DWARF-5: DW_FORM_data16
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76 #include <algorithm>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
83 This is in contrast to the low level DIE reading of dwarf_die_debug. */
84 static unsigned int dwarf_read_debug = 0;
85
86 /* When non-zero, dump DIEs after they are read in. */
87 static unsigned int dwarf_die_debug = 0;
88
89 /* When non-zero, dump line number entries as they are read in. */
90 static unsigned int dwarf_line_debug = 0;
91
92 /* When non-zero, cross-check physname against demangler. */
93 static int check_physname = 0;
94
95 /* When non-zero, do not reject deprecated .gdb_index sections. */
96 static int use_deprecated_index_sections = 0;
97
98 static const struct objfile_data *dwarf2_objfile_data_key;
99
100 /* The "aclass" indices for various kinds of computed DWARF symbols. */
101
102 static int dwarf2_locexpr_index;
103 static int dwarf2_loclist_index;
104 static int dwarf2_locexpr_block_index;
105 static int dwarf2_loclist_block_index;
106
107 /* A descriptor for dwarf sections.
108
109 S.ASECTION, SIZE are typically initialized when the objfile is first
110 scanned. BUFFER, READIN are filled in later when the section is read.
111 If the section contained compressed data then SIZE is updated to record
112 the uncompressed size of the section.
113
114 DWP file format V2 introduces a wrinkle that is easiest to handle by
115 creating the concept of virtual sections contained within a real section.
116 In DWP V2 the sections of the input DWO files are concatenated together
117 into one section, but section offsets are kept relative to the original
118 input section.
119 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
120 the real section this "virtual" section is contained in, and BUFFER,SIZE
121 describe the virtual section. */
122
123 struct dwarf2_section_info
124 {
125 union
126 {
127 /* If this is a real section, the bfd section. */
128 asection *section;
129 /* If this is a virtual section, pointer to the containing ("real")
130 section. */
131 struct dwarf2_section_info *containing_section;
132 } s;
133 /* Pointer to section data, only valid if readin. */
134 const gdb_byte *buffer;
135 /* The size of the section, real or virtual. */
136 bfd_size_type size;
137 /* If this is a virtual section, the offset in the real section.
138 Only valid if is_virtual. */
139 bfd_size_type virtual_offset;
140 /* True if we have tried to read this section. */
141 char readin;
142 /* True if this is a virtual section, False otherwise.
143 This specifies which of s.section and s.containing_section to use. */
144 char is_virtual;
145 };
146
147 typedef struct dwarf2_section_info dwarf2_section_info_def;
148 DEF_VEC_O (dwarf2_section_info_def);
149
150 /* All offsets in the index are of this type. It must be
151 architecture-independent. */
152 typedef uint32_t offset_type;
153
154 DEF_VEC_I (offset_type);
155
156 /* Ensure only legit values are used. */
157 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
158 do { \
159 gdb_assert ((unsigned int) (value) <= 1); \
160 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
161 } while (0)
162
163 /* Ensure only legit values are used. */
164 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
167 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
168 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
169 } while (0)
170
171 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
172 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
173 do { \
174 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
175 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178 /* A description of the mapped index. The file format is described in
179 a comment by the code that writes the index. */
180 struct mapped_index
181 {
182 /* Index data format version. */
183 int version;
184
185 /* The total length of the buffer. */
186 off_t total_size;
187
188 /* A pointer to the address table data. */
189 const gdb_byte *address_table;
190
191 /* Size of the address table data in bytes. */
192 offset_type address_table_size;
193
194 /* The symbol table, implemented as a hash table. */
195 const offset_type *symbol_table;
196
197 /* Size in slots, each slot is 2 offset_types. */
198 offset_type symbol_table_slots;
199
200 /* A pointer to the constant pool. */
201 const char *constant_pool;
202 };
203
204 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
205 DEF_VEC_P (dwarf2_per_cu_ptr);
206
207 struct tu_stats
208 {
209 int nr_uniq_abbrev_tables;
210 int nr_symtabs;
211 int nr_symtab_sharers;
212 int nr_stmt_less_type_units;
213 int nr_all_type_units_reallocs;
214 };
215
216 /* Collection of data recorded per objfile.
217 This hangs off of dwarf2_objfile_data_key. */
218
219 struct dwarf2_per_objfile
220 {
221 struct dwarf2_section_info info;
222 struct dwarf2_section_info abbrev;
223 struct dwarf2_section_info line;
224 struct dwarf2_section_info loc;
225 struct dwarf2_section_info loclists;
226 struct dwarf2_section_info macinfo;
227 struct dwarf2_section_info macro;
228 struct dwarf2_section_info str;
229 struct dwarf2_section_info line_str;
230 struct dwarf2_section_info ranges;
231 struct dwarf2_section_info rnglists;
232 struct dwarf2_section_info addr;
233 struct dwarf2_section_info frame;
234 struct dwarf2_section_info eh_frame;
235 struct dwarf2_section_info gdb_index;
236
237 VEC (dwarf2_section_info_def) *types;
238
239 /* Back link. */
240 struct objfile *objfile;
241
242 /* Table of all the compilation units. This is used to locate
243 the target compilation unit of a particular reference. */
244 struct dwarf2_per_cu_data **all_comp_units;
245
246 /* The number of compilation units in ALL_COMP_UNITS. */
247 int n_comp_units;
248
249 /* The number of .debug_types-related CUs. */
250 int n_type_units;
251
252 /* The number of elements allocated in all_type_units.
253 If there are skeleton-less TUs, we add them to all_type_units lazily. */
254 int n_allocated_type_units;
255
256 /* The .debug_types-related CUs (TUs).
257 This is stored in malloc space because we may realloc it. */
258 struct signatured_type **all_type_units;
259
260 /* Table of struct type_unit_group objects.
261 The hash key is the DW_AT_stmt_list value. */
262 htab_t type_unit_groups;
263
264 /* A table mapping .debug_types signatures to its signatured_type entry.
265 This is NULL if the .debug_types section hasn't been read in yet. */
266 htab_t signatured_types;
267
268 /* Type unit statistics, to see how well the scaling improvements
269 are doing. */
270 struct tu_stats tu_stats;
271
272 /* A chain of compilation units that are currently read in, so that
273 they can be freed later. */
274 struct dwarf2_per_cu_data *read_in_chain;
275
276 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
277 This is NULL if the table hasn't been allocated yet. */
278 htab_t dwo_files;
279
280 /* Non-zero if we've check for whether there is a DWP file. */
281 int dwp_checked;
282
283 /* The DWP file if there is one, or NULL. */
284 struct dwp_file *dwp_file;
285
286 /* The shared '.dwz' file, if one exists. This is used when the
287 original data was compressed using 'dwz -m'. */
288 struct dwz_file *dwz_file;
289
290 /* A flag indicating wether this objfile has a section loaded at a
291 VMA of 0. */
292 int has_section_at_zero;
293
294 /* True if we are using the mapped index,
295 or we are faking it for OBJF_READNOW's sake. */
296 unsigned char using_index;
297
298 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
299 struct mapped_index *index_table;
300
301 /* When using index_table, this keeps track of all quick_file_names entries.
302 TUs typically share line table entries with a CU, so we maintain a
303 separate table of all line table entries to support the sharing.
304 Note that while there can be way more TUs than CUs, we've already
305 sorted all the TUs into "type unit groups", grouped by their
306 DW_AT_stmt_list value. Therefore the only sharing done here is with a
307 CU and its associated TU group if there is one. */
308 htab_t quick_file_names_table;
309
310 /* Set during partial symbol reading, to prevent queueing of full
311 symbols. */
312 int reading_partial_symbols;
313
314 /* Table mapping type DIEs to their struct type *.
315 This is NULL if not allocated yet.
316 The mapping is done via (CU/TU + DIE offset) -> type. */
317 htab_t die_type_hash;
318
319 /* The CUs we recently read. */
320 VEC (dwarf2_per_cu_ptr) *just_read_cus;
321
322 /* Table containing line_header indexed by offset and offset_in_dwz. */
323 htab_t line_header_hash;
324 };
325
326 static struct dwarf2_per_objfile *dwarf2_per_objfile;
327
328 /* Default names of the debugging sections. */
329
330 /* Note that if the debugging section has been compressed, it might
331 have a name like .zdebug_info. */
332
333 static const struct dwarf2_debug_sections dwarf2_elf_names =
334 {
335 { ".debug_info", ".zdebug_info" },
336 { ".debug_abbrev", ".zdebug_abbrev" },
337 { ".debug_line", ".zdebug_line" },
338 { ".debug_loc", ".zdebug_loc" },
339 { ".debug_loclists", ".zdebug_loclists" },
340 { ".debug_macinfo", ".zdebug_macinfo" },
341 { ".debug_macro", ".zdebug_macro" },
342 { ".debug_str", ".zdebug_str" },
343 { ".debug_line_str", ".zdebug_line_str" },
344 { ".debug_ranges", ".zdebug_ranges" },
345 { ".debug_rnglists", ".zdebug_rnglists" },
346 { ".debug_types", ".zdebug_types" },
347 { ".debug_addr", ".zdebug_addr" },
348 { ".debug_frame", ".zdebug_frame" },
349 { ".eh_frame", NULL },
350 { ".gdb_index", ".zgdb_index" },
351 23
352 };
353
354 /* List of DWO/DWP sections. */
355
356 static const struct dwop_section_names
357 {
358 struct dwarf2_section_names abbrev_dwo;
359 struct dwarf2_section_names info_dwo;
360 struct dwarf2_section_names line_dwo;
361 struct dwarf2_section_names loc_dwo;
362 struct dwarf2_section_names loclists_dwo;
363 struct dwarf2_section_names macinfo_dwo;
364 struct dwarf2_section_names macro_dwo;
365 struct dwarf2_section_names str_dwo;
366 struct dwarf2_section_names str_offsets_dwo;
367 struct dwarf2_section_names types_dwo;
368 struct dwarf2_section_names cu_index;
369 struct dwarf2_section_names tu_index;
370 }
371 dwop_section_names =
372 {
373 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
374 { ".debug_info.dwo", ".zdebug_info.dwo" },
375 { ".debug_line.dwo", ".zdebug_line.dwo" },
376 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
377 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
378 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
379 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
380 { ".debug_str.dwo", ".zdebug_str.dwo" },
381 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
382 { ".debug_types.dwo", ".zdebug_types.dwo" },
383 { ".debug_cu_index", ".zdebug_cu_index" },
384 { ".debug_tu_index", ".zdebug_tu_index" },
385 };
386
387 /* local data types */
388
389 /* The data in a compilation unit header, after target2host
390 translation, looks like this. */
391 struct comp_unit_head
392 {
393 unsigned int length;
394 short version;
395 unsigned char addr_size;
396 unsigned char signed_addr_p;
397 sect_offset abbrev_offset;
398
399 /* Size of file offsets; either 4 or 8. */
400 unsigned int offset_size;
401
402 /* Size of the length field; either 4 or 12. */
403 unsigned int initial_length_size;
404
405 enum dwarf_unit_type unit_type;
406
407 /* Offset to the first byte of this compilation unit header in the
408 .debug_info section, for resolving relative reference dies. */
409 sect_offset offset;
410
411 /* Offset to first die in this cu from the start of the cu.
412 This will be the first byte following the compilation unit header. */
413 cu_offset first_die_offset;
414
415 /* 64-bit signature of this type unit - it is valid only for
416 UNIT_TYPE DW_UT_type. */
417 ULONGEST signature;
418
419 /* For types, offset in the type's DIE of the type defined by this TU. */
420 cu_offset type_offset_in_tu;
421 };
422
423 /* Type used for delaying computation of method physnames.
424 See comments for compute_delayed_physnames. */
425 struct delayed_method_info
426 {
427 /* The type to which the method is attached, i.e., its parent class. */
428 struct type *type;
429
430 /* The index of the method in the type's function fieldlists. */
431 int fnfield_index;
432
433 /* The index of the method in the fieldlist. */
434 int index;
435
436 /* The name of the DIE. */
437 const char *name;
438
439 /* The DIE associated with this method. */
440 struct die_info *die;
441 };
442
443 typedef struct delayed_method_info delayed_method_info;
444 DEF_VEC_O (delayed_method_info);
445
446 /* Internal state when decoding a particular compilation unit. */
447 struct dwarf2_cu
448 {
449 /* The objfile containing this compilation unit. */
450 struct objfile *objfile;
451
452 /* The header of the compilation unit. */
453 struct comp_unit_head header;
454
455 /* Base address of this compilation unit. */
456 CORE_ADDR base_address;
457
458 /* Non-zero if base_address has been set. */
459 int base_known;
460
461 /* The language we are debugging. */
462 enum language language;
463 const struct language_defn *language_defn;
464
465 const char *producer;
466
467 /* The generic symbol table building routines have separate lists for
468 file scope symbols and all all other scopes (local scopes). So
469 we need to select the right one to pass to add_symbol_to_list().
470 We do it by keeping a pointer to the correct list in list_in_scope.
471
472 FIXME: The original dwarf code just treated the file scope as the
473 first local scope, and all other local scopes as nested local
474 scopes, and worked fine. Check to see if we really need to
475 distinguish these in buildsym.c. */
476 struct pending **list_in_scope;
477
478 /* The abbrev table for this CU.
479 Normally this points to the abbrev table in the objfile.
480 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
481 struct abbrev_table *abbrev_table;
482
483 /* Hash table holding all the loaded partial DIEs
484 with partial_die->offset.SECT_OFF as hash. */
485 htab_t partial_dies;
486
487 /* Storage for things with the same lifetime as this read-in compilation
488 unit, including partial DIEs. */
489 struct obstack comp_unit_obstack;
490
491 /* When multiple dwarf2_cu structures are living in memory, this field
492 chains them all together, so that they can be released efficiently.
493 We will probably also want a generation counter so that most-recently-used
494 compilation units are cached... */
495 struct dwarf2_per_cu_data *read_in_chain;
496
497 /* Backlink to our per_cu entry. */
498 struct dwarf2_per_cu_data *per_cu;
499
500 /* How many compilation units ago was this CU last referenced? */
501 int last_used;
502
503 /* A hash table of DIE cu_offset for following references with
504 die_info->offset.sect_off as hash. */
505 htab_t die_hash;
506
507 /* Full DIEs if read in. */
508 struct die_info *dies;
509
510 /* A set of pointers to dwarf2_per_cu_data objects for compilation
511 units referenced by this one. Only set during full symbol processing;
512 partial symbol tables do not have dependencies. */
513 htab_t dependencies;
514
515 /* Header data from the line table, during full symbol processing. */
516 struct line_header *line_header;
517
518 /* A list of methods which need to have physnames computed
519 after all type information has been read. */
520 VEC (delayed_method_info) *method_list;
521
522 /* To be copied to symtab->call_site_htab. */
523 htab_t call_site_htab;
524
525 /* Non-NULL if this CU came from a DWO file.
526 There is an invariant here that is important to remember:
527 Except for attributes copied from the top level DIE in the "main"
528 (or "stub") file in preparation for reading the DWO file
529 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
530 Either there isn't a DWO file (in which case this is NULL and the point
531 is moot), or there is and either we're not going to read it (in which
532 case this is NULL) or there is and we are reading it (in which case this
533 is non-NULL). */
534 struct dwo_unit *dwo_unit;
535
536 /* The DW_AT_addr_base attribute if present, zero otherwise
537 (zero is a valid value though).
538 Note this value comes from the Fission stub CU/TU's DIE. */
539 ULONGEST addr_base;
540
541 /* The DW_AT_ranges_base attribute if present, zero otherwise
542 (zero is a valid value though).
543 Note this value comes from the Fission stub CU/TU's DIE.
544 Also note that the value is zero in the non-DWO case so this value can
545 be used without needing to know whether DWO files are in use or not.
546 N.B. This does not apply to DW_AT_ranges appearing in
547 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
548 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
549 DW_AT_ranges_base *would* have to be applied, and we'd have to care
550 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
551 ULONGEST ranges_base;
552
553 /* Mark used when releasing cached dies. */
554 unsigned int mark : 1;
555
556 /* This CU references .debug_loc. See the symtab->locations_valid field.
557 This test is imperfect as there may exist optimized debug code not using
558 any location list and still facing inlining issues if handled as
559 unoptimized code. For a future better test see GCC PR other/32998. */
560 unsigned int has_loclist : 1;
561
562 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
563 if all the producer_is_* fields are valid. This information is cached
564 because profiling CU expansion showed excessive time spent in
565 producer_is_gxx_lt_4_6. */
566 unsigned int checked_producer : 1;
567 unsigned int producer_is_gxx_lt_4_6 : 1;
568 unsigned int producer_is_gcc_lt_4_3 : 1;
569 unsigned int producer_is_icc : 1;
570
571 /* When set, the file that we're processing is known to have
572 debugging info for C++ namespaces. GCC 3.3.x did not produce
573 this information, but later versions do. */
574
575 unsigned int processing_has_namespace_info : 1;
576 };
577
578 /* Persistent data held for a compilation unit, even when not
579 processing it. We put a pointer to this structure in the
580 read_symtab_private field of the psymtab. */
581
582 struct dwarf2_per_cu_data
583 {
584 /* The start offset and length of this compilation unit.
585 NOTE: Unlike comp_unit_head.length, this length includes
586 initial_length_size.
587 If the DIE refers to a DWO file, this is always of the original die,
588 not the DWO file. */
589 sect_offset offset;
590 unsigned int length;
591
592 /* DWARF standard version this data has been read from (such as 4 or 5). */
593 short dwarf_version;
594
595 /* Flag indicating this compilation unit will be read in before
596 any of the current compilation units are processed. */
597 unsigned int queued : 1;
598
599 /* This flag will be set when reading partial DIEs if we need to load
600 absolutely all DIEs for this compilation unit, instead of just the ones
601 we think are interesting. It gets set if we look for a DIE in the
602 hash table and don't find it. */
603 unsigned int load_all_dies : 1;
604
605 /* Non-zero if this CU is from .debug_types.
606 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
607 this is non-zero. */
608 unsigned int is_debug_types : 1;
609
610 /* Non-zero if this CU is from the .dwz file. */
611 unsigned int is_dwz : 1;
612
613 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
614 This flag is only valid if is_debug_types is true.
615 We can't read a CU directly from a DWO file: There are required
616 attributes in the stub. */
617 unsigned int reading_dwo_directly : 1;
618
619 /* Non-zero if the TU has been read.
620 This is used to assist the "Stay in DWO Optimization" for Fission:
621 When reading a DWO, it's faster to read TUs from the DWO instead of
622 fetching them from random other DWOs (due to comdat folding).
623 If the TU has already been read, the optimization is unnecessary
624 (and unwise - we don't want to change where gdb thinks the TU lives
625 "midflight").
626 This flag is only valid if is_debug_types is true. */
627 unsigned int tu_read : 1;
628
629 /* The section this CU/TU lives in.
630 If the DIE refers to a DWO file, this is always the original die,
631 not the DWO file. */
632 struct dwarf2_section_info *section;
633
634 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
635 of the CU cache it gets reset to NULL again. This is left as NULL for
636 dummy CUs (a CU header, but nothing else). */
637 struct dwarf2_cu *cu;
638
639 /* The corresponding objfile.
640 Normally we can get the objfile from dwarf2_per_objfile.
641 However we can enter this file with just a "per_cu" handle. */
642 struct objfile *objfile;
643
644 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
645 is active. Otherwise, the 'psymtab' field is active. */
646 union
647 {
648 /* The partial symbol table associated with this compilation unit,
649 or NULL for unread partial units. */
650 struct partial_symtab *psymtab;
651
652 /* Data needed by the "quick" functions. */
653 struct dwarf2_per_cu_quick_data *quick;
654 } v;
655
656 /* The CUs we import using DW_TAG_imported_unit. This is filled in
657 while reading psymtabs, used to compute the psymtab dependencies,
658 and then cleared. Then it is filled in again while reading full
659 symbols, and only deleted when the objfile is destroyed.
660
661 This is also used to work around a difference between the way gold
662 generates .gdb_index version <=7 and the way gdb does. Arguably this
663 is a gold bug. For symbols coming from TUs, gold records in the index
664 the CU that includes the TU instead of the TU itself. This breaks
665 dw2_lookup_symbol: It assumes that if the index says symbol X lives
666 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
667 will find X. Alas TUs live in their own symtab, so after expanding CU Y
668 we need to look in TU Z to find X. Fortunately, this is akin to
669 DW_TAG_imported_unit, so we just use the same mechanism: For
670 .gdb_index version <=7 this also records the TUs that the CU referred
671 to. Concurrently with this change gdb was modified to emit version 8
672 indices so we only pay a price for gold generated indices.
673 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
674 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
675 };
676
677 /* Entry in the signatured_types hash table. */
678
679 struct signatured_type
680 {
681 /* The "per_cu" object of this type.
682 This struct is used iff per_cu.is_debug_types.
683 N.B.: This is the first member so that it's easy to convert pointers
684 between them. */
685 struct dwarf2_per_cu_data per_cu;
686
687 /* The type's signature. */
688 ULONGEST signature;
689
690 /* Offset in the TU of the type's DIE, as read from the TU header.
691 If this TU is a DWO stub and the definition lives in a DWO file
692 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
693 cu_offset type_offset_in_tu;
694
695 /* Offset in the section of the type's DIE.
696 If the definition lives in a DWO file, this is the offset in the
697 .debug_types.dwo section.
698 The value is zero until the actual value is known.
699 Zero is otherwise not a valid section offset. */
700 sect_offset type_offset_in_section;
701
702 /* Type units are grouped by their DW_AT_stmt_list entry so that they
703 can share them. This points to the containing symtab. */
704 struct type_unit_group *type_unit_group;
705
706 /* The type.
707 The first time we encounter this type we fully read it in and install it
708 in the symbol tables. Subsequent times we only need the type. */
709 struct type *type;
710
711 /* Containing DWO unit.
712 This field is valid iff per_cu.reading_dwo_directly. */
713 struct dwo_unit *dwo_unit;
714 };
715
716 typedef struct signatured_type *sig_type_ptr;
717 DEF_VEC_P (sig_type_ptr);
718
719 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
720 This includes type_unit_group and quick_file_names. */
721
722 struct stmt_list_hash
723 {
724 /* The DWO unit this table is from or NULL if there is none. */
725 struct dwo_unit *dwo_unit;
726
727 /* Offset in .debug_line or .debug_line.dwo. */
728 sect_offset line_offset;
729 };
730
731 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
732 an object of this type. */
733
734 struct type_unit_group
735 {
736 /* dwarf2read.c's main "handle" on a TU symtab.
737 To simplify things we create an artificial CU that "includes" all the
738 type units using this stmt_list so that the rest of the code still has
739 a "per_cu" handle on the symtab.
740 This PER_CU is recognized by having no section. */
741 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
742 struct dwarf2_per_cu_data per_cu;
743
744 /* The TUs that share this DW_AT_stmt_list entry.
745 This is added to while parsing type units to build partial symtabs,
746 and is deleted afterwards and not used again. */
747 VEC (sig_type_ptr) *tus;
748
749 /* The compunit symtab.
750 Type units in a group needn't all be defined in the same source file,
751 so we create an essentially anonymous symtab as the compunit symtab. */
752 struct compunit_symtab *compunit_symtab;
753
754 /* The data used to construct the hash key. */
755 struct stmt_list_hash hash;
756
757 /* The number of symtabs from the line header.
758 The value here must match line_header.num_file_names. */
759 unsigned int num_symtabs;
760
761 /* The symbol tables for this TU (obtained from the files listed in
762 DW_AT_stmt_list).
763 WARNING: The order of entries here must match the order of entries
764 in the line header. After the first TU using this type_unit_group, the
765 line header for the subsequent TUs is recreated from this. This is done
766 because we need to use the same symtabs for each TU using the same
767 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
768 there's no guarantee the line header doesn't have duplicate entries. */
769 struct symtab **symtabs;
770 };
771
772 /* These sections are what may appear in a (real or virtual) DWO file. */
773
774 struct dwo_sections
775 {
776 struct dwarf2_section_info abbrev;
777 struct dwarf2_section_info line;
778 struct dwarf2_section_info loc;
779 struct dwarf2_section_info loclists;
780 struct dwarf2_section_info macinfo;
781 struct dwarf2_section_info macro;
782 struct dwarf2_section_info str;
783 struct dwarf2_section_info str_offsets;
784 /* In the case of a virtual DWO file, these two are unused. */
785 struct dwarf2_section_info info;
786 VEC (dwarf2_section_info_def) *types;
787 };
788
789 /* CUs/TUs in DWP/DWO files. */
790
791 struct dwo_unit
792 {
793 /* Backlink to the containing struct dwo_file. */
794 struct dwo_file *dwo_file;
795
796 /* The "id" that distinguishes this CU/TU.
797 .debug_info calls this "dwo_id", .debug_types calls this "signature".
798 Since signatures came first, we stick with it for consistency. */
799 ULONGEST signature;
800
801 /* The section this CU/TU lives in, in the DWO file. */
802 struct dwarf2_section_info *section;
803
804 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
805 sect_offset offset;
806 unsigned int length;
807
808 /* For types, offset in the type's DIE of the type defined by this TU. */
809 cu_offset type_offset_in_tu;
810 };
811
812 /* include/dwarf2.h defines the DWP section codes.
813 It defines a max value but it doesn't define a min value, which we
814 use for error checking, so provide one. */
815
816 enum dwp_v2_section_ids
817 {
818 DW_SECT_MIN = 1
819 };
820
821 /* Data for one DWO file.
822
823 This includes virtual DWO files (a virtual DWO file is a DWO file as it
824 appears in a DWP file). DWP files don't really have DWO files per se -
825 comdat folding of types "loses" the DWO file they came from, and from
826 a high level view DWP files appear to contain a mass of random types.
827 However, to maintain consistency with the non-DWP case we pretend DWP
828 files contain virtual DWO files, and we assign each TU with one virtual
829 DWO file (generally based on the line and abbrev section offsets -
830 a heuristic that seems to work in practice). */
831
832 struct dwo_file
833 {
834 /* The DW_AT_GNU_dwo_name attribute.
835 For virtual DWO files the name is constructed from the section offsets
836 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
837 from related CU+TUs. */
838 const char *dwo_name;
839
840 /* The DW_AT_comp_dir attribute. */
841 const char *comp_dir;
842
843 /* The bfd, when the file is open. Otherwise this is NULL.
844 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
845 bfd *dbfd;
846
847 /* The sections that make up this DWO file.
848 Remember that for virtual DWO files in DWP V2, these are virtual
849 sections (for lack of a better name). */
850 struct dwo_sections sections;
851
852 /* The CU in the file.
853 We only support one because having more than one requires hacking the
854 dwo_name of each to match, which is highly unlikely to happen.
855 Doing this means all TUs can share comp_dir: We also assume that
856 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
857 struct dwo_unit *cu;
858
859 /* Table of TUs in the file.
860 Each element is a struct dwo_unit. */
861 htab_t tus;
862 };
863
864 /* These sections are what may appear in a DWP file. */
865
866 struct dwp_sections
867 {
868 /* These are used by both DWP version 1 and 2. */
869 struct dwarf2_section_info str;
870 struct dwarf2_section_info cu_index;
871 struct dwarf2_section_info tu_index;
872
873 /* These are only used by DWP version 2 files.
874 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
875 sections are referenced by section number, and are not recorded here.
876 In DWP version 2 there is at most one copy of all these sections, each
877 section being (effectively) comprised of the concatenation of all of the
878 individual sections that exist in the version 1 format.
879 To keep the code simple we treat each of these concatenated pieces as a
880 section itself (a virtual section?). */
881 struct dwarf2_section_info abbrev;
882 struct dwarf2_section_info info;
883 struct dwarf2_section_info line;
884 struct dwarf2_section_info loc;
885 struct dwarf2_section_info macinfo;
886 struct dwarf2_section_info macro;
887 struct dwarf2_section_info str_offsets;
888 struct dwarf2_section_info types;
889 };
890
891 /* These sections are what may appear in a virtual DWO file in DWP version 1.
892 A virtual DWO file is a DWO file as it appears in a DWP file. */
893
894 struct virtual_v1_dwo_sections
895 {
896 struct dwarf2_section_info abbrev;
897 struct dwarf2_section_info line;
898 struct dwarf2_section_info loc;
899 struct dwarf2_section_info macinfo;
900 struct dwarf2_section_info macro;
901 struct dwarf2_section_info str_offsets;
902 /* Each DWP hash table entry records one CU or one TU.
903 That is recorded here, and copied to dwo_unit.section. */
904 struct dwarf2_section_info info_or_types;
905 };
906
907 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
908 In version 2, the sections of the DWO files are concatenated together
909 and stored in one section of that name. Thus each ELF section contains
910 several "virtual" sections. */
911
912 struct virtual_v2_dwo_sections
913 {
914 bfd_size_type abbrev_offset;
915 bfd_size_type abbrev_size;
916
917 bfd_size_type line_offset;
918 bfd_size_type line_size;
919
920 bfd_size_type loc_offset;
921 bfd_size_type loc_size;
922
923 bfd_size_type macinfo_offset;
924 bfd_size_type macinfo_size;
925
926 bfd_size_type macro_offset;
927 bfd_size_type macro_size;
928
929 bfd_size_type str_offsets_offset;
930 bfd_size_type str_offsets_size;
931
932 /* Each DWP hash table entry records one CU or one TU.
933 That is recorded here, and copied to dwo_unit.section. */
934 bfd_size_type info_or_types_offset;
935 bfd_size_type info_or_types_size;
936 };
937
938 /* Contents of DWP hash tables. */
939
940 struct dwp_hash_table
941 {
942 uint32_t version, nr_columns;
943 uint32_t nr_units, nr_slots;
944 const gdb_byte *hash_table, *unit_table;
945 union
946 {
947 struct
948 {
949 const gdb_byte *indices;
950 } v1;
951 struct
952 {
953 /* This is indexed by column number and gives the id of the section
954 in that column. */
955 #define MAX_NR_V2_DWO_SECTIONS \
956 (1 /* .debug_info or .debug_types */ \
957 + 1 /* .debug_abbrev */ \
958 + 1 /* .debug_line */ \
959 + 1 /* .debug_loc */ \
960 + 1 /* .debug_str_offsets */ \
961 + 1 /* .debug_macro or .debug_macinfo */)
962 int section_ids[MAX_NR_V2_DWO_SECTIONS];
963 const gdb_byte *offsets;
964 const gdb_byte *sizes;
965 } v2;
966 } section_pool;
967 };
968
969 /* Data for one DWP file. */
970
971 struct dwp_file
972 {
973 /* Name of the file. */
974 const char *name;
975
976 /* File format version. */
977 int version;
978
979 /* The bfd. */
980 bfd *dbfd;
981
982 /* Section info for this file. */
983 struct dwp_sections sections;
984
985 /* Table of CUs in the file. */
986 const struct dwp_hash_table *cus;
987
988 /* Table of TUs in the file. */
989 const struct dwp_hash_table *tus;
990
991 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
992 htab_t loaded_cus;
993 htab_t loaded_tus;
994
995 /* Table to map ELF section numbers to their sections.
996 This is only needed for the DWP V1 file format. */
997 unsigned int num_sections;
998 asection **elf_sections;
999 };
1000
1001 /* This represents a '.dwz' file. */
1002
1003 struct dwz_file
1004 {
1005 /* A dwz file can only contain a few sections. */
1006 struct dwarf2_section_info abbrev;
1007 struct dwarf2_section_info info;
1008 struct dwarf2_section_info str;
1009 struct dwarf2_section_info line;
1010 struct dwarf2_section_info macro;
1011 struct dwarf2_section_info gdb_index;
1012
1013 /* The dwz's BFD. */
1014 bfd *dwz_bfd;
1015 };
1016
1017 /* Struct used to pass misc. parameters to read_die_and_children, et
1018 al. which are used for both .debug_info and .debug_types dies.
1019 All parameters here are unchanging for the life of the call. This
1020 struct exists to abstract away the constant parameters of die reading. */
1021
1022 struct die_reader_specs
1023 {
1024 /* The bfd of die_section. */
1025 bfd* abfd;
1026
1027 /* The CU of the DIE we are parsing. */
1028 struct dwarf2_cu *cu;
1029
1030 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1031 struct dwo_file *dwo_file;
1032
1033 /* The section the die comes from.
1034 This is either .debug_info or .debug_types, or the .dwo variants. */
1035 struct dwarf2_section_info *die_section;
1036
1037 /* die_section->buffer. */
1038 const gdb_byte *buffer;
1039
1040 /* The end of the buffer. */
1041 const gdb_byte *buffer_end;
1042
1043 /* The value of the DW_AT_comp_dir attribute. */
1044 const char *comp_dir;
1045 };
1046
1047 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1048 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1049 const gdb_byte *info_ptr,
1050 struct die_info *comp_unit_die,
1051 int has_children,
1052 void *data);
1053
1054 struct file_entry
1055 {
1056 const char *name;
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
1060 /* Non-zero if referenced by the Line Number Program. */
1061 int included_p;
1062 /* The associated symbol table, if any. */
1063 struct symtab *symtab;
1064 };
1065
1066 /* The line number information for a compilation unit (found in the
1067 .debug_line section) begins with a "statement program header",
1068 which contains the following information. */
1069 struct line_header
1070 {
1071 /* Offset of line number information in .debug_line section. */
1072 sect_offset offset;
1073
1074 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1075 unsigned offset_in_dwz : 1;
1076
1077 unsigned int total_length;
1078 unsigned short version;
1079 unsigned int header_length;
1080 unsigned char minimum_instruction_length;
1081 unsigned char maximum_ops_per_instruction;
1082 unsigned char default_is_stmt;
1083 int line_base;
1084 unsigned char line_range;
1085 unsigned char opcode_base;
1086
1087 /* standard_opcode_lengths[i] is the number of operands for the
1088 standard opcode whose value is i. This means that
1089 standard_opcode_lengths[0] is unused, and the last meaningful
1090 element is standard_opcode_lengths[opcode_base - 1]. */
1091 unsigned char *standard_opcode_lengths;
1092
1093 /* The include_directories table. NOTE! These strings are not
1094 allocated with xmalloc; instead, they are pointers into
1095 debug_line_buffer. If you try to free them, `free' will get
1096 indigestion. */
1097 unsigned int num_include_dirs, include_dirs_size;
1098 const char **include_dirs;
1099
1100 /* The file_names table. NOTE! These strings are not allocated
1101 with xmalloc; instead, they are pointers into debug_line_buffer.
1102 Don't try to free them directly. */
1103 unsigned int num_file_names, file_names_size;
1104 struct file_entry *file_names;
1105
1106 /* The start and end of the statement program following this
1107 header. These point into dwarf2_per_objfile->line_buffer. */
1108 const gdb_byte *statement_program_start, *statement_program_end;
1109 };
1110
1111 /* When we construct a partial symbol table entry we only
1112 need this much information. */
1113 struct partial_die_info
1114 {
1115 /* Offset of this DIE. */
1116 sect_offset offset;
1117
1118 /* DWARF-2 tag for this DIE. */
1119 ENUM_BITFIELD(dwarf_tag) tag : 16;
1120
1121 /* Assorted flags describing the data found in this DIE. */
1122 unsigned int has_children : 1;
1123 unsigned int is_external : 1;
1124 unsigned int is_declaration : 1;
1125 unsigned int has_type : 1;
1126 unsigned int has_specification : 1;
1127 unsigned int has_pc_info : 1;
1128 unsigned int may_be_inlined : 1;
1129
1130 /* This DIE has been marked DW_AT_main_subprogram. */
1131 unsigned int main_subprogram : 1;
1132
1133 /* Flag set if the SCOPE field of this structure has been
1134 computed. */
1135 unsigned int scope_set : 1;
1136
1137 /* Flag set if the DIE has a byte_size attribute. */
1138 unsigned int has_byte_size : 1;
1139
1140 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1141 unsigned int has_const_value : 1;
1142
1143 /* Flag set if any of the DIE's children are template arguments. */
1144 unsigned int has_template_arguments : 1;
1145
1146 /* Flag set if fixup_partial_die has been called on this die. */
1147 unsigned int fixup_called : 1;
1148
1149 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1150 unsigned int is_dwz : 1;
1151
1152 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1153 unsigned int spec_is_dwz : 1;
1154
1155 /* The name of this DIE. Normally the value of DW_AT_name, but
1156 sometimes a default name for unnamed DIEs. */
1157 const char *name;
1158
1159 /* The linkage name, if present. */
1160 const char *linkage_name;
1161
1162 /* The scope to prepend to our children. This is generally
1163 allocated on the comp_unit_obstack, so will disappear
1164 when this compilation unit leaves the cache. */
1165 const char *scope;
1166
1167 /* Some data associated with the partial DIE. The tag determines
1168 which field is live. */
1169 union
1170 {
1171 /* The location description associated with this DIE, if any. */
1172 struct dwarf_block *locdesc;
1173 /* The offset of an import, for DW_TAG_imported_unit. */
1174 sect_offset offset;
1175 } d;
1176
1177 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1178 CORE_ADDR lowpc;
1179 CORE_ADDR highpc;
1180
1181 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1182 DW_AT_sibling, if any. */
1183 /* NOTE: This member isn't strictly necessary, read_partial_die could
1184 return DW_AT_sibling values to its caller load_partial_dies. */
1185 const gdb_byte *sibling;
1186
1187 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1188 DW_AT_specification (or DW_AT_abstract_origin or
1189 DW_AT_extension). */
1190 sect_offset spec_offset;
1191
1192 /* Pointers to this DIE's parent, first child, and next sibling,
1193 if any. */
1194 struct partial_die_info *die_parent, *die_child, *die_sibling;
1195 };
1196
1197 /* This data structure holds the information of an abbrev. */
1198 struct abbrev_info
1199 {
1200 unsigned int number; /* number identifying abbrev */
1201 enum dwarf_tag tag; /* dwarf tag */
1202 unsigned short has_children; /* boolean */
1203 unsigned short num_attrs; /* number of attributes */
1204 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1205 struct abbrev_info *next; /* next in chain */
1206 };
1207
1208 struct attr_abbrev
1209 {
1210 ENUM_BITFIELD(dwarf_attribute) name : 16;
1211 ENUM_BITFIELD(dwarf_form) form : 16;
1212
1213 /* It is valid only if FORM is DW_FORM_implicit_const. */
1214 LONGEST implicit_const;
1215 };
1216
1217 /* Size of abbrev_table.abbrev_hash_table. */
1218 #define ABBREV_HASH_SIZE 121
1219
1220 /* Top level data structure to contain an abbreviation table. */
1221
1222 struct abbrev_table
1223 {
1224 /* Where the abbrev table came from.
1225 This is used as a sanity check when the table is used. */
1226 sect_offset offset;
1227
1228 /* Storage for the abbrev table. */
1229 struct obstack abbrev_obstack;
1230
1231 /* Hash table of abbrevs.
1232 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1233 It could be statically allocated, but the previous code didn't so we
1234 don't either. */
1235 struct abbrev_info **abbrevs;
1236 };
1237
1238 /* Attributes have a name and a value. */
1239 struct attribute
1240 {
1241 ENUM_BITFIELD(dwarf_attribute) name : 16;
1242 ENUM_BITFIELD(dwarf_form) form : 15;
1243
1244 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1245 field should be in u.str (existing only for DW_STRING) but it is kept
1246 here for better struct attribute alignment. */
1247 unsigned int string_is_canonical : 1;
1248
1249 union
1250 {
1251 const char *str;
1252 struct dwarf_block *blk;
1253 ULONGEST unsnd;
1254 LONGEST snd;
1255 CORE_ADDR addr;
1256 ULONGEST signature;
1257 }
1258 u;
1259 };
1260
1261 /* This data structure holds a complete die structure. */
1262 struct die_info
1263 {
1264 /* DWARF-2 tag for this DIE. */
1265 ENUM_BITFIELD(dwarf_tag) tag : 16;
1266
1267 /* Number of attributes */
1268 unsigned char num_attrs;
1269
1270 /* True if we're presently building the full type name for the
1271 type derived from this DIE. */
1272 unsigned char building_fullname : 1;
1273
1274 /* True if this die is in process. PR 16581. */
1275 unsigned char in_process : 1;
1276
1277 /* Abbrev number */
1278 unsigned int abbrev;
1279
1280 /* Offset in .debug_info or .debug_types section. */
1281 sect_offset offset;
1282
1283 /* The dies in a compilation unit form an n-ary tree. PARENT
1284 points to this die's parent; CHILD points to the first child of
1285 this node; and all the children of a given node are chained
1286 together via their SIBLING fields. */
1287 struct die_info *child; /* Its first child, if any. */
1288 struct die_info *sibling; /* Its next sibling, if any. */
1289 struct die_info *parent; /* Its parent, if any. */
1290
1291 /* An array of attributes, with NUM_ATTRS elements. There may be
1292 zero, but it's not common and zero-sized arrays are not
1293 sufficiently portable C. */
1294 struct attribute attrs[1];
1295 };
1296
1297 /* Get at parts of an attribute structure. */
1298
1299 #define DW_STRING(attr) ((attr)->u.str)
1300 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1301 #define DW_UNSND(attr) ((attr)->u.unsnd)
1302 #define DW_BLOCK(attr) ((attr)->u.blk)
1303 #define DW_SND(attr) ((attr)->u.snd)
1304 #define DW_ADDR(attr) ((attr)->u.addr)
1305 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1306
1307 /* Blocks are a bunch of untyped bytes. */
1308 struct dwarf_block
1309 {
1310 size_t size;
1311
1312 /* Valid only if SIZE is not zero. */
1313 const gdb_byte *data;
1314 };
1315
1316 #ifndef ATTR_ALLOC_CHUNK
1317 #define ATTR_ALLOC_CHUNK 4
1318 #endif
1319
1320 /* Allocate fields for structs, unions and enums in this size. */
1321 #ifndef DW_FIELD_ALLOC_CHUNK
1322 #define DW_FIELD_ALLOC_CHUNK 4
1323 #endif
1324
1325 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1326 but this would require a corresponding change in unpack_field_as_long
1327 and friends. */
1328 static int bits_per_byte = 8;
1329
1330 struct nextfield
1331 {
1332 struct nextfield *next;
1333 int accessibility;
1334 int virtuality;
1335 struct field field;
1336 };
1337
1338 struct nextfnfield
1339 {
1340 struct nextfnfield *next;
1341 struct fn_field fnfield;
1342 };
1343
1344 struct fnfieldlist
1345 {
1346 const char *name;
1347 int length;
1348 struct nextfnfield *head;
1349 };
1350
1351 struct typedef_field_list
1352 {
1353 struct typedef_field field;
1354 struct typedef_field_list *next;
1355 };
1356
1357 /* The routines that read and process dies for a C struct or C++ class
1358 pass lists of data member fields and lists of member function fields
1359 in an instance of a field_info structure, as defined below. */
1360 struct field_info
1361 {
1362 /* List of data member and baseclasses fields. */
1363 struct nextfield *fields, *baseclasses;
1364
1365 /* Number of fields (including baseclasses). */
1366 int nfields;
1367
1368 /* Number of baseclasses. */
1369 int nbaseclasses;
1370
1371 /* Set if the accesibility of one of the fields is not public. */
1372 int non_public_fields;
1373
1374 /* Member function fields array, entries are allocated in the order they
1375 are encountered in the object file. */
1376 struct nextfnfield *fnfields;
1377
1378 /* Member function fieldlist array, contains name of possibly overloaded
1379 member function, number of overloaded member functions and a pointer
1380 to the head of the member function field chain. */
1381 struct fnfieldlist *fnfieldlists;
1382
1383 /* Number of entries in the fnfieldlists array. */
1384 int nfnfields;
1385
1386 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1387 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1388 struct typedef_field_list *typedef_field_list;
1389 unsigned typedef_field_list_count;
1390 };
1391
1392 /* One item on the queue of compilation units to read in full symbols
1393 for. */
1394 struct dwarf2_queue_item
1395 {
1396 struct dwarf2_per_cu_data *per_cu;
1397 enum language pretend_language;
1398 struct dwarf2_queue_item *next;
1399 };
1400
1401 /* The current queue. */
1402 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1403
1404 /* Loaded secondary compilation units are kept in memory until they
1405 have not been referenced for the processing of this many
1406 compilation units. Set this to zero to disable caching. Cache
1407 sizes of up to at least twenty will improve startup time for
1408 typical inter-CU-reference binaries, at an obvious memory cost. */
1409 static int dwarf_max_cache_age = 5;
1410 static void
1411 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1412 struct cmd_list_element *c, const char *value)
1413 {
1414 fprintf_filtered (file, _("The upper bound on the age of cached "
1415 "DWARF compilation units is %s.\n"),
1416 value);
1417 }
1418 \f
1419 /* local function prototypes */
1420
1421 static const char *get_section_name (const struct dwarf2_section_info *);
1422
1423 static const char *get_section_file_name (const struct dwarf2_section_info *);
1424
1425 static void dwarf2_locate_sections (bfd *, asection *, void *);
1426
1427 static void dwarf2_find_base_address (struct die_info *die,
1428 struct dwarf2_cu *cu);
1429
1430 static struct partial_symtab *create_partial_symtab
1431 (struct dwarf2_per_cu_data *per_cu, const char *name);
1432
1433 static void dwarf2_build_psymtabs_hard (struct objfile *);
1434
1435 static void scan_partial_symbols (struct partial_die_info *,
1436 CORE_ADDR *, CORE_ADDR *,
1437 int, struct dwarf2_cu *);
1438
1439 static void add_partial_symbol (struct partial_die_info *,
1440 struct dwarf2_cu *);
1441
1442 static void add_partial_namespace (struct partial_die_info *pdi,
1443 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1444 int set_addrmap, struct dwarf2_cu *cu);
1445
1446 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1447 CORE_ADDR *highpc, int set_addrmap,
1448 struct dwarf2_cu *cu);
1449
1450 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1451 struct dwarf2_cu *cu);
1452
1453 static void add_partial_subprogram (struct partial_die_info *pdi,
1454 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1455 int need_pc, struct dwarf2_cu *cu);
1456
1457 static void dwarf2_read_symtab (struct partial_symtab *,
1458 struct objfile *);
1459
1460 static void psymtab_to_symtab_1 (struct partial_symtab *);
1461
1462 static struct abbrev_info *abbrev_table_lookup_abbrev
1463 (const struct abbrev_table *, unsigned int);
1464
1465 static struct abbrev_table *abbrev_table_read_table
1466 (struct dwarf2_section_info *, sect_offset);
1467
1468 static void abbrev_table_free (struct abbrev_table *);
1469
1470 static void abbrev_table_free_cleanup (void *);
1471
1472 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1473 struct dwarf2_section_info *);
1474
1475 static void dwarf2_free_abbrev_table (void *);
1476
1477 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1478
1479 static struct partial_die_info *load_partial_dies
1480 (const struct die_reader_specs *, const gdb_byte *, int);
1481
1482 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1483 struct partial_die_info *,
1484 struct abbrev_info *,
1485 unsigned int,
1486 const gdb_byte *);
1487
1488 static struct partial_die_info *find_partial_die (sect_offset, int,
1489 struct dwarf2_cu *);
1490
1491 static void fixup_partial_die (struct partial_die_info *,
1492 struct dwarf2_cu *);
1493
1494 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1495 struct attribute *, struct attr_abbrev *,
1496 const gdb_byte *);
1497
1498 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1499
1500 static int read_1_signed_byte (bfd *, const gdb_byte *);
1501
1502 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1503
1504 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1505
1506 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1507
1508 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1509 unsigned int *);
1510
1511 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1512
1513 static LONGEST read_checked_initial_length_and_offset
1514 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1515 unsigned int *, unsigned int *);
1516
1517 static LONGEST read_offset (bfd *, const gdb_byte *,
1518 const struct comp_unit_head *,
1519 unsigned int *);
1520
1521 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1522
1523 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1524 sect_offset);
1525
1526 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1527
1528 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1529
1530 static const char *read_indirect_string (bfd *, const gdb_byte *,
1531 const struct comp_unit_head *,
1532 unsigned int *);
1533
1534 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1535 const struct comp_unit_head *,
1536 unsigned int *);
1537
1538 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1539
1540 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1541
1542 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1543 const gdb_byte *,
1544 unsigned int *);
1545
1546 static const char *read_str_index (const struct die_reader_specs *reader,
1547 ULONGEST str_index);
1548
1549 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1550
1551 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1552 struct dwarf2_cu *);
1553
1554 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1555 unsigned int);
1556
1557 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1558 struct dwarf2_cu *cu);
1559
1560 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1561 struct dwarf2_cu *cu);
1562
1563 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1564
1565 static struct die_info *die_specification (struct die_info *die,
1566 struct dwarf2_cu **);
1567
1568 static void free_line_header (struct line_header *lh);
1569
1570 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1571 struct dwarf2_cu *cu);
1572
1573 static void dwarf_decode_lines (struct line_header *, const char *,
1574 struct dwarf2_cu *, struct partial_symtab *,
1575 CORE_ADDR, int decode_mapping);
1576
1577 static void dwarf2_start_subfile (const char *, const char *);
1578
1579 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1580 const char *, const char *,
1581 CORE_ADDR);
1582
1583 static struct symbol *new_symbol (struct die_info *, struct type *,
1584 struct dwarf2_cu *);
1585
1586 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1587 struct dwarf2_cu *, struct symbol *);
1588
1589 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1590 struct dwarf2_cu *);
1591
1592 static void dwarf2_const_value_attr (const struct attribute *attr,
1593 struct type *type,
1594 const char *name,
1595 struct obstack *obstack,
1596 struct dwarf2_cu *cu, LONGEST *value,
1597 const gdb_byte **bytes,
1598 struct dwarf2_locexpr_baton **baton);
1599
1600 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1601
1602 static int need_gnat_info (struct dwarf2_cu *);
1603
1604 static struct type *die_descriptive_type (struct die_info *,
1605 struct dwarf2_cu *);
1606
1607 static void set_descriptive_type (struct type *, struct die_info *,
1608 struct dwarf2_cu *);
1609
1610 static struct type *die_containing_type (struct die_info *,
1611 struct dwarf2_cu *);
1612
1613 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1614 struct dwarf2_cu *);
1615
1616 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1617
1618 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1619
1620 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1621
1622 static char *typename_concat (struct obstack *obs, const char *prefix,
1623 const char *suffix, int physname,
1624 struct dwarf2_cu *cu);
1625
1626 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1627
1628 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1629
1630 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1631
1632 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1633
1634 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1635
1636 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1637 struct dwarf2_cu *, struct partial_symtab *);
1638
1639 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1640 values. Keep the items ordered with increasing constraints compliance. */
1641 enum pc_bounds_kind
1642 {
1643 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1644 PC_BOUNDS_NOT_PRESENT,
1645
1646 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1647 were present but they do not form a valid range of PC addresses. */
1648 PC_BOUNDS_INVALID,
1649
1650 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1651 PC_BOUNDS_RANGES,
1652
1653 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1654 PC_BOUNDS_HIGH_LOW,
1655 };
1656
1657 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *,
1660 struct partial_symtab *);
1661
1662 static void get_scope_pc_bounds (struct die_info *,
1663 CORE_ADDR *, CORE_ADDR *,
1664 struct dwarf2_cu *);
1665
1666 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1667 CORE_ADDR, struct dwarf2_cu *);
1668
1669 static void dwarf2_add_field (struct field_info *, struct die_info *,
1670 struct dwarf2_cu *);
1671
1672 static void dwarf2_attach_fields_to_type (struct field_info *,
1673 struct type *, struct dwarf2_cu *);
1674
1675 static void dwarf2_add_member_fn (struct field_info *,
1676 struct die_info *, struct type *,
1677 struct dwarf2_cu *);
1678
1679 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1680 struct type *,
1681 struct dwarf2_cu *);
1682
1683 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1684
1685 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1686
1687 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1688
1689 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1690
1691 static struct using_direct **using_directives (enum language);
1692
1693 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1694
1695 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1696
1697 static struct type *read_module_type (struct die_info *die,
1698 struct dwarf2_cu *cu);
1699
1700 static const char *namespace_name (struct die_info *die,
1701 int *is_anonymous, struct dwarf2_cu *);
1702
1703 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1704
1705 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1706
1707 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1708 struct dwarf2_cu *);
1709
1710 static struct die_info *read_die_and_siblings_1
1711 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1712 struct die_info *);
1713
1714 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1715 const gdb_byte *info_ptr,
1716 const gdb_byte **new_info_ptr,
1717 struct die_info *parent);
1718
1719 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1720 struct die_info **, const gdb_byte *,
1721 int *, int);
1722
1723 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1724 struct die_info **, const gdb_byte *,
1725 int *);
1726
1727 static void process_die (struct die_info *, struct dwarf2_cu *);
1728
1729 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1730 struct obstack *);
1731
1732 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1733
1734 static const char *dwarf2_full_name (const char *name,
1735 struct die_info *die,
1736 struct dwarf2_cu *cu);
1737
1738 static const char *dwarf2_physname (const char *name, struct die_info *die,
1739 struct dwarf2_cu *cu);
1740
1741 static struct die_info *dwarf2_extension (struct die_info *die,
1742 struct dwarf2_cu **);
1743
1744 static const char *dwarf_tag_name (unsigned int);
1745
1746 static const char *dwarf_attr_name (unsigned int);
1747
1748 static const char *dwarf_form_name (unsigned int);
1749
1750 static char *dwarf_bool_name (unsigned int);
1751
1752 static const char *dwarf_type_encoding_name (unsigned int);
1753
1754 static struct die_info *sibling_die (struct die_info *);
1755
1756 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1757
1758 static void dump_die_for_error (struct die_info *);
1759
1760 static void dump_die_1 (struct ui_file *, int level, int max_level,
1761 struct die_info *);
1762
1763 /*static*/ void dump_die (struct die_info *, int max_level);
1764
1765 static void store_in_ref_table (struct die_info *,
1766 struct dwarf2_cu *);
1767
1768 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1769
1770 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1771
1772 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1773 const struct attribute *,
1774 struct dwarf2_cu **);
1775
1776 static struct die_info *follow_die_ref (struct die_info *,
1777 const struct attribute *,
1778 struct dwarf2_cu **);
1779
1780 static struct die_info *follow_die_sig (struct die_info *,
1781 const struct attribute *,
1782 struct dwarf2_cu **);
1783
1784 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1785 struct dwarf2_cu *);
1786
1787 static struct type *get_DW_AT_signature_type (struct die_info *,
1788 const struct attribute *,
1789 struct dwarf2_cu *);
1790
1791 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1792
1793 static void read_signatured_type (struct signatured_type *);
1794
1795 static int attr_to_dynamic_prop (const struct attribute *attr,
1796 struct die_info *die, struct dwarf2_cu *cu,
1797 struct dynamic_prop *prop);
1798
1799 /* memory allocation interface */
1800
1801 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1802
1803 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1804
1805 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1806
1807 static int attr_form_is_block (const struct attribute *);
1808
1809 static int attr_form_is_section_offset (const struct attribute *);
1810
1811 static int attr_form_is_constant (const struct attribute *);
1812
1813 static int attr_form_is_ref (const struct attribute *);
1814
1815 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1816 struct dwarf2_loclist_baton *baton,
1817 const struct attribute *attr);
1818
1819 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1820 struct symbol *sym,
1821 struct dwarf2_cu *cu,
1822 int is_block);
1823
1824 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1825 const gdb_byte *info_ptr,
1826 struct abbrev_info *abbrev);
1827
1828 static void free_stack_comp_unit (void *);
1829
1830 static hashval_t partial_die_hash (const void *item);
1831
1832 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1833
1834 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1835 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1836
1837 static void init_one_comp_unit (struct dwarf2_cu *cu,
1838 struct dwarf2_per_cu_data *per_cu);
1839
1840 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1841 struct die_info *comp_unit_die,
1842 enum language pretend_language);
1843
1844 static void free_heap_comp_unit (void *);
1845
1846 static void free_cached_comp_units (void *);
1847
1848 static void age_cached_comp_units (void);
1849
1850 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1851
1852 static struct type *set_die_type (struct die_info *, struct type *,
1853 struct dwarf2_cu *);
1854
1855 static void create_all_comp_units (struct objfile *);
1856
1857 static int create_all_type_units (struct objfile *);
1858
1859 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1860 enum language);
1861
1862 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1863 enum language);
1864
1865 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1866 enum language);
1867
1868 static void dwarf2_add_dependence (struct dwarf2_cu *,
1869 struct dwarf2_per_cu_data *);
1870
1871 static void dwarf2_mark (struct dwarf2_cu *);
1872
1873 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1874
1875 static struct type *get_die_type_at_offset (sect_offset,
1876 struct dwarf2_per_cu_data *);
1877
1878 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1879
1880 static void dwarf2_release_queue (void *dummy);
1881
1882 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1883 enum language pretend_language);
1884
1885 static void process_queue (void);
1886
1887 static void find_file_and_directory (struct die_info *die,
1888 struct dwarf2_cu *cu,
1889 const char **name, const char **comp_dir);
1890
1891 static char *file_full_name (int file, struct line_header *lh,
1892 const char *comp_dir);
1893
1894 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1895 enum class rcuh_kind { COMPILE, TYPE };
1896
1897 static const gdb_byte *read_and_check_comp_unit_head
1898 (struct comp_unit_head *header,
1899 struct dwarf2_section_info *section,
1900 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1901 rcuh_kind section_kind);
1902
1903 static void init_cutu_and_read_dies
1904 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1905 int use_existing_cu, int keep,
1906 die_reader_func_ftype *die_reader_func, void *data);
1907
1908 static void init_cutu_and_read_dies_simple
1909 (struct dwarf2_per_cu_data *this_cu,
1910 die_reader_func_ftype *die_reader_func, void *data);
1911
1912 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1913
1914 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1915
1916 static struct dwo_unit *lookup_dwo_unit_in_dwp
1917 (struct dwp_file *dwp_file, const char *comp_dir,
1918 ULONGEST signature, int is_debug_types);
1919
1920 static struct dwp_file *get_dwp_file (void);
1921
1922 static struct dwo_unit *lookup_dwo_comp_unit
1923 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1924
1925 static struct dwo_unit *lookup_dwo_type_unit
1926 (struct signatured_type *, const char *, const char *);
1927
1928 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1929
1930 static void free_dwo_file_cleanup (void *);
1931
1932 static void process_cu_includes (void);
1933
1934 static void check_producer (struct dwarf2_cu *cu);
1935
1936 static void free_line_header_voidp (void *arg);
1937 \f
1938 /* Various complaints about symbol reading that don't abort the process. */
1939
1940 static void
1941 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1942 {
1943 complaint (&symfile_complaints,
1944 _("statement list doesn't fit in .debug_line section"));
1945 }
1946
1947 static void
1948 dwarf2_debug_line_missing_file_complaint (void)
1949 {
1950 complaint (&symfile_complaints,
1951 _(".debug_line section has line data without a file"));
1952 }
1953
1954 static void
1955 dwarf2_debug_line_missing_end_sequence_complaint (void)
1956 {
1957 complaint (&symfile_complaints,
1958 _(".debug_line section has line "
1959 "program sequence without an end"));
1960 }
1961
1962 static void
1963 dwarf2_complex_location_expr_complaint (void)
1964 {
1965 complaint (&symfile_complaints, _("location expression too complex"));
1966 }
1967
1968 static void
1969 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1970 int arg3)
1971 {
1972 complaint (&symfile_complaints,
1973 _("const value length mismatch for '%s', got %d, expected %d"),
1974 arg1, arg2, arg3);
1975 }
1976
1977 static void
1978 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1979 {
1980 complaint (&symfile_complaints,
1981 _("debug info runs off end of %s section"
1982 " [in module %s]"),
1983 get_section_name (section),
1984 get_section_file_name (section));
1985 }
1986
1987 static void
1988 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1989 {
1990 complaint (&symfile_complaints,
1991 _("macro debug info contains a "
1992 "malformed macro definition:\n`%s'"),
1993 arg1);
1994 }
1995
1996 static void
1997 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1998 {
1999 complaint (&symfile_complaints,
2000 _("invalid attribute class or form for '%s' in '%s'"),
2001 arg1, arg2);
2002 }
2003
2004 /* Hash function for line_header_hash. */
2005
2006 static hashval_t
2007 line_header_hash (const struct line_header *ofs)
2008 {
2009 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
2010 }
2011
2012 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2013
2014 static hashval_t
2015 line_header_hash_voidp (const void *item)
2016 {
2017 const struct line_header *ofs = (const struct line_header *) item;
2018
2019 return line_header_hash (ofs);
2020 }
2021
2022 /* Equality function for line_header_hash. */
2023
2024 static int
2025 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2026 {
2027 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2028 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2029
2030 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
2031 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2032 }
2033
2034 \f
2035 #if WORDS_BIGENDIAN
2036
2037 /* Convert VALUE between big- and little-endian. */
2038 static offset_type
2039 byte_swap (offset_type value)
2040 {
2041 offset_type result;
2042
2043 result = (value & 0xff) << 24;
2044 result |= (value & 0xff00) << 8;
2045 result |= (value & 0xff0000) >> 8;
2046 result |= (value & 0xff000000) >> 24;
2047 return result;
2048 }
2049
2050 #define MAYBE_SWAP(V) byte_swap (V)
2051
2052 #else
2053 #define MAYBE_SWAP(V) (V)
2054 #endif /* WORDS_BIGENDIAN */
2055
2056 /* Read the given attribute value as an address, taking the attribute's
2057 form into account. */
2058
2059 static CORE_ADDR
2060 attr_value_as_address (struct attribute *attr)
2061 {
2062 CORE_ADDR addr;
2063
2064 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2065 {
2066 /* Aside from a few clearly defined exceptions, attributes that
2067 contain an address must always be in DW_FORM_addr form.
2068 Unfortunately, some compilers happen to be violating this
2069 requirement by encoding addresses using other forms, such
2070 as DW_FORM_data4 for example. For those broken compilers,
2071 we try to do our best, without any guarantee of success,
2072 to interpret the address correctly. It would also be nice
2073 to generate a complaint, but that would require us to maintain
2074 a list of legitimate cases where a non-address form is allowed,
2075 as well as update callers to pass in at least the CU's DWARF
2076 version. This is more overhead than what we're willing to
2077 expand for a pretty rare case. */
2078 addr = DW_UNSND (attr);
2079 }
2080 else
2081 addr = DW_ADDR (attr);
2082
2083 return addr;
2084 }
2085
2086 /* The suffix for an index file. */
2087 #define INDEX_SUFFIX ".gdb-index"
2088
2089 /* Try to locate the sections we need for DWARF 2 debugging
2090 information and return true if we have enough to do something.
2091 NAMES points to the dwarf2 section names, or is NULL if the standard
2092 ELF names are used. */
2093
2094 int
2095 dwarf2_has_info (struct objfile *objfile,
2096 const struct dwarf2_debug_sections *names)
2097 {
2098 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2099 objfile_data (objfile, dwarf2_objfile_data_key));
2100 if (!dwarf2_per_objfile)
2101 {
2102 /* Initialize per-objfile state. */
2103 struct dwarf2_per_objfile *data
2104 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2105
2106 memset (data, 0, sizeof (*data));
2107 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2108 dwarf2_per_objfile = data;
2109
2110 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2111 (void *) names);
2112 dwarf2_per_objfile->objfile = objfile;
2113 }
2114 return (!dwarf2_per_objfile->info.is_virtual
2115 && dwarf2_per_objfile->info.s.section != NULL
2116 && !dwarf2_per_objfile->abbrev.is_virtual
2117 && dwarf2_per_objfile->abbrev.s.section != NULL);
2118 }
2119
2120 /* Return the containing section of virtual section SECTION. */
2121
2122 static struct dwarf2_section_info *
2123 get_containing_section (const struct dwarf2_section_info *section)
2124 {
2125 gdb_assert (section->is_virtual);
2126 return section->s.containing_section;
2127 }
2128
2129 /* Return the bfd owner of SECTION. */
2130
2131 static struct bfd *
2132 get_section_bfd_owner (const struct dwarf2_section_info *section)
2133 {
2134 if (section->is_virtual)
2135 {
2136 section = get_containing_section (section);
2137 gdb_assert (!section->is_virtual);
2138 }
2139 return section->s.section->owner;
2140 }
2141
2142 /* Return the bfd section of SECTION.
2143 Returns NULL if the section is not present. */
2144
2145 static asection *
2146 get_section_bfd_section (const struct dwarf2_section_info *section)
2147 {
2148 if (section->is_virtual)
2149 {
2150 section = get_containing_section (section);
2151 gdb_assert (!section->is_virtual);
2152 }
2153 return section->s.section;
2154 }
2155
2156 /* Return the name of SECTION. */
2157
2158 static const char *
2159 get_section_name (const struct dwarf2_section_info *section)
2160 {
2161 asection *sectp = get_section_bfd_section (section);
2162
2163 gdb_assert (sectp != NULL);
2164 return bfd_section_name (get_section_bfd_owner (section), sectp);
2165 }
2166
2167 /* Return the name of the file SECTION is in. */
2168
2169 static const char *
2170 get_section_file_name (const struct dwarf2_section_info *section)
2171 {
2172 bfd *abfd = get_section_bfd_owner (section);
2173
2174 return bfd_get_filename (abfd);
2175 }
2176
2177 /* Return the id of SECTION.
2178 Returns 0 if SECTION doesn't exist. */
2179
2180 static int
2181 get_section_id (const struct dwarf2_section_info *section)
2182 {
2183 asection *sectp = get_section_bfd_section (section);
2184
2185 if (sectp == NULL)
2186 return 0;
2187 return sectp->id;
2188 }
2189
2190 /* Return the flags of SECTION.
2191 SECTION (or containing section if this is a virtual section) must exist. */
2192
2193 static int
2194 get_section_flags (const struct dwarf2_section_info *section)
2195 {
2196 asection *sectp = get_section_bfd_section (section);
2197
2198 gdb_assert (sectp != NULL);
2199 return bfd_get_section_flags (sectp->owner, sectp);
2200 }
2201
2202 /* When loading sections, we look either for uncompressed section or for
2203 compressed section names. */
2204
2205 static int
2206 section_is_p (const char *section_name,
2207 const struct dwarf2_section_names *names)
2208 {
2209 if (names->normal != NULL
2210 && strcmp (section_name, names->normal) == 0)
2211 return 1;
2212 if (names->compressed != NULL
2213 && strcmp (section_name, names->compressed) == 0)
2214 return 1;
2215 return 0;
2216 }
2217
2218 /* This function is mapped across the sections and remembers the
2219 offset and size of each of the debugging sections we are interested
2220 in. */
2221
2222 static void
2223 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2224 {
2225 const struct dwarf2_debug_sections *names;
2226 flagword aflag = bfd_get_section_flags (abfd, sectp);
2227
2228 if (vnames == NULL)
2229 names = &dwarf2_elf_names;
2230 else
2231 names = (const struct dwarf2_debug_sections *) vnames;
2232
2233 if ((aflag & SEC_HAS_CONTENTS) == 0)
2234 {
2235 }
2236 else if (section_is_p (sectp->name, &names->info))
2237 {
2238 dwarf2_per_objfile->info.s.section = sectp;
2239 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2240 }
2241 else if (section_is_p (sectp->name, &names->abbrev))
2242 {
2243 dwarf2_per_objfile->abbrev.s.section = sectp;
2244 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2245 }
2246 else if (section_is_p (sectp->name, &names->line))
2247 {
2248 dwarf2_per_objfile->line.s.section = sectp;
2249 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2250 }
2251 else if (section_is_p (sectp->name, &names->loc))
2252 {
2253 dwarf2_per_objfile->loc.s.section = sectp;
2254 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2255 }
2256 else if (section_is_p (sectp->name, &names->loclists))
2257 {
2258 dwarf2_per_objfile->loclists.s.section = sectp;
2259 dwarf2_per_objfile->loclists.size = bfd_get_section_size (sectp);
2260 }
2261 else if (section_is_p (sectp->name, &names->macinfo))
2262 {
2263 dwarf2_per_objfile->macinfo.s.section = sectp;
2264 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2265 }
2266 else if (section_is_p (sectp->name, &names->macro))
2267 {
2268 dwarf2_per_objfile->macro.s.section = sectp;
2269 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2270 }
2271 else if (section_is_p (sectp->name, &names->str))
2272 {
2273 dwarf2_per_objfile->str.s.section = sectp;
2274 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2275 }
2276 else if (section_is_p (sectp->name, &names->line_str))
2277 {
2278 dwarf2_per_objfile->line_str.s.section = sectp;
2279 dwarf2_per_objfile->line_str.size = bfd_get_section_size (sectp);
2280 }
2281 else if (section_is_p (sectp->name, &names->addr))
2282 {
2283 dwarf2_per_objfile->addr.s.section = sectp;
2284 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2285 }
2286 else if (section_is_p (sectp->name, &names->frame))
2287 {
2288 dwarf2_per_objfile->frame.s.section = sectp;
2289 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2290 }
2291 else if (section_is_p (sectp->name, &names->eh_frame))
2292 {
2293 dwarf2_per_objfile->eh_frame.s.section = sectp;
2294 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2295 }
2296 else if (section_is_p (sectp->name, &names->ranges))
2297 {
2298 dwarf2_per_objfile->ranges.s.section = sectp;
2299 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2300 }
2301 else if (section_is_p (sectp->name, &names->rnglists))
2302 {
2303 dwarf2_per_objfile->rnglists.s.section = sectp;
2304 dwarf2_per_objfile->rnglists.size = bfd_get_section_size (sectp);
2305 }
2306 else if (section_is_p (sectp->name, &names->types))
2307 {
2308 struct dwarf2_section_info type_section;
2309
2310 memset (&type_section, 0, sizeof (type_section));
2311 type_section.s.section = sectp;
2312 type_section.size = bfd_get_section_size (sectp);
2313
2314 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2315 &type_section);
2316 }
2317 else if (section_is_p (sectp->name, &names->gdb_index))
2318 {
2319 dwarf2_per_objfile->gdb_index.s.section = sectp;
2320 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2321 }
2322
2323 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2324 && bfd_section_vma (abfd, sectp) == 0)
2325 dwarf2_per_objfile->has_section_at_zero = 1;
2326 }
2327
2328 /* A helper function that decides whether a section is empty,
2329 or not present. */
2330
2331 static int
2332 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2333 {
2334 if (section->is_virtual)
2335 return section->size == 0;
2336 return section->s.section == NULL || section->size == 0;
2337 }
2338
2339 /* Read the contents of the section INFO.
2340 OBJFILE is the main object file, but not necessarily the file where
2341 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2342 of the DWO file.
2343 If the section is compressed, uncompress it before returning. */
2344
2345 static void
2346 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2347 {
2348 asection *sectp;
2349 bfd *abfd;
2350 gdb_byte *buf, *retbuf;
2351
2352 if (info->readin)
2353 return;
2354 info->buffer = NULL;
2355 info->readin = 1;
2356
2357 if (dwarf2_section_empty_p (info))
2358 return;
2359
2360 sectp = get_section_bfd_section (info);
2361
2362 /* If this is a virtual section we need to read in the real one first. */
2363 if (info->is_virtual)
2364 {
2365 struct dwarf2_section_info *containing_section =
2366 get_containing_section (info);
2367
2368 gdb_assert (sectp != NULL);
2369 if ((sectp->flags & SEC_RELOC) != 0)
2370 {
2371 error (_("Dwarf Error: DWP format V2 with relocations is not"
2372 " supported in section %s [in module %s]"),
2373 get_section_name (info), get_section_file_name (info));
2374 }
2375 dwarf2_read_section (objfile, containing_section);
2376 /* Other code should have already caught virtual sections that don't
2377 fit. */
2378 gdb_assert (info->virtual_offset + info->size
2379 <= containing_section->size);
2380 /* If the real section is empty or there was a problem reading the
2381 section we shouldn't get here. */
2382 gdb_assert (containing_section->buffer != NULL);
2383 info->buffer = containing_section->buffer + info->virtual_offset;
2384 return;
2385 }
2386
2387 /* If the section has relocations, we must read it ourselves.
2388 Otherwise we attach it to the BFD. */
2389 if ((sectp->flags & SEC_RELOC) == 0)
2390 {
2391 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2392 return;
2393 }
2394
2395 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2396 info->buffer = buf;
2397
2398 /* When debugging .o files, we may need to apply relocations; see
2399 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2400 We never compress sections in .o files, so we only need to
2401 try this when the section is not compressed. */
2402 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2403 if (retbuf != NULL)
2404 {
2405 info->buffer = retbuf;
2406 return;
2407 }
2408
2409 abfd = get_section_bfd_owner (info);
2410 gdb_assert (abfd != NULL);
2411
2412 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2413 || bfd_bread (buf, info->size, abfd) != info->size)
2414 {
2415 error (_("Dwarf Error: Can't read DWARF data"
2416 " in section %s [in module %s]"),
2417 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2418 }
2419 }
2420
2421 /* A helper function that returns the size of a section in a safe way.
2422 If you are positive that the section has been read before using the
2423 size, then it is safe to refer to the dwarf2_section_info object's
2424 "size" field directly. In other cases, you must call this
2425 function, because for compressed sections the size field is not set
2426 correctly until the section has been read. */
2427
2428 static bfd_size_type
2429 dwarf2_section_size (struct objfile *objfile,
2430 struct dwarf2_section_info *info)
2431 {
2432 if (!info->readin)
2433 dwarf2_read_section (objfile, info);
2434 return info->size;
2435 }
2436
2437 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2438 SECTION_NAME. */
2439
2440 void
2441 dwarf2_get_section_info (struct objfile *objfile,
2442 enum dwarf2_section_enum sect,
2443 asection **sectp, const gdb_byte **bufp,
2444 bfd_size_type *sizep)
2445 {
2446 struct dwarf2_per_objfile *data
2447 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2448 dwarf2_objfile_data_key);
2449 struct dwarf2_section_info *info;
2450
2451 /* We may see an objfile without any DWARF, in which case we just
2452 return nothing. */
2453 if (data == NULL)
2454 {
2455 *sectp = NULL;
2456 *bufp = NULL;
2457 *sizep = 0;
2458 return;
2459 }
2460 switch (sect)
2461 {
2462 case DWARF2_DEBUG_FRAME:
2463 info = &data->frame;
2464 break;
2465 case DWARF2_EH_FRAME:
2466 info = &data->eh_frame;
2467 break;
2468 default:
2469 gdb_assert_not_reached ("unexpected section");
2470 }
2471
2472 dwarf2_read_section (objfile, info);
2473
2474 *sectp = get_section_bfd_section (info);
2475 *bufp = info->buffer;
2476 *sizep = info->size;
2477 }
2478
2479 /* A helper function to find the sections for a .dwz file. */
2480
2481 static void
2482 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2483 {
2484 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2485
2486 /* Note that we only support the standard ELF names, because .dwz
2487 is ELF-only (at the time of writing). */
2488 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2489 {
2490 dwz_file->abbrev.s.section = sectp;
2491 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2492 }
2493 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2494 {
2495 dwz_file->info.s.section = sectp;
2496 dwz_file->info.size = bfd_get_section_size (sectp);
2497 }
2498 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2499 {
2500 dwz_file->str.s.section = sectp;
2501 dwz_file->str.size = bfd_get_section_size (sectp);
2502 }
2503 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2504 {
2505 dwz_file->line.s.section = sectp;
2506 dwz_file->line.size = bfd_get_section_size (sectp);
2507 }
2508 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2509 {
2510 dwz_file->macro.s.section = sectp;
2511 dwz_file->macro.size = bfd_get_section_size (sectp);
2512 }
2513 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2514 {
2515 dwz_file->gdb_index.s.section = sectp;
2516 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2517 }
2518 }
2519
2520 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2521 there is no .gnu_debugaltlink section in the file. Error if there
2522 is such a section but the file cannot be found. */
2523
2524 static struct dwz_file *
2525 dwarf2_get_dwz_file (void)
2526 {
2527 char *data;
2528 struct cleanup *cleanup;
2529 const char *filename;
2530 struct dwz_file *result;
2531 bfd_size_type buildid_len_arg;
2532 size_t buildid_len;
2533 bfd_byte *buildid;
2534
2535 if (dwarf2_per_objfile->dwz_file != NULL)
2536 return dwarf2_per_objfile->dwz_file;
2537
2538 bfd_set_error (bfd_error_no_error);
2539 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2540 &buildid_len_arg, &buildid);
2541 if (data == NULL)
2542 {
2543 if (bfd_get_error () == bfd_error_no_error)
2544 return NULL;
2545 error (_("could not read '.gnu_debugaltlink' section: %s"),
2546 bfd_errmsg (bfd_get_error ()));
2547 }
2548 cleanup = make_cleanup (xfree, data);
2549 make_cleanup (xfree, buildid);
2550
2551 buildid_len = (size_t) buildid_len_arg;
2552
2553 filename = (const char *) data;
2554 if (!IS_ABSOLUTE_PATH (filename))
2555 {
2556 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2557 char *rel;
2558
2559 make_cleanup (xfree, abs);
2560 abs = ldirname (abs);
2561 make_cleanup (xfree, abs);
2562
2563 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2564 make_cleanup (xfree, rel);
2565 filename = rel;
2566 }
2567
2568 /* First try the file name given in the section. If that doesn't
2569 work, try to use the build-id instead. */
2570 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2571 if (dwz_bfd != NULL)
2572 {
2573 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2574 dwz_bfd.release ();
2575 }
2576
2577 if (dwz_bfd == NULL)
2578 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2579
2580 if (dwz_bfd == NULL)
2581 error (_("could not find '.gnu_debugaltlink' file for %s"),
2582 objfile_name (dwarf2_per_objfile->objfile));
2583
2584 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2585 struct dwz_file);
2586 result->dwz_bfd = dwz_bfd.release ();
2587
2588 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2589
2590 do_cleanups (cleanup);
2591
2592 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2593 dwarf2_per_objfile->dwz_file = result;
2594 return result;
2595 }
2596 \f
2597 /* DWARF quick_symbols_functions support. */
2598
2599 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2600 unique line tables, so we maintain a separate table of all .debug_line
2601 derived entries to support the sharing.
2602 All the quick functions need is the list of file names. We discard the
2603 line_header when we're done and don't need to record it here. */
2604 struct quick_file_names
2605 {
2606 /* The data used to construct the hash key. */
2607 struct stmt_list_hash hash;
2608
2609 /* The number of entries in file_names, real_names. */
2610 unsigned int num_file_names;
2611
2612 /* The file names from the line table, after being run through
2613 file_full_name. */
2614 const char **file_names;
2615
2616 /* The file names from the line table after being run through
2617 gdb_realpath. These are computed lazily. */
2618 const char **real_names;
2619 };
2620
2621 /* When using the index (and thus not using psymtabs), each CU has an
2622 object of this type. This is used to hold information needed by
2623 the various "quick" methods. */
2624 struct dwarf2_per_cu_quick_data
2625 {
2626 /* The file table. This can be NULL if there was no file table
2627 or it's currently not read in.
2628 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2629 struct quick_file_names *file_names;
2630
2631 /* The corresponding symbol table. This is NULL if symbols for this
2632 CU have not yet been read. */
2633 struct compunit_symtab *compunit_symtab;
2634
2635 /* A temporary mark bit used when iterating over all CUs in
2636 expand_symtabs_matching. */
2637 unsigned int mark : 1;
2638
2639 /* True if we've tried to read the file table and found there isn't one.
2640 There will be no point in trying to read it again next time. */
2641 unsigned int no_file_data : 1;
2642 };
2643
2644 /* Utility hash function for a stmt_list_hash. */
2645
2646 static hashval_t
2647 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2648 {
2649 hashval_t v = 0;
2650
2651 if (stmt_list_hash->dwo_unit != NULL)
2652 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2653 v += stmt_list_hash->line_offset.sect_off;
2654 return v;
2655 }
2656
2657 /* Utility equality function for a stmt_list_hash. */
2658
2659 static int
2660 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2661 const struct stmt_list_hash *rhs)
2662 {
2663 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2664 return 0;
2665 if (lhs->dwo_unit != NULL
2666 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2667 return 0;
2668
2669 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2670 }
2671
2672 /* Hash function for a quick_file_names. */
2673
2674 static hashval_t
2675 hash_file_name_entry (const void *e)
2676 {
2677 const struct quick_file_names *file_data
2678 = (const struct quick_file_names *) e;
2679
2680 return hash_stmt_list_entry (&file_data->hash);
2681 }
2682
2683 /* Equality function for a quick_file_names. */
2684
2685 static int
2686 eq_file_name_entry (const void *a, const void *b)
2687 {
2688 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2689 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2690
2691 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2692 }
2693
2694 /* Delete function for a quick_file_names. */
2695
2696 static void
2697 delete_file_name_entry (void *e)
2698 {
2699 struct quick_file_names *file_data = (struct quick_file_names *) e;
2700 int i;
2701
2702 for (i = 0; i < file_data->num_file_names; ++i)
2703 {
2704 xfree ((void*) file_data->file_names[i]);
2705 if (file_data->real_names)
2706 xfree ((void*) file_data->real_names[i]);
2707 }
2708
2709 /* The space for the struct itself lives on objfile_obstack,
2710 so we don't free it here. */
2711 }
2712
2713 /* Create a quick_file_names hash table. */
2714
2715 static htab_t
2716 create_quick_file_names_table (unsigned int nr_initial_entries)
2717 {
2718 return htab_create_alloc (nr_initial_entries,
2719 hash_file_name_entry, eq_file_name_entry,
2720 delete_file_name_entry, xcalloc, xfree);
2721 }
2722
2723 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2724 have to be created afterwards. You should call age_cached_comp_units after
2725 processing PER_CU->CU. dw2_setup must have been already called. */
2726
2727 static void
2728 load_cu (struct dwarf2_per_cu_data *per_cu)
2729 {
2730 if (per_cu->is_debug_types)
2731 load_full_type_unit (per_cu);
2732 else
2733 load_full_comp_unit (per_cu, language_minimal);
2734
2735 if (per_cu->cu == NULL)
2736 return; /* Dummy CU. */
2737
2738 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2739 }
2740
2741 /* Read in the symbols for PER_CU. */
2742
2743 static void
2744 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2745 {
2746 struct cleanup *back_to;
2747
2748 /* Skip type_unit_groups, reading the type units they contain
2749 is handled elsewhere. */
2750 if (IS_TYPE_UNIT_GROUP (per_cu))
2751 return;
2752
2753 back_to = make_cleanup (dwarf2_release_queue, NULL);
2754
2755 if (dwarf2_per_objfile->using_index
2756 ? per_cu->v.quick->compunit_symtab == NULL
2757 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2758 {
2759 queue_comp_unit (per_cu, language_minimal);
2760 load_cu (per_cu);
2761
2762 /* If we just loaded a CU from a DWO, and we're working with an index
2763 that may badly handle TUs, load all the TUs in that DWO as well.
2764 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2765 if (!per_cu->is_debug_types
2766 && per_cu->cu != NULL
2767 && per_cu->cu->dwo_unit != NULL
2768 && dwarf2_per_objfile->index_table != NULL
2769 && dwarf2_per_objfile->index_table->version <= 7
2770 /* DWP files aren't supported yet. */
2771 && get_dwp_file () == NULL)
2772 queue_and_load_all_dwo_tus (per_cu);
2773 }
2774
2775 process_queue ();
2776
2777 /* Age the cache, releasing compilation units that have not
2778 been used recently. */
2779 age_cached_comp_units ();
2780
2781 do_cleanups (back_to);
2782 }
2783
2784 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2785 the objfile from which this CU came. Returns the resulting symbol
2786 table. */
2787
2788 static struct compunit_symtab *
2789 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2790 {
2791 gdb_assert (dwarf2_per_objfile->using_index);
2792 if (!per_cu->v.quick->compunit_symtab)
2793 {
2794 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2795 increment_reading_symtab ();
2796 dw2_do_instantiate_symtab (per_cu);
2797 process_cu_includes ();
2798 do_cleanups (back_to);
2799 }
2800
2801 return per_cu->v.quick->compunit_symtab;
2802 }
2803
2804 /* Return the CU/TU given its index.
2805
2806 This is intended for loops like:
2807
2808 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2809 + dwarf2_per_objfile->n_type_units); ++i)
2810 {
2811 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2812
2813 ...;
2814 }
2815 */
2816
2817 static struct dwarf2_per_cu_data *
2818 dw2_get_cutu (int index)
2819 {
2820 if (index >= dwarf2_per_objfile->n_comp_units)
2821 {
2822 index -= dwarf2_per_objfile->n_comp_units;
2823 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2824 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2825 }
2826
2827 return dwarf2_per_objfile->all_comp_units[index];
2828 }
2829
2830 /* Return the CU given its index.
2831 This differs from dw2_get_cutu in that it's for when you know INDEX
2832 refers to a CU. */
2833
2834 static struct dwarf2_per_cu_data *
2835 dw2_get_cu (int index)
2836 {
2837 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2838
2839 return dwarf2_per_objfile->all_comp_units[index];
2840 }
2841
2842 /* A helper for create_cus_from_index that handles a given list of
2843 CUs. */
2844
2845 static void
2846 create_cus_from_index_list (struct objfile *objfile,
2847 const gdb_byte *cu_list, offset_type n_elements,
2848 struct dwarf2_section_info *section,
2849 int is_dwz,
2850 int base_offset)
2851 {
2852 offset_type i;
2853
2854 for (i = 0; i < n_elements; i += 2)
2855 {
2856 struct dwarf2_per_cu_data *the_cu;
2857 ULONGEST offset, length;
2858
2859 gdb_static_assert (sizeof (ULONGEST) >= 8);
2860 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2861 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2862 cu_list += 2 * 8;
2863
2864 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct dwarf2_per_cu_data);
2866 the_cu->offset.sect_off = offset;
2867 the_cu->length = length;
2868 the_cu->objfile = objfile;
2869 the_cu->section = section;
2870 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2871 struct dwarf2_per_cu_quick_data);
2872 the_cu->is_dwz = is_dwz;
2873 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2874 }
2875 }
2876
2877 /* Read the CU list from the mapped index, and use it to create all
2878 the CU objects for this objfile. */
2879
2880 static void
2881 create_cus_from_index (struct objfile *objfile,
2882 const gdb_byte *cu_list, offset_type cu_list_elements,
2883 const gdb_byte *dwz_list, offset_type dwz_elements)
2884 {
2885 struct dwz_file *dwz;
2886
2887 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2888 dwarf2_per_objfile->all_comp_units =
2889 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2890 dwarf2_per_objfile->n_comp_units);
2891
2892 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2893 &dwarf2_per_objfile->info, 0, 0);
2894
2895 if (dwz_elements == 0)
2896 return;
2897
2898 dwz = dwarf2_get_dwz_file ();
2899 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2900 cu_list_elements / 2);
2901 }
2902
2903 /* Create the signatured type hash table from the index. */
2904
2905 static void
2906 create_signatured_type_table_from_index (struct objfile *objfile,
2907 struct dwarf2_section_info *section,
2908 const gdb_byte *bytes,
2909 offset_type elements)
2910 {
2911 offset_type i;
2912 htab_t sig_types_hash;
2913
2914 dwarf2_per_objfile->n_type_units
2915 = dwarf2_per_objfile->n_allocated_type_units
2916 = elements / 3;
2917 dwarf2_per_objfile->all_type_units =
2918 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2919
2920 sig_types_hash = allocate_signatured_type_table (objfile);
2921
2922 for (i = 0; i < elements; i += 3)
2923 {
2924 struct signatured_type *sig_type;
2925 ULONGEST offset, type_offset_in_tu, signature;
2926 void **slot;
2927
2928 gdb_static_assert (sizeof (ULONGEST) >= 8);
2929 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2930 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2931 BFD_ENDIAN_LITTLE);
2932 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2933 bytes += 3 * 8;
2934
2935 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2936 struct signatured_type);
2937 sig_type->signature = signature;
2938 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2939 sig_type->per_cu.is_debug_types = 1;
2940 sig_type->per_cu.section = section;
2941 sig_type->per_cu.offset.sect_off = offset;
2942 sig_type->per_cu.objfile = objfile;
2943 sig_type->per_cu.v.quick
2944 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2945 struct dwarf2_per_cu_quick_data);
2946
2947 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2948 *slot = sig_type;
2949
2950 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2951 }
2952
2953 dwarf2_per_objfile->signatured_types = sig_types_hash;
2954 }
2955
2956 /* Read the address map data from the mapped index, and use it to
2957 populate the objfile's psymtabs_addrmap. */
2958
2959 static void
2960 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2961 {
2962 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2963 const gdb_byte *iter, *end;
2964 struct obstack temp_obstack;
2965 struct addrmap *mutable_map;
2966 struct cleanup *cleanup;
2967 CORE_ADDR baseaddr;
2968
2969 obstack_init (&temp_obstack);
2970 cleanup = make_cleanup_obstack_free (&temp_obstack);
2971 mutable_map = addrmap_create_mutable (&temp_obstack);
2972
2973 iter = index->address_table;
2974 end = iter + index->address_table_size;
2975
2976 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2977
2978 while (iter < end)
2979 {
2980 ULONGEST hi, lo, cu_index;
2981 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2982 iter += 8;
2983 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2984 iter += 8;
2985 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2986 iter += 4;
2987
2988 if (lo > hi)
2989 {
2990 complaint (&symfile_complaints,
2991 _(".gdb_index address table has invalid range (%s - %s)"),
2992 hex_string (lo), hex_string (hi));
2993 continue;
2994 }
2995
2996 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2997 {
2998 complaint (&symfile_complaints,
2999 _(".gdb_index address table has invalid CU number %u"),
3000 (unsigned) cu_index);
3001 continue;
3002 }
3003
3004 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3005 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3006 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3007 }
3008
3009 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3010 &objfile->objfile_obstack);
3011 do_cleanups (cleanup);
3012 }
3013
3014 /* The hash function for strings in the mapped index. This is the same as
3015 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3016 implementation. This is necessary because the hash function is tied to the
3017 format of the mapped index file. The hash values do not have to match with
3018 SYMBOL_HASH_NEXT.
3019
3020 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3021
3022 static hashval_t
3023 mapped_index_string_hash (int index_version, const void *p)
3024 {
3025 const unsigned char *str = (const unsigned char *) p;
3026 hashval_t r = 0;
3027 unsigned char c;
3028
3029 while ((c = *str++) != 0)
3030 {
3031 if (index_version >= 5)
3032 c = tolower (c);
3033 r = r * 67 + c - 113;
3034 }
3035
3036 return r;
3037 }
3038
3039 /* Find a slot in the mapped index INDEX for the object named NAME.
