dwarf2read.c (add_partial_symbol): Remove outdated comments.
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 static int dwarf2_get_pc_bounds (struct die_info *,
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
1612
1613 static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
1617 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
1620 static void dwarf2_add_field (struct field_info *, struct die_info *,
1621 struct dwarf2_cu *);
1622
1623 static void dwarf2_attach_fields_to_type (struct field_info *,
1624 struct type *, struct dwarf2_cu *);
1625
1626 static void dwarf2_add_member_fn (struct field_info *,
1627 struct die_info *, struct type *,
1628 struct dwarf2_cu *);
1629
1630 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1631 struct type *,
1632 struct dwarf2_cu *);
1633
1634 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1639
1640 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static struct using_direct **using_directives (enum language);
1643
1644 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
1646 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
1648 static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
1651 static const char *namespace_name (struct die_info *die,
1652 int *is_anonymous, struct dwarf2_cu *);
1653
1654 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1655
1656 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1657
1658 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1659 struct dwarf2_cu *);
1660
1661 static struct die_info *read_die_and_siblings_1
1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1663 struct die_info *);
1664
1665 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
1668 struct die_info *parent);
1669
1670 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
1673
1674 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
1677
1678 static void process_die (struct die_info *, struct dwarf2_cu *);
1679
1680 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
1682
1683 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1684
1685 static const char *dwarf2_full_name (const char *name,
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
1692 static struct die_info *dwarf2_extension (struct die_info *die,
1693 struct dwarf2_cu **);
1694
1695 static const char *dwarf_tag_name (unsigned int);
1696
1697 static const char *dwarf_attr_name (unsigned int);
1698
1699 static const char *dwarf_form_name (unsigned int);
1700
1701 static char *dwarf_bool_name (unsigned int);
1702
1703 static const char *dwarf_type_encoding_name (unsigned int);
1704
1705 static struct die_info *sibling_die (struct die_info *);
1706
1707 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709 static void dump_die_for_error (struct die_info *);
1710
1711 static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
1713
1714 /*static*/ void dump_die (struct die_info *, int max_level);
1715
1716 static void store_in_ref_table (struct die_info *,
1717 struct dwarf2_cu *);
1718
1719 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1720
1721 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1722
1723 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu **);
1726
1727 static struct die_info *follow_die_ref (struct die_info *,
1728 const struct attribute *,
1729 struct dwarf2_cu **);
1730
1731 static struct die_info *follow_die_sig (struct die_info *,
1732 const struct attribute *,
1733 struct dwarf2_cu **);
1734
1735 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738 static struct type *get_DW_AT_signature_type (struct die_info *,
1739 const struct attribute *,
1740 struct dwarf2_cu *);
1741
1742 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1743
1744 static void read_signatured_type (struct signatured_type *);
1745
1746 static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
1750 /* memory allocation interface */
1751
1752 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1753
1754 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1755
1756 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1757
1758 static int attr_form_is_block (const struct attribute *);
1759
1760 static int attr_form_is_section_offset (const struct attribute *);
1761
1762 static int attr_form_is_constant (const struct attribute *);
1763
1764 static int attr_form_is_ref (const struct attribute *);
1765
1766 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
1768 const struct attribute *attr);
1769
1770 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1771 struct symbol *sym,
1772 struct dwarf2_cu *cu,
1773 int is_block);
1774
1775 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
1778
1779 static void free_stack_comp_unit (void *);
1780
1781 static hashval_t partial_die_hash (const void *item);
1782
1783 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
1785 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1787
1788 static void init_one_comp_unit (struct dwarf2_cu *cu,
1789 struct dwarf2_per_cu_data *per_cu);
1790
1791 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
1794
1795 static void free_heap_comp_unit (void *);
1796
1797 static void free_cached_comp_units (void *);
1798
1799 static void age_cached_comp_units (void);
1800
1801 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1802
1803 static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1805
1806 static void create_all_comp_units (struct objfile *);
1807
1808 static int create_all_type_units (struct objfile *);
1809
1810 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
1812
1813 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
1815
1816 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
1819 static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
1822 static void dwarf2_mark (struct dwarf2_cu *);
1823
1824 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
1826 static struct type *get_die_type_at_offset (sect_offset,
1827 struct dwarf2_per_cu_data *);
1828
1829 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1830
1831 static void dwarf2_release_queue (void *dummy);
1832
1833 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
1836 static void process_queue (void);
1837
1838 static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
1840 const char **name, const char **comp_dir);
1841
1842 static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
1845 static const gdb_byte *read_and_check_comp_unit_head
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1849 int is_debug_types_section);
1850
1851 static void init_cutu_and_read_dies
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
1856 static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
1859
1860 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1861
1862 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
1864 static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
1867
1868 static struct dwp_file *get_dwp_file (void);
1869
1870 static struct dwo_unit *lookup_dwo_comp_unit
1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1872
1873 static struct dwo_unit *lookup_dwo_type_unit
1874 (struct signatured_type *, const char *, const char *);
1875
1876 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
1878 static void free_dwo_file_cleanup (void *);
1879
1880 static void process_cu_includes (void);
1881
1882 static void check_producer (struct dwarf2_cu *cu);
1883
1884 static void free_line_header_voidp (void *arg);
1885 \f
1886 /* Various complaints about symbol reading that don't abort the process. */
1887
1888 static void
1889 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_file_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900 }
1901
1902 static void
1903 dwarf2_debug_line_missing_end_sequence_complaint (void)
1904 {
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908 }
1909
1910 static void
1911 dwarf2_complex_location_expr_complaint (void)
1912 {
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914 }
1915
1916 static void
1917 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919 {
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923 }
1924
1925 static void
1926 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927 {
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
1931 get_section_name (section),
1932 get_section_file_name (section));
1933 }
1934
1935 static void
1936 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937 {
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942 }
1943
1944 static void
1945 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946 {
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950 }
1951
1952 /* Hash function for line_header_hash. */
1953
1954 static hashval_t
1955 line_header_hash (const struct line_header *ofs)
1956 {
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958 }
1959
1960 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962 static hashval_t
1963 line_header_hash_voidp (const void *item)
1964 {
1965 const struct line_header *ofs = item;
1966
1967 return line_header_hash (ofs);
1968 }
1969
1970 /* Equality function for line_header_hash. */
1971
1972 static int
1973 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974 {
1975 const struct line_header *ofs_lhs = item_lhs;
1976 const struct line_header *ofs_rhs = item_rhs;
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980 }
1981
1982 \f
1983 #if WORDS_BIGENDIAN
1984
1985 /* Convert VALUE between big- and little-endian. */
1986 static offset_type
1987 byte_swap (offset_type value)
1988 {
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996 }
1997
1998 #define MAYBE_SWAP(V) byte_swap (V)
1999
2000 #else
2001 #define MAYBE_SWAP(V) (V)
2002 #endif /* WORDS_BIGENDIAN */
2003
2004 /* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007 static CORE_ADDR
2008 attr_value_as_address (struct attribute *attr)
2009 {
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032 }
2033
2034 /* The suffix for an index file. */
2035 #define INDEX_SUFFIX ".gdb-index"
2036
2037 /* Try to locate the sections we need for DWARF 2 debugging
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
2041
2042 int
2043 dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
2045 {
2046 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2047 if (!dwarf2_per_objfile)
2048 {
2049 /* Initialize per-objfile state. */
2050 struct dwarf2_per_objfile *data
2051 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2052
2053 memset (data, 0, sizeof (*data));
2054 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2055 dwarf2_per_objfile = data;
2056
2057 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2058 (void *) names);
2059 dwarf2_per_objfile->objfile = objfile;
2060 }
2061 return (!dwarf2_per_objfile->info.is_virtual
2062 && dwarf2_per_objfile->info.s.section != NULL
2063 && !dwarf2_per_objfile->abbrev.is_virtual
2064 && dwarf2_per_objfile->abbrev.s.section != NULL);
2065 }
2066
2067 /* Return the containing section of virtual section SECTION. */
2068
2069 static struct dwarf2_section_info *
2070 get_containing_section (const struct dwarf2_section_info *section)
2071 {
2072 gdb_assert (section->is_virtual);
2073 return section->s.containing_section;
2074 }
2075
2076 /* Return the bfd owner of SECTION. */
2077
2078 static struct bfd *
2079 get_section_bfd_owner (const struct dwarf2_section_info *section)
2080 {
2081 if (section->is_virtual)
2082 {
2083 section = get_containing_section (section);
2084 gdb_assert (!section->is_virtual);
2085 }
2086 return section->s.section->owner;
2087 }
2088
2089 /* Return the bfd section of SECTION.
2090 Returns NULL if the section is not present. */
2091
2092 static asection *
2093 get_section_bfd_section (const struct dwarf2_section_info *section)
2094 {
2095 if (section->is_virtual)
2096 {
2097 section = get_containing_section (section);
2098 gdb_assert (!section->is_virtual);
2099 }
2100 return section->s.section;
2101 }
2102
2103 /* Return the name of SECTION. */
2104
2105 static const char *
2106 get_section_name (const struct dwarf2_section_info *section)
2107 {
2108 asection *sectp = get_section_bfd_section (section);
2109
2110 gdb_assert (sectp != NULL);
2111 return bfd_section_name (get_section_bfd_owner (section), sectp);
2112 }
2113
2114 /* Return the name of the file SECTION is in. */
2115
2116 static const char *
2117 get_section_file_name (const struct dwarf2_section_info *section)
2118 {
2119 bfd *abfd = get_section_bfd_owner (section);
2120
2121 return bfd_get_filename (abfd);
2122 }
2123
2124 /* Return the id of SECTION.
2125 Returns 0 if SECTION doesn't exist. */
2126
2127 static int
2128 get_section_id (const struct dwarf2_section_info *section)
2129 {
2130 asection *sectp = get_section_bfd_section (section);
2131
2132 if (sectp == NULL)
2133 return 0;
2134 return sectp->id;
2135 }
2136
2137 /* Return the flags of SECTION.
2138 SECTION (or containing section if this is a virtual section) must exist. */
2139
2140 static int
2141 get_section_flags (const struct dwarf2_section_info *section)
2142 {
2143 asection *sectp = get_section_bfd_section (section);
2144
2145 gdb_assert (sectp != NULL);
2146 return bfd_get_section_flags (sectp->owner, sectp);
2147 }
2148
2149 /* When loading sections, we look either for uncompressed section or for
2150 compressed section names. */
2151
2152 static int
2153 section_is_p (const char *section_name,
2154 const struct dwarf2_section_names *names)
2155 {
2156 if (names->normal != NULL
2157 && strcmp (section_name, names->normal) == 0)
2158 return 1;
2159 if (names->compressed != NULL
2160 && strcmp (section_name, names->compressed) == 0)
2161 return 1;
2162 return 0;
2163 }
2164
2165 /* This function is mapped across the sections and remembers the
2166 offset and size of each of the debugging sections we are interested
2167 in. */
2168
2169 static void
2170 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2171 {
2172 const struct dwarf2_debug_sections *names;
2173 flagword aflag = bfd_get_section_flags (abfd, sectp);
2174
2175 if (vnames == NULL)
2176 names = &dwarf2_elf_names;
2177 else
2178 names = (const struct dwarf2_debug_sections *) vnames;
2179
2180 if ((aflag & SEC_HAS_CONTENTS) == 0)
2181 {
2182 }
2183 else if (section_is_p (sectp->name, &names->info))
2184 {
2185 dwarf2_per_objfile->info.s.section = sectp;
2186 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2187 }
2188 else if (section_is_p (sectp->name, &names->abbrev))
2189 {
2190 dwarf2_per_objfile->abbrev.s.section = sectp;
2191 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2192 }
2193 else if (section_is_p (sectp->name, &names->line))
2194 {
2195 dwarf2_per_objfile->line.s.section = sectp;
2196 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2197 }
2198 else if (section_is_p (sectp->name, &names->loc))
2199 {
2200 dwarf2_per_objfile->loc.s.section = sectp;
2201 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2202 }
2203 else if (section_is_p (sectp->name, &names->macinfo))
2204 {
2205 dwarf2_per_objfile->macinfo.s.section = sectp;
2206 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2207 }
2208 else if (section_is_p (sectp->name, &names->macro))
2209 {
2210 dwarf2_per_objfile->macro.s.section = sectp;
2211 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2212 }
2213 else if (section_is_p (sectp->name, &names->str))
2214 {
2215 dwarf2_per_objfile->str.s.section = sectp;
2216 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2217 }
2218 else if (section_is_p (sectp->name, &names->addr))
2219 {
2220 dwarf2_per_objfile->addr.s.section = sectp;
2221 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2222 }
2223 else if (section_is_p (sectp->name, &names->frame))
2224 {
2225 dwarf2_per_objfile->frame.s.section = sectp;
2226 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2227 }
2228 else if (section_is_p (sectp->name, &names->eh_frame))
2229 {
2230 dwarf2_per_objfile->eh_frame.s.section = sectp;
2231 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2232 }
2233 else if (section_is_p (sectp->name, &names->ranges))
2234 {
2235 dwarf2_per_objfile->ranges.s.section = sectp;
2236 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2237 }
2238 else if (section_is_p (sectp->name, &names->types))
2239 {
2240 struct dwarf2_section_info type_section;
2241
2242 memset (&type_section, 0, sizeof (type_section));
2243 type_section.s.section = sectp;
2244 type_section.size = bfd_get_section_size (sectp);
2245
2246 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2247 &type_section);
2248 }
2249 else if (section_is_p (sectp->name, &names->gdb_index))
2250 {
2251 dwarf2_per_objfile->gdb_index.s.section = sectp;
2252 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2253 }
2254
2255 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2256 && bfd_section_vma (abfd, sectp) == 0)
2257 dwarf2_per_objfile->has_section_at_zero = 1;
2258 }
2259
2260 /* A helper function that decides whether a section is empty,
2261 or not present. */
2262
2263 static int
2264 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2265 {
2266 if (section->is_virtual)
2267 return section->size == 0;
2268 return section->s.section == NULL || section->size == 0;
2269 }
2270
2271 /* Read the contents of the section INFO.
2272 OBJFILE is the main object file, but not necessarily the file where
2273 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2274 of the DWO file.
2275 If the section is compressed, uncompress it before returning. */
2276
2277 static void
2278 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2279 {
2280 asection *sectp;
2281 bfd *abfd;
2282 gdb_byte *buf, *retbuf;
2283
2284 if (info->readin)
2285 return;
2286 info->buffer = NULL;
2287 info->readin = 1;
2288
2289 if (dwarf2_section_empty_p (info))
2290 return;
2291
2292 sectp = get_section_bfd_section (info);
2293
2294 /* If this is a virtual section we need to read in the real one first. */
2295 if (info->is_virtual)
2296 {
2297 struct dwarf2_section_info *containing_section =
2298 get_containing_section (info);
2299
2300 gdb_assert (sectp != NULL);
2301 if ((sectp->flags & SEC_RELOC) != 0)
2302 {
2303 error (_("Dwarf Error: DWP format V2 with relocations is not"
2304 " supported in section %s [in module %s]"),
2305 get_section_name (info), get_section_file_name (info));
2306 }
2307 dwarf2_read_section (objfile, containing_section);
2308 /* Other code should have already caught virtual sections that don't
2309 fit. */
2310 gdb_assert (info->virtual_offset + info->size
2311 <= containing_section->size);
2312 /* If the real section is empty or there was a problem reading the
2313 section we shouldn't get here. */
2314 gdb_assert (containing_section->buffer != NULL);
2315 info->buffer = containing_section->buffer + info->virtual_offset;
2316 return;
2317 }
2318
2319 /* If the section has relocations, we must read it ourselves.
2320 Otherwise we attach it to the BFD. */
2321 if ((sectp->flags & SEC_RELOC) == 0)
2322 {
2323 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2324 return;
2325 }
2326
2327 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2328 info->buffer = buf;
2329
2330 /* When debugging .o files, we may need to apply relocations; see
2331 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2332 We never compress sections in .o files, so we only need to
2333 try this when the section is not compressed. */
2334 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2335 if (retbuf != NULL)
2336 {
2337 info->buffer = retbuf;
2338 return;
2339 }
2340
2341 abfd = get_section_bfd_owner (info);
2342 gdb_assert (abfd != NULL);
2343
2344 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2345 || bfd_bread (buf, info->size, abfd) != info->size)
2346 {
2347 error (_("Dwarf Error: Can't read DWARF data"
2348 " in section %s [in module %s]"),
2349 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2350 }
2351 }
2352
2353 /* A helper function that returns the size of a section in a safe way.
2354 If you are positive that the section has been read before using the
2355 size, then it is safe to refer to the dwarf2_section_info object's
2356 "size" field directly. In other cases, you must call this
2357 function, because for compressed sections the size field is not set
2358 correctly until the section has been read. */
2359
2360 static bfd_size_type
2361 dwarf2_section_size (struct objfile *objfile,
2362 struct dwarf2_section_info *info)
2363 {
2364 if (!info->readin)
2365 dwarf2_read_section (objfile, info);
2366 return info->size;
2367 }
2368
2369 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2370 SECTION_NAME. */
2371
2372 void
2373 dwarf2_get_section_info (struct objfile *objfile,
2374 enum dwarf2_section_enum sect,
2375 asection **sectp, const gdb_byte **bufp,
2376 bfd_size_type *sizep)
2377 {
2378 struct dwarf2_per_objfile *data
2379 = objfile_data (objfile, dwarf2_objfile_data_key);
2380 struct dwarf2_section_info *info;
2381
2382 /* We may see an objfile without any DWARF, in which case we just
2383 return nothing. */
2384 if (data == NULL)
2385 {
2386 *sectp = NULL;
2387 *bufp = NULL;
2388 *sizep = 0;
2389 return;
2390 }
2391 switch (sect)
2392 {
2393 case DWARF2_DEBUG_FRAME:
2394 info = &data->frame;
2395 break;
2396 case DWARF2_EH_FRAME:
2397 info = &data->eh_frame;
2398 break;
2399 default:
2400 gdb_assert_not_reached ("unexpected section");
2401 }
2402
2403 dwarf2_read_section (objfile, info);
2404
2405 *sectp = get_section_bfd_section (info);
2406 *bufp = info->buffer;
2407 *sizep = info->size;
2408 }
2409
2410 /* A helper function to find the sections for a .dwz file. */
2411
2412 static void
2413 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2414 {
2415 struct dwz_file *dwz_file = arg;
2416
2417 /* Note that we only support the standard ELF names, because .dwz
2418 is ELF-only (at the time of writing). */
2419 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2420 {
2421 dwz_file->abbrev.s.section = sectp;
2422 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2423 }
2424 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2425 {
2426 dwz_file->info.s.section = sectp;
2427 dwz_file->info.size = bfd_get_section_size (sectp);
2428 }
2429 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2430 {
2431 dwz_file->str.s.section = sectp;
2432 dwz_file->str.size = bfd_get_section_size (sectp);
2433 }
2434 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2435 {
2436 dwz_file->line.s.section = sectp;
2437 dwz_file->line.size = bfd_get_section_size (sectp);
2438 }
2439 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2440 {
2441 dwz_file->macro.s.section = sectp;
2442 dwz_file->macro.size = bfd_get_section_size (sectp);
2443 }
2444 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2445 {
2446 dwz_file->gdb_index.s.section = sectp;
2447 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2448 }
2449 }
2450
2451 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2452 there is no .gnu_debugaltlink section in the file. Error if there
2453 is such a section but the file cannot be found. */
2454
2455 static struct dwz_file *
2456 dwarf2_get_dwz_file (void)
2457 {
2458 bfd *dwz_bfd;
2459 char *data;
2460 struct cleanup *cleanup;
2461 const char *filename;
2462 struct dwz_file *result;
2463 bfd_size_type buildid_len_arg;
2464 size_t buildid_len;
2465 bfd_byte *buildid;
2466
2467 if (dwarf2_per_objfile->dwz_file != NULL)
2468 return dwarf2_per_objfile->dwz_file;
2469
2470 bfd_set_error (bfd_error_no_error);
2471 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2472 &buildid_len_arg, &buildid);
2473 if (data == NULL)
2474 {
2475 if (bfd_get_error () == bfd_error_no_error)
2476 return NULL;
2477 error (_("could not read '.gnu_debugaltlink' section: %s"),
2478 bfd_errmsg (bfd_get_error ()));
2479 }
2480 cleanup = make_cleanup (xfree, data);
2481 make_cleanup (xfree, buildid);
2482
2483 buildid_len = (size_t) buildid_len_arg;
2484
2485 filename = (const char *) data;
2486 if (!IS_ABSOLUTE_PATH (filename))
2487 {
2488 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2489 char *rel;
2490
2491 make_cleanup (xfree, abs);
2492 abs = ldirname (abs);
2493 make_cleanup (xfree, abs);
2494
2495 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2496 make_cleanup (xfree, rel);
2497 filename = rel;
2498 }
2499
2500 /* First try the file name given in the section. If that doesn't
2501 work, try to use the build-id instead. */
2502 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2503 if (dwz_bfd != NULL)
2504 {
2505 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2506 {
2507 gdb_bfd_unref (dwz_bfd);
2508 dwz_bfd = NULL;
2509 }
2510 }
2511
2512 if (dwz_bfd == NULL)
2513 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2514
2515 if (dwz_bfd == NULL)
2516 error (_("could not find '.gnu_debugaltlink' file for %s"),
2517 objfile_name (dwarf2_per_objfile->objfile));
2518
2519 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2520 struct dwz_file);
2521 result->dwz_bfd = dwz_bfd;
2522
2523 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2524
2525 do_cleanups (cleanup);
2526
2527 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2528 dwarf2_per_objfile->dwz_file = result;
2529 return result;
2530 }
2531 \f
2532 /* DWARF quick_symbols_functions support. */
2533
2534 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2535 unique line tables, so we maintain a separate table of all .debug_line
2536 derived entries to support the sharing.
2537 All the quick functions need is the list of file names. We discard the
2538 line_header when we're done and don't need to record it here. */
2539 struct quick_file_names
2540 {
2541 /* The data used to construct the hash key. */
2542 struct stmt_list_hash hash;
2543
2544 /* The number of entries in file_names, real_names. */
2545 unsigned int num_file_names;
2546
2547 /* The file names from the line table, after being run through
2548 file_full_name. */
2549 const char **file_names;
2550
2551 /* The file names from the line table after being run through
2552 gdb_realpath. These are computed lazily. */
2553 const char **real_names;
2554 };
2555
2556 /* When using the index (and thus not using psymtabs), each CU has an
2557 object of this type. This is used to hold information needed by
2558 the various "quick" methods. */
2559 struct dwarf2_per_cu_quick_data
2560 {
2561 /* The file table. This can be NULL if there was no file table
2562 or it's currently not read in.
2563 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2564 struct quick_file_names *file_names;
2565
2566 /* The corresponding symbol table. This is NULL if symbols for this
2567 CU have not yet been read. */
2568 struct compunit_symtab *compunit_symtab;
2569
2570 /* A temporary mark bit used when iterating over all CUs in
2571 expand_symtabs_matching. */
2572 unsigned int mark : 1;
2573
2574 /* True if we've tried to read the file table and found there isn't one.
2575 There will be no point in trying to read it again next time. */
2576 unsigned int no_file_data : 1;
2577 };
2578
2579 /* Utility hash function for a stmt_list_hash. */
2580
2581 static hashval_t
2582 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2583 {
2584 hashval_t v = 0;
2585
2586 if (stmt_list_hash->dwo_unit != NULL)
2587 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2588 v += stmt_list_hash->line_offset.sect_off;
2589 return v;
2590 }
2591
2592 /* Utility equality function for a stmt_list_hash. */
2593
2594 static int
2595 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2596 const struct stmt_list_hash *rhs)
2597 {
2598 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2599 return 0;
2600 if (lhs->dwo_unit != NULL
2601 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2602 return 0;
2603
2604 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2605 }
2606
2607 /* Hash function for a quick_file_names. */
2608
2609 static hashval_t
2610 hash_file_name_entry (const void *e)
2611 {
2612 const struct quick_file_names *file_data = e;
2613
2614 return hash_stmt_list_entry (&file_data->hash);
2615 }
2616
2617 /* Equality function for a quick_file_names. */
2618
2619 static int
2620 eq_file_name_entry (const void *a, const void *b)
2621 {
2622 const struct quick_file_names *ea = a;
2623 const struct quick_file_names *eb = b;
2624
2625 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2626 }
2627
2628 /* Delete function for a quick_file_names. */
2629
2630 static void
2631 delete_file_name_entry (void *e)
2632 {
2633 struct quick_file_names *file_data = e;
2634 int i;
2635
2636 for (i = 0; i < file_data->num_file_names; ++i)
2637 {
2638 xfree ((void*) file_data->file_names[i]);
2639 if (file_data->real_names)
2640 xfree ((void*) file_data->real_names[i]);
2641 }
2642
2643 /* The space for the struct itself lives on objfile_obstack,
2644 so we don't free it here. */
2645 }
2646
2647 /* Create a quick_file_names hash table. */
2648
2649 static htab_t
2650 create_quick_file_names_table (unsigned int nr_initial_entries)
2651 {
2652 return htab_create_alloc (nr_initial_entries,
2653 hash_file_name_entry, eq_file_name_entry,
2654 delete_file_name_entry, xcalloc, xfree);
2655 }
2656
2657 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2658 have to be created afterwards. You should call age_cached_comp_units after
2659 processing PER_CU->CU. dw2_setup must have been already called. */
2660
2661 static void
2662 load_cu (struct dwarf2_per_cu_data *per_cu)
2663 {
2664 if (per_cu->is_debug_types)
2665 load_full_type_unit (per_cu);
2666 else
2667 load_full_comp_unit (per_cu, language_minimal);
2668
2669 if (per_cu->cu == NULL)
2670 return; /* Dummy CU. */
2671
2672 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2673 }
2674
2675 /* Read in the symbols for PER_CU. */
2676
2677 static void
2678 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2679 {
2680 struct cleanup *back_to;
2681
2682 /* Skip type_unit_groups, reading the type units they contain
2683 is handled elsewhere. */
2684 if (IS_TYPE_UNIT_GROUP (per_cu))
2685 return;
2686
2687 back_to = make_cleanup (dwarf2_release_queue, NULL);
2688
2689 if (dwarf2_per_objfile->using_index
2690 ? per_cu->v.quick->compunit_symtab == NULL
2691 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2692 {
2693 queue_comp_unit (per_cu, language_minimal);
2694 load_cu (per_cu);
2695
2696 /* If we just loaded a CU from a DWO, and we're working with an index
2697 that may badly handle TUs, load all the TUs in that DWO as well.
2698 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2699 if (!per_cu->is_debug_types
2700 && per_cu->cu != NULL
2701 && per_cu->cu->dwo_unit != NULL
2702 && dwarf2_per_objfile->index_table != NULL
2703 && dwarf2_per_objfile->index_table->version <= 7
2704 /* DWP files aren't supported yet. */
2705 && get_dwp_file () == NULL)
2706 queue_and_load_all_dwo_tus (per_cu);
2707 }
2708
2709 process_queue ();
2710
2711 /* Age the cache, releasing compilation units that have not
2712 been used recently. */
2713 age_cached_comp_units ();
2714
2715 do_cleanups (back_to);
2716 }
2717
2718 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2719 the objfile from which this CU came. Returns the resulting symbol
2720 table. */
2721
2722 static struct compunit_symtab *
2723 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2724 {
2725 gdb_assert (dwarf2_per_objfile->using_index);
2726 if (!per_cu->v.quick->compunit_symtab)
2727 {
2728 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2729 increment_reading_symtab ();
2730 dw2_do_instantiate_symtab (per_cu);
2731 process_cu_includes ();
2732 do_cleanups (back_to);
2733 }
2734
2735 return per_cu->v.quick->compunit_symtab;
2736 }
2737
2738 /* Return the CU/TU given its index.
2739
2740 This is intended for loops like:
2741
2742 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2743 + dwarf2_per_objfile->n_type_units); ++i)
2744 {
2745 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2746
2747 ...;
2748 }
2749 */
2750
2751 static struct dwarf2_per_cu_data *
2752 dw2_get_cutu (int index)
2753 {
2754 if (index >= dwarf2_per_objfile->n_comp_units)
2755 {
2756 index -= dwarf2_per_objfile->n_comp_units;
2757 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2758 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2759 }
2760
2761 return dwarf2_per_objfile->all_comp_units[index];
2762 }
2763
2764 /* Return the CU given its index.
2765 This differs from dw2_get_cutu in that it's for when you know INDEX
2766 refers to a CU. */
2767
2768 static struct dwarf2_per_cu_data *
2769 dw2_get_cu (int index)
2770 {
2771 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2772
2773 return dwarf2_per_objfile->all_comp_units[index];
2774 }
2775
2776 /* A helper for create_cus_from_index that handles a given list of
2777 CUs. */
2778
2779 static void
2780 create_cus_from_index_list (struct objfile *objfile,
2781 const gdb_byte *cu_list, offset_type n_elements,
2782 struct dwarf2_section_info *section,
2783 int is_dwz,
2784 int base_offset)
2785 {
2786 offset_type i;
2787
2788 for (i = 0; i < n_elements; i += 2)
2789 {
2790 struct dwarf2_per_cu_data *the_cu;
2791 ULONGEST offset, length;
2792
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2795 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2796 cu_list += 2 * 8;
2797
2798 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2799 struct dwarf2_per_cu_data);
2800 the_cu->offset.sect_off = offset;
2801 the_cu->length = length;
2802 the_cu->objfile = objfile;
2803 the_cu->section = section;
2804 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2805 struct dwarf2_per_cu_quick_data);
2806 the_cu->is_dwz = is_dwz;
2807 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2808 }
2809 }
2810
2811 /* Read the CU list from the mapped index, and use it to create all
2812 the CU objects for this objfile. */
2813
2814 static void
2815 create_cus_from_index (struct objfile *objfile,
2816 const gdb_byte *cu_list, offset_type cu_list_elements,
2817 const gdb_byte *dwz_list, offset_type dwz_elements)
2818 {
2819 struct dwz_file *dwz;
2820
2821 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2822 dwarf2_per_objfile->all_comp_units =
2823 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2824 dwarf2_per_objfile->n_comp_units);
2825
2826 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2827 &dwarf2_per_objfile->info, 0, 0);
2828
2829 if (dwz_elements == 0)
2830 return;
2831
2832 dwz = dwarf2_get_dwz_file ();
2833 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2834 cu_list_elements / 2);
2835 }
2836
2837 /* Create the signatured type hash table from the index. */
2838
2839 static void
2840 create_signatured_type_table_from_index (struct objfile *objfile,
2841 struct dwarf2_section_info *section,
2842 const gdb_byte *bytes,
2843 offset_type elements)
2844 {
2845 offset_type i;
2846 htab_t sig_types_hash;
2847
2848 dwarf2_per_objfile->n_type_units
2849 = dwarf2_per_objfile->n_allocated_type_units
2850 = elements / 3;
2851 dwarf2_per_objfile->all_type_units =
2852 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2853
2854 sig_types_hash = allocate_signatured_type_table (objfile);
2855
2856 for (i = 0; i < elements; i += 3)
2857 {
2858 struct signatured_type *sig_type;
2859 ULONGEST offset, type_offset_in_tu, signature;
2860 void **slot;
2861
2862 gdb_static_assert (sizeof (ULONGEST) >= 8);
2863 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2864 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2865 BFD_ENDIAN_LITTLE);
2866 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2867 bytes += 3 * 8;
2868
2869 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2870 struct signatured_type);
2871 sig_type->signature = signature;
2872 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2873 sig_type->per_cu.is_debug_types = 1;
2874 sig_type->per_cu.section = section;
2875 sig_type->per_cu.offset.sect_off = offset;
2876 sig_type->per_cu.objfile = objfile;
2877 sig_type->per_cu.v.quick
2878 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2879 struct dwarf2_per_cu_quick_data);
2880
2881 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2882 *slot = sig_type;
2883
2884 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2885 }
2886
2887 dwarf2_per_objfile->signatured_types = sig_types_hash;
2888 }
2889
2890 /* Read the address map data from the mapped index, and use it to
2891 populate the objfile's psymtabs_addrmap. */
2892
2893 static void
2894 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2895 {
2896 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2897 const gdb_byte *iter, *end;
2898 struct obstack temp_obstack;
2899 struct addrmap *mutable_map;
2900 struct cleanup *cleanup;
2901 CORE_ADDR baseaddr;
2902
2903 obstack_init (&temp_obstack);
2904 cleanup = make_cleanup_obstack_free (&temp_obstack);
2905 mutable_map = addrmap_create_mutable (&temp_obstack);
2906
2907 iter = index->address_table;
2908 end = iter + index->address_table_size;
2909
2910 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2911
2912 while (iter < end)
2913 {
2914 ULONGEST hi, lo, cu_index;
2915 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2916 iter += 8;
2917 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2918 iter += 8;
2919 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2920 iter += 4;
2921
2922 if (lo > hi)
2923 {
2924 complaint (&symfile_complaints,
2925 _(".gdb_index address table has invalid range (%s - %s)"),
2926 hex_string (lo), hex_string (hi));
2927 continue;
2928 }
2929
2930 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2931 {
2932 complaint (&symfile_complaints,
2933 _(".gdb_index address table has invalid CU number %u"),
2934 (unsigned) cu_index);
2935 continue;
2936 }
2937
2938 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2939 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2940 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2941 }
2942
2943 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2944 &objfile->objfile_obstack);
2945 do_cleanups (cleanup);
2946 }
2947
2948 /* The hash function for strings in the mapped index. This is the same as
2949 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2950 implementation. This is necessary because the hash function is tied to the
2951 format of the mapped index file. The hash values do not have to match with
2952 SYMBOL_HASH_NEXT.
2953
2954 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2955
2956 static hashval_t
2957 mapped_index_string_hash (int index_version, const void *p)
2958 {
2959 const unsigned char *str = (const unsigned char *) p;
2960 hashval_t r = 0;
2961 unsigned char c;
2962
2963 while ((c = *str++) != 0)
2964 {
2965 if (index_version >= 5)
2966 c = tolower (c);
2967 r = r * 67 + c - 113;
2968 }
2969
2970 return r;
2971 }
2972
2973 /* Find a slot in the mapped index INDEX for the object named NAME.
2974 If NAME is found, set *VEC_OUT to point to the CU vector in the
2975 constant pool and return 1. If NAME cannot be found, return 0. */
2976
2977 static int
2978 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2979 offset_type **vec_out)
2980 {
2981 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2982 offset_type hash;
2983 offset_type slot, step;
2984 int (*cmp) (const char *, const char *);
2985
2986 if (current_language->la_language == language_cplus
2987 || current_language->la_language == language_java
2988 || current_language->la_language == language_fortran
2989 || current_language->la_language == language_d)
2990 {
2991 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2992 not contain any. */
2993
2994 if (strchr (name, '(') != NULL)
2995 {
2996 char *without_params = cp_remove_params (name);
2997
2998 if (without_params != NULL)
2999 {
3000 make_cleanup (xfree, without_params);
3001 name = without_params;
3002 }
3003 }
3004 }
3005
3006 /* Index version 4 did not support case insensitive searches. But the
3007 indices for case insensitive languages are built in lowercase, therefore
3008 simulate our NAME being searched is also lowercased. */
3009 hash = mapped_index_string_hash ((index->version == 4
3010 && case_sensitivity == case_sensitive_off
3011 ? 5 : index->version),
3012 name);
3013
3014 slot = hash & (index->symbol_table_slots - 1);
3015 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3016 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3017
3018 for (;;)
3019 {
3020 /* Convert a slot number to an offset into the table. */
3021 offset_type i = 2 * slot;
3022 const char *str;
3023 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3024 {
3025 do_cleanups (back_to);
3026 return 0;
3027 }
3028
3029 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3030 if (!cmp (name, str))
3031 {
3032 *vec_out = (offset_type *) (index->constant_pool
3033 + MAYBE_SWAP (index->symbol_table[i + 1]));
3034 do_cleanups (back_to);
3035 return 1;
3036 }
3037
3038 slot = (slot + step) & (index->symbol_table_slots - 1);
3039 }
3040 }
3041
3042 /* A helper function that reads the .gdb_index from SECTION and fills
3043 in MAP. FILENAME is the name of the file containing the section;
3044 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3045 ok to use deprecated sections.
3046
3047 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3048 out parameters that are filled in with information about the CU and
3049 TU lists in the section.
3050
3051 Returns 1 if all went well, 0 otherwise. */
3052
3053 static int
3054 read_index_from_section (struct objfile *objfile,
3055 const char *filename,
3056 int deprecated_ok,
3057 struct dwarf2_section_info *section,
3058 struct mapped_index *map,
3059 const gdb_byte **cu_list,
3060 offset_type *cu_list_elements,
3061 const gdb_byte **types_list,
3062 offset_type *types_list_elements)
3063 {
3064 const gdb_byte *addr;
3065 offset_type version;
3066 offset_type *metadata;
3067 int i;
3068
3069 if (dwarf2_section_empty_p (section))
3070 return 0;
3071
3072 /* Older elfutils strip versions could keep the section in the main
3073 executable while splitting it for the separate debug info file. */
3074 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3075 return 0;
3076
3077 dwarf2_read_section (objfile, section);
3078
3079 addr = section->buffer;
3080 /* Version check. */
3081 version = MAYBE_SWAP (*(offset_type *) addr);
3082 /* Versions earlier than 3 emitted every copy of a psymbol. This
3083 causes the index to behave very poorly for certain requests. Version 3
3084 contained incomplete addrmap. So, it seems better to just ignore such
3085 indices. */
3086 if (version < 4)
3087 {
3088 static int warning_printed = 0;
3089 if (!warning_printed)
3090 {
3091 warning (_("Skipping obsolete .gdb_index section in %s."),
3092 filename);
3093 warning_printed = 1;
3094 }
3095 return 0;
3096 }
3097 /* Index version 4 uses a different hash function than index version
3098 5 and later.
3099
3100 Versions earlier than 6 did not emit psymbols for inlined
3101 functions. Using these files will cause GDB not to be able to
3102 set breakpoints on inlined functions by name, so we ignore these
3103 indices unless the user has done
3104 "set use-deprecated-index-sections on". */
3105 if (version < 6 && !deprecated_ok)
3106 {
3107 static int warning_printed = 0;
3108 if (!warning_printed)
3109 {
3110 warning (_("\
3111 Skipping deprecated .gdb_index section in %s.\n\
3112 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3113 to use the section anyway."),
3114 filename);
3115 warning_printed = 1;
3116 }
3117 return 0;
3118 }
3119 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3120 of the TU (for symbols coming from TUs),
3121 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3122 Plus gold-generated indices can have duplicate entries for global symbols,
3123 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3124 These are just performance bugs, and we can't distinguish gdb-generated
3125 indices from gold-generated ones, so issue no warning here. */
3126
3127 /* Indexes with higher version than the one supported by GDB may be no
3128 longer backward compatible. */
3129 if (version > 8)
3130 return 0;
3131
3132 map->version = version;
3133 map->total_size = section->size;
3134
3135 metadata = (offset_type *) (addr + sizeof (offset_type));
3136
3137 i = 0;
3138 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3139 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3140 / 8);
3141 ++i;
3142
3143 *types_list = addr + MAYBE_SWAP (metadata[i]);
3144 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3145 - MAYBE_SWAP (metadata[i]))
3146 / 8);
3147 ++i;
3148
3149 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3150 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3151 - MAYBE_SWAP (metadata[i]));
3152 ++i;
3153
3154 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3155 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3156 - MAYBE_SWAP (metadata[i]))
3157 / (2 * sizeof (offset_type)));
3158 ++i;
3159
3160 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3161
3162 return 1;
3163 }
3164
3165
3166 /* Read the index file. If everything went ok, initialize the "quick"
3167 elements of all the CUs and return 1. Otherwise, return 0. */
3168
3169 static int
3170 dwarf2_read_index (struct objfile *objfile)
3171 {
3172 struct mapped_index local_map, *map;
3173 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3174 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3175 struct dwz_file *dwz;
3176
3177 if (!read_index_from_section (objfile, objfile_name (objfile),
3178 use_deprecated_index_sections,
3179 &dwarf2_per_objfile->gdb_index, &local_map,
3180 &cu_list, &cu_list_elements,
3181 &types_list, &types_list_elements))
3182 return 0;
3183
3184 /* Don't use the index if it's empty. */
3185 if (local_map.symbol_table_slots == 0)
3186 return 0;
3187
3188 /* If there is a .dwz file, read it so we can get its CU list as
3189 well. */
3190 dwz = dwarf2_get_dwz_file ();
3191 if (dwz != NULL)
3192 {
3193 struct mapped_index dwz_map;
3194 const gdb_byte *dwz_types_ignore;
3195 offset_type dwz_types_elements_ignore;
3196
3197 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3198 1,
3199 &dwz->gdb_index, &dwz_map,
3200 &dwz_list, &dwz_list_elements,
3201 &dwz_types_ignore,
3202 &dwz_types_elements_ignore))
3203 {
3204 warning (_("could not read '.gdb_index' section from %s; skipping"),
3205 bfd_get_filename (dwz->dwz_bfd));
3206 return 0;
3207 }
3208 }
3209
3210 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3211 dwz_list_elements);
3212
3213 if (types_list_elements)
3214 {
3215 struct dwarf2_section_info *section;
3216
3217 /* We can only handle a single .debug_types when we have an
3218 index. */
3219 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3220 return 0;
3221
3222 section = VEC_index (dwarf2_section_info_def,
3223 dwarf2_per_objfile->types, 0);
3224
3225 create_signatured_type_table_from_index (objfile, section, types_list,
3226 types_list_elements);
3227 }
3228
3229 create_addrmap_from_index (objfile, &local_map);
3230
3231 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3232 *map = local_map;
3233
3234 dwarf2_per_objfile->index_table = map;
3235 dwarf2_per_objfile->using_index = 1;
3236 dwarf2_per_objfile->quick_file_names_table =
3237 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3238
3239 return 1;
3240 }
3241
3242 /* A helper for the "quick" functions which sets the global
3243 dwarf2_per_objfile according to OBJFILE. */
3244
3245 static void
3246 dw2_setup (struct objfile *objfile)
3247 {
3248 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3249 gdb_assert (dwarf2_per_objfile);
3250 }
3251
3252 /* die_reader_func for dw2_get_file_names. */
3253
3254 static void
3255 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3256 const gdb_byte *info_ptr,
3257 struct die_info *comp_unit_die,
3258 int has_children,
3259 void *data)
3260 {
3261 struct dwarf2_cu *cu = reader->cu;
3262 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3263 struct objfile *objfile = dwarf2_per_objfile->objfile;
3264 struct dwarf2_per_cu_data *lh_cu;
3265 struct line_header *lh;
3266 struct attribute *attr;
3267 int i;
3268 const char *name, *comp_dir;
3269 void **slot;
3270 struct quick_file_names *qfn;
3271 unsigned int line_offset;
3272
3273 gdb_assert (! this_cu->is_debug_types);
3274
3275 /* Our callers never want to match partial units -- instead they
3276 will match the enclosing full CU. */
3277 if (comp_unit_die->tag == DW_TAG_partial_unit)
3278 {
3279 this_cu->v.quick->no_file_data = 1;
3280 return;
3281 }
3282
3283 lh_cu = this_cu;
3284 lh = NULL;
3285 slot = NULL;
3286 line_offset = 0;
3287
3288 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3289 if (attr)
3290 {
3291 struct quick_file_names find_entry;
3292
3293 line_offset = DW_UNSND (attr);
3294
3295 /* We may have already read in this line header (TU line header sharing).
3296 If we have we're done. */
3297 find_entry.hash.dwo_unit = cu->dwo_unit;
3298 find_entry.hash.line_offset.sect_off = line_offset;
3299 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3300 &find_entry, INSERT);
3301 if (*slot != NULL)
3302 {
3303 lh_cu->v.quick->file_names = *slot;
3304 return;
3305 }
3306
3307 lh = dwarf_decode_line_header (line_offset, cu);
3308 }
3309 if (lh == NULL)
3310 {
3311 lh_cu->v.quick->no_file_data = 1;
3312 return;
3313 }
3314
3315 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3316 qfn->hash.dwo_unit = cu->dwo_unit;
3317 qfn->hash.line_offset.sect_off = line_offset;
3318 gdb_assert (slot != NULL);
3319 *slot = qfn;
3320
3321 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3322
3323 qfn->num_file_names = lh->num_file_names;
3324 qfn->file_names =
3325 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3326 for (i = 0; i < lh->num_file_names; ++i)
3327 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3328 qfn->real_names = NULL;
3329
3330 free_line_header (lh);
3331
3332 lh_cu->v.quick->file_names = qfn;
3333 }
3334
3335 /* A helper for the "quick" functions which attempts to read the line
3336 table for THIS_CU. */
3337
3338 static struct quick_file_names *
3339 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3340 {
3341 /* This should never be called for TUs. */
3342 gdb_assert (! this_cu->is_debug_types);
3343 /* Nor type unit groups. */
3344 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3345
3346 if (this_cu->v.quick->file_names != NULL)
3347 return this_cu->v.quick->file_names;
3348 /* If we know there is no line data, no point in looking again. */
3349 if (this_cu->v.quick->no_file_data)
3350 return NULL;
3351
3352 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3353
3354 if (this_cu->v.quick->no_file_data)
3355 return NULL;
3356 return this_cu->v.quick->file_names;
3357 }
3358
3359 /* A helper for the "quick" functions which computes and caches the
3360 real path for a given file name from the line table. */
3361
3362 static const char *
3363 dw2_get_real_path (struct objfile *objfile,
3364 struct quick_file_names *qfn, int index)
3365 {
3366 if (qfn->real_names == NULL)
3367 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3368 qfn->num_file_names, const char *);
3369
3370 if (qfn->real_names[index] == NULL)
3371 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3372
3373 return qfn->real_names[index];
3374 }
3375
3376 static struct symtab *
3377 dw2_find_last_source_symtab (struct objfile *objfile)
3378 {
3379 struct compunit_symtab *cust;
3380 int index;
3381
3382 dw2_setup (objfile);
3383 index = dwarf2_per_objfile->n_comp_units - 1;
3384 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3385 if (cust == NULL)
3386 return NULL;
3387 return compunit_primary_filetab (cust);
3388 }
3389
3390 /* Traversal function for dw2_forget_cached_source_info. */
3391
3392 static int
3393 dw2_free_cached_file_names (void **slot, void *info)
3394 {
3395 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3396
3397 if (file_data->real_names)
3398 {
3399 int i;
3400
3401 for (i = 0; i < file_data->num_file_names; ++i)
3402 {
3403 xfree ((void*) file_data->real_names[i]);
3404 file_data->real_names[i] = NULL;
3405 }
3406 }
3407
3408 return 1;
3409 }
3410
3411 static void
3412 dw2_forget_cached_source_info (struct objfile *objfile)
3413 {
3414 dw2_setup (objfile);
3415
3416 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3417 dw2_free_cached_file_names, NULL);
3418 }
3419
3420 /* Helper function for dw2_map_symtabs_matching_filename that expands
3421 the symtabs and calls the iterator. */
3422
3423 static int
3424 dw2_map_expand_apply (struct objfile *objfile,
3425 struct dwarf2_per_cu_data *per_cu,
3426 const char *name, const char *real_path,
3427 int (*callback) (struct symtab *, void *),
3428 void *data)
3429 {
3430 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3431
3432 /* Don't visit already-expanded CUs. */
3433 if (per_cu->v.quick->compunit_symtab)
3434 return 0;
3435
3436 /* This may expand more than one symtab, and we want to iterate over
3437 all of them. */
3438 dw2_instantiate_symtab (per_cu);
3439
3440 return iterate_over_some_symtabs (name, real_path, callback, data,
3441 objfile->compunit_symtabs, last_made);
3442 }
3443
3444 /* Implementation of the map_symtabs_matching_filename method. */
3445
3446 static int
3447 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3448 const char *real_path,
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
3451 {
3452 int i;
3453 const char *name_basename = lbasename (name);
3454
3455 dw2_setup (objfile);
3456
3457 /* The rule is CUs specify all the files, including those used by
3458 any TU, so there's no need to scan TUs here. */
3459
3460 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3461 {
3462 int j;
3463 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3464 struct quick_file_names *file_data;
3465
3466 /* We only need to look at symtabs not already expanded. */
3467 if (per_cu->v.quick->compunit_symtab)
3468 continue;
3469
3470 file_data = dw2_get_file_names (per_cu);
3471 if (file_data == NULL)
3472 continue;
3473
3474 for (j = 0; j < file_data->num_file_names; ++j)
3475 {
3476 const char *this_name = file_data->file_names[j];
3477 const char *this_real_name;
3478
3479 if (compare_filenames_for_search (this_name, name))
3480 {
3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3482 callback, data))
3483 return 1;
3484 continue;
3485 }
3486
3487 /* Before we invoke realpath, which can get expensive when many
3488 files are involved, do a quick comparison of the basenames. */
3489 if (! basenames_may_differ
3490 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3491 continue;
3492
3493 this_real_name = dw2_get_real_path (objfile, file_data, j);
3494 if (compare_filenames_for_search (this_real_name, name))
3495 {
3496 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3497 callback, data))
3498 return 1;
3499 continue;
3500 }
3501
3502 if (real_path != NULL)
3503 {
3504 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3505 gdb_assert (IS_ABSOLUTE_PATH (name));
3506 if (this_real_name != NULL
3507 && FILENAME_CMP (real_path, this_real_name) == 0)
3508 {
3509 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3510 callback, data))
3511 return 1;
3512 continue;
3513 }
3514 }
3515 }
3516 }
3517
3518 return 0;
3519 }
3520
3521 /* Struct used to manage iterating over all CUs looking for a symbol. */
3522
3523 struct dw2_symtab_iterator
3524 {
3525 /* The internalized form of .gdb_index. */
3526 struct mapped_index *index;
3527 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3528 int want_specific_block;
3529 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3530 Unused if !WANT_SPECIFIC_BLOCK. */
3531 int block_index;
3532 /* The kind of symbol we're looking for. */
3533 domain_enum domain;
3534 /* The list of CUs from the index entry of the symbol,
3535 or NULL if not found. */
3536 offset_type *vec;
3537 /* The next element in VEC to look at. */
3538 int next;
3539 /* The number of elements in VEC, or zero if there is no match. */
3540 int length;
3541 /* Have we seen a global version of the symbol?
3542 If so we can ignore all further global instances.
3543 This is to work around gold/15646, inefficient gold-generated
3544 indices. */
3545 int global_seen;
3546 };
3547
3548 /* Initialize the index symtab iterator ITER.
3549 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3550 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3551
3552 static void
3553 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3554 struct mapped_index *index,
3555 int want_specific_block,
3556 int block_index,
3557 domain_enum domain,
3558 const char *name)
3559 {
3560 iter->index = index;
3561 iter->want_specific_block = want_specific_block;
3562 iter->block_index = block_index;
3563 iter->domain = domain;
3564 iter->next = 0;
3565 iter->global_seen = 0;
3566
3567 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3568 iter->length = MAYBE_SWAP (*iter->vec);
3569 else
3570 {
3571 iter->vec = NULL;
3572 iter->length = 0;
3573 }
3574 }
3575
3576 /* Return the next matching CU or NULL if there are no more. */
3577
3578 static struct dwarf2_per_cu_data *
3579 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3580 {
3581 for ( ; iter->next < iter->length; ++iter->next)
3582 {
3583 offset_type cu_index_and_attrs =
3584 MAYBE_SWAP (iter->vec[iter->next + 1]);
3585 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3586 struct dwarf2_per_cu_data *per_cu;
3587 int want_static = iter->block_index != GLOBAL_BLOCK;
3588 /* This value is only valid for index versions >= 7. */
3589 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3590 gdb_index_symbol_kind symbol_kind =
3591 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3592 /* Only check the symbol attributes if they're present.
3593 Indices prior to version 7 don't record them,
3594 and indices >= 7 may elide them for certain symbols
3595 (gold does this). */
3596 int attrs_valid =
3597 (iter->index->version >= 7
3598 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3599
3600 /* Don't crash on bad data. */
3601 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3602 + dwarf2_per_objfile->n_type_units))
3603 {
3604 complaint (&symfile_complaints,
3605 _(".gdb_index entry has bad CU index"
3606 " [in module %s]"),
3607 objfile_name (dwarf2_per_objfile->objfile));
3608 continue;
3609 }
3610
3611 per_cu = dw2_get_cutu (cu_index);
3612
3613 /* Skip if already read in. */
3614 if (per_cu->v.quick->compunit_symtab)
3615 continue;
3616
3617 /* Check static vs global. */
3618 if (attrs_valid)
3619 {
3620 if (iter->want_specific_block
3621 && want_static != is_static)
3622 continue;
3623 /* Work around gold/15646. */
3624 if (!is_static && iter->global_seen)
3625 continue;
3626 if (!is_static)
3627 iter->global_seen = 1;
3628 }
3629
3630 /* Only check the symbol's kind if it has one. */
3631 if (attrs_valid)
3632 {
3633 switch (iter->domain)
3634 {
3635 case VAR_DOMAIN:
3636 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3637 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3638 /* Some types are also in VAR_DOMAIN. */
3639 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3640 continue;
3641 break;
3642 case STRUCT_DOMAIN:
3643 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case LABEL_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3648 continue;
3649 break;
3650 default:
3651 break;
3652 }
3653 }
3654
3655 ++iter->next;
3656 return per_cu;
3657 }
3658
3659 return NULL;
3660 }
3661
3662 static struct compunit_symtab *
3663 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3664 const char *name, domain_enum domain)
3665 {
3666 struct compunit_symtab *stab_best = NULL;
3667 struct mapped_index *index;
3668
3669 dw2_setup (objfile);
3670
3671 index = dwarf2_per_objfile->index_table;
3672
3673 /* index is NULL if OBJF_READNOW. */
3674 if (index)
3675 {
3676 struct dw2_symtab_iterator iter;
3677 struct dwarf2_per_cu_data *per_cu;
3678
3679 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3680
3681 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3682 {
3683 struct symbol *sym, *with_opaque = NULL;
3684 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3685 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3686 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3687
3688 sym = block_find_symbol (block, name, domain,
3689 block_find_non_opaque_type_preferred,
3690 &with_opaque);
3691
3692 /* Some caution must be observed with overloaded functions
3693 and methods, since the index will not contain any overload
3694 information (but NAME might contain it). */
3695
3696 if (sym != NULL
3697 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3698 return stab;
3699 if (with_opaque != NULL
3700 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3701 stab_best = stab;
3702
3703 /* Keep looking through other CUs. */
3704 }
3705 }
3706
3707 return stab_best;
3708 }
3709
3710 static void
3711 dw2_print_stats (struct objfile *objfile)
3712 {
3713 int i, total, count;
3714
3715 dw2_setup (objfile);
3716 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3717 count = 0;
3718 for (i = 0; i < total; ++i)
3719 {
3720 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3721
3722 if (!per_cu->v.quick->compunit_symtab)
3723 ++count;
3724 }
3725 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3726 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3727 }
3728
3729 /* This dumps minimal information about the index.
3730 It is called via "mt print objfiles".
3731 One use is to verify .gdb_index has been loaded by the
3732 gdb.dwarf2/gdb-index.exp testcase. */
3733
3734 static void
3735 dw2_dump (struct objfile *objfile)
3736 {
3737 dw2_setup (objfile);
3738 gdb_assert (dwarf2_per_objfile->using_index);
3739 printf_filtered (".gdb_index:");
3740 if (dwarf2_per_objfile->index_table != NULL)
3741 {
3742 printf_filtered (" version %d\n",
3743 dwarf2_per_objfile->index_table->version);
3744 }
3745 else
3746 printf_filtered (" faked for \"readnow\"\n");
3747 printf_filtered ("\n");
3748 }
3749
3750 static void
3751 dw2_relocate (struct objfile *objfile,
3752 const struct section_offsets *new_offsets,
3753 const struct section_offsets *delta)
3754 {
3755 /* There's nothing to relocate here. */
3756 }
3757
3758 static void
3759 dw2_expand_symtabs_for_function (struct objfile *objfile,
3760 const char *func_name)
3761 {
3762 struct mapped_index *index;
3763
3764 dw2_setup (objfile);
3765
3766 index = dwarf2_per_objfile->index_table;
3767
3768 /* index is NULL if OBJF_READNOW. */
3769 if (index)
3770 {
3771 struct dw2_symtab_iterator iter;
3772 struct dwarf2_per_cu_data *per_cu;
3773
3774 /* Note: It doesn't matter what we pass for block_index here. */
3775 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3776 func_name);
3777
3778 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3779 dw2_instantiate_symtab (per_cu);
3780 }
3781 }
3782
3783 static void
3784 dw2_expand_all_symtabs (struct objfile *objfile)
3785 {
3786 int i;
3787
3788 dw2_setup (objfile);
3789
3790 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3791 + dwarf2_per_objfile->n_type_units); ++i)
3792 {
3793 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3794
3795 dw2_instantiate_symtab (per_cu);
3796 }
3797 }
3798
3799 static void
3800 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3801 const char *fullname)
3802 {
3803 int i;
3804
3805 dw2_setup (objfile);
3806
3807 /* We don't need to consider type units here.
