gdb
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_assert.h"
55 #include <sys/types.h>
56 #ifdef HAVE_ZLIB_H
57 #include <zlib.h>
58 #endif
59 #ifdef HAVE_MMAP
60 #include <sys/mman.h>
61 #ifndef MAP_FAILED
62 #define MAP_FAILED ((void *) -1)
63 #endif
64 #endif
65
66 #if 0
67 /* .debug_info header for a compilation unit
68 Because of alignment constraints, this structure has padding and cannot
69 be mapped directly onto the beginning of the .debug_info section. */
70 typedef struct comp_unit_header
71 {
72 unsigned int length; /* length of the .debug_info
73 contribution */
74 unsigned short version; /* version number -- 2 for DWARF
75 version 2 */
76 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
77 unsigned char addr_size; /* byte size of an address -- 4 */
78 }
79 _COMP_UNIT_HEADER;
80 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
81 #endif
82
83 /* .debug_pubnames header
84 Because of alignment constraints, this structure has padding and cannot
85 be mapped directly onto the beginning of the .debug_info section. */
86 typedef struct pubnames_header
87 {
88 unsigned int length; /* length of the .debug_pubnames
89 contribution */
90 unsigned char version; /* version number -- 2 for DWARF
91 version 2 */
92 unsigned int info_offset; /* offset into .debug_info section */
93 unsigned int info_size; /* byte size of .debug_info section
94 portion */
95 }
96 _PUBNAMES_HEADER;
97 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
98
99 /* .debug_pubnames header
100 Because of alignment constraints, this structure has padding and cannot
101 be mapped directly onto the beginning of the .debug_info section. */
102 typedef struct aranges_header
103 {
104 unsigned int length; /* byte len of the .debug_aranges
105 contribution */
106 unsigned short version; /* version number -- 2 for DWARF
107 version 2 */
108 unsigned int info_offset; /* offset into .debug_info section */
109 unsigned char addr_size; /* byte size of an address */
110 unsigned char seg_size; /* byte size of segment descriptor */
111 }
112 _ARANGES_HEADER;
113 #define _ACTUAL_ARANGES_HEADER_SIZE 12
114
115 /* .debug_line statement program prologue
116 Because of alignment constraints, this structure has padding and cannot
117 be mapped directly onto the beginning of the .debug_info section. */
118 typedef struct statement_prologue
119 {
120 unsigned int total_length; /* byte length of the statement
121 information */
122 unsigned short version; /* version number -- 2 for DWARF
123 version 2 */
124 unsigned int prologue_length; /* # bytes between prologue &
125 stmt program */
126 unsigned char minimum_instruction_length; /* byte size of
127 smallest instr */
128 unsigned char default_is_stmt; /* initial value of is_stmt
129 register */
130 char line_base;
131 unsigned char line_range;
132 unsigned char opcode_base; /* number assigned to first special
133 opcode */
134 unsigned char *standard_opcode_lengths;
135 }
136 _STATEMENT_PROLOGUE;
137
138 /* When non-zero, dump DIEs after they are read in. */
139 static int dwarf2_die_debug = 0;
140
141 static int pagesize;
142
143 /* When set, the file that we're processing is known to have debugging
144 info for C++ namespaces. GCC 3.3.x did not produce this information,
145 but later versions do. */
146
147 static int processing_has_namespace_info;
148
149 static const struct objfile_data *dwarf2_objfile_data_key;
150
151 struct dwarf2_section_info
152 {
153 asection *asection;
154 gdb_byte *buffer;
155 bfd_size_type size;
156 int was_mmapped;
157 };
158
159 struct dwarf2_per_objfile
160 {
161 struct dwarf2_section_info info;
162 struct dwarf2_section_info abbrev;
163 struct dwarf2_section_info line;
164 struct dwarf2_section_info pubnames;
165 struct dwarf2_section_info aranges;
166 struct dwarf2_section_info loc;
167 struct dwarf2_section_info macinfo;
168 struct dwarf2_section_info str;
169 struct dwarf2_section_info ranges;
170 struct dwarf2_section_info types;
171 struct dwarf2_section_info frame;
172 struct dwarf2_section_info eh_frame;
173
174 /* A list of all the compilation units. This is used to locate
175 the target compilation unit of a particular reference. */
176 struct dwarf2_per_cu_data **all_comp_units;
177
178 /* The number of compilation units in ALL_COMP_UNITS. */
179 int n_comp_units;
180
181 /* A chain of compilation units that are currently read in, so that
182 they can be freed later. */
183 struct dwarf2_per_cu_data *read_in_chain;
184
185 /* A table mapping .debug_types signatures to its signatured_type entry.
186 This is NULL if the .debug_types section hasn't been read in yet. */
187 htab_t signatured_types;
188
189 /* A flag indicating wether this objfile has a section loaded at a
190 VMA of 0. */
191 int has_section_at_zero;
192 };
193
194 static struct dwarf2_per_objfile *dwarf2_per_objfile;
195
196 /* names of the debugging sections */
197
198 /* Note that if the debugging section has been compressed, it might
199 have a name like .zdebug_info. */
200
201 #define INFO_SECTION "debug_info"
202 #define ABBREV_SECTION "debug_abbrev"
203 #define LINE_SECTION "debug_line"
204 #define PUBNAMES_SECTION "debug_pubnames"
205 #define ARANGES_SECTION "debug_aranges"
206 #define LOC_SECTION "debug_loc"
207 #define MACINFO_SECTION "debug_macinfo"
208 #define STR_SECTION "debug_str"
209 #define RANGES_SECTION "debug_ranges"
210 #define TYPES_SECTION "debug_types"
211 #define FRAME_SECTION "debug_frame"
212 #define EH_FRAME_SECTION "eh_frame"
213
214 /* local data types */
215
216 /* We hold several abbreviation tables in memory at the same time. */
217 #ifndef ABBREV_HASH_SIZE
218 #define ABBREV_HASH_SIZE 121
219 #endif
220
221 /* The data in a compilation unit header, after target2host
222 translation, looks like this. */
223 struct comp_unit_head
224 {
225 unsigned int length;
226 short version;
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
229 unsigned int abbrev_offset;
230
231 /* Size of file offsets; either 4 or 8. */
232 unsigned int offset_size;
233
234 /* Size of the length field; either 4 or 12. */
235 unsigned int initial_length_size;
236
237 /* Offset to the first byte of this compilation unit header in the
238 .debug_info section, for resolving relative reference dies. */
239 unsigned int offset;
240
241 /* Offset to first die in this cu from the start of the cu.
242 This will be the first byte following the compilation unit header. */
243 unsigned int first_die_offset;
244 };
245
246 /* Internal state when decoding a particular compilation unit. */
247 struct dwarf2_cu
248 {
249 /* The objfile containing this compilation unit. */
250 struct objfile *objfile;
251
252 /* The header of the compilation unit. */
253 struct comp_unit_head header;
254
255 /* Base address of this compilation unit. */
256 CORE_ADDR base_address;
257
258 /* Non-zero if base_address has been set. */
259 int base_known;
260
261 struct function_range *first_fn, *last_fn, *cached_fn;
262
263 /* The language we are debugging. */
264 enum language language;
265 const struct language_defn *language_defn;
266
267 const char *producer;
268
269 /* The generic symbol table building routines have separate lists for
270 file scope symbols and all all other scopes (local scopes). So
271 we need to select the right one to pass to add_symbol_to_list().
272 We do it by keeping a pointer to the correct list in list_in_scope.
273
274 FIXME: The original dwarf code just treated the file scope as the
275 first local scope, and all other local scopes as nested local
276 scopes, and worked fine. Check to see if we really need to
277 distinguish these in buildsym.c. */
278 struct pending **list_in_scope;
279
280 /* DWARF abbreviation table associated with this compilation unit. */
281 struct abbrev_info **dwarf2_abbrevs;
282
283 /* Storage for the abbrev table. */
284 struct obstack abbrev_obstack;
285
286 /* Hash table holding all the loaded partial DIEs. */
287 htab_t partial_dies;
288
289 /* Storage for things with the same lifetime as this read-in compilation
290 unit, including partial DIEs. */
291 struct obstack comp_unit_obstack;
292
293 /* When multiple dwarf2_cu structures are living in memory, this field
294 chains them all together, so that they can be released efficiently.
295 We will probably also want a generation counter so that most-recently-used
296 compilation units are cached... */
297 struct dwarf2_per_cu_data *read_in_chain;
298
299 /* Backchain to our per_cu entry if the tree has been built. */
300 struct dwarf2_per_cu_data *per_cu;
301
302 /* Pointer to the die -> type map. Although it is stored
303 permanently in per_cu, we copy it here to avoid double
304 indirection. */
305 htab_t type_hash;
306
307 /* How many compilation units ago was this CU last referenced? */
308 int last_used;
309
310 /* A hash table of die offsets for following references. */
311 htab_t die_hash;
312
313 /* Full DIEs if read in. */
314 struct die_info *dies;
315
316 /* A set of pointers to dwarf2_per_cu_data objects for compilation
317 units referenced by this one. Only set during full symbol processing;
318 partial symbol tables do not have dependencies. */
319 htab_t dependencies;
320
321 /* Header data from the line table, during full symbol processing. */
322 struct line_header *line_header;
323
324 /* Mark used when releasing cached dies. */
325 unsigned int mark : 1;
326
327 /* This flag will be set if this compilation unit might include
328 inter-compilation-unit references. */
329 unsigned int has_form_ref_addr : 1;
330
331 /* This flag will be set if this compilation unit includes any
332 DW_TAG_namespace DIEs. If we know that there are explicit
333 DIEs for namespaces, we don't need to try to infer them
334 from mangled names. */
335 unsigned int has_namespace_info : 1;
336 };
337
338 /* Persistent data held for a compilation unit, even when not
339 processing it. We put a pointer to this structure in the
340 read_symtab_private field of the psymtab. If we encounter
341 inter-compilation-unit references, we also maintain a sorted
342 list of all compilation units. */
343
344 struct dwarf2_per_cu_data
345 {
346 /* The start offset and length of this compilation unit. 2**29-1
347 bytes should suffice to store the length of any compilation unit
348 - if it doesn't, GDB will fall over anyway.
349 NOTE: Unlike comp_unit_head.length, this length includes
350 initial_length_size. */
351 unsigned int offset;
352 unsigned int length : 29;
353
354 /* Flag indicating this compilation unit will be read in before
355 any of the current compilation units are processed. */
356 unsigned int queued : 1;
357
358 /* This flag will be set if we need to load absolutely all DIEs
359 for this compilation unit, instead of just the ones we think
360 are interesting. It gets set if we look for a DIE in the
361 hash table and don't find it. */
362 unsigned int load_all_dies : 1;
363
364 /* Non-zero if this CU is from .debug_types.
365 Otherwise it's from .debug_info. */
366 unsigned int from_debug_types : 1;
367
368 /* Set iff currently read in. */
369 struct dwarf2_cu *cu;
370
371 /* If full symbols for this CU have been read in, then this field
372 holds a map of DIE offsets to types. It isn't always possible
373 to reconstruct this information later, so we have to preserve
374 it. */
375 htab_t type_hash;
376
377 /* The partial symbol table associated with this compilation unit,
378 or NULL for partial units (which do not have an associated
379 symtab). */
380 struct partial_symtab *psymtab;
381 };
382
383 /* Entry in the signatured_types hash table. */
384
385 struct signatured_type
386 {
387 ULONGEST signature;
388
389 /* Offset in .debug_types of the TU (type_unit) for this type. */
390 unsigned int offset;
391
392 /* Offset in .debug_types of the type defined by this TU. */
393 unsigned int type_offset;
394
395 /* The CU(/TU) of this type. */
396 struct dwarf2_per_cu_data per_cu;
397 };
398
399 /* Struct used to pass misc. parameters to read_die_and_children, et. al.
400 which are used for both .debug_info and .debug_types dies.
401 All parameters here are unchanging for the life of the call.
402 This struct exists to abstract away the constant parameters of
403 die reading. */
404
405 struct die_reader_specs
406 {
407 /* The bfd of this objfile. */
408 bfd* abfd;
409
410 /* The CU of the DIE we are parsing. */
411 struct dwarf2_cu *cu;
412
413 /* Pointer to start of section buffer.
414 This is either the start of .debug_info or .debug_types. */
415 const gdb_byte *buffer;
416 };
417
418 /* The line number information for a compilation unit (found in the
419 .debug_line section) begins with a "statement program header",
420 which contains the following information. */
421 struct line_header
422 {
423 unsigned int total_length;
424 unsigned short version;
425 unsigned int header_length;
426 unsigned char minimum_instruction_length;
427 unsigned char default_is_stmt;
428 int line_base;
429 unsigned char line_range;
430 unsigned char opcode_base;
431
432 /* standard_opcode_lengths[i] is the number of operands for the
433 standard opcode whose value is i. This means that
434 standard_opcode_lengths[0] is unused, and the last meaningful
435 element is standard_opcode_lengths[opcode_base - 1]. */
436 unsigned char *standard_opcode_lengths;
437
438 /* The include_directories table. NOTE! These strings are not
439 allocated with xmalloc; instead, they are pointers into
440 debug_line_buffer. If you try to free them, `free' will get
441 indigestion. */
442 unsigned int num_include_dirs, include_dirs_size;
443 char **include_dirs;
444
445 /* The file_names table. NOTE! These strings are not allocated
446 with xmalloc; instead, they are pointers into debug_line_buffer.
447 Don't try to free them directly. */
448 unsigned int num_file_names, file_names_size;
449 struct file_entry
450 {
451 char *name;
452 unsigned int dir_index;
453 unsigned int mod_time;
454 unsigned int length;
455 int included_p; /* Non-zero if referenced by the Line Number Program. */
456 struct symtab *symtab; /* The associated symbol table, if any. */
457 } *file_names;
458
459 /* The start and end of the statement program following this
460 header. These point into dwarf2_per_objfile->line_buffer. */
461 gdb_byte *statement_program_start, *statement_program_end;
462 };
463
464 /* When we construct a partial symbol table entry we only
465 need this much information. */
466 struct partial_die_info
467 {
468 /* Offset of this DIE. */
469 unsigned int offset;
470
471 /* DWARF-2 tag for this DIE. */
472 ENUM_BITFIELD(dwarf_tag) tag : 16;
473
474 /* Assorted flags describing the data found in this DIE. */
475 unsigned int has_children : 1;
476 unsigned int is_external : 1;
477 unsigned int is_declaration : 1;
478 unsigned int has_type : 1;
479 unsigned int has_specification : 1;
480 unsigned int has_pc_info : 1;
481
482 /* Flag set if the SCOPE field of this structure has been
483 computed. */
484 unsigned int scope_set : 1;
485
486 /* Flag set if the DIE has a byte_size attribute. */
487 unsigned int has_byte_size : 1;
488
489 /* The name of this DIE. Normally the value of DW_AT_name, but
490 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
491 other fashion. */
492 char *name;
493
494 /* The scope to prepend to our children. This is generally
495 allocated on the comp_unit_obstack, so will disappear
496 when this compilation unit leaves the cache. */
497 char *scope;
498
499 /* The location description associated with this DIE, if any. */
500 struct dwarf_block *locdesc;
501
502 /* If HAS_PC_INFO, the PC range associated with this DIE. */
503 CORE_ADDR lowpc;
504 CORE_ADDR highpc;
505
506 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
507 DW_AT_sibling, if any. */
508 gdb_byte *sibling;
509
510 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
511 DW_AT_specification (or DW_AT_abstract_origin or
512 DW_AT_extension). */
513 unsigned int spec_offset;
514
515 /* Pointers to this DIE's parent, first child, and next sibling,
516 if any. */
517 struct partial_die_info *die_parent, *die_child, *die_sibling;
518 };
519
520 /* This data structure holds the information of an abbrev. */
521 struct abbrev_info
522 {
523 unsigned int number; /* number identifying abbrev */
524 enum dwarf_tag tag; /* dwarf tag */
525 unsigned short has_children; /* boolean */
526 unsigned short num_attrs; /* number of attributes */
527 struct attr_abbrev *attrs; /* an array of attribute descriptions */
528 struct abbrev_info *next; /* next in chain */
529 };
530
531 struct attr_abbrev
532 {
533 ENUM_BITFIELD(dwarf_attribute) name : 16;
534 ENUM_BITFIELD(dwarf_form) form : 16;
535 };
536
537 /* Attributes have a name and a value */
538 struct attribute
539 {
540 ENUM_BITFIELD(dwarf_attribute) name : 16;
541 ENUM_BITFIELD(dwarf_form) form : 15;
542
543 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
544 field should be in u.str (existing only for DW_STRING) but it is kept
545 here for better struct attribute alignment. */
546 unsigned int string_is_canonical : 1;
547
548 union
549 {
550 char *str;
551 struct dwarf_block *blk;
552 ULONGEST unsnd;
553 LONGEST snd;
554 CORE_ADDR addr;
555 struct signatured_type *signatured_type;
556 }
557 u;
558 };
559
560 /* This data structure holds a complete die structure. */
561 struct die_info
562 {
563 /* DWARF-2 tag for this DIE. */
564 ENUM_BITFIELD(dwarf_tag) tag : 16;
565
566 /* Number of attributes */
567 unsigned short num_attrs;
568
569 /* Abbrev number */
570 unsigned int abbrev;
571
572 /* Offset in .debug_info or .debug_types section. */
573 unsigned int offset;
574
575 /* The dies in a compilation unit form an n-ary tree. PARENT
576 points to this die's parent; CHILD points to the first child of
577 this node; and all the children of a given node are chained
578 together via their SIBLING fields, terminated by a die whose
579 tag is zero. */
580 struct die_info *child; /* Its first child, if any. */
581 struct die_info *sibling; /* Its next sibling, if any. */
582 struct die_info *parent; /* Its parent, if any. */
583
584 /* An array of attributes, with NUM_ATTRS elements. There may be
585 zero, but it's not common and zero-sized arrays are not
586 sufficiently portable C. */
587 struct attribute attrs[1];
588 };
589
590 struct function_range
591 {
592 const char *name;
593 CORE_ADDR lowpc, highpc;
594 int seen_line;
595 struct function_range *next;
596 };
597
598 /* Get at parts of an attribute structure */
599
600 #define DW_STRING(attr) ((attr)->u.str)
601 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
602 #define DW_UNSND(attr) ((attr)->u.unsnd)
603 #define DW_BLOCK(attr) ((attr)->u.blk)
604 #define DW_SND(attr) ((attr)->u.snd)
605 #define DW_ADDR(attr) ((attr)->u.addr)
606 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
607
608 /* Blocks are a bunch of untyped bytes. */
609 struct dwarf_block
610 {
611 unsigned int size;
612 gdb_byte *data;
613 };
614
615 #ifndef ATTR_ALLOC_CHUNK
616 #define ATTR_ALLOC_CHUNK 4
617 #endif
618
619 /* Allocate fields for structs, unions and enums in this size. */
620 #ifndef DW_FIELD_ALLOC_CHUNK
621 #define DW_FIELD_ALLOC_CHUNK 4
622 #endif
623
624 /* A zeroed version of a partial die for initialization purposes. */
625 static struct partial_die_info zeroed_partial_die;
626
627 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
628 but this would require a corresponding change in unpack_field_as_long
629 and friends. */
630 static int bits_per_byte = 8;
631
632 /* The routines that read and process dies for a C struct or C++ class
633 pass lists of data member fields and lists of member function fields
634 in an instance of a field_info structure, as defined below. */
635 struct field_info
636 {
637 /* List of data member and baseclasses fields. */
638 struct nextfield
639 {
640 struct nextfield *next;
641 int accessibility;
642 int virtuality;
643 struct field field;
644 }
645 *fields, *baseclasses;
646
647 /* Number of fields (including baseclasses). */
648 int nfields;
649
650 /* Number of baseclasses. */
651 int nbaseclasses;
652
653 /* Set if the accesibility of one of the fields is not public. */
654 int non_public_fields;
655
656 /* Member function fields array, entries are allocated in the order they
657 are encountered in the object file. */
658 struct nextfnfield
659 {
660 struct nextfnfield *next;
661 struct fn_field fnfield;
662 }
663 *fnfields;
664
665 /* Member function fieldlist array, contains name of possibly overloaded
666 member function, number of overloaded member functions and a pointer
667 to the head of the member function field chain. */
668 struct fnfieldlist
669 {
670 char *name;
671 int length;
672 struct nextfnfield *head;
673 }
674 *fnfieldlists;
675
676 /* Number of entries in the fnfieldlists array. */
677 int nfnfields;
678 };
679
680 /* One item on the queue of compilation units to read in full symbols
681 for. */
682 struct dwarf2_queue_item
683 {
684 struct dwarf2_per_cu_data *per_cu;
685 struct dwarf2_queue_item *next;
686 };
687
688 /* The current queue. */
689 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
690
691 /* Loaded secondary compilation units are kept in memory until they
692 have not been referenced for the processing of this many
693 compilation units. Set this to zero to disable caching. Cache
694 sizes of up to at least twenty will improve startup time for
695 typical inter-CU-reference binaries, at an obvious memory cost. */
696 static int dwarf2_max_cache_age = 5;
697 static void
698 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
699 struct cmd_list_element *c, const char *value)
700 {
701 fprintf_filtered (file, _("\
702 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
703 value);
704 }
705
706
707 /* Various complaints about symbol reading that don't abort the process */
708
709 static void
710 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
711 {
712 complaint (&symfile_complaints,
713 _("statement list doesn't fit in .debug_line section"));
714 }
715
716 static void
717 dwarf2_debug_line_missing_file_complaint (void)
718 {
719 complaint (&symfile_complaints,
720 _(".debug_line section has line data without a file"));
721 }
722
723 static void
724 dwarf2_debug_line_missing_end_sequence_complaint (void)
725 {
726 complaint (&symfile_complaints,
727 _(".debug_line section has line program sequence without an end"));
728 }
729
730 static void
731 dwarf2_complex_location_expr_complaint (void)
732 {
733 complaint (&symfile_complaints, _("location expression too complex"));
734 }
735
736 static void
737 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
738 int arg3)
739 {
740 complaint (&symfile_complaints,
741 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
742 arg2, arg3);
743 }
744
745 static void
746 dwarf2_macros_too_long_complaint (void)
747 {
748 complaint (&symfile_complaints,
749 _("macro info runs off end of `.debug_macinfo' section"));
750 }
751
752 static void
753 dwarf2_macro_malformed_definition_complaint (const char *arg1)
754 {
755 complaint (&symfile_complaints,
756 _("macro debug info contains a malformed macro definition:\n`%s'"),
757 arg1);
758 }
759
760 static void
761 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
762 {
763 complaint (&symfile_complaints,
764 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
765 }
766
767 /* local function prototypes */
768
769 static void dwarf2_locate_sections (bfd *, asection *, void *);
770
771 #if 0
772 static void dwarf2_build_psymtabs_easy (struct objfile *);
773 #endif
774
775 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
776 struct objfile *);
777
778 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
779 struct die_info *,
780 struct partial_symtab *);
781
782 static void dwarf2_build_psymtabs_hard (struct objfile *);
783
784 static void scan_partial_symbols (struct partial_die_info *,
785 CORE_ADDR *, CORE_ADDR *,
786 int, struct dwarf2_cu *);
787
788 static void add_partial_symbol (struct partial_die_info *,
789 struct dwarf2_cu *);
790
791 static int pdi_needs_namespace (enum dwarf_tag tag);
792
793 static void add_partial_namespace (struct partial_die_info *pdi,
794 CORE_ADDR *lowpc, CORE_ADDR *highpc,
795 int need_pc, struct dwarf2_cu *cu);
796
797 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
798 CORE_ADDR *highpc, int need_pc,
799 struct dwarf2_cu *cu);
800
801 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
802 struct dwarf2_cu *cu);
803
804 static void add_partial_subprogram (struct partial_die_info *pdi,
805 CORE_ADDR *lowpc, CORE_ADDR *highpc,
806 int need_pc, struct dwarf2_cu *cu);
807
808 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
809 gdb_byte *buffer, gdb_byte *info_ptr,
810 bfd *abfd, struct dwarf2_cu *cu);
811
812 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
813
814 static void psymtab_to_symtab_1 (struct partial_symtab *);
815
816 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
817
818 static void dwarf2_free_abbrev_table (void *);
819
820 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
821 struct dwarf2_cu *);
822
823 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
824 struct dwarf2_cu *);
825
826 static struct partial_die_info *load_partial_dies (bfd *,
827 gdb_byte *, gdb_byte *,
828 int, struct dwarf2_cu *);
829
830 static gdb_byte *read_partial_die (struct partial_die_info *,
831 struct abbrev_info *abbrev,
832 unsigned int, bfd *,
833 gdb_byte *, gdb_byte *,
834 struct dwarf2_cu *);
835
836 static struct partial_die_info *find_partial_die (unsigned int,
837 struct dwarf2_cu *);
838
839 static void fixup_partial_die (struct partial_die_info *,
840 struct dwarf2_cu *);
841
842 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
843 bfd *, gdb_byte *, struct dwarf2_cu *);
844
845 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
846 bfd *, gdb_byte *, struct dwarf2_cu *);
847
848 static unsigned int read_1_byte (bfd *, gdb_byte *);
849
850 static int read_1_signed_byte (bfd *, gdb_byte *);
851
852 static unsigned int read_2_bytes (bfd *, gdb_byte *);
853
854 static unsigned int read_4_bytes (bfd *, gdb_byte *);
855
856 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
857
858 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
859 unsigned int *);
860
861 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
862
863 static LONGEST read_checked_initial_length_and_offset
864 (bfd *, gdb_byte *, const struct comp_unit_head *,
865 unsigned int *, unsigned int *);
866
867 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
868 unsigned int *);
869
870 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
871
872 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
873
874 static char *read_string (bfd *, gdb_byte *, unsigned int *);
875
876 static char *read_indirect_string (bfd *, gdb_byte *,
877 const struct comp_unit_head *,
878 unsigned int *);
879
880 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
881
882 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
883
884 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
885
886 static void set_cu_language (unsigned int, struct dwarf2_cu *);
887
888 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
889 struct dwarf2_cu *);
890
891 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
892 unsigned int,
893 struct dwarf2_cu *);
894
895 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
896 struct dwarf2_cu *cu);
897
898 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
899
900 static struct die_info *die_specification (struct die_info *die,
901 struct dwarf2_cu **);
902
903 static void free_line_header (struct line_header *lh);
904
905 static void add_file_name (struct line_header *, char *, unsigned int,
906 unsigned int, unsigned int);
907
908 static struct line_header *(dwarf_decode_line_header
909 (unsigned int offset,
910 bfd *abfd, struct dwarf2_cu *cu));
911
912 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
913 struct dwarf2_cu *, struct partial_symtab *);
914
915 static void dwarf2_start_subfile (char *, char *, char *);
916
917 static struct symbol *new_symbol (struct die_info *, struct type *,
918 struct dwarf2_cu *);
919
920 static void dwarf2_const_value (struct attribute *, struct symbol *,
921 struct dwarf2_cu *);
922
923 static void dwarf2_const_value_data (struct attribute *attr,
924 struct symbol *sym,
925 int bits);
926
927 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
928
929 static int need_gnat_info (struct dwarf2_cu *);
930
931 static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
932
933 static void set_descriptive_type (struct type *, struct die_info *,
934 struct dwarf2_cu *);
935
936 static struct type *die_containing_type (struct die_info *,
937 struct dwarf2_cu *);
938
939 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
940
941 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
942
943 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
944
945 static char *typename_concat (struct obstack *,
946 const char *prefix,
947 const char *suffix,
948 struct dwarf2_cu *);
949
950 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
951
952 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
953
954 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
955
956 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
957
958 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
959 struct dwarf2_cu *, struct partial_symtab *);
960
961 static int dwarf2_get_pc_bounds (struct die_info *,
962 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
963 struct partial_symtab *);
964
965 static void get_scope_pc_bounds (struct die_info *,
966 CORE_ADDR *, CORE_ADDR *,
967 struct dwarf2_cu *);
968
969 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
970 CORE_ADDR, struct dwarf2_cu *);
971
972 static void dwarf2_add_field (struct field_info *, struct die_info *,
973 struct dwarf2_cu *);
974
975 static void dwarf2_attach_fields_to_type (struct field_info *,
976 struct type *, struct dwarf2_cu *);
977
978 static void dwarf2_add_member_fn (struct field_info *,
979 struct die_info *, struct type *,
980 struct dwarf2_cu *);
981
982 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
983 struct type *, struct dwarf2_cu *);
984
985 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
986
987 static const char *determine_class_name (struct die_info *die,
988 struct dwarf2_cu *cu);
989
990 static void read_common_block (struct die_info *, struct dwarf2_cu *);
991
992 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
993
994 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
995
996 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
997
998 static const char *namespace_name (struct die_info *die,
999 int *is_anonymous, struct dwarf2_cu *);
1000
1001 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1002
1003 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1004
1005 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1006 struct dwarf2_cu *);
1007
1008 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1009
1010 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1011 gdb_byte *info_ptr,
1012 gdb_byte **new_info_ptr,
1013 struct die_info *parent);
1014
1015 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1016 gdb_byte *info_ptr,
1017 gdb_byte **new_info_ptr,
1018 struct die_info *parent);
1019
1020 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1021 gdb_byte *info_ptr,
1022 gdb_byte **new_info_ptr,
1023 struct die_info *parent);
1024
1025 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1026 struct die_info **, gdb_byte *,
1027 int *);
1028
1029 static void process_die (struct die_info *, struct dwarf2_cu *);
1030
1031 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
1032
1033 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1034 struct obstack *);
1035
1036 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1037
1038 static struct die_info *dwarf2_extension (struct die_info *die,
1039 struct dwarf2_cu **);
1040
1041 static char *dwarf_tag_name (unsigned int);
1042
1043 static char *dwarf_attr_name (unsigned int);
1044
1045 static char *dwarf_form_name (unsigned int);
1046
1047 static char *dwarf_stack_op_name (unsigned int);
1048
1049 static char *dwarf_bool_name (unsigned int);
1050
1051 static char *dwarf_type_encoding_name (unsigned int);
1052
1053 #if 0
1054 static char *dwarf_cfi_name (unsigned int);
1055 #endif
1056
1057 static struct die_info *sibling_die (struct die_info *);
1058
1059 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1060
1061 static void dump_die_for_error (struct die_info *);
1062
1063 static void dump_die_1 (struct ui_file *, int level, int max_level,
1064 struct die_info *);
1065
1066 /*static*/ void dump_die (struct die_info *, int max_level);
1067
1068 static void store_in_ref_table (struct die_info *,
1069 struct dwarf2_cu *);
1070
1071 static int is_ref_attr (struct attribute *);
1072
1073 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1074
1075 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1076
1077 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1078 struct attribute *,
1079 struct dwarf2_cu **);
1080
1081 static struct die_info *follow_die_ref (struct die_info *,
1082 struct attribute *,
1083 struct dwarf2_cu **);
1084
1085 static struct die_info *follow_die_sig (struct die_info *,
1086 struct attribute *,
1087 struct dwarf2_cu **);
1088
1089 static void read_signatured_type_at_offset (struct objfile *objfile,
1090 unsigned int offset);
1091
1092 static void read_signatured_type (struct objfile *,
1093 struct signatured_type *type_sig);
1094
1095 /* memory allocation interface */
1096
1097 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1098
1099 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1100
1101 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1102
1103 static void initialize_cu_func_list (struct dwarf2_cu *);
1104
1105 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1106 struct dwarf2_cu *);
1107
1108 static void dwarf_decode_macros (struct line_header *, unsigned int,
1109 char *, bfd *, struct dwarf2_cu *);
1110
1111 static int attr_form_is_block (struct attribute *);
1112
1113 static int attr_form_is_section_offset (struct attribute *);
1114
1115 static int attr_form_is_constant (struct attribute *);
1116
1117 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1118 struct symbol *sym,
1119 struct dwarf2_cu *cu);
1120
1121 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1122 struct abbrev_info *abbrev,
1123 struct dwarf2_cu *cu);
1124
1125 static void free_stack_comp_unit (void *);
1126
1127 static hashval_t partial_die_hash (const void *item);
1128
1129 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1130
1131 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1132 (unsigned int offset, struct objfile *objfile);
1133
1134 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1135 (unsigned int offset, struct objfile *objfile);
1136
1137 static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1138
1139 static void free_one_comp_unit (void *);
1140
1141 static void free_cached_comp_units (void *);
1142
1143 static void age_cached_comp_units (void);
1144
1145 static void free_one_cached_comp_unit (void *);
1146
1147 static struct type *set_die_type (struct die_info *, struct type *,
1148 struct dwarf2_cu *);
1149
1150 static void create_all_comp_units (struct objfile *);
1151
1152 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1153 struct objfile *);
1154
1155 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1156
1157 static void dwarf2_add_dependence (struct dwarf2_cu *,
1158 struct dwarf2_per_cu_data *);
1159
1160 static void dwarf2_mark (struct dwarf2_cu *);
1161
1162 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1163
1164 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1165
1166 /* Try to locate the sections we need for DWARF 2 debugging
1167 information and return true if we have enough to do something. */
1168
1169 int
1170 dwarf2_has_info (struct objfile *objfile)
1171 {
1172 struct dwarf2_per_objfile *data;
1173
1174 /* Initialize per-objfile state. */
1175 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1176 memset (data, 0, sizeof (*data));
1177 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1178 dwarf2_per_objfile = data;
1179
1180 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1181 return (data->info.asection != NULL && data->abbrev.asection != NULL);
1182 }
1183
1184 /* When loading sections, we can either look for ".<name>", or for
1185 * ".z<name>", which indicates a compressed section. */
1186
1187 static int
1188 section_is_p (const char *section_name, const char *name)
1189 {
1190 return (section_name[0] == '.'
1191 && (strcmp (section_name + 1, name) == 0
1192 || (section_name[1] == 'z'
1193 && strcmp (section_name + 2, name) == 0)));
1194 }
1195
1196 /* This function is mapped across the sections and remembers the
1197 offset and size of each of the debugging sections we are interested
1198 in. */
1199
1200 static void
1201 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1202 {
1203 if (section_is_p (sectp->name, INFO_SECTION))
1204 {
1205 dwarf2_per_objfile->info.asection = sectp;
1206 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1207 }
1208 else if (section_is_p (sectp->name, ABBREV_SECTION))
1209 {
1210 dwarf2_per_objfile->abbrev.asection = sectp;
1211 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1212 }
1213 else if (section_is_p (sectp->name, LINE_SECTION))
1214 {
1215 dwarf2_per_objfile->line.asection = sectp;
1216 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1217 }
1218 else if (section_is_p (sectp->name, PUBNAMES_SECTION))
1219 {
1220 dwarf2_per_objfile->pubnames.asection = sectp;
1221 dwarf2_per_objfile->pubnames.size = bfd_get_section_size (sectp);
1222 }
1223 else if (section_is_p (sectp->name, ARANGES_SECTION))
1224 {
1225 dwarf2_per_objfile->aranges.asection = sectp;
1226 dwarf2_per_objfile->aranges.size = bfd_get_section_size (sectp);
1227 }
1228 else if (section_is_p (sectp->name, LOC_SECTION))
1229 {
1230 dwarf2_per_objfile->loc.asection = sectp;
1231 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1232 }
1233 else if (section_is_p (sectp->name, MACINFO_SECTION))
1234 {
1235 dwarf2_per_objfile->macinfo.asection = sectp;
1236 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1237 }
1238 else if (section_is_p (sectp->name, STR_SECTION))
1239 {
1240 dwarf2_per_objfile->str.asection = sectp;
1241 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1242 }
1243 else if (section_is_p (sectp->name, FRAME_SECTION))
1244 {
1245 dwarf2_per_objfile->frame.asection = sectp;
1246 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1247 }
1248 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1249 {
1250 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1251 if (aflag & SEC_HAS_CONTENTS)
1252 {
1253 dwarf2_per_objfile->eh_frame.asection = sectp;
1254 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1255 }
1256 }
1257 else if (section_is_p (sectp->name, RANGES_SECTION))
1258 {
1259 dwarf2_per_objfile->ranges.asection = sectp;
1260 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1261 }
1262 else if (section_is_p (sectp->name, TYPES_SECTION))
1263 {
1264 dwarf2_per_objfile->types.asection = sectp;
1265 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1266 }
1267
1268 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1269 && bfd_section_vma (abfd, sectp) == 0)
1270 dwarf2_per_objfile->has_section_at_zero = 1;
1271 }
1272
1273 /* Decompress a section that was compressed using zlib. Store the
1274 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1275
1276 static void
1277 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1278 gdb_byte **outbuf, bfd_size_type *outsize)
1279 {
1280 bfd *abfd = objfile->obfd;
1281 #ifndef HAVE_ZLIB_H
1282 error (_("Support for zlib-compressed DWARF data (from '%s') "
1283 "is disabled in this copy of GDB"),
1284 bfd_get_filename (abfd));
1285 #else
1286 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1287 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1288 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1289 bfd_size_type uncompressed_size;
1290 gdb_byte *uncompressed_buffer;
1291 z_stream strm;
1292 int rc;
1293 int header_size = 12;
1294
1295 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1296 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1297 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1298 bfd_get_filename (abfd));
1299
1300 /* Read the zlib header. In this case, it should be "ZLIB" followed
1301 by the uncompressed section size, 8 bytes in big-endian order. */
1302 if (compressed_size < header_size
1303 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1304 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1305 bfd_get_filename (abfd));
1306 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1307 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1308 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1309 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1310 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1311 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1312 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1313 uncompressed_size += compressed_buffer[11];
1314
1315 /* It is possible the section consists of several compressed
1316 buffers concatenated together, so we uncompress in a loop. */
1317 strm.zalloc = NULL;
1318 strm.zfree = NULL;
1319 strm.opaque = NULL;
1320 strm.avail_in = compressed_size - header_size;
1321 strm.next_in = (Bytef*) compressed_buffer + header_size;
1322 strm.avail_out = uncompressed_size;
1323 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1324 uncompressed_size);
1325 rc = inflateInit (&strm);
1326 while (strm.avail_in > 0)
1327 {
1328 if (rc != Z_OK)
1329 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1330 bfd_get_filename (abfd), rc);
1331 strm.next_out = ((Bytef*) uncompressed_buffer
1332 + (uncompressed_size - strm.avail_out));
1333 rc = inflate (&strm, Z_FINISH);
1334 if (rc != Z_STREAM_END)
1335 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1336 bfd_get_filename (abfd), rc);
1337 rc = inflateReset (&strm);
1338 }
1339 rc = inflateEnd (&strm);
1340 if (rc != Z_OK
1341 || strm.avail_out != 0)
1342 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1343 bfd_get_filename (abfd), rc);
1344
1345 do_cleanups (cleanup);
1346 *outbuf = uncompressed_buffer;
1347 *outsize = uncompressed_size;
1348 #endif
1349 }
1350
1351 /* Read the contents of the section SECTP from object file specified by
1352 OBJFILE, store info about the section into INFO.
1353 If the section is compressed, uncompress it before returning. */
1354
1355 static void
1356 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1357 {
1358 bfd *abfd = objfile->obfd;
1359 asection *sectp = info->asection;
1360 gdb_byte *buf, *retbuf;
1361 unsigned char header[4];
1362
1363 info->buffer = NULL;
1364 info->was_mmapped = 0;
1365
1366 if (info->asection == NULL || info->size == 0)
1367 return;
1368
1369 /* Check if the file has a 4-byte header indicating compression. */
1370 if (info->size > sizeof (header)
1371 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1372 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1373 {
1374 /* Upon decompression, update the buffer and its size. */
1375 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1376 {
1377 zlib_decompress_section (objfile, sectp, &info->buffer,
1378 &info->size);
1379 return;
1380 }
1381 }
1382
1383 #ifdef HAVE_MMAP
1384 if (pagesize == 0)
1385 pagesize = getpagesize ();
1386
1387 /* Only try to mmap sections which are large enough: we don't want to
1388 waste space due to fragmentation. Also, only try mmap for sections
1389 without relocations. */
1390
1391 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1392 {
1393 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1394 size_t map_length = info->size + sectp->filepos - pg_offset;
1395 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1396 MAP_PRIVATE, pg_offset);
1397
1398 if (retbuf != MAP_FAILED)
1399 {
1400 info->was_mmapped = 1;
1401 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1402 return;
1403 }
1404 }
1405 #endif
1406
1407 /* If we get here, we are a normal, not-compressed section. */
1408 info->buffer = buf
1409 = obstack_alloc (&objfile->objfile_obstack, info->size);
1410
1411 /* When debugging .o files, we may need to apply relocations; see
1412 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1413 We never compress sections in .o files, so we only need to
1414 try this when the section is not compressed. */
1415 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
1416 if (retbuf != NULL)
1417 {
1418 info->buffer = retbuf;
1419 return;
1420 }
1421
1422 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1423 || bfd_bread (buf, info->size, abfd) != info->size)
1424 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1425 bfd_get_filename (abfd));
1426 }
1427
1428 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1429 SECTION_NAME. */
1430
1431 void
1432 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1433 asection **sectp, gdb_byte **bufp,
1434 bfd_size_type *sizep)
1435 {
1436 struct dwarf2_per_objfile *data
1437 = objfile_data (objfile, dwarf2_objfile_data_key);
1438 struct dwarf2_section_info *info;
1439 if (section_is_p (section_name, EH_FRAME_SECTION))
1440 info = &data->eh_frame;
1441 else if (section_is_p (section_name, FRAME_SECTION))
1442 info = &data->frame;
1443 else
1444 gdb_assert (0);
1445
1446 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1447 /* We haven't read this section in yet. Do it now. */
1448 dwarf2_read_section (objfile, info);
1449
1450 *sectp = info->asection;
1451 *bufp = info->buffer;
1452 *sizep = info->size;
1453 }
1454
1455 /* Build a partial symbol table. */
1456
1457 void
1458 dwarf2_build_psymtabs (struct objfile *objfile)
1459 {
1460 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
1461 dwarf2_read_section (objfile, &dwarf2_per_objfile->abbrev);
1462 dwarf2_read_section (objfile, &dwarf2_per_objfile->line);
1463 dwarf2_read_section (objfile, &dwarf2_per_objfile->str);
1464 dwarf2_read_section (objfile, &dwarf2_per_objfile->macinfo);
1465 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
1466 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
1467 dwarf2_read_section (objfile, &dwarf2_per_objfile->loc);
1468 dwarf2_read_section (objfile, &dwarf2_per_objfile->eh_frame);
1469 dwarf2_read_section (objfile, &dwarf2_per_objfile->frame);
1470
1471 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
1472 {
1473 init_psymbol_list (objfile, 1024);
1474 }
1475
1476 #if 0
1477 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1478 {
1479 /* Things are significantly easier if we have .debug_aranges and
1480 .debug_pubnames sections */
1481
1482 dwarf2_build_psymtabs_easy (objfile);
1483 }
1484 else
1485 #endif
1486 /* only test this case for now */
1487 {
1488 /* In this case we have to work a bit harder */
1489 dwarf2_build_psymtabs_hard (objfile);
1490 }
1491 }
1492
1493 #if 0
1494 /* Build the partial symbol table from the information in the
1495 .debug_pubnames and .debug_aranges sections. */
1496
1497 static void
1498 dwarf2_build_psymtabs_easy (struct objfile *objfile)
1499 {
1500 bfd *abfd = objfile->obfd;
1501 char *aranges_buffer, *pubnames_buffer;
1502 char *aranges_ptr, *pubnames_ptr;
1503 unsigned int entry_length, version, info_offset, info_size;
1504
1505 pubnames_buffer = dwarf2_read_section (objfile,
1506 dwarf_pubnames_section);
1507 pubnames_ptr = pubnames_buffer;
1508 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames.size)
1509 {
1510 unsigned int bytes_read;
1511
1512 entry_length = read_initial_length (abfd, pubnames_ptr, &bytes_read);
1513 pubnames_ptr += bytes_read;
1514 version = read_1_byte (abfd, pubnames_ptr);
1515 pubnames_ptr += 1;
1516 info_offset = read_4_bytes (abfd, pubnames_ptr);
1517 pubnames_ptr += 4;
1518 info_size = read_4_bytes (abfd, pubnames_ptr);
1519 pubnames_ptr += 4;
1520 }
1521
1522 aranges_buffer = dwarf2_read_section (objfile,
1523 dwarf_aranges_section);
1524
1525 }
1526 #endif
1527
1528 /* Return TRUE if OFFSET is within CU_HEADER. */
1529
1530 static inline int
1531 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
1532 {
1533 unsigned int bottom = cu_header->offset;
1534 unsigned int top = (cu_header->offset
1535 + cu_header->length
1536 + cu_header->initial_length_size);
1537 return (offset >= bottom && offset < top);
1538 }
1539
1540 /* Read in the comp unit header information from the debug_info at info_ptr.