3040 If NAME is found, set *VEC_OUT to point to the CU vector in the
3041 constant pool and return 1. If NAME cannot be found, return 0. */
3042
3043 static int
3044 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3045 offset_type **vec_out)
3046 {
3047 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3048 offset_type hash;
3049 offset_type slot, step;
3050 int (*cmp) (const char *, const char *);
3051
3052 if (current_language->la_language == language_cplus
3053 || current_language->la_language == language_fortran
3054 || current_language->la_language == language_d)
3055 {
3056 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3057 not contain any. */
3058
3059 if (strchr (name, '(') != NULL)
3060 {
3061 char *without_params = cp_remove_params (name);
3062
3063 if (without_params != NULL)
3064 {
3065 make_cleanup (xfree, without_params);
3066 name = without_params;
3067 }
3068 }
3069 }
3070
3071 /* Index version 4 did not support case insensitive searches. But the
3072 indices for case insensitive languages are built in lowercase, therefore
3073 simulate our NAME being searched is also lowercased. */
3074 hash = mapped_index_string_hash ((index->version == 4
3075 && case_sensitivity == case_sensitive_off
3076 ? 5 : index->version),
3077 name);
3078
3079 slot = hash & (index->symbol_table_slots - 1);
3080 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3081 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3082
3083 for (;;)
3084 {
3085 /* Convert a slot number to an offset into the table. */
3086 offset_type i = 2 * slot;
3087 const char *str;
3088 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3089 {
3090 do_cleanups (back_to);
3091 return 0;
3092 }
3093
3094 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3095 if (!cmp (name, str))
3096 {
3097 *vec_out = (offset_type *) (index->constant_pool
3098 + MAYBE_SWAP (index->symbol_table[i + 1]));
3099 do_cleanups (back_to);
3100 return 1;
3101 }
3102
3103 slot = (slot + step) & (index->symbol_table_slots - 1);
3104 }
3105 }
3106
3107 /* A helper function that reads the .gdb_index from SECTION and fills
3108 in MAP. FILENAME is the name of the file containing the section;
3109 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3110 ok to use deprecated sections.
3111
3112 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3113 out parameters that are filled in with information about the CU and
3114 TU lists in the section.
3115
3116 Returns 1 if all went well, 0 otherwise. */
3117
3118 static int
3119 read_index_from_section (struct objfile *objfile,
3120 const char *filename,
3121 int deprecated_ok,
3122 struct dwarf2_section_info *section,
3123 struct mapped_index *map,
3124 const gdb_byte **cu_list,
3125 offset_type *cu_list_elements,
3126 const gdb_byte **types_list,
3127 offset_type *types_list_elements)
3128 {
3129 const gdb_byte *addr;
3130 offset_type version;
3131 offset_type *metadata;
3132 int i;
3133
3134 if (dwarf2_section_empty_p (section))
3135 return 0;
3136
3137 /* Older elfutils strip versions could keep the section in the main
3138 executable while splitting it for the separate debug info file. */
3139 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3140 return 0;
3141
3142 dwarf2_read_section (objfile, section);
3143
3144 addr = section->buffer;
3145 /* Version check. */
3146 version = MAYBE_SWAP (*(offset_type *) addr);
3147 /* Versions earlier than 3 emitted every copy of a psymbol. This
3148 causes the index to behave very poorly for certain requests. Version 3
3149 contained incomplete addrmap. So, it seems better to just ignore such
3150 indices. */
3151 if (version < 4)
3152 {
3153 static int warning_printed = 0;
3154 if (!warning_printed)
3155 {
3156 warning (_("Skipping obsolete .gdb_index section in %s."),
3157 filename);
3158 warning_printed = 1;
3159 }
3160 return 0;
3161 }
3162 /* Index version 4 uses a different hash function than index version
3163 5 and later.
3164
3165 Versions earlier than 6 did not emit psymbols for inlined
3166 functions. Using these files will cause GDB not to be able to
3167 set breakpoints on inlined functions by name, so we ignore these
3168 indices unless the user has done
3169 "set use-deprecated-index-sections on". */
3170 if (version < 6 && !deprecated_ok)
3171 {
3172 static int warning_printed = 0;
3173 if (!warning_printed)
3174 {
3175 warning (_("\
3176 Skipping deprecated .gdb_index section in %s.\n\
3177 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3178 to use the section anyway."),
3179 filename);
3180 warning_printed = 1;
3181 }
3182 return 0;
3183 }
3184 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3185 of the TU (for symbols coming from TUs),
3186 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3187 Plus gold-generated indices can have duplicate entries for global symbols,
3188 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3189 These are just performance bugs, and we can't distinguish gdb-generated
3190 indices from gold-generated ones, so issue no warning here. */
3191
3192 /* Indexes with higher version than the one supported by GDB may be no
3193 longer backward compatible. */
3194 if (version > 8)
3195 return 0;
3196
3197 map->version = version;
3198 map->total_size = section->size;
3199
3200 metadata = (offset_type *) (addr + sizeof (offset_type));
3201
3202 i = 0;
3203 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3204 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3205 / 8);
3206 ++i;
3207
3208 *types_list = addr + MAYBE_SWAP (metadata[i]);
3209 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3210 - MAYBE_SWAP (metadata[i]))
3211 / 8);
3212 ++i;
3213
3214 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3215 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3216 - MAYBE_SWAP (metadata[i]));
3217 ++i;
3218
3219 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3220 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3221 - MAYBE_SWAP (metadata[i]))
3222 / (2 * sizeof (offset_type)));
3223 ++i;
3224
3225 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3226
3227 return 1;
3228 }
3229
3230
3231 /* Read the index file. If everything went ok, initialize the "quick"
3232 elements of all the CUs and return 1. Otherwise, return 0. */
3233
3234 static int
3235 dwarf2_read_index (struct objfile *objfile)
3236 {
3237 struct mapped_index local_map, *map;
3238 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3239 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3240 struct dwz_file *dwz;
3241
3242 if (!read_index_from_section (objfile, objfile_name (objfile),
3243 use_deprecated_index_sections,
3244 &dwarf2_per_objfile->gdb_index, &local_map,
3245 &cu_list, &cu_list_elements,
3246 &types_list, &types_list_elements))
3247 return 0;
3248
3249 /* Don't use the index if it's empty. */
3250 if (local_map.symbol_table_slots == 0)
3251 return 0;
3252
3253 /* If there is a .dwz file, read it so we can get its CU list as
3254 well. */
3255 dwz = dwarf2_get_dwz_file ();
3256 if (dwz != NULL)
3257 {
3258 struct mapped_index dwz_map;
3259 const gdb_byte *dwz_types_ignore;
3260 offset_type dwz_types_elements_ignore;
3261
3262 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3263 1,
3264 &dwz->gdb_index, &dwz_map,
3265 &dwz_list, &dwz_list_elements,
3266 &dwz_types_ignore,
3267 &dwz_types_elements_ignore))
3268 {
3269 warning (_("could not read '.gdb_index' section from %s; skipping"),
3270 bfd_get_filename (dwz->dwz_bfd));
3271 return 0;
3272 }
3273 }
3274
3275 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3276 dwz_list_elements);
3277
3278 if (types_list_elements)
3279 {
3280 struct dwarf2_section_info *section;
3281
3282 /* We can only handle a single .debug_types when we have an
3283 index. */
3284 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3285 return 0;
3286
3287 section = VEC_index (dwarf2_section_info_def,
3288 dwarf2_per_objfile->types, 0);
3289
3290 create_signatured_type_table_from_index (objfile, section, types_list,
3291 types_list_elements);
3292 }
3293
3294 create_addrmap_from_index (objfile, &local_map);
3295
3296 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3297 *map = local_map;
3298
3299 dwarf2_per_objfile->index_table = map;
3300 dwarf2_per_objfile->using_index = 1;
3301 dwarf2_per_objfile->quick_file_names_table =
3302 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3303
3304 return 1;
3305 }
3306
3307 /* A helper for the "quick" functions which sets the global
3308 dwarf2_per_objfile according to OBJFILE. */
3309
3310 static void
3311 dw2_setup (struct objfile *objfile)
3312 {
3313 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3314 objfile_data (objfile, dwarf2_objfile_data_key));
3315 gdb_assert (dwarf2_per_objfile);
3316 }
3317
3318 /* die_reader_func for dw2_get_file_names. */
3319
3320 static void
3321 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3322 const gdb_byte *info_ptr,
3323 struct die_info *comp_unit_die,
3324 int has_children,
3325 void *data)
3326 {
3327 struct dwarf2_cu *cu = reader->cu;
3328 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3329 struct objfile *objfile = dwarf2_per_objfile->objfile;
3330 struct dwarf2_per_cu_data *lh_cu;
3331 struct line_header *lh;
3332 struct attribute *attr;
3333 int i;
3334 const char *name, *comp_dir;
3335 void **slot;
3336 struct quick_file_names *qfn;
3337 unsigned int line_offset;
3338
3339 gdb_assert (! this_cu->is_debug_types);
3340
3341 /* Our callers never want to match partial units -- instead they
3342 will match the enclosing full CU. */
3343 if (comp_unit_die->tag == DW_TAG_partial_unit)
3344 {
3345 this_cu->v.quick->no_file_data = 1;
3346 return;
3347 }
3348
3349 lh_cu = this_cu;
3350 lh = NULL;
3351 slot = NULL;
3352 line_offset = 0;
3353
3354 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3355 if (attr)
3356 {
3357 struct quick_file_names find_entry;
3358
3359 line_offset = DW_UNSND (attr);
3360
3361 /* We may have already read in this line header (TU line header sharing).
3362 If we have we're done. */
3363 find_entry.hash.dwo_unit = cu->dwo_unit;
3364 find_entry.hash.line_offset.sect_off = line_offset;
3365 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3366 &find_entry, INSERT);
3367 if (*slot != NULL)
3368 {
3369 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3370 return;
3371 }
3372
3373 lh = dwarf_decode_line_header (line_offset, cu);
3374 }
3375 if (lh == NULL)
3376 {
3377 lh_cu->v.quick->no_file_data = 1;
3378 return;
3379 }
3380
3381 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3382 qfn->hash.dwo_unit = cu->dwo_unit;
3383 qfn->hash.line_offset.sect_off = line_offset;
3384 gdb_assert (slot != NULL);
3385 *slot = qfn;
3386
3387 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3388
3389 qfn->num_file_names = lh->num_file_names;
3390 qfn->file_names =
3391 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3392 for (i = 0; i < lh->num_file_names; ++i)
3393 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3394 qfn->real_names = NULL;
3395
3396 free_line_header (lh);
3397
3398 lh_cu->v.quick->file_names = qfn;
3399 }
3400
3401 /* A helper for the "quick" functions which attempts to read the line
3402 table for THIS_CU. */
3403
3404 static struct quick_file_names *
3405 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3406 {
3407 /* This should never be called for TUs. */
3408 gdb_assert (! this_cu->is_debug_types);
3409 /* Nor type unit groups. */
3410 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3411
3412 if (this_cu->v.quick->file_names != NULL)
3413 return this_cu->v.quick->file_names;
3414 /* If we know there is no line data, no point in looking again. */
3415 if (this_cu->v.quick->no_file_data)
3416 return NULL;
3417
3418 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3419
3420 if (this_cu->v.quick->no_file_data)
3421 return NULL;
3422 return this_cu->v.quick->file_names;
3423 }
3424
3425 /* A helper for the "quick" functions which computes and caches the
3426 real path for a given file name from the line table. */
3427
3428 static const char *
3429 dw2_get_real_path (struct objfile *objfile,
3430 struct quick_file_names *qfn, int index)
3431 {
3432 if (qfn->real_names == NULL)
3433 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3434 qfn->num_file_names, const char *);
3435
3436 if (qfn->real_names[index] == NULL)
3437 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3438
3439 return qfn->real_names[index];
3440 }
3441
3442 static struct symtab *
3443 dw2_find_last_source_symtab (struct objfile *objfile)
3444 {
3445 struct compunit_symtab *cust;
3446 int index;
3447
3448 dw2_setup (objfile);
3449 index = dwarf2_per_objfile->n_comp_units - 1;
3450 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3451 if (cust == NULL)
3452 return NULL;
3453 return compunit_primary_filetab (cust);
3454 }
3455
3456 /* Traversal function for dw2_forget_cached_source_info. */
3457
3458 static int
3459 dw2_free_cached_file_names (void **slot, void *info)
3460 {
3461 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3462
3463 if (file_data->real_names)
3464 {
3465 int i;
3466
3467 for (i = 0; i < file_data->num_file_names; ++i)
3468 {
3469 xfree ((void*) file_data->real_names[i]);
3470 file_data->real_names[i] = NULL;
3471 }
3472 }
3473
3474 return 1;
3475 }
3476
3477 static void
3478 dw2_forget_cached_source_info (struct objfile *objfile)
3479 {
3480 dw2_setup (objfile);
3481
3482 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3483 dw2_free_cached_file_names, NULL);
3484 }
3485
3486 /* Helper function for dw2_map_symtabs_matching_filename that expands
3487 the symtabs and calls the iterator. */
3488
3489 static int
3490 dw2_map_expand_apply (struct objfile *objfile,
3491 struct dwarf2_per_cu_data *per_cu,
3492 const char *name, const char *real_path,
3493 int (*callback) (struct symtab *, void *),
3494 void *data)
3495 {
3496 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3497
3498 /* Don't visit already-expanded CUs. */
3499 if (per_cu->v.quick->compunit_symtab)
3500 return 0;
3501
3502 /* This may expand more than one symtab, and we want to iterate over
3503 all of them. */
3504 dw2_instantiate_symtab (per_cu);
3505
3506 return iterate_over_some_symtabs (name, real_path, callback, data,
3507 objfile->compunit_symtabs, last_made);
3508 }
3509
3510 /* Implementation of the map_symtabs_matching_filename method. */
3511
3512 static int
3513 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3514 const char *real_path,
3515 int (*callback) (struct symtab *, void *),
3516 void *data)
3517 {
3518 int i;
3519 const char *name_basename = lbasename (name);
3520
3521 dw2_setup (objfile);
3522
3523 /* The rule is CUs specify all the files, including those used by
3524 any TU, so there's no need to scan TUs here. */
3525
3526 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3527 {
3528 int j;
3529 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3530 struct quick_file_names *file_data;
3531
3532 /* We only need to look at symtabs not already expanded. */
3533 if (per_cu->v.quick->compunit_symtab)
3534 continue;
3535
3536 file_data = dw2_get_file_names (per_cu);
3537 if (file_data == NULL)
3538 continue;
3539
3540 for (j = 0; j < file_data->num_file_names; ++j)
3541 {
3542 const char *this_name = file_data->file_names[j];
3543 const char *this_real_name;
3544
3545 if (compare_filenames_for_search (this_name, name))
3546 {
3547 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3548 callback, data))
3549 return 1;
3550 continue;
3551 }
3552
3553 /* Before we invoke realpath, which can get expensive when many
3554 files are involved, do a quick comparison of the basenames. */
3555 if (! basenames_may_differ
3556 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3557 continue;
3558
3559 this_real_name = dw2_get_real_path (objfile, file_data, j);
3560 if (compare_filenames_for_search (this_real_name, name))
3561 {
3562 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3563 callback, data))
3564 return 1;
3565 continue;
3566 }
3567
3568 if (real_path != NULL)
3569 {
3570 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3571 gdb_assert (IS_ABSOLUTE_PATH (name));
3572 if (this_real_name != NULL
3573 && FILENAME_CMP (real_path, this_real_name) == 0)
3574 {
3575 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3576 callback, data))
3577 return 1;
3578 continue;
3579 }
3580 }
3581 }
3582 }
3583
3584 return 0;
3585 }
3586
3587 /* Struct used to manage iterating over all CUs looking for a symbol. */
3588
3589 struct dw2_symtab_iterator
3590 {
3591 /* The internalized form of .gdb_index. */
3592 struct mapped_index *index;
3593 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3594 int want_specific_block;
3595 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3596 Unused if !WANT_SPECIFIC_BLOCK. */
3597 int block_index;
3598 /* The kind of symbol we're looking for. */
3599 domain_enum domain;
3600 /* The list of CUs from the index entry of the symbol,
3601 or NULL if not found. */
3602 offset_type *vec;
3603 /* The next element in VEC to look at. */
3604 int next;
3605 /* The number of elements in VEC, or zero if there is no match. */
3606 int length;
3607 /* Have we seen a global version of the symbol?
3608 If so we can ignore all further global instances.
3609 This is to work around gold/15646, inefficient gold-generated
3610 indices. */
3611 int global_seen;
3612 };
3613
3614 /* Initialize the index symtab iterator ITER.
3615 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3616 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3617
3618 static void
3619 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3620 struct mapped_index *index,
3621 int want_specific_block,
3622 int block_index,
3623 domain_enum domain,
3624 const char *name)
3625 {
3626 iter->index = index;
3627 iter->want_specific_block = want_specific_block;
3628 iter->block_index = block_index;
3629 iter->domain = domain;
3630 iter->next = 0;
3631 iter->global_seen = 0;
3632
3633 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3634 iter->length = MAYBE_SWAP (*iter->vec);
3635 else
3636 {
3637 iter->vec = NULL;
3638 iter->length = 0;
3639 }
3640 }
3641
3642 /* Return the next matching CU or NULL if there are no more. */
3643
3644 static struct dwarf2_per_cu_data *
3645 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3646 {
3647 for ( ; iter->next < iter->length; ++iter->next)
3648 {
3649 offset_type cu_index_and_attrs =
3650 MAYBE_SWAP (iter->vec[iter->next + 1]);
3651 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3652 struct dwarf2_per_cu_data *per_cu;
3653 int want_static = iter->block_index != GLOBAL_BLOCK;
3654 /* This value is only valid for index versions >= 7. */
3655 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3656 gdb_index_symbol_kind symbol_kind =
3657 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3658 /* Only check the symbol attributes if they're present.
3659 Indices prior to version 7 don't record them,
3660 and indices >= 7 may elide them for certain symbols
3661 (gold does this). */
3662 int attrs_valid =
3663 (iter->index->version >= 7
3664 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3665
3666 /* Don't crash on bad data. */
3667 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3668 + dwarf2_per_objfile->n_type_units))
3669 {
3670 complaint (&symfile_complaints,
3671 _(".gdb_index entry has bad CU index"
3672 " [in module %s]"),
3673 objfile_name (dwarf2_per_objfile->objfile));
3674 continue;
3675 }
3676
3677 per_cu = dw2_get_cutu (cu_index);
3678
3679 /* Skip if already read in. */
3680 if (per_cu->v.quick->compunit_symtab)
3681 continue;
3682
3683 /* Check static vs global. */
3684 if (attrs_valid)
3685 {
3686 if (iter->want_specific_block
3687 && want_static != is_static)
3688 continue;
3689 /* Work around gold/15646. */
3690 if (!is_static && iter->global_seen)
3691 continue;
3692 if (!is_static)
3693 iter->global_seen = 1;
3694 }
3695
3696 /* Only check the symbol's kind if it has one. */
3697 if (attrs_valid)
3698 {
3699 switch (iter->domain)
3700 {
3701 case VAR_DOMAIN:
3702 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3703 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3704 /* Some types are also in VAR_DOMAIN. */
3705 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3706 continue;
3707 break;
3708 case STRUCT_DOMAIN:
3709 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3710 continue;
3711 break;
3712 case LABEL_DOMAIN:
3713 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3714 continue;
3715 break;
3716 default:
3717 break;
3718 }
3719 }
3720
3721 ++iter->next;
3722 return per_cu;
3723 }
3724
3725 return NULL;
3726 }
3727
3728 static struct compunit_symtab *
3729 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3730 const char *name, domain_enum domain)
3731 {
3732 struct compunit_symtab *stab_best = NULL;
3733 struct mapped_index *index;
3734
3735 dw2_setup (objfile);
3736
3737 index = dwarf2_per_objfile->index_table;
3738
3739 /* index is NULL if OBJF_READNOW. */
3740 if (index)
3741 {
3742 struct dw2_symtab_iterator iter;
3743 struct dwarf2_per_cu_data *per_cu;
3744
3745 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3746
3747 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3748 {
3749 struct symbol *sym, *with_opaque = NULL;
3750 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3751 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3752 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3753
3754 sym = block_find_symbol (block, name, domain,
3755 block_find_non_opaque_type_preferred,
3756 &with_opaque);
3757
3758 /* Some caution must be observed with overloaded functions
3759 and methods, since the index will not contain any overload
3760 information (but NAME might contain it). */
3761
3762 if (sym != NULL
3763 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3764 return stab;
3765 if (with_opaque != NULL
3766 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3767 stab_best = stab;
3768
3769 /* Keep looking through other CUs. */
3770 }
3771 }
3772
3773 return stab_best;
3774 }
3775
3776 static void
3777 dw2_print_stats (struct objfile *objfile)
3778 {
3779 int i, total, count;
3780
3781 dw2_setup (objfile);
3782 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3783 count = 0;
3784 for (i = 0; i < total; ++i)
3785 {
3786 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3787
3788 if (!per_cu->v.quick->compunit_symtab)
3789 ++count;
3790 }
3791 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3792 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3793 }
3794
3795 /* This dumps minimal information about the index.
3796 It is called via "mt print objfiles".
3797 One use is to verify .gdb_index has been loaded by the
3798 gdb.dwarf2/gdb-index.exp testcase. */
3799
3800 static void
3801 dw2_dump (struct objfile *objfile)
3802 {
3803 dw2_setup (objfile);
3804 gdb_assert (dwarf2_per_objfile->using_index);
3805 printf_filtered (".gdb_index:");
3806 if (dwarf2_per_objfile->index_table != NULL)
3807 {
3808 printf_filtered (" version %d\n",
3809 dwarf2_per_objfile->index_table->version);
3810 }
3811 else
3812 printf_filtered (" faked for \"readnow\"\n");
3813 printf_filtered ("\n");
3814 }
3815
3816 static void
3817 dw2_relocate (struct objfile *objfile,
3818 const struct section_offsets *new_offsets,
3819 const struct section_offsets *delta)
3820 {
3821 /* There's nothing to relocate here. */
3822 }
3823
3824 static void
3825 dw2_expand_symtabs_for_function (struct objfile *objfile,
3826 const char *func_name)
3827 {
3828 struct mapped_index *index;
3829
3830 dw2_setup (objfile);
3831
3832 index = dwarf2_per_objfile->index_table;
3833
3834 /* index is NULL if OBJF_READNOW. */
3835 if (index)
3836 {
3837 struct dw2_symtab_iterator iter;
3838 struct dwarf2_per_cu_data *per_cu;
3839
3840 /* Note: It doesn't matter what we pass for block_index here. */
3841 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3842 func_name);
3843
3844 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3845 dw2_instantiate_symtab (per_cu);
3846 }
3847 }
3848
3849 static void
3850 dw2_expand_all_symtabs (struct objfile *objfile)
3851 {
3852 int i;
3853
3854 dw2_setup (objfile);
3855
3856 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3857 + dwarf2_per_objfile->n_type_units); ++i)
3858 {
3859 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3860
3861 dw2_instantiate_symtab (per_cu);
3862 }
3863 }
3864
3865 static void
3866 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3867 const char *fullname)
3868 {
3869 int i;
3870
3871 dw2_setup (objfile);
3872
3873 /* We don't need to consider type units here.
3874 This is only called for examining code, e.g. expand_line_sal.
3875 There can be an order of magnitude (or more) more type units
3876 than comp units, and we avoid them if we can. */
3877
3878 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3879 {
3880 int j;
3881 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3882 struct quick_file_names *file_data;
3883
3884 /* We only need to look at symtabs not already expanded. */
3885 if (per_cu->v.quick->compunit_symtab)
3886 continue;
3887
3888 file_data = dw2_get_file_names (per_cu);
3889 if (file_data == NULL)
3890 continue;
3891
3892 for (j = 0; j < file_data->num_file_names; ++j)
3893 {
3894 const char *this_fullname = file_data->file_names[j];
3895
3896 if (filename_cmp (this_fullname, fullname) == 0)
3897 {
3898 dw2_instantiate_symtab (per_cu);
3899 break;
3900 }
3901 }
3902 }
3903 }
3904
3905 static void
3906 dw2_map_matching_symbols (struct objfile *objfile,
3907 const char * name, domain_enum domain,
3908 int global,
3909 int (*callback) (struct block *,
3910 struct symbol *, void *),
3911 void *data, symbol_compare_ftype *match,
3912 symbol_compare_ftype *ordered_compare)
3913 {
3914 /* Currently unimplemented; used for Ada. The function can be called if the
3915 current language is Ada for a non-Ada objfile using GNU index. As Ada
3916 does not look for non-Ada symbols this function should just return. */
3917 }
3918
3919 static void
3920 dw2_expand_symtabs_matching
3921 (struct objfile *objfile,
3922 expand_symtabs_file_matcher_ftype *file_matcher,
3923 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3924 expand_symtabs_exp_notify_ftype *expansion_notify,
3925 enum search_domain kind,
3926 void *data)
3927 {
3928 int i;
3929 offset_type iter;
3930 struct mapped_index *index;
3931
3932 dw2_setup (objfile);
3933
3934 /* index_table is NULL if OBJF_READNOW. */
3935 if (!dwarf2_per_objfile->index_table)
3936 return;
3937 index = dwarf2_per_objfile->index_table;
3938
3939 if (file_matcher != NULL)
3940 {
3941 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
3942 htab_eq_pointer,
3943 NULL, xcalloc, xfree));
3944 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
3945 htab_eq_pointer,
3946 NULL, xcalloc, xfree));
3947
3948 /* The rule is CUs specify all the files, including those used by
3949 any TU, so there's no need to scan TUs here. */
3950
3951 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3952 {
3953 int j;
3954 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3955 struct quick_file_names *file_data;
3956 void **slot;
3957
3958 QUIT;
3959
3960 per_cu->v.quick->mark = 0;
3961
3962 /* We only need to look at symtabs not already expanded. */
3963 if (per_cu->v.quick->compunit_symtab)
3964 continue;
3965
3966 file_data = dw2_get_file_names (per_cu);
3967 if (file_data == NULL)
3968 continue;
3969
3970 if (htab_find (visited_not_found.get (), file_data) != NULL)
3971 continue;
3972 else if (htab_find (visited_found.get (), file_data) != NULL)
3973 {
3974 per_cu->v.quick->mark = 1;
3975 continue;
3976 }
3977
3978 for (j = 0; j < file_data->num_file_names; ++j)
3979 {
3980 const char *this_real_name;
3981
3982 if (file_matcher (file_data->file_names[j], data, 0))
3983 {
3984 per_cu->v.quick->mark = 1;
3985 break;
3986 }
3987
3988 /* Before we invoke realpath, which can get expensive when many
3989 files are involved, do a quick comparison of the basenames. */
3990 if (!basenames_may_differ
3991 && !file_matcher (lbasename (file_data->file_names[j]),
3992 data, 1))
3993 continue;
3994
3995 this_real_name = dw2_get_real_path (objfile, file_data, j);
3996 if (file_matcher (this_real_name, data, 0))
3997 {
3998 per_cu->v.quick->mark = 1;
3999 break;
4000 }
4001 }
4002
4003 slot = htab_find_slot (per_cu->v.quick->mark
4004 ? visited_found.get ()
4005 : visited_not_found.get (),
4006 file_data, INSERT);
4007 *slot = file_data;
4008 }
4009 }
4010
4011 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4012 {
4013 offset_type idx = 2 * iter;
4014 const char *name;
4015 offset_type *vec, vec_len, vec_idx;
4016 int global_seen = 0;
4017
4018 QUIT;
4019
4020 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4021 continue;
4022
4023 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4024
4025 if (! (*symbol_matcher) (name, data))
4026 continue;
4027
4028 /* The name was matched, now expand corresponding CUs that were
4029 marked. */
4030 vec = (offset_type *) (index->constant_pool
4031 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4032 vec_len = MAYBE_SWAP (vec[0]);
4033 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4034 {
4035 struct dwarf2_per_cu_data *per_cu;
4036 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4037 /* This value is only valid for index versions >= 7. */
4038 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4039 gdb_index_symbol_kind symbol_kind =
4040 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4041 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4042 /* Only check the symbol attributes if they're present.
4043 Indices prior to version 7 don't record them,
4044 and indices >= 7 may elide them for certain symbols
4045 (gold does this). */
4046 int attrs_valid =
4047 (index->version >= 7
4048 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4049
4050 /* Work around gold/15646. */
4051 if (attrs_valid)
4052 {
4053 if (!is_static && global_seen)
4054 continue;
4055 if (!is_static)
4056 global_seen = 1;
4057 }
4058
4059 /* Only check the symbol's kind if it has one. */
4060 if (attrs_valid)
4061 {
4062 switch (kind)
4063 {
4064 case VARIABLES_DOMAIN:
4065 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4066 continue;
4067 break;
4068 case FUNCTIONS_DOMAIN:
4069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4070 continue;
4071 break;
4072 case TYPES_DOMAIN:
4073 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4074 continue;
4075 break;
4076 default:
4077 break;
4078 }
4079 }
4080
4081 /* Don't crash on bad data. */
4082 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4083 + dwarf2_per_objfile->n_type_units))
4084 {
4085 complaint (&symfile_complaints,
4086 _(".gdb_index entry has bad CU index"
4087 " [in module %s]"), objfile_name (objfile));
4088 continue;
4089 }
4090
4091 per_cu = dw2_get_cutu (cu_index);
4092 if (file_matcher == NULL || per_cu->v.quick->mark)
4093 {
4094 int symtab_was_null =
4095 (per_cu->v.quick->compunit_symtab == NULL);
4096
4097 dw2_instantiate_symtab (per_cu);
4098
4099 if (expansion_notify != NULL
4100 && symtab_was_null
4101 && per_cu->v.quick->compunit_symtab != NULL)
4102 {
4103 expansion_notify (per_cu->v.quick->compunit_symtab,
4104 data);
4105 }
4106 }
4107 }
4108 }
4109 }
4110
4111 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4112 symtab. */
4113
4114 static struct compunit_symtab *
4115 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4116 CORE_ADDR pc)
4117 {
4118 int i;
4119
4120 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4121 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4122 return cust;
4123
4124 if (cust->includes == NULL)
4125 return NULL;
4126
4127 for (i = 0; cust->includes[i]; ++i)
4128 {
4129 struct compunit_symtab *s = cust->includes[i];
4130
4131 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4132 if (s != NULL)
4133 return s;
4134 }
4135
4136 return NULL;
4137 }
4138
4139 static struct compunit_symtab *
4140 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4141 struct bound_minimal_symbol msymbol,
4142 CORE_ADDR pc,
4143 struct obj_section *section,
4144 int warn_if_readin)
4145 {
4146 struct dwarf2_per_cu_data *data;
4147 struct compunit_symtab *result;
4148
4149 dw2_setup (objfile);
4150
4151 if (!objfile->psymtabs_addrmap)
4152 return NULL;
4153
4154 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4155 pc);
4156 if (!data)
4157 return NULL;
4158
4159 if (warn_if_readin && data->v.quick->compunit_symtab)
4160 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4161 paddress (get_objfile_arch (objfile), pc));
4162
4163 result
4164 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4165 pc);
4166 gdb_assert (result != NULL);
4167 return result;
4168 }
4169
4170 static void
4171 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4172 void *data, int need_fullname)
4173 {
4174 int i;
4175 htab_up visited (htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4176 NULL, xcalloc, xfree));
4177
4178 dw2_setup (objfile);
4179
4180 /* The rule is CUs specify all the files, including those used by
4181 any TU, so there's no need to scan TUs here.
4182 We can ignore file names coming from already-expanded CUs. */
4183
4184 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4185 {
4186 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4187
4188 if (per_cu->v.quick->compunit_symtab)
4189 {
4190 void **slot = htab_find_slot (visited.get (),
4191 per_cu->v.quick->file_names,
4192 INSERT);
4193
4194 *slot = per_cu->v.quick->file_names;
4195 }
4196 }
4197
4198 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4199 {
4200 int j;
4201 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4202 struct quick_file_names *file_data;
4203 void **slot;
4204
4205 /* We only need to look at symtabs not already expanded. */
4206 if (per_cu->v.quick->compunit_symtab)
4207 continue;
4208
4209 file_data = dw2_get_file_names (per_cu);
4210 if (file_data == NULL)
4211 continue;
4212
4213 slot = htab_find_slot (visited.get (), file_data, INSERT);
4214 if (*slot)
4215 {
4216 /* Already visited. */
4217 continue;
4218 }
4219 *slot = file_data;
4220
4221 for (j = 0; j < file_data->num_file_names; ++j)
4222 {
4223 const char *this_real_name;
4224
4225 if (need_fullname)
4226 this_real_name = dw2_get_real_path (objfile, file_data, j);
4227 else
4228 this_real_name = NULL;
4229 (*fun) (file_data->file_names[j], this_real_name, data);
4230 }
4231 }
4232 }
4233
4234 static int
4235 dw2_has_symbols (struct objfile *objfile)
4236 {
4237 return 1;
4238 }
4239
4240 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4241 {
4242 dw2_has_symbols,
4243 dw2_find_last_source_symtab,
4244 dw2_forget_cached_source_info,
4245 dw2_map_symtabs_matching_filename,
4246 dw2_lookup_symbol,
4247 dw2_print_stats,
4248 dw2_dump,
4249 dw2_relocate,
4250 dw2_expand_symtabs_for_function,
4251 dw2_expand_all_symtabs,
4252 dw2_expand_symtabs_with_fullname,
4253 dw2_map_matching_symbols,
4254 dw2_expand_symtabs_matching,
4255 dw2_find_pc_sect_compunit_symtab,
4256 dw2_map_symbol_filenames
4257 };
4258
4259 /* Initialize for reading DWARF for this objfile. Return 0 if this
4260 file will use psymtabs, or 1 if using the GNU index. */
4261
4262 int
4263 dwarf2_initialize_objfile (struct objfile *objfile)
4264 {
4265 /* If we're about to read full symbols, don't bother with the
4266 indices. In this case we also don't care if some other debug
4267 format is making psymtabs, because they are all about to be
4268 expanded anyway. */
4269 if ((objfile->flags & OBJF_READNOW))
4270 {
4271 int i;
4272
4273 dwarf2_per_objfile->using_index = 1;
4274 create_all_comp_units (objfile);
4275 create_all_type_units (objfile);
4276 dwarf2_per_objfile->quick_file_names_table =
4277 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4278
4279 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4280 + dwarf2_per_objfile->n_type_units); ++i)
4281 {
4282 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4283
4284 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4285 struct dwarf2_per_cu_quick_data);
4286 }
4287
4288 /* Return 1 so that gdb sees the "quick" functions. However,
4289 these functions will be no-ops because we will have expanded
4290 all symtabs. */
4291 return 1;
4292 }
4293
4294 if (dwarf2_read_index (objfile))
4295 return 1;
4296
4297 return 0;
4298 }
4299
4300 \f
4301
4302 /* Build a partial symbol table. */
4303
4304 void
4305 dwarf2_build_psymtabs (struct objfile *objfile)
4306 {
4307
4308 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4309 {
4310 init_psymbol_list (objfile, 1024);
4311 }
4312
4313 TRY
4314 {
4315 /* This isn't really ideal: all the data we allocate on the
4316 objfile's obstack is still uselessly kept around. However,
4317 freeing it seems unsafe. */
4318 psymtab_discarder psymtabs (objfile);
4319 dwarf2_build_psymtabs_hard (objfile);
4320 psymtabs.keep ();
4321 }
4322 CATCH (except, RETURN_MASK_ERROR)
4323 {
4324 exception_print (gdb_stderr, except);
4325 }
4326 END_CATCH
4327 }
4328
4329 /* Return the total length of the CU described by HEADER. */
4330
4331 static unsigned int
4332 get_cu_length (const struct comp_unit_head *header)
4333 {
4334 return header->initial_length_size + header->length;
4335 }
4336
4337 /* Return TRUE if OFFSET is within CU_HEADER. */
4338
4339 static inline int
4340 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4341 {
4342 sect_offset bottom = { cu_header->offset.sect_off };
4343 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4344
4345 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4346 }
4347
4348 /* Find the base address of the compilation unit for range lists and
4349 location lists. It will normally be specified by DW_AT_low_pc.
4350 In DWARF-3 draft 4, the base address could be overridden by
4351 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4352 compilation units with discontinuous ranges. */
4353
4354 static void
4355 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4356 {
4357 struct attribute *attr;
4358
4359 cu->base_known = 0;
4360 cu->base_address = 0;
4361
4362 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4363 if (attr)
4364 {
4365 cu->base_address = attr_value_as_address (attr);
4366 cu->base_known = 1;
4367 }
4368 else
4369 {
4370 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4371 if (attr)
4372 {
4373 cu->base_address = attr_value_as_address (attr);
4374 cu->base_known = 1;
4375 }
4376 }
4377 }
4378
4379 /* Read in the comp unit header information from the debug_info at info_ptr.
4380 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4381 NOTE: This leaves members offset, first_die_offset to be filled in
4382 by the caller. */
4383
4384 static const gdb_byte *
4385 read_comp_unit_head (struct comp_unit_head *cu_header,
4386 const gdb_byte *info_ptr,
4387 struct dwarf2_section_info *section,
4388 rcuh_kind section_kind)
4389 {
4390 int signed_addr;
4391 unsigned int bytes_read;
4392 const char *filename = get_section_file_name (section);
4393 bfd *abfd = get_section_bfd_owner (section);
4394
4395 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4396 cu_header->initial_length_size = bytes_read;
4397 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4398 info_ptr += bytes_read;
4399 cu_header->version = read_2_bytes (abfd, info_ptr);
4400 info_ptr += 2;
4401 if (cu_header->version < 5)
4402 switch (section_kind)
4403 {
4404 case rcuh_kind::COMPILE:
4405 cu_header->unit_type = DW_UT_compile;
4406 break;
4407 case rcuh_kind::TYPE:
4408 cu_header->unit_type = DW_UT_type;
4409 break;
4410 default:
4411 internal_error (__FILE__, __LINE__,
4412 _("read_comp_unit_head: invalid section_kind"));
4413 }
4414 else
4415 {
4416 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4417 (read_1_byte (abfd, info_ptr));
4418 info_ptr += 1;
4419 switch (cu_header->unit_type)
4420 {
4421 case DW_UT_compile:
4422 if (section_kind != rcuh_kind::COMPILE)
4423 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4424 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4425 filename);
4426 break;
4427 case DW_UT_type:
4428 section_kind = rcuh_kind::TYPE;
4429 break;
4430 default:
4431 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4432 "(is %d, should be %d or %d) [in module %s]"),
4433 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4434 }
4435
4436 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4437 info_ptr += 1;
4438 }
4439 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4440 &bytes_read);
4441 info_ptr += bytes_read;
4442 if (cu_header->version < 5)
4443 {
4444 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4445 info_ptr += 1;
4446 }
4447 signed_addr = bfd_get_sign_extend_vma (abfd);
4448 if (signed_addr < 0)
4449 internal_error (__FILE__, __LINE__,
4450 _("read_comp_unit_head: dwarf from non elf file"));
4451 cu_header->signed_addr_p = signed_addr;
4452
4453 if (section_kind == rcuh_kind::TYPE)
4454 {
4455 LONGEST type_offset;
4456
4457 cu_header->signature = read_8_bytes (abfd, info_ptr);
4458 info_ptr += 8;
4459
4460 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4461 info_ptr += bytes_read;
4462 cu_header->type_offset_in_tu.cu_off = type_offset;
4463 if (cu_header->type_offset_in_tu.cu_off != type_offset)
4464 error (_("Dwarf Error: Too big type_offset in compilation unit "
4465 "header (is %s) [in module %s]"), plongest (type_offset),
4466 filename);
4467 }
4468
4469 return info_ptr;
4470 }
4471
4472 /* Helper function that returns the proper abbrev section for
4473 THIS_CU. */
4474
4475 static struct dwarf2_section_info *
4476 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4477 {
4478 struct dwarf2_section_info *abbrev;
4479
4480 if (this_cu->is_dwz)
4481 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4482 else
4483 abbrev = &dwarf2_per_objfile->abbrev;
4484
4485 return abbrev;
4486 }
4487
4488 /* Subroutine of read_and_check_comp_unit_head and
4489 read_and_check_type_unit_head to simplify them.
4490 Perform various error checking on the header. */
4491
4492 static void
4493 error_check_comp_unit_head (struct comp_unit_head *header,
4494 struct dwarf2_section_info *section,
4495 struct dwarf2_section_info *abbrev_section)
4496 {
4497 const char *filename = get_section_file_name (section);
4498
4499 if (header->version < 2 || header->version > 5)
4500 error (_("Dwarf Error: wrong version in compilation unit header "
4501 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4502 filename);
4503
4504 if (header->abbrev_offset.sect_off
4505 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4506 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4507 "(offset 0x%lx + 6) [in module %s]"),
4508 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4509 filename);
4510
4511 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4512 avoid potential 32-bit overflow. */
4513 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4514 > section->size)
4515 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4516 "(offset 0x%lx + 0) [in module %s]"),
4517 (long) header->length, (long) header->offset.sect_off,
4518 filename);
4519 }
4520
4521 /* Read in a CU/TU header and perform some basic error checking.
4522 The contents of the header are stored in HEADER.
4523 The result is a pointer to the start of the first DIE. */
4524
4525 static const gdb_byte *
4526 read_and_check_comp_unit_head (struct comp_unit_head *header,
4527 struct dwarf2_section_info *section,
4528 struct dwarf2_section_info *abbrev_section,
4529 const gdb_byte *info_ptr,
4530 rcuh_kind section_kind)
4531 {
4532 const gdb_byte *beg_of_comp_unit = info_ptr;
4533 bfd *abfd = get_section_bfd_owner (section);
4534
4535 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4536
4537 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4538
4539 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4540
4541 error_check_comp_unit_head (header, section, abbrev_section);
4542
4543 return info_ptr;
4544 }
4545
4546 /* Fetch the abbreviation table offset from a comp or type unit header. */
4547
4548 static sect_offset
4549 read_abbrev_offset (struct dwarf2_section_info *section,
4550 sect_offset offset)
4551 {
4552 bfd *abfd = get_section_bfd_owner (section);
4553 const gdb_byte *info_ptr;
4554 unsigned int initial_length_size, offset_size;
4555 sect_offset abbrev_offset;
4556 uint16_t version;
4557
4558 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4559 info_ptr = section->buffer + offset.sect_off;
4560 read_initial_length (abfd, info_ptr, &initial_length_size);
4561 offset_size = initial_length_size == 4 ? 4 : 8;
4562 info_ptr += initial_length_size;
4563
4564 version = read_2_bytes (abfd, info_ptr);
4565 info_ptr += 2;
4566 if (version >= 5)
4567 {
4568 /* Skip unit type and address size. */
4569 info_ptr += 2;
4570 }
4571
4572 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4573 return abbrev_offset;
4574 }
4575
4576 /* Allocate a new partial symtab for file named NAME and mark this new
4577 partial symtab as being an include of PST. */
4578
4579 static void
4580 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4581 struct objfile *objfile)
4582 {
4583 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4584
4585 if (!IS_ABSOLUTE_PATH (subpst->filename))
4586 {
4587 /* It shares objfile->objfile_obstack. */
4588 subpst->dirname = pst->dirname;
4589 }
4590
4591 subpst->textlow = 0;
4592 subpst->texthigh = 0;
4593
4594 subpst->dependencies
4595 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4596 subpst->dependencies[0] = pst;
4597 subpst->number_of_dependencies = 1;
4598
4599 subpst->globals_offset = 0;
4600 subpst->n_global_syms = 0;
4601 subpst->statics_offset = 0;
4602 subpst->n_static_syms = 0;
4603 subpst->compunit_symtab = NULL;
4604 subpst->read_symtab = pst->read_symtab;
4605 subpst->readin = 0;
4606
4607 /* No private part is necessary for include psymtabs. This property
4608 can be used to differentiate between such include psymtabs and
4609 the regular ones. */
4610 subpst->read_symtab_private = NULL;
4611 }
4612
4613 /* Read the Line Number Program data and extract the list of files
4614 included by the source file represented by PST. Build an include
4615 partial symtab for each of these included files. */
4616
4617 static void
4618 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4619 struct die_info *die,
4620 struct partial_symtab *pst)
4621 {
4622 struct line_header *lh = NULL;
4623 struct attribute *attr;
4624
4625 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4626 if (attr)
4627 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4628 if (lh == NULL)
4629 return; /* No linetable, so no includes. */
4630
4631 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4632 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4633
4634 free_line_header (lh);
4635 }
4636
4637 static hashval_t
4638 hash_signatured_type (const void *item)
4639 {
4640 const struct signatured_type *sig_type
4641 = (const struct signatured_type *) item;
4642
4643 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4644 return sig_type->signature;
4645 }
4646
4647 static int
4648 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4649 {
4650 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4651 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4652
4653 return lhs->signature == rhs->signature;
4654 }
4655
4656 /* Allocate a hash table for signatured types. */
4657
4658 static htab_t
4659 allocate_signatured_type_table (struct objfile *objfile)
4660 {
4661 return htab_create_alloc_ex (41,
4662 hash_signatured_type,
4663 eq_signatured_type,
4664 NULL,
4665 &objfile->objfile_obstack,
4666 hashtab_obstack_allocate,
4667 dummy_obstack_deallocate);
4668 }
4669
4670 /* A helper function to add a signatured type CU to a table. */
4671
4672 static int
4673 add_signatured_type_cu_to_table (void **slot, void *datum)
4674 {
4675 struct signatured_type *sigt = (struct signatured_type *) *slot;
4676 struct signatured_type ***datap = (struct signatured_type ***) datum;
4677
4678 **datap = sigt;
4679 ++*datap;
4680
4681 return 1;
4682 }
4683
4684 /* A helper for create_debug_types_hash_table. Read types from SECTION
4685 and fill them into TYPES_HTAB. It will process only type units,
4686 therefore DW_UT_type. */
4687
4688 static void
4689 create_debug_type_hash_table (struct dwo_file *dwo_file,
4690 dwarf2_section_info *section, htab_t &types_htab,
4691 rcuh_kind section_kind)
4692 {
4693 struct objfile *objfile = dwarf2_per_objfile->objfile;
4694 struct dwarf2_section_info *abbrev_section;
4695 bfd *abfd;
4696 const gdb_byte *info_ptr, *end_ptr;
4697
4698 abbrev_section = (dwo_file != NULL
4699 ? &dwo_file->sections.abbrev
4700 : &dwarf2_per_objfile->abbrev);
4701
4702 if (dwarf_read_debug)
4703 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4704 get_section_name (section),
4705 get_section_file_name (abbrev_section));
4706
4707 dwarf2_read_section (objfile, section);
4708 info_ptr = section->buffer;
4709
4710 if (info_ptr == NULL)
4711 return;
4712
4713 /* We can't set abfd until now because the section may be empty or
4714 not present, in which case the bfd is unknown. */
4715 abfd = get_section_bfd_owner (section);
4716
4717 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4718 because we don't need to read any dies: the signature is in the
4719 header. */
4720
4721 end_ptr = info_ptr + section->size;
4722 while (info_ptr < end_ptr)
4723 {
4724 sect_offset offset;
4725 struct signatured_type *sig_type;
4726 struct dwo_unit *dwo_tu;
4727 void **slot;
4728 const gdb_byte *ptr = info_ptr;
4729 struct comp_unit_head header;
4730 unsigned int length;
4731
4732 offset.sect_off = ptr - section->buffer;
4733
4734 /* We need to read the type's signature in order to build the hash
4735 table, but we don't need anything else just yet. */
4736
4737 ptr = read_and_check_comp_unit_head (&header, section,
4738 abbrev_section, ptr, section_kind);
4739
4740 length = get_cu_length (&header);
4741
4742 /* Skip dummy type units. */
4743 if (ptr >= info_ptr + length
4744 || peek_abbrev_code (abfd, ptr) == 0
4745 || header.unit_type != DW_UT_type)
4746 {
4747 info_ptr += length;
4748 continue;
4749 }
4750
4751 if (types_htab == NULL)
4752 {
4753 if (dwo_file)
4754 types_htab = allocate_dwo_unit_table (objfile);
4755 else
4756 types_htab = allocate_signatured_type_table (objfile);
4757 }
4758
4759 if (dwo_file)
4760 {
4761 sig_type = NULL;
4762 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4763 struct dwo_unit);
4764 dwo_tu->dwo_file = dwo_file;
4765 dwo_tu->signature = header.signature;
4766 dwo_tu->type_offset_in_tu = header.type_offset_in_tu;
4767 dwo_tu->section = section;
4768 dwo_tu->offset = offset;
4769 dwo_tu->length = length;
4770 }
4771 else
4772 {
4773 /* N.B.: type_offset is not usable if this type uses a DWO file.
4774 The real type_offset is in the DWO file. */
4775 dwo_tu = NULL;
4776 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4777 struct signatured_type);
4778 sig_type->signature = header.signature;
4779 sig_type->type_offset_in_tu = header.type_offset_in_tu;
4780 sig_type->per_cu.objfile = objfile;
4781 sig_type->per_cu.is_debug_types = 1;
4782 sig_type->per_cu.section = section;
4783 sig_type->per_cu.offset = offset;
4784 sig_type->per_cu.length = length;
4785 }
4786
4787 slot = htab_find_slot (types_htab,
4788 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4789 INSERT);
4790 gdb_assert (slot != NULL);
4791 if (*slot != NULL)
4792 {
4793 sect_offset dup_offset;
4794
4795 if (dwo_file)
4796 {
4797 const struct dwo_unit *dup_tu
4798 = (const struct dwo_unit *) *slot;
4799
4800 dup_offset = dup_tu->offset;
4801 }
4802 else
4803 {
4804 const struct signatured_type *dup_tu
4805 = (const struct signatured_type *) *slot;
4806
4807 dup_offset = dup_tu->per_cu.offset;
4808 }
4809
4810 complaint (&symfile_complaints,
4811 _("debug type entry at offset 0x%x is duplicate to"
4812 " the entry at offset 0x%x, signature %s"),
4813 offset.sect_off, dup_offset.sect_off,
4814 hex_string (header.signature));
4815 }
4816 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4817
4818 if (dwarf_read_debug > 1)
4819 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4820 offset.sect_off,
4821 hex_string (header.signature));
4822
4823 info_ptr += length;
4824 }
4825 }
4826
4827 /* Create the hash table of all entries in the .debug_types
4828 (or .debug_types.dwo) section(s).
4829 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4830 otherwise it is NULL.
4831
4832 The result is a pointer to the hash table or NULL if there are no types.
4833
4834 Note: This function processes DWO files only, not DWP files. */
4835
4836 static void
4837 create_debug_types_hash_table (struct dwo_file *dwo_file,
4838 VEC (dwarf2_section_info_def) *types,
4839 htab_t &types_htab)
4840 {
4841 int ix;
4842 struct dwarf2_section_info *section;
4843
4844 if (VEC_empty (dwarf2_section_info_def, types))
4845 return;
4846
4847 for (ix = 0;
4848 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4849 ++ix)
4850 create_debug_type_hash_table (dwo_file, section, types_htab,
4851 rcuh_kind::TYPE);
4852 }
4853
4854 /* Create the hash table of all entries in the .debug_types section,
4855 and initialize all_type_units.
4856 The result is zero if there is an error (e.g. missing .debug_types section),
4857 otherwise non-zero. */
4858
4859 static int
4860 create_all_type_units (struct objfile *objfile)
4861 {
4862 htab_t types_htab = NULL;
4863 struct signatured_type **iter;
4864
4865 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
4866 rcuh_kind::COMPILE);
4867 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
4868 if (types_htab == NULL)
4869 {
4870 dwarf2_per_objfile->signatured_types = NULL;
4871 return 0;
4872 }
4873
4874 dwarf2_per_objfile->signatured_types = types_htab;
4875
4876 dwarf2_per_objfile->n_type_units
4877 = dwarf2_per_objfile->n_allocated_type_units
4878 = htab_elements (types_htab);
4879 dwarf2_per_objfile->all_type_units =
4880 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4881 iter = &dwarf2_per_objfile->all_type_units[0];
4882 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4883 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4884 == dwarf2_per_objfile->n_type_units);
4885
4886 return 1;
4887 }
4888
4889 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4890 If SLOT is non-NULL, it is the entry to use in the hash table.
4891 Otherwise we find one. */
4892
4893 static struct signatured_type *
4894 add_type_unit (ULONGEST sig, void **slot)
4895 {
4896 struct objfile *objfile = dwarf2_per_objfile->objfile;
4897 int n_type_units = dwarf2_per_objfile->n_type_units;
4898 struct signatured_type *sig_type;
4899
4900 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4901 ++n_type_units;
4902 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4903 {
4904 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4905 dwarf2_per_objfile->n_allocated_type_units = 1;
4906 dwarf2_per_objfile->n_allocated_type_units *= 2;
4907 dwarf2_per_objfile->all_type_units
4908 = XRESIZEVEC (struct signatured_type *,
4909 dwarf2_per_objfile->all_type_units,
4910 dwarf2_per_objfile->n_allocated_type_units);
4911 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4912 }
4913 dwarf2_per_objfile->n_type_units = n_type_units;
4914
4915 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4916 struct signatured_type);
4917 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4918 sig_type->signature = sig;
4919 sig_type->per_cu.is_debug_types = 1;
4920 if (dwarf2_per_objfile->using_index)
4921 {
4922 sig_type->per_cu.v.quick =
4923 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4924 struct dwarf2_per_cu_quick_data);
4925 }
4926
4927 if (slot == NULL)
4928 {
4929 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4930 sig_type, INSERT);
4931 }
4932 gdb_assert (*slot == NULL);
4933 *slot = sig_type;
4934 /* The rest of sig_type must be filled in by the caller. */
4935 return sig_type;
4936 }
4937
4938 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4939 Fill in SIG_ENTRY with DWO_ENTRY. */
4940
4941 static void
4942 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4943 struct signatured_type *sig_entry,
4944 struct dwo_unit *dwo_entry)
4945 {
4946 /* Make sure we're not clobbering something we don't expect to. */
4947 gdb_assert (! sig_entry->per_cu.queued);
4948 gdb_assert (sig_entry->per_cu.cu == NULL);
4949 if (dwarf2_per_objfile->using_index)
4950 {
4951 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4952 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4953 }
4954 else
4955 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4956 gdb_assert (sig_entry->signature == dwo_entry->signature);
4957 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4958 gdb_assert (sig_entry->type_unit_group == NULL);
4959 gdb_assert (sig_entry->dwo_unit == NULL);
4960
4961 sig_entry->per_cu.section = dwo_entry->section;
4962 sig_entry->per_cu.offset = dwo_entry->offset;
4963 sig_entry->per_cu.length = dwo_entry->length;
4964 sig_entry->per_cu.reading_dwo_directly = 1;
4965 sig_entry->per_cu.objfile = objfile;
4966 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4967 sig_entry->dwo_unit = dwo_entry;
4968 }
4969
4970 /* Subroutine of lookup_signatured_type.
4971 If we haven't read the TU yet, create the signatured_type data structure
4972 for a TU to be read in directly from a DWO file, bypassing the stub.
4973 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4974 using .gdb_index, then when reading a CU we want to stay in the DWO file
4975 containing that CU. Otherwise we could end up reading several other DWO
4976 files (due to comdat folding) to process the transitive closure of all the
4977 mentioned TUs, and that can be slow. The current DWO file will have every
4978 type signature that it needs.
4979 We only do this for .gdb_index because in the psymtab case we already have
4980 to read all the DWOs to build the type unit groups. */
4981
4982 static struct signatured_type *
4983 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4984 {
4985 struct objfile *objfile = dwarf2_per_objfile->objfile;
4986 struct dwo_file *dwo_file;
4987 struct dwo_unit find_dwo_entry, *dwo_entry;
4988 struct signatured_type find_sig_entry, *sig_entry;
4989 void **slot;
4990
4991 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4992
4993 /* If TU skeletons have been removed then we may not have read in any
4994 TUs yet. */
4995 if (dwarf2_per_objfile->signatured_types == NULL)
4996 {
4997 dwarf2_per_objfile->signatured_types
4998 = allocate_signatured_type_table (objfile);
4999 }
5000
5001 /* We only ever need to read in one copy of a signatured type.
5002 Use the global signatured_types array to do our own comdat-folding
5003 of types. If this is the first time we're reading this TU, and
5004 the TU has an entry in .gdb_index, replace the recorded data from
5005 .gdb_index with this TU. */
5006
5007 find_sig_entry.signature = sig;
5008 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5009 &find_sig_entry, INSERT);
5010 sig_entry = (struct signatured_type *) *slot;
5011
5012 /* We can get here with the TU already read, *or* in the process of being
5013 read. Don't reassign the global entry to point to this DWO if that's
5014 the case. Also note that if the TU is already being read, it may not
5015 have come from a DWO, the program may be a mix of Fission-compiled
5016 code and non-Fission-compiled code. */
5017
5018 /* Have we already tried to read this TU?
5019 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5020 needn't exist in the global table yet). */
5021 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5022 return sig_entry;
5023
5024 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5025 dwo_unit of the TU itself. */
5026 dwo_file = cu->dwo_unit->dwo_file;
5027
5028 /* Ok, this is the first time we're reading this TU. */
5029 if (dwo_file->tus == NULL)
5030 return NULL;
5031 find_dwo_entry.signature = sig;
5032 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5033 if (dwo_entry == NULL)
5034 return NULL;
5035
5036 /* If the global table doesn't have an entry for this TU, add one. */
5037 if (sig_entry == NULL)
5038 sig_entry = add_type_unit (sig, slot);
5039
5040 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5041 sig_entry->per_cu.tu_read = 1;
5042 return sig_entry;
5043 }
5044
5045 /* Subroutine of lookup_signatured_type.
5046 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5047 then try the DWP file. If the TU stub (skeleton) has been removed then
5048 it won't be in .gdb_index. */
5049
5050 static struct signatured_type *
5051 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5052 {
5053 struct objfile *objfile = dwarf2_per_objfile->objfile;
5054 struct dwp_file *dwp_file = get_dwp_file ();
5055 struct dwo_unit *dwo_entry;
5056 struct signatured_type find_sig_entry, *sig_entry;
5057 void **slot;
5058
5059 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5060 gdb_assert (dwp_file != NULL);
5061
5062 /* If TU skeletons have been removed then we may not have read in any
5063 TUs yet. */
5064 if (dwarf2_per_objfile->signatured_types == NULL)
5065 {
5066 dwarf2_per_objfile->signatured_types
5067 = allocate_signatured_type_table (objfile);
5068 }
5069
5070 find_sig_entry.signature = sig;
5071 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5072 &find_sig_entry, INSERT);
5073 sig_entry = (struct signatured_type *) *slot;
5074
5075 /* Have we already tried to read this TU?
5076 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5077 needn't exist in the global table yet). */
5078 if (sig_entry != NULL)
5079 return sig_entry;
5080
5081 if (dwp_file->tus == NULL)
5082 return NULL;
5083 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5084 sig, 1 /* is_debug_types */);
5085 if (dwo_entry == NULL)
5086 return NULL;
5087
5088 sig_entry = add_type_unit (sig, slot);
5089 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5090
5091 return sig_entry;
5092 }
5093
5094 /* Lookup a signature based type for DW_FORM_ref_sig8.
5095 Returns NULL if signature SIG is not present in the table.
5096 It is up to the caller to complain about this. */
5097
5098 static struct signatured_type *
5099 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5100 {
5101 if (cu->dwo_unit
5102 && dwarf2_per_objfile->using_index)
5103 {
5104 /* We're in a DWO/DWP file, and we're using .gdb_index.
5105 These cases require special processing. */
5106 if (get_dwp_file () == NULL)
5107 return lookup_dwo_signatured_type (cu, sig);
5108 else
5109 return lookup_dwp_signatured_type (cu, sig);
5110 }
5111 else
5112 {
5113 struct signatured_type find_entry, *entry;
5114
5115 if (dwarf2_per_objfile->signatured_types == NULL)
5116 return NULL;
5117 find_entry.signature = sig;
5118 entry = ((struct signatured_type *)
5119 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5120 return entry;
5121 }
5122 }
5123 \f
5124 /* Low level DIE reading support. */
5125
5126 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5127
5128 static void
5129 init_cu_die_reader (struct die_reader_specs *reader,
5130 struct dwarf2_cu *cu,
5131 struct dwarf2_section_info *section,
5132 struct dwo_file *dwo_file)
5133 {
5134 gdb_assert (section->readin && section->buffer != NULL);
5135 reader->abfd = get_section_bfd_owner (section);
5136 reader->cu = cu;
5137 reader->dwo_file = dwo_file;
5138 reader->die_section = section;
5139 reader->buffer = section->buffer;
5140 reader->buffer_end = section->buffer + section->size;
5141 reader->comp_dir = NULL;
5142 }
5143
5144 /* Subroutine of init_cutu_and_read_dies to simplify it.
5145 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5146 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5147 already.
5148
5149 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5150 from it to the DIE in the DWO. If NULL we are skipping the stub.
5151 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5152 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5153 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5154 STUB_COMP_DIR may be non-NULL.
5155 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5156 are filled in with the info of the DIE from the DWO file.
5157 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5158 provided an abbrev table to use.
5159 The result is non-zero if a valid (non-dummy) DIE was found. */
5160
5161 static int
5162 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5163 struct dwo_unit *dwo_unit,
5164 int abbrev_table_provided,
5165 struct die_info *stub_comp_unit_die,
5166 const char *stub_comp_dir,
5167 struct die_reader_specs *result_reader,
5168 const gdb_byte **result_info_ptr,
5169 struct die_info **result_comp_unit_die,
5170 int *result_has_children)
5171 {
5172 struct objfile *objfile = dwarf2_per_objfile->objfile;
5173 struct dwarf2_cu *cu = this_cu->cu;
5174 struct dwarf2_section_info *section;
5175 bfd *abfd;
5176 const gdb_byte *begin_info_ptr, *info_ptr;
5177 ULONGEST signature; /* Or dwo_id. */
5178 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5179 int i,num_extra_attrs;
5180 struct dwarf2_section_info *dwo_abbrev_section;
5181 struct attribute *attr;
5182 struct die_info *comp_unit_die;
5183
5184 /* At most one of these may be provided. */
5185 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5186
5187 /* These attributes aren't processed until later:
5188 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5189 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5190 referenced later. However, these attributes are found in the stub
5191 which we won't have later. In order to not impose this complication
5192 on the rest of the code, we read them here and copy them to the
5193 DWO CU/TU die. */
5194
5195 stmt_list = NULL;
5196 low_pc = NULL;
5197 high_pc = NULL;
5198 ranges = NULL;
5199 comp_dir = NULL;
5200
5201 if (stub_comp_unit_die != NULL)
5202 {
5203 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5204 DWO file. */
5205 if (! this_cu->is_debug_types)
5206 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5207 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5208 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5209 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5210 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5211
5212 /* There should be a DW_AT_addr_base attribute here (if needed).
5213 We need the value before we can process DW_FORM_GNU_addr_index. */
5214 cu->addr_base = 0;
5215 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5216 if (attr)
5217 cu->addr_base = DW_UNSND (attr);
5218
5219 /* There should be a DW_AT_ranges_base attribute here (if needed).
5220 We need the value before we can process DW_AT_ranges. */
5221 cu->ranges_base = 0;
5222 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5223 if (attr)
5224 cu->ranges_base = DW_UNSND (attr);
5225 }
5226 else if (stub_comp_dir != NULL)
5227 {
5228 /* Reconstruct the comp_dir attribute to simplify the code below. */
5229 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5230 comp_dir->name = DW_AT_comp_dir;
5231 comp_dir->form = DW_FORM_string;
5232 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5233 DW_STRING (comp_dir) = stub_comp_dir;
5234 }
5235
5236 /* Set up for reading the DWO CU/TU. */
5237 cu->dwo_unit = dwo_unit;
5238 section = dwo_unit->section;
5239 dwarf2_read_section (objfile, section);
5240 abfd = get_section_bfd_owner (section);
5241 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5242 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5243 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5244
5245 if (this_cu->is_debug_types)
5246 {
5247 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5248
5249 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5250 dwo_abbrev_section,
5251 info_ptr, rcuh_kind::TYPE);
5252 /* This is not an assert because it can be caused by bad debug info. */
5253 if (sig_type->signature != cu->header.signature)
5254 {
5255 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5256 " TU at offset 0x%x [in module %s]"),
5257 hex_string (sig_type->signature),
5258 hex_string (cu->header.signature),
5259 dwo_unit->offset.sect_off,
5260 bfd_get_filename (abfd));
5261 }
5262 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5263 /* For DWOs coming from DWP files, we don't know the CU length
5264 nor the type's offset in the TU until now. */
5265 dwo_unit->length = get_cu_length (&cu->header);
5266 dwo_unit->type_offset_in_tu = cu->header.type_offset_in_tu;
5267
5268 /* Establish the type offset that can be used to lookup the type.
5269 For DWO files, we don't know it until now. */
5270 sig_type->type_offset_in_section.sect_off =
5271 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5272 }
5273 else
5274 {
5275 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5276 dwo_abbrev_section,
5277 info_ptr, rcuh_kind::COMPILE);
5278 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5279 /* For DWOs coming from DWP files, we don't know the CU length
5280 until now. */
5281 dwo_unit->length = get_cu_length (&cu->header);
5282 }
5283
5284 /* Replace the CU's original abbrev table with the DWO's.
5285 Reminder: We can't read the abbrev table until we've read the header. */
5286 if (abbrev_table_provided)
5287 {
5288 /* Don't free the provided abbrev table, the caller of
5289 init_cutu_and_read_dies owns it. */
5290 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5291 /* Ensure the DWO abbrev table gets freed. */
5292 make_cleanup (dwarf2_free_abbrev_table, cu);
5293 }
5294 else
5295 {
5296 dwarf2_free_abbrev_table (cu);
5297 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5298 /* Leave any existing abbrev table cleanup as is. */
5299 }
5300
5301 /* Read in the die, but leave space to copy over the attributes
5302 from the stub. This has the benefit of simplifying the rest of
5303 the code - all the work to maintain the illusion of a single
5304 DW_TAG_{compile,type}_unit DIE is done here. */
5305 num_extra_attrs = ((stmt_list != NULL)
5306 + (low_pc != NULL)
5307 + (high_pc != NULL)
5308 + (ranges != NULL)
5309 + (comp_dir != NULL));
5310 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5311 result_has_children, num_extra_attrs);
5312
5313 /* Copy over the attributes from the stub to the DIE we just read in. */
5314 comp_unit_die = *result_comp_unit_die;
5315 i = comp_unit_die->num_attrs;
5316 if (stmt_list != NULL)
5317 comp_unit_die->attrs[i++] = *stmt_list;
5318 if (low_pc != NULL)
5319 comp_unit_die->attrs[i++] = *low_pc;
5320 if (high_pc != NULL)
5321 comp_unit_die->attrs[i++] = *high_pc;
5322 if (ranges != NULL)
5323 comp_unit_die->attrs[i++] = *ranges;
5324 if (comp_dir != NULL)
5325 comp_unit_die->attrs[i++] = *comp_dir;
5326 comp_unit_die->num_attrs += num_extra_attrs;
5327
5328 if (dwarf_die_debug)
5329 {
5330 fprintf_unfiltered (gdb_stdlog,
5331 "Read die from %s@0x%x of %s:\n",
5332 get_section_name (section),
5333 (unsigned) (begin_info_ptr - section->buffer),
5334 bfd_get_filename (abfd));
5335 dump_die (comp_unit_die, dwarf_die_debug);
5336 }
5337
5338 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5339 TUs by skipping the stub and going directly to the entry in the DWO file.
5340 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5341 to get it via circuitous means. Blech. */
5342 if (comp_dir != NULL)
5343 result_reader->comp_dir = DW_STRING (comp_dir);
5344
5345 /* Skip dummy compilation units. */
5346 if (info_ptr >= begin_info_ptr + dwo_unit->length
5347 || peek_abbrev_code (abfd, info_ptr) == 0)
5348 return 0;
5349
5350 *result_info_ptr = info_ptr;
5351 return 1;
5352 }
5353
5354 /* Subroutine of init_cutu_and_read_dies to simplify it.
5355 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5356 Returns NULL if the specified DWO unit cannot be found. */
5357
5358 static struct dwo_unit *
5359 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5360 struct die_info *comp_unit_die)
5361 {
5362 struct dwarf2_cu *cu = this_cu->cu;
5363 struct attribute *attr;
5364 ULONGEST signature;
5365 struct dwo_unit *dwo_unit;
5366 const char *comp_dir, *dwo_name;
5367
5368 gdb_assert (cu != NULL);
5369
5370 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5371 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5372 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5373
5374 if (this_cu->is_debug_types)
5375 {
5376 struct signatured_type *sig_type;
5377
5378 /* Since this_cu is the first member of struct signatured_type,
5379 we can go from a pointer to one to a pointer to the other. */
5380 sig_type = (struct signatured_type *) this_cu;
5381 signature = sig_type->signature;
5382 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5383 }
5384 else
5385 {
5386 struct attribute *attr;
5387
5388 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5389 if (! attr)
5390 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5391 " [in module %s]"),
5392 dwo_name, objfile_name (this_cu->objfile));
5393 signature = DW_UNSND (attr);
5394 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5395 signature);
5396 }
5397
5398 return dwo_unit;
5399 }
5400
5401 /* Subroutine of init_cutu_and_read_dies to simplify it.
5402 See it for a description of the parameters.
5403 Read a TU directly from a DWO file, bypassing the stub.
5404
5405 Note: This function could be a little bit simpler if we shared cleanups
5406 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5407 to do, so we keep this function self-contained. Or we could move this
5408 into our caller, but it's complex enough already. */
5409
5410 static void
5411 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5412 int use_existing_cu, int keep,
5413 die_reader_func_ftype *die_reader_func,
5414 void *data)
5415 {
5416 struct dwarf2_cu *cu;
5417 struct signatured_type *sig_type;
5418 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5419 struct die_reader_specs reader;
5420 const gdb_byte *info_ptr;
5421 struct die_info *comp_unit_die;
5422 int has_children;
5423
5424 /* Verify we can do the following downcast, and that we have the
5425 data we need. */
5426 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5427 sig_type = (struct signatured_type *) this_cu;
5428 gdb_assert (sig_type->dwo_unit != NULL);
5429
5430 cleanups = make_cleanup (null_cleanup, NULL);
5431
5432 if (use_existing_cu && this_cu->cu != NULL)
5433 {
5434 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5435 cu = this_cu->cu;
5436 /* There's no need to do the rereading_dwo_cu handling that
5437 init_cutu_and_read_dies does since we don't read the stub. */
5438 }
5439 else
5440 {
5441 /* If !use_existing_cu, this_cu->cu must be NULL. */
5442 gdb_assert (this_cu->cu == NULL);
5443 cu = XNEW (struct dwarf2_cu);
5444 init_one_comp_unit (cu, this_cu);
5445 /* If an error occurs while loading, release our storage. */
5446 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5447 }
5448
5449 /* A future optimization, if needed, would be to use an existing
5450 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5451 could share abbrev tables. */
5452
5453 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5454 0 /* abbrev_table_provided */,
5455 NULL /* stub_comp_unit_die */,
5456 sig_type->dwo_unit->dwo_file->comp_dir,
5457 &reader, &info_ptr,
5458 &comp_unit_die, &has_children) == 0)
5459 {
5460 /* Dummy die. */
5461 do_cleanups (cleanups);
5462 return;
5463 }
5464
5465 /* All the "real" work is done here. */
5466 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5467
5468 /* This duplicates the code in init_cutu_and_read_dies,
5469 but the alternative is making the latter more complex.
5470 This function is only for the special case of using DWO files directly:
5471 no point in overly complicating the general case just to handle this. */
5472 if (free_cu_cleanup != NULL)
5473 {
5474 if (keep)
5475 {
5476 /* We've successfully allocated this compilation unit. Let our
5477 caller clean it up when finished with it. */
5478 discard_cleanups (free_cu_cleanup);
5479
5480 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5481 So we have to manually free the abbrev table. */
5482 dwarf2_free_abbrev_table (cu);
5483
5484 /* Link this CU into read_in_chain. */
5485 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5486 dwarf2_per_objfile->read_in_chain = this_cu;
5487 }
5488 else
5489 do_cleanups (free_cu_cleanup);
5490 }
5491
5492 do_cleanups (cleanups);
5493 }
5494
5495 /* Initialize a CU (or TU) and read its DIEs.
5496 If the CU defers to a DWO file, read the DWO file as well.
5497
5498 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5499 Otherwise the table specified in the comp unit header is read in and used.
5500 This is an optimization for when we already have the abbrev table.
5501
5502 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5503 Otherwise, a new CU is allocated with xmalloc.
5504
5505 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5506 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5507
5508 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5509 linker) then DIE_READER_FUNC will not get called. */
5510
5511 static void
5512 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5513 struct abbrev_table *abbrev_table,
5514 int use_existing_cu, int keep,
5515 die_reader_func_ftype *die_reader_func,
5516 void *data)
5517 {
5518 struct objfile *objfile = dwarf2_per_objfile->objfile;
5519 struct dwarf2_section_info *section = this_cu->section;
5520 bfd *abfd = get_section_bfd_owner (section);
5521 struct dwarf2_cu *cu;
5522 const gdb_byte *begin_info_ptr, *info_ptr;
5523 struct die_reader_specs reader;
5524 struct die_info *comp_unit_die;
5525 int has_children;
5526 struct attribute *attr;
5527 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5528 struct signatured_type *sig_type = NULL;
5529 struct dwarf2_section_info *abbrev_section;
5530 /* Non-zero if CU currently points to a DWO file and we need to
5531 reread it. When this happens we need to reread the skeleton die
5532 before we can reread the DWO file (this only applies to CUs, not TUs). */
5533 int rereading_dwo_cu = 0;
5534
5535 if (dwarf_die_debug)
5536 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5537 this_cu->is_debug_types ? "type" : "comp",
5538 this_cu->offset.sect_off);
5539
5540 if (use_existing_cu)
5541 gdb_assert (keep);
5542
5543 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5544 file (instead of going through the stub), short-circuit all of this. */
5545 if (this_cu->reading_dwo_directly)
5546 {
5547 /* Narrow down the scope of possibilities to have to understand. */
5548 gdb_assert (this_cu->is_debug_types);
5549 gdb_assert (abbrev_table == NULL);
5550 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5551 die_reader_func, data);
5552 return;
5553 }
5554
5555 cleanups = make_cleanup (null_cleanup, NULL);
5556
5557 /* This is cheap if the section is already read in. */
5558 dwarf2_read_section (objfile, section);
5559
5560 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5561
5562 abbrev_section = get_abbrev_section_for_cu (this_cu);
5563
5564 if (use_existing_cu && this_cu->cu != NULL)
5565 {
5566 cu = this_cu->cu;
5567 /* If this CU is from a DWO file we need to start over, we need to
5568 refetch the attributes from the skeleton CU.
5569 This could be optimized by retrieving those attributes from when we
5570 were here the first time: the previous comp_unit_die was stored in
5571 comp_unit_obstack. But there's no data yet that we need this
5572 optimization. */
5573 if (cu->dwo_unit != NULL)
5574 rereading_dwo_cu = 1;
5575 }
5576 else
5577 {
5578 /* If !use_existing_cu, this_cu->cu must be NULL. */
5579 gdb_assert (this_cu->cu == NULL);
5580 cu = XNEW (struct dwarf2_cu);
5581 init_one_comp_unit (cu, this_cu);
5582 /* If an error occurs while loading, release our storage. */
5583 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5584 }
5585
5586 /* Get the header. */
5587 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5588 {
5589 /* We already have the header, there's no need to read it in again. */
5590 info_ptr += cu->header.first_die_offset.cu_off;
5591 }
5592 else
5593 {
5594 if (this_cu->is_debug_types)
5595 {
5596 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5597 abbrev_section, info_ptr,
5598 rcuh_kind::TYPE);
5599
5600 /* Since per_cu is the first member of struct signatured_type,
5601 we can go from a pointer to one to a pointer to the other. */
5602 sig_type = (struct signatured_type *) this_cu;
5603 gdb_assert (sig_type->signature == cu->header.signature);
5604 gdb_assert (sig_type->type_offset_in_tu.cu_off
5605 == cu->header.type_offset_in_tu.cu_off);
5606 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5607
5608 /* LENGTH has not been set yet for type units if we're
5609 using .gdb_index. */
5610 this_cu->length = get_cu_length (&cu->header);
5611
5612 /* Establish the type offset that can be used to lookup the type. */
5613 sig_type->type_offset_in_section.sect_off =
5614 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5615
5616 this_cu->dwarf_version = cu->header.version;
5617 }
5618 else
5619 {
5620 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5621 abbrev_section,
5622 info_ptr,
5623 rcuh_kind::COMPILE);
5624
5625 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5626 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5627 this_cu->dwarf_version = cu->header.version;
5628 }
5629 }
5630
5631 /* Skip dummy compilation units. */
5632 if (info_ptr >= begin_info_ptr + this_cu->length
5633 || peek_abbrev_code (abfd, info_ptr) == 0)
5634 {
5635 do_cleanups (cleanups);
5636 return;
5637 }
5638
5639 /* If we don't have them yet, read the abbrevs for this compilation unit.
5640 And if we need to read them now, make sure they're freed when we're
5641 done. Note that it's important that if the CU had an abbrev table
5642 on entry we don't free it when we're done: Somewhere up the call stack
5643 it may be in use. */
5644 if (abbrev_table != NULL)
5645 {
5646 gdb_assert (cu->abbrev_table == NULL);
5647 gdb_assert (cu->header.abbrev_offset.sect_off
5648 == abbrev_table->offset.sect_off);
5649 cu->abbrev_table = abbrev_table;
5650 }
5651 else if (cu->abbrev_table == NULL)
5652 {
5653 dwarf2_read_abbrevs (cu, abbrev_section);
5654 make_cleanup (dwarf2_free_abbrev_table, cu);
5655 }
5656 else if (rereading_dwo_cu)
5657 {
5658 dwarf2_free_abbrev_table (cu);
5659 dwarf2_read_abbrevs (cu, abbrev_section);
5660 }
5661
5662 /* Read the top level CU/TU die. */
5663 init_cu_die_reader (&reader, cu, section, NULL);
5664 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5665
5666 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5667 from the DWO file.
5668 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5669 DWO CU, that this test will fail (the attribute will not be present). */
5670 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5671 if (attr)
5672 {
5673 struct dwo_unit *dwo_unit;
5674 struct die_info *dwo_comp_unit_die;
5675
5676 if (has_children)
5677 {
5678 complaint (&symfile_complaints,
5679 _("compilation unit with DW_AT_GNU_dwo_name"
5680 " has children (offset 0x%x) [in module %s]"),
5681 this_cu->offset.sect_off, bfd_get_filename (abfd));
5682 }
5683 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5684 if (dwo_unit != NULL)
5685 {
5686 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5687 abbrev_table != NULL,
5688 comp_unit_die, NULL,
5689 &reader, &info_ptr,
5690 &dwo_comp_unit_die, &has_children) == 0)
5691 {
5692 /* Dummy die. */
5693 do_cleanups (cleanups);
5694 return;
5695 }
5696 comp_unit_die = dwo_comp_unit_die;
5697 }
5698 else
5699 {
5700 /* Yikes, we couldn't find the rest of the DIE, we only have
5701 the stub. A complaint has already been logged. There's
5702 not much more we can do except pass on the stub DIE to
5703 die_reader_func. We don't want to throw an error on bad
5704 debug info. */
5705 }
5706 }
5707
5708 /* All of the above is setup for this call. Yikes. */
5709 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5710
5711 /* Done, clean up. */
5712 if (free_cu_cleanup != NULL)
5713 {
5714 if (keep)
5715 {
5716 /* We've successfully allocated this compilation unit. Let our
5717 caller clean it up when finished with it. */
5718 discard_cleanups (free_cu_cleanup);
5719
5720 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5721 So we have to manually free the abbrev table. */
5722 dwarf2_free_abbrev_table (cu);
5723
5724 /* Link this CU into read_in_chain. */
5725 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5726 dwarf2_per_objfile->read_in_chain = this_cu;
5727 }
5728 else
5729 do_cleanups (free_cu_cleanup);
5730 }
5731
5732 do_cleanups (cleanups);
5733 }
5734
5735 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5736 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5737 to have already done the lookup to find the DWO file).
5738
5739 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5740 THIS_CU->is_debug_types, but nothing else.
5741
5742 We fill in THIS_CU->length.
5743
5744 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5745 linker) then DIE_READER_FUNC will not get called.
5746
5747 THIS_CU->cu is always freed when done.
5748 This is done in order to not leave THIS_CU->cu in a state where we have
5749 to care whether it refers to the "main" CU or the DWO CU. */
5750
5751 static void
5752 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5753 struct dwo_file *dwo_file,
5754 die_reader_func_ftype *die_reader_func,
5755 void *data)
5756 {
5757 struct objfile *objfile = dwarf2_per_objfile->objfile;
5758 struct dwarf2_section_info *section = this_cu->section;
5759 bfd *abfd = get_section_bfd_owner (section);
5760 struct dwarf2_section_info *abbrev_section;
5761 struct dwarf2_cu cu;
5762 const gdb_byte *begin_info_ptr, *info_ptr;
5763 struct die_reader_specs reader;
5764 struct cleanup *cleanups;
5765 struct die_info *comp_unit_die;
5766 int has_children;
5767
5768 if (dwarf_die_debug)
5769 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5770 this_cu->is_debug_types ? "type" : "comp",
5771 this_cu->offset.sect_off);
5772
5773 gdb_assert (this_cu->cu == NULL);
5774
5775 abbrev_section = (dwo_file != NULL
5776 ? &dwo_file->sections.abbrev
5777 : get_abbrev_section_for_cu (this_cu));
5778
5779 /* This is cheap if the section is already read in. */
5780 dwarf2_read_section (objfile, section);
5781
5782 init_one_comp_unit (&cu, this_cu);
5783
5784 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5785
5786 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5787 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5788 abbrev_section, info_ptr,
5789 (this_cu->is_debug_types
5790 ? rcuh_kind::TYPE
5791 : rcuh_kind::COMPILE));
5792
5793 this_cu->length = get_cu_length (&cu.header);
5794
5795 /* Skip dummy compilation units. */
5796 if (info_ptr >= begin_info_ptr + this_cu->length
5797 || peek_abbrev_code (abfd, info_ptr) == 0)
5798 {
5799 do_cleanups (cleanups);
5800 return;
5801 }
5802
5803 dwarf2_read_abbrevs (&cu, abbrev_section);
5804 make_cleanup (dwarf2_free_abbrev_table, &cu);
5805
5806 init_cu_die_reader (&reader, &cu, section, dwo_file);
5807 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5808
5809 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5810
5811 do_cleanups (cleanups);
5812 }
5813
5814 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5815 does not lookup the specified DWO file.
5816 This cannot be used to read DWO files.
5817
5818 THIS_CU->cu is always freed when done.
5819 This is done in order to not leave THIS_CU->cu in a state where we have
5820 to care whether it refers to the "main" CU or the DWO CU.
5821 We can revisit this if the data shows there's a performance issue. */
5822
5823 static void
5824 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5825 die_reader_func_ftype *die_reader_func,
5826 void *data)
5827 {
5828 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5829 }
5830 \f
5831 /* Type Unit Groups.
5832
5833 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5834 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5835 so that all types coming from the same compilation (.o file) are grouped
5836 together. A future step could be to put the types in the same symtab as
5837 the CU the types ultimately came from. */
5838
5839 static hashval_t
5840 hash_type_unit_group (const void *item)
5841 {
5842 const struct type_unit_group *tu_group
5843 = (const struct type_unit_group *) item;
5844
5845 return hash_stmt_list_entry (&tu_group->hash);
5846 }
5847
5848 static int
5849 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5850 {
5851 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5852 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5853
5854 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5855 }
5856
5857 /* Allocate a hash table for type unit groups. */
5858
5859 static htab_t
5860 allocate_type_unit_groups_table (void)
5861 {
5862 return htab_create_alloc_ex (3,
5863 hash_type_unit_group,
5864 eq_type_unit_group,
5865 NULL,
5866 &dwarf2_per_objfile->objfile->objfile_obstack,
5867 hashtab_obstack_allocate,
5868 dummy_obstack_deallocate);
5869 }
5870
5871 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5872 partial symtabs. We combine several TUs per psymtab to not let the size
5873 of any one psymtab grow too big. */
5874 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5875 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5876
5877 /* Helper routine for get_type_unit_group.
5878 Create the type_unit_group object used to hold one or more TUs. */
5879
5880 static struct type_unit_group *
5881 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5882 {
5883 struct objfile *objfile = dwarf2_per_objfile->objfile;
5884 struct dwarf2_per_cu_data *per_cu;
5885 struct type_unit_group *tu_group;
5886
5887 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5888 struct type_unit_group);
5889 per_cu = &tu_group->per_cu;
5890 per_cu->objfile = objfile;
5891
5892 if (dwarf2_per_objfile->using_index)
5893 {
5894 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5895 struct dwarf2_per_cu_quick_data);
5896 }
5897 else
5898 {
5899 unsigned int line_offset = line_offset_struct.sect_off;
5900 struct partial_symtab *pst;
5901 char *name;
5902
5903 /* Give the symtab a useful name for debug purposes. */
5904 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5905 name = xstrprintf ("<type_units_%d>",
5906 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5907 else
5908 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5909
5910 pst = create_partial_symtab (per_cu, name);
5911 pst->anonymous = 1;
5912
5913 xfree (name);
5914 }
5915
5916 tu_group->hash.dwo_unit = cu->dwo_unit;
5917 tu_group->hash.line_offset = line_offset_struct;
5918
5919 return tu_group;
5920 }
5921
5922 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5923 STMT_LIST is a DW_AT_stmt_list attribute. */
5924
5925 static struct type_unit_group *
5926 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5927 {
5928 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5929 struct type_unit_group *tu_group;
5930 void **slot;
5931 unsigned int line_offset;
5932 struct type_unit_group type_unit_group_for_lookup;
5933
5934 if (dwarf2_per_objfile->type_unit_groups == NULL)
5935 {
5936 dwarf2_per_objfile->type_unit_groups =
5937 allocate_type_unit_groups_table ();
5938 }
5939
5940 /* Do we need to create a new group, or can we use an existing one? */
5941
5942 if (stmt_list)
5943 {
5944 line_offset = DW_UNSND (stmt_list);
5945 ++tu_stats->nr_symtab_sharers;
5946 }
5947 else
5948 {
5949 /* Ugh, no stmt_list. Rare, but we have to handle it.
5950 We can do various things here like create one group per TU or
5951 spread them over multiple groups to split up the expansion work.
5952 To avoid worst case scenarios (too many groups or too large groups)
5953 we, umm, group them in bunches. */
5954 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5955 | (tu_stats->nr_stmt_less_type_units
5956 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5957 ++tu_stats->nr_stmt_less_type_units;
5958 }
5959
5960 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5961 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5962 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5963 &type_unit_group_for_lookup, INSERT);
5964 if (*slot != NULL)
5965 {
5966 tu_group = (struct type_unit_group *) *slot;
5967 gdb_assert (tu_group != NULL);
5968 }
5969 else
5970 {
5971 sect_offset line_offset_struct;
5972
5973 line_offset_struct.sect_off = line_offset;
5974 tu_group = create_type_unit_group (cu, line_offset_struct);
5975 *slot = tu_group;
5976 ++tu_stats->nr_symtabs;
5977 }
5978
5979 return tu_group;
5980 }
5981 \f
5982 /* Partial symbol tables. */
5983
5984 /* Create a psymtab named NAME and assign it to PER_CU.
5985
5986 The caller must fill in the following details:
5987 dirname, textlow, texthigh. */
5988
5989 static struct partial_symtab *
5990 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5991 {
5992 struct objfile *objfile = per_cu->objfile;
5993 struct partial_symtab *pst;
5994
5995 pst = start_psymtab_common (objfile, name, 0,
5996 objfile->global_psymbols.next,
5997 objfile->static_psymbols.next);
5998
5999 pst->psymtabs_addrmap_supported = 1;
6000
6001 /* This is the glue that links PST into GDB's symbol API. */
6002 pst->read_symtab_private = per_cu;
6003 pst->read_symtab = dwarf2_read_symtab;
6004 per_cu->v.psymtab = pst;
6005
6006 return pst;
6007 }
6008
6009 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6010 type. */
6011
6012 struct process_psymtab_comp_unit_data
6013 {
6014 /* True if we are reading a DW_TAG_partial_unit. */
6015
6016 int want_partial_unit;
6017
6018 /* The "pretend" language that is used if the CU doesn't declare a
6019 language. */
6020
6021 enum language pretend_language;
6022 };
6023
6024 /* die_reader_func for process_psymtab_comp_unit. */
6025
6026 static void
6027 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6028 const gdb_byte *info_ptr,
6029 struct die_info *comp_unit_die,
6030 int has_children,
6031 void *data)
6032 {
6033 struct dwarf2_cu *cu = reader->cu;
6034 struct objfile *objfile = cu->objfile;
6035 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6036 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6037 CORE_ADDR baseaddr;
6038 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6039 struct partial_symtab *pst;
6040 enum pc_bounds_kind cu_bounds_kind;
6041 const char *filename;
6042 struct process_psymtab_comp_unit_data *info
6043 = (struct process_psymtab_comp_unit_data *) data;
6044
6045 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6046 return;
6047
6048 gdb_assert (! per_cu->is_debug_types);
6049
6050 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6051
6052 cu->list_in_scope = &file_symbols;
6053
6054 /* Allocate a new partial symbol table structure. */
6055 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6056 if (filename == NULL)
6057 filename = "";
6058
6059 pst = create_partial_symtab (per_cu, filename);
6060
6061 /* This must be done before calling dwarf2_build_include_psymtabs. */
6062 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6063
6064 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6065
6066 dwarf2_find_base_address (comp_unit_die, cu);
6067
6068 /* Possibly set the default values of LOWPC and HIGHPC from
6069 `DW_AT_ranges'. */
6070 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6071 &best_highpc, cu, pst);
6072 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6073 /* Store the contiguous range if it is not empty; it can be empty for
6074 CUs with no code. */
6075 addrmap_set_empty (objfile->psymtabs_addrmap,
6076 gdbarch_adjust_dwarf2_addr (gdbarch,
6077 best_lowpc + baseaddr),
6078 gdbarch_adjust_dwarf2_addr (gdbarch,
6079 best_highpc + baseaddr) - 1,
6080 pst);
6081
6082 /* Check if comp unit has_children.
