == DW_MACRO_GNU_define_indirect
20440 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20441 if (! current_file)
20442 {
20443 /* DWARF violation as no main source is present. */
20444 complaint (&symfile_complaints,
20445 _("debug info with no main source gives macro %s "
20446 "on line %d: %s"),
20447 is_define ? _("definition") : _("undefinition"),
20448 line, body);
20449 break;
20450 }
20451 if ((line == 0 && !at_commandline)
20452 || (line != 0 && at_commandline))
20453 complaint (&symfile_complaints,
20454 _("debug info gives %s macro %s with %s line %d: %s"),
20455 at_commandline ? _("command-line") : _("in-file"),
20456 is_define ? _("definition") : _("undefinition"),
20457 line == 0 ? _("zero") : _("non-zero"), line, body);
20458
20459 if (is_define)
20460 parse_macro_definition (current_file, line, body);
20461 else
20462 {
20463 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20464 || macinfo_type == DW_MACRO_GNU_undef_indirect
20465 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20466 macro_undef (current_file, line, body);
20467 }
20468 }
20469 break;
20470
20471 case DW_MACRO_GNU_start_file:
20472 {
20473 unsigned int bytes_read;
20474 int line, file;
20475
20476 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20477 mac_ptr += bytes_read;
20478 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20479 mac_ptr += bytes_read;
20480
20481 if ((line == 0 && !at_commandline)
20482 || (line != 0 && at_commandline))
20483 complaint (&symfile_complaints,
20484 _("debug info gives source %d included "
20485 "from %s at %s line %d"),
20486 file, at_commandline ? _("command-line") : _("file"),
20487 line == 0 ? _("zero") : _("non-zero"), line);
20488
20489 if (at_commandline)
20490 {
20491 /* This DW_MACRO_GNU_start_file was executed in the
20492 pass one. */
20493 at_commandline = 0;
20494 }
20495 else
20496 current_file = macro_start_file (file, line,
20497 current_file, comp_dir,
20498 lh, objfile);
20499 }
20500 break;
20501
20502 case DW_MACRO_GNU_end_file:
20503 if (! current_file)
20504 complaint (&symfile_complaints,
20505 _("macro debug info has an unmatched "
20506 "`close_file' directive"));
20507 else
20508 {
20509 current_file = current_file->included_by;
20510 if (! current_file)
20511 {
20512 enum dwarf_macro_record_type next_type;
20513
20514 /* GCC circa March 2002 doesn't produce the zero
20515 type byte marking the end of the compilation
20516 unit. Complain if it's not there, but exit no
20517 matter what. */
20518
20519 /* Do we at least have room for a macinfo type byte? */
20520 if (mac_ptr >= mac_end)
20521 {
20522 dwarf2_section_buffer_overflow_complaint (section);
20523 return;
20524 }
20525
20526 /* We don't increment mac_ptr here, so this is just
20527 a look-ahead. */
20528 next_type = read_1_byte (abfd, mac_ptr);
20529 if (next_type != 0)
20530 complaint (&symfile_complaints,
20531 _("no terminating 0-type entry for "
20532 "macros in `.debug_macinfo' section"));
20533
20534 return;
20535 }
20536 }
20537 break;
20538
20539 case DW_MACRO_GNU_transparent_include:
20540 case DW_MACRO_GNU_transparent_include_alt:
20541 {
20542 LONGEST offset;
20543 void **slot;
20544 bfd *include_bfd = abfd;
20545 struct dwarf2_section_info *include_section = section;
20546 struct dwarf2_section_info alt_section;
20547 const gdb_byte *include_mac_end = mac_end;
20548 int is_dwz = section_is_dwz;
20549 const gdb_byte *new_mac_ptr;
20550
20551 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20552 mac_ptr += offset_size;
20553
20554 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20555 {
20556 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20557
20558 dwarf2_read_section (dwarf2_per_objfile->objfile,
20559 &dwz->macro);
20560
20561 include_section = &dwz->macro;
20562 include_bfd = get_section_bfd_owner (include_section);
20563 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20564 is_dwz = 1;
20565 }
20566
20567 new_mac_ptr = include_section->buffer + offset;
20568 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20569
20570 if (*slot != NULL)
20571 {
20572 /* This has actually happened; see
20573 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20574 complaint (&symfile_complaints,
20575 _("recursive DW_MACRO_GNU_transparent_include in "
20576 ".debug_macro section"));
20577 }
20578 else
20579 {
20580 *slot = (void *) new_mac_ptr;
20581
20582 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20583 include_mac_end, current_file,
20584 lh, comp_dir,
20585 section, section_is_gnu, is_dwz,
20586 offset_size, objfile, include_hash);
20587
20588 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20589 }
20590 }
20591 break;
20592
20593 case DW_MACINFO_vendor_ext:
20594 if (!section_is_gnu)
20595 {
20596 unsigned int bytes_read;
20597 int constant;
20598
20599 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20600 mac_ptr += bytes_read;
20601 read_direct_string (abfd, mac_ptr, &bytes_read);
20602 mac_ptr += bytes_read;
20603
20604 /* We don't recognize any vendor extensions. */
20605 break;
20606 }
20607 /* FALLTHROUGH */
20608
20609 default:
20610 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20611 mac_ptr, mac_end, abfd, offset_size,
20612 section);
20613 if (mac_ptr == NULL)
20614 return;
20615 break;
20616 }
20617 } while (macinfo_type != 0);
20618 }
20619
20620 static void
20621 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20622 const char *comp_dir, int section_is_gnu)
20623 {
20624 struct objfile *objfile = dwarf2_per_objfile->objfile;
20625 struct line_header *lh = cu->line_header;
20626 bfd *abfd;
20627 const gdb_byte *mac_ptr, *mac_end;
20628 struct macro_source_file *current_file = 0;
20629 enum dwarf_macro_record_type macinfo_type;
20630 unsigned int offset_size = cu->header.offset_size;
20631 const gdb_byte *opcode_definitions[256];
20632 struct cleanup *cleanup;
20633 htab_t include_hash;
20634 void **slot;
20635 struct dwarf2_section_info *section;
20636 const char *section_name;
20637
20638 if (cu->dwo_unit != NULL)
20639 {
20640 if (section_is_gnu)
20641 {
20642 section = &cu->dwo_unit->dwo_file->sections.macro;
20643 section_name = ".debug_macro.dwo";
20644 }
20645 else
20646 {
20647 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20648 section_name = ".debug_macinfo.dwo";
20649 }
20650 }
20651 else
20652 {
20653 if (section_is_gnu)
20654 {
20655 section = &dwarf2_per_objfile->macro;
20656 section_name = ".debug_macro";
20657 }
20658 else
20659 {
20660 section = &dwarf2_per_objfile->macinfo;
20661 section_name = ".debug_macinfo";
20662 }
20663 }
20664
20665 dwarf2_read_section (objfile, section);
20666 if (section->buffer == NULL)
20667 {
20668 complaint (&symfile_complaints, _("missing %s section"), section_name);
20669 return;
20670 }
20671 abfd = get_section_bfd_owner (section);
20672
20673 /* First pass: Find the name of the base filename.
20674 This filename is needed in order to process all macros whose definition
20675 (or undefinition) comes from the command line. These macros are defined
20676 before the first DW_MACINFO_start_file entry, and yet still need to be
20677 associated to the base file.
