* NEWS: Mention pointer to member improvements.
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
20
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "elf/dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "expression.h"
40 #include "filenames.h" /* for DOSish file names */
41 #include "macrotab.h"
42 #include "language.h"
43 #include "complaints.h"
44 #include "bcache.h"
45 #include "dwarf2expr.h"
46 #include "dwarf2loc.h"
47 #include "cp-support.h"
48 #include "hashtab.h"
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_assert.h"
55 #include <sys/types.h>
56
57 /* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
71 #ifndef DWARF2_REG_TO_REGNUM
72 #define DWARF2_REG_TO_REGNUM(REG) (REG)
73 #endif
74
75 #if 0
76 /* .debug_info header for a compilation unit
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79 typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88 _COMP_UNIT_HEADER;
89 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
90 #endif
91
92 /* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95 typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105 _PUBNAMES_HEADER;
106 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108 /* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111 typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121 _ARANGES_HEADER;
122 #define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124 /* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127 typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145 _STATEMENT_PROLOGUE;
146
147 static const struct objfile_data *dwarf2_objfile_data_key;
148
149 struct dwarf2_per_objfile
150 {
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
165 gdb_byte *info_buffer;
166 gdb_byte *abbrev_buffer;
167 gdb_byte *line_buffer;
168 gdb_byte *str_buffer;
169 gdb_byte *macinfo_buffer;
170 gdb_byte *ranges_buffer;
171 gdb_byte *loc_buffer;
172
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
183
184 /* A flag indicating wether this objfile has a section loaded at a
185 VMA of 0. */
186 int has_section_at_zero;
187 };
188
189 static struct dwarf2_per_objfile *dwarf2_per_objfile;
190
191 static asection *dwarf_info_section;
192 static asection *dwarf_abbrev_section;
193 static asection *dwarf_line_section;
194 static asection *dwarf_pubnames_section;
195 static asection *dwarf_aranges_section;
196 static asection *dwarf_loc_section;
197 static asection *dwarf_macinfo_section;
198 static asection *dwarf_str_section;
199 static asection *dwarf_ranges_section;
200 asection *dwarf_frame_section;
201 asection *dwarf_eh_frame_section;
202
203 /* names of the debugging sections */
204
205 #define INFO_SECTION ".debug_info"
206 #define ABBREV_SECTION ".debug_abbrev"
207 #define LINE_SECTION ".debug_line"
208 #define PUBNAMES_SECTION ".debug_pubnames"
209 #define ARANGES_SECTION ".debug_aranges"
210 #define LOC_SECTION ".debug_loc"
211 #define MACINFO_SECTION ".debug_macinfo"
212 #define STR_SECTION ".debug_str"
213 #define RANGES_SECTION ".debug_ranges"
214 #define FRAME_SECTION ".debug_frame"
215 #define EH_FRAME_SECTION ".eh_frame"
216
217 /* local data types */
218
219 /* We hold several abbreviation tables in memory at the same time. */
220 #ifndef ABBREV_HASH_SIZE
221 #define ABBREV_HASH_SIZE 121
222 #endif
223
224 /* The data in a compilation unit header, after target2host
225 translation, looks like this. */
226 struct comp_unit_head
227 {
228 unsigned long length;
229 short version;
230 unsigned int abbrev_offset;
231 unsigned char addr_size;
232 unsigned char signed_addr_p;
233
234 /* Size of file offsets; either 4 or 8. */
235 unsigned int offset_size;
236
237 /* Size of the length field; either 4 or 12. */
238 unsigned int initial_length_size;
239
240 /* Offset to the first byte of this compilation unit header in the
241 .debug_info section, for resolving relative reference dies. */
242 unsigned int offset;
243
244 /* Pointer to this compilation unit header in the .debug_info
245 section. */
246 gdb_byte *cu_head_ptr;
247
248 /* Pointer to the first die of this compilation unit. This will be
249 the first byte following the compilation unit header. */
250 gdb_byte *first_die_ptr;
251
252 /* Pointer to the next compilation unit header in the program. */
253 struct comp_unit_head *next;
254
255 /* Base address of this compilation unit. */
256 CORE_ADDR base_address;
257
258 /* Non-zero if base_address has been set. */
259 int base_known;
260 };
261
262 /* Fixed size for the DIE hash table. */
263 #ifndef REF_HASH_SIZE
264 #define REF_HASH_SIZE 1021
265 #endif
266
267 /* Internal state when decoding a particular compilation unit. */
268 struct dwarf2_cu
269 {
270 /* The objfile containing this compilation unit. */
271 struct objfile *objfile;
272
273 /* The header of the compilation unit.
274
275 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
276 should logically be moved to the dwarf2_cu structure. */
277 struct comp_unit_head header;
278
279 struct function_range *first_fn, *last_fn, *cached_fn;
280
281 /* The language we are debugging. */
282 enum language language;
283 const struct language_defn *language_defn;
284
285 const char *producer;
286
287 /* The generic symbol table building routines have separate lists for
288 file scope symbols and all all other scopes (local scopes). So
289 we need to select the right one to pass to add_symbol_to_list().
290 We do it by keeping a pointer to the correct list in list_in_scope.
291
292 FIXME: The original dwarf code just treated the file scope as the
293 first local scope, and all other local scopes as nested local
294 scopes, and worked fine. Check to see if we really need to
295 distinguish these in buildsym.c. */
296 struct pending **list_in_scope;
297
298 /* Maintain an array of referenced fundamental types for the current
299 compilation unit being read. For DWARF version 1, we have to construct
300 the fundamental types on the fly, since no information about the
301 fundamental types is supplied. Each such fundamental type is created by
302 calling a language dependent routine to create the type, and then a
303 pointer to that type is then placed in the array at the index specified
304 by it's FT_<TYPENAME> value. The array has a fixed size set by the
305 FT_NUM_MEMBERS compile time constant, which is the number of predefined
306 fundamental types gdb knows how to construct. */
307 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
308
309 /* DWARF abbreviation table associated with this compilation unit. */
310 struct abbrev_info **dwarf2_abbrevs;
311
312 /* Storage for the abbrev table. */
313 struct obstack abbrev_obstack;
314
315 /* Hash table holding all the loaded partial DIEs. */
316 htab_t partial_dies;
317
318 /* Storage for things with the same lifetime as this read-in compilation
319 unit, including partial DIEs. */
320 struct obstack comp_unit_obstack;
321
322 /* When multiple dwarf2_cu structures are living in memory, this field
323 chains them all together, so that they can be released efficiently.
324 We will probably also want a generation counter so that most-recently-used
325 compilation units are cached... */
326 struct dwarf2_per_cu_data *read_in_chain;
327
328 /* Backchain to our per_cu entry if the tree has been built. */
329 struct dwarf2_per_cu_data *per_cu;
330
331 /* How many compilation units ago was this CU last referenced? */
332 int last_used;
333
334 /* A hash table of die offsets for following references. */
335 struct die_info *die_ref_table[REF_HASH_SIZE];
336
337 /* Full DIEs if read in. */
338 struct die_info *dies;
339
340 /* A set of pointers to dwarf2_per_cu_data objects for compilation
341 units referenced by this one. Only set during full symbol processing;
342 partial symbol tables do not have dependencies. */
343 htab_t dependencies;
344
345 /* Mark used when releasing cached dies. */
346 unsigned int mark : 1;
347
348 /* This flag will be set if this compilation unit might include
349 inter-compilation-unit references. */
350 unsigned int has_form_ref_addr : 1;
351
352 /* This flag will be set if this compilation unit includes any
353 DW_TAG_namespace DIEs. If we know that there are explicit
354 DIEs for namespaces, we don't need to try to infer them
355 from mangled names. */
356 unsigned int has_namespace_info : 1;
357 };
358
359 /* Persistent data held for a compilation unit, even when not
360 processing it. We put a pointer to this structure in the
361 read_symtab_private field of the psymtab. If we encounter
362 inter-compilation-unit references, we also maintain a sorted
363 list of all compilation units. */
364
365 struct dwarf2_per_cu_data
366 {
367 /* The start offset and length of this compilation unit. 2**30-1
368 bytes should suffice to store the length of any compilation unit
369 - if it doesn't, GDB will fall over anyway. */
370 unsigned long offset;
371 unsigned long length : 30;
372
373 /* Flag indicating this compilation unit will be read in before
374 any of the current compilation units are processed. */
375 unsigned long queued : 1;
376
377 /* This flag will be set if we need to load absolutely all DIEs
378 for this compilation unit, instead of just the ones we think
379 are interesting. It gets set if we look for a DIE in the
380 hash table and don't find it. */
381 unsigned int load_all_dies : 1;
382
383 /* Set iff currently read in. */
384 struct dwarf2_cu *cu;
385
386 /* If full symbols for this CU have been read in, then this field
387 holds a map of DIE offsets to types. It isn't always possible
388 to reconstruct this information later, so we have to preserve
389 it. */
390 htab_t type_hash;
391
392 /* The partial symbol table associated with this compilation unit,
393 or NULL for partial units (which do not have an associated
394 symtab). */
395 struct partial_symtab *psymtab;
396 };
397
398 /* The line number information for a compilation unit (found in the
399 .debug_line section) begins with a "statement program header",
400 which contains the following information. */
401 struct line_header
402 {
403 unsigned int total_length;
404 unsigned short version;
405 unsigned int header_length;
406 unsigned char minimum_instruction_length;
407 unsigned char default_is_stmt;
408 int line_base;
409 unsigned char line_range;
410 unsigned char opcode_base;
411
412 /* standard_opcode_lengths[i] is the number of operands for the
413 standard opcode whose value is i. This means that
414 standard_opcode_lengths[0] is unused, and the last meaningful
415 element is standard_opcode_lengths[opcode_base - 1]. */
416 unsigned char *standard_opcode_lengths;
417
418 /* The include_directories table. NOTE! These strings are not
419 allocated with xmalloc; instead, they are pointers into
420 debug_line_buffer. If you try to free them, `free' will get
421 indigestion. */
422 unsigned int num_include_dirs, include_dirs_size;
423 char **include_dirs;
424
425 /* The file_names table. NOTE! These strings are not allocated
426 with xmalloc; instead, they are pointers into debug_line_buffer.
427 Don't try to free them directly. */
428 unsigned int num_file_names, file_names_size;
429 struct file_entry
430 {
431 char *name;
432 unsigned int dir_index;
433 unsigned int mod_time;
434 unsigned int length;
435 int included_p; /* Non-zero if referenced by the Line Number Program. */
436 } *file_names;
437
438 /* The start and end of the statement program following this
439 header. These point into dwarf2_per_objfile->line_buffer. */
440 gdb_byte *statement_program_start, *statement_program_end;
441 };
442
443 /* When we construct a partial symbol table entry we only
444 need this much information. */
445 struct partial_die_info
446 {
447 /* Offset of this DIE. */
448 unsigned int offset;
449
450 /* DWARF-2 tag for this DIE. */
451 ENUM_BITFIELD(dwarf_tag) tag : 16;
452
453 /* Language code associated with this DIE. This is only used
454 for the compilation unit DIE. */
455 unsigned int language : 8;
456
457 /* Assorted flags describing the data found in this DIE. */
458 unsigned int has_children : 1;
459 unsigned int is_external : 1;
460 unsigned int is_declaration : 1;
461 unsigned int has_type : 1;
462 unsigned int has_specification : 1;
463 unsigned int has_stmt_list : 1;
464 unsigned int has_pc_info : 1;
465
466 /* Flag set if the SCOPE field of this structure has been
467 computed. */
468 unsigned int scope_set : 1;
469
470 /* The name of this DIE. Normally the value of DW_AT_name, but
471 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
472 other fashion. */
473 char *name;
474 char *dirname;
475
476 /* The scope to prepend to our children. This is generally
477 allocated on the comp_unit_obstack, so will disappear
478 when this compilation unit leaves the cache. */
479 char *scope;
480
481 /* The location description associated with this DIE, if any. */
482 struct dwarf_block *locdesc;
483
484 /* If HAS_PC_INFO, the PC range associated with this DIE. */
485 CORE_ADDR lowpc;
486 CORE_ADDR highpc;
487
488 /* Pointer into the info_buffer pointing at the target of
489 DW_AT_sibling, if any. */
490 gdb_byte *sibling;
491
492 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
493 DW_AT_specification (or DW_AT_abstract_origin or
494 DW_AT_extension). */
495 unsigned int spec_offset;
496
497 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
498 unsigned int line_offset;
499
500 /* Pointers to this DIE's parent, first child, and next sibling,
501 if any. */
502 struct partial_die_info *die_parent, *die_child, *die_sibling;
503 };
504
505 /* This data structure holds the information of an abbrev. */
506 struct abbrev_info
507 {
508 unsigned int number; /* number identifying abbrev */
509 enum dwarf_tag tag; /* dwarf tag */
510 unsigned short has_children; /* boolean */
511 unsigned short num_attrs; /* number of attributes */
512 struct attr_abbrev *attrs; /* an array of attribute descriptions */
513 struct abbrev_info *next; /* next in chain */
514 };
515
516 struct attr_abbrev
517 {
518 enum dwarf_attribute name;
519 enum dwarf_form form;
520 };
521
522 /* This data structure holds a complete die structure. */
523 struct die_info
524 {
525 enum dwarf_tag tag; /* Tag indicating type of die */
526 unsigned int abbrev; /* Abbrev number */
527 unsigned int offset; /* Offset in .debug_info section */
528 unsigned int num_attrs; /* Number of attributes */
529 struct attribute *attrs; /* An array of attributes */
530 struct die_info *next_ref; /* Next die in ref hash table */
531
532 /* The dies in a compilation unit form an n-ary tree. PARENT
533 points to this die's parent; CHILD points to the first child of
534 this node; and all the children of a given node are chained
535 together via their SIBLING fields, terminated by a die whose
536 tag is zero. */
537 struct die_info *child; /* Its first child, if any. */
538 struct die_info *sibling; /* Its next sibling, if any. */
539 struct die_info *parent; /* Its parent, if any. */
540
541 struct type *type; /* Cached type information */
542 };
543
544 /* Attributes have a name and a value */
545 struct attribute
546 {
547 enum dwarf_attribute name;
548 enum dwarf_form form;
549 union
550 {
551 char *str;
552 struct dwarf_block *blk;
553 unsigned long unsnd;
554 long int snd;
555 CORE_ADDR addr;
556 }
557 u;
558 };
559
560 struct function_range
561 {
562 const char *name;
563 CORE_ADDR lowpc, highpc;
564 int seen_line;
565 struct function_range *next;
566 };
567
568 /* Get at parts of an attribute structure */
569
570 #define DW_STRING(attr) ((attr)->u.str)
571 #define DW_UNSND(attr) ((attr)->u.unsnd)
572 #define DW_BLOCK(attr) ((attr)->u.blk)
573 #define DW_SND(attr) ((attr)->u.snd)
574 #define DW_ADDR(attr) ((attr)->u.addr)
575
576 /* Blocks are a bunch of untyped bytes. */
577 struct dwarf_block
578 {
579 unsigned int size;
580 gdb_byte *data;
581 };
582
583 #ifndef ATTR_ALLOC_CHUNK
584 #define ATTR_ALLOC_CHUNK 4
585 #endif
586
587 /* Allocate fields for structs, unions and enums in this size. */
588 #ifndef DW_FIELD_ALLOC_CHUNK
589 #define DW_FIELD_ALLOC_CHUNK 4
590 #endif
591
592 /* A zeroed version of a partial die for initialization purposes. */
593 static struct partial_die_info zeroed_partial_die;
594
595 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
596 but this would require a corresponding change in unpack_field_as_long
597 and friends. */
598 static int bits_per_byte = 8;
599
600 /* The routines that read and process dies for a C struct or C++ class
601 pass lists of data member fields and lists of member function fields
602 in an instance of a field_info structure, as defined below. */
603 struct field_info
604 {
605 /* List of data member and baseclasses fields. */
606 struct nextfield
607 {
608 struct nextfield *next;
609 int accessibility;
610 int virtuality;
611 struct field field;
612 }
613 *fields;
614
615 /* Number of fields. */
616 int nfields;
617
618 /* Number of baseclasses. */
619 int nbaseclasses;
620
621 /* Set if the accesibility of one of the fields is not public. */
622 int non_public_fields;
623
624 /* Member function fields array, entries are allocated in the order they
625 are encountered in the object file. */
626 struct nextfnfield
627 {
628 struct nextfnfield *next;
629 struct fn_field fnfield;
630 }
631 *fnfields;
632
633 /* Member function fieldlist array, contains name of possibly overloaded
634 member function, number of overloaded member functions and a pointer
635 to the head of the member function field chain. */
636 struct fnfieldlist
637 {
638 char *name;
639 int length;
640 struct nextfnfield *head;
641 }
642 *fnfieldlists;
643
644 /* Number of entries in the fnfieldlists array. */
645 int nfnfields;
646 };
647
648 /* One item on the queue of compilation units to read in full symbols
649 for. */
650 struct dwarf2_queue_item
651 {
652 struct dwarf2_per_cu_data *per_cu;
653 struct dwarf2_queue_item *next;
654 };
655
656 /* The current queue. */
657 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
658
659 /* Loaded secondary compilation units are kept in memory until they
660 have not been referenced for the processing of this many
661 compilation units. Set this to zero to disable caching. Cache
662 sizes of up to at least twenty will improve startup time for
663 typical inter-CU-reference binaries, at an obvious memory cost. */
664 static int dwarf2_max_cache_age = 5;
665 static void
666 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
667 struct cmd_list_element *c, const char *value)
668 {
669 fprintf_filtered (file, _("\
670 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
671 value);
672 }
673
674
675 /* Various complaints about symbol reading that don't abort the process */
676
677 static void
678 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
679 {
680 complaint (&symfile_complaints,
681 _("statement list doesn't fit in .debug_line section"));
682 }
683
684 static void
685 dwarf2_complex_location_expr_complaint (void)
686 {
687 complaint (&symfile_complaints, _("location expression too complex"));
688 }
689
690 static void
691 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
692 int arg3)
693 {
694 complaint (&symfile_complaints,
695 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
696 arg2, arg3);
697 }
698
699 static void
700 dwarf2_macros_too_long_complaint (void)
701 {
702 complaint (&symfile_complaints,
703 _("macro info runs off end of `.debug_macinfo' section"));
704 }
705
706 static void
707 dwarf2_macro_malformed_definition_complaint (const char *arg1)
708 {
709 complaint (&symfile_complaints,
710 _("macro debug info contains a malformed macro definition:\n`%s'"),
711 arg1);
712 }
713
714 static void
715 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
716 {
717 complaint (&symfile_complaints,
718 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
719 }
720
721 /* local function prototypes */
722
723 static void dwarf2_locate_sections (bfd *, asection *, void *);
724
725 #if 0
726 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
727 #endif
728
729 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
730 struct objfile *);
731
732 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
733 struct partial_die_info *,
734 struct partial_symtab *);
735
736 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
737
738 static void scan_partial_symbols (struct partial_die_info *,
739 CORE_ADDR *, CORE_ADDR *,
740 struct dwarf2_cu *);
741
742 static void add_partial_symbol (struct partial_die_info *,
743 struct dwarf2_cu *);
744
745 static int pdi_needs_namespace (enum dwarf_tag tag);
746
747 static void add_partial_namespace (struct partial_die_info *pdi,
748 CORE_ADDR *lowpc, CORE_ADDR *highpc,
749 struct dwarf2_cu *cu);
750
751 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
752 struct dwarf2_cu *cu);
753
754 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
755 gdb_byte *info_ptr,
756 bfd *abfd,
757 struct dwarf2_cu *cu);
758
759 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
760
761 static void psymtab_to_symtab_1 (struct partial_symtab *);
762
763 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
764
765 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
766
767 static void dwarf2_free_abbrev_table (void *);
768
769 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
770 struct dwarf2_cu *);
771
772 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
773 struct dwarf2_cu *);
774
775 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
776 struct dwarf2_cu *);
777
778 static gdb_byte *read_partial_die (struct partial_die_info *,
779 struct abbrev_info *abbrev, unsigned int,
780 bfd *, gdb_byte *, struct dwarf2_cu *);
781
782 static struct partial_die_info *find_partial_die (unsigned long,
783 struct dwarf2_cu *);
784
785 static void fixup_partial_die (struct partial_die_info *,
786 struct dwarf2_cu *);
787
788 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
789 struct dwarf2_cu *, int *);
790
791 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
792 bfd *, gdb_byte *, struct dwarf2_cu *);
793
794 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
795 bfd *, gdb_byte *, struct dwarf2_cu *);
796
797 static unsigned int read_1_byte (bfd *, gdb_byte *);
798
799 static int read_1_signed_byte (bfd *, gdb_byte *);
800
801 static unsigned int read_2_bytes (bfd *, gdb_byte *);
802
803 static unsigned int read_4_bytes (bfd *, gdb_byte *);
804
805 static unsigned long read_8_bytes (bfd *, gdb_byte *);
806
807 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
808 unsigned int *);
809
810 static LONGEST read_initial_length (bfd *, gdb_byte *,
811 struct comp_unit_head *, unsigned int *);
812
813 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
814 unsigned int *);
815
816 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
817
818 static char *read_string (bfd *, gdb_byte *, unsigned int *);
819
820 static char *read_indirect_string (bfd *, gdb_byte *,
821 const struct comp_unit_head *,
822 unsigned int *);
823
824 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
825
826 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
827
828 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
829
830 static void set_cu_language (unsigned int, struct dwarf2_cu *);
831
832 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
833 struct dwarf2_cu *);
834
835 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
836 struct dwarf2_cu *cu);
837
838 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
839
840 static struct die_info *die_specification (struct die_info *die,
841 struct dwarf2_cu *);
842
843 static void free_line_header (struct line_header *lh);
844
845 static void add_file_name (struct line_header *, char *, unsigned int,
846 unsigned int, unsigned int);
847
848 static struct line_header *(dwarf_decode_line_header
849 (unsigned int offset,
850 bfd *abfd, struct dwarf2_cu *cu));
851
852 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
853 struct dwarf2_cu *, struct partial_symtab *);
854
855 static void dwarf2_start_subfile (char *, char *, char *);
856
857 static struct symbol *new_symbol (struct die_info *, struct type *,
858 struct dwarf2_cu *);
859
860 static void dwarf2_const_value (struct attribute *, struct symbol *,
861 struct dwarf2_cu *);
862
863 static void dwarf2_const_value_data (struct attribute *attr,
864 struct symbol *sym,
865 int bits);
866
867 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
868
869 static struct type *die_containing_type (struct die_info *,
870 struct dwarf2_cu *);
871
872 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
873
874 static void read_type_die (struct die_info *, struct dwarf2_cu *);
875
876 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
877
878 static char *typename_concat (struct obstack *,
879 const char *prefix,
880 const char *suffix,
881 struct dwarf2_cu *);
882
883 static void read_typedef (struct die_info *, struct dwarf2_cu *);
884
885 static void read_base_type (struct die_info *, struct dwarf2_cu *);
886
887 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
888
889 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
890
891 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
892
893 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
894
895 static int dwarf2_get_pc_bounds (struct die_info *,
896 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
897
898 static void get_scope_pc_bounds (struct die_info *,
899 CORE_ADDR *, CORE_ADDR *,
900 struct dwarf2_cu *);
901
902 static void dwarf2_add_field (struct field_info *, struct die_info *,
903 struct dwarf2_cu *);
904
905 static void dwarf2_attach_fields_to_type (struct field_info *,
906 struct type *, struct dwarf2_cu *);
907
908 static void dwarf2_add_member_fn (struct field_info *,
909 struct die_info *, struct type *,
910 struct dwarf2_cu *);
911
912 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
913 struct type *, struct dwarf2_cu *);
914
915 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
916
917 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
918
919 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
920
921 static void read_common_block (struct die_info *, struct dwarf2_cu *);
922
923 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
924
925 static const char *namespace_name (struct die_info *die,
926 int *is_anonymous, struct dwarf2_cu *);
927
928 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
929
930 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
931
932 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
933
934 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
935
936 static void read_array_type (struct die_info *, struct dwarf2_cu *);
937
938 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
939 struct dwarf2_cu *);
940
941 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
942
943 static void read_tag_ptr_to_member_type (struct die_info *,
944 struct dwarf2_cu *);
945
946 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
947
948 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
949
950 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
951
952 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
953
954 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
955
956 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
957
958 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
959 struct dwarf2_cu *,
960 gdb_byte **new_info_ptr,
961 struct die_info *parent);
962
963 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
964 struct dwarf2_cu *,
965 gdb_byte **new_info_ptr,
966 struct die_info *parent);
967
968 static void free_die_list (struct die_info *);
969
970 static void process_die (struct die_info *, struct dwarf2_cu *);
971
972 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
973
974 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
975
976 static struct die_info *dwarf2_extension (struct die_info *die,
977 struct dwarf2_cu *);
978
979 static char *dwarf_tag_name (unsigned int);
980
981 static char *dwarf_attr_name (unsigned int);
982
983 static char *dwarf_form_name (unsigned int);
984
985 static char *dwarf_stack_op_name (unsigned int);
986
987 static char *dwarf_bool_name (unsigned int);
988
989 static char *dwarf_type_encoding_name (unsigned int);
990
991 #if 0
992 static char *dwarf_cfi_name (unsigned int);
993
994 struct die_info *copy_die (struct die_info *);
995 #endif
996
997 static struct die_info *sibling_die (struct die_info *);
998
999 static void dump_die (struct die_info *);
1000
1001 static void dump_die_list (struct die_info *);
1002
1003 static void store_in_ref_table (unsigned int, struct die_info *,
1004 struct dwarf2_cu *);
1005
1006 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1007 struct dwarf2_cu *);
1008
1009 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1010
1011 static struct die_info *follow_die_ref (struct die_info *,
1012 struct attribute *,
1013 struct dwarf2_cu *);
1014
1015 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1016 struct dwarf2_cu *);
1017
1018 /* memory allocation interface */
1019
1020 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1021
1022 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1023
1024 static struct die_info *dwarf_alloc_die (void);
1025
1026 static void initialize_cu_func_list (struct dwarf2_cu *);
1027
1028 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1029 struct dwarf2_cu *);
1030
1031 static void dwarf_decode_macros (struct line_header *, unsigned int,
1032 char *, bfd *, struct dwarf2_cu *);
1033
1034 static int attr_form_is_block (struct attribute *);
1035
1036 static void
1037 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1038 struct dwarf2_cu *cu);
1039
1040 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1041 struct dwarf2_cu *cu);
1042
1043 static void free_stack_comp_unit (void *);
1044
1045 static hashval_t partial_die_hash (const void *item);
1046
1047 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1048
1049 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1050 (unsigned long offset, struct objfile *objfile);
1051
1052 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1053 (unsigned long offset, struct objfile *objfile);
1054
1055 static void free_one_comp_unit (void *);
1056
1057 static void free_cached_comp_units (void *);
1058
1059 static void age_cached_comp_units (void);
1060
1061 static void free_one_cached_comp_unit (void *);
1062
1063 static void set_die_type (struct die_info *, struct type *,
1064 struct dwarf2_cu *);
1065
1066 static void reset_die_and_siblings_types (struct die_info *,
1067 struct dwarf2_cu *);
1068
1069 static void create_all_comp_units (struct objfile *);
1070
1071 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1072 struct objfile *);
1073
1074 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1075
1076 static void dwarf2_add_dependence (struct dwarf2_cu *,
1077 struct dwarf2_per_cu_data *);
1078
1079 static void dwarf2_mark (struct dwarf2_cu *);
1080
1081 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1082
1083 static void read_set_type (struct die_info *, struct dwarf2_cu *);
1084
1085
1086 /* Try to locate the sections we need for DWARF 2 debugging
1087 information and return true if we have enough to do something. */
1088
1089 int
1090 dwarf2_has_info (struct objfile *objfile)
1091 {
1092 struct dwarf2_per_objfile *data;
1093
1094 /* Initialize per-objfile state. */
1095 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1096 memset (data, 0, sizeof (*data));
1097 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1098 dwarf2_per_objfile = data;
1099
1100 dwarf_info_section = 0;
1101 dwarf_abbrev_section = 0;
1102 dwarf_line_section = 0;
1103 dwarf_str_section = 0;
1104 dwarf_macinfo_section = 0;
1105 dwarf_frame_section = 0;
1106 dwarf_eh_frame_section = 0;
1107 dwarf_ranges_section = 0;
1108 dwarf_loc_section = 0;
1109
1110 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1111 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1112 }
1113
1114 /* This function is mapped across the sections and remembers the
1115 offset and size of each of the debugging sections we are interested
1116 in. */
1117
1118 static void
1119 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1120 {
1121 if (strcmp (sectp->name, INFO_SECTION) == 0)
1122 {
1123 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1124 dwarf_info_section = sectp;
1125 }
1126 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1127 {
1128 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1129 dwarf_abbrev_section = sectp;
1130 }
1131 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1132 {
1133 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1134 dwarf_line_section = sectp;
1135 }
1136 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1137 {
1138 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1139 dwarf_pubnames_section = sectp;
1140 }
1141 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1142 {
1143 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1144 dwarf_aranges_section = sectp;
1145 }
1146 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1147 {
1148 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1149 dwarf_loc_section = sectp;
1150 }
1151 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1152 {
1153 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1154 dwarf_macinfo_section = sectp;
1155 }
1156 else if (strcmp (sectp->name, STR_SECTION) == 0)
1157 {
1158 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1159 dwarf_str_section = sectp;
1160 }
1161 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1162 {
1163 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1164 dwarf_frame_section = sectp;
1165 }
1166 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1167 {
1168 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1169 if (aflag & SEC_HAS_CONTENTS)
1170 {
1171 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1172 dwarf_eh_frame_section = sectp;
1173 }
1174 }
1175 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1176 {
1177 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1178 dwarf_ranges_section = sectp;
1179 }
1180
1181 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1182 && bfd_section_vma (abfd, sectp) == 0)
1183 dwarf2_per_objfile->has_section_at_zero = 1;
1184 }
1185
1186 /* Build a partial symbol table. */
1187
1188 void
1189 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1190 {
1191 /* We definitely need the .debug_info and .debug_abbrev sections */
1192
1193 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1194 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1195
1196 if (dwarf_line_section)
1197 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1198 else
1199 dwarf2_per_objfile->line_buffer = NULL;
1200
1201 if (dwarf_str_section)
1202 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1203 else
1204 dwarf2_per_objfile->str_buffer = NULL;
1205
1206 if (dwarf_macinfo_section)
1207 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1208 dwarf_macinfo_section);
1209 else
1210 dwarf2_per_objfile->macinfo_buffer = NULL;
1211
1212 if (dwarf_ranges_section)
1213 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1214 else
1215 dwarf2_per_objfile->ranges_buffer = NULL;
1216
1217 if (dwarf_loc_section)
1218 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1219 else
1220 dwarf2_per_objfile->loc_buffer = NULL;
1221
1222 if (mainline
1223 || (objfile->global_psymbols.size == 0
1224 && objfile->static_psymbols.size == 0))
1225 {
1226 init_psymbol_list (objfile, 1024);
1227 }
1228
1229 #if 0
1230 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1231 {
1232 /* Things are significantly easier if we have .debug_aranges and
1233 .debug_pubnames sections */
1234
1235 dwarf2_build_psymtabs_easy (objfile, mainline);
1236 }
1237 else
1238 #endif
1239 /* only test this case for now */
1240 {
1241 /* In this case we have to work a bit harder */
1242 dwarf2_build_psymtabs_hard (objfile, mainline);
1243 }
1244 }
1245
1246 #if 0
1247 /* Build the partial symbol table from the information in the
1248 .debug_pubnames and .debug_aranges sections. */
1249
1250 static void
1251 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1252 {
1253 bfd *abfd = objfile->obfd;
1254 char *aranges_buffer, *pubnames_buffer;
1255 char *aranges_ptr, *pubnames_ptr;
1256 unsigned int entry_length, version, info_offset, info_size;
1257
1258 pubnames_buffer = dwarf2_read_section (objfile,
1259 dwarf_pubnames_section);
1260 pubnames_ptr = pubnames_buffer;
1261 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1262 {
1263 struct comp_unit_head cu_header;
1264 unsigned int bytes_read;
1265
1266 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1267 &bytes_read);
1268 pubnames_ptr += bytes_read;
1269 version = read_1_byte (abfd, pubnames_ptr);
1270 pubnames_ptr += 1;
1271 info_offset = read_4_bytes (abfd, pubnames_ptr);
1272 pubnames_ptr += 4;
1273 info_size = read_4_bytes (abfd, pubnames_ptr);
1274 pubnames_ptr += 4;
1275 }
1276
1277 aranges_buffer = dwarf2_read_section (objfile,
1278 dwarf_aranges_section);
1279
1280 }
1281 #endif
1282
1283 /* Read in the comp unit header information from the debug_info at
1284 info_ptr. */
1285
1286 static gdb_byte *
1287 read_comp_unit_head (struct comp_unit_head *cu_header,
1288 gdb_byte *info_ptr, bfd *abfd)
1289 {
1290 int signed_addr;
1291 unsigned int bytes_read;
1292 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1293 &bytes_read);
1294 info_ptr += bytes_read;
1295 cu_header->version = read_2_bytes (abfd, info_ptr);
1296 info_ptr += 2;
1297 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1298 &bytes_read);
1299 info_ptr += bytes_read;
1300 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1301 info_ptr += 1;
1302 signed_addr = bfd_get_sign_extend_vma (abfd);
1303 if (signed_addr < 0)
1304 internal_error (__FILE__, __LINE__,
1305 _("read_comp_unit_head: dwarf from non elf file"));
1306 cu_header->signed_addr_p = signed_addr;
1307 return info_ptr;
1308 }
1309
1310 static gdb_byte *
1311 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1312 bfd *abfd)
1313 {
1314 gdb_byte *beg_of_comp_unit = info_ptr;
1315
1316 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1317
1318 if (header->version != 2 && header->version != 3)
1319 error (_("Dwarf Error: wrong version in compilation unit header "
1320 "(is %d, should be %d) [in module %s]"), header->version,
1321 2, bfd_get_filename (abfd));
1322
1323 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1324 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1325 "(offset 0x%lx + 6) [in module %s]"),
1326 (long) header->abbrev_offset,
1327 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1328 bfd_get_filename (abfd));
1329
1330 if (beg_of_comp_unit + header->length + header->initial_length_size
1331 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1332 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1333 "(offset 0x%lx + 0) [in module %s]"),
1334 (long) header->length,
1335 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1336 bfd_get_filename (abfd));
1337
1338 return info_ptr;
1339 }
1340
1341 /* Allocate a new partial symtab for file named NAME and mark this new
1342 partial symtab as being an include of PST. */
1343
1344 static void
1345 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1346 struct objfile *objfile)
1347 {
1348 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1349
1350 subpst->section_offsets = pst->section_offsets;
1351 subpst->textlow = 0;
1352 subpst->texthigh = 0;
1353
1354 subpst->dependencies = (struct partial_symtab **)
1355 obstack_alloc (&objfile->objfile_obstack,
1356 sizeof (struct partial_symtab *));
1357 subpst->dependencies[0] = pst;
1358 subpst->number_of_dependencies = 1;
1359
1360 subpst->globals_offset = 0;
1361 subpst->n_global_syms = 0;
1362 subpst->statics_offset = 0;
1363 subpst->n_static_syms = 0;
1364 subpst->symtab = NULL;
1365 subpst->read_symtab = pst->read_symtab;
1366 subpst->readin = 0;
1367
1368 /* No private part is necessary for include psymtabs. This property
1369 can be used to differentiate between such include psymtabs and
1370 the regular ones. */
1371 subpst->read_symtab_private = NULL;
1372 }
1373
1374 /* Read the Line Number Program data and extract the list of files
1375 included by the source file represented by PST. Build an include
1376 partial symtab for each of these included files.
1377
1378 This procedure assumes that there *is* a Line Number Program in
1379 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1380 before calling this procedure. */
1381
1382 static void
1383 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1384 struct partial_die_info *pdi,
1385 struct partial_symtab *pst)
1386 {
1387 struct objfile *objfile = cu->objfile;
1388 bfd *abfd = objfile->obfd;
1389 struct line_header *lh;
1390
1391 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1392 if (lh == NULL)
1393 return; /* No linetable, so no includes. */
1394
1395 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1396
1397 free_line_header (lh);
1398 }
1399
1400
1401 /* Build the partial symbol table by doing a quick pass through the
1402 .debug_info and .debug_abbrev sections. */
1403
1404 static void
1405 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1406 {
1407 /* Instead of reading this into a big buffer, we should probably use
1408 mmap() on architectures that support it. (FIXME) */
1409 bfd *abfd = objfile->obfd;
1410 gdb_byte *info_ptr;
1411 gdb_byte *beg_of_comp_unit;
1412 struct partial_die_info comp_unit_die;
1413 struct partial_symtab *pst;
1414 struct cleanup *back_to;
1415 CORE_ADDR lowpc, highpc, baseaddr;
1416
1417 info_ptr = dwarf2_per_objfile->info_buffer;
1418
1419 /* Any cached compilation units will be linked by the per-objfile
1420 read_in_chain. Make sure to free them when we're done. */
1421 back_to = make_cleanup (free_cached_comp_units, NULL);
1422
1423 create_all_comp_units (objfile);
1424
1425 /* Since the objects we're extracting from .debug_info vary in
1426 length, only the individual functions to extract them (like
1427 read_comp_unit_head and load_partial_die) can really know whether
1428 the buffer is large enough to hold another complete object.
