* dwarf2read.c (dwarf2_ranges_read): Ignore ranges starting at zero if
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "gdb-demangle.h"
40 #include "expression.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "macrotab.h"
43 #include "language.h"
44 #include "complaints.h"
45 #include "bcache.h"
46 #include "dwarf2expr.h"
47 #include "dwarf2loc.h"
48 #include "cp-support.h"
49 #include "hashtab.h"
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "block.h"
53 #include "addrmap.h"
54 #include "typeprint.h"
55 #include "jv-lang.h"
56 #include "psympriv.h"
57 #include "exceptions.h"
58 #include "gdb_stat.h"
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68
69 #include <fcntl.h>
70 #include "gdb_string.h"
71 #include "gdb_assert.h"
72 #include <sys/types.h>
73
74 typedef struct symbol *symbolp;
75 DEF_VEC_P (symbolp);
76
77 /* When non-zero, print basic high level tracing messages.
78 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
79 static int dwarf2_read_debug = 0;
80
81 /* When non-zero, dump DIEs after they are read in. */
82 static int dwarf2_die_debug = 0;
83
84 /* When non-zero, cross-check physname against demangler. */
85 static int check_physname = 0;
86
87 /* When non-zero, do not reject deprecated .gdb_index sections. */
88 int use_deprecated_index_sections = 0;
89
90 /* When set, the file that we're processing is known to have debugging
91 info for C++ namespaces. GCC 3.3.x did not produce this information,
92 but later versions do. */
93
94 static int processing_has_namespace_info;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 struct dwarf2_section_info
99 {
100 asection *asection;
101 gdb_byte *buffer;
102 bfd_size_type size;
103 /* True if we have tried to read this section. */
104 int readin;
105 };
106
107 typedef struct dwarf2_section_info dwarf2_section_info_def;
108 DEF_VEC_O (dwarf2_section_info_def);
109
110 /* All offsets in the index are of this type. It must be
111 architecture-independent. */
112 typedef uint32_t offset_type;
113
114 DEF_VEC_I (offset_type);
115
116 /* Ensure only legit values are used. */
117 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
118 do { \
119 gdb_assert ((unsigned int) (value) <= 1); \
120 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
121 } while (0)
122
123 /* Ensure only legit values are used. */
124 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
125 do { \
126 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
127 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
128 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
129 } while (0)
130
131 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
132 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
133 do { \
134 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
135 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
136 } while (0)
137
138 /* A description of the mapped index. The file format is described in
139 a comment by the code that writes the index. */
140 struct mapped_index
141 {
142 /* Index data format version. */
143 int version;
144
145 /* The total length of the buffer. */
146 off_t total_size;
147
148 /* A pointer to the address table data. */
149 const gdb_byte *address_table;
150
151 /* Size of the address table data in bytes. */
152 offset_type address_table_size;
153
154 /* The symbol table, implemented as a hash table. */
155 const offset_type *symbol_table;
156
157 /* Size in slots, each slot is 2 offset_types. */
158 offset_type symbol_table_slots;
159
160 /* A pointer to the constant pool. */
161 const char *constant_pool;
162 };
163
164 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
165 DEF_VEC_P (dwarf2_per_cu_ptr);
166
167 /* Collection of data recorded per objfile.
168 This hangs off of dwarf2_objfile_data_key. */
169
170 struct dwarf2_per_objfile
171 {
172 struct dwarf2_section_info info;
173 struct dwarf2_section_info abbrev;
174 struct dwarf2_section_info line;
175 struct dwarf2_section_info loc;
176 struct dwarf2_section_info macinfo;
177 struct dwarf2_section_info macro;
178 struct dwarf2_section_info str;
179 struct dwarf2_section_info ranges;
180 struct dwarf2_section_info addr;
181 struct dwarf2_section_info frame;
182 struct dwarf2_section_info eh_frame;
183 struct dwarf2_section_info gdb_index;
184
185 VEC (dwarf2_section_info_def) *types;
186
187 /* Back link. */
188 struct objfile *objfile;
189
190 /* Table of all the compilation units. This is used to locate
191 the target compilation unit of a particular reference. */
192 struct dwarf2_per_cu_data **all_comp_units;
193
194 /* The number of compilation units in ALL_COMP_UNITS. */
195 int n_comp_units;
196
197 /* The number of .debug_types-related CUs. */
198 int n_type_units;
199
200 /* The .debug_types-related CUs (TUs). */
201 struct signatured_type **all_type_units;
202
203 /* The number of entries in all_type_unit_groups. */
204 int n_type_unit_groups;
205
206 /* Table of type unit groups.
207 This exists to make it easy to iterate over all CUs and TU groups. */
208 struct type_unit_group **all_type_unit_groups;
209
210 /* Table of struct type_unit_group objects.
211 The hash key is the DW_AT_stmt_list value. */
212 htab_t type_unit_groups;
213
214 /* A table mapping .debug_types signatures to its signatured_type entry.
215 This is NULL if the .debug_types section hasn't been read in yet. */
216 htab_t signatured_types;
217
218 /* Type unit statistics, to see how well the scaling improvements
219 are doing. */
220 struct tu_stats
221 {
222 int nr_uniq_abbrev_tables;
223 int nr_symtabs;
224 int nr_symtab_sharers;
225 int nr_stmt_less_type_units;
226 } tu_stats;
227
228 /* A chain of compilation units that are currently read in, so that
229 they can be freed later. */
230 struct dwarf2_per_cu_data *read_in_chain;
231
232 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
233 This is NULL if the table hasn't been allocated yet. */
234 htab_t dwo_files;
235
236 /* The shared '.dwz' file, if one exists. This is used when the
237 original data was compressed using 'dwz -m'. */
238 struct dwz_file *dwz_file;
239
240 /* A flag indicating wether this objfile has a section loaded at a
241 VMA of 0. */
242 int has_section_at_zero;
243
244 /* True if we are using the mapped index,
245 or we are faking it for OBJF_READNOW's sake. */
246 unsigned char using_index;
247
248 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
249 struct mapped_index *index_table;
250
251 /* When using index_table, this keeps track of all quick_file_names entries.
252 TUs can share line table entries with CUs or other TUs, and there can be
253 a lot more TUs than unique line tables, so we maintain a separate table
254 of all line table entries to support the sharing. */
255 htab_t quick_file_names_table;
256
257 /* Set during partial symbol reading, to prevent queueing of full
258 symbols. */
259 int reading_partial_symbols;
260
261 /* Table mapping type DIEs to their struct type *.
262 This is NULL if not allocated yet.
263 The mapping is done via (CU/TU signature + DIE offset) -> type. */
264 htab_t die_type_hash;
265
266 /* The CUs we recently read. */
267 VEC (dwarf2_per_cu_ptr) *just_read_cus;
268 };
269
270 static struct dwarf2_per_objfile *dwarf2_per_objfile;
271
272 /* Default names of the debugging sections. */
273
274 /* Note that if the debugging section has been compressed, it might
275 have a name like .zdebug_info. */
276
277 static const struct dwarf2_debug_sections dwarf2_elf_names =
278 {
279 { ".debug_info", ".zdebug_info" },
280 { ".debug_abbrev", ".zdebug_abbrev" },
281 { ".debug_line", ".zdebug_line" },
282 { ".debug_loc", ".zdebug_loc" },
283 { ".debug_macinfo", ".zdebug_macinfo" },
284 { ".debug_macro", ".zdebug_macro" },
285 { ".debug_str", ".zdebug_str" },
286 { ".debug_ranges", ".zdebug_ranges" },
287 { ".debug_types", ".zdebug_types" },
288 { ".debug_addr", ".zdebug_addr" },
289 { ".debug_frame", ".zdebug_frame" },
290 { ".eh_frame", NULL },
291 { ".gdb_index", ".zgdb_index" },
292 23
293 };
294
295 /* List of DWO sections. */
296
297 static const struct dwo_section_names
298 {
299 struct dwarf2_section_names abbrev_dwo;
300 struct dwarf2_section_names info_dwo;
301 struct dwarf2_section_names line_dwo;
302 struct dwarf2_section_names loc_dwo;
303 struct dwarf2_section_names macinfo_dwo;
304 struct dwarf2_section_names macro_dwo;
305 struct dwarf2_section_names str_dwo;
306 struct dwarf2_section_names str_offsets_dwo;
307 struct dwarf2_section_names types_dwo;
308 }
309 dwo_section_names =
310 {
311 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
312 { ".debug_info.dwo", ".zdebug_info.dwo" },
313 { ".debug_line.dwo", ".zdebug_line.dwo" },
314 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
315 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
316 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
317 { ".debug_str.dwo", ".zdebug_str.dwo" },
318 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
319 { ".debug_types.dwo", ".zdebug_types.dwo" },
320 };
321
322 /* local data types */
323
324 /* The data in a compilation unit header, after target2host
325 translation, looks like this. */
326 struct comp_unit_head
327 {
328 unsigned int length;
329 short version;
330 unsigned char addr_size;
331 unsigned char signed_addr_p;
332 sect_offset abbrev_offset;
333
334 /* Size of file offsets; either 4 or 8. */
335 unsigned int offset_size;
336
337 /* Size of the length field; either 4 or 12. */
338 unsigned int initial_length_size;
339
340 /* Offset to the first byte of this compilation unit header in the
341 .debug_info section, for resolving relative reference dies. */
342 sect_offset offset;
343
344 /* Offset to first die in this cu from the start of the cu.
345 This will be the first byte following the compilation unit header. */
346 cu_offset first_die_offset;
347 };
348
349 /* Type used for delaying computation of method physnames.
350 See comments for compute_delayed_physnames. */
351 struct delayed_method_info
352 {
353 /* The type to which the method is attached, i.e., its parent class. */
354 struct type *type;
355
356 /* The index of the method in the type's function fieldlists. */
357 int fnfield_index;
358
359 /* The index of the method in the fieldlist. */
360 int index;
361
362 /* The name of the DIE. */
363 const char *name;
364
365 /* The DIE associated with this method. */
366 struct die_info *die;
367 };
368
369 typedef struct delayed_method_info delayed_method_info;
370 DEF_VEC_O (delayed_method_info);
371
372 /* Internal state when decoding a particular compilation unit. */
373 struct dwarf2_cu
374 {
375 /* The objfile containing this compilation unit. */
376 struct objfile *objfile;
377
378 /* The header of the compilation unit. */
379 struct comp_unit_head header;
380
381 /* Base address of this compilation unit. */
382 CORE_ADDR base_address;
383
384 /* Non-zero if base_address has been set. */
385 int base_known;
386
387 /* The language we are debugging. */
388 enum language language;
389 const struct language_defn *language_defn;
390
391 const char *producer;
392
393 /* The generic symbol table building routines have separate lists for
394 file scope symbols and all all other scopes (local scopes). So
395 we need to select the right one to pass to add_symbol_to_list().
396 We do it by keeping a pointer to the correct list in list_in_scope.
397
398 FIXME: The original dwarf code just treated the file scope as the
399 first local scope, and all other local scopes as nested local
400 scopes, and worked fine. Check to see if we really need to
401 distinguish these in buildsym.c. */
402 struct pending **list_in_scope;
403
404 /* The abbrev table for this CU.
405 Normally this points to the abbrev table in the objfile.
406 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
407 struct abbrev_table *abbrev_table;
408
409 /* Hash table holding all the loaded partial DIEs
410 with partial_die->offset.SECT_OFF as hash. */
411 htab_t partial_dies;
412
413 /* Storage for things with the same lifetime as this read-in compilation
414 unit, including partial DIEs. */
415 struct obstack comp_unit_obstack;
416
417 /* When multiple dwarf2_cu structures are living in memory, this field
418 chains them all together, so that they can be released efficiently.
419 We will probably also want a generation counter so that most-recently-used
420 compilation units are cached... */
421 struct dwarf2_per_cu_data *read_in_chain;
422
423 /* Backchain to our per_cu entry if the tree has been built. */
424 struct dwarf2_per_cu_data *per_cu;
425
426 /* How many compilation units ago was this CU last referenced? */
427 int last_used;
428
429 /* A hash table of DIE cu_offset for following references with
430 die_info->offset.sect_off as hash. */
431 htab_t die_hash;
432
433 /* Full DIEs if read in. */
434 struct die_info *dies;
435
436 /* A set of pointers to dwarf2_per_cu_data objects for compilation
437 units referenced by this one. Only set during full symbol processing;
438 partial symbol tables do not have dependencies. */
439 htab_t dependencies;
440
441 /* Header data from the line table, during full symbol processing. */
442 struct line_header *line_header;
443
444 /* A list of methods which need to have physnames computed
445 after all type information has been read. */
446 VEC (delayed_method_info) *method_list;
447
448 /* To be copied to symtab->call_site_htab. */
449 htab_t call_site_htab;
450
451 /* Non-NULL if this CU came from a DWO file.
452 There is an invariant here that is important to remember:
453 Except for attributes copied from the top level DIE in the "main"
454 (or "stub") file in preparation for reading the DWO file
455 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
456 Either there isn't a DWO file (in which case this is NULL and the point
457 is moot), or there is and either we're not going to read it (in which
458 case this is NULL) or there is and we are reading it (in which case this
459 is non-NULL). */
460 struct dwo_unit *dwo_unit;
461
462 /* The DW_AT_addr_base attribute if present, zero otherwise
463 (zero is a valid value though).
464 Note this value comes from the stub CU/TU's DIE. */
465 ULONGEST addr_base;
466
467 /* The DW_AT_ranges_base attribute if present, zero otherwise
468 (zero is a valid value though).
469 Note this value comes from the stub CU/TU's DIE.
470 Also note that the value is zero in the non-DWO case so this value can
471 be used without needing to know whether DWO files are in use or not. */
472 ULONGEST ranges_base;
473
474 /* Mark used when releasing cached dies. */
475 unsigned int mark : 1;
476
477 /* This CU references .debug_loc. See the symtab->locations_valid field.
478 This test is imperfect as there may exist optimized debug code not using
479 any location list and still facing inlining issues if handled as
480 unoptimized code. For a future better test see GCC PR other/32998. */
481 unsigned int has_loclist : 1;
482
483 /* These cache the results for producer_is_gxx_lt_4_6 and producer_is_icc.
484 CHECKED_PRODUCER is set if both PRODUCER_IS_GXX_LT_4_6 and PRODUCER_IS_ICC
485 are valid. This information is cached because profiling CU expansion
486 showed excessive time spent in producer_is_gxx_lt_4_6. */
487 unsigned int checked_producer : 1;
488 unsigned int producer_is_gxx_lt_4_6 : 1;
489 unsigned int producer_is_icc : 1;
490 };
491
492 /* Persistent data held for a compilation unit, even when not
493 processing it. We put a pointer to this structure in the
494 read_symtab_private field of the psymtab. */
495
496 struct dwarf2_per_cu_data
497 {
498 /* The start offset and length of this compilation unit.
499 NOTE: Unlike comp_unit_head.length, this length includes
500 initial_length_size.
501 If the DIE refers to a DWO file, this is always of the original die,
502 not the DWO file. */
503 sect_offset offset;
504 unsigned int length;
505
506 /* Flag indicating this compilation unit will be read in before
507 any of the current compilation units are processed. */
508 unsigned int queued : 1;
509
510 /* This flag will be set when reading partial DIEs if we need to load
511 absolutely all DIEs for this compilation unit, instead of just the ones
512 we think are interesting. It gets set if we look for a DIE in the
513 hash table and don't find it. */
514 unsigned int load_all_dies : 1;
515
516 /* Non-zero if this CU is from .debug_types. */
517 unsigned int is_debug_types : 1;
518
519 /* Non-zero if this CU is from the .dwz file. */
520 unsigned int is_dwz : 1;
521
522 /* The section this CU/TU lives in.
523 If the DIE refers to a DWO file, this is always the original die,
524 not the DWO file. */
525 struct dwarf2_section_info *info_or_types_section;
526
527 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
528 of the CU cache it gets reset to NULL again. */
529 struct dwarf2_cu *cu;
530
531 /* The corresponding objfile.
532 Normally we can get the objfile from dwarf2_per_objfile.
533 However we can enter this file with just a "per_cu" handle. */
534 struct objfile *objfile;
535
536 /* When using partial symbol tables, the 'psymtab' field is active.
537 Otherwise the 'quick' field is active. */
538 union
539 {
540 /* The partial symbol table associated with this compilation unit,
541 or NULL for unread partial units. */
542 struct partial_symtab *psymtab;
543
544 /* Data needed by the "quick" functions. */
545 struct dwarf2_per_cu_quick_data *quick;
546 } v;
547
548 union
549 {
550 /* The CUs we import using DW_TAG_imported_unit. This is filled in
551 while reading psymtabs, used to compute the psymtab dependencies,
552 and then cleared. Then it is filled in again while reading full
553 symbols, and only deleted when the objfile is destroyed. */
554 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
555
556 /* Type units are grouped by their DW_AT_stmt_list entry so that they
557 can share them. If this is a TU, this points to the containing
558 symtab. */
559 struct type_unit_group *type_unit_group;
560 } s;
561 };
562
563 /* Entry in the signatured_types hash table. */
564
565 struct signatured_type
566 {
567 /* The "per_cu" object of this type.
568 N.B.: This is the first member so that it's easy to convert pointers
569 between them. */
570 struct dwarf2_per_cu_data per_cu;
571
572 /* The type's signature. */
573 ULONGEST signature;
574
575 /* Offset in the TU of the type's DIE, as read from the TU header.
576 If the definition lives in a DWO file, this value is unusable. */
577 cu_offset type_offset_in_tu;
578
579 /* Offset in the section of the type's DIE.
580 If the definition lives in a DWO file, this is the offset in the
581 .debug_types.dwo section.
582 The value is zero until the actual value is known.
583 Zero is otherwise not a valid section offset. */
584 sect_offset type_offset_in_section;
585 };
586
587 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
588 This includes type_unit_group and quick_file_names. */
589
590 struct stmt_list_hash
591 {
592 /* The DWO unit this table is from or NULL if there is none. */
593 struct dwo_unit *dwo_unit;
594
595 /* Offset in .debug_line or .debug_line.dwo. */
596 sect_offset line_offset;
597 };
598
599 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
600 an object of this type. */
601
602 struct type_unit_group
603 {
604 /* dwarf2read.c's main "handle" on the symtab.
605 To simplify things we create an artificial CU that "includes" all the
606 type units using this stmt_list so that the rest of the code still has
607 a "per_cu" handle on the symtab.
608 This PER_CU is recognized by having no section. */
609 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
610 struct dwarf2_per_cu_data per_cu;
611
612 union
613 {
614 /* The TUs that share this DW_AT_stmt_list entry.
615 This is added to while parsing type units to build partial symtabs,
616 and is deleted afterwards and not used again. */
617 VEC (dwarf2_per_cu_ptr) *tus;
618
619 /* When reading the line table in "quick" functions, we need a real TU.
620 Any will do, we know they all share the same DW_AT_stmt_list entry.
621 For simplicity's sake, we pick the first one. */
622 struct dwarf2_per_cu_data *first_tu;
623 } t;
624
625 /* The primary symtab.
626 Type units in a group needn't all be defined in the same source file,
627 so we create an essentially anonymous symtab as the primary symtab. */
628 struct symtab *primary_symtab;
629
630 /* The data used to construct the hash key. */
631 struct stmt_list_hash hash;
632
633 /* The number of symtabs from the line header.
634 The value here must match line_header.num_file_names. */
635 unsigned int num_symtabs;
636
637 /* The symbol tables for this TU (obtained from the files listed in
638 DW_AT_stmt_list).
639 WARNING: The order of entries here must match the order of entries
640 in the line header. After the first TU using this type_unit_group, the
641 line header for the subsequent TUs is recreated from this. This is done
642 because we need to use the same symtabs for each TU using the same
643 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
644 there's no guarantee the line header doesn't have duplicate entries. */
645 struct symtab **symtabs;
646 };
647
648 /* These sections are what may appear in a "dwo" file. */
649
650 struct dwo_sections
651 {
652 struct dwarf2_section_info abbrev;
653 struct dwarf2_section_info info;
654 struct dwarf2_section_info line;
655 struct dwarf2_section_info loc;
656 struct dwarf2_section_info macinfo;
657 struct dwarf2_section_info macro;
658 struct dwarf2_section_info str;
659 struct dwarf2_section_info str_offsets;
660 VEC (dwarf2_section_info_def) *types;
661 };
662
663 /* Common bits of DWO CUs/TUs. */
664
665 struct dwo_unit
666 {
667 /* Backlink to the containing struct dwo_file. */
668 struct dwo_file *dwo_file;
669
670 /* The "id" that distinguishes this CU/TU.
671 .debug_info calls this "dwo_id", .debug_types calls this "signature".
672 Since signatures came first, we stick with it for consistency. */
673 ULONGEST signature;
674
675 /* The section this CU/TU lives in, in the DWO file. */
676 struct dwarf2_section_info *info_or_types_section;
677
678 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
679 sect_offset offset;
680 unsigned int length;
681
682 /* For types, offset in the type's DIE of the type defined by this TU. */
683 cu_offset type_offset_in_tu;
684 };
685
686 /* Data for one DWO file. */
687
688 struct dwo_file
689 {
690 /* The DW_AT_GNU_dwo_name attribute.
691 We don't manage space for this, it's an attribute. */
692 const char *dwo_name;
693
694 /* The bfd, when the file is open. Otherwise this is NULL. */
695 bfd *dwo_bfd;
696
697 /* Section info for this file. */
698 struct dwo_sections sections;
699
700 /* Table of CUs in the file.
701 Each element is a struct dwo_unit. */
702 htab_t cus;
703
704 /* Table of TUs in the file.
705 Each element is a struct dwo_unit. */
706 htab_t tus;
707 };
708
709 /* This represents a '.dwz' file. */
710
711 struct dwz_file
712 {
713 /* A dwz file can only contain a few sections. */
714 struct dwarf2_section_info abbrev;
715 struct dwarf2_section_info info;
716 struct dwarf2_section_info str;
717 struct dwarf2_section_info line;
718 struct dwarf2_section_info macro;
719 struct dwarf2_section_info gdb_index;
720
721 /* The dwz's BFD. */
722 bfd *dwz_bfd;
723 };
724
725 /* Struct used to pass misc. parameters to read_die_and_children, et
726 al. which are used for both .debug_info and .debug_types dies.
727 All parameters here are unchanging for the life of the call. This
728 struct exists to abstract away the constant parameters of die reading. */
729
730 struct die_reader_specs
731 {
732 /* die_section->asection->owner. */
733 bfd* abfd;
734
735 /* The CU of the DIE we are parsing. */
736 struct dwarf2_cu *cu;
737
738 /* Non-NULL if reading a DWO file. */
739 struct dwo_file *dwo_file;
740
741 /* The section the die comes from.
742 This is either .debug_info or .debug_types, or the .dwo variants. */
743 struct dwarf2_section_info *die_section;
744
745 /* die_section->buffer. */
746 gdb_byte *buffer;
747
748 /* The end of the buffer. */
749 const gdb_byte *buffer_end;
750 };
751
752 /* Type of function passed to init_cutu_and_read_dies, et.al. */
753 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
754 gdb_byte *info_ptr,
755 struct die_info *comp_unit_die,
756 int has_children,
757 void *data);
758
759 /* The line number information for a compilation unit (found in the
760 .debug_line section) begins with a "statement program header",
761 which contains the following information. */
762 struct line_header
763 {
764 unsigned int total_length;
765 unsigned short version;
766 unsigned int header_length;
767 unsigned char minimum_instruction_length;
768 unsigned char maximum_ops_per_instruction;
769 unsigned char default_is_stmt;
770 int line_base;
771 unsigned char line_range;
772 unsigned char opcode_base;
773
774 /* standard_opcode_lengths[i] is the number of operands for the
775 standard opcode whose value is i. This means that
776 standard_opcode_lengths[0] is unused, and the last meaningful
777 element is standard_opcode_lengths[opcode_base - 1]. */
778 unsigned char *standard_opcode_lengths;
779
780 /* The include_directories table. NOTE! These strings are not
781 allocated with xmalloc; instead, they are pointers into
782 debug_line_buffer. If you try to free them, `free' will get
783 indigestion. */
784 unsigned int num_include_dirs, include_dirs_size;
785 char **include_dirs;
786
787 /* The file_names table. NOTE! These strings are not allocated
788 with xmalloc; instead, they are pointers into debug_line_buffer.
789 Don't try to free them directly. */
790 unsigned int num_file_names, file_names_size;
791 struct file_entry
792 {
793 char *name;
794 unsigned int dir_index;
795 unsigned int mod_time;
796 unsigned int length;
797 int included_p; /* Non-zero if referenced by the Line Number Program. */
798 struct symtab *symtab; /* The associated symbol table, if any. */
799 } *file_names;
800
801 /* The start and end of the statement program following this
802 header. These point into dwarf2_per_objfile->line_buffer. */
803 gdb_byte *statement_program_start, *statement_program_end;
804 };
805
806 /* When we construct a partial symbol table entry we only
807 need this much information. */
808 struct partial_die_info
809 {
810 /* Offset of this DIE. */
811 sect_offset offset;
812
813 /* DWARF-2 tag for this DIE. */
814 ENUM_BITFIELD(dwarf_tag) tag : 16;
815
816 /* Assorted flags describing the data found in this DIE. */
817 unsigned int has_children : 1;
818 unsigned int is_external : 1;
819 unsigned int is_declaration : 1;
820 unsigned int has_type : 1;
821 unsigned int has_specification : 1;
822 unsigned int has_pc_info : 1;
823 unsigned int may_be_inlined : 1;
824
825 /* Flag set if the SCOPE field of this structure has been
826 computed. */
827 unsigned int scope_set : 1;
828
829 /* Flag set if the DIE has a byte_size attribute. */
830 unsigned int has_byte_size : 1;
831
832 /* Flag set if any of the DIE's children are template arguments. */
833 unsigned int has_template_arguments : 1;
834
835 /* Flag set if fixup_partial_die has been called on this die. */
836 unsigned int fixup_called : 1;
837
838 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
839 unsigned int is_dwz : 1;
840
841 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
842 unsigned int spec_is_dwz : 1;
843
844 /* The name of this DIE. Normally the value of DW_AT_name, but
845 sometimes a default name for unnamed DIEs. */
846 char *name;
847
848 /* The linkage name, if present. */
849 const char *linkage_name;
850
851 /* The scope to prepend to our children. This is generally
852 allocated on the comp_unit_obstack, so will disappear
853 when this compilation unit leaves the cache. */
854 char *scope;
855
856 /* Some data associated with the partial DIE. The tag determines
857 which field is live. */
858 union
859 {
860 /* The location description associated with this DIE, if any. */
861 struct dwarf_block *locdesc;
862 /* The offset of an import, for DW_TAG_imported_unit. */
863 sect_offset offset;
864 } d;
865
866 /* If HAS_PC_INFO, the PC range associated with this DIE. */
867 CORE_ADDR lowpc;
868 CORE_ADDR highpc;
869
870 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
871 DW_AT_sibling, if any. */
872 /* NOTE: This member isn't strictly necessary, read_partial_die could
873 return DW_AT_sibling values to its caller load_partial_dies. */
874 gdb_byte *sibling;
875
876 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
877 DW_AT_specification (or DW_AT_abstract_origin or
878 DW_AT_extension). */
879 sect_offset spec_offset;
880
881 /* Pointers to this DIE's parent, first child, and next sibling,
882 if any. */
883 struct partial_die_info *die_parent, *die_child, *die_sibling;
884 };
885
886 /* This data structure holds the information of an abbrev. */
887 struct abbrev_info
888 {
889 unsigned int number; /* number identifying abbrev */
890 enum dwarf_tag tag; /* dwarf tag */
891 unsigned short has_children; /* boolean */
892 unsigned short num_attrs; /* number of attributes */
893 struct attr_abbrev *attrs; /* an array of attribute descriptions */
894 struct abbrev_info *next; /* next in chain */
895 };
896
897 struct attr_abbrev
898 {
899 ENUM_BITFIELD(dwarf_attribute) name : 16;
900 ENUM_BITFIELD(dwarf_form) form : 16;
901 };
902
903 /* Size of abbrev_table.abbrev_hash_table. */
904 #define ABBREV_HASH_SIZE 121
905
906 /* Top level data structure to contain an abbreviation table. */
907
908 struct abbrev_table
909 {
910 /* Where the abbrev table came from.
911 This is used as a sanity check when the table is used. */
912 sect_offset offset;
913
914 /* Storage for the abbrev table. */
915 struct obstack abbrev_obstack;
916
917 /* Hash table of abbrevs.
918 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
919 It could be statically allocated, but the previous code didn't so we
920 don't either. */
921 struct abbrev_info **abbrevs;
922 };
923
924 /* Attributes have a name and a value. */
925 struct attribute
926 {
927 ENUM_BITFIELD(dwarf_attribute) name : 16;
928 ENUM_BITFIELD(dwarf_form) form : 15;
929
930 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
931 field should be in u.str (existing only for DW_STRING) but it is kept
932 here for better struct attribute alignment. */
933 unsigned int string_is_canonical : 1;
934
935 union
936 {
937 char *str;
938 struct dwarf_block *blk;
939 ULONGEST unsnd;
940 LONGEST snd;
941 CORE_ADDR addr;
942 struct signatured_type *signatured_type;
943 }
944 u;
945 };
946
947 /* This data structure holds a complete die structure. */
948 struct die_info
949 {
950 /* DWARF-2 tag for this DIE. */
951 ENUM_BITFIELD(dwarf_tag) tag : 16;
952
953 /* Number of attributes */
954 unsigned char num_attrs;
955
956 /* True if we're presently building the full type name for the
957 type derived from this DIE. */
958 unsigned char building_fullname : 1;
959
960 /* Abbrev number */
961 unsigned int abbrev;
962
963 /* Offset in .debug_info or .debug_types section. */
964 sect_offset offset;
965
966 /* The dies in a compilation unit form an n-ary tree. PARENT
967 points to this die's parent; CHILD points to the first child of
968 this node; and all the children of a given node are chained
969 together via their SIBLING fields. */
970 struct die_info *child; /* Its first child, if any. */
971 struct die_info *sibling; /* Its next sibling, if any. */
972 struct die_info *parent; /* Its parent, if any. */
973
974 /* An array of attributes, with NUM_ATTRS elements. There may be
975 zero, but it's not common and zero-sized arrays are not
976 sufficiently portable C. */
977 struct attribute attrs[1];
978 };
979
980 /* Get at parts of an attribute structure. */
981
982 #define DW_STRING(attr) ((attr)->u.str)
983 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
984 #define DW_UNSND(attr) ((attr)->u.unsnd)
985 #define DW_BLOCK(attr) ((attr)->u.blk)
986 #define DW_SND(attr) ((attr)->u.snd)
987 #define DW_ADDR(attr) ((attr)->u.addr)
988 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
989
990 /* Blocks are a bunch of untyped bytes. */
991 struct dwarf_block
992 {
993 unsigned int size;
994
995 /* Valid only if SIZE is not zero. */
996 gdb_byte *data;
997 };
998
999 #ifndef ATTR_ALLOC_CHUNK
1000 #define ATTR_ALLOC_CHUNK 4
1001 #endif
1002
1003 /* Allocate fields for structs, unions and enums in this size. */
1004 #ifndef DW_FIELD_ALLOC_CHUNK
1005 #define DW_FIELD_ALLOC_CHUNK 4
1006 #endif
1007
1008 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1009 but this would require a corresponding change in unpack_field_as_long
1010 and friends. */
1011 static int bits_per_byte = 8;
1012
1013 /* The routines that read and process dies for a C struct or C++ class
1014 pass lists of data member fields and lists of member function fields
1015 in an instance of a field_info structure, as defined below. */
1016 struct field_info
1017 {
1018 /* List of data member and baseclasses fields. */
1019 struct nextfield
1020 {
1021 struct nextfield *next;
1022 int accessibility;
1023 int virtuality;
1024 struct field field;
1025 }
1026 *fields, *baseclasses;
1027
1028 /* Number of fields (including baseclasses). */
1029 int nfields;
1030
1031 /* Number of baseclasses. */
1032 int nbaseclasses;
1033
1034 /* Set if the accesibility of one of the fields is not public. */
1035 int non_public_fields;
1036
1037 /* Member function fields array, entries are allocated in the order they
1038 are encountered in the object file. */
1039 struct nextfnfield
1040 {
1041 struct nextfnfield *next;
1042 struct fn_field fnfield;
1043 }
1044 *fnfields;
1045
1046 /* Member function fieldlist array, contains name of possibly overloaded
1047 member function, number of overloaded member functions and a pointer
1048 to the head of the member function field chain. */
1049 struct fnfieldlist
1050 {
1051 char *name;
1052 int length;
1053 struct nextfnfield *head;
1054 }
1055 *fnfieldlists;
1056
1057 /* Number of entries in the fnfieldlists array. */
1058 int nfnfields;
1059
1060 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1061 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1062 struct typedef_field_list
1063 {
1064 struct typedef_field field;
1065 struct typedef_field_list *next;
1066 }
1067 *typedef_field_list;
1068 unsigned typedef_field_list_count;
1069 };
1070
1071 /* One item on the queue of compilation units to read in full symbols
1072 for. */
1073 struct dwarf2_queue_item
1074 {
1075 struct dwarf2_per_cu_data *per_cu;
1076 enum language pretend_language;
1077 struct dwarf2_queue_item *next;
1078 };
1079
1080 /* The current queue. */
1081 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1082
1083 /* Loaded secondary compilation units are kept in memory until they
1084 have not been referenced for the processing of this many
1085 compilation units. Set this to zero to disable caching. Cache
1086 sizes of up to at least twenty will improve startup time for
1087 typical inter-CU-reference binaries, at an obvious memory cost. */
1088 static int dwarf2_max_cache_age = 5;
1089 static void
1090 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1091 struct cmd_list_element *c, const char *value)
1092 {
1093 fprintf_filtered (file, _("The upper bound on the age of cached "
1094 "dwarf2 compilation units is %s.\n"),
1095 value);
1096 }
1097
1098
1099 /* Various complaints about symbol reading that don't abort the process. */
1100
1101 static void
1102 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1103 {
1104 complaint (&symfile_complaints,
1105 _("statement list doesn't fit in .debug_line section"));
1106 }
1107
1108 static void
1109 dwarf2_debug_line_missing_file_complaint (void)
1110 {
1111 complaint (&symfile_complaints,
1112 _(".debug_line section has line data without a file"));
1113 }
1114
1115 static void
1116 dwarf2_debug_line_missing_end_sequence_complaint (void)
1117 {
1118 complaint (&symfile_complaints,
1119 _(".debug_line section has line "
1120 "program sequence without an end"));
1121 }
1122
1123 static void
1124 dwarf2_complex_location_expr_complaint (void)
1125 {
1126 complaint (&symfile_complaints, _("location expression too complex"));
1127 }
1128
1129 static void
1130 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1131 int arg3)
1132 {
1133 complaint (&symfile_complaints,
1134 _("const value length mismatch for '%s', got %d, expected %d"),
1135 arg1, arg2, arg3);
1136 }
1137
1138 static void
1139 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1140 {
1141 complaint (&symfile_complaints,
1142 _("debug info runs off end of %s section"
1143 " [in module %s]"),
1144 section->asection->name,
1145 bfd_get_filename (section->asection->owner));
1146 }
1147
1148 static void
1149 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1150 {
1151 complaint (&symfile_complaints,
1152 _("macro debug info contains a "
1153 "malformed macro definition:\n`%s'"),
1154 arg1);
1155 }
1156
1157 static void
1158 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1159 {
1160 complaint (&symfile_complaints,
1161 _("invalid attribute class or form for '%s' in '%s'"),
1162 arg1, arg2);
1163 }
1164
1165 /* local function prototypes */
1166
1167 static void dwarf2_locate_sections (bfd *, asection *, void *);
1168
1169 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1170 struct objfile *);
1171
1172 static void dwarf2_find_base_address (struct die_info *die,
1173 struct dwarf2_cu *cu);
1174
1175 static void dwarf2_build_psymtabs_hard (struct objfile *);
1176
1177 static void scan_partial_symbols (struct partial_die_info *,
1178 CORE_ADDR *, CORE_ADDR *,
1179 int, struct dwarf2_cu *);
1180
1181 static void add_partial_symbol (struct partial_die_info *,
1182 struct dwarf2_cu *);
1183
1184 static void add_partial_namespace (struct partial_die_info *pdi,
1185 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1186 int need_pc, struct dwarf2_cu *cu);
1187
1188 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1189 CORE_ADDR *highpc, int need_pc,
1190 struct dwarf2_cu *cu);
1191
1192 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1193 struct dwarf2_cu *cu);
1194
1195 static void add_partial_subprogram (struct partial_die_info *pdi,
1196 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1197 int need_pc, struct dwarf2_cu *cu);
1198
1199 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
1200
1201 static void psymtab_to_symtab_1 (struct partial_symtab *);
1202
1203 static struct abbrev_info *abbrev_table_lookup_abbrev
1204 (const struct abbrev_table *, unsigned int);
1205
1206 static struct abbrev_table *abbrev_table_read_table
1207 (struct dwarf2_section_info *, sect_offset);
1208
1209 static void abbrev_table_free (struct abbrev_table *);
1210
1211 static void abbrev_table_free_cleanup (void *);
1212
1213 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1214 struct dwarf2_section_info *);
1215
1216 static void dwarf2_free_abbrev_table (void *);
1217
1218 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1219
1220 static struct partial_die_info *load_partial_dies
1221 (const struct die_reader_specs *, gdb_byte *, int);
1222
1223 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1224 struct partial_die_info *,
1225 struct abbrev_info *,
1226 unsigned int,
1227 gdb_byte *);
1228
1229 static struct partial_die_info *find_partial_die (sect_offset, int,
1230 struct dwarf2_cu *);
1231
1232 static void fixup_partial_die (struct partial_die_info *,
1233 struct dwarf2_cu *);
1234
1235 static gdb_byte *read_attribute (const struct die_reader_specs *,
1236 struct attribute *, struct attr_abbrev *,
1237 gdb_byte *);
1238
1239 static unsigned int read_1_byte (bfd *, gdb_byte *);
1240
1241 static int read_1_signed_byte (bfd *, gdb_byte *);
1242
1243 static unsigned int read_2_bytes (bfd *, gdb_byte *);
1244
1245 static unsigned int read_4_bytes (bfd *, gdb_byte *);
1246
1247 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
1248
1249 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1250 unsigned int *);
1251
1252 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1253
1254 static LONGEST read_checked_initial_length_and_offset
1255 (bfd *, gdb_byte *, const struct comp_unit_head *,
1256 unsigned int *, unsigned int *);
1257
1258 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1259 unsigned int *);
1260
1261 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1262
1263 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1264 sect_offset);
1265
1266 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1267
1268 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1269
1270 static char *read_indirect_string (bfd *, gdb_byte *,
1271 const struct comp_unit_head *,
1272 unsigned int *);
1273
1274 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1275
1276 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1277
1278 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1279
1280 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1281 unsigned int *);
1282
1283 static char *read_str_index (const struct die_reader_specs *reader,
1284 struct dwarf2_cu *cu, ULONGEST str_index);
1285
1286 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1287
1288 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1289 struct dwarf2_cu *);
1290
1291 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1292 unsigned int);
1293
1294 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1295 struct dwarf2_cu *cu);
1296
1297 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1298
1299 static struct die_info *die_specification (struct die_info *die,
1300 struct dwarf2_cu **);
1301
1302 static void free_line_header (struct line_header *lh);
1303
1304 static void add_file_name (struct line_header *, char *, unsigned int,
1305 unsigned int, unsigned int);
1306
1307 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1308 struct dwarf2_cu *cu);
1309
1310 static void dwarf_decode_lines (struct line_header *, const char *,
1311 struct dwarf2_cu *, struct partial_symtab *,
1312 int);
1313
1314 static void dwarf2_start_subfile (char *, const char *, const char *);
1315
1316 static void dwarf2_start_symtab (struct dwarf2_cu *,
1317 char *, char *, CORE_ADDR);
1318
1319 static struct symbol *new_symbol (struct die_info *, struct type *,
1320 struct dwarf2_cu *);
1321
1322 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1323 struct dwarf2_cu *, struct symbol *);
1324
1325 static void dwarf2_const_value (struct attribute *, struct symbol *,
1326 struct dwarf2_cu *);
1327
1328 static void dwarf2_const_value_attr (struct attribute *attr,
1329 struct type *type,
1330 const char *name,
1331 struct obstack *obstack,
1332 struct dwarf2_cu *cu, LONGEST *value,
1333 gdb_byte **bytes,
1334 struct dwarf2_locexpr_baton **baton);
1335
1336 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1337
1338 static int need_gnat_info (struct dwarf2_cu *);
1339
1340 static struct type *die_descriptive_type (struct die_info *,
1341 struct dwarf2_cu *);
1342
1343 static void set_descriptive_type (struct type *, struct die_info *,
1344 struct dwarf2_cu *);
1345
1346 static struct type *die_containing_type (struct die_info *,
1347 struct dwarf2_cu *);
1348
1349 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1350 struct dwarf2_cu *);
1351
1352 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1353
1354 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1355
1356 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1357
1358 static char *typename_concat (struct obstack *obs, const char *prefix,
1359 const char *suffix, int physname,
1360 struct dwarf2_cu *cu);
1361
1362 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1363
1364 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1365
1366 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1367
1368 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1369
1370 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1371
1372 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1373 struct dwarf2_cu *, struct partial_symtab *);
1374
1375 static int dwarf2_get_pc_bounds (struct die_info *,
1376 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1377 struct partial_symtab *);
1378
1379 static void get_scope_pc_bounds (struct die_info *,
1380 CORE_ADDR *, CORE_ADDR *,
1381 struct dwarf2_cu *);
1382
1383 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1384 CORE_ADDR, struct dwarf2_cu *);
1385
1386 static void dwarf2_add_field (struct field_info *, struct die_info *,
1387 struct dwarf2_cu *);
1388
1389 static void dwarf2_attach_fields_to_type (struct field_info *,
1390 struct type *, struct dwarf2_cu *);
1391
1392 static void dwarf2_add_member_fn (struct field_info *,
1393 struct die_info *, struct type *,
1394 struct dwarf2_cu *);
1395
1396 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1397 struct type *,
1398 struct dwarf2_cu *);
1399
1400 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1401
1402 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1403
1404 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1405
1406 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1407
1408 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1409
1410 static struct type *read_module_type (struct die_info *die,
1411 struct dwarf2_cu *cu);
1412
1413 static const char *namespace_name (struct die_info *die,
1414 int *is_anonymous, struct dwarf2_cu *);
1415
1416 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1417
1418 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1419
1420 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1421 struct dwarf2_cu *);
1422
1423 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1424 gdb_byte *info_ptr,
1425 gdb_byte **new_info_ptr,
1426 struct die_info *parent);
1427
1428 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1429 gdb_byte *info_ptr,
1430 gdb_byte **new_info_ptr,
1431 struct die_info *parent);
1432
1433 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1434 struct die_info **, gdb_byte *, int *, int);
1435
1436 static gdb_byte *read_full_die (const struct die_reader_specs *,
1437 struct die_info **, gdb_byte *, int *);
1438
1439 static void process_die (struct die_info *, struct dwarf2_cu *);
1440
1441 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1442 struct obstack *);
1443
1444 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1445
1446 static const char *dwarf2_full_name (char *name,
1447 struct die_info *die,
1448 struct dwarf2_cu *cu);
1449
1450 static struct die_info *dwarf2_extension (struct die_info *die,
1451 struct dwarf2_cu **);
1452
1453 static const char *dwarf_tag_name (unsigned int);
1454
1455 static const char *dwarf_attr_name (unsigned int);
1456
1457 static const char *dwarf_form_name (unsigned int);
1458
1459 static char *dwarf_bool_name (unsigned int);
1460
1461 static const char *dwarf_type_encoding_name (unsigned int);
1462
1463 static struct die_info *sibling_die (struct die_info *);
1464
1465 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1466
1467 static void dump_die_for_error (struct die_info *);
1468
1469 static void dump_die_1 (struct ui_file *, int level, int max_level,
1470 struct die_info *);
1471
1472 /*static*/ void dump_die (struct die_info *, int max_level);
1473
1474 static void store_in_ref_table (struct die_info *,
1475 struct dwarf2_cu *);
1476
1477 static int is_ref_attr (struct attribute *);
1478
1479 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1480
1481 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1482
1483 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1484 struct attribute *,
1485 struct dwarf2_cu **);
1486
1487 static struct die_info *follow_die_ref (struct die_info *,
1488 struct attribute *,
1489 struct dwarf2_cu **);
1490
1491 static struct die_info *follow_die_sig (struct die_info *,
1492 struct attribute *,
1493 struct dwarf2_cu **);
1494
1495 static struct signatured_type *lookup_signatured_type_at_offset
1496 (struct objfile *objfile,
1497 struct dwarf2_section_info *section, sect_offset offset);
1498
1499 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1500
1501 static void read_signatured_type (struct signatured_type *);
1502
1503 static struct type_unit_group *get_type_unit_group
1504 (struct dwarf2_cu *, struct attribute *);
1505
1506 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1507
1508 /* memory allocation interface */
1509
1510 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1511
1512 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1513
1514 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1515 char *, int);
1516
1517 static int attr_form_is_block (struct attribute *);
1518
1519 static int attr_form_is_section_offset (struct attribute *);
1520
1521 static int attr_form_is_constant (struct attribute *);
1522
1523 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1524 struct dwarf2_loclist_baton *baton,
1525 struct attribute *attr);
1526
1527 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1528 struct symbol *sym,
1529 struct dwarf2_cu *cu);
1530
1531 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1532 gdb_byte *info_ptr,
1533 struct abbrev_info *abbrev);
1534
1535 static void free_stack_comp_unit (void *);
1536
1537 static hashval_t partial_die_hash (const void *item);
1538
1539 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1540
1541 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1542 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1543
1544 static void init_one_comp_unit (struct dwarf2_cu *cu,
1545 struct dwarf2_per_cu_data *per_cu);
1546
1547 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1548 struct die_info *comp_unit_die,
1549 enum language pretend_language);
1550
1551 static void free_heap_comp_unit (void *);
1552
1553 static void free_cached_comp_units (void *);
1554
1555 static void age_cached_comp_units (void);
1556
1557 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1558
1559 static struct type *set_die_type (struct die_info *, struct type *,
1560 struct dwarf2_cu *);
1561
1562 static void create_all_comp_units (struct objfile *);
1563
1564 static int create_all_type_units (struct objfile *);
1565
1566 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1567 enum language);
1568
1569 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1570 enum language);
1571
1572 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1573 enum language);
1574
1575 static void dwarf2_add_dependence (struct dwarf2_cu *,
1576 struct dwarf2_per_cu_data *);
1577
1578 static void dwarf2_mark (struct dwarf2_cu *);
1579
1580 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1581
1582 static struct type *get_die_type_at_offset (sect_offset,
1583 struct dwarf2_per_cu_data *per_cu);
1584
1585 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1586
1587 static void dwarf2_release_queue (void *dummy);
1588
1589 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1590 enum language pretend_language);
1591
1592 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1593 struct dwarf2_per_cu_data *per_cu,
1594 enum language pretend_language);
1595
1596 static void process_queue (void);
1597
1598 static void find_file_and_directory (struct die_info *die,
1599 struct dwarf2_cu *cu,
1600 char **name, char **comp_dir);
1601
1602 static char *file_full_name (int file, struct line_header *lh,
1603 const char *comp_dir);
1604
1605 static gdb_byte *read_and_check_comp_unit_head
1606 (struct comp_unit_head *header,
1607 struct dwarf2_section_info *section,
1608 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1609 int is_debug_types_section);
1610
1611 static void init_cutu_and_read_dies
1612 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1613 int use_existing_cu, int keep,
1614 die_reader_func_ftype *die_reader_func, void *data);
1615
1616 static void init_cutu_and_read_dies_simple
1617 (struct dwarf2_per_cu_data *this_cu,
1618 die_reader_func_ftype *die_reader_func, void *data);
1619
1620 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1621
1622 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1623
1624 static struct dwo_unit *lookup_dwo_comp_unit
1625 (struct dwarf2_per_cu_data *, char *, const char *, ULONGEST);
1626
1627 static struct dwo_unit *lookup_dwo_type_unit
1628 (struct signatured_type *, char *, const char *);
1629
1630 static void free_dwo_file_cleanup (void *);
1631
1632 static void process_cu_includes (void);
1633
1634 #if WORDS_BIGENDIAN
1635
1636 /* Convert VALUE between big- and little-endian. */
1637 static offset_type
1638 byte_swap (offset_type value)
1639 {
1640 offset_type result;
1641
1642 result = (value & 0xff) << 24;
1643 result |= (value & 0xff00) << 8;
1644 result |= (value & 0xff0000) >> 8;
1645 result |= (value & 0xff000000) >> 24;
1646 return result;
1647 }
1648
1649 #define MAYBE_SWAP(V) byte_swap (V)
1650
1651 #else
1652 #define MAYBE_SWAP(V) (V)
1653 #endif /* WORDS_BIGENDIAN */
1654
1655 /* The suffix for an index file. */
1656 #define INDEX_SUFFIX ".gdb-index"
1657
1658 static const char *dwarf2_physname (char *name, struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
1661 /* Try to locate the sections we need for DWARF 2 debugging
1662 information and return true if we have enough to do something.
1663 NAMES points to the dwarf2 section names, or is NULL if the standard
1664 ELF names are used. */
1665
1666 int
1667 dwarf2_has_info (struct objfile *objfile,
1668 const struct dwarf2_debug_sections *names)
1669 {
1670 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1671 if (!dwarf2_per_objfile)
1672 {
1673 /* Initialize per-objfile state. */
1674 struct dwarf2_per_objfile *data
1675 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1676
1677 memset (data, 0, sizeof (*data));
1678 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1679 dwarf2_per_objfile = data;
1680
1681 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1682 (void *) names);
1683 dwarf2_per_objfile->objfile = objfile;
1684 }
1685 return (dwarf2_per_objfile->info.asection != NULL
1686 && dwarf2_per_objfile->abbrev.asection != NULL);
1687 }
1688
1689 /* When loading sections, we look either for uncompressed section or for
1690 compressed section names. */
1691
1692 static int
1693 section_is_p (const char *section_name,
1694 const struct dwarf2_section_names *names)
1695 {
1696 if (names->normal != NULL
1697 && strcmp (section_name, names->normal) == 0)
1698 return 1;
1699 if (names->compressed != NULL
1700 && strcmp (section_name, names->compressed) == 0)
1701 return 1;
1702 return 0;
1703 }
1704
1705 /* This function is mapped across the sections and remembers the
1706 offset and size of each of the debugging sections we are interested
1707 in. */
1708
1709 static void
1710 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1711 {
1712 const struct dwarf2_debug_sections *names;
1713
1714 if (vnames == NULL)
1715 names = &dwarf2_elf_names;
1716 else
1717 names = (const struct dwarf2_debug_sections *) vnames;
1718
1719 if (section_is_p (sectp->name, &names->info))
1720 {
1721 dwarf2_per_objfile->info.asection = sectp;
1722 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1723 }
1724 else if (section_is_p (sectp->name, &names->abbrev))
1725 {
1726 dwarf2_per_objfile->abbrev.asection = sectp;
1727 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1728 }
1729 else if (section_is_p (sectp->name, &names->line))
1730 {
1731 dwarf2_per_objfile->line.asection = sectp;
1732 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1733 }
1734 else if (section_is_p (sectp->name, &names->loc))
1735 {
1736 dwarf2_per_objfile->loc.asection = sectp;
1737 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1738 }
1739 else if (section_is_p (sectp->name, &names->macinfo))
1740 {
1741 dwarf2_per_objfile->macinfo.asection = sectp;
1742 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1743 }
1744 else if (section_is_p (sectp->name, &names->macro))
1745 {
1746 dwarf2_per_objfile->macro.asection = sectp;
1747 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1748 }
1749 else if (section_is_p (sectp->name, &names->str))
1750 {
1751 dwarf2_per_objfile->str.asection = sectp;
1752 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1753 }
1754 else if (section_is_p (sectp->name, &names->addr))
1755 {
1756 dwarf2_per_objfile->addr.asection = sectp;
1757 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1758 }
1759 else if (section_is_p (sectp->name, &names->frame))
1760 {
1761 dwarf2_per_objfile->frame.asection = sectp;
1762 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1763 }
1764 else if (section_is_p (sectp->name, &names->eh_frame))
1765 {
1766 flagword aflag = bfd_get_section_flags (abfd, sectp);
1767
1768 if (aflag & SEC_HAS_CONTENTS)
1769 {
1770 dwarf2_per_objfile->eh_frame.asection = sectp;
1771 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1772 }
1773 }
1774 else if (section_is_p (sectp->name, &names->ranges))
1775 {
1776 dwarf2_per_objfile->ranges.asection = sectp;
1777 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1778 }
1779 else if (section_is_p (sectp->name, &names->types))
1780 {
1781 struct dwarf2_section_info type_section;
1782
1783 memset (&type_section, 0, sizeof (type_section));
1784 type_section.asection = sectp;
1785 type_section.size = bfd_get_section_size (sectp);
1786
1787 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1788 &type_section);
1789 }
1790 else if (section_is_p (sectp->name, &names->gdb_index))
1791 {
1792 dwarf2_per_objfile->gdb_index.asection = sectp;
1793 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1794 }
1795
1796 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1797 && bfd_section_vma (abfd, sectp) == 0)
1798 dwarf2_per_objfile->has_section_at_zero = 1;
1799 }
1800
1801 /* A helper function that decides whether a section is empty,
1802 or not present. */
1803
1804 static int
1805 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1806 {
1807 return info->asection == NULL || info->size == 0;
1808 }
1809
1810 /* Read the contents of the section INFO.
1811 OBJFILE is the main object file, but not necessarily the file where
1812 the section comes from. E.g., for DWO files INFO->asection->owner
1813 is the bfd of the DWO file.
1814 If the section is compressed, uncompress it before returning. */
1815
1816 static void
1817 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1818 {
1819 asection *sectp = info->asection;
1820 bfd *abfd;
1821 gdb_byte *buf, *retbuf;
1822 unsigned char header[4];
1823
1824 if (info->readin)
1825 return;
1826 info->buffer = NULL;
1827 info->readin = 1;
1828
1829 if (dwarf2_section_empty_p (info))
1830 return;
1831
1832 abfd = sectp->owner;
1833
1834 /* If the section has relocations, we must read it ourselves.
1835 Otherwise we attach it to the BFD. */
1836 if ((sectp->flags & SEC_RELOC) == 0)
1837 {
1838 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1839
1840 /* We have to cast away const here for historical reasons.
1841 Fixing dwarf2read to be const-correct would be quite nice. */
1842 info->buffer = (gdb_byte *) bytes;
1843 return;
1844 }
1845
1846 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1847 info->buffer = buf;
1848
1849 /* When debugging .o files, we may need to apply relocations; see
1850 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1851 We never compress sections in .o files, so we only need to
1852 try this when the section is not compressed. */
1853 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1854 if (retbuf != NULL)
1855 {
1856 info->buffer = retbuf;
1857 return;
1858 }
1859
1860 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1861 || bfd_bread (buf, info->size, abfd) != info->size)
1862 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1863 bfd_get_filename (abfd));
1864 }
1865
1866 /* A helper function that returns the size of a section in a safe way.
1867 If you are positive that the section has been read before using the
1868 size, then it is safe to refer to the dwarf2_section_info object's
1869 "size" field directly. In other cases, you must call this
1870 function, because for compressed sections the size field is not set
1871 correctly until the section has been read. */
1872
1873 static bfd_size_type
1874 dwarf2_section_size (struct objfile *objfile,
1875 struct dwarf2_section_info *info)
1876 {
1877 if (!info->readin)
1878 dwarf2_read_section (objfile, info);
1879 return info->size;
1880 }
1881
1882 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1883 SECTION_NAME. */
1884
1885 void
1886 dwarf2_get_section_info (struct objfile *objfile,
1887 enum dwarf2_section_enum sect,
1888 asection **sectp, gdb_byte **bufp,
1889 bfd_size_type *sizep)
1890 {
1891 struct dwarf2_per_objfile *data
1892 = objfile_data (objfile, dwarf2_objfile_data_key);
1893 struct dwarf2_section_info *info;
1894
1895 /* We may see an objfile without any DWARF, in which case we just
1896 return nothing. */
1897 if (data == NULL)
1898 {
1899 *sectp = NULL;
1900 *bufp = NULL;
1901 *sizep = 0;
1902 return;
1903 }
1904 switch (sect)
1905 {
1906 case DWARF2_DEBUG_FRAME:
1907 info = &data->frame;
1908 break;
1909 case DWARF2_EH_FRAME:
1910 info = &data->eh_frame;
1911 break;
1912 default:
1913 gdb_assert_not_reached ("unexpected section");
1914 }
1915
1916 dwarf2_read_section (objfile, info);
1917
1918 *sectp = info->asection;
1919 *bufp = info->buffer;
1920 *sizep = info->size;
1921 }
1922
1923 /* A helper function to find the sections for a .dwz file. */
1924
1925 static void
1926 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
1927 {
1928 struct dwz_file *dwz_file = arg;
1929
1930 /* Note that we only support the standard ELF names, because .dwz
1931 is ELF-only (at the time of writing). */
1932 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
1933 {
1934 dwz_file->abbrev.asection = sectp;
1935 dwz_file->abbrev.size = bfd_get_section_size (sectp);
1936 }
1937 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
1938 {
1939 dwz_file->info.asection = sectp;
1940 dwz_file->info.size = bfd_get_section_size (sectp);
1941 }
1942 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
1943 {
1944 dwz_file->str.asection = sectp;
1945 dwz_file->str.size = bfd_get_section_size (sectp);
1946 }
1947 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
1948 {
1949 dwz_file->line.asection = sectp;
1950 dwz_file->line.size = bfd_get_section_size (sectp);
1951 }
1952 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
1953 {
1954 dwz_file->macro.asection = sectp;
1955 dwz_file->macro.size = bfd_get_section_size (sectp);
1956 }
1957 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
1958 {
1959 dwz_file->gdb_index.asection = sectp;
1960 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
1961 }
1962 }
1963
1964 /* Open the separate '.dwz' debug file, if needed. Error if the file
1965 cannot be found. */
1966
1967 static struct dwz_file *
1968 dwarf2_get_dwz_file (void)
1969 {
1970 bfd *abfd, *dwz_bfd;
1971 asection *section;
1972 gdb_byte *data;
1973 struct cleanup *cleanup;
1974 const char *filename;
1975 struct dwz_file *result;
1976
1977 if (dwarf2_per_objfile->dwz_file != NULL)
1978 return dwarf2_per_objfile->dwz_file;
1979
1980 abfd = dwarf2_per_objfile->objfile->obfd;
1981 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
1982 if (section == NULL)
1983 error (_("could not find '.gnu_debugaltlink' section"));
1984 if (!bfd_malloc_and_get_section (abfd, section, &data))
1985 error (_("could not read '.gnu_debugaltlink' section: %s"),
1986 bfd_errmsg (bfd_get_error ()));
1987 cleanup = make_cleanup (xfree, data);
1988
1989 filename = data;
1990 if (!IS_ABSOLUTE_PATH (filename))
1991 {
1992 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
1993 char *rel;
1994
1995 make_cleanup (xfree, abs);
1996 abs = ldirname (abs);
1997 make_cleanup (xfree, abs);
1998
1999 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2000 make_cleanup (xfree, rel);
2001 filename = rel;
2002 }
2003
2004 /* The format is just a NUL-terminated file name, followed by the
2005 build-id. For now, though, we ignore the build-id. */
2006 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2007 if (dwz_bfd == NULL)
2008 error (_("could not read '%s': %s"), filename,
2009 bfd_errmsg (bfd_get_error ()));
2010
2011 if (!bfd_check_format (dwz_bfd, bfd_object))
2012 {
2013 gdb_bfd_unref (dwz_bfd);
2014 error (_("file '%s' was not usable: %s"), filename,
2015 bfd_errmsg (bfd_get_error ()));
2016 }
2017
2018 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2019 struct dwz_file);
2020 result->dwz_bfd = dwz_bfd;
2021
2022 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2023
2024 do_cleanups (cleanup);
2025
2026 return result;
2027 }
2028 \f
2029 /* DWARF quick_symbols_functions support. */
2030
2031 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2032 unique line tables, so we maintain a separate table of all .debug_line
2033 derived entries to support the sharing.
2034 All the quick functions need is the list of file names. We discard the
2035 line_header when we're done and don't need to record it here. */
2036 struct quick_file_names
2037 {
2038 /* The data used to construct the hash key. */
2039 struct stmt_list_hash hash;
2040
2041 /* The number of entries in file_names, real_names. */
2042 unsigned int num_file_names;
2043
2044 /* The file names from the line table, after being run through
2045 file_full_name. */
2046 const char **file_names;
2047
2048 /* The file names from the line table after being run through
2049 gdb_realpath. These are computed lazily. */
2050 const char **real_names;
2051 };
2052
2053 /* When using the index (and thus not using psymtabs), each CU has an
2054 object of this type. This is used to hold information needed by
2055 the various "quick" methods. */
2056 struct dwarf2_per_cu_quick_data
2057 {
2058 /* The file table. This can be NULL if there was no file table
2059 or it's currently not read in.
2060 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2061 struct quick_file_names *file_names;
2062
2063 /* The corresponding symbol table. This is NULL if symbols for this
2064 CU have not yet been read. */
2065 struct symtab *symtab;
2066
2067 /* A temporary mark bit used when iterating over all CUs in
2068 expand_symtabs_matching. */
2069 unsigned int mark : 1;
2070
2071 /* True if we've tried to read the file table and found there isn't one.
2072 There will be no point in trying to read it again next time. */
2073 unsigned int no_file_data : 1;
2074 };
2075
2076 /* Utility hash function for a stmt_list_hash. */
2077
2078 static hashval_t
2079 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2080 {
2081 hashval_t v = 0;
2082
2083 if (stmt_list_hash->dwo_unit != NULL)
2084 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2085 v += stmt_list_hash->line_offset.sect_off;
2086 return v;
2087 }
2088
2089 /* Utility equality function for a stmt_list_hash. */
2090
2091 static int
2092 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2093 const struct stmt_list_hash *rhs)
2094 {
2095 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2096 return 0;
2097 if (lhs->dwo_unit != NULL
2098 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2099 return 0;
2100
2101 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2102 }
2103
2104 /* Hash function for a quick_file_names. */
2105
2106 static hashval_t
2107 hash_file_name_entry (const void *e)
2108 {
2109 const struct quick_file_names *file_data = e;
2110
2111 return hash_stmt_list_entry (&file_data->hash);
2112 }
2113
2114 /* Equality function for a quick_file_names. */
2115
2116 static int
2117 eq_file_name_entry (const void *a, const void *b)
2118 {
2119 const struct quick_file_names *ea = a;
2120 const struct quick_file_names *eb = b;
2121
2122 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2123 }
2124
2125 /* Delete function for a quick_file_names. */
2126
2127 static void
2128 delete_file_name_entry (void *e)
2129 {
2130 struct quick_file_names *file_data = e;
2131 int i;
2132
2133 for (i = 0; i < file_data->num_file_names; ++i)
2134 {
2135 xfree ((void*) file_data->file_names[i]);
2136 if (file_data->real_names)
2137 xfree ((void*) file_data->real_names[i]);
2138 }
2139
2140 /* The space for the struct itself lives on objfile_obstack,
2141 so we don't free it here. */
2142 }
2143
2144 /* Create a quick_file_names hash table. */
2145
2146 static htab_t
2147 create_quick_file_names_table (unsigned int nr_initial_entries)
2148 {
2149 return htab_create_alloc (nr_initial_entries,
2150 hash_file_name_entry, eq_file_name_entry,
2151 delete_file_name_entry, xcalloc, xfree);
2152 }
2153
2154 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2155 have to be created afterwards. You should call age_cached_comp_units after
2156 processing PER_CU->CU. dw2_setup must have been already called. */
2157
2158 static void
2159 load_cu (struct dwarf2_per_cu_data *per_cu)
2160 {
2161 if (per_cu->is_debug_types)
2162 load_full_type_unit (per_cu);
2163 else
2164 load_full_comp_unit (per_cu, language_minimal);
2165
2166 gdb_assert (per_cu->cu != NULL);
2167
2168 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2169 }
2170
2171 /* Read in the symbols for PER_CU. */
2172
2173 static void
2174 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2175 {
2176 struct cleanup *back_to;
2177
2178 /* Skip type_unit_groups, reading the type units they contain
2179 is handled elsewhere. */
2180 if (IS_TYPE_UNIT_GROUP (per_cu))
2181 return;
2182
2183 back_to = make_cleanup (dwarf2_release_queue, NULL);
2184
2185 if (dwarf2_per_objfile->using_index
2186 ? per_cu->v.quick->symtab == NULL
2187 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2188 {
2189 queue_comp_unit (per_cu, language_minimal);
2190 load_cu (per_cu);
2191 }
2192
2193 process_queue ();
2194
2195 /* Age the cache, releasing compilation units that have not
2196 been used recently. */
2197 age_cached_comp_units ();
2198
2199 do_cleanups (back_to);
2200 }
2201
2202 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2203 the objfile from which this CU came. Returns the resulting symbol
2204 table. */
2205
2206 static struct symtab *
2207 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2208 {
2209 gdb_assert (dwarf2_per_objfile->using_index);
2210 if (!per_cu->v.quick->symtab)
2211 {
2212 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2213 increment_reading_symtab ();
2214 dw2_do_instantiate_symtab (per_cu);
2215 process_cu_includes ();
2216 do_cleanups (back_to);
2217 }
2218 return per_cu->v.quick->symtab;
2219 }
2220
2221 /* Return the CU given its index.
2222
2223 This is intended for loops like:
2224
2225 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2226 + dwarf2_per_objfile->n_type_units); ++i)
2227 {
2228 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2229
2230 ...;
2231 }
2232 */
2233
2234 static struct dwarf2_per_cu_data *
2235 dw2_get_cu (int index)
2236 {
2237 if (index >= dwarf2_per_objfile->n_comp_units)
2238 {
2239 index -= dwarf2_per_objfile->n_comp_units;
2240 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2241 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2242 }
2243
2244 return dwarf2_per_objfile->all_comp_units[index];
2245 }
2246
2247 /* Return the primary CU given its index.
2248 The difference between this function and dw2_get_cu is in the handling
2249 of type units (TUs). Here we return the type_unit_group object.
2250
2251 This is intended for loops like:
2252
2253 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2254 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2255 {
2256 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2257
2258 ...;
2259 }
2260 */
2261
2262 static struct dwarf2_per_cu_data *
2263 dw2_get_primary_cu (int index)
2264 {
2265 if (index >= dwarf2_per_objfile->n_comp_units)
2266 {
2267 index -= dwarf2_per_objfile->n_comp_units;
2268 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2269 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2270 }
2271
2272 return dwarf2_per_objfile->all_comp_units[index];
2273 }
2274
2275 /* A helper function that knows how to read a 64-bit value in a way
2276 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
2277 otherwise. */
2278
2279 static int
2280 extract_cu_value (const char *bytes, ULONGEST *result)
2281 {
2282 if (sizeof (ULONGEST) < 8)
2283 {
2284 int i;
2285
2286 /* Ignore the upper 4 bytes if they are all zero. */
2287 for (i = 0; i < 4; ++i)
2288 if (bytes[i + 4] != 0)
2289 return 0;
2290
2291 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
2292 }
2293 else
2294 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2295 return 1;
2296 }
2297
2298 /* A helper for create_cus_from_index that handles a given list of
2299 CUs. */
2300
2301 static int
2302 create_cus_from_index_list (struct objfile *objfile,
2303 const gdb_byte *cu_list, offset_type n_elements,
2304 struct dwarf2_section_info *section,
2305 int is_dwz,
2306 int base_offset)
2307 {
2308 offset_type i;
2309
2310 for (i = 0; i < n_elements; i += 2)
2311 {
2312 struct dwarf2_per_cu_data *the_cu;
2313 ULONGEST offset, length;
2314
2315 if (!extract_cu_value (cu_list, &offset)
2316 || !extract_cu_value (cu_list + 8, &length))
2317 return 0;
2318 cu_list += 2 * 8;
2319
2320 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2321 struct dwarf2_per_cu_data);
2322 the_cu->offset.sect_off = offset;
2323 the_cu->length = length;
2324 the_cu->objfile = objfile;
2325 the_cu->info_or_types_section = section;
2326 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2327 struct dwarf2_per_cu_quick_data);
2328 the_cu->is_dwz = is_dwz;
2329 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2330 }
2331
2332 return 1;
2333 }
2334
2335 /* Read the CU list from the mapped index, and use it to create all
2336 the CU objects for this objfile. Return 0 if something went wrong,
2337 1 if everything went ok. */
2338
2339 static int
2340 create_cus_from_index (struct objfile *objfile,
2341 const gdb_byte *cu_list, offset_type cu_list_elements,
2342 const gdb_byte *dwz_list, offset_type dwz_elements)
2343 {
2344 struct dwz_file *dwz;
2345
2346 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2347 dwarf2_per_objfile->all_comp_units
2348 = obstack_alloc (&objfile->objfile_obstack,
2349 dwarf2_per_objfile->n_comp_units
2350 * sizeof (struct dwarf2_per_cu_data *));
2351
2352 if (!create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2353 &dwarf2_per_objfile->info, 0, 0))
2354 return 0;
2355
2356 if (dwz_elements == 0)
2357 return 1;
2358
2359 dwz = dwarf2_get_dwz_file ();
2360 return create_cus_from_index_list (objfile, dwz_list, dwz_elements,
2361 &dwz->info, 1, cu_list_elements / 2);
2362 }
2363
2364 /* Create the signatured type hash table from the index. */
2365
2366 static int
2367 create_signatured_type_table_from_index (struct objfile *objfile,
2368 struct dwarf2_section_info *section,
2369 const gdb_byte *bytes,
2370 offset_type elements)
2371 {
2372 offset_type i;
2373 htab_t sig_types_hash;
2374
2375 dwarf2_per_objfile->n_type_units = elements / 3;
2376 dwarf2_per_objfile->all_type_units
2377 = obstack_alloc (&objfile->objfile_obstack,
2378 dwarf2_per_objfile->n_type_units
2379 * sizeof (struct signatured_type *));
2380
2381 sig_types_hash = allocate_signatured_type_table (objfile);
2382
2383 for (i = 0; i < elements; i += 3)
2384 {
2385 struct signatured_type *sig_type;
2386 ULONGEST offset, type_offset_in_tu, signature;
2387 void **slot;
2388
2389 if (!extract_cu_value (bytes, &offset)
2390 || !extract_cu_value (bytes + 8, &type_offset_in_tu))
2391 return 0;
2392 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2393 bytes += 3 * 8;
2394
2395 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2396 struct signatured_type);
2397 sig_type->signature = signature;
2398 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2399 sig_type->per_cu.is_debug_types = 1;
2400 sig_type->per_cu.info_or_types_section = section;
2401 sig_type->per_cu.offset.sect_off = offset;
2402 sig_type->per_cu.objfile = objfile;
2403 sig_type->per_cu.v.quick
2404 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2405 struct dwarf2_per_cu_quick_data);
2406
2407 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2408 *slot = sig_type;
2409
2410 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2411 }
2412
2413 dwarf2_per_objfile->signatured_types = sig_types_hash;
2414
2415 return 1;
2416 }
2417
2418 /* Read the address map data from the mapped index, and use it to
2419 populate the objfile's psymtabs_addrmap. */
2420
2421 static void
2422 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2423 {
2424 const gdb_byte *iter, *end;
2425 struct obstack temp_obstack;
2426 struct addrmap *mutable_map;
2427 struct cleanup *cleanup;
2428 CORE_ADDR baseaddr;
2429
2430 obstack_init (&temp_obstack);
2431 cleanup = make_cleanup_obstack_free (&temp_obstack);
2432 mutable_map = addrmap_create_mutable (&temp_obstack);
2433
2434 iter = index->address_table;
2435 end = iter + index->address_table_size;
2436
2437 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2438
2439 while (iter < end)
2440 {
2441 ULONGEST hi, lo, cu_index;
2442 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2443 iter += 8;
2444 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2445 iter += 8;
2446 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2447 iter += 4;
2448
2449 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2450 dw2_get_cu (cu_index));
2451 }
2452
2453 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2454 &objfile->objfile_obstack);
2455 do_cleanups (cleanup);
2456 }
2457
2458 /* The hash function for strings in the mapped index. This is the same as
2459 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2460 implementation. This is necessary because the hash function is tied to the
2461 format of the mapped index file. The hash values do not have to match with
2462 SYMBOL_HASH_NEXT.
2463
2464 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2465
2466 static hashval_t
2467 mapped_index_string_hash (int index_version, const void *p)
2468 {
2469 const unsigned char *str = (const unsigned char *) p;
2470 hashval_t r = 0;
2471 unsigned char c;
2472
2473 while ((c = *str++) != 0)
2474 {
2475 if (index_version >= 5)
2476 c = tolower (c);
2477 r = r * 67 + c - 113;
2478 }
2479
2480 return r;
2481 }
2482
2483 /* Find a slot in the mapped index INDEX for the object named NAME.
2484 If NAME is found, set *VEC_OUT to point to the CU vector in the
2485 constant pool and return 1. If NAME cannot be found, return 0. */
2486
2487 static int
2488 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2489 offset_type **vec_out)
2490 {
2491 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2492 offset_type hash;
2493 offset_type slot, step;
2494 int (*cmp) (const char *, const char *);
2495
2496 if (current_language->la_language == language_cplus
2497 || current_language->la_language == language_java
2498 || current_language->la_language == language_fortran)
2499 {
2500 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2501 not contain any. */
2502 const char *paren = strchr (name, '(');
2503
2504 if (paren)
2505 {
2506 char *dup;
2507
2508 dup = xmalloc (paren - name + 1);
2509 memcpy (dup, name, paren - name);
2510 dup[paren - name] = 0;
2511
2512 make_cleanup (xfree, dup);
2513 name = dup;
2514 }
2515 }
2516
2517 /* Index version 4 did not support case insensitive searches. But the
2518 indices for case insensitive languages are built in lowercase, therefore
2519 simulate our NAME being searched is also lowercased. */
2520 hash = mapped_index_string_hash ((index->version == 4
2521 && case_sensitivity == case_sensitive_off
2522 ? 5 : index->version),
2523 name);
2524
2525 slot = hash & (index->symbol_table_slots - 1);
2526 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2527 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2528
2529 for (;;)
2530 {
2531 /* Convert a slot number to an offset into the table. */
2532 offset_type i = 2 * slot;
2533 const char *str;
2534 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2535 {
2536 do_cleanups (back_to);
2537 return 0;
2538 }
2539
2540 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2541 if (!cmp (name, str))
2542 {
2543 *vec_out = (offset_type *) (index->constant_pool
2544 + MAYBE_SWAP (index->symbol_table[i + 1]));
2545 do_cleanups (back_to);
2546 return 1;
2547 }
2548
2549 slot = (slot + step) & (index->symbol_table_slots - 1);
2550 }
2551 }
2552
2553 /* A helper function that reads the .gdb_index from SECTION and fills
2554 in MAP. FILENAME is the name of the file containing the section;
2555 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2556 ok to use deprecated sections.