1541 NOTE: This leaves members offset, first_die_offset to be filled in
1542 by the caller. */
1543
1544 static gdb_byte *
1545 read_comp_unit_head (struct comp_unit_head *cu_header,
1546 gdb_byte *info_ptr, bfd *abfd)
1547 {
1548 int signed_addr;
1549 unsigned int bytes_read;
1550
1551 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
1552 cu_header->initial_length_size = bytes_read;
1553 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
1554 info_ptr += bytes_read;
1555 cu_header->version = read_2_bytes (abfd, info_ptr);
1556 info_ptr += 2;
1557 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1558 &bytes_read);
1559 info_ptr += bytes_read;
1560 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1561 info_ptr += 1;
1562 signed_addr = bfd_get_sign_extend_vma (abfd);
1563 if (signed_addr < 0)
1564 internal_error (__FILE__, __LINE__,
1565 _("read_comp_unit_head: dwarf from non elf file"));
1566 cu_header->signed_addr_p = signed_addr;
1567
1568 return info_ptr;
1569 }
1570
1571 static gdb_byte *
1572 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1573 gdb_byte *buffer, unsigned int buffer_size,
1574 bfd *abfd)
1575 {
1576 gdb_byte *beg_of_comp_unit = info_ptr;
1577
1578 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1579
1580 if (header->version != 2 && header->version != 3)
1581 error (_("Dwarf Error: wrong version in compilation unit header "
1582 "(is %d, should be %d) [in module %s]"), header->version,
1583 2, bfd_get_filename (abfd));
1584
1585 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
1586 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1587 "(offset 0x%lx + 6) [in module %s]"),
1588 (long) header->abbrev_offset,
1589 (long) (beg_of_comp_unit - buffer),
1590 bfd_get_filename (abfd));
1591
1592 if (beg_of_comp_unit + header->length + header->initial_length_size
1593 > buffer + buffer_size)
1594 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1595 "(offset 0x%lx + 0) [in module %s]"),
1596 (long) header->length,
1597 (long) (beg_of_comp_unit - buffer),
1598 bfd_get_filename (abfd));
1599
1600 return info_ptr;
1601 }
1602
1603 /* Read in the types comp unit header information from .debug_types entry at
1604 types_ptr. The result is a pointer to one past the end of the header. */
1605
1606 static gdb_byte *
1607 read_type_comp_unit_head (struct comp_unit_head *cu_header,
1608 ULONGEST *signature,
1609 gdb_byte *types_ptr, bfd *abfd)
1610 {
1611 unsigned int bytes_read;
1612 gdb_byte *initial_types_ptr = types_ptr;
1613
1614 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
1615
1616 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
1617
1618 *signature = read_8_bytes (abfd, types_ptr);
1619 types_ptr += 8;
1620 types_ptr += cu_header->offset_size;
1621 cu_header->first_die_offset = types_ptr - initial_types_ptr;
1622
1623 return types_ptr;
1624 }
1625
1626 /* Allocate a new partial symtab for file named NAME and mark this new
1627 partial symtab as being an include of PST. */
1628
1629 static void
1630 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1631 struct objfile *objfile)
1632 {
1633 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1634
1635 subpst->section_offsets = pst->section_offsets;
1636 subpst->textlow = 0;
1637 subpst->texthigh = 0;
1638
1639 subpst->dependencies = (struct partial_symtab **)
1640 obstack_alloc (&objfile->objfile_obstack,
1641 sizeof (struct partial_symtab *));
1642 subpst->dependencies[0] = pst;
1643 subpst->number_of_dependencies = 1;
1644
1645 subpst->globals_offset = 0;
1646 subpst->n_global_syms = 0;
1647 subpst->statics_offset = 0;
1648 subpst->n_static_syms = 0;
1649 subpst->symtab = NULL;
1650 subpst->read_symtab = pst->read_symtab;
1651 subpst->readin = 0;
1652
1653 /* No private part is necessary for include psymtabs. This property
1654 can be used to differentiate between such include psymtabs and
1655 the regular ones. */
1656 subpst->read_symtab_private = NULL;
1657 }
1658
1659 /* Read the Line Number Program data and extract the list of files
1660 included by the source file represented by PST. Build an include
1661 partial symtab for each of these included files. */
1662
1663 static void
1664 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1665 struct die_info *die,
1666 struct partial_symtab *pst)
1667 {
1668 struct objfile *objfile = cu->objfile;
1669 bfd *abfd = objfile->obfd;
1670 struct line_header *lh = NULL;
1671 struct attribute *attr;
1672
1673 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
1674 if (attr)
1675 {
1676 unsigned int line_offset = DW_UNSND (attr);
1677 lh = dwarf_decode_line_header (line_offset, abfd, cu);
1678 }
1679 if (lh == NULL)
1680 return; /* No linetable, so no includes. */
1681
1682 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1683
1684 free_line_header (lh);
1685 }
1686
1687 static hashval_t
1688 hash_type_signature (const void *item)
1689 {
1690 const struct signatured_type *type_sig = item;
1691 /* This drops the top 32 bits of the signature, but is ok for a hash. */
1692 return type_sig->signature;
1693 }
1694
1695 static int
1696 eq_type_signature (const void *item_lhs, const void *item_rhs)
1697 {
1698 const struct signatured_type *lhs = item_lhs;
1699 const struct signatured_type *rhs = item_rhs;
1700 return lhs->signature == rhs->signature;
1701 }
1702
1703 /* Create the hash table of all entries in the .debug_types section.
1704 The result is zero if there is an error (e.g. missing .debug_types section),
1705 otherwise non-zero. */
1706
1707 static int
1708 create_debug_types_hash_table (struct objfile *objfile)
1709 {
1710 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer;
1711 htab_t types_htab;
1712
1713 if (info_ptr == NULL)
1714 {
1715 dwarf2_per_objfile->signatured_types = NULL;
1716 return 0;
1717 }
1718
1719 types_htab = htab_create_alloc_ex (41,
1720 hash_type_signature,
1721 eq_type_signature,
1722 NULL,
1723 &objfile->objfile_obstack,
1724 hashtab_obstack_allocate,
1725 dummy_obstack_deallocate);
1726
1727 if (dwarf2_die_debug)
1728 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
1729
1730 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1731 {
1732 unsigned int offset;
1733 unsigned int offset_size;
1734 unsigned int type_offset;
1735 unsigned int length, initial_length_size;
1736 unsigned short version;
1737 ULONGEST signature;
1738 struct signatured_type *type_sig;
1739 void **slot;
1740 gdb_byte *ptr = info_ptr;
1741
1742 offset = ptr - dwarf2_per_objfile->types.buffer;
1743
1744 /* We need to read the type's signature in order to build the hash
1745 table, but we don't need to read anything else just yet. */
1746
1747 /* Sanity check to ensure entire cu is present. */
1748 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
1749 if (ptr + length + initial_length_size
1750 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1751 {
1752 complaint (&symfile_complaints,
1753 _("debug type entry runs off end of `.debug_types' section, ignored"));
1754 break;
1755 }
1756
1757 offset_size = initial_length_size == 4 ? 4 : 8;
1758 ptr += initial_length_size;
1759 version = bfd_get_16 (objfile->obfd, ptr);
1760 ptr += 2;
1761 ptr += offset_size; /* abbrev offset */
1762 ptr += 1; /* address size */
1763 signature = bfd_get_64 (objfile->obfd, ptr);
1764 ptr += 8;
1765 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
1766
1767 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
1768 memset (type_sig, 0, sizeof (*type_sig));
1769 type_sig->signature = signature;
1770 type_sig->offset = offset;
1771 type_sig->type_offset = type_offset;
1772
1773 slot = htab_find_slot (types_htab, type_sig, INSERT);
1774 gdb_assert (slot != NULL);
1775 *slot = type_sig;
1776
1777 if (dwarf2_die_debug)
1778 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
1779 offset, phex (signature, sizeof (signature)));
1780
1781 info_ptr = info_ptr + initial_length_size + length;
1782 }
1783
1784 dwarf2_per_objfile->signatured_types = types_htab;
1785
1786 return 1;
1787 }
1788
1789 /* Lookup a signature based type.
1790 Returns NULL if SIG is not present in the table. */
1791
1792 static struct signatured_type *
1793 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
1794 {
1795 struct signatured_type find_entry, *entry;
1796
1797 if (dwarf2_per_objfile->signatured_types == NULL)
1798 {
1799 complaint (&symfile_complaints,
1800 _("missing `.debug_types' section for DW_FORM_sig8 die"));
1801 return 0;
1802 }
1803
1804 find_entry.signature = sig;
1805 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
1806 return entry;
1807 }
1808
1809 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
1810
1811 static void
1812 init_cu_die_reader (struct die_reader_specs *reader,
1813 struct dwarf2_cu *cu)
1814 {
1815 reader->abfd = cu->objfile->obfd;
1816 reader->cu = cu;
1817 if (cu->per_cu->from_debug_types)
1818 reader->buffer = dwarf2_per_objfile->types.buffer;
1819 else
1820 reader->buffer = dwarf2_per_objfile->info.buffer;
1821 }
1822
1823 /* Find the base address of the compilation unit for range lists and
1824 location lists. It will normally be specified by DW_AT_low_pc.
1825 In DWARF-3 draft 4, the base address could be overridden by
1826 DW_AT_entry_pc. It's been removed, but GCC still uses this for
1827 compilation units with discontinuous ranges. */
1828
1829 static void
1830 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
1831 {
1832 struct attribute *attr;
1833
1834 cu->base_known = 0;
1835 cu->base_address = 0;
1836
1837 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
1838 if (attr)
1839 {
1840 cu->base_address = DW_ADDR (attr);
1841 cu->base_known = 1;
1842 }
1843 else
1844 {
1845 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
1846 if (attr)
1847 {
1848 cu->base_address = DW_ADDR (attr);
1849 cu->base_known = 1;
1850 }
1851 }
1852 }
1853
1854 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
1855 to combine the common parts.
1856 Process a compilation unit for a psymtab.
1857 BUFFER is a pointer to the beginning of the dwarf section buffer,
1858 either .debug_info or debug_types.
1859 INFO_PTR is a pointer to the start of the CU.
1860 Returns a pointer to the next CU. */
1861
1862 static gdb_byte *
1863 process_psymtab_comp_unit (struct objfile *objfile,
1864 struct dwarf2_per_cu_data *this_cu,
1865 gdb_byte *buffer, gdb_byte *info_ptr,
1866 unsigned int buffer_size)
1867 {
1868 bfd *abfd = objfile->obfd;
1869 gdb_byte *beg_of_comp_unit = info_ptr;
1870 struct die_info *comp_unit_die;
1871 struct partial_symtab *pst;
1872 CORE_ADDR baseaddr;
1873 struct cleanup *back_to_inner;
1874 struct dwarf2_cu cu;
1875 unsigned int bytes_read;
1876 int has_children, has_pc_info;
1877 struct attribute *attr;
1878 const char *name;
1879 CORE_ADDR best_lowpc = 0, best_highpc = 0;
1880 struct die_reader_specs reader_specs;
1881
1882 memset (&cu, 0, sizeof (cu));
1883 cu.objfile = objfile;
1884 obstack_init (&cu.comp_unit_obstack);
1885
1886 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1887
1888 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
1889 buffer, buffer_size,
1890 abfd);
1891
1892 /* Complete the cu_header. */
1893 cu.header.offset = beg_of_comp_unit - buffer;
1894 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
1895
1896 cu.list_in_scope = &file_symbols;
1897
1898 /* If this compilation unit was already read in, free the
1899 cached copy in order to read it in again. This is
1900 necessary because we skipped some symbols when we first
1901 read in the compilation unit (see load_partial_dies).
1902 This problem could be avoided, but the benefit is
1903 unclear. */
1904 if (this_cu->cu != NULL)
1905 free_one_cached_comp_unit (this_cu->cu);
1906
1907 /* Note that this is a pointer to our stack frame, being
1908 added to a global data structure. It will be cleaned up
1909 in free_stack_comp_unit when we finish with this
1910 compilation unit. */
1911 this_cu->cu = &cu;
1912 cu.per_cu = this_cu;
1913
1914 /* Read the abbrevs for this compilation unit into a table. */
1915 dwarf2_read_abbrevs (abfd, &cu);
1916 make_cleanup (dwarf2_free_abbrev_table, &cu);
1917
1918 /* Read the compilation unit die. */
1919 if (this_cu->from_debug_types)
1920 info_ptr += 8 /*signature*/ + cu.header.offset_size;
1921 init_cu_die_reader (&reader_specs, &cu);
1922 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
1923 &has_children);
1924
1925 if (this_cu->from_debug_types)
1926 {
1927 /* offset,length haven't been set yet for type units. */
1928 this_cu->offset = cu.header.offset;
1929 this_cu->length = cu.header.length + cu.header.initial_length_size;
1930 }
1931 else if (comp_unit_die->tag == DW_TAG_partial_unit)
1932 {
1933 info_ptr = (beg_of_comp_unit + cu.header.length
1934 + cu.header.initial_length_size);
1935 do_cleanups (back_to_inner);
1936 return info_ptr;
1937 }
1938
1939 /* Set the language we're debugging. */
1940 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
1941 if (attr)
1942 set_cu_language (DW_UNSND (attr), &cu);
1943 else
1944 set_cu_language (language_minimal, &cu);
1945
1946 /* Allocate a new partial symbol table structure. */
1947 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
1948 pst = start_psymtab_common (objfile, objfile->section_offsets,
1949 (attr != NULL) ? DW_STRING (attr) : "",
1950 /* TEXTLOW and TEXTHIGH are set below. */
1951 0,
1952 objfile->global_psymbols.next,
1953 objfile->static_psymbols.next);
1954
1955 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
1956 if (attr != NULL)
1957 pst->dirname = DW_STRING (attr);
1958
1959 pst->read_symtab_private = (char *) this_cu;
1960
1961 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1962
1963 /* Store the function that reads in the rest of the symbol table */
1964 pst->read_symtab = dwarf2_psymtab_to_symtab;
1965
1966 this_cu->psymtab = pst;
1967
1968 dwarf2_find_base_address (comp_unit_die, &cu);
1969
1970 /* Possibly set the default values of LOWPC and HIGHPC from
1971 `DW_AT_ranges'. */
1972 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
1973 &best_highpc, &cu, pst);
1974 if (has_pc_info == 1 && best_lowpc < best_highpc)
1975 /* Store the contiguous range if it is not empty; it can be empty for
1976 CUs with no code. */
1977 addrmap_set_empty (objfile->psymtabs_addrmap,
1978 best_lowpc + baseaddr,
1979 best_highpc + baseaddr - 1, pst);
1980
1981 /* Check if comp unit has_children.
1982 If so, read the rest of the partial symbols from this comp unit.
1983 If not, there's no more debug_info for this comp unit. */
1984 if (has_children)
1985 {
1986 struct partial_die_info *first_die;
1987 CORE_ADDR lowpc, highpc;
1988
1989 lowpc = ((CORE_ADDR) -1);
1990 highpc = ((CORE_ADDR) 0);
1991
1992 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
1993
1994 scan_partial_symbols (first_die, &lowpc, &highpc,
1995 ! has_pc_info, &cu);
1996
1997 /* If we didn't find a lowpc, set it to highpc to avoid
1998 complaints from `maint check'. */
1999 if (lowpc == ((CORE_ADDR) -1))
2000 lowpc = highpc;
2001
2002 /* If the compilation unit didn't have an explicit address range,
2003 then use the information extracted from its child dies. */
2004 if (! has_pc_info)
2005 {
2006 best_lowpc = lowpc;
2007 best_highpc = highpc;
2008 }
2009 }
2010 pst->textlow = best_lowpc + baseaddr;
2011 pst->texthigh = best_highpc + baseaddr;
2012
2013 pst->n_global_syms = objfile->global_psymbols.next -
2014 (objfile->global_psymbols.list + pst->globals_offset);
2015 pst->n_static_syms = objfile->static_psymbols.next -
2016 (objfile->static_psymbols.list + pst->statics_offset);
2017 sort_pst_symbols (pst);
2018
2019 info_ptr = (beg_of_comp_unit + cu.header.length
2020 + cu.header.initial_length_size);
2021
2022 if (this_cu->from_debug_types)
2023 {
2024 /* It's not clear we want to do anything with stmt lists here.
2025 Waiting to see what gcc ultimately does. */
2026 }
2027 else
2028 {
2029 /* Get the list of files included in the current compilation unit,
2030 and build a psymtab for each of them. */
2031 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
2032 }
2033
2034 do_cleanups (back_to_inner);
2035
2036 return info_ptr;
2037 }
2038
2039 /* Traversal function for htab_traverse_noresize.
2040 Process one .debug_types comp-unit. */
2041
2042 static int
2043 process_type_comp_unit (void **slot, void *info)
2044 {
2045 struct signatured_type *entry = (struct signatured_type *) *slot;
2046 struct objfile *objfile = (struct objfile *) info;
2047 struct dwarf2_per_cu_data *this_cu;
2048
2049 this_cu = &entry->per_cu;
2050 this_cu->from_debug_types = 1;
2051
2052 process_psymtab_comp_unit (objfile, this_cu,
2053 dwarf2_per_objfile->types.buffer,
2054 dwarf2_per_objfile->types.buffer + entry->offset,
2055 dwarf2_per_objfile->types.size);
2056
2057 return 1;
2058 }
2059
2060 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
2061 Build partial symbol tables for the .debug_types comp-units. */
2062
2063 static void
2064 build_type_psymtabs (struct objfile *objfile)
2065 {
2066 if (! create_debug_types_hash_table (objfile))
2067 return;
2068
2069 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
2070 process_type_comp_unit, objfile);
2071 }
2072
2073 /* Build the partial symbol table by doing a quick pass through the
2074 .debug_info and .debug_abbrev sections. */
2075
2076 static void
2077 dwarf2_build_psymtabs_hard (struct objfile *objfile)
2078 {
2079 /* Instead of reading this into a big buffer, we should probably use
2080 mmap() on architectures that support it. (FIXME) */
2081 bfd *abfd = objfile->obfd;
2082 gdb_byte *info_ptr;
2083 struct cleanup *back_to;
2084
2085 info_ptr = dwarf2_per_objfile->info.buffer;
2086
2087 /* Any cached compilation units will be linked by the per-objfile
2088 read_in_chain. Make sure to free them when we're done. */
2089 back_to = make_cleanup (free_cached_comp_units, NULL);
2090
2091 build_type_psymtabs (objfile);
2092
2093 create_all_comp_units (objfile);
2094
2095 objfile->psymtabs_addrmap =
2096 addrmap_create_mutable (&objfile->objfile_obstack);
2097
2098 /* Since the objects we're extracting from .debug_info vary in
2099 length, only the individual functions to extract them (like
2100 read_comp_unit_head and load_partial_die) can really know whether
2101 the buffer is large enough to hold another complete object.
2102
2103 At the moment, they don't actually check that. If .debug_info
2104 holds just one extra byte after the last compilation unit's dies,
2105 then read_comp_unit_head will happily read off the end of the
2106 buffer. read_partial_die is similarly casual. Those functions
2107 should be fixed.
2108
2109 For this loop condition, simply checking whether there's any data
2110 left at all should be sufficient. */
2111
2112 while (info_ptr < (dwarf2_per_objfile->info.buffer
2113 + dwarf2_per_objfile->info.size))
2114 {
2115 struct dwarf2_per_cu_data *this_cu;
2116
2117 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
2118 objfile);
2119
2120 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
2121 dwarf2_per_objfile->info.buffer,
2122 info_ptr,
2123 dwarf2_per_objfile->info.size);
2124 }
2125
2126 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
2127 &objfile->objfile_obstack);
2128
2129 do_cleanups (back_to);
2130 }
2131
2132 /* Load the partial DIEs for a secondary CU into memory. */
2133
2134 static void
2135 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
2136 struct objfile *objfile)
2137 {
2138 bfd *abfd = objfile->obfd;
2139 gdb_byte *info_ptr, *beg_of_comp_unit;
2140 struct die_info *comp_unit_die;
2141 struct dwarf2_cu *cu;
2142 unsigned int bytes_read;
2143 struct cleanup *back_to;
2144 struct attribute *attr;
2145 int has_children;
2146 struct die_reader_specs reader_specs;
2147
2148 gdb_assert (! this_cu->from_debug_types);
2149
2150 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
2151 beg_of_comp_unit = info_ptr;
2152
2153 cu = alloc_one_comp_unit (objfile);
2154
2155 /* ??? Missing cleanup for CU? */
2156
2157 /* Link this compilation unit into the compilation unit tree. */
2158 this_cu->cu = cu;
2159 cu->per_cu = this_cu;
2160 cu->type_hash = this_cu->type_hash;
2161
2162 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
2163 dwarf2_per_objfile->info.buffer,
2164 dwarf2_per_objfile->info.size,
2165 abfd);
2166
2167 /* Complete the cu_header. */
2168 cu->header.offset = this_cu->offset;
2169 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
2170
2171 /* Read the abbrevs for this compilation unit into a table. */
2172 dwarf2_read_abbrevs (abfd, cu);
2173 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2174
2175 /* Read the compilation unit die. */
2176 init_cu_die_reader (&reader_specs, cu);
2177 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2178 &has_children);
2179
2180 /* Set the language we're debugging. */
2181 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
2182 if (attr)
2183 set_cu_language (DW_UNSND (attr), cu);
2184 else
2185 set_cu_language (language_minimal, cu);
2186
2187 /* Check if comp unit has_children.
2188 If so, read the rest of the partial symbols from this comp unit.
2189 If not, there's no more debug_info for this comp unit. */
2190 if (has_children)
2191 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
2192
2193 do_cleanups (back_to);
2194 }
2195
2196 /* Create a list of all compilation units in OBJFILE. We do this only
2197 if an inter-comp-unit reference is found; presumably if there is one,
2198 there will be many, and one will occur early in the .debug_info section.
2199 So there's no point in building this list incrementally. */
2200
2201 static void
2202 create_all_comp_units (struct objfile *objfile)
2203 {
2204 int n_allocated;
2205 int n_comp_units;
2206 struct dwarf2_per_cu_data **all_comp_units;
2207 gdb_byte *info_ptr = dwarf2_per_objfile->info.buffer;
2208
2209 n_comp_units = 0;
2210 n_allocated = 10;
2211 all_comp_units = xmalloc (n_allocated
2212 * sizeof (struct dwarf2_per_cu_data *));
2213
2214 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
2215 {
2216 unsigned int length, initial_length_size;
2217 gdb_byte *beg_of_comp_unit;
2218 struct dwarf2_per_cu_data *this_cu;
2219 unsigned int offset;
2220
2221 offset = info_ptr - dwarf2_per_objfile->info.buffer;
2222
2223 /* Read just enough information to find out where the next
2224 compilation unit is. */
2225 length = read_initial_length (objfile->obfd, info_ptr,
2226 &initial_length_size);
2227
2228 /* Save the compilation unit for later lookup. */
2229 this_cu = obstack_alloc (&objfile->objfile_obstack,
2230 sizeof (struct dwarf2_per_cu_data));
2231 memset (this_cu, 0, sizeof (*this_cu));
2232 this_cu->offset = offset;
2233 this_cu->length = length + initial_length_size;
2234
2235 if (n_comp_units == n_allocated)
2236 {
2237 n_allocated *= 2;
2238 all_comp_units = xrealloc (all_comp_units,
2239 n_allocated
2240 * sizeof (struct dwarf2_per_cu_data *));
2241 }
2242 all_comp_units[n_comp_units++] = this_cu;
2243
2244 info_ptr = info_ptr + this_cu->length;
2245 }
2246
2247 dwarf2_per_objfile->all_comp_units
2248 = obstack_alloc (&objfile->objfile_obstack,
2249 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2250 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
2251 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2252 xfree (all_comp_units);
2253 dwarf2_per_objfile->n_comp_units = n_comp_units;
2254 }
2255
2256 /* Process all loaded DIEs for compilation unit CU, starting at
2257 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
2258 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
2259 DW_AT_ranges). If NEED_PC is set, then this function will set
2260 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
2261 and record the covered ranges in the addrmap. */
2262
2263 static void
2264 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
2265 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2266 {
2267 struct objfile *objfile = cu->objfile;
2268 bfd *abfd = objfile->obfd;
2269 struct partial_die_info *pdi;
2270
2271 /* Now, march along the PDI's, descending into ones which have
2272 interesting children but skipping the children of the other ones,
2273 until we reach the end of the compilation unit. */
2274
2275 pdi = first_die;
2276
2277 while (pdi != NULL)
2278 {
2279 fixup_partial_die (pdi, cu);
2280
2281 /* Anonymous namespaces have no name but have interesting
2282 children, so we need to look at them. Ditto for anonymous
2283 enums. */
2284
2285 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
2286 || pdi->tag == DW_TAG_enumeration_type)
2287 {
2288 switch (pdi->tag)
2289 {
2290 case DW_TAG_subprogram:
2291 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
2292 break;
2293 case DW_TAG_variable:
2294 case DW_TAG_typedef:
2295 case DW_TAG_union_type:
2296 if (!pdi->is_declaration)
2297 {
2298 add_partial_symbol (pdi, cu);
2299 }
2300 break;
2301 case DW_TAG_class_type:
2302 case DW_TAG_interface_type:
2303 case DW_TAG_structure_type:
2304 if (!pdi->is_declaration)
2305 {
2306 add_partial_symbol (pdi, cu);
2307 }
2308 break;
2309 case DW_TAG_enumeration_type:
2310 if (!pdi->is_declaration)
2311 add_partial_enumeration (pdi, cu);
2312 break;
2313 case DW_TAG_base_type:
2314 case DW_TAG_subrange_type:
2315 /* File scope base type definitions are added to the partial
2316 symbol table. */
2317 add_partial_symbol (pdi, cu);
2318 break;
2319 case DW_TAG_namespace:
2320 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
2321 break;
2322 case DW_TAG_module:
2323 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
2324 break;
2325 default:
2326 break;
2327 }
2328 }
2329
2330 /* If the die has a sibling, skip to the sibling. */
2331
2332 pdi = pdi->die_sibling;
2333 }
2334 }
2335
2336 /* Functions used to compute the fully scoped name of a partial DIE.
2337
2338 Normally, this is simple. For C++, the parent DIE's fully scoped
2339 name is concatenated with "::" and the partial DIE's name. For
2340 Java, the same thing occurs except that "." is used instead of "::".
2341 Enumerators are an exception; they use the scope of their parent
2342 enumeration type, i.e. the name of the enumeration type is not
2343 prepended to the enumerator.
2344
2345 There are two complexities. One is DW_AT_specification; in this
2346 case "parent" means the parent of the target of the specification,
2347 instead of the direct parent of the DIE. The other is compilers
2348 which do not emit DW_TAG_namespace; in this case we try to guess
2349 the fully qualified name of structure types from their members'
2350 linkage names. This must be done using the DIE's children rather
2351 than the children of any DW_AT_specification target. We only need
2352 to do this for structures at the top level, i.e. if the target of
2353 any DW_AT_specification (if any; otherwise the DIE itself) does not
2354 have a parent. */
2355
2356 /* Compute the scope prefix associated with PDI's parent, in
2357 compilation unit CU. The result will be allocated on CU's
2358 comp_unit_obstack, or a copy of the already allocated PDI->NAME
2359 field. NULL is returned if no prefix is necessary. */
2360 static char *
2361 partial_die_parent_scope (struct partial_die_info *pdi,
2362 struct dwarf2_cu *cu)
2363 {
2364 char *grandparent_scope;
2365 struct partial_die_info *parent, *real_pdi;
2366
2367 /* We need to look at our parent DIE; if we have a DW_AT_specification,
2368 then this means the parent of the specification DIE. */
2369
2370 real_pdi = pdi;
2371 while (real_pdi->has_specification)
2372 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2373
2374 parent = real_pdi->die_parent;
2375 if (parent == NULL)
2376 return NULL;
2377
2378 if (parent->scope_set)
2379 return parent->scope;
2380
2381 fixup_partial_die (parent, cu);
2382
2383 grandparent_scope = partial_die_parent_scope (parent, cu);
2384
2385 if (parent->tag == DW_TAG_namespace
2386 || parent->tag == DW_TAG_structure_type
2387 || parent->tag == DW_TAG_class_type
2388 || parent->tag == DW_TAG_interface_type
2389 || parent->tag == DW_TAG_union_type
2390 || parent->tag == DW_TAG_enumeration_type)
2391 {
2392 if (grandparent_scope == NULL)
2393 parent->scope = parent->name;
2394 else
2395 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
2396 parent->name, cu);
2397 }
2398 else if (parent->tag == DW_TAG_enumerator)
2399 /* Enumerators should not get the name of the enumeration as a prefix. */
2400 parent->scope = grandparent_scope;
2401 else
2402 {
2403 /* FIXME drow/2004-04-01: What should we be doing with
2404 function-local names? For partial symbols, we should probably be
2405 ignoring them. */
2406 complaint (&symfile_complaints,
2407 _("unhandled containing DIE tag %d for DIE at %d"),
2408 parent->tag, pdi->offset);
2409 parent->scope = grandparent_scope;
2410 }
2411
2412 parent->scope_set = 1;
2413 return parent->scope;
2414 }
2415
2416 /* Return the fully scoped name associated with PDI, from compilation unit
2417 CU. The result will be allocated with malloc. */
2418 static char *
2419 partial_die_full_name (struct partial_die_info *pdi,
2420 struct dwarf2_cu *cu)
2421 {
2422 char *parent_scope;
2423
2424 parent_scope = partial_die_parent_scope (pdi, cu);
2425 if (parent_scope == NULL)
2426 return NULL;
2427 else
2428 return typename_concat (NULL, parent_scope, pdi->name, cu);
2429 }
2430
2431 static void
2432 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
2433 {
2434 struct objfile *objfile = cu->objfile;
2435 CORE_ADDR addr = 0;
2436 char *actual_name = NULL;
2437 const char *my_prefix;
2438 const struct partial_symbol *psym = NULL;
2439 CORE_ADDR baseaddr;
2440 int built_actual_name = 0;
2441
2442 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2443
2444 if (pdi_needs_namespace (pdi->tag))
2445 {
2446 actual_name = partial_die_full_name (pdi, cu);
2447 if (actual_name)
2448 built_actual_name = 1;
2449 }
2450
2451 if (actual_name == NULL)
2452 actual_name = pdi->name;
2453
2454 switch (pdi->tag)
2455 {
2456 case DW_TAG_subprogram:
2457 if (pdi->is_external || cu->language == language_ada)
2458 {
2459 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
2460 of the global scope. But in Ada, we want to be able to access
2461 nested procedures globally. So all Ada subprograms are stored
2462 in the global scope. */
2463 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
2464 mst_text, objfile); */
2465 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2466 built_actual_name,
2467 VAR_DOMAIN, LOC_BLOCK,
2468 &objfile->global_psymbols,
2469 0, pdi->lowpc + baseaddr,
2470 cu->language, objfile);
2471 }
2472 else
2473 {
2474 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
2475 mst_file_text, objfile); */
2476 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2477 built_actual_name,
2478 VAR_DOMAIN, LOC_BLOCK,
2479 &objfile->static_psymbols,
2480 0, pdi->lowpc + baseaddr,
2481 cu->language, objfile);
2482 }
2483 break;
2484 case DW_TAG_variable:
2485 if (pdi->is_external)
2486 {
2487 /* Global Variable.
2488 Don't enter into the minimal symbol tables as there is
2489 a minimal symbol table entry from the ELF symbols already.
2490 Enter into partial symbol table if it has a location
2491 descriptor or a type.
2492 If the location descriptor is missing, new_symbol will create
2493 a LOC_UNRESOLVED symbol, the address of the variable will then
2494 be determined from the minimal symbol table whenever the variable
2495 is referenced.
2496 The address for the partial symbol table entry is not
2497 used by GDB, but it comes in handy for debugging partial symbol
2498 table building. */
2499
2500 if (pdi->locdesc)
2501 addr = decode_locdesc (pdi->locdesc, cu);
2502 if (pdi->locdesc || pdi->has_type)
2503 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2504 built_actual_name,
2505 VAR_DOMAIN, LOC_STATIC,
2506 &objfile->global_psymbols,
2507 0, addr + baseaddr,
2508 cu->language, objfile);
2509 }
2510 else
2511 {
2512 /* Static Variable. Skip symbols without location descriptors. */
2513 if (pdi->locdesc == NULL)
2514 {
2515 if (built_actual_name)
2516 xfree (actual_name);
2517 return;
2518 }
2519 addr = decode_locdesc (pdi->locdesc, cu);
2520 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
2521 mst_file_data, objfile); */
2522 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2523 built_actual_name,
2524 VAR_DOMAIN, LOC_STATIC,
2525 &objfile->static_psymbols,
2526 0, addr + baseaddr,
2527 cu->language, objfile);
2528 }
2529 break;
2530 case DW_TAG_typedef:
2531 case DW_TAG_base_type:
2532 case DW_TAG_subrange_type:
2533 add_psymbol_to_list (actual_name, strlen (actual_name),
2534 built_actual_name,
2535 VAR_DOMAIN, LOC_TYPEDEF,
2536 &objfile->static_psymbols,
2537 0, (CORE_ADDR) 0, cu->language, objfile);
2538 break;
2539 case DW_TAG_namespace:
2540 add_psymbol_to_list (actual_name, strlen (actual_name),
2541 built_actual_name,
2542 VAR_DOMAIN, LOC_TYPEDEF,
2543 &objfile->global_psymbols,
2544 0, (CORE_ADDR) 0, cu->language, objfile);
2545 break;
2546 case DW_TAG_class_type:
2547 case DW_TAG_interface_type:
2548 case DW_TAG_structure_type:
2549 case DW_TAG_union_type:
2550 case DW_TAG_enumeration_type:
2551 /* Skip external references. The DWARF standard says in the section
2552 about "Structure, Union, and Class Type Entries": "An incomplete
2553 structure, union or class type is represented by a structure,
2554 union or class entry that does not have a byte size attribute
2555 and that has a DW_AT_declaration attribute." */
2556 if (!pdi->has_byte_size && pdi->is_declaration)
2557 {
2558 if (built_actual_name)
2559 xfree (actual_name);
2560 return;
2561 }
2562
2563 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2564 static vs. global. */
2565 add_psymbol_to_list (actual_name, strlen (actual_name),
2566 built_actual_name,
2567 STRUCT_DOMAIN, LOC_TYPEDEF,
2568 (cu->language == language_cplus
2569 || cu->language == language_java)
2570 ? &objfile->global_psymbols
2571 : &objfile->static_psymbols,
2572 0, (CORE_ADDR) 0, cu->language, objfile);
2573
2574 break;
2575 case DW_TAG_enumerator:
2576 add_psymbol_to_list (actual_name, strlen (actual_name),
2577 built_actual_name,
2578 VAR_DOMAIN, LOC_CONST,
2579 (cu->language == language_cplus
2580 || cu->language == language_java)
2581 ? &objfile->global_psymbols
2582 : &objfile->static_psymbols,
2583 0, (CORE_ADDR) 0, cu->language, objfile);
2584 break;
2585 default:
2586 break;
2587 }
2588
2589 /* Check to see if we should scan the name for possible namespace
2590 info. Only do this if this is C++, if we don't have namespace
2591 debugging info in the file, if the psym is of an appropriate type
2592 (otherwise we'll have psym == NULL), and if we actually had a
2593 mangled name to begin with. */
2594
2595 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2596 cases which do not set PSYM above? */
2597
2598 if (cu->language == language_cplus
2599 && cu->has_namespace_info == 0
2600 && psym != NULL
2601 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2602 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2603 objfile);
2604
2605 if (built_actual_name)
2606 xfree (actual_name);
2607 }
2608
2609 /* Determine whether a die of type TAG living in a C++ class or
2610 namespace needs to have the name of the scope prepended to the
2611 name listed in the die. */
2612
2613 static int
2614 pdi_needs_namespace (enum dwarf_tag tag)
2615 {
2616 switch (tag)
2617 {
2618 case DW_TAG_namespace:
2619 case DW_TAG_typedef:
2620 case DW_TAG_class_type:
2621 case DW_TAG_interface_type:
2622 case DW_TAG_structure_type:
2623 case DW_TAG_union_type:
2624 case DW_TAG_enumeration_type:
2625 case DW_TAG_enumerator:
2626 return 1;
2627 default:
2628 return 0;
2629 }
2630 }
2631
2632 /* Read a partial die corresponding to a namespace; also, add a symbol
2633 corresponding to that namespace to the symbol table. NAMESPACE is
2634 the name of the enclosing namespace. */
2635
2636 static void
2637 add_partial_namespace (struct partial_die_info *pdi,
2638 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2639 int need_pc, struct dwarf2_cu *cu)
2640 {
2641 struct objfile *objfile = cu->objfile;
2642
2643 /* Add a symbol for the namespace. */
2644
2645 add_partial_symbol (pdi, cu);
2646
2647 /* Now scan partial symbols in that namespace. */
2648
2649 if (pdi->has_children)
2650 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2651 }
2652
2653 /* Read a partial die corresponding to a Fortran module. */
2654
2655 static void
2656 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
2657 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2658 {
2659 /* Now scan partial symbols in that module.
2660
2661 FIXME: Support the separate Fortran module namespaces. */
2662
2663 if (pdi->has_children)
2664 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2665 }
2666
2667 /* Read a partial die corresponding to a subprogram and create a partial
2668 symbol for that subprogram. When the CU language allows it, this
2669 routine also defines a partial symbol for each nested subprogram
2670 that this subprogram contains.
2671
2672 DIE my also be a lexical block, in which case we simply search
2673 recursively for suprograms defined inside that lexical block.
2674 Again, this is only performed when the CU language allows this
2675 type of definitions. */
2676
2677 static void
2678 add_partial_subprogram (struct partial_die_info *pdi,
2679 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2680 int need_pc, struct dwarf2_cu *cu)
2681 {
2682 if (pdi->tag == DW_TAG_subprogram)
2683 {
2684 if (pdi->has_pc_info)
2685 {
2686 if (pdi->lowpc < *lowpc)
2687 *lowpc = pdi->lowpc;
2688 if (pdi->highpc > *highpc)
2689 *highpc = pdi->highpc;
2690 if (need_pc)
2691 {
2692 CORE_ADDR baseaddr;
2693 struct objfile *objfile = cu->objfile;
2694
2695 baseaddr = ANOFFSET (objfile->section_offsets,
2696 SECT_OFF_TEXT (objfile));
2697 addrmap_set_empty (objfile->psymtabs_addrmap,
2698 pdi->lowpc, pdi->highpc - 1,
2699 cu->per_cu->psymtab);
2700 }
2701 if (!pdi->is_declaration)
2702 add_partial_symbol (pdi, cu);
2703 }
2704 }
2705
2706 if (! pdi->has_children)
2707 return;
2708
2709 if (cu->language == language_ada)
2710 {
2711 pdi = pdi->die_child;
2712 while (pdi != NULL)
2713 {
2714 fixup_partial_die (pdi, cu);
2715 if (pdi->tag == DW_TAG_subprogram
2716 || pdi->tag == DW_TAG_lexical_block)
2717 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
2718 pdi = pdi->die_sibling;
2719 }
2720 }
2721 }
2722
2723 /* See if we can figure out if the class lives in a namespace. We do
2724 this by looking for a member function; its demangled name will
2725 contain namespace info, if there is any. */
2726
2727 static void
2728 guess_structure_name (struct partial_die_info *struct_pdi,
2729 struct dwarf2_cu *cu)
2730 {
2731 if ((cu->language == language_cplus
2732 || cu->language == language_java)
2733 && cu->has_namespace_info == 0
2734 && struct_pdi->has_children)
2735 {
2736 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2737 what template types look like, because the demangler
2738 frequently doesn't give the same name as the debug info. We
2739 could fix this by only using the demangled name to get the
2740 prefix (but see comment in read_structure_type). */
2741
2742 struct partial_die_info *child_pdi = struct_pdi->die_child;
2743 struct partial_die_info *real_pdi;
2744
2745 /* If this DIE (this DIE's specification, if any) has a parent, then
2746 we should not do this. We'll prepend the parent's fully qualified
2747 name when we create the partial symbol. */
2748
2749 real_pdi = struct_pdi;
2750 while (real_pdi->has_specification)
2751 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2752
2753 if (real_pdi->die_parent != NULL)
2754 return;
2755
2756 while (child_pdi != NULL)
2757 {
2758 if (child_pdi->tag == DW_TAG_subprogram)
2759 {
2760 char *actual_class_name
2761 = language_class_name_from_physname (cu->language_defn,
2762 child_pdi->name);
2763 if (actual_class_name != NULL)
2764 {
2765 struct_pdi->name
2766 = obsavestring (actual_class_name,
2767 strlen (actual_class_name),
2768 &cu->comp_unit_obstack);
2769 xfree (actual_class_name);
2770 }
2771 break;
2772 }
2773
2774 child_pdi = child_pdi->die_sibling;
2775 }
2776 }
2777 }
2778
2779 /* Read a partial die corresponding to an enumeration type. */
2780
2781 static void
2782 add_partial_enumeration (struct partial_die_info *enum_pdi,
2783 struct dwarf2_cu *cu)
2784 {
2785 struct objfile *objfile = cu->objfile;
2786 bfd *abfd = objfile->obfd;
2787 struct partial_die_info *pdi;
2788
2789 if (enum_pdi->name != NULL)
2790 add_partial_symbol (enum_pdi, cu);
2791
2792 pdi = enum_pdi->die_child;
2793 while (pdi)
2794 {
2795 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2796 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2797 else
2798 add_partial_symbol (pdi, cu);
2799 pdi = pdi->die_sibling;
2800 }
2801 }
2802
2803 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2804 Return the corresponding abbrev, or NULL if the number is zero (indicating
2805 an empty DIE). In either case *BYTES_READ will be set to the length of
2806 the initial number. */
2807
2808 static struct abbrev_info *
2809 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2810 struct dwarf2_cu *cu)
2811 {
2812 bfd *abfd = cu->objfile->obfd;
2813 unsigned int abbrev_number;
2814 struct abbrev_info *abbrev;
2815
2816 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2817
2818 if (abbrev_number == 0)
2819 return NULL;
2820
2821 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2822 if (!abbrev)
2823 {
2824 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2825 bfd_get_filename (abfd));
2826 }
2827
2828 return abbrev;
2829 }
2830
2831 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2832 Returns a pointer to the end of a series of DIEs, terminated by an empty
2833 DIE. Any children of the skipped DIEs will also be skipped. */
2834
2835 static gdb_byte *
2836 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
2837 {
2838 struct abbrev_info *abbrev;
2839 unsigned int bytes_read;
2840
2841 while (1)
2842 {
2843 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2844 if (abbrev == NULL)
2845 return info_ptr + bytes_read;
2846 else
2847 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
2848 }
2849 }
2850
2851 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2852 INFO_PTR should point just after the initial uleb128 of a DIE, and the
2853 abbrev corresponding to that skipped uleb128 should be passed in
2854 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2855 children. */
2856
2857 static gdb_byte *
2858 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
2859 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
2860 {
2861 unsigned int bytes_read;
2862 struct attribute attr;
2863 bfd *abfd = cu->objfile->obfd;
2864 unsigned int form, i;
2865
2866 for (i = 0; i < abbrev->num_attrs; i++)
2867 {
2868 /* The only abbrev we care about is DW_AT_sibling. */
2869 if (abbrev->attrs[i].name == DW_AT_sibling)
2870 {
2871 read_attribute (&attr, &abbrev->attrs[i],
2872 abfd, info_ptr, cu);
2873 if (attr.form == DW_FORM_ref_addr)
2874 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2875 else
2876 return buffer + dwarf2_get_ref_die_offset (&attr);
2877 }
2878
2879 /* If it isn't DW_AT_sibling, skip this attribute. */
2880 form = abbrev->attrs[i].form;
2881 skip_attribute:
2882 switch (form)
2883 {
2884 case DW_FORM_addr:
2885 case DW_FORM_ref_addr:
2886 info_ptr += cu->header.addr_size;
2887 break;
2888 case DW_FORM_data1:
2889 case DW_FORM_ref1:
2890 case DW_FORM_flag:
2891 info_ptr += 1;
2892 break;
2893 case DW_FORM_data2:
2894 case DW_FORM_ref2:
2895 info_ptr += 2;
2896 break;
2897 case DW_FORM_data4:
2898 case DW_FORM_ref4:
2899 info_ptr += 4;
2900 break;
2901 case DW_FORM_data8:
2902 case DW_FORM_ref8:
2903 case DW_FORM_sig8:
2904 info_ptr += 8;
2905 break;
2906 case DW_FORM_string:
2907 read_string (abfd, info_ptr, &bytes_read);
2908 info_ptr += bytes_read;
2909 break;
2910 case DW_FORM_strp:
2911 info_ptr += cu->header.offset_size;
2912 break;
2913 case DW_FORM_block:
2914 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2915 info_ptr += bytes_read;
2916 break;
2917 case DW_FORM_block1:
2918 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2919 break;
2920 case DW_FORM_block2:
2921 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2922 break;
2923 case DW_FORM_block4:
2924 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2925 break;
2926 case DW_FORM_sdata:
2927 case DW_FORM_udata:
2928 case DW_FORM_ref_udata:
2929 info_ptr = skip_leb128 (abfd, info_ptr);
2930 break;
2931 case DW_FORM_indirect:
2932 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2933 info_ptr += bytes_read;
2934 /* We need to continue parsing from here, so just go back to
2935 the top. */
2936 goto skip_attribute;
2937
2938 default:
2939 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2940 dwarf_form_name (form),
2941 bfd_get_filename (abfd));
2942 }
2943 }
2944
2945 if (abbrev->has_children)
2946 return skip_children (buffer, info_ptr, cu);
2947 else
2948 return info_ptr;
2949 }
2950
2951 /* Locate ORIG_PDI's sibling.
2952 INFO_PTR should point to the start of the next DIE after ORIG_PDI
2953 in BUFFER. */
2954
2955 static gdb_byte *
2956 locate_pdi_sibling (struct partial_die_info *orig_pdi,
2957 gdb_byte *buffer, gdb_byte *info_ptr,
2958 bfd *abfd, struct dwarf2_cu *cu)
2959 {
2960 /* Do we know the sibling already? */
2961
2962 if (orig_pdi->sibling)
2963 return orig_pdi->sibling;
2964
2965 /* Are there any children to deal with? */
2966
2967 if (!orig_pdi->has_children)
2968 return info_ptr;
2969
2970 /* Skip the children the long way. */
2971
2972 return skip_children (buffer, info_ptr, cu);
2973 }
2974
2975 /* Expand this partial symbol table into a full symbol table. */
2976
2977 static void
2978 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2979 {
2980 /* FIXME: This is barely more than a stub. */
2981 if (pst != NULL)
2982 {
2983 if (pst->readin)
2984 {
2985 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2986 }
2987 else
2988 {
2989 if (info_verbose)
2990 {
2991 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2992 gdb_flush (gdb_stdout);
2993 }
2994
2995 /* Restore our global data. */
2996 dwarf2_per_objfile = objfile_data (pst->objfile,
2997 dwarf2_objfile_data_key);
2998
2999 /* If this psymtab is constructed from a debug-only objfile, the
3000 has_section_at_zero flag will not necessarily be correct. We
3001 can get the correct value for this flag by looking at the data
3002 associated with the (presumably stripped) associated objfile. */
3003 if (pst->objfile->separate_debug_objfile_backlink)
3004 {
3005 struct dwarf2_per_objfile *dpo_backlink
3006 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
3007 dwarf2_objfile_data_key);
3008 dwarf2_per_objfile->has_section_at_zero
3009 = dpo_backlink->has_section_at_zero;
3010 }
3011
3012 psymtab_to_symtab_1 (pst);
3013
3014 /* Finish up the debug error message. */
3015 if (info_verbose)
3016 printf_filtered (_("done.\n"));
3017 }
3018 }
3019 }
3020
3021 /* Add PER_CU to the queue. */
3022
3023 static void
3024 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
3025 {
3026 struct dwarf2_queue_item *item;
3027
3028 per_cu->queued = 1;
3029 item = xmalloc (sizeof (*item));
3030 item->per_cu = per_cu;
3031 item->next = NULL;
3032
3033 if (dwarf2_queue == NULL)
3034 dwarf2_queue = item;
3035 else
3036 dwarf2_queue_tail->next = item;
3037
3038 dwarf2_queue_tail = item;
3039 }
3040
3041 /* Process the queue. */
3042
3043 static void
3044 process_queue (struct objfile *objfile)
3045 {
3046 struct dwarf2_queue_item *item, *next_item;
3047
3048 /* The queue starts out with one item, but following a DIE reference
3049 may load a new CU, adding it to the end of the queue. */
3050 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
3051 {
3052 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
3053 process_full_comp_unit (item->per_cu);
3054
3055 item->per_cu->queued = 0;
3056 next_item = item->next;
3057 xfree (item);
3058 }
3059
3060 dwarf2_queue_tail = NULL;
3061 }
3062
3063 /* Free all allocated queue entries. This function only releases anything if
3064 an error was thrown; if the queue was processed then it would have been
3065 freed as we went along. */
3066
3067 static void
3068 dwarf2_release_queue (void *dummy)
3069 {
3070 struct dwarf2_queue_item *item, *last;
3071
3072 item = dwarf2_queue;
3073 while (item)
3074 {
3075 /* Anything still marked queued is likely to be in an
3076 inconsistent state, so discard it. */
3077 if (item->per_cu->queued)
3078 {
3079 if (item->per_cu->cu != NULL)
3080 free_one_cached_comp_unit (item->per_cu->cu);
3081 item->per_cu->queued = 0;
3082 }
3083
3084 last = item;
3085 item = item->next;
3086 xfree (last);
3087 }
3088
3089 dwarf2_queue = dwarf2_queue_tail = NULL;
3090 }
3091
3092 /* Read in full symbols for PST, and anything it depends on. */
3093
3094 static void
3095 psymtab_to_symtab_1 (struct partial_symtab *pst)
3096 {
3097 struct dwarf2_per_cu_data *per_cu;
3098 struct cleanup *back_to;
3099 int i;
3100
3101 for (i = 0; i < pst->number_of_dependencies; i++)
3102 if (!pst->dependencies[i]->readin)
3103 {
3104 /* Inform about additional files that need to be read in. */
3105 if (info_verbose)
3106 {
3107 /* FIXME: i18n: Need to make this a single string. */
3108 fputs_filtered (" ", gdb_stdout);
3109 wrap_here ("");
3110 fputs_filtered ("and ", gdb_stdout);
3111 wrap_here ("");
3112 printf_filtered ("%s...", pst->dependencies[i]->filename);
3113 wrap_here (""); /* Flush output */
3114 gdb_flush (gdb_stdout);
3115 }
3116 psymtab_to_symtab_1 (pst->dependencies[i]);
3117 }
3118
3119 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
3120
3121 if (per_cu == NULL)
3122 {
3123 /* It's an include file, no symbols to read for it.