1429
1430 At the moment, they don't actually check that. If .debug_info
1431 holds just one extra byte after the last compilation unit's dies,
1432 then read_comp_unit_head will happily read off the end of the
1433 buffer. read_partial_die is similarly casual. Those functions
1434 should be fixed.
1435
1436 For this loop condition, simply checking whether there's any data
1437 left at all should be sufficient. */
1438 while (info_ptr < (dwarf2_per_objfile->info_buffer
1439 + dwarf2_per_objfile->info_size))
1440 {
1441 struct cleanup *back_to_inner;
1442 struct dwarf2_cu cu;
1443 struct abbrev_info *abbrev;
1444 unsigned int bytes_read;
1445 struct dwarf2_per_cu_data *this_cu;
1446
1447 beg_of_comp_unit = info_ptr;
1448
1449 memset (&cu, 0, sizeof (cu));
1450
1451 obstack_init (&cu.comp_unit_obstack);
1452
1453 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1454
1455 cu.objfile = objfile;
1456 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1457
1458 /* Complete the cu_header */
1459 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1460 cu.header.first_die_ptr = info_ptr;
1461 cu.header.cu_head_ptr = beg_of_comp_unit;
1462
1463 cu.list_in_scope = &file_symbols;
1464
1465 /* Read the abbrevs for this compilation unit into a table */
1466 dwarf2_read_abbrevs (abfd, &cu);
1467 make_cleanup (dwarf2_free_abbrev_table, &cu);
1468
1469 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1470
1471 /* Read the compilation unit die */
1472 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1473 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1474 abfd, info_ptr, &cu);
1475
1476 if (comp_unit_die.tag == DW_TAG_partial_unit)
1477 {
1478 info_ptr = (beg_of_comp_unit + cu.header.length
1479 + cu.header.initial_length_size);
1480 do_cleanups (back_to_inner);
1481 continue;
1482 }
1483
1484 /* Set the language we're debugging */
1485 set_cu_language (comp_unit_die.language, &cu);
1486
1487 /* Allocate a new partial symbol table structure */
1488 pst = start_psymtab_common (objfile, objfile->section_offsets,
1489 comp_unit_die.name ? comp_unit_die.name : "",
1490 comp_unit_die.lowpc,
1491 objfile->global_psymbols.next,
1492 objfile->static_psymbols.next);
1493
1494 if (comp_unit_die.dirname)
1495 pst->dirname = xstrdup (comp_unit_die.dirname);
1496
1497 pst->read_symtab_private = (char *) this_cu;
1498
1499 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1500
1501 /* Store the function that reads in the rest of the symbol table */
1502 pst->read_symtab = dwarf2_psymtab_to_symtab;
1503
1504 /* If this compilation unit was already read in, free the
1505 cached copy in order to read it in again. This is
1506 necessary because we skipped some symbols when we first
1507 read in the compilation unit (see load_partial_dies).
1508 This problem could be avoided, but the benefit is
1509 unclear. */
1510 if (this_cu->cu != NULL)
1511 free_one_cached_comp_unit (this_cu->cu);
1512
1513 cu.per_cu = this_cu;
1514
1515 /* Note that this is a pointer to our stack frame, being
1516 added to a global data structure. It will be cleaned up
1517 in free_stack_comp_unit when we finish with this
1518 compilation unit. */
1519 this_cu->cu = &cu;
1520
1521 this_cu->psymtab = pst;
1522
1523 /* Check if comp unit has_children.
1524 If so, read the rest of the partial symbols from this comp unit.
1525 If not, there's no more debug_info for this comp unit. */
1526 if (comp_unit_die.has_children)
1527 {
1528 struct partial_die_info *first_die;
1529
1530 lowpc = ((CORE_ADDR) -1);
1531 highpc = ((CORE_ADDR) 0);
1532
1533 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1534
1535 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1536
1537 /* If we didn't find a lowpc, set it to highpc to avoid
1538 complaints from `maint check'. */
1539 if (lowpc == ((CORE_ADDR) -1))
1540 lowpc = highpc;
1541
1542 /* If the compilation unit didn't have an explicit address range,
1543 then use the information extracted from its child dies. */
1544 if (! comp_unit_die.has_pc_info)
1545 {
1546 comp_unit_die.lowpc = lowpc;
1547 comp_unit_die.highpc = highpc;
1548 }
1549 }
1550 pst->textlow = comp_unit_die.lowpc + baseaddr;
1551 pst->texthigh = comp_unit_die.highpc + baseaddr;
1552
1553 pst->n_global_syms = objfile->global_psymbols.next -
1554 (objfile->global_psymbols.list + pst->globals_offset);
1555 pst->n_static_syms = objfile->static_psymbols.next -
1556 (objfile->static_psymbols.list + pst->statics_offset);
1557 sort_pst_symbols (pst);
1558
1559 /* If there is already a psymtab or symtab for a file of this
1560 name, remove it. (If there is a symtab, more drastic things
1561 also happen.) This happens in VxWorks. */
1562 free_named_symtabs (pst->filename);
1563
1564 info_ptr = beg_of_comp_unit + cu.header.length
1565 + cu.header.initial_length_size;
1566
1567 if (comp_unit_die.has_stmt_list)
1568 {
1569 /* Get the list of files included in the current compilation unit,
1570 and build a psymtab for each of them. */
1571 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1572 }
1573
1574 do_cleanups (back_to_inner);
1575 }
1576 do_cleanups (back_to);
1577 }
1578
1579 /* Load the DIEs for a secondary CU into memory. */
1580
1581 static void
1582 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1583 {
1584 bfd *abfd = objfile->obfd;
1585 gdb_byte *info_ptr, *beg_of_comp_unit;
1586 struct partial_die_info comp_unit_die;
1587 struct dwarf2_cu *cu;
1588 struct abbrev_info *abbrev;
1589 unsigned int bytes_read;
1590 struct cleanup *back_to;
1591
1592 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1593 beg_of_comp_unit = info_ptr;
1594
1595 cu = xmalloc (sizeof (struct dwarf2_cu));
1596 memset (cu, 0, sizeof (struct dwarf2_cu));
1597
1598 obstack_init (&cu->comp_unit_obstack);
1599
1600 cu->objfile = objfile;
1601 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1602
1603 /* Complete the cu_header. */
1604 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1605 cu->header.first_die_ptr = info_ptr;
1606 cu->header.cu_head_ptr = beg_of_comp_unit;
1607
1608 /* Read the abbrevs for this compilation unit into a table. */
1609 dwarf2_read_abbrevs (abfd, cu);
1610 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1611
1612 /* Read the compilation unit die. */
1613 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1614 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1615 abfd, info_ptr, cu);
1616
1617 /* Set the language we're debugging. */
1618 set_cu_language (comp_unit_die.language, cu);
1619
1620 /* Link this compilation unit into the compilation unit tree. */
1621 this_cu->cu = cu;
1622 cu->per_cu = this_cu;
1623
1624 /* Check if comp unit has_children.
1625 If so, read the rest of the partial symbols from this comp unit.
1626 If not, there's no more debug_info for this comp unit. */
1627 if (comp_unit_die.has_children)
1628 load_partial_dies (abfd, info_ptr, 0, cu);
1629
1630 do_cleanups (back_to);
1631 }
1632
1633 /* Create a list of all compilation units in OBJFILE. We do this only
1634 if an inter-comp-unit reference is found; presumably if there is one,
1635 there will be many, and one will occur early in the .debug_info section.
1636 So there's no point in building this list incrementally. */
1637
1638 static void
1639 create_all_comp_units (struct objfile *objfile)
1640 {
1641 int n_allocated;
1642 int n_comp_units;
1643 struct dwarf2_per_cu_data **all_comp_units;
1644 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1645
1646 n_comp_units = 0;
1647 n_allocated = 10;
1648 all_comp_units = xmalloc (n_allocated
1649 * sizeof (struct dwarf2_per_cu_data *));
1650
1651 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1652 {
1653 struct comp_unit_head cu_header;
1654 gdb_byte *beg_of_comp_unit;
1655 struct dwarf2_per_cu_data *this_cu;
1656 unsigned long offset;
1657 unsigned int bytes_read;
1658
1659 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1660
1661 /* Read just enough information to find out where the next
1662 compilation unit is. */
1663 cu_header.initial_length_size = 0;
1664 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1665 &cu_header, &bytes_read);
1666
1667 /* Save the compilation unit for later lookup. */
1668 this_cu = obstack_alloc (&objfile->objfile_obstack,
1669 sizeof (struct dwarf2_per_cu_data));
1670 memset (this_cu, 0, sizeof (*this_cu));
1671 this_cu->offset = offset;
1672 this_cu->length = cu_header.length + cu_header.initial_length_size;
1673
1674 if (n_comp_units == n_allocated)
1675 {
1676 n_allocated *= 2;
1677 all_comp_units = xrealloc (all_comp_units,
1678 n_allocated
1679 * sizeof (struct dwarf2_per_cu_data *));
1680 }
1681 all_comp_units[n_comp_units++] = this_cu;
1682
1683 info_ptr = info_ptr + this_cu->length;
1684 }
1685
1686 dwarf2_per_objfile->all_comp_units
1687 = obstack_alloc (&objfile->objfile_obstack,
1688 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1689 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1690 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1691 xfree (all_comp_units);
1692 dwarf2_per_objfile->n_comp_units = n_comp_units;
1693 }
1694
1695 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1696 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1697 in CU. */
1698
1699 static void
1700 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1701 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1702 {
1703 struct objfile *objfile = cu->objfile;
1704 bfd *abfd = objfile->obfd;
1705 struct partial_die_info *pdi;
1706
1707 /* Now, march along the PDI's, descending into ones which have
1708 interesting children but skipping the children of the other ones,
1709 until we reach the end of the compilation unit. */
1710
1711 pdi = first_die;
1712
1713 while (pdi != NULL)
1714 {
1715 fixup_partial_die (pdi, cu);
1716
1717 /* Anonymous namespaces have no name but have interesting
1718 children, so we need to look at them. Ditto for anonymous
1719 enums. */
1720
1721 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1722 || pdi->tag == DW_TAG_enumeration_type)
1723 {
1724 switch (pdi->tag)
1725 {
1726 case DW_TAG_subprogram:
1727 if (pdi->has_pc_info)
1728 {
1729 if (pdi->lowpc < *lowpc)
1730 {
1731 *lowpc = pdi->lowpc;
1732 }
1733 if (pdi->highpc > *highpc)
1734 {
1735 *highpc = pdi->highpc;
1736 }
1737 if (!pdi->is_declaration)
1738 {
1739 add_partial_symbol (pdi, cu);
1740 }
1741 }
1742 break;
1743 case DW_TAG_variable:
1744 case DW_TAG_typedef:
1745 case DW_TAG_union_type:
1746 if (!pdi->is_declaration)
1747 {
1748 add_partial_symbol (pdi, cu);
1749 }
1750 break;
1751 case DW_TAG_class_type:
1752 case DW_TAG_structure_type:
1753 if (!pdi->is_declaration)
1754 {
1755 add_partial_symbol (pdi, cu);
1756 }
1757 break;
1758 case DW_TAG_enumeration_type:
1759 if (!pdi->is_declaration)
1760 add_partial_enumeration (pdi, cu);
1761 break;
1762 case DW_TAG_base_type:
1763 case DW_TAG_subrange_type:
1764 /* File scope base type definitions are added to the partial
1765 symbol table. */
1766 add_partial_symbol (pdi, cu);
1767 break;
1768 case DW_TAG_namespace:
1769 add_partial_namespace (pdi, lowpc, highpc, cu);
1770 break;
1771 default:
1772 break;
1773 }
1774 }
1775
1776 /* If the die has a sibling, skip to the sibling. */
1777
1778 pdi = pdi->die_sibling;
1779 }
1780 }
1781
1782 /* Functions used to compute the fully scoped name of a partial DIE.
1783
1784 Normally, this is simple. For C++, the parent DIE's fully scoped
1785 name is concatenated with "::" and the partial DIE's name. For
1786 Java, the same thing occurs except that "." is used instead of "::".
1787 Enumerators are an exception; they use the scope of their parent
1788 enumeration type, i.e. the name of the enumeration type is not
1789 prepended to the enumerator.
1790
1791 There are two complexities. One is DW_AT_specification; in this
1792 case "parent" means the parent of the target of the specification,
1793 instead of the direct parent of the DIE. The other is compilers
1794 which do not emit DW_TAG_namespace; in this case we try to guess
1795 the fully qualified name of structure types from their members'
1796 linkage names. This must be done using the DIE's children rather
1797 than the children of any DW_AT_specification target. We only need
1798 to do this for structures at the top level, i.e. if the target of
1799 any DW_AT_specification (if any; otherwise the DIE itself) does not
1800 have a parent. */
1801
1802 /* Compute the scope prefix associated with PDI's parent, in
1803 compilation unit CU. The result will be allocated on CU's
1804 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1805 field. NULL is returned if no prefix is necessary. */
1806 static char *
1807 partial_die_parent_scope (struct partial_die_info *pdi,
1808 struct dwarf2_cu *cu)
1809 {
1810 char *grandparent_scope;
1811 struct partial_die_info *parent, *real_pdi;
1812
1813 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1814 then this means the parent of the specification DIE. */
1815
1816 real_pdi = pdi;
1817 while (real_pdi->has_specification)
1818 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1819
1820 parent = real_pdi->die_parent;
1821 if (parent == NULL)
1822 return NULL;
1823
1824 if (parent->scope_set)
1825 return parent->scope;
1826
1827 fixup_partial_die (parent, cu);
1828
1829 grandparent_scope = partial_die_parent_scope (parent, cu);
1830
1831 if (parent->tag == DW_TAG_namespace
1832 || parent->tag == DW_TAG_structure_type
1833 || parent->tag == DW_TAG_class_type
1834 || parent->tag == DW_TAG_union_type)
1835 {
1836 if (grandparent_scope == NULL)
1837 parent->scope = parent->name;
1838 else
1839 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1840 parent->name, cu);
1841 }
1842 else if (parent->tag == DW_TAG_enumeration_type)
1843 /* Enumerators should not get the name of the enumeration as a prefix. */
1844 parent->scope = grandparent_scope;
1845 else
1846 {
1847 /* FIXME drow/2004-04-01: What should we be doing with
1848 function-local names? For partial symbols, we should probably be
1849 ignoring them. */
1850 complaint (&symfile_complaints,
1851 _("unhandled containing DIE tag %d for DIE at %d"),
1852 parent->tag, pdi->offset);
1853 parent->scope = grandparent_scope;
1854 }
1855
1856 parent->scope_set = 1;
1857 return parent->scope;
1858 }
1859
1860 /* Return the fully scoped name associated with PDI, from compilation unit
1861 CU. The result will be allocated with malloc. */
1862 static char *
1863 partial_die_full_name (struct partial_die_info *pdi,
1864 struct dwarf2_cu *cu)
1865 {
1866 char *parent_scope;
1867
1868 parent_scope = partial_die_parent_scope (pdi, cu);
1869 if (parent_scope == NULL)
1870 return NULL;
1871 else
1872 return typename_concat (NULL, parent_scope, pdi->name, cu);
1873 }
1874
1875 static void
1876 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1877 {
1878 struct objfile *objfile = cu->objfile;
1879 CORE_ADDR addr = 0;
1880 char *actual_name;
1881 const char *my_prefix;
1882 const struct partial_symbol *psym = NULL;
1883 CORE_ADDR baseaddr;
1884 int built_actual_name = 0;
1885
1886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1887
1888 actual_name = NULL;
1889
1890 if (pdi_needs_namespace (pdi->tag))
1891 {
1892 actual_name = partial_die_full_name (pdi, cu);
1893 if (actual_name)
1894 built_actual_name = 1;
1895 }
1896
1897 if (actual_name == NULL)
1898 actual_name = pdi->name;
1899
1900 switch (pdi->tag)
1901 {
1902 case DW_TAG_subprogram:
1903 if (pdi->is_external)
1904 {
1905 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1906 mst_text, objfile); */
1907 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1908 VAR_DOMAIN, LOC_BLOCK,
1909 &objfile->global_psymbols,
1910 0, pdi->lowpc + baseaddr,
1911 cu->language, objfile);
1912 }
1913 else
1914 {
1915 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1916 mst_file_text, objfile); */
1917 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1918 VAR_DOMAIN, LOC_BLOCK,
1919 &objfile->static_psymbols,
1920 0, pdi->lowpc + baseaddr,
1921 cu->language, objfile);
1922 }
1923 break;
1924 case DW_TAG_variable:
1925 if (pdi->is_external)
1926 {
1927 /* Global Variable.
1928 Don't enter into the minimal symbol tables as there is
1929 a minimal symbol table entry from the ELF symbols already.
1930 Enter into partial symbol table if it has a location
1931 descriptor or a type.
1932 If the location descriptor is missing, new_symbol will create
1933 a LOC_UNRESOLVED symbol, the address of the variable will then
1934 be determined from the minimal symbol table whenever the variable
1935 is referenced.
1936 The address for the partial symbol table entry is not
1937 used by GDB, but it comes in handy for debugging partial symbol
1938 table building. */
1939
1940 if (pdi->locdesc)
1941 addr = decode_locdesc (pdi->locdesc, cu);
1942 if (pdi->locdesc || pdi->has_type)
1943 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1944 VAR_DOMAIN, LOC_STATIC,
1945 &objfile->global_psymbols,
1946 0, addr + baseaddr,
1947 cu->language, objfile);
1948 }
1949 else
1950 {
1951 /* Static Variable. Skip symbols without location descriptors. */
1952 if (pdi->locdesc == NULL)
1953 return;
1954 addr = decode_locdesc (pdi->locdesc, cu);
1955 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1956 mst_file_data, objfile); */
1957 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1958 VAR_DOMAIN, LOC_STATIC,
1959 &objfile->static_psymbols,
1960 0, addr + baseaddr,
1961 cu->language, objfile);
1962 }
1963 break;
1964 case DW_TAG_typedef:
1965 case DW_TAG_base_type:
1966 case DW_TAG_subrange_type:
1967 add_psymbol_to_list (actual_name, strlen (actual_name),
1968 VAR_DOMAIN, LOC_TYPEDEF,
1969 &objfile->static_psymbols,
1970 0, (CORE_ADDR) 0, cu->language, objfile);
1971 break;
1972 case DW_TAG_namespace:
1973 add_psymbol_to_list (actual_name, strlen (actual_name),
1974 VAR_DOMAIN, LOC_TYPEDEF,
1975 &objfile->global_psymbols,
1976 0, (CORE_ADDR) 0, cu->language, objfile);
1977 break;
1978 case DW_TAG_class_type:
1979 case DW_TAG_structure_type:
1980 case DW_TAG_union_type:
1981 case DW_TAG_enumeration_type:
1982 /* Skip aggregate types without children, these are external
1983 references. */
1984 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1985 static vs. global. */
1986 if (pdi->has_children == 0)
1987 return;
1988 add_psymbol_to_list (actual_name, strlen (actual_name),
1989 STRUCT_DOMAIN, LOC_TYPEDEF,
1990 (cu->language == language_cplus
1991 || cu->language == language_java)
1992 ? &objfile->global_psymbols
1993 : &objfile->static_psymbols,
1994 0, (CORE_ADDR) 0, cu->language, objfile);
1995
1996 if (cu->language == language_cplus
1997 || cu->language == language_java)
1998 {
1999 /* For C++ and Java, these implicitly act as typedefs as well. */
2000 add_psymbol_to_list (actual_name, strlen (actual_name),
2001 VAR_DOMAIN, LOC_TYPEDEF,
2002 &objfile->global_psymbols,
2003 0, (CORE_ADDR) 0, cu->language, objfile);
2004 }
2005 break;
2006 case DW_TAG_enumerator:
2007 add_psymbol_to_list (actual_name, strlen (actual_name),
2008 VAR_DOMAIN, LOC_CONST,
2009 (cu->language == language_cplus
2010 || cu->language == language_java)
2011 ? &objfile->global_psymbols
2012 : &objfile->static_psymbols,
2013 0, (CORE_ADDR) 0, cu->language, objfile);
2014 break;
2015 default:
2016 break;
2017 }
2018
2019 /* Check to see if we should scan the name for possible namespace
2020 info. Only do this if this is C++, if we don't have namespace
2021 debugging info in the file, if the psym is of an appropriate type
2022 (otherwise we'll have psym == NULL), and if we actually had a
2023 mangled name to begin with. */
2024
2025 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2026 cases which do not set PSYM above? */
2027
2028 if (cu->language == language_cplus
2029 && cu->has_namespace_info == 0
2030 && psym != NULL
2031 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2032 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2033 objfile);
2034
2035 if (built_actual_name)
2036 xfree (actual_name);
2037 }
2038
2039 /* Determine whether a die of type TAG living in a C++ class or
2040 namespace needs to have the name of the scope prepended to the
2041 name listed in the die. */
2042
2043 static int
2044 pdi_needs_namespace (enum dwarf_tag tag)
2045 {
2046 switch (tag)
2047 {
2048 case DW_TAG_namespace:
2049 case DW_TAG_typedef:
2050 case DW_TAG_class_type:
2051 case DW_TAG_structure_type:
2052 case DW_TAG_union_type:
2053 case DW_TAG_enumeration_type:
2054 case DW_TAG_enumerator:
2055 return 1;
2056 default:
2057 return 0;
2058 }
2059 }
2060
2061 /* Read a partial die corresponding to a namespace; also, add a symbol
2062 corresponding to that namespace to the symbol table. NAMESPACE is
2063 the name of the enclosing namespace. */
2064
2065 static void
2066 add_partial_namespace (struct partial_die_info *pdi,
2067 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2068 struct dwarf2_cu *cu)
2069 {
2070 struct objfile *objfile = cu->objfile;
2071
2072 /* Add a symbol for the namespace. */
2073
2074 add_partial_symbol (pdi, cu);
2075
2076 /* Now scan partial symbols in that namespace. */
2077
2078 if (pdi->has_children)
2079 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2080 }
2081
2082 /* See if we can figure out if the class lives in a namespace. We do
2083 this by looking for a member function; its demangled name will
2084 contain namespace info, if there is any. */
2085
2086 static void
2087 guess_structure_name (struct partial_die_info *struct_pdi,
2088 struct dwarf2_cu *cu)
2089 {
2090 if ((cu->language == language_cplus
2091 || cu->language == language_java)
2092 && cu->has_namespace_info == 0
2093 && struct_pdi->has_children)
2094 {
2095 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2096 what template types look like, because the demangler
2097 frequently doesn't give the same name as the debug info. We
2098 could fix this by only using the demangled name to get the
2099 prefix (but see comment in read_structure_type). */
2100
2101 struct partial_die_info *child_pdi = struct_pdi->die_child;
2102 struct partial_die_info *real_pdi;
2103
2104 /* If this DIE (this DIE's specification, if any) has a parent, then
2105 we should not do this. We'll prepend the parent's fully qualified
2106 name when we create the partial symbol. */
2107
2108 real_pdi = struct_pdi;
2109 while (real_pdi->has_specification)
2110 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2111
2112 if (real_pdi->die_parent != NULL)
2113 return;
2114
2115 while (child_pdi != NULL)
2116 {
2117 if (child_pdi->tag == DW_TAG_subprogram)
2118 {
2119 char *actual_class_name
2120 = language_class_name_from_physname (cu->language_defn,
2121 child_pdi->name);
2122 if (actual_class_name != NULL)
2123 {
2124 struct_pdi->name
2125 = obsavestring (actual_class_name,
2126 strlen (actual_class_name),
2127 &cu->comp_unit_obstack);
2128 xfree (actual_class_name);
2129 }
2130 break;
2131 }
2132
2133 child_pdi = child_pdi->die_sibling;
2134 }
2135 }
2136 }
2137
2138 /* Read a partial die corresponding to an enumeration type. */
2139
2140 static void
2141 add_partial_enumeration (struct partial_die_info *enum_pdi,
2142 struct dwarf2_cu *cu)
2143 {
2144 struct objfile *objfile = cu->objfile;
2145 bfd *abfd = objfile->obfd;
2146 struct partial_die_info *pdi;
2147
2148 if (enum_pdi->name != NULL)
2149 add_partial_symbol (enum_pdi, cu);
2150
2151 pdi = enum_pdi->die_child;
2152 while (pdi)
2153 {
2154 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2155 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2156 else
2157 add_partial_symbol (pdi, cu);
2158 pdi = pdi->die_sibling;
2159 }
2160 }
2161
2162 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2163 Return the corresponding abbrev, or NULL if the number is zero (indicating
2164 an empty DIE). In either case *BYTES_READ will be set to the length of
2165 the initial number. */
2166
2167 static struct abbrev_info *
2168 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2169 struct dwarf2_cu *cu)
2170 {
2171 bfd *abfd = cu->objfile->obfd;
2172 unsigned int abbrev_number;
2173 struct abbrev_info *abbrev;
2174
2175 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2176
2177 if (abbrev_number == 0)
2178 return NULL;
2179
2180 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2181 if (!abbrev)
2182 {
2183 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2184 bfd_get_filename (abfd));
2185 }
2186
2187 return abbrev;
2188 }
2189
2190 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2191 pointer to the end of a series of DIEs, terminated by an empty
2192 DIE. Any children of the skipped DIEs will also be skipped. */
2193
2194 static gdb_byte *
2195 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2196 {
2197 struct abbrev_info *abbrev;
2198 unsigned int bytes_read;
2199
2200 while (1)
2201 {
2202 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2203 if (abbrev == NULL)
2204 return info_ptr + bytes_read;
2205 else
2206 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2207 }
2208 }
2209
2210 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2211 should point just after the initial uleb128 of a DIE, and the
2212 abbrev corresponding to that skipped uleb128 should be passed in
2213 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2214 children. */
2215
2216 static gdb_byte *
2217 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2218 struct dwarf2_cu *cu)
2219 {
2220 unsigned int bytes_read;
2221 struct attribute attr;
2222 bfd *abfd = cu->objfile->obfd;
2223 unsigned int form, i;
2224
2225 for (i = 0; i < abbrev->num_attrs; i++)
2226 {
2227 /* The only abbrev we care about is DW_AT_sibling. */
2228 if (abbrev->attrs[i].name == DW_AT_sibling)
2229 {
2230 read_attribute (&attr, &abbrev->attrs[i],
2231 abfd, info_ptr, cu);
2232 if (attr.form == DW_FORM_ref_addr)
2233 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2234 else
2235 return dwarf2_per_objfile->info_buffer
2236 + dwarf2_get_ref_die_offset (&attr, cu);
2237 }
2238
2239 /* If it isn't DW_AT_sibling, skip this attribute. */
2240 form = abbrev->attrs[i].form;
2241 skip_attribute:
2242 switch (form)
2243 {
2244 case DW_FORM_addr:
2245 case DW_FORM_ref_addr:
2246 info_ptr += cu->header.addr_size;
2247 break;
2248 case DW_FORM_data1:
2249 case DW_FORM_ref1:
2250 case DW_FORM_flag:
2251 info_ptr += 1;
2252 break;
2253 case DW_FORM_data2:
2254 case DW_FORM_ref2:
2255 info_ptr += 2;
2256 break;
2257 case DW_FORM_data4:
2258 case DW_FORM_ref4:
2259 info_ptr += 4;
2260 break;
2261 case DW_FORM_data8:
2262 case DW_FORM_ref8:
2263 info_ptr += 8;
2264 break;
2265 case DW_FORM_string:
2266 read_string (abfd, info_ptr, &bytes_read);
2267 info_ptr += bytes_read;
2268 break;
2269 case DW_FORM_strp:
2270 info_ptr += cu->header.offset_size;
2271 break;
2272 case DW_FORM_block:
2273 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2274 info_ptr += bytes_read;
2275 break;
2276 case DW_FORM_block1:
2277 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2278 break;
2279 case DW_FORM_block2:
2280 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2281 break;
2282 case DW_FORM_block4:
2283 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2284 break;
2285 case DW_FORM_sdata:
2286 case DW_FORM_udata:
2287 case DW_FORM_ref_udata:
2288 info_ptr = skip_leb128 (abfd, info_ptr);
2289 break;
2290 case DW_FORM_indirect:
2291 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2292 info_ptr += bytes_read;
2293 /* We need to continue parsing from here, so just go back to
2294 the top. */
2295 goto skip_attribute;
2296
2297 default:
2298 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2299 dwarf_form_name (form),
2300 bfd_get_filename (abfd));
2301 }
2302 }
2303
2304 if (abbrev->has_children)
2305 return skip_children (info_ptr, cu);
2306 else
2307 return info_ptr;
2308 }
2309
2310 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2311 the next DIE after ORIG_PDI. */
2312
2313 static gdb_byte *
2314 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2315 bfd *abfd, struct dwarf2_cu *cu)
2316 {
2317 /* Do we know the sibling already? */
2318
2319 if (orig_pdi->sibling)
2320 return orig_pdi->sibling;
2321
2322 /* Are there any children to deal with? */
2323
2324 if (!orig_pdi->has_children)
2325 return info_ptr;
2326
2327 /* Skip the children the long way. */
2328
2329 return skip_children (info_ptr, cu);
2330 }
2331
2332 /* Expand this partial symbol table into a full symbol table. */
2333
2334 static void
2335 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2336 {
2337 /* FIXME: This is barely more than a stub. */
2338 if (pst != NULL)
2339 {
2340 if (pst->readin)
2341 {
2342 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2343 }
2344 else
2345 {
2346 if (info_verbose)
2347 {
2348 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2349 gdb_flush (gdb_stdout);
2350 }
2351
2352 /* Restore our global data. */
2353 dwarf2_per_objfile = objfile_data (pst->objfile,
2354 dwarf2_objfile_data_key);
2355
2356 psymtab_to_symtab_1 (pst);
2357
2358 /* Finish up the debug error message. */
2359 if (info_verbose)
2360 printf_filtered (_("done.\n"));
2361 }
2362 }
2363 }
2364
2365 /* Add PER_CU to the queue. */
2366
2367 static void
2368 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2369 {
2370 struct dwarf2_queue_item *item;
2371
2372 per_cu->queued = 1;
2373 item = xmalloc (sizeof (*item));
2374 item->per_cu = per_cu;
2375 item->next = NULL;
2376
2377 if (dwarf2_queue == NULL)
2378 dwarf2_queue = item;
2379 else
2380 dwarf2_queue_tail->next = item;
2381
2382 dwarf2_queue_tail = item;
2383 }
2384
2385 /* Process the queue. */
2386
2387 static void
2388 process_queue (struct objfile *objfile)
2389 {
2390 struct dwarf2_queue_item *item, *next_item;
2391
2392 /* Initially, there is just one item on the queue. Load its DIEs,
2393 and the DIEs of any other compilation units it requires,
2394 transitively. */
2395
2396 for (item = dwarf2_queue; item != NULL; item = item->next)
2397 {
2398 /* Read in this compilation unit. This may add new items to
2399 the end of the queue. */
2400 load_full_comp_unit (item->per_cu, objfile);
2401
2402 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2403 dwarf2_per_objfile->read_in_chain = item->per_cu;
2404
2405 /* If this compilation unit has already had full symbols created,
2406 reset the TYPE fields in each DIE. */
2407 if (item->per_cu->type_hash)
2408 reset_die_and_siblings_types (item->per_cu->cu->dies,
2409 item->per_cu->cu);
2410 }
2411
2412 /* Now everything left on the queue needs to be read in. Process
2413 them, one at a time, removing from the queue as we finish. */
2414 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2415 {
2416 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2417 process_full_comp_unit (item->per_cu);
2418
2419 item->per_cu->queued = 0;
2420 next_item = item->next;
2421 xfree (item);
2422 }
2423
2424 dwarf2_queue_tail = NULL;
2425 }
2426
2427 /* Free all allocated queue entries. This function only releases anything if
2428 an error was thrown; if the queue was processed then it would have been
2429 freed as we went along. */
2430
2431 static void
2432 dwarf2_release_queue (void *dummy)
2433 {
2434 struct dwarf2_queue_item *item, *last;
2435
2436 item = dwarf2_queue;
2437 while (item)
2438 {
2439 /* Anything still marked queued is likely to be in an
2440 inconsistent state, so discard it. */
2441 if (item->per_cu->queued)
2442 {
2443 if (item->per_cu->cu != NULL)
2444 free_one_cached_comp_unit (item->per_cu->cu);
2445 item->per_cu->queued = 0;
2446 }
2447
2448 last = item;
2449 item = item->next;
2450 xfree (last);
2451 }
2452
2453 dwarf2_queue = dwarf2_queue_tail = NULL;
2454 }
2455
2456 /* Read in full symbols for PST, and anything it depends on. */
2457
2458 static void
2459 psymtab_to_symtab_1 (struct partial_symtab *pst)
2460 {
2461 struct dwarf2_per_cu_data *per_cu;
2462 struct cleanup *back_to;
2463 int i;
2464
2465 for (i = 0; i < pst->number_of_dependencies; i++)
2466 if (!pst->dependencies[i]->readin)
2467 {
2468 /* Inform about additional files that need to be read in. */
2469 if (info_verbose)
2470 {
2471 /* FIXME: i18n: Need to make this a single string. */
2472 fputs_filtered (" ", gdb_stdout);
2473 wrap_here ("");
2474 fputs_filtered ("and ", gdb_stdout);
2475 wrap_here ("");
2476 printf_filtered ("%s...", pst->dependencies[i]->filename);
2477 wrap_here (""); /* Flush output */
2478 gdb_flush (gdb_stdout);
2479 }
2480 psymtab_to_symtab_1 (pst->dependencies[i]);
2481 }
2482
2483 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2484
2485 if (per_cu == NULL)
2486 {
2487 /* It's an include file, no symbols to read for it.
2488 Everything is in the parent symtab. */
2489 pst->readin = 1;
2490 return;
2491 }
2492
2493 back_to = make_cleanup (dwarf2_release_queue, NULL);
2494
2495 queue_comp_unit (per_cu);
2496
2497 process_queue (pst->objfile);
2498
2499 /* Age the cache, releasing compilation units that have not
2500 been used recently. */
2501 age_cached_comp_units ();
2502
2503 do_cleanups (back_to);
2504 }
2505
2506 /* Load the DIEs associated with PST and PER_CU into memory. */
2507
2508 static struct dwarf2_cu *
2509 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2510 {
2511 bfd *abfd = objfile->obfd;
2512 struct dwarf2_cu *cu;
2513 unsigned long offset;
2514 gdb_byte *info_ptr;
2515 struct cleanup *back_to, *free_cu_cleanup;
2516 struct attribute *attr;
2517 CORE_ADDR baseaddr;
2518
2519 /* Set local variables from the partial symbol table info. */
2520 offset = per_cu->offset;
2521
2522 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2523
2524 cu = xmalloc (sizeof (struct dwarf2_cu));
2525 memset (cu, 0, sizeof (struct dwarf2_cu));
2526
2527 /* If an error occurs while loading, release our storage. */
2528 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2529
2530 cu->objfile = objfile;
2531
2532 /* read in the comp_unit header */
2533 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2534
2535 /* Read the abbrevs for this compilation unit */
2536 dwarf2_read_abbrevs (abfd, cu);
2537 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2538
2539 cu->header.offset = offset;
2540
2541 cu->per_cu = per_cu;
2542 per_cu->cu = cu;
2543
2544 /* We use this obstack for block values in dwarf_alloc_block. */
2545 obstack_init (&cu->comp_unit_obstack);
2546
2547 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2548
2549 /* We try not to read any attributes in this function, because not
2550 all objfiles needed for references have been loaded yet, and symbol
2551 table processing isn't initialized. But we have to set the CU language,
2552 or we won't be able to build types correctly. */
2553 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2554 if (attr)
2555 set_cu_language (DW_UNSND (attr), cu);
2556 else
2557 set_cu_language (language_minimal, cu);
2558
2559 do_cleanups (back_to);
2560
2561 /* We've successfully allocated this compilation unit. Let our caller
2562 clean it up when finished with it. */
2563 discard_cleanups (free_cu_cleanup);
2564
2565 return cu;
2566 }
2567
2568 /* Generate full symbol information for PST and CU, whose DIEs have
2569 already been loaded into memory. */
2570
2571 static void
2572 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2573 {
2574 struct partial_symtab *pst = per_cu->psymtab;
2575 struct dwarf2_cu *cu = per_cu->cu;
2576 struct objfile *objfile = pst->objfile;
2577 bfd *abfd = objfile->obfd;
2578 CORE_ADDR lowpc, highpc;
2579 struct symtab *symtab;
2580 struct cleanup *back_to;
2581 struct attribute *attr;
2582 CORE_ADDR baseaddr;
2583
2584 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2585
2586 /* We're in the global namespace. */
2587 processing_current_prefix = "";
2588
2589 buildsym_init ();
2590 back_to = make_cleanup (really_free_pendings, NULL);
2591
2592 cu->list_in_scope = &file_symbols;
2593
2594 /* Find the base address of the compilation unit for range lists and
2595 location lists. It will normally be specified by DW_AT_low_pc.
2596 In DWARF-3 draft 4, the base address could be overridden by
2597 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2598 compilation units with discontinuous ranges. */
2599
2600 cu->header.base_known = 0;
2601 cu->header.base_address = 0;
2602
2603 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2604 if (attr)
2605 {
2606 cu->header.base_address = DW_ADDR (attr);
2607 cu->header.base_known = 1;
2608 }
2609 else
2610 {
2611 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2612 if (attr)
2613 {
2614 cu->header.base_address = DW_ADDR (attr);
2615 cu->header.base_known = 1;
2616 }
2617 }
2618
2619 /* Do line number decoding in read_file_scope () */
2620 process_die (cu->dies, cu);
2621
2622 /* Some compilers don't define a DW_AT_high_pc attribute for the
2623 compilation unit. If the DW_AT_high_pc is missing, synthesize
2624 it, by scanning the DIE's below the compilation unit. */
2625 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2626
2627 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2628
2629 /* Set symtab language to language from DW_AT_language.