3808 This is only called for examining code, e.g. expand_line_sal.
3809 There can be an order of magnitude (or more) more type units
3810 than comp units, and we avoid them if we can. */
3811
3812 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3813 {
3814 int j;
3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3816 struct quick_file_names *file_data;
3817
3818 /* We only need to look at symtabs not already expanded. */
3819 if (per_cu->v.quick->compunit_symtab)
3820 continue;
3821
3822 file_data = dw2_get_file_names (per_cu);
3823 if (file_data == NULL)
3824 continue;
3825
3826 for (j = 0; j < file_data->num_file_names; ++j)
3827 {
3828 const char *this_fullname = file_data->file_names[j];
3829
3830 if (filename_cmp (this_fullname, fullname) == 0)
3831 {
3832 dw2_instantiate_symtab (per_cu);
3833 break;
3834 }
3835 }
3836 }
3837 }
3838
3839 static void
3840 dw2_map_matching_symbols (struct objfile *objfile,
3841 const char * name, domain_enum domain,
3842 int global,
3843 int (*callback) (struct block *,
3844 struct symbol *, void *),
3845 void *data, symbol_compare_ftype *match,
3846 symbol_compare_ftype *ordered_compare)
3847 {
3848 /* Currently unimplemented; used for Ada. The function can be called if the
3849 current language is Ada for a non-Ada objfile using GNU index. As Ada
3850 does not look for non-Ada symbols this function should just return. */
3851 }
3852
3853 static void
3854 dw2_expand_symtabs_matching
3855 (struct objfile *objfile,
3856 expand_symtabs_file_matcher_ftype *file_matcher,
3857 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3858 expand_symtabs_exp_notify_ftype *expansion_notify,
3859 enum search_domain kind,
3860 void *data)
3861 {
3862 int i;
3863 offset_type iter;
3864 struct mapped_index *index;
3865
3866 dw2_setup (objfile);
3867
3868 /* index_table is NULL if OBJF_READNOW. */
3869 if (!dwarf2_per_objfile->index_table)
3870 return;
3871 index = dwarf2_per_objfile->index_table;
3872
3873 if (file_matcher != NULL)
3874 {
3875 struct cleanup *cleanup;
3876 htab_t visited_found, visited_not_found;
3877
3878 visited_found = htab_create_alloc (10,
3879 htab_hash_pointer, htab_eq_pointer,
3880 NULL, xcalloc, xfree);
3881 cleanup = make_cleanup_htab_delete (visited_found);
3882 visited_not_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 make_cleanup_htab_delete (visited_not_found);
3886
3887 /* The rule is CUs specify all the files, including those used by
3888 any TU, so there's no need to scan TUs here. */
3889
3890 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3891 {
3892 int j;
3893 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3894 struct quick_file_names *file_data;
3895 void **slot;
3896
3897 QUIT;
3898
3899 per_cu->v.quick->mark = 0;
3900
3901 /* We only need to look at symtabs not already expanded. */
3902 if (per_cu->v.quick->compunit_symtab)
3903 continue;
3904
3905 file_data = dw2_get_file_names (per_cu);
3906 if (file_data == NULL)
3907 continue;
3908
3909 if (htab_find (visited_not_found, file_data) != NULL)
3910 continue;
3911 else if (htab_find (visited_found, file_data) != NULL)
3912 {
3913 per_cu->v.quick->mark = 1;
3914 continue;
3915 }
3916
3917 for (j = 0; j < file_data->num_file_names; ++j)
3918 {
3919 const char *this_real_name;
3920
3921 if (file_matcher (file_data->file_names[j], data, 0))
3922 {
3923 per_cu->v.quick->mark = 1;
3924 break;
3925 }
3926
3927 /* Before we invoke realpath, which can get expensive when many
3928 files are involved, do a quick comparison of the basenames. */
3929 if (!basenames_may_differ
3930 && !file_matcher (lbasename (file_data->file_names[j]),
3931 data, 1))
3932 continue;
3933
3934 this_real_name = dw2_get_real_path (objfile, file_data, j);
3935 if (file_matcher (this_real_name, data, 0))
3936 {
3937 per_cu->v.quick->mark = 1;
3938 break;
3939 }
3940 }
3941
3942 slot = htab_find_slot (per_cu->v.quick->mark
3943 ? visited_found
3944 : visited_not_found,
3945 file_data, INSERT);
3946 *slot = file_data;
3947 }
3948
3949 do_cleanups (cleanup);
3950 }
3951
3952 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3953 {
3954 offset_type idx = 2 * iter;
3955 const char *name;
3956 offset_type *vec, vec_len, vec_idx;
3957 int global_seen = 0;
3958
3959 QUIT;
3960
3961 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3962 continue;
3963
3964 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3965
3966 if (! (*symbol_matcher) (name, data))
3967 continue;
3968
3969 /* The name was matched, now expand corresponding CUs that were
3970 marked. */
3971 vec = (offset_type *) (index->constant_pool
3972 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3973 vec_len = MAYBE_SWAP (vec[0]);
3974 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3975 {
3976 struct dwarf2_per_cu_data *per_cu;
3977 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3978 /* This value is only valid for index versions >= 7. */
3979 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3980 gdb_index_symbol_kind symbol_kind =
3981 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3982 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3983 /* Only check the symbol attributes if they're present.
3984 Indices prior to version 7 don't record them,
3985 and indices >= 7 may elide them for certain symbols
3986 (gold does this). */
3987 int attrs_valid =
3988 (index->version >= 7
3989 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3990
3991 /* Work around gold/15646. */
3992 if (attrs_valid)
3993 {
3994 if (!is_static && global_seen)
3995 continue;
3996 if (!is_static)
3997 global_seen = 1;
3998 }
3999
4000 /* Only check the symbol's kind if it has one. */
4001 if (attrs_valid)
4002 {
4003 switch (kind)
4004 {
4005 case VARIABLES_DOMAIN:
4006 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4007 continue;
4008 break;
4009 case FUNCTIONS_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4011 continue;
4012 break;
4013 case TYPES_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4015 continue;
4016 break;
4017 default:
4018 break;
4019 }
4020 }
4021
4022 /* Don't crash on bad data. */
4023 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4024 + dwarf2_per_objfile->n_type_units))
4025 {
4026 complaint (&symfile_complaints,
4027 _(".gdb_index entry has bad CU index"
4028 " [in module %s]"), objfile_name (objfile));
4029 continue;
4030 }
4031
4032 per_cu = dw2_get_cutu (cu_index);
4033 if (file_matcher == NULL || per_cu->v.quick->mark)
4034 {
4035 int symtab_was_null =
4036 (per_cu->v.quick->compunit_symtab == NULL);
4037
4038 dw2_instantiate_symtab (per_cu);
4039
4040 if (expansion_notify != NULL
4041 && symtab_was_null
4042 && per_cu->v.quick->compunit_symtab != NULL)
4043 {
4044 expansion_notify (per_cu->v.quick->compunit_symtab,
4045 data);
4046 }
4047 }
4048 }
4049 }
4050 }
4051
4052 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4053 symtab. */
4054
4055 static struct compunit_symtab *
4056 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4057 CORE_ADDR pc)
4058 {
4059 int i;
4060
4061 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4062 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4063 return cust;
4064
4065 if (cust->includes == NULL)
4066 return NULL;
4067
4068 for (i = 0; cust->includes[i]; ++i)
4069 {
4070 struct compunit_symtab *s = cust->includes[i];
4071
4072 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4073 if (s != NULL)
4074 return s;
4075 }
4076
4077 return NULL;
4078 }
4079
4080 static struct compunit_symtab *
4081 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4082 struct bound_minimal_symbol msymbol,
4083 CORE_ADDR pc,
4084 struct obj_section *section,
4085 int warn_if_readin)
4086 {
4087 struct dwarf2_per_cu_data *data;
4088 struct compunit_symtab *result;
4089
4090 dw2_setup (objfile);
4091
4092 if (!objfile->psymtabs_addrmap)
4093 return NULL;
4094
4095 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4096 if (!data)
4097 return NULL;
4098
4099 if (warn_if_readin && data->v.quick->compunit_symtab)
4100 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4101 paddress (get_objfile_arch (objfile), pc));
4102
4103 result
4104 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4105 pc);
4106 gdb_assert (result != NULL);
4107 return result;
4108 }
4109
4110 static void
4111 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4112 void *data, int need_fullname)
4113 {
4114 int i;
4115 struct cleanup *cleanup;
4116 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4117 NULL, xcalloc, xfree);
4118
4119 cleanup = make_cleanup_htab_delete (visited);
4120 dw2_setup (objfile);
4121
4122 /* The rule is CUs specify all the files, including those used by
4123 any TU, so there's no need to scan TUs here.
4124 We can ignore file names coming from already-expanded CUs. */
4125
4126 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4127 {
4128 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4129
4130 if (per_cu->v.quick->compunit_symtab)
4131 {
4132 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4133 INSERT);
4134
4135 *slot = per_cu->v.quick->file_names;
4136 }
4137 }
4138
4139 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4140 {
4141 int j;
4142 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4143 struct quick_file_names *file_data;
4144 void **slot;
4145
4146 /* We only need to look at symtabs not already expanded. */
4147 if (per_cu->v.quick->compunit_symtab)
4148 continue;
4149
4150 file_data = dw2_get_file_names (per_cu);
4151 if (file_data == NULL)
4152 continue;
4153
4154 slot = htab_find_slot (visited, file_data, INSERT);
4155 if (*slot)
4156 {
4157 /* Already visited. */
4158 continue;
4159 }
4160 *slot = file_data;
4161
4162 for (j = 0; j < file_data->num_file_names; ++j)
4163 {
4164 const char *this_real_name;
4165
4166 if (need_fullname)
4167 this_real_name = dw2_get_real_path (objfile, file_data, j);
4168 else
4169 this_real_name = NULL;
4170 (*fun) (file_data->file_names[j], this_real_name, data);
4171 }
4172 }
4173
4174 do_cleanups (cleanup);
4175 }
4176
4177 static int
4178 dw2_has_symbols (struct objfile *objfile)
4179 {
4180 return 1;
4181 }
4182
4183 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4184 {
4185 dw2_has_symbols,
4186 dw2_find_last_source_symtab,
4187 dw2_forget_cached_source_info,
4188 dw2_map_symtabs_matching_filename,
4189 dw2_lookup_symbol,
4190 dw2_print_stats,
4191 dw2_dump,
4192 dw2_relocate,
4193 dw2_expand_symtabs_for_function,
4194 dw2_expand_all_symtabs,
4195 dw2_expand_symtabs_with_fullname,
4196 dw2_map_matching_symbols,
4197 dw2_expand_symtabs_matching,
4198 dw2_find_pc_sect_compunit_symtab,
4199 dw2_map_symbol_filenames
4200 };
4201
4202 /* Initialize for reading DWARF for this objfile. Return 0 if this
4203 file will use psymtabs, or 1 if using the GNU index. */
4204
4205 int
4206 dwarf2_initialize_objfile (struct objfile *objfile)
4207 {
4208 /* If we're about to read full symbols, don't bother with the
4209 indices. In this case we also don't care if some other debug
4210 format is making psymtabs, because they are all about to be
4211 expanded anyway. */
4212 if ((objfile->flags & OBJF_READNOW))
4213 {
4214 int i;
4215
4216 dwarf2_per_objfile->using_index = 1;
4217 create_all_comp_units (objfile);
4218 create_all_type_units (objfile);
4219 dwarf2_per_objfile->quick_file_names_table =
4220 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4221
4222 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4223 + dwarf2_per_objfile->n_type_units); ++i)
4224 {
4225 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4226
4227 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4228 struct dwarf2_per_cu_quick_data);
4229 }
4230
4231 /* Return 1 so that gdb sees the "quick" functions. However,
4232 these functions will be no-ops because we will have expanded
4233 all symtabs. */
4234 return 1;
4235 }
4236
4237 if (dwarf2_read_index (objfile))
4238 return 1;
4239
4240 return 0;
4241 }
4242
4243 \f
4244
4245 /* Build a partial symbol table. */
4246
4247 void
4248 dwarf2_build_psymtabs (struct objfile *objfile)
4249 {
4250
4251 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4252 {
4253 init_psymbol_list (objfile, 1024);
4254 }
4255
4256 TRY
4257 {
4258 /* This isn't really ideal: all the data we allocate on the
4259 objfile's obstack is still uselessly kept around. However,
4260 freeing it seems unsafe. */
4261 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4262
4263 dwarf2_build_psymtabs_hard (objfile);
4264 discard_cleanups (cleanups);
4265 }
4266 CATCH (except, RETURN_MASK_ERROR)
4267 {
4268 exception_print (gdb_stderr, except);
4269 }
4270 END_CATCH
4271 }
4272
4273 /* Return the total length of the CU described by HEADER. */
4274
4275 static unsigned int
4276 get_cu_length (const struct comp_unit_head *header)
4277 {
4278 return header->initial_length_size + header->length;
4279 }
4280
4281 /* Return TRUE if OFFSET is within CU_HEADER. */
4282
4283 static inline int
4284 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4285 {
4286 sect_offset bottom = { cu_header->offset.sect_off };
4287 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4288
4289 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4290 }
4291
4292 /* Find the base address of the compilation unit for range lists and
4293 location lists. It will normally be specified by DW_AT_low_pc.
4294 In DWARF-3 draft 4, the base address could be overridden by
4295 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4296 compilation units with discontinuous ranges. */
4297
4298 static void
4299 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4300 {
4301 struct attribute *attr;
4302
4303 cu->base_known = 0;
4304 cu->base_address = 0;
4305
4306 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4307 if (attr)
4308 {
4309 cu->base_address = attr_value_as_address (attr);
4310 cu->base_known = 1;
4311 }
4312 else
4313 {
4314 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4315 if (attr)
4316 {
4317 cu->base_address = attr_value_as_address (attr);
4318 cu->base_known = 1;
4319 }
4320 }
4321 }
4322
4323 /* Read in the comp unit header information from the debug_info at info_ptr.
4324 NOTE: This leaves members offset, first_die_offset to be filled in
4325 by the caller. */
4326
4327 static const gdb_byte *
4328 read_comp_unit_head (struct comp_unit_head *cu_header,
4329 const gdb_byte *info_ptr, bfd *abfd)
4330 {
4331 int signed_addr;
4332 unsigned int bytes_read;
4333
4334 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4335 cu_header->initial_length_size = bytes_read;
4336 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4337 info_ptr += bytes_read;
4338 cu_header->version = read_2_bytes (abfd, info_ptr);
4339 info_ptr += 2;
4340 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4341 &bytes_read);
4342 info_ptr += bytes_read;
4343 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4344 info_ptr += 1;
4345 signed_addr = bfd_get_sign_extend_vma (abfd);
4346 if (signed_addr < 0)
4347 internal_error (__FILE__, __LINE__,
4348 _("read_comp_unit_head: dwarf from non elf file"));
4349 cu_header->signed_addr_p = signed_addr;
4350
4351 return info_ptr;
4352 }
4353
4354 /* Helper function that returns the proper abbrev section for
4355 THIS_CU. */
4356
4357 static struct dwarf2_section_info *
4358 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4359 {
4360 struct dwarf2_section_info *abbrev;
4361
4362 if (this_cu->is_dwz)
4363 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4364 else
4365 abbrev = &dwarf2_per_objfile->abbrev;
4366
4367 return abbrev;
4368 }
4369
4370 /* Subroutine of read_and_check_comp_unit_head and
4371 read_and_check_type_unit_head to simplify them.
4372 Perform various error checking on the header. */
4373
4374 static void
4375 error_check_comp_unit_head (struct comp_unit_head *header,
4376 struct dwarf2_section_info *section,
4377 struct dwarf2_section_info *abbrev_section)
4378 {
4379 bfd *abfd = get_section_bfd_owner (section);
4380 const char *filename = get_section_file_name (section);
4381
4382 if (header->version != 2 && header->version != 3 && header->version != 4)
4383 error (_("Dwarf Error: wrong version in compilation unit header "
4384 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4385 filename);
4386
4387 if (header->abbrev_offset.sect_off
4388 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4389 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4390 "(offset 0x%lx + 6) [in module %s]"),
4391 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4392 filename);
4393
4394 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4395 avoid potential 32-bit overflow. */
4396 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4397 > section->size)
4398 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4399 "(offset 0x%lx + 0) [in module %s]"),
4400 (long) header->length, (long) header->offset.sect_off,
4401 filename);
4402 }
4403
4404 /* Read in a CU/TU header and perform some basic error checking.
4405 The contents of the header are stored in HEADER.
4406 The result is a pointer to the start of the first DIE. */
4407
4408 static const gdb_byte *
4409 read_and_check_comp_unit_head (struct comp_unit_head *header,
4410 struct dwarf2_section_info *section,
4411 struct dwarf2_section_info *abbrev_section,
4412 const gdb_byte *info_ptr,
4413 int is_debug_types_section)
4414 {
4415 const gdb_byte *beg_of_comp_unit = info_ptr;
4416 bfd *abfd = get_section_bfd_owner (section);
4417
4418 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4419
4420 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4421
4422 /* If we're reading a type unit, skip over the signature and
4423 type_offset fields. */
4424 if (is_debug_types_section)
4425 info_ptr += 8 /*signature*/ + header->offset_size;
4426
4427 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4428
4429 error_check_comp_unit_head (header, section, abbrev_section);
4430
4431 return info_ptr;
4432 }
4433
4434 /* Read in the types comp unit header information from .debug_types entry at
4435 types_ptr. The result is a pointer to one past the end of the header. */
4436
4437 static const gdb_byte *
4438 read_and_check_type_unit_head (struct comp_unit_head *header,
4439 struct dwarf2_section_info *section,
4440 struct dwarf2_section_info *abbrev_section,
4441 const gdb_byte *info_ptr,
4442 ULONGEST *signature,
4443 cu_offset *type_offset_in_tu)
4444 {
4445 const gdb_byte *beg_of_comp_unit = info_ptr;
4446 bfd *abfd = get_section_bfd_owner (section);
4447
4448 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4449
4450 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4451
4452 /* If we're reading a type unit, skip over the signature and
4453 type_offset fields. */
4454 if (signature != NULL)
4455 *signature = read_8_bytes (abfd, info_ptr);
4456 info_ptr += 8;
4457 if (type_offset_in_tu != NULL)
4458 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4459 header->offset_size);
4460 info_ptr += header->offset_size;
4461
4462 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4463
4464 error_check_comp_unit_head (header, section, abbrev_section);
4465
4466 return info_ptr;
4467 }
4468
4469 /* Fetch the abbreviation table offset from a comp or type unit header. */
4470
4471 static sect_offset
4472 read_abbrev_offset (struct dwarf2_section_info *section,
4473 sect_offset offset)
4474 {
4475 bfd *abfd = get_section_bfd_owner (section);
4476 const gdb_byte *info_ptr;
4477 unsigned int length, initial_length_size, offset_size;
4478 sect_offset abbrev_offset;
4479
4480 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4481 info_ptr = section->buffer + offset.sect_off;
4482 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4483 offset_size = initial_length_size == 4 ? 4 : 8;
4484 info_ptr += initial_length_size + 2 /*version*/;
4485 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4486 return abbrev_offset;
4487 }
4488
4489 /* Allocate a new partial symtab for file named NAME and mark this new
4490 partial symtab as being an include of PST. */
4491
4492 static void
4493 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4494 struct objfile *objfile)
4495 {
4496 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4497
4498 if (!IS_ABSOLUTE_PATH (subpst->filename))
4499 {
4500 /* It shares objfile->objfile_obstack. */
4501 subpst->dirname = pst->dirname;
4502 }
4503
4504 subpst->textlow = 0;
4505 subpst->texthigh = 0;
4506
4507 subpst->dependencies
4508 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4509 subpst->dependencies[0] = pst;
4510 subpst->number_of_dependencies = 1;
4511
4512 subpst->globals_offset = 0;
4513 subpst->n_global_syms = 0;
4514 subpst->statics_offset = 0;
4515 subpst->n_static_syms = 0;
4516 subpst->compunit_symtab = NULL;
4517 subpst->read_symtab = pst->read_symtab;
4518 subpst->readin = 0;
4519
4520 /* No private part is necessary for include psymtabs. This property
4521 can be used to differentiate between such include psymtabs and
4522 the regular ones. */
4523 subpst->read_symtab_private = NULL;
4524 }
4525
4526 /* Read the Line Number Program data and extract the list of files
4527 included by the source file represented by PST. Build an include
4528 partial symtab for each of these included files. */
4529
4530 static void
4531 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4532 struct die_info *die,
4533 struct partial_symtab *pst)
4534 {
4535 struct line_header *lh = NULL;
4536 struct attribute *attr;
4537
4538 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4539 if (attr)
4540 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4541 if (lh == NULL)
4542 return; /* No linetable, so no includes. */
4543
4544 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4545 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4546
4547 free_line_header (lh);
4548 }
4549
4550 static hashval_t
4551 hash_signatured_type (const void *item)
4552 {
4553 const struct signatured_type *sig_type = item;
4554
4555 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4556 return sig_type->signature;
4557 }
4558
4559 static int
4560 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4561 {
4562 const struct signatured_type *lhs = item_lhs;
4563 const struct signatured_type *rhs = item_rhs;
4564
4565 return lhs->signature == rhs->signature;
4566 }
4567
4568 /* Allocate a hash table for signatured types. */
4569
4570 static htab_t
4571 allocate_signatured_type_table (struct objfile *objfile)
4572 {
4573 return htab_create_alloc_ex (41,
4574 hash_signatured_type,
4575 eq_signatured_type,
4576 NULL,
4577 &objfile->objfile_obstack,
4578 hashtab_obstack_allocate,
4579 dummy_obstack_deallocate);
4580 }
4581
4582 /* A helper function to add a signatured type CU to a table. */
4583
4584 static int
4585 add_signatured_type_cu_to_table (void **slot, void *datum)
4586 {
4587 struct signatured_type *sigt = *slot;
4588 struct signatured_type ***datap = datum;
4589
4590 **datap = sigt;
4591 ++*datap;
4592
4593 return 1;
4594 }
4595
4596 /* Create the hash table of all entries in the .debug_types
4597 (or .debug_types.dwo) section(s).
4598 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4599 otherwise it is NULL.
4600
4601 The result is a pointer to the hash table or NULL if there are no types.
4602
4603 Note: This function processes DWO files only, not DWP files. */
4604
4605 static htab_t
4606 create_debug_types_hash_table (struct dwo_file *dwo_file,
4607 VEC (dwarf2_section_info_def) *types)
4608 {
4609 struct objfile *objfile = dwarf2_per_objfile->objfile;
4610 htab_t types_htab = NULL;
4611 int ix;
4612 struct dwarf2_section_info *section;
4613 struct dwarf2_section_info *abbrev_section;
4614
4615 if (VEC_empty (dwarf2_section_info_def, types))
4616 return NULL;
4617
4618 abbrev_section = (dwo_file != NULL
4619 ? &dwo_file->sections.abbrev
4620 : &dwarf2_per_objfile->abbrev);
4621
4622 if (dwarf_read_debug)
4623 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4624 dwo_file ? ".dwo" : "",
4625 get_section_file_name (abbrev_section));
4626
4627 for (ix = 0;
4628 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4629 ++ix)
4630 {
4631 bfd *abfd;
4632 const gdb_byte *info_ptr, *end_ptr;
4633
4634 dwarf2_read_section (objfile, section);
4635 info_ptr = section->buffer;
4636
4637 if (info_ptr == NULL)
4638 continue;
4639
4640 /* We can't set abfd until now because the section may be empty or
4641 not present, in which case the bfd is unknown. */
4642 abfd = get_section_bfd_owner (section);
4643
4644 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4645 because we don't need to read any dies: the signature is in the
4646 header. */
4647
4648 end_ptr = info_ptr + section->size;
4649 while (info_ptr < end_ptr)
4650 {
4651 sect_offset offset;
4652 cu_offset type_offset_in_tu;
4653 ULONGEST signature;
4654 struct signatured_type *sig_type;
4655 struct dwo_unit *dwo_tu;
4656 void **slot;
4657 const gdb_byte *ptr = info_ptr;
4658 struct comp_unit_head header;
4659 unsigned int length;
4660
4661 offset.sect_off = ptr - section->buffer;
4662
4663 /* We need to read the type's signature in order to build the hash
4664 table, but we don't need anything else just yet. */
4665
4666 ptr = read_and_check_type_unit_head (&header, section,
4667 abbrev_section, ptr,
4668 &signature, &type_offset_in_tu);
4669
4670 length = get_cu_length (&header);
4671
4672 /* Skip dummy type units. */
4673 if (ptr >= info_ptr + length
4674 || peek_abbrev_code (abfd, ptr) == 0)
4675 {
4676 info_ptr += length;
4677 continue;
4678 }
4679
4680 if (types_htab == NULL)
4681 {
4682 if (dwo_file)
4683 types_htab = allocate_dwo_unit_table (objfile);
4684 else
4685 types_htab = allocate_signatured_type_table (objfile);
4686 }
4687
4688 if (dwo_file)
4689 {
4690 sig_type = NULL;
4691 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4692 struct dwo_unit);
4693 dwo_tu->dwo_file = dwo_file;
4694 dwo_tu->signature = signature;
4695 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4696 dwo_tu->section = section;
4697 dwo_tu->offset = offset;
4698 dwo_tu->length = length;
4699 }
4700 else
4701 {
4702 /* N.B.: type_offset is not usable if this type uses a DWO file.
4703 The real type_offset is in the DWO file. */
4704 dwo_tu = NULL;
4705 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4706 struct signatured_type);
4707 sig_type->signature = signature;
4708 sig_type->type_offset_in_tu = type_offset_in_tu;
4709 sig_type->per_cu.objfile = objfile;
4710 sig_type->per_cu.is_debug_types = 1;
4711 sig_type->per_cu.section = section;
4712 sig_type->per_cu.offset = offset;
4713 sig_type->per_cu.length = length;
4714 }
4715
4716 slot = htab_find_slot (types_htab,
4717 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4718 INSERT);
4719 gdb_assert (slot != NULL);
4720 if (*slot != NULL)
4721 {
4722 sect_offset dup_offset;
4723
4724 if (dwo_file)
4725 {
4726 const struct dwo_unit *dup_tu = *slot;
4727
4728 dup_offset = dup_tu->offset;
4729 }
4730 else
4731 {
4732 const struct signatured_type *dup_tu = *slot;
4733
4734 dup_offset = dup_tu->per_cu.offset;
4735 }
4736
4737 complaint (&symfile_complaints,
4738 _("debug type entry at offset 0x%x is duplicate to"
4739 " the entry at offset 0x%x, signature %s"),
4740 offset.sect_off, dup_offset.sect_off,
4741 hex_string (signature));
4742 }
4743 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4744
4745 if (dwarf_read_debug > 1)
4746 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4747 offset.sect_off,
4748 hex_string (signature));
4749
4750 info_ptr += length;
4751 }
4752 }
4753
4754 return types_htab;
4755 }
4756
4757 /* Create the hash table of all entries in the .debug_types section,
4758 and initialize all_type_units.
4759 The result is zero if there is an error (e.g. missing .debug_types section),
4760 otherwise non-zero. */
4761
4762 static int
4763 create_all_type_units (struct objfile *objfile)
4764 {
4765 htab_t types_htab;
4766 struct signatured_type **iter;
4767
4768 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4769 if (types_htab == NULL)
4770 {
4771 dwarf2_per_objfile->signatured_types = NULL;
4772 return 0;
4773 }
4774
4775 dwarf2_per_objfile->signatured_types = types_htab;
4776
4777 dwarf2_per_objfile->n_type_units
4778 = dwarf2_per_objfile->n_allocated_type_units
4779 = htab_elements (types_htab);
4780 dwarf2_per_objfile->all_type_units =
4781 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4782 iter = &dwarf2_per_objfile->all_type_units[0];
4783 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4784 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4785 == dwarf2_per_objfile->n_type_units);
4786
4787 return 1;
4788 }
4789
4790 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4791 If SLOT is non-NULL, it is the entry to use in the hash table.
4792 Otherwise we find one. */
4793
4794 static struct signatured_type *
4795 add_type_unit (ULONGEST sig, void **slot)
4796 {
4797 struct objfile *objfile = dwarf2_per_objfile->objfile;
4798 int n_type_units = dwarf2_per_objfile->n_type_units;
4799 struct signatured_type *sig_type;
4800
4801 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4802 ++n_type_units;
4803 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4804 {
4805 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4806 dwarf2_per_objfile->n_allocated_type_units = 1;
4807 dwarf2_per_objfile->n_allocated_type_units *= 2;
4808 dwarf2_per_objfile->all_type_units
4809 = xrealloc (dwarf2_per_objfile->all_type_units,
4810 dwarf2_per_objfile->n_allocated_type_units
4811 * sizeof (struct signatured_type *));
4812 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4813 }
4814 dwarf2_per_objfile->n_type_units = n_type_units;
4815
4816 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4817 struct signatured_type);
4818 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4819 sig_type->signature = sig;
4820 sig_type->per_cu.is_debug_types = 1;
4821 if (dwarf2_per_objfile->using_index)
4822 {
4823 sig_type->per_cu.v.quick =
4824 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct dwarf2_per_cu_quick_data);
4826 }
4827
4828 if (slot == NULL)
4829 {
4830 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4831 sig_type, INSERT);
4832 }
4833 gdb_assert (*slot == NULL);
4834 *slot = sig_type;
4835 /* The rest of sig_type must be filled in by the caller. */
4836 return sig_type;
4837 }
4838
4839 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4840 Fill in SIG_ENTRY with DWO_ENTRY. */
4841
4842 static void
4843 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4844 struct signatured_type *sig_entry,
4845 struct dwo_unit *dwo_entry)
4846 {
4847 /* Make sure we're not clobbering something we don't expect to. */
4848 gdb_assert (! sig_entry->per_cu.queued);
4849 gdb_assert (sig_entry->per_cu.cu == NULL);
4850 if (dwarf2_per_objfile->using_index)
4851 {
4852 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4853 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4854 }
4855 else
4856 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4857 gdb_assert (sig_entry->signature == dwo_entry->signature);
4858 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4859 gdb_assert (sig_entry->type_unit_group == NULL);
4860 gdb_assert (sig_entry->dwo_unit == NULL);
4861
4862 sig_entry->per_cu.section = dwo_entry->section;
4863 sig_entry->per_cu.offset = dwo_entry->offset;
4864 sig_entry->per_cu.length = dwo_entry->length;
4865 sig_entry->per_cu.reading_dwo_directly = 1;
4866 sig_entry->per_cu.objfile = objfile;
4867 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4868 sig_entry->dwo_unit = dwo_entry;
4869 }
4870
4871 /* Subroutine of lookup_signatured_type.
4872 If we haven't read the TU yet, create the signatured_type data structure
4873 for a TU to be read in directly from a DWO file, bypassing the stub.
4874 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4875 using .gdb_index, then when reading a CU we want to stay in the DWO file
4876 containing that CU. Otherwise we could end up reading several other DWO
4877 files (due to comdat folding) to process the transitive closure of all the
4878 mentioned TUs, and that can be slow. The current DWO file will have every
4879 type signature that it needs.
4880 We only do this for .gdb_index because in the psymtab case we already have
4881 to read all the DWOs to build the type unit groups. */
4882
4883 static struct signatured_type *
4884 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4885 {
4886 struct objfile *objfile = dwarf2_per_objfile->objfile;
4887 struct dwo_file *dwo_file;
4888 struct dwo_unit find_dwo_entry, *dwo_entry;
4889 struct signatured_type find_sig_entry, *sig_entry;
4890 void **slot;
4891
4892 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4893
4894 /* If TU skeletons have been removed then we may not have read in any
4895 TUs yet. */
4896 if (dwarf2_per_objfile->signatured_types == NULL)
4897 {
4898 dwarf2_per_objfile->signatured_types
4899 = allocate_signatured_type_table (objfile);
4900 }
4901
4902 /* We only ever need to read in one copy of a signatured type.
4903 Use the global signatured_types array to do our own comdat-folding
4904 of types. If this is the first time we're reading this TU, and
4905 the TU has an entry in .gdb_index, replace the recorded data from
4906 .gdb_index with this TU. */
4907
4908 find_sig_entry.signature = sig;
4909 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4910 &find_sig_entry, INSERT);
4911 sig_entry = *slot;
4912
4913 /* We can get here with the TU already read, *or* in the process of being
4914 read. Don't reassign the global entry to point to this DWO if that's
4915 the case. Also note that if the TU is already being read, it may not
4916 have come from a DWO, the program may be a mix of Fission-compiled
4917 code and non-Fission-compiled code. */
4918
4919 /* Have we already tried to read this TU?
4920 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4921 needn't exist in the global table yet). */
4922 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4923 return sig_entry;
4924
4925 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4926 dwo_unit of the TU itself. */
4927 dwo_file = cu->dwo_unit->dwo_file;
4928
4929 /* Ok, this is the first time we're reading this TU. */
4930 if (dwo_file->tus == NULL)
4931 return NULL;
4932 find_dwo_entry.signature = sig;
4933 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4934 if (dwo_entry == NULL)
4935 return NULL;
4936
4937 /* If the global table doesn't have an entry for this TU, add one. */
4938 if (sig_entry == NULL)
4939 sig_entry = add_type_unit (sig, slot);
4940
4941 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4942 sig_entry->per_cu.tu_read = 1;
4943 return sig_entry;
4944 }
4945
4946 /* Subroutine of lookup_signatured_type.
4947 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4948 then try the DWP file. If the TU stub (skeleton) has been removed then
4949 it won't be in .gdb_index. */
4950
4951 static struct signatured_type *
4952 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4953 {
4954 struct objfile *objfile = dwarf2_per_objfile->objfile;
4955 struct dwp_file *dwp_file = get_dwp_file ();
4956 struct dwo_unit *dwo_entry;
4957 struct signatured_type find_sig_entry, *sig_entry;
4958 void **slot;
4959
4960 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4961 gdb_assert (dwp_file != NULL);
4962
4963 /* If TU skeletons have been removed then we may not have read in any
4964 TUs yet. */
4965 if (dwarf2_per_objfile->signatured_types == NULL)
4966 {
4967 dwarf2_per_objfile->signatured_types
4968 = allocate_signatured_type_table (objfile);
4969 }
4970
4971 find_sig_entry.signature = sig;
4972 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4973 &find_sig_entry, INSERT);
4974 sig_entry = *slot;
4975
4976 /* Have we already tried to read this TU?
4977 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4978 needn't exist in the global table yet). */
4979 if (sig_entry != NULL)
4980 return sig_entry;
4981
4982 if (dwp_file->tus == NULL)
4983 return NULL;
4984 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4985 sig, 1 /* is_debug_types */);
4986 if (dwo_entry == NULL)
4987 return NULL;
4988
4989 sig_entry = add_type_unit (sig, slot);
4990 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4991
4992 return sig_entry;
4993 }
4994
4995 /* Lookup a signature based type for DW_FORM_ref_sig8.
4996 Returns NULL if signature SIG is not present in the table.
4997 It is up to the caller to complain about this. */
4998
4999 static struct signatured_type *
5000 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5001 {
5002 if (cu->dwo_unit
5003 && dwarf2_per_objfile->using_index)
5004 {
5005 /* We're in a DWO/DWP file, and we're using .gdb_index.
5006 These cases require special processing. */
5007 if (get_dwp_file () == NULL)
5008 return lookup_dwo_signatured_type (cu, sig);
5009 else
5010 return lookup_dwp_signatured_type (cu, sig);
5011 }
5012 else
5013 {
5014 struct signatured_type find_entry, *entry;
5015
5016 if (dwarf2_per_objfile->signatured_types == NULL)
5017 return NULL;
5018 find_entry.signature = sig;
5019 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5020 return entry;
5021 }
5022 }
5023 \f
5024 /* Low level DIE reading support. */
5025
5026 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5027
5028 static void
5029 init_cu_die_reader (struct die_reader_specs *reader,
5030 struct dwarf2_cu *cu,
5031 struct dwarf2_section_info *section,
5032 struct dwo_file *dwo_file)
5033 {
5034 gdb_assert (section->readin && section->buffer != NULL);
5035 reader->abfd = get_section_bfd_owner (section);
5036 reader->cu = cu;
5037 reader->dwo_file = dwo_file;
5038 reader->die_section = section;
5039 reader->buffer = section->buffer;
5040 reader->buffer_end = section->buffer + section->size;
5041 reader->comp_dir = NULL;
5042 }
5043
5044 /* Subroutine of init_cutu_and_read_dies to simplify it.
5045 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5046 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5047 already.
5048
5049 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5050 from it to the DIE in the DWO. If NULL we are skipping the stub.
5051 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5052 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5053 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5054 STUB_COMP_DIR may be non-NULL.
5055 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5056 are filled in with the info of the DIE from the DWO file.
5057 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5058 provided an abbrev table to use.
5059 The result is non-zero if a valid (non-dummy) DIE was found. */
5060
5061 static int
5062 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5063 struct dwo_unit *dwo_unit,
5064 int abbrev_table_provided,
5065 struct die_info *stub_comp_unit_die,
5066 const char *stub_comp_dir,
5067 struct die_reader_specs *result_reader,
5068 const gdb_byte **result_info_ptr,
5069 struct die_info **result_comp_unit_die,
5070 int *result_has_children)
5071 {
5072 struct objfile *objfile = dwarf2_per_objfile->objfile;
5073 struct dwarf2_cu *cu = this_cu->cu;
5074 struct dwarf2_section_info *section;
5075 bfd *abfd;
5076 const gdb_byte *begin_info_ptr, *info_ptr;
5077 ULONGEST signature; /* Or dwo_id. */
5078 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5079 int i,num_extra_attrs;
5080 struct dwarf2_section_info *dwo_abbrev_section;
5081 struct attribute *attr;
5082 struct die_info *comp_unit_die;
5083
5084 /* At most one of these may be provided. */
5085 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5086
5087 /* These attributes aren't processed until later:
5088 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5089 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5090 referenced later. However, these attributes are found in the stub
5091 which we won't have later. In order to not impose this complication
5092 on the rest of the code, we read them here and copy them to the
5093 DWO CU/TU die. */
5094
5095 stmt_list = NULL;
5096 low_pc = NULL;
5097 high_pc = NULL;
5098 ranges = NULL;
5099 comp_dir = NULL;
5100
5101 if (stub_comp_unit_die != NULL)
5102 {
5103 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5104 DWO file. */
5105 if (! this_cu->is_debug_types)
5106 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5107 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5108 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5109 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5110 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5111
5112 /* There should be a DW_AT_addr_base attribute here (if needed).
5113 We need the value before we can process DW_FORM_GNU_addr_index. */
5114 cu->addr_base = 0;
5115 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5116 if (attr)
5117 cu->addr_base = DW_UNSND (attr);
5118
5119 /* There should be a DW_AT_ranges_base attribute here (if needed).
5120 We need the value before we can process DW_AT_ranges. */
5121 cu->ranges_base = 0;
5122 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5123 if (attr)
5124 cu->ranges_base = DW_UNSND (attr);
5125 }
5126 else if (stub_comp_dir != NULL)
5127 {
5128 /* Reconstruct the comp_dir attribute to simplify the code below. */
5129 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5130 comp_dir->name = DW_AT_comp_dir;
5131 comp_dir->form = DW_FORM_string;
5132 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5133 DW_STRING (comp_dir) = stub_comp_dir;
5134 }
5135
5136 /* Set up for reading the DWO CU/TU. */
5137 cu->dwo_unit = dwo_unit;
5138 section = dwo_unit->section;
5139 dwarf2_read_section (objfile, section);
5140 abfd = get_section_bfd_owner (section);
5141 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5142 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5143 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5144
5145 if (this_cu->is_debug_types)
5146 {
5147 ULONGEST header_signature;
5148 cu_offset type_offset_in_tu;
5149 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5150
5151 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5152 dwo_abbrev_section,
5153 info_ptr,
5154 &header_signature,
5155 &type_offset_in_tu);
5156 /* This is not an assert because it can be caused by bad debug info. */
5157 if (sig_type->signature != header_signature)
5158 {
5159 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5160 " TU at offset 0x%x [in module %s]"),
5161 hex_string (sig_type->signature),
5162 hex_string (header_signature),
5163 dwo_unit->offset.sect_off,
5164 bfd_get_filename (abfd));
5165 }
5166 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5167 /* For DWOs coming from DWP files, we don't know the CU length
5168 nor the type's offset in the TU until now. */
5169 dwo_unit->length = get_cu_length (&cu->header);
5170 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5171
5172 /* Establish the type offset that can be used to lookup the type.
5173 For DWO files, we don't know it until now. */
5174 sig_type->type_offset_in_section.sect_off =
5175 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5176 }
5177 else
5178 {
5179 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5180 dwo_abbrev_section,
5181 info_ptr, 0);
5182 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5183 /* For DWOs coming from DWP files, we don't know the CU length
5184 until now. */
5185 dwo_unit->length = get_cu_length (&cu->header);
5186 }
5187
5188 /* Replace the CU's original abbrev table with the DWO's.
5189 Reminder: We can't read the abbrev table until we've read the header. */
5190 if (abbrev_table_provided)
5191 {
5192 /* Don't free the provided abbrev table, the caller of
5193 init_cutu_and_read_dies owns it. */
5194 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5195 /* Ensure the DWO abbrev table gets freed. */
5196 make_cleanup (dwarf2_free_abbrev_table, cu);
5197 }
5198 else
5199 {
5200 dwarf2_free_abbrev_table (cu);
5201 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5202 /* Leave any existing abbrev table cleanup as is. */
5203 }
5204
5205 /* Read in the die, but leave space to copy over the attributes
5206 from the stub. This has the benefit of simplifying the rest of
5207 the code - all the work to maintain the illusion of a single
5208 DW_TAG_{compile,type}_unit DIE is done here. */
5209 num_extra_attrs = ((stmt_list != NULL)
5210 + (low_pc != NULL)
5211 + (high_pc != NULL)
5212 + (ranges != NULL)
5213 + (comp_dir != NULL));
5214 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5215 result_has_children, num_extra_attrs);
5216
5217 /* Copy over the attributes from the stub to the DIE we just read in. */
5218 comp_unit_die = *result_comp_unit_die;
5219 i = comp_unit_die->num_attrs;
5220 if (stmt_list != NULL)
5221 comp_unit_die->attrs[i++] = *stmt_list;
5222 if (low_pc != NULL)
5223 comp_unit_die->attrs[i++] = *low_pc;
5224 if (high_pc != NULL)
5225 comp_unit_die->attrs[i++] = *high_pc;
5226 if (ranges != NULL)
5227 comp_unit_die->attrs[i++] = *ranges;
5228 if (comp_dir != NULL)
5229 comp_unit_die->attrs[i++] = *comp_dir;
5230 comp_unit_die->num_attrs += num_extra_attrs;
5231
5232 if (dwarf_die_debug)
5233 {
5234 fprintf_unfiltered (gdb_stdlog,
5235 "Read die from %s@0x%x of %s:\n",
5236 get_section_name (section),
5237 (unsigned) (begin_info_ptr - section->buffer),
5238 bfd_get_filename (abfd));
5239 dump_die (comp_unit_die, dwarf_die_debug);
5240 }
5241
5242 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5243 TUs by skipping the stub and going directly to the entry in the DWO file.
5244 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5245 to get it via circuitous means. Blech. */
5246 if (comp_dir != NULL)
5247 result_reader->comp_dir = DW_STRING (comp_dir);
5248
5249 /* Skip dummy compilation units. */
5250 if (info_ptr >= begin_info_ptr + dwo_unit->length
5251 || peek_abbrev_code (abfd, info_ptr) == 0)
5252 return 0;
5253
5254 *result_info_ptr = info_ptr;
5255 return 1;
5256 }
5257
5258 /* Subroutine of init_cutu_and_read_dies to simplify it.
5259 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5260 Returns NULL if the specified DWO unit cannot be found. */
5261
5262 static struct dwo_unit *
5263 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5264 struct die_info *comp_unit_die)
5265 {
5266 struct dwarf2_cu *cu = this_cu->cu;
5267 struct attribute *attr;
5268 ULONGEST signature;
5269 struct dwo_unit *dwo_unit;
5270 const char *comp_dir, *dwo_name;
5271
5272 gdb_assert (cu != NULL);
5273
5274 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5275 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5276 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5277
5278 if (this_cu->is_debug_types)
5279 {
5280 struct signatured_type *sig_type;
5281
5282 /* Since this_cu is the first member of struct signatured_type,
5283 we can go from a pointer to one to a pointer to the other. */
5284 sig_type = (struct signatured_type *) this_cu;
5285 signature = sig_type->signature;
5286 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5287 }
5288 else
5289 {
5290 struct attribute *attr;
5291
5292 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5293 if (! attr)
5294 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5295 " [in module %s]"),
5296 dwo_name, objfile_name (this_cu->objfile));
5297 signature = DW_UNSND (attr);
5298 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5299 signature);
5300 }
5301
5302 return dwo_unit;
5303 }
5304
5305 /* Subroutine of init_cutu_and_read_dies to simplify it.
5306 See it for a description of the parameters.
5307 Read a TU directly from a DWO file, bypassing the stub.
5308
5309 Note: This function could be a little bit simpler if we shared cleanups
5310 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5311 to do, so we keep this function self-contained. Or we could move this
5312 into our caller, but it's complex enough already. */
5313
5314 static void
5315 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5316 int use_existing_cu, int keep,
5317 die_reader_func_ftype *die_reader_func,
5318 void *data)
5319 {
5320 struct dwarf2_cu *cu;
5321 struct signatured_type *sig_type;
5322 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5323 struct die_reader_specs reader;
5324 const gdb_byte *info_ptr;
5325 struct die_info *comp_unit_die;
5326 int has_children;
5327
5328 /* Verify we can do the following downcast, and that we have the
5329 data we need. */
5330 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5331 sig_type = (struct signatured_type *) this_cu;
5332 gdb_assert (sig_type->dwo_unit != NULL);
5333
5334 cleanups = make_cleanup (null_cleanup, NULL);
5335
5336 if (use_existing_cu && this_cu->cu != NULL)
5337 {
5338 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5339 cu = this_cu->cu;
5340 /* There's no need to do the rereading_dwo_cu handling that
5341 init_cutu_and_read_dies does since we don't read the stub. */
5342 }
5343 else
5344 {
5345 /* If !use_existing_cu, this_cu->cu must be NULL. */
5346 gdb_assert (this_cu->cu == NULL);
5347 cu = XNEW (struct dwarf2_cu);
5348 init_one_comp_unit (cu, this_cu);
5349 /* If an error occurs while loading, release our storage. */
5350 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5351 }
5352
5353 /* A future optimization, if needed, would be to use an existing
5354 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5355 could share abbrev tables. */
5356
5357 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5358 0 /* abbrev_table_provided */,
5359 NULL /* stub_comp_unit_die */,
5360 sig_type->dwo_unit->dwo_file->comp_dir,
5361 &reader, &info_ptr,
5362 &comp_unit_die, &has_children) == 0)
5363 {
5364 /* Dummy die. */
5365 do_cleanups (cleanups);
5366 return;
5367 }
5368
5369 /* All the "real" work is done here. */
5370 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5371
5372 /* This duplicates the code in init_cutu_and_read_dies,
5373 but the alternative is making the latter more complex.
5374 This function is only for the special case of using DWO files directly:
5375 no point in overly complicating the general case just to handle this. */
5376 if (free_cu_cleanup != NULL)
5377 {
5378 if (keep)
5379 {
5380 /* We've successfully allocated this compilation unit. Let our
5381 caller clean it up when finished with it. */
5382 discard_cleanups (free_cu_cleanup);
5383
5384 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5385 So we have to manually free the abbrev table. */
5386 dwarf2_free_abbrev_table (cu);
5387
5388 /* Link this CU into read_in_chain. */
5389 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5390 dwarf2_per_objfile->read_in_chain = this_cu;
5391 }
5392 else
5393 do_cleanups (free_cu_cleanup);
5394 }
5395
5396 do_cleanups (cleanups);
5397 }
5398
5399 /* Initialize a CU (or TU) and read its DIEs.
5400 If the CU defers to a DWO file, read the DWO file as well.
5401
5402 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5403 Otherwise the table specified in the comp unit header is read in and used.
5404 This is an optimization for when we already have the abbrev table.
5405
5406 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5407 Otherwise, a new CU is allocated with xmalloc.
5408
5409 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5410 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5411
5412 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5413 linker) then DIE_READER_FUNC will not get called. */
5414
5415 static void
5416 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5417 struct abbrev_table *abbrev_table,
5418 int use_existing_cu, int keep,
5419 die_reader_func_ftype *die_reader_func,
5420 void *data)
5421 {
5422 struct objfile *objfile = dwarf2_per_objfile->objfile;
5423 struct dwarf2_section_info *section = this_cu->section;
5424 bfd *abfd = get_section_bfd_owner (section);
5425 struct dwarf2_cu *cu;
5426 const gdb_byte *begin_info_ptr, *info_ptr;
5427 struct die_reader_specs reader;
5428 struct die_info *comp_unit_die;
5429 int has_children;
5430 struct attribute *attr;
5431 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5432 struct signatured_type *sig_type = NULL;
5433 struct dwarf2_section_info *abbrev_section;
5434 /* Non-zero if CU currently points to a DWO file and we need to
5435 reread it. When this happens we need to reread the skeleton die
5436 before we can reread the DWO file (this only applies to CUs, not TUs). */
5437 int rereading_dwo_cu = 0;
5438
5439 if (dwarf_die_debug)
5440 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5441 this_cu->is_debug_types ? "type" : "comp",
5442 this_cu->offset.sect_off);
5443
5444 if (use_existing_cu)
5445 gdb_assert (keep);
5446
5447 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5448 file (instead of going through the stub), short-circuit all of this. */
5449 if (this_cu->reading_dwo_directly)
5450 {
5451 /* Narrow down the scope of possibilities to have to understand. */
5452 gdb_assert (this_cu->is_debug_types);
5453 gdb_assert (abbrev_table == NULL);
5454 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5455 die_reader_func, data);
5456 return;
5457 }
5458
5459 cleanups = make_cleanup (null_cleanup, NULL);
5460
5461 /* This is cheap if the section is already read in. */
5462 dwarf2_read_section (objfile, section);
5463
5464 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5465
5466 abbrev_section = get_abbrev_section_for_cu (this_cu);
5467
5468 if (use_existing_cu && this_cu->cu != NULL)
5469 {
5470 cu = this_cu->cu;
5471 /* If this CU is from a DWO file we need to start over, we need to
5472 refetch the attributes from the skeleton CU.
5473 This could be optimized by retrieving those attributes from when we
5474 were here the first time: the previous comp_unit_die was stored in
5475 comp_unit_obstack. But there's no data yet that we need this
5476 optimization. */
5477 if (cu->dwo_unit != NULL)
5478 rereading_dwo_cu = 1;
5479 }
5480 else
5481 {
5482 /* If !use_existing_cu, this_cu->cu must be NULL. */
5483 gdb_assert (this_cu->cu == NULL);
5484 cu = XNEW (struct dwarf2_cu);
5485 init_one_comp_unit (cu, this_cu);
5486 /* If an error occurs while loading, release our storage. */
5487 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5488 }
5489
5490 /* Get the header. */
5491 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5492 {
5493 /* We already have the header, there's no need to read it in again. */
5494 info_ptr += cu->header.first_die_offset.cu_off;
5495 }
5496 else
5497 {
5498 if (this_cu->is_debug_types)
5499 {
5500 ULONGEST signature;
5501 cu_offset type_offset_in_tu;
5502
5503 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5504 abbrev_section, info_ptr,
5505 &signature,
5506 &type_offset_in_tu);
5507
5508 /* Since per_cu is the first member of struct signatured_type,
5509 we can go from a pointer to one to a pointer to the other. */
5510 sig_type = (struct signatured_type *) this_cu;
5511 gdb_assert (sig_type->signature == signature);
5512 gdb_assert (sig_type->type_offset_in_tu.cu_off
5513 == type_offset_in_tu.cu_off);
5514 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5515
5516 /* LENGTH has not been set yet for type units if we're
5517 using .gdb_index. */
5518 this_cu->length = get_cu_length (&cu->header);
5519
5520 /* Establish the type offset that can be used to lookup the type. */
5521 sig_type->type_offset_in_section.sect_off =
5522 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5523 }
5524 else
5525 {
5526 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5527 abbrev_section,
5528 info_ptr, 0);
5529
5530 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5531 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5532 }
5533 }
5534
5535 /* Skip dummy compilation units. */
5536 if (info_ptr >= begin_info_ptr + this_cu->length
5537 || peek_abbrev_code (abfd, info_ptr) == 0)
5538 {
5539 do_cleanups (cleanups);
5540 return;
5541 }
5542
5543 /* If we don't have them yet, read the abbrevs for this compilation unit.
5544 And if we need to read them now, make sure they're freed when we're
5545 done. Note that it's important that if the CU had an abbrev table
5546 on entry we don't free it when we're done: Somewhere up the call stack
5547 it may be in use. */
5548 if (abbrev_table != NULL)
5549 {
5550 gdb_assert (cu->abbrev_table == NULL);
5551 gdb_assert (cu->header.abbrev_offset.sect_off
5552 == abbrev_table->offset.sect_off);
5553 cu->abbrev_table = abbrev_table;
5554 }
5555 else if (cu->abbrev_table == NULL)
5556 {
5557 dwarf2_read_abbrevs (cu, abbrev_section);
5558 make_cleanup (dwarf2_free_abbrev_table, cu);
5559 }
5560 else if (rereading_dwo_cu)
5561 {
5562 dwarf2_free_abbrev_table (cu);
5563 dwarf2_read_abbrevs (cu, abbrev_section);
5564 }
5565
5566 /* Read the top level CU/TU die. */
5567 init_cu_die_reader (&reader, cu, section, NULL);
5568 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5569
5570 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5571 from the DWO file.
5572 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5573 DWO CU, that this test will fail (the attribute will not be present). */
5574 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5575 if (attr)
5576 {
5577 struct dwo_unit *dwo_unit;
5578 struct die_info *dwo_comp_unit_die;
5579
5580 if (has_children)
5581 {
5582 complaint (&symfile_complaints,
5583 _("compilation unit with DW_AT_GNU_dwo_name"
5584 " has children (offset 0x%x) [in module %s]"),
5585 this_cu->offset.sect_off, bfd_get_filename (abfd));
5586 }
5587 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5588 if (dwo_unit != NULL)
5589 {
5590 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5591 abbrev_table != NULL,
5592 comp_unit_die, NULL,
5593 &reader, &info_ptr,
5594 &dwo_comp_unit_die, &has_children) == 0)
5595 {
5596 /* Dummy die. */
5597 do_cleanups (cleanups);
5598 return;
5599 }
5600 comp_unit_die = dwo_comp_unit_die;
5601 }
5602 else
5603 {
5604 /* Yikes, we couldn't find the rest of the DIE, we only have
5605 the stub. A complaint has already been logged. There's
5606 not much more we can do except pass on the stub DIE to
5607 die_reader_func. We don't want to throw an error on bad
5608 debug info. */
5609 }
5610 }
5611
5612 /* All of the above is setup for this call. Yikes. */
5613 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5614
5615 /* Done, clean up. */
5616 if (free_cu_cleanup != NULL)
5617 {
5618 if (keep)
5619 {
5620 /* We've successfully allocated this compilation unit. Let our
5621 caller clean it up when finished with it. */
5622 discard_cleanups (free_cu_cleanup);
5623
5624 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5625 So we have to manually free the abbrev table. */
5626 dwarf2_free_abbrev_table (cu);
5627
5628 /* Link this CU into read_in_chain. */
5629 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5630 dwarf2_per_objfile->read_in_chain = this_cu;
5631 }
5632 else
5633 do_cleanups (free_cu_cleanup);
5634 }
5635
5636 do_cleanups (cleanups);
5637 }
5638
5639 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5640 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5641 to have already done the lookup to find the DWO file).
5642
5643 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5644 THIS_CU->is_debug_types, but nothing else.
5645
5646 We fill in THIS_CU->length.
5647
5648 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5649 linker) then DIE_READER_FUNC will not get called.
5650
5651 THIS_CU->cu is always freed when done.
5652 This is done in order to not leave THIS_CU->cu in a state where we have
5653 to care whether it refers to the "main" CU or the DWO CU. */
5654
5655 static void
5656 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5657 struct dwo_file *dwo_file,
5658 die_reader_func_ftype *die_reader_func,
5659 void *data)
5660 {
5661 struct objfile *objfile = dwarf2_per_objfile->objfile;
5662 struct dwarf2_section_info *section = this_cu->section;
5663 bfd *abfd = get_section_bfd_owner (section);
5664 struct dwarf2_section_info *abbrev_section;
5665 struct dwarf2_cu cu;
5666 const gdb_byte *begin_info_ptr, *info_ptr;
5667 struct die_reader_specs reader;
5668 struct cleanup *cleanups;
5669 struct die_info *comp_unit_die;
5670 int has_children;
5671
5672 if (dwarf_die_debug)
5673 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5674 this_cu->is_debug_types ? "type" : "comp",
5675 this_cu->offset.sect_off);
5676
5677 gdb_assert (this_cu->cu == NULL);
5678
5679 abbrev_section = (dwo_file != NULL
5680 ? &dwo_file->sections.abbrev
5681 : get_abbrev_section_for_cu (this_cu));
5682
5683 /* This is cheap if the section is already read in. */
5684 dwarf2_read_section (objfile, section);
5685
5686 init_one_comp_unit (&cu, this_cu);
5687
5688 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5689
5690 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5691 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5692 abbrev_section, info_ptr,
5693 this_cu->is_debug_types);
5694
5695 this_cu->length = get_cu_length (&cu.header);
5696
5697 /* Skip dummy compilation units. */
5698 if (info_ptr >= begin_info_ptr + this_cu->length
5699 || peek_abbrev_code (abfd, info_ptr) == 0)
5700 {
5701 do_cleanups (cleanups);
5702 return;
5703 }
5704
5705 dwarf2_read_abbrevs (&cu, abbrev_section);
5706 make_cleanup (dwarf2_free_abbrev_table, &cu);
5707
5708 init_cu_die_reader (&reader, &cu, section, dwo_file);
5709 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5710
5711 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5712
5713 do_cleanups (cleanups);
5714 }
5715
5716 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5717 does not lookup the specified DWO file.
5718 This cannot be used to read DWO files.
5719
5720 THIS_CU->cu is always freed when done.
5721 This is done in order to not leave THIS_CU->cu in a state where we have
5722 to care whether it refers to the "main" CU or the DWO CU.
5723 We can revisit this if the data shows there's a performance issue. */
5724
5725 static void
5726 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5727 die_reader_func_ftype *die_reader_func,
5728 void *data)
5729 {
5730 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5731 }
5732 \f
5733 /* Type Unit Groups.