2557
2558 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2559 out parameters that are filled in with information about the CU and
2560 TU lists in the section.
2561
2562 Returns 1 if all went well, 0 otherwise. */
2563
2564 static int
2565 read_index_from_section (struct objfile *objfile,
2566 const char *filename,
2567 int deprecated_ok,
2568 struct dwarf2_section_info *section,
2569 struct mapped_index *map,
2570 const gdb_byte **cu_list,
2571 offset_type *cu_list_elements,
2572 const gdb_byte **types_list,
2573 offset_type *types_list_elements)
2574 {
2575 char *addr;
2576 offset_type version;
2577 offset_type *metadata;
2578 int i;
2579
2580 if (dwarf2_section_empty_p (section))
2581 return 0;
2582
2583 /* Older elfutils strip versions could keep the section in the main
2584 executable while splitting it for the separate debug info file. */
2585 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2586 return 0;
2587
2588 dwarf2_read_section (objfile, section);
2589
2590 addr = section->buffer;
2591 /* Version check. */
2592 version = MAYBE_SWAP (*(offset_type *) addr);
2593 /* Versions earlier than 3 emitted every copy of a psymbol. This
2594 causes the index to behave very poorly for certain requests. Version 3
2595 contained incomplete addrmap. So, it seems better to just ignore such
2596 indices. */
2597 if (version < 4)
2598 {
2599 static int warning_printed = 0;
2600 if (!warning_printed)
2601 {
2602 warning (_("Skipping obsolete .gdb_index section in %s."),
2603 filename);
2604 warning_printed = 1;
2605 }
2606 return 0;
2607 }
2608 /* Index version 4 uses a different hash function than index version
2609 5 and later.
2610
2611 Versions earlier than 6 did not emit psymbols for inlined
2612 functions. Using these files will cause GDB not to be able to
2613 set breakpoints on inlined functions by name, so we ignore these
2614 indices unless the --use-deprecated-index-sections command line
2615 option was supplied. */
2616 if (version < 6 && !deprecated_ok)
2617 {
2618 static int warning_printed = 0;
2619 if (!warning_printed)
2620 {
2621 warning (_("Skipping deprecated .gdb_index section in %s, pass "
2622 "--use-deprecated-index-sections to use them anyway"),
2623 filename);
2624 warning_printed = 1;
2625 }
2626 return 0;
2627 }
2628 /* Indexes with higher version than the one supported by GDB may be no
2629 longer backward compatible. */
2630 if (version > 7)
2631 return 0;
2632
2633 map->version = version;
2634 map->total_size = section->size;
2635
2636 metadata = (offset_type *) (addr + sizeof (offset_type));
2637
2638 i = 0;
2639 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2640 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2641 / 8);
2642 ++i;
2643
2644 *types_list = addr + MAYBE_SWAP (metadata[i]);
2645 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2646 - MAYBE_SWAP (metadata[i]))
2647 / 8);
2648 ++i;
2649
2650 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2651 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2652 - MAYBE_SWAP (metadata[i]));
2653 ++i;
2654
2655 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2656 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2657 - MAYBE_SWAP (metadata[i]))
2658 / (2 * sizeof (offset_type)));
2659 ++i;
2660
2661 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2662
2663 return 1;
2664 }
2665
2666
2667 /* Read the index file. If everything went ok, initialize the "quick"
2668 elements of all the CUs and return 1. Otherwise, return 0. */
2669
2670 static int
2671 dwarf2_read_index (struct objfile *objfile)
2672 {
2673 struct mapped_index local_map, *map;
2674 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2675 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2676
2677 if (!read_index_from_section (objfile, objfile->name,
2678 use_deprecated_index_sections,
2679 &dwarf2_per_objfile->gdb_index, &local_map,
2680 &cu_list, &cu_list_elements,
2681 &types_list, &types_list_elements))
2682 return 0;
2683
2684 /* Don't use the index if it's empty. */
2685 if (local_map.symbol_table_slots == 0)
2686 return 0;
2687
2688 /* If there is a .dwz file, read it so we can get its CU list as
2689 well. */
2690 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2691 {
2692 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2693 struct mapped_index dwz_map;
2694 const gdb_byte *dwz_types_ignore;
2695 offset_type dwz_types_elements_ignore;
2696
2697 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2698 1,
2699 &dwz->gdb_index, &dwz_map,
2700 &dwz_list, &dwz_list_elements,
2701 &dwz_types_ignore,
2702 &dwz_types_elements_ignore))
2703 {
2704 warning (_("could not read '.gdb_index' section from %s; skipping"),
2705 bfd_get_filename (dwz->dwz_bfd));
2706 return 0;
2707 }
2708 }
2709
2710 if (!create_cus_from_index (objfile, cu_list, cu_list_elements,
2711 dwz_list, dwz_list_elements))
2712 return 0;
2713
2714 if (types_list_elements)
2715 {
2716 struct dwarf2_section_info *section;
2717
2718 /* We can only handle a single .debug_types when we have an
2719 index. */
2720 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2721 return 0;
2722
2723 section = VEC_index (dwarf2_section_info_def,
2724 dwarf2_per_objfile->types, 0);
2725
2726 if (!create_signatured_type_table_from_index (objfile, section,
2727 types_list,
2728 types_list_elements))
2729 return 0;
2730 }
2731
2732 create_addrmap_from_index (objfile, &local_map);
2733
2734 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2735 *map = local_map;
2736
2737 dwarf2_per_objfile->index_table = map;
2738 dwarf2_per_objfile->using_index = 1;
2739 dwarf2_per_objfile->quick_file_names_table =
2740 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2741
2742 return 1;
2743 }
2744
2745 /* A helper for the "quick" functions which sets the global
2746 dwarf2_per_objfile according to OBJFILE. */
2747
2748 static void
2749 dw2_setup (struct objfile *objfile)
2750 {
2751 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2752 gdb_assert (dwarf2_per_objfile);
2753 }
2754
2755 /* Reader function for dw2_build_type_unit_groups. */
2756
2757 static void
2758 dw2_build_type_unit_groups_reader (const struct die_reader_specs *reader,
2759 gdb_byte *info_ptr,
2760 struct die_info *type_unit_die,
2761 int has_children,
2762 void *data)
2763 {
2764 struct dwarf2_cu *cu = reader->cu;
2765 struct attribute *attr;
2766 struct type_unit_group *tu_group;
2767
2768 gdb_assert (data == NULL);
2769
2770 if (! has_children)
2771 return;
2772
2773 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
2774 /* Call this for its side-effect of creating the associated
2775 struct type_unit_group if it doesn't already exist. */
2776 tu_group = get_type_unit_group (cu, attr);
2777 }
2778
2779 /* Build dwarf2_per_objfile->type_unit_groups.
2780 This function may be called multiple times. */
2781
2782 static void
2783 dw2_build_type_unit_groups (void)
2784 {
2785 if (dwarf2_per_objfile->type_unit_groups == NULL)
2786 build_type_unit_groups (dw2_build_type_unit_groups_reader, NULL);
2787 }
2788
2789 /* die_reader_func for dw2_get_file_names. */
2790
2791 static void
2792 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2793 gdb_byte *info_ptr,
2794 struct die_info *comp_unit_die,
2795 int has_children,
2796 void *data)
2797 {
2798 struct dwarf2_cu *cu = reader->cu;
2799 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2800 struct objfile *objfile = dwarf2_per_objfile->objfile;
2801 struct dwarf2_per_cu_data *lh_cu;
2802 struct line_header *lh;
2803 struct attribute *attr;
2804 int i;
2805 char *name, *comp_dir;
2806 void **slot;
2807 struct quick_file_names *qfn;
2808 unsigned int line_offset;
2809
2810 /* Our callers never want to match partial units -- instead they
2811 will match the enclosing full CU. */
2812 if (comp_unit_die->tag == DW_TAG_partial_unit)
2813 {
2814 this_cu->v.quick->no_file_data = 1;
2815 return;
2816 }
2817
2818 /* If we're reading the line header for TUs, store it in the "per_cu"
2819 for tu_group. */
2820 if (this_cu->is_debug_types)
2821 {
2822 struct type_unit_group *tu_group = data;
2823
2824 gdb_assert (tu_group != NULL);
2825 lh_cu = &tu_group->per_cu;
2826 }
2827 else
2828 lh_cu = this_cu;
2829
2830 lh = NULL;
2831 slot = NULL;
2832 line_offset = 0;
2833
2834 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2835 if (attr)
2836 {
2837 struct quick_file_names find_entry;
2838
2839 line_offset = DW_UNSND (attr);
2840
2841 /* We may have already read in this line header (TU line header sharing).
2842 If we have we're done. */
2843 find_entry.hash.dwo_unit = cu->dwo_unit;
2844 find_entry.hash.line_offset.sect_off = line_offset;
2845 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2846 &find_entry, INSERT);
2847 if (*slot != NULL)
2848 {
2849 lh_cu->v.quick->file_names = *slot;
2850 return;
2851 }
2852
2853 lh = dwarf_decode_line_header (line_offset, cu);
2854 }
2855 if (lh == NULL)
2856 {
2857 lh_cu->v.quick->no_file_data = 1;
2858 return;
2859 }
2860
2861 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2862 qfn->hash.dwo_unit = cu->dwo_unit;
2863 qfn->hash.line_offset.sect_off = line_offset;
2864 gdb_assert (slot != NULL);
2865 *slot = qfn;
2866
2867 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2868
2869 qfn->num_file_names = lh->num_file_names;
2870 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2871 lh->num_file_names * sizeof (char *));
2872 for (i = 0; i < lh->num_file_names; ++i)
2873 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2874 qfn->real_names = NULL;
2875
2876 free_line_header (lh);
2877
2878 lh_cu->v.quick->file_names = qfn;
2879 }
2880
2881 /* A helper for the "quick" functions which attempts to read the line
2882 table for THIS_CU. */
2883
2884 static struct quick_file_names *
2885 dw2_get_file_names (struct objfile *objfile,
2886 struct dwarf2_per_cu_data *this_cu)
2887 {
2888 /* For TUs this should only be called on the parent group. */
2889 if (this_cu->is_debug_types)
2890 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2891
2892 if (this_cu->v.quick->file_names != NULL)
2893 return this_cu->v.quick->file_names;
2894 /* If we know there is no line data, no point in looking again. */
2895 if (this_cu->v.quick->no_file_data)
2896 return NULL;
2897
2898 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2899 in the stub for CUs, there's is no need to lookup the DWO file.
2900 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2901 DWO file. */
2902 if (this_cu->is_debug_types)
2903 {
2904 struct type_unit_group *tu_group = this_cu->s.type_unit_group;
2905
2906 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2907 dw2_get_file_names_reader, tu_group);
2908 }
2909 else
2910 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2911
2912 if (this_cu->v.quick->no_file_data)
2913 return NULL;
2914 return this_cu->v.quick->file_names;
2915 }
2916
2917 /* A helper for the "quick" functions which computes and caches the
2918 real path for a given file name from the line table. */
2919
2920 static const char *
2921 dw2_get_real_path (struct objfile *objfile,
2922 struct quick_file_names *qfn, int index)
2923 {
2924 if (qfn->real_names == NULL)
2925 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2926 qfn->num_file_names, sizeof (char *));
2927
2928 if (qfn->real_names[index] == NULL)
2929 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2930
2931 return qfn->real_names[index];
2932 }
2933
2934 static struct symtab *
2935 dw2_find_last_source_symtab (struct objfile *objfile)
2936 {
2937 int index;
2938
2939 dw2_setup (objfile);
2940 index = dwarf2_per_objfile->n_comp_units - 1;
2941 return dw2_instantiate_symtab (dw2_get_cu (index));
2942 }
2943
2944 /* Traversal function for dw2_forget_cached_source_info. */
2945
2946 static int
2947 dw2_free_cached_file_names (void **slot, void *info)
2948 {
2949 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2950
2951 if (file_data->real_names)
2952 {
2953 int i;
2954
2955 for (i = 0; i < file_data->num_file_names; ++i)
2956 {
2957 xfree ((void*) file_data->real_names[i]);
2958 file_data->real_names[i] = NULL;
2959 }
2960 }
2961
2962 return 1;
2963 }
2964
2965 static void
2966 dw2_forget_cached_source_info (struct objfile *objfile)
2967 {
2968 dw2_setup (objfile);
2969
2970 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2971 dw2_free_cached_file_names, NULL);
2972 }
2973
2974 /* Helper function for dw2_map_symtabs_matching_filename that expands
2975 the symtabs and calls the iterator. */
2976
2977 static int
2978 dw2_map_expand_apply (struct objfile *objfile,
2979 struct dwarf2_per_cu_data *per_cu,
2980 const char *name,
2981 const char *full_path, const char *real_path,
2982 int (*callback) (struct symtab *, void *),
2983 void *data)
2984 {
2985 struct symtab *last_made = objfile->symtabs;
2986
2987 /* Don't visit already-expanded CUs. */
2988 if (per_cu->v.quick->symtab)
2989 return 0;
2990
2991 /* This may expand more than one symtab, and we want to iterate over
2992 all of them. */
2993 dw2_instantiate_symtab (per_cu);
2994
2995 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2996 objfile->symtabs, last_made);
2997 }
2998
2999 /* Implementation of the map_symtabs_matching_filename method. */
3000
3001 static int
3002 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3003 const char *full_path, const char *real_path,
3004 int (*callback) (struct symtab *, void *),
3005 void *data)
3006 {
3007 int i;
3008 const char *name_basename = lbasename (name);
3009 int name_len = strlen (name);
3010 int is_abs = IS_ABSOLUTE_PATH (name);
3011
3012 dw2_setup (objfile);
3013
3014 dw2_build_type_unit_groups ();
3015
3016 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3017 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3018 {
3019 int j;
3020 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3021 struct quick_file_names *file_data;
3022
3023 /* We only need to look at symtabs not already expanded. */
3024 if (per_cu->v.quick->symtab)
3025 continue;
3026
3027 file_data = dw2_get_file_names (objfile, per_cu);
3028 if (file_data == NULL)
3029 continue;
3030
3031 for (j = 0; j < file_data->num_file_names; ++j)
3032 {
3033 const char *this_name = file_data->file_names[j];
3034
3035 if (FILENAME_CMP (name, this_name) == 0
3036 || (!is_abs && compare_filenames_for_search (this_name,
3037 name, name_len)))
3038 {
3039 if (dw2_map_expand_apply (objfile, per_cu,
3040 name, full_path, real_path,
3041 callback, data))
3042 return 1;
3043 }
3044
3045 /* Before we invoke realpath, which can get expensive when many
3046 files are involved, do a quick comparison of the basenames. */
3047 if (! basenames_may_differ
3048 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3049 continue;
3050
3051 if (full_path != NULL)
3052 {
3053 const char *this_real_name = dw2_get_real_path (objfile,
3054 file_data, j);
3055
3056 if (this_real_name != NULL
3057 && (FILENAME_CMP (full_path, this_real_name) == 0
3058 || (!is_abs
3059 && compare_filenames_for_search (this_real_name,
3060 name, name_len))))
3061 {
3062 if (dw2_map_expand_apply (objfile, per_cu,
3063 name, full_path, real_path,
3064 callback, data))
3065 return 1;
3066 }
3067 }
3068
3069 if (real_path != NULL)
3070 {
3071 const char *this_real_name = dw2_get_real_path (objfile,
3072 file_data, j);
3073
3074 if (this_real_name != NULL
3075 && (FILENAME_CMP (real_path, this_real_name) == 0
3076 || (!is_abs
3077 && compare_filenames_for_search (this_real_name,
3078 name, name_len))))
3079 {
3080 if (dw2_map_expand_apply (objfile, per_cu,
3081 name, full_path, real_path,
3082 callback, data))
3083 return 1;
3084 }
3085 }
3086 }
3087 }
3088
3089 return 0;
3090 }
3091
3092 static struct symtab *
3093 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3094 const char *name, domain_enum domain)
3095 {
3096 /* We do all the work in the pre_expand_symtabs_matching hook
3097 instead. */
3098 return NULL;
3099 }
3100
3101 /* A helper function that expands all symtabs that hold an object
3102 named NAME. If WANT_SPECIFIC_BLOCK is non-zero, only look for
3103 symbols in block BLOCK_KIND. */
3104
3105 static void
3106 dw2_do_expand_symtabs_matching (struct objfile *objfile,
3107 int want_specific_block,
3108 enum block_enum block_kind,
3109 const char *name, domain_enum domain)
3110 {
3111 struct mapped_index *index;
3112
3113 dw2_setup (objfile);
3114
3115 index = dwarf2_per_objfile->index_table;
3116
3117 /* index_table is NULL if OBJF_READNOW. */
3118 if (index)
3119 {
3120 offset_type *vec;
3121
3122 if (find_slot_in_mapped_hash (index, name, &vec))
3123 {
3124 offset_type i, len = MAYBE_SWAP (*vec);
3125 for (i = 0; i < len; ++i)
3126 {
3127 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[i + 1]);
3128 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3129 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3130 int want_static = block_kind != GLOBAL_BLOCK;
3131 /* This value is only valid for index versions >= 7. */
3132 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3133 gdb_index_symbol_kind symbol_kind =
3134 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3135
3136 if (want_specific_block
3137 && index->version >= 7
3138 && want_static != is_static)
3139 continue;
3140
3141 /* Only check the symbol's kind if it has one.
3142 Indices prior to version 7 don't record it. */
3143 if (index->version >= 7)
3144 {
3145 switch (domain)
3146 {
3147 case VAR_DOMAIN:
3148 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3149 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3150 /* Some types are also in VAR_DOMAIN. */
3151 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3152 continue;
3153 break;
3154 case STRUCT_DOMAIN:
3155 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3156 continue;
3157 break;
3158 case LABEL_DOMAIN:
3159 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3160 continue;
3161 break;
3162 default:
3163 break;
3164 }
3165 }
3166
3167 dw2_instantiate_symtab (per_cu);
3168 }
3169 }
3170 }
3171 }
3172
3173 static void
3174 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
3175 enum block_enum block_kind, const char *name,
3176 domain_enum domain)
3177 {
3178 dw2_do_expand_symtabs_matching (objfile, 1, block_kind, name, domain);
3179 }
3180
3181 static void
3182 dw2_print_stats (struct objfile *objfile)
3183 {
3184 int i, count;
3185
3186 dw2_setup (objfile);
3187 count = 0;
3188 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3189 + dwarf2_per_objfile->n_type_units); ++i)
3190 {
3191 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3192
3193 if (!per_cu->v.quick->symtab)
3194 ++count;
3195 }
3196 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3197 }
3198
3199 static void
3200 dw2_dump (struct objfile *objfile)
3201 {
3202 /* Nothing worth printing. */
3203 }
3204
3205 static void
3206 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3207 struct section_offsets *delta)
3208 {
3209 /* There's nothing to relocate here. */
3210 }
3211
3212 static void
3213 dw2_expand_symtabs_for_function (struct objfile *objfile,
3214 const char *func_name)
3215 {
3216 /* Note: It doesn't matter what we pass for block_kind here. */
3217 dw2_do_expand_symtabs_matching (objfile, 0, GLOBAL_BLOCK, func_name,
3218 VAR_DOMAIN);
3219 }
3220
3221 static void
3222 dw2_expand_all_symtabs (struct objfile *objfile)
3223 {
3224 int i;
3225
3226 dw2_setup (objfile);
3227
3228 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3229 + dwarf2_per_objfile->n_type_units); ++i)
3230 {
3231 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3232
3233 dw2_instantiate_symtab (per_cu);
3234 }
3235 }
3236
3237 static void
3238 dw2_expand_symtabs_with_filename (struct objfile *objfile,
3239 const char *filename)
3240 {
3241 int i;
3242
3243 dw2_setup (objfile);
3244
3245 /* We don't need to consider type units here.
3246 This is only called for examining code, e.g. expand_line_sal.
3247 There can be an order of magnitude (or more) more type units
3248 than comp units, and we avoid them if we can. */
3249
3250 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3251 {
3252 int j;
3253 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3254 struct quick_file_names *file_data;
3255
3256 /* We only need to look at symtabs not already expanded. */
3257 if (per_cu->v.quick->symtab)
3258 continue;
3259
3260 file_data = dw2_get_file_names (objfile, per_cu);
3261 if (file_data == NULL)
3262 continue;
3263
3264 for (j = 0; j < file_data->num_file_names; ++j)
3265 {
3266 const char *this_name = file_data->file_names[j];
3267 if (FILENAME_CMP (this_name, filename) == 0)
3268 {
3269 dw2_instantiate_symtab (per_cu);
3270 break;
3271 }
3272 }
3273 }
3274 }
3275
3276 /* A helper function for dw2_find_symbol_file that finds the primary
3277 file name for a given CU. This is a die_reader_func. */
3278
3279 static void
3280 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3281 gdb_byte *info_ptr,
3282 struct die_info *comp_unit_die,
3283 int has_children,
3284 void *data)
3285 {
3286 const char **result_ptr = data;
3287 struct dwarf2_cu *cu = reader->cu;
3288 struct attribute *attr;
3289
3290 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3291 if (attr == NULL)
3292 *result_ptr = NULL;
3293 else
3294 *result_ptr = DW_STRING (attr);
3295 }
3296
3297 static const char *
3298 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3299 {
3300 struct dwarf2_per_cu_data *per_cu;
3301 offset_type *vec;
3302 struct quick_file_names *file_data;
3303 const char *filename;
3304
3305 dw2_setup (objfile);
3306
3307 /* index_table is NULL if OBJF_READNOW. */
3308 if (!dwarf2_per_objfile->index_table)
3309 {
3310 struct symtab *s;
3311
3312 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3313 {
3314 struct blockvector *bv = BLOCKVECTOR (s);
3315 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3316 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3317
3318 if (sym)
3319 return sym->symtab->filename;
3320 }
3321 return NULL;
3322 }
3323
3324 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3325 name, &vec))
3326 return NULL;
3327
3328 /* Note that this just looks at the very first one named NAME -- but
3329 actually we are looking for a function. find_main_filename
3330 should be rewritten so that it doesn't require a custom hook. It
3331 could just use the ordinary symbol tables. */
3332 /* vec[0] is the length, which must always be >0. */
3333 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3334
3335 if (per_cu->v.quick->symtab != NULL)
3336 return per_cu->v.quick->symtab->filename;
3337
3338 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3339 dw2_get_primary_filename_reader, &filename);
3340
3341 return filename;
3342 }
3343
3344 static void
3345 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3346 struct objfile *objfile, int global,
3347 int (*callback) (struct block *,
3348 struct symbol *, void *),
3349 void *data, symbol_compare_ftype *match,
3350 symbol_compare_ftype *ordered_compare)
3351 {
3352 /* Currently unimplemented; used for Ada. The function can be called if the
3353 current language is Ada for a non-Ada objfile using GNU index. As Ada
3354 does not look for non-Ada symbols this function should just return. */
3355 }
3356
3357 static void
3358 dw2_expand_symtabs_matching
3359 (struct objfile *objfile,
3360 int (*file_matcher) (const char *, void *),
3361 int (*name_matcher) (const char *, void *),
3362 enum search_domain kind,
3363 void *data)
3364 {
3365 int i;
3366 offset_type iter;
3367 struct mapped_index *index;
3368
3369 dw2_setup (objfile);
3370
3371 /* index_table is NULL if OBJF_READNOW. */
3372 if (!dwarf2_per_objfile->index_table)
3373 return;
3374 index = dwarf2_per_objfile->index_table;
3375
3376 if (file_matcher != NULL)
3377 {
3378 struct cleanup *cleanup;
3379 htab_t visited_found, visited_not_found;
3380
3381 dw2_build_type_unit_groups ();
3382
3383 visited_found = htab_create_alloc (10,
3384 htab_hash_pointer, htab_eq_pointer,
3385 NULL, xcalloc, xfree);
3386 cleanup = make_cleanup_htab_delete (visited_found);
3387 visited_not_found = htab_create_alloc (10,
3388 htab_hash_pointer, htab_eq_pointer,
3389 NULL, xcalloc, xfree);
3390 make_cleanup_htab_delete (visited_not_found);
3391
3392 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3393 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3394 {
3395 int j;
3396 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3397 struct quick_file_names *file_data;
3398 void **slot;
3399
3400 per_cu->v.quick->mark = 0;
3401
3402 /* We only need to look at symtabs not already expanded. */
3403 if (per_cu->v.quick->symtab)
3404 continue;
3405
3406 file_data = dw2_get_file_names (objfile, per_cu);
3407 if (file_data == NULL)
3408 continue;
3409
3410 if (htab_find (visited_not_found, file_data) != NULL)
3411 continue;
3412 else if (htab_find (visited_found, file_data) != NULL)
3413 {
3414 per_cu->v.quick->mark = 1;
3415 continue;
3416 }
3417
3418 for (j = 0; j < file_data->num_file_names; ++j)
3419 {
3420 if (file_matcher (file_data->file_names[j], data))
3421 {
3422 per_cu->v.quick->mark = 1;
3423 break;
3424 }
3425 }
3426
3427 slot = htab_find_slot (per_cu->v.quick->mark
3428 ? visited_found
3429 : visited_not_found,
3430 file_data, INSERT);
3431 *slot = file_data;
3432 }
3433
3434 do_cleanups (cleanup);
3435 }
3436
3437 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3438 {
3439 offset_type idx = 2 * iter;
3440 const char *name;
3441 offset_type *vec, vec_len, vec_idx;
3442
3443 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3444 continue;
3445
3446 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3447
3448 if (! (*name_matcher) (name, data))
3449 continue;
3450
3451 /* The name was matched, now expand corresponding CUs that were
3452 marked. */
3453 vec = (offset_type *) (index->constant_pool
3454 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3455 vec_len = MAYBE_SWAP (vec[0]);
3456 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3457 {
3458 struct dwarf2_per_cu_data *per_cu;
3459 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3460 gdb_index_symbol_kind symbol_kind =
3461 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3462 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3463
3464 /* Don't crash on bad data. */
3465 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3466 + dwarf2_per_objfile->n_type_units))
3467 continue;
3468
3469 /* Only check the symbol's kind if it has one.
3470 Indices prior to version 7 don't record it. */
3471 if (index->version >= 7)
3472 {
3473 switch (kind)
3474 {
3475 case VARIABLES_DOMAIN:
3476 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3477 continue;
3478 break;
3479 case FUNCTIONS_DOMAIN:
3480 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3481 continue;
3482 break;
3483 case TYPES_DOMAIN:
3484 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3485 continue;
3486 break;
3487 default:
3488 break;
3489 }
3490 }
3491
3492 per_cu = dw2_get_cu (cu_index);
3493 if (file_matcher == NULL || per_cu->v.quick->mark)
3494 dw2_instantiate_symtab (per_cu);
3495 }
3496 }
3497 }
3498
3499 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3500 symtab. */
3501
3502 static struct symtab *
3503 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3504 {
3505 int i;
3506
3507 if (BLOCKVECTOR (symtab) != NULL
3508 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3509 return symtab;
3510
3511 if (symtab->includes == NULL)
3512 return NULL;
3513
3514 for (i = 0; symtab->includes[i]; ++i)
3515 {
3516 struct symtab *s = symtab->includes[i];
3517
3518 s = recursively_find_pc_sect_symtab (s, pc);
3519 if (s != NULL)
3520 return s;
3521 }
3522
3523 return NULL;
3524 }
3525
3526 static struct symtab *
3527 dw2_find_pc_sect_symtab (struct objfile *objfile,
3528 struct minimal_symbol *msymbol,
3529 CORE_ADDR pc,
3530 struct obj_section *section,
3531 int warn_if_readin)
3532 {
3533 struct dwarf2_per_cu_data *data;
3534 struct symtab *result;
3535
3536 dw2_setup (objfile);
3537
3538 if (!objfile->psymtabs_addrmap)
3539 return NULL;
3540
3541 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3542 if (!data)
3543 return NULL;
3544
3545 if (warn_if_readin && data->v.quick->symtab)
3546 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3547 paddress (get_objfile_arch (objfile), pc));
3548
3549 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3550 gdb_assert (result != NULL);
3551 return result;
3552 }
3553
3554 static void
3555 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3556 void *data, int need_fullname)
3557 {
3558 int i;
3559 struct cleanup *cleanup;
3560 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3561 NULL, xcalloc, xfree);
3562
3563 cleanup = make_cleanup_htab_delete (visited);
3564 dw2_setup (objfile);
3565
3566 dw2_build_type_unit_groups ();
3567
3568 /* We can ignore file names coming from already-expanded CUs. */
3569 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3570 + dwarf2_per_objfile->n_type_units); ++i)
3571 {
3572 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3573
3574 if (per_cu->v.quick->symtab)
3575 {
3576 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3577 INSERT);
3578
3579 *slot = per_cu->v.quick->file_names;
3580 }
3581 }
3582
3583 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3584 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3585 {
3586 int j;
3587 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3588 struct quick_file_names *file_data;
3589 void **slot;
3590
3591 /* We only need to look at symtabs not already expanded. */
3592 if (per_cu->v.quick->symtab)
3593 continue;
3594
3595 file_data = dw2_get_file_names (objfile, per_cu);
3596 if (file_data == NULL)
3597 continue;
3598
3599 slot = htab_find_slot (visited, file_data, INSERT);
3600 if (*slot)
3601 {
3602 /* Already visited. */
3603 continue;
3604 }
3605 *slot = file_data;
3606
3607 for (j = 0; j < file_data->num_file_names; ++j)
3608 {
3609 const char *this_real_name;
3610
3611 if (need_fullname)
3612 this_real_name = dw2_get_real_path (objfile, file_data, j);
3613 else
3614 this_real_name = NULL;
3615 (*fun) (file_data->file_names[j], this_real_name, data);
3616 }
3617 }
3618
3619 do_cleanups (cleanup);
3620 }
3621
3622 static int
3623 dw2_has_symbols (struct objfile *objfile)
3624 {
3625 return 1;
3626 }
3627
3628 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3629 {
3630 dw2_has_symbols,
3631 dw2_find_last_source_symtab,
3632 dw2_forget_cached_source_info,
3633 dw2_map_symtabs_matching_filename,
3634 dw2_lookup_symbol,
3635 dw2_pre_expand_symtabs_matching,
3636 dw2_print_stats,
3637 dw2_dump,
3638 dw2_relocate,
3639 dw2_expand_symtabs_for_function,
3640 dw2_expand_all_symtabs,
3641 dw2_expand_symtabs_with_filename,
3642 dw2_find_symbol_file,
3643 dw2_map_matching_symbols,
3644 dw2_expand_symtabs_matching,
3645 dw2_find_pc_sect_symtab,
3646 dw2_map_symbol_filenames
3647 };
3648
3649 /* Initialize for reading DWARF for this objfile. Return 0 if this
3650 file will use psymtabs, or 1 if using the GNU index. */
3651
3652 int
3653 dwarf2_initialize_objfile (struct objfile *objfile)
3654 {
3655 /* If we're about to read full symbols, don't bother with the
3656 indices. In this case we also don't care if some other debug
3657 format is making psymtabs, because they are all about to be
3658 expanded anyway. */
3659 if ((objfile->flags & OBJF_READNOW))
3660 {
3661 int i;
3662
3663 dwarf2_per_objfile->using_index = 1;
3664 create_all_comp_units (objfile);
3665 create_all_type_units (objfile);
3666 dwarf2_per_objfile->quick_file_names_table =
3667 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3668
3669 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3670 + dwarf2_per_objfile->n_type_units); ++i)
3671 {
3672 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3673
3674 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3675 struct dwarf2_per_cu_quick_data);
3676 }
3677
3678 /* Return 1 so that gdb sees the "quick" functions. However,
3679 these functions will be no-ops because we will have expanded
3680 all symtabs. */
3681 return 1;
3682 }
3683
3684 if (dwarf2_read_index (objfile))
3685 return 1;
3686
3687 return 0;
3688 }
3689
3690 \f
3691
3692 /* Build a partial symbol table. */
3693
3694 void
3695 dwarf2_build_psymtabs (struct objfile *objfile)
3696 {
3697 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3698 {
3699 init_psymbol_list (objfile, 1024);
3700 }
3701
3702 dwarf2_build_psymtabs_hard (objfile);
3703 }
3704
3705 /* Return the total length of the CU described by HEADER. */
3706
3707 static unsigned int
3708 get_cu_length (const struct comp_unit_head *header)
3709 {
3710 return header->initial_length_size + header->length;
3711 }
3712
3713 /* Return TRUE if OFFSET is within CU_HEADER. */
3714
3715 static inline int
3716 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3717 {
3718 sect_offset bottom = { cu_header->offset.sect_off };
3719 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3720
3721 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3722 }
3723
3724 /* Find the base address of the compilation unit for range lists and
3725 location lists. It will normally be specified by DW_AT_low_pc.
3726 In DWARF-3 draft 4, the base address could be overridden by
3727 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3728 compilation units with discontinuous ranges. */
3729
3730 static void
3731 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3732 {
3733 struct attribute *attr;
3734
3735 cu->base_known = 0;
3736 cu->base_address = 0;
3737
3738 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3739 if (attr)
3740 {
3741 cu->base_address = DW_ADDR (attr);
3742 cu->base_known = 1;
3743 }
3744 else
3745 {
3746 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3747 if (attr)
3748 {
3749 cu->base_address = DW_ADDR (attr);
3750 cu->base_known = 1;
3751 }
3752 }
3753 }
3754
3755 /* Read in the comp unit header information from the debug_info at info_ptr.
3756 NOTE: This leaves members offset, first_die_offset to be filled in
3757 by the caller. */
3758
3759 static gdb_byte *
3760 read_comp_unit_head (struct comp_unit_head *cu_header,
3761 gdb_byte *info_ptr, bfd *abfd)
3762 {
3763 int signed_addr;
3764 unsigned int bytes_read;
3765
3766 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3767 cu_header->initial_length_size = bytes_read;
3768 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3769 info_ptr += bytes_read;
3770 cu_header->version = read_2_bytes (abfd, info_ptr);
3771 info_ptr += 2;
3772 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3773 &bytes_read);
3774 info_ptr += bytes_read;
3775 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3776 info_ptr += 1;
3777 signed_addr = bfd_get_sign_extend_vma (abfd);
3778 if (signed_addr < 0)
3779 internal_error (__FILE__, __LINE__,
3780 _("read_comp_unit_head: dwarf from non elf file"));
3781 cu_header->signed_addr_p = signed_addr;
3782
3783 return info_ptr;
3784 }
3785
3786 /* Helper function that returns the proper abbrev section for
3787 THIS_CU. */
3788
3789 static struct dwarf2_section_info *
3790 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3791 {
3792 struct dwarf2_section_info *abbrev;
3793
3794 if (this_cu->is_dwz)
3795 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3796 else
3797 abbrev = &dwarf2_per_objfile->abbrev;
3798
3799 return abbrev;
3800 }
3801
3802 /* Subroutine of read_and_check_comp_unit_head and
3803 read_and_check_type_unit_head to simplify them.
3804 Perform various error checking on the header. */
3805
3806 static void
3807 error_check_comp_unit_head (struct comp_unit_head *header,
3808 struct dwarf2_section_info *section,
3809 struct dwarf2_section_info *abbrev_section)
3810 {
3811 bfd *abfd = section->asection->owner;
3812 const char *filename = bfd_get_filename (abfd);
3813
3814 if (header->version != 2 && header->version != 3 && header->version != 4)
3815 error (_("Dwarf Error: wrong version in compilation unit header "
3816 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3817 filename);
3818
3819 if (header->abbrev_offset.sect_off
3820 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3821 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3822 "(offset 0x%lx + 6) [in module %s]"),
3823 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3824 filename);
3825
3826 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3827 avoid potential 32-bit overflow. */
3828 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3829 > section->size)
3830 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3831 "(offset 0x%lx + 0) [in module %s]"),
3832 (long) header->length, (long) header->offset.sect_off,
3833 filename);
3834 }
3835
3836 /* Read in a CU/TU header and perform some basic error checking.
3837 The contents of the header are stored in HEADER.
3838 The result is a pointer to the start of the first DIE. */
3839
3840 static gdb_byte *
3841 read_and_check_comp_unit_head (struct comp_unit_head *header,
3842 struct dwarf2_section_info *section,
3843 struct dwarf2_section_info *abbrev_section,
3844 gdb_byte *info_ptr,
3845 int is_debug_types_section)
3846 {
3847 gdb_byte *beg_of_comp_unit = info_ptr;
3848 bfd *abfd = section->asection->owner;
3849
3850 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3851
3852 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3853
3854 /* If we're reading a type unit, skip over the signature and
3855 type_offset fields. */
3856 if (is_debug_types_section)
3857 info_ptr += 8 /*signature*/ + header->offset_size;
3858
3859 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3860
3861 error_check_comp_unit_head (header, section, abbrev_section);
3862
3863 return info_ptr;
3864 }
3865
3866 /* Read in the types comp unit header information from .debug_types entry at
3867 types_ptr. The result is a pointer to one past the end of the header. */
3868
3869 static gdb_byte *
3870 read_and_check_type_unit_head (struct comp_unit_head *header,
3871 struct dwarf2_section_info *section,
3872 struct dwarf2_section_info *abbrev_section,
3873 gdb_byte *info_ptr,
3874 ULONGEST *signature,
3875 cu_offset *type_offset_in_tu)
3876 {
3877 gdb_byte *beg_of_comp_unit = info_ptr;
3878 bfd *abfd = section->asection->owner;
3879
3880 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3881
3882 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3883
3884 /* If we're reading a type unit, skip over the signature and
3885 type_offset fields. */
3886 if (signature != NULL)
3887 *signature = read_8_bytes (abfd, info_ptr);
3888 info_ptr += 8;
3889 if (type_offset_in_tu != NULL)
3890 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3891 header->offset_size);
3892 info_ptr += header->offset_size;
3893
3894 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3895
3896 error_check_comp_unit_head (header, section, abbrev_section);
3897
3898 return info_ptr;
3899 }
3900
3901 /* Fetch the abbreviation table offset from a comp or type unit header. */
3902
3903 static sect_offset
3904 read_abbrev_offset (struct dwarf2_section_info *section,
3905 sect_offset offset)
3906 {
3907 bfd *abfd = section->asection->owner;
3908 gdb_byte *info_ptr;
3909 unsigned int length, initial_length_size, offset_size;
3910 sect_offset abbrev_offset;
3911
3912 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3913 info_ptr = section->buffer + offset.sect_off;
3914 length = read_initial_length (abfd, info_ptr, &initial_length_size);
3915 offset_size = initial_length_size == 4 ? 4 : 8;
3916 info_ptr += initial_length_size + 2 /*version*/;
3917 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
3918 return abbrev_offset;
3919 }
3920
3921 /* Allocate a new partial symtab for file named NAME and mark this new
3922 partial symtab as being an include of PST. */
3923
3924 static void
3925 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3926 struct objfile *objfile)
3927 {
3928 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3929
3930 subpst->section_offsets = pst->section_offsets;
3931 subpst->textlow = 0;
3932 subpst->texthigh = 0;
3933
3934 subpst->dependencies = (struct partial_symtab **)
3935 obstack_alloc (&objfile->objfile_obstack,
3936 sizeof (struct partial_symtab *));
3937 subpst->dependencies[0] = pst;
3938 subpst->number_of_dependencies = 1;
3939
3940 subpst->globals_offset = 0;
3941 subpst->n_global_syms = 0;
3942 subpst->statics_offset = 0;
3943 subpst->n_static_syms = 0;
3944 subpst->symtab = NULL;
3945 subpst->read_symtab = pst->read_symtab;
3946 subpst->readin = 0;
3947
3948 /* No private part is necessary for include psymtabs. This property
3949 can be used to differentiate between such include psymtabs and
3950 the regular ones. */
3951 subpst->read_symtab_private = NULL;
3952 }
3953
3954 /* Read the Line Number Program data and extract the list of files
3955 included by the source file represented by PST. Build an include
3956 partial symtab for each of these included files. */
3957
3958 static void
3959 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3960 struct die_info *die,
3961 struct partial_symtab *pst)
3962 {
3963 struct line_header *lh = NULL;
3964 struct attribute *attr;
3965
3966 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3967 if (attr)
3968 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
3969 if (lh == NULL)
3970 return; /* No linetable, so no includes. */
3971
3972 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3973 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
3974
3975 free_line_header (lh);
3976 }
3977
3978 static hashval_t
3979 hash_signatured_type (const void *item)
3980 {
3981 const struct signatured_type *sig_type = item;
3982
3983 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3984 return sig_type->signature;
3985 }
3986
3987 static int
3988 eq_signatured_type (const void *item_lhs, const void *item_rhs)
3989 {
3990 const struct signatured_type *lhs = item_lhs;
3991 const struct signatured_type *rhs = item_rhs;
3992
3993 return lhs->signature == rhs->signature;
3994 }
3995
3996 /* Allocate a hash table for signatured types. */
3997
3998 static htab_t
3999 allocate_signatured_type_table (struct objfile *objfile)
4000 {
4001 return htab_create_alloc_ex (41,
4002 hash_signatured_type,
4003 eq_signatured_type,
4004 NULL,
4005 &objfile->objfile_obstack,
4006 hashtab_obstack_allocate,
4007 dummy_obstack_deallocate);
4008 }
4009
4010 /* A helper function to add a signatured type CU to a table. */
4011
4012 static int
4013 add_signatured_type_cu_to_table (void **slot, void *datum)
4014 {
4015 struct signatured_type *sigt = *slot;
4016 struct signatured_type ***datap = datum;
4017
4018 **datap = sigt;
4019 ++*datap;
4020
4021 return 1;
4022 }
4023
4024 /* Create the hash table of all entries in the .debug_types section.
4025 DWO_FILE is a pointer to the DWO file for .debug_types.dwo, NULL otherwise.
4026 The result is a pointer to the hash table or NULL if there are
4027 no types. */
4028
4029 static htab_t
4030 create_debug_types_hash_table (struct dwo_file *dwo_file,
4031 VEC (dwarf2_section_info_def) *types)
4032 {
4033 struct objfile *objfile = dwarf2_per_objfile->objfile;
4034 htab_t types_htab = NULL;
4035 int ix;
4036 struct dwarf2_section_info *section;
4037 struct dwarf2_section_info *abbrev_section;
4038
4039 if (VEC_empty (dwarf2_section_info_def, types))
4040 return NULL;
4041
4042 abbrev_section = (dwo_file != NULL
4043 ? &dwo_file->sections.abbrev
4044 : &dwarf2_per_objfile->abbrev);
4045
4046 if (dwarf2_read_debug)
4047 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4048 dwo_file ? ".dwo" : "",
4049 bfd_get_filename (abbrev_section->asection->owner));
4050
4051 for (ix = 0;
4052 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4053 ++ix)
4054 {
4055 bfd *abfd;
4056 gdb_byte *info_ptr, *end_ptr;
4057 struct dwarf2_section_info *abbrev_section;
4058
4059 dwarf2_read_section (objfile, section);
4060 info_ptr = section->buffer;
4061
4062 if (info_ptr == NULL)
4063 continue;
4064
4065 /* We can't set abfd until now because the section may be empty or
4066 not present, in which case section->asection will be NULL. */
4067 abfd = section->asection->owner;
4068
4069 if (dwo_file)
4070 abbrev_section = &dwo_file->sections.abbrev;
4071 else
4072 abbrev_section = &dwarf2_per_objfile->abbrev;
4073
4074 if (types_htab == NULL)
4075 {
4076 if (dwo_file)
4077 types_htab = allocate_dwo_unit_table (objfile);
4078 else
4079 types_htab = allocate_signatured_type_table (objfile);
4080 }
4081
4082 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4083 because we don't need to read any dies: the signature is in the
4084 header. */
4085
4086 end_ptr = info_ptr + section->size;
4087 while (info_ptr < end_ptr)
4088 {
4089 sect_offset offset;
4090 cu_offset type_offset_in_tu;
4091 ULONGEST signature;
4092 struct signatured_type *sig_type;
4093 struct dwo_unit *dwo_tu;
4094 void **slot;
4095 gdb_byte *ptr = info_ptr;
4096 struct comp_unit_head header;
4097 unsigned int length;
4098
4099 offset.sect_off = ptr - section->buffer;
4100
4101 /* We need to read the type's signature in order to build the hash
4102 table, but we don't need anything else just yet. */
4103
4104 ptr = read_and_check_type_unit_head (&header, section,
4105 abbrev_section, ptr,
4106 &signature, &type_offset_in_tu);
4107
4108 length = get_cu_length (&header);
4109
4110 /* Skip dummy type units. */
4111 if (ptr >= info_ptr + length
4112 || peek_abbrev_code (abfd, ptr) == 0)
4113 {
4114 info_ptr += length;
4115 continue;
4116 }
4117
4118 if (dwo_file)
4119 {
4120 sig_type = NULL;
4121 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4122 struct dwo_unit);
4123 dwo_tu->dwo_file = dwo_file;
4124 dwo_tu->signature = signature;
4125 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4126 dwo_tu->info_or_types_section = section;
4127 dwo_tu->offset = offset;
4128 dwo_tu->length = length;
4129 }
4130 else
4131 {
4132 /* N.B.: type_offset is not usable if this type uses a DWO file.
4133 The real type_offset is in the DWO file. */
4134 dwo_tu = NULL;
4135 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4136 struct signatured_type);
4137 sig_type->signature = signature;
4138 sig_type->type_offset_in_tu = type_offset_in_tu;
4139 sig_type->per_cu.objfile = objfile;
4140 sig_type->per_cu.is_debug_types = 1;
4141 sig_type->per_cu.info_or_types_section = section;
4142 sig_type->per_cu.offset = offset;
4143 sig_type->per_cu.length = length;
4144 }
4145
4146 slot = htab_find_slot (types_htab,
4147 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4148 INSERT);
4149 gdb_assert (slot != NULL);
4150 if (*slot != NULL)
4151 {
4152 sect_offset dup_offset;
4153
4154 if (dwo_file)
4155 {
4156 const struct dwo_unit *dup_tu = *slot;
4157
4158 dup_offset = dup_tu->offset;
4159 }
4160 else
4161 {
4162 const struct signatured_type *dup_tu = *slot;
4163
4164 dup_offset = dup_tu->per_cu.offset;
4165 }
4166
4167 complaint (&symfile_complaints,
4168 _("debug type entry at offset 0x%x is duplicate to the "
4169 "entry at offset 0x%x, signature 0x%s"),
4170 offset.sect_off, dup_offset.sect_off,
4171 phex (signature, sizeof (signature)));
4172 }
4173 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4174
4175 if (dwarf2_read_debug)
4176 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4177 offset.sect_off,
4178 phex (signature, sizeof (signature)));
4179
4180 info_ptr += length;
4181 }
4182 }
4183
4184 return types_htab;
4185 }
4186
4187 /* Create the hash table of all entries in the .debug_types section,
4188 and initialize all_type_units.
4189 The result is zero if there is an error (e.g. missing .debug_types section),
4190 otherwise non-zero. */
4191
4192 static int
4193 create_all_type_units (struct objfile *objfile)
4194 {
4195 htab_t types_htab;
4196 struct signatured_type **iter;
4197
4198 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4199 if (types_htab == NULL)
4200 {
4201 dwarf2_per_objfile->signatured_types = NULL;
4202 return 0;
4203 }
4204
4205 dwarf2_per_objfile->signatured_types = types_htab;
4206
4207 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4208 dwarf2_per_objfile->all_type_units
4209 = obstack_alloc (&objfile->objfile_obstack,
4210 dwarf2_per_objfile->n_type_units
4211 * sizeof (struct signatured_type *));
4212 iter = &dwarf2_per_objfile->all_type_units[0];
4213 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4214 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4215 == dwarf2_per_objfile->n_type_units);
4216
4217 return 1;
4218 }
4219
4220 /* Lookup a signature based type for DW_FORM_ref_sig8.
4221 Returns NULL if signature SIG is not present in the table. */
4222
4223 static struct signatured_type *
4224 lookup_signatured_type (ULONGEST sig)
4225 {
4226 struct signatured_type find_entry, *entry;
4227
4228 if (dwarf2_per_objfile->signatured_types == NULL)
4229 {
4230 complaint (&symfile_complaints,
4231 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4232 return NULL;
4233 }
4234
4235 find_entry.signature = sig;
4236 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4237 return entry;
4238 }
4239 \f
4240 /* Low level DIE reading support. */
4241
4242 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4243
4244 static void
4245 init_cu_die_reader (struct die_reader_specs *reader,
4246 struct dwarf2_cu *cu,
4247 struct dwarf2_section_info *section,
4248 struct dwo_file *dwo_file)
4249 {
4250 gdb_assert (section->readin && section->buffer != NULL);
4251 reader->abfd = section->asection->owner;
4252 reader->cu = cu;
4253 reader->dwo_file = dwo_file;
4254 reader->die_section = section;
4255 reader->buffer = section->buffer;
4256 reader->buffer_end = section->buffer + section->size;
4257 }
4258
4259 /* Initialize a CU (or TU) and read its DIEs.
4260 If the CU defers to a DWO file, read the DWO file as well.
4261
4262 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4263 Otherwise the table specified in the comp unit header is read in and used.
4264 This is an optimization for when we already have the abbrev table.
4265
4266 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4267 Otherwise, a new CU is allocated with xmalloc.
4268
4269 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4270 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4271
4272 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4273 linker) then DIE_READER_FUNC will not get called. */
4274
4275 static void
4276 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4277 struct abbrev_table *abbrev_table,
4278 int use_existing_cu, int keep,
4279 die_reader_func_ftype *die_reader_func,
4280 void *data)
4281 {
4282 struct objfile *objfile = dwarf2_per_objfile->objfile;
4283 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4284 bfd *abfd = section->asection->owner;
4285 struct dwarf2_cu *cu;
4286 gdb_byte *begin_info_ptr, *info_ptr;
4287 struct die_reader_specs reader;
4288 struct die_info *comp_unit_die;
4289 int has_children;
4290 struct attribute *attr;
4291 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4292 struct signatured_type *sig_type = NULL;
4293 struct dwarf2_section_info *abbrev_section;
4294 /* Non-zero if CU currently points to a DWO file and we need to
4295 reread it. When this happens we need to reread the skeleton die
4296 before we can reread the DWO file. */
4297 int rereading_dwo_cu = 0;
4298
4299 if (dwarf2_die_debug)
4300 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4301 this_cu->is_debug_types ? "type" : "comp",
4302 this_cu->offset.sect_off);
4303
4304 if (use_existing_cu)
4305 gdb_assert (keep);
4306
4307 cleanups = make_cleanup (null_cleanup, NULL);
4308
4309 /* This is cheap if the section is already read in. */
4310 dwarf2_read_section (objfile, section);
4311
4312 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4313
4314 abbrev_section = get_abbrev_section_for_cu (this_cu);
4315
4316 if (use_existing_cu && this_cu->cu != NULL)
4317 {
4318 cu = this_cu->cu;
4319
4320 /* If this CU is from a DWO file we need to start over, we need to
4321 refetch the attributes from the skeleton CU.
4322 This could be optimized by retrieving those attributes from when we
4323 were here the first time: the previous comp_unit_die was stored in
4324 comp_unit_obstack. But there's no data yet that we need this
4325 optimization. */
4326 if (cu->dwo_unit != NULL)
4327 rereading_dwo_cu = 1;
4328 }
4329 else
4330 {
4331 /* If !use_existing_cu, this_cu->cu must be NULL. */
4332 gdb_assert (this_cu->cu == NULL);
4333
4334 cu = xmalloc (sizeof (*cu));
4335 init_one_comp_unit (cu, this_cu);
4336
4337 /* If an error occurs while loading, release our storage. */
4338 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4339 }
4340
4341 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4342 {
4343 /* We already have the header, there's no need to read it in again. */
4344 info_ptr += cu->header.first_die_offset.cu_off;
4345 }
4346 else
4347 {
4348 if (this_cu->is_debug_types)
4349 {
4350 ULONGEST signature;
4351 cu_offset type_offset_in_tu;
4352
4353 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4354 abbrev_section, info_ptr,
4355 &signature,
4356 &type_offset_in_tu);
4357
4358 /* Since per_cu is the first member of struct signatured_type,
4359 we can go from a pointer to one to a pointer to the other. */
4360 sig_type = (struct signatured_type *) this_cu;
4361 gdb_assert (sig_type->signature == signature);
4362 gdb_assert (sig_type->type_offset_in_tu.cu_off
4363 == type_offset_in_tu.cu_off);
4364 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4365
4366 /* LENGTH has not been set yet for type units if we're
4367 using .gdb_index. */
4368 this_cu->length = get_cu_length (&cu->header);
4369
4370 /* Establish the type offset that can be used to lookup the type. */
4371 sig_type->type_offset_in_section.sect_off =
4372 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4373 }
4374 else
4375 {
4376 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4377 abbrev_section,
4378 info_ptr, 0);
4379
4380 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4381 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4382 }
4383 }
4384
4385 /* Skip dummy compilation units. */
4386 if (info_ptr >= begin_info_ptr + this_cu->length
4387 || peek_abbrev_code (abfd, info_ptr) == 0)
4388 {
4389 do_cleanups (cleanups);
4390 return;
4391 }
4392
4393 /* If we don't have them yet, read the abbrevs for this compilation unit.
4394 And if we need to read them now, make sure they're freed when we're
4395 done. Note that it's important that if the CU had an abbrev table
4396 on entry we don't free it when we're done: Somewhere up the call stack
4397 it may be in use. */
4398 if (abbrev_table != NULL)
4399 {
4400 gdb_assert (cu->abbrev_table == NULL);
4401 gdb_assert (cu->header.abbrev_offset.sect_off
4402 == abbrev_table->offset.sect_off);
4403 cu->abbrev_table = abbrev_table;
4404 }
4405 else if (cu->abbrev_table == NULL)
4406 {
4407 dwarf2_read_abbrevs (cu, abbrev_section);
4408 make_cleanup (dwarf2_free_abbrev_table, cu);
4409 }
4410 else if (rereading_dwo_cu)
4411 {
4412 dwarf2_free_abbrev_table (cu);
4413 dwarf2_read_abbrevs (cu, abbrev_section);
4414 }
4415
4416 /* Read the top level CU/TU die. */
4417 init_cu_die_reader (&reader, cu, section, NULL);
4418 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4419
4420 /* If we have a DWO stub, process it and then read in the DWO file.
4421 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4422 a DWO CU, that this test will fail. */
4423 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4424 if (attr)
4425 {
4426 char *dwo_name = DW_STRING (attr);
4427 const char *comp_dir_string;
4428 struct dwo_unit *dwo_unit;
4429 ULONGEST signature; /* Or dwo_id. */
4430 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4431 int i,num_extra_attrs;
4432 struct dwarf2_section_info *dwo_abbrev_section;
4433
4434 if (has_children)
4435 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4436 " has children (offset 0x%x) [in module %s]"),
4437 this_cu->offset.sect_off, bfd_get_filename (abfd));
4438
4439 /* These attributes aren't processed until later:
4440 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4441 However, the attribute is found in the stub which we won't have later.
4442 In order to not impose this complication on the rest of the code,
4443 we read them here and copy them to the DWO CU/TU die. */
4444
4445 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4446 DWO file. */
4447 stmt_list = NULL;
4448 if (! this_cu->is_debug_types)
4449 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4450 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4451 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4452 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4453 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4454
4455 /* There should be a DW_AT_addr_base attribute here (if needed).
4456 We need the value before we can process DW_FORM_GNU_addr_index. */
4457 cu->addr_base = 0;
4458 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4459 if (attr)
4460 cu->addr_base = DW_UNSND (attr);
4461
4462 /* There should be a DW_AT_ranges_base attribute here (if needed).
4463 We need the value before we can process DW_AT_ranges. */
4464 cu->ranges_base = 0;
4465 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4466 if (attr)
4467 cu->ranges_base = DW_UNSND (attr);
4468
4469 if (this_cu->is_debug_types)
4470 {
4471 gdb_assert (sig_type != NULL);
4472 signature = sig_type->signature;
4473 }
4474 else
4475 {
4476 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4477 if (! attr)
4478 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4479 dwo_name);
4480 signature = DW_UNSND (attr);
4481 }
4482
4483 /* We may need the comp_dir in order to find the DWO file. */
4484 comp_dir_string = NULL;
4485 if (comp_dir)
4486 comp_dir_string = DW_STRING (comp_dir);
4487
4488 if (this_cu->is_debug_types)
4489 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4490 else
4491 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4492 signature);
4493
4494 if (dwo_unit == NULL)
4495 {
4496 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4497 " with ID %s [in module %s]"),
4498 this_cu->offset.sect_off,
4499 phex (signature, sizeof (signature)),
4500 objfile->name);
4501 }
4502
4503 /* Set up for reading the DWO CU/TU. */
4504 cu->dwo_unit = dwo_unit;
4505 section = dwo_unit->info_or_types_section;
4506 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4507 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4508 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4509
4510 if (this_cu->is_debug_types)
4511 {
4512 ULONGEST signature;
4513
4514 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4515 dwo_abbrev_section,
4516 info_ptr,
4517 &signature, NULL);
4518 gdb_assert (sig_type->signature == signature);
4519 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4520 gdb_assert (dwo_unit->length == get_cu_length (&cu->header));
4521
4522 /* Establish the type offset that can be used to lookup the type.
4523 For DWO files, we don't know it until now. */
4524 sig_type->type_offset_in_section.sect_off =
4525 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4526 }
4527 else
4528 {
4529 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4530 dwo_abbrev_section,
4531 info_ptr, 0);
4532 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4533 gdb_assert (dwo_unit->length == get_cu_length (&cu->header));
4534 }
4535
4536 /* Discard the original CU's abbrev table, and read the DWO's. */
4537 if (abbrev_table == NULL)
4538 {
4539 dwarf2_free_abbrev_table (cu);
4540 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4541 }
4542 else
4543 {
4544 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4545 make_cleanup (dwarf2_free_abbrev_table, cu);
4546 }
4547
4548 /* Read in the die, but leave space to copy over the attributes
4549 from the stub. This has the benefit of simplifying the rest of
4550 the code - all the real work is done here. */
4551 num_extra_attrs = ((stmt_list != NULL)
4552 + (low_pc != NULL)
4553 + (high_pc != NULL)
4554 + (ranges != NULL)
4555 + (comp_dir != NULL));
4556 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4557 &has_children, num_extra_attrs);
4558
4559 /* Copy over the attributes from the stub to the DWO die. */
4560 i = comp_unit_die->num_attrs;
4561 if (stmt_list != NULL)
4562 comp_unit_die->attrs[i++] = *stmt_list;
4563 if (low_pc != NULL)
4564 comp_unit_die->attrs[i++] = *low_pc;
4565 if (high_pc != NULL)
4566 comp_unit_die->attrs[i++] = *high_pc;
4567 if (ranges != NULL)
4568 comp_unit_die->attrs[i++] = *ranges;
4569 if (comp_dir != NULL)
4570 comp_unit_die->attrs[i++] = *comp_dir;
4571 comp_unit_die->num_attrs += num_extra_attrs;
4572
4573 /* Skip dummy compilation units. */
4574 if (info_ptr >= begin_info_ptr + dwo_unit->length
4575 || peek_abbrev_code (abfd, info_ptr) == 0)
4576 {
4577 do_cleanups (cleanups);
4578 return;
4579 }
4580 }
4581
4582 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4583
4584 if (free_cu_cleanup != NULL)
4585 {
4586 if (keep)
4587 {
4588 /* We've successfully allocated this compilation unit. Let our
4589 caller clean it up when finished with it. */
4590 discard_cleanups (free_cu_cleanup);
4591
4592 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4593 So we have to manually free the abbrev table. */
4594 dwarf2_free_abbrev_table (cu);
4595
4596 /* Link this CU into read_in_chain. */
4597 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4598 dwarf2_per_objfile->read_in_chain = this_cu;
4599 }
4600 else
4601 do_cleanups (free_cu_cleanup);
4602 }
4603
4604 do_cleanups (cleanups);
4605 }
4606
4607 /* Read CU/TU THIS_CU in section SECTION,
4608 but do not follow DW_AT_GNU_dwo_name if present.
4609 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed to
4610 have already done the lookup to find the DWO file).
4611
4612 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4613 THIS_CU->is_debug_types, but nothing else.
4614
4615 We fill in THIS_CU->length.
4616
4617 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4618 linker) then DIE_READER_FUNC will not get called.
4619
4620 THIS_CU->cu is always freed when done.
4621 This is done in order to not leave THIS_CU->cu in a state where we have
4622 to care whether it refers to the "main" CU or the DWO CU. */
4623
4624 static void
4625 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4626 struct dwarf2_section_info *abbrev_section,
4627 struct dwo_file *dwo_file,
4628 die_reader_func_ftype *die_reader_func,
4629 void *data)
4630 {
4631 struct objfile *objfile = dwarf2_per_objfile->objfile;
4632 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4633 bfd *abfd = section->asection->owner;
4634 struct dwarf2_cu cu;
4635 gdb_byte *begin_info_ptr, *info_ptr;
4636 struct die_reader_specs reader;
4637 struct cleanup *cleanups;
4638 struct die_info *comp_unit_die;
4639 int has_children;
4640
4641 if (dwarf2_die_debug)
4642 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4643 this_cu->is_debug_types ? "type" : "comp",
4644 this_cu->offset.sect_off);
4645
4646 gdb_assert (this_cu->cu == NULL);
4647
4648 /* This is cheap if the section is already read in. */
4649 dwarf2_read_section (objfile, section);
4650
4651 init_one_comp_unit (&cu, this_cu);
4652
4653 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4654
4655 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4656 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4657 abbrev_section, info_ptr,
4658 this_cu->is_debug_types);
4659
4660 this_cu->length = get_cu_length (&cu.header);
4661
4662 /* Skip dummy compilation units. */
4663 if (info_ptr >= begin_info_ptr + this_cu->length
4664 || peek_abbrev_code (abfd, info_ptr) == 0)
4665 {
4666 do_cleanups (cleanups);
4667 return;
4668 }
4669
4670 dwarf2_read_abbrevs (&cu, abbrev_section);
4671 make_cleanup (dwarf2_free_abbrev_table, &cu);
4672
4673 init_cu_die_reader (&reader, &cu, section, dwo_file);
4674 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4675
4676 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4677
4678 do_cleanups (cleanups);
4679 }
4680
4681 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4682 does not lookup the specified DWO file.
4683 This cannot be used to read DWO files.
4684
4685 THIS_CU->cu is always freed when done.
4686 This is done in order to not leave THIS_CU->cu in a state where we have
4687 to care whether it refers to the "main" CU or the DWO CU.
4688 We can revisit this if the data shows there's a performance issue. */
4689
4690 static void
4691 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4692 die_reader_func_ftype *die_reader_func,
4693 void *data)
4694 {
4695 init_cutu_and_read_dies_no_follow (this_cu,
4696 get_abbrev_section_for_cu (this_cu),
4697 NULL,
4698 die_reader_func, data);
4699 }
4700
4701 /* Create a psymtab named NAME and assign it to PER_CU.
4702
4703 The caller must fill in the following details:
4704 dirname, textlow, texthigh. */
4705
4706 static struct partial_symtab *
4707 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4708 {
4709 struct objfile *objfile = per_cu->objfile;
4710 struct partial_symtab *pst;
4711
4712 pst = start_psymtab_common (objfile, objfile->section_offsets,
4713 name, 0,
4714 objfile->global_psymbols.next,
4715 objfile->static_psymbols.next);
4716
4717 pst->psymtabs_addrmap_supported = 1;
4718
4719 /* This is the glue that links PST into GDB's symbol API. */
4720 pst->read_symtab_private = per_cu;
4721 pst->read_symtab = dwarf2_psymtab_to_symtab;
4722 per_cu->v.psymtab = pst;
4723
4724 return pst;
4725 }
4726
4727 /* die_reader_func for process_psymtab_comp_unit. */
4728
4729 static void
4730 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4731 gdb_byte *info_ptr,
4732 struct die_info *comp_unit_die,
4733 int has_children,
4734 void *data)
4735 {
4736 struct dwarf2_cu *cu = reader->cu;
4737 struct objfile *objfile = cu->objfile;
4738 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4739 struct attribute *attr;
4740 CORE_ADDR baseaddr;
4741 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4742 struct partial_symtab *pst;
4743 int has_pc_info;
4744 const char *filename;
4745 int *want_partial_unit_ptr = data;
4746
4747 if (comp_unit_die->tag == DW_TAG_partial_unit
4748 && (want_partial_unit_ptr == NULL
4749 || !*want_partial_unit_ptr))
4750 return;
4751
4752 gdb_assert (! per_cu->is_debug_types);
4753
4754 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4755
4756 cu->list_in_scope = &file_symbols;
4757
4758 /* Allocate a new partial symbol table structure. */
4759 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4760 if (attr == NULL || !DW_STRING (attr))
4761 filename = "";
4762 else
4763 filename = DW_STRING (attr);
4764
4765 pst = create_partial_symtab (per_cu, filename);
4766
4767 /* This must be done before calling dwarf2_build_include_psymtabs. */
4768 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4769 if (attr != NULL)
4770 pst->dirname = DW_STRING (attr);
4771
4772 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4773
4774 dwarf2_find_base_address (comp_unit_die, cu);
4775
4776 /* Possibly set the default values of LOWPC and HIGHPC from
4777 `DW_AT_ranges'. */
4778 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4779 &best_highpc, cu, pst);
4780 if (has_pc_info == 1 && best_lowpc < best_highpc)
4781 /* Store the contiguous range if it is not empty; it can be empty for
4782 CUs with no code. */
4783 addrmap_set_empty (objfile->psymtabs_addrmap,
4784 best_lowpc + baseaddr,
4785 best_highpc + baseaddr - 1, pst);
4786
4787 /* Check if comp unit has_children.
4788 If so, read the rest of the partial symbols from this comp unit.
4789 If not, there's no more debug_info for this comp unit. */
4790 if (has_children)
4791 {
4792 struct partial_die_info *first_die;
4793 CORE_ADDR lowpc, highpc;
4794
4795 lowpc = ((CORE_ADDR) -1);
4796 highpc = ((CORE_ADDR) 0);
4797
4798 first_die = load_partial_dies (reader, info_ptr, 1);
4799
4800 scan_partial_symbols (first_die, &lowpc, &highpc,
4801 ! has_pc_info, cu);
4802
4803 /* If we didn't find a lowpc, set it to highpc to avoid
4804 complaints from `maint check'. */
4805 if (lowpc == ((CORE_ADDR) -1))
4806 lowpc = highpc;
4807
4808 /* If the compilation unit didn't have an explicit address range,
4809 then use the information extracted from its child dies. */
4810 if (! has_pc_info)
4811 {
4812 best_lowpc = lowpc;
4813 best_highpc = highpc;
4814 }
4815 }
4816 pst->textlow = best_lowpc + baseaddr;
4817 pst->texthigh = best_highpc + baseaddr;
4818
4819 pst->n_global_syms = objfile->global_psymbols.next -
4820 (objfile->global_psymbols.list + pst->globals_offset);
4821 pst->n_static_syms = objfile->static_psymbols.next -
4822 (objfile->static_psymbols.list + pst->statics_offset);
4823 sort_pst_symbols (pst);
4824
4825 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs))
4826 {
4827 int i;
4828 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4829 struct dwarf2_per_cu_data *iter;
4830
4831 /* Fill in 'dependencies' here; we fill in 'users' in a
4832 post-pass. */
4833 pst->number_of_dependencies = len;
4834 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4835 len * sizeof (struct symtab *));
4836 for (i = 0;
4837 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
4838 i, iter);
4839 ++i)
4840 pst->dependencies[i] = iter->v.psymtab;
4841
4842 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4843 }
4844
4845 /* Get the list of files included in the current compilation unit,
4846 and build a psymtab for each of them. */
4847 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
4848
4849 if (dwarf2_read_debug)
4850 {
4851 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4852
4853 fprintf_unfiltered (gdb_stdlog,
4854 "Psymtab for %s unit @0x%x: 0x%s - 0x%s"
4855 ", %d global, %d static syms\n",
4856 per_cu->is_debug_types ? "type" : "comp",
4857 per_cu->offset.sect_off,
4858 paddress (gdbarch, pst->textlow),
4859 paddress (gdbarch, pst->texthigh),
4860 pst->n_global_syms, pst->n_static_syms);
4861 }
4862 }
4863
4864 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4865 Process compilation unit THIS_CU for a psymtab. */
4866
4867 static void
4868 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4869 int want_partial_unit)
4870 {
4871 /* If this compilation unit was already read in, free the
4872 cached copy in order to read it in again. This is
4873 necessary because we skipped some symbols when we first
4874 read in the compilation unit (see load_partial_dies).
4875 This problem could be avoided, but the benefit is unclear. */
4876 if (this_cu->cu != NULL)
4877 free_one_cached_comp_unit (this_cu);
4878
4879 gdb_assert (! this_cu->is_debug_types);
4880 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
4881 process_psymtab_comp_unit_reader,
4882 &want_partial_unit);
4883
4884 /* Age out any secondary CUs. */
4885 age_cached_comp_units ();
4886 }
4887
4888 static hashval_t
4889 hash_type_unit_group (const void *item)
4890 {
4891 const struct type_unit_group *tu_group = item;
4892
4893 return hash_stmt_list_entry (&tu_group->hash);
4894 }
4895
4896 static int
4897 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4898 {
4899 const struct type_unit_group *lhs = item_lhs;
4900 const struct type_unit_group *rhs = item_rhs;
4901
4902 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
4903 }
4904
4905 /* Allocate a hash table for type unit groups. */
4906
4907 static htab_t
4908 allocate_type_unit_groups_table (void)
4909 {
4910 return htab_create_alloc_ex (3,
4911 hash_type_unit_group,
4912 eq_type_unit_group,
4913 NULL,
4914 &dwarf2_per_objfile->objfile->objfile_obstack,
4915 hashtab_obstack_allocate,
4916 dummy_obstack_deallocate);
4917 }
4918
4919 /* Type units that don't have DW_AT_stmt_list are grouped into their own
4920 partial symtabs. We combine several TUs per psymtab to not let the size
4921 of any one psymtab grow too big. */
4922 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
4923 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
4924
4925 /* Helper routine for get_type_unit_group.
4926 Create the type_unit_group object used to hold one or more TUs. */
4927
4928 static struct type_unit_group *
4929 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
4930 {
4931 struct objfile *objfile = dwarf2_per_objfile->objfile;
4932 struct dwarf2_per_cu_data *per_cu;
4933 struct type_unit_group *tu_group;
4934
4935 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4936 struct type_unit_group);
4937 per_cu = &tu_group->per_cu;
4938 per_cu->objfile = objfile;
4939 per_cu->is_debug_types = 1;
4940 per_cu->s.type_unit_group = tu_group;
4941
4942 if (dwarf2_per_objfile->using_index)
4943 {
4944 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4945 struct dwarf2_per_cu_quick_data);
4946 tu_group->t.first_tu = cu->per_cu;
4947 }
4948 else
4949 {
4950 unsigned int line_offset = line_offset_struct.sect_off;
4951 struct partial_symtab *pst;
4952 char *name;
4953
4954 /* Give the symtab a useful name for debug purposes. */
4955 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
4956 name = xstrprintf ("<type_units_%d>",
4957 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
4958 else
4959 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
4960
4961 pst = create_partial_symtab (per_cu, name);
4962 pst->anonymous = 1;
4963
4964 xfree (name);
4965 }
4966
4967 tu_group->hash.dwo_unit = cu->dwo_unit;
4968 tu_group->hash.line_offset = line_offset_struct;
4969
4970 return tu_group;
4971 }
4972
4973 /* Look up the type_unit_group for type unit CU, and create it if necessary.
4974 STMT_LIST is a DW_AT_stmt_list attribute. */
4975
4976 static struct type_unit_group *
4977 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
4978 {
4979 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
4980 struct type_unit_group *tu_group;
4981 void **slot;
4982 unsigned int line_offset;
4983 struct type_unit_group type_unit_group_for_lookup;
4984
4985 if (dwarf2_per_objfile->type_unit_groups == NULL)
4986 {
4987 dwarf2_per_objfile->type_unit_groups =
4988 allocate_type_unit_groups_table ();
4989 }
4990
4991 /* Do we need to create a new group, or can we use an existing one? */
4992
4993 if (stmt_list)
4994 {
4995 line_offset = DW_UNSND (stmt_list);
4996 ++tu_stats->nr_symtab_sharers;
4997 }
4998 else
4999 {
5000 /* Ugh, no stmt_list. Rare, but we have to handle it.
5001 We can do various things here like create one group per TU or
5002 spread them over multiple groups to split up the expansion work.
5003 To avoid worst case scenarios (too many groups or too large groups)
5004 we, umm, group them in bunches. */
5005 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5006 | (tu_stats->nr_stmt_less_type_units
5007 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5008 ++tu_stats->nr_stmt_less_type_units;
5009 }
5010
5011 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5012 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5013 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5014 &type_unit_group_for_lookup, INSERT);
5015 if (*slot != NULL)
5016 {
5017 tu_group = *slot;
5018 gdb_assert (tu_group != NULL);
5019 }
5020 else
5021 {
5022 sect_offset line_offset_struct;
5023
5024 line_offset_struct.sect_off = line_offset;
5025 tu_group = create_type_unit_group (cu, line_offset_struct);
5026 *slot = tu_group;
5027 ++tu_stats->nr_symtabs;
5028 }
5029
5030 return tu_group;
5031 }
5032
5033 /* Struct used to sort TUs by their abbreviation table offset. */
5034
5035 struct tu_abbrev_offset
5036 {
5037 struct signatured_type *sig_type;
5038 sect_offset abbrev_offset;
5039 };
5040
5041 /* Helper routine for build_type_unit_groups, passed to qsort. */
5042
5043 static int
5044 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5045 {
5046 const struct tu_abbrev_offset * const *a = ap;
5047 const struct tu_abbrev_offset * const *b = bp;
5048 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5049 unsigned int boff = (*b)->abbrev_offset.sect_off;
5050
5051 return (aoff > boff) - (aoff < boff);
5052 }
5053
5054 /* A helper function to add a type_unit_group to a table. */
5055
5056 static int
5057 add_type_unit_group_to_table (void **slot, void *datum)
5058 {
5059 struct type_unit_group *tu_group = *slot;
5060 struct type_unit_group ***datap = datum;
5061
5062 **datap = tu_group;
5063 ++*datap;
5064
5065 return 1;
5066 }
5067
5068 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5069 each one passing FUNC,DATA.
5070
5071 The efficiency is because we sort TUs by the abbrev table they use and
5072 only read each abbrev table once. In one program there are 200K TUs
5073 sharing 8K abbrev tables.
5074
5075 The main purpose of this function is to support building the
5076 dwarf2_per_objfile->type_unit_groups table.
5077 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5078 can collapse the search space by grouping them by stmt_list.
5079 The savings can be significant, in the same program from above the 200K TUs
5080 share 8K stmt_list tables.