20678
20679 To determine the base file name, we scan the macro definitions until we
20680 reach the first DW_MACINFO_start_file entry. We then initialize
20681 CURRENT_FILE accordingly so that any macro definition found before the
20682 first DW_MACINFO_start_file can still be associated to the base file. */
20683
20684 mac_ptr = section->buffer + offset;
20685 mac_end = section->buffer + section->size;
20686
20687 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20688 &offset_size, section_is_gnu);
20689 if (mac_ptr == NULL)
20690 {
20691 /* We already issued a complaint. */
20692 return;
20693 }
20694
20695 do
20696 {
20697 /* Do we at least have room for a macinfo type byte? */
20698 if (mac_ptr >= mac_end)
20699 {
20700 /* Complaint is printed during the second pass as GDB will probably
20701 stop the first pass earlier upon finding
20702 DW_MACINFO_start_file. */
20703 break;
20704 }
20705
20706 macinfo_type = read_1_byte (abfd, mac_ptr);
20707 mac_ptr++;
20708
20709 /* Note that we rely on the fact that the corresponding GNU and
20710 DWARF constants are the same. */
20711 switch (macinfo_type)
20712 {
20713 /* A zero macinfo type indicates the end of the macro
20714 information. */
20715 case 0:
20716 break;
20717
20718 case DW_MACRO_GNU_define:
20719 case DW_MACRO_GNU_undef:
20720 /* Only skip the data by MAC_PTR. */
20721 {
20722 unsigned int bytes_read;
20723
20724 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20725 mac_ptr += bytes_read;
20726 read_direct_string (abfd, mac_ptr, &bytes_read);
20727 mac_ptr += bytes_read;
20728 }
20729 break;
20730
20731 case DW_MACRO_GNU_start_file:
20732 {
20733 unsigned int bytes_read;
20734 int line, file;
20735
20736 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20737 mac_ptr += bytes_read;
20738 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20739 mac_ptr += bytes_read;
20740
20741 current_file = macro_start_file (file, line, current_file,
20742 comp_dir, lh, objfile);
20743 }
20744 break;
20745
20746 case DW_MACRO_GNU_end_file:
20747 /* No data to skip by MAC_PTR. */
20748 break;
20749
20750 case DW_MACRO_GNU_define_indirect:
20751 case DW_MACRO_GNU_undef_indirect:
20752 case DW_MACRO_GNU_define_indirect_alt:
20753 case DW_MACRO_GNU_undef_indirect_alt:
20754 {
20755 unsigned int bytes_read;
20756
20757 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20758 mac_ptr += bytes_read;
20759 mac_ptr += offset_size;
20760 }
20761 break;
20762
20763 case DW_MACRO_GNU_transparent_include:
20764 case DW_MACRO_GNU_transparent_include_alt:
20765 /* Note that, according to the spec, a transparent include
20766 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20767 skip this opcode. */
20768 mac_ptr += offset_size;
20769 break;
20770
20771 case DW_MACINFO_vendor_ext:
20772 /* Only skip the data by MAC_PTR. */
20773 if (!section_is_gnu)
20774 {
20775 unsigned int bytes_read;
20776
20777 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20778 mac_ptr += bytes_read;
20779 read_direct_string (abfd, mac_ptr, &bytes_read);
20780 mac_ptr += bytes_read;
20781 }
20782 /* FALLTHROUGH */
20783
20784 default:
20785 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20786 mac_ptr, mac_end, abfd, offset_size,
20787 section);
20788 if (mac_ptr == NULL)
20789 return;
20790 break;
20791 }
20792 } while (macinfo_type != 0 && current_file == NULL);
20793
20794 /* Second pass: Process all entries.
20795
20796 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20797 command-line macro definitions/undefinitions. This flag is unset when we
20798 reach the first DW_MACINFO_start_file entry. */
20799
20800 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20801 NULL, xcalloc, xfree);
20802 cleanup = make_cleanup_htab_delete (include_hash);
20803 mac_ptr = section->buffer + offset;
20804 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
20805 *slot = (void *) mac_ptr;
20806 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
20807 current_file, lh, comp_dir, section,
20808 section_is_gnu, 0,
20809 offset_size, objfile, include_hash);
20810 do_cleanups (cleanup);
20811 }
20812
20813 /* Check if the attribute's form is a DW_FORM_block*
20814 if so return true else false. */
20815
20816 static int
20817 attr_form_is_block (const struct attribute *attr)
20818 {
20819 return (attr == NULL ? 0 :
20820 attr->form == DW_FORM_block1
20821 || attr->form == DW_FORM_block2
20822 || attr->form == DW_FORM_block4
20823 || attr->form == DW_FORM_block
20824 || attr->form == DW_FORM_exprloc);
20825 }
20826
20827 /* Return non-zero if ATTR's value is a section offset --- classes
20828 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20829 You may use DW_UNSND (attr) to retrieve such offsets.
20830
20831 Section 7.5.4, "Attribute Encodings", explains that no attribute
20832 may have a value that belongs to more than one of these classes; it
20833 would be ambiguous if we did, because we use the same forms for all
20834 of them. */
20835
20836 static int
20837 attr_form_is_section_offset (const struct attribute *attr)
20838 {
20839 return (attr->form == DW_FORM_data4
20840 || attr->form == DW_FORM_data8
20841 || attr->form == DW_FORM_sec_offset);
20842 }
20843
20844 /* Return non-zero if ATTR's value falls in the 'constant' class, or
20845 zero otherwise. When this function returns true, you can apply
20846 dwarf2_get_attr_constant_value to it.
20847
20848 However, note that for some attributes you must check
20849 attr_form_is_section_offset before using this test. DW_FORM_data4
20850 and DW_FORM_data8 are members of both the constant class, and of
20851 the classes that contain offsets into other debug sections
20852 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20853 that, if an attribute's can be either a constant or one of the
20854 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20855 taken as section offsets, not constants. */
20856
20857 static int
20858 attr_form_is_constant (const struct attribute *attr)
20859 {
20860 switch (attr->form)
20861 {
20862 case DW_FORM_sdata:
20863 case DW_FORM_udata:
20864 case DW_FORM_data1:
20865 case DW_FORM_data2:
20866 case DW_FORM_data4:
20867 case DW_FORM_data8:
20868 return 1;
20869 default:
20870 return 0;
20871 }
20872 }
20873
20874
20875 /* DW_ADDR is always stored already as sect_offset; despite for the forms
20876 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20877
20878 static int
20879 attr_form_is_ref (const struct attribute *attr)
20880 {
20881 switch (attr->form)
20882 {
20883 case DW_FORM_ref_addr:
20884 case DW_FORM_ref1:
20885 case DW_FORM_ref2:
20886 case DW_FORM_ref4:
20887 case DW_FORM_ref8:
20888 case DW_FORM_ref_udata:
20889 case DW_FORM_GNU_ref_alt:
20890 return 1;
20891 default:
20892 return 0;
20893 }
20894 }
20895
20896 /* Return the .debug_loc section to use for CU.
20897 For DWO files use .debug_loc.dwo. */
20898
20899 static struct dwarf2_section_info *
20900 cu_debug_loc_section (struct dwarf2_cu *cu)
20901 {
20902 if (cu->dwo_unit)
20903 return &cu->dwo_unit->dwo_file->sections.loc;
20904 return &dwarf2_per_objfile->loc;
20905 }
20906
20907 /* A helper function that fills in a dwarf2_loclist_baton. */
20908
20909 static void
20910 fill_in_loclist_baton (struct dwarf2_cu *cu,
20911 struct dwarf2_loclist_baton *baton,
20912 const struct attribute *attr)
20913 {
20914 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20915
20916 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20917
20918 baton->per_cu = cu->per_cu;
20919 gdb_assert (baton->per_cu);
20920 /* We don't know how long the location list is, but make sure we
20921 don't run off the edge of the section. */
20922 baton->size = section->size - DW_UNSND (attr);
20923 baton->data = section->buffer + DW_UNSND (attr);
20924 baton->base_address = cu->base_address;
20925 baton->from_dwo = cu->dwo_unit != NULL;
20926 }
20927
20928 static void
20929 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
20930 struct dwarf2_cu *cu, int is_block)
20931 {
20932 struct objfile *objfile = dwarf2_per_objfile->objfile;
20933 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20934
20935 if (attr_form_is_section_offset (attr)
20936 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
20937 the section. If so, fall through to the complaint in the
20938 other branch. */
20939 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
20940 {
20941 struct dwarf2_loclist_baton *baton;
20942
20943 baton = obstack_alloc (&objfile->objfile_obstack,
20944 sizeof (struct dwarf2_loclist_baton));
20945
20946 fill_in_loclist_baton (cu, baton, attr);
20947
20948 if (cu->base_known == 0)
20949 complaint (&symfile_complaints,
20950 _("Location list used without "
20951 "specifying the CU base address."));
20952
20953 SYMBOL_ACLASS_INDEX (sym) = (is_block
20954 ? dwarf2_loclist_block_index
20955 : dwarf2_loclist_index);
20956 SYMBOL_LOCATION_BATON (sym) = baton;
20957 }
20958 else
20959 {
20960 struct dwarf2_locexpr_baton *baton;
20961
20962 baton = obstack_alloc (&objfile->objfile_obstack,
20963 sizeof (struct dwarf2_locexpr_baton));
20964 baton->per_cu = cu->per_cu;
20965 gdb_assert (baton->per_cu);
20966
20967 if (attr_form_is_block (attr))
20968 {
20969 /* Note that we're just copying the block's data pointer
20970 here, not the actual data. We're still pointing into the
20971 info_buffer for SYM's objfile; right now we never release
20972 that buffer, but when we do clean up properly this may
20973 need to change. */
20974 baton->size = DW_BLOCK (attr)->size;
20975 baton->data = DW_BLOCK (attr)->data;
20976 }
20977 else
20978 {
20979 dwarf2_invalid_attrib_class_complaint ("location description",
20980 SYMBOL_NATURAL_NAME (sym));
20981 baton->size = 0;
20982 }
20983
20984 SYMBOL_ACLASS_INDEX (sym) = (is_block
20985 ? dwarf2_locexpr_block_index
20986 : dwarf2_locexpr_index);