2630 If the compilation is from a C file generated by language preprocessors,
2631 do not set the language if it was already deduced by start_subfile. */
2632 if (symtab != NULL
2633 && !(cu->language == language_c && symtab->language != language_c))
2634 {
2635 symtab->language = cu->language;
2636 }
2637 pst->symtab = symtab;
2638 pst->readin = 1;
2639
2640 do_cleanups (back_to);
2641 }
2642
2643 /* Process a die and its children. */
2644
2645 static void
2646 process_die (struct die_info *die, struct dwarf2_cu *cu)
2647 {
2648 switch (die->tag)
2649 {
2650 case DW_TAG_padding:
2651 break;
2652 case DW_TAG_compile_unit:
2653 read_file_scope (die, cu);
2654 break;
2655 case DW_TAG_subprogram:
2656 read_subroutine_type (die, cu);
2657 read_func_scope (die, cu);
2658 break;
2659 case DW_TAG_inlined_subroutine:
2660 /* FIXME: These are ignored for now.
2661 They could be used to set breakpoints on all inlined instances
2662 of a function and make GDB `next' properly over inlined functions. */
2663 break;
2664 case DW_TAG_lexical_block:
2665 case DW_TAG_try_block:
2666 case DW_TAG_catch_block:
2667 read_lexical_block_scope (die, cu);
2668 break;
2669 case DW_TAG_class_type:
2670 case DW_TAG_structure_type:
2671 case DW_TAG_union_type:
2672 read_structure_type (die, cu);
2673 process_structure_scope (die, cu);
2674 break;
2675 case DW_TAG_enumeration_type:
2676 read_enumeration_type (die, cu);
2677 process_enumeration_scope (die, cu);
2678 break;
2679
2680 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2681 a symbol or process any children. Therefore it doesn't do anything
2682 that won't be done on-demand by read_type_die. */
2683 case DW_TAG_subroutine_type:
2684 read_subroutine_type (die, cu);
2685 break;
2686 case DW_TAG_set_type:
2687 read_set_type (die, cu);
2688 break;
2689 case DW_TAG_array_type:
2690 read_array_type (die, cu);
2691 break;
2692 case DW_TAG_pointer_type:
2693 read_tag_pointer_type (die, cu);
2694 break;
2695 case DW_TAG_ptr_to_member_type:
2696 read_tag_ptr_to_member_type (die, cu);
2697 break;
2698 case DW_TAG_reference_type:
2699 read_tag_reference_type (die, cu);
2700 break;
2701 case DW_TAG_string_type:
2702 read_tag_string_type (die, cu);
2703 break;
2704 /* END FIXME */
2705
2706 case DW_TAG_base_type:
2707 read_base_type (die, cu);
2708 /* Add a typedef symbol for the type definition, if it has a
2709 DW_AT_name. */
2710 new_symbol (die, die->type, cu);
2711 break;
2712 case DW_TAG_subrange_type:
2713 read_subrange_type (die, cu);
2714 /* Add a typedef symbol for the type definition, if it has a
2715 DW_AT_name. */
2716 new_symbol (die, die->type, cu);
2717 break;
2718 case DW_TAG_common_block:
2719 read_common_block (die, cu);
2720 break;
2721 case DW_TAG_common_inclusion:
2722 break;
2723 case DW_TAG_namespace:
2724 processing_has_namespace_info = 1;
2725 read_namespace (die, cu);
2726 break;
2727 case DW_TAG_imported_declaration:
2728 case DW_TAG_imported_module:
2729 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2730 information contained in these. DW_TAG_imported_declaration
2731 dies shouldn't have children; DW_TAG_imported_module dies
2732 shouldn't in the C++ case, but conceivably could in the
2733 Fortran case, so we'll have to replace this gdb_assert if
2734 Fortran compilers start generating that info. */
2735 processing_has_namespace_info = 1;
2736 gdb_assert (die->child == NULL);
2737 break;
2738 default:
2739 new_symbol (die, NULL, cu);
2740 break;
2741 }
2742 }
2743
2744 static void
2745 initialize_cu_func_list (struct dwarf2_cu *cu)
2746 {
2747 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2748 }
2749
2750 static void
2751 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2752 {
2753 struct objfile *objfile = cu->objfile;
2754 struct comp_unit_head *cu_header = &cu->header;
2755 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2756 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2757 CORE_ADDR highpc = ((CORE_ADDR) 0);
2758 struct attribute *attr;
2759 char *name = "<unknown>";
2760 char *comp_dir = NULL;
2761 struct die_info *child_die;
2762 bfd *abfd = objfile->obfd;
2763 struct line_header *line_header = 0;
2764 CORE_ADDR baseaddr;
2765
2766 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2767
2768 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2769
2770 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2771 from finish_block. */
2772 if (lowpc == ((CORE_ADDR) -1))
2773 lowpc = highpc;
2774 lowpc += baseaddr;
2775 highpc += baseaddr;
2776
2777 attr = dwarf2_attr (die, DW_AT_name, cu);
2778 if (attr)
2779 {
2780 name = DW_STRING (attr);
2781 }
2782 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2783 if (attr)
2784 {
2785 comp_dir = DW_STRING (attr);
2786 if (comp_dir)
2787 {
2788 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2789 directory, get rid of it. */
2790 char *cp = strchr (comp_dir, ':');
2791
2792 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2793 comp_dir = cp + 1;
2794 }
2795 }
2796
2797 attr = dwarf2_attr (die, DW_AT_language, cu);
2798 if (attr)
2799 {
2800 set_cu_language (DW_UNSND (attr), cu);
2801 }
2802
2803 attr = dwarf2_attr (die, DW_AT_producer, cu);
2804 if (attr)
2805 cu->producer = DW_STRING (attr);
2806
2807 /* We assume that we're processing GCC output. */
2808 processing_gcc_compilation = 2;
2809 #if 0
2810 /* FIXME:Do something here. */
2811 if (dip->at_producer != NULL)
2812 {
2813 handle_producer (dip->at_producer);
2814 }
2815 #endif
2816
2817 /* The compilation unit may be in a different language or objfile,
2818 zero out all remembered fundamental types. */
2819 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2820
2821 start_symtab (name, comp_dir, lowpc);
2822 record_debugformat ("DWARF 2");
2823
2824 initialize_cu_func_list (cu);
2825
2826 /* Process all dies in compilation unit. */
2827 if (die->child != NULL)
2828 {
2829 child_die = die->child;
2830 while (child_die && child_die->tag)
2831 {
2832 process_die (child_die, cu);
2833 child_die = sibling_die (child_die);
2834 }
2835 }
2836
2837 /* Decode line number information if present. */
2838 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2839 if (attr)
2840 {
2841 unsigned int line_offset = DW_UNSND (attr);
2842 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2843 if (line_header)
2844 {
2845 make_cleanup ((make_cleanup_ftype *) free_line_header,
2846 (void *) line_header);
2847 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2848 }
2849 }
2850
2851 /* Decode macro information, if present. Dwarf 2 macro information
2852 refers to information in the line number info statement program
2853 header, so we can only read it if we've read the header
2854 successfully. */
2855 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2856 if (attr && line_header)
2857 {
2858 unsigned int macro_offset = DW_UNSND (attr);
2859 dwarf_decode_macros (line_header, macro_offset,
2860 comp_dir, abfd, cu);
2861 }
2862 do_cleanups (back_to);
2863 }
2864
2865 static void
2866 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2867 struct dwarf2_cu *cu)
2868 {
2869 struct function_range *thisfn;
2870
2871 thisfn = (struct function_range *)
2872 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2873 thisfn->name = name;
2874 thisfn->lowpc = lowpc;
2875 thisfn->highpc = highpc;
2876 thisfn->seen_line = 0;
2877 thisfn->next = NULL;
2878
2879 if (cu->last_fn == NULL)
2880 cu->first_fn = thisfn;
2881 else
2882 cu->last_fn->next = thisfn;
2883
2884 cu->last_fn = thisfn;
2885 }
2886
2887 static void
2888 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2889 {
2890 struct objfile *objfile = cu->objfile;
2891 struct context_stack *new;
2892 CORE_ADDR lowpc;
2893 CORE_ADDR highpc;
2894 struct die_info *child_die;
2895 struct attribute *attr;
2896 char *name;
2897 const char *previous_prefix = processing_current_prefix;
2898 struct cleanup *back_to = NULL;
2899 CORE_ADDR baseaddr;
2900
2901 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2902
2903 name = dwarf2_linkage_name (die, cu);
2904
2905 /* Ignore functions with missing or empty names and functions with
2906 missing or invalid low and high pc attributes. */
2907 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2908 return;
2909
2910 if (cu->language == language_cplus
2911 || cu->language == language_java)
2912 {
2913 struct die_info *spec_die = die_specification (die, cu);
2914
2915 /* NOTE: carlton/2004-01-23: We have to be careful in the
2916 presence of DW_AT_specification. For example, with GCC 3.4,
2917 given the code
2918
2919 namespace N {
2920 void foo() {
2921 // Definition of N::foo.
2922 }
2923 }
2924
2925 then we'll have a tree of DIEs like this:
2926
2927 1: DW_TAG_compile_unit
2928 2: DW_TAG_namespace // N
2929 3: DW_TAG_subprogram // declaration of N::foo
2930 4: DW_TAG_subprogram // definition of N::foo
2931 DW_AT_specification // refers to die #3
2932
2933 Thus, when processing die #4, we have to pretend that we're
2934 in the context of its DW_AT_specification, namely the contex
2935 of die #3. */
2936
2937 if (spec_die != NULL)
2938 {
2939 char *specification_prefix = determine_prefix (spec_die, cu);
2940 processing_current_prefix = specification_prefix;
2941 back_to = make_cleanup (xfree, specification_prefix);
2942 }
2943 }
2944
2945 lowpc += baseaddr;
2946 highpc += baseaddr;
2947
2948 /* Record the function range for dwarf_decode_lines. */
2949 add_to_cu_func_list (name, lowpc, highpc, cu);
2950
2951 new = push_context (0, lowpc);
2952 new->name = new_symbol (die, die->type, cu);
2953
2954 /* If there is a location expression for DW_AT_frame_base, record
2955 it. */
2956 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2957 if (attr)
2958 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2959 expression is being recorded directly in the function's symbol
2960 and not in a separate frame-base object. I guess this hack is
2961 to avoid adding some sort of frame-base adjunct/annex to the
2962 function's symbol :-(. The problem with doing this is that it
2963 results in a function symbol with a location expression that
2964 has nothing to do with the location of the function, ouch! The
2965 relationship should be: a function's symbol has-a frame base; a
2966 frame-base has-a location expression. */
2967 dwarf2_symbol_mark_computed (attr, new->name, cu);
2968
2969 cu->list_in_scope = &local_symbols;
2970
2971 if (die->child != NULL)
2972 {
2973 child_die = die->child;
2974 while (child_die && child_die->tag)
2975 {
2976 process_die (child_die, cu);
2977 child_die = sibling_die (child_die);
2978 }
2979 }
2980
2981 new = pop_context ();
2982 /* Make a block for the local symbols within. */
2983 finish_block (new->name, &local_symbols, new->old_blocks,
2984 lowpc, highpc, objfile);
2985
2986 /* In C++, we can have functions nested inside functions (e.g., when
2987 a function declares a class that has methods). This means that
2988 when we finish processing a function scope, we may need to go
2989 back to building a containing block's symbol lists. */
2990 local_symbols = new->locals;
2991 param_symbols = new->params;
2992
2993 /* If we've finished processing a top-level function, subsequent
2994 symbols go in the file symbol list. */
2995 if (outermost_context_p ())
2996 cu->list_in_scope = &file_symbols;
2997
2998 processing_current_prefix = previous_prefix;
2999 if (back_to != NULL)
3000 do_cleanups (back_to);
3001 }
3002
3003 /* Process all the DIES contained within a lexical block scope. Start
3004 a new scope, process the dies, and then close the scope. */
3005
3006 static void
3007 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3008 {
3009 struct objfile *objfile = cu->objfile;
3010 struct context_stack *new;
3011 CORE_ADDR lowpc, highpc;
3012 struct die_info *child_die;
3013 CORE_ADDR baseaddr;
3014
3015 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3016
3017 /* Ignore blocks with missing or invalid low and high pc attributes. */
3018 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3019 as multiple lexical blocks? Handling children in a sane way would
3020 be nasty. Might be easier to properly extend generic blocks to
3021 describe ranges. */
3022 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3023 return;
3024 lowpc += baseaddr;
3025 highpc += baseaddr;
3026
3027 push_context (0, lowpc);
3028 if (die->child != NULL)
3029 {
3030 child_die = die->child;
3031 while (child_die && child_die->tag)
3032 {
3033 process_die (child_die, cu);
3034 child_die = sibling_die (child_die);
3035 }
3036 }
3037 new = pop_context ();
3038
3039 if (local_symbols != NULL)
3040 {
3041 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3042 highpc, objfile);
3043 }
3044 local_symbols = new->locals;
3045 }
3046
3047 /* Get low and high pc attributes from a die. Return 1 if the attributes
3048 are present and valid, otherwise, return 0. Return -1 if the range is
3049 discontinuous, i.e. derived from DW_AT_ranges information. */
3050 static int
3051 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3052 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3053 {
3054 struct objfile *objfile = cu->objfile;
3055 struct comp_unit_head *cu_header = &cu->header;
3056 struct attribute *attr;
3057 bfd *obfd = objfile->obfd;
3058 CORE_ADDR low = 0;
3059 CORE_ADDR high = 0;
3060 int ret = 0;
3061
3062 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3063 if (attr)
3064 {
3065 high = DW_ADDR (attr);
3066 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3067 if (attr)
3068 low = DW_ADDR (attr);
3069 else
3070 /* Found high w/o low attribute. */
3071 return 0;
3072
3073 /* Found consecutive range of addresses. */
3074 ret = 1;
3075 }
3076 else
3077 {
3078 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3079 if (attr != NULL)
3080 {
3081 unsigned int addr_size = cu_header->addr_size;
3082 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3083 /* Value of the DW_AT_ranges attribute is the offset in the
3084 .debug_ranges section. */
3085 unsigned int offset = DW_UNSND (attr);
3086 /* Base address selection entry. */
3087 CORE_ADDR base;
3088 int found_base;
3089 unsigned int dummy;
3090 gdb_byte *buffer;
3091 CORE_ADDR marker;
3092 int low_set;
3093
3094 found_base = cu_header->base_known;
3095 base = cu_header->base_address;
3096
3097 if (offset >= dwarf2_per_objfile->ranges_size)
3098 {
3099 complaint (&symfile_complaints,
3100 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3101 offset);
3102 return 0;
3103 }
3104 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3105
3106 /* Read in the largest possible address. */
3107 marker = read_address (obfd, buffer, cu, &dummy);
3108 if ((marker & mask) == mask)
3109 {
3110 /* If we found the largest possible address, then
3111 read the base address. */
3112 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3113 buffer += 2 * addr_size;
3114 offset += 2 * addr_size;
3115 found_base = 1;
3116 }
3117
3118 low_set = 0;
3119
3120 while (1)
3121 {
3122 CORE_ADDR range_beginning, range_end;
3123
3124 range_beginning = read_address (obfd, buffer, cu, &dummy);
3125 buffer += addr_size;
3126 range_end = read_address (obfd, buffer, cu, &dummy);
3127 buffer += addr_size;
3128 offset += 2 * addr_size;
3129
3130 /* An end of list marker is a pair of zero addresses. */
3131 if (range_beginning == 0 && range_end == 0)
3132 /* Found the end of list entry. */
3133 break;
3134
3135 /* Each base address selection entry is a pair of 2 values.
3136 The first is the largest possible address, the second is
3137 the base address. Check for a base address here. */
3138 if ((range_beginning & mask) == mask)
3139 {
3140 /* If we found the largest possible address, then
3141 read the base address. */
3142 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3143 found_base = 1;
3144 continue;
3145 }
3146
3147 if (!found_base)
3148 {
3149 /* We have no valid base address for the ranges
3150 data. */
3151 complaint (&symfile_complaints,
3152 _("Invalid .debug_ranges data (no base address)"));
3153 return 0;
3154 }
3155
3156 range_beginning += base;
3157 range_end += base;
3158
3159 /* FIXME: This is recording everything as a low-high
3160 segment of consecutive addresses. We should have a
3161 data structure for discontiguous block ranges
3162 instead. */
3163 if (! low_set)
3164 {
3165 low = range_beginning;
3166 high = range_end;
3167 low_set = 1;
3168 }
3169 else
3170 {
3171 if (range_beginning < low)
3172 low = range_beginning;
3173 if (range_end > high)
3174 high = range_end;
3175 }
3176 }
3177
3178 if (! low_set)
3179 /* If the first entry is an end-of-list marker, the range
3180 describes an empty scope, i.e. no instructions. */
3181 return 0;
3182
3183 ret = -1;
3184 }
3185 }
3186
3187 if (high < low)
3188 return 0;
3189
3190 /* When using the GNU linker, .gnu.linkonce. sections are used to
3191 eliminate duplicate copies of functions and vtables and such.
3192 The linker will arbitrarily choose one and discard the others.
3193 The AT_*_pc values for such functions refer to local labels in
3194 these sections. If the section from that file was discarded, the
3195 labels are not in the output, so the relocs get a value of 0.
3196 If this is a discarded function, mark the pc bounds as invalid,
3197 so that GDB will ignore it. */
3198 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3199 return 0;
3200
3201 *lowpc = low;
3202 *highpc = high;
3203 return ret;
3204 }
3205
3206 /* Get the low and high pc's represented by the scope DIE, and store
3207 them in *LOWPC and *HIGHPC. If the correct values can't be
3208 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3209
3210 static void
3211 get_scope_pc_bounds (struct die_info *die,
3212 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3213 struct dwarf2_cu *cu)
3214 {
3215 CORE_ADDR best_low = (CORE_ADDR) -1;
3216 CORE_ADDR best_high = (CORE_ADDR) 0;
3217 CORE_ADDR current_low, current_high;
3218
3219 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3220 {
3221 best_low = current_low;
3222 best_high = current_high;
3223 }
3224 else
3225 {
3226 struct die_info *child = die->child;
3227
3228 while (child && child->tag)
3229 {
3230 switch (child->tag) {
3231 case DW_TAG_subprogram:
3232 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3233 {
3234 best_low = min (best_low, current_low);
3235 best_high = max (best_high, current_high);
3236 }
3237 break;
3238 case DW_TAG_namespace:
3239 /* FIXME: carlton/2004-01-16: Should we do this for
3240 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3241 that current GCC's always emit the DIEs corresponding
3242 to definitions of methods of classes as children of a
3243 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3244 the DIEs giving the declarations, which could be
3245 anywhere). But I don't see any reason why the
3246 standards says that they have to be there. */
3247 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3248
3249 if (current_low != ((CORE_ADDR) -1))
3250 {
3251 best_low = min (best_low, current_low);
3252 best_high = max (best_high, current_high);
3253 }
3254 break;
3255 default:
3256 /* Ignore. */
3257 break;
3258 }
3259
3260 child = sibling_die (child);
3261 }
3262 }
3263
3264 *lowpc = best_low;
3265 *highpc = best_high;
3266 }
3267
3268 /* Add an aggregate field to the field list. */
3269
3270 static void
3271 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3272 struct dwarf2_cu *cu)
3273 {
3274 struct objfile *objfile = cu->objfile;
3275 struct nextfield *new_field;
3276 struct attribute *attr;
3277 struct field *fp;
3278 char *fieldname = "";
3279
3280 /* Allocate a new field list entry and link it in. */
3281 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3282 make_cleanup (xfree, new_field);
3283 memset (new_field, 0, sizeof (struct nextfield));
3284 new_field->next = fip->fields;
3285 fip->fields = new_field;
3286 fip->nfields++;
3287
3288 /* Handle accessibility and virtuality of field.
3289 The default accessibility for members is public, the default
3290 accessibility for inheritance is private. */
3291 if (die->tag != DW_TAG_inheritance)
3292 new_field->accessibility = DW_ACCESS_public;
3293 else
3294 new_field->accessibility = DW_ACCESS_private;
3295 new_field->virtuality = DW_VIRTUALITY_none;
3296
3297 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3298 if (attr)
3299 new_field->accessibility = DW_UNSND (attr);
3300 if (new_field->accessibility != DW_ACCESS_public)
3301 fip->non_public_fields = 1;
3302 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3303 if (attr)
3304 new_field->virtuality = DW_UNSND (attr);
3305
3306 fp = &new_field->field;
3307
3308 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3309 {
3310 /* Data member other than a C++ static data member. */
3311
3312 /* Get type of field. */
3313 fp->type = die_type (die, cu);
3314
3315 FIELD_STATIC_KIND (*fp) = 0;
3316
3317 /* Get bit size of field (zero if none). */
3318 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3319 if (attr)
3320 {
3321 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3322 }
3323 else
3324 {
3325 FIELD_BITSIZE (*fp) = 0;
3326 }
3327
3328 /* Get bit offset of field. */
3329 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3330 if (attr)
3331 {
3332 FIELD_BITPOS (*fp) =
3333 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3334 }
3335 else
3336 FIELD_BITPOS (*fp) = 0;
3337 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3338 if (attr)
3339 {
3340 if (BITS_BIG_ENDIAN)
3341 {
3342 /* For big endian bits, the DW_AT_bit_offset gives the
3343 additional bit offset from the MSB of the containing
3344 anonymous object to the MSB of the field. We don't
3345 have to do anything special since we don't need to
3346 know the size of the anonymous object. */
3347 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3348 }
3349 else
3350 {
3351 /* For little endian bits, compute the bit offset to the
3352 MSB of the anonymous object, subtract off the number of
3353 bits from the MSB of the field to the MSB of the
3354 object, and then subtract off the number of bits of
3355 the field itself. The result is the bit offset of
3356 the LSB of the field. */
3357 int anonymous_size;
3358 int bit_offset = DW_UNSND (attr);
3359
3360 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3361 if (attr)
3362 {
3363 /* The size of the anonymous object containing
3364 the bit field is explicit, so use the
3365 indicated size (in bytes). */
3366 anonymous_size = DW_UNSND (attr);
3367 }
3368 else
3369 {
3370 /* The size of the anonymous object containing
3371 the bit field must be inferred from the type
3372 attribute of the data member containing the
3373 bit field. */
3374 anonymous_size = TYPE_LENGTH (fp->type);
3375 }
3376 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3377 - bit_offset - FIELD_BITSIZE (*fp);
3378 }
3379 }
3380
3381 /* Get name of field. */
3382 attr = dwarf2_attr (die, DW_AT_name, cu);
3383 if (attr && DW_STRING (attr))
3384 fieldname = DW_STRING (attr);
3385
3386 /* The name is already allocated along with this objfile, so we don't
3387 need to duplicate it for the type. */
3388 fp->name = fieldname;
3389
3390 /* Change accessibility for artificial fields (e.g. virtual table
3391 pointer or virtual base class pointer) to private. */
3392 if (dwarf2_attr (die, DW_AT_artificial, cu))
3393 {
3394 new_field->accessibility = DW_ACCESS_private;
3395 fip->non_public_fields = 1;
3396 }
3397 }
3398 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3399 {
3400 /* C++ static member. */
3401
3402 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3403 is a declaration, but all versions of G++ as of this writing
3404 (so through at least 3.2.1) incorrectly generate
3405 DW_TAG_variable tags. */
3406
3407 char *physname;
3408
3409 /* Get name of field. */
3410 attr = dwarf2_attr (die, DW_AT_name, cu);
3411 if (attr && DW_STRING (attr))
3412 fieldname = DW_STRING (attr);
3413 else
3414 return;
3415
3416 /* Get physical name. */
3417 physname = dwarf2_linkage_name (die, cu);
3418
3419 /* The name is already allocated along with this objfile, so we don't
3420 need to duplicate it for the type. */
3421 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3422 FIELD_TYPE (*fp) = die_type (die, cu);
3423 FIELD_NAME (*fp) = fieldname;
3424 }
3425 else if (die->tag == DW_TAG_inheritance)
3426 {
3427 /* C++ base class field. */
3428 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3429 if (attr)
3430 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3431 * bits_per_byte);
3432 FIELD_BITSIZE (*fp) = 0;
3433 FIELD_STATIC_KIND (*fp) = 0;
3434 FIELD_TYPE (*fp) = die_type (die, cu);
3435 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3436 fip->nbaseclasses++;
3437 }
3438 }
3439
3440 /* Create the vector of fields, and attach it to the type. */
3441
3442 static void
3443 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3444 struct dwarf2_cu *cu)
3445 {
3446 int nfields = fip->nfields;
3447
3448 /* Record the field count, allocate space for the array of fields,
3449 and create blank accessibility bitfields if necessary. */
3450 TYPE_NFIELDS (type) = nfields;
3451 TYPE_FIELDS (type) = (struct field *)
3452 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3453 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3454
3455 if (fip->non_public_fields)
3456 {
3457 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3458
3459 TYPE_FIELD_PRIVATE_BITS (type) =
3460 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3461 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3462
3463 TYPE_FIELD_PROTECTED_BITS (type) =
3464 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3465 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3466
3467 TYPE_FIELD_IGNORE_BITS (type) =
3468 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3469 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3470 }
3471
3472 /* If the type has baseclasses, allocate and clear a bit vector for
3473 TYPE_FIELD_VIRTUAL_BITS. */
3474 if (fip->nbaseclasses)
3475 {
3476 int num_bytes = B_BYTES (fip->nbaseclasses);
3477 unsigned char *pointer;
3478
3479 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3480 pointer = TYPE_ALLOC (type, num_bytes);
3481 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3482 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3483 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3484 }
3485
3486 /* Copy the saved-up fields into the field vector. Start from the head
3487 of the list, adding to the tail of the field array, so that they end
3488 up in the same order in the array in which they were added to the list. */
3489 while (nfields-- > 0)
3490 {
3491 TYPE_FIELD (type, nfields) = fip->fields->field;
3492 switch (fip->fields->accessibility)
3493 {
3494 case DW_ACCESS_private:
3495 SET_TYPE_FIELD_PRIVATE (type, nfields);
3496 break;
3497
3498 case DW_ACCESS_protected:
3499 SET_TYPE_FIELD_PROTECTED (type, nfields);
3500 break;
3501
3502 case DW_ACCESS_public:
3503 break;
3504
3505 default:
3506 /* Unknown accessibility. Complain and treat it as public. */
3507 {
3508 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3509 fip->fields->accessibility);
3510 }
3511 break;
3512 }
3513 if (nfields < fip->nbaseclasses)
3514 {
3515 switch (fip->fields->virtuality)
3516 {
3517 case DW_VIRTUALITY_virtual:
3518 case DW_VIRTUALITY_pure_virtual:
3519 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3520 break;
3521 }
3522 }
3523 fip->fields = fip->fields->next;
3524 }
3525 }
3526
3527 /* Add a member function to the proper fieldlist. */
3528
3529 static void
3530 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3531 struct type *type, struct dwarf2_cu *cu)
3532 {
3533 struct objfile *objfile = cu->objfile;
3534 struct attribute *attr;
3535 struct fnfieldlist *flp;
3536 int i;
3537 struct fn_field *fnp;
3538 char *fieldname;
3539 char *physname;
3540 struct nextfnfield *new_fnfield;
3541
3542 /* Get name of member function. */
3543 attr = dwarf2_attr (die, DW_AT_name, cu);
3544 if (attr && DW_STRING (attr))
3545 fieldname = DW_STRING (attr);
3546 else
3547 return;
3548
3549 /* Get the mangled name. */
3550 physname = dwarf2_linkage_name (die, cu);
3551
3552 /* Look up member function name in fieldlist. */
3553 for (i = 0; i < fip->nfnfields; i++)
3554 {
3555 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3556 break;
3557 }
3558
3559 /* Create new list element if necessary. */
3560 if (i < fip->nfnfields)
3561 flp = &fip->fnfieldlists[i];
3562 else
3563 {
3564 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3565 {
3566 fip->fnfieldlists = (struct fnfieldlist *)
3567 xrealloc (fip->fnfieldlists,
3568 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3569 * sizeof (struct fnfieldlist));
3570 if (fip->nfnfields == 0)
3571 make_cleanup (free_current_contents, &fip->fnfieldlists);
3572 }
3573 flp = &fip->fnfieldlists[fip->nfnfields];
3574 flp->name = fieldname;
3575 flp->length = 0;
3576 flp->head = NULL;
3577 fip->nfnfields++;
3578 }
3579
3580 /* Create a new member function field and chain it to the field list
3581 entry. */
3582 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3583 make_cleanup (xfree, new_fnfield);
3584 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3585 new_fnfield->next = flp->head;
3586 flp->head = new_fnfield;
3587 flp->length++;
3588
3589 /* Fill in the member function field info. */
3590 fnp = &new_fnfield->fnfield;
3591 /* The name is already allocated along with this objfile, so we don't
3592 need to duplicate it for the type. */
3593 fnp->physname = physname ? physname : "";
3594 fnp->type = alloc_type (objfile);
3595 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3596 {
3597 int nparams = TYPE_NFIELDS (die->type);
3598
3599 /* TYPE is the domain of this method, and DIE->TYPE is the type
3600 of the method itself (TYPE_CODE_METHOD). */
3601 smash_to_method_type (fnp->type, type,
3602 TYPE_TARGET_TYPE (die->type),
3603 TYPE_FIELDS (die->type),
3604 TYPE_NFIELDS (die->type),
3605 TYPE_VARARGS (die->type));
3606
3607 /* Handle static member functions.
3608 Dwarf2 has no clean way to discern C++ static and non-static
3609 member functions. G++ helps GDB by marking the first
3610 parameter for non-static member functions (which is the
3611 this pointer) as artificial. We obtain this information
3612 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3613 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3614 fnp->voffset = VOFFSET_STATIC;
3615 }
3616 else
3617 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3618 physname);
3619
3620 /* Get fcontext from DW_AT_containing_type if present. */
3621 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3622 fnp->fcontext = die_containing_type (die, cu);
3623
3624 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3625 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3626
3627 /* Get accessibility. */
3628 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3629 if (attr)
3630 {
3631 switch (DW_UNSND (attr))
3632 {
3633 case DW_ACCESS_private:
3634 fnp->is_private = 1;
3635 break;
3636 case DW_ACCESS_protected:
3637 fnp->is_protected = 1;
3638 break;
3639 }
3640 }
3641
3642 /* Check for artificial methods. */
3643 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3644 if (attr && DW_UNSND (attr) != 0)
3645 fnp->is_artificial = 1;
3646
3647 /* Get index in virtual function table if it is a virtual member function. */
3648 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3649 if (attr)
3650 {
3651 /* Support the .debug_loc offsets */
3652 if (attr_form_is_block (attr))
3653 {
3654 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3655 }
3656 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3657 {
3658 dwarf2_complex_location_expr_complaint ();
3659 }
3660 else
3661 {
3662 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3663 fieldname);
3664 }
3665 }
3666 }
3667
3668 /* Create the vector of member function fields, and attach it to the type. */
3669
3670 static void
3671 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3672 struct dwarf2_cu *cu)
3673 {
3674 struct fnfieldlist *flp;
3675 int total_length = 0;
3676 int i;
3677
3678 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3679 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3680 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3681
3682 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3683 {
3684 struct nextfnfield *nfp = flp->head;
3685 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3686 int k;
3687
3688 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3689 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3690 fn_flp->fn_fields = (struct fn_field *)
3691 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3692 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3693 fn_flp->fn_fields[k] = nfp->fnfield;
3694
3695 total_length += flp->length;
3696 }
3697
3698 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3699 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3700 }
3701
3702 /* Returns non-zero if NAME is the name of a vtable member in CU's
3703 language, zero otherwise. */
3704 static int
3705 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3706 {
3707 static const char vptr[] = "_vptr";
3708 static const char vtable[] = "vtable";
3709
3710 /* Look for the C++ and Java forms of the vtable. */
3711 if ((cu->language == language_java
3712 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3713 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3714 && is_cplus_marker (name[sizeof (vptr) - 1])))
3715 return 1;
3716
3717 return 0;
3718 }
3719
3720 /* GCC outputs unnamed structures that are really pointers to member
3721 functions, with the ABI-specified layout. If DIE (from CU) describes
3722 such a structure, set its type, and return nonzero. Otherwise return
3723 zero.
3724
3725 GCC shouldn't do this; it should just output pointer to member DIEs.
3726 This is GCC PR debug/28767. */
3727
3728 static int
3729 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3730 {
3731 struct objfile *objfile = cu->objfile;
3732 struct type *type;
3733 struct die_info *pfn_die, *delta_die;
3734 struct attribute *pfn_name, *delta_name;
3735 struct type *pfn_type, *domain_type;
3736
3737 /* Check for a structure with no name and two children. */
3738 if (die->tag != DW_TAG_structure_type
3739 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3740 || die->child == NULL
3741 || die->child->sibling == NULL
3742 || (die->child->sibling->sibling != NULL
3743 && die->child->sibling->sibling->tag != DW_TAG_padding))
3744 return 0;
3745
3746 /* Check for __pfn and __delta members. */
3747 pfn_die = die->child;
3748 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3749 if (pfn_die->tag != DW_TAG_member
3750 || pfn_name == NULL
3751 || DW_STRING (pfn_name) == NULL
3752 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3753 return 0;
3754
3755 delta_die = pfn_die->sibling;
3756 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3757 if (delta_die->tag != DW_TAG_member
3758 || delta_name == NULL
3759 || DW_STRING (delta_name) == NULL
3760 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3761 return 0;
3762
3763 /* Find the type of the method. */
3764 pfn_type = die_type (pfn_die, cu);
3765 if (pfn_type == NULL
3766 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3767 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3768 return 0;
3769
3770 /* Look for the "this" argument. */
3771 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3772 if (TYPE_NFIELDS (pfn_type) == 0
3773 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3774 return 0;
3775
3776 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3777 type = alloc_type (objfile);
3778 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3779 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3780 TYPE_VARARGS (pfn_type));
3781 type = lookup_methodptr_type (type);
3782 set_die_type (die, type, cu);
3783
3784 return 1;
3785 }
3786
3787 /* Called when we find the DIE that starts a structure or union scope
3788 (definition) to process all dies that define the members of the
3789 structure or union.
3790
3791 NOTE: we need to call struct_type regardless of whether or not the
3792 DIE has an at_name attribute, since it might be an anonymous
3793 structure or union. This gets the type entered into our set of
3794 user defined types.