6083 If so, read the rest of the partial symbols from this comp unit.
6084 If not, there's no more debug_info for this comp unit. */
6085 if (has_children)
6086 {
6087 struct partial_die_info *first_die;
6088 CORE_ADDR lowpc, highpc;
6089
6090 lowpc = ((CORE_ADDR) -1);
6091 highpc = ((CORE_ADDR) 0);
6092
6093 first_die = load_partial_dies (reader, info_ptr, 1);
6094
6095 scan_partial_symbols (first_die, &lowpc, &highpc,
6096 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6097
6098 /* If we didn't find a lowpc, set it to highpc to avoid
6099 complaints from `maint check'. */
6100 if (lowpc == ((CORE_ADDR) -1))
6101 lowpc = highpc;
6102
6103 /* If the compilation unit didn't have an explicit address range,
6104 then use the information extracted from its child dies. */
6105 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6106 {
6107 best_lowpc = lowpc;
6108 best_highpc = highpc;
6109 }
6110 }
6111 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6112 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6113
6114 end_psymtab_common (objfile, pst);
6115
6116 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6117 {
6118 int i;
6119 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6120 struct dwarf2_per_cu_data *iter;
6121
6122 /* Fill in 'dependencies' here; we fill in 'users' in a
6123 post-pass. */
6124 pst->number_of_dependencies = len;
6125 pst->dependencies =
6126 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6127 for (i = 0;
6128 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6129 i, iter);
6130 ++i)
6131 pst->dependencies[i] = iter->v.psymtab;
6132
6133 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6134 }
6135
6136 /* Get the list of files included in the current compilation unit,
6137 and build a psymtab for each of them. */
6138 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6139
6140 if (dwarf_read_debug)
6141 {
6142 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6143
6144 fprintf_unfiltered (gdb_stdlog,
6145 "Psymtab for %s unit @0x%x: %s - %s"
6146 ", %d global, %d static syms\n",
6147 per_cu->is_debug_types ? "type" : "comp",
6148 per_cu->offset.sect_off,
6149 paddress (gdbarch, pst->textlow),
6150 paddress (gdbarch, pst->texthigh),
6151 pst->n_global_syms, pst->n_static_syms);
6152 }
6153 }
6154
6155 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6156 Process compilation unit THIS_CU for a psymtab. */
6157
6158 static void
6159 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6160 int want_partial_unit,
6161 enum language pretend_language)
6162 {
6163 struct process_psymtab_comp_unit_data info;
6164
6165 /* If this compilation unit was already read in, free the
6166 cached copy in order to read it in again. This is
6167 necessary because we skipped some symbols when we first
6168 read in the compilation unit (see load_partial_dies).
6169 This problem could be avoided, but the benefit is unclear. */
6170 if (this_cu->cu != NULL)
6171 free_one_cached_comp_unit (this_cu);
6172
6173 gdb_assert (! this_cu->is_debug_types);
6174 info.want_partial_unit = want_partial_unit;
6175 info.pretend_language = pretend_language;
6176 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6177 process_psymtab_comp_unit_reader,
6178 &info);
6179
6180 /* Age out any secondary CUs. */
6181 age_cached_comp_units ();
6182 }
6183
6184 /* Reader function for build_type_psymtabs. */
6185
6186 static void
6187 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6188 const gdb_byte *info_ptr,
6189 struct die_info *type_unit_die,
6190 int has_children,
6191 void *data)
6192 {
6193 struct objfile *objfile = dwarf2_per_objfile->objfile;
6194 struct dwarf2_cu *cu = reader->cu;
6195 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6196 struct signatured_type *sig_type;
6197 struct type_unit_group *tu_group;
6198 struct attribute *attr;
6199 struct partial_die_info *first_die;
6200 CORE_ADDR lowpc, highpc;
6201 struct partial_symtab *pst;
6202
6203 gdb_assert (data == NULL);
6204 gdb_assert (per_cu->is_debug_types);
6205 sig_type = (struct signatured_type *) per_cu;
6206
6207 if (! has_children)
6208 return;
6209
6210 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6211 tu_group = get_type_unit_group (cu, attr);
6212
6213 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6214
6215 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6216 cu->list_in_scope = &file_symbols;
6217 pst = create_partial_symtab (per_cu, "");
6218 pst->anonymous = 1;
6219
6220 first_die = load_partial_dies (reader, info_ptr, 1);
6221
6222 lowpc = (CORE_ADDR) -1;
6223 highpc = (CORE_ADDR) 0;
6224 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6225
6226 end_psymtab_common (objfile, pst);
6227 }
6228
6229 /* Struct used to sort TUs by their abbreviation table offset. */
6230
6231 struct tu_abbrev_offset
6232 {
6233 struct signatured_type *sig_type;
6234 sect_offset abbrev_offset;
6235 };
6236
6237 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6238
6239 static int
6240 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6241 {
6242 const struct tu_abbrev_offset * const *a
6243 = (const struct tu_abbrev_offset * const*) ap;
6244 const struct tu_abbrev_offset * const *b
6245 = (const struct tu_abbrev_offset * const*) bp;
6246 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6247 unsigned int boff = (*b)->abbrev_offset.sect_off;
6248
6249 return (aoff > boff) - (aoff < boff);
6250 }
6251
6252 /* Efficiently read all the type units.
6253 This does the bulk of the work for build_type_psymtabs.
6254
6255 The efficiency is because we sort TUs by the abbrev table they use and
6256 only read each abbrev table once. In one program there are 200K TUs
6257 sharing 8K abbrev tables.
6258
6259 The main purpose of this function is to support building the
6260 dwarf2_per_objfile->type_unit_groups table.
6261 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6262 can collapse the search space by grouping them by stmt_list.
6263 The savings can be significant, in the same program from above the 200K TUs
6264 share 8K stmt_list tables.
6265
6266 FUNC is expected to call get_type_unit_group, which will create the
6267 struct type_unit_group if necessary and add it to
6268 dwarf2_per_objfile->type_unit_groups. */
6269
6270 static void
6271 build_type_psymtabs_1 (void)
6272 {
6273 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6274 struct cleanup *cleanups;
6275 struct abbrev_table *abbrev_table;
6276 sect_offset abbrev_offset;
6277 struct tu_abbrev_offset *sorted_by_abbrev;
6278 int i;
6279
6280 /* It's up to the caller to not call us multiple times. */
6281 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6282
6283 if (dwarf2_per_objfile->n_type_units == 0)
6284 return;
6285
6286 /* TUs typically share abbrev tables, and there can be way more TUs than
6287 abbrev tables. Sort by abbrev table to reduce the number of times we
6288 read each abbrev table in.
6289 Alternatives are to punt or to maintain a cache of abbrev tables.
6290 This is simpler and efficient enough for now.
6291
6292 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6293 symtab to use). Typically TUs with the same abbrev offset have the same
6294 stmt_list value too so in practice this should work well.
6295
6296 The basic algorithm here is:
6297
6298 sort TUs by abbrev table
6299 for each TU with same abbrev table:
6300 read abbrev table if first user
6301 read TU top level DIE
6302 [IWBN if DWO skeletons had DW_AT_stmt_list]
6303 call FUNC */
6304
6305 if (dwarf_read_debug)
6306 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6307
6308 /* Sort in a separate table to maintain the order of all_type_units
6309 for .gdb_index: TU indices directly index all_type_units. */
6310 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6311 dwarf2_per_objfile->n_type_units);
6312 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6313 {
6314 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6315
6316 sorted_by_abbrev[i].sig_type = sig_type;
6317 sorted_by_abbrev[i].abbrev_offset =
6318 read_abbrev_offset (sig_type->per_cu.section,
6319 sig_type->per_cu.offset);
6320 }
6321 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6322 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6323 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6324
6325 abbrev_offset.sect_off = ~(unsigned) 0;
6326 abbrev_table = NULL;
6327 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6328
6329 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6330 {
6331 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6332
6333 /* Switch to the next abbrev table if necessary. */
6334 if (abbrev_table == NULL
6335 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6336 {
6337 if (abbrev_table != NULL)
6338 {
6339 abbrev_table_free (abbrev_table);
6340 /* Reset to NULL in case abbrev_table_read_table throws
6341 an error: abbrev_table_free_cleanup will get called. */
6342 abbrev_table = NULL;
6343 }
6344 abbrev_offset = tu->abbrev_offset;
6345 abbrev_table =
6346 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6347 abbrev_offset);
6348 ++tu_stats->nr_uniq_abbrev_tables;
6349 }
6350
6351 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6352 build_type_psymtabs_reader, NULL);
6353 }
6354
6355 do_cleanups (cleanups);
6356 }
6357
6358 /* Print collected type unit statistics. */
6359
6360 static void
6361 print_tu_stats (void)
6362 {
6363 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6364
6365 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6366 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6367 dwarf2_per_objfile->n_type_units);
6368 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6369 tu_stats->nr_uniq_abbrev_tables);
6370 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6371 tu_stats->nr_symtabs);
6372 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6373 tu_stats->nr_symtab_sharers);
6374 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6375 tu_stats->nr_stmt_less_type_units);
6376 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6377 tu_stats->nr_all_type_units_reallocs);
6378 }
6379
6380 /* Traversal function for build_type_psymtabs. */
6381
6382 static int
6383 build_type_psymtab_dependencies (void **slot, void *info)
6384 {
6385 struct objfile *objfile = dwarf2_per_objfile->objfile;
6386 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6387 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6388 struct partial_symtab *pst = per_cu->v.psymtab;
6389 int len = VEC_length (sig_type_ptr, tu_group->tus);
6390 struct signatured_type *iter;
6391 int i;
6392
6393 gdb_assert (len > 0);
6394 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6395
6396 pst->number_of_dependencies = len;
6397 pst->dependencies =
6398 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6399 for (i = 0;
6400 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6401 ++i)
6402 {
6403 gdb_assert (iter->per_cu.is_debug_types);
6404 pst->dependencies[i] = iter->per_cu.v.psymtab;
6405 iter->type_unit_group = tu_group;
6406 }
6407
6408 VEC_free (sig_type_ptr, tu_group->tus);
6409
6410 return 1;
6411 }
6412
6413 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6414 Build partial symbol tables for the .debug_types comp-units. */
6415
6416 static void
6417 build_type_psymtabs (struct objfile *objfile)
6418 {
6419 if (! create_all_type_units (objfile))
6420 return;
6421
6422 build_type_psymtabs_1 ();
6423 }
6424
6425 /* Traversal function for process_skeletonless_type_unit.
6426 Read a TU in a DWO file and build partial symbols for it. */
6427
6428 static int
6429 process_skeletonless_type_unit (void **slot, void *info)
6430 {
6431 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6432 struct objfile *objfile = (struct objfile *) info;
6433 struct signatured_type find_entry, *entry;
6434
6435 /* If this TU doesn't exist in the global table, add it and read it in. */
6436
6437 if (dwarf2_per_objfile->signatured_types == NULL)
6438 {
6439 dwarf2_per_objfile->signatured_types
6440 = allocate_signatured_type_table (objfile);
6441 }
6442
6443 find_entry.signature = dwo_unit->signature;
6444 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6445 INSERT);
6446 /* If we've already seen this type there's nothing to do. What's happening
6447 is we're doing our own version of comdat-folding here. */
6448 if (*slot != NULL)
6449 return 1;
6450
6451 /* This does the job that create_all_type_units would have done for
6452 this TU. */
6453 entry = add_type_unit (dwo_unit->signature, slot);
6454 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6455 *slot = entry;
6456
6457 /* This does the job that build_type_psymtabs_1 would have done. */
6458 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6459 build_type_psymtabs_reader, NULL);
6460
6461 return 1;
6462 }
6463
6464 /* Traversal function for process_skeletonless_type_units. */
6465
6466 static int
6467 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6468 {
6469 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6470
6471 if (dwo_file->tus != NULL)
6472 {
6473 htab_traverse_noresize (dwo_file->tus,
6474 process_skeletonless_type_unit, info);
6475 }
6476
6477 return 1;
6478 }
6479
6480 /* Scan all TUs of DWO files, verifying we've processed them.
6481 This is needed in case a TU was emitted without its skeleton.
6482 Note: This can't be done until we know what all the DWO files are. */
6483
6484 static void
6485 process_skeletonless_type_units (struct objfile *objfile)
6486 {
6487 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6488 if (get_dwp_file () == NULL
6489 && dwarf2_per_objfile->dwo_files != NULL)
6490 {
6491 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6492 process_dwo_file_for_skeletonless_type_units,
6493 objfile);
6494 }
6495 }
6496
6497 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6498
6499 static void
6500 psymtabs_addrmap_cleanup (void *o)
6501 {
6502 struct objfile *objfile = (struct objfile *) o;
6503
6504 objfile->psymtabs_addrmap = NULL;
6505 }
6506
6507 /* Compute the 'user' field for each psymtab in OBJFILE. */
6508
6509 static void
6510 set_partial_user (struct objfile *objfile)
6511 {
6512 int i;
6513
6514 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6515 {
6516 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6517 struct partial_symtab *pst = per_cu->v.psymtab;
6518 int j;
6519
6520 if (pst == NULL)
6521 continue;
6522
6523 for (j = 0; j < pst->number_of_dependencies; ++j)
6524 {
6525 /* Set the 'user' field only if it is not already set. */
6526 if (pst->dependencies[j]->user == NULL)
6527 pst->dependencies[j]->user = pst;
6528 }
6529 }
6530 }
6531
6532 /* Build the partial symbol table by doing a quick pass through the
6533 .debug_info and .debug_abbrev sections. */
6534
6535 static void
6536 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6537 {
6538 struct cleanup *back_to, *addrmap_cleanup;
6539 struct obstack temp_obstack;
6540 int i;
6541
6542 if (dwarf_read_debug)
6543 {
6544 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6545 objfile_name (objfile));
6546 }
6547
6548 dwarf2_per_objfile->reading_partial_symbols = 1;
6549
6550 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6551
6552 /* Any cached compilation units will be linked by the per-objfile
6553 read_in_chain. Make sure to free them when we're done. */
6554 back_to = make_cleanup (free_cached_comp_units, NULL);
6555
6556 build_type_psymtabs (objfile);
6557
6558 create_all_comp_units (objfile);
6559
6560 /* Create a temporary address map on a temporary obstack. We later
6561 copy this to the final obstack. */
6562 obstack_init (&temp_obstack);
6563 make_cleanup_obstack_free (&temp_obstack);
6564 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6565 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6566
6567 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6568 {
6569 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6570
6571 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6572 }
6573
6574 /* This has to wait until we read the CUs, we need the list of DWOs. */
6575 process_skeletonless_type_units (objfile);
6576
6577 /* Now that all TUs have been processed we can fill in the dependencies. */
6578 if (dwarf2_per_objfile->type_unit_groups != NULL)
6579 {
6580 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6581 build_type_psymtab_dependencies, NULL);
6582 }
6583
6584 if (dwarf_read_debug)
6585 print_tu_stats ();
6586
6587 set_partial_user (objfile);
6588
6589 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6590 &objfile->objfile_obstack);
6591 discard_cleanups (addrmap_cleanup);
6592
6593 do_cleanups (back_to);
6594
6595 if (dwarf_read_debug)
6596 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6597 objfile_name (objfile));
6598 }
6599
6600 /* die_reader_func for load_partial_comp_unit. */
6601
6602 static void
6603 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6604 const gdb_byte *info_ptr,
6605 struct die_info *comp_unit_die,
6606 int has_children,
6607 void *data)
6608 {
6609 struct dwarf2_cu *cu = reader->cu;
6610
6611 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6612
6613 /* Check if comp unit has_children.
6614 If so, read the rest of the partial symbols from this comp unit.
6615 If not, there's no more debug_info for this comp unit. */
6616 if (has_children)
6617 load_partial_dies (reader, info_ptr, 0);
6618 }
6619
6620 /* Load the partial DIEs for a secondary CU into memory.
6621 This is also used when rereading a primary CU with load_all_dies. */
6622
6623 static void
6624 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6625 {
6626 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6627 load_partial_comp_unit_reader, NULL);
6628 }
6629
6630 static void
6631 read_comp_units_from_section (struct objfile *objfile,
6632 struct dwarf2_section_info *section,
6633 unsigned int is_dwz,
6634 int *n_allocated,
6635 int *n_comp_units,
6636 struct dwarf2_per_cu_data ***all_comp_units)
6637 {
6638 const gdb_byte *info_ptr;
6639 bfd *abfd = get_section_bfd_owner (section);
6640
6641 if (dwarf_read_debug)
6642 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6643 get_section_name (section),
6644 get_section_file_name (section));
6645
6646 dwarf2_read_section (objfile, section);
6647
6648 info_ptr = section->buffer;
6649
6650 while (info_ptr < section->buffer + section->size)
6651 {
6652 unsigned int length, initial_length_size;
6653 struct dwarf2_per_cu_data *this_cu;
6654 sect_offset offset;
6655
6656 offset.sect_off = info_ptr - section->buffer;
6657
6658 /* Read just enough information to find out where the next
6659 compilation unit is. */
6660 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6661
6662 /* Save the compilation unit for later lookup. */
6663 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6664 memset (this_cu, 0, sizeof (*this_cu));
6665 this_cu->offset = offset;
6666 this_cu->length = length + initial_length_size;
6667 this_cu->is_dwz = is_dwz;
6668 this_cu->objfile = objfile;
6669 this_cu->section = section;
6670
6671 if (*n_comp_units == *n_allocated)
6672 {
6673 *n_allocated *= 2;
6674 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6675 *all_comp_units, *n_allocated);
6676 }
6677 (*all_comp_units)[*n_comp_units] = this_cu;
6678 ++*n_comp_units;
6679
6680 info_ptr = info_ptr + this_cu->length;
6681 }
6682 }
6683
6684 /* Create a list of all compilation units in OBJFILE.
6685 This is only done for -readnow and building partial symtabs. */
6686
6687 static void
6688 create_all_comp_units (struct objfile *objfile)
6689 {
6690 int n_allocated;
6691 int n_comp_units;
6692 struct dwarf2_per_cu_data **all_comp_units;
6693 struct dwz_file *dwz;
6694
6695 n_comp_units = 0;
6696 n_allocated = 10;
6697 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6698
6699 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6700 &n_allocated, &n_comp_units, &all_comp_units);
6701
6702 dwz = dwarf2_get_dwz_file ();
6703 if (dwz != NULL)
6704 read_comp_units_from_section (objfile, &dwz->info, 1,
6705 &n_allocated, &n_comp_units,
6706 &all_comp_units);
6707
6708 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6709 struct dwarf2_per_cu_data *,
6710 n_comp_units);
6711 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6712 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6713 xfree (all_comp_units);
6714 dwarf2_per_objfile->n_comp_units = n_comp_units;
6715 }
6716
6717 /* Process all loaded DIEs for compilation unit CU, starting at
6718 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6719 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6720 DW_AT_ranges). See the comments of add_partial_subprogram on how
6721 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6722
6723 static void
6724 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6725 CORE_ADDR *highpc, int set_addrmap,
6726 struct dwarf2_cu *cu)
6727 {
6728 struct partial_die_info *pdi;
6729
6730 /* Now, march along the PDI's, descending into ones which have
6731 interesting children but skipping the children of the other ones,
6732 until we reach the end of the compilation unit. */
6733
6734 pdi = first_die;
6735
6736 while (pdi != NULL)
6737 {
6738 fixup_partial_die (pdi, cu);
6739
6740 /* Anonymous namespaces or modules have no name but have interesting
6741 children, so we need to look at them. Ditto for anonymous
6742 enums. */
6743
6744 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6745 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6746 || pdi->tag == DW_TAG_imported_unit)
6747 {
6748 switch (pdi->tag)
6749 {
6750 case DW_TAG_subprogram:
6751 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6752 break;
6753 case DW_TAG_constant:
6754 case DW_TAG_variable:
6755 case DW_TAG_typedef:
6756 case DW_TAG_union_type:
6757 if (!pdi->is_declaration)
6758 {
6759 add_partial_symbol (pdi, cu);
6760 }
6761 break;
6762 case DW_TAG_class_type:
6763 case DW_TAG_interface_type:
6764 case DW_TAG_structure_type:
6765 if (!pdi->is_declaration)
6766 {
6767 add_partial_symbol (pdi, cu);
6768 }
6769 if (cu->language == language_rust && pdi->has_children)
6770 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6771 set_addrmap, cu);
6772 break;
6773 case DW_TAG_enumeration_type:
6774 if (!pdi->is_declaration)
6775 add_partial_enumeration (pdi, cu);
6776 break;
6777 case DW_TAG_base_type:
6778 case DW_TAG_subrange_type:
6779 /* File scope base type definitions are added to the partial
6780 symbol table. */
6781 add_partial_symbol (pdi, cu);
6782 break;
6783 case DW_TAG_namespace:
6784 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6785 break;
6786 case DW_TAG_module:
6787 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6788 break;
6789 case DW_TAG_imported_unit:
6790 {
6791 struct dwarf2_per_cu_data *per_cu;
6792
6793 /* For now we don't handle imported units in type units. */
6794 if (cu->per_cu->is_debug_types)
6795 {
6796 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6797 " supported in type units [in module %s]"),
6798 objfile_name (cu->objfile));
6799 }
6800
6801 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6802 pdi->is_dwz,
6803 cu->objfile);
6804
6805 /* Go read the partial unit, if needed. */
6806 if (per_cu->v.psymtab == NULL)
6807 process_psymtab_comp_unit (per_cu, 1, cu->language);
6808
6809 VEC_safe_push (dwarf2_per_cu_ptr,
6810 cu->per_cu->imported_symtabs, per_cu);
6811 }
6812 break;
6813 case DW_TAG_imported_declaration:
6814 add_partial_symbol (pdi, cu);
6815 break;
6816 default:
6817 break;
6818 }
6819 }
6820
6821 /* If the die has a sibling, skip to the sibling. */
6822
6823 pdi = pdi->die_sibling;
6824 }
6825 }
6826
6827 /* Functions used to compute the fully scoped name of a partial DIE.
6828
6829 Normally, this is simple. For C++, the parent DIE's fully scoped
6830 name is concatenated with "::" and the partial DIE's name.
6831 Enumerators are an exception; they use the scope of their parent
6832 enumeration type, i.e. the name of the enumeration type is not
6833 prepended to the enumerator.
6834
6835 There are two complexities. One is DW_AT_specification; in this
6836 case "parent" means the parent of the target of the specification,
6837 instead of the direct parent of the DIE. The other is compilers
6838 which do not emit DW_TAG_namespace; in this case we try to guess
6839 the fully qualified name of structure types from their members'
6840 linkage names. This must be done using the DIE's children rather
6841 than the children of any DW_AT_specification target. We only need
6842 to do this for structures at the top level, i.e. if the target of
6843 any DW_AT_specification (if any; otherwise the DIE itself) does not
6844 have a parent. */
6845
6846 /* Compute the scope prefix associated with PDI's parent, in
6847 compilation unit CU. The result will be allocated on CU's
6848 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6849 field. NULL is returned if no prefix is necessary. */
6850 static const char *
6851 partial_die_parent_scope (struct partial_die_info *pdi,
6852 struct dwarf2_cu *cu)
6853 {
6854 const char *grandparent_scope;
6855 struct partial_die_info *parent, *real_pdi;
6856
6857 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6858 then this means the parent of the specification DIE. */
6859
6860 real_pdi = pdi;
6861 while (real_pdi->has_specification)
6862 real_pdi = find_partial_die (real_pdi->spec_offset,
6863 real_pdi->spec_is_dwz, cu);
6864
6865 parent = real_pdi->die_parent;
6866 if (parent == NULL)
6867 return NULL;
6868
6869 if (parent->scope_set)
6870 return parent->scope;
6871
6872 fixup_partial_die (parent, cu);
6873
6874 grandparent_scope = partial_die_parent_scope (parent, cu);
6875
6876 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6877 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6878 Work around this problem here. */
6879 if (cu->language == language_cplus
6880 && parent->tag == DW_TAG_namespace
6881 && strcmp (parent->name, "::") == 0
6882 && grandparent_scope == NULL)
6883 {
6884 parent->scope = NULL;
6885 parent->scope_set = 1;
6886 return NULL;
6887 }
6888
6889 if (pdi->tag == DW_TAG_enumerator)
6890 /* Enumerators should not get the name of the enumeration as a prefix. */
6891 parent->scope = grandparent_scope;
6892 else if (parent->tag == DW_TAG_namespace
6893 || parent->tag == DW_TAG_module
6894 || parent->tag == DW_TAG_structure_type
6895 || parent->tag == DW_TAG_class_type
6896 || parent->tag == DW_TAG_interface_type
6897 || parent->tag == DW_TAG_union_type
6898 || parent->tag == DW_TAG_enumeration_type)
6899 {
6900 if (grandparent_scope == NULL)
6901 parent->scope = parent->name;
6902 else
6903 parent->scope = typename_concat (&cu->comp_unit_obstack,
6904 grandparent_scope,
6905 parent->name, 0, cu);
6906 }
6907 else
6908 {
6909 /* FIXME drow/2004-04-01: What should we be doing with
6910 function-local names? For partial symbols, we should probably be
6911 ignoring them. */
6912 complaint (&symfile_complaints,
6913 _("unhandled containing DIE tag %d for DIE at %d"),
6914 parent->tag, pdi->offset.sect_off);
6915 parent->scope = grandparent_scope;
6916 }
6917
6918 parent->scope_set = 1;
6919 return parent->scope;
6920 }
6921
6922 /* Return the fully scoped name associated with PDI, from compilation unit
6923 CU. The result will be allocated with malloc. */
6924
6925 static char *
6926 partial_die_full_name (struct partial_die_info *pdi,
6927 struct dwarf2_cu *cu)
6928 {
6929 const char *parent_scope;
6930
6931 /* If this is a template instantiation, we can not work out the
6932 template arguments from partial DIEs. So, unfortunately, we have
6933 to go through the full DIEs. At least any work we do building
6934 types here will be reused if full symbols are loaded later. */
6935 if (pdi->has_template_arguments)
6936 {
6937 fixup_partial_die (pdi, cu);
6938
6939 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6940 {
6941 struct die_info *die;
6942 struct attribute attr;
6943 struct dwarf2_cu *ref_cu = cu;
6944
6945 /* DW_FORM_ref_addr is using section offset. */
6946 attr.name = (enum dwarf_attribute) 0;
6947 attr.form = DW_FORM_ref_addr;
6948 attr.u.unsnd = pdi->offset.sect_off;
6949 die = follow_die_ref (NULL, &attr, &ref_cu);
6950
6951 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6952 }
6953 }
6954
6955 parent_scope = partial_die_parent_scope (pdi, cu);
6956 if (parent_scope == NULL)
6957 return NULL;
6958 else
6959 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6960 }
6961
6962 static void
6963 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6964 {
6965 struct objfile *objfile = cu->objfile;
6966 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6967 CORE_ADDR addr = 0;
6968 const char *actual_name = NULL;
6969 CORE_ADDR baseaddr;
6970 char *built_actual_name;
6971
6972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6973
6974 built_actual_name = partial_die_full_name (pdi, cu);
6975 if (built_actual_name != NULL)
6976 actual_name = built_actual_name;
6977
6978 if (actual_name == NULL)
6979 actual_name = pdi->name;
6980
6981 switch (pdi->tag)
6982 {
6983 case DW_TAG_subprogram:
6984 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6985 if (pdi->is_external || cu->language == language_ada)
6986 {
6987 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6988 of the global scope. But in Ada, we want to be able to access
6989 nested procedures globally. So all Ada subprograms are stored
6990 in the global scope. */
6991 add_psymbol_to_list (actual_name, strlen (actual_name),
6992 built_actual_name != NULL,
6993 VAR_DOMAIN, LOC_BLOCK,
6994 &objfile->global_psymbols,
6995 addr, cu->language, objfile);
6996 }
6997 else
6998 {
6999 add_psymbol_to_list (actual_name, strlen (actual_name),
7000 built_actual_name != NULL,
7001 VAR_DOMAIN, LOC_BLOCK,
7002 &objfile->static_psymbols,
7003 addr, cu->language, objfile);
7004 }
7005
7006 if (pdi->main_subprogram && actual_name != NULL)
7007 set_objfile_main_name (objfile, actual_name, cu->language);
7008 break;
7009 case DW_TAG_constant:
7010 {
7011 struct psymbol_allocation_list *list;
7012
7013 if (pdi->is_external)
7014 list = &objfile->global_psymbols;
7015 else
7016 list = &objfile->static_psymbols;
7017 add_psymbol_to_list (actual_name, strlen (actual_name),
7018 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7019 list, 0, cu->language, objfile);
7020 }
7021 break;
7022 case DW_TAG_variable:
7023 if (pdi->d.locdesc)
7024 addr = decode_locdesc (pdi->d.locdesc, cu);
7025
7026 if (pdi->d.locdesc
7027 && addr == 0
7028 && !dwarf2_per_objfile->has_section_at_zero)
7029 {
7030 /* A global or static variable may also have been stripped
7031 out by the linker if unused, in which case its address
7032 will be nullified; do not add such variables into partial
7033 symbol table then. */
7034 }
7035 else if (pdi->is_external)
7036 {
7037 /* Global Variable.
7038 Don't enter into the minimal symbol tables as there is
7039 a minimal symbol table entry from the ELF symbols already.
7040 Enter into partial symbol table if it has a location
7041 descriptor or a type.
7042 If the location descriptor is missing, new_symbol will create
7043 a LOC_UNRESOLVED symbol, the address of the variable will then
7044 be determined from the minimal symbol table whenever the variable
7045 is referenced.
7046 The address for the partial symbol table entry is not
7047 used by GDB, but it comes in handy for debugging partial symbol
7048 table building. */
7049
7050 if (pdi->d.locdesc || pdi->has_type)
7051 add_psymbol_to_list (actual_name, strlen (actual_name),
7052 built_actual_name != NULL,
7053 VAR_DOMAIN, LOC_STATIC,
7054 &objfile->global_psymbols,
7055 addr + baseaddr,
7056 cu->language, objfile);
7057 }
7058 else
7059 {
7060 int has_loc = pdi->d.locdesc != NULL;
7061
7062 /* Static Variable. Skip symbols whose value we cannot know (those
7063 without location descriptors or constant values). */
7064 if (!has_loc && !pdi->has_const_value)
7065 {
7066 xfree (built_actual_name);
7067 return;
7068 }
7069
7070 add_psymbol_to_list (actual_name, strlen (actual_name),
7071 built_actual_name != NULL,
7072 VAR_DOMAIN, LOC_STATIC,
7073 &objfile->static_psymbols,
7074 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7075 cu->language, objfile);
7076 }
7077 break;
7078 case DW_TAG_typedef:
7079 case DW_TAG_base_type:
7080 case DW_TAG_subrange_type:
7081 add_psymbol_to_list (actual_name, strlen (actual_name),
7082 built_actual_name != NULL,
7083 VAR_DOMAIN, LOC_TYPEDEF,
7084 &objfile->static_psymbols,
7085 0, cu->language, objfile);
7086 break;
7087 case DW_TAG_imported_declaration:
7088 case DW_TAG_namespace:
7089 add_psymbol_to_list (actual_name, strlen (actual_name),
7090 built_actual_name != NULL,
7091 VAR_DOMAIN, LOC_TYPEDEF,
7092 &objfile->global_psymbols,
7093 0, cu->language, objfile);
7094 break;
7095 case DW_TAG_module:
7096 add_psymbol_to_list (actual_name, strlen (actual_name),
7097 built_actual_name != NULL,
7098 MODULE_DOMAIN, LOC_TYPEDEF,
7099 &objfile->global_psymbols,
7100 0, cu->language, objfile);
7101 break;
7102 case DW_TAG_class_type:
7103 case DW_TAG_interface_type:
7104 case DW_TAG_structure_type:
7105 case DW_TAG_union_type:
7106 case DW_TAG_enumeration_type:
7107 /* Skip external references. The DWARF standard says in the section
7108 about "Structure, Union, and Class Type Entries": "An incomplete
7109 structure, union or class type is represented by a structure,
7110 union or class entry that does not have a byte size attribute
7111 and that has a DW_AT_declaration attribute." */
7112 if (!pdi->has_byte_size && pdi->is_declaration)
7113 {
7114 xfree (built_actual_name);
7115 return;
7116 }
7117
7118 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7119 static vs. global. */
7120 add_psymbol_to_list (actual_name, strlen (actual_name),
7121 built_actual_name != NULL,
7122 STRUCT_DOMAIN, LOC_TYPEDEF,
7123 cu->language == language_cplus
7124 ? &objfile->global_psymbols
7125 : &objfile->static_psymbols,
7126 0, cu->language, objfile);
7127
7128 break;
7129 case DW_TAG_enumerator:
7130 add_psymbol_to_list (actual_name, strlen (actual_name),
7131 built_actual_name != NULL,
7132 VAR_DOMAIN, LOC_CONST,
7133 cu->language == language_cplus
7134 ? &objfile->global_psymbols
7135 : &objfile->static_psymbols,
7136 0, cu->language, objfile);
7137 break;
7138 default:
7139 break;
7140 }
7141
7142 xfree (built_actual_name);
7143 }
7144
7145 /* Read a partial die corresponding to a namespace; also, add a symbol
7146 corresponding to that namespace to the symbol table. NAMESPACE is
7147 the name of the enclosing namespace. */
7148
7149 static void
7150 add_partial_namespace (struct partial_die_info *pdi,
7151 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7152 int set_addrmap, struct dwarf2_cu *cu)
7153 {
7154 /* Add a symbol for the namespace. */
7155
7156 add_partial_symbol (pdi, cu);
7157
7158 /* Now scan partial symbols in that namespace. */
7159
7160 if (pdi->has_children)
7161 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7162 }
7163
7164 /* Read a partial die corresponding to a Fortran module. */
7165
7166 static void
7167 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7168 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7169 {
7170 /* Add a symbol for the namespace. */
7171
7172 add_partial_symbol (pdi, cu);
7173
7174 /* Now scan partial symbols in that module. */
7175
7176 if (pdi->has_children)
7177 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7178 }
7179
7180 /* Read a partial die corresponding to a subprogram and create a partial
7181 symbol for that subprogram. When the CU language allows it, this
7182 routine also defines a partial symbol for each nested subprogram
7183 that this subprogram contains. If SET_ADDRMAP is true, record the
7184 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7185 and highest PC values found in PDI.
7186
7187 PDI may also be a lexical block, in which case we simply search
7188 recursively for subprograms defined inside that lexical block.
7189 Again, this is only performed when the CU language allows this
7190 type of definitions. */
7191
7192 static void
7193 add_partial_subprogram (struct partial_die_info *pdi,
7194 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7195 int set_addrmap, struct dwarf2_cu *cu)
7196 {
7197 if (pdi->tag == DW_TAG_subprogram)
7198 {
7199 if (pdi->has_pc_info)
7200 {
7201 if (pdi->lowpc < *lowpc)
7202 *lowpc = pdi->lowpc;
7203 if (pdi->highpc > *highpc)
7204 *highpc = pdi->highpc;
7205 if (set_addrmap)
7206 {
7207 struct objfile *objfile = cu->objfile;
7208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7209 CORE_ADDR baseaddr;
7210 CORE_ADDR highpc;
7211 CORE_ADDR lowpc;
7212
7213 baseaddr = ANOFFSET (objfile->section_offsets,
7214 SECT_OFF_TEXT (objfile));
7215 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7216 pdi->lowpc + baseaddr);
7217 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7218 pdi->highpc + baseaddr);
7219 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7220 cu->per_cu->v.psymtab);
7221 }
7222 }
7223
7224 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7225 {
7226 if (!pdi->is_declaration)
7227 /* Ignore subprogram DIEs that do not have a name, they are
7228 illegal. Do not emit a complaint at this point, we will
7229 do so when we convert this psymtab into a symtab. */
7230 if (pdi->name)
7231 add_partial_symbol (pdi, cu);
7232 }
7233 }
7234
7235 if (! pdi->has_children)
7236 return;
7237
7238 if (cu->language == language_ada)
7239 {
7240 pdi = pdi->die_child;
7241 while (pdi != NULL)
7242 {
7243 fixup_partial_die (pdi, cu);
7244 if (pdi->tag == DW_TAG_subprogram
7245 || pdi->tag == DW_TAG_lexical_block)
7246 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7247 pdi = pdi->die_sibling;
7248 }
7249 }
7250 }
7251
7252 /* Read a partial die corresponding to an enumeration type. */
7253
7254 static void
7255 add_partial_enumeration (struct partial_die_info *enum_pdi,
7256 struct dwarf2_cu *cu)
7257 {
7258 struct partial_die_info *pdi;
7259
7260 if (enum_pdi->name != NULL)
7261 add_partial_symbol (enum_pdi, cu);
7262
7263 pdi = enum_pdi->die_child;
7264 while (pdi)
7265 {
7266 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7267 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7268 else
7269 add_partial_symbol (pdi, cu);
7270 pdi = pdi->die_sibling;
7271 }
7272 }
7273
7274 /* Return the initial uleb128 in the die at INFO_PTR. */
7275
7276 static unsigned int
7277 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7278 {
7279 unsigned int bytes_read;
7280
7281 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7282 }
7283
7284 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7285 Return the corresponding abbrev, or NULL if the number is zero (indicating
7286 an empty DIE). In either case *BYTES_READ will be set to the length of
7287 the initial number. */
7288
7289 static struct abbrev_info *
7290 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7291 struct dwarf2_cu *cu)
7292 {
7293 bfd *abfd = cu->objfile->obfd;
7294 unsigned int abbrev_number;
7295 struct abbrev_info *abbrev;
7296
7297 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7298
7299 if (abbrev_number == 0)
7300 return NULL;
7301
7302 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7303 if (!abbrev)
7304 {
7305 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7306 " at offset 0x%x [in module %s]"),
7307 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7308 cu->header.offset.sect_off, bfd_get_filename (abfd));
7309 }
7310
7311 return abbrev;
7312 }
7313
7314 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7315 Returns a pointer to the end of a series of DIEs, terminated by an empty
7316 DIE. Any children of the skipped DIEs will also be skipped. */
7317
7318 static const gdb_byte *
7319 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7320 {
7321 struct dwarf2_cu *cu = reader->cu;
7322 struct abbrev_info *abbrev;
7323 unsigned int bytes_read;
7324
7325 while (1)
7326 {
7327 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7328 if (abbrev == NULL)
7329 return info_ptr + bytes_read;
7330 else
7331 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7332 }
7333 }
7334
7335 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7336 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7337 abbrev corresponding to that skipped uleb128 should be passed in
7338 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7339 children. */
7340
7341 static const gdb_byte *
7342 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7343 struct abbrev_info *abbrev)
7344 {
7345 unsigned int bytes_read;
7346 struct attribute attr;
7347 bfd *abfd = reader->abfd;
7348 struct dwarf2_cu *cu = reader->cu;
7349 const gdb_byte *buffer = reader->buffer;
7350 const gdb_byte *buffer_end = reader->buffer_end;
7351 unsigned int form, i;
7352
7353 for (i = 0; i < abbrev->num_attrs; i++)
7354 {
7355 /* The only abbrev we care about is DW_AT_sibling. */
7356 if (abbrev->attrs[i].name == DW_AT_sibling)
7357 {
7358 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7359 if (attr.form == DW_FORM_ref_addr)
7360 complaint (&symfile_complaints,
7361 _("ignoring absolute DW_AT_sibling"));
7362 else
7363 {
7364 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7365 const gdb_byte *sibling_ptr = buffer + off;
7366
7367 if (sibling_ptr < info_ptr)
7368 complaint (&symfile_complaints,
7369 _("DW_AT_sibling points backwards"));
7370 else if (sibling_ptr > reader->buffer_end)
7371 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7372 else
7373 return sibling_ptr;
7374 }
7375 }
7376
7377 /* If it isn't DW_AT_sibling, skip this attribute. */
7378 form = abbrev->attrs[i].form;
7379 skip_attribute:
7380 switch (form)
7381 {
7382 case DW_FORM_ref_addr:
7383 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7384 and later it is offset sized. */
7385 if (cu->header.version == 2)
7386 info_ptr += cu->header.addr_size;
7387 else
7388 info_ptr += cu->header.offset_size;
7389 break;
7390 case DW_FORM_GNU_ref_alt:
7391 info_ptr += cu->header.offset_size;
7392 break;
7393 case DW_FORM_addr:
7394 info_ptr += cu->header.addr_size;
7395 break;
7396 case DW_FORM_data1:
7397 case DW_FORM_ref1:
7398 case DW_FORM_flag:
7399 info_ptr += 1;
7400 break;
7401 case DW_FORM_flag_present:
7402 case DW_FORM_implicit_const:
7403 break;
7404 case DW_FORM_data2:
7405 case DW_FORM_ref2:
7406 info_ptr += 2;
7407 break;
7408 case DW_FORM_data4:
7409 case DW_FORM_ref4:
7410 info_ptr += 4;
7411 break;
7412 case DW_FORM_data8:
7413 case DW_FORM_ref8:
7414 case DW_FORM_ref_sig8:
7415 info_ptr += 8;
7416 break;
7417 case DW_FORM_data16:
7418 info_ptr += 16;
7419 break;
7420 case DW_FORM_string:
7421 read_direct_string (abfd, info_ptr, &bytes_read);
7422 info_ptr += bytes_read;
7423 break;
7424 case DW_FORM_sec_offset:
7425 case DW_FORM_strp:
7426 case DW_FORM_GNU_strp_alt:
7427 info_ptr += cu->header.offset_size;
7428 break;
7429 case DW_FORM_exprloc:
7430 case DW_FORM_block:
7431 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7432 info_ptr += bytes_read;
7433 break;
7434 case DW_FORM_block1:
7435 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7436 break;
7437 case DW_FORM_block2:
7438 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7439 break;
7440 case DW_FORM_block4:
7441 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7442 break;
7443 case DW_FORM_sdata:
7444 case DW_FORM_udata:
7445 case DW_FORM_ref_udata:
7446 case DW_FORM_GNU_addr_index:
7447 case DW_FORM_GNU_str_index:
7448 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7449 break;
7450 case DW_FORM_indirect:
7451 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7452 info_ptr += bytes_read;
7453 /* We need to continue parsing from here, so just go back to
7454 the top. */
7455 goto skip_attribute;
7456
7457 default:
7458 error (_("Dwarf Error: Cannot handle %s "
7459 "in DWARF reader [in module %s]"),
7460 dwarf_form_name (form),
7461 bfd_get_filename (abfd));
7462 }
7463 }
7464
7465 if (abbrev->has_children)
7466 return skip_children (reader, info_ptr);
7467 else
7468 return info_ptr;
7469 }
7470
7471 /* Locate ORIG_PDI's sibling.
7472 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7473
7474 static const gdb_byte *
7475 locate_pdi_sibling (const struct die_reader_specs *reader,
7476 struct partial_die_info *orig_pdi,
7477 const gdb_byte *info_ptr)
7478 {
7479 /* Do we know the sibling already? */
7480
7481 if (orig_pdi->sibling)
7482 return orig_pdi->sibling;
7483
7484 /* Are there any children to deal with? */
7485
7486 if (!orig_pdi->has_children)
7487 return info_ptr;
7488
7489 /* Skip the children the long way. */
7490
7491 return skip_children (reader, info_ptr);
7492 }
7493
7494 /* Expand this partial symbol table into a full symbol table. SELF is
7495 not NULL. */
7496
7497 static void
7498 dwarf2_read_symtab (struct partial_symtab *self,
7499 struct objfile *objfile)
7500 {
7501 if (self->readin)
7502 {
7503 warning (_("bug: psymtab for %s is already read in."),
7504 self->filename);
7505 }
7506 else
7507 {
7508 if (info_verbose)
7509 {
7510 printf_filtered (_("Reading in symbols for %s..."),
7511 self->filename);
7512 gdb_flush (gdb_stdout);
7513 }
7514
7515 /* Restore our global data. */
7516 dwarf2_per_objfile
7517 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7518 dwarf2_objfile_data_key);
7519
7520 /* If this psymtab is constructed from a debug-only objfile, the
7521 has_section_at_zero flag will not necessarily be correct. We
7522 can get the correct value for this flag by looking at the data
7523 associated with the (presumably stripped) associated objfile. */
7524 if (objfile->separate_debug_objfile_backlink)
7525 {
7526 struct dwarf2_per_objfile *dpo_backlink
7527 = ((struct dwarf2_per_objfile *)
7528 objfile_data (objfile->separate_debug_objfile_backlink,
7529 dwarf2_objfile_data_key));
7530
7531 dwarf2_per_objfile->has_section_at_zero
7532 = dpo_backlink->has_section_at_zero;
7533 }
7534
7535 dwarf2_per_objfile->reading_partial_symbols = 0;
7536
7537 psymtab_to_symtab_1 (self);
7538
7539 /* Finish up the debug error message. */
7540 if (info_verbose)
7541 printf_filtered (_("done.\n"));
7542 }
7543
7544 process_cu_includes ();
7545 }
7546 \f
7547 /* Reading in full CUs. */
7548
7549 /* Add PER_CU to the queue. */
7550
7551 static void
7552 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7553 enum language pretend_language)
7554 {
7555 struct dwarf2_queue_item *item;
7556
7557 per_cu->queued = 1;
7558 item = XNEW (struct dwarf2_queue_item);
7559 item->per_cu = per_cu;
7560 item->pretend_language = pretend_language;
7561 item->next = NULL;
7562
7563 if (dwarf2_queue == NULL)
7564 dwarf2_queue = item;
7565 else
7566 dwarf2_queue_tail->next = item;
7567
7568 dwarf2_queue_tail = item;
7569 }
7570
7571 /* If PER_CU is not yet queued, add it to the queue.
7572 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7573 dependency.
7574 The result is non-zero if PER_CU was queued, otherwise the result is zero
7575 meaning either PER_CU is already queued or it is already loaded.
7576
7577 N.B. There is an invariant here that if a CU is queued then it is loaded.
7578 The caller is required to load PER_CU if we return non-zero. */
7579
7580 static int
7581 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7582 struct dwarf2_per_cu_data *per_cu,
7583 enum language pretend_language)
7584 {
7585 /* We may arrive here during partial symbol reading, if we need full
7586 DIEs to process an unusual case (e.g. template arguments). Do
7587 not queue PER_CU, just tell our caller to load its DIEs. */
7588 if (dwarf2_per_objfile->reading_partial_symbols)
7589 {
7590 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7591 return 1;
7592 return 0;
7593 }
7594
7595 /* Mark the dependence relation so that we don't flush PER_CU
7596 too early. */
7597 if (dependent_cu != NULL)
7598 dwarf2_add_dependence (dependent_cu, per_cu);
7599
7600 /* If it's already on the queue, we have nothing to do. */
7601 if (per_cu->queued)
7602 return 0;
7603
7604 /* If the compilation unit is already loaded, just mark it as
7605 used. */
7606 if (per_cu->cu != NULL)
7607 {
7608 per_cu->cu->last_used = 0;
7609 return 0;
7610 }
7611
7612 /* Add it to the queue. */
7613 queue_comp_unit (per_cu, pretend_language);
7614
7615 return 1;
7616 }
7617
7618 /* Process the queue. */
7619
7620 static void
7621 process_queue (void)
7622 {
7623 struct dwarf2_queue_item *item, *next_item;
7624
7625 if (dwarf_read_debug)
7626 {
7627 fprintf_unfiltered (gdb_stdlog,
7628 "Expanding one or more symtabs of objfile %s ...\n",
7629 objfile_name (dwarf2_per_objfile->objfile));
7630 }
7631
7632 /* The queue starts out with one item, but following a DIE reference
7633 may load a new CU, adding it to the end of the queue. */
7634 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7635 {
7636 if ((dwarf2_per_objfile->using_index
7637 ? !item->per_cu->v.quick->compunit_symtab
7638 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7639 /* Skip dummy CUs. */
7640 && item->per_cu->cu != NULL)
7641 {
7642 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7643 unsigned int debug_print_threshold;
7644 char buf[100];
7645
7646 if (per_cu->is_debug_types)
7647 {
7648 struct signatured_type *sig_type =
7649 (struct signatured_type *) per_cu;
7650
7651 sprintf (buf, "TU %s at offset 0x%x",
7652 hex_string (sig_type->signature),
7653 per_cu->offset.sect_off);
7654 /* There can be 100s of TUs.
7655 Only print them in verbose mode. */
7656 debug_print_threshold = 2;
7657 }
7658 else
7659 {
7660 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7661 debug_print_threshold = 1;
7662 }
7663
7664 if (dwarf_read_debug >= debug_print_threshold)
7665 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7666
7667 if (per_cu->is_debug_types)
7668 process_full_type_unit (per_cu, item->pretend_language);
7669 else
7670 process_full_comp_unit (per_cu, item->pretend_language);
7671
7672 if (dwarf_read_debug >= debug_print_threshold)
7673 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7674 }
7675
7676 item->per_cu->queued = 0;
7677 next_item = item->next;
7678 xfree (item);
7679 }
7680
7681 dwarf2_queue_tail = NULL;
7682
7683 if (dwarf_read_debug)
7684 {
7685 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7686 objfile_name (dwarf2_per_objfile->objfile));
7687 }
7688 }
7689
7690 /* Free all allocated queue entries. This function only releases anything if
7691 an error was thrown; if the queue was processed then it would have been
7692 freed as we went along. */
7693
7694 static void
7695 dwarf2_release_queue (void *dummy)
7696 {
7697 struct dwarf2_queue_item *item, *last;
7698
7699 item = dwarf2_queue;
7700 while (item)
7701 {
7702 /* Anything still marked queued is likely to be in an
7703 inconsistent state, so discard it. */
7704 if (item->per_cu->queued)
7705 {
7706 if (item->per_cu->cu != NULL)
7707 free_one_cached_comp_unit (item->per_cu);
7708 item->per_cu->queued = 0;
7709 }
7710
7711 last = item;
7712 item = item->next;
7713 xfree (last);
7714 }
7715
7716 dwarf2_queue = dwarf2_queue_tail = NULL;
7717 }
7718
7719 /* Read in full symbols for PST, and anything it depends on. */
7720
7721 static void
7722 psymtab_to_symtab_1 (struct partial_symtab *pst)
7723 {
7724 struct dwarf2_per_cu_data *per_cu;
7725 int i;
7726
7727 if (pst->readin)
7728 return;
7729
7730 for (i = 0; i < pst->number_of_dependencies; i++)
7731 if (!pst->dependencies[i]->readin
7732 && pst->dependencies[i]->user == NULL)
7733 {
7734 /* Inform about additional files that need to be read in. */
7735 if (info_verbose)
7736 {
7737 /* FIXME: i18n: Need to make this a single string. */
7738 fputs_filtered (" ", gdb_stdout);
7739 wrap_here ("");
7740 fputs_filtered ("and ", gdb_stdout);
7741 wrap_here ("");
7742 printf_filtered ("%s...", pst->dependencies[i]->filename);
7743 wrap_here (""); /* Flush output. */
7744 gdb_flush (gdb_stdout);
7745 }
7746 psymtab_to_symtab_1 (pst->dependencies[i]);
7747 }
7748
7749 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7750
7751 if (per_cu == NULL)
7752 {
7753 /* It's an include file, no symbols to read for it.
7754 Everything is in the parent symtab. */
7755 pst->readin = 1;
7756 return;
7757 }
7758
7759 dw2_do_instantiate_symtab (per_cu);
7760 }
7761
7762 /* Trivial hash function for die_info: the hash value of a DIE
7763 is its offset in .debug_info for this objfile. */
7764
7765 static hashval_t
7766 die_hash (const void *item)
7767 {
7768 const struct die_info *die = (const struct die_info *) item;
7769
7770 return die->offset.sect_off;
7771 }
7772
7773 /* Trivial comparison function for die_info structures: two DIEs
7774 are equal if they have the same offset. */
7775
7776 static int
7777 die_eq (const void *item_lhs, const void *item_rhs)
7778 {
7779 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7780 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7781
7782 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7783 }
7784
7785 /* die_reader_func for load_full_comp_unit.
7786 This is identical to read_signatured_type_reader,
7787 but is kept separate for now. */
7788
7789 static void
7790 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7791 const gdb_byte *info_ptr,
7792 struct die_info *comp_unit_die,
7793 int has_children,
7794 void *data)
7795 {
7796 struct dwarf2_cu *cu = reader->cu;
7797 enum language *language_ptr = (enum language *) data;
7798
7799 gdb_assert (cu->die_hash == NULL);
7800 cu->die_hash =
7801 htab_create_alloc_ex (cu->header.length / 12,
7802 die_hash,
7803 die_eq,
7804 NULL,
7805 &cu->comp_unit_obstack,
7806 hashtab_obstack_allocate,
7807 dummy_obstack_deallocate);
7808
7809 if (has_children)
7810 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7811 &info_ptr, comp_unit_die);
7812 cu->dies = comp_unit_die;
7813 /* comp_unit_die is not stored in die_hash, no need. */
7814
7815 /* We try not to read any attributes in this function, because not
7816 all CUs needed for references have been loaded yet, and symbol
7817 table processing isn't initialized. But we have to set the CU language,
7818 or we won't be able to build types correctly.
7819 Similarly, if we do not read the producer, we can not apply
7820 producer-specific interpretation. */
7821 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7822 }
7823
7824 /* Load the DIEs associated with PER_CU into memory. */
7825
7826 static void
7827 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7828 enum language pretend_language)
7829 {
7830 gdb_assert (! this_cu->is_debug_types);
7831
7832 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7833 load_full_comp_unit_reader, &pretend_language);
7834 }
7835
7836 /* Add a DIE to the delayed physname list. */
7837
7838 static void
7839 add_to_method_list (struct type *type, int fnfield_index, int index,
7840 const char *name, struct die_info *die,
7841 struct dwarf2_cu *cu)
7842 {
7843 struct delayed_method_info mi;
7844 mi.type = type;
7845 mi.fnfield_index = fnfield_index;
7846 mi.index = index;
7847 mi.name = name;
7848 mi.die = die;
7849 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7850 }
7851
7852 /* A cleanup for freeing the delayed method list. */
7853
7854 static void
7855 free_delayed_list (void *ptr)
7856 {
7857 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7858 if (cu->method_list != NULL)
7859 {
7860 VEC_free (delayed_method_info, cu->method_list);
7861 cu->method_list = NULL;
7862 }
7863 }
7864
7865 /* Compute the physnames of any methods on the CU's method list.
7866
7867 The computation of method physnames is delayed in order to avoid the
7868 (bad) condition that one of the method's formal parameters is of an as yet
7869 incomplete type. */
7870
7871 static void
7872 compute_delayed_physnames (struct dwarf2_cu *cu)
7873 {
7874 int i;
7875 struct delayed_method_info *mi;
7876 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7877 {
7878 const char *physname;
7879 struct fn_fieldlist *fn_flp
7880 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7881 physname = dwarf2_physname (mi->name, mi->die, cu);
7882 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7883 = physname ? physname : "";
7884 }
7885 }
7886
7887 /* Go objects should be embedded in a DW_TAG_module DIE,
7888 and it's not clear if/how imported objects will appear.
7889 To keep Go support simple until that's worked out,
7890 go back through what we've read and create something usable.
7891 We could do this while processing each DIE, and feels kinda cleaner,
7892 but that way is more invasive.
7893 This is to, for example, allow the user to type "p var" or "b main"
7894 without having to specify the package name, and allow lookups
7895 of module.object to work in contexts that use the expression
7896 parser. */
7897
7898 static void
7899 fixup_go_packaging (struct dwarf2_cu *cu)
7900 {
7901 char *package_name = NULL;
7902 struct pending *list;
7903 int i;
7904
7905 for (list = global_symbols; list != NULL; list = list->next)
7906 {
7907 for (i = 0; i < list->nsyms; ++i)
7908 {
7909 struct symbol *sym = list->symbol[i];
7910
7911 if (SYMBOL_LANGUAGE (sym) == language_go
7912 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7913 {
7914 char *this_package_name = go_symbol_package_name (sym);
7915
7916 if (this_package_name == NULL)
7917 continue;
7918 if (package_name == NULL)
7919 package_name = this_package_name;
7920 else
7921 {
7922 if (strcmp (package_name, this_package_name) != 0)
7923 complaint (&symfile_complaints,
7924 _("Symtab %s has objects from two different Go packages: %s and %s"),
7925 (symbol_symtab (sym) != NULL
7926 ? symtab_to_filename_for_display
7927 (symbol_symtab (sym))
7928 : objfile_name (cu->objfile)),
7929 this_package_name, package_name);
7930 xfree (this_package_name);
7931 }
7932 }
7933 }
7934 }
7935
7936 if (package_name != NULL)
7937 {
7938 struct objfile *objfile = cu->objfile;
7939 const char *saved_package_name
7940 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7941 package_name,
7942 strlen (package_name));
7943 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7944 saved_package_name);
7945 struct symbol *sym;
7946
7947 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7948
7949 sym = allocate_symbol (objfile);
7950 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7951 SYMBOL_SET_NAMES (sym, saved_package_name,
7952 strlen (saved_package_name), 0, objfile);
7953 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7954 e.g., "main" finds the "main" module and not C's main(). */
7955 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7956 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7957 SYMBOL_TYPE (sym) = type;
7958
7959 add_symbol_to_list (sym, &global_symbols);
7960
7961 xfree (package_name);
7962 }
7963 }
7964
7965 /* Return the symtab for PER_CU. This works properly regardless of
7966 whether we're using the index or psymtabs. */
7967
7968 static struct compunit_symtab *
7969 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7970 {
7971 return (dwarf2_per_objfile->using_index
7972 ? per_cu->v.quick->compunit_symtab
7973 : per_cu->v.psymtab->compunit_symtab);
7974 }
7975
7976 /* A helper function for computing the list of all symbol tables
7977 included by PER_CU. */
7978
7979 static void
7980 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7981 htab_t all_children, htab_t all_type_symtabs,
7982 struct dwarf2_per_cu_data *per_cu,
7983 struct compunit_symtab *immediate_parent)
7984 {
7985 void **slot;
7986 int ix;
7987 struct compunit_symtab *cust;
7988 struct dwarf2_per_cu_data *iter;
7989
7990 slot = htab_find_slot (all_children, per_cu, INSERT);
7991 if (*slot != NULL)
7992 {
7993 /* This inclusion and its children have been processed. */
7994 return;
7995 }
7996
7997 *slot = per_cu;
7998 /* Only add a CU if it has a symbol table. */
7999 cust = get_compunit_symtab (per_cu);
8000 if (cust != NULL)
8001 {
8002 /* If this is a type unit only add its symbol table if we haven't
8003 seen it yet (type unit per_cu's can share symtabs). */
8004 if (per_cu->is_debug_types)
8005 {
8006 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8007 if (*slot == NULL)
8008 {
8009 *slot = cust;
8010 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8011 if (cust->user == NULL)
8012 cust->user = immediate_parent;
8013 }
8014 }
8015 else
8016 {
8017 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8018 if (cust->user == NULL)
8019 cust->user = immediate_parent;
8020 }
8021 }
8022
8023 for (ix = 0;
8024 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8025 ++ix)
8026 {
8027 recursively_compute_inclusions (result, all_children,
8028 all_type_symtabs, iter, cust);
8029 }
8030 }
8031
8032 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8033 PER_CU. */
8034
8035 static void
8036 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8037 {
8038 gdb_assert (! per_cu->is_debug_types);
8039
8040 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8041 {
8042 int ix, len;
8043 struct dwarf2_per_cu_data *per_cu_iter;
8044 struct compunit_symtab *compunit_symtab_iter;
8045 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8046 htab_t all_children, all_type_symtabs;
8047 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8048
8049 /* If we don't have a symtab, we can just skip this case. */
8050 if (cust == NULL)
8051 return;
8052
8053 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8054 NULL, xcalloc, xfree);
8055 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8056 NULL, xcalloc, xfree);
8057
8058 for (ix = 0;
8059 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8060 ix, per_cu_iter);
8061 ++ix)
8062 {
8063 recursively_compute_inclusions (&result_symtabs, all_children,
8064 all_type_symtabs, per_cu_iter,
8065 cust);
8066 }
8067
8068 /* Now we have a transitive closure of all the included symtabs. */
8069 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8070 cust->includes
8071 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8072 struct compunit_symtab *, len + 1);
8073 for (ix = 0;
8074 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8075 compunit_symtab_iter);
8076 ++ix)
8077 cust->includes[ix] = compunit_symtab_iter;
8078 cust->includes[len] = NULL;
8079
8080 VEC_free (compunit_symtab_ptr, result_symtabs);
8081 htab_delete (all_children);
8082 htab_delete (all_type_symtabs);
8083 }
8084 }
8085
8086 /* Compute the 'includes' field for the symtabs of all the CUs we just
8087 read. */
8088
8089 static void
8090 process_cu_includes (void)
8091 {
8092 int ix;
8093 struct dwarf2_per_cu_data *iter;
8094
8095 for (ix = 0;
8096 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8097 ix, iter);
8098 ++ix)
8099 {
8100 if (! iter->is_debug_types)
8101 compute_compunit_symtab_includes (iter);
8102 }
8103
8104 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8105 }
8106
8107 /* Generate full symbol information for PER_CU, whose DIEs have
8108 already been loaded into memory. */
8109
8110 static void
8111 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8112 enum language pretend_language)
8113 {
8114 struct dwarf2_cu *cu = per_cu->cu;
8115 struct objfile *objfile = per_cu->objfile;
8116 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8117 CORE_ADDR lowpc, highpc;
8118 struct compunit_symtab *cust;
8119 struct cleanup *back_to, *delayed_list_cleanup;
8120 CORE_ADDR baseaddr;
8121 struct block *static_block;
8122 CORE_ADDR addr;
8123
8124 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8125
8126 buildsym_init ();
8127 back_to = make_cleanup (really_free_pendings, NULL);
8128 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8129
8130 cu->list_in_scope = &file_symbols;
8131
8132 cu->language = pretend_language;
8133 cu->language_defn = language_def (cu->language);
8134
8135 /* Do line number decoding in read_file_scope () */
8136 process_die (cu->dies, cu);
8137
8138 /* For now fudge the Go package. */
8139 if (cu->language == language_go)
8140 fixup_go_packaging (cu);
8141
8142 /* Now that we have processed all the DIEs in the CU, all the types
8143 should be complete, and it should now be safe to compute all of the
8144 physnames. */
8145 compute_delayed_physnames (cu);
8146 do_cleanups (delayed_list_cleanup);
8147
8148 /* Some compilers don't define a DW_AT_high_pc attribute for the
8149 compilation unit. If the DW_AT_high_pc is missing, synthesize
8150 it, by scanning the DIE's below the compilation unit. */
8151 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8152
8153 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8154 static_block = end_symtab_get_static_block (addr, 0, 1);
8155
8156 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8157 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8158 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8159 addrmap to help ensure it has an accurate map of pc values belonging to
8160 this comp unit. */
8161 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8162
8163 cust = end_symtab_from_static_block (static_block,
8164 SECT_OFF_TEXT (objfile), 0);
8165
8166 if (cust != NULL)
8167 {
8168 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8169
8170 /* Set symtab language to language from DW_AT_language. If the
8171 compilation is from a C file generated by language preprocessors, do
8172 not set the language if it was already deduced by start_subfile. */
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
8176
8177 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8178 produce DW_AT_location with location lists but it can be possibly
8179 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8180 there were bugs in prologue debug info, fixed later in GCC-4.5
8181 by "unwind info for epilogues" patch (which is not directly related).
8182
8183 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8184 needed, it would be wrong due to missing DW_AT_producer there.
8185
8186 Still one can confuse GDB by using non-standard GCC compilation
8187 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8188 */
8189 if (cu->has_loclist && gcc_4_minor >= 5)
8190 cust->locations_valid = 1;
8191
8192 if (gcc_4_minor >= 5)
8193 cust->epilogue_unwind_valid = 1;
8194
8195 cust->call_site_htab = cu->call_site_htab;
8196 }
8197
8198 if (dwarf2_per_objfile->using_index)
8199 per_cu->v.quick->compunit_symtab = cust;
8200 else
8201 {
8202 struct partial_symtab *pst = per_cu->v.psymtab;
8203 pst->compunit_symtab = cust;
8204 pst->readin = 1;
8205 }
8206
8207 /* Push it for inclusion processing later. */
8208 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8209
8210 do_cleanups (back_to);
8211 }
8212
8213 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8214 already been loaded into memory. */
8215
8216 static void
8217 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8218 enum language pretend_language)
8219 {
8220 struct dwarf2_cu *cu = per_cu->cu;
8221 struct objfile *objfile = per_cu->objfile;
8222 struct compunit_symtab *cust;
8223 struct cleanup *back_to, *delayed_list_cleanup;
8224 struct signatured_type *sig_type;
8225
8226 gdb_assert (per_cu->is_debug_types);
8227 sig_type = (struct signatured_type *) per_cu;
8228
8229 buildsym_init ();
8230 back_to = make_cleanup (really_free_pendings, NULL);
8231 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8232
8233 cu->list_in_scope = &file_symbols;
8234
8235 cu->language = pretend_language;
8236 cu->language_defn = language_def (cu->language);
8237
8238 /* The symbol tables are set up in read_type_unit_scope. */
8239 process_die (cu->dies, cu);
8240
8241 /* For now fudge the Go package. */
8242 if (cu->language == language_go)
8243 fixup_go_packaging (cu);
8244
8245 /* Now that we have processed all the DIEs in the CU, all the types
8246 should be complete, and it should now be safe to compute all of the
8247 physnames. */
8248 compute_delayed_physnames (cu);
8249 do_cleanups (delayed_list_cleanup);
8250
8251 /* TUs share symbol tables.
8252 If this is the first TU to use this symtab, complete the construction
8253 of it with end_expandable_symtab. Otherwise, complete the addition of
8254 this TU's symbols to the existing symtab. */
8255 if (sig_type->type_unit_group->compunit_symtab == NULL)
8256 {
8257 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8258 sig_type->type_unit_group->compunit_symtab = cust;
8259
8260 if (cust != NULL)
8261 {
8262 /* Set symtab language to language from DW_AT_language. If the
8263 compilation is from a C file generated by language preprocessors,
8264 do not set the language if it was already deduced by
8265 start_subfile. */
8266 if (!(cu->language == language_c
8267 && COMPUNIT_FILETABS (cust)->language != language_c))
8268 COMPUNIT_FILETABS (cust)->language = cu->language;
8269 }
8270 }
8271 else
8272 {
8273 augment_type_symtab ();
8274 cust = sig_type->type_unit_group->compunit_symtab;
8275 }
8276
8277 if (dwarf2_per_objfile->using_index)
8278 per_cu->v.quick->compunit_symtab = cust;
8279 else
8280 {
8281 struct partial_symtab *pst = per_cu->v.psymtab;
8282 pst->compunit_symtab = cust;
8283 pst->readin = 1;
8284 }
8285
8286 do_cleanups (back_to);
8287 }
8288
8289 /* Process an imported unit DIE. */
8290
8291 static void
8292 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8293 {
8294 struct attribute *attr;
8295
8296 /* For now we don't handle imported units in type units. */
8297 if (cu->per_cu->is_debug_types)
8298 {
8299 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8300 " supported in type units [in module %s]"),
8301 objfile_name (cu->objfile));
8302 }
8303
8304 attr = dwarf2_attr (die, DW_AT_import, cu);
8305 if (attr != NULL)
8306 {
8307 struct dwarf2_per_cu_data *per_cu;
8308 sect_offset offset;
8309 int is_dwz;
8310
8311 offset = dwarf2_get_ref_die_offset (attr);
8312 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8313 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8314
8315 /* If necessary, add it to the queue and load its DIEs. */
8316 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8317 load_full_comp_unit (per_cu, cu->language);
8318
8319 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8320 per_cu);
8321 }
8322 }
8323
8324 /* Reset the in_process bit of a die. */
8325
8326 static void
8327 reset_die_in_process (void *arg)
8328 {
8329 struct die_info *die = (struct die_info *) arg;
8330
8331 die->in_process = 0;
8332 }
8333
8334 /* Process a die and its children. */
8335
8336 static void
8337 process_die (struct die_info *die, struct dwarf2_cu *cu)
8338 {
8339 struct cleanup *in_process;
8340
8341 /* We should only be processing those not already in process. */
8342 gdb_assert (!die->in_process);
8343
8344 die->in_process = 1;
8345 in_process = make_cleanup (reset_die_in_process,die);
8346
8347 switch (die->tag)
8348 {
8349 case DW_TAG_padding:
8350 break;
8351 case DW_TAG_compile_unit:
8352 case DW_TAG_partial_unit:
8353 read_file_scope (die, cu);
8354 break;
8355 case DW_TAG_type_unit:
8356 read_type_unit_scope (die, cu);
8357 break;
8358 case DW_TAG_subprogram:
8359 case DW_TAG_inlined_subroutine:
8360 read_func_scope (die, cu);
8361 break;
8362 case DW_TAG_lexical_block:
8363 case DW_TAG_try_block:
8364 case DW_TAG_catch_block:
8365 read_lexical_block_scope (die, cu);
8366 break;
8367 case DW_TAG_call_site:
8368 case DW_TAG_GNU_call_site:
8369 read_call_site_scope (die, cu);
8370 break;
8371 case DW_TAG_class_type:
8372 case DW_TAG_interface_type:
8373 case DW_TAG_structure_type:
8374 case DW_TAG_union_type:
8375 process_structure_scope (die, cu);
8376 break;
8377 case DW_TAG_enumeration_type:
8378 process_enumeration_scope (die, cu);
8379 break;
8380
8381 /* These dies have a type, but processing them does not create
8382 a symbol or recurse to process the children. Therefore we can
8383 read them on-demand through read_type_die. */
8384 case DW_TAG_subroutine_type:
8385 case DW_TAG_set_type:
8386 case DW_TAG_array_type:
8387 case DW_TAG_pointer_type:
8388 case DW_TAG_ptr_to_member_type:
8389 case DW_TAG_reference_type:
8390 case DW_TAG_string_type:
8391 break;
8392
8393 case DW_TAG_base_type:
8394 case DW_TAG_subrange_type:
8395 case DW_TAG_typedef:
8396 /* Add a typedef symbol for the type definition, if it has a
8397 DW_AT_name. */
8398 new_symbol (die, read_type_die (die, cu), cu);
8399 break;
8400 case DW_TAG_common_block:
8401 read_common_block (die, cu);
8402 break;
8403 case DW_TAG_common_inclusion:
8404 break;
8405 case DW_TAG_namespace:
8406 cu->processing_has_namespace_info = 1;
8407 read_namespace (die, cu);
8408 break;
8409 case DW_TAG_module:
8410 cu->processing_has_namespace_info = 1;
8411 read_module (die, cu);
8412 break;
8413 case DW_TAG_imported_declaration:
8414 cu->processing_has_namespace_info = 1;
8415 if (read_namespace_alias (die, cu))
8416 break;
8417 /* The declaration is not a global namespace alias: fall through. */
8418 case DW_TAG_imported_module:
8419 cu->processing_has_namespace_info = 1;
8420 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8421 || cu->language != language_fortran))
8422 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8423 dwarf_tag_name (die->tag));
8424 read_import_statement (die, cu);
8425 break;
8426
8427 case DW_TAG_imported_unit:
8428 process_imported_unit_die (die, cu);
8429 break;
8430
8431 default:
8432 new_symbol (die, NULL, cu);
8433 break;
8434 }
8435
8436 do_cleanups (in_process);
8437 }
8438 \f
8439 /* DWARF name computation. */
8440
8441 /* A helper function for dwarf2_compute_name which determines whether DIE
8442 needs to have the name of the scope prepended to the name listed in the
8443 die. */
8444
8445 static int
8446 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8447 {
8448 struct attribute *attr;
8449
8450 switch (die->tag)
8451 {
8452 case DW_TAG_namespace:
8453 case DW_TAG_typedef:
8454 case DW_TAG_class_type:
8455 case DW_TAG_interface_type:
8456 case DW_TAG_structure_type:
8457 case DW_TAG_union_type:
8458 case DW_TAG_enumeration_type:
8459 case DW_TAG_enumerator:
8460 case DW_TAG_subprogram:
8461 case DW_TAG_inlined_subroutine:
8462 case DW_TAG_member:
8463 case DW_TAG_imported_declaration:
8464 return 1;
8465
8466 case DW_TAG_variable:
8467 case DW_TAG_constant:
8468 /* We only need to prefix "globally" visible variables. These include
8469 any variable marked with DW_AT_external or any variable that
8470 lives in a namespace. [Variables in anonymous namespaces
8471 require prefixing, but they are not DW_AT_external.] */
8472
8473 if (dwarf2_attr (die, DW_AT_specification, cu))
8474 {
8475 struct dwarf2_cu *spec_cu = cu;
8476
8477 return die_needs_namespace (die_specification (die, &spec_cu),
8478 spec_cu);
8479 }
8480
8481 attr = dwarf2_attr (die, DW_AT_external, cu);
8482 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8483 && die->parent->tag != DW_TAG_module)
8484 return 0;
8485 /* A variable in a lexical block of some kind does not need a
8486 namespace, even though in C++ such variables may be external
8487 and have a mangled name. */
8488 if (die->parent->tag == DW_TAG_lexical_block
8489 || die->parent->tag == DW_TAG_try_block
8490 || die->parent->tag == DW_TAG_catch_block
8491 || die->parent->tag == DW_TAG_subprogram)
8492 return 0;
8493 return 1;
8494
8495 default:
8496 return 0;
8497 }
8498 }
8499
8500 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8501 compute the physname for the object, which include a method's:
8502 - formal parameters (C++),
8503 - receiver type (Go),
8504
8505 The term "physname" is a bit confusing.
8506 For C++, for example, it is the demangled name.
8507 For Go, for example, it's the mangled name.
8508
8509 For Ada, return the DIE's linkage name rather than the fully qualified
8510 name. PHYSNAME is ignored..
8511
8512 The result is allocated on the objfile_obstack and canonicalized. */
8513
8514 static const char *
8515 dwarf2_compute_name (const char *name,
8516 struct die_info *die, struct dwarf2_cu *cu,
8517 int physname)
8518 {
8519 struct objfile *objfile = cu->objfile;
8520
8521 if (name == NULL)
8522 name = dwarf2_name (die, cu);
8523
8524 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8525 but otherwise compute it by typename_concat inside GDB.
8526 FIXME: Actually this is not really true, or at least not always true.
8527 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8528 Fortran names because there is no mangling standard. So new_symbol_full
8529 will set the demangled name to the result of dwarf2_full_name, and it is
8530 the demangled name that GDB uses if it exists. */
8531 if (cu->language == language_ada
8532 || (cu->language == language_fortran && physname))
8533 {
8534 /* For Ada unit, we prefer the linkage name over the name, as
8535 the former contains the exported name, which the user expects
8536 to be able to reference. Ideally, we want the user to be able
8537 to reference this entity using either natural or linkage name,
8538 but we haven't started looking at this enhancement yet. */
8539 const char *linkage_name;
8540
8541 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8542 if (linkage_name == NULL)
8543 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8544 if (linkage_name != NULL)
8545 return linkage_name;
8546 }
8547
8548 /* These are the only languages we know how to qualify names in. */
8549 if (name != NULL
8550 && (cu->language == language_cplus
8551 || cu->language == language_fortran || cu->language == language_d
8552 || cu->language == language_rust))
8553 {
8554 if (die_needs_namespace (die, cu))
8555 {
8556 long length;
8557 const char *prefix;
8558 const char *canonical_name = NULL;
8559
8560 string_file buf;
8561
8562 prefix = determine_prefix (die, cu);
8563 if (*prefix != '\0')
8564 {
8565 char *prefixed_name = typename_concat (NULL, prefix, name,
8566 physname, cu);
8567
8568 buf.puts (prefixed_name);
8569 xfree (prefixed_name);
8570 }
8571 else
8572 buf.puts (name);
8573
8574 /* Template parameters may be specified in the DIE's DW_AT_name, or
8575 as children with DW_TAG_template_type_param or
8576 DW_TAG_value_type_param. If the latter, add them to the name
8577 here. If the name already has template parameters, then
8578 skip this step; some versions of GCC emit both, and
8579 it is more efficient to use the pre-computed name.
8580
8581 Something to keep in mind about this process: it is very
8582 unlikely, or in some cases downright impossible, to produce
8583 something that will match the mangled name of a function.
8584 If the definition of the function has the same debug info,
8585 we should be able to match up with it anyway. But fallbacks
8586 using the minimal symbol, for instance to find a method
8587 implemented in a stripped copy of libstdc++, will not work.
8588 If we do not have debug info for the definition, we will have to
8589 match them up some other way.
8590
8591 When we do name matching there is a related problem with function
8592 templates; two instantiated function templates are allowed to
8593 differ only by their return types, which we do not add here. */
8594
8595 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8596 {
8597 struct attribute *attr;
8598 struct die_info *child;
8599 int first = 1;
8600
8601 die->building_fullname = 1;
8602
8603 for (child = die->child; child != NULL; child = child->sibling)
8604 {
8605 struct type *type;
8606 LONGEST value;
8607 const gdb_byte *bytes;
8608 struct dwarf2_locexpr_baton *baton;
8609 struct value *v;
8610
8611 if (child->tag != DW_TAG_template_type_param
8612 && child->tag != DW_TAG_template_value_param)
8613 continue;
8614
8615 if (first)
8616 {
8617 buf.puts ("<");
8618 first = 0;
8619 }
8620 else
8621 buf.puts (", ");
8622
8623 attr = dwarf2_attr (child, DW_AT_type, cu);
8624 if (attr == NULL)
8625 {
8626 complaint (&symfile_complaints,
8627 _("template parameter missing DW_AT_type"));
8628 buf.puts ("UNKNOWN_TYPE");
8629 continue;
8630 }
8631 type = die_type (child, cu);
8632
8633 if (child->tag == DW_TAG_template_type_param)
8634 {
8635 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8636 continue;
8637 }
8638
8639 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8640 if (attr == NULL)
8641 {
8642 complaint (&symfile_complaints,
8643 _("template parameter missing "
8644 "DW_AT_const_value"));
8645 buf.puts ("UNKNOWN_VALUE");
8646 continue;
8647 }
8648
8649 dwarf2_const_value_attr (attr, type, name,
8650 &cu->comp_unit_obstack, cu,
8651 &value, &bytes, &baton);
8652
8653 if (TYPE_NOSIGN (type))
8654 /* GDB prints characters as NUMBER 'CHAR'. If that's
8655 changed, this can use value_print instead. */
8656 c_printchar (value, type, &buf);
8657 else
8658 {
8659 struct value_print_options opts;
8660
8661 if (baton != NULL)
8662 v = dwarf2_evaluate_loc_desc (type, NULL,
8663 baton->data,
8664 baton->size,
8665 baton->per_cu);
8666 else if (bytes != NULL)
8667 {
8668 v = allocate_value (type);
8669 memcpy (value_contents_writeable (v), bytes,
8670 TYPE_LENGTH (type));
8671 }
8672 else
8673 v = value_from_longest (type, value);
8674
8675 /* Specify decimal so that we do not depend on
8676 the radix. */
8677 get_formatted_print_options (&opts, 'd');
8678 opts.raw = 1;
8679 value_print (v, &buf, &opts);
8680 release_value (v);
8681 value_free (v);
8682 }
8683 }
8684
8685 die->building_fullname = 0;
8686
8687 if (!first)
8688 {
8689 /* Close the argument list, with a space if necessary
8690 (nested templates). */
8691 if (!buf.empty () && buf.string ().back () == '>')
8692 buf.puts (" >");
8693 else
8694 buf.puts (">");
8695 }
8696 }
8697
8698 /* For C++ methods, append formal parameter type
8699 information, if PHYSNAME. */
8700
8701 if (physname && die->tag == DW_TAG_subprogram
8702 && cu->language == language_cplus)
8703 {
8704 struct type *type = read_type_die (die, cu);
8705
8706 c_type_print_args (type, &buf, 1, cu->language,
8707 &type_print_raw_options);
8708
8709 if (cu->language == language_cplus)
8710 {
8711 /* Assume that an artificial first parameter is
8712 "this", but do not crash if it is not. RealView
8713 marks unnamed (and thus unused) parameters as
8714 artificial; there is no way to differentiate
8715 the two cases. */
8716 if (TYPE_NFIELDS (type) > 0
8717 && TYPE_FIELD_ARTIFICIAL (type, 0)
8718 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8719 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8720 0))))
8721 buf.puts (" const");
8722 }
8723 }
8724
8725 const std::string &intermediate_name = buf.string ();
8726
8727 if (cu->language == language_cplus)
8728 canonical_name
8729 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8730 &objfile->per_bfd->storage_obstack);
8731
8732 /* If we only computed INTERMEDIATE_NAME, or if
8733 INTERMEDIATE_NAME is already canonical, then we need to
8734 copy it to the appropriate obstack. */
8735 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8736 name = ((const char *)
8737 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8738 intermediate_name.c_str (),
8739 intermediate_name.length ()));
8740 else
8741 name = canonical_name;
8742 }
8743 }
8744
8745 return name;
8746 }
8747
8748 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8749 If scope qualifiers are appropriate they will be added. The result
8750 will be allocated on the storage_obstack, or NULL if the DIE does
8751 not have a name. NAME may either be from a previous call to
8752 dwarf2_name or NULL.
8753
8754 The output string will be canonicalized (if C++). */
8755
8756 static const char *
8757 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8758 {
8759 return dwarf2_compute_name (name, die, cu, 0);
8760 }
8761
8762 /* Construct a physname for the given DIE in CU. NAME may either be
8763 from a previous call to dwarf2_name or NULL. The result will be
8764 allocated on the objfile_objstack or NULL if the DIE does not have a
8765 name.
8766
8767 The output string will be canonicalized (if C++). */
8768
8769 static const char *
8770 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8771 {
8772 struct objfile *objfile = cu->objfile;
8773 const char *retval, *mangled = NULL, *canon = NULL;
8774 struct cleanup *back_to;
8775 int need_copy = 1;
8776
8777 /* In this case dwarf2_compute_name is just a shortcut not building anything
8778 on its own. */
8779 if (!die_needs_namespace (die, cu))
8780 return dwarf2_compute_name (name, die, cu, 1);
8781
8782 back_to = make_cleanup (null_cleanup, NULL);
8783
8784 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8785 if (mangled == NULL)
8786 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8787
8788 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8789 See https://github.com/rust-lang/rust/issues/32925. */
8790 if (cu->language == language_rust && mangled != NULL
8791 && strchr (mangled, '{') != NULL)
8792 mangled = NULL;
8793
8794 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8795 has computed. */
8796 if (mangled != NULL)
8797 {
8798 char *demangled;
8799
8800 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8801 type. It is easier for GDB users to search for such functions as
8802 `name(params)' than `long name(params)'. In such case the minimal
8803 symbol names do not match the full symbol names but for template
8804 functions there is never a need to look up their definition from their
8805 declaration so the only disadvantage remains the minimal symbol
8806 variant `long name(params)' does not have the proper inferior type.
8807 */
8808
8809 if (cu->language == language_go)
8810 {
8811 /* This is a lie, but we already lie to the caller new_symbol_full.
8812 new_symbol_full assumes we return the mangled name.
8813 This just undoes that lie until things are cleaned up. */
8814 demangled = NULL;
8815 }
8816 else
8817 {
8818 demangled = gdb_demangle (mangled,
8819 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8820 }
8821 if (demangled)
8822 {
8823 make_cleanup (xfree, demangled);
8824 canon = demangled;
8825 }
8826 else
8827 {
8828 canon = mangled;
8829 need_copy = 0;
8830 }
8831 }
8832
8833 if (canon == NULL || check_physname)
8834 {
8835 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8836
8837 if (canon != NULL && strcmp (physname, canon) != 0)
8838 {
8839 /* It may not mean a bug in GDB. The compiler could also
8840 compute DW_AT_linkage_name incorrectly. But in such case
8841 GDB would need to be bug-to-bug compatible. */
8842
8843 complaint (&symfile_complaints,
8844 _("Computed physname <%s> does not match demangled <%s> "
8845 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8846 physname, canon, mangled, die->offset.sect_off,
8847 objfile_name (objfile));
8848
8849 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8850 is available here - over computed PHYSNAME. It is safer
8851 against both buggy GDB and buggy compilers. */
8852
8853 retval = canon;
8854 }
8855 else
8856 {
8857 retval = physname;
8858 need_copy = 0;
8859 }
8860 }
8861 else
8862 retval = canon;
8863
8864 if (need_copy)
8865 retval = ((const char *)
8866 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8867 retval, strlen (retval)));
8868
8869 do_cleanups (back_to);
8870 return retval;
8871 }
8872
8873 /* Inspect DIE in CU for a namespace alias. If one exists, record
8874 a new symbol for it.
8875
8876 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8877
8878 static int
8879 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8880 {
8881 struct attribute *attr;
8882
8883 /* If the die does not have a name, this is not a namespace
8884 alias. */
8885 attr = dwarf2_attr (die, DW_AT_name, cu);
8886 if (attr != NULL)
8887 {
8888 int num;
8889 struct die_info *d = die;
8890 struct dwarf2_cu *imported_cu = cu;
8891
8892 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8893 keep inspecting DIEs until we hit the underlying import. */
8894 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8895 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8896 {
8897 attr = dwarf2_attr (d, DW_AT_import, cu);
8898 if (attr == NULL)
8899 break;
8900
8901 d = follow_die_ref (d, attr, &imported_cu);
8902 if (d->tag != DW_TAG_imported_declaration)
8903 break;
8904 }
8905
8906 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8907 {
8908 complaint (&symfile_complaints,
8909 _("DIE at 0x%x has too many recursively imported "
8910 "declarations"), d->offset.sect_off);
8911 return 0;
8912 }
8913
8914 if (attr != NULL)
8915 {
8916 struct type *type;
8917 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8918
8919 type = get_die_type_at_offset (offset, cu->per_cu);
8920 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8921 {
8922 /* This declaration is a global namespace alias. Add
8923 a symbol for it whose type is the aliased namespace. */
8924 new_symbol (die, type, cu);
8925 return 1;
8926 }
8927 }
8928 }
8929
8930 return 0;
8931 }
8932
8933 /* Return the using directives repository (global or local?) to use in the
8934 current context for LANGUAGE.
8935
8936 For Ada, imported declarations can materialize renamings, which *may* be
8937 global. However it is impossible (for now?) in DWARF to distinguish
8938 "external" imported declarations and "static" ones. As all imported
8939 declarations seem to be static in all other languages, make them all CU-wide
8940 global only in Ada. */
8941
8942 static struct using_direct **
8943 using_directives (enum language language)
8944 {
8945 if (language == language_ada && context_stack_depth == 0)
8946 return &global_using_directives;
8947 else
8948 return &local_using_directives;
8949 }
8950
8951 /* Read the import statement specified by the given die and record it. */
8952
8953 static void
8954 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8955 {
8956 struct objfile *objfile = cu->objfile;
8957 struct attribute *import_attr;
8958 struct die_info *imported_die, *child_die;
8959 struct dwarf2_cu *imported_cu;
8960 const char *imported_name;
8961 const char *imported_name_prefix;
8962 const char *canonical_name;
8963 const char *import_alias;
8964 const char *imported_declaration = NULL;
8965 const char *import_prefix;
8966 VEC (const_char_ptr) *excludes = NULL;
8967 struct cleanup *cleanups;
8968
8969 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8970 if (import_attr == NULL)
8971 {
8972 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8973 dwarf_tag_name (die->tag));
8974 return;
8975 }
8976
8977 imported_cu = cu;
8978 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8979 imported_name = dwarf2_name (imported_die, imported_cu);
8980 if (imported_name == NULL)
8981 {
8982 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8983
8984 The import in the following code:
8985 namespace A
8986 {
8987 typedef int B;
8988 }
8989
8990 int main ()
8991 {
8992 using A::B;
8993 B b;
8994 return b;
8995 }
8996
8997 ...
8998 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8999 <52> DW_AT_decl_file : 1
9000 <53> DW_AT_decl_line : 6
9001 <54> DW_AT_import : <0x75>
9002 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9003 <59> DW_AT_name : B
9004 <5b> DW_AT_decl_file : 1
9005 <5c> DW_AT_decl_line : 2
9006 <5d> DW_AT_type : <0x6e>
9007 ...
9008 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9009 <76> DW_AT_byte_size : 4
9010 <77> DW_AT_encoding : 5 (signed)
9011
9012 imports the wrong die ( 0x75 instead of 0x58 ).
9013 This case will be ignored until the gcc bug is fixed. */
9014 return;
9015 }
9016
9017 /* Figure out the local name after import. */
9018 import_alias = dwarf2_name (die, cu);
9019
9020 /* Figure out where the statement is being imported to. */
9021 import_prefix = determine_prefix (die, cu);
9022
9023 /* Figure out what the scope of the imported die is and prepend it
9024 to the name of the imported die. */
9025 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9026
9027 if (imported_die->tag != DW_TAG_namespace
9028 && imported_die->tag != DW_TAG_module)
9029 {
9030 imported_declaration = imported_name;
9031 canonical_name = imported_name_prefix;
9032 }
9033 else if (strlen (imported_name_prefix) > 0)
9034 canonical_name = obconcat (&objfile->objfile_obstack,
9035 imported_name_prefix,
9036 (cu->language == language_d ? "." : "::"),
9037 imported_name, (char *) NULL);
9038 else
9039 canonical_name = imported_name;
9040
9041 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9042
9043 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9044 for (child_die = die->child; child_die && child_die->tag;
9045 child_die = sibling_die (child_die))
9046 {
9047 /* DWARF-4: A Fortran use statement with a “rename list” may be
9048 represented by an imported module entry with an import attribute
9049 referring to the module and owned entries corresponding to those
9050 entities that are renamed as part of being imported. */
9051
9052 if (child_die->tag != DW_TAG_imported_declaration)
9053 {
9054 complaint (&symfile_complaints,
9055 _("child DW_TAG_imported_declaration expected "
9056 "- DIE at 0x%x [in module %s]"),
9057 child_die->offset.sect_off, objfile_name (objfile));
9058 continue;
9059 }
9060
9061 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9062 if (import_attr == NULL)
9063 {
9064 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9065 dwarf_tag_name (child_die->tag));
9066 continue;
9067 }
9068
9069 imported_cu = cu;
9070 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9071 &imported_cu);
9072 imported_name = dwarf2_name (imported_die, imported_cu);
9073 if (imported_name == NULL)
9074 {
9075 complaint (&symfile_complaints,
9076 _("child DW_TAG_imported_declaration has unknown "
9077 "imported name - DIE at 0x%x [in module %s]"),
9078 child_die->offset.sect_off, objfile_name (objfile));
9079 continue;
9080 }
9081
9082 VEC_safe_push (const_char_ptr, excludes, imported_name);
9083
9084 process_die (child_die, cu);
9085 }
9086
9087 add_using_directive (using_directives (cu->language),
9088 import_prefix,
9089 canonical_name,
9090 import_alias,
9091 imported_declaration,
9092 excludes,
9093 0,
9094 &objfile->objfile_obstack);
9095
9096 do_cleanups (cleanups);
9097 }
9098
9099 /* Cleanup function for handle_DW_AT_stmt_list. */
9100
9101 static void
9102 free_cu_line_header (void *arg)
9103 {
9104 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9105
9106 free_line_header (cu->line_header);
9107 cu->line_header = NULL;
9108 }
9109
9110 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9111 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9112 this, it was first present in GCC release 4.3.0. */
9113
9114 static int
9115 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9116 {
9117 if (!cu->checked_producer)
9118 check_producer (cu);
9119
9120 return cu->producer_is_gcc_lt_4_3;
9121 }
9122
9123 static void
9124 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9125 const char **name, const char **comp_dir)
9126 {
9127 /* Find the filename. Do not use dwarf2_name here, since the filename
9128 is not a source language identifier. */
9129 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9130 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9131
9132 if (*comp_dir == NULL
9133 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9134 && IS_ABSOLUTE_PATH (*name))
9135 {
9136 char *d = ldirname (*name);
9137
9138 *comp_dir = d;
9139 if (d != NULL)
9140 make_cleanup (xfree, d);
9141 }
9142 if (*comp_dir != NULL)
9143 {
9144 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9145 directory, get rid of it. */
9146 const char *cp = strchr (*comp_dir, ':');
9147
9148 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9149 *comp_dir = cp + 1;
9150 }
9151
9152 if (*name == NULL)
9153 *name = "<unknown>";
9154 }
9155
9156 /* Handle DW_AT_stmt_list for a compilation unit.