20987 SYMBOL_LOCATION_BATON (sym) = baton;
20988 }
20989 }
20990
20991 /* Return the OBJFILE associated with the compilation unit CU. If CU
20992 came from a separate debuginfo file, then the master objfile is
20993 returned. */
20994
20995 struct objfile *
20996 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20997 {
20998 struct objfile *objfile = per_cu->objfile;
20999
21000 /* Return the master objfile, so that we can report and look up the
21001 correct file containing this variable. */
21002 if (objfile->separate_debug_objfile_backlink)
21003 objfile = objfile->separate_debug_objfile_backlink;
21004
21005 return objfile;
21006 }
21007
21008 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21009 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21010 CU_HEADERP first. */
21011
21012 static const struct comp_unit_head *
21013 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21014 struct dwarf2_per_cu_data *per_cu)
21015 {
21016 const gdb_byte *info_ptr;
21017
21018 if (per_cu->cu)
21019 return &per_cu->cu->header;
21020
21021 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21022
21023 memset (cu_headerp, 0, sizeof (*cu_headerp));
21024 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21025
21026 return cu_headerp;
21027 }
21028
21029 /* Return the address size given in the compilation unit header for CU. */
21030
21031 int
21032 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21033 {
21034 struct comp_unit_head cu_header_local;
21035 const struct comp_unit_head *cu_headerp;
21036
21037 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21038
21039 return cu_headerp->addr_size;
21040 }
21041
21042 /* Return the offset size given in the compilation unit header for CU. */
21043
21044 int
21045 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21046 {
21047 struct comp_unit_head cu_header_local;
21048 const struct comp_unit_head *cu_headerp;
21049
21050 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21051
21052 return cu_headerp->offset_size;
21053 }
21054
21055 /* See its dwarf2loc.h declaration. */
21056
21057 int
21058 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21059 {
21060 struct comp_unit_head cu_header_local;
21061 const struct comp_unit_head *cu_headerp;
21062
21063 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21064
21065 if (cu_headerp->version == 2)
21066 return cu_headerp->addr_size;
21067 else
21068 return cu_headerp->offset_size;
21069 }
21070
21071 /* Return the text offset of the CU. The returned offset comes from
21072 this CU's objfile. If this objfile came from a separate debuginfo
21073 file, then the offset may be different from the corresponding
21074 offset in the parent objfile. */
21075
21076 CORE_ADDR
21077 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21078 {
21079 struct objfile *objfile = per_cu->objfile;
21080
21081 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21082 }
21083
21084 /* Locate the .debug_info compilation unit from CU's objfile which contains
21085 the DIE at OFFSET. Raises an error on failure. */
21086
21087 static struct dwarf2_per_cu_data *
21088 dwarf2_find_containing_comp_unit (sect_offset offset,
21089 unsigned int offset_in_dwz,
21090 struct objfile *objfile)
21091 {
21092 struct dwarf2_per_cu_data *this_cu;
21093 int low, high;
21094 const sect_offset *cu_off;
21095
21096 low = 0;
21097 high = dwarf2_per_objfile->n_comp_units - 1;
21098 while (high > low)
21099 {
21100 struct dwarf2_per_cu_data *mid_cu;
21101 int mid = low + (high - low) / 2;
21102
21103 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21104 cu_off = &mid_cu->offset;
21105 if (mid_cu->is_dwz > offset_in_dwz
21106 || (mid_cu->is_dwz == offset_in_dwz
21107 && cu_off->sect_off >= offset.sect_off))
21108 high = mid;
21109 else
21110 low = mid + 1;
21111 }
21112 gdb_assert (low == high);
21113 this_cu = dwarf2_per_objfile->all_comp_units[low];
21114 cu_off = &this_cu->offset;
21115 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21116 {
21117 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21118 error (_("Dwarf Error: could not find partial DIE containing "
21119 "offset 0x%lx [in module %s]"),
21120 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21121
21122 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21123 <= offset.sect_off);
21124 return dwarf2_per_objfile->all_comp_units[low-1];
21125 }
21126 else
21127 {
21128 this_cu = dwarf2_per_objfile->all_comp_units[low];
21129 if (low == dwarf2_per_objfile->n_comp_units - 1
21130 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21131 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21132 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21133 return this_cu;
21134 }
21135 }
21136
21137 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21138
21139 static void
21140 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21141 {
21142 memset (cu, 0, sizeof (*cu));
21143 per_cu->cu = cu;
21144 cu->per_cu = per_cu;
21145 cu->objfile = per_cu->objfile;
21146 obstack_init (&cu->comp_unit_obstack);
21147 }
21148
21149 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21150
21151 static void
21152 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21153 enum language pretend_language)
21154 {
21155 struct attribute *attr;
21156
21157 /* Set the language we're debugging. */
21158 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21159 if (attr)
21160 set_cu_language (DW_UNSND (attr), cu);
21161 else
21162 {
21163 cu->language = pretend_language;
21164 cu->language_defn = language_def (cu->language);
21165 }
21166
21167 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21168 if (attr)
21169 cu->producer = DW_STRING (attr);
21170 }
21171
21172 /* Release one cached compilation unit, CU. We unlink it from the tree
21173 of compilation units, but we don't remove it from the read_in_chain;
21174 the caller is responsible for that.
21175 NOTE: DATA is a void * because this function is also used as a
21176 cleanup routine. */
21177
21178 static void
21179 free_heap_comp_unit (void *data)
21180 {
21181 struct dwarf2_cu *cu = data;
21182
21183 gdb_assert (cu->per_cu != NULL);
21184 cu->per_cu->cu = NULL;
21185 cu->per_cu = NULL;
21186
21187 obstack_free (&cu->comp_unit_obstack, NULL);
21188
21189 xfree (cu);
21190 }
21191
21192 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21193 when we're finished with it. We can't free the pointer itself, but be
21194 sure to unlink it from the cache. Also release any associated storage. */
21195
21196 static void
21197 free_stack_comp_unit (void *data)
21198 {
21199 struct dwarf2_cu *cu = data;
21200
21201 gdb_assert (cu->per_cu != NULL);
21202 cu->per_cu->cu = NULL;
21203 cu->per_cu = NULL;
21204
21205 obstack_free (&cu->comp_unit_obstack, NULL);
21206 cu->partial_dies = NULL;
21207 }
21208
21209 /* Free all cached compilation units. */
21210
21211 static void
21212 free_cached_comp_units (void *data)
21213 {
21214 struct dwarf2_per_cu_data *per_cu, **last_chain;
21215
21216 per_cu = dwarf2_per_objfile->read_in_chain;
21217 last_chain = &dwarf2_per_objfile->read_in_chain;
21218 while (per_cu != NULL)
21219 {
21220 struct dwarf2_per_cu_data *next_cu;
21221
21222 next_cu = per_cu->cu->read_in_chain;
21223
21224 free_heap_comp_unit (per_cu->cu);
21225 *last_chain = next_cu;
21226
21227 per_cu = next_cu;
21228 }
21229 }
21230
21231 /* Increase the age counter on each cached compilation unit, and free
21232 any that are too old. */
21233
21234 static void
21235 age_cached_comp_units (void)
21236 {
21237 struct dwarf2_per_cu_data *per_cu, **last_chain;
21238
21239 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21240 per_cu = dwarf2_per_objfile->read_in_chain;
21241 while (per_cu != NULL)
21242 {
21243 per_cu->cu->last_used ++;
21244 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21245 dwarf2_mark (per_cu->cu);
21246 per_cu = per_cu->cu->read_in_chain;
21247 }
21248
21249 per_cu = dwarf2_per_objfile->read_in_chain;
21250 last_chain = &dwarf2_per_objfile->read_in_chain;
21251 while (per_cu != NULL)
21252 {
21253 struct dwarf2_per_cu_data *next_cu;
21254
21255 next_cu = per_cu->cu->read_in_chain;
21256
21257 if (!per_cu->cu->mark)
21258 {
21259 free_heap_comp_unit (per_cu->cu);
21260 *last_chain = next_cu;
21261 }
21262 else
21263 last_chain = &per_cu->cu->read_in_chain;
21264
21265 per_cu = next_cu;
21266 }
21267 }
21268
21269 /* Remove a single compilation unit from the cache. */
21270
21271 static void
21272 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21273 {
21274 struct dwarf2_per_cu_data *per_cu, **last_chain;
21275
21276 per_cu = dwarf2_per_objfile->read_in_chain;
21277 last_chain = &dwarf2_per_objfile->read_in_chain;
21278 while (per_cu != NULL)
21279 {
21280 struct dwarf2_per_cu_data *next_cu;
21281
21282 next_cu = per_cu->cu->read_in_chain;
21283
21284 if (per_cu == target_per_cu)
21285 {
21286 free_heap_comp_unit (per_cu->cu);
21287 per_cu->cu = NULL;
21288 *last_chain = next_cu;
21289 break;
21290 }
21291 else
21292 last_chain = &per_cu->cu->read_in_chain;
21293
21294 per_cu = next_cu;
21295 }
21296 }
21297
21298 /* Release all extra memory associated with OBJFILE. */
21299
21300 void
21301 dwarf2_free_objfile (struct objfile *objfile)
21302 {
21303 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21304
21305 if (dwarf2_per_objfile == NULL)
21306 return;
21307
21308 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21309 free_cached_comp_units (NULL);
21310
21311 if (dwarf2_per_objfile->quick_file_names_table)
21312 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21313
21314 /* Everything else should be on the objfile obstack. */
21315 }
21316
21317 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21318 We store these in a hash table separate from the DIEs, and preserve them
21319 when the DIEs are flushed out of cache.