5081
5082 FUNC is expected to call get_type_unit_group, which will create the
5083 struct type_unit_group if necessary and add it to
5084 dwarf2_per_objfile->type_unit_groups. */
5085
5086 static void
5087 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5088 {
5089 struct objfile *objfile = dwarf2_per_objfile->objfile;
5090 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5091 struct cleanup *cleanups;
5092 struct abbrev_table *abbrev_table;
5093 sect_offset abbrev_offset;
5094 struct tu_abbrev_offset *sorted_by_abbrev;
5095 struct type_unit_group **iter;
5096 int i;
5097
5098 /* It's up to the caller to not call us multiple times. */
5099 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5100
5101 if (dwarf2_per_objfile->n_type_units == 0)
5102 return;
5103
5104 /* TUs typically share abbrev tables, and there can be way more TUs than
5105 abbrev tables. Sort by abbrev table to reduce the number of times we
5106 read each abbrev table in.
5107 Alternatives are to punt or to maintain a cache of abbrev tables.
5108 This is simpler and efficient enough for now.
5109
5110 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5111 symtab to use). Typically TUs with the same abbrev offset have the same
5112 stmt_list value too so in practice this should work well.
5113
5114 The basic algorithm here is:
5115
5116 sort TUs by abbrev table
5117 for each TU with same abbrev table:
5118 read abbrev table if first user
5119 read TU top level DIE
5120 [IWBN if DWO skeletons had DW_AT_stmt_list]
5121 call FUNC */
5122
5123 if (dwarf2_read_debug)
5124 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5125
5126 /* Sort in a separate table to maintain the order of all_type_units
5127 for .gdb_index: TU indices directly index all_type_units. */
5128 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5129 dwarf2_per_objfile->n_type_units);
5130 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5131 {
5132 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5133
5134 sorted_by_abbrev[i].sig_type = sig_type;
5135 sorted_by_abbrev[i].abbrev_offset =
5136 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5137 sig_type->per_cu.offset);
5138 }
5139 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5140 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5141 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5142
5143 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5144 called any number of times, so we don't reset tu_stats here. */
5145
5146 abbrev_offset.sect_off = ~(unsigned) 0;
5147 abbrev_table = NULL;
5148 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5149
5150 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5151 {
5152 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5153
5154 /* Switch to the next abbrev table if necessary. */
5155 if (abbrev_table == NULL
5156 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5157 {
5158 if (abbrev_table != NULL)
5159 {
5160 abbrev_table_free (abbrev_table);
5161 /* Reset to NULL in case abbrev_table_read_table throws
5162 an error: abbrev_table_free_cleanup will get called. */
5163 abbrev_table = NULL;
5164 }
5165 abbrev_offset = tu->abbrev_offset;
5166 abbrev_table =
5167 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5168 abbrev_offset);
5169 ++tu_stats->nr_uniq_abbrev_tables;
5170 }
5171
5172 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5173 func, data);
5174 }
5175
5176 /* Create a vector of pointers to primary type units to make it easy to
5177 iterate over them and CUs. See dw2_get_primary_cu. */
5178 dwarf2_per_objfile->n_type_unit_groups =
5179 htab_elements (dwarf2_per_objfile->type_unit_groups);
5180 dwarf2_per_objfile->all_type_unit_groups =
5181 obstack_alloc (&objfile->objfile_obstack,
5182 dwarf2_per_objfile->n_type_unit_groups
5183 * sizeof (struct type_unit_group *));
5184 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5185 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5186 add_type_unit_group_to_table, &iter);
5187 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5188 == dwarf2_per_objfile->n_type_unit_groups);
5189
5190 do_cleanups (cleanups);
5191
5192 if (dwarf2_read_debug)
5193 {
5194 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5195 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5196 dwarf2_per_objfile->n_type_units);
5197 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5198 tu_stats->nr_uniq_abbrev_tables);
5199 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5200 tu_stats->nr_symtabs);
5201 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5202 tu_stats->nr_symtab_sharers);
5203 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5204 tu_stats->nr_stmt_less_type_units);
5205 }
5206 }
5207
5208 /* Reader function for build_type_psymtabs. */
5209
5210 static void
5211 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5212 gdb_byte *info_ptr,
5213 struct die_info *type_unit_die,
5214 int has_children,
5215 void *data)
5216 {
5217 struct objfile *objfile = dwarf2_per_objfile->objfile;
5218 struct dwarf2_cu *cu = reader->cu;
5219 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5220 struct type_unit_group *tu_group;
5221 struct attribute *attr;
5222 struct partial_die_info *first_die;
5223 CORE_ADDR lowpc, highpc;
5224 struct partial_symtab *pst;
5225
5226 gdb_assert (data == NULL);
5227
5228 if (! has_children)
5229 return;
5230
5231 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5232 tu_group = get_type_unit_group (cu, attr);
5233
5234 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5235
5236 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5237 cu->list_in_scope = &file_symbols;
5238 pst = create_partial_symtab (per_cu, "");
5239 pst->anonymous = 1;
5240
5241 first_die = load_partial_dies (reader, info_ptr, 1);
5242
5243 lowpc = (CORE_ADDR) -1;
5244 highpc = (CORE_ADDR) 0;
5245 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5246
5247 pst->n_global_syms = objfile->global_psymbols.next -
5248 (objfile->global_psymbols.list + pst->globals_offset);
5249 pst->n_static_syms = objfile->static_psymbols.next -
5250 (objfile->static_psymbols.list + pst->statics_offset);
5251 sort_pst_symbols (pst);
5252 }
5253
5254 /* Traversal function for build_type_psymtabs. */
5255
5256 static int
5257 build_type_psymtab_dependencies (void **slot, void *info)
5258 {
5259 struct objfile *objfile = dwarf2_per_objfile->objfile;
5260 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5261 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5262 struct partial_symtab *pst = per_cu->v.psymtab;
5263 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5264 struct dwarf2_per_cu_data *iter;
5265 int i;
5266
5267 gdb_assert (len > 0);
5268
5269 pst->number_of_dependencies = len;
5270 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5271 len * sizeof (struct psymtab *));
5272 for (i = 0;
5273 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5274 ++i)
5275 {
5276 pst->dependencies[i] = iter->v.psymtab;
5277 iter->s.type_unit_group = tu_group;
5278 }
5279
5280 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5281
5282 return 1;
5283 }
5284
5285 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5286 Build partial symbol tables for the .debug_types comp-units. */
5287
5288 static void
5289 build_type_psymtabs (struct objfile *objfile)
5290 {
5291 if (! create_all_type_units (objfile))
5292 return;
5293
5294 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5295
5296 /* Now that all TUs have been processed we can fill in the dependencies. */
5297 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5298 build_type_psymtab_dependencies, NULL);
5299 }
5300
5301 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5302
5303 static void
5304 psymtabs_addrmap_cleanup (void *o)
5305 {
5306 struct objfile *objfile = o;
5307
5308 objfile->psymtabs_addrmap = NULL;
5309 }
5310
5311 /* Compute the 'user' field for each psymtab in OBJFILE. */
5312
5313 static void
5314 set_partial_user (struct objfile *objfile)
5315 {
5316 int i;
5317
5318 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5319 {
5320 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5321 struct partial_symtab *pst = per_cu->v.psymtab;
5322 int j;
5323
5324 if (pst == NULL)
5325 continue;
5326
5327 for (j = 0; j < pst->number_of_dependencies; ++j)
5328 {
5329 /* Set the 'user' field only if it is not already set. */
5330 if (pst->dependencies[j]->user == NULL)
5331 pst->dependencies[j]->user = pst;
5332 }
5333 }
5334 }
5335
5336 /* Build the partial symbol table by doing a quick pass through the
5337 .debug_info and .debug_abbrev sections. */
5338
5339 static void
5340 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5341 {
5342 struct cleanup *back_to, *addrmap_cleanup;
5343 struct obstack temp_obstack;
5344 int i;
5345
5346 if (dwarf2_read_debug)
5347 {
5348 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5349 objfile->name);
5350 }
5351
5352 dwarf2_per_objfile->reading_partial_symbols = 1;
5353
5354 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5355
5356 /* Any cached compilation units will be linked by the per-objfile
5357 read_in_chain. Make sure to free them when we're done. */
5358 back_to = make_cleanup (free_cached_comp_units, NULL);
5359
5360 build_type_psymtabs (objfile);
5361
5362 create_all_comp_units (objfile);
5363
5364 /* Create a temporary address map on a temporary obstack. We later
5365 copy this to the final obstack. */
5366 obstack_init (&temp_obstack);
5367 make_cleanup_obstack_free (&temp_obstack);
5368 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5369 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5370
5371 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5372 {
5373 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5374
5375 process_psymtab_comp_unit (per_cu, 0);
5376 }
5377
5378 set_partial_user (objfile);
5379
5380 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5381 &objfile->objfile_obstack);
5382 discard_cleanups (addrmap_cleanup);
5383
5384 do_cleanups (back_to);
5385
5386 if (dwarf2_read_debug)
5387 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5388 objfile->name);
5389 }
5390
5391 /* die_reader_func for load_partial_comp_unit. */
5392
5393 static void
5394 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5395 gdb_byte *info_ptr,
5396 struct die_info *comp_unit_die,
5397 int has_children,
5398 void *data)
5399 {
5400 struct dwarf2_cu *cu = reader->cu;
5401
5402 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5403
5404 /* Check if comp unit has_children.
5405 If so, read the rest of the partial symbols from this comp unit.
5406 If not, there's no more debug_info for this comp unit. */
5407 if (has_children)
5408 load_partial_dies (reader, info_ptr, 0);
5409 }
5410
5411 /* Load the partial DIEs for a secondary CU into memory.
5412 This is also used when rereading a primary CU with load_all_dies. */
5413
5414 static void
5415 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5416 {
5417 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5418 load_partial_comp_unit_reader, NULL);
5419 }
5420
5421 static void
5422 read_comp_units_from_section (struct objfile *objfile,
5423 struct dwarf2_section_info *section,
5424 unsigned int is_dwz,
5425 int *n_allocated,
5426 int *n_comp_units,
5427 struct dwarf2_per_cu_data ***all_comp_units)
5428 {
5429 gdb_byte *info_ptr;
5430 bfd *abfd = section->asection->owner;
5431
5432 dwarf2_read_section (objfile, section);
5433
5434 info_ptr = section->buffer;
5435
5436 while (info_ptr < section->buffer + section->size)
5437 {
5438 unsigned int length, initial_length_size;
5439 struct dwarf2_per_cu_data *this_cu;
5440 sect_offset offset;
5441
5442 offset.sect_off = info_ptr - section->buffer;
5443
5444 /* Read just enough information to find out where the next
5445 compilation unit is. */
5446 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5447
5448 /* Save the compilation unit for later lookup. */
5449 this_cu = obstack_alloc (&objfile->objfile_obstack,
5450 sizeof (struct dwarf2_per_cu_data));
5451 memset (this_cu, 0, sizeof (*this_cu));
5452 this_cu->offset = offset;
5453 this_cu->length = length + initial_length_size;
5454 this_cu->is_dwz = is_dwz;
5455 this_cu->objfile = objfile;
5456 this_cu->info_or_types_section = section;
5457
5458 if (*n_comp_units == *n_allocated)
5459 {
5460 *n_allocated *= 2;
5461 *all_comp_units = xrealloc (*all_comp_units,
5462 *n_allocated
5463 * sizeof (struct dwarf2_per_cu_data *));
5464 }
5465 (*all_comp_units)[*n_comp_units] = this_cu;
5466 ++*n_comp_units;
5467
5468 info_ptr = info_ptr + this_cu->length;
5469 }
5470 }
5471
5472 /* Create a list of all compilation units in OBJFILE.
5473 This is only done for -readnow and building partial symtabs. */
5474
5475 static void
5476 create_all_comp_units (struct objfile *objfile)
5477 {
5478 int n_allocated;
5479 int n_comp_units;
5480 struct dwarf2_per_cu_data **all_comp_units;
5481
5482 n_comp_units = 0;
5483 n_allocated = 10;
5484 all_comp_units = xmalloc (n_allocated
5485 * sizeof (struct dwarf2_per_cu_data *));
5486
5487 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5488 &n_allocated, &n_comp_units, &all_comp_units);
5489
5490 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5491 {
5492 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5493
5494 read_comp_units_from_section (objfile, &dwz->info, 1,
5495 &n_allocated, &n_comp_units,
5496 &all_comp_units);
5497 }
5498
5499 dwarf2_per_objfile->all_comp_units
5500 = obstack_alloc (&objfile->objfile_obstack,
5501 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5502 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5503 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5504 xfree (all_comp_units);
5505 dwarf2_per_objfile->n_comp_units = n_comp_units;
5506 }
5507
5508 /* Process all loaded DIEs for compilation unit CU, starting at
5509 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5510 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5511 DW_AT_ranges). If NEED_PC is set, then this function will set
5512 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5513 and record the covered ranges in the addrmap. */
5514
5515 static void
5516 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5517 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5518 {
5519 struct partial_die_info *pdi;
5520
5521 /* Now, march along the PDI's, descending into ones which have
5522 interesting children but skipping the children of the other ones,
5523 until we reach the end of the compilation unit. */
5524
5525 pdi = first_die;
5526
5527 while (pdi != NULL)
5528 {
5529 fixup_partial_die (pdi, cu);
5530
5531 /* Anonymous namespaces or modules have no name but have interesting
5532 children, so we need to look at them. Ditto for anonymous
5533 enums. */
5534
5535 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5536 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5537 || pdi->tag == DW_TAG_imported_unit)
5538 {
5539 switch (pdi->tag)
5540 {
5541 case DW_TAG_subprogram:
5542 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5543 break;
5544 case DW_TAG_constant:
5545 case DW_TAG_variable:
5546 case DW_TAG_typedef:
5547 case DW_TAG_union_type:
5548 if (!pdi->is_declaration)
5549 {
5550 add_partial_symbol (pdi, cu);
5551 }
5552 break;
5553 case DW_TAG_class_type:
5554 case DW_TAG_interface_type:
5555 case DW_TAG_structure_type:
5556 if (!pdi->is_declaration)
5557 {
5558 add_partial_symbol (pdi, cu);
5559 }
5560 break;
5561 case DW_TAG_enumeration_type:
5562 if (!pdi->is_declaration)
5563 add_partial_enumeration (pdi, cu);
5564 break;
5565 case DW_TAG_base_type:
5566 case DW_TAG_subrange_type:
5567 /* File scope base type definitions are added to the partial
5568 symbol table. */
5569 add_partial_symbol (pdi, cu);
5570 break;
5571 case DW_TAG_namespace:
5572 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5573 break;
5574 case DW_TAG_module:
5575 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5576 break;
5577 case DW_TAG_imported_unit:
5578 {
5579 struct dwarf2_per_cu_data *per_cu;
5580
5581 /* For now we don't handle imported units in type units. */
5582 if (cu->per_cu->is_debug_types)
5583 {
5584 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5585 " supported in type units [in module %s]"),
5586 cu->objfile->name);
5587 }
5588
5589 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5590 pdi->is_dwz,
5591 cu->objfile);
5592
5593 /* Go read the partial unit, if needed. */
5594 if (per_cu->v.psymtab == NULL)
5595 process_psymtab_comp_unit (per_cu, 1);
5596
5597 VEC_safe_push (dwarf2_per_cu_ptr,
5598 cu->per_cu->s.imported_symtabs, per_cu);
5599 }
5600 break;
5601 default:
5602 break;
5603 }
5604 }
5605
5606 /* If the die has a sibling, skip to the sibling. */
5607
5608 pdi = pdi->die_sibling;
5609 }
5610 }
5611
5612 /* Functions used to compute the fully scoped name of a partial DIE.
5613
5614 Normally, this is simple. For C++, the parent DIE's fully scoped
5615 name is concatenated with "::" and the partial DIE's name. For
5616 Java, the same thing occurs except that "." is used instead of "::".
5617 Enumerators are an exception; they use the scope of their parent
5618 enumeration type, i.e. the name of the enumeration type is not
5619 prepended to the enumerator.
5620
5621 There are two complexities. One is DW_AT_specification; in this
5622 case "parent" means the parent of the target of the specification,
5623 instead of the direct parent of the DIE. The other is compilers
5624 which do not emit DW_TAG_namespace; in this case we try to guess
5625 the fully qualified name of structure types from their members'
5626 linkage names. This must be done using the DIE's children rather
5627 than the children of any DW_AT_specification target. We only need
5628 to do this for structures at the top level, i.e. if the target of
5629 any DW_AT_specification (if any; otherwise the DIE itself) does not
5630 have a parent. */
5631
5632 /* Compute the scope prefix associated with PDI's parent, in
5633 compilation unit CU. The result will be allocated on CU's
5634 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5635 field. NULL is returned if no prefix is necessary. */
5636 static char *
5637 partial_die_parent_scope (struct partial_die_info *pdi,
5638 struct dwarf2_cu *cu)
5639 {
5640 char *grandparent_scope;
5641 struct partial_die_info *parent, *real_pdi;
5642
5643 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5644 then this means the parent of the specification DIE. */
5645
5646 real_pdi = pdi;
5647 while (real_pdi->has_specification)
5648 real_pdi = find_partial_die (real_pdi->spec_offset,
5649 real_pdi->spec_is_dwz, cu);
5650
5651 parent = real_pdi->die_parent;
5652 if (parent == NULL)
5653 return NULL;
5654
5655 if (parent->scope_set)
5656 return parent->scope;
5657
5658 fixup_partial_die (parent, cu);
5659
5660 grandparent_scope = partial_die_parent_scope (parent, cu);
5661
5662 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5663 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5664 Work around this problem here. */
5665 if (cu->language == language_cplus
5666 && parent->tag == DW_TAG_namespace
5667 && strcmp (parent->name, "::") == 0
5668 && grandparent_scope == NULL)
5669 {
5670 parent->scope = NULL;
5671 parent->scope_set = 1;
5672 return NULL;
5673 }
5674
5675 if (pdi->tag == DW_TAG_enumerator)
5676 /* Enumerators should not get the name of the enumeration as a prefix. */
5677 parent->scope = grandparent_scope;
5678 else if (parent->tag == DW_TAG_namespace
5679 || parent->tag == DW_TAG_module
5680 || parent->tag == DW_TAG_structure_type
5681 || parent->tag == DW_TAG_class_type
5682 || parent->tag == DW_TAG_interface_type
5683 || parent->tag == DW_TAG_union_type
5684 || parent->tag == DW_TAG_enumeration_type)
5685 {
5686 if (grandparent_scope == NULL)
5687 parent->scope = parent->name;
5688 else
5689 parent->scope = typename_concat (&cu->comp_unit_obstack,
5690 grandparent_scope,
5691 parent->name, 0, cu);
5692 }
5693 else
5694 {
5695 /* FIXME drow/2004-04-01: What should we be doing with
5696 function-local names? For partial symbols, we should probably be
5697 ignoring them. */
5698 complaint (&symfile_complaints,
5699 _("unhandled containing DIE tag %d for DIE at %d"),
5700 parent->tag, pdi->offset.sect_off);
5701 parent->scope = grandparent_scope;
5702 }
5703
5704 parent->scope_set = 1;
5705 return parent->scope;
5706 }
5707
5708 /* Return the fully scoped name associated with PDI, from compilation unit
5709 CU. The result will be allocated with malloc. */
5710
5711 static char *
5712 partial_die_full_name (struct partial_die_info *pdi,
5713 struct dwarf2_cu *cu)
5714 {
5715 char *parent_scope;
5716
5717 /* If this is a template instantiation, we can not work out the
5718 template arguments from partial DIEs. So, unfortunately, we have
5719 to go through the full DIEs. At least any work we do building
5720 types here will be reused if full symbols are loaded later. */
5721 if (pdi->has_template_arguments)
5722 {
5723 fixup_partial_die (pdi, cu);
5724
5725 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5726 {
5727 struct die_info *die;
5728 struct attribute attr;
5729 struct dwarf2_cu *ref_cu = cu;
5730
5731 /* DW_FORM_ref_addr is using section offset. */
5732 attr.name = 0;
5733 attr.form = DW_FORM_ref_addr;
5734 attr.u.unsnd = pdi->offset.sect_off;
5735 die = follow_die_ref (NULL, &attr, &ref_cu);
5736
5737 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5738 }
5739 }
5740
5741 parent_scope = partial_die_parent_scope (pdi, cu);
5742 if (parent_scope == NULL)
5743 return NULL;
5744 else
5745 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5746 }
5747
5748 static void
5749 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5750 {
5751 struct objfile *objfile = cu->objfile;
5752 CORE_ADDR addr = 0;
5753 char *actual_name = NULL;
5754 CORE_ADDR baseaddr;
5755 int built_actual_name = 0;
5756
5757 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5758
5759 actual_name = partial_die_full_name (pdi, cu);
5760 if (actual_name)
5761 built_actual_name = 1;
5762
5763 if (actual_name == NULL)
5764 actual_name = pdi->name;
5765
5766 switch (pdi->tag)
5767 {
5768 case DW_TAG_subprogram:
5769 if (pdi->is_external || cu->language == language_ada)
5770 {
5771 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5772 of the global scope. But in Ada, we want to be able to access
5773 nested procedures globally. So all Ada subprograms are stored
5774 in the global scope. */
5775 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5776 mst_text, objfile); */
5777 add_psymbol_to_list (actual_name, strlen (actual_name),
5778 built_actual_name,
5779 VAR_DOMAIN, LOC_BLOCK,
5780 &objfile->global_psymbols,
5781 0, pdi->lowpc + baseaddr,
5782 cu->language, objfile);
5783 }
5784 else
5785 {
5786 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5787 mst_file_text, objfile); */
5788 add_psymbol_to_list (actual_name, strlen (actual_name),
5789 built_actual_name,
5790 VAR_DOMAIN, LOC_BLOCK,
5791 &objfile->static_psymbols,
5792 0, pdi->lowpc + baseaddr,
5793 cu->language, objfile);
5794 }
5795 break;
5796 case DW_TAG_constant:
5797 {
5798 struct psymbol_allocation_list *list;
5799
5800 if (pdi->is_external)
5801 list = &objfile->global_psymbols;
5802 else
5803 list = &objfile->static_psymbols;
5804 add_psymbol_to_list (actual_name, strlen (actual_name),
5805 built_actual_name, VAR_DOMAIN, LOC_STATIC,
5806 list, 0, 0, cu->language, objfile);
5807 }
5808 break;
5809 case DW_TAG_variable:
5810 if (pdi->d.locdesc)
5811 addr = decode_locdesc (pdi->d.locdesc, cu);
5812
5813 if (pdi->d.locdesc
5814 && addr == 0
5815 && !dwarf2_per_objfile->has_section_at_zero)
5816 {
5817 /* A global or static variable may also have been stripped
5818 out by the linker if unused, in which case its address
5819 will be nullified; do not add such variables into partial
5820 symbol table then. */
5821 }
5822 else if (pdi->is_external)
5823 {
5824 /* Global Variable.
5825 Don't enter into the minimal symbol tables as there is
5826 a minimal symbol table entry from the ELF symbols already.
5827 Enter into partial symbol table if it has a location
5828 descriptor or a type.
5829 If the location descriptor is missing, new_symbol will create
5830 a LOC_UNRESOLVED symbol, the address of the variable will then
5831 be determined from the minimal symbol table whenever the variable
5832 is referenced.
5833 The address for the partial symbol table entry is not
5834 used by GDB, but it comes in handy for debugging partial symbol
5835 table building. */
5836
5837 if (pdi->d.locdesc || pdi->has_type)
5838 add_psymbol_to_list (actual_name, strlen (actual_name),
5839 built_actual_name,
5840 VAR_DOMAIN, LOC_STATIC,
5841 &objfile->global_psymbols,
5842 0, addr + baseaddr,
5843 cu->language, objfile);
5844 }
5845 else
5846 {
5847 /* Static Variable. Skip symbols without location descriptors. */
5848 if (pdi->d.locdesc == NULL)
5849 {
5850 if (built_actual_name)
5851 xfree (actual_name);
5852 return;
5853 }
5854 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
5855 mst_file_data, objfile); */
5856 add_psymbol_to_list (actual_name, strlen (actual_name),
5857 built_actual_name,
5858 VAR_DOMAIN, LOC_STATIC,
5859 &objfile->static_psymbols,
5860 0, addr + baseaddr,
5861 cu->language, objfile);
5862 }
5863 break;
5864 case DW_TAG_typedef:
5865 case DW_TAG_base_type:
5866 case DW_TAG_subrange_type:
5867 add_psymbol_to_list (actual_name, strlen (actual_name),
5868 built_actual_name,
5869 VAR_DOMAIN, LOC_TYPEDEF,
5870 &objfile->static_psymbols,
5871 0, (CORE_ADDR) 0, cu->language, objfile);
5872 break;
5873 case DW_TAG_namespace:
5874 add_psymbol_to_list (actual_name, strlen (actual_name),
5875 built_actual_name,
5876 VAR_DOMAIN, LOC_TYPEDEF,
5877 &objfile->global_psymbols,
5878 0, (CORE_ADDR) 0, cu->language, objfile);
5879 break;
5880 case DW_TAG_class_type:
5881 case DW_TAG_interface_type:
5882 case DW_TAG_structure_type:
5883 case DW_TAG_union_type:
5884 case DW_TAG_enumeration_type:
5885 /* Skip external references. The DWARF standard says in the section
5886 about "Structure, Union, and Class Type Entries": "An incomplete
5887 structure, union or class type is represented by a structure,
5888 union or class entry that does not have a byte size attribute
5889 and that has a DW_AT_declaration attribute." */
5890 if (!pdi->has_byte_size && pdi->is_declaration)
5891 {
5892 if (built_actual_name)
5893 xfree (actual_name);
5894 return;
5895 }
5896
5897 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
5898 static vs. global. */
5899 add_psymbol_to_list (actual_name, strlen (actual_name),
5900 built_actual_name,
5901 STRUCT_DOMAIN, LOC_TYPEDEF,
5902 (cu->language == language_cplus
5903 || cu->language == language_java)
5904 ? &objfile->global_psymbols
5905 : &objfile->static_psymbols,
5906 0, (CORE_ADDR) 0, cu->language, objfile);
5907
5908 break;
5909 case DW_TAG_enumerator:
5910 add_psymbol_to_list (actual_name, strlen (actual_name),
5911 built_actual_name,
5912 VAR_DOMAIN, LOC_CONST,
5913 (cu->language == language_cplus
5914 || cu->language == language_java)
5915 ? &objfile->global_psymbols
5916 : &objfile->static_psymbols,
5917 0, (CORE_ADDR) 0, cu->language, objfile);
5918 break;
5919 default:
5920 break;
5921 }
5922
5923 if (built_actual_name)
5924 xfree (actual_name);
5925 }
5926
5927 /* Read a partial die corresponding to a namespace; also, add a symbol
5928 corresponding to that namespace to the symbol table. NAMESPACE is
5929 the name of the enclosing namespace. */
5930
5931 static void
5932 add_partial_namespace (struct partial_die_info *pdi,
5933 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5934 int need_pc, struct dwarf2_cu *cu)
5935 {
5936 /* Add a symbol for the namespace. */
5937
5938 add_partial_symbol (pdi, cu);
5939
5940 /* Now scan partial symbols in that namespace. */
5941
5942 if (pdi->has_children)
5943 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
5944 }
5945
5946 /* Read a partial die corresponding to a Fortran module. */
5947
5948 static void
5949 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
5950 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5951 {
5952 /* Now scan partial symbols in that module. */
5953
5954 if (pdi->has_children)
5955 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
5956 }
5957
5958 /* Read a partial die corresponding to a subprogram and create a partial
5959 symbol for that subprogram. When the CU language allows it, this
5960 routine also defines a partial symbol for each nested subprogram
5961 that this subprogram contains.
5962
5963 DIE my also be a lexical block, in which case we simply search
5964 recursively for suprograms defined inside that lexical block.
5965 Again, this is only performed when the CU language allows this
5966 type of definitions. */
5967
5968 static void
5969 add_partial_subprogram (struct partial_die_info *pdi,
5970 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5971 int need_pc, struct dwarf2_cu *cu)
5972 {
5973 if (pdi->tag == DW_TAG_subprogram)
5974 {
5975 if (pdi->has_pc_info)
5976 {
5977 if (pdi->lowpc < *lowpc)
5978 *lowpc = pdi->lowpc;
5979 if (pdi->highpc > *highpc)
5980 *highpc = pdi->highpc;
5981 if (need_pc)
5982 {
5983 CORE_ADDR baseaddr;
5984 struct objfile *objfile = cu->objfile;
5985
5986 baseaddr = ANOFFSET (objfile->section_offsets,
5987 SECT_OFF_TEXT (objfile));
5988 addrmap_set_empty (objfile->psymtabs_addrmap,
5989 pdi->lowpc + baseaddr,
5990 pdi->highpc - 1 + baseaddr,
5991 cu->per_cu->v.psymtab);
5992 }
5993 }
5994
5995 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
5996 {
5997 if (!pdi->is_declaration)
5998 /* Ignore subprogram DIEs that do not have a name, they are
5999 illegal. Do not emit a complaint at this point, we will
6000 do so when we convert this psymtab into a symtab. */
6001 if (pdi->name)
6002 add_partial_symbol (pdi, cu);
6003 }
6004 }
6005
6006 if (! pdi->has_children)
6007 return;
6008
6009 if (cu->language == language_ada)
6010 {
6011 pdi = pdi->die_child;
6012 while (pdi != NULL)
6013 {
6014 fixup_partial_die (pdi, cu);
6015 if (pdi->tag == DW_TAG_subprogram
6016 || pdi->tag == DW_TAG_lexical_block)
6017 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6018 pdi = pdi->die_sibling;
6019 }
6020 }
6021 }
6022
6023 /* Read a partial die corresponding to an enumeration type. */
6024
6025 static void
6026 add_partial_enumeration (struct partial_die_info *enum_pdi,
6027 struct dwarf2_cu *cu)
6028 {
6029 struct partial_die_info *pdi;
6030
6031 if (enum_pdi->name != NULL)
6032 add_partial_symbol (enum_pdi, cu);
6033
6034 pdi = enum_pdi->die_child;
6035 while (pdi)
6036 {
6037 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6038 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6039 else
6040 add_partial_symbol (pdi, cu);
6041 pdi = pdi->die_sibling;
6042 }
6043 }
6044
6045 /* Return the initial uleb128 in the die at INFO_PTR. */
6046
6047 static unsigned int
6048 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6049 {
6050 unsigned int bytes_read;
6051
6052 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6053 }
6054
6055 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6056 Return the corresponding abbrev, or NULL if the number is zero (indicating
6057 an empty DIE). In either case *BYTES_READ will be set to the length of
6058 the initial number. */
6059
6060 static struct abbrev_info *
6061 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6062 struct dwarf2_cu *cu)
6063 {
6064 bfd *abfd = cu->objfile->obfd;
6065 unsigned int abbrev_number;
6066 struct abbrev_info *abbrev;
6067
6068 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6069
6070 if (abbrev_number == 0)
6071 return NULL;
6072
6073 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6074 if (!abbrev)
6075 {
6076 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6077 abbrev_number, bfd_get_filename (abfd));
6078 }
6079
6080 return abbrev;
6081 }
6082
6083 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6084 Returns a pointer to the end of a series of DIEs, terminated by an empty
6085 DIE. Any children of the skipped DIEs will also be skipped. */
6086
6087 static gdb_byte *
6088 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6089 {
6090 struct dwarf2_cu *cu = reader->cu;
6091 struct abbrev_info *abbrev;
6092 unsigned int bytes_read;
6093
6094 while (1)
6095 {
6096 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6097 if (abbrev == NULL)
6098 return info_ptr + bytes_read;
6099 else
6100 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6101 }
6102 }
6103
6104 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6105 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6106 abbrev corresponding to that skipped uleb128 should be passed in
6107 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6108 children. */
6109
6110 static gdb_byte *
6111 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6112 struct abbrev_info *abbrev)
6113 {
6114 unsigned int bytes_read;
6115 struct attribute attr;
6116 bfd *abfd = reader->abfd;
6117 struct dwarf2_cu *cu = reader->cu;
6118 gdb_byte *buffer = reader->buffer;
6119 const gdb_byte *buffer_end = reader->buffer_end;
6120 gdb_byte *start_info_ptr = info_ptr;
6121 unsigned int form, i;
6122
6123 for (i = 0; i < abbrev->num_attrs; i++)
6124 {
6125 /* The only abbrev we care about is DW_AT_sibling. */
6126 if (abbrev->attrs[i].name == DW_AT_sibling)
6127 {
6128 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6129 if (attr.form == DW_FORM_ref_addr)
6130 complaint (&symfile_complaints,
6131 _("ignoring absolute DW_AT_sibling"));
6132 else
6133 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6134 }
6135
6136 /* If it isn't DW_AT_sibling, skip this attribute. */
6137 form = abbrev->attrs[i].form;
6138 skip_attribute:
6139 switch (form)
6140 {
6141 case DW_FORM_ref_addr:
6142 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6143 and later it is offset sized. */
6144 if (cu->header.version == 2)
6145 info_ptr += cu->header.addr_size;
6146 else
6147 info_ptr += cu->header.offset_size;
6148 break;
6149 case DW_FORM_GNU_ref_alt:
6150 info_ptr += cu->header.offset_size;
6151 break;
6152 case DW_FORM_addr:
6153 info_ptr += cu->header.addr_size;
6154 break;
6155 case DW_FORM_data1:
6156 case DW_FORM_ref1:
6157 case DW_FORM_flag:
6158 info_ptr += 1;
6159 break;
6160 case DW_FORM_flag_present:
6161 break;
6162 case DW_FORM_data2:
6163 case DW_FORM_ref2:
6164 info_ptr += 2;
6165 break;
6166 case DW_FORM_data4:
6167 case DW_FORM_ref4:
6168 info_ptr += 4;
6169 break;
6170 case DW_FORM_data8:
6171 case DW_FORM_ref8:
6172 case DW_FORM_ref_sig8:
6173 info_ptr += 8;
6174 break;
6175 case DW_FORM_string:
6176 read_direct_string (abfd, info_ptr, &bytes_read);
6177 info_ptr += bytes_read;
6178 break;
6179 case DW_FORM_sec_offset:
6180 case DW_FORM_strp:
6181 case DW_FORM_GNU_strp_alt:
6182 info_ptr += cu->header.offset_size;
6183 break;
6184 case DW_FORM_exprloc:
6185 case DW_FORM_block:
6186 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6187 info_ptr += bytes_read;
6188 break;
6189 case DW_FORM_block1:
6190 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6191 break;
6192 case DW_FORM_block2:
6193 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6194 break;
6195 case DW_FORM_block4:
6196 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6197 break;
6198 case DW_FORM_sdata:
6199 case DW_FORM_udata:
6200 case DW_FORM_ref_udata:
6201 case DW_FORM_GNU_addr_index:
6202 case DW_FORM_GNU_str_index:
6203 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6204 break;
6205 case DW_FORM_indirect:
6206 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6207 info_ptr += bytes_read;
6208 /* We need to continue parsing from here, so just go back to
6209 the top. */
6210 goto skip_attribute;
6211
6212 default:
6213 error (_("Dwarf Error: Cannot handle %s "
6214 "in DWARF reader [in module %s]"),
6215 dwarf_form_name (form),
6216 bfd_get_filename (abfd));
6217 }
6218 }
6219
6220 if (abbrev->has_children)
6221 return skip_children (reader, info_ptr);
6222 else
6223 return info_ptr;
6224 }
6225
6226 /* Locate ORIG_PDI's sibling.
6227 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6228
6229 static gdb_byte *
6230 locate_pdi_sibling (const struct die_reader_specs *reader,
6231 struct partial_die_info *orig_pdi,
6232 gdb_byte *info_ptr)
6233 {
6234 /* Do we know the sibling already? */
6235
6236 if (orig_pdi->sibling)
6237 return orig_pdi->sibling;
6238
6239 /* Are there any children to deal with? */
6240
6241 if (!orig_pdi->has_children)
6242 return info_ptr;
6243
6244 /* Skip the children the long way. */
6245
6246 return skip_children (reader, info_ptr);
6247 }
6248
6249 /* Expand this partial symbol table into a full symbol table. */
6250
6251 static void
6252 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
6253 {
6254 if (pst != NULL)
6255 {
6256 if (pst->readin)
6257 {
6258 warning (_("bug: psymtab for %s is already read in."),
6259 pst->filename);
6260 }
6261 else
6262 {
6263 if (info_verbose)
6264 {
6265 printf_filtered (_("Reading in symbols for %s..."),
6266 pst->filename);
6267 gdb_flush (gdb_stdout);
6268 }
6269
6270 /* Restore our global data. */
6271 dwarf2_per_objfile = objfile_data (pst->objfile,
6272 dwarf2_objfile_data_key);
6273
6274 /* If this psymtab is constructed from a debug-only objfile, the
6275 has_section_at_zero flag will not necessarily be correct. We
6276 can get the correct value for this flag by looking at the data
6277 associated with the (presumably stripped) associated objfile. */
6278 if (pst->objfile->separate_debug_objfile_backlink)
6279 {
6280 struct dwarf2_per_objfile *dpo_backlink
6281 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
6282 dwarf2_objfile_data_key);
6283
6284 dwarf2_per_objfile->has_section_at_zero
6285 = dpo_backlink->has_section_at_zero;
6286 }
6287
6288 dwarf2_per_objfile->reading_partial_symbols = 0;
6289
6290 psymtab_to_symtab_1 (pst);
6291
6292 /* Finish up the debug error message. */
6293 if (info_verbose)
6294 printf_filtered (_("done.\n"));
6295 }
6296 }
6297
6298 process_cu_includes ();
6299 }
6300 \f
6301 /* Reading in full CUs. */
6302
6303 /* Add PER_CU to the queue. */
6304
6305 static void
6306 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6307 enum language pretend_language)
6308 {
6309 struct dwarf2_queue_item *item;
6310
6311 per_cu->queued = 1;
6312 item = xmalloc (sizeof (*item));
6313 item->per_cu = per_cu;
6314 item->pretend_language = pretend_language;
6315 item->next = NULL;
6316
6317 if (dwarf2_queue == NULL)
6318 dwarf2_queue = item;
6319 else
6320 dwarf2_queue_tail->next = item;
6321
6322 dwarf2_queue_tail = item;
6323 }
6324
6325 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6326 unit and add it to our queue.
6327 The result is non-zero if PER_CU was queued, otherwise the result is zero
6328 meaning either PER_CU is already queued or it is already loaded. */
6329
6330 static int
6331 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6332 struct dwarf2_per_cu_data *per_cu,
6333 enum language pretend_language)
6334 {
6335 /* We may arrive here during partial symbol reading, if we need full
6336 DIEs to process an unusual case (e.g. template arguments). Do
6337 not queue PER_CU, just tell our caller to load its DIEs. */
6338 if (dwarf2_per_objfile->reading_partial_symbols)
6339 {
6340 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6341 return 1;
6342 return 0;
6343 }
6344
6345 /* Mark the dependence relation so that we don't flush PER_CU
6346 too early. */
6347 dwarf2_add_dependence (this_cu, per_cu);
6348
6349 /* If it's already on the queue, we have nothing to do. */
6350 if (per_cu->queued)
6351 return 0;
6352
6353 /* If the compilation unit is already loaded, just mark it as
6354 used. */
6355 if (per_cu->cu != NULL)
6356 {
6357 per_cu->cu->last_used = 0;
6358 return 0;
6359 }
6360
6361 /* Add it to the queue. */
6362 queue_comp_unit (per_cu, pretend_language);
6363
6364 return 1;
6365 }
6366
6367 /* Process the queue. */
6368
6369 static void
6370 process_queue (void)
6371 {
6372 struct dwarf2_queue_item *item, *next_item;
6373
6374 if (dwarf2_read_debug)
6375 {
6376 fprintf_unfiltered (gdb_stdlog,
6377 "Expanding one or more symtabs of objfile %s ...\n",
6378 dwarf2_per_objfile->objfile->name);
6379 }
6380
6381 /* The queue starts out with one item, but following a DIE reference
6382 may load a new CU, adding it to the end of the queue. */
6383 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6384 {
6385 if (dwarf2_per_objfile->using_index
6386 ? !item->per_cu->v.quick->symtab
6387 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6388 {
6389 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6390
6391 if (dwarf2_read_debug)
6392 {
6393 fprintf_unfiltered (gdb_stdlog,
6394 "Expanding symtab of %s at offset 0x%x\n",
6395 per_cu->is_debug_types ? "TU" : "CU",
6396 per_cu->offset.sect_off);
6397 }
6398
6399 if (per_cu->is_debug_types)
6400 process_full_type_unit (per_cu, item->pretend_language);
6401 else
6402 process_full_comp_unit (per_cu, item->pretend_language);
6403
6404 if (dwarf2_read_debug)
6405 {
6406 fprintf_unfiltered (gdb_stdlog,
6407 "Done expanding %s at offset 0x%x\n",
6408 per_cu->is_debug_types ? "TU" : "CU",
6409 per_cu->offset.sect_off);
6410 }
6411 }
6412
6413 item->per_cu->queued = 0;
6414 next_item = item->next;
6415 xfree (item);
6416 }
6417
6418 dwarf2_queue_tail = NULL;
6419
6420 if (dwarf2_read_debug)
6421 {
6422 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6423 dwarf2_per_objfile->objfile->name);
6424 }
6425 }
6426
6427 /* Free all allocated queue entries. This function only releases anything if
6428 an error was thrown; if the queue was processed then it would have been
6429 freed as we went along. */
6430
6431 static void
6432 dwarf2_release_queue (void *dummy)
6433 {
6434 struct dwarf2_queue_item *item, *last;
6435
6436 item = dwarf2_queue;
6437 while (item)
6438 {
6439 /* Anything still marked queued is likely to be in an
6440 inconsistent state, so discard it. */
6441 if (item->per_cu->queued)
6442 {
6443 if (item->per_cu->cu != NULL)
6444 free_one_cached_comp_unit (item->per_cu);
6445 item->per_cu->queued = 0;
6446 }
6447
6448 last = item;
6449 item = item->next;
6450 xfree (last);
6451 }
6452
6453 dwarf2_queue = dwarf2_queue_tail = NULL;
6454 }
6455
6456 /* Read in full symbols for PST, and anything it depends on. */
6457
6458 static void
6459 psymtab_to_symtab_1 (struct partial_symtab *pst)
6460 {
6461 struct dwarf2_per_cu_data *per_cu;
6462 int i;
6463
6464 if (pst->readin)
6465 return;
6466
6467 for (i = 0; i < pst->number_of_dependencies; i++)
6468 if (!pst->dependencies[i]->readin
6469 && pst->dependencies[i]->user == NULL)
6470 {
6471 /* Inform about additional files that need to be read in. */
6472 if (info_verbose)
6473 {
6474 /* FIXME: i18n: Need to make this a single string. */
6475 fputs_filtered (" ", gdb_stdout);
6476 wrap_here ("");
6477 fputs_filtered ("and ", gdb_stdout);
6478 wrap_here ("");
6479 printf_filtered ("%s...", pst->dependencies[i]->filename);
6480 wrap_here (""); /* Flush output. */
6481 gdb_flush (gdb_stdout);
6482 }
6483 psymtab_to_symtab_1 (pst->dependencies[i]);
6484 }
6485
6486 per_cu = pst->read_symtab_private;
6487
6488 if (per_cu == NULL)
6489 {
6490 /* It's an include file, no symbols to read for it.
6491 Everything is in the parent symtab. */
6492 pst->readin = 1;
6493 return;
6494 }
6495
6496 dw2_do_instantiate_symtab (per_cu);
6497 }
6498
6499 /* Trivial hash function for die_info: the hash value of a DIE
6500 is its offset in .debug_info for this objfile. */
6501
6502 static hashval_t
6503 die_hash (const void *item)
6504 {
6505 const struct die_info *die = item;
6506
6507 return die->offset.sect_off;
6508 }
6509
6510 /* Trivial comparison function for die_info structures: two DIEs
6511 are equal if they have the same offset. */
6512
6513 static int
6514 die_eq (const void *item_lhs, const void *item_rhs)
6515 {
6516 const struct die_info *die_lhs = item_lhs;
6517 const struct die_info *die_rhs = item_rhs;
6518
6519 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6520 }
6521
6522 /* die_reader_func for load_full_comp_unit.
6523 This is identical to read_signatured_type_reader,
6524 but is kept separate for now. */
6525
6526 static void
6527 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6528 gdb_byte *info_ptr,
6529 struct die_info *comp_unit_die,
6530 int has_children,
6531 void *data)
6532 {
6533 struct dwarf2_cu *cu = reader->cu;
6534 enum language *language_ptr = data;
6535
6536 gdb_assert (cu->die_hash == NULL);
6537 cu->die_hash =
6538 htab_create_alloc_ex (cu->header.length / 12,
6539 die_hash,
6540 die_eq,
6541 NULL,
6542 &cu->comp_unit_obstack,
6543 hashtab_obstack_allocate,
6544 dummy_obstack_deallocate);
6545
6546 if (has_children)
6547 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6548 &info_ptr, comp_unit_die);
6549 cu->dies = comp_unit_die;
6550 /* comp_unit_die is not stored in die_hash, no need. */
6551
6552 /* We try not to read any attributes in this function, because not
6553 all CUs needed for references have been loaded yet, and symbol
6554 table processing isn't initialized. But we have to set the CU language,
6555 or we won't be able to build types correctly.
6556 Similarly, if we do not read the producer, we can not apply
6557 producer-specific interpretation. */
6558 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6559 }
6560
6561 /* Load the DIEs associated with PER_CU into memory. */
6562
6563 static void
6564 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6565 enum language pretend_language)
6566 {
6567 gdb_assert (! this_cu->is_debug_types);
6568
6569 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6570 load_full_comp_unit_reader, &pretend_language);
6571 }
6572
6573 /* Add a DIE to the delayed physname list. */
6574
6575 static void
6576 add_to_method_list (struct type *type, int fnfield_index, int index,
6577 const char *name, struct die_info *die,
6578 struct dwarf2_cu *cu)
6579 {
6580 struct delayed_method_info mi;
6581 mi.type = type;
6582 mi.fnfield_index = fnfield_index;
6583 mi.index = index;
6584 mi.name = name;
6585 mi.die = die;
6586 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6587 }
6588
6589 /* A cleanup for freeing the delayed method list. */
6590
6591 static void
6592 free_delayed_list (void *ptr)
6593 {
6594 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6595 if (cu->method_list != NULL)
6596 {
6597 VEC_free (delayed_method_info, cu->method_list);
6598 cu->method_list = NULL;
6599 }
6600 }
6601
6602 /* Compute the physnames of any methods on the CU's method list.
6603
6604 The computation of method physnames is delayed in order to avoid the
6605 (bad) condition that one of the method's formal parameters is of an as yet
6606 incomplete type. */
6607
6608 static void
6609 compute_delayed_physnames (struct dwarf2_cu *cu)
6610 {
6611 int i;
6612 struct delayed_method_info *mi;
6613 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6614 {
6615 const char *physname;
6616 struct fn_fieldlist *fn_flp
6617 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6618 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
6619 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6620 }
6621 }
6622
6623 /* Go objects should be embedded in a DW_TAG_module DIE,
6624 and it's not clear if/how imported objects will appear.
6625 To keep Go support simple until that's worked out,
6626 go back through what we've read and create something usable.
6627 We could do this while processing each DIE, and feels kinda cleaner,
6628 but that way is more invasive.
6629 This is to, for example, allow the user to type "p var" or "b main"
6630 without having to specify the package name, and allow lookups
6631 of module.object to work in contexts that use the expression
6632 parser. */
6633
6634 static void
6635 fixup_go_packaging (struct dwarf2_cu *cu)
6636 {
6637 char *package_name = NULL;
6638 struct pending *list;
6639 int i;
6640
6641 for (list = global_symbols; list != NULL; list = list->next)
6642 {
6643 for (i = 0; i < list->nsyms; ++i)
6644 {
6645 struct symbol *sym = list->symbol[i];
6646
6647 if (SYMBOL_LANGUAGE (sym) == language_go
6648 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6649 {
6650 char *this_package_name = go_symbol_package_name (sym);
6651
6652 if (this_package_name == NULL)
6653 continue;
6654 if (package_name == NULL)
6655 package_name = this_package_name;
6656 else
6657 {
6658 if (strcmp (package_name, this_package_name) != 0)
6659 complaint (&symfile_complaints,
6660 _("Symtab %s has objects from two different Go packages: %s and %s"),
6661 (sym->symtab && sym->symtab->filename
6662 ? sym->symtab->filename
6663 : cu->objfile->name),
6664 this_package_name, package_name);
6665 xfree (this_package_name);
6666 }
6667 }
6668 }
6669 }
6670
6671 if (package_name != NULL)
6672 {
6673 struct objfile *objfile = cu->objfile;
6674 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6675 package_name, objfile);
6676 struct symbol *sym;
6677
6678 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6679
6680 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6681 SYMBOL_SET_LANGUAGE (sym, language_go);
6682 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
6683 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6684 e.g., "main" finds the "main" module and not C's main(). */
6685 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6686 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6687 SYMBOL_TYPE (sym) = type;
6688
6689 add_symbol_to_list (sym, &global_symbols);
6690
6691 xfree (package_name);
6692 }
6693 }
6694
6695 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6696
6697 /* Return the symtab for PER_CU. This works properly regardless of
6698 whether we're using the index or psymtabs. */
6699
6700 static struct symtab *
6701 get_symtab (struct dwarf2_per_cu_data *per_cu)
6702 {
6703 return (dwarf2_per_objfile->using_index
6704 ? per_cu->v.quick->symtab
6705 : per_cu->v.psymtab->symtab);
6706 }
6707
6708 /* A helper function for computing the list of all symbol tables
6709 included by PER_CU. */
6710
6711 static void
6712 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6713 htab_t all_children,
6714 struct dwarf2_per_cu_data *per_cu)
6715 {
6716 void **slot;
6717 int ix;
6718 struct dwarf2_per_cu_data *iter;
6719
6720 slot = htab_find_slot (all_children, per_cu, INSERT);
6721 if (*slot != NULL)
6722 {
6723 /* This inclusion and its children have been processed. */
6724 return;
6725 }
6726
6727 *slot = per_cu;
6728 /* Only add a CU if it has a symbol table. */
6729 if (get_symtab (per_cu) != NULL)
6730 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6731
6732 for (ix = 0;
6733 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs, ix, iter);
6734 ++ix)
6735 recursively_compute_inclusions (result, all_children, iter);
6736 }
6737
6738 /* Compute the symtab 'includes' fields for the symtab related to
6739 PER_CU. */
6740
6741 static void
6742 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6743 {
6744 gdb_assert (! per_cu->is_debug_types);
6745
6746 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs))
6747 {
6748 int ix, len;
6749 struct dwarf2_per_cu_data *iter;
6750 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6751 htab_t all_children;
6752 struct symtab *symtab = get_symtab (per_cu);
6753
6754 /* If we don't have a symtab, we can just skip this case. */
6755 if (symtab == NULL)
6756 return;
6757
6758 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6759 NULL, xcalloc, xfree);
6760
6761 for (ix = 0;
6762 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs,
6763 ix, iter);
6764 ++ix)
6765 recursively_compute_inclusions (&result_children, all_children, iter);
6766
6767 /* Now we have a transitive closure of all the included CUs, so
6768 we can convert it to a list of symtabs. */
6769 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6770 symtab->includes
6771 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6772 (len + 1) * sizeof (struct symtab *));
6773 for (ix = 0;
6774 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6775 ++ix)
6776 symtab->includes[ix] = get_symtab (iter);
6777 symtab->includes[len] = NULL;
6778
6779 VEC_free (dwarf2_per_cu_ptr, result_children);
6780 htab_delete (all_children);
6781 }
6782 }
6783
6784 /* Compute the 'includes' field for the symtabs of all the CUs we just
6785 read. */
6786
6787 static void
6788 process_cu_includes (void)
6789 {
6790 int ix;
6791 struct dwarf2_per_cu_data *iter;
6792
6793 for (ix = 0;
6794 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6795 ix, iter);
6796 ++ix)
6797 {
6798 if (! iter->is_debug_types)
6799 compute_symtab_includes (iter);
6800 }
6801
6802 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6803 }
6804
6805 /* Generate full symbol information for PER_CU, whose DIEs have
6806 already been loaded into memory. */
6807
6808 static void
6809 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6810 enum language pretend_language)
6811 {
6812 struct dwarf2_cu *cu = per_cu->cu;
6813 struct objfile *objfile = per_cu->objfile;
6814 CORE_ADDR lowpc, highpc;
6815 struct symtab *symtab;
6816 struct cleanup *back_to, *delayed_list_cleanup;
6817 CORE_ADDR baseaddr;
6818 struct block *static_block;
6819
6820 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6821
6822 buildsym_init ();
6823 back_to = make_cleanup (really_free_pendings, NULL);
6824 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6825
6826 cu->list_in_scope = &file_symbols;
6827
6828 cu->language = pretend_language;
6829 cu->language_defn = language_def (cu->language);
6830
6831 /* Do line number decoding in read_file_scope () */
6832 process_die (cu->dies, cu);
6833
6834 /* For now fudge the Go package. */
6835 if (cu->language == language_go)
6836 fixup_go_packaging (cu);
6837
6838 /* Now that we have processed all the DIEs in the CU, all the types
6839 should be complete, and it should now be safe to compute all of the
6840 physnames. */
6841 compute_delayed_physnames (cu);
6842 do_cleanups (delayed_list_cleanup);
6843
6844 /* Some compilers don't define a DW_AT_high_pc attribute for the
6845 compilation unit. If the DW_AT_high_pc is missing, synthesize
6846 it, by scanning the DIE's below the compilation unit. */
6847 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
6848
6849 static_block
6850 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
6851 per_cu->s.imported_symtabs != NULL);
6852
6853 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6854 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6855 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6856 addrmap to help ensure it has an accurate map of pc values belonging to
6857 this comp unit. */
6858 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6859
6860 symtab = end_symtab_from_static_block (static_block, objfile,
6861 SECT_OFF_TEXT (objfile), 0);
6862
6863 if (symtab != NULL)
6864 {
6865 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
6866
6867 /* Set symtab language to language from DW_AT_language. If the
6868 compilation is from a C file generated by language preprocessors, do
6869 not set the language if it was already deduced by start_subfile. */
6870 if (!(cu->language == language_c && symtab->language != language_c))
6871 symtab->language = cu->language;
6872
6873 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
6874 produce DW_AT_location with location lists but it can be possibly
6875 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
6876 there were bugs in prologue debug info, fixed later in GCC-4.5
6877 by "unwind info for epilogues" patch (which is not directly related).
6878
6879 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
6880 needed, it would be wrong due to missing DW_AT_producer there.
6881
6882 Still one can confuse GDB by using non-standard GCC compilation
6883 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
6884 */
6885 if (cu->has_loclist && gcc_4_minor >= 5)
6886 symtab->locations_valid = 1;
6887
6888 if (gcc_4_minor >= 5)
6889 symtab->epilogue_unwind_valid = 1;
6890
6891 symtab->call_site_htab = cu->call_site_htab;
6892 }
6893
6894 if (dwarf2_per_objfile->using_index)
6895 per_cu->v.quick->symtab = symtab;
6896 else
6897 {
6898 struct partial_symtab *pst = per_cu->v.psymtab;
6899 pst->symtab = symtab;
6900 pst->readin = 1;
6901 }
6902
6903 /* Push it for inclusion processing later. */
6904 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
6905
6906 do_cleanups (back_to);
6907 }
6908
6909 /* Generate full symbol information for type unit PER_CU, whose DIEs have
6910 already been loaded into memory. */
6911
6912 static void
6913 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
6914 enum language pretend_language)
6915 {
6916 struct dwarf2_cu *cu = per_cu->cu;
6917 struct objfile *objfile = per_cu->objfile;
6918 struct symtab *symtab;
6919 struct cleanup *back_to, *delayed_list_cleanup;
6920
6921 buildsym_init ();
6922 back_to = make_cleanup (really_free_pendings, NULL);
6923 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6924
6925 cu->list_in_scope = &file_symbols;
6926
6927 cu->language = pretend_language;
6928 cu->language_defn = language_def (cu->language);
6929
6930 /* The symbol tables are set up in read_type_unit_scope. */
6931 process_die (cu->dies, cu);
6932
6933 /* For now fudge the Go package. */
6934 if (cu->language == language_go)
6935 fixup_go_packaging (cu);
6936
6937 /* Now that we have processed all the DIEs in the CU, all the types
6938 should be complete, and it should now be safe to compute all of the
6939 physnames. */
6940 compute_delayed_physnames (cu);
6941 do_cleanups (delayed_list_cleanup);
6942
6943 /* TUs share symbol tables.
6944 If this is the first TU to use this symtab, complete the construction
6945 of it with end_expandable_symtab. Otherwise, complete the addition of
6946 this TU's symbols to the existing symtab. */
6947 if (per_cu->s.type_unit_group->primary_symtab == NULL)
6948 {
6949 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
6950 per_cu->s.type_unit_group->primary_symtab = symtab;
6951
6952 if (symtab != NULL)
6953 {
6954 /* Set symtab language to language from DW_AT_language. If the
6955 compilation is from a C file generated by language preprocessors,
6956 do not set the language if it was already deduced by
6957 start_subfile. */
6958 if (!(cu->language == language_c && symtab->language != language_c))
6959 symtab->language = cu->language;
6960 }
6961 }
6962 else
6963 {
6964 augment_type_symtab (objfile,
6965 per_cu->s.type_unit_group->primary_symtab);
6966 symtab = per_cu->s.type_unit_group->primary_symtab;
6967 }
6968
6969 if (dwarf2_per_objfile->using_index)
6970 per_cu->v.quick->symtab = symtab;
6971 else
6972 {
6973 struct partial_symtab *pst = per_cu->v.psymtab;
6974 pst->symtab = symtab;
6975 pst->readin = 1;
6976 }
6977
6978 do_cleanups (back_to);
6979 }
6980
6981 /* Process an imported unit DIE. */
6982
6983 static void
6984 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
6985 {
6986 struct attribute *attr;
6987
6988 /* For now we don't handle imported units in type units. */
6989 if (cu->per_cu->is_debug_types)
6990 {
6991 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6992 " supported in type units [in module %s]"),
6993 cu->objfile->name);
6994 }
6995
6996 attr = dwarf2_attr (die, DW_AT_import, cu);
6997 if (attr != NULL)
6998 {
6999 struct dwarf2_per_cu_data *per_cu;
7000 struct symtab *imported_symtab;
7001 sect_offset offset;
7002 int is_dwz;
7003
7004 offset = dwarf2_get_ref_die_offset (attr);
7005 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7006 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7007
7008 /* Queue the unit, if needed. */
7009 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7010 load_full_comp_unit (per_cu, cu->language);
7011
7012 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
7013 per_cu);
7014 }
7015 }
7016
7017 /* Process a die and its children. */
7018
7019 static void
7020 process_die (struct die_info *die, struct dwarf2_cu *cu)
7021 {
7022 switch (die->tag)
7023 {
7024 case DW_TAG_padding:
7025 break;
7026 case DW_TAG_compile_unit:
7027 case DW_TAG_partial_unit:
7028 read_file_scope (die, cu);
7029 break;
7030 case DW_TAG_type_unit:
7031 read_type_unit_scope (die, cu);
7032 break;
7033 case DW_TAG_subprogram:
7034 case DW_TAG_inlined_subroutine:
7035 read_func_scope (die, cu);
7036 break;
7037 case DW_TAG_lexical_block:
7038 case DW_TAG_try_block:
7039 case DW_TAG_catch_block:
7040 read_lexical_block_scope (die, cu);
7041 break;
7042 case DW_TAG_GNU_call_site:
7043 read_call_site_scope (die, cu);
7044 break;
7045 case DW_TAG_class_type:
7046 case DW_TAG_interface_type:
7047 case DW_TAG_structure_type:
7048 case DW_TAG_union_type:
7049 process_structure_scope (die, cu);
7050 break;
7051 case DW_TAG_enumeration_type:
7052 process_enumeration_scope (die, cu);
7053 break;
7054
7055 /* These dies have a type, but processing them does not create
7056 a symbol or recurse to process the children. Therefore we can
7057 read them on-demand through read_type_die. */
7058 case DW_TAG_subroutine_type:
7059 case DW_TAG_set_type:
7060 case DW_TAG_array_type:
7061 case DW_TAG_pointer_type:
7062 case DW_TAG_ptr_to_member_type:
7063 case DW_TAG_reference_type:
7064 case DW_TAG_string_type:
7065 break;
7066
7067 case DW_TAG_base_type:
7068 case DW_TAG_subrange_type:
7069 case DW_TAG_typedef:
7070 /* Add a typedef symbol for the type definition, if it has a
7071 DW_AT_name. */
7072 new_symbol (die, read_type_die (die, cu), cu);
7073 break;
7074 case DW_TAG_common_block:
7075 read_common_block (die, cu);
7076 break;
7077 case DW_TAG_common_inclusion:
7078 break;
7079 case DW_TAG_namespace:
7080 processing_has_namespace_info = 1;
7081 read_namespace (die, cu);
7082 break;
7083 case DW_TAG_module:
7084 processing_has_namespace_info = 1;
7085 read_module (die, cu);
7086 break;
7087 case DW_TAG_imported_declaration:
7088 case DW_TAG_imported_module:
7089 processing_has_namespace_info = 1;
7090 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7091 || cu->language != language_fortran))
7092 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7093 dwarf_tag_name (die->tag));
7094 read_import_statement (die, cu);
7095 break;
7096
7097 case DW_TAG_imported_unit:
7098 process_imported_unit_die (die, cu);
7099 break;
7100
7101 default:
7102 new_symbol (die, NULL, cu);
7103 break;
7104 }
7105 }
7106
7107 /* A helper function for dwarf2_compute_name which determines whether DIE
7108 needs to have the name of the scope prepended to the name listed in the
7109 die. */
7110
7111 static int
7112 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7113 {
7114 struct attribute *attr;
7115
7116 switch (die->tag)
7117 {
7118 case DW_TAG_namespace:
7119 case DW_TAG_typedef:
7120 case DW_TAG_class_type:
7121 case DW_TAG_interface_type:
7122 case DW_TAG_structure_type:
7123 case DW_TAG_union_type:
7124 case DW_TAG_enumeration_type:
7125 case DW_TAG_enumerator:
7126 case DW_TAG_subprogram:
7127 case DW_TAG_member:
7128 return 1;
7129
7130 case DW_TAG_variable:
7131 case DW_TAG_constant:
7132 /* We only need to prefix "globally" visible variables. These include
7133 any variable marked with DW_AT_external or any variable that
7134 lives in a namespace. [Variables in anonymous namespaces
7135 require prefixing, but they are not DW_AT_external.] */
7136
7137 if (dwarf2_attr (die, DW_AT_specification, cu))
7138 {
7139 struct dwarf2_cu *spec_cu = cu;
7140
7141 return die_needs_namespace (die_specification (die, &spec_cu),
7142 spec_cu);
7143 }
7144
7145 attr = dwarf2_attr (die, DW_AT_external, cu);
7146 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7147 && die->parent->tag != DW_TAG_module)
7148 return 0;
7149 /* A variable in a lexical block of some kind does not need a
7150 namespace, even though in C++ such variables may be external
7151 and have a mangled name. */
7152 if (die->parent->tag == DW_TAG_lexical_block
7153 || die->parent->tag == DW_TAG_try_block
7154 || die->parent->tag == DW_TAG_catch_block
7155 || die->parent->tag == DW_TAG_subprogram)
7156 return 0;
7157 return 1;
7158
7159 default:
7160 return 0;
7161 }
7162 }
7163
7164 /* Retrieve the last character from a mem_file. */
7165
7166 static void
7167 do_ui_file_peek_last (void *object, const char *buffer, long length)
7168 {
7169 char *last_char_p = (char *) object;
7170
7171 if (length > 0)
7172 *last_char_p = buffer[length - 1];
7173 }
7174
7175 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7176 compute the physname for the object, which include a method's:
7177 - formal parameters (C++/Java),
7178 - receiver type (Go),
7179 - return type (Java).
7180
7181 The term "physname" is a bit confusing.
7182 For C++, for example, it is the demangled name.
7183 For Go, for example, it's the mangled name.
7184
7185 For Ada, return the DIE's linkage name rather than the fully qualified
7186 name. PHYSNAME is ignored..
7187
7188 The result is allocated on the objfile_obstack and canonicalized. */
7189
7190 static const char *
7191 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
7192 int physname)
7193 {
7194 struct objfile *objfile = cu->objfile;
7195
7196 if (name == NULL)
7197 name = dwarf2_name (die, cu);
7198
7199 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7200 compute it by typename_concat inside GDB. */
7201 if (cu->language == language_ada
7202 || (cu->language == language_fortran && physname))
7203 {
7204 /* For Ada unit, we prefer the linkage name over the name, as
7205 the former contains the exported name, which the user expects
7206 to be able to reference. Ideally, we want the user to be able
7207 to reference this entity using either natural or linkage name,
7208 but we haven't started looking at this enhancement yet. */
7209 struct attribute *attr;
7210
7211 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7212 if (attr == NULL)
7213 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7214 if (attr && DW_STRING (attr))
7215 return DW_STRING (attr);
7216 }
7217
7218 /* These are the only languages we know how to qualify names in. */
7219 if (name != NULL
7220 && (cu->language == language_cplus || cu->language == language_java
7221 || cu->language == language_fortran))
7222 {
7223 if (die_needs_namespace (die, cu))
7224 {
7225 long length;
7226 const char *prefix;
7227 struct ui_file *buf;
7228
7229 prefix = determine_prefix (die, cu);
7230 buf = mem_fileopen ();
7231 if (*prefix != '\0')
7232 {
7233 char *prefixed_name = typename_concat (NULL, prefix, name,
7234 physname, cu);
7235
7236 fputs_unfiltered (prefixed_name, buf);
7237 xfree (prefixed_name);
7238 }
7239 else
7240 fputs_unfiltered (name, buf);
7241
7242 /* Template parameters may be specified in the DIE's DW_AT_name, or
7243 as children with DW_TAG_template_type_param or
7244 DW_TAG_value_type_param. If the latter, add them to the name
7245 here. If the name already has template parameters, then
7246 skip this step; some versions of GCC emit both, and
7247 it is more efficient to use the pre-computed name.
7248
7249 Something to keep in mind about this process: it is very
7250 unlikely, or in some cases downright impossible, to produce
7251 something that will match the mangled name of a function.
7252 If the definition of the function has the same debug info,
7253 we should be able to match up with it anyway. But fallbacks
7254 using the minimal symbol, for instance to find a method
7255 implemented in a stripped copy of libstdc++, will not work.
7256 If we do not have debug info for the definition, we will have to
7257 match them up some other way.
7258
7259 When we do name matching there is a related problem with function
7260 templates; two instantiated function templates are allowed to
7261 differ only by their return types, which we do not add here. */
7262
7263 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7264 {
7265 struct attribute *attr;
7266 struct die_info *child;
7267 int first = 1;
7268
7269 die->building_fullname = 1;
7270
7271 for (child = die->child; child != NULL; child = child->sibling)
7272 {
7273 struct type *type;
7274 LONGEST value;
7275 gdb_byte *bytes;
7276 struct dwarf2_locexpr_baton *baton;
7277 struct value *v;
7278
7279 if (child->tag != DW_TAG_template_type_param
7280 && child->tag != DW_TAG_template_value_param)
7281 continue;
7282
7283 if (first)
7284 {
7285 fputs_unfiltered ("<", buf);
7286 first = 0;
7287 }
7288 else
7289 fputs_unfiltered (", ", buf);
7290
7291 attr = dwarf2_attr (child, DW_AT_type, cu);
7292 if (attr == NULL)
7293 {
7294 complaint (&symfile_complaints,
7295 _("template parameter missing DW_AT_type"));
7296 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7297 continue;
7298 }
7299 type = die_type (child, cu);
7300
7301 if (child->tag == DW_TAG_template_type_param)
7302 {
7303 c_print_type (type, "", buf, -1, 0);
7304 continue;
7305 }
7306
7307 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7308 if (attr == NULL)
7309 {
7310 complaint (&symfile_complaints,
7311 _("template parameter missing "
7312 "DW_AT_const_value"));
7313 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7314 continue;
7315 }
7316
7317 dwarf2_const_value_attr (attr, type, name,
7318 &cu->comp_unit_obstack, cu,
7319 &value, &bytes, &baton);
7320
7321 if (TYPE_NOSIGN (type))
7322 /* GDB prints characters as NUMBER 'CHAR'. If that's
7323 changed, this can use value_print instead. */
7324 c_printchar (value, type, buf);
7325 else
7326 {
7327 struct value_print_options opts;
7328
7329 if (baton != NULL)
7330 v = dwarf2_evaluate_loc_desc (type, NULL,
7331 baton->data,
7332 baton->size,
7333 baton->per_cu);
7334 else if (bytes != NULL)
7335 {
7336 v = allocate_value (type);
7337 memcpy (value_contents_writeable (v), bytes,
7338 TYPE_LENGTH (type));
7339 }
7340 else
7341 v = value_from_longest (type, value);
7342
7343 /* Specify decimal so that we do not depend on
7344 the radix. */
7345 get_formatted_print_options (&opts, 'd');
7346 opts.raw = 1;
7347 value_print (v, buf, &opts);
7348 release_value (v);
7349 value_free (v);
7350 }
7351 }
7352
7353 die->building_fullname = 0;
7354
7355 if (!first)
7356 {
7357 /* Close the argument list, with a space if necessary
7358 (nested templates). */
7359 char last_char = '\0';
7360 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7361 if (last_char == '>')
7362 fputs_unfiltered (" >", buf);
7363 else
7364 fputs_unfiltered (">", buf);
7365 }
7366 }
7367
7368 /* For Java and C++ methods, append formal parameter type
7369 information, if PHYSNAME. */
7370
7371 if (physname && die->tag == DW_TAG_subprogram
7372 && (cu->language == language_cplus
7373 || cu->language == language_java))
7374 {
7375 struct type *type = read_type_die (die, cu);
7376
7377 c_type_print_args (type, buf, 1, cu->language);
7378
7379 if (cu->language == language_java)
7380 {
7381 /* For java, we must append the return type to method
7382 names. */
7383 if (die->tag == DW_TAG_subprogram)
7384 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7385 0, 0);
7386 }
7387 else if (cu->language == language_cplus)
7388 {
7389 /* Assume that an artificial first parameter is
7390 "this", but do not crash if it is not. RealView
7391 marks unnamed (and thus unused) parameters as
7392 artificial; there is no way to differentiate
7393 the two cases. */
7394 if (TYPE_NFIELDS (type) > 0
7395 && TYPE_FIELD_ARTIFICIAL (type, 0)
7396 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7397 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7398 0))))
7399 fputs_unfiltered (" const", buf);
7400 }
7401 }
7402
7403 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7404 &length);
7405 ui_file_delete (buf);
7406
7407 if (cu->language == language_cplus)
7408 {
7409 char *cname
7410 = dwarf2_canonicalize_name (name, cu,
7411 &objfile->objfile_obstack);
7412
7413 if (cname != NULL)
7414 name = cname;
7415 }
7416 }
7417 }
7418
7419 return name;
7420 }
7421
7422 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7423 If scope qualifiers are appropriate they will be added. The result
7424 will be allocated on the objfile_obstack, or NULL if the DIE does
7425 not have a name. NAME may either be from a previous call to
7426 dwarf2_name or NULL.
7427
7428 The output string will be canonicalized (if C++/Java). */
7429
7430 static const char *
7431 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
7432 {
7433 return dwarf2_compute_name (name, die, cu, 0);
7434 }
7435
7436 /* Construct a physname for the given DIE in CU. NAME may either be
7437 from a previous call to dwarf2_name or NULL. The result will be
7438 allocated on the objfile_objstack or NULL if the DIE does not have a
7439 name.
7440
7441 The output string will be canonicalized (if C++/Java). */
7442
7443 static const char *
7444 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
7445 {
7446 struct objfile *objfile = cu->objfile;
7447 struct attribute *attr;
7448 const char *retval, *mangled = NULL, *canon = NULL;
7449 struct cleanup *back_to;
7450 int need_copy = 1;
7451
7452 /* In this case dwarf2_compute_name is just a shortcut not building anything
7453 on its own. */
7454 if (!die_needs_namespace (die, cu))
7455 return dwarf2_compute_name (name, die, cu, 1);
7456
7457 back_to = make_cleanup (null_cleanup, NULL);
7458
7459 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7460 if (!attr)
7461 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7462
7463 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7464 has computed. */
7465 if (attr && DW_STRING (attr))
7466 {
7467 char *demangled;
7468
7469 mangled = DW_STRING (attr);
7470
7471 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7472 type. It is easier for GDB users to search for such functions as
7473 `name(params)' than `long name(params)'. In such case the minimal
7474 symbol names do not match the full symbol names but for template
7475 functions there is never a need to look up their definition from their
7476 declaration so the only disadvantage remains the minimal symbol
7477 variant `long name(params)' does not have the proper inferior type.
7478 */
7479
7480 if (cu->language == language_go)
7481 {
7482 /* This is a lie, but we already lie to the caller new_symbol_full.
7483 new_symbol_full assumes we return the mangled name.
7484 This just undoes that lie until things are cleaned up. */
7485 demangled = NULL;
7486 }
7487 else
7488 {
7489 demangled = cplus_demangle (mangled,
7490 (DMGL_PARAMS | DMGL_ANSI
7491 | (cu->language == language_java
7492 ? DMGL_JAVA | DMGL_RET_POSTFIX
7493 : DMGL_RET_DROP)));
7494 }
7495 if (demangled)
7496 {
7497 make_cleanup (xfree, demangled);
7498 canon = demangled;
7499 }
7500 else
7501 {
7502 canon = mangled;
7503 need_copy = 0;
7504 }
7505 }
7506
7507 if (canon == NULL || check_physname)
7508 {
7509 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7510
7511 if (canon != NULL && strcmp (physname, canon) != 0)
7512 {
7513 /* It may not mean a bug in GDB. The compiler could also
7514 compute DW_AT_linkage_name incorrectly. But in such case
7515 GDB would need to be bug-to-bug compatible. */
7516
7517 complaint (&symfile_complaints,
7518 _("Computed physname <%s> does not match demangled <%s> "
7519 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7520 physname, canon, mangled, die->offset.sect_off, objfile->name);
7521
7522 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7523 is available here - over computed PHYSNAME. It is safer
7524 against both buggy GDB and buggy compilers. */
7525
7526 retval = canon;
7527 }
7528 else
7529 {
7530 retval = physname;
7531 need_copy = 0;
7532 }
7533 }
7534 else
7535 retval = canon;
7536
7537 if (need_copy)
7538 retval = obsavestring (retval, strlen (retval),
7539 &objfile->objfile_obstack);
7540
7541 do_cleanups (back_to);
7542 return retval;
7543 }
7544
7545 /* Read the import statement specified by the given die and record it. */
7546
7547 static void
7548 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7549 {
7550 struct objfile *objfile = cu->objfile;
7551 struct attribute *import_attr;
7552 struct die_info *imported_die, *child_die;
7553 struct dwarf2_cu *imported_cu;
7554 const char *imported_name;
7555 const char *imported_name_prefix;
7556 const char *canonical_name;
7557 const char *import_alias;
7558 const char *imported_declaration = NULL;
7559 const char *import_prefix;
7560 VEC (const_char_ptr) *excludes = NULL;
7561 struct cleanup *cleanups;
7562
7563 char *temp;
7564
7565 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7566 if (import_attr == NULL)
7567 {
7568 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7569 dwarf_tag_name (die->tag));
7570 return;
7571 }
7572
7573 imported_cu = cu;
7574 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7575 imported_name = dwarf2_name (imported_die, imported_cu);
7576 if (imported_name == NULL)
7577 {
7578 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7579
7580 The import in the following code:
7581 namespace A
7582 {
7583 typedef int B;
7584 }
7585
7586 int main ()
7587 {
7588 using A::B;
7589 B b;
7590 return b;
7591 }
7592
7593 ...