9157 DIE is the DW_TAG_compile_unit die for CU.
9158 COMP_DIR is the compilation directory. LOWPC is passed to
9159 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9160
9161 static void
9162 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9163 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9164 {
9165 struct objfile *objfile = dwarf2_per_objfile->objfile;
9166 struct attribute *attr;
9167 unsigned int line_offset;
9168 struct line_header line_header_local;
9169 hashval_t line_header_local_hash;
9170 unsigned u;
9171 void **slot;
9172 int decode_mapping;
9173
9174 gdb_assert (! cu->per_cu->is_debug_types);
9175
9176 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9177 if (attr == NULL)
9178 return;
9179
9180 line_offset = DW_UNSND (attr);
9181
9182 /* The line header hash table is only created if needed (it exists to
9183 prevent redundant reading of the line table for partial_units).
9184 If we're given a partial_unit, we'll need it. If we're given a
9185 compile_unit, then use the line header hash table if it's already
9186 created, but don't create one just yet. */
9187
9188 if (dwarf2_per_objfile->line_header_hash == NULL
9189 && die->tag == DW_TAG_partial_unit)
9190 {
9191 dwarf2_per_objfile->line_header_hash
9192 = htab_create_alloc_ex (127, line_header_hash_voidp,
9193 line_header_eq_voidp,
9194 free_line_header_voidp,
9195 &objfile->objfile_obstack,
9196 hashtab_obstack_allocate,
9197 dummy_obstack_deallocate);
9198 }
9199
9200 line_header_local.offset.sect_off = line_offset;
9201 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9202 line_header_local_hash = line_header_hash (&line_header_local);
9203 if (dwarf2_per_objfile->line_header_hash != NULL)
9204 {
9205 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9206 &line_header_local,
9207 line_header_local_hash, NO_INSERT);
9208
9209 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9210 is not present in *SLOT (since if there is something in *SLOT then
9211 it will be for a partial_unit). */
9212 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9213 {
9214 gdb_assert (*slot != NULL);
9215 cu->line_header = (struct line_header *) *slot;
9216 return;
9217 }
9218 }
9219
9220 /* dwarf_decode_line_header does not yet provide sufficient information.
9221 We always have to call also dwarf_decode_lines for it. */
9222 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9223 if (cu->line_header == NULL)
9224 return;
9225
9226 if (dwarf2_per_objfile->line_header_hash == NULL)
9227 slot = NULL;
9228 else
9229 {
9230 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9231 &line_header_local,
9232 line_header_local_hash, INSERT);
9233 gdb_assert (slot != NULL);
9234 }
9235 if (slot != NULL && *slot == NULL)
9236 {
9237 /* This newly decoded line number information unit will be owned
9238 by line_header_hash hash table. */
9239 *slot = cu->line_header;
9240 }
9241 else
9242 {
9243 /* We cannot free any current entry in (*slot) as that struct line_header
9244 may be already used by multiple CUs. Create only temporary decoded
9245 line_header for this CU - it may happen at most once for each line
9246 number information unit. And if we're not using line_header_hash
9247 then this is what we want as well. */
9248 gdb_assert (die->tag != DW_TAG_partial_unit);
9249 make_cleanup (free_cu_line_header, cu);
9250 }
9251 decode_mapping = (die->tag != DW_TAG_partial_unit);
9252 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9253 decode_mapping);
9254 }
9255
9256 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9257
9258 static void
9259 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9260 {
9261 struct objfile *objfile = dwarf2_per_objfile->objfile;
9262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9263 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9264 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9265 CORE_ADDR highpc = ((CORE_ADDR) 0);
9266 struct attribute *attr;
9267 const char *name = NULL;
9268 const char *comp_dir = NULL;
9269 struct die_info *child_die;
9270 CORE_ADDR baseaddr;
9271
9272 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9273
9274 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9275
9276 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9277 from finish_block. */
9278 if (lowpc == ((CORE_ADDR) -1))
9279 lowpc = highpc;
9280 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9281
9282 find_file_and_directory (die, cu, &name, &comp_dir);
9283
9284 prepare_one_comp_unit (cu, die, cu->language);
9285
9286 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9287 standardised yet. As a workaround for the language detection we fall
9288 back to the DW_AT_producer string. */
9289 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9290 cu->language = language_opencl;
9291
9292 /* Similar hack for Go. */
9293 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9294 set_cu_language (DW_LANG_Go, cu);
9295
9296 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9297
9298 /* Decode line number information if present. We do this before
9299 processing child DIEs, so that the line header table is available
9300 for DW_AT_decl_file. */
9301 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9302
9303 /* Process all dies in compilation unit. */
9304 if (die->child != NULL)
9305 {
9306 child_die = die->child;
9307 while (child_die && child_die->tag)
9308 {
9309 process_die (child_die, cu);
9310 child_die = sibling_die (child_die);
9311 }
9312 }
9313
9314 /* Decode macro information, if present. Dwarf 2 macro information
9315 refers to information in the line number info statement program
9316 header, so we can only read it if we've read the header
9317 successfully. */
9318 attr = dwarf2_attr (die, DW_AT_macros, cu);
9319 if (attr == NULL)
9320 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9321 if (attr && cu->line_header)
9322 {
9323 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9324 complaint (&symfile_complaints,
9325 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9326
9327 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9328 }
9329 else
9330 {
9331 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9332 if (attr && cu->line_header)
9333 {
9334 unsigned int macro_offset = DW_UNSND (attr);
9335
9336 dwarf_decode_macros (cu, macro_offset, 0);
9337 }
9338 }
9339
9340 do_cleanups (back_to);
9341 }
9342
9343 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9344 Create the set of symtabs used by this TU, or if this TU is sharing
9345 symtabs with another TU and the symtabs have already been created
9346 then restore those symtabs in the line header.
9347 We don't need the pc/line-number mapping for type units. */
9348
9349 static void
9350 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9351 {
9352 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9353 struct type_unit_group *tu_group;
9354 int first_time;
9355 struct line_header *lh;
9356 struct attribute *attr;
9357 unsigned int i, line_offset;
9358 struct signatured_type *sig_type;
9359
9360 gdb_assert (per_cu->is_debug_types);
9361 sig_type = (struct signatured_type *) per_cu;
9362
9363 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9364
9365 /* If we're using .gdb_index (includes -readnow) then
9366 per_cu->type_unit_group may not have been set up yet. */
9367 if (sig_type->type_unit_group == NULL)
9368 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9369 tu_group = sig_type->type_unit_group;
9370
9371 /* If we've already processed this stmt_list there's no real need to
9372 do it again, we could fake it and just recreate the part we need
9373 (file name,index -> symtab mapping). If data shows this optimization
9374 is useful we can do it then. */
9375 first_time = tu_group->compunit_symtab == NULL;
9376
9377 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9378 debug info. */
9379 lh = NULL;
9380 if (attr != NULL)
9381 {
9382 line_offset = DW_UNSND (attr);
9383 lh = dwarf_decode_line_header (line_offset, cu);
9384 }
9385 if (lh == NULL)
9386 {
9387 if (first_time)
9388 dwarf2_start_symtab (cu, "", NULL, 0);
9389 else
9390 {
9391 gdb_assert (tu_group->symtabs == NULL);
9392 restart_symtab (tu_group->compunit_symtab, "", 0);
9393 }
9394 return;
9395 }
9396
9397 cu->line_header = lh;
9398 make_cleanup (free_cu_line_header, cu);
9399
9400 if (first_time)
9401 {
9402 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9403
9404 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9405 still initializing it, and our caller (a few levels up)
9406 process_full_type_unit still needs to know if this is the first
9407 time. */
9408
9409 tu_group->num_symtabs = lh->num_file_names;
9410 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9411
9412 for (i = 0; i < lh->num_file_names; ++i)
9413 {
9414 const char *dir = NULL;
9415 struct file_entry *fe = &lh->file_names[i];
9416
9417 if (fe->dir_index && lh->include_dirs != NULL)
9418 dir = lh->include_dirs[fe->dir_index - 1];
9419 dwarf2_start_subfile (fe->name, dir);
9420
9421 if (current_subfile->symtab == NULL)
9422 {
9423 /* NOTE: start_subfile will recognize when it's been passed
9424 a file it has already seen. So we can't assume there's a
9425 simple mapping from lh->file_names to subfiles, plus
9426 lh->file_names may contain dups. */
9427 current_subfile->symtab
9428 = allocate_symtab (cust, current_subfile->name);
9429 }
9430
9431 fe->symtab = current_subfile->symtab;
9432 tu_group->symtabs[i] = fe->symtab;
9433 }
9434 }
9435 else
9436 {
9437 restart_symtab (tu_group->compunit_symtab, "", 0);
9438
9439 for (i = 0; i < lh->num_file_names; ++i)
9440 {
9441 struct file_entry *fe = &lh->file_names[i];
9442
9443 fe->symtab = tu_group->symtabs[i];
9444 }
9445 }
9446
9447 /* The main symtab is allocated last. Type units don't have DW_AT_name
9448 so they don't have a "real" (so to speak) symtab anyway.
9449 There is later code that will assign the main symtab to all symbols
9450 that don't have one. We need to handle the case of a symbol with a
9451 missing symtab (DW_AT_decl_file) anyway. */
9452 }
9453
9454 /* Process DW_TAG_type_unit.
9455 For TUs we want to skip the first top level sibling if it's not the
9456 actual type being defined by this TU. In this case the first top
9457 level sibling is there to provide context only. */
9458
9459 static void
9460 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9461 {
9462 struct die_info *child_die;
9463
9464 prepare_one_comp_unit (cu, die, language_minimal);
9465
9466 /* Initialize (or reinitialize) the machinery for building symtabs.
9467 We do this before processing child DIEs, so that the line header table
9468 is available for DW_AT_decl_file. */
9469 setup_type_unit_groups (die, cu);
9470
9471 if (die->child != NULL)
9472 {
9473 child_die = die->child;
9474 while (child_die && child_die->tag)
9475 {
9476 process_die (child_die, cu);
9477 child_die = sibling_die (child_die);
9478 }
9479 }
9480 }
9481 \f
9482 /* DWO/DWP files.
9483
9484 http://gcc.gnu.org/wiki/DebugFission
9485 http://gcc.gnu.org/wiki/DebugFissionDWP
9486
9487 To simplify handling of both DWO files ("object" files with the DWARF info)
9488 and DWP files (a file with the DWOs packaged up into one file), we treat
9489 DWP files as having a collection of virtual DWO files. */
9490
9491 static hashval_t
9492 hash_dwo_file (const void *item)
9493 {
9494 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9495 hashval_t hash;
9496
9497 hash = htab_hash_string (dwo_file->dwo_name);
9498 if (dwo_file->comp_dir != NULL)
9499 hash += htab_hash_string (dwo_file->comp_dir);
9500 return hash;
9501 }
9502
9503 static int
9504 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9505 {
9506 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9507 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9508
9509 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9510 return 0;
9511 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9512 return lhs->comp_dir == rhs->comp_dir;
9513 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9514 }
9515
9516 /* Allocate a hash table for DWO files. */
9517
9518 static htab_t
9519 allocate_dwo_file_hash_table (void)
9520 {
9521 struct objfile *objfile = dwarf2_per_objfile->objfile;
9522
9523 return htab_create_alloc_ex (41,
9524 hash_dwo_file,
9525 eq_dwo_file,
9526 NULL,
9527 &objfile->objfile_obstack,
9528 hashtab_obstack_allocate,
9529 dummy_obstack_deallocate);
9530 }
9531
9532 /* Lookup DWO file DWO_NAME. */
9533
9534 static void **
9535 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9536 {
9537 struct dwo_file find_entry;
9538 void **slot;
9539
9540 if (dwarf2_per_objfile->dwo_files == NULL)
9541 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9542
9543 memset (&find_entry, 0, sizeof (find_entry));
9544 find_entry.dwo_name = dwo_name;
9545 find_entry.comp_dir = comp_dir;
9546 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9547
9548 return slot;
9549 }
9550
9551 static hashval_t
9552 hash_dwo_unit (const void *item)
9553 {
9554 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9555
9556 /* This drops the top 32 bits of the id, but is ok for a hash. */
9557 return dwo_unit->signature;
9558 }
9559
9560 static int
9561 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9562 {
9563 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9564 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9565
9566 /* The signature is assumed to be unique within the DWO file.
9567 So while object file CU dwo_id's always have the value zero,
9568 that's OK, assuming each object file DWO file has only one CU,
9569 and that's the rule for now. */
9570 return lhs->signature == rhs->signature;
9571 }
9572
9573 /* Allocate a hash table for DWO CUs,TUs.
9574 There is one of these tables for each of CUs,TUs for each DWO file. */
9575
9576 static htab_t
9577 allocate_dwo_unit_table (struct objfile *objfile)
9578 {
9579 /* Start out with a pretty small number.
9580 Generally DWO files contain only one CU and maybe some TUs. */
9581 return htab_create_alloc_ex (3,
9582 hash_dwo_unit,
9583 eq_dwo_unit,
9584 NULL,
9585 &objfile->objfile_obstack,
9586 hashtab_obstack_allocate,
9587 dummy_obstack_deallocate);
9588 }
9589
9590 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9591
9592 struct create_dwo_cu_data
9593 {
9594 struct dwo_file *dwo_file;
9595 struct dwo_unit dwo_unit;
9596 };
9597
9598 /* die_reader_func for create_dwo_cu. */
9599
9600 static void
9601 create_dwo_cu_reader (const struct die_reader_specs *reader,
9602 const gdb_byte *info_ptr,
9603 struct die_info *comp_unit_die,
9604 int has_children,
9605 void *datap)
9606 {
9607 struct dwarf2_cu *cu = reader->cu;
9608 sect_offset offset = cu->per_cu->offset;
9609 struct dwarf2_section_info *section = cu->per_cu->section;
9610 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9611 struct dwo_file *dwo_file = data->dwo_file;
9612 struct dwo_unit *dwo_unit = &data->dwo_unit;
9613 struct attribute *attr;
9614
9615 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9616 if (attr == NULL)
9617 {
9618 complaint (&symfile_complaints,
9619 _("Dwarf Error: debug entry at offset 0x%x is missing"
9620 " its dwo_id [in module %s]"),
9621 offset.sect_off, dwo_file->dwo_name);
9622 return;
9623 }
9624
9625 dwo_unit->dwo_file = dwo_file;
9626 dwo_unit->signature = DW_UNSND (attr);
9627 dwo_unit->section = section;
9628 dwo_unit->offset = offset;
9629 dwo_unit->length = cu->per_cu->length;
9630
9631 if (dwarf_read_debug)
9632 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9633 offset.sect_off, hex_string (dwo_unit->signature));
9634 }
9635
9636 /* Create the dwo_unit for the lone CU in DWO_FILE.
9637 Note: This function processes DWO files only, not DWP files. */
9638
9639 static struct dwo_unit *
9640 create_dwo_cu (struct dwo_file *dwo_file)
9641 {
9642 struct objfile *objfile = dwarf2_per_objfile->objfile;
9643 struct dwarf2_section_info *section = &dwo_file->sections.info;
9644 const gdb_byte *info_ptr, *end_ptr;
9645 struct create_dwo_cu_data create_dwo_cu_data;
9646 struct dwo_unit *dwo_unit;
9647
9648 dwarf2_read_section (objfile, section);
9649 info_ptr = section->buffer;
9650
9651 if (info_ptr == NULL)
9652 return NULL;
9653
9654 if (dwarf_read_debug)
9655 {
9656 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9657 get_section_name (section),
9658 get_section_file_name (section));
9659 }
9660
9661 create_dwo_cu_data.dwo_file = dwo_file;
9662 dwo_unit = NULL;
9663
9664 end_ptr = info_ptr + section->size;
9665 while (info_ptr < end_ptr)
9666 {
9667 struct dwarf2_per_cu_data per_cu;
9668
9669 memset (&create_dwo_cu_data.dwo_unit, 0,
9670 sizeof (create_dwo_cu_data.dwo_unit));
9671 memset (&per_cu, 0, sizeof (per_cu));
9672 per_cu.objfile = objfile;
9673 per_cu.is_debug_types = 0;
9674 per_cu.offset.sect_off = info_ptr - section->buffer;
9675 per_cu.section = section;
9676
9677 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9678 create_dwo_cu_reader,
9679 &create_dwo_cu_data);
9680
9681 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9682 {
9683 /* If we've already found one, complain. We only support one
9684 because having more than one requires hacking the dwo_name of
9685 each to match, which is highly unlikely to happen. */
9686 if (dwo_unit != NULL)
9687 {
9688 complaint (&symfile_complaints,
9689 _("Multiple CUs in DWO file %s [in module %s]"),
9690 dwo_file->dwo_name, objfile_name (objfile));
9691 break;
9692 }
9693
9694 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9695 *dwo_unit = create_dwo_cu_data.dwo_unit;
9696 }
9697
9698 info_ptr += per_cu.length;
9699 }
9700
9701 return dwo_unit;
9702 }
9703
9704 /* DWP file .debug_{cu,tu}_index section format:
9705 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9706
9707 DWP Version 1:
9708
9709 Both index sections have the same format, and serve to map a 64-bit
9710 signature to a set of section numbers. Each section begins with a header,
9711 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9712 indexes, and a pool of 32-bit section numbers. The index sections will be
9713 aligned at 8-byte boundaries in the file.
9714
9715 The index section header consists of:
9716
9717 V, 32 bit version number
9718 -, 32 bits unused
9719 N, 32 bit number of compilation units or type units in the index
9720 M, 32 bit number of slots in the hash table
9721
9722 Numbers are recorded using the byte order of the application binary.
9723
9724 The hash table begins at offset 16 in the section, and consists of an array
9725 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9726 order of the application binary). Unused slots in the hash table are 0.
9727 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9728
9729 The parallel table begins immediately after the hash table
9730 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9731 array of 32-bit indexes (using the byte order of the application binary),
9732 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9733 table contains a 32-bit index into the pool of section numbers. For unused
9734 hash table slots, the corresponding entry in the parallel table will be 0.
9735
9736 The pool of section numbers begins immediately following the hash table
9737 (at offset 16 + 12 * M from the beginning of the section). The pool of
9738 section numbers consists of an array of 32-bit words (using the byte order
9739 of the application binary). Each item in the array is indexed starting
9740 from 0. The hash table entry provides the index of the first section
9741 number in the set. Additional section numbers in the set follow, and the
9742 set is terminated by a 0 entry (section number 0 is not used in ELF).
9743
9744 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9745 section must be the first entry in the set, and the .debug_abbrev.dwo must
9746 be the second entry. Other members of the set may follow in any order.
9747
9748 ---
9749
9750 DWP Version 2:
9751
9752 DWP Version 2 combines all the .debug_info, etc. sections into one,
9753 and the entries in the index tables are now offsets into these sections.
9754 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9755 section.
9756
9757 Index Section Contents:
9758 Header
9759 Hash Table of Signatures dwp_hash_table.hash_table
9760 Parallel Table of Indices dwp_hash_table.unit_table
9761 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9762 Table of Section Sizes dwp_hash_table.v2.sizes
9763
9764 The index section header consists of:
9765
9766 V, 32 bit version number
9767 L, 32 bit number of columns in the table of section offsets
9768 N, 32 bit number of compilation units or type units in the index
9769 M, 32 bit number of slots in the hash table
9770
9771 Numbers are recorded using the byte order of the application binary.
9772
9773 The hash table has the same format as version 1.
9774 The parallel table of indices has the same format as version 1,
9775 except that the entries are origin-1 indices into the table of sections
9776 offsets and the table of section sizes.
9777
9778 The table of offsets begins immediately following the parallel table
9779 (at offset 16 + 12 * M from the beginning of the section). The table is
9780 a two-dimensional array of 32-bit words (using the byte order of the
9781 application binary), with L columns and N+1 rows, in row-major order.
9782 Each row in the array is indexed starting from 0. The first row provides
9783 a key to the remaining rows: each column in this row provides an identifier
9784 for a debug section, and the offsets in the same column of subsequent rows
9785 refer to that section. The section identifiers are:
9786
9787 DW_SECT_INFO 1 .debug_info.dwo
9788 DW_SECT_TYPES 2 .debug_types.dwo
9789 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9790 DW_SECT_LINE 4 .debug_line.dwo
9791 DW_SECT_LOC 5 .debug_loc.dwo
9792 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9793 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9794 DW_SECT_MACRO 8 .debug_macro.dwo
9795
9796 The offsets provided by the CU and TU index sections are the base offsets
9797 for the contributions made by each CU or TU to the corresponding section
9798 in the package file. Each CU and TU header contains an abbrev_offset
9799 field, used to find the abbreviations table for that CU or TU within the
9800 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9801 be interpreted as relative to the base offset given in the index section.
9802 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9803 should be interpreted as relative to the base offset for .debug_line.dwo,
9804 and offsets into other debug sections obtained from DWARF attributes should
9805 also be interpreted as relative to the corresponding base offset.
9806
9807 The table of sizes begins immediately following the table of offsets.
9808 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9809 with L columns and N rows, in row-major order. Each row in the array is
9810 indexed starting from 1 (row 0 is shared by the two tables).
9811
9812 ---
9813
9814 Hash table lookup is handled the same in version 1 and 2:
9815
9816 We assume that N and M will not exceed 2^32 - 1.
9817 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9818
9819 Given a 64-bit compilation unit signature or a type signature S, an entry
9820 in the hash table is located as follows:
9821
9822 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9823 the low-order k bits all set to 1.
9824
9825 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9826
9827 3) If the hash table entry at index H matches the signature, use that
9828 entry. If the hash table entry at index H is unused (all zeroes),
9829 terminate the search: the signature is not present in the table.
9830
9831 4) Let H = (H + H') modulo M. Repeat at Step 3.
9832
9833 Because M > N and H' and M are relatively prime, the search is guaranteed
9834 to stop at an unused slot or find the match. */
9835
9836 /* Create a hash table to map DWO IDs to their CU/TU entry in
9837 .debug_{info,types}.dwo in DWP_FILE.
9838 Returns NULL if there isn't one.
9839 Note: This function processes DWP files only, not DWO files. */
9840
9841 static struct dwp_hash_table *
9842 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9843 {
9844 struct objfile *objfile = dwarf2_per_objfile->objfile;
9845 bfd *dbfd = dwp_file->dbfd;
9846 const gdb_byte *index_ptr, *index_end;
9847 struct dwarf2_section_info *index;
9848 uint32_t version, nr_columns, nr_units, nr_slots;
9849 struct dwp_hash_table *htab;
9850
9851 if (is_debug_types)
9852 index = &dwp_file->sections.tu_index;
9853 else
9854 index = &dwp_file->sections.cu_index;
9855
9856 if (dwarf2_section_empty_p (index))
9857 return NULL;
9858 dwarf2_read_section (objfile, index);
9859
9860 index_ptr = index->buffer;
9861 index_end = index_ptr + index->size;
9862
9863 version = read_4_bytes (dbfd, index_ptr);
9864 index_ptr += 4;
9865 if (version == 2)
9866 nr_columns = read_4_bytes (dbfd, index_ptr);
9867 else
9868 nr_columns = 0;
9869 index_ptr += 4;
9870 nr_units = read_4_bytes (dbfd, index_ptr);
9871 index_ptr += 4;
9872 nr_slots = read_4_bytes (dbfd, index_ptr);
9873 index_ptr += 4;
9874
9875 if (version != 1 && version != 2)
9876 {
9877 error (_("Dwarf Error: unsupported DWP file version (%s)"
9878 " [in module %s]"),
9879 pulongest (version), dwp_file->name);
9880 }
9881 if (nr_slots != (nr_slots & -nr_slots))
9882 {
9883 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9884 " is not power of 2 [in module %s]"),
9885 pulongest (nr_slots), dwp_file->name);
9886 }
9887
9888 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9889 htab->version = version;
9890 htab->nr_columns = nr_columns;
9891 htab->nr_units = nr_units;
9892 htab->nr_slots = nr_slots;
9893 htab->hash_table = index_ptr;
9894 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9895
9896 /* Exit early if the table is empty. */
9897 if (nr_slots == 0 || nr_units == 0
9898 || (version == 2 && nr_columns == 0))
9899 {
9900 /* All must be zero. */
9901 if (nr_slots != 0 || nr_units != 0
9902 || (version == 2 && nr_columns != 0))
9903 {
9904 complaint (&symfile_complaints,
9905 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9906 " all zero [in modules %s]"),
9907 dwp_file->name);
9908 }
9909 return htab;
9910 }
9911
9912 if (version == 1)
9913 {
9914 htab->section_pool.v1.indices =
9915 htab->unit_table + sizeof (uint32_t) * nr_slots;
9916 /* It's harder to decide whether the section is too small in v1.
9917 V1 is deprecated anyway so we punt. */
9918 }
9919 else
9920 {
9921 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9922 int *ids = htab->section_pool.v2.section_ids;
9923 /* Reverse map for error checking. */
9924 int ids_seen[DW_SECT_MAX + 1];
9925 int i;
9926
9927 if (nr_columns < 2)
9928 {
9929 error (_("Dwarf Error: bad DWP hash table, too few columns"
9930 " in section table [in module %s]"),
9931 dwp_file->name);
9932 }
9933 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9934 {
9935 error (_("Dwarf Error: bad DWP hash table, too many columns"
9936 " in section table [in module %s]"),
9937 dwp_file->name);
9938 }
9939 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9940 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9941 for (i = 0; i < nr_columns; ++i)
9942 {
9943 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9944
9945 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9946 {
9947 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9948 " in section table [in module %s]"),
9949 id, dwp_file->name);
9950 }
9951 if (ids_seen[id] != -1)
9952 {
9953 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9954 " id %d in section table [in module %s]"),
9955 id, dwp_file->name);
9956 }
9957 ids_seen[id] = i;
9958 ids[i] = id;
9959 }
9960 /* Must have exactly one info or types section. */
9961 if (((ids_seen[DW_SECT_INFO] != -1)
9962 + (ids_seen[DW_SECT_TYPES] != -1))
9963 != 1)
9964 {
9965 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9966 " DWO info/types section [in module %s]"),
9967 dwp_file->name);
9968 }
9969 /* Must have an abbrev section. */
9970 if (ids_seen[DW_SECT_ABBREV] == -1)
9971 {
9972 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9973 " section [in module %s]"),
9974 dwp_file->name);
9975 }
9976 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9977 htab->section_pool.v2.sizes =
9978 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9979 * nr_units * nr_columns);
9980 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9981 * nr_units * nr_columns))
9982 > index_end)
9983 {
9984 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9985 " [in module %s]"),
9986 dwp_file->name);
9987 }
9988 }
9989
9990 return htab;
9991 }
9992
9993 /* Update SECTIONS with the data from SECTP.
9994
9995 This function is like the other "locate" section routines that are
9996 passed to bfd_map_over_sections, but in this context the sections to
9997 read comes from the DWP V1 hash table, not the full ELF section table.
9998
9999 The result is non-zero for success, or zero if an error was found. */
10000
10001 static int
10002 locate_v1_virtual_dwo_sections (asection *sectp,
10003 struct virtual_v1_dwo_sections *sections)
10004 {
10005 const struct dwop_section_names *names = &dwop_section_names;
10006
10007 if (section_is_p (sectp->name, &names->abbrev_dwo))
10008 {
10009 /* There can be only one. */
10010 if (sections->abbrev.s.section != NULL)
10011 return 0;
10012 sections->abbrev.s.section = sectp;
10013 sections->abbrev.size = bfd_get_section_size (sectp);
10014 }
10015 else if (section_is_p (sectp->name, &names->info_dwo)
10016 || section_is_p (sectp->name, &names->types_dwo))
10017 {
10018 /* There can be only one. */
10019 if (sections->info_or_types.s.section != NULL)
10020 return 0;
10021 sections->info_or_types.s.section = sectp;
10022 sections->info_or_types.size = bfd_get_section_size (sectp);
10023 }
10024 else if (section_is_p (sectp->name, &names->line_dwo))
10025 {
10026 /* There can be only one. */
10027 if (sections->line.s.section != NULL)
10028 return 0;
10029 sections->line.s.section = sectp;
10030 sections->line.size = bfd_get_section_size (sectp);
10031 }
10032 else if (section_is_p (sectp->name, &names->loc_dwo))
10033 {
10034 /* There can be only one. */
10035 if (sections->loc.s.section != NULL)
10036 return 0;
10037 sections->loc.s.section = sectp;
10038 sections->loc.size = bfd_get_section_size (sectp);
10039 }
10040 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10041 {
10042 /* There can be only one. */
10043 if (sections->macinfo.s.section != NULL)
10044 return 0;
10045 sections->macinfo.s.section = sectp;
10046 sections->macinfo.size = bfd_get_section_size (sectp);
10047 }
10048 else if (section_is_p (sectp->name, &names->macro_dwo))
10049 {
10050 /* There can be only one. */
10051 if (sections->macro.s.section != NULL)
10052 return 0;
10053 sections->macro.s.section = sectp;
10054 sections->macro.size = bfd_get_section_size (sectp);
10055 }
10056 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10057 {
10058 /* There can be only one. */
10059 if (sections->str_offsets.s.section != NULL)
10060 return 0;
10061 sections->str_offsets.s.section = sectp;
10062 sections->str_offsets.size = bfd_get_section_size (sectp);
10063 }
10064 else
10065 {
10066 /* No other kind of section is valid. */
10067 return 0;
10068 }
10069
10070 return 1;
10071 }
10072
10073 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10074 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10075 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10076 This is for DWP version 1 files. */
10077
10078 static struct dwo_unit *
10079 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10080 uint32_t unit_index,
10081 const char *comp_dir,
10082 ULONGEST signature, int is_debug_types)
10083 {
10084 struct objfile *objfile = dwarf2_per_objfile->objfile;
10085 const struct dwp_hash_table *dwp_htab =
10086 is_debug_types ? dwp_file->tus : dwp_file->cus;
10087 bfd *dbfd = dwp_file->dbfd;
10088 const char *kind = is_debug_types ? "TU" : "CU";
10089 struct dwo_file *dwo_file;
10090 struct dwo_unit *dwo_unit;
10091 struct virtual_v1_dwo_sections sections;
10092 void **dwo_file_slot;
10093 char *virtual_dwo_name;
10094 struct cleanup *cleanups;
10095 int i;
10096
10097 gdb_assert (dwp_file->version == 1);
10098
10099 if (dwarf_read_debug)
10100 {
10101 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10102 kind,
10103 pulongest (unit_index), hex_string (signature),
10104 dwp_file->name);
10105 }
10106
10107 /* Fetch the sections of this DWO unit.
10108 Put a limit on the number of sections we look for so that bad data
10109 doesn't cause us to loop forever. */
10110
10111 #define MAX_NR_V1_DWO_SECTIONS \
10112 (1 /* .debug_info or .debug_types */ \
10113 + 1 /* .debug_abbrev */ \
10114 + 1 /* .debug_line */ \
10115 + 1 /* .debug_loc */ \
10116 + 1 /* .debug_str_offsets */ \
10117 + 1 /* .debug_macro or .debug_macinfo */ \
10118 + 1 /* trailing zero */)
10119
10120 memset (&sections, 0, sizeof (sections));
10121 cleanups = make_cleanup (null_cleanup, 0);
10122
10123 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10124 {
10125 asection *sectp;
10126 uint32_t section_nr =
10127 read_4_bytes (dbfd,
10128 dwp_htab->section_pool.v1.indices
10129 + (unit_index + i) * sizeof (uint32_t));
10130
10131 if (section_nr == 0)
10132 break;
10133 if (section_nr >= dwp_file->num_sections)
10134 {
10135 error (_("Dwarf Error: bad DWP hash table, section number too large"
10136 " [in module %s]"),
10137 dwp_file->name);
10138 }
10139
10140 sectp = dwp_file->elf_sections[section_nr];
10141 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10142 {
10143 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10144 " [in module %s]"),
10145 dwp_file->name);
10146 }
10147 }
10148
10149 if (i < 2
10150 || dwarf2_section_empty_p (&sections.info_or_types)
10151 || dwarf2_section_empty_p (&sections.abbrev))
10152 {
10153 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10154 " [in module %s]"),
10155 dwp_file->name);
10156 }
10157 if (i == MAX_NR_V1_DWO_SECTIONS)
10158 {
10159 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10160 " [in module %s]"),
10161 dwp_file->name);
10162 }
10163
10164 /* It's easier for the rest of the code if we fake a struct dwo_file and
10165 have dwo_unit "live" in that. At least for now.
10166
10167 The DWP file can be made up of a random collection of CUs and TUs.
10168 However, for each CU + set of TUs that came from the same original DWO
10169 file, we can combine them back into a virtual DWO file to save space
10170 (fewer struct dwo_file objects to allocate). Remember that for really
10171 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10172
10173 virtual_dwo_name =
10174 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10175 get_section_id (&sections.abbrev),
10176 get_section_id (&sections.line),
10177 get_section_id (&sections.loc),
10178 get_section_id (&sections.str_offsets));
10179 make_cleanup (xfree, virtual_dwo_name);
10180 /* Can we use an existing virtual DWO file? */
10181 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10182 /* Create one if necessary. */
10183 if (*dwo_file_slot == NULL)
10184 {
10185 if (dwarf_read_debug)
10186 {
10187 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10188 virtual_dwo_name);
10189 }
10190 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10191 dwo_file->dwo_name
10192 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10193 virtual_dwo_name,
10194 strlen (virtual_dwo_name));
10195 dwo_file->comp_dir = comp_dir;
10196 dwo_file->sections.abbrev = sections.abbrev;
10197 dwo_file->sections.line = sections.line;
10198 dwo_file->sections.loc = sections.loc;
10199 dwo_file->sections.macinfo = sections.macinfo;
10200 dwo_file->sections.macro = sections.macro;
10201 dwo_file->sections.str_offsets = sections.str_offsets;
10202 /* The "str" section is global to the entire DWP file. */
10203 dwo_file->sections.str = dwp_file->sections.str;
10204 /* The info or types section is assigned below to dwo_unit,
10205 there's no need to record it in dwo_file.
10206 Also, we can't simply record type sections in dwo_file because
10207 we record a pointer into the vector in dwo_unit. As we collect more
10208 types we'll grow the vector and eventually have to reallocate space
10209 for it, invalidating all copies of pointers into the previous
10210 contents. */
10211 *dwo_file_slot = dwo_file;
10212 }
10213 else
10214 {
10215 if (dwarf_read_debug)
10216 {
10217 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10218 virtual_dwo_name);
10219 }
10220 dwo_file = (struct dwo_file *) *dwo_file_slot;
10221 }
10222 do_cleanups (cleanups);
10223
10224 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10225 dwo_unit->dwo_file = dwo_file;
10226 dwo_unit->signature = signature;
10227 dwo_unit->section =
10228 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10229 *dwo_unit->section = sections.info_or_types;
10230 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10231
10232 return dwo_unit;
10233 }
10234
10235 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10236 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10237 piece within that section used by a TU/CU, return a virtual section
10238 of just that piece. */
10239
10240 static struct dwarf2_section_info
10241 create_dwp_v2_section (struct dwarf2_section_info *section,
10242 bfd_size_type offset, bfd_size_type size)
10243 {
10244 struct dwarf2_section_info result;
10245 asection *sectp;
10246
10247 gdb_assert (section != NULL);
10248 gdb_assert (!section->is_virtual);
10249
10250 memset (&result, 0, sizeof (result));
10251 result.s.containing_section = section;
10252 result.is_virtual = 1;
10253
10254 if (size == 0)
10255 return result;
10256
10257 sectp = get_section_bfd_section (section);
10258
10259 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10260 bounds of the real section. This is a pretty-rare event, so just
10261 flag an error (easier) instead of a warning and trying to cope. */
10262 if (sectp == NULL
10263 || offset + size > bfd_get_section_size (sectp))
10264 {
10265 bfd *abfd = sectp->owner;
10266
10267 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10268 " in section %s [in module %s]"),
10269 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10270 objfile_name (dwarf2_per_objfile->objfile));
10271 }
10272
10273 result.virtual_offset = offset;
10274 result.size = size;
10275 return result;
10276 }
10277
10278 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10279 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10280 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10281 This is for DWP version 2 files. */
10282
10283 static struct dwo_unit *
10284 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10285 uint32_t unit_index,
10286 const char *comp_dir,
10287 ULONGEST signature, int is_debug_types)
10288 {
10289 struct objfile *objfile = dwarf2_per_objfile->objfile;
10290 const struct dwp_hash_table *dwp_htab =
10291 is_debug_types ? dwp_file->tus : dwp_file->cus;
10292 bfd *dbfd = dwp_file->dbfd;
10293 const char *kind = is_debug_types ? "TU" : "CU";
10294 struct dwo_file *dwo_file;
10295 struct dwo_unit *dwo_unit;
10296 struct virtual_v2_dwo_sections sections;
10297 void **dwo_file_slot;
10298 char *virtual_dwo_name;
10299 struct cleanup *cleanups;
10300 int i;
10301
10302 gdb_assert (dwp_file->version == 2);
10303
10304 if (dwarf_read_debug)
10305 {
10306 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10307 kind,
10308 pulongest (unit_index), hex_string (signature),
10309 dwp_file->name);
10310 }
10311
10312 /* Fetch the section offsets of this DWO unit. */
10313
10314 memset (&sections, 0, sizeof (sections));
10315 cleanups = make_cleanup (null_cleanup, 0);
10316
10317 for (i = 0; i < dwp_htab->nr_columns; ++i)
10318 {
10319 uint32_t offset = read_4_bytes (dbfd,
10320 dwp_htab->section_pool.v2.offsets
10321 + (((unit_index - 1) * dwp_htab->nr_columns
10322 + i)
10323 * sizeof (uint32_t)));
10324 uint32_t size = read_4_bytes (dbfd,
10325 dwp_htab->section_pool.v2.sizes
10326 + (((unit_index - 1) * dwp_htab->nr_columns
10327 + i)
10328 * sizeof (uint32_t)));
10329
10330 switch (dwp_htab->section_pool.v2.section_ids[i])
10331 {
10332 case DW_SECT_INFO:
10333 case DW_SECT_TYPES:
10334 sections.info_or_types_offset = offset;
10335 sections.info_or_types_size = size;
10336 break;
10337 case DW_SECT_ABBREV:
10338 sections.abbrev_offset = offset;
10339 sections.abbrev_size = size;
10340 break;
10341 case DW_SECT_LINE:
10342 sections.line_offset = offset;
10343 sections.line_size = size;
10344 break;
10345 case DW_SECT_LOC:
10346 sections.loc_offset = offset;
10347 sections.loc_size = size;
10348 break;
10349 case DW_SECT_STR_OFFSETS:
10350 sections.str_offsets_offset = offset;
10351 sections.str_offsets_size = size;
10352 break;
10353 case DW_SECT_MACINFO:
10354 sections.macinfo_offset = offset;
10355 sections.macinfo_size = size;
10356 break;
10357 case DW_SECT_MACRO:
10358 sections.macro_offset = offset;
10359 sections.macro_size = size;
10360 break;
10361 }
10362 }
10363
10364 /* It's easier for the rest of the code if we fake a struct dwo_file and
10365 have dwo_unit "live" in that. At least for now.
10366
10367 The DWP file can be made up of a random collection of CUs and TUs.
10368 However, for each CU + set of TUs that came from the same original DWO
10369 file, we can combine them back into a virtual DWO file to save space
10370 (fewer struct dwo_file objects to allocate). Remember that for really
10371 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10372
10373 virtual_dwo_name =
10374 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10375 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10376 (long) (sections.line_size ? sections.line_offset : 0),
10377 (long) (sections.loc_size ? sections.loc_offset : 0),
10378 (long) (sections.str_offsets_size
10379 ? sections.str_offsets_offset : 0));
10380 make_cleanup (xfree, virtual_dwo_name);
10381 /* Can we use an existing virtual DWO file? */
10382 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10383 /* Create one if necessary. */
10384 if (*dwo_file_slot == NULL)
10385 {
10386 if (dwarf_read_debug)
10387 {
10388 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10389 virtual_dwo_name);
10390 }
10391 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10392 dwo_file->dwo_name
10393 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10394 virtual_dwo_name,
10395 strlen (virtual_dwo_name));
10396 dwo_file->comp_dir = comp_dir;
10397 dwo_file->sections.abbrev =
10398 create_dwp_v2_section (&dwp_file->sections.abbrev,
10399 sections.abbrev_offset, sections.abbrev_size);
10400 dwo_file->sections.line =
10401 create_dwp_v2_section (&dwp_file->sections.line,
10402 sections.line_offset, sections.line_size);
10403 dwo_file->sections.loc =
10404 create_dwp_v2_section (&dwp_file->sections.loc,
10405 sections.loc_offset, sections.loc_size);
10406 dwo_file->sections.macinfo =
10407 create_dwp_v2_section (&dwp_file->sections.macinfo,
10408 sections.macinfo_offset, sections.macinfo_size);
10409 dwo_file->sections.macro =
10410 create_dwp_v2_section (&dwp_file->sections.macro,
10411 sections.macro_offset, sections.macro_size);
10412 dwo_file->sections.str_offsets =
10413 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10414 sections.str_offsets_offset,
10415 sections.str_offsets_size);
10416 /* The "str" section is global to the entire DWP file. */
10417 dwo_file->sections.str = dwp_file->sections.str;
10418 /* The info or types section is assigned below to dwo_unit,
10419 there's no need to record it in dwo_file.
10420 Also, we can't simply record type sections in dwo_file because
10421 we record a pointer into the vector in dwo_unit. As we collect more
10422 types we'll grow the vector and eventually have to reallocate space
10423 for it, invalidating all copies of pointers into the previous
10424 contents. */
10425 *dwo_file_slot = dwo_file;
10426 }
10427 else
10428 {
10429 if (dwarf_read_debug)
10430 {
10431 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10432 virtual_dwo_name);
10433 }
10434 dwo_file = (struct dwo_file *) *dwo_file_slot;
10435 }
10436 do_cleanups (cleanups);
10437
10438 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10439 dwo_unit->dwo_file = dwo_file;
10440 dwo_unit->signature = signature;
10441 dwo_unit->section =
10442 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10443 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10444 ? &dwp_file->sections.types
10445 : &dwp_file->sections.info,
10446 sections.info_or_types_offset,
10447 sections.info_or_types_size);
10448 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10449
10450 return dwo_unit;
10451 }
10452
10453 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10454 Returns NULL if the signature isn't found. */
10455
10456 static struct dwo_unit *
10457 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10458 ULONGEST signature, int is_debug_types)
10459 {
10460 const struct dwp_hash_table *dwp_htab =
10461 is_debug_types ? dwp_file->tus : dwp_file->cus;
10462 bfd *dbfd = dwp_file->dbfd;
10463 uint32_t mask = dwp_htab->nr_slots - 1;
10464 uint32_t hash = signature & mask;
10465 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10466 unsigned int i;
10467 void **slot;
10468 struct dwo_unit find_dwo_cu;
10469
10470 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10471 find_dwo_cu.signature = signature;
10472 slot = htab_find_slot (is_debug_types
10473 ? dwp_file->loaded_tus
10474 : dwp_file->loaded_cus,
10475 &find_dwo_cu, INSERT);
10476
10477 if (*slot != NULL)
10478 return (struct dwo_unit *) *slot;
10479
10480 /* Use a for loop so that we don't loop forever on bad debug info. */
10481 for (i = 0; i < dwp_htab->nr_slots; ++i)
10482 {
10483 ULONGEST signature_in_table;
10484
10485 signature_in_table =
10486 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10487 if (signature_in_table == signature)
10488 {
10489 uint32_t unit_index =
10490 read_4_bytes (dbfd,
10491 dwp_htab->unit_table + hash * sizeof (uint32_t));
10492
10493 if (dwp_file->version == 1)
10494 {
10495 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10496 comp_dir, signature,
10497 is_debug_types);
10498 }
10499 else
10500 {
10501 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10502 comp_dir, signature,
10503 is_debug_types);
10504 }
10505 return (struct dwo_unit *) *slot;
10506 }
10507 if (signature_in_table == 0)
10508 return NULL;
10509 hash = (hash + hash2) & mask;
10510 }
10511
10512 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10513 " [in module %s]"),
10514 dwp_file->name);
10515 }
10516
10517 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10518 Open the file specified by FILE_NAME and hand it off to BFD for
10519 preliminary analysis. Return a newly initialized bfd *, which
10520 includes a canonicalized copy of FILE_NAME.
10521 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10522 SEARCH_CWD is true if the current directory is to be searched.
10523 It will be searched before debug-file-directory.
10524 If successful, the file is added to the bfd include table of the
10525 objfile's bfd (see gdb_bfd_record_inclusion).
10526 If unable to find/open the file, return NULL.
10527 NOTE: This function is derived from symfile_bfd_open. */
10528
10529 static gdb_bfd_ref_ptr
10530 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10531 {
10532 int desc, flags;
10533 char *absolute_name;
10534 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10535 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10536 to debug_file_directory. */
10537 char *search_path;
10538 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10539
10540 if (search_cwd)
10541 {
10542 if (*debug_file_directory != '\0')
10543 search_path = concat (".", dirname_separator_string,
10544 debug_file_directory, (char *) NULL);
10545 else
10546 search_path = xstrdup (".");
10547 }
10548 else
10549 search_path = xstrdup (debug_file_directory);
10550
10551 flags = OPF_RETURN_REALPATH;
10552 if (is_dwp)
10553 flags |= OPF_SEARCH_IN_PATH;
10554 desc = openp (search_path, flags, file_name,
10555 O_RDONLY | O_BINARY, &absolute_name);
10556 xfree (search_path);
10557 if (desc < 0)
10558 return NULL;
10559
10560 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10561 xfree (absolute_name);
10562 if (sym_bfd == NULL)
10563 return NULL;
10564 bfd_set_cacheable (sym_bfd.get (), 1);
10565
10566 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10567 return NULL;
10568
10569 /* Success. Record the bfd as having been included by the objfile's bfd.
10570 This is important because things like demangled_names_hash lives in the
10571 objfile's per_bfd space and may have references to things like symbol
10572 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10573 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10574
10575 return sym_bfd;
10576 }
10577
10578 /* Try to open DWO file FILE_NAME.
10579 COMP_DIR is the DW_AT_comp_dir attribute.
10580 The result is the bfd handle of the file.
10581 If there is a problem finding or opening the file, return NULL.
10582 Upon success, the canonicalized path of the file is stored in the bfd,
10583 same as symfile_bfd_open. */
10584
10585 static gdb_bfd_ref_ptr
10586 open_dwo_file (const char *file_name, const char *comp_dir)
10587 {
10588 if (IS_ABSOLUTE_PATH (file_name))
10589 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10590
10591 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10592
10593 if (comp_dir != NULL)
10594 {
10595 char *path_to_try = concat (comp_dir, SLASH_STRING,
10596 file_name, (char *) NULL);
10597
10598 /* NOTE: If comp_dir is a relative path, this will also try the
10599 search path, which seems useful. */
10600 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10601 1 /*search_cwd*/));
10602 xfree (path_to_try);
10603 if (abfd != NULL)
10604 return abfd;
10605 }
10606
10607 /* That didn't work, try debug-file-directory, which, despite its name,
10608 is a list of paths. */
10609
10610 if (*debug_file_directory == '\0')
10611 return NULL;
10612
10613 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10614 }
10615
10616 /* This function is mapped across the sections and remembers the offset and
10617 size of each of the DWO debugging sections we are interested in. */
10618
10619 static void
10620 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10621 {
10622 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10623 const struct dwop_section_names *names = &dwop_section_names;
10624
10625 if (section_is_p (sectp->name, &names->abbrev_dwo))
10626 {
10627 dwo_sections->abbrev.s.section = sectp;
10628 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10629 }
10630 else if (section_is_p (sectp->name, &names->info_dwo))
10631 {
10632 dwo_sections->info.s.section = sectp;
10633 dwo_sections->info.size = bfd_get_section_size (sectp);
10634 }
10635 else if (section_is_p (sectp->name, &names->line_dwo))
10636 {
10637 dwo_sections->line.s.section = sectp;
10638 dwo_sections->line.size = bfd_get_section_size (sectp);
10639 }
10640 else if (section_is_p (sectp->name, &names->loc_dwo))
10641 {
10642 dwo_sections->loc.s.section = sectp;
10643 dwo_sections->loc.size = bfd_get_section_size (sectp);
10644 }
10645 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10646 {
10647 dwo_sections->macinfo.s.section = sectp;
10648 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10649 }
10650 else if (section_is_p (sectp->name, &names->macro_dwo))
10651 {
10652 dwo_sections->macro.s.section = sectp;
10653 dwo_sections->macro.size = bfd_get_section_size (sectp);
10654 }
10655 else if (section_is_p (sectp->name, &names->str_dwo))
10656 {
10657 dwo_sections->str.s.section = sectp;
10658 dwo_sections->str.size = bfd_get_section_size (sectp);
10659 }
10660 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10661 {
10662 dwo_sections->str_offsets.s.section = sectp;
10663 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10664 }
10665 else if (section_is_p (sectp->name, &names->types_dwo))
10666 {
10667 struct dwarf2_section_info type_section;
10668
10669 memset (&type_section, 0, sizeof (type_section));
10670 type_section.s.section = sectp;
10671 type_section.size = bfd_get_section_size (sectp);
10672 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10673 &type_section);
10674 }
10675 }
10676
10677 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10678 by PER_CU. This is for the non-DWP case.
10679 The result is NULL if DWO_NAME can't be found. */
10680
10681 static struct dwo_file *
10682 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10683 const char *dwo_name, const char *comp_dir)
10684 {
10685 struct objfile *objfile = dwarf2_per_objfile->objfile;
10686 struct dwo_file *dwo_file;
10687 struct cleanup *cleanups;
10688
10689 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10690 if (dbfd == NULL)
10691 {
10692 if (dwarf_read_debug)
10693 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10694 return NULL;
10695 }
10696 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10697 dwo_file->dwo_name = dwo_name;
10698 dwo_file->comp_dir = comp_dir;
10699 dwo_file->dbfd = dbfd.release ();
10700
10701 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10702
10703 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10704 &dwo_file->sections);
10705
10706 dwo_file->cu = create_dwo_cu (dwo_file);
10707
10708 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10709 dwo_file->tus);
10710
10711 discard_cleanups (cleanups);
10712
10713 if (dwarf_read_debug)
10714 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10715
10716 return dwo_file;
10717 }
10718
10719 /* This function is mapped across the sections and remembers the offset and
10720 size of each of the DWP debugging sections common to version 1 and 2 that
10721 we are interested in. */
10722
10723 static void
10724 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10725 void *dwp_file_ptr)
10726 {
10727 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10728 const struct dwop_section_names *names = &dwop_section_names;
10729 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10730
10731 /* Record the ELF section number for later lookup: this is what the
10732 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10733 gdb_assert (elf_section_nr < dwp_file->num_sections);
10734 dwp_file->elf_sections[elf_section_nr] = sectp;
10735
10736 /* Look for specific sections that we need. */
10737 if (section_is_p (sectp->name, &names->str_dwo))
10738 {
10739 dwp_file->sections.str.s.section = sectp;
10740 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10741 }
10742 else if (section_is_p (sectp->name, &names->cu_index))
10743 {
10744 dwp_file->sections.cu_index.s.section = sectp;
10745 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10746 }
10747 else if (section_is_p (sectp->name, &names->tu_index))
10748 {
10749 dwp_file->sections.tu_index.s.section = sectp;
10750 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10751 }
10752 }
10753
10754 /* This function is mapped across the sections and remembers the offset and
10755 size of each of the DWP version 2 debugging sections that we are interested
10756 in. This is split into a separate function because we don't know if we
10757 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10758
10759 static void
10760 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10761 {
10762 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10763 const struct dwop_section_names *names = &dwop_section_names;
10764 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10765
10766 /* Record the ELF section number for later lookup: this is what the
10767 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10768 gdb_assert (elf_section_nr < dwp_file->num_sections);
10769 dwp_file->elf_sections[elf_section_nr] = sectp;
10770
10771 /* Look for specific sections that we need. */
10772 if (section_is_p (sectp->name, &names->abbrev_dwo))
10773 {
10774 dwp_file->sections.abbrev.s.section = sectp;
10775 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10776 }
10777 else if (section_is_p (sectp->name, &names->info_dwo))
10778 {
10779 dwp_file->sections.info.s.section = sectp;
10780 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10781 }
10782 else if (section_is_p (sectp->name, &names->line_dwo))
10783 {
10784 dwp_file->sections.line.s.section = sectp;
10785 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10786 }
10787 else if (section_is_p (sectp->name, &names->loc_dwo))
10788 {
10789 dwp_file->sections.loc.s.section = sectp;
10790 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10791 }
10792 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10793 {
10794 dwp_file->sections.macinfo.s.section = sectp;
10795 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10796 }
10797 else if (section_is_p (sectp->name, &names->macro_dwo))
10798 {
10799 dwp_file->sections.macro.s.section = sectp;
10800 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10801 }
10802 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10803 {
10804 dwp_file->sections.str_offsets.s.section = sectp;
10805 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10806 }
10807 else if (section_is_p (sectp->name, &names->types_dwo))
10808 {
10809 dwp_file->sections.types.s.section = sectp;
10810 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10811 }
10812 }
10813
10814 /* Hash function for dwp_file loaded CUs/TUs. */
10815
10816 static hashval_t
10817 hash_dwp_loaded_cutus (const void *item)
10818 {
10819 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10820
10821 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10822 return dwo_unit->signature;
10823 }
10824
10825 /* Equality function for dwp_file loaded CUs/TUs. */
10826
10827 static int
10828 eq_dwp_loaded_cutus (const void *a, const void *b)
10829 {
10830 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10831 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10832
10833 return dua->signature == dub->signature;
10834 }
10835
10836 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10837
10838 static htab_t
10839 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10840 {
10841 return htab_create_alloc_ex (3,
10842 hash_dwp_loaded_cutus,
10843 eq_dwp_loaded_cutus,
10844 NULL,
10845 &objfile->objfile_obstack,
10846 hashtab_obstack_allocate,
10847 dummy_obstack_deallocate);
10848 }
10849
10850 /* Try to open DWP file FILE_NAME.
10851 The result is the bfd handle of the file.
10852 If there is a problem finding or opening the file, return NULL.
10853 Upon success, the canonicalized path of the file is stored in the bfd,
10854 same as symfile_bfd_open. */
10855
10856 static gdb_bfd_ref_ptr
10857 open_dwp_file (const char *file_name)
10858 {
10859 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10860 1 /*search_cwd*/));
10861 if (abfd != NULL)
10862 return abfd;
10863
10864 /* Work around upstream bug 15652.
10865 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10866 [Whether that's a "bug" is debatable, but it is getting in our way.]
10867 We have no real idea where the dwp file is, because gdb's realpath-ing
10868 of the executable's path may have discarded the needed info.
10869 [IWBN if the dwp file name was recorded in the executable, akin to
10870 .gnu_debuglink, but that doesn't exist yet.]
10871 Strip the directory from FILE_NAME and search again. */
10872 if (*debug_file_directory != '\0')
10873 {
10874 /* Don't implicitly search the current directory here.
10875 If the user wants to search "." to handle this case,
10876 it must be added to debug-file-directory. */
10877 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10878 0 /*search_cwd*/);
10879 }
10880
10881 return NULL;
10882 }
10883
10884 /* Initialize the use of the DWP file for the current objfile.
10885 By convention the name of the DWP file is ${objfile}.dwp.
10886 The result is NULL if it can't be found. */
10887
10888 static struct dwp_file *
10889 open_and_init_dwp_file (void)
10890 {
10891 struct objfile *objfile = dwarf2_per_objfile->objfile;
10892 struct dwp_file *dwp_file;
10893 char *dwp_name;
10894 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10895
10896 /* Try to find first .dwp for the binary file before any symbolic links
10897 resolving. */
10898
10899 /* If the objfile is a debug file, find the name of the real binary
10900 file and get the name of dwp file from there. */
10901 if (objfile->separate_debug_objfile_backlink != NULL)
10902 {
10903 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10904 const char *backlink_basename = lbasename (backlink->original_name);
10905 char *debug_dirname = ldirname (objfile->original_name);
10906
10907 make_cleanup (xfree, debug_dirname);
10908 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10909 SLASH_STRING, backlink_basename);
10910 }
10911 else
10912 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10913 make_cleanup (xfree, dwp_name);
10914
10915 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name));
10916 if (dbfd == NULL
10917 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10918 {
10919 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10920 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10921 make_cleanup (xfree, dwp_name);
10922 dbfd = open_dwp_file (dwp_name);
10923 }
10924
10925 if (dbfd == NULL)
10926 {
10927 if (dwarf_read_debug)
10928 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10929 do_cleanups (cleanups);
10930 return NULL;
10931 }
10932 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10933 dwp_file->name = bfd_get_filename (dbfd.get ());
10934 dwp_file->dbfd = dbfd.release ();
10935 do_cleanups (cleanups);
10936
10937 /* +1: section 0 is unused */
10938 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
10939 dwp_file->elf_sections =
10940 OBSTACK_CALLOC (&objfile->objfile_obstack,
10941 dwp_file->num_sections, asection *);
10942
10943 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
10944 dwp_file);
10945
10946 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10947
10948 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10949
10950 /* The DWP file version is stored in the hash table. Oh well. */
10951 if (dwp_file->cus->version != dwp_file->tus->version)
10952 {
10953 /* Technically speaking, we should try to limp along, but this is
10954 pretty bizarre. We use pulongest here because that's the established
10955 portability solution (e.g, we cannot use %u for uint32_t). */
10956 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10957 " TU version %s [in DWP file %s]"),
10958 pulongest (dwp_file->cus->version),
10959 pulongest (dwp_file->tus->version), dwp_name);
10960 }
10961 dwp_file->version = dwp_file->cus->version;
10962
10963 if (dwp_file->version == 2)
10964 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
10965 dwp_file);
10966
10967 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10968 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10969
10970 if (dwarf_read_debug)
10971 {
10972 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10973 fprintf_unfiltered (gdb_stdlog,
10974 " %s CUs, %s TUs\n",
10975 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10976 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10977 }
10978
10979 return dwp_file;
10980 }
10981
10982 /* Wrapper around open_and_init_dwp_file, only open it once. */
10983
10984 static struct dwp_file *
10985 get_dwp_file (void)
10986 {
10987 if (! dwarf2_per_objfile->dwp_checked)
10988 {
10989 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10990 dwarf2_per_objfile->dwp_checked = 1;
10991 }
10992 return dwarf2_per_objfile->dwp_file;
10993 }
10994
10995 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10996 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10997 or in the DWP file for the objfile, referenced by THIS_UNIT.
10998 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10999 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11000
11001 This is called, for example, when wanting to read a variable with a
11002 complex location. Therefore we don't want to do file i/o for every call.
11003 Therefore we don't want to look for a DWO file on every call.
11004 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11005 then we check if we've already seen DWO_NAME, and only THEN do we check
11006 for a DWO file.
11007
11008 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11009 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11010
11011 static struct dwo_unit *
11012 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11013 const char *dwo_name, const char *comp_dir,
11014 ULONGEST signature, int is_debug_types)
11015 {
11016 struct objfile *objfile = dwarf2_per_objfile->objfile;
11017 const char *kind = is_debug_types ? "TU" : "CU";
11018 void **dwo_file_slot;
11019 struct dwo_file *dwo_file;
11020 struct dwp_file *dwp_file;
11021
11022 /* First see if there's a DWP file.
11023 If we have a DWP file but didn't find the DWO inside it, don't
11024 look for the original DWO file. It makes gdb behave differently
11025 depending on whether one is debugging in the build tree. */
11026
11027 dwp_file = get_dwp_file ();
11028 if (dwp_file != NULL)
11029 {
11030 const struct dwp_hash_table *dwp_htab =
11031 is_debug_types ? dwp_file->tus : dwp_file->cus;
11032
11033 if (dwp_htab != NULL)
11034 {
11035 struct dwo_unit *dwo_cutu =
11036 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11037 signature, is_debug_types);
11038
11039 if (dwo_cutu != NULL)
11040 {
11041 if (dwarf_read_debug)
11042 {
11043 fprintf_unfiltered (gdb_stdlog,
11044 "Virtual DWO %s %s found: @%s\n",
11045 kind, hex_string (signature),
11046 host_address_to_string (dwo_cutu));
11047 }
11048 return dwo_cutu;
11049 }
11050 }
11051 }
11052 else
11053 {
11054 /* No DWP file, look for the DWO file. */
11055
11056 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11057 if (*dwo_file_slot == NULL)
11058 {
11059 /* Read in the file and build a table of the CUs/TUs it contains. */
11060 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11061 }
11062 /* NOTE: This will be NULL if unable to open the file. */
11063 dwo_file = (struct dwo_file *) *dwo_file_slot;
11064
11065 if (dwo_file != NULL)
11066 {
11067 struct dwo_unit *dwo_cutu = NULL;
11068
11069 if (is_debug_types && dwo_file->tus)
11070 {
11071 struct dwo_unit find_dwo_cutu;
11072
11073 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11074 find_dwo_cutu.signature = signature;
11075 dwo_cutu
11076 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11077 }
11078 else if (!is_debug_types && dwo_file->cu)
11079 {
11080 if (signature == dwo_file->cu->signature)
11081 dwo_cutu = dwo_file->cu;
11082 }
11083
11084 if (dwo_cutu != NULL)
11085 {
11086 if (dwarf_read_debug)
11087 {
11088 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11089 kind, dwo_name, hex_string (signature),
11090 host_address_to_string (dwo_cutu));
11091 }
11092 return dwo_cutu;
11093 }
11094 }
11095 }
11096
11097 /* We didn't find it. This could mean a dwo_id mismatch, or
11098 someone deleted the DWO/DWP file, or the search path isn't set up
11099 correctly to find the file. */
11100
11101 if (dwarf_read_debug)
11102 {
11103 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11104 kind, dwo_name, hex_string (signature));
11105 }
11106
11107 /* This is a warning and not a complaint because it can be caused by
11108 pilot error (e.g., user accidentally deleting the DWO). */
11109 {
11110 /* Print the name of the DWP file if we looked there, helps the user
11111 better diagnose the problem. */
11112 char *dwp_text = NULL;
11113 struct cleanup *cleanups;
11114
11115 if (dwp_file != NULL)
11116 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11117 cleanups = make_cleanup (xfree, dwp_text);
11118
11119 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11120 " [in module %s]"),
11121 kind, dwo_name, hex_string (signature),
11122 dwp_text != NULL ? dwp_text : "",
11123 this_unit->is_debug_types ? "TU" : "CU",
11124 this_unit->offset.sect_off, objfile_name (objfile));
11125
11126 do_cleanups (cleanups);
11127 }
11128 return NULL;
11129 }
11130
11131 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11132 See lookup_dwo_cutu_unit for details. */
11133
11134 static struct dwo_unit *
11135 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11136 const char *dwo_name, const char *comp_dir,
11137 ULONGEST signature)
11138 {
11139 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11140 }
11141
11142 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11143 See lookup_dwo_cutu_unit for details. */
11144
11145 static struct dwo_unit *
11146 lookup_dwo_type_unit (struct signatured_type *this_tu,
11147 const char *dwo_name, const char *comp_dir)
11148 {
11149 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11150 }
11151
11152 /* Traversal function for queue_and_load_all_dwo_tus. */
11153
11154 static int
11155 queue_and_load_dwo_tu (void **slot, void *info)
11156 {
11157 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11158 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11159 ULONGEST signature = dwo_unit->signature;
11160 struct signatured_type *sig_type =
11161 lookup_dwo_signatured_type (per_cu->cu, signature);
11162
11163 if (sig_type != NULL)
11164 {
11165 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11166
11167 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11168 a real dependency of PER_CU on SIG_TYPE. That is detected later
11169 while processing PER_CU. */
11170 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11171 load_full_type_unit (sig_cu);
11172 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11173 }
11174
11175 return 1;
11176 }
11177
11178 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11179 The DWO may have the only definition of the type, though it may not be
11180 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11181 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11182
11183 static void
11184 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11185 {
11186 struct dwo_unit *dwo_unit;
11187 struct dwo_file *dwo_file;
11188
11189 gdb_assert (!per_cu->is_debug_types);
11190 gdb_assert (get_dwp_file () == NULL);
11191 gdb_assert (per_cu->cu != NULL);
11192
11193 dwo_unit = per_cu->cu->dwo_unit;
11194 gdb_assert (dwo_unit != NULL);
11195
11196 dwo_file = dwo_unit->dwo_file;
11197 if (dwo_file->tus != NULL)
11198 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11199 }
11200
11201 /* Free all resources associated with DWO_FILE.
11202 Close the DWO file and munmap the sections.
11203 All memory should be on the objfile obstack. */
11204
11205 static void
11206 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11207 {
11208
11209 /* Note: dbfd is NULL for virtual DWO files. */
11210 gdb_bfd_unref (dwo_file->dbfd);
11211
11212 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11213 }
11214
11215 /* Wrapper for free_dwo_file for use in cleanups. */
11216
11217 static void
11218 free_dwo_file_cleanup (void *arg)
11219 {
11220 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11221 struct objfile *objfile = dwarf2_per_objfile->objfile;
11222
11223 free_dwo_file (dwo_file, objfile);
11224 }
11225
11226 /* Traversal function for free_dwo_files. */
11227
11228 static int
11229 free_dwo_file_from_slot (void **slot, void *info)
11230 {
11231 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11232 struct objfile *objfile = (struct objfile *) info;
11233
11234 free_dwo_file (dwo_file, objfile);
11235
11236 return 1;
11237 }
11238
11239 /* Free all resources associated with DWO_FILES. */
11240
11241 static void
11242 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11243 {
11244 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11245 }
11246 \f
11247 /* Read in various DIEs. */
11248
11249 /* qsort helper for inherit_abstract_dies. */
11250
11251 static int
11252 unsigned_int_compar (const void *ap, const void *bp)
11253 {
11254 unsigned int a = *(unsigned int *) ap;
11255 unsigned int b = *(unsigned int *) bp;
11256
11257 return (a > b) - (b > a);
11258 }
11259
11260 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11261 Inherit only the children of the DW_AT_abstract_origin DIE not being
11262 already referenced by DW_AT_abstract_origin from the children of the
11263 current DIE. */
11264
11265 static void
11266 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11267 {
11268 struct die_info *child_die;
11269 unsigned die_children_count;
11270 /* CU offsets which were referenced by children of the current DIE. */
11271 sect_offset *offsets;
11272 sect_offset *offsets_end, *offsetp;
11273 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11274 struct die_info *origin_die;
11275 /* Iterator of the ORIGIN_DIE children. */
11276 struct die_info *origin_child_die;
11277 struct cleanup *cleanups;
11278 struct attribute *attr;
11279 struct dwarf2_cu *origin_cu;
11280 struct pending **origin_previous_list_in_scope;
11281
11282 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11283 if (!attr)
11284 return;
11285
11286 /* Note that following die references may follow to a die in a
11287 different cu. */
11288
11289 origin_cu = cu;
11290 origin_die = follow_die_ref (die, attr, &origin_cu);
11291
11292 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11293 symbols in. */
11294 origin_previous_list_in_scope = origin_cu->list_in_scope;
11295 origin_cu->list_in_scope = cu->list_in_scope;
11296
11297 if (die->tag != origin_die->tag
11298 && !(die->tag == DW_TAG_inlined_subroutine
11299 && origin_die->tag == DW_TAG_subprogram))
11300 complaint (&symfile_complaints,
11301 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11302 die->offset.sect_off, origin_die->offset.sect_off);
11303
11304 child_die = die->child;
11305 die_children_count = 0;
11306 while (child_die && child_die->tag)
11307 {
11308 child_die = sibling_die (child_die);
11309 die_children_count++;
11310 }
11311 offsets = XNEWVEC (sect_offset, die_children_count);
11312 cleanups = make_cleanup (xfree, offsets);
11313
11314 offsets_end = offsets;
11315 for (child_die = die->child;
11316 child_die && child_die->tag;
11317 child_die = sibling_die (child_die))
11318 {
11319 struct die_info *child_origin_die;
11320 struct dwarf2_cu *child_origin_cu;
11321
11322 /* We are trying to process concrete instance entries:
11323 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11324 it's not relevant to our analysis here. i.e. detecting DIEs that are
11325 present in the abstract instance but not referenced in the concrete
11326 one. */
11327 if (child_die->tag == DW_TAG_call_site
11328 || child_die->tag == DW_TAG_GNU_call_site)
11329 continue;
11330
11331 /* For each CHILD_DIE, find the corresponding child of
11332 ORIGIN_DIE. If there is more than one layer of
11333 DW_AT_abstract_origin, follow them all; there shouldn't be,
11334 but GCC versions at least through 4.4 generate this (GCC PR
11335 40573). */
11336 child_origin_die = child_die;
11337 child_origin_cu = cu;
11338 while (1)
11339 {
11340 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11341 child_origin_cu);
11342 if (attr == NULL)
11343 break;
11344 child_origin_die = follow_die_ref (child_origin_die, attr,
11345 &child_origin_cu);
11346 }
11347
11348 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11349 counterpart may exist. */
11350 if (child_origin_die != child_die)
11351 {
11352 if (child_die->tag != child_origin_die->tag
11353 && !(child_die->tag == DW_TAG_inlined_subroutine
11354 && child_origin_die->tag == DW_TAG_subprogram))
11355 complaint (&symfile_complaints,
11356 _("Child DIE 0x%x and its abstract origin 0x%x have "
11357 "different tags"), child_die->offset.sect_off,
11358 child_origin_die->offset.sect_off);
11359 if (child_origin_die->parent != origin_die)
11360 complaint (&symfile_complaints,
11361 _("Child DIE 0x%x and its abstract origin 0x%x have "
11362 "different parents"), child_die->offset.sect_off,
11363 child_origin_die->offset.sect_off);
11364 else
11365 *offsets_end++ = child_origin_die->offset;
11366 }
11367 }
11368 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11369 unsigned_int_compar);
11370 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11371 if (offsetp[-1].sect_off == offsetp->sect_off)
11372 complaint (&symfile_complaints,
11373 _("Multiple children of DIE 0x%x refer "
11374 "to DIE 0x%x as their abstract origin"),
11375 die->offset.sect_off, offsetp->sect_off);
11376
11377 offsetp = offsets;
11378 origin_child_die = origin_die->child;
11379 while (origin_child_die && origin_child_die->tag)
11380 {
11381 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11382 while (offsetp < offsets_end
11383 && offsetp->sect_off < origin_child_die->offset.sect_off)
11384 offsetp++;
11385 if (offsetp >= offsets_end
11386 || offsetp->sect_off > origin_child_die->offset.sect_off)
11387 {
11388 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11389 Check whether we're already processing ORIGIN_CHILD_DIE.
11390 This can happen with mutually referenced abstract_origins.
11391 PR 16581. */
11392 if (!origin_child_die->in_process)
11393 process_die (origin_child_die, origin_cu);
11394 }
11395 origin_child_die = sibling_die (origin_child_die);
11396 }
11397 origin_cu->list_in_scope = origin_previous_list_in_scope;
11398
11399 do_cleanups (cleanups);
11400 }
11401
11402 static void
11403 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11404 {
11405 struct objfile *objfile = cu->objfile;
11406 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11407 struct context_stack *newobj;
11408 CORE_ADDR lowpc;
11409 CORE_ADDR highpc;
11410 struct die_info *child_die;
11411 struct attribute *attr, *call_line, *call_file;
11412 const char *name;
11413 CORE_ADDR baseaddr;
11414 struct block *block;
11415 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11416 VEC (symbolp) *template_args = NULL;
11417 struct template_symbol *templ_func = NULL;
11418
11419 if (inlined_func)
11420 {
11421 /* If we do not have call site information, we can't show the
11422 caller of this inlined function. That's too confusing, so
11423 only use the scope for local variables. */
11424 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11425 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11426 if (call_line == NULL || call_file == NULL)
11427 {
11428 read_lexical_block_scope (die, cu);
11429 return;
11430 }
11431 }
11432
11433 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11434
11435 name = dwarf2_name (die, cu);
11436
11437 /* Ignore functions with missing or empty names. These are actually
11438 illegal according to the DWARF standard. */
11439 if (name == NULL)
11440 {
11441 complaint (&symfile_complaints,
11442 _("missing name for subprogram DIE at %d"),
11443 die->offset.sect_off);
11444 return;
11445 }
11446
11447 /* Ignore functions with missing or invalid low and high pc attributes. */
11448 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11449 <= PC_BOUNDS_INVALID)
11450 {
11451 attr = dwarf2_attr (die, DW_AT_external, cu);
11452 if (!attr || !DW_UNSND (attr))
11453 complaint (&symfile_complaints,
11454 _("cannot get low and high bounds "
11455 "for subprogram DIE at %d"),
11456 die->offset.sect_off);
11457 return;
11458 }
11459
11460 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11461 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11462
11463 /* If we have any template arguments, then we must allocate a
11464 different sort of symbol. */
11465 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11466 {
11467 if (child_die->tag == DW_TAG_template_type_param
11468 || child_die->tag == DW_TAG_template_value_param)
11469 {
11470 templ_func = allocate_template_symbol (objfile);
11471 templ_func->base.is_cplus_template_function = 1;
11472 break;
11473 }
11474 }
11475
11476 newobj = push_context (0, lowpc);
11477 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11478 (struct symbol *) templ_func);
11479
11480 /* If there is a location expression for DW_AT_frame_base, record
11481 it. */
11482 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11483 if (attr)
11484 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11485
11486 /* If there is a location for the static link, record it. */
11487 newobj->static_link = NULL;
11488 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11489 if (attr)
11490 {
11491 newobj->static_link
11492 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11493 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11494 }
11495
11496 cu->list_in_scope = &local_symbols;
11497
11498 if (die->child != NULL)
11499 {
11500 child_die = die->child;
11501 while (child_die && child_die->tag)
11502 {
11503 if (child_die->tag == DW_TAG_template_type_param
11504 || child_die->tag == DW_TAG_template_value_param)
11505 {
11506 struct symbol *arg = new_symbol (child_die, NULL, cu);
11507
11508 if (arg != NULL)
11509 VEC_safe_push (symbolp, template_args, arg);
11510 }
11511 else
11512 process_die (child_die, cu);
11513 child_die = sibling_die (child_die);
11514 }
11515 }
11516
11517 inherit_abstract_dies (die, cu);
11518
11519 /* If we have a DW_AT_specification, we might need to import using
11520 directives from the context of the specification DIE. See the
11521 comment in determine_prefix. */
11522 if (cu->language == language_cplus
11523 && dwarf2_attr (die, DW_AT_specification, cu))
11524 {
11525 struct dwarf2_cu *spec_cu = cu;
11526 struct die_info *spec_die = die_specification (die, &spec_cu);
11527
11528 while (spec_die)
11529 {
11530 child_die = spec_die->child;
11531 while (child_die && child_die->tag)
11532 {
11533 if (child_die->tag == DW_TAG_imported_module)
11534 process_die (child_die, spec_cu);
11535 child_die = sibling_die (child_die);
11536 }
11537
11538 /* In some cases, GCC generates specification DIEs that
11539 themselves contain DW_AT_specification attributes. */
11540 spec_die = die_specification (spec_die, &spec_cu);
11541 }
11542 }
11543
11544 newobj = pop_context ();
11545 /* Make a block for the local symbols within. */
11546 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11547 newobj->static_link, lowpc, highpc);
11548
11549 /* For C++, set the block's scope. */
11550 if ((cu->language == language_cplus
11551 || cu->language == language_fortran
11552 || cu->language == language_d
11553 || cu->language == language_rust)
11554 && cu->processing_has_namespace_info)
11555 block_set_scope (block, determine_prefix (die, cu),
11556 &objfile->objfile_obstack);
11557
11558 /* If we have address ranges, record them. */
11559 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11560
11561 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11562
11563 /* Attach template arguments to function. */
11564 if (! VEC_empty (symbolp, template_args))
11565 {
11566 gdb_assert (templ_func != NULL);
11567
11568 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11569 templ_func->template_arguments
11570 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11571 templ_func->n_template_arguments);
11572 memcpy (templ_func->template_arguments,
11573 VEC_address (symbolp, template_args),
11574 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11575 VEC_free (symbolp, template_args);
11576 }
11577
11578 /* In C++, we can have functions nested inside functions (e.g., when
11579 a function declares a class that has methods). This means that
11580 when we finish processing a function scope, we may need to go
11581 back to building a containing block's symbol lists. */
11582 local_symbols = newobj->locals;
11583 local_using_directives = newobj->local_using_directives;
11584
11585 /* If we've finished processing a top-level function, subsequent
11586 symbols go in the file symbol list. */
11587 if (outermost_context_p ())
11588 cu->list_in_scope = &file_symbols;
11589 }
11590
11591 /* Process all the DIES contained within a lexical block scope. Start
11592 a new scope, process the dies, and then close the scope. */
11593
11594 static void
11595 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11596 {
11597 struct objfile *objfile = cu->objfile;
11598 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11599 struct context_stack *newobj;
11600 CORE_ADDR lowpc, highpc;
11601 struct die_info *child_die;
11602 CORE_ADDR baseaddr;
11603
11604 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11605
11606 /* Ignore blocks with missing or invalid low and high pc attributes. */
11607 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11608 as multiple lexical blocks? Handling children in a sane way would
11609 be nasty. Might be easier to properly extend generic blocks to
11610 describe ranges. */
11611 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11612 {
11613 case PC_BOUNDS_NOT_PRESENT:
11614 /* DW_TAG_lexical_block has no attributes, process its children as if
11615 there was no wrapping by that DW_TAG_lexical_block.
11616 GCC does no longer produces such DWARF since GCC r224161. */
11617 for (child_die = die->child;
11618 child_die != NULL && child_die->tag;
11619 child_die = sibling_die (child_die))
11620 process_die (child_die, cu);
11621 return;
11622 case PC_BOUNDS_INVALID:
11623 return;
11624 }
11625 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11626 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11627
11628 push_context (0, lowpc);
11629 if (die->child != NULL)
11630 {
11631 child_die = die->child;
11632 while (child_die && child_die->tag)
11633 {
11634 process_die (child_die, cu);
11635 child_die = sibling_die (child_die);
11636 }
11637 }
11638 inherit_abstract_dies (die, cu);
11639 newobj = pop_context ();
11640
11641 if (local_symbols != NULL || local_using_directives != NULL)
11642 {
11643 struct block *block
11644 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11645 newobj->start_addr, highpc);
11646
11647 /* Note that recording ranges after traversing children, as we
11648 do here, means that recording a parent's ranges entails
11649 walking across all its children's ranges as they appear in
11650 the address map, which is quadratic behavior.
11651
11652 It would be nicer to record the parent's ranges before
11653 traversing its children, simply overriding whatever you find
11654 there. But since we don't even decide whether to create a
11655 block until after we've traversed its children, that's hard
11656 to do. */
11657 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11658 }
11659 local_symbols = newobj->locals;
11660 local_using_directives = newobj->local_using_directives;
11661 }
11662
11663 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11664
11665 static void
11666 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11667 {
11668 struct objfile *objfile = cu->objfile;
11669 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11670 CORE_ADDR pc, baseaddr;
11671 struct attribute *attr;
11672 struct call_site *call_site, call_site_local;
11673 void **slot;
11674 int nparams;
11675 struct die_info *child_die;
11676
11677 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11678
11679 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11680 if (attr == NULL)
11681 {
11682 /* This was a pre-DWARF-5 GNU extension alias
11683 for DW_AT_call_return_pc. */
11684 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11685 }
11686 if (!attr)
11687 {
11688 complaint (&symfile_complaints,
11689 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11690 "DIE 0x%x [in module %s]"),
11691 die->offset.sect_off, objfile_name (objfile));
11692 return;
11693 }
11694 pc = attr_value_as_address (attr) + baseaddr;
11695 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11696
11697 if (cu->call_site_htab == NULL)
11698 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11699 NULL, &objfile->objfile_obstack,
11700 hashtab_obstack_allocate, NULL);
11701 call_site_local.pc = pc;
11702 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11703 if (*slot != NULL)
11704 {
11705 complaint (&symfile_complaints,
11706 _("Duplicate PC %s for DW_TAG_call_site "
11707 "DIE 0x%x [in module %s]"),
11708 paddress (gdbarch, pc), die->offset.sect_off,
11709 objfile_name (objfile));
11710 return;
11711 }
11712
11713 /* Count parameters at the caller. */
11714
11715 nparams = 0;
11716 for (child_die = die->child; child_die && child_die->tag;
11717 child_die = sibling_die (child_die))
11718 {
11719 if (child_die->tag != DW_TAG_call_site_parameter
11720 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11721 {
11722 complaint (&symfile_complaints,
11723 _("Tag %d is not DW_TAG_call_site_parameter in "
11724 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11725 child_die->tag, child_die->offset.sect_off,
11726 objfile_name (objfile));
11727 continue;
11728 }
11729
11730 nparams++;
11731 }
11732
11733 call_site
11734 = ((struct call_site *)
11735 obstack_alloc (&objfile->objfile_obstack,
11736 sizeof (*call_site)
11737 + (sizeof (*call_site->parameter) * (nparams - 1))));
11738 *slot = call_site;
11739 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11740 call_site->pc = pc;
11741
11742 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11743 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11744 {
11745 struct die_info *func_die;
11746
11747 /* Skip also over DW_TAG_inlined_subroutine. */
11748 for (func_die = die->parent;
11749 func_die && func_die->tag != DW_TAG_subprogram
11750 && func_die->tag != DW_TAG_subroutine_type;
11751 func_die = func_die->parent);
11752
11753 /* DW_AT_call_all_calls is a superset
11754 of DW_AT_call_all_tail_calls. */
11755 if (func_die
11756 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
11757 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11758 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
11759 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11760 {
11761 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11762 not complete. But keep CALL_SITE for look ups via call_site_htab,
11763 both the initial caller containing the real return address PC and
11764 the final callee containing the current PC of a chain of tail
11765 calls do not need to have the tail call list complete. But any
11766 function candidate for a virtual tail call frame searched via
11767 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11768 determined unambiguously. */
11769 }
11770 else
11771 {
11772 struct type *func_type = NULL;
11773
11774 if (func_die)
11775 func_type = get_die_type (func_die, cu);
11776 if (func_type != NULL)
11777 {
11778 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11779
11780 /* Enlist this call site to the function. */
11781 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11782 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11783 }
11784 else
11785 complaint (&symfile_complaints,
11786 _("Cannot find function owning DW_TAG_call_site "
11787 "DIE 0x%x [in module %s]"),
11788 die->offset.sect_off, objfile_name (objfile));
11789 }
11790 }
11791
11792 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11793 if (attr == NULL)
11794 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11795 if (attr == NULL)
11796 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
11797 if (attr == NULL)
11798 {
11799 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11800 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11801 }
11802 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11803 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11804 /* Keep NULL DWARF_BLOCK. */;
11805 else if (attr_form_is_block (attr))
11806 {
11807 struct dwarf2_locexpr_baton *dlbaton;
11808
11809 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11810 dlbaton->data = DW_BLOCK (attr)->data;
11811 dlbaton->size = DW_BLOCK (attr)->size;
11812 dlbaton->per_cu = cu->per_cu;
11813
11814 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11815 }
11816 else if (attr_form_is_ref (attr))
11817 {
11818 struct dwarf2_cu *target_cu = cu;
11819 struct die_info *target_die;
11820
11821 target_die = follow_die_ref (die, attr, &target_cu);
11822 gdb_assert (target_cu->objfile == objfile);
11823 if (die_is_declaration (target_die, target_cu))
11824 {
11825 const char *target_physname;
11826
11827 /* Prefer the mangled name; otherwise compute the demangled one. */
11828 target_physname = dwarf2_string_attr (target_die,
11829 DW_AT_linkage_name,
11830 target_cu);
11831 if (target_physname == NULL)
11832 target_physname = dwarf2_string_attr (target_die,
11833 DW_AT_MIPS_linkage_name,
11834 target_cu);
11835 if (target_physname == NULL)
11836 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11837 if (target_physname == NULL)
11838 complaint (&symfile_complaints,
11839 _("DW_AT_call_target target DIE has invalid "
11840 "physname, for referencing DIE 0x%x [in module %s]"),
11841 die->offset.sect_off, objfile_name (objfile));
11842 else
11843 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11844 }
11845 else
11846 {
11847 CORE_ADDR lowpc;
11848
11849 /* DW_AT_entry_pc should be preferred. */
11850 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11851 <= PC_BOUNDS_INVALID)
11852 complaint (&symfile_complaints,
11853 _("DW_AT_call_target target DIE has invalid "
11854 "low pc, for referencing DIE 0x%x [in module %s]"),
11855 die->offset.sect_off, objfile_name (objfile));
11856 else
11857 {
11858 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11859 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11860 }
11861 }
11862 }
11863 else
11864 complaint (&symfile_complaints,
11865 _("DW_TAG_call_site DW_AT_call_target is neither "
11866 "block nor reference, for DIE 0x%x [in module %s]"),
11867 die->offset.sect_off, objfile_name (objfile));
11868
11869 call_site->per_cu = cu->per_cu;
11870
11871 for (child_die = die->child;
11872 child_die && child_die->tag;
11873 child_die = sibling_die (child_die))
11874 {
11875 struct call_site_parameter *parameter;
11876 struct attribute *loc, *origin;
11877
11878 if (child_die->tag != DW_TAG_call_site_parameter
11879 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11880 {
11881 /* Already printed the complaint above. */
11882 continue;
11883 }
11884
11885 gdb_assert (call_site->parameter_count < nparams);
11886 parameter = &call_site->parameter[call_site->parameter_count];
11887
11888 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11889 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11890 register is contained in DW_AT_call_value. */
11891
11892 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11893 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
11894 if (origin == NULL)
11895 {
11896 /* This was a pre-DWARF-5 GNU extension alias
11897 for DW_AT_call_parameter. */
11898 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11899 }
11900 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11901 {
11902 sect_offset offset;
11903
11904 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11905 offset = dwarf2_get_ref_die_offset (origin);
11906 if (!offset_in_cu_p (&cu->header, offset))
11907 {
11908 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11909 binding can be done only inside one CU. Such referenced DIE
11910 therefore cannot be even moved to DW_TAG_partial_unit. */
11911 complaint (&symfile_complaints,
11912 _("DW_AT_call_parameter offset is not in CU for "
11913 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11914 child_die->offset.sect_off, objfile_name (objfile));
11915 continue;
11916 }
11917 parameter->u.param_offset.cu_off = (offset.sect_off
11918 - cu->header.offset.sect_off);
11919 }
11920 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11921 {
11922 complaint (&symfile_complaints,
11923 _("No DW_FORM_block* DW_AT_location for "
11924 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11925 child_die->offset.sect_off, objfile_name (objfile));
11926 continue;
11927 }
11928 else
11929 {
11930 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11931 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11932 if (parameter->u.dwarf_reg != -1)
11933 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11934 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11935 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11936 &parameter->u.fb_offset))
11937 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11938 else
11939 {
11940 complaint (&symfile_complaints,
11941 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11942 "for DW_FORM_block* DW_AT_location is supported for "
11943 "DW_TAG_call_site child DIE 0x%x "
11944 "[in module %s]"),
11945 child_die->offset.sect_off, objfile_name (objfile));
11946 continue;
11947 }
11948 }
11949
11950 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
11951 if (attr == NULL)
11952 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11953 if (!attr_form_is_block (attr))
11954 {
11955 complaint (&symfile_complaints,
11956 _("No DW_FORM_block* DW_AT_call_value for "
11957 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11958 child_die->offset.sect_off, objfile_name (objfile));
11959 continue;
11960 }
11961 parameter->value = DW_BLOCK (attr)->data;
11962 parameter->value_size = DW_BLOCK (attr)->size;
11963
11964 /* Parameters are not pre-cleared by memset above. */
11965 parameter->data_value = NULL;
11966 parameter->data_value_size = 0;
11967 call_site->parameter_count++;
11968
11969 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
11970 if (attr == NULL)
11971 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11972 if (attr)
11973 {
11974 if (!attr_form_is_block (attr))
11975 complaint (&symfile_complaints,
11976 _("No DW_FORM_block* DW_AT_call_data_value for "
11977 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11978 child_die->offset.sect_off, objfile_name (objfile));
11979 else
11980 {
11981 parameter->data_value = DW_BLOCK (attr)->data;
11982 parameter->data_value_size = DW_BLOCK (attr)->size;
11983 }
11984 }
11985 }
11986 }
11987
11988 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
11989 reading .debug_rnglists.