3795
3796 However, if the structure is incomplete (an opaque struct/union)
3797 then suppress creating a symbol table entry for it since gdb only
3798 wants to find the one with the complete definition. Note that if
3799 it is complete, we just call new_symbol, which does it's own
3800 checking about whether the struct/union is anonymous or not (and
3801 suppresses creating a symbol table entry itself). */
3802
3803 static void
3804 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3805 {
3806 struct objfile *objfile = cu->objfile;
3807 struct type *type;
3808 struct attribute *attr;
3809 const char *previous_prefix = processing_current_prefix;
3810 struct cleanup *back_to = NULL;
3811
3812 if (die->type)
3813 return;
3814
3815 if (quirk_gcc_member_function_pointer (die, cu))
3816 return;
3817
3818 type = alloc_type (objfile);
3819 INIT_CPLUS_SPECIFIC (type);
3820 attr = dwarf2_attr (die, DW_AT_name, cu);
3821 if (attr && DW_STRING (attr))
3822 {
3823 if (cu->language == language_cplus
3824 || cu->language == language_java)
3825 {
3826 char *new_prefix = determine_class_name (die, cu);
3827 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3828 strlen (new_prefix),
3829 &objfile->objfile_obstack);
3830 back_to = make_cleanup (xfree, new_prefix);
3831 processing_current_prefix = new_prefix;
3832 }
3833 else
3834 {
3835 /* The name is already allocated along with this objfile, so
3836 we don't need to duplicate it for the type. */
3837 TYPE_TAG_NAME (type) = DW_STRING (attr);
3838 }
3839 }
3840
3841 if (die->tag == DW_TAG_structure_type)
3842 {
3843 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3844 }
3845 else if (die->tag == DW_TAG_union_type)
3846 {
3847 TYPE_CODE (type) = TYPE_CODE_UNION;
3848 }
3849 else
3850 {
3851 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3852 in gdbtypes.h. */
3853 TYPE_CODE (type) = TYPE_CODE_CLASS;
3854 }
3855
3856 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3857 if (attr)
3858 {
3859 TYPE_LENGTH (type) = DW_UNSND (attr);
3860 }
3861 else
3862 {
3863 TYPE_LENGTH (type) = 0;
3864 }
3865
3866 if (die_is_declaration (die, cu))
3867 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3868
3869 /* We need to add the type field to the die immediately so we don't
3870 infinitely recurse when dealing with pointers to the structure
3871 type within the structure itself. */
3872 set_die_type (die, type, cu);
3873
3874 if (die->child != NULL && ! die_is_declaration (die, cu))
3875 {
3876 struct field_info fi;
3877 struct die_info *child_die;
3878 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3879
3880 memset (&fi, 0, sizeof (struct field_info));
3881
3882 child_die = die->child;
3883
3884 while (child_die && child_die->tag)
3885 {
3886 if (child_die->tag == DW_TAG_member
3887 || child_die->tag == DW_TAG_variable)
3888 {
3889 /* NOTE: carlton/2002-11-05: A C++ static data member
3890 should be a DW_TAG_member that is a declaration, but
3891 all versions of G++ as of this writing (so through at
3892 least 3.2.1) incorrectly generate DW_TAG_variable
3893 tags for them instead. */
3894 dwarf2_add_field (&fi, child_die, cu);
3895 }
3896 else if (child_die->tag == DW_TAG_subprogram)
3897 {
3898 /* C++ member function. */
3899 read_type_die (child_die, cu);
3900 dwarf2_add_member_fn (&fi, child_die, type, cu);
3901 }
3902 else if (child_die->tag == DW_TAG_inheritance)
3903 {
3904 /* C++ base class field. */
3905 dwarf2_add_field (&fi, child_die, cu);
3906 }
3907 child_die = sibling_die (child_die);
3908 }
3909
3910 /* Attach fields and member functions to the type. */
3911 if (fi.nfields)
3912 dwarf2_attach_fields_to_type (&fi, type, cu);
3913 if (fi.nfnfields)
3914 {
3915 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3916
3917 /* Get the type which refers to the base class (possibly this
3918 class itself) which contains the vtable pointer for the current
3919 class from the DW_AT_containing_type attribute. */
3920
3921 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3922 {
3923 struct type *t = die_containing_type (die, cu);
3924
3925 TYPE_VPTR_BASETYPE (type) = t;
3926 if (type == t)
3927 {
3928 int i;
3929
3930 /* Our own class provides vtbl ptr. */
3931 for (i = TYPE_NFIELDS (t) - 1;
3932 i >= TYPE_N_BASECLASSES (t);
3933 --i)
3934 {
3935 char *fieldname = TYPE_FIELD_NAME (t, i);
3936
3937 if (is_vtable_name (fieldname, cu))
3938 {
3939 TYPE_VPTR_FIELDNO (type) = i;
3940 break;
3941 }
3942 }
3943
3944 /* Complain if virtual function table field not found. */
3945 if (i < TYPE_N_BASECLASSES (t))
3946 complaint (&symfile_complaints,
3947 _("virtual function table pointer not found when defining class '%s'"),
3948 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3949 "");
3950 }
3951 else
3952 {
3953 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3954 }
3955 }
3956 else if (cu->producer
3957 && strncmp (cu->producer,
3958 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3959 {
3960 /* The IBM XLC compiler does not provide direct indication
3961 of the containing type, but the vtable pointer is
3962 always named __vfp. */
3963
3964 int i;
3965
3966 for (i = TYPE_NFIELDS (type) - 1;
3967 i >= TYPE_N_BASECLASSES (type);
3968 --i)
3969 {
3970 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
3971 {
3972 TYPE_VPTR_FIELDNO (type) = i;
3973 TYPE_VPTR_BASETYPE (type) = type;
3974 break;
3975 }
3976 }
3977 }
3978 }
3979
3980 do_cleanups (back_to);
3981 }
3982
3983 processing_current_prefix = previous_prefix;
3984 if (back_to != NULL)
3985 do_cleanups (back_to);
3986 }
3987
3988 static void
3989 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3990 {
3991 struct objfile *objfile = cu->objfile;
3992 const char *previous_prefix = processing_current_prefix;
3993 struct die_info *child_die = die->child;
3994
3995 if (TYPE_TAG_NAME (die->type) != NULL)
3996 processing_current_prefix = TYPE_TAG_NAME (die->type);
3997
3998 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3999 snapshots) has been known to create a die giving a declaration
4000 for a class that has, as a child, a die giving a definition for a
4001 nested class. So we have to process our children even if the
4002 current die is a declaration. Normally, of course, a declaration
4003 won't have any children at all. */
4004
4005 while (child_die != NULL && child_die->tag)
4006 {
4007 if (child_die->tag == DW_TAG_member
4008 || child_die->tag == DW_TAG_variable
4009 || child_die->tag == DW_TAG_inheritance)
4010 {
4011 /* Do nothing. */
4012 }
4013 else
4014 process_die (child_die, cu);
4015
4016 child_die = sibling_die (child_die);
4017 }
4018
4019 if (die->child != NULL && ! die_is_declaration (die, cu))
4020 new_symbol (die, die->type, cu);
4021
4022 processing_current_prefix = previous_prefix;
4023 }
4024
4025 /* Given a DW_AT_enumeration_type die, set its type. We do not
4026 complete the type's fields yet, or create any symbols. */
4027
4028 static void
4029 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
4030 {
4031 struct objfile *objfile = cu->objfile;
4032 struct type *type;
4033 struct attribute *attr;
4034
4035 if (die->type)
4036 return;
4037
4038 type = alloc_type (objfile);
4039
4040 TYPE_CODE (type) = TYPE_CODE_ENUM;
4041 attr = dwarf2_attr (die, DW_AT_name, cu);
4042 if (attr && DW_STRING (attr))
4043 {
4044 char *name = DW_STRING (attr);
4045
4046 if (processing_has_namespace_info)
4047 {
4048 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4049 processing_current_prefix,
4050 name, cu);
4051 }
4052 else
4053 {
4054 /* The name is already allocated along with this objfile, so
4055 we don't need to duplicate it for the type. */
4056 TYPE_TAG_NAME (type) = name;
4057 }
4058 }
4059
4060 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4061 if (attr)
4062 {
4063 TYPE_LENGTH (type) = DW_UNSND (attr);
4064 }
4065 else
4066 {
4067 TYPE_LENGTH (type) = 0;
4068 }
4069
4070 set_die_type (die, type, cu);
4071 }
4072
4073 /* Determine the name of the type represented by DIE, which should be
4074 a named C++ or Java compound type. Return the name in question; the caller
4075 is responsible for xfree()'ing it. */
4076
4077 static char *
4078 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4079 {
4080 struct cleanup *back_to = NULL;
4081 struct die_info *spec_die = die_specification (die, cu);
4082 char *new_prefix = NULL;
4083
4084 /* If this is the definition of a class that is declared by another
4085 die, then processing_current_prefix may not be accurate; see
4086 read_func_scope for a similar example. */
4087 if (spec_die != NULL)
4088 {
4089 char *specification_prefix = determine_prefix (spec_die, cu);
4090 processing_current_prefix = specification_prefix;
4091 back_to = make_cleanup (xfree, specification_prefix);
4092 }
4093
4094 /* If we don't have namespace debug info, guess the name by trying
4095 to demangle the names of members, just like we did in
4096 guess_structure_name. */
4097 if (!processing_has_namespace_info)
4098 {
4099 struct die_info *child;
4100
4101 for (child = die->child;
4102 child != NULL && child->tag != 0;
4103 child = sibling_die (child))
4104 {
4105 if (child->tag == DW_TAG_subprogram)
4106 {
4107 new_prefix
4108 = language_class_name_from_physname (cu->language_defn,
4109 dwarf2_linkage_name
4110 (child, cu));
4111
4112 if (new_prefix != NULL)
4113 break;
4114 }
4115 }
4116 }
4117
4118 if (new_prefix == NULL)
4119 {
4120 const char *name = dwarf2_name (die, cu);
4121 new_prefix = typename_concat (NULL, processing_current_prefix,
4122 name ? name : "<<anonymous>>",
4123 cu);
4124 }
4125
4126 if (back_to != NULL)
4127 do_cleanups (back_to);
4128
4129 return new_prefix;
4130 }
4131
4132 /* Given a pointer to a die which begins an enumeration, process all
4133 the dies that define the members of the enumeration, and create the
4134 symbol for the enumeration type.
4135
4136 NOTE: We reverse the order of the element list. */
4137
4138 static void
4139 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4140 {
4141 struct objfile *objfile = cu->objfile;
4142 struct die_info *child_die;
4143 struct field *fields;
4144 struct attribute *attr;
4145 struct symbol *sym;
4146 int num_fields;
4147 int unsigned_enum = 1;
4148
4149 num_fields = 0;
4150 fields = NULL;
4151 if (die->child != NULL)
4152 {
4153 child_die = die->child;
4154 while (child_die && child_die->tag)
4155 {
4156 if (child_die->tag != DW_TAG_enumerator)
4157 {
4158 process_die (child_die, cu);
4159 }
4160 else
4161 {
4162 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4163 if (attr)
4164 {
4165 sym = new_symbol (child_die, die->type, cu);
4166 if (SYMBOL_VALUE (sym) < 0)
4167 unsigned_enum = 0;
4168
4169 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4170 {
4171 fields = (struct field *)
4172 xrealloc (fields,
4173 (num_fields + DW_FIELD_ALLOC_CHUNK)
4174 * sizeof (struct field));
4175 }
4176
4177 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4178 FIELD_TYPE (fields[num_fields]) = NULL;
4179 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4180 FIELD_BITSIZE (fields[num_fields]) = 0;
4181 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4182
4183 num_fields++;
4184 }
4185 }
4186
4187 child_die = sibling_die (child_die);
4188 }
4189
4190 if (num_fields)
4191 {
4192 TYPE_NFIELDS (die->type) = num_fields;
4193 TYPE_FIELDS (die->type) = (struct field *)
4194 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4195 memcpy (TYPE_FIELDS (die->type), fields,
4196 sizeof (struct field) * num_fields);
4197 xfree (fields);
4198 }
4199 if (unsigned_enum)
4200 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4201 }
4202
4203 new_symbol (die, die->type, cu);
4204 }
4205
4206 /* Extract all information from a DW_TAG_array_type DIE and put it in
4207 the DIE's type field. For now, this only handles one dimensional
4208 arrays. */
4209
4210 static void
4211 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4212 {
4213 struct objfile *objfile = cu->objfile;
4214 struct die_info *child_die;
4215 struct type *type = NULL;
4216 struct type *element_type, *range_type, *index_type;
4217 struct type **range_types = NULL;
4218 struct attribute *attr;
4219 int ndim = 0;
4220 struct cleanup *back_to;
4221
4222 /* Return if we've already decoded this type. */
4223 if (die->type)
4224 {
4225 return;
4226 }
4227
4228 element_type = die_type (die, cu);
4229
4230 /* Irix 6.2 native cc creates array types without children for
4231 arrays with unspecified length. */
4232 if (die->child == NULL)
4233 {
4234 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4235 range_type = create_range_type (NULL, index_type, 0, -1);
4236 set_die_type (die, create_array_type (NULL, element_type, range_type),
4237 cu);
4238 return;
4239 }
4240
4241 back_to = make_cleanup (null_cleanup, NULL);
4242 child_die = die->child;
4243 while (child_die && child_die->tag)
4244 {
4245 if (child_die->tag == DW_TAG_subrange_type)
4246 {
4247 read_subrange_type (child_die, cu);
4248
4249 if (child_die->type != NULL)
4250 {
4251 /* The range type was succesfully read. Save it for
4252 the array type creation. */
4253 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4254 {
4255 range_types = (struct type **)
4256 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4257 * sizeof (struct type *));
4258 if (ndim == 0)
4259 make_cleanup (free_current_contents, &range_types);
4260 }
4261 range_types[ndim++] = child_die->type;
4262 }
4263 }
4264 child_die = sibling_die (child_die);
4265 }
4266
4267 /* Dwarf2 dimensions are output from left to right, create the
4268 necessary array types in backwards order. */
4269
4270 type = element_type;
4271
4272 if (read_array_order (die, cu) == DW_ORD_col_major)
4273 {
4274 int i = 0;
4275 while (i < ndim)
4276 type = create_array_type (NULL, type, range_types[i++]);
4277 }
4278 else
4279 {
4280 while (ndim-- > 0)
4281 type = create_array_type (NULL, type, range_types[ndim]);
4282 }
4283
4284 /* Understand Dwarf2 support for vector types (like they occur on
4285 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4286 array type. This is not part of the Dwarf2/3 standard yet, but a
4287 custom vendor extension. The main difference between a regular
4288 array and the vector variant is that vectors are passed by value
4289 to functions. */
4290 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4291 if (attr)
4292 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4293
4294 attr = dwarf2_attr (die, DW_AT_name, cu);
4295 if (attr && DW_STRING (attr))
4296 TYPE_NAME (type) = DW_STRING (attr);
4297
4298 do_cleanups (back_to);
4299
4300 /* Install the type in the die. */
4301 set_die_type (die, type, cu);
4302 }
4303
4304 static enum dwarf_array_dim_ordering
4305 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4306 {
4307 struct attribute *attr;
4308
4309 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4310
4311 if (attr) return DW_SND (attr);
4312
4313 /*
4314 GNU F77 is a special case, as at 08/2004 array type info is the
4315 opposite order to the dwarf2 specification, but data is still
4316 laid out as per normal fortran.
4317
4318 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4319 version checking.
4320 */
4321
4322 if (cu->language == language_fortran &&
4323 cu->producer && strstr (cu->producer, "GNU F77"))
4324 {
4325 return DW_ORD_row_major;
4326 }
4327
4328 switch (cu->language_defn->la_array_ordering)
4329 {
4330 case array_column_major:
4331 return DW_ORD_col_major;
4332 case array_row_major:
4333 default:
4334 return DW_ORD_row_major;
4335 };
4336 }
4337
4338 /* Extract all information from a DW_TAG_set_type DIE and put it in
4339 the DIE's type field. */
4340
4341 static void
4342 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4343 {
4344 if (die->type == NULL)
4345 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4346 }
4347
4348 /* First cut: install each common block member as a global variable. */
4349
4350 static void
4351 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4352 {
4353 struct die_info *child_die;
4354 struct attribute *attr;
4355 struct symbol *sym;
4356 CORE_ADDR base = (CORE_ADDR) 0;
4357
4358 attr = dwarf2_attr (die, DW_AT_location, cu);
4359 if (attr)
4360 {
4361 /* Support the .debug_loc offsets */
4362 if (attr_form_is_block (attr))
4363 {
4364 base = decode_locdesc (DW_BLOCK (attr), cu);
4365 }
4366 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4367 {
4368 dwarf2_complex_location_expr_complaint ();
4369 }
4370 else
4371 {
4372 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4373 "common block member");
4374 }
4375 }
4376 if (die->child != NULL)
4377 {
4378 child_die = die->child;
4379 while (child_die && child_die->tag)
4380 {
4381 sym = new_symbol (child_die, NULL, cu);
4382 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4383 if (attr)
4384 {
4385 SYMBOL_VALUE_ADDRESS (sym) =
4386 base + decode_locdesc (DW_BLOCK (attr), cu);
4387 add_symbol_to_list (sym, &global_symbols);
4388 }
4389 child_die = sibling_die (child_die);
4390 }
4391 }
4392 }
4393
4394 /* Read a C++ namespace. */
4395
4396 static void
4397 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4398 {
4399 struct objfile *objfile = cu->objfile;
4400 const char *previous_prefix = processing_current_prefix;
4401 const char *name;
4402 int is_anonymous;
4403 struct die_info *current_die;
4404 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4405
4406 name = namespace_name (die, &is_anonymous, cu);
4407
4408 /* Now build the name of the current namespace. */
4409
4410 if (previous_prefix[0] == '\0')
4411 {
4412 processing_current_prefix = name;
4413 }
4414 else
4415 {
4416 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4417 make_cleanup (xfree, temp_name);
4418 processing_current_prefix = temp_name;
4419 }
4420
4421 /* Add a symbol associated to this if we haven't seen the namespace
4422 before. Also, add a using directive if it's an anonymous
4423 namespace. */
4424
4425 if (dwarf2_extension (die, cu) == NULL)
4426 {
4427 struct type *type;
4428
4429 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4430 this cast will hopefully become unnecessary. */
4431 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4432 (char *) processing_current_prefix,
4433 objfile);
4434 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4435
4436 new_symbol (die, type, cu);
4437 set_die_type (die, type, cu);
4438
4439 if (is_anonymous)
4440 cp_add_using_directive (processing_current_prefix,
4441 strlen (previous_prefix),
4442 strlen (processing_current_prefix));
4443 }
4444
4445 if (die->child != NULL)
4446 {
4447 struct die_info *child_die = die->child;
4448
4449 while (child_die && child_die->tag)
4450 {
4451 process_die (child_die, cu);
4452 child_die = sibling_die (child_die);
4453 }
4454 }
4455
4456 processing_current_prefix = previous_prefix;
4457 do_cleanups (back_to);
4458 }
4459
4460 /* Return the name of the namespace represented by DIE. Set
4461 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4462 namespace. */
4463
4464 static const char *
4465 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4466 {
4467 struct die_info *current_die;
4468 const char *name = NULL;
4469
4470 /* Loop through the extensions until we find a name. */
4471
4472 for (current_die = die;
4473 current_die != NULL;
4474 current_die = dwarf2_extension (die, cu))
4475 {
4476 name = dwarf2_name (current_die, cu);
4477 if (name != NULL)
4478 break;
4479 }
4480
4481 /* Is it an anonymous namespace? */
4482
4483 *is_anonymous = (name == NULL);
4484 if (*is_anonymous)
4485 name = "(anonymous namespace)";
4486
4487 return name;
4488 }
4489
4490 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4491 the user defined type vector. */
4492
4493 static void
4494 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4495 {
4496 struct comp_unit_head *cu_header = &cu->header;
4497 struct type *type;
4498 struct attribute *attr_byte_size;
4499 struct attribute *attr_address_class;
4500 int byte_size, addr_class;
4501
4502 if (die->type)
4503 {
4504 return;
4505 }
4506
4507 type = lookup_pointer_type (die_type (die, cu));
4508
4509 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4510 if (attr_byte_size)
4511 byte_size = DW_UNSND (attr_byte_size);
4512 else
4513 byte_size = cu_header->addr_size;
4514
4515 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4516 if (attr_address_class)
4517 addr_class = DW_UNSND (attr_address_class);
4518 else
4519 addr_class = DW_ADDR_none;
4520
4521 /* If the pointer size or address class is different than the
4522 default, create a type variant marked as such and set the
4523 length accordingly. */
4524 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4525 {
4526 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4527 {
4528 int type_flags;
4529
4530 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4531 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4532 type = make_type_with_address_space (type, type_flags);
4533 }
4534 else if (TYPE_LENGTH (type) != byte_size)
4535 {
4536 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4537 }
4538 else {
4539 /* Should we also complain about unhandled address classes? */
4540 }
4541 }
4542
4543 TYPE_LENGTH (type) = byte_size;
4544 set_die_type (die, type, cu);
4545 }
4546
4547 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4548 the user defined type vector. */
4549
4550 static void
4551 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4552 {
4553 struct objfile *objfile = cu->objfile;
4554 struct type *type;
4555 struct type *to_type;
4556 struct type *domain;
4557
4558 if (die->type)
4559 {
4560 return;
4561 }
4562
4563 to_type = die_type (die, cu);
4564 domain = die_containing_type (die, cu);
4565
4566 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4567 type = lookup_methodptr_type (to_type);
4568 else
4569 type = lookup_memberptr_type (to_type, domain);
4570
4571 set_die_type (die, type, cu);
4572 }
4573
4574 /* Extract all information from a DW_TAG_reference_type DIE and add to
4575 the user defined type vector. */
4576
4577 static void
4578 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4579 {
4580 struct comp_unit_head *cu_header = &cu->header;
4581 struct type *type;
4582 struct attribute *attr;
4583
4584 if (die->type)
4585 {
4586 return;
4587 }
4588
4589 type = lookup_reference_type (die_type (die, cu));
4590 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4591 if (attr)
4592 {
4593 TYPE_LENGTH (type) = DW_UNSND (attr);
4594 }
4595 else
4596 {
4597 TYPE_LENGTH (type) = cu_header->addr_size;
4598 }
4599 set_die_type (die, type, cu);
4600 }
4601
4602 static void
4603 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4604 {
4605 struct type *base_type;
4606
4607 if (die->type)
4608 {
4609 return;
4610 }
4611
4612 base_type = die_type (die, cu);
4613 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4614 cu);
4615 }
4616
4617 static void
4618 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4619 {
4620 struct type *base_type;
4621
4622 if (die->type)
4623 {
4624 return;
4625 }
4626
4627 base_type = die_type (die, cu);
4628 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4629 cu);
4630 }
4631
4632 /* Extract all information from a DW_TAG_string_type DIE and add to
4633 the user defined type vector. It isn't really a user defined type,
4634 but it behaves like one, with other DIE's using an AT_user_def_type
4635 attribute to reference it. */
4636
4637 static void
4638 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4639 {
4640 struct objfile *objfile = cu->objfile;
4641 struct type *type, *range_type, *index_type, *char_type;
4642 struct attribute *attr;
4643 unsigned int length;
4644
4645 if (die->type)
4646 {
4647 return;
4648 }
4649
4650 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4651 if (attr)
4652 {
4653 length = DW_UNSND (attr);
4654 }
4655 else
4656 {
4657 /* check for the DW_AT_byte_size attribute */
4658 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4659 if (attr)
4660 {
4661 length = DW_UNSND (attr);
4662 }
4663 else
4664 {
4665 length = 1;
4666 }
4667 }
4668 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4669 range_type = create_range_type (NULL, index_type, 1, length);
4670 if (cu->language == language_fortran)
4671 {
4672 /* Need to create a unique string type for bounds
4673 information */
4674 type = create_string_type (0, range_type);
4675 }
4676 else
4677 {
4678 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4679 type = create_string_type (char_type, range_type);
4680 }
4681 set_die_type (die, type, cu);
4682 }
4683
4684 /* Handle DIES due to C code like:
4685
4686 struct foo
4687 {
4688 int (*funcp)(int a, long l);
4689 int b;
4690 };
4691
4692 ('funcp' generates a DW_TAG_subroutine_type DIE)
4693 */
4694
4695 static void
4696 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4697 {
4698 struct type *type; /* Type that this function returns */
4699 struct type *ftype; /* Function that returns above type */
4700 struct attribute *attr;
4701
4702 /* Decode the type that this subroutine returns */
4703 if (die->type)
4704 {
4705 return;
4706 }
4707 type = die_type (die, cu);
4708 ftype = make_function_type (type, (struct type **) 0);
4709
4710 /* All functions in C++ and Java have prototypes. */
4711 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4712 if ((attr && (DW_UNSND (attr) != 0))
4713 || cu->language == language_cplus
4714 || cu->language == language_java)
4715 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4716
4717 if (die->child != NULL)
4718 {
4719 struct die_info *child_die;
4720 int nparams = 0;
4721 int iparams = 0;
4722
4723 /* Count the number of parameters.
4724 FIXME: GDB currently ignores vararg functions, but knows about
4725 vararg member functions. */
4726 child_die = die->child;
4727 while (child_die && child_die->tag)
4728 {
4729 if (child_die->tag == DW_TAG_formal_parameter)
4730 nparams++;
4731 else if (child_die->tag == DW_TAG_unspecified_parameters)
4732 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4733 child_die = sibling_die (child_die);
4734 }
4735
4736 /* Allocate storage for parameters and fill them in. */
4737 TYPE_NFIELDS (ftype) = nparams;
4738 TYPE_FIELDS (ftype) = (struct field *)
4739 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4740
4741 child_die = die->child;
4742 while (child_die && child_die->tag)
4743 {
4744 if (child_die->tag == DW_TAG_formal_parameter)
4745 {
4746 /* Dwarf2 has no clean way to discern C++ static and non-static
4747 member functions. G++ helps GDB by marking the first
4748 parameter for non-static member functions (which is the
4749 this pointer) as artificial. We pass this information
4750 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4751 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4752 if (attr)
4753 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4754 else
4755 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4756 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4757 iparams++;
4758 }
4759 child_die = sibling_die (child_die);
4760 }
4761 }
4762
4763 set_die_type (die, ftype, cu);
4764 }
4765
4766 static void
4767 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4768 {
4769 struct objfile *objfile = cu->objfile;
4770 struct attribute *attr;
4771 char *name = NULL;
4772
4773 if (!die->type)
4774 {
4775 attr = dwarf2_attr (die, DW_AT_name, cu);
4776 if (attr && DW_STRING (attr))
4777 {
4778 name = DW_STRING (attr);
4779 }
4780 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4781 TYPE_FLAG_TARGET_STUB, name, objfile),
4782 cu);
4783 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4784 }
4785 }
4786
4787 /* Find a representation of a given base type and install
4788 it in the TYPE field of the die. */
4789
4790 static void
4791 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4792 {
4793 struct objfile *objfile = cu->objfile;
4794 struct type *type;
4795 struct attribute *attr;
4796 int encoding = 0, size = 0;
4797
4798 /* If we've already decoded this die, this is a no-op. */
4799 if (die->type)
4800 {
4801 return;
4802 }
4803
4804 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4805 if (attr)
4806 {
4807 encoding = DW_UNSND (attr);
4808 }
4809 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4810 if (attr)
4811 {
4812 size = DW_UNSND (attr);
4813 }
4814 attr = dwarf2_attr (die, DW_AT_name, cu);
4815 if (attr && DW_STRING (attr))
4816 {
4817 enum type_code code = TYPE_CODE_INT;
4818 int type_flags = 0;
4819
4820 switch (encoding)
4821 {
4822 case DW_ATE_address:
4823 /* Turn DW_ATE_address into a void * pointer. */
4824 code = TYPE_CODE_PTR;
4825 type_flags |= TYPE_FLAG_UNSIGNED;
4826 break;
4827 case DW_ATE_boolean:
4828 code = TYPE_CODE_BOOL;
4829 type_flags |= TYPE_FLAG_UNSIGNED;
4830 break;
4831 case DW_ATE_complex_float:
4832 code = TYPE_CODE_COMPLEX;
4833 break;
4834 case DW_ATE_float:
4835 code = TYPE_CODE_FLT;
4836 break;
4837 case DW_ATE_signed:
4838 break;
4839 case DW_ATE_unsigned:
4840 type_flags |= TYPE_FLAG_UNSIGNED;
4841 break;
4842 case DW_ATE_signed_char:
4843 if (cu->language == language_m2)
4844 code = TYPE_CODE_CHAR;
4845 break;
4846 case DW_ATE_unsigned_char:
4847 if (cu->language == language_m2)
4848 code = TYPE_CODE_CHAR;
4849 type_flags |= TYPE_FLAG_UNSIGNED;
4850 break;
4851 default:
4852 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4853 dwarf_type_encoding_name (encoding));
4854 break;
4855 }
4856 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4857 if (encoding == DW_ATE_address)
4858 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4859 cu);
4860 else if (encoding == DW_ATE_complex_float)
4861 {
4862 if (size == 32)
4863 TYPE_TARGET_TYPE (type)
4864 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4865 else if (size == 16)
4866 TYPE_TARGET_TYPE (type)
4867 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4868 else if (size == 8)
4869 TYPE_TARGET_TYPE (type)
4870 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4871 }
4872 }
4873 else
4874 {
4875 type = dwarf_base_type (encoding, size, cu);
4876 }
4877 set_die_type (die, type, cu);
4878 }
4879
4880 /* Read the given DW_AT_subrange DIE. */
4881
4882 static void
4883 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4884 {
4885 struct type *base_type;
4886 struct type *range_type;
4887 struct attribute *attr;
4888 int low = 0;
4889 int high = -1;
4890
4891 /* If we have already decoded this die, then nothing more to do. */
4892 if (die->type)
4893 return;
4894
4895 base_type = die_type (die, cu);
4896 if (base_type == NULL)
4897 {
4898 complaint (&symfile_complaints,
4899 _("DW_AT_type missing from DW_TAG_subrange_type"));
4900 return;
4901 }
4902
4903 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4904 base_type = alloc_type (NULL);
4905
4906 if (cu->language == language_fortran)
4907 {
4908 /* FORTRAN implies a lower bound of 1, if not given. */
4909 low = 1;
4910 }
4911
4912 /* FIXME: For variable sized arrays either of these could be
4913 a variable rather than a constant value. We'll allow it,
4914 but we don't know how to handle it. */
4915 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4916 if (attr)
4917 low = dwarf2_get_attr_constant_value (attr, 0);
4918
4919 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4920 if (attr)
4921 {
4922 if (attr->form == DW_FORM_block1)
4923 {
4924 /* GCC encodes arrays with unspecified or dynamic length
4925 with a DW_FORM_block1 attribute.
4926 FIXME: GDB does not yet know how to handle dynamic
4927 arrays properly, treat them as arrays with unspecified
4928 length for now.
4929
4930 FIXME: jimb/2003-09-22: GDB does not really know
4931 how to handle arrays of unspecified length
4932 either; we just represent them as zero-length
4933 arrays. Choose an appropriate upper bound given
4934 the lower bound we've computed above. */
4935 high = low - 1;
4936 }
4937 else
4938 high = dwarf2_get_attr_constant_value (attr, 1);
4939 }
4940
4941 range_type = create_range_type (NULL, base_type, low, high);
4942
4943 attr = dwarf2_attr (die, DW_AT_name, cu);
4944 if (attr && DW_STRING (attr))
4945 TYPE_NAME (range_type) = DW_STRING (attr);
4946
4947 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4948 if (attr)
4949 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4950
4951 set_die_type (die, range_type, cu);
4952 }
4953
4954 static void
4955 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4956 {
4957 struct type *type;
4958 struct attribute *attr;
4959
4960 if (die->type)
4961 return;
4962
4963 /* For now, we only support the C meaning of an unspecified type: void. */
4964
4965 attr = dwarf2_attr (die, DW_AT_name, cu);
4966 type = init_type (TYPE_CODE_VOID, 0, 0, attr ? DW_STRING (attr) : "",
4967 cu->objfile);
4968
4969 set_die_type (die, type, cu);
4970 }
4971
4972 /* Read a whole compilation unit into a linked list of dies. */
4973
4974 static struct die_info *
4975 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4976 {
4977 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4978 }
4979
4980 /* Read a single die and all its descendents. Set the die's sibling
4981 field to NULL; set other fields in the die correctly, and set all
4982 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4983 location of the info_ptr after reading all of those dies. PARENT
4984 is the parent of the die in question. */
4985
4986 static struct die_info *
4987 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
4988 struct dwarf2_cu *cu,
4989 gdb_byte **new_info_ptr,
4990 struct die_info *parent)
4991 {
4992 struct die_info *die;
4993 gdb_byte *cur_ptr;
4994 int has_children;
4995
4996 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4997 store_in_ref_table (die->offset, die, cu);
4998
4999 if (has_children)
5000 {
5001 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
5002 new_info_ptr, die);
5003 }
5004 else
5005 {
5006 die->child = NULL;
5007 *new_info_ptr = cur_ptr;
5008 }
5009
5010 die->sibling = NULL;
5011 die->parent = parent;
5012 return die;
5013 }
5014
5015 /* Read a die, all of its descendents, and all of its siblings; set
5016 all of the fields of all of the dies correctly. Arguments are as
5017 in read_die_and_children. */
5018
5019 static struct die_info *
5020 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
5021 struct dwarf2_cu *cu,
5022 gdb_byte **new_info_ptr,
5023 struct die_info *parent)
5024 {
5025 struct die_info *first_die, *last_sibling;
5026 gdb_byte *cur_ptr;
5027
5028 cur_ptr = info_ptr;
5029 first_die = last_sibling = NULL;
5030
5031 while (1)
5032 {
5033 struct die_info *die
5034 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
5035
5036 if (!first_die)
5037 {
5038 first_die = die;
5039 }
5040 else
5041 {
5042 last_sibling->sibling = die;
5043 }
5044
5045 if (die->tag == 0)
5046 {
5047 *new_info_ptr = cur_ptr;
5048 return first_die;
5049 }
5050 else
5051 {
5052 last_sibling = die;
5053 }
5054 }
5055 }
5056
5057 /* Free a linked list of dies. */
5058
5059 static void
5060 free_die_list (struct die_info *dies)
5061 {
5062 struct die_info *die, *next;
5063
5064 die = dies;
5065 while (die)
5066 {
5067 if (die->child != NULL)
5068 free_die_list (die->child);
5069 next = die->sibling;
5070 xfree (die->attrs);
5071 xfree (die);
5072 die = next;
5073 }
5074 }
5075
5076 /* Read the contents of the section at OFFSET and of size SIZE from the
5077 object file specified by OBJFILE into the objfile_obstack and return it. */
5078
5079 gdb_byte *
5080 dwarf2_read_section (struct objfile *objfile, asection *sectp)
5081 {
5082 bfd *abfd = objfile->obfd;
5083 gdb_byte *buf, *retbuf;
5084 bfd_size_type size = bfd_get_section_size (sectp);
5085
5086 if (size == 0)
5087 return NULL;
5088
5089 buf = obstack_alloc (&objfile->objfile_obstack, size);
5090 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5091 if (retbuf != NULL)
5092 return retbuf;
5093
5094 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5095 || bfd_bread (buf, size, abfd) != size)
5096 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5097 bfd_get_filename (abfd));
5098
5099 return buf;
5100 }
5101
5102 /* In DWARF version 2, the description of the debugging information is
5103 stored in a separate .debug_abbrev section. Before we read any
5104 dies from a section we read in all abbreviations and install them
5105 in a hash table. This function also sets flags in CU describing
5106 the data found in the abbrev table. */
5107
5108 static void
5109 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5110 {
5111 struct comp_unit_head *cu_header = &cu->header;
5112 gdb_byte *abbrev_ptr;
5113 struct abbrev_info *cur_abbrev;
5114 unsigned int abbrev_number, bytes_read, abbrev_name;
5115 unsigned int abbrev_form, hash_number;
5116 struct attr_abbrev *cur_attrs;
5117 unsigned int allocated_attrs;
5118
5119 /* Initialize dwarf2 abbrevs */
5120 obstack_init (&cu->abbrev_obstack);
5121 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5122 (ABBREV_HASH_SIZE
5123 * sizeof (struct abbrev_info *)));
5124 memset (cu->dwarf2_abbrevs, 0,
5125 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5126
5127 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5128 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5129 abbrev_ptr += bytes_read;
5130
5131 allocated_attrs = ATTR_ALLOC_CHUNK;
5132 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5133
5134 /* loop until we reach an abbrev number of 0 */
5135 while (abbrev_number)
5136 {
5137 cur_abbrev = dwarf_alloc_abbrev (cu);
5138
5139 /* read in abbrev header */
5140 cur_abbrev->number = abbrev_number;
5141 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5142 abbrev_ptr += bytes_read;
5143 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5144 abbrev_ptr += 1;
5145
5146 if (cur_abbrev->tag == DW_TAG_namespace)
5147 cu->has_namespace_info = 1;
5148
5149 /* now read in declarations */
5150 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5151 abbrev_ptr += bytes_read;
5152 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5153 abbrev_ptr += bytes_read;
5154 while (abbrev_name)
5155 {
5156 if (cur_abbrev->num_attrs == allocated_attrs)
5157 {
5158 allocated_attrs += ATTR_ALLOC_CHUNK;
5159 cur_attrs
5160 = xrealloc (cur_attrs, (allocated_attrs
5161 * sizeof (struct attr_abbrev)));
5162 }
5163
5164 /* Record whether this compilation unit might have
5165 inter-compilation-unit references. If we don't know what form
5166 this attribute will have, then it might potentially be a
5167 DW_FORM_ref_addr, so we conservatively expect inter-CU
5168 references. */
5169
5170 if (abbrev_form == DW_FORM_ref_addr
5171 || abbrev_form == DW_FORM_indirect)
5172 cu->has_form_ref_addr = 1;
5173
5174 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5175 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5176 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5177 abbrev_ptr += bytes_read;
5178 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5179 abbrev_ptr += bytes_read;
5180 }
5181
5182 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5183 (cur_abbrev->num_attrs
5184 * sizeof (struct attr_abbrev)));
5185 memcpy (cur_abbrev->attrs, cur_attrs,
5186 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5187
5188 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5189 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5190 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5191
5192 /* Get next abbreviation.
5193 Under Irix6 the abbreviations for a compilation unit are not
5194 always properly terminated with an abbrev number of 0.