3124 Everything is in the parent symtab. */
3125 pst->readin = 1;
3126 return;
3127 }
3128
3129 back_to = make_cleanup (dwarf2_release_queue, NULL);
3130
3131 queue_comp_unit (per_cu, pst->objfile);
3132
3133 if (per_cu->from_debug_types)
3134 read_signatured_type_at_offset (pst->objfile, per_cu->offset);
3135 else
3136 load_full_comp_unit (per_cu, pst->objfile);
3137
3138 process_queue (pst->objfile);
3139
3140 /* Age the cache, releasing compilation units that have not
3141 been used recently. */
3142 age_cached_comp_units ();
3143
3144 do_cleanups (back_to);
3145 }
3146
3147 /* Load the DIEs associated with PER_CU into memory. */
3148
3149 static void
3150 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
3151 {
3152 bfd *abfd = objfile->obfd;
3153 struct dwarf2_cu *cu;
3154 unsigned int offset;
3155 gdb_byte *info_ptr, *beg_of_comp_unit;
3156 struct cleanup *back_to, *free_cu_cleanup;
3157 struct attribute *attr;
3158 CORE_ADDR baseaddr;
3159
3160 gdb_assert (! per_cu->from_debug_types);
3161
3162 /* Set local variables from the partial symbol table info. */
3163 offset = per_cu->offset;
3164
3165 info_ptr = dwarf2_per_objfile->info.buffer + offset;
3166 beg_of_comp_unit = info_ptr;
3167
3168 cu = alloc_one_comp_unit (objfile);
3169
3170 /* If an error occurs while loading, release our storage. */
3171 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3172
3173 /* Read in the comp_unit header. */
3174 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
3175
3176 /* Complete the cu_header. */
3177 cu->header.offset = offset;
3178 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3179
3180 /* Read the abbrevs for this compilation unit. */
3181 dwarf2_read_abbrevs (abfd, cu);
3182 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
3183
3184 /* Link this compilation unit into the compilation unit tree. */
3185 per_cu->cu = cu;
3186 cu->per_cu = per_cu;
3187 cu->type_hash = per_cu->type_hash;
3188
3189 cu->dies = read_comp_unit (info_ptr, cu);
3190
3191 /* We try not to read any attributes in this function, because not
3192 all objfiles needed for references have been loaded yet, and symbol
3193 table processing isn't initialized. But we have to set the CU language,
3194 or we won't be able to build types correctly. */
3195 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
3196 if (attr)
3197 set_cu_language (DW_UNSND (attr), cu);
3198 else
3199 set_cu_language (language_minimal, cu);
3200
3201 /* Link this CU into read_in_chain. */
3202 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3203 dwarf2_per_objfile->read_in_chain = per_cu;
3204
3205 do_cleanups (back_to);
3206
3207 /* We've successfully allocated this compilation unit. Let our caller
3208 clean it up when finished with it. */
3209 discard_cleanups (free_cu_cleanup);
3210 }
3211
3212 /* Generate full symbol information for PST and CU, whose DIEs have
3213 already been loaded into memory. */
3214
3215 static void
3216 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
3217 {
3218 struct partial_symtab *pst = per_cu->psymtab;
3219 struct dwarf2_cu *cu = per_cu->cu;
3220 struct objfile *objfile = pst->objfile;
3221 bfd *abfd = objfile->obfd;
3222 CORE_ADDR lowpc, highpc;
3223 struct symtab *symtab;
3224 struct cleanup *back_to;
3225 CORE_ADDR baseaddr;
3226
3227 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3228
3229 buildsym_init ();
3230 back_to = make_cleanup (really_free_pendings, NULL);
3231
3232 cu->list_in_scope = &file_symbols;
3233
3234 dwarf2_find_base_address (cu->dies, cu);
3235
3236 /* Do line number decoding in read_file_scope () */
3237 process_die (cu->dies, cu);
3238
3239 /* Some compilers don't define a DW_AT_high_pc attribute for the
3240 compilation unit. If the DW_AT_high_pc is missing, synthesize
3241 it, by scanning the DIE's below the compilation unit. */
3242 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
3243
3244 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
3245
3246 /* Set symtab language to language from DW_AT_language.
3247 If the compilation is from a C file generated by language preprocessors,
3248 do not set the language if it was already deduced by start_subfile. */
3249 if (symtab != NULL
3250 && !(cu->language == language_c && symtab->language != language_c))
3251 {
3252 symtab->language = cu->language;
3253 }
3254 pst->symtab = symtab;
3255 pst->readin = 1;
3256
3257 do_cleanups (back_to);
3258 }
3259
3260 /* Process a die and its children. */
3261
3262 static void
3263 process_die (struct die_info *die, struct dwarf2_cu *cu)
3264 {
3265 switch (die->tag)
3266 {
3267 case DW_TAG_padding:
3268 break;
3269 case DW_TAG_compile_unit:
3270 read_file_scope (die, cu);
3271 break;
3272 case DW_TAG_type_unit:
3273 read_type_unit_scope (die, cu);
3274 break;
3275 case DW_TAG_subprogram:
3276 case DW_TAG_inlined_subroutine:
3277 read_func_scope (die, cu);
3278 break;
3279 case DW_TAG_lexical_block:
3280 case DW_TAG_try_block:
3281 case DW_TAG_catch_block:
3282 read_lexical_block_scope (die, cu);
3283 break;
3284 case DW_TAG_class_type:
3285 case DW_TAG_interface_type:
3286 case DW_TAG_structure_type:
3287 case DW_TAG_union_type:
3288 process_structure_scope (die, cu);
3289 break;
3290 case DW_TAG_enumeration_type:
3291 process_enumeration_scope (die, cu);
3292 break;
3293
3294 /* These dies have a type, but processing them does not create
3295 a symbol or recurse to process the children. Therefore we can
3296 read them on-demand through read_type_die. */
3297 case DW_TAG_subroutine_type:
3298 case DW_TAG_set_type:
3299 case DW_TAG_array_type:
3300 case DW_TAG_pointer_type:
3301 case DW_TAG_ptr_to_member_type:
3302 case DW_TAG_reference_type:
3303 case DW_TAG_string_type:
3304 break;
3305
3306 case DW_TAG_base_type:
3307 case DW_TAG_subrange_type:
3308 case DW_TAG_typedef:
3309 /* Add a typedef symbol for the type definition, if it has a
3310 DW_AT_name. */
3311 new_symbol (die, read_type_die (die, cu), cu);
3312 break;
3313 case DW_TAG_common_block:
3314 read_common_block (die, cu);
3315 break;
3316 case DW_TAG_common_inclusion:
3317 break;
3318 case DW_TAG_namespace:
3319 processing_has_namespace_info = 1;
3320 read_namespace (die, cu);
3321 break;
3322 case DW_TAG_module:
3323 read_module (die, cu);
3324 break;
3325 case DW_TAG_imported_declaration:
3326 case DW_TAG_imported_module:
3327 processing_has_namespace_info = 1;
3328 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
3329 || cu->language != language_fortran))
3330 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
3331 dwarf_tag_name (die->tag));
3332 read_import_statement (die, cu);
3333 break;
3334 default:
3335 new_symbol (die, NULL, cu);
3336 break;
3337 }
3338 }
3339
3340 /* Return the fully qualified name of DIE, based on its DW_AT_name.
3341 If scope qualifiers are appropriate they will be added. The result
3342 will be allocated on the objfile_obstack, or NULL if the DIE does
3343 not have a name. */
3344
3345 static const char *
3346 dwarf2_full_name (struct die_info *die, struct dwarf2_cu *cu)
3347 {
3348 struct attribute *attr;
3349 char *prefix, *name;
3350 struct ui_file *buf = NULL;
3351
3352 name = dwarf2_name (die, cu);
3353 if (!name)
3354 return NULL;
3355
3356 /* These are the only languages we know how to qualify names in. */
3357 if (cu->language != language_cplus
3358 && cu->language != language_java)
3359 return name;
3360
3361 /* If no prefix is necessary for this type of DIE, return the
3362 unqualified name. The other three tags listed could be handled
3363 in pdi_needs_namespace, but that requires broader changes. */
3364 if (!pdi_needs_namespace (die->tag)
3365 && die->tag != DW_TAG_subprogram
3366 && die->tag != DW_TAG_variable
3367 && die->tag != DW_TAG_member)
3368 return name;
3369
3370 prefix = determine_prefix (die, cu);
3371 if (*prefix != '\0')
3372 name = typename_concat (&cu->objfile->objfile_obstack, prefix,
3373 name, cu);
3374
3375 return name;
3376 }
3377
3378 /* Read the import statement specified by the given die and record it. */
3379
3380 static void
3381 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
3382 {
3383 struct attribute *import_attr;
3384 struct die_info *imported_die;
3385 struct dwarf2_cu *imported_cu;
3386 const char *imported_name;
3387 const char *imported_name_prefix;
3388 const char *import_prefix;
3389 char *canonical_name;
3390
3391 import_attr = dwarf2_attr (die, DW_AT_import, cu);
3392 if (import_attr == NULL)
3393 {
3394 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
3395 dwarf_tag_name (die->tag));
3396 return;
3397 }
3398
3399 imported_cu = cu;
3400 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
3401 imported_name = dwarf2_name (imported_die, imported_cu);
3402 if (imported_name == NULL)
3403 {
3404 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
3405
3406 The import in the following code:
3407 namespace A
3408 {
3409 typedef int B;
3410 }
3411
3412 int main ()
3413 {
3414 using A::B;
3415 B b;
3416 return b;
3417 }
3418
3419 ...
3420 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
3421 <52> DW_AT_decl_file : 1
3422 <53> DW_AT_decl_line : 6
3423 <54> DW_AT_import : <0x75>
3424 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
3425 <59> DW_AT_name : B
3426 <5b> DW_AT_decl_file : 1
3427 <5c> DW_AT_decl_line : 2
3428 <5d> DW_AT_type : <0x6e>
3429 ...
3430 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
3431 <76> DW_AT_byte_size : 4
3432 <77> DW_AT_encoding : 5 (signed)
3433
3434 imports the wrong die ( 0x75 instead of 0x58 ).
3435 This case will be ignored until the gcc bug is fixed. */
3436 return;
3437 }
3438
3439 /* FIXME: dwarf2_name (die); for the local name after import. */
3440
3441 /* Figure out where the statement is being imported to. */
3442 import_prefix = determine_prefix (die, cu);
3443
3444 /* Figure out what the scope of the imported die is and prepend it
3445 to the name of the imported die. */
3446 imported_name_prefix = determine_prefix (imported_die, imported_cu);
3447
3448 if (strlen (imported_name_prefix) > 0)
3449 {
3450 canonical_name = alloca (strlen (imported_name_prefix) + 2 + strlen (imported_name) + 1);
3451 strcpy (canonical_name, imported_name_prefix);
3452 strcat (canonical_name, "::");
3453 strcat (canonical_name, imported_name);
3454 }
3455 else
3456 {
3457 canonical_name = alloca (strlen (imported_name) + 1);
3458 strcpy (canonical_name, imported_name);
3459 }
3460
3461 using_directives = cp_add_using (import_prefix,canonical_name, using_directives);
3462 }
3463
3464 static void
3465 initialize_cu_func_list (struct dwarf2_cu *cu)
3466 {
3467 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
3468 }
3469
3470 static void
3471 free_cu_line_header (void *arg)
3472 {
3473 struct dwarf2_cu *cu = arg;
3474
3475 free_line_header (cu->line_header);
3476 cu->line_header = NULL;
3477 }
3478
3479 static void
3480 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
3481 {
3482 struct objfile *objfile = cu->objfile;
3483 struct comp_unit_head *cu_header = &cu->header;
3484 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3485 CORE_ADDR lowpc = ((CORE_ADDR) -1);
3486 CORE_ADDR highpc = ((CORE_ADDR) 0);
3487 struct attribute *attr;
3488 char *name = NULL;
3489 char *comp_dir = NULL;
3490 struct die_info *child_die;
3491 bfd *abfd = objfile->obfd;
3492 struct line_header *line_header = 0;
3493 CORE_ADDR baseaddr;
3494
3495 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3496
3497 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
3498
3499 /* If we didn't find a lowpc, set it to highpc to avoid complaints
3500 from finish_block. */
3501 if (lowpc == ((CORE_ADDR) -1))
3502 lowpc = highpc;
3503 lowpc += baseaddr;
3504 highpc += baseaddr;
3505
3506 /* Find the filename. Do not use dwarf2_name here, since the filename
3507 is not a source language identifier. */
3508 attr = dwarf2_attr (die, DW_AT_name, cu);
3509 if (attr)
3510 {
3511 name = DW_STRING (attr);
3512 }
3513
3514 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3515 if (attr)
3516 comp_dir = DW_STRING (attr);
3517 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3518 {
3519 comp_dir = ldirname (name);
3520 if (comp_dir != NULL)
3521 make_cleanup (xfree, comp_dir);
3522 }
3523 if (comp_dir != NULL)
3524 {
3525 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3526 directory, get rid of it. */
3527 char *cp = strchr (comp_dir, ':');
3528
3529 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3530 comp_dir = cp + 1;
3531 }
3532
3533 if (name == NULL)
3534 name = "<unknown>";
3535
3536 attr = dwarf2_attr (die, DW_AT_language, cu);
3537 if (attr)
3538 {
3539 set_cu_language (DW_UNSND (attr), cu);
3540 }
3541
3542 attr = dwarf2_attr (die, DW_AT_producer, cu);
3543 if (attr)
3544 cu->producer = DW_STRING (attr);
3545
3546 /* We assume that we're processing GCC output. */
3547 processing_gcc_compilation = 2;
3548
3549 processing_has_namespace_info = 0;
3550
3551 start_symtab (name, comp_dir, lowpc);
3552 record_debugformat ("DWARF 2");
3553 record_producer (cu->producer);
3554
3555 initialize_cu_func_list (cu);
3556
3557 /* Decode line number information if present. We do this before
3558 processing child DIEs, so that the line header table is available
3559 for DW_AT_decl_file. */
3560 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3561 if (attr)
3562 {
3563 unsigned int line_offset = DW_UNSND (attr);
3564 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
3565 if (line_header)
3566 {
3567 cu->line_header = line_header;
3568 make_cleanup (free_cu_line_header, cu);
3569 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
3570 }
3571 }
3572
3573 /* Process all dies in compilation unit. */
3574 if (die->child != NULL)
3575 {
3576 child_die = die->child;
3577 while (child_die && child_die->tag)
3578 {
3579 process_die (child_die, cu);
3580 child_die = sibling_die (child_die);
3581 }
3582 }
3583
3584 /* Decode macro information, if present. Dwarf 2 macro information
3585 refers to information in the line number info statement program
3586 header, so we can only read it if we've read the header
3587 successfully. */
3588 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
3589 if (attr && line_header)
3590 {
3591 unsigned int macro_offset = DW_UNSND (attr);
3592 dwarf_decode_macros (line_header, macro_offset,
3593 comp_dir, abfd, cu);
3594 }
3595 do_cleanups (back_to);
3596 }
3597
3598 /* For TUs we want to skip the first top level sibling if it's not the
3599 actual type being defined by this TU. In this case the first top
3600 level sibling is there to provide context only. */
3601
3602 static void
3603 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
3604 {
3605 struct objfile *objfile = cu->objfile;
3606 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3607 CORE_ADDR lowpc;
3608 struct attribute *attr;
3609 char *name = NULL;
3610 char *comp_dir = NULL;
3611 struct die_info *child_die;
3612 bfd *abfd = objfile->obfd;
3613 struct line_header *line_header = 0;
3614
3615 /* start_symtab needs a low pc, but we don't really have one.
3616 Do what read_file_scope would do in the absence of such info. */
3617 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3618
3619 /* Find the filename. Do not use dwarf2_name here, since the filename
3620 is not a source language identifier. */
3621 attr = dwarf2_attr (die, DW_AT_name, cu);
3622 if (attr)
3623 name = DW_STRING (attr);
3624
3625 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3626 if (attr)
3627 comp_dir = DW_STRING (attr);
3628 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3629 {
3630 comp_dir = ldirname (name);
3631 if (comp_dir != NULL)
3632 make_cleanup (xfree, comp_dir);
3633 }
3634
3635 if (name == NULL)
3636 name = "<unknown>";
3637
3638 attr = dwarf2_attr (die, DW_AT_language, cu);
3639 if (attr)
3640 set_cu_language (DW_UNSND (attr), cu);
3641
3642 /* This isn't technically needed today. It is done for symmetry
3643 with read_file_scope. */
3644 attr = dwarf2_attr (die, DW_AT_producer, cu);
3645 if (attr)
3646 cu->producer = DW_STRING (attr);
3647
3648 /* We assume that we're processing GCC output. */
3649 processing_gcc_compilation = 2;
3650
3651 processing_has_namespace_info = 0;
3652
3653 start_symtab (name, comp_dir, lowpc);
3654 record_debugformat ("DWARF 2");
3655 record_producer (cu->producer);
3656
3657 /* Process the dies in the type unit. */
3658 if (die->child == NULL)
3659 {
3660 dump_die_for_error (die);
3661 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
3662 bfd_get_filename (abfd));
3663 }
3664
3665 child_die = die->child;
3666
3667 while (child_die && child_die->tag)
3668 {
3669 process_die (child_die, cu);
3670
3671 child_die = sibling_die (child_die);
3672 }
3673
3674 do_cleanups (back_to);
3675 }
3676
3677 static void
3678 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
3679 struct dwarf2_cu *cu)
3680 {
3681 struct function_range *thisfn;
3682
3683 thisfn = (struct function_range *)
3684 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
3685 thisfn->name = name;
3686 thisfn->lowpc = lowpc;
3687 thisfn->highpc = highpc;
3688 thisfn->seen_line = 0;
3689 thisfn->next = NULL;
3690
3691 if (cu->last_fn == NULL)
3692 cu->first_fn = thisfn;
3693 else
3694 cu->last_fn->next = thisfn;
3695
3696 cu->last_fn = thisfn;
3697 }
3698
3699 /* qsort helper for inherit_abstract_dies. */
3700
3701 static int
3702 unsigned_int_compar (const void *ap, const void *bp)
3703 {
3704 unsigned int a = *(unsigned int *) ap;
3705 unsigned int b = *(unsigned int *) bp;
3706
3707 return (a > b) - (b > a);
3708 }
3709
3710 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3711 Inherit only the children of the DW_AT_abstract_origin DIE not being already
3712 referenced by DW_AT_abstract_origin from the children of the current DIE. */
3713
3714 static void
3715 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
3716 {
3717 struct die_info *child_die;
3718 unsigned die_children_count;
3719 /* CU offsets which were referenced by children of the current DIE. */
3720 unsigned *offsets;
3721 unsigned *offsets_end, *offsetp;
3722 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
3723 struct die_info *origin_die;
3724 /* Iterator of the ORIGIN_DIE children. */
3725 struct die_info *origin_child_die;
3726 struct cleanup *cleanups;
3727 struct attribute *attr;
3728
3729 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
3730 if (!attr)
3731 return;
3732
3733 origin_die = follow_die_ref (die, attr, &cu);
3734 if (die->tag != origin_die->tag
3735 && !(die->tag == DW_TAG_inlined_subroutine
3736 && origin_die->tag == DW_TAG_subprogram))
3737 complaint (&symfile_complaints,
3738 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
3739 die->offset, origin_die->offset);
3740
3741 child_die = die->child;
3742 die_children_count = 0;
3743 while (child_die && child_die->tag)
3744 {
3745 child_die = sibling_die (child_die);
3746 die_children_count++;
3747 }
3748 offsets = xmalloc (sizeof (*offsets) * die_children_count);
3749 cleanups = make_cleanup (xfree, offsets);
3750
3751 offsets_end = offsets;
3752 child_die = die->child;
3753 while (child_die && child_die->tag)
3754 {
3755 /* For each CHILD_DIE, find the corresponding child of
3756 ORIGIN_DIE. If there is more than one layer of
3757 DW_AT_abstract_origin, follow them all; there shouldn't be,
3758 but GCC versions at least through 4.4 generate this (GCC PR
3759 40573). */
3760 struct die_info *child_origin_die = child_die;
3761 while (1)
3762 {
3763 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, cu);
3764 if (attr == NULL)
3765 break;
3766 child_origin_die = follow_die_ref (child_origin_die, attr, &cu);
3767 }
3768
3769 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
3770 counterpart may exist. */
3771 if (child_origin_die != child_die)
3772 {
3773 if (child_die->tag != child_origin_die->tag
3774 && !(child_die->tag == DW_TAG_inlined_subroutine
3775 && child_origin_die->tag == DW_TAG_subprogram))
3776 complaint (&symfile_complaints,
3777 _("Child DIE 0x%x and its abstract origin 0x%x have "
3778 "different tags"), child_die->offset,
3779 child_origin_die->offset);
3780 if (child_origin_die->parent != origin_die)
3781 complaint (&symfile_complaints,
3782 _("Child DIE 0x%x and its abstract origin 0x%x have "
3783 "different parents"), child_die->offset,
3784 child_origin_die->offset);
3785 else
3786 *offsets_end++ = child_origin_die->offset;
3787 }
3788 child_die = sibling_die (child_die);
3789 }
3790 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
3791 unsigned_int_compar);
3792 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
3793 if (offsetp[-1] == *offsetp)
3794 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
3795 "to DIE 0x%x as their abstract origin"),
3796 die->offset, *offsetp);
3797
3798 offsetp = offsets;
3799 origin_child_die = origin_die->child;
3800 while (origin_child_die && origin_child_die->tag)
3801 {
3802 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
3803 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
3804 offsetp++;
3805 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
3806 {
3807 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
3808 process_die (origin_child_die, cu);
3809 }
3810 origin_child_die = sibling_die (origin_child_die);
3811 }
3812
3813 do_cleanups (cleanups);
3814 }
3815
3816 static void
3817 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
3818 {
3819 struct objfile *objfile = cu->objfile;
3820 struct context_stack *new;
3821 CORE_ADDR lowpc;
3822 CORE_ADDR highpc;
3823 struct die_info *child_die;
3824 struct attribute *attr, *call_line, *call_file;
3825 char *name;
3826 CORE_ADDR baseaddr;
3827 struct block *block;
3828 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
3829
3830 if (inlined_func)
3831 {
3832 /* If we do not have call site information, we can't show the
3833 caller of this inlined function. That's too confusing, so
3834 only use the scope for local variables. */
3835 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
3836 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
3837 if (call_line == NULL || call_file == NULL)
3838 {
3839 read_lexical_block_scope (die, cu);
3840 return;
3841 }
3842 }
3843
3844 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3845
3846 name = dwarf2_linkage_name (die, cu);
3847
3848 /* Ignore functions with missing or empty names and functions with
3849 missing or invalid low and high pc attributes. */
3850 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
3851 return;
3852
3853 lowpc += baseaddr;
3854 highpc += baseaddr;
3855
3856 /* Record the function range for dwarf_decode_lines. */
3857 add_to_cu_func_list (name, lowpc, highpc, cu);
3858
3859 new = push_context (0, lowpc);
3860 new->name = new_symbol (die, read_type_die (die, cu), cu);
3861
3862 /* If there is a location expression for DW_AT_frame_base, record
3863 it. */
3864 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
3865 if (attr)
3866 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
3867 expression is being recorded directly in the function's symbol
3868 and not in a separate frame-base object. I guess this hack is
3869 to avoid adding some sort of frame-base adjunct/annex to the
3870 function's symbol :-(. The problem with doing this is that it
3871 results in a function symbol with a location expression that
3872 has nothing to do with the location of the function, ouch! The
3873 relationship should be: a function's symbol has-a frame base; a
3874 frame-base has-a location expression. */
3875 dwarf2_symbol_mark_computed (attr, new->name, cu);
3876
3877 cu->list_in_scope = &local_symbols;
3878
3879 if (die->child != NULL)
3880 {
3881 child_die = die->child;
3882 while (child_die && child_die->tag)
3883 {
3884 process_die (child_die, cu);
3885 child_die = sibling_die (child_die);
3886 }
3887 }
3888
3889 inherit_abstract_dies (die, cu);
3890
3891 new = pop_context ();
3892 /* Make a block for the local symbols within. */
3893 block = finish_block (new->name, &local_symbols, new->old_blocks,
3894 lowpc, highpc, objfile);
3895
3896 /* For C++, set the block's scope. */
3897 if (cu->language == language_cplus)
3898 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
3899 determine_prefix (die, cu),
3900 processing_has_namespace_info);
3901
3902 /* If we have address ranges, record them. */
3903 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3904
3905 /* In C++, we can have functions nested inside functions (e.g., when
3906 a function declares a class that has methods). This means that
3907 when we finish processing a function scope, we may need to go
3908 back to building a containing block's symbol lists. */
3909 local_symbols = new->locals;
3910 param_symbols = new->params;
3911 using_directives = new->using_directives;
3912
3913 /* If we've finished processing a top-level function, subsequent
3914 symbols go in the file symbol list. */
3915 if (outermost_context_p ())
3916 cu->list_in_scope = &file_symbols;
3917 }
3918
3919 /* Process all the DIES contained within a lexical block scope. Start
3920 a new scope, process the dies, and then close the scope. */
3921
3922 static void
3923 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3924 {
3925 struct objfile *objfile = cu->objfile;
3926 struct context_stack *new;
3927 CORE_ADDR lowpc, highpc;
3928 struct die_info *child_die;
3929 CORE_ADDR baseaddr;
3930
3931 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3932
3933 /* Ignore blocks with missing or invalid low and high pc attributes. */
3934 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3935 as multiple lexical blocks? Handling children in a sane way would
3936 be nasty. Might be easier to properly extend generic blocks to
3937 describe ranges. */
3938 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
3939 return;
3940 lowpc += baseaddr;
3941 highpc += baseaddr;
3942
3943 push_context (0, lowpc);
3944 if (die->child != NULL)
3945 {
3946 child_die = die->child;
3947 while (child_die && child_die->tag)
3948 {
3949 process_die (child_die, cu);
3950 child_die = sibling_die (child_die);
3951 }
3952 }
3953 new = pop_context ();
3954
3955 if (local_symbols != NULL)
3956 {
3957 struct block *block
3958 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3959 highpc, objfile);
3960
3961 /* Note that recording ranges after traversing children, as we
3962 do here, means that recording a parent's ranges entails
3963 walking across all its children's ranges as they appear in
3964 the address map, which is quadratic behavior.
3965
3966 It would be nicer to record the parent's ranges before
3967 traversing its children, simply overriding whatever you find
3968 there. But since we don't even decide whether to create a
3969 block until after we've traversed its children, that's hard
3970 to do. */
3971 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3972 }
3973 local_symbols = new->locals;
3974 using_directives = new->using_directives;
3975 }
3976
3977 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
3978 Return 1 if the attributes are present and valid, otherwise, return 0.
3979 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
3980
3981 static int
3982 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
3983 CORE_ADDR *high_return, struct dwarf2_cu *cu,
3984 struct partial_symtab *ranges_pst)
3985 {
3986 struct objfile *objfile = cu->objfile;
3987 struct comp_unit_head *cu_header = &cu->header;
3988 bfd *obfd = objfile->obfd;
3989 unsigned int addr_size = cu_header->addr_size;
3990 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3991 /* Base address selection entry. */
3992 CORE_ADDR base;
3993 int found_base;
3994 unsigned int dummy;
3995 gdb_byte *buffer;
3996 CORE_ADDR marker;
3997 int low_set;
3998 CORE_ADDR low = 0;
3999 CORE_ADDR high = 0;
4000 CORE_ADDR baseaddr;
4001
4002 found_base = cu->base_known;
4003 base = cu->base_address;
4004
4005 if (offset >= dwarf2_per_objfile->ranges.size)
4006 {
4007 complaint (&symfile_complaints,
4008 _("Offset %d out of bounds for DW_AT_ranges attribute"),
4009 offset);
4010 return 0;
4011 }
4012 buffer = dwarf2_per_objfile->ranges.buffer + offset;
4013
4014 /* Read in the largest possible address. */
4015 marker = read_address (obfd, buffer, cu, &dummy);
4016 if ((marker & mask) == mask)
4017 {
4018 /* If we found the largest possible address, then
4019 read the base address. */
4020 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4021 buffer += 2 * addr_size;
4022 offset += 2 * addr_size;
4023 found_base = 1;
4024 }
4025
4026 low_set = 0;
4027
4028 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4029
4030 while (1)
4031 {
4032 CORE_ADDR range_beginning, range_end;
4033
4034 range_beginning = read_address (obfd, buffer, cu, &dummy);
4035 buffer += addr_size;
4036 range_end = read_address (obfd, buffer, cu, &dummy);
4037 buffer += addr_size;
4038 offset += 2 * addr_size;
4039
4040 /* An end of list marker is a pair of zero addresses. */
4041 if (range_beginning == 0 && range_end == 0)
4042 /* Found the end of list entry. */
4043 break;
4044
4045 /* Each base address selection entry is a pair of 2 values.
4046 The first is the largest possible address, the second is
4047 the base address. Check for a base address here. */
4048 if ((range_beginning & mask) == mask)
4049 {
4050 /* If we found the largest possible address, then
4051 read the base address. */
4052 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4053 found_base = 1;
4054 continue;
4055 }
4056
4057 if (!found_base)
4058 {
4059 /* We have no valid base address for the ranges
4060 data. */
4061 complaint (&symfile_complaints,
4062 _("Invalid .debug_ranges data (no base address)"));
4063 return 0;
4064 }
4065
4066 range_beginning += base;
4067 range_end += base;
4068
4069 if (ranges_pst != NULL && range_beginning < range_end)
4070 addrmap_set_empty (objfile->psymtabs_addrmap,
4071 range_beginning + baseaddr, range_end - 1 + baseaddr,
4072 ranges_pst);
4073
4074 /* FIXME: This is recording everything as a low-high
4075 segment of consecutive addresses. We should have a
4076 data structure for discontiguous block ranges
4077 instead. */
4078 if (! low_set)
4079 {
4080 low = range_beginning;
4081 high = range_end;
4082 low_set = 1;
4083 }
4084 else
4085 {
4086 if (range_beginning < low)
4087 low = range_beginning;
4088 if (range_end > high)
4089 high = range_end;
4090 }
4091 }
4092
4093 if (! low_set)
4094 /* If the first entry is an end-of-list marker, the range
4095 describes an empty scope, i.e. no instructions. */
4096 return 0;
4097
4098 if (low_return)
4099 *low_return = low;
4100 if (high_return)
4101 *high_return = high;
4102 return 1;
4103 }
4104
4105 /* Get low and high pc attributes from a die. Return 1 if the attributes
4106 are present and valid, otherwise, return 0. Return -1 if the range is
4107 discontinuous, i.e. derived from DW_AT_ranges information. */
4108 static int
4109 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
4110 CORE_ADDR *highpc, struct dwarf2_cu *cu,
4111 struct partial_symtab *pst)
4112 {
4113 struct attribute *attr;
4114 CORE_ADDR low = 0;
4115 CORE_ADDR high = 0;
4116 int ret = 0;
4117
4118 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4119 if (attr)
4120 {
4121 high = DW_ADDR (attr);
4122 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4123 if (attr)
4124 low = DW_ADDR (attr);
4125 else
4126 /* Found high w/o low attribute. */
4127 return 0;
4128
4129 /* Found consecutive range of addresses. */
4130 ret = 1;
4131 }
4132 else
4133 {
4134 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4135 if (attr != NULL)
4136 {
4137 /* Value of the DW_AT_ranges attribute is the offset in the
4138 .debug_ranges section. */
4139 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
4140 return 0;
4141 /* Found discontinuous range of addresses. */
4142 ret = -1;
4143 }
4144 }
4145
4146 if (high < low)
4147 return 0;
4148
4149 /* When using the GNU linker, .gnu.linkonce. sections are used to
4150 eliminate duplicate copies of functions and vtables and such.
4151 The linker will arbitrarily choose one and discard the others.
4152 The AT_*_pc values for such functions refer to local labels in
4153 these sections. If the section from that file was discarded, the
4154 labels are not in the output, so the relocs get a value of 0.
4155 If this is a discarded function, mark the pc bounds as invalid,
4156 so that GDB will ignore it. */
4157 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
4158 return 0;
4159
4160 *lowpc = low;
4161 *highpc = high;
4162 return ret;
4163 }
4164
4165 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
4166 its low and high PC addresses. Do nothing if these addresses could not
4167 be determined. Otherwise, set LOWPC to the low address if it is smaller,
4168 and HIGHPC to the high address if greater than HIGHPC. */
4169
4170 static void
4171 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
4172 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4173 struct dwarf2_cu *cu)
4174 {
4175 CORE_ADDR low, high;
4176 struct die_info *child = die->child;
4177
4178 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
4179 {
4180 *lowpc = min (*lowpc, low);
4181 *highpc = max (*highpc, high);
4182 }
4183
4184 /* If the language does not allow nested subprograms (either inside
4185 subprograms or lexical blocks), we're done. */
4186 if (cu->language != language_ada)
4187 return;
4188
4189 /* Check all the children of the given DIE. If it contains nested
4190 subprograms, then check their pc bounds. Likewise, we need to
4191 check lexical blocks as well, as they may also contain subprogram
4192 definitions. */
4193 while (child && child->tag)
4194 {
4195 if (child->tag == DW_TAG_subprogram
4196 || child->tag == DW_TAG_lexical_block)
4197 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
4198 child = sibling_die (child);
4199 }
4200 }
4201
4202 /* Get the low and high pc's represented by the scope DIE, and store
4203 them in *LOWPC and *HIGHPC. If the correct values can't be
4204 determined, set *LOWPC to -1 and *HIGHPC to 0. */
4205
4206 static void
4207 get_scope_pc_bounds (struct die_info *die,
4208 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4209 struct dwarf2_cu *cu)
4210 {
4211 CORE_ADDR best_low = (CORE_ADDR) -1;
4212 CORE_ADDR best_high = (CORE_ADDR) 0;
4213 CORE_ADDR current_low, current_high;
4214
4215 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
4216 {
4217 best_low = current_low;
4218 best_high = current_high;
4219 }
4220 else
4221 {
4222 struct die_info *child = die->child;
4223
4224 while (child && child->tag)
4225 {
4226 switch (child->tag) {
4227 case DW_TAG_subprogram:
4228 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
4229 break;
4230 case DW_TAG_namespace:
4231 /* FIXME: carlton/2004-01-16: Should we do this for
4232 DW_TAG_class_type/DW_TAG_structure_type, too? I think
4233 that current GCC's always emit the DIEs corresponding
4234 to definitions of methods of classes as children of a
4235 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
4236 the DIEs giving the declarations, which could be
4237 anywhere). But I don't see any reason why the
4238 standards says that they have to be there. */
4239 get_scope_pc_bounds (child, &current_low, &current_high, cu);
4240
4241 if (current_low != ((CORE_ADDR) -1))
4242 {
4243 best_low = min (best_low, current_low);
4244 best_high = max (best_high, current_high);
4245 }
4246 break;
4247 default:
4248 /* Ignore. */
4249 break;
4250 }
4251
4252 child = sibling_die (child);
4253 }
4254 }
4255
4256 *lowpc = best_low;
4257 *highpc = best_high;
4258 }
4259
4260 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
4261 in DIE. */
4262 static void
4263 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
4264 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
4265 {
4266 struct attribute *attr;
4267
4268 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4269 if (attr)
4270 {
4271 CORE_ADDR high = DW_ADDR (attr);
4272 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4273 if (attr)
4274 {
4275 CORE_ADDR low = DW_ADDR (attr);
4276 record_block_range (block, baseaddr + low, baseaddr + high - 1);
4277 }
4278 }
4279
4280 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4281 if (attr)
4282 {
4283 bfd *obfd = cu->objfile->obfd;
4284
4285 /* The value of the DW_AT_ranges attribute is the offset of the
4286 address range list in the .debug_ranges section. */
4287 unsigned long offset = DW_UNSND (attr);
4288 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
4289
4290 /* For some target architectures, but not others, the
4291 read_address function sign-extends the addresses it returns.
4292 To recognize base address selection entries, we need a
4293 mask. */
4294 unsigned int addr_size = cu->header.addr_size;
4295 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4296
4297 /* The base address, to which the next pair is relative. Note
4298 that this 'base' is a DWARF concept: most entries in a range
4299 list are relative, to reduce the number of relocs against the
4300 debugging information. This is separate from this function's
4301 'baseaddr' argument, which GDB uses to relocate debugging
4302 information from a shared library based on the address at
4303 which the library was loaded. */
4304 CORE_ADDR base = cu->base_address;
4305 int base_known = cu->base_known;
4306
4307 if (offset >= dwarf2_per_objfile->ranges.size)
4308 {
4309 complaint (&symfile_complaints,
4310 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
4311 offset);
4312 return;
4313 }
4314
4315 for (;;)
4316 {
4317 unsigned int bytes_read;
4318 CORE_ADDR start, end;
4319
4320 start = read_address (obfd, buffer, cu, &bytes_read);
4321 buffer += bytes_read;
4322 end = read_address (obfd, buffer, cu, &bytes_read);
4323 buffer += bytes_read;
4324
4325 /* Did we find the end of the range list? */
4326 if (start == 0 && end == 0)
4327 break;
4328
4329 /* Did we find a base address selection entry? */
4330 else if ((start & base_select_mask) == base_select_mask)
4331 {
4332 base = end;
4333 base_known = 1;
4334 }
4335
4336 /* We found an ordinary address range. */
4337 else
4338 {
4339 if (!base_known)
4340 {
4341 complaint (&symfile_complaints,
4342 _("Invalid .debug_ranges data (no base address)"));
4343 return;
4344 }
4345
4346 record_block_range (block,
4347 baseaddr + base + start,
4348 baseaddr + base + end - 1);
4349 }
4350 }
4351 }
4352 }
4353
4354 /* Add an aggregate field to the field list. */
4355
4356 static void
4357 dwarf2_add_field (struct field_info *fip, struct die_info *die,
4358 struct dwarf2_cu *cu)
4359 {
4360 struct objfile *objfile = cu->objfile;
4361 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4362 struct nextfield *new_field;
4363 struct attribute *attr;
4364 struct field *fp;
4365 char *fieldname = "";
4366
4367 /* Allocate a new field list entry and link it in. */
4368 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
4369 make_cleanup (xfree, new_field);
4370 memset (new_field, 0, sizeof (struct nextfield));
4371
4372 if (die->tag == DW_TAG_inheritance)
4373 {
4374 new_field->next = fip->baseclasses;
4375 fip->baseclasses = new_field;
4376 }
4377 else
4378 {
4379 new_field->next = fip->fields;
4380 fip->fields = new_field;
4381 }
4382 fip->nfields++;
4383
4384 /* Handle accessibility and virtuality of field.
4385 The default accessibility for members is public, the default
4386 accessibility for inheritance is private. */
4387 if (die->tag != DW_TAG_inheritance)
4388 new_field->accessibility = DW_ACCESS_public;
4389 else
4390 new_field->accessibility = DW_ACCESS_private;
4391 new_field->virtuality = DW_VIRTUALITY_none;
4392
4393 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
4394 if (attr)
4395 new_field->accessibility = DW_UNSND (attr);
4396 if (new_field->accessibility != DW_ACCESS_public)
4397 fip->non_public_fields = 1;
4398 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
4399 if (attr)
4400 new_field->virtuality = DW_UNSND (attr);
4401
4402 fp = &new_field->field;
4403
4404 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
4405 {
4406 /* Data member other than a C++ static data member. */
4407
4408 /* Get type of field. */
4409 fp->type = die_type (die, cu);
4410
4411 SET_FIELD_BITPOS (*fp, 0);
4412
4413 /* Get bit size of field (zero if none). */
4414 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
4415 if (attr)
4416 {
4417 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
4418 }
4419 else
4420 {
4421 FIELD_BITSIZE (*fp) = 0;
4422 }
4423
4424 /* Get bit offset of field. */
4425 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
4426 if (attr)
4427 {
4428 int byte_offset = 0;
4429
4430 if (attr_form_is_section_offset (attr))
4431 dwarf2_complex_location_expr_complaint ();
4432 else if (attr_form_is_constant (attr))
4433 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4434 else if (attr_form_is_block (attr))
4435 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4436 else
4437 dwarf2_complex_location_expr_complaint ();
4438
4439 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4440 }
4441 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
4442 if (attr)
4443 {
4444 if (gdbarch_bits_big_endian (gdbarch))
4445 {
4446 /* For big endian bits, the DW_AT_bit_offset gives the
4447 additional bit offset from the MSB of the containing
4448 anonymous object to the MSB of the field. We don't
4449 have to do anything special since we don't need to
4450 know the size of the anonymous object. */
4451 FIELD_BITPOS (*fp) += DW_UNSND (attr);
4452 }
4453 else
4454 {
4455 /* For little endian bits, compute the bit offset to the
4456 MSB of the anonymous object, subtract off the number of
4457 bits from the MSB of the field to the MSB of the
4458 object, and then subtract off the number of bits of
4459 the field itself. The result is the bit offset of
4460 the LSB of the field. */
4461 int anonymous_size;
4462 int bit_offset = DW_UNSND (attr);
4463
4464 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4465 if (attr)
4466 {
4467 /* The size of the anonymous object containing
4468 the bit field is explicit, so use the
4469 indicated size (in bytes). */
4470 anonymous_size = DW_UNSND (attr);
4471 }
4472 else
4473 {
4474 /* The size of the anonymous object containing
4475 the bit field must be inferred from the type
4476 attribute of the data member containing the
4477 bit field. */
4478 anonymous_size = TYPE_LENGTH (fp->type);
4479 }
4480 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
4481 - bit_offset - FIELD_BITSIZE (*fp);
4482 }
4483 }
4484
4485 /* Get name of field. */
4486 fieldname = dwarf2_name (die, cu);
4487 if (fieldname == NULL)
4488 fieldname = "";
4489
4490 /* The name is already allocated along with this objfile, so we don't
4491 need to duplicate it for the type. */
4492 fp->name = fieldname;
4493
4494 /* Change accessibility for artificial fields (e.g. virtual table
4495 pointer or virtual base class pointer) to private. */
4496 if (dwarf2_attr (die, DW_AT_artificial, cu))
4497 {
4498 FIELD_ARTIFICIAL (*fp) = 1;
4499 new_field->accessibility = DW_ACCESS_private;
4500 fip->non_public_fields = 1;
4501 }
4502 }
4503 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
4504 {
4505 /* C++ static member. */
4506
4507 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
4508 is a declaration, but all versions of G++ as of this writing
4509 (so through at least 3.2.1) incorrectly generate
4510 DW_TAG_variable tags. */
4511
4512 char *physname;
4513
4514 /* Get name of field. */
4515 fieldname = dwarf2_name (die, cu);
4516 if (fieldname == NULL)
4517 return;
4518
4519 /* Get physical name. */
4520 physname = dwarf2_linkage_name (die, cu);
4521
4522 /* The name is already allocated along with this objfile, so we don't
4523 need to duplicate it for the type. */
4524 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
4525 FIELD_TYPE (*fp) = die_type (die, cu);
4526 FIELD_NAME (*fp) = fieldname;
4527 }
4528 else if (die->tag == DW_TAG_inheritance)
4529 {
4530 /* C++ base class field. */
4531 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
4532 if (attr)
4533 {
4534 int byte_offset = 0;
4535
4536 if (attr_form_is_section_offset (attr))
4537 dwarf2_complex_location_expr_complaint ();
4538 else if (attr_form_is_constant (attr))
4539 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4540 else if (attr_form_is_block (attr))
4541 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4542 else
4543 dwarf2_complex_location_expr_complaint ();
4544
4545 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4546 }
4547 FIELD_BITSIZE (*fp) = 0;
4548 FIELD_TYPE (*fp) = die_type (die, cu);
4549 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
4550 fip->nbaseclasses++;
4551 }
4552 }
4553
4554 /* Create the vector of fields, and attach it to the type. */
4555
4556 static void
4557 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
4558 struct dwarf2_cu *cu)
4559 {
4560 int nfields = fip->nfields;
4561
4562 /* Record the field count, allocate space for the array of fields,
4563 and create blank accessibility bitfields if necessary. */
4564 TYPE_NFIELDS (type) = nfields;
4565 TYPE_FIELDS (type) = (struct field *)
4566 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4567 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4568
4569 if (fip->non_public_fields && cu->language != language_ada)
4570 {
4571 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4572
4573 TYPE_FIELD_PRIVATE_BITS (type) =
4574 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4575 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4576
4577 TYPE_FIELD_PROTECTED_BITS (type) =
4578 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4579 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4580
4581 TYPE_FIELD_IGNORE_BITS (type) =
4582 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4583 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4584 }
4585
4586 /* If the type has baseclasses, allocate and clear a bit vector for
4587 TYPE_FIELD_VIRTUAL_BITS. */
4588 if (fip->nbaseclasses && cu->language != language_ada)
4589 {
4590 int num_bytes = B_BYTES (fip->nbaseclasses);
4591 unsigned char *pointer;
4592
4593 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4594 pointer = TYPE_ALLOC (type, num_bytes);
4595 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
4596 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
4597 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
4598 }
4599
4600 /* Copy the saved-up fields into the field vector. Start from the head
4601 of the list, adding to the tail of the field array, so that they end
4602 up in the same order in the array in which they were added to the list. */
4603 while (nfields-- > 0)
4604 {
4605 struct nextfield *fieldp;
4606
4607 if (fip->fields)
4608 {
4609 fieldp = fip->fields;
4610 fip->fields = fieldp->next;
4611 }
4612 else
4613 {
4614 fieldp = fip->baseclasses;
4615 fip->baseclasses = fieldp->next;
4616 }
4617
4618 TYPE_FIELD (type, nfields) = fieldp->field;
4619 switch (fieldp->accessibility)
4620 {
4621 case DW_ACCESS_private:
4622 if (cu->language != language_ada)
4623 SET_TYPE_FIELD_PRIVATE (type, nfields);
4624 break;
4625
4626 case DW_ACCESS_protected:
4627 if (cu->language != language_ada)
4628 SET_TYPE_FIELD_PROTECTED (type, nfields);
4629 break;
4630
4631 case DW_ACCESS_public:
4632 break;
4633
4634 default:
4635 /* Unknown accessibility. Complain and treat it as public. */
4636 {
4637 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4638 fieldp->accessibility);
4639 }
4640 break;
4641 }
4642 if (nfields < fip->nbaseclasses)
4643 {
4644 switch (fieldp->virtuality)
4645 {
4646 case DW_VIRTUALITY_virtual:
4647 case DW_VIRTUALITY_pure_virtual:
4648 if (cu->language == language_ada)
4649 error ("unexpected virtuality in component of Ada type");
4650 SET_TYPE_FIELD_VIRTUAL (type, nfields);
4651 break;
4652 }
4653 }
4654 }
4655 }
4656
4657 /* Add a member function to the proper fieldlist. */
4658
4659 static void
4660 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
4661 struct type *type, struct dwarf2_cu *cu)
4662 {
4663 struct objfile *objfile = cu->objfile;
4664 struct attribute *attr;
4665 struct fnfieldlist *flp;
4666 int i;
4667 struct fn_field *fnp;
4668 char *fieldname;
4669 char *physname;
4670 struct nextfnfield *new_fnfield;
4671 struct type *this_type;
4672
4673 if (cu->language == language_ada)
4674 error ("unexpected member function in Ada type");
4675
4676 /* Get name of member function. */
4677 fieldname = dwarf2_name (die, cu);
4678 if (fieldname == NULL)
4679 return;
4680
4681 /* Get the mangled name. */
4682 physname = dwarf2_linkage_name (die, cu);
4683
4684 /* Look up member function name in fieldlist. */
4685 for (i = 0; i < fip->nfnfields; i++)
4686 {
4687 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
4688 break;
4689 }
4690
4691 /* Create new list element if necessary. */
4692 if (i < fip->nfnfields)
4693 flp = &fip->fnfieldlists[i];
4694 else
4695 {
4696 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
4697 {
4698 fip->fnfieldlists = (struct fnfieldlist *)
4699 xrealloc (fip->fnfieldlists,
4700 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
4701 * sizeof (struct fnfieldlist));
4702 if (fip->nfnfields == 0)
4703 make_cleanup (free_current_contents, &fip->fnfieldlists);
4704 }
4705 flp = &fip->fnfieldlists[fip->nfnfields];
4706 flp->name = fieldname;
4707 flp->length = 0;
4708 flp->head = NULL;
4709 fip->nfnfields++;
4710 }
4711
4712 /* Create a new member function field and chain it to the field list
4713 entry. */
4714 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
4715 make_cleanup (xfree, new_fnfield);
4716 memset (new_fnfield, 0, sizeof (struct nextfnfield));
4717 new_fnfield->next = flp->head;
4718 flp->head = new_fnfield;
4719 flp->length++;
4720
4721 /* Fill in the member function field info. */
4722 fnp = &new_fnfield->fnfield;
4723 /* The name is already allocated along with this objfile, so we don't
4724 need to duplicate it for the type. */
4725 fnp->physname = physname ? physname : "";
4726 fnp->type = alloc_type (objfile);
4727 this_type = read_type_die (die, cu);
4728 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
4729 {
4730 int nparams = TYPE_NFIELDS (this_type);
4731
4732 /* TYPE is the domain of this method, and THIS_TYPE is the type
4733 of the method itself (TYPE_CODE_METHOD). */
4734 smash_to_method_type (fnp->type, type,
4735 TYPE_TARGET_TYPE (this_type),
4736 TYPE_FIELDS (this_type),
4737 TYPE_NFIELDS (this_type),
4738 TYPE_VARARGS (this_type));
4739
4740 /* Handle static member functions.