11990 Callback's type should be:
11991 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
11992 Return true if the attributes are present and valid, otherwise,
11993 return false. */
11994
11995 template <typename Callback>
11996 static bool
11997 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
11998 Callback &&callback)
11999 {
12000 struct objfile *objfile = cu->objfile;
12001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12002 struct comp_unit_head *cu_header = &cu->header;
12003 bfd *obfd = objfile->obfd;
12004 unsigned int addr_size = cu_header->addr_size;
12005 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12006 /* Base address selection entry. */
12007 CORE_ADDR base;
12008 int found_base;
12009 unsigned int dummy;
12010 const gdb_byte *buffer;
12011 CORE_ADDR low = 0;
12012 CORE_ADDR high = 0;
12013 CORE_ADDR baseaddr;
12014 bool overflow = false;
12015
12016 found_base = cu->base_known;
12017 base = cu->base_address;
12018
12019 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12020 if (offset >= dwarf2_per_objfile->rnglists.size)
12021 {
12022 complaint (&symfile_complaints,
12023 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12024 offset);
12025 return false;
12026 }
12027 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12028
12029 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12030
12031 while (1)
12032 {
12033 CORE_ADDR range_beginning, range_end;
12034 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12035 + dwarf2_per_objfile->rnglists.size);
12036 unsigned int bytes_read;
12037
12038 if (buffer == buf_end)
12039 {
12040 overflow = true;
12041 break;
12042 }
12043 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12044 switch (rlet)
12045 {
12046 case DW_RLE_end_of_list:
12047 break;
12048 case DW_RLE_base_address:
12049 if (buffer + cu->header.addr_size > buf_end)
12050 {
12051 overflow = true;
12052 break;
12053 }
12054 base = read_address (obfd, buffer, cu, &bytes_read);
12055 found_base = 1;
12056 buffer += bytes_read;
12057 break;
12058 case DW_RLE_start_length:
12059 if (buffer + cu->header.addr_size > buf_end)
12060 {
12061 overflow = true;
12062 break;
12063 }
12064 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12065 buffer += bytes_read;
12066 range_end = (range_beginning
12067 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12068 buffer += bytes_read;
12069 if (buffer > buf_end)
12070 {
12071 overflow = true;
12072 break;
12073 }
12074 break;
12075 case DW_RLE_offset_pair:
12076 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12077 buffer += bytes_read;
12078 if (buffer > buf_end)
12079 {
12080 overflow = true;
12081 break;
12082 }
12083 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12084 buffer += bytes_read;
12085 if (buffer > buf_end)
12086 {
12087 overflow = true;
12088 break;
12089 }
12090 break;
12091 case DW_RLE_start_end:
12092 if (buffer + 2 * cu->header.addr_size > buf_end)
12093 {
12094 overflow = true;
12095 break;
12096 }
12097 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12098 buffer += bytes_read;
12099 range_end = read_address (obfd, buffer, cu, &bytes_read);
12100 buffer += bytes_read;
12101 break;
12102 default:
12103 complaint (&symfile_complaints,
12104 _("Invalid .debug_rnglists data (no base address)"));
12105 return false;
12106 }
12107 if (rlet == DW_RLE_end_of_list || overflow)
12108 break;
12109 if (rlet == DW_RLE_base_address)
12110 continue;
12111
12112 if (!found_base)
12113 {
12114 /* We have no valid base address for the ranges
12115 data. */
12116 complaint (&symfile_complaints,
12117 _("Invalid .debug_rnglists data (no base address)"));
12118 return false;
12119 }
12120
12121 if (range_beginning > range_end)
12122 {
12123 /* Inverted range entries are invalid. */
12124 complaint (&symfile_complaints,
12125 _("Invalid .debug_rnglists data (inverted range)"));
12126 return false;
12127 }
12128
12129 /* Empty range entries have no effect. */
12130 if (range_beginning == range_end)
12131 continue;
12132
12133 range_beginning += base;
12134 range_end += base;
12135
12136 /* A not-uncommon case of bad debug info.
12137 Don't pollute the addrmap with bad data. */
12138 if (range_beginning + baseaddr == 0
12139 && !dwarf2_per_objfile->has_section_at_zero)
12140 {
12141 complaint (&symfile_complaints,
12142 _(".debug_rnglists entry has start address of zero"
12143 " [in module %s]"), objfile_name (objfile));
12144 continue;
12145 }
12146
12147 callback (range_beginning, range_end);
12148 }
12149
12150 if (overflow)
12151 {
12152 complaint (&symfile_complaints,
12153 _("Offset %d is not terminated "
12154 "for DW_AT_ranges attribute"),
12155 offset);
12156 return false;
12157 }
12158
12159 return true;
12160 }
12161
12162 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12163 Callback's type should be:
12164 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12165 Return 1 if the attributes are present and valid, otherwise, return 0. */
12166
12167 template <typename Callback>
12168 static int
12169 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12170 Callback &&callback)
12171 {
12172 struct objfile *objfile = cu->objfile;
12173 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12174 struct comp_unit_head *cu_header = &cu->header;
12175 bfd *obfd = objfile->obfd;
12176 unsigned int addr_size = cu_header->addr_size;
12177 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12178 /* Base address selection entry. */
12179 CORE_ADDR base;
12180 int found_base;
12181 unsigned int dummy;
12182 const gdb_byte *buffer;
12183 CORE_ADDR baseaddr;
12184
12185 if (cu_header->version >= 5)
12186 return dwarf2_rnglists_process (offset, cu, callback);
12187
12188 found_base = cu->base_known;
12189 base = cu->base_address;
12190
12191 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12192 if (offset >= dwarf2_per_objfile->ranges.size)
12193 {
12194 complaint (&symfile_complaints,
12195 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12196 offset);
12197 return 0;
12198 }
12199 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12200
12201 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12202
12203 while (1)
12204 {
12205 CORE_ADDR range_beginning, range_end;
12206
12207 range_beginning = read_address (obfd, buffer, cu, &dummy);
12208 buffer += addr_size;
12209 range_end = read_address (obfd, buffer, cu, &dummy);
12210 buffer += addr_size;
12211 offset += 2 * addr_size;
12212
12213 /* An end of list marker is a pair of zero addresses. */
12214 if (range_beginning == 0 && range_end == 0)
12215 /* Found the end of list entry. */
12216 break;
12217
12218 /* Each base address selection entry is a pair of 2 values.
12219 The first is the largest possible address, the second is
12220 the base address. Check for a base address here. */
12221 if ((range_beginning & mask) == mask)
12222 {
12223 /* If we found the largest possible address, then we already
12224 have the base address in range_end. */
12225 base = range_end;
12226 found_base = 1;
12227 continue;
12228 }
12229
12230 if (!found_base)
12231 {
12232 /* We have no valid base address for the ranges
12233 data. */
12234 complaint (&symfile_complaints,
12235 _("Invalid .debug_ranges data (no base address)"));
12236 return 0;
12237 }
12238
12239 if (range_beginning > range_end)
12240 {
12241 /* Inverted range entries are invalid. */
12242 complaint (&symfile_complaints,
12243 _("Invalid .debug_ranges data (inverted range)"));
12244 return 0;
12245 }
12246
12247 /* Empty range entries have no effect. */
12248 if (range_beginning == range_end)
12249 continue;
12250
12251 range_beginning += base;
12252 range_end += base;
12253
12254 /* A not-uncommon case of bad debug info.
12255 Don't pollute the addrmap with bad data. */
12256 if (range_beginning + baseaddr == 0
12257 && !dwarf2_per_objfile->has_section_at_zero)
12258 {
12259 complaint (&symfile_complaints,
12260 _(".debug_ranges entry has start address of zero"
12261 " [in module %s]"), objfile_name (objfile));
12262 continue;
12263 }
12264
12265 callback (range_beginning, range_end);
12266 }
12267
12268 return 1;
12269 }
12270
12271 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12272 Return 1 if the attributes are present and valid, otherwise, return 0.
12273 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12274
12275 static int
12276 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12277 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12278 struct partial_symtab *ranges_pst)
12279 {
12280 struct objfile *objfile = cu->objfile;
12281 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12282 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12283 SECT_OFF_TEXT (objfile));
12284 int low_set = 0;
12285 CORE_ADDR low = 0;
12286 CORE_ADDR high = 0;
12287 int retval;
12288
12289 retval = dwarf2_ranges_process (offset, cu,
12290 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12291 {
12292 if (ranges_pst != NULL)
12293 {
12294 CORE_ADDR lowpc;
12295 CORE_ADDR highpc;
12296
12297 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12298 range_beginning + baseaddr);
12299 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12300 range_end + baseaddr);
12301 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12302 ranges_pst);
12303 }
12304
12305 /* FIXME: This is recording everything as a low-high
12306 segment of consecutive addresses. We should have a
12307 data structure for discontiguous block ranges
12308 instead. */
12309 if (! low_set)
12310 {
12311 low = range_beginning;
12312 high = range_end;
12313 low_set = 1;
12314 }
12315 else
12316 {
12317 if (range_beginning < low)
12318 low = range_beginning;
12319 if (range_end > high)
12320 high = range_end;
12321 }
12322 });
12323 if (!retval)
12324 return 0;
12325
12326 if (! low_set)
12327 /* If the first entry is an end-of-list marker, the range
12328 describes an empty scope, i.e. no instructions. */
12329 return 0;
12330
12331 if (low_return)
12332 *low_return = low;
12333 if (high_return)
12334 *high_return = high;
12335 return 1;
12336 }
12337
12338 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12339 definition for the return value. *LOWPC and *HIGHPC are set iff
12340 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12341
12342 static enum pc_bounds_kind
12343 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12344 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12345 struct partial_symtab *pst)
12346 {
12347 struct attribute *attr;
12348 struct attribute *attr_high;
12349 CORE_ADDR low = 0;
12350 CORE_ADDR high = 0;
12351 enum pc_bounds_kind ret;
12352
12353 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12354 if (attr_high)
12355 {
12356 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12357 if (attr)
12358 {
12359 low = attr_value_as_address (attr);
12360 high = attr_value_as_address (attr_high);
12361 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12362 high += low;
12363 }
12364 else
12365 /* Found high w/o low attribute. */
12366 return PC_BOUNDS_INVALID;
12367
12368 /* Found consecutive range of addresses. */
12369 ret = PC_BOUNDS_HIGH_LOW;
12370 }
12371 else
12372 {
12373 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12374 if (attr != NULL)
12375 {
12376 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12377 We take advantage of the fact that DW_AT_ranges does not appear
12378 in DW_TAG_compile_unit of DWO files. */
12379 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12380 unsigned int ranges_offset = (DW_UNSND (attr)
12381 + (need_ranges_base
12382 ? cu->ranges_base
12383 : 0));
12384
12385 /* Value of the DW_AT_ranges attribute is the offset in the
12386 .debug_ranges section. */
12387 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12388 return PC_BOUNDS_INVALID;
12389 /* Found discontinuous range of addresses. */
12390 ret = PC_BOUNDS_RANGES;
12391 }
12392 else
12393 return PC_BOUNDS_NOT_PRESENT;
12394 }
12395
12396 /* read_partial_die has also the strict LOW < HIGH requirement. */
12397 if (high <= low)
12398 return PC_BOUNDS_INVALID;
12399
12400 /* When using the GNU linker, .gnu.linkonce. sections are used to
12401 eliminate duplicate copies of functions and vtables and such.
12402 The linker will arbitrarily choose one and discard the others.
12403 The AT_*_pc values for such functions refer to local labels in
12404 these sections. If the section from that file was discarded, the
12405 labels are not in the output, so the relocs get a value of 0.
12406 If this is a discarded function, mark the pc bounds as invalid,
12407 so that GDB will ignore it. */
12408 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12409 return PC_BOUNDS_INVALID;
12410
12411 *lowpc = low;
12412 if (highpc)
12413 *highpc = high;
12414 return ret;
12415 }
12416
12417 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12418 its low and high PC addresses. Do nothing if these addresses could not
12419 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12420 and HIGHPC to the high address if greater than HIGHPC. */
12421
12422 static void
12423 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12424 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12425 struct dwarf2_cu *cu)
12426 {
12427 CORE_ADDR low, high;
12428 struct die_info *child = die->child;
12429
12430 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12431 {
12432 *lowpc = std::min (*lowpc, low);
12433 *highpc = std::max (*highpc, high);
12434 }
12435
12436 /* If the language does not allow nested subprograms (either inside
12437 subprograms or lexical blocks), we're done. */
12438 if (cu->language != language_ada)
12439 return;
12440
12441 /* Check all the children of the given DIE. If it contains nested
12442 subprograms, then check their pc bounds. Likewise, we need to
12443 check lexical blocks as well, as they may also contain subprogram
12444 definitions. */
12445 while (child && child->tag)
12446 {
12447 if (child->tag == DW_TAG_subprogram
12448 || child->tag == DW_TAG_lexical_block)
12449 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12450 child = sibling_die (child);
12451 }
12452 }
12453
12454 /* Get the low and high pc's represented by the scope DIE, and store
12455 them in *LOWPC and *HIGHPC. If the correct values can't be
12456 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12457
12458 static void
12459 get_scope_pc_bounds (struct die_info *die,
12460 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12461 struct dwarf2_cu *cu)
12462 {
12463 CORE_ADDR best_low = (CORE_ADDR) -1;
12464 CORE_ADDR best_high = (CORE_ADDR) 0;
12465 CORE_ADDR current_low, current_high;
12466
12467 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12468 >= PC_BOUNDS_RANGES)
12469 {
12470 best_low = current_low;
12471 best_high = current_high;
12472 }
12473 else
12474 {
12475 struct die_info *child = die->child;
12476
12477 while (child && child->tag)
12478 {
12479 switch (child->tag) {
12480 case DW_TAG_subprogram:
12481 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12482 break;
12483 case DW_TAG_namespace:
12484 case DW_TAG_module:
12485 /* FIXME: carlton/2004-01-16: Should we do this for
12486 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12487 that current GCC's always emit the DIEs corresponding
12488 to definitions of methods of classes as children of a
12489 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12490 the DIEs giving the declarations, which could be
12491 anywhere). But I don't see any reason why the
12492 standards says that they have to be there. */
12493 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12494
12495 if (current_low != ((CORE_ADDR) -1))
12496 {
12497 best_low = std::min (best_low, current_low);
12498 best_high = std::max (best_high, current_high);
12499 }
12500 break;
12501 default:
12502 /* Ignore. */
12503 break;
12504 }
12505
12506 child = sibling_die (child);
12507 }
12508 }
12509
12510 *lowpc = best_low;
12511 *highpc = best_high;
12512 }
12513
12514 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12515 in DIE. */
12516
12517 static void
12518 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12519 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12520 {
12521 struct objfile *objfile = cu->objfile;
12522 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12523 struct attribute *attr;
12524 struct attribute *attr_high;
12525
12526 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12527 if (attr_high)
12528 {
12529 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12530 if (attr)
12531 {
12532 CORE_ADDR low = attr_value_as_address (attr);
12533 CORE_ADDR high = attr_value_as_address (attr_high);
12534
12535 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12536 high += low;
12537
12538 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12539 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12540 record_block_range (block, low, high - 1);
12541 }
12542 }
12543
12544 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12545 if (attr)
12546 {
12547 bfd *obfd = objfile->obfd;
12548 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12549 We take advantage of the fact that DW_AT_ranges does not appear
12550 in DW_TAG_compile_unit of DWO files. */
12551 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12552
12553 /* The value of the DW_AT_ranges attribute is the offset of the
12554 address range list in the .debug_ranges section. */
12555 unsigned long offset = (DW_UNSND (attr)
12556 + (need_ranges_base ? cu->ranges_base : 0));
12557 const gdb_byte *buffer;
12558
12559 /* For some target architectures, but not others, the
12560 read_address function sign-extends the addresses it returns.
12561 To recognize base address selection entries, we need a
12562 mask. */
12563 unsigned int addr_size = cu->header.addr_size;
12564 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12565
12566 /* The base address, to which the next pair is relative. Note
12567 that this 'base' is a DWARF concept: most entries in a range
12568 list are relative, to reduce the number of relocs against the
12569 debugging information. This is separate from this function's
12570 'baseaddr' argument, which GDB uses to relocate debugging
12571 information from a shared library based on the address at
12572 which the library was loaded. */
12573 CORE_ADDR base = cu->base_address;
12574 int base_known = cu->base_known;
12575
12576 dwarf2_ranges_process (offset, cu,
12577 [&] (CORE_ADDR start, CORE_ADDR end)
12578 {
12579 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12580 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12581 record_block_range (block, start, end - 1);
12582 });
12583 }
12584 }
12585
12586 /* Check whether the producer field indicates either of GCC < 4.6, or the
12587 Intel C/C++ compiler, and cache the result in CU. */
12588
12589 static void
12590 check_producer (struct dwarf2_cu *cu)
12591 {
12592 int major, minor;
12593
12594 if (cu->producer == NULL)
12595 {
12596 /* For unknown compilers expect their behavior is DWARF version
12597 compliant.
12598
12599 GCC started to support .debug_types sections by -gdwarf-4 since
12600 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12601 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12602 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12603 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12604 }
12605 else if (producer_is_gcc (cu->producer, &major, &minor))
12606 {
12607 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12608 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12609 }
12610 else if (startswith (cu->producer, "Intel(R) C"))
12611 cu->producer_is_icc = 1;
12612 else
12613 {
12614 /* For other non-GCC compilers, expect their behavior is DWARF version
12615 compliant. */
12616 }
12617
12618 cu->checked_producer = 1;
12619 }
12620
12621 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12622 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12623 during 4.6.0 experimental. */
12624
12625 static int
12626 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12627 {
12628 if (!cu->checked_producer)
12629 check_producer (cu);
12630
12631 return cu->producer_is_gxx_lt_4_6;
12632 }
12633
12634 /* Return the default accessibility type if it is not overriden by
12635 DW_AT_accessibility. */
12636
12637 static enum dwarf_access_attribute
12638 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12639 {
12640 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12641 {
12642 /* The default DWARF 2 accessibility for members is public, the default
12643 accessibility for inheritance is private. */
12644
12645 if (die->tag != DW_TAG_inheritance)
12646 return DW_ACCESS_public;
12647 else
12648 return DW_ACCESS_private;
12649 }
12650 else
12651 {
12652 /* DWARF 3+ defines the default accessibility a different way. The same
12653 rules apply now for DW_TAG_inheritance as for the members and it only
12654 depends on the container kind. */
12655
12656 if (die->parent->tag == DW_TAG_class_type)
12657 return DW_ACCESS_private;
12658 else
12659 return DW_ACCESS_public;
12660 }
12661 }
12662
12663 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12664 offset. If the attribute was not found return 0, otherwise return
12665 1. If it was found but could not properly be handled, set *OFFSET
12666 to 0. */
12667
12668 static int
12669 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12670 LONGEST *offset)
12671 {
12672 struct attribute *attr;
12673
12674 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12675 if (attr != NULL)
12676 {
12677 *offset = 0;
12678
12679 /* Note that we do not check for a section offset first here.
12680 This is because DW_AT_data_member_location is new in DWARF 4,
12681 so if we see it, we can assume that a constant form is really
12682 a constant and not a section offset. */
12683 if (attr_form_is_constant (attr))
12684 *offset = dwarf2_get_attr_constant_value (attr, 0);
12685 else if (attr_form_is_section_offset (attr))
12686 dwarf2_complex_location_expr_complaint ();
12687 else if (attr_form_is_block (attr))
12688 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12689 else
12690 dwarf2_complex_location_expr_complaint ();
12691
12692 return 1;
12693 }
12694
12695 return 0;
12696 }
12697
12698 /* Add an aggregate field to the field list. */
12699
12700 static void
12701 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12702 struct dwarf2_cu *cu)
12703 {
12704 struct objfile *objfile = cu->objfile;
12705 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12706 struct nextfield *new_field;
12707 struct attribute *attr;
12708 struct field *fp;
12709 const char *fieldname = "";
12710
12711 /* Allocate a new field list entry and link it in. */
12712 new_field = XNEW (struct nextfield);
12713 make_cleanup (xfree, new_field);
12714 memset (new_field, 0, sizeof (struct nextfield));
12715
12716 if (die->tag == DW_TAG_inheritance)
12717 {
12718 new_field->next = fip->baseclasses;
12719 fip->baseclasses = new_field;
12720 }
12721 else
12722 {
12723 new_field->next = fip->fields;
12724 fip->fields = new_field;
12725 }
12726 fip->nfields++;
12727
12728 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12729 if (attr)
12730 new_field->accessibility = DW_UNSND (attr);
12731 else
12732 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12733 if (new_field->accessibility != DW_ACCESS_public)
12734 fip->non_public_fields = 1;
12735
12736 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12737 if (attr)
12738 new_field->virtuality = DW_UNSND (attr);
12739 else
12740 new_field->virtuality = DW_VIRTUALITY_none;
12741
12742 fp = &new_field->field;
12743
12744 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12745 {
12746 LONGEST offset;
12747
12748 /* Data member other than a C++ static data member. */
12749
12750 /* Get type of field. */
12751 fp->type = die_type (die, cu);
12752
12753 SET_FIELD_BITPOS (*fp, 0);
12754
12755 /* Get bit size of field (zero if none). */
12756 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12757 if (attr)
12758 {
12759 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12760 }
12761 else
12762 {
12763 FIELD_BITSIZE (*fp) = 0;
12764 }
12765
12766 /* Get bit offset of field. */
12767 if (handle_data_member_location (die, cu, &offset))
12768 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12769 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12770 if (attr)
12771 {
12772 if (gdbarch_bits_big_endian (gdbarch))
12773 {
12774 /* For big endian bits, the DW_AT_bit_offset gives the
12775 additional bit offset from the MSB of the containing
12776 anonymous object to the MSB of the field. We don't
12777 have to do anything special since we don't need to
12778 know the size of the anonymous object. */
12779 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12780 }
12781 else
12782 {
12783 /* For little endian bits, compute the bit offset to the
12784 MSB of the anonymous object, subtract off the number of
12785 bits from the MSB of the field to the MSB of the
12786 object, and then subtract off the number of bits of
12787 the field itself. The result is the bit offset of
12788 the LSB of the field. */
12789 int anonymous_size;
12790 int bit_offset = DW_UNSND (attr);
12791
12792 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12793 if (attr)
12794 {
12795 /* The size of the anonymous object containing
12796 the bit field is explicit, so use the
12797 indicated size (in bytes). */
12798 anonymous_size = DW_UNSND (attr);
12799 }
12800 else
12801 {
12802 /* The size of the anonymous object containing
12803 the bit field must be inferred from the type
12804 attribute of the data member containing the
12805 bit field. */
12806 anonymous_size = TYPE_LENGTH (fp->type);
12807 }
12808 SET_FIELD_BITPOS (*fp,
12809 (FIELD_BITPOS (*fp)
12810 + anonymous_size * bits_per_byte
12811 - bit_offset - FIELD_BITSIZE (*fp)));
12812 }
12813 }
12814 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12815 if (attr != NULL)
12816 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12817 + dwarf2_get_attr_constant_value (attr, 0)));
12818
12819 /* Get name of field. */
12820 fieldname = dwarf2_name (die, cu);
12821 if (fieldname == NULL)
12822 fieldname = "";
12823
12824 /* The name is already allocated along with this objfile, so we don't
12825 need to duplicate it for the type. */
12826 fp->name = fieldname;
12827
12828 /* Change accessibility for artificial fields (e.g. virtual table
12829 pointer or virtual base class pointer) to private. */
12830 if (dwarf2_attr (die, DW_AT_artificial, cu))
12831 {
12832 FIELD_ARTIFICIAL (*fp) = 1;
12833 new_field->accessibility = DW_ACCESS_private;
12834 fip->non_public_fields = 1;
12835 }
12836 }
12837 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12838 {
12839 /* C++ static member. */
12840
12841 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12842 is a declaration, but all versions of G++ as of this writing
12843 (so through at least 3.2.1) incorrectly generate
12844 DW_TAG_variable tags. */
12845
12846 const char *physname;
12847
12848 /* Get name of field. */
12849 fieldname = dwarf2_name (die, cu);
12850 if (fieldname == NULL)
12851 return;
12852
12853 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12854 if (attr
12855 /* Only create a symbol if this is an external value.
12856 new_symbol checks this and puts the value in the global symbol
12857 table, which we want. If it is not external, new_symbol
12858 will try to put the value in cu->list_in_scope which is wrong. */
12859 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12860 {
12861 /* A static const member, not much different than an enum as far as
12862 we're concerned, except that we can support more types. */
12863 new_symbol (die, NULL, cu);
12864 }
12865
12866 /* Get physical name. */
12867 physname = dwarf2_physname (fieldname, die, cu);
12868
12869 /* The name is already allocated along with this objfile, so we don't
12870 need to duplicate it for the type. */
12871 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12872 FIELD_TYPE (*fp) = die_type (die, cu);
12873 FIELD_NAME (*fp) = fieldname;
12874 }
12875 else if (die->tag == DW_TAG_inheritance)
12876 {
12877 LONGEST offset;
12878
12879 /* C++ base class field. */
12880 if (handle_data_member_location (die, cu, &offset))
12881 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12882 FIELD_BITSIZE (*fp) = 0;
12883 FIELD_TYPE (*fp) = die_type (die, cu);
12884 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12885 fip->nbaseclasses++;
12886 }
12887 }
12888
12889 /* Add a typedef defined in the scope of the FIP's class. */
12890
12891 static void
12892 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12893 struct dwarf2_cu *cu)
12894 {
12895 struct typedef_field_list *new_field;
12896 struct typedef_field *fp;
12897
12898 /* Allocate a new field list entry and link it in. */
12899 new_field = XCNEW (struct typedef_field_list);
12900 make_cleanup (xfree, new_field);
12901
12902 gdb_assert (die->tag == DW_TAG_typedef);
12903
12904 fp = &new_field->field;
12905
12906 /* Get name of field. */
12907 fp->name = dwarf2_name (die, cu);
12908 if (fp->name == NULL)
12909 return;
12910
12911 fp->type = read_type_die (die, cu);
12912
12913 new_field->next = fip->typedef_field_list;
12914 fip->typedef_field_list = new_field;
12915 fip->typedef_field_list_count++;
12916 }
12917
12918 /* Create the vector of fields, and attach it to the type. */
12919
12920 static void
12921 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12922 struct dwarf2_cu *cu)
12923 {
12924 int nfields = fip->nfields;
12925
12926 /* Record the field count, allocate space for the array of fields,
12927 and create blank accessibility bitfields if necessary. */
12928 TYPE_NFIELDS (type) = nfields;
12929 TYPE_FIELDS (type) = (struct field *)
12930 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12931 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12932
12933 if (fip->non_public_fields && cu->language != language_ada)
12934 {
12935 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12936
12937 TYPE_FIELD_PRIVATE_BITS (type) =
12938 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12939 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12940
12941 TYPE_FIELD_PROTECTED_BITS (type) =
12942 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12943 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12944
12945 TYPE_FIELD_IGNORE_BITS (type) =
12946 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12947 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12948 }
12949
12950 /* If the type has baseclasses, allocate and clear a bit vector for
12951 TYPE_FIELD_VIRTUAL_BITS. */
12952 if (fip->nbaseclasses && cu->language != language_ada)
12953 {
12954 int num_bytes = B_BYTES (fip->nbaseclasses);
12955 unsigned char *pointer;
12956
12957 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12958 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12959 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12960 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12961 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12962 }
12963
12964 /* Copy the saved-up fields into the field vector. Start from the head of
12965 the list, adding to the tail of the field array, so that they end up in
12966 the same order in the array in which they were added to the list. */
12967 while (nfields-- > 0)
12968 {
12969 struct nextfield *fieldp;
12970
12971 if (fip->fields)
12972 {
12973 fieldp = fip->fields;
12974 fip->fields = fieldp->next;
12975 }
12976 else
12977 {
12978 fieldp = fip->baseclasses;
12979 fip->baseclasses = fieldp->next;
12980 }
12981
12982 TYPE_FIELD (type, nfields) = fieldp->field;
12983 switch (fieldp->accessibility)
12984 {
12985 case DW_ACCESS_private:
12986 if (cu->language != language_ada)
12987 SET_TYPE_FIELD_PRIVATE (type, nfields);
12988 break;
12989
12990 case DW_ACCESS_protected:
12991 if (cu->language != language_ada)
12992 SET_TYPE_FIELD_PROTECTED (type, nfields);
12993 break;
12994
12995 case DW_ACCESS_public:
12996 break;
12997
12998 default:
12999 /* Unknown accessibility. Complain and treat it as public. */
13000 {
13001 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13002 fieldp->accessibility);
13003 }
13004 break;
13005 }
13006 if (nfields < fip->nbaseclasses)
13007 {
13008 switch (fieldp->virtuality)
13009 {
13010 case DW_VIRTUALITY_virtual:
13011 case DW_VIRTUALITY_pure_virtual:
13012 if (cu->language == language_ada)
13013 error (_("unexpected virtuality in component of Ada type"));
13014 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13015 break;
13016 }
13017 }
13018 }
13019 }
13020
13021 /* Return true if this member function is a constructor, false
13022 otherwise. */
13023
13024 static int
13025 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13026 {
13027 const char *fieldname;
13028 const char *type_name;
13029 int len;
13030
13031 if (die->parent == NULL)
13032 return 0;
13033
13034 if (die->parent->tag != DW_TAG_structure_type
13035 && die->parent->tag != DW_TAG_union_type
13036 && die->parent->tag != DW_TAG_class_type)
13037 return 0;
13038
13039 fieldname = dwarf2_name (die, cu);
13040 type_name = dwarf2_name (die->parent, cu);
13041 if (fieldname == NULL || type_name == NULL)
13042 return 0;
13043
13044 len = strlen (fieldname);
13045 return (strncmp (fieldname, type_name, len) == 0
13046 && (type_name[len] == '\0' || type_name[len] == '<'));
13047 }
13048
13049 /* Add a member function to the proper fieldlist. */
13050
13051 static void
13052 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13053 struct type *type, struct dwarf2_cu *cu)
13054 {
13055 struct objfile *objfile = cu->objfile;
13056 struct attribute *attr;
13057 struct fnfieldlist *flp;
13058 int i;
13059 struct fn_field *fnp;
13060 const char *fieldname;
13061 struct nextfnfield *new_fnfield;
13062 struct type *this_type;
13063 enum dwarf_access_attribute accessibility;
13064
13065 if (cu->language == language_ada)
13066 error (_("unexpected member function in Ada type"));
13067
13068 /* Get name of member function. */
13069 fieldname = dwarf2_name (die, cu);
13070 if (fieldname == NULL)
13071 return;
13072
13073 /* Look up member function name in fieldlist. */
13074 for (i = 0; i < fip->nfnfields; i++)
13075 {
13076 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13077 break;
13078 }
13079
13080 /* Create new list element if necessary. */
13081 if (i < fip->nfnfields)
13082 flp = &fip->fnfieldlists[i];
13083 else
13084 {
13085 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13086 {
13087 fip->fnfieldlists = (struct fnfieldlist *)
13088 xrealloc (fip->fnfieldlists,
13089 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13090 * sizeof (struct fnfieldlist));
13091 if (fip->nfnfields == 0)
13092 make_cleanup (free_current_contents, &fip->fnfieldlists);
13093 }
13094 flp = &fip->fnfieldlists[fip->nfnfields];
13095 flp->name = fieldname;
13096 flp->length = 0;
13097 flp->head = NULL;
13098 i = fip->nfnfields++;
13099 }
13100
13101 /* Create a new member function field and chain it to the field list
13102 entry. */
13103 new_fnfield = XNEW (struct nextfnfield);
13104 make_cleanup (xfree, new_fnfield);
13105 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13106 new_fnfield->next = flp->head;
13107 flp->head = new_fnfield;
13108 flp->length++;
13109
13110 /* Fill in the member function field info. */
13111 fnp = &new_fnfield->fnfield;
13112
13113 /* Delay processing of the physname until later. */
13114 if (cu->language == language_cplus)
13115 {
13116 add_to_method_list (type, i, flp->length - 1, fieldname,
13117 die, cu);
13118 }
13119 else
13120 {
13121 const char *physname = dwarf2_physname (fieldname, die, cu);
13122 fnp->physname = physname ? physname : "";
13123 }
13124
13125 fnp->type = alloc_type (objfile);
13126 this_type = read_type_die (die, cu);
13127 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13128 {
13129 int nparams = TYPE_NFIELDS (this_type);
13130
13131 /* TYPE is the domain of this method, and THIS_TYPE is the type
13132 of the method itself (TYPE_CODE_METHOD). */
13133 smash_to_method_type (fnp->type, type,
13134 TYPE_TARGET_TYPE (this_type),
13135 TYPE_FIELDS (this_type),
13136 TYPE_NFIELDS (this_type),
13137 TYPE_VARARGS (this_type));
13138
13139 /* Handle static member functions.
13140 Dwarf2 has no clean way to discern C++ static and non-static
13141 member functions. G++ helps GDB by marking the first
13142 parameter for non-static member functions (which is the this
13143 pointer) as artificial. We obtain this information from
13144 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13145 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13146 fnp->voffset = VOFFSET_STATIC;
13147 }
13148 else
13149 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13150 dwarf2_full_name (fieldname, die, cu));
13151
13152 /* Get fcontext from DW_AT_containing_type if present. */
13153 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13154 fnp->fcontext = die_containing_type (die, cu);
13155
13156 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13157 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13158
13159 /* Get accessibility. */
13160 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13161 if (attr)
13162 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13163 else
13164 accessibility = dwarf2_default_access_attribute (die, cu);
13165 switch (accessibility)
13166 {
13167 case DW_ACCESS_private:
13168 fnp->is_private = 1;
13169 break;
13170 case DW_ACCESS_protected:
13171 fnp->is_protected = 1;
13172 break;
13173 }
13174
13175 /* Check for artificial methods. */
13176 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13177 if (attr && DW_UNSND (attr) != 0)
13178 fnp->is_artificial = 1;
13179
13180 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13181
13182 /* Get index in virtual function table if it is a virtual member
13183 function. For older versions of GCC, this is an offset in the
13184 appropriate virtual table, as specified by DW_AT_containing_type.
13185 For everyone else, it is an expression to be evaluated relative
13186 to the object address. */
13187
13188 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13189 if (attr)
13190 {
13191 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13192 {
13193 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13194 {
13195 /* Old-style GCC. */
13196 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13197 }
13198 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13199 || (DW_BLOCK (attr)->size > 1
13200 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13201 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13202 {
13203 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13204 if ((fnp->voffset % cu->header.addr_size) != 0)
13205 dwarf2_complex_location_expr_complaint ();
13206 else
13207 fnp->voffset /= cu->header.addr_size;
13208 fnp->voffset += 2;
13209 }
13210 else
13211 dwarf2_complex_location_expr_complaint ();
13212
13213 if (!fnp->fcontext)
13214 {
13215 /* If there is no `this' field and no DW_AT_containing_type,
13216 we cannot actually find a base class context for the
13217 vtable! */
13218 if (TYPE_NFIELDS (this_type) == 0
13219 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13220 {
13221 complaint (&symfile_complaints,
13222 _("cannot determine context for virtual member "
13223 "function \"%s\" (offset %d)"),
13224 fieldname, die->offset.sect_off);
13225 }
13226 else
13227 {
13228 fnp->fcontext
13229 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13230 }
13231 }
13232 }
13233 else if (attr_form_is_section_offset (attr))
13234 {
13235 dwarf2_complex_location_expr_complaint ();
13236 }
13237 else
13238 {
13239 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13240 fieldname);
13241 }
13242 }
13243 else
13244 {
13245 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13246 if (attr && DW_UNSND (attr))
13247 {
13248 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13249 complaint (&symfile_complaints,
13250 _("Member function \"%s\" (offset %d) is virtual "
13251 "but the vtable offset is not specified"),
13252 fieldname, die->offset.sect_off);
13253 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13254 TYPE_CPLUS_DYNAMIC (type) = 1;
13255 }
13256 }
13257 }
13258
13259 /* Create the vector of member function fields, and attach it to the type. */
13260
13261 static void
13262 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13263 struct dwarf2_cu *cu)
13264 {
13265 struct fnfieldlist *flp;
13266 int i;
13267
13268 if (cu->language == language_ada)
13269 error (_("unexpected member functions in Ada type"));
13270
13271 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13272 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13273 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13274
13275 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13276 {
13277 struct nextfnfield *nfp = flp->head;
13278 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13279 int k;
13280
13281 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13282 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13283 fn_flp->fn_fields = (struct fn_field *)
13284 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13285 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13286 fn_flp->fn_fields[k] = nfp->fnfield;
13287 }
13288
13289 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13290 }
13291
13292 /* Returns non-zero if NAME is the name of a vtable member in CU's
13293 language, zero otherwise. */
13294 static int
13295 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13296 {
13297 static const char vptr[] = "_vptr";
13298 static const char vtable[] = "vtable";
13299
13300 /* Look for the C++ form of the vtable. */
13301 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13302 return 1;
13303
13304 return 0;
13305 }
13306
13307 /* GCC outputs unnamed structures that are really pointers to member
13308 functions, with the ABI-specified layout. If TYPE describes
13309 such a structure, smash it into a member function type.
13310
13311 GCC shouldn't do this; it should just output pointer to member DIEs.
13312 This is GCC PR debug/28767. */
13313
13314 static void
13315 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13316 {
13317 struct type *pfn_type, *self_type, *new_type;
13318
13319 /* Check for a structure with no name and two children. */
13320 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13321 return;
13322
13323 /* Check for __pfn and __delta members. */
13324 if (TYPE_FIELD_NAME (type, 0) == NULL
13325 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13326 || TYPE_FIELD_NAME (type, 1) == NULL
13327 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13328 return;
13329
13330 /* Find the type of the method. */
13331 pfn_type = TYPE_FIELD_TYPE (type, 0);
13332 if (pfn_type == NULL
13333 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13334 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13335 return;
13336
13337 /* Look for the "this" argument. */
13338 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13339 if (TYPE_NFIELDS (pfn_type) == 0
13340 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13341 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13342 return;
13343
13344 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13345 new_type = alloc_type (objfile);
13346 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13347 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13348 TYPE_VARARGS (pfn_type));
13349 smash_to_methodptr_type (type, new_type);
13350 }
13351
13352 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13353 (icc). */
13354
13355 static int
13356 producer_is_icc (struct dwarf2_cu *cu)
13357 {
13358 if (!cu->checked_producer)
13359 check_producer (cu);
13360
13361 return cu->producer_is_icc;
13362 }
13363
13364 /* Called when we find the DIE that starts a structure or union scope
13365 (definition) to create a type for the structure or union. Fill in
13366 the type's name and general properties; the members will not be
13367 processed until process_structure_scope. A symbol table entry for
13368 the type will also not be done until process_structure_scope (assuming
13369 the type has a name).
13370
13371 NOTE: we need to call these functions regardless of whether or not the
13372 DIE has a DW_AT_name attribute, since it might be an anonymous
13373 structure or union. This gets the type entered into our set of
13374 user defined types. */
13375
13376 static struct type *
13377 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13378 {
13379 struct objfile *objfile = cu->objfile;
13380 struct type *type;
13381 struct attribute *attr;
13382 const char *name;
13383
13384 /* If the definition of this type lives in .debug_types, read that type.
13385 Don't follow DW_AT_specification though, that will take us back up
13386 the chain and we want to go down. */
13387 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13388 if (attr)
13389 {
13390 type = get_DW_AT_signature_type (die, attr, cu);
13391
13392 /* The type's CU may not be the same as CU.
13393 Ensure TYPE is recorded with CU in die_type_hash. */
13394 return set_die_type (die, type, cu);
13395 }
13396
13397 type = alloc_type (objfile);
13398 INIT_CPLUS_SPECIFIC (type);
13399
13400 name = dwarf2_name (die, cu);
13401 if (name != NULL)
13402 {
13403 if (cu->language == language_cplus
13404 || cu->language == language_d
13405 || cu->language == language_rust)
13406 {
13407 const char *full_name = dwarf2_full_name (name, die, cu);
13408
13409 /* dwarf2_full_name might have already finished building the DIE's
13410 type. If so, there is no need to continue. */
13411 if (get_die_type (die, cu) != NULL)
13412 return get_die_type (die, cu);
13413
13414 TYPE_TAG_NAME (type) = full_name;
13415 if (die->tag == DW_TAG_structure_type
13416 || die->tag == DW_TAG_class_type)
13417 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13418 }
13419 else
13420 {
13421 /* The name is already allocated along with this objfile, so
13422 we don't need to duplicate it for the type. */
13423 TYPE_TAG_NAME (type) = name;
13424 if (die->tag == DW_TAG_class_type)
13425 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13426 }
13427 }
13428
13429 if (die->tag == DW_TAG_structure_type)
13430 {
13431 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13432 }
13433 else if (die->tag == DW_TAG_union_type)
13434 {
13435 TYPE_CODE (type) = TYPE_CODE_UNION;
13436 }
13437 else
13438 {
13439 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13440 }
13441
13442 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13443 TYPE_DECLARED_CLASS (type) = 1;
13444
13445 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13446 if (attr)
13447 {
13448 if (attr_form_is_constant (attr))
13449 TYPE_LENGTH (type) = DW_UNSND (attr);
13450 else
13451 {
13452 /* For the moment, dynamic type sizes are not supported
13453 by GDB's struct type. The actual size is determined
13454 on-demand when resolving the type of a given object,
13455 so set the type's length to zero for now. Otherwise,
13456 we record an expression as the length, and that expression
13457 could lead to a very large value, which could eventually
13458 lead to us trying to allocate that much memory when creating
13459 a value of that type. */
13460 TYPE_LENGTH (type) = 0;
13461 }
13462 }
13463 else
13464 {
13465 TYPE_LENGTH (type) = 0;
13466 }
13467
13468 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13469 {
13470 /* ICC does not output the required DW_AT_declaration
13471 on incomplete types, but gives them a size of zero. */
13472 TYPE_STUB (type) = 1;
13473 }
13474 else
13475 TYPE_STUB_SUPPORTED (type) = 1;
13476
13477 if (die_is_declaration (die, cu))
13478 TYPE_STUB (type) = 1;
13479 else if (attr == NULL && die->child == NULL
13480 && producer_is_realview (cu->producer))
13481 /* RealView does not output the required DW_AT_declaration
13482 on incomplete types. */
13483 TYPE_STUB (type) = 1;
13484
13485 /* We need to add the type field to the die immediately so we don't
13486 infinitely recurse when dealing with pointers to the structure
13487 type within the structure itself. */
13488 set_die_type (die, type, cu);
13489
13490 /* set_die_type should be already done. */
13491 set_descriptive_type (type, die, cu);
13492
13493 return type;
13494 }
13495
13496 /* Finish creating a structure or union type, including filling in
13497 its members and creating a symbol for it. */
13498
13499 static void
13500 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13501 {
13502 struct objfile *objfile = cu->objfile;
13503 struct die_info *child_die;
13504 struct type *type;
13505
13506 type = get_die_type (die, cu);
13507 if (type == NULL)
13508 type = read_structure_type (die, cu);
13509
13510 if (die->child != NULL && ! die_is_declaration (die, cu))
13511 {
13512 struct field_info fi;
13513 VEC (symbolp) *template_args = NULL;
13514 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13515
13516 memset (&fi, 0, sizeof (struct field_info));
13517
13518 child_die = die->child;
13519
13520 while (child_die && child_die->tag)
13521 {
13522 if (child_die->tag == DW_TAG_member
13523 || child_die->tag == DW_TAG_variable)
13524 {
13525 /* NOTE: carlton/2002-11-05: A C++ static data member
13526 should be a DW_TAG_member that is a declaration, but
13527 all versions of G++ as of this writing (so through at
13528 least 3.2.1) incorrectly generate DW_TAG_variable
13529 tags for them instead. */
13530 dwarf2_add_field (&fi, child_die, cu);
13531 }
13532 else if (child_die->tag == DW_TAG_subprogram)
13533 {
13534 /* Rust doesn't have member functions in the C++ sense.
13535 However, it does emit ordinary functions as children
13536 of a struct DIE. */
13537 if (cu->language == language_rust)
13538 read_func_scope (child_die, cu);
13539 else
13540 {
13541 /* C++ member function. */
13542 dwarf2_add_member_fn (&fi, child_die, type, cu);
13543 }
13544 }
13545 else if (child_die->tag == DW_TAG_inheritance)
13546 {
13547 /* C++ base class field. */
13548 dwarf2_add_field (&fi, child_die, cu);
13549 }
13550 else if (child_die->tag == DW_TAG_typedef)
13551 dwarf2_add_typedef (&fi, child_die, cu);
13552 else if (child_die->tag == DW_TAG_template_type_param
13553 || child_die->tag == DW_TAG_template_value_param)
13554 {
13555 struct symbol *arg = new_symbol (child_die, NULL, cu);
13556
13557 if (arg != NULL)
13558 VEC_safe_push (symbolp, template_args, arg);
13559 }
13560
13561 child_die = sibling_die (child_die);
13562 }
13563
13564 /* Attach template arguments to type. */
13565 if (! VEC_empty (symbolp, template_args))
13566 {
13567 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13568 TYPE_N_TEMPLATE_ARGUMENTS (type)
13569 = VEC_length (symbolp, template_args);
13570 TYPE_TEMPLATE_ARGUMENTS (type)
13571 = XOBNEWVEC (&objfile->objfile_obstack,
13572 struct symbol *,
13573 TYPE_N_TEMPLATE_ARGUMENTS (type));
13574 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13575 VEC_address (symbolp, template_args),
13576 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13577 * sizeof (struct symbol *)));
13578 VEC_free (symbolp, template_args);
13579 }
13580
13581 /* Attach fields and member functions to the type. */
13582 if (fi.nfields)
13583 dwarf2_attach_fields_to_type (&fi, type, cu);
13584 if (fi.nfnfields)
13585 {
13586 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13587
13588 /* Get the type which refers to the base class (possibly this
13589 class itself) which contains the vtable pointer for the current
13590 class from the DW_AT_containing_type attribute. This use of
13591 DW_AT_containing_type is a GNU extension. */
13592
13593 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13594 {
13595 struct type *t = die_containing_type (die, cu);
13596
13597 set_type_vptr_basetype (type, t);
13598 if (type == t)
13599 {
13600 int i;
13601
13602 /* Our own class provides vtbl ptr. */
13603 for (i = TYPE_NFIELDS (t) - 1;
13604 i >= TYPE_N_BASECLASSES (t);
13605 --i)
13606 {
13607 const char *fieldname = TYPE_FIELD_NAME (t, i);
13608
13609 if (is_vtable_name (fieldname, cu))
13610 {
13611 set_type_vptr_fieldno (type, i);
13612 break;
13613 }
13614 }
13615
13616 /* Complain if virtual function table field not found. */
13617 if (i < TYPE_N_BASECLASSES (t))
13618 complaint (&symfile_complaints,
13619 _("virtual function table pointer "
13620 "not found when defining class '%s'"),
13621 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13622 "");
13623 }
13624 else
13625 {
13626 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13627 }
13628 }
13629 else if (cu->producer
13630 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13631 {
13632 /* The IBM XLC compiler does not provide direct indication
13633 of the containing type, but the vtable pointer is
13634 always named __vfp. */
13635
13636 int i;
13637
13638 for (i = TYPE_NFIELDS (type) - 1;
13639 i >= TYPE_N_BASECLASSES (type);
13640 --i)
13641 {
13642 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13643 {
13644 set_type_vptr_fieldno (type, i);
13645 set_type_vptr_basetype (type, type);
13646 break;
13647 }
13648 }
13649 }
13650 }
13651
13652 /* Copy fi.typedef_field_list linked list elements content into the
13653 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13654 if (fi.typedef_field_list)
13655 {
13656 int i = fi.typedef_field_list_count;
13657
13658 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13659 TYPE_TYPEDEF_FIELD_ARRAY (type)
13660 = ((struct typedef_field *)
13661 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13662 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13663
13664 /* Reverse the list order to keep the debug info elements order. */
13665 while (--i >= 0)
13666 {
13667 struct typedef_field *dest, *src;
13668
13669 dest = &TYPE_TYPEDEF_FIELD (type, i);
13670 src = &fi.typedef_field_list->field;
13671 fi.typedef_field_list = fi.typedef_field_list->next;
13672 *dest = *src;
13673 }
13674 }
13675
13676 do_cleanups (back_to);
13677 }
13678
13679 quirk_gcc_member_function_pointer (type, objfile);
13680
13681 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13682 snapshots) has been known to create a die giving a declaration
13683 for a class that has, as a child, a die giving a definition for a
13684 nested class. So we have to process our children even if the
13685 current die is a declaration. Normally, of course, a declaration
13686 won't have any children at all. */
13687
13688 child_die = die->child;
13689
13690 while (child_die != NULL && child_die->tag)
13691 {
13692 if (child_die->tag == DW_TAG_member
13693 || child_die->tag == DW_TAG_variable
13694 || child_die->tag == DW_TAG_inheritance
13695 || child_die->tag == DW_TAG_template_value_param
13696 || child_die->tag == DW_TAG_template_type_param)
13697 {
13698 /* Do nothing. */
13699 }
13700 else
13701 process_die (child_die, cu);
13702
13703 child_die = sibling_die (child_die);
13704 }
13705
13706 /* Do not consider external references. According to the DWARF standard,
13707 these DIEs are identified by the fact that they have no byte_size
13708 attribute, and a declaration attribute. */
13709 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13710 || !die_is_declaration (die, cu))
13711 new_symbol (die, type, cu);
13712 }
13713
13714 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13715 update TYPE using some information only available in DIE's children. */
13716
13717 static void
13718 update_enumeration_type_from_children (struct die_info *die,
13719 struct type *type,
13720 struct dwarf2_cu *cu)
13721 {
13722 struct obstack obstack;
13723 struct die_info *child_die;
13724 int unsigned_enum = 1;
13725 int flag_enum = 1;
13726 ULONGEST mask = 0;
13727 struct cleanup *old_chain;
13728
13729 obstack_init (&obstack);
13730 old_chain = make_cleanup_obstack_free (&obstack);
13731
13732 for (child_die = die->child;
13733 child_die != NULL && child_die->tag;
13734 child_die = sibling_die (child_die))
13735 {
13736 struct attribute *attr;
13737 LONGEST value;
13738 const gdb_byte *bytes;
13739 struct dwarf2_locexpr_baton *baton;
13740 const char *name;
13741
13742 if (child_die->tag != DW_TAG_enumerator)
13743 continue;
13744
13745 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13746 if (attr == NULL)
13747 continue;
13748
13749 name = dwarf2_name (child_die, cu);
13750 if (name == NULL)
13751 name = "<anonymous enumerator>";
13752
13753 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13754 &value, &bytes, &baton);
13755 if (value < 0)
13756 {
13757 unsigned_enum = 0;
13758 flag_enum = 0;
13759 }
13760 else if ((mask & value) != 0)
13761 flag_enum = 0;
13762 else
13763 mask |= value;
13764
13765 /* If we already know that the enum type is neither unsigned, nor
13766 a flag type, no need to look at the rest of the enumerates. */
13767 if (!unsigned_enum && !flag_enum)
13768 break;
13769 }
13770
13771 if (unsigned_enum)
13772 TYPE_UNSIGNED (type) = 1;
13773 if (flag_enum)
13774 TYPE_FLAG_ENUM (type) = 1;
13775
13776 do_cleanups (old_chain);
13777 }
13778
13779 /* Given a DW_AT_enumeration_type die, set its type. We do not
13780 complete the type's fields yet, or create any symbols. */
13781
13782 static struct type *
13783 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13784 {
13785 struct objfile *objfile = cu->objfile;
13786 struct type *type;
13787 struct attribute *attr;
13788 const char *name;
13789
13790 /* If the definition of this type lives in .debug_types, read that type.
13791 Don't follow DW_AT_specification though, that will take us back up
13792 the chain and we want to go down. */
13793 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13794 if (attr)
13795 {
13796 type = get_DW_AT_signature_type (die, attr, cu);
13797
13798 /* The type's CU may not be the same as CU.
13799 Ensure TYPE is recorded with CU in die_type_hash. */
13800 return set_die_type (die, type, cu);
13801 }
13802
13803 type = alloc_type (objfile);
13804
13805 TYPE_CODE (type) = TYPE_CODE_ENUM;
13806 name = dwarf2_full_name (NULL, die, cu);
13807 if (name != NULL)
13808 TYPE_TAG_NAME (type) = name;
13809
13810 attr = dwarf2_attr (die, DW_AT_type, cu);
13811 if (attr != NULL)
13812 {
13813 struct type *underlying_type = die_type (die, cu);
13814
13815 TYPE_TARGET_TYPE (type) = underlying_type;
13816 }
13817
13818 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13819 if (attr)
13820 {
13821 TYPE_LENGTH (type) = DW_UNSND (attr);
13822 }
13823 else
13824 {
13825 TYPE_LENGTH (type) = 0;
13826 }
13827
13828 /* The enumeration DIE can be incomplete. In Ada, any type can be
13829 declared as private in the package spec, and then defined only
13830 inside the package body. Such types are known as Taft Amendment
13831 Types. When another package uses such a type, an incomplete DIE
13832 may be generated by the compiler. */
13833 if (die_is_declaration (die, cu))
13834 TYPE_STUB (type) = 1;
13835
13836 /* Finish the creation of this type by using the enum's children.
13837 We must call this even when the underlying type has been provided
13838 so that we can determine if we're looking at a "flag" enum. */
13839 update_enumeration_type_from_children (die, type, cu);
13840
13841 /* If this type has an underlying type that is not a stub, then we
13842 may use its attributes. We always use the "unsigned" attribute
13843 in this situation, because ordinarily we guess whether the type
13844 is unsigned -- but the guess can be wrong and the underlying type
13845 can tell us the reality. However, we defer to a local size
13846 attribute if one exists, because this lets the compiler override
13847 the underlying type if needed. */
13848 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13849 {
13850 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13851 if (TYPE_LENGTH (type) == 0)
13852 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13853 }
13854
13855 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13856
13857 return set_die_type (die, type, cu);
13858 }
13859
13860 /* Given a pointer to a die which begins an enumeration, process all
13861 the dies that define the members of the enumeration, and create the
13862 symbol for the enumeration type.
13863
13864 NOTE: We reverse the order of the element list. */
13865
13866 static void
13867 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13868 {
13869 struct type *this_type;
13870
13871 this_type = get_die_type (die, cu);
13872 if (this_type == NULL)
13873 this_type = read_enumeration_type (die, cu);
13874
13875 if (die->child != NULL)
13876 {
13877 struct die_info *child_die;
13878 struct symbol *sym;
13879 struct field *fields = NULL;
13880 int num_fields = 0;
13881 const char *name;
13882
13883 child_die = die->child;
13884 while (child_die && child_die->tag)
13885 {
13886 if (child_die->tag != DW_TAG_enumerator)
13887 {
13888 process_die (child_die, cu);
13889 }
13890 else
13891 {
13892 name = dwarf2_name (child_die, cu);
13893 if (name)
13894 {
13895 sym = new_symbol (child_die, this_type, cu);
13896
13897 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13898 {
13899 fields = (struct field *)
13900 xrealloc (fields,
13901 (num_fields + DW_FIELD_ALLOC_CHUNK)
13902 * sizeof (struct field));
13903 }
13904
13905 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13906 FIELD_TYPE (fields[num_fields]) = NULL;
13907 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13908 FIELD_BITSIZE (fields[num_fields]) = 0;
13909
13910 num_fields++;
13911 }
13912 }
13913
13914 child_die = sibling_die (child_die);
13915 }
13916
13917 if (num_fields)
13918 {
13919 TYPE_NFIELDS (this_type) = num_fields;
13920 TYPE_FIELDS (this_type) = (struct field *)
13921 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13922 memcpy (TYPE_FIELDS (this_type), fields,
13923 sizeof (struct field) * num_fields);
13924 xfree (fields);
13925 }
13926 }
13927
13928 /* If we are reading an enum from a .debug_types unit, and the enum
13929 is a declaration, and the enum is not the signatured type in the
13930 unit, then we do not want to add a symbol for it. Adding a
13931 symbol would in some cases obscure the true definition of the
13932 enum, giving users an incomplete type when the definition is
13933 actually available. Note that we do not want to do this for all
13934 enums which are just declarations, because C++0x allows forward
13935 enum declarations. */
13936 if (cu->per_cu->is_debug_types
13937 && die_is_declaration (die, cu))
13938 {
13939 struct signatured_type *sig_type;
13940
13941 sig_type = (struct signatured_type *) cu->per_cu;
13942 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13943 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13944 return;
13945 }
13946
13947 new_symbol (die, this_type, cu);
13948 }
13949
13950 /* Extract all information from a DW_TAG_array_type DIE and put it in
13951 the DIE's type field. For now, this only handles one dimensional
13952 arrays. */
13953
13954 static struct type *
13955 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13956 {
13957 struct objfile *objfile = cu->objfile;
13958 struct die_info *child_die;
13959 struct type *type;
13960 struct type *element_type, *range_type, *index_type;
13961 struct type **range_types = NULL;
13962 struct attribute *attr;
13963 int ndim = 0;
13964 struct cleanup *back_to;
13965 const char *name;
13966 unsigned int bit_stride = 0;
13967
13968 element_type = die_type (die, cu);
13969
13970 /* The die_type call above may have already set the type for this DIE. */
13971 type = get_die_type (die, cu);
13972 if (type)
13973 return type;
13974
13975 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13976 if (attr != NULL)
13977 bit_stride = DW_UNSND (attr) * 8;
13978
13979 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13980 if (attr != NULL)
13981 bit_stride = DW_UNSND (attr);
13982
13983 /* Irix 6.2 native cc creates array types without children for
13984 arrays with unspecified length. */
13985 if (die->child == NULL)
13986 {
13987 index_type = objfile_type (objfile)->builtin_int;
13988 range_type = create_static_range_type (NULL, index_type, 0, -1);
13989 type = create_array_type_with_stride (NULL, element_type, range_type,
13990 bit_stride);
13991 return set_die_type (die, type, cu);
13992 }
13993
13994 back_to = make_cleanup (null_cleanup, NULL);
13995 child_die = die->child;
13996 while (child_die && child_die->tag)
13997 {
13998 if (child_die->tag == DW_TAG_subrange_type)
13999 {
14000 struct type *child_type = read_type_die (child_die, cu);
14001
14002 if (child_type != NULL)
14003 {
14004 /* The range type was succesfully read. Save it for the
14005 array type creation. */
14006 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14007 {
14008 range_types = (struct type **)
14009 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14010 * sizeof (struct type *));
14011 if (ndim == 0)
14012 make_cleanup (free_current_contents, &range_types);
14013 }
14014 range_types[ndim++] = child_type;
14015 }
14016 }
14017 child_die = sibling_die (child_die);
14018 }
14019
14020 /* Dwarf2 dimensions are output from left to right, create the
14021 necessary array types in backwards order. */
14022
14023 type = element_type;
14024
14025 if (read_array_order (die, cu) == DW_ORD_col_major)
14026 {
14027 int i = 0;
14028
14029 while (i < ndim)
14030 type = create_array_type_with_stride (NULL, type, range_types[i++],
14031 bit_stride);
14032 }
14033 else
14034 {
14035 while (ndim-- > 0)
14036 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14037 bit_stride);
14038 }
14039
14040 /* Understand Dwarf2 support for vector types (like they occur on
14041 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14042 array type. This is not part of the Dwarf2/3 standard yet, but a
14043 custom vendor extension. The main difference between a regular
14044 array and the vector variant is that vectors are passed by value
14045 to functions. */
14046 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14047 if (attr)
14048 make_vector_type (type);
14049
14050 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14051 implementation may choose to implement triple vectors using this
14052 attribute. */
14053 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14054 if (attr)
14055 {
14056 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14057 TYPE_LENGTH (type) = DW_UNSND (attr);
14058 else
14059 complaint (&symfile_complaints,
14060 _("DW_AT_byte_size for array type smaller "
14061 "than the total size of elements"));
14062 }
14063
14064 name = dwarf2_name (die, cu);
14065 if (name)
14066 TYPE_NAME (type) = name;
14067
14068 /* Install the type in the die. */
14069 set_die_type (die, type, cu);
14070
14071 /* set_die_type should be already done. */
14072 set_descriptive_type (type, die, cu);
14073
14074 do_cleanups (back_to);
14075
14076 return type;
14077 }
14078
14079 static enum dwarf_array_dim_ordering
14080 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14081 {
14082 struct attribute *attr;
14083
14084 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14085
14086 if (attr)
14087 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14088
14089 /* GNU F77 is a special case, as at 08/2004 array type info is the
14090 opposite order to the dwarf2 specification, but data is still
14091 laid out as per normal fortran.
14092
14093 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14094 version checking. */
14095
14096 if (cu->language == language_fortran
14097 && cu->producer && strstr (cu->producer, "GNU F77"))
14098 {
14099 return DW_ORD_row_major;
14100 }
14101
14102 switch (cu->language_defn->la_array_ordering)
14103 {
14104 case array_column_major:
14105 return DW_ORD_col_major;
14106 case array_row_major:
14107 default:
14108 return DW_ORD_row_major;
14109 };
14110 }
14111
14112 /* Extract all information from a DW_TAG_set_type DIE and put it in
14113 the DIE's type field. */
14114
14115 static struct type *
14116 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14117 {
14118 struct type *domain_type, *set_type;
14119 struct attribute *attr;
14120
14121 domain_type = die_type (die, cu);
14122
14123 /* The die_type call above may have already set the type for this DIE. */
14124 set_type = get_die_type (die, cu);
14125 if (set_type)
14126 return set_type;
14127
14128 set_type = create_set_type (NULL, domain_type);
14129
14130 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14131 if (attr)
14132 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14133
14134 return set_die_type (die, set_type, cu);
14135 }
14136
14137 /* A helper for read_common_block that creates a locexpr baton.
14138 SYM is the symbol which we are marking as computed.
14139 COMMON_DIE is the DIE for the common block.
14140 COMMON_LOC is the location expression attribute for the common
14141 block itself.
14142 MEMBER_LOC is the location expression attribute for the particular
14143 member of the common block that we are processing.
14144 CU is the CU from which the above come. */
14145
14146 static void
14147 mark_common_block_symbol_computed (struct symbol *sym,
14148 struct die_info *common_die,
14149 struct attribute *common_loc,
14150 struct attribute *member_loc,
14151 struct dwarf2_cu *cu)
14152 {
14153 struct objfile *objfile = dwarf2_per_objfile->objfile;
14154 struct dwarf2_locexpr_baton *baton;
14155 gdb_byte *ptr;
14156 unsigned int cu_off;
14157 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14158 LONGEST offset = 0;
14159
14160 gdb_assert (common_loc && member_loc);
14161 gdb_assert (attr_form_is_block (common_loc));
14162 gdb_assert (attr_form_is_block (member_loc)
14163 || attr_form_is_constant (member_loc));
14164
14165 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14166 baton->per_cu = cu->per_cu;
14167 gdb_assert (baton->per_cu);
14168
14169 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14170
14171 if (attr_form_is_constant (member_loc))
14172 {
14173 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14174 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14175 }
14176 else
14177 baton->size += DW_BLOCK (member_loc)->size;
14178
14179 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14180 baton->data = ptr;
14181
14182 *ptr++ = DW_OP_call4;
14183 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
14184 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14185 ptr += 4;
14186
14187 if (attr_form_is_constant (member_loc))
14188 {
14189 *ptr++ = DW_OP_addr;
14190 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14191 ptr += cu->header.addr_size;
14192 }
14193 else
14194 {
14195 /* We have to copy the data here, because DW_OP_call4 will only
14196 use a DW_AT_location attribute. */
14197 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14198 ptr += DW_BLOCK (member_loc)->size;
14199 }
14200
14201 *ptr++ = DW_OP_plus;
14202 gdb_assert (ptr - baton->data == baton->size);
14203
14204 SYMBOL_LOCATION_BATON (sym) = baton;
14205 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14206 }
14207
14208 /* Create appropriate locally-scoped variables for all the
14209 DW_TAG_common_block entries. Also create a struct common_block
14210 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14211 is used to sepate the common blocks name namespace from regular
14212 variable names. */
14213
14214 static void
14215 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14216 {
14217 struct attribute *attr;
14218
14219 attr = dwarf2_attr (die, DW_AT_location, cu);
14220 if (attr)
14221 {
14222 /* Support the .debug_loc offsets. */
14223 if (attr_form_is_block (attr))
14224 {
14225 /* Ok. */
14226 }
14227 else if (attr_form_is_section_offset (attr))
14228 {
14229 dwarf2_complex_location_expr_complaint ();
14230 attr = NULL;
14231 }
14232 else
14233 {
14234 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14235 "common block member");
14236 attr = NULL;
14237 }
14238 }
14239
14240 if (die->child != NULL)
14241 {
14242 struct objfile *objfile = cu->objfile;
14243 struct die_info *child_die;
14244 size_t n_entries = 0, size;
14245 struct common_block *common_block;
14246 struct symbol *sym;
14247
14248 for (child_die = die->child;
14249 child_die && child_die->tag;
14250 child_die = sibling_die (child_die))
14251 ++n_entries;
14252
14253 size = (sizeof (struct common_block)
14254 + (n_entries - 1) * sizeof (struct symbol *));
14255 common_block
14256 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14257 size);
14258 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14259 common_block->n_entries = 0;
14260
14261 for (child_die = die->child;
14262 child_die && child_die->tag;
14263 child_die = sibling_die (child_die))
14264 {
14265 /* Create the symbol in the DW_TAG_common_block block in the current
14266 symbol scope. */
14267 sym = new_symbol (child_die, NULL, cu);
14268 if (sym != NULL)
14269 {
14270 struct attribute *member_loc;
14271
14272 common_block->contents[common_block->n_entries++] = sym;
14273
14274 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14275 cu);
14276 if (member_loc)
14277 {
14278 /* GDB has handled this for a long time, but it is
14279 not specified by DWARF. It seems to have been
14280 emitted by gfortran at least as recently as:
14281 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14282 complaint (&symfile_complaints,
14283 _("Variable in common block has "
14284 "DW_AT_data_member_location "
14285 "- DIE at 0x%x [in module %s]"),
14286 child_die->offset.sect_off,
14287 objfile_name (cu->objfile));
14288
14289 if (attr_form_is_section_offset (member_loc))
14290 dwarf2_complex_location_expr_complaint ();
14291 else if (attr_form_is_constant (member_loc)
14292 || attr_form_is_block (member_loc))
14293 {
14294 if (attr)
14295 mark_common_block_symbol_computed (sym, die, attr,
14296 member_loc, cu);
14297 }
14298 else
14299 dwarf2_complex_location_expr_complaint ();
14300 }
14301 }
14302 }
14303
14304 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14305 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14306 }
14307 }
14308
14309 /* Create a type for a C++ namespace. */
14310
14311 static struct type *
14312 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14313 {
14314 struct objfile *objfile = cu->objfile;
14315 const char *previous_prefix, *name;
14316 int is_anonymous;
14317 struct type *type;
14318
14319 /* For extensions, reuse the type of the original namespace. */
14320 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14321 {
14322 struct die_info *ext_die;
14323 struct dwarf2_cu *ext_cu = cu;
14324
14325 ext_die = dwarf2_extension (die, &ext_cu);
14326 type = read_type_die (ext_die, ext_cu);
14327
14328 /* EXT_CU may not be the same as CU.
14329 Ensure TYPE is recorded with CU in die_type_hash. */
14330 return set_die_type (die, type, cu);
14331 }
14332
14333 name = namespace_name (die, &is_anonymous, cu);
14334
14335 /* Now build the name of the current namespace. */
14336
14337 previous_prefix = determine_prefix (die, cu);
14338 if (previous_prefix[0] != '\0')
14339 name = typename_concat (&objfile->objfile_obstack,
14340 previous_prefix, name, 0, cu);
14341
14342 /* Create the type. */
14343 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14344 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14345
14346 return set_die_type (die, type, cu);
14347 }
14348
14349 /* Read a namespace scope. */
14350
14351 static void
14352 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14353 {
14354 struct objfile *objfile = cu->objfile;
14355 int is_anonymous;
14356
14357 /* Add a symbol associated to this if we haven't seen the namespace
14358 before. Also, add a using directive if it's an anonymous
14359 namespace. */
14360
14361 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14362 {
14363 struct type *type;
14364
14365 type = read_type_die (die, cu);
14366 new_symbol (die, type, cu);
14367
14368 namespace_name (die, &is_anonymous, cu);
14369 if (is_anonymous)
14370 {
14371 const char *previous_prefix = determine_prefix (die, cu);
14372
14373 add_using_directive (using_directives (cu->language),
14374 previous_prefix, TYPE_NAME (type), NULL,
14375 NULL, NULL, 0, &objfile->objfile_obstack);
14376 }
14377 }
14378
14379 if (die->child != NULL)
14380 {
14381 struct die_info *child_die = die->child;
14382
14383 while (child_die && child_die->tag)
14384 {
14385 process_die (child_die, cu);
14386 child_die = sibling_die (child_die);
14387 }
14388 }
14389 }
14390
14391 /* Read a Fortran module as type. This DIE can be only a declaration used for
14392 imported module. Still we need that type as local Fortran "use ... only"
14393 declaration imports depend on the created type in determine_prefix. */
14394
14395 static struct type *
14396 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14397 {
14398 struct objfile *objfile = cu->objfile;
14399 const char *module_name;
14400 struct type *type;
14401
14402 module_name = dwarf2_name (die, cu);
14403 if (!module_name)
14404 complaint (&symfile_complaints,
14405 _("DW_TAG_module has no name, offset 0x%x"),
14406 die->offset.sect_off);
14407 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14408
14409 /* determine_prefix uses TYPE_TAG_NAME. */
14410 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14411
14412 return set_die_type (die, type, cu);
14413 }
14414
14415 /* Read a Fortran module. */
14416
14417 static void
14418 read_module (struct die_info *die, struct dwarf2_cu *cu)
14419 {
14420 struct die_info *child_die = die->child;
14421 struct type *type;
14422
14423 type = read_type_die (die, cu);
14424 new_symbol (die, type, cu);
14425
14426 while (child_die && child_die->tag)
14427 {
14428 process_die (child_die, cu);
14429 child_die = sibling_die (child_die);
14430 }
14431 }
14432
14433 /* Return the name of the namespace represented by DIE. Set
14434 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14435 namespace. */
14436
14437 static const char *
14438 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14439 {
14440 struct die_info *current_die;
14441 const char *name = NULL;
14442
14443 /* Loop through the extensions until we find a name. */
14444
14445 for (current_die = die;
14446 current_die != NULL;
14447 current_die = dwarf2_extension (die, &cu))
14448 {
14449 /* We don't use dwarf2_name here so that we can detect the absence
14450 of a name -> anonymous namespace. */
14451 name = dwarf2_string_attr (die, DW_AT_name, cu);
14452
14453 if (name != NULL)
14454 break;
14455 }
14456
14457 /* Is it an anonymous namespace? */
14458
14459 *is_anonymous = (name == NULL);
14460 if (*is_anonymous)
14461 name = CP_ANONYMOUS_NAMESPACE_STR;
14462
14463 return name;
14464 }
14465
14466 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14467 the user defined type vector. */
14468
14469 static struct type *
14470 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14471 {
14472 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14473 struct comp_unit_head *cu_header = &cu->header;
14474 struct type *type;
14475 struct attribute *attr_byte_size;
14476 struct attribute *attr_address_class;
14477 int byte_size, addr_class;
14478 struct type *target_type;
14479
14480 target_type = die_type (die, cu);
14481
14482 /* The die_type call above may have already set the type for this DIE. */
14483 type = get_die_type (die, cu);
14484 if (type)
14485 return type;
14486
14487 type = lookup_pointer_type (target_type);
14488
14489 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14490 if (attr_byte_size)
14491 byte_size = DW_UNSND (attr_byte_size);
14492 else
14493 byte_size = cu_header->addr_size;
14494
14495 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14496 if (attr_address_class)
14497 addr_class = DW_UNSND (attr_address_class);
14498 else
14499 addr_class = DW_ADDR_none;
14500
14501 /* If the pointer size or address class is different than the
14502 default, create a type variant marked as such and set the
14503 length accordingly. */
14504 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14505 {
14506 if (gdbarch_address_class_type_flags_p (gdbarch))
14507 {
14508 int type_flags;
14509
14510 type_flags = gdbarch_address_class_type_flags
14511 (gdbarch, byte_size, addr_class);
14512 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14513 == 0);
14514 type = make_type_with_address_space (type, type_flags);
14515 }
14516 else if (TYPE_LENGTH (type) != byte_size)
14517 {
14518 complaint (&symfile_complaints,
14519 _("invalid pointer size %d"), byte_size);
14520 }
14521 else
14522 {
14523 /* Should we also complain about unhandled address classes? */
14524 }
14525 }
14526
14527 TYPE_LENGTH (type) = byte_size;
14528 return set_die_type (die, type, cu);
14529 }
14530
14531 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14532 the user defined type vector. */
14533
14534 static struct type *
14535 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14536 {
14537 struct type *type;
14538 struct type *to_type;
14539 struct type *domain;
14540
14541 to_type = die_type (die, cu);
14542 domain = die_containing_type (die, cu);
14543
14544 /* The calls above may have already set the type for this DIE. */
14545 type = get_die_type (die, cu);
14546 if (type)
14547 return type;
14548
14549 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14550 type = lookup_methodptr_type (to_type);
14551 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14552 {
14553 struct type *new_type = alloc_type (cu->objfile);
14554
14555 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14556 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14557 TYPE_VARARGS (to_type));
14558 type = lookup_methodptr_type (new_type);
14559 }
14560 else
14561 type = lookup_memberptr_type (to_type, domain);
14562
14563 return set_die_type (die, type, cu);
14564 }
14565
14566 /* Extract all information from a DW_TAG_reference_type DIE and add to
14567 the user defined type vector. */
14568
14569 static struct type *
14570 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14571 {
14572 struct comp_unit_head *cu_header = &cu->header;
14573 struct type *type, *target_type;
14574 struct attribute *attr;
14575
14576 target_type = die_type (die, cu);
14577
14578 /* The die_type call above may have already set the type for this DIE. */
14579 type = get_die_type (die, cu);
14580 if (type)
14581 return type;
14582
14583 type = lookup_reference_type (target_type);
14584 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14585 if (attr)
14586 {
14587 TYPE_LENGTH (type) = DW_UNSND (attr);
14588 }
14589 else
14590 {
14591 TYPE_LENGTH (type) = cu_header->addr_size;
14592 }
14593 return set_die_type (die, type, cu);
14594 }
14595
14596 /* Add the given cv-qualifiers to the element type of the array. GCC
14597 outputs DWARF type qualifiers that apply to an array, not the
14598 element type. But GDB relies on the array element type to carry
14599 the cv-qualifiers. This mimics section 6.7.3 of the C99
14600 specification. */
14601
14602 static struct type *
14603 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14604 struct type *base_type, int cnst, int voltl)
14605 {
14606 struct type *el_type, *inner_array;
14607
14608 base_type = copy_type (base_type);
14609 inner_array = base_type;
14610
14611 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14612 {
14613 TYPE_TARGET_TYPE (inner_array) =
14614 copy_type (TYPE_TARGET_TYPE (inner_array));
14615 inner_array = TYPE_TARGET_TYPE (inner_array);
14616 }
14617
14618 el_type = TYPE_TARGET_TYPE (inner_array);
14619 cnst |= TYPE_CONST (el_type);
14620 voltl |= TYPE_VOLATILE (el_type);
14621 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14622
14623 return set_die_type (die, base_type, cu);
14624 }
14625
14626 static struct type *
14627 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14628 {
14629 struct type *base_type, *cv_type;
14630
14631 base_type = die_type (die, cu);
14632
14633 /* The die_type call above may have already set the type for this DIE. */
14634 cv_type = get_die_type (die, cu);
14635 if (cv_type)
14636 return cv_type;
14637
14638 /* In case the const qualifier is applied to an array type, the element type
14639 is so qualified, not the array type (section 6.7.3 of C99). */
14640 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14641 return add_array_cv_type (die, cu, base_type, 1, 0);
14642
14643 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14644 return set_die_type (die, cv_type, cu);
14645 }
14646
14647 static struct type *
14648 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14649 {
14650 struct type *base_type, *cv_type;
14651
14652 base_type = die_type (die, cu);
14653
14654 /* The die_type call above may have already set the type for this DIE. */
14655 cv_type = get_die_type (die, cu);
14656 if (cv_type)
14657 return cv_type;
14658
14659 /* In case the volatile qualifier is applied to an array type, the
14660 element type is so qualified, not the array type (section 6.7.3
14661 of C99). */
14662 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14663 return add_array_cv_type (die, cu, base_type, 0, 1);
14664
14665 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14666 return set_die_type (die, cv_type, cu);
14667 }
14668
14669 /* Handle DW_TAG_restrict_type. */
14670
14671 static struct type *
14672 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14673 {
14674 struct type *base_type, *cv_type;
14675
14676 base_type = die_type (die, cu);
14677
14678 /* The die_type call above may have already set the type for this DIE. */
14679 cv_type = get_die_type (die, cu);
14680 if (cv_type)
14681 return cv_type;
14682
14683 cv_type = make_restrict_type (base_type);
14684 return set_die_type (die, cv_type, cu);
14685 }
14686
14687 /* Handle DW_TAG_atomic_type. */
14688
14689 static struct type *
14690 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14691 {
14692 struct type *base_type, *cv_type;
14693
14694 base_type = die_type (die, cu);
14695
14696 /* The die_type call above may have already set the type for this DIE. */
14697 cv_type = get_die_type (die, cu);
14698 if (cv_type)
14699 return cv_type;
14700
14701 cv_type = make_atomic_type (base_type);
14702 return set_die_type (die, cv_type, cu);
14703 }
14704
14705 /* Extract all information from a DW_TAG_string_type DIE and add to
14706 the user defined type vector. It isn't really a user defined type,
14707 but it behaves like one, with other DIE's using an AT_user_def_type
14708 attribute to reference it. */
14709
14710 static struct type *
14711 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14712 {
14713 struct objfile *objfile = cu->objfile;
14714 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14715 struct type *type, *range_type, *index_type, *char_type;
14716 struct attribute *attr;
14717 unsigned int length;
14718
14719 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14720 if (attr)
14721 {
14722 length = DW_UNSND (attr);
14723 }
14724 else
14725 {
14726 /* Check for the DW_AT_byte_size attribute. */
14727 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14728 if (attr)
14729 {
14730 length = DW_UNSND (attr);
14731 }
14732 else
14733 {
14734 length = 1;
14735 }
14736 }
14737
14738 index_type = objfile_type (objfile)->builtin_int;
14739 range_type = create_static_range_type (NULL, index_type, 1, length);
14740 char_type = language_string_char_type (cu->language_defn, gdbarch);
14741 type = create_string_type (NULL, char_type, range_type);
14742
14743 return set_die_type (die, type, cu);
14744 }
14745
14746 /* Assuming that DIE corresponds to a function, returns nonzero
14747 if the function is prototyped. */
14748
14749 static int
14750 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14751 {
14752 struct attribute *attr;
14753
14754 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14755 if (attr && (DW_UNSND (attr) != 0))
14756 return 1;
14757
14758 /* The DWARF standard implies that the DW_AT_prototyped attribute
14759 is only meaninful for C, but the concept also extends to other
14760 languages that allow unprototyped functions (Eg: Objective C).
14761 For all other languages, assume that functions are always
14762 prototyped. */
14763 if (cu->language != language_c
14764 && cu->language != language_objc
14765 && cu->language != language_opencl)
14766 return 1;
14767
14768 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14769 prototyped and unprototyped functions; default to prototyped,
14770 since that is more common in modern code (and RealView warns
14771 about unprototyped functions). */
14772 if (producer_is_realview (cu->producer))
14773 return 1;
14774
14775 return 0;
14776 }
14777
14778 /* Handle DIES due to C code like:
14779
14780 struct foo
14781 {
14782 int (*funcp)(int a, long l);
14783 int b;
14784 };
14785
14786 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14787
14788 static struct type *
14789 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14790 {
14791 struct objfile *objfile = cu->objfile;
14792 struct type *type; /* Type that this function returns. */
14793 struct type *ftype; /* Function that returns above type. */
14794 struct attribute *attr;
14795
14796 type = die_type (die, cu);
14797
14798 /* The die_type call above may have already set the type for this DIE. */
14799 ftype = get_die_type (die, cu);
14800 if (ftype)
14801 return ftype;
14802
14803 ftype = lookup_function_type (type);
14804
14805 if (prototyped_function_p (die, cu))
14806 TYPE_PROTOTYPED (ftype) = 1;
14807
14808 /* Store the calling convention in the type if it's available in
14809 the subroutine die. Otherwise set the calling convention to
14810 the default value DW_CC_normal. */
14811 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14812 if (attr)
14813 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14814 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14815 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14816 else
14817 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14818
14819 /* Record whether the function returns normally to its caller or not
14820 if the DWARF producer set that information. */
14821 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14822 if (attr && (DW_UNSND (attr) != 0))
14823 TYPE_NO_RETURN (ftype) = 1;
14824
14825 /* We need to add the subroutine type to the die immediately so
14826 we don't infinitely recurse when dealing with parameters
14827 declared as the same subroutine type. */
14828 set_die_type (die, ftype, cu);
14829
14830 if (die->child != NULL)
14831 {
14832 struct type *void_type = objfile_type (objfile)->builtin_void;
14833 struct die_info *child_die;
14834 int nparams, iparams;
14835
14836 /* Count the number of parameters.
14837 FIXME: GDB currently ignores vararg functions, but knows about
14838 vararg member functions. */
14839 nparams = 0;
14840 child_die = die->child;
14841 while (child_die && child_die->tag)
14842 {
14843 if (child_die->tag == DW_TAG_formal_parameter)
14844 nparams++;
14845 else if (child_die->tag == DW_TAG_unspecified_parameters)
14846 TYPE_VARARGS (ftype) = 1;
14847 child_die = sibling_die (child_die);
14848 }
14849
14850 /* Allocate storage for parameters and fill them in. */
14851 TYPE_NFIELDS (ftype) = nparams;
14852 TYPE_FIELDS (ftype) = (struct field *)
14853 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14854
14855 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14856 even if we error out during the parameters reading below. */
14857 for (iparams = 0; iparams < nparams; iparams++)
14858 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14859
14860 iparams = 0;
14861 child_die = die->child;
14862 while (child_die && child_die->tag)
14863 {
14864 if (child_die->tag == DW_TAG_formal_parameter)
14865 {
14866 struct type *arg_type;
14867
14868 /* DWARF version 2 has no clean way to discern C++
14869 static and non-static member functions. G++ helps
14870 GDB by marking the first parameter for non-static
14871 member functions (which is the this pointer) as
14872 artificial. We pass this information to
14873 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14874
14875 DWARF version 3 added DW_AT_object_pointer, which GCC
14876 4.5 does not yet generate. */
14877 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14878 if (attr)
14879 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14880 else
14881 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14882 arg_type = die_type (child_die, cu);
14883
14884 /* RealView does not mark THIS as const, which the testsuite
14885 expects. GCC marks THIS as const in method definitions,
14886 but not in the class specifications (GCC PR 43053). */
14887 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14888 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14889 {
14890 int is_this = 0;
14891 struct dwarf2_cu *arg_cu = cu;
14892 const char *name = dwarf2_name (child_die, cu);
14893
14894 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14895 if (attr)
14896 {
14897 /* If the compiler emits this, use it. */
14898 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14899 is_this = 1;
14900 }
14901 else if (name && strcmp (name, "this") == 0)
14902 /* Function definitions will have the argument names. */
14903 is_this = 1;
14904 else if (name == NULL && iparams == 0)
14905 /* Declarations may not have the names, so like
14906 elsewhere in GDB, assume an artificial first
14907 argument is "this". */
14908 is_this = 1;
14909
14910 if (is_this)
14911 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14912 arg_type, 0);
14913 }
14914
14915 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14916 iparams++;
14917 }
14918 child_die = sibling_die (child_die);
14919 }
14920 }
14921
14922 return ftype;
14923 }
14924
14925 static struct type *
14926 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14927 {
14928 struct objfile *objfile = cu->objfile;
14929 const char *name = NULL;
14930 struct type *this_type, *target_type;
14931
14932 name = dwarf2_full_name (NULL, die, cu);
14933 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14934 TYPE_TARGET_STUB (this_type) = 1;
14935 set_die_type (die, this_type, cu);
14936 target_type = die_type (die, cu);
14937 if (target_type != this_type)
14938 TYPE_TARGET_TYPE (this_type) = target_type;
14939 else
14940 {
14941 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14942 spec and cause infinite loops in GDB. */
14943 complaint (&symfile_complaints,
14944 _("Self-referential DW_TAG_typedef "
14945 "- DIE at 0x%x [in module %s]"),
14946 die->offset.sect_off, objfile_name (objfile));
14947 TYPE_TARGET_TYPE (this_type) = NULL;
14948 }
14949 return this_type;
14950 }
14951
14952 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14953 (which may be different from NAME) to the architecture back-end to allow
14954 it to guess the correct format if necessary. */
14955
14956 static struct type *
14957 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14958 const char *name_hint)
14959 {
14960 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14961 const struct floatformat **format;
14962 struct type *type;
14963
14964 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14965 if (format)
14966 type = init_float_type (objfile, bits, name, format);
14967 else
14968 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14969
14970 return type;
14971 }
14972
14973 /* Find a representation of a given base type and install
14974 it in the TYPE field of the die. */
14975
14976 static struct type *
14977 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14978 {
14979 struct objfile *objfile = cu->objfile;
14980 struct type *type;
14981 struct attribute *attr;
14982 int encoding = 0, bits = 0;
14983 const char *name;
14984
14985 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14986 if (attr)
14987 {
14988 encoding = DW_UNSND (attr);
14989 }
14990 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14991 if (attr)
14992 {
14993 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
14994 }
14995 name = dwarf2_name (die, cu);
14996 if (!name)
14997 {
14998 complaint (&symfile_complaints,
14999 _("DW_AT_name missing from DW_TAG_base_type"));
15000 }
15001
15002 switch (encoding)
15003 {
15004 case DW_ATE_address:
15005 /* Turn DW_ATE_address into a void * pointer. */
15006 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15007 type = init_pointer_type (objfile, bits, name, type);
15008 break;
15009 case DW_ATE_boolean:
15010 type = init_boolean_type (objfile, bits, 1, name);
15011 break;
15012 case DW_ATE_complex_float:
15013 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15014 type = init_complex_type (objfile, name, type);
15015 break;
15016 case DW_ATE_decimal_float:
15017 type = init_decfloat_type (objfile, bits, name);
15018 break;
15019 case DW_ATE_float:
15020 type = dwarf2_init_float_type (objfile, bits, name, name);
15021 break;
15022 case DW_ATE_signed:
15023 type = init_integer_type (objfile, bits, 0, name);
15024 break;
15025 case DW_ATE_unsigned:
15026 if (cu->language == language_fortran
15027 && name
15028 && startswith (name, "character("))
15029 type = init_character_type (objfile, bits, 1, name);
15030 else
15031 type = init_integer_type (objfile, bits, 1, name);
15032 break;
15033 case DW_ATE_signed_char:
15034 if (cu->language == language_ada || cu->language == language_m2
15035 || cu->language == language_pascal
15036 || cu->language == language_fortran)
15037 type = init_character_type (objfile, bits, 0, name);
15038 else
15039 type = init_integer_type (objfile, bits, 0, name);
15040 break;
15041 case DW_ATE_unsigned_char:
15042 if (cu->language == language_ada || cu->language == language_m2
15043 || cu->language == language_pascal
15044 || cu->language == language_fortran
15045 || cu->language == language_rust)
15046 type = init_character_type (objfile, bits, 1, name);
15047 else
15048 type = init_integer_type (objfile, bits, 1, name);
15049 break;
15050 case DW_ATE_UTF:
15051 /* We just treat this as an integer and then recognize the
15052 type by name elsewhere. */
15053 type = init_integer_type (objfile, bits, 0, name);
15054 break;
15055
15056 default:
15057 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15058 dwarf_type_encoding_name (encoding));
15059 type = init_type (objfile, TYPE_CODE_ERROR,
15060 bits / TARGET_CHAR_BIT, name);
15061 break;
15062 }
15063
15064 if (name && strcmp (name, "char") == 0)
15065 TYPE_NOSIGN (type) = 1;
15066
15067 return set_die_type (die, type, cu);
15068 }
15069
15070 /* Parse dwarf attribute if it's a block, reference or constant and put the
15071 resulting value of the attribute into struct bound_prop.
15072 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15073
15074 static int
15075 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15076 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15077 {
15078 struct dwarf2_property_baton *baton;
15079 struct obstack *obstack = &cu->objfile->objfile_obstack;
15080
15081 if (attr == NULL || prop == NULL)
15082 return 0;
15083
15084 if (attr_form_is_block (attr))
15085 {
15086 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15087 baton->referenced_type = NULL;
15088 baton->locexpr.per_cu = cu->per_cu;
15089 baton->locexpr.size = DW_BLOCK (attr)->size;
15090 baton->locexpr.data = DW_BLOCK (attr)->data;
15091 prop->data.baton = baton;
15092 prop->kind = PROP_LOCEXPR;
15093 gdb_assert (prop->data.baton != NULL);
15094 }
15095 else if (attr_form_is_ref (attr))
15096 {
15097 struct dwarf2_cu *target_cu = cu;
15098 struct die_info *target_die;
15099 struct attribute *target_attr;
15100
15101 target_die = follow_die_ref (die, attr, &target_cu);
15102 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15103 if (target_attr == NULL)
15104 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15105 target_cu);
15106 if (target_attr == NULL)
15107 return 0;
15108
15109 switch (target_attr->name)
15110 {
15111 case DW_AT_location:
15112 if (attr_form_is_section_offset (target_attr))
15113 {
15114 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15115 baton->referenced_type = die_type (target_die, target_cu);
15116 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15117 prop->data.baton = baton;
15118 prop->kind = PROP_LOCLIST;
15119 gdb_assert (prop->data.baton != NULL);
15120 }
15121 else if (attr_form_is_block (target_attr))
15122 {
15123 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15124 baton->referenced_type = die_type (target_die, target_cu);
15125 baton->locexpr.per_cu = cu->per_cu;
15126 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15127 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15128 prop->data.baton = baton;
15129 prop->kind = PROP_LOCEXPR;
15130 gdb_assert (prop->data.baton != NULL);
15131 }
15132 else
15133 {
15134 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15135 "dynamic property");
15136 return 0;
15137 }
15138 break;
15139 case DW_AT_data_member_location:
15140 {
15141 LONGEST offset;
15142
15143 if (!handle_data_member_location (target_die, target_cu,
15144 &offset))
15145 return 0;
15146
15147 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15148 baton->referenced_type = read_type_die (target_die->parent,
15149 target_cu);
15150 baton->offset_info.offset = offset;
15151 baton->offset_info.type = die_type (target_die, target_cu);
15152 prop->data.baton = baton;
15153 prop->kind = PROP_ADDR_OFFSET;
15154 break;
15155 }
15156 }
15157 }
15158 else if (attr_form_is_constant (attr))
15159 {
15160 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15161 prop->kind = PROP_CONST;
15162 }
15163 else
15164 {
15165 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15166 dwarf2_name (die, cu));
15167 return 0;
15168 }
15169
15170 return 1;
15171 }
15172
15173 /* Read the given DW_AT_subrange DIE. */
15174
15175 static struct type *
15176 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15177 {
15178 struct type *base_type, *orig_base_type;
15179 struct type *range_type;
15180 struct attribute *attr;
15181 struct dynamic_prop low, high;
15182 int low_default_is_valid;
15183 int high_bound_is_count = 0;
15184 const char *name;
15185 LONGEST negative_mask;
15186
15187 orig_base_type = die_type (die, cu);
15188 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15189 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15190 creating the range type, but we use the result of check_typedef
15191 when examining properties of the type. */
15192 base_type = check_typedef (orig_base_type);
15193
15194 /* The die_type call above may have already set the type for this DIE. */
15195 range_type = get_die_type (die, cu);
15196 if (range_type)
15197 return range_type;
15198
15199 low.kind = PROP_CONST;
15200 high.kind = PROP_CONST;
15201 high.data.const_val = 0;
15202
15203 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15204 omitting DW_AT_lower_bound. */
15205 switch (cu->language)
15206 {
15207 case language_c:
15208 case language_cplus:
15209 low.data.const_val = 0;
15210 low_default_is_valid = 1;
15211 break;
15212 case language_fortran:
15213 low.data.const_val = 1;
15214 low_default_is_valid = 1;
15215 break;
15216 case language_d:
15217 case language_objc:
15218 case language_rust:
15219 low.data.const_val = 0;
15220 low_default_is_valid = (cu->header.version >= 4);
15221 break;
15222 case language_ada:
15223 case language_m2:
15224 case language_pascal:
15225 low.data.const_val = 1;
15226 low_default_is_valid = (cu->header.version >= 4);
15227 break;
15228 default:
15229 low.data.const_val = 0;
15230 low_default_is_valid = 0;
15231 break;
15232 }
15233
15234 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15235 if (attr)
15236 attr_to_dynamic_prop (attr, die, cu, &low);
15237 else if (!low_default_is_valid)
15238 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15239 "- DIE at 0x%x [in module %s]"),
15240 die->offset.sect_off, objfile_name (cu->objfile));
15241
15242 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15243 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15244 {
15245 attr = dwarf2_attr (die, DW_AT_count, cu);
15246 if (attr_to_dynamic_prop (attr, die, cu, &high))
15247 {
15248 /* If bounds are constant do the final calculation here. */
15249 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15250 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15251 else
15252 high_bound_is_count = 1;
15253 }
15254 }
15255
15256 /* Dwarf-2 specifications explicitly allows to create subrange types
15257 without specifying a base type.