7594 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7595 <52> DW_AT_decl_file : 1
7596 <53> DW_AT_decl_line : 6
7597 <54> DW_AT_import : <0x75>
7598 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7599 <59> DW_AT_name : B
7600 <5b> DW_AT_decl_file : 1
7601 <5c> DW_AT_decl_line : 2
7602 <5d> DW_AT_type : <0x6e>
7603 ...
7604 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7605 <76> DW_AT_byte_size : 4
7606 <77> DW_AT_encoding : 5 (signed)
7607
7608 imports the wrong die ( 0x75 instead of 0x58 ).
7609 This case will be ignored until the gcc bug is fixed. */
7610 return;
7611 }
7612
7613 /* Figure out the local name after import. */
7614 import_alias = dwarf2_name (die, cu);
7615
7616 /* Figure out where the statement is being imported to. */
7617 import_prefix = determine_prefix (die, cu);
7618
7619 /* Figure out what the scope of the imported die is and prepend it
7620 to the name of the imported die. */
7621 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7622
7623 if (imported_die->tag != DW_TAG_namespace
7624 && imported_die->tag != DW_TAG_module)
7625 {
7626 imported_declaration = imported_name;
7627 canonical_name = imported_name_prefix;
7628 }
7629 else if (strlen (imported_name_prefix) > 0)
7630 {
7631 temp = alloca (strlen (imported_name_prefix)
7632 + 2 + strlen (imported_name) + 1);
7633 strcpy (temp, imported_name_prefix);
7634 strcat (temp, "::");
7635 strcat (temp, imported_name);
7636 canonical_name = temp;
7637 }
7638 else
7639 canonical_name = imported_name;
7640
7641 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7642
7643 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7644 for (child_die = die->child; child_die && child_die->tag;
7645 child_die = sibling_die (child_die))
7646 {
7647 /* DWARF-4: A Fortran use statement with a “rename list” may be
7648 represented by an imported module entry with an import attribute
7649 referring to the module and owned entries corresponding to those
7650 entities that are renamed as part of being imported. */
7651
7652 if (child_die->tag != DW_TAG_imported_declaration)
7653 {
7654 complaint (&symfile_complaints,
7655 _("child DW_TAG_imported_declaration expected "
7656 "- DIE at 0x%x [in module %s]"),
7657 child_die->offset.sect_off, objfile->name);
7658 continue;
7659 }
7660
7661 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7662 if (import_attr == NULL)
7663 {
7664 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7665 dwarf_tag_name (child_die->tag));
7666 continue;
7667 }
7668
7669 imported_cu = cu;
7670 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7671 &imported_cu);
7672 imported_name = dwarf2_name (imported_die, imported_cu);
7673 if (imported_name == NULL)
7674 {
7675 complaint (&symfile_complaints,
7676 _("child DW_TAG_imported_declaration has unknown "
7677 "imported name - DIE at 0x%x [in module %s]"),
7678 child_die->offset.sect_off, objfile->name);
7679 continue;
7680 }
7681
7682 VEC_safe_push (const_char_ptr, excludes, imported_name);
7683
7684 process_die (child_die, cu);
7685 }
7686
7687 cp_add_using_directive (import_prefix,
7688 canonical_name,
7689 import_alias,
7690 imported_declaration,
7691 excludes,
7692 &objfile->objfile_obstack);
7693
7694 do_cleanups (cleanups);
7695 }
7696
7697 /* Cleanup function for handle_DW_AT_stmt_list. */
7698
7699 static void
7700 free_cu_line_header (void *arg)
7701 {
7702 struct dwarf2_cu *cu = arg;
7703
7704 free_line_header (cu->line_header);
7705 cu->line_header = NULL;
7706 }
7707
7708 static void
7709 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7710 char **name, char **comp_dir)
7711 {
7712 struct attribute *attr;
7713
7714 *name = NULL;
7715 *comp_dir = NULL;
7716
7717 /* Find the filename. Do not use dwarf2_name here, since the filename
7718 is not a source language identifier. */
7719 attr = dwarf2_attr (die, DW_AT_name, cu);
7720 if (attr)
7721 {
7722 *name = DW_STRING (attr);
7723 }
7724
7725 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7726 if (attr)
7727 *comp_dir = DW_STRING (attr);
7728 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
7729 {
7730 *comp_dir = ldirname (*name);
7731 if (*comp_dir != NULL)
7732 make_cleanup (xfree, *comp_dir);
7733 }
7734 if (*comp_dir != NULL)
7735 {
7736 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7737 directory, get rid of it. */
7738 char *cp = strchr (*comp_dir, ':');
7739
7740 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7741 *comp_dir = cp + 1;
7742 }
7743
7744 if (*name == NULL)
7745 *name = "<unknown>";
7746 }
7747
7748 /* Handle DW_AT_stmt_list for a compilation unit.
7749 DIE is the DW_TAG_compile_unit die for CU.
7750 COMP_DIR is the compilation directory.
7751 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7752
7753 static void
7754 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7755 const char *comp_dir)
7756 {
7757 struct attribute *attr;
7758
7759 gdb_assert (! cu->per_cu->is_debug_types);
7760
7761 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7762 if (attr)
7763 {
7764 unsigned int line_offset = DW_UNSND (attr);
7765 struct line_header *line_header
7766 = dwarf_decode_line_header (line_offset, cu);
7767
7768 if (line_header)
7769 {
7770 cu->line_header = line_header;
7771 make_cleanup (free_cu_line_header, cu);
7772 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7773 }
7774 }
7775 }
7776
7777 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7778
7779 static void
7780 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7781 {
7782 struct objfile *objfile = dwarf2_per_objfile->objfile;
7783 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7784 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7785 CORE_ADDR highpc = ((CORE_ADDR) 0);
7786 struct attribute *attr;
7787 char *name = NULL;
7788 char *comp_dir = NULL;
7789 struct die_info *child_die;
7790 bfd *abfd = objfile->obfd;
7791 CORE_ADDR baseaddr;
7792
7793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7794
7795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7796
7797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7798 from finish_block. */
7799 if (lowpc == ((CORE_ADDR) -1))
7800 lowpc = highpc;
7801 lowpc += baseaddr;
7802 highpc += baseaddr;
7803
7804 find_file_and_directory (die, cu, &name, &comp_dir);
7805
7806 prepare_one_comp_unit (cu, die, cu->language);
7807
7808 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7809 standardised yet. As a workaround for the language detection we fall
7810 back to the DW_AT_producer string. */
7811 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7812 cu->language = language_opencl;
7813
7814 /* Similar hack for Go. */
7815 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7816 set_cu_language (DW_LANG_Go, cu);
7817
7818 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7819
7820 /* Decode line number information if present. We do this before
7821 processing child DIEs, so that the line header table is available
7822 for DW_AT_decl_file. */
7823 handle_DW_AT_stmt_list (die, cu, comp_dir);
7824
7825 /* Process all dies in compilation unit. */
7826 if (die->child != NULL)
7827 {
7828 child_die = die->child;
7829 while (child_die && child_die->tag)
7830 {
7831 process_die (child_die, cu);
7832 child_die = sibling_die (child_die);
7833 }
7834 }
7835
7836 /* Decode macro information, if present. Dwarf 2 macro information
7837 refers to information in the line number info statement program
7838 header, so we can only read it if we've read the header
7839 successfully. */
7840 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7841 if (attr && cu->line_header)
7842 {
7843 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7844 complaint (&symfile_complaints,
7845 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7846
7847 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
7848 }
7849 else
7850 {
7851 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
7852 if (attr && cu->line_header)
7853 {
7854 unsigned int macro_offset = DW_UNSND (attr);
7855
7856 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
7857 }
7858 }
7859
7860 do_cleanups (back_to);
7861 }
7862
7863 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
7864 Create the set of symtabs used by this TU, or if this TU is sharing
7865 symtabs with another TU and the symtabs have already been created
7866 then restore those symtabs in the line header.
7867 We don't need the pc/line-number mapping for type units. */
7868
7869 static void
7870 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
7871 {
7872 struct objfile *objfile = dwarf2_per_objfile->objfile;
7873 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7874 struct type_unit_group *tu_group;
7875 int first_time;
7876 struct line_header *lh;
7877 struct attribute *attr;
7878 unsigned int i, line_offset;
7879
7880 gdb_assert (per_cu->is_debug_types);
7881
7882 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7883
7884 /* If we're using .gdb_index (includes -readnow) then
7885 per_cu->s.type_unit_group may not have been set up yet. */
7886 if (per_cu->s.type_unit_group == NULL)
7887 per_cu->s.type_unit_group = get_type_unit_group (cu, attr);
7888 tu_group = per_cu->s.type_unit_group;
7889
7890 /* If we've already processed this stmt_list there's no real need to
7891 do it again, we could fake it and just recreate the part we need
7892 (file name,index -> symtab mapping). If data shows this optimization
7893 is useful we can do it then. */
7894 first_time = tu_group->primary_symtab == NULL;
7895
7896 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
7897 debug info. */
7898 lh = NULL;
7899 if (attr != NULL)
7900 {
7901 line_offset = DW_UNSND (attr);
7902 lh = dwarf_decode_line_header (line_offset, cu);
7903 }
7904 if (lh == NULL)
7905 {
7906 if (first_time)
7907 dwarf2_start_symtab (cu, "", NULL, 0);
7908 else
7909 {
7910 gdb_assert (tu_group->symtabs == NULL);
7911 restart_symtab (0);
7912 }
7913 /* Note: The primary symtab will get allocated at the end. */
7914 return;
7915 }
7916
7917 cu->line_header = lh;
7918 make_cleanup (free_cu_line_header, cu);
7919
7920 if (first_time)
7921 {
7922 dwarf2_start_symtab (cu, "", NULL, 0);
7923
7924 tu_group->num_symtabs = lh->num_file_names;
7925 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
7926
7927 for (i = 0; i < lh->num_file_names; ++i)
7928 {
7929 char *dir = NULL;
7930 struct file_entry *fe = &lh->file_names[i];
7931
7932 if (fe->dir_index)
7933 dir = lh->include_dirs[fe->dir_index - 1];
7934 dwarf2_start_subfile (fe->name, dir, NULL);
7935
7936 /* Note: We don't have to watch for the main subfile here, type units
7937 don't have DW_AT_name. */
7938
7939 if (current_subfile->symtab == NULL)
7940 {
7941 /* NOTE: start_subfile will recognize when it's been passed
7942 a file it has already seen. So we can't assume there's a
7943 simple mapping from lh->file_names to subfiles,
7944 lh->file_names may contain dups. */
7945 current_subfile->symtab = allocate_symtab (current_subfile->name,
7946 objfile);
7947 }
7948
7949 fe->symtab = current_subfile->symtab;
7950 tu_group->symtabs[i] = fe->symtab;
7951 }
7952 }
7953 else
7954 {
7955 restart_symtab (0);
7956
7957 for (i = 0; i < lh->num_file_names; ++i)
7958 {
7959 struct file_entry *fe = &lh->file_names[i];
7960
7961 fe->symtab = tu_group->symtabs[i];
7962 }
7963 }
7964
7965 /* The main symtab is allocated last. Type units don't have DW_AT_name
7966 so they don't have a "real" (so to speak) symtab anyway.
7967 There is later code that will assign the main symtab to all symbols
7968 that don't have one. We need to handle the case of a symbol with a
7969 missing symtab (DW_AT_decl_file) anyway. */
7970 }
7971
7972 /* Process DW_TAG_type_unit.
7973 For TUs we want to skip the first top level sibling if it's not the
7974 actual type being defined by this TU. In this case the first top
7975 level sibling is there to provide context only. */
7976
7977 static void
7978 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
7979 {
7980 struct die_info *child_die;
7981
7982 prepare_one_comp_unit (cu, die, language_minimal);
7983
7984 /* Initialize (or reinitialize) the machinery for building symtabs.
7985 We do this before processing child DIEs, so that the line header table
7986 is available for DW_AT_decl_file. */
7987 setup_type_unit_groups (die, cu);
7988
7989 if (die->child != NULL)
7990 {
7991 child_die = die->child;
7992 while (child_die && child_die->tag)
7993 {
7994 process_die (child_die, cu);
7995 child_die = sibling_die (child_die);
7996 }
7997 }
7998 }
7999 \f
8000 /* DWO files. */
8001
8002 static hashval_t
8003 hash_dwo_file (const void *item)
8004 {
8005 const struct dwo_file *dwo_file = item;
8006
8007 return htab_hash_string (dwo_file->dwo_name);
8008 }
8009
8010 static int
8011 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8012 {
8013 const struct dwo_file *lhs = item_lhs;
8014 const struct dwo_file *rhs = item_rhs;
8015
8016 return strcmp (lhs->dwo_name, rhs->dwo_name) == 0;
8017 }
8018
8019 /* Allocate a hash table for DWO files. */
8020
8021 static htab_t
8022 allocate_dwo_file_hash_table (void)
8023 {
8024 struct objfile *objfile = dwarf2_per_objfile->objfile;
8025
8026 return htab_create_alloc_ex (41,
8027 hash_dwo_file,
8028 eq_dwo_file,
8029 NULL,
8030 &objfile->objfile_obstack,
8031 hashtab_obstack_allocate,
8032 dummy_obstack_deallocate);
8033 }
8034
8035 static hashval_t
8036 hash_dwo_unit (const void *item)
8037 {
8038 const struct dwo_unit *dwo_unit = item;
8039
8040 /* This drops the top 32 bits of the id, but is ok for a hash. */
8041 return dwo_unit->signature;
8042 }
8043
8044 static int
8045 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8046 {
8047 const struct dwo_unit *lhs = item_lhs;
8048 const struct dwo_unit *rhs = item_rhs;
8049
8050 /* The signature is assumed to be unique within the DWO file.
8051 So while object file CU dwo_id's always have the value zero,
8052 that's OK, assuming each object file DWO file has only one CU,
8053 and that's the rule for now. */
8054 return lhs->signature == rhs->signature;
8055 }
8056
8057 /* Allocate a hash table for DWO CUs,TUs.
8058 There is one of these tables for each of CUs,TUs for each DWO file. */
8059
8060 static htab_t
8061 allocate_dwo_unit_table (struct objfile *objfile)
8062 {
8063 /* Start out with a pretty small number.
8064 Generally DWO files contain only one CU and maybe some TUs. */
8065 return htab_create_alloc_ex (3,
8066 hash_dwo_unit,
8067 eq_dwo_unit,
8068 NULL,
8069 &objfile->objfile_obstack,
8070 hashtab_obstack_allocate,
8071 dummy_obstack_deallocate);
8072 }
8073
8074 /* This function is mapped across the sections and remembers the offset and
8075 size of each of the DWO debugging sections we are interested in. */
8076
8077 static void
8078 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_file_ptr)
8079 {
8080 struct dwo_file *dwo_file = dwo_file_ptr;
8081 const struct dwo_section_names *names = &dwo_section_names;
8082
8083 if (section_is_p (sectp->name, &names->abbrev_dwo))
8084 {
8085 dwo_file->sections.abbrev.asection = sectp;
8086 dwo_file->sections.abbrev.size = bfd_get_section_size (sectp);
8087 }
8088 else if (section_is_p (sectp->name, &names->info_dwo))
8089 {
8090 dwo_file->sections.info.asection = sectp;
8091 dwo_file->sections.info.size = bfd_get_section_size (sectp);
8092 }
8093 else if (section_is_p (sectp->name, &names->line_dwo))
8094 {
8095 dwo_file->sections.line.asection = sectp;
8096 dwo_file->sections.line.size = bfd_get_section_size (sectp);
8097 }
8098 else if (section_is_p (sectp->name, &names->loc_dwo))
8099 {
8100 dwo_file->sections.loc.asection = sectp;
8101 dwo_file->sections.loc.size = bfd_get_section_size (sectp);
8102 }
8103 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8104 {
8105 dwo_file->sections.macinfo.asection = sectp;
8106 dwo_file->sections.macinfo.size = bfd_get_section_size (sectp);
8107 }
8108 else if (section_is_p (sectp->name, &names->macro_dwo))
8109 {
8110 dwo_file->sections.macro.asection = sectp;
8111 dwo_file->sections.macro.size = bfd_get_section_size (sectp);
8112 }
8113 else if (section_is_p (sectp->name, &names->str_dwo))
8114 {
8115 dwo_file->sections.str.asection = sectp;
8116 dwo_file->sections.str.size = bfd_get_section_size (sectp);
8117 }
8118 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8119 {
8120 dwo_file->sections.str_offsets.asection = sectp;
8121 dwo_file->sections.str_offsets.size = bfd_get_section_size (sectp);
8122 }
8123 else if (section_is_p (sectp->name, &names->types_dwo))
8124 {
8125 struct dwarf2_section_info type_section;
8126
8127 memset (&type_section, 0, sizeof (type_section));
8128 type_section.asection = sectp;
8129 type_section.size = bfd_get_section_size (sectp);
8130 VEC_safe_push (dwarf2_section_info_def, dwo_file->sections.types,
8131 &type_section);
8132 }
8133 }
8134
8135 /* Structure used to pass data to create_debug_info_hash_table_reader. */
8136
8137 struct create_dwo_info_table_data
8138 {
8139 struct dwo_file *dwo_file;
8140 htab_t cu_htab;
8141 };
8142
8143 /* die_reader_func for create_debug_info_hash_table. */
8144
8145 static void
8146 create_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8147 gdb_byte *info_ptr,
8148 struct die_info *comp_unit_die,
8149 int has_children,
8150 void *datap)
8151 {
8152 struct dwarf2_cu *cu = reader->cu;
8153 struct objfile *objfile = dwarf2_per_objfile->objfile;
8154 sect_offset offset = cu->per_cu->offset;
8155 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8156 struct create_dwo_info_table_data *data = datap;
8157 struct dwo_file *dwo_file = data->dwo_file;
8158 htab_t cu_htab = data->cu_htab;
8159 void **slot;
8160 struct attribute *attr;
8161 struct dwo_unit *dwo_unit;
8162
8163 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8164 if (attr == NULL)
8165 {
8166 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8167 " its dwo_id [in module %s]"),
8168 offset.sect_off, dwo_file->dwo_name);
8169 return;
8170 }
8171
8172 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8173 dwo_unit->dwo_file = dwo_file;
8174 dwo_unit->signature = DW_UNSND (attr);
8175 dwo_unit->info_or_types_section = section;
8176 dwo_unit->offset = offset;
8177 dwo_unit->length = cu->per_cu->length;
8178
8179 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8180 gdb_assert (slot != NULL);
8181 if (*slot != NULL)
8182 {
8183 const struct dwo_unit *dup_dwo_unit = *slot;
8184
8185 complaint (&symfile_complaints,
8186 _("debug entry at offset 0x%x is duplicate to the entry at"
8187 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8188 offset.sect_off, dup_dwo_unit->offset.sect_off,
8189 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8190 dwo_file->dwo_name);
8191 }
8192 else
8193 *slot = dwo_unit;
8194
8195 if (dwarf2_read_debug)
8196 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8197 offset.sect_off,
8198 phex (dwo_unit->signature,
8199 sizeof (dwo_unit->signature)));
8200 }
8201
8202 /* Create a hash table to map DWO IDs to their CU entry in .debug_info.dwo. */
8203
8204 static htab_t
8205 create_debug_info_hash_table (struct dwo_file *dwo_file)
8206 {
8207 struct objfile *objfile = dwarf2_per_objfile->objfile;
8208 struct dwarf2_section_info *section = &dwo_file->sections.info;
8209 bfd *abfd;
8210 htab_t cu_htab;
8211 gdb_byte *info_ptr, *end_ptr;
8212 struct create_dwo_info_table_data create_dwo_info_table_data;
8213
8214 dwarf2_read_section (objfile, section);
8215 info_ptr = section->buffer;
8216
8217 if (info_ptr == NULL)
8218 return NULL;
8219
8220 /* We can't set abfd until now because the section may be empty or
8221 not present, in which case section->asection will be NULL. */
8222 abfd = section->asection->owner;
8223
8224 if (dwarf2_read_debug)
8225 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8226 bfd_get_filename (abfd));
8227
8228 cu_htab = allocate_dwo_unit_table (objfile);
8229
8230 create_dwo_info_table_data.dwo_file = dwo_file;
8231 create_dwo_info_table_data.cu_htab = cu_htab;
8232
8233 end_ptr = info_ptr + section->size;
8234 while (info_ptr < end_ptr)
8235 {
8236 struct dwarf2_per_cu_data per_cu;
8237
8238 memset (&per_cu, 0, sizeof (per_cu));
8239 per_cu.objfile = objfile;
8240 per_cu.is_debug_types = 0;
8241 per_cu.offset.sect_off = info_ptr - section->buffer;
8242 per_cu.info_or_types_section = section;
8243
8244 init_cutu_and_read_dies_no_follow (&per_cu,
8245 &dwo_file->sections.abbrev,
8246 dwo_file,
8247 create_debug_info_hash_table_reader,
8248 &create_dwo_info_table_data);
8249
8250 info_ptr += per_cu.length;
8251 }
8252
8253 return cu_htab;
8254 }
8255
8256 /* Subroutine of open_dwo_file to simplify it.
8257 Open the file specified by FILE_NAME and hand it off to BFD for
8258 preliminary analysis. Return a newly initialized bfd *, which
8259 includes a canonicalized copy of FILE_NAME.
8260 In case of trouble, return NULL.
8261 NOTE: This function is derived from symfile_bfd_open. */
8262
8263 static bfd *
8264 try_open_dwo_file (const char *file_name)
8265 {
8266 bfd *sym_bfd;
8267 int desc;
8268 char *absolute_name;
8269
8270 desc = openp (debug_file_directory, OPF_TRY_CWD_FIRST, file_name,
8271 O_RDONLY | O_BINARY, &absolute_name);
8272 if (desc < 0)
8273 return NULL;
8274
8275 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8276 if (!sym_bfd)
8277 {
8278 xfree (absolute_name);
8279 return NULL;
8280 }
8281 gdb_bfd_stash_filename (sym_bfd);
8282 xfree (absolute_name);
8283 bfd_set_cacheable (sym_bfd, 1);
8284
8285 if (!bfd_check_format (sym_bfd, bfd_object))
8286 {
8287 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8288 return NULL;
8289 }
8290
8291 return sym_bfd;
8292 }
8293
8294 /* Try to open DWO file DWO_NAME.
8295 COMP_DIR is the DW_AT_comp_dir attribute.
8296 The result is the bfd handle of the file.
8297 If there is a problem finding or opening the file, return NULL.
8298 Upon success, the canonicalized path of the file is stored in the bfd,
8299 same as symfile_bfd_open. */
8300
8301 static bfd *
8302 open_dwo_file (const char *dwo_name, const char *comp_dir)
8303 {
8304 bfd *abfd;
8305
8306 if (IS_ABSOLUTE_PATH (dwo_name))
8307 return try_open_dwo_file (dwo_name);
8308
8309 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8310
8311 if (comp_dir != NULL)
8312 {
8313 char *path_to_try = concat (comp_dir, SLASH_STRING, dwo_name, NULL);
8314
8315 /* NOTE: If comp_dir is a relative path, this will also try the
8316 search path, which seems useful. */
8317 abfd = try_open_dwo_file (path_to_try);
8318 xfree (path_to_try);
8319 if (abfd != NULL)
8320 return abfd;
8321 }
8322
8323 /* That didn't work, try debug-file-directory, which, despite its name,
8324 is a list of paths. */
8325
8326 if (*debug_file_directory == '\0')
8327 return NULL;
8328
8329 return try_open_dwo_file (dwo_name);
8330 }
8331
8332 /* Initialize the use of the DWO file specified by DWO_NAME. */
8333
8334 static struct dwo_file *
8335 init_dwo_file (const char *dwo_name, const char *comp_dir)
8336 {
8337 struct objfile *objfile = dwarf2_per_objfile->objfile;
8338 struct dwo_file *dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8339 struct dwo_file);
8340 bfd *abfd;
8341 struct cleanup *cleanups;
8342
8343 if (dwarf2_read_debug)
8344 fprintf_unfiltered (gdb_stdlog, "Reading DWO file %s:\n", dwo_name);
8345
8346 abfd = open_dwo_file (dwo_name, comp_dir);
8347 if (abfd == NULL)
8348 return NULL;
8349 dwo_file->dwo_name = dwo_name;
8350 dwo_file->dwo_bfd = abfd;
8351
8352 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8353
8354 bfd_map_over_sections (abfd, dwarf2_locate_dwo_sections, dwo_file);
8355
8356 dwo_file->cus = create_debug_info_hash_table (dwo_file);
8357
8358 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8359 dwo_file->sections.types);
8360
8361 discard_cleanups (cleanups);
8362
8363 return dwo_file;
8364 }
8365
8366 /* Lookup DWO file DWO_NAME. */
8367
8368 static struct dwo_file *
8369 lookup_dwo_file (char *dwo_name, const char *comp_dir)
8370 {
8371 struct dwo_file *dwo_file;
8372 struct dwo_file find_entry;
8373 void **slot;
8374
8375 if (dwarf2_per_objfile->dwo_files == NULL)
8376 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8377
8378 /* Have we already seen this DWO file? */
8379 find_entry.dwo_name = dwo_name;
8380 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8381
8382 /* If not, read it in and build a table of the DWOs it contains. */
8383 if (*slot == NULL)
8384 *slot = init_dwo_file (dwo_name, comp_dir);
8385
8386 /* NOTE: This will be NULL if unable to open the file. */
8387 dwo_file = *slot;
8388
8389 return dwo_file;
8390 }
8391
8392 /* Lookup the DWO CU referenced from THIS_CU in DWO file DWO_NAME.
8393 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
8394 SIGNATURE is the "dwo_id" of the CU (for consistency we use the same
8395 nomenclature as TUs).
8396 The result is a pointer to the dwo_unit object or NULL if we didn't find it
8397 (dwo_id mismatch or couldn't find the DWO file). */
8398
8399 static struct dwo_unit *
8400 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
8401 char *dwo_name, const char *comp_dir,
8402 ULONGEST signature)
8403 {
8404 struct objfile *objfile = dwarf2_per_objfile->objfile;
8405 struct dwo_file *dwo_file;
8406
8407 dwo_file = lookup_dwo_file (dwo_name, comp_dir);
8408 if (dwo_file == NULL)
8409 return NULL;
8410
8411 /* Look up the DWO using its signature(dwo_id). */
8412
8413 if (dwo_file->cus != NULL)
8414 {
8415 struct dwo_unit find_dwo_cu, *dwo_cu;
8416
8417 find_dwo_cu.signature = signature;
8418 dwo_cu = htab_find (dwo_file->cus, &find_dwo_cu);
8419
8420 if (dwo_cu != NULL)
8421 return dwo_cu;
8422 }
8423
8424 /* We didn't find it. This must mean a dwo_id mismatch. */
8425
8426 complaint (&symfile_complaints,
8427 _("Could not find DWO CU referenced by CU at offset 0x%x"
8428 " [in module %s]"),
8429 this_cu->offset.sect_off, objfile->name);
8430 return NULL;
8431 }
8432
8433 /* Lookup the DWO TU referenced from THIS_TU in DWO file DWO_NAME.
8434 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
8435 The result is a pointer to the dwo_unit object or NULL if we didn't find it
8436 (dwo_id mismatch or couldn't find the DWO file). */
8437
8438 static struct dwo_unit *
8439 lookup_dwo_type_unit (struct signatured_type *this_tu,
8440 char *dwo_name, const char *comp_dir)
8441 {
8442 struct objfile *objfile = dwarf2_per_objfile->objfile;
8443 struct dwo_file *dwo_file;
8444
8445 dwo_file = lookup_dwo_file (dwo_name, comp_dir);
8446 if (dwo_file == NULL)
8447 return NULL;
8448
8449 /* Look up the DWO using its signature(dwo_id). */
8450
8451 if (dwo_file->tus != NULL)
8452 {
8453 struct dwo_unit find_dwo_tu, *dwo_tu;
8454
8455 find_dwo_tu.signature = this_tu->signature;
8456 dwo_tu = htab_find (dwo_file->tus, &find_dwo_tu);
8457
8458 if (dwo_tu != NULL)
8459 return dwo_tu;
8460 }
8461
8462 /* We didn't find it. This must mean a dwo_id mismatch. */
8463
8464 complaint (&symfile_complaints,
8465 _("Could not find DWO TU referenced by TU at offset 0x%x"
8466 " [in module %s]"),
8467 this_tu->per_cu.offset.sect_off, objfile->name);
8468 return NULL;
8469 }
8470
8471 /* Free all resources associated with DWO_FILE.
8472 Close the DWO file and munmap the sections.
8473 All memory should be on the objfile obstack. */
8474
8475 static void
8476 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
8477 {
8478 int ix;
8479 struct dwarf2_section_info *section;
8480
8481 gdb_assert (dwo_file->dwo_bfd != objfile->obfd);
8482 gdb_bfd_unref (dwo_file->dwo_bfd);
8483
8484 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
8485 }
8486
8487 /* Wrapper for free_dwo_file for use in cleanups. */
8488
8489 static void
8490 free_dwo_file_cleanup (void *arg)
8491 {
8492 struct dwo_file *dwo_file = (struct dwo_file *) arg;
8493 struct objfile *objfile = dwarf2_per_objfile->objfile;
8494
8495 free_dwo_file (dwo_file, objfile);
8496 }
8497
8498 /* Traversal function for free_dwo_files. */
8499
8500 static int
8501 free_dwo_file_from_slot (void **slot, void *info)
8502 {
8503 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8504 struct objfile *objfile = (struct objfile *) info;
8505
8506 free_dwo_file (dwo_file, objfile);
8507
8508 return 1;
8509 }
8510
8511 /* Free all resources associated with DWO_FILES. */
8512
8513 static void
8514 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
8515 {
8516 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
8517 }
8518 \f
8519 /* Read in various DIEs. */
8520
8521 /* qsort helper for inherit_abstract_dies. */
8522
8523 static int
8524 unsigned_int_compar (const void *ap, const void *bp)
8525 {
8526 unsigned int a = *(unsigned int *) ap;
8527 unsigned int b = *(unsigned int *) bp;
8528
8529 return (a > b) - (b > a);
8530 }
8531
8532 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
8533 Inherit only the children of the DW_AT_abstract_origin DIE not being
8534 already referenced by DW_AT_abstract_origin from the children of the
8535 current DIE. */
8536
8537 static void
8538 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
8539 {
8540 struct die_info *child_die;
8541 unsigned die_children_count;
8542 /* CU offsets which were referenced by children of the current DIE. */
8543 sect_offset *offsets;
8544 sect_offset *offsets_end, *offsetp;
8545 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
8546 struct die_info *origin_die;
8547 /* Iterator of the ORIGIN_DIE children. */
8548 struct die_info *origin_child_die;
8549 struct cleanup *cleanups;
8550 struct attribute *attr;
8551 struct dwarf2_cu *origin_cu;
8552 struct pending **origin_previous_list_in_scope;
8553
8554 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
8555 if (!attr)
8556 return;
8557
8558 /* Note that following die references may follow to a die in a
8559 different cu. */
8560
8561 origin_cu = cu;
8562 origin_die = follow_die_ref (die, attr, &origin_cu);
8563
8564 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
8565 symbols in. */
8566 origin_previous_list_in_scope = origin_cu->list_in_scope;
8567 origin_cu->list_in_scope = cu->list_in_scope;
8568
8569 if (die->tag != origin_die->tag
8570 && !(die->tag == DW_TAG_inlined_subroutine
8571 && origin_die->tag == DW_TAG_subprogram))
8572 complaint (&symfile_complaints,
8573 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
8574 die->offset.sect_off, origin_die->offset.sect_off);
8575
8576 child_die = die->child;
8577 die_children_count = 0;
8578 while (child_die && child_die->tag)
8579 {
8580 child_die = sibling_die (child_die);
8581 die_children_count++;
8582 }
8583 offsets = xmalloc (sizeof (*offsets) * die_children_count);
8584 cleanups = make_cleanup (xfree, offsets);
8585
8586 offsets_end = offsets;
8587 child_die = die->child;
8588 while (child_die && child_die->tag)
8589 {
8590 /* For each CHILD_DIE, find the corresponding child of
8591 ORIGIN_DIE. If there is more than one layer of
8592 DW_AT_abstract_origin, follow them all; there shouldn't be,
8593 but GCC versions at least through 4.4 generate this (GCC PR
8594 40573). */
8595 struct die_info *child_origin_die = child_die;
8596 struct dwarf2_cu *child_origin_cu = cu;
8597
8598 while (1)
8599 {
8600 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
8601 child_origin_cu);
8602 if (attr == NULL)
8603 break;
8604 child_origin_die = follow_die_ref (child_origin_die, attr,
8605 &child_origin_cu);
8606 }
8607
8608 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
8609 counterpart may exist. */
8610 if (child_origin_die != child_die)
8611 {
8612 if (child_die->tag != child_origin_die->tag
8613 && !(child_die->tag == DW_TAG_inlined_subroutine
8614 && child_origin_die->tag == DW_TAG_subprogram))
8615 complaint (&symfile_complaints,
8616 _("Child DIE 0x%x and its abstract origin 0x%x have "
8617 "different tags"), child_die->offset.sect_off,
8618 child_origin_die->offset.sect_off);
8619 if (child_origin_die->parent != origin_die)
8620 complaint (&symfile_complaints,
8621 _("Child DIE 0x%x and its abstract origin 0x%x have "
8622 "different parents"), child_die->offset.sect_off,
8623 child_origin_die->offset.sect_off);
8624 else
8625 *offsets_end++ = child_origin_die->offset;
8626 }
8627 child_die = sibling_die (child_die);
8628 }
8629 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
8630 unsigned_int_compar);
8631 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
8632 if (offsetp[-1].sect_off == offsetp->sect_off)
8633 complaint (&symfile_complaints,
8634 _("Multiple children of DIE 0x%x refer "
8635 "to DIE 0x%x as their abstract origin"),
8636 die->offset.sect_off, offsetp->sect_off);
8637
8638 offsetp = offsets;
8639 origin_child_die = origin_die->child;
8640 while (origin_child_die && origin_child_die->tag)
8641 {
8642 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
8643 while (offsetp < offsets_end
8644 && offsetp->sect_off < origin_child_die->offset.sect_off)
8645 offsetp++;
8646 if (offsetp >= offsets_end
8647 || offsetp->sect_off > origin_child_die->offset.sect_off)
8648 {
8649 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
8650 process_die (origin_child_die, origin_cu);
8651 }
8652 origin_child_die = sibling_die (origin_child_die);
8653 }
8654 origin_cu->list_in_scope = origin_previous_list_in_scope;
8655
8656 do_cleanups (cleanups);
8657 }
8658
8659 static void
8660 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
8661 {
8662 struct objfile *objfile = cu->objfile;
8663 struct context_stack *new;
8664 CORE_ADDR lowpc;
8665 CORE_ADDR highpc;
8666 struct die_info *child_die;
8667 struct attribute *attr, *call_line, *call_file;
8668 char *name;
8669 CORE_ADDR baseaddr;
8670 struct block *block;
8671 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
8672 VEC (symbolp) *template_args = NULL;
8673 struct template_symbol *templ_func = NULL;
8674
8675 if (inlined_func)
8676 {
8677 /* If we do not have call site information, we can't show the
8678 caller of this inlined function. That's too confusing, so
8679 only use the scope for local variables. */
8680 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
8681 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
8682 if (call_line == NULL || call_file == NULL)
8683 {
8684 read_lexical_block_scope (die, cu);
8685 return;
8686 }
8687 }
8688
8689 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8690
8691 name = dwarf2_name (die, cu);
8692
8693 /* Ignore functions with missing or empty names. These are actually
8694 illegal according to the DWARF standard. */
8695 if (name == NULL)
8696 {
8697 complaint (&symfile_complaints,
8698 _("missing name for subprogram DIE at %d"),
8699 die->offset.sect_off);
8700 return;
8701 }
8702
8703 /* Ignore functions with missing or invalid low and high pc attributes. */
8704 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
8705 {
8706 attr = dwarf2_attr (die, DW_AT_external, cu);
8707 if (!attr || !DW_UNSND (attr))
8708 complaint (&symfile_complaints,
8709 _("cannot get low and high bounds "
8710 "for subprogram DIE at %d"),
8711 die->offset.sect_off);
8712 return;
8713 }
8714
8715 lowpc += baseaddr;
8716 highpc += baseaddr;
8717
8718 /* If we have any template arguments, then we must allocate a
8719 different sort of symbol. */
8720 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
8721 {
8722 if (child_die->tag == DW_TAG_template_type_param
8723 || child_die->tag == DW_TAG_template_value_param)
8724 {
8725 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8726 struct template_symbol);
8727 templ_func->base.is_cplus_template_function = 1;
8728 break;
8729 }
8730 }
8731
8732 new = push_context (0, lowpc);
8733 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
8734 (struct symbol *) templ_func);
8735
8736 /* If there is a location expression for DW_AT_frame_base, record
8737 it. */
8738 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
8739 if (attr)
8740 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
8741 expression is being recorded directly in the function's symbol
8742 and not in a separate frame-base object. I guess this hack is
8743 to avoid adding some sort of frame-base adjunct/annex to the
8744 function's symbol :-(. The problem with doing this is that it
8745 results in a function symbol with a location expression that
8746 has nothing to do with the location of the function, ouch! The
8747 relationship should be: a function's symbol has-a frame base; a
8748 frame-base has-a location expression. */
8749 dwarf2_symbol_mark_computed (attr, new->name, cu);
8750
8751 cu->list_in_scope = &local_symbols;
8752
8753 if (die->child != NULL)
8754 {
8755 child_die = die->child;
8756 while (child_die && child_die->tag)
8757 {
8758 if (child_die->tag == DW_TAG_template_type_param
8759 || child_die->tag == DW_TAG_template_value_param)
8760 {
8761 struct symbol *arg = new_symbol (child_die, NULL, cu);
8762
8763 if (arg != NULL)
8764 VEC_safe_push (symbolp, template_args, arg);
8765 }
8766 else
8767 process_die (child_die, cu);
8768 child_die = sibling_die (child_die);
8769 }
8770 }
8771
8772 inherit_abstract_dies (die, cu);
8773
8774 /* If we have a DW_AT_specification, we might need to import using
8775 directives from the context of the specification DIE. See the
8776 comment in determine_prefix. */
8777 if (cu->language == language_cplus
8778 && dwarf2_attr (die, DW_AT_specification, cu))
8779 {
8780 struct dwarf2_cu *spec_cu = cu;
8781 struct die_info *spec_die = die_specification (die, &spec_cu);
8782
8783 while (spec_die)
8784 {
8785 child_die = spec_die->child;
8786 while (child_die && child_die->tag)
8787 {
8788 if (child_die->tag == DW_TAG_imported_module)
8789 process_die (child_die, spec_cu);
8790 child_die = sibling_die (child_die);
8791 }
8792
8793 /* In some cases, GCC generates specification DIEs that
8794 themselves contain DW_AT_specification attributes. */
8795 spec_die = die_specification (spec_die, &spec_cu);
8796 }
8797 }
8798
8799 new = pop_context ();
8800 /* Make a block for the local symbols within. */
8801 block = finish_block (new->name, &local_symbols, new->old_blocks,
8802 lowpc, highpc, objfile);
8803
8804 /* For C++, set the block's scope. */
8805 if (cu->language == language_cplus || cu->language == language_fortran)
8806 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
8807 determine_prefix (die, cu),
8808 processing_has_namespace_info);
8809
8810 /* If we have address ranges, record them. */
8811 dwarf2_record_block_ranges (die, block, baseaddr, cu);
8812
8813 /* Attach template arguments to function. */
8814 if (! VEC_empty (symbolp, template_args))
8815 {
8816 gdb_assert (templ_func != NULL);
8817
8818 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
8819 templ_func->template_arguments
8820 = obstack_alloc (&objfile->objfile_obstack,
8821 (templ_func->n_template_arguments
8822 * sizeof (struct symbol *)));
8823 memcpy (templ_func->template_arguments,
8824 VEC_address (symbolp, template_args),
8825 (templ_func->n_template_arguments * sizeof (struct symbol *)));
8826 VEC_free (symbolp, template_args);
8827 }
8828
8829 /* In C++, we can have functions nested inside functions (e.g., when
8830 a function declares a class that has methods). This means that
8831 when we finish processing a function scope, we may need to go
8832 back to building a containing block's symbol lists. */
8833 local_symbols = new->locals;
8834 param_symbols = new->params;
8835 using_directives = new->using_directives;
8836
8837 /* If we've finished processing a top-level function, subsequent
8838 symbols go in the file symbol list. */
8839 if (outermost_context_p ())
8840 cu->list_in_scope = &file_symbols;
8841 }
8842
8843 /* Process all the DIES contained within a lexical block scope. Start
8844 a new scope, process the dies, and then close the scope. */
8845
8846 static void
8847 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
8848 {
8849 struct objfile *objfile = cu->objfile;
8850 struct context_stack *new;
8851 CORE_ADDR lowpc, highpc;
8852 struct die_info *child_die;
8853 CORE_ADDR baseaddr;
8854
8855 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8856
8857 /* Ignore blocks with missing or invalid low and high pc attributes. */
8858 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
8859 as multiple lexical blocks? Handling children in a sane way would
8860 be nasty. Might be easier to properly extend generic blocks to
8861 describe ranges. */
8862 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
8863 return;
8864 lowpc += baseaddr;
8865 highpc += baseaddr;
8866
8867 push_context (0, lowpc);
8868 if (die->child != NULL)
8869 {
8870 child_die = die->child;
8871 while (child_die && child_die->tag)
8872 {
8873 process_die (child_die, cu);
8874 child_die = sibling_die (child_die);
8875 }
8876 }
8877 new = pop_context ();
8878
8879 if (local_symbols != NULL || using_directives != NULL)
8880 {
8881 struct block *block
8882 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
8883 highpc, objfile);
8884
8885 /* Note that recording ranges after traversing children, as we
8886 do here, means that recording a parent's ranges entails
8887 walking across all its children's ranges as they appear in
8888 the address map, which is quadratic behavior.
8889
8890 It would be nicer to record the parent's ranges before
8891 traversing its children, simply overriding whatever you find
8892 there. But since we don't even decide whether to create a
8893 block until after we've traversed its children, that's hard
8894 to do. */
8895 dwarf2_record_block_ranges (die, block, baseaddr, cu);
8896 }
8897 local_symbols = new->locals;
8898 using_directives = new->using_directives;
8899 }
8900
8901 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
8902
8903 static void
8904 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
8905 {
8906 struct objfile *objfile = cu->objfile;
8907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8908 CORE_ADDR pc, baseaddr;
8909 struct attribute *attr;
8910 struct call_site *call_site, call_site_local;
8911 void **slot;
8912 int nparams;
8913 struct die_info *child_die;
8914
8915 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8916
8917 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
8918 if (!attr)
8919 {
8920 complaint (&symfile_complaints,
8921 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
8922 "DIE 0x%x [in module %s]"),
8923 die->offset.sect_off, objfile->name);
8924 return;
8925 }
8926 pc = DW_ADDR (attr) + baseaddr;
8927
8928 if (cu->call_site_htab == NULL)
8929 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
8930 NULL, &objfile->objfile_obstack,
8931 hashtab_obstack_allocate, NULL);
8932 call_site_local.pc = pc;
8933 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
8934 if (*slot != NULL)
8935 {
8936 complaint (&symfile_complaints,
8937 _("Duplicate PC %s for DW_TAG_GNU_call_site "
8938 "DIE 0x%x [in module %s]"),
8939 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
8940 return;
8941 }
8942
8943 /* Count parameters at the caller. */
8944
8945 nparams = 0;
8946 for (child_die = die->child; child_die && child_die->tag;
8947 child_die = sibling_die (child_die))
8948 {
8949 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
8950 {
8951 complaint (&symfile_complaints,
8952 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
8953 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
8954 child_die->tag, child_die->offset.sect_off, objfile->name);
8955 continue;
8956 }
8957
8958 nparams++;
8959 }
8960
8961 call_site = obstack_alloc (&objfile->objfile_obstack,
8962 (sizeof (*call_site)
8963 + (sizeof (*call_site->parameter)
8964 * (nparams - 1))));
8965 *slot = call_site;
8966 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
8967 call_site->pc = pc;
8968
8969 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
8970 {
8971 struct die_info *func_die;
8972
8973 /* Skip also over DW_TAG_inlined_subroutine. */
8974 for (func_die = die->parent;
8975 func_die && func_die->tag != DW_TAG_subprogram
8976 && func_die->tag != DW_TAG_subroutine_type;
8977 func_die = func_die->parent);
8978
8979 /* DW_AT_GNU_all_call_sites is a superset
8980 of DW_AT_GNU_all_tail_call_sites. */
8981 if (func_die
8982 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
8983 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
8984 {
8985 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
8986 not complete. But keep CALL_SITE for look ups via call_site_htab,
8987 both the initial caller containing the real return address PC and
8988 the final callee containing the current PC of a chain of tail
8989 calls do not need to have the tail call list complete. But any
8990 function candidate for a virtual tail call frame searched via
8991 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
8992 determined unambiguously. */
8993 }
8994 else
8995 {
8996 struct type *func_type = NULL;
8997
8998 if (func_die)
8999 func_type = get_die_type (func_die, cu);
9000 if (func_type != NULL)
9001 {
9002 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9003
9004 /* Enlist this call site to the function. */
9005 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9006 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9007 }
9008 else
9009 complaint (&symfile_complaints,
9010 _("Cannot find function owning DW_TAG_GNU_call_site "
9011 "DIE 0x%x [in module %s]"),
9012 die->offset.sect_off, objfile->name);
9013 }
9014 }
9015
9016 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9017 if (attr == NULL)
9018 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9019 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9020 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9021 /* Keep NULL DWARF_BLOCK. */;
9022 else if (attr_form_is_block (attr))
9023 {
9024 struct dwarf2_locexpr_baton *dlbaton;
9025
9026 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9027 dlbaton->data = DW_BLOCK (attr)->data;
9028 dlbaton->size = DW_BLOCK (attr)->size;
9029 dlbaton->per_cu = cu->per_cu;
9030
9031 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9032 }
9033 else if (is_ref_attr (attr))
9034 {
9035 struct dwarf2_cu *target_cu = cu;
9036 struct die_info *target_die;
9037
9038 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9039 gdb_assert (target_cu->objfile == objfile);
9040 if (die_is_declaration (target_die, target_cu))
9041 {
9042 const char *target_physname;
9043
9044 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9045 if (target_physname == NULL)
9046 complaint (&symfile_complaints,
9047 _("DW_AT_GNU_call_site_target target DIE has invalid "
9048 "physname, for referencing DIE 0x%x [in module %s]"),
9049 die->offset.sect_off, objfile->name);
9050 else
9051 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
9052 }
9053 else
9054 {
9055 CORE_ADDR lowpc;
9056
9057 /* DW_AT_entry_pc should be preferred. */
9058 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9059 complaint (&symfile_complaints,
9060 _("DW_AT_GNU_call_site_target target DIE has invalid "
9061 "low pc, for referencing DIE 0x%x [in module %s]"),
9062 die->offset.sect_off, objfile->name);
9063 else
9064 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9065 }
9066 }
9067 else
9068 complaint (&symfile_complaints,
9069 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9070 "block nor reference, for DIE 0x%x [in module %s]"),
9071 die->offset.sect_off, objfile->name);
9072
9073 call_site->per_cu = cu->per_cu;
9074
9075 for (child_die = die->child;
9076 child_die && child_die->tag;
9077 child_die = sibling_die (child_die))
9078 {
9079 struct call_site_parameter *parameter;
9080 struct attribute *loc, *origin;
9081
9082 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9083 {
9084 /* Already printed the complaint above. */
9085 continue;
9086 }
9087
9088 gdb_assert (call_site->parameter_count < nparams);
9089 parameter = &call_site->parameter[call_site->parameter_count];
9090
9091 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9092 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9093 register is contained in DW_AT_GNU_call_site_value. */
9094
9095 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9096 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9097 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9098 {
9099 sect_offset offset;
9100
9101 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9102 offset = dwarf2_get_ref_die_offset (origin);
9103 if (!offset_in_cu_p (&cu->header, offset))
9104 {
9105 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9106 binding can be done only inside one CU. Such referenced DIE
9107 therefore cannot be even moved to DW_TAG_partial_unit. */
9108 complaint (&symfile_complaints,
9109 _("DW_AT_abstract_origin offset is not in CU for "
9110 "DW_TAG_GNU_call_site child DIE 0x%x "
9111 "[in module %s]"),
9112 child_die->offset.sect_off, objfile->name);
9113 continue;
9114 }
9115 parameter->u.param_offset.cu_off = (offset.sect_off
9116 - cu->header.offset.sect_off);
9117 }
9118 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9119 {
9120 complaint (&symfile_complaints,
9121 _("No DW_FORM_block* DW_AT_location for "
9122 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9123 child_die->offset.sect_off, objfile->name);
9124 continue;
9125 }
9126 else
9127 {
9128 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9129 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9130 if (parameter->u.dwarf_reg != -1)
9131 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9132 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9133 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9134 &parameter->u.fb_offset))
9135 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9136 else
9137 {
9138 complaint (&symfile_complaints,
9139 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9140 "for DW_FORM_block* DW_AT_location is supported for "
9141 "DW_TAG_GNU_call_site child DIE 0x%x "
9142 "[in module %s]"),
9143 child_die->offset.sect_off, objfile->name);
9144 continue;
9145 }
9146 }
9147
9148 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9149 if (!attr_form_is_block (attr))
9150 {
9151 complaint (&symfile_complaints,
9152 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9153 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9154 child_die->offset.sect_off, objfile->name);
9155 continue;
9156 }
9157 parameter->value = DW_BLOCK (attr)->data;
9158 parameter->value_size = DW_BLOCK (attr)->size;
9159
9160 /* Parameters are not pre-cleared by memset above. */
9161 parameter->data_value = NULL;
9162 parameter->data_value_size = 0;
9163 call_site->parameter_count++;
9164
9165 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9166 if (attr)
9167 {
9168 if (!attr_form_is_block (attr))
9169 complaint (&symfile_complaints,
9170 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9171 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9172 child_die->offset.sect_off, objfile->name);
9173 else
9174 {
9175 parameter->data_value = DW_BLOCK (attr)->data;
9176 parameter->data_value_size = DW_BLOCK (attr)->size;
9177 }
9178 }
9179 }
9180 }
9181
9182 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9183 Return 1 if the attributes are present and valid, otherwise, return 0.
9184 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9185
9186 static int
9187 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9188 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9189 struct partial_symtab *ranges_pst)
9190 {
9191 struct objfile *objfile = cu->objfile;
9192 struct comp_unit_head *cu_header = &cu->header;
9193 bfd *obfd = objfile->obfd;
9194 unsigned int addr_size = cu_header->addr_size;
9195 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9196 /* Base address selection entry. */
9197 CORE_ADDR base;
9198 int found_base;
9199 unsigned int dummy;
9200 gdb_byte *buffer;
9201 CORE_ADDR marker;
9202 int low_set;
9203 CORE_ADDR low = 0;
9204 CORE_ADDR high = 0;
9205 CORE_ADDR baseaddr;
9206
9207 found_base = cu->base_known;
9208 base = cu->base_address;
9209
9210 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9211 if (offset >= dwarf2_per_objfile->ranges.size)
9212 {
9213 complaint (&symfile_complaints,
9214 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9215 offset);
9216 return 0;
9217 }
9218 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9219
9220 /* Read in the largest possible address. */
9221 marker = read_address (obfd, buffer, cu, &dummy);
9222 if ((marker & mask) == mask)
9223 {
9224 /* If we found the largest possible address, then
9225 read the base address. */
9226 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9227 buffer += 2 * addr_size;
9228 offset += 2 * addr_size;
9229 found_base = 1;
9230 }
9231
9232 low_set = 0;
9233
9234 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9235
9236 while (1)
9237 {
9238 CORE_ADDR range_beginning, range_end;
9239
9240 range_beginning = read_address (obfd, buffer, cu, &dummy);
9241 buffer += addr_size;
9242 range_end = read_address (obfd, buffer, cu, &dummy);
9243 buffer += addr_size;
9244 offset += 2 * addr_size;
9245
9246 /* An end of list marker is a pair of zero addresses. */
9247 if (range_beginning == 0 && range_end == 0)
9248 /* Found the end of list entry. */
9249 break;
9250
9251 /* Each base address selection entry is a pair of 2 values.
9252 The first is the largest possible address, the second is
9253 the base address. Check for a base address here. */
9254 if ((range_beginning & mask) == mask)
9255 {
9256 /* If we found the largest possible address, then
9257 read the base address. */
9258 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9259 found_base = 1;
9260 continue;
9261 }
9262
9263 if (!found_base)
9264 {
9265 /* We have no valid base address for the ranges
9266 data. */
9267 complaint (&symfile_complaints,
9268 _("Invalid .debug_ranges data (no base address)"));
9269 return 0;
9270 }
9271
9272 if (range_beginning > range_end)
9273 {
9274 /* Inverted range entries are invalid. */
9275 complaint (&symfile_complaints,
9276 _("Invalid .debug_ranges data (inverted range)"));
9277 return 0;
9278 }
9279
9280 /* Empty range entries have no effect. */
9281 if (range_beginning == range_end)
9282 continue;
9283
9284 range_beginning += base;
9285 range_end += base;
9286
9287 /* A not-uncommon case of bad debug info.
9288 Don't pollute the addrmap with bad data. */
9289 if (range_beginning + baseaddr == 0
9290 && !dwarf2_per_objfile->has_section_at_zero)
9291 {
9292 complaint (&symfile_complaints,
9293 _(".debug_ranges entry has start address of zero"
9294 " [in module %s]"), objfile->name);
9295 continue;
9296 }
9297
9298 if (ranges_pst != NULL)
9299 addrmap_set_empty (objfile->psymtabs_addrmap,
9300 range_beginning + baseaddr,
9301 range_end - 1 + baseaddr,
9302 ranges_pst);
9303
9304 /* FIXME: This is recording everything as a low-high
9305 segment of consecutive addresses. We should have a
9306 data structure for discontiguous block ranges
9307 instead. */
9308 if (! low_set)
9309 {
9310 low = range_beginning;
9311 high = range_end;
9312 low_set = 1;
9313 }
9314 else
9315 {
9316 if (range_beginning < low)
9317 low = range_beginning;
9318 if (range_end > high)
9319 high = range_end;
9320 }
9321 }
9322
9323 if (! low_set)
9324 /* If the first entry is an end-of-list marker, the range
9325 describes an empty scope, i.e. no instructions. */
9326 return 0;
9327
9328 if (low_return)
9329 *low_return = low;
9330 if (high_return)
9331 *high_return = high;
9332 return 1;
9333 }
9334
9335 /* Get low and high pc attributes from a die. Return 1 if the attributes
9336 are present and valid, otherwise, return 0. Return -1 if the range is
9337 discontinuous, i.e. derived from DW_AT_ranges information. */
9338
9339 static int
9340 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
9341 CORE_ADDR *highpc, struct dwarf2_cu *cu,
9342 struct partial_symtab *pst)
9343 {
9344 struct attribute *attr;
9345 struct attribute *attr_high;
9346 CORE_ADDR low = 0;
9347 CORE_ADDR high = 0;
9348 int ret = 0;
9349
9350 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
9351 if (attr_high)
9352 {
9353 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9354 if (attr)
9355 {
9356 low = DW_ADDR (attr);
9357 if (attr_high->form == DW_FORM_addr
9358 || attr_high->form == DW_FORM_GNU_addr_index)
9359 high = DW_ADDR (attr_high);
9360 else
9361 high = low + DW_UNSND (attr_high);
9362 }
9363 else
9364 /* Found high w/o low attribute. */
9365 return 0;
9366
9367 /* Found consecutive range of addresses. */
9368 ret = 1;
9369 }
9370 else
9371 {
9372 attr = dwarf2_attr (die, DW_AT_ranges, cu);
9373 if (attr != NULL)
9374 {
9375 unsigned int ranges_offset = DW_UNSND (attr) + cu->ranges_base;
9376
9377 /* Value of the DW_AT_ranges attribute is the offset in the
9378 .debug_ranges section. */
9379 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
9380 return 0;
9381 /* Found discontinuous range of addresses. */
9382 ret = -1;
9383 }
9384 }
9385
9386 /* read_partial_die has also the strict LOW < HIGH requirement. */
9387 if (high <= low)
9388 return 0;
9389
9390 /* When using the GNU linker, .gnu.linkonce. sections are used to
9391 eliminate duplicate copies of functions and vtables and such.
9392 The linker will arbitrarily choose one and discard the others.
9393 The AT_*_pc values for such functions refer to local labels in
9394 these sections. If the section from that file was discarded, the
9395 labels are not in the output, so the relocs get a value of 0.
9396 If this is a discarded function, mark the pc bounds as invalid,
9397 so that GDB will ignore it. */
9398 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
9399 return 0;
9400
9401 *lowpc = low;
9402 if (highpc)
9403 *highpc = high;
9404 return ret;
9405 }
9406
9407 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
9408 its low and high PC addresses. Do nothing if these addresses could not
9409 be determined. Otherwise, set LOWPC to the low address if it is smaller,
9410 and HIGHPC to the high address if greater than HIGHPC. */
9411
9412 static void
9413 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
9414 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9415 struct dwarf2_cu *cu)
9416 {
9417 CORE_ADDR low, high;
9418 struct die_info *child = die->child;
9419
9420 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
9421 {
9422 *lowpc = min (*lowpc, low);
9423 *highpc = max (*highpc, high);
9424 }
9425
9426 /* If the language does not allow nested subprograms (either inside
9427 subprograms or lexical blocks), we're done. */
9428 if (cu->language != language_ada)
9429 return;
9430
9431 /* Check all the children of the given DIE. If it contains nested
9432 subprograms, then check their pc bounds. Likewise, we need to
9433 check lexical blocks as well, as they may also contain subprogram
9434 definitions. */
9435 while (child && child->tag)
9436 {
9437 if (child->tag == DW_TAG_subprogram
9438 || child->tag == DW_TAG_lexical_block)
9439 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
9440 child = sibling_die (child);
9441 }
9442 }
9443
9444 /* Get the low and high pc's represented by the scope DIE, and store
9445 them in *LOWPC and *HIGHPC. If the correct values can't be
9446 determined, set *LOWPC to -1 and *HIGHPC to 0. */
9447
9448 static void
9449 get_scope_pc_bounds (struct die_info *die,
9450 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9451 struct dwarf2_cu *cu)
9452 {
9453 CORE_ADDR best_low = (CORE_ADDR) -1;
9454 CORE_ADDR best_high = (CORE_ADDR) 0;
9455 CORE_ADDR current_low, current_high;
9456
9457 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
9458 {
9459 best_low = current_low;
9460 best_high = current_high;
9461 }
9462 else
9463 {
9464 struct die_info *child = die->child;
9465
9466 while (child && child->tag)
9467 {
9468 switch (child->tag) {
9469 case DW_TAG_subprogram:
9470 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
9471 break;
9472 case DW_TAG_namespace:
9473 case DW_TAG_module:
9474 /* FIXME: carlton/2004-01-16: Should we do this for
9475 DW_TAG_class_type/DW_TAG_structure_type, too? I think
9476 that current GCC's always emit the DIEs corresponding
9477 to definitions of methods of classes as children of a
9478 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
9479 the DIEs giving the declarations, which could be
9480 anywhere). But I don't see any reason why the
9481 standards says that they have to be there. */
9482 get_scope_pc_bounds (child, &current_low, &current_high, cu);
9483
9484 if (current_low != ((CORE_ADDR) -1))
9485 {
9486 best_low = min (best_low, current_low);
9487 best_high = max (best_high, current_high);
9488 }
9489 break;
9490 default:
9491 /* Ignore. */
9492 break;
9493 }
9494
9495 child = sibling_die (child);
9496 }
9497 }
9498
9499 *lowpc = best_low;
9500 *highpc = best_high;
9501 }
9502
9503 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
9504 in DIE. */
9505
9506 static void
9507 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
9508 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
9509 {
9510 struct objfile *objfile = cu->objfile;
9511 struct attribute *attr;
9512 struct attribute *attr_high;
9513
9514 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
9515 if (attr_high)
9516 {
9517 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9518 if (attr)
9519 {
9520 CORE_ADDR low = DW_ADDR (attr);
9521 CORE_ADDR high;
9522 if (attr_high->form == DW_FORM_addr
9523 || attr_high->form == DW_FORM_GNU_addr_index)
9524 high = DW_ADDR (attr_high);
9525 else
9526 high = low + DW_UNSND (attr_high);
9527
9528 record_block_range (block, baseaddr + low, baseaddr + high - 1);
9529 }
9530 }
9531
9532 attr = dwarf2_attr (die, DW_AT_ranges, cu);
9533 if (attr)
9534 {
9535 bfd *obfd = objfile->obfd;
9536
9537 /* The value of the DW_AT_ranges attribute is the offset of the
9538 address range list in the .debug_ranges section. */
9539 unsigned long offset = DW_UNSND (attr) + cu->ranges_base;
9540 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
9541
9542 /* For some target architectures, but not others, the
9543 read_address function sign-extends the addresses it returns.
9544 To recognize base address selection entries, we need a
9545 mask. */
9546 unsigned int addr_size = cu->header.addr_size;
9547 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9548
9549 /* The base address, to which the next pair is relative. Note
9550 that this 'base' is a DWARF concept: most entries in a range
9551 list are relative, to reduce the number of relocs against the
9552 debugging information. This is separate from this function's
9553 'baseaddr' argument, which GDB uses to relocate debugging
9554 information from a shared library based on the address at
9555 which the library was loaded. */
9556 CORE_ADDR base = cu->base_address;
9557 int base_known = cu->base_known;
9558
9559 gdb_assert (dwarf2_per_objfile->ranges.readin);
9560 if (offset >= dwarf2_per_objfile->ranges.size)
9561 {
9562 complaint (&symfile_complaints,
9563 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
9564 offset);
9565 return;
9566 }
9567
9568 for (;;)
9569 {
9570 unsigned int bytes_read;
9571 CORE_ADDR start, end;
9572
9573 start = read_address (obfd, buffer, cu, &bytes_read);
9574 buffer += bytes_read;
9575 end = read_address (obfd, buffer, cu, &bytes_read);
9576 buffer += bytes_read;
9577
9578 /* Did we find the end of the range list? */
9579 if (start == 0 && end == 0)
9580 break;
9581
9582 /* Did we find a base address selection entry? */
9583 else if ((start & base_select_mask) == base_select_mask)
9584 {
9585 base = end;
9586 base_known = 1;
9587 }
9588
9589 /* We found an ordinary address range. */
9590 else
9591 {
9592 if (!base_known)
9593 {
9594 complaint (&symfile_complaints,
9595 _("Invalid .debug_ranges data "
9596 "(no base address)"));
9597 return;
9598 }
9599
9600 if (start > end)
9601 {
9602 /* Inverted range entries are invalid. */
9603 complaint (&symfile_complaints,
9604 _("Invalid .debug_ranges data "
9605 "(inverted range)"));
9606 return;
9607 }
9608
9609 /* Empty range entries have no effect. */
9610 if (start == end)
9611 continue;
9612
9613 start += base + baseaddr;
9614 end += base + baseaddr;
9615
9616 /* A not-uncommon case of bad debug info.
9617 Don't pollute the addrmap with bad data. */
9618 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
9619 {
9620 complaint (&symfile_complaints,
9621 _(".debug_ranges entry has start address of zero"
9622 " [in module %s]"), objfile->name);
9623 continue;
9624 }
9625
9626 record_block_range (block, start, end - 1);
9627 }
9628 }
9629 }
9630 }
9631
9632 /* Check whether the producer field indicates either of GCC < 4.6, or the
9633 Intel C/C++ compiler, and cache the result in CU. */
9634
9635 static void
9636 check_producer (struct dwarf2_cu *cu)
9637 {
9638 const char *cs;
9639 int major, minor, release;
9640
9641 if (cu->producer == NULL)
9642 {
9643 /* For unknown compilers expect their behavior is DWARF version
9644 compliant.
9645
9646 GCC started to support .debug_types sections by -gdwarf-4 since
9647 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
9648 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
9649 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
9650 interpreted incorrectly by GDB now - GCC PR debug/48229. */
9651 }
9652 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
9653 {
9654 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
9655
9656 cs = &cu->producer[strlen ("GNU ")];
9657 while (*cs && !isdigit (*cs))
9658 cs++;
9659 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
9660 {
9661 /* Not recognized as GCC. */
9662 }
9663 else
9664 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
9665 }
9666 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
9667 cu->producer_is_icc = 1;
9668 else
9669 {
9670 /* For other non-GCC compilers, expect their behavior is DWARF version
9671 compliant. */
9672 }
9673
9674 cu->checked_producer = 1;
9675 }
9676
9677 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
9678 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
9679 during 4.6.0 experimental. */
9680
9681 static int
9682 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
9683 {
9684 if (!cu->checked_producer)
9685 check_producer (cu);
9686
9687 return cu->producer_is_gxx_lt_4_6;
9688 }
9689
9690 /* Return the default accessibility type if it is not overriden by
9691 DW_AT_accessibility. */
9692
9693 static enum dwarf_access_attribute
9694 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
9695 {
9696 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
9697 {
9698 /* The default DWARF 2 accessibility for members is public, the default
9699 accessibility for inheritance is private. */
9700
9701 if (die->tag != DW_TAG_inheritance)
9702 return DW_ACCESS_public;
9703 else
9704 return DW_ACCESS_private;
9705 }
9706 else
9707 {
9708 /* DWARF 3+ defines the default accessibility a different way. The same
9709 rules apply now for DW_TAG_inheritance as for the members and it only
9710 depends on the container kind. */
9711
9712 if (die->parent->tag == DW_TAG_class_type)
9713 return DW_ACCESS_private;
9714 else
9715 return DW_ACCESS_public;
9716 }
9717 }
9718
9719 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
9720 offset. If the attribute was not found return 0, otherwise return
9721 1. If it was found but could not properly be handled, set *OFFSET
9722 to 0. */
9723
9724 static int
9725 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
9726 LONGEST *offset)
9727 {
9728 struct attribute *attr;
9729
9730 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
9731 if (attr != NULL)
9732 {
9733 *offset = 0;
9734
9735 /* Note that we do not check for a section offset first here.
9736 This is because DW_AT_data_member_location is new in DWARF 4,
9737 so if we see it, we can assume that a constant form is really
9738 a constant and not a section offset. */
9739 if (attr_form_is_constant (attr))
9740 *offset = dwarf2_get_attr_constant_value (attr, 0);
9741 else if (attr_form_is_section_offset (attr))
9742 dwarf2_complex_location_expr_complaint ();
9743 else if (attr_form_is_block (attr))
9744 *offset = decode_locdesc (DW_BLOCK (attr), cu);
9745 else
9746 dwarf2_complex_location_expr_complaint ();
9747
9748 return 1;
9749 }
9750
9751 return 0;
9752 }
9753
9754 /* Add an aggregate field to the field list. */
9755
9756 static void
9757 dwarf2_add_field (struct field_info *fip, struct die_info *die,
9758 struct dwarf2_cu *cu)
9759 {
9760 struct objfile *objfile = cu->objfile;
9761 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9762 struct nextfield *new_field;
9763 struct attribute *attr;
9764 struct field *fp;
9765 char *fieldname = "";
9766
9767 /* Allocate a new field list entry and link it in. */
9768 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
9769 make_cleanup (xfree, new_field);
9770 memset (new_field, 0, sizeof (struct nextfield));
9771
9772 if (die->tag == DW_TAG_inheritance)
9773 {
9774 new_field->next = fip->baseclasses;
9775 fip->baseclasses = new_field;
9776 }
9777 else
9778 {
9779 new_field->next = fip->fields;
9780 fip->fields = new_field;
9781 }
9782 fip->nfields++;
9783
9784 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
9785 if (attr)
9786 new_field->accessibility = DW_UNSND (attr);
9787 else
9788 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
9789 if (new_field->accessibility != DW_ACCESS_public)
9790 fip->non_public_fields = 1;
9791
9792 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
9793 if (attr)
9794 new_field->virtuality = DW_UNSND (attr);
9795 else
9796 new_field->virtuality = DW_VIRTUALITY_none;
9797
9798 fp = &new_field->field;
9799
9800 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
9801 {
9802 LONGEST offset;
9803
9804 /* Data member other than a C++ static data member. */
9805
9806 /* Get type of field. */
9807 fp->type = die_type (die, cu);
9808
9809 SET_FIELD_BITPOS (*fp, 0);
9810
9811 /* Get bit size of field (zero if none). */
9812 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
9813 if (attr)
9814 {
9815 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
9816 }
9817 else
9818 {
9819 FIELD_BITSIZE (*fp) = 0;
9820 }
9821
9822 /* Get bit offset of field. */
9823 if (handle_data_member_location (die, cu, &offset))
9824 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
9825 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
9826 if (attr)
9827 {
9828 if (gdbarch_bits_big_endian (gdbarch))
9829 {
9830 /* For big endian bits, the DW_AT_bit_offset gives the
9831 additional bit offset from the MSB of the containing
9832 anonymous object to the MSB of the field. We don't
9833 have to do anything special since we don't need to
9834 know the size of the anonymous object. */
9835 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
9836 }
9837 else
9838 {
9839 /* For little endian bits, compute the bit offset to the
9840 MSB of the anonymous object, subtract off the number of
9841 bits from the MSB of the field to the MSB of the
9842 object, and then subtract off the number of bits of
9843 the field itself. The result is the bit offset of
9844 the LSB of the field. */
9845 int anonymous_size;
9846 int bit_offset = DW_UNSND (attr);
9847
9848 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9849 if (attr)
9850 {
9851 /* The size of the anonymous object containing
9852 the bit field is explicit, so use the
9853 indicated size (in bytes). */
9854 anonymous_size = DW_UNSND (attr);
9855 }
9856 else
9857 {
9858 /* The size of the anonymous object containing
9859 the bit field must be inferred from the type
9860 attribute of the data member containing the
9861 bit field. */
9862 anonymous_size = TYPE_LENGTH (fp->type);
9863 }
9864 SET_FIELD_BITPOS (*fp,
9865 (FIELD_BITPOS (*fp)
9866 + anonymous_size * bits_per_byte
9867 - bit_offset - FIELD_BITSIZE (*fp)));
9868 }
9869 }
9870
9871 /* Get name of field. */
9872 fieldname = dwarf2_name (die, cu);
9873 if (fieldname == NULL)
9874 fieldname = "";
9875
9876 /* The name is already allocated along with this objfile, so we don't
9877 need to duplicate it for the type. */
9878 fp->name = fieldname;
9879
9880 /* Change accessibility for artificial fields (e.g. virtual table
9881 pointer or virtual base class pointer) to private. */
9882 if (dwarf2_attr (die, DW_AT_artificial, cu))
9883 {
9884 FIELD_ARTIFICIAL (*fp) = 1;
9885 new_field->accessibility = DW_ACCESS_private;
9886 fip->non_public_fields = 1;
9887 }
9888 }
9889 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
9890 {
9891 /* C++ static member. */
9892
9893 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
9894 is a declaration, but all versions of G++ as of this writing
9895 (so through at least 3.2.1) incorrectly generate
9896 DW_TAG_variable tags. */
9897
9898 const char *physname;
9899
9900 /* Get name of field. */
9901 fieldname = dwarf2_name (die, cu);
9902 if (fieldname == NULL)
9903 return;
9904
9905 attr = dwarf2_attr (die, DW_AT_const_value, cu);
9906 if (attr
9907 /* Only create a symbol if this is an external value.