5734
5735 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5736 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5737 so that all types coming from the same compilation (.o file) are grouped
5738 together. A future step could be to put the types in the same symtab as
5739 the CU the types ultimately came from. */
5740
5741 static hashval_t
5742 hash_type_unit_group (const void *item)
5743 {
5744 const struct type_unit_group *tu_group = item;
5745
5746 return hash_stmt_list_entry (&tu_group->hash);
5747 }
5748
5749 static int
5750 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5751 {
5752 const struct type_unit_group *lhs = item_lhs;
5753 const struct type_unit_group *rhs = item_rhs;
5754
5755 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5756 }
5757
5758 /* Allocate a hash table for type unit groups. */
5759
5760 static htab_t
5761 allocate_type_unit_groups_table (void)
5762 {
5763 return htab_create_alloc_ex (3,
5764 hash_type_unit_group,
5765 eq_type_unit_group,
5766 NULL,
5767 &dwarf2_per_objfile->objfile->objfile_obstack,
5768 hashtab_obstack_allocate,
5769 dummy_obstack_deallocate);
5770 }
5771
5772 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5773 partial symtabs. We combine several TUs per psymtab to not let the size
5774 of any one psymtab grow too big. */
5775 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5776 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5777
5778 /* Helper routine for get_type_unit_group.
5779 Create the type_unit_group object used to hold one or more TUs. */
5780
5781 static struct type_unit_group *
5782 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5783 {
5784 struct objfile *objfile = dwarf2_per_objfile->objfile;
5785 struct dwarf2_per_cu_data *per_cu;
5786 struct type_unit_group *tu_group;
5787
5788 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5789 struct type_unit_group);
5790 per_cu = &tu_group->per_cu;
5791 per_cu->objfile = objfile;
5792
5793 if (dwarf2_per_objfile->using_index)
5794 {
5795 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5796 struct dwarf2_per_cu_quick_data);
5797 }
5798 else
5799 {
5800 unsigned int line_offset = line_offset_struct.sect_off;
5801 struct partial_symtab *pst;
5802 char *name;
5803
5804 /* Give the symtab a useful name for debug purposes. */
5805 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5806 name = xstrprintf ("<type_units_%d>",
5807 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5808 else
5809 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5810
5811 pst = create_partial_symtab (per_cu, name);
5812 pst->anonymous = 1;
5813
5814 xfree (name);
5815 }
5816
5817 tu_group->hash.dwo_unit = cu->dwo_unit;
5818 tu_group->hash.line_offset = line_offset_struct;
5819
5820 return tu_group;
5821 }
5822
5823 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5824 STMT_LIST is a DW_AT_stmt_list attribute. */
5825
5826 static struct type_unit_group *
5827 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5828 {
5829 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5830 struct type_unit_group *tu_group;
5831 void **slot;
5832 unsigned int line_offset;
5833 struct type_unit_group type_unit_group_for_lookup;
5834
5835 if (dwarf2_per_objfile->type_unit_groups == NULL)
5836 {
5837 dwarf2_per_objfile->type_unit_groups =
5838 allocate_type_unit_groups_table ();
5839 }
5840
5841 /* Do we need to create a new group, or can we use an existing one? */
5842
5843 if (stmt_list)
5844 {
5845 line_offset = DW_UNSND (stmt_list);
5846 ++tu_stats->nr_symtab_sharers;
5847 }
5848 else
5849 {
5850 /* Ugh, no stmt_list. Rare, but we have to handle it.
5851 We can do various things here like create one group per TU or
5852 spread them over multiple groups to split up the expansion work.
5853 To avoid worst case scenarios (too many groups or too large groups)
5854 we, umm, group them in bunches. */
5855 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5856 | (tu_stats->nr_stmt_less_type_units
5857 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5858 ++tu_stats->nr_stmt_less_type_units;
5859 }
5860
5861 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5862 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5863 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5864 &type_unit_group_for_lookup, INSERT);
5865 if (*slot != NULL)
5866 {
5867 tu_group = *slot;
5868 gdb_assert (tu_group != NULL);
5869 }
5870 else
5871 {
5872 sect_offset line_offset_struct;
5873
5874 line_offset_struct.sect_off = line_offset;
5875 tu_group = create_type_unit_group (cu, line_offset_struct);
5876 *slot = tu_group;
5877 ++tu_stats->nr_symtabs;
5878 }
5879
5880 return tu_group;
5881 }
5882 \f
5883 /* Partial symbol tables. */
5884
5885 /* Create a psymtab named NAME and assign it to PER_CU.
5886
5887 The caller must fill in the following details:
5888 dirname, textlow, texthigh. */
5889
5890 static struct partial_symtab *
5891 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5892 {
5893 struct objfile *objfile = per_cu->objfile;
5894 struct partial_symtab *pst;
5895
5896 pst = start_psymtab_common (objfile, name, 0,
5897 objfile->global_psymbols.next,
5898 objfile->static_psymbols.next);
5899
5900 pst->psymtabs_addrmap_supported = 1;
5901
5902 /* This is the glue that links PST into GDB's symbol API. */
5903 pst->read_symtab_private = per_cu;
5904 pst->read_symtab = dwarf2_read_symtab;
5905 per_cu->v.psymtab = pst;
5906
5907 return pst;
5908 }
5909
5910 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5911 type. */
5912
5913 struct process_psymtab_comp_unit_data
5914 {
5915 /* True if we are reading a DW_TAG_partial_unit. */
5916
5917 int want_partial_unit;
5918
5919 /* The "pretend" language that is used if the CU doesn't declare a
5920 language. */
5921
5922 enum language pretend_language;
5923 };
5924
5925 /* die_reader_func for process_psymtab_comp_unit. */
5926
5927 static void
5928 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5929 const gdb_byte *info_ptr,
5930 struct die_info *comp_unit_die,
5931 int has_children,
5932 void *data)
5933 {
5934 struct dwarf2_cu *cu = reader->cu;
5935 struct objfile *objfile = cu->objfile;
5936 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5937 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5938 CORE_ADDR baseaddr;
5939 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5940 struct partial_symtab *pst;
5941 int has_pc_info;
5942 const char *filename;
5943 struct process_psymtab_comp_unit_data *info = data;
5944
5945 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5946 return;
5947
5948 gdb_assert (! per_cu->is_debug_types);
5949
5950 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5951
5952 cu->list_in_scope = &file_symbols;
5953
5954 /* Allocate a new partial symbol table structure. */
5955 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5956 if (filename == NULL)
5957 filename = "";
5958
5959 pst = create_partial_symtab (per_cu, filename);
5960
5961 /* This must be done before calling dwarf2_build_include_psymtabs. */
5962 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5963
5964 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5965
5966 dwarf2_find_base_address (comp_unit_die, cu);
5967
5968 /* Possibly set the default values of LOWPC and HIGHPC from
5969 `DW_AT_ranges'. */
5970 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5971 &best_highpc, cu, pst);
5972 if (has_pc_info == 1 && best_lowpc < best_highpc)
5973 /* Store the contiguous range if it is not empty; it can be empty for
5974 CUs with no code. */
5975 addrmap_set_empty (objfile->psymtabs_addrmap,
5976 gdbarch_adjust_dwarf2_addr (gdbarch,
5977 best_lowpc + baseaddr),
5978 gdbarch_adjust_dwarf2_addr (gdbarch,
5979 best_highpc + baseaddr) - 1,
5980 pst);
5981
5982 /* Check if comp unit has_children.
5983 If so, read the rest of the partial symbols from this comp unit.
5984 If not, there's no more debug_info for this comp unit. */
5985 if (has_children)
5986 {
5987 struct partial_die_info *first_die;
5988 CORE_ADDR lowpc, highpc;
5989
5990 lowpc = ((CORE_ADDR) -1);
5991 highpc = ((CORE_ADDR) 0);
5992
5993 first_die = load_partial_dies (reader, info_ptr, 1);
5994
5995 scan_partial_symbols (first_die, &lowpc, &highpc,
5996 ! has_pc_info, cu);
5997
5998 /* If we didn't find a lowpc, set it to highpc to avoid
5999 complaints from `maint check'. */
6000 if (lowpc == ((CORE_ADDR) -1))
6001 lowpc = highpc;
6002
6003 /* If the compilation unit didn't have an explicit address range,
6004 then use the information extracted from its child dies. */
6005 if (! has_pc_info)
6006 {
6007 best_lowpc = lowpc;
6008 best_highpc = highpc;
6009 }
6010 }
6011 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6012 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6013
6014 end_psymtab_common (objfile, pst);
6015
6016 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6017 {
6018 int i;
6019 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6020 struct dwarf2_per_cu_data *iter;
6021
6022 /* Fill in 'dependencies' here; we fill in 'users' in a
6023 post-pass. */
6024 pst->number_of_dependencies = len;
6025 pst->dependencies =
6026 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6027 for (i = 0;
6028 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6029 i, iter);
6030 ++i)
6031 pst->dependencies[i] = iter->v.psymtab;
6032
6033 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6034 }
6035
6036 /* Get the list of files included in the current compilation unit,
6037 and build a psymtab for each of them. */
6038 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6039
6040 if (dwarf_read_debug)
6041 {
6042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6043
6044 fprintf_unfiltered (gdb_stdlog,
6045 "Psymtab for %s unit @0x%x: %s - %s"
6046 ", %d global, %d static syms\n",
6047 per_cu->is_debug_types ? "type" : "comp",
6048 per_cu->offset.sect_off,
6049 paddress (gdbarch, pst->textlow),
6050 paddress (gdbarch, pst->texthigh),
6051 pst->n_global_syms, pst->n_static_syms);
6052 }
6053 }
6054
6055 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6056 Process compilation unit THIS_CU for a psymtab. */
6057
6058 static void
6059 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6060 int want_partial_unit,
6061 enum language pretend_language)
6062 {
6063 struct process_psymtab_comp_unit_data info;
6064
6065 /* If this compilation unit was already read in, free the
6066 cached copy in order to read it in again. This is
6067 necessary because we skipped some symbols when we first
6068 read in the compilation unit (see load_partial_dies).
6069 This problem could be avoided, but the benefit is unclear. */
6070 if (this_cu->cu != NULL)
6071 free_one_cached_comp_unit (this_cu);
6072
6073 gdb_assert (! this_cu->is_debug_types);
6074 info.want_partial_unit = want_partial_unit;
6075 info.pretend_language = pretend_language;
6076 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6077 process_psymtab_comp_unit_reader,
6078 &info);
6079
6080 /* Age out any secondary CUs. */
6081 age_cached_comp_units ();
6082 }
6083
6084 /* Reader function for build_type_psymtabs. */
6085
6086 static void
6087 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6088 const gdb_byte *info_ptr,
6089 struct die_info *type_unit_die,
6090 int has_children,
6091 void *data)
6092 {
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_cu *cu = reader->cu;
6095 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6096 struct signatured_type *sig_type;
6097 struct type_unit_group *tu_group;
6098 struct attribute *attr;
6099 struct partial_die_info *first_die;
6100 CORE_ADDR lowpc, highpc;
6101 struct partial_symtab *pst;
6102
6103 gdb_assert (data == NULL);
6104 gdb_assert (per_cu->is_debug_types);
6105 sig_type = (struct signatured_type *) per_cu;
6106
6107 if (! has_children)
6108 return;
6109
6110 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6111 tu_group = get_type_unit_group (cu, attr);
6112
6113 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6114
6115 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6116 cu->list_in_scope = &file_symbols;
6117 pst = create_partial_symtab (per_cu, "");
6118 pst->anonymous = 1;
6119
6120 first_die = load_partial_dies (reader, info_ptr, 1);
6121
6122 lowpc = (CORE_ADDR) -1;
6123 highpc = (CORE_ADDR) 0;
6124 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6125
6126 end_psymtab_common (objfile, pst);
6127 }
6128
6129 /* Struct used to sort TUs by their abbreviation table offset. */
6130
6131 struct tu_abbrev_offset
6132 {
6133 struct signatured_type *sig_type;
6134 sect_offset abbrev_offset;
6135 };
6136
6137 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6138
6139 static int
6140 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6141 {
6142 const struct tu_abbrev_offset * const *a = ap;
6143 const struct tu_abbrev_offset * const *b = bp;
6144 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6145 unsigned int boff = (*b)->abbrev_offset.sect_off;
6146
6147 return (aoff > boff) - (aoff < boff);
6148 }
6149
6150 /* Efficiently read all the type units.
6151 This does the bulk of the work for build_type_psymtabs.
6152
6153 The efficiency is because we sort TUs by the abbrev table they use and
6154 only read each abbrev table once. In one program there are 200K TUs
6155 sharing 8K abbrev tables.
6156
6157 The main purpose of this function is to support building the
6158 dwarf2_per_objfile->type_unit_groups table.
6159 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6160 can collapse the search space by grouping them by stmt_list.
6161 The savings can be significant, in the same program from above the 200K TUs
6162 share 8K stmt_list tables.
6163
6164 FUNC is expected to call get_type_unit_group, which will create the
6165 struct type_unit_group if necessary and add it to
6166 dwarf2_per_objfile->type_unit_groups. */
6167
6168 static void
6169 build_type_psymtabs_1 (void)
6170 {
6171 struct objfile *objfile = dwarf2_per_objfile->objfile;
6172 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6173 struct cleanup *cleanups;
6174 struct abbrev_table *abbrev_table;
6175 sect_offset abbrev_offset;
6176 struct tu_abbrev_offset *sorted_by_abbrev;
6177 struct type_unit_group **iter;
6178 int i;
6179
6180 /* It's up to the caller to not call us multiple times. */
6181 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6182
6183 if (dwarf2_per_objfile->n_type_units == 0)
6184 return;
6185
6186 /* TUs typically share abbrev tables, and there can be way more TUs than
6187 abbrev tables. Sort by abbrev table to reduce the number of times we
6188 read each abbrev table in.
6189 Alternatives are to punt or to maintain a cache of abbrev tables.
6190 This is simpler and efficient enough for now.
6191
6192 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6193 symtab to use). Typically TUs with the same abbrev offset have the same
6194 stmt_list value too so in practice this should work well.
6195
6196 The basic algorithm here is:
6197
6198 sort TUs by abbrev table
6199 for each TU with same abbrev table:
6200 read abbrev table if first user
6201 read TU top level DIE
6202 [IWBN if DWO skeletons had DW_AT_stmt_list]
6203 call FUNC */
6204
6205 if (dwarf_read_debug)
6206 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6207
6208 /* Sort in a separate table to maintain the order of all_type_units
6209 for .gdb_index: TU indices directly index all_type_units. */
6210 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6211 dwarf2_per_objfile->n_type_units);
6212 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6213 {
6214 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6215
6216 sorted_by_abbrev[i].sig_type = sig_type;
6217 sorted_by_abbrev[i].abbrev_offset =
6218 read_abbrev_offset (sig_type->per_cu.section,
6219 sig_type->per_cu.offset);
6220 }
6221 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6222 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6223 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6224
6225 abbrev_offset.sect_off = ~(unsigned) 0;
6226 abbrev_table = NULL;
6227 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6228
6229 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6230 {
6231 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6232
6233 /* Switch to the next abbrev table if necessary. */
6234 if (abbrev_table == NULL
6235 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6236 {
6237 if (abbrev_table != NULL)
6238 {
6239 abbrev_table_free (abbrev_table);
6240 /* Reset to NULL in case abbrev_table_read_table throws
6241 an error: abbrev_table_free_cleanup will get called. */
6242 abbrev_table = NULL;
6243 }
6244 abbrev_offset = tu->abbrev_offset;
6245 abbrev_table =
6246 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6247 abbrev_offset);
6248 ++tu_stats->nr_uniq_abbrev_tables;
6249 }
6250
6251 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6252 build_type_psymtabs_reader, NULL);
6253 }
6254
6255 do_cleanups (cleanups);
6256 }
6257
6258 /* Print collected type unit statistics. */
6259
6260 static void
6261 print_tu_stats (void)
6262 {
6263 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6264
6265 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6266 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6267 dwarf2_per_objfile->n_type_units);
6268 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6269 tu_stats->nr_uniq_abbrev_tables);
6270 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6271 tu_stats->nr_symtabs);
6272 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6273 tu_stats->nr_symtab_sharers);
6274 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6275 tu_stats->nr_stmt_less_type_units);
6276 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6277 tu_stats->nr_all_type_units_reallocs);
6278 }
6279
6280 /* Traversal function for build_type_psymtabs. */
6281
6282 static int
6283 build_type_psymtab_dependencies (void **slot, void *info)
6284 {
6285 struct objfile *objfile = dwarf2_per_objfile->objfile;
6286 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6287 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6288 struct partial_symtab *pst = per_cu->v.psymtab;
6289 int len = VEC_length (sig_type_ptr, tu_group->tus);
6290 struct signatured_type *iter;
6291 int i;
6292
6293 gdb_assert (len > 0);
6294 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6295
6296 pst->number_of_dependencies = len;
6297 pst->dependencies =
6298 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6299 for (i = 0;
6300 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6301 ++i)
6302 {
6303 gdb_assert (iter->per_cu.is_debug_types);
6304 pst->dependencies[i] = iter->per_cu.v.psymtab;
6305 iter->type_unit_group = tu_group;
6306 }
6307
6308 VEC_free (sig_type_ptr, tu_group->tus);
6309
6310 return 1;
6311 }
6312
6313 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6314 Build partial symbol tables for the .debug_types comp-units. */
6315
6316 static void
6317 build_type_psymtabs (struct objfile *objfile)
6318 {
6319 if (! create_all_type_units (objfile))
6320 return;
6321
6322 build_type_psymtabs_1 ();
6323 }
6324
6325 /* Traversal function for process_skeletonless_type_unit.
6326 Read a TU in a DWO file and build partial symbols for it. */
6327
6328 static int
6329 process_skeletonless_type_unit (void **slot, void *info)
6330 {
6331 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6332 struct objfile *objfile = info;
6333 struct signatured_type find_entry, *entry;
6334
6335 /* If this TU doesn't exist in the global table, add it and read it in. */
6336
6337 if (dwarf2_per_objfile->signatured_types == NULL)
6338 {
6339 dwarf2_per_objfile->signatured_types
6340 = allocate_signatured_type_table (objfile);
6341 }
6342
6343 find_entry.signature = dwo_unit->signature;
6344 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6345 INSERT);
6346 /* If we've already seen this type there's nothing to do. What's happening
6347 is we're doing our own version of comdat-folding here. */
6348 if (*slot != NULL)
6349 return 1;
6350
6351 /* This does the job that create_all_type_units would have done for
6352 this TU. */
6353 entry = add_type_unit (dwo_unit->signature, slot);
6354 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6355 *slot = entry;
6356
6357 /* This does the job that build_type_psymtabs_1 would have done. */
6358 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6359 build_type_psymtabs_reader, NULL);
6360
6361 return 1;
6362 }
6363
6364 /* Traversal function for process_skeletonless_type_units. */
6365
6366 static int
6367 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6368 {
6369 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6370
6371 if (dwo_file->tus != NULL)
6372 {
6373 htab_traverse_noresize (dwo_file->tus,
6374 process_skeletonless_type_unit, info);
6375 }
6376
6377 return 1;
6378 }
6379
6380 /* Scan all TUs of DWO files, verifying we've processed them.
6381 This is needed in case a TU was emitted without its skeleton.
6382 Note: This can't be done until we know what all the DWO files are. */
6383
6384 static void
6385 process_skeletonless_type_units (struct objfile *objfile)
6386 {
6387 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6388 if (get_dwp_file () == NULL
6389 && dwarf2_per_objfile->dwo_files != NULL)
6390 {
6391 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6392 process_dwo_file_for_skeletonless_type_units,
6393 objfile);
6394 }
6395 }
6396
6397 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6398
6399 static void
6400 psymtabs_addrmap_cleanup (void *o)
6401 {
6402 struct objfile *objfile = o;
6403
6404 objfile->psymtabs_addrmap = NULL;
6405 }
6406
6407 /* Compute the 'user' field for each psymtab in OBJFILE. */
6408
6409 static void
6410 set_partial_user (struct objfile *objfile)
6411 {
6412 int i;
6413
6414 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6415 {
6416 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6417 struct partial_symtab *pst = per_cu->v.psymtab;
6418 int j;
6419
6420 if (pst == NULL)
6421 continue;
6422
6423 for (j = 0; j < pst->number_of_dependencies; ++j)
6424 {
6425 /* Set the 'user' field only if it is not already set. */
6426 if (pst->dependencies[j]->user == NULL)
6427 pst->dependencies[j]->user = pst;
6428 }
6429 }
6430 }
6431
6432 /* Build the partial symbol table by doing a quick pass through the
6433 .debug_info and .debug_abbrev sections. */
6434
6435 static void
6436 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6437 {
6438 struct cleanup *back_to, *addrmap_cleanup;
6439 struct obstack temp_obstack;
6440 int i;
6441
6442 if (dwarf_read_debug)
6443 {
6444 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6445 objfile_name (objfile));
6446 }
6447
6448 dwarf2_per_objfile->reading_partial_symbols = 1;
6449
6450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6451
6452 /* Any cached compilation units will be linked by the per-objfile
6453 read_in_chain. Make sure to free them when we're done. */
6454 back_to = make_cleanup (free_cached_comp_units, NULL);
6455
6456 build_type_psymtabs (objfile);
6457
6458 create_all_comp_units (objfile);
6459
6460 /* Create a temporary address map on a temporary obstack. We later
6461 copy this to the final obstack. */
6462 obstack_init (&temp_obstack);
6463 make_cleanup_obstack_free (&temp_obstack);
6464 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6465 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6466
6467 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6468 {
6469 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6470
6471 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6472 }
6473
6474 /* This has to wait until we read the CUs, we need the list of DWOs. */
6475 process_skeletonless_type_units (objfile);
6476
6477 /* Now that all TUs have been processed we can fill in the dependencies. */
6478 if (dwarf2_per_objfile->type_unit_groups != NULL)
6479 {
6480 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6481 build_type_psymtab_dependencies, NULL);
6482 }
6483
6484 if (dwarf_read_debug)
6485 print_tu_stats ();
6486
6487 set_partial_user (objfile);
6488
6489 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6490 &objfile->objfile_obstack);
6491 discard_cleanups (addrmap_cleanup);
6492
6493 do_cleanups (back_to);
6494
6495 if (dwarf_read_debug)
6496 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6497 objfile_name (objfile));
6498 }
6499
6500 /* die_reader_func for load_partial_comp_unit. */
6501
6502 static void
6503 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6504 const gdb_byte *info_ptr,
6505 struct die_info *comp_unit_die,
6506 int has_children,
6507 void *data)
6508 {
6509 struct dwarf2_cu *cu = reader->cu;
6510
6511 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6512
6513 /* Check if comp unit has_children.
6514 If so, read the rest of the partial symbols from this comp unit.
6515 If not, there's no more debug_info for this comp unit. */
6516 if (has_children)
6517 load_partial_dies (reader, info_ptr, 0);
6518 }
6519
6520 /* Load the partial DIEs for a secondary CU into memory.
6521 This is also used when rereading a primary CU with load_all_dies. */
6522
6523 static void
6524 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6525 {
6526 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6527 load_partial_comp_unit_reader, NULL);
6528 }
6529
6530 static void
6531 read_comp_units_from_section (struct objfile *objfile,
6532 struct dwarf2_section_info *section,
6533 unsigned int is_dwz,
6534 int *n_allocated,
6535 int *n_comp_units,
6536 struct dwarf2_per_cu_data ***all_comp_units)
6537 {
6538 const gdb_byte *info_ptr;
6539 bfd *abfd = get_section_bfd_owner (section);
6540
6541 if (dwarf_read_debug)
6542 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6543 get_section_name (section),
6544 get_section_file_name (section));
6545
6546 dwarf2_read_section (objfile, section);
6547
6548 info_ptr = section->buffer;
6549
6550 while (info_ptr < section->buffer + section->size)
6551 {
6552 unsigned int length, initial_length_size;
6553 struct dwarf2_per_cu_data *this_cu;
6554 sect_offset offset;
6555
6556 offset.sect_off = info_ptr - section->buffer;
6557
6558 /* Read just enough information to find out where the next
6559 compilation unit is. */
6560 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6561
6562 /* Save the compilation unit for later lookup. */
6563 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6564 memset (this_cu, 0, sizeof (*this_cu));
6565 this_cu->offset = offset;
6566 this_cu->length = length + initial_length_size;
6567 this_cu->is_dwz = is_dwz;
6568 this_cu->objfile = objfile;
6569 this_cu->section = section;
6570
6571 if (*n_comp_units == *n_allocated)
6572 {
6573 *n_allocated *= 2;
6574 *all_comp_units = xrealloc (*all_comp_units,
6575 *n_allocated
6576 * sizeof (struct dwarf2_per_cu_data *));
6577 }
6578 (*all_comp_units)[*n_comp_units] = this_cu;
6579 ++*n_comp_units;
6580
6581 info_ptr = info_ptr + this_cu->length;
6582 }
6583 }
6584
6585 /* Create a list of all compilation units in OBJFILE.
6586 This is only done for -readnow and building partial symtabs. */
6587
6588 static void
6589 create_all_comp_units (struct objfile *objfile)
6590 {
6591 int n_allocated;
6592 int n_comp_units;
6593 struct dwarf2_per_cu_data **all_comp_units;
6594 struct dwz_file *dwz;
6595
6596 n_comp_units = 0;
6597 n_allocated = 10;
6598 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6599
6600 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6601 &n_allocated, &n_comp_units, &all_comp_units);
6602
6603 dwz = dwarf2_get_dwz_file ();
6604 if (dwz != NULL)
6605 read_comp_units_from_section (objfile, &dwz->info, 1,
6606 &n_allocated, &n_comp_units,
6607 &all_comp_units);
6608
6609 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6610 struct dwarf2_per_cu_data *,
6611 n_comp_units);
6612 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6613 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6614 xfree (all_comp_units);
6615 dwarf2_per_objfile->n_comp_units = n_comp_units;
6616 }
6617
6618 /* Process all loaded DIEs for compilation unit CU, starting at
6619 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6620 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6621 DW_AT_ranges). See the comments of add_partial_subprogram on how
6622 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6623
6624 static void
6625 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6626 CORE_ADDR *highpc, int set_addrmap,
6627 struct dwarf2_cu *cu)
6628 {
6629 struct partial_die_info *pdi;
6630
6631 /* Now, march along the PDI's, descending into ones which have
6632 interesting children but skipping the children of the other ones,
6633 until we reach the end of the compilation unit. */
6634
6635 pdi = first_die;
6636
6637 while (pdi != NULL)
6638 {
6639 fixup_partial_die (pdi, cu);
6640
6641 /* Anonymous namespaces or modules have no name but have interesting
6642 children, so we need to look at them. Ditto for anonymous
6643 enums. */
6644
6645 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6646 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6647 || pdi->tag == DW_TAG_imported_unit)
6648 {
6649 switch (pdi->tag)
6650 {
6651 case DW_TAG_subprogram:
6652 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6653 break;
6654 case DW_TAG_constant:
6655 case DW_TAG_variable:
6656 case DW_TAG_typedef:
6657 case DW_TAG_union_type:
6658 if (!pdi->is_declaration)
6659 {
6660 add_partial_symbol (pdi, cu);
6661 }
6662 break;
6663 case DW_TAG_class_type:
6664 case DW_TAG_interface_type:
6665 case DW_TAG_structure_type:
6666 if (!pdi->is_declaration)
6667 {
6668 add_partial_symbol (pdi, cu);
6669 }
6670 break;
6671 case DW_TAG_enumeration_type:
6672 if (!pdi->is_declaration)
6673 add_partial_enumeration (pdi, cu);
6674 break;
6675 case DW_TAG_base_type:
6676 case DW_TAG_subrange_type:
6677 /* File scope base type definitions are added to the partial
6678 symbol table. */
6679 add_partial_symbol (pdi, cu);
6680 break;
6681 case DW_TAG_namespace:
6682 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6683 break;
6684 case DW_TAG_module:
6685 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6686 break;
6687 case DW_TAG_imported_unit:
6688 {
6689 struct dwarf2_per_cu_data *per_cu;
6690
6691 /* For now we don't handle imported units in type units. */
6692 if (cu->per_cu->is_debug_types)
6693 {
6694 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6695 " supported in type units [in module %s]"),
6696 objfile_name (cu->objfile));
6697 }
6698
6699 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6700 pdi->is_dwz,
6701 cu->objfile);
6702
6703 /* Go read the partial unit, if needed. */
6704 if (per_cu->v.psymtab == NULL)
6705 process_psymtab_comp_unit (per_cu, 1, cu->language);
6706
6707 VEC_safe_push (dwarf2_per_cu_ptr,
6708 cu->per_cu->imported_symtabs, per_cu);
6709 }
6710 break;
6711 case DW_TAG_imported_declaration:
6712 add_partial_symbol (pdi, cu);
6713 break;
6714 default:
6715 break;
6716 }
6717 }
6718
6719 /* If the die has a sibling, skip to the sibling. */
6720
6721 pdi = pdi->die_sibling;
6722 }
6723 }
6724
6725 /* Functions used to compute the fully scoped name of a partial DIE.
6726
6727 Normally, this is simple. For C++, the parent DIE's fully scoped
6728 name is concatenated with "::" and the partial DIE's name. For
6729 Java, the same thing occurs except that "." is used instead of "::".
6730 Enumerators are an exception; they use the scope of their parent
6731 enumeration type, i.e. the name of the enumeration type is not
6732 prepended to the enumerator.
6733
6734 There are two complexities. One is DW_AT_specification; in this
6735 case "parent" means the parent of the target of the specification,
6736 instead of the direct parent of the DIE. The other is compilers
6737 which do not emit DW_TAG_namespace; in this case we try to guess
6738 the fully qualified name of structure types from their members'
6739 linkage names. This must be done using the DIE's children rather
6740 than the children of any DW_AT_specification target. We only need
6741 to do this for structures at the top level, i.e. if the target of
6742 any DW_AT_specification (if any; otherwise the DIE itself) does not
6743 have a parent. */
6744
6745 /* Compute the scope prefix associated with PDI's parent, in
6746 compilation unit CU. The result will be allocated on CU's
6747 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6748 field. NULL is returned if no prefix is necessary. */
6749 static const char *
6750 partial_die_parent_scope (struct partial_die_info *pdi,
6751 struct dwarf2_cu *cu)
6752 {
6753 const char *grandparent_scope;
6754 struct partial_die_info *parent, *real_pdi;
6755
6756 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6757 then this means the parent of the specification DIE. */
6758
6759 real_pdi = pdi;
6760 while (real_pdi->has_specification)
6761 real_pdi = find_partial_die (real_pdi->spec_offset,
6762 real_pdi->spec_is_dwz, cu);
6763
6764 parent = real_pdi->die_parent;
6765 if (parent == NULL)
6766 return NULL;
6767
6768 if (parent->scope_set)
6769 return parent->scope;
6770
6771 fixup_partial_die (parent, cu);
6772
6773 grandparent_scope = partial_die_parent_scope (parent, cu);
6774
6775 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6776 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6777 Work around this problem here. */
6778 if (cu->language == language_cplus
6779 && parent->tag == DW_TAG_namespace
6780 && strcmp (parent->name, "::") == 0
6781 && grandparent_scope == NULL)
6782 {
6783 parent->scope = NULL;
6784 parent->scope_set = 1;
6785 return NULL;
6786 }
6787
6788 if (pdi->tag == DW_TAG_enumerator)
6789 /* Enumerators should not get the name of the enumeration as a prefix. */
6790 parent->scope = grandparent_scope;
6791 else if (parent->tag == DW_TAG_namespace
6792 || parent->tag == DW_TAG_module
6793 || parent->tag == DW_TAG_structure_type
6794 || parent->tag == DW_TAG_class_type
6795 || parent->tag == DW_TAG_interface_type
6796 || parent->tag == DW_TAG_union_type
6797 || parent->tag == DW_TAG_enumeration_type)
6798 {
6799 if (grandparent_scope == NULL)
6800 parent->scope = parent->name;
6801 else
6802 parent->scope = typename_concat (&cu->comp_unit_obstack,
6803 grandparent_scope,
6804 parent->name, 0, cu);
6805 }
6806 else
6807 {
6808 /* FIXME drow/2004-04-01: What should we be doing with
6809 function-local names? For partial symbols, we should probably be
6810 ignoring them. */
6811 complaint (&symfile_complaints,
6812 _("unhandled containing DIE tag %d for DIE at %d"),
6813 parent->tag, pdi->offset.sect_off);
6814 parent->scope = grandparent_scope;
6815 }
6816
6817 parent->scope_set = 1;
6818 return parent->scope;
6819 }
6820
6821 /* Return the fully scoped name associated with PDI, from compilation unit
6822 CU. The result will be allocated with malloc. */
6823
6824 static char *
6825 partial_die_full_name (struct partial_die_info *pdi,
6826 struct dwarf2_cu *cu)
6827 {
6828 const char *parent_scope;
6829
6830 /* If this is a template instantiation, we can not work out the
6831 template arguments from partial DIEs. So, unfortunately, we have
6832 to go through the full DIEs. At least any work we do building
6833 types here will be reused if full symbols are loaded later. */
6834 if (pdi->has_template_arguments)
6835 {
6836 fixup_partial_die (pdi, cu);
6837
6838 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6839 {
6840 struct die_info *die;
6841 struct attribute attr;
6842 struct dwarf2_cu *ref_cu = cu;
6843
6844 /* DW_FORM_ref_addr is using section offset. */
6845 attr.name = 0;
6846 attr.form = DW_FORM_ref_addr;
6847 attr.u.unsnd = pdi->offset.sect_off;
6848 die = follow_die_ref (NULL, &attr, &ref_cu);
6849
6850 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6851 }
6852 }
6853
6854 parent_scope = partial_die_parent_scope (pdi, cu);
6855 if (parent_scope == NULL)
6856 return NULL;
6857 else
6858 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6859 }
6860
6861 static void
6862 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6863 {
6864 struct objfile *objfile = cu->objfile;
6865 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6866 CORE_ADDR addr = 0;
6867 const char *actual_name = NULL;
6868 CORE_ADDR baseaddr;
6869 char *built_actual_name;
6870
6871 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6872
6873 built_actual_name = partial_die_full_name (pdi, cu);
6874 if (built_actual_name != NULL)
6875 actual_name = built_actual_name;
6876
6877 if (actual_name == NULL)
6878 actual_name = pdi->name;
6879
6880 switch (pdi->tag)
6881 {
6882 case DW_TAG_subprogram:
6883 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6884 if (pdi->is_external || cu->language == language_ada)
6885 {
6886 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6887 of the global scope. But in Ada, we want to be able to access
6888 nested procedures globally. So all Ada subprograms are stored
6889 in the global scope. */
6890 add_psymbol_to_list (actual_name, strlen (actual_name),
6891 built_actual_name != NULL,
6892 VAR_DOMAIN, LOC_BLOCK,
6893 &objfile->global_psymbols,
6894 addr, cu->language, objfile);
6895 }
6896 else
6897 {
6898 add_psymbol_to_list (actual_name, strlen (actual_name),
6899 built_actual_name != NULL,
6900 VAR_DOMAIN, LOC_BLOCK,
6901 &objfile->static_psymbols,
6902 addr, cu->language, objfile);
6903 }
6904 break;
6905 case DW_TAG_constant:
6906 {
6907 struct psymbol_allocation_list *list;
6908
6909 if (pdi->is_external)
6910 list = &objfile->global_psymbols;
6911 else
6912 list = &objfile->static_psymbols;
6913 add_psymbol_to_list (actual_name, strlen (actual_name),
6914 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6915 list, 0, cu->language, objfile);
6916 }
6917 break;
6918 case DW_TAG_variable:
6919 if (pdi->d.locdesc)
6920 addr = decode_locdesc (pdi->d.locdesc, cu);
6921
6922 if (pdi->d.locdesc
6923 && addr == 0
6924 && !dwarf2_per_objfile->has_section_at_zero)
6925 {
6926 /* A global or static variable may also have been stripped
6927 out by the linker if unused, in which case its address
6928 will be nullified; do not add such variables into partial
6929 symbol table then. */
6930 }
6931 else if (pdi->is_external)
6932 {
6933 /* Global Variable.
6934 Don't enter into the minimal symbol tables as there is
6935 a minimal symbol table entry from the ELF symbols already.
6936 Enter into partial symbol table if it has a location
6937 descriptor or a type.
6938 If the location descriptor is missing, new_symbol will create
6939 a LOC_UNRESOLVED symbol, the address of the variable will then
6940 be determined from the minimal symbol table whenever the variable
6941 is referenced.
6942 The address for the partial symbol table entry is not
6943 used by GDB, but it comes in handy for debugging partial symbol
6944 table building. */
6945
6946 if (pdi->d.locdesc || pdi->has_type)
6947 add_psymbol_to_list (actual_name, strlen (actual_name),
6948 built_actual_name != NULL,
6949 VAR_DOMAIN, LOC_STATIC,
6950 &objfile->global_psymbols,
6951 addr + baseaddr,
6952 cu->language, objfile);
6953 }
6954 else
6955 {
6956 int has_loc = pdi->d.locdesc != NULL;
6957
6958 /* Static Variable. Skip symbols whose value we cannot know (those
6959 without location descriptors or constant values). */
6960 if (!has_loc && !pdi->has_const_value)
6961 {
6962 xfree (built_actual_name);
6963 return;
6964 }
6965
6966 add_psymbol_to_list (actual_name, strlen (actual_name),
6967 built_actual_name != NULL,
6968 VAR_DOMAIN, LOC_STATIC,
6969 &objfile->static_psymbols,
6970 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6971 cu->language, objfile);
6972 }
6973 break;
6974 case DW_TAG_typedef:
6975 case DW_TAG_base_type:
6976 case DW_TAG_subrange_type:
6977 add_psymbol_to_list (actual_name, strlen (actual_name),
6978 built_actual_name != NULL,
6979 VAR_DOMAIN, LOC_TYPEDEF,
6980 &objfile->static_psymbols,
6981 0, cu->language, objfile);
6982 break;
6983 case DW_TAG_imported_declaration:
6984 case DW_TAG_namespace:
6985 add_psymbol_to_list (actual_name, strlen (actual_name),
6986 built_actual_name != NULL,
6987 VAR_DOMAIN, LOC_TYPEDEF,
6988 &objfile->global_psymbols,
6989 0, cu->language, objfile);
6990 break;
6991 case DW_TAG_module:
6992 add_psymbol_to_list (actual_name, strlen (actual_name),
6993 built_actual_name != NULL,
6994 MODULE_DOMAIN, LOC_TYPEDEF,
6995 &objfile->global_psymbols,
6996 0, cu->language, objfile);
6997 break;
6998 case DW_TAG_class_type:
6999 case DW_TAG_interface_type:
7000 case DW_TAG_structure_type:
7001 case DW_TAG_union_type:
7002 case DW_TAG_enumeration_type:
7003 /* Skip external references. The DWARF standard says in the section
7004 about "Structure, Union, and Class Type Entries": "An incomplete
7005 structure, union or class type is represented by a structure,
7006 union or class entry that does not have a byte size attribute
7007 and that has a DW_AT_declaration attribute." */
7008 if (!pdi->has_byte_size && pdi->is_declaration)
7009 {
7010 xfree (built_actual_name);
7011 return;
7012 }
7013
7014 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7015 static vs. global. */
7016 add_psymbol_to_list (actual_name, strlen (actual_name),
7017 built_actual_name != NULL,
7018 STRUCT_DOMAIN, LOC_TYPEDEF,
7019 (cu->language == language_cplus
7020 || cu->language == language_java)
7021 ? &objfile->global_psymbols
7022 : &objfile->static_psymbols,
7023 0, cu->language, objfile);
7024
7025 break;
7026 case DW_TAG_enumerator:
7027 add_psymbol_to_list (actual_name, strlen (actual_name),
7028 built_actual_name != NULL,
7029 VAR_DOMAIN, LOC_CONST,
7030 (cu->language == language_cplus
7031 || cu->language == language_java)
7032 ? &objfile->global_psymbols
7033 : &objfile->static_psymbols,
7034 0, cu->language, objfile);
7035 break;
7036 default:
7037 break;
7038 }
7039
7040 xfree (built_actual_name);
7041 }
7042
7043 /* Read a partial die corresponding to a namespace; also, add a symbol
7044 corresponding to that namespace to the symbol table. NAMESPACE is
7045 the name of the enclosing namespace. */
7046
7047 static void
7048 add_partial_namespace (struct partial_die_info *pdi,
7049 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7050 int set_addrmap, struct dwarf2_cu *cu)
7051 {
7052 /* Add a symbol for the namespace. */
7053
7054 add_partial_symbol (pdi, cu);
7055
7056 /* Now scan partial symbols in that namespace. */
7057
7058 if (pdi->has_children)
7059 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7060 }
7061
7062 /* Read a partial die corresponding to a Fortran module. */
7063
7064 static void
7065 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7066 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7067 {
7068 /* Add a symbol for the namespace. */
7069
7070 add_partial_symbol (pdi, cu);
7071
7072 /* Now scan partial symbols in that module. */
7073
7074 if (pdi->has_children)
7075 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7076 }
7077
7078 /* Read a partial die corresponding to a subprogram and create a partial
7079 symbol for that subprogram. When the CU language allows it, this
7080 routine also defines a partial symbol for each nested subprogram
7081 that this subprogram contains. If SET_ADDRMAP is true, record the
7082 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7083 and highest PC values found in PDI.
7084
7085 PDI may also be a lexical block, in which case we simply search
7086 recursively for subprograms defined inside that lexical block.
7087 Again, this is only performed when the CU language allows this
7088 type of definitions. */
7089
7090 static void
7091 add_partial_subprogram (struct partial_die_info *pdi,
7092 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7093 int set_addrmap, struct dwarf2_cu *cu)
7094 {
7095 if (pdi->tag == DW_TAG_subprogram)
7096 {
7097 if (pdi->has_pc_info)
7098 {
7099 if (pdi->lowpc < *lowpc)
7100 *lowpc = pdi->lowpc;
7101 if (pdi->highpc > *highpc)
7102 *highpc = pdi->highpc;
7103 if (set_addrmap)
7104 {
7105 struct objfile *objfile = cu->objfile;
7106 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7107 CORE_ADDR baseaddr;
7108 CORE_ADDR highpc;
7109 CORE_ADDR lowpc;
7110
7111 baseaddr = ANOFFSET (objfile->section_offsets,
7112 SECT_OFF_TEXT (objfile));
7113 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7114 pdi->lowpc + baseaddr);
7115 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7116 pdi->highpc + baseaddr);
7117 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7118 cu->per_cu->v.psymtab);
7119 }
7120 }
7121
7122 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7123 {
7124 if (!pdi->is_declaration)
7125 /* Ignore subprogram DIEs that do not have a name, they are
7126 illegal. Do not emit a complaint at this point, we will
7127 do so when we convert this psymtab into a symtab. */
7128 if (pdi->name)
7129 add_partial_symbol (pdi, cu);
7130 }
7131 }
7132
7133 if (! pdi->has_children)
7134 return;
7135
7136 if (cu->language == language_ada)
7137 {
7138 pdi = pdi->die_child;
7139 while (pdi != NULL)
7140 {
7141 fixup_partial_die (pdi, cu);
7142 if (pdi->tag == DW_TAG_subprogram
7143 || pdi->tag == DW_TAG_lexical_block)
7144 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7145 pdi = pdi->die_sibling;
7146 }
7147 }
7148 }
7149
7150 /* Read a partial die corresponding to an enumeration type. */
7151
7152 static void
7153 add_partial_enumeration (struct partial_die_info *enum_pdi,
7154 struct dwarf2_cu *cu)
7155 {
7156 struct partial_die_info *pdi;
7157
7158 if (enum_pdi->name != NULL)
7159 add_partial_symbol (enum_pdi, cu);
7160
7161 pdi = enum_pdi->die_child;
7162 while (pdi)
7163 {
7164 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7165 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7166 else
7167 add_partial_symbol (pdi, cu);
7168 pdi = pdi->die_sibling;
7169 }
7170 }
7171
7172 /* Return the initial uleb128 in the die at INFO_PTR. */
7173
7174 static unsigned int
7175 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7176 {
7177 unsigned int bytes_read;
7178
7179 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7180 }
7181
7182 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7183 Return the corresponding abbrev, or NULL if the number is zero (indicating
7184 an empty DIE). In either case *BYTES_READ will be set to the length of
7185 the initial number. */
7186
7187 static struct abbrev_info *
7188 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7189 struct dwarf2_cu *cu)
7190 {
7191 bfd *abfd = cu->objfile->obfd;
7192 unsigned int abbrev_number;
7193 struct abbrev_info *abbrev;
7194
7195 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7196
7197 if (abbrev_number == 0)
7198 return NULL;
7199
7200 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7201 if (!abbrev)
7202 {
7203 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7204 " at offset 0x%x [in module %s]"),
7205 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7206 cu->header.offset.sect_off, bfd_get_filename (abfd));
7207 }
7208
7209 return abbrev;
7210 }
7211
7212 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7213 Returns a pointer to the end of a series of DIEs, terminated by an empty
7214 DIE. Any children of the skipped DIEs will also be skipped. */
7215
7216 static const gdb_byte *
7217 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7218 {
7219 struct dwarf2_cu *cu = reader->cu;
7220 struct abbrev_info *abbrev;
7221 unsigned int bytes_read;
7222
7223 while (1)
7224 {
7225 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7226 if (abbrev == NULL)
7227 return info_ptr + bytes_read;
7228 else
7229 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7230 }
7231 }
7232
7233 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7234 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7235 abbrev corresponding to that skipped uleb128 should be passed in
7236 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7237 children. */
7238
7239 static const gdb_byte *
7240 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7241 struct abbrev_info *abbrev)
7242 {
7243 unsigned int bytes_read;
7244 struct attribute attr;
7245 bfd *abfd = reader->abfd;
7246 struct dwarf2_cu *cu = reader->cu;
7247 const gdb_byte *buffer = reader->buffer;
7248 const gdb_byte *buffer_end = reader->buffer_end;
7249 const gdb_byte *start_info_ptr = info_ptr;
7250 unsigned int form, i;
7251
7252 for (i = 0; i < abbrev->num_attrs; i++)
7253 {
7254 /* The only abbrev we care about is DW_AT_sibling. */
7255 if (abbrev->attrs[i].name == DW_AT_sibling)
7256 {
7257 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7258 if (attr.form == DW_FORM_ref_addr)
7259 complaint (&symfile_complaints,
7260 _("ignoring absolute DW_AT_sibling"));
7261 else
7262 {
7263 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7264 const gdb_byte *sibling_ptr = buffer + off;
7265
7266 if (sibling_ptr < info_ptr)
7267 complaint (&symfile_complaints,
7268 _("DW_AT_sibling points backwards"));
7269 else if (sibling_ptr > reader->buffer_end)
7270 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7271 else
7272 return sibling_ptr;
7273 }
7274 }
7275
7276 /* If it isn't DW_AT_sibling, skip this attribute. */
7277 form = abbrev->attrs[i].form;
7278 skip_attribute:
7279 switch (form)
7280 {
7281 case DW_FORM_ref_addr:
7282 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7283 and later it is offset sized. */
7284 if (cu->header.version == 2)
7285 info_ptr += cu->header.addr_size;
7286 else
7287 info_ptr += cu->header.offset_size;
7288 break;
7289 case DW_FORM_GNU_ref_alt:
7290 info_ptr += cu->header.offset_size;
7291 break;
7292 case DW_FORM_addr:
7293 info_ptr += cu->header.addr_size;
7294 break;
7295 case DW_FORM_data1:
7296 case DW_FORM_ref1:
7297 case DW_FORM_flag:
7298 info_ptr += 1;
7299 break;
7300 case DW_FORM_flag_present:
7301 break;
7302 case DW_FORM_data2:
7303 case DW_FORM_ref2:
7304 info_ptr += 2;
7305 break;
7306 case DW_FORM_data4:
7307 case DW_FORM_ref4:
7308 info_ptr += 4;
7309 break;
7310 case DW_FORM_data8:
7311 case DW_FORM_ref8:
7312 case DW_FORM_ref_sig8:
7313 info_ptr += 8;
7314 break;
7315 case DW_FORM_string:
7316 read_direct_string (abfd, info_ptr, &bytes_read);
7317 info_ptr += bytes_read;
7318 break;
7319 case DW_FORM_sec_offset:
7320 case DW_FORM_strp:
7321 case DW_FORM_GNU_strp_alt:
7322 info_ptr += cu->header.offset_size;
7323 break;
7324 case DW_FORM_exprloc:
7325 case DW_FORM_block:
7326 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7327 info_ptr += bytes_read;
7328 break;
7329 case DW_FORM_block1:
7330 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7331 break;
7332 case DW_FORM_block2:
7333 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7334 break;
7335 case DW_FORM_block4:
7336 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7337 break;
7338 case DW_FORM_sdata:
7339 case DW_FORM_udata:
7340 case DW_FORM_ref_udata:
7341 case DW_FORM_GNU_addr_index:
7342 case DW_FORM_GNU_str_index:
7343 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7344 break;
7345 case DW_FORM_indirect:
7346 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7347 info_ptr += bytes_read;
7348 /* We need to continue parsing from here, so just go back to
7349 the top. */
7350 goto skip_attribute;
7351
7352 default:
7353 error (_("Dwarf Error: Cannot handle %s "
7354 "in DWARF reader [in module %s]"),
7355 dwarf_form_name (form),
7356 bfd_get_filename (abfd));
7357 }
7358 }
7359
7360 if (abbrev->has_children)
7361 return skip_children (reader, info_ptr);
7362 else
7363 return info_ptr;
7364 }
7365
7366 /* Locate ORIG_PDI's sibling.
7367 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7368
7369 static const gdb_byte *
7370 locate_pdi_sibling (const struct die_reader_specs *reader,
7371 struct partial_die_info *orig_pdi,
7372 const gdb_byte *info_ptr)
7373 {
7374 /* Do we know the sibling already? */
7375
7376 if (orig_pdi->sibling)
7377 return orig_pdi->sibling;
7378
7379 /* Are there any children to deal with? */
7380
7381 if (!orig_pdi->has_children)
7382 return info_ptr;
7383
7384 /* Skip the children the long way. */
7385
7386 return skip_children (reader, info_ptr);
7387 }
7388
7389 /* Expand this partial symbol table into a full symbol table. SELF is
7390 not NULL. */
7391
7392 static void
7393 dwarf2_read_symtab (struct partial_symtab *self,
7394 struct objfile *objfile)
7395 {
7396 if (self->readin)
7397 {
7398 warning (_("bug: psymtab for %s is already read in."),
7399 self->filename);
7400 }
7401 else
7402 {
7403 if (info_verbose)
7404 {
7405 printf_filtered (_("Reading in symbols for %s..."),
7406 self->filename);
7407 gdb_flush (gdb_stdout);
7408 }
7409
7410 /* Restore our global data. */
7411 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7412
7413 /* If this psymtab is constructed from a debug-only objfile, the
7414 has_section_at_zero flag will not necessarily be correct. We
7415 can get the correct value for this flag by looking at the data
7416 associated with the (presumably stripped) associated objfile. */
7417 if (objfile->separate_debug_objfile_backlink)
7418 {
7419 struct dwarf2_per_objfile *dpo_backlink
7420 = objfile_data (objfile->separate_debug_objfile_backlink,
7421 dwarf2_objfile_data_key);
7422
7423 dwarf2_per_objfile->has_section_at_zero
7424 = dpo_backlink->has_section_at_zero;
7425 }
7426
7427 dwarf2_per_objfile->reading_partial_symbols = 0;
7428
7429 psymtab_to_symtab_1 (self);
7430
7431 /* Finish up the debug error message. */
7432 if (info_verbose)
7433 printf_filtered (_("done.\n"));
7434 }
7435
7436 process_cu_includes ();
7437 }
7438 \f
7439 /* Reading in full CUs. */
7440
7441 /* Add PER_CU to the queue. */
7442
7443 static void
7444 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7445 enum language pretend_language)
7446 {
7447 struct dwarf2_queue_item *item;
7448
7449 per_cu->queued = 1;
7450 item = XNEW (struct dwarf2_queue_item);
7451 item->per_cu = per_cu;
7452 item->pretend_language = pretend_language;
7453 item->next = NULL;
7454
7455 if (dwarf2_queue == NULL)
7456 dwarf2_queue = item;
7457 else
7458 dwarf2_queue_tail->next = item;
7459
7460 dwarf2_queue_tail = item;
7461 }
7462
7463 /* If PER_CU is not yet queued, add it to the queue.
7464 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7465 dependency.
7466 The result is non-zero if PER_CU was queued, otherwise the result is zero
7467 meaning either PER_CU is already queued or it is already loaded.
7468
7469 N.B. There is an invariant here that if a CU is queued then it is loaded.
7470 The caller is required to load PER_CU if we return non-zero. */
7471
7472 static int
7473 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7474 struct dwarf2_per_cu_data *per_cu,
7475 enum language pretend_language)
7476 {
7477 /* We may arrive here during partial symbol reading, if we need full
7478 DIEs to process an unusual case (e.g. template arguments). Do
7479 not queue PER_CU, just tell our caller to load its DIEs. */
7480 if (dwarf2_per_objfile->reading_partial_symbols)
7481 {
7482 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7483 return 1;
7484 return 0;
7485 }
7486
7487 /* Mark the dependence relation so that we don't flush PER_CU
7488 too early. */
7489 if (dependent_cu != NULL)
7490 dwarf2_add_dependence (dependent_cu, per_cu);
7491
7492 /* If it's already on the queue, we have nothing to do. */
7493 if (per_cu->queued)
7494 return 0;
7495
7496 /* If the compilation unit is already loaded, just mark it as
7497 used. */
7498 if (per_cu->cu != NULL)
7499 {
7500 per_cu->cu->last_used = 0;
7501 return 0;
7502 }
7503
7504 /* Add it to the queue. */
7505 queue_comp_unit (per_cu, pretend_language);
7506
7507 return 1;
7508 }
7509
7510 /* Process the queue. */
7511
7512 static void
7513 process_queue (void)
7514 {
7515 struct dwarf2_queue_item *item, *next_item;
7516
7517 if (dwarf_read_debug)
7518 {
7519 fprintf_unfiltered (gdb_stdlog,
7520 "Expanding one or more symtabs of objfile %s ...\n",
7521 objfile_name (dwarf2_per_objfile->objfile));
7522 }
7523
7524 /* The queue starts out with one item, but following a DIE reference
7525 may load a new CU, adding it to the end of the queue. */
7526 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7527 {
7528 if ((dwarf2_per_objfile->using_index
7529 ? !item->per_cu->v.quick->compunit_symtab
7530 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7531 /* Skip dummy CUs. */
7532 && item->per_cu->cu != NULL)
7533 {
7534 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7535 unsigned int debug_print_threshold;
7536 char buf[100];
7537
7538 if (per_cu->is_debug_types)
7539 {
7540 struct signatured_type *sig_type =
7541 (struct signatured_type *) per_cu;
7542
7543 sprintf (buf, "TU %s at offset 0x%x",
7544 hex_string (sig_type->signature),
7545 per_cu->offset.sect_off);
7546 /* There can be 100s of TUs.
7547 Only print them in verbose mode. */
7548 debug_print_threshold = 2;
7549 }
7550 else
7551 {
7552 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7553 debug_print_threshold = 1;
7554 }
7555
7556 if (dwarf_read_debug >= debug_print_threshold)
7557 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7558
7559 if (per_cu->is_debug_types)
7560 process_full_type_unit (per_cu, item->pretend_language);
7561 else
7562 process_full_comp_unit (per_cu, item->pretend_language);
7563
7564 if (dwarf_read_debug >= debug_print_threshold)
7565 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7566 }
7567
7568 item->per_cu->queued = 0;
7569 next_item = item->next;
7570 xfree (item);
7571 }
7572
7573 dwarf2_queue_tail = NULL;
7574
7575 if (dwarf_read_debug)
7576 {
7577 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7578 objfile_name (dwarf2_per_objfile->objfile));
7579 }
7580 }
7581
7582 /* Free all allocated queue entries. This function only releases anything if
7583 an error was thrown; if the queue was processed then it would have been
7584 freed as we went along. */
7585
7586 static void
7587 dwarf2_release_queue (void *dummy)
7588 {
7589 struct dwarf2_queue_item *item, *last;
7590
7591 item = dwarf2_queue;
7592 while (item)
7593 {
7594 /* Anything still marked queued is likely to be in an
7595 inconsistent state, so discard it. */
7596 if (item->per_cu->queued)
7597 {
7598 if (item->per_cu->cu != NULL)
7599 free_one_cached_comp_unit (item->per_cu);
7600 item->per_cu->queued = 0;
7601 }
7602
7603 last = item;
7604 item = item->next;
7605 xfree (last);
7606 }
7607
7608 dwarf2_queue = dwarf2_queue_tail = NULL;
7609 }
7610
7611 /* Read in full symbols for PST, and anything it depends on. */
7612
7613 static void
7614 psymtab_to_symtab_1 (struct partial_symtab *pst)
7615 {
7616 struct dwarf2_per_cu_data *per_cu;
7617 int i;
7618
7619 if (pst->readin)
7620 return;
7621
7622 for (i = 0; i < pst->number_of_dependencies; i++)
7623 if (!pst->dependencies[i]->readin
7624 && pst->dependencies[i]->user == NULL)
7625 {
7626 /* Inform about additional files that need to be read in. */
7627 if (info_verbose)
7628 {
7629 /* FIXME: i18n: Need to make this a single string. */
7630 fputs_filtered (" ", gdb_stdout);
7631 wrap_here ("");
7632 fputs_filtered ("and ", gdb_stdout);
7633 wrap_here ("");
7634 printf_filtered ("%s...", pst->dependencies[i]->filename);
7635 wrap_here (""); /* Flush output. */
7636 gdb_flush (gdb_stdout);
7637 }
7638 psymtab_to_symtab_1 (pst->dependencies[i]);
7639 }
7640
7641 per_cu = pst->read_symtab_private;
7642
7643 if (per_cu == NULL)
7644 {
7645 /* It's an include file, no symbols to read for it.