4741 Dwarf2 has no clean way to discern C++ static and non-static
4742 member functions. G++ helps GDB by marking the first
4743 parameter for non-static member functions (which is the
4744 this pointer) as artificial. We obtain this information
4745 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
4746 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
4747 fnp->voffset = VOFFSET_STATIC;
4748 }
4749 else
4750 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4751 physname);
4752
4753 /* Get fcontext from DW_AT_containing_type if present. */
4754 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
4755 fnp->fcontext = die_containing_type (die, cu);
4756
4757 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
4758 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
4759
4760 /* Get accessibility. */
4761 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
4762 if (attr)
4763 {
4764 switch (DW_UNSND (attr))
4765 {
4766 case DW_ACCESS_private:
4767 fnp->is_private = 1;
4768 break;
4769 case DW_ACCESS_protected:
4770 fnp->is_protected = 1;
4771 break;
4772 }
4773 }
4774
4775 /* Check for artificial methods. */
4776 attr = dwarf2_attr (die, DW_AT_artificial, cu);
4777 if (attr && DW_UNSND (attr) != 0)
4778 fnp->is_artificial = 1;
4779
4780 /* Get index in virtual function table if it is a virtual member
4781 function. For GCC, this is an offset in the appropriate
4782 virtual table, as specified by DW_AT_containing_type. For
4783 everyone else, it is an expression to be evaluated relative
4784 to the object address. */
4785
4786 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
4787 if (attr && fnp->fcontext)
4788 {
4789 /* Support the .debug_loc offsets */
4790 if (attr_form_is_block (attr))
4791 {
4792 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
4793 }
4794 else if (attr_form_is_section_offset (attr))
4795 {
4796 dwarf2_complex_location_expr_complaint ();
4797 }
4798 else
4799 {
4800 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
4801 fieldname);
4802 }
4803 }
4804 else if (attr)
4805 {
4806 /* We only support trivial expressions here. This hack will work
4807 for v3 classes, which always start with the vtable pointer. */
4808 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0
4809 && DW_BLOCK (attr)->data[0] == DW_OP_deref)
4810 {
4811 struct dwarf_block blk;
4812 blk.size = DW_BLOCK (attr)->size - 1;
4813 blk.data = DW_BLOCK (attr)->data + 1;
4814 fnp->voffset = decode_locdesc (&blk, cu);
4815 if ((fnp->voffset % cu->header.addr_size) != 0)
4816 dwarf2_complex_location_expr_complaint ();
4817 else
4818 fnp->voffset /= cu->header.addr_size;
4819 fnp->voffset += 2;
4820 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
4821 }
4822 else
4823 dwarf2_complex_location_expr_complaint ();
4824 }
4825 else
4826 {
4827 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
4828 if (attr && DW_UNSND (attr))
4829 {
4830 /* GCC does this, as of 2008-08-25; PR debug/37237. */
4831 complaint (&symfile_complaints,
4832 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
4833 fieldname, die->offset);
4834 TYPE_CPLUS_DYNAMIC (type) = 1;
4835 }
4836 }
4837 }
4838
4839 /* Create the vector of member function fields, and attach it to the type. */
4840
4841 static void
4842 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
4843 struct dwarf2_cu *cu)
4844 {
4845 struct fnfieldlist *flp;
4846 int total_length = 0;
4847 int i;
4848
4849 if (cu->language == language_ada)
4850 error ("unexpected member functions in Ada type");
4851
4852 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4853 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
4854 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
4855
4856 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
4857 {
4858 struct nextfnfield *nfp = flp->head;
4859 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
4860 int k;
4861
4862 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
4863 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
4864 fn_flp->fn_fields = (struct fn_field *)
4865 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
4866 for (k = flp->length; (k--, nfp); nfp = nfp->next)
4867 fn_flp->fn_fields[k] = nfp->fnfield;
4868
4869 total_length += flp->length;
4870 }
4871
4872 TYPE_NFN_FIELDS (type) = fip->nfnfields;
4873 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4874 }
4875
4876 /* Returns non-zero if NAME is the name of a vtable member in CU's
4877 language, zero otherwise. */
4878 static int
4879 is_vtable_name (const char *name, struct dwarf2_cu *cu)
4880 {
4881 static const char vptr[] = "_vptr";
4882 static const char vtable[] = "vtable";
4883
4884 /* Look for the C++ and Java forms of the vtable. */
4885 if ((cu->language == language_java
4886 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
4887 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
4888 && is_cplus_marker (name[sizeof (vptr) - 1])))
4889 return 1;
4890
4891 return 0;
4892 }
4893
4894 /* GCC outputs unnamed structures that are really pointers to member
4895 functions, with the ABI-specified layout. If TYPE describes
4896 such a structure, smash it into a member function type.
4897
4898 GCC shouldn't do this; it should just output pointer to member DIEs.
4899 This is GCC PR debug/28767. */
4900
4901 static void
4902 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
4903 {
4904 struct type *pfn_type, *domain_type, *new_type;
4905
4906 /* Check for a structure with no name and two children. */
4907 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
4908 return;
4909
4910 /* Check for __pfn and __delta members. */
4911 if (TYPE_FIELD_NAME (type, 0) == NULL
4912 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
4913 || TYPE_FIELD_NAME (type, 1) == NULL
4914 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
4915 return;
4916
4917 /* Find the type of the method. */
4918 pfn_type = TYPE_FIELD_TYPE (type, 0);
4919 if (pfn_type == NULL
4920 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
4921 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
4922 return;
4923
4924 /* Look for the "this" argument. */
4925 pfn_type = TYPE_TARGET_TYPE (pfn_type);
4926 if (TYPE_NFIELDS (pfn_type) == 0
4927 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
4928 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
4929 return;
4930
4931 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
4932 new_type = alloc_type (objfile);
4933 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
4934 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
4935 TYPE_VARARGS (pfn_type));
4936 smash_to_methodptr_type (type, new_type);
4937 }
4938
4939 /* Called when we find the DIE that starts a structure or union scope
4940 (definition) to process all dies that define the members of the
4941 structure or union.
4942
4943 NOTE: we need to call struct_type regardless of whether or not the
4944 DIE has an at_name attribute, since it might be an anonymous
4945 structure or union. This gets the type entered into our set of
4946 user defined types.
4947
4948 However, if the structure is incomplete (an opaque struct/union)
4949 then suppress creating a symbol table entry for it since gdb only
4950 wants to find the one with the complete definition. Note that if
4951 it is complete, we just call new_symbol, which does it's own
4952 checking about whether the struct/union is anonymous or not (and
4953 suppresses creating a symbol table entry itself). */
4954
4955 static struct type *
4956 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
4957 {
4958 struct objfile *objfile = cu->objfile;
4959 struct type *type;
4960 struct attribute *attr;
4961 char *name;
4962 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4963
4964 /* If the definition of this type lives in .debug_types, read that type.
4965 Don't follow DW_AT_specification though, that will take us back up
4966 the chain and we want to go down. */
4967 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
4968 if (attr)
4969 {
4970 struct dwarf2_cu *type_cu = cu;
4971 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
4972 /* We could just recurse on read_structure_type, but we need to call
4973 get_die_type to ensure only one type for this DIE is created.
4974 This is important, for example, because for c++ classes we need
4975 TYPE_NAME set which is only done by new_symbol. Blech. */
4976 type = read_type_die (type_die, type_cu);
4977 return set_die_type (die, type, cu);
4978 }
4979
4980 type = alloc_type (objfile);
4981 INIT_CPLUS_SPECIFIC (type);
4982
4983 name = dwarf2_name (die, cu);
4984 if (name != NULL)
4985 {
4986 if (cu->language == language_cplus
4987 || cu->language == language_java)
4988 {
4989 const char *new_prefix = determine_class_name (die, cu);
4990 TYPE_TAG_NAME (type) = (char *) new_prefix;
4991 }
4992 else
4993 {
4994 /* The name is already allocated along with this objfile, so
4995 we don't need to duplicate it for the type. */
4996 TYPE_TAG_NAME (type) = name;
4997 }
4998 }
4999
5000 if (die->tag == DW_TAG_structure_type)
5001 {
5002 TYPE_CODE (type) = TYPE_CODE_STRUCT;
5003 }
5004 else if (die->tag == DW_TAG_union_type)
5005 {
5006 TYPE_CODE (type) = TYPE_CODE_UNION;
5007 }
5008 else
5009 {
5010 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
5011 in gdbtypes.h. */
5012 TYPE_CODE (type) = TYPE_CODE_CLASS;
5013 }
5014
5015 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5016 if (attr)
5017 {
5018 TYPE_LENGTH (type) = DW_UNSND (attr);
5019 }
5020 else
5021 {
5022 TYPE_LENGTH (type) = 0;
5023 }
5024
5025 TYPE_STUB_SUPPORTED (type) = 1;
5026 if (die_is_declaration (die, cu))
5027 TYPE_STUB (type) = 1;
5028
5029 set_descriptive_type (type, die, cu);
5030
5031 /* We need to add the type field to the die immediately so we don't
5032 infinitely recurse when dealing with pointers to the structure
5033 type within the structure itself. */
5034 set_die_type (die, type, cu);
5035
5036 if (die->child != NULL && ! die_is_declaration (die, cu))
5037 {
5038 struct field_info fi;
5039 struct die_info *child_die;
5040
5041 memset (&fi, 0, sizeof (struct field_info));
5042
5043 child_die = die->child;
5044
5045 while (child_die && child_die->tag)
5046 {
5047 if (child_die->tag == DW_TAG_member
5048 || child_die->tag == DW_TAG_variable)
5049 {
5050 /* NOTE: carlton/2002-11-05: A C++ static data member
5051 should be a DW_TAG_member that is a declaration, but
5052 all versions of G++ as of this writing (so through at
5053 least 3.2.1) incorrectly generate DW_TAG_variable
5054 tags for them instead. */
5055 dwarf2_add_field (&fi, child_die, cu);
5056 }
5057 else if (child_die->tag == DW_TAG_subprogram)
5058 {
5059 /* C++ member function. */
5060 dwarf2_add_member_fn (&fi, child_die, type, cu);
5061 }
5062 else if (child_die->tag == DW_TAG_inheritance)
5063 {
5064 /* C++ base class field. */
5065 dwarf2_add_field (&fi, child_die, cu);
5066 }
5067 child_die = sibling_die (child_die);
5068 }
5069
5070 /* Attach fields and member functions to the type. */
5071 if (fi.nfields)
5072 dwarf2_attach_fields_to_type (&fi, type, cu);
5073 if (fi.nfnfields)
5074 {
5075 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
5076
5077 /* Get the type which refers to the base class (possibly this
5078 class itself) which contains the vtable pointer for the current
5079 class from the DW_AT_containing_type attribute. This use of
5080 DW_AT_containing_type is a GNU extension. */
5081
5082 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
5083 {
5084 struct type *t = die_containing_type (die, cu);
5085
5086 TYPE_VPTR_BASETYPE (type) = t;
5087 if (type == t)
5088 {
5089 int i;
5090
5091 /* Our own class provides vtbl ptr. */
5092 for (i = TYPE_NFIELDS (t) - 1;
5093 i >= TYPE_N_BASECLASSES (t);
5094 --i)
5095 {
5096 char *fieldname = TYPE_FIELD_NAME (t, i);
5097
5098 if (is_vtable_name (fieldname, cu))
5099 {
5100 TYPE_VPTR_FIELDNO (type) = i;
5101 break;
5102 }
5103 }
5104
5105 /* Complain if virtual function table field not found. */
5106 if (i < TYPE_N_BASECLASSES (t))
5107 complaint (&symfile_complaints,
5108 _("virtual function table pointer not found when defining class '%s'"),
5109 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
5110 "");
5111 }
5112 else
5113 {
5114 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
5115 }
5116 }
5117 else if (cu->producer
5118 && strncmp (cu->producer,
5119 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
5120 {
5121 /* The IBM XLC compiler does not provide direct indication
5122 of the containing type, but the vtable pointer is
5123 always named __vfp. */
5124
5125 int i;
5126
5127 for (i = TYPE_NFIELDS (type) - 1;
5128 i >= TYPE_N_BASECLASSES (type);
5129 --i)
5130 {
5131 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
5132 {
5133 TYPE_VPTR_FIELDNO (type) = i;
5134 TYPE_VPTR_BASETYPE (type) = type;
5135 break;
5136 }
5137 }
5138 }
5139 }
5140 }
5141
5142 quirk_gcc_member_function_pointer (type, cu->objfile);
5143
5144 do_cleanups (back_to);
5145 return type;
5146 }
5147
5148 static void
5149 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
5150 {
5151 struct objfile *objfile = cu->objfile;
5152 struct die_info *child_die = die->child;
5153 struct type *this_type;
5154
5155 this_type = get_die_type (die, cu);
5156 if (this_type == NULL)
5157 this_type = read_structure_type (die, cu);
5158
5159 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
5160 snapshots) has been known to create a die giving a declaration
5161 for a class that has, as a child, a die giving a definition for a
5162 nested class. So we have to process our children even if the
5163 current die is a declaration. Normally, of course, a declaration
5164 won't have any children at all. */
5165
5166 while (child_die != NULL && child_die->tag)
5167 {
5168 if (child_die->tag == DW_TAG_member
5169 || child_die->tag == DW_TAG_variable
5170 || child_die->tag == DW_TAG_inheritance)
5171 {
5172 /* Do nothing. */
5173 }
5174 else
5175 process_die (child_die, cu);
5176
5177 child_die = sibling_die (child_die);
5178 }
5179
5180 /* Do not consider external references. According to the DWARF standard,
5181 these DIEs are identified by the fact that they have no byte_size
5182 attribute, and a declaration attribute. */
5183 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
5184 || !die_is_declaration (die, cu))
5185 new_symbol (die, this_type, cu);
5186 }
5187
5188 /* Given a DW_AT_enumeration_type die, set its type. We do not
5189 complete the type's fields yet, or create any symbols. */
5190
5191 static struct type *
5192 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
5193 {
5194 struct objfile *objfile = cu->objfile;
5195 struct type *type;
5196 struct attribute *attr;
5197 const char *name;
5198
5199 /* If the definition of this type lives in .debug_types, read that type.
5200 Don't follow DW_AT_specification though, that will take us back up
5201 the chain and we want to go down. */
5202 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5203 if (attr)
5204 {
5205 struct dwarf2_cu *type_cu = cu;
5206 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
5207 type = read_type_die (type_die, type_cu);
5208 return set_die_type (die, type, cu);
5209 }
5210
5211 type = alloc_type (objfile);
5212
5213 TYPE_CODE (type) = TYPE_CODE_ENUM;
5214 name = dwarf2_full_name (die, cu);
5215 if (name != NULL)
5216 TYPE_TAG_NAME (type) = (char *) name;
5217
5218 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5219 if (attr)
5220 {
5221 TYPE_LENGTH (type) = DW_UNSND (attr);
5222 }
5223 else
5224 {
5225 TYPE_LENGTH (type) = 0;
5226 }
5227
5228 /* The enumeration DIE can be incomplete. In Ada, any type can be
5229 declared as private in the package spec, and then defined only
5230 inside the package body. Such types are known as Taft Amendment
5231 Types. When another package uses such a type, an incomplete DIE
5232 may be generated by the compiler. */
5233 if (die_is_declaration (die, cu))
5234 TYPE_STUB (type) = 1;
5235
5236 return set_die_type (die, type, cu);
5237 }
5238
5239 /* Determine the name of the type represented by DIE, which should be
5240 a named C++ or Java compound type. Return the name in question,
5241 allocated on the objfile obstack. */
5242
5243 static const char *
5244 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
5245 {
5246 const char *new_prefix = NULL;
5247
5248 /* If we don't have namespace debug info, guess the name by trying
5249 to demangle the names of members, just like we did in
5250 guess_structure_name. */
5251 if (!processing_has_namespace_info)
5252 {
5253 struct die_info *child;
5254
5255 for (child = die->child;
5256 child != NULL && child->tag != 0;
5257 child = sibling_die (child))
5258 {
5259 if (child->tag == DW_TAG_subprogram)
5260 {
5261 char *phys_prefix
5262 = language_class_name_from_physname (cu->language_defn,
5263 dwarf2_linkage_name
5264 (child, cu));
5265
5266 if (phys_prefix != NULL)
5267 {
5268 new_prefix
5269 = obsavestring (phys_prefix, strlen (phys_prefix),
5270 &cu->objfile->objfile_obstack);
5271 xfree (phys_prefix);
5272 break;
5273 }
5274 }
5275 }
5276 }
5277
5278 if (new_prefix == NULL)
5279 new_prefix = dwarf2_full_name (die, cu);
5280
5281 return new_prefix;
5282 }
5283
5284 /* Given a pointer to a die which begins an enumeration, process all
5285 the dies that define the members of the enumeration, and create the
5286 symbol for the enumeration type.
5287
5288 NOTE: We reverse the order of the element list. */
5289
5290 static void
5291 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
5292 {
5293 struct objfile *objfile = cu->objfile;
5294 struct die_info *child_die;
5295 struct field *fields;
5296 struct symbol *sym;
5297 int num_fields;
5298 int unsigned_enum = 1;
5299 char *name;
5300 struct type *this_type;
5301
5302 num_fields = 0;
5303 fields = NULL;
5304 this_type = get_die_type (die, cu);
5305 if (this_type == NULL)
5306 this_type = read_enumeration_type (die, cu);
5307 if (die->child != NULL)
5308 {
5309 child_die = die->child;
5310 while (child_die && child_die->tag)
5311 {
5312 if (child_die->tag != DW_TAG_enumerator)
5313 {
5314 process_die (child_die, cu);
5315 }
5316 else
5317 {
5318 name = dwarf2_name (child_die, cu);
5319 if (name)
5320 {
5321 sym = new_symbol (child_die, this_type, cu);
5322 if (SYMBOL_VALUE (sym) < 0)
5323 unsigned_enum = 0;
5324
5325 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
5326 {
5327 fields = (struct field *)
5328 xrealloc (fields,
5329 (num_fields + DW_FIELD_ALLOC_CHUNK)
5330 * sizeof (struct field));
5331 }
5332
5333 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
5334 FIELD_TYPE (fields[num_fields]) = NULL;
5335 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
5336 FIELD_BITSIZE (fields[num_fields]) = 0;
5337
5338 num_fields++;
5339 }
5340 }
5341
5342 child_die = sibling_die (child_die);
5343 }
5344
5345 if (num_fields)
5346 {
5347 TYPE_NFIELDS (this_type) = num_fields;
5348 TYPE_FIELDS (this_type) = (struct field *)
5349 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
5350 memcpy (TYPE_FIELDS (this_type), fields,
5351 sizeof (struct field) * num_fields);
5352 xfree (fields);
5353 }
5354 if (unsigned_enum)
5355 TYPE_UNSIGNED (this_type) = 1;
5356 }
5357
5358 new_symbol (die, this_type, cu);
5359 }
5360
5361 /* Extract all information from a DW_TAG_array_type DIE and put it in
5362 the DIE's type field. For now, this only handles one dimensional
5363 arrays. */
5364
5365 static struct type *
5366 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
5367 {
5368 struct objfile *objfile = cu->objfile;
5369 struct die_info *child_die;
5370 struct type *type = NULL;
5371 struct type *element_type, *range_type, *index_type;
5372 struct type **range_types = NULL;
5373 struct attribute *attr;
5374 int ndim = 0;
5375 struct cleanup *back_to;
5376 char *name;
5377
5378 element_type = die_type (die, cu);
5379
5380 /* Irix 6.2 native cc creates array types without children for
5381 arrays with unspecified length. */
5382 if (die->child == NULL)
5383 {
5384 index_type = objfile_type (objfile)->builtin_int;
5385 range_type = create_range_type (NULL, index_type, 0, -1);
5386 type = create_array_type (NULL, element_type, range_type);
5387 return set_die_type (die, type, cu);
5388 }
5389
5390 back_to = make_cleanup (null_cleanup, NULL);
5391 child_die = die->child;
5392 while (child_die && child_die->tag)
5393 {
5394 if (child_die->tag == DW_TAG_subrange_type)
5395 {
5396 struct type *child_type = read_type_die (child_die, cu);
5397 if (child_type != NULL)
5398 {
5399 /* The range type was succesfully read. Save it for
5400 the array type creation. */
5401 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
5402 {
5403 range_types = (struct type **)
5404 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
5405 * sizeof (struct type *));
5406 if (ndim == 0)
5407 make_cleanup (free_current_contents, &range_types);
5408 }
5409 range_types[ndim++] = child_type;
5410 }
5411 }
5412 child_die = sibling_die (child_die);
5413 }
5414
5415 /* Dwarf2 dimensions are output from left to right, create the
5416 necessary array types in backwards order. */
5417
5418 type = element_type;
5419
5420 if (read_array_order (die, cu) == DW_ORD_col_major)
5421 {
5422 int i = 0;
5423 while (i < ndim)
5424 type = create_array_type (NULL, type, range_types[i++]);
5425 }
5426 else
5427 {
5428 while (ndim-- > 0)
5429 type = create_array_type (NULL, type, range_types[ndim]);
5430 }
5431
5432 /* Understand Dwarf2 support for vector types (like they occur on
5433 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
5434 array type. This is not part of the Dwarf2/3 standard yet, but a
5435 custom vendor extension. The main difference between a regular
5436 array and the vector variant is that vectors are passed by value
5437 to functions. */
5438 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
5439 if (attr)
5440 make_vector_type (type);
5441
5442 name = dwarf2_name (die, cu);
5443 if (name)
5444 TYPE_NAME (type) = name;
5445
5446 set_descriptive_type (type, die, cu);
5447
5448 do_cleanups (back_to);
5449
5450 /* Install the type in the die. */
5451 return set_die_type (die, type, cu);
5452 }
5453
5454 static enum dwarf_array_dim_ordering
5455 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
5456 {
5457 struct attribute *attr;
5458
5459 attr = dwarf2_attr (die, DW_AT_ordering, cu);
5460
5461 if (attr) return DW_SND (attr);
5462
5463 /*
5464 GNU F77 is a special case, as at 08/2004 array type info is the
5465 opposite order to the dwarf2 specification, but data is still
5466 laid out as per normal fortran.
5467
5468 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
5469 version checking.
5470 */
5471
5472 if (cu->language == language_fortran
5473 && cu->producer && strstr (cu->producer, "GNU F77"))
5474 {
5475 return DW_ORD_row_major;
5476 }
5477
5478 switch (cu->language_defn->la_array_ordering)
5479 {
5480 case array_column_major:
5481 return DW_ORD_col_major;
5482 case array_row_major:
5483 default:
5484 return DW_ORD_row_major;
5485 };
5486 }
5487
5488 /* Extract all information from a DW_TAG_set_type DIE and put it in
5489 the DIE's type field. */
5490
5491 static struct type *
5492 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
5493 {
5494 struct type *set_type = create_set_type (NULL, die_type (die, cu));
5495
5496 return set_die_type (die, set_type, cu);
5497 }
5498
5499 /* First cut: install each common block member as a global variable. */
5500
5501 static void
5502 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
5503 {
5504 struct die_info *child_die;
5505 struct attribute *attr;
5506 struct symbol *sym;
5507 CORE_ADDR base = (CORE_ADDR) 0;
5508
5509 attr = dwarf2_attr (die, DW_AT_location, cu);
5510 if (attr)
5511 {
5512 /* Support the .debug_loc offsets */
5513 if (attr_form_is_block (attr))
5514 {
5515 base = decode_locdesc (DW_BLOCK (attr), cu);
5516 }
5517 else if (attr_form_is_section_offset (attr))
5518 {
5519 dwarf2_complex_location_expr_complaint ();
5520 }
5521 else
5522 {
5523 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5524 "common block member");
5525 }
5526 }
5527 if (die->child != NULL)
5528 {
5529 child_die = die->child;
5530 while (child_die && child_die->tag)
5531 {
5532 sym = new_symbol (child_die, NULL, cu);
5533 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
5534 if (attr)
5535 {
5536 CORE_ADDR byte_offset = 0;
5537
5538 if (attr_form_is_section_offset (attr))
5539 dwarf2_complex_location_expr_complaint ();
5540 else if (attr_form_is_constant (attr))
5541 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
5542 else if (attr_form_is_block (attr))
5543 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
5544 else
5545 dwarf2_complex_location_expr_complaint ();
5546
5547 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
5548 add_symbol_to_list (sym, &global_symbols);
5549 }
5550 child_die = sibling_die (child_die);
5551 }
5552 }
5553 }
5554
5555 /* Create a type for a C++ namespace. */
5556
5557 static struct type *
5558 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
5559 {
5560 struct objfile *objfile = cu->objfile;
5561 const char *previous_prefix, *name;
5562 int is_anonymous;
5563 struct type *type;
5564
5565 /* For extensions, reuse the type of the original namespace. */
5566 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
5567 {
5568 struct die_info *ext_die;
5569 struct dwarf2_cu *ext_cu = cu;
5570 ext_die = dwarf2_extension (die, &ext_cu);
5571 type = read_type_die (ext_die, ext_cu);
5572 return set_die_type (die, type, cu);
5573 }
5574
5575 name = namespace_name (die, &is_anonymous, cu);
5576
5577 /* Now build the name of the current namespace. */
5578
5579 previous_prefix = determine_prefix (die, cu);
5580 if (previous_prefix[0] != '\0')
5581 name = typename_concat (&objfile->objfile_obstack,
5582 previous_prefix, name, cu);
5583
5584 /* Create the type. */
5585 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
5586 objfile);
5587 TYPE_NAME (type) = (char *) name;
5588 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5589
5590 set_die_type (die, type, cu);
5591
5592 return type;
5593 }
5594
5595 /* Read a C++ namespace. */
5596
5597 static void
5598 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
5599 {
5600 struct objfile *objfile = cu->objfile;
5601 const char *name;
5602 int is_anonymous;
5603
5604 /* Add a symbol associated to this if we haven't seen the namespace
5605 before. Also, add a using directive if it's an anonymous
5606 namespace. */
5607
5608 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5609 {
5610 struct type *type;
5611
5612 type = read_type_die (die, cu);
5613 new_symbol (die, type, cu);
5614
5615 name = namespace_name (die, &is_anonymous, cu);
5616 if (is_anonymous)
5617 {
5618 const char *previous_prefix = determine_prefix (die, cu);
5619 cp_add_using_directive (previous_prefix, TYPE_NAME (type));
5620 }
5621 }
5622
5623 if (die->child != NULL)
5624 {
5625 struct die_info *child_die = die->child;
5626
5627 while (child_die && child_die->tag)
5628 {
5629 process_die (child_die, cu);
5630 child_die = sibling_die (child_die);
5631 }
5632 }
5633 }
5634
5635 /* Read a Fortran module. */
5636
5637 static void
5638 read_module (struct die_info *die, struct dwarf2_cu *cu)
5639 {
5640 struct die_info *child_die = die->child;
5641
5642 /* FIXME: Support the separate Fortran module namespaces. */
5643
5644 while (child_die && child_die->tag)
5645 {
5646 process_die (child_die, cu);
5647 child_die = sibling_die (child_die);
5648 }
5649 }
5650
5651 /* Return the name of the namespace represented by DIE. Set
5652 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
5653 namespace. */
5654
5655 static const char *
5656 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
5657 {
5658 struct die_info *current_die;
5659 const char *name = NULL;
5660
5661 /* Loop through the extensions until we find a name. */
5662
5663 for (current_die = die;
5664 current_die != NULL;
5665 current_die = dwarf2_extension (die, &cu))
5666 {
5667 name = dwarf2_name (current_die, cu);
5668 if (name != NULL)
5669 break;
5670 }
5671
5672 /* Is it an anonymous namespace? */
5673
5674 *is_anonymous = (name == NULL);
5675 if (*is_anonymous)
5676 name = "(anonymous namespace)";
5677
5678 return name;
5679 }
5680
5681 /* Extract all information from a DW_TAG_pointer_type DIE and add to
5682 the user defined type vector. */
5683
5684 static struct type *
5685 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
5686 {
5687 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
5688 struct comp_unit_head *cu_header = &cu->header;
5689 struct type *type;
5690 struct attribute *attr_byte_size;
5691 struct attribute *attr_address_class;
5692 int byte_size, addr_class;
5693
5694 type = lookup_pointer_type (die_type (die, cu));
5695
5696 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
5697 if (attr_byte_size)
5698 byte_size = DW_UNSND (attr_byte_size);
5699 else
5700 byte_size = cu_header->addr_size;
5701
5702 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
5703 if (attr_address_class)
5704 addr_class = DW_UNSND (attr_address_class);
5705 else
5706 addr_class = DW_ADDR_none;
5707
5708 /* If the pointer size or address class is different than the
5709 default, create a type variant marked as such and set the
5710 length accordingly. */
5711 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
5712 {
5713 if (gdbarch_address_class_type_flags_p (gdbarch))
5714 {
5715 int type_flags;
5716
5717 type_flags = gdbarch_address_class_type_flags
5718 (gdbarch, byte_size, addr_class);
5719 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5720 == 0);
5721 type = make_type_with_address_space (type, type_flags);
5722 }
5723 else if (TYPE_LENGTH (type) != byte_size)
5724 {
5725 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
5726 }
5727 else {
5728 /* Should we also complain about unhandled address classes? */
5729 }
5730 }
5731
5732 TYPE_LENGTH (type) = byte_size;
5733 return set_die_type (die, type, cu);
5734 }
5735
5736 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
5737 the user defined type vector. */
5738
5739 static struct type *
5740 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
5741 {
5742 struct objfile *objfile = cu->objfile;
5743 struct type *type;
5744 struct type *to_type;
5745 struct type *domain;
5746
5747 to_type = die_type (die, cu);
5748 domain = die_containing_type (die, cu);
5749
5750 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
5751 type = lookup_methodptr_type (to_type);
5752 else
5753 type = lookup_memberptr_type (to_type, domain);
5754
5755 return set_die_type (die, type, cu);
5756 }
5757
5758 /* Extract all information from a DW_TAG_reference_type DIE and add to
5759 the user defined type vector. */
5760
5761 static struct type *
5762 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
5763 {
5764 struct comp_unit_head *cu_header = &cu->header;
5765 struct type *type;
5766 struct attribute *attr;
5767
5768 type = lookup_reference_type (die_type (die, cu));
5769 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5770 if (attr)
5771 {
5772 TYPE_LENGTH (type) = DW_UNSND (attr);
5773 }
5774 else
5775 {
5776 TYPE_LENGTH (type) = cu_header->addr_size;
5777 }
5778 return set_die_type (die, type, cu);
5779 }
5780
5781 static struct type *
5782 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
5783 {
5784 struct type *base_type, *cv_type;
5785
5786 base_type = die_type (die, cu);
5787 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
5788 return set_die_type (die, cv_type, cu);
5789 }
5790
5791 static struct type *
5792 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
5793 {
5794 struct type *base_type, *cv_type;
5795
5796 base_type = die_type (die, cu);
5797 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
5798 return set_die_type (die, cv_type, cu);
5799 }
5800
5801 /* Extract all information from a DW_TAG_string_type DIE and add to
5802 the user defined type vector. It isn't really a user defined type,
5803 but it behaves like one, with other DIE's using an AT_user_def_type
5804 attribute to reference it. */
5805
5806 static struct type *
5807 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
5808 {
5809 struct objfile *objfile = cu->objfile;
5810 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5811 struct type *type, *range_type, *index_type, *char_type;
5812 struct attribute *attr;
5813 unsigned int length;
5814
5815 attr = dwarf2_attr (die, DW_AT_string_length, cu);
5816 if (attr)
5817 {
5818 length = DW_UNSND (attr);
5819 }
5820 else
5821 {
5822 /* check for the DW_AT_byte_size attribute */
5823 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5824 if (attr)
5825 {
5826 length = DW_UNSND (attr);
5827 }
5828 else
5829 {
5830 length = 1;
5831 }
5832 }
5833
5834 index_type = objfile_type (objfile)->builtin_int;
5835 range_type = create_range_type (NULL, index_type, 1, length);
5836 char_type = language_string_char_type (cu->language_defn, gdbarch);
5837 type = create_string_type (NULL, char_type, range_type);
5838
5839 return set_die_type (die, type, cu);
5840 }
5841
5842 /* Handle DIES due to C code like:
5843
5844 struct foo
5845 {
5846 int (*funcp)(int a, long l);
5847 int b;
5848 };
5849
5850 ('funcp' generates a DW_TAG_subroutine_type DIE)
5851 */
5852
5853 static struct type *
5854 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
5855 {
5856 struct type *type; /* Type that this function returns */
5857 struct type *ftype; /* Function that returns above type */
5858 struct attribute *attr;
5859
5860 type = die_type (die, cu);
5861 ftype = lookup_function_type (type);
5862
5863 /* All functions in C++, Pascal and Java have prototypes. */
5864 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
5865 if ((attr && (DW_UNSND (attr) != 0))
5866 || cu->language == language_cplus
5867 || cu->language == language_java
5868 || cu->language == language_pascal)
5869 TYPE_PROTOTYPED (ftype) = 1;
5870
5871 /* Store the calling convention in the type if it's available in
5872 the subroutine die. Otherwise set the calling convention to
5873 the default value DW_CC_normal. */
5874 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
5875 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
5876
5877 /* We need to add the subroutine type to the die immediately so
5878 we don't infinitely recurse when dealing with parameters
5879 declared as the same subroutine type. */
5880 set_die_type (die, ftype, cu);
5881
5882 if (die->child != NULL)
5883 {
5884 struct die_info *child_die;
5885 int nparams = 0;
5886 int iparams = 0;
5887
5888 /* Count the number of parameters.
5889 FIXME: GDB currently ignores vararg functions, but knows about
5890 vararg member functions. */
5891 child_die = die->child;
5892 while (child_die && child_die->tag)
5893 {
5894 if (child_die->tag == DW_TAG_formal_parameter)
5895 nparams++;
5896 else if (child_die->tag == DW_TAG_unspecified_parameters)
5897 TYPE_VARARGS (ftype) = 1;
5898 child_die = sibling_die (child_die);
5899 }
5900
5901 /* Allocate storage for parameters and fill them in. */
5902 TYPE_NFIELDS (ftype) = nparams;
5903 TYPE_FIELDS (ftype) = (struct field *)
5904 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
5905
5906 child_die = die->child;
5907 while (child_die && child_die->tag)
5908 {
5909 if (child_die->tag == DW_TAG_formal_parameter)
5910 {
5911 /* Dwarf2 has no clean way to discern C++ static and non-static
5912 member functions. G++ helps GDB by marking the first
5913 parameter for non-static member functions (which is the
5914 this pointer) as artificial. We pass this information
5915 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
5916 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
5917 if (attr)
5918 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
5919 else
5920 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
5921 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
5922 iparams++;
5923 }
5924 child_die = sibling_die (child_die);
5925 }
5926 }
5927
5928 return ftype;
5929 }
5930
5931 static struct type *
5932 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
5933 {
5934 struct objfile *objfile = cu->objfile;
5935 struct attribute *attr;
5936 const char *name = NULL;
5937 struct type *this_type;
5938
5939 name = dwarf2_full_name (die, cu);
5940 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
5941 TYPE_FLAG_TARGET_STUB, NULL, objfile);
5942 TYPE_NAME (this_type) = (char *) name;
5943 set_die_type (die, this_type, cu);
5944 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
5945 return this_type;
5946 }
5947
5948 /* Find a representation of a given base type and install
5949 it in the TYPE field of the die. */
5950
5951 static struct type *
5952 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
5953 {
5954 struct objfile *objfile = cu->objfile;
5955 struct type *type;
5956 struct attribute *attr;
5957 int encoding = 0, size = 0;
5958 char *name;
5959 enum type_code code = TYPE_CODE_INT;
5960 int type_flags = 0;
5961 struct type *target_type = NULL;
5962
5963 attr = dwarf2_attr (die, DW_AT_encoding, cu);
5964 if (attr)
5965 {
5966 encoding = DW_UNSND (attr);
5967 }
5968 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5969 if (attr)
5970 {
5971 size = DW_UNSND (attr);
5972 }
5973 name = dwarf2_name (die, cu);
5974 if (!name)
5975 {
5976 complaint (&symfile_complaints,
5977 _("DW_AT_name missing from DW_TAG_base_type"));
5978 }
5979
5980 switch (encoding)
5981 {
5982 case DW_ATE_address:
5983 /* Turn DW_ATE_address into a void * pointer. */
5984 code = TYPE_CODE_PTR;
5985 type_flags |= TYPE_FLAG_UNSIGNED;
5986 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
5987 break;
5988 case DW_ATE_boolean:
5989 code = TYPE_CODE_BOOL;
5990 type_flags |= TYPE_FLAG_UNSIGNED;
5991 break;
5992 case DW_ATE_complex_float:
5993 code = TYPE_CODE_COMPLEX;
5994 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
5995 break;
5996 case DW_ATE_decimal_float:
5997 code = TYPE_CODE_DECFLOAT;
5998 break;
5999 case DW_ATE_float:
6000 code = TYPE_CODE_FLT;
6001 break;
6002 case DW_ATE_signed:
6003 break;
6004 case DW_ATE_unsigned:
6005 type_flags |= TYPE_FLAG_UNSIGNED;
6006 break;
6007 case DW_ATE_signed_char:
6008 if (cu->language == language_ada || cu->language == language_m2
6009 || cu->language == language_pascal)
6010 code = TYPE_CODE_CHAR;
6011 break;
6012 case DW_ATE_unsigned_char:
6013 if (cu->language == language_ada || cu->language == language_m2
6014 || cu->language == language_pascal)
6015 code = TYPE_CODE_CHAR;
6016 type_flags |= TYPE_FLAG_UNSIGNED;
6017 break;
6018 default:
6019 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
6020 dwarf_type_encoding_name (encoding));
6021 break;
6022 }
6023
6024 type = init_type (code, size, type_flags, NULL, objfile);
6025 TYPE_NAME (type) = name;
6026 TYPE_TARGET_TYPE (type) = target_type;
6027
6028 if (name && strcmp (name, "char") == 0)
6029 TYPE_NOSIGN (type) = 1;
6030
6031 return set_die_type (die, type, cu);
6032 }
6033
6034 /* Read the given DW_AT_subrange DIE. */
6035
6036 static struct type *
6037 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
6038 {
6039 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
6040 struct type *base_type;
6041 struct type *range_type;
6042 struct attribute *attr;
6043 LONGEST low = 0;
6044 LONGEST high = -1;
6045 char *name;
6046 LONGEST negative_mask;
6047
6048 base_type = die_type (die, cu);
6049 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
6050 {
6051 complaint (&symfile_complaints,
6052 _("DW_AT_type missing from DW_TAG_subrange_type"));
6053 base_type
6054 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (gdbarch) / 8,
6055 0, NULL, cu->objfile);
6056 }
6057
6058 if (cu->language == language_fortran)
6059 {
6060 /* FORTRAN implies a lower bound of 1, if not given. */
6061 low = 1;
6062 }
6063
6064 /* FIXME: For variable sized arrays either of these could be
6065 a variable rather than a constant value. We'll allow it,
6066 but we don't know how to handle it. */
6067 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
6068 if (attr)
6069 low = dwarf2_get_attr_constant_value (attr, 0);
6070
6071 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
6072 if (attr)
6073 {
6074 if (attr->form == DW_FORM_block1)
6075 {
6076 /* GCC encodes arrays with unspecified or dynamic length
6077 with a DW_FORM_block1 attribute.
6078 FIXME: GDB does not yet know how to handle dynamic
6079 arrays properly, treat them as arrays with unspecified
6080 length for now.
6081
6082 FIXME: jimb/2003-09-22: GDB does not really know
6083 how to handle arrays of unspecified length
6084 either; we just represent them as zero-length
6085 arrays. Choose an appropriate upper bound given
6086 the lower bound we've computed above. */
6087 high = low - 1;
6088 }
6089 else
6090 high = dwarf2_get_attr_constant_value (attr, 1);
6091 }
6092
6093 negative_mask =
6094 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
6095 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
6096 low |= negative_mask;
6097 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
6098 high |= negative_mask;
6099
6100 range_type = create_range_type (NULL, base_type, low, high);
6101
6102 name = dwarf2_name (die, cu);
6103 if (name)
6104 TYPE_NAME (range_type) = name;
6105
6106 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6107 if (attr)
6108 TYPE_LENGTH (range_type) = DW_UNSND (attr);
6109
6110 set_descriptive_type (range_type, die, cu);
6111
6112 return set_die_type (die, range_type, cu);
6113 }
6114
6115 static struct type *
6116 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
6117 {
6118 struct type *type;
6119
6120 /* For now, we only support the C meaning of an unspecified type: void. */
6121
6122 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
6123 TYPE_NAME (type) = dwarf2_name (die, cu);
6124
6125 return set_die_type (die, type, cu);
6126 }
6127
6128 /* Trivial hash function for die_info: the hash value of a DIE
6129 is its offset in .debug_info for this objfile. */
6130
6131 static hashval_t
6132 die_hash (const void *item)
6133 {
6134 const struct die_info *die = item;
6135 return die->offset;
6136 }
6137
6138 /* Trivial comparison function for die_info structures: two DIEs
6139 are equal if they have the same offset. */
6140
6141 static int
6142 die_eq (const void *item_lhs, const void *item_rhs)
6143 {
6144 const struct die_info *die_lhs = item_lhs;
6145 const struct die_info *die_rhs = item_rhs;
6146 return die_lhs->offset == die_rhs->offset;
6147 }
6148
6149 /* Read a whole compilation unit into a linked list of dies. */
6150
6151 static struct die_info *
6152 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
6153 {
6154 struct die_reader_specs reader_specs;
6155
6156 gdb_assert (cu->die_hash == NULL);
6157 cu->die_hash
6158 = htab_create_alloc_ex (cu->header.length / 12,
6159 die_hash,
6160 die_eq,
6161 NULL,
6162 &cu->comp_unit_obstack,
6163 hashtab_obstack_allocate,
6164 dummy_obstack_deallocate);
6165
6166 init_cu_die_reader (&reader_specs, cu);
6167
6168 return read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
6169 }
6170
6171 /* Main entry point for reading a DIE and all children.