9908 new_symbol checks this and puts the value in the global symbol
9909 table, which we want. If it is not external, new_symbol
9910 will try to put the value in cu->list_in_scope which is wrong. */
9911 && dwarf2_flag_true_p (die, DW_AT_external, cu))
9912 {
9913 /* A static const member, not much different than an enum as far as
9914 we're concerned, except that we can support more types. */
9915 new_symbol (die, NULL, cu);
9916 }
9917
9918 /* Get physical name. */
9919 physname = dwarf2_physname (fieldname, die, cu);
9920
9921 /* The name is already allocated along with this objfile, so we don't
9922 need to duplicate it for the type. */
9923 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
9924 FIELD_TYPE (*fp) = die_type (die, cu);
9925 FIELD_NAME (*fp) = fieldname;
9926 }
9927 else if (die->tag == DW_TAG_inheritance)
9928 {
9929 LONGEST offset;
9930
9931 /* C++ base class field. */
9932 if (handle_data_member_location (die, cu, &offset))
9933 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
9934 FIELD_BITSIZE (*fp) = 0;
9935 FIELD_TYPE (*fp) = die_type (die, cu);
9936 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
9937 fip->nbaseclasses++;
9938 }
9939 }
9940
9941 /* Add a typedef defined in the scope of the FIP's class. */
9942
9943 static void
9944 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
9945 struct dwarf2_cu *cu)
9946 {
9947 struct objfile *objfile = cu->objfile;
9948 struct typedef_field_list *new_field;
9949 struct attribute *attr;
9950 struct typedef_field *fp;
9951 char *fieldname = "";
9952
9953 /* Allocate a new field list entry and link it in. */
9954 new_field = xzalloc (sizeof (*new_field));
9955 make_cleanup (xfree, new_field);
9956
9957 gdb_assert (die->tag == DW_TAG_typedef);
9958
9959 fp = &new_field->field;
9960
9961 /* Get name of field. */
9962 fp->name = dwarf2_name (die, cu);
9963 if (fp->name == NULL)
9964 return;
9965
9966 fp->type = read_type_die (die, cu);
9967
9968 new_field->next = fip->typedef_field_list;
9969 fip->typedef_field_list = new_field;
9970 fip->typedef_field_list_count++;
9971 }
9972
9973 /* Create the vector of fields, and attach it to the type. */
9974
9975 static void
9976 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
9977 struct dwarf2_cu *cu)
9978 {
9979 int nfields = fip->nfields;
9980
9981 /* Record the field count, allocate space for the array of fields,
9982 and create blank accessibility bitfields if necessary. */
9983 TYPE_NFIELDS (type) = nfields;
9984 TYPE_FIELDS (type) = (struct field *)
9985 TYPE_ALLOC (type, sizeof (struct field) * nfields);
9986 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
9987
9988 if (fip->non_public_fields && cu->language != language_ada)
9989 {
9990 ALLOCATE_CPLUS_STRUCT_TYPE (type);
9991
9992 TYPE_FIELD_PRIVATE_BITS (type) =
9993 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
9994 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
9995
9996 TYPE_FIELD_PROTECTED_BITS (type) =
9997 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
9998 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
9999
10000 TYPE_FIELD_IGNORE_BITS (type) =
10001 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10002 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10003 }
10004
10005 /* If the type has baseclasses, allocate and clear a bit vector for
10006 TYPE_FIELD_VIRTUAL_BITS. */
10007 if (fip->nbaseclasses && cu->language != language_ada)
10008 {
10009 int num_bytes = B_BYTES (fip->nbaseclasses);
10010 unsigned char *pointer;
10011
10012 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10013 pointer = TYPE_ALLOC (type, num_bytes);
10014 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10015 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10016 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10017 }
10018
10019 /* Copy the saved-up fields into the field vector. Start from the head of
10020 the list, adding to the tail of the field array, so that they end up in
10021 the same order in the array in which they were added to the list. */
10022 while (nfields-- > 0)
10023 {
10024 struct nextfield *fieldp;
10025
10026 if (fip->fields)
10027 {
10028 fieldp = fip->fields;
10029 fip->fields = fieldp->next;
10030 }
10031 else
10032 {
10033 fieldp = fip->baseclasses;
10034 fip->baseclasses = fieldp->next;
10035 }
10036
10037 TYPE_FIELD (type, nfields) = fieldp->field;
10038 switch (fieldp->accessibility)
10039 {
10040 case DW_ACCESS_private:
10041 if (cu->language != language_ada)
10042 SET_TYPE_FIELD_PRIVATE (type, nfields);
10043 break;
10044
10045 case DW_ACCESS_protected:
10046 if (cu->language != language_ada)
10047 SET_TYPE_FIELD_PROTECTED (type, nfields);
10048 break;
10049
10050 case DW_ACCESS_public:
10051 break;
10052
10053 default:
10054 /* Unknown accessibility. Complain and treat it as public. */
10055 {
10056 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10057 fieldp->accessibility);
10058 }
10059 break;
10060 }
10061 if (nfields < fip->nbaseclasses)
10062 {
10063 switch (fieldp->virtuality)
10064 {
10065 case DW_VIRTUALITY_virtual:
10066 case DW_VIRTUALITY_pure_virtual:
10067 if (cu->language == language_ada)
10068 error (_("unexpected virtuality in component of Ada type"));
10069 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10070 break;
10071 }
10072 }
10073 }
10074 }
10075
10076 /* Add a member function to the proper fieldlist. */
10077
10078 static void
10079 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10080 struct type *type, struct dwarf2_cu *cu)
10081 {
10082 struct objfile *objfile = cu->objfile;
10083 struct attribute *attr;
10084 struct fnfieldlist *flp;
10085 int i;
10086 struct fn_field *fnp;
10087 char *fieldname;
10088 struct nextfnfield *new_fnfield;
10089 struct type *this_type;
10090 enum dwarf_access_attribute accessibility;
10091
10092 if (cu->language == language_ada)
10093 error (_("unexpected member function in Ada type"));
10094
10095 /* Get name of member function. */
10096 fieldname = dwarf2_name (die, cu);
10097 if (fieldname == NULL)
10098 return;
10099
10100 /* Look up member function name in fieldlist. */
10101 for (i = 0; i < fip->nfnfields; i++)
10102 {
10103 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10104 break;
10105 }
10106
10107 /* Create new list element if necessary. */
10108 if (i < fip->nfnfields)
10109 flp = &fip->fnfieldlists[i];
10110 else
10111 {
10112 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10113 {
10114 fip->fnfieldlists = (struct fnfieldlist *)
10115 xrealloc (fip->fnfieldlists,
10116 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10117 * sizeof (struct fnfieldlist));
10118 if (fip->nfnfields == 0)
10119 make_cleanup (free_current_contents, &fip->fnfieldlists);
10120 }
10121 flp = &fip->fnfieldlists[fip->nfnfields];
10122 flp->name = fieldname;
10123 flp->length = 0;
10124 flp->head = NULL;
10125 i = fip->nfnfields++;
10126 }
10127
10128 /* Create a new member function field and chain it to the field list
10129 entry. */
10130 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10131 make_cleanup (xfree, new_fnfield);
10132 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10133 new_fnfield->next = flp->head;
10134 flp->head = new_fnfield;
10135 flp->length++;
10136
10137 /* Fill in the member function field info. */
10138 fnp = &new_fnfield->fnfield;
10139
10140 /* Delay processing of the physname until later. */
10141 if (cu->language == language_cplus || cu->language == language_java)
10142 {
10143 add_to_method_list (type, i, flp->length - 1, fieldname,
10144 die, cu);
10145 }
10146 else
10147 {
10148 const char *physname = dwarf2_physname (fieldname, die, cu);
10149 fnp->physname = physname ? physname : "";
10150 }
10151
10152 fnp->type = alloc_type (objfile);
10153 this_type = read_type_die (die, cu);
10154 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10155 {
10156 int nparams = TYPE_NFIELDS (this_type);
10157
10158 /* TYPE is the domain of this method, and THIS_TYPE is the type
10159 of the method itself (TYPE_CODE_METHOD). */
10160 smash_to_method_type (fnp->type, type,
10161 TYPE_TARGET_TYPE (this_type),
10162 TYPE_FIELDS (this_type),
10163 TYPE_NFIELDS (this_type),
10164 TYPE_VARARGS (this_type));
10165
10166 /* Handle static member functions.
10167 Dwarf2 has no clean way to discern C++ static and non-static
10168 member functions. G++ helps GDB by marking the first
10169 parameter for non-static member functions (which is the this
10170 pointer) as artificial. We obtain this information from
10171 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10172 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10173 fnp->voffset = VOFFSET_STATIC;
10174 }
10175 else
10176 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10177 dwarf2_full_name (fieldname, die, cu));
10178
10179 /* Get fcontext from DW_AT_containing_type if present. */
10180 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10181 fnp->fcontext = die_containing_type (die, cu);
10182
10183 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10184 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
10185
10186 /* Get accessibility. */
10187 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10188 if (attr)
10189 accessibility = DW_UNSND (attr);
10190 else
10191 accessibility = dwarf2_default_access_attribute (die, cu);
10192 switch (accessibility)
10193 {
10194 case DW_ACCESS_private:
10195 fnp->is_private = 1;
10196 break;
10197 case DW_ACCESS_protected:
10198 fnp->is_protected = 1;
10199 break;
10200 }
10201
10202 /* Check for artificial methods. */
10203 attr = dwarf2_attr (die, DW_AT_artificial, cu);
10204 if (attr && DW_UNSND (attr) != 0)
10205 fnp->is_artificial = 1;
10206
10207 /* Get index in virtual function table if it is a virtual member
10208 function. For older versions of GCC, this is an offset in the
10209 appropriate virtual table, as specified by DW_AT_containing_type.
10210 For everyone else, it is an expression to be evaluated relative
10211 to the object address. */
10212
10213 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
10214 if (attr)
10215 {
10216 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
10217 {
10218 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
10219 {
10220 /* Old-style GCC. */
10221 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
10222 }
10223 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
10224 || (DW_BLOCK (attr)->size > 1
10225 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
10226 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
10227 {
10228 struct dwarf_block blk;
10229 int offset;
10230
10231 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
10232 ? 1 : 2);
10233 blk.size = DW_BLOCK (attr)->size - offset;
10234 blk.data = DW_BLOCK (attr)->data + offset;
10235 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
10236 if ((fnp->voffset % cu->header.addr_size) != 0)
10237 dwarf2_complex_location_expr_complaint ();
10238 else
10239 fnp->voffset /= cu->header.addr_size;
10240 fnp->voffset += 2;
10241 }
10242 else
10243 dwarf2_complex_location_expr_complaint ();
10244
10245 if (!fnp->fcontext)
10246 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
10247 }
10248 else if (attr_form_is_section_offset (attr))
10249 {
10250 dwarf2_complex_location_expr_complaint ();
10251 }
10252 else
10253 {
10254 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
10255 fieldname);
10256 }
10257 }
10258 else
10259 {
10260 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10261 if (attr && DW_UNSND (attr))
10262 {
10263 /* GCC does this, as of 2008-08-25; PR debug/37237. */
10264 complaint (&symfile_complaints,
10265 _("Member function \"%s\" (offset %d) is virtual "
10266 "but the vtable offset is not specified"),
10267 fieldname, die->offset.sect_off);
10268 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10269 TYPE_CPLUS_DYNAMIC (type) = 1;
10270 }
10271 }
10272 }
10273
10274 /* Create the vector of member function fields, and attach it to the type. */
10275
10276 static void
10277 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
10278 struct dwarf2_cu *cu)
10279 {
10280 struct fnfieldlist *flp;
10281 int i;
10282
10283 if (cu->language == language_ada)
10284 error (_("unexpected member functions in Ada type"));
10285
10286 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10287 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
10288 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
10289
10290 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
10291 {
10292 struct nextfnfield *nfp = flp->head;
10293 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
10294 int k;
10295
10296 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
10297 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
10298 fn_flp->fn_fields = (struct fn_field *)
10299 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
10300 for (k = flp->length; (k--, nfp); nfp = nfp->next)
10301 fn_flp->fn_fields[k] = nfp->fnfield;
10302 }
10303
10304 TYPE_NFN_FIELDS (type) = fip->nfnfields;
10305 }
10306
10307 /* Returns non-zero if NAME is the name of a vtable member in CU's
10308 language, zero otherwise. */
10309 static int
10310 is_vtable_name (const char *name, struct dwarf2_cu *cu)
10311 {
10312 static const char vptr[] = "_vptr";
10313 static const char vtable[] = "vtable";
10314
10315 /* Look for the C++ and Java forms of the vtable. */
10316 if ((cu->language == language_java
10317 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
10318 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
10319 && is_cplus_marker (name[sizeof (vptr) - 1])))
10320 return 1;
10321
10322 return 0;
10323 }
10324
10325 /* GCC outputs unnamed structures that are really pointers to member
10326 functions, with the ABI-specified layout. If TYPE describes
10327 such a structure, smash it into a member function type.
10328
10329 GCC shouldn't do this; it should just output pointer to member DIEs.
10330 This is GCC PR debug/28767. */
10331
10332 static void
10333 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
10334 {
10335 struct type *pfn_type, *domain_type, *new_type;
10336
10337 /* Check for a structure with no name and two children. */
10338 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
10339 return;
10340
10341 /* Check for __pfn and __delta members. */
10342 if (TYPE_FIELD_NAME (type, 0) == NULL
10343 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
10344 || TYPE_FIELD_NAME (type, 1) == NULL
10345 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
10346 return;
10347
10348 /* Find the type of the method. */
10349 pfn_type = TYPE_FIELD_TYPE (type, 0);
10350 if (pfn_type == NULL
10351 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
10352 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
10353 return;
10354
10355 /* Look for the "this" argument. */
10356 pfn_type = TYPE_TARGET_TYPE (pfn_type);
10357 if (TYPE_NFIELDS (pfn_type) == 0
10358 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
10359 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
10360 return;
10361
10362 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
10363 new_type = alloc_type (objfile);
10364 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
10365 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
10366 TYPE_VARARGS (pfn_type));
10367 smash_to_methodptr_type (type, new_type);
10368 }
10369
10370 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
10371 (icc). */
10372
10373 static int
10374 producer_is_icc (struct dwarf2_cu *cu)
10375 {
10376 if (!cu->checked_producer)
10377 check_producer (cu);
10378
10379 return cu->producer_is_icc;
10380 }
10381
10382 /* Called when we find the DIE that starts a structure or union scope
10383 (definition) to create a type for the structure or union. Fill in
10384 the type's name and general properties; the members will not be
10385 processed until process_structure_type.
10386
10387 NOTE: we need to call these functions regardless of whether or not the
10388 DIE has a DW_AT_name attribute, since it might be an anonymous
10389 structure or union. This gets the type entered into our set of
10390 user defined types.
10391
10392 However, if the structure is incomplete (an opaque struct/union)
10393 then suppress creating a symbol table entry for it since gdb only
10394 wants to find the one with the complete definition. Note that if
10395 it is complete, we just call new_symbol, which does it's own
10396 checking about whether the struct/union is anonymous or not (and
10397 suppresses creating a symbol table entry itself). */
10398
10399 static struct type *
10400 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
10401 {
10402 struct objfile *objfile = cu->objfile;
10403 struct type *type;
10404 struct attribute *attr;
10405 char *name;
10406
10407 /* If the definition of this type lives in .debug_types, read that type.
10408 Don't follow DW_AT_specification though, that will take us back up
10409 the chain and we want to go down. */
10410 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
10411 if (attr)
10412 {
10413 struct dwarf2_cu *type_cu = cu;
10414 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
10415
10416 /* We could just recurse on read_structure_type, but we need to call
10417 get_die_type to ensure only one type for this DIE is created.
10418 This is important, for example, because for c++ classes we need
10419 TYPE_NAME set which is only done by new_symbol. Blech. */
10420 type = read_type_die (type_die, type_cu);
10421
10422 /* TYPE_CU may not be the same as CU.
10423 Ensure TYPE is recorded in CU's type_hash table. */
10424 return set_die_type (die, type, cu);
10425 }
10426
10427 type = alloc_type (objfile);
10428 INIT_CPLUS_SPECIFIC (type);
10429
10430 name = dwarf2_name (die, cu);
10431 if (name != NULL)
10432 {
10433 if (cu->language == language_cplus
10434 || cu->language == language_java)
10435 {
10436 char *full_name = (char *) dwarf2_full_name (name, die, cu);
10437
10438 /* dwarf2_full_name might have already finished building the DIE's
10439 type. If so, there is no need to continue. */
10440 if (get_die_type (die, cu) != NULL)
10441 return get_die_type (die, cu);
10442
10443 TYPE_TAG_NAME (type) = full_name;
10444 if (die->tag == DW_TAG_structure_type
10445 || die->tag == DW_TAG_class_type)
10446 TYPE_NAME (type) = TYPE_TAG_NAME (type);
10447 }
10448 else
10449 {
10450 /* The name is already allocated along with this objfile, so
10451 we don't need to duplicate it for the type. */
10452 TYPE_TAG_NAME (type) = (char *) name;
10453 if (die->tag == DW_TAG_class_type)
10454 TYPE_NAME (type) = TYPE_TAG_NAME (type);
10455 }
10456 }
10457
10458 if (die->tag == DW_TAG_structure_type)
10459 {
10460 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10461 }
10462 else if (die->tag == DW_TAG_union_type)
10463 {
10464 TYPE_CODE (type) = TYPE_CODE_UNION;
10465 }
10466 else
10467 {
10468 TYPE_CODE (type) = TYPE_CODE_CLASS;
10469 }
10470
10471 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
10472 TYPE_DECLARED_CLASS (type) = 1;
10473
10474 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10475 if (attr)
10476 {
10477 TYPE_LENGTH (type) = DW_UNSND (attr);
10478 }
10479 else
10480 {
10481 TYPE_LENGTH (type) = 0;
10482 }
10483
10484 if (producer_is_icc (cu))
10485 {
10486 /* ICC does not output the required DW_AT_declaration
10487 on incomplete types, but gives them a size of zero. */
10488 }
10489 else
10490 TYPE_STUB_SUPPORTED (type) = 1;
10491
10492 if (die_is_declaration (die, cu))
10493 TYPE_STUB (type) = 1;
10494 else if (attr == NULL && die->child == NULL
10495 && producer_is_realview (cu->producer))
10496 /* RealView does not output the required DW_AT_declaration
10497 on incomplete types. */
10498 TYPE_STUB (type) = 1;
10499
10500 /* We need to add the type field to the die immediately so we don't
10501 infinitely recurse when dealing with pointers to the structure
10502 type within the structure itself. */
10503 set_die_type (die, type, cu);
10504
10505 /* set_die_type should be already done. */
10506 set_descriptive_type (type, die, cu);
10507
10508 return type;
10509 }
10510
10511 /* Finish creating a structure or union type, including filling in
10512 its members and creating a symbol for it. */
10513
10514 static void
10515 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
10516 {
10517 struct objfile *objfile = cu->objfile;
10518 struct die_info *child_die = die->child;
10519 struct type *type;
10520
10521 type = get_die_type (die, cu);
10522 if (type == NULL)
10523 type = read_structure_type (die, cu);
10524
10525 if (die->child != NULL && ! die_is_declaration (die, cu))
10526 {
10527 struct field_info fi;
10528 struct die_info *child_die;
10529 VEC (symbolp) *template_args = NULL;
10530 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
10531
10532 memset (&fi, 0, sizeof (struct field_info));
10533
10534 child_die = die->child;
10535
10536 while (child_die && child_die->tag)
10537 {
10538 if (child_die->tag == DW_TAG_member
10539 || child_die->tag == DW_TAG_variable)
10540 {
10541 /* NOTE: carlton/2002-11-05: A C++ static data member
10542 should be a DW_TAG_member that is a declaration, but
10543 all versions of G++ as of this writing (so through at
10544 least 3.2.1) incorrectly generate DW_TAG_variable
10545 tags for them instead. */
10546 dwarf2_add_field (&fi, child_die, cu);
10547 }
10548 else if (child_die->tag == DW_TAG_subprogram)
10549 {
10550 /* C++ member function. */
10551 dwarf2_add_member_fn (&fi, child_die, type, cu);
10552 }
10553 else if (child_die->tag == DW_TAG_inheritance)
10554 {
10555 /* C++ base class field. */
10556 dwarf2_add_field (&fi, child_die, cu);
10557 }
10558 else if (child_die->tag == DW_TAG_typedef)
10559 dwarf2_add_typedef (&fi, child_die, cu);
10560 else if (child_die->tag == DW_TAG_template_type_param
10561 || child_die->tag == DW_TAG_template_value_param)
10562 {
10563 struct symbol *arg = new_symbol (child_die, NULL, cu);
10564
10565 if (arg != NULL)
10566 VEC_safe_push (symbolp, template_args, arg);
10567 }
10568
10569 child_die = sibling_die (child_die);
10570 }
10571
10572 /* Attach template arguments to type. */
10573 if (! VEC_empty (symbolp, template_args))
10574 {
10575 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10576 TYPE_N_TEMPLATE_ARGUMENTS (type)
10577 = VEC_length (symbolp, template_args);
10578 TYPE_TEMPLATE_ARGUMENTS (type)
10579 = obstack_alloc (&objfile->objfile_obstack,
10580 (TYPE_N_TEMPLATE_ARGUMENTS (type)
10581 * sizeof (struct symbol *)));
10582 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
10583 VEC_address (symbolp, template_args),
10584 (TYPE_N_TEMPLATE_ARGUMENTS (type)
10585 * sizeof (struct symbol *)));
10586 VEC_free (symbolp, template_args);
10587 }
10588
10589 /* Attach fields and member functions to the type. */
10590 if (fi.nfields)
10591 dwarf2_attach_fields_to_type (&fi, type, cu);
10592 if (fi.nfnfields)
10593 {
10594 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
10595
10596 /* Get the type which refers to the base class (possibly this
10597 class itself) which contains the vtable pointer for the current
10598 class from the DW_AT_containing_type attribute. This use of
10599 DW_AT_containing_type is a GNU extension. */
10600
10601 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10602 {
10603 struct type *t = die_containing_type (die, cu);
10604
10605 TYPE_VPTR_BASETYPE (type) = t;
10606 if (type == t)
10607 {
10608 int i;
10609
10610 /* Our own class provides vtbl ptr. */
10611 for (i = TYPE_NFIELDS (t) - 1;
10612 i >= TYPE_N_BASECLASSES (t);
10613 --i)
10614 {
10615 const char *fieldname = TYPE_FIELD_NAME (t, i);
10616
10617 if (is_vtable_name (fieldname, cu))
10618 {
10619 TYPE_VPTR_FIELDNO (type) = i;
10620 break;
10621 }
10622 }
10623
10624 /* Complain if virtual function table field not found. */
10625 if (i < TYPE_N_BASECLASSES (t))
10626 complaint (&symfile_complaints,
10627 _("virtual function table pointer "
10628 "not found when defining class '%s'"),
10629 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
10630 "");
10631 }
10632 else
10633 {
10634 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
10635 }
10636 }
10637 else if (cu->producer
10638 && strncmp (cu->producer,
10639 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
10640 {
10641 /* The IBM XLC compiler does not provide direct indication
10642 of the containing type, but the vtable pointer is
10643 always named __vfp. */
10644
10645 int i;
10646
10647 for (i = TYPE_NFIELDS (type) - 1;
10648 i >= TYPE_N_BASECLASSES (type);
10649 --i)
10650 {
10651 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
10652 {
10653 TYPE_VPTR_FIELDNO (type) = i;
10654 TYPE_VPTR_BASETYPE (type) = type;
10655 break;
10656 }
10657 }
10658 }
10659 }
10660
10661 /* Copy fi.typedef_field_list linked list elements content into the
10662 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
10663 if (fi.typedef_field_list)
10664 {
10665 int i = fi.typedef_field_list_count;
10666
10667 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10668 TYPE_TYPEDEF_FIELD_ARRAY (type)
10669 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
10670 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
10671
10672 /* Reverse the list order to keep the debug info elements order. */
10673 while (--i >= 0)
10674 {
10675 struct typedef_field *dest, *src;
10676
10677 dest = &TYPE_TYPEDEF_FIELD (type, i);
10678 src = &fi.typedef_field_list->field;
10679 fi.typedef_field_list = fi.typedef_field_list->next;
10680 *dest = *src;
10681 }
10682 }
10683
10684 do_cleanups (back_to);
10685
10686 if (HAVE_CPLUS_STRUCT (type))
10687 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
10688 }
10689
10690 quirk_gcc_member_function_pointer (type, objfile);
10691
10692 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
10693 snapshots) has been known to create a die giving a declaration
10694 for a class that has, as a child, a die giving a definition for a
10695 nested class. So we have to process our children even if the
10696 current die is a declaration. Normally, of course, a declaration
10697 won't have any children at all. */
10698
10699 while (child_die != NULL && child_die->tag)
10700 {
10701 if (child_die->tag == DW_TAG_member
10702 || child_die->tag == DW_TAG_variable
10703 || child_die->tag == DW_TAG_inheritance
10704 || child_die->tag == DW_TAG_template_value_param
10705 || child_die->tag == DW_TAG_template_type_param)
10706 {
10707 /* Do nothing. */
10708 }
10709 else
10710 process_die (child_die, cu);
10711
10712 child_die = sibling_die (child_die);
10713 }
10714
10715 /* Do not consider external references. According to the DWARF standard,
10716 these DIEs are identified by the fact that they have no byte_size
10717 attribute, and a declaration attribute. */
10718 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
10719 || !die_is_declaration (die, cu))
10720 new_symbol (die, type, cu);
10721 }
10722
10723 /* Given a DW_AT_enumeration_type die, set its type. We do not
10724 complete the type's fields yet, or create any symbols. */
10725
10726 static struct type *
10727 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
10728 {
10729 struct objfile *objfile = cu->objfile;
10730 struct type *type;
10731 struct attribute *attr;
10732 const char *name;
10733
10734 /* If the definition of this type lives in .debug_types, read that type.
10735 Don't follow DW_AT_specification though, that will take us back up
10736 the chain and we want to go down. */
10737 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
10738 if (attr)
10739 {
10740 struct dwarf2_cu *type_cu = cu;
10741 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
10742
10743 type = read_type_die (type_die, type_cu);
10744
10745 /* TYPE_CU may not be the same as CU.
10746 Ensure TYPE is recorded in CU's type_hash table. */
10747 return set_die_type (die, type, cu);
10748 }
10749
10750 type = alloc_type (objfile);
10751
10752 TYPE_CODE (type) = TYPE_CODE_ENUM;
10753 name = dwarf2_full_name (NULL, die, cu);
10754 if (name != NULL)
10755 TYPE_TAG_NAME (type) = (char *) name;
10756
10757 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10758 if (attr)
10759 {
10760 TYPE_LENGTH (type) = DW_UNSND (attr);
10761 }
10762 else
10763 {
10764 TYPE_LENGTH (type) = 0;
10765 }
10766
10767 /* The enumeration DIE can be incomplete. In Ada, any type can be
10768 declared as private in the package spec, and then defined only
10769 inside the package body. Such types are known as Taft Amendment
10770 Types. When another package uses such a type, an incomplete DIE
10771 may be generated by the compiler. */
10772 if (die_is_declaration (die, cu))
10773 TYPE_STUB (type) = 1;
10774
10775 return set_die_type (die, type, cu);
10776 }
10777
10778 /* Given a pointer to a die which begins an enumeration, process all
10779 the dies that define the members of the enumeration, and create the
10780 symbol for the enumeration type.
10781
10782 NOTE: We reverse the order of the element list. */
10783
10784 static void
10785 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
10786 {
10787 struct type *this_type;
10788
10789 this_type = get_die_type (die, cu);
10790 if (this_type == NULL)
10791 this_type = read_enumeration_type (die, cu);
10792
10793 if (die->child != NULL)
10794 {
10795 struct die_info *child_die;
10796 struct symbol *sym;
10797 struct field *fields = NULL;
10798 int num_fields = 0;
10799 int unsigned_enum = 1;
10800 char *name;
10801 int flag_enum = 1;
10802 ULONGEST mask = 0;
10803
10804 child_die = die->child;
10805 while (child_die && child_die->tag)
10806 {
10807 if (child_die->tag != DW_TAG_enumerator)
10808 {
10809 process_die (child_die, cu);
10810 }
10811 else
10812 {
10813 name = dwarf2_name (child_die, cu);
10814 if (name)
10815 {
10816 sym = new_symbol (child_die, this_type, cu);
10817 if (SYMBOL_VALUE (sym) < 0)
10818 {
10819 unsigned_enum = 0;
10820 flag_enum = 0;
10821 }
10822 else if ((mask & SYMBOL_VALUE (sym)) != 0)
10823 flag_enum = 0;
10824 else
10825 mask |= SYMBOL_VALUE (sym);
10826
10827 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
10828 {
10829 fields = (struct field *)
10830 xrealloc (fields,
10831 (num_fields + DW_FIELD_ALLOC_CHUNK)
10832 * sizeof (struct field));
10833 }
10834
10835 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
10836 FIELD_TYPE (fields[num_fields]) = NULL;
10837 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
10838 FIELD_BITSIZE (fields[num_fields]) = 0;
10839
10840 num_fields++;
10841 }
10842 }
10843
10844 child_die = sibling_die (child_die);
10845 }
10846
10847 if (num_fields)
10848 {
10849 TYPE_NFIELDS (this_type) = num_fields;
10850 TYPE_FIELDS (this_type) = (struct field *)
10851 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
10852 memcpy (TYPE_FIELDS (this_type), fields,
10853 sizeof (struct field) * num_fields);
10854 xfree (fields);
10855 }
10856 if (unsigned_enum)
10857 TYPE_UNSIGNED (this_type) = 1;
10858 if (flag_enum)
10859 TYPE_FLAG_ENUM (this_type) = 1;
10860 }
10861
10862 /* If we are reading an enum from a .debug_types unit, and the enum
10863 is a declaration, and the enum is not the signatured type in the
10864 unit, then we do not want to add a symbol for it. Adding a
10865 symbol would in some cases obscure the true definition of the
10866 enum, giving users an incomplete type when the definition is
10867 actually available. Note that we do not want to do this for all
10868 enums which are just declarations, because C++0x allows forward
10869 enum declarations. */
10870 if (cu->per_cu->is_debug_types
10871 && die_is_declaration (die, cu))
10872 {
10873 struct signatured_type *sig_type;
10874
10875 sig_type
10876 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
10877 cu->per_cu->info_or_types_section,
10878 cu->per_cu->offset);
10879 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
10880 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
10881 return;
10882 }
10883
10884 new_symbol (die, this_type, cu);
10885 }
10886
10887 /* Extract all information from a DW_TAG_array_type DIE and put it in
10888 the DIE's type field. For now, this only handles one dimensional
10889 arrays. */
10890
10891 static struct type *
10892 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
10893 {
10894 struct objfile *objfile = cu->objfile;
10895 struct die_info *child_die;
10896 struct type *type;
10897 struct type *element_type, *range_type, *index_type;
10898 struct type **range_types = NULL;
10899 struct attribute *attr;
10900 int ndim = 0;
10901 struct cleanup *back_to;
10902 char *name;
10903
10904 element_type = die_type (die, cu);
10905
10906 /* The die_type call above may have already set the type for this DIE. */
10907 type = get_die_type (die, cu);
10908 if (type)
10909 return type;
10910
10911 /* Irix 6.2 native cc creates array types without children for
10912 arrays with unspecified length. */
10913 if (die->child == NULL)
10914 {
10915 index_type = objfile_type (objfile)->builtin_int;
10916 range_type = create_range_type (NULL, index_type, 0, -1);
10917 type = create_array_type (NULL, element_type, range_type);
10918 return set_die_type (die, type, cu);
10919 }
10920
10921 back_to = make_cleanup (null_cleanup, NULL);
10922 child_die = die->child;
10923 while (child_die && child_die->tag)
10924 {
10925 if (child_die->tag == DW_TAG_subrange_type)
10926 {
10927 struct type *child_type = read_type_die (child_die, cu);
10928
10929 if (child_type != NULL)
10930 {
10931 /* The range type was succesfully read. Save it for the
10932 array type creation. */
10933 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
10934 {
10935 range_types = (struct type **)
10936 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
10937 * sizeof (struct type *));
10938 if (ndim == 0)
10939 make_cleanup (free_current_contents, &range_types);
10940 }
10941 range_types[ndim++] = child_type;
10942 }
10943 }
10944 child_die = sibling_die (child_die);
10945 }
10946
10947 /* Dwarf2 dimensions are output from left to right, create the
10948 necessary array types in backwards order. */
10949
10950 type = element_type;
10951
10952 if (read_array_order (die, cu) == DW_ORD_col_major)
10953 {
10954 int i = 0;
10955
10956 while (i < ndim)
10957 type = create_array_type (NULL, type, range_types[i++]);
10958 }
10959 else
10960 {
10961 while (ndim-- > 0)
10962 type = create_array_type (NULL, type, range_types[ndim]);
10963 }
10964
10965 /* Understand Dwarf2 support for vector types (like they occur on
10966 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
10967 array type. This is not part of the Dwarf2/3 standard yet, but a
10968 custom vendor extension. The main difference between a regular
10969 array and the vector variant is that vectors are passed by value
10970 to functions. */
10971 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
10972 if (attr)
10973 make_vector_type (type);
10974
10975 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
10976 implementation may choose to implement triple vectors using this
10977 attribute. */
10978 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10979 if (attr)
10980 {
10981 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
10982 TYPE_LENGTH (type) = DW_UNSND (attr);
10983 else
10984 complaint (&symfile_complaints,
10985 _("DW_AT_byte_size for array type smaller "
10986 "than the total size of elements"));
10987 }
10988
10989 name = dwarf2_name (die, cu);
10990 if (name)
10991 TYPE_NAME (type) = name;
10992
10993 /* Install the type in the die. */
10994 set_die_type (die, type, cu);
10995
10996 /* set_die_type should be already done. */
10997 set_descriptive_type (type, die, cu);
10998
10999 do_cleanups (back_to);
11000
11001 return type;
11002 }
11003
11004 static enum dwarf_array_dim_ordering
11005 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11006 {
11007 struct attribute *attr;
11008
11009 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11010
11011 if (attr) return DW_SND (attr);
11012
11013 /* GNU F77 is a special case, as at 08/2004 array type info is the
11014 opposite order to the dwarf2 specification, but data is still
11015 laid out as per normal fortran.
11016
11017 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11018 version checking. */
11019
11020 if (cu->language == language_fortran
11021 && cu->producer && strstr (cu->producer, "GNU F77"))
11022 {
11023 return DW_ORD_row_major;
11024 }
11025
11026 switch (cu->language_defn->la_array_ordering)
11027 {
11028 case array_column_major:
11029 return DW_ORD_col_major;
11030 case array_row_major:
11031 default:
11032 return DW_ORD_row_major;
11033 };
11034 }
11035
11036 /* Extract all information from a DW_TAG_set_type DIE and put it in
11037 the DIE's type field. */
11038
11039 static struct type *
11040 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11041 {
11042 struct type *domain_type, *set_type;
11043 struct attribute *attr;
11044
11045 domain_type = die_type (die, cu);
11046
11047 /* The die_type call above may have already set the type for this DIE. */
11048 set_type = get_die_type (die, cu);
11049 if (set_type)
11050 return set_type;
11051
11052 set_type = create_set_type (NULL, domain_type);
11053
11054 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11055 if (attr)
11056 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11057
11058 return set_die_type (die, set_type, cu);
11059 }
11060
11061 /* First cut: install each common block member as a global variable. */
11062
11063 static void
11064 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11065 {
11066 struct die_info *child_die;
11067 struct attribute *attr;
11068 struct symbol *sym;
11069 CORE_ADDR base = (CORE_ADDR) 0;
11070
11071 attr = dwarf2_attr (die, DW_AT_location, cu);
11072 if (attr)
11073 {
11074 /* Support the .debug_loc offsets. */
11075 if (attr_form_is_block (attr))
11076 {
11077 base = decode_locdesc (DW_BLOCK (attr), cu);
11078 }
11079 else if (attr_form_is_section_offset (attr))
11080 {
11081 dwarf2_complex_location_expr_complaint ();
11082 }
11083 else
11084 {
11085 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11086 "common block member");
11087 }
11088 }
11089 if (die->child != NULL)
11090 {
11091 child_die = die->child;
11092 while (child_die && child_die->tag)
11093 {
11094 LONGEST offset;
11095
11096 sym = new_symbol (child_die, NULL, cu);
11097 if (sym != NULL
11098 && handle_data_member_location (child_die, cu, &offset))
11099 {
11100 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
11101 add_symbol_to_list (sym, &global_symbols);
11102 }
11103 child_die = sibling_die (child_die);
11104 }
11105 }
11106 }
11107
11108 /* Create a type for a C++ namespace. */
11109
11110 static struct type *
11111 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
11112 {
11113 struct objfile *objfile = cu->objfile;
11114 const char *previous_prefix, *name;
11115 int is_anonymous;
11116 struct type *type;
11117
11118 /* For extensions, reuse the type of the original namespace. */
11119 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
11120 {
11121 struct die_info *ext_die;
11122 struct dwarf2_cu *ext_cu = cu;
11123
11124 ext_die = dwarf2_extension (die, &ext_cu);
11125 type = read_type_die (ext_die, ext_cu);
11126
11127 /* EXT_CU may not be the same as CU.
11128 Ensure TYPE is recorded in CU's type_hash table. */
11129 return set_die_type (die, type, cu);
11130 }
11131
11132 name = namespace_name (die, &is_anonymous, cu);
11133
11134 /* Now build the name of the current namespace. */
11135
11136 previous_prefix = determine_prefix (die, cu);
11137 if (previous_prefix[0] != '\0')
11138 name = typename_concat (&objfile->objfile_obstack,
11139 previous_prefix, name, 0, cu);
11140
11141 /* Create the type. */
11142 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
11143 objfile);
11144 TYPE_NAME (type) = (char *) name;
11145 TYPE_TAG_NAME (type) = TYPE_NAME (type);
11146
11147 return set_die_type (die, type, cu);
11148 }
11149
11150 /* Read a C++ namespace. */
11151
11152 static void
11153 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
11154 {
11155 struct objfile *objfile = cu->objfile;
11156 int is_anonymous;
11157
11158 /* Add a symbol associated to this if we haven't seen the namespace
11159 before. Also, add a using directive if it's an anonymous
11160 namespace. */
11161
11162 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
11163 {
11164 struct type *type;
11165
11166 type = read_type_die (die, cu);
11167 new_symbol (die, type, cu);
11168
11169 namespace_name (die, &is_anonymous, cu);
11170 if (is_anonymous)
11171 {
11172 const char *previous_prefix = determine_prefix (die, cu);
11173
11174 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
11175 NULL, NULL, &objfile->objfile_obstack);
11176 }
11177 }
11178
11179 if (die->child != NULL)
11180 {
11181 struct die_info *child_die = die->child;
11182
11183 while (child_die && child_die->tag)
11184 {
11185 process_die (child_die, cu);
11186 child_die = sibling_die (child_die);
11187 }
11188 }
11189 }
11190
11191 /* Read a Fortran module as type. This DIE can be only a declaration used for
11192 imported module. Still we need that type as local Fortran "use ... only"
11193 declaration imports depend on the created type in determine_prefix. */
11194
11195 static struct type *
11196 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
11197 {
11198 struct objfile *objfile = cu->objfile;
11199 char *module_name;
11200 struct type *type;
11201
11202 module_name = dwarf2_name (die, cu);
11203 if (!module_name)
11204 complaint (&symfile_complaints,
11205 _("DW_TAG_module has no name, offset 0x%x"),
11206 die->offset.sect_off);
11207 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
11208
11209 /* determine_prefix uses TYPE_TAG_NAME. */
11210 TYPE_TAG_NAME (type) = TYPE_NAME (type);
11211
11212 return set_die_type (die, type, cu);
11213 }
11214
11215 /* Read a Fortran module. */
11216
11217 static void
11218 read_module (struct die_info *die, struct dwarf2_cu *cu)
11219 {
11220 struct die_info *child_die = die->child;
11221
11222 while (child_die && child_die->tag)
11223 {
11224 process_die (child_die, cu);
11225 child_die = sibling_die (child_die);
11226 }
11227 }
11228
11229 /* Return the name of the namespace represented by DIE. Set
11230 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
11231 namespace. */
11232
11233 static const char *
11234 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
11235 {
11236 struct die_info *current_die;
11237 const char *name = NULL;
11238
11239 /* Loop through the extensions until we find a name. */
11240
11241 for (current_die = die;
11242 current_die != NULL;
11243 current_die = dwarf2_extension (die, &cu))
11244 {
11245 name = dwarf2_name (current_die, cu);
11246 if (name != NULL)
11247 break;
11248 }
11249
11250 /* Is it an anonymous namespace? */
11251
11252 *is_anonymous = (name == NULL);
11253 if (*is_anonymous)
11254 name = CP_ANONYMOUS_NAMESPACE_STR;
11255
11256 return name;
11257 }
11258
11259 /* Extract all information from a DW_TAG_pointer_type DIE and add to
11260 the user defined type vector. */
11261
11262 static struct type *
11263 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
11264 {
11265 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
11266 struct comp_unit_head *cu_header = &cu->header;
11267 struct type *type;
11268 struct attribute *attr_byte_size;
11269 struct attribute *attr_address_class;
11270 int byte_size, addr_class;
11271 struct type *target_type;
11272
11273 target_type = die_type (die, cu);
11274
11275 /* The die_type call above may have already set the type for this DIE. */
11276 type = get_die_type (die, cu);
11277 if (type)
11278 return type;
11279
11280 type = lookup_pointer_type (target_type);
11281
11282 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
11283 if (attr_byte_size)
11284 byte_size = DW_UNSND (attr_byte_size);
11285 else
11286 byte_size = cu_header->addr_size;
11287
11288 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
11289 if (attr_address_class)
11290 addr_class = DW_UNSND (attr_address_class);
11291 else
11292 addr_class = DW_ADDR_none;
11293
11294 /* If the pointer size or address class is different than the
11295 default, create a type variant marked as such and set the
11296 length accordingly. */
11297 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
11298 {
11299 if (gdbarch_address_class_type_flags_p (gdbarch))
11300 {
11301 int type_flags;
11302
11303 type_flags = gdbarch_address_class_type_flags
11304 (gdbarch, byte_size, addr_class);
11305 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
11306 == 0);
11307 type = make_type_with_address_space (type, type_flags);
11308 }
11309 else if (TYPE_LENGTH (type) != byte_size)
11310 {
11311 complaint (&symfile_complaints,
11312 _("invalid pointer size %d"), byte_size);
11313 }
11314 else
11315 {
11316 /* Should we also complain about unhandled address classes? */
11317 }
11318 }
11319
11320 TYPE_LENGTH (type) = byte_size;
11321 return set_die_type (die, type, cu);
11322 }
11323
11324 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
11325 the user defined type vector. */
11326
11327 static struct type *
11328 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
11329 {
11330 struct type *type;
11331 struct type *to_type;
11332 struct type *domain;
11333
11334 to_type = die_type (die, cu);
11335 domain = die_containing_type (die, cu);
11336
11337 /* The calls above may have already set the type for this DIE. */
11338 type = get_die_type (die, cu);
11339 if (type)
11340 return type;
11341
11342 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
11343 type = lookup_methodptr_type (to_type);
11344 else
11345 type = lookup_memberptr_type (to_type, domain);
11346
11347 return set_die_type (die, type, cu);
11348 }
11349
11350 /* Extract all information from a DW_TAG_reference_type DIE and add to
11351 the user defined type vector. */
11352
11353 static struct type *
11354 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
11355 {
11356 struct comp_unit_head *cu_header = &cu->header;
11357 struct type *type, *target_type;
11358 struct attribute *attr;
11359
11360 target_type = die_type (die, cu);
11361
11362 /* The die_type call above may have already set the type for this DIE. */
11363 type = get_die_type (die, cu);
11364 if (type)
11365 return type;
11366
11367 type = lookup_reference_type (target_type);
11368 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11369 if (attr)
11370 {
11371 TYPE_LENGTH (type) = DW_UNSND (attr);
11372 }
11373 else
11374 {
11375 TYPE_LENGTH (type) = cu_header->addr_size;
11376 }
11377 return set_die_type (die, type, cu);
11378 }
11379
11380 static struct type *
11381 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
11382 {
11383 struct type *base_type, *cv_type;
11384
11385 base_type = die_type (die, cu);
11386
11387 /* The die_type call above may have already set the type for this DIE. */
11388 cv_type = get_die_type (die, cu);
11389 if (cv_type)
11390 return cv_type;
11391
11392 /* In case the const qualifier is applied to an array type, the element type
11393 is so qualified, not the array type (section 6.7.3 of C99). */
11394 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
11395 {
11396 struct type *el_type, *inner_array;
11397
11398 base_type = copy_type (base_type);
11399 inner_array = base_type;
11400
11401 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
11402 {
11403 TYPE_TARGET_TYPE (inner_array) =
11404 copy_type (TYPE_TARGET_TYPE (inner_array));
11405 inner_array = TYPE_TARGET_TYPE (inner_array);
11406 }
11407
11408 el_type = TYPE_TARGET_TYPE (inner_array);
11409 TYPE_TARGET_TYPE (inner_array) =
11410 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
11411
11412 return set_die_type (die, base_type, cu);
11413 }
11414
11415 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
11416 return set_die_type (die, cv_type, cu);
11417 }
11418
11419 static struct type *
11420 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
11421 {
11422 struct type *base_type, *cv_type;
11423
11424 base_type = die_type (die, cu);
11425
11426 /* The die_type call above may have already set the type for this DIE. */
11427 cv_type = get_die_type (die, cu);
11428 if (cv_type)
11429 return cv_type;
11430
11431 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
11432 return set_die_type (die, cv_type, cu);
11433 }
11434
11435 /* Extract all information from a DW_TAG_string_type DIE and add to
11436 the user defined type vector. It isn't really a user defined type,
11437 but it behaves like one, with other DIE's using an AT_user_def_type
11438 attribute to reference it. */
11439
11440 static struct type *
11441 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
11442 {
11443 struct objfile *objfile = cu->objfile;
11444 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11445 struct type *type, *range_type, *index_type, *char_type;
11446 struct attribute *attr;
11447 unsigned int length;
11448
11449 attr = dwarf2_attr (die, DW_AT_string_length, cu);
11450 if (attr)
11451 {
11452 length = DW_UNSND (attr);
11453 }
11454 else
11455 {
11456 /* Check for the DW_AT_byte_size attribute. */
11457 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11458 if (attr)
11459 {
11460 length = DW_UNSND (attr);
11461 }
11462 else
11463 {
11464 length = 1;
11465 }
11466 }
11467
11468 index_type = objfile_type (objfile)->builtin_int;
11469 range_type = create_range_type (NULL, index_type, 1, length);
11470 char_type = language_string_char_type (cu->language_defn, gdbarch);
11471 type = create_string_type (NULL, char_type, range_type);
11472
11473 return set_die_type (die, type, cu);
11474 }
11475
11476 /* Handle DIES due to C code like:
11477
11478 struct foo
11479 {
11480 int (*funcp)(int a, long l);
11481 int b;
11482 };
11483
11484 ('funcp' generates a DW_TAG_subroutine_type DIE). */
11485
11486 static struct type *
11487 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
11488 {
11489 struct objfile *objfile = cu->objfile;
11490 struct type *type; /* Type that this function returns. */
11491 struct type *ftype; /* Function that returns above type. */
11492 struct attribute *attr;
11493
11494 type = die_type (die, cu);
11495
11496 /* The die_type call above may have already set the type for this DIE. */
11497 ftype = get_die_type (die, cu);
11498 if (ftype)
11499 return ftype;
11500
11501 ftype = lookup_function_type (type);
11502
11503 /* All functions in C++, Pascal and Java have prototypes. */
11504 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
11505 if ((attr && (DW_UNSND (attr) != 0))
11506 || cu->language == language_cplus
11507 || cu->language == language_java
11508 || cu->language == language_pascal)
11509 TYPE_PROTOTYPED (ftype) = 1;
11510 else if (producer_is_realview (cu->producer))
11511 /* RealView does not emit DW_AT_prototyped. We can not
11512 distinguish prototyped and unprototyped functions; default to
11513 prototyped, since that is more common in modern code (and
11514 RealView warns about unprototyped functions). */
11515 TYPE_PROTOTYPED (ftype) = 1;
11516
11517 /* Store the calling convention in the type if it's available in
11518 the subroutine die. Otherwise set the calling convention to
11519 the default value DW_CC_normal. */
11520 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
11521 if (attr)
11522 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
11523 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
11524 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
11525 else
11526 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
11527
11528 /* We need to add the subroutine type to the die immediately so
11529 we don't infinitely recurse when dealing with parameters
11530 declared as the same subroutine type. */
11531 set_die_type (die, ftype, cu);
11532
11533 if (die->child != NULL)
11534 {
11535 struct type *void_type = objfile_type (objfile)->builtin_void;
11536 struct die_info *child_die;
11537 int nparams, iparams;
11538
11539 /* Count the number of parameters.
11540 FIXME: GDB currently ignores vararg functions, but knows about
11541 vararg member functions. */
11542 nparams = 0;
11543 child_die = die->child;
11544 while (child_die && child_die->tag)
11545 {
11546 if (child_die->tag == DW_TAG_formal_parameter)
11547 nparams++;
11548 else if (child_die->tag == DW_TAG_unspecified_parameters)
11549 TYPE_VARARGS (ftype) = 1;
11550 child_die = sibling_die (child_die);
11551 }
11552
11553 /* Allocate storage for parameters and fill them in. */
11554 TYPE_NFIELDS (ftype) = nparams;
11555 TYPE_FIELDS (ftype) = (struct field *)
11556 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
11557
11558 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
11559 even if we error out during the parameters reading below. */
11560 for (iparams = 0; iparams < nparams; iparams++)
11561 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
11562
11563 iparams = 0;
11564 child_die = die->child;
11565 while (child_die && child_die->tag)
11566 {
11567 if (child_die->tag == DW_TAG_formal_parameter)
11568 {
11569 struct type *arg_type;
11570
11571 /* DWARF version 2 has no clean way to discern C++
11572 static and non-static member functions. G++ helps
11573 GDB by marking the first parameter for non-static
11574 member functions (which is the this pointer) as
11575 artificial. We pass this information to
11576 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
11577
11578 DWARF version 3 added DW_AT_object_pointer, which GCC
11579 4.5 does not yet generate. */
11580 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
11581 if (attr)
11582 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
11583 else
11584 {
11585 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
11586
11587 /* GCC/43521: In java, the formal parameter
11588 "this" is sometimes not marked with DW_AT_artificial. */
11589 if (cu->language == language_java)
11590 {
11591 const char *name = dwarf2_name (child_die, cu);
11592
11593 if (name && !strcmp (name, "this"))
11594 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
11595 }
11596 }
11597 arg_type = die_type (child_die, cu);
11598
11599 /* RealView does not mark THIS as const, which the testsuite
11600 expects. GCC marks THIS as const in method definitions,
11601 but not in the class specifications (GCC PR 43053). */
11602 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
11603 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
11604 {
11605 int is_this = 0;
11606 struct dwarf2_cu *arg_cu = cu;
11607 const char *name = dwarf2_name (child_die, cu);
11608
11609 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
11610 if (attr)
11611 {
11612 /* If the compiler emits this, use it. */
11613 if (follow_die_ref (die, attr, &arg_cu) == child_die)
11614 is_this = 1;
11615 }
11616 else if (name && strcmp (name, "this") == 0)
11617 /* Function definitions will have the argument names. */
11618 is_this = 1;
11619 else if (name == NULL && iparams == 0)
11620 /* Declarations may not have the names, so like
11621 elsewhere in GDB, assume an artificial first
11622 argument is "this". */
11623 is_this = 1;
11624
11625 if (is_this)
11626 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
11627 arg_type, 0);
11628 }
11629
11630 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
11631 iparams++;
11632 }
11633 child_die = sibling_die (child_die);
11634 }
11635 }
11636
11637 return ftype;
11638 }
11639
11640 static struct type *
11641 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
11642 {
11643 struct objfile *objfile = cu->objfile;
11644 const char *name = NULL;
11645 struct type *this_type, *target_type;
11646
11647 name = dwarf2_full_name (NULL, die, cu);
11648 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
11649 TYPE_FLAG_TARGET_STUB, NULL, objfile);
11650 TYPE_NAME (this_type) = (char *) name;
11651 set_die_type (die, this_type, cu);
11652 target_type = die_type (die, cu);
11653 if (target_type != this_type)
11654 TYPE_TARGET_TYPE (this_type) = target_type;
11655 else
11656 {
11657 /* Self-referential typedefs are, it seems, not allowed by the DWARF
11658 spec and cause infinite loops in GDB. */
11659 complaint (&symfile_complaints,
11660 _("Self-referential DW_TAG_typedef "
11661 "- DIE at 0x%x [in module %s]"),
11662 die->offset.sect_off, objfile->name);
11663 TYPE_TARGET_TYPE (this_type) = NULL;
11664 }
11665 return this_type;
11666 }
11667
11668 /* Find a representation of a given base type and install
11669 it in the TYPE field of the die. */
11670
11671 static struct type *
11672 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
11673 {
11674 struct objfile *objfile = cu->objfile;
11675 struct type *type;
11676 struct attribute *attr;
11677 int encoding = 0, size = 0;
11678 char *name;
11679 enum type_code code = TYPE_CODE_INT;
11680 int type_flags = 0;
11681 struct type *target_type = NULL;
11682
11683 attr = dwarf2_attr (die, DW_AT_encoding, cu);
11684 if (attr)
11685 {
11686 encoding = DW_UNSND (attr);
11687 }
11688 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11689 if (attr)
11690 {
11691 size = DW_UNSND (attr);
11692 }
11693 name = dwarf2_name (die, cu);
11694 if (!name)
11695 {
11696 complaint (&symfile_complaints,
11697 _("DW_AT_name missing from DW_TAG_base_type"));
11698 }
11699
11700 switch (encoding)
11701 {
11702 case DW_ATE_address:
11703 /* Turn DW_ATE_address into a void * pointer. */
11704 code = TYPE_CODE_PTR;
11705 type_flags |= TYPE_FLAG_UNSIGNED;
11706 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
11707 break;
11708 case DW_ATE_boolean:
11709 code = TYPE_CODE_BOOL;
11710 type_flags |= TYPE_FLAG_UNSIGNED;
11711 break;
11712 case DW_ATE_complex_float:
11713 code = TYPE_CODE_COMPLEX;
11714 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
11715 break;
11716 case DW_ATE_decimal_float:
11717 code = TYPE_CODE_DECFLOAT;
11718 break;
11719 case DW_ATE_float:
11720 code = TYPE_CODE_FLT;
11721 break;
11722 case DW_ATE_signed:
11723 break;
11724 case DW_ATE_unsigned:
11725 type_flags |= TYPE_FLAG_UNSIGNED;
11726 if (cu->language == language_fortran
11727 && name
11728 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
11729 code = TYPE_CODE_CHAR;
11730 break;
11731 case DW_ATE_signed_char:
11732 if (cu->language == language_ada || cu->language == language_m2
11733 || cu->language == language_pascal
11734 || cu->language == language_fortran)
11735 code = TYPE_CODE_CHAR;
11736 break;
11737 case DW_ATE_unsigned_char:
11738 if (cu->language == language_ada || cu->language == language_m2
11739 || cu->language == language_pascal
11740 || cu->language == language_fortran)
11741 code = TYPE_CODE_CHAR;
11742 type_flags |= TYPE_FLAG_UNSIGNED;
11743 break;
11744 case DW_ATE_UTF:
11745 /* We just treat this as an integer and then recognize the
11746 type by name elsewhere. */
11747 break;
11748
11749 default:
11750 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
11751 dwarf_type_encoding_name (encoding));
11752 break;
11753 }
11754
11755 type = init_type (code, size, type_flags, NULL, objfile);
11756 TYPE_NAME (type) = name;
11757 TYPE_TARGET_TYPE (type) = target_type;
11758
11759 if (name && strcmp (name, "char") == 0)
11760 TYPE_NOSIGN (type) = 1;
11761
11762 return set_die_type (die, type, cu);
11763 }
11764
11765 /* Read the given DW_AT_subrange DIE. */
11766
11767 static struct type *
11768 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
11769 {
11770 struct type *base_type;
11771 struct type *range_type;
11772 struct attribute *attr;
11773 LONGEST low, high;
11774 int low_default_is_valid;
11775 char *name;
11776 LONGEST negative_mask;
11777
11778 base_type = die_type (die, cu);
11779 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
11780 check_typedef (base_type);
11781
11782 /* The die_type call above may have already set the type for this DIE. */
11783 range_type = get_die_type (die, cu);
11784 if (range_type)
11785 return range_type;
11786
11787 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
11788 omitting DW_AT_lower_bound. */
11789 switch (cu->language)
11790 {
11791 case language_c:
11792 case language_cplus:
11793 low = 0;
11794 low_default_is_valid = 1;
11795 break;
11796 case language_fortran:
11797 low = 1;
11798 low_default_is_valid = 1;
11799 break;
11800 case language_d:
11801 case language_java:
11802 case language_objc:
11803 low = 0;
11804 low_default_is_valid = (cu->header.version >= 4);
11805 break;
11806 case language_ada:
11807 case language_m2:
11808 case language_pascal:
11809 low = 1;
11810 low_default_is_valid = (cu->header.version >= 4);
11811 break;
11812 default:
11813 low = 0;
11814 low_default_is_valid = 0;
11815 break;
11816 }
11817
11818 /* FIXME: For variable sized arrays either of these could be
11819 a variable rather than a constant value. We'll allow it,
11820 but we don't know how to handle it. */
11821 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
11822 if (attr)
11823 low = dwarf2_get_attr_constant_value (attr, low);
11824 else if (!low_default_is_valid)
11825 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
11826 "- DIE at 0x%x [in module %s]"),
11827 die->offset.sect_off, cu->objfile->name);
11828
11829 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
11830 if (attr)
11831 {
11832 if (attr_form_is_block (attr) || is_ref_attr (attr))
11833 {
11834 /* GCC encodes arrays with unspecified or dynamic length
11835 with a DW_FORM_block1 attribute or a reference attribute.
11836 FIXME: GDB does not yet know how to handle dynamic
11837 arrays properly, treat them as arrays with unspecified
11838 length for now.
11839
11840 FIXME: jimb/2003-09-22: GDB does not really know
11841 how to handle arrays of unspecified length
11842 either; we just represent them as zero-length
11843 arrays. Choose an appropriate upper bound given
11844 the lower bound we've computed above. */
11845 high = low - 1;
11846 }
11847 else
11848 high = dwarf2_get_attr_constant_value (attr, 1);
11849 }
11850 else
11851 {
11852 attr = dwarf2_attr (die, DW_AT_count, cu);
11853 if (attr)
11854 {
11855 int count = dwarf2_get_attr_constant_value (attr, 1);
11856 high = low + count - 1;
11857 }
11858 else
11859 {
11860 /* Unspecified array length. */
11861 high = low - 1;
11862 }
11863 }
11864
11865 /* Dwarf-2 specifications explicitly allows to create subrange types
11866 without specifying a base type.
11867 In that case, the base type must be set to the type of
11868 the lower bound, upper bound or count, in that order, if any of these
11869 three attributes references an object that has a type.
11870 If no base type is found, the Dwarf-2 specifications say that
11871 a signed integer type of size equal to the size of an address should
11872 be used.
11873 For the following C code: `extern char gdb_int [];'
11874 GCC produces an empty range DIE.
11875 FIXME: muller/2010-05-28: Possible references to object for low bound,
11876 high bound or count are not yet handled by this code. */
11877 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
11878 {
11879 struct objfile *objfile = cu->objfile;
11880 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11881 int addr_size = gdbarch_addr_bit (gdbarch) /8;
11882 struct type *int_type = objfile_type (objfile)->builtin_int;
11883
11884 /* Test "int", "long int", and "long long int" objfile types,
11885 and select the first one having a size above or equal to the
11886 architecture address size. */
11887 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
11888 base_type = int_type;
11889 else
11890 {
11891 int_type = objfile_type (objfile)->builtin_long;
11892 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
11893 base_type = int_type;
11894 else
11895 {
11896 int_type = objfile_type (objfile)->builtin_long_long;
11897 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
11898 base_type = int_type;
11899 }
11900 }
11901 }
11902
11903 negative_mask =
11904 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
11905 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
11906 low |= negative_mask;
11907 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
11908 high |= negative_mask;
11909
11910 range_type = create_range_type (NULL, base_type, low, high);
11911
11912 /* Mark arrays with dynamic length at least as an array of unspecified
11913 length. GDB could check the boundary but before it gets implemented at
11914 least allow accessing the array elements. */
11915 if (attr && attr_form_is_block (attr))
11916 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
11917
11918 /* Ada expects an empty array on no boundary attributes. */
11919 if (attr == NULL && cu->language != language_ada)
11920 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
11921
11922 name = dwarf2_name (die, cu);
11923 if (name)
11924 TYPE_NAME (range_type) = name;
11925
11926 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11927 if (attr)
11928 TYPE_LENGTH (range_type) = DW_UNSND (attr);
11929
11930 set_die_type (die, range_type, cu);
11931
11932 /* set_die_type should be already done. */
11933 set_descriptive_type (range_type, die, cu);
11934
11935 return range_type;
11936 }
11937
11938 static struct type *
11939 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
11940 {
11941 struct type *type;
11942
11943 /* For now, we only support the C meaning of an unspecified type: void. */
11944
11945 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
11946 TYPE_NAME (type) = dwarf2_name (die, cu);
11947
11948 return set_die_type (die, type, cu);
11949 }
11950
11951 /* Read a single die and all its descendents. Set the die's sibling
11952 field to NULL; set other fields in the die correctly, and set all
11953 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
11954 location of the info_ptr after reading all of those dies. PARENT
11955 is the parent of the die in question. */
11956
11957 static struct die_info *
11958 read_die_and_children (const struct die_reader_specs *reader,
11959 gdb_byte *info_ptr,
11960 gdb_byte **new_info_ptr,
11961 struct die_info *parent)
11962 {
11963 struct die_info *die;
11964 gdb_byte *cur_ptr;
11965 int has_children;
11966
11967 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
11968 if (die == NULL)
11969 {
11970 *new_info_ptr = cur_ptr;
11971 return NULL;
11972 }
11973 store_in_ref_table (die, reader->cu);
11974
11975 if (has_children)
11976 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
11977 else
11978 {
11979 die->child = NULL;
11980 *new_info_ptr = cur_ptr;
11981 }
11982
11983 die->sibling = NULL;
11984 die->parent = parent;
11985 return die;
11986 }
11987
11988 /* Read a die, all of its descendents, and all of its siblings; set
11989 all of the fields of all of the dies correctly. Arguments are as
11990 in read_die_and_children. */
11991
11992 static struct die_info *
11993 read_die_and_siblings (const struct die_reader_specs *reader,
11994 gdb_byte *info_ptr,
11995 gdb_byte **new_info_ptr,
11996 struct die_info *parent)
11997 {
11998 struct die_info *first_die, *last_sibling;
11999 gdb_byte *cur_ptr;
12000
12001 cur_ptr = info_ptr;
12002 first_die = last_sibling = NULL;
12003
12004 while (1)
12005 {
12006 struct die_info *die
12007 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12008
12009 if (die == NULL)
12010 {
12011 *new_info_ptr = cur_ptr;
12012 return first_die;
12013 }
12014
12015 if (!first_die)
12016 first_die = die;
12017 else
12018 last_sibling->sibling = die;
12019
12020 last_sibling = die;
12021 }
12022 }
12023
12024 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12025 attributes.
12026 The caller is responsible for filling in the extra attributes
12027 and updating (*DIEP)->num_attrs.
12028 Set DIEP to point to a newly allocated die with its information,
12029 except for its child, sibling, and parent fields.
12030 Set HAS_CHILDREN to tell whether the die has children or not. */
12031
12032 static gdb_byte *
12033 read_full_die_1 (const struct die_reader_specs *reader,
12034 struct die_info **diep, gdb_byte *info_ptr,
12035 int *has_children, int num_extra_attrs)
12036 {
12037 unsigned int abbrev_number, bytes_read, i;
12038 sect_offset offset;
12039 struct abbrev_info *abbrev;
12040 struct die_info *die;
12041 struct dwarf2_cu *cu = reader->cu;
12042 bfd *abfd = reader->abfd;
12043
12044 offset.sect_off = info_ptr - reader->buffer;
12045 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12046 info_ptr += bytes_read;
12047 if (!abbrev_number)
12048 {
12049 *diep = NULL;
12050 *has_children = 0;
12051 return info_ptr;
12052 }
12053
12054 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
12055 if (!abbrev)
12056 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
12057 abbrev_number,
12058 bfd_get_filename (abfd));
12059
12060 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
12061 die->offset = offset;
12062 die->tag = abbrev->tag;
12063 die->abbrev = abbrev_number;
12064
12065 /* Make the result usable.
12066 The caller needs to update num_attrs after adding the extra
12067 attributes. */
12068 die->num_attrs = abbrev->num_attrs;
12069
12070 for (i = 0; i < abbrev->num_attrs; ++i)
12071 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
12072 info_ptr);
12073
12074 *diep = die;
12075 *has_children = abbrev->has_children;
12076 return info_ptr;
12077 }
12078
12079 /* Read a die and all its attributes.
12080 Set DIEP to point to a newly allocated die with its information,
12081 except for its child, sibling, and parent fields.
12082 Set HAS_CHILDREN to tell whether the die has children or not. */
12083
12084 static gdb_byte *
12085 read_full_die (const struct die_reader_specs *reader,
12086 struct die_info **diep, gdb_byte *info_ptr,
12087 int *has_children)
12088 {
12089 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
12090 }
12091 \f
12092 /* Abbreviation tables.
12093
12094 In DWARF version 2, the description of the debugging information is
12095 stored in a separate .debug_abbrev section. Before we read any
12096 dies from a section we read in all abbreviations and install them
12097 in a hash table. */
12098
12099 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
12100
12101 static struct abbrev_info *
12102 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
12103 {
12104 struct abbrev_info *abbrev;
12105
12106 abbrev = (struct abbrev_info *)
12107 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
12108 memset (abbrev, 0, sizeof (struct abbrev_info));
12109 return abbrev;
12110 }
12111
12112 /* Add an abbreviation to the table. */
12113
12114 static void
12115 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
12116 unsigned int abbrev_number,
12117 struct abbrev_info *abbrev)
12118 {
12119 unsigned int hash_number;
12120
12121 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12122 abbrev->next = abbrev_table->abbrevs[hash_number];
12123 abbrev_table->abbrevs[hash_number] = abbrev;
12124 }
12125
12126 /* Look up an abbrev in the table.
12127 Returns NULL if the abbrev is not found. */
12128
12129 static struct abbrev_info *
12130 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
12131 unsigned int abbrev_number)
12132 {
12133 unsigned int hash_number;
12134 struct abbrev_info *abbrev;
12135
12136 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12137 abbrev = abbrev_table->abbrevs[hash_number];
12138
12139 while (abbrev)
12140 {
12141 if (abbrev->number == abbrev_number)
12142 return abbrev;
12143 abbrev = abbrev->next;
12144 }
12145 return NULL;
12146 }
12147
12148 /* Read in an abbrev table. */
12149
12150 static struct abbrev_table *
12151 abbrev_table_read_table (struct dwarf2_section_info *section,
12152 sect_offset offset)
12153 {
12154 struct objfile *objfile = dwarf2_per_objfile->objfile;
12155 bfd *abfd = section->asection->owner;
12156 struct abbrev_table *abbrev_table;
12157 gdb_byte *abbrev_ptr;
12158 struct abbrev_info *cur_abbrev;
12159 unsigned int abbrev_number, bytes_read, abbrev_name;
12160 unsigned int abbrev_form;
12161 struct attr_abbrev *cur_attrs;
12162 unsigned int allocated_attrs;
12163
12164 abbrev_table = XMALLOC (struct abbrev_table);
12165 abbrev_table->offset = offset;
12166 obstack_init (&abbrev_table->abbrev_obstack);
12167 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
12168 (ABBREV_HASH_SIZE
12169 * sizeof (struct abbrev_info *)));
12170 memset (abbrev_table->abbrevs, 0,
12171 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
12172
12173 dwarf2_read_section (objfile, section);
12174 abbrev_ptr = section->buffer + offset.sect_off;
12175 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12176 abbrev_ptr += bytes_read;
12177
12178 allocated_attrs = ATTR_ALLOC_CHUNK;
12179 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
12180
12181 /* Loop until we reach an abbrev number of 0. */
12182 while (abbrev_number)
12183 {
12184 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
12185
12186 /* read in abbrev header */
12187 cur_abbrev->number = abbrev_number;
12188 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12189 abbrev_ptr += bytes_read;
12190 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
12191 abbrev_ptr += 1;
12192
12193 /* now read in declarations */
12194 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12195 abbrev_ptr += bytes_read;
12196 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12197 abbrev_ptr += bytes_read;
12198 while (abbrev_name)
12199 {
12200 if (cur_abbrev->num_attrs == allocated_attrs)
12201 {
12202 allocated_attrs += ATTR_ALLOC_CHUNK;
12203 cur_attrs
12204 = xrealloc (cur_attrs, (allocated_attrs
12205 * sizeof (struct attr_abbrev)));
12206 }
12207
12208 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
12209 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
12210 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12211 abbrev_ptr += bytes_read;
12212 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12213 abbrev_ptr += bytes_read;
12214 }
12215
12216 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
12217 (cur_abbrev->num_attrs
12218 * sizeof (struct attr_abbrev)));
12219 memcpy (cur_abbrev->attrs, cur_attrs,
12220 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
12221
12222 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
12223
12224 /* Get next abbreviation.
12225 Under Irix6 the abbreviations for a compilation unit are not
12226 always properly terminated with an abbrev number of 0.
12227 Exit loop if we encounter an abbreviation which we have
12228 already read (which means we are about to read the abbreviations
12229 for the next compile unit) or if the end of the abbreviation
12230 table is reached. */
12231 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
12232 break;
12233 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12234 abbrev_ptr += bytes_read;
12235 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
12236 break;
12237 }
12238
12239 xfree (cur_attrs);
12240 return abbrev_table;
12241 }
12242
12243 /* Free the resources held by ABBREV_TABLE. */
12244
12245 static void
12246 abbrev_table_free (struct abbrev_table *abbrev_table)
12247 {
12248 obstack_free (&abbrev_table->abbrev_obstack, NULL);
12249 xfree (abbrev_table);
12250 }
12251
12252 /* Same as abbrev_table_free but as a cleanup.
12253 We pass in a pointer to the pointer to the table so that we can
12254 set the pointer to NULL when we're done. It also simplifies
12255 build_type_unit_groups. */
12256
12257 static void
12258 abbrev_table_free_cleanup (void *table_ptr)
12259 {
12260 struct abbrev_table **abbrev_table_ptr = table_ptr;
12261
12262 if (*abbrev_table_ptr != NULL)
12263 abbrev_table_free (*abbrev_table_ptr);
12264 *abbrev_table_ptr = NULL;
12265 }
12266
12267 /* Read the abbrev table for CU from ABBREV_SECTION. */
12268
12269 static void
12270 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
12271 struct dwarf2_section_info *abbrev_section)
12272 {
12273 cu->abbrev_table =
12274 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
12275 }
12276
12277 /* Release the memory used by the abbrev table for a compilation unit. */
12278
12279 static void
12280 dwarf2_free_abbrev_table (void *ptr_to_cu)
12281 {
12282 struct dwarf2_cu *cu = ptr_to_cu;
12283
12284 abbrev_table_free (cu->abbrev_table);
12285 /* Set this to NULL so that we SEGV if we try to read it later,
12286 and also because free_comp_unit verifies this is NULL. */
12287 cu->abbrev_table = NULL;
12288 }
12289 \f
12290 /* Returns nonzero if TAG represents a type that we might generate a partial
12291 symbol for. */
12292
12293 static int
12294 is_type_tag_for_partial (int tag)
12295 {
12296 switch (tag)
12297 {
12298 #if 0
12299 /* Some types that would be reasonable to generate partial symbols for,
12300 that we don't at present. */
12301 case DW_TAG_array_type:
12302 case DW_TAG_file_type:
12303 case DW_TAG_ptr_to_member_type:
12304 case DW_TAG_set_type:
12305 case DW_TAG_string_type:
12306 case DW_TAG_subroutine_type:
12307 #endif
12308 case DW_TAG_base_type:
12309 case DW_TAG_class_type:
12310 case DW_TAG_interface_type:
12311 case DW_TAG_enumeration_type:
12312 case DW_TAG_structure_type:
12313 case DW_TAG_subrange_type:
12314 case DW_TAG_typedef:
12315 case DW_TAG_union_type:
12316 return 1;
12317 default:
12318 return 0;
12319 }
12320 }
12321
12322 /* Load all DIEs that are interesting for partial symbols into memory. */
12323
12324 static struct partial_die_info *
12325 load_partial_dies (const struct die_reader_specs *reader,
12326 gdb_byte *info_ptr, int building_psymtab)
12327 {
12328 struct dwarf2_cu *cu = reader->cu;
12329 struct objfile *objfile = cu->objfile;
12330 struct partial_die_info *part_die;
12331 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
12332 struct abbrev_info *abbrev;
12333 unsigned int bytes_read;
12334 unsigned int load_all = 0;
12335 int nesting_level = 1;
12336
12337 parent_die = NULL;
12338 last_die = NULL;
12339
12340 gdb_assert (cu->per_cu != NULL);
12341 if (cu->per_cu->load_all_dies)
12342 load_all = 1;
12343
12344 cu->partial_dies
12345 = htab_create_alloc_ex (cu->header.length / 12,
12346 partial_die_hash,
12347 partial_die_eq,
12348 NULL,
12349 &cu->comp_unit_obstack,
12350 hashtab_obstack_allocate,
12351 dummy_obstack_deallocate);
12352
12353 part_die = obstack_alloc (&cu->comp_unit_obstack,
12354 sizeof (struct partial_die_info));
12355
12356 while (1)
12357 {
12358 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
12359
12360 /* A NULL abbrev means the end of a series of children. */
12361 if (abbrev == NULL)
12362 {
12363 if (--nesting_level == 0)
12364 {
12365 /* PART_DIE was probably the last thing allocated on the
12366 comp_unit_obstack, so we could call obstack_free
12367 here. We don't do that because the waste is small,
12368 and will be cleaned up when we're done with this
12369 compilation unit. This way, we're also more robust
12370 against other users of the comp_unit_obstack. */
12371 return first_die;
12372 }
12373 info_ptr += bytes_read;
12374 last_die = parent_die;
12375 parent_die = parent_die->die_parent;
12376 continue;
12377 }
12378
12379 /* Check for template arguments. We never save these; if
12380 they're seen, we just mark the parent, and go on our way. */
12381 if (parent_die != NULL
12382 && cu->language == language_cplus
12383 && (abbrev->tag == DW_TAG_template_type_param
12384 || abbrev->tag == DW_TAG_template_value_param))
12385 {
12386 parent_die->has_template_arguments = 1;
12387
12388 if (!load_all)
12389 {
12390 /* We don't need a partial DIE for the template argument. */
12391 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
12392 continue;
12393 }
12394 }
12395
12396 /* We only recurse into c++ subprograms looking for template arguments.
12397 Skip their other children. */
12398 if (!load_all
12399 && cu->language == language_cplus
12400 && parent_die != NULL
12401 && parent_die->tag == DW_TAG_subprogram)
12402 {
12403 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
12404 continue;
12405 }
12406
12407 /* Check whether this DIE is interesting enough to save. Normally
12408 we would not be interested in members here, but there may be
12409 later variables referencing them via DW_AT_specification (for
12410 static members). */
12411 if (!load_all
12412 && !is_type_tag_for_partial (abbrev->tag)
12413 && abbrev->tag != DW_TAG_constant
12414 && abbrev->tag != DW_TAG_enumerator
12415 && abbrev->tag != DW_TAG_subprogram
12416 && abbrev->tag != DW_TAG_lexical_block
12417 && abbrev->tag != DW_TAG_variable
12418 && abbrev->tag != DW_TAG_namespace
12419 && abbrev->tag != DW_TAG_module
12420 && abbrev->tag != DW_TAG_member
12421 && abbrev->tag != DW_TAG_imported_unit)
12422 {
12423 /* Otherwise we skip to the next sibling, if any. */
12424 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
12425 continue;
12426 }
12427
12428 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
12429 info_ptr);
12430
12431 /* This two-pass algorithm for processing partial symbols has a
12432 high cost in cache pressure. Thus, handle some simple cases
12433 here which cover the majority of C partial symbols. DIEs
12434 which neither have specification tags in them, nor could have
12435 specification tags elsewhere pointing at them, can simply be
12436 processed and discarded.
12437
12438 This segment is also optional; scan_partial_symbols and
12439 add_partial_symbol will handle these DIEs if we chain
12440 them in normally. When compilers which do not emit large
12441 quantities of duplicate debug information are more common,
12442 this code can probably be removed. */
12443
12444 /* Any complete simple types at the top level (pretty much all
12445 of them, for a language without namespaces), can be processed
12446 directly. */
12447 if (parent_die == NULL
12448 && part_die->has_specification == 0
12449 && part_die->is_declaration == 0
12450 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
12451 || part_die->tag == DW_TAG_base_type
12452 || part_die->tag == DW_TAG_subrange_type))
12453 {
12454 if (building_psymtab && part_die->name != NULL)
12455 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
12456 VAR_DOMAIN, LOC_TYPEDEF,
12457 &objfile->static_psymbols,
12458 0, (CORE_ADDR) 0, cu->language, objfile);
12459 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
12460 continue;
12461 }
12462
12463 /* The exception for DW_TAG_typedef with has_children above is
12464 a workaround of GCC PR debug/47510. In the case of this complaint
12465 type_name_no_tag_or_error will error on such types later.