7646 Everything is in the parent symtab. */
7647 pst->readin = 1;
7648 return;
7649 }
7650
7651 dw2_do_instantiate_symtab (per_cu);
7652 }
7653
7654 /* Trivial hash function for die_info: the hash value of a DIE
7655 is its offset in .debug_info for this objfile. */
7656
7657 static hashval_t
7658 die_hash (const void *item)
7659 {
7660 const struct die_info *die = item;
7661
7662 return die->offset.sect_off;
7663 }
7664
7665 /* Trivial comparison function for die_info structures: two DIEs
7666 are equal if they have the same offset. */
7667
7668 static int
7669 die_eq (const void *item_lhs, const void *item_rhs)
7670 {
7671 const struct die_info *die_lhs = item_lhs;
7672 const struct die_info *die_rhs = item_rhs;
7673
7674 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7675 }
7676
7677 /* die_reader_func for load_full_comp_unit.
7678 This is identical to read_signatured_type_reader,
7679 but is kept separate for now. */
7680
7681 static void
7682 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7683 const gdb_byte *info_ptr,
7684 struct die_info *comp_unit_die,
7685 int has_children,
7686 void *data)
7687 {
7688 struct dwarf2_cu *cu = reader->cu;
7689 enum language *language_ptr = data;
7690
7691 gdb_assert (cu->die_hash == NULL);
7692 cu->die_hash =
7693 htab_create_alloc_ex (cu->header.length / 12,
7694 die_hash,
7695 die_eq,
7696 NULL,
7697 &cu->comp_unit_obstack,
7698 hashtab_obstack_allocate,
7699 dummy_obstack_deallocate);
7700
7701 if (has_children)
7702 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7703 &info_ptr, comp_unit_die);
7704 cu->dies = comp_unit_die;
7705 /* comp_unit_die is not stored in die_hash, no need. */
7706
7707 /* We try not to read any attributes in this function, because not
7708 all CUs needed for references have been loaded yet, and symbol
7709 table processing isn't initialized. But we have to set the CU language,
7710 or we won't be able to build types correctly.
7711 Similarly, if we do not read the producer, we can not apply
7712 producer-specific interpretation. */
7713 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7714 }
7715
7716 /* Load the DIEs associated with PER_CU into memory. */
7717
7718 static void
7719 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7720 enum language pretend_language)
7721 {
7722 gdb_assert (! this_cu->is_debug_types);
7723
7724 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7725 load_full_comp_unit_reader, &pretend_language);
7726 }
7727
7728 /* Add a DIE to the delayed physname list. */
7729
7730 static void
7731 add_to_method_list (struct type *type, int fnfield_index, int index,
7732 const char *name, struct die_info *die,
7733 struct dwarf2_cu *cu)
7734 {
7735 struct delayed_method_info mi;
7736 mi.type = type;
7737 mi.fnfield_index = fnfield_index;
7738 mi.index = index;
7739 mi.name = name;
7740 mi.die = die;
7741 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7742 }
7743
7744 /* A cleanup for freeing the delayed method list. */
7745
7746 static void
7747 free_delayed_list (void *ptr)
7748 {
7749 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7750 if (cu->method_list != NULL)
7751 {
7752 VEC_free (delayed_method_info, cu->method_list);
7753 cu->method_list = NULL;
7754 }
7755 }
7756
7757 /* Compute the physnames of any methods on the CU's method list.
7758
7759 The computation of method physnames is delayed in order to avoid the
7760 (bad) condition that one of the method's formal parameters is of an as yet
7761 incomplete type. */
7762
7763 static void
7764 compute_delayed_physnames (struct dwarf2_cu *cu)
7765 {
7766 int i;
7767 struct delayed_method_info *mi;
7768 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7769 {
7770 const char *physname;
7771 struct fn_fieldlist *fn_flp
7772 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7773 physname = dwarf2_physname (mi->name, mi->die, cu);
7774 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7775 = physname ? physname : "";
7776 }
7777 }
7778
7779 /* Go objects should be embedded in a DW_TAG_module DIE,
7780 and it's not clear if/how imported objects will appear.
7781 To keep Go support simple until that's worked out,
7782 go back through what we've read and create something usable.
7783 We could do this while processing each DIE, and feels kinda cleaner,
7784 but that way is more invasive.
7785 This is to, for example, allow the user to type "p var" or "b main"
7786 without having to specify the package name, and allow lookups
7787 of module.object to work in contexts that use the expression
7788 parser. */
7789
7790 static void
7791 fixup_go_packaging (struct dwarf2_cu *cu)
7792 {
7793 char *package_name = NULL;
7794 struct pending *list;
7795 int i;
7796
7797 for (list = global_symbols; list != NULL; list = list->next)
7798 {
7799 for (i = 0; i < list->nsyms; ++i)
7800 {
7801 struct symbol *sym = list->symbol[i];
7802
7803 if (SYMBOL_LANGUAGE (sym) == language_go
7804 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7805 {
7806 char *this_package_name = go_symbol_package_name (sym);
7807
7808 if (this_package_name == NULL)
7809 continue;
7810 if (package_name == NULL)
7811 package_name = this_package_name;
7812 else
7813 {
7814 if (strcmp (package_name, this_package_name) != 0)
7815 complaint (&symfile_complaints,
7816 _("Symtab %s has objects from two different Go packages: %s and %s"),
7817 (symbol_symtab (sym) != NULL
7818 ? symtab_to_filename_for_display
7819 (symbol_symtab (sym))
7820 : objfile_name (cu->objfile)),
7821 this_package_name, package_name);
7822 xfree (this_package_name);
7823 }
7824 }
7825 }
7826 }
7827
7828 if (package_name != NULL)
7829 {
7830 struct objfile *objfile = cu->objfile;
7831 const char *saved_package_name
7832 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7833 package_name,
7834 strlen (package_name));
7835 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7836 saved_package_name, objfile);
7837 struct symbol *sym;
7838
7839 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7840
7841 sym = allocate_symbol (objfile);
7842 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7843 SYMBOL_SET_NAMES (sym, saved_package_name,
7844 strlen (saved_package_name), 0, objfile);
7845 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7846 e.g., "main" finds the "main" module and not C's main(). */
7847 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7848 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7849 SYMBOL_TYPE (sym) = type;
7850
7851 add_symbol_to_list (sym, &global_symbols);
7852
7853 xfree (package_name);
7854 }
7855 }
7856
7857 /* Return the symtab for PER_CU. This works properly regardless of
7858 whether we're using the index or psymtabs. */
7859
7860 static struct compunit_symtab *
7861 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7862 {
7863 return (dwarf2_per_objfile->using_index
7864 ? per_cu->v.quick->compunit_symtab
7865 : per_cu->v.psymtab->compunit_symtab);
7866 }
7867
7868 /* A helper function for computing the list of all symbol tables
7869 included by PER_CU. */
7870
7871 static void
7872 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7873 htab_t all_children, htab_t all_type_symtabs,
7874 struct dwarf2_per_cu_data *per_cu,
7875 struct compunit_symtab *immediate_parent)
7876 {
7877 void **slot;
7878 int ix;
7879 struct compunit_symtab *cust;
7880 struct dwarf2_per_cu_data *iter;
7881
7882 slot = htab_find_slot (all_children, per_cu, INSERT);
7883 if (*slot != NULL)
7884 {
7885 /* This inclusion and its children have been processed. */
7886 return;
7887 }
7888
7889 *slot = per_cu;
7890 /* Only add a CU if it has a symbol table. */
7891 cust = get_compunit_symtab (per_cu);
7892 if (cust != NULL)
7893 {
7894 /* If this is a type unit only add its symbol table if we haven't
7895 seen it yet (type unit per_cu's can share symtabs). */
7896 if (per_cu->is_debug_types)
7897 {
7898 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7899 if (*slot == NULL)
7900 {
7901 *slot = cust;
7902 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7903 if (cust->user == NULL)
7904 cust->user = immediate_parent;
7905 }
7906 }
7907 else
7908 {
7909 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7910 if (cust->user == NULL)
7911 cust->user = immediate_parent;
7912 }
7913 }
7914
7915 for (ix = 0;
7916 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7917 ++ix)
7918 {
7919 recursively_compute_inclusions (result, all_children,
7920 all_type_symtabs, iter, cust);
7921 }
7922 }
7923
7924 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7925 PER_CU. */
7926
7927 static void
7928 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7929 {
7930 gdb_assert (! per_cu->is_debug_types);
7931
7932 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7933 {
7934 int ix, len;
7935 struct dwarf2_per_cu_data *per_cu_iter;
7936 struct compunit_symtab *compunit_symtab_iter;
7937 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7938 htab_t all_children, all_type_symtabs;
7939 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7940
7941 /* If we don't have a symtab, we can just skip this case. */
7942 if (cust == NULL)
7943 return;
7944
7945 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7946 NULL, xcalloc, xfree);
7947 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7948 NULL, xcalloc, xfree);
7949
7950 for (ix = 0;
7951 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7952 ix, per_cu_iter);
7953 ++ix)
7954 {
7955 recursively_compute_inclusions (&result_symtabs, all_children,
7956 all_type_symtabs, per_cu_iter,
7957 cust);
7958 }
7959
7960 /* Now we have a transitive closure of all the included symtabs. */
7961 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7962 cust->includes
7963 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7964 struct compunit_symtab *, len + 1);
7965 for (ix = 0;
7966 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7967 compunit_symtab_iter);
7968 ++ix)
7969 cust->includes[ix] = compunit_symtab_iter;
7970 cust->includes[len] = NULL;
7971
7972 VEC_free (compunit_symtab_ptr, result_symtabs);
7973 htab_delete (all_children);
7974 htab_delete (all_type_symtabs);
7975 }
7976 }
7977
7978 /* Compute the 'includes' field for the symtabs of all the CUs we just
7979 read. */
7980
7981 static void
7982 process_cu_includes (void)
7983 {
7984 int ix;
7985 struct dwarf2_per_cu_data *iter;
7986
7987 for (ix = 0;
7988 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7989 ix, iter);
7990 ++ix)
7991 {
7992 if (! iter->is_debug_types)
7993 compute_compunit_symtab_includes (iter);
7994 }
7995
7996 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7997 }
7998
7999 /* Generate full symbol information for PER_CU, whose DIEs have
8000 already been loaded into memory. */
8001
8002 static void
8003 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8004 enum language pretend_language)
8005 {
8006 struct dwarf2_cu *cu = per_cu->cu;
8007 struct objfile *objfile = per_cu->objfile;
8008 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8009 CORE_ADDR lowpc, highpc;
8010 struct compunit_symtab *cust;
8011 struct cleanup *back_to, *delayed_list_cleanup;
8012 CORE_ADDR baseaddr;
8013 struct block *static_block;
8014 CORE_ADDR addr;
8015
8016 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8017
8018 buildsym_init ();
8019 back_to = make_cleanup (really_free_pendings, NULL);
8020 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8021
8022 cu->list_in_scope = &file_symbols;
8023
8024 cu->language = pretend_language;
8025 cu->language_defn = language_def (cu->language);
8026
8027 /* Do line number decoding in read_file_scope () */
8028 process_die (cu->dies, cu);
8029
8030 /* For now fudge the Go package. */
8031 if (cu->language == language_go)
8032 fixup_go_packaging (cu);
8033
8034 /* Now that we have processed all the DIEs in the CU, all the types
8035 should be complete, and it should now be safe to compute all of the
8036 physnames. */
8037 compute_delayed_physnames (cu);
8038 do_cleanups (delayed_list_cleanup);
8039
8040 /* Some compilers don't define a DW_AT_high_pc attribute for the
8041 compilation unit. If the DW_AT_high_pc is missing, synthesize
8042 it, by scanning the DIE's below the compilation unit. */
8043 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8044
8045 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8046 static_block = end_symtab_get_static_block (addr, 0, 1);
8047
8048 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8049 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8050 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8051 addrmap to help ensure it has an accurate map of pc values belonging to
8052 this comp unit. */
8053 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8054
8055 cust = end_symtab_from_static_block (static_block,
8056 SECT_OFF_TEXT (objfile), 0);
8057
8058 if (cust != NULL)
8059 {
8060 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8061
8062 /* Set symtab language to language from DW_AT_language. If the
8063 compilation is from a C file generated by language preprocessors, do
8064 not set the language if it was already deduced by start_subfile. */
8065 if (!(cu->language == language_c
8066 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8067 COMPUNIT_FILETABS (cust)->language = cu->language;
8068
8069 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8070 produce DW_AT_location with location lists but it can be possibly
8071 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8072 there were bugs in prologue debug info, fixed later in GCC-4.5
8073 by "unwind info for epilogues" patch (which is not directly related).
8074
8075 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8076 needed, it would be wrong due to missing DW_AT_producer there.
8077
8078 Still one can confuse GDB by using non-standard GCC compilation
8079 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8080 */
8081 if (cu->has_loclist && gcc_4_minor >= 5)
8082 cust->locations_valid = 1;
8083
8084 if (gcc_4_minor >= 5)
8085 cust->epilogue_unwind_valid = 1;
8086
8087 cust->call_site_htab = cu->call_site_htab;
8088 }
8089
8090 if (dwarf2_per_objfile->using_index)
8091 per_cu->v.quick->compunit_symtab = cust;
8092 else
8093 {
8094 struct partial_symtab *pst = per_cu->v.psymtab;
8095 pst->compunit_symtab = cust;
8096 pst->readin = 1;
8097 }
8098
8099 /* Push it for inclusion processing later. */
8100 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8101
8102 do_cleanups (back_to);
8103 }
8104
8105 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8106 already been loaded into memory. */
8107
8108 static void
8109 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8110 enum language pretend_language)
8111 {
8112 struct dwarf2_cu *cu = per_cu->cu;
8113 struct objfile *objfile = per_cu->objfile;
8114 struct compunit_symtab *cust;
8115 struct cleanup *back_to, *delayed_list_cleanup;
8116 struct signatured_type *sig_type;
8117
8118 gdb_assert (per_cu->is_debug_types);
8119 sig_type = (struct signatured_type *) per_cu;
8120
8121 buildsym_init ();
8122 back_to = make_cleanup (really_free_pendings, NULL);
8123 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8124
8125 cu->list_in_scope = &file_symbols;
8126
8127 cu->language = pretend_language;
8128 cu->language_defn = language_def (cu->language);
8129
8130 /* The symbol tables are set up in read_type_unit_scope. */
8131 process_die (cu->dies, cu);
8132
8133 /* For now fudge the Go package. */
8134 if (cu->language == language_go)
8135 fixup_go_packaging (cu);
8136
8137 /* Now that we have processed all the DIEs in the CU, all the types
8138 should be complete, and it should now be safe to compute all of the
8139 physnames. */
8140 compute_delayed_physnames (cu);
8141 do_cleanups (delayed_list_cleanup);
8142
8143 /* TUs share symbol tables.
8144 If this is the first TU to use this symtab, complete the construction
8145 of it with end_expandable_symtab. Otherwise, complete the addition of
8146 this TU's symbols to the existing symtab. */
8147 if (sig_type->type_unit_group->compunit_symtab == NULL)
8148 {
8149 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8150 sig_type->type_unit_group->compunit_symtab = cust;
8151
8152 if (cust != NULL)
8153 {
8154 /* Set symtab language to language from DW_AT_language. If the
8155 compilation is from a C file generated by language preprocessors,
8156 do not set the language if it was already deduced by
8157 start_subfile. */
8158 if (!(cu->language == language_c
8159 && COMPUNIT_FILETABS (cust)->language != language_c))
8160 COMPUNIT_FILETABS (cust)->language = cu->language;
8161 }
8162 }
8163 else
8164 {
8165 augment_type_symtab ();
8166 cust = sig_type->type_unit_group->compunit_symtab;
8167 }
8168
8169 if (dwarf2_per_objfile->using_index)
8170 per_cu->v.quick->compunit_symtab = cust;
8171 else
8172 {
8173 struct partial_symtab *pst = per_cu->v.psymtab;
8174 pst->compunit_symtab = cust;
8175 pst->readin = 1;
8176 }
8177
8178 do_cleanups (back_to);
8179 }
8180
8181 /* Process an imported unit DIE. */
8182
8183 static void
8184 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8185 {
8186 struct attribute *attr;
8187
8188 /* For now we don't handle imported units in type units. */
8189 if (cu->per_cu->is_debug_types)
8190 {
8191 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8192 " supported in type units [in module %s]"),
8193 objfile_name (cu->objfile));
8194 }
8195
8196 attr = dwarf2_attr (die, DW_AT_import, cu);
8197 if (attr != NULL)
8198 {
8199 struct dwarf2_per_cu_data *per_cu;
8200 struct symtab *imported_symtab;
8201 sect_offset offset;
8202 int is_dwz;
8203
8204 offset = dwarf2_get_ref_die_offset (attr);
8205 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8206 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8207
8208 /* If necessary, add it to the queue and load its DIEs. */
8209 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8210 load_full_comp_unit (per_cu, cu->language);
8211
8212 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8213 per_cu);
8214 }
8215 }
8216
8217 /* Reset the in_process bit of a die. */
8218
8219 static void
8220 reset_die_in_process (void *arg)
8221 {
8222 struct die_info *die = arg;
8223
8224 die->in_process = 0;
8225 }
8226
8227 /* Process a die and its children. */
8228
8229 static void
8230 process_die (struct die_info *die, struct dwarf2_cu *cu)
8231 {
8232 struct cleanup *in_process;
8233
8234 /* We should only be processing those not already in process. */
8235 gdb_assert (!die->in_process);
8236
8237 die->in_process = 1;
8238 in_process = make_cleanup (reset_die_in_process,die);
8239
8240 switch (die->tag)
8241 {
8242 case DW_TAG_padding:
8243 break;
8244 case DW_TAG_compile_unit:
8245 case DW_TAG_partial_unit:
8246 read_file_scope (die, cu);
8247 break;
8248 case DW_TAG_type_unit:
8249 read_type_unit_scope (die, cu);
8250 break;
8251 case DW_TAG_subprogram:
8252 case DW_TAG_inlined_subroutine:
8253 read_func_scope (die, cu);
8254 break;
8255 case DW_TAG_lexical_block:
8256 case DW_TAG_try_block:
8257 case DW_TAG_catch_block:
8258 read_lexical_block_scope (die, cu);
8259 break;
8260 case DW_TAG_GNU_call_site:
8261 read_call_site_scope (die, cu);
8262 break;
8263 case DW_TAG_class_type:
8264 case DW_TAG_interface_type:
8265 case DW_TAG_structure_type:
8266 case DW_TAG_union_type:
8267 process_structure_scope (die, cu);
8268 break;
8269 case DW_TAG_enumeration_type:
8270 process_enumeration_scope (die, cu);
8271 break;
8272
8273 /* These dies have a type, but processing them does not create
8274 a symbol or recurse to process the children. Therefore we can
8275 read them on-demand through read_type_die. */
8276 case DW_TAG_subroutine_type:
8277 case DW_TAG_set_type:
8278 case DW_TAG_array_type:
8279 case DW_TAG_pointer_type:
8280 case DW_TAG_ptr_to_member_type:
8281 case DW_TAG_reference_type:
8282 case DW_TAG_string_type:
8283 break;
8284
8285 case DW_TAG_base_type:
8286 case DW_TAG_subrange_type:
8287 case DW_TAG_typedef:
8288 /* Add a typedef symbol for the type definition, if it has a
8289 DW_AT_name. */
8290 new_symbol (die, read_type_die (die, cu), cu);
8291 break;
8292 case DW_TAG_common_block:
8293 read_common_block (die, cu);
8294 break;
8295 case DW_TAG_common_inclusion:
8296 break;
8297 case DW_TAG_namespace:
8298 cu->processing_has_namespace_info = 1;
8299 read_namespace (die, cu);
8300 break;
8301 case DW_TAG_module:
8302 cu->processing_has_namespace_info = 1;
8303 read_module (die, cu);
8304 break;
8305 case DW_TAG_imported_declaration:
8306 cu->processing_has_namespace_info = 1;
8307 if (read_namespace_alias (die, cu))
8308 break;
8309 /* The declaration is not a global namespace alias: fall through. */
8310 case DW_TAG_imported_module:
8311 cu->processing_has_namespace_info = 1;
8312 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8313 || cu->language != language_fortran))
8314 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8315 dwarf_tag_name (die->tag));
8316 read_import_statement (die, cu);
8317 break;
8318
8319 case DW_TAG_imported_unit:
8320 process_imported_unit_die (die, cu);
8321 break;
8322
8323 default:
8324 new_symbol (die, NULL, cu);
8325 break;
8326 }
8327
8328 do_cleanups (in_process);
8329 }
8330 \f
8331 /* DWARF name computation. */
8332
8333 /* A helper function for dwarf2_compute_name which determines whether DIE
8334 needs to have the name of the scope prepended to the name listed in the
8335 die. */
8336
8337 static int
8338 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8339 {
8340 struct attribute *attr;
8341
8342 switch (die->tag)
8343 {
8344 case DW_TAG_namespace:
8345 case DW_TAG_typedef:
8346 case DW_TAG_class_type:
8347 case DW_TAG_interface_type:
8348 case DW_TAG_structure_type:
8349 case DW_TAG_union_type:
8350 case DW_TAG_enumeration_type:
8351 case DW_TAG_enumerator:
8352 case DW_TAG_subprogram:
8353 case DW_TAG_inlined_subroutine:
8354 case DW_TAG_member:
8355 case DW_TAG_imported_declaration:
8356 return 1;
8357
8358 case DW_TAG_variable:
8359 case DW_TAG_constant:
8360 /* We only need to prefix "globally" visible variables. These include
8361 any variable marked with DW_AT_external or any variable that
8362 lives in a namespace. [Variables in anonymous namespaces
8363 require prefixing, but they are not DW_AT_external.] */
8364
8365 if (dwarf2_attr (die, DW_AT_specification, cu))
8366 {
8367 struct dwarf2_cu *spec_cu = cu;
8368
8369 return die_needs_namespace (die_specification (die, &spec_cu),
8370 spec_cu);
8371 }
8372
8373 attr = dwarf2_attr (die, DW_AT_external, cu);
8374 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8375 && die->parent->tag != DW_TAG_module)
8376 return 0;
8377 /* A variable in a lexical block of some kind does not need a
8378 namespace, even though in C++ such variables may be external
8379 and have a mangled name. */
8380 if (die->parent->tag == DW_TAG_lexical_block
8381 || die->parent->tag == DW_TAG_try_block
8382 || die->parent->tag == DW_TAG_catch_block
8383 || die->parent->tag == DW_TAG_subprogram)
8384 return 0;
8385 return 1;
8386
8387 default:
8388 return 0;
8389 }
8390 }
8391
8392 /* Retrieve the last character from a mem_file. */
8393
8394 static void
8395 do_ui_file_peek_last (void *object, const char *buffer, long length)
8396 {
8397 char *last_char_p = (char *) object;
8398
8399 if (length > 0)
8400 *last_char_p = buffer[length - 1];
8401 }
8402
8403 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8404 compute the physname for the object, which include a method's:
8405 - formal parameters (C++/Java),
8406 - receiver type (Go),
8407 - return type (Java).
8408
8409 The term "physname" is a bit confusing.
8410 For C++, for example, it is the demangled name.
8411 For Go, for example, it's the mangled name.
8412
8413 For Ada, return the DIE's linkage name rather than the fully qualified
8414 name. PHYSNAME is ignored..
8415
8416 The result is allocated on the objfile_obstack and canonicalized. */
8417
8418 static const char *
8419 dwarf2_compute_name (const char *name,
8420 struct die_info *die, struct dwarf2_cu *cu,
8421 int physname)
8422 {
8423 struct objfile *objfile = cu->objfile;
8424
8425 if (name == NULL)
8426 name = dwarf2_name (die, cu);
8427
8428 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8429 but otherwise compute it by typename_concat inside GDB.
8430 FIXME: Actually this is not really true, or at least not always true.
8431 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8432 Fortran names because there is no mangling standard. So new_symbol_full
8433 will set the demangled name to the result of dwarf2_full_name, and it is
8434 the demangled name that GDB uses if it exists. */
8435 if (cu->language == language_ada
8436 || (cu->language == language_fortran && physname))
8437 {
8438 /* For Ada unit, we prefer the linkage name over the name, as
8439 the former contains the exported name, which the user expects
8440 to be able to reference. Ideally, we want the user to be able
8441 to reference this entity using either natural or linkage name,
8442 but we haven't started looking at this enhancement yet. */
8443 const char *linkage_name;
8444
8445 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8446 if (linkage_name == NULL)
8447 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8448 if (linkage_name != NULL)
8449 return linkage_name;
8450 }
8451
8452 /* These are the only languages we know how to qualify names in. */
8453 if (name != NULL
8454 && (cu->language == language_cplus || cu->language == language_java
8455 || cu->language == language_fortran || cu->language == language_d))
8456 {
8457 if (die_needs_namespace (die, cu))
8458 {
8459 long length;
8460 const char *prefix;
8461 struct ui_file *buf;
8462 char *intermediate_name;
8463 const char *canonical_name = NULL;
8464
8465 prefix = determine_prefix (die, cu);
8466 buf = mem_fileopen ();
8467 if (*prefix != '\0')
8468 {
8469 char *prefixed_name = typename_concat (NULL, prefix, name,
8470 physname, cu);
8471
8472 fputs_unfiltered (prefixed_name, buf);
8473 xfree (prefixed_name);
8474 }
8475 else
8476 fputs_unfiltered (name, buf);
8477
8478 /* Template parameters may be specified in the DIE's DW_AT_name, or
8479 as children with DW_TAG_template_type_param or
8480 DW_TAG_value_type_param. If the latter, add them to the name
8481 here. If the name already has template parameters, then
8482 skip this step; some versions of GCC emit both, and
8483 it is more efficient to use the pre-computed name.
8484
8485 Something to keep in mind about this process: it is very
8486 unlikely, or in some cases downright impossible, to produce
8487 something that will match the mangled name of a function.
8488 If the definition of the function has the same debug info,
8489 we should be able to match up with it anyway. But fallbacks
8490 using the minimal symbol, for instance to find a method
8491 implemented in a stripped copy of libstdc++, will not work.
8492 If we do not have debug info for the definition, we will have to
8493 match them up some other way.
8494
8495 When we do name matching there is a related problem with function
8496 templates; two instantiated function templates are allowed to
8497 differ only by their return types, which we do not add here. */
8498
8499 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8500 {
8501 struct attribute *attr;
8502 struct die_info *child;
8503 int first = 1;
8504
8505 die->building_fullname = 1;
8506
8507 for (child = die->child; child != NULL; child = child->sibling)
8508 {
8509 struct type *type;
8510 LONGEST value;
8511 const gdb_byte *bytes;
8512 struct dwarf2_locexpr_baton *baton;
8513 struct value *v;
8514
8515 if (child->tag != DW_TAG_template_type_param
8516 && child->tag != DW_TAG_template_value_param)
8517 continue;
8518
8519 if (first)
8520 {
8521 fputs_unfiltered ("<", buf);
8522 first = 0;
8523 }
8524 else
8525 fputs_unfiltered (", ", buf);
8526
8527 attr = dwarf2_attr (child, DW_AT_type, cu);
8528 if (attr == NULL)
8529 {
8530 complaint (&symfile_complaints,
8531 _("template parameter missing DW_AT_type"));
8532 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8533 continue;
8534 }
8535 type = die_type (child, cu);
8536
8537 if (child->tag == DW_TAG_template_type_param)
8538 {
8539 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8540 continue;
8541 }
8542
8543 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8544 if (attr == NULL)
8545 {
8546 complaint (&symfile_complaints,
8547 _("template parameter missing "
8548 "DW_AT_const_value"));
8549 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8550 continue;
8551 }
8552
8553 dwarf2_const_value_attr (attr, type, name,
8554 &cu->comp_unit_obstack, cu,
8555 &value, &bytes, &baton);
8556
8557 if (TYPE_NOSIGN (type))
8558 /* GDB prints characters as NUMBER 'CHAR'. If that's
8559 changed, this can use value_print instead. */
8560 c_printchar (value, type, buf);
8561 else
8562 {
8563 struct value_print_options opts;
8564
8565 if (baton != NULL)
8566 v = dwarf2_evaluate_loc_desc (type, NULL,
8567 baton->data,
8568 baton->size,
8569 baton->per_cu);
8570 else if (bytes != NULL)
8571 {
8572 v = allocate_value (type);
8573 memcpy (value_contents_writeable (v), bytes,
8574 TYPE_LENGTH (type));
8575 }
8576 else
8577 v = value_from_longest (type, value);
8578
8579 /* Specify decimal so that we do not depend on
8580 the radix. */
8581 get_formatted_print_options (&opts, 'd');
8582 opts.raw = 1;
8583 value_print (v, buf, &opts);
8584 release_value (v);
8585 value_free (v);
8586 }
8587 }
8588
8589 die->building_fullname = 0;
8590
8591 if (!first)
8592 {
8593 /* Close the argument list, with a space if necessary
8594 (nested templates). */
8595 char last_char = '\0';
8596 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8597 if (last_char == '>')
8598 fputs_unfiltered (" >", buf);
8599 else
8600 fputs_unfiltered (">", buf);
8601 }
8602 }
8603
8604 /* For Java and C++ methods, append formal parameter type
8605 information, if PHYSNAME. */
8606
8607 if (physname && die->tag == DW_TAG_subprogram
8608 && (cu->language == language_cplus
8609 || cu->language == language_java))
8610 {
8611 struct type *type = read_type_die (die, cu);
8612
8613 c_type_print_args (type, buf, 1, cu->language,
8614 &type_print_raw_options);
8615
8616 if (cu->language == language_java)
8617 {
8618 /* For java, we must append the return type to method
8619 names. */
8620 if (die->tag == DW_TAG_subprogram)
8621 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8622 0, 0, &type_print_raw_options);
8623 }
8624 else if (cu->language == language_cplus)
8625 {
8626 /* Assume that an artificial first parameter is
8627 "this", but do not crash if it is not. RealView
8628 marks unnamed (and thus unused) parameters as
8629 artificial; there is no way to differentiate
8630 the two cases. */
8631 if (TYPE_NFIELDS (type) > 0
8632 && TYPE_FIELD_ARTIFICIAL (type, 0)
8633 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8634 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8635 0))))
8636 fputs_unfiltered (" const", buf);
8637 }
8638 }
8639
8640 intermediate_name = ui_file_xstrdup (buf, &length);
8641 ui_file_delete (buf);
8642
8643 if (cu->language == language_cplus)
8644 canonical_name
8645 = dwarf2_canonicalize_name (intermediate_name, cu,
8646 &objfile->per_bfd->storage_obstack);
8647
8648 /* If we only computed INTERMEDIATE_NAME, or if
8649 INTERMEDIATE_NAME is already canonical, then we need to
8650 copy it to the appropriate obstack. */
8651 if (canonical_name == NULL || canonical_name == intermediate_name)
8652 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8653 intermediate_name,
8654 strlen (intermediate_name));
8655 else
8656 name = canonical_name;
8657
8658 xfree (intermediate_name);
8659 }
8660 }
8661
8662 return name;
8663 }
8664
8665 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8666 If scope qualifiers are appropriate they will be added. The result
8667 will be allocated on the storage_obstack, or NULL if the DIE does
8668 not have a name. NAME may either be from a previous call to
8669 dwarf2_name or NULL.
8670
8671 The output string will be canonicalized (if C++/Java). */
8672
8673 static const char *
8674 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8675 {
8676 return dwarf2_compute_name (name, die, cu, 0);
8677 }
8678
8679 /* Construct a physname for the given DIE in CU. NAME may either be
8680 from a previous call to dwarf2_name or NULL. The result will be
8681 allocated on the objfile_objstack or NULL if the DIE does not have a
8682 name.
8683
8684 The output string will be canonicalized (if C++/Java). */
8685
8686 static const char *
8687 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8688 {
8689 struct objfile *objfile = cu->objfile;
8690 struct attribute *attr;
8691 const char *retval, *mangled = NULL, *canon = NULL;
8692 struct cleanup *back_to;
8693 int need_copy = 1;
8694
8695 /* In this case dwarf2_compute_name is just a shortcut not building anything
8696 on its own. */
8697 if (!die_needs_namespace (die, cu))
8698 return dwarf2_compute_name (name, die, cu, 1);
8699
8700 back_to = make_cleanup (null_cleanup, NULL);
8701
8702 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8703 if (mangled == NULL)
8704 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8705
8706 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8707 has computed. */
8708 if (mangled != NULL)
8709 {
8710 char *demangled;
8711
8712 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8713 type. It is easier for GDB users to search for such functions as
8714 `name(params)' than `long name(params)'. In such case the minimal
8715 symbol names do not match the full symbol names but for template
8716 functions there is never a need to look up their definition from their
8717 declaration so the only disadvantage remains the minimal symbol
8718 variant `long name(params)' does not have the proper inferior type.
8719 */
8720
8721 if (cu->language == language_go)
8722 {
8723 /* This is a lie, but we already lie to the caller new_symbol_full.
8724 new_symbol_full assumes we return the mangled name.
8725 This just undoes that lie until things are cleaned up. */
8726 demangled = NULL;
8727 }
8728 else
8729 {
8730 demangled = gdb_demangle (mangled,
8731 (DMGL_PARAMS | DMGL_ANSI
8732 | (cu->language == language_java
8733 ? DMGL_JAVA | DMGL_RET_POSTFIX
8734 : DMGL_RET_DROP)));
8735 }
8736 if (demangled)
8737 {
8738 make_cleanup (xfree, demangled);
8739 canon = demangled;
8740 }
8741 else
8742 {
8743 canon = mangled;
8744 need_copy = 0;
8745 }
8746 }
8747
8748 if (canon == NULL || check_physname)
8749 {
8750 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8751
8752 if (canon != NULL && strcmp (physname, canon) != 0)
8753 {
8754 /* It may not mean a bug in GDB. The compiler could also
8755 compute DW_AT_linkage_name incorrectly. But in such case
8756 GDB would need to be bug-to-bug compatible. */
8757
8758 complaint (&symfile_complaints,
8759 _("Computed physname <%s> does not match demangled <%s> "
8760 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8761 physname, canon, mangled, die->offset.sect_off,
8762 objfile_name (objfile));
8763
8764 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8765 is available here - over computed PHYSNAME. It is safer
8766 against both buggy GDB and buggy compilers. */
8767
8768 retval = canon;
8769 }
8770 else
8771 {
8772 retval = physname;
8773 need_copy = 0;
8774 }
8775 }
8776 else
8777 retval = canon;
8778
8779 if (need_copy)
8780 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8781 retval, strlen (retval));
8782
8783 do_cleanups (back_to);
8784 return retval;
8785 }
8786
8787 /* Inspect DIE in CU for a namespace alias. If one exists, record
8788 a new symbol for it.
8789
8790 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8791
8792 static int
8793 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8794 {
8795 struct attribute *attr;
8796
8797 /* If the die does not have a name, this is not a namespace
8798 alias. */
8799 attr = dwarf2_attr (die, DW_AT_name, cu);
8800 if (attr != NULL)
8801 {
8802 int num;
8803 struct die_info *d = die;
8804 struct dwarf2_cu *imported_cu = cu;
8805
8806 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8807 keep inspecting DIEs until we hit the underlying import. */
8808 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8809 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8810 {
8811 attr = dwarf2_attr (d, DW_AT_import, cu);
8812 if (attr == NULL)
8813 break;
8814
8815 d = follow_die_ref (d, attr, &imported_cu);
8816 if (d->tag != DW_TAG_imported_declaration)
8817 break;
8818 }
8819
8820 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8821 {
8822 complaint (&symfile_complaints,
8823 _("DIE at 0x%x has too many recursively imported "
8824 "declarations"), d->offset.sect_off);
8825 return 0;
8826 }
8827
8828 if (attr != NULL)
8829 {
8830 struct type *type;
8831 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8832
8833 type = get_die_type_at_offset (offset, cu->per_cu);
8834 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8835 {
8836 /* This declaration is a global namespace alias. Add
8837 a symbol for it whose type is the aliased namespace. */
8838 new_symbol (die, type, cu);
8839 return 1;
8840 }
8841 }
8842 }
8843
8844 return 0;
8845 }
8846
8847 /* Return the using directives repository (global or local?) to use in the
8848 current context for LANGUAGE.
8849
8850 For Ada, imported declarations can materialize renamings, which *may* be
8851 global. However it is impossible (for now?) in DWARF to distinguish
8852 "external" imported declarations and "static" ones. As all imported
8853 declarations seem to be static in all other languages, make them all CU-wide
8854 global only in Ada. */
8855
8856 static struct using_direct **
8857 using_directives (enum language language)
8858 {
8859 if (language == language_ada && context_stack_depth == 0)
8860 return &global_using_directives;
8861 else
8862 return &local_using_directives;
8863 }
8864
8865 /* Read the import statement specified by the given die and record it. */
8866
8867 static void
8868 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8869 {
8870 struct objfile *objfile = cu->objfile;
8871 struct attribute *import_attr;
8872 struct die_info *imported_die, *child_die;
8873 struct dwarf2_cu *imported_cu;
8874 const char *imported_name;
8875 const char *imported_name_prefix;
8876 const char *canonical_name;
8877 const char *import_alias;
8878 const char *imported_declaration = NULL;
8879 const char *import_prefix;
8880 VEC (const_char_ptr) *excludes = NULL;
8881 struct cleanup *cleanups;
8882
8883 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8884 if (import_attr == NULL)
8885 {
8886 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8887 dwarf_tag_name (die->tag));
8888 return;
8889 }
8890
8891 imported_cu = cu;
8892 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8893 imported_name = dwarf2_name (imported_die, imported_cu);
8894 if (imported_name == NULL)
8895 {
8896 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8897
8898 The import in the following code:
8899 namespace A
8900 {
8901 typedef int B;
8902 }
8903
8904 int main ()
8905 {
8906 using A::B;
8907 B b;
8908 return b;
8909 }
8910
8911 ...
8912 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8913 <52> DW_AT_decl_file : 1
8914 <53> DW_AT_decl_line : 6
8915 <54> DW_AT_import : <0x75>
8916 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8917 <59> DW_AT_name : B
8918 <5b> DW_AT_decl_file : 1
8919 <5c> DW_AT_decl_line : 2
8920 <5d> DW_AT_type : <0x6e>
8921 ...
8922 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8923 <76> DW_AT_byte_size : 4
8924 <77> DW_AT_encoding : 5 (signed)
8925
8926 imports the wrong die ( 0x75 instead of 0x58 ).
8927 This case will be ignored until the gcc bug is fixed. */
8928 return;
8929 }
8930
8931 /* Figure out the local name after import. */
8932 import_alias = dwarf2_name (die, cu);
8933
8934 /* Figure out where the statement is being imported to. */
8935 import_prefix = determine_prefix (die, cu);
8936
8937 /* Figure out what the scope of the imported die is and prepend it
8938 to the name of the imported die. */
8939 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8940
8941 if (imported_die->tag != DW_TAG_namespace
8942 && imported_die->tag != DW_TAG_module)
8943 {
8944 imported_declaration = imported_name;
8945 canonical_name = imported_name_prefix;
8946 }
8947 else if (strlen (imported_name_prefix) > 0)
8948 canonical_name = obconcat (&objfile->objfile_obstack,
8949 imported_name_prefix,
8950 (cu->language == language_d ? "." : "::"),
8951 imported_name, (char *) NULL);
8952 else
8953 canonical_name = imported_name;
8954
8955 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8956
8957 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8958 for (child_die = die->child; child_die && child_die->tag;
8959 child_die = sibling_die (child_die))
8960 {
8961 /* DWARF-4: A Fortran use statement with a “rename list” may be
8962 represented by an imported module entry with an import attribute
8963 referring to the module and owned entries corresponding to those
8964 entities that are renamed as part of being imported. */
8965
8966 if (child_die->tag != DW_TAG_imported_declaration)
8967 {
8968 complaint (&symfile_complaints,
8969 _("child DW_TAG_imported_declaration expected "
8970 "- DIE at 0x%x [in module %s]"),
8971 child_die->offset.sect_off, objfile_name (objfile));
8972 continue;
8973 }
8974
8975 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8976 if (import_attr == NULL)
8977 {
8978 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8979 dwarf_tag_name (child_die->tag));
8980 continue;
8981 }
8982
8983 imported_cu = cu;
8984 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8985 &imported_cu);
8986 imported_name = dwarf2_name (imported_die, imported_cu);
8987 if (imported_name == NULL)
8988 {
8989 complaint (&symfile_complaints,
8990 _("child DW_TAG_imported_declaration has unknown "
8991 "imported name - DIE at 0x%x [in module %s]"),
8992 child_die->offset.sect_off, objfile_name (objfile));
8993 continue;
8994 }
8995
8996 VEC_safe_push (const_char_ptr, excludes, imported_name);
8997
8998 process_die (child_die, cu);
8999 }
9000
9001 add_using_directive (using_directives (cu->language),
9002 import_prefix,
9003 canonical_name,
9004 import_alias,
9005 imported_declaration,
9006 excludes,
9007 0,
9008 &objfile->objfile_obstack);
9009
9010 do_cleanups (cleanups);
9011 }
9012
9013 /* Cleanup function for handle_DW_AT_stmt_list. */
9014
9015 static void
9016 free_cu_line_header (void *arg)
9017 {
9018 struct dwarf2_cu *cu = arg;
9019
9020 free_line_header (cu->line_header);
9021 cu->line_header = NULL;
9022 }
9023
9024 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9025 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9026 this, it was first present in GCC release 4.3.0. */
9027
9028 static int
9029 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9030 {
9031 if (!cu->checked_producer)
9032 check_producer (cu);
9033
9034 return cu->producer_is_gcc_lt_4_3;
9035 }
9036
9037 static void
9038 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9039 const char **name, const char **comp_dir)
9040 {
9041 /* Find the filename. Do not use dwarf2_name here, since the filename
9042 is not a source language identifier. */
9043 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9044 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9045
9046 if (*comp_dir == NULL
9047 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9048 && IS_ABSOLUTE_PATH (*name))
9049 {
9050 char *d = ldirname (*name);
9051
9052 *comp_dir = d;
9053 if (d != NULL)
9054 make_cleanup (xfree, d);
9055 }
9056 if (*comp_dir != NULL)
9057 {
9058 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9059 directory, get rid of it. */
9060 char *cp = strchr (*comp_dir, ':');
9061
9062 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9063 *comp_dir = cp + 1;
9064 }
9065
9066 if (*name == NULL)
9067 *name = "<unknown>";
9068 }
9069
9070 /* Handle DW_AT_stmt_list for a compilation unit.
9071 DIE is the DW_TAG_compile_unit die for CU.
9072 COMP_DIR is the compilation directory. LOWPC is passed to
9073 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9074
9075 static void
9076 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9077 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9078 {
9079 struct objfile *objfile = dwarf2_per_objfile->objfile;
9080 struct attribute *attr;
9081 unsigned int line_offset;
9082 struct line_header line_header_local;
9083 hashval_t line_header_local_hash;
9084 unsigned u;
9085 void **slot;
9086 int decode_mapping;
9087
9088 gdb_assert (! cu->per_cu->is_debug_types);
9089
9090 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9091 if (attr == NULL)
9092 return;
9093
9094 line_offset = DW_UNSND (attr);
9095
9096 /* The line header hash table is only created if needed (it exists to
9097 prevent redundant reading of the line table for partial_units).
9098 If we're given a partial_unit, we'll need it. If we're given a
9099 compile_unit, then use the line header hash table if it's already
9100 created, but don't create one just yet. */
9101
9102 if (dwarf2_per_objfile->line_header_hash == NULL
9103 && die->tag == DW_TAG_partial_unit)
9104 {
9105 dwarf2_per_objfile->line_header_hash
9106 = htab_create_alloc_ex (127, line_header_hash_voidp,
9107 line_header_eq_voidp,
9108 free_line_header_voidp,
9109 &objfile->objfile_obstack,
9110 hashtab_obstack_allocate,
9111 dummy_obstack_deallocate);
9112 }
9113
9114 line_header_local.offset.sect_off = line_offset;
9115 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9116 line_header_local_hash = line_header_hash (&line_header_local);
9117 if (dwarf2_per_objfile->line_header_hash != NULL)
9118 {
9119 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9120 &line_header_local,
9121 line_header_local_hash, NO_INSERT);
9122
9123 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9124 is not present in *SLOT (since if there is something in *SLOT then
9125 it will be for a partial_unit). */
9126 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9127 {
9128 gdb_assert (*slot != NULL);
9129 cu->line_header = *slot;
9130 return;
9131 }
9132 }
9133
9134 /* dwarf_decode_line_header does not yet provide sufficient information.
9135 We always have to call also dwarf_decode_lines for it. */
9136 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9137 if (cu->line_header == NULL)
9138 return;
9139
9140 if (dwarf2_per_objfile->line_header_hash == NULL)
9141 slot = NULL;
9142 else
9143 {
9144 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9145 &line_header_local,
9146 line_header_local_hash, INSERT);
9147 gdb_assert (slot != NULL);
9148 }
9149 if (slot != NULL && *slot == NULL)
9150 {
9151 /* This newly decoded line number information unit will be owned
9152 by line_header_hash hash table. */
9153 *slot = cu->line_header;
9154 }
9155 else
9156 {
9157 /* We cannot free any current entry in (*slot) as that struct line_header
9158 may be already used by multiple CUs. Create only temporary decoded
9159 line_header for this CU - it may happen at most once for each line
9160 number information unit. And if we're not using line_header_hash
9161 then this is what we want as well. */
9162 gdb_assert (die->tag != DW_TAG_partial_unit);
9163 make_cleanup (free_cu_line_header, cu);
9164 }
9165 decode_mapping = (die->tag != DW_TAG_partial_unit);
9166 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9167 decode_mapping);
9168 }
9169
9170 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9171
9172 static void
9173 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9174 {
9175 struct objfile *objfile = dwarf2_per_objfile->objfile;
9176 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9177 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9178 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9179 CORE_ADDR highpc = ((CORE_ADDR) 0);
9180 struct attribute *attr;
9181 const char *name = NULL;
9182 const char *comp_dir = NULL;
9183 struct die_info *child_die;
9184 bfd *abfd = objfile->obfd;
9185 CORE_ADDR baseaddr;
9186
9187 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9188
9189 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9190
9191 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9192 from finish_block. */
9193 if (lowpc == ((CORE_ADDR) -1))
9194 lowpc = highpc;
9195 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9196
9197 find_file_and_directory (die, cu, &name, &comp_dir);
9198
9199 prepare_one_comp_unit (cu, die, cu->language);
9200
9201 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9202 standardised yet. As a workaround for the language detection we fall
9203 back to the DW_AT_producer string. */
9204 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9205 cu->language = language_opencl;
9206
9207 /* Similar hack for Go. */
9208 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9209 set_cu_language (DW_LANG_Go, cu);
9210
9211 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9212
9213 /* Decode line number information if present. We do this before
9214 processing child DIEs, so that the line header table is available
9215 for DW_AT_decl_file. */
9216 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9217
9218 /* Process all dies in compilation unit. */
9219 if (die->child != NULL)
9220 {
9221 child_die = die->child;
9222 while (child_die && child_die->tag)
9223 {
9224 process_die (child_die, cu);
9225 child_die = sibling_die (child_die);
9226 }
9227 }
9228
9229 /* Decode macro information, if present. Dwarf 2 macro information
9230 refers to information in the line number info statement program
9231 header, so we can only read it if we've read the header
9232 successfully. */
9233 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9234 if (attr && cu->line_header)
9235 {
9236 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9237 complaint (&symfile_complaints,
9238 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9239
9240 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9241 }
9242 else
9243 {
9244 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9245 if (attr && cu->line_header)
9246 {
9247 unsigned int macro_offset = DW_UNSND (attr);
9248
9249 dwarf_decode_macros (cu, macro_offset, 0);
9250 }
9251 }
9252
9253 do_cleanups (back_to);
9254 }
9255
9256 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9257 Create the set of symtabs used by this TU, or if this TU is sharing
9258 symtabs with another TU and the symtabs have already been created
9259 then restore those symtabs in the line header.
9260 We don't need the pc/line-number mapping for type units. */
9261
9262 static void
9263 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9264 {
9265 struct objfile *objfile = dwarf2_per_objfile->objfile;
9266 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9267 struct type_unit_group *tu_group;
9268 int first_time;
9269 struct line_header *lh;
9270 struct attribute *attr;
9271 unsigned int i, line_offset;
9272 struct signatured_type *sig_type;
9273
9274 gdb_assert (per_cu->is_debug_types);
9275 sig_type = (struct signatured_type *) per_cu;
9276
9277 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9278
9279 /* If we're using .gdb_index (includes -readnow) then
9280 per_cu->type_unit_group may not have been set up yet. */
9281 if (sig_type->type_unit_group == NULL)
9282 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9283 tu_group = sig_type->type_unit_group;
9284
9285 /* If we've already processed this stmt_list there's no real need to
9286 do it again, we could fake it and just recreate the part we need
9287 (file name,index -> symtab mapping). If data shows this optimization
9288 is useful we can do it then. */
9289 first_time = tu_group->compunit_symtab == NULL;
9290
9291 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9292 debug info. */
9293 lh = NULL;
9294 if (attr != NULL)
9295 {
9296 line_offset = DW_UNSND (attr);
9297 lh = dwarf_decode_line_header (line_offset, cu);
9298 }
9299 if (lh == NULL)
9300 {
9301 if (first_time)
9302 dwarf2_start_symtab (cu, "", NULL, 0);
9303 else
9304 {
9305 gdb_assert (tu_group->symtabs == NULL);
9306 restart_symtab (tu_group->compunit_symtab, "", 0);
9307 }
9308 return;
9309 }
9310
9311 cu->line_header = lh;
9312 make_cleanup (free_cu_line_header, cu);
9313
9314 if (first_time)
9315 {
9316 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9317
9318 tu_group->num_symtabs = lh->num_file_names;
9319 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9320
9321 for (i = 0; i < lh->num_file_names; ++i)
9322 {
9323 const char *dir = NULL;
9324 struct file_entry *fe = &lh->file_names[i];
9325
9326 if (fe->dir_index && lh->include_dirs != NULL)
9327 dir = lh->include_dirs[fe->dir_index - 1];
9328 dwarf2_start_subfile (fe->name, dir);
9329
9330 if (current_subfile->symtab == NULL)
9331 {
9332 /* NOTE: start_subfile will recognize when it's been passed
9333 a file it has already seen. So we can't assume there's a
9334 simple mapping from lh->file_names to subfiles, plus
9335 lh->file_names may contain dups. */
9336 current_subfile->symtab
9337 = allocate_symtab (cust, current_subfile->name);
9338 }
9339
9340 fe->symtab = current_subfile->symtab;
9341 tu_group->symtabs[i] = fe->symtab;
9342 }
9343 }
9344 else
9345 {
9346 restart_symtab (tu_group->compunit_symtab, "", 0);
9347
9348 for (i = 0; i < lh->num_file_names; ++i)
9349 {
9350 struct file_entry *fe = &lh->file_names[i];
9351
9352 fe->symtab = tu_group->symtabs[i];
9353 }
9354 }
9355
9356 /* The main symtab is allocated last. Type units don't have DW_AT_name
9357 so they don't have a "real" (so to speak) symtab anyway.
9358 There is later code that will assign the main symtab to all symbols
9359 that don't have one. We need to handle the case of a symbol with a
9360 missing symtab (DW_AT_decl_file) anyway. */
9361 }
9362
9363 /* Process DW_TAG_type_unit.
9364 For TUs we want to skip the first top level sibling if it's not the
9365 actual type being defined by this TU. In this case the first top
9366 level sibling is there to provide context only. */
9367
9368 static void
9369 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9370 {
9371 struct die_info *child_die;
9372
9373 prepare_one_comp_unit (cu, die, language_minimal);
9374
9375 /* Initialize (or reinitialize) the machinery for building symtabs.
9376 We do this before processing child DIEs, so that the line header table
9377 is available for DW_AT_decl_file. */
9378 setup_type_unit_groups (die, cu);
9379
9380 if (die->child != NULL)
9381 {
9382 child_die = die->child;
9383 while (child_die && child_die->tag)
9384 {
9385 process_die (child_die, cu);
9386 child_die = sibling_die (child_die);
9387 }
9388 }
9389 }
9390 \f
9391 /* DWO/DWP files.
9392
9393 http://gcc.gnu.org/wiki/DebugFission
9394 http://gcc.gnu.org/wiki/DebugFissionDWP
9395
9396 To simplify handling of both DWO files ("object" files with the DWARF info)
9397 and DWP files (a file with the DWOs packaged up into one file), we treat
9398 DWP files as having a collection of virtual DWO files. */
9399
9400 static hashval_t
9401 hash_dwo_file (const void *item)
9402 {
9403 const struct dwo_file *dwo_file = item;
9404 hashval_t hash;
9405
9406 hash = htab_hash_string (dwo_file->dwo_name);
9407 if (dwo_file->comp_dir != NULL)
9408 hash += htab_hash_string (dwo_file->comp_dir);
9409 return hash;
9410 }
9411
9412 static int
9413 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9414 {
9415 const struct dwo_file *lhs = item_lhs;
9416 const struct dwo_file *rhs = item_rhs;
9417
9418 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9419 return 0;
9420 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9421 return lhs->comp_dir == rhs->comp_dir;
9422 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9423 }
9424
9425 /* Allocate a hash table for DWO files. */
9426
9427 static htab_t
9428 allocate_dwo_file_hash_table (void)
9429 {
9430 struct objfile *objfile = dwarf2_per_objfile->objfile;
9431
9432 return htab_create_alloc_ex (41,
9433 hash_dwo_file,
9434 eq_dwo_file,
9435 NULL,
9436 &objfile->objfile_obstack,
9437 hashtab_obstack_allocate,
9438 dummy_obstack_deallocate);
9439 }
9440
9441 /* Lookup DWO file DWO_NAME. */
9442
9443 static void **
9444 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9445 {
9446 struct dwo_file find_entry;
9447 void **slot;
9448
9449 if (dwarf2_per_objfile->dwo_files == NULL)
9450 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9451
9452 memset (&find_entry, 0, sizeof (find_entry));
9453 find_entry.dwo_name = dwo_name;
9454 find_entry.comp_dir = comp_dir;
9455 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9456
9457 return slot;
9458 }
9459
9460 static hashval_t
9461 hash_dwo_unit (const void *item)
9462 {
9463 const struct dwo_unit *dwo_unit = item;
9464
9465 /* This drops the top 32 bits of the id, but is ok for a hash. */
9466 return dwo_unit->signature;
9467 }
9468
9469 static int
9470 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9471 {
9472 const struct dwo_unit *lhs = item_lhs;
9473 const struct dwo_unit *rhs = item_rhs;
9474
9475 /* The signature is assumed to be unique within the DWO file.
9476 So while object file CU dwo_id's always have the value zero,
9477 that's OK, assuming each object file DWO file has only one CU,
9478 and that's the rule for now. */
9479 return lhs->signature == rhs->signature;
9480 }
9481
9482 /* Allocate a hash table for DWO CUs,TUs.
9483 There is one of these tables for each of CUs,TUs for each DWO file. */
9484
9485 static htab_t
9486 allocate_dwo_unit_table (struct objfile *objfile)
9487 {
9488 /* Start out with a pretty small number.
9489 Generally DWO files contain only one CU and maybe some TUs. */
9490 return htab_create_alloc_ex (3,
9491 hash_dwo_unit,
9492 eq_dwo_unit,
9493 NULL,
9494 &objfile->objfile_obstack,
9495 hashtab_obstack_allocate,
9496 dummy_obstack_deallocate);
9497 }
9498
9499 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9500
9501 struct create_dwo_cu_data
9502 {
9503 struct dwo_file *dwo_file;
9504 struct dwo_unit dwo_unit;
9505 };
9506
9507 /* die_reader_func for create_dwo_cu. */
9508
9509 static void
9510 create_dwo_cu_reader (const struct die_reader_specs *reader,
9511 const gdb_byte *info_ptr,
9512 struct die_info *comp_unit_die,
9513 int has_children,
9514 void *datap)
9515 {
9516 struct dwarf2_cu *cu = reader->cu;
9517 struct objfile *objfile = dwarf2_per_objfile->objfile;
9518 sect_offset offset = cu->per_cu->offset;
9519 struct dwarf2_section_info *section = cu->per_cu->section;
9520 struct create_dwo_cu_data *data = datap;
9521 struct dwo_file *dwo_file = data->dwo_file;
9522 struct dwo_unit *dwo_unit = &data->dwo_unit;
9523 struct attribute *attr;
9524
9525 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9526 if (attr == NULL)
9527 {
9528 complaint (&symfile_complaints,
9529 _("Dwarf Error: debug entry at offset 0x%x is missing"
9530 " its dwo_id [in module %s]"),
9531 offset.sect_off, dwo_file->dwo_name);
9532 return;
9533 }
9534
9535 dwo_unit->dwo_file = dwo_file;
9536 dwo_unit->signature = DW_UNSND (attr);
9537 dwo_unit->section = section;
9538 dwo_unit->offset = offset;
9539 dwo_unit->length = cu->per_cu->length;
9540
9541 if (dwarf_read_debug)
9542 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9543 offset.sect_off, hex_string (dwo_unit->signature));
9544 }
9545
9546 /* Create the dwo_unit for the lone CU in DWO_FILE.