6172 Read the DIE and dump it if requested. */
6173
6174 static struct die_info *
6175 read_die_and_children (const struct die_reader_specs *reader,
6176 gdb_byte *info_ptr,
6177 gdb_byte **new_info_ptr,
6178 struct die_info *parent)
6179 {
6180 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
6181 new_info_ptr, parent);
6182
6183 if (dwarf2_die_debug)
6184 {
6185 fprintf_unfiltered (gdb_stdlog,
6186 "\nRead die from %s of %s:\n",
6187 reader->buffer == dwarf2_per_objfile->info.buffer
6188 ? ".debug_info"
6189 : reader->buffer == dwarf2_per_objfile->types.buffer
6190 ? ".debug_types"
6191 : "unknown section",
6192 reader->abfd->filename);
6193 dump_die (result, dwarf2_die_debug);
6194 }
6195
6196 return result;
6197 }
6198
6199 /* Read a single die and all its descendents. Set the die's sibling
6200 field to NULL; set other fields in the die correctly, and set all
6201 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
6202 location of the info_ptr after reading all of those dies. PARENT
6203 is the parent of the die in question. */
6204
6205 static struct die_info *
6206 read_die_and_children_1 (const struct die_reader_specs *reader,
6207 gdb_byte *info_ptr,
6208 gdb_byte **new_info_ptr,
6209 struct die_info *parent)
6210 {
6211 struct die_info *die;
6212 gdb_byte *cur_ptr;
6213 int has_children;
6214
6215 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
6216 if (die == NULL)
6217 {
6218 *new_info_ptr = cur_ptr;
6219 return NULL;
6220 }
6221 store_in_ref_table (die, reader->cu);
6222
6223 if (has_children)
6224 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
6225 else
6226 {
6227 die->child = NULL;
6228 *new_info_ptr = cur_ptr;
6229 }
6230
6231 die->sibling = NULL;
6232 die->parent = parent;
6233 return die;
6234 }
6235
6236 /* Read a die, all of its descendents, and all of its siblings; set
6237 all of the fields of all of the dies correctly. Arguments are as
6238 in read_die_and_children. */
6239
6240 static struct die_info *
6241 read_die_and_siblings (const struct die_reader_specs *reader,
6242 gdb_byte *info_ptr,
6243 gdb_byte **new_info_ptr,
6244 struct die_info *parent)
6245 {
6246 struct die_info *first_die, *last_sibling;
6247 gdb_byte *cur_ptr;
6248
6249 cur_ptr = info_ptr;
6250 first_die = last_sibling = NULL;
6251
6252 while (1)
6253 {
6254 struct die_info *die
6255 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
6256
6257 if (die == NULL)
6258 {
6259 *new_info_ptr = cur_ptr;
6260 return first_die;
6261 }
6262
6263 if (!first_die)
6264 first_die = die;
6265 else
6266 last_sibling->sibling = die;
6267
6268 last_sibling = die;
6269 }
6270 }
6271
6272 /* Read the die from the .debug_info section buffer. Set DIEP to
6273 point to a newly allocated die with its information, except for its
6274 child, sibling, and parent fields. Set HAS_CHILDREN to tell
6275 whether the die has children or not. */
6276
6277 static gdb_byte *
6278 read_full_die (const struct die_reader_specs *reader,
6279 struct die_info **diep, gdb_byte *info_ptr,
6280 int *has_children)
6281 {
6282 unsigned int abbrev_number, bytes_read, i, offset;
6283 struct abbrev_info *abbrev;
6284 struct die_info *die;
6285 struct dwarf2_cu *cu = reader->cu;
6286 bfd *abfd = reader->abfd;
6287
6288 offset = info_ptr - reader->buffer;
6289 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6290 info_ptr += bytes_read;
6291 if (!abbrev_number)
6292 {
6293 *diep = NULL;
6294 *has_children = 0;
6295 return info_ptr;
6296 }
6297
6298 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
6299 if (!abbrev)
6300 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
6301 abbrev_number,
6302 bfd_get_filename (abfd));
6303
6304 die = dwarf_alloc_die (cu, abbrev->num_attrs);
6305 die->offset = offset;
6306 die->tag = abbrev->tag;
6307 die->abbrev = abbrev_number;
6308
6309 die->num_attrs = abbrev->num_attrs;
6310
6311 for (i = 0; i < abbrev->num_attrs; ++i)
6312 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
6313 abfd, info_ptr, cu);
6314
6315 *diep = die;
6316 *has_children = abbrev->has_children;
6317 return info_ptr;
6318 }
6319
6320 /* In DWARF version 2, the description of the debugging information is
6321 stored in a separate .debug_abbrev section. Before we read any
6322 dies from a section we read in all abbreviations and install them
6323 in a hash table. This function also sets flags in CU describing
6324 the data found in the abbrev table. */
6325
6326 static void
6327 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
6328 {
6329 struct comp_unit_head *cu_header = &cu->header;
6330 gdb_byte *abbrev_ptr;
6331 struct abbrev_info *cur_abbrev;
6332 unsigned int abbrev_number, bytes_read, abbrev_name;
6333 unsigned int abbrev_form, hash_number;
6334 struct attr_abbrev *cur_attrs;
6335 unsigned int allocated_attrs;
6336
6337 /* Initialize dwarf2 abbrevs */
6338 obstack_init (&cu->abbrev_obstack);
6339 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
6340 (ABBREV_HASH_SIZE
6341 * sizeof (struct abbrev_info *)));
6342 memset (cu->dwarf2_abbrevs, 0,
6343 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
6344
6345 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
6346 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6347 abbrev_ptr += bytes_read;
6348
6349 allocated_attrs = ATTR_ALLOC_CHUNK;
6350 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6351
6352 /* loop until we reach an abbrev number of 0 */
6353 while (abbrev_number)
6354 {
6355 cur_abbrev = dwarf_alloc_abbrev (cu);
6356
6357 /* read in abbrev header */
6358 cur_abbrev->number = abbrev_number;
6359 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6360 abbrev_ptr += bytes_read;
6361 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
6362 abbrev_ptr += 1;
6363
6364 if (cur_abbrev->tag == DW_TAG_namespace)
6365 cu->has_namespace_info = 1;
6366
6367 /* now read in declarations */
6368 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6369 abbrev_ptr += bytes_read;
6370 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6371 abbrev_ptr += bytes_read;
6372 while (abbrev_name)
6373 {
6374 if (cur_abbrev->num_attrs == allocated_attrs)
6375 {
6376 allocated_attrs += ATTR_ALLOC_CHUNK;
6377 cur_attrs
6378 = xrealloc (cur_attrs, (allocated_attrs
6379 * sizeof (struct attr_abbrev)));
6380 }
6381
6382 /* Record whether this compilation unit might have
6383 inter-compilation-unit references. If we don't know what form
6384 this attribute will have, then it might potentially be a
6385 DW_FORM_ref_addr, so we conservatively expect inter-CU
6386 references. */
6387
6388 if (abbrev_form == DW_FORM_ref_addr
6389 || abbrev_form == DW_FORM_indirect)
6390 cu->has_form_ref_addr = 1;
6391
6392 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
6393 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
6394 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6395 abbrev_ptr += bytes_read;
6396 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6397 abbrev_ptr += bytes_read;
6398 }
6399
6400 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
6401 (cur_abbrev->num_attrs
6402 * sizeof (struct attr_abbrev)));
6403 memcpy (cur_abbrev->attrs, cur_attrs,
6404 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
6405
6406 hash_number = abbrev_number % ABBREV_HASH_SIZE;
6407 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
6408 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
6409
6410 /* Get next abbreviation.
6411 Under Irix6 the abbreviations for a compilation unit are not
6412 always properly terminated with an abbrev number of 0.
6413 Exit loop if we encounter an abbreviation which we have
6414 already read (which means we are about to read the abbreviations
6415 for the next compile unit) or if the end of the abbreviation
6416 table is reached. */
6417 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
6418 >= dwarf2_per_objfile->abbrev.size)
6419 break;
6420 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6421 abbrev_ptr += bytes_read;
6422 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
6423 break;
6424 }
6425
6426 xfree (cur_attrs);
6427 }
6428
6429 /* Release the memory used by the abbrev table for a compilation unit. */
6430
6431 static void
6432 dwarf2_free_abbrev_table (void *ptr_to_cu)
6433 {
6434 struct dwarf2_cu *cu = ptr_to_cu;
6435
6436 obstack_free (&cu->abbrev_obstack, NULL);
6437 cu->dwarf2_abbrevs = NULL;
6438 }
6439
6440 /* Lookup an abbrev_info structure in the abbrev hash table. */
6441
6442 static struct abbrev_info *
6443 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
6444 {
6445 unsigned int hash_number;
6446 struct abbrev_info *abbrev;
6447
6448 hash_number = number % ABBREV_HASH_SIZE;
6449 abbrev = cu->dwarf2_abbrevs[hash_number];
6450
6451 while (abbrev)
6452 {
6453 if (abbrev->number == number)
6454 return abbrev;
6455 else
6456 abbrev = abbrev->next;
6457 }
6458 return NULL;
6459 }
6460
6461 /* Returns nonzero if TAG represents a type that we might generate a partial
6462 symbol for. */
6463
6464 static int
6465 is_type_tag_for_partial (int tag)
6466 {
6467 switch (tag)
6468 {
6469 #if 0
6470 /* Some types that would be reasonable to generate partial symbols for,
6471 that we don't at present. */
6472 case DW_TAG_array_type:
6473 case DW_TAG_file_type:
6474 case DW_TAG_ptr_to_member_type:
6475 case DW_TAG_set_type:
6476 case DW_TAG_string_type:
6477 case DW_TAG_subroutine_type:
6478 #endif
6479 case DW_TAG_base_type:
6480 case DW_TAG_class_type:
6481 case DW_TAG_interface_type:
6482 case DW_TAG_enumeration_type:
6483 case DW_TAG_structure_type:
6484 case DW_TAG_subrange_type:
6485 case DW_TAG_typedef:
6486 case DW_TAG_union_type:
6487 return 1;
6488 default:
6489 return 0;
6490 }
6491 }
6492
6493 /* Load all DIEs that are interesting for partial symbols into memory. */
6494
6495 static struct partial_die_info *
6496 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
6497 int building_psymtab, struct dwarf2_cu *cu)
6498 {
6499 struct partial_die_info *part_die;
6500 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
6501 struct abbrev_info *abbrev;
6502 unsigned int bytes_read;
6503 unsigned int load_all = 0;
6504
6505 int nesting_level = 1;
6506
6507 parent_die = NULL;
6508 last_die = NULL;
6509
6510 if (cu->per_cu && cu->per_cu->load_all_dies)
6511 load_all = 1;
6512
6513 cu->partial_dies
6514 = htab_create_alloc_ex (cu->header.length / 12,
6515 partial_die_hash,
6516 partial_die_eq,
6517 NULL,
6518 &cu->comp_unit_obstack,
6519 hashtab_obstack_allocate,
6520 dummy_obstack_deallocate);
6521
6522 part_die = obstack_alloc (&cu->comp_unit_obstack,
6523 sizeof (struct partial_die_info));
6524
6525 while (1)
6526 {
6527 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6528
6529 /* A NULL abbrev means the end of a series of children. */
6530 if (abbrev == NULL)
6531 {
6532 if (--nesting_level == 0)
6533 {
6534 /* PART_DIE was probably the last thing allocated on the
6535 comp_unit_obstack, so we could call obstack_free
6536 here. We don't do that because the waste is small,
6537 and will be cleaned up when we're done with this
6538 compilation unit. This way, we're also more robust
6539 against other users of the comp_unit_obstack. */
6540 return first_die;
6541 }
6542 info_ptr += bytes_read;
6543 last_die = parent_die;
6544 parent_die = parent_die->die_parent;
6545 continue;
6546 }
6547
6548 /* Check whether this DIE is interesting enough to save. Normally
6549 we would not be interested in members here, but there may be
6550 later variables referencing them via DW_AT_specification (for
6551 static members). */
6552 if (!load_all
6553 && !is_type_tag_for_partial (abbrev->tag)
6554 && abbrev->tag != DW_TAG_enumerator
6555 && abbrev->tag != DW_TAG_subprogram
6556 && abbrev->tag != DW_TAG_lexical_block
6557 && abbrev->tag != DW_TAG_variable
6558 && abbrev->tag != DW_TAG_namespace
6559 && abbrev->tag != DW_TAG_member)
6560 {
6561 /* Otherwise we skip to the next sibling, if any. */
6562 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
6563 continue;
6564 }
6565
6566 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
6567 buffer, info_ptr, cu);
6568
6569 /* This two-pass algorithm for processing partial symbols has a
6570 high cost in cache pressure. Thus, handle some simple cases
6571 here which cover the majority of C partial symbols. DIEs
6572 which neither have specification tags in them, nor could have
6573 specification tags elsewhere pointing at them, can simply be
6574 processed and discarded.
6575
6576 This segment is also optional; scan_partial_symbols and
6577 add_partial_symbol will handle these DIEs if we chain
6578 them in normally. When compilers which do not emit large
6579 quantities of duplicate debug information are more common,
6580 this code can probably be removed. */
6581
6582 /* Any complete simple types at the top level (pretty much all
6583 of them, for a language without namespaces), can be processed
6584 directly. */
6585 if (parent_die == NULL
6586 && part_die->has_specification == 0
6587 && part_die->is_declaration == 0
6588 && (part_die->tag == DW_TAG_typedef
6589 || part_die->tag == DW_TAG_base_type
6590 || part_die->tag == DW_TAG_subrange_type))
6591 {
6592 if (building_psymtab && part_die->name != NULL)
6593 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
6594 VAR_DOMAIN, LOC_TYPEDEF,
6595 &cu->objfile->static_psymbols,
6596 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6597 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
6598 continue;
6599 }
6600
6601 /* If we're at the second level, and we're an enumerator, and
6602 our parent has no specification (meaning possibly lives in a
6603 namespace elsewhere), then we can add the partial symbol now
6604 instead of queueing it. */
6605 if (part_die->tag == DW_TAG_enumerator
6606 && parent_die != NULL
6607 && parent_die->die_parent == NULL
6608 && parent_die->tag == DW_TAG_enumeration_type
6609 && parent_die->has_specification == 0)
6610 {
6611 if (part_die->name == NULL)
6612 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6613 else if (building_psymtab)
6614 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
6615 VAR_DOMAIN, LOC_CONST,
6616 (cu->language == language_cplus
6617 || cu->language == language_java)
6618 ? &cu->objfile->global_psymbols
6619 : &cu->objfile->static_psymbols,
6620 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6621
6622 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
6623 continue;
6624 }
6625
6626 /* We'll save this DIE so link it in. */
6627 part_die->die_parent = parent_die;
6628 part_die->die_sibling = NULL;
6629 part_die->die_child = NULL;
6630
6631 if (last_die && last_die == parent_die)
6632 last_die->die_child = part_die;
6633 else if (last_die)
6634 last_die->die_sibling = part_die;
6635
6636 last_die = part_die;
6637
6638 if (first_die == NULL)
6639 first_die = part_die;
6640
6641 /* Maybe add the DIE to the hash table. Not all DIEs that we
6642 find interesting need to be in the hash table, because we
6643 also have the parent/sibling/child chains; only those that we
6644 might refer to by offset later during partial symbol reading.
6645
6646 For now this means things that might have be the target of a
6647 DW_AT_specification, DW_AT_abstract_origin, or
6648 DW_AT_extension. DW_AT_extension will refer only to
6649 namespaces; DW_AT_abstract_origin refers to functions (and
6650 many things under the function DIE, but we do not recurse
6651 into function DIEs during partial symbol reading) and
6652 possibly variables as well; DW_AT_specification refers to
6653 declarations. Declarations ought to have the DW_AT_declaration
6654 flag. It happens that GCC forgets to put it in sometimes, but
6655 only for functions, not for types.
6656
6657 Adding more things than necessary to the hash table is harmless
6658 except for the performance cost. Adding too few will result in
6659 wasted time in find_partial_die, when we reread the compilation
6660 unit with load_all_dies set. */
6661
6662 if (load_all
6663 || abbrev->tag == DW_TAG_subprogram
6664 || abbrev->tag == DW_TAG_variable
6665 || abbrev->tag == DW_TAG_namespace
6666 || part_die->is_declaration)
6667 {
6668 void **slot;
6669
6670 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
6671 part_die->offset, INSERT);
6672 *slot = part_die;
6673 }
6674
6675 part_die = obstack_alloc (&cu->comp_unit_obstack,
6676 sizeof (struct partial_die_info));
6677
6678 /* For some DIEs we want to follow their children (if any). For C
6679 we have no reason to follow the children of structures; for other
6680 languages we have to, both so that we can get at method physnames
6681 to infer fully qualified class names, and for DW_AT_specification.
6682
6683 For Ada, we need to scan the children of subprograms and lexical
6684 blocks as well because Ada allows the definition of nested
6685 entities that could be interesting for the debugger, such as
6686 nested subprograms for instance. */
6687 if (last_die->has_children
6688 && (load_all
6689 || last_die->tag == DW_TAG_namespace
6690 || last_die->tag == DW_TAG_enumeration_type
6691 || (cu->language != language_c
6692 && (last_die->tag == DW_TAG_class_type
6693 || last_die->tag == DW_TAG_interface_type
6694 || last_die->tag == DW_TAG_structure_type
6695 || last_die->tag == DW_TAG_union_type))
6696 || (cu->language == language_ada
6697 && (last_die->tag == DW_TAG_subprogram
6698 || last_die->tag == DW_TAG_lexical_block))))
6699 {
6700 nesting_level++;
6701 parent_die = last_die;
6702 continue;
6703 }
6704
6705 /* Otherwise we skip to the next sibling, if any. */
6706 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
6707
6708 /* Back to the top, do it again. */
6709 }
6710 }
6711
6712 /* Read a minimal amount of information into the minimal die structure. */
6713
6714 static gdb_byte *
6715 read_partial_die (struct partial_die_info *part_die,
6716 struct abbrev_info *abbrev,
6717 unsigned int abbrev_len, bfd *abfd,
6718 gdb_byte *buffer, gdb_byte *info_ptr,
6719 struct dwarf2_cu *cu)
6720 {
6721 unsigned int bytes_read, i;
6722 struct attribute attr;
6723 int has_low_pc_attr = 0;
6724 int has_high_pc_attr = 0;
6725
6726 memset (part_die, 0, sizeof (struct partial_die_info));
6727
6728 part_die->offset = info_ptr - buffer;
6729
6730 info_ptr += abbrev_len;
6731
6732 if (abbrev == NULL)
6733 return info_ptr;
6734
6735 part_die->tag = abbrev->tag;
6736 part_die->has_children = abbrev->has_children;
6737
6738 for (i = 0; i < abbrev->num_attrs; ++i)
6739 {
6740 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
6741
6742 /* Store the data if it is of an attribute we want to keep in a
6743 partial symbol table. */
6744 switch (attr.name)
6745 {
6746 case DW_AT_name:
6747 switch (part_die->tag)
6748 {
6749 case DW_TAG_compile_unit:
6750 case DW_TAG_type_unit:
6751 /* Compilation units have a DW_AT_name that is a filename, not
6752 a source language identifier. */
6753 case DW_TAG_enumeration_type:
6754 case DW_TAG_enumerator:
6755 /* These tags always have simple identifiers already; no need
6756 to canonicalize them. */
6757 part_die->name = DW_STRING (&attr);
6758 break;
6759 default:
6760 part_die->name
6761 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
6762 &cu->objfile->objfile_obstack);
6763 break;
6764 }
6765 break;
6766 case DW_AT_MIPS_linkage_name:
6767 part_die->name = DW_STRING (&attr);
6768 break;
6769 case DW_AT_low_pc:
6770 has_low_pc_attr = 1;
6771 part_die->lowpc = DW_ADDR (&attr);
6772 break;
6773 case DW_AT_high_pc:
6774 has_high_pc_attr = 1;
6775 part_die->highpc = DW_ADDR (&attr);
6776 break;
6777 case DW_AT_location:
6778 /* Support the .debug_loc offsets */
6779 if (attr_form_is_block (&attr))
6780 {
6781 part_die->locdesc = DW_BLOCK (&attr);
6782 }
6783 else if (attr_form_is_section_offset (&attr))
6784 {
6785 dwarf2_complex_location_expr_complaint ();
6786 }
6787 else
6788 {
6789 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
6790 "partial symbol information");
6791 }
6792 break;
6793 case DW_AT_external:
6794 part_die->is_external = DW_UNSND (&attr);
6795 break;
6796 case DW_AT_declaration:
6797 part_die->is_declaration = DW_UNSND (&attr);
6798 break;
6799 case DW_AT_type:
6800 part_die->has_type = 1;
6801 break;
6802 case DW_AT_abstract_origin:
6803 case DW_AT_specification:
6804 case DW_AT_extension:
6805 part_die->has_specification = 1;
6806 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
6807 break;
6808 case DW_AT_sibling:
6809 /* Ignore absolute siblings, they might point outside of
6810 the current compile unit. */
6811 if (attr.form == DW_FORM_ref_addr)
6812 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
6813 else
6814 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
6815 break;
6816 case DW_AT_byte_size:
6817 part_die->has_byte_size = 1;
6818 break;
6819 case DW_AT_calling_convention:
6820 /* DWARF doesn't provide a way to identify a program's source-level
6821 entry point. DW_AT_calling_convention attributes are only meant
6822 to describe functions' calling conventions.
6823
6824 However, because it's a necessary piece of information in
6825 Fortran, and because DW_CC_program is the only piece of debugging
6826 information whose definition refers to a 'main program' at all,
6827 several compilers have begun marking Fortran main programs with
6828 DW_CC_program --- even when those functions use the standard
6829 calling conventions.
6830
6831 So until DWARF specifies a way to provide this information and
6832 compilers pick up the new representation, we'll support this
6833 practice. */
6834 if (DW_UNSND (&attr) == DW_CC_program
6835 && cu->language == language_fortran)
6836 set_main_name (part_die->name);
6837 break;
6838 default:
6839 break;
6840 }
6841 }
6842
6843 /* When using the GNU linker, .gnu.linkonce. sections are used to
6844 eliminate duplicate copies of functions and vtables and such.
6845 The linker will arbitrarily choose one and discard the others.
6846 The AT_*_pc values for such functions refer to local labels in
6847 these sections. If the section from that file was discarded, the
6848 labels are not in the output, so the relocs get a value of 0.
6849 If this is a discarded function, mark the pc bounds as invalid,
6850 so that GDB will ignore it. */
6851 if (has_low_pc_attr && has_high_pc_attr
6852 && part_die->lowpc < part_die->highpc
6853 && (part_die->lowpc != 0
6854 || dwarf2_per_objfile->has_section_at_zero))
6855 part_die->has_pc_info = 1;
6856
6857 return info_ptr;
6858 }
6859
6860 /* Find a cached partial DIE at OFFSET in CU. */
6861
6862 static struct partial_die_info *
6863 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
6864 {
6865 struct partial_die_info *lookup_die = NULL;
6866 struct partial_die_info part_die;
6867
6868 part_die.offset = offset;
6869 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
6870
6871 return lookup_die;
6872 }
6873
6874 /* Find a partial DIE at OFFSET, which may or may not be in CU,
6875 except in the case of .debug_types DIEs which do not reference
6876 outside their CU (they do however referencing other types via
6877 DW_FORM_sig8). */
6878
6879 static struct partial_die_info *
6880 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
6881 {
6882 struct dwarf2_per_cu_data *per_cu = NULL;
6883 struct partial_die_info *pd = NULL;
6884
6885 if (cu->per_cu->from_debug_types)
6886 {
6887 pd = find_partial_die_in_comp_unit (offset, cu);
6888 if (pd != NULL)
6889 return pd;
6890 goto not_found;
6891 }
6892
6893 if (offset_in_cu_p (&cu->header, offset))
6894 {
6895 pd = find_partial_die_in_comp_unit (offset, cu);
6896 if (pd != NULL)
6897 return pd;
6898 }
6899
6900 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
6901
6902 if (per_cu->cu == NULL)
6903 {
6904 load_partial_comp_unit (per_cu, cu->objfile);
6905 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6906 dwarf2_per_objfile->read_in_chain = per_cu;
6907 }
6908
6909 per_cu->cu->last_used = 0;
6910 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
6911
6912 if (pd == NULL && per_cu->load_all_dies == 0)
6913 {
6914 struct cleanup *back_to;
6915 struct partial_die_info comp_unit_die;
6916 struct abbrev_info *abbrev;
6917 unsigned int bytes_read;
6918 char *info_ptr;
6919
6920 per_cu->load_all_dies = 1;
6921
6922 /* Re-read the DIEs. */
6923 back_to = make_cleanup (null_cleanup, 0);
6924 if (per_cu->cu->dwarf2_abbrevs == NULL)
6925 {
6926 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
6927 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
6928 }
6929 info_ptr = (dwarf2_per_objfile->info.buffer
6930 + per_cu->cu->header.offset
6931 + per_cu->cu->header.first_die_offset);
6932 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
6933 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
6934 per_cu->cu->objfile->obfd,
6935 dwarf2_per_objfile->info.buffer, info_ptr,
6936 per_cu->cu);
6937 if (comp_unit_die.has_children)
6938 load_partial_dies (per_cu->cu->objfile->obfd,
6939 dwarf2_per_objfile->info.buffer, info_ptr,
6940 0, per_cu->cu);
6941 do_cleanups (back_to);
6942
6943 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
6944 }
6945
6946 not_found:
6947
6948 if (pd == NULL)
6949 internal_error (__FILE__, __LINE__,
6950 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
6951 offset, bfd_get_filename (cu->objfile->obfd));
6952 return pd;
6953 }
6954
6955 /* Adjust PART_DIE before generating a symbol for it. This function
6956 may set the is_external flag or change the DIE's name. */
6957
6958 static void
6959 fixup_partial_die (struct partial_die_info *part_die,
6960 struct dwarf2_cu *cu)
6961 {
6962 /* If we found a reference attribute and the DIE has no name, try
6963 to find a name in the referred to DIE. */
6964
6965 if (part_die->name == NULL && part_die->has_specification)
6966 {
6967 struct partial_die_info *spec_die;
6968
6969 spec_die = find_partial_die (part_die->spec_offset, cu);
6970
6971 fixup_partial_die (spec_die, cu);
6972
6973 if (spec_die->name)
6974 {
6975 part_die->name = spec_die->name;
6976
6977 /* Copy DW_AT_external attribute if it is set. */
6978 if (spec_die->is_external)
6979 part_die->is_external = spec_die->is_external;
6980 }
6981 }
6982
6983 /* Set default names for some unnamed DIEs. */
6984 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
6985 || part_die->tag == DW_TAG_class_type))
6986 part_die->name = "(anonymous class)";
6987
6988 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
6989 part_die->name = "(anonymous namespace)";
6990
6991 if (part_die->tag == DW_TAG_structure_type
6992 || part_die->tag == DW_TAG_class_type
6993 || part_die->tag == DW_TAG_union_type)
6994 guess_structure_name (part_die, cu);
6995 }
6996
6997 /* Read an attribute value described by an attribute form. */
6998
6999 static gdb_byte *
7000 read_attribute_value (struct attribute *attr, unsigned form,
7001 bfd *abfd, gdb_byte *info_ptr,
7002 struct dwarf2_cu *cu)
7003 {
7004 struct comp_unit_head *cu_header = &cu->header;
7005 unsigned int bytes_read;
7006 struct dwarf_block *blk;
7007
7008 attr->form = form;
7009 switch (form)
7010 {
7011 case DW_FORM_addr:
7012 case DW_FORM_ref_addr:
7013 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
7014 info_ptr += bytes_read;
7015 break;
7016 case DW_FORM_block2:
7017 blk = dwarf_alloc_block (cu);
7018 blk->size = read_2_bytes (abfd, info_ptr);
7019 info_ptr += 2;
7020 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7021 info_ptr += blk->size;
7022 DW_BLOCK (attr) = blk;
7023 break;
7024 case DW_FORM_block4:
7025 blk = dwarf_alloc_block (cu);
7026 blk->size = read_4_bytes (abfd, info_ptr);
7027 info_ptr += 4;
7028 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7029 info_ptr += blk->size;
7030 DW_BLOCK (attr) = blk;
7031 break;
7032 case DW_FORM_data2:
7033 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
7034 info_ptr += 2;
7035 break;
7036 case DW_FORM_data4:
7037 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
7038 info_ptr += 4;
7039 break;
7040 case DW_FORM_data8:
7041 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
7042 info_ptr += 8;
7043 break;
7044 case DW_FORM_string:
7045 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
7046 DW_STRING_IS_CANONICAL (attr) = 0;
7047 info_ptr += bytes_read;
7048 break;
7049 case DW_FORM_strp:
7050 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
7051 &bytes_read);
7052 DW_STRING_IS_CANONICAL (attr) = 0;
7053 info_ptr += bytes_read;
7054 break;
7055 case DW_FORM_block:
7056 blk = dwarf_alloc_block (cu);
7057 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7058 info_ptr += bytes_read;
7059 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7060 info_ptr += blk->size;
7061 DW_BLOCK (attr) = blk;
7062 break;
7063 case DW_FORM_block1:
7064 blk = dwarf_alloc_block (cu);
7065 blk->size = read_1_byte (abfd, info_ptr);
7066 info_ptr += 1;
7067 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7068 info_ptr += blk->size;
7069 DW_BLOCK (attr) = blk;
7070 break;
7071 case DW_FORM_data1:
7072 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7073 info_ptr += 1;
7074 break;
7075 case DW_FORM_flag:
7076 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7077 info_ptr += 1;
7078 break;
7079 case DW_FORM_sdata:
7080 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
7081 info_ptr += bytes_read;
7082 break;
7083 case DW_FORM_udata:
7084 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7085 info_ptr += bytes_read;
7086 break;
7087 case DW_FORM_ref1:
7088 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
7089 info_ptr += 1;
7090 break;
7091 case DW_FORM_ref2:
7092 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
7093 info_ptr += 2;
7094 break;
7095 case DW_FORM_ref4:
7096 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
7097 info_ptr += 4;
7098 break;
7099 case DW_FORM_ref8:
7100 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
7101 info_ptr += 8;
7102 break;
7103 case DW_FORM_sig8:
7104 /* Convert the signature to something we can record in DW_UNSND
7105 for later lookup.
7106 NOTE: This is NULL if the type wasn't found. */
7107 DW_SIGNATURED_TYPE (attr) =
7108 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
7109 info_ptr += 8;
7110 break;
7111 case DW_FORM_ref_udata:
7112 DW_ADDR (attr) = (cu->header.offset
7113 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
7114 info_ptr += bytes_read;
7115 break;
7116 case DW_FORM_indirect:
7117 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7118 info_ptr += bytes_read;
7119 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
7120 break;
7121 default:
7122 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
7123 dwarf_form_name (form),
7124 bfd_get_filename (abfd));
7125 }
7126
7127 /* We have seen instances where the compiler tried to emit a byte
7128 size attribute of -1 which ended up being encoded as an unsigned
7129 0xffffffff. Although 0xffffffff is technically a valid size value,
7130 an object of this size seems pretty unlikely so we can relatively
7131 safely treat these cases as if the size attribute was invalid and
7132 treat them as zero by default. */
7133 if (attr->name == DW_AT_byte_size
7134 && form == DW_FORM_data4
7135 && DW_UNSND (attr) >= 0xffffffff)
7136 {
7137 complaint
7138 (&symfile_complaints,
7139 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
7140 hex_string (DW_UNSND (attr)));
7141 DW_UNSND (attr) = 0;
7142 }
7143
7144 return info_ptr;
7145 }
7146
7147 /* Read an attribute described by an abbreviated attribute. */
7148
7149 static gdb_byte *
7150 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
7151 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
7152 {
7153 attr->name = abbrev->name;
7154 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
7155 }
7156
7157 /* read dwarf information from a buffer */
7158
7159 static unsigned int
7160 read_1_byte (bfd *abfd, gdb_byte *buf)
7161 {
7162 return bfd_get_8 (abfd, buf);
7163 }
7164
7165 static int
7166 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
7167 {
7168 return bfd_get_signed_8 (abfd, buf);
7169 }
7170
7171 static unsigned int
7172 read_2_bytes (bfd *abfd, gdb_byte *buf)
7173 {
7174 return bfd_get_16 (abfd, buf);
7175 }
7176
7177 static int
7178 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
7179 {
7180 return bfd_get_signed_16 (abfd, buf);
7181 }
7182
7183 static unsigned int
7184 read_4_bytes (bfd *abfd, gdb_byte *buf)
7185 {
7186 return bfd_get_32 (abfd, buf);
7187 }
7188
7189 static int
7190 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
7191 {
7192 return bfd_get_signed_32 (abfd, buf);
7193 }
7194
7195 static ULONGEST
7196 read_8_bytes (bfd *abfd, gdb_byte *buf)
7197 {
7198 return bfd_get_64 (abfd, buf);
7199 }
7200
7201 static CORE_ADDR
7202 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
7203 unsigned int *bytes_read)
7204 {
7205 struct comp_unit_head *cu_header = &cu->header;
7206 CORE_ADDR retval = 0;
7207
7208 if (cu_header->signed_addr_p)
7209 {
7210 switch (cu_header->addr_size)
7211 {
7212 case 2:
7213 retval = bfd_get_signed_16 (abfd, buf);
7214 break;
7215 case 4:
7216 retval = bfd_get_signed_32 (abfd, buf);
7217 break;
7218 case 8:
7219 retval = bfd_get_signed_64 (abfd, buf);
7220 break;
7221 default:
7222 internal_error (__FILE__, __LINE__,
7223 _("read_address: bad switch, signed [in module %s]"),
7224 bfd_get_filename (abfd));
7225 }
7226 }
7227 else
7228 {
7229 switch (cu_header->addr_size)
7230 {
7231 case 2:
7232 retval = bfd_get_16 (abfd, buf);
7233 break;
7234 case 4:
7235 retval = bfd_get_32 (abfd, buf);
7236 break;
7237 case 8:
7238 retval = bfd_get_64 (abfd, buf);
7239 break;
7240 default:
7241 internal_error (__FILE__, __LINE__,
7242 _("read_address: bad switch, unsigned [in module %s]"),
7243 bfd_get_filename (abfd));
7244 }
7245 }
7246
7247 *bytes_read = cu_header->addr_size;
7248 return retval;
7249 }
7250
7251 /* Read the initial length from a section. The (draft) DWARF 3
7252 specification allows the initial length to take up either 4 bytes
7253 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
7254 bytes describe the length and all offsets will be 8 bytes in length
7255 instead of 4.
7256
7257 An older, non-standard 64-bit format is also handled by this
7258 function. The older format in question stores the initial length
7259 as an 8-byte quantity without an escape value. Lengths greater
7260 than 2^32 aren't very common which means that the initial 4 bytes
7261 is almost always zero. Since a length value of zero doesn't make
7262 sense for the 32-bit format, this initial zero can be considered to
7263 be an escape value which indicates the presence of the older 64-bit
7264 format. As written, the code can't detect (old format) lengths
7265 greater than 4GB. If it becomes necessary to handle lengths
7266 somewhat larger than 4GB, we could allow other small values (such
7267 as the non-sensical values of 1, 2, and 3) to also be used as
7268 escape values indicating the presence of the old format.
7269
7270 The value returned via bytes_read should be used to increment the
7271 relevant pointer after calling read_initial_length().
7272
7273 [ Note: read_initial_length() and read_offset() are based on the
7274 document entitled "DWARF Debugging Information Format", revision
7275 3, draft 8, dated November 19, 2001. This document was obtained
7276 from:
7277
7278 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
7279
7280 This document is only a draft and is subject to change. (So beware.)
7281
7282 Details regarding the older, non-standard 64-bit format were
7283 determined empirically by examining 64-bit ELF files produced by
7284 the SGI toolchain on an IRIX 6.5 machine.
7285
7286 - Kevin, July 16, 2002
7287 ] */
7288
7289 static LONGEST
7290 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
7291 {
7292 LONGEST length = bfd_get_32 (abfd, buf);
7293
7294 if (length == 0xffffffff)
7295 {
7296 length = bfd_get_64 (abfd, buf + 4);
7297 *bytes_read = 12;
7298 }
7299 else if (length == 0)
7300 {
7301 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
7302 length = bfd_get_64 (abfd, buf);
7303 *bytes_read = 8;
7304 }
7305 else
7306 {
7307 *bytes_read = 4;
7308 }
7309
7310 return length;
7311 }
7312
7313 /* Cover function for read_initial_length.
7314 Returns the length of the object at BUF, and stores the size of the
7315 initial length in *BYTES_READ and stores the size that offsets will be in
7316 *OFFSET_SIZE.
7317 If the initial length size is not equivalent to that specified in
7318 CU_HEADER then issue a complaint.
7319 This is useful when reading non-comp-unit headers. */
7320
7321 static LONGEST
7322 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
7323 const struct comp_unit_head *cu_header,
7324 unsigned int *bytes_read,
7325 unsigned int *offset_size)
7326 {
7327 LONGEST length = read_initial_length (abfd, buf, bytes_read);
7328
7329 gdb_assert (cu_header->initial_length_size == 4
7330 || cu_header->initial_length_size == 8
7331 || cu_header->initial_length_size == 12);
7332
7333 if (cu_header->initial_length_size != *bytes_read)
7334 complaint (&symfile_complaints,
7335 _("intermixed 32-bit and 64-bit DWARF sections"));
7336
7337 *offset_size = (*bytes_read == 4) ? 4 : 8;
7338 return length;
7339 }
7340
7341 /* Read an offset from the data stream. The size of the offset is
7342 given by cu_header->offset_size. */
7343
7344 static LONGEST
7345 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
7346 unsigned int *bytes_read)
7347 {
7348 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
7349 *bytes_read = cu_header->offset_size;
7350 return offset;
7351 }
7352
7353 /* Read an offset from the data stream. */
7354
7355 static LONGEST
7356 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
7357 {
7358 LONGEST retval = 0;
7359
7360 switch (offset_size)
7361 {
7362 case 4:
7363 retval = bfd_get_32 (abfd, buf);
7364 break;
7365 case 8:
7366 retval = bfd_get_64 (abfd, buf);
7367 break;
7368 default:
7369 internal_error (__FILE__, __LINE__,
7370 _("read_offset_1: bad switch [in module %s]"),
7371 bfd_get_filename (abfd));
7372 }
7373
7374 return retval;
7375 }
7376
7377 static gdb_byte *
7378 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
7379 {
7380 /* If the size of a host char is 8 bits, we can return a pointer
7381 to the buffer, otherwise we have to copy the data to a buffer
7382 allocated on the temporary obstack. */
7383 gdb_assert (HOST_CHAR_BIT == 8);
7384 return buf;
7385 }
7386
7387 static char *
7388 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7389 {
7390 /* If the size of a host char is 8 bits, we can return a pointer
7391 to the string, otherwise we have to copy the string to a buffer
7392 allocated on the temporary obstack. */
7393 gdb_assert (HOST_CHAR_BIT == 8);
7394 if (*buf == '\0')
7395 {
7396 *bytes_read_ptr = 1;
7397 return NULL;
7398 }
7399 *bytes_read_ptr = strlen ((char *) buf) + 1;
7400 return (char *) buf;
7401 }
7402
7403 static char *
7404 read_indirect_string (bfd *abfd, gdb_byte *buf,
7405 const struct comp_unit_head *cu_header,
7406 unsigned int *bytes_read_ptr)
7407 {
7408 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
7409
7410 if (dwarf2_per_objfile->str.buffer == NULL)
7411 {
7412 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
7413 bfd_get_filename (abfd));
7414 return NULL;
7415 }
7416 if (str_offset >= dwarf2_per_objfile->str.size)
7417 {
7418 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
7419 bfd_get_filename (abfd));
7420 return NULL;
7421 }
7422 gdb_assert (HOST_CHAR_BIT == 8);
7423 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
7424 return NULL;
7425 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
7426 }
7427
7428 static unsigned long
7429 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7430 {
7431 unsigned long result;
7432 unsigned int num_read;
7433 int i, shift;
7434 unsigned char byte;
7435
7436 result = 0;
7437 shift = 0;
7438 num_read = 0;
7439 i = 0;
7440 while (1)
7441 {
7442 byte = bfd_get_8 (abfd, buf);
7443 buf++;
7444 num_read++;
7445 result |= ((unsigned long)(byte & 127) << shift);
7446 if ((byte & 128) == 0)
7447 {
7448 break;
7449 }
7450 shift += 7;
7451 }
7452 *bytes_read_ptr = num_read;
7453 return result;
7454 }
7455
7456 static long
7457 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7458 {
7459 long result;
7460 int i, shift, num_read;
7461 unsigned char byte;
7462
7463 result = 0;
7464 shift = 0;
7465 num_read = 0;
7466 i = 0;
7467 while (1)
7468 {
7469 byte = bfd_get_8 (abfd, buf);
7470 buf++;
7471 num_read++;
7472 result |= ((long)(byte & 127) << shift);
7473 shift += 7;
7474 if ((byte & 128) == 0)
7475 {
7476 break;
7477 }
7478 }
7479 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
7480 result |= -(((long)1) << shift);
7481 *bytes_read_ptr = num_read;
7482 return result;
7483 }
7484
7485 /* Return a pointer to just past the end of an LEB128 number in BUF. */
7486
7487 static gdb_byte *
7488 skip_leb128 (bfd *abfd, gdb_byte *buf)
7489 {
7490 int byte;
7491
7492 while (1)
7493 {
7494 byte = bfd_get_8 (abfd, buf);
7495 buf++;
7496 if ((byte & 128) == 0)
7497 return buf;
7498 }
7499 }
7500
7501 static void
7502 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
7503 {
7504 switch (lang)
7505 {
7506 case DW_LANG_C89:
7507 case DW_LANG_C99:
7508 case DW_LANG_C:
7509 cu->language = language_c;
7510 break;
7511 case DW_LANG_C_plus_plus:
7512 cu->language = language_cplus;
7513 break;
7514 case DW_LANG_Fortran77:
7515 case DW_LANG_Fortran90:
7516 case DW_LANG_Fortran95:
7517 cu->language = language_fortran;
7518 break;
7519 case DW_LANG_Mips_Assembler:
7520 cu->language = language_asm;
7521 break;
7522 case DW_LANG_Java:
7523 cu->language = language_java;
7524 break;
7525 case DW_LANG_Ada83:
7526 case DW_LANG_Ada95:
7527 cu->language = language_ada;
7528 break;
7529 case DW_LANG_Modula2:
7530 cu->language = language_m2;
7531 break;
7532 case DW_LANG_Pascal83:
7533 cu->language = language_pascal;
7534 break;
7535 case DW_LANG_ObjC:
7536 cu->language = language_objc;
7537 break;
7538 case DW_LANG_Cobol74:
7539 case DW_LANG_Cobol85:
7540 default:
7541 cu->language = language_minimal;
7542 break;
7543 }
7544 cu->language_defn = language_def (cu->language);
7545 }
7546
7547 /* Return the named attribute or NULL if not there. */
7548
7549 static struct attribute *
7550 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
7551 {
7552 unsigned int i;
7553 struct attribute *spec = NULL;
7554
7555 for (i = 0; i < die->num_attrs; ++i)
7556 {
7557 if (die->attrs[i].name == name)
7558 return &die->attrs[i];
7559 if (die->attrs[i].name == DW_AT_specification
7560 || die->attrs[i].name == DW_AT_abstract_origin)
7561 spec = &die->attrs[i];
7562 }
7563
7564 if (spec)
7565 {
7566 die = follow_die_ref (die, spec, &cu);
7567 return dwarf2_attr (die, name, cu);
7568 }
7569
7570 return NULL;
7571 }
7572
7573 /* Return the named attribute or NULL if not there,
7574 but do not follow DW_AT_specification, etc.
7575 This is for use in contexts where we're reading .debug_types dies.
7576 Following DW_AT_specification, DW_AT_abstract_origin will take us
7577 back up the chain, and we want to go down. */
7578
7579 static struct attribute *
7580 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
7581 struct dwarf2_cu *cu)
7582 {
7583 unsigned int i;
7584
7585 for (i = 0; i < die->num_attrs; ++i)
7586 if (die->attrs[i].name == name)
7587 return &die->attrs[i];
7588
7589 return NULL;
7590 }
7591
7592 /* Return non-zero iff the attribute NAME is defined for the given DIE,
7593 and holds a non-zero value. This function should only be used for
7594 DW_FORM_flag attributes. */
7595
7596 static int
7597 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
7598 {
7599 struct attribute *attr = dwarf2_attr (die, name, cu);
7600
7601 return (attr && DW_UNSND (attr));
7602 }
7603
7604 static int
7605 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
7606 {
7607 /* A DIE is a declaration if it has a DW_AT_declaration attribute
7608 which value is non-zero. However, we have to be careful with
7609 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
7610 (via dwarf2_flag_true_p) follows this attribute. So we may
7611 end up accidently finding a declaration attribute that belongs
7612 to a different DIE referenced by the specification attribute,
7613 even though the given DIE does not have a declaration attribute. */
7614 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
7615 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
7616 }
7617
7618 /* Return the die giving the specification for DIE, if there is
7619 one. *SPEC_CU is the CU containing DIE on input, and the CU
7620 containing the return value on output. If there is no
7621 specification, but there is an abstract origin, that is
7622 returned. */
7623
7624 static struct die_info *
7625 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
7626 {
7627 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
7628 *spec_cu);
7629
7630 if (spec_attr == NULL)
7631 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
7632
7633 if (spec_attr == NULL)
7634 return NULL;
7635 else
7636 return follow_die_ref (die, spec_attr, spec_cu);
7637 }
7638
7639 /* Free the line_header structure *LH, and any arrays and strings it
7640 refers to. */
7641 static void
7642 free_line_header (struct line_header *lh)
7643 {
7644 if (lh->standard_opcode_lengths)
7645 xfree (lh->standard_opcode_lengths);
7646
7647 /* Remember that all the lh->file_names[i].name pointers are
7648 pointers into debug_line_buffer, and don't need to be freed. */
7649 if (lh->file_names)
7650 xfree (lh->file_names);
7651
7652 /* Similarly for the include directory names. */
7653 if (lh->include_dirs)
7654 xfree (lh->include_dirs);
7655
7656 xfree (lh);
7657 }
7658
7659
7660 /* Add an entry to LH's include directory table. */
7661 static void
7662 add_include_dir (struct line_header *lh, char *include_dir)
7663 {
7664 /* Grow the array if necessary. */
7665 if (lh->include_dirs_size == 0)
7666 {
7667 lh->include_dirs_size = 1; /* for testing */
7668 lh->include_dirs = xmalloc (lh->include_dirs_size
7669 * sizeof (*lh->include_dirs));
7670 }
7671 else if (lh->num_include_dirs >= lh->include_dirs_size)
7672 {
7673 lh->include_dirs_size *= 2;
7674 lh->include_dirs = xrealloc (lh->include_dirs,
7675 (lh->include_dirs_size
7676 * sizeof (*lh->include_dirs)));
7677 }
7678
7679 lh->include_dirs[lh->num_include_dirs++] = include_dir;
7680 }
7681
7682
7683 /* Add an entry to LH's file name table. */
7684 static void
7685 add_file_name (struct line_header *lh,
7686 char *name,
7687 unsigned int dir_index,
7688 unsigned int mod_time,
7689 unsigned int length)
7690 {
7691 struct file_entry *fe;
7692
7693 /* Grow the array if necessary. */
7694 if (lh->file_names_size == 0)
7695 {
7696 lh->file_names_size = 1; /* for testing */
7697 lh->file_names = xmalloc (lh->file_names_size
7698 * sizeof (*lh->file_names));
7699 }
7700 else if (lh->num_file_names >= lh->file_names_size)
7701 {
7702 lh->file_names_size *= 2;
7703 lh->file_names = xrealloc (lh->file_names,
7704 (lh->file_names_size
7705 * sizeof (*lh->file_names)));
7706 }
7707
7708 fe = &lh->file_names[lh->num_file_names++];
7709 fe->name = name;
7710 fe->dir_index = dir_index;
7711 fe->mod_time = mod_time;
7712 fe->length = length;
7713 fe->included_p = 0;
7714 fe->symtab = NULL;
7715 }
7716
7717
7718 /* Read the statement program header starting at OFFSET in
7719 .debug_line, according to the endianness of ABFD. Return a pointer
7720 to a struct line_header, allocated using xmalloc.