12466
12467 GDB skipped children of DW_TAG_typedef by the shortcut above and then
12468 it could not find the child DIEs referenced later, this is checked
12469 above. In correct DWARF DW_TAG_typedef should have no children. */
12470
12471 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
12472 complaint (&symfile_complaints,
12473 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
12474 "- DIE at 0x%x [in module %s]"),
12475 part_die->offset.sect_off, objfile->name);
12476
12477 /* If we're at the second level, and we're an enumerator, and
12478 our parent has no specification (meaning possibly lives in a
12479 namespace elsewhere), then we can add the partial symbol now
12480 instead of queueing it. */
12481 if (part_die->tag == DW_TAG_enumerator
12482 && parent_die != NULL
12483 && parent_die->die_parent == NULL
12484 && parent_die->tag == DW_TAG_enumeration_type
12485 && parent_die->has_specification == 0)
12486 {
12487 if (part_die->name == NULL)
12488 complaint (&symfile_complaints,
12489 _("malformed enumerator DIE ignored"));
12490 else if (building_psymtab)
12491 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
12492 VAR_DOMAIN, LOC_CONST,
12493 (cu->language == language_cplus
12494 || cu->language == language_java)
12495 ? &objfile->global_psymbols
12496 : &objfile->static_psymbols,
12497 0, (CORE_ADDR) 0, cu->language, objfile);
12498
12499 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
12500 continue;
12501 }
12502
12503 /* We'll save this DIE so link it in. */
12504 part_die->die_parent = parent_die;
12505 part_die->die_sibling = NULL;
12506 part_die->die_child = NULL;
12507
12508 if (last_die && last_die == parent_die)
12509 last_die->die_child = part_die;
12510 else if (last_die)
12511 last_die->die_sibling = part_die;
12512
12513 last_die = part_die;
12514
12515 if (first_die == NULL)
12516 first_die = part_die;
12517
12518 /* Maybe add the DIE to the hash table. Not all DIEs that we
12519 find interesting need to be in the hash table, because we
12520 also have the parent/sibling/child chains; only those that we
12521 might refer to by offset later during partial symbol reading.
12522
12523 For now this means things that might have be the target of a
12524 DW_AT_specification, DW_AT_abstract_origin, or
12525 DW_AT_extension. DW_AT_extension will refer only to
12526 namespaces; DW_AT_abstract_origin refers to functions (and
12527 many things under the function DIE, but we do not recurse
12528 into function DIEs during partial symbol reading) and
12529 possibly variables as well; DW_AT_specification refers to
12530 declarations. Declarations ought to have the DW_AT_declaration
12531 flag. It happens that GCC forgets to put it in sometimes, but
12532 only for functions, not for types.
12533
12534 Adding more things than necessary to the hash table is harmless
12535 except for the performance cost. Adding too few will result in
12536 wasted time in find_partial_die, when we reread the compilation
12537 unit with load_all_dies set. */
12538
12539 if (load_all
12540 || abbrev->tag == DW_TAG_constant
12541 || abbrev->tag == DW_TAG_subprogram
12542 || abbrev->tag == DW_TAG_variable
12543 || abbrev->tag == DW_TAG_namespace
12544 || part_die->is_declaration)
12545 {
12546 void **slot;
12547
12548 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
12549 part_die->offset.sect_off, INSERT);
12550 *slot = part_die;
12551 }
12552
12553 part_die = obstack_alloc (&cu->comp_unit_obstack,
12554 sizeof (struct partial_die_info));
12555
12556 /* For some DIEs we want to follow their children (if any). For C
12557 we have no reason to follow the children of structures; for other
12558 languages we have to, so that we can get at method physnames
12559 to infer fully qualified class names, for DW_AT_specification,
12560 and for C++ template arguments. For C++, we also look one level
12561 inside functions to find template arguments (if the name of the
12562 function does not already contain the template arguments).
12563
12564 For Ada, we need to scan the children of subprograms and lexical
12565 blocks as well because Ada allows the definition of nested
12566 entities that could be interesting for the debugger, such as
12567 nested subprograms for instance. */
12568 if (last_die->has_children
12569 && (load_all
12570 || last_die->tag == DW_TAG_namespace
12571 || last_die->tag == DW_TAG_module
12572 || last_die->tag == DW_TAG_enumeration_type
12573 || (cu->language == language_cplus
12574 && last_die->tag == DW_TAG_subprogram
12575 && (last_die->name == NULL
12576 || strchr (last_die->name, '<') == NULL))
12577 || (cu->language != language_c
12578 && (last_die->tag == DW_TAG_class_type
12579 || last_die->tag == DW_TAG_interface_type
12580 || last_die->tag == DW_TAG_structure_type
12581 || last_die->tag == DW_TAG_union_type))
12582 || (cu->language == language_ada
12583 && (last_die->tag == DW_TAG_subprogram
12584 || last_die->tag == DW_TAG_lexical_block))))
12585 {
12586 nesting_level++;
12587 parent_die = last_die;
12588 continue;
12589 }
12590
12591 /* Otherwise we skip to the next sibling, if any. */
12592 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
12593
12594 /* Back to the top, do it again. */
12595 }
12596 }
12597
12598 /* Read a minimal amount of information into the minimal die structure. */
12599
12600 static gdb_byte *
12601 read_partial_die (const struct die_reader_specs *reader,
12602 struct partial_die_info *part_die,
12603 struct abbrev_info *abbrev, unsigned int abbrev_len,
12604 gdb_byte *info_ptr)
12605 {
12606 struct dwarf2_cu *cu = reader->cu;
12607 struct objfile *objfile = cu->objfile;
12608 gdb_byte *buffer = reader->buffer;
12609 unsigned int i;
12610 struct attribute attr;
12611 int has_low_pc_attr = 0;
12612 int has_high_pc_attr = 0;
12613 int high_pc_relative = 0;
12614
12615 memset (part_die, 0, sizeof (struct partial_die_info));
12616
12617 part_die->offset.sect_off = info_ptr - buffer;
12618
12619 info_ptr += abbrev_len;
12620
12621 if (abbrev == NULL)
12622 return info_ptr;
12623
12624 part_die->tag = abbrev->tag;
12625 part_die->has_children = abbrev->has_children;
12626
12627 for (i = 0; i < abbrev->num_attrs; ++i)
12628 {
12629 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
12630
12631 /* Store the data if it is of an attribute we want to keep in a
12632 partial symbol table. */
12633 switch (attr.name)
12634 {
12635 case DW_AT_name:
12636 switch (part_die->tag)
12637 {
12638 case DW_TAG_compile_unit:
12639 case DW_TAG_partial_unit:
12640 case DW_TAG_type_unit:
12641 /* Compilation units have a DW_AT_name that is a filename, not
12642 a source language identifier. */
12643 case DW_TAG_enumeration_type:
12644 case DW_TAG_enumerator:
12645 /* These tags always have simple identifiers already; no need
12646 to canonicalize them. */
12647 part_die->name = DW_STRING (&attr);
12648 break;
12649 default:
12650 part_die->name
12651 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
12652 &objfile->objfile_obstack);
12653 break;
12654 }
12655 break;
12656 case DW_AT_linkage_name:
12657 case DW_AT_MIPS_linkage_name:
12658 /* Note that both forms of linkage name might appear. We
12659 assume they will be the same, and we only store the last
12660 one we see. */
12661 if (cu->language == language_ada)
12662 part_die->name = DW_STRING (&attr);
12663 part_die->linkage_name = DW_STRING (&attr);
12664 break;
12665 case DW_AT_low_pc:
12666 has_low_pc_attr = 1;
12667 part_die->lowpc = DW_ADDR (&attr);
12668 break;
12669 case DW_AT_high_pc:
12670 has_high_pc_attr = 1;
12671 if (attr.form == DW_FORM_addr
12672 || attr.form == DW_FORM_GNU_addr_index)
12673 part_die->highpc = DW_ADDR (&attr);
12674 else
12675 {
12676 high_pc_relative = 1;
12677 part_die->highpc = DW_UNSND (&attr);
12678 }
12679 break;
12680 case DW_AT_location:
12681 /* Support the .debug_loc offsets. */
12682 if (attr_form_is_block (&attr))
12683 {
12684 part_die->d.locdesc = DW_BLOCK (&attr);
12685 }
12686 else if (attr_form_is_section_offset (&attr))
12687 {
12688 dwarf2_complex_location_expr_complaint ();
12689 }
12690 else
12691 {
12692 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12693 "partial symbol information");
12694 }
12695 break;
12696 case DW_AT_external:
12697 part_die->is_external = DW_UNSND (&attr);
12698 break;
12699 case DW_AT_declaration:
12700 part_die->is_declaration = DW_UNSND (&attr);
12701 break;
12702 case DW_AT_type:
12703 part_die->has_type = 1;
12704 break;
12705 case DW_AT_abstract_origin:
12706 case DW_AT_specification:
12707 case DW_AT_extension:
12708 part_die->has_specification = 1;
12709 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
12710 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
12711 || cu->per_cu->is_dwz);
12712 break;
12713 case DW_AT_sibling:
12714 /* Ignore absolute siblings, they might point outside of
12715 the current compile unit. */
12716 if (attr.form == DW_FORM_ref_addr)
12717 complaint (&symfile_complaints,
12718 _("ignoring absolute DW_AT_sibling"));
12719 else
12720 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
12721 break;
12722 case DW_AT_byte_size:
12723 part_die->has_byte_size = 1;
12724 break;
12725 case DW_AT_calling_convention:
12726 /* DWARF doesn't provide a way to identify a program's source-level
12727 entry point. DW_AT_calling_convention attributes are only meant
12728 to describe functions' calling conventions.
12729
12730 However, because it's a necessary piece of information in
12731 Fortran, and because DW_CC_program is the only piece of debugging
12732 information whose definition refers to a 'main program' at all,
12733 several compilers have begun marking Fortran main programs with
12734 DW_CC_program --- even when those functions use the standard
12735 calling conventions.
12736
12737 So until DWARF specifies a way to provide this information and
12738 compilers pick up the new representation, we'll support this
12739 practice. */
12740 if (DW_UNSND (&attr) == DW_CC_program
12741 && cu->language == language_fortran)
12742 {
12743 set_main_name (part_die->name);
12744
12745 /* As this DIE has a static linkage the name would be difficult
12746 to look up later. */
12747 language_of_main = language_fortran;
12748 }
12749 break;
12750 case DW_AT_inline:
12751 if (DW_UNSND (&attr) == DW_INL_inlined
12752 || DW_UNSND (&attr) == DW_INL_declared_inlined)
12753 part_die->may_be_inlined = 1;
12754 break;
12755
12756 case DW_AT_import:
12757 if (part_die->tag == DW_TAG_imported_unit)
12758 {
12759 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
12760 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
12761 || cu->per_cu->is_dwz);
12762 }
12763 break;
12764
12765 default:
12766 break;
12767 }
12768 }
12769
12770 if (high_pc_relative)
12771 part_die->highpc += part_die->lowpc;
12772
12773 if (has_low_pc_attr && has_high_pc_attr)
12774 {
12775 /* When using the GNU linker, .gnu.linkonce. sections are used to
12776 eliminate duplicate copies of functions and vtables and such.
12777 The linker will arbitrarily choose one and discard the others.
12778 The AT_*_pc values for such functions refer to local labels in
12779 these sections. If the section from that file was discarded, the
12780 labels are not in the output, so the relocs get a value of 0.
12781 If this is a discarded function, mark the pc bounds as invalid,
12782 so that GDB will ignore it. */
12783 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
12784 {
12785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12786
12787 complaint (&symfile_complaints,
12788 _("DW_AT_low_pc %s is zero "
12789 "for DIE at 0x%x [in module %s]"),
12790 paddress (gdbarch, part_die->lowpc),
12791 part_die->offset.sect_off, objfile->name);
12792 }
12793 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
12794 else if (part_die->lowpc >= part_die->highpc)
12795 {
12796 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12797
12798 complaint (&symfile_complaints,
12799 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
12800 "for DIE at 0x%x [in module %s]"),
12801 paddress (gdbarch, part_die->lowpc),
12802 paddress (gdbarch, part_die->highpc),
12803 part_die->offset.sect_off, objfile->name);
12804 }
12805 else
12806 part_die->has_pc_info = 1;
12807 }
12808
12809 return info_ptr;
12810 }
12811
12812 /* Find a cached partial DIE at OFFSET in CU. */
12813
12814 static struct partial_die_info *
12815 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
12816 {
12817 struct partial_die_info *lookup_die = NULL;
12818 struct partial_die_info part_die;
12819
12820 part_die.offset = offset;
12821 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
12822 offset.sect_off);
12823
12824 return lookup_die;
12825 }
12826
12827 /* Find a partial DIE at OFFSET, which may or may not be in CU,
12828 except in the case of .debug_types DIEs which do not reference
12829 outside their CU (they do however referencing other types via
12830 DW_FORM_ref_sig8). */
12831
12832 static struct partial_die_info *
12833 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
12834 {
12835 struct objfile *objfile = cu->objfile;
12836 struct dwarf2_per_cu_data *per_cu = NULL;
12837 struct partial_die_info *pd = NULL;
12838
12839 if (offset_in_dwz == cu->per_cu->is_dwz
12840 && offset_in_cu_p (&cu->header, offset))
12841 {
12842 pd = find_partial_die_in_comp_unit (offset, cu);
12843 if (pd != NULL)
12844 return pd;
12845 /* We missed recording what we needed.
12846 Load all dies and try again. */
12847 per_cu = cu->per_cu;
12848 }
12849 else
12850 {
12851 /* TUs don't reference other CUs/TUs (except via type signatures). */
12852 if (cu->per_cu->is_debug_types)
12853 {
12854 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
12855 " external reference to offset 0x%lx [in module %s].\n"),
12856 (long) cu->header.offset.sect_off, (long) offset.sect_off,
12857 bfd_get_filename (objfile->obfd));
12858 }
12859 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
12860 objfile);
12861
12862 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
12863 load_partial_comp_unit (per_cu);
12864
12865 per_cu->cu->last_used = 0;
12866 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
12867 }
12868
12869 /* If we didn't find it, and not all dies have been loaded,
12870 load them all and try again. */
12871
12872 if (pd == NULL && per_cu->load_all_dies == 0)
12873 {
12874 per_cu->load_all_dies = 1;
12875
12876 /* This is nasty. When we reread the DIEs, somewhere up the call chain
12877 THIS_CU->cu may already be in use. So we can't just free it and
12878 replace its DIEs with the ones we read in. Instead, we leave those
12879 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
12880 and clobber THIS_CU->cu->partial_dies with the hash table for the new
12881 set. */
12882 load_partial_comp_unit (per_cu);
12883
12884 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
12885 }
12886
12887 if (pd == NULL)
12888 internal_error (__FILE__, __LINE__,
12889 _("could not find partial DIE 0x%x "
12890 "in cache [from module %s]\n"),
12891 offset.sect_off, bfd_get_filename (objfile->obfd));
12892 return pd;
12893 }
12894
12895 /* See if we can figure out if the class lives in a namespace. We do
12896 this by looking for a member function; its demangled name will
12897 contain namespace info, if there is any. */
12898
12899 static void
12900 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
12901 struct dwarf2_cu *cu)
12902 {
12903 /* NOTE: carlton/2003-10-07: Getting the info this way changes
12904 what template types look like, because the demangler
12905 frequently doesn't give the same name as the debug info. We
12906 could fix this by only using the demangled name to get the
12907 prefix (but see comment in read_structure_type). */
12908
12909 struct partial_die_info *real_pdi;
12910 struct partial_die_info *child_pdi;
12911
12912 /* If this DIE (this DIE's specification, if any) has a parent, then
12913 we should not do this. We'll prepend the parent's fully qualified
12914 name when we create the partial symbol. */
12915
12916 real_pdi = struct_pdi;
12917 while (real_pdi->has_specification)
12918 real_pdi = find_partial_die (real_pdi->spec_offset,
12919 real_pdi->spec_is_dwz, cu);
12920
12921 if (real_pdi->die_parent != NULL)
12922 return;
12923
12924 for (child_pdi = struct_pdi->die_child;
12925 child_pdi != NULL;
12926 child_pdi = child_pdi->die_sibling)
12927 {
12928 if (child_pdi->tag == DW_TAG_subprogram
12929 && child_pdi->linkage_name != NULL)
12930 {
12931 char *actual_class_name
12932 = language_class_name_from_physname (cu->language_defn,
12933 child_pdi->linkage_name);
12934 if (actual_class_name != NULL)
12935 {
12936 struct_pdi->name
12937 = obsavestring (actual_class_name,
12938 strlen (actual_class_name),
12939 &cu->objfile->objfile_obstack);
12940 xfree (actual_class_name);
12941 }
12942 break;
12943 }
12944 }
12945 }
12946
12947 /* Adjust PART_DIE before generating a symbol for it. This function
12948 may set the is_external flag or change the DIE's name. */
12949
12950 static void
12951 fixup_partial_die (struct partial_die_info *part_die,
12952 struct dwarf2_cu *cu)
12953 {
12954 /* Once we've fixed up a die, there's no point in doing so again.
12955 This also avoids a memory leak if we were to call
12956 guess_partial_die_structure_name multiple times. */
12957 if (part_die->fixup_called)
12958 return;
12959
12960 /* If we found a reference attribute and the DIE has no name, try
12961 to find a name in the referred to DIE. */
12962
12963 if (part_die->name == NULL && part_die->has_specification)
12964 {
12965 struct partial_die_info *spec_die;
12966
12967 spec_die = find_partial_die (part_die->spec_offset,
12968 part_die->spec_is_dwz, cu);
12969
12970 fixup_partial_die (spec_die, cu);
12971
12972 if (spec_die->name)
12973 {
12974 part_die->name = spec_die->name;
12975
12976 /* Copy DW_AT_external attribute if it is set. */
12977 if (spec_die->is_external)
12978 part_die->is_external = spec_die->is_external;
12979 }
12980 }
12981
12982 /* Set default names for some unnamed DIEs. */
12983
12984 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
12985 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
12986
12987 /* If there is no parent die to provide a namespace, and there are
12988 children, see if we can determine the namespace from their linkage
12989 name. */
12990 if (cu->language == language_cplus
12991 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12992 && part_die->die_parent == NULL
12993 && part_die->has_children
12994 && (part_die->tag == DW_TAG_class_type
12995 || part_die->tag == DW_TAG_structure_type
12996 || part_die->tag == DW_TAG_union_type))
12997 guess_partial_die_structure_name (part_die, cu);
12998
12999 /* GCC might emit a nameless struct or union that has a linkage
13000 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13001 if (part_die->name == NULL
13002 && (part_die->tag == DW_TAG_class_type
13003 || part_die->tag == DW_TAG_interface_type
13004 || part_die->tag == DW_TAG_structure_type
13005 || part_die->tag == DW_TAG_union_type)
13006 && part_die->linkage_name != NULL)
13007 {
13008 char *demangled;
13009
13010 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13011 if (demangled)
13012 {
13013 const char *base;
13014
13015 /* Strip any leading namespaces/classes, keep only the base name.
13016 DW_AT_name for named DIEs does not contain the prefixes. */
13017 base = strrchr (demangled, ':');
13018 if (base && base > demangled && base[-1] == ':')
13019 base++;
13020 else
13021 base = demangled;
13022
13023 part_die->name = obsavestring (base, strlen (base),
13024 &cu->objfile->objfile_obstack);
13025 xfree (demangled);
13026 }
13027 }
13028
13029 part_die->fixup_called = 1;
13030 }
13031
13032 /* Read an attribute value described by an attribute form. */
13033
13034 static gdb_byte *
13035 read_attribute_value (const struct die_reader_specs *reader,
13036 struct attribute *attr, unsigned form,
13037 gdb_byte *info_ptr)
13038 {
13039 struct dwarf2_cu *cu = reader->cu;
13040 bfd *abfd = reader->abfd;
13041 struct comp_unit_head *cu_header = &cu->header;
13042 unsigned int bytes_read;
13043 struct dwarf_block *blk;
13044
13045 attr->form = form;
13046 switch (form)
13047 {
13048 case DW_FORM_ref_addr:
13049 if (cu->header.version == 2)
13050 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13051 else
13052 DW_UNSND (attr) = read_offset (abfd, info_ptr,
13053 &cu->header, &bytes_read);
13054 info_ptr += bytes_read;
13055 break;
13056 case DW_FORM_GNU_ref_alt:
13057 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13058 info_ptr += bytes_read;
13059 break;
13060 case DW_FORM_addr:
13061 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13062 info_ptr += bytes_read;
13063 break;
13064 case DW_FORM_block2:
13065 blk = dwarf_alloc_block (cu);
13066 blk->size = read_2_bytes (abfd, info_ptr);
13067 info_ptr += 2;
13068 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13069 info_ptr += blk->size;
13070 DW_BLOCK (attr) = blk;
13071 break;
13072 case DW_FORM_block4:
13073 blk = dwarf_alloc_block (cu);
13074 blk->size = read_4_bytes (abfd, info_ptr);
13075 info_ptr += 4;
13076 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13077 info_ptr += blk->size;
13078 DW_BLOCK (attr) = blk;
13079 break;
13080 case DW_FORM_data2:
13081 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
13082 info_ptr += 2;
13083 break;
13084 case DW_FORM_data4:
13085 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
13086 info_ptr += 4;
13087 break;
13088 case DW_FORM_data8:
13089 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
13090 info_ptr += 8;
13091 break;
13092 case DW_FORM_sec_offset:
13093 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13094 info_ptr += bytes_read;
13095 break;
13096 case DW_FORM_string:
13097 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
13098 DW_STRING_IS_CANONICAL (attr) = 0;
13099 info_ptr += bytes_read;
13100 break;
13101 case DW_FORM_strp:
13102 if (!cu->per_cu->is_dwz)
13103 {
13104 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
13105 &bytes_read);
13106 DW_STRING_IS_CANONICAL (attr) = 0;
13107 info_ptr += bytes_read;
13108 break;
13109 }
13110 /* FALLTHROUGH */
13111 case DW_FORM_GNU_strp_alt:
13112 {
13113 struct dwz_file *dwz = dwarf2_get_dwz_file ();
13114 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
13115 &bytes_read);
13116
13117 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
13118 DW_STRING_IS_CANONICAL (attr) = 0;
13119 info_ptr += bytes_read;
13120 }
13121 break;
13122 case DW_FORM_exprloc:
13123 case DW_FORM_block:
13124 blk = dwarf_alloc_block (cu);
13125 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13126 info_ptr += bytes_read;
13127 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13128 info_ptr += blk->size;
13129 DW_BLOCK (attr) = blk;
13130 break;
13131 case DW_FORM_block1:
13132 blk = dwarf_alloc_block (cu);
13133 blk->size = read_1_byte (abfd, info_ptr);
13134 info_ptr += 1;
13135 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13136 info_ptr += blk->size;
13137 DW_BLOCK (attr) = blk;
13138 break;
13139 case DW_FORM_data1:
13140 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13141 info_ptr += 1;
13142 break;
13143 case DW_FORM_flag:
13144 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13145 info_ptr += 1;
13146 break;
13147 case DW_FORM_flag_present:
13148 DW_UNSND (attr) = 1;
13149 break;
13150 case DW_FORM_sdata:
13151 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
13152 info_ptr += bytes_read;
13153 break;
13154 case DW_FORM_udata:
13155 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13156 info_ptr += bytes_read;
13157 break;
13158 case DW_FORM_ref1:
13159 DW_UNSND (attr) = (cu->header.offset.sect_off
13160 + read_1_byte (abfd, info_ptr));
13161 info_ptr += 1;
13162 break;
13163 case DW_FORM_ref2:
13164 DW_UNSND (attr) = (cu->header.offset.sect_off
13165 + read_2_bytes (abfd, info_ptr));
13166 info_ptr += 2;
13167 break;
13168 case DW_FORM_ref4:
13169 DW_UNSND (attr) = (cu->header.offset.sect_off
13170 + read_4_bytes (abfd, info_ptr));
13171 info_ptr += 4;
13172 break;
13173 case DW_FORM_ref8:
13174 DW_UNSND (attr) = (cu->header.offset.sect_off
13175 + read_8_bytes (abfd, info_ptr));
13176 info_ptr += 8;
13177 break;
13178 case DW_FORM_ref_sig8:
13179 /* Convert the signature to something we can record in DW_UNSND
13180 for later lookup.
13181 NOTE: This is NULL if the type wasn't found. */
13182 DW_SIGNATURED_TYPE (attr) =
13183 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
13184 info_ptr += 8;
13185 break;
13186 case DW_FORM_ref_udata:
13187 DW_UNSND (attr) = (cu->header.offset.sect_off
13188 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
13189 info_ptr += bytes_read;
13190 break;
13191 case DW_FORM_indirect:
13192 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13193 info_ptr += bytes_read;
13194 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
13195 break;
13196 case DW_FORM_GNU_addr_index:
13197 if (reader->dwo_file == NULL)
13198 {
13199 /* For now flag a hard error.
13200 Later we can turn this into a complaint. */
13201 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
13202 dwarf_form_name (form),
13203 bfd_get_filename (abfd));
13204 }
13205 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
13206 info_ptr += bytes_read;
13207 break;
13208 case DW_FORM_GNU_str_index:
13209 if (reader->dwo_file == NULL)
13210 {
13211 /* For now flag a hard error.
13212 Later we can turn this into a complaint if warranted. */
13213 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
13214 dwarf_form_name (form),
13215 bfd_get_filename (abfd));
13216 }
13217 {
13218 ULONGEST str_index =
13219 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13220
13221 DW_STRING (attr) = read_str_index (reader, cu, str_index);
13222 DW_STRING_IS_CANONICAL (attr) = 0;
13223 info_ptr += bytes_read;
13224 }
13225 break;
13226 default:
13227 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
13228 dwarf_form_name (form),
13229 bfd_get_filename (abfd));
13230 }
13231
13232 /* Super hack. */
13233 if (cu->per_cu->is_dwz && is_ref_attr (attr))
13234 attr->form = DW_FORM_GNU_ref_alt;
13235
13236 /* We have seen instances where the compiler tried to emit a byte
13237 size attribute of -1 which ended up being encoded as an unsigned
13238 0xffffffff. Although 0xffffffff is technically a valid size value,
13239 an object of this size seems pretty unlikely so we can relatively
13240 safely treat these cases as if the size attribute was invalid and
13241 treat them as zero by default. */
13242 if (attr->name == DW_AT_byte_size
13243 && form == DW_FORM_data4
13244 && DW_UNSND (attr) >= 0xffffffff)
13245 {
13246 complaint
13247 (&symfile_complaints,
13248 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
13249 hex_string (DW_UNSND (attr)));
13250 DW_UNSND (attr) = 0;
13251 }
13252
13253 return info_ptr;
13254 }
13255
13256 /* Read an attribute described by an abbreviated attribute. */
13257
13258 static gdb_byte *
13259 read_attribute (const struct die_reader_specs *reader,
13260 struct attribute *attr, struct attr_abbrev *abbrev,
13261 gdb_byte *info_ptr)
13262 {
13263 attr->name = abbrev->name;
13264 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
13265 }
13266
13267 /* Read dwarf information from a buffer. */
13268
13269 static unsigned int
13270 read_1_byte (bfd *abfd, gdb_byte *buf)
13271 {
13272 return bfd_get_8 (abfd, buf);
13273 }
13274
13275 static int
13276 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
13277 {
13278 return bfd_get_signed_8 (abfd, buf);
13279 }
13280
13281 static unsigned int
13282 read_2_bytes (bfd *abfd, gdb_byte *buf)
13283 {
13284 return bfd_get_16 (abfd, buf);
13285 }
13286
13287 static int
13288 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
13289 {
13290 return bfd_get_signed_16 (abfd, buf);
13291 }
13292
13293 static unsigned int
13294 read_4_bytes (bfd *abfd, gdb_byte *buf)
13295 {
13296 return bfd_get_32 (abfd, buf);
13297 }
13298
13299 static int
13300 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
13301 {
13302 return bfd_get_signed_32 (abfd, buf);
13303 }
13304
13305 static ULONGEST
13306 read_8_bytes (bfd *abfd, gdb_byte *buf)
13307 {
13308 return bfd_get_64 (abfd, buf);
13309 }
13310
13311 static CORE_ADDR
13312 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
13313 unsigned int *bytes_read)
13314 {
13315 struct comp_unit_head *cu_header = &cu->header;
13316 CORE_ADDR retval = 0;
13317
13318 if (cu_header->signed_addr_p)
13319 {
13320 switch (cu_header->addr_size)
13321 {
13322 case 2:
13323 retval = bfd_get_signed_16 (abfd, buf);
13324 break;
13325 case 4:
13326 retval = bfd_get_signed_32 (abfd, buf);
13327 break;
13328 case 8:
13329 retval = bfd_get_signed_64 (abfd, buf);
13330 break;
13331 default:
13332 internal_error (__FILE__, __LINE__,
13333 _("read_address: bad switch, signed [in module %s]"),
13334 bfd_get_filename (abfd));
13335 }
13336 }
13337 else
13338 {
13339 switch (cu_header->addr_size)
13340 {
13341 case 2:
13342 retval = bfd_get_16 (abfd, buf);
13343 break;
13344 case 4:
13345 retval = bfd_get_32 (abfd, buf);
13346 break;
13347 case 8:
13348 retval = bfd_get_64 (abfd, buf);
13349 break;
13350 default:
13351 internal_error (__FILE__, __LINE__,
13352 _("read_address: bad switch, "
13353 "unsigned [in module %s]"),
13354 bfd_get_filename (abfd));
13355 }
13356 }
13357
13358 *bytes_read = cu_header->addr_size;
13359 return retval;
13360 }
13361
13362 /* Read the initial length from a section. The (draft) DWARF 3
13363 specification allows the initial length to take up either 4 bytes
13364 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
13365 bytes describe the length and all offsets will be 8 bytes in length
13366 instead of 4.
13367
13368 An older, non-standard 64-bit format is also handled by this
13369 function. The older format in question stores the initial length
13370 as an 8-byte quantity without an escape value. Lengths greater
13371 than 2^32 aren't very common which means that the initial 4 bytes
13372 is almost always zero. Since a length value of zero doesn't make
13373 sense for the 32-bit format, this initial zero can be considered to
13374 be an escape value which indicates the presence of the older 64-bit
13375 format. As written, the code can't detect (old format) lengths
13376 greater than 4GB. If it becomes necessary to handle lengths
13377 somewhat larger than 4GB, we could allow other small values (such
13378 as the non-sensical values of 1, 2, and 3) to also be used as
13379 escape values indicating the presence of the old format.
13380
13381 The value returned via bytes_read should be used to increment the
13382 relevant pointer after calling read_initial_length().
13383
13384 [ Note: read_initial_length() and read_offset() are based on the
13385 document entitled "DWARF Debugging Information Format", revision
13386 3, draft 8, dated November 19, 2001. This document was obtained
13387 from:
13388
13389 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
13390
13391 This document is only a draft and is subject to change. (So beware.)
13392
13393 Details regarding the older, non-standard 64-bit format were
13394 determined empirically by examining 64-bit ELF files produced by
13395 the SGI toolchain on an IRIX 6.5 machine.
13396
13397 - Kevin, July 16, 2002
13398 ] */
13399
13400 static LONGEST
13401 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
13402 {
13403 LONGEST length = bfd_get_32 (abfd, buf);
13404
13405 if (length == 0xffffffff)
13406 {
13407 length = bfd_get_64 (abfd, buf + 4);
13408 *bytes_read = 12;
13409 }
13410 else if (length == 0)
13411 {
13412 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
13413 length = bfd_get_64 (abfd, buf);
13414 *bytes_read = 8;
13415 }
13416 else
13417 {
13418 *bytes_read = 4;
13419 }
13420
13421 return length;
13422 }
13423
13424 /* Cover function for read_initial_length.
13425 Returns the length of the object at BUF, and stores the size of the
13426 initial length in *BYTES_READ and stores the size that offsets will be in
13427 *OFFSET_SIZE.
13428 If the initial length size is not equivalent to that specified in
13429 CU_HEADER then issue a complaint.
13430 This is useful when reading non-comp-unit headers. */
13431
13432 static LONGEST
13433 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
13434 const struct comp_unit_head *cu_header,
13435 unsigned int *bytes_read,
13436 unsigned int *offset_size)
13437 {
13438 LONGEST length = read_initial_length (abfd, buf, bytes_read);
13439
13440 gdb_assert (cu_header->initial_length_size == 4
13441 || cu_header->initial_length_size == 8
13442 || cu_header->initial_length_size == 12);
13443
13444 if (cu_header->initial_length_size != *bytes_read)
13445 complaint (&symfile_complaints,
13446 _("intermixed 32-bit and 64-bit DWARF sections"));
13447
13448 *offset_size = (*bytes_read == 4) ? 4 : 8;
13449 return length;
13450 }
13451
13452 /* Read an offset from the data stream. The size of the offset is
13453 given by cu_header->offset_size. */
13454
13455 static LONGEST
13456 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
13457 unsigned int *bytes_read)
13458 {
13459 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
13460
13461 *bytes_read = cu_header->offset_size;
13462 return offset;
13463 }
13464
13465 /* Read an offset from the data stream. */
13466
13467 static LONGEST
13468 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
13469 {
13470 LONGEST retval = 0;
13471
13472 switch (offset_size)
13473 {
13474 case 4:
13475 retval = bfd_get_32 (abfd, buf);
13476 break;
13477 case 8:
13478 retval = bfd_get_64 (abfd, buf);
13479 break;
13480 default:
13481 internal_error (__FILE__, __LINE__,
13482 _("read_offset_1: bad switch [in module %s]"),
13483 bfd_get_filename (abfd));
13484 }
13485
13486 return retval;
13487 }
13488
13489 static gdb_byte *
13490 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
13491 {
13492 /* If the size of a host char is 8 bits, we can return a pointer
13493 to the buffer, otherwise we have to copy the data to a buffer
13494 allocated on the temporary obstack. */
13495 gdb_assert (HOST_CHAR_BIT == 8);
13496 return buf;
13497 }
13498
13499 static char *
13500 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
13501 {
13502 /* If the size of a host char is 8 bits, we can return a pointer
13503 to the string, otherwise we have to copy the string to a buffer
13504 allocated on the temporary obstack. */
13505 gdb_assert (HOST_CHAR_BIT == 8);
13506 if (*buf == '\0')
13507 {
13508 *bytes_read_ptr = 1;
13509 return NULL;
13510 }
13511 *bytes_read_ptr = strlen ((char *) buf) + 1;
13512 return (char *) buf;
13513 }
13514
13515 static char *
13516 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
13517 {
13518 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
13519 if (dwarf2_per_objfile->str.buffer == NULL)
13520 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
13521 bfd_get_filename (abfd));
13522 if (str_offset >= dwarf2_per_objfile->str.size)
13523 error (_("DW_FORM_strp pointing outside of "
13524 ".debug_str section [in module %s]"),
13525 bfd_get_filename (abfd));
13526 gdb_assert (HOST_CHAR_BIT == 8);
13527 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
13528 return NULL;
13529 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
13530 }
13531
13532 /* Read a string at offset STR_OFFSET in the .debug_str section from
13533 the .dwz file DWZ. Throw an error if the offset is too large. If
13534 the string consists of a single NUL byte, return NULL; otherwise
13535 return a pointer to the string. */
13536
13537 static char *
13538 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
13539 {
13540 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
13541
13542 if (dwz->str.buffer == NULL)
13543 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
13544 "section [in module %s]"),
13545 bfd_get_filename (dwz->dwz_bfd));
13546 if (str_offset >= dwz->str.size)
13547 error (_("DW_FORM_GNU_strp_alt pointing outside of "
13548 ".debug_str section [in module %s]"),
13549 bfd_get_filename (dwz->dwz_bfd));
13550 gdb_assert (HOST_CHAR_BIT == 8);
13551 if (dwz->str.buffer[str_offset] == '\0')
13552 return NULL;
13553 return (char *) (dwz->str.buffer + str_offset);
13554 }
13555
13556 static char *
13557 read_indirect_string (bfd *abfd, gdb_byte *buf,
13558 const struct comp_unit_head *cu_header,
13559 unsigned int *bytes_read_ptr)
13560 {
13561 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
13562
13563 return read_indirect_string_at_offset (abfd, str_offset);
13564 }
13565
13566 static ULONGEST
13567 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
13568 {
13569 ULONGEST result;
13570 unsigned int num_read;
13571 int i, shift;
13572 unsigned char byte;
13573
13574 result = 0;
13575 shift = 0;
13576 num_read = 0;
13577 i = 0;
13578 while (1)
13579 {
13580 byte = bfd_get_8 (abfd, buf);
13581 buf++;
13582 num_read++;
13583 result |= ((ULONGEST) (byte & 127) << shift);
13584 if ((byte & 128) == 0)
13585 {
13586 break;
13587 }
13588 shift += 7;
13589 }
13590 *bytes_read_ptr = num_read;
13591 return result;
13592 }
13593
13594 static LONGEST
13595 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
13596 {
13597 LONGEST result;
13598 int i, shift, num_read;
13599 unsigned char byte;
13600
13601 result = 0;
13602 shift = 0;
13603 num_read = 0;
13604 i = 0;
13605 while (1)
13606 {
13607 byte = bfd_get_8 (abfd, buf);
13608 buf++;
13609 num_read++;
13610 result |= ((LONGEST) (byte & 127) << shift);
13611 shift += 7;
13612 if ((byte & 128) == 0)
13613 {
13614 break;
13615 }
13616 }
13617 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
13618 result |= -(((LONGEST) 1) << shift);
13619 *bytes_read_ptr = num_read;
13620 return result;
13621 }
13622
13623 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
13624 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
13625 ADDR_SIZE is the size of addresses from the CU header. */
13626
13627 static CORE_ADDR
13628 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
13629 {
13630 struct objfile *objfile = dwarf2_per_objfile->objfile;
13631 bfd *abfd = objfile->obfd;
13632 const gdb_byte *info_ptr;
13633
13634 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
13635 if (dwarf2_per_objfile->addr.buffer == NULL)
13636 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
13637 objfile->name);
13638 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
13639 error (_("DW_FORM_addr_index pointing outside of "
13640 ".debug_addr section [in module %s]"),
13641 objfile->name);
13642 info_ptr = (dwarf2_per_objfile->addr.buffer
13643 + addr_base + addr_index * addr_size);
13644 if (addr_size == 4)
13645 return bfd_get_32 (abfd, info_ptr);
13646 else
13647 return bfd_get_64 (abfd, info_ptr);
13648 }
13649
13650 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
13651
13652 static CORE_ADDR
13653 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
13654 {
13655 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
13656 }
13657
13658 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
13659
13660 static CORE_ADDR
13661 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
13662 unsigned int *bytes_read)
13663 {
13664 bfd *abfd = cu->objfile->obfd;
13665 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
13666
13667 return read_addr_index (cu, addr_index);
13668 }
13669
13670 /* Data structure to pass results from dwarf2_read_addr_index_reader
13671 back to dwarf2_read_addr_index. */
13672
13673 struct dwarf2_read_addr_index_data
13674 {
13675 ULONGEST addr_base;
13676 int addr_size;
13677 };
13678
13679 /* die_reader_func for dwarf2_read_addr_index. */
13680
13681 static void
13682 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
13683 gdb_byte *info_ptr,
13684 struct die_info *comp_unit_die,
13685 int has_children,
13686 void *data)
13687 {
13688 struct dwarf2_cu *cu = reader->cu;
13689 struct dwarf2_read_addr_index_data *aidata =
13690 (struct dwarf2_read_addr_index_data *) data;
13691
13692 aidata->addr_base = cu->addr_base;
13693 aidata->addr_size = cu->header.addr_size;
13694 }
13695
13696 /* Given an index in .debug_addr, fetch the value.
13697 NOTE: This can be called during dwarf expression evaluation,
13698 long after the debug information has been read, and thus per_cu->cu
13699 may no longer exist. */
13700
13701 CORE_ADDR
13702 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
13703 unsigned int addr_index)
13704 {
13705 struct objfile *objfile = per_cu->objfile;
13706 struct dwarf2_cu *cu = per_cu->cu;
13707 ULONGEST addr_base;
13708 int addr_size;
13709
13710 /* This is intended to be called from outside this file. */
13711 dw2_setup (objfile);
13712
13713 /* We need addr_base and addr_size.
13714 If we don't have PER_CU->cu, we have to get it.
13715 Nasty, but the alternative is storing the needed info in PER_CU,
13716 which at this point doesn't seem justified: it's not clear how frequently
13717 it would get used and it would increase the size of every PER_CU.
13718 Entry points like dwarf2_per_cu_addr_size do a similar thing
13719 so we're not in uncharted territory here.
13720 Alas we need to be a bit more complicated as addr_base is contained
13721 in the DIE.
13722
13723 We don't need to read the entire CU(/TU).
13724 We just need the header and top level die.
13725 IWBN to use the aging mechanism to let us lazily later discard the CU.
13726 See however init_cutu_and_read_dies_simple. */
13727
13728 if (cu != NULL)
13729 {
13730 addr_base = cu->addr_base;
13731 addr_size = cu->header.addr_size;
13732 }
13733 else
13734 {
13735 struct dwarf2_read_addr_index_data aidata;
13736
13737 init_cutu_and_read_dies_simple (per_cu, dwarf2_read_addr_index_reader,
13738 &aidata);
13739 addr_base = aidata.addr_base;
13740 addr_size = aidata.addr_size;
13741 }
13742
13743 return read_addr_index_1 (addr_index, addr_base, addr_size);
13744 }
13745
13746 /* Given a DW_AT_str_index, fetch the string. */
13747
13748 static char *
13749 read_str_index (const struct die_reader_specs *reader,
13750 struct dwarf2_cu *cu, ULONGEST str_index)
13751 {
13752 struct objfile *objfile = dwarf2_per_objfile->objfile;
13753 const char *dwo_name = objfile->name;
13754 bfd *abfd = objfile->obfd;
13755 struct dwo_sections *sections = &reader->dwo_file->sections;
13756 gdb_byte *info_ptr;
13757 ULONGEST str_offset;
13758
13759 dwarf2_read_section (objfile, &sections->str);
13760 dwarf2_read_section (objfile, &sections->str_offsets);
13761 if (sections->str.buffer == NULL)
13762 error (_("DW_FORM_str_index used without .debug_str.dwo section"
13763 " in CU at offset 0x%lx [in module %s]"),
13764 (long) cu->header.offset.sect_off, dwo_name);
13765 if (sections->str_offsets.buffer == NULL)
13766 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
13767 " in CU at offset 0x%lx [in module %s]"),
13768 (long) cu->header.offset.sect_off, dwo_name);
13769 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
13770 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
13771 " section in CU at offset 0x%lx [in module %s]"),
13772 (long) cu->header.offset.sect_off, dwo_name);
13773 info_ptr = (sections->str_offsets.buffer
13774 + str_index * cu->header.offset_size);
13775 if (cu->header.offset_size == 4)
13776 str_offset = bfd_get_32 (abfd, info_ptr);
13777 else
13778 str_offset = bfd_get_64 (abfd, info_ptr);
13779 if (str_offset >= sections->str.size)
13780 error (_("Offset from DW_FORM_str_index pointing outside of"
13781 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
13782 (long) cu->header.offset.sect_off, dwo_name);
13783 return (char *) (sections->str.buffer + str_offset);
13784 }
13785
13786 /* Return the length of an LEB128 number in BUF. */
13787
13788 static int
13789 leb128_size (const gdb_byte *buf)
13790 {
13791 const gdb_byte *begin = buf;
13792 gdb_byte byte;
13793
13794 while (1)
13795 {
13796 byte = *buf++;
13797 if ((byte & 128) == 0)
13798 return buf - begin;
13799 }
13800 }
13801
13802 static void
13803 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
13804 {
13805 switch (lang)
13806 {
13807 case DW_LANG_C89:
13808 case DW_LANG_C99:
13809 case DW_LANG_C:
13810 cu->language = language_c;
13811 break;
13812 case DW_LANG_C_plus_plus:
13813 cu->language = language_cplus;
13814 break;
13815 case DW_LANG_D:
13816 cu->language = language_d;
13817 break;
13818 case DW_LANG_Fortran77:
13819 case DW_LANG_Fortran90:
13820 case DW_LANG_Fortran95:
13821 cu->language = language_fortran;
13822 break;
13823 case DW_LANG_Go:
13824 cu->language = language_go;
13825 break;
13826 case DW_LANG_Mips_Assembler:
13827 cu->language = language_asm;
13828 break;
13829 case DW_LANG_Java:
13830 cu->language = language_java;
13831 break;
13832 case DW_LANG_Ada83:
13833 case DW_LANG_Ada95:
13834 cu->language = language_ada;
13835 break;
13836 case DW_LANG_Modula2:
13837 cu->language = language_m2;
13838 break;
13839 case DW_LANG_Pascal83:
13840 cu->language = language_pascal;
13841 break;
13842 case DW_LANG_ObjC:
13843 cu->language = language_objc;
13844 break;
13845 case DW_LANG_Cobol74:
13846 case DW_LANG_Cobol85:
13847 default:
13848 cu->language = language_minimal;
13849 break;
13850 }
13851 cu->language_defn = language_def (cu->language);
13852 }
13853
13854 /* Return the named attribute or NULL if not there. */
13855
13856 static struct attribute *
13857 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
13858 {
13859 for (;;)
13860 {
13861 unsigned int i;
13862 struct attribute *spec = NULL;
13863
13864 for (i = 0; i < die->num_attrs; ++i)
13865 {
13866 if (die->attrs[i].name == name)
13867 return &die->attrs[i];
13868 if (die->attrs[i].name == DW_AT_specification
13869 || die->attrs[i].name == DW_AT_abstract_origin)
13870 spec = &die->attrs[i];
13871 }
13872
13873 if (!spec)
13874 break;
13875
13876 die = follow_die_ref (die, spec, &cu);
13877 }
13878
13879 return NULL;
13880 }
13881
13882 /* Return the named attribute or NULL if not there,
13883 but do not follow DW_AT_specification, etc.
13884 This is for use in contexts where we're reading .debug_types dies.
13885 Following DW_AT_specification, DW_AT_abstract_origin will take us
13886 back up the chain, and we want to go down. */
13887
13888 static struct attribute *
13889 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
13890 {
13891 unsigned int i;
13892
13893 for (i = 0; i < die->num_attrs; ++i)
13894 if (die->attrs[i].name == name)
13895 return &die->attrs[i];
13896
13897 return NULL;
13898 }
13899
13900 /* Return non-zero iff the attribute NAME is defined for the given DIE,
13901 and holds a non-zero value. This function should only be used for
13902 DW_FORM_flag or DW_FORM_flag_present attributes. */
13903
13904 static int
13905 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
13906 {
13907 struct attribute *attr = dwarf2_attr (die, name, cu);
13908
13909 return (attr && DW_UNSND (attr));
13910 }
13911
13912 static int
13913 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
13914 {
13915 /* A DIE is a declaration if it has a DW_AT_declaration attribute
13916 which value is non-zero. However, we have to be careful with
13917 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
13918 (via dwarf2_flag_true_p) follows this attribute. So we may
13919 end up accidently finding a declaration attribute that belongs
13920 to a different DIE referenced by the specification attribute,
13921 even though the given DIE does not have a declaration attribute. */
13922 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
13923 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
13924 }
13925
13926 /* Return the die giving the specification for DIE, if there is
13927 one. *SPEC_CU is the CU containing DIE on input, and the CU
13928 containing the return value on output. If there is no
13929 specification, but there is an abstract origin, that is
13930 returned. */
13931
13932 static struct die_info *
13933 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
13934 {
13935 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
13936 *spec_cu);
13937
13938 if (spec_attr == NULL)
13939 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
13940
13941 if (spec_attr == NULL)
13942 return NULL;
13943 else
13944 return follow_die_ref (die, spec_attr, spec_cu);
13945 }
13946
13947 /* Free the line_header structure *LH, and any arrays and strings it
13948 refers to.
13949 NOTE: This is also used as a "cleanup" function. */
13950
13951 static void
13952 free_line_header (struct line_header *lh)
13953 {
13954 if (lh->standard_opcode_lengths)
13955 xfree (lh->standard_opcode_lengths);
13956
13957 /* Remember that all the lh->file_names[i].name pointers are
13958 pointers into debug_line_buffer, and don't need to be freed. */
13959 if (lh->file_names)
13960 xfree (lh->file_names);
13961
13962 /* Similarly for the include directory names. */
13963 if (lh->include_dirs)
13964 xfree (lh->include_dirs);
13965
13966 xfree (lh);
13967 }
13968
13969 /* Add an entry to LH's include directory table. */
13970
13971 static void
13972 add_include_dir (struct line_header *lh, char *include_dir)
13973 {
13974 /* Grow the array if necessary. */
13975 if (lh->include_dirs_size == 0)
13976 {
13977 lh->include_dirs_size = 1; /* for testing */
13978 lh->include_dirs = xmalloc (lh->include_dirs_size
13979 * sizeof (*lh->include_dirs));
13980 }
13981 else if (lh->num_include_dirs >= lh->include_dirs_size)
13982 {
13983 lh->include_dirs_size *= 2;
13984 lh->include_dirs = xrealloc (lh->include_dirs,
13985 (lh->include_dirs_size
13986 * sizeof (*lh->include_dirs)));
13987 }
13988
13989 lh->include_dirs[lh->num_include_dirs++] = include_dir;
13990 }
13991
13992 /* Add an entry to LH's file name table. */
13993
13994 static void
13995 add_file_name (struct line_header *lh,
13996 char *name,
13997 unsigned int dir_index,
13998 unsigned int mod_time,
13999 unsigned int length)
14000 {
14001 struct file_entry *fe;
14002
14003 /* Grow the array if necessary. */
14004 if (lh->file_names_size == 0)
14005 {
14006 lh->file_names_size = 1; /* for testing */
14007 lh->file_names = xmalloc (lh->file_names_size
14008 * sizeof (*lh->file_names));
14009 }
14010 else if (lh->num_file_names >= lh->file_names_size)
14011 {
14012 lh->file_names_size *= 2;
14013 lh->file_names = xrealloc (lh->file_names,
14014 (lh->file_names_size
14015 * sizeof (*lh->file_names)));
14016 }
14017
14018 fe = &lh->file_names[lh->num_file_names++];
14019 fe->name = name;
14020 fe->dir_index = dir_index;
14021 fe->mod_time = mod_time;
14022 fe->length = length;
14023 fe->included_p = 0;
14024 fe->symtab = NULL;
14025 }
14026
14027 /* A convenience function to find the proper .debug_line section for a
14028 CU. */
14029
14030 static struct dwarf2_section_info *
14031 get_debug_line_section (struct dwarf2_cu *cu)
14032 {
14033 struct dwarf2_section_info *section;
14034
14035 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14036 DWO file. */
14037 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14038 section = &cu->dwo_unit->dwo_file->sections.line;
14039 else if (cu->per_cu->is_dwz)
14040 {
14041 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14042
14043 section = &dwz->line;
14044 }
14045 else
14046 section = &dwarf2_per_objfile->line;
14047
14048 return section;
14049 }
14050
14051 /* Read the statement program header starting at OFFSET in
14052 .debug_line, or .debug_line.dwo. Return a pointer
14053 to a struct line_header, allocated using xmalloc.
14054
14055 NOTE: the strings in the include directory and file name tables of
14056 the returned object point into the dwarf line section buffer,
14057 and must not be freed. */
14058
14059 static struct line_header *
14060 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
14061 {
14062 struct cleanup *back_to;
14063 struct line_header *lh;
14064 gdb_byte *line_ptr;
14065 unsigned int bytes_read, offset_size;
14066 int i;
14067 char *cur_dir, *cur_file;
14068 struct dwarf2_section_info *section;
14069 bfd *abfd;
14070
14071 section = get_debug_line_section (cu);
14072 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
14073 if (section->buffer == NULL)
14074 {
14075 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14076 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
14077 else
14078 complaint (&symfile_complaints, _("missing .debug_line section"));
14079 return 0;
14080 }
14081
14082 /* We can't do this until we know the section is non-empty.
14083 Only then do we know we have such a section. */
14084 abfd = section->asection->owner;
14085
14086 /* Make sure that at least there's room for the total_length field.
14087 That could be 12 bytes long, but we're just going to fudge that. */
14088 if (offset + 4 >= section->size)
14089 {
14090 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14091 return 0;
14092 }
14093
14094 lh = xmalloc (sizeof (*lh));
14095 memset (lh, 0, sizeof (*lh));
14096 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
14097 (void *) lh);
14098
14099 line_ptr = section->buffer + offset;
14100
14101 /* Read in the header. */
14102 lh->total_length =
14103 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
14104 &bytes_read, &offset_size);
14105 line_ptr += bytes_read;
14106 if (line_ptr + lh->total_length > (section->buffer + section->size))
14107 {
14108 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14109 return 0;
14110 }
14111 lh->statement_program_end = line_ptr + lh->total_length;
14112 lh->version = read_2_bytes (abfd, line_ptr);
14113 line_ptr += 2;
14114 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
14115 line_ptr += offset_size;
14116 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
14117 line_ptr += 1;
14118 if (lh->version >= 4)
14119 {
14120 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
14121 line_ptr += 1;
14122 }
14123 else
14124 lh->maximum_ops_per_instruction = 1;
14125
14126 if (lh->maximum_ops_per_instruction == 0)
14127 {
14128 lh->maximum_ops_per_instruction = 1;
14129 complaint (&symfile_complaints,
14130 _("invalid maximum_ops_per_instruction "
14131 "in `.debug_line' section"));
14132 }
14133
14134 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
14135 line_ptr += 1;
14136 lh->line_base = read_1_signed_byte (abfd, line_ptr);
14137 line_ptr += 1;
14138 lh->line_range = read_1_byte (abfd, line_ptr);
14139 line_ptr += 1;
14140 lh->opcode_base = read_1_byte (abfd, line_ptr);
14141 line_ptr += 1;
14142 lh->standard_opcode_lengths
14143 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
14144
14145 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
14146 for (i = 1; i < lh->opcode_base; ++i)
14147 {
14148 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
14149 line_ptr += 1;
14150 }
14151
14152 /* Read directory table. */
14153 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
14154 {
14155 line_ptr += bytes_read;
14156 add_include_dir (lh, cur_dir);
14157 }
14158 line_ptr += bytes_read;
14159
14160 /* Read file name table. */
14161 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
14162 {
14163 unsigned int dir_index, mod_time, length;
14164
14165 line_ptr += bytes_read;
14166 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14167 line_ptr += bytes_read;
14168 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14169 line_ptr += bytes_read;
14170 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14171 line_ptr += bytes_read;
14172
14173 add_file_name (lh, cur_file, dir_index, mod_time, length);
14174 }
14175 line_ptr += bytes_read;
14176 lh->statement_program_start = line_ptr;
14177
14178 if (line_ptr > (section->buffer + section->size))
14179 complaint (&symfile_complaints,
14180 _("line number info header doesn't "
14181 "fit in `.debug_line' section"));
14182
14183 discard_cleanups (back_to);
14184 return lh;
14185 }
14186
14187 /* Subroutine of dwarf_decode_lines to simplify it.
14188 Return the file name of the psymtab for included file FILE_INDEX
14189 in line header LH of PST.
14190 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
14191 If space for the result is malloc'd, it will be freed by a cleanup.
14192 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
14193
14194 static char *
14195 psymtab_include_file_name (const struct line_header *lh, int file_index,
14196 const struct partial_symtab *pst,
14197 const char *comp_dir)
14198 {
14199 const struct file_entry fe = lh->file_names [file_index];
14200 char *include_name = fe.name;
14201 char *include_name_to_compare = include_name;
14202 char *dir_name = NULL;
14203 const char *pst_filename;
14204 char *copied_name = NULL;
14205 int file_is_pst;
14206
14207 if (fe.dir_index)
14208 dir_name = lh->include_dirs[fe.dir_index - 1];
14209
14210 if (!IS_ABSOLUTE_PATH (include_name)
14211 && (dir_name != NULL || comp_dir != NULL))
14212 {
14213 /* Avoid creating a duplicate psymtab for PST.
14214 We do this by comparing INCLUDE_NAME and PST_FILENAME.
14215 Before we do the comparison, however, we need to account
14216 for DIR_NAME and COMP_DIR.
14217 First prepend dir_name (if non-NULL). If we still don't
14218 have an absolute path prepend comp_dir (if non-NULL).
14219 However, the directory we record in the include-file's
14220 psymtab does not contain COMP_DIR (to match the
14221 corresponding symtab(s)).
14222
14223 Example:
14224
14225 bash$ cd /tmp
14226 bash$ gcc -g ./hello.c
14227 include_name = "hello.c"
14228 dir_name = "."
14229 DW_AT_comp_dir = comp_dir = "/tmp"
14230 DW_AT_name = "./hello.c" */
14231
14232 if (dir_name != NULL)
14233 {
14234 include_name = concat (dir_name, SLASH_STRING,
14235 include_name, (char *)NULL);
14236 include_name_to_compare = include_name;
14237 make_cleanup (xfree, include_name);
14238 }
14239 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
14240 {
14241 include_name_to_compare = concat (comp_dir, SLASH_STRING,
14242 include_name, (char *)NULL);
14243 }
14244 }
14245
14246 pst_filename = pst->filename;
14247 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
14248 {
14249 copied_name = concat (pst->dirname, SLASH_STRING,
14250 pst_filename, (char *)NULL);
14251 pst_filename = copied_name;
14252 }
14253
14254 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
14255
14256 if (include_name_to_compare != include_name)
14257 xfree (include_name_to_compare);
14258 if (copied_name != NULL)
14259 xfree (copied_name);
14260
14261 if (file_is_pst)
14262 return NULL;
14263 return include_name;
14264 }
14265
14266 /* Ignore this record_line request. */
14267
14268 static void
14269 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
14270 {
14271 return;
14272 }
14273
14274 /* Subroutine of dwarf_decode_lines to simplify it.
14275 Process the line number information in LH. */
14276
14277 static void
14278 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
14279 struct dwarf2_cu *cu, struct partial_symtab *pst)
14280 {
14281 gdb_byte *line_ptr, *extended_end;
14282 gdb_byte *line_end;
14283 unsigned int bytes_read, extended_len;
14284 unsigned char op_code, extended_op, adj_opcode;
14285 CORE_ADDR baseaddr;
14286 struct objfile *objfile = cu->objfile;
14287 bfd *abfd = objfile->obfd;
14288 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14289 const int decode_for_pst_p = (pst != NULL);
14290 struct subfile *last_subfile = NULL;
14291 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
14292 = record_line;
14293
14294 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14295
14296 line_ptr = lh->statement_program_start;
14297 line_end = lh->statement_program_end;
14298
14299 /* Read the statement sequences until there's nothing left. */
14300 while (line_ptr < line_end)
14301 {
14302 /* state machine registers */
14303 CORE_ADDR address = 0;
14304 unsigned int file = 1;
14305 unsigned int line = 1;
14306 unsigned int column = 0;
14307 int is_stmt = lh->default_is_stmt;
14308 int basic_block = 0;
14309 int end_sequence = 0;
14310 CORE_ADDR addr;
14311 unsigned char op_index = 0;
14312
14313 if (!decode_for_pst_p && lh->num_file_names >= file)
14314 {
14315 /* Start a subfile for the current file of the state machine. */
14316 /* lh->include_dirs and lh->file_names are 0-based, but the
14317 directory and file name numbers in the statement program
14318 are 1-based. */
14319 struct file_entry *fe = &lh->file_names[file - 1];
14320 char *dir = NULL;
14321
14322 if (fe->dir_index)
14323 dir = lh->include_dirs[fe->dir_index - 1];
14324
14325 dwarf2_start_subfile (fe->name, dir, comp_dir);
14326 }
14327
14328 /* Decode the table. */
14329 while (!end_sequence)
14330 {
14331 op_code = read_1_byte (abfd, line_ptr);
14332 line_ptr += 1;
14333 if (line_ptr > line_end)
14334 {
14335 dwarf2_debug_line_missing_end_sequence_complaint ();
14336 break;
14337 }
14338
14339 if (op_code >= lh->opcode_base)
14340 {
14341 /* Special operand. */
14342 adj_opcode = op_code - lh->opcode_base;
14343 address += (((op_index + (adj_opcode / lh->line_range))
14344 / lh->maximum_ops_per_instruction)
14345 * lh->minimum_instruction_length);
14346 op_index = ((op_index + (adj_opcode / lh->line_range))
14347 % lh->maximum_ops_per_instruction);
14348 line += lh->line_base + (adj_opcode % lh->line_range);
14349 if (lh->num_file_names < file || file == 0)
14350 dwarf2_debug_line_missing_file_complaint ();
14351 /* For now we ignore lines not starting on an
14352 instruction boundary. */
14353 else if (op_index == 0)
14354 {
14355 lh->file_names[file - 1].included_p = 1;
14356 if (!decode_for_pst_p && is_stmt)
14357 {
14358 if (last_subfile != current_subfile)
14359 {
14360 addr = gdbarch_addr_bits_remove (gdbarch, address);
14361 if (last_subfile)
14362 (*p_record_line) (last_subfile, 0, addr);
14363 last_subfile = current_subfile;
14364 }
14365 /* Append row to matrix using current values. */
14366 addr = gdbarch_addr_bits_remove (gdbarch, address);
14367 (*p_record_line) (current_subfile, line, addr);
14368 }
14369 }
14370 basic_block = 0;
14371 }
14372 else switch (op_code)
14373 {
14374 case DW_LNS_extended_op:
14375 extended_len = read_unsigned_leb128 (abfd, line_ptr,
14376 &bytes_read);
14377 line_ptr += bytes_read;
14378 extended_end = line_ptr + extended_len;
14379 extended_op = read_1_byte (abfd, line_ptr);
14380 line_ptr += 1;
14381 switch (extended_op)
14382 {
14383 case DW_LNE_end_sequence:
14384 p_record_line = record_line;
14385 end_sequence = 1;
14386 break;
14387 case DW_LNE_set_address:
14388 address = read_address (abfd, line_ptr, cu, &bytes_read);
14389
14390 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
14391 {
14392 /* This line table is for a function which has been
14393 GCd by the linker. Ignore it. PR gdb/12528 */
14394
14395 long line_offset
14396 = line_ptr - get_debug_line_section (cu)->buffer;
14397
14398 complaint (&symfile_complaints,
14399 _(".debug_line address at offset 0x%lx is 0 "
14400 "[in module %s]"),
14401 line_offset, objfile->name);
14402 p_record_line = noop_record_line;
14403 }
14404
14405 op_index = 0;
14406 line_ptr += bytes_read;
14407 address += baseaddr;
14408 break;
14409 case DW_LNE_define_file:
14410 {
14411 char *cur_file;
14412 unsigned int dir_index, mod_time, length;
14413
14414 cur_file = read_direct_string (abfd, line_ptr,
14415 &bytes_read);
14416 line_ptr += bytes_read;
14417 dir_index =
14418 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14419 line_ptr += bytes_read;
14420 mod_time =
14421 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14422 line_ptr += bytes_read;
14423 length =
14424 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14425 line_ptr += bytes_read;
14426 add_file_name (lh, cur_file, dir_index, mod_time, length);
14427 }
14428 break;
14429 case DW_LNE_set_discriminator:
14430 /* The discriminator is not interesting to the debugger;
14431 just ignore it. */
14432 line_ptr = extended_end;
14433 break;
14434 default:
14435 complaint (&symfile_complaints,
14436 _("mangled .debug_line section"));
14437 return;
14438 }
14439 /* Make sure that we parsed the extended op correctly. If e.g.
14440 we expected a different address size than the producer used,
14441 we may have read the wrong number of bytes. */
14442 if (line_ptr != extended_end)
14443 {
14444 complaint (&symfile_complaints,
14445 _("mangled .debug_line section"));
14446 return;
14447 }
14448 break;
14449 case DW_LNS_copy:
14450 if (lh->num_file_names < file || file == 0)
14451 dwarf2_debug_line_missing_file_complaint ();
14452 else
14453 {
14454 lh->file_names[file - 1].included_p = 1;
14455 if (!decode_for_pst_p && is_stmt)
14456 {
14457 if (last_subfile != current_subfile)
14458 {
14459 addr = gdbarch_addr_bits_remove (gdbarch, address);
14460 if (last_subfile)
14461 (*p_record_line) (last_subfile, 0, addr);
14462 last_subfile = current_subfile;
14463 }
14464 addr = gdbarch_addr_bits_remove (gdbarch, address);
14465 (*p_record_line) (current_subfile, line, addr);
14466 }
14467 }
14468 basic_block = 0;
14469 break;
14470 case DW_LNS_advance_pc:
14471 {
14472 CORE_ADDR adjust
14473 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14474
14475 address += (((op_index + adjust)
14476 / lh->maximum_ops_per_instruction)
14477 * lh->minimum_instruction_length);
14478 op_index = ((op_index + adjust)
14479 % lh->maximum_ops_per_instruction);
14480 line_ptr += bytes_read;
14481 }
14482 break;
14483 case DW_LNS_advance_line:
14484 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
14485 line_ptr += bytes_read;
14486 break;
14487 case DW_LNS_set_file:
14488 {
14489 /* The arrays lh->include_dirs and lh->file_names are
14490 0-based, but the directory and file name numbers in
14491 the statement program are 1-based. */
14492 struct file_entry *fe;
14493 char *dir = NULL;
14494
14495 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14496 line_ptr += bytes_read;
14497 if (lh->num_file_names < file || file == 0)
14498 dwarf2_debug_line_missing_file_complaint ();
14499 else
14500 {
14501 fe = &lh->file_names[file - 1];
14502 if (fe->dir_index)
14503 dir = lh->include_dirs[fe->dir_index - 1];
14504 if (!decode_for_pst_p)
14505 {
14506 last_subfile = current_subfile;
14507 dwarf2_start_subfile (fe->name, dir, comp_dir);
14508 }
14509 }
14510 }
14511 break;
14512 case DW_LNS_set_column:
14513 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14514 line_ptr += bytes_read;
14515 break;
14516 case DW_LNS_negate_stmt:
14517 is_stmt = (!is_stmt);
14518 break;
14519 case DW_LNS_set_basic_block:
14520 basic_block = 1;
14521 break;
14522 /* Add to the address register of the state machine the
14523 address increment value corresponding to special opcode
14524 255. I.e., this value is scaled by the minimum
14525 instruction length since special opcode 255 would have
14526 scaled the increment. */
14527 case DW_LNS_const_add_pc:
14528 {
14529 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
14530
14531 address += (((op_index + adjust)
14532 / lh->maximum_ops_per_instruction)
14533 * lh->minimum_instruction_length);
14534 op_index = ((op_index + adjust)
14535 % lh->maximum_ops_per_instruction);
14536 }
14537 break;
14538 case DW_LNS_fixed_advance_pc:
14539 address += read_2_bytes (abfd, line_ptr);
14540 op_index = 0;
14541 line_ptr += 2;
14542 break;
14543 default:
14544 {
14545 /* Unknown standard opcode, ignore it. */
14546 int i;
14547
14548 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
14549 {
14550 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14551 line_ptr += bytes_read;
14552 }
14553 }
14554 }
14555 }
14556 if (lh->num_file_names < file || file == 0)
14557 dwarf2_debug_line_missing_file_complaint ();
14558 else
14559 {
14560 lh->file_names[file - 1].included_p = 1;
14561 if (!decode_for_pst_p)
14562 {
14563 addr = gdbarch_addr_bits_remove (gdbarch, address);
14564 (*p_record_line) (current_subfile, 0, addr);
14565 }
14566 }
14567 }
14568 }
14569
14570 /* Decode the Line Number Program (LNP) for the given line_header
14571 structure and CU. The actual information extracted and the type
14572 of structures created from the LNP depends on the value of PST.
14573
14574 1. If PST is NULL, then this procedure uses the data from the program
14575 to create all necessary symbol tables, and their linetables.
14576
14577 2. If PST is not NULL, this procedure reads the program to determine
14578 the list of files included by the unit represented by PST, and
14579 builds all the associated partial symbol tables.
14580
14581 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
14582 It is used for relative paths in the line table.
14583 NOTE: When processing partial symtabs (pst != NULL),
14584 comp_dir == pst->dirname.
14585
14586 NOTE: It is important that psymtabs have the same file name (via strcmp)
14587 as the corresponding symtab. Since COMP_DIR is not used in the name of the
14588 symtab we don't use it in the name of the psymtabs we create.
14589 E.g. expand_line_sal requires this when finding psymtabs to expand.
14590 A good testcase for this is mb-inline.exp. */
14591
14592 static void
14593 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
14594 struct dwarf2_cu *cu, struct partial_symtab *pst,
14595 int want_line_info)
14596 {
14597 struct objfile *objfile = cu->objfile;
14598 const int decode_for_pst_p = (pst != NULL);
14599 struct subfile *first_subfile = current_subfile;
14600
14601 if (want_line_info)
14602 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
14603
14604 if (decode_for_pst_p)
14605 {
14606 int file_index;
14607
14608 /* Now that we're done scanning the Line Header Program, we can
14609 create the psymtab of each included file. */
14610 for (file_index = 0; file_index < lh->num_file_names; file_index++)
14611 if (lh->file_names[file_index].included_p == 1)
14612 {
14613 char *include_name =
14614 psymtab_include_file_name (lh, file_index, pst, comp_dir);
14615 if (include_name != NULL)
14616 dwarf2_create_include_psymtab (include_name, pst, objfile);
14617 }
14618 }
14619 else
14620 {
14621 /* Make sure a symtab is created for every file, even files
14622 which contain only variables (i.e. no code with associated
14623 line numbers). */
14624 int i;
14625
14626 for (i = 0; i < lh->num_file_names; i++)
14627 {
14628 char *dir = NULL;
14629 struct file_entry *fe;
14630
14631 fe = &lh->file_names[i];
14632 if (fe->dir_index)
14633 dir = lh->include_dirs[fe->dir_index - 1];
14634 dwarf2_start_subfile (fe->name, dir, comp_dir);
14635
14636 /* Skip the main file; we don't need it, and it must be
14637 allocated last, so that it will show up before the
14638 non-primary symtabs in the objfile's symtab list. */
14639 if (current_subfile == first_subfile)
14640 continue;
14641
14642 if (current_subfile->symtab == NULL)
14643 current_subfile->symtab = allocate_symtab (current_subfile->name,
14644 objfile);
14645 fe->symtab = current_subfile->symtab;
14646 }
14647 }
14648 }
14649
14650 /* Start a subfile for DWARF. FILENAME is the name of the file and
14651 DIRNAME the name of the source directory which contains FILENAME
14652 or NULL if not known. COMP_DIR is the compilation directory for the
14653 linetable's compilation unit or NULL if not known.
14654 This routine tries to keep line numbers from identical absolute and
14655 relative file names in a common subfile.
14656
14657 Using the `list' example from the GDB testsuite, which resides in
14658 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
14659 of /srcdir/list0.c yields the following debugging information for list0.c:
14660
14661 DW_AT_name: /srcdir/list0.c
14662 DW_AT_comp_dir: /compdir
14663 files.files[0].name: list0.h
14664 files.files[0].dir: /srcdir
14665 files.files[1].name: list0.c
14666 files.files[1].dir: /srcdir
14667
14668 The line number information for list0.c has to end up in a single
14669 subfile, so that `break /srcdir/list0.c:1' works as expected.
14670 start_subfile will ensure that this happens provided that we pass the
14671 concatenation of files.files[1].dir and files.files[1].name as the
14672 subfile's name. */
14673
14674 static void
14675 dwarf2_start_subfile (char *filename, const char *dirname,
14676 const char *comp_dir)
14677 {
14678 char *fullname;
14679
14680 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
14681 `start_symtab' will always pass the contents of DW_AT_comp_dir as
14682 second argument to start_subfile. To be consistent, we do the
14683 same here. In order not to lose the line information directory,
14684 we concatenate it to the filename when it makes sense.
14685 Note that the Dwarf3 standard says (speaking of filenames in line
14686 information): ``The directory index is ignored for file names
14687 that represent full path names''. Thus ignoring dirname in the
14688 `else' branch below isn't an issue. */
14689
14690 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
14691 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
14692 else
14693 fullname = filename;
14694
14695 start_subfile (fullname, comp_dir);
14696
14697 if (fullname != filename)
14698 xfree (fullname);
14699 }
14700
14701 /* Start a symtab for DWARF.
14702 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
14703
14704 static void
14705 dwarf2_start_symtab (struct dwarf2_cu *cu,
14706 char *name, char *comp_dir, CORE_ADDR low_pc)
14707 {
14708 start_symtab (name, comp_dir, low_pc);
14709 record_debugformat ("DWARF 2");
14710 record_producer (cu->producer);
14711
14712 /* We assume that we're processing GCC output. */
14713 processing_gcc_compilation = 2;
14714
14715 processing_has_namespace_info = 0;
14716 }
14717
14718 static void
14719 var_decode_location (struct attribute *attr, struct symbol *sym,
14720 struct dwarf2_cu *cu)
14721 {
14722 struct objfile *objfile = cu->objfile;
14723 struct comp_unit_head *cu_header = &cu->header;
14724
14725 /* NOTE drow/2003-01-30: There used to be a comment and some special
14726 code here to turn a symbol with DW_AT_external and a
14727 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
14728 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
14729 with some versions of binutils) where shared libraries could have
14730 relocations against symbols in their debug information - the
14731 minimal symbol would have the right address, but the debug info
14732 would not. It's no longer necessary, because we will explicitly
14733 apply relocations when we read in the debug information now. */
14734
14735 /* A DW_AT_location attribute with no contents indicates that a
14736 variable has been optimized away. */
14737 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
14738 {
14739 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
14740 return;
14741 }
14742
14743 /* Handle one degenerate form of location expression specially, to
14744 preserve GDB's previous behavior when section offsets are
14745 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
14746 then mark this symbol as LOC_STATIC. */
14747
14748 if (attr_form_is_block (attr)
14749 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
14750 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
14751 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
14752 && (DW_BLOCK (attr)->size
14753 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
14754 {
14755 unsigned int dummy;
14756
14757 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
14758 SYMBOL_VALUE_ADDRESS (sym) =
14759 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
14760 else
14761 SYMBOL_VALUE_ADDRESS (sym) =
14762 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
14763 SYMBOL_CLASS (sym) = LOC_STATIC;
14764 fixup_symbol_section (sym, objfile);
14765 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
14766 SYMBOL_SECTION (sym));
14767 return;
14768 }
14769
14770 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
14771 expression evaluator, and use LOC_COMPUTED only when necessary
14772 (i.e. when the value of a register or memory location is
14773 referenced, or a thread-local block, etc.). Then again, it might
14774 not be worthwhile. I'm assuming that it isn't unless performance
14775 or memory numbers show me otherwise. */
14776
14777 dwarf2_symbol_mark_computed (attr, sym, cu);
14778 SYMBOL_CLASS (sym) = LOC_COMPUTED;
14779
14780 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
14781 cu->has_loclist = 1;
14782 }
14783
14784 /* Given a pointer to a DWARF information entry, figure out if we need
14785 to make a symbol table entry for it, and if so, create a new entry
14786 and return a pointer to it.
14787 If TYPE is NULL, determine symbol type from the die, otherwise
14788 used the passed type.