9547 Note: This function processes DWO files only, not DWP files. */
9548
9549 static struct dwo_unit *
9550 create_dwo_cu (struct dwo_file *dwo_file)
9551 {
9552 struct objfile *objfile = dwarf2_per_objfile->objfile;
9553 struct dwarf2_section_info *section = &dwo_file->sections.info;
9554 bfd *abfd;
9555 htab_t cu_htab;
9556 const gdb_byte *info_ptr, *end_ptr;
9557 struct create_dwo_cu_data create_dwo_cu_data;
9558 struct dwo_unit *dwo_unit;
9559
9560 dwarf2_read_section (objfile, section);
9561 info_ptr = section->buffer;
9562
9563 if (info_ptr == NULL)
9564 return NULL;
9565
9566 /* We can't set abfd until now because the section may be empty or
9567 not present, in which case section->asection will be NULL. */
9568 abfd = get_section_bfd_owner (section);
9569
9570 if (dwarf_read_debug)
9571 {
9572 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9573 get_section_name (section),
9574 get_section_file_name (section));
9575 }
9576
9577 create_dwo_cu_data.dwo_file = dwo_file;
9578 dwo_unit = NULL;
9579
9580 end_ptr = info_ptr + section->size;
9581 while (info_ptr < end_ptr)
9582 {
9583 struct dwarf2_per_cu_data per_cu;
9584
9585 memset (&create_dwo_cu_data.dwo_unit, 0,
9586 sizeof (create_dwo_cu_data.dwo_unit));
9587 memset (&per_cu, 0, sizeof (per_cu));
9588 per_cu.objfile = objfile;
9589 per_cu.is_debug_types = 0;
9590 per_cu.offset.sect_off = info_ptr - section->buffer;
9591 per_cu.section = section;
9592
9593 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9594 create_dwo_cu_reader,
9595 &create_dwo_cu_data);
9596
9597 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9598 {
9599 /* If we've already found one, complain. We only support one
9600 because having more than one requires hacking the dwo_name of
9601 each to match, which is highly unlikely to happen. */
9602 if (dwo_unit != NULL)
9603 {
9604 complaint (&symfile_complaints,
9605 _("Multiple CUs in DWO file %s [in module %s]"),
9606 dwo_file->dwo_name, objfile_name (objfile));
9607 break;
9608 }
9609
9610 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9611 *dwo_unit = create_dwo_cu_data.dwo_unit;
9612 }
9613
9614 info_ptr += per_cu.length;
9615 }
9616
9617 return dwo_unit;
9618 }
9619
9620 /* DWP file .debug_{cu,tu}_index section format:
9621 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9622
9623 DWP Version 1:
9624
9625 Both index sections have the same format, and serve to map a 64-bit
9626 signature to a set of section numbers. Each section begins with a header,
9627 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9628 indexes, and a pool of 32-bit section numbers. The index sections will be
9629 aligned at 8-byte boundaries in the file.
9630
9631 The index section header consists of:
9632
9633 V, 32 bit version number
9634 -, 32 bits unused
9635 N, 32 bit number of compilation units or type units in the index
9636 M, 32 bit number of slots in the hash table
9637
9638 Numbers are recorded using the byte order of the application binary.
9639
9640 The hash table begins at offset 16 in the section, and consists of an array
9641 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9642 order of the application binary). Unused slots in the hash table are 0.
9643 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9644
9645 The parallel table begins immediately after the hash table
9646 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9647 array of 32-bit indexes (using the byte order of the application binary),
9648 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9649 table contains a 32-bit index into the pool of section numbers. For unused
9650 hash table slots, the corresponding entry in the parallel table will be 0.
9651
9652 The pool of section numbers begins immediately following the hash table
9653 (at offset 16 + 12 * M from the beginning of the section). The pool of
9654 section numbers consists of an array of 32-bit words (using the byte order
9655 of the application binary). Each item in the array is indexed starting
9656 from 0. The hash table entry provides the index of the first section
9657 number in the set. Additional section numbers in the set follow, and the
9658 set is terminated by a 0 entry (section number 0 is not used in ELF).
9659
9660 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9661 section must be the first entry in the set, and the .debug_abbrev.dwo must
9662 be the second entry. Other members of the set may follow in any order.
9663
9664 ---
9665
9666 DWP Version 2:
9667
9668 DWP Version 2 combines all the .debug_info, etc. sections into one,
9669 and the entries in the index tables are now offsets into these sections.
9670 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9671 section.
9672
9673 Index Section Contents:
9674 Header
9675 Hash Table of Signatures dwp_hash_table.hash_table
9676 Parallel Table of Indices dwp_hash_table.unit_table
9677 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9678 Table of Section Sizes dwp_hash_table.v2.sizes
9679
9680 The index section header consists of:
9681
9682 V, 32 bit version number
9683 L, 32 bit number of columns in the table of section offsets
9684 N, 32 bit number of compilation units or type units in the index
9685 M, 32 bit number of slots in the hash table
9686
9687 Numbers are recorded using the byte order of the application binary.
9688
9689 The hash table has the same format as version 1.
9690 The parallel table of indices has the same format as version 1,
9691 except that the entries are origin-1 indices into the table of sections
9692 offsets and the table of section sizes.
9693
9694 The table of offsets begins immediately following the parallel table
9695 (at offset 16 + 12 * M from the beginning of the section). The table is
9696 a two-dimensional array of 32-bit words (using the byte order of the
9697 application binary), with L columns and N+1 rows, in row-major order.
9698 Each row in the array is indexed starting from 0. The first row provides
9699 a key to the remaining rows: each column in this row provides an identifier
9700 for a debug section, and the offsets in the same column of subsequent rows
9701 refer to that section. The section identifiers are:
9702
9703 DW_SECT_INFO 1 .debug_info.dwo
9704 DW_SECT_TYPES 2 .debug_types.dwo
9705 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9706 DW_SECT_LINE 4 .debug_line.dwo
9707 DW_SECT_LOC 5 .debug_loc.dwo
9708 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9709 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9710 DW_SECT_MACRO 8 .debug_macro.dwo
9711
9712 The offsets provided by the CU and TU index sections are the base offsets
9713 for the contributions made by each CU or TU to the corresponding section
9714 in the package file. Each CU and TU header contains an abbrev_offset
9715 field, used to find the abbreviations table for that CU or TU within the
9716 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9717 be interpreted as relative to the base offset given in the index section.
9718 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9719 should be interpreted as relative to the base offset for .debug_line.dwo,
9720 and offsets into other debug sections obtained from DWARF attributes should
9721 also be interpreted as relative to the corresponding base offset.
9722
9723 The table of sizes begins immediately following the table of offsets.
9724 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9725 with L columns and N rows, in row-major order. Each row in the array is
9726 indexed starting from 1 (row 0 is shared by the two tables).
9727
9728 ---
9729
9730 Hash table lookup is handled the same in version 1 and 2:
9731
9732 We assume that N and M will not exceed 2^32 - 1.
9733 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9734
9735 Given a 64-bit compilation unit signature or a type signature S, an entry
9736 in the hash table is located as follows:
9737
9738 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9739 the low-order k bits all set to 1.
9740
9741 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9742
9743 3) If the hash table entry at index H matches the signature, use that
9744 entry. If the hash table entry at index H is unused (all zeroes),
9745 terminate the search: the signature is not present in the table.
9746
9747 4) Let H = (H + H') modulo M. Repeat at Step 3.
9748
9749 Because M > N and H' and M are relatively prime, the search is guaranteed
9750 to stop at an unused slot or find the match. */
9751
9752 /* Create a hash table to map DWO IDs to their CU/TU entry in
9753 .debug_{info,types}.dwo in DWP_FILE.
9754 Returns NULL if there isn't one.
9755 Note: This function processes DWP files only, not DWO files. */
9756
9757 static struct dwp_hash_table *
9758 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9759 {
9760 struct objfile *objfile = dwarf2_per_objfile->objfile;
9761 bfd *dbfd = dwp_file->dbfd;
9762 const gdb_byte *index_ptr, *index_end;
9763 struct dwarf2_section_info *index;
9764 uint32_t version, nr_columns, nr_units, nr_slots;
9765 struct dwp_hash_table *htab;
9766
9767 if (is_debug_types)
9768 index = &dwp_file->sections.tu_index;
9769 else
9770 index = &dwp_file->sections.cu_index;
9771
9772 if (dwarf2_section_empty_p (index))
9773 return NULL;
9774 dwarf2_read_section (objfile, index);
9775
9776 index_ptr = index->buffer;
9777 index_end = index_ptr + index->size;
9778
9779 version = read_4_bytes (dbfd, index_ptr);
9780 index_ptr += 4;
9781 if (version == 2)
9782 nr_columns = read_4_bytes (dbfd, index_ptr);
9783 else
9784 nr_columns = 0;
9785 index_ptr += 4;
9786 nr_units = read_4_bytes (dbfd, index_ptr);
9787 index_ptr += 4;
9788 nr_slots = read_4_bytes (dbfd, index_ptr);
9789 index_ptr += 4;
9790
9791 if (version != 1 && version != 2)
9792 {
9793 error (_("Dwarf Error: unsupported DWP file version (%s)"
9794 " [in module %s]"),
9795 pulongest (version), dwp_file->name);
9796 }
9797 if (nr_slots != (nr_slots & -nr_slots))
9798 {
9799 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9800 " is not power of 2 [in module %s]"),
9801 pulongest (nr_slots), dwp_file->name);
9802 }
9803
9804 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9805 htab->version = version;
9806 htab->nr_columns = nr_columns;
9807 htab->nr_units = nr_units;
9808 htab->nr_slots = nr_slots;
9809 htab->hash_table = index_ptr;
9810 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9811
9812 /* Exit early if the table is empty. */
9813 if (nr_slots == 0 || nr_units == 0
9814 || (version == 2 && nr_columns == 0))
9815 {
9816 /* All must be zero. */
9817 if (nr_slots != 0 || nr_units != 0
9818 || (version == 2 && nr_columns != 0))
9819 {
9820 complaint (&symfile_complaints,
9821 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9822 " all zero [in modules %s]"),
9823 dwp_file->name);
9824 }
9825 return htab;
9826 }
9827
9828 if (version == 1)
9829 {
9830 htab->section_pool.v1.indices =
9831 htab->unit_table + sizeof (uint32_t) * nr_slots;
9832 /* It's harder to decide whether the section is too small in v1.
9833 V1 is deprecated anyway so we punt. */
9834 }
9835 else
9836 {
9837 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9838 int *ids = htab->section_pool.v2.section_ids;
9839 /* Reverse map for error checking. */
9840 int ids_seen[DW_SECT_MAX + 1];
9841 int i;
9842
9843 if (nr_columns < 2)
9844 {
9845 error (_("Dwarf Error: bad DWP hash table, too few columns"
9846 " in section table [in module %s]"),
9847 dwp_file->name);
9848 }
9849 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9850 {
9851 error (_("Dwarf Error: bad DWP hash table, too many columns"
9852 " in section table [in module %s]"),
9853 dwp_file->name);
9854 }
9855 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9856 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9857 for (i = 0; i < nr_columns; ++i)
9858 {
9859 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9860
9861 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9862 {
9863 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9864 " in section table [in module %s]"),
9865 id, dwp_file->name);
9866 }
9867 if (ids_seen[id] != -1)
9868 {
9869 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9870 " id %d in section table [in module %s]"),
9871 id, dwp_file->name);
9872 }
9873 ids_seen[id] = i;
9874 ids[i] = id;
9875 }
9876 /* Must have exactly one info or types section. */
9877 if (((ids_seen[DW_SECT_INFO] != -1)
9878 + (ids_seen[DW_SECT_TYPES] != -1))
9879 != 1)
9880 {
9881 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9882 " DWO info/types section [in module %s]"),
9883 dwp_file->name);
9884 }
9885 /* Must have an abbrev section. */
9886 if (ids_seen[DW_SECT_ABBREV] == -1)
9887 {
9888 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9889 " section [in module %s]"),
9890 dwp_file->name);
9891 }
9892 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9893 htab->section_pool.v2.sizes =
9894 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9895 * nr_units * nr_columns);
9896 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9897 * nr_units * nr_columns))
9898 > index_end)
9899 {
9900 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9901 " [in module %s]"),
9902 dwp_file->name);
9903 }
9904 }
9905
9906 return htab;
9907 }
9908
9909 /* Update SECTIONS with the data from SECTP.
9910
9911 This function is like the other "locate" section routines that are
9912 passed to bfd_map_over_sections, but in this context the sections to
9913 read comes from the DWP V1 hash table, not the full ELF section table.
9914
9915 The result is non-zero for success, or zero if an error was found. */
9916
9917 static int
9918 locate_v1_virtual_dwo_sections (asection *sectp,
9919 struct virtual_v1_dwo_sections *sections)
9920 {
9921 const struct dwop_section_names *names = &dwop_section_names;
9922
9923 if (section_is_p (sectp->name, &names->abbrev_dwo))
9924 {
9925 /* There can be only one. */
9926 if (sections->abbrev.s.section != NULL)
9927 return 0;
9928 sections->abbrev.s.section = sectp;
9929 sections->abbrev.size = bfd_get_section_size (sectp);
9930 }
9931 else if (section_is_p (sectp->name, &names->info_dwo)
9932 || section_is_p (sectp->name, &names->types_dwo))
9933 {
9934 /* There can be only one. */
9935 if (sections->info_or_types.s.section != NULL)
9936 return 0;
9937 sections->info_or_types.s.section = sectp;
9938 sections->info_or_types.size = bfd_get_section_size (sectp);
9939 }
9940 else if (section_is_p (sectp->name, &names->line_dwo))
9941 {
9942 /* There can be only one. */
9943 if (sections->line.s.section != NULL)
9944 return 0;
9945 sections->line.s.section = sectp;
9946 sections->line.size = bfd_get_section_size (sectp);
9947 }
9948 else if (section_is_p (sectp->name, &names->loc_dwo))
9949 {
9950 /* There can be only one. */
9951 if (sections->loc.s.section != NULL)
9952 return 0;
9953 sections->loc.s.section = sectp;
9954 sections->loc.size = bfd_get_section_size (sectp);
9955 }
9956 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9957 {
9958 /* There can be only one. */
9959 if (sections->macinfo.s.section != NULL)
9960 return 0;
9961 sections->macinfo.s.section = sectp;
9962 sections->macinfo.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->macro_dwo))
9965 {
9966 /* There can be only one. */
9967 if (sections->macro.s.section != NULL)
9968 return 0;
9969 sections->macro.s.section = sectp;
9970 sections->macro.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9973 {
9974 /* There can be only one. */
9975 if (sections->str_offsets.s.section != NULL)
9976 return 0;
9977 sections->str_offsets.s.section = sectp;
9978 sections->str_offsets.size = bfd_get_section_size (sectp);
9979 }
9980 else
9981 {
9982 /* No other kind of section is valid. */
9983 return 0;
9984 }
9985
9986 return 1;
9987 }
9988
9989 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9990 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9991 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9992 This is for DWP version 1 files. */
9993
9994 static struct dwo_unit *
9995 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9996 uint32_t unit_index,
9997 const char *comp_dir,
9998 ULONGEST signature, int is_debug_types)
9999 {
10000 struct objfile *objfile = dwarf2_per_objfile->objfile;
10001 const struct dwp_hash_table *dwp_htab =
10002 is_debug_types ? dwp_file->tus : dwp_file->cus;
10003 bfd *dbfd = dwp_file->dbfd;
10004 const char *kind = is_debug_types ? "TU" : "CU";
10005 struct dwo_file *dwo_file;
10006 struct dwo_unit *dwo_unit;
10007 struct virtual_v1_dwo_sections sections;
10008 void **dwo_file_slot;
10009 char *virtual_dwo_name;
10010 struct dwarf2_section_info *cutu;
10011 struct cleanup *cleanups;
10012 int i;
10013
10014 gdb_assert (dwp_file->version == 1);
10015
10016 if (dwarf_read_debug)
10017 {
10018 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10019 kind,
10020 pulongest (unit_index), hex_string (signature),
10021 dwp_file->name);
10022 }
10023
10024 /* Fetch the sections of this DWO unit.
10025 Put a limit on the number of sections we look for so that bad data
10026 doesn't cause us to loop forever. */
10027
10028 #define MAX_NR_V1_DWO_SECTIONS \
10029 (1 /* .debug_info or .debug_types */ \
10030 + 1 /* .debug_abbrev */ \
10031 + 1 /* .debug_line */ \
10032 + 1 /* .debug_loc */ \
10033 + 1 /* .debug_str_offsets */ \
10034 + 1 /* .debug_macro or .debug_macinfo */ \
10035 + 1 /* trailing zero */)
10036
10037 memset (&sections, 0, sizeof (sections));
10038 cleanups = make_cleanup (null_cleanup, 0);
10039
10040 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10041 {
10042 asection *sectp;
10043 uint32_t section_nr =
10044 read_4_bytes (dbfd,
10045 dwp_htab->section_pool.v1.indices
10046 + (unit_index + i) * sizeof (uint32_t));
10047
10048 if (section_nr == 0)
10049 break;
10050 if (section_nr >= dwp_file->num_sections)
10051 {
10052 error (_("Dwarf Error: bad DWP hash table, section number too large"
10053 " [in module %s]"),
10054 dwp_file->name);
10055 }
10056
10057 sectp = dwp_file->elf_sections[section_nr];
10058 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10059 {
10060 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10061 " [in module %s]"),
10062 dwp_file->name);
10063 }
10064 }
10065
10066 if (i < 2
10067 || dwarf2_section_empty_p (&sections.info_or_types)
10068 || dwarf2_section_empty_p (&sections.abbrev))
10069 {
10070 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10071 " [in module %s]"),
10072 dwp_file->name);
10073 }
10074 if (i == MAX_NR_V1_DWO_SECTIONS)
10075 {
10076 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10077 " [in module %s]"),
10078 dwp_file->name);
10079 }
10080
10081 /* It's easier for the rest of the code if we fake a struct dwo_file and
10082 have dwo_unit "live" in that. At least for now.
10083
10084 The DWP file can be made up of a random collection of CUs and TUs.
10085 However, for each CU + set of TUs that came from the same original DWO
10086 file, we can combine them back into a virtual DWO file to save space
10087 (fewer struct dwo_file objects to allocate). Remember that for really
10088 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10089
10090 virtual_dwo_name =
10091 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10092 get_section_id (&sections.abbrev),
10093 get_section_id (&sections.line),
10094 get_section_id (&sections.loc),
10095 get_section_id (&sections.str_offsets));
10096 make_cleanup (xfree, virtual_dwo_name);
10097 /* Can we use an existing virtual DWO file? */
10098 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10099 /* Create one if necessary. */
10100 if (*dwo_file_slot == NULL)
10101 {
10102 if (dwarf_read_debug)
10103 {
10104 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10105 virtual_dwo_name);
10106 }
10107 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10108 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10109 virtual_dwo_name,
10110 strlen (virtual_dwo_name));
10111 dwo_file->comp_dir = comp_dir;
10112 dwo_file->sections.abbrev = sections.abbrev;
10113 dwo_file->sections.line = sections.line;
10114 dwo_file->sections.loc = sections.loc;
10115 dwo_file->sections.macinfo = sections.macinfo;
10116 dwo_file->sections.macro = sections.macro;
10117 dwo_file->sections.str_offsets = sections.str_offsets;
10118 /* The "str" section is global to the entire DWP file. */
10119 dwo_file->sections.str = dwp_file->sections.str;
10120 /* The info or types section is assigned below to dwo_unit,
10121 there's no need to record it in dwo_file.
10122 Also, we can't simply record type sections in dwo_file because
10123 we record a pointer into the vector in dwo_unit. As we collect more
10124 types we'll grow the vector and eventually have to reallocate space
10125 for it, invalidating all copies of pointers into the previous
10126 contents. */
10127 *dwo_file_slot = dwo_file;
10128 }
10129 else
10130 {
10131 if (dwarf_read_debug)
10132 {
10133 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10134 virtual_dwo_name);
10135 }
10136 dwo_file = *dwo_file_slot;
10137 }
10138 do_cleanups (cleanups);
10139
10140 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10141 dwo_unit->dwo_file = dwo_file;
10142 dwo_unit->signature = signature;
10143 dwo_unit->section =
10144 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10145 *dwo_unit->section = sections.info_or_types;
10146 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10147
10148 return dwo_unit;
10149 }
10150
10151 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10152 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10153 piece within that section used by a TU/CU, return a virtual section
10154 of just that piece. */
10155
10156 static struct dwarf2_section_info
10157 create_dwp_v2_section (struct dwarf2_section_info *section,
10158 bfd_size_type offset, bfd_size_type size)
10159 {
10160 struct dwarf2_section_info result;
10161 asection *sectp;
10162
10163 gdb_assert (section != NULL);
10164 gdb_assert (!section->is_virtual);
10165
10166 memset (&result, 0, sizeof (result));
10167 result.s.containing_section = section;
10168 result.is_virtual = 1;
10169
10170 if (size == 0)
10171 return result;
10172
10173 sectp = get_section_bfd_section (section);
10174
10175 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10176 bounds of the real section. This is a pretty-rare event, so just
10177 flag an error (easier) instead of a warning and trying to cope. */
10178 if (sectp == NULL
10179 || offset + size > bfd_get_section_size (sectp))
10180 {
10181 bfd *abfd = sectp->owner;
10182
10183 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10184 " in section %s [in module %s]"),
10185 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10186 objfile_name (dwarf2_per_objfile->objfile));
10187 }
10188
10189 result.virtual_offset = offset;
10190 result.size = size;
10191 return result;
10192 }
10193
10194 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10195 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10196 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10197 This is for DWP version 2 files. */
10198
10199 static struct dwo_unit *
10200 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10201 uint32_t unit_index,
10202 const char *comp_dir,
10203 ULONGEST signature, int is_debug_types)
10204 {
10205 struct objfile *objfile = dwarf2_per_objfile->objfile;
10206 const struct dwp_hash_table *dwp_htab =
10207 is_debug_types ? dwp_file->tus : dwp_file->cus;
10208 bfd *dbfd = dwp_file->dbfd;
10209 const char *kind = is_debug_types ? "TU" : "CU";
10210 struct dwo_file *dwo_file;
10211 struct dwo_unit *dwo_unit;
10212 struct virtual_v2_dwo_sections sections;
10213 void **dwo_file_slot;
10214 char *virtual_dwo_name;
10215 struct dwarf2_section_info *cutu;
10216 struct cleanup *cleanups;
10217 int i;
10218
10219 gdb_assert (dwp_file->version == 2);
10220
10221 if (dwarf_read_debug)
10222 {
10223 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10224 kind,
10225 pulongest (unit_index), hex_string (signature),
10226 dwp_file->name);
10227 }
10228
10229 /* Fetch the section offsets of this DWO unit. */
10230
10231 memset (&sections, 0, sizeof (sections));
10232 cleanups = make_cleanup (null_cleanup, 0);
10233
10234 for (i = 0; i < dwp_htab->nr_columns; ++i)
10235 {
10236 uint32_t offset = read_4_bytes (dbfd,
10237 dwp_htab->section_pool.v2.offsets
10238 + (((unit_index - 1) * dwp_htab->nr_columns
10239 + i)
10240 * sizeof (uint32_t)));
10241 uint32_t size = read_4_bytes (dbfd,
10242 dwp_htab->section_pool.v2.sizes
10243 + (((unit_index - 1) * dwp_htab->nr_columns
10244 + i)
10245 * sizeof (uint32_t)));
10246
10247 switch (dwp_htab->section_pool.v2.section_ids[i])
10248 {
10249 case DW_SECT_INFO:
10250 case DW_SECT_TYPES:
10251 sections.info_or_types_offset = offset;
10252 sections.info_or_types_size = size;
10253 break;
10254 case DW_SECT_ABBREV:
10255 sections.abbrev_offset = offset;
10256 sections.abbrev_size = size;
10257 break;
10258 case DW_SECT_LINE:
10259 sections.line_offset = offset;
10260 sections.line_size = size;
10261 break;
10262 case DW_SECT_LOC:
10263 sections.loc_offset = offset;
10264 sections.loc_size = size;
10265 break;
10266 case DW_SECT_STR_OFFSETS:
10267 sections.str_offsets_offset = offset;
10268 sections.str_offsets_size = size;
10269 break;
10270 case DW_SECT_MACINFO:
10271 sections.macinfo_offset = offset;
10272 sections.macinfo_size = size;
10273 break;
10274 case DW_SECT_MACRO:
10275 sections.macro_offset = offset;
10276 sections.macro_size = size;
10277 break;
10278 }
10279 }
10280
10281 /* It's easier for the rest of the code if we fake a struct dwo_file and
10282 have dwo_unit "live" in that. At least for now.
10283
10284 The DWP file can be made up of a random collection of CUs and TUs.
10285 However, for each CU + set of TUs that came from the same original DWO
10286 file, we can combine them back into a virtual DWO file to save space
10287 (fewer struct dwo_file objects to allocate). Remember that for really
10288 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10289
10290 virtual_dwo_name =
10291 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10292 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10293 (long) (sections.line_size ? sections.line_offset : 0),
10294 (long) (sections.loc_size ? sections.loc_offset : 0),
10295 (long) (sections.str_offsets_size
10296 ? sections.str_offsets_offset : 0));
10297 make_cleanup (xfree, virtual_dwo_name);
10298 /* Can we use an existing virtual DWO file? */
10299 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10300 /* Create one if necessary. */
10301 if (*dwo_file_slot == NULL)
10302 {
10303 if (dwarf_read_debug)
10304 {
10305 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10306 virtual_dwo_name);
10307 }
10308 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10309 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10310 virtual_dwo_name,
10311 strlen (virtual_dwo_name));
10312 dwo_file->comp_dir = comp_dir;
10313 dwo_file->sections.abbrev =
10314 create_dwp_v2_section (&dwp_file->sections.abbrev,
10315 sections.abbrev_offset, sections.abbrev_size);
10316 dwo_file->sections.line =
10317 create_dwp_v2_section (&dwp_file->sections.line,
10318 sections.line_offset, sections.line_size);
10319 dwo_file->sections.loc =
10320 create_dwp_v2_section (&dwp_file->sections.loc,
10321 sections.loc_offset, sections.loc_size);
10322 dwo_file->sections.macinfo =
10323 create_dwp_v2_section (&dwp_file->sections.macinfo,
10324 sections.macinfo_offset, sections.macinfo_size);
10325 dwo_file->sections.macro =
10326 create_dwp_v2_section (&dwp_file->sections.macro,
10327 sections.macro_offset, sections.macro_size);
10328 dwo_file->sections.str_offsets =
10329 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10330 sections.str_offsets_offset,
10331 sections.str_offsets_size);
10332 /* The "str" section is global to the entire DWP file. */
10333 dwo_file->sections.str = dwp_file->sections.str;
10334 /* The info or types section is assigned below to dwo_unit,
10335 there's no need to record it in dwo_file.
10336 Also, we can't simply record type sections in dwo_file because
10337 we record a pointer into the vector in dwo_unit. As we collect more
10338 types we'll grow the vector and eventually have to reallocate space
10339 for it, invalidating all copies of pointers into the previous
10340 contents. */
10341 *dwo_file_slot = dwo_file;
10342 }
10343 else
10344 {
10345 if (dwarf_read_debug)
10346 {
10347 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10348 virtual_dwo_name);
10349 }
10350 dwo_file = *dwo_file_slot;
10351 }
10352 do_cleanups (cleanups);
10353
10354 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10355 dwo_unit->dwo_file = dwo_file;
10356 dwo_unit->signature = signature;
10357 dwo_unit->section =
10358 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10359 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10360 ? &dwp_file->sections.types
10361 : &dwp_file->sections.info,
10362 sections.info_or_types_offset,
10363 sections.info_or_types_size);
10364 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10365
10366 return dwo_unit;
10367 }
10368
10369 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10370 Returns NULL if the signature isn't found. */
10371
10372 static struct dwo_unit *
10373 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10374 ULONGEST signature, int is_debug_types)
10375 {
10376 const struct dwp_hash_table *dwp_htab =
10377 is_debug_types ? dwp_file->tus : dwp_file->cus;
10378 bfd *dbfd = dwp_file->dbfd;
10379 uint32_t mask = dwp_htab->nr_slots - 1;
10380 uint32_t hash = signature & mask;
10381 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10382 unsigned int i;
10383 void **slot;
10384 struct dwo_unit find_dwo_cu, *dwo_cu;
10385
10386 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10387 find_dwo_cu.signature = signature;
10388 slot = htab_find_slot (is_debug_types
10389 ? dwp_file->loaded_tus
10390 : dwp_file->loaded_cus,
10391 &find_dwo_cu, INSERT);
10392
10393 if (*slot != NULL)
10394 return *slot;
10395
10396 /* Use a for loop so that we don't loop forever on bad debug info. */
10397 for (i = 0; i < dwp_htab->nr_slots; ++i)
10398 {
10399 ULONGEST signature_in_table;
10400
10401 signature_in_table =
10402 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10403 if (signature_in_table == signature)
10404 {
10405 uint32_t unit_index =
10406 read_4_bytes (dbfd,
10407 dwp_htab->unit_table + hash * sizeof (uint32_t));
10408
10409 if (dwp_file->version == 1)
10410 {
10411 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10412 comp_dir, signature,
10413 is_debug_types);
10414 }
10415 else
10416 {
10417 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10418 comp_dir, signature,
10419 is_debug_types);
10420 }
10421 return *slot;
10422 }
10423 if (signature_in_table == 0)
10424 return NULL;
10425 hash = (hash + hash2) & mask;
10426 }
10427
10428 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10429 " [in module %s]"),
10430 dwp_file->name);
10431 }
10432
10433 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10434 Open the file specified by FILE_NAME and hand it off to BFD for
10435 preliminary analysis. Return a newly initialized bfd *, which
10436 includes a canonicalized copy of FILE_NAME.
10437 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10438 SEARCH_CWD is true if the current directory is to be searched.
10439 It will be searched before debug-file-directory.
10440 If successful, the file is added to the bfd include table of the
10441 objfile's bfd (see gdb_bfd_record_inclusion).
10442 If unable to find/open the file, return NULL.
10443 NOTE: This function is derived from symfile_bfd_open. */
10444
10445 static bfd *
10446 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10447 {
10448 bfd *sym_bfd;
10449 int desc, flags;
10450 char *absolute_name;
10451 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10452 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10453 to debug_file_directory. */
10454 char *search_path;
10455 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10456
10457 if (search_cwd)
10458 {
10459 if (*debug_file_directory != '\0')
10460 search_path = concat (".", dirname_separator_string,
10461 debug_file_directory, NULL);
10462 else
10463 search_path = xstrdup (".");
10464 }
10465 else
10466 search_path = xstrdup (debug_file_directory);
10467
10468 flags = OPF_RETURN_REALPATH;
10469 if (is_dwp)
10470 flags |= OPF_SEARCH_IN_PATH;
10471 desc = openp (search_path, flags, file_name,
10472 O_RDONLY | O_BINARY, &absolute_name);
10473 xfree (search_path);
10474 if (desc < 0)
10475 return NULL;
10476
10477 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10478 xfree (absolute_name);
10479 if (sym_bfd == NULL)
10480 return NULL;
10481 bfd_set_cacheable (sym_bfd, 1);
10482
10483 if (!bfd_check_format (sym_bfd, bfd_object))
10484 {
10485 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10486 return NULL;
10487 }
10488
10489 /* Success. Record the bfd as having been included by the objfile's bfd.
10490 This is important because things like demangled_names_hash lives in the
10491 objfile's per_bfd space and may have references to things like symbol
10492 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10493 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10494
10495 return sym_bfd;
10496 }
10497
10498 /* Try to open DWO file FILE_NAME.
10499 COMP_DIR is the DW_AT_comp_dir attribute.
10500 The result is the bfd handle of the file.
10501 If there is a problem finding or opening the file, return NULL.
10502 Upon success, the canonicalized path of the file is stored in the bfd,
10503 same as symfile_bfd_open. */
10504
10505 static bfd *
10506 open_dwo_file (const char *file_name, const char *comp_dir)
10507 {
10508 bfd *abfd;
10509
10510 if (IS_ABSOLUTE_PATH (file_name))
10511 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10512
10513 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10514
10515 if (comp_dir != NULL)
10516 {
10517 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10518
10519 /* NOTE: If comp_dir is a relative path, this will also try the
10520 search path, which seems useful. */
10521 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10522 xfree (path_to_try);
10523 if (abfd != NULL)
10524 return abfd;
10525 }
10526
10527 /* That didn't work, try debug-file-directory, which, despite its name,
10528 is a list of paths. */
10529
10530 if (*debug_file_directory == '\0')
10531 return NULL;
10532
10533 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10534 }
10535
10536 /* This function is mapped across the sections and remembers the offset and
10537 size of each of the DWO debugging sections we are interested in. */
10538
10539 static void
10540 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10541 {
10542 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10543 const struct dwop_section_names *names = &dwop_section_names;
10544
10545 if (section_is_p (sectp->name, &names->abbrev_dwo))
10546 {
10547 dwo_sections->abbrev.s.section = sectp;
10548 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10549 }
10550 else if (section_is_p (sectp->name, &names->info_dwo))
10551 {
10552 dwo_sections->info.s.section = sectp;
10553 dwo_sections->info.size = bfd_get_section_size (sectp);
10554 }
10555 else if (section_is_p (sectp->name, &names->line_dwo))
10556 {
10557 dwo_sections->line.s.section = sectp;
10558 dwo_sections->line.size = bfd_get_section_size (sectp);
10559 }
10560 else if (section_is_p (sectp->name, &names->loc_dwo))
10561 {
10562 dwo_sections->loc.s.section = sectp;
10563 dwo_sections->loc.size = bfd_get_section_size (sectp);
10564 }
10565 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10566 {
10567 dwo_sections->macinfo.s.section = sectp;
10568 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10569 }
10570 else if (section_is_p (sectp->name, &names->macro_dwo))
10571 {
10572 dwo_sections->macro.s.section = sectp;
10573 dwo_sections->macro.size = bfd_get_section_size (sectp);
10574 }
10575 else if (section_is_p (sectp->name, &names->str_dwo))
10576 {
10577 dwo_sections->str.s.section = sectp;
10578 dwo_sections->str.size = bfd_get_section_size (sectp);
10579 }
10580 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10581 {
10582 dwo_sections->str_offsets.s.section = sectp;
10583 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10584 }
10585 else if (section_is_p (sectp->name, &names->types_dwo))
10586 {
10587 struct dwarf2_section_info type_section;
10588
10589 memset (&type_section, 0, sizeof (type_section));
10590 type_section.s.section = sectp;
10591 type_section.size = bfd_get_section_size (sectp);
10592 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10593 &type_section);
10594 }
10595 }
10596
10597 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10598 by PER_CU. This is for the non-DWP case.
10599 The result is NULL if DWO_NAME can't be found. */
10600
10601 static struct dwo_file *
10602 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10603 const char *dwo_name, const char *comp_dir)
10604 {
10605 struct objfile *objfile = dwarf2_per_objfile->objfile;
10606 struct dwo_file *dwo_file;
10607 bfd *dbfd;
10608 struct cleanup *cleanups;
10609
10610 dbfd = open_dwo_file (dwo_name, comp_dir);
10611 if (dbfd == NULL)
10612 {
10613 if (dwarf_read_debug)
10614 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10615 return NULL;
10616 }
10617 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10618 dwo_file->dwo_name = dwo_name;
10619 dwo_file->comp_dir = comp_dir;
10620 dwo_file->dbfd = dbfd;
10621
10622 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10623
10624 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10625
10626 dwo_file->cu = create_dwo_cu (dwo_file);
10627
10628 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10629 dwo_file->sections.types);
10630
10631 discard_cleanups (cleanups);
10632
10633 if (dwarf_read_debug)
10634 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10635
10636 return dwo_file;
10637 }
10638
10639 /* This function is mapped across the sections and remembers the offset and
10640 size of each of the DWP debugging sections common to version 1 and 2 that
10641 we are interested in. */
10642
10643 static void
10644 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10645 void *dwp_file_ptr)
10646 {
10647 struct dwp_file *dwp_file = dwp_file_ptr;
10648 const struct dwop_section_names *names = &dwop_section_names;
10649 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10650
10651 /* Record the ELF section number for later lookup: this is what the
10652 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10653 gdb_assert (elf_section_nr < dwp_file->num_sections);
10654 dwp_file->elf_sections[elf_section_nr] = sectp;
10655
10656 /* Look for specific sections that we need. */
10657 if (section_is_p (sectp->name, &names->str_dwo))
10658 {
10659 dwp_file->sections.str.s.section = sectp;
10660 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10661 }
10662 else if (section_is_p (sectp->name, &names->cu_index))
10663 {
10664 dwp_file->sections.cu_index.s.section = sectp;
10665 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10666 }
10667 else if (section_is_p (sectp->name, &names->tu_index))
10668 {
10669 dwp_file->sections.tu_index.s.section = sectp;
10670 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10671 }
10672 }
10673
10674 /* This function is mapped across the sections and remembers the offset and
10675 size of each of the DWP version 2 debugging sections that we are interested
10676 in. This is split into a separate function because we don't know if we
10677 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10678
10679 static void
10680 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10681 {
10682 struct dwp_file *dwp_file = dwp_file_ptr;
10683 const struct dwop_section_names *names = &dwop_section_names;
10684 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10685
10686 /* Record the ELF section number for later lookup: this is what the
10687 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10688 gdb_assert (elf_section_nr < dwp_file->num_sections);
10689 dwp_file->elf_sections[elf_section_nr] = sectp;
10690
10691 /* Look for specific sections that we need. */
10692 if (section_is_p (sectp->name, &names->abbrev_dwo))
10693 {
10694 dwp_file->sections.abbrev.s.section = sectp;
10695 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10696 }
10697 else if (section_is_p (sectp->name, &names->info_dwo))
10698 {
10699 dwp_file->sections.info.s.section = sectp;
10700 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10701 }
10702 else if (section_is_p (sectp->name, &names->line_dwo))
10703 {
10704 dwp_file->sections.line.s.section = sectp;
10705 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10706 }
10707 else if (section_is_p (sectp->name, &names->loc_dwo))
10708 {
10709 dwp_file->sections.loc.s.section = sectp;
10710 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10711 }
10712 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10713 {
10714 dwp_file->sections.macinfo.s.section = sectp;
10715 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10716 }
10717 else if (section_is_p (sectp->name, &names->macro_dwo))
10718 {
10719 dwp_file->sections.macro.s.section = sectp;
10720 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10721 }
10722 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10723 {
10724 dwp_file->sections.str_offsets.s.section = sectp;
10725 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10726 }
10727 else if (section_is_p (sectp->name, &names->types_dwo))
10728 {
10729 dwp_file->sections.types.s.section = sectp;
10730 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10731 }
10732 }
10733
10734 /* Hash function for dwp_file loaded CUs/TUs. */
10735
10736 static hashval_t
10737 hash_dwp_loaded_cutus (const void *item)
10738 {
10739 const struct dwo_unit *dwo_unit = item;
10740
10741 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10742 return dwo_unit->signature;
10743 }
10744
10745 /* Equality function for dwp_file loaded CUs/TUs. */
10746
10747 static int
10748 eq_dwp_loaded_cutus (const void *a, const void *b)
10749 {
10750 const struct dwo_unit *dua = a;
10751 const struct dwo_unit *dub = b;
10752
10753 return dua->signature == dub->signature;
10754 }
10755
10756 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10757
10758 static htab_t
10759 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10760 {
10761 return htab_create_alloc_ex (3,
10762 hash_dwp_loaded_cutus,
10763 eq_dwp_loaded_cutus,
10764 NULL,
10765 &objfile->objfile_obstack,
10766 hashtab_obstack_allocate,
10767 dummy_obstack_deallocate);
10768 }
10769
10770 /* Try to open DWP file FILE_NAME.
10771 The result is the bfd handle of the file.
10772 If there is a problem finding or opening the file, return NULL.
10773 Upon success, the canonicalized path of the file is stored in the bfd,
10774 same as symfile_bfd_open. */
10775
10776 static bfd *
10777 open_dwp_file (const char *file_name)
10778 {
10779 bfd *abfd;
10780
10781 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10782 if (abfd != NULL)
10783 return abfd;
10784
10785 /* Work around upstream bug 15652.
10786 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10787 [Whether that's a "bug" is debatable, but it is getting in our way.]
10788 We have no real idea where the dwp file is, because gdb's realpath-ing
10789 of the executable's path may have discarded the needed info.
10790 [IWBN if the dwp file name was recorded in the executable, akin to
10791 .gnu_debuglink, but that doesn't exist yet.]
10792 Strip the directory from FILE_NAME and search again. */
10793 if (*debug_file_directory != '\0')
10794 {
10795 /* Don't implicitly search the current directory here.
10796 If the user wants to search "." to handle this case,
10797 it must be added to debug-file-directory. */
10798 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10799 0 /*search_cwd*/);
10800 }
10801
10802 return NULL;
10803 }
10804
10805 /* Initialize the use of the DWP file for the current objfile.
10806 By convention the name of the DWP file is ${objfile}.dwp.
10807 The result is NULL if it can't be found. */
10808
10809 static struct dwp_file *
10810 open_and_init_dwp_file (void)
10811 {
10812 struct objfile *objfile = dwarf2_per_objfile->objfile;
10813 struct dwp_file *dwp_file;
10814 char *dwp_name;
10815 bfd *dbfd;
10816 struct cleanup *cleanups;
10817
10818 /* Try to find first .dwp for the binary file before any symbolic links
10819 resolving. */
10820 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10821 cleanups = make_cleanup (xfree, dwp_name);
10822
10823 dbfd = open_dwp_file (dwp_name);
10824 if (dbfd == NULL
10825 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10826 {
10827 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10828 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10829 make_cleanup (xfree, dwp_name);
10830 dbfd = open_dwp_file (dwp_name);
10831 }
10832
10833 if (dbfd == NULL)
10834 {
10835 if (dwarf_read_debug)
10836 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10837 do_cleanups (cleanups);
10838 return NULL;
10839 }
10840 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10841 dwp_file->name = bfd_get_filename (dbfd);
10842 dwp_file->dbfd = dbfd;
10843 do_cleanups (cleanups);
10844
10845 /* +1: section 0 is unused */
10846 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10847 dwp_file->elf_sections =
10848 OBSTACK_CALLOC (&objfile->objfile_obstack,
10849 dwp_file->num_sections, asection *);
10850
10851 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10852
10853 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10854
10855 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10856
10857 /* The DWP file version is stored in the hash table. Oh well. */
10858 if (dwp_file->cus->version != dwp_file->tus->version)
10859 {
10860 /* Technically speaking, we should try to limp along, but this is
10861 pretty bizarre. We use pulongest here because that's the established
10862 portability solution (e.g, we cannot use %u for uint32_t). */
10863 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10864 " TU version %s [in DWP file %s]"),
10865 pulongest (dwp_file->cus->version),
10866 pulongest (dwp_file->tus->version), dwp_name);
10867 }
10868 dwp_file->version = dwp_file->cus->version;
10869
10870 if (dwp_file->version == 2)
10871 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10872
10873 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10874 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10875
10876 if (dwarf_read_debug)
10877 {
10878 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10879 fprintf_unfiltered (gdb_stdlog,
10880 " %s CUs, %s TUs\n",
10881 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10882 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10883 }
10884
10885 return dwp_file;
10886 }
10887
10888 /* Wrapper around open_and_init_dwp_file, only open it once. */
10889
10890 static struct dwp_file *
10891 get_dwp_file (void)
10892 {
10893 if (! dwarf2_per_objfile->dwp_checked)
10894 {
10895 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10896 dwarf2_per_objfile->dwp_checked = 1;
10897 }
10898 return dwarf2_per_objfile->dwp_file;
10899 }
10900
10901 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10902 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10903 or in the DWP file for the objfile, referenced by THIS_UNIT.
10904 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10905 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10906
10907 This is called, for example, when wanting to read a variable with a
10908 complex location. Therefore we don't want to do file i/o for every call.
10909 Therefore we don't want to look for a DWO file on every call.
10910 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10911 then we check if we've already seen DWO_NAME, and only THEN do we check
10912 for a DWO file.
10913
10914 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10915 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10916
10917 static struct dwo_unit *
10918 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10919 const char *dwo_name, const char *comp_dir,
10920 ULONGEST signature, int is_debug_types)
10921 {
10922 struct objfile *objfile = dwarf2_per_objfile->objfile;
10923 const char *kind = is_debug_types ? "TU" : "CU";
10924 void **dwo_file_slot;
10925 struct dwo_file *dwo_file;
10926 struct dwp_file *dwp_file;
10927
10928 /* First see if there's a DWP file.
10929 If we have a DWP file but didn't find the DWO inside it, don't
10930 look for the original DWO file. It makes gdb behave differently
10931 depending on whether one is debugging in the build tree. */
10932
10933 dwp_file = get_dwp_file ();
10934 if (dwp_file != NULL)
10935 {
10936 const struct dwp_hash_table *dwp_htab =
10937 is_debug_types ? dwp_file->tus : dwp_file->cus;
10938
10939 if (dwp_htab != NULL)
10940 {
10941 struct dwo_unit *dwo_cutu =
10942 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10943 signature, is_debug_types);
10944
10945 if (dwo_cutu != NULL)
10946 {
10947 if (dwarf_read_debug)
10948 {
10949 fprintf_unfiltered (gdb_stdlog,
10950 "Virtual DWO %s %s found: @%s\n",
10951 kind, hex_string (signature),
10952 host_address_to_string (dwo_cutu));
10953 }
10954 return dwo_cutu;
10955 }
10956 }
10957 }
10958 else
10959 {
10960 /* No DWP file, look for the DWO file. */
10961
10962 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10963 if (*dwo_file_slot == NULL)
10964 {
10965 /* Read in the file and build a table of the CUs/TUs it contains. */
10966 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10967 }
10968 /* NOTE: This will be NULL if unable to open the file. */
10969 dwo_file = *dwo_file_slot;
10970
10971 if (dwo_file != NULL)
10972 {
10973 struct dwo_unit *dwo_cutu = NULL;
10974
10975 if (is_debug_types && dwo_file->tus)
10976 {
10977 struct dwo_unit find_dwo_cutu;
10978
10979 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10980 find_dwo_cutu.signature = signature;
10981 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10982 }
10983 else if (!is_debug_types && dwo_file->cu)
10984 {
10985 if (signature == dwo_file->cu->signature)
10986 dwo_cutu = dwo_file->cu;
10987 }
10988
10989 if (dwo_cutu != NULL)
10990 {
10991 if (dwarf_read_debug)
10992 {
10993 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10994 kind, dwo_name, hex_string (signature),
10995 host_address_to_string (dwo_cutu));
10996 }
10997 return dwo_cutu;
10998 }
10999 }
11000 }
11001
11002 /* We didn't find it. This could mean a dwo_id mismatch, or
11003 someone deleted the DWO/DWP file, or the search path isn't set up
11004 correctly to find the file. */
11005
11006 if (dwarf_read_debug)
11007 {
11008 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11009 kind, dwo_name, hex_string (signature));
11010 }
11011
11012 /* This is a warning and not a complaint because it can be caused by
11013 pilot error (e.g., user accidentally deleting the DWO). */
11014 {
11015 /* Print the name of the DWP file if we looked there, helps the user
11016 better diagnose the problem. */
11017 char *dwp_text = NULL;
11018 struct cleanup *cleanups;
11019
11020 if (dwp_file != NULL)
11021 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11022 cleanups = make_cleanup (xfree, dwp_text);
11023
11024 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11025 " [in module %s]"),
11026 kind, dwo_name, hex_string (signature),
11027 dwp_text != NULL ? dwp_text : "",
11028 this_unit->is_debug_types ? "TU" : "CU",
11029 this_unit->offset.sect_off, objfile_name (objfile));
11030
11031 do_cleanups (cleanups);
11032 }
11033 return NULL;
11034 }
11035
11036 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11037 See lookup_dwo_cutu_unit for details. */
11038
11039 static struct dwo_unit *
11040 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11041 const char *dwo_name, const char *comp_dir,
11042 ULONGEST signature)
11043 {
11044 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11045 }
11046
11047 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11048 See lookup_dwo_cutu_unit for details. */
11049
11050 static struct dwo_unit *
11051 lookup_dwo_type_unit (struct signatured_type *this_tu,
11052 const char *dwo_name, const char *comp_dir)
11053 {
11054 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11055 }
11056
11057 /* Traversal function for queue_and_load_all_dwo_tus. */
11058
11059 static int
11060 queue_and_load_dwo_tu (void **slot, void *info)
11061 {
11062 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11063 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11064 ULONGEST signature = dwo_unit->signature;
11065 struct signatured_type *sig_type =
11066 lookup_dwo_signatured_type (per_cu->cu, signature);
11067
11068 if (sig_type != NULL)
11069 {
11070 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11071
11072 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11073 a real dependency of PER_CU on SIG_TYPE. That is detected later
11074 while processing PER_CU. */
11075 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11076 load_full_type_unit (sig_cu);
11077 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11078 }
11079
11080 return 1;
11081 }
11082
11083 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11084 The DWO may have the only definition of the type, though it may not be
11085 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11086 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11087
11088 static void
11089 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11090 {
11091 struct dwo_unit *dwo_unit;
11092 struct dwo_file *dwo_file;
11093
11094 gdb_assert (!per_cu->is_debug_types);
11095 gdb_assert (get_dwp_file () == NULL);
11096 gdb_assert (per_cu->cu != NULL);
11097
11098 dwo_unit = per_cu->cu->dwo_unit;
11099 gdb_assert (dwo_unit != NULL);
11100
11101 dwo_file = dwo_unit->dwo_file;
11102 if (dwo_file->tus != NULL)
11103 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11104 }
11105
11106 /* Free all resources associated with DWO_FILE.
11107 Close the DWO file and munmap the sections.
11108 All memory should be on the objfile obstack. */
11109
11110 static void
11111 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11112 {
11113 int ix;
11114 struct dwarf2_section_info *section;
11115
11116 /* Note: dbfd is NULL for virtual DWO files. */
11117 gdb_bfd_unref (dwo_file->dbfd);
11118
11119 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11120 }
11121
11122 /* Wrapper for free_dwo_file for use in cleanups. */
11123
11124 static void
11125 free_dwo_file_cleanup (void *arg)
11126 {
11127 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11128 struct objfile *objfile = dwarf2_per_objfile->objfile;
11129
11130 free_dwo_file (dwo_file, objfile);
11131 }
11132
11133 /* Traversal function for free_dwo_files. */
11134
11135 static int
11136 free_dwo_file_from_slot (void **slot, void *info)
11137 {
11138 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11139 struct objfile *objfile = (struct objfile *) info;
11140
11141 free_dwo_file (dwo_file, objfile);
11142
11143 return 1;
11144 }
11145
11146 /* Free all resources associated with DWO_FILES. */
11147
11148 static void
11149 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11150 {
11151 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11152 }
11153 \f
11154 /* Read in various DIEs. */
11155
11156 /* qsort helper for inherit_abstract_dies. */
11157
11158 static int
11159 unsigned_int_compar (const void *ap, const void *bp)
11160 {
11161 unsigned int a = *(unsigned int *) ap;
11162 unsigned int b = *(unsigned int *) bp;
11163
11164 return (a > b) - (b > a);
11165 }
11166
11167 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11168 Inherit only the children of the DW_AT_abstract_origin DIE not being
11169 already referenced by DW_AT_abstract_origin from the children of the
11170 current DIE. */
11171
11172 static void
11173 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11174 {
11175 struct die_info *child_die;
11176 unsigned die_children_count;
11177 /* CU offsets which were referenced by children of the current DIE. */
11178 sect_offset *offsets;
11179 sect_offset *offsets_end, *offsetp;
11180 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11181 struct die_info *origin_die;
11182 /* Iterator of the ORIGIN_DIE children. */
11183 struct die_info *origin_child_die;
11184 struct cleanup *cleanups;
11185 struct attribute *attr;
11186 struct dwarf2_cu *origin_cu;
11187 struct pending **origin_previous_list_in_scope;
11188
11189 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11190 if (!attr)
11191 return;
11192
11193 /* Note that following die references may follow to a die in a
11194 different cu. */
11195
11196 origin_cu = cu;
11197 origin_die = follow_die_ref (die, attr, &origin_cu);
11198
11199 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11200 symbols in. */
11201 origin_previous_list_in_scope = origin_cu->list_in_scope;
11202 origin_cu->list_in_scope = cu->list_in_scope;
11203
11204 if (die->tag != origin_die->tag
11205 && !(die->tag == DW_TAG_inlined_subroutine
11206 && origin_die->tag == DW_TAG_subprogram))
11207 complaint (&symfile_complaints,
11208 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11209 die->offset.sect_off, origin_die->offset.sect_off);
11210
11211 child_die = die->child;
11212 die_children_count = 0;
11213 while (child_die && child_die->tag)
11214 {
11215 child_die = sibling_die (child_die);
11216 die_children_count++;
11217 }
11218 offsets = XNEWVEC (sect_offset, die_children_count);
11219 cleanups = make_cleanup (xfree, offsets);
11220
11221 offsets_end = offsets;
11222 for (child_die = die->child;
11223 child_die && child_die->tag;
11224 child_die = sibling_die (child_die))
11225 {
11226 struct die_info *child_origin_die;
11227 struct dwarf2_cu *child_origin_cu;
11228
11229 /* We are trying to process concrete instance entries:
11230 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11231 it's not relevant to our analysis here. i.e. detecting DIEs that are
11232 present in the abstract instance but not referenced in the concrete
11233 one. */
11234 if (child_die->tag == DW_TAG_GNU_call_site)
11235 continue;
11236
11237 /* For each CHILD_DIE, find the corresponding child of
11238 ORIGIN_DIE. If there is more than one layer of
11239 DW_AT_abstract_origin, follow them all; there shouldn't be,
11240 but GCC versions at least through 4.4 generate this (GCC PR
11241 40573). */
11242 child_origin_die = child_die;
11243 child_origin_cu = cu;
11244 while (1)
11245 {
11246 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11247 child_origin_cu);
11248 if (attr == NULL)
11249 break;
11250 child_origin_die = follow_die_ref (child_origin_die, attr,
11251 &child_origin_cu);
11252 }
11253
11254 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11255 counterpart may exist. */
11256 if (child_origin_die != child_die)
11257 {
11258 if (child_die->tag != child_origin_die->tag
11259 && !(child_die->tag == DW_TAG_inlined_subroutine
11260 && child_origin_die->tag == DW_TAG_subprogram))
11261 complaint (&symfile_complaints,
11262 _("Child DIE 0x%x and its abstract origin 0x%x have "
11263 "different tags"), child_die->offset.sect_off,
11264 child_origin_die->offset.sect_off);
11265 if (child_origin_die->parent != origin_die)
11266 complaint (&symfile_complaints,
11267 _("Child DIE 0x%x and its abstract origin 0x%x have "
11268 "different parents"), child_die->offset.sect_off,
11269 child_origin_die->offset.sect_off);
11270 else
11271 *offsets_end++ = child_origin_die->offset;
11272 }
11273 }
11274 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11275 unsigned_int_compar);
11276 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11277 if (offsetp[-1].sect_off == offsetp->sect_off)
11278 complaint (&symfile_complaints,
11279 _("Multiple children of DIE 0x%x refer "
11280 "to DIE 0x%x as their abstract origin"),
11281 die->offset.sect_off, offsetp->sect_off);
11282
11283 offsetp = offsets;
11284 origin_child_die = origin_die->child;
11285 while (origin_child_die && origin_child_die->tag)
11286 {
11287 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11288 while (offsetp < offsets_end
11289 && offsetp->sect_off < origin_child_die->offset.sect_off)
11290 offsetp++;
11291 if (offsetp >= offsets_end
11292 || offsetp->sect_off > origin_child_die->offset.sect_off)
11293 {
11294 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11295 Check whether we're already processing ORIGIN_CHILD_DIE.