7721
7722 NOTE: the strings in the include directory and file name tables of
7723 the returned object point into debug_line_buffer, and must not be
7724 freed. */
7725 static struct line_header *
7726 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
7727 struct dwarf2_cu *cu)
7728 {
7729 struct cleanup *back_to;
7730 struct line_header *lh;
7731 gdb_byte *line_ptr;
7732 unsigned int bytes_read, offset_size;
7733 int i;
7734 char *cur_dir, *cur_file;
7735
7736 if (dwarf2_per_objfile->line.buffer == NULL)
7737 {
7738 complaint (&symfile_complaints, _("missing .debug_line section"));
7739 return 0;
7740 }
7741
7742 /* Make sure that at least there's room for the total_length field.
7743 That could be 12 bytes long, but we're just going to fudge that. */
7744 if (offset + 4 >= dwarf2_per_objfile->line.size)
7745 {
7746 dwarf2_statement_list_fits_in_line_number_section_complaint ();
7747 return 0;
7748 }
7749
7750 lh = xmalloc (sizeof (*lh));
7751 memset (lh, 0, sizeof (*lh));
7752 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
7753 (void *) lh);
7754
7755 line_ptr = dwarf2_per_objfile->line.buffer + offset;
7756
7757 /* Read in the header. */
7758 lh->total_length =
7759 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
7760 &bytes_read, &offset_size);
7761 line_ptr += bytes_read;
7762 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
7763 + dwarf2_per_objfile->line.size))
7764 {
7765 dwarf2_statement_list_fits_in_line_number_section_complaint ();
7766 return 0;
7767 }
7768 lh->statement_program_end = line_ptr + lh->total_length;
7769 lh->version = read_2_bytes (abfd, line_ptr);
7770 line_ptr += 2;
7771 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
7772 line_ptr += offset_size;
7773 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
7774 line_ptr += 1;
7775 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
7776 line_ptr += 1;
7777 lh->line_base = read_1_signed_byte (abfd, line_ptr);
7778 line_ptr += 1;
7779 lh->line_range = read_1_byte (abfd, line_ptr);
7780 line_ptr += 1;
7781 lh->opcode_base = read_1_byte (abfd, line_ptr);
7782 line_ptr += 1;
7783 lh->standard_opcode_lengths
7784 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
7785
7786 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
7787 for (i = 1; i < lh->opcode_base; ++i)
7788 {
7789 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
7790 line_ptr += 1;
7791 }
7792
7793 /* Read directory table. */
7794 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7795 {
7796 line_ptr += bytes_read;
7797 add_include_dir (lh, cur_dir);
7798 }
7799 line_ptr += bytes_read;
7800
7801 /* Read file name table. */
7802 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7803 {
7804 unsigned int dir_index, mod_time, length;
7805
7806 line_ptr += bytes_read;
7807 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7808 line_ptr += bytes_read;
7809 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7810 line_ptr += bytes_read;
7811 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7812 line_ptr += bytes_read;
7813
7814 add_file_name (lh, cur_file, dir_index, mod_time, length);
7815 }
7816 line_ptr += bytes_read;
7817 lh->statement_program_start = line_ptr;
7818
7819 if (line_ptr > (dwarf2_per_objfile->line.buffer
7820 + dwarf2_per_objfile->line.size))
7821 complaint (&symfile_complaints,
7822 _("line number info header doesn't fit in `.debug_line' section"));
7823
7824 discard_cleanups (back_to);
7825 return lh;
7826 }
7827
7828 /* This function exists to work around a bug in certain compilers
7829 (particularly GCC 2.95), in which the first line number marker of a
7830 function does not show up until after the prologue, right before
7831 the second line number marker. This function shifts ADDRESS down
7832 to the beginning of the function if necessary, and is called on
7833 addresses passed to record_line. */
7834
7835 static CORE_ADDR
7836 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
7837 {
7838 struct function_range *fn;
7839
7840 /* Find the function_range containing address. */
7841 if (!cu->first_fn)
7842 return address;
7843
7844 if (!cu->cached_fn)
7845 cu->cached_fn = cu->first_fn;
7846
7847 fn = cu->cached_fn;
7848 while (fn)
7849 if (fn->lowpc <= address && fn->highpc > address)
7850 goto found;
7851 else
7852 fn = fn->next;
7853
7854 fn = cu->first_fn;
7855 while (fn && fn != cu->cached_fn)
7856 if (fn->lowpc <= address && fn->highpc > address)
7857 goto found;
7858 else
7859 fn = fn->next;
7860
7861 return address;
7862
7863 found:
7864 if (fn->seen_line)
7865 return address;
7866 if (address != fn->lowpc)
7867 complaint (&symfile_complaints,
7868 _("misplaced first line number at 0x%lx for '%s'"),
7869 (unsigned long) address, fn->name);
7870 fn->seen_line = 1;
7871 return fn->lowpc;
7872 }
7873
7874 /* Decode the Line Number Program (LNP) for the given line_header
7875 structure and CU. The actual information extracted and the type
7876 of structures created from the LNP depends on the value of PST.
7877
7878 1. If PST is NULL, then this procedure uses the data from the program
7879 to create all necessary symbol tables, and their linetables.
7880 The compilation directory of the file is passed in COMP_DIR,
7881 and must not be NULL.
7882
7883 2. If PST is not NULL, this procedure reads the program to determine
7884 the list of files included by the unit represented by PST, and
7885 builds all the associated partial symbol tables. In this case,
7886 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
7887 is not used to compute the full name of the symtab, and therefore
7888 omitting it when building the partial symtab does not introduce
7889 the potential for inconsistency - a partial symtab and its associated
7890 symbtab having a different fullname -). */
7891
7892 static void
7893 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
7894 struct dwarf2_cu *cu, struct partial_symtab *pst)
7895 {
7896 gdb_byte *line_ptr, *extended_end;
7897 gdb_byte *line_end;
7898 unsigned int bytes_read, extended_len;
7899 unsigned char op_code, extended_op, adj_opcode;
7900 CORE_ADDR baseaddr;
7901 struct objfile *objfile = cu->objfile;
7902 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7903 const int decode_for_pst_p = (pst != NULL);
7904 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
7905
7906 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7907
7908 line_ptr = lh->statement_program_start;
7909 line_end = lh->statement_program_end;
7910
7911 /* Read the statement sequences until there's nothing left. */
7912 while (line_ptr < line_end)
7913 {
7914 /* state machine registers */
7915 CORE_ADDR address = 0;
7916 unsigned int file = 1;
7917 unsigned int line = 1;
7918 unsigned int column = 0;
7919 int is_stmt = lh->default_is_stmt;
7920 int basic_block = 0;
7921 int end_sequence = 0;
7922 CORE_ADDR addr;
7923
7924 if (!decode_for_pst_p && lh->num_file_names >= file)
7925 {
7926 /* Start a subfile for the current file of the state machine. */
7927 /* lh->include_dirs and lh->file_names are 0-based, but the
7928 directory and file name numbers in the statement program
7929 are 1-based. */
7930 struct file_entry *fe = &lh->file_names[file - 1];
7931 char *dir = NULL;
7932
7933 if (fe->dir_index)
7934 dir = lh->include_dirs[fe->dir_index - 1];
7935
7936 dwarf2_start_subfile (fe->name, dir, comp_dir);
7937 }
7938
7939 /* Decode the table. */
7940 while (!end_sequence)
7941 {
7942 op_code = read_1_byte (abfd, line_ptr);
7943 line_ptr += 1;
7944 if (line_ptr > line_end)
7945 {
7946 dwarf2_debug_line_missing_end_sequence_complaint ();
7947 break;
7948 }
7949
7950 if (op_code >= lh->opcode_base)
7951 {
7952 /* Special operand. */
7953 adj_opcode = op_code - lh->opcode_base;
7954 address += (adj_opcode / lh->line_range)
7955 * lh->minimum_instruction_length;
7956 line += lh->line_base + (adj_opcode % lh->line_range);
7957 if (lh->num_file_names < file || file == 0)
7958 dwarf2_debug_line_missing_file_complaint ();
7959 else
7960 {
7961 lh->file_names[file - 1].included_p = 1;
7962 if (!decode_for_pst_p && is_stmt)
7963 {
7964 if (last_subfile != current_subfile)
7965 {
7966 addr = gdbarch_addr_bits_remove (gdbarch, address);
7967 if (last_subfile)
7968 record_line (last_subfile, 0, addr);
7969 last_subfile = current_subfile;
7970 }
7971 /* Append row to matrix using current values. */
7972 addr = check_cu_functions (address, cu);
7973 addr = gdbarch_addr_bits_remove (gdbarch, addr);
7974 record_line (current_subfile, line, addr);
7975 }
7976 }
7977 basic_block = 0;
7978 }
7979 else switch (op_code)
7980 {
7981 case DW_LNS_extended_op:
7982 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7983 line_ptr += bytes_read;
7984 extended_end = line_ptr + extended_len;
7985 extended_op = read_1_byte (abfd, line_ptr);
7986 line_ptr += 1;
7987 switch (extended_op)
7988 {
7989 case DW_LNE_end_sequence:
7990 end_sequence = 1;
7991 break;
7992 case DW_LNE_set_address:
7993 address = read_address (abfd, line_ptr, cu, &bytes_read);
7994 line_ptr += bytes_read;
7995 address += baseaddr;
7996 break;
7997 case DW_LNE_define_file:
7998 {
7999 char *cur_file;
8000 unsigned int dir_index, mod_time, length;
8001
8002 cur_file = read_string (abfd, line_ptr, &bytes_read);
8003 line_ptr += bytes_read;
8004 dir_index =
8005 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8006 line_ptr += bytes_read;
8007 mod_time =
8008 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8009 line_ptr += bytes_read;
8010 length =
8011 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8012 line_ptr += bytes_read;
8013 add_file_name (lh, cur_file, dir_index, mod_time, length);
8014 }
8015 break;
8016 case DW_LNE_set_discriminator:
8017 /* The discriminator is not interesting to the debugger;
8018 just ignore it. */
8019 line_ptr = extended_end;
8020 break;
8021 default:
8022 complaint (&symfile_complaints,
8023 _("mangled .debug_line section"));
8024 return;
8025 }
8026 /* Make sure that we parsed the extended op correctly. If e.g.
8027 we expected a different address size than the producer used,
8028 we may have read the wrong number of bytes. */
8029 if (line_ptr != extended_end)
8030 {
8031 complaint (&symfile_complaints,
8032 _("mangled .debug_line section"));
8033 return;
8034 }
8035 break;
8036 case DW_LNS_copy:
8037 if (lh->num_file_names < file || file == 0)
8038 dwarf2_debug_line_missing_file_complaint ();
8039 else
8040 {
8041 lh->file_names[file - 1].included_p = 1;
8042 if (!decode_for_pst_p && is_stmt)
8043 {
8044 if (last_subfile != current_subfile)
8045 {
8046 addr = gdbarch_addr_bits_remove (gdbarch, address);
8047 if (last_subfile)
8048 record_line (last_subfile, 0, addr);
8049 last_subfile = current_subfile;
8050 }
8051 addr = check_cu_functions (address, cu);
8052 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8053 record_line (current_subfile, line, addr);
8054 }
8055 }
8056 basic_block = 0;
8057 break;
8058 case DW_LNS_advance_pc:
8059 address += lh->minimum_instruction_length
8060 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8061 line_ptr += bytes_read;
8062 break;
8063 case DW_LNS_advance_line:
8064 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
8065 line_ptr += bytes_read;
8066 break;
8067 case DW_LNS_set_file:
8068 {
8069 /* The arrays lh->include_dirs and lh->file_names are
8070 0-based, but the directory and file name numbers in
8071 the statement program are 1-based. */
8072 struct file_entry *fe;
8073 char *dir = NULL;
8074
8075 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8076 line_ptr += bytes_read;
8077 if (lh->num_file_names < file || file == 0)
8078 dwarf2_debug_line_missing_file_complaint ();
8079 else
8080 {
8081 fe = &lh->file_names[file - 1];
8082 if (fe->dir_index)
8083 dir = lh->include_dirs[fe->dir_index - 1];
8084 if (!decode_for_pst_p)
8085 {
8086 last_subfile = current_subfile;
8087 dwarf2_start_subfile (fe->name, dir, comp_dir);
8088 }
8089 }
8090 }
8091 break;
8092 case DW_LNS_set_column:
8093 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8094 line_ptr += bytes_read;
8095 break;
8096 case DW_LNS_negate_stmt:
8097 is_stmt = (!is_stmt);
8098 break;
8099 case DW_LNS_set_basic_block:
8100 basic_block = 1;
8101 break;
8102 /* Add to the address register of the state machine the
8103 address increment value corresponding to special opcode
8104 255. I.e., this value is scaled by the minimum
8105 instruction length since special opcode 255 would have
8106 scaled the the increment. */
8107 case DW_LNS_const_add_pc:
8108 address += (lh->minimum_instruction_length
8109 * ((255 - lh->opcode_base) / lh->line_range));
8110 break;
8111 case DW_LNS_fixed_advance_pc:
8112 address += read_2_bytes (abfd, line_ptr);
8113 line_ptr += 2;
8114 break;
8115 default:
8116 {
8117 /* Unknown standard opcode, ignore it. */
8118 int i;
8119
8120 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
8121 {
8122 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8123 line_ptr += bytes_read;
8124 }
8125 }
8126 }
8127 }
8128 if (lh->num_file_names < file || file == 0)
8129 dwarf2_debug_line_missing_file_complaint ();
8130 else
8131 {
8132 lh->file_names[file - 1].included_p = 1;
8133 if (!decode_for_pst_p)
8134 {
8135 addr = gdbarch_addr_bits_remove (gdbarch, address);
8136 record_line (current_subfile, 0, addr);
8137 }
8138 }
8139 }
8140
8141 if (decode_for_pst_p)
8142 {
8143 int file_index;
8144
8145 /* Now that we're done scanning the Line Header Program, we can
8146 create the psymtab of each included file. */
8147 for (file_index = 0; file_index < lh->num_file_names; file_index++)
8148 if (lh->file_names[file_index].included_p == 1)
8149 {
8150 const struct file_entry fe = lh->file_names [file_index];
8151 char *include_name = fe.name;
8152 char *dir_name = NULL;
8153 char *pst_filename = pst->filename;
8154
8155 if (fe.dir_index)
8156 dir_name = lh->include_dirs[fe.dir_index - 1];
8157
8158 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
8159 {
8160 include_name = concat (dir_name, SLASH_STRING,
8161 include_name, (char *)NULL);
8162 make_cleanup (xfree, include_name);
8163 }
8164
8165 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
8166 {
8167 pst_filename = concat (pst->dirname, SLASH_STRING,
8168 pst_filename, (char *)NULL);
8169 make_cleanup (xfree, pst_filename);
8170 }
8171
8172 if (strcmp (include_name, pst_filename) != 0)
8173 dwarf2_create_include_psymtab (include_name, pst, objfile);
8174 }
8175 }
8176 else
8177 {
8178 /* Make sure a symtab is created for every file, even files
8179 which contain only variables (i.e. no code with associated
8180 line numbers). */
8181
8182 int i;
8183 struct file_entry *fe;
8184
8185 for (i = 0; i < lh->num_file_names; i++)
8186 {
8187 char *dir = NULL;
8188 fe = &lh->file_names[i];
8189 if (fe->dir_index)
8190 dir = lh->include_dirs[fe->dir_index - 1];
8191 dwarf2_start_subfile (fe->name, dir, comp_dir);
8192
8193 /* Skip the main file; we don't need it, and it must be
8194 allocated last, so that it will show up before the
8195 non-primary symtabs in the objfile's symtab list. */
8196 if (current_subfile == first_subfile)
8197 continue;
8198
8199 if (current_subfile->symtab == NULL)
8200 current_subfile->symtab = allocate_symtab (current_subfile->name,
8201 cu->objfile);
8202 fe->symtab = current_subfile->symtab;
8203 }
8204 }
8205 }
8206
8207 /* Start a subfile for DWARF. FILENAME is the name of the file and
8208 DIRNAME the name of the source directory which contains FILENAME
8209 or NULL if not known. COMP_DIR is the compilation directory for the
8210 linetable's compilation unit or NULL if not known.
8211 This routine tries to keep line numbers from identical absolute and
8212 relative file names in a common subfile.
8213
8214 Using the `list' example from the GDB testsuite, which resides in
8215 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
8216 of /srcdir/list0.c yields the following debugging information for list0.c:
8217
8218 DW_AT_name: /srcdir/list0.c
8219 DW_AT_comp_dir: /compdir
8220 files.files[0].name: list0.h
8221 files.files[0].dir: /srcdir
8222 files.files[1].name: list0.c
8223 files.files[1].dir: /srcdir
8224
8225 The line number information for list0.c has to end up in a single
8226 subfile, so that `break /srcdir/list0.c:1' works as expected.
8227 start_subfile will ensure that this happens provided that we pass the
8228 concatenation of files.files[1].dir and files.files[1].name as the
8229 subfile's name. */
8230
8231 static void
8232 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
8233 {
8234 char *fullname;
8235
8236 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
8237 `start_symtab' will always pass the contents of DW_AT_comp_dir as
8238 second argument to start_subfile. To be consistent, we do the
8239 same here. In order not to lose the line information directory,
8240 we concatenate it to the filename when it makes sense.
8241 Note that the Dwarf3 standard says (speaking of filenames in line
8242 information): ``The directory index is ignored for file names
8243 that represent full path names''. Thus ignoring dirname in the
8244 `else' branch below isn't an issue. */
8245
8246 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
8247 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
8248 else
8249 fullname = filename;
8250
8251 start_subfile (fullname, comp_dir);
8252
8253 if (fullname != filename)
8254 xfree (fullname);
8255 }
8256
8257 static void
8258 var_decode_location (struct attribute *attr, struct symbol *sym,
8259 struct dwarf2_cu *cu)
8260 {
8261 struct objfile *objfile = cu->objfile;
8262 struct comp_unit_head *cu_header = &cu->header;
8263
8264 /* NOTE drow/2003-01-30: There used to be a comment and some special
8265 code here to turn a symbol with DW_AT_external and a
8266 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
8267 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
8268 with some versions of binutils) where shared libraries could have
8269 relocations against symbols in their debug information - the
8270 minimal symbol would have the right address, but the debug info
8271 would not. It's no longer necessary, because we will explicitly
8272 apply relocations when we read in the debug information now. */
8273
8274 /* A DW_AT_location attribute with no contents indicates that a
8275 variable has been optimized away. */
8276 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
8277 {
8278 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8279 return;
8280 }
8281
8282 /* Handle one degenerate form of location expression specially, to
8283 preserve GDB's previous behavior when section offsets are
8284 specified. If this is just a DW_OP_addr then mark this symbol
8285 as LOC_STATIC. */
8286
8287 if (attr_form_is_block (attr)
8288 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
8289 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
8290 {
8291 unsigned int dummy;
8292
8293 SYMBOL_VALUE_ADDRESS (sym) =
8294 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
8295 SYMBOL_CLASS (sym) = LOC_STATIC;
8296 fixup_symbol_section (sym, objfile);
8297 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
8298 SYMBOL_SECTION (sym));
8299 return;
8300 }
8301
8302 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
8303 expression evaluator, and use LOC_COMPUTED only when necessary
8304 (i.e. when the value of a register or memory location is
8305 referenced, or a thread-local block, etc.). Then again, it might
8306 not be worthwhile. I'm assuming that it isn't unless performance
8307 or memory numbers show me otherwise. */
8308
8309 dwarf2_symbol_mark_computed (attr, sym, cu);
8310 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8311 }
8312
8313 /* Given a pointer to a DWARF information entry, figure out if we need
8314 to make a symbol table entry for it, and if so, create a new entry
8315 and return a pointer to it.
8316 If TYPE is NULL, determine symbol type from the die, otherwise
8317 used the passed type. */
8318
8319 static struct symbol *
8320 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
8321 {
8322 struct objfile *objfile = cu->objfile;
8323 struct symbol *sym = NULL;
8324 char *name;
8325 struct attribute *attr = NULL;
8326 struct attribute *attr2 = NULL;
8327 CORE_ADDR baseaddr;
8328 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
8329
8330 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8331
8332 if (die->tag != DW_TAG_namespace)
8333 name = dwarf2_linkage_name (die, cu);
8334 else
8335 name = TYPE_NAME (type);
8336
8337 if (name)
8338 {
8339 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
8340 sizeof (struct symbol));
8341 OBJSTAT (objfile, n_syms++);
8342 memset (sym, 0, sizeof (struct symbol));
8343
8344 /* Cache this symbol's name and the name's demangled form (if any). */
8345 SYMBOL_LANGUAGE (sym) = cu->language;
8346 SYMBOL_SET_NAMES (sym, name, strlen (name), 0, objfile);
8347
8348 /* Default assumptions.
8349 Use the passed type or decode it from the die. */
8350 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
8351 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8352 if (type != NULL)
8353 SYMBOL_TYPE (sym) = type;
8354 else
8355 SYMBOL_TYPE (sym) = die_type (die, cu);
8356 attr = dwarf2_attr (die,
8357 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
8358 cu);
8359 if (attr)
8360 {
8361 SYMBOL_LINE (sym) = DW_UNSND (attr);
8362 }
8363
8364 attr = dwarf2_attr (die,
8365 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
8366 cu);
8367 if (attr)
8368 {
8369 int file_index = DW_UNSND (attr);
8370 if (cu->line_header == NULL
8371 || file_index > cu->line_header->num_file_names)
8372 complaint (&symfile_complaints,
8373 _("file index out of range"));
8374 else if (file_index > 0)
8375 {
8376 struct file_entry *fe;
8377 fe = &cu->line_header->file_names[file_index - 1];
8378 SYMBOL_SYMTAB (sym) = fe->symtab;
8379 }
8380 }
8381
8382 switch (die->tag)
8383 {
8384 case DW_TAG_label:
8385 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
8386 if (attr)
8387 {
8388 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
8389 }
8390 SYMBOL_CLASS (sym) = LOC_LABEL;
8391 break;
8392 case DW_TAG_subprogram:
8393 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8394 finish_block. */
8395 SYMBOL_CLASS (sym) = LOC_BLOCK;
8396 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8397 if ((attr2 && (DW_UNSND (attr2) != 0))
8398 || cu->language == language_ada)
8399 {
8400 /* Subprograms marked external are stored as a global symbol.
8401 Ada subprograms, whether marked external or not, are always
8402 stored as a global symbol, because we want to be able to
8403 access them globally. For instance, we want to be able
8404 to break on a nested subprogram without having to
8405 specify the context. */
8406 add_symbol_to_list (sym, &global_symbols);
8407 }
8408 else
8409 {
8410 add_symbol_to_list (sym, cu->list_in_scope);
8411 }
8412 break;
8413 case DW_TAG_inlined_subroutine:
8414 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8415 finish_block. */
8416 SYMBOL_CLASS (sym) = LOC_BLOCK;
8417 SYMBOL_INLINED (sym) = 1;
8418 /* Do not add the symbol to any lists. It will be found via
8419 BLOCK_FUNCTION from the blockvector. */
8420 break;
8421 case DW_TAG_variable:
8422 /* Compilation with minimal debug info may result in variables
8423 with missing type entries. Change the misleading `void' type
8424 to something sensible. */
8425 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
8426 SYMBOL_TYPE (sym)
8427 = objfile_type (objfile)->nodebug_data_symbol;
8428
8429 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8430 if (attr)
8431 {
8432 dwarf2_const_value (attr, sym, cu);
8433 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8434 if (attr2 && (DW_UNSND (attr2) != 0))
8435 add_symbol_to_list (sym, &global_symbols);
8436 else
8437 add_symbol_to_list (sym, cu->list_in_scope);
8438 break;
8439 }
8440 attr = dwarf2_attr (die, DW_AT_location, cu);
8441 if (attr)
8442 {
8443 var_decode_location (attr, sym, cu);
8444 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8445 if (attr2 && (DW_UNSND (attr2) != 0))
8446 add_symbol_to_list (sym, &global_symbols);
8447 else
8448 add_symbol_to_list (sym, cu->list_in_scope);
8449 }
8450 else
8451 {
8452 /* We do not know the address of this symbol.
8453 If it is an external symbol and we have type information
8454 for it, enter the symbol as a LOC_UNRESOLVED symbol.
8455 The address of the variable will then be determined from
8456 the minimal symbol table whenever the variable is
8457 referenced. */
8458 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8459 if (attr2 && (DW_UNSND (attr2) != 0)
8460 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
8461 {
8462 struct pending **list_to_add;
8463
8464 /* A variable with DW_AT_external is never static, but it
8465 may be block-scoped. */
8466 list_to_add = (cu->list_in_scope == &file_symbols
8467 ? &global_symbols : cu->list_in_scope);
8468
8469 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
8470 add_symbol_to_list (sym, list_to_add);
8471 }
8472 else if (!die_is_declaration (die, cu))
8473 {
8474 /* Use the default LOC_OPTIMIZED_OUT class. */
8475 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
8476 add_symbol_to_list (sym, cu->list_in_scope);
8477 }
8478 }
8479 break;
8480 case DW_TAG_formal_parameter:
8481 /* If we are inside a function, mark this as an argument. If
8482 not, we might be looking at an argument to an inlined function
8483 when we do not have enough information to show inlined frames;
8484 pretend it's a local variable in that case so that the user can
8485 still see it. */
8486 if (context_stack_depth > 0
8487 && context_stack[context_stack_depth - 1].name != NULL)
8488 SYMBOL_IS_ARGUMENT (sym) = 1;
8489 attr = dwarf2_attr (die, DW_AT_location, cu);
8490 if (attr)
8491 {
8492 var_decode_location (attr, sym, cu);
8493 }
8494 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8495 if (attr)
8496 {
8497 dwarf2_const_value (attr, sym, cu);
8498 }
8499 add_symbol_to_list (sym, cu->list_in_scope);
8500 break;
8501 case DW_TAG_unspecified_parameters:
8502 /* From varargs functions; gdb doesn't seem to have any
8503 interest in this information, so just ignore it for now.
8504 (FIXME?) */
8505 break;
8506 case DW_TAG_class_type:
8507 case DW_TAG_interface_type:
8508 case DW_TAG_structure_type:
8509 case DW_TAG_union_type:
8510 case DW_TAG_set_type:
8511 case DW_TAG_enumeration_type:
8512 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8513 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8514
8515 /* Make sure that the symbol includes appropriate enclosing
8516 classes/namespaces in its name. These are calculated in
8517 read_structure_type, and the correct name is saved in
8518 the type. */
8519
8520 if (cu->language == language_cplus
8521 || cu->language == language_java)
8522 {
8523 struct type *type = SYMBOL_TYPE (sym);
8524
8525 if (TYPE_TAG_NAME (type) != NULL)
8526 {
8527 /* FIXME: carlton/2003-11-10: Should this use
8528 SYMBOL_SET_NAMES instead? (The same problem also
8529 arises further down in this function.) */
8530 /* The type's name is already allocated along with
8531 this objfile, so we don't need to duplicate it
8532 for the symbol. */
8533 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
8534 }
8535 }
8536
8537 {
8538 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
8539 really ever be static objects: otherwise, if you try
8540 to, say, break of a class's method and you're in a file
8541 which doesn't mention that class, it won't work unless
8542 the check for all static symbols in lookup_symbol_aux
8543 saves you. See the OtherFileClass tests in
8544 gdb.c++/namespace.exp. */
8545
8546 struct pending **list_to_add;
8547
8548 list_to_add = (cu->list_in_scope == &file_symbols
8549 && (cu->language == language_cplus
8550 || cu->language == language_java)
8551 ? &global_symbols : cu->list_in_scope);
8552
8553 add_symbol_to_list (sym, list_to_add);
8554
8555 /* The semantics of C++ state that "struct foo { ... }" also
8556 defines a typedef for "foo". A Java class declaration also
8557 defines a typedef for the class. */
8558 if (cu->language == language_cplus
8559 || cu->language == language_java
8560 || cu->language == language_ada)
8561 {
8562 /* The symbol's name is already allocated along with
8563 this objfile, so we don't need to duplicate it for
8564 the type. */
8565 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
8566 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
8567 }
8568 }
8569 break;
8570 case DW_TAG_typedef:
8571 SYMBOL_LINKAGE_NAME (sym) = (char *) dwarf2_full_name (die, cu);
8572 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8573 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
8574 add_symbol_to_list (sym, cu->list_in_scope);
8575 break;
8576 case DW_TAG_base_type:
8577 case DW_TAG_subrange_type:
8578 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8579 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
8580 add_symbol_to_list (sym, cu->list_in_scope);
8581 break;
8582 case DW_TAG_enumerator:
8583 SYMBOL_LINKAGE_NAME (sym) = (char *) dwarf2_full_name (die, cu);
8584 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8585 if (attr)
8586 {
8587 dwarf2_const_value (attr, sym, cu);
8588 }
8589 {
8590 /* NOTE: carlton/2003-11-10: See comment above in the
8591 DW_TAG_class_type, etc. block. */
8592
8593 struct pending **list_to_add;
8594
8595 list_to_add = (cu->list_in_scope == &file_symbols
8596 && (cu->language == language_cplus
8597 || cu->language == language_java)
8598 ? &global_symbols : cu->list_in_scope);
8599
8600 add_symbol_to_list (sym, list_to_add);
8601 }
8602 break;
8603 case DW_TAG_namespace:
8604 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8605 add_symbol_to_list (sym, &global_symbols);
8606 break;
8607 default:
8608 /* Not a tag we recognize. Hopefully we aren't processing
8609 trash data, but since we must specifically ignore things
8610 we don't recognize, there is nothing else we should do at
8611 this point. */
8612 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
8613 dwarf_tag_name (die->tag));
8614 break;
8615 }
8616
8617 /* For the benefit of old versions of GCC, check for anonymous
8618 namespaces based on the demangled name. */
8619 if (!processing_has_namespace_info
8620 && cu->language == language_cplus
8621 && dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu) != NULL)
8622 cp_scan_for_anonymous_namespaces (sym);
8623 }
8624 return (sym);
8625 }
8626
8627 /* Copy constant value from an attribute to a symbol. */
8628
8629 static void
8630 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
8631 struct dwarf2_cu *cu)
8632 {
8633 struct objfile *objfile = cu->objfile;
8634 struct comp_unit_head *cu_header = &cu->header;
8635 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
8636 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
8637 struct dwarf_block *blk;
8638
8639 switch (attr->form)
8640 {
8641 case DW_FORM_addr:
8642 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
8643 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
8644 cu_header->addr_size,
8645 TYPE_LENGTH (SYMBOL_TYPE
8646 (sym)));
8647 SYMBOL_VALUE_BYTES (sym) =
8648 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
8649 /* NOTE: cagney/2003-05-09: In-lined store_address call with
8650 it's body - store_unsigned_integer. */
8651 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
8652 byte_order, DW_ADDR (attr));
8653 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8654 break;
8655 case DW_FORM_string:
8656 case DW_FORM_strp:
8657 /* DW_STRING is already allocated on the obstack, point directly
8658 to it. */
8659 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
8660 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8661 break;
8662 case DW_FORM_block1:
8663 case DW_FORM_block2:
8664 case DW_FORM_block4:
8665 case DW_FORM_block:
8666 blk = DW_BLOCK (attr);
8667 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
8668 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
8669 blk->size,
8670 TYPE_LENGTH (SYMBOL_TYPE
8671 (sym)));
8672 SYMBOL_VALUE_BYTES (sym) =
8673 obstack_alloc (&objfile->objfile_obstack, blk->size);
8674 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
8675 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8676 break;
8677
8678 /* The DW_AT_const_value attributes are supposed to carry the
8679 symbol's value "represented as it would be on the target
8680 architecture." By the time we get here, it's already been
8681 converted to host endianness, so we just need to sign- or
8682 zero-extend it as appropriate. */
8683 case DW_FORM_data1:
8684 dwarf2_const_value_data (attr, sym, 8);
8685 break;
8686 case DW_FORM_data2:
8687 dwarf2_const_value_data (attr, sym, 16);
8688 break;
8689 case DW_FORM_data4:
8690 dwarf2_const_value_data (attr, sym, 32);
8691 break;
8692 case DW_FORM_data8:
8693 dwarf2_const_value_data (attr, sym, 64);
8694 break;
8695
8696 case DW_FORM_sdata:
8697 SYMBOL_VALUE (sym) = DW_SND (attr);
8698 SYMBOL_CLASS (sym) = LOC_CONST;
8699 break;
8700
8701 case DW_FORM_udata:
8702 SYMBOL_VALUE (sym) = DW_UNSND (attr);
8703 SYMBOL_CLASS (sym) = LOC_CONST;
8704 break;
8705
8706 default:
8707 complaint (&symfile_complaints,
8708 _("unsupported const value attribute form: '%s'"),
8709 dwarf_form_name (attr->form));
8710 SYMBOL_VALUE (sym) = 0;
8711 SYMBOL_CLASS (sym) = LOC_CONST;
8712 break;
8713 }
8714 }
8715
8716
8717 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
8718 or zero-extend it as appropriate for the symbol's type. */
8719 static void
8720 dwarf2_const_value_data (struct attribute *attr,
8721 struct symbol *sym,
8722 int bits)
8723 {
8724 LONGEST l = DW_UNSND (attr);
8725
8726 if (bits < sizeof (l) * 8)
8727 {
8728 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
8729 l &= ((LONGEST) 1 << bits) - 1;
8730 else
8731 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
8732 }
8733
8734 SYMBOL_VALUE (sym) = l;
8735 SYMBOL_CLASS (sym) = LOC_CONST;
8736 }
8737
8738
8739 /* Return the type of the die in question using its DW_AT_type attribute. */
8740
8741 static struct type *
8742 die_type (struct die_info *die, struct dwarf2_cu *cu)
8743 {
8744 struct type *type;
8745 struct attribute *type_attr;
8746 struct die_info *type_die;
8747
8748 type_attr = dwarf2_attr (die, DW_AT_type, cu);
8749 if (!type_attr)
8750 {
8751 /* A missing DW_AT_type represents a void type. */
8752 return objfile_type (cu->objfile)->builtin_void;
8753 }
8754
8755 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
8756
8757 type = tag_type_to_type (type_die, cu);
8758 if (!type)
8759 {
8760 dump_die_for_error (type_die);
8761 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
8762 cu->objfile->name);
8763 }
8764 return type;
8765 }
8766
8767 /* True iff CU's producer generates GNAT Ada auxiliary information
8768 that allows to find parallel types through that information instead
8769 of having to do expensive parallel lookups by type name. */
8770
8771 static int
8772 need_gnat_info (struct dwarf2_cu *cu)
8773 {
8774 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
8775 of GNAT produces this auxiliary information, without any indication
8776 that it is produced. Part of enhancing the FSF version of GNAT
8777 to produce that information will be to put in place an indicator
8778 that we can use in order to determine whether the descriptive type
8779 info is available or not. One suggestion that has been made is
8780 to use a new attribute, attached to the CU die. For now, assume
8781 that the descriptive type info is not available. */
8782 return 0;
8783 }
8784
8785
8786 /* Return the auxiliary type of the die in question using its
8787 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
8788 attribute is not present. */
8789
8790 static struct type *
8791 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
8792 {
8793 struct type *type;
8794 struct attribute *type_attr;
8795 struct die_info *type_die;
8796
8797 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
8798 if (!type_attr)
8799 return NULL;
8800
8801 type_die = follow_die_ref (die, type_attr, &cu);
8802 type = tag_type_to_type (type_die, cu);
8803 if (!type)
8804 {
8805 dump_die_for_error (type_die);
8806 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
8807 cu->objfile->name);
8808 }
8809 return type;
8810 }
8811
8812 /* If DIE has a descriptive_type attribute, then set the TYPE's
8813 descriptive type accordingly. */
8814
8815 static void
8816 set_descriptive_type (struct type *type, struct die_info *die,
8817 struct dwarf2_cu *cu)
8818 {
8819 struct type *descriptive_type = die_descriptive_type (die, cu);
8820
8821 if (descriptive_type)
8822 {
8823 ALLOCATE_GNAT_AUX_TYPE (type);
8824 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
8825 }
8826 }
8827
8828 /* Return the containing type of the die in question using its
8829 DW_AT_containing_type attribute. */
8830
8831 static struct type *
8832 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
8833 {
8834 struct type *type = NULL;
8835 struct attribute *type_attr;
8836 struct die_info *type_die = NULL;
8837
8838 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
8839 if (type_attr)
8840 {
8841 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
8842 type = tag_type_to_type (type_die, cu);
8843 }
8844 if (!type)
8845 {
8846 if (type_die)
8847 dump_die_for_error (type_die);
8848 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
8849 cu->objfile->name);
8850 }
8851 return type;
8852 }
8853
8854 static struct type *
8855 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
8856 {
8857 struct type *this_type;
8858
8859 this_type = read_type_die (die, cu);
8860 if (!this_type)
8861 {
8862 dump_die_for_error (die);
8863 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
8864 cu->objfile->name);
8865 }
8866 return this_type;
8867 }
8868
8869 static struct type *
8870 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
8871 {
8872 struct type *this_type;
8873
8874 this_type = get_die_type (die, cu);
8875 if (this_type)
8876 return this_type;
8877
8878 switch (die->tag)
8879 {
8880 case DW_TAG_class_type:
8881 case DW_TAG_interface_type:
8882 case DW_TAG_structure_type:
8883 case DW_TAG_union_type:
8884 this_type = read_structure_type (die, cu);
8885 break;
8886 case DW_TAG_enumeration_type:
8887 this_type = read_enumeration_type (die, cu);
8888 break;
8889 case DW_TAG_subprogram:
8890 case DW_TAG_subroutine_type:
8891 case DW_TAG_inlined_subroutine:
8892 this_type = read_subroutine_type (die, cu);
8893 break;
8894 case DW_TAG_array_type:
8895 this_type = read_array_type (die, cu);
8896 break;
8897 case DW_TAG_set_type:
8898 this_type = read_set_type (die, cu);
8899 break;
8900 case DW_TAG_pointer_type:
8901 this_type = read_tag_pointer_type (die, cu);
8902 break;
8903 case DW_TAG_ptr_to_member_type:
8904 this_type = read_tag_ptr_to_member_type (die, cu);
8905 break;
8906 case DW_TAG_reference_type:
8907 this_type = read_tag_reference_type (die, cu);
8908 break;
8909 case DW_TAG_const_type:
8910 this_type = read_tag_const_type (die, cu);
8911 break;
8912 case DW_TAG_volatile_type:
8913 this_type = read_tag_volatile_type (die, cu);
8914 break;
8915 case DW_TAG_string_type:
8916 this_type = read_tag_string_type (die, cu);
8917 break;
8918 case DW_TAG_typedef:
8919 this_type = read_typedef (die, cu);
8920 break;
8921 case DW_TAG_subrange_type:
8922 this_type = read_subrange_type (die, cu);
8923 break;
8924 case DW_TAG_base_type:
8925 this_type = read_base_type (die, cu);
8926 break;
8927 case DW_TAG_unspecified_type:
8928 this_type = read_unspecified_type (die, cu);
8929 break;
8930 case DW_TAG_namespace:
8931 this_type = read_namespace_type (die, cu);
8932 break;
8933 default:
8934 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
8935 dwarf_tag_name (die->tag));
8936 break;
8937 }
8938
8939 return this_type;
8940 }
8941
8942 /* Return the name of the namespace/class that DIE is defined within,
8943 or "" if we can't tell. The caller should not xfree the result.
8944
8945 For example, if we're within the method foo() in the following
8946 code:
8947
8948 namespace N {
8949 class C {
8950 void foo () {
8951 }
8952 };
8953 }
8954
8955 then determine_prefix on foo's die will return "N::C". */
8956
8957 static char *
8958 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
8959 {
8960 struct die_info *parent, *spec_die;
8961 struct dwarf2_cu *spec_cu;
8962 struct type *parent_type;
8963
8964 if (cu->language != language_cplus
8965 && cu->language != language_java)
8966 return "";
8967
8968 /* We have to be careful in the presence of DW_AT_specification.
8969 For example, with GCC 3.4, given the code
8970
8971 namespace N {
8972 void foo() {
8973 // Definition of N::foo.
8974 }
8975 }
8976
8977 then we'll have a tree of DIEs like this:
8978
8979 1: DW_TAG_compile_unit
8980 2: DW_TAG_namespace // N
8981 3: DW_TAG_subprogram // declaration of N::foo
8982 4: DW_TAG_subprogram // definition of N::foo
8983 DW_AT_specification // refers to die #3
8984
8985 Thus, when processing die #4, we have to pretend that we're in
8986 the context of its DW_AT_specification, namely the contex of die
8987 #3. */
8988 spec_cu = cu;
8989 spec_die = die_specification (die, &spec_cu);
8990 if (spec_die == NULL)
8991 parent = die->parent;
8992 else
8993 {
8994 parent = spec_die->parent;
8995 cu = spec_cu;
8996 }
8997
8998 if (parent == NULL)
8999 return "";
9000 else
9001 switch (parent->tag)
9002 {
9003 case DW_TAG_namespace:
9004 parent_type = read_type_die (parent, cu);
9005 /* We give a name to even anonymous namespaces. */
9006 return TYPE_TAG_NAME (parent_type);
9007 case DW_TAG_class_type:
9008 case DW_TAG_interface_type:
9009 case DW_TAG_structure_type:
9010 case DW_TAG_union_type:
9011 parent_type = read_type_die (parent, cu);
9012 if (TYPE_TAG_NAME (parent_type) != NULL)
9013 return TYPE_TAG_NAME (parent_type);
9014 else
9015 /* An anonymous structure is only allowed non-static data
9016 members; no typedefs, no member functions, et cetera.