21320
21321 The CU "per_cu" pointer is needed because offset alone is not enough to
21322 uniquely identify the type. A file may have multiple .debug_types sections,
21323 or the type may come from a DWO file. Furthermore, while it's more logical
21324 to use per_cu->section+offset, with Fission the section with the data is in
21325 the DWO file but we don't know that section at the point we need it.
21326 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21327 because we can enter the lookup routine, get_die_type_at_offset, from
21328 outside this file, and thus won't necessarily have PER_CU->cu.
21329 Fortunately, PER_CU is stable for the life of the objfile. */
21330
21331 struct dwarf2_per_cu_offset_and_type
21332 {
21333 const struct dwarf2_per_cu_data *per_cu;
21334 sect_offset offset;
21335 struct type *type;
21336 };
21337
21338 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21339
21340 static hashval_t
21341 per_cu_offset_and_type_hash (const void *item)
21342 {
21343 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21344
21345 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21346 }
21347
21348 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21349
21350 static int
21351 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21352 {
21353 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21354 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21355
21356 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21357 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21358 }
21359
21360 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21361 table if necessary. For convenience, return TYPE.
21362
21363 The DIEs reading must have careful ordering to:
21364 * Not cause infite loops trying to read in DIEs as a prerequisite for
21365 reading current DIE.
21366 * Not trying to dereference contents of still incompletely read in types
21367 while reading in other DIEs.
21368 * Enable referencing still incompletely read in types just by a pointer to
21369 the type without accessing its fields.
21370
21371 Therefore caller should follow these rules:
21372 * Try to fetch any prerequisite types we may need to build this DIE type
21373 before building the type and calling set_die_type.
21374 * After building type call set_die_type for current DIE as soon as
21375 possible before fetching more types to complete the current type.
21376 * Make the type as complete as possible before fetching more types. */
21377
21378 static struct type *
21379 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21380 {
21381 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21382 struct objfile *objfile = cu->objfile;
21383
21384 /* For Ada types, make sure that the gnat-specific data is always
21385 initialized (if not already set). There are a few types where
21386 we should not be doing so, because the type-specific area is
21387 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21388 where the type-specific area is used to store the floatformat).
21389 But this is not a problem, because the gnat-specific information
21390 is actually not needed for these types. */
21391 if (need_gnat_info (cu)
21392 && TYPE_CODE (type) != TYPE_CODE_FUNC
21393 && TYPE_CODE (type) != TYPE_CODE_FLT
21394 && !HAVE_GNAT_AUX_INFO (type))
21395 INIT_GNAT_SPECIFIC (type);
21396
21397 if (dwarf2_per_objfile->die_type_hash == NULL)
21398 {
21399 dwarf2_per_objfile->die_type_hash =
21400 htab_create_alloc_ex (127,
21401 per_cu_offset_and_type_hash,
21402 per_cu_offset_and_type_eq,
21403 NULL,
21404 &objfile->objfile_obstack,
21405 hashtab_obstack_allocate,
21406 dummy_obstack_deallocate);
21407 }
21408
21409 ofs.per_cu = cu->per_cu;
21410 ofs.offset = die->offset;
21411 ofs.type = type;
21412 slot = (struct dwarf2_per_cu_offset_and_type **)
21413 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21414 if (*slot)
21415 complaint (&symfile_complaints,
21416 _("A problem internal to GDB: DIE 0x%x has type already set"),
21417 die->offset.sect_off);
21418 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21419 **slot = ofs;
21420 return type;
21421 }
21422
21423 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21424 or return NULL if the die does not have a saved type. */
21425
21426 static struct type *
21427 get_die_type_at_offset (sect_offset offset,
21428 struct dwarf2_per_cu_data *per_cu)
21429 {
21430 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21431
21432 if (dwarf2_per_objfile->die_type_hash == NULL)
21433 return NULL;
21434
21435 ofs.per_cu = per_cu;
21436 ofs.offset = offset;
21437 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21438 if (slot)
21439 return slot->type;
21440 else
21441 return NULL;
21442 }
21443
21444 /* Look up the type for DIE in CU in die_type_hash,
21445 or return NULL if DIE does not have a saved type. */
21446
21447 static struct type *
21448 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21449 {
21450 return get_die_type_at_offset (die->offset, cu->per_cu);
21451 }
21452
21453 /* Add a dependence relationship from CU to REF_PER_CU. */
21454
21455 static void
21456 dwarf2_add_dependence (struct dwarf2_cu *cu,
21457 struct dwarf2_per_cu_data *ref_per_cu)
21458 {
21459 void **slot;
21460
21461 if (cu->dependencies == NULL)
21462 cu->dependencies
21463 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21464 NULL, &cu->comp_unit_obstack,
21465 hashtab_obstack_allocate,
21466 dummy_obstack_deallocate);
21467
21468 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21469 if (*slot == NULL)
21470 *slot = ref_per_cu;
21471 }
21472
21473 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21474 Set the mark field in every compilation unit in the
21475 cache that we must keep because we are keeping CU. */
21476
21477 static int
21478 dwarf2_mark_helper (void **slot, void *data)
21479 {
21480 struct dwarf2_per_cu_data *per_cu;
21481
21482 per_cu = (struct dwarf2_per_cu_data *) *slot;
21483
21484 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21485 reading of the chain. As such dependencies remain valid it is not much
21486 useful to track and undo them during QUIT cleanups. */
21487 if (per_cu->cu == NULL)
21488 return 1;
21489
21490 if (per_cu->cu->mark)
21491 return 1;
21492 per_cu->cu->mark = 1;
21493
21494 if (per_cu->cu->dependencies != NULL)
21495 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21496
21497 return 1;
21498 }
21499
21500 /* Set the mark field in CU and in every other compilation unit in the
21501 cache that we must keep because we are keeping CU. */
21502
21503 static void
21504 dwarf2_mark (struct dwarf2_cu *cu)
21505 {
21506 if (cu->mark)
21507 return;
21508 cu->mark = 1;
21509 if (cu->dependencies != NULL)
21510 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21511 }
21512
21513 static void
21514 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21515 {
21516 while (per_cu)
21517 {
21518 per_cu->cu->mark = 0;
21519 per_cu = per_cu->cu->read_in_chain;
21520 }
21521 }
21522
21523 /* Trivial hash function for partial_die_info: the hash value of a DIE
21524 is its offset in .debug_info for this objfile. */
21525
21526 static hashval_t
21527 partial_die_hash (const void *item)
21528 {
21529 const struct partial_die_info *part_die = item;
21530
21531 return part_die->offset.sect_off;
21532 }
21533
21534 /* Trivial comparison function for partial_die_info structures: two DIEs
21535 are equal if they have the same offset. */
21536
21537 static int
21538 partial_die_eq (const void *item_lhs, const void *item_rhs)
21539 {
21540 const struct partial_die_info *part_die_lhs = item_lhs;
21541 const struct partial_die_info *part_die_rhs = item_rhs;
21542
21543 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21544 }
21545
21546 static struct cmd_list_element *set_dwarf2_cmdlist;
21547 static struct cmd_list_element *show_dwarf2_cmdlist;
21548
21549 static void
21550 set_dwarf2_cmd (char *args, int from_tty)
21551 {
21552 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21553 }
21554
21555 static void
21556 show_dwarf2_cmd (char *args, int from_tty)
21557 {
21558 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21559 }
21560
21561 /* Free data associated with OBJFILE, if necessary. */
21562
21563 static void
21564 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21565 {
21566 struct dwarf2_per_objfile *data = d;
21567 int ix;
21568
21569 /* Make sure we don't accidentally use dwarf2_per_objfile while
21570 cleaning up. */
21571 dwarf2_per_objfile = NULL;
21572
21573 for (ix = 0; ix < data->n_comp_units; ++ix)
21574 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21575
21576 for (ix = 0; ix < data->n_type_units; ++ix)
21577 VEC_free (dwarf2_per_cu_ptr,
21578 data->all_type_units[ix]->per_cu.imported_symtabs);
21579 xfree (data->all_type_units);
21580
21581 VEC_free (dwarf2_section_info_def, data->types);
21582
21583 if (data->dwo_files)
21584 free_dwo_files (data->dwo_files, objfile);
21585 if (data->dwp_file)
21586 gdb_bfd_unref (data->dwp_file->dbfd);
21587
21588 if (data->dwz_file && data->dwz_file->dwz_bfd)
21589 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21590 }
21591
21592 \f
21593 /* The "save gdb-index" command. */
21594
21595 /* The contents of the hash table we create when building the string
21596 table. */
21597 struct strtab_entry
21598 {
21599 offset_type offset;
21600 const char *str;
21601 };
21602
21603 /* Hash function for a strtab_entry.