14789 If SPACE is not NULL, use it to hold the new symbol. If it is
14790 NULL, allocate a new symbol on the objfile's obstack. */
14791
14792 static struct symbol *
14793 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
14794 struct symbol *space)
14795 {
14796 struct objfile *objfile = cu->objfile;
14797 struct symbol *sym = NULL;
14798 char *name;
14799 struct attribute *attr = NULL;
14800 struct attribute *attr2 = NULL;
14801 CORE_ADDR baseaddr;
14802 struct pending **list_to_add = NULL;
14803
14804 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
14805
14806 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14807
14808 name = dwarf2_name (die, cu);
14809 if (name)
14810 {
14811 const char *linkagename;
14812 int suppress_add = 0;
14813
14814 if (space)
14815 sym = space;
14816 else
14817 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
14818 OBJSTAT (objfile, n_syms++);
14819
14820 /* Cache this symbol's name and the name's demangled form (if any). */
14821 SYMBOL_SET_LANGUAGE (sym, cu->language);
14822 linkagename = dwarf2_physname (name, die, cu);
14823 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
14824
14825 /* Fortran does not have mangling standard and the mangling does differ
14826 between gfortran, iFort etc. */
14827 if (cu->language == language_fortran
14828 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
14829 symbol_set_demangled_name (&(sym->ginfo),
14830 (char *) dwarf2_full_name (name, die, cu),
14831 NULL);
14832
14833 /* Default assumptions.
14834 Use the passed type or decode it from the die. */
14835 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
14836 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
14837 if (type != NULL)
14838 SYMBOL_TYPE (sym) = type;
14839 else
14840 SYMBOL_TYPE (sym) = die_type (die, cu);
14841 attr = dwarf2_attr (die,
14842 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
14843 cu);
14844 if (attr)
14845 {
14846 SYMBOL_LINE (sym) = DW_UNSND (attr);
14847 }
14848
14849 attr = dwarf2_attr (die,
14850 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
14851 cu);
14852 if (attr)
14853 {
14854 int file_index = DW_UNSND (attr);
14855
14856 if (cu->line_header == NULL
14857 || file_index > cu->line_header->num_file_names)
14858 complaint (&symfile_complaints,
14859 _("file index out of range"));
14860 else if (file_index > 0)
14861 {
14862 struct file_entry *fe;
14863
14864 fe = &cu->line_header->file_names[file_index - 1];
14865 SYMBOL_SYMTAB (sym) = fe->symtab;
14866 }
14867 }
14868
14869 switch (die->tag)
14870 {
14871 case DW_TAG_label:
14872 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14873 if (attr)
14874 {
14875 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
14876 }
14877 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
14878 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
14879 SYMBOL_CLASS (sym) = LOC_LABEL;
14880 add_symbol_to_list (sym, cu->list_in_scope);
14881 break;
14882 case DW_TAG_subprogram:
14883 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
14884 finish_block. */
14885 SYMBOL_CLASS (sym) = LOC_BLOCK;
14886 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14887 if ((attr2 && (DW_UNSND (attr2) != 0))
14888 || cu->language == language_ada)
14889 {
14890 /* Subprograms marked external are stored as a global symbol.
14891 Ada subprograms, whether marked external or not, are always
14892 stored as a global symbol, because we want to be able to
14893 access them globally. For instance, we want to be able
14894 to break on a nested subprogram without having to
14895 specify the context. */
14896 list_to_add = &global_symbols;
14897 }
14898 else
14899 {
14900 list_to_add = cu->list_in_scope;
14901 }
14902 break;
14903 case DW_TAG_inlined_subroutine:
14904 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
14905 finish_block. */
14906 SYMBOL_CLASS (sym) = LOC_BLOCK;
14907 SYMBOL_INLINED (sym) = 1;
14908 list_to_add = cu->list_in_scope;
14909 break;
14910 case DW_TAG_template_value_param:
14911 suppress_add = 1;
14912 /* Fall through. */
14913 case DW_TAG_constant:
14914 case DW_TAG_variable:
14915 case DW_TAG_member:
14916 /* Compilation with minimal debug info may result in
14917 variables with missing type entries. Change the
14918 misleading `void' type to something sensible. */
14919 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
14920 SYMBOL_TYPE (sym)
14921 = objfile_type (objfile)->nodebug_data_symbol;
14922
14923 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14924 /* In the case of DW_TAG_member, we should only be called for
14925 static const members. */
14926 if (die->tag == DW_TAG_member)
14927 {
14928 /* dwarf2_add_field uses die_is_declaration,
14929 so we do the same. */
14930 gdb_assert (die_is_declaration (die, cu));
14931 gdb_assert (attr);
14932 }
14933 if (attr)
14934 {
14935 dwarf2_const_value (attr, sym, cu);
14936 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14937 if (!suppress_add)
14938 {
14939 if (attr2 && (DW_UNSND (attr2) != 0))
14940 list_to_add = &global_symbols;
14941 else
14942 list_to_add = cu->list_in_scope;
14943 }
14944 break;
14945 }
14946 attr = dwarf2_attr (die, DW_AT_location, cu);
14947 if (attr)
14948 {
14949 var_decode_location (attr, sym, cu);
14950 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14951 if (SYMBOL_CLASS (sym) == LOC_STATIC
14952 && SYMBOL_VALUE_ADDRESS (sym) == 0
14953 && !dwarf2_per_objfile->has_section_at_zero)
14954 {
14955 /* When a static variable is eliminated by the linker,
14956 the corresponding debug information is not stripped
14957 out, but the variable address is set to null;
14958 do not add such variables into symbol table. */
14959 }
14960 else if (attr2 && (DW_UNSND (attr2) != 0))
14961 {
14962 /* Workaround gfortran PR debug/40040 - it uses
14963 DW_AT_location for variables in -fPIC libraries which may
14964 get overriden by other libraries/executable and get
14965 a different address. Resolve it by the minimal symbol
14966 which may come from inferior's executable using copy
14967 relocation. Make this workaround only for gfortran as for
14968 other compilers GDB cannot guess the minimal symbol
14969 Fortran mangling kind. */
14970 if (cu->language == language_fortran && die->parent
14971 && die->parent->tag == DW_TAG_module
14972 && cu->producer
14973 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
14974 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
14975
14976 /* A variable with DW_AT_external is never static,
14977 but it may be block-scoped. */
14978 list_to_add = (cu->list_in_scope == &file_symbols
14979 ? &global_symbols : cu->list_in_scope);
14980 }
14981 else
14982 list_to_add = cu->list_in_scope;
14983 }
14984 else
14985 {
14986 /* We do not know the address of this symbol.
14987 If it is an external symbol and we have type information
14988 for it, enter the symbol as a LOC_UNRESOLVED symbol.
14989 The address of the variable will then be determined from
14990 the minimal symbol table whenever the variable is
14991 referenced. */
14992 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14993 if (attr2 && (DW_UNSND (attr2) != 0)
14994 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
14995 {
14996 /* A variable with DW_AT_external is never static, but it
14997 may be block-scoped. */
14998 list_to_add = (cu->list_in_scope == &file_symbols
14999 ? &global_symbols : cu->list_in_scope);
15000
15001 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15002 }
15003 else if (!die_is_declaration (die, cu))
15004 {
15005 /* Use the default LOC_OPTIMIZED_OUT class. */
15006 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
15007 if (!suppress_add)
15008 list_to_add = cu->list_in_scope;
15009 }
15010 }
15011 break;
15012 case DW_TAG_formal_parameter:
15013 /* If we are inside a function, mark this as an argument. If
15014 not, we might be looking at an argument to an inlined function
15015 when we do not have enough information to show inlined frames;
15016 pretend it's a local variable in that case so that the user can
15017 still see it. */
15018 if (context_stack_depth > 0
15019 && context_stack[context_stack_depth - 1].name != NULL)
15020 SYMBOL_IS_ARGUMENT (sym) = 1;
15021 attr = dwarf2_attr (die, DW_AT_location, cu);
15022 if (attr)
15023 {
15024 var_decode_location (attr, sym, cu);
15025 }
15026 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15027 if (attr)
15028 {
15029 dwarf2_const_value (attr, sym, cu);
15030 }
15031
15032 list_to_add = cu->list_in_scope;
15033 break;
15034 case DW_TAG_unspecified_parameters:
15035 /* From varargs functions; gdb doesn't seem to have any
15036 interest in this information, so just ignore it for now.
15037 (FIXME?) */
15038 break;
15039 case DW_TAG_template_type_param:
15040 suppress_add = 1;
15041 /* Fall through. */
15042 case DW_TAG_class_type:
15043 case DW_TAG_interface_type:
15044 case DW_TAG_structure_type:
15045 case DW_TAG_union_type:
15046 case DW_TAG_set_type:
15047 case DW_TAG_enumeration_type:
15048 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15049 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
15050
15051 {
15052 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
15053 really ever be static objects: otherwise, if you try
15054 to, say, break of a class's method and you're in a file
15055 which doesn't mention that class, it won't work unless
15056 the check for all static symbols in lookup_symbol_aux
15057 saves you. See the OtherFileClass tests in
15058 gdb.c++/namespace.exp. */
15059
15060 if (!suppress_add)
15061 {
15062 list_to_add = (cu->list_in_scope == &file_symbols
15063 && (cu->language == language_cplus
15064 || cu->language == language_java)
15065 ? &global_symbols : cu->list_in_scope);
15066
15067 /* The semantics of C++ state that "struct foo {
15068 ... }" also defines a typedef for "foo". A Java
15069 class declaration also defines a typedef for the
15070 class. */
15071 if (cu->language == language_cplus
15072 || cu->language == language_java
15073 || cu->language == language_ada)
15074 {
15075 /* The symbol's name is already allocated along
15076 with this objfile, so we don't need to
15077 duplicate it for the type. */
15078 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
15079 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
15080 }
15081 }
15082 }
15083 break;
15084 case DW_TAG_typedef:
15085 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15086 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15087 list_to_add = cu->list_in_scope;
15088 break;
15089 case DW_TAG_base_type:
15090 case DW_TAG_subrange_type:
15091 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15092 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15093 list_to_add = cu->list_in_scope;
15094 break;
15095 case DW_TAG_enumerator:
15096 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15097 if (attr)
15098 {
15099 dwarf2_const_value (attr, sym, cu);
15100 }
15101 {
15102 /* NOTE: carlton/2003-11-10: See comment above in the
15103 DW_TAG_class_type, etc. block. */
15104
15105 list_to_add = (cu->list_in_scope == &file_symbols
15106 && (cu->language == language_cplus
15107 || cu->language == language_java)
15108 ? &global_symbols : cu->list_in_scope);
15109 }
15110 break;
15111 case DW_TAG_namespace:
15112 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15113 list_to_add = &global_symbols;
15114 break;
15115 default:
15116 /* Not a tag we recognize. Hopefully we aren't processing
15117 trash data, but since we must specifically ignore things
15118 we don't recognize, there is nothing else we should do at
15119 this point. */
15120 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
15121 dwarf_tag_name (die->tag));
15122 break;
15123 }
15124
15125 if (suppress_add)
15126 {
15127 sym->hash_next = objfile->template_symbols;
15128 objfile->template_symbols = sym;
15129 list_to_add = NULL;
15130 }
15131
15132 if (list_to_add != NULL)
15133 add_symbol_to_list (sym, list_to_add);
15134
15135 /* For the benefit of old versions of GCC, check for anonymous
15136 namespaces based on the demangled name. */
15137 if (!processing_has_namespace_info
15138 && cu->language == language_cplus)
15139 cp_scan_for_anonymous_namespaces (sym, objfile);
15140 }
15141 return (sym);
15142 }
15143
15144 /* A wrapper for new_symbol_full that always allocates a new symbol. */
15145
15146 static struct symbol *
15147 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
15148 {
15149 return new_symbol_full (die, type, cu, NULL);
15150 }
15151
15152 /* Given an attr with a DW_FORM_dataN value in host byte order,
15153 zero-extend it as appropriate for the symbol's type. The DWARF
15154 standard (v4) is not entirely clear about the meaning of using
15155 DW_FORM_dataN for a constant with a signed type, where the type is
15156 wider than the data. The conclusion of a discussion on the DWARF
15157 list was that this is unspecified. We choose to always zero-extend
15158 because that is the interpretation long in use by GCC. */
15159
15160 static gdb_byte *
15161 dwarf2_const_value_data (struct attribute *attr, struct type *type,
15162 const char *name, struct obstack *obstack,
15163 struct dwarf2_cu *cu, LONGEST *value, int bits)
15164 {
15165 struct objfile *objfile = cu->objfile;
15166 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
15167 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
15168 LONGEST l = DW_UNSND (attr);
15169
15170 if (bits < sizeof (*value) * 8)
15171 {
15172 l &= ((LONGEST) 1 << bits) - 1;
15173 *value = l;
15174 }
15175 else if (bits == sizeof (*value) * 8)
15176 *value = l;
15177 else
15178 {
15179 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
15180 store_unsigned_integer (bytes, bits / 8, byte_order, l);
15181 return bytes;
15182 }
15183
15184 return NULL;
15185 }
15186
15187 /* Read a constant value from an attribute. Either set *VALUE, or if
15188 the value does not fit in *VALUE, set *BYTES - either already
15189 allocated on the objfile obstack, or newly allocated on OBSTACK,
15190 or, set *BATON, if we translated the constant to a location
15191 expression. */
15192
15193 static void
15194 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
15195 const char *name, struct obstack *obstack,
15196 struct dwarf2_cu *cu,
15197 LONGEST *value, gdb_byte **bytes,
15198 struct dwarf2_locexpr_baton **baton)
15199 {
15200 struct objfile *objfile = cu->objfile;
15201 struct comp_unit_head *cu_header = &cu->header;
15202 struct dwarf_block *blk;
15203 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
15204 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
15205
15206 *value = 0;
15207 *bytes = NULL;
15208 *baton = NULL;
15209
15210 switch (attr->form)
15211 {
15212 case DW_FORM_addr:
15213 case DW_FORM_GNU_addr_index:
15214 {
15215 gdb_byte *data;
15216
15217 if (TYPE_LENGTH (type) != cu_header->addr_size)
15218 dwarf2_const_value_length_mismatch_complaint (name,
15219 cu_header->addr_size,
15220 TYPE_LENGTH (type));
15221 /* Symbols of this form are reasonably rare, so we just
15222 piggyback on the existing location code rather than writing
15223 a new implementation of symbol_computed_ops. */
15224 *baton = obstack_alloc (&objfile->objfile_obstack,
15225 sizeof (struct dwarf2_locexpr_baton));
15226 (*baton)->per_cu = cu->per_cu;
15227 gdb_assert ((*baton)->per_cu);
15228
15229 (*baton)->size = 2 + cu_header->addr_size;
15230 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
15231 (*baton)->data = data;
15232
15233 data[0] = DW_OP_addr;
15234 store_unsigned_integer (&data[1], cu_header->addr_size,
15235 byte_order, DW_ADDR (attr));
15236 data[cu_header->addr_size + 1] = DW_OP_stack_value;
15237 }
15238 break;
15239 case DW_FORM_string:
15240 case DW_FORM_strp:
15241 case DW_FORM_GNU_str_index:
15242 case DW_FORM_GNU_strp_alt:
15243 /* DW_STRING is already allocated on the objfile obstack, point
15244 directly to it. */
15245 *bytes = (gdb_byte *) DW_STRING (attr);
15246 break;
15247 case DW_FORM_block1:
15248 case DW_FORM_block2:
15249 case DW_FORM_block4:
15250 case DW_FORM_block:
15251 case DW_FORM_exprloc:
15252 blk = DW_BLOCK (attr);
15253 if (TYPE_LENGTH (type) != blk->size)
15254 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
15255 TYPE_LENGTH (type));
15256 *bytes = blk->data;
15257 break;
15258
15259 /* The DW_AT_const_value attributes are supposed to carry the
15260 symbol's value "represented as it would be on the target
15261 architecture." By the time we get here, it's already been
15262 converted to host endianness, so we just need to sign- or
15263 zero-extend it as appropriate. */
15264 case DW_FORM_data1:
15265 *bytes = dwarf2_const_value_data (attr, type, name,
15266 obstack, cu, value, 8);
15267 break;
15268 case DW_FORM_data2:
15269 *bytes = dwarf2_const_value_data (attr, type, name,
15270 obstack, cu, value, 16);
15271 break;
15272 case DW_FORM_data4:
15273 *bytes = dwarf2_const_value_data (attr, type, name,
15274 obstack, cu, value, 32);
15275 break;
15276 case DW_FORM_data8:
15277 *bytes = dwarf2_const_value_data (attr, type, name,
15278 obstack, cu, value, 64);
15279 break;
15280
15281 case DW_FORM_sdata:
15282 *value = DW_SND (attr);
15283 break;
15284
15285 case DW_FORM_udata:
15286 *value = DW_UNSND (attr);
15287 break;
15288
15289 default:
15290 complaint (&symfile_complaints,
15291 _("unsupported const value attribute form: '%s'"),
15292 dwarf_form_name (attr->form));
15293 *value = 0;
15294 break;
15295 }
15296 }
15297
15298
15299 /* Copy constant value from an attribute to a symbol. */
15300
15301 static void
15302 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
15303 struct dwarf2_cu *cu)
15304 {
15305 struct objfile *objfile = cu->objfile;
15306 struct comp_unit_head *cu_header = &cu->header;
15307 LONGEST value;
15308 gdb_byte *bytes;
15309 struct dwarf2_locexpr_baton *baton;
15310
15311 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
15312 SYMBOL_PRINT_NAME (sym),
15313 &objfile->objfile_obstack, cu,
15314 &value, &bytes, &baton);
15315
15316 if (baton != NULL)
15317 {
15318 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15319 SYMBOL_LOCATION_BATON (sym) = baton;
15320 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15321 }
15322 else if (bytes != NULL)
15323 {
15324 SYMBOL_VALUE_BYTES (sym) = bytes;
15325 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
15326 }
15327 else
15328 {
15329 SYMBOL_VALUE (sym) = value;
15330 SYMBOL_CLASS (sym) = LOC_CONST;
15331 }
15332 }
15333
15334 /* Return the type of the die in question using its DW_AT_type attribute. */
15335
15336 static struct type *
15337 die_type (struct die_info *die, struct dwarf2_cu *cu)
15338 {
15339 struct attribute *type_attr;
15340
15341 type_attr = dwarf2_attr (die, DW_AT_type, cu);
15342 if (!type_attr)
15343 {
15344 /* A missing DW_AT_type represents a void type. */
15345 return objfile_type (cu->objfile)->builtin_void;
15346 }
15347
15348 return lookup_die_type (die, type_attr, cu);
15349 }
15350
15351 /* True iff CU's producer generates GNAT Ada auxiliary information
15352 that allows to find parallel types through that information instead
15353 of having to do expensive parallel lookups by type name. */
15354
15355 static int
15356 need_gnat_info (struct dwarf2_cu *cu)
15357 {
15358 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
15359 of GNAT produces this auxiliary information, without any indication
15360 that it is produced. Part of enhancing the FSF version of GNAT
15361 to produce that information will be to put in place an indicator
15362 that we can use in order to determine whether the descriptive type
15363 info is available or not. One suggestion that has been made is
15364 to use a new attribute, attached to the CU die. For now, assume
15365 that the descriptive type info is not available. */
15366 return 0;
15367 }
15368
15369 /* Return the auxiliary type of the die in question using its
15370 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
15371 attribute is not present. */
15372
15373 static struct type *
15374 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
15375 {
15376 struct attribute *type_attr;
15377
15378 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
15379 if (!type_attr)
15380 return NULL;
15381
15382 return lookup_die_type (die, type_attr, cu);
15383 }
15384
15385 /* If DIE has a descriptive_type attribute, then set the TYPE's
15386 descriptive type accordingly. */
15387
15388 static void
15389 set_descriptive_type (struct type *type, struct die_info *die,
15390 struct dwarf2_cu *cu)
15391 {
15392 struct type *descriptive_type = die_descriptive_type (die, cu);
15393
15394 if (descriptive_type)
15395 {
15396 ALLOCATE_GNAT_AUX_TYPE (type);
15397 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
15398 }
15399 }
15400
15401 /* Return the containing type of the die in question using its
15402 DW_AT_containing_type attribute. */
15403
15404 static struct type *
15405 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
15406 {
15407 struct attribute *type_attr;
15408
15409 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
15410 if (!type_attr)
15411 error (_("Dwarf Error: Problem turning containing type into gdb type "
15412 "[in module %s]"), cu->objfile->name);
15413
15414 return lookup_die_type (die, type_attr, cu);
15415 }
15416
15417 /* Look up the type of DIE in CU using its type attribute ATTR.
15418 If there is no type substitute an error marker. */
15419
15420 static struct type *
15421 lookup_die_type (struct die_info *die, struct attribute *attr,
15422 struct dwarf2_cu *cu)
15423 {
15424 struct objfile *objfile = cu->objfile;
15425 struct type *this_type;
15426
15427 /* First see if we have it cached. */
15428
15429 if (attr->form == DW_FORM_GNU_ref_alt)
15430 {
15431 struct dwarf2_per_cu_data *per_cu;
15432 sect_offset offset = dwarf2_get_ref_die_offset (attr);
15433
15434 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
15435 this_type = get_die_type_at_offset (offset, per_cu);
15436 }
15437 else if (is_ref_attr (attr))
15438 {
15439 sect_offset offset = dwarf2_get_ref_die_offset (attr);
15440
15441 this_type = get_die_type_at_offset (offset, cu->per_cu);
15442 }
15443 else if (attr->form == DW_FORM_ref_sig8)
15444 {
15445 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
15446
15447 /* sig_type will be NULL if the signatured type is missing from
15448 the debug info. */
15449 if (sig_type == NULL)
15450 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
15451 "at 0x%x [in module %s]"),
15452 die->offset.sect_off, objfile->name);
15453
15454 gdb_assert (sig_type->per_cu.is_debug_types);
15455 /* If we haven't filled in type_offset_in_section yet, then we
15456 haven't read the type in yet. */
15457 this_type = NULL;
15458 if (sig_type->type_offset_in_section.sect_off != 0)
15459 {
15460 this_type =
15461 get_die_type_at_offset (sig_type->type_offset_in_section,
15462 &sig_type->per_cu);
15463 }
15464 }
15465 else
15466 {
15467 dump_die_for_error (die);
15468 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
15469 dwarf_attr_name (attr->name), objfile->name);
15470 }
15471
15472 /* If not cached we need to read it in. */
15473
15474 if (this_type == NULL)
15475 {
15476 struct die_info *type_die;
15477 struct dwarf2_cu *type_cu = cu;
15478
15479 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
15480 /* If we found the type now, it's probably because the type came
15481 from an inter-CU reference and the type's CU got expanded before
15482 ours. */
15483 this_type = get_die_type (type_die, type_cu);
15484 if (this_type == NULL)
15485 this_type = read_type_die_1 (type_die, type_cu);
15486 }
15487
15488 /* If we still don't have a type use an error marker. */
15489
15490 if (this_type == NULL)
15491 {
15492 char *message, *saved;
15493
15494 /* read_type_die already issued a complaint. */
15495 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
15496 objfile->name,
15497 cu->header.offset.sect_off,
15498 die->offset.sect_off);
15499 saved = obstack_copy0 (&objfile->objfile_obstack,
15500 message, strlen (message));
15501 xfree (message);
15502
15503 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
15504 }
15505
15506 return this_type;
15507 }
15508
15509 /* Return the type in DIE, CU.
15510 Returns NULL for invalid types.
15511
15512 This first does a lookup in the appropriate type_hash table,
15513 and only reads the die in if necessary.
15514
15515 NOTE: This can be called when reading in partial or full symbols. */
15516
15517 static struct type *
15518 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
15519 {
15520 struct type *this_type;
15521
15522 this_type = get_die_type (die, cu);
15523 if (this_type)
15524 return this_type;
15525
15526 return read_type_die_1 (die, cu);
15527 }
15528
15529 /* Read the type in DIE, CU.
15530 Returns NULL for invalid types. */
15531
15532 static struct type *
15533 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
15534 {
15535 struct type *this_type = NULL;
15536
15537 switch (die->tag)
15538 {
15539 case DW_TAG_class_type:
15540 case DW_TAG_interface_type:
15541 case DW_TAG_structure_type:
15542 case DW_TAG_union_type:
15543 this_type = read_structure_type (die, cu);
15544 break;
15545 case DW_TAG_enumeration_type:
15546 this_type = read_enumeration_type (die, cu);
15547 break;
15548 case DW_TAG_subprogram:
15549 case DW_TAG_subroutine_type:
15550 case DW_TAG_inlined_subroutine:
15551 this_type = read_subroutine_type (die, cu);
15552 break;
15553 case DW_TAG_array_type:
15554 this_type = read_array_type (die, cu);
15555 break;
15556 case DW_TAG_set_type:
15557 this_type = read_set_type (die, cu);
15558 break;
15559 case DW_TAG_pointer_type:
15560 this_type = read_tag_pointer_type (die, cu);
15561 break;
15562 case DW_TAG_ptr_to_member_type:
15563 this_type = read_tag_ptr_to_member_type (die, cu);
15564 break;
15565 case DW_TAG_reference_type:
15566 this_type = read_tag_reference_type (die, cu);
15567 break;
15568 case DW_TAG_const_type:
15569 this_type = read_tag_const_type (die, cu);
15570 break;
15571 case DW_TAG_volatile_type:
15572 this_type = read_tag_volatile_type (die, cu);
15573 break;
15574 case DW_TAG_string_type:
15575 this_type = read_tag_string_type (die, cu);
15576 break;
15577 case DW_TAG_typedef:
15578 this_type = read_typedef (die, cu);
15579 break;
15580 case DW_TAG_subrange_type:
15581 this_type = read_subrange_type (die, cu);
15582 break;
15583 case DW_TAG_base_type:
15584 this_type = read_base_type (die, cu);
15585 break;
15586 case DW_TAG_unspecified_type:
15587 this_type = read_unspecified_type (die, cu);
15588 break;
15589 case DW_TAG_namespace:
15590 this_type = read_namespace_type (die, cu);
15591 break;
15592 case DW_TAG_module:
15593 this_type = read_module_type (die, cu);
15594 break;
15595 default:
15596 complaint (&symfile_complaints,
15597 _("unexpected tag in read_type_die: '%s'"),
15598 dwarf_tag_name (die->tag));
15599 break;
15600 }
15601
15602 return this_type;
15603 }
15604
15605 /* See if we can figure out if the class lives in a namespace. We do
15606 this by looking for a member function; its demangled name will
15607 contain namespace info, if there is any.
15608 Return the computed name or NULL.
15609 Space for the result is allocated on the objfile's obstack.
15610 This is the full-die version of guess_partial_die_structure_name.
15611 In this case we know DIE has no useful parent. */
15612
15613 static char *
15614 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
15615 {
15616 struct die_info *spec_die;
15617 struct dwarf2_cu *spec_cu;
15618 struct die_info *child;
15619
15620 spec_cu = cu;
15621 spec_die = die_specification (die, &spec_cu);
15622 if (spec_die != NULL)
15623 {
15624 die = spec_die;
15625 cu = spec_cu;
15626 }
15627
15628 for (child = die->child;
15629 child != NULL;
15630 child = child->sibling)
15631 {
15632 if (child->tag == DW_TAG_subprogram)
15633 {
15634 struct attribute *attr;
15635
15636 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
15637 if (attr == NULL)
15638 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
15639 if (attr != NULL)
15640 {
15641 char *actual_name
15642 = language_class_name_from_physname (cu->language_defn,
15643 DW_STRING (attr));
15644 char *name = NULL;
15645
15646 if (actual_name != NULL)
15647 {
15648 char *die_name = dwarf2_name (die, cu);
15649
15650 if (die_name != NULL
15651 && strcmp (die_name, actual_name) != 0)
15652 {
15653 /* Strip off the class name from the full name.
15654 We want the prefix. */
15655 int die_name_len = strlen (die_name);
15656 int actual_name_len = strlen (actual_name);
15657
15658 /* Test for '::' as a sanity check. */
15659 if (actual_name_len > die_name_len + 2
15660 && actual_name[actual_name_len
15661 - die_name_len - 1] == ':')
15662 name =
15663 obsavestring (actual_name,
15664 actual_name_len - die_name_len - 2,
15665 &cu->objfile->objfile_obstack);
15666 }
15667 }
15668 xfree (actual_name);
15669 return name;
15670 }
15671 }
15672 }
15673
15674 return NULL;
15675 }
15676
15677 /* GCC might emit a nameless typedef that has a linkage name. Determine the
15678 prefix part in such case. See
15679 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15680
15681 static char *
15682 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
15683 {
15684 struct attribute *attr;
15685 char *base;
15686
15687 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
15688 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
15689 return NULL;
15690
15691 attr = dwarf2_attr (die, DW_AT_name, cu);
15692 if (attr != NULL && DW_STRING (attr) != NULL)
15693 return NULL;
15694
15695 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
15696 if (attr == NULL)
15697 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
15698 if (attr == NULL || DW_STRING (attr) == NULL)
15699 return NULL;
15700
15701 /* dwarf2_name had to be already called. */
15702 gdb_assert (DW_STRING_IS_CANONICAL (attr));
15703
15704 /* Strip the base name, keep any leading namespaces/classes. */
15705 base = strrchr (DW_STRING (attr), ':');
15706 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
15707 return "";
15708
15709 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
15710 &cu->objfile->objfile_obstack);
15711 }
15712
15713 /* Return the name of the namespace/class that DIE is defined within,
15714 or "" if we can't tell. The caller should not xfree the result.
15715
15716 For example, if we're within the method foo() in the following
15717 code:
15718
15719 namespace N {
15720 class C {
15721 void foo () {
15722 }
15723 };
15724 }
15725
15726 then determine_prefix on foo's die will return "N::C". */
15727
15728 static const char *
15729 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
15730 {
15731 struct die_info *parent, *spec_die;
15732 struct dwarf2_cu *spec_cu;
15733 struct type *parent_type;
15734 char *retval;
15735
15736 if (cu->language != language_cplus && cu->language != language_java
15737 && cu->language != language_fortran)
15738 return "";
15739
15740 retval = anonymous_struct_prefix (die, cu);
15741 if (retval)
15742 return retval;
15743
15744 /* We have to be careful in the presence of DW_AT_specification.
15745 For example, with GCC 3.4, given the code
15746
15747 namespace N {
15748 void foo() {
15749 // Definition of N::foo.
15750 }
15751 }
15752
15753 then we'll have a tree of DIEs like this:
15754
15755 1: DW_TAG_compile_unit
15756 2: DW_TAG_namespace // N
15757 3: DW_TAG_subprogram // declaration of N::foo
15758 4: DW_TAG_subprogram // definition of N::foo
15759 DW_AT_specification // refers to die #3
15760
15761 Thus, when processing die #4, we have to pretend that we're in
15762 the context of its DW_AT_specification, namely the contex of die
15763 #3. */
15764 spec_cu = cu;
15765 spec_die = die_specification (die, &spec_cu);
15766 if (spec_die == NULL)
15767 parent = die->parent;
15768 else
15769 {
15770 parent = spec_die->parent;
15771 cu = spec_cu;
15772 }
15773
15774 if (parent == NULL)
15775 return "";
15776 else if (parent->building_fullname)
15777 {
15778 const char *name;
15779 const char *parent_name;
15780
15781 /* It has been seen on RealView 2.2 built binaries,
15782 DW_TAG_template_type_param types actually _defined_ as
15783 children of the parent class:
15784
15785 enum E {};
15786 template class <class Enum> Class{};
15787 Class<enum E> class_e;
15788
15789 1: DW_TAG_class_type (Class)
15790 2: DW_TAG_enumeration_type (E)
15791 3: DW_TAG_enumerator (enum1:0)
15792 3: DW_TAG_enumerator (enum2:1)
15793 ...
15794 2: DW_TAG_template_type_param
15795 DW_AT_type DW_FORM_ref_udata (E)
15796
15797 Besides being broken debug info, it can put GDB into an
15798 infinite loop. Consider:
15799
15800 When we're building the full name for Class<E>, we'll start
15801 at Class, and go look over its template type parameters,
15802 finding E. We'll then try to build the full name of E, and
15803 reach here. We're now trying to build the full name of E,
15804 and look over the parent DIE for containing scope. In the
15805 broken case, if we followed the parent DIE of E, we'd again
15806 find Class, and once again go look at its template type
15807 arguments, etc., etc. Simply don't consider such parent die
15808 as source-level parent of this die (it can't be, the language
15809 doesn't allow it), and break the loop here. */
15810 name = dwarf2_name (die, cu);
15811 parent_name = dwarf2_name (parent, cu);
15812 complaint (&symfile_complaints,
15813 _("template param type '%s' defined within parent '%s'"),
15814 name ? name : "<unknown>",
15815 parent_name ? parent_name : "<unknown>");
15816 return "";
15817 }
15818 else
15819 switch (parent->tag)
15820 {
15821 case DW_TAG_namespace:
15822 parent_type = read_type_die (parent, cu);
15823 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
15824 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
15825 Work around this problem here. */
15826 if (cu->language == language_cplus
15827 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
15828 return "";
15829 /* We give a name to even anonymous namespaces. */
15830 return TYPE_TAG_NAME (parent_type);
15831 case DW_TAG_class_type:
15832 case DW_TAG_interface_type:
15833 case DW_TAG_structure_type:
15834 case DW_TAG_union_type:
15835 case DW_TAG_module:
15836 parent_type = read_type_die (parent, cu);
15837 if (TYPE_TAG_NAME (parent_type) != NULL)
15838 return TYPE_TAG_NAME (parent_type);
15839 else
15840 /* An anonymous structure is only allowed non-static data
15841 members; no typedefs, no member functions, et cetera.
15842 So it does not need a prefix. */
15843 return "";
15844 case DW_TAG_compile_unit:
15845 case DW_TAG_partial_unit:
15846 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
15847 if (cu->language == language_cplus
15848 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15849 && die->child != NULL
15850 && (die->tag == DW_TAG_class_type
15851 || die->tag == DW_TAG_structure_type
15852 || die->tag == DW_TAG_union_type))
15853 {
15854 char *name = guess_full_die_structure_name (die, cu);
15855 if (name != NULL)
15856 return name;
15857 }
15858 return "";
15859 default:
15860 return determine_prefix (parent, cu);
15861 }
15862 }
15863
15864 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
15865 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
15866 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
15867 an obconcat, otherwise allocate storage for the result. The CU argument is
15868 used to determine the language and hence, the appropriate separator. */
15869
15870 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
15871
15872 static char *
15873 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
15874 int physname, struct dwarf2_cu *cu)
15875 {
15876 const char *lead = "";
15877 const char *sep;
15878
15879 if (suffix == NULL || suffix[0] == '\0'
15880 || prefix == NULL || prefix[0] == '\0')
15881 sep = "";
15882 else if (cu->language == language_java)
15883 sep = ".";
15884 else if (cu->language == language_fortran && physname)
15885 {
15886 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
15887 DW_AT_MIPS_linkage_name is preferred and used instead. */
15888
15889 lead = "__";
15890 sep = "_MOD_";
15891 }
15892 else
15893 sep = "::";
15894
15895 if (prefix == NULL)
15896 prefix = "";
15897 if (suffix == NULL)
15898 suffix = "";
15899
15900 if (obs == NULL)
15901 {
15902 char *retval
15903 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
15904
15905 strcpy (retval, lead);
15906 strcat (retval, prefix);
15907 strcat (retval, sep);
15908 strcat (retval, suffix);
15909 return retval;
15910 }
15911 else
15912 {
15913 /* We have an obstack. */
15914 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
15915 }
15916 }
15917
15918 /* Return sibling of die, NULL if no sibling. */
15919
15920 static struct die_info *
15921 sibling_die (struct die_info *die)
15922 {
15923 return die->sibling;
15924 }
15925
15926 /* Get name of a die, return NULL if not found. */
15927
15928 static char *
15929 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
15930 struct obstack *obstack)
15931 {
15932 if (name && cu->language == language_cplus)
15933 {
15934 char *canon_name = cp_canonicalize_string (name);
15935
15936 if (canon_name != NULL)
15937 {
15938 if (strcmp (canon_name, name) != 0)
15939 name = obsavestring (canon_name, strlen (canon_name),
15940 obstack);
15941 xfree (canon_name);
15942 }
15943 }
15944
15945 return name;
15946 }
15947
15948 /* Get name of a die, return NULL if not found. */
15949
15950 static char *
15951 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
15952 {
15953 struct attribute *attr;
15954
15955 attr = dwarf2_attr (die, DW_AT_name, cu);
15956 if ((!attr || !DW_STRING (attr))
15957 && die->tag != DW_TAG_class_type
15958 && die->tag != DW_TAG_interface_type
15959 && die->tag != DW_TAG_structure_type
15960 && die->tag != DW_TAG_union_type)
15961 return NULL;
15962
15963 switch (die->tag)
15964 {
15965 case DW_TAG_compile_unit:
15966 case DW_TAG_partial_unit:
15967 /* Compilation units have a DW_AT_name that is a filename, not
15968 a source language identifier. */
15969 case DW_TAG_enumeration_type:
15970 case DW_TAG_enumerator:
15971 /* These tags always have simple identifiers already; no need
15972 to canonicalize them. */
15973 return DW_STRING (attr);
15974
15975 case DW_TAG_subprogram:
15976 /* Java constructors will all be named "<init>", so return
15977 the class name when we see this special case. */
15978 if (cu->language == language_java
15979 && DW_STRING (attr) != NULL
15980 && strcmp (DW_STRING (attr), "<init>") == 0)
15981 {
15982 struct dwarf2_cu *spec_cu = cu;
15983 struct die_info *spec_die;
15984
15985 /* GCJ will output '<init>' for Java constructor names.
15986 For this special case, return the name of the parent class. */
15987
15988 /* GCJ may output suprogram DIEs with AT_specification set.
15989 If so, use the name of the specified DIE. */
15990 spec_die = die_specification (die, &spec_cu);
15991 if (spec_die != NULL)
15992 return dwarf2_name (spec_die, spec_cu);
15993
15994 do
15995 {
15996 die = die->parent;
15997 if (die->tag == DW_TAG_class_type)
15998 return dwarf2_name (die, cu);
15999 }
16000 while (die->tag != DW_TAG_compile_unit
16001 && die->tag != DW_TAG_partial_unit);
16002 }
16003 break;
16004
16005 case DW_TAG_class_type:
16006 case DW_TAG_interface_type:
16007 case DW_TAG_structure_type:
16008 case DW_TAG_union_type:
16009 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16010 structures or unions. These were of the form "._%d" in GCC 4.1,
16011 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16012 and GCC 4.4. We work around this problem by ignoring these. */
16013 if (attr && DW_STRING (attr)
16014 && (strncmp (DW_STRING (attr), "._", 2) == 0
16015 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
16016 return NULL;
16017
16018 /* GCC might emit a nameless typedef that has a linkage name. See
16019 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16020 if (!attr || DW_STRING (attr) == NULL)
16021 {
16022 char *demangled = NULL;
16023
16024 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16025 if (attr == NULL)
16026 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16027
16028 if (attr == NULL || DW_STRING (attr) == NULL)
16029 return NULL;
16030
16031 /* Avoid demangling DW_STRING (attr) the second time on a second
16032 call for the same DIE. */
16033 if (!DW_STRING_IS_CANONICAL (attr))
16034 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
16035
16036 if (demangled)
16037 {
16038 char *base;
16039
16040 /* FIXME: we already did this for the partial symbol... */
16041 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
16042 &cu->objfile->objfile_obstack);
16043 DW_STRING_IS_CANONICAL (attr) = 1;
16044 xfree (demangled);
16045
16046 /* Strip any leading namespaces/classes, keep only the base name.
16047 DW_AT_name for named DIEs does not contain the prefixes. */
16048 base = strrchr (DW_STRING (attr), ':');
16049 if (base && base > DW_STRING (attr) && base[-1] == ':')
16050 return &base[1];
16051 else
16052 return DW_STRING (attr);
16053 }
16054 }
16055 break;
16056
16057 default:
16058 break;
16059 }
16060
16061 if (!DW_STRING_IS_CANONICAL (attr))
16062 {
16063 DW_STRING (attr)
16064 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
16065 &cu->objfile->objfile_obstack);
16066 DW_STRING_IS_CANONICAL (attr) = 1;
16067 }
16068 return DW_STRING (attr);
16069 }
16070
16071 /* Return the die that this die in an extension of, or NULL if there
16072 is none. *EXT_CU is the CU containing DIE on input, and the CU
16073 containing the return value on output. */
16074
16075 static struct die_info *
16076 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
16077 {
16078 struct attribute *attr;
16079
16080 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
16081 if (attr == NULL)
16082 return NULL;
16083
16084 return follow_die_ref (die, attr, ext_cu);
16085 }
16086
16087 /* Convert a DIE tag into its string name. */
16088
16089 static const char *
16090 dwarf_tag_name (unsigned tag)
16091 {
16092 const char *name = get_DW_TAG_name (tag);
16093
16094 if (name == NULL)
16095 return "DW_TAG_<unknown>";
16096
16097 return name;
16098 }
16099
16100 /* Convert a DWARF attribute code into its string name. */
16101
16102 static const char *
16103 dwarf_attr_name (unsigned attr)
16104 {
16105 const char *name;
16106
16107 #ifdef MIPS /* collides with DW_AT_HP_block_index */
16108 if (attr == DW_AT_MIPS_fde)
16109 return "DW_AT_MIPS_fde";
16110 #else
16111 if (attr == DW_AT_HP_block_index)
16112 return "DW_AT_HP_block_index";
16113 #endif
16114
16115 name = get_DW_AT_name (attr);
16116
16117 if (name == NULL)
16118 return "DW_AT_<unknown>";
16119
16120 return name;
16121 }
16122
16123 /* Convert a DWARF value form code into its string name. */
16124
16125 static const char *
16126 dwarf_form_name (unsigned form)
16127 {
16128 const char *name = get_DW_FORM_name (form);
16129
16130 if (name == NULL)
16131 return "DW_FORM_<unknown>";
16132
16133 return name;
16134 }
16135
16136 static char *
16137 dwarf_bool_name (unsigned mybool)
16138 {
16139 if (mybool)
16140 return "TRUE";
16141 else
16142 return "FALSE";
16143 }
16144
16145 /* Convert a DWARF type code into its string name. */
16146
16147 static const char *
16148 dwarf_type_encoding_name (unsigned enc)
16149 {
16150 const char *name = get_DW_ATE_name (enc);
16151
16152 if (name == NULL)
16153 return "DW_ATE_<unknown>";
16154
16155 return name;
16156 }
16157
16158 static void
16159 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
16160 {
16161 unsigned int i;
16162
16163 print_spaces (indent, f);
16164 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
16165 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
16166
16167 if (die->parent != NULL)
16168 {
16169 print_spaces (indent, f);
16170 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
16171 die->parent->offset.sect_off);
16172 }
16173
16174 print_spaces (indent, f);
16175 fprintf_unfiltered (f, " has children: %s\n",
16176 dwarf_bool_name (die->child != NULL));
16177
16178 print_spaces (indent, f);
16179 fprintf_unfiltered (f, " attributes:\n");
16180
16181 for (i = 0; i < die->num_attrs; ++i)
16182 {
16183 print_spaces (indent, f);
16184 fprintf_unfiltered (f, " %s (%s) ",
16185 dwarf_attr_name (die->attrs[i].name),
16186 dwarf_form_name (die->attrs[i].form));
16187
16188 switch (die->attrs[i].form)
16189 {
16190 case DW_FORM_addr:
16191 case DW_FORM_GNU_addr_index:
16192 fprintf_unfiltered (f, "address: ");
16193 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
16194 break;
16195 case DW_FORM_block2:
16196 case DW_FORM_block4:
16197 case DW_FORM_block:
16198 case DW_FORM_block1:
16199 fprintf_unfiltered (f, "block: size %d",
16200 DW_BLOCK (&die->attrs[i])->size);
16201 break;
16202 case DW_FORM_exprloc:
16203 fprintf_unfiltered (f, "expression: size %u",
16204 DW_BLOCK (&die->attrs[i])->size);
16205 break;
16206 case DW_FORM_ref_addr:
16207 fprintf_unfiltered (f, "ref address: ");
16208 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
16209 break;
16210 case DW_FORM_GNU_ref_alt:
16211 fprintf_unfiltered (f, "alt ref address: ");
16212 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
16213 break;
16214 case DW_FORM_ref1:
16215 case DW_FORM_ref2:
16216 case DW_FORM_ref4:
16217 case DW_FORM_ref8:
16218 case DW_FORM_ref_udata:
16219 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
16220 (long) (DW_UNSND (&die->attrs[i])));
16221 break;
16222 case DW_FORM_data1:
16223 case DW_FORM_data2:
16224 case DW_FORM_data4:
16225 case DW_FORM_data8:
16226 case DW_FORM_udata:
16227 case DW_FORM_sdata:
16228 fprintf_unfiltered (f, "constant: %s",
16229 pulongest (DW_UNSND (&die->attrs[i])));
16230 break;
16231 case DW_FORM_sec_offset:
16232 fprintf_unfiltered (f, "section offset: %s",
16233 pulongest (DW_UNSND (&die->attrs[i])));
16234 break;
16235 case DW_FORM_ref_sig8:
16236 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
16237 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
16238 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
16239 else
16240 fprintf_unfiltered (f, "signatured type, offset: unknown");
16241 break;
16242 case DW_FORM_string:
16243 case DW_FORM_strp:
16244 case DW_FORM_GNU_str_index:
16245 case DW_FORM_GNU_strp_alt:
16246 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
16247 DW_STRING (&die->attrs[i])
16248 ? DW_STRING (&die->attrs[i]) : "",
16249 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
16250 break;
16251 case DW_FORM_flag:
16252 if (DW_UNSND (&die->attrs[i]))
16253 fprintf_unfiltered (f, "flag: TRUE");
16254 else
16255 fprintf_unfiltered (f, "flag: FALSE");
16256 break;
16257 case DW_FORM_flag_present:
16258 fprintf_unfiltered (f, "flag: TRUE");
16259 break;
16260 case DW_FORM_indirect:
16261 /* The reader will have reduced the indirect form to
16262 the "base form" so this form should not occur. */
16263 fprintf_unfiltered (f,
16264 "unexpected attribute form: DW_FORM_indirect");
16265 break;
16266 default:
16267 fprintf_unfiltered (f, "unsupported attribute form: %d.",
16268 die->attrs[i].form);
16269 break;
16270 }
16271 fprintf_unfiltered (f, "\n");
16272 }
16273 }
16274
16275 static void
16276 dump_die_for_error (struct die_info *die)
16277 {
16278 dump_die_shallow (gdb_stderr, 0, die);
16279 }
16280
16281 static void
16282 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
16283 {
16284 int indent = level * 4;
16285
16286 gdb_assert (die != NULL);
16287
16288 if (level >= max_level)
16289 return;
16290
16291 dump_die_shallow (f, indent, die);
16292
16293 if (die->child != NULL)
16294 {
16295 print_spaces (indent, f);
16296 fprintf_unfiltered (f, " Children:");
16297 if (level + 1 < max_level)
16298 {
16299 fprintf_unfiltered (f, "\n");
16300 dump_die_1 (f, level + 1, max_level, die->child);
16301 }
16302 else
16303 {
16304 fprintf_unfiltered (f,
16305 " [not printed, max nesting level reached]\n");
16306 }
16307 }
16308
16309 if (die->sibling != NULL && level > 0)
16310 {
16311 dump_die_1 (f, level, max_level, die->sibling);
16312 }
16313 }
16314
16315 /* This is called from the pdie macro in gdbinit.in.
16316 It's not static so gcc will keep a copy callable from gdb. */
16317
16318 void
16319 dump_die (struct die_info *die, int max_level)
16320 {
16321 dump_die_1 (gdb_stdlog, 0, max_level, die);
16322 }
16323
16324 static void
16325 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
16326 {
16327 void **slot;
16328
16329 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
16330 INSERT);
16331
16332 *slot = die;
16333 }
16334
16335 /* DW_ADDR is always stored already as sect_offset; despite for the forms
16336 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
16337
16338 static int
16339 is_ref_attr (struct attribute *attr)
16340 {
16341 switch (attr->form)
16342 {
16343 case DW_FORM_ref_addr:
16344 case DW_FORM_ref1:
16345 case DW_FORM_ref2:
16346 case DW_FORM_ref4:
16347 case DW_FORM_ref8:
16348 case DW_FORM_ref_udata:
16349 case DW_FORM_GNU_ref_alt:
16350 return 1;
16351 default:
16352 return 0;
16353 }
16354 }
16355
16356 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
16357 required kind. */
16358
16359 static sect_offset
16360 dwarf2_get_ref_die_offset (struct attribute *attr)
16361 {
16362 sect_offset retval = { DW_UNSND (attr) };
16363
16364 if (is_ref_attr (attr))
16365 return retval;
16366
16367 retval.sect_off = 0;
16368 complaint (&symfile_complaints,
16369 _("unsupported die ref attribute form: '%s'"),
16370 dwarf_form_name (attr->form));
16371 return retval;
16372 }
16373
16374 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
16375 * the value held by the attribute is not constant. */
16376
16377 static LONGEST
16378 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
16379 {
16380 if (attr->form == DW_FORM_sdata)
16381 return DW_SND (attr);
16382 else if (attr->form == DW_FORM_udata
16383 || attr->form == DW_FORM_data1
16384 || attr->form == DW_FORM_data2
16385 || attr->form == DW_FORM_data4
16386 || attr->form == DW_FORM_data8)
16387 return DW_UNSND (attr);
16388 else
16389 {
16390 complaint (&symfile_complaints,
16391 _("Attribute value is not a constant (%s)"),
16392 dwarf_form_name (attr->form));
16393 return default_value;
16394 }
16395 }
16396
16397 /* Follow reference or signature attribute ATTR of SRC_DIE.
16398 On entry *REF_CU is the CU of SRC_DIE.
16399 On exit *REF_CU is the CU of the result. */
16400
16401 static struct die_info *
16402 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
16403 struct dwarf2_cu **ref_cu)
16404 {
16405 struct die_info *die;
16406
16407 if (is_ref_attr (attr))
16408 die = follow_die_ref (src_die, attr, ref_cu);
16409 else if (attr->form == DW_FORM_ref_sig8)
16410 die = follow_die_sig (src_die, attr, ref_cu);
16411 else
16412 {
16413 dump_die_for_error (src_die);
16414 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
16415 (*ref_cu)->objfile->name);
16416 }
16417
16418 return die;
16419 }
16420
16421 /* Follow reference OFFSET.
16422 On entry *REF_CU is the CU of the source die referencing OFFSET.
16423 On exit *REF_CU is the CU of the result.
16424 Returns NULL if OFFSET is invalid. */
16425
16426 static struct die_info *
16427 follow_die_offset (sect_offset offset, int offset_in_dwz,
16428 struct dwarf2_cu **ref_cu)
16429 {
16430 struct die_info temp_die;
16431 struct dwarf2_cu *target_cu, *cu = *ref_cu;
16432
16433 gdb_assert (cu->per_cu != NULL);
16434
16435 target_cu = cu;
16436
16437 if (cu->per_cu->is_debug_types)
16438 {
16439 /* .debug_types CUs cannot reference anything outside their CU.
16440 If they need to, they have to reference a signatured type via
16441 DW_FORM_ref_sig8. */
16442 if (! offset_in_cu_p (&cu->header, offset))
16443 return NULL;
16444 }
16445 else if (offset_in_dwz != cu->per_cu->is_dwz
16446 || ! offset_in_cu_p (&cu->header, offset))
16447 {
16448 struct dwarf2_per_cu_data *per_cu;
16449
16450 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16451 cu->objfile);
16452
16453 /* If necessary, add it to the queue and load its DIEs. */
16454 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
16455 load_full_comp_unit (per_cu, cu->language);
16456
16457 target_cu = per_cu->cu;
16458 }
16459 else if (cu->dies == NULL)
16460 {
16461 /* We're loading full DIEs during partial symbol reading. */
16462 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
16463 load_full_comp_unit (cu->per_cu, language_minimal);
16464 }
16465
16466 *ref_cu = target_cu;
16467 temp_die.offset = offset;
16468 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
16469 }
16470
16471 /* Follow reference attribute ATTR of SRC_DIE.
16472 On entry *REF_CU is the CU of SRC_DIE.
16473 On exit *REF_CU is the CU of the result. */
16474
16475 static struct die_info *
16476 follow_die_ref (struct die_info *src_die, struct attribute *attr,
16477 struct dwarf2_cu **ref_cu)
16478 {
16479 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16480 struct dwarf2_cu *cu = *ref_cu;
16481 struct die_info *die;
16482
16483 die = follow_die_offset (offset,
16484 (attr->form == DW_FORM_GNU_ref_alt
16485 || cu->per_cu->is_dwz),
16486 ref_cu);
16487 if (!die)
16488 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
16489 "at 0x%x [in module %s]"),
16490 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
16491
16492 return die;
16493 }
16494
16495 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
16496 Returned value is intended for DW_OP_call*. Returned
16497 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
16498
16499 struct dwarf2_locexpr_baton
16500 dwarf2_fetch_die_location_block (cu_offset offset_in_cu,
16501 struct dwarf2_per_cu_data *per_cu,
16502 CORE_ADDR (*get_frame_pc) (void *baton),
16503 void *baton)
16504 {
16505 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
16506 struct dwarf2_cu *cu;
16507 struct die_info *die;
16508 struct attribute *attr;
16509 struct dwarf2_locexpr_baton retval;
16510
16511 dw2_setup (per_cu->objfile);
16512
16513 if (per_cu->cu == NULL)
16514 load_cu (per_cu);
16515 cu = per_cu->cu;
16516
16517 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
16518 if (!die)
16519 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
16520 offset.sect_off, per_cu->objfile->name);
16521
16522 attr = dwarf2_attr (die, DW_AT_location, cu);
16523 if (!attr)
16524 {
16525 /* DWARF: "If there is no such attribute, then there is no effect.".
16526 DATA is ignored if SIZE is 0. */
16527
16528 retval.data = NULL;
16529 retval.size = 0;
16530 }
16531 else if (attr_form_is_section_offset (attr))
16532 {
16533 struct dwarf2_loclist_baton loclist_baton;
16534 CORE_ADDR pc = (*get_frame_pc) (baton);
16535 size_t size;
16536
16537 fill_in_loclist_baton (cu, &loclist_baton, attr);
16538
16539 retval.data = dwarf2_find_location_expression (&loclist_baton,
16540 &size, pc);
16541 retval.size = size;
16542 }
16543 else
16544 {
16545 if (!attr_form_is_block (attr))
16546 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
16547 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
16548 offset.sect_off, per_cu->objfile->name);
16549
16550 retval.data = DW_BLOCK (attr)->data;
16551 retval.size = DW_BLOCK (attr)->size;
16552 }
16553 retval.per_cu = cu->per_cu;
16554
16555 age_cached_comp_units ();
16556
16557 return retval;
16558 }
16559
16560 /* Return the type of the DIE at DIE_OFFSET in the CU named by
16561 PER_CU. */
16562
16563 struct type *
16564 dwarf2_get_die_type (cu_offset die_offset,
16565 struct dwarf2_per_cu_data *per_cu)
16566 {
16567 sect_offset die_offset_sect;
16568
16569 dw2_setup (per_cu->objfile);
16570
16571 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
16572 return get_die_type_at_offset (die_offset_sect, per_cu);
16573 }
16574
16575 /* Follow the signature attribute ATTR in SRC_DIE.
16576 On entry *REF_CU is the CU of SRC_DIE.
16577 On exit *REF_CU is the CU of the result. */
16578
16579 static struct die_info *
16580 follow_die_sig (struct die_info *src_die, struct attribute *attr,
16581 struct dwarf2_cu **ref_cu)
16582 {
16583 struct objfile *objfile = (*ref_cu)->objfile;
16584 struct die_info temp_die;
16585 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16586 struct dwarf2_cu *sig_cu;
16587 struct die_info *die;
16588
16589 /* sig_type will be NULL if the signatured type is missing from
16590 the debug info. */
16591 if (sig_type == NULL)
16592 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16593 "at 0x%x [in module %s]"),
16594 src_die->offset.sect_off, objfile->name);
16595
16596 /* If necessary, add it to the queue and load its DIEs. */
16597
16598 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
16599 read_signatured_type (sig_type);
16600
16601 gdb_assert (sig_type->per_cu.cu != NULL);
16602
16603 sig_cu = sig_type->per_cu.cu;
16604 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
16605 temp_die.offset = sig_type->type_offset_in_section;
16606 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
16607 temp_die.offset.sect_off);
16608 if (die)
16609 {
16610 *ref_cu = sig_cu;
16611 return die;
16612 }
16613
16614 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
16615 "from DIE at 0x%x [in module %s]"),
16616 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
16617 }
16618
16619 /* Given an offset of a signatured type, return its signatured_type. */
16620
16621 static struct signatured_type *
16622 lookup_signatured_type_at_offset (struct objfile *objfile,
16623 struct dwarf2_section_info *section,
16624 sect_offset offset)
16625 {
16626 gdb_byte *info_ptr = section->buffer + offset.sect_off;
16627 unsigned int length, initial_length_size;
16628 unsigned int sig_offset;
16629 struct signatured_type find_entry, *sig_type;
16630
16631 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
16632 sig_offset = (initial_length_size
16633 + 2 /*version*/
16634 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
16635 + 1 /*address_size*/);
16636 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
16637 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
16638
16639 /* This is only used to lookup previously recorded types.
16640 If we didn't find it, it's our bug. */
16641 gdb_assert (sig_type != NULL);
16642 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
16643
16644 return sig_type;
16645 }
16646
16647 /* Load the DIEs associated with type unit PER_CU into memory. */
16648
16649 static void
16650 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
16651 {
16652 struct signatured_type *sig_type;
16653
16654 /* Caller is responsible for ensuring type_unit_groups don't get here. */
16655 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
16656
16657 /* We have the per_cu, but we need the signatured_type.
16658 Fortunately this is an easy translation. */
16659 gdb_assert (per_cu->is_debug_types);
16660 sig_type = (struct signatured_type *) per_cu;
16661
16662 gdb_assert (per_cu->cu == NULL);
16663
16664 read_signatured_type (sig_type);
16665
16666 gdb_assert (per_cu->cu != NULL);
16667 }
16668
16669 /* die_reader_func for read_signatured_type.
16670 This is identical to load_full_comp_unit_reader,
16671 but is kept separate for now. */
16672
16673 static void
16674 read_signatured_type_reader (const struct die_reader_specs *reader,
16675 gdb_byte *info_ptr,
16676 struct die_info *comp_unit_die,
16677 int has_children,
16678 void *data)
16679 {
16680 struct dwarf2_cu *cu = reader->cu;
16681
16682 gdb_assert (cu->die_hash == NULL);
16683 cu->die_hash =
16684 htab_create_alloc_ex (cu->header.length / 12,
16685 die_hash,
16686 die_eq,
16687 NULL,
16688 &cu->comp_unit_obstack,
16689 hashtab_obstack_allocate,
16690 dummy_obstack_deallocate);
16691
16692 if (has_children)
16693 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
16694 &info_ptr, comp_unit_die);
16695 cu->dies = comp_unit_die;
16696 /* comp_unit_die is not stored in die_hash, no need. */
16697
16698 /* We try not to read any attributes in this function, because not
16699 all CUs needed for references have been loaded yet, and symbol
16700 table processing isn't initialized. But we have to set the CU language,
16701 or we won't be able to build types correctly.
16702 Similarly, if we do not read the producer, we can not apply
16703 producer-specific interpretation. */
16704 prepare_one_comp_unit (cu, cu->dies, language_minimal);
16705 }
16706
16707 /* Read in a signatured type and build its CU and DIEs.
16708 If the type is a stub for the real type in a DWO file,
16709 read in the real type from the DWO file as well. */
16710
16711 static void
16712 read_signatured_type (struct signatured_type *sig_type)
16713 {
16714 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
16715
16716 gdb_assert (per_cu->is_debug_types);
16717 gdb_assert (per_cu->cu == NULL);
16718
16719 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
16720 read_signatured_type_reader, NULL);
16721 }
16722
16723 /* Decode simple location descriptions.
16724 Given a pointer to a dwarf block that defines a location, compute
16725 the location and return the value.
16726
16727 NOTE drow/2003-11-18: This function is called in two situations
16728 now: for the address of static or global variables (partial symbols
16729 only) and for offsets into structures which are expected to be
16730 (more or less) constant. The partial symbol case should go away,
16731 and only the constant case should remain. That will let this
16732 function complain more accurately. A few special modes are allowed
16733 without complaint for global variables (for instance, global
16734 register values and thread-local values).
16735
16736 A location description containing no operations indicates that the
16737 object is optimized out. The return value is 0 for that case.
16738 FIXME drow/2003-11-16: No callers check for this case any more; soon all
16739 callers will only want a very basic result and this can become a
16740 complaint.
16741
16742 Note that stack[0] is unused except as a default error return. */
16743
16744 static CORE_ADDR
16745 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
16746 {
16747 struct objfile *objfile = cu->objfile;
16748 int i;
16749 int size = blk->size;
16750 gdb_byte *data = blk->data;
16751 CORE_ADDR stack[64];
16752 int stacki;
16753 unsigned int bytes_read, unsnd;
16754 gdb_byte op;
16755
16756 i = 0;
16757 stacki = 0;
16758 stack[stacki] = 0;
16759 stack[++stacki] = 0;
16760
16761 while (i < size)
16762 {
16763 op = data[i++];
16764 switch (op)
16765 {
16766 case DW_OP_lit0:
16767 case DW_OP_lit1:
16768 case DW_OP_lit2:
16769 case DW_OP_lit3:
16770 case DW_OP_lit4:
16771 case DW_OP_lit5:
16772 case DW_OP_lit6:
16773 case DW_OP_lit7:
16774 case DW_OP_lit8:
16775 case DW_OP_lit9:
16776 case DW_OP_lit10:
16777 case DW_OP_lit11:
16778 case DW_OP_lit12:
16779 case DW_OP_lit13:
16780 case DW_OP_lit14:
16781 case DW_OP_lit15:
16782 case DW_OP_lit16:
16783 case DW_OP_lit17:
16784 case DW_OP_lit18:
16785 case DW_OP_lit19:
16786 case DW_OP_lit20:
16787 case DW_OP_lit21:
16788 case DW_OP_lit22:
16789 case DW_OP_lit23:
16790 case DW_OP_lit24:
16791 case DW_OP_lit25:
16792 case DW_OP_lit26:
16793 case DW_OP_lit27:
16794 case DW_OP_lit28:
16795 case DW_OP_lit29:
16796 case DW_OP_lit30:
16797 case DW_OP_lit31:
16798 stack[++stacki] = op - DW_OP_lit0;
16799 break;
16800
16801 case DW_OP_reg0:
16802 case DW_OP_reg1:
16803 case DW_OP_reg2:
16804 case DW_OP_reg3:
16805 case DW_OP_reg4:
16806 case DW_OP_reg5:
16807 case DW_OP_reg6:
16808 case DW_OP_reg7:
16809 case DW_OP_reg8:
16810 case DW_OP_reg9:
16811 case DW_OP_reg10:
16812 case DW_OP_reg11:
16813 case DW_OP_reg12:
16814 case DW_OP_reg13:
16815 case DW_OP_reg14:
16816 case DW_OP_reg15:
16817 case DW_OP_reg16:
16818 case DW_OP_reg17:
16819 case DW_OP_reg18:
16820 case DW_OP_reg19:
16821 case DW_OP_reg20:
16822 case DW_OP_reg21:
16823 case DW_OP_reg22:
16824 case DW_OP_reg23:
16825 case DW_OP_reg24:
16826 case DW_OP_reg25:
16827 case DW_OP_reg26:
16828 case DW_OP_reg27:
16829 case DW_OP_reg28:
16830 case DW_OP_reg29:
16831 case DW_OP_reg30:
16832 case DW_OP_reg31:
16833 stack[++stacki] = op - DW_OP_reg0;
16834 if (i < size)
16835 dwarf2_complex_location_expr_complaint ();
16836 break;
16837
16838 case DW_OP_regx:
16839 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
16840 i += bytes_read;
16841 stack[++stacki] = unsnd;
16842 if (i < size)
16843 dwarf2_complex_location_expr_complaint ();
16844 break;
16845
16846 case DW_OP_addr:
16847 stack[++stacki] = read_address (objfile->obfd, &data[i],
16848 cu, &bytes_read);
16849 i += bytes_read;
16850 break;
16851
16852 case DW_OP_const1u:
16853 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
16854 i += 1;
16855 break;
16856
16857 case DW_OP_const1s:
16858 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
16859 i += 1;
16860 break;
16861
16862 case DW_OP_const2u:
16863 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
16864 i += 2;
16865 break;
16866
16867 case DW_OP_const2s:
16868 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
16869 i += 2;
16870 break;
16871
16872 case DW_OP_const4u:
16873 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
16874 i += 4;
16875 break;
16876
16877 case DW_OP_const4s:
16878 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
16879 i += 4;
16880 break;
16881
16882 case DW_OP_const8u:
16883 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
16884 i += 8;
16885 break;
16886
16887 case DW_OP_constu:
16888 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
16889 &bytes_read);
16890 i += bytes_read;
16891 break;
16892
16893 case DW_OP_consts:
16894 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
16895 i += bytes_read;
16896 break;
16897
16898 case DW_OP_dup:
16899 stack[stacki + 1] = stack[stacki];
16900 stacki++;
16901 break;
16902
16903 case DW_OP_plus:
16904 stack[stacki - 1] += stack[stacki];
16905 stacki--;
16906 break;
16907
16908 case DW_OP_plus_uconst:
16909 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
16910 &bytes_read);
16911 i += bytes_read;
16912 break;
16913
16914 case DW_OP_minus:
16915 stack[stacki - 1] -= stack[stacki];
16916 stacki--;
16917 break;
16918
16919 case DW_OP_deref:
16920 /* If we're not the last op, then we definitely can't encode
16921 this using GDB's address_class enum. This is valid for partial
16922 global symbols, although the variable's address will be bogus
16923 in the psymtab. */
16924 if (i < size)
16925 dwarf2_complex_location_expr_complaint ();
16926 break;
16927
16928 case DW_OP_GNU_push_tls_address:
16929 /* The top of the stack has the offset from the beginning
16930 of the thread control block at which the variable is located. */
16931 /* Nothing should follow this operator, so the top of stack would
16932 be returned. */
16933 /* This is valid for partial global symbols, but the variable's
16934 address will be bogus in the psymtab. Make it always at least
16935 non-zero to not look as a variable garbage collected by linker
16936 which have DW_OP_addr 0. */
16937 if (i < size)
16938 dwarf2_complex_location_expr_complaint ();
16939 stack[stacki]++;
16940 break;
16941
16942 case DW_OP_GNU_uninit:
16943 break;
16944
16945 case DW_OP_GNU_addr_index:
16946 case DW_OP_GNU_const_index:
16947 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
16948 &bytes_read);
16949 i += bytes_read;
16950 break;
16951
16952 default:
16953 {
16954 const char *name = get_DW_OP_name (op);
16955
16956 if (name)
16957 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
16958 name);
16959 else
16960 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
16961 op);
16962 }
16963
16964 return (stack[stacki]);
16965 }
16966
16967 /* Enforce maximum stack depth of SIZE-1 to avoid writing
16968 outside of the allocated space. Also enforce minimum>0. */
16969 if (stacki >= ARRAY_SIZE (stack) - 1)
16970 {
16971 complaint (&symfile_complaints,
16972 _("location description stack overflow"));
16973 return 0;
16974 }
16975
16976 if (stacki <= 0)
16977 {
16978 complaint (&symfile_complaints,
16979 _("location description stack underflow"));
16980 return 0;
16981 }
16982 }
16983 return (stack[stacki]);
16984 }
16985
16986 /* memory allocation interface */
16987
16988 static struct dwarf_block *
16989 dwarf_alloc_block (struct dwarf2_cu *cu)
16990 {
16991 struct dwarf_block *blk;
16992
16993 blk = (struct dwarf_block *)
16994 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
16995 return (blk);
16996 }
16997
16998 static struct die_info *
16999 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
17000 {
17001 struct die_info *die;
17002 size_t size = sizeof (struct die_info);
17003
17004 if (num_attrs > 1)
17005 size += (num_attrs - 1) * sizeof (struct attribute);
17006
17007 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
17008 memset (die, 0, sizeof (struct die_info));
17009 return (die);
17010 }
17011
17012 \f
17013 /* Macro support. */
17014
17015 /* Return the full name of file number I in *LH's file name table.
17016 Use COMP_DIR as the name of the current directory of the
17017 compilation. The result is allocated using xmalloc; the caller is
17018 responsible for freeing it. */
17019 static char *
17020 file_full_name (int file, struct line_header *lh, const char *comp_dir)
17021 {
17022 /* Is the file number a valid index into the line header's file name
17023 table? Remember that file numbers start with one, not zero. */
17024 if (1 <= file && file <= lh->num_file_names)
17025 {
17026 struct file_entry *fe = &lh->file_names[file - 1];
17027
17028 if (IS_ABSOLUTE_PATH (fe->name))
17029 return xstrdup (fe->name);
17030 else
17031 {
17032 const char *dir;
17033 int dir_len;
17034 char *full_name;
17035
17036 if (fe->dir_index)
17037 dir = lh->include_dirs[fe->dir_index - 1];
17038 else
17039 dir = comp_dir;
17040
17041 if (dir)
17042 {
17043 dir_len = strlen (dir);
17044 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
17045 strcpy (full_name, dir);
17046 full_name[dir_len] = '/';
17047 strcpy (full_name + dir_len + 1, fe->name);
17048 return full_name;
17049 }
17050 else
17051 return xstrdup (fe->name);
17052 }
17053 }
17054 else
17055 {
17056 /* The compiler produced a bogus file number. We can at least
17057 record the macro definitions made in the file, even if we
17058 won't be able to find the file by name. */
17059 char fake_name[80];
17060
17061 sprintf (fake_name, "<bad macro file number %d>", file);
17062
17063 complaint (&symfile_complaints,
17064 _("bad file number in macro information (%d)"),
17065 file);
17066
17067 return xstrdup (fake_name);
17068 }
17069 }
17070
17071
17072 static struct macro_source_file *
17073 macro_start_file (int file, int line,
17074 struct macro_source_file *current_file,
17075 const char *comp_dir,
17076 struct line_header *lh, struct objfile *objfile)
17077 {
17078 /* The full name of this source file. */
17079 char *full_name = file_full_name (file, lh, comp_dir);
17080
17081 /* We don't create a macro table for this compilation unit
17082 at all until we actually get a filename. */
17083 if (! pending_macros)
17084 pending_macros = new_macro_table (&objfile->objfile_obstack,
17085 objfile->macro_cache);
17086
17087 if (! current_file)
17088 {
17089 /* If we have no current file, then this must be the start_file
17090 directive for the compilation unit's main source file. */
17091 current_file = macro_set_main (pending_macros, full_name);
17092 macro_define_special (pending_macros);
17093 }
17094 else
17095 current_file = macro_include (current_file, line, full_name);
17096
17097 xfree (full_name);
17098
17099 return current_file;
17100 }
17101
17102
17103 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
17104 followed by a null byte. */
17105 static char *
17106 copy_string (const char *buf, int len)
17107 {
17108 char *s = xmalloc (len + 1);
17109
17110 memcpy (s, buf, len);
17111 s[len] = '\0';
17112 return s;
17113 }
17114
17115
17116 static const char *
17117 consume_improper_spaces (const char *p, const char *body)
17118 {
17119 if (*p == ' ')
17120 {
17121 complaint (&symfile_complaints,
17122 _("macro definition contains spaces "
17123 "in formal argument list:\n`%s'"),
17124 body);
17125
17126 while (*p == ' ')
17127 p++;
17128 }
17129
17130 return p;
17131 }
17132
17133
17134 static void
17135 parse_macro_definition (struct macro_source_file *file, int line,
17136 const char *body)
17137 {
17138 const char *p;
17139
17140 /* The body string takes one of two forms. For object-like macro
17141 definitions, it should be:
17142
17143 <macro name> " " <definition>
17144
17145 For function-like macro definitions, it should be:
17146
17147 <macro name> "() " <definition>
17148 or
17149 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
17150
17151 Spaces may appear only where explicitly indicated, and in the
17152 <definition>.
17153
17154 The Dwarf 2 spec says that an object-like macro's name is always
17155 followed by a space, but versions of GCC around March 2002 omit
17156 the space when the macro's definition is the empty string.
17157
17158 The Dwarf 2 spec says that there should be no spaces between the
17159 formal arguments in a function-like macro's formal argument list,
17160 but versions of GCC around March 2002 include spaces after the
17161 commas. */
17162
17163
17164 /* Find the extent of the macro name. The macro name is terminated
17165 by either a space or null character (for an object-like macro) or
17166 an opening paren (for a function-like macro). */
17167 for (p = body; *p; p++)
17168 if (*p == ' ' || *p == '(')
17169 break;
17170
17171 if (*p == ' ' || *p == '\0')
17172 {
17173 /* It's an object-like macro. */
17174 int name_len = p - body;
17175 char *name = copy_string (body, name_len);
17176 const char *replacement;
17177
17178 if (*p == ' ')
17179 replacement = body + name_len + 1;
17180 else
17181 {
17182 dwarf2_macro_malformed_definition_complaint (body);
17183 replacement = body + name_len;
17184 }
17185
17186 macro_define_object (file, line, name, replacement);
17187
17188 xfree (name);
17189 }
17190 else if (*p == '(')
17191 {
17192 /* It's a function-like macro. */
17193 char *name = copy_string (body, p - body);
17194 int argc = 0;
17195 int argv_size = 1;
17196 char **argv = xmalloc (argv_size * sizeof (*argv));
17197
17198 p++;
17199
17200 p = consume_improper_spaces (p, body);
17201
17202 /* Parse the formal argument list. */
17203 while (*p && *p != ')')
17204 {
17205 /* Find the extent of the current argument name. */
17206 const char *arg_start = p;
17207
17208 while (*p && *p != ',' && *p != ')' && *p != ' ')
17209 p++;
17210
17211 if (! *p || p == arg_start)
17212 dwarf2_macro_malformed_definition_complaint (body);
17213 else
17214 {
17215 /* Make sure argv has room for the new argument. */
17216 if (argc >= argv_size)
17217 {
17218 argv_size *= 2;
17219 argv = xrealloc (argv, argv_size * sizeof (*argv));
17220 }
17221
17222 argv[argc++] = copy_string (arg_start, p - arg_start);
17223 }
17224
17225 p = consume_improper_spaces (p, body);
17226
17227 /* Consume the comma, if present. */
17228 if (*p == ',')
17229 {
17230 p++;
17231
17232 p = consume_improper_spaces (p, body);
17233 }
17234 }
17235
17236 if (*p == ')')
17237 {
17238 p++;
17239
17240 if (*p == ' ')
17241 /* Perfectly formed definition, no complaints. */
17242 macro_define_function (file, line, name,
17243 argc, (const char **) argv,
17244 p + 1);
17245 else if (*p == '\0')
17246 {
17247 /* Complain, but do define it. */
17248 dwarf2_macro_malformed_definition_complaint (body);
17249 macro_define_function (file, line, name,
17250 argc, (const char **) argv,
17251 p);
17252 }
17253 else
17254 /* Just complain. */
17255 dwarf2_macro_malformed_definition_complaint (body);
17256 }
17257 else
17258 /* Just complain. */
17259 dwarf2_macro_malformed_definition_complaint (body);
17260
17261 xfree (name);
17262 {
17263 int i;
17264
17265 for (i = 0; i < argc; i++)
17266 xfree (argv[i]);
17267 }
17268 xfree (argv);
17269 }
17270 else
17271 dwarf2_macro_malformed_definition_complaint (body);
17272 }
17273
17274 /* Skip some bytes from BYTES according to the form given in FORM.