9017 So it does not need a prefix. */
9018 return "";
9019 default:
9020 return determine_prefix (parent, cu);
9021 }
9022 }
9023
9024 /* Return a newly-allocated string formed by concatenating PREFIX and
9025 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
9026 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
9027 perform an obconcat, otherwise allocate storage for the result. The CU argument
9028 is used to determine the language and hence, the appropriate separator. */
9029
9030 #define MAX_SEP_LEN 2 /* sizeof ("::") */
9031
9032 static char *
9033 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
9034 struct dwarf2_cu *cu)
9035 {
9036 char *sep;
9037
9038 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
9039 sep = "";
9040 else if (cu->language == language_java)
9041 sep = ".";
9042 else
9043 sep = "::";
9044
9045 if (prefix == NULL)
9046 prefix = "";
9047 if (suffix == NULL)
9048 suffix = "";
9049
9050 if (obs == NULL)
9051 {
9052 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9053 strcpy (retval, prefix);
9054 strcat (retval, sep);
9055 strcat (retval, suffix);
9056 return retval;
9057 }
9058 else
9059 {
9060 /* We have an obstack. */
9061 return obconcat (obs, prefix, sep, suffix);
9062 }
9063 }
9064
9065 /* Return sibling of die, NULL if no sibling. */
9066
9067 static struct die_info *
9068 sibling_die (struct die_info *die)
9069 {
9070 return die->sibling;
9071 }
9072
9073 /* Get linkage name of a die, return NULL if not found. */
9074
9075 static char *
9076 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9077 {
9078 struct attribute *attr;
9079
9080 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9081 if (attr && DW_STRING (attr))
9082 return DW_STRING (attr);
9083 return dwarf2_name (die, cu);
9084 }
9085
9086 /* Get name of a die, return NULL if not found. */
9087
9088 static char *
9089 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
9090 struct obstack *obstack)
9091 {
9092 if (name && cu->language == language_cplus)
9093 {
9094 char *canon_name = cp_canonicalize_string (name);
9095
9096 if (canon_name != NULL)
9097 {
9098 if (strcmp (canon_name, name) != 0)
9099 name = obsavestring (canon_name, strlen (canon_name),
9100 obstack);
9101 xfree (canon_name);
9102 }
9103 }
9104
9105 return name;
9106 }
9107
9108 /* Get name of a die, return NULL if not found. */
9109
9110 static char *
9111 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9112 {
9113 struct attribute *attr;
9114
9115 attr = dwarf2_attr (die, DW_AT_name, cu);
9116 if (!attr || !DW_STRING (attr))
9117 return NULL;
9118
9119 switch (die->tag)
9120 {
9121 case DW_TAG_compile_unit:
9122 /* Compilation units have a DW_AT_name that is a filename, not
9123 a source language identifier. */
9124 case DW_TAG_enumeration_type:
9125 case DW_TAG_enumerator:
9126 /* These tags always have simple identifiers already; no need
9127 to canonicalize them. */
9128 return DW_STRING (attr);
9129 default:
9130 if (!DW_STRING_IS_CANONICAL (attr))
9131 {
9132 DW_STRING (attr)
9133 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
9134 &cu->objfile->objfile_obstack);
9135 DW_STRING_IS_CANONICAL (attr) = 1;
9136 }
9137 return DW_STRING (attr);
9138 }
9139 }
9140
9141 /* Return the die that this die in an extension of, or NULL if there
9142 is none. *EXT_CU is the CU containing DIE on input, and the CU
9143 containing the return value on output. */
9144
9145 static struct die_info *
9146 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9147 {
9148 struct attribute *attr;
9149
9150 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9151 if (attr == NULL)
9152 return NULL;
9153
9154 return follow_die_ref (die, attr, ext_cu);
9155 }
9156
9157 /* Convert a DIE tag into its string name. */
9158
9159 static char *
9160 dwarf_tag_name (unsigned tag)
9161 {
9162 switch (tag)
9163 {
9164 case DW_TAG_padding:
9165 return "DW_TAG_padding";
9166 case DW_TAG_array_type:
9167 return "DW_TAG_array_type";
9168 case DW_TAG_class_type:
9169 return "DW_TAG_class_type";
9170 case DW_TAG_entry_point:
9171 return "DW_TAG_entry_point";
9172 case DW_TAG_enumeration_type:
9173 return "DW_TAG_enumeration_type";
9174 case DW_TAG_formal_parameter:
9175 return "DW_TAG_formal_parameter";
9176 case DW_TAG_imported_declaration:
9177 return "DW_TAG_imported_declaration";
9178 case DW_TAG_label:
9179 return "DW_TAG_label";
9180 case DW_TAG_lexical_block:
9181 return "DW_TAG_lexical_block";
9182 case DW_TAG_member:
9183 return "DW_TAG_member";
9184 case DW_TAG_pointer_type:
9185 return "DW_TAG_pointer_type";
9186 case DW_TAG_reference_type:
9187 return "DW_TAG_reference_type";
9188 case DW_TAG_compile_unit:
9189 return "DW_TAG_compile_unit";
9190 case DW_TAG_string_type:
9191 return "DW_TAG_string_type";
9192 case DW_TAG_structure_type:
9193 return "DW_TAG_structure_type";
9194 case DW_TAG_subroutine_type:
9195 return "DW_TAG_subroutine_type";
9196 case DW_TAG_typedef:
9197 return "DW_TAG_typedef";
9198 case DW_TAG_union_type:
9199 return "DW_TAG_union_type";
9200 case DW_TAG_unspecified_parameters:
9201 return "DW_TAG_unspecified_parameters";
9202 case DW_TAG_variant:
9203 return "DW_TAG_variant";
9204 case DW_TAG_common_block:
9205 return "DW_TAG_common_block";
9206 case DW_TAG_common_inclusion:
9207 return "DW_TAG_common_inclusion";
9208 case DW_TAG_inheritance:
9209 return "DW_TAG_inheritance";
9210 case DW_TAG_inlined_subroutine:
9211 return "DW_TAG_inlined_subroutine";
9212 case DW_TAG_module:
9213 return "DW_TAG_module";
9214 case DW_TAG_ptr_to_member_type:
9215 return "DW_TAG_ptr_to_member_type";
9216 case DW_TAG_set_type:
9217 return "DW_TAG_set_type";
9218 case DW_TAG_subrange_type:
9219 return "DW_TAG_subrange_type";
9220 case DW_TAG_with_stmt:
9221 return "DW_TAG_with_stmt";
9222 case DW_TAG_access_declaration:
9223 return "DW_TAG_access_declaration";
9224 case DW_TAG_base_type:
9225 return "DW_TAG_base_type";
9226 case DW_TAG_catch_block:
9227 return "DW_TAG_catch_block";
9228 case DW_TAG_const_type:
9229 return "DW_TAG_const_type";
9230 case DW_TAG_constant:
9231 return "DW_TAG_constant";
9232 case DW_TAG_enumerator:
9233 return "DW_TAG_enumerator";
9234 case DW_TAG_file_type:
9235 return "DW_TAG_file_type";
9236 case DW_TAG_friend:
9237 return "DW_TAG_friend";
9238 case DW_TAG_namelist:
9239 return "DW_TAG_namelist";
9240 case DW_TAG_namelist_item:
9241 return "DW_TAG_namelist_item";
9242 case DW_TAG_packed_type:
9243 return "DW_TAG_packed_type";
9244 case DW_TAG_subprogram:
9245 return "DW_TAG_subprogram";
9246 case DW_TAG_template_type_param:
9247 return "DW_TAG_template_type_param";
9248 case DW_TAG_template_value_param:
9249 return "DW_TAG_template_value_param";
9250 case DW_TAG_thrown_type:
9251 return "DW_TAG_thrown_type";
9252 case DW_TAG_try_block:
9253 return "DW_TAG_try_block";
9254 case DW_TAG_variant_part:
9255 return "DW_TAG_variant_part";
9256 case DW_TAG_variable:
9257 return "DW_TAG_variable";
9258 case DW_TAG_volatile_type:
9259 return "DW_TAG_volatile_type";
9260 case DW_TAG_dwarf_procedure:
9261 return "DW_TAG_dwarf_procedure";
9262 case DW_TAG_restrict_type:
9263 return "DW_TAG_restrict_type";
9264 case DW_TAG_interface_type:
9265 return "DW_TAG_interface_type";
9266 case DW_TAG_namespace:
9267 return "DW_TAG_namespace";
9268 case DW_TAG_imported_module:
9269 return "DW_TAG_imported_module";
9270 case DW_TAG_unspecified_type:
9271 return "DW_TAG_unspecified_type";
9272 case DW_TAG_partial_unit:
9273 return "DW_TAG_partial_unit";
9274 case DW_TAG_imported_unit:
9275 return "DW_TAG_imported_unit";
9276 case DW_TAG_condition:
9277 return "DW_TAG_condition";
9278 case DW_TAG_shared_type:
9279 return "DW_TAG_shared_type";
9280 case DW_TAG_type_unit:
9281 return "DW_TAG_type_unit";
9282 case DW_TAG_MIPS_loop:
9283 return "DW_TAG_MIPS_loop";
9284 case DW_TAG_HP_array_descriptor:
9285 return "DW_TAG_HP_array_descriptor";
9286 case DW_TAG_format_label:
9287 return "DW_TAG_format_label";
9288 case DW_TAG_function_template:
9289 return "DW_TAG_function_template";
9290 case DW_TAG_class_template:
9291 return "DW_TAG_class_template";
9292 case DW_TAG_GNU_BINCL:
9293 return "DW_TAG_GNU_BINCL";
9294 case DW_TAG_GNU_EINCL:
9295 return "DW_TAG_GNU_EINCL";
9296 case DW_TAG_upc_shared_type:
9297 return "DW_TAG_upc_shared_type";
9298 case DW_TAG_upc_strict_type:
9299 return "DW_TAG_upc_strict_type";
9300 case DW_TAG_upc_relaxed_type:
9301 return "DW_TAG_upc_relaxed_type";
9302 case DW_TAG_PGI_kanji_type:
9303 return "DW_TAG_PGI_kanji_type";
9304 case DW_TAG_PGI_interface_block:
9305 return "DW_TAG_PGI_interface_block";
9306 default:
9307 return "DW_TAG_<unknown>";
9308 }
9309 }
9310
9311 /* Convert a DWARF attribute code into its string name. */
9312
9313 static char *
9314 dwarf_attr_name (unsigned attr)
9315 {
9316 switch (attr)
9317 {
9318 case DW_AT_sibling:
9319 return "DW_AT_sibling";
9320 case DW_AT_location:
9321 return "DW_AT_location";
9322 case DW_AT_name:
9323 return "DW_AT_name";
9324 case DW_AT_ordering:
9325 return "DW_AT_ordering";
9326 case DW_AT_subscr_data:
9327 return "DW_AT_subscr_data";
9328 case DW_AT_byte_size:
9329 return "DW_AT_byte_size";
9330 case DW_AT_bit_offset:
9331 return "DW_AT_bit_offset";
9332 case DW_AT_bit_size:
9333 return "DW_AT_bit_size";
9334 case DW_AT_element_list:
9335 return "DW_AT_element_list";
9336 case DW_AT_stmt_list:
9337 return "DW_AT_stmt_list";
9338 case DW_AT_low_pc:
9339 return "DW_AT_low_pc";
9340 case DW_AT_high_pc:
9341 return "DW_AT_high_pc";
9342 case DW_AT_language:
9343 return "DW_AT_language";
9344 case DW_AT_member:
9345 return "DW_AT_member";
9346 case DW_AT_discr:
9347 return "DW_AT_discr";
9348 case DW_AT_discr_value:
9349 return "DW_AT_discr_value";
9350 case DW_AT_visibility:
9351 return "DW_AT_visibility";
9352 case DW_AT_import:
9353 return "DW_AT_import";
9354 case DW_AT_string_length:
9355 return "DW_AT_string_length";
9356 case DW_AT_common_reference:
9357 return "DW_AT_common_reference";
9358 case DW_AT_comp_dir:
9359 return "DW_AT_comp_dir";
9360 case DW_AT_const_value:
9361 return "DW_AT_const_value";
9362 case DW_AT_containing_type:
9363 return "DW_AT_containing_type";
9364 case DW_AT_default_value:
9365 return "DW_AT_default_value";
9366 case DW_AT_inline:
9367 return "DW_AT_inline";
9368 case DW_AT_is_optional:
9369 return "DW_AT_is_optional";
9370 case DW_AT_lower_bound:
9371 return "DW_AT_lower_bound";
9372 case DW_AT_producer:
9373 return "DW_AT_producer";
9374 case DW_AT_prototyped:
9375 return "DW_AT_prototyped";
9376 case DW_AT_return_addr:
9377 return "DW_AT_return_addr";
9378 case DW_AT_start_scope:
9379 return "DW_AT_start_scope";
9380 case DW_AT_bit_stride:
9381 return "DW_AT_bit_stride";
9382 case DW_AT_upper_bound:
9383 return "DW_AT_upper_bound";
9384 case DW_AT_abstract_origin:
9385 return "DW_AT_abstract_origin";
9386 case DW_AT_accessibility:
9387 return "DW_AT_accessibility";
9388 case DW_AT_address_class:
9389 return "DW_AT_address_class";
9390 case DW_AT_artificial:
9391 return "DW_AT_artificial";
9392 case DW_AT_base_types:
9393 return "DW_AT_base_types";
9394 case DW_AT_calling_convention:
9395 return "DW_AT_calling_convention";
9396 case DW_AT_count:
9397 return "DW_AT_count";
9398 case DW_AT_data_member_location:
9399 return "DW_AT_data_member_location";
9400 case DW_AT_decl_column:
9401 return "DW_AT_decl_column";
9402 case DW_AT_decl_file:
9403 return "DW_AT_decl_file";
9404 case DW_AT_decl_line:
9405 return "DW_AT_decl_line";
9406 case DW_AT_declaration:
9407 return "DW_AT_declaration";
9408 case DW_AT_discr_list:
9409 return "DW_AT_discr_list";
9410 case DW_AT_encoding:
9411 return "DW_AT_encoding";
9412 case DW_AT_external:
9413 return "DW_AT_external";
9414 case DW_AT_frame_base:
9415 return "DW_AT_frame_base";
9416 case DW_AT_friend:
9417 return "DW_AT_friend";
9418 case DW_AT_identifier_case:
9419 return "DW_AT_identifier_case";
9420 case DW_AT_macro_info:
9421 return "DW_AT_macro_info";
9422 case DW_AT_namelist_items:
9423 return "DW_AT_namelist_items";
9424 case DW_AT_priority:
9425 return "DW_AT_priority";
9426 case DW_AT_segment:
9427 return "DW_AT_segment";
9428 case DW_AT_specification:
9429 return "DW_AT_specification";
9430 case DW_AT_static_link:
9431 return "DW_AT_static_link";
9432 case DW_AT_type:
9433 return "DW_AT_type";
9434 case DW_AT_use_location:
9435 return "DW_AT_use_location";
9436 case DW_AT_variable_parameter:
9437 return "DW_AT_variable_parameter";
9438 case DW_AT_virtuality:
9439 return "DW_AT_virtuality";
9440 case DW_AT_vtable_elem_location:
9441 return "DW_AT_vtable_elem_location";
9442 /* DWARF 3 values. */
9443 case DW_AT_allocated:
9444 return "DW_AT_allocated";
9445 case DW_AT_associated:
9446 return "DW_AT_associated";
9447 case DW_AT_data_location:
9448 return "DW_AT_data_location";
9449 case DW_AT_byte_stride:
9450 return "DW_AT_byte_stride";
9451 case DW_AT_entry_pc:
9452 return "DW_AT_entry_pc";
9453 case DW_AT_use_UTF8:
9454 return "DW_AT_use_UTF8";
9455 case DW_AT_extension:
9456 return "DW_AT_extension";
9457 case DW_AT_ranges:
9458 return "DW_AT_ranges";
9459 case DW_AT_trampoline:
9460 return "DW_AT_trampoline";
9461 case DW_AT_call_column:
9462 return "DW_AT_call_column";
9463 case DW_AT_call_file:
9464 return "DW_AT_call_file";
9465 case DW_AT_call_line:
9466 return "DW_AT_call_line";
9467 case DW_AT_description:
9468 return "DW_AT_description";
9469 case DW_AT_binary_scale:
9470 return "DW_AT_binary_scale";
9471 case DW_AT_decimal_scale:
9472 return "DW_AT_decimal_scale";
9473 case DW_AT_small:
9474 return "DW_AT_small";
9475 case DW_AT_decimal_sign:
9476 return "DW_AT_decimal_sign";
9477 case DW_AT_digit_count:
9478 return "DW_AT_digit_count";
9479 case DW_AT_picture_string:
9480 return "DW_AT_picture_string";
9481 case DW_AT_mutable:
9482 return "DW_AT_mutable";
9483 case DW_AT_threads_scaled:
9484 return "DW_AT_threads_scaled";
9485 case DW_AT_explicit:
9486 return "DW_AT_explicit";
9487 case DW_AT_object_pointer:
9488 return "DW_AT_object_pointer";
9489 case DW_AT_endianity:
9490 return "DW_AT_endianity";
9491 case DW_AT_elemental:
9492 return "DW_AT_elemental";
9493 case DW_AT_pure:
9494 return "DW_AT_pure";
9495 case DW_AT_recursive:
9496 return "DW_AT_recursive";
9497 /* DWARF 4 values. */
9498 case DW_AT_signature:
9499 return "DW_AT_signature";
9500 /* SGI/MIPS extensions. */
9501 #ifdef MIPS /* collides with DW_AT_HP_block_index */
9502 case DW_AT_MIPS_fde:
9503 return "DW_AT_MIPS_fde";
9504 #endif
9505 case DW_AT_MIPS_loop_begin:
9506 return "DW_AT_MIPS_loop_begin";
9507 case DW_AT_MIPS_tail_loop_begin:
9508 return "DW_AT_MIPS_tail_loop_begin";
9509 case DW_AT_MIPS_epilog_begin:
9510 return "DW_AT_MIPS_epilog_begin";
9511 case DW_AT_MIPS_loop_unroll_factor:
9512 return "DW_AT_MIPS_loop_unroll_factor";
9513 case DW_AT_MIPS_software_pipeline_depth:
9514 return "DW_AT_MIPS_software_pipeline_depth";
9515 case DW_AT_MIPS_linkage_name:
9516 return "DW_AT_MIPS_linkage_name";
9517 case DW_AT_MIPS_stride:
9518 return "DW_AT_MIPS_stride";
9519 case DW_AT_MIPS_abstract_name:
9520 return "DW_AT_MIPS_abstract_name";
9521 case DW_AT_MIPS_clone_origin:
9522 return "DW_AT_MIPS_clone_origin";
9523 case DW_AT_MIPS_has_inlines:
9524 return "DW_AT_MIPS_has_inlines";
9525 /* HP extensions. */
9526 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
9527 case DW_AT_HP_block_index:
9528 return "DW_AT_HP_block_index";
9529 #endif
9530 case DW_AT_HP_unmodifiable:
9531 return "DW_AT_HP_unmodifiable";
9532 case DW_AT_HP_actuals_stmt_list:
9533 return "DW_AT_HP_actuals_stmt_list";
9534 case DW_AT_HP_proc_per_section:
9535 return "DW_AT_HP_proc_per_section";
9536 case DW_AT_HP_raw_data_ptr:
9537 return "DW_AT_HP_raw_data_ptr";
9538 case DW_AT_HP_pass_by_reference:
9539 return "DW_AT_HP_pass_by_reference";
9540 case DW_AT_HP_opt_level:
9541 return "DW_AT_HP_opt_level";
9542 case DW_AT_HP_prof_version_id:
9543 return "DW_AT_HP_prof_version_id";
9544 case DW_AT_HP_opt_flags:
9545 return "DW_AT_HP_opt_flags";
9546 case DW_AT_HP_cold_region_low_pc:
9547 return "DW_AT_HP_cold_region_low_pc";
9548 case DW_AT_HP_cold_region_high_pc:
9549 return "DW_AT_HP_cold_region_high_pc";
9550 case DW_AT_HP_all_variables_modifiable:
9551 return "DW_AT_HP_all_variables_modifiable";
9552 case DW_AT_HP_linkage_name:
9553 return "DW_AT_HP_linkage_name";
9554 case DW_AT_HP_prof_flags:
9555 return "DW_AT_HP_prof_flags";
9556 /* GNU extensions. */
9557 case DW_AT_sf_names:
9558 return "DW_AT_sf_names";
9559 case DW_AT_src_info:
9560 return "DW_AT_src_info";
9561 case DW_AT_mac_info:
9562 return "DW_AT_mac_info";
9563 case DW_AT_src_coords:
9564 return "DW_AT_src_coords";
9565 case DW_AT_body_begin:
9566 return "DW_AT_body_begin";
9567 case DW_AT_body_end:
9568 return "DW_AT_body_end";
9569 case DW_AT_GNU_vector:
9570 return "DW_AT_GNU_vector";
9571 /* VMS extensions. */
9572 case DW_AT_VMS_rtnbeg_pd_address:
9573 return "DW_AT_VMS_rtnbeg_pd_address";
9574 /* UPC extension. */
9575 case DW_AT_upc_threads_scaled:
9576 return "DW_AT_upc_threads_scaled";
9577 /* PGI (STMicroelectronics) extensions. */
9578 case DW_AT_PGI_lbase:
9579 return "DW_AT_PGI_lbase";
9580 case DW_AT_PGI_soffset:
9581 return "DW_AT_PGI_soffset";
9582 case DW_AT_PGI_lstride:
9583 return "DW_AT_PGI_lstride";
9584 default:
9585 return "DW_AT_<unknown>";
9586 }
9587 }
9588
9589 /* Convert a DWARF value form code into its string name. */
9590
9591 static char *
9592 dwarf_form_name (unsigned form)
9593 {
9594 switch (form)
9595 {
9596 case DW_FORM_addr:
9597 return "DW_FORM_addr";
9598 case DW_FORM_block2:
9599 return "DW_FORM_block2";
9600 case DW_FORM_block4:
9601 return "DW_FORM_block4";
9602 case DW_FORM_data2:
9603 return "DW_FORM_data2";
9604 case DW_FORM_data4:
9605 return "DW_FORM_data4";
9606 case DW_FORM_data8:
9607 return "DW_FORM_data8";
9608 case DW_FORM_string:
9609 return "DW_FORM_string";
9610 case DW_FORM_block:
9611 return "DW_FORM_block";
9612 case DW_FORM_block1:
9613 return "DW_FORM_block1";
9614 case DW_FORM_data1:
9615 return "DW_FORM_data1";
9616 case DW_FORM_flag:
9617 return "DW_FORM_flag";
9618 case DW_FORM_sdata:
9619 return "DW_FORM_sdata";
9620 case DW_FORM_strp:
9621 return "DW_FORM_strp";
9622 case DW_FORM_udata:
9623 return "DW_FORM_udata";
9624 case DW_FORM_ref_addr:
9625 return "DW_FORM_ref_addr";
9626 case DW_FORM_ref1:
9627 return "DW_FORM_ref1";
9628 case DW_FORM_ref2:
9629 return "DW_FORM_ref2";
9630 case DW_FORM_ref4:
9631 return "DW_FORM_ref4";
9632 case DW_FORM_ref8:
9633 return "DW_FORM_ref8";
9634 case DW_FORM_ref_udata:
9635 return "DW_FORM_ref_udata";
9636 case DW_FORM_indirect:
9637 return "DW_FORM_indirect";
9638 case DW_FORM_sec_offset:
9639 return "DW_FORM_sec_offset";
9640 case DW_FORM_exprloc:
9641 return "DW_FORM_exprloc";
9642 case DW_FORM_flag_present:
9643 return "DW_FORM_flag_present";
9644 case DW_FORM_sig8:
9645 return "DW_FORM_sig8";
9646 default:
9647 return "DW_FORM_<unknown>";
9648 }
9649 }
9650
9651 /* Convert a DWARF stack opcode into its string name. */
9652
9653 static char *
9654 dwarf_stack_op_name (unsigned op)
9655 {
9656 switch (op)
9657 {
9658 case DW_OP_addr:
9659 return "DW_OP_addr";
9660 case DW_OP_deref:
9661 return "DW_OP_deref";
9662 case DW_OP_const1u:
9663 return "DW_OP_const1u";
9664 case DW_OP_const1s:
9665 return "DW_OP_const1s";
9666 case DW_OP_const2u:
9667 return "DW_OP_const2u";
9668 case DW_OP_const2s:
9669 return "DW_OP_const2s";
9670 case DW_OP_const4u:
9671 return "DW_OP_const4u";
9672 case DW_OP_const4s:
9673 return "DW_OP_const4s";
9674 case DW_OP_const8u:
9675 return "DW_OP_const8u";
9676 case DW_OP_const8s:
9677 return "DW_OP_const8s";
9678 case DW_OP_constu:
9679 return "DW_OP_constu";
9680 case DW_OP_consts:
9681 return "DW_OP_consts";
9682 case DW_OP_dup:
9683 return "DW_OP_dup";
9684 case DW_OP_drop:
9685 return "DW_OP_drop";
9686 case DW_OP_over:
9687 return "DW_OP_over";
9688 case DW_OP_pick:
9689 return "DW_OP_pick";
9690 case DW_OP_swap:
9691 return "DW_OP_swap";
9692 case DW_OP_rot:
9693 return "DW_OP_rot";
9694 case DW_OP_xderef:
9695 return "DW_OP_xderef";
9696 case DW_OP_abs:
9697 return "DW_OP_abs";
9698 case DW_OP_and:
9699 return "DW_OP_and";
9700 case DW_OP_div:
9701 return "DW_OP_div";
9702 case DW_OP_minus:
9703 return "DW_OP_minus";
9704 case DW_OP_mod:
9705 return "DW_OP_mod";
9706 case DW_OP_mul:
9707 return "DW_OP_mul";
9708 case DW_OP_neg:
9709 return "DW_OP_neg";
9710 case DW_OP_not:
9711 return "DW_OP_not";
9712 case DW_OP_or:
9713 return "DW_OP_or";
9714 case DW_OP_plus:
9715 return "DW_OP_plus";
9716 case DW_OP_plus_uconst:
9717 return "DW_OP_plus_uconst";
9718 case DW_OP_shl:
9719 return "DW_OP_shl";
9720 case DW_OP_shr:
9721 return "DW_OP_shr";
9722 case DW_OP_shra:
9723 return "DW_OP_shra";
9724 case DW_OP_xor:
9725 return "DW_OP_xor";
9726 case DW_OP_bra:
9727 return "DW_OP_bra";
9728 case DW_OP_eq:
9729 return "DW_OP_eq";
9730 case DW_OP_ge:
9731 return "DW_OP_ge";
9732 case DW_OP_gt:
9733 return "DW_OP_gt";
9734 case DW_OP_le:
9735 return "DW_OP_le";
9736 case DW_OP_lt:
9737 return "DW_OP_lt";
9738 case DW_OP_ne:
9739 return "DW_OP_ne";
9740 case DW_OP_skip:
9741 return "DW_OP_skip";
9742 case DW_OP_lit0:
9743 return "DW_OP_lit0";
9744 case DW_OP_lit1:
9745 return "DW_OP_lit1";
9746 case DW_OP_lit2:
9747 return "DW_OP_lit2";
9748 case DW_OP_lit3:
9749 return "DW_OP_lit3";
9750 case DW_OP_lit4:
9751 return "DW_OP_lit4";
9752 case DW_OP_lit5:
9753 return "DW_OP_lit5";
9754 case DW_OP_lit6:
9755 return "DW_OP_lit6";
9756 case DW_OP_lit7:
9757 return "DW_OP_lit7";
9758 case DW_OP_lit8:
9759 return "DW_OP_lit8";
9760 case DW_OP_lit9:
9761 return "DW_OP_lit9";
9762 case DW_OP_lit10:
9763 return "DW_OP_lit10";
9764 case DW_OP_lit11:
9765 return "DW_OP_lit11";
9766 case DW_OP_lit12:
9767 return "DW_OP_lit12";
9768 case DW_OP_lit13:
9769 return "DW_OP_lit13";
9770 case DW_OP_lit14:
9771 return "DW_OP_lit14";
9772 case DW_OP_lit15:
9773 return "DW_OP_lit15";
9774 case DW_OP_lit16:
9775 return "DW_OP_lit16";
9776 case DW_OP_lit17:
9777 return "DW_OP_lit17";
9778 case DW_OP_lit18:
9779 return "DW_OP_lit18";
9780 case DW_OP_lit19:
9781 return "DW_OP_lit19";
9782 case DW_OP_lit20:
9783 return "DW_OP_lit20";
9784 case DW_OP_lit21:
9785 return "DW_OP_lit21";
9786 case DW_OP_lit22:
9787 return "DW_OP_lit22";
9788 case DW_OP_lit23:
9789 return "DW_OP_lit23";
9790 case DW_OP_lit24:
9791 return "DW_OP_lit24";
9792 case DW_OP_lit25:
9793 return "DW_OP_lit25";
9794 case DW_OP_lit26:
9795 return "DW_OP_lit26";
9796 case DW_OP_lit27:
9797 return "DW_OP_lit27";
9798 case DW_OP_lit28:
9799 return "DW_OP_lit28";
9800 case DW_OP_lit29:
9801 return "DW_OP_lit29";
9802 case DW_OP_lit30:
9803 return "DW_OP_lit30";
9804 case DW_OP_lit31:
9805 return "DW_OP_lit31";
9806 case DW_OP_reg0:
9807 return "DW_OP_reg0";
9808 case DW_OP_reg1:
9809 return "DW_OP_reg1";
9810 case DW_OP_reg2:
9811 return "DW_OP_reg2";
9812 case DW_OP_reg3:
9813 return "DW_OP_reg3";
9814 case DW_OP_reg4:
9815 return "DW_OP_reg4";
9816 case DW_OP_reg5:
9817 return "DW_OP_reg5";
9818 case DW_OP_reg6:
9819 return "DW_OP_reg6";
9820 case DW_OP_reg7:
9821 return "DW_OP_reg7";
9822 case DW_OP_reg8:
9823 return "DW_OP_reg8";
9824 case DW_OP_reg9:
9825 return "DW_OP_reg9";
9826 case DW_OP_reg10:
9827 return "DW_OP_reg10";
9828 case DW_OP_reg11:
9829 return "DW_OP_reg11";
9830 case DW_OP_reg12:
9831 return "DW_OP_reg12";
9832 case DW_OP_reg13:
9833 return "DW_OP_reg13";
9834 case DW_OP_reg14:
9835 return "DW_OP_reg14";
9836 case DW_OP_reg15:
9837 return "DW_OP_reg15";
9838 case DW_OP_reg16:
9839 return "DW_OP_reg16";
9840 case DW_OP_reg17:
9841 return "DW_OP_reg17";
9842 case DW_OP_reg18:
9843 return "DW_OP_reg18";
9844 case DW_OP_reg19:
9845 return "DW_OP_reg19";
9846 case DW_OP_reg20:
9847 return "DW_OP_reg20";
9848 case DW_OP_reg21:
9849 return "DW_OP_reg21";
9850 case DW_OP_reg22:
9851 return "DW_OP_reg22";
9852 case DW_OP_reg23:
9853 return "DW_OP_reg23";
9854 case DW_OP_reg24:
9855 return "DW_OP_reg24";
9856 case DW_OP_reg25:
9857 return "DW_OP_reg25";
9858 case DW_OP_reg26:
9859 return "DW_OP_reg26";
9860 case DW_OP_reg27:
9861 return "DW_OP_reg27";
9862 case DW_OP_reg28:
9863 return "DW_OP_reg28";
9864 case DW_OP_reg29:
9865 return "DW_OP_reg29";
9866 case DW_OP_reg30:
9867 return "DW_OP_reg30";
9868 case DW_OP_reg31:
9869 return "DW_OP_reg31";
9870 case DW_OP_breg0:
9871 return "DW_OP_breg0";
9872 case DW_OP_breg1:
9873 return "DW_OP_breg1";
9874 case DW_OP_breg2:
9875 return "DW_OP_breg2";
9876 case DW_OP_breg3:
9877 return "DW_OP_breg3";
9878 case DW_OP_breg4:
9879 return "DW_OP_breg4";
9880 case DW_OP_breg5:
9881 return "DW_OP_breg5";
9882 case DW_OP_breg6:
9883 return "DW_OP_breg6";
9884 case DW_OP_breg7:
9885 return "DW_OP_breg7";
9886 case DW_OP_breg8:
9887 return "DW_OP_breg8";
9888 case DW_OP_breg9:
9889 return "DW_OP_breg9";
9890 case DW_OP_breg10:
9891 return "DW_OP_breg10";
9892 case DW_OP_breg11:
9893 return "DW_OP_breg11";
9894 case DW_OP_breg12:
9895 return "DW_OP_breg12";
9896 case DW_OP_breg13:
9897 return "DW_OP_breg13";
9898 case DW_OP_breg14:
9899 return "DW_OP_breg14";
9900 case DW_OP_breg15:
9901 return "DW_OP_breg15";
9902 case DW_OP_breg16:
9903 return "DW_OP_breg16";
9904 case DW_OP_breg17:
9905 return "DW_OP_breg17";
9906 case DW_OP_breg18:
9907 return "DW_OP_breg18";
9908 case DW_OP_breg19:
9909 return "DW_OP_breg19";
9910 case DW_OP_breg20:
9911 return "DW_OP_breg20";
9912 case DW_OP_breg21:
9913 return "DW_OP_breg21";
9914 case DW_OP_breg22:
9915 return "DW_OP_breg22";
9916 case DW_OP_breg23:
9917 return "DW_OP_breg23";
9918 case DW_OP_breg24:
9919 return "DW_OP_breg24";
9920 case DW_OP_breg25:
9921 return "DW_OP_breg25";
9922 case DW_OP_breg26:
9923 return "DW_OP_breg26";
9924 case DW_OP_breg27:
9925 return "DW_OP_breg27";
9926 case DW_OP_breg28:
9927 return "DW_OP_breg28";
9928 case DW_OP_breg29:
9929 return "DW_OP_breg29";
9930 case DW_OP_breg30:
9931 return "DW_OP_breg30";
9932 case DW_OP_breg31:
9933 return "DW_OP_breg31";
9934 case DW_OP_regx:
9935 return "DW_OP_regx";
9936 case DW_OP_fbreg:
9937 return "DW_OP_fbreg";
9938 case DW_OP_bregx:
9939 return "DW_OP_bregx";
9940 case DW_OP_piece:
9941 return "DW_OP_piece";
9942 case DW_OP_deref_size:
9943 return "DW_OP_deref_size";
9944 case DW_OP_xderef_size:
9945 return "DW_OP_xderef_size";
9946 case DW_OP_nop:
9947 return "DW_OP_nop";
9948 /* DWARF 3 extensions. */
9949 case DW_OP_push_object_address:
9950 return "DW_OP_push_object_address";
9951 case DW_OP_call2:
9952 return "DW_OP_call2";
9953 case DW_OP_call4:
9954 return "DW_OP_call4";
9955 case DW_OP_call_ref:
9956 return "DW_OP_call_ref";
9957 /* GNU extensions. */
9958 case DW_OP_form_tls_address:
9959 return "DW_OP_form_tls_address";
9960 case DW_OP_call_frame_cfa:
9961 return "DW_OP_call_frame_cfa";
9962 case DW_OP_bit_piece:
9963 return "DW_OP_bit_piece";
9964 case DW_OP_GNU_push_tls_address:
9965 return "DW_OP_GNU_push_tls_address";
9966 case DW_OP_GNU_uninit:
9967 return "DW_OP_GNU_uninit";
9968 /* HP extensions. */
9969 case DW_OP_HP_is_value:
9970 return "DW_OP_HP_is_value";
9971 case DW_OP_HP_fltconst4:
9972 return "DW_OP_HP_fltconst4";
9973 case DW_OP_HP_fltconst8:
9974 return "DW_OP_HP_fltconst8";
9975 case DW_OP_HP_mod_range:
9976 return "DW_OP_HP_mod_range";
9977 case DW_OP_HP_unmod_range:
9978 return "DW_OP_HP_unmod_range";
9979 case DW_OP_HP_tls:
9980 return "DW_OP_HP_tls";
9981 default:
9982 return "OP_<unknown>";
9983 }
9984 }
9985
9986 static char *
9987 dwarf_bool_name (unsigned mybool)
9988 {
9989 if (mybool)
9990 return "TRUE";
9991 else
9992 return "FALSE";
9993 }
9994
9995 /* Convert a DWARF type code into its string name. */
9996
9997 static char *
9998 dwarf_type_encoding_name (unsigned enc)
9999 {
10000 switch (enc)
10001 {
10002 case DW_ATE_void:
10003 return "DW_ATE_void";
10004 case DW_ATE_address:
10005 return "DW_ATE_address";
10006 case DW_ATE_boolean:
10007 return "DW_ATE_boolean";
10008 case DW_ATE_complex_float:
10009 return "DW_ATE_complex_float";
10010 case DW_ATE_float:
10011 return "DW_ATE_float";
10012 case DW_ATE_signed:
10013 return "DW_ATE_signed";
10014 case DW_ATE_signed_char:
10015 return "DW_ATE_signed_char";
10016 case DW_ATE_unsigned:
10017 return "DW_ATE_unsigned";
10018 case DW_ATE_unsigned_char:
10019 return "DW_ATE_unsigned_char";
10020 /* DWARF 3. */
10021 case DW_ATE_imaginary_float:
10022 return "DW_ATE_imaginary_float";
10023 case DW_ATE_packed_decimal:
10024 return "DW_ATE_packed_decimal";
10025 case DW_ATE_numeric_string:
10026 return "DW_ATE_numeric_string";
10027 case DW_ATE_edited:
10028 return "DW_ATE_edited";
10029 case DW_ATE_signed_fixed:
10030 return "DW_ATE_signed_fixed";
10031 case DW_ATE_unsigned_fixed:
10032 return "DW_ATE_unsigned_fixed";
10033 case DW_ATE_decimal_float:
10034 return "DW_ATE_decimal_float";
10035 /* HP extensions. */
10036 case DW_ATE_HP_float80:
10037 return "DW_ATE_HP_float80";
10038 case DW_ATE_HP_complex_float80:
10039 return "DW_ATE_HP_complex_float80";
10040 case DW_ATE_HP_float128:
10041 return "DW_ATE_HP_float128";
10042 case DW_ATE_HP_complex_float128:
10043 return "DW_ATE_HP_complex_float128";
10044 case DW_ATE_HP_floathpintel:
10045 return "DW_ATE_HP_floathpintel";
10046 case DW_ATE_HP_imaginary_float80:
10047 return "DW_ATE_HP_imaginary_float80";
10048 case DW_ATE_HP_imaginary_float128:
10049 return "DW_ATE_HP_imaginary_float128";
10050 default:
10051 return "DW_ATE_<unknown>";
10052 }
10053 }
10054
10055 /* Convert a DWARF call frame info operation to its string name. */
10056
10057 #if 0
10058 static char *
10059 dwarf_cfi_name (unsigned cfi_opc)
10060 {
10061 switch (cfi_opc)
10062 {
10063 case DW_CFA_advance_loc:
10064 return "DW_CFA_advance_loc";
10065 case DW_CFA_offset:
10066 return "DW_CFA_offset";
10067 case DW_CFA_restore:
10068 return "DW_CFA_restore";
10069 case DW_CFA_nop:
10070 return "DW_CFA_nop";
10071 case DW_CFA_set_loc:
10072 return "DW_CFA_set_loc";
10073 case DW_CFA_advance_loc1:
10074 return "DW_CFA_advance_loc1";
10075 case DW_CFA_advance_loc2:
10076 return "DW_CFA_advance_loc2";
10077 case DW_CFA_advance_loc4:
10078 return "DW_CFA_advance_loc4";
10079 case DW_CFA_offset_extended:
10080 return "DW_CFA_offset_extended";
10081 case DW_CFA_restore_extended:
10082 return "DW_CFA_restore_extended";
10083 case DW_CFA_undefined:
10084 return "DW_CFA_undefined";
10085 case DW_CFA_same_value:
10086 return "DW_CFA_same_value";
10087 case DW_CFA_register:
10088 return "DW_CFA_register";
10089 case DW_CFA_remember_state:
10090 return "DW_CFA_remember_state";
10091 case DW_CFA_restore_state:
10092 return "DW_CFA_restore_state";
10093 case DW_CFA_def_cfa:
10094 return "DW_CFA_def_cfa";
10095 case DW_CFA_def_cfa_register:
10096 return "DW_CFA_def_cfa_register";
10097 case DW_CFA_def_cfa_offset:
10098 return "DW_CFA_def_cfa_offset";
10099 /* DWARF 3. */
10100 case DW_CFA_def_cfa_expression:
10101 return "DW_CFA_def_cfa_expression";
10102 case DW_CFA_expression:
10103 return "DW_CFA_expression";
10104 case DW_CFA_offset_extended_sf:
10105 return "DW_CFA_offset_extended_sf";
10106 case DW_CFA_def_cfa_sf:
10107 return "DW_CFA_def_cfa_sf";
10108 case DW_CFA_def_cfa_offset_sf:
10109 return "DW_CFA_def_cfa_offset_sf";
10110 case DW_CFA_val_offset:
10111 return "DW_CFA_val_offset";
10112 case DW_CFA_val_offset_sf:
10113 return "DW_CFA_val_offset_sf";
10114 case DW_CFA_val_expression:
10115 return "DW_CFA_val_expression";
10116 /* SGI/MIPS specific. */
10117 case DW_CFA_MIPS_advance_loc8:
10118 return "DW_CFA_MIPS_advance_loc8";
10119 /* GNU extensions. */
10120 case DW_CFA_GNU_window_save:
10121 return "DW_CFA_GNU_window_save";
10122 case DW_CFA_GNU_args_size:
10123 return "DW_CFA_GNU_args_size";
10124 case DW_CFA_GNU_negative_offset_extended:
10125 return "DW_CFA_GNU_negative_offset_extended";
10126 default:
10127 return "DW_CFA_<unknown>";
10128 }
10129 }
10130 #endif
10131
10132 static void
10133 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
10134 {
10135 unsigned int i;
10136
10137 print_spaces (indent, f);
10138 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
10139 dwarf_tag_name (die->tag), die->abbrev, die->offset);
10140
10141 if (die->parent != NULL)
10142 {
10143 print_spaces (indent, f);
10144 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
10145 die->parent->offset);
10146 }
10147
10148 print_spaces (indent, f);
10149 fprintf_unfiltered (f, " has children: %s\n",
10150 dwarf_bool_name (die->child != NULL));
10151
10152 print_spaces (indent, f);
10153 fprintf_unfiltered (f, " attributes:\n");
10154
10155 for (i = 0; i < die->num_attrs; ++i)
10156 {
10157 print_spaces (indent, f);
10158 fprintf_unfiltered (f, " %s (%s) ",
10159 dwarf_attr_name (die->attrs[i].name),
10160 dwarf_form_name (die->attrs[i].form));
10161
10162 switch (die->attrs[i].form)
10163 {
10164 case DW_FORM_ref_addr:
10165 case DW_FORM_addr:
10166 fprintf_unfiltered (f, "address: ");
10167 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
10168 break;
10169 case DW_FORM_block2:
10170 case DW_FORM_block4:
10171 case DW_FORM_block:
10172 case DW_FORM_block1:
10173 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
10174 break;
10175 case DW_FORM_ref1:
10176 case DW_FORM_ref2:
10177 case DW_FORM_ref4:
10178 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10179 (long) (DW_ADDR (&die->attrs[i])));
10180 break;
10181 case DW_FORM_data1:
10182 case DW_FORM_data2:
10183 case DW_FORM_data4:
10184 case DW_FORM_data8:
10185 case DW_FORM_udata:
10186 case DW_FORM_sdata:
10187 fprintf_unfiltered (f, "constant: %s",
10188 pulongest (DW_UNSND (&die->attrs[i])));
10189 break;
10190 case DW_FORM_sig8:
10191 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
10192 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
10193 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
10194 else
10195 fprintf_unfiltered (f, "signatured type, offset: unknown");
10196 break;
10197 case DW_FORM_string:
10198 case DW_FORM_strp:
10199 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
10200 DW_STRING (&die->attrs[i])
10201 ? DW_STRING (&die->attrs[i]) : "",
10202 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
10203 break;
10204 case DW_FORM_flag:
10205 if (DW_UNSND (&die->attrs[i]))
10206 fprintf_unfiltered (f, "flag: TRUE");
10207 else
10208 fprintf_unfiltered (f, "flag: FALSE");
10209 break;
10210 case DW_FORM_indirect:
10211 /* the reader will have reduced the indirect form to
10212 the "base form" so this form should not occur */
10213 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
10214 break;
10215 default:
10216 fprintf_unfiltered (f, "unsupported attribute form: %d.",
10217 die->attrs[i].form);
10218 break;
10219 }
10220 fprintf_unfiltered (f, "\n");
10221 }
10222 }
10223
10224 static void
10225 dump_die_for_error (struct die_info *die)
10226 {
10227 dump_die_shallow (gdb_stderr, 0, die);
10228 }
10229
10230 static void
10231 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
10232 {
10233 int indent = level * 4;
10234
10235 gdb_assert (die != NULL);
10236
10237 if (level >= max_level)
10238 return;
10239
10240 dump_die_shallow (f, indent, die);
10241
10242 if (die->child != NULL)
10243 {
10244 print_spaces (indent, f);
10245 fprintf_unfiltered (f, " Children:");
10246 if (level + 1 < max_level)
10247 {
10248 fprintf_unfiltered (f, "\n");
10249 dump_die_1 (f, level + 1, max_level, die->child);
10250 }
10251 else
10252 {
10253 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
10254 }
10255 }
10256
10257 if (die->sibling != NULL && level > 0)
10258 {
10259 dump_die_1 (f, level, max_level, die->sibling);
10260 }
10261 }
10262
10263 /* This is called from the pdie macro in gdbinit.in.
10264 It's not static so gcc will keep a copy callable from gdb. */
10265
10266 void
10267 dump_die (struct die_info *die, int max_level)
10268 {
10269 dump_die_1 (gdb_stdlog, 0, max_level, die);
10270 }
10271
10272 static void
10273 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
10274 {
10275 void **slot;
10276
10277 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
10278
10279 *slot = die;
10280 }
10281
10282 static int
10283 is_ref_attr (struct attribute *attr)
10284 {
10285 switch (attr->form)
10286 {
10287 case DW_FORM_ref_addr:
10288 case DW_FORM_ref1:
10289 case DW_FORM_ref2:
10290 case DW_FORM_ref4:
10291 case DW_FORM_ref8:
10292 case DW_FORM_ref_udata:
10293 return 1;
10294 default:
10295 return 0;
10296 }
10297 }
10298
10299 static unsigned int
10300 dwarf2_get_ref_die_offset (struct attribute *attr)
10301 {
10302 if (is_ref_attr (attr))
10303 return DW_ADDR (attr);
10304
10305 complaint (&symfile_complaints,
10306 _("unsupported die ref attribute form: '%s'"),
10307 dwarf_form_name (attr->form));
10308 return 0;
10309 }
10310
10311 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
10312 * the value held by the attribute is not constant. */
10313
10314 static LONGEST
10315 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
10316 {
10317 if (attr->form == DW_FORM_sdata)
10318 return DW_SND (attr);
10319 else if (attr->form == DW_FORM_udata
10320 || attr->form == DW_FORM_data1
10321 || attr->form == DW_FORM_data2
10322 || attr->form == DW_FORM_data4
10323 || attr->form == DW_FORM_data8)
10324 return DW_UNSND (attr);
10325 else
10326 {
10327 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
10328 dwarf_form_name (attr->form));
10329 return default_value;
10330 }
10331 }
10332
10333 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
10334 unit and add it to our queue.
10335 The result is non-zero if PER_CU was queued, otherwise the result is zero
10336 meaning either PER_CU is already queued or it is already loaded. */
10337
10338 static int
10339 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
10340 struct dwarf2_per_cu_data *per_cu)
10341 {
10342 /* Mark the dependence relation so that we don't flush PER_CU
10343 too early. */
10344 dwarf2_add_dependence (this_cu, per_cu);
10345
10346 /* If it's already on the queue, we have nothing to do. */
10347 if (per_cu->queued)
10348 return 0;
10349
10350 /* If the compilation unit is already loaded, just mark it as
10351 used. */
10352 if (per_cu->cu != NULL)
10353 {
10354 per_cu->cu->last_used = 0;
10355 return 0;
10356 }
10357
10358 /* Add it to the queue. */
10359 queue_comp_unit (per_cu, this_cu->objfile);
10360
10361 return 1;
10362 }
10363
10364 /* Follow reference or signature attribute ATTR of SRC_DIE.
10365 On entry *REF_CU is the CU of SRC_DIE.
10366 On exit *REF_CU is the CU of the result. */
10367
10368 static struct die_info *
10369 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
10370 struct dwarf2_cu **ref_cu)
10371 {
10372 struct die_info *die;
10373
10374 if (is_ref_attr (attr))
10375 die = follow_die_ref (src_die, attr, ref_cu);
10376 else if (attr->form == DW_FORM_sig8)
10377 die = follow_die_sig (src_die, attr, ref_cu);
10378 else
10379 {
10380 dump_die_for_error (src_die);
10381 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
10382 (*ref_cu)->objfile->name);
10383 }
10384
10385 return die;
10386 }
10387
10388 /* Follow reference attribute ATTR of SRC_DIE.
10389 On entry *REF_CU is the CU of SRC_DIE.
10390 On exit *REF_CU is the CU of the result. */
10391
10392 static struct die_info *
10393 follow_die_ref (struct die_info *src_die, struct attribute *attr,
10394 struct dwarf2_cu **ref_cu)
10395 {
10396 struct die_info *die;
10397 unsigned int offset;
10398 struct die_info temp_die;
10399 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10400
10401 gdb_assert (cu->per_cu != NULL);
10402
10403 offset = dwarf2_get_ref_die_offset (attr);
10404
10405 if (cu->per_cu->from_debug_types)
10406 {
10407 /* .debug_types CUs cannot reference anything outside their CU.
10408 If they need to, they have to reference a signatured type via
10409 DW_FORM_sig8. */
10410 if (! offset_in_cu_p (&cu->header, offset))
10411 goto not_found;
10412 target_cu = cu;
10413 }
10414 else if (! offset_in_cu_p (&cu->header, offset))
10415 {
10416 struct dwarf2_per_cu_data *per_cu;
10417 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
10418
10419 /* If necessary, add it to the queue and load its DIEs. */
10420 if (maybe_queue_comp_unit (cu, per_cu))
10421 load_full_comp_unit (per_cu, cu->objfile);
10422
10423 target_cu = per_cu->cu;
10424 }
10425 else
10426 target_cu = cu;
10427
10428 *ref_cu = target_cu;
10429 temp_die.offset = offset;
10430 die = htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
10431 if (die)
10432 return die;
10433
10434 not_found:
10435
10436 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
10437 "at 0x%x [in module %s]"),
10438 offset, src_die->offset, cu->objfile->name);
10439 }
10440
10441 /* Follow the signature attribute ATTR in SRC_DIE.
10442 On entry *REF_CU is the CU of SRC_DIE.
10443 On exit *REF_CU is the CU of the result. */
10444
10445 static struct die_info *
10446 follow_die_sig (struct die_info *src_die, struct attribute *attr,
10447 struct dwarf2_cu **ref_cu)
10448 {
10449 struct objfile *objfile = (*ref_cu)->objfile;
10450 struct die_info temp_die;
10451 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
10452 struct dwarf2_cu *sig_cu;
10453 struct die_info *die;
10454
10455 /* sig_type will be NULL if the signatured type is missing from
10456 the debug info. */
10457 if (sig_type == NULL)
10458 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
10459 "at 0x%x [in module %s]"),
10460 src_die->offset, objfile->name);
10461
10462 /* If necessary, add it to the queue and load its DIEs. */
10463
10464 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
10465 read_signatured_type (objfile, sig_type);
10466
10467 gdb_assert (sig_type->per_cu.cu != NULL);
10468
10469 sig_cu = sig_type->per_cu.cu;
10470 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
10471 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
10472 if (die)
10473 {
10474 *ref_cu = sig_cu;
10475 return die;
10476 }
10477
10478 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
10479 "at 0x%x [in module %s]"),
10480 sig_type->type_offset, src_die->offset, objfile->name);
10481 }
10482
10483 /* Given an offset of a signatured type, return its signatured_type. */
10484
10485 static struct signatured_type *
10486 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
10487 {
10488 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
10489 unsigned int length, initial_length_size;
10490 unsigned int sig_offset;
10491 struct signatured_type find_entry, *type_sig;
10492
10493 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
10494 sig_offset = (initial_length_size
10495 + 2 /*version*/
10496 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
10497 + 1 /*address_size*/);
10498 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
10499 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
10500
10501 /* This is only used to lookup previously recorded types.