11296 This can happen with mutually referenced abstract_origins.
11297 PR 16581. */
11298 if (!origin_child_die->in_process)
11299 process_die (origin_child_die, origin_cu);
11300 }
11301 origin_child_die = sibling_die (origin_child_die);
11302 }
11303 origin_cu->list_in_scope = origin_previous_list_in_scope;
11304
11305 do_cleanups (cleanups);
11306 }
11307
11308 static void
11309 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11310 {
11311 struct objfile *objfile = cu->objfile;
11312 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11313 struct context_stack *newobj;
11314 CORE_ADDR lowpc;
11315 CORE_ADDR highpc;
11316 struct die_info *child_die;
11317 struct attribute *attr, *call_line, *call_file;
11318 const char *name;
11319 CORE_ADDR baseaddr;
11320 struct block *block;
11321 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11322 VEC (symbolp) *template_args = NULL;
11323 struct template_symbol *templ_func = NULL;
11324
11325 if (inlined_func)
11326 {
11327 /* If we do not have call site information, we can't show the
11328 caller of this inlined function. That's too confusing, so
11329 only use the scope for local variables. */
11330 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11331 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11332 if (call_line == NULL || call_file == NULL)
11333 {
11334 read_lexical_block_scope (die, cu);
11335 return;
11336 }
11337 }
11338
11339 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11340
11341 name = dwarf2_name (die, cu);
11342
11343 /* Ignore functions with missing or empty names. These are actually
11344 illegal according to the DWARF standard. */
11345 if (name == NULL)
11346 {
11347 complaint (&symfile_complaints,
11348 _("missing name for subprogram DIE at %d"),
11349 die->offset.sect_off);
11350 return;
11351 }
11352
11353 /* Ignore functions with missing or invalid low and high pc attributes. */
11354 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11355 {
11356 attr = dwarf2_attr (die, DW_AT_external, cu);
11357 if (!attr || !DW_UNSND (attr))
11358 complaint (&symfile_complaints,
11359 _("cannot get low and high bounds "
11360 "for subprogram DIE at %d"),
11361 die->offset.sect_off);
11362 return;
11363 }
11364
11365 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11366 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11367
11368 /* If we have any template arguments, then we must allocate a
11369 different sort of symbol. */
11370 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11371 {
11372 if (child_die->tag == DW_TAG_template_type_param
11373 || child_die->tag == DW_TAG_template_value_param)
11374 {
11375 templ_func = allocate_template_symbol (objfile);
11376 templ_func->base.is_cplus_template_function = 1;
11377 break;
11378 }
11379 }
11380
11381 newobj = push_context (0, lowpc);
11382 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11383 (struct symbol *) templ_func);
11384
11385 /* If there is a location expression for DW_AT_frame_base, record
11386 it. */
11387 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11388 if (attr)
11389 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11390
11391 /* If there is a location for the static link, record it. */
11392 newobj->static_link = NULL;
11393 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11394 if (attr)
11395 {
11396 newobj->static_link = obstack_alloc (&objfile->objfile_obstack,
11397 sizeof (*newobj->static_link));
11398 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11399 }
11400
11401 cu->list_in_scope = &local_symbols;
11402
11403 if (die->child != NULL)
11404 {
11405 child_die = die->child;
11406 while (child_die && child_die->tag)
11407 {
11408 if (child_die->tag == DW_TAG_template_type_param
11409 || child_die->tag == DW_TAG_template_value_param)
11410 {
11411 struct symbol *arg = new_symbol (child_die, NULL, cu);
11412
11413 if (arg != NULL)
11414 VEC_safe_push (symbolp, template_args, arg);
11415 }
11416 else
11417 process_die (child_die, cu);
11418 child_die = sibling_die (child_die);
11419 }
11420 }
11421
11422 inherit_abstract_dies (die, cu);
11423
11424 /* If we have a DW_AT_specification, we might need to import using
11425 directives from the context of the specification DIE. See the
11426 comment in determine_prefix. */
11427 if (cu->language == language_cplus
11428 && dwarf2_attr (die, DW_AT_specification, cu))
11429 {
11430 struct dwarf2_cu *spec_cu = cu;
11431 struct die_info *spec_die = die_specification (die, &spec_cu);
11432
11433 while (spec_die)
11434 {
11435 child_die = spec_die->child;
11436 while (child_die && child_die->tag)
11437 {
11438 if (child_die->tag == DW_TAG_imported_module)
11439 process_die (child_die, spec_cu);
11440 child_die = sibling_die (child_die);
11441 }
11442
11443 /* In some cases, GCC generates specification DIEs that
11444 themselves contain DW_AT_specification attributes. */
11445 spec_die = die_specification (spec_die, &spec_cu);
11446 }
11447 }
11448
11449 newobj = pop_context ();
11450 /* Make a block for the local symbols within. */
11451 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11452 newobj->static_link, lowpc, highpc);
11453
11454 /* For C++, set the block's scope. */
11455 if ((cu->language == language_cplus
11456 || cu->language == language_fortran
11457 || cu->language == language_d)
11458 && cu->processing_has_namespace_info)
11459 block_set_scope (block, determine_prefix (die, cu),
11460 &objfile->objfile_obstack);
11461
11462 /* If we have address ranges, record them. */
11463 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11464
11465 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11466
11467 /* Attach template arguments to function. */
11468 if (! VEC_empty (symbolp, template_args))
11469 {
11470 gdb_assert (templ_func != NULL);
11471
11472 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11473 templ_func->template_arguments
11474 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11475 templ_func->n_template_arguments);
11476 memcpy (templ_func->template_arguments,
11477 VEC_address (symbolp, template_args),
11478 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11479 VEC_free (symbolp, template_args);
11480 }
11481
11482 /* In C++, we can have functions nested inside functions (e.g., when
11483 a function declares a class that has methods). This means that
11484 when we finish processing a function scope, we may need to go
11485 back to building a containing block's symbol lists. */
11486 local_symbols = newobj->locals;
11487 local_using_directives = newobj->local_using_directives;
11488
11489 /* If we've finished processing a top-level function, subsequent
11490 symbols go in the file symbol list. */
11491 if (outermost_context_p ())
11492 cu->list_in_scope = &file_symbols;
11493 }
11494
11495 /* Process all the DIES contained within a lexical block scope. Start
11496 a new scope, process the dies, and then close the scope. */
11497
11498 static void
11499 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11500 {
11501 struct objfile *objfile = cu->objfile;
11502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11503 struct context_stack *newobj;
11504 CORE_ADDR lowpc, highpc;
11505 struct die_info *child_die;
11506 CORE_ADDR baseaddr;
11507
11508 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11509
11510 /* Ignore blocks with missing or invalid low and high pc attributes. */
11511 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11512 as multiple lexical blocks? Handling children in a sane way would
11513 be nasty. Might be easier to properly extend generic blocks to
11514 describe ranges. */
11515 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11516 return;
11517 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11518 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11519
11520 push_context (0, lowpc);
11521 if (die->child != NULL)
11522 {
11523 child_die = die->child;
11524 while (child_die && child_die->tag)
11525 {
11526 process_die (child_die, cu);
11527 child_die = sibling_die (child_die);
11528 }
11529 }
11530 inherit_abstract_dies (die, cu);
11531 newobj = pop_context ();
11532
11533 if (local_symbols != NULL || local_using_directives != NULL)
11534 {
11535 struct block *block
11536 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11537 newobj->start_addr, highpc);
11538
11539 /* Note that recording ranges after traversing children, as we
11540 do here, means that recording a parent's ranges entails
11541 walking across all its children's ranges as they appear in
11542 the address map, which is quadratic behavior.
11543
11544 It would be nicer to record the parent's ranges before
11545 traversing its children, simply overriding whatever you find
11546 there. But since we don't even decide whether to create a
11547 block until after we've traversed its children, that's hard
11548 to do. */
11549 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11550 }
11551 local_symbols = newobj->locals;
11552 local_using_directives = newobj->local_using_directives;
11553 }
11554
11555 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11556
11557 static void
11558 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11559 {
11560 struct objfile *objfile = cu->objfile;
11561 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11562 CORE_ADDR pc, baseaddr;
11563 struct attribute *attr;
11564 struct call_site *call_site, call_site_local;
11565 void **slot;
11566 int nparams;
11567 struct die_info *child_die;
11568
11569 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11570
11571 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11572 if (!attr)
11573 {
11574 complaint (&symfile_complaints,
11575 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11576 "DIE 0x%x [in module %s]"),
11577 die->offset.sect_off, objfile_name (objfile));
11578 return;
11579 }
11580 pc = attr_value_as_address (attr) + baseaddr;
11581 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11582
11583 if (cu->call_site_htab == NULL)
11584 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11585 NULL, &objfile->objfile_obstack,
11586 hashtab_obstack_allocate, NULL);
11587 call_site_local.pc = pc;
11588 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11589 if (*slot != NULL)
11590 {
11591 complaint (&symfile_complaints,
11592 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11593 "DIE 0x%x [in module %s]"),
11594 paddress (gdbarch, pc), die->offset.sect_off,
11595 objfile_name (objfile));
11596 return;
11597 }
11598
11599 /* Count parameters at the caller. */
11600
11601 nparams = 0;
11602 for (child_die = die->child; child_die && child_die->tag;
11603 child_die = sibling_die (child_die))
11604 {
11605 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11606 {
11607 complaint (&symfile_complaints,
11608 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11609 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11610 child_die->tag, child_die->offset.sect_off,
11611 objfile_name (objfile));
11612 continue;
11613 }
11614
11615 nparams++;
11616 }
11617
11618 call_site = obstack_alloc (&objfile->objfile_obstack,
11619 (sizeof (*call_site)
11620 + (sizeof (*call_site->parameter)
11621 * (nparams - 1))));
11622 *slot = call_site;
11623 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11624 call_site->pc = pc;
11625
11626 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11627 {
11628 struct die_info *func_die;
11629
11630 /* Skip also over DW_TAG_inlined_subroutine. */
11631 for (func_die = die->parent;
11632 func_die && func_die->tag != DW_TAG_subprogram
11633 && func_die->tag != DW_TAG_subroutine_type;
11634 func_die = func_die->parent);
11635
11636 /* DW_AT_GNU_all_call_sites is a superset
11637 of DW_AT_GNU_all_tail_call_sites. */
11638 if (func_die
11639 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11640 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11641 {
11642 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11643 not complete. But keep CALL_SITE for look ups via call_site_htab,
11644 both the initial caller containing the real return address PC and
11645 the final callee containing the current PC of a chain of tail
11646 calls do not need to have the tail call list complete. But any
11647 function candidate for a virtual tail call frame searched via
11648 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11649 determined unambiguously. */
11650 }
11651 else
11652 {
11653 struct type *func_type = NULL;
11654
11655 if (func_die)
11656 func_type = get_die_type (func_die, cu);
11657 if (func_type != NULL)
11658 {
11659 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11660
11661 /* Enlist this call site to the function. */
11662 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11663 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11664 }
11665 else
11666 complaint (&symfile_complaints,
11667 _("Cannot find function owning DW_TAG_GNU_call_site "
11668 "DIE 0x%x [in module %s]"),
11669 die->offset.sect_off, objfile_name (objfile));
11670 }
11671 }
11672
11673 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11674 if (attr == NULL)
11675 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11676 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11677 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11678 /* Keep NULL DWARF_BLOCK. */;
11679 else if (attr_form_is_block (attr))
11680 {
11681 struct dwarf2_locexpr_baton *dlbaton;
11682
11683 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11684 dlbaton->data = DW_BLOCK (attr)->data;
11685 dlbaton->size = DW_BLOCK (attr)->size;
11686 dlbaton->per_cu = cu->per_cu;
11687
11688 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11689 }
11690 else if (attr_form_is_ref (attr))
11691 {
11692 struct dwarf2_cu *target_cu = cu;
11693 struct die_info *target_die;
11694
11695 target_die = follow_die_ref (die, attr, &target_cu);
11696 gdb_assert (target_cu->objfile == objfile);
11697 if (die_is_declaration (target_die, target_cu))
11698 {
11699 const char *target_physname;
11700
11701 /* Prefer the mangled name; otherwise compute the demangled one. */
11702 target_physname = dwarf2_string_attr (target_die,
11703 DW_AT_linkage_name,
11704 target_cu);
11705 if (target_physname == NULL)
11706 target_physname = dwarf2_string_attr (target_die,
11707 DW_AT_MIPS_linkage_name,
11708 target_cu);
11709 if (target_physname == NULL)
11710 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11711 if (target_physname == NULL)
11712 complaint (&symfile_complaints,
11713 _("DW_AT_GNU_call_site_target target DIE has invalid "
11714 "physname, for referencing DIE 0x%x [in module %s]"),
11715 die->offset.sect_off, objfile_name (objfile));
11716 else
11717 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11718 }
11719 else
11720 {
11721 CORE_ADDR lowpc;
11722
11723 /* DW_AT_entry_pc should be preferred. */
11724 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11725 complaint (&symfile_complaints,
11726 _("DW_AT_GNU_call_site_target target DIE has invalid "
11727 "low pc, for referencing DIE 0x%x [in module %s]"),
11728 die->offset.sect_off, objfile_name (objfile));
11729 else
11730 {
11731 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11732 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11733 }
11734 }
11735 }
11736 else
11737 complaint (&symfile_complaints,
11738 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11739 "block nor reference, for DIE 0x%x [in module %s]"),
11740 die->offset.sect_off, objfile_name (objfile));
11741
11742 call_site->per_cu = cu->per_cu;
11743
11744 for (child_die = die->child;
11745 child_die && child_die->tag;
11746 child_die = sibling_die (child_die))
11747 {
11748 struct call_site_parameter *parameter;
11749 struct attribute *loc, *origin;
11750
11751 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11752 {
11753 /* Already printed the complaint above. */
11754 continue;
11755 }
11756
11757 gdb_assert (call_site->parameter_count < nparams);
11758 parameter = &call_site->parameter[call_site->parameter_count];
11759
11760 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11761 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11762 register is contained in DW_AT_GNU_call_site_value. */
11763
11764 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11765 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11766 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11767 {
11768 sect_offset offset;
11769
11770 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11771 offset = dwarf2_get_ref_die_offset (origin);
11772 if (!offset_in_cu_p (&cu->header, offset))
11773 {
11774 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11775 binding can be done only inside one CU. Such referenced DIE
11776 therefore cannot be even moved to DW_TAG_partial_unit. */
11777 complaint (&symfile_complaints,
11778 _("DW_AT_abstract_origin offset is not in CU for "
11779 "DW_TAG_GNU_call_site child DIE 0x%x "
11780 "[in module %s]"),
11781 child_die->offset.sect_off, objfile_name (objfile));
11782 continue;
11783 }
11784 parameter->u.param_offset.cu_off = (offset.sect_off
11785 - cu->header.offset.sect_off);
11786 }
11787 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11788 {
11789 complaint (&symfile_complaints,
11790 _("No DW_FORM_block* DW_AT_location for "
11791 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11792 child_die->offset.sect_off, objfile_name (objfile));
11793 continue;
11794 }
11795 else
11796 {
11797 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11798 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11799 if (parameter->u.dwarf_reg != -1)
11800 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11801 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11802 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11803 &parameter->u.fb_offset))
11804 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11805 else
11806 {
11807 complaint (&symfile_complaints,
11808 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11809 "for DW_FORM_block* DW_AT_location is supported for "
11810 "DW_TAG_GNU_call_site child DIE 0x%x "
11811 "[in module %s]"),
11812 child_die->offset.sect_off, objfile_name (objfile));
11813 continue;
11814 }
11815 }
11816
11817 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11818 if (!attr_form_is_block (attr))
11819 {
11820 complaint (&symfile_complaints,
11821 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11822 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11823 child_die->offset.sect_off, objfile_name (objfile));
11824 continue;
11825 }
11826 parameter->value = DW_BLOCK (attr)->data;
11827 parameter->value_size = DW_BLOCK (attr)->size;
11828
11829 /* Parameters are not pre-cleared by memset above. */
11830 parameter->data_value = NULL;
11831 parameter->data_value_size = 0;
11832 call_site->parameter_count++;
11833
11834 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11835 if (attr)
11836 {
11837 if (!attr_form_is_block (attr))
11838 complaint (&symfile_complaints,
11839 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11840 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11841 child_die->offset.sect_off, objfile_name (objfile));
11842 else
11843 {
11844 parameter->data_value = DW_BLOCK (attr)->data;
11845 parameter->data_value_size = DW_BLOCK (attr)->size;
11846 }
11847 }
11848 }
11849 }
11850
11851 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11852 Return 1 if the attributes are present and valid, otherwise, return 0.
11853 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11854
11855 static int
11856 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11857 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11858 struct partial_symtab *ranges_pst)
11859 {
11860 struct objfile *objfile = cu->objfile;
11861 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11862 struct comp_unit_head *cu_header = &cu->header;
11863 bfd *obfd = objfile->obfd;
11864 unsigned int addr_size = cu_header->addr_size;
11865 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11866 /* Base address selection entry. */
11867 CORE_ADDR base;
11868 int found_base;
11869 unsigned int dummy;
11870 const gdb_byte *buffer;
11871 CORE_ADDR marker;
11872 int low_set;
11873 CORE_ADDR low = 0;
11874 CORE_ADDR high = 0;
11875 CORE_ADDR baseaddr;
11876
11877 found_base = cu->base_known;
11878 base = cu->base_address;
11879
11880 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11881 if (offset >= dwarf2_per_objfile->ranges.size)
11882 {
11883 complaint (&symfile_complaints,
11884 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11885 offset);
11886 return 0;
11887 }
11888 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11889
11890 /* Read in the largest possible address. */
11891 marker = read_address (obfd, buffer, cu, &dummy);
11892 if ((marker & mask) == mask)
11893 {
11894 /* If we found the largest possible address, then
11895 read the base address. */
11896 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11897 buffer += 2 * addr_size;
11898 offset += 2 * addr_size;
11899 found_base = 1;
11900 }
11901
11902 low_set = 0;
11903
11904 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11905
11906 while (1)
11907 {
11908 CORE_ADDR range_beginning, range_end;
11909
11910 range_beginning = read_address (obfd, buffer, cu, &dummy);
11911 buffer += addr_size;
11912 range_end = read_address (obfd, buffer, cu, &dummy);
11913 buffer += addr_size;
11914 offset += 2 * addr_size;
11915
11916 /* An end of list marker is a pair of zero addresses. */
11917 if (range_beginning == 0 && range_end == 0)
11918 /* Found the end of list entry. */
11919 break;
11920
11921 /* Each base address selection entry is a pair of 2 values.
11922 The first is the largest possible address, the second is
11923 the base address. Check for a base address here. */
11924 if ((range_beginning & mask) == mask)
11925 {
11926 /* If we found the largest possible address, then
11927 read the base address. */
11928 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11929 found_base = 1;
11930 continue;
11931 }
11932
11933 if (!found_base)
11934 {
11935 /* We have no valid base address for the ranges
11936 data. */
11937 complaint (&symfile_complaints,
11938 _("Invalid .debug_ranges data (no base address)"));
11939 return 0;
11940 }
11941
11942 if (range_beginning > range_end)
11943 {
11944 /* Inverted range entries are invalid. */
11945 complaint (&symfile_complaints,
11946 _("Invalid .debug_ranges data (inverted range)"));
11947 return 0;
11948 }
11949
11950 /* Empty range entries have no effect. */
11951 if (range_beginning == range_end)
11952 continue;
11953
11954 range_beginning += base;
11955 range_end += base;
11956
11957 /* A not-uncommon case of bad debug info.
11958 Don't pollute the addrmap with bad data. */
11959 if (range_beginning + baseaddr == 0
11960 && !dwarf2_per_objfile->has_section_at_zero)
11961 {
11962 complaint (&symfile_complaints,
11963 _(".debug_ranges entry has start address of zero"
11964 " [in module %s]"), objfile_name (objfile));
11965 continue;
11966 }
11967
11968 if (ranges_pst != NULL)
11969 {
11970 CORE_ADDR lowpc;
11971 CORE_ADDR highpc;
11972
11973 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11974 range_beginning + baseaddr);
11975 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11976 range_end + baseaddr);
11977 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11978 ranges_pst);
11979 }
11980
11981 /* FIXME: This is recording everything as a low-high
11982 segment of consecutive addresses. We should have a
11983 data structure for discontiguous block ranges
11984 instead. */
11985 if (! low_set)
11986 {
11987 low = range_beginning;
11988 high = range_end;
11989 low_set = 1;
11990 }
11991 else
11992 {
11993 if (range_beginning < low)
11994 low = range_beginning;
11995 if (range_end > high)
11996 high = range_end;
11997 }
11998 }
11999
12000 if (! low_set)
12001 /* If the first entry is an end-of-list marker, the range
12002 describes an empty scope, i.e. no instructions. */
12003 return 0;
12004
12005 if (low_return)
12006 *low_return = low;
12007 if (high_return)
12008 *high_return = high;
12009 return 1;
12010 }
12011
12012 /* Get low and high pc attributes from a die. Return 1 if the attributes
12013 are present and valid, otherwise, return 0. Return -1 if the range is
12014 discontinuous, i.e. derived from DW_AT_ranges information. */
12015
12016 static int
12017 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12018 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12019 struct partial_symtab *pst)
12020 {
12021 struct attribute *attr;
12022 struct attribute *attr_high;
12023 CORE_ADDR low = 0;
12024 CORE_ADDR high = 0;
12025 int ret = 0;
12026
12027 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12028 if (attr_high)
12029 {
12030 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12031 if (attr)
12032 {
12033 low = attr_value_as_address (attr);
12034 high = attr_value_as_address (attr_high);
12035 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12036 high += low;
12037 }
12038 else
12039 /* Found high w/o low attribute. */
12040 return 0;
12041
12042 /* Found consecutive range of addresses. */
12043 ret = 1;
12044 }
12045 else
12046 {
12047 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12048 if (attr != NULL)
12049 {
12050 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12051 We take advantage of the fact that DW_AT_ranges does not appear
12052 in DW_TAG_compile_unit of DWO files. */
12053 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12054 unsigned int ranges_offset = (DW_UNSND (attr)
12055 + (need_ranges_base
12056 ? cu->ranges_base
12057 : 0));
12058
12059 /* Value of the DW_AT_ranges attribute is the offset in the
12060 .debug_ranges section. */
12061 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12062 return 0;
12063 /* Found discontinuous range of addresses. */
12064 ret = -1;
12065 }
12066 }
12067
12068 /* read_partial_die has also the strict LOW < HIGH requirement. */
12069 if (high <= low)
12070 return 0;
12071
12072 /* When using the GNU linker, .gnu.linkonce. sections are used to
12073 eliminate duplicate copies of functions and vtables and such.
12074 The linker will arbitrarily choose one and discard the others.
12075 The AT_*_pc values for such functions refer to local labels in
12076 these sections. If the section from that file was discarded, the
12077 labels are not in the output, so the relocs get a value of 0.
12078 If this is a discarded function, mark the pc bounds as invalid,
12079 so that GDB will ignore it. */
12080 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12081 return 0;
12082
12083 *lowpc = low;
12084 if (highpc)
12085 *highpc = high;
12086 return ret;
12087 }
12088
12089 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12090 its low and high PC addresses. Do nothing if these addresses could not
12091 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12092 and HIGHPC to the high address if greater than HIGHPC. */
12093
12094 static void
12095 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12096 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12097 struct dwarf2_cu *cu)
12098 {
12099 CORE_ADDR low, high;
12100 struct die_info *child = die->child;
12101
12102 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12103 {
12104 *lowpc = min (*lowpc, low);
12105 *highpc = max (*highpc, high);
12106 }
12107
12108 /* If the language does not allow nested subprograms (either inside
12109 subprograms or lexical blocks), we're done. */
12110 if (cu->language != language_ada)
12111 return;
12112
12113 /* Check all the children of the given DIE. If it contains nested
12114 subprograms, then check their pc bounds. Likewise, we need to
12115 check lexical blocks as well, as they may also contain subprogram
12116 definitions. */
12117 while (child && child->tag)
12118 {
12119 if (child->tag == DW_TAG_subprogram
12120 || child->tag == DW_TAG_lexical_block)
12121 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12122 child = sibling_die (child);
12123 }
12124 }
12125
12126 /* Get the low and high pc's represented by the scope DIE, and store
12127 them in *LOWPC and *HIGHPC. If the correct values can't be
12128 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12129
12130 static void
12131 get_scope_pc_bounds (struct die_info *die,
12132 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12133 struct dwarf2_cu *cu)
12134 {
12135 CORE_ADDR best_low = (CORE_ADDR) -1;
12136 CORE_ADDR best_high = (CORE_ADDR) 0;
12137 CORE_ADDR current_low, current_high;
12138
12139 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12140 {
12141 best_low = current_low;
12142 best_high = current_high;
12143 }
12144 else
12145 {
12146 struct die_info *child = die->child;
12147
12148 while (child && child->tag)
12149 {
12150 switch (child->tag) {
12151 case DW_TAG_subprogram:
12152 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12153 break;
12154 case DW_TAG_namespace:
12155 case DW_TAG_module:
12156 /* FIXME: carlton/2004-01-16: Should we do this for
12157 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12158 that current GCC's always emit the DIEs corresponding
12159 to definitions of methods of classes as children of a
12160 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12161 the DIEs giving the declarations, which could be
12162 anywhere). But I don't see any reason why the
12163 standards says that they have to be there. */
12164 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12165
12166 if (current_low != ((CORE_ADDR) -1))
12167 {
12168 best_low = min (best_low, current_low);
12169 best_high = max (best_high, current_high);
12170 }
12171 break;
12172 default:
12173 /* Ignore. */
12174 break;
12175 }
12176
12177 child = sibling_die (child);
12178 }
12179 }
12180
12181 *lowpc = best_low;
12182 *highpc = best_high;
12183 }
12184
12185 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12186 in DIE. */
12187
12188 static void
12189 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12190 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12191 {
12192 struct objfile *objfile = cu->objfile;
12193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12194 struct attribute *attr;
12195 struct attribute *attr_high;
12196
12197 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12198 if (attr_high)
12199 {
12200 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12201 if (attr)
12202 {
12203 CORE_ADDR low = attr_value_as_address (attr);
12204 CORE_ADDR high = attr_value_as_address (attr_high);
12205
12206 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12207 high += low;
12208
12209 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12210 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12211 record_block_range (block, low, high - 1);
12212 }
12213 }
12214
12215 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12216 if (attr)
12217 {
12218 bfd *obfd = objfile->obfd;
12219 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12220 We take advantage of the fact that DW_AT_ranges does not appear
12221 in DW_TAG_compile_unit of DWO files. */
12222 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12223
12224 /* The value of the DW_AT_ranges attribute is the offset of the
12225 address range list in the .debug_ranges section. */
12226 unsigned long offset = (DW_UNSND (attr)
12227 + (need_ranges_base ? cu->ranges_base : 0));
12228 const gdb_byte *buffer;
12229
12230 /* For some target architectures, but not others, the
12231 read_address function sign-extends the addresses it returns.
12232 To recognize base address selection entries, we need a
12233 mask. */
12234 unsigned int addr_size = cu->header.addr_size;
12235 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12236
12237 /* The base address, to which the next pair is relative. Note
12238 that this 'base' is a DWARF concept: most entries in a range
12239 list are relative, to reduce the number of relocs against the
12240 debugging information. This is separate from this function's
12241 'baseaddr' argument, which GDB uses to relocate debugging
12242 information from a shared library based on the address at
12243 which the library was loaded. */
12244 CORE_ADDR base = cu->base_address;
12245 int base_known = cu->base_known;
12246
12247 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12248 if (offset >= dwarf2_per_objfile->ranges.size)
12249 {
12250 complaint (&symfile_complaints,
12251 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12252 offset);
12253 return;
12254 }
12255 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12256
12257 for (;;)
12258 {
12259 unsigned int bytes_read;
12260 CORE_ADDR start, end;
12261
12262 start = read_address (obfd, buffer, cu, &bytes_read);
12263 buffer += bytes_read;
12264 end = read_address (obfd, buffer, cu, &bytes_read);
12265 buffer += bytes_read;
12266
12267 /* Did we find the end of the range list? */
12268 if (start == 0 && end == 0)
12269 break;
12270
12271 /* Did we find a base address selection entry? */
12272 else if ((start & base_select_mask) == base_select_mask)
12273 {
12274 base = end;
12275 base_known = 1;
12276 }
12277
12278 /* We found an ordinary address range. */
12279 else
12280 {
12281 if (!base_known)
12282 {
12283 complaint (&symfile_complaints,
12284 _("Invalid .debug_ranges data "
12285 "(no base address)"));
12286 return;
12287 }
12288
12289 if (start > end)
12290 {
12291 /* Inverted range entries are invalid. */
12292 complaint (&symfile_complaints,
12293 _("Invalid .debug_ranges data "
12294 "(inverted range)"));
12295 return;
12296 }
12297
12298 /* Empty range entries have no effect. */
12299 if (start == end)
12300 continue;
12301
12302 start += base + baseaddr;
12303 end += base + baseaddr;
12304
12305 /* A not-uncommon case of bad debug info.
12306 Don't pollute the addrmap with bad data. */
12307 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12308 {
12309 complaint (&symfile_complaints,
12310 _(".debug_ranges entry has start address of zero"
12311 " [in module %s]"), objfile_name (objfile));
12312 continue;
12313 }
12314
12315 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12316 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12317 record_block_range (block, start, end - 1);
12318 }
12319 }
12320 }
12321 }
12322
12323 /* Check whether the producer field indicates either of GCC < 4.6, or the
12324 Intel C/C++ compiler, and cache the result in CU. */
12325
12326 static void
12327 check_producer (struct dwarf2_cu *cu)
12328 {
12329 const char *cs;
12330 int major, minor;
12331
12332 if (cu->producer == NULL)
12333 {
12334 /* For unknown compilers expect their behavior is DWARF version
12335 compliant.
12336
12337 GCC started to support .debug_types sections by -gdwarf-4 since
12338 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12339 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12340 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12341 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12342 }
12343 else if (producer_is_gcc (cu->producer, &major, &minor))
12344 {
12345 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12346 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12347 }
12348 else if (startswith (cu->producer, "Intel(R) C"))
12349 cu->producer_is_icc = 1;
12350 else
12351 {
12352 /* For other non-GCC compilers, expect their behavior is DWARF version
12353 compliant. */
12354 }
12355
12356 cu->checked_producer = 1;
12357 }
12358
12359 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12360 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12361 during 4.6.0 experimental. */
12362
12363 static int
12364 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12365 {
12366 if (!cu->checked_producer)
12367 check_producer (cu);
12368
12369 return cu->producer_is_gxx_lt_4_6;
12370 }
12371
12372 /* Return the default accessibility type if it is not overriden by
12373 DW_AT_accessibility. */
12374
12375 static enum dwarf_access_attribute
12376 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12377 {
12378 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12379 {
12380 /* The default DWARF 2 accessibility for members is public, the default
12381 accessibility for inheritance is private. */
12382
12383 if (die->tag != DW_TAG_inheritance)
12384 return DW_ACCESS_public;
12385 else
12386 return DW_ACCESS_private;
12387 }
12388 else
12389 {
12390 /* DWARF 3+ defines the default accessibility a different way. The same
12391 rules apply now for DW_TAG_inheritance as for the members and it only
12392 depends on the container kind. */
12393
12394 if (die->parent->tag == DW_TAG_class_type)
12395 return DW_ACCESS_private;
12396 else
12397 return DW_ACCESS_public;
12398 }
12399 }
12400
12401 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12402 offset. If the attribute was not found return 0, otherwise return
12403 1. If it was found but could not properly be handled, set *OFFSET
12404 to 0. */
12405
12406 static int
12407 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12408 LONGEST *offset)
12409 {
12410 struct attribute *attr;
12411
12412 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12413 if (attr != NULL)
12414 {
12415 *offset = 0;
12416
12417 /* Note that we do not check for a section offset first here.
12418 This is because DW_AT_data_member_location is new in DWARF 4,
12419 so if we see it, we can assume that a constant form is really
12420 a constant and not a section offset. */
12421 if (attr_form_is_constant (attr))
12422 *offset = dwarf2_get_attr_constant_value (attr, 0);
12423 else if (attr_form_is_section_offset (attr))
12424 dwarf2_complex_location_expr_complaint ();
12425 else if (attr_form_is_block (attr))
12426 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12427 else
12428 dwarf2_complex_location_expr_complaint ();
12429
12430 return 1;
12431 }
12432
12433 return 0;
12434 }
12435
12436 /* Add an aggregate field to the field list. */
12437
12438 static void
12439 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12440 struct dwarf2_cu *cu)
12441 {
12442 struct objfile *objfile = cu->objfile;
12443 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12444 struct nextfield *new_field;
12445 struct attribute *attr;
12446 struct field *fp;
12447 const char *fieldname = "";
12448
12449 /* Allocate a new field list entry and link it in. */
12450 new_field = XNEW (struct nextfield);
12451 make_cleanup (xfree, new_field);
12452 memset (new_field, 0, sizeof (struct nextfield));
12453
12454 if (die->tag == DW_TAG_inheritance)
12455 {
12456 new_field->next = fip->baseclasses;
12457 fip->baseclasses = new_field;
12458 }
12459 else
12460 {
12461 new_field->next = fip->fields;
12462 fip->fields = new_field;
12463 }
12464 fip->nfields++;
12465
12466 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12467 if (attr)
12468 new_field->accessibility = DW_UNSND (attr);
12469 else
12470 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12471 if (new_field->accessibility != DW_ACCESS_public)
12472 fip->non_public_fields = 1;
12473
12474 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12475 if (attr)
12476 new_field->virtuality = DW_UNSND (attr);
12477 else
12478 new_field->virtuality = DW_VIRTUALITY_none;
12479
12480 fp = &new_field->field;
12481
12482 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12483 {
12484 LONGEST offset;
12485
12486 /* Data member other than a C++ static data member. */
12487
12488 /* Get type of field. */
12489 fp->type = die_type (die, cu);
12490
12491 SET_FIELD_BITPOS (*fp, 0);
12492
12493 /* Get bit size of field (zero if none). */
12494 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12495 if (attr)
12496 {
12497 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12498 }
12499 else
12500 {
12501 FIELD_BITSIZE (*fp) = 0;
12502 }
12503
12504 /* Get bit offset of field. */
12505 if (handle_data_member_location (die, cu, &offset))
12506 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12507 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12508 if (attr)
12509 {
12510 if (gdbarch_bits_big_endian (gdbarch))
12511 {
12512 /* For big endian bits, the DW_AT_bit_offset gives the
12513 additional bit offset from the MSB of the containing
12514 anonymous object to the MSB of the field. We don't
12515 have to do anything special since we don't need to
12516 know the size of the anonymous object. */
12517 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12518 }
12519 else
12520 {
12521 /* For little endian bits, compute the bit offset to the
12522 MSB of the anonymous object, subtract off the number of
12523 bits from the MSB of the field to the MSB of the
12524 object, and then subtract off the number of bits of
12525 the field itself. The result is the bit offset of
12526 the LSB of the field. */
12527 int anonymous_size;
12528 int bit_offset = DW_UNSND (attr);
12529
12530 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12531 if (attr)
12532 {
12533 /* The size of the anonymous object containing
12534 the bit field is explicit, so use the
12535 indicated size (in bytes). */
12536 anonymous_size = DW_UNSND (attr);
12537 }
12538 else
12539 {
12540 /* The size of the anonymous object containing
12541 the bit field must be inferred from the type
12542 attribute of the data member containing the
12543 bit field. */
12544 anonymous_size = TYPE_LENGTH (fp->type);
12545 }
12546 SET_FIELD_BITPOS (*fp,
12547 (FIELD_BITPOS (*fp)
12548 + anonymous_size * bits_per_byte
12549 - bit_offset - FIELD_BITSIZE (*fp)));
12550 }
12551 }
12552
12553 /* Get name of field. */
12554 fieldname = dwarf2_name (die, cu);
12555 if (fieldname == NULL)
12556 fieldname = "";
12557
12558 /* The name is already allocated along with this objfile, so we don't
12559 need to duplicate it for the type. */
12560 fp->name = fieldname;
12561
12562 /* Change accessibility for artificial fields (e.g. virtual table
12563 pointer or virtual base class pointer) to private. */
12564 if (dwarf2_attr (die, DW_AT_artificial, cu))
12565 {
12566 FIELD_ARTIFICIAL (*fp) = 1;
12567 new_field->accessibility = DW_ACCESS_private;
12568 fip->non_public_fields = 1;
12569 }
12570 }
12571 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12572 {
12573 /* C++ static member. */
12574
12575 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12576 is a declaration, but all versions of G++ as of this writing
12577 (so through at least 3.2.1) incorrectly generate
12578 DW_TAG_variable tags. */
12579
12580 const char *physname;
12581
12582 /* Get name of field. */
12583 fieldname = dwarf2_name (die, cu);
12584 if (fieldname == NULL)
12585 return;
12586
12587 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12588 if (attr
12589 /* Only create a symbol if this is an external value.
12590 new_symbol checks this and puts the value in the global symbol
12591 table, which we want. If it is not external, new_symbol
12592 will try to put the value in cu->list_in_scope which is wrong. */
12593 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12594 {
12595 /* A static const member, not much different than an enum as far as
12596 we're concerned, except that we can support more types. */
12597 new_symbol (die, NULL, cu);
12598 }
12599
12600 /* Get physical name. */
12601 physname = dwarf2_physname (fieldname, die, cu);
12602
12603 /* The name is already allocated along with this objfile, so we don't
12604 need to duplicate it for the type. */
12605 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12606 FIELD_TYPE (*fp) = die_type (die, cu);
12607 FIELD_NAME (*fp) = fieldname;
12608 }
12609 else if (die->tag == DW_TAG_inheritance)
12610 {
12611 LONGEST offset;
12612
12613 /* C++ base class field. */
12614 if (handle_data_member_location (die, cu, &offset))
12615 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12616 FIELD_BITSIZE (*fp) = 0;
12617 FIELD_TYPE (*fp) = die_type (die, cu);
12618 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12619 fip->nbaseclasses++;
12620 }
12621 }
12622
12623 /* Add a typedef defined in the scope of the FIP's class. */
12624
12625 static void
12626 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12627 struct dwarf2_cu *cu)
12628 {
12629 struct objfile *objfile = cu->objfile;
12630 struct typedef_field_list *new_field;
12631 struct attribute *attr;
12632 struct typedef_field *fp;
12633 char *fieldname = "";
12634
12635 /* Allocate a new field list entry and link it in. */
12636 new_field = XCNEW (struct typedef_field_list);
12637 make_cleanup (xfree, new_field);
12638
12639 gdb_assert (die->tag == DW_TAG_typedef);
12640
12641 fp = &new_field->field;
12642
12643 /* Get name of field. */
12644 fp->name = dwarf2_name (die, cu);
12645 if (fp->name == NULL)
12646 return;
12647
12648 fp->type = read_type_die (die, cu);
12649
12650 new_field->next = fip->typedef_field_list;
12651 fip->typedef_field_list = new_field;
12652 fip->typedef_field_list_count++;
12653 }
12654
12655 /* Create the vector of fields, and attach it to the type. */
12656
12657 static void
12658 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12659 struct dwarf2_cu *cu)
12660 {
12661 int nfields = fip->nfields;
12662
12663 /* Record the field count, allocate space for the array of fields,
12664 and create blank accessibility bitfields if necessary. */
12665 TYPE_NFIELDS (type) = nfields;
12666 TYPE_FIELDS (type) = (struct field *)
12667 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12668 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12669
12670 if (fip->non_public_fields && cu->language != language_ada)
12671 {
12672 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12673
12674 TYPE_FIELD_PRIVATE_BITS (type) =
12675 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12676 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12677
12678 TYPE_FIELD_PROTECTED_BITS (type) =
12679 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12680 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12681
12682 TYPE_FIELD_IGNORE_BITS (type) =
12683 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12684 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12685 }
12686
12687 /* If the type has baseclasses, allocate and clear a bit vector for
12688 TYPE_FIELD_VIRTUAL_BITS. */
12689 if (fip->nbaseclasses && cu->language != language_ada)
12690 {
12691 int num_bytes = B_BYTES (fip->nbaseclasses);
12692 unsigned char *pointer;
12693
12694 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12695 pointer = TYPE_ALLOC (type, num_bytes);
12696 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12697 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12698 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12699 }
12700
12701 /* Copy the saved-up fields into the field vector. Start from the head of
12702 the list, adding to the tail of the field array, so that they end up in
12703 the same order in the array in which they were added to the list. */
12704 while (nfields-- > 0)
12705 {
12706 struct nextfield *fieldp;
12707
12708 if (fip->fields)
12709 {
12710 fieldp = fip->fields;
12711 fip->fields = fieldp->next;
12712 }
12713 else
12714 {
12715 fieldp = fip->baseclasses;
12716 fip->baseclasses = fieldp->next;
12717 }
12718
12719 TYPE_FIELD (type, nfields) = fieldp->field;
12720 switch (fieldp->accessibility)
12721 {
12722 case DW_ACCESS_private:
12723 if (cu->language != language_ada)
12724 SET_TYPE_FIELD_PRIVATE (type, nfields);
12725 break;
12726
12727 case DW_ACCESS_protected:
12728 if (cu->language != language_ada)
12729 SET_TYPE_FIELD_PROTECTED (type, nfields);
12730 break;
12731
12732 case DW_ACCESS_public:
12733 break;
12734
12735 default:
12736 /* Unknown accessibility. Complain and treat it as public. */
12737 {
12738 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12739 fieldp->accessibility);
12740 }
12741 break;
12742 }
12743 if (nfields < fip->nbaseclasses)
12744 {
12745 switch (fieldp->virtuality)
12746 {
12747 case DW_VIRTUALITY_virtual:
12748 case DW_VIRTUALITY_pure_virtual:
12749 if (cu->language == language_ada)
12750 error (_("unexpected virtuality in component of Ada type"));
12751 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12752 break;
12753 }
12754 }
12755 }
12756 }
12757
12758 /* Return true if this member function is a constructor, false
12759 otherwise. */
12760
12761 static int
12762 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12763 {
12764 const char *fieldname;
12765 const char *type_name;
12766 int len;
12767
12768 if (die->parent == NULL)
12769 return 0;
12770
12771 if (die->parent->tag != DW_TAG_structure_type
12772 && die->parent->tag != DW_TAG_union_type
12773 && die->parent->tag != DW_TAG_class_type)
12774 return 0;
12775
12776 fieldname = dwarf2_name (die, cu);
12777 type_name = dwarf2_name (die->parent, cu);
12778 if (fieldname == NULL || type_name == NULL)
12779 return 0;
12780
12781 len = strlen (fieldname);
12782 return (strncmp (fieldname, type_name, len) == 0
12783 && (type_name[len] == '\0' || type_name[len] == '<'));
12784 }
12785
12786 /* Add a member function to the proper fieldlist. */
12787
12788 static void
12789 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12790 struct type *type, struct dwarf2_cu *cu)
12791 {
12792 struct objfile *objfile = cu->objfile;
12793 struct attribute *attr;
12794 struct fnfieldlist *flp;
12795 int i;
12796 struct fn_field *fnp;
12797 const char *fieldname;
12798 struct nextfnfield *new_fnfield;
12799 struct type *this_type;
12800 enum dwarf_access_attribute accessibility;
12801
12802 if (cu->language == language_ada)
12803 error (_("unexpected member function in Ada type"));
12804
12805 /* Get name of member function. */
12806 fieldname = dwarf2_name (die, cu);
12807 if (fieldname == NULL)
12808 return;
12809
12810 /* Look up member function name in fieldlist. */
12811 for (i = 0; i < fip->nfnfields; i++)
12812 {
12813 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12814 break;
12815 }
12816
12817 /* Create new list element if necessary. */
12818 if (i < fip->nfnfields)
12819 flp = &fip->fnfieldlists[i];
12820 else
12821 {
12822 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12823 {
12824 fip->fnfieldlists = (struct fnfieldlist *)
12825 xrealloc (fip->fnfieldlists,
12826 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12827 * sizeof (struct fnfieldlist));
12828 if (fip->nfnfields == 0)
12829 make_cleanup (free_current_contents, &fip->fnfieldlists);
12830 }
12831 flp = &fip->fnfieldlists[fip->nfnfields];
12832 flp->name = fieldname;
12833 flp->length = 0;
12834 flp->head = NULL;
12835 i = fip->nfnfields++;
12836 }
12837
12838 /* Create a new member function field and chain it to the field list
12839 entry. */
12840 new_fnfield = XNEW (struct nextfnfield);
12841 make_cleanup (xfree, new_fnfield);
12842 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12843 new_fnfield->next = flp->head;
12844 flp->head = new_fnfield;
12845 flp->length++;
12846
12847 /* Fill in the member function field info. */
12848 fnp = &new_fnfield->fnfield;
12849
12850 /* Delay processing of the physname until later. */
12851 if (cu->language == language_cplus || cu->language == language_java)
12852 {
12853 add_to_method_list (type, i, flp->length - 1, fieldname,
12854 die, cu);
12855 }
12856 else
12857 {
12858 const char *physname = dwarf2_physname (fieldname, die, cu);
12859 fnp->physname = physname ? physname : "";
12860 }
12861
12862 fnp->type = alloc_type (objfile);
12863 this_type = read_type_die (die, cu);
12864 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12865 {
12866 int nparams = TYPE_NFIELDS (this_type);
12867
12868 /* TYPE is the domain of this method, and THIS_TYPE is the type
12869 of the method itself (TYPE_CODE_METHOD). */
12870 smash_to_method_type (fnp->type, type,
12871 TYPE_TARGET_TYPE (this_type),
12872 TYPE_FIELDS (this_type),
12873 TYPE_NFIELDS (this_type),
12874 TYPE_VARARGS (this_type));
12875
12876 /* Handle static member functions.
12877 Dwarf2 has no clean way to discern C++ static and non-static
12878 member functions. G++ helps GDB by marking the first
12879 parameter for non-static member functions (which is the this
12880 pointer) as artificial. We obtain this information from
12881 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12882 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12883 fnp->voffset = VOFFSET_STATIC;
12884 }
12885 else
12886 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12887 dwarf2_full_name (fieldname, die, cu));
12888
12889 /* Get fcontext from DW_AT_containing_type if present. */
12890 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12891 fnp->fcontext = die_containing_type (die, cu);
12892
12893 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12894 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12895
12896 /* Get accessibility. */
12897 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12898 if (attr)
12899 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12900 else
12901 accessibility = dwarf2_default_access_attribute (die, cu);
12902 switch (accessibility)
12903 {
12904 case DW_ACCESS_private:
12905 fnp->is_private = 1;
12906 break;
12907 case DW_ACCESS_protected:
12908 fnp->is_protected = 1;
12909 break;
12910 }
12911
12912 /* Check for artificial methods. */
12913 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12914 if (attr && DW_UNSND (attr) != 0)
12915 fnp->is_artificial = 1;
12916
12917 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12918
12919 /* Get index in virtual function table if it is a virtual member
12920 function. For older versions of GCC, this is an offset in the
12921 appropriate virtual table, as specified by DW_AT_containing_type.
12922 For everyone else, it is an expression to be evaluated relative
12923 to the object address. */
12924
12925 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12926 if (attr)
12927 {
12928 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12929 {
12930 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12931 {
12932 /* Old-style GCC. */
12933 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12934 }
12935 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12936 || (DW_BLOCK (attr)->size > 1
12937 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12938 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12939 {
12940 struct dwarf_block blk;
12941 int offset;
12942
12943 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12944 ? 1 : 2);
12945 blk.size = DW_BLOCK (attr)->size - offset;
12946 blk.data = DW_BLOCK (attr)->data + offset;
12947 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12948 if ((fnp->voffset % cu->header.addr_size) != 0)
12949 dwarf2_complex_location_expr_complaint ();
12950 else
12951 fnp->voffset /= cu->header.addr_size;
12952 fnp->voffset += 2;
12953 }
12954 else
12955 dwarf2_complex_location_expr_complaint ();
12956
12957 if (!fnp->fcontext)
12958 {
12959 /* If there is no `this' field and no DW_AT_containing_type,
12960 we cannot actually find a base class context for the
12961 vtable! */
12962 if (TYPE_NFIELDS (this_type) == 0
12963 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12964 {
12965 complaint (&symfile_complaints,
12966 _("cannot determine context for virtual member "
12967 "function \"%s\" (offset %d)"),
12968 fieldname, die->offset.sect_off);
12969 }
12970 else
12971 {
12972 fnp->fcontext
12973 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12974 }
12975 }
12976 }
12977 else if (attr_form_is_section_offset (attr))
12978 {
12979 dwarf2_complex_location_expr_complaint ();
12980 }
12981 else
12982 {
12983 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12984 fieldname);
12985 }
12986 }
12987 else
12988 {
12989 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12990 if (attr && DW_UNSND (attr))
12991 {
12992 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12993 complaint (&symfile_complaints,
12994 _("Member function \"%s\" (offset %d) is virtual "
12995 "but the vtable offset is not specified"),
12996 fieldname, die->offset.sect_off);
12997 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12998 TYPE_CPLUS_DYNAMIC (type) = 1;
12999 }
13000 }
13001 }
13002
13003 /* Create the vector of member function fields, and attach it to the type. */
13004
13005 static void
13006 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13007 struct dwarf2_cu *cu)
13008 {
13009 struct fnfieldlist *flp;
13010 int i;
13011
13012 if (cu->language == language_ada)
13013 error (_("unexpected member functions in Ada type"));
13014
13015 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13016 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13017 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13018
13019 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13020 {
13021 struct nextfnfield *nfp = flp->head;
13022 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13023 int k;
13024
13025 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13026 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13027 fn_flp->fn_fields = (struct fn_field *)
13028 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13029 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13030 fn_flp->fn_fields[k] = nfp->fnfield;
13031 }
13032
13033 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13034 }
13035
13036 /* Returns non-zero if NAME is the name of a vtable member in CU's
13037 language, zero otherwise. */
13038 static int
13039 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13040 {
13041 static const char vptr[] = "_vptr";
13042 static const char vtable[] = "vtable";
13043
13044 /* Look for the C++ and Java forms of the vtable. */
13045 if ((cu->language == language_java
13046 && startswith (name, vtable))
13047 || (startswith (name, vptr)
13048 && is_cplus_marker (name[sizeof (vptr) - 1])))
13049 return 1;
13050
13051 return 0;
13052 }
13053
13054 /* GCC outputs unnamed structures that are really pointers to member
13055 functions, with the ABI-specified layout. If TYPE describes
13056 such a structure, smash it into a member function type.
13057
13058 GCC shouldn't do this; it should just output pointer to member DIEs.
13059 This is GCC PR debug/28767. */
13060
13061 static void
13062 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13063 {
13064 struct type *pfn_type, *self_type, *new_type;
13065
13066 /* Check for a structure with no name and two children. */
13067 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13068 return;
13069
13070 /* Check for __pfn and __delta members. */
13071 if (TYPE_FIELD_NAME (type, 0) == NULL
13072 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13073 || TYPE_FIELD_NAME (type, 1) == NULL
13074 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13075 return;
13076
13077 /* Find the type of the method. */
13078 pfn_type = TYPE_FIELD_TYPE (type, 0);
13079 if (pfn_type == NULL
13080 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13081 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13082 return;
13083
13084 /* Look for the "this" argument. */
13085 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13086 if (TYPE_NFIELDS (pfn_type) == 0
13087 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13088 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13089 return;
13090
13091 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13092 new_type = alloc_type (objfile);
13093 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13094 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13095 TYPE_VARARGS (pfn_type));
13096 smash_to_methodptr_type (type, new_type);
13097 }
13098
13099 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13100 (icc). */
13101
13102 static int
13103 producer_is_icc (struct dwarf2_cu *cu)
13104 {
13105 if (!cu->checked_producer)
13106 check_producer (cu);
13107
13108 return cu->producer_is_icc;
13109 }
13110
13111 /* Called when we find the DIE that starts a structure or union scope
13112 (definition) to create a type for the structure or union. Fill in
13113 the type's name and general properties; the members will not be
13114 processed until process_structure_scope. A symbol table entry for
13115 the type will also not be done until process_structure_scope (assuming
13116 the type has a name).
13117
13118 NOTE: we need to call these functions regardless of whether or not the
13119 DIE has a DW_AT_name attribute, since it might be an anonymous
13120 structure or union. This gets the type entered into our set of
13121 user defined types. */
13122
13123 static struct type *
13124 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13125 {
13126 struct objfile *objfile = cu->objfile;
13127 struct type *type;
13128 struct attribute *attr;
13129 const char *name;
13130
13131 /* If the definition of this type lives in .debug_types, read that type.
13132 Don't follow DW_AT_specification though, that will take us back up
13133 the chain and we want to go down. */
13134 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13135 if (attr)
13136 {
13137 type = get_DW_AT_signature_type (die, attr, cu);
13138
13139 /* The type's CU may not be the same as CU.
13140 Ensure TYPE is recorded with CU in die_type_hash. */
13141 return set_die_type (die, type, cu);
13142 }
13143
13144 type = alloc_type (objfile);
13145 INIT_CPLUS_SPECIFIC (type);
13146
13147 name = dwarf2_name (die, cu);
13148 if (name != NULL)
13149 {
13150 if (cu->language == language_cplus
13151 || cu->language == language_java
13152 || cu->language == language_d)
13153 {
13154 const char *full_name = dwarf2_full_name (name, die, cu);
13155
13156 /* dwarf2_full_name might have already finished building the DIE's
13157 type. If so, there is no need to continue. */
13158 if (get_die_type (die, cu) != NULL)
13159 return get_die_type (die, cu);
13160
13161 TYPE_TAG_NAME (type) = full_name;
13162 if (die->tag == DW_TAG_structure_type
13163 || die->tag == DW_TAG_class_type)
13164 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13165 }
13166 else
13167 {
13168 /* The name is already allocated along with this objfile, so
13169 we don't need to duplicate it for the type. */
13170 TYPE_TAG_NAME (type) = name;
13171 if (die->tag == DW_TAG_class_type)
13172 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13173 }
13174 }
13175
13176 if (die->tag == DW_TAG_structure_type)
13177 {
13178 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13179 }
13180 else if (die->tag == DW_TAG_union_type)
13181 {
13182 TYPE_CODE (type) = TYPE_CODE_UNION;
13183 }
13184 else
13185 {
13186 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13187 }
13188
13189 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13190 TYPE_DECLARED_CLASS (type) = 1;
13191
13192 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13193 if (attr)
13194 {
13195 TYPE_LENGTH (type) = DW_UNSND (attr);
13196 }
13197 else
13198 {
13199 TYPE_LENGTH (type) = 0;
13200 }
13201
13202 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13203 {
13204 /* ICC does not output the required DW_AT_declaration
13205 on incomplete types, but gives them a size of zero. */
13206 TYPE_STUB (type) = 1;
13207 }
13208 else
13209 TYPE_STUB_SUPPORTED (type) = 1;
13210
13211 if (die_is_declaration (die, cu))
13212 TYPE_STUB (type) = 1;
13213 else if (attr == NULL && die->child == NULL
13214 && producer_is_realview (cu->producer))
13215 /* RealView does not output the required DW_AT_declaration
13216 on incomplete types. */
13217 TYPE_STUB (type) = 1;
13218
13219 /* We need to add the type field to the die immediately so we don't
13220 infinitely recurse when dealing with pointers to the structure
13221 type within the structure itself. */
13222 set_die_type (die, type, cu);
13223
13224 /* set_die_type should be already done. */
13225 set_descriptive_type (type, die, cu);
13226
13227 return type;
13228 }
13229
13230 /* Finish creating a structure or union type, including filling in
13231 its members and creating a symbol for it. */
13232
13233 static void
13234 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13235 {
13236 struct objfile *objfile = cu->objfile;
13237 struct die_info *child_die;
13238 struct type *type;
13239
13240 type = get_die_type (die, cu);
13241 if (type == NULL)
13242 type = read_structure_type (die, cu);
13243
13244 if (die->child != NULL && ! die_is_declaration (die, cu))
13245 {
13246 struct field_info fi;
13247 VEC (symbolp) *template_args = NULL;
13248 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13249
13250 memset (&fi, 0, sizeof (struct field_info));
13251
13252 child_die = die->child;
13253
13254 while (child_die && child_die->tag)
13255 {
13256 if (child_die->tag == DW_TAG_member
13257 || child_die->tag == DW_TAG_variable)
13258 {
13259 /* NOTE: carlton/2002-11-05: A C++ static data member
13260 should be a DW_TAG_member that is a declaration, but
13261 all versions of G++ as of this writing (so through at
13262 least 3.2.1) incorrectly generate DW_TAG_variable
13263 tags for them instead. */
13264 dwarf2_add_field (&fi, child_die, cu);
13265 }
13266 else if (child_die->tag == DW_TAG_subprogram)
13267 {
13268 /* C++ member function. */
13269 dwarf2_add_member_fn (&fi, child_die, type, cu);
13270 }
13271 else if (child_die->tag == DW_TAG_inheritance)
13272 {
13273 /* C++ base class field. */
13274 dwarf2_add_field (&fi, child_die, cu);
13275 }
13276 else if (child_die->tag == DW_TAG_typedef)
13277 dwarf2_add_typedef (&fi, child_die, cu);
13278 else if (child_die->tag == DW_TAG_template_type_param
13279 || child_die->tag == DW_TAG_template_value_param)
13280 {
13281 struct symbol *arg = new_symbol (child_die, NULL, cu);
13282
13283 if (arg != NULL)
13284 VEC_safe_push (symbolp, template_args, arg);
13285 }
13286
13287 child_die = sibling_die (child_die);
13288 }
13289
13290 /* Attach template arguments to type. */
13291 if (! VEC_empty (symbolp, template_args))
13292 {
13293 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13294 TYPE_N_TEMPLATE_ARGUMENTS (type)
13295 = VEC_length (symbolp, template_args);
13296 TYPE_TEMPLATE_ARGUMENTS (type)
13297 = XOBNEWVEC (&objfile->objfile_obstack,
13298 struct symbol *,
13299 TYPE_N_TEMPLATE_ARGUMENTS (type));
13300 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13301 VEC_address (symbolp, template_args),
13302 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13303 * sizeof (struct symbol *)));
13304 VEC_free (symbolp, template_args);
13305 }
13306
13307 /* Attach fields and member functions to the type. */
13308 if (fi.nfields)
13309 dwarf2_attach_fields_to_type (&fi, type, cu);
13310 if (fi.nfnfields)
13311 {
13312 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13313
13314 /* Get the type which refers to the base class (possibly this
13315 class itself) which contains the vtable pointer for the current
13316 class from the DW_AT_containing_type attribute. This use of
13317 DW_AT_containing_type is a GNU extension. */
13318
13319 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13320 {
13321 struct type *t = die_containing_type (die, cu);
13322
13323 set_type_vptr_basetype (type, t);
13324 if (type == t)
13325 {
13326 int i;
13327
13328 /* Our own class provides vtbl ptr. */
13329 for (i = TYPE_NFIELDS (t) - 1;
13330 i >= TYPE_N_BASECLASSES (t);
13331 --i)
13332 {
13333 const char *fieldname = TYPE_FIELD_NAME (t, i);
13334
13335 if (is_vtable_name (fieldname, cu))
13336 {
13337 set_type_vptr_fieldno (type, i);
13338 break;
13339 }
13340 }
13341
13342 /* Complain if virtual function table field not found. */
13343 if (i < TYPE_N_BASECLASSES (t))
13344 complaint (&symfile_complaints,
13345 _("virtual function table pointer "
13346 "not found when defining class '%s'"),
13347 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13348 "");
13349 }
13350 else
13351 {
13352 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13353 }
13354 }
13355 else if (cu->producer
13356 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13357 {
13358 /* The IBM XLC compiler does not provide direct indication
13359 of the containing type, but the vtable pointer is
13360 always named __vfp. */
13361
13362 int i;
13363
13364 for (i = TYPE_NFIELDS (type) - 1;
13365 i >= TYPE_N_BASECLASSES (type);
13366 --i)
13367 {
13368 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13369 {
13370 set_type_vptr_fieldno (type, i);
13371 set_type_vptr_basetype (type, type);
13372 break;
13373 }
13374 }
13375 }
13376 }
13377
13378 /* Copy fi.typedef_field_list linked list elements content into the
13379 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13380 if (fi.typedef_field_list)
13381 {
13382 int i = fi.typedef_field_list_count;
13383
13384 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13385 TYPE_TYPEDEF_FIELD_ARRAY (type)
13386 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13387 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13388
13389 /* Reverse the list order to keep the debug info elements order. */
13390 while (--i >= 0)
13391 {
13392 struct typedef_field *dest, *src;
13393
13394 dest = &TYPE_TYPEDEF_FIELD (type, i);
13395 src = &fi.typedef_field_list->field;
13396 fi.typedef_field_list = fi.typedef_field_list->next;
13397 *dest = *src;
13398 }
13399 }
13400
13401 do_cleanups (back_to);
13402
13403 if (HAVE_CPLUS_STRUCT (type))
13404 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13405 }
13406
13407 quirk_gcc_member_function_pointer (type, objfile);
13408
13409 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13410 snapshots) has been known to create a die giving a declaration
13411 for a class that has, as a child, a die giving a definition for a
13412 nested class. So we have to process our children even if the
13413 current die is a declaration. Normally, of course, a declaration
13414 won't have any children at all. */
13415
13416 child_die = die->child;
13417
13418 while (child_die != NULL && child_die->tag)
13419 {
13420 if (child_die->tag == DW_TAG_member
13421 || child_die->tag == DW_TAG_variable
13422 || child_die->tag == DW_TAG_inheritance
13423 || child_die->tag == DW_TAG_template_value_param
13424 || child_die->tag == DW_TAG_template_type_param)
13425 {
13426 /* Do nothing. */
13427 }
13428 else
13429 process_die (child_die, cu);
13430
13431 child_die = sibling_die (child_die);
13432 }
13433
13434 /* Do not consider external references. According to the DWARF standard,
13435 these DIEs are identified by the fact that they have no byte_size
13436 attribute, and a declaration attribute. */
13437 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13438 || !die_is_declaration (die, cu))
13439 new_symbol (die, type, cu);
13440 }
13441
13442 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13443 update TYPE using some information only available in DIE's children. */
13444
13445 static void
13446 update_enumeration_type_from_children (struct die_info *die,
13447 struct type *type,
13448 struct dwarf2_cu *cu)
13449 {
13450 struct obstack obstack;
13451 struct die_info *child_die;
13452 int unsigned_enum = 1;
13453 int flag_enum = 1;
13454 ULONGEST mask = 0;
13455 struct cleanup *old_chain;
13456
13457 obstack_init (&obstack);
13458 old_chain = make_cleanup_obstack_free (&obstack);
13459
13460 for (child_die = die->child;
13461 child_die != NULL && child_die->tag;
13462 child_die = sibling_die (child_die))
13463 {
13464 struct attribute *attr;
13465 LONGEST value;
13466 const gdb_byte *bytes;
13467 struct dwarf2_locexpr_baton *baton;
13468 const char *name;
13469
13470 if (child_die->tag != DW_TAG_enumerator)
13471 continue;
13472
13473 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13474 if (attr == NULL)
13475 continue;
13476
13477 name = dwarf2_name (child_die, cu);
13478 if (name == NULL)
13479 name = "<anonymous enumerator>";
13480
13481 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13482 &value, &bytes, &baton);
13483 if (value < 0)
13484 {
13485 unsigned_enum = 0;
13486 flag_enum = 0;
13487 }
13488 else if ((mask & value) != 0)
13489 flag_enum = 0;
13490 else
13491 mask |= value;
13492
13493 /* If we already know that the enum type is neither unsigned, nor
13494 a flag type, no need to look at the rest of the enumerates. */
13495 if (!unsigned_enum && !flag_enum)
13496 break;
13497 }
13498
13499 if (unsigned_enum)
13500 TYPE_UNSIGNED (type) = 1;
13501 if (flag_enum)
13502 TYPE_FLAG_ENUM (type) = 1;
13503
13504 do_cleanups (old_chain);
13505 }
13506
13507 /* Given a DW_AT_enumeration_type die, set its type. We do not
13508 complete the type's fields yet, or create any symbols. */
13509
13510 static struct type *
13511 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13512 {
13513 struct objfile *objfile = cu->objfile;
13514 struct type *type;
13515 struct attribute *attr;
13516 const char *name;
13517
13518 /* If the definition of this type lives in .debug_types, read that type.