15258 In that case, the base type must be set to the type of
15259 the lower bound, upper bound or count, in that order, if any of these
15260 three attributes references an object that has a type.
15261 If no base type is found, the Dwarf-2 specifications say that
15262 a signed integer type of size equal to the size of an address should
15263 be used.
15264 For the following C code: `extern char gdb_int [];'
15265 GCC produces an empty range DIE.
15266 FIXME: muller/2010-05-28: Possible references to object for low bound,
15267 high bound or count are not yet handled by this code. */
15268 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15269 {
15270 struct objfile *objfile = cu->objfile;
15271 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15272 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15273 struct type *int_type = objfile_type (objfile)->builtin_int;
15274
15275 /* Test "int", "long int", and "long long int" objfile types,
15276 and select the first one having a size above or equal to the
15277 architecture address size. */
15278 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15279 base_type = int_type;
15280 else
15281 {
15282 int_type = objfile_type (objfile)->builtin_long;
15283 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15284 base_type = int_type;
15285 else
15286 {
15287 int_type = objfile_type (objfile)->builtin_long_long;
15288 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15289 base_type = int_type;
15290 }
15291 }
15292 }
15293
15294 /* Normally, the DWARF producers are expected to use a signed
15295 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15296 But this is unfortunately not always the case, as witnessed
15297 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15298 is used instead. To work around that ambiguity, we treat
15299 the bounds as signed, and thus sign-extend their values, when
15300 the base type is signed. */
15301 negative_mask =
15302 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15303 if (low.kind == PROP_CONST
15304 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15305 low.data.const_val |= negative_mask;
15306 if (high.kind == PROP_CONST
15307 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15308 high.data.const_val |= negative_mask;
15309
15310 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15311
15312 if (high_bound_is_count)
15313 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15314
15315 /* Ada expects an empty array on no boundary attributes. */
15316 if (attr == NULL && cu->language != language_ada)
15317 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15318
15319 name = dwarf2_name (die, cu);
15320 if (name)
15321 TYPE_NAME (range_type) = name;
15322
15323 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15324 if (attr)
15325 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15326
15327 set_die_type (die, range_type, cu);
15328
15329 /* set_die_type should be already done. */
15330 set_descriptive_type (range_type, die, cu);
15331
15332 return range_type;
15333 }
15334
15335 static struct type *
15336 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15337 {
15338 struct type *type;
15339
15340 /* For now, we only support the C meaning of an unspecified type: void. */
15341
15342 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15343 TYPE_NAME (type) = dwarf2_name (die, cu);
15344
15345 return set_die_type (die, type, cu);
15346 }
15347
15348 /* Read a single die and all its descendents. Set the die's sibling
15349 field to NULL; set other fields in the die correctly, and set all
15350 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15351 location of the info_ptr after reading all of those dies. PARENT
15352 is the parent of the die in question. */
15353
15354 static struct die_info *
15355 read_die_and_children (const struct die_reader_specs *reader,
15356 const gdb_byte *info_ptr,
15357 const gdb_byte **new_info_ptr,
15358 struct die_info *parent)
15359 {
15360 struct die_info *die;
15361 const gdb_byte *cur_ptr;
15362 int has_children;
15363
15364 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15365 if (die == NULL)
15366 {
15367 *new_info_ptr = cur_ptr;
15368 return NULL;
15369 }
15370 store_in_ref_table (die, reader->cu);
15371
15372 if (has_children)
15373 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15374 else
15375 {
15376 die->child = NULL;
15377 *new_info_ptr = cur_ptr;
15378 }
15379
15380 die->sibling = NULL;
15381 die->parent = parent;
15382 return die;
15383 }
15384
15385 /* Read a die, all of its descendents, and all of its siblings; set
15386 all of the fields of all of the dies correctly. Arguments are as
15387 in read_die_and_children. */
15388
15389 static struct die_info *
15390 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15391 const gdb_byte *info_ptr,
15392 const gdb_byte **new_info_ptr,
15393 struct die_info *parent)
15394 {
15395 struct die_info *first_die, *last_sibling;
15396 const gdb_byte *cur_ptr;
15397
15398 cur_ptr = info_ptr;
15399 first_die = last_sibling = NULL;
15400
15401 while (1)
15402 {
15403 struct die_info *die
15404 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15405
15406 if (die == NULL)
15407 {
15408 *new_info_ptr = cur_ptr;
15409 return first_die;
15410 }
15411
15412 if (!first_die)
15413 first_die = die;
15414 else
15415 last_sibling->sibling = die;
15416
15417 last_sibling = die;
15418 }
15419 }
15420
15421 /* Read a die, all of its descendents, and all of its siblings; set
15422 all of the fields of all of the dies correctly. Arguments are as
15423 in read_die_and_children.
15424 This the main entry point for reading a DIE and all its children. */
15425
15426 static struct die_info *
15427 read_die_and_siblings (const struct die_reader_specs *reader,
15428 const gdb_byte *info_ptr,
15429 const gdb_byte **new_info_ptr,
15430 struct die_info *parent)
15431 {
15432 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15433 new_info_ptr, parent);
15434
15435 if (dwarf_die_debug)
15436 {
15437 fprintf_unfiltered (gdb_stdlog,
15438 "Read die from %s@0x%x of %s:\n",
15439 get_section_name (reader->die_section),
15440 (unsigned) (info_ptr - reader->die_section->buffer),
15441 bfd_get_filename (reader->abfd));
15442 dump_die (die, dwarf_die_debug);
15443 }
15444
15445 return die;
15446 }
15447
15448 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15449 attributes.
15450 The caller is responsible for filling in the extra attributes
15451 and updating (*DIEP)->num_attrs.
15452 Set DIEP to point to a newly allocated die with its information,
15453 except for its child, sibling, and parent fields.
15454 Set HAS_CHILDREN to tell whether the die has children or not. */
15455
15456 static const gdb_byte *
15457 read_full_die_1 (const struct die_reader_specs *reader,
15458 struct die_info **diep, const gdb_byte *info_ptr,
15459 int *has_children, int num_extra_attrs)
15460 {
15461 unsigned int abbrev_number, bytes_read, i;
15462 sect_offset offset;
15463 struct abbrev_info *abbrev;
15464 struct die_info *die;
15465 struct dwarf2_cu *cu = reader->cu;
15466 bfd *abfd = reader->abfd;
15467
15468 offset.sect_off = info_ptr - reader->buffer;
15469 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15470 info_ptr += bytes_read;
15471 if (!abbrev_number)
15472 {
15473 *diep = NULL;
15474 *has_children = 0;
15475 return info_ptr;
15476 }
15477
15478 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15479 if (!abbrev)
15480 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15481 abbrev_number,
15482 bfd_get_filename (abfd));
15483
15484 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15485 die->offset = offset;
15486 die->tag = abbrev->tag;
15487 die->abbrev = abbrev_number;
15488
15489 /* Make the result usable.
15490 The caller needs to update num_attrs after adding the extra
15491 attributes. */
15492 die->num_attrs = abbrev->num_attrs;
15493
15494 for (i = 0; i < abbrev->num_attrs; ++i)
15495 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15496 info_ptr);
15497
15498 *diep = die;
15499 *has_children = abbrev->has_children;
15500 return info_ptr;
15501 }
15502
15503 /* Read a die and all its attributes.
15504 Set DIEP to point to a newly allocated die with its information,
15505 except for its child, sibling, and parent fields.
15506 Set HAS_CHILDREN to tell whether the die has children or not. */
15507
15508 static const gdb_byte *
15509 read_full_die (const struct die_reader_specs *reader,
15510 struct die_info **diep, const gdb_byte *info_ptr,
15511 int *has_children)
15512 {
15513 const gdb_byte *result;
15514
15515 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15516
15517 if (dwarf_die_debug)
15518 {
15519 fprintf_unfiltered (gdb_stdlog,
15520 "Read die from %s@0x%x of %s:\n",
15521 get_section_name (reader->die_section),
15522 (unsigned) (info_ptr - reader->die_section->buffer),
15523 bfd_get_filename (reader->abfd));
15524 dump_die (*diep, dwarf_die_debug);
15525 }
15526
15527 return result;
15528 }
15529 \f
15530 /* Abbreviation tables.
15531
15532 In DWARF version 2, the description of the debugging information is
15533 stored in a separate .debug_abbrev section. Before we read any
15534 dies from a section we read in all abbreviations and install them
15535 in a hash table. */
15536
15537 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15538
15539 static struct abbrev_info *
15540 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15541 {
15542 struct abbrev_info *abbrev;
15543
15544 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15545 memset (abbrev, 0, sizeof (struct abbrev_info));
15546
15547 return abbrev;
15548 }
15549
15550 /* Add an abbreviation to the table. */
15551
15552 static void
15553 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15554 unsigned int abbrev_number,
15555 struct abbrev_info *abbrev)
15556 {
15557 unsigned int hash_number;
15558
15559 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15560 abbrev->next = abbrev_table->abbrevs[hash_number];
15561 abbrev_table->abbrevs[hash_number] = abbrev;
15562 }
15563
15564 /* Look up an abbrev in the table.
15565 Returns NULL if the abbrev is not found. */
15566
15567 static struct abbrev_info *
15568 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15569 unsigned int abbrev_number)
15570 {
15571 unsigned int hash_number;
15572 struct abbrev_info *abbrev;
15573
15574 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15575 abbrev = abbrev_table->abbrevs[hash_number];
15576
15577 while (abbrev)
15578 {
15579 if (abbrev->number == abbrev_number)
15580 return abbrev;
15581 abbrev = abbrev->next;
15582 }
15583 return NULL;
15584 }
15585
15586 /* Read in an abbrev table. */
15587
15588 static struct abbrev_table *
15589 abbrev_table_read_table (struct dwarf2_section_info *section,
15590 sect_offset offset)
15591 {
15592 struct objfile *objfile = dwarf2_per_objfile->objfile;
15593 bfd *abfd = get_section_bfd_owner (section);
15594 struct abbrev_table *abbrev_table;
15595 const gdb_byte *abbrev_ptr;
15596 struct abbrev_info *cur_abbrev;
15597 unsigned int abbrev_number, bytes_read, abbrev_name;
15598 unsigned int abbrev_form;
15599 struct attr_abbrev *cur_attrs;
15600 unsigned int allocated_attrs;
15601
15602 abbrev_table = XNEW (struct abbrev_table);
15603 abbrev_table->offset = offset;
15604 obstack_init (&abbrev_table->abbrev_obstack);
15605 abbrev_table->abbrevs =
15606 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15607 ABBREV_HASH_SIZE);
15608 memset (abbrev_table->abbrevs, 0,
15609 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15610
15611 dwarf2_read_section (objfile, section);
15612 abbrev_ptr = section->buffer + offset.sect_off;
15613 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15614 abbrev_ptr += bytes_read;
15615
15616 allocated_attrs = ATTR_ALLOC_CHUNK;
15617 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15618
15619 /* Loop until we reach an abbrev number of 0. */
15620 while (abbrev_number)
15621 {
15622 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15623
15624 /* read in abbrev header */
15625 cur_abbrev->number = abbrev_number;
15626 cur_abbrev->tag
15627 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15628 abbrev_ptr += bytes_read;
15629 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15630 abbrev_ptr += 1;
15631
15632 /* now read in declarations */
15633 for (;;)
15634 {
15635 LONGEST implicit_const;
15636
15637 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15638 abbrev_ptr += bytes_read;
15639 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15640 abbrev_ptr += bytes_read;
15641 if (abbrev_form == DW_FORM_implicit_const)
15642 {
15643 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15644 &bytes_read);
15645 abbrev_ptr += bytes_read;
15646 }
15647 else
15648 {
15649 /* Initialize it due to a false compiler warning. */
15650 implicit_const = -1;
15651 }
15652
15653 if (abbrev_name == 0)
15654 break;
15655
15656 if (cur_abbrev->num_attrs == allocated_attrs)
15657 {
15658 allocated_attrs += ATTR_ALLOC_CHUNK;
15659 cur_attrs
15660 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15661 }
15662
15663 cur_attrs[cur_abbrev->num_attrs].name
15664 = (enum dwarf_attribute) abbrev_name;
15665 cur_attrs[cur_abbrev->num_attrs].form
15666 = (enum dwarf_form) abbrev_form;
15667 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15668 ++cur_abbrev->num_attrs;
15669 }
15670
15671 cur_abbrev->attrs =
15672 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15673 cur_abbrev->num_attrs);
15674 memcpy (cur_abbrev->attrs, cur_attrs,
15675 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15676
15677 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15678
15679 /* Get next abbreviation.
15680 Under Irix6 the abbreviations for a compilation unit are not
15681 always properly terminated with an abbrev number of 0.
15682 Exit loop if we encounter an abbreviation which we have
15683 already read (which means we are about to read the abbreviations
15684 for the next compile unit) or if the end of the abbreviation
15685 table is reached. */
15686 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15687 break;
15688 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15689 abbrev_ptr += bytes_read;
15690 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15691 break;
15692 }
15693
15694 xfree (cur_attrs);
15695 return abbrev_table;
15696 }
15697
15698 /* Free the resources held by ABBREV_TABLE. */
15699
15700 static void
15701 abbrev_table_free (struct abbrev_table *abbrev_table)
15702 {
15703 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15704 xfree (abbrev_table);
15705 }
15706
15707 /* Same as abbrev_table_free but as a cleanup.
15708 We pass in a pointer to the pointer to the table so that we can
15709 set the pointer to NULL when we're done. It also simplifies
15710 build_type_psymtabs_1. */
15711
15712 static void
15713 abbrev_table_free_cleanup (void *table_ptr)
15714 {
15715 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15716
15717 if (*abbrev_table_ptr != NULL)
15718 abbrev_table_free (*abbrev_table_ptr);
15719 *abbrev_table_ptr = NULL;
15720 }
15721
15722 /* Read the abbrev table for CU from ABBREV_SECTION. */
15723
15724 static void
15725 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15726 struct dwarf2_section_info *abbrev_section)
15727 {
15728 cu->abbrev_table =
15729 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15730 }
15731
15732 /* Release the memory used by the abbrev table for a compilation unit. */
15733
15734 static void
15735 dwarf2_free_abbrev_table (void *ptr_to_cu)
15736 {
15737 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15738
15739 if (cu->abbrev_table != NULL)
15740 abbrev_table_free (cu->abbrev_table);
15741 /* Set this to NULL so that we SEGV if we try to read it later,
15742 and also because free_comp_unit verifies this is NULL. */
15743 cu->abbrev_table = NULL;
15744 }
15745 \f
15746 /* Returns nonzero if TAG represents a type that we might generate a partial
15747 symbol for. */
15748
15749 static int
15750 is_type_tag_for_partial (int tag)
15751 {
15752 switch (tag)
15753 {
15754 #if 0
15755 /* Some types that would be reasonable to generate partial symbols for,
15756 that we don't at present. */
15757 case DW_TAG_array_type:
15758 case DW_TAG_file_type:
15759 case DW_TAG_ptr_to_member_type:
15760 case DW_TAG_set_type:
15761 case DW_TAG_string_type:
15762 case DW_TAG_subroutine_type:
15763 #endif
15764 case DW_TAG_base_type:
15765 case DW_TAG_class_type:
15766 case DW_TAG_interface_type:
15767 case DW_TAG_enumeration_type:
15768 case DW_TAG_structure_type:
15769 case DW_TAG_subrange_type:
15770 case DW_TAG_typedef:
15771 case DW_TAG_union_type:
15772 return 1;
15773 default:
15774 return 0;
15775 }
15776 }
15777
15778 /* Load all DIEs that are interesting for partial symbols into memory. */
15779
15780 static struct partial_die_info *
15781 load_partial_dies (const struct die_reader_specs *reader,
15782 const gdb_byte *info_ptr, int building_psymtab)
15783 {
15784 struct dwarf2_cu *cu = reader->cu;
15785 struct objfile *objfile = cu->objfile;
15786 struct partial_die_info *part_die;
15787 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15788 struct abbrev_info *abbrev;
15789 unsigned int bytes_read;
15790 unsigned int load_all = 0;
15791 int nesting_level = 1;
15792
15793 parent_die = NULL;
15794 last_die = NULL;
15795
15796 gdb_assert (cu->per_cu != NULL);
15797 if (cu->per_cu->load_all_dies)
15798 load_all = 1;
15799
15800 cu->partial_dies
15801 = htab_create_alloc_ex (cu->header.length / 12,
15802 partial_die_hash,
15803 partial_die_eq,
15804 NULL,
15805 &cu->comp_unit_obstack,
15806 hashtab_obstack_allocate,
15807 dummy_obstack_deallocate);
15808
15809 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15810
15811 while (1)
15812 {
15813 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15814
15815 /* A NULL abbrev means the end of a series of children. */
15816 if (abbrev == NULL)
15817 {
15818 if (--nesting_level == 0)
15819 {
15820 /* PART_DIE was probably the last thing allocated on the
15821 comp_unit_obstack, so we could call obstack_free
15822 here. We don't do that because the waste is small,
15823 and will be cleaned up when we're done with this
15824 compilation unit. This way, we're also more robust
15825 against other users of the comp_unit_obstack. */
15826 return first_die;
15827 }
15828 info_ptr += bytes_read;
15829 last_die = parent_die;
15830 parent_die = parent_die->die_parent;
15831 continue;
15832 }
15833
15834 /* Check for template arguments. We never save these; if
15835 they're seen, we just mark the parent, and go on our way. */
15836 if (parent_die != NULL
15837 && cu->language == language_cplus
15838 && (abbrev->tag == DW_TAG_template_type_param
15839 || abbrev->tag == DW_TAG_template_value_param))
15840 {
15841 parent_die->has_template_arguments = 1;
15842
15843 if (!load_all)
15844 {
15845 /* We don't need a partial DIE for the template argument. */
15846 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15847 continue;
15848 }
15849 }
15850
15851 /* We only recurse into c++ subprograms looking for template arguments.
15852 Skip their other children. */
15853 if (!load_all
15854 && cu->language == language_cplus
15855 && parent_die != NULL
15856 && parent_die->tag == DW_TAG_subprogram)
15857 {
15858 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15859 continue;
15860 }
15861
15862 /* Check whether this DIE is interesting enough to save. Normally
15863 we would not be interested in members here, but there may be
15864 later variables referencing them via DW_AT_specification (for
15865 static members). */
15866 if (!load_all
15867 && !is_type_tag_for_partial (abbrev->tag)
15868 && abbrev->tag != DW_TAG_constant
15869 && abbrev->tag != DW_TAG_enumerator
15870 && abbrev->tag != DW_TAG_subprogram
15871 && abbrev->tag != DW_TAG_lexical_block
15872 && abbrev->tag != DW_TAG_variable
15873 && abbrev->tag != DW_TAG_namespace
15874 && abbrev->tag != DW_TAG_module
15875 && abbrev->tag != DW_TAG_member
15876 && abbrev->tag != DW_TAG_imported_unit
15877 && abbrev->tag != DW_TAG_imported_declaration)
15878 {
15879 /* Otherwise we skip to the next sibling, if any. */
15880 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15881 continue;
15882 }
15883
15884 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15885 info_ptr);
15886
15887 /* This two-pass algorithm for processing partial symbols has a
15888 high cost in cache pressure. Thus, handle some simple cases
15889 here which cover the majority of C partial symbols. DIEs
15890 which neither have specification tags in them, nor could have
15891 specification tags elsewhere pointing at them, can simply be
15892 processed and discarded.
15893
15894 This segment is also optional; scan_partial_symbols and
15895 add_partial_symbol will handle these DIEs if we chain
15896 them in normally. When compilers which do not emit large
15897 quantities of duplicate debug information are more common,
15898 this code can probably be removed. */
15899
15900 /* Any complete simple types at the top level (pretty much all
15901 of them, for a language without namespaces), can be processed
15902 directly. */
15903 if (parent_die == NULL
15904 && part_die->has_specification == 0
15905 && part_die->is_declaration == 0
15906 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15907 || part_die->tag == DW_TAG_base_type
15908 || part_die->tag == DW_TAG_subrange_type))
15909 {
15910 if (building_psymtab && part_die->name != NULL)
15911 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15912 VAR_DOMAIN, LOC_TYPEDEF,
15913 &objfile->static_psymbols,
15914 0, cu->language, objfile);
15915 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15916 continue;
15917 }
15918
15919 /* The exception for DW_TAG_typedef with has_children above is
15920 a workaround of GCC PR debug/47510. In the case of this complaint
15921 type_name_no_tag_or_error will error on such types later.
15922
15923 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15924 it could not find the child DIEs referenced later, this is checked
15925 above. In correct DWARF DW_TAG_typedef should have no children. */
15926
15927 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15928 complaint (&symfile_complaints,
15929 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15930 "- DIE at 0x%x [in module %s]"),
15931 part_die->offset.sect_off, objfile_name (objfile));
15932
15933 /* If we're at the second level, and we're an enumerator, and
15934 our parent has no specification (meaning possibly lives in a
15935 namespace elsewhere), then we can add the partial symbol now
15936 instead of queueing it. */
15937 if (part_die->tag == DW_TAG_enumerator
15938 && parent_die != NULL
15939 && parent_die->die_parent == NULL
15940 && parent_die->tag == DW_TAG_enumeration_type
15941 && parent_die->has_specification == 0)
15942 {
15943 if (part_die->name == NULL)
15944 complaint (&symfile_complaints,
15945 _("malformed enumerator DIE ignored"));
15946 else if (building_psymtab)
15947 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15948 VAR_DOMAIN, LOC_CONST,
15949 cu->language == language_cplus
15950 ? &objfile->global_psymbols
15951 : &objfile->static_psymbols,
15952 0, cu->language, objfile);
15953
15954 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15955 continue;
15956 }
15957
15958 /* We'll save this DIE so link it in. */
15959 part_die->die_parent = parent_die;
15960 part_die->die_sibling = NULL;
15961 part_die->die_child = NULL;
15962
15963 if (last_die && last_die == parent_die)
15964 last_die->die_child = part_die;
15965 else if (last_die)
15966 last_die->die_sibling = part_die;
15967
15968 last_die = part_die;
15969
15970 if (first_die == NULL)
15971 first_die = part_die;
15972
15973 /* Maybe add the DIE to the hash table. Not all DIEs that we
15974 find interesting need to be in the hash table, because we
15975 also have the parent/sibling/child chains; only those that we
15976 might refer to by offset later during partial symbol reading.
15977
15978 For now this means things that might have be the target of a
15979 DW_AT_specification, DW_AT_abstract_origin, or
15980 DW_AT_extension. DW_AT_extension will refer only to
15981 namespaces; DW_AT_abstract_origin refers to functions (and
15982 many things under the function DIE, but we do not recurse
15983 into function DIEs during partial symbol reading) and
15984 possibly variables as well; DW_AT_specification refers to
15985 declarations. Declarations ought to have the DW_AT_declaration
15986 flag. It happens that GCC forgets to put it in sometimes, but
15987 only for functions, not for types.
15988
15989 Adding more things than necessary to the hash table is harmless
15990 except for the performance cost. Adding too few will result in
15991 wasted time in find_partial_die, when we reread the compilation
15992 unit with load_all_dies set. */
15993
15994 if (load_all
15995 || abbrev->tag == DW_TAG_constant
15996 || abbrev->tag == DW_TAG_subprogram
15997 || abbrev->tag == DW_TAG_variable
15998 || abbrev->tag == DW_TAG_namespace
15999 || part_die->is_declaration)
16000 {
16001 void **slot;
16002
16003 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16004 part_die->offset.sect_off, INSERT);
16005 *slot = part_die;
16006 }
16007
16008 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16009
16010 /* For some DIEs we want to follow their children (if any). For C
16011 we have no reason to follow the children of structures; for other
16012 languages we have to, so that we can get at method physnames
16013 to infer fully qualified class names, for DW_AT_specification,
16014 and for C++ template arguments. For C++, we also look one level
16015 inside functions to find template arguments (if the name of the
16016 function does not already contain the template arguments).
16017
16018 For Ada, we need to scan the children of subprograms and lexical
16019 blocks as well because Ada allows the definition of nested
16020 entities that could be interesting for the debugger, such as
16021 nested subprograms for instance. */
16022 if (last_die->has_children
16023 && (load_all
16024 || last_die->tag == DW_TAG_namespace
16025 || last_die->tag == DW_TAG_module
16026 || last_die->tag == DW_TAG_enumeration_type
16027 || (cu->language == language_cplus
16028 && last_die->tag == DW_TAG_subprogram
16029 && (last_die->name == NULL
16030 || strchr (last_die->name, '<') == NULL))
16031 || (cu->language != language_c
16032 && (last_die->tag == DW_TAG_class_type
16033 || last_die->tag == DW_TAG_interface_type
16034 || last_die->tag == DW_TAG_structure_type
16035 || last_die->tag == DW_TAG_union_type))
16036 || (cu->language == language_ada
16037 && (last_die->tag == DW_TAG_subprogram
16038 || last_die->tag == DW_TAG_lexical_block))))
16039 {
16040 nesting_level++;
16041 parent_die = last_die;
16042 continue;
16043 }
16044
16045 /* Otherwise we skip to the next sibling, if any. */
16046 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16047
16048 /* Back to the top, do it again. */
16049 }
16050 }
16051
16052 /* Read a minimal amount of information into the minimal die structure. */
16053
16054 static const gdb_byte *
16055 read_partial_die (const struct die_reader_specs *reader,
16056 struct partial_die_info *part_die,
16057 struct abbrev_info *abbrev, unsigned int abbrev_len,
16058 const gdb_byte *info_ptr)
16059 {
16060 struct dwarf2_cu *cu = reader->cu;
16061 struct objfile *objfile = cu->objfile;
16062 const gdb_byte *buffer = reader->buffer;
16063 unsigned int i;
16064 struct attribute attr;
16065 int has_low_pc_attr = 0;
16066 int has_high_pc_attr = 0;
16067 int high_pc_relative = 0;
16068
16069 memset (part_die, 0, sizeof (struct partial_die_info));
16070
16071 part_die->offset.sect_off = info_ptr - buffer;
16072
16073 info_ptr += abbrev_len;
16074
16075 if (abbrev == NULL)
16076 return info_ptr;
16077
16078 part_die->tag = abbrev->tag;
16079 part_die->has_children = abbrev->has_children;
16080
16081 for (i = 0; i < abbrev->num_attrs; ++i)
16082 {
16083 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16084
16085 /* Store the data if it is of an attribute we want to keep in a
16086 partial symbol table. */
16087 switch (attr.name)
16088 {
16089 case DW_AT_name:
16090 switch (part_die->tag)
16091 {
16092 case DW_TAG_compile_unit:
16093 case DW_TAG_partial_unit:
16094 case DW_TAG_type_unit:
16095 /* Compilation units have a DW_AT_name that is a filename, not
16096 a source language identifier. */
16097 case DW_TAG_enumeration_type:
16098 case DW_TAG_enumerator:
16099 /* These tags always have simple identifiers already; no need
16100 to canonicalize them. */
16101 part_die->name = DW_STRING (&attr);
16102 break;
16103 default:
16104 part_die->name
16105 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16106 &objfile->per_bfd->storage_obstack);
16107 break;
16108 }
16109 break;
16110 case DW_AT_linkage_name:
16111 case DW_AT_MIPS_linkage_name:
16112 /* Note that both forms of linkage name might appear. We
16113 assume they will be the same, and we only store the last
16114 one we see. */
16115 if (cu->language == language_ada)
16116 part_die->name = DW_STRING (&attr);
16117 part_die->linkage_name = DW_STRING (&attr);
16118 break;
16119 case DW_AT_low_pc:
16120 has_low_pc_attr = 1;
16121 part_die->lowpc = attr_value_as_address (&attr);
16122 break;
16123 case DW_AT_high_pc:
16124 has_high_pc_attr = 1;
16125 part_die->highpc = attr_value_as_address (&attr);
16126 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16127 high_pc_relative = 1;
16128 break;
16129 case DW_AT_location:
16130 /* Support the .debug_loc offsets. */
16131 if (attr_form_is_block (&attr))
16132 {
16133 part_die->d.locdesc = DW_BLOCK (&attr);
16134 }
16135 else if (attr_form_is_section_offset (&attr))
16136 {
16137 dwarf2_complex_location_expr_complaint ();
16138 }
16139 else
16140 {
16141 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16142 "partial symbol information");
16143 }
16144 break;
16145 case DW_AT_external:
16146 part_die->is_external = DW_UNSND (&attr);
16147 break;
16148 case DW_AT_declaration:
16149 part_die->is_declaration = DW_UNSND (&attr);
16150 break;
16151 case DW_AT_type:
16152 part_die->has_type = 1;
16153 break;
16154 case DW_AT_abstract_origin:
16155 case DW_AT_specification:
16156 case DW_AT_extension:
16157 part_die->has_specification = 1;
16158 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16159 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16160 || cu->per_cu->is_dwz);
16161 break;
16162 case DW_AT_sibling:
16163 /* Ignore absolute siblings, they might point outside of
16164 the current compile unit. */
16165 if (attr.form == DW_FORM_ref_addr)
16166 complaint (&symfile_complaints,
16167 _("ignoring absolute DW_AT_sibling"));
16168 else
16169 {
16170 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
16171 const gdb_byte *sibling_ptr = buffer + off;
16172
16173 if (sibling_ptr < info_ptr)
16174 complaint (&symfile_complaints,
16175 _("DW_AT_sibling points backwards"));
16176 else if (sibling_ptr > reader->buffer_end)
16177 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16178 else
16179 part_die->sibling = sibling_ptr;
16180 }
16181 break;
16182 case DW_AT_byte_size:
16183 part_die->has_byte_size = 1;
16184 break;
16185 case DW_AT_const_value:
16186 part_die->has_const_value = 1;
16187 break;
16188 case DW_AT_calling_convention:
16189 /* DWARF doesn't provide a way to identify a program's source-level
16190 entry point. DW_AT_calling_convention attributes are only meant
16191 to describe functions' calling conventions.
16192
16193 However, because it's a necessary piece of information in
16194 Fortran, and before DWARF 4 DW_CC_program was the only
16195 piece of debugging information whose definition refers to
16196 a 'main program' at all, several compilers marked Fortran
16197 main programs with DW_CC_program --- even when those
16198 functions use the standard calling conventions.
16199
16200 Although DWARF now specifies a way to provide this
16201 information, we support this practice for backward
16202 compatibility. */
16203 if (DW_UNSND (&attr) == DW_CC_program
16204 && cu->language == language_fortran)
16205 part_die->main_subprogram = 1;
16206 break;
16207 case DW_AT_inline:
16208 if (DW_UNSND (&attr) == DW_INL_inlined
16209 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16210 part_die->may_be_inlined = 1;
16211 break;
16212
16213 case DW_AT_import:
16214 if (part_die->tag == DW_TAG_imported_unit)
16215 {
16216 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
16217 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16218 || cu->per_cu->is_dwz);
16219 }
16220 break;
16221
16222 case DW_AT_main_subprogram:
16223 part_die->main_subprogram = DW_UNSND (&attr);
16224 break;
16225
16226 default:
16227 break;
16228 }
16229 }
16230
16231 if (high_pc_relative)
16232 part_die->highpc += part_die->lowpc;
16233
16234 if (has_low_pc_attr && has_high_pc_attr)
16235 {
16236 /* When using the GNU linker, .gnu.linkonce. sections are used to
16237 eliminate duplicate copies of functions and vtables and such.
16238 The linker will arbitrarily choose one and discard the others.
16239 The AT_*_pc values for such functions refer to local labels in
16240 these sections. If the section from that file was discarded, the
16241 labels are not in the output, so the relocs get a value of 0.
16242 If this is a discarded function, mark the pc bounds as invalid,
16243 so that GDB will ignore it. */
16244 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16245 {
16246 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16247
16248 complaint (&symfile_complaints,
16249 _("DW_AT_low_pc %s is zero "
16250 "for DIE at 0x%x [in module %s]"),
16251 paddress (gdbarch, part_die->lowpc),
16252 part_die->offset.sect_off, objfile_name (objfile));
16253 }
16254 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16255 else if (part_die->lowpc >= part_die->highpc)
16256 {
16257 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16258
16259 complaint (&symfile_complaints,
16260 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16261 "for DIE at 0x%x [in module %s]"),
16262 paddress (gdbarch, part_die->lowpc),
16263 paddress (gdbarch, part_die->highpc),
16264 part_die->offset.sect_off, objfile_name (objfile));
16265 }
16266 else
16267 part_die->has_pc_info = 1;
16268 }
16269
16270 return info_ptr;
16271 }
16272
16273 /* Find a cached partial DIE at OFFSET in CU. */
16274
16275 static struct partial_die_info *
16276 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16277 {
16278 struct partial_die_info *lookup_die = NULL;
16279 struct partial_die_info part_die;
16280
16281 part_die.offset = offset;
16282 lookup_die = ((struct partial_die_info *)
16283 htab_find_with_hash (cu->partial_dies, &part_die,
16284 offset.sect_off));
16285
16286 return lookup_die;
16287 }
16288
16289 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16290 except in the case of .debug_types DIEs which do not reference
16291 outside their CU (they do however referencing other types via
16292 DW_FORM_ref_sig8). */
16293
16294 static struct partial_die_info *
16295 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16296 {
16297 struct objfile *objfile = cu->objfile;
16298 struct dwarf2_per_cu_data *per_cu = NULL;
16299 struct partial_die_info *pd = NULL;
16300
16301 if (offset_in_dwz == cu->per_cu->is_dwz
16302 && offset_in_cu_p (&cu->header, offset))
16303 {
16304 pd = find_partial_die_in_comp_unit (offset, cu);
16305 if (pd != NULL)
16306 return pd;
16307 /* We missed recording what we needed.
16308 Load all dies and try again. */
16309 per_cu = cu->per_cu;
16310 }
16311 else
16312 {
16313 /* TUs don't reference other CUs/TUs (except via type signatures). */
16314 if (cu->per_cu->is_debug_types)
16315 {
16316 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16317 " external reference to offset 0x%lx [in module %s].\n"),
16318 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16319 bfd_get_filename (objfile->obfd));
16320 }
16321 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16322 objfile);
16323
16324 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16325 load_partial_comp_unit (per_cu);
16326
16327 per_cu->cu->last_used = 0;
16328 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16329 }
16330
16331 /* If we didn't find it, and not all dies have been loaded,
16332 load them all and try again. */
16333
16334 if (pd == NULL && per_cu->load_all_dies == 0)
16335 {
16336 per_cu->load_all_dies = 1;
16337
16338 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16339 THIS_CU->cu may already be in use. So we can't just free it and
16340 replace its DIEs with the ones we read in. Instead, we leave those
16341 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16342 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16343 set. */
16344 load_partial_comp_unit (per_cu);
16345
16346 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16347 }
16348
16349 if (pd == NULL)
16350 internal_error (__FILE__, __LINE__,
16351 _("could not find partial DIE 0x%x "
16352 "in cache [from module %s]\n"),
16353 offset.sect_off, bfd_get_filename (objfile->obfd));
16354 return pd;
16355 }
16356
16357 /* See if we can figure out if the class lives in a namespace. We do
16358 this by looking for a member function; its demangled name will
16359 contain namespace info, if there is any. */
16360
16361 static void
16362 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16363 struct dwarf2_cu *cu)
16364 {
16365 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16366 what template types look like, because the demangler
16367 frequently doesn't give the same name as the debug info. We
16368 could fix this by only using the demangled name to get the
16369 prefix (but see comment in read_structure_type). */
16370
16371 struct partial_die_info *real_pdi;
16372 struct partial_die_info *child_pdi;
16373
16374 /* If this DIE (this DIE's specification, if any) has a parent, then
16375 we should not do this. We'll prepend the parent's fully qualified
16376 name when we create the partial symbol. */
16377
16378 real_pdi = struct_pdi;
16379 while (real_pdi->has_specification)
16380 real_pdi = find_partial_die (real_pdi->spec_offset,
16381 real_pdi->spec_is_dwz, cu);
16382
16383 if (real_pdi->die_parent != NULL)
16384 return;
16385
16386 for (child_pdi = struct_pdi->die_child;
16387 child_pdi != NULL;
16388 child_pdi = child_pdi->die_sibling)
16389 {
16390 if (child_pdi->tag == DW_TAG_subprogram
16391 && child_pdi->linkage_name != NULL)
16392 {
16393 char *actual_class_name
16394 = language_class_name_from_physname (cu->language_defn,
16395 child_pdi->linkage_name);
16396 if (actual_class_name != NULL)
16397 {
16398 struct_pdi->name
16399 = ((const char *)
16400 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16401 actual_class_name,
16402 strlen (actual_class_name)));
16403 xfree (actual_class_name);
16404 }
16405 break;
16406 }
16407 }
16408 }
16409
16410 /* Adjust PART_DIE before generating a symbol for it. This function
16411 may set the is_external flag or change the DIE's name. */
16412
16413 static void
16414 fixup_partial_die (struct partial_die_info *part_die,
16415 struct dwarf2_cu *cu)
16416 {
16417 /* Once we've fixed up a die, there's no point in doing so again.
16418 This also avoids a memory leak if we were to call
16419 guess_partial_die_structure_name multiple times. */
16420 if (part_die->fixup_called)
16421 return;
16422
16423 /* If we found a reference attribute and the DIE has no name, try
16424 to find a name in the referred to DIE. */
16425
16426 if (part_die->name == NULL && part_die->has_specification)
16427 {
16428 struct partial_die_info *spec_die;
16429
16430 spec_die = find_partial_die (part_die->spec_offset,
16431 part_die->spec_is_dwz, cu);
16432
16433 fixup_partial_die (spec_die, cu);
16434
16435 if (spec_die->name)
16436 {
16437 part_die->name = spec_die->name;
16438
16439 /* Copy DW_AT_external attribute if it is set. */
16440 if (spec_die->is_external)
16441 part_die->is_external = spec_die->is_external;
16442 }
16443 }
16444
16445 /* Set default names for some unnamed DIEs. */
16446
16447 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16448 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16449
16450 /* If there is no parent die to provide a namespace, and there are
16451 children, see if we can determine the namespace from their linkage
16452 name. */
16453 if (cu->language == language_cplus
16454 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16455 && part_die->die_parent == NULL
16456 && part_die->has_children
16457 && (part_die->tag == DW_TAG_class_type
16458 || part_die->tag == DW_TAG_structure_type
16459 || part_die->tag == DW_TAG_union_type))
16460 guess_partial_die_structure_name (part_die, cu);
16461
16462 /* GCC might emit a nameless struct or union that has a linkage
16463 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16464 if (part_die->name == NULL
16465 && (part_die->tag == DW_TAG_class_type
16466 || part_die->tag == DW_TAG_interface_type
16467 || part_die->tag == DW_TAG_structure_type
16468 || part_die->tag == DW_TAG_union_type)
16469 && part_die->linkage_name != NULL)
16470 {
16471 char *demangled;
16472
16473 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16474 if (demangled)
16475 {
16476 const char *base;
16477
16478 /* Strip any leading namespaces/classes, keep only the base name.
16479 DW_AT_name for named DIEs does not contain the prefixes. */
16480 base = strrchr (demangled, ':');
16481 if (base && base > demangled && base[-1] == ':')
16482 base++;
16483 else
16484 base = demangled;
16485
16486 part_die->name
16487 = ((const char *)
16488 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16489 base, strlen (base)));
16490 xfree (demangled);
16491 }
16492 }
16493
16494 part_die->fixup_called = 1;
16495 }
16496
16497 /* Read an attribute value described by an attribute form. */
16498
16499 static const gdb_byte *
16500 read_attribute_value (const struct die_reader_specs *reader,
16501 struct attribute *attr, unsigned form,
16502 LONGEST implicit_const, const gdb_byte *info_ptr)
16503 {
16504 struct dwarf2_cu *cu = reader->cu;
16505 struct objfile *objfile = cu->objfile;
16506 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16507 bfd *abfd = reader->abfd;
16508 struct comp_unit_head *cu_header = &cu->header;
16509 unsigned int bytes_read;
16510 struct dwarf_block *blk;
16511
16512 attr->form = (enum dwarf_form) form;
16513 switch (form)
16514 {
16515 case DW_FORM_ref_addr:
16516 if (cu->header.version == 2)
16517 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16518 else
16519 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16520 &cu->header, &bytes_read);
16521 info_ptr += bytes_read;
16522 break;
16523 case DW_FORM_GNU_ref_alt:
16524 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16525 info_ptr += bytes_read;
16526 break;
16527 case DW_FORM_addr:
16528 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16529 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16530 info_ptr += bytes_read;
16531 break;
16532 case DW_FORM_block2:
16533 blk = dwarf_alloc_block (cu);
16534 blk->size = read_2_bytes (abfd, info_ptr);
16535 info_ptr += 2;
16536 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16537 info_ptr += blk->size;
16538 DW_BLOCK (attr) = blk;
16539 break;
16540 case DW_FORM_block4:
16541 blk = dwarf_alloc_block (cu);
16542 blk->size = read_4_bytes (abfd, info_ptr);
16543 info_ptr += 4;
16544 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16545 info_ptr += blk->size;
16546 DW_BLOCK (attr) = blk;
16547 break;
16548 case DW_FORM_data2:
16549 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16550 info_ptr += 2;
16551 break;
16552 case DW_FORM_data4:
16553 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16554 info_ptr += 4;
16555 break;
16556 case DW_FORM_data8:
16557 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16558 info_ptr += 8;
16559 break;
16560 case DW_FORM_data16:
16561 blk = dwarf_alloc_block (cu);
16562 blk->size = 16;
16563 blk->data = read_n_bytes (abfd, info_ptr, 16);
16564 info_ptr += 16;
16565 DW_BLOCK (attr) = blk;
16566 break;
16567 case DW_FORM_sec_offset:
16568 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16569 info_ptr += bytes_read;
16570 break;
16571 case DW_FORM_string:
16572 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16573 DW_STRING_IS_CANONICAL (attr) = 0;
16574 info_ptr += bytes_read;
16575 break;
16576 case DW_FORM_strp:
16577 if (!cu->per_cu->is_dwz)
16578 {
16579 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16580 &bytes_read);
16581 DW_STRING_IS_CANONICAL (attr) = 0;
16582 info_ptr += bytes_read;
16583 break;
16584 }
16585 /* FALLTHROUGH */
16586 case DW_FORM_line_strp:
16587 if (!cu->per_cu->is_dwz)
16588 {
16589 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16590 cu_header, &bytes_read);
16591 DW_STRING_IS_CANONICAL (attr) = 0;
16592 info_ptr += bytes_read;
16593 break;
16594 }
16595 /* FALLTHROUGH */
16596 case DW_FORM_GNU_strp_alt:
16597 {
16598 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16599 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16600 &bytes_read);
16601
16602 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16603 DW_STRING_IS_CANONICAL (attr) = 0;
16604 info_ptr += bytes_read;
16605 }
16606 break;
16607 case DW_FORM_exprloc:
16608 case DW_FORM_block:
16609 blk = dwarf_alloc_block (cu);
16610 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16611 info_ptr += bytes_read;
16612 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16613 info_ptr += blk->size;
16614 DW_BLOCK (attr) = blk;
16615 break;
16616 case DW_FORM_block1:
16617 blk = dwarf_alloc_block (cu);
16618 blk->size = read_1_byte (abfd, info_ptr);
16619 info_ptr += 1;
16620 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16621 info_ptr += blk->size;
16622 DW_BLOCK (attr) = blk;
16623 break;
16624 case DW_FORM_data1:
16625 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16626 info_ptr += 1;
16627 break;
16628 case DW_FORM_flag:
16629 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16630 info_ptr += 1;
16631 break;
16632 case DW_FORM_flag_present:
16633 DW_UNSND (attr) = 1;
16634 break;
16635 case DW_FORM_sdata:
16636 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16637 info_ptr += bytes_read;
16638 break;
16639 case DW_FORM_udata:
16640 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16641 info_ptr += bytes_read;
16642 break;
16643 case DW_FORM_ref1:
16644 DW_UNSND (attr) = (cu->header.offset.sect_off
16645 + read_1_byte (abfd, info_ptr));
16646 info_ptr += 1;
16647 break;
16648 case DW_FORM_ref2:
16649 DW_UNSND (attr) = (cu->header.offset.sect_off
16650 + read_2_bytes (abfd, info_ptr));
16651 info_ptr += 2;
16652 break;
16653 case DW_FORM_ref4:
16654 DW_UNSND (attr) = (cu->header.offset.sect_off
16655 + read_4_bytes (abfd, info_ptr));
16656 info_ptr += 4;
16657 break;
16658 case DW_FORM_ref8:
16659 DW_UNSND (attr) = (cu->header.offset.sect_off
16660 + read_8_bytes (abfd, info_ptr));
16661 info_ptr += 8;
16662 break;
16663 case DW_FORM_ref_sig8:
16664 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16665 info_ptr += 8;
16666 break;
16667 case DW_FORM_ref_udata:
16668 DW_UNSND (attr) = (cu->header.offset.sect_off
16669 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16670 info_ptr += bytes_read;
16671 break;
16672 case DW_FORM_indirect:
16673 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16674 info_ptr += bytes_read;
16675 if (form == DW_FORM_implicit_const)
16676 {
16677 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16678 info_ptr += bytes_read;
16679 }
16680 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16681 info_ptr);
16682 break;
16683 case DW_FORM_implicit_const:
16684 DW_SND (attr) = implicit_const;
16685 break;
16686 case DW_FORM_GNU_addr_index:
16687 if (reader->dwo_file == NULL)
16688 {
16689 /* For now flag a hard error.
16690 Later we can turn this into a complaint. */
16691 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16692 dwarf_form_name (form),
16693 bfd_get_filename (abfd));
16694 }
16695 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16696 info_ptr += bytes_read;
16697 break;
16698 case DW_FORM_GNU_str_index:
16699 if (reader->dwo_file == NULL)
16700 {
16701 /* For now flag a hard error.
16702 Later we can turn this into a complaint if warranted. */
16703 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16704 dwarf_form_name (form),
16705 bfd_get_filename (abfd));
16706 }
16707 {
16708 ULONGEST str_index =
16709 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16710
16711 DW_STRING (attr) = read_str_index (reader, str_index);
16712 DW_STRING_IS_CANONICAL (attr) = 0;
16713 info_ptr += bytes_read;
16714 }
16715 break;
16716 default:
16717 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16718 dwarf_form_name (form),
16719 bfd_get_filename (abfd));
16720 }
16721
16722 /* Super hack. */
16723 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16724 attr->form = DW_FORM_GNU_ref_alt;
16725
16726 /* We have seen instances where the compiler tried to emit a byte
16727 size attribute of -1 which ended up being encoded as an unsigned
16728 0xffffffff. Although 0xffffffff is technically a valid size value,
16729 an object of this size seems pretty unlikely so we can relatively
16730 safely treat these cases as if the size attribute was invalid and
16731 treat them as zero by default. */
16732 if (attr->name == DW_AT_byte_size
16733 && form == DW_FORM_data4
16734 && DW_UNSND (attr) >= 0xffffffff)
16735 {
16736 complaint
16737 (&symfile_complaints,
16738 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16739 hex_string (DW_UNSND (attr)));
16740 DW_UNSND (attr) = 0;
16741 }
16742
16743 return info_ptr;
16744 }
16745
16746 /* Read an attribute described by an abbreviated attribute. */
16747
16748 static const gdb_byte *
16749 read_attribute (const struct die_reader_specs *reader,
16750 struct attribute *attr, struct attr_abbrev *abbrev,
16751 const gdb_byte *info_ptr)
16752 {
16753 attr->name = abbrev->name;
16754 return read_attribute_value (reader, attr, abbrev->form,
16755 abbrev->implicit_const, info_ptr);
16756 }
16757
16758 /* Read dwarf information from a buffer. */
16759
16760 static unsigned int
16761 read_1_byte (bfd *abfd, const gdb_byte *buf)
16762 {
16763 return bfd_get_8 (abfd, buf);
16764 }
16765
16766 static int
16767 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16768 {
16769 return bfd_get_signed_8 (abfd, buf);
16770 }
16771
16772 static unsigned int
16773 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16774 {
16775 return bfd_get_16 (abfd, buf);
16776 }
16777
16778 static int
16779 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16780 {
16781 return bfd_get_signed_16 (abfd, buf);
16782 }
16783
16784 static unsigned int
16785 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16786 {
16787 return bfd_get_32 (abfd, buf);
16788 }
16789
16790 static int
16791 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16792 {
16793 return bfd_get_signed_32 (abfd, buf);
16794 }
16795
16796 static ULONGEST
16797 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16798 {
16799 return bfd_get_64 (abfd, buf);
16800 }
16801
16802 static CORE_ADDR
16803 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16804 unsigned int *bytes_read)
16805 {
16806 struct comp_unit_head *cu_header = &cu->header;
16807 CORE_ADDR retval = 0;
16808
16809 if (cu_header->signed_addr_p)
16810 {
16811 switch (cu_header->addr_size)
16812 {
16813 case 2:
16814 retval = bfd_get_signed_16 (abfd, buf);
16815 break;
16816 case 4:
16817 retval = bfd_get_signed_32 (abfd, buf);
16818 break;
16819 case 8:
16820 retval = bfd_get_signed_64 (abfd, buf);
16821 break;
16822 default:
16823 internal_error (__FILE__, __LINE__,
16824 _("read_address: bad switch, signed [in module %s]"),
16825 bfd_get_filename (abfd));
16826 }
16827 }
16828 else
16829 {
16830 switch (cu_header->addr_size)
16831 {
16832 case 2:
16833 retval = bfd_get_16 (abfd, buf);
16834 break;
16835 case 4:
16836 retval = bfd_get_32 (abfd, buf);
16837 break;
16838 case 8:
16839 retval = bfd_get_64 (abfd, buf);
16840 break;
16841 default:
16842 internal_error (__FILE__, __LINE__,
16843 _("read_address: bad switch, "
16844 "unsigned [in module %s]"),
16845 bfd_get_filename (abfd));
16846 }
16847 }
16848
16849 *bytes_read = cu_header->addr_size;
16850 return retval;
16851 }
16852
16853 /* Read the initial length from a section. The (draft) DWARF 3
16854 specification allows the initial length to take up either 4 bytes
16855 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16856 bytes describe the length and all offsets will be 8 bytes in length
16857 instead of 4.
16858
16859 An older, non-standard 64-bit format is also handled by this
16860 function. The older format in question stores the initial length
16861 as an 8-byte quantity without an escape value. Lengths greater
16862 than 2^32 aren't very common which means that the initial 4 bytes
16863 is almost always zero. Since a length value of zero doesn't make
16864 sense for the 32-bit format, this initial zero can be considered to
16865 be an escape value which indicates the presence of the older 64-bit
16866 format. As written, the code can't detect (old format) lengths
16867 greater than 4GB. If it becomes necessary to handle lengths
16868 somewhat larger than 4GB, we could allow other small values (such
16869 as the non-sensical values of 1, 2, and 3) to also be used as
16870 escape values indicating the presence of the old format.
16871
16872 The value returned via bytes_read should be used to increment the
16873 relevant pointer after calling read_initial_length().
16874
16875 [ Note: read_initial_length() and read_offset() are based on the
16876 document entitled "DWARF Debugging Information Format", revision
16877 3, draft 8, dated November 19, 2001. This document was obtained
16878 from:
16879
16880 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16881
16882 This document is only a draft and is subject to change. (So beware.)
16883
16884 Details regarding the older, non-standard 64-bit format were
16885 determined empirically by examining 64-bit ELF files produced by
16886 the SGI toolchain on an IRIX 6.5 machine.
16887
16888 - Kevin, July 16, 2002
16889 ] */
16890
16891 static LONGEST
16892 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16893 {
16894 LONGEST length = bfd_get_32 (abfd, buf);
16895
16896 if (length == 0xffffffff)
16897 {
16898 length = bfd_get_64 (abfd, buf + 4);
16899 *bytes_read = 12;
16900 }
16901 else if (length == 0)
16902 {
16903 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16904 length = bfd_get_64 (abfd, buf);
16905 *bytes_read = 8;
16906 }
16907 else
16908 {
16909 *bytes_read = 4;
16910 }
16911
16912 return length;
16913 }
16914
16915 /* Cover function for read_initial_length.
16916 Returns the length of the object at BUF, and stores the size of the
16917 initial length in *BYTES_READ and stores the size that offsets will be in
16918 *OFFSET_SIZE.
16919 If the initial length size is not equivalent to that specified in
16920 CU_HEADER then issue a complaint.
16921 This is useful when reading non-comp-unit headers. */
16922
16923 static LONGEST
16924 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16925 const struct comp_unit_head *cu_header,
16926 unsigned int *bytes_read,
16927 unsigned int *offset_size)
16928 {
16929 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16930
16931 gdb_assert (cu_header->initial_length_size == 4
16932 || cu_header->initial_length_size == 8
16933 || cu_header->initial_length_size == 12);
16934
16935 if (cu_header->initial_length_size != *bytes_read)
16936 complaint (&symfile_complaints,
16937 _("intermixed 32-bit and 64-bit DWARF sections"));
16938
16939 *offset_size = (*bytes_read == 4) ? 4 : 8;
16940 return length;
16941 }
16942
16943 /* Read an offset from the data stream. The size of the offset is
16944 given by cu_header->offset_size. */
16945
16946 static LONGEST
16947 read_offset (bfd *abfd, const gdb_byte *buf,
16948 const struct comp_unit_head *cu_header,
16949 unsigned int *bytes_read)
16950 {
16951 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16952
16953 *bytes_read = cu_header->offset_size;
16954 return offset;
16955 }
16956
16957 /* Read an offset from the data stream. */
16958
16959 static LONGEST
16960 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16961 {
16962 LONGEST retval = 0;
16963
16964 switch (offset_size)
16965 {
16966 case 4:
16967 retval = bfd_get_32 (abfd, buf);
16968 break;
16969 case 8:
16970 retval = bfd_get_64 (abfd, buf);
16971 break;
16972 default:
16973 internal_error (__FILE__, __LINE__,
16974 _("read_offset_1: bad switch [in module %s]"),
16975 bfd_get_filename (abfd));
16976 }
16977
16978 return retval;
16979 }
16980
16981 static const gdb_byte *
16982 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16983 {
16984 /* If the size of a host char is 8 bits, we can return a pointer
16985 to the buffer, otherwise we have to copy the data to a buffer
16986 allocated on the temporary obstack. */
16987 gdb_assert (HOST_CHAR_BIT == 8);
16988 return buf;
16989 }
16990
16991 static const char *
16992 read_direct_string (bfd *abfd, const gdb_byte *buf,
16993 unsigned int *bytes_read_ptr)
16994 {
16995 /* If the size of a host char is 8 bits, we can return a pointer
16996 to the string, otherwise we have to copy the string to a buffer
16997 allocated on the temporary obstack. */
16998 gdb_assert (HOST_CHAR_BIT == 8);
16999 if (*buf == '\0')
17000 {
17001 *bytes_read_ptr = 1;
17002 return NULL;
17003 }
17004 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17005 return (const char *) buf;
17006 }
17007
17008 /* Return pointer to string at section SECT offset STR_OFFSET with error
17009 reporting strings FORM_NAME and SECT_NAME. */
17010
17011 static const char *
17012 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17013 struct dwarf2_section_info *sect,
17014 const char *form_name,
17015 const char *sect_name)
17016 {
17017 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17018 if (sect->buffer == NULL)
17019 error (_("%s used without %s section [in module %s]"),
17020 form_name, sect_name, bfd_get_filename (abfd));
17021 if (str_offset >= sect->size)
17022 error (_("%s pointing outside of %s section [in module %s]"),
17023 form_name, sect_name, bfd_get_filename (abfd));
17024 gdb_assert (HOST_CHAR_BIT == 8);
17025 if (sect->buffer[str_offset] == '\0')
17026 return NULL;
17027 return (const char *) (sect->buffer + str_offset);
17028 }
17029
17030 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17031
17032 static const char *
17033 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17034 {
17035 return read_indirect_string_at_offset_from (abfd, str_offset,
17036 &dwarf2_per_objfile->str,
17037 "DW_FORM_strp", ".debug_str");
17038 }
17039
17040 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17041
17042 static const char *
17043 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17044 {
17045 return read_indirect_string_at_offset_from (abfd, str_offset,
17046 &dwarf2_per_objfile->line_str,
17047 "DW_FORM_line_strp",
17048 ".debug_line_str");
17049 }
17050
17051 /* Read a string at offset STR_OFFSET in the .debug_str section from
17052 the .dwz file DWZ. Throw an error if the offset is too large. If
17053 the string consists of a single NUL byte, return NULL; otherwise
17054 return a pointer to the string. */
17055
17056 static const char *
17057 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17058 {
17059 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17060
17061 if (dwz->str.buffer == NULL)
17062 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17063 "section [in module %s]"),
17064 bfd_get_filename (dwz->dwz_bfd));
17065 if (str_offset >= dwz->str.size)
17066 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17067 ".debug_str section [in module %s]"),
17068 bfd_get_filename (dwz->dwz_bfd));
17069 gdb_assert (HOST_CHAR_BIT == 8);
17070 if (dwz->str.buffer[str_offset] == '\0')
17071 return NULL;
17072 return (const char *) (dwz->str.buffer + str_offset);
17073 }
17074
17075 /* Return pointer to string at .debug_str offset as read from BUF.
17076 BUF is assumed to be in a compilation unit described by CU_HEADER.
17077 Return *BYTES_READ_PTR count of bytes read from BUF. */
17078
17079 static const char *
17080 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17081 const struct comp_unit_head *cu_header,
17082 unsigned int *bytes_read_ptr)
17083 {
17084 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17085
17086 return read_indirect_string_at_offset (abfd, str_offset);
17087 }
17088
17089 /* Return pointer to string at .debug_line_str offset as read from BUF.
17090 BUF is assumed to be in a compilation unit described by CU_HEADER.
17091 Return *BYTES_READ_PTR count of bytes read from BUF. */
17092
17093 static const char *
17094 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17095 const struct comp_unit_head *cu_header,
17096 unsigned int *bytes_read_ptr)
17097 {
17098 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17099
17100 return read_indirect_line_string_at_offset (abfd, str_offset);
17101 }
17102
17103 ULONGEST
17104 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17105 unsigned int *bytes_read_ptr)
17106 {
17107 ULONGEST result;
17108 unsigned int num_read;
17109 int shift;
17110 unsigned char byte;
17111
17112 result = 0;
17113 shift = 0;
17114 num_read = 0;
17115 while (1)
17116 {
17117 byte = bfd_get_8 (abfd, buf);
17118 buf++;
17119 num_read++;
17120 result |= ((ULONGEST) (byte & 127) << shift);
17121 if ((byte & 128) == 0)
17122 {
17123 break;
17124 }
17125 shift += 7;
17126 }
17127 *bytes_read_ptr = num_read;
17128 return result;
17129 }
17130
17131 static LONGEST
17132 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17133 unsigned int *bytes_read_ptr)
17134 {
17135 LONGEST result;
17136 int shift, num_read;
17137 unsigned char byte;
17138
17139 result = 0;
17140 shift = 0;
17141 num_read = 0;
17142 while (1)
17143 {
17144 byte = bfd_get_8 (abfd, buf);
17145 buf++;
17146 num_read++;
17147 result |= ((LONGEST) (byte & 127) << shift);
17148 shift += 7;
17149 if ((byte & 128) == 0)
17150 {
17151 break;
17152 }
17153 }
17154 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17155 result |= -(((LONGEST) 1) << shift);
17156 *bytes_read_ptr = num_read;
17157 return result;
17158 }
17159
17160 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17161 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17162 ADDR_SIZE is the size of addresses from the CU header. */
17163
17164 static CORE_ADDR
17165 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17166 {
17167 struct objfile *objfile = dwarf2_per_objfile->objfile;
17168 bfd *abfd = objfile->obfd;
17169 const gdb_byte *info_ptr;
17170
17171 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17172 if (dwarf2_per_objfile->addr.buffer == NULL)
17173 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17174 objfile_name (objfile));
17175 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17176 error (_("DW_FORM_addr_index pointing outside of "
17177 ".debug_addr section [in module %s]"),
17178 objfile_name (objfile));
17179 info_ptr = (dwarf2_per_objfile->addr.buffer
17180 + addr_base + addr_index * addr_size);
17181 if (addr_size == 4)
17182 return bfd_get_32 (abfd, info_ptr);
17183 else
17184 return bfd_get_64 (abfd, info_ptr);
17185 }
17186
17187 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17188
17189 static CORE_ADDR
17190 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17191 {
17192 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17193 }
17194
17195 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17196
17197 static CORE_ADDR
17198 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17199 unsigned int *bytes_read)
17200 {
17201 bfd *abfd = cu->objfile->obfd;
17202 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17203
17204 return read_addr_index (cu, addr_index);
17205 }
17206
17207 /* Data structure to pass results from dwarf2_read_addr_index_reader
17208 back to dwarf2_read_addr_index. */
17209
17210 struct dwarf2_read_addr_index_data
17211 {
17212 ULONGEST addr_base;
17213 int addr_size;
17214 };
17215
17216 /* die_reader_func for dwarf2_read_addr_index. */
17217
17218 static void
17219 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17220 const gdb_byte *info_ptr,
17221 struct die_info *comp_unit_die,
17222 int has_children,
17223 void *data)
17224 {
17225 struct dwarf2_cu *cu = reader->cu;
17226 struct dwarf2_read_addr_index_data *aidata =
17227 (struct dwarf2_read_addr_index_data *) data;
17228
17229 aidata->addr_base = cu->addr_base;
17230 aidata->addr_size = cu->header.addr_size;
17231 }
17232
17233 /* Given an index in .debug_addr, fetch the value.
17234 NOTE: This can be called during dwarf expression evaluation,
17235 long after the debug information has been read, and thus per_cu->cu
17236 may no longer exist. */
17237
17238 CORE_ADDR
17239 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17240 unsigned int addr_index)
17241 {
17242 struct objfile *objfile = per_cu->objfile;
17243 struct dwarf2_cu *cu = per_cu->cu;
17244 ULONGEST addr_base;
17245 int addr_size;
17246
17247 /* This is intended to be called from outside this file. */
17248 dw2_setup (objfile);
17249
17250 /* We need addr_base and addr_size.
17251 If we don't have PER_CU->cu, we have to get it.
17252 Nasty, but the alternative is storing the needed info in PER_CU,
17253 which at this point doesn't seem justified: it's not clear how frequently
17254 it would get used and it would increase the size of every PER_CU.
17255 Entry points like dwarf2_per_cu_addr_size do a similar thing
17256 so we're not in uncharted territory here.
17257 Alas we need to be a bit more complicated as addr_base is contained
17258 in the DIE.
17259
17260 We don't need to read the entire CU(/TU).
17261 We just need the header and top level die.
17262
17263 IWBN to use the aging mechanism to let us lazily later discard the CU.
17264 For now we skip this optimization. */
17265
17266 if (cu != NULL)
17267 {
17268 addr_base = cu->addr_base;
17269 addr_size = cu->header.addr_size;
17270 }
17271 else
17272 {
17273 struct dwarf2_read_addr_index_data aidata;
17274
17275 /* Note: We can't use init_cutu_and_read_dies_simple here,
17276 we need addr_base. */
17277 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17278 dwarf2_read_addr_index_reader, &aidata);
17279 addr_base = aidata.addr_base;
17280 addr_size = aidata.addr_size;
17281 }
17282
17283 return read_addr_index_1 (addr_index, addr_base, addr_size);
17284 }
17285
17286 /* Given a DW_FORM_GNU_str_index, fetch the string.
17287 This is only used by the Fission support. */
17288
17289 static const char *
17290 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17291 {
17292 struct objfile *objfile = dwarf2_per_objfile->objfile;
17293 const char *objf_name = objfile_name (objfile);
17294 bfd *abfd = objfile->obfd;
17295 struct dwarf2_cu *cu = reader->cu;
17296 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17297 struct dwarf2_section_info *str_offsets_section =
17298 &reader->dwo_file->sections.str_offsets;
17299 const gdb_byte *info_ptr;
17300 ULONGEST str_offset;
17301 static const char form_name[] = "DW_FORM_GNU_str_index";
17302
17303 dwarf2_read_section (objfile, str_section);
17304 dwarf2_read_section (objfile, str_offsets_section);
17305 if (str_section->buffer == NULL)
17306 error (_("%s used without .debug_str.dwo section"
17307 " in CU at offset 0x%lx [in module %s]"),
17308 form_name, (long) cu->header.offset.sect_off, objf_name);
17309 if (str_offsets_section->buffer == NULL)
17310 error (_("%s used without .debug_str_offsets.dwo section"
17311 " in CU at offset 0x%lx [in module %s]"),
17312 form_name, (long) cu->header.offset.sect_off, objf_name);
17313 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17314 error (_("%s pointing outside of .debug_str_offsets.dwo"
17315 " section in CU at offset 0x%lx [in module %s]"),
17316 form_name, (long) cu->header.offset.sect_off, objf_name);
17317 info_ptr = (str_offsets_section->buffer
17318 + str_index * cu->header.offset_size);
17319 if (cu->header.offset_size == 4)
17320 str_offset = bfd_get_32 (abfd, info_ptr);
17321 else
17322 str_offset = bfd_get_64 (abfd, info_ptr);
17323 if (str_offset >= str_section->size)
17324 error (_("Offset from %s pointing outside of"
17325 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
17326 form_name, (long) cu->header.offset.sect_off, objf_name);
17327 return (const char *) (str_section->buffer + str_offset);
17328 }
17329
17330 /* Return the length of an LEB128 number in BUF. */
17331
17332 static int
17333 leb128_size (const gdb_byte *buf)
17334 {
17335 const gdb_byte *begin = buf;
17336 gdb_byte byte;
17337
17338 while (1)
17339 {
17340 byte = *buf++;
17341 if ((byte & 128) == 0)
17342 return buf - begin;
17343 }
17344 }
17345
17346 static void
17347 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17348 {
17349 switch (lang)
17350 {
17351 case DW_LANG_C89:
17352 case DW_LANG_C99:
17353 case DW_LANG_C11:
17354 case DW_LANG_C:
17355 case DW_LANG_UPC:
17356 cu->language = language_c;
17357 break;
17358 case DW_LANG_Java:
17359 case DW_LANG_C_plus_plus:
17360 case DW_LANG_C_plus_plus_11:
17361 case DW_LANG_C_plus_plus_14:
17362 cu->language = language_cplus;
17363 break;
17364 case DW_LANG_D:
17365 cu->language = language_d;
17366 break;
17367 case DW_LANG_Fortran77:
17368 case DW_LANG_Fortran90:
17369 case DW_LANG_Fortran95:
17370 case DW_LANG_Fortran03:
17371 case DW_LANG_Fortran08:
17372 cu->language = language_fortran;
17373 break;
17374 case DW_LANG_Go:
17375 cu->language = language_go;
17376 break;
17377 case DW_LANG_Mips_Assembler:
17378 cu->language = language_asm;
17379 break;
17380 case DW_LANG_Ada83:
17381 case DW_LANG_Ada95:
17382 cu->language = language_ada;
17383 break;
17384 case DW_LANG_Modula2:
17385 cu->language = language_m2;
17386 break;
17387 case DW_LANG_Pascal83:
17388 cu->language = language_pascal;
17389 break;
17390 case DW_LANG_ObjC:
17391 cu->language = language_objc;
17392 break;
17393 case DW_LANG_Rust:
17394 case DW_LANG_Rust_old:
17395 cu->language = language_rust;
17396 break;
17397 case DW_LANG_Cobol74:
17398 case DW_LANG_Cobol85:
17399 default:
17400 cu->language = language_minimal;
17401 break;
17402 }
17403 cu->language_defn = language_def (cu->language);
17404 }
17405
17406 /* Return the named attribute or NULL if not there. */
17407
17408 static struct attribute *
17409 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17410 {
17411 for (;;)
17412 {
17413 unsigned int i;
17414 struct attribute *spec = NULL;
17415
17416 for (i = 0; i < die->num_attrs; ++i)
17417 {
17418 if (die->attrs[i].name == name)
17419 return &die->attrs[i];
17420 if (die->attrs[i].name == DW_AT_specification
17421 || die->attrs[i].name == DW_AT_abstract_origin)
17422 spec = &die->attrs[i];
17423 }
17424
17425 if (!spec)
17426 break;
17427
17428 die = follow_die_ref (die, spec, &cu);
17429 }
17430
17431 return NULL;
17432 }
17433
17434 /* Return the named attribute or NULL if not there,
17435 but do not follow DW_AT_specification, etc.
17436 This is for use in contexts where we're reading .debug_types dies.
17437 Following DW_AT_specification, DW_AT_abstract_origin will take us
17438 back up the chain, and we want to go down. */
17439
17440 static struct attribute *
17441 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17442 {
17443 unsigned int i;
17444
17445 for (i = 0; i < die->num_attrs; ++i)
17446 if (die->attrs[i].name == name)
17447 return &die->attrs[i];
17448
17449 return NULL;
17450 }
17451
17452 /* Return the string associated with a string-typed attribute, or NULL if it
17453 is either not found or is of an incorrect type. */
17454
17455 static const char *
17456 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17457 {
17458 struct attribute *attr;
17459 const char *str = NULL;
17460
17461 attr = dwarf2_attr (die, name, cu);
17462
17463 if (attr != NULL)
17464 {
17465 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17466 || attr->form == DW_FORM_string || attr->form == DW_FORM_GNU_strp_alt)
17467 str = DW_STRING (attr);
17468 else
17469 complaint (&symfile_complaints,
17470 _("string type expected for attribute %s for "
17471 "DIE at 0x%x in module %s"),
17472 dwarf_attr_name (name), die->offset.sect_off,
17473 objfile_name (cu->objfile));
17474 }
17475
17476 return str;
17477 }
17478
17479 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17480 and holds a non-zero value. This function should only be used for
17481 DW_FORM_flag or DW_FORM_flag_present attributes. */
17482
17483 static int
17484 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17485 {
17486 struct attribute *attr = dwarf2_attr (die, name, cu);
17487
17488 return (attr && DW_UNSND (attr));
17489 }
17490
17491 static int
17492 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17493 {
17494 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17495 which value is non-zero. However, we have to be careful with
17496 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17497 (via dwarf2_flag_true_p) follows this attribute. So we may
17498 end up accidently finding a declaration attribute that belongs
17499 to a different DIE referenced by the specification attribute,
17500 even though the given DIE does not have a declaration attribute. */
17501 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17502 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17503 }
17504
17505 /* Return the die giving the specification for DIE, if there is
17506 one. *SPEC_CU is the CU containing DIE on input, and the CU
17507 containing the return value on output. If there is no
17508 specification, but there is an abstract origin, that is
17509 returned. */
17510
17511 static struct die_info *
17512 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17513 {
17514 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17515 *spec_cu);
17516
17517 if (spec_attr == NULL)
17518 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17519
17520 if (spec_attr == NULL)
17521 return NULL;
17522 else
17523 return follow_die_ref (die, spec_attr, spec_cu);
17524 }
17525
17526 /* Free the line_header structure *LH, and any arrays and strings it
17527 refers to.
17528 NOTE: This is also used as a "cleanup" function. */
17529
17530 static void
17531 free_line_header (struct line_header *lh)
17532 {
17533 if (lh->standard_opcode_lengths)
17534 xfree (lh->standard_opcode_lengths);
17535
17536 /* Remember that all the lh->file_names[i].name pointers are
17537 pointers into debug_line_buffer, and don't need to be freed. */
17538 if (lh->file_names)
17539 xfree (lh->file_names);
17540
17541 /* Similarly for the include directory names. */
17542 if (lh->include_dirs)
17543 xfree (lh->include_dirs);
17544
17545 xfree (lh);
17546 }
17547
17548 /* Stub for free_line_header to match void * callback types. */
17549
17550 static void
17551 free_line_header_voidp (void *arg)
17552 {
17553 struct line_header *lh = (struct line_header *) arg;
17554
17555 free_line_header (lh);
17556 }
17557
17558 /* Add an entry to LH's include directory table. */
17559
17560 static void
17561 add_include_dir (struct line_header *lh, const char *include_dir)
17562 {
17563 if (dwarf_line_debug >= 2)
17564 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17565 lh->num_include_dirs + 1, include_dir);
17566
17567 /* Grow the array if necessary. */
17568 if (lh->include_dirs_size == 0)
17569 {
17570 lh->include_dirs_size = 1; /* for testing */
17571 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17572 }
17573 else if (lh->num_include_dirs >= lh->include_dirs_size)
17574 {
17575 lh->include_dirs_size *= 2;
17576 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17577 lh->include_dirs_size);
17578 }
17579
17580 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17581 }
17582
17583 /* Add an entry to LH's file name table. */
17584
17585 static void
17586 add_file_name (struct line_header *lh,
17587 const char *name,
17588 unsigned int dir_index,
17589 unsigned int mod_time,
17590 unsigned int length)
17591 {
17592 struct file_entry *fe;
17593
17594 if (dwarf_line_debug >= 2)
17595 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17596 lh->num_file_names + 1, name);
17597
17598 /* Grow the array if necessary. */
17599 if (lh->file_names_size == 0)
17600 {
17601 lh->file_names_size = 1; /* for testing */
17602 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17603 }
17604 else if (lh->num_file_names >= lh->file_names_size)
17605 {
17606 lh->file_names_size *= 2;
17607 lh->file_names
17608 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17609 }
17610
17611 fe = &lh->file_names[lh->num_file_names++];
17612 fe->name = name;
17613 fe->dir_index = dir_index;
17614 fe->mod_time = mod_time;
17615 fe->length = length;
17616 fe->included_p = 0;
17617 fe->symtab = NULL;
17618 }
17619
17620 /* A convenience function to find the proper .debug_line section for a CU. */
17621
17622 static struct dwarf2_section_info *
17623 get_debug_line_section (struct dwarf2_cu *cu)
17624 {
17625 struct dwarf2_section_info *section;
17626
17627 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17628 DWO file. */
17629 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17630 section = &cu->dwo_unit->dwo_file->sections.line;
17631 else if (cu->per_cu->is_dwz)
17632 {
17633 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17634
17635 section = &dwz->line;
17636 }
17637 else
17638 section = &dwarf2_per_objfile->line;
17639
17640 return section;
17641 }
17642
17643 /* Forwarding function for read_formatted_entries. */
17644
17645 static void
17646 add_include_dir_stub (struct line_header *lh, const char *name,
17647 unsigned int dir_index, unsigned int mod_time,
17648 unsigned int length)
17649 {
17650 add_include_dir (lh, name);
17651 }
17652
17653 /* Read directory or file name entry format, starting with byte of
17654 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17655 entries count and the entries themselves in the described entry
17656 format. */
17657
17658 static void
17659 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17660 struct line_header *lh,
17661 const struct comp_unit_head *cu_header,
17662 void (*callback) (struct line_header *lh,
17663 const char *name,
17664 unsigned int dir_index,
17665 unsigned int mod_time,
17666 unsigned int length))
17667 {
17668 gdb_byte format_count, formati;
17669 ULONGEST data_count, datai;
17670 const gdb_byte *buf = *bufp;
17671 const gdb_byte *format_header_data;
17672 int i;
17673 unsigned int bytes_read;
17674
17675 format_count = read_1_byte (abfd, buf);
17676 buf += 1;
17677 format_header_data = buf;
17678 for (formati = 0; formati < format_count; formati++)
17679 {
17680 read_unsigned_leb128 (abfd, buf, &bytes_read);
17681 buf += bytes_read;
17682 read_unsigned_leb128 (abfd, buf, &bytes_read);
17683 buf += bytes_read;
17684 }
17685
17686 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17687 buf += bytes_read;
17688 for (datai = 0; datai < data_count; datai++)
17689 {
17690 const gdb_byte *format = format_header_data;
17691 struct file_entry fe;
17692
17693 memset (&fe, 0, sizeof (fe));
17694
17695 for (formati = 0; formati < format_count; formati++)
17696 {
17697 ULONGEST content_type, form;
17698 const char *string_trash;
17699 const char **stringp = &string_trash;
17700 unsigned int uint_trash, *uintp = &uint_trash;
17701
17702 content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17703 format += bytes_read;
17704 switch (content_type)
17705 {
17706 case DW_LNCT_path:
17707 stringp = &fe.name;
17708 break;
17709 case DW_LNCT_directory_index:
17710 uintp = &fe.dir_index;
17711 break;
17712 case DW_LNCT_timestamp:
17713 uintp = &fe.mod_time;
17714 break;
17715 case DW_LNCT_size:
17716 uintp = &fe.length;
17717 break;
17718 case DW_LNCT_MD5:
17719 break;
17720 default:
17721 complaint (&symfile_complaints,
17722 _("Unknown format content type %s"),
17723 pulongest (content_type));
17724 }
17725
17726 form = read_unsigned_leb128 (abfd, format, &bytes_read);
17727 format += bytes_read;
17728 switch (form)
17729 {
17730 case DW_FORM_string:
17731 *stringp = read_direct_string (abfd, buf, &bytes_read);
17732 buf += bytes_read;
17733 break;
17734
17735 case DW_FORM_line_strp:
17736 *stringp = read_indirect_line_string (abfd, buf, cu_header, &bytes_read);
17737 buf += bytes_read;
17738 break;
17739
17740 case DW_FORM_data1:
17741 *uintp = read_1_byte (abfd, buf);
17742 buf += 1;
17743 break;
17744
17745 case DW_FORM_data2:
17746 *uintp = read_2_bytes (abfd, buf);
17747 buf += 2;
17748 break;
17749
17750 case DW_FORM_data4:
17751 *uintp = read_4_bytes (abfd, buf);
17752 buf += 4;
17753 break;
17754
17755 case DW_FORM_data8:
17756 *uintp = read_8_bytes (abfd, buf);
17757 buf += 8;
17758 break;
17759
17760 case DW_FORM_udata:
17761 *uintp = read_unsigned_leb128 (abfd, buf, &bytes_read);
17762 buf += bytes_read;
17763 break;
17764
17765 case DW_FORM_block:
17766 /* It is valid only for DW_LNCT_timestamp which is ignored by
17767 current GDB. */
17768 break;
17769 }
17770 }
17771
17772 callback (lh, fe.name, fe.dir_index, fe.mod_time, fe.length);
17773 }
17774
17775 *bufp = buf;
17776 }
17777
17778 /* Read the statement program header starting at OFFSET in
17779 .debug_line, or .debug_line.dwo. Return a pointer
17780 to a struct line_header, allocated using xmalloc.
17781 Returns NULL if there is a problem reading the header, e.g., if it
17782 has a version we don't understand.
17783
17784 NOTE: the strings in the include directory and file name tables of
17785 the returned object point into the dwarf line section buffer,
17786 and must not be freed. */
17787
17788 static struct line_header *
17789 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17790 {
17791 struct cleanup *back_to;
17792 struct line_header *lh;
17793 const gdb_byte *line_ptr;
17794 unsigned int bytes_read, offset_size;
17795 int i;
17796 const char *cur_dir, *cur_file;
17797 struct dwarf2_section_info *section;
17798 bfd *abfd;
17799
17800 section = get_debug_line_section (cu);
17801 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17802 if (section->buffer == NULL)
17803 {
17804 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17805 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17806 else
17807 complaint (&symfile_complaints, _("missing .debug_line section"));
17808 return 0;
17809 }
17810
17811 /* We can't do this until we know the section is non-empty.
17812 Only then do we know we have such a section. */
17813 abfd = get_section_bfd_owner (section);
17814
17815 /* Make sure that at least there's room for the total_length field.
17816 That could be 12 bytes long, but we're just going to fudge that. */
17817 if (offset + 4 >= section->size)
17818 {
17819 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17820 return 0;
17821 }
17822
17823 lh = XNEW (struct line_header);
17824 memset (lh, 0, sizeof (*lh));
17825 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17826 (void *) lh);
17827
17828 lh->offset.sect_off = offset;
17829 lh->offset_in_dwz = cu->per_cu->is_dwz;
17830
17831 line_ptr = section->buffer + offset;
17832
17833 /* Read in the header. */
17834 lh->total_length =
17835 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17836 &bytes_read, &offset_size);
17837 line_ptr += bytes_read;
17838 if (line_ptr + lh->total_length > (section->buffer + section->size))
17839 {
17840 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17841 do_cleanups (back_to);
17842 return 0;
17843 }
17844 lh->statement_program_end = line_ptr + lh->total_length;
17845 lh->version = read_2_bytes (abfd, line_ptr);
17846 line_ptr += 2;
17847 if (lh->version > 5)
17848 {
17849 /* This is a version we don't understand. The format could have
17850 changed in ways we don't handle properly so just punt. */
17851 complaint (&symfile_complaints,
17852 _("unsupported version in .debug_line section"));
17853 return NULL;
17854 }
17855 if (lh->version >= 5)
17856 {
17857 gdb_byte segment_selector_size;
17858
17859 /* Skip address size. */
17860 read_1_byte (abfd, line_ptr);
17861 line_ptr += 1;
17862
17863 segment_selector_size = read_1_byte (abfd, line_ptr);
17864 line_ptr += 1;
17865 if (segment_selector_size != 0)
17866 {
17867 complaint (&symfile_complaints,
17868 _("unsupported segment selector size %u "
17869 "in .debug_line section"),
17870 segment_selector_size);
17871 return NULL;
17872 }
17873 }
17874 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17875 line_ptr += offset_size;
17876 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17877 line_ptr += 1;
17878 if (lh->version >= 4)
17879 {
17880 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17881 line_ptr += 1;
17882 }
17883 else
17884 lh->maximum_ops_per_instruction = 1;
17885
17886 if (lh->maximum_ops_per_instruction == 0)
17887 {
17888 lh->maximum_ops_per_instruction = 1;
17889 complaint (&symfile_complaints,
17890 _("invalid maximum_ops_per_instruction "
17891 "in `.debug_line' section"));
17892 }
17893
17894 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17895 line_ptr += 1;
17896 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17897 line_ptr += 1;
17898 lh->line_range = read_1_byte (abfd, line_ptr);
17899 line_ptr += 1;
17900 lh->opcode_base = read_1_byte (abfd, line_ptr);
17901 line_ptr += 1;
17902 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17903
17904 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17905 for (i = 1; i < lh->opcode_base; ++i)
17906 {
17907 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17908 line_ptr += 1;
17909 }
17910
17911 if (lh->version >= 5)
17912 {
17913 /* Read directory table. */
17914 read_formatted_entries (abfd, &line_ptr, lh, &cu->header,
17915 add_include_dir_stub);
17916
17917 /* Read file name table. */
17918 read_formatted_entries (abfd, &line_ptr, lh, &cu->header, add_file_name);
17919 }
17920 else
17921 {
17922 /* Read directory table. */
17923 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17924 {
17925 line_ptr += bytes_read;
17926 add_include_dir (lh, cur_dir);
17927 }
17928 line_ptr += bytes_read;
17929
17930 /* Read file name table. */
17931 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17932 {
17933 unsigned int dir_index, mod_time, length;
17934
17935 line_ptr += bytes_read;
17936 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17937 line_ptr += bytes_read;
17938 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17939 line_ptr += bytes_read;
17940 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17941 line_ptr += bytes_read;
17942
17943 add_file_name (lh, cur_file, dir_index, mod_time, length);
17944 }
17945 line_ptr += bytes_read;
17946 }
17947 lh->statement_program_start = line_ptr;
17948
17949 if (line_ptr > (section->buffer + section->size))
17950 complaint (&symfile_complaints,
17951 _("line number info header doesn't "
17952 "fit in `.debug_line' section"));
17953
17954 discard_cleanups (back_to);
17955 return lh;
17956 }
17957
17958 /* Subroutine of dwarf_decode_lines to simplify it.
17959 Return the file name of the psymtab for included file FILE_INDEX
17960 in line header LH of PST.
17961 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17962 If space for the result is malloc'd, it will be freed by a cleanup.
17963 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17964
17965 The function creates dangling cleanup registration. */
17966
17967 static const char *
17968 psymtab_include_file_name (const struct line_header *lh, int file_index,
17969 const struct partial_symtab *pst,
17970 const char *comp_dir)
17971 {
17972 const struct file_entry fe = lh->file_names [file_index];
17973 const char *include_name = fe.name;
17974 const char *include_name_to_compare = include_name;
17975 const char *dir_name = NULL;
17976 const char *pst_filename;
17977 char *copied_name = NULL;
17978 int file_is_pst;
17979
17980 if (fe.dir_index && lh->include_dirs != NULL)
17981 dir_name = lh->include_dirs[fe.dir_index - 1];
17982
17983 if (!IS_ABSOLUTE_PATH (include_name)
17984 && (dir_name != NULL || comp_dir != NULL))
17985 {
17986 /* Avoid creating a duplicate psymtab for PST.
17987 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17988 Before we do the comparison, however, we need to account
17989 for DIR_NAME and COMP_DIR.
17990 First prepend dir_name (if non-NULL). If we still don't
17991 have an absolute path prepend comp_dir (if non-NULL).
17992 However, the directory we record in the include-file's
17993 psymtab does not contain COMP_DIR (to match the
17994 corresponding symtab(s)).
17995
17996 Example:
17997
17998 bash$ cd /tmp
17999 bash$ gcc -g ./hello.c
18000 include_name = "hello.c"
18001 dir_name = "."
18002 DW_AT_comp_dir = comp_dir = "/tmp"
18003 DW_AT_name = "./hello.c"
18004
18005 */
18006
18007 if (dir_name != NULL)
18008 {
18009 char *tem = concat (dir_name, SLASH_STRING,
18010 include_name, (char *)NULL);
18011
18012 make_cleanup (xfree, tem);
18013 include_name = tem;
18014 include_name_to_compare = include_name;
18015 }
18016 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18017 {
18018 char *tem = concat (comp_dir, SLASH_STRING,
18019 include_name, (char *)NULL);
18020
18021 make_cleanup (xfree, tem);
18022 include_name_to_compare = tem;
18023 }
18024 }
18025
18026 pst_filename = pst->filename;
18027 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18028 {
18029 copied_name = concat (pst->dirname, SLASH_STRING,
18030 pst_filename, (char *)NULL);
18031 pst_filename = copied_name;
18032 }
18033
18034 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18035
18036 if (copied_name != NULL)
18037 xfree (copied_name);
18038
18039 if (file_is_pst)
18040 return NULL;
18041 return include_name;
18042 }
18043
18044 /* State machine to track the state of the line number program. */
18045
18046 typedef struct
18047 {
18048 /* These are part of the standard DWARF line number state machine. */
18049
18050 unsigned char op_index;
18051 unsigned int file;
18052 unsigned int line;
18053 CORE_ADDR address;
18054 int is_stmt;
18055 unsigned int discriminator;
18056
18057 /* Additional bits of state we need to track. */
18058
18059 /* The last file that we called dwarf2_start_subfile for.
18060 This is only used for TLLs. */
18061 unsigned int last_file;
18062 /* The last file a line number was recorded for. */
18063 struct subfile *last_subfile;
18064
18065 /* The function to call to record a line. */
18066 record_line_ftype *record_line;
18067
18068 /* The last line number that was recorded, used to coalesce
18069 consecutive entries for the same line. This can happen, for
18070 example, when discriminators are present. PR 17276. */
18071 unsigned int last_line;
18072 int line_has_non_zero_discriminator;
18073 } lnp_state_machine;
18074
18075 /* There's a lot of static state to pass to dwarf_record_line.
18076 This keeps it all together. */
18077
18078 typedef struct
18079 {
18080 /* The gdbarch. */
18081 struct gdbarch *gdbarch;
18082
18083 /* The line number header. */
18084 struct line_header *line_header;
18085
18086 /* Non-zero if we're recording lines.
18087 Otherwise we're building partial symtabs and are just interested in
18088 finding include files mentioned by the line number program. */
18089 int record_lines_p;
18090 } lnp_reader_state;
18091
18092 /* Ignore this record_line request. */
18093
18094 static void
18095 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18096 {
18097 return;
18098 }
18099
18100 /* Return non-zero if we should add LINE to the line number table.
18101 LINE is the line to add, LAST_LINE is the last line that was added,
18102 LAST_SUBFILE is the subfile for LAST_LINE.
18103 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18104 had a non-zero discriminator.
18105
18106 We have to be careful in the presence of discriminators.
18107 E.g., for this line:
18108
18109 for (i = 0; i < 100000; i++);
18110
18111 clang can emit four line number entries for that one line,
18112 each with a different discriminator.
18113 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18114
18115 However, we want gdb to coalesce all four entries into one.
18116 Otherwise the user could stepi into the middle of the line and
18117 gdb would get confused about whether the pc really was in the
18118 middle of the line.