5195 Exit loop if we encounter an abbreviation which we have
5196 already read (which means we are about to read the abbreviations
5197 for the next compile unit) or if the end of the abbreviation
5198 table is reached. */
5199 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5200 >= dwarf2_per_objfile->abbrev_size)
5201 break;
5202 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5203 abbrev_ptr += bytes_read;
5204 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5205 break;
5206 }
5207
5208 xfree (cur_attrs);
5209 }
5210
5211 /* Release the memory used by the abbrev table for a compilation unit. */
5212
5213 static void
5214 dwarf2_free_abbrev_table (void *ptr_to_cu)
5215 {
5216 struct dwarf2_cu *cu = ptr_to_cu;
5217
5218 obstack_free (&cu->abbrev_obstack, NULL);
5219 cu->dwarf2_abbrevs = NULL;
5220 }
5221
5222 /* Lookup an abbrev_info structure in the abbrev hash table. */
5223
5224 static struct abbrev_info *
5225 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5226 {
5227 unsigned int hash_number;
5228 struct abbrev_info *abbrev;
5229
5230 hash_number = number % ABBREV_HASH_SIZE;
5231 abbrev = cu->dwarf2_abbrevs[hash_number];
5232
5233 while (abbrev)
5234 {
5235 if (abbrev->number == number)
5236 return abbrev;
5237 else
5238 abbrev = abbrev->next;
5239 }
5240 return NULL;
5241 }
5242
5243 /* Returns nonzero if TAG represents a type that we might generate a partial
5244 symbol for. */
5245
5246 static int
5247 is_type_tag_for_partial (int tag)
5248 {
5249 switch (tag)
5250 {
5251 #if 0
5252 /* Some types that would be reasonable to generate partial symbols for,
5253 that we don't at present. */
5254 case DW_TAG_array_type:
5255 case DW_TAG_file_type:
5256 case DW_TAG_ptr_to_member_type:
5257 case DW_TAG_set_type:
5258 case DW_TAG_string_type:
5259 case DW_TAG_subroutine_type:
5260 #endif
5261 case DW_TAG_base_type:
5262 case DW_TAG_class_type:
5263 case DW_TAG_enumeration_type:
5264 case DW_TAG_structure_type:
5265 case DW_TAG_subrange_type:
5266 case DW_TAG_typedef:
5267 case DW_TAG_union_type:
5268 return 1;
5269 default:
5270 return 0;
5271 }
5272 }
5273
5274 /* Load all DIEs that are interesting for partial symbols into memory. */
5275
5276 static struct partial_die_info *
5277 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5278 struct dwarf2_cu *cu)
5279 {
5280 struct partial_die_info *part_die;
5281 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5282 struct abbrev_info *abbrev;
5283 unsigned int bytes_read;
5284 unsigned int load_all = 0;
5285
5286 int nesting_level = 1;
5287
5288 parent_die = NULL;
5289 last_die = NULL;
5290
5291 if (cu->per_cu && cu->per_cu->load_all_dies)
5292 load_all = 1;
5293
5294 cu->partial_dies
5295 = htab_create_alloc_ex (cu->header.length / 12,
5296 partial_die_hash,
5297 partial_die_eq,
5298 NULL,
5299 &cu->comp_unit_obstack,
5300 hashtab_obstack_allocate,
5301 dummy_obstack_deallocate);
5302
5303 part_die = obstack_alloc (&cu->comp_unit_obstack,
5304 sizeof (struct partial_die_info));
5305
5306 while (1)
5307 {
5308 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5309
5310 /* A NULL abbrev means the end of a series of children. */
5311 if (abbrev == NULL)
5312 {
5313 if (--nesting_level == 0)
5314 {
5315 /* PART_DIE was probably the last thing allocated on the
5316 comp_unit_obstack, so we could call obstack_free
5317 here. We don't do that because the waste is small,
5318 and will be cleaned up when we're done with this
5319 compilation unit. This way, we're also more robust
5320 against other users of the comp_unit_obstack. */
5321 return first_die;
5322 }
5323 info_ptr += bytes_read;
5324 last_die = parent_die;
5325 parent_die = parent_die->die_parent;
5326 continue;
5327 }
5328
5329 /* Check whether this DIE is interesting enough to save. Normally
5330 we would not be interested in members here, but there may be
5331 later variables referencing them via DW_AT_specification (for
5332 static members). */
5333 if (!load_all
5334 && !is_type_tag_for_partial (abbrev->tag)
5335 && abbrev->tag != DW_TAG_enumerator
5336 && abbrev->tag != DW_TAG_subprogram
5337 && abbrev->tag != DW_TAG_variable
5338 && abbrev->tag != DW_TAG_namespace
5339 && abbrev->tag != DW_TAG_member)
5340 {
5341 /* Otherwise we skip to the next sibling, if any. */
5342 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5343 continue;
5344 }
5345
5346 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5347 abfd, info_ptr, cu);
5348
5349 /* This two-pass algorithm for processing partial symbols has a
5350 high cost in cache pressure. Thus, handle some simple cases
5351 here which cover the majority of C partial symbols. DIEs
5352 which neither have specification tags in them, nor could have
5353 specification tags elsewhere pointing at them, can simply be
5354 processed and discarded.
5355
5356 This segment is also optional; scan_partial_symbols and
5357 add_partial_symbol will handle these DIEs if we chain
5358 them in normally. When compilers which do not emit large
5359 quantities of duplicate debug information are more common,
5360 this code can probably be removed. */
5361
5362 /* Any complete simple types at the top level (pretty much all
5363 of them, for a language without namespaces), can be processed
5364 directly. */
5365 if (parent_die == NULL
5366 && part_die->has_specification == 0
5367 && part_die->is_declaration == 0
5368 && (part_die->tag == DW_TAG_typedef
5369 || part_die->tag == DW_TAG_base_type
5370 || part_die->tag == DW_TAG_subrange_type))
5371 {
5372 if (building_psymtab && part_die->name != NULL)
5373 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5374 VAR_DOMAIN, LOC_TYPEDEF,
5375 &cu->objfile->static_psymbols,
5376 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5377 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5378 continue;
5379 }
5380
5381 /* If we're at the second level, and we're an enumerator, and
5382 our parent has no specification (meaning possibly lives in a
5383 namespace elsewhere), then we can add the partial symbol now
5384 instead of queueing it. */
5385 if (part_die->tag == DW_TAG_enumerator
5386 && parent_die != NULL
5387 && parent_die->die_parent == NULL
5388 && parent_die->tag == DW_TAG_enumeration_type
5389 && parent_die->has_specification == 0)
5390 {
5391 if (part_die->name == NULL)
5392 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5393 else if (building_psymtab)
5394 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5395 VAR_DOMAIN, LOC_CONST,
5396 (cu->language == language_cplus
5397 || cu->language == language_java)
5398 ? &cu->objfile->global_psymbols
5399 : &cu->objfile->static_psymbols,
5400 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5401
5402 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5403 continue;
5404 }
5405
5406 /* We'll save this DIE so link it in. */
5407 part_die->die_parent = parent_die;
5408 part_die->die_sibling = NULL;
5409 part_die->die_child = NULL;
5410
5411 if (last_die && last_die == parent_die)
5412 last_die->die_child = part_die;
5413 else if (last_die)
5414 last_die->die_sibling = part_die;
5415
5416 last_die = part_die;
5417
5418 if (first_die == NULL)
5419 first_die = part_die;
5420
5421 /* Maybe add the DIE to the hash table. Not all DIEs that we
5422 find interesting need to be in the hash table, because we
5423 also have the parent/sibling/child chains; only those that we
5424 might refer to by offset later during partial symbol reading.
5425
5426 For now this means things that might have be the target of a
5427 DW_AT_specification, DW_AT_abstract_origin, or
5428 DW_AT_extension. DW_AT_extension will refer only to
5429 namespaces; DW_AT_abstract_origin refers to functions (and
5430 many things under the function DIE, but we do not recurse
5431 into function DIEs during partial symbol reading) and
5432 possibly variables as well; DW_AT_specification refers to
5433 declarations. Declarations ought to have the DW_AT_declaration
5434 flag. It happens that GCC forgets to put it in sometimes, but
5435 only for functions, not for types.
5436
5437 Adding more things than necessary to the hash table is harmless
5438 except for the performance cost. Adding too few will result in
5439 wasted time in find_partial_die, when we reread the compilation
5440 unit with load_all_dies set. */
5441
5442 if (load_all
5443 || abbrev->tag == DW_TAG_subprogram
5444 || abbrev->tag == DW_TAG_variable
5445 || abbrev->tag == DW_TAG_namespace
5446 || part_die->is_declaration)
5447 {
5448 void **slot;
5449
5450 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5451 part_die->offset, INSERT);
5452 *slot = part_die;
5453 }
5454
5455 part_die = obstack_alloc (&cu->comp_unit_obstack,
5456 sizeof (struct partial_die_info));
5457
5458 /* For some DIEs we want to follow their children (if any). For C
5459 we have no reason to follow the children of structures; for other
5460 languages we have to, both so that we can get at method physnames
5461 to infer fully qualified class names, and for DW_AT_specification. */
5462 if (last_die->has_children
5463 && (load_all
5464 || last_die->tag == DW_TAG_namespace
5465 || last_die->tag == DW_TAG_enumeration_type
5466 || (cu->language != language_c
5467 && (last_die->tag == DW_TAG_class_type
5468 || last_die->tag == DW_TAG_structure_type
5469 || last_die->tag == DW_TAG_union_type))))
5470 {
5471 nesting_level++;
5472 parent_die = last_die;
5473 continue;
5474 }
5475
5476 /* Otherwise we skip to the next sibling, if any. */
5477 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5478
5479 /* Back to the top, do it again. */
5480 }
5481 }
5482
5483 /* Read a minimal amount of information into the minimal die structure. */
5484
5485 static gdb_byte *
5486 read_partial_die (struct partial_die_info *part_die,
5487 struct abbrev_info *abbrev,
5488 unsigned int abbrev_len, bfd *abfd,
5489 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5490 {
5491 unsigned int bytes_read, i;
5492 struct attribute attr;
5493 int has_low_pc_attr = 0;
5494 int has_high_pc_attr = 0;
5495
5496 memset (part_die, 0, sizeof (struct partial_die_info));
5497
5498 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5499
5500 info_ptr += abbrev_len;
5501
5502 if (abbrev == NULL)
5503 return info_ptr;
5504
5505 part_die->tag = abbrev->tag;
5506 part_die->has_children = abbrev->has_children;
5507
5508 for (i = 0; i < abbrev->num_attrs; ++i)
5509 {
5510 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5511
5512 /* Store the data if it is of an attribute we want to keep in a
5513 partial symbol table. */
5514 switch (attr.name)
5515 {
5516 case DW_AT_name:
5517
5518 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5519 if (part_die->name == NULL)
5520 part_die->name = DW_STRING (&attr);
5521 break;
5522 case DW_AT_comp_dir:
5523 if (part_die->dirname == NULL)
5524 part_die->dirname = DW_STRING (&attr);
5525 break;
5526 case DW_AT_MIPS_linkage_name:
5527 part_die->name = DW_STRING (&attr);
5528 break;
5529 case DW_AT_low_pc:
5530 has_low_pc_attr = 1;
5531 part_die->lowpc = DW_ADDR (&attr);
5532 break;
5533 case DW_AT_high_pc:
5534 has_high_pc_attr = 1;
5535 part_die->highpc = DW_ADDR (&attr);
5536 break;
5537 case DW_AT_location:
5538 /* Support the .debug_loc offsets */
5539 if (attr_form_is_block (&attr))
5540 {
5541 part_die->locdesc = DW_BLOCK (&attr);
5542 }
5543 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5544 {
5545 dwarf2_complex_location_expr_complaint ();
5546 }
5547 else
5548 {
5549 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5550 "partial symbol information");
5551 }
5552 break;
5553 case DW_AT_language:
5554 part_die->language = DW_UNSND (&attr);
5555 break;
5556 case DW_AT_external:
5557 part_die->is_external = DW_UNSND (&attr);
5558 break;
5559 case DW_AT_declaration:
5560 part_die->is_declaration = DW_UNSND (&attr);
5561 break;
5562 case DW_AT_type:
5563 part_die->has_type = 1;
5564 break;
5565 case DW_AT_abstract_origin:
5566 case DW_AT_specification:
5567 case DW_AT_extension:
5568 part_die->has_specification = 1;
5569 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5570 break;
5571 case DW_AT_sibling:
5572 /* Ignore absolute siblings, they might point outside of
5573 the current compile unit. */
5574 if (attr.form == DW_FORM_ref_addr)
5575 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5576 else
5577 part_die->sibling = dwarf2_per_objfile->info_buffer
5578 + dwarf2_get_ref_die_offset (&attr, cu);
5579 break;
5580 case DW_AT_stmt_list:
5581 part_die->has_stmt_list = 1;
5582 part_die->line_offset = DW_UNSND (&attr);
5583 break;
5584 default:
5585 break;
5586 }
5587 }
5588
5589 /* When using the GNU linker, .gnu.linkonce. sections are used to
5590 eliminate duplicate copies of functions and vtables and such.
5591 The linker will arbitrarily choose one and discard the others.
5592 The AT_*_pc values for such functions refer to local labels in
5593 these sections. If the section from that file was discarded, the
5594 labels are not in the output, so the relocs get a value of 0.
5595 If this is a discarded function, mark the pc bounds as invalid,
5596 so that GDB will ignore it. */
5597 if (has_low_pc_attr && has_high_pc_attr
5598 && part_die->lowpc < part_die->highpc
5599 && (part_die->lowpc != 0
5600 || dwarf2_per_objfile->has_section_at_zero))
5601 part_die->has_pc_info = 1;
5602 return info_ptr;
5603 }
5604
5605 /* Find a cached partial DIE at OFFSET in CU. */
5606
5607 static struct partial_die_info *
5608 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5609 {
5610 struct partial_die_info *lookup_die = NULL;
5611 struct partial_die_info part_die;
5612
5613 part_die.offset = offset;
5614 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5615
5616 return lookup_die;
5617 }
5618
5619 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5620
5621 static struct partial_die_info *
5622 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5623 {
5624 struct dwarf2_per_cu_data *per_cu = NULL;
5625 struct partial_die_info *pd = NULL;
5626
5627 if (offset >= cu->header.offset
5628 && offset < cu->header.offset + cu->header.length)
5629 {
5630 pd = find_partial_die_in_comp_unit (offset, cu);
5631 if (pd != NULL)
5632 return pd;
5633 }
5634
5635 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5636
5637 if (per_cu->cu == NULL)
5638 {
5639 load_comp_unit (per_cu, cu->objfile);
5640 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5641 dwarf2_per_objfile->read_in_chain = per_cu;
5642 }
5643
5644 per_cu->cu->last_used = 0;
5645 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5646
5647 if (pd == NULL && per_cu->load_all_dies == 0)
5648 {
5649 struct cleanup *back_to;
5650 struct partial_die_info comp_unit_die;
5651 struct abbrev_info *abbrev;
5652 unsigned int bytes_read;
5653 char *info_ptr;
5654
5655 per_cu->load_all_dies = 1;
5656
5657 /* Re-read the DIEs. */
5658 back_to = make_cleanup (null_cleanup, 0);
5659 if (per_cu->cu->dwarf2_abbrevs == NULL)
5660 {
5661 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5662 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5663 }
5664 info_ptr = per_cu->cu->header.first_die_ptr;
5665 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5666 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5667 per_cu->cu->objfile->obfd, info_ptr,
5668 per_cu->cu);
5669 if (comp_unit_die.has_children)
5670 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5671 do_cleanups (back_to);
5672
5673 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5674 }
5675
5676 if (pd == NULL)
5677 internal_error (__FILE__, __LINE__,
5678 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5679 offset, bfd_get_filename (cu->objfile->obfd));
5680 return pd;
5681 }
5682
5683 /* Adjust PART_DIE before generating a symbol for it. This function
5684 may set the is_external flag or change the DIE's name. */
5685
5686 static void
5687 fixup_partial_die (struct partial_die_info *part_die,
5688 struct dwarf2_cu *cu)
5689 {
5690 /* If we found a reference attribute and the DIE has no name, try
5691 to find a name in the referred to DIE. */
5692
5693 if (part_die->name == NULL && part_die->has_specification)
5694 {
5695 struct partial_die_info *spec_die;
5696
5697 spec_die = find_partial_die (part_die->spec_offset, cu);
5698
5699 fixup_partial_die (spec_die, cu);
5700
5701 if (spec_die->name)
5702 {
5703 part_die->name = spec_die->name;
5704
5705 /* Copy DW_AT_external attribute if it is set. */
5706 if (spec_die->is_external)
5707 part_die->is_external = spec_die->is_external;
5708 }
5709 }
5710
5711 /* Set default names for some unnamed DIEs. */
5712 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5713 || part_die->tag == DW_TAG_class_type))
5714 part_die->name = "(anonymous class)";
5715
5716 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5717 part_die->name = "(anonymous namespace)";
5718
5719 if (part_die->tag == DW_TAG_structure_type
5720 || part_die->tag == DW_TAG_class_type
5721 || part_die->tag == DW_TAG_union_type)
5722 guess_structure_name (part_die, cu);
5723 }
5724
5725 /* Read the die from the .debug_info section buffer. Set DIEP to
5726 point to a newly allocated die with its information, except for its
5727 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5728 whether the die has children or not. */
5729
5730 static gdb_byte *
5731 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5732 struct dwarf2_cu *cu, int *has_children)
5733 {
5734 unsigned int abbrev_number, bytes_read, i, offset;
5735 struct abbrev_info *abbrev;
5736 struct die_info *die;
5737
5738 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5739 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5740 info_ptr += bytes_read;
5741 if (!abbrev_number)
5742 {
5743 die = dwarf_alloc_die ();
5744 die->tag = 0;
5745 die->abbrev = abbrev_number;
5746 die->type = NULL;
5747 *diep = die;
5748 *has_children = 0;
5749 return info_ptr;
5750 }
5751
5752 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5753 if (!abbrev)
5754 {
5755 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5756 abbrev_number,
5757 bfd_get_filename (abfd));
5758 }
5759 die = dwarf_alloc_die ();
5760 die->offset = offset;
5761 die->tag = abbrev->tag;
5762 die->abbrev = abbrev_number;
5763 die->type = NULL;
5764
5765 die->num_attrs = abbrev->num_attrs;
5766 die->attrs = (struct attribute *)
5767 xmalloc (die->num_attrs * sizeof (struct attribute));
5768
5769 for (i = 0; i < abbrev->num_attrs; ++i)
5770 {
5771 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5772 abfd, info_ptr, cu);
5773
5774 /* If this attribute is an absolute reference to a different
5775 compilation unit, make sure that compilation unit is loaded
5776 also. */
5777 if (die->attrs[i].form == DW_FORM_ref_addr
5778 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5779 || (DW_ADDR (&die->attrs[i])
5780 >= cu->header.offset + cu->header.length)))
5781 {
5782 struct dwarf2_per_cu_data *per_cu;
5783 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5784 cu->objfile);
5785
5786 /* Mark the dependence relation so that we don't flush PER_CU
5787 too early. */
5788 dwarf2_add_dependence (cu, per_cu);
5789
5790 /* If it's already on the queue, we have nothing to do. */
5791 if (per_cu->queued)
5792 continue;
5793
5794 /* If the compilation unit is already loaded, just mark it as
5795 used. */
5796 if (per_cu->cu != NULL)
5797 {
5798 per_cu->cu->last_used = 0;
5799 continue;
5800 }
5801
5802 /* Add it to the queue. */
5803 queue_comp_unit (per_cu);
5804 }
5805 }
5806
5807 *diep = die;
5808 *has_children = abbrev->has_children;
5809 return info_ptr;
5810 }
5811
5812 /* Read an attribute value described by an attribute form. */
5813
5814 static gdb_byte *
5815 read_attribute_value (struct attribute *attr, unsigned form,
5816 bfd *abfd, gdb_byte *info_ptr,
5817 struct dwarf2_cu *cu)
5818 {
5819 struct comp_unit_head *cu_header = &cu->header;
5820 unsigned int bytes_read;
5821 struct dwarf_block *blk;
5822
5823 attr->form = form;
5824 switch (form)
5825 {
5826 case DW_FORM_addr:
5827 case DW_FORM_ref_addr:
5828 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5829 info_ptr += bytes_read;
5830 break;
5831 case DW_FORM_block2:
5832 blk = dwarf_alloc_block (cu);
5833 blk->size = read_2_bytes (abfd, info_ptr);
5834 info_ptr += 2;
5835 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5836 info_ptr += blk->size;
5837 DW_BLOCK (attr) = blk;
5838 break;
5839 case DW_FORM_block4:
5840 blk = dwarf_alloc_block (cu);
5841 blk->size = read_4_bytes (abfd, info_ptr);
5842 info_ptr += 4;
5843 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5844 info_ptr += blk->size;
5845 DW_BLOCK (attr) = blk;
5846 break;
5847 case DW_FORM_data2:
5848 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5849 info_ptr += 2;
5850 break;
5851 case DW_FORM_data4:
5852 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5853 info_ptr += 4;
5854 break;
5855 case DW_FORM_data8:
5856 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5857 info_ptr += 8;
5858 break;
5859 case DW_FORM_string:
5860 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5861 info_ptr += bytes_read;
5862 break;
5863 case DW_FORM_strp:
5864 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5865 &bytes_read);
5866 info_ptr += bytes_read;
5867 break;
5868 case DW_FORM_block:
5869 blk = dwarf_alloc_block (cu);
5870 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5871 info_ptr += bytes_read;
5872 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5873 info_ptr += blk->size;
5874 DW_BLOCK (attr) = blk;
5875 break;
5876 case DW_FORM_block1:
5877 blk = dwarf_alloc_block (cu);
5878 blk->size = read_1_byte (abfd, info_ptr);
5879 info_ptr += 1;
5880 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5881 info_ptr += blk->size;
5882 DW_BLOCK (attr) = blk;
5883 break;
5884 case DW_FORM_data1:
5885 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5886 info_ptr += 1;
5887 break;
5888 case DW_FORM_flag:
5889 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5890 info_ptr += 1;
5891 break;
5892 case DW_FORM_sdata:
5893 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5894 info_ptr += bytes_read;
5895 break;
5896 case DW_FORM_udata:
5897 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5898 info_ptr += bytes_read;
5899 break;
5900 case DW_FORM_ref1:
5901 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5902 info_ptr += 1;
5903 break;
5904 case DW_FORM_ref2:
5905 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5906 info_ptr += 2;
5907 break;
5908 case DW_FORM_ref4:
5909 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5910 info_ptr += 4;
5911 break;
5912 case DW_FORM_ref8:
5913 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5914 info_ptr += 8;
5915 break;
5916 case DW_FORM_ref_udata:
5917 DW_ADDR (attr) = (cu->header.offset
5918 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5919 info_ptr += bytes_read;
5920 break;
5921 case DW_FORM_indirect:
5922 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5923 info_ptr += bytes_read;
5924 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5925 break;
5926 default:
5927 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5928 dwarf_form_name (form),
5929 bfd_get_filename (abfd));
5930 }
5931 return info_ptr;
5932 }
5933
5934 /* Read an attribute described by an abbreviated attribute. */
5935
5936 static gdb_byte *
5937 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5938 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
5939 {
5940 attr->name = abbrev->name;
5941 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5942 }
5943
5944 /* read dwarf information from a buffer */
5945
5946 static unsigned int
5947 read_1_byte (bfd *abfd, gdb_byte *buf)
5948 {
5949 return bfd_get_8 (abfd, buf);
5950 }
5951
5952 static int
5953 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
5954 {
5955 return bfd_get_signed_8 (abfd, buf);
5956 }
5957
5958 static unsigned int
5959 read_2_bytes (bfd *abfd, gdb_byte *buf)
5960 {
5961 return bfd_get_16 (abfd, buf);
5962 }
5963
5964 static int
5965 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
5966 {
5967 return bfd_get_signed_16 (abfd, buf);
5968 }
5969
5970 static unsigned int
5971 read_4_bytes (bfd *abfd, gdb_byte *buf)
5972 {
5973 return bfd_get_32 (abfd, buf);
5974 }
5975
5976 static int
5977 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
5978 {
5979 return bfd_get_signed_32 (abfd, buf);
5980 }
5981
5982 static unsigned long
5983 read_8_bytes (bfd *abfd, gdb_byte *buf)
5984 {
5985 return bfd_get_64 (abfd, buf);
5986 }
5987
5988 static CORE_ADDR
5989 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
5990 unsigned int *bytes_read)
5991 {
5992 struct comp_unit_head *cu_header = &cu->header;
5993 CORE_ADDR retval = 0;
5994
5995 if (cu_header->signed_addr_p)
5996 {
5997 switch (cu_header->addr_size)
5998 {
5999 case 2:
6000 retval = bfd_get_signed_16 (abfd, buf);
6001 break;
6002 case 4:
6003 retval = bfd_get_signed_32 (abfd, buf);
6004 break;
6005 case 8:
6006 retval = bfd_get_signed_64 (abfd, buf);
6007 break;
6008 default:
6009 internal_error (__FILE__, __LINE__,
6010 _("read_address: bad switch, signed [in module %s]"),
6011 bfd_get_filename (abfd));
6012 }
6013 }
6014 else
6015 {
6016 switch (cu_header->addr_size)
6017 {
6018 case 2:
6019 retval = bfd_get_16 (abfd, buf);
6020 break;
6021 case 4:
6022 retval = bfd_get_32 (abfd, buf);
6023 break;
6024 case 8:
6025 retval = bfd_get_64 (abfd, buf);
6026 break;
6027 default:
6028 internal_error (__FILE__, __LINE__,
6029 _("read_address: bad switch, unsigned [in module %s]"),
6030 bfd_get_filename (abfd));
6031 }
6032 }
6033
6034 *bytes_read = cu_header->addr_size;
6035 return retval;
6036 }
6037
6038 /* Read the initial length from a section. The (draft) DWARF 3
6039 specification allows the initial length to take up either 4 bytes
6040 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6041 bytes describe the length and all offsets will be 8 bytes in length
6042 instead of 4.
6043
6044 An older, non-standard 64-bit format is also handled by this
6045 function. The older format in question stores the initial length
6046 as an 8-byte quantity without an escape value. Lengths greater
6047 than 2^32 aren't very common which means that the initial 4 bytes
6048 is almost always zero. Since a length value of zero doesn't make
6049 sense for the 32-bit format, this initial zero can be considered to
6050 be an escape value which indicates the presence of the older 64-bit
6051 format. As written, the code can't detect (old format) lengths
6052 greater than 4GB. If it becomes necessary to handle lengths
6053 somewhat larger than 4GB, we could allow other small values (such
6054 as the non-sensical values of 1, 2, and 3) to also be used as
6055 escape values indicating the presence of the old format.
6056
6057 The value returned via bytes_read should be used to increment the
6058 relevant pointer after calling read_initial_length().
6059
6060 As a side effect, this function sets the fields initial_length_size
6061 and offset_size in cu_header to the values appropriate for the
6062 length field. (The format of the initial length field determines
6063 the width of file offsets to be fetched later with read_offset().)
6064
6065 [ Note: read_initial_length() and read_offset() are based on the
6066 document entitled "DWARF Debugging Information Format", revision
6067 3, draft 8, dated November 19, 2001. This document was obtained
6068 from:
6069
6070 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6071
6072 This document is only a draft and is subject to change. (So beware.)
6073
6074 Details regarding the older, non-standard 64-bit format were
6075 determined empirically by examining 64-bit ELF files produced by
6076 the SGI toolchain on an IRIX 6.5 machine.
6077
6078 - Kevin, July 16, 2002
6079 ] */
6080
6081 static LONGEST
6082 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
6083 unsigned int *bytes_read)
6084 {
6085 LONGEST length = bfd_get_32 (abfd, buf);
6086
6087 if (length == 0xffffffff)
6088 {
6089 length = bfd_get_64 (abfd, buf + 4);
6090 *bytes_read = 12;
6091 }
6092 else if (length == 0)
6093 {
6094 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6095 length = bfd_get_64 (abfd, buf);
6096 *bytes_read = 8;
6097 }
6098 else
6099 {
6100 *bytes_read = 4;
6101 }
6102
6103 if (cu_header)
6104 {
6105 gdb_assert (cu_header->initial_length_size == 0
6106 || cu_header->initial_length_size == 4
6107 || cu_header->initial_length_size == 8
6108 || cu_header->initial_length_size == 12);
6109
6110 if (cu_header->initial_length_size != 0
6111 && cu_header->initial_length_size != *bytes_read)
6112 complaint (&symfile_complaints,
6113 _("intermixed 32-bit and 64-bit DWARF sections"));
6114
6115 cu_header->initial_length_size = *bytes_read;
6116 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6117 }
6118
6119 return length;
6120 }
6121
6122 /* Read an offset from the data stream. The size of the offset is
6123 given by cu_header->offset_size. */
6124
6125 static LONGEST
6126 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6127 unsigned int *bytes_read)
6128 {
6129 LONGEST retval = 0;
6130
6131 switch (cu_header->offset_size)
6132 {
6133 case 4:
6134 retval = bfd_get_32 (abfd, buf);
6135 *bytes_read = 4;
6136 break;
6137 case 8:
6138 retval = bfd_get_64 (abfd, buf);
6139 *bytes_read = 8;
6140 break;
6141 default:
6142 internal_error (__FILE__, __LINE__,
6143 _("read_offset: bad switch [in module %s]"),
6144 bfd_get_filename (abfd));
6145 }
6146
6147 return retval;
6148 }
6149
6150 static gdb_byte *
6151 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6152 {
6153 /* If the size of a host char is 8 bits, we can return a pointer
6154 to the buffer, otherwise we have to copy the data to a buffer
6155 allocated on the temporary obstack. */
6156 gdb_assert (HOST_CHAR_BIT == 8);
6157 return buf;
6158 }
6159
6160 static char *
6161 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6162 {
6163 /* If the size of a host char is 8 bits, we can return a pointer
6164 to the string, otherwise we have to copy the string to a buffer
6165 allocated on the temporary obstack. */
6166 gdb_assert (HOST_CHAR_BIT == 8);
6167 if (*buf == '\0')
6168 {
6169 *bytes_read_ptr = 1;
6170 return NULL;
6171 }
6172 *bytes_read_ptr = strlen ((char *) buf) + 1;
6173 return (char *) buf;
6174 }
6175
6176 static char *
6177 read_indirect_string (bfd *abfd, gdb_byte *buf,
6178 const struct comp_unit_head *cu_header,
6179 unsigned int *bytes_read_ptr)
6180 {
6181 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6182 bytes_read_ptr);
6183
6184 if (dwarf2_per_objfile->str_buffer == NULL)
6185 {
6186 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6187 bfd_get_filename (abfd));
6188 return NULL;
6189 }
6190 if (str_offset >= dwarf2_per_objfile->str_size)
6191 {
6192 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6193 bfd_get_filename (abfd));
6194 return NULL;
6195 }
6196 gdb_assert (HOST_CHAR_BIT == 8);
6197 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6198 return NULL;
6199 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6200 }
6201
6202 static unsigned long
6203 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6204 {
6205 unsigned long result;
6206 unsigned int num_read;
6207 int i, shift;
6208 unsigned char byte;
6209
6210 result = 0;
6211 shift = 0;
6212 num_read = 0;
6213 i = 0;
6214 while (1)
6215 {
6216 byte = bfd_get_8 (abfd, buf);
6217 buf++;
6218 num_read++;
6219 result |= ((unsigned long)(byte & 127) << shift);
6220 if ((byte & 128) == 0)
6221 {
6222 break;
6223 }
6224 shift += 7;
6225 }
6226 *bytes_read_ptr = num_read;
6227 return result;
6228 }
6229
6230 static long
6231 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6232 {
6233 long result;
6234 int i, shift, num_read;
6235 unsigned char byte;
6236
6237 result = 0;
6238 shift = 0;
6239 num_read = 0;
6240 i = 0;
6241 while (1)
6242 {
6243 byte = bfd_get_8 (abfd, buf);
6244 buf++;
6245 num_read++;
6246 result |= ((long)(byte & 127) << shift);
6247 shift += 7;
6248 if ((byte & 128) == 0)
6249 {
6250 break;
6251 }
6252 }
6253 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6254 result |= -(((long)1) << shift);
6255 *bytes_read_ptr = num_read;
6256 return result;
6257 }
6258
6259 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6260
6261 static gdb_byte *
6262 skip_leb128 (bfd *abfd, gdb_byte *buf)
6263 {
6264 int byte;
6265
6266 while (1)
6267 {
6268 byte = bfd_get_8 (abfd, buf);
6269 buf++;
6270 if ((byte & 128) == 0)
6271 return buf;
6272 }
6273 }
6274
6275 static void
6276 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6277 {
6278 switch (lang)
6279 {
6280 case DW_LANG_C89:
6281 case DW_LANG_C:
6282 cu->language = language_c;
6283 break;
6284 case DW_LANG_C_plus_plus:
6285 cu->language = language_cplus;
6286 break;
6287 case DW_LANG_Fortran77:
6288 case DW_LANG_Fortran90:
6289 case DW_LANG_Fortran95:
6290 cu->language = language_fortran;
6291 break;
6292 case DW_LANG_Mips_Assembler:
6293 cu->language = language_asm;
6294 break;
6295 case DW_LANG_Java:
6296 cu->language = language_java;
6297 break;
6298 case DW_LANG_Ada83:
6299 case DW_LANG_Ada95:
6300 cu->language = language_ada;
6301 break;
6302 case DW_LANG_Modula2:
6303 cu->language = language_m2;
6304 break;
6305 case DW_LANG_Cobol74:
6306 case DW_LANG_Cobol85:
6307 case DW_LANG_Pascal83:
6308 default:
6309 cu->language = language_minimal;
6310 break;
6311 }
6312 cu->language_defn = language_def (cu->language);
6313 }
6314
6315 /* Return the named attribute or NULL if not there. */
6316
6317 static struct attribute *
6318 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6319 {
6320 unsigned int i;
6321 struct attribute *spec = NULL;
6322
6323 for (i = 0; i < die->num_attrs; ++i)
6324 {
6325 if (die->attrs[i].name == name)
6326 return &die->attrs[i];
6327 if (die->attrs[i].name == DW_AT_specification
6328 || die->attrs[i].name == DW_AT_abstract_origin)
6329 spec = &die->attrs[i];
6330 }
6331
6332 if (spec)
6333 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6334
6335 return NULL;
6336 }
6337
6338 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6339 and holds a non-zero value. This function should only be used for
6340 DW_FORM_flag attributes. */
6341
6342 static int
6343 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6344 {
6345 struct attribute *attr = dwarf2_attr (die, name, cu);
6346
6347 return (attr && DW_UNSND (attr));
6348 }
6349
6350 static int
6351 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6352 {
6353 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6354 which value is non-zero. However, we have to be careful with
6355 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6356 (via dwarf2_flag_true_p) follows this attribute. So we may
6357 end up accidently finding a declaration attribute that belongs
6358 to a different DIE referenced by the specification attribute,
6359 even though the given DIE does not have a declaration attribute. */
6360 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6361 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6362 }
6363
6364 /* Return the die giving the specification for DIE, if there is
6365 one. */
6366
6367 static struct die_info *
6368 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6369 {
6370 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6371
6372 if (spec_attr == NULL)
6373 return NULL;
6374 else
6375 return follow_die_ref (die, spec_attr, cu);
6376 }
6377
6378 /* Free the line_header structure *LH, and any arrays and strings it
6379 refers to. */
6380 static void
6381 free_line_header (struct line_header *lh)
6382 {
6383 if (lh->standard_opcode_lengths)
6384 xfree (lh->standard_opcode_lengths);
6385
6386 /* Remember that all the lh->file_names[i].name pointers are
6387 pointers into debug_line_buffer, and don't need to be freed. */
6388 if (lh->file_names)
6389 xfree (lh->file_names);
6390
6391 /* Similarly for the include directory names. */
6392 if (lh->include_dirs)
6393 xfree (lh->include_dirs);
6394
6395 xfree (lh);
6396 }
6397
6398
6399 /* Add an entry to LH's include directory table. */
6400 static void
6401 add_include_dir (struct line_header *lh, char *include_dir)
6402 {
6403 /* Grow the array if necessary. */
6404 if (lh->include_dirs_size == 0)
6405 {
6406 lh->include_dirs_size = 1; /* for testing */
6407 lh->include_dirs = xmalloc (lh->include_dirs_size
6408 * sizeof (*lh->include_dirs));
6409 }
6410 else if (lh->num_include_dirs >= lh->include_dirs_size)
6411 {
6412 lh->include_dirs_size *= 2;
6413 lh->include_dirs = xrealloc (lh->include_dirs,
6414 (lh->include_dirs_size
6415 * sizeof (*lh->include_dirs)));
6416 }
6417
6418 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6419 }
6420
6421
6422 /* Add an entry to LH's file name table. */
6423 static void
6424 add_file_name (struct line_header *lh,
6425 char *name,
6426 unsigned int dir_index,
6427 unsigned int mod_time,
6428 unsigned int length)
6429 {
6430 struct file_entry *fe;
6431
6432 /* Grow the array if necessary. */
6433 if (lh->file_names_size == 0)
6434 {
6435 lh->file_names_size = 1; /* for testing */
6436 lh->file_names = xmalloc (lh->file_names_size
6437 * sizeof (*lh->file_names));
6438 }
6439 else if (lh->num_file_names >= lh->file_names_size)
6440 {
6441 lh->file_names_size *= 2;
6442 lh->file_names = xrealloc (lh->file_names,
6443 (lh->file_names_size
6444 * sizeof (*lh->file_names)));
6445 }
6446
6447 fe = &lh->file_names[lh->num_file_names++];
6448 fe->name = name;
6449 fe->dir_index = dir_index;
6450 fe->mod_time = mod_time;
6451 fe->length = length;
6452 fe->included_p = 0;
6453 }
6454
6455
6456 /* Read the statement program header starting at OFFSET in
6457 .debug_line, according to the endianness of ABFD. Return a pointer
6458 to a struct line_header, allocated using xmalloc.
6459
6460 NOTE: the strings in the include directory and file name tables of
6461 the returned object point into debug_line_buffer, and must not be
6462 freed. */
6463 static struct line_header *
6464 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6465 struct dwarf2_cu *cu)
6466 {
6467 struct cleanup *back_to;
6468 struct line_header *lh;
6469 gdb_byte *line_ptr;
6470 unsigned int bytes_read;
6471 int i;
6472 char *cur_dir, *cur_file;
6473
6474 if (dwarf2_per_objfile->line_buffer == NULL)
6475 {
6476 complaint (&symfile_complaints, _("missing .debug_line section"));
6477 return 0;
6478 }
6479
6480 /* Make sure that at least there's room for the total_length field.