13519 Don't follow DW_AT_specification though, that will take us back up
13520 the chain and we want to go down. */
13521 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13522 if (attr)
13523 {
13524 type = get_DW_AT_signature_type (die, attr, cu);
13525
13526 /* The type's CU may not be the same as CU.
13527 Ensure TYPE is recorded with CU in die_type_hash. */
13528 return set_die_type (die, type, cu);
13529 }
13530
13531 type = alloc_type (objfile);
13532
13533 TYPE_CODE (type) = TYPE_CODE_ENUM;
13534 name = dwarf2_full_name (NULL, die, cu);
13535 if (name != NULL)
13536 TYPE_TAG_NAME (type) = name;
13537
13538 attr = dwarf2_attr (die, DW_AT_type, cu);
13539 if (attr != NULL)
13540 {
13541 struct type *underlying_type = die_type (die, cu);
13542
13543 TYPE_TARGET_TYPE (type) = underlying_type;
13544 }
13545
13546 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13547 if (attr)
13548 {
13549 TYPE_LENGTH (type) = DW_UNSND (attr);
13550 }
13551 else
13552 {
13553 TYPE_LENGTH (type) = 0;
13554 }
13555
13556 /* The enumeration DIE can be incomplete. In Ada, any type can be
13557 declared as private in the package spec, and then defined only
13558 inside the package body. Such types are known as Taft Amendment
13559 Types. When another package uses such a type, an incomplete DIE
13560 may be generated by the compiler. */
13561 if (die_is_declaration (die, cu))
13562 TYPE_STUB (type) = 1;
13563
13564 /* Finish the creation of this type by using the enum's children.
13565 We must call this even when the underlying type has been provided
13566 so that we can determine if we're looking at a "flag" enum. */
13567 update_enumeration_type_from_children (die, type, cu);
13568
13569 /* If this type has an underlying type that is not a stub, then we
13570 may use its attributes. We always use the "unsigned" attribute
13571 in this situation, because ordinarily we guess whether the type
13572 is unsigned -- but the guess can be wrong and the underlying type
13573 can tell us the reality. However, we defer to a local size
13574 attribute if one exists, because this lets the compiler override
13575 the underlying type if needed. */
13576 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13577 {
13578 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13579 if (TYPE_LENGTH (type) == 0)
13580 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13581 }
13582
13583 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13584
13585 return set_die_type (die, type, cu);
13586 }
13587
13588 /* Given a pointer to a die which begins an enumeration, process all
13589 the dies that define the members of the enumeration, and create the
13590 symbol for the enumeration type.
13591
13592 NOTE: We reverse the order of the element list. */
13593
13594 static void
13595 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13596 {
13597 struct type *this_type;
13598
13599 this_type = get_die_type (die, cu);
13600 if (this_type == NULL)
13601 this_type = read_enumeration_type (die, cu);
13602
13603 if (die->child != NULL)
13604 {
13605 struct die_info *child_die;
13606 struct symbol *sym;
13607 struct field *fields = NULL;
13608 int num_fields = 0;
13609 const char *name;
13610
13611 child_die = die->child;
13612 while (child_die && child_die->tag)
13613 {
13614 if (child_die->tag != DW_TAG_enumerator)
13615 {
13616 process_die (child_die, cu);
13617 }
13618 else
13619 {
13620 name = dwarf2_name (child_die, cu);
13621 if (name)
13622 {
13623 sym = new_symbol (child_die, this_type, cu);
13624
13625 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13626 {
13627 fields = (struct field *)
13628 xrealloc (fields,
13629 (num_fields + DW_FIELD_ALLOC_CHUNK)
13630 * sizeof (struct field));
13631 }
13632
13633 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13634 FIELD_TYPE (fields[num_fields]) = NULL;
13635 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13636 FIELD_BITSIZE (fields[num_fields]) = 0;
13637
13638 num_fields++;
13639 }
13640 }
13641
13642 child_die = sibling_die (child_die);
13643 }
13644
13645 if (num_fields)
13646 {
13647 TYPE_NFIELDS (this_type) = num_fields;
13648 TYPE_FIELDS (this_type) = (struct field *)
13649 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13650 memcpy (TYPE_FIELDS (this_type), fields,
13651 sizeof (struct field) * num_fields);
13652 xfree (fields);
13653 }
13654 }
13655
13656 /* If we are reading an enum from a .debug_types unit, and the enum
13657 is a declaration, and the enum is not the signatured type in the
13658 unit, then we do not want to add a symbol for it. Adding a
13659 symbol would in some cases obscure the true definition of the
13660 enum, giving users an incomplete type when the definition is
13661 actually available. Note that we do not want to do this for all
13662 enums which are just declarations, because C++0x allows forward
13663 enum declarations. */
13664 if (cu->per_cu->is_debug_types
13665 && die_is_declaration (die, cu))
13666 {
13667 struct signatured_type *sig_type;
13668
13669 sig_type = (struct signatured_type *) cu->per_cu;
13670 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13671 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13672 return;
13673 }
13674
13675 new_symbol (die, this_type, cu);
13676 }
13677
13678 /* Extract all information from a DW_TAG_array_type DIE and put it in
13679 the DIE's type field. For now, this only handles one dimensional
13680 arrays. */
13681
13682 static struct type *
13683 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13684 {
13685 struct objfile *objfile = cu->objfile;
13686 struct die_info *child_die;
13687 struct type *type;
13688 struct type *element_type, *range_type, *index_type;
13689 struct type **range_types = NULL;
13690 struct attribute *attr;
13691 int ndim = 0;
13692 struct cleanup *back_to;
13693 const char *name;
13694 unsigned int bit_stride = 0;
13695
13696 element_type = die_type (die, cu);
13697
13698 /* The die_type call above may have already set the type for this DIE. */
13699 type = get_die_type (die, cu);
13700 if (type)
13701 return type;
13702
13703 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13704 if (attr != NULL)
13705 bit_stride = DW_UNSND (attr) * 8;
13706
13707 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13708 if (attr != NULL)
13709 bit_stride = DW_UNSND (attr);
13710
13711 /* Irix 6.2 native cc creates array types without children for
13712 arrays with unspecified length. */
13713 if (die->child == NULL)
13714 {
13715 index_type = objfile_type (objfile)->builtin_int;
13716 range_type = create_static_range_type (NULL, index_type, 0, -1);
13717 type = create_array_type_with_stride (NULL, element_type, range_type,
13718 bit_stride);
13719 return set_die_type (die, type, cu);
13720 }
13721
13722 back_to = make_cleanup (null_cleanup, NULL);
13723 child_die = die->child;
13724 while (child_die && child_die->tag)
13725 {
13726 if (child_die->tag == DW_TAG_subrange_type)
13727 {
13728 struct type *child_type = read_type_die (child_die, cu);
13729
13730 if (child_type != NULL)
13731 {
13732 /* The range type was succesfully read. Save it for the
13733 array type creation. */
13734 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13735 {
13736 range_types = (struct type **)
13737 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13738 * sizeof (struct type *));
13739 if (ndim == 0)
13740 make_cleanup (free_current_contents, &range_types);
13741 }
13742 range_types[ndim++] = child_type;
13743 }
13744 }
13745 child_die = sibling_die (child_die);
13746 }
13747
13748 /* Dwarf2 dimensions are output from left to right, create the
13749 necessary array types in backwards order. */
13750
13751 type = element_type;
13752
13753 if (read_array_order (die, cu) == DW_ORD_col_major)
13754 {
13755 int i = 0;
13756
13757 while (i < ndim)
13758 type = create_array_type_with_stride (NULL, type, range_types[i++],
13759 bit_stride);
13760 }
13761 else
13762 {
13763 while (ndim-- > 0)
13764 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13765 bit_stride);
13766 }
13767
13768 /* Understand Dwarf2 support for vector types (like they occur on
13769 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13770 array type. This is not part of the Dwarf2/3 standard yet, but a
13771 custom vendor extension. The main difference between a regular
13772 array and the vector variant is that vectors are passed by value
13773 to functions. */
13774 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13775 if (attr)
13776 make_vector_type (type);
13777
13778 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13779 implementation may choose to implement triple vectors using this
13780 attribute. */
13781 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13782 if (attr)
13783 {
13784 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13785 TYPE_LENGTH (type) = DW_UNSND (attr);
13786 else
13787 complaint (&symfile_complaints,
13788 _("DW_AT_byte_size for array type smaller "
13789 "than the total size of elements"));
13790 }
13791
13792 name = dwarf2_name (die, cu);
13793 if (name)
13794 TYPE_NAME (type) = name;
13795
13796 /* Install the type in the die. */
13797 set_die_type (die, type, cu);
13798
13799 /* set_die_type should be already done. */
13800 set_descriptive_type (type, die, cu);
13801
13802 do_cleanups (back_to);
13803
13804 return type;
13805 }
13806
13807 static enum dwarf_array_dim_ordering
13808 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13809 {
13810 struct attribute *attr;
13811
13812 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13813
13814 if (attr)
13815 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13816
13817 /* GNU F77 is a special case, as at 08/2004 array type info is the
13818 opposite order to the dwarf2 specification, but data is still
13819 laid out as per normal fortran.
13820
13821 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13822 version checking. */
13823
13824 if (cu->language == language_fortran
13825 && cu->producer && strstr (cu->producer, "GNU F77"))
13826 {
13827 return DW_ORD_row_major;
13828 }
13829
13830 switch (cu->language_defn->la_array_ordering)
13831 {
13832 case array_column_major:
13833 return DW_ORD_col_major;
13834 case array_row_major:
13835 default:
13836 return DW_ORD_row_major;
13837 };
13838 }
13839
13840 /* Extract all information from a DW_TAG_set_type DIE and put it in
13841 the DIE's type field. */
13842
13843 static struct type *
13844 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13845 {
13846 struct type *domain_type, *set_type;
13847 struct attribute *attr;
13848
13849 domain_type = die_type (die, cu);
13850
13851 /* The die_type call above may have already set the type for this DIE. */
13852 set_type = get_die_type (die, cu);
13853 if (set_type)
13854 return set_type;
13855
13856 set_type = create_set_type (NULL, domain_type);
13857
13858 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13859 if (attr)
13860 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13861
13862 return set_die_type (die, set_type, cu);
13863 }
13864
13865 /* A helper for read_common_block that creates a locexpr baton.
13866 SYM is the symbol which we are marking as computed.
13867 COMMON_DIE is the DIE for the common block.
13868 COMMON_LOC is the location expression attribute for the common
13869 block itself.
13870 MEMBER_LOC is the location expression attribute for the particular
13871 member of the common block that we are processing.
13872 CU is the CU from which the above come. */
13873
13874 static void
13875 mark_common_block_symbol_computed (struct symbol *sym,
13876 struct die_info *common_die,
13877 struct attribute *common_loc,
13878 struct attribute *member_loc,
13879 struct dwarf2_cu *cu)
13880 {
13881 struct objfile *objfile = dwarf2_per_objfile->objfile;
13882 struct dwarf2_locexpr_baton *baton;
13883 gdb_byte *ptr;
13884 unsigned int cu_off;
13885 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13886 LONGEST offset = 0;
13887
13888 gdb_assert (common_loc && member_loc);
13889 gdb_assert (attr_form_is_block (common_loc));
13890 gdb_assert (attr_form_is_block (member_loc)
13891 || attr_form_is_constant (member_loc));
13892
13893 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13894 baton->per_cu = cu->per_cu;
13895 gdb_assert (baton->per_cu);
13896
13897 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13898
13899 if (attr_form_is_constant (member_loc))
13900 {
13901 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13902 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13903 }
13904 else
13905 baton->size += DW_BLOCK (member_loc)->size;
13906
13907 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13908 baton->data = ptr;
13909
13910 *ptr++ = DW_OP_call4;
13911 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13912 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13913 ptr += 4;
13914
13915 if (attr_form_is_constant (member_loc))
13916 {
13917 *ptr++ = DW_OP_addr;
13918 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13919 ptr += cu->header.addr_size;
13920 }
13921 else
13922 {
13923 /* We have to copy the data here, because DW_OP_call4 will only
13924 use a DW_AT_location attribute. */
13925 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13926 ptr += DW_BLOCK (member_loc)->size;
13927 }
13928
13929 *ptr++ = DW_OP_plus;
13930 gdb_assert (ptr - baton->data == baton->size);
13931
13932 SYMBOL_LOCATION_BATON (sym) = baton;
13933 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13934 }
13935
13936 /* Create appropriate locally-scoped variables for all the
13937 DW_TAG_common_block entries. Also create a struct common_block
13938 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13939 is used to sepate the common blocks name namespace from regular
13940 variable names. */
13941
13942 static void
13943 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13944 {
13945 struct attribute *attr;
13946
13947 attr = dwarf2_attr (die, DW_AT_location, cu);
13948 if (attr)
13949 {
13950 /* Support the .debug_loc offsets. */
13951 if (attr_form_is_block (attr))
13952 {
13953 /* Ok. */
13954 }
13955 else if (attr_form_is_section_offset (attr))
13956 {
13957 dwarf2_complex_location_expr_complaint ();
13958 attr = NULL;
13959 }
13960 else
13961 {
13962 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13963 "common block member");
13964 attr = NULL;
13965 }
13966 }
13967
13968 if (die->child != NULL)
13969 {
13970 struct objfile *objfile = cu->objfile;
13971 struct die_info *child_die;
13972 size_t n_entries = 0, size;
13973 struct common_block *common_block;
13974 struct symbol *sym;
13975
13976 for (child_die = die->child;
13977 child_die && child_die->tag;
13978 child_die = sibling_die (child_die))
13979 ++n_entries;
13980
13981 size = (sizeof (struct common_block)
13982 + (n_entries - 1) * sizeof (struct symbol *));
13983 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13984 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13985 common_block->n_entries = 0;
13986
13987 for (child_die = die->child;
13988 child_die && child_die->tag;
13989 child_die = sibling_die (child_die))
13990 {
13991 /* Create the symbol in the DW_TAG_common_block block in the current
13992 symbol scope. */
13993 sym = new_symbol (child_die, NULL, cu);
13994 if (sym != NULL)
13995 {
13996 struct attribute *member_loc;
13997
13998 common_block->contents[common_block->n_entries++] = sym;
13999
14000 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14001 cu);
14002 if (member_loc)
14003 {
14004 /* GDB has handled this for a long time, but it is
14005 not specified by DWARF. It seems to have been
14006 emitted by gfortran at least as recently as:
14007 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14008 complaint (&symfile_complaints,
14009 _("Variable in common block has "
14010 "DW_AT_data_member_location "
14011 "- DIE at 0x%x [in module %s]"),
14012 child_die->offset.sect_off,
14013 objfile_name (cu->objfile));
14014
14015 if (attr_form_is_section_offset (member_loc))
14016 dwarf2_complex_location_expr_complaint ();
14017 else if (attr_form_is_constant (member_loc)
14018 || attr_form_is_block (member_loc))
14019 {
14020 if (attr)
14021 mark_common_block_symbol_computed (sym, die, attr,
14022 member_loc, cu);
14023 }
14024 else
14025 dwarf2_complex_location_expr_complaint ();
14026 }
14027 }
14028 }
14029
14030 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14031 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14032 }
14033 }
14034
14035 /* Create a type for a C++ namespace. */
14036
14037 static struct type *
14038 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14039 {
14040 struct objfile *objfile = cu->objfile;
14041 const char *previous_prefix, *name;
14042 int is_anonymous;
14043 struct type *type;
14044
14045 /* For extensions, reuse the type of the original namespace. */
14046 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14047 {
14048 struct die_info *ext_die;
14049 struct dwarf2_cu *ext_cu = cu;
14050
14051 ext_die = dwarf2_extension (die, &ext_cu);
14052 type = read_type_die (ext_die, ext_cu);
14053
14054 /* EXT_CU may not be the same as CU.
14055 Ensure TYPE is recorded with CU in die_type_hash. */
14056 return set_die_type (die, type, cu);
14057 }
14058
14059 name = namespace_name (die, &is_anonymous, cu);
14060
14061 /* Now build the name of the current namespace. */
14062
14063 previous_prefix = determine_prefix (die, cu);
14064 if (previous_prefix[0] != '\0')
14065 name = typename_concat (&objfile->objfile_obstack,
14066 previous_prefix, name, 0, cu);
14067
14068 /* Create the type. */
14069 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14070 objfile);
14071 TYPE_NAME (type) = name;
14072 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14073
14074 return set_die_type (die, type, cu);
14075 }
14076
14077 /* Read a namespace scope. */
14078
14079 static void
14080 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14081 {
14082 struct objfile *objfile = cu->objfile;
14083 int is_anonymous;
14084
14085 /* Add a symbol associated to this if we haven't seen the namespace
14086 before. Also, add a using directive if it's an anonymous
14087 namespace. */
14088
14089 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14090 {
14091 struct type *type;
14092
14093 type = read_type_die (die, cu);
14094 new_symbol (die, type, cu);
14095
14096 namespace_name (die, &is_anonymous, cu);
14097 if (is_anonymous)
14098 {
14099 const char *previous_prefix = determine_prefix (die, cu);
14100
14101 add_using_directive (using_directives (cu->language),
14102 previous_prefix, TYPE_NAME (type), NULL,
14103 NULL, NULL, 0, &objfile->objfile_obstack);
14104 }
14105 }
14106
14107 if (die->child != NULL)
14108 {
14109 struct die_info *child_die = die->child;
14110
14111 while (child_die && child_die->tag)
14112 {
14113 process_die (child_die, cu);
14114 child_die = sibling_die (child_die);
14115 }
14116 }
14117 }
14118
14119 /* Read a Fortran module as type. This DIE can be only a declaration used for
14120 imported module. Still we need that type as local Fortran "use ... only"
14121 declaration imports depend on the created type in determine_prefix. */
14122
14123 static struct type *
14124 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14125 {
14126 struct objfile *objfile = cu->objfile;
14127 const char *module_name;
14128 struct type *type;
14129
14130 module_name = dwarf2_name (die, cu);
14131 if (!module_name)
14132 complaint (&symfile_complaints,
14133 _("DW_TAG_module has no name, offset 0x%x"),
14134 die->offset.sect_off);
14135 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14136
14137 /* determine_prefix uses TYPE_TAG_NAME. */
14138 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14139
14140 return set_die_type (die, type, cu);
14141 }
14142
14143 /* Read a Fortran module. */
14144
14145 static void
14146 read_module (struct die_info *die, struct dwarf2_cu *cu)
14147 {
14148 struct die_info *child_die = die->child;
14149 struct type *type;
14150
14151 type = read_type_die (die, cu);
14152 new_symbol (die, type, cu);
14153
14154 while (child_die && child_die->tag)
14155 {
14156 process_die (child_die, cu);
14157 child_die = sibling_die (child_die);
14158 }
14159 }
14160
14161 /* Return the name of the namespace represented by DIE. Set
14162 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14163 namespace. */
14164
14165 static const char *
14166 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14167 {
14168 struct die_info *current_die;
14169 const char *name = NULL;
14170
14171 /* Loop through the extensions until we find a name. */
14172
14173 for (current_die = die;
14174 current_die != NULL;
14175 current_die = dwarf2_extension (die, &cu))
14176 {
14177 /* We don't use dwarf2_name here so that we can detect the absence
14178 of a name -> anonymous namespace. */
14179 name = dwarf2_string_attr (die, DW_AT_name, cu);
14180
14181 if (name != NULL)
14182 break;
14183 }
14184
14185 /* Is it an anonymous namespace? */
14186
14187 *is_anonymous = (name == NULL);
14188 if (*is_anonymous)
14189 name = CP_ANONYMOUS_NAMESPACE_STR;
14190
14191 return name;
14192 }
14193
14194 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14195 the user defined type vector. */
14196
14197 static struct type *
14198 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14199 {
14200 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14201 struct comp_unit_head *cu_header = &cu->header;
14202 struct type *type;
14203 struct attribute *attr_byte_size;
14204 struct attribute *attr_address_class;
14205 int byte_size, addr_class;
14206 struct type *target_type;
14207
14208 target_type = die_type (die, cu);
14209
14210 /* The die_type call above may have already set the type for this DIE. */
14211 type = get_die_type (die, cu);
14212 if (type)
14213 return type;
14214
14215 type = lookup_pointer_type (target_type);
14216
14217 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14218 if (attr_byte_size)
14219 byte_size = DW_UNSND (attr_byte_size);
14220 else
14221 byte_size = cu_header->addr_size;
14222
14223 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14224 if (attr_address_class)
14225 addr_class = DW_UNSND (attr_address_class);
14226 else
14227 addr_class = DW_ADDR_none;
14228
14229 /* If the pointer size or address class is different than the
14230 default, create a type variant marked as such and set the
14231 length accordingly. */
14232 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14233 {
14234 if (gdbarch_address_class_type_flags_p (gdbarch))
14235 {
14236 int type_flags;
14237
14238 type_flags = gdbarch_address_class_type_flags
14239 (gdbarch, byte_size, addr_class);
14240 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14241 == 0);
14242 type = make_type_with_address_space (type, type_flags);
14243 }
14244 else if (TYPE_LENGTH (type) != byte_size)
14245 {
14246 complaint (&symfile_complaints,
14247 _("invalid pointer size %d"), byte_size);
14248 }
14249 else
14250 {
14251 /* Should we also complain about unhandled address classes? */
14252 }
14253 }
14254
14255 TYPE_LENGTH (type) = byte_size;
14256 return set_die_type (die, type, cu);
14257 }
14258
14259 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14260 the user defined type vector. */
14261
14262 static struct type *
14263 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14264 {
14265 struct type *type;
14266 struct type *to_type;
14267 struct type *domain;
14268
14269 to_type = die_type (die, cu);
14270 domain = die_containing_type (die, cu);
14271
14272 /* The calls above may have already set the type for this DIE. */
14273 type = get_die_type (die, cu);
14274 if (type)
14275 return type;
14276
14277 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14278 type = lookup_methodptr_type (to_type);
14279 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14280 {
14281 struct type *new_type = alloc_type (cu->objfile);
14282
14283 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14284 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14285 TYPE_VARARGS (to_type));
14286 type = lookup_methodptr_type (new_type);
14287 }
14288 else
14289 type = lookup_memberptr_type (to_type, domain);
14290
14291 return set_die_type (die, type, cu);
14292 }
14293
14294 /* Extract all information from a DW_TAG_reference_type DIE and add to
14295 the user defined type vector. */
14296
14297 static struct type *
14298 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14299 {
14300 struct comp_unit_head *cu_header = &cu->header;
14301 struct type *type, *target_type;
14302 struct attribute *attr;
14303
14304 target_type = die_type (die, cu);
14305
14306 /* The die_type call above may have already set the type for this DIE. */
14307 type = get_die_type (die, cu);
14308 if (type)
14309 return type;
14310
14311 type = lookup_reference_type (target_type);
14312 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14313 if (attr)
14314 {
14315 TYPE_LENGTH (type) = DW_UNSND (attr);
14316 }
14317 else
14318 {
14319 TYPE_LENGTH (type) = cu_header->addr_size;
14320 }
14321 return set_die_type (die, type, cu);
14322 }
14323
14324 /* Add the given cv-qualifiers to the element type of the array. GCC
14325 outputs DWARF type qualifiers that apply to an array, not the
14326 element type. But GDB relies on the array element type to carry
14327 the cv-qualifiers. This mimics section 6.7.3 of the C99
14328 specification. */
14329
14330 static struct type *
14331 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14332 struct type *base_type, int cnst, int voltl)
14333 {
14334 struct type *el_type, *inner_array;
14335
14336 base_type = copy_type (base_type);
14337 inner_array = base_type;
14338
14339 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14340 {
14341 TYPE_TARGET_TYPE (inner_array) =
14342 copy_type (TYPE_TARGET_TYPE (inner_array));
14343 inner_array = TYPE_TARGET_TYPE (inner_array);
14344 }
14345
14346 el_type = TYPE_TARGET_TYPE (inner_array);
14347 cnst |= TYPE_CONST (el_type);
14348 voltl |= TYPE_VOLATILE (el_type);
14349 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14350
14351 return set_die_type (die, base_type, cu);
14352 }
14353
14354 static struct type *
14355 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14356 {
14357 struct type *base_type, *cv_type;
14358
14359 base_type = die_type (die, cu);
14360
14361 /* The die_type call above may have already set the type for this DIE. */
14362 cv_type = get_die_type (die, cu);
14363 if (cv_type)
14364 return cv_type;
14365
14366 /* In case the const qualifier is applied to an array type, the element type
14367 is so qualified, not the array type (section 6.7.3 of C99). */
14368 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14369 return add_array_cv_type (die, cu, base_type, 1, 0);
14370
14371 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14372 return set_die_type (die, cv_type, cu);
14373 }
14374
14375 static struct type *
14376 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14377 {
14378 struct type *base_type, *cv_type;
14379
14380 base_type = die_type (die, cu);
14381
14382 /* The die_type call above may have already set the type for this DIE. */
14383 cv_type = get_die_type (die, cu);
14384 if (cv_type)
14385 return cv_type;
14386
14387 /* In case the volatile qualifier is applied to an array type, the
14388 element type is so qualified, not the array type (section 6.7.3
14389 of C99). */
14390 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14391 return add_array_cv_type (die, cu, base_type, 0, 1);
14392
14393 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14394 return set_die_type (die, cv_type, cu);
14395 }
14396
14397 /* Handle DW_TAG_restrict_type. */
14398
14399 static struct type *
14400 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14401 {
14402 struct type *base_type, *cv_type;
14403
14404 base_type = die_type (die, cu);
14405
14406 /* The die_type call above may have already set the type for this DIE. */
14407 cv_type = get_die_type (die, cu);
14408 if (cv_type)
14409 return cv_type;
14410
14411 cv_type = make_restrict_type (base_type);
14412 return set_die_type (die, cv_type, cu);
14413 }
14414
14415 /* Handle DW_TAG_atomic_type. */
14416
14417 static struct type *
14418 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14419 {
14420 struct type *base_type, *cv_type;
14421
14422 base_type = die_type (die, cu);
14423
14424 /* The die_type call above may have already set the type for this DIE. */
14425 cv_type = get_die_type (die, cu);
14426 if (cv_type)
14427 return cv_type;
14428
14429 cv_type = make_atomic_type (base_type);
14430 return set_die_type (die, cv_type, cu);
14431 }
14432
14433 /* Extract all information from a DW_TAG_string_type DIE and add to
14434 the user defined type vector. It isn't really a user defined type,
14435 but it behaves like one, with other DIE's using an AT_user_def_type
14436 attribute to reference it. */
14437
14438 static struct type *
14439 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14440 {
14441 struct objfile *objfile = cu->objfile;
14442 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14443 struct type *type, *range_type, *index_type, *char_type;
14444 struct attribute *attr;
14445 unsigned int length;
14446
14447 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14448 if (attr)
14449 {
14450 length = DW_UNSND (attr);
14451 }
14452 else
14453 {
14454 /* Check for the DW_AT_byte_size attribute. */
14455 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14456 if (attr)
14457 {
14458 length = DW_UNSND (attr);
14459 }
14460 else
14461 {
14462 length = 1;
14463 }
14464 }
14465
14466 index_type = objfile_type (objfile)->builtin_int;
14467 range_type = create_static_range_type (NULL, index_type, 1, length);
14468 char_type = language_string_char_type (cu->language_defn, gdbarch);
14469 type = create_string_type (NULL, char_type, range_type);
14470
14471 return set_die_type (die, type, cu);
14472 }
14473
14474 /* Assuming that DIE corresponds to a function, returns nonzero
14475 if the function is prototyped. */
14476
14477 static int
14478 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14479 {
14480 struct attribute *attr;
14481
14482 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14483 if (attr && (DW_UNSND (attr) != 0))
14484 return 1;
14485
14486 /* The DWARF standard implies that the DW_AT_prototyped attribute
14487 is only meaninful for C, but the concept also extends to other
14488 languages that allow unprototyped functions (Eg: Objective C).
14489 For all other languages, assume that functions are always
14490 prototyped. */
14491 if (cu->language != language_c
14492 && cu->language != language_objc
14493 && cu->language != language_opencl)
14494 return 1;
14495
14496 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14497 prototyped and unprototyped functions; default to prototyped,
14498 since that is more common in modern code (and RealView warns
14499 about unprototyped functions). */
14500 if (producer_is_realview (cu->producer))
14501 return 1;
14502
14503 return 0;
14504 }
14505
14506 /* Handle DIES due to C code like:
14507
14508 struct foo
14509 {
14510 int (*funcp)(int a, long l);
14511 int b;
14512 };
14513
14514 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14515
14516 static struct type *
14517 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14518 {
14519 struct objfile *objfile = cu->objfile;
14520 struct type *type; /* Type that this function returns. */
14521 struct type *ftype; /* Function that returns above type. */
14522 struct attribute *attr;
14523
14524 type = die_type (die, cu);
14525
14526 /* The die_type call above may have already set the type for this DIE. */
14527 ftype = get_die_type (die, cu);
14528 if (ftype)
14529 return ftype;
14530
14531 ftype = lookup_function_type (type);
14532
14533 if (prototyped_function_p (die, cu))
14534 TYPE_PROTOTYPED (ftype) = 1;
14535
14536 /* Store the calling convention in the type if it's available in
14537 the subroutine die. Otherwise set the calling convention to
14538 the default value DW_CC_normal. */
14539 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14540 if (attr)
14541 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14542 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14543 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14544 else
14545 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14546
14547 /* Record whether the function returns normally to its caller or not
14548 if the DWARF producer set that information. */
14549 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14550 if (attr && (DW_UNSND (attr) != 0))
14551 TYPE_NO_RETURN (ftype) = 1;
14552
14553 /* We need to add the subroutine type to the die immediately so
14554 we don't infinitely recurse when dealing with parameters
14555 declared as the same subroutine type. */
14556 set_die_type (die, ftype, cu);
14557
14558 if (die->child != NULL)
14559 {
14560 struct type *void_type = objfile_type (objfile)->builtin_void;
14561 struct die_info *child_die;
14562 int nparams, iparams;
14563
14564 /* Count the number of parameters.
14565 FIXME: GDB currently ignores vararg functions, but knows about
14566 vararg member functions. */
14567 nparams = 0;
14568 child_die = die->child;
14569 while (child_die && child_die->tag)
14570 {
14571 if (child_die->tag == DW_TAG_formal_parameter)
14572 nparams++;
14573 else if (child_die->tag == DW_TAG_unspecified_parameters)
14574 TYPE_VARARGS (ftype) = 1;
14575 child_die = sibling_die (child_die);
14576 }
14577
14578 /* Allocate storage for parameters and fill them in. */
14579 TYPE_NFIELDS (ftype) = nparams;
14580 TYPE_FIELDS (ftype) = (struct field *)
14581 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14582
14583 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14584 even if we error out during the parameters reading below. */
14585 for (iparams = 0; iparams < nparams; iparams++)
14586 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14587
14588 iparams = 0;
14589 child_die = die->child;
14590 while (child_die && child_die->tag)
14591 {
14592 if (child_die->tag == DW_TAG_formal_parameter)
14593 {
14594 struct type *arg_type;
14595
14596 /* DWARF version 2 has no clean way to discern C++
14597 static and non-static member functions. G++ helps
14598 GDB by marking the first parameter for non-static
14599 member functions (which is the this pointer) as
14600 artificial. We pass this information to
14601 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14602
14603 DWARF version 3 added DW_AT_object_pointer, which GCC
14604 4.5 does not yet generate. */
14605 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14606 if (attr)
14607 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14608 else
14609 {
14610 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14611
14612 /* GCC/43521: In java, the formal parameter
14613 "this" is sometimes not marked with DW_AT_artificial. */
14614 if (cu->language == language_java)
14615 {
14616 const char *name = dwarf2_name (child_die, cu);
14617
14618 if (name && !strcmp (name, "this"))
14619 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14620 }
14621 }
14622 arg_type = die_type (child_die, cu);
14623
14624 /* RealView does not mark THIS as const, which the testsuite
14625 expects. GCC marks THIS as const in method definitions,
14626 but not in the class specifications (GCC PR 43053). */
14627 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14628 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14629 {
14630 int is_this = 0;
14631 struct dwarf2_cu *arg_cu = cu;
14632 const char *name = dwarf2_name (child_die, cu);
14633
14634 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14635 if (attr)
14636 {
14637 /* If the compiler emits this, use it. */
14638 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14639 is_this = 1;
14640 }
14641 else if (name && strcmp (name, "this") == 0)
14642 /* Function definitions will have the argument names. */
14643 is_this = 1;
14644 else if (name == NULL && iparams == 0)
14645 /* Declarations may not have the names, so like
14646 elsewhere in GDB, assume an artificial first
14647 argument is "this". */
14648 is_this = 1;
14649
14650 if (is_this)
14651 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14652 arg_type, 0);
14653 }
14654
14655 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14656 iparams++;
14657 }
14658 child_die = sibling_die (child_die);
14659 }
14660 }
14661
14662 return ftype;
14663 }
14664
14665 static struct type *
14666 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14667 {
14668 struct objfile *objfile = cu->objfile;
14669 const char *name = NULL;
14670 struct type *this_type, *target_type;
14671
14672 name = dwarf2_full_name (NULL, die, cu);
14673 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14674 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14675 TYPE_NAME (this_type) = name;
14676 set_die_type (die, this_type, cu);
14677 target_type = die_type (die, cu);
14678 if (target_type != this_type)
14679 TYPE_TARGET_TYPE (this_type) = target_type;
14680 else
14681 {
14682 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14683 spec and cause infinite loops in GDB. */
14684 complaint (&symfile_complaints,
14685 _("Self-referential DW_TAG_typedef "
14686 "- DIE at 0x%x [in module %s]"),
14687 die->offset.sect_off, objfile_name (objfile));
14688 TYPE_TARGET_TYPE (this_type) = NULL;
14689 }
14690 return this_type;
14691 }
14692
14693 /* Find a representation of a given base type and install
14694 it in the TYPE field of the die. */
14695
14696 static struct type *
14697 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14698 {
14699 struct objfile *objfile = cu->objfile;
14700 struct type *type;
14701 struct attribute *attr;
14702 int encoding = 0, size = 0;
14703 const char *name;
14704 enum type_code code = TYPE_CODE_INT;
14705 int type_flags = 0;
14706 struct type *target_type = NULL;
14707
14708 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14709 if (attr)
14710 {
14711 encoding = DW_UNSND (attr);
14712 }
14713 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14714 if (attr)
14715 {
14716 size = DW_UNSND (attr);
14717 }
14718 name = dwarf2_name (die, cu);
14719 if (!name)
14720 {
14721 complaint (&symfile_complaints,
14722 _("DW_AT_name missing from DW_TAG_base_type"));
14723 }
14724
14725 switch (encoding)
14726 {
14727 case DW_ATE_address:
14728 /* Turn DW_ATE_address into a void * pointer. */
14729 code = TYPE_CODE_PTR;
14730 type_flags |= TYPE_FLAG_UNSIGNED;
14731 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14732 break;
14733 case DW_ATE_boolean:
14734 code = TYPE_CODE_BOOL;
14735 type_flags |= TYPE_FLAG_UNSIGNED;
14736 break;
14737 case DW_ATE_complex_float:
14738 code = TYPE_CODE_COMPLEX;
14739 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14740 break;
14741 case DW_ATE_decimal_float:
14742 code = TYPE_CODE_DECFLOAT;
14743 break;
14744 case DW_ATE_float:
14745 code = TYPE_CODE_FLT;
14746 break;
14747 case DW_ATE_signed:
14748 break;
14749 case DW_ATE_unsigned:
14750 type_flags |= TYPE_FLAG_UNSIGNED;
14751 if (cu->language == language_fortran
14752 && name
14753 && startswith (name, "character("))
14754 code = TYPE_CODE_CHAR;
14755 break;
14756 case DW_ATE_signed_char:
14757 if (cu->language == language_ada || cu->language == language_m2
14758 || cu->language == language_pascal
14759 || cu->language == language_fortran)
14760 code = TYPE_CODE_CHAR;
14761 break;
14762 case DW_ATE_unsigned_char:
14763 if (cu->language == language_ada || cu->language == language_m2
14764 || cu->language == language_pascal
14765 || cu->language == language_fortran)
14766 code = TYPE_CODE_CHAR;
14767 type_flags |= TYPE_FLAG_UNSIGNED;
14768 break;
14769 case DW_ATE_UTF:
14770 /* We just treat this as an integer and then recognize the
14771 type by name elsewhere. */
14772 break;
14773
14774 default:
14775 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14776 dwarf_type_encoding_name (encoding));
14777 break;
14778 }
14779
14780 type = init_type (code, size, type_flags, NULL, objfile);
14781 TYPE_NAME (type) = name;
14782 TYPE_TARGET_TYPE (type) = target_type;
14783
14784 if (name && strcmp (name, "char") == 0)
14785 TYPE_NOSIGN (type) = 1;
14786
14787 return set_die_type (die, type, cu);
14788 }
14789
14790 /* Parse dwarf attribute if it's a block, reference or constant and put the
14791 resulting value of the attribute into struct bound_prop.
14792 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14793
14794 static int
14795 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14796 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14797 {
14798 struct dwarf2_property_baton *baton;
14799 struct obstack *obstack = &cu->objfile->objfile_obstack;
14800
14801 if (attr == NULL || prop == NULL)
14802 return 0;
14803
14804 if (attr_form_is_block (attr))
14805 {
14806 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14807 baton->referenced_type = NULL;
14808 baton->locexpr.per_cu = cu->per_cu;
14809 baton->locexpr.size = DW_BLOCK (attr)->size;
14810 baton->locexpr.data = DW_BLOCK (attr)->data;
14811 prop->data.baton = baton;
14812 prop->kind = PROP_LOCEXPR;
14813 gdb_assert (prop->data.baton != NULL);
14814 }
14815 else if (attr_form_is_ref (attr))
14816 {
14817 struct dwarf2_cu *target_cu = cu;
14818 struct die_info *target_die;
14819 struct attribute *target_attr;
14820
14821 target_die = follow_die_ref (die, attr, &target_cu);
14822 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14823 if (target_attr == NULL)
14824 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14825 target_cu);
14826 if (target_attr == NULL)
14827 return 0;
14828
14829 switch (target_attr->name)
14830 {
14831 case DW_AT_location:
14832 if (attr_form_is_section_offset (target_attr))
14833 {
14834 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14835 baton->referenced_type = die_type (target_die, target_cu);
14836 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14837 prop->data.baton = baton;
14838 prop->kind = PROP_LOCLIST;
14839 gdb_assert (prop->data.baton != NULL);
14840 }
14841 else if (attr_form_is_block (target_attr))
14842 {
14843 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14844 baton->referenced_type = die_type (target_die, target_cu);
14845 baton->locexpr.per_cu = cu->per_cu;
14846 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14847 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14848 prop->data.baton = baton;
14849 prop->kind = PROP_LOCEXPR;
14850 gdb_assert (prop->data.baton != NULL);
14851 }
14852 else
14853 {
14854 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14855 "dynamic property");
14856 return 0;
14857 }
14858 break;
14859 case DW_AT_data_member_location:
14860 {
14861 LONGEST offset;
14862
14863 if (!handle_data_member_location (target_die, target_cu,
14864 &offset))
14865 return 0;
14866
14867 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14868 baton->referenced_type = read_type_die (target_die->parent,
14869 target_cu);
14870 baton->offset_info.offset = offset;
14871 baton->offset_info.type = die_type (target_die, target_cu);
14872 prop->data.baton = baton;
14873 prop->kind = PROP_ADDR_OFFSET;
14874 break;
14875 }
14876 }
14877 }
14878 else if (attr_form_is_constant (attr))
14879 {
14880 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14881 prop->kind = PROP_CONST;
14882 }
14883 else
14884 {
14885 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14886 dwarf2_name (die, cu));
14887 return 0;
14888 }
14889
14890 return 1;
14891 }
14892
14893 /* Read the given DW_AT_subrange DIE. */
14894
14895 static struct type *
14896 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14897 {
14898 struct type *base_type, *orig_base_type;
14899 struct type *range_type;
14900 struct attribute *attr;
14901 struct dynamic_prop low, high;
14902 int low_default_is_valid;
14903 int high_bound_is_count = 0;
14904 const char *name;
14905 LONGEST negative_mask;
14906
14907 orig_base_type = die_type (die, cu);
14908 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14909 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14910 creating the range type, but we use the result of check_typedef
14911 when examining properties of the type. */
14912 base_type = check_typedef (orig_base_type);
14913
14914 /* The die_type call above may have already set the type for this DIE. */
14915 range_type = get_die_type (die, cu);
14916 if (range_type)
14917 return range_type;
14918
14919 low.kind = PROP_CONST;
14920 high.kind = PROP_CONST;
14921 high.data.const_val = 0;
14922
14923 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14924 omitting DW_AT_lower_bound. */
14925 switch (cu->language)
14926 {
14927 case language_c:
14928 case language_cplus:
14929 low.data.const_val = 0;
14930 low_default_is_valid = 1;
14931 break;
14932 case language_fortran:
14933 low.data.const_val = 1;
14934 low_default_is_valid = 1;
14935 break;
14936 case language_d:
14937 case language_java:
14938 case language_objc:
14939 low.data.const_val = 0;
14940 low_default_is_valid = (cu->header.version >= 4);
14941 break;
14942 case language_ada:
14943 case language_m2:
14944 case language_pascal:
14945 low.data.const_val = 1;
14946 low_default_is_valid = (cu->header.version >= 4);
14947 break;
14948 default:
14949 low.data.const_val = 0;
14950 low_default_is_valid = 0;
14951 break;
14952 }
14953
14954 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14955 if (attr)
14956 attr_to_dynamic_prop (attr, die, cu, &low);
14957 else if (!low_default_is_valid)
14958 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14959 "- DIE at 0x%x [in module %s]"),
14960 die->offset.sect_off, objfile_name (cu->objfile));
14961
14962 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14963 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14964 {
14965 attr = dwarf2_attr (die, DW_AT_count, cu);
14966 if (attr_to_dynamic_prop (attr, die, cu, &high))
14967 {
14968 /* If bounds are constant do the final calculation here. */
14969 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14970 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14971 else
14972 high_bound_is_count = 1;
14973 }
14974 }
14975
14976 /* Dwarf-2 specifications explicitly allows to create subrange types
14977 without specifying a base type.
14978 In that case, the base type must be set to the type of
14979 the lower bound, upper bound or count, in that order, if any of these
14980 three attributes references an object that has a type.
14981 If no base type is found, the Dwarf-2 specifications say that
14982 a signed integer type of size equal to the size of an address should
14983 be used.
14984 For the following C code: `extern char gdb_int [];'
14985 GCC produces an empty range DIE.
14986 FIXME: muller/2010-05-28: Possible references to object for low bound,
14987 high bound or count are not yet handled by this code. */
14988 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14989 {
14990 struct objfile *objfile = cu->objfile;
14991 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14992 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14993 struct type *int_type = objfile_type (objfile)->builtin_int;
14994
14995 /* Test "int", "long int", and "long long int" objfile types,
14996 and select the first one having a size above or equal to the
14997 architecture address size. */
14998 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14999 base_type = int_type;
15000 else
15001 {
15002 int_type = objfile_type (objfile)->builtin_long;
15003 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15004 base_type = int_type;
15005 else
15006 {
15007 int_type = objfile_type (objfile)->builtin_long_long;
15008 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15009 base_type = int_type;
15010 }
15011 }
15012 }
15013
15014 /* Normally, the DWARF producers are expected to use a signed
15015 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15016 But this is unfortunately not always the case, as witnessed
15017 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15018 is used instead. To work around that ambiguity, we treat
15019 the bounds as signed, and thus sign-extend their values, when
15020 the base type is signed. */
15021 negative_mask =
15022 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15023 if (low.kind == PROP_CONST
15024 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15025 low.data.const_val |= negative_mask;
15026 if (high.kind == PROP_CONST
15027 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15028 high.data.const_val |= negative_mask;
15029
15030 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15031
15032 if (high_bound_is_count)
15033 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15034
15035 /* Ada expects an empty array on no boundary attributes. */
15036 if (attr == NULL && cu->language != language_ada)
15037 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15038
15039 name = dwarf2_name (die, cu);
15040 if (name)
15041 TYPE_NAME (range_type) = name;
15042
15043 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15044 if (attr)
15045 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15046
15047 set_die_type (die, range_type, cu);
15048
15049 /* set_die_type should be already done. */
15050 set_descriptive_type (range_type, die, cu);
15051
15052 return range_type;
15053 }
15054
15055 static struct type *
15056 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15057 {
15058 struct type *type;
15059
15060 /* For now, we only support the C meaning of an unspecified type: void. */
15061
15062 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15063 TYPE_NAME (type) = dwarf2_name (die, cu);
15064
15065 return set_die_type (die, type, cu);
15066 }
15067
15068 /* Read a single die and all its descendents. Set the die's sibling
15069 field to NULL; set other fields in the die correctly, and set all
15070 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15071 location of the info_ptr after reading all of those dies. PARENT
15072 is the parent of the die in question. */
15073
15074 static struct die_info *
15075 read_die_and_children (const struct die_reader_specs *reader,
15076 const gdb_byte *info_ptr,
15077 const gdb_byte **new_info_ptr,
15078 struct die_info *parent)
15079 {
15080 struct die_info *die;
15081 const gdb_byte *cur_ptr;
15082 int has_children;
15083
15084 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15085 if (die == NULL)
15086 {
15087 *new_info_ptr = cur_ptr;
15088 return NULL;
15089 }
15090 store_in_ref_table (die, reader->cu);
15091
15092 if (has_children)
15093 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15094 else
15095 {
15096 die->child = NULL;
15097 *new_info_ptr = cur_ptr;
15098 }
15099
15100 die->sibling = NULL;
15101 die->parent = parent;
15102 return die;
15103 }
15104
15105 /* Read a die, all of its descendents, and all of its siblings; set
15106 all of the fields of all of the dies correctly. Arguments are as
15107 in read_die_and_children. */
15108
15109 static struct die_info *
15110 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15111 const gdb_byte *info_ptr,
15112 const gdb_byte **new_info_ptr,
15113 struct die_info *parent)
15114 {
15115 struct die_info *first_die, *last_sibling;
15116 const gdb_byte *cur_ptr;
15117
15118 cur_ptr = info_ptr;
15119 first_die = last_sibling = NULL;
15120
15121 while (1)
15122 {
15123 struct die_info *die
15124 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15125
15126 if (die == NULL)
15127 {
15128 *new_info_ptr = cur_ptr;
15129 return first_die;
15130 }
15131
15132 if (!first_die)
15133 first_die = die;
15134 else
15135 last_sibling->sibling = die;
15136
15137 last_sibling = die;
15138 }
15139 }
15140
15141 /* Read a die, all of its descendents, and all of its siblings; set
15142 all of the fields of all of the dies correctly. Arguments are as
15143 in read_die_and_children.
15144 This the main entry point for reading a DIE and all its children. */
15145
15146 static struct die_info *
15147 read_die_and_siblings (const struct die_reader_specs *reader,
15148 const gdb_byte *info_ptr,
15149 const gdb_byte **new_info_ptr,
15150 struct die_info *parent)
15151 {
15152 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15153 new_info_ptr, parent);
15154
15155 if (dwarf_die_debug)
15156 {
15157 fprintf_unfiltered (gdb_stdlog,
15158 "Read die from %s@0x%x of %s:\n",
15159 get_section_name (reader->die_section),
15160 (unsigned) (info_ptr - reader->die_section->buffer),
15161 bfd_get_filename (reader->abfd));
15162 dump_die (die, dwarf_die_debug);
15163 }
15164
15165 return die;
15166 }
15167
15168 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15169 attributes.
15170 The caller is responsible for filling in the extra attributes
15171 and updating (*DIEP)->num_attrs.
15172 Set DIEP to point to a newly allocated die with its information,
15173 except for its child, sibling, and parent fields.
15174 Set HAS_CHILDREN to tell whether the die has children or not. */
15175
15176 static const gdb_byte *
15177 read_full_die_1 (const struct die_reader_specs *reader,
15178 struct die_info **diep, const gdb_byte *info_ptr,
15179 int *has_children, int num_extra_attrs)
15180 {
15181 unsigned int abbrev_number, bytes_read, i;
15182 sect_offset offset;
15183 struct abbrev_info *abbrev;
15184 struct die_info *die;
15185 struct dwarf2_cu *cu = reader->cu;
15186 bfd *abfd = reader->abfd;
15187
15188 offset.sect_off = info_ptr - reader->buffer;
15189 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15190 info_ptr += bytes_read;
15191 if (!abbrev_number)
15192 {
15193 *diep = NULL;
15194 *has_children = 0;
15195 return info_ptr;
15196 }
15197
15198 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15199 if (!abbrev)
15200 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15201 abbrev_number,
15202 bfd_get_filename (abfd));
15203
15204 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15205 die->offset = offset;
15206 die->tag = abbrev->tag;
15207 die->abbrev = abbrev_number;
15208
15209 /* Make the result usable.
15210 The caller needs to update num_attrs after adding the extra
15211 attributes. */
15212 die->num_attrs = abbrev->num_attrs;
15213
15214 for (i = 0; i < abbrev->num_attrs; ++i)
15215 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15216 info_ptr);
15217
15218 *diep = die;
15219 *has_children = abbrev->has_children;
15220 return info_ptr;
15221 }
15222
15223 /* Read a die and all its attributes.
15224 Set DIEP to point to a newly allocated die with its information,
15225 except for its child, sibling, and parent fields.
15226 Set HAS_CHILDREN to tell whether the die has children or not. */
15227
15228 static const gdb_byte *
15229 read_full_die (const struct die_reader_specs *reader,
15230 struct die_info **diep, const gdb_byte *info_ptr,
15231 int *has_children)
15232 {
15233 const gdb_byte *result;
15234
15235 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15236
15237 if (dwarf_die_debug)
15238 {
15239 fprintf_unfiltered (gdb_stdlog,
15240 "Read die from %s@0x%x of %s:\n",
15241 get_section_name (reader->die_section),
15242 (unsigned) (info_ptr - reader->die_section->buffer),
15243 bfd_get_filename (reader->abfd));
15244 dump_die (*diep, dwarf_die_debug);
15245 }
15246
15247 return result;
15248 }
15249 \f
15250 /* Abbreviation tables.
15251
15252 In DWARF version 2, the description of the debugging information is
15253 stored in a separate .debug_abbrev section. Before we read any
15254 dies from a section we read in all abbreviations and install them
15255 in a hash table. */
15256
15257 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15258
15259 static struct abbrev_info *
15260 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15261 {
15262 struct abbrev_info *abbrev;
15263
15264 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15265 memset (abbrev, 0, sizeof (struct abbrev_info));
15266
15267 return abbrev;
15268 }
15269
15270 /* Add an abbreviation to the table. */
15271
15272 static void
15273 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15274 unsigned int abbrev_number,
15275 struct abbrev_info *abbrev)
15276 {
15277 unsigned int hash_number;
15278
15279 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15280 abbrev->next = abbrev_table->abbrevs[hash_number];
15281 abbrev_table->abbrevs[hash_number] = abbrev;
15282 }
15283
15284 /* Look up an abbrev in the table.
15285 Returns NULL if the abbrev is not found. */
15286
15287 static struct abbrev_info *
15288 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15289 unsigned int abbrev_number)
15290 {
15291 unsigned int hash_number;
15292 struct abbrev_info *abbrev;
15293
15294 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15295 abbrev = abbrev_table->abbrevs[hash_number];
15296
15297 while (abbrev)
15298 {
15299 if (abbrev->number == abbrev_number)
15300 return abbrev;
15301 abbrev = abbrev->next;
15302 }
15303 return NULL;
15304 }
15305
15306 /* Read in an abbrev table. */
15307
15308 static struct abbrev_table *
15309 abbrev_table_read_table (struct dwarf2_section_info *section,
15310 sect_offset offset)
15311 {
15312 struct objfile *objfile = dwarf2_per_objfile->objfile;
15313 bfd *abfd = get_section_bfd_owner (section);
15314 struct abbrev_table *abbrev_table;
15315 const gdb_byte *abbrev_ptr;
15316 struct abbrev_info *cur_abbrev;
15317 unsigned int abbrev_number, bytes_read, abbrev_name;
15318 unsigned int abbrev_form;
15319 struct attr_abbrev *cur_attrs;
15320 unsigned int allocated_attrs;
15321
15322 abbrev_table = XNEW (struct abbrev_table);
15323 abbrev_table->offset = offset;
15324 obstack_init (&abbrev_table->abbrev_obstack);
15325 abbrev_table->abbrevs =
15326 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15327 ABBREV_HASH_SIZE);
15328 memset (abbrev_table->abbrevs, 0,
15329 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15330
15331 dwarf2_read_section (objfile, section);
15332 abbrev_ptr = section->buffer + offset.sect_off;
15333 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15334 abbrev_ptr += bytes_read;
15335
15336 allocated_attrs = ATTR_ALLOC_CHUNK;
15337 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15338
15339 /* Loop until we reach an abbrev number of 0. */
15340 while (abbrev_number)
15341 {
15342 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15343
15344 /* read in abbrev header */
15345 cur_abbrev->number = abbrev_number;
15346 cur_abbrev->tag
15347 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15348 abbrev_ptr += bytes_read;
15349 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15350 abbrev_ptr += 1;
15351
15352 /* now read in declarations */
15353 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15354 abbrev_ptr += bytes_read;
15355 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15356 abbrev_ptr += bytes_read;
15357 while (abbrev_name)
15358 {
15359 if (cur_abbrev->num_attrs == allocated_attrs)
15360 {
15361 allocated_attrs += ATTR_ALLOC_CHUNK;
15362 cur_attrs
15363 = xrealloc (cur_attrs, (allocated_attrs
15364 * sizeof (struct attr_abbrev)));
15365 }
15366
15367 cur_attrs[cur_abbrev->num_attrs].name
15368 = (enum dwarf_attribute) abbrev_name;
15369 cur_attrs[cur_abbrev->num_attrs++].form
15370 = (enum dwarf_form) abbrev_form;
15371 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15372 abbrev_ptr += bytes_read;
15373 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15374 abbrev_ptr += bytes_read;
15375 }
15376
15377 cur_abbrev->attrs =
15378 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15379 cur_abbrev->num_attrs);
15380 memcpy (cur_abbrev->attrs, cur_attrs,
15381 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15382
15383 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15384
15385 /* Get next abbreviation.