18119
18120 Things are further complicated by the fact that two consecutive
18121 line number entries for the same line is a heuristic used by gcc
18122 to denote the end of the prologue. So we can't just discard duplicate
18123 entries, we have to be selective about it. The heuristic we use is
18124 that we only collapse consecutive entries for the same line if at least
18125 one of those entries has a non-zero discriminator. PR 17276.
18126
18127 Note: Addresses in the line number state machine can never go backwards
18128 within one sequence, thus this coalescing is ok. */
18129
18130 static int
18131 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18132 int line_has_non_zero_discriminator,
18133 struct subfile *last_subfile)
18134 {
18135 if (current_subfile != last_subfile)
18136 return 1;
18137 if (line != last_line)
18138 return 1;
18139 /* Same line for the same file that we've seen already.
18140 As a last check, for pr 17276, only record the line if the line
18141 has never had a non-zero discriminator. */
18142 if (!line_has_non_zero_discriminator)
18143 return 1;
18144 return 0;
18145 }
18146
18147 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18148 in the line table of subfile SUBFILE. */
18149
18150 static void
18151 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18152 unsigned int line, CORE_ADDR address,
18153 record_line_ftype p_record_line)
18154 {
18155 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18156
18157 if (dwarf_line_debug)
18158 {
18159 fprintf_unfiltered (gdb_stdlog,
18160 "Recording line %u, file %s, address %s\n",
18161 line, lbasename (subfile->name),
18162 paddress (gdbarch, address));
18163 }
18164
18165 (*p_record_line) (subfile, line, addr);
18166 }
18167
18168 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18169 Mark the end of a set of line number records.
18170 The arguments are the same as for dwarf_record_line_1.
18171 If SUBFILE is NULL the request is ignored. */
18172
18173 static void
18174 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18175 CORE_ADDR address, record_line_ftype p_record_line)
18176 {
18177 if (subfile == NULL)
18178 return;
18179
18180 if (dwarf_line_debug)
18181 {
18182 fprintf_unfiltered (gdb_stdlog,
18183 "Finishing current line, file %s, address %s\n",
18184 lbasename (subfile->name),
18185 paddress (gdbarch, address));
18186 }
18187
18188 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18189 }
18190
18191 /* Record the line in STATE.
18192 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
18193
18194 static void
18195 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
18196 int end_sequence)
18197 {
18198 const struct line_header *lh = reader->line_header;
18199 unsigned int file, line, discriminator;
18200 int is_stmt;
18201
18202 file = state->file;
18203 line = state->line;
18204 is_stmt = state->is_stmt;
18205 discriminator = state->discriminator;
18206
18207 if (dwarf_line_debug)
18208 {
18209 fprintf_unfiltered (gdb_stdlog,
18210 "Processing actual line %u: file %u,"
18211 " address %s, is_stmt %u, discrim %u\n",
18212 line, file,
18213 paddress (reader->gdbarch, state->address),
18214 is_stmt, discriminator);
18215 }
18216
18217 if (file == 0 || file - 1 >= lh->num_file_names)
18218 dwarf2_debug_line_missing_file_complaint ();
18219 /* For now we ignore lines not starting on an instruction boundary.
18220 But not when processing end_sequence for compatibility with the
18221 previous version of the code. */
18222 else if (state->op_index == 0 || end_sequence)
18223 {
18224 lh->file_names[file - 1].included_p = 1;
18225 if (reader->record_lines_p && is_stmt)
18226 {
18227 if (state->last_subfile != current_subfile || end_sequence)
18228 {
18229 dwarf_finish_line (reader->gdbarch, state->last_subfile,
18230 state->address, state->record_line);
18231 }
18232
18233 if (!end_sequence)
18234 {
18235 if (dwarf_record_line_p (line, state->last_line,
18236 state->line_has_non_zero_discriminator,
18237 state->last_subfile))
18238 {
18239 dwarf_record_line_1 (reader->gdbarch, current_subfile,
18240 line, state->address,
18241 state->record_line);
18242 }
18243 state->last_subfile = current_subfile;
18244 state->last_line = line;
18245 }
18246 }
18247 }
18248 }
18249
18250 /* Initialize STATE for the start of a line number program. */
18251
18252 static void
18253 init_lnp_state_machine (lnp_state_machine *state,
18254 const lnp_reader_state *reader)
18255 {
18256 memset (state, 0, sizeof (*state));
18257
18258 /* Just starting, there is no "last file". */
18259 state->last_file = 0;
18260 state->last_subfile = NULL;
18261
18262 state->record_line = record_line;
18263
18264 state->last_line = 0;
18265 state->line_has_non_zero_discriminator = 0;
18266
18267 /* Initialize these according to the DWARF spec. */
18268 state->op_index = 0;
18269 state->file = 1;
18270 state->line = 1;
18271 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18272 was a line entry for it so that the backend has a chance to adjust it
18273 and also record it in case it needs it. This is currently used by MIPS
18274 code, cf. `mips_adjust_dwarf2_line'. */
18275 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
18276 state->is_stmt = reader->line_header->default_is_stmt;
18277 state->discriminator = 0;
18278 }
18279
18280 /* Check address and if invalid nop-out the rest of the lines in this
18281 sequence. */
18282
18283 static void
18284 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
18285 const gdb_byte *line_ptr,
18286 CORE_ADDR lowpc, CORE_ADDR address)
18287 {
18288 /* If address < lowpc then it's not a usable value, it's outside the
18289 pc range of the CU. However, we restrict the test to only address
18290 values of zero to preserve GDB's previous behaviour which is to
18291 handle the specific case of a function being GC'd by the linker. */
18292
18293 if (address == 0 && address < lowpc)
18294 {
18295 /* This line table is for a function which has been
18296 GCd by the linker. Ignore it. PR gdb/12528 */
18297
18298 struct objfile *objfile = cu->objfile;
18299 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18300
18301 complaint (&symfile_complaints,
18302 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18303 line_offset, objfile_name (objfile));
18304 state->record_line = noop_record_line;
18305 /* Note: sm.record_line is left as noop_record_line
18306 until we see DW_LNE_end_sequence. */
18307 }
18308 }
18309
18310 /* Subroutine of dwarf_decode_lines to simplify it.
18311 Process the line number information in LH.
18312 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18313 program in order to set included_p for every referenced header. */
18314
18315 static void
18316 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18317 const int decode_for_pst_p, CORE_ADDR lowpc)
18318 {
18319 const gdb_byte *line_ptr, *extended_end;
18320 const gdb_byte *line_end;
18321 unsigned int bytes_read, extended_len;
18322 unsigned char op_code, extended_op;
18323 CORE_ADDR baseaddr;
18324 struct objfile *objfile = cu->objfile;
18325 bfd *abfd = objfile->obfd;
18326 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18327 /* Non-zero if we're recording line info (as opposed to building partial
18328 symtabs). */
18329 int record_lines_p = !decode_for_pst_p;
18330 /* A collection of things we need to pass to dwarf_record_line. */
18331 lnp_reader_state reader_state;
18332
18333 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18334
18335 line_ptr = lh->statement_program_start;
18336 line_end = lh->statement_program_end;
18337
18338 reader_state.gdbarch = gdbarch;
18339 reader_state.line_header = lh;
18340 reader_state.record_lines_p = record_lines_p;
18341
18342 /* Read the statement sequences until there's nothing left. */
18343 while (line_ptr < line_end)
18344 {
18345 /* The DWARF line number program state machine. */
18346 lnp_state_machine state_machine;
18347 int end_sequence = 0;
18348
18349 /* Reset the state machine at the start of each sequence. */
18350 init_lnp_state_machine (&state_machine, &reader_state);
18351
18352 if (record_lines_p && lh->num_file_names >= state_machine.file)
18353 {
18354 /* Start a subfile for the current file of the state machine. */
18355 /* lh->include_dirs and lh->file_names are 0-based, but the
18356 directory and file name numbers in the statement program
18357 are 1-based. */
18358 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
18359 const char *dir = NULL;
18360
18361 if (fe->dir_index && lh->include_dirs != NULL)
18362 dir = lh->include_dirs[fe->dir_index - 1];
18363
18364 dwarf2_start_subfile (fe->name, dir);
18365 }
18366
18367 /* Decode the table. */
18368 while (line_ptr < line_end && !end_sequence)
18369 {
18370 op_code = read_1_byte (abfd, line_ptr);
18371 line_ptr += 1;
18372
18373 if (op_code >= lh->opcode_base)
18374 {
18375 /* Special opcode. */
18376 unsigned char adj_opcode;
18377 CORE_ADDR addr_adj;
18378 int line_delta;
18379
18380 adj_opcode = op_code - lh->opcode_base;
18381 addr_adj = (((state_machine.op_index
18382 + (adj_opcode / lh->line_range))
18383 / lh->maximum_ops_per_instruction)
18384 * lh->minimum_instruction_length);
18385 state_machine.address
18386 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18387 state_machine.op_index = ((state_machine.op_index
18388 + (adj_opcode / lh->line_range))
18389 % lh->maximum_ops_per_instruction);
18390 line_delta = lh->line_base + (adj_opcode % lh->line_range);
18391 state_machine.line += line_delta;
18392 if (line_delta != 0)
18393 state_machine.line_has_non_zero_discriminator
18394 = state_machine.discriminator != 0;
18395
18396 dwarf_record_line (&reader_state, &state_machine, 0);
18397 state_machine.discriminator = 0;
18398 }
18399 else switch (op_code)
18400 {
18401 case DW_LNS_extended_op:
18402 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18403 &bytes_read);
18404 line_ptr += bytes_read;
18405 extended_end = line_ptr + extended_len;
18406 extended_op = read_1_byte (abfd, line_ptr);
18407 line_ptr += 1;
18408 switch (extended_op)
18409 {
18410 case DW_LNE_end_sequence:
18411 state_machine.record_line = record_line;
18412 end_sequence = 1;
18413 break;
18414 case DW_LNE_set_address:
18415 {
18416 CORE_ADDR address
18417 = read_address (abfd, line_ptr, cu, &bytes_read);
18418
18419 line_ptr += bytes_read;
18420 check_line_address (cu, &state_machine, line_ptr,
18421 lowpc, address);
18422 state_machine.op_index = 0;
18423 address += baseaddr;
18424 state_machine.address
18425 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
18426 }
18427 break;
18428 case DW_LNE_define_file:
18429 {
18430 const char *cur_file;
18431 unsigned int dir_index, mod_time, length;
18432
18433 cur_file = read_direct_string (abfd, line_ptr,
18434 &bytes_read);
18435 line_ptr += bytes_read;
18436 dir_index =
18437 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18438 line_ptr += bytes_read;
18439 mod_time =
18440 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18441 line_ptr += bytes_read;
18442 length =
18443 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18444 line_ptr += bytes_read;
18445 add_file_name (lh, cur_file, dir_index, mod_time, length);
18446 }
18447 break;
18448 case DW_LNE_set_discriminator:
18449 /* The discriminator is not interesting to the debugger;
18450 just ignore it. We still need to check its value though:
18451 if there are consecutive entries for the same
18452 (non-prologue) line we want to coalesce them.
18453 PR 17276. */
18454 state_machine.discriminator
18455 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18456 state_machine.line_has_non_zero_discriminator
18457 |= state_machine.discriminator != 0;
18458 line_ptr += bytes_read;
18459 break;
18460 default:
18461 complaint (&symfile_complaints,
18462 _("mangled .debug_line section"));
18463 return;
18464 }
18465 /* Make sure that we parsed the extended op correctly. If e.g.
18466 we expected a different address size than the producer used,
18467 we may have read the wrong number of bytes. */
18468 if (line_ptr != extended_end)
18469 {
18470 complaint (&symfile_complaints,
18471 _("mangled .debug_line section"));
18472 return;
18473 }
18474 break;
18475 case DW_LNS_copy:
18476 dwarf_record_line (&reader_state, &state_machine, 0);
18477 state_machine.discriminator = 0;
18478 break;
18479 case DW_LNS_advance_pc:
18480 {
18481 CORE_ADDR adjust
18482 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18483 CORE_ADDR addr_adj;
18484
18485 addr_adj = (((state_machine.op_index + adjust)
18486 / lh->maximum_ops_per_instruction)
18487 * lh->minimum_instruction_length);
18488 state_machine.address
18489 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18490 state_machine.op_index = ((state_machine.op_index + adjust)
18491 % lh->maximum_ops_per_instruction);
18492 line_ptr += bytes_read;
18493 }
18494 break;
18495 case DW_LNS_advance_line:
18496 {
18497 int line_delta
18498 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18499
18500 state_machine.line += line_delta;
18501 if (line_delta != 0)
18502 state_machine.line_has_non_zero_discriminator
18503 = state_machine.discriminator != 0;
18504 line_ptr += bytes_read;
18505 }
18506 break;
18507 case DW_LNS_set_file:
18508 {
18509 /* The arrays lh->include_dirs and lh->file_names are
18510 0-based, but the directory and file name numbers in
18511 the statement program are 1-based. */
18512 struct file_entry *fe;
18513 const char *dir = NULL;
18514
18515 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18516 &bytes_read);
18517 line_ptr += bytes_read;
18518 if (state_machine.file == 0
18519 || state_machine.file - 1 >= lh->num_file_names)
18520 dwarf2_debug_line_missing_file_complaint ();
18521 else
18522 {
18523 fe = &lh->file_names[state_machine.file - 1];
18524 if (fe->dir_index && lh->include_dirs != NULL)
18525 dir = lh->include_dirs[fe->dir_index - 1];
18526 if (record_lines_p)
18527 {
18528 state_machine.last_subfile = current_subfile;
18529 state_machine.line_has_non_zero_discriminator
18530 = state_machine.discriminator != 0;
18531 dwarf2_start_subfile (fe->name, dir);
18532 }
18533 }
18534 }
18535 break;
18536 case DW_LNS_set_column:
18537 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18538 line_ptr += bytes_read;
18539 break;
18540 case DW_LNS_negate_stmt:
18541 state_machine.is_stmt = (!state_machine.is_stmt);
18542 break;
18543 case DW_LNS_set_basic_block:
18544 break;
18545 /* Add to the address register of the state machine the
18546 address increment value corresponding to special opcode
18547 255. I.e., this value is scaled by the minimum
18548 instruction length since special opcode 255 would have
18549 scaled the increment. */
18550 case DW_LNS_const_add_pc:
18551 {
18552 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18553 CORE_ADDR addr_adj;
18554
18555 addr_adj = (((state_machine.op_index + adjust)
18556 / lh->maximum_ops_per_instruction)
18557 * lh->minimum_instruction_length);
18558 state_machine.address
18559 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18560 state_machine.op_index = ((state_machine.op_index + adjust)
18561 % lh->maximum_ops_per_instruction);
18562 }
18563 break;
18564 case DW_LNS_fixed_advance_pc:
18565 {
18566 CORE_ADDR addr_adj;
18567
18568 addr_adj = read_2_bytes (abfd, line_ptr);
18569 state_machine.address
18570 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18571 state_machine.op_index = 0;
18572 line_ptr += 2;
18573 }
18574 break;
18575 default:
18576 {
18577 /* Unknown standard opcode, ignore it. */
18578 int i;
18579
18580 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18581 {
18582 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18583 line_ptr += bytes_read;
18584 }
18585 }
18586 }
18587 }
18588
18589 if (!end_sequence)
18590 dwarf2_debug_line_missing_end_sequence_complaint ();
18591
18592 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18593 in which case we still finish recording the last line). */
18594 dwarf_record_line (&reader_state, &state_machine, 1);
18595 }
18596 }
18597
18598 /* Decode the Line Number Program (LNP) for the given line_header
18599 structure and CU. The actual information extracted and the type
18600 of structures created from the LNP depends on the value of PST.
18601
18602 1. If PST is NULL, then this procedure uses the data from the program
18603 to create all necessary symbol tables, and their linetables.
18604
18605 2. If PST is not NULL, this procedure reads the program to determine
18606 the list of files included by the unit represented by PST, and
18607 builds all the associated partial symbol tables.
18608
18609 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18610 It is used for relative paths in the line table.
18611 NOTE: When processing partial symtabs (pst != NULL),
18612 comp_dir == pst->dirname.
18613
18614 NOTE: It is important that psymtabs have the same file name (via strcmp)
18615 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18616 symtab we don't use it in the name of the psymtabs we create.
18617 E.g. expand_line_sal requires this when finding psymtabs to expand.
18618 A good testcase for this is mb-inline.exp.
18619
18620 LOWPC is the lowest address in CU (or 0 if not known).
18621
18622 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18623 for its PC<->lines mapping information. Otherwise only the filename
18624 table is read in. */
18625
18626 static void
18627 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18628 struct dwarf2_cu *cu, struct partial_symtab *pst,
18629 CORE_ADDR lowpc, int decode_mapping)
18630 {
18631 struct objfile *objfile = cu->objfile;
18632 const int decode_for_pst_p = (pst != NULL);
18633
18634 if (decode_mapping)
18635 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18636
18637 if (decode_for_pst_p)
18638 {
18639 int file_index;
18640
18641 /* Now that we're done scanning the Line Header Program, we can
18642 create the psymtab of each included file. */
18643 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18644 if (lh->file_names[file_index].included_p == 1)
18645 {
18646 const char *include_name =
18647 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18648 if (include_name != NULL)
18649 dwarf2_create_include_psymtab (include_name, pst, objfile);
18650 }
18651 }
18652 else
18653 {
18654 /* Make sure a symtab is created for every file, even files
18655 which contain only variables (i.e. no code with associated
18656 line numbers). */
18657 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18658 int i;
18659
18660 for (i = 0; i < lh->num_file_names; i++)
18661 {
18662 const char *dir = NULL;
18663 struct file_entry *fe;
18664
18665 fe = &lh->file_names[i];
18666 if (fe->dir_index && lh->include_dirs != NULL)
18667 dir = lh->include_dirs[fe->dir_index - 1];
18668 dwarf2_start_subfile (fe->name, dir);
18669
18670 if (current_subfile->symtab == NULL)
18671 {
18672 current_subfile->symtab
18673 = allocate_symtab (cust, current_subfile->name);
18674 }
18675 fe->symtab = current_subfile->symtab;
18676 }
18677 }
18678 }
18679
18680 /* Start a subfile for DWARF. FILENAME is the name of the file and
18681 DIRNAME the name of the source directory which contains FILENAME
18682 or NULL if not known.
18683 This routine tries to keep line numbers from identical absolute and
18684 relative file names in a common subfile.
18685
18686 Using the `list' example from the GDB testsuite, which resides in
18687 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18688 of /srcdir/list0.c yields the following debugging information for list0.c:
18689
18690 DW_AT_name: /srcdir/list0.c
18691 DW_AT_comp_dir: /compdir
18692 files.files[0].name: list0.h
18693 files.files[0].dir: /srcdir
18694 files.files[1].name: list0.c
18695 files.files[1].dir: /srcdir
18696
18697 The line number information for list0.c has to end up in a single
18698 subfile, so that `break /srcdir/list0.c:1' works as expected.
18699 start_subfile will ensure that this happens provided that we pass the
18700 concatenation of files.files[1].dir and files.files[1].name as the
18701 subfile's name. */
18702
18703 static void
18704 dwarf2_start_subfile (const char *filename, const char *dirname)
18705 {
18706 char *copy = NULL;
18707
18708 /* In order not to lose the line information directory,
18709 we concatenate it to the filename when it makes sense.
18710 Note that the Dwarf3 standard says (speaking of filenames in line
18711 information): ``The directory index is ignored for file names
18712 that represent full path names''. Thus ignoring dirname in the
18713 `else' branch below isn't an issue. */
18714
18715 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18716 {
18717 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18718 filename = copy;
18719 }
18720
18721 start_subfile (filename);
18722
18723 if (copy != NULL)
18724 xfree (copy);
18725 }
18726
18727 /* Start a symtab for DWARF.
18728 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18729
18730 static struct compunit_symtab *
18731 dwarf2_start_symtab (struct dwarf2_cu *cu,
18732 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18733 {
18734 struct compunit_symtab *cust
18735 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18736
18737 record_debugformat ("DWARF 2");
18738 record_producer (cu->producer);
18739
18740 /* We assume that we're processing GCC output. */
18741 processing_gcc_compilation = 2;
18742
18743 cu->processing_has_namespace_info = 0;
18744
18745 return cust;
18746 }
18747
18748 static void
18749 var_decode_location (struct attribute *attr, struct symbol *sym,
18750 struct dwarf2_cu *cu)
18751 {
18752 struct objfile *objfile = cu->objfile;
18753 struct comp_unit_head *cu_header = &cu->header;
18754
18755 /* NOTE drow/2003-01-30: There used to be a comment and some special
18756 code here to turn a symbol with DW_AT_external and a
18757 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18758 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18759 with some versions of binutils) where shared libraries could have
18760 relocations against symbols in their debug information - the
18761 minimal symbol would have the right address, but the debug info
18762 would not. It's no longer necessary, because we will explicitly
18763 apply relocations when we read in the debug information now. */
18764
18765 /* A DW_AT_location attribute with no contents indicates that a
18766 variable has been optimized away. */
18767 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18768 {
18769 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18770 return;
18771 }
18772
18773 /* Handle one degenerate form of location expression specially, to
18774 preserve GDB's previous behavior when section offsets are
18775 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18776 then mark this symbol as LOC_STATIC. */
18777
18778 if (attr_form_is_block (attr)
18779 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18780 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18781 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18782 && (DW_BLOCK (attr)->size
18783 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18784 {
18785 unsigned int dummy;
18786
18787 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18788 SYMBOL_VALUE_ADDRESS (sym) =
18789 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18790 else
18791 SYMBOL_VALUE_ADDRESS (sym) =
18792 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18793 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18794 fixup_symbol_section (sym, objfile);
18795 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18796 SYMBOL_SECTION (sym));
18797 return;
18798 }
18799
18800 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18801 expression evaluator, and use LOC_COMPUTED only when necessary
18802 (i.e. when the value of a register or memory location is
18803 referenced, or a thread-local block, etc.). Then again, it might
18804 not be worthwhile. I'm assuming that it isn't unless performance
18805 or memory numbers show me otherwise. */
18806
18807 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18808
18809 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18810 cu->has_loclist = 1;
18811 }
18812
18813 /* Given a pointer to a DWARF information entry, figure out if we need
18814 to make a symbol table entry for it, and if so, create a new entry
18815 and return a pointer to it.
18816 If TYPE is NULL, determine symbol type from the die, otherwise
18817 used the passed type.
18818 If SPACE is not NULL, use it to hold the new symbol. If it is
18819 NULL, allocate a new symbol on the objfile's obstack. */
18820
18821 static struct symbol *
18822 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18823 struct symbol *space)
18824 {
18825 struct objfile *objfile = cu->objfile;
18826 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18827 struct symbol *sym = NULL;
18828 const char *name;
18829 struct attribute *attr = NULL;
18830 struct attribute *attr2 = NULL;
18831 CORE_ADDR baseaddr;
18832 struct pending **list_to_add = NULL;
18833
18834 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18835
18836 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18837
18838 name = dwarf2_name (die, cu);
18839 if (name)
18840 {
18841 const char *linkagename;
18842 int suppress_add = 0;
18843
18844 if (space)
18845 sym = space;
18846 else
18847 sym = allocate_symbol (objfile);
18848 OBJSTAT (objfile, n_syms++);
18849
18850 /* Cache this symbol's name and the name's demangled form (if any). */
18851 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18852 linkagename = dwarf2_physname (name, die, cu);
18853 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18854
18855 /* Fortran does not have mangling standard and the mangling does differ
18856 between gfortran, iFort etc. */
18857 if (cu->language == language_fortran
18858 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18859 symbol_set_demangled_name (&(sym->ginfo),
18860 dwarf2_full_name (name, die, cu),
18861 NULL);
18862
18863 /* Default assumptions.
18864 Use the passed type or decode it from the die. */
18865 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18866 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18867 if (type != NULL)
18868 SYMBOL_TYPE (sym) = type;
18869 else
18870 SYMBOL_TYPE (sym) = die_type (die, cu);
18871 attr = dwarf2_attr (die,
18872 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18873 cu);
18874 if (attr)
18875 {
18876 SYMBOL_LINE (sym) = DW_UNSND (attr);
18877 }
18878
18879 attr = dwarf2_attr (die,
18880 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18881 cu);
18882 if (attr)
18883 {
18884 int file_index = DW_UNSND (attr);
18885
18886 if (cu->line_header == NULL
18887 || file_index > cu->line_header->num_file_names)
18888 complaint (&symfile_complaints,
18889 _("file index out of range"));
18890 else if (file_index > 0)
18891 {
18892 struct file_entry *fe;
18893
18894 fe = &cu->line_header->file_names[file_index - 1];
18895 symbol_set_symtab (sym, fe->symtab);
18896 }
18897 }
18898
18899 switch (die->tag)
18900 {
18901 case DW_TAG_label:
18902 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18903 if (attr)
18904 {
18905 CORE_ADDR addr;
18906
18907 addr = attr_value_as_address (attr);
18908 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18909 SYMBOL_VALUE_ADDRESS (sym) = addr;
18910 }
18911 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18912 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18913 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18914 add_symbol_to_list (sym, cu->list_in_scope);
18915 break;
18916 case DW_TAG_subprogram:
18917 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18918 finish_block. */
18919 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18920 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18921 if ((attr2 && (DW_UNSND (attr2) != 0))
18922 || cu->language == language_ada)
18923 {
18924 /* Subprograms marked external are stored as a global symbol.
18925 Ada subprograms, whether marked external or not, are always
18926 stored as a global symbol, because we want to be able to
18927 access them globally. For instance, we want to be able
18928 to break on a nested subprogram without having to
18929 specify the context. */
18930 list_to_add = &global_symbols;
18931 }
18932 else
18933 {
18934 list_to_add = cu->list_in_scope;
18935 }
18936 break;
18937 case DW_TAG_inlined_subroutine:
18938 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18939 finish_block. */
18940 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18941 SYMBOL_INLINED (sym) = 1;
18942 list_to_add = cu->list_in_scope;
18943 break;
18944 case DW_TAG_template_value_param:
18945 suppress_add = 1;
18946 /* Fall through. */
18947 case DW_TAG_constant:
18948 case DW_TAG_variable:
18949 case DW_TAG_member:
18950 /* Compilation with minimal debug info may result in
18951 variables with missing type entries. Change the
18952 misleading `void' type to something sensible. */
18953 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18954 SYMBOL_TYPE (sym)
18955 = objfile_type (objfile)->nodebug_data_symbol;
18956
18957 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18958 /* In the case of DW_TAG_member, we should only be called for
18959 static const members. */
18960 if (die->tag == DW_TAG_member)
18961 {
18962 /* dwarf2_add_field uses die_is_declaration,
18963 so we do the same. */
18964 gdb_assert (die_is_declaration (die, cu));
18965 gdb_assert (attr);
18966 }
18967 if (attr)
18968 {
18969 dwarf2_const_value (attr, sym, cu);
18970 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18971 if (!suppress_add)
18972 {
18973 if (attr2 && (DW_UNSND (attr2) != 0))
18974 list_to_add = &global_symbols;
18975 else
18976 list_to_add = cu->list_in_scope;
18977 }
18978 break;
18979 }
18980 attr = dwarf2_attr (die, DW_AT_location, cu);
18981 if (attr)
18982 {
18983 var_decode_location (attr, sym, cu);
18984 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18985
18986 /* Fortran explicitly imports any global symbols to the local
18987 scope by DW_TAG_common_block. */
18988 if (cu->language == language_fortran && die->parent
18989 && die->parent->tag == DW_TAG_common_block)
18990 attr2 = NULL;
18991
18992 if (SYMBOL_CLASS (sym) == LOC_STATIC
18993 && SYMBOL_VALUE_ADDRESS (sym) == 0
18994 && !dwarf2_per_objfile->has_section_at_zero)
18995 {
18996 /* When a static variable is eliminated by the linker,
18997 the corresponding debug information is not stripped
18998 out, but the variable address is set to null;
18999 do not add such variables into symbol table. */
19000 }
19001 else if (attr2 && (DW_UNSND (attr2) != 0))
19002 {
19003 /* Workaround gfortran PR debug/40040 - it uses
19004 DW_AT_location for variables in -fPIC libraries which may
19005 get overriden by other libraries/executable and get
19006 a different address. Resolve it by the minimal symbol
19007 which may come from inferior's executable using copy
19008 relocation. Make this workaround only for gfortran as for
19009 other compilers GDB cannot guess the minimal symbol
19010 Fortran mangling kind. */
19011 if (cu->language == language_fortran && die->parent
19012 && die->parent->tag == DW_TAG_module
19013 && cu->producer
19014 && startswith (cu->producer, "GNU Fortran"))
19015 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19016
19017 /* A variable with DW_AT_external is never static,
19018 but it may be block-scoped. */
19019 list_to_add = (cu->list_in_scope == &file_symbols
19020 ? &global_symbols : cu->list_in_scope);
19021 }
19022 else
19023 list_to_add = cu->list_in_scope;
19024 }
19025 else
19026 {
19027 /* We do not know the address of this symbol.
19028 If it is an external symbol and we have type information
19029 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19030 The address of the variable will then be determined from
19031 the minimal symbol table whenever the variable is
19032 referenced. */
19033 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19034
19035 /* Fortran explicitly imports any global symbols to the local
19036 scope by DW_TAG_common_block. */
19037 if (cu->language == language_fortran && die->parent
19038 && die->parent->tag == DW_TAG_common_block)
19039 {
19040 /* SYMBOL_CLASS doesn't matter here because
19041 read_common_block is going to reset it. */
19042 if (!suppress_add)
19043 list_to_add = cu->list_in_scope;
19044 }
19045 else if (attr2 && (DW_UNSND (attr2) != 0)
19046 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19047 {
19048 /* A variable with DW_AT_external is never static, but it
19049 may be block-scoped. */
19050 list_to_add = (cu->list_in_scope == &file_symbols
19051 ? &global_symbols : cu->list_in_scope);
19052
19053 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19054 }
19055 else if (!die_is_declaration (die, cu))
19056 {
19057 /* Use the default LOC_OPTIMIZED_OUT class. */
19058 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19059 if (!suppress_add)
19060 list_to_add = cu->list_in_scope;
19061 }
19062 }
19063 break;
19064 case DW_TAG_formal_parameter:
19065 /* If we are inside a function, mark this as an argument. If
19066 not, we might be looking at an argument to an inlined function
19067 when we do not have enough information to show inlined frames;
19068 pretend it's a local variable in that case so that the user can
19069 still see it. */
19070 if (context_stack_depth > 0
19071 && context_stack[context_stack_depth - 1].name != NULL)
19072 SYMBOL_IS_ARGUMENT (sym) = 1;
19073 attr = dwarf2_attr (die, DW_AT_location, cu);
19074 if (attr)
19075 {
19076 var_decode_location (attr, sym, cu);
19077 }
19078 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19079 if (attr)
19080 {
19081 dwarf2_const_value (attr, sym, cu);
19082 }
19083
19084 list_to_add = cu->list_in_scope;
19085 break;
19086 case DW_TAG_unspecified_parameters:
19087 /* From varargs functions; gdb doesn't seem to have any
19088 interest in this information, so just ignore it for now.
19089 (FIXME?) */
19090 break;
19091 case DW_TAG_template_type_param:
19092 suppress_add = 1;
19093 /* Fall through. */
19094 case DW_TAG_class_type:
19095 case DW_TAG_interface_type:
19096 case DW_TAG_structure_type:
19097 case DW_TAG_union_type:
19098 case DW_TAG_set_type:
19099 case DW_TAG_enumeration_type:
19100 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19101 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19102
19103 {
19104 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19105 really ever be static objects: otherwise, if you try
19106 to, say, break of a class's method and you're in a file
19107 which doesn't mention that class, it won't work unless
19108 the check for all static symbols in lookup_symbol_aux
19109 saves you. See the OtherFileClass tests in
19110 gdb.c++/namespace.exp. */
19111
19112 if (!suppress_add)
19113 {
19114 list_to_add = (cu->list_in_scope == &file_symbols
19115 && cu->language == language_cplus
19116 ? &global_symbols : cu->list_in_scope);
19117
19118 /* The semantics of C++ state that "struct foo {
19119 ... }" also defines a typedef for "foo". */
19120 if (cu->language == language_cplus
19121 || cu->language == language_ada
19122 || cu->language == language_d
19123 || cu->language == language_rust)
19124 {
19125 /* The symbol's name is already allocated along
19126 with this objfile, so we don't need to
19127 duplicate it for the type. */
19128 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19129 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19130 }
19131 }
19132 }
19133 break;
19134 case DW_TAG_typedef:
19135 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19136 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19137 list_to_add = cu->list_in_scope;
19138 break;
19139 case DW_TAG_base_type:
19140 case DW_TAG_subrange_type:
19141 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19142 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19143 list_to_add = cu->list_in_scope;
19144 break;
19145 case DW_TAG_enumerator:
19146 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19147 if (attr)
19148 {
19149 dwarf2_const_value (attr, sym, cu);
19150 }
19151 {
19152 /* NOTE: carlton/2003-11-10: See comment above in the
19153 DW_TAG_class_type, etc. block. */
19154
19155 list_to_add = (cu->list_in_scope == &file_symbols
19156 && cu->language == language_cplus
19157 ? &global_symbols : cu->list_in_scope);
19158 }
19159 break;
19160 case DW_TAG_imported_declaration:
19161 case DW_TAG_namespace:
19162 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19163 list_to_add = &global_symbols;
19164 break;
19165 case DW_TAG_module:
19166 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19167 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19168 list_to_add = &global_symbols;
19169 break;
19170 case DW_TAG_common_block:
19171 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19172 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19173 add_symbol_to_list (sym, cu->list_in_scope);
19174 break;
19175 default:
19176 /* Not a tag we recognize. Hopefully we aren't processing
19177 trash data, but since we must specifically ignore things
19178 we don't recognize, there is nothing else we should do at
19179 this point. */
19180 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19181 dwarf_tag_name (die->tag));
19182 break;
19183 }
19184
19185 if (suppress_add)
19186 {
19187 sym->hash_next = objfile->template_symbols;
19188 objfile->template_symbols = sym;
19189 list_to_add = NULL;
19190 }
19191
19192 if (list_to_add != NULL)
19193 add_symbol_to_list (sym, list_to_add);
19194
19195 /* For the benefit of old versions of GCC, check for anonymous
19196 namespaces based on the demangled name. */
19197 if (!cu->processing_has_namespace_info
19198 && cu->language == language_cplus)
19199 cp_scan_for_anonymous_namespaces (sym, objfile);
19200 }
19201 return (sym);
19202 }
19203
19204 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19205
19206 static struct symbol *
19207 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19208 {
19209 return new_symbol_full (die, type, cu, NULL);
19210 }
19211
19212 /* Given an attr with a DW_FORM_dataN value in host byte order,
19213 zero-extend it as appropriate for the symbol's type. The DWARF
19214 standard (v4) is not entirely clear about the meaning of using
19215 DW_FORM_dataN for a constant with a signed type, where the type is
19216 wider than the data. The conclusion of a discussion on the DWARF
19217 list was that this is unspecified. We choose to always zero-extend
19218 because that is the interpretation long in use by GCC. */
19219
19220 static gdb_byte *
19221 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19222 struct dwarf2_cu *cu, LONGEST *value, int bits)
19223 {
19224 struct objfile *objfile = cu->objfile;
19225 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19226 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19227 LONGEST l = DW_UNSND (attr);
19228
19229 if (bits < sizeof (*value) * 8)
19230 {
19231 l &= ((LONGEST) 1 << bits) - 1;
19232 *value = l;
19233 }
19234 else if (bits == sizeof (*value) * 8)
19235 *value = l;
19236 else
19237 {
19238 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19239 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19240 return bytes;
19241 }
19242
19243 return NULL;
19244 }
19245
19246 /* Read a constant value from an attribute. Either set *VALUE, or if
19247 the value does not fit in *VALUE, set *BYTES - either already
19248 allocated on the objfile obstack, or newly allocated on OBSTACK,
19249 or, set *BATON, if we translated the constant to a location
19250 expression. */
19251
19252 static void
19253 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19254 const char *name, struct obstack *obstack,
19255 struct dwarf2_cu *cu,
19256 LONGEST *value, const gdb_byte **bytes,
19257 struct dwarf2_locexpr_baton **baton)
19258 {
19259 struct objfile *objfile = cu->objfile;
19260 struct comp_unit_head *cu_header = &cu->header;
19261 struct dwarf_block *blk;
19262 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19263 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19264
19265 *value = 0;
19266 *bytes = NULL;
19267 *baton = NULL;
19268
19269 switch (attr->form)
19270 {
19271 case DW_FORM_addr:
19272 case DW_FORM_GNU_addr_index:
19273 {
19274 gdb_byte *data;
19275
19276 if (TYPE_LENGTH (type) != cu_header->addr_size)
19277 dwarf2_const_value_length_mismatch_complaint (name,
19278 cu_header->addr_size,
19279 TYPE_LENGTH (type));
19280 /* Symbols of this form are reasonably rare, so we just
19281 piggyback on the existing location code rather than writing
19282 a new implementation of symbol_computed_ops. */
19283 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19284 (*baton)->per_cu = cu->per_cu;
19285 gdb_assert ((*baton)->per_cu);
19286
19287 (*baton)->size = 2 + cu_header->addr_size;
19288 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19289 (*baton)->data = data;
19290
19291 data[0] = DW_OP_addr;
19292 store_unsigned_integer (&data[1], cu_header->addr_size,
19293 byte_order, DW_ADDR (attr));
19294 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19295 }
19296 break;
19297 case DW_FORM_string:
19298 case DW_FORM_strp:
19299 case DW_FORM_GNU_str_index:
19300 case DW_FORM_GNU_strp_alt:
19301 /* DW_STRING is already allocated on the objfile obstack, point
19302 directly to it. */
19303 *bytes = (const gdb_byte *) DW_STRING (attr);
19304 break;
19305 case DW_FORM_block1:
19306 case DW_FORM_block2:
19307 case DW_FORM_block4:
19308 case DW_FORM_block:
19309 case DW_FORM_exprloc:
19310 case DW_FORM_data16:
19311 blk = DW_BLOCK (attr);
19312 if (TYPE_LENGTH (type) != blk->size)
19313 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19314 TYPE_LENGTH (type));
19315 *bytes = blk->data;
19316 break;
19317
19318 /* The DW_AT_const_value attributes are supposed to carry the
19319 symbol's value "represented as it would be on the target
19320 architecture." By the time we get here, it's already been
19321 converted to host endianness, so we just need to sign- or
19322 zero-extend it as appropriate. */
19323 case DW_FORM_data1:
19324 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19325 break;
19326 case DW_FORM_data2:
19327 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19328 break;
19329 case DW_FORM_data4:
19330 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19331 break;
19332 case DW_FORM_data8:
19333 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19334 break;
19335
19336 case DW_FORM_sdata:
19337 *value = DW_SND (attr);
19338 break;
19339
19340 case DW_FORM_udata:
19341 *value = DW_UNSND (attr);
19342 break;
19343
19344 default:
19345 complaint (&symfile_complaints,
19346 _("unsupported const value attribute form: '%s'"),
19347 dwarf_form_name (attr->form));
19348 *value = 0;
19349 break;
19350 }
19351 }
19352
19353
19354 /* Copy constant value from an attribute to a symbol. */
19355
19356 static void
19357 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19358 struct dwarf2_cu *cu)
19359 {
19360 struct objfile *objfile = cu->objfile;
19361 LONGEST value;
19362 const gdb_byte *bytes;
19363 struct dwarf2_locexpr_baton *baton;
19364
19365 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19366 SYMBOL_PRINT_NAME (sym),
19367 &objfile->objfile_obstack, cu,
19368 &value, &bytes, &baton);
19369
19370 if (baton != NULL)
19371 {
19372 SYMBOL_LOCATION_BATON (sym) = baton;
19373 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19374 }
19375 else if (bytes != NULL)
19376 {
19377 SYMBOL_VALUE_BYTES (sym) = bytes;
19378 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19379 }
19380 else
19381 {
19382 SYMBOL_VALUE (sym) = value;
19383 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19384 }
19385 }
19386
19387 /* Return the type of the die in question using its DW_AT_type attribute. */
19388
19389 static struct type *
19390 die_type (struct die_info *die, struct dwarf2_cu *cu)
19391 {
19392 struct attribute *type_attr;
19393
19394 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19395 if (!type_attr)
19396 {
19397 /* A missing DW_AT_type represents a void type. */
19398 return objfile_type (cu->objfile)->builtin_void;
19399 }
19400
19401 return lookup_die_type (die, type_attr, cu);
19402 }
19403
19404 /* True iff CU's producer generates GNAT Ada auxiliary information
19405 that allows to find parallel types through that information instead
19406 of having to do expensive parallel lookups by type name. */
19407
19408 static int
19409 need_gnat_info (struct dwarf2_cu *cu)
19410 {
19411 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19412 of GNAT produces this auxiliary information, without any indication
19413 that it is produced. Part of enhancing the FSF version of GNAT
19414 to produce that information will be to put in place an indicator
19415 that we can use in order to determine whether the descriptive type
19416 info is available or not. One suggestion that has been made is
19417 to use a new attribute, attached to the CU die. For now, assume
19418 that the descriptive type info is not available. */
19419 return 0;
19420 }
19421
19422 /* Return the auxiliary type of the die in question using its
19423 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19424 attribute is not present. */
19425
19426 static struct type *
19427 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19428 {
19429 struct attribute *type_attr;
19430
19431 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19432 if (!type_attr)
19433 return NULL;
19434
19435 return lookup_die_type (die, type_attr, cu);
19436 }
19437
19438 /* If DIE has a descriptive_type attribute, then set the TYPE's
19439 descriptive type accordingly. */
19440
19441 static void
19442 set_descriptive_type (struct type *type, struct die_info *die,
19443 struct dwarf2_cu *cu)
19444 {
19445 struct type *descriptive_type = die_descriptive_type (die, cu);
19446
19447 if (descriptive_type)
19448 {
19449 ALLOCATE_GNAT_AUX_TYPE (type);
19450 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19451 }
19452 }
19453
19454 /* Return the containing type of the die in question using its
19455 DW_AT_containing_type attribute. */
19456
19457 static struct type *
19458 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19459 {
19460 struct attribute *type_attr;
19461
19462 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19463 if (!type_attr)
19464 error (_("Dwarf Error: Problem turning containing type into gdb type "
19465 "[in module %s]"), objfile_name (cu->objfile));
19466
19467 return lookup_die_type (die, type_attr, cu);
19468 }
19469
19470 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19471
19472 static struct type *
19473 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19474 {
19475 struct objfile *objfile = dwarf2_per_objfile->objfile;
19476 char *message, *saved;
19477
19478 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19479 objfile_name (objfile),
19480 cu->header.offset.sect_off,
19481 die->offset.sect_off);
19482 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19483 message, strlen (message));
19484 xfree (message);
19485
19486 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19487 }
19488
19489 /* Look up the type of DIE in CU using its type attribute ATTR.
19490 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19491 DW_AT_containing_type.
19492 If there is no type substitute an error marker. */
19493
19494 static struct type *
19495 lookup_die_type (struct die_info *die, const struct attribute *attr,
19496 struct dwarf2_cu *cu)
19497 {
19498 struct objfile *objfile = cu->objfile;
19499 struct type *this_type;
19500
19501 gdb_assert (attr->name == DW_AT_type
19502 || attr->name == DW_AT_GNAT_descriptive_type
19503 || attr->name == DW_AT_containing_type);
19504
19505 /* First see if we have it cached. */
19506
19507 if (attr->form == DW_FORM_GNU_ref_alt)
19508 {
19509 struct dwarf2_per_cu_data *per_cu;
19510 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19511
19512 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19513 this_type = get_die_type_at_offset (offset, per_cu);
19514 }
19515 else if (attr_form_is_ref (attr))
19516 {
19517 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19518
19519 this_type = get_die_type_at_offset (offset, cu->per_cu);
19520 }
19521 else if (attr->form == DW_FORM_ref_sig8)
19522 {
19523 ULONGEST signature = DW_SIGNATURE (attr);
19524
19525 return get_signatured_type (die, signature, cu);
19526 }
19527 else
19528 {
19529 complaint (&symfile_complaints,
19530 _("Dwarf Error: Bad type attribute %s in DIE"
19531 " at 0x%x [in module %s]"),
19532 dwarf_attr_name (attr->name), die->offset.sect_off,
19533 objfile_name (objfile));
19534 return build_error_marker_type (cu, die);
19535 }
19536
19537 /* If not cached we need to read it in. */
19538
19539 if (this_type == NULL)
19540 {
19541 struct die_info *type_die = NULL;
19542 struct dwarf2_cu *type_cu = cu;
19543
19544 if (attr_form_is_ref (attr))
19545 type_die = follow_die_ref (die, attr, &type_cu);
19546 if (type_die == NULL)
19547 return build_error_marker_type (cu, die);
19548 /* If we find the type now, it's probably because the type came
19549 from an inter-CU reference and the type's CU got expanded before
19550 ours. */
19551 this_type = read_type_die (type_die, type_cu);
19552 }
19553
19554 /* If we still don't have a type use an error marker. */
19555
19556 if (this_type == NULL)
19557 return build_error_marker_type (cu, die);
19558
19559 return this_type;
19560 }
19561
19562 /* Return the type in DIE, CU.
19563 Returns NULL for invalid types.
19564
19565 This first does a lookup in die_type_hash,
19566 and only reads the die in if necessary.
19567
19568 NOTE: This can be called when reading in partial or full symbols. */
19569
19570 static struct type *
19571 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19572 {
19573 struct type *this_type;
19574
19575 this_type = get_die_type (die, cu);
19576 if (this_type)
19577 return this_type;
19578
19579 return read_type_die_1 (die, cu);
19580 }
19581
19582 /* Read the type in DIE, CU.
19583 Returns NULL for invalid types. */
19584
19585 static struct type *
19586 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19587 {
19588 struct type *this_type = NULL;
19589
19590 switch (die->tag)
19591 {
19592 case DW_TAG_class_type:
19593 case DW_TAG_interface_type:
19594 case DW_TAG_structure_type:
19595 case DW_TAG_union_type:
19596 this_type = read_structure_type (die, cu);
19597 break;
19598 case DW_TAG_enumeration_type:
19599 this_type = read_enumeration_type (die, cu);
19600 break;
19601 case DW_TAG_subprogram:
19602 case DW_TAG_subroutine_type:
19603 case DW_TAG_inlined_subroutine:
19604 this_type = read_subroutine_type (die, cu);
19605 break;
19606 case DW_TAG_array_type:
19607 this_type = read_array_type (die, cu);
19608 break;
19609 case DW_TAG_set_type:
19610 this_type = read_set_type (die, cu);
19611 break;
19612 case DW_TAG_pointer_type:
19613 this_type = read_tag_pointer_type (die, cu);
19614 break;
19615 case DW_TAG_ptr_to_member_type:
19616 this_type = read_tag_ptr_to_member_type (die, cu);
19617 break;
19618 case DW_TAG_reference_type:
19619 this_type = read_tag_reference_type (die, cu);
19620 break;
19621 case DW_TAG_const_type:
19622 this_type = read_tag_const_type (die, cu);
19623 break;
19624 case DW_TAG_volatile_type:
19625 this_type = read_tag_volatile_type (die, cu);
19626 break;
19627 case DW_TAG_restrict_type:
19628 this_type = read_tag_restrict_type (die, cu);
19629 break;
19630 case DW_TAG_string_type:
19631 this_type = read_tag_string_type (die, cu);
19632 break;
19633 case DW_TAG_typedef:
19634 this_type = read_typedef (die, cu);
19635 break;
19636 case DW_TAG_subrange_type:
19637 this_type = read_subrange_type (die, cu);
19638 break;
19639 case DW_TAG_base_type:
19640 this_type = read_base_type (die, cu);
19641 break;
19642 case DW_TAG_unspecified_type:
19643 this_type = read_unspecified_type (die, cu);
19644 break;
19645 case DW_TAG_namespace:
19646 this_type = read_namespace_type (die, cu);
19647 break;
19648 case DW_TAG_module:
19649 this_type = read_module_type (die, cu);
19650 break;
19651 case DW_TAG_atomic_type:
19652 this_type = read_tag_atomic_type (die, cu);
19653 break;
19654 default:
19655 complaint (&symfile_complaints,
19656 _("unexpected tag in read_type_die: '%s'"),
19657 dwarf_tag_name (die->tag));
19658 break;
19659 }
19660
19661 return this_type;
19662 }
19663
19664 /* See if we can figure out if the class lives in a namespace. We do
19665 this by looking for a member function; its demangled name will
19666 contain namespace info, if there is any.
19667 Return the computed name or NULL.
19668 Space for the result is allocated on the objfile's obstack.
19669 This is the full-die version of guess_partial_die_structure_name.
19670 In this case we know DIE has no useful parent. */
19671
19672 static char *
19673 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19674 {
19675 struct die_info *spec_die;
19676 struct dwarf2_cu *spec_cu;
19677 struct die_info *child;
19678
19679 spec_cu = cu;
19680 spec_die = die_specification (die, &spec_cu);
19681 if (spec_die != NULL)
19682 {
19683 die = spec_die;
19684 cu = spec_cu;
19685 }
19686
19687 for (child = die->child;
19688 child != NULL;
19689 child = child->sibling)
19690 {
19691 if (child->tag == DW_TAG_subprogram)
19692 {
19693 const char *linkage_name;
19694
19695 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19696 if (linkage_name == NULL)
19697 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19698 cu);
19699 if (linkage_name != NULL)
19700 {
19701 char *actual_name
19702 = language_class_name_from_physname (cu->language_defn,
19703 linkage_name);
19704 char *name = NULL;
19705
19706 if (actual_name != NULL)
19707 {
19708 const char *die_name = dwarf2_name (die, cu);
19709
19710 if (die_name != NULL
19711 && strcmp (die_name, actual_name) != 0)
19712 {
19713 /* Strip off the class name from the full name.
19714 We want the prefix. */
19715 int die_name_len = strlen (die_name);
19716 int actual_name_len = strlen (actual_name);
19717
19718 /* Test for '::' as a sanity check. */
19719 if (actual_name_len > die_name_len + 2
19720 && actual_name[actual_name_len
19721 - die_name_len - 1] == ':')
19722 name = (char *) obstack_copy0 (
19723 &cu->objfile->per_bfd->storage_obstack,
19724 actual_name, actual_name_len - die_name_len - 2);
19725 }
19726 }
19727 xfree (actual_name);
19728 return name;
19729 }
19730 }
19731 }
19732
19733 return NULL;
19734 }
19735
19736 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19737 prefix part in such case. See
19738 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19739
19740 static char *
19741 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19742 {
19743 struct attribute *attr;
19744 const char *base;
19745
19746 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19747 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19748 return NULL;
19749
19750 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19751 return NULL;
19752
19753 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19754 if (attr == NULL)
19755 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19756 if (attr == NULL || DW_STRING (attr) == NULL)
19757 return NULL;
19758
19759 /* dwarf2_name had to be already called. */
19760 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19761
19762 /* Strip the base name, keep any leading namespaces/classes. */
19763 base = strrchr (DW_STRING (attr), ':');
19764 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19765 return "";
19766
19767 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19768 DW_STRING (attr),
19769 &base[-1] - DW_STRING (attr));
19770 }
19771
19772 /* Return the name of the namespace/class that DIE is defined within,
19773 or "" if we can't tell. The caller should not xfree the result.
19774
19775 For example, if we're within the method foo() in the following
19776 code:
19777
19778 namespace N {
19779 class C {
19780 void foo () {
19781 }
19782 };
19783 }
19784
19785 then determine_prefix on foo's die will return "N::C". */
19786
19787 static const char *
19788 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19789 {
19790 struct die_info *parent, *spec_die;
19791 struct dwarf2_cu *spec_cu;
19792 struct type *parent_type;
19793 char *retval;
19794
19795 if (cu->language != language_cplus
19796 && cu->language != language_fortran && cu->language != language_d
19797 && cu->language != language_rust)
19798 return "";
19799
19800 retval = anonymous_struct_prefix (die, cu);
19801 if (retval)
19802 return retval;
19803
19804 /* We have to be careful in the presence of DW_AT_specification.
19805 For example, with GCC 3.4, given the code
19806
19807 namespace N {
19808 void foo() {
19809 // Definition of N::foo.
19810 }
19811 }
19812
19813 then we'll have a tree of DIEs like this:
19814
19815 1: DW_TAG_compile_unit
19816 2: DW_TAG_namespace // N
19817 3: DW_TAG_subprogram // declaration of N::foo
19818 4: DW_TAG_subprogram // definition of N::foo
19819 DW_AT_specification // refers to die #3
19820
19821 Thus, when processing die #4, we have to pretend that we're in
19822 the context of its DW_AT_specification, namely the contex of die
19823 #3. */
19824 spec_cu = cu;
19825 spec_die = die_specification (die, &spec_cu);
19826 if (spec_die == NULL)
19827 parent = die->parent;
19828 else
19829 {
19830 parent = spec_die->parent;
19831 cu = spec_cu;
19832 }
19833
19834 if (parent == NULL)
19835 return "";
19836 else if (parent->building_fullname)
19837 {
19838 const char *name;
19839 const char *parent_name;
19840
19841 /* It has been seen on RealView 2.2 built binaries,
19842 DW_TAG_template_type_param types actually _defined_ as
19843 children of the parent class:
19844
19845 enum E {};
19846 template class <class Enum> Class{};
19847 Class<enum E> class_e;
19848
19849 1: DW_TAG_class_type (Class)
19850 2: DW_TAG_enumeration_type (E)
19851 3: DW_TAG_enumerator (enum1:0)
19852 3: DW_TAG_enumerator (enum2:1)
19853 ...
19854 2: DW_TAG_template_type_param
19855 DW_AT_type DW_FORM_ref_udata (E)
19856
19857 Besides being broken debug info, it can put GDB into an
19858 infinite loop. Consider:
19859
19860 When we're building the full name for Class<E>, we'll start
19861 at Class, and go look over its template type parameters,
19862 finding E. We'll then try to build the full name of E, and
19863 reach here. We're now trying to build the full name of E,
19864 and look over the parent DIE for containing scope. In the
19865 broken case, if we followed the parent DIE of E, we'd again
19866 find Class, and once again go look at its template type
19867 arguments, etc., etc. Simply don't consider such parent die
19868 as source-level parent of this die (it can't be, the language
19869 doesn't allow it), and break the loop here. */
19870 name = dwarf2_name (die, cu);
19871 parent_name = dwarf2_name (parent, cu);
19872 complaint (&symfile_complaints,
19873 _("template param type '%s' defined within parent '%s'"),
19874 name ? name : "<unknown>",
19875 parent_name ? parent_name : "<unknown>");
19876 return "";
19877 }
19878 else
19879 switch (parent->tag)
19880 {
19881 case DW_TAG_namespace:
19882 parent_type = read_type_die (parent, cu);
19883 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19884 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19885 Work around this problem here. */
19886 if (cu->language == language_cplus
19887 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19888 return "";
19889 /* We give a name to even anonymous namespaces. */
19890 return TYPE_TAG_NAME (parent_type);
19891 case DW_TAG_class_type:
19892 case DW_TAG_interface_type:
19893 case DW_TAG_structure_type:
19894 case DW_TAG_union_type:
19895 case DW_TAG_module:
19896 parent_type = read_type_die (parent, cu);
19897 if (TYPE_TAG_NAME (parent_type) != NULL)
19898 return TYPE_TAG_NAME (parent_type);
19899 else
19900 /* An anonymous structure is only allowed non-static data
19901 members; no typedefs, no member functions, et cetera.
19902 So it does not need a prefix. */
19903 return "";
19904 case DW_TAG_compile_unit:
19905 case DW_TAG_partial_unit:
19906 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19907 if (cu->language == language_cplus
19908 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19909 && die->child != NULL
19910 && (die->tag == DW_TAG_class_type
19911 || die->tag == DW_TAG_structure_type
19912 || die->tag == DW_TAG_union_type))
19913 {
19914 char *name = guess_full_die_structure_name (die, cu);
19915 if (name != NULL)
19916 return name;
19917 }
19918 return "";
19919 case DW_TAG_enumeration_type:
19920 parent_type = read_type_die (parent, cu);
19921 if (TYPE_DECLARED_CLASS (parent_type))
19922 {
19923 if (TYPE_TAG_NAME (parent_type) != NULL)
19924 return TYPE_TAG_NAME (parent_type);
19925 return "";
19926 }
19927 /* Fall through. */
19928 default:
19929 return determine_prefix (parent, cu);
19930 }
19931 }
19932
19933 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19934 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19935 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19936 an obconcat, otherwise allocate storage for the result. The CU argument is
19937 used to determine the language and hence, the appropriate separator. */
19938
19939 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19940
19941 static char *
19942 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19943 int physname, struct dwarf2_cu *cu)
19944 {
19945 const char *lead = "";
19946 const char *sep;
19947
19948 if (suffix == NULL || suffix[0] == '\0'
19949 || prefix == NULL || prefix[0] == '\0')
19950 sep = "";
19951 else if (cu->language == language_d)
19952 {
19953 /* For D, the 'main' function could be defined in any module, but it
19954 should never be prefixed. */
19955 if (strcmp (suffix, "D main") == 0)
19956 {
19957 prefix = "";
19958 sep = "";
19959 }
19960 else
19961 sep = ".";
19962 }
19963 else if (cu->language == language_fortran && physname)
19964 {
19965 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19966 DW_AT_MIPS_linkage_name is preferred and used instead. */
19967
19968 lead = "__";
19969 sep = "_MOD_";
19970 }
19971 else
19972 sep = "::";
19973
19974 if (prefix == NULL)
19975 prefix = "";
19976 if (suffix == NULL)
19977 suffix = "";
19978
19979 if (obs == NULL)
19980 {
19981 char *retval
19982 = ((char *)
19983 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19984
19985 strcpy (retval, lead);
19986 strcat (retval, prefix);
19987 strcat (retval, sep);
19988 strcat (retval, suffix);
19989 return retval;
19990 }
19991 else
19992 {
19993 /* We have an obstack. */
19994 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19995 }
19996 }
19997
19998 /* Return sibling of die, NULL if no sibling. */
19999
20000 static struct die_info *
20001 sibling_die (struct die_info *die)
20002 {
20003 return die->sibling;
20004 }
20005
20006 /* Get name of a die, return NULL if not found. */
20007
20008 static const char *
20009 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20010 struct obstack *obstack)
20011 {
20012 if (name && cu->language == language_cplus)
20013 {
20014 std::string canon_name = cp_canonicalize_string (name);
20015
20016 if (!canon_name.empty ())
20017 {
20018 if (canon_name != name)
20019 name = (const char *) obstack_copy0 (obstack,
20020 canon_name.c_str (),
20021 canon_name.length ());
20022 }
20023 }
20024
20025 return name;
20026 }
20027
20028 /* Get name of a die, return NULL if not found.
20029 Anonymous namespaces are converted to their magic string. */
20030
20031 static const char *
20032 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20033 {
20034 struct attribute *attr;
20035
20036 attr = dwarf2_attr (die, DW_AT_name, cu);
20037 if ((!attr || !DW_STRING (attr))
20038 && die->tag != DW_TAG_namespace
20039 && die->tag != DW_TAG_class_type
20040 && die->tag != DW_TAG_interface_type
20041 && die->tag != DW_TAG_structure_type
20042 && die->tag != DW_TAG_union_type)
20043 return NULL;
20044
20045 switch (die->tag)
20046 {
20047 case DW_TAG_compile_unit:
20048 case DW_TAG_partial_unit:
20049 /* Compilation units have a DW_AT_name that is a filename, not
20050 a source language identifier. */
20051 case DW_TAG_enumeration_type:
20052 case DW_TAG_enumerator:
20053 /* These tags always have simple identifiers already; no need
20054 to canonicalize them. */
20055 return DW_STRING (attr);
20056
20057 case DW_TAG_namespace:
20058 if (attr != NULL && DW_STRING (attr) != NULL)
20059 return DW_STRING (attr);
20060 return CP_ANONYMOUS_NAMESPACE_STR;
20061
20062 case DW_TAG_class_type:
20063 case DW_TAG_interface_type:
20064 case DW_TAG_structure_type:
20065 case DW_TAG_union_type:
20066 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20067 structures or unions. These were of the form "._%d" in GCC 4.1,
20068 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20069 and GCC 4.4. We work around this problem by ignoring these. */
20070 if (attr && DW_STRING (attr)
20071 && (startswith (DW_STRING (attr), "._")
20072 || startswith (DW_STRING (attr), "<anonymous")))
20073 return NULL;
20074
20075 /* GCC might emit a nameless typedef that has a linkage name. See
20076 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20077 if (!attr || DW_STRING (attr) == NULL)
20078 {
20079 char *demangled = NULL;
20080
20081 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20082 if (attr == NULL)
20083 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20084
20085 if (attr == NULL || DW_STRING (attr) == NULL)
20086 return NULL;
20087
20088 /* Avoid demangling DW_STRING (attr) the second time on a second
20089 call for the same DIE. */
20090 if (!DW_STRING_IS_CANONICAL (attr))
20091 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20092
20093 if (demangled)
20094 {
20095 const char *base;
20096
20097 /* FIXME: we already did this for the partial symbol... */
20098 DW_STRING (attr)
20099 = ((const char *)
20100 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20101 demangled, strlen (demangled)));
20102 DW_STRING_IS_CANONICAL (attr) = 1;
20103 xfree (demangled);
20104
20105 /* Strip any leading namespaces/classes, keep only the base name.
20106 DW_AT_name for named DIEs does not contain the prefixes. */
20107 base = strrchr (DW_STRING (attr), ':');
20108 if (base && base > DW_STRING (attr) && base[-1] == ':')
20109 return &base[1];
20110 else
20111 return DW_STRING (attr);
20112 }
20113 }
20114 break;
20115
20116 default:
20117 break;
20118 }
20119
20120 if (!DW_STRING_IS_CANONICAL (attr))
20121 {
20122 DW_STRING (attr)
20123 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20124 &cu->objfile->per_bfd->storage_obstack);
20125 DW_STRING_IS_CANONICAL (attr) = 1;
20126 }
20127 return DW_STRING (attr);
20128 }
20129
20130 /* Return the die that this die in an extension of, or NULL if there
20131 is none. *EXT_CU is the CU containing DIE on input, and the CU
20132 containing the return value on output. */
20133
20134 static struct die_info *
20135 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20136 {
20137 struct attribute *attr;
20138
20139 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20140 if (attr == NULL)
20141 return NULL;
20142
20143 return follow_die_ref (die, attr, ext_cu);
20144 }
20145
20146 /* Convert a DIE tag into its string name. */
20147
20148 static const char *
20149 dwarf_tag_name (unsigned tag)
20150 {
20151 const char *name = get_DW_TAG_name (tag);
20152
20153 if (name == NULL)
20154 return "DW_TAG_<unknown>";
20155
20156 return name;
20157 }
20158
20159 /* Convert a DWARF attribute code into its string name. */
20160
20161 static const char *
20162 dwarf_attr_name (unsigned attr)
20163 {
20164 const char *name;
20165
20166 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20167 if (attr == DW_AT_MIPS_fde)
20168 return "DW_AT_MIPS_fde";
20169 #else
20170 if (attr == DW_AT_HP_block_index)
20171 return "DW_AT_HP_block_index";
20172 #endif
20173
20174 name = get_DW_AT_name (attr);
20175
20176 if (name == NULL)
20177 return "DW_AT_<unknown>";
20178
20179 return name;
20180 }
20181
20182 /* Convert a DWARF value form code into its string name. */
20183
20184 static const char *
20185 dwarf_form_name (unsigned form)
20186 {
20187 const char *name = get_DW_FORM_name (form);
20188
20189 if (name == NULL)
20190 return "DW_FORM_<unknown>";
20191
20192 return name;
20193 }
20194
20195 static char *
20196 dwarf_bool_name (unsigned mybool)
20197 {
20198 if (mybool)
20199 return "TRUE";
20200 else
20201 return "FALSE";
20202 }
20203
20204 /* Convert a DWARF type code into its string name. */
20205
20206 static const char *
20207 dwarf_type_encoding_name (unsigned enc)
20208 {
20209 const char *name = get_DW_ATE_name (enc);
20210
20211 if (name == NULL)
20212 return "DW_ATE_<unknown>";
20213
20214 return name;
20215 }
20216
20217 static void
20218 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20219 {
20220 unsigned int i;
20221
20222 print_spaces (indent, f);
20223 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20224 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
20225
20226 if (die->parent != NULL)
20227 {
20228 print_spaces (indent, f);
20229 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20230 die->parent->offset.sect_off);
20231 }
20232
20233 print_spaces (indent, f);
20234 fprintf_unfiltered (f, " has children: %s\n",
20235 dwarf_bool_name (die->child != NULL));
20236
20237 print_spaces (indent, f);
20238 fprintf_unfiltered (f, " attributes:\n");
20239
20240 for (i = 0; i < die->num_attrs; ++i)
20241 {
20242 print_spaces (indent, f);
20243 fprintf_unfiltered (f, " %s (%s) ",
20244 dwarf_attr_name (die->attrs[i].name),
20245 dwarf_form_name (die->attrs[i].form));
20246
20247 switch (die->attrs[i].form)
20248 {
20249 case DW_FORM_addr:
20250 case DW_FORM_GNU_addr_index:
20251 fprintf_unfiltered (f, "address: ");
20252 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20253 break;
20254 case DW_FORM_block2:
20255 case DW_FORM_block4:
20256 case DW_FORM_block:
20257 case DW_FORM_block1:
20258 fprintf_unfiltered (f, "block: size %s",
20259 pulongest (DW_BLOCK (&die->attrs[i])->size));
20260 break;
20261 case DW_FORM_exprloc:
20262 fprintf_unfiltered (f, "expression: size %s",
20263 pulongest (DW_BLOCK (&die->attrs[i])->size));
20264 break;
20265 case DW_FORM_data16:
20266 fprintf_unfiltered (f, "constant of 16 bytes");
20267 break;
20268 case DW_FORM_ref_addr:
20269 fprintf_unfiltered (f, "ref address: ");
20270 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20271 break;
20272 case DW_FORM_GNU_ref_alt:
20273 fprintf_unfiltered (f, "alt ref address: ");
20274 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20275 break;
20276 case DW_FORM_ref1:
20277 case DW_FORM_ref2:
20278 case DW_FORM_ref4:
20279 case DW_FORM_ref8:
20280 case DW_FORM_ref_udata:
20281 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20282 (long) (DW_UNSND (&die->attrs[i])));
20283 break;
20284 case DW_FORM_data1:
20285 case DW_FORM_data2:
20286 case DW_FORM_data4:
20287 case DW_FORM_data8:
20288 case DW_FORM_udata:
20289 case DW_FORM_sdata:
20290 fprintf_unfiltered (f, "constant: %s",
20291 pulongest (DW_UNSND (&die->attrs[i])));
20292 break;
20293 case DW_FORM_sec_offset:
20294 fprintf_unfiltered (f, "section offset: %s",
20295 pulongest (DW_UNSND (&die->attrs[i])));
20296 break;
20297 case DW_FORM_ref_sig8:
20298 fprintf_unfiltered (f, "signature: %s",
20299 hex_string (DW_SIGNATURE (&die->attrs[i])));
20300 break;
20301 case DW_FORM_string:
20302 case DW_FORM_strp:
20303 case DW_FORM_line_strp:
20304 case DW_FORM_GNU_str_index:
20305 case DW_FORM_GNU_strp_alt:
20306 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20307 DW_STRING (&die->attrs[i])
20308 ? DW_STRING (&die->attrs[i]) : "",
20309 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20310 break;
20311 case DW_FORM_flag:
20312 if (DW_UNSND (&die->attrs[i]))
20313 fprintf_unfiltered (f, "flag: TRUE");
20314 else
20315 fprintf_unfiltered (f, "flag: FALSE");
20316 break;
20317 case DW_FORM_flag_present:
20318 fprintf_unfiltered (f, "flag: TRUE");
20319 break;
20320 case DW_FORM_indirect:
20321 /* The reader will have reduced the indirect form to
20322 the "base form" so this form should not occur. */
20323 fprintf_unfiltered (f,
20324 "unexpected attribute form: DW_FORM_indirect");
20325 break;
20326 default:
20327 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20328 die->attrs[i].form);
20329 break;
20330 }
20331 fprintf_unfiltered (f, "\n");
20332 }
20333 }
20334
20335 static void
20336 dump_die_for_error (struct die_info *die)
20337 {
20338 dump_die_shallow (gdb_stderr, 0, die);
20339 }
20340
20341 static void
20342 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20343 {
20344 int indent = level * 4;
20345
20346 gdb_assert (die != NULL);
20347
20348 if (level >= max_level)
20349 return;
20350
20351 dump_die_shallow (f, indent, die);
20352
20353 if (die->child != NULL)
20354 {
20355 print_spaces (indent, f);
20356 fprintf_unfiltered (f, " Children:");
20357 if (level + 1 < max_level)
20358 {
20359 fprintf_unfiltered (f, "\n");
20360 dump_die_1 (f, level + 1, max_level, die->child);
20361 }
20362 else
20363 {
20364 fprintf_unfiltered (f,
20365 " [not printed, max nesting level reached]\n");
20366 }
20367 }
20368
20369 if (die->sibling != NULL && level > 0)
20370 {
20371 dump_die_1 (f, level, max_level, die->sibling);
20372 }
20373 }
20374
20375 /* This is called from the pdie macro in gdbinit.in.
20376 It's not static so gcc will keep a copy callable from gdb. */
20377
20378 void
20379 dump_die (struct die_info *die, int max_level)
20380 {
20381 dump_die_1 (gdb_stdlog, 0, max_level, die);
20382 }
20383
20384 static void
20385 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20386 {
20387 void **slot;
20388
20389 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
20390 INSERT);
20391
20392 *slot = die;
20393 }
20394
20395 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20396 required kind. */
20397
20398 static sect_offset
20399 dwarf2_get_ref_die_offset (const struct attribute *attr)
20400 {
20401 sect_offset retval = { DW_UNSND (attr) };
20402
20403 if (attr_form_is_ref (attr))
20404 return retval;
20405
20406 retval.sect_off = 0;
20407 complaint (&symfile_complaints,
20408 _("unsupported die ref attribute form: '%s'"),
20409 dwarf_form_name (attr->form));
20410 return retval;
20411 }
20412
20413 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20414 * the value held by the attribute is not constant. */
20415
20416 static LONGEST
20417 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20418 {
20419 if (attr->form == DW_FORM_sdata)
20420 return DW_SND (attr);
20421 else if (attr->form == DW_FORM_udata
20422 || attr->form == DW_FORM_data1
20423 || attr->form == DW_FORM_data2
20424 || attr->form == DW_FORM_data4
20425 || attr->form == DW_FORM_data8)
20426 return DW_UNSND (attr);
20427 else
20428 {
20429 /* For DW_FORM_data16 see attr_form_is_constant. */
20430 complaint (&symfile_complaints,
20431 _("Attribute value is not a constant (%s)"),
20432 dwarf_form_name (attr->form));
20433 return default_value;
20434 }
20435 }
20436
20437 /* Follow reference or signature attribute ATTR of SRC_DIE.
20438 On entry *REF_CU is the CU of SRC_DIE.
20439 On exit *REF_CU is the CU of the result. */
20440
20441 static struct die_info *
20442 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20443 struct dwarf2_cu **ref_cu)
20444 {
20445 struct die_info *die;
20446
20447 if (attr_form_is_ref (attr))
20448 die = follow_die_ref (src_die, attr, ref_cu);
20449 else if (attr->form == DW_FORM_ref_sig8)
20450 die = follow_die_sig (src_die, attr, ref_cu);
20451 else
20452 {
20453 dump_die_for_error (src_die);
20454 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20455 objfile_name ((*ref_cu)->objfile));
20456 }
20457
20458 return die;
20459 }
20460
20461 /* Follow reference OFFSET.
20462 On entry *REF_CU is the CU of the source die referencing OFFSET.
20463 On exit *REF_CU is the CU of the result.
20464 Returns NULL if OFFSET is invalid. */
20465
20466 static struct die_info *
20467 follow_die_offset (sect_offset offset, int offset_in_dwz,
20468 struct dwarf2_cu **ref_cu)
20469 {
20470 struct die_info temp_die;
20471 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20472
20473 gdb_assert (cu->per_cu != NULL);
20474
20475 target_cu = cu;
20476
20477 if (cu->per_cu->is_debug_types)
20478 {
20479 /* .debug_types CUs cannot reference anything outside their CU.
20480 If they need to, they have to reference a signatured type via
20481 DW_FORM_ref_sig8. */
20482 if (! offset_in_cu_p (&cu->header, offset))
20483 return NULL;
20484 }
20485 else if (offset_in_dwz != cu->per_cu->is_dwz
20486 || ! offset_in_cu_p (&cu->header, offset))
20487 {
20488 struct dwarf2_per_cu_data *per_cu;
20489
20490 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20491 cu->objfile);
20492
20493 /* If necessary, add it to the queue and load its DIEs. */
20494 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20495 load_full_comp_unit (per_cu, cu->language);
20496
20497 target_cu = per_cu->cu;
20498 }
20499 else if (cu->dies == NULL)
20500 {
20501 /* We're loading full DIEs during partial symbol reading. */
20502 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20503 load_full_comp_unit (cu->per_cu, language_minimal);
20504 }
20505
20506 *ref_cu = target_cu;
20507 temp_die.offset = offset;
20508 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20509 &temp_die, offset.sect_off);
20510 }
20511
20512 /* Follow reference attribute ATTR of SRC_DIE.
20513 On entry *REF_CU is the CU of SRC_DIE.
20514 On exit *REF_CU is the CU of the result. */
20515
20516 static struct die_info *
20517 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20518 struct dwarf2_cu **ref_cu)
20519 {
20520 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20521 struct dwarf2_cu *cu = *ref_cu;
20522 struct die_info *die;
20523
20524 die = follow_die_offset (offset,
20525 (attr->form == DW_FORM_GNU_ref_alt
20526 || cu->per_cu->is_dwz),
20527 ref_cu);
20528 if (!die)
20529 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20530 "at 0x%x [in module %s]"),
20531 offset.sect_off, src_die->offset.sect_off,
20532 objfile_name (cu->objfile));
20533
20534 return die;
20535 }
20536
20537 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20538 Returned value is intended for DW_OP_call*. Returned
20539 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20540
20541 struct dwarf2_locexpr_baton
20542 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20543 struct dwarf2_per_cu_data *per_cu,
20544 CORE_ADDR (*get_frame_pc) (void *baton),
20545 void *baton)
20546 {
20547 struct dwarf2_cu *cu;
20548 struct die_info *die;
20549 struct attribute *attr;
20550 struct dwarf2_locexpr_baton retval;
20551
20552 dw2_setup (per_cu->objfile);
20553
20554 if (per_cu->cu == NULL)
20555 load_cu (per_cu);
20556 cu = per_cu->cu;
20557 if (cu == NULL)
20558 {
20559 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20560 Instead just throw an error, not much else we can do. */
20561 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20562 offset.sect_off, objfile_name (per_cu->objfile));
20563 }
20564
20565 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20566 if (!die)
20567 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20568 offset.sect_off, objfile_name (per_cu->objfile));
20569
20570 attr = dwarf2_attr (die, DW_AT_location, cu);
20571 if (!attr)
20572 {
20573 /* DWARF: "If there is no such attribute, then there is no effect.".
20574 DATA is ignored if SIZE is 0. */
20575
20576 retval.data = NULL;
20577 retval.size = 0;
20578 }
20579 else if (attr_form_is_section_offset (attr))
20580 {
20581 struct dwarf2_loclist_baton loclist_baton;
20582 CORE_ADDR pc = (*get_frame_pc) (baton);
20583 size_t size;
20584
20585 fill_in_loclist_baton (cu, &loclist_baton, attr);
20586
20587 retval.data = dwarf2_find_location_expression (&loclist_baton,
20588 &size, pc);
20589 retval.size = size;
20590 }
20591 else
20592 {
20593 if (!attr_form_is_block (attr))
20594 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20595 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20596 offset.sect_off, objfile_name (per_cu->objfile));
20597
20598 retval.data = DW_BLOCK (attr)->data;
20599 retval.size = DW_BLOCK (attr)->size;
20600 }
20601 retval.per_cu = cu->per_cu;
20602
20603 age_cached_comp_units ();
20604
20605 return retval;
20606 }
20607
20608 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20609 offset. */
20610
20611 struct dwarf2_locexpr_baton
20612 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20613 struct dwarf2_per_cu_data *per_cu,
20614 CORE_ADDR (*get_frame_pc) (void *baton),
20615 void *baton)
20616 {
20617 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20618
20619 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20620 }
20621
20622 /* Write a constant of a given type as target-ordered bytes into
20623 OBSTACK. */
20624
20625 static const gdb_byte *
20626 write_constant_as_bytes (struct obstack *obstack,
20627 enum bfd_endian byte_order,
20628 struct type *type,
20629 ULONGEST value,
20630 LONGEST *len)
20631 {
20632 gdb_byte *result;
20633
20634 *len = TYPE_LENGTH (type);
20635 result = (gdb_byte *) obstack_alloc (obstack, *len);
20636 store_unsigned_integer (result, *len, byte_order, value);
20637
20638 return result;
20639 }
20640
20641 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20642 pointer to the constant bytes and set LEN to the length of the
20643 data. If memory is needed, allocate it on OBSTACK. If the DIE
20644 does not have a DW_AT_const_value, return NULL. */
20645
20646 const gdb_byte *
20647 dwarf2_fetch_constant_bytes (sect_offset offset,
20648 struct dwarf2_per_cu_data *per_cu,
20649 struct obstack *obstack,
20650 LONGEST *len)
20651 {
20652 struct dwarf2_cu *cu;
20653 struct die_info *die;
20654 struct attribute *attr;
20655 const gdb_byte *result = NULL;
20656 struct type *type;
20657 LONGEST value;
20658 enum bfd_endian byte_order;
20659
20660 dw2_setup (per_cu->objfile);
20661
20662 if (per_cu->cu == NULL)
20663 load_cu (per_cu);
20664 cu = per_cu->cu;
20665 if (cu == NULL)
20666 {
20667 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20668 Instead just throw an error, not much else we can do. */
20669 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20670 offset.sect_off, objfile_name (per_cu->objfile));
20671 }
20672
20673 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20674 if (!die)
20675 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20676 offset.sect_off, objfile_name (per_cu->objfile));
20677
20678
20679 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20680 if (attr == NULL)
20681 return NULL;
20682
20683 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20684 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20685
20686 switch (attr->form)
20687 {
20688 case DW_FORM_addr:
20689 case DW_FORM_GNU_addr_index:
20690 {
20691 gdb_byte *tem;
20692
20693 *len = cu->header.addr_size;
20694 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20695 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20696 result = tem;
20697 }
20698 break;
20699 case DW_FORM_string:
20700 case DW_FORM_strp:
20701 case DW_FORM_GNU_str_index:
20702 case DW_FORM_GNU_strp_alt:
20703 /* DW_STRING is already allocated on the objfile obstack, point
20704 directly to it. */
20705 result = (const gdb_byte *) DW_STRING (attr);
20706 *len = strlen (DW_STRING (attr));
20707 break;
20708 case DW_FORM_block1:
20709 case DW_FORM_block2:
20710 case DW_FORM_block4:
20711 case DW_FORM_block:
20712 case DW_FORM_exprloc:
20713 case DW_FORM_data16:
20714 result = DW_BLOCK (attr)->data;
20715 *len = DW_BLOCK (attr)->size;
20716 break;
20717
20718 /* The DW_AT_const_value attributes are supposed to carry the
20719 symbol's value "represented as it would be on the target
20720 architecture." By the time we get here, it's already been
20721 converted to host endianness, so we just need to sign- or
20722 zero-extend it as appropriate. */
20723 case DW_FORM_data1:
20724 type = die_type (die, cu);
20725 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20726 if (result == NULL)
20727 result = write_constant_as_bytes (obstack, byte_order,
20728 type, value, len);
20729 break;
20730 case DW_FORM_data2:
20731 type = die_type (die, cu);
20732 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20733 if (result == NULL)
20734 result = write_constant_as_bytes (obstack, byte_order,
20735 type, value, len);
20736 break;
20737 case DW_FORM_data4:
20738 type = die_type (die, cu);
20739 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20740 if (result == NULL)
20741 result = write_constant_as_bytes (obstack, byte_order,
20742 type, value, len);
20743 break;
20744 case DW_FORM_data8:
20745 type = die_type (die, cu);
20746 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20747 if (result == NULL)
20748 result = write_constant_as_bytes (obstack, byte_order,
20749 type, value, len);
20750 break;
20751
20752 case DW_FORM_sdata:
20753 type = die_type (die, cu);
20754 result = write_constant_as_bytes (obstack, byte_order,
20755 type, DW_SND (attr), len);
20756 break;
20757
20758 case DW_FORM_udata:
20759 type = die_type (die, cu);
20760 result = write_constant_as_bytes (obstack, byte_order,
20761 type, DW_UNSND (attr), len);
20762 break;
20763
20764 default:
20765 complaint (&symfile_complaints,
20766 _("unsupported const value attribute form: '%s'"),
20767 dwarf_form_name (attr->form));
20768 break;
20769 }
20770
20771 return result;
20772 }
20773
20774 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20775 PER_CU. */
20776
20777 struct type *
20778 dwarf2_get_die_type (cu_offset die_offset,
20779 struct dwarf2_per_cu_data *per_cu)
20780 {
20781 sect_offset die_offset_sect;
20782
20783 dw2_setup (per_cu->objfile);
20784
20785 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20786 return get_die_type_at_offset (die_offset_sect, per_cu);
20787 }
20788
20789 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20790 On entry *REF_CU is the CU of SRC_DIE.
20791 On exit *REF_CU is the CU of the result.
20792 Returns NULL if the referenced DIE isn't found. */
20793
20794 static struct die_info *
20795 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20796 struct dwarf2_cu **ref_cu)
20797 {
20798 struct die_info temp_die;
20799 struct dwarf2_cu *sig_cu;
20800 struct die_info *die;
20801
20802 /* While it might be nice to assert sig_type->type == NULL here,
20803 we can get here for DW_AT_imported_declaration where we need
20804 the DIE not the type. */
20805
20806 /* If necessary, add it to the queue and load its DIEs. */
20807
20808 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20809 read_signatured_type (sig_type);
20810
20811 sig_cu = sig_type->per_cu.cu;
20812 gdb_assert (sig_cu != NULL);
20813 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20814 temp_die.offset = sig_type->type_offset_in_section;
20815 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20816 temp_die.offset.sect_off);
20817 if (die)
20818 {
20819 /* For .gdb_index version 7 keep track of included TUs.
20820 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20821 if (dwarf2_per_objfile->index_table != NULL
20822 && dwarf2_per_objfile->index_table->version <= 7)
20823 {
20824 VEC_safe_push (dwarf2_per_cu_ptr,
20825 (*ref_cu)->per_cu->imported_symtabs,
20826 sig_cu->per_cu);
20827 }
20828
20829 *ref_cu = sig_cu;
20830 return die;
20831 }
20832
20833 return NULL;
20834 }
20835
20836 /* Follow signatured type referenced by ATTR in SRC_DIE.
20837 On entry *REF_CU is the CU of SRC_DIE.
20838 On exit *REF_CU is the CU of the result.
20839 The result is the DIE of the type.
20840 If the referenced type cannot be found an error is thrown. */
20841
20842 static struct die_info *
20843 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20844 struct dwarf2_cu **ref_cu)
20845 {
20846 ULONGEST signature = DW_SIGNATURE (attr);
20847 struct signatured_type *sig_type;
20848 struct die_info *die;
20849
20850 gdb_assert (attr->form == DW_FORM_ref_sig8);
20851
20852 sig_type = lookup_signatured_type (*ref_cu, signature);
20853 /* sig_type will be NULL if the signatured type is missing from
20854 the debug info. */
20855 if (sig_type == NULL)
20856 {
20857 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20858 " from DIE at 0x%x [in module %s]"),
20859 hex_string (signature), src_die->offset.sect_off,
20860 objfile_name ((*ref_cu)->objfile));
20861 }
20862
20863 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20864 if (die == NULL)
20865 {
20866 dump_die_for_error (src_die);
20867 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20868 " from DIE at 0x%x [in module %s]"),
20869 hex_string (signature), src_die->offset.sect_off,
20870 objfile_name ((*ref_cu)->objfile));
20871 }
20872
20873 return die;
20874 }
20875
20876 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20877 reading in and processing the type unit if necessary. */
20878
20879 static struct type *
20880 get_signatured_type (struct die_info *die, ULONGEST signature,
20881 struct dwarf2_cu *cu)
20882 {
20883 struct signatured_type *sig_type;
20884 struct dwarf2_cu *type_cu;
20885 struct die_info *type_die;
20886 struct type *type;
20887
20888 sig_type = lookup_signatured_type (cu, signature);
20889 /* sig_type will be NULL if the signatured type is missing from
20890 the debug info. */
20891 if (sig_type == NULL)
20892 {
20893 complaint (&symfile_complaints,
20894 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20895 " from DIE at 0x%x [in module %s]"),
20896 hex_string (signature), die->offset.sect_off,
20897 objfile_name (dwarf2_per_objfile->objfile));
20898 return build_error_marker_type (cu, die);
20899 }
20900
20901 /* If we already know the type we're done. */
20902 if (sig_type->type != NULL)
20903 return sig_type->type;
20904
20905 type_cu = cu;
20906 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20907 if (type_die != NULL)
20908 {
20909 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20910 is created. This is important, for example, because for c++ classes
20911 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20912 type = read_type_die (type_die, type_cu);
20913 if (type == NULL)
20914 {
20915 complaint (&symfile_complaints,
20916 _("Dwarf Error: Cannot build signatured type %s"
20917 " referenced from DIE at 0x%x [in module %s]"),
20918 hex_string (signature), die->offset.sect_off,
20919 objfile_name (dwarf2_per_objfile->objfile));
20920 type = build_error_marker_type (cu, die);
20921 }
20922 }
20923 else
20924 {
20925 complaint (&symfile_complaints,
20926 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20927 " from DIE at 0x%x [in module %s]"),
20928 hex_string (signature), die->offset.sect_off,
20929 objfile_name (dwarf2_per_objfile->objfile));
20930 type = build_error_marker_type (cu, die);
20931 }
20932 sig_type->type = type;
20933
20934 return type;
20935 }
20936
20937 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20938 reading in and processing the type unit if necessary. */
20939
20940 static struct type *
20941 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20942 struct dwarf2_cu *cu) /* ARI: editCase function */
20943 {
20944 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20945 if (attr_form_is_ref (attr))
20946 {
20947 struct dwarf2_cu *type_cu = cu;
20948 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20949
20950 return read_type_die (type_die, type_cu);
20951 }
20952 else if (attr->form == DW_FORM_ref_sig8)
20953 {
20954 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20955 }
20956 else
20957 {
20958 complaint (&symfile_complaints,
20959 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20960 " at 0x%x [in module %s]"),
20961 dwarf_form_name (attr->form), die->offset.sect_off,
20962 objfile_name (dwarf2_per_objfile->objfile));
20963 return build_error_marker_type (cu, die);
20964 }
20965 }
20966
20967 /* Load the DIEs associated with type unit PER_CU into memory. */
20968
20969 static void
20970 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20971 {
20972 struct signatured_type *sig_type;
20973
20974 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20975 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20976
20977 /* We have the per_cu, but we need the signatured_type.
20978 Fortunately this is an easy translation. */
20979 gdb_assert (per_cu->is_debug_types);
20980 sig_type = (struct signatured_type *) per_cu;
20981
20982 gdb_assert (per_cu->cu == NULL);
20983
20984 read_signatured_type (sig_type);
20985
20986 gdb_assert (per_cu->cu != NULL);
20987 }
20988
20989 /* die_reader_func for read_signatured_type.
20990 This is identical to load_full_comp_unit_reader,
20991 but is kept separate for now. */
20992
20993 static void
20994 read_signatured_type_reader (const struct die_reader_specs *reader,
20995 const gdb_byte *info_ptr,
20996 struct die_info *comp_unit_die,
20997 int has_children,
20998 void *data)
20999 {
21000 struct dwarf2_cu *cu = reader->cu;
21001
21002 gdb_assert (cu->die_hash == NULL);
21003 cu->die_hash =
21004 htab_create_alloc_ex (cu->header.length / 12,
21005 die_hash,
21006 die_eq,
21007 NULL,
21008 &cu->comp_unit_obstack,
21009 hashtab_obstack_allocate,
21010 dummy_obstack_deallocate);
21011
21012 if (has_children)
21013 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21014 &info_ptr, comp_unit_die);
21015 cu->dies = comp_unit_die;
21016 /* comp_unit_die is not stored in die_hash, no need. */
21017
21018 /* We try not to read any attributes in this function, because not
21019 all CUs needed for references have been loaded yet, and symbol
21020 table processing isn't initialized. But we have to set the CU language,
21021 or we won't be able to build types correctly.
21022 Similarly, if we do not read the producer, we can not apply
21023 producer-specific interpretation. */
21024 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21025 }
21026
21027 /* Read in a signatured type and build its CU and DIEs.
21028 If the type is a stub for the real type in a DWO file,
21029 read in the real type from the DWO file as well. */
21030
21031 static void
21032 read_signatured_type (struct signatured_type *sig_type)
21033 {
21034 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21035
21036 gdb_assert (per_cu->is_debug_types);
21037 gdb_assert (per_cu->cu == NULL);
21038
21039 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21040 read_signatured_type_reader, NULL);
21041 sig_type->per_cu.tu_read = 1;
21042 }
21043
21044 /* Decode simple location descriptions.
21045 Given a pointer to a dwarf block that defines a location, compute
21046 the location and return the value.
21047
21048 NOTE drow/2003-11-18: This function is called in two situations
21049 now: for the address of static or global variables (partial symbols
21050 only) and for offsets into structures which are expected to be
21051 (more or less) constant. The partial symbol case should go away,
21052 and only the constant case should remain. That will let this
21053 function complain more accurately. A few special modes are allowed
21054 without complaint for global variables (for instance, global
21055 register values and thread-local values).
21056
21057 A location description containing no operations indicates that the
21058 object is optimized out. The return value is 0 for that case.
21059 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21060 callers will only want a very basic result and this can become a
21061 complaint.