21604
21605 Function is used only during write_hash_table so no index format backward
21606 compatibility is needed. */
21607
21608 static hashval_t
21609 hash_strtab_entry (const void *e)
21610 {
21611 const struct strtab_entry *entry = e;
21612 return mapped_index_string_hash (INT_MAX, entry->str);
21613 }
21614
21615 /* Equality function for a strtab_entry. */
21616
21617 static int
21618 eq_strtab_entry (const void *a, const void *b)
21619 {
21620 const struct strtab_entry *ea = a;
21621 const struct strtab_entry *eb = b;
21622 return !strcmp (ea->str, eb->str);
21623 }
21624
21625 /* Create a strtab_entry hash table. */
21626
21627 static htab_t
21628 create_strtab (void)
21629 {
21630 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21631 xfree, xcalloc, xfree);
21632 }
21633
21634 /* Add a string to the constant pool. Return the string's offset in
21635 host order. */
21636
21637 static offset_type
21638 add_string (htab_t table, struct obstack *cpool, const char *str)
21639 {
21640 void **slot;
21641 struct strtab_entry entry;
21642 struct strtab_entry *result;
21643
21644 entry.str = str;
21645 slot = htab_find_slot (table, &entry, INSERT);
21646 if (*slot)
21647 result = *slot;
21648 else
21649 {
21650 result = XNEW (struct strtab_entry);
21651 result->offset = obstack_object_size (cpool);
21652 result->str = str;
21653 obstack_grow_str0 (cpool, str);
21654 *slot = result;
21655 }
21656 return result->offset;
21657 }
21658
21659 /* An entry in the symbol table. */
21660 struct symtab_index_entry
21661 {
21662 /* The name of the symbol. */
21663 const char *name;
21664 /* The offset of the name in the constant pool. */
21665 offset_type index_offset;
21666 /* A sorted vector of the indices of all the CUs that hold an object
21667 of this name. */
21668 VEC (offset_type) *cu_indices;
21669 };
21670
21671 /* The symbol table. This is a power-of-2-sized hash table. */
21672 struct mapped_symtab
21673 {
21674 offset_type n_elements;
21675 offset_type size;
21676 struct symtab_index_entry **data;
21677 };
21678
21679 /* Hash function for a symtab_index_entry. */
21680
21681 static hashval_t
21682 hash_symtab_entry (const void *e)
21683 {
21684 const struct symtab_index_entry *entry = e;
21685 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21686 sizeof (offset_type) * VEC_length (offset_type,
21687 entry->cu_indices),
21688 0);
21689 }
21690
21691 /* Equality function for a symtab_index_entry. */
21692
21693 static int
21694 eq_symtab_entry (const void *a, const void *b)
21695 {
21696 const struct symtab_index_entry *ea = a;
21697 const struct symtab_index_entry *eb = b;
21698 int len = VEC_length (offset_type, ea->cu_indices);
21699 if (len != VEC_length (offset_type, eb->cu_indices))
21700 return 0;
21701 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21702 VEC_address (offset_type, eb->cu_indices),
21703 sizeof (offset_type) * len);
21704 }
21705
21706 /* Destroy a symtab_index_entry. */
21707
21708 static void
21709 delete_symtab_entry (void *p)
21710 {
21711 struct symtab_index_entry *entry = p;
21712 VEC_free (offset_type, entry->cu_indices);
21713 xfree (entry);
21714 }
21715
21716 /* Create a hash table holding symtab_index_entry objects. */
21717
21718 static htab_t
21719 create_symbol_hash_table (void)
21720 {
21721 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21722 delete_symtab_entry, xcalloc, xfree);
21723 }
21724
21725 /* Create a new mapped symtab object. */
21726
21727 static struct mapped_symtab *
21728 create_mapped_symtab (void)
21729 {
21730 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21731 symtab->n_elements = 0;
21732 symtab->size = 1024;
21733 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21734 return symtab;
21735 }
21736
21737 /* Destroy a mapped_symtab. */
21738
21739 static void
21740 cleanup_mapped_symtab (void *p)
21741 {
21742 struct mapped_symtab *symtab = p;
21743 /* The contents of the array are freed when the other hash table is
21744 destroyed. */
21745 xfree (symtab->data);
21746 xfree (symtab);
21747 }
21748
21749 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
21750 the slot.
21751
21752 Function is used only during write_hash_table so no index format backward
21753 compatibility is needed. */
21754
21755 static struct symtab_index_entry **
21756 find_slot (struct mapped_symtab *symtab, const char *name)
21757 {
21758 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
21759
21760 index = hash & (symtab->size - 1);
21761 step = ((hash * 17) & (symtab->size - 1)) | 1;
21762
21763 for (;;)
21764 {
21765 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21766 return &symtab->data[index];
21767 index = (index + step) & (symtab->size - 1);
21768 }
21769 }
21770
21771 /* Expand SYMTAB's hash table. */
21772
21773 static void
21774 hash_expand (struct mapped_symtab *symtab)
21775 {
21776 offset_type old_size = symtab->size;
21777 offset_type i;
21778 struct symtab_index_entry **old_entries = symtab->data;
21779
21780 symtab->size *= 2;
21781 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21782
21783 for (i = 0; i < old_size; ++i)
21784 {
21785 if (old_entries[i])
21786 {
21787 struct symtab_index_entry **slot = find_slot (symtab,
21788 old_entries[i]->name);
21789 *slot = old_entries[i];
21790 }
21791 }
21792
21793 xfree (old_entries);
21794 }
21795
21796 /* Add an entry to SYMTAB. NAME is the name of the symbol.
21797 CU_INDEX is the index of the CU in which the symbol appears.
21798 IS_STATIC is one if the symbol is static, otherwise zero (global). */
21799
21800 static void
21801 add_index_entry (struct mapped_symtab *symtab, const char *name,
21802 int is_static, gdb_index_symbol_kind kind,
21803 offset_type cu_index)
21804 {
21805 struct symtab_index_entry **slot;
21806 offset_type cu_index_and_attrs;
21807
21808 ++symtab->n_elements;
21809 if (4 * symtab->n_elements / 3 >= symtab->size)
21810 hash_expand (symtab);
21811
21812 slot = find_slot (symtab, name);
21813 if (!*slot)
21814 {
21815 *slot = XNEW (struct symtab_index_entry);
21816 (*slot)->name = name;
21817 /* index_offset is set later. */
21818 (*slot)->cu_indices = NULL;
21819 }
21820
21821 cu_index_and_attrs = 0;
21822 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21823 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21824 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21825
21826 /* We don't want to record an index value twice as we want to avoid the
21827 duplication.
21828 We process all global symbols and then all static symbols
21829 (which would allow us to avoid the duplication by only having to check
21830 the last entry pushed), but a symbol could have multiple kinds in one CU.