17275 Returns the new pointer. */
17276
17277 static gdb_byte *
17278 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
17279 enum dwarf_form form,
17280 unsigned int offset_size,
17281 struct dwarf2_section_info *section)
17282 {
17283 unsigned int bytes_read;
17284
17285 switch (form)
17286 {
17287 case DW_FORM_data1:
17288 case DW_FORM_flag:
17289 ++bytes;
17290 break;
17291
17292 case DW_FORM_data2:
17293 bytes += 2;
17294 break;
17295
17296 case DW_FORM_data4:
17297 bytes += 4;
17298 break;
17299
17300 case DW_FORM_data8:
17301 bytes += 8;
17302 break;
17303
17304 case DW_FORM_string:
17305 read_direct_string (abfd, bytes, &bytes_read);
17306 bytes += bytes_read;
17307 break;
17308
17309 case DW_FORM_sec_offset:
17310 case DW_FORM_strp:
17311 case DW_FORM_GNU_strp_alt:
17312 bytes += offset_size;
17313 break;
17314
17315 case DW_FORM_block:
17316 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
17317 bytes += bytes_read;
17318 break;
17319
17320 case DW_FORM_block1:
17321 bytes += 1 + read_1_byte (abfd, bytes);
17322 break;
17323 case DW_FORM_block2:
17324 bytes += 2 + read_2_bytes (abfd, bytes);
17325 break;
17326 case DW_FORM_block4:
17327 bytes += 4 + read_4_bytes (abfd, bytes);
17328 break;
17329
17330 case DW_FORM_sdata:
17331 case DW_FORM_udata:
17332 case DW_FORM_GNU_addr_index:
17333 case DW_FORM_GNU_str_index:
17334 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
17335 if (bytes == NULL)
17336 {
17337 dwarf2_section_buffer_overflow_complaint (section);
17338 return NULL;
17339 }
17340 break;
17341
17342 default:
17343 {
17344 complain:
17345 complaint (&symfile_complaints,
17346 _("invalid form 0x%x in `%s'"),
17347 form,
17348 section->asection->name);
17349 return NULL;
17350 }
17351 }
17352
17353 return bytes;
17354 }
17355
17356 /* A helper for dwarf_decode_macros that handles skipping an unknown
17357 opcode. Returns an updated pointer to the macro data buffer; or,
17358 on error, issues a complaint and returns NULL. */
17359
17360 static gdb_byte *
17361 skip_unknown_opcode (unsigned int opcode,
17362 gdb_byte **opcode_definitions,
17363 gdb_byte *mac_ptr, gdb_byte *mac_end,
17364 bfd *abfd,
17365 unsigned int offset_size,
17366 struct dwarf2_section_info *section)
17367 {
17368 unsigned int bytes_read, i;
17369 unsigned long arg;
17370 gdb_byte *defn;
17371
17372 if (opcode_definitions[opcode] == NULL)
17373 {
17374 complaint (&symfile_complaints,
17375 _("unrecognized DW_MACFINO opcode 0x%x"),
17376 opcode);
17377 return NULL;
17378 }
17379
17380 defn = opcode_definitions[opcode];
17381 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
17382 defn += bytes_read;
17383
17384 for (i = 0; i < arg; ++i)
17385 {
17386 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
17387 section);
17388 if (mac_ptr == NULL)
17389 {
17390 /* skip_form_bytes already issued the complaint. */
17391 return NULL;
17392 }
17393 }
17394
17395 return mac_ptr;
17396 }
17397
17398 /* A helper function which parses the header of a macro section.
17399 If the macro section is the extended (for now called "GNU") type,
17400 then this updates *OFFSET_SIZE. Returns a pointer to just after
17401 the header, or issues a complaint and returns NULL on error. */
17402
17403 static gdb_byte *
17404 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
17405 bfd *abfd,
17406 gdb_byte *mac_ptr,
17407 unsigned int *offset_size,
17408 int section_is_gnu)
17409 {
17410 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
17411
17412 if (section_is_gnu)
17413 {
17414 unsigned int version, flags;
17415
17416 version = read_2_bytes (abfd, mac_ptr);
17417 if (version != 4)
17418 {
17419 complaint (&symfile_complaints,
17420 _("unrecognized version `%d' in .debug_macro section"),
17421 version);
17422 return NULL;
17423 }
17424 mac_ptr += 2;
17425
17426 flags = read_1_byte (abfd, mac_ptr);
17427 ++mac_ptr;
17428 *offset_size = (flags & 1) ? 8 : 4;
17429
17430 if ((flags & 2) != 0)
17431 /* We don't need the line table offset. */
17432 mac_ptr += *offset_size;
17433
17434 /* Vendor opcode descriptions. */
17435 if ((flags & 4) != 0)
17436 {
17437 unsigned int i, count;
17438
17439 count = read_1_byte (abfd, mac_ptr);
17440 ++mac_ptr;
17441 for (i = 0; i < count; ++i)
17442 {
17443 unsigned int opcode, bytes_read;
17444 unsigned long arg;
17445
17446 opcode = read_1_byte (abfd, mac_ptr);
17447 ++mac_ptr;
17448 opcode_definitions[opcode] = mac_ptr;
17449 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17450 mac_ptr += bytes_read;
17451 mac_ptr += arg;
17452 }
17453 }
17454 }
17455
17456 return mac_ptr;
17457 }
17458
17459 /* A helper for dwarf_decode_macros that handles the GNU extensions,
17460 including DW_MACRO_GNU_transparent_include. */
17461
17462 static void
17463 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
17464 struct macro_source_file *current_file,
17465 struct line_header *lh, char *comp_dir,
17466 struct dwarf2_section_info *section,
17467 int section_is_gnu, int section_is_dwz,
17468 unsigned int offset_size,
17469 struct objfile *objfile,
17470 htab_t include_hash)
17471 {
17472 enum dwarf_macro_record_type macinfo_type;
17473 int at_commandline;
17474 gdb_byte *opcode_definitions[256];
17475
17476 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
17477 &offset_size, section_is_gnu);
17478 if (mac_ptr == NULL)
17479 {
17480 /* We already issued a complaint. */
17481 return;
17482 }
17483
17484 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
17485 GDB is still reading the definitions from command line. First
17486 DW_MACINFO_start_file will need to be ignored as it was already executed
17487 to create CURRENT_FILE for the main source holding also the command line
17488 definitions. On first met DW_MACINFO_start_file this flag is reset to
17489 normally execute all the remaining DW_MACINFO_start_file macinfos. */
17490
17491 at_commandline = 1;
17492
17493 do
17494 {
17495 /* Do we at least have room for a macinfo type byte? */
17496 if (mac_ptr >= mac_end)
17497 {
17498 dwarf2_section_buffer_overflow_complaint (section);
17499 break;
17500 }
17501
17502 macinfo_type = read_1_byte (abfd, mac_ptr);
17503 mac_ptr++;
17504
17505 /* Note that we rely on the fact that the corresponding GNU and
17506 DWARF constants are the same. */
17507 switch (macinfo_type)
17508 {
17509 /* A zero macinfo type indicates the end of the macro
17510 information. */
17511 case 0:
17512 break;
17513
17514 case DW_MACRO_GNU_define:
17515 case DW_MACRO_GNU_undef:
17516 case DW_MACRO_GNU_define_indirect:
17517 case DW_MACRO_GNU_undef_indirect:
17518 case DW_MACRO_GNU_define_indirect_alt:
17519 case DW_MACRO_GNU_undef_indirect_alt:
17520 {
17521 unsigned int bytes_read;
17522 int line;
17523 char *body;
17524 int is_define;
17525
17526 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17527 mac_ptr += bytes_read;
17528
17529 if (macinfo_type == DW_MACRO_GNU_define
17530 || macinfo_type == DW_MACRO_GNU_undef)
17531 {
17532 body = read_direct_string (abfd, mac_ptr, &bytes_read);
17533 mac_ptr += bytes_read;
17534 }
17535 else
17536 {
17537 LONGEST str_offset;
17538
17539 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
17540 mac_ptr += offset_size;
17541
17542 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
17543 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt)
17544 {
17545 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17546
17547 body = read_indirect_string_from_dwz (dwz, str_offset);
17548 }
17549 else
17550 body = read_indirect_string_at_offset (abfd, str_offset);
17551 }
17552
17553 is_define = (macinfo_type == DW_MACRO_GNU_define
17554 || macinfo_type == DW_MACRO_GNU_define_indirect
17555 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
17556 if (! current_file)
17557 {
17558 /* DWARF violation as no main source is present. */
17559 complaint (&symfile_complaints,
17560 _("debug info with no main source gives macro %s "
17561 "on line %d: %s"),
17562 is_define ? _("definition") : _("undefinition"),
17563 line, body);
17564 break;
17565 }
17566 if ((line == 0 && !at_commandline)
17567 || (line != 0 && at_commandline))
17568 complaint (&symfile_complaints,
17569 _("debug info gives %s macro %s with %s line %d: %s"),
17570 at_commandline ? _("command-line") : _("in-file"),
17571 is_define ? _("definition") : _("undefinition"),
17572 line == 0 ? _("zero") : _("non-zero"), line, body);
17573
17574 if (is_define)
17575 parse_macro_definition (current_file, line, body);
17576 else
17577 {
17578 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
17579 || macinfo_type == DW_MACRO_GNU_undef_indirect
17580 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
17581 macro_undef (current_file, line, body);
17582 }
17583 }
17584 break;
17585
17586 case DW_MACRO_GNU_start_file:
17587 {
17588 unsigned int bytes_read;
17589 int line, file;
17590
17591 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17592 mac_ptr += bytes_read;
17593 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17594 mac_ptr += bytes_read;
17595
17596 if ((line == 0 && !at_commandline)
17597 || (line != 0 && at_commandline))
17598 complaint (&symfile_complaints,
17599 _("debug info gives source %d included "
17600 "from %s at %s line %d"),
17601 file, at_commandline ? _("command-line") : _("file"),
17602 line == 0 ? _("zero") : _("non-zero"), line);
17603
17604 if (at_commandline)
17605 {
17606 /* This DW_MACRO_GNU_start_file was executed in the
17607 pass one. */
17608 at_commandline = 0;
17609 }
17610 else
17611 current_file = macro_start_file (file, line,
17612 current_file, comp_dir,
17613 lh, objfile);
17614 }
17615 break;
17616
17617 case DW_MACRO_GNU_end_file:
17618 if (! current_file)
17619 complaint (&symfile_complaints,
17620 _("macro debug info has an unmatched "
17621 "`close_file' directive"));
17622 else
17623 {
17624 current_file = current_file->included_by;
17625 if (! current_file)
17626 {
17627 enum dwarf_macro_record_type next_type;
17628
17629 /* GCC circa March 2002 doesn't produce the zero
17630 type byte marking the end of the compilation
17631 unit. Complain if it's not there, but exit no
17632 matter what. */
17633
17634 /* Do we at least have room for a macinfo type byte? */
17635 if (mac_ptr >= mac_end)
17636 {
17637 dwarf2_section_buffer_overflow_complaint (section);
17638 return;
17639 }
17640
17641 /* We don't increment mac_ptr here, so this is just
17642 a look-ahead. */
17643 next_type = read_1_byte (abfd, mac_ptr);
17644 if (next_type != 0)
17645 complaint (&symfile_complaints,
17646 _("no terminating 0-type entry for "
17647 "macros in `.debug_macinfo' section"));
17648
17649 return;
17650 }
17651 }
17652 break;
17653
17654 case DW_MACRO_GNU_transparent_include:
17655 case DW_MACRO_GNU_transparent_include_alt:
17656 {
17657 LONGEST offset;
17658 void **slot;
17659
17660 offset = read_offset_1 (abfd, mac_ptr, offset_size);
17661 mac_ptr += offset_size;
17662
17663 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
17664 if (*slot != NULL)
17665 {
17666 /* This has actually happened; see
17667 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
17668 complaint (&symfile_complaints,
17669 _("recursive DW_MACRO_GNU_transparent_include in "
17670 ".debug_macro section"));
17671 }
17672 else
17673 {
17674 bfd *include_bfd = abfd;
17675 struct dwarf2_section_info *include_section = section;
17676 struct dwarf2_section_info alt_section;
17677 gdb_byte *include_mac_end = mac_end;
17678 int is_dwz = section_is_dwz;
17679
17680 *slot = mac_ptr;
17681
17682 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
17683 {
17684 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17685
17686 dwarf2_read_section (dwarf2_per_objfile->objfile,
17687 &dwz->macro);
17688
17689 include_bfd = dwz->macro.asection->owner;
17690 include_section = &dwz->macro;
17691 include_mac_end = dwz->macro.buffer + dwz->macro.size;
17692 is_dwz = 1;
17693 }
17694
17695 dwarf_decode_macro_bytes (include_bfd,
17696 include_section->buffer + offset,
17697 include_mac_end, current_file,
17698 lh, comp_dir,
17699 section, section_is_gnu, is_dwz,
17700 offset_size, objfile, include_hash);
17701
17702 htab_remove_elt (include_hash, mac_ptr);
17703 }
17704 }
17705 break;
17706
17707 case DW_MACINFO_vendor_ext:
17708 if (!section_is_gnu)
17709 {
17710 unsigned int bytes_read;
17711 int constant;
17712
17713 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17714 mac_ptr += bytes_read;
17715 read_direct_string (abfd, mac_ptr, &bytes_read);
17716 mac_ptr += bytes_read;
17717
17718 /* We don't recognize any vendor extensions. */
17719 break;
17720 }
17721 /* FALLTHROUGH */
17722
17723 default:
17724 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
17725 mac_ptr, mac_end, abfd, offset_size,
17726 section);
17727 if (mac_ptr == NULL)
17728 return;
17729 break;
17730 }
17731 } while (macinfo_type != 0);
17732 }
17733
17734 static void
17735 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
17736 char *comp_dir, int section_is_gnu)
17737 {
17738 struct objfile *objfile = dwarf2_per_objfile->objfile;
17739 struct line_header *lh = cu->line_header;
17740 bfd *abfd;
17741 gdb_byte *mac_ptr, *mac_end;
17742 struct macro_source_file *current_file = 0;
17743 enum dwarf_macro_record_type macinfo_type;
17744 unsigned int offset_size = cu->header.offset_size;
17745 gdb_byte *opcode_definitions[256];
17746 struct cleanup *cleanup;
17747 htab_t include_hash;
17748 void **slot;
17749 struct dwarf2_section_info *section;
17750 const char *section_name;
17751
17752 if (cu->dwo_unit != NULL)
17753 {
17754 if (section_is_gnu)
17755 {
17756 section = &cu->dwo_unit->dwo_file->sections.macro;
17757 section_name = ".debug_macro.dwo";
17758 }
17759 else
17760 {
17761 section = &cu->dwo_unit->dwo_file->sections.macinfo;
17762 section_name = ".debug_macinfo.dwo";
17763 }
17764 }
17765 else
17766 {
17767 if (section_is_gnu)
17768 {
17769 section = &dwarf2_per_objfile->macro;
17770 section_name = ".debug_macro";
17771 }
17772 else
17773 {
17774 section = &dwarf2_per_objfile->macinfo;
17775 section_name = ".debug_macinfo";
17776 }
17777 }
17778
17779 dwarf2_read_section (objfile, section);
17780 if (section->buffer == NULL)
17781 {
17782 complaint (&symfile_complaints, _("missing %s section"), section_name);
17783 return;
17784 }
17785 abfd = section->asection->owner;
17786
17787 /* First pass: Find the name of the base filename.
17788 This filename is needed in order to process all macros whose definition
17789 (or undefinition) comes from the command line. These macros are defined
17790 before the first DW_MACINFO_start_file entry, and yet still need to be
17791 associated to the base file.
17792
17793 To determine the base file name, we scan the macro definitions until we
17794 reach the first DW_MACINFO_start_file entry. We then initialize
17795 CURRENT_FILE accordingly so that any macro definition found before the
17796 first DW_MACINFO_start_file can still be associated to the base file. */
17797
17798 mac_ptr = section->buffer + offset;
17799 mac_end = section->buffer + section->size;
17800
17801 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
17802 &offset_size, section_is_gnu);
17803 if (mac_ptr == NULL)
17804 {
17805 /* We already issued a complaint. */
17806 return;
17807 }
17808
17809 do
17810 {
17811 /* Do we at least have room for a macinfo type byte? */
17812 if (mac_ptr >= mac_end)
17813 {
17814 /* Complaint is printed during the second pass as GDB will probably
17815 stop the first pass earlier upon finding
17816 DW_MACINFO_start_file. */
17817 break;
17818 }
17819
17820 macinfo_type = read_1_byte (abfd, mac_ptr);
17821 mac_ptr++;
17822
17823 /* Note that we rely on the fact that the corresponding GNU and
17824 DWARF constants are the same. */
17825 switch (macinfo_type)
17826 {
17827 /* A zero macinfo type indicates the end of the macro
17828 information. */
17829 case 0:
17830 break;
17831
17832 case DW_MACRO_GNU_define:
17833 case DW_MACRO_GNU_undef:
17834 /* Only skip the data by MAC_PTR. */
17835 {
17836 unsigned int bytes_read;
17837
17838 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17839 mac_ptr += bytes_read;
17840 read_direct_string (abfd, mac_ptr, &bytes_read);
17841 mac_ptr += bytes_read;
17842 }
17843 break;
17844
17845 case DW_MACRO_GNU_start_file:
17846 {
17847 unsigned int bytes_read;
17848 int line, file;
17849
17850 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17851 mac_ptr += bytes_read;
17852 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17853 mac_ptr += bytes_read;
17854
17855 current_file = macro_start_file (file, line, current_file,
17856 comp_dir, lh, objfile);
17857 }
17858 break;
17859
17860 case DW_MACRO_GNU_end_file:
17861 /* No data to skip by MAC_PTR. */
17862 break;
17863
17864 case DW_MACRO_GNU_define_indirect:
17865 case DW_MACRO_GNU_undef_indirect:
17866 {
17867 unsigned int bytes_read;
17868
17869 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17870 mac_ptr += bytes_read;
17871 mac_ptr += offset_size;
17872 }
17873 break;
17874
17875 case DW_MACRO_GNU_transparent_include:
17876 /* Note that, according to the spec, a transparent include
17877 chain cannot call DW_MACRO_GNU_start_file. So, we can just
17878 skip this opcode. */
17879 mac_ptr += offset_size;
17880 break;
17881
17882 case DW_MACINFO_vendor_ext:
17883 /* Only skip the data by MAC_PTR. */
17884 if (!section_is_gnu)
17885 {
17886 unsigned int bytes_read;
17887
17888 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17889 mac_ptr += bytes_read;
17890 read_direct_string (abfd, mac_ptr, &bytes_read);
17891 mac_ptr += bytes_read;
17892 }
17893 /* FALLTHROUGH */
17894
17895 default:
17896 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
17897 mac_ptr, mac_end, abfd, offset_size,
17898 section);
17899 if (mac_ptr == NULL)
17900 return;
17901 break;
17902 }
17903 } while (macinfo_type != 0 && current_file == NULL);
17904
17905 /* Second pass: Process all entries.
17906
17907 Use the AT_COMMAND_LINE flag to determine whether we are still processing
17908 command-line macro definitions/undefinitions. This flag is unset when we
17909 reach the first DW_MACINFO_start_file entry. */
17910
17911 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
17912 NULL, xcalloc, xfree);
17913 cleanup = make_cleanup_htab_delete (include_hash);
17914 mac_ptr = section->buffer + offset;
17915 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
17916 *slot = mac_ptr;
17917 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
17918 current_file, lh, comp_dir, section,
17919 section_is_gnu, 0,
17920 offset_size, objfile, include_hash);
17921 do_cleanups (cleanup);
17922 }
17923
17924 /* Check if the attribute's form is a DW_FORM_block*
17925 if so return true else false. */
17926
17927 static int
17928 attr_form_is_block (struct attribute *attr)
17929 {
17930 return (attr == NULL ? 0 :
17931 attr->form == DW_FORM_block1
17932 || attr->form == DW_FORM_block2
17933 || attr->form == DW_FORM_block4
17934 || attr->form == DW_FORM_block
17935 || attr->form == DW_FORM_exprloc);
17936 }
17937
17938 /* Return non-zero if ATTR's value is a section offset --- classes
17939 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
17940 You may use DW_UNSND (attr) to retrieve such offsets.
17941
17942 Section 7.5.4, "Attribute Encodings", explains that no attribute
17943 may have a value that belongs to more than one of these classes; it
17944 would be ambiguous if we did, because we use the same forms for all
17945 of them. */
17946
17947 static int
17948 attr_form_is_section_offset (struct attribute *attr)
17949 {
17950 return (attr->form == DW_FORM_data4
17951 || attr->form == DW_FORM_data8
17952 || attr->form == DW_FORM_sec_offset);
17953 }
17954
17955 /* Return non-zero if ATTR's value falls in the 'constant' class, or
17956 zero otherwise. When this function returns true, you can apply
17957 dwarf2_get_attr_constant_value to it.
17958
17959 However, note that for some attributes you must check
17960 attr_form_is_section_offset before using this test. DW_FORM_data4
17961 and DW_FORM_data8 are members of both the constant class, and of
17962 the classes that contain offsets into other debug sections
17963 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
17964 that, if an attribute's can be either a constant or one of the
17965 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
17966 taken as section offsets, not constants. */
17967
17968 static int
17969 attr_form_is_constant (struct attribute *attr)
17970 {
17971 switch (attr->form)
17972 {
17973 case DW_FORM_sdata:
17974 case DW_FORM_udata:
17975 case DW_FORM_data1:
17976 case DW_FORM_data2:
17977 case DW_FORM_data4:
17978 case DW_FORM_data8:
17979 return 1;
17980 default:
17981 return 0;
17982 }
17983 }
17984
17985 /* Return the .debug_loc section to use for CU.
17986 For DWO files use .debug_loc.dwo. */
17987
17988 static struct dwarf2_section_info *
17989 cu_debug_loc_section (struct dwarf2_cu *cu)
17990 {
17991 if (cu->dwo_unit)
17992 return &cu->dwo_unit->dwo_file->sections.loc;
17993 return &dwarf2_per_objfile->loc;
17994 }
17995
17996 /* A helper function that fills in a dwarf2_loclist_baton. */
17997
17998 static void
17999 fill_in_loclist_baton (struct dwarf2_cu *cu,
18000 struct dwarf2_loclist_baton *baton,
18001 struct attribute *attr)
18002 {
18003 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18004
18005 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18006
18007 baton->per_cu = cu->per_cu;
18008 gdb_assert (baton->per_cu);
18009 /* We don't know how long the location list is, but make sure we
18010 don't run off the edge of the section. */
18011 baton->size = section->size - DW_UNSND (attr);
18012 baton->data = section->buffer + DW_UNSND (attr);
18013 baton->base_address = cu->base_address;
18014 baton->from_dwo = cu->dwo_unit != NULL;
18015 }
18016
18017 static void
18018 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
18019 struct dwarf2_cu *cu)
18020 {
18021 struct objfile *objfile = dwarf2_per_objfile->objfile;
18022 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18023
18024 if (attr_form_is_section_offset (attr)
18025 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
18026 the section. If so, fall through to the complaint in the
18027 other branch. */
18028 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
18029 {
18030 struct dwarf2_loclist_baton *baton;
18031
18032 baton = obstack_alloc (&objfile->objfile_obstack,
18033 sizeof (struct dwarf2_loclist_baton));
18034
18035 fill_in_loclist_baton (cu, baton, attr);
18036
18037 if (cu->base_known == 0)
18038 complaint (&symfile_complaints,
18039 _("Location list used without "
18040 "specifying the CU base address."));
18041
18042 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
18043 SYMBOL_LOCATION_BATON (sym) = baton;
18044 }
18045 else
18046 {
18047 struct dwarf2_locexpr_baton *baton;
18048
18049 baton = obstack_alloc (&objfile->objfile_obstack,
18050 sizeof (struct dwarf2_locexpr_baton));
18051 baton->per_cu = cu->per_cu;
18052 gdb_assert (baton->per_cu);
18053
18054 if (attr_form_is_block (attr))
18055 {
18056 /* Note that we're just copying the block's data pointer
18057 here, not the actual data. We're still pointing into the
18058 info_buffer for SYM's objfile; right now we never release
18059 that buffer, but when we do clean up properly this may
18060 need to change. */
18061 baton->size = DW_BLOCK (attr)->size;
18062 baton->data = DW_BLOCK (attr)->data;
18063 }
18064 else
18065 {
18066 dwarf2_invalid_attrib_class_complaint ("location description",
18067 SYMBOL_NATURAL_NAME (sym));
18068 baton->size = 0;
18069 }
18070
18071 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
18072 SYMBOL_LOCATION_BATON (sym) = baton;
18073 }
18074 }
18075
18076 /* Return the OBJFILE associated with the compilation unit CU. If CU
18077 came from a separate debuginfo file, then the master objfile is
18078 returned. */
18079
18080 struct objfile *
18081 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
18082 {
18083 struct objfile *objfile = per_cu->objfile;
18084
18085 /* Return the master objfile, so that we can report and look up the
18086 correct file containing this variable. */
18087 if (objfile->separate_debug_objfile_backlink)
18088 objfile = objfile->separate_debug_objfile_backlink;
18089
18090 return objfile;
18091 }
18092
18093 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
18094 (CU_HEADERP is unused in such case) or prepare a temporary copy at
18095 CU_HEADERP first. */
18096
18097 static const struct comp_unit_head *
18098 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
18099 struct dwarf2_per_cu_data *per_cu)
18100 {
18101 gdb_byte *info_ptr;
18102
18103 if (per_cu->cu)
18104 return &per_cu->cu->header;
18105
18106 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
18107
18108 memset (cu_headerp, 0, sizeof (*cu_headerp));
18109 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
18110
18111 return cu_headerp;
18112 }
18113
18114 /* Return the address size given in the compilation unit header for CU. */
18115
18116 int
18117 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
18118 {
18119 struct comp_unit_head cu_header_local;
18120 const struct comp_unit_head *cu_headerp;
18121
18122 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18123
18124 return cu_headerp->addr_size;
18125 }
18126
18127 /* Return the offset size given in the compilation unit header for CU. */
18128
18129 int
18130 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
18131 {
18132 struct comp_unit_head cu_header_local;
18133 const struct comp_unit_head *cu_headerp;
18134
18135 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18136
18137 return cu_headerp->offset_size;
18138 }
18139
18140 /* See its dwarf2loc.h declaration. */
18141
18142 int
18143 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
18144 {
18145 struct comp_unit_head cu_header_local;
18146 const struct comp_unit_head *cu_headerp;
18147
18148 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18149
18150 if (cu_headerp->version == 2)
18151 return cu_headerp->addr_size;
18152 else
18153 return cu_headerp->offset_size;
18154 }
18155
18156 /* Return the text offset of the CU. The returned offset comes from
18157 this CU's objfile. If this objfile came from a separate debuginfo
18158 file, then the offset may be different from the corresponding
18159 offset in the parent objfile. */
18160
18161 CORE_ADDR
18162 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
18163 {
18164 struct objfile *objfile = per_cu->objfile;
18165
18166 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18167 }
18168
18169 /* Locate the .debug_info compilation unit from CU's objfile which contains
18170 the DIE at OFFSET. Raises an error on failure. */
18171
18172 static struct dwarf2_per_cu_data *
18173 dwarf2_find_containing_comp_unit (sect_offset offset,
18174 unsigned int offset_in_dwz,
18175 struct objfile *objfile)
18176 {
18177 struct dwarf2_per_cu_data *this_cu;
18178 int low, high;
18179 const sect_offset *cu_off;
18180
18181 low = 0;
18182 high = dwarf2_per_objfile->n_comp_units - 1;
18183 while (high > low)
18184 {
18185 struct dwarf2_per_cu_data *mid_cu;
18186 int mid = low + (high - low) / 2;
18187
18188 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
18189 cu_off = &mid_cu->offset;
18190 if (mid_cu->is_dwz > offset_in_dwz
18191 || (mid_cu->is_dwz == offset_in_dwz
18192 && cu_off->sect_off >= offset.sect_off))
18193 high = mid;
18194 else
18195 low = mid + 1;
18196 }
18197 gdb_assert (low == high);
18198 this_cu = dwarf2_per_objfile->all_comp_units[low];
18199 cu_off = &this_cu->offset;
18200 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
18201 {
18202 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
18203 error (_("Dwarf Error: could not find partial DIE containing "
18204 "offset 0x%lx [in module %s]"),
18205 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
18206
18207 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
18208 <= offset.sect_off);
18209 return dwarf2_per_objfile->all_comp_units[low-1];
18210 }
18211 else
18212 {
18213 this_cu = dwarf2_per_objfile->all_comp_units[low];
18214 if (low == dwarf2_per_objfile->n_comp_units - 1
18215 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
18216 error (_("invalid dwarf2 offset %u"), offset.sect_off);
18217 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
18218 return this_cu;
18219 }
18220 }
18221
18222 /* Initialize dwarf2_cu CU, owned by PER_CU. */
18223
18224 static void
18225 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
18226 {
18227 memset (cu, 0, sizeof (*cu));
18228 per_cu->cu = cu;
18229 cu->per_cu = per_cu;
18230 cu->objfile = per_cu->objfile;
18231 obstack_init (&cu->comp_unit_obstack);
18232 }
18233
18234 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
18235
18236 static void
18237 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
18238 enum language pretend_language)
18239 {
18240 struct attribute *attr;
18241
18242 /* Set the language we're debugging. */
18243 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
18244 if (attr)
18245 set_cu_language (DW_UNSND (attr), cu);
18246 else
18247 {
18248 cu->language = pretend_language;
18249 cu->language_defn = language_def (cu->language);
18250 }
18251
18252 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
18253 if (attr)
18254 cu->producer = DW_STRING (attr);
18255 }
18256
18257 /* Release one cached compilation unit, CU. We unlink it from the tree
18258 of compilation units, but we don't remove it from the read_in_chain;
18259 the caller is responsible for that.
18260 NOTE: DATA is a void * because this function is also used as a
18261 cleanup routine. */
18262
18263 static void
18264 free_heap_comp_unit (void *data)
18265 {
18266 struct dwarf2_cu *cu = data;
18267
18268 gdb_assert (cu->per_cu != NULL);
18269 cu->per_cu->cu = NULL;
18270 cu->per_cu = NULL;
18271
18272 obstack_free (&cu->comp_unit_obstack, NULL);
18273
18274 xfree (cu);
18275 }
18276
18277 /* This cleanup function is passed the address of a dwarf2_cu on the stack
18278 when we're finished with it. We can't free the pointer itself, but be
18279 sure to unlink it from the cache. Also release any associated storage. */
18280
18281 static void
18282 free_stack_comp_unit (void *data)
18283 {
18284 struct dwarf2_cu *cu = data;
18285
18286 gdb_assert (cu->per_cu != NULL);
18287 cu->per_cu->cu = NULL;
18288 cu->per_cu = NULL;
18289
18290 obstack_free (&cu->comp_unit_obstack, NULL);
18291 cu->partial_dies = NULL;
18292 }
18293
18294 /* Free all cached compilation units. */
18295
18296 static void
18297 free_cached_comp_units (void *data)
18298 {
18299 struct dwarf2_per_cu_data *per_cu, **last_chain;
18300
18301 per_cu = dwarf2_per_objfile->read_in_chain;
18302 last_chain = &dwarf2_per_objfile->read_in_chain;
18303 while (per_cu != NULL)
18304 {
18305 struct dwarf2_per_cu_data *next_cu;
18306
18307 next_cu = per_cu->cu->read_in_chain;
18308
18309 free_heap_comp_unit (per_cu->cu);
18310 *last_chain = next_cu;
18311
18312 per_cu = next_cu;
18313 }
18314 }
18315
18316 /* Increase the age counter on each cached compilation unit, and free
18317 any that are too old. */
18318
18319 static void
18320 age_cached_comp_units (void)
18321 {
18322 struct dwarf2_per_cu_data *per_cu, **last_chain;
18323
18324 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
18325 per_cu = dwarf2_per_objfile->read_in_chain;
18326 while (per_cu != NULL)
18327 {
18328 per_cu->cu->last_used ++;
18329 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
18330 dwarf2_mark (per_cu->cu);
18331 per_cu = per_cu->cu->read_in_chain;
18332 }
18333
18334 per_cu = dwarf2_per_objfile->read_in_chain;
18335 last_chain = &dwarf2_per_objfile->read_in_chain;
18336 while (per_cu != NULL)
18337 {
18338 struct dwarf2_per_cu_data *next_cu;
18339
18340 next_cu = per_cu->cu->read_in_chain;
18341
18342 if (!per_cu->cu->mark)
18343 {
18344 free_heap_comp_unit (per_cu->cu);
18345 *last_chain = next_cu;
18346 }
18347 else
18348 last_chain = &per_cu->cu->read_in_chain;
18349
18350 per_cu = next_cu;
18351 }
18352 }
18353
18354 /* Remove a single compilation unit from the cache. */
18355
18356 static void
18357 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
18358 {
18359 struct dwarf2_per_cu_data *per_cu, **last_chain;
18360
18361 per_cu = dwarf2_per_objfile->read_in_chain;
18362 last_chain = &dwarf2_per_objfile->read_in_chain;
18363 while (per_cu != NULL)
18364 {
18365 struct dwarf2_per_cu_data *next_cu;
18366
18367 next_cu = per_cu->cu->read_in_chain;
18368
18369 if (per_cu == target_per_cu)
18370 {
18371 free_heap_comp_unit (per_cu->cu);
18372 per_cu->cu = NULL;
18373 *last_chain = next_cu;
18374 break;
18375 }
18376 else
18377 last_chain = &per_cu->cu->read_in_chain;
18378
18379 per_cu = next_cu;
18380 }
18381 }
18382
18383 /* Release all extra memory associated with OBJFILE. */
18384
18385 void
18386 dwarf2_free_objfile (struct objfile *objfile)
18387 {
18388 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
18389
18390 if (dwarf2_per_objfile == NULL)
18391 return;
18392
18393 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
18394 free_cached_comp_units (NULL);
18395
18396 if (dwarf2_per_objfile->quick_file_names_table)
18397 htab_delete (dwarf2_per_objfile->quick_file_names_table);
18398
18399 /* Everything else should be on the objfile obstack. */
18400 }
18401
18402 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
18403 We store these in a hash table separate from the DIEs, and preserve them
18404 when the DIEs are flushed out of cache.
18405
18406 The CU "per_cu" pointer is needed because offset alone is not enough to
18407 uniquely identify the type. A file may have multiple .debug_types sections,
18408 or the type may come from a DWO file. We have to use something in
18409 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
18410 routine, get_die_type_at_offset, from outside this file, and thus won't
18411 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
18412 of the objfile. */
18413
18414 struct dwarf2_per_cu_offset_and_type
18415 {
18416 const struct dwarf2_per_cu_data *per_cu;
18417 sect_offset offset;
18418 struct type *type;
18419 };
18420
18421 /* Hash function for a dwarf2_per_cu_offset_and_type. */
18422
18423 static hashval_t
18424 per_cu_offset_and_type_hash (const void *item)
18425 {
18426 const struct dwarf2_per_cu_offset_and_type *ofs = item;
18427
18428 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
18429 }
18430
18431 /* Equality function for a dwarf2_per_cu_offset_and_type. */
18432
18433 static int
18434 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
18435 {
18436 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
18437 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
18438
18439 return (ofs_lhs->per_cu == ofs_rhs->per_cu
18440 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
18441 }
18442
18443 /* Set the type associated with DIE to TYPE. Save it in CU's hash
18444 table if necessary. For convenience, return TYPE.
18445
18446 The DIEs reading must have careful ordering to:
18447 * Not cause infite loops trying to read in DIEs as a prerequisite for
18448 reading current DIE.
18449 * Not trying to dereference contents of still incompletely read in types
18450 while reading in other DIEs.
18451 * Enable referencing still incompletely read in types just by a pointer to
18452 the type without accessing its fields.
18453
18454 Therefore caller should follow these rules:
18455 * Try to fetch any prerequisite types we may need to build this DIE type
18456 before building the type and calling set_die_type.
18457 * After building type call set_die_type for current DIE as soon as
18458 possible before fetching more types to complete the current type.
18459 * Make the type as complete as possible before fetching more types. */
18460
18461 static struct type *
18462 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18463 {
18464 struct dwarf2_per_cu_offset_and_type **slot, ofs;
18465 struct objfile *objfile = cu->objfile;
18466
18467 /* For Ada types, make sure that the gnat-specific data is always
18468 initialized (if not already set). There are a few types where
18469 we should not be doing so, because the type-specific area is
18470 already used to hold some other piece of info (eg: TYPE_CODE_FLT
18471 where the type-specific area is used to store the floatformat).
18472 But this is not a problem, because the gnat-specific information
18473 is actually not needed for these types. */
18474 if (need_gnat_info (cu)
18475 && TYPE_CODE (type) != TYPE_CODE_FUNC
18476 && TYPE_CODE (type) != TYPE_CODE_FLT
18477 && !HAVE_GNAT_AUX_INFO (type))
18478 INIT_GNAT_SPECIFIC (type);
18479
18480 if (dwarf2_per_objfile->die_type_hash == NULL)
18481 {
18482 dwarf2_per_objfile->die_type_hash =
18483 htab_create_alloc_ex (127,
18484 per_cu_offset_and_type_hash,
18485 per_cu_offset_and_type_eq,
18486 NULL,
18487 &objfile->objfile_obstack,
18488 hashtab_obstack_allocate,
18489 dummy_obstack_deallocate);
18490 }
18491
18492 ofs.per_cu = cu->per_cu;
18493 ofs.offset = die->offset;
18494 ofs.type = type;
18495 slot = (struct dwarf2_per_cu_offset_and_type **)
18496 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
18497 if (*slot)
18498 complaint (&symfile_complaints,
18499 _("A problem internal to GDB: DIE 0x%x has type already set"),
18500 die->offset.sect_off);
18501 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
18502 **slot = ofs;
18503 return type;
18504 }
18505
18506 /* Look up the type for the die at OFFSET in the appropriate type_hash
18507 table, or return NULL if the die does not have a saved type. */
18508
18509 static struct type *
18510 get_die_type_at_offset (sect_offset offset,
18511 struct dwarf2_per_cu_data *per_cu)
18512 {
18513 struct dwarf2_per_cu_offset_and_type *slot, ofs;
18514
18515 if (dwarf2_per_objfile->die_type_hash == NULL)
18516 return NULL;
18517
18518 ofs.per_cu = per_cu;
18519 ofs.offset = offset;
18520 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
18521 if (slot)
18522 return slot->type;
18523 else
18524 return NULL;
18525 }
18526
18527 /* Look up the type for DIE in the appropriate type_hash table,
18528 or return NULL if DIE does not have a saved type. */
18529
18530 static struct type *
18531 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
18532 {
18533 return get_die_type_at_offset (die->offset, cu->per_cu);
18534 }
18535
18536 /* Add a dependence relationship from CU to REF_PER_CU. */
18537
18538 static void
18539 dwarf2_add_dependence (struct dwarf2_cu *cu,
18540 struct dwarf2_per_cu_data *ref_per_cu)
18541 {
18542 void **slot;
18543
18544 if (cu->dependencies == NULL)
18545 cu->dependencies
18546 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
18547 NULL, &cu->comp_unit_obstack,
18548 hashtab_obstack_allocate,
18549 dummy_obstack_deallocate);
18550
18551 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
18552 if (*slot == NULL)
18553 *slot = ref_per_cu;
18554 }
18555
18556 /* Subroutine of dwarf2_mark to pass to htab_traverse.
18557 Set the mark field in every compilation unit in the
18558 cache that we must keep because we are keeping CU. */
18559
18560 static int
18561 dwarf2_mark_helper (void **slot, void *data)
18562 {
18563 struct dwarf2_per_cu_data *per_cu;
18564
18565 per_cu = (struct dwarf2_per_cu_data *) *slot;
18566
18567 /* cu->dependencies references may not yet have been ever read if QUIT aborts
18568 reading of the chain. As such dependencies remain valid it is not much
18569 useful to track and undo them during QUIT cleanups. */
18570 if (per_cu->cu == NULL)
18571 return 1;
18572
18573 if (per_cu->cu->mark)
18574 return 1;
18575 per_cu->cu->mark = 1;
18576
18577 if (per_cu->cu->dependencies != NULL)
18578 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
18579
18580 return 1;
18581 }
18582
18583 /* Set the mark field in CU and in every other compilation unit in the
18584 cache that we must keep because we are keeping CU. */
18585
18586 static void
18587 dwarf2_mark (struct dwarf2_cu *cu)
18588 {
18589 if (cu->mark)
18590 return;
18591 cu->mark = 1;
18592 if (cu->dependencies != NULL)
18593 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
18594 }
18595
18596 static void
18597 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
18598 {
18599 while (per_cu)
18600 {
18601 per_cu->cu->mark = 0;
18602 per_cu = per_cu->cu->read_in_chain;
18603 }
18604 }
18605
18606 /* Trivial hash function for partial_die_info: the hash value of a DIE
18607 is its offset in .debug_info for this objfile. */
18608
18609 static hashval_t
18610 partial_die_hash (const void *item)
18611 {
18612 const struct partial_die_info *part_die = item;
18613
18614 return part_die->offset.sect_off;
18615 }
18616
18617 /* Trivial comparison function for partial_die_info structures: two DIEs
18618 are equal if they have the same offset. */
18619
18620 static int
18621 partial_die_eq (const void *item_lhs, const void *item_rhs)
18622 {
18623 const struct partial_die_info *part_die_lhs = item_lhs;
18624 const struct partial_die_info *part_die_rhs = item_rhs;
18625
18626 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
18627 }
18628
18629 static struct cmd_list_element *set_dwarf2_cmdlist;
18630 static struct cmd_list_element *show_dwarf2_cmdlist;
18631
18632 static void
18633 set_dwarf2_cmd (char *args, int from_tty)
18634 {
18635 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
18636 }
18637
18638 static void
18639 show_dwarf2_cmd (char *args, int from_tty)
18640 {
18641 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
18642 }
18643
18644 /* Free data associated with OBJFILE, if necessary. */
18645
18646 static void
18647 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
18648 {
18649 struct dwarf2_per_objfile *data = d;
18650 int ix;
18651
18652 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
18653 VEC_free (dwarf2_per_cu_ptr,
18654 dwarf2_per_objfile->all_comp_units[ix]->s.imported_symtabs);
18655
18656 VEC_free (dwarf2_section_info_def, data->types);
18657
18658 if (data->dwo_files)
18659 free_dwo_files (data->dwo_files, objfile);
18660
18661 if (data->dwz_file && data->dwz_file->dwz_bfd)
18662 gdb_bfd_unref (data->dwz_file->dwz_bfd);
18663 }
18664
18665 \f
18666 /* The "save gdb-index" command. */
18667
18668 /* The contents of the hash table we create when building the string
18669 table. */
18670 struct strtab_entry
18671 {
18672 offset_type offset;
18673 const char *str;
18674 };
18675
18676 /* Hash function for a strtab_entry.
18677
18678 Function is used only during write_hash_table so no index format backward
18679 compatibility is needed. */
18680
18681 static hashval_t
18682 hash_strtab_entry (const void *e)
18683 {
18684 const struct strtab_entry *entry = e;
18685 return mapped_index_string_hash (INT_MAX, entry->str);
18686 }
18687
18688 /* Equality function for a strtab_entry. */
18689
18690 static int
18691 eq_strtab_entry (const void *a, const void *b)
18692 {
18693 const struct strtab_entry *ea = a;
18694 const struct strtab_entry *eb = b;
18695 return !strcmp (ea->str, eb->str);
18696 }
18697
18698 /* Create a strtab_entry hash table. */
18699
18700 static htab_t
18701 create_strtab (void)
18702 {
18703 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
18704 xfree, xcalloc, xfree);
18705 }
18706
18707 /* Add a string to the constant pool. Return the string's offset in
18708 host order. */
18709
18710 static offset_type
18711 add_string (htab_t table, struct obstack *cpool, const char *str)
18712 {
18713 void **slot;
18714 struct strtab_entry entry;
18715 struct strtab_entry *result;
18716
18717 entry.str = str;
18718 slot = htab_find_slot (table, &entry, INSERT);
18719 if (*slot)
18720 result = *slot;
18721 else
18722 {
18723 result = XNEW (struct strtab_entry);
18724 result->offset = obstack_object_size (cpool);
18725 result->str = str;
18726 obstack_grow_str0 (cpool, str);
18727 *slot = result;
18728 }
18729 return result->offset;
18730 }
18731
18732 /* An entry in the symbol table. */
18733 struct symtab_index_entry
18734 {
18735 /* The name of the symbol. */
18736 const char *name;
18737 /* The offset of the name in the constant pool. */
18738 offset_type index_offset;
18739 /* A sorted vector of the indices of all the CUs that hold an object
18740 of this name. */
18741 VEC (offset_type) *cu_indices;
18742 };
18743
18744 /* The symbol table. This is a power-of-2-sized hash table. */
18745 struct mapped_symtab
18746 {
18747 offset_type n_elements;
18748 offset_type size;
18749 struct symtab_index_entry **data;
18750 };
18751
18752 /* Hash function for a symtab_index_entry. */
18753
18754 static hashval_t
18755 hash_symtab_entry (const void *e)
18756 {
18757 const struct symtab_index_entry *entry = e;
18758 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
18759 sizeof (offset_type) * VEC_length (offset_type,
18760 entry->cu_indices),
18761 0);
18762 }
18763
18764 /* Equality function for a symtab_index_entry. */
18765
18766 static int
18767 eq_symtab_entry (const void *a, const void *b)
18768 {
18769 const struct symtab_index_entry *ea = a;
18770 const struct symtab_index_entry *eb = b;
18771 int len = VEC_length (offset_type, ea->cu_indices);
18772 if (len != VEC_length (offset_type, eb->cu_indices))
18773 return 0;
18774 return !memcmp (VEC_address (offset_type, ea->cu_indices),
18775 VEC_address (offset_type, eb->cu_indices),
18776 sizeof (offset_type) * len);
18777 }
18778
18779 /* Destroy a symtab_index_entry. */
18780
18781 static void
18782 delete_symtab_entry (void *p)
18783 {
18784 struct symtab_index_entry *entry = p;
18785 VEC_free (offset_type, entry->cu_indices);
18786 xfree (entry);
18787 }
18788
18789 /* Create a hash table holding symtab_index_entry objects. */
18790
18791 static htab_t
18792 create_symbol_hash_table (void)
18793 {
18794 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
18795 delete_symtab_entry, xcalloc, xfree);
18796 }
18797
18798 /* Create a new mapped symtab object. */
18799
18800 static struct mapped_symtab *
18801 create_mapped_symtab (void)
18802 {
18803 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
18804 symtab->n_elements = 0;
18805 symtab->size = 1024;
18806 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
18807 return symtab;
18808 }
18809
18810 /* Destroy a mapped_symtab. */
18811
18812 static void
18813 cleanup_mapped_symtab (void *p)
18814 {
18815 struct mapped_symtab *symtab = p;
18816 /* The contents of the array are freed when the other hash table is
18817 destroyed. */
18818 xfree (symtab->data);
18819 xfree (symtab);
18820 }
18821
18822 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
18823 the slot.
18824
18825 Function is used only during write_hash_table so no index format backward
18826 compatibility is needed. */
18827
18828 static struct symtab_index_entry **
18829 find_slot (struct mapped_symtab *symtab, const char *name)
18830 {
18831 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
18832
18833 index = hash & (symtab->size - 1);
18834 step = ((hash * 17) & (symtab->size - 1)) | 1;
18835
18836 for (;;)
18837 {
18838 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
18839 return &symtab->data[index];
18840 index = (index + step) & (symtab->size - 1);
18841 }
18842 }
18843
18844 /* Expand SYMTAB's hash table. */
18845
18846 static void
18847 hash_expand (struct mapped_symtab *symtab)
18848 {
18849 offset_type old_size = symtab->size;
18850 offset_type i;
18851 struct symtab_index_entry **old_entries = symtab->data;
18852
18853 symtab->size *= 2;
18854 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
18855
18856 for (i = 0; i < old_size; ++i)
18857 {
18858 if (old_entries[i])
18859 {
18860 struct symtab_index_entry **slot = find_slot (symtab,
18861 old_entries[i]->name);
18862 *slot = old_entries[i];
18863 }
18864 }
18865
18866 xfree (old_entries);
18867 }
18868
18869 /* Add an entry to SYMTAB. NAME is the name of the symbol.
18870 CU_INDEX is the index of the CU in which the symbol appears.
18871 IS_STATIC is one if the symbol is static, otherwise zero (global). */
18872
18873 static void
18874 add_index_entry (struct mapped_symtab *symtab, const char *name,
18875 int is_static, gdb_index_symbol_kind kind,
18876 offset_type cu_index)
18877 {
18878 struct symtab_index_entry **slot;
18879 offset_type cu_index_and_attrs;
18880
18881 ++symtab->n_elements;
18882 if (4 * symtab->n_elements / 3 >= symtab->size)
18883 hash_expand (symtab);
18884
18885 slot = find_slot (symtab, name);
18886 if (!*slot)
18887 {
18888 *slot = XNEW (struct symtab_index_entry);
18889 (*slot)->name = name;
18890 /* index_offset is set later. */
18891 (*slot)->cu_indices = NULL;
18892 }
18893
18894 cu_index_and_attrs = 0;
18895 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
18896 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
18897 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
18898
18899 /* We don't want to record an index value twice as we want to avoid the
18900 duplication.
18901 We process all global symbols and then all static symbols
18902 (which would allow us to avoid the duplication by only having to check
18903 the last entry pushed), but a symbol could have multiple kinds in one CU.
18904 To keep things simple we don't worry about the duplication here and
18905 sort and uniqufy the list after we've processed all symbols. */
18906 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
18907 }
18908
18909 /* qsort helper routine for uniquify_cu_indices. */
18910
18911 static int
18912 offset_type_compare (const void *ap, const void *bp)
18913 {
18914 offset_type a = *(offset_type *) ap;
18915 offset_type b = *(offset_type *) bp;
18916
18917 return (a > b) - (b > a);
18918 }
18919
18920 /* Sort and remove duplicates of all symbols' cu_indices lists. */
18921
18922 static void
18923 uniquify_cu_indices (struct mapped_symtab *symtab)
18924 {
18925 int i;
18926
18927 for (i = 0; i < symtab->size; ++i)
18928 {
18929 struct symtab_index_entry *entry = symtab->data[i];
18930
18931 if (entry
18932 && entry->cu_indices != NULL)
18933 {
18934 unsigned int next_to_insert, next_to_check;
18935 offset_type last_value;
18936
18937 qsort (VEC_address (offset_type, entry->cu_indices),
18938 VEC_length (offset_type, entry->cu_indices),
18939 sizeof (offset_type), offset_type_compare);
18940
18941 last_value = VEC_index (offset_type, entry->cu_indices, 0);
18942 next_to_insert = 1;
18943 for (next_to_check = 1;
18944 next_to_check < VEC_length (offset_type, entry->cu_indices);
18945 ++next_to_check)
18946 {
18947 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
18948 != last_value)
18949 {
18950 last_value = VEC_index (offset_type, entry->cu_indices,
18951 next_to_check);
18952 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
18953 last_value);
18954 ++next_to_insert;
18955 }
18956 }
18957 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
18958 }
18959 }
18960 }
18961
18962 /* Add a vector of indices to the constant pool. */
18963
18964 static offset_type
18965 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
18966 struct symtab_index_entry *entry)
18967 {
18968 void **slot;
18969
18970 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
18971 if (!*slot)
18972 {
18973 offset_type len = VEC_length (offset_type, entry->cu_indices);
18974 offset_type val = MAYBE_SWAP (len);
18975 offset_type iter;
18976 int i;
18977
18978 *slot = entry;
18979 entry->index_offset = obstack_object_size (cpool);
18980
18981 obstack_grow (cpool, &val, sizeof (val));
18982 for (i = 0;
18983 VEC_iterate (offset_type, entry->cu_indices, i, iter);
18984 ++i)
18985 {
18986 val = MAYBE_SWAP (iter);
18987 obstack_grow (cpool, &val, sizeof (val));
18988 }
18989 }
18990 else
18991 {
18992 struct symtab_index_entry *old_entry = *slot;
18993 entry->index_offset = old_entry->index_offset;
18994 entry = old_entry;
18995 }
18996 return entry->index_offset;
18997 }
18998
18999 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
19000 constant pool entries going into the obstack CPOOL. */
19001
19002 static void
19003 write_hash_table (struct mapped_symtab *symtab,
19004 struct obstack *output, struct obstack *cpool)
19005 {
19006 offset_type i;
19007 htab_t symbol_hash_table;
19008 htab_t str_table;
19009
19010 symbol_hash_table = create_symbol_hash_table ();
19011 str_table = create_strtab ();
19012
19013 /* We add all the index vectors to the constant pool first, to
19014 ensure alignment is ok. */
19015 for (i = 0; i < symtab->size; ++i)
19016 {
19017 if (symtab->data[i])
19018 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
19019 }
19020
19021 /* Now write out the hash table. */
19022 for (i = 0; i < symtab->size; ++i)
19023 {
19024 offset_type str_off, vec_off;
19025
19026 if (symtab->data[i])
19027 {
19028 str_off = add_string (str_table, cpool, symtab->data[i]->name);
19029 vec_off = symtab->data[i]->index_offset;
19030 }
19031 else
19032 {
19033 /* While 0 is a valid constant pool index, it is not valid
19034 to have 0 for both offsets. */
19035 str_off = 0;
19036 vec_off = 0;
19037 }
19038
19039 str_off = MAYBE_SWAP (str_off);
19040 vec_off = MAYBE_SWAP (vec_off);
19041
19042 obstack_grow (output, &str_off, sizeof (str_off));
19043 obstack_grow (output, &vec_off, sizeof (vec_off));
19044 }
19045
19046 htab_delete (str_table);
19047 htab_delete (symbol_hash_table);
19048 }
19049
19050 /* Struct to map psymtab to CU index in the index file. */
19051 struct psymtab_cu_index_map
19052 {
19053 struct partial_symtab *psymtab;
19054 unsigned int cu_index;
19055 };
19056
19057 static hashval_t
19058 hash_psymtab_cu_index (const void *item)
19059 {
19060 const struct psymtab_cu_index_map *map = item;
19061
19062 return htab_hash_pointer (map->psymtab);
19063 }
19064
19065 static int
19066 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
19067 {
19068 const struct psymtab_cu_index_map *lhs = item_lhs;
19069 const struct psymtab_cu_index_map *rhs = item_rhs;
19070
19071 return lhs->psymtab == rhs->psymtab;
19072 }
19073
19074 /* Helper struct for building the address table. */
19075 struct addrmap_index_data
19076 {
19077 struct objfile *objfile;
19078 struct obstack *addr_obstack;
19079 htab_t cu_index_htab;
19080
19081 /* Non-zero if the previous_* fields are valid.
19082 We can't write an entry until we see the next entry (since it is only then
19083 that we know the end of the entry). */
19084 int previous_valid;
19085 /* Index of the CU in the table of all CUs in the index file. */
19086 unsigned int previous_cu_index;
19087 /* Start address of the CU. */
19088 CORE_ADDR previous_cu_start;
19089 };
19090
19091 /* Write an address entry to OBSTACK. */
19092
19093 static void
19094 add_address_entry (struct objfile *objfile, struct obstack *obstack,
19095 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
19096 {
19097 offset_type cu_index_to_write;
19098 char addr[8];
19099 CORE_ADDR baseaddr;
19100
19101 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19102
19103 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
19104 obstack_grow (obstack, addr, 8);
19105 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
19106 obstack_grow (obstack, addr, 8);
19107 cu_index_to_write = MAYBE_SWAP (cu_index);
19108 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
19109 }
19110
19111 /* Worker function for traversing an addrmap to build the address table. */
19112
19113 static int
19114 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
19115 {
19116 struct addrmap_index_data *data = datap;
19117 struct partial_symtab *pst = obj;
19118
19119 if (data->previous_valid)
19120 add_address_entry (data->objfile, data->addr_obstack,
19121 data->previous_cu_start, start_addr,
19122 data->previous_cu_index);
19123
19124 data->previous_cu_start = start_addr;
19125 if (pst != NULL)
19126 {
19127 struct psymtab_cu_index_map find_map, *map;
19128 find_map.psymtab = pst;
19129 map = htab_find (data->cu_index_htab, &find_map);
19130 gdb_assert (map != NULL);
19131 data->previous_cu_index = map->cu_index;
19132 data->previous_valid = 1;
19133 }
19134 else
19135 data->previous_valid = 0;
19136
19137 return 0;
19138 }
19139
19140 /* Write OBJFILE's address map to OBSTACK.
19141 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
19142 in the index file. */
19143
19144 static void
19145 write_address_map (struct objfile *objfile, struct obstack *obstack,
19146 htab_t cu_index_htab)
19147 {
19148 struct addrmap_index_data addrmap_index_data;
19149
19150 /* When writing the address table, we have to cope with the fact that
19151 the addrmap iterator only provides the start of a region; we have to
19152 wait until the next invocation to get the start of the next region. */
19153
19154 addrmap_index_data.objfile = objfile;
19155 addrmap_index_data.addr_obstack = obstack;
19156 addrmap_index_data.cu_index_htab = cu_index_htab;
19157 addrmap_index_data.previous_valid = 0;
19158
19159 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
19160 &addrmap_index_data);
19161
19162 /* It's highly unlikely the last entry (end address = 0xff...ff)
19163 is valid, but we should still handle it.
19164 The end address is recorded as the start of the next region, but that
19165 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
19166 anyway. */
19167 if (addrmap_index_data.previous_valid)
19168 add_address_entry (objfile, obstack,
19169 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
19170 addrmap_index_data.previous_cu_index);
19171 }
19172
19173 /* Return the symbol kind of PSYM. */
19174
19175 static gdb_index_symbol_kind
19176 symbol_kind (struct partial_symbol *psym)
19177 {
19178 domain_enum domain = PSYMBOL_DOMAIN (psym);
19179 enum address_class aclass = PSYMBOL_CLASS (psym);
19180
19181 switch (domain)
19182 {
19183 case VAR_DOMAIN:
19184 switch (aclass)
19185 {
19186 case LOC_BLOCK:
19187 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
19188 case LOC_TYPEDEF:
19189 return GDB_INDEX_SYMBOL_KIND_TYPE;
19190 case LOC_COMPUTED:
19191 case LOC_CONST_BYTES:
19192 case LOC_OPTIMIZED_OUT:
19193 case LOC_STATIC:
19194 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
19195 case LOC_CONST:
19196 /* Note: It's currently impossible to recognize psyms as enum values
19197 short of reading the type info. For now punt. */
19198 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
19199 default:
19200 /* There are other LOC_FOO values that one might want to classify
19201 as variables, but dwarf2read.c doesn't currently use them. */
19202 return GDB_INDEX_SYMBOL_KIND_OTHER;
19203 }
19204 case STRUCT_DOMAIN:
19205 return GDB_INDEX_SYMBOL_KIND_TYPE;
19206 default:
19207 return GDB_INDEX_SYMBOL_KIND_OTHER;
19208 }
19209 }
19210
19211 /* Add a list of partial symbols to SYMTAB. */
19212
19213 static void
19214 write_psymbols (struct mapped_symtab *symtab,
19215 htab_t psyms_seen,
19216 struct partial_symbol **psymp,
19217 int count,
19218 offset_type cu_index,
19219 int is_static)
19220 {
19221 for (; count-- > 0; ++psymp)
19222 {
19223 struct partial_symbol *psym = *psymp;
19224 void **slot;
19225
19226 if (SYMBOL_LANGUAGE (psym) == language_ada)
19227 error (_("Ada is not currently supported by the index"));
19228
19229 /* Only add a given psymbol once. */
19230 slot = htab_find_slot (psyms_seen, psym, INSERT);
19231 if (!*slot)
19232 {
19233 gdb_index_symbol_kind kind = symbol_kind (psym);
19234
19235 *slot = psym;
19236 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
19237 is_static, kind, cu_index);
19238 }
19239 }
19240 }
19241
19242 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
19243 exception if there is an error. */
19244
19245 static void
19246 write_obstack (FILE *file, struct obstack *obstack)
19247 {
19248 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
19249 file)
19250 != obstack_object_size (obstack))
19251 error (_("couldn't data write to file"));
19252 }
19253
19254 /* Unlink a file if the argument is not NULL. */
19255
19256 static void
19257 unlink_if_set (void *p)
19258 {
19259 char **filename = p;
19260 if (*filename)
19261 unlink (*filename);
19262 }
19263
19264 /* A helper struct used when iterating over debug_types. */
19265 struct signatured_type_index_data
19266 {
19267 struct objfile *objfile;
19268 struct mapped_symtab *symtab;
19269 struct obstack *types_list;
19270 htab_t psyms_seen;
19271 int cu_index;
19272 };
19273
19274 /* A helper function that writes a single signatured_type to an
19275 obstack. */
19276
19277 static int
19278 write_one_signatured_type (void **slot, void *d)
19279 {
19280 struct signatured_type_index_data *info = d;
19281 struct signatured_type *entry = (struct signatured_type *) *slot;
19282 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
19283 struct partial_symtab *psymtab = per_cu->v.psymtab;
19284 gdb_byte val[8];
19285
19286 write_psymbols (info->symtab,
19287 info->psyms_seen,
19288 info->objfile->global_psymbols.list
19289 + psymtab->globals_offset,
19290 psymtab->n_global_syms, info->cu_index,
19291 0);
19292 write_psymbols (info->symtab,
19293 info->psyms_seen,
19294 info->objfile->static_psymbols.list
19295 + psymtab->statics_offset,
19296 psymtab->n_static_syms, info->cu_index,
19297 1);
19298
19299 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
19300 entry->per_cu.offset.sect_off);
19301 obstack_grow (info->types_list, val, 8);
19302 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
19303 entry->type_offset_in_tu.cu_off);
19304 obstack_grow (info->types_list, val, 8);
19305 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
19306 obstack_grow (info->types_list, val, 8);
19307
19308 ++info->cu_index;
19309
19310 return 1;
19311 }
19312
19313 /* Recurse into all "included" dependencies and write their symbols as
19314 if they appeared in this psymtab. */
19315
19316 static void
19317 recursively_write_psymbols (struct objfile *objfile,
19318 struct partial_symtab *psymtab,
19319 struct mapped_symtab *symtab,
19320 htab_t psyms_seen,
19321 offset_type cu_index)
19322 {
19323 int i;
19324
19325 for (i = 0; i < psymtab->number_of_dependencies; ++i)
19326 if (psymtab->dependencies[i]->user != NULL)
19327 recursively_write_psymbols (objfile, psymtab->dependencies[i],
19328 symtab, psyms_seen, cu_index);
19329
19330 write_psymbols (symtab,
19331 psyms_seen,
19332 objfile->global_psymbols.list + psymtab->globals_offset,
19333 psymtab->n_global_syms, cu_index,
19334 0);
19335 write_psymbols (symtab,
19336 psyms_seen,
19337 objfile->static_psymbols.list + psymtab->statics_offset,
19338 psymtab->n_static_syms, cu_index,
19339 1);
19340 }
19341
19342 /* Create an index file for OBJFILE in the directory DIR. */
19343
19344 static void
19345 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
19346 {
19347 struct cleanup *cleanup;
19348 char *filename, *cleanup_filename;
19349 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
19350 struct obstack cu_list, types_cu_list;
19351 int i;
19352 FILE *out_file;
19353 struct mapped_symtab *symtab;
19354 offset_type val, size_of_contents, total_len;
19355 struct stat st;
19356 htab_t psyms_seen;
19357 htab_t cu_index_htab;
19358 struct psymtab_cu_index_map *psymtab_cu_index_map;
19359
19360 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
19361 return;
19362
19363 if (dwarf2_per_objfile->using_index)
19364 error (_("Cannot use an index to create the index"));
19365
19366 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
19367 error (_("Cannot make an index when the file has multiple .debug_types sections"));
19368
19369 if (stat (objfile->name, &st) < 0)
19370 perror_with_name (objfile->name);
19371
19372 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
19373 INDEX_SUFFIX, (char *) NULL);
19374 cleanup = make_cleanup (xfree, filename);
19375
19376 out_file = fopen (filename, "wb");
19377 if (!out_file)
19378 error (_("Can't open `%s' for writing"), filename);
19379
19380 cleanup_filename = filename;
19381 make_cleanup (unlink_if_set, &cleanup_filename);
19382
19383 symtab = create_mapped_symtab ();
19384 make_cleanup (cleanup_mapped_symtab, symtab);
19385
19386 obstack_init (&addr_obstack);
19387 make_cleanup_obstack_free (&addr_obstack);
19388
19389 obstack_init (&cu_list);
19390 make_cleanup_obstack_free (&cu_list);
19391
19392 obstack_init (&types_cu_list);
19393 make_cleanup_obstack_free (&types_cu_list);
19394
19395 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
19396 NULL, xcalloc, xfree);
19397 make_cleanup_htab_delete (psyms_seen);
19398
19399 /* While we're scanning CU's create a table that maps a psymtab pointer
19400 (which is what addrmap records) to its index (which is what is recorded
19401 in the index file). This will later be needed to write the address
19402 table. */
19403 cu_index_htab = htab_create_alloc (100,
19404 hash_psymtab_cu_index,
19405 eq_psymtab_cu_index,
19406 NULL, xcalloc, xfree);
19407 make_cleanup_htab_delete (cu_index_htab);
19408 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
19409 xmalloc (sizeof (struct psymtab_cu_index_map)
19410 * dwarf2_per_objfile->n_comp_units);
19411 make_cleanup (xfree, psymtab_cu_index_map);
19412
19413 /* The CU list is already sorted, so we don't need to do additional
19414 work here. Also, the debug_types entries do not appear in
19415 all_comp_units, but only in their own hash table. */
19416 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
19417 {
19418 struct dwarf2_per_cu_data *per_cu
19419 = dwarf2_per_objfile->all_comp_units[i];
19420 struct partial_symtab *psymtab = per_cu->v.psymtab;
19421 gdb_byte val[8];
19422 struct psymtab_cu_index_map *map;
19423 void **slot;
19424
19425 if (psymtab->user == NULL)
19426 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
19427
19428 map = &psymtab_cu_index_map[i];
19429 map->psymtab = psymtab;
19430 map->cu_index = i;
19431 slot = htab_find_slot (cu_index_htab, map, INSERT);
19432 gdb_assert (slot != NULL);
19433 gdb_assert (*slot == NULL);
19434 *slot = map;
19435
19436 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
19437 per_cu->offset.sect_off);
19438 obstack_grow (&cu_list, val, 8);
19439 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
19440 obstack_grow (&cu_list, val, 8);
19441 }
19442
19443 /* Dump the address map. */
19444 write_address_map (objfile, &addr_obstack, cu_index_htab);
19445
19446 /* Write out the .debug_type entries, if any. */
19447 if (dwarf2_per_objfile->signatured_types)
19448 {
19449 struct signatured_type_index_data sig_data;
19450
19451 sig_data.objfile = objfile;
19452 sig_data.symtab = symtab;
19453 sig_data.types_list = &types_cu_list;
19454 sig_data.psyms_seen = psyms_seen;
19455 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
19456 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
19457 write_one_signatured_type, &sig_data);
19458 }
19459
19460 /* Now that we've processed all symbols we can shrink their cu_indices
19461 lists. */
19462 uniquify_cu_indices (symtab);
19463
19464 obstack_init (&constant_pool);
19465 make_cleanup_obstack_free (&constant_pool);
19466 obstack_init (&symtab_obstack);
19467 make_cleanup_obstack_free (&symtab_obstack);
19468 write_hash_table (symtab, &symtab_obstack, &constant_pool);
19469
19470 obstack_init (&contents);
19471 make_cleanup_obstack_free (&contents);
19472 size_of_contents = 6 * sizeof (offset_type);
19473 total_len = size_of_contents;
19474
19475 /* The version number. */
19476 val = MAYBE_SWAP (7);
19477 obstack_grow (&contents, &val, sizeof (val));
19478
19479 /* The offset of the CU list from the start of the file. */
19480 val = MAYBE_SWAP (total_len);
19481 obstack_grow (&contents, &val, sizeof (val));
19482 total_len += obstack_object_size (&cu_list);
19483
19484 /* The offset of the types CU list from the start of the file. */
19485 val = MAYBE_SWAP (total_len);
19486 obstack_grow (&contents, &val, sizeof (val));
19487 total_len += obstack_object_size (&types_cu_list);
19488
19489 /* The offset of the address table from the start of the file. */
19490 val = MAYBE_SWAP (total_len);
19491 obstack_grow (&contents, &val, sizeof (val));
19492 total_len += obstack_object_size (&addr_obstack);
19493
19494 /* The offset of the symbol table from the start of the file. */
19495 val = MAYBE_SWAP (total_len);
19496 obstack_grow (&contents, &val, sizeof (val));
19497 total_len += obstack_object_size (&symtab_obstack);
19498
19499 /* The offset of the constant pool from the start of the file. */
19500 val = MAYBE_SWAP (total_len);
19501 obstack_grow (&contents, &val, sizeof (val));
19502 total_len += obstack_object_size (&constant_pool);
19503
19504 gdb_assert (obstack_object_size (&contents) == size_of_contents);
19505
19506 write_obstack (out_file, &contents);
19507 write_obstack (out_file, &cu_list);
19508 write_obstack (out_file, &types_cu_list);
19509 write_obstack (out_file, &addr_obstack);
19510 write_obstack (out_file, &symtab_obstack);
19511 write_obstack (out_file, &constant_pool);
19512
19513 fclose (out_file);
19514
19515 /* We want to keep the file, so we set cleanup_filename to NULL
19516 here. See unlink_if_set. */
19517 cleanup_filename = NULL;
19518
19519 do_cleanups (cleanup);
19520 }
19521
19522 /* Implementation of the `save gdb-index' command.
19523
19524 Note that the file format used by this command is documented in the
19525 GDB manual. Any changes here must be documented there. */
19526
19527 static void
19528 save_gdb_index_command (char *arg, int from_tty)
19529 {
19530 struct objfile *objfile;
19531
19532 if (!arg || !*arg)
19533 error (_("usage: save gdb-index DIRECTORY"));
19534
19535 ALL_OBJFILES (objfile)
19536 {
19537 struct stat st;
19538
19539 /* If the objfile does not correspond to an actual file, skip it. */
19540 if (stat (objfile->name, &st) < 0)
19541 continue;
19542
19543 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19544 if (dwarf2_per_objfile)
19545 {
19546 volatile struct gdb_exception except;
19547
19548 TRY_CATCH (except, RETURN_MASK_ERROR)
19549 {
19550 write_psymtabs_to_index (objfile, arg);
19551 }
19552 if (except.reason < 0)
19553 exception_fprintf (gdb_stderr, except,
19554 _("Error while writing index for `%s': "),
19555 objfile->name);
19556 }
19557 }
19558 }
19559
19560 \f
19561
19562 int dwarf2_always_disassemble;
19563
19564 static void
19565 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
19566 struct cmd_list_element *c, const char *value)
19567 {
19568 fprintf_filtered (file,
19569 _("Whether to always disassemble "
19570 "DWARF expressions is %s.\n"),
19571 value);
19572 }
19573
19574 static void
19575 show_check_physname (struct ui_file *file, int from_tty,
19576 struct cmd_list_element *c, const char *value)
19577 {
19578 fprintf_filtered (file,
19579 _("Whether to check \"physname\" is %s.\n"),
19580 value);
19581 }
19582
19583 void _initialize_dwarf2_read (void);
19584
19585 void
19586 _initialize_dwarf2_read (void)
19587 {
19588 struct cmd_list_element *c;
19589
19590 dwarf2_objfile_data_key
19591 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
19592
19593 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
19594 Set DWARF 2 specific variables.\n\
19595 Configure DWARF 2 variables such as the cache size"),
19596 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
19597 0/*allow-unknown*/, &maintenance_set_cmdlist);
19598
19599 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
19600 Show DWARF 2 specific variables\n\
19601 Show DWARF 2 variables such as the cache size"),
19602 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
19603 0/*allow-unknown*/, &maintenance_show_cmdlist);
19604
19605 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
19606 &dwarf2_max_cache_age, _("\
19607 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
19608 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
19609 A higher limit means that cached compilation units will be stored\n\
19610 in memory longer, and more total memory will be used. Zero disables\n\
19611 caching, which can slow down startup."),
19612 NULL,
19613 show_dwarf2_max_cache_age,
19614 &set_dwarf2_cmdlist,
19615 &show_dwarf2_cmdlist);
19616
19617 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
19618 &dwarf2_always_disassemble, _("\
19619 Set whether `info address' always disassembles DWARF expressions."), _("\
19620 Show whether `info address' always disassembles DWARF expressions."), _("\
19621 When enabled, DWARF expressions are always printed in an assembly-like\n\
19622 syntax. When disabled, expressions will be printed in a more\n\
19623 conversational style, when possible."),
19624 NULL,
19625 show_dwarf2_always_disassemble,
19626 &set_dwarf2_cmdlist,
19627 &show_dwarf2_cmdlist);
19628
19629 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
19630 Set debugging of the dwarf2 reader."), _("\
19631 Show debugging of the dwarf2 reader."), _("\
19632 When enabled, debugging messages are printed during dwarf2 reading\n\
19633 and symtab expansion."),
19634 NULL,
19635 NULL,
19636 &setdebuglist, &showdebuglist);
19637
19638 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
19639 Set debugging of the dwarf2 DIE reader."), _("\
19640 Show debugging of the dwarf2 DIE reader."), _("\
19641 When enabled (non-zero), DIEs are dumped after they are read in.\n\
19642 The value is the maximum depth to print."),
19643 NULL,
19644 NULL,
19645 &setdebuglist, &showdebuglist);
19646
19647 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
19648 Set cross-checking of \"physname\" code against demangler."), _("\
19649 Show cross-checking of \"physname\" code against demangler."), _("\
19650 When enabled, GDB's internal \"physname\" code is checked against\n\
19651 the demangler."),
19652 NULL, show_check_physname,
19653 &setdebuglist, &showdebuglist);
19654
19655 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
19656 _("\
19657 Save a gdb-index file.\n\
19658 Usage: save gdb-index DIRECTORY"),
19659 &save_cmdlist);
19660 set_cmd_completer (c, filename_completer);
19661 }