6481 That could be 12 bytes long, but we're just going to fudge that. */
6482 if (offset + 4 >= dwarf2_per_objfile->line_size)
6483 {
6484 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6485 return 0;
6486 }
6487
6488 lh = xmalloc (sizeof (*lh));
6489 memset (lh, 0, sizeof (*lh));
6490 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6491 (void *) lh);
6492
6493 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6494
6495 /* Read in the header. */
6496 lh->total_length =
6497 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6498 line_ptr += bytes_read;
6499 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6500 + dwarf2_per_objfile->line_size))
6501 {
6502 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6503 return 0;
6504 }
6505 lh->statement_program_end = line_ptr + lh->total_length;
6506 lh->version = read_2_bytes (abfd, line_ptr);
6507 line_ptr += 2;
6508 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6509 line_ptr += bytes_read;
6510 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6511 line_ptr += 1;
6512 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6513 line_ptr += 1;
6514 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6515 line_ptr += 1;
6516 lh->line_range = read_1_byte (abfd, line_ptr);
6517 line_ptr += 1;
6518 lh->opcode_base = read_1_byte (abfd, line_ptr);
6519 line_ptr += 1;
6520 lh->standard_opcode_lengths
6521 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6522
6523 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6524 for (i = 1; i < lh->opcode_base; ++i)
6525 {
6526 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6527 line_ptr += 1;
6528 }
6529
6530 /* Read directory table. */
6531 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6532 {
6533 line_ptr += bytes_read;
6534 add_include_dir (lh, cur_dir);
6535 }
6536 line_ptr += bytes_read;
6537
6538 /* Read file name table. */
6539 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6540 {
6541 unsigned int dir_index, mod_time, length;
6542
6543 line_ptr += bytes_read;
6544 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6545 line_ptr += bytes_read;
6546 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6547 line_ptr += bytes_read;
6548 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6549 line_ptr += bytes_read;
6550
6551 add_file_name (lh, cur_file, dir_index, mod_time, length);
6552 }
6553 line_ptr += bytes_read;
6554 lh->statement_program_start = line_ptr;
6555
6556 if (line_ptr > (dwarf2_per_objfile->line_buffer
6557 + dwarf2_per_objfile->line_size))
6558 complaint (&symfile_complaints,
6559 _("line number info header doesn't fit in `.debug_line' section"));
6560
6561 discard_cleanups (back_to);
6562 return lh;
6563 }
6564
6565 /* This function exists to work around a bug in certain compilers
6566 (particularly GCC 2.95), in which the first line number marker of a
6567 function does not show up until after the prologue, right before
6568 the second line number marker. This function shifts ADDRESS down
6569 to the beginning of the function if necessary, and is called on
6570 addresses passed to record_line. */
6571
6572 static CORE_ADDR
6573 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6574 {
6575 struct function_range *fn;
6576
6577 /* Find the function_range containing address. */
6578 if (!cu->first_fn)
6579 return address;
6580
6581 if (!cu->cached_fn)
6582 cu->cached_fn = cu->first_fn;
6583
6584 fn = cu->cached_fn;
6585 while (fn)
6586 if (fn->lowpc <= address && fn->highpc > address)
6587 goto found;
6588 else
6589 fn = fn->next;
6590
6591 fn = cu->first_fn;
6592 while (fn && fn != cu->cached_fn)
6593 if (fn->lowpc <= address && fn->highpc > address)
6594 goto found;
6595 else
6596 fn = fn->next;
6597
6598 return address;
6599
6600 found:
6601 if (fn->seen_line)
6602 return address;
6603 if (address != fn->lowpc)
6604 complaint (&symfile_complaints,
6605 _("misplaced first line number at 0x%lx for '%s'"),
6606 (unsigned long) address, fn->name);
6607 fn->seen_line = 1;
6608 return fn->lowpc;
6609 }
6610
6611 /* Decode the Line Number Program (LNP) for the given line_header
6612 structure and CU. The actual information extracted and the type
6613 of structures created from the LNP depends on the value of PST.
6614
6615 1. If PST is NULL, then this procedure uses the data from the program
6616 to create all necessary symbol tables, and their linetables.
6617 The compilation directory of the file is passed in COMP_DIR,
6618 and must not be NULL.
6619
6620 2. If PST is not NULL, this procedure reads the program to determine
6621 the list of files included by the unit represented by PST, and
6622 builds all the associated partial symbol tables. In this case,
6623 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6624 is not used to compute the full name of the symtab, and therefore
6625 omitting it when building the partial symtab does not introduce
6626 the potential for inconsistency - a partial symtab and its associated
6627 symbtab having a different fullname -). */
6628
6629 static void
6630 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6631 struct dwarf2_cu *cu, struct partial_symtab *pst)
6632 {
6633 gdb_byte *line_ptr;
6634 gdb_byte *line_end;
6635 unsigned int bytes_read;
6636 unsigned char op_code, extended_op, adj_opcode;
6637 CORE_ADDR baseaddr;
6638 struct objfile *objfile = cu->objfile;
6639 const int decode_for_pst_p = (pst != NULL);
6640 struct subfile *last_subfile = NULL;
6641
6642 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6643
6644 line_ptr = lh->statement_program_start;
6645 line_end = lh->statement_program_end;
6646
6647 /* Read the statement sequences until there's nothing left. */
6648 while (line_ptr < line_end)
6649 {
6650 /* state machine registers */
6651 CORE_ADDR address = 0;
6652 unsigned int file = 1;
6653 unsigned int line = 1;
6654 unsigned int column = 0;
6655 int is_stmt = lh->default_is_stmt;
6656 int basic_block = 0;
6657 int end_sequence = 0;
6658
6659 if (!decode_for_pst_p && lh->num_file_names >= file)
6660 {
6661 /* Start a subfile for the current file of the state machine. */
6662 /* lh->include_dirs and lh->file_names are 0-based, but the
6663 directory and file name numbers in the statement program
6664 are 1-based. */
6665 struct file_entry *fe = &lh->file_names[file - 1];
6666 char *dir = NULL;
6667
6668 if (fe->dir_index)
6669 dir = lh->include_dirs[fe->dir_index - 1];
6670
6671 dwarf2_start_subfile (fe->name, dir, comp_dir);
6672 }
6673
6674 /* Decode the table. */
6675 while (!end_sequence)
6676 {
6677 op_code = read_1_byte (abfd, line_ptr);
6678 line_ptr += 1;
6679
6680 if (op_code >= lh->opcode_base)
6681 {
6682 /* Special operand. */
6683 adj_opcode = op_code - lh->opcode_base;
6684 address += (adj_opcode / lh->line_range)
6685 * lh->minimum_instruction_length;
6686 line += lh->line_base + (adj_opcode % lh->line_range);
6687 lh->file_names[file - 1].included_p = 1;
6688 if (!decode_for_pst_p)
6689 {
6690 if (last_subfile != current_subfile)
6691 {
6692 if (last_subfile)
6693 record_line (last_subfile, 0, address);
6694 last_subfile = current_subfile;
6695 }
6696 /* Append row to matrix using current values. */
6697 record_line (current_subfile, line,
6698 check_cu_functions (address, cu));
6699 }
6700 basic_block = 1;
6701 }
6702 else switch (op_code)
6703 {
6704 case DW_LNS_extended_op:
6705 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6706 line_ptr += bytes_read;
6707 extended_op = read_1_byte (abfd, line_ptr);
6708 line_ptr += 1;
6709 switch (extended_op)
6710 {
6711 case DW_LNE_end_sequence:
6712 end_sequence = 1;
6713 lh->file_names[file - 1].included_p = 1;
6714 if (!decode_for_pst_p)
6715 record_line (current_subfile, 0, address);
6716 break;
6717 case DW_LNE_set_address:
6718 address = read_address (abfd, line_ptr, cu, &bytes_read);
6719 line_ptr += bytes_read;
6720 address += baseaddr;
6721 break;
6722 case DW_LNE_define_file:
6723 {
6724 char *cur_file;
6725 unsigned int dir_index, mod_time, length;
6726
6727 cur_file = read_string (abfd, line_ptr, &bytes_read);
6728 line_ptr += bytes_read;
6729 dir_index =
6730 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6731 line_ptr += bytes_read;
6732 mod_time =
6733 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6734 line_ptr += bytes_read;
6735 length =
6736 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6737 line_ptr += bytes_read;
6738 add_file_name (lh, cur_file, dir_index, mod_time, length);
6739 }
6740 break;
6741 default:
6742 complaint (&symfile_complaints,
6743 _("mangled .debug_line section"));
6744 return;
6745 }
6746 break;
6747 case DW_LNS_copy:
6748 lh->file_names[file - 1].included_p = 1;
6749 if (!decode_for_pst_p)
6750 {
6751 if (last_subfile != current_subfile)
6752 {
6753 if (last_subfile)
6754 record_line (last_subfile, 0, address);
6755 last_subfile = current_subfile;
6756 }
6757 record_line (current_subfile, line,
6758 check_cu_functions (address, cu));
6759 }
6760 basic_block = 0;
6761 break;
6762 case DW_LNS_advance_pc:
6763 address += lh->minimum_instruction_length
6764 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6765 line_ptr += bytes_read;
6766 break;
6767 case DW_LNS_advance_line:
6768 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6769 line_ptr += bytes_read;
6770 break;
6771 case DW_LNS_set_file:
6772 {
6773 /* The arrays lh->include_dirs and lh->file_names are
6774 0-based, but the directory and file name numbers in
6775 the statement program are 1-based. */
6776 struct file_entry *fe;
6777 char *dir = NULL;
6778
6779 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6780 line_ptr += bytes_read;
6781 fe = &lh->file_names[file - 1];
6782 if (fe->dir_index)
6783 dir = lh->include_dirs[fe->dir_index - 1];
6784
6785 if (!decode_for_pst_p)
6786 {
6787 last_subfile = current_subfile;
6788 dwarf2_start_subfile (fe->name, dir, comp_dir);
6789 }
6790 }
6791 break;
6792 case DW_LNS_set_column:
6793 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6794 line_ptr += bytes_read;
6795 break;
6796 case DW_LNS_negate_stmt:
6797 is_stmt = (!is_stmt);
6798 break;
6799 case DW_LNS_set_basic_block:
6800 basic_block = 1;
6801 break;
6802 /* Add to the address register of the state machine the
6803 address increment value corresponding to special opcode
6804 255. I.e., this value is scaled by the minimum
6805 instruction length since special opcode 255 would have
6806 scaled the the increment. */
6807 case DW_LNS_const_add_pc:
6808 address += (lh->minimum_instruction_length
6809 * ((255 - lh->opcode_base) / lh->line_range));
6810 break;
6811 case DW_LNS_fixed_advance_pc:
6812 address += read_2_bytes (abfd, line_ptr);
6813 line_ptr += 2;
6814 break;
6815 default:
6816 {
6817 /* Unknown standard opcode, ignore it. */
6818 int i;
6819
6820 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6821 {
6822 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6823 line_ptr += bytes_read;
6824 }
6825 }
6826 }
6827 }
6828 }
6829
6830 if (decode_for_pst_p)
6831 {
6832 int file_index;
6833
6834 /* Now that we're done scanning the Line Header Program, we can
6835 create the psymtab of each included file. */
6836 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6837 if (lh->file_names[file_index].included_p == 1)
6838 {
6839 const struct file_entry fe = lh->file_names [file_index];
6840 char *include_name = fe.name;
6841 char *dir_name = NULL;
6842 char *pst_filename = pst->filename;
6843
6844 if (fe.dir_index)
6845 dir_name = lh->include_dirs[fe.dir_index - 1];
6846
6847 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6848 {
6849 include_name = concat (dir_name, SLASH_STRING,
6850 include_name, (char *)NULL);
6851 make_cleanup (xfree, include_name);
6852 }
6853
6854 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6855 {
6856 pst_filename = concat (pst->dirname, SLASH_STRING,
6857 pst_filename, (char *)NULL);
6858 make_cleanup (xfree, pst_filename);
6859 }
6860
6861 if (strcmp (include_name, pst_filename) != 0)
6862 dwarf2_create_include_psymtab (include_name, pst, objfile);
6863 }
6864 }
6865 }
6866
6867 /* Start a subfile for DWARF. FILENAME is the name of the file and
6868 DIRNAME the name of the source directory which contains FILENAME
6869 or NULL if not known. COMP_DIR is the compilation directory for the
6870 linetable's compilation unit or NULL if not known.
6871 This routine tries to keep line numbers from identical absolute and
6872 relative file names in a common subfile.
6873
6874 Using the `list' example from the GDB testsuite, which resides in
6875 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6876 of /srcdir/list0.c yields the following debugging information for list0.c:
6877
6878 DW_AT_name: /srcdir/list0.c
6879 DW_AT_comp_dir: /compdir
6880 files.files[0].name: list0.h
6881 files.files[0].dir: /srcdir
6882 files.files[1].name: list0.c
6883 files.files[1].dir: /srcdir
6884
6885 The line number information for list0.c has to end up in a single
6886 subfile, so that `break /srcdir/list0.c:1' works as expected.
6887 start_subfile will ensure that this happens provided that we pass the
6888 concatenation of files.files[1].dir and files.files[1].name as the
6889 subfile's name. */
6890
6891 static void
6892 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
6893 {
6894 char *fullname;
6895
6896 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6897 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6898 second argument to start_subfile. To be consistent, we do the
6899 same here. In order not to lose the line information directory,
6900 we concatenate it to the filename when it makes sense.
6901 Note that the Dwarf3 standard says (speaking of filenames in line
6902 information): ``The directory index is ignored for file names
6903 that represent full path names''. Thus ignoring dirname in the
6904 `else' branch below isn't an issue. */
6905
6906 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6907 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
6908 else
6909 fullname = filename;
6910
6911 start_subfile (fullname, comp_dir);
6912
6913 if (fullname != filename)
6914 xfree (fullname);
6915 }
6916
6917 static void
6918 var_decode_location (struct attribute *attr, struct symbol *sym,
6919 struct dwarf2_cu *cu)
6920 {
6921 struct objfile *objfile = cu->objfile;
6922 struct comp_unit_head *cu_header = &cu->header;
6923
6924 /* NOTE drow/2003-01-30: There used to be a comment and some special
6925 code here to turn a symbol with DW_AT_external and a
6926 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6927 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6928 with some versions of binutils) where shared libraries could have
6929 relocations against symbols in their debug information - the
6930 minimal symbol would have the right address, but the debug info
6931 would not. It's no longer necessary, because we will explicitly
6932 apply relocations when we read in the debug information now. */
6933
6934 /* A DW_AT_location attribute with no contents indicates that a
6935 variable has been optimized away. */
6936 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6937 {
6938 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6939 return;
6940 }
6941
6942 /* Handle one degenerate form of location expression specially, to
6943 preserve GDB's previous behavior when section offsets are
6944 specified. If this is just a DW_OP_addr then mark this symbol
6945 as LOC_STATIC. */
6946
6947 if (attr_form_is_block (attr)
6948 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6949 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6950 {
6951 unsigned int dummy;
6952
6953 SYMBOL_VALUE_ADDRESS (sym) =
6954 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6955 fixup_symbol_section (sym, objfile);
6956 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6957 SYMBOL_SECTION (sym));
6958 SYMBOL_CLASS (sym) = LOC_STATIC;
6959 return;
6960 }
6961
6962 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6963 expression evaluator, and use LOC_COMPUTED only when necessary
6964 (i.e. when the value of a register or memory location is
6965 referenced, or a thread-local block, etc.). Then again, it might
6966 not be worthwhile. I'm assuming that it isn't unless performance
6967 or memory numbers show me otherwise. */
6968
6969 dwarf2_symbol_mark_computed (attr, sym, cu);
6970 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6971 }
6972
6973 /* Given a pointer to a DWARF information entry, figure out if we need
6974 to make a symbol table entry for it, and if so, create a new entry
6975 and return a pointer to it.
6976 If TYPE is NULL, determine symbol type from the die, otherwise
6977 used the passed type. */
6978
6979 static struct symbol *
6980 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6981 {
6982 struct objfile *objfile = cu->objfile;
6983 struct symbol *sym = NULL;
6984 char *name;
6985 struct attribute *attr = NULL;
6986 struct attribute *attr2 = NULL;
6987 CORE_ADDR baseaddr;
6988
6989 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6990
6991 if (die->tag != DW_TAG_namespace)
6992 name = dwarf2_linkage_name (die, cu);
6993 else
6994 name = TYPE_NAME (type);
6995
6996 if (name)
6997 {
6998 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6999 sizeof (struct symbol));
7000 OBJSTAT (objfile, n_syms++);
7001 memset (sym, 0, sizeof (struct symbol));
7002
7003 /* Cache this symbol's name and the name's demangled form (if any). */
7004 SYMBOL_LANGUAGE (sym) = cu->language;
7005 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
7006
7007 /* Default assumptions.
7008 Use the passed type or decode it from the die. */
7009 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7010 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7011 if (type != NULL)
7012 SYMBOL_TYPE (sym) = type;
7013 else
7014 SYMBOL_TYPE (sym) = die_type (die, cu);
7015 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
7016 if (attr)
7017 {
7018 SYMBOL_LINE (sym) = DW_UNSND (attr);
7019 }
7020 switch (die->tag)
7021 {
7022 case DW_TAG_label:
7023 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7024 if (attr)
7025 {
7026 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7027 }
7028 SYMBOL_CLASS (sym) = LOC_LABEL;
7029 break;
7030 case DW_TAG_subprogram:
7031 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7032 finish_block. */
7033 SYMBOL_CLASS (sym) = LOC_BLOCK;
7034 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7035 if (attr2 && (DW_UNSND (attr2) != 0))
7036 {
7037 add_symbol_to_list (sym, &global_symbols);
7038 }
7039 else
7040 {
7041 add_symbol_to_list (sym, cu->list_in_scope);
7042 }
7043 break;
7044 case DW_TAG_variable:
7045 /* Compilation with minimal debug info may result in variables
7046 with missing type entries. Change the misleading `void' type
7047 to something sensible. */
7048 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7049 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
7050 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
7051 "<variable, no debug info>",
7052 objfile);
7053 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7054 if (attr)
7055 {
7056 dwarf2_const_value (attr, sym, cu);
7057 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7058 if (attr2 && (DW_UNSND (attr2) != 0))
7059 add_symbol_to_list (sym, &global_symbols);
7060 else
7061 add_symbol_to_list (sym, cu->list_in_scope);
7062 break;
7063 }
7064 attr = dwarf2_attr (die, DW_AT_location, cu);
7065 if (attr)
7066 {
7067 var_decode_location (attr, sym, cu);
7068 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7069 if (attr2 && (DW_UNSND (attr2) != 0))
7070 add_symbol_to_list (sym, &global_symbols);
7071 else
7072 add_symbol_to_list (sym, cu->list_in_scope);
7073 }
7074 else
7075 {
7076 /* We do not know the address of this symbol.
7077 If it is an external symbol and we have type information
7078 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7079 The address of the variable will then be determined from
7080 the minimal symbol table whenever the variable is
7081 referenced. */
7082 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7083 if (attr2 && (DW_UNSND (attr2) != 0)
7084 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
7085 {
7086 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7087 add_symbol_to_list (sym, &global_symbols);
7088 }
7089 }
7090 break;
7091 case DW_TAG_formal_parameter:
7092 attr = dwarf2_attr (die, DW_AT_location, cu);
7093 if (attr)
7094 {
7095 var_decode_location (attr, sym, cu);
7096 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7097 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7098 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
7099 }
7100 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7101 if (attr)
7102 {
7103 dwarf2_const_value (attr, sym, cu);
7104 }
7105 add_symbol_to_list (sym, cu->list_in_scope);
7106 break;
7107 case DW_TAG_unspecified_parameters:
7108 /* From varargs functions; gdb doesn't seem to have any
7109 interest in this information, so just ignore it for now.
7110 (FIXME?) */
7111 break;
7112 case DW_TAG_class_type:
7113 case DW_TAG_structure_type:
7114 case DW_TAG_union_type:
7115 case DW_TAG_set_type:
7116 case DW_TAG_enumeration_type:
7117 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7118 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7119
7120 /* Make sure that the symbol includes appropriate enclosing
7121 classes/namespaces in its name. These are calculated in
7122 read_structure_type, and the correct name is saved in
7123 the type. */
7124
7125 if (cu->language == language_cplus
7126 || cu->language == language_java)
7127 {
7128 struct type *type = SYMBOL_TYPE (sym);
7129
7130 if (TYPE_TAG_NAME (type) != NULL)
7131 {
7132 /* FIXME: carlton/2003-11-10: Should this use
7133 SYMBOL_SET_NAMES instead? (The same problem also
7134 arises further down in this function.) */
7135 /* The type's name is already allocated along with
7136 this objfile, so we don't need to duplicate it
7137 for the symbol. */
7138 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7139 }
7140 }
7141
7142 {
7143 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7144 really ever be static objects: otherwise, if you try
7145 to, say, break of a class's method and you're in a file
7146 which doesn't mention that class, it won't work unless
7147 the check for all static symbols in lookup_symbol_aux
7148 saves you. See the OtherFileClass tests in
7149 gdb.c++/namespace.exp. */
7150
7151 struct pending **list_to_add;
7152
7153 list_to_add = (cu->list_in_scope == &file_symbols
7154 && (cu->language == language_cplus
7155 || cu->language == language_java)
7156 ? &global_symbols : cu->list_in_scope);
7157
7158 add_symbol_to_list (sym, list_to_add);
7159
7160 /* The semantics of C++ state that "struct foo { ... }" also
7161 defines a typedef for "foo". A Java class declaration also
7162 defines a typedef for the class. Synthesize a typedef symbol
7163 so that "ptype foo" works as expected. */
7164 if (cu->language == language_cplus
7165 || cu->language == language_java)
7166 {
7167 struct symbol *typedef_sym = (struct symbol *)
7168 obstack_alloc (&objfile->objfile_obstack,
7169 sizeof (struct symbol));
7170 *typedef_sym = *sym;
7171 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7172 /* The symbol's name is already allocated along with
7173 this objfile, so we don't need to duplicate it for
7174 the type. */
7175 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7176 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7177 add_symbol_to_list (typedef_sym, list_to_add);
7178 }
7179 }
7180 break;
7181 case DW_TAG_typedef:
7182 if (processing_has_namespace_info
7183 && processing_current_prefix[0] != '\0')
7184 {
7185 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7186 processing_current_prefix,
7187 name, cu);
7188 }
7189 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7190 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7191 add_symbol_to_list (sym, cu->list_in_scope);
7192 break;
7193 case DW_TAG_base_type:
7194 case DW_TAG_subrange_type:
7195 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7196 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7197 add_symbol_to_list (sym, cu->list_in_scope);
7198 break;
7199 case DW_TAG_enumerator:
7200 if (processing_has_namespace_info
7201 && processing_current_prefix[0] != '\0')
7202 {
7203 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7204 processing_current_prefix,
7205 name, cu);
7206 }
7207 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7208 if (attr)
7209 {
7210 dwarf2_const_value (attr, sym, cu);
7211 }
7212 {
7213 /* NOTE: carlton/2003-11-10: See comment above in the
7214 DW_TAG_class_type, etc. block. */
7215
7216 struct pending **list_to_add;
7217
7218 list_to_add = (cu->list_in_scope == &file_symbols
7219 && (cu->language == language_cplus
7220 || cu->language == language_java)
7221 ? &global_symbols : cu->list_in_scope);
7222
7223 add_symbol_to_list (sym, list_to_add);
7224 }
7225 break;
7226 case DW_TAG_namespace:
7227 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7228 add_symbol_to_list (sym, &global_symbols);
7229 break;
7230 default:
7231 /* Not a tag we recognize. Hopefully we aren't processing
7232 trash data, but since we must specifically ignore things
7233 we don't recognize, there is nothing else we should do at
7234 this point. */
7235 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7236 dwarf_tag_name (die->tag));
7237 break;
7238 }
7239 }
7240 return (sym);
7241 }
7242
7243 /* Copy constant value from an attribute to a symbol. */
7244
7245 static void
7246 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7247 struct dwarf2_cu *cu)
7248 {
7249 struct objfile *objfile = cu->objfile;
7250 struct comp_unit_head *cu_header = &cu->header;
7251 struct dwarf_block *blk;
7252
7253 switch (attr->form)
7254 {
7255 case DW_FORM_addr:
7256 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7257 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7258 cu_header->addr_size,
7259 TYPE_LENGTH (SYMBOL_TYPE
7260 (sym)));
7261 SYMBOL_VALUE_BYTES (sym) =
7262 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7263 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7264 it's body - store_unsigned_integer. */
7265 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7266 DW_ADDR (attr));
7267 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7268 break;
7269 case DW_FORM_block1:
7270 case DW_FORM_block2:
7271 case DW_FORM_block4:
7272 case DW_FORM_block:
7273 blk = DW_BLOCK (attr);
7274 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7275 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7276 blk->size,
7277 TYPE_LENGTH (SYMBOL_TYPE
7278 (sym)));
7279 SYMBOL_VALUE_BYTES (sym) =
7280 obstack_alloc (&objfile->objfile_obstack, blk->size);
7281 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7282 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7283 break;
7284
7285 /* The DW_AT_const_value attributes are supposed to carry the
7286 symbol's value "represented as it would be on the target
7287 architecture." By the time we get here, it's already been
7288 converted to host endianness, so we just need to sign- or
7289 zero-extend it as appropriate. */
7290 case DW_FORM_data1:
7291 dwarf2_const_value_data (attr, sym, 8);
7292 break;
7293 case DW_FORM_data2:
7294 dwarf2_const_value_data (attr, sym, 16);
7295 break;
7296 case DW_FORM_data4:
7297 dwarf2_const_value_data (attr, sym, 32);
7298 break;
7299 case DW_FORM_data8:
7300 dwarf2_const_value_data (attr, sym, 64);
7301 break;
7302
7303 case DW_FORM_sdata:
7304 SYMBOL_VALUE (sym) = DW_SND (attr);
7305 SYMBOL_CLASS (sym) = LOC_CONST;
7306 break;
7307
7308 case DW_FORM_udata:
7309 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7310 SYMBOL_CLASS (sym) = LOC_CONST;
7311 break;
7312
7313 default:
7314 complaint (&symfile_complaints,
7315 _("unsupported const value attribute form: '%s'"),
7316 dwarf_form_name (attr->form));
7317 SYMBOL_VALUE (sym) = 0;
7318 SYMBOL_CLASS (sym) = LOC_CONST;
7319 break;
7320 }
7321 }
7322
7323
7324 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7325 or zero-extend it as appropriate for the symbol's type. */
7326 static void
7327 dwarf2_const_value_data (struct attribute *attr,
7328 struct symbol *sym,
7329 int bits)
7330 {
7331 LONGEST l = DW_UNSND (attr);
7332
7333 if (bits < sizeof (l) * 8)
7334 {
7335 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7336 l &= ((LONGEST) 1 << bits) - 1;
7337 else
7338 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7339 }
7340
7341 SYMBOL_VALUE (sym) = l;
7342 SYMBOL_CLASS (sym) = LOC_CONST;
7343 }
7344
7345
7346 /* Return the type of the die in question using its DW_AT_type attribute. */
7347
7348 static struct type *
7349 die_type (struct die_info *die, struct dwarf2_cu *cu)
7350 {
7351 struct type *type;
7352 struct attribute *type_attr;
7353 struct die_info *type_die;
7354
7355 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7356 if (!type_attr)
7357 {
7358 /* A missing DW_AT_type represents a void type. */
7359 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7360 }
7361 else
7362 type_die = follow_die_ref (die, type_attr, cu);
7363
7364 type = tag_type_to_type (type_die, cu);
7365 if (!type)
7366 {
7367 dump_die (type_die);
7368 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7369 cu->objfile->name);
7370 }
7371 return type;
7372 }
7373
7374 /* Return the containing type of the die in question using its
7375 DW_AT_containing_type attribute. */
7376
7377 static struct type *
7378 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7379 {
7380 struct type *type = NULL;
7381 struct attribute *type_attr;
7382 struct die_info *type_die = NULL;
7383
7384 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7385 if (type_attr)
7386 {
7387 type_die = follow_die_ref (die, type_attr, cu);
7388 type = tag_type_to_type (type_die, cu);
7389 }
7390 if (!type)
7391 {
7392 if (type_die)
7393 dump_die (type_die);
7394 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7395 cu->objfile->name);
7396 }
7397 return type;
7398 }
7399
7400 static struct type *
7401 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7402 {
7403 if (die->type)
7404 {
7405 return die->type;
7406 }
7407 else
7408 {
7409 read_type_die (die, cu);
7410 if (!die->type)
7411 {
7412 dump_die (die);
7413 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7414 cu->objfile->name);
7415 }
7416 return die->type;
7417 }
7418 }
7419
7420 static void
7421 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7422 {
7423 char *prefix = determine_prefix (die, cu);
7424 const char *old_prefix = processing_current_prefix;
7425 struct cleanup *back_to = make_cleanup (xfree, prefix);
7426 processing_current_prefix = prefix;
7427
7428 switch (die->tag)
7429 {
7430 case DW_TAG_class_type:
7431 case DW_TAG_structure_type:
7432 case DW_TAG_union_type:
7433 read_structure_type (die, cu);
7434 break;
7435 case DW_TAG_enumeration_type:
7436 read_enumeration_type (die, cu);
7437 break;
7438 case DW_TAG_subprogram:
7439 case DW_TAG_subroutine_type:
7440 read_subroutine_type (die, cu);
7441 break;
7442 case DW_TAG_array_type:
7443 read_array_type (die, cu);
7444 break;
7445 case DW_TAG_set_type:
7446 read_set_type (die, cu);
7447 break;
7448 case DW_TAG_pointer_type:
7449 read_tag_pointer_type (die, cu);
7450 break;
7451 case DW_TAG_ptr_to_member_type:
7452 read_tag_ptr_to_member_type (die, cu);
7453 break;
7454 case DW_TAG_reference_type:
7455 read_tag_reference_type (die, cu);
7456 break;
7457 case DW_TAG_const_type:
7458 read_tag_const_type (die, cu);
7459 break;
7460 case DW_TAG_volatile_type:
7461 read_tag_volatile_type (die, cu);
7462 break;
7463 case DW_TAG_string_type:
7464 read_tag_string_type (die, cu);
7465 break;
7466 case DW_TAG_typedef:
7467 read_typedef (die, cu);
7468 break;
7469 case DW_TAG_subrange_type:
7470 read_subrange_type (die, cu);
7471 break;
7472 case DW_TAG_base_type:
7473 read_base_type (die, cu);
7474 break;
7475 case DW_TAG_unspecified_type:
7476 read_unspecified_type (die, cu);
7477 break;
7478 default:
7479 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7480 dwarf_tag_name (die->tag));
7481 break;
7482 }
7483
7484 processing_current_prefix = old_prefix;
7485 do_cleanups (back_to);
7486 }
7487
7488 /* Return the name of the namespace/class that DIE is defined within,
7489 or "" if we can't tell. The caller should xfree the result. */
7490
7491 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7492 therein) for an example of how to use this function to deal with
7493 DW_AT_specification. */
7494
7495 static char *
7496 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7497 {
7498 struct die_info *parent;
7499
7500 if (cu->language != language_cplus
7501 && cu->language != language_java)
7502 return NULL;
7503
7504 parent = die->parent;
7505
7506 if (parent == NULL)
7507 {
7508 return xstrdup ("");
7509 }
7510 else
7511 {
7512 switch (parent->tag) {
7513 case DW_TAG_namespace:
7514 {
7515 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7516 before doing this check? */
7517 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7518 {
7519 return xstrdup (TYPE_TAG_NAME (parent->type));
7520 }
7521 else
7522 {
7523 int dummy;
7524 char *parent_prefix = determine_prefix (parent, cu);
7525 char *retval = typename_concat (NULL, parent_prefix,
7526 namespace_name (parent, &dummy,
7527 cu),
7528 cu);
7529 xfree (parent_prefix);
7530 return retval;
7531 }
7532 }
7533 break;
7534 case DW_TAG_class_type:
7535 case DW_TAG_structure_type:
7536 {
7537 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7538 {
7539 return xstrdup (TYPE_TAG_NAME (parent->type));
7540 }
7541 else
7542 {
7543 const char *old_prefix = processing_current_prefix;
7544 char *new_prefix = determine_prefix (parent, cu);
7545 char *retval;
7546
7547 processing_current_prefix = new_prefix;
7548 retval = determine_class_name (parent, cu);
7549 processing_current_prefix = old_prefix;
7550
7551 xfree (new_prefix);
7552 return retval;
7553 }
7554 }
7555 default:
7556 return determine_prefix (parent, cu);
7557 }
7558 }
7559 }
7560
7561 /* Return a newly-allocated string formed by concatenating PREFIX and
7562 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7563 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7564 perform an obconcat, otherwise allocate storage for the result. The CU argument
7565 is used to determine the language and hence, the appropriate separator. */
7566
7567 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7568
7569 static char *
7570 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7571 struct dwarf2_cu *cu)
7572 {
7573 char *sep;
7574
7575 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7576 sep = "";
7577 else if (cu->language == language_java)
7578 sep = ".";
7579 else
7580 sep = "::";
7581
7582 if (obs == NULL)
7583 {
7584 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7585 retval[0] = '\0';
7586
7587 if (prefix)
7588 {
7589 strcpy (retval, prefix);
7590 strcat (retval, sep);
7591 }
7592 if (suffix)
7593 strcat (retval, suffix);
7594
7595 return retval;
7596 }
7597 else
7598 {
7599 /* We have an obstack. */
7600 return obconcat (obs, prefix, sep, suffix);
7601 }
7602 }
7603
7604 static struct type *
7605 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7606 {
7607 struct objfile *objfile = cu->objfile;
7608
7609 /* FIXME - this should not produce a new (struct type *)
7610 every time. It should cache base types. */
7611 struct type *type;
7612 switch (encoding)
7613 {
7614 case DW_ATE_address:
7615 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7616 return type;
7617 case DW_ATE_boolean:
7618 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7619 return type;
7620 case DW_ATE_complex_float:
7621 if (size == 16)
7622 {
7623 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7624 }
7625 else
7626 {
7627 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7628 }
7629 return type;
7630 case DW_ATE_float:
7631 if (size == 8)
7632 {
7633 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7634 }
7635 else
7636 {
7637 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7638 }