21831 To keep things simple we don't worry about the duplication here and
21832 sort and uniqufy the list after we've processed all symbols. */
21833 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21834 }
21835
21836 /* qsort helper routine for uniquify_cu_indices. */
21837
21838 static int
21839 offset_type_compare (const void *ap, const void *bp)
21840 {
21841 offset_type a = *(offset_type *) ap;
21842 offset_type b = *(offset_type *) bp;
21843
21844 return (a > b) - (b > a);
21845 }
21846
21847 /* Sort and remove duplicates of all symbols' cu_indices lists. */
21848
21849 static void
21850 uniquify_cu_indices (struct mapped_symtab *symtab)
21851 {
21852 int i;
21853
21854 for (i = 0; i < symtab->size; ++i)
21855 {
21856 struct symtab_index_entry *entry = symtab->data[i];
21857
21858 if (entry
21859 && entry->cu_indices != NULL)
21860 {
21861 unsigned int next_to_insert, next_to_check;
21862 offset_type last_value;
21863
21864 qsort (VEC_address (offset_type, entry->cu_indices),
21865 VEC_length (offset_type, entry->cu_indices),
21866 sizeof (offset_type), offset_type_compare);
21867
21868 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21869 next_to_insert = 1;
21870 for (next_to_check = 1;
21871 next_to_check < VEC_length (offset_type, entry->cu_indices);
21872 ++next_to_check)
21873 {
21874 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21875 != last_value)
21876 {
21877 last_value = VEC_index (offset_type, entry->cu_indices,
21878 next_to_check);
21879 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21880 last_value);
21881 ++next_to_insert;
21882 }
21883 }
21884 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21885 }
21886 }
21887 }
21888
21889 /* Add a vector of indices to the constant pool. */
21890
21891 static offset_type
21892 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
21893 struct symtab_index_entry *entry)
21894 {
21895 void **slot;
21896
21897 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
21898 if (!*slot)
21899 {
21900 offset_type len = VEC_length (offset_type, entry->cu_indices);
21901 offset_type val = MAYBE_SWAP (len);
21902 offset_type iter;
21903 int i;
21904
21905 *slot = entry;
21906 entry->index_offset = obstack_object_size (cpool);
21907
21908 obstack_grow (cpool, &val, sizeof (val));
21909 for (i = 0;
21910 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21911 ++i)
21912 {
21913 val = MAYBE_SWAP (iter);
21914 obstack_grow (cpool, &val, sizeof (val));
21915 }
21916 }
21917 else
21918 {
21919 struct symtab_index_entry *old_entry = *slot;
21920 entry->index_offset = old_entry->index_offset;
21921 entry = old_entry;
21922 }
21923 return entry->index_offset;
21924 }
21925
21926 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21927 constant pool entries going into the obstack CPOOL. */
21928
21929 static void
21930 write_hash_table (struct mapped_symtab *symtab,
21931 struct obstack *output, struct obstack *cpool)
21932 {
21933 offset_type i;
21934 htab_t symbol_hash_table;
21935 htab_t str_table;
21936
21937 symbol_hash_table = create_symbol_hash_table ();
21938 str_table = create_strtab ();
21939
21940 /* We add all the index vectors to the constant pool first, to
21941 ensure alignment is ok. */
21942 for (i = 0; i < symtab->size; ++i)
21943 {
21944 if (symtab->data[i])
21945 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
21946 }
21947
21948 /* Now write out the hash table. */
21949 for (i = 0; i < symtab->size; ++i)
21950 {
21951 offset_type str_off, vec_off;
21952
21953 if (symtab->data[i])
21954 {
21955 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21956 vec_off = symtab->data[i]->index_offset;
21957 }
21958 else
21959 {
21960 /* While 0 is a valid constant pool index, it is not valid
21961 to have 0 for both offsets. */
21962 str_off = 0;
21963 vec_off = 0;
21964 }
21965
21966 str_off = MAYBE_SWAP (str_off);
21967 vec_off = MAYBE_SWAP (vec_off);
21968
21969 obstack_grow (output, &str_off, sizeof (str_off));
21970 obstack_grow (output, &vec_off, sizeof (vec_off));
21971 }
21972
21973 htab_delete (str_table);
21974 htab_delete (symbol_hash_table);
21975 }
21976
21977 /* Struct to map psymtab to CU index in the index file. */
21978 struct psymtab_cu_index_map
21979 {
21980 struct partial_symtab *psymtab;
21981 unsigned int cu_index;
21982 };
21983
21984 static hashval_t
21985 hash_psymtab_cu_index (const void *item)
21986 {
21987 const struct psymtab_cu_index_map *map = item;
21988
21989 return htab_hash_pointer (map->psymtab);
21990 }
21991
21992 static int
21993 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21994 {
21995 const struct psymtab_cu_index_map *lhs = item_lhs;
21996 const struct psymtab_cu_index_map *rhs = item_rhs;
21997
21998 return lhs->psymtab == rhs->psymtab;
21999 }
22000
22001 /* Helper struct for building the address table. */
22002 struct addrmap_index_data
22003 {
22004 struct objfile *objfile;
22005 struct obstack *addr_obstack;
22006 htab_t cu_index_htab;
22007
22008 /* Non-zero if the previous_* fields are valid.
22009 We can't write an entry until we see the next entry (since it is only then
22010 that we know the end of the entry). */
22011 int previous_valid;
22012 /* Index of the CU in the table of all CUs in the index file. */
22013 unsigned int previous_cu_index;
22014 /* Start address of the CU. */
22015 CORE_ADDR previous_cu_start;
22016 };
22017
22018 /* Write an address entry to OBSTACK. */
22019
22020 static void
22021 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22022 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22023 {
22024 offset_type cu_index_to_write;
22025 gdb_byte addr[8];
22026 CORE_ADDR baseaddr;
22027
22028 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22029
22030 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22031 obstack_grow (obstack, addr, 8);
22032 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22033 obstack_grow (obstack, addr, 8);
22034 cu_index_to_write = MAYBE_SWAP (cu_index);
22035 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22036 }
22037
22038 /* Worker function for traversing an addrmap to build the address table. */
22039
22040 static int
22041 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22042 {
22043 struct addrmap_index_data *data = datap;
22044 struct partial_symtab *pst = obj;
22045
22046 if (data->previous_valid)
22047 add_address_entry (data->objfile, data->addr_obstack,
22048 data->previous_cu_start, start_addr,
22049 data->previous_cu_index);
22050
22051 data->previous_cu_start = start_addr;
22052 if (pst != NULL)
22053 {
22054 struct psymtab_cu_index_map find_map, *map;
22055 find_map.psymtab = pst;
22056 map = htab_find (data->cu_index_htab, &find_map);
22057 gdb_assert (map != NULL);
22058 data->previous_cu_index = map->cu_index;
22059 data->previous_valid = 1;
22060 }
22061 else
22062 data->previous_valid = 0;
22063
22064 return 0;
22065 }
22066
22067 /* Write OBJFILE's address map to OBSTACK.
22068 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22069 in the index file. */
22070
22071 static void
22072 write_address_map (struct objfile *objfile, struct obstack *obstack,
22073 htab_t cu_index_htab)
22074 {
22075 struct addrmap_index_data addrmap_index_data;
22076
22077 /* When writing the address table, we have to cope with the fact that
22078 the addrmap iterator only provides the start of a region; we have to
22079 wait until the next invocation to get the start of the next region. */
22080
22081 addrmap_index_data.objfile = objfile;
22082 addrmap_index_data.addr_obstack = obstack;
22083 addrmap_index_data.cu_index_htab = cu_index_htab;
22084 addrmap_index_data.previous_valid = 0;
22085
22086 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22087 &addrmap_index_data);
22088
22089 /* It's highly unlikely the last entry (end address = 0xff...ff)
22090 is valid, but we should still handle it.