10502 If we didn't find it, it's our bug. */
10503 gdb_assert (type_sig != NULL);
10504 gdb_assert (offset == type_sig->offset);
10505
10506 return type_sig;
10507 }
10508
10509 /* Read in signatured type at OFFSET and build its CU and die(s). */
10510
10511 static void
10512 read_signatured_type_at_offset (struct objfile *objfile,
10513 unsigned int offset)
10514 {
10515 struct signatured_type *type_sig;
10516
10517 /* We have the section offset, but we need the signature to do the
10518 hash table lookup. */
10519 type_sig = lookup_signatured_type_at_offset (objfile, offset);
10520
10521 gdb_assert (type_sig->per_cu.cu == NULL);
10522
10523 read_signatured_type (objfile, type_sig);
10524
10525 gdb_assert (type_sig->per_cu.cu != NULL);
10526 }
10527
10528 /* Read in a signatured type and build its CU and DIEs. */
10529
10530 static void
10531 read_signatured_type (struct objfile *objfile,
10532 struct signatured_type *type_sig)
10533 {
10534 gdb_byte *types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
10535 struct die_reader_specs reader_specs;
10536 struct dwarf2_cu *cu;
10537 ULONGEST signature;
10538 struct cleanup *back_to, *free_cu_cleanup;
10539 struct attribute *attr;
10540
10541 gdb_assert (type_sig->per_cu.cu == NULL);
10542
10543 cu = xmalloc (sizeof (struct dwarf2_cu));
10544 memset (cu, 0, sizeof (struct dwarf2_cu));
10545 obstack_init (&cu->comp_unit_obstack);
10546 cu->objfile = objfile;
10547 type_sig->per_cu.cu = cu;
10548 cu->per_cu = &type_sig->per_cu;
10549
10550 /* If an error occurs while loading, release our storage. */
10551 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
10552
10553 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
10554 types_ptr, objfile->obfd);
10555 gdb_assert (signature == type_sig->signature);
10556
10557 cu->die_hash
10558 = htab_create_alloc_ex (cu->header.length / 12,
10559 die_hash,
10560 die_eq,
10561 NULL,
10562 &cu->comp_unit_obstack,
10563 hashtab_obstack_allocate,
10564 dummy_obstack_deallocate);
10565
10566 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
10567 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
10568
10569 init_cu_die_reader (&reader_specs, cu);
10570
10571 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
10572 NULL /*parent*/);
10573
10574 /* We try not to read any attributes in this function, because not
10575 all objfiles needed for references have been loaded yet, and symbol
10576 table processing isn't initialized. But we have to set the CU language,
10577 or we won't be able to build types correctly. */
10578 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
10579 if (attr)
10580 set_cu_language (DW_UNSND (attr), cu);
10581 else
10582 set_cu_language (language_minimal, cu);
10583
10584 do_cleanups (back_to);
10585
10586 /* We've successfully allocated this compilation unit. Let our caller
10587 clean it up when finished with it. */
10588 discard_cleanups (free_cu_cleanup);
10589
10590 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
10591 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
10592 }
10593
10594 /* Decode simple location descriptions.
10595 Given a pointer to a dwarf block that defines a location, compute
10596 the location and return the value.
10597
10598 NOTE drow/2003-11-18: This function is called in two situations
10599 now: for the address of static or global variables (partial symbols
10600 only) and for offsets into structures which are expected to be
10601 (more or less) constant. The partial symbol case should go away,
10602 and only the constant case should remain. That will let this
10603 function complain more accurately. A few special modes are allowed
10604 without complaint for global variables (for instance, global
10605 register values and thread-local values).
10606
10607 A location description containing no operations indicates that the
10608 object is optimized out. The return value is 0 for that case.
10609 FIXME drow/2003-11-16: No callers check for this case any more; soon all
10610 callers will only want a very basic result and this can become a
10611 complaint.
10612
10613 Note that stack[0] is unused except as a default error return.
10614 Note that stack overflow is not yet handled. */
10615
10616 static CORE_ADDR
10617 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
10618 {
10619 struct objfile *objfile = cu->objfile;
10620 struct comp_unit_head *cu_header = &cu->header;
10621 int i;
10622 int size = blk->size;
10623 gdb_byte *data = blk->data;
10624 CORE_ADDR stack[64];
10625 int stacki;
10626 unsigned int bytes_read, unsnd;
10627 gdb_byte op;
10628
10629 i = 0;
10630 stacki = 0;
10631 stack[stacki] = 0;
10632
10633 while (i < size)
10634 {
10635 op = data[i++];
10636 switch (op)
10637 {
10638 case DW_OP_lit0:
10639 case DW_OP_lit1:
10640 case DW_OP_lit2:
10641 case DW_OP_lit3:
10642 case DW_OP_lit4:
10643 case DW_OP_lit5:
10644 case DW_OP_lit6:
10645 case DW_OP_lit7:
10646 case DW_OP_lit8:
10647 case DW_OP_lit9:
10648 case DW_OP_lit10:
10649 case DW_OP_lit11:
10650 case DW_OP_lit12:
10651 case DW_OP_lit13:
10652 case DW_OP_lit14:
10653 case DW_OP_lit15:
10654 case DW_OP_lit16:
10655 case DW_OP_lit17:
10656 case DW_OP_lit18:
10657 case DW_OP_lit19:
10658 case DW_OP_lit20:
10659 case DW_OP_lit21:
10660 case DW_OP_lit22:
10661 case DW_OP_lit23:
10662 case DW_OP_lit24:
10663 case DW_OP_lit25:
10664 case DW_OP_lit26:
10665 case DW_OP_lit27:
10666 case DW_OP_lit28:
10667 case DW_OP_lit29:
10668 case DW_OP_lit30:
10669 case DW_OP_lit31:
10670 stack[++stacki] = op - DW_OP_lit0;
10671 break;
10672
10673 case DW_OP_reg0:
10674 case DW_OP_reg1:
10675 case DW_OP_reg2:
10676 case DW_OP_reg3:
10677 case DW_OP_reg4:
10678 case DW_OP_reg5:
10679 case DW_OP_reg6:
10680 case DW_OP_reg7:
10681 case DW_OP_reg8:
10682 case DW_OP_reg9:
10683 case DW_OP_reg10:
10684 case DW_OP_reg11:
10685 case DW_OP_reg12:
10686 case DW_OP_reg13:
10687 case DW_OP_reg14:
10688 case DW_OP_reg15:
10689 case DW_OP_reg16:
10690 case DW_OP_reg17:
10691 case DW_OP_reg18:
10692 case DW_OP_reg19:
10693 case DW_OP_reg20:
10694 case DW_OP_reg21:
10695 case DW_OP_reg22:
10696 case DW_OP_reg23:
10697 case DW_OP_reg24:
10698 case DW_OP_reg25:
10699 case DW_OP_reg26:
10700 case DW_OP_reg27:
10701 case DW_OP_reg28:
10702 case DW_OP_reg29:
10703 case DW_OP_reg30:
10704 case DW_OP_reg31:
10705 stack[++stacki] = op - DW_OP_reg0;
10706 if (i < size)
10707 dwarf2_complex_location_expr_complaint ();
10708 break;
10709
10710 case DW_OP_regx:
10711 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10712 i += bytes_read;
10713 stack[++stacki] = unsnd;
10714 if (i < size)
10715 dwarf2_complex_location_expr_complaint ();
10716 break;
10717
10718 case DW_OP_addr:
10719 stack[++stacki] = read_address (objfile->obfd, &data[i],
10720 cu, &bytes_read);
10721 i += bytes_read;
10722 break;
10723
10724 case DW_OP_const1u:
10725 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
10726 i += 1;
10727 break;
10728
10729 case DW_OP_const1s:
10730 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
10731 i += 1;
10732 break;
10733
10734 case DW_OP_const2u:
10735 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
10736 i += 2;
10737 break;
10738
10739 case DW_OP_const2s:
10740 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
10741 i += 2;
10742 break;
10743
10744 case DW_OP_const4u:
10745 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
10746 i += 4;
10747 break;
10748
10749 case DW_OP_const4s:
10750 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
10751 i += 4;
10752 break;
10753
10754 case DW_OP_constu:
10755 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
10756 &bytes_read);
10757 i += bytes_read;
10758 break;
10759
10760 case DW_OP_consts:
10761 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
10762 i += bytes_read;
10763 break;
10764
10765 case DW_OP_dup:
10766 stack[stacki + 1] = stack[stacki];
10767 stacki++;
10768 break;
10769
10770 case DW_OP_plus:
10771 stack[stacki - 1] += stack[stacki];
10772 stacki--;
10773 break;
10774
10775 case DW_OP_plus_uconst:
10776 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10777 i += bytes_read;
10778 break;
10779
10780 case DW_OP_minus:
10781 stack[stacki - 1] -= stack[stacki];
10782 stacki--;
10783 break;
10784
10785 case DW_OP_deref:
10786 /* If we're not the last op, then we definitely can't encode
10787 this using GDB's address_class enum. This is valid for partial
10788 global symbols, although the variable's address will be bogus
10789 in the psymtab. */
10790 if (i < size)
10791 dwarf2_complex_location_expr_complaint ();
10792 break;
10793
10794 case DW_OP_GNU_push_tls_address:
10795 /* The top of the stack has the offset from the beginning
10796 of the thread control block at which the variable is located. */
10797 /* Nothing should follow this operator, so the top of stack would
10798 be returned. */
10799 /* This is valid for partial global symbols, but the variable's
10800 address will be bogus in the psymtab. */
10801 if (i < size)
10802 dwarf2_complex_location_expr_complaint ();
10803 break;
10804
10805 case DW_OP_GNU_uninit:
10806 break;
10807
10808 default:
10809 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
10810 dwarf_stack_op_name (op));
10811 return (stack[stacki]);
10812 }
10813 }
10814 return (stack[stacki]);
10815 }
10816
10817 /* memory allocation interface */
10818
10819 static struct dwarf_block *
10820 dwarf_alloc_block (struct dwarf2_cu *cu)
10821 {
10822 struct dwarf_block *blk;
10823
10824 blk = (struct dwarf_block *)
10825 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
10826 return (blk);
10827 }
10828
10829 static struct abbrev_info *
10830 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
10831 {
10832 struct abbrev_info *abbrev;
10833
10834 abbrev = (struct abbrev_info *)
10835 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
10836 memset (abbrev, 0, sizeof (struct abbrev_info));
10837 return (abbrev);
10838 }
10839
10840 static struct die_info *
10841 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
10842 {
10843 struct die_info *die;
10844 size_t size = sizeof (struct die_info);
10845
10846 if (num_attrs > 1)
10847 size += (num_attrs - 1) * sizeof (struct attribute);
10848
10849 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
10850 memset (die, 0, sizeof (struct die_info));
10851 return (die);
10852 }
10853
10854 \f
10855 /* Macro support. */
10856
10857
10858 /* Return the full name of file number I in *LH's file name table.
10859 Use COMP_DIR as the name of the current directory of the
10860 compilation. The result is allocated using xmalloc; the caller is
10861 responsible for freeing it. */
10862 static char *
10863 file_full_name (int file, struct line_header *lh, const char *comp_dir)
10864 {
10865 /* Is the file number a valid index into the line header's file name
10866 table? Remember that file numbers start with one, not zero. */
10867 if (1 <= file && file <= lh->num_file_names)
10868 {
10869 struct file_entry *fe = &lh->file_names[file - 1];
10870
10871 if (IS_ABSOLUTE_PATH (fe->name))
10872 return xstrdup (fe->name);
10873 else
10874 {
10875 const char *dir;
10876 int dir_len;
10877 char *full_name;
10878
10879 if (fe->dir_index)
10880 dir = lh->include_dirs[fe->dir_index - 1];
10881 else
10882 dir = comp_dir;
10883
10884 if (dir)
10885 {
10886 dir_len = strlen (dir);
10887 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
10888 strcpy (full_name, dir);
10889 full_name[dir_len] = '/';
10890 strcpy (full_name + dir_len + 1, fe->name);
10891 return full_name;
10892 }
10893 else
10894 return xstrdup (fe->name);
10895 }
10896 }
10897 else
10898 {
10899 /* The compiler produced a bogus file number. We can at least
10900 record the macro definitions made in the file, even if we
10901 won't be able to find the file by name. */
10902 char fake_name[80];
10903 sprintf (fake_name, "<bad macro file number %d>", file);
10904
10905 complaint (&symfile_complaints,
10906 _("bad file number in macro information (%d)"),
10907 file);
10908
10909 return xstrdup (fake_name);
10910 }
10911 }
10912
10913
10914 static struct macro_source_file *
10915 macro_start_file (int file, int line,
10916 struct macro_source_file *current_file,
10917 const char *comp_dir,
10918 struct line_header *lh, struct objfile *objfile)
10919 {
10920 /* The full name of this source file. */
10921 char *full_name = file_full_name (file, lh, comp_dir);
10922
10923 /* We don't create a macro table for this compilation unit
10924 at all until we actually get a filename. */
10925 if (! pending_macros)
10926 pending_macros = new_macro_table (&objfile->objfile_obstack,
10927 objfile->macro_cache);
10928
10929 if (! current_file)
10930 /* If we have no current file, then this must be the start_file
10931 directive for the compilation unit's main source file. */
10932 current_file = macro_set_main (pending_macros, full_name);
10933 else
10934 current_file = macro_include (current_file, line, full_name);
10935
10936 xfree (full_name);
10937
10938 return current_file;
10939 }
10940
10941
10942 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
10943 followed by a null byte. */
10944 static char *
10945 copy_string (const char *buf, int len)
10946 {
10947 char *s = xmalloc (len + 1);
10948 memcpy (s, buf, len);
10949 s[len] = '\0';
10950
10951 return s;
10952 }
10953
10954
10955 static const char *
10956 consume_improper_spaces (const char *p, const char *body)
10957 {
10958 if (*p == ' ')
10959 {
10960 complaint (&symfile_complaints,
10961 _("macro definition contains spaces in formal argument list:\n`%s'"),
10962 body);
10963
10964 while (*p == ' ')
10965 p++;
10966 }
10967
10968 return p;
10969 }
10970
10971
10972 static void
10973 parse_macro_definition (struct macro_source_file *file, int line,
10974 const char *body)
10975 {
10976 const char *p;
10977
10978 /* The body string takes one of two forms. For object-like macro
10979 definitions, it should be:
10980
10981 <macro name> " " <definition>
10982
10983 For function-like macro definitions, it should be:
10984
10985 <macro name> "() " <definition>
10986 or
10987 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
10988
10989 Spaces may appear only where explicitly indicated, and in the
10990 <definition>.
10991
10992 The Dwarf 2 spec says that an object-like macro's name is always
10993 followed by a space, but versions of GCC around March 2002 omit
10994 the space when the macro's definition is the empty string.
10995
10996 The Dwarf 2 spec says that there should be no spaces between the
10997 formal arguments in a function-like macro's formal argument list,
10998 but versions of GCC around March 2002 include spaces after the
10999 commas. */
11000
11001
11002 /* Find the extent of the macro name. The macro name is terminated
11003 by either a space or null character (for an object-like macro) or
11004 an opening paren (for a function-like macro). */
11005 for (p = body; *p; p++)
11006 if (*p == ' ' || *p == '(')
11007 break;
11008
11009 if (*p == ' ' || *p == '\0')
11010 {
11011 /* It's an object-like macro. */
11012 int name_len = p - body;
11013 char *name = copy_string (body, name_len);
11014 const char *replacement;
11015
11016 if (*p == ' ')
11017 replacement = body + name_len + 1;
11018 else
11019 {
11020 dwarf2_macro_malformed_definition_complaint (body);
11021 replacement = body + name_len;
11022 }
11023
11024 macro_define_object (file, line, name, replacement);
11025
11026 xfree (name);
11027 }
11028 else if (*p == '(')
11029 {
11030 /* It's a function-like macro. */
11031 char *name = copy_string (body, p - body);
11032 int argc = 0;
11033 int argv_size = 1;
11034 char **argv = xmalloc (argv_size * sizeof (*argv));
11035
11036 p++;
11037
11038 p = consume_improper_spaces (p, body);
11039
11040 /* Parse the formal argument list. */
11041 while (*p && *p != ')')
11042 {
11043 /* Find the extent of the current argument name. */
11044 const char *arg_start = p;
11045
11046 while (*p && *p != ',' && *p != ')' && *p != ' ')
11047 p++;
11048
11049 if (! *p || p == arg_start)
11050 dwarf2_macro_malformed_definition_complaint (body);
11051 else
11052 {
11053 /* Make sure argv has room for the new argument. */
11054 if (argc >= argv_size)
11055 {
11056 argv_size *= 2;
11057 argv = xrealloc (argv, argv_size * sizeof (*argv));
11058 }
11059
11060 argv[argc++] = copy_string (arg_start, p - arg_start);
11061 }
11062
11063 p = consume_improper_spaces (p, body);
11064
11065 /* Consume the comma, if present. */
11066 if (*p == ',')
11067 {
11068 p++;
11069
11070 p = consume_improper_spaces (p, body);
11071 }
11072 }
11073
11074 if (*p == ')')
11075 {
11076 p++;
11077
11078 if (*p == ' ')
11079 /* Perfectly formed definition, no complaints. */
11080 macro_define_function (file, line, name,
11081 argc, (const char **) argv,
11082 p + 1);
11083 else if (*p == '\0')
11084 {
11085 /* Complain, but do define it. */
11086 dwarf2_macro_malformed_definition_complaint (body);
11087 macro_define_function (file, line, name,
11088 argc, (const char **) argv,
11089 p);
11090 }
11091 else
11092 /* Just complain. */
11093 dwarf2_macro_malformed_definition_complaint (body);
11094 }
11095 else
11096 /* Just complain. */
11097 dwarf2_macro_malformed_definition_complaint (body);
11098
11099 xfree (name);
11100 {
11101 int i;
11102
11103 for (i = 0; i < argc; i++)
11104 xfree (argv[i]);
11105 }
11106 xfree (argv);
11107 }
11108 else
11109 dwarf2_macro_malformed_definition_complaint (body);
11110 }
11111
11112
11113 static void
11114 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
11115 char *comp_dir, bfd *abfd,
11116 struct dwarf2_cu *cu)
11117 {
11118 gdb_byte *mac_ptr, *mac_end;
11119 struct macro_source_file *current_file = 0;
11120 enum dwarf_macinfo_record_type macinfo_type;
11121 int at_commandline;
11122
11123 if (dwarf2_per_objfile->macinfo.buffer == NULL)
11124 {
11125 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
11126 return;
11127 }
11128
11129 /* First pass: Find the name of the base filename.
11130 This filename is needed in order to process all macros whose definition
11131 (or undefinition) comes from the command line. These macros are defined
11132 before the first DW_MACINFO_start_file entry, and yet still need to be
11133 associated to the base file.
11134
11135 To determine the base file name, we scan the macro definitions until we
11136 reach the first DW_MACINFO_start_file entry. We then initialize
11137 CURRENT_FILE accordingly so that any macro definition found before the
11138 first DW_MACINFO_start_file can still be associated to the base file. */
11139
11140 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11141 mac_end = dwarf2_per_objfile->macinfo.buffer
11142 + dwarf2_per_objfile->macinfo.size;
11143
11144 do
11145 {
11146 /* Do we at least have room for a macinfo type byte? */
11147 if (mac_ptr >= mac_end)
11148 {
11149 /* Complaint is printed during the second pass as GDB will probably
11150 stop the first pass earlier upon finding DW_MACINFO_start_file. */
11151 break;
11152 }
11153
11154 macinfo_type = read_1_byte (abfd, mac_ptr);
11155 mac_ptr++;
11156
11157 switch (macinfo_type)
11158 {
11159 /* A zero macinfo type indicates the end of the macro
11160 information. */
11161 case 0:
11162 break;
11163
11164 case DW_MACINFO_define:
11165 case DW_MACINFO_undef:
11166 /* Only skip the data by MAC_PTR. */
11167 {
11168 unsigned int bytes_read;
11169
11170 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11171 mac_ptr += bytes_read;
11172 read_string (abfd, mac_ptr, &bytes_read);
11173 mac_ptr += bytes_read;
11174 }
11175 break;
11176
11177 case DW_MACINFO_start_file:
11178 {
11179 unsigned int bytes_read;
11180 int line, file;
11181
11182 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11183 mac_ptr += bytes_read;
11184 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11185 mac_ptr += bytes_read;
11186
11187 current_file = macro_start_file (file, line, current_file, comp_dir,
11188 lh, cu->objfile);
11189 }
11190 break;
11191
11192 case DW_MACINFO_end_file:
11193 /* No data to skip by MAC_PTR. */
11194 break;
11195
11196 case DW_MACINFO_vendor_ext:
11197 /* Only skip the data by MAC_PTR. */
11198 {
11199 unsigned int bytes_read;
11200
11201 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11202 mac_ptr += bytes_read;
11203 read_string (abfd, mac_ptr, &bytes_read);
11204 mac_ptr += bytes_read;
11205 }
11206 break;
11207
11208 default:
11209 break;
11210 }
11211 } while (macinfo_type != 0 && current_file == NULL);
11212
11213 /* Second pass: Process all entries.
11214
11215 Use the AT_COMMAND_LINE flag to determine whether we are still processing
11216 command-line macro definitions/undefinitions. This flag is unset when we
11217 reach the first DW_MACINFO_start_file entry. */
11218
11219 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11220
11221 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
11222 GDB is still reading the definitions from command line. First
11223 DW_MACINFO_start_file will need to be ignored as it was already executed
11224 to create CURRENT_FILE for the main source holding also the command line
11225 definitions. On first met DW_MACINFO_start_file this flag is reset to
11226 normally execute all the remaining DW_MACINFO_start_file macinfos. */
11227
11228 at_commandline = 1;
11229
11230 do
11231 {
11232 /* Do we at least have room for a macinfo type byte? */
11233 if (mac_ptr >= mac_end)
11234 {
11235 dwarf2_macros_too_long_complaint ();
11236 break;
11237 }
11238
11239 macinfo_type = read_1_byte (abfd, mac_ptr);
11240 mac_ptr++;
11241
11242 switch (macinfo_type)
11243 {
11244 /* A zero macinfo type indicates the end of the macro
11245 information. */
11246 case 0:
11247 break;
11248
11249 case DW_MACINFO_define:
11250 case DW_MACINFO_undef:
11251 {
11252 unsigned int bytes_read;
11253 int line;
11254 char *body;
11255
11256 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11257 mac_ptr += bytes_read;
11258 body = read_string (abfd, mac_ptr, &bytes_read);
11259 mac_ptr += bytes_read;
11260
11261 if (! current_file)
11262 {
11263 /* DWARF violation as no main source is present. */
11264 complaint (&symfile_complaints,
11265 _("debug info with no main source gives macro %s "
11266 "on line %d: %s"),
11267 macinfo_type == DW_MACINFO_define ?
11268 _("definition") :
11269 macinfo_type == DW_MACINFO_undef ?
11270 _("undefinition") :
11271 _("something-or-other"), line, body);
11272 break;
11273 }
11274 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11275 complaint (&symfile_complaints,
11276 _("debug info gives %s macro %s with %s line %d: %s"),
11277 at_commandline ? _("command-line") : _("in-file"),
11278 macinfo_type == DW_MACINFO_define ?
11279 _("definition") :
11280 macinfo_type == DW_MACINFO_undef ?
11281 _("undefinition") :
11282 _("something-or-other"),
11283 line == 0 ? _("zero") : _("non-zero"), line, body);
11284
11285 if (macinfo_type == DW_MACINFO_define)
11286 parse_macro_definition (current_file, line, body);
11287 else if (macinfo_type == DW_MACINFO_undef)
11288 macro_undef (current_file, line, body);
11289 }
11290 break;
11291
11292 case DW_MACINFO_start_file:
11293 {
11294 unsigned int bytes_read;
11295 int line, file;
11296
11297 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11298 mac_ptr += bytes_read;
11299 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11300 mac_ptr += bytes_read;
11301
11302 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11303 complaint (&symfile_complaints,
11304 _("debug info gives source %d included "
11305 "from %s at %s line %d"),
11306 file, at_commandline ? _("command-line") : _("file"),
11307 line == 0 ? _("zero") : _("non-zero"), line);
11308
11309 if (at_commandline)
11310 {
11311 /* This DW_MACINFO_start_file was executed in the pass one. */
11312 at_commandline = 0;
11313 }
11314 else
11315 current_file = macro_start_file (file, line,
11316 current_file, comp_dir,
11317 lh, cu->objfile);
11318 }
11319 break;
11320
11321 case DW_MACINFO_end_file:
11322 if (! current_file)
11323 complaint (&symfile_complaints,
11324 _("macro debug info has an unmatched `close_file' directive"));
11325 else
11326 {
11327 current_file = current_file->included_by;
11328 if (! current_file)
11329 {
11330 enum dwarf_macinfo_record_type next_type;
11331
11332 /* GCC circa March 2002 doesn't produce the zero
11333 type byte marking the end of the compilation
11334 unit. Complain if it's not there, but exit no
11335 matter what. */
11336
11337 /* Do we at least have room for a macinfo type byte? */
11338 if (mac_ptr >= mac_end)
11339 {
11340 dwarf2_macros_too_long_complaint ();
11341 return;
11342 }
11343
11344 /* We don't increment mac_ptr here, so this is just
11345 a look-ahead. */
11346 next_type = read_1_byte (abfd, mac_ptr);
11347 if (next_type != 0)
11348 complaint (&symfile_complaints,
11349 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
11350
11351 return;
11352 }
11353 }
11354 break;
11355
11356 case DW_MACINFO_vendor_ext:
11357 {
11358 unsigned int bytes_read;
11359 int constant;
11360 char *string;
11361
11362 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11363 mac_ptr += bytes_read;
11364 string = read_string (abfd, mac_ptr, &bytes_read);
11365 mac_ptr += bytes_read;
11366
11367 /* We don't recognize any vendor extensions. */
11368 }
11369 break;
11370 }
11371 } while (macinfo_type != 0);
11372 }
11373
11374 /* Check if the attribute's form is a DW_FORM_block*
11375 if so return true else false. */
11376 static int
11377 attr_form_is_block (struct attribute *attr)
11378 {
11379 return (attr == NULL ? 0 :
11380 attr->form == DW_FORM_block1
11381 || attr->form == DW_FORM_block2
11382 || attr->form == DW_FORM_block4
11383 || attr->form == DW_FORM_block);
11384 }
11385
11386 /* Return non-zero if ATTR's value is a section offset --- classes
11387 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
11388 You may use DW_UNSND (attr) to retrieve such offsets.
11389
11390 Section 7.5.4, "Attribute Encodings", explains that no attribute
11391 may have a value that belongs to more than one of these classes; it
11392 would be ambiguous if we did, because we use the same forms for all
11393 of them. */
11394 static int
11395 attr_form_is_section_offset (struct attribute *attr)
11396 {
11397 return (attr->form == DW_FORM_data4
11398 || attr->form == DW_FORM_data8);
11399 }
11400
11401
11402 /* Return non-zero if ATTR's value falls in the 'constant' class, or
11403 zero otherwise. When this function returns true, you can apply
11404 dwarf2_get_attr_constant_value to it.
11405
11406 However, note that for some attributes you must check
11407 attr_form_is_section_offset before using this test. DW_FORM_data4
11408 and DW_FORM_data8 are members of both the constant class, and of
11409 the classes that contain offsets into other debug sections
11410 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
11411 that, if an attribute's can be either a constant or one of the
11412 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
11413 taken as section offsets, not constants. */
11414 static int
11415 attr_form_is_constant (struct attribute *attr)
11416 {
11417 switch (attr->form)
11418 {
11419 case DW_FORM_sdata:
11420 case DW_FORM_udata:
11421 case DW_FORM_data1:
11422 case DW_FORM_data2:
11423 case DW_FORM_data4:
11424 case DW_FORM_data8:
11425 return 1;
11426 default:
11427 return 0;
11428 }
11429 }
11430
11431 static void
11432 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
11433 struct dwarf2_cu *cu)
11434 {
11435 if (attr_form_is_section_offset (attr)
11436 /* ".debug_loc" may not exist at all, or the offset may be outside
11437 the section. If so, fall through to the complaint in the
11438 other branch. */
11439 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
11440 {
11441 struct dwarf2_loclist_baton *baton;
11442
11443 baton = obstack_alloc (&cu->objfile->objfile_obstack,
11444 sizeof (struct dwarf2_loclist_baton));
11445 baton->per_cu = cu->per_cu;
11446 gdb_assert (baton->per_cu);
11447
11448 /* We don't know how long the location list is, but make sure we
11449 don't run off the edge of the section. */
11450 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
11451 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
11452 baton->base_address = cu->base_address;
11453 if (cu->base_known == 0)
11454 complaint (&symfile_complaints,
11455 _("Location list used without specifying the CU base address."));
11456
11457 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
11458 SYMBOL_LOCATION_BATON (sym) = baton;
11459 }
11460 else
11461 {
11462 struct dwarf2_locexpr_baton *baton;
11463
11464 baton = obstack_alloc (&cu->objfile->objfile_obstack,
11465 sizeof (struct dwarf2_locexpr_baton));
11466 baton->per_cu = cu->per_cu;
11467 gdb_assert (baton->per_cu);
11468
11469 if (attr_form_is_block (attr))
11470 {
11471 /* Note that we're just copying the block's data pointer
11472 here, not the actual data. We're still pointing into the
11473 info_buffer for SYM's objfile; right now we never release
11474 that buffer, but when we do clean up properly this may
11475 need to change. */
11476 baton->size = DW_BLOCK (attr)->size;
11477 baton->data = DW_BLOCK (attr)->data;
11478 }
11479 else
11480 {
11481 dwarf2_invalid_attrib_class_complaint ("location description",
11482 SYMBOL_NATURAL_NAME (sym));
11483 baton->size = 0;
11484 baton->data = NULL;
11485 }
11486
11487 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11488 SYMBOL_LOCATION_BATON (sym) = baton;
11489 }
11490 }
11491
11492 /* Return the OBJFILE associated with the compilation unit CU. */
11493
11494 struct objfile *
11495 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
11496 {
11497 struct objfile *objfile = per_cu->psymtab->objfile;
11498
11499 /* Return the master objfile, so that we can report and look up the
11500 correct file containing this variable. */
11501 if (objfile->separate_debug_objfile_backlink)
11502 objfile = objfile->separate_debug_objfile_backlink;
11503
11504 return objfile;
11505 }
11506
11507 /* Return the address size given in the compilation unit header for CU. */
11508
11509 CORE_ADDR
11510 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
11511 {
11512 if (per_cu->cu)
11513 return per_cu->cu->header.addr_size;
11514 else
11515 {
11516 /* If the CU is not currently read in, we re-read its header. */
11517 struct objfile *objfile = per_cu->psymtab->objfile;
11518 struct dwarf2_per_objfile *per_objfile
11519 = objfile_data (objfile, dwarf2_objfile_data_key);
11520 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
11521
11522 struct comp_unit_head cu_header;
11523 memset (&cu_header, 0, sizeof cu_header);
11524 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
11525 return cu_header.addr_size;
11526 }
11527 }
11528
11529 /* Locate the .debug_info compilation unit from CU's objfile which contains
11530 the DIE at OFFSET. Raises an error on failure. */
11531
11532 static struct dwarf2_per_cu_data *
11533 dwarf2_find_containing_comp_unit (unsigned int offset,
11534 struct objfile *objfile)
11535 {
11536 struct dwarf2_per_cu_data *this_cu;
11537 int low, high;
11538
11539 low = 0;
11540 high = dwarf2_per_objfile->n_comp_units - 1;
11541 while (high > low)
11542 {
11543 int mid = low + (high - low) / 2;
11544 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
11545 high = mid;
11546 else
11547 low = mid + 1;
11548 }
11549 gdb_assert (low == high);
11550 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
11551 {
11552 if (low == 0)
11553 error (_("Dwarf Error: could not find partial DIE containing "
11554 "offset 0x%lx [in module %s]"),
11555 (long) offset, bfd_get_filename (objfile->obfd));
11556
11557 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
11558 return dwarf2_per_objfile->all_comp_units[low-1];
11559 }
11560 else
11561 {
11562 this_cu = dwarf2_per_objfile->all_comp_units[low];
11563 if (low == dwarf2_per_objfile->n_comp_units - 1
11564 && offset >= this_cu->offset + this_cu->length)
11565 error (_("invalid dwarf2 offset %u"), offset);
11566 gdb_assert (offset < this_cu->offset + this_cu->length);
11567 return this_cu;
11568 }
11569 }
11570
11571 /* Locate the compilation unit from OBJFILE which is located at exactly
11572 OFFSET. Raises an error on failure. */
11573
11574 static struct dwarf2_per_cu_data *
11575 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
11576 {
11577 struct dwarf2_per_cu_data *this_cu;
11578 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
11579 if (this_cu->offset != offset)
11580 error (_("no compilation unit with offset %u."), offset);
11581 return this_cu;
11582 }
11583
11584 /* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
11585
11586 static struct dwarf2_cu *
11587 alloc_one_comp_unit (struct objfile *objfile)
11588 {
11589 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
11590 cu->objfile = objfile;
11591 obstack_init (&cu->comp_unit_obstack);
11592 return cu;
11593 }
11594
11595 /* Release one cached compilation unit, CU. We unlink it from the tree
11596 of compilation units, but we don't remove it from the read_in_chain;
11597 the caller is responsible for that.
11598 NOTE: DATA is a void * because this function is also used as a
11599 cleanup routine. */
11600
11601 static void
11602 free_one_comp_unit (void *data)
11603 {
11604 struct dwarf2_cu *cu = data;
11605
11606 if (cu->per_cu != NULL)
11607 cu->per_cu->cu = NULL;
11608 cu->per_cu = NULL;
11609
11610 obstack_free (&cu->comp_unit_obstack, NULL);
11611
11612 xfree (cu);
11613 }
11614
11615 /* This cleanup function is passed the address of a dwarf2_cu on the stack
11616 when we're finished with it. We can't free the pointer itself, but be
11617 sure to unlink it from the cache. Also release any associated storage
11618 and perform cache maintenance.
11619
11620 Only used during partial symbol parsing. */
11621
11622 static void
11623 free_stack_comp_unit (void *data)
11624 {
11625 struct dwarf2_cu *cu = data;
11626
11627 obstack_free (&cu->comp_unit_obstack, NULL);
11628 cu->partial_dies = NULL;
11629
11630 if (cu->per_cu != NULL)
11631 {
11632 /* This compilation unit is on the stack in our caller, so we
11633 should not xfree it. Just unlink it. */
11634 cu->per_cu->cu = NULL;
11635 cu->per_cu = NULL;
11636
11637 /* If we had a per-cu pointer, then we may have other compilation
11638 units loaded, so age them now. */
11639 age_cached_comp_units ();
11640 }
11641 }
11642
11643 /* Free all cached compilation units. */
11644
11645 static void
11646 free_cached_comp_units (void *data)
11647 {
11648 struct dwarf2_per_cu_data *per_cu, **last_chain;
11649
11650 per_cu = dwarf2_per_objfile->read_in_chain;
11651 last_chain = &dwarf2_per_objfile->read_in_chain;
11652 while (per_cu != NULL)
11653 {
11654 struct dwarf2_per_cu_data *next_cu;
11655
11656 next_cu = per_cu->cu->read_in_chain;
11657
11658 free_one_comp_unit (per_cu->cu);
11659 *last_chain = next_cu;
11660
11661 per_cu = next_cu;
11662 }
11663 }
11664
11665 /* Increase the age counter on each cached compilation unit, and free
11666 any that are too old. */
11667
11668 static void
11669 age_cached_comp_units (void)
11670 {
11671 struct dwarf2_per_cu_data *per_cu, **last_chain;
11672
11673 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
11674 per_cu = dwarf2_per_objfile->read_in_chain;
11675 while (per_cu != NULL)
11676 {
11677 per_cu->cu->last_used ++;
11678 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
11679 dwarf2_mark (per_cu->cu);
11680 per_cu = per_cu->cu->read_in_chain;
11681 }
11682
11683 per_cu = dwarf2_per_objfile->read_in_chain;
11684 last_chain = &dwarf2_per_objfile->read_in_chain;
11685 while (per_cu != NULL)
11686 {
11687 struct dwarf2_per_cu_data *next_cu;
11688
11689 next_cu = per_cu->cu->read_in_chain;
11690
11691 if (!per_cu->cu->mark)
11692 {
11693 free_one_comp_unit (per_cu->cu);
11694 *last_chain = next_cu;
11695 }
11696 else
11697 last_chain = &per_cu->cu->read_in_chain;
11698
11699 per_cu = next_cu;
11700 }
11701 }
11702
11703 /* Remove a single compilation unit from the cache. */
11704
11705 static void
11706 free_one_cached_comp_unit (void *target_cu)
11707 {
11708 struct dwarf2_per_cu_data *per_cu, **last_chain;
11709
11710 per_cu = dwarf2_per_objfile->read_in_chain;
11711 last_chain = &dwarf2_per_objfile->read_in_chain;
11712 while (per_cu != NULL)
11713 {
11714 struct dwarf2_per_cu_data *next_cu;
11715
11716 next_cu = per_cu->cu->read_in_chain;
11717
11718 if (per_cu->cu == target_cu)
11719 {
11720 free_one_comp_unit (per_cu->cu);
11721 *last_chain = next_cu;
11722 break;
11723 }
11724 else
11725 last_chain = &per_cu->cu->read_in_chain;
11726
11727 per_cu = next_cu;
11728 }
11729 }
11730
11731 /* Release all extra memory associated with OBJFILE. */
11732
11733 void
11734 dwarf2_free_objfile (struct objfile *objfile)
11735 {
11736 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
11737
11738 if (dwarf2_per_objfile == NULL)
11739 return;
11740
11741 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
11742 free_cached_comp_units (NULL);
11743
11744 /* Everything else should be on the objfile obstack. */
11745 }
11746
11747 /* A pair of DIE offset and GDB type pointer. We store these
11748 in a hash table separate from the DIEs, and preserve them
11749 when the DIEs are flushed out of cache. */
11750
11751 struct dwarf2_offset_and_type
11752 {
11753 unsigned int offset;
11754 struct type *type;
11755 };
11756
11757 /* Hash function for a dwarf2_offset_and_type. */
11758
11759 static hashval_t
11760 offset_and_type_hash (const void *item)
11761 {
11762 const struct dwarf2_offset_and_type *ofs = item;
11763 return ofs->offset;
11764 }
11765
11766 /* Equality function for a dwarf2_offset_and_type. */
11767
11768 static int
11769 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
11770 {
11771 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
11772 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
11773 return ofs_lhs->offset == ofs_rhs->offset;
11774 }
11775
11776 /* Set the type associated with DIE to TYPE. Save it in CU's hash
11777 table if necessary. For convenience, return TYPE. */
11778
11779 static struct type *
11780 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11781 {
11782 struct dwarf2_offset_and_type **slot, ofs;
11783
11784 /* For Ada types, make sure that the gnat-specific data is always
11785 initialized (if not already set). There are a few types where
11786 we should not be doing so, because the type-specific area is
11787 already used to hold some other piece of info (eg: TYPE_CODE_FLT
11788 where the type-specific area is used to store the floatformat).
11789 But this is not a problem, because the gnat-specific information
11790 is actually not needed for these types. */
11791 if (need_gnat_info (cu)
11792 && TYPE_CODE (type) != TYPE_CODE_FUNC
11793 && TYPE_CODE (type) != TYPE_CODE_FLT
11794 && !HAVE_GNAT_AUX_INFO (type))
11795 INIT_GNAT_SPECIFIC (type);
11796
11797 if (cu->type_hash == NULL)
11798 {
11799 gdb_assert (cu->per_cu != NULL);
11800 cu->per_cu->type_hash
11801 = htab_create_alloc_ex (cu->header.length / 24,
11802 offset_and_type_hash,
11803 offset_and_type_eq,
11804 NULL,
11805 &cu->objfile->objfile_obstack,
11806 hashtab_obstack_allocate,
11807 dummy_obstack_deallocate);
11808 cu->type_hash = cu->per_cu->type_hash;
11809 }
11810
11811 ofs.offset = die->offset;
11812 ofs.type = type;
11813 slot = (struct dwarf2_offset_and_type **)
11814 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
11815 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
11816 **slot = ofs;
11817 return type;
11818 }
11819
11820 /* Find the type for DIE in CU's type_hash, or return NULL if DIE does
11821 not have a saved type. */
11822
11823 static struct type *
11824 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
11825 {
11826 struct dwarf2_offset_and_type *slot, ofs;
11827 htab_t type_hash = cu->type_hash;
11828
11829 if (type_hash == NULL)
11830 return NULL;
11831
11832 ofs.offset = die->offset;
11833 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
11834 if (slot)
11835 return slot->type;
11836 else
11837 return NULL;
11838 }
11839
11840 /* Add a dependence relationship from CU to REF_PER_CU. */
11841
11842 static void
11843 dwarf2_add_dependence (struct dwarf2_cu *cu,
11844 struct dwarf2_per_cu_data *ref_per_cu)
11845 {
11846 void **slot;
11847
11848 if (cu->dependencies == NULL)
11849 cu->dependencies
11850 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
11851 NULL, &cu->comp_unit_obstack,
11852 hashtab_obstack_allocate,
11853 dummy_obstack_deallocate);
11854
11855 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
11856 if (*slot == NULL)
11857 *slot = ref_per_cu;
11858 }
11859
11860 /* Subroutine of dwarf2_mark to pass to htab_traverse.
11861 Set the mark field in every compilation unit in the
11862 cache that we must keep because we are keeping CU. */
11863
11864 static int
11865 dwarf2_mark_helper (void **slot, void *data)
11866 {
11867 struct dwarf2_per_cu_data *per_cu;
11868
11869 per_cu = (struct dwarf2_per_cu_data *) *slot;
11870 if (per_cu->cu->mark)
11871 return 1;
11872 per_cu->cu->mark = 1;
11873
11874 if (per_cu->cu->dependencies != NULL)
11875 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
11876
11877 return 1;
11878 }
11879
11880 /* Set the mark field in CU and in every other compilation unit in the
11881 cache that we must keep because we are keeping CU. */
11882
11883 static void
11884 dwarf2_mark (struct dwarf2_cu *cu)
11885 {
11886 if (cu->mark)
11887 return;
11888 cu->mark = 1;
11889 if (cu->dependencies != NULL)
11890 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
11891 }
11892
11893 static void
11894 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
11895 {
11896 while (per_cu)
11897 {
11898 per_cu->cu->mark = 0;
11899 per_cu = per_cu->cu->read_in_chain;
11900 }
11901 }
11902
11903 /* Trivial hash function for partial_die_info: the hash value of a DIE
11904 is its offset in .debug_info for this objfile. */
11905
11906 static hashval_t
11907 partial_die_hash (const void *item)
11908 {
11909 const struct partial_die_info *part_die = item;
11910 return part_die->offset;
11911 }
11912
11913 /* Trivial comparison function for partial_die_info structures: two DIEs
11914 are equal if they have the same offset. */
11915
11916 static int
11917 partial_die_eq (const void *item_lhs, const void *item_rhs)
11918 {
11919 const struct partial_die_info *part_die_lhs = item_lhs;
11920 const struct partial_die_info *part_die_rhs = item_rhs;
11921 return part_die_lhs->offset == part_die_rhs->offset;
11922 }
11923
11924 static struct cmd_list_element *set_dwarf2_cmdlist;
11925 static struct cmd_list_element *show_dwarf2_cmdlist;
11926
11927 static void
11928 set_dwarf2_cmd (char *args, int from_tty)
11929 {
11930 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
11931 }
11932
11933 static void
11934 show_dwarf2_cmd (char *args, int from_tty)
11935 {
11936 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
11937 }
11938
11939 /* If section described by INFO was mmapped, munmap it now. */
11940
11941 static void
11942 munmap_section_buffer (struct dwarf2_section_info *info)
11943 {
11944 if (info->was_mmapped)
11945 {
11946 #ifdef HAVE_MMAP
11947 intptr_t begin = (intptr_t) info->buffer;
11948 intptr_t map_begin = begin & ~(pagesize - 1);
11949 size_t map_length = info->size + begin - map_begin;
11950 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
11951 #else
11952 /* Without HAVE_MMAP, we should never be here to begin with. */
11953 gdb_assert (0);
11954 #endif
11955 }
11956 }
11957
11958 /* munmap debug sections for OBJFILE, if necessary. */
11959
11960 static void
11961 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
11962 {
11963 struct dwarf2_per_objfile *data = d;
11964 munmap_section_buffer (&data->info);
11965 munmap_section_buffer (&data->abbrev);
11966 munmap_section_buffer (&data->line);
11967 munmap_section_buffer (&data->str);
11968 munmap_section_buffer (&data->macinfo);
11969 munmap_section_buffer (&data->ranges);
11970 munmap_section_buffer (&data->loc);
11971 munmap_section_buffer (&data->frame);
11972 munmap_section_buffer (&data->eh_frame);
11973 }
11974
11975 void _initialize_dwarf2_read (void);
11976
11977 void
11978 _initialize_dwarf2_read (void)
11979 {
11980 dwarf2_objfile_data_key
11981 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
11982
11983 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
11984 Set DWARF 2 specific variables.\n\
11985 Configure DWARF 2 variables such as the cache size"),
11986 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
11987 0/*allow-unknown*/, &maintenance_set_cmdlist);
11988
11989 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
11990 Show DWARF 2 specific variables\n\
11991 Show DWARF 2 variables such as the cache size"),
11992 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
11993 0/*allow-unknown*/, &maintenance_show_cmdlist);
11994
11995 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
11996 &dwarf2_max_cache_age, _("\
11997 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
11998 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
11999 A higher limit means that cached compilation units will be stored\n\
12000 in memory longer, and more total memory will be used. Zero disables\n\
12001 caching, which can slow down startup."),
12002 NULL,
12003 show_dwarf2_max_cache_age,
12004 &set_dwarf2_cmdlist,
12005 &show_dwarf2_cmdlist);
12006
12007 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
12008 Set debugging of the dwarf2 DIE reader."), _("\
12009 Show debugging of the dwarf2 DIE reader."), _("\
12010 When enabled (non-zero), DIEs are dumped after they are read in.\n\
12011 The value is the maximum depth to print."),
12012 NULL,
12013 NULL,
12014 &setdebuglist, &showdebuglist);
12015 }