7639 return type;
7640 case DW_ATE_signed:
7641 switch (size)
7642 {
7643 case 1:
7644 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7645 break;
7646 case 2:
7647 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7648 break;
7649 default:
7650 case 4:
7651 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7652 break;
7653 }
7654 return type;
7655 case DW_ATE_signed_char:
7656 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7657 return type;
7658 case DW_ATE_unsigned:
7659 switch (size)
7660 {
7661 case 1:
7662 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7663 break;
7664 case 2:
7665 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7666 break;
7667 default:
7668 case 4:
7669 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7670 break;
7671 }
7672 return type;
7673 case DW_ATE_unsigned_char:
7674 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7675 return type;
7676 default:
7677 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7678 return type;
7679 }
7680 }
7681
7682 #if 0
7683 struct die_info *
7684 copy_die (struct die_info *old_die)
7685 {
7686 struct die_info *new_die;
7687 int i, num_attrs;
7688
7689 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7690 memset (new_die, 0, sizeof (struct die_info));
7691
7692 new_die->tag = old_die->tag;
7693 new_die->has_children = old_die->has_children;
7694 new_die->abbrev = old_die->abbrev;
7695 new_die->offset = old_die->offset;
7696 new_die->type = NULL;
7697
7698 num_attrs = old_die->num_attrs;
7699 new_die->num_attrs = num_attrs;
7700 new_die->attrs = (struct attribute *)
7701 xmalloc (num_attrs * sizeof (struct attribute));
7702
7703 for (i = 0; i < old_die->num_attrs; ++i)
7704 {
7705 new_die->attrs[i].name = old_die->attrs[i].name;
7706 new_die->attrs[i].form = old_die->attrs[i].form;
7707 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7708 }
7709
7710 new_die->next = NULL;
7711 return new_die;
7712 }
7713 #endif
7714
7715 /* Return sibling of die, NULL if no sibling. */
7716
7717 static struct die_info *
7718 sibling_die (struct die_info *die)
7719 {
7720 return die->sibling;
7721 }
7722
7723 /* Get linkage name of a die, return NULL if not found. */
7724
7725 static char *
7726 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7727 {
7728 struct attribute *attr;
7729
7730 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7731 if (attr && DW_STRING (attr))
7732 return DW_STRING (attr);
7733 attr = dwarf2_attr (die, DW_AT_name, cu);
7734 if (attr && DW_STRING (attr))
7735 return DW_STRING (attr);
7736 return NULL;
7737 }
7738
7739 /* Get name of a die, return NULL if not found. */
7740
7741 static char *
7742 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7743 {
7744 struct attribute *attr;
7745
7746 attr = dwarf2_attr (die, DW_AT_name, cu);
7747 if (attr && DW_STRING (attr))
7748 return DW_STRING (attr);
7749 return NULL;
7750 }
7751
7752 /* Return the die that this die in an extension of, or NULL if there
7753 is none. */
7754
7755 static struct die_info *
7756 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7757 {
7758 struct attribute *attr;
7759
7760 attr = dwarf2_attr (die, DW_AT_extension, cu);
7761 if (attr == NULL)
7762 return NULL;
7763
7764 return follow_die_ref (die, attr, cu);
7765 }
7766
7767 /* Convert a DIE tag into its string name. */
7768
7769 static char *
7770 dwarf_tag_name (unsigned tag)
7771 {
7772 switch (tag)
7773 {
7774 case DW_TAG_padding:
7775 return "DW_TAG_padding";
7776 case DW_TAG_array_type:
7777 return "DW_TAG_array_type";
7778 case DW_TAG_class_type:
7779 return "DW_TAG_class_type";
7780 case DW_TAG_entry_point:
7781 return "DW_TAG_entry_point";
7782 case DW_TAG_enumeration_type:
7783 return "DW_TAG_enumeration_type";
7784 case DW_TAG_formal_parameter:
7785 return "DW_TAG_formal_parameter";
7786 case DW_TAG_imported_declaration:
7787 return "DW_TAG_imported_declaration";
7788 case DW_TAG_label:
7789 return "DW_TAG_label";
7790 case DW_TAG_lexical_block:
7791 return "DW_TAG_lexical_block";
7792 case DW_TAG_member:
7793 return "DW_TAG_member";
7794 case DW_TAG_pointer_type:
7795 return "DW_TAG_pointer_type";
7796 case DW_TAG_reference_type:
7797 return "DW_TAG_reference_type";
7798 case DW_TAG_compile_unit:
7799 return "DW_TAG_compile_unit";
7800 case DW_TAG_string_type:
7801 return "DW_TAG_string_type";
7802 case DW_TAG_structure_type:
7803 return "DW_TAG_structure_type";
7804 case DW_TAG_subroutine_type:
7805 return "DW_TAG_subroutine_type";
7806 case DW_TAG_typedef:
7807 return "DW_TAG_typedef";
7808 case DW_TAG_union_type:
7809 return "DW_TAG_union_type";
7810 case DW_TAG_unspecified_parameters:
7811 return "DW_TAG_unspecified_parameters";
7812 case DW_TAG_variant:
7813 return "DW_TAG_variant";
7814 case DW_TAG_common_block:
7815 return "DW_TAG_common_block";
7816 case DW_TAG_common_inclusion:
7817 return "DW_TAG_common_inclusion";
7818 case DW_TAG_inheritance:
7819 return "DW_TAG_inheritance";
7820 case DW_TAG_inlined_subroutine:
7821 return "DW_TAG_inlined_subroutine";
7822 case DW_TAG_module:
7823 return "DW_TAG_module";
7824 case DW_TAG_ptr_to_member_type:
7825 return "DW_TAG_ptr_to_member_type";
7826 case DW_TAG_set_type:
7827 return "DW_TAG_set_type";
7828 case DW_TAG_subrange_type:
7829 return "DW_TAG_subrange_type";
7830 case DW_TAG_with_stmt:
7831 return "DW_TAG_with_stmt";
7832 case DW_TAG_access_declaration:
7833 return "DW_TAG_access_declaration";
7834 case DW_TAG_base_type:
7835 return "DW_TAG_base_type";
7836 case DW_TAG_catch_block:
7837 return "DW_TAG_catch_block";
7838 case DW_TAG_const_type:
7839 return "DW_TAG_const_type";
7840 case DW_TAG_constant:
7841 return "DW_TAG_constant";
7842 case DW_TAG_enumerator:
7843 return "DW_TAG_enumerator";
7844 case DW_TAG_file_type:
7845 return "DW_TAG_file_type";
7846 case DW_TAG_friend:
7847 return "DW_TAG_friend";
7848 case DW_TAG_namelist:
7849 return "DW_TAG_namelist";
7850 case DW_TAG_namelist_item:
7851 return "DW_TAG_namelist_item";
7852 case DW_TAG_packed_type:
7853 return "DW_TAG_packed_type";
7854 case DW_TAG_subprogram:
7855 return "DW_TAG_subprogram";
7856 case DW_TAG_template_type_param:
7857 return "DW_TAG_template_type_param";
7858 case DW_TAG_template_value_param:
7859 return "DW_TAG_template_value_param";
7860 case DW_TAG_thrown_type:
7861 return "DW_TAG_thrown_type";
7862 case DW_TAG_try_block:
7863 return "DW_TAG_try_block";
7864 case DW_TAG_variant_part:
7865 return "DW_TAG_variant_part";
7866 case DW_TAG_variable:
7867 return "DW_TAG_variable";
7868 case DW_TAG_volatile_type:
7869 return "DW_TAG_volatile_type";
7870 case DW_TAG_dwarf_procedure:
7871 return "DW_TAG_dwarf_procedure";
7872 case DW_TAG_restrict_type:
7873 return "DW_TAG_restrict_type";
7874 case DW_TAG_interface_type:
7875 return "DW_TAG_interface_type";
7876 case DW_TAG_namespace:
7877 return "DW_TAG_namespace";
7878 case DW_TAG_imported_module:
7879 return "DW_TAG_imported_module";
7880 case DW_TAG_unspecified_type:
7881 return "DW_TAG_unspecified_type";
7882 case DW_TAG_partial_unit:
7883 return "DW_TAG_partial_unit";
7884 case DW_TAG_imported_unit:
7885 return "DW_TAG_imported_unit";
7886 case DW_TAG_condition:
7887 return "DW_TAG_condition";
7888 case DW_TAG_shared_type:
7889 return "DW_TAG_shared_type";
7890 case DW_TAG_MIPS_loop:
7891 return "DW_TAG_MIPS_loop";
7892 case DW_TAG_HP_array_descriptor:
7893 return "DW_TAG_HP_array_descriptor";
7894 case DW_TAG_format_label:
7895 return "DW_TAG_format_label";
7896 case DW_TAG_function_template:
7897 return "DW_TAG_function_template";
7898 case DW_TAG_class_template:
7899 return "DW_TAG_class_template";
7900 case DW_TAG_GNU_BINCL:
7901 return "DW_TAG_GNU_BINCL";
7902 case DW_TAG_GNU_EINCL:
7903 return "DW_TAG_GNU_EINCL";
7904 case DW_TAG_upc_shared_type:
7905 return "DW_TAG_upc_shared_type";
7906 case DW_TAG_upc_strict_type:
7907 return "DW_TAG_upc_strict_type";
7908 case DW_TAG_upc_relaxed_type:
7909 return "DW_TAG_upc_relaxed_type";
7910 case DW_TAG_PGI_kanji_type:
7911 return "DW_TAG_PGI_kanji_type";
7912 case DW_TAG_PGI_interface_block:
7913 return "DW_TAG_PGI_interface_block";
7914 default:
7915 return "DW_TAG_<unknown>";
7916 }
7917 }
7918
7919 /* Convert a DWARF attribute code into its string name. */
7920
7921 static char *
7922 dwarf_attr_name (unsigned attr)
7923 {
7924 switch (attr)
7925 {
7926 case DW_AT_sibling:
7927 return "DW_AT_sibling";
7928 case DW_AT_location:
7929 return "DW_AT_location";
7930 case DW_AT_name:
7931 return "DW_AT_name";
7932 case DW_AT_ordering:
7933 return "DW_AT_ordering";
7934 case DW_AT_subscr_data:
7935 return "DW_AT_subscr_data";
7936 case DW_AT_byte_size:
7937 return "DW_AT_byte_size";
7938 case DW_AT_bit_offset:
7939 return "DW_AT_bit_offset";
7940 case DW_AT_bit_size:
7941 return "DW_AT_bit_size";
7942 case DW_AT_element_list:
7943 return "DW_AT_element_list";
7944 case DW_AT_stmt_list:
7945 return "DW_AT_stmt_list";
7946 case DW_AT_low_pc:
7947 return "DW_AT_low_pc";
7948 case DW_AT_high_pc:
7949 return "DW_AT_high_pc";
7950 case DW_AT_language:
7951 return "DW_AT_language";
7952 case DW_AT_member:
7953 return "DW_AT_member";
7954 case DW_AT_discr:
7955 return "DW_AT_discr";
7956 case DW_AT_discr_value:
7957 return "DW_AT_discr_value";
7958 case DW_AT_visibility:
7959 return "DW_AT_visibility";
7960 case DW_AT_import:
7961 return "DW_AT_import";
7962 case DW_AT_string_length:
7963 return "DW_AT_string_length";
7964 case DW_AT_common_reference:
7965 return "DW_AT_common_reference";
7966 case DW_AT_comp_dir:
7967 return "DW_AT_comp_dir";
7968 case DW_AT_const_value:
7969 return "DW_AT_const_value";
7970 case DW_AT_containing_type:
7971 return "DW_AT_containing_type";
7972 case DW_AT_default_value:
7973 return "DW_AT_default_value";
7974 case DW_AT_inline:
7975 return "DW_AT_inline";
7976 case DW_AT_is_optional:
7977 return "DW_AT_is_optional";
7978 case DW_AT_lower_bound:
7979 return "DW_AT_lower_bound";
7980 case DW_AT_producer:
7981 return "DW_AT_producer";
7982 case DW_AT_prototyped:
7983 return "DW_AT_prototyped";
7984 case DW_AT_return_addr:
7985 return "DW_AT_return_addr";
7986 case DW_AT_start_scope:
7987 return "DW_AT_start_scope";
7988 case DW_AT_stride_size:
7989 return "DW_AT_stride_size";
7990 case DW_AT_upper_bound:
7991 return "DW_AT_upper_bound";
7992 case DW_AT_abstract_origin:
7993 return "DW_AT_abstract_origin";
7994 case DW_AT_accessibility:
7995 return "DW_AT_accessibility";
7996 case DW_AT_address_class:
7997 return "DW_AT_address_class";
7998 case DW_AT_artificial:
7999 return "DW_AT_artificial";
8000 case DW_AT_base_types:
8001 return "DW_AT_base_types";
8002 case DW_AT_calling_convention:
8003 return "DW_AT_calling_convention";
8004 case DW_AT_count:
8005 return "DW_AT_count";
8006 case DW_AT_data_member_location:
8007 return "DW_AT_data_member_location";
8008 case DW_AT_decl_column:
8009 return "DW_AT_decl_column";
8010 case DW_AT_decl_file:
8011 return "DW_AT_decl_file";
8012 case DW_AT_decl_line:
8013 return "DW_AT_decl_line";
8014 case DW_AT_declaration:
8015 return "DW_AT_declaration";
8016 case DW_AT_discr_list:
8017 return "DW_AT_discr_list";
8018 case DW_AT_encoding:
8019 return "DW_AT_encoding";
8020 case DW_AT_external:
8021 return "DW_AT_external";
8022 case DW_AT_frame_base:
8023 return "DW_AT_frame_base";
8024 case DW_AT_friend:
8025 return "DW_AT_friend";
8026 case DW_AT_identifier_case:
8027 return "DW_AT_identifier_case";
8028 case DW_AT_macro_info:
8029 return "DW_AT_macro_info";
8030 case DW_AT_namelist_items:
8031 return "DW_AT_namelist_items";
8032 case DW_AT_priority:
8033 return "DW_AT_priority";
8034 case DW_AT_segment:
8035 return "DW_AT_segment";
8036 case DW_AT_specification:
8037 return "DW_AT_specification";
8038 case DW_AT_static_link:
8039 return "DW_AT_static_link";
8040 case DW_AT_type:
8041 return "DW_AT_type";
8042 case DW_AT_use_location:
8043 return "DW_AT_use_location";
8044 case DW_AT_variable_parameter:
8045 return "DW_AT_variable_parameter";
8046 case DW_AT_virtuality:
8047 return "DW_AT_virtuality";
8048 case DW_AT_vtable_elem_location:
8049 return "DW_AT_vtable_elem_location";
8050 /* DWARF 3 values. */
8051 case DW_AT_allocated:
8052 return "DW_AT_allocated";
8053 case DW_AT_associated:
8054 return "DW_AT_associated";
8055 case DW_AT_data_location:
8056 return "DW_AT_data_location";
8057 case DW_AT_stride:
8058 return "DW_AT_stride";
8059 case DW_AT_entry_pc:
8060 return "DW_AT_entry_pc";
8061 case DW_AT_use_UTF8:
8062 return "DW_AT_use_UTF8";
8063 case DW_AT_extension:
8064 return "DW_AT_extension";
8065 case DW_AT_ranges:
8066 return "DW_AT_ranges";
8067 case DW_AT_trampoline:
8068 return "DW_AT_trampoline";
8069 case DW_AT_call_column:
8070 return "DW_AT_call_column";
8071 case DW_AT_call_file:
8072 return "DW_AT_call_file";
8073 case DW_AT_call_line:
8074 return "DW_AT_call_line";
8075 case DW_AT_description:
8076 return "DW_AT_description";
8077 case DW_AT_binary_scale:
8078 return "DW_AT_binary_scale";
8079 case DW_AT_decimal_scale:
8080 return "DW_AT_decimal_scale";
8081 case DW_AT_small:
8082 return "DW_AT_small";
8083 case DW_AT_decimal_sign:
8084 return "DW_AT_decimal_sign";
8085 case DW_AT_digit_count:
8086 return "DW_AT_digit_count";
8087 case DW_AT_picture_string:
8088 return "DW_AT_picture_string";
8089 case DW_AT_mutable:
8090 return "DW_AT_mutable";
8091 case DW_AT_threads_scaled:
8092 return "DW_AT_threads_scaled";
8093 case DW_AT_explicit:
8094 return "DW_AT_explicit";
8095 case DW_AT_object_pointer:
8096 return "DW_AT_object_pointer";
8097 case DW_AT_endianity:
8098 return "DW_AT_endianity";
8099 case DW_AT_elemental:
8100 return "DW_AT_elemental";
8101 case DW_AT_pure:
8102 return "DW_AT_pure";
8103 case DW_AT_recursive:
8104 return "DW_AT_recursive";
8105 #ifdef MIPS
8106 /* SGI/MIPS extensions. */
8107 case DW_AT_MIPS_fde:
8108 return "DW_AT_MIPS_fde";
8109 case DW_AT_MIPS_loop_begin:
8110 return "DW_AT_MIPS_loop_begin";
8111 case DW_AT_MIPS_tail_loop_begin:
8112 return "DW_AT_MIPS_tail_loop_begin";
8113 case DW_AT_MIPS_epilog_begin:
8114 return "DW_AT_MIPS_epilog_begin";
8115 case DW_AT_MIPS_loop_unroll_factor:
8116 return "DW_AT_MIPS_loop_unroll_factor";
8117 case DW_AT_MIPS_software_pipeline_depth:
8118 return "DW_AT_MIPS_software_pipeline_depth";
8119 case DW_AT_MIPS_linkage_name:
8120 return "DW_AT_MIPS_linkage_name";
8121 case DW_AT_MIPS_stride:
8122 return "DW_AT_MIPS_stride";
8123 case DW_AT_MIPS_abstract_name:
8124 return "DW_AT_MIPS_abstract_name";
8125 case DW_AT_MIPS_clone_origin:
8126 return "DW_AT_MIPS_clone_origin";
8127 case DW_AT_MIPS_has_inlines:
8128 return "DW_AT_MIPS_has_inlines";
8129 #endif
8130 /* HP extensions. */
8131 case DW_AT_HP_block_index:
8132 return "DW_AT_HP_block_index";
8133 case DW_AT_HP_unmodifiable:
8134 return "DW_AT_HP_unmodifiable";
8135 case DW_AT_HP_actuals_stmt_list:
8136 return "DW_AT_HP_actuals_stmt_list";
8137 case DW_AT_HP_proc_per_section:
8138 return "DW_AT_HP_proc_per_section";
8139 case DW_AT_HP_raw_data_ptr:
8140 return "DW_AT_HP_raw_data_ptr";
8141 case DW_AT_HP_pass_by_reference:
8142 return "DW_AT_HP_pass_by_reference";
8143 case DW_AT_HP_opt_level:
8144 return "DW_AT_HP_opt_level";
8145 case DW_AT_HP_prof_version_id:
8146 return "DW_AT_HP_prof_version_id";
8147 case DW_AT_HP_opt_flags:
8148 return "DW_AT_HP_opt_flags";
8149 case DW_AT_HP_cold_region_low_pc:
8150 return "DW_AT_HP_cold_region_low_pc";
8151 case DW_AT_HP_cold_region_high_pc:
8152 return "DW_AT_HP_cold_region_high_pc";
8153 case DW_AT_HP_all_variables_modifiable:
8154 return "DW_AT_HP_all_variables_modifiable";
8155 case DW_AT_HP_linkage_name:
8156 return "DW_AT_HP_linkage_name";
8157 case DW_AT_HP_prof_flags:
8158 return "DW_AT_HP_prof_flags";
8159 /* GNU extensions. */
8160 case DW_AT_sf_names:
8161 return "DW_AT_sf_names";
8162 case DW_AT_src_info:
8163 return "DW_AT_src_info";
8164 case DW_AT_mac_info:
8165 return "DW_AT_mac_info";
8166 case DW_AT_src_coords:
8167 return "DW_AT_src_coords";
8168 case DW_AT_body_begin:
8169 return "DW_AT_body_begin";
8170 case DW_AT_body_end:
8171 return "DW_AT_body_end";
8172 case DW_AT_GNU_vector:
8173 return "DW_AT_GNU_vector";
8174 /* VMS extensions. */
8175 case DW_AT_VMS_rtnbeg_pd_address:
8176 return "DW_AT_VMS_rtnbeg_pd_address";
8177 /* UPC extension. */
8178 case DW_AT_upc_threads_scaled:
8179 return "DW_AT_upc_threads_scaled";
8180 /* PGI (STMicroelectronics) extensions. */
8181 case DW_AT_PGI_lbase:
8182 return "DW_AT_PGI_lbase";
8183 case DW_AT_PGI_soffset:
8184 return "DW_AT_PGI_soffset";
8185 case DW_AT_PGI_lstride:
8186 return "DW_AT_PGI_lstride";
8187 default:
8188 return "DW_AT_<unknown>";
8189 }
8190 }
8191
8192 /* Convert a DWARF value form code into its string name. */
8193
8194 static char *
8195 dwarf_form_name (unsigned form)
8196 {
8197 switch (form)
8198 {
8199 case DW_FORM_addr:
8200 return "DW_FORM_addr";
8201 case DW_FORM_block2:
8202 return "DW_FORM_block2";
8203 case DW_FORM_block4:
8204 return "DW_FORM_block4";
8205 case DW_FORM_data2:
8206 return "DW_FORM_data2";
8207 case DW_FORM_data4:
8208 return "DW_FORM_data4";
8209 case DW_FORM_data8:
8210 return "DW_FORM_data8";
8211 case DW_FORM_string:
8212 return "DW_FORM_string";
8213 case DW_FORM_block:
8214 return "DW_FORM_block";
8215 case DW_FORM_block1:
8216 return "DW_FORM_block1";
8217 case DW_FORM_data1:
8218 return "DW_FORM_data1";
8219 case DW_FORM_flag:
8220 return "DW_FORM_flag";
8221 case DW_FORM_sdata:
8222 return "DW_FORM_sdata";
8223 case DW_FORM_strp:
8224 return "DW_FORM_strp";
8225 case DW_FORM_udata:
8226 return "DW_FORM_udata";
8227 case DW_FORM_ref_addr:
8228 return "DW_FORM_ref_addr";
8229 case DW_FORM_ref1:
8230 return "DW_FORM_ref1";
8231 case DW_FORM_ref2:
8232 return "DW_FORM_ref2";
8233 case DW_FORM_ref4:
8234 return "DW_FORM_ref4";
8235 case DW_FORM_ref8:
8236 return "DW_FORM_ref8";
8237 case DW_FORM_ref_udata:
8238 return "DW_FORM_ref_udata";
8239 case DW_FORM_indirect:
8240 return "DW_FORM_indirect";
8241 default:
8242 return "DW_FORM_<unknown>";
8243 }
8244 }
8245
8246 /* Convert a DWARF stack opcode into its string name. */
8247
8248 static char *
8249 dwarf_stack_op_name (unsigned op)
8250 {
8251 switch (op)
8252 {
8253 case DW_OP_addr:
8254 return "DW_OP_addr";
8255 case DW_OP_deref:
8256 return "DW_OP_deref";
8257 case DW_OP_const1u:
8258 return "DW_OP_const1u";
8259 case DW_OP_const1s:
8260 return "DW_OP_const1s";
8261 case DW_OP_const2u:
8262 return "DW_OP_const2u";
8263 case DW_OP_const2s:
8264 return "DW_OP_const2s";
8265 case DW_OP_const4u:
8266 return "DW_OP_const4u";
8267 case DW_OP_const4s:
8268 return "DW_OP_const4s";
8269 case DW_OP_const8u:
8270 return "DW_OP_const8u";
8271 case DW_OP_const8s:
8272 return "DW_OP_const8s";
8273 case DW_OP_constu:
8274 return "DW_OP_constu";
8275 case DW_OP_consts:
8276 return "DW_OP_consts";
8277 case DW_OP_dup:
8278 return "DW_OP_dup";
8279 case DW_OP_drop:
8280 return "DW_OP_drop";
8281 case DW_OP_over:
8282 return "DW_OP_over";
8283 case DW_OP_pick:
8284 return "DW_OP_pick";
8285 case DW_OP_swap:
8286 return "DW_OP_swap";
8287 case DW_OP_rot:
8288 return "DW_OP_rot";
8289 case DW_OP_xderef:
8290 return "DW_OP_xderef";
8291 case DW_OP_abs:
8292 return "DW_OP_abs";
8293 case DW_OP_and:
8294 return "DW_OP_and";
8295 case DW_OP_div:
8296 return "DW_OP_div";
8297 case DW_OP_minus:
8298 return "DW_OP_minus";
8299 case DW_OP_mod:
8300 return "DW_OP_mod";
8301 case DW_OP_mul:
8302 return "DW_OP_mul";
8303 case DW_OP_neg:
8304 return "DW_OP_neg";
8305 case DW_OP_not:
8306 return "DW_OP_not";
8307 case DW_OP_or:
8308 return "DW_OP_or";
8309 case DW_OP_plus:
8310 return "DW_OP_plus";
8311 case DW_OP_plus_uconst:
8312 return "DW_OP_plus_uconst";
8313 case DW_OP_shl:
8314 return "DW_OP_shl";
8315 case DW_OP_shr:
8316 return "DW_OP_shr";
8317 case DW_OP_shra:
8318 return "DW_OP_shra";
8319 case DW_OP_xor:
8320 return "DW_OP_xor";
8321 case DW_OP_bra:
8322 return "DW_OP_bra";
8323 case DW_OP_eq:
8324 return "DW_OP_eq";
8325 case DW_OP_ge:
8326 return "DW_OP_ge";
8327 case DW_OP_gt:
8328 return "DW_OP_gt";
8329 case DW_OP_le:
8330 return "DW_OP_le";
8331 case DW_OP_lt:
8332 return "DW_OP_lt";
8333 case DW_OP_ne:
8334 return "DW_OP_ne";
8335 case DW_OP_skip:
8336 return "DW_OP_skip";
8337 case DW_OP_lit0:
8338 return "DW_OP_lit0";
8339 case DW_OP_lit1:
8340 return "DW_OP_lit1";
8341 case DW_OP_lit2:
8342 return "DW_OP_lit2";
8343 case DW_OP_lit3:
8344 return "DW_OP_lit3";
8345 case DW_OP_lit4:
8346 return "DW_OP_lit4";
8347 case DW_OP_lit5:
8348 return "DW_OP_lit5";
8349 case DW_OP_lit6:
8350 return "DW_OP_lit6";
8351 case DW_OP_lit7:
8352 return "DW_OP_lit7";
8353 case DW_OP_lit8:
8354 return "DW_OP_lit8";
8355 case DW_OP_lit9:
8356 return "DW_OP_lit9";
8357 case DW_OP_lit10:
8358 return "DW_OP_lit10";
8359 case DW_OP_lit11:
8360 return "DW_OP_lit11";
8361 case DW_OP_lit12:
8362 return "DW_OP_lit12";
8363 case DW_OP_lit13:
8364 return "DW_OP_lit13";
8365 case DW_OP_lit14:
8366 return "DW_OP_lit14";
8367 case DW_OP_lit15:
8368 return "DW_OP_lit15";
8369 case DW_OP_lit16:
8370 return "DW_OP_lit16";
8371 case DW_OP_lit17:
8372 return "DW_OP_lit17";
8373 case DW_OP_lit18:
8374 return "DW_OP_lit18";
8375 case DW_OP_lit19:
8376 return "DW_OP_lit19";
8377 case DW_OP_lit20:
8378 return "DW_OP_lit20";
8379 case DW_OP_lit21:
8380 return "DW_OP_lit21";
8381 case DW_OP_lit22:
8382 return "DW_OP_lit22";
8383 case DW_OP_lit23:
8384 return "DW_OP_lit23";
8385 case DW_OP_lit24:
8386 return "DW_OP_lit24";
8387 case DW_OP_lit25:
8388 return "DW_OP_lit25";
8389 case DW_OP_lit26:
8390 return "DW_OP_lit26";
8391 case DW_OP_lit27:
8392 return "DW_OP_lit27";
8393 case DW_OP_lit28:
8394 return "DW_OP_lit28";
8395 case DW_OP_lit29:
8396 return "DW_OP_lit29";
8397 case DW_OP_lit30:
8398 return "DW_OP_lit30";
8399 case DW_OP_lit31:
8400 return "DW_OP_lit31";
8401 case DW_OP_reg0:
8402 return "DW_OP_reg0";
8403 case DW_OP_reg1:
8404 return "DW_OP_reg1";
8405 case DW_OP_reg2:
8406 return "DW_OP_reg2";
8407 case DW_OP_reg3:
8408 return "DW_OP_reg3";
8409 case DW_OP_reg4:
8410 return "DW_OP_reg4";
8411 case DW_OP_reg5:
8412 return "DW_OP_reg5";
8413 case DW_OP_reg6:
8414 return "DW_OP_reg6";
8415 case DW_OP_reg7:
8416 return "DW_OP_reg7";
8417 case DW_OP_reg8:
8418 return "DW_OP_reg8";
8419 case DW_OP_reg9:
8420 return "DW_OP_reg9";
8421 case DW_OP_reg10:
8422 return "DW_OP_reg10";
8423 case DW_OP_reg11:
8424 return "DW_OP_reg11";
8425 case DW_OP_reg12:
8426 return "DW_OP_reg12";
8427 case DW_OP_reg13:
8428 return "DW_OP_reg13";
8429 case DW_OP_reg14:
8430 return "DW_OP_reg14";
8431 case DW_OP_reg15:
8432 return "DW_OP_reg15";
8433 case DW_OP_reg16:
8434 return "DW_OP_reg16";
8435 case DW_OP_reg17:
8436 return "DW_OP_reg17";
8437 case DW_OP_reg18:
8438 return "DW_OP_reg18";
8439 case DW_OP_reg19:
8440 return "DW_OP_reg19";
8441 case DW_OP_reg20:
8442 return "DW_OP_reg20";
8443 case DW_OP_reg21:
8444 return "DW_OP_reg21";
8445 case DW_OP_reg22:
8446 return "DW_OP_reg22";
8447 case DW_OP_reg23:
8448 return "DW_OP_reg23";
8449 case DW_OP_reg24:
8450 return "DW_OP_reg24";
8451 case DW_OP_reg25:
8452 return "DW_OP_reg25";
8453 case DW_OP_reg26:
8454 return "DW_OP_reg26";
8455 case DW_OP_reg27:
8456 return "DW_OP_reg27";
8457 case DW_OP_reg28:
8458 return "DW_OP_reg28";
8459 case DW_OP_reg29:
8460 return "DW_OP_reg29";
8461 case DW_OP_reg30:
8462 return "DW_OP_reg30";
8463 case DW_OP_reg31:
8464 return "DW_OP_reg31";
8465 case DW_OP_breg0:
8466 return "DW_OP_breg0";
8467 case DW_OP_breg1:
8468 return "DW_OP_breg1";
8469 case DW_OP_breg2:
8470 return "DW_OP_breg2";
8471 case DW_OP_breg3:
8472 return "DW_OP_breg3";
8473 case DW_OP_breg4:
8474 return "DW_OP_breg4";
8475 case DW_OP_breg5:
8476 return "DW_OP_breg5";
8477 case DW_OP_breg6:
8478 return "DW_OP_breg6";
8479 case DW_OP_breg7:
8480 return "DW_OP_breg7";
8481 case DW_OP_breg8:
8482 return "DW_OP_breg8";
8483 case DW_OP_breg9:
8484 return "DW_OP_breg9";
8485 case DW_OP_breg10:
8486 return "DW_OP_breg10";
8487 case DW_OP_breg11:
8488 return "DW_OP_breg11";
8489 case DW_OP_breg12:
8490 return "DW_OP_breg12";
8491 case DW_OP_breg13:
8492 return "DW_OP_breg13";
8493 case DW_OP_breg14:
8494 return "DW_OP_breg14";
8495 case DW_OP_breg15:
8496 return "DW_OP_breg15";
8497 case DW_OP_breg16:
8498 return "DW_OP_breg16";
8499 case DW_OP_breg17:
8500 return "DW_OP_breg17";
8501 case DW_OP_breg18:
8502 return "DW_OP_breg18";
8503 case DW_OP_breg19:
8504 return "DW_OP_breg19";
8505 case DW_OP_breg20:
8506 return "DW_OP_breg20";
8507 case DW_OP_breg21:
8508 return "DW_OP_breg21";
8509 case DW_OP_breg22:
8510 return "DW_OP_breg22";
8511 case DW_OP_breg23:
8512 return "DW_OP_breg23";
8513 case DW_OP_breg24:
8514 return "DW_OP_breg24";
8515 case DW_OP_breg25:
8516 return "DW_OP_breg25";
8517 case DW_OP_breg26:
8518 return "DW_OP_breg26";
8519 case DW_OP_breg27:
8520 return "DW_OP_breg27";
8521 case DW_OP_breg28:
8522 return "DW_OP_breg28";
8523 case DW_OP_breg29:
8524 return "DW_OP_breg29";
8525 case DW_OP_breg30:
8526 return "DW_OP_breg30";
8527 case DW_OP_breg31:
8528 return "DW_OP_breg31";
8529 case DW_OP_regx:
8530 return "DW_OP_regx";
8531 case DW_OP_fbreg:
8532 return "DW_OP_fbreg";
8533 case DW_OP_bregx:
8534 return "DW_OP_bregx";
8535 case DW_OP_piece:
8536 return "DW_OP_piece";
8537 case DW_OP_deref_size:
8538 return "DW_OP_deref_size";
8539 case DW_OP_xderef_size:
8540 return "DW_OP_xderef_size";
8541 case DW_OP_nop:
8542 return "DW_OP_nop";
8543 /* DWARF 3 extensions. */
8544 case DW_OP_push_object_address:
8545 return "DW_OP_push_object_address";
8546 case DW_OP_call2:
8547 return "DW_OP_call2";
8548 case DW_OP_call4:
8549 return "DW_OP_call4";
8550 case DW_OP_call_ref:
8551 return "DW_OP_call_ref";
8552 /* GNU extensions. */
8553 case DW_OP_form_tls_address:
8554 return "DW_OP_form_tls_address";
8555 case DW_OP_call_frame_cfa:
8556 return "DW_OP_call_frame_cfa";
8557 case DW_OP_bit_piece:
8558 return "DW_OP_bit_piece";
8559 case DW_OP_GNU_push_tls_address:
8560 return "DW_OP_GNU_push_tls_address";
8561 /* HP extensions. */
8562 case DW_OP_HP_is_value:
8563 return "DW_OP_HP_is_value";
8564 case DW_OP_HP_fltconst4:
8565 return "DW_OP_HP_fltconst4";
8566 case DW_OP_HP_fltconst8:
8567 return "DW_OP_HP_fltconst8";
8568 case DW_OP_HP_mod_range:
8569 return "DW_OP_HP_mod_range";
8570 case DW_OP_HP_unmod_range:
8571 return "DW_OP_HP_unmod_range";
8572 case DW_OP_HP_tls:
8573 return "DW_OP_HP_tls";
8574 default:
8575 return "OP_<unknown>";
8576 }
8577 }
8578
8579 static char *
8580 dwarf_bool_name (unsigned mybool)
8581 {
8582 if (mybool)
8583 return "TRUE";
8584 else
8585 return "FALSE";
8586 }
8587
8588 /* Convert a DWARF type code into its string name. */
8589
8590 static char *
8591 dwarf_type_encoding_name (unsigned enc)
8592 {
8593 switch (enc)
8594 {
8595 case DW_ATE_void:
8596 return "DW_ATE_void";
8597 case DW_ATE_address:
8598 return "DW_ATE_address";
8599 case DW_ATE_boolean:
8600 return "DW_ATE_boolean";
8601 case DW_ATE_complex_float:
8602 return "DW_ATE_complex_float";
8603 case DW_ATE_float:
8604 return "DW_ATE_float";
8605 case DW_ATE_signed:
8606 return "DW_ATE_signed";
8607 case DW_ATE_signed_char:
8608 return "DW_ATE_signed_char";
8609 case DW_ATE_unsigned:
8610 return "DW_ATE_unsigned";
8611 case DW_ATE_unsigned_char:
8612 return "DW_ATE_unsigned_char";
8613 /* DWARF 3. */
8614 case DW_ATE_imaginary_float:
8615 return "DW_ATE_imaginary_float";
8616 case DW_ATE_packed_decimal:
8617 return "DW_ATE_packed_decimal";
8618 case DW_ATE_numeric_string:
8619 return "DW_ATE_numeric_string";
8620 case DW_ATE_edited:
8621 return "DW_ATE_edited";
8622 case DW_ATE_signed_fixed:
8623 return "DW_ATE_signed_fixed";
8624 case DW_ATE_unsigned_fixed:
8625 return "DW_ATE_unsigned_fixed";
8626 case DW_ATE_decimal_float:
8627 return "DW_ATE_decimal_float";
8628 /* HP extensions. */
8629 case DW_ATE_HP_float80:
8630 return "DW_ATE_HP_float80";
8631 case DW_ATE_HP_complex_float80:
8632 return "DW_ATE_HP_complex_float80";
8633 case DW_ATE_HP_float128:
8634 return "DW_ATE_HP_float128";
8635 case DW_ATE_HP_complex_float128:
8636 return "DW_ATE_HP_complex_float128";
8637 case DW_ATE_HP_floathpintel:
8638 return "DW_ATE_HP_floathpintel";
8639 case DW_ATE_HP_imaginary_float80:
8640 return "DW_ATE_HP_imaginary_float80";
8641 case DW_ATE_HP_imaginary_float128:
8642 return "DW_ATE_HP_imaginary_float128";
8643 default:
8644 return "DW_ATE_<unknown>";
8645 }
8646 }
8647
8648 /* Convert a DWARF call frame info operation to its string name. */
8649
8650 #if 0
8651 static char *
8652 dwarf_cfi_name (unsigned cfi_opc)
8653 {
8654 switch (cfi_opc)
8655 {
8656 case DW_CFA_advance_loc:
8657 return "DW_CFA_advance_loc";
8658 case DW_CFA_offset:
8659 return "DW_CFA_offset";
8660 case DW_CFA_restore:
8661 return "DW_CFA_restore";
8662 case DW_CFA_nop:
8663 return "DW_CFA_nop";
8664 case DW_CFA_set_loc:
8665 return "DW_CFA_set_loc";
8666 case DW_CFA_advance_loc1:
8667 return "DW_CFA_advance_loc1";
8668 case DW_CFA_advance_loc2:
8669 return "DW_CFA_advance_loc2";
8670 case DW_CFA_advance_loc4:
8671 return "DW_CFA_advance_loc4";
8672 case DW_CFA_offset_extended:
8673 return "DW_CFA_offset_extended";
8674 case DW_CFA_restore_extended:
8675 return "DW_CFA_restore_extended";
8676 case DW_CFA_undefined:
8677 return "DW_CFA_undefined";
8678 case DW_CFA_same_value:
8679 return "DW_CFA_same_value";
8680 case DW_CFA_register:
8681 return "DW_CFA_register";
8682 case DW_CFA_remember_state:
8683 return "DW_CFA_remember_state";
8684 case DW_CFA_restore_state:
8685 return "DW_CFA_restore_state";
8686 case DW_CFA_def_cfa:
8687 return "DW_CFA_def_cfa";
8688 case DW_CFA_def_cfa_register:
8689 return "DW_CFA_def_cfa_register";
8690 case DW_CFA_def_cfa_offset:
8691 return "DW_CFA_def_cfa_offset";
8692 /* DWARF 3. */
8693 case DW_CFA_def_cfa_expression:
8694 return "DW_CFA_def_cfa_expression";
8695 case DW_CFA_expression:
8696 return "DW_CFA_expression";
8697 case DW_CFA_offset_extended_sf:
8698 return "DW_CFA_offset_extended_sf";
8699 case DW_CFA_def_cfa_sf:
8700 return "DW_CFA_def_cfa_sf";
8701 case DW_CFA_def_cfa_offset_sf:
8702 return "DW_CFA_def_cfa_offset_sf";
8703 case DW_CFA_val_offset:
8704 return "DW_CFA_val_offset";
8705 case DW_CFA_val_offset_sf:
8706 return "DW_CFA_val_offset_sf";
8707 case DW_CFA_val_expression:
8708 return "DW_CFA_val_expression";
8709 /* SGI/MIPS specific. */
8710 case DW_CFA_MIPS_advance_loc8:
8711 return "DW_CFA_MIPS_advance_loc8";
8712 /* GNU extensions. */
8713 case DW_CFA_GNU_window_save:
8714 return "DW_CFA_GNU_window_save";
8715 case DW_CFA_GNU_args_size:
8716 return "DW_CFA_GNU_args_size";
8717 case DW_CFA_GNU_negative_offset_extended:
8718 return "DW_CFA_GNU_negative_offset_extended";
8719 default:
8720 return "DW_CFA_<unknown>";
8721 }
8722 }
8723 #endif
8724
8725 static void
8726 dump_die (struct die_info *die)
8727 {
8728 unsigned int i;
8729
8730 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8731 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8732 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8733 dwarf_bool_name (die->child != NULL));
8734
8735 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8736 for (i = 0; i < die->num_attrs; ++i)
8737 {
8738 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8739 dwarf_attr_name (die->attrs[i].name),
8740 dwarf_form_name (die->attrs[i].form));
8741 switch (die->attrs[i].form)
8742 {
8743 case DW_FORM_ref_addr:
8744 case DW_FORM_addr:
8745 fprintf_unfiltered (gdb_stderr, "address: ");
8746 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8747 break;
8748 case DW_FORM_block2:
8749 case DW_FORM_block4:
8750 case DW_FORM_block:
8751 case DW_FORM_block1:
8752 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8753 break;
8754 case DW_FORM_ref1:
8755 case DW_FORM_ref2:
8756 case DW_FORM_ref4:
8757 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8758 (long) (DW_ADDR (&die->attrs[i])));
8759 break;
8760 case DW_FORM_data1:
8761 case DW_FORM_data2:
8762 case DW_FORM_data4:
8763 case DW_FORM_data8:
8764 case DW_FORM_udata:
8765 case DW_FORM_sdata:
8766 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8767 break;
8768 case DW_FORM_string:
8769 case DW_FORM_strp:
8770 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8771 DW_STRING (&die->attrs[i])
8772 ? DW_STRING (&die->attrs[i]) : "");
8773 break;
8774 case DW_FORM_flag:
8775 if (DW_UNSND (&die->attrs[i]))
8776 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8777 else
8778 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8779 break;
8780 case DW_FORM_indirect:
8781 /* the reader will have reduced the indirect form to
8782 the "base form" so this form should not occur */
8783 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8784 break;
8785 default:
8786 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8787 die->attrs[i].form);
8788 }
8789 fprintf_unfiltered (gdb_stderr, "\n");
8790 }
8791 }
8792
8793 static void
8794 dump_die_list (struct die_info *die)
8795 {
8796 while (die)
8797 {
8798 dump_die (die);
8799 if (die->child != NULL)
8800 dump_die_list (die->child);
8801 if (die->sibling != NULL)
8802 dump_die_list (die->sibling);
8803 }
8804 }
8805
8806 static void
8807 store_in_ref_table (unsigned int offset, struct die_info *die,
8808 struct dwarf2_cu *cu)
8809 {
8810 int h;
8811 struct die_info *old;
8812
8813 h = (offset % REF_HASH_SIZE);
8814 old = cu->die_ref_table[h];
8815 die->next_ref = old;
8816 cu->die_ref_table[h] = die;
8817 }
8818
8819 static unsigned int
8820 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8821 {
8822 unsigned int result = 0;
8823
8824 switch (attr->form)
8825 {
8826 case DW_FORM_ref_addr:
8827 case DW_FORM_ref1:
8828 case DW_FORM_ref2:
8829 case DW_FORM_ref4:
8830 case DW_FORM_ref8:
8831 case DW_FORM_ref_udata:
8832 result = DW_ADDR (attr);
8833 break;
8834 default:
8835 complaint (&symfile_complaints,
8836 _("unsupported die ref attribute form: '%s'"),
8837 dwarf_form_name (attr->form));
8838 }
8839 return result;
8840 }
8841
8842 /* Return the constant value held by the given attribute. Return -1
8843 if the value held by the attribute is not constant. */
8844
8845 static int
8846 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8847 {
8848 if (attr->form == DW_FORM_sdata)
8849 return DW_SND (attr);
8850 else if (attr->form == DW_FORM_udata
8851 || attr->form == DW_FORM_data1
8852 || attr->form == DW_FORM_data2
8853 || attr->form == DW_FORM_data4
8854 || attr->form == DW_FORM_data8)
8855 return DW_UNSND (attr);
8856 else
8857 {
8858 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8859 dwarf_form_name (attr->form));
8860 return default_value;
8861 }
8862 }
8863
8864 static struct die_info *
8865 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8866 struct dwarf2_cu *cu)
8867 {
8868 struct die_info *die;
8869 unsigned int offset;
8870 int h;
8871 struct die_info temp_die;
8872 struct dwarf2_cu *target_cu;
8873
8874 offset = dwarf2_get_ref_die_offset (attr, cu);
8875
8876 if (DW_ADDR (attr) < cu->header.offset
8877 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8878 {
8879 struct dwarf2_per_cu_data *per_cu;
8880 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8881 cu->objfile);
8882 target_cu = per_cu->cu;
8883 }
8884 else
8885 target_cu = cu;
8886
8887 h = (offset % REF_HASH_SIZE);
8888 die = target_cu->die_ref_table[h];
8889 while (die)
8890 {
8891 if (die->offset == offset)
8892 return die;
8893 die = die->next_ref;
8894 }
8895
8896 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8897 "at 0x%lx [in module %s]"),
8898 (long) src_die->offset, (long) offset, cu->objfile->name);
8899
8900 return NULL;
8901 }
8902
8903 static struct type *
8904 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8905 struct dwarf2_cu *cu)
8906 {
8907 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8908 {
8909 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
8910 typeid, objfile->name);
8911 }
8912
8913 /* Look for this particular type in the fundamental type vector. If
8914 one is not found, create and install one appropriate for the
8915 current language and the current target machine. */
8916
8917 if (cu->ftypes[typeid] == NULL)
8918 {
8919 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8920 }
8921
8922 return (cu->ftypes[typeid]);
8923 }
8924
8925 /* Decode simple location descriptions.