22091 The end address is recorded as the start of the next region, but that
22092 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22093 anyway. */
22094 if (addrmap_index_data.previous_valid)
22095 add_address_entry (objfile, obstack,
22096 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22097 addrmap_index_data.previous_cu_index);
22098 }
22099
22100 /* Return the symbol kind of PSYM. */
22101
22102 static gdb_index_symbol_kind
22103 symbol_kind (struct partial_symbol *psym)
22104 {
22105 domain_enum domain = PSYMBOL_DOMAIN (psym);
22106 enum address_class aclass = PSYMBOL_CLASS (psym);
22107
22108 switch (domain)
22109 {
22110 case VAR_DOMAIN:
22111 switch (aclass)
22112 {
22113 case LOC_BLOCK:
22114 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22115 case LOC_TYPEDEF:
22116 return GDB_INDEX_SYMBOL_KIND_TYPE;
22117 case LOC_COMPUTED:
22118 case LOC_CONST_BYTES:
22119 case LOC_OPTIMIZED_OUT:
22120 case LOC_STATIC:
22121 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22122 case LOC_CONST:
22123 /* Note: It's currently impossible to recognize psyms as enum values
22124 short of reading the type info. For now punt. */
22125 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22126 default:
22127 /* There are other LOC_FOO values that one might want to classify
22128 as variables, but dwarf2read.c doesn't currently use them. */
22129 return GDB_INDEX_SYMBOL_KIND_OTHER;
22130 }
22131 case STRUCT_DOMAIN:
22132 return GDB_INDEX_SYMBOL_KIND_TYPE;
22133 default:
22134 return GDB_INDEX_SYMBOL_KIND_OTHER;
22135 }
22136 }
22137
22138 /* Add a list of partial symbols to SYMTAB. */
22139
22140 static void
22141 write_psymbols (struct mapped_symtab *symtab,
22142 htab_t psyms_seen,
22143 struct partial_symbol **psymp,
22144 int count,
22145 offset_type cu_index,
22146 int is_static)
22147 {
22148 for (; count-- > 0; ++psymp)
22149 {
22150 struct partial_symbol *psym = *psymp;
22151 void **slot;
22152
22153 if (SYMBOL_LANGUAGE (psym) == language_ada)
22154 error (_("Ada is not currently supported by the index"));
22155
22156 /* Only add a given psymbol once. */
22157 slot = htab_find_slot (psyms_seen, psym, INSERT);
22158 if (!*slot)
22159 {
22160 gdb_index_symbol_kind kind = symbol_kind (psym);
22161
22162 *slot = psym;
22163 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22164 is_static, kind, cu_index);
22165 }
22166 }
22167 }
22168
22169 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22170 exception if there is an error. */
22171
22172 static void
22173 write_obstack (FILE *file, struct obstack *obstack)
22174 {
22175 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22176 file)
22177 != obstack_object_size (obstack))
22178 error (_("couldn't data write to file"));
22179 }
22180
22181 /* Unlink a file if the argument is not NULL. */
22182
22183 static void
22184 unlink_if_set (void *p)
22185 {
22186 char **filename = p;
22187 if (*filename)
22188 unlink (*filename);
22189 }
22190
22191 /* A helper struct used when iterating over debug_types. */
22192 struct signatured_type_index_data
22193 {
22194 struct objfile *objfile;
22195 struct mapped_symtab *symtab;
22196 struct obstack *types_list;
22197 htab_t psyms_seen;
22198 int cu_index;
22199 };
22200
22201 /* A helper function that writes a single signatured_type to an
22202 obstack. */
22203
22204 static int
22205 write_one_signatured_type (void **slot, void *d)
22206 {
22207 struct signatured_type_index_data *info = d;
22208 struct signatured_type *entry = (struct signatured_type *) *slot;
22209 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22210 gdb_byte val[8];
22211
22212 write_psymbols (info->symtab,
22213 info->psyms_seen,
22214 info->objfile->global_psymbols.list
22215 + psymtab->globals_offset,
22216 psymtab->n_global_syms, info->cu_index,
22217 0);
22218 write_psymbols (info->symtab,
22219 info->psyms_seen,
22220 info->objfile->static_psymbols.list
22221 + psymtab->statics_offset,
22222 psymtab->n_static_syms, info->cu_index,
22223 1);
22224
22225 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22226 entry->per_cu.offset.sect_off);
22227 obstack_grow (info->types_list, val, 8);
22228 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22229 entry->type_offset_in_tu.cu_off);
22230 obstack_grow (info->types_list, val, 8);
22231 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22232 obstack_grow (info->types_list, val, 8);
22233
22234 ++info->cu_index;
22235
22236 return 1;
22237 }
22238
22239 /* Recurse into all "included" dependencies and write their symbols as
22240 if they appeared in this psymtab. */
22241
22242 static void
22243 recursively_write_psymbols (struct objfile *objfile,
22244 struct partial_symtab *psymtab,
22245 struct mapped_symtab *symtab,
22246 htab_t psyms_seen,
22247 offset_type cu_index)
22248 {
22249 int i;
22250
22251 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22252 if (psymtab->dependencies[i]->user != NULL)
22253 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22254 symtab, psyms_seen, cu_index);
22255
22256 write_psymbols (symtab,
22257 psyms_seen,
22258 objfile->global_psymbols.list + psymtab->globals_offset,
22259 psymtab->n_global_syms, cu_index,
22260 0);
22261 write_psymbols (symtab,
22262 psyms_seen,
22263 objfile->static_psymbols.list + psymtab->statics_offset,
22264 psymtab->n_static_syms, cu_index,
22265 1);
22266 }
22267
22268 /* Create an index file for OBJFILE in the directory DIR. */
22269
22270 static void
22271 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22272 {
22273 struct cleanup *cleanup;
22274 char *filename, *cleanup_filename;
22275 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22276 struct obstack cu_list, types_cu_list;
22277 int i;
22278 FILE *out_file;
22279 struct mapped_symtab *symtab;
22280 offset_type val, size_of_contents, total_len;
22281 struct stat st;
22282 htab_t psyms_seen;
22283 htab_t cu_index_htab;
22284 struct psymtab_cu_index_map *psymtab_cu_index_map;
22285
22286 if (dwarf2_per_objfile->using_index)
22287 error (_("Cannot use an index to create the index"));
22288
22289 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22290 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22291
22292 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22293 return;
22294
22295 if (stat (objfile_name (objfile), &st) < 0)
22296 perror_with_name (objfile_name (objfile));
22297
22298 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22299 INDEX_SUFFIX, (char *) NULL);
22300 cleanup = make_cleanup (xfree, filename);
22301
22302 out_file = gdb_fopen_cloexec (filename, "wb");
22303 if (!out_file)
22304 error (_("Can't open `%s' for writing"), filename);
22305
22306 cleanup_filename = filename;
22307 make_cleanup (unlink_if_set, &cleanup_filename);
22308
22309 symtab = create_mapped_symtab ();
22310 make_cleanup (cleanup_mapped_symtab, symtab);
22311
22312 obstack_init (&addr_obstack);
22313 make_cleanup_obstack_free (&addr_obstack);
22314
22315 obstack_init (&cu_list);
22316 make_cleanup_obstack_free (&cu_list);
22317
22318 obstack_init (&types_cu_list);
22319 make_cleanup_obstack_free (&types_cu_list);
22320
22321 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22322 NULL, xcalloc, xfree);
22323 make_cleanup_htab_delete (psyms_seen);
22324
22325 /* While we're scanning CU's create a table that maps a psymtab pointer
22326 (which is what addrmap records) to its index (which is what is recorded
22327 in the index file). This will later be needed to write the address
22328 table. */
22329 cu_index_htab = htab_create_alloc (100,
22330 hash_psymtab_cu_index,
22331 eq_psymtab_cu_index,
22332 NULL, xcalloc, xfree);
22333 make_cleanup_htab_delete (cu_index_htab);
22334 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22335 xmalloc (sizeof (struct psymtab_cu_index_map)
22336 * dwarf2_per_objfile->n_comp_units);
22337 make_cleanup (xfree, psymtab_cu_index_map);
22338
22339 /* The CU list is already sorted, so we don't need to do additional
22340 work here. Also, the debug_types entries do not appear in
22341 all_comp_units, but only in their own hash table. */
22342 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22343 {
22344 struct dwarf2_per_cu_data *per_cu
22345 = dwarf2_per_objfile->all_comp_units[i];
22346 struct partial_symtab *psymtab = per_cu->v.psymtab;
22347 gdb_byte val[8];
22348 struct psymtab_cu_index_map *map;
22349 void **slot;
22350
22351 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22352 It may be referenced from a local scope but in such case it does not
22353 need to be present in .gdb_index. */
22354 if (psymtab == NULL)
22355 continue;
22356
22357 if (psymtab->user == NULL)
22358 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22359
22360 map = &psymtab_cu_index_map[i];
22361 map->psymtab = psymtab;
22362 map->cu_index = i;
22363 slot = htab_find_slot (cu_index_htab, map, INSERT);
22364 gdb_assert (slot != NULL);
22365 gdb_assert (*slot == NULL);
22366 *slot = map;
22367