21062
21063 Note that stack[0] is unused except as a default error return. */
21064
21065 static CORE_ADDR
21066 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21067 {
21068 struct objfile *objfile = cu->objfile;
21069 size_t i;
21070 size_t size = blk->size;
21071 const gdb_byte *data = blk->data;
21072 CORE_ADDR stack[64];
21073 int stacki;
21074 unsigned int bytes_read, unsnd;
21075 gdb_byte op;
21076
21077 i = 0;
21078 stacki = 0;
21079 stack[stacki] = 0;
21080 stack[++stacki] = 0;
21081
21082 while (i < size)
21083 {
21084 op = data[i++];
21085 switch (op)
21086 {
21087 case DW_OP_lit0:
21088 case DW_OP_lit1:
21089 case DW_OP_lit2:
21090 case DW_OP_lit3:
21091 case DW_OP_lit4:
21092 case DW_OP_lit5:
21093 case DW_OP_lit6:
21094 case DW_OP_lit7:
21095 case DW_OP_lit8:
21096 case DW_OP_lit9:
21097 case DW_OP_lit10:
21098 case DW_OP_lit11:
21099 case DW_OP_lit12:
21100 case DW_OP_lit13:
21101 case DW_OP_lit14:
21102 case DW_OP_lit15:
21103 case DW_OP_lit16:
21104 case DW_OP_lit17:
21105 case DW_OP_lit18:
21106 case DW_OP_lit19:
21107 case DW_OP_lit20:
21108 case DW_OP_lit21:
21109 case DW_OP_lit22:
21110 case DW_OP_lit23:
21111 case DW_OP_lit24:
21112 case DW_OP_lit25:
21113 case DW_OP_lit26:
21114 case DW_OP_lit27:
21115 case DW_OP_lit28:
21116 case DW_OP_lit29:
21117 case DW_OP_lit30:
21118 case DW_OP_lit31:
21119 stack[++stacki] = op - DW_OP_lit0;
21120 break;
21121
21122 case DW_OP_reg0:
21123 case DW_OP_reg1:
21124 case DW_OP_reg2:
21125 case DW_OP_reg3:
21126 case DW_OP_reg4:
21127 case DW_OP_reg5:
21128 case DW_OP_reg6:
21129 case DW_OP_reg7:
21130 case DW_OP_reg8:
21131 case DW_OP_reg9:
21132 case DW_OP_reg10:
21133 case DW_OP_reg11:
21134 case DW_OP_reg12:
21135 case DW_OP_reg13:
21136 case DW_OP_reg14:
21137 case DW_OP_reg15:
21138 case DW_OP_reg16:
21139 case DW_OP_reg17:
21140 case DW_OP_reg18:
21141 case DW_OP_reg19:
21142 case DW_OP_reg20:
21143 case DW_OP_reg21:
21144 case DW_OP_reg22:
21145 case DW_OP_reg23:
21146 case DW_OP_reg24:
21147 case DW_OP_reg25:
21148 case DW_OP_reg26:
21149 case DW_OP_reg27:
21150 case DW_OP_reg28:
21151 case DW_OP_reg29:
21152 case DW_OP_reg30:
21153 case DW_OP_reg31:
21154 stack[++stacki] = op - DW_OP_reg0;
21155 if (i < size)
21156 dwarf2_complex_location_expr_complaint ();
21157 break;
21158
21159 case DW_OP_regx:
21160 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21161 i += bytes_read;
21162 stack[++stacki] = unsnd;
21163 if (i < size)
21164 dwarf2_complex_location_expr_complaint ();
21165 break;
21166
21167 case DW_OP_addr:
21168 stack[++stacki] = read_address (objfile->obfd, &data[i],
21169 cu, &bytes_read);
21170 i += bytes_read;
21171 break;
21172
21173 case DW_OP_const1u:
21174 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21175 i += 1;
21176 break;
21177
21178 case DW_OP_const1s:
21179 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21180 i += 1;
21181 break;
21182
21183 case DW_OP_const2u:
21184 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21185 i += 2;
21186 break;
21187
21188 case DW_OP_const2s:
21189 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21190 i += 2;
21191 break;
21192
21193 case DW_OP_const4u:
21194 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21195 i += 4;
21196 break;
21197
21198 case DW_OP_const4s:
21199 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21200 i += 4;
21201 break;
21202
21203 case DW_OP_const8u:
21204 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21205 i += 8;
21206 break;
21207
21208 case DW_OP_constu:
21209 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21210 &bytes_read);
21211 i += bytes_read;
21212 break;
21213
21214 case DW_OP_consts:
21215 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21216 i += bytes_read;
21217 break;
21218
21219 case DW_OP_dup:
21220 stack[stacki + 1] = stack[stacki];
21221 stacki++;
21222 break;
21223
21224 case DW_OP_plus:
21225 stack[stacki - 1] += stack[stacki];
21226 stacki--;
21227 break;
21228
21229 case DW_OP_plus_uconst:
21230 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21231 &bytes_read);
21232 i += bytes_read;
21233 break;
21234
21235 case DW_OP_minus:
21236 stack[stacki - 1] -= stack[stacki];
21237 stacki--;
21238 break;
21239
21240 case DW_OP_deref:
21241 /* If we're not the last op, then we definitely can't encode
21242 this using GDB's address_class enum. This is valid for partial
21243 global symbols, although the variable's address will be bogus
21244 in the psymtab. */
21245 if (i < size)
21246 dwarf2_complex_location_expr_complaint ();
21247 break;
21248
21249 case DW_OP_GNU_push_tls_address:
21250 case DW_OP_form_tls_address:
21251 /* The top of the stack has the offset from the beginning
21252 of the thread control block at which the variable is located. */
21253 /* Nothing should follow this operator, so the top of stack would
21254 be returned. */
21255 /* This is valid for partial global symbols, but the variable's
21256 address will be bogus in the psymtab. Make it always at least
21257 non-zero to not look as a variable garbage collected by linker
21258 which have DW_OP_addr 0. */
21259 if (i < size)
21260 dwarf2_complex_location_expr_complaint ();
21261 stack[stacki]++;
21262 break;
21263
21264 case DW_OP_GNU_uninit:
21265 break;
21266
21267 case DW_OP_GNU_addr_index:
21268 case DW_OP_GNU_const_index:
21269 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21270 &bytes_read);
21271 i += bytes_read;
21272 break;
21273
21274 default:
21275 {
21276 const char *name = get_DW_OP_name (op);
21277
21278 if (name)
21279 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21280 name);
21281 else
21282 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21283 op);
21284 }
21285
21286 return (stack[stacki]);
21287 }
21288
21289 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21290 outside of the allocated space. Also enforce minimum>0. */
21291 if (stacki >= ARRAY_SIZE (stack) - 1)
21292 {
21293 complaint (&symfile_complaints,
21294 _("location description stack overflow"));
21295 return 0;
21296 }
21297
21298 if (stacki <= 0)
21299 {
21300 complaint (&symfile_complaints,
21301 _("location description stack underflow"));
21302 return 0;
21303 }
21304 }
21305 return (stack[stacki]);
21306 }
21307
21308 /* memory allocation interface */
21309
21310 static struct dwarf_block *
21311 dwarf_alloc_block (struct dwarf2_cu *cu)
21312 {
21313 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21314 }
21315
21316 static struct die_info *
21317 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21318 {
21319 struct die_info *die;
21320 size_t size = sizeof (struct die_info);
21321
21322 if (num_attrs > 1)
21323 size += (num_attrs - 1) * sizeof (struct attribute);
21324
21325 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21326 memset (die, 0, sizeof (struct die_info));
21327 return (die);
21328 }
21329
21330 \f
21331 /* Macro support. */
21332
21333 /* Return file name relative to the compilation directory of file number I in
21334 *LH's file name table. The result is allocated using xmalloc; the caller is
21335 responsible for freeing it. */
21336
21337 static char *
21338 file_file_name (int file, struct line_header *lh)
21339 {
21340 /* Is the file number a valid index into the line header's file name
21341 table? Remember that file numbers start with one, not zero. */
21342 if (1 <= file && file <= lh->num_file_names)
21343 {
21344 struct file_entry *fe = &lh->file_names[file - 1];
21345
21346 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
21347 || lh->include_dirs == NULL)
21348 return xstrdup (fe->name);
21349 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
21350 fe->name, (char *) NULL);
21351 }
21352 else
21353 {
21354 /* The compiler produced a bogus file number. We can at least
21355 record the macro definitions made in the file, even if we
21356 won't be able to find the file by name. */
21357 char fake_name[80];
21358
21359 xsnprintf (fake_name, sizeof (fake_name),
21360 "<bad macro file number %d>", file);
21361
21362 complaint (&symfile_complaints,
21363 _("bad file number in macro information (%d)"),
21364 file);
21365
21366 return xstrdup (fake_name);
21367 }
21368 }
21369
21370 /* Return the full name of file number I in *LH's file name table.
21371 Use COMP_DIR as the name of the current directory of the
21372 compilation. The result is allocated using xmalloc; the caller is
21373 responsible for freeing it. */
21374 static char *
21375 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21376 {
21377 /* Is the file number a valid index into the line header's file name
21378 table? Remember that file numbers start with one, not zero. */
21379 if (1 <= file && file <= lh->num_file_names)
21380 {
21381 char *relative = file_file_name (file, lh);
21382
21383 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21384 return relative;
21385 return reconcat (relative, comp_dir, SLASH_STRING,
21386 relative, (char *) NULL);
21387 }
21388 else
21389 return file_file_name (file, lh);
21390 }
21391
21392
21393 static struct macro_source_file *
21394 macro_start_file (int file, int line,
21395 struct macro_source_file *current_file,
21396 struct line_header *lh)
21397 {
21398 /* File name relative to the compilation directory of this source file. */
21399 char *file_name = file_file_name (file, lh);
21400
21401 if (! current_file)
21402 {
21403 /* Note: We don't create a macro table for this compilation unit
21404 at all until we actually get a filename. */
21405 struct macro_table *macro_table = get_macro_table ();
21406
21407 /* If we have no current file, then this must be the start_file
21408 directive for the compilation unit's main source file. */
21409 current_file = macro_set_main (macro_table, file_name);
21410 macro_define_special (macro_table);
21411 }
21412 else
21413 current_file = macro_include (current_file, line, file_name);
21414
21415 xfree (file_name);
21416
21417 return current_file;
21418 }
21419
21420
21421 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21422 followed by a null byte. */
21423 static char *
21424 copy_string (const char *buf, int len)
21425 {
21426 char *s = (char *) xmalloc (len + 1);
21427
21428 memcpy (s, buf, len);
21429 s[len] = '\0';
21430 return s;
21431 }
21432
21433
21434 static const char *
21435 consume_improper_spaces (const char *p, const char *body)
21436 {
21437 if (*p == ' ')
21438 {
21439 complaint (&symfile_complaints,
21440 _("macro definition contains spaces "
21441 "in formal argument list:\n`%s'"),
21442 body);
21443
21444 while (*p == ' ')
21445 p++;
21446 }
21447
21448 return p;
21449 }
21450
21451
21452 static void
21453 parse_macro_definition (struct macro_source_file *file, int line,
21454 const char *body)
21455 {
21456 const char *p;
21457
21458 /* The body string takes one of two forms. For object-like macro
21459 definitions, it should be:
21460
21461 <macro name> " " <definition>
21462
21463 For function-like macro definitions, it should be:
21464
21465 <macro name> "() " <definition>
21466 or
21467 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21468
21469 Spaces may appear only where explicitly indicated, and in the
21470 <definition>.
21471
21472 The Dwarf 2 spec says that an object-like macro's name is always
21473 followed by a space, but versions of GCC around March 2002 omit
21474 the space when the macro's definition is the empty string.
21475
21476 The Dwarf 2 spec says that there should be no spaces between the
21477 formal arguments in a function-like macro's formal argument list,
21478 but versions of GCC around March 2002 include spaces after the
21479 commas. */
21480
21481
21482 /* Find the extent of the macro name. The macro name is terminated
21483 by either a space or null character (for an object-like macro) or
21484 an opening paren (for a function-like macro). */
21485 for (p = body; *p; p++)
21486 if (*p == ' ' || *p == '(')
21487 break;
21488
21489 if (*p == ' ' || *p == '\0')
21490 {
21491 /* It's an object-like macro. */
21492 int name_len = p - body;
21493 char *name = copy_string (body, name_len);
21494 const char *replacement;
21495
21496 if (*p == ' ')
21497 replacement = body + name_len + 1;
21498 else
21499 {
21500 dwarf2_macro_malformed_definition_complaint (body);
21501 replacement = body + name_len;
21502 }
21503
21504 macro_define_object (file, line, name, replacement);
21505
21506 xfree (name);
21507 }
21508 else if (*p == '(')
21509 {
21510 /* It's a function-like macro. */
21511 char *name = copy_string (body, p - body);
21512 int argc = 0;
21513 int argv_size = 1;
21514 char **argv = XNEWVEC (char *, argv_size);
21515
21516 p++;
21517
21518 p = consume_improper_spaces (p, body);
21519
21520 /* Parse the formal argument list. */
21521 while (*p && *p != ')')
21522 {
21523 /* Find the extent of the current argument name. */
21524 const char *arg_start = p;
21525
21526 while (*p && *p != ',' && *p != ')' && *p != ' ')
21527 p++;
21528
21529 if (! *p || p == arg_start)
21530 dwarf2_macro_malformed_definition_complaint (body);
21531 else
21532 {
21533 /* Make sure argv has room for the new argument. */
21534 if (argc >= argv_size)
21535 {
21536 argv_size *= 2;
21537 argv = XRESIZEVEC (char *, argv, argv_size);
21538 }
21539
21540 argv[argc++] = copy_string (arg_start, p - arg_start);
21541 }
21542
21543 p = consume_improper_spaces (p, body);
21544
21545 /* Consume the comma, if present. */
21546 if (*p == ',')
21547 {
21548 p++;
21549
21550 p = consume_improper_spaces (p, body);
21551 }
21552 }
21553
21554 if (*p == ')')
21555 {
21556 p++;
21557
21558 if (*p == ' ')
21559 /* Perfectly formed definition, no complaints. */
21560 macro_define_function (file, line, name,
21561 argc, (const char **) argv,
21562 p + 1);
21563 else if (*p == '\0')
21564 {
21565 /* Complain, but do define it. */
21566 dwarf2_macro_malformed_definition_complaint (body);
21567 macro_define_function (file, line, name,
21568 argc, (const char **) argv,
21569 p);
21570 }
21571 else
21572 /* Just complain. */
21573 dwarf2_macro_malformed_definition_complaint (body);
21574 }
21575 else
21576 /* Just complain. */
21577 dwarf2_macro_malformed_definition_complaint (body);
21578
21579 xfree (name);
21580 {
21581 int i;
21582
21583 for (i = 0; i < argc; i++)
21584 xfree (argv[i]);
21585 }
21586 xfree (argv);
21587 }
21588 else
21589 dwarf2_macro_malformed_definition_complaint (body);
21590 }
21591
21592 /* Skip some bytes from BYTES according to the form given in FORM.
21593 Returns the new pointer. */
21594
21595 static const gdb_byte *
21596 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21597 enum dwarf_form form,
21598 unsigned int offset_size,
21599 struct dwarf2_section_info *section)
21600 {
21601 unsigned int bytes_read;
21602
21603 switch (form)
21604 {
21605 case DW_FORM_data1:
21606 case DW_FORM_flag:
21607 ++bytes;
21608 break;
21609
21610 case DW_FORM_data2:
21611 bytes += 2;
21612 break;
21613
21614 case DW_FORM_data4:
21615 bytes += 4;
21616 break;
21617
21618 case DW_FORM_data8:
21619 bytes += 8;
21620 break;
21621
21622 case DW_FORM_data16:
21623 bytes += 16;
21624 break;
21625
21626 case DW_FORM_string:
21627 read_direct_string (abfd, bytes, &bytes_read);
21628 bytes += bytes_read;
21629 break;
21630
21631 case DW_FORM_sec_offset:
21632 case DW_FORM_strp:
21633 case DW_FORM_GNU_strp_alt:
21634 bytes += offset_size;
21635 break;
21636
21637 case DW_FORM_block:
21638 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21639 bytes += bytes_read;
21640 break;
21641
21642 case DW_FORM_block1:
21643 bytes += 1 + read_1_byte (abfd, bytes);
21644 break;
21645 case DW_FORM_block2:
21646 bytes += 2 + read_2_bytes (abfd, bytes);
21647 break;
21648 case DW_FORM_block4:
21649 bytes += 4 + read_4_bytes (abfd, bytes);
21650 break;
21651
21652 case DW_FORM_sdata:
21653 case DW_FORM_udata:
21654 case DW_FORM_GNU_addr_index:
21655 case DW_FORM_GNU_str_index:
21656 bytes = gdb_skip_leb128 (bytes, buffer_end);
21657 if (bytes == NULL)
21658 {
21659 dwarf2_section_buffer_overflow_complaint (section);
21660 return NULL;
21661 }
21662 break;
21663
21664 default:
21665 {
21666 complain:
21667 complaint (&symfile_complaints,
21668 _("invalid form 0x%x in `%s'"),
21669 form, get_section_name (section));
21670 return NULL;
21671 }
21672 }
21673
21674 return bytes;
21675 }
21676
21677 /* A helper for dwarf_decode_macros that handles skipping an unknown
21678 opcode. Returns an updated pointer to the macro data buffer; or,
21679 on error, issues a complaint and returns NULL. */
21680
21681 static const gdb_byte *
21682 skip_unknown_opcode (unsigned int opcode,
21683 const gdb_byte **opcode_definitions,
21684 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21685 bfd *abfd,
21686 unsigned int offset_size,
21687 struct dwarf2_section_info *section)
21688 {
21689 unsigned int bytes_read, i;
21690 unsigned long arg;
21691 const gdb_byte *defn;
21692
21693 if (opcode_definitions[opcode] == NULL)
21694 {
21695 complaint (&symfile_complaints,
21696 _("unrecognized DW_MACFINO opcode 0x%x"),
21697 opcode);
21698 return NULL;
21699 }
21700
21701 defn = opcode_definitions[opcode];
21702 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21703 defn += bytes_read;
21704
21705 for (i = 0; i < arg; ++i)
21706 {
21707 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21708 (enum dwarf_form) defn[i], offset_size,
21709 section);
21710 if (mac_ptr == NULL)
21711 {
21712 /* skip_form_bytes already issued the complaint. */
21713 return NULL;
21714 }
21715 }
21716
21717 return mac_ptr;
21718 }
21719
21720 /* A helper function which parses the header of a macro section.
21721 If the macro section is the extended (for now called "GNU") type,
21722 then this updates *OFFSET_SIZE. Returns a pointer to just after
21723 the header, or issues a complaint and returns NULL on error. */
21724
21725 static const gdb_byte *
21726 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21727 bfd *abfd,
21728 const gdb_byte *mac_ptr,
21729 unsigned int *offset_size,
21730 int section_is_gnu)
21731 {
21732 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21733
21734 if (section_is_gnu)
21735 {
21736 unsigned int version, flags;
21737
21738 version = read_2_bytes (abfd, mac_ptr);
21739 if (version != 4 && version != 5)
21740 {
21741 complaint (&symfile_complaints,
21742 _("unrecognized version `%d' in .debug_macro section"),
21743 version);
21744 return NULL;
21745 }
21746 mac_ptr += 2;
21747
21748 flags = read_1_byte (abfd, mac_ptr);
21749 ++mac_ptr;
21750 *offset_size = (flags & 1) ? 8 : 4;
21751
21752 if ((flags & 2) != 0)
21753 /* We don't need the line table offset. */
21754 mac_ptr += *offset_size;
21755
21756 /* Vendor opcode descriptions. */
21757 if ((flags & 4) != 0)
21758 {
21759 unsigned int i, count;
21760
21761 count = read_1_byte (abfd, mac_ptr);
21762 ++mac_ptr;
21763 for (i = 0; i < count; ++i)
21764 {
21765 unsigned int opcode, bytes_read;
21766 unsigned long arg;
21767
21768 opcode = read_1_byte (abfd, mac_ptr);
21769 ++mac_ptr;
21770 opcode_definitions[opcode] = mac_ptr;
21771 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21772 mac_ptr += bytes_read;
21773 mac_ptr += arg;
21774 }
21775 }
21776 }
21777
21778 return mac_ptr;
21779 }
21780
21781 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21782 including DW_MACRO_import. */
21783
21784 static void
21785 dwarf_decode_macro_bytes (bfd *abfd,
21786 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21787 struct macro_source_file *current_file,
21788 struct line_header *lh,
21789 struct dwarf2_section_info *section,
21790 int section_is_gnu, int section_is_dwz,
21791 unsigned int offset_size,
21792 htab_t include_hash)
21793 {
21794 struct objfile *objfile = dwarf2_per_objfile->objfile;
21795 enum dwarf_macro_record_type macinfo_type;
21796 int at_commandline;
21797 const gdb_byte *opcode_definitions[256];
21798
21799 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21800 &offset_size, section_is_gnu);
21801 if (mac_ptr == NULL)
21802 {
21803 /* We already issued a complaint. */
21804 return;
21805 }
21806
21807 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21808 GDB is still reading the definitions from command line. First
21809 DW_MACINFO_start_file will need to be ignored as it was already executed
21810 to create CURRENT_FILE for the main source holding also the command line
21811 definitions. On first met DW_MACINFO_start_file this flag is reset to
21812 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21813
21814 at_commandline = 1;
21815
21816 do
21817 {
21818 /* Do we at least have room for a macinfo type byte? */
21819 if (mac_ptr >= mac_end)
21820 {
21821 dwarf2_section_buffer_overflow_complaint (section);
21822 break;
21823 }
21824
21825 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21826 mac_ptr++;
21827
21828 /* Note that we rely on the fact that the corresponding GNU and
21829 DWARF constants are the same. */
21830 switch (macinfo_type)
21831 {
21832 /* A zero macinfo type indicates the end of the macro
21833 information. */
21834 case 0:
21835 break;
21836
21837 case DW_MACRO_define:
21838 case DW_MACRO_undef:
21839 case DW_MACRO_define_strp:
21840 case DW_MACRO_undef_strp:
21841 case DW_MACRO_define_sup:
21842 case DW_MACRO_undef_sup:
21843 {
21844 unsigned int bytes_read;
21845 int line;
21846 const char *body;
21847 int is_define;
21848
21849 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21850 mac_ptr += bytes_read;
21851
21852 if (macinfo_type == DW_MACRO_define
21853 || macinfo_type == DW_MACRO_undef)
21854 {
21855 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21856 mac_ptr += bytes_read;
21857 }
21858 else
21859 {
21860 LONGEST str_offset;
21861
21862 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21863 mac_ptr += offset_size;
21864
21865 if (macinfo_type == DW_MACRO_define_sup
21866 || macinfo_type == DW_MACRO_undef_sup
21867 || section_is_dwz)
21868 {
21869 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21870
21871 body = read_indirect_string_from_dwz (dwz, str_offset);
21872 }
21873 else
21874 body = read_indirect_string_at_offset (abfd, str_offset);
21875 }
21876
21877 is_define = (macinfo_type == DW_MACRO_define
21878 || macinfo_type == DW_MACRO_define_strp
21879 || macinfo_type == DW_MACRO_define_sup);
21880 if (! current_file)
21881 {
21882 /* DWARF violation as no main source is present. */
21883 complaint (&symfile_complaints,
21884 _("debug info with no main source gives macro %s "
21885 "on line %d: %s"),
21886 is_define ? _("definition") : _("undefinition"),
21887 line, body);
21888 break;
21889 }
21890 if ((line == 0 && !at_commandline)
21891 || (line != 0 && at_commandline))
21892 complaint (&symfile_complaints,
21893 _("debug info gives %s macro %s with %s line %d: %s"),
21894 at_commandline ? _("command-line") : _("in-file"),
21895 is_define ? _("definition") : _("undefinition"),
21896 line == 0 ? _("zero") : _("non-zero"), line, body);
21897
21898 if (is_define)
21899 parse_macro_definition (current_file, line, body);
21900 else
21901 {
21902 gdb_assert (macinfo_type == DW_MACRO_undef
21903 || macinfo_type == DW_MACRO_undef_strp
21904 || macinfo_type == DW_MACRO_undef_sup);
21905 macro_undef (current_file, line, body);
21906 }
21907 }
21908 break;
21909
21910 case DW_MACRO_start_file:
21911 {
21912 unsigned int bytes_read;
21913 int line, file;
21914
21915 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21916 mac_ptr += bytes_read;
21917 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21918 mac_ptr += bytes_read;
21919
21920 if ((line == 0 && !at_commandline)
21921 || (line != 0 && at_commandline))
21922 complaint (&symfile_complaints,
21923 _("debug info gives source %d included "
21924 "from %s at %s line %d"),
21925 file, at_commandline ? _("command-line") : _("file"),
21926 line == 0 ? _("zero") : _("non-zero"), line);
21927
21928 if (at_commandline)
21929 {
21930 /* This DW_MACRO_start_file was executed in the
21931 pass one. */
21932 at_commandline = 0;
21933 }
21934 else
21935 current_file = macro_start_file (file, line, current_file, lh);
21936 }
21937 break;
21938
21939 case DW_MACRO_end_file:
21940 if (! current_file)
21941 complaint (&symfile_complaints,
21942 _("macro debug info has an unmatched "
21943 "`close_file' directive"));
21944 else
21945 {
21946 current_file = current_file->included_by;
21947 if (! current_file)
21948 {
21949 enum dwarf_macro_record_type next_type;
21950
21951 /* GCC circa March 2002 doesn't produce the zero
21952 type byte marking the end of the compilation
21953 unit. Complain if it's not there, but exit no
21954 matter what. */
21955
21956 /* Do we at least have room for a macinfo type byte? */
21957 if (mac_ptr >= mac_end)
21958 {
21959 dwarf2_section_buffer_overflow_complaint (section);
21960 return;
21961 }
21962
21963 /* We don't increment mac_ptr here, so this is just
21964 a look-ahead. */
21965 next_type
21966 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21967 mac_ptr);
21968 if (next_type != 0)
21969 complaint (&symfile_complaints,
21970 _("no terminating 0-type entry for "
21971 "macros in `.debug_macinfo' section"));
21972
21973 return;
21974 }
21975 }
21976 break;
21977
21978 case DW_MACRO_import:
21979 case DW_MACRO_import_sup:
21980 {
21981 LONGEST offset;
21982 void **slot;
21983 bfd *include_bfd = abfd;
21984 struct dwarf2_section_info *include_section = section;
21985 const gdb_byte *include_mac_end = mac_end;
21986 int is_dwz = section_is_dwz;
21987 const gdb_byte *new_mac_ptr;
21988
21989 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21990 mac_ptr += offset_size;
21991
21992 if (macinfo_type == DW_MACRO_import_sup)
21993 {
21994 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21995
21996 dwarf2_read_section (objfile, &dwz->macro);
21997
21998 include_section = &dwz->macro;
21999 include_bfd = get_section_bfd_owner (include_section);
22000 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22001 is_dwz = 1;
22002 }
22003
22004 new_mac_ptr = include_section->buffer + offset;
22005 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22006
22007 if (*slot != NULL)
22008 {
22009 /* This has actually happened; see
22010 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22011 complaint (&symfile_complaints,
22012 _("recursive DW_MACRO_import in "
22013 ".debug_macro section"));
22014 }
22015 else
22016 {
22017 *slot = (void *) new_mac_ptr;
22018
22019 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22020 include_mac_end, current_file, lh,
22021 section, section_is_gnu, is_dwz,
22022 offset_size, include_hash);
22023
22024 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22025 }
22026 }
22027 break;
22028
22029 case DW_MACINFO_vendor_ext:
22030 if (!section_is_gnu)
22031 {
22032 unsigned int bytes_read;
22033
22034 /* This reads the constant, but since we don't recognize
22035 any vendor extensions, we ignore it. */
22036 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22037 mac_ptr += bytes_read;
22038 read_direct_string (abfd, mac_ptr, &bytes_read);
22039 mac_ptr += bytes_read;
22040
22041 /* We don't recognize any vendor extensions. */
22042 break;
22043 }
22044 /* FALLTHROUGH */
22045
22046 default:
22047 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22048 mac_ptr, mac_end, abfd, offset_size,
22049 section);
22050 if (mac_ptr == NULL)
22051 return;
22052 break;
22053 }
22054 } while (macinfo_type != 0);
22055 }
22056
22057 static void
22058 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22059 int section_is_gnu)
22060 {
22061 struct objfile *objfile = dwarf2_per_objfile->objfile;
22062 struct line_header *lh = cu->line_header;
22063 bfd *abfd;
22064 const gdb_byte *mac_ptr, *mac_end;
22065 struct macro_source_file *current_file = 0;
22066 enum dwarf_macro_record_type macinfo_type;
22067 unsigned int offset_size = cu->header.offset_size;
22068 const gdb_byte *opcode_definitions[256];
22069 struct cleanup *cleanup;
22070 void **slot;
22071 struct dwarf2_section_info *section;
22072 const char *section_name;
22073
22074 if (cu->dwo_unit != NULL)
22075 {
22076 if (section_is_gnu)
22077 {
22078 section = &cu->dwo_unit->dwo_file->sections.macro;
22079 section_name = ".debug_macro.dwo";
22080 }
22081 else
22082 {
22083 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22084 section_name = ".debug_macinfo.dwo";
22085 }
22086 }
22087 else
22088 {
22089 if (section_is_gnu)
22090 {
22091 section = &dwarf2_per_objfile->macro;
22092 section_name = ".debug_macro";
22093 }
22094 else
22095 {
22096 section = &dwarf2_per_objfile->macinfo;
22097 section_name = ".debug_macinfo";
22098 }
22099 }
22100
22101 dwarf2_read_section (objfile, section);
22102 if (section->buffer == NULL)
22103 {
22104 complaint (&symfile_complaints, _("missing %s section"), section_name);
22105 return;
22106 }
22107 abfd = get_section_bfd_owner (section);
22108
22109 /* First pass: Find the name of the base filename.
22110 This filename is needed in order to process all macros whose definition
22111 (or undefinition) comes from the command line. These macros are defined
22112 before the first DW_MACINFO_start_file entry, and yet still need to be
22113 associated to the base file.
22114
22115 To determine the base file name, we scan the macro definitions until we
22116 reach the first DW_MACINFO_start_file entry. We then initialize
22117 CURRENT_FILE accordingly so that any macro definition found before the
22118 first DW_MACINFO_start_file can still be associated to the base file. */
22119
22120 mac_ptr = section->buffer + offset;
22121 mac_end = section->buffer + section->size;
22122
22123 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22124 &offset_size, section_is_gnu);
22125 if (mac_ptr == NULL)
22126 {
22127 /* We already issued a complaint. */
22128 return;
22129 }
22130
22131 do
22132 {
22133 /* Do we at least have room for a macinfo type byte? */
22134 if (mac_ptr >= mac_end)
22135 {
22136 /* Complaint is printed during the second pass as GDB will probably
22137 stop the first pass earlier upon finding
22138 DW_MACINFO_start_file. */
22139 break;
22140 }
22141
22142 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22143 mac_ptr++;
22144
22145 /* Note that we rely on the fact that the corresponding GNU and
22146 DWARF constants are the same. */
22147 switch (macinfo_type)
22148 {
22149 /* A zero macinfo type indicates the end of the macro
22150 information. */
22151 case 0:
22152 break;
22153
22154 case DW_MACRO_define:
22155 case DW_MACRO_undef:
22156 /* Only skip the data by MAC_PTR. */
22157 {
22158 unsigned int bytes_read;
22159
22160 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22161 mac_ptr += bytes_read;
22162 read_direct_string (abfd, mac_ptr, &bytes_read);
22163 mac_ptr += bytes_read;
22164 }
22165 break;
22166
22167 case DW_MACRO_start_file:
22168 {
22169 unsigned int bytes_read;
22170 int line, file;
22171
22172 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22173 mac_ptr += bytes_read;
22174 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22175 mac_ptr += bytes_read;
22176
22177 current_file = macro_start_file (file, line, current_file, lh);
22178 }
22179 break;
22180
22181 case DW_MACRO_end_file:
22182 /* No data to skip by MAC_PTR. */
22183 break;
22184
22185 case DW_MACRO_define_strp:
22186 case DW_MACRO_undef_strp:
22187 case DW_MACRO_define_sup:
22188 case DW_MACRO_undef_sup:
22189 {
22190 unsigned int bytes_read;
22191
22192 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22193 mac_ptr += bytes_read;
22194 mac_ptr += offset_size;
22195 }
22196 break;
22197
22198 case DW_MACRO_import:
22199 case DW_MACRO_import_sup:
22200 /* Note that, according to the spec, a transparent include
22201 chain cannot call DW_MACRO_start_file. So, we can just
22202 skip this opcode. */
22203 mac_ptr += offset_size;
22204 break;
22205
22206 case DW_MACINFO_vendor_ext:
22207 /* Only skip the data by MAC_PTR. */
22208 if (!section_is_gnu)
22209 {
22210 unsigned int bytes_read;
22211
22212 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22213 mac_ptr += bytes_read;
22214 read_direct_string (abfd, mac_ptr, &bytes_read);
22215 mac_ptr += bytes_read;
22216 }
22217 /* FALLTHROUGH */
22218
22219 default:
22220 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22221 mac_ptr, mac_end, abfd, offset_size,
22222 section);
22223 if (mac_ptr == NULL)
22224 return;
22225 break;
22226 }
22227 } while (macinfo_type != 0 && current_file == NULL);
22228
22229 /* Second pass: Process all entries.
22230
22231 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22232 command-line macro definitions/undefinitions. This flag is unset when we
22233 reach the first DW_MACINFO_start_file entry. */
22234
22235 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22236 htab_eq_pointer,
22237 NULL, xcalloc, xfree));
22238 mac_ptr = section->buffer + offset;
22239 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22240 *slot = (void *) mac_ptr;
22241 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22242 current_file, lh, section,
22243 section_is_gnu, 0, offset_size,
22244 include_hash.get ());
22245 }
22246
22247 /* Check if the attribute's form is a DW_FORM_block*
22248 if so return true else false. */
22249
22250 static int
22251 attr_form_is_block (const struct attribute *attr)
22252 {
22253 return (attr == NULL ? 0 :
22254 attr->form == DW_FORM_block1
22255 || attr->form == DW_FORM_block2
22256 || attr->form == DW_FORM_block4
22257 || attr->form == DW_FORM_block
22258 || attr->form == DW_FORM_exprloc);
22259 }
22260
22261 /* Return non-zero if ATTR's value is a section offset --- classes
22262 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22263 You may use DW_UNSND (attr) to retrieve such offsets.
22264
22265 Section 7.5.4, "Attribute Encodings", explains that no attribute
22266 may have a value that belongs to more than one of these classes; it
22267 would be ambiguous if we did, because we use the same forms for all
22268 of them. */
22269
22270 static int
22271 attr_form_is_section_offset (const struct attribute *attr)
22272 {
22273 return (attr->form == DW_FORM_data4
22274 || attr->form == DW_FORM_data8
22275 || attr->form == DW_FORM_sec_offset);
22276 }
22277
22278 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22279 zero otherwise. When this function returns true, you can apply
22280 dwarf2_get_attr_constant_value to it.
22281
22282 However, note that for some attributes you must check
22283 attr_form_is_section_offset before using this test. DW_FORM_data4
22284 and DW_FORM_data8 are members of both the constant class, and of
22285 the classes that contain offsets into other debug sections
22286 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22287 that, if an attribute's can be either a constant or one of the
22288 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22289 taken as section offsets, not constants.
22290
22291 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22292 cannot handle that. */
22293
22294 static int
22295 attr_form_is_constant (const struct attribute *attr)
22296 {
22297 switch (attr->form)
22298 {
22299 case DW_FORM_sdata:
22300 case DW_FORM_udata:
22301 case DW_FORM_data1:
22302 case DW_FORM_data2:
22303 case DW_FORM_data4:
22304 case DW_FORM_data8:
22305 return 1;
22306 default:
22307 return 0;
22308 }
22309 }
22310
22311
22312 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22313 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22314
22315 static int
22316 attr_form_is_ref (const struct attribute *attr)
22317 {
22318 switch (attr->form)
22319 {
22320 case DW_FORM_ref_addr:
22321 case DW_FORM_ref1:
22322 case DW_FORM_ref2:
22323 case DW_FORM_ref4:
22324 case DW_FORM_ref8:
22325 case DW_FORM_ref_udata:
22326 case DW_FORM_GNU_ref_alt:
22327 return 1;
22328 default:
22329 return 0;
22330 }
22331 }
22332
22333 /* Return the .debug_loc section to use for CU.
22334 For DWO files use .debug_loc.dwo. */
22335
22336 static struct dwarf2_section_info *
22337 cu_debug_loc_section (struct dwarf2_cu *cu)
22338 {
22339 if (cu->dwo_unit)
22340 {
22341 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22342
22343 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22344 }
22345 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22346 : &dwarf2_per_objfile->loc);
22347 }
22348
22349 /* A helper function that fills in a dwarf2_loclist_baton. */
22350
22351 static void
22352 fill_in_loclist_baton (struct dwarf2_cu *cu,
22353 struct dwarf2_loclist_baton *baton,
22354 const struct attribute *attr)
22355 {
22356 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22357
22358 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22359
22360 baton->per_cu = cu->per_cu;
22361 gdb_assert (baton->per_cu);
22362 /* We don't know how long the location list is, but make sure we
22363 don't run off the edge of the section. */
22364 baton->size = section->size - DW_UNSND (attr);
22365 baton->data = section->buffer + DW_UNSND (attr);
22366 baton->base_address = cu->base_address;
22367 baton->from_dwo = cu->dwo_unit != NULL;
22368 }
22369
22370 static void
22371 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22372 struct dwarf2_cu *cu, int is_block)
22373 {
22374 struct objfile *objfile = dwarf2_per_objfile->objfile;
22375 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22376
22377 if (attr_form_is_section_offset (attr)
22378 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22379 the section. If so, fall through to the complaint in the
22380 other branch. */
22381 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22382 {
22383 struct dwarf2_loclist_baton *baton;
22384
22385 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22386
22387 fill_in_loclist_baton (cu, baton, attr);
22388
22389 if (cu->base_known == 0)
22390 complaint (&symfile_complaints,
22391 _("Location list used without "
22392 "specifying the CU base address."));
22393
22394 SYMBOL_ACLASS_INDEX (sym) = (is_block
22395 ? dwarf2_loclist_block_index
22396 : dwarf2_loclist_index);
22397 SYMBOL_LOCATION_BATON (sym) = baton;
22398 }
22399 else
22400 {
22401 struct dwarf2_locexpr_baton *baton;
22402
22403 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22404 baton->per_cu = cu->per_cu;
22405 gdb_assert (baton->per_cu);
22406
22407 if (attr_form_is_block (attr))
22408 {
22409 /* Note that we're just copying the block's data pointer
22410 here, not the actual data. We're still pointing into the
22411 info_buffer for SYM's objfile; right now we never release
22412 that buffer, but when we do clean up properly this may
22413 need to change. */
22414 baton->size = DW_BLOCK (attr)->size;
22415 baton->data = DW_BLOCK (attr)->data;
22416 }
22417 else
22418 {
22419 dwarf2_invalid_attrib_class_complaint ("location description",
22420 SYMBOL_NATURAL_NAME (sym));
22421 baton->size = 0;
22422 }
22423
22424 SYMBOL_ACLASS_INDEX (sym) = (is_block
22425 ? dwarf2_locexpr_block_index
22426 : dwarf2_locexpr_index);
22427 SYMBOL_LOCATION_BATON (sym) = baton;
22428 }
22429 }
22430
22431 /* Return the OBJFILE associated with the compilation unit CU. If CU
22432 came from a separate debuginfo file, then the master objfile is
22433 returned. */
22434
22435 struct objfile *
22436 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22437 {
22438 struct objfile *objfile = per_cu->objfile;
22439
22440 /* Return the master objfile, so that we can report and look up the
22441 correct file containing this variable. */
22442 if (objfile->separate_debug_objfile_backlink)
22443 objfile = objfile->separate_debug_objfile_backlink;
22444
22445 return objfile;
22446 }
22447
22448 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22449 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22450 CU_HEADERP first. */
22451
22452 static const struct comp_unit_head *
22453 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22454 struct dwarf2_per_cu_data *per_cu)
22455 {
22456 const gdb_byte *info_ptr;
22457
22458 if (per_cu->cu)
22459 return &per_cu->cu->header;
22460
22461 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
22462
22463 memset (cu_headerp, 0, sizeof (*cu_headerp));
22464 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22465 rcuh_kind::COMPILE);
22466
22467 return cu_headerp;
22468 }
22469
22470 /* Return the address size given in the compilation unit header for CU. */
22471
22472 int
22473 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22474 {
22475 struct comp_unit_head cu_header_local;
22476 const struct comp_unit_head *cu_headerp;
22477
22478 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22479
22480 return cu_headerp->addr_size;
22481 }
22482
22483 /* Return the offset size given in the compilation unit header for CU. */
22484
22485 int
22486 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22487 {
22488 struct comp_unit_head cu_header_local;
22489 const struct comp_unit_head *cu_headerp;
22490
22491 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22492
22493 return cu_headerp->offset_size;
22494 }
22495
22496 /* See its dwarf2loc.h declaration. */
22497
22498 int
22499 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22500 {
22501 struct comp_unit_head cu_header_local;
22502 const struct comp_unit_head *cu_headerp;
22503
22504 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22505
22506 if (cu_headerp->version == 2)
22507 return cu_headerp->addr_size;
22508 else
22509 return cu_headerp->offset_size;
22510 }
22511
22512 /* Return the text offset of the CU. The returned offset comes from
22513 this CU's objfile. If this objfile came from a separate debuginfo
22514 file, then the offset may be different from the corresponding
22515 offset in the parent objfile. */
22516
22517 CORE_ADDR
22518 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22519 {
22520 struct objfile *objfile = per_cu->objfile;
22521
22522 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22523 }
22524
22525 /* Return DWARF version number of PER_CU. */
22526
22527 short
22528 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22529 {
22530 return per_cu->dwarf_version;
22531 }
22532
22533 /* Locate the .debug_info compilation unit from CU's objfile which contains
22534 the DIE at OFFSET. Raises an error on failure. */
22535
22536 static struct dwarf2_per_cu_data *
22537 dwarf2_find_containing_comp_unit (sect_offset offset,
22538 unsigned int offset_in_dwz,
22539 struct objfile *objfile)
22540 {
22541 struct dwarf2_per_cu_data *this_cu;
22542 int low, high;
22543 const sect_offset *cu_off;
22544
22545 low = 0;
22546 high = dwarf2_per_objfile->n_comp_units - 1;
22547 while (high > low)
22548 {
22549 struct dwarf2_per_cu_data *mid_cu;
22550 int mid = low + (high - low) / 2;
22551
22552 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22553 cu_off = &mid_cu->offset;
22554 if (mid_cu->is_dwz > offset_in_dwz
22555 || (mid_cu->is_dwz == offset_in_dwz
22556 && cu_off->sect_off >= offset.sect_off))
22557 high = mid;
22558 else
22559 low = mid + 1;
22560 }
22561 gdb_assert (low == high);
22562 this_cu = dwarf2_per_objfile->all_comp_units[low];
22563 cu_off = &this_cu->offset;
22564 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22565 {
22566 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22567 error (_("Dwarf Error: could not find partial DIE containing "
22568 "offset 0x%lx [in module %s]"),
22569 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22570
22571 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22572 <= offset.sect_off);
22573 return dwarf2_per_objfile->all_comp_units[low-1];
22574 }
22575 else
22576 {
22577 this_cu = dwarf2_per_objfile->all_comp_units[low];
22578 if (low == dwarf2_per_objfile->n_comp_units - 1
22579 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22580 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22581 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22582 return this_cu;
22583 }
22584 }
22585
22586 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22587
22588 static void
22589 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22590 {
22591 memset (cu, 0, sizeof (*cu));
22592 per_cu->cu = cu;
22593 cu->per_cu = per_cu;
22594 cu->objfile = per_cu->objfile;
22595 obstack_init (&cu->comp_unit_obstack);
22596 }
22597
22598 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22599
22600 static void
22601 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22602 enum language pretend_language)
22603 {
22604 struct attribute *attr;
22605
22606 /* Set the language we're debugging. */
22607 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22608 if (attr)
22609 set_cu_language (DW_UNSND (attr), cu);
22610 else
22611 {
22612 cu->language = pretend_language;
22613 cu->language_defn = language_def (cu->language);
22614 }
22615
22616 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22617 }
22618
22619 /* Release one cached compilation unit, CU. We unlink it from the tree
22620 of compilation units, but we don't remove it from the read_in_chain;
22621 the caller is responsible for that.
22622 NOTE: DATA is a void * because this function is also used as a
22623 cleanup routine. */
22624
22625 static void
22626 free_heap_comp_unit (void *data)
22627 {
22628 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22629
22630 gdb_assert (cu->per_cu != NULL);
22631 cu->per_cu->cu = NULL;
22632 cu->per_cu = NULL;
22633
22634 obstack_free (&cu->comp_unit_obstack, NULL);
22635
22636 xfree (cu);
22637 }
22638
22639 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22640 when we're finished with it. We can't free the pointer itself, but be
22641 sure to unlink it from the cache. Also release any associated storage. */
22642
22643 static void
22644 free_stack_comp_unit (void *data)
22645 {
22646 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22647
22648 gdb_assert (cu->per_cu != NULL);
22649 cu->per_cu->cu = NULL;
22650 cu->per_cu = NULL;
22651
22652 obstack_free (&cu->comp_unit_obstack, NULL);
22653 cu->partial_dies = NULL;
22654 }
22655
22656 /* Free all cached compilation units. */
22657
22658 static void
22659 free_cached_comp_units (void *data)
22660 {
22661 struct dwarf2_per_cu_data *per_cu, **last_chain;
22662
22663 per_cu = dwarf2_per_objfile->read_in_chain;
22664 last_chain = &dwarf2_per_objfile->read_in_chain;
22665 while (per_cu != NULL)
22666 {
22667 struct dwarf2_per_cu_data *next_cu;
22668
22669 next_cu = per_cu->cu->read_in_chain;
22670
22671 free_heap_comp_unit (per_cu->cu);
22672 *last_chain = next_cu;
22673
22674 per_cu = next_cu;
22675 }
22676 }
22677
22678 /* Increase the age counter on each cached compilation unit, and free
22679 any that are too old. */
22680
22681 static void
22682 age_cached_comp_units (void)
22683 {
22684 struct dwarf2_per_cu_data *per_cu, **last_chain;
22685
22686 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22687 per_cu = dwarf2_per_objfile->read_in_chain;
22688 while (per_cu != NULL)
22689 {
22690 per_cu->cu->last_used ++;
22691 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22692 dwarf2_mark (per_cu->cu);
22693 per_cu = per_cu->cu->read_in_chain;
22694 }
22695
22696 per_cu = dwarf2_per_objfile->read_in_chain;
22697 last_chain = &dwarf2_per_objfile->read_in_chain;
22698 while (per_cu != NULL)
22699 {
22700 struct dwarf2_per_cu_data *next_cu;
22701
22702 next_cu = per_cu->cu->read_in_chain;
22703
22704 if (!per_cu->cu->mark)
22705 {
22706 free_heap_comp_unit (per_cu->cu);
22707 *last_chain = next_cu;
22708 }
22709 else
22710 last_chain = &per_cu->cu->read_in_chain;
22711
22712 per_cu = next_cu;
22713 }
22714 }
22715
22716 /* Remove a single compilation unit from the cache. */
22717
22718 static void
22719 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22720 {
22721 struct dwarf2_per_cu_data *per_cu, **last_chain;
22722
22723 per_cu = dwarf2_per_objfile->read_in_chain;
22724 last_chain = &dwarf2_per_objfile->read_in_chain;
22725 while (per_cu != NULL)
22726 {
22727 struct dwarf2_per_cu_data *next_cu;
22728
22729 next_cu = per_cu->cu->read_in_chain;
22730
22731 if (per_cu == target_per_cu)
22732 {
22733 free_heap_comp_unit (per_cu->cu);
22734 per_cu->cu = NULL;
22735 *last_chain = next_cu;
22736 break;
22737 }
22738 else
22739 last_chain = &per_cu->cu->read_in_chain;
22740
22741 per_cu = next_cu;
22742 }
22743 }
22744
22745 /* Release all extra memory associated with OBJFILE. */
22746
22747 void
22748 dwarf2_free_objfile (struct objfile *objfile)
22749 {
22750 dwarf2_per_objfile
22751 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22752 dwarf2_objfile_data_key);
22753
22754 if (dwarf2_per_objfile == NULL)
22755 return;
22756
22757 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22758 free_cached_comp_units (NULL);
22759
22760 if (dwarf2_per_objfile->quick_file_names_table)
22761 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22762
22763 if (dwarf2_per_objfile->line_header_hash)
22764 htab_delete (dwarf2_per_objfile->line_header_hash);
22765
22766 /* Everything else should be on the objfile obstack. */
22767 }
22768
22769 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22770 We store these in a hash table separate from the DIEs, and preserve them
22771 when the DIEs are flushed out of cache.
22772
22773 The CU "per_cu" pointer is needed because offset alone is not enough to
22774 uniquely identify the type. A file may have multiple .debug_types sections,
22775 or the type may come from a DWO file. Furthermore, while it's more logical
22776 to use per_cu->section+offset, with Fission the section with the data is in
22777 the DWO file but we don't know that section at the point we need it.
22778 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22779 because we can enter the lookup routine, get_die_type_at_offset, from
22780 outside this file, and thus won't necessarily have PER_CU->cu.
22781 Fortunately, PER_CU is stable for the life of the objfile. */
22782
22783 struct dwarf2_per_cu_offset_and_type
22784 {
22785 const struct dwarf2_per_cu_data *per_cu;
22786 sect_offset offset;
22787 struct type *type;
22788 };
22789
22790 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22791
22792 static hashval_t
22793 per_cu_offset_and_type_hash (const void *item)
22794 {
22795 const struct dwarf2_per_cu_offset_and_type *ofs
22796 = (const struct dwarf2_per_cu_offset_and_type *) item;
22797
22798 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22799 }
22800
22801 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22802
22803 static int
22804 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22805 {
22806 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22807 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22808 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22809 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22810
22811 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22812 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22813 }
22814
22815 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22816 table if necessary. For convenience, return TYPE.
22817
22818 The DIEs reading must have careful ordering to:
22819 * Not cause infite loops trying to read in DIEs as a prerequisite for
22820 reading current DIE.
22821 * Not trying to dereference contents of still incompletely read in types
22822 while reading in other DIEs.
22823 * Enable referencing still incompletely read in types just by a pointer to
22824 the type without accessing its fields.
22825
22826 Therefore caller should follow these rules:
22827 * Try to fetch any prerequisite types we may need to build this DIE type
22828 before building the type and calling set_die_type.
22829 * After building type call set_die_type for current DIE as soon as
22830 possible before fetching more types to complete the current type.
22831 * Make the type as complete as possible before fetching more types. */
22832
22833 static struct type *
22834 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22835 {
22836 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22837 struct objfile *objfile = cu->objfile;
22838 struct attribute *attr;
22839 struct dynamic_prop prop;
22840
22841 /* For Ada types, make sure that the gnat-specific data is always
22842 initialized (if not already set). There are a few types where
22843 we should not be doing so, because the type-specific area is
22844 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22845 where the type-specific area is used to store the floatformat).
22846 But this is not a problem, because the gnat-specific information
22847 is actually not needed for these types. */
22848 if (need_gnat_info (cu)
22849 && TYPE_CODE (type) != TYPE_CODE_FUNC
22850 && TYPE_CODE (type) != TYPE_CODE_FLT
22851 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22852 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22853 && TYPE_CODE (type) != TYPE_CODE_METHOD
22854 && !HAVE_GNAT_AUX_INFO (type))
22855 INIT_GNAT_SPECIFIC (type);
22856
22857 /* Read DW_AT_allocated and set in type. */
22858 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22859 if (attr_form_is_block (attr))
22860 {
22861 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22862 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22863 }
22864 else if (attr != NULL)
22865 {
22866 complaint (&symfile_complaints,
22867 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22868 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22869 die->offset.sect_off);
22870 }
22871
22872 /* Read DW_AT_associated and set in type. */
22873 attr = dwarf2_attr (die, DW_AT_associated, cu);
22874 if (attr_form_is_block (attr))
22875 {
22876 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22877 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22878 }
22879 else if (attr != NULL)
22880 {
22881 complaint (&symfile_complaints,
22882 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22883 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22884 die->offset.sect_off);
22885 }
22886
22887 /* Read DW_AT_data_location and set in type. */
22888 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22889 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22890 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22891
22892 if (dwarf2_per_objfile->die_type_hash == NULL)
22893 {
22894 dwarf2_per_objfile->die_type_hash =
22895 htab_create_alloc_ex (127,
22896 per_cu_offset_and_type_hash,
22897 per_cu_offset_and_type_eq,
22898 NULL,
22899 &objfile->objfile_obstack,
22900 hashtab_obstack_allocate,
22901 dummy_obstack_deallocate);
22902 }
22903
22904 ofs.per_cu = cu->per_cu;
22905 ofs.offset = die->offset;
22906 ofs.type = type;
22907 slot = (struct dwarf2_per_cu_offset_and_type **)
22908 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22909 if (*slot)
22910 complaint (&symfile_complaints,
22911 _("A problem internal to GDB: DIE 0x%x has type already set"),
22912 die->offset.sect_off);
22913 *slot = XOBNEW (&objfile->objfile_obstack,
22914 struct dwarf2_per_cu_offset_and_type);
22915 **slot = ofs;
22916 return type;
22917 }
22918
22919 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22920 or return NULL if the die does not have a saved type. */
22921
22922 static struct type *
22923 get_die_type_at_offset (sect_offset offset,
22924 struct dwarf2_per_cu_data *per_cu)
22925 {
22926 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22927
22928 if (dwarf2_per_objfile->die_type_hash == NULL)
22929 return NULL;
22930
22931 ofs.per_cu = per_cu;
22932 ofs.offset = offset;
22933 slot = ((struct dwarf2_per_cu_offset_and_type *)
22934 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22935 if (slot)
22936 return slot->type;
22937 else
22938 return NULL;
22939 }
22940
22941 /* Look up the type for DIE in CU in die_type_hash,
22942 or return NULL if DIE does not have a saved type. */
22943
22944 static struct type *
22945 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22946 {
22947 return get_die_type_at_offset (die->offset, cu->per_cu);
22948 }
22949
22950 /* Add a dependence relationship from CU to REF_PER_CU. */
22951
22952 static void
22953 dwarf2_add_dependence (struct dwarf2_cu *cu,
22954 struct dwarf2_per_cu_data *ref_per_cu)
22955 {
22956 void **slot;
22957
22958 if (cu->dependencies == NULL)
22959 cu->dependencies
22960 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22961 NULL, &cu->comp_unit_obstack,
22962 hashtab_obstack_allocate,
22963 dummy_obstack_deallocate);
22964
22965 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22966 if (*slot == NULL)
22967 *slot = ref_per_cu;
22968 }
22969
22970 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22971 Set the mark field in every compilation unit in the
22972 cache that we must keep because we are keeping CU. */
22973
22974 static int
22975 dwarf2_mark_helper (void **slot, void *data)
22976 {
22977 struct dwarf2_per_cu_data *per_cu;
22978
22979 per_cu = (struct dwarf2_per_cu_data *) *slot;
22980
22981 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22982 reading of the chain. As such dependencies remain valid it is not much
22983 useful to track and undo them during QUIT cleanups. */
22984 if (per_cu->cu == NULL)
22985 return 1;
22986
22987 if (per_cu->cu->mark)
22988 return 1;
22989 per_cu->cu->mark = 1;
22990
22991 if (per_cu->cu->dependencies != NULL)
22992 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22993
22994 return 1;
22995 }
22996
22997 /* Set the mark field in CU and in every other compilation unit in the
22998 cache that we must keep because we are keeping CU. */
22999
23000 static void
23001 dwarf2_mark (struct dwarf2_cu *cu)
23002 {
23003 if (cu->mark)
23004 return;
23005 cu->mark = 1;
23006 if (cu->dependencies != NULL)
23007 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23008 }
23009
23010 static void
23011 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23012 {
23013 while (per_cu)
23014 {
23015 per_cu->cu->mark = 0;
23016 per_cu = per_cu->cu->read_in_chain;
23017 }
23018 }
23019
23020 /* Trivial hash function for partial_die_info: the hash value of a DIE
23021 is its offset in .debug_info for this objfile. */
23022
23023 static hashval_t
23024 partial_die_hash (const void *item)
23025 {
23026 const struct partial_die_info *part_die
23027 = (const struct partial_die_info *) item;
23028
23029 return part_die->offset.sect_off;
23030 }
23031
23032 /* Trivial comparison function for partial_die_info structures: two DIEs
23033 are equal if they have the same offset. */
23034
23035 static int
23036 partial_die_eq (const void *item_lhs, const void *item_rhs)
23037 {
23038 const struct partial_die_info *part_die_lhs
23039 = (const struct partial_die_info *) item_lhs;
23040 const struct partial_die_info *part_die_rhs
23041 = (const struct partial_die_info *) item_rhs;
23042
23043 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
23044 }
23045
23046 static struct cmd_list_element *set_dwarf_cmdlist;
23047 static struct cmd_list_element *show_dwarf_cmdlist;
23048
23049 static void
23050 set_dwarf_cmd (char *args, int from_tty)
23051 {
23052 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23053 gdb_stdout);
23054 }
23055
23056 static void
23057 show_dwarf_cmd (char *args, int from_tty)
23058 {
23059 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23060 }
23061
23062 /* Free data associated with OBJFILE, if necessary. */
23063
23064 static void
23065 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23066 {
23067 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23068 int ix;
23069
23070 /* Make sure we don't accidentally use dwarf2_per_objfile while
23071 cleaning up. */
23072 dwarf2_per_objfile = NULL;
23073
23074 for (ix = 0; ix < data->n_comp_units; ++ix)
23075 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23076
23077 for (ix = 0; ix < data->n_type_units; ++ix)
23078 VEC_free (dwarf2_per_cu_ptr,
23079 data->all_type_units[ix]->per_cu.imported_symtabs);
23080 xfree (data->all_type_units);
23081
23082 VEC_free (dwarf2_section_info_def, data->types);
23083
23084 if (data->dwo_files)
23085 free_dwo_files (data->dwo_files, objfile);
23086 if (data->dwp_file)
23087 gdb_bfd_unref (data->dwp_file->dbfd);
23088
23089 if (data->dwz_file && data->dwz_file->dwz_bfd)
23090 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23091 }
23092
23093 \f
23094 /* The "save gdb-index" command. */
23095
23096 /* The contents of the hash table we create when building the string
23097 table. */
23098 struct strtab_entry
23099 {
23100 offset_type offset;
23101 const char *str;
23102 };
23103
23104 /* Hash function for a strtab_entry.
23105
23106 Function is used only during write_hash_table so no index format backward
23107 compatibility is needed. */
23108
23109 static hashval_t
23110 hash_strtab_entry (const void *e)
23111 {
23112 const struct strtab_entry *entry = (const struct strtab_entry *) e;
23113 return mapped_index_string_hash (INT_MAX, entry->str);
23114 }
23115
23116 /* Equality function for a strtab_entry. */
23117
23118 static int
23119 eq_strtab_entry (const void *a, const void *b)
23120 {
23121 const struct strtab_entry *ea = (const struct strtab_entry *) a;
23122 const struct strtab_entry *eb = (const struct strtab_entry *) b;
23123 return !strcmp (ea->str, eb->str);
23124 }
23125
23126 /* Create a strtab_entry hash table. */
23127
23128 static htab_t
23129 create_strtab (void)
23130 {
23131 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
23132 xfree, xcalloc, xfree);
23133 }
23134
23135 /* Add a string to the constant pool. Return the string's offset in
23136 host order. */
23137
23138 static offset_type
23139 add_string (htab_t table, struct obstack *cpool, const char *str)
23140 {
23141 void **slot;
23142 struct strtab_entry entry;
23143 struct strtab_entry *result;
23144
23145 entry.str = str;
23146 slot = htab_find_slot (table, &entry, INSERT);
23147 if (*slot)
23148 result = (struct strtab_entry *) *slot;
23149 else
23150 {
23151 result = XNEW (struct strtab_entry);
23152 result->offset = obstack_object_size (cpool);
23153 result->str = str;
23154 obstack_grow_str0 (cpool, str);
23155 *slot = result;
23156 }
23157 return result->offset;
23158 }
23159
23160 /* An entry in the symbol table. */
23161 struct symtab_index_entry
23162 {
23163 /* The name of the symbol. */
23164 const char *name;
23165 /* The offset of the name in the constant pool. */
23166 offset_type index_offset;
23167 /* A sorted vector of the indices of all the CUs that hold an object
23168 of this name. */
23169 VEC (offset_type) *cu_indices;
23170 };
23171
23172 /* The symbol table. This is a power-of-2-sized hash table. */
23173 struct mapped_symtab
23174 {
23175 offset_type n_elements;
23176 offset_type size;
23177 struct symtab_index_entry **data;
23178 };
23179
23180 /* Hash function for a symtab_index_entry. */
23181
23182 static hashval_t
23183 hash_symtab_entry (const void *e)
23184 {
23185 const struct symtab_index_entry *entry
23186 = (const struct symtab_index_entry *) e;
23187 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
23188 sizeof (offset_type) * VEC_length (offset_type,
23189 entry->cu_indices),
23190 0);
23191 }
23192
23193 /* Equality function for a symtab_index_entry. */
23194
23195 static int
23196 eq_symtab_entry (const void *a, const void *b)
23197 {
23198 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
23199 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
23200 int len = VEC_length (offset_type, ea->cu_indices);
23201 if (len != VEC_length (offset_type, eb->cu_indices))
23202 return 0;
23203 return !memcmp (VEC_address (offset_type, ea->cu_indices),
23204 VEC_address (offset_type, eb->cu_indices),
23205 sizeof (offset_type) * len);
23206 }
23207
23208 /* Destroy a symtab_index_entry. */
23209
23210 static void
23211 delete_symtab_entry (void *p)
23212 {
23213 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
23214 VEC_free (offset_type, entry->cu_indices);
23215 xfree (entry);
23216 }
23217
23218 /* Create a hash table holding symtab_index_entry objects. */
23219
23220 static htab_t
23221 create_symbol_hash_table (void)
23222 {
23223 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
23224 delete_symtab_entry, xcalloc, xfree);
23225 }
23226
23227 /* Create a new mapped symtab object. */
23228
23229 static struct mapped_symtab *
23230 create_mapped_symtab (void)
23231 {
23232 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
23233 symtab->n_elements = 0;
23234 symtab->size = 1024;
23235 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
23236 return symtab;
23237 }
23238
23239 /* Destroy a mapped_symtab. */
23240
23241 static void
23242 cleanup_mapped_symtab (void *p)
23243 {
23244 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
23245 /* The contents of the array are freed when the other hash table is
23246 destroyed. */
23247 xfree (symtab->data);
23248 xfree (symtab);
23249 }
23250
23251 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
23252 the slot.
23253
23254 Function is used only during write_hash_table so no index format backward
23255 compatibility is needed. */
23256
23257 static struct symtab_index_entry **
23258 find_slot (struct mapped_symtab *symtab, const char *name)
23259 {
23260 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23261
23262 index = hash & (symtab->size - 1);
23263 step = ((hash * 17) & (symtab->size - 1)) | 1;
23264
23265 for (;;)
23266 {
23267 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
23268 return &symtab->data[index];
23269 index = (index + step) & (symtab->size - 1);
23270 }
23271 }
23272
23273 /* Expand SYMTAB's hash table. */
23274
23275 static void
23276 hash_expand (struct mapped_symtab *symtab)
23277 {
23278 offset_type old_size = symtab->size;
23279 offset_type i;
23280 struct symtab_index_entry **old_entries = symtab->data;
23281
23282 symtab->size *= 2;
23283 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
23284
23285 for (i = 0; i < old_size; ++i)
23286 {
23287 if (old_entries[i])
23288 {
23289 struct symtab_index_entry **slot = find_slot (symtab,
23290 old_entries[i]->name);
23291 *slot = old_entries[i];
23292 }
23293 }
23294
23295 xfree (old_entries);
23296 }
23297
23298 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23299 CU_INDEX is the index of the CU in which the symbol appears.
23300 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23301
23302 static void
23303 add_index_entry (struct mapped_symtab *symtab, const char *name,
23304 int is_static, gdb_index_symbol_kind kind,
23305 offset_type cu_index)
23306 {
23307 struct symtab_index_entry **slot;
23308 offset_type cu_index_and_attrs;
23309
23310 ++symtab->n_elements;
23311 if (4 * symtab->n_elements / 3 >= symtab->size)
23312 hash_expand (symtab);
23313
23314 slot = find_slot (symtab, name);
23315 if (!*slot)
23316 {
23317 *slot = XNEW (struct symtab_index_entry);
23318 (*slot)->name = name;
23319 /* index_offset is set later. */
23320 (*slot)->cu_indices = NULL;
23321 }
23322
23323 cu_index_and_attrs = 0;
23324 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23325 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23326 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23327
23328 /* We don't want to record an index value twice as we want to avoid the
23329 duplication.
23330 We process all global symbols and then all static symbols
23331 (which would allow us to avoid the duplication by only having to check
23332 the last entry pushed), but a symbol could have multiple kinds in one CU.
23333 To keep things simple we don't worry about the duplication here and
23334 sort and uniqufy the list after we've processed all symbols. */
23335 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
23336 }
23337
23338 /* qsort helper routine for uniquify_cu_indices. */
23339
23340 static int
23341 offset_type_compare (const void *ap, const void *bp)
23342 {
23343 offset_type a = *(offset_type *) ap;
23344 offset_type b = *(offset_type *) bp;
23345
23346 return (a > b) - (b > a);
23347 }
23348
23349 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23350
23351 static void
23352 uniquify_cu_indices (struct mapped_symtab *symtab)
23353 {
23354 int i;
23355
23356 for (i = 0; i < symtab->size; ++i)
23357 {
23358 struct symtab_index_entry *entry = symtab->data[i];
23359
23360 if (entry
23361 && entry->cu_indices != NULL)
23362 {
23363 unsigned int next_to_insert, next_to_check;
23364 offset_type last_value;
23365
23366 qsort (VEC_address (offset_type, entry->cu_indices),
23367 VEC_length (offset_type, entry->cu_indices),
23368 sizeof (offset_type), offset_type_compare);
23369
23370 last_value = VEC_index (offset_type, entry->cu_indices, 0);
23371 next_to_insert = 1;
23372 for (next_to_check = 1;
23373 next_to_check < VEC_length (offset_type, entry->cu_indices);
23374 ++next_to_check)
23375 {
23376 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
23377 != last_value)
23378 {
23379 last_value = VEC_index (offset_type, entry->cu_indices,
23380 next_to_check);
23381 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
23382 last_value);
23383 ++next_to_insert;
23384 }
23385 }
23386 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
23387 }
23388 }
23389 }
23390
23391 /* Add a vector of indices to the constant pool. */
23392
23393 static offset_type
23394 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
23395 struct symtab_index_entry *entry)
23396 {
23397 void **slot;
23398
23399 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
23400 if (!*slot)
23401 {
23402 offset_type len = VEC_length (offset_type, entry->cu_indices);
23403 offset_type val = MAYBE_SWAP (len);
23404 offset_type iter;
23405 int i;
23406
23407 *slot = entry;
23408 entry->index_offset = obstack_object_size (cpool);
23409
23410 obstack_grow (cpool, &val, sizeof (val));
23411 for (i = 0;
23412 VEC_iterate (offset_type, entry->cu_indices, i, iter);
23413 ++i)
23414 {
23415 val = MAYBE_SWAP (iter);
23416 obstack_grow (cpool, &val, sizeof (val));
23417 }
23418 }
23419 else
23420 {
23421 struct symtab_index_entry *old_entry
23422 = (struct symtab_index_entry *) *slot;
23423 entry->index_offset = old_entry->index_offset;
23424 entry = old_entry;
23425 }
23426 return entry->index_offset;
23427 }
23428
23429 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
23430 constant pool entries going into the obstack CPOOL. */
23431
23432 static void
23433 write_hash_table (struct mapped_symtab *symtab,
23434 struct obstack *output, struct obstack *cpool)
23435 {
23436 offset_type i;
23437 htab_t symbol_hash_table;
23438 htab_t str_table;
23439
23440 symbol_hash_table = create_symbol_hash_table ();
23441 str_table = create_strtab ();
23442
23443 /* We add all the index vectors to the constant pool first, to
23444 ensure alignment is ok. */
23445 for (i = 0; i < symtab->size; ++i)
23446 {
23447 if (symtab->data[i])
23448 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
23449 }
23450
23451 /* Now write out the hash table. */
23452 for (i = 0; i < symtab->size; ++i)
23453 {
23454 offset_type str_off, vec_off;
23455
23456 if (symtab->data[i])
23457 {
23458 str_off = add_string (str_table, cpool, symtab->data[i]->name);
23459 vec_off = symtab->data[i]->index_offset;
23460 }
23461 else
23462 {
23463 /* While 0 is a valid constant pool index, it is not valid
23464 to have 0 for both offsets. */
23465 str_off = 0;
23466 vec_off = 0;
23467 }
23468
23469 str_off = MAYBE_SWAP (str_off);
23470 vec_off = MAYBE_SWAP (vec_off);
23471
23472 obstack_grow (output, &str_off, sizeof (str_off));
23473 obstack_grow (output, &vec_off, sizeof (vec_off));
23474 }
23475
23476 htab_delete (str_table);
23477 htab_delete (symbol_hash_table);
23478 }
23479
23480 /* Struct to map psymtab to CU index in the index file. */
23481 struct psymtab_cu_index_map
23482 {
23483 struct partial_symtab *psymtab;
23484 unsigned int cu_index;
23485 };
23486
23487 static hashval_t
23488 hash_psymtab_cu_index (const void *item)
23489 {
23490 const struct psymtab_cu_index_map *map
23491 = (const struct psymtab_cu_index_map *) item;
23492
23493 return htab_hash_pointer (map->psymtab);
23494 }
23495
23496 static int
23497 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23498 {
23499 const struct psymtab_cu_index_map *lhs
23500 = (const struct psymtab_cu_index_map *) item_lhs;
23501 const struct psymtab_cu_index_map *rhs
23502 = (const struct psymtab_cu_index_map *) item_rhs;
23503
23504 return lhs->psymtab == rhs->psymtab;
23505 }
23506
23507 /* Helper struct for building the address table. */
23508 struct addrmap_index_data
23509 {
23510 struct objfile *objfile;
23511 struct obstack *addr_obstack;
23512 htab_t cu_index_htab;
23513
23514 /* Non-zero if the previous_* fields are valid.
23515 We can't write an entry until we see the next entry (since it is only then
23516 that we know the end of the entry). */
23517 int previous_valid;
23518 /* Index of the CU in the table of all CUs in the index file. */
23519 unsigned int previous_cu_index;
23520 /* Start address of the CU. */
23521 CORE_ADDR previous_cu_start;
23522 };
23523
23524 /* Write an address entry to OBSTACK. */
23525
23526 static void
23527 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23528 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23529 {
23530 offset_type cu_index_to_write;
23531 gdb_byte addr[8];
23532 CORE_ADDR baseaddr;
23533
23534 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23535
23536 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23537 obstack_grow (obstack, addr, 8);
23538 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23539 obstack_grow (obstack, addr, 8);
23540 cu_index_to_write = MAYBE_SWAP (cu_index);
23541 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23542 }
23543
23544 /* Worker function for traversing an addrmap to build the address table. */
23545
23546 static int
23547 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23548 {
23549 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23550 struct partial_symtab *pst = (struct partial_symtab *) obj;
23551
23552 if (data->previous_valid)
23553 add_address_entry (data->objfile, data->addr_obstack,
23554 data->previous_cu_start, start_addr,
23555 data->previous_cu_index);
23556
23557 data->previous_cu_start = start_addr;
23558 if (pst != NULL)
23559 {
23560 struct psymtab_cu_index_map find_map, *map;
23561 find_map.psymtab = pst;
23562 map = ((struct psymtab_cu_index_map *)
23563 htab_find (data->cu_index_htab, &find_map));
23564 gdb_assert (map != NULL);
23565 data->previous_cu_index = map->cu_index;
23566 data->previous_valid = 1;
23567 }
23568 else
23569 data->previous_valid = 0;
23570
23571 return 0;
23572 }
23573
23574 /* Write OBJFILE's address map to OBSTACK.
23575 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23576 in the index file. */
23577
23578 static void
23579 write_address_map (struct objfile *objfile, struct obstack *obstack,
23580 htab_t cu_index_htab)
23581 {
23582 struct addrmap_index_data addrmap_index_data;
23583
23584 /* When writing the address table, we have to cope with the fact that
23585 the addrmap iterator only provides the start of a region; we have to
23586 wait until the next invocation to get the start of the next region. */
23587
23588 addrmap_index_data.objfile = objfile;
23589 addrmap_index_data.addr_obstack = obstack;
23590 addrmap_index_data.cu_index_htab = cu_index_htab;
23591 addrmap_index_data.previous_valid = 0;
23592
23593 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23594 &addrmap_index_data);
23595
23596 /* It's highly unlikely the last entry (end address = 0xff...ff)
23597 is valid, but we should still handle it.
23598 The end address is recorded as the start of the next region, but that
23599 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23600 anyway. */
23601 if (addrmap_index_data.previous_valid)
23602 add_address_entry (objfile, obstack,
23603 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23604 addrmap_index_data.previous_cu_index);
23605 }
23606
23607 /* Return the symbol kind of PSYM. */
23608
23609 static gdb_index_symbol_kind
23610 symbol_kind (struct partial_symbol *psym)
23611 {
23612 domain_enum domain = PSYMBOL_DOMAIN (psym);
23613 enum address_class aclass = PSYMBOL_CLASS (psym);
23614
23615 switch (domain)
23616 {
23617 case VAR_DOMAIN:
23618 switch (aclass)
23619 {
23620 case LOC_BLOCK:
23621 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23622 case LOC_TYPEDEF:
23623 return GDB_INDEX_SYMBOL_KIND_TYPE;
23624 case LOC_COMPUTED:
23625 case LOC_CONST_BYTES:
23626 case LOC_OPTIMIZED_OUT:
23627 case LOC_STATIC:
23628 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23629 case LOC_CONST:
23630 /* Note: It's currently impossible to recognize psyms as enum values
23631 short of reading the type info. For now punt. */
23632 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23633 default:
23634 /* There are other LOC_FOO values that one might want to classify
23635 as variables, but dwarf2read.c doesn't currently use them. */
23636 return GDB_INDEX_SYMBOL_KIND_OTHER;
23637 }
23638 case STRUCT_DOMAIN:
23639 return GDB_INDEX_SYMBOL_KIND_TYPE;
23640 default:
23641 return GDB_INDEX_SYMBOL_KIND_OTHER;
23642 }
23643 }
23644
23645 /* Add a list of partial symbols to SYMTAB. */
23646
23647 static void
23648 write_psymbols (struct mapped_symtab *symtab,
23649 htab_t psyms_seen,
23650 struct partial_symbol **psymp,
23651 int count,
23652 offset_type cu_index,
23653 int is_static)
23654 {
23655 for (; count-- > 0; ++psymp)
23656 {
23657 struct partial_symbol *psym = *psymp;
23658 void **slot;
23659
23660 if (SYMBOL_LANGUAGE (psym) == language_ada)
23661 error (_("Ada is not currently supported by the index"));
23662
23663 /* Only add a given psymbol once. */
23664 slot = htab_find_slot (psyms_seen, psym, INSERT);
23665 if (!*slot)
23666 {
23667 gdb_index_symbol_kind kind = symbol_kind (psym);
23668
23669 *slot = psym;
23670 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23671 is_static, kind, cu_index);
23672 }
23673 }
23674 }
23675
23676 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23677 exception if there is an error. */
23678
23679 static void
23680 write_obstack (FILE *file, struct obstack *obstack)
23681 {
23682 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23683 file)
23684 != obstack_object_size (obstack))
23685 error (_("couldn't data write to file"));
23686 }
23687
23688 /* A helper struct used when iterating over debug_types. */
23689 struct signatured_type_index_data
23690 {
23691 struct objfile *objfile;
23692 struct mapped_symtab *symtab;
23693 struct obstack *types_list;
23694 htab_t psyms_seen;
23695 int cu_index;
23696 };
23697
23698 /* A helper function that writes a single signatured_type to an
23699 obstack. */
23700
23701 static int
23702 write_one_signatured_type (void **slot, void *d)
23703 {
23704 struct signatured_type_index_data *info
23705 = (struct signatured_type_index_data *) d;
23706 struct signatured_type *entry = (struct signatured_type *) *slot;
23707 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23708 gdb_byte val[8];
23709
23710 write_psymbols (info->symtab,
23711 info->psyms_seen,
23712 info->objfile->global_psymbols.list
23713 + psymtab->globals_offset,
23714 psymtab->n_global_syms, info->cu_index,
23715 0);
23716 write_psymbols (info->symtab,
23717 info->psyms_seen,
23718 info->objfile->static_psymbols.list
23719 + psymtab->statics_offset,
23720 psymtab->n_static_syms, info->cu_index,
23721 1);
23722
23723 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23724 entry->per_cu.offset.sect_off);
23725 obstack_grow (info->types_list, val, 8);
23726 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23727 entry->type_offset_in_tu.cu_off);
23728 obstack_grow (info->types_list, val, 8);
23729 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23730 obstack_grow (info->types_list, val, 8);
23731
23732 ++info->cu_index;
23733
23734 return 1;
23735 }
23736
23737 /* Recurse into all "included" dependencies and write their symbols as
23738 if they appeared in this psymtab. */
23739
23740 static void
23741 recursively_write_psymbols (struct objfile *objfile,
23742 struct partial_symtab *psymtab,
23743 struct mapped_symtab *symtab,
23744 htab_t psyms_seen,
23745 offset_type cu_index)
23746 {
23747 int i;
23748
23749 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23750 if (psymtab->dependencies[i]->user != NULL)
23751 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23752 symtab, psyms_seen, cu_index);
23753
23754 write_psymbols (symtab,
23755 psyms_seen,
23756 objfile->global_psymbols.list + psymtab->globals_offset,
23757 psymtab->n_global_syms, cu_index,
23758 0);
23759 write_psymbols (symtab,
23760 psyms_seen,
23761 objfile->static_psymbols.list + psymtab->statics_offset,
23762 psymtab->n_static_syms, cu_index,
23763 1);
23764 }
23765
23766 /* Create an index file for OBJFILE in the directory DIR. */
23767
23768 static void
23769 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23770 {
23771 struct cleanup *cleanup;
23772 char *filename;
23773 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23774 struct obstack cu_list, types_cu_list;
23775 int i;
23776 FILE *out_file;
23777 struct mapped_symtab *symtab;
23778 offset_type val, size_of_contents, total_len;
23779 struct stat st;
23780 struct psymtab_cu_index_map *psymtab_cu_index_map;
23781
23782 if (dwarf2_per_objfile->using_index)
23783 error (_("Cannot use an index to create the index"));
23784
23785 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23786 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23787
23788 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23789 return;
23790
23791 if (stat (objfile_name (objfile), &st) < 0)
23792 perror_with_name (objfile_name (objfile));
23793
23794 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23795 INDEX_SUFFIX, (char *) NULL);
23796 cleanup = make_cleanup (xfree, filename);
23797
23798 out_file = gdb_fopen_cloexec (filename, "wb");
23799 if (!out_file)
23800 error (_("Can't open `%s' for writing"), filename);
23801
23802 gdb::unlinker unlink_file (filename);
23803
23804 symtab = create_mapped_symtab ();
23805 make_cleanup (cleanup_mapped_symtab, symtab);
23806
23807 obstack_init (&addr_obstack);
23808 make_cleanup_obstack_free (&addr_obstack);
23809
23810 obstack_init (&cu_list);
23811 make_cleanup_obstack_free (&cu_list);
23812
23813 obstack_init (&types_cu_list);
23814 make_cleanup_obstack_free (&types_cu_list);
23815
23816 htab_up psyms_seen (htab_create_alloc (100, htab_hash_pointer,
23817 htab_eq_pointer,
23818 NULL, xcalloc, xfree));
23819
23820 /* While we're scanning CU's create a table that maps a psymtab pointer
23821 (which is what addrmap records) to its index (which is what is recorded
23822 in the index file). This will later be needed to write the address
23823 table. */
23824 htab_up cu_index_htab (htab_create_alloc (100,
23825 hash_psymtab_cu_index,
23826 eq_psymtab_cu_index,
23827 NULL, xcalloc, xfree));
23828 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23829 dwarf2_per_objfile->n_comp_units);
23830 make_cleanup (xfree, psymtab_cu_index_map);
23831
23832 /* The CU list is already sorted, so we don't need to do additional
23833 work here. Also, the debug_types entries do not appear in
23834 all_comp_units, but only in their own hash table. */
23835 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23836 {
23837 struct dwarf2_per_cu_data *per_cu
23838 = dwarf2_per_objfile->all_comp_units[i];
23839 struct partial_symtab *psymtab = per_cu->v.psymtab;
23840 gdb_byte val[8];
23841 struct psymtab_cu_index_map *map;
23842 void **slot;
23843
23844 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23845 It may be referenced from a local scope but in such case it does not
23846 need to be present in .gdb_index. */
23847 if (psymtab == NULL)
23848 continue;
23849
23850 if (psymtab->user == NULL)
23851 recursively_write_psymbols (objfile, psymtab, symtab,
23852 psyms_seen.get (), i);
23853
23854 map = &psymtab_cu_index_map[i];
23855 map->psymtab = psymtab;
23856 map->cu_index = i;
23857 slot = htab_find_slot (cu_index_htab.get (), map, INSERT);
23858 gdb_assert (slot != NULL);
23859 gdb_assert (*slot == NULL);
23860 *slot = map;
23861
23862 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23863 per_cu->offset.sect_off);
23864 obstack_grow (&cu_list, val, 8);
23865 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23866 obstack_grow (&cu_list, val, 8);
23867 }
23868
23869 /* Dump the address map. */
23870 write_address_map (objfile, &addr_obstack, cu_index_htab.get ());
23871
23872 /* Write out the .debug_type entries, if any. */
23873 if (dwarf2_per_objfile->signatured_types)
23874 {
23875 struct signatured_type_index_data sig_data;
23876
23877 sig_data.objfile = objfile;
23878 sig_data.symtab = symtab;
23879 sig_data.types_list = &types_cu_list;
23880 sig_data.psyms_seen = psyms_seen.get ();
23881 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23882 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23883 write_one_signatured_type, &sig_data);
23884 }
23885
23886 /* Now that we've processed all symbols we can shrink their cu_indices
23887 lists. */
23888 uniquify_cu_indices (symtab);
23889
23890 obstack_init (&constant_pool);
23891 make_cleanup_obstack_free (&constant_pool);
23892 obstack_init (&symtab_obstack);
23893 make_cleanup_obstack_free (&symtab_obstack);
23894 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23895
23896 obstack_init (&contents);
23897 make_cleanup_obstack_free (&contents);
23898 size_of_contents = 6 * sizeof (offset_type);
23899 total_len = size_of_contents;
23900
23901 /* The version number. */
23902 val = MAYBE_SWAP (8);
23903 obstack_grow (&contents, &val, sizeof (val));
23904
23905 /* The offset of the CU list from the start of the file. */
23906 val = MAYBE_SWAP (total_len);
23907 obstack_grow (&contents, &val, sizeof (val));
23908 total_len += obstack_object_size (&cu_list);
23909
23910 /* The offset of the types CU list from the start of the file. */
23911 val = MAYBE_SWAP (total_len);
23912 obstack_grow (&contents, &val, sizeof (val));
23913 total_len += obstack_object_size (&types_cu_list);
23914
23915 /* The offset of the address table from the start of the file. */
23916 val = MAYBE_SWAP (total_len);
23917 obstack_grow (&contents, &val, sizeof (val));
23918 total_len += obstack_object_size (&addr_obstack);
23919
23920 /* The offset of the symbol table from the start of the file. */
23921 val = MAYBE_SWAP (total_len);
23922 obstack_grow (&contents, &val, sizeof (val));
23923 total_len += obstack_object_size (&symtab_obstack);
23924
23925 /* The offset of the constant pool from the start of the file. */
23926 val = MAYBE_SWAP (total_len);
23927 obstack_grow (&contents, &val, sizeof (val));
23928 total_len += obstack_object_size (&constant_pool);
23929
23930 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23931
23932 write_obstack (out_file, &contents);
23933 write_obstack (out_file, &cu_list);
23934 write_obstack (out_file, &types_cu_list);
23935 write_obstack (out_file, &addr_obstack);
23936 write_obstack (out_file, &symtab_obstack);
23937 write_obstack (out_file, &constant_pool);
23938
23939 fclose (out_file);
23940
23941 /* We want to keep the file. */
23942 unlink_file.keep ();
23943
23944 do_cleanups (cleanup);
23945 }
23946
23947 /* Implementation of the `save gdb-index' command.
23948
23949 Note that the file format used by this command is documented in the
23950 GDB manual. Any changes here must be documented there. */
23951
23952 static void
23953 save_gdb_index_command (char *arg, int from_tty)
23954 {
23955 struct objfile *objfile;
23956
23957 if (!arg || !*arg)
23958 error (_("usage: save gdb-index DIRECTORY"));
23959
23960 ALL_OBJFILES (objfile)
23961 {
23962 struct stat st;
23963
23964 /* If the objfile does not correspond to an actual file, skip it. */
23965 if (stat (objfile_name (objfile), &st) < 0)
23966 continue;
23967
23968 dwarf2_per_objfile
23969 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23970 dwarf2_objfile_data_key);
23971 if (dwarf2_per_objfile)
23972 {
23973
23974 TRY
23975 {
23976 write_psymtabs_to_index (objfile, arg);
23977 }
23978 CATCH (except, RETURN_MASK_ERROR)
23979 {
23980 exception_fprintf (gdb_stderr, except,
23981 _("Error while writing index for `%s': "),
23982 objfile_name (objfile));
23983 }
23984 END_CATCH
23985 }
23986 }
23987 }
23988
23989 \f
23990
23991 int dwarf_always_disassemble;
23992
23993 static void
23994 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23995 struct cmd_list_element *c, const char *value)
23996 {
23997 fprintf_filtered (file,
23998 _("Whether to always disassemble "
23999 "DWARF expressions is %s.\n"),
24000 value);
24001 }
24002
24003 static void
24004 show_check_physname (struct ui_file *file, int from_tty,
24005 struct cmd_list_element *c, const char *value)
24006 {
24007 fprintf_filtered (file,
24008 _("Whether to check \"physname\" is %s.\n"),
24009 value);
24010 }
24011
24012 void _initialize_dwarf2_read (void);
24013
24014 void
24015 _initialize_dwarf2_read (void)
24016 {
24017 struct cmd_list_element *c;
24018
24019 dwarf2_objfile_data_key
24020 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24021
24022 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24023 Set DWARF specific variables.\n\
24024 Configure DWARF variables such as the cache size"),
24025 &set_dwarf_cmdlist, "maintenance set dwarf ",
24026 0/*allow-unknown*/, &maintenance_set_cmdlist);
24027
24028 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24029 Show DWARF specific variables\n\
24030 Show DWARF variables such as the cache size"),
24031 &show_dwarf_cmdlist, "maintenance show dwarf ",
24032 0/*allow-unknown*/, &maintenance_show_cmdlist);
24033
24034 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24035 &dwarf_max_cache_age, _("\
24036 Set the upper bound on the age of cached DWARF compilation units."), _("\
24037 Show the upper bound on the age of cached DWARF compilation units."), _("\
24038 A higher limit means that cached compilation units will be stored\n\
24039 in memory longer, and more total memory will be used. Zero disables\n\
24040 caching, which can slow down startup."),
24041 NULL,
24042 show_dwarf_max_cache_age,
24043 &set_dwarf_cmdlist,
24044 &show_dwarf_cmdlist);
24045
24046 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24047 &dwarf_always_disassemble, _("\
24048 Set whether `info address' always disassembles DWARF expressions."), _("\
24049 Show whether `info address' always disassembles DWARF expressions."), _("\
24050 When enabled, DWARF expressions are always printed in an assembly-like\n\
24051 syntax. When disabled, expressions will be printed in a more\n\
24052 conversational style, when possible."),
24053 NULL,
24054 show_dwarf_always_disassemble,
24055 &set_dwarf_cmdlist,
24056 &show_dwarf_cmdlist);
24057
24058 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24059 Set debugging of the DWARF reader."), _("\
24060 Show debugging of the DWARF reader."), _("\
24061 When enabled (non-zero), debugging messages are printed during DWARF\n\
24062 reading and symtab expansion. A value of 1 (one) provides basic\n\
24063 information. A value greater than 1 provides more verbose information."),
24064 NULL,
24065 NULL,
24066 &setdebuglist, &showdebuglist);
24067
24068 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24069 Set debugging of the DWARF DIE reader."), _("\
24070 Show debugging of the DWARF DIE reader."), _("\
24071 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24072 The value is the maximum depth to print."),
24073 NULL,
24074 NULL,
24075 &setdebuglist, &showdebuglist);
24076
24077 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24078 Set debugging of the dwarf line reader."), _("\
24079 Show debugging of the dwarf line reader."), _("\
24080 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24081 A value of 1 (one) provides basic information.\n\
24082 A value greater than 1 provides more verbose information."),
24083 NULL,
24084 NULL,
24085 &setdebuglist, &showdebuglist);
24086
24087 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24088 Set cross-checking of \"physname\" code against demangler."), _("\
24089 Show cross-checking of \"physname\" code against demangler."), _("\
24090 When enabled, GDB's internal \"physname\" code is checked against\n\
24091 the demangler."),
24092 NULL, show_check_physname,
24093 &setdebuglist, &showdebuglist);
24094
24095 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24096 no_class, &use_deprecated_index_sections, _("\
24097 Set whether to use deprecated gdb_index sections."), _("\
24098 Show whether to use deprecated gdb_index sections."), _("\
24099 When enabled, deprecated .gdb_index sections are used anyway.\n\
24100 Normally they are ignored either because of a missing feature or\n\
24101 performance issue.\n\
24102 Warning: This option must be enabled before gdb reads the file."),
24103 NULL,
24104 NULL,
24105 &setlist, &showlist);
24106
24107 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24108 _("\
24109 Save a gdb-index file.\n\
24110 Usage: save gdb-index DIRECTORY"),
24111 &save_cmdlist);
24112 set_cmd_completer (c, filename_completer);
24113
24114 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24115 &dwarf2_locexpr_funcs);
24116 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24117 &dwarf2_loclist_funcs);
24118
24119 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24120 &dwarf2_block_frame_base_locexpr_funcs);
24121 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24122 &dwarf2_block_frame_base_loclist_funcs);
24123 }