8926 Given a pointer to a dwarf block that defines a location, compute
8927 the location and return the value.
8928
8929 NOTE drow/2003-11-18: This function is called in two situations
8930 now: for the address of static or global variables (partial symbols
8931 only) and for offsets into structures which are expected to be
8932 (more or less) constant. The partial symbol case should go away,
8933 and only the constant case should remain. That will let this
8934 function complain more accurately. A few special modes are allowed
8935 without complaint for global variables (for instance, global
8936 register values and thread-local values).
8937
8938 A location description containing no operations indicates that the
8939 object is optimized out. The return value is 0 for that case.
8940 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8941 callers will only want a very basic result and this can become a
8942 complaint.
8943
8944 Note that stack[0] is unused except as a default error return.
8945 Note that stack overflow is not yet handled. */
8946
8947 static CORE_ADDR
8948 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8949 {
8950 struct objfile *objfile = cu->objfile;
8951 struct comp_unit_head *cu_header = &cu->header;
8952 int i;
8953 int size = blk->size;
8954 gdb_byte *data = blk->data;
8955 CORE_ADDR stack[64];
8956 int stacki;
8957 unsigned int bytes_read, unsnd;
8958 gdb_byte op;
8959
8960 i = 0;
8961 stacki = 0;
8962 stack[stacki] = 0;
8963
8964 while (i < size)
8965 {
8966 op = data[i++];
8967 switch (op)
8968 {
8969 case DW_OP_lit0:
8970 case DW_OP_lit1:
8971 case DW_OP_lit2:
8972 case DW_OP_lit3:
8973 case DW_OP_lit4:
8974 case DW_OP_lit5:
8975 case DW_OP_lit6:
8976 case DW_OP_lit7:
8977 case DW_OP_lit8:
8978 case DW_OP_lit9:
8979 case DW_OP_lit10:
8980 case DW_OP_lit11:
8981 case DW_OP_lit12:
8982 case DW_OP_lit13:
8983 case DW_OP_lit14:
8984 case DW_OP_lit15:
8985 case DW_OP_lit16:
8986 case DW_OP_lit17:
8987 case DW_OP_lit18:
8988 case DW_OP_lit19:
8989 case DW_OP_lit20:
8990 case DW_OP_lit21:
8991 case DW_OP_lit22:
8992 case DW_OP_lit23:
8993 case DW_OP_lit24:
8994 case DW_OP_lit25:
8995 case DW_OP_lit26:
8996 case DW_OP_lit27:
8997 case DW_OP_lit28:
8998 case DW_OP_lit29:
8999 case DW_OP_lit30:
9000 case DW_OP_lit31:
9001 stack[++stacki] = op - DW_OP_lit0;
9002 break;
9003
9004 case DW_OP_reg0:
9005 case DW_OP_reg1:
9006 case DW_OP_reg2:
9007 case DW_OP_reg3:
9008 case DW_OP_reg4:
9009 case DW_OP_reg5:
9010 case DW_OP_reg6:
9011 case DW_OP_reg7:
9012 case DW_OP_reg8:
9013 case DW_OP_reg9:
9014 case DW_OP_reg10:
9015 case DW_OP_reg11:
9016 case DW_OP_reg12:
9017 case DW_OP_reg13:
9018 case DW_OP_reg14:
9019 case DW_OP_reg15:
9020 case DW_OP_reg16:
9021 case DW_OP_reg17:
9022 case DW_OP_reg18:
9023 case DW_OP_reg19:
9024 case DW_OP_reg20:
9025 case DW_OP_reg21:
9026 case DW_OP_reg22:
9027 case DW_OP_reg23:
9028 case DW_OP_reg24:
9029 case DW_OP_reg25:
9030 case DW_OP_reg26:
9031 case DW_OP_reg27:
9032 case DW_OP_reg28:
9033 case DW_OP_reg29:
9034 case DW_OP_reg30:
9035 case DW_OP_reg31:
9036 stack[++stacki] = op - DW_OP_reg0;
9037 if (i < size)
9038 dwarf2_complex_location_expr_complaint ();
9039 break;
9040
9041 case DW_OP_regx:
9042 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9043 i += bytes_read;
9044 stack[++stacki] = unsnd;
9045 if (i < size)
9046 dwarf2_complex_location_expr_complaint ();
9047 break;
9048
9049 case DW_OP_addr:
9050 stack[++stacki] = read_address (objfile->obfd, &data[i],
9051 cu, &bytes_read);
9052 i += bytes_read;
9053 break;
9054
9055 case DW_OP_const1u:
9056 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9057 i += 1;
9058 break;
9059
9060 case DW_OP_const1s:
9061 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9062 i += 1;
9063 break;
9064
9065 case DW_OP_const2u:
9066 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9067 i += 2;
9068 break;
9069
9070 case DW_OP_const2s:
9071 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9072 i += 2;
9073 break;
9074
9075 case DW_OP_const4u:
9076 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9077 i += 4;
9078 break;
9079
9080 case DW_OP_const4s:
9081 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9082 i += 4;
9083 break;
9084
9085 case DW_OP_constu:
9086 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
9087 &bytes_read);
9088 i += bytes_read;
9089 break;
9090
9091 case DW_OP_consts:
9092 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9093 i += bytes_read;
9094 break;
9095
9096 case DW_OP_dup:
9097 stack[stacki + 1] = stack[stacki];
9098 stacki++;
9099 break;
9100
9101 case DW_OP_plus:
9102 stack[stacki - 1] += stack[stacki];
9103 stacki--;
9104 break;
9105
9106 case DW_OP_plus_uconst:
9107 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9108 i += bytes_read;
9109 break;
9110
9111 case DW_OP_minus:
9112 stack[stacki - 1] -= stack[stacki];
9113 stacki--;
9114 break;
9115
9116 case DW_OP_deref:
9117 /* If we're not the last op, then we definitely can't encode
9118 this using GDB's address_class enum. This is valid for partial
9119 global symbols, although the variable's address will be bogus
9120 in the psymtab. */
9121 if (i < size)
9122 dwarf2_complex_location_expr_complaint ();
9123 break;
9124
9125 case DW_OP_GNU_push_tls_address:
9126 /* The top of the stack has the offset from the beginning
9127 of the thread control block at which the variable is located. */
9128 /* Nothing should follow this operator, so the top of stack would
9129 be returned. */
9130 /* This is valid for partial global symbols, but the variable's
9131 address will be bogus in the psymtab. */
9132 if (i < size)
9133 dwarf2_complex_location_expr_complaint ();
9134 break;
9135
9136 default:
9137 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9138 dwarf_stack_op_name (op));
9139 return (stack[stacki]);
9140 }
9141 }
9142 return (stack[stacki]);
9143 }
9144
9145 /* memory allocation interface */
9146
9147 static struct dwarf_block *
9148 dwarf_alloc_block (struct dwarf2_cu *cu)
9149 {
9150 struct dwarf_block *blk;
9151
9152 blk = (struct dwarf_block *)
9153 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
9154 return (blk);
9155 }
9156
9157 static struct abbrev_info *
9158 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
9159 {
9160 struct abbrev_info *abbrev;
9161
9162 abbrev = (struct abbrev_info *)
9163 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
9164 memset (abbrev, 0, sizeof (struct abbrev_info));
9165 return (abbrev);
9166 }
9167
9168 static struct die_info *
9169 dwarf_alloc_die (void)
9170 {
9171 struct die_info *die;
9172
9173 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9174 memset (die, 0, sizeof (struct die_info));
9175 return (die);
9176 }
9177
9178 \f
9179 /* Macro support. */
9180
9181
9182 /* Return the full name of file number I in *LH's file name table.
9183 Use COMP_DIR as the name of the current directory of the
9184 compilation. The result is allocated using xmalloc; the caller is
9185 responsible for freeing it. */
9186 static char *
9187 file_full_name (int file, struct line_header *lh, const char *comp_dir)
9188 {
9189 /* Is the file number a valid index into the line header's file name
9190 table? Remember that file numbers start with one, not zero. */
9191 if (1 <= file && file <= lh->num_file_names)
9192 {
9193 struct file_entry *fe = &lh->file_names[file - 1];
9194
9195 if (IS_ABSOLUTE_PATH (fe->name))
9196 return xstrdup (fe->name);
9197 else
9198 {
9199 const char *dir;
9200 int dir_len;
9201 char *full_name;
9202
9203 if (fe->dir_index)
9204 dir = lh->include_dirs[fe->dir_index - 1];
9205 else
9206 dir = comp_dir;
9207
9208 if (dir)
9209 {
9210 dir_len = strlen (dir);
9211 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9212 strcpy (full_name, dir);
9213 full_name[dir_len] = '/';
9214 strcpy (full_name + dir_len + 1, fe->name);
9215 return full_name;
9216 }
9217 else
9218 return xstrdup (fe->name);
9219 }
9220 }
9221 else
9222 {
9223 /* The compiler produced a bogus file number. We can at least
9224 record the macro definitions made in the file, even if we
9225 won't be able to find the file by name. */
9226 char fake_name[80];
9227 sprintf (fake_name, "<bad macro file number %d>", file);
9228
9229 complaint (&symfile_complaints,
9230 _("bad file number in macro information (%d)"),
9231 file);
9232
9233 return xstrdup (fake_name);
9234 }
9235 }
9236
9237
9238 static struct macro_source_file *
9239 macro_start_file (int file, int line,
9240 struct macro_source_file *current_file,
9241 const char *comp_dir,
9242 struct line_header *lh, struct objfile *objfile)
9243 {
9244 /* The full name of this source file. */
9245 char *full_name = file_full_name (file, lh, comp_dir);
9246
9247 /* We don't create a macro table for this compilation unit
9248 at all until we actually get a filename. */
9249 if (! pending_macros)
9250 pending_macros = new_macro_table (&objfile->objfile_obstack,
9251 objfile->macro_cache);
9252
9253 if (! current_file)
9254 /* If we have no current file, then this must be the start_file
9255 directive for the compilation unit's main source file. */
9256 current_file = macro_set_main (pending_macros, full_name);
9257 else
9258 current_file = macro_include (current_file, line, full_name);
9259
9260 xfree (full_name);
9261
9262 return current_file;
9263 }
9264
9265
9266 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9267 followed by a null byte. */
9268 static char *
9269 copy_string (const char *buf, int len)
9270 {
9271 char *s = xmalloc (len + 1);
9272 memcpy (s, buf, len);
9273 s[len] = '\0';
9274
9275 return s;
9276 }
9277
9278
9279 static const char *
9280 consume_improper_spaces (const char *p, const char *body)
9281 {
9282 if (*p == ' ')
9283 {
9284 complaint (&symfile_complaints,
9285 _("macro definition contains spaces in formal argument list:\n`%s'"),
9286 body);
9287
9288 while (*p == ' ')
9289 p++;
9290 }
9291
9292 return p;
9293 }
9294
9295
9296 static void
9297 parse_macro_definition (struct macro_source_file *file, int line,
9298 const char *body)
9299 {
9300 const char *p;
9301
9302 /* The body string takes one of two forms. For object-like macro
9303 definitions, it should be:
9304
9305 <macro name> " " <definition>
9306
9307 For function-like macro definitions, it should be:
9308
9309 <macro name> "() " <definition>
9310 or
9311 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9312
9313 Spaces may appear only where explicitly indicated, and in the
9314 <definition>.
9315
9316 The Dwarf 2 spec says that an object-like macro's name is always
9317 followed by a space, but versions of GCC around March 2002 omit
9318 the space when the macro's definition is the empty string.
9319
9320 The Dwarf 2 spec says that there should be no spaces between the
9321 formal arguments in a function-like macro's formal argument list,
9322 but versions of GCC around March 2002 include spaces after the
9323 commas. */
9324
9325
9326 /* Find the extent of the macro name. The macro name is terminated
9327 by either a space or null character (for an object-like macro) or
9328 an opening paren (for a function-like macro). */
9329 for (p = body; *p; p++)
9330 if (*p == ' ' || *p == '(')
9331 break;
9332
9333 if (*p == ' ' || *p == '\0')
9334 {
9335 /* It's an object-like macro. */
9336 int name_len = p - body;
9337 char *name = copy_string (body, name_len);
9338 const char *replacement;
9339
9340 if (*p == ' ')
9341 replacement = body + name_len + 1;
9342 else
9343 {
9344 dwarf2_macro_malformed_definition_complaint (body);
9345 replacement = body + name_len;
9346 }
9347
9348 macro_define_object (file, line, name, replacement);
9349
9350 xfree (name);
9351 }
9352 else if (*p == '(')
9353 {
9354 /* It's a function-like macro. */
9355 char *name = copy_string (body, p - body);
9356 int argc = 0;
9357 int argv_size = 1;
9358 char **argv = xmalloc (argv_size * sizeof (*argv));
9359
9360 p++;
9361
9362 p = consume_improper_spaces (p, body);
9363
9364 /* Parse the formal argument list. */
9365 while (*p && *p != ')')
9366 {
9367 /* Find the extent of the current argument name. */
9368 const char *arg_start = p;
9369
9370 while (*p && *p != ',' && *p != ')' && *p != ' ')
9371 p++;
9372
9373 if (! *p || p == arg_start)
9374 dwarf2_macro_malformed_definition_complaint (body);
9375 else
9376 {
9377 /* Make sure argv has room for the new argument. */
9378 if (argc >= argv_size)
9379 {
9380 argv_size *= 2;
9381 argv = xrealloc (argv, argv_size * sizeof (*argv));
9382 }
9383
9384 argv[argc++] = copy_string (arg_start, p - arg_start);
9385 }
9386
9387 p = consume_improper_spaces (p, body);
9388
9389 /* Consume the comma, if present. */
9390 if (*p == ',')
9391 {
9392 p++;
9393
9394 p = consume_improper_spaces (p, body);
9395 }
9396 }
9397
9398 if (*p == ')')
9399 {
9400 p++;
9401
9402 if (*p == ' ')
9403 /* Perfectly formed definition, no complaints. */
9404 macro_define_function (file, line, name,
9405 argc, (const char **) argv,
9406 p + 1);
9407 else if (*p == '\0')
9408 {
9409 /* Complain, but do define it. */
9410 dwarf2_macro_malformed_definition_complaint (body);
9411 macro_define_function (file, line, name,
9412 argc, (const char **) argv,
9413 p);
9414 }
9415 else
9416 /* Just complain. */
9417 dwarf2_macro_malformed_definition_complaint (body);
9418 }
9419 else
9420 /* Just complain. */
9421 dwarf2_macro_malformed_definition_complaint (body);
9422
9423 xfree (name);
9424 {
9425 int i;
9426
9427 for (i = 0; i < argc; i++)
9428 xfree (argv[i]);
9429 }
9430 xfree (argv);
9431 }
9432 else
9433 dwarf2_macro_malformed_definition_complaint (body);
9434 }
9435
9436
9437 static void
9438 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9439 char *comp_dir, bfd *abfd,
9440 struct dwarf2_cu *cu)
9441 {
9442 gdb_byte *mac_ptr, *mac_end;
9443 struct macro_source_file *current_file = 0;
9444
9445 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9446 {
9447 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9448 return;
9449 }
9450
9451 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9452 mac_end = dwarf2_per_objfile->macinfo_buffer
9453 + dwarf2_per_objfile->macinfo_size;
9454
9455 for (;;)
9456 {
9457 enum dwarf_macinfo_record_type macinfo_type;
9458
9459 /* Do we at least have room for a macinfo type byte? */
9460 if (mac_ptr >= mac_end)
9461 {
9462 dwarf2_macros_too_long_complaint ();
9463 return;
9464 }
9465
9466 macinfo_type = read_1_byte (abfd, mac_ptr);
9467 mac_ptr++;
9468
9469 switch (macinfo_type)
9470 {
9471 /* A zero macinfo type indicates the end of the macro
9472 information. */
9473 case 0:
9474 return;
9475
9476 case DW_MACINFO_define:
9477 case DW_MACINFO_undef:
9478 {
9479 unsigned int bytes_read;
9480 int line;
9481 char *body;
9482
9483 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9484 mac_ptr += bytes_read;
9485 body = read_string (abfd, mac_ptr, &bytes_read);
9486 mac_ptr += bytes_read;
9487
9488 if (! current_file)
9489 complaint (&symfile_complaints,
9490 _("debug info gives macro %s outside of any file: %s"),
9491 macinfo_type ==
9492 DW_MACINFO_define ? "definition" : macinfo_type ==
9493 DW_MACINFO_undef ? "undefinition" :
9494 "something-or-other", body);
9495 else
9496 {
9497 if (macinfo_type == DW_MACINFO_define)
9498 parse_macro_definition (current_file, line, body);
9499 else if (macinfo_type == DW_MACINFO_undef)
9500 macro_undef (current_file, line, body);
9501 }
9502 }
9503 break;
9504
9505 case DW_MACINFO_start_file:
9506 {
9507 unsigned int bytes_read;
9508 int line, file;
9509
9510 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9511 mac_ptr += bytes_read;
9512 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9513 mac_ptr += bytes_read;
9514
9515 current_file = macro_start_file (file, line,
9516 current_file, comp_dir,
9517 lh, cu->objfile);
9518 }
9519 break;
9520
9521 case DW_MACINFO_end_file:
9522 if (! current_file)
9523 complaint (&symfile_complaints,
9524 _("macro debug info has an unmatched `close_file' directive"));
9525 else
9526 {
9527 current_file = current_file->included_by;
9528 if (! current_file)
9529 {
9530 enum dwarf_macinfo_record_type next_type;
9531
9532 /* GCC circa March 2002 doesn't produce the zero
9533 type byte marking the end of the compilation
9534 unit. Complain if it's not there, but exit no
9535 matter what. */
9536
9537 /* Do we at least have room for a macinfo type byte? */
9538 if (mac_ptr >= mac_end)
9539 {
9540 dwarf2_macros_too_long_complaint ();
9541 return;
9542 }
9543
9544 /* We don't increment mac_ptr here, so this is just
9545 a look-ahead. */
9546 next_type = read_1_byte (abfd, mac_ptr);
9547 if (next_type != 0)
9548 complaint (&symfile_complaints,
9549 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9550
9551 return;
9552 }
9553 }
9554 break;
9555
9556 case DW_MACINFO_vendor_ext:
9557 {
9558 unsigned int bytes_read;
9559 int constant;
9560 char *string;
9561
9562 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9563 mac_ptr += bytes_read;
9564 string = read_string (abfd, mac_ptr, &bytes_read);
9565 mac_ptr += bytes_read;
9566
9567 /* We don't recognize any vendor extensions. */
9568 }
9569 break;
9570 }
9571 }
9572 }
9573
9574 /* Check if the attribute's form is a DW_FORM_block*
9575 if so return true else false. */
9576 static int
9577 attr_form_is_block (struct attribute *attr)
9578 {
9579 return (attr == NULL ? 0 :
9580 attr->form == DW_FORM_block1
9581 || attr->form == DW_FORM_block2
9582 || attr->form == DW_FORM_block4
9583 || attr->form == DW_FORM_block);
9584 }
9585
9586 static void
9587 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9588 struct dwarf2_cu *cu)
9589 {
9590 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9591 /* ".debug_loc" may not exist at all, or the offset may be outside
9592 the section. If so, fall through to the complaint in the
9593 other branch. */
9594 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9595 {
9596 struct dwarf2_loclist_baton *baton;
9597
9598 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9599 sizeof (struct dwarf2_loclist_baton));
9600 baton->objfile = cu->objfile;
9601
9602 /* We don't know how long the location list is, but make sure we
9603 don't run off the edge of the section. */
9604 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9605 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9606 baton->base_address = cu->header.base_address;
9607 if (cu->header.base_known == 0)
9608 complaint (&symfile_complaints,
9609 _("Location list used without specifying the CU base address."));
9610
9611 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9612 SYMBOL_LOCATION_BATON (sym) = baton;
9613 }
9614 else
9615 {
9616 struct dwarf2_locexpr_baton *baton;
9617
9618 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9619 sizeof (struct dwarf2_locexpr_baton));
9620 baton->objfile = cu->objfile;
9621
9622 if (attr_form_is_block (attr))
9623 {
9624 /* Note that we're just copying the block's data pointer
9625 here, not the actual data. We're still pointing into the
9626 info_buffer for SYM's objfile; right now we never release
9627 that buffer, but when we do clean up properly this may
9628 need to change. */
9629 baton->size = DW_BLOCK (attr)->size;
9630 baton->data = DW_BLOCK (attr)->data;
9631 }
9632 else
9633 {
9634 dwarf2_invalid_attrib_class_complaint ("location description",
9635 SYMBOL_NATURAL_NAME (sym));
9636 baton->size = 0;
9637 baton->data = NULL;
9638 }
9639
9640 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9641 SYMBOL_LOCATION_BATON (sym) = baton;
9642 }
9643 }
9644
9645 /* Locate the compilation unit from CU's objfile which contains the
9646 DIE at OFFSET. Raises an error on failure. */
9647
9648 static struct dwarf2_per_cu_data *
9649 dwarf2_find_containing_comp_unit (unsigned long offset,
9650 struct objfile *objfile)
9651 {
9652 struct dwarf2_per_cu_data *this_cu;
9653 int low, high;
9654
9655 low = 0;
9656 high = dwarf2_per_objfile->n_comp_units - 1;
9657 while (high > low)
9658 {
9659 int mid = low + (high - low) / 2;
9660 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9661 high = mid;
9662 else
9663 low = mid + 1;
9664 }
9665 gdb_assert (low == high);
9666 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9667 {
9668 if (low == 0)
9669 error (_("Dwarf Error: could not find partial DIE containing "
9670 "offset 0x%lx [in module %s]"),
9671 (long) offset, bfd_get_filename (objfile->obfd));
9672
9673 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9674 return dwarf2_per_objfile->all_comp_units[low-1];
9675 }
9676 else
9677 {
9678 this_cu = dwarf2_per_objfile->all_comp_units[low];
9679 if (low == dwarf2_per_objfile->n_comp_units - 1
9680 && offset >= this_cu->offset + this_cu->length)
9681 error (_("invalid dwarf2 offset %ld"), offset);
9682 gdb_assert (offset < this_cu->offset + this_cu->length);
9683 return this_cu;
9684 }
9685 }
9686
9687 /* Locate the compilation unit from OBJFILE which is located at exactly
9688 OFFSET. Raises an error on failure. */
9689
9690 static struct dwarf2_per_cu_data *
9691 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9692 {
9693 struct dwarf2_per_cu_data *this_cu;
9694 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9695 if (this_cu->offset != offset)
9696 error (_("no compilation unit with offset %ld."), offset);
9697 return this_cu;
9698 }
9699
9700 /* Release one cached compilation unit, CU. We unlink it from the tree
9701 of compilation units, but we don't remove it from the read_in_chain;
9702 the caller is responsible for that. */
9703
9704 static void
9705 free_one_comp_unit (void *data)
9706 {
9707 struct dwarf2_cu *cu = data;
9708
9709 if (cu->per_cu != NULL)
9710 cu->per_cu->cu = NULL;
9711 cu->per_cu = NULL;
9712
9713 obstack_free (&cu->comp_unit_obstack, NULL);
9714 if (cu->dies)
9715 free_die_list (cu->dies);
9716
9717 xfree (cu);
9718 }
9719
9720 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9721 when we're finished with it. We can't free the pointer itself, but be
9722 sure to unlink it from the cache. Also release any associated storage
9723 and perform cache maintenance.
9724
9725 Only used during partial symbol parsing. */
9726
9727 static void
9728 free_stack_comp_unit (void *data)
9729 {
9730 struct dwarf2_cu *cu = data;
9731
9732 obstack_free (&cu->comp_unit_obstack, NULL);
9733 cu->partial_dies = NULL;
9734
9735 if (cu->per_cu != NULL)
9736 {
9737 /* This compilation unit is on the stack in our caller, so we
9738 should not xfree it. Just unlink it. */
9739 cu->per_cu->cu = NULL;
9740 cu->per_cu = NULL;
9741
9742 /* If we had a per-cu pointer, then we may have other compilation
9743 units loaded, so age them now. */
9744 age_cached_comp_units ();
9745 }
9746 }
9747
9748 /* Free all cached compilation units. */
9749
9750 static void
9751 free_cached_comp_units (void *data)
9752 {
9753 struct dwarf2_per_cu_data *per_cu, **last_chain;
9754
9755 per_cu = dwarf2_per_objfile->read_in_chain;
9756 last_chain = &dwarf2_per_objfile->read_in_chain;
9757 while (per_cu != NULL)
9758 {
9759 struct dwarf2_per_cu_data *next_cu;
9760
9761 next_cu = per_cu->cu->read_in_chain;
9762
9763 free_one_comp_unit (per_cu->cu);
9764 *last_chain = next_cu;
9765
9766 per_cu = next_cu;
9767 }
9768 }
9769
9770 /* Increase the age counter on each cached compilation unit, and free
9771 any that are too old. */
9772
9773 static void
9774 age_cached_comp_units (void)
9775 {
9776 struct dwarf2_per_cu_data *per_cu, **last_chain;
9777
9778 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9779 per_cu = dwarf2_per_objfile->read_in_chain;
9780 while (per_cu != NULL)
9781 {
9782 per_cu->cu->last_used ++;
9783 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9784 dwarf2_mark (per_cu->cu);
9785 per_cu = per_cu->cu->read_in_chain;
9786 }
9787
9788 per_cu = dwarf2_per_objfile->read_in_chain;
9789 last_chain = &dwarf2_per_objfile->read_in_chain;
9790 while (per_cu != NULL)
9791 {
9792 struct dwarf2_per_cu_data *next_cu;
9793
9794 next_cu = per_cu->cu->read_in_chain;
9795
9796 if (!per_cu->cu->mark)
9797 {
9798 free_one_comp_unit (per_cu->cu);
9799 *last_chain = next_cu;
9800 }
9801 else
9802 last_chain = &per_cu->cu->read_in_chain;
9803
9804 per_cu = next_cu;
9805 }
9806 }
9807
9808 /* Remove a single compilation unit from the cache. */
9809
9810 static void
9811 free_one_cached_comp_unit (void *target_cu)
9812 {
9813 struct dwarf2_per_cu_data *per_cu, **last_chain;
9814
9815 per_cu = dwarf2_per_objfile->read_in_chain;
9816 last_chain = &dwarf2_per_objfile->read_in_chain;
9817 while (per_cu != NULL)
9818 {
9819 struct dwarf2_per_cu_data *next_cu;
9820
9821 next_cu = per_cu->cu->read_in_chain;
9822
9823 if (per_cu->cu == target_cu)
9824 {
9825 free_one_comp_unit (per_cu->cu);
9826 *last_chain = next_cu;
9827 break;
9828 }
9829 else
9830 last_chain = &per_cu->cu->read_in_chain;
9831
9832 per_cu = next_cu;
9833 }
9834 }
9835
9836 /* A pair of DIE offset and GDB type pointer. We store these
9837 in a hash table separate from the DIEs, and preserve them
9838 when the DIEs are flushed out of cache. */
9839
9840 struct dwarf2_offset_and_type
9841 {
9842 unsigned int offset;
9843 struct type *type;
9844 };
9845
9846 /* Hash function for a dwarf2_offset_and_type. */
9847
9848 static hashval_t
9849 offset_and_type_hash (const void *item)
9850 {
9851 const struct dwarf2_offset_and_type *ofs = item;
9852 return ofs->offset;
9853 }
9854
9855 /* Equality function for a dwarf2_offset_and_type. */
9856
9857 static int
9858 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9859 {
9860 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9861 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9862 return ofs_lhs->offset == ofs_rhs->offset;
9863 }
9864
9865 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9866 table if necessary. */
9867
9868 static void
9869 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9870 {
9871 struct dwarf2_offset_and_type **slot, ofs;
9872
9873 die->type = type;
9874
9875 if (cu->per_cu == NULL)
9876 return;
9877
9878 if (cu->per_cu->type_hash == NULL)
9879 cu->per_cu->type_hash
9880 = htab_create_alloc_ex (cu->header.length / 24,
9881 offset_and_type_hash,
9882 offset_and_type_eq,
9883 NULL,
9884 &cu->objfile->objfile_obstack,
9885 hashtab_obstack_allocate,
9886 dummy_obstack_deallocate);
9887
9888 ofs.offset = die->offset;
9889 ofs.type = type;
9890 slot = (struct dwarf2_offset_and_type **)
9891 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9892 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9893 **slot = ofs;
9894 }
9895
9896 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9897 have a saved type. */
9898
9899 static struct type *
9900 get_die_type (struct die_info *die, htab_t type_hash)
9901 {
9902 struct dwarf2_offset_and_type *slot, ofs;
9903
9904 ofs.offset = die->offset;
9905 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9906 if (slot)
9907 return slot->type;
9908 else
9909 return NULL;
9910 }
9911
9912 /* Restore the types of the DIE tree starting at START_DIE from the hash
9913 table saved in CU. */
9914
9915 static void
9916 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9917 {
9918 struct die_info *die;
9919
9920 if (cu->per_cu->type_hash == NULL)
9921 return;
9922
9923 for (die = start_die; die != NULL; die = die->sibling)
9924 {
9925 die->type = get_die_type (die, cu->per_cu->type_hash);
9926 if (die->child != NULL)
9927 reset_die_and_siblings_types (die->child, cu);
9928 }
9929 }
9930
9931 /* Set the mark field in CU and in every other compilation unit in the
9932 cache that we must keep because we are keeping CU. */
9933
9934 /* Add a dependence relationship from CU to REF_PER_CU. */
9935
9936 static void
9937 dwarf2_add_dependence (struct dwarf2_cu *cu,
9938 struct dwarf2_per_cu_data *ref_per_cu)
9939 {
9940 void **slot;
9941
9942 if (cu->dependencies == NULL)
9943 cu->dependencies
9944 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9945 NULL, &cu->comp_unit_obstack,
9946 hashtab_obstack_allocate,
9947 dummy_obstack_deallocate);
9948
9949 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9950 if (*slot == NULL)
9951 *slot = ref_per_cu;
9952 }
9953
9954 /* Set the mark field in CU and in every other compilation unit in the
9955 cache that we must keep because we are keeping CU. */
9956
9957 static int
9958 dwarf2_mark_helper (void **slot, void *data)
9959 {
9960 struct dwarf2_per_cu_data *per_cu;
9961
9962 per_cu = (struct dwarf2_per_cu_data *) *slot;
9963 if (per_cu->cu->mark)
9964 return 1;
9965 per_cu->cu->mark = 1;
9966
9967 if (per_cu->cu->dependencies != NULL)
9968 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9969
9970 return 1;
9971 }
9972
9973 static void
9974 dwarf2_mark (struct dwarf2_cu *cu)
9975 {
9976 if (cu->mark)
9977 return;
9978 cu->mark = 1;
9979 if (cu->dependencies != NULL)
9980 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
9981 }
9982
9983 static void
9984 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9985 {
9986 while (per_cu)
9987 {
9988 per_cu->cu->mark = 0;
9989 per_cu = per_cu->cu->read_in_chain;
9990 }
9991 }
9992
9993 /* Trivial hash function for partial_die_info: the hash value of a DIE
9994 is its offset in .debug_info for this objfile. */
9995
9996 static hashval_t
9997 partial_die_hash (const void *item)
9998 {
9999 const struct partial_die_info *part_die = item;
10000 return part_die->offset;
10001 }
10002
10003 /* Trivial comparison function for partial_die_info structures: two DIEs
10004 are equal if they have the same offset. */
10005
10006 static int
10007 partial_die_eq (const void *item_lhs, const void *item_rhs)
10008 {
10009 const struct partial_die_info *part_die_lhs = item_lhs;
10010 const struct partial_die_info *part_die_rhs = item_rhs;
10011 return part_die_lhs->offset == part_die_rhs->offset;
10012 }
10013
10014 static struct cmd_list_element *set_dwarf2_cmdlist;
10015 static struct cmd_list_element *show_dwarf2_cmdlist;
10016
10017 static void
10018 set_dwarf2_cmd (char *args, int from_tty)
10019 {
10020 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10021 }
10022
10023 static void
10024 show_dwarf2_cmd (char *args, int from_tty)
10025 {
10026 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10027 }
10028
10029 void _initialize_dwarf2_read (void);
10030
10031 void
10032 _initialize_dwarf2_read (void)
10033 {
10034 dwarf2_objfile_data_key = register_objfile_data ();
10035
10036 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10037 Set DWARF 2 specific variables.\n\
10038 Configure DWARF 2 variables such as the cache size"),
10039 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10040 0/*allow-unknown*/, &maintenance_set_cmdlist);
10041
10042 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10043 Show DWARF 2 specific variables\n\
10044 Show DWARF 2 variables such as the cache size"),
10045 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10046 0/*allow-unknown*/, &maintenance_show_cmdlist);
10047
10048 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
10049 &dwarf2_max_cache_age, _("\
10050 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10051 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10052 A higher limit means that cached compilation units will be stored\n\
10053 in memory longer, and more total memory will be used. Zero disables\n\
10054 caching, which can slow down startup."),
10055 NULL,
10056 show_dwarf2_max_cache_age,
10057 &set_dwarf2_cmdlist,
10058 &show_dwarf2_cmdlist);
10059 }