22368 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22369 per_cu->offset.sect_off);
22370 obstack_grow (&cu_list, val, 8);
22371 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22372 obstack_grow (&cu_list, val, 8);
22373 }
22374
22375 /* Dump the address map. */
22376 write_address_map (objfile, &addr_obstack, cu_index_htab);
22377
22378 /* Write out the .debug_type entries, if any. */
22379 if (dwarf2_per_objfile->signatured_types)
22380 {
22381 struct signatured_type_index_data sig_data;
22382
22383 sig_data.objfile = objfile;
22384 sig_data.symtab = symtab;
22385 sig_data.types_list = &types_cu_list;
22386 sig_data.psyms_seen = psyms_seen;
22387 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22388 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22389 write_one_signatured_type, &sig_data);
22390 }
22391
22392 /* Now that we've processed all symbols we can shrink their cu_indices
22393 lists. */
22394 uniquify_cu_indices (symtab);
22395
22396 obstack_init (&constant_pool);
22397 make_cleanup_obstack_free (&constant_pool);
22398 obstack_init (&symtab_obstack);
22399 make_cleanup_obstack_free (&symtab_obstack);
22400 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22401
22402 obstack_init (&contents);
22403 make_cleanup_obstack_free (&contents);
22404 size_of_contents = 6 * sizeof (offset_type);
22405 total_len = size_of_contents;
22406
22407 /* The version number. */
22408 val = MAYBE_SWAP (8);
22409 obstack_grow (&contents, &val, sizeof (val));
22410
22411 /* The offset of the CU list from the start of the file. */
22412 val = MAYBE_SWAP (total_len);
22413 obstack_grow (&contents, &val, sizeof (val));
22414 total_len += obstack_object_size (&cu_list);
22415
22416 /* The offset of the types CU list from the start of the file. */
22417 val = MAYBE_SWAP (total_len);
22418 obstack_grow (&contents, &val, sizeof (val));
22419 total_len += obstack_object_size (&types_cu_list);
22420
22421 /* The offset of the address table from the start of the file. */
22422 val = MAYBE_SWAP (total_len);
22423 obstack_grow (&contents, &val, sizeof (val));
22424 total_len += obstack_object_size (&addr_obstack);
22425
22426 /* The offset of the symbol table from the start of the file. */
22427 val = MAYBE_SWAP (total_len);
22428 obstack_grow (&contents, &val, sizeof (val));
22429 total_len += obstack_object_size (&symtab_obstack);
22430
22431 /* The offset of the constant pool from the start of the file. */
22432 val = MAYBE_SWAP (total_len);
22433 obstack_grow (&contents, &val, sizeof (val));
22434 total_len += obstack_object_size (&constant_pool);
22435
22436 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22437
22438 write_obstack (out_file, &contents);
22439 write_obstack (out_file, &cu_list);
22440 write_obstack (out_file, &types_cu_list);
22441 write_obstack (out_file, &addr_obstack);
22442 write_obstack (out_file, &symtab_obstack);
22443 write_obstack (out_file, &constant_pool);
22444
22445 fclose (out_file);
22446
22447 /* We want to keep the file, so we set cleanup_filename to NULL
22448 here. See unlink_if_set. */
22449 cleanup_filename = NULL;
22450
22451 do_cleanups (cleanup);
22452 }
22453
22454 /* Implementation of the `save gdb-index' command.
22455
22456 Note that the file format used by this command is documented in the
22457 GDB manual. Any changes here must be documented there. */
22458
22459 static void
22460 save_gdb_index_command (char *arg, int from_tty)
22461 {
22462 struct objfile *objfile;
22463
22464 if (!arg || !*arg)
22465 error (_("usage: save gdb-index DIRECTORY"));
22466
22467 ALL_OBJFILES (objfile)
22468 {
22469 struct stat st;
22470
22471 /* If the objfile does not correspond to an actual file, skip it. */
22472 if (stat (objfile_name (objfile), &st) < 0)
22473 continue;
22474
22475 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22476 if (dwarf2_per_objfile)
22477 {
22478 volatile struct gdb_exception except;
22479
22480 TRY_CATCH (except, RETURN_MASK_ERROR)
22481 {
22482 write_psymtabs_to_index (objfile, arg);
22483 }
22484 if (except.reason < 0)
22485 exception_fprintf (gdb_stderr, except,
22486 _("Error while writing index for `%s': "),
22487 objfile_name (objfile));
22488 }
22489 }
22490 }
22491
22492 \f
22493
22494 int dwarf2_always_disassemble;
22495
22496 static void
22497 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22498 struct cmd_list_element *c, const char *value)
22499 {
22500 fprintf_filtered (file,
22501 _("Whether to always disassemble "
22502 "DWARF expressions is %s.\n"),
22503 value);
22504 }
22505
22506 static void
22507 show_check_physname (struct ui_file *file, int from_tty,
22508 struct cmd_list_element *c, const char *value)
22509 {
22510 fprintf_filtered (file,
22511 _("Whether to check \"physname\" is %s.\n"),
22512 value);
22513 }
22514
22515 void _initialize_dwarf2_read (void);
22516
22517 void
22518 _initialize_dwarf2_read (void)
22519 {
22520 struct cmd_list_element *c;
22521
22522 dwarf2_objfile_data_key
22523 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22524
22525 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22526 Set DWARF 2 specific variables.\n\
22527 Configure DWARF 2 variables such as the cache size"),
22528 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22529 0/*allow-unknown*/, &maintenance_set_cmdlist);
22530
22531 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22532 Show DWARF 2 specific variables\n\
22533 Show DWARF 2 variables such as the cache size"),
22534 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22535 0/*allow-unknown*/, &maintenance_show_cmdlist);
22536
22537 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22538 &dwarf2_max_cache_age, _("\
22539 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22540 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22541 A higher limit means that cached compilation units will be stored\n\
22542 in memory longer, and more total memory will be used. Zero disables\n\
22543 caching, which can slow down startup."),
22544 NULL,
22545 show_dwarf2_max_cache_age,
22546 &set_dwarf2_cmdlist,
22547 &show_dwarf2_cmdlist);
22548
22549 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22550 &dwarf2_always_disassemble, _("\
22551 Set whether `info address' always disassembles DWARF expressions."), _("\
22552 Show whether `info address' always disassembles DWARF expressions."), _("\
22553 When enabled, DWARF expressions are always printed in an assembly-like\n\
22554 syntax. When disabled, expressions will be printed in a more\n\
22555 conversational style, when possible."),
22556 NULL,
22557 show_dwarf2_always_disassemble,
22558 &set_dwarf2_cmdlist,
22559 &show_dwarf2_cmdlist);
22560
22561 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22562 Set debugging of the dwarf2 reader."), _("\
22563 Show debugging of the dwarf2 reader."), _("\
22564 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22565 reading and symtab expansion. A value of 1 (one) provides basic\n\
22566 information. A value greater than 1 provides more verbose information."),
22567 NULL,
22568 NULL,
22569 &setdebuglist, &showdebuglist);
22570
22571 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22572 Set debugging of the dwarf2 DIE reader."), _("\
22573 Show debugging of the dwarf2 DIE reader."), _("\
22574 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22575 The value is the maximum depth to print."),
22576 NULL,
22577 NULL,
22578 &setdebuglist, &showdebuglist);
22579
22580 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22581 Set cross-checking of \"physname\" code against demangler."), _("\
22582 Show cross-checking of \"physname\" code against demangler."), _("\
22583 When enabled, GDB's internal \"physname\" code is checked against\n\
22584 the demangler."),
22585 NULL, show_check_physname,
22586 &setdebuglist, &showdebuglist);
22587
22588 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22589 no_class, &use_deprecated_index_sections, _("\
22590 Set whether to use deprecated gdb_index sections."), _("\
22591 Show whether to use deprecated gdb_index sections."), _("\
22592 When enabled, deprecated .gdb_index sections are used anyway.\n\
22593 Normally they are ignored either because of a missing feature or\n\
22594 performance issue.\n\
22595 Warning: This option must be enabled before gdb reads the file."),
22596 NULL,
22597 NULL,
22598 &setlist, &showlist);
22599
22600 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22601 _("\
22602 Save a gdb-index file.\n\
22603 Usage: save gdb-index DIRECTORY"),
22604 &save_cmdlist);
22605 set_cmd_completer (c, filename_completer);
22606
22607 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22608 &dwarf2_locexpr_funcs);
22609 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22610 &dwarf2_loclist_funcs);
22611
22612 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22613 &dwarf2_block_frame_base_locexpr_funcs);
22614 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22615 &dwarf2_block_frame_base_loclist_funcs);
22616 }