15386 Under Irix6 the abbreviations for a compilation unit are not
15387 always properly terminated with an abbrev number of 0.
15388 Exit loop if we encounter an abbreviation which we have
15389 already read (which means we are about to read the abbreviations
15390 for the next compile unit) or if the end of the abbreviation
15391 table is reached. */
15392 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15393 break;
15394 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15395 abbrev_ptr += bytes_read;
15396 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15397 break;
15398 }
15399
15400 xfree (cur_attrs);
15401 return abbrev_table;
15402 }
15403
15404 /* Free the resources held by ABBREV_TABLE. */
15405
15406 static void
15407 abbrev_table_free (struct abbrev_table *abbrev_table)
15408 {
15409 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15410 xfree (abbrev_table);
15411 }
15412
15413 /* Same as abbrev_table_free but as a cleanup.
15414 We pass in a pointer to the pointer to the table so that we can
15415 set the pointer to NULL when we're done. It also simplifies
15416 build_type_psymtabs_1. */
15417
15418 static void
15419 abbrev_table_free_cleanup (void *table_ptr)
15420 {
15421 struct abbrev_table **abbrev_table_ptr = table_ptr;
15422
15423 if (*abbrev_table_ptr != NULL)
15424 abbrev_table_free (*abbrev_table_ptr);
15425 *abbrev_table_ptr = NULL;
15426 }
15427
15428 /* Read the abbrev table for CU from ABBREV_SECTION. */
15429
15430 static void
15431 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15432 struct dwarf2_section_info *abbrev_section)
15433 {
15434 cu->abbrev_table =
15435 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15436 }
15437
15438 /* Release the memory used by the abbrev table for a compilation unit. */
15439
15440 static void
15441 dwarf2_free_abbrev_table (void *ptr_to_cu)
15442 {
15443 struct dwarf2_cu *cu = ptr_to_cu;
15444
15445 if (cu->abbrev_table != NULL)
15446 abbrev_table_free (cu->abbrev_table);
15447 /* Set this to NULL so that we SEGV if we try to read it later,
15448 and also because free_comp_unit verifies this is NULL. */
15449 cu->abbrev_table = NULL;
15450 }
15451 \f
15452 /* Returns nonzero if TAG represents a type that we might generate a partial
15453 symbol for. */
15454
15455 static int
15456 is_type_tag_for_partial (int tag)
15457 {
15458 switch (tag)
15459 {
15460 #if 0
15461 /* Some types that would be reasonable to generate partial symbols for,
15462 that we don't at present. */
15463 case DW_TAG_array_type:
15464 case DW_TAG_file_type:
15465 case DW_TAG_ptr_to_member_type:
15466 case DW_TAG_set_type:
15467 case DW_TAG_string_type:
15468 case DW_TAG_subroutine_type:
15469 #endif
15470 case DW_TAG_base_type:
15471 case DW_TAG_class_type:
15472 case DW_TAG_interface_type:
15473 case DW_TAG_enumeration_type:
15474 case DW_TAG_structure_type:
15475 case DW_TAG_subrange_type:
15476 case DW_TAG_typedef:
15477 case DW_TAG_union_type:
15478 return 1;
15479 default:
15480 return 0;
15481 }
15482 }
15483
15484 /* Load all DIEs that are interesting for partial symbols into memory. */
15485
15486 static struct partial_die_info *
15487 load_partial_dies (const struct die_reader_specs *reader,
15488 const gdb_byte *info_ptr, int building_psymtab)
15489 {
15490 struct dwarf2_cu *cu = reader->cu;
15491 struct objfile *objfile = cu->objfile;
15492 struct partial_die_info *part_die;
15493 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15494 struct abbrev_info *abbrev;
15495 unsigned int bytes_read;
15496 unsigned int load_all = 0;
15497 int nesting_level = 1;
15498
15499 parent_die = NULL;
15500 last_die = NULL;
15501
15502 gdb_assert (cu->per_cu != NULL);
15503 if (cu->per_cu->load_all_dies)
15504 load_all = 1;
15505
15506 cu->partial_dies
15507 = htab_create_alloc_ex (cu->header.length / 12,
15508 partial_die_hash,
15509 partial_die_eq,
15510 NULL,
15511 &cu->comp_unit_obstack,
15512 hashtab_obstack_allocate,
15513 dummy_obstack_deallocate);
15514
15515 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15516
15517 while (1)
15518 {
15519 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15520
15521 /* A NULL abbrev means the end of a series of children. */
15522 if (abbrev == NULL)
15523 {
15524 if (--nesting_level == 0)
15525 {
15526 /* PART_DIE was probably the last thing allocated on the
15527 comp_unit_obstack, so we could call obstack_free
15528 here. We don't do that because the waste is small,
15529 and will be cleaned up when we're done with this
15530 compilation unit. This way, we're also more robust
15531 against other users of the comp_unit_obstack. */
15532 return first_die;
15533 }
15534 info_ptr += bytes_read;
15535 last_die = parent_die;
15536 parent_die = parent_die->die_parent;
15537 continue;
15538 }
15539
15540 /* Check for template arguments. We never save these; if
15541 they're seen, we just mark the parent, and go on our way. */
15542 if (parent_die != NULL
15543 && cu->language == language_cplus
15544 && (abbrev->tag == DW_TAG_template_type_param
15545 || abbrev->tag == DW_TAG_template_value_param))
15546 {
15547 parent_die->has_template_arguments = 1;
15548
15549 if (!load_all)
15550 {
15551 /* We don't need a partial DIE for the template argument. */
15552 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15553 continue;
15554 }
15555 }
15556
15557 /* We only recurse into c++ subprograms looking for template arguments.
15558 Skip their other children. */
15559 if (!load_all
15560 && cu->language == language_cplus
15561 && parent_die != NULL
15562 && parent_die->tag == DW_TAG_subprogram)
15563 {
15564 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15565 continue;
15566 }
15567
15568 /* Check whether this DIE is interesting enough to save. Normally
15569 we would not be interested in members here, but there may be
15570 later variables referencing them via DW_AT_specification (for
15571 static members). */
15572 if (!load_all
15573 && !is_type_tag_for_partial (abbrev->tag)
15574 && abbrev->tag != DW_TAG_constant
15575 && abbrev->tag != DW_TAG_enumerator
15576 && abbrev->tag != DW_TAG_subprogram
15577 && abbrev->tag != DW_TAG_lexical_block
15578 && abbrev->tag != DW_TAG_variable
15579 && abbrev->tag != DW_TAG_namespace
15580 && abbrev->tag != DW_TAG_module
15581 && abbrev->tag != DW_TAG_member
15582 && abbrev->tag != DW_TAG_imported_unit
15583 && abbrev->tag != DW_TAG_imported_declaration)
15584 {
15585 /* Otherwise we skip to the next sibling, if any. */
15586 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15587 continue;
15588 }
15589
15590 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15591 info_ptr);
15592
15593 /* This two-pass algorithm for processing partial symbols has a
15594 high cost in cache pressure. Thus, handle some simple cases
15595 here which cover the majority of C partial symbols. DIEs
15596 which neither have specification tags in them, nor could have
15597 specification tags elsewhere pointing at them, can simply be
15598 processed and discarded.
15599
15600 This segment is also optional; scan_partial_symbols and
15601 add_partial_symbol will handle these DIEs if we chain
15602 them in normally. When compilers which do not emit large
15603 quantities of duplicate debug information are more common,
15604 this code can probably be removed. */
15605
15606 /* Any complete simple types at the top level (pretty much all
15607 of them, for a language without namespaces), can be processed
15608 directly. */
15609 if (parent_die == NULL
15610 && part_die->has_specification == 0
15611 && part_die->is_declaration == 0
15612 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15613 || part_die->tag == DW_TAG_base_type
15614 || part_die->tag == DW_TAG_subrange_type))
15615 {
15616 if (building_psymtab && part_die->name != NULL)
15617 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15618 VAR_DOMAIN, LOC_TYPEDEF,
15619 &objfile->static_psymbols,
15620 0, cu->language, objfile);
15621 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15622 continue;
15623 }
15624
15625 /* The exception for DW_TAG_typedef with has_children above is
15626 a workaround of GCC PR debug/47510. In the case of this complaint
15627 type_name_no_tag_or_error will error on such types later.
15628
15629 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15630 it could not find the child DIEs referenced later, this is checked
15631 above. In correct DWARF DW_TAG_typedef should have no children. */
15632
15633 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15634 complaint (&symfile_complaints,
15635 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15636 "- DIE at 0x%x [in module %s]"),
15637 part_die->offset.sect_off, objfile_name (objfile));
15638
15639 /* If we're at the second level, and we're an enumerator, and
15640 our parent has no specification (meaning possibly lives in a
15641 namespace elsewhere), then we can add the partial symbol now
15642 instead of queueing it. */
15643 if (part_die->tag == DW_TAG_enumerator
15644 && parent_die != NULL
15645 && parent_die->die_parent == NULL
15646 && parent_die->tag == DW_TAG_enumeration_type
15647 && parent_die->has_specification == 0)
15648 {
15649 if (part_die->name == NULL)
15650 complaint (&symfile_complaints,
15651 _("malformed enumerator DIE ignored"));
15652 else if (building_psymtab)
15653 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15654 VAR_DOMAIN, LOC_CONST,
15655 (cu->language == language_cplus
15656 || cu->language == language_java)
15657 ? &objfile->global_psymbols
15658 : &objfile->static_psymbols,
15659 0, cu->language, objfile);
15660
15661 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15662 continue;
15663 }
15664
15665 /* We'll save this DIE so link it in. */
15666 part_die->die_parent = parent_die;
15667 part_die->die_sibling = NULL;
15668 part_die->die_child = NULL;
15669
15670 if (last_die && last_die == parent_die)
15671 last_die->die_child = part_die;
15672 else if (last_die)
15673 last_die->die_sibling = part_die;
15674
15675 last_die = part_die;
15676
15677 if (first_die == NULL)
15678 first_die = part_die;
15679
15680 /* Maybe add the DIE to the hash table. Not all DIEs that we
15681 find interesting need to be in the hash table, because we
15682 also have the parent/sibling/child chains; only those that we
15683 might refer to by offset later during partial symbol reading.
15684
15685 For now this means things that might have be the target of a
15686 DW_AT_specification, DW_AT_abstract_origin, or
15687 DW_AT_extension. DW_AT_extension will refer only to
15688 namespaces; DW_AT_abstract_origin refers to functions (and
15689 many things under the function DIE, but we do not recurse
15690 into function DIEs during partial symbol reading) and
15691 possibly variables as well; DW_AT_specification refers to
15692 declarations. Declarations ought to have the DW_AT_declaration
15693 flag. It happens that GCC forgets to put it in sometimes, but
15694 only for functions, not for types.
15695
15696 Adding more things than necessary to the hash table is harmless
15697 except for the performance cost. Adding too few will result in
15698 wasted time in find_partial_die, when we reread the compilation
15699 unit with load_all_dies set. */
15700
15701 if (load_all
15702 || abbrev->tag == DW_TAG_constant
15703 || abbrev->tag == DW_TAG_subprogram
15704 || abbrev->tag == DW_TAG_variable
15705 || abbrev->tag == DW_TAG_namespace
15706 || part_die->is_declaration)
15707 {
15708 void **slot;
15709
15710 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15711 part_die->offset.sect_off, INSERT);
15712 *slot = part_die;
15713 }
15714
15715 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15716
15717 /* For some DIEs we want to follow their children (if any). For C
15718 we have no reason to follow the children of structures; for other
15719 languages we have to, so that we can get at method physnames
15720 to infer fully qualified class names, for DW_AT_specification,
15721 and for C++ template arguments. For C++, we also look one level
15722 inside functions to find template arguments (if the name of the
15723 function does not already contain the template arguments).
15724
15725 For Ada, we need to scan the children of subprograms and lexical
15726 blocks as well because Ada allows the definition of nested
15727 entities that could be interesting for the debugger, such as
15728 nested subprograms for instance. */
15729 if (last_die->has_children
15730 && (load_all
15731 || last_die->tag == DW_TAG_namespace
15732 || last_die->tag == DW_TAG_module
15733 || last_die->tag == DW_TAG_enumeration_type
15734 || (cu->language == language_cplus
15735 && last_die->tag == DW_TAG_subprogram
15736 && (last_die->name == NULL
15737 || strchr (last_die->name, '<') == NULL))
15738 || (cu->language != language_c
15739 && (last_die->tag == DW_TAG_class_type
15740 || last_die->tag == DW_TAG_interface_type
15741 || last_die->tag == DW_TAG_structure_type
15742 || last_die->tag == DW_TAG_union_type))
15743 || (cu->language == language_ada
15744 && (last_die->tag == DW_TAG_subprogram
15745 || last_die->tag == DW_TAG_lexical_block))))
15746 {
15747 nesting_level++;
15748 parent_die = last_die;
15749 continue;
15750 }
15751
15752 /* Otherwise we skip to the next sibling, if any. */
15753 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15754
15755 /* Back to the top, do it again. */
15756 }
15757 }
15758
15759 /* Read a minimal amount of information into the minimal die structure. */
15760
15761 static const gdb_byte *
15762 read_partial_die (const struct die_reader_specs *reader,
15763 struct partial_die_info *part_die,
15764 struct abbrev_info *abbrev, unsigned int abbrev_len,
15765 const gdb_byte *info_ptr)
15766 {
15767 struct dwarf2_cu *cu = reader->cu;
15768 struct objfile *objfile = cu->objfile;
15769 const gdb_byte *buffer = reader->buffer;
15770 unsigned int i;
15771 struct attribute attr;
15772 int has_low_pc_attr = 0;
15773 int has_high_pc_attr = 0;
15774 int high_pc_relative = 0;
15775
15776 memset (part_die, 0, sizeof (struct partial_die_info));
15777
15778 part_die->offset.sect_off = info_ptr - buffer;
15779
15780 info_ptr += abbrev_len;
15781
15782 if (abbrev == NULL)
15783 return info_ptr;
15784
15785 part_die->tag = abbrev->tag;
15786 part_die->has_children = abbrev->has_children;
15787
15788 for (i = 0; i < abbrev->num_attrs; ++i)
15789 {
15790 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15791
15792 /* Store the data if it is of an attribute we want to keep in a
15793 partial symbol table. */
15794 switch (attr.name)
15795 {
15796 case DW_AT_name:
15797 switch (part_die->tag)
15798 {
15799 case DW_TAG_compile_unit:
15800 case DW_TAG_partial_unit:
15801 case DW_TAG_type_unit:
15802 /* Compilation units have a DW_AT_name that is a filename, not
15803 a source language identifier. */
15804 case DW_TAG_enumeration_type:
15805 case DW_TAG_enumerator:
15806 /* These tags always have simple identifiers already; no need
15807 to canonicalize them. */
15808 part_die->name = DW_STRING (&attr);
15809 break;
15810 default:
15811 part_die->name
15812 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15813 &objfile->per_bfd->storage_obstack);
15814 break;
15815 }
15816 break;
15817 case DW_AT_linkage_name:
15818 case DW_AT_MIPS_linkage_name:
15819 /* Note that both forms of linkage name might appear. We
15820 assume they will be the same, and we only store the last
15821 one we see. */
15822 if (cu->language == language_ada)
15823 part_die->name = DW_STRING (&attr);
15824 part_die->linkage_name = DW_STRING (&attr);
15825 break;
15826 case DW_AT_low_pc:
15827 has_low_pc_attr = 1;
15828 part_die->lowpc = attr_value_as_address (&attr);
15829 break;
15830 case DW_AT_high_pc:
15831 has_high_pc_attr = 1;
15832 part_die->highpc = attr_value_as_address (&attr);
15833 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15834 high_pc_relative = 1;
15835 break;
15836 case DW_AT_location:
15837 /* Support the .debug_loc offsets. */
15838 if (attr_form_is_block (&attr))
15839 {
15840 part_die->d.locdesc = DW_BLOCK (&attr);
15841 }
15842 else if (attr_form_is_section_offset (&attr))
15843 {
15844 dwarf2_complex_location_expr_complaint ();
15845 }
15846 else
15847 {
15848 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15849 "partial symbol information");
15850 }
15851 break;
15852 case DW_AT_external:
15853 part_die->is_external = DW_UNSND (&attr);
15854 break;
15855 case DW_AT_declaration:
15856 part_die->is_declaration = DW_UNSND (&attr);
15857 break;
15858 case DW_AT_type:
15859 part_die->has_type = 1;
15860 break;
15861 case DW_AT_abstract_origin:
15862 case DW_AT_specification:
15863 case DW_AT_extension:
15864 part_die->has_specification = 1;
15865 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15866 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15867 || cu->per_cu->is_dwz);
15868 break;
15869 case DW_AT_sibling:
15870 /* Ignore absolute siblings, they might point outside of
15871 the current compile unit. */
15872 if (attr.form == DW_FORM_ref_addr)
15873 complaint (&symfile_complaints,
15874 _("ignoring absolute DW_AT_sibling"));
15875 else
15876 {
15877 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15878 const gdb_byte *sibling_ptr = buffer + off;
15879
15880 if (sibling_ptr < info_ptr)
15881 complaint (&symfile_complaints,
15882 _("DW_AT_sibling points backwards"));
15883 else if (sibling_ptr > reader->buffer_end)
15884 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15885 else
15886 part_die->sibling = sibling_ptr;
15887 }
15888 break;
15889 case DW_AT_byte_size:
15890 part_die->has_byte_size = 1;
15891 break;
15892 case DW_AT_const_value:
15893 part_die->has_const_value = 1;
15894 break;
15895 case DW_AT_calling_convention:
15896 /* DWARF doesn't provide a way to identify a program's source-level
15897 entry point. DW_AT_calling_convention attributes are only meant
15898 to describe functions' calling conventions.
15899
15900 However, because it's a necessary piece of information in
15901 Fortran, and because DW_CC_program is the only piece of debugging
15902 information whose definition refers to a 'main program' at all,
15903 several compilers have begun marking Fortran main programs with
15904 DW_CC_program --- even when those functions use the standard
15905 calling conventions.
15906
15907 So until DWARF specifies a way to provide this information and
15908 compilers pick up the new representation, we'll support this
15909 practice. */
15910 if (DW_UNSND (&attr) == DW_CC_program
15911 && cu->language == language_fortran)
15912 set_objfile_main_name (objfile, part_die->name, language_fortran);
15913 break;
15914 case DW_AT_inline:
15915 if (DW_UNSND (&attr) == DW_INL_inlined
15916 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15917 part_die->may_be_inlined = 1;
15918 break;
15919
15920 case DW_AT_import:
15921 if (part_die->tag == DW_TAG_imported_unit)
15922 {
15923 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15924 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15925 || cu->per_cu->is_dwz);
15926 }
15927 break;
15928
15929 default:
15930 break;
15931 }
15932 }
15933
15934 if (high_pc_relative)
15935 part_die->highpc += part_die->lowpc;
15936
15937 if (has_low_pc_attr && has_high_pc_attr)
15938 {
15939 /* When using the GNU linker, .gnu.linkonce. sections are used to
15940 eliminate duplicate copies of functions and vtables and such.
15941 The linker will arbitrarily choose one and discard the others.
15942 The AT_*_pc values for such functions refer to local labels in
15943 these sections. If the section from that file was discarded, the
15944 labels are not in the output, so the relocs get a value of 0.
15945 If this is a discarded function, mark the pc bounds as invalid,
15946 so that GDB will ignore it. */
15947 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15948 {
15949 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15950
15951 complaint (&symfile_complaints,
15952 _("DW_AT_low_pc %s is zero "
15953 "for DIE at 0x%x [in module %s]"),
15954 paddress (gdbarch, part_die->lowpc),
15955 part_die->offset.sect_off, objfile_name (objfile));
15956 }
15957 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15958 else if (part_die->lowpc >= part_die->highpc)
15959 {
15960 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15961
15962 complaint (&symfile_complaints,
15963 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15964 "for DIE at 0x%x [in module %s]"),
15965 paddress (gdbarch, part_die->lowpc),
15966 paddress (gdbarch, part_die->highpc),
15967 part_die->offset.sect_off, objfile_name (objfile));
15968 }
15969 else
15970 part_die->has_pc_info = 1;
15971 }
15972
15973 return info_ptr;
15974 }
15975
15976 /* Find a cached partial DIE at OFFSET in CU. */
15977
15978 static struct partial_die_info *
15979 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15980 {
15981 struct partial_die_info *lookup_die = NULL;
15982 struct partial_die_info part_die;
15983
15984 part_die.offset = offset;
15985 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15986 offset.sect_off);
15987
15988 return lookup_die;
15989 }
15990
15991 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15992 except in the case of .debug_types DIEs which do not reference
15993 outside their CU (they do however referencing other types via
15994 DW_FORM_ref_sig8). */
15995
15996 static struct partial_die_info *
15997 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15998 {
15999 struct objfile *objfile = cu->objfile;
16000 struct dwarf2_per_cu_data *per_cu = NULL;
16001 struct partial_die_info *pd = NULL;
16002
16003 if (offset_in_dwz == cu->per_cu->is_dwz
16004 && offset_in_cu_p (&cu->header, offset))
16005 {
16006 pd = find_partial_die_in_comp_unit (offset, cu);
16007 if (pd != NULL)
16008 return pd;
16009 /* We missed recording what we needed.
16010 Load all dies and try again. */
16011 per_cu = cu->per_cu;
16012 }
16013 else
16014 {
16015 /* TUs don't reference other CUs/TUs (except via type signatures). */
16016 if (cu->per_cu->is_debug_types)
16017 {
16018 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16019 " external reference to offset 0x%lx [in module %s].\n"),
16020 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16021 bfd_get_filename (objfile->obfd));
16022 }
16023 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16024 objfile);
16025
16026 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16027 load_partial_comp_unit (per_cu);
16028
16029 per_cu->cu->last_used = 0;
16030 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16031 }
16032
16033 /* If we didn't find it, and not all dies have been loaded,
16034 load them all and try again. */
16035
16036 if (pd == NULL && per_cu->load_all_dies == 0)
16037 {
16038 per_cu->load_all_dies = 1;
16039
16040 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16041 THIS_CU->cu may already be in use. So we can't just free it and
16042 replace its DIEs with the ones we read in. Instead, we leave those
16043 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16044 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16045 set. */
16046 load_partial_comp_unit (per_cu);
16047
16048 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16049 }
16050
16051 if (pd == NULL)
16052 internal_error (__FILE__, __LINE__,
16053 _("could not find partial DIE 0x%x "
16054 "in cache [from module %s]\n"),
16055 offset.sect_off, bfd_get_filename (objfile->obfd));
16056 return pd;
16057 }
16058
16059 /* See if we can figure out if the class lives in a namespace. We do
16060 this by looking for a member function; its demangled name will
16061 contain namespace info, if there is any. */
16062
16063 static void
16064 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16065 struct dwarf2_cu *cu)
16066 {
16067 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16068 what template types look like, because the demangler
16069 frequently doesn't give the same name as the debug info. We
16070 could fix this by only using the demangled name to get the
16071 prefix (but see comment in read_structure_type). */
16072
16073 struct partial_die_info *real_pdi;
16074 struct partial_die_info *child_pdi;
16075
16076 /* If this DIE (this DIE's specification, if any) has a parent, then
16077 we should not do this. We'll prepend the parent's fully qualified
16078 name when we create the partial symbol. */
16079
16080 real_pdi = struct_pdi;
16081 while (real_pdi->has_specification)
16082 real_pdi = find_partial_die (real_pdi->spec_offset,
16083 real_pdi->spec_is_dwz, cu);
16084
16085 if (real_pdi->die_parent != NULL)
16086 return;
16087
16088 for (child_pdi = struct_pdi->die_child;
16089 child_pdi != NULL;
16090 child_pdi = child_pdi->die_sibling)
16091 {
16092 if (child_pdi->tag == DW_TAG_subprogram
16093 && child_pdi->linkage_name != NULL)
16094 {
16095 char *actual_class_name
16096 = language_class_name_from_physname (cu->language_defn,
16097 child_pdi->linkage_name);
16098 if (actual_class_name != NULL)
16099 {
16100 struct_pdi->name
16101 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16102 actual_class_name,
16103 strlen (actual_class_name));
16104 xfree (actual_class_name);
16105 }
16106 break;
16107 }
16108 }
16109 }
16110
16111 /* Adjust PART_DIE before generating a symbol for it. This function
16112 may set the is_external flag or change the DIE's name. */
16113
16114 static void
16115 fixup_partial_die (struct partial_die_info *part_die,
16116 struct dwarf2_cu *cu)
16117 {
16118 /* Once we've fixed up a die, there's no point in doing so again.
16119 This also avoids a memory leak if we were to call
16120 guess_partial_die_structure_name multiple times. */
16121 if (part_die->fixup_called)
16122 return;
16123
16124 /* If we found a reference attribute and the DIE has no name, try
16125 to find a name in the referred to DIE. */
16126
16127 if (part_die->name == NULL && part_die->has_specification)
16128 {
16129 struct partial_die_info *spec_die;
16130
16131 spec_die = find_partial_die (part_die->spec_offset,
16132 part_die->spec_is_dwz, cu);
16133
16134 fixup_partial_die (spec_die, cu);
16135
16136 if (spec_die->name)
16137 {
16138 part_die->name = spec_die->name;
16139
16140 /* Copy DW_AT_external attribute if it is set. */
16141 if (spec_die->is_external)
16142 part_die->is_external = spec_die->is_external;
16143 }
16144 }
16145
16146 /* Set default names for some unnamed DIEs. */
16147
16148 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16149 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16150
16151 /* If there is no parent die to provide a namespace, and there are
16152 children, see if we can determine the namespace from their linkage
16153 name. */
16154 if (cu->language == language_cplus
16155 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16156 && part_die->die_parent == NULL
16157 && part_die->has_children
16158 && (part_die->tag == DW_TAG_class_type
16159 || part_die->tag == DW_TAG_structure_type
16160 || part_die->tag == DW_TAG_union_type))
16161 guess_partial_die_structure_name (part_die, cu);
16162
16163 /* GCC might emit a nameless struct or union that has a linkage
16164 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16165 if (part_die->name == NULL
16166 && (part_die->tag == DW_TAG_class_type
16167 || part_die->tag == DW_TAG_interface_type
16168 || part_die->tag == DW_TAG_structure_type
16169 || part_die->tag == DW_TAG_union_type)
16170 && part_die->linkage_name != NULL)
16171 {
16172 char *demangled;
16173
16174 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16175 if (demangled)
16176 {
16177 const char *base;
16178
16179 /* Strip any leading namespaces/classes, keep only the base name.
16180 DW_AT_name for named DIEs does not contain the prefixes. */
16181 base = strrchr (demangled, ':');
16182 if (base && base > demangled && base[-1] == ':')
16183 base++;
16184 else
16185 base = demangled;
16186
16187 part_die->name
16188 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16189 base, strlen (base));
16190 xfree (demangled);
16191 }
16192 }
16193
16194 part_die->fixup_called = 1;
16195 }
16196
16197 /* Read an attribute value described by an attribute form. */
16198
16199 static const gdb_byte *
16200 read_attribute_value (const struct die_reader_specs *reader,
16201 struct attribute *attr, unsigned form,
16202 const gdb_byte *info_ptr)
16203 {
16204 struct dwarf2_cu *cu = reader->cu;
16205 struct objfile *objfile = cu->objfile;
16206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16207 bfd *abfd = reader->abfd;
16208 struct comp_unit_head *cu_header = &cu->header;
16209 unsigned int bytes_read;
16210 struct dwarf_block *blk;
16211
16212 attr->form = (enum dwarf_form) form;
16213 switch (form)
16214 {
16215 case DW_FORM_ref_addr:
16216 if (cu->header.version == 2)
16217 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16218 else
16219 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16220 &cu->header, &bytes_read);
16221 info_ptr += bytes_read;
16222 break;
16223 case DW_FORM_GNU_ref_alt:
16224 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16225 info_ptr += bytes_read;
16226 break;
16227 case DW_FORM_addr:
16228 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16229 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16230 info_ptr += bytes_read;
16231 break;
16232 case DW_FORM_block2:
16233 blk = dwarf_alloc_block (cu);
16234 blk->size = read_2_bytes (abfd, info_ptr);
16235 info_ptr += 2;
16236 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16237 info_ptr += blk->size;
16238 DW_BLOCK (attr) = blk;
16239 break;
16240 case DW_FORM_block4:
16241 blk = dwarf_alloc_block (cu);
16242 blk->size = read_4_bytes (abfd, info_ptr);
16243 info_ptr += 4;
16244 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16245 info_ptr += blk->size;
16246 DW_BLOCK (attr) = blk;
16247 break;
16248 case DW_FORM_data2:
16249 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16250 info_ptr += 2;
16251 break;
16252 case DW_FORM_data4:
16253 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16254 info_ptr += 4;
16255 break;
16256 case DW_FORM_data8:
16257 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16258 info_ptr += 8;
16259 break;
16260 case DW_FORM_sec_offset:
16261 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16262 info_ptr += bytes_read;
16263 break;
16264 case DW_FORM_string:
16265 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16266 DW_STRING_IS_CANONICAL (attr) = 0;
16267 info_ptr += bytes_read;
16268 break;
16269 case DW_FORM_strp:
16270 if (!cu->per_cu->is_dwz)
16271 {
16272 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16273 &bytes_read);
16274 DW_STRING_IS_CANONICAL (attr) = 0;
16275 info_ptr += bytes_read;
16276 break;
16277 }
16278 /* FALLTHROUGH */
16279 case DW_FORM_GNU_strp_alt:
16280 {
16281 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16282 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16283 &bytes_read);
16284
16285 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16286 DW_STRING_IS_CANONICAL (attr) = 0;
16287 info_ptr += bytes_read;
16288 }
16289 break;
16290 case DW_FORM_exprloc:
16291 case DW_FORM_block:
16292 blk = dwarf_alloc_block (cu);
16293 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16294 info_ptr += bytes_read;
16295 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16296 info_ptr += blk->size;
16297 DW_BLOCK (attr) = blk;
16298 break;
16299 case DW_FORM_block1:
16300 blk = dwarf_alloc_block (cu);
16301 blk->size = read_1_byte (abfd, info_ptr);
16302 info_ptr += 1;
16303 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16304 info_ptr += blk->size;
16305 DW_BLOCK (attr) = blk;
16306 break;
16307 case DW_FORM_data1:
16308 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16309 info_ptr += 1;
16310 break;
16311 case DW_FORM_flag:
16312 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16313 info_ptr += 1;
16314 break;
16315 case DW_FORM_flag_present:
16316 DW_UNSND (attr) = 1;
16317 break;
16318 case DW_FORM_sdata:
16319 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16320 info_ptr += bytes_read;
16321 break;
16322 case DW_FORM_udata:
16323 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16324 info_ptr += bytes_read;
16325 break;
16326 case DW_FORM_ref1:
16327 DW_UNSND (attr) = (cu->header.offset.sect_off
16328 + read_1_byte (abfd, info_ptr));
16329 info_ptr += 1;
16330 break;
16331 case DW_FORM_ref2:
16332 DW_UNSND (attr) = (cu->header.offset.sect_off
16333 + read_2_bytes (abfd, info_ptr));
16334 info_ptr += 2;
16335 break;
16336 case DW_FORM_ref4:
16337 DW_UNSND (attr) = (cu->header.offset.sect_off
16338 + read_4_bytes (abfd, info_ptr));
16339 info_ptr += 4;
16340 break;
16341 case DW_FORM_ref8:
16342 DW_UNSND (attr) = (cu->header.offset.sect_off
16343 + read_8_bytes (abfd, info_ptr));
16344 info_ptr += 8;
16345 break;
16346 case DW_FORM_ref_sig8:
16347 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16348 info_ptr += 8;
16349 break;
16350 case DW_FORM_ref_udata:
16351 DW_UNSND (attr) = (cu->header.offset.sect_off
16352 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16353 info_ptr += bytes_read;
16354 break;
16355 case DW_FORM_indirect:
16356 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16357 info_ptr += bytes_read;
16358 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16359 break;
16360 case DW_FORM_GNU_addr_index:
16361 if (reader->dwo_file == NULL)
16362 {
16363 /* For now flag a hard error.
16364 Later we can turn this into a complaint. */
16365 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16366 dwarf_form_name (form),
16367 bfd_get_filename (abfd));
16368 }
16369 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16370 info_ptr += bytes_read;
16371 break;
16372 case DW_FORM_GNU_str_index:
16373 if (reader->dwo_file == NULL)
16374 {
16375 /* For now flag a hard error.
16376 Later we can turn this into a complaint if warranted. */
16377 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16378 dwarf_form_name (form),
16379 bfd_get_filename (abfd));
16380 }
16381 {
16382 ULONGEST str_index =
16383 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16384
16385 DW_STRING (attr) = read_str_index (reader, str_index);
16386 DW_STRING_IS_CANONICAL (attr) = 0;
16387 info_ptr += bytes_read;
16388 }
16389 break;
16390 default:
16391 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16392 dwarf_form_name (form),
16393 bfd_get_filename (abfd));
16394 }
16395
16396 /* Super hack. */
16397 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16398 attr->form = DW_FORM_GNU_ref_alt;
16399
16400 /* We have seen instances where the compiler tried to emit a byte
16401 size attribute of -1 which ended up being encoded as an unsigned
16402 0xffffffff. Although 0xffffffff is technically a valid size value,
16403 an object of this size seems pretty unlikely so we can relatively
16404 safely treat these cases as if the size attribute was invalid and
16405 treat them as zero by default. */
16406 if (attr->name == DW_AT_byte_size
16407 && form == DW_FORM_data4
16408 && DW_UNSND (attr) >= 0xffffffff)
16409 {
16410 complaint
16411 (&symfile_complaints,
16412 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16413 hex_string (DW_UNSND (attr)));
16414 DW_UNSND (attr) = 0;
16415 }
16416
16417 return info_ptr;
16418 }
16419
16420 /* Read an attribute described by an abbreviated attribute. */
16421
16422 static const gdb_byte *
16423 read_attribute (const struct die_reader_specs *reader,
16424 struct attribute *attr, struct attr_abbrev *abbrev,
16425 const gdb_byte *info_ptr)
16426 {
16427 attr->name = abbrev->name;
16428 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16429 }
16430
16431 /* Read dwarf information from a buffer. */
16432
16433 static unsigned int
16434 read_1_byte (bfd *abfd, const gdb_byte *buf)
16435 {
16436 return bfd_get_8 (abfd, buf);
16437 }
16438
16439 static int
16440 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16441 {
16442 return bfd_get_signed_8 (abfd, buf);
16443 }
16444
16445 static unsigned int
16446 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16447 {
16448 return bfd_get_16 (abfd, buf);
16449 }
16450
16451 static int
16452 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16453 {
16454 return bfd_get_signed_16 (abfd, buf);
16455 }
16456
16457 static unsigned int
16458 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16459 {
16460 return bfd_get_32 (abfd, buf);
16461 }
16462
16463 static int
16464 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16465 {
16466 return bfd_get_signed_32 (abfd, buf);
16467 }
16468
16469 static ULONGEST
16470 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16471 {
16472 return bfd_get_64 (abfd, buf);
16473 }
16474
16475 static CORE_ADDR
16476 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16477 unsigned int *bytes_read)
16478 {
16479 struct comp_unit_head *cu_header = &cu->header;
16480 CORE_ADDR retval = 0;
16481
16482 if (cu_header->signed_addr_p)
16483 {
16484 switch (cu_header->addr_size)
16485 {
16486 case 2:
16487 retval = bfd_get_signed_16 (abfd, buf);
16488 break;
16489 case 4:
16490 retval = bfd_get_signed_32 (abfd, buf);
16491 break;
16492 case 8:
16493 retval = bfd_get_signed_64 (abfd, buf);
16494 break;
16495 default:
16496 internal_error (__FILE__, __LINE__,
16497 _("read_address: bad switch, signed [in module %s]"),
16498 bfd_get_filename (abfd));
16499 }
16500 }
16501 else
16502 {
16503 switch (cu_header->addr_size)
16504 {
16505 case 2:
16506 retval = bfd_get_16 (abfd, buf);
16507 break;
16508 case 4:
16509 retval = bfd_get_32 (abfd, buf);
16510 break;
16511 case 8:
16512 retval = bfd_get_64 (abfd, buf);
16513 break;
16514 default:
16515 internal_error (__FILE__, __LINE__,
16516 _("read_address: bad switch, "
16517 "unsigned [in module %s]"),
16518 bfd_get_filename (abfd));
16519 }
16520 }
16521
16522 *bytes_read = cu_header->addr_size;
16523 return retval;
16524 }
16525
16526 /* Read the initial length from a section. The (draft) DWARF 3
16527 specification allows the initial length to take up either 4 bytes
16528 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16529 bytes describe the length and all offsets will be 8 bytes in length
16530 instead of 4.
16531
16532 An older, non-standard 64-bit format is also handled by this
16533 function. The older format in question stores the initial length
16534 as an 8-byte quantity without an escape value. Lengths greater
16535 than 2^32 aren't very common which means that the initial 4 bytes
16536 is almost always zero. Since a length value of zero doesn't make
16537 sense for the 32-bit format, this initial zero can be considered to
16538 be an escape value which indicates the presence of the older 64-bit
16539 format. As written, the code can't detect (old format) lengths
16540 greater than 4GB. If it becomes necessary to handle lengths
16541 somewhat larger than 4GB, we could allow other small values (such
16542 as the non-sensical values of 1, 2, and 3) to also be used as
16543 escape values indicating the presence of the old format.
16544
16545 The value returned via bytes_read should be used to increment the
16546 relevant pointer after calling read_initial_length().
16547
16548 [ Note: read_initial_length() and read_offset() are based on the
16549 document entitled "DWARF Debugging Information Format", revision
16550 3, draft 8, dated November 19, 2001. This document was obtained
16551 from:
16552
16553 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16554
16555 This document is only a draft and is subject to change. (So beware.)
16556
16557 Details regarding the older, non-standard 64-bit format were
16558 determined empirically by examining 64-bit ELF files produced by
16559 the SGI toolchain on an IRIX 6.5 machine.
16560
16561 - Kevin, July 16, 2002
16562 ] */
16563
16564 static LONGEST
16565 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16566 {
16567 LONGEST length = bfd_get_32 (abfd, buf);
16568
16569 if (length == 0xffffffff)
16570 {
16571 length = bfd_get_64 (abfd, buf + 4);
16572 *bytes_read = 12;
16573 }
16574 else if (length == 0)
16575 {
16576 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16577 length = bfd_get_64 (abfd, buf);
16578 *bytes_read = 8;
16579 }
16580 else
16581 {
16582 *bytes_read = 4;
16583 }
16584
16585 return length;
16586 }
16587
16588 /* Cover function for read_initial_length.
16589 Returns the length of the object at BUF, and stores the size of the
16590 initial length in *BYTES_READ and stores the size that offsets will be in
16591 *OFFSET_SIZE.
16592 If the initial length size is not equivalent to that specified in
16593 CU_HEADER then issue a complaint.
16594 This is useful when reading non-comp-unit headers. */
16595
16596 static LONGEST
16597 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16598 const struct comp_unit_head *cu_header,
16599 unsigned int *bytes_read,
16600 unsigned int *offset_size)
16601 {
16602 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16603
16604 gdb_assert (cu_header->initial_length_size == 4
16605 || cu_header->initial_length_size == 8
16606 || cu_header->initial_length_size == 12);
16607
16608 if (cu_header->initial_length_size != *bytes_read)
16609 complaint (&symfile_complaints,
16610 _("intermixed 32-bit and 64-bit DWARF sections"));
16611
16612 *offset_size = (*bytes_read == 4) ? 4 : 8;
16613 return length;
16614 }
16615
16616 /* Read an offset from the data stream. The size of the offset is
16617 given by cu_header->offset_size. */
16618
16619 static LONGEST
16620 read_offset (bfd *abfd, const gdb_byte *buf,
16621 const struct comp_unit_head *cu_header,
16622 unsigned int *bytes_read)
16623 {
16624 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16625
16626 *bytes_read = cu_header->offset_size;
16627 return offset;
16628 }
16629
16630 /* Read an offset from the data stream. */
16631
16632 static LONGEST
16633 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16634 {
16635 LONGEST retval = 0;
16636
16637 switch (offset_size)
16638 {
16639 case 4:
16640 retval = bfd_get_32 (abfd, buf);
16641 break;
16642 case 8:
16643 retval = bfd_get_64 (abfd, buf);
16644 break;
16645 default:
16646 internal_error (__FILE__, __LINE__,
16647 _("read_offset_1: bad switch [in module %s]"),
16648 bfd_get_filename (abfd));
16649 }
16650
16651 return retval;
16652 }
16653
16654 static const gdb_byte *
16655 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16656 {
16657 /* If the size of a host char is 8 bits, we can return a pointer
16658 to the buffer, otherwise we have to copy the data to a buffer
16659 allocated on the temporary obstack. */
16660 gdb_assert (HOST_CHAR_BIT == 8);
16661 return buf;
16662 }
16663
16664 static const char *
16665 read_direct_string (bfd *abfd, const gdb_byte *buf,
16666 unsigned int *bytes_read_ptr)
16667 {
16668 /* If the size of a host char is 8 bits, we can return a pointer
16669 to the string, otherwise we have to copy the string to a buffer
16670 allocated on the temporary obstack. */
16671 gdb_assert (HOST_CHAR_BIT == 8);
16672 if (*buf == '\0')
16673 {
16674 *bytes_read_ptr = 1;
16675 return NULL;
16676 }
16677 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16678 return (const char *) buf;
16679 }
16680
16681 static const char *
16682 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16683 {
16684 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16685 if (dwarf2_per_objfile->str.buffer == NULL)
16686 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16687 bfd_get_filename (abfd));
16688 if (str_offset >= dwarf2_per_objfile->str.size)
16689 error (_("DW_FORM_strp pointing outside of "
16690 ".debug_str section [in module %s]"),
16691 bfd_get_filename (abfd));
16692 gdb_assert (HOST_CHAR_BIT == 8);
16693 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16694 return NULL;
16695 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16696 }
16697
16698 /* Read a string at offset STR_OFFSET in the .debug_str section from
16699 the .dwz file DWZ. Throw an error if the offset is too large. If
16700 the string consists of a single NUL byte, return NULL; otherwise
16701 return a pointer to the string. */
16702
16703 static const char *
16704 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16705 {
16706 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16707
16708 if (dwz->str.buffer == NULL)
16709 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16710 "section [in module %s]"),
16711 bfd_get_filename (dwz->dwz_bfd));
16712 if (str_offset >= dwz->str.size)
16713 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16714 ".debug_str section [in module %s]"),
16715 bfd_get_filename (dwz->dwz_bfd));
16716 gdb_assert (HOST_CHAR_BIT == 8);
16717 if (dwz->str.buffer[str_offset] == '\0')
16718 return NULL;
16719 return (const char *) (dwz->str.buffer + str_offset);
16720 }
16721
16722 static const char *
16723 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16724 const struct comp_unit_head *cu_header,
16725 unsigned int *bytes_read_ptr)
16726 {
16727 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16728
16729 return read_indirect_string_at_offset (abfd, str_offset);
16730 }
16731
16732 static ULONGEST
16733 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16734 unsigned int *bytes_read_ptr)
16735 {
16736 ULONGEST result;
16737 unsigned int num_read;
16738 int i, shift;
16739 unsigned char byte;
16740
16741 result = 0;
16742 shift = 0;
16743 num_read = 0;
16744 i = 0;
16745 while (1)
16746 {
16747 byte = bfd_get_8 (abfd, buf);
16748 buf++;
16749 num_read++;
16750 result |= ((ULONGEST) (byte & 127) << shift);
16751 if ((byte & 128) == 0)
16752 {
16753 break;
16754 }
16755 shift += 7;
16756 }
16757 *bytes_read_ptr = num_read;
16758 return result;
16759 }
16760
16761 static LONGEST
16762 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16763 unsigned int *bytes_read_ptr)
16764 {
16765 LONGEST result;
16766 int i, shift, num_read;
16767 unsigned char byte;
16768
16769 result = 0;
16770 shift = 0;
16771 num_read = 0;
16772 i = 0;
16773 while (1)
16774 {
16775 byte = bfd_get_8 (abfd, buf);
16776 buf++;
16777 num_read++;
16778 result |= ((LONGEST) (byte & 127) << shift);
16779 shift += 7;
16780 if ((byte & 128) == 0)
16781 {
16782 break;
16783 }
16784 }
16785 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16786 result |= -(((LONGEST) 1) << shift);
16787 *bytes_read_ptr = num_read;
16788 return result;
16789 }
16790
16791 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16792 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16793 ADDR_SIZE is the size of addresses from the CU header. */
16794
16795 static CORE_ADDR
16796 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16797 {
16798 struct objfile *objfile = dwarf2_per_objfile->objfile;
16799 bfd *abfd = objfile->obfd;
16800 const gdb_byte *info_ptr;
16801
16802 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16803 if (dwarf2_per_objfile->addr.buffer == NULL)
16804 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16805 objfile_name (objfile));
16806 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16807 error (_("DW_FORM_addr_index pointing outside of "
16808 ".debug_addr section [in module %s]"),
16809 objfile_name (objfile));
16810 info_ptr = (dwarf2_per_objfile->addr.buffer
16811 + addr_base + addr_index * addr_size);
16812 if (addr_size == 4)
16813 return bfd_get_32 (abfd, info_ptr);
16814 else
16815 return bfd_get_64 (abfd, info_ptr);
16816 }
16817
16818 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16819
16820 static CORE_ADDR
16821 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16822 {
16823 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16824 }
16825
16826 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16827
16828 static CORE_ADDR
16829 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16830 unsigned int *bytes_read)
16831 {
16832 bfd *abfd = cu->objfile->obfd;
16833 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16834
16835 return read_addr_index (cu, addr_index);
16836 }
16837
16838 /* Data structure to pass results from dwarf2_read_addr_index_reader
16839 back to dwarf2_read_addr_index. */
16840
16841 struct dwarf2_read_addr_index_data
16842 {
16843 ULONGEST addr_base;
16844 int addr_size;
16845 };
16846
16847 /* die_reader_func for dwarf2_read_addr_index. */
16848
16849 static void
16850 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16851 const gdb_byte *info_ptr,
16852 struct die_info *comp_unit_die,
16853 int has_children,
16854 void *data)
16855 {
16856 struct dwarf2_cu *cu = reader->cu;
16857 struct dwarf2_read_addr_index_data *aidata =
16858 (struct dwarf2_read_addr_index_data *) data;
16859
16860 aidata->addr_base = cu->addr_base;
16861 aidata->addr_size = cu->header.addr_size;
16862 }
16863
16864 /* Given an index in .debug_addr, fetch the value.
16865 NOTE: This can be called during dwarf expression evaluation,
16866 long after the debug information has been read, and thus per_cu->cu
16867 may no longer exist. */
16868
16869 CORE_ADDR
16870 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16871 unsigned int addr_index)
16872 {
16873 struct objfile *objfile = per_cu->objfile;
16874 struct dwarf2_cu *cu = per_cu->cu;
16875 ULONGEST addr_base;
16876 int addr_size;
16877
16878 /* This is intended to be called from outside this file. */
16879 dw2_setup (objfile);
16880
16881 /* We need addr_base and addr_size.
16882 If we don't have PER_CU->cu, we have to get it.
16883 Nasty, but the alternative is storing the needed info in PER_CU,
16884 which at this point doesn't seem justified: it's not clear how frequently
16885 it would get used and it would increase the size of every PER_CU.
16886 Entry points like dwarf2_per_cu_addr_size do a similar thing
16887 so we're not in uncharted territory here.
16888 Alas we need to be a bit more complicated as addr_base is contained
16889 in the DIE.
16890
16891 We don't need to read the entire CU(/TU).
16892 We just need the header and top level die.
16893
16894 IWBN to use the aging mechanism to let us lazily later discard the CU.
16895 For now we skip this optimization. */
16896
16897 if (cu != NULL)
16898 {
16899 addr_base = cu->addr_base;
16900 addr_size = cu->header.addr_size;
16901 }
16902 else
16903 {
16904 struct dwarf2_read_addr_index_data aidata;
16905
16906 /* Note: We can't use init_cutu_and_read_dies_simple here,
16907 we need addr_base. */
16908 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16909 dwarf2_read_addr_index_reader, &aidata);
16910 addr_base = aidata.addr_base;
16911 addr_size = aidata.addr_size;
16912 }
16913
16914 return read_addr_index_1 (addr_index, addr_base, addr_size);
16915 }
16916
16917 /* Given a DW_FORM_GNU_str_index, fetch the string.
16918 This is only used by the Fission support. */
16919
16920 static const char *
16921 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16922 {
16923 struct objfile *objfile = dwarf2_per_objfile->objfile;
16924 const char *objf_name = objfile_name (objfile);
16925 bfd *abfd = objfile->obfd;
16926 struct dwarf2_cu *cu = reader->cu;
16927 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16928 struct dwarf2_section_info *str_offsets_section =
16929 &reader->dwo_file->sections.str_offsets;
16930 const gdb_byte *info_ptr;
16931 ULONGEST str_offset;
16932 static const char form_name[] = "DW_FORM_GNU_str_index";
16933
16934 dwarf2_read_section (objfile, str_section);
16935 dwarf2_read_section (objfile, str_offsets_section);
16936 if (str_section->buffer == NULL)
16937 error (_("%s used without .debug_str.dwo section"
16938 " in CU at offset 0x%lx [in module %s]"),
16939 form_name, (long) cu->header.offset.sect_off, objf_name);
16940 if (str_offsets_section->buffer == NULL)
16941 error (_("%s used without .debug_str_offsets.dwo section"
16942 " in CU at offset 0x%lx [in module %s]"),
16943 form_name, (long) cu->header.offset.sect_off, objf_name);
16944 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16945 error (_("%s pointing outside of .debug_str_offsets.dwo"
16946 " section in CU at offset 0x%lx [in module %s]"),
16947 form_name, (long) cu->header.offset.sect_off, objf_name);
16948 info_ptr = (str_offsets_section->buffer
16949 + str_index * cu->header.offset_size);
16950 if (cu->header.offset_size == 4)
16951 str_offset = bfd_get_32 (abfd, info_ptr);
16952 else
16953 str_offset = bfd_get_64 (abfd, info_ptr);
16954 if (str_offset >= str_section->size)
16955 error (_("Offset from %s pointing outside of"
16956 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16957 form_name, (long) cu->header.offset.sect_off, objf_name);
16958 return (const char *) (str_section->buffer + str_offset);
16959 }
16960
16961 /* Return the length of an LEB128 number in BUF. */
16962
16963 static int
16964 leb128_size (const gdb_byte *buf)
16965 {
16966 const gdb_byte *begin = buf;
16967 gdb_byte byte;
16968
16969 while (1)
16970 {
16971 byte = *buf++;
16972 if ((byte & 128) == 0)
16973 return buf - begin;
16974 }
16975 }
16976
16977 static void
16978 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16979 {
16980 switch (lang)
16981 {
16982 case DW_LANG_C89:
16983 case DW_LANG_C99:
16984 case DW_LANG_C11:
16985 case DW_LANG_C:
16986 case DW_LANG_UPC:
16987 cu->language = language_c;
16988 break;
16989 case DW_LANG_C_plus_plus:
16990 case DW_LANG_C_plus_plus_11:
16991 case DW_LANG_C_plus_plus_14:
16992 cu->language = language_cplus;
16993 break;
16994 case DW_LANG_D:
16995 cu->language = language_d;
16996 break;
16997 case DW_LANG_Fortran77:
16998 case DW_LANG_Fortran90:
16999 case DW_LANG_Fortran95:
17000 case DW_LANG_Fortran03:
17001 case DW_LANG_Fortran08:
17002 cu->language = language_fortran;
17003 break;
17004 case DW_LANG_Go:
17005 cu->language = language_go;
17006 break;
17007 case DW_LANG_Mips_Assembler:
17008 cu->language = language_asm;
17009 break;
17010 case DW_LANG_Java:
17011 cu->language = language_java;
17012 break;
17013 case DW_LANG_Ada83:
17014 case DW_LANG_Ada95:
17015 cu->language = language_ada;
17016 break;
17017 case DW_LANG_Modula2:
17018 cu->language = language_m2;
17019 break;
17020 case DW_LANG_Pascal83:
17021 cu->language = language_pascal;
17022 break;
17023 case DW_LANG_ObjC:
17024 cu->language = language_objc;
17025 break;
17026 case DW_LANG_Cobol74:
17027 case DW_LANG_Cobol85:
17028 default:
17029 cu->language = language_minimal;
17030 break;
17031 }
17032 cu->language_defn = language_def (cu->language);
17033 }
17034
17035 /* Return the named attribute or NULL if not there. */
17036
17037 static struct attribute *
17038 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17039 {
17040 for (;;)
17041 {
17042 unsigned int i;
17043 struct attribute *spec = NULL;
17044
17045 for (i = 0; i < die->num_attrs; ++i)
17046 {
17047 if (die->attrs[i].name == name)
17048 return &die->attrs[i];
17049 if (die->attrs[i].name == DW_AT_specification
17050 || die->attrs[i].name == DW_AT_abstract_origin)
17051 spec = &die->attrs[i];
17052 }
17053
17054 if (!spec)
17055 break;
17056
17057 die = follow_die_ref (die, spec, &cu);
17058 }
17059
17060 return NULL;
17061 }
17062
17063 /* Return the named attribute or NULL if not there,
17064 but do not follow DW_AT_specification, etc.
17065 This is for use in contexts where we're reading .debug_types dies.
17066 Following DW_AT_specification, DW_AT_abstract_origin will take us
17067 back up the chain, and we want to go down. */
17068
17069 static struct attribute *
17070 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17071 {
17072 unsigned int i;
17073
17074 for (i = 0; i < die->num_attrs; ++i)
17075 if (die->attrs[i].name == name)
17076 return &die->attrs[i];
17077
17078 return NULL;
17079 }
17080
17081 /* Return the string associated with a string-typed attribute, or NULL if it
17082 is either not found or is of an incorrect type. */
17083
17084 static const char *
17085 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17086 {
17087 struct attribute *attr;
17088 const char *str = NULL;
17089
17090 attr = dwarf2_attr (die, name, cu);
17091
17092 if (attr != NULL)
17093 {
17094 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17095 || attr->form == DW_FORM_GNU_strp_alt)
17096 str = DW_STRING (attr);
17097 else
17098 complaint (&symfile_complaints,
17099 _("string type expected for attribute %s for "
17100 "DIE at 0x%x in module %s"),
17101 dwarf_attr_name (name), die->offset.sect_off,
17102 objfile_name (cu->objfile));
17103 }
17104
17105 return str;
17106 }
17107
17108 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17109 and holds a non-zero value. This function should only be used for
17110 DW_FORM_flag or DW_FORM_flag_present attributes. */
17111
17112 static int
17113 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17114 {
17115 struct attribute *attr = dwarf2_attr (die, name, cu);
17116
17117 return (attr && DW_UNSND (attr));
17118 }
17119
17120 static int
17121 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17122 {
17123 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17124 which value is non-zero. However, we have to be careful with
17125 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17126 (via dwarf2_flag_true_p) follows this attribute. So we may
17127 end up accidently finding a declaration attribute that belongs
17128 to a different DIE referenced by the specification attribute,
17129 even though the given DIE does not have a declaration attribute. */
17130 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17131 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17132 }
17133
17134 /* Return the die giving the specification for DIE, if there is
17135 one. *SPEC_CU is the CU containing DIE on input, and the CU
17136 containing the return value on output. If there is no
17137 specification, but there is an abstract origin, that is
17138 returned. */
17139
17140 static struct die_info *
17141 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17142 {
17143 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17144 *spec_cu);
17145
17146 if (spec_attr == NULL)
17147 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17148
17149 if (spec_attr == NULL)
17150 return NULL;
17151 else
17152 return follow_die_ref (die, spec_attr, spec_cu);
17153 }
17154
17155 /* Free the line_header structure *LH, and any arrays and strings it
17156 refers to.
17157 NOTE: This is also used as a "cleanup" function. */
17158
17159 static void
17160 free_line_header (struct line_header *lh)
17161 {
17162 if (lh->standard_opcode_lengths)
17163 xfree (lh->standard_opcode_lengths);
17164
17165 /* Remember that all the lh->file_names[i].name pointers are
17166 pointers into debug_line_buffer, and don't need to be freed. */
17167 if (lh->file_names)
17168 xfree (lh->file_names);
17169
17170 /* Similarly for the include directory names. */
17171 if (lh->include_dirs)
17172 xfree (lh->include_dirs);
17173
17174 xfree (lh);
17175 }
17176
17177 /* Stub for free_line_header to match void * callback types. */
17178
17179 static void
17180 free_line_header_voidp (void *arg)
17181 {
17182 struct line_header *lh = arg;
17183
17184 free_line_header (lh);
17185 }
17186
17187 /* Add an entry to LH's include directory table. */
17188
17189 static void
17190 add_include_dir (struct line_header *lh, const char *include_dir)
17191 {
17192 if (dwarf_line_debug >= 2)
17193 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17194 lh->num_include_dirs + 1, include_dir);
17195
17196 /* Grow the array if necessary. */
17197 if (lh->include_dirs_size == 0)
17198 {
17199 lh->include_dirs_size = 1; /* for testing */
17200 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17201 }
17202 else if (lh->num_include_dirs >= lh->include_dirs_size)
17203 {
17204 lh->include_dirs_size *= 2;
17205 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17206 lh->include_dirs_size);
17207 }
17208
17209 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17210 }
17211
17212 /* Add an entry to LH's file name table. */
17213
17214 static void
17215 add_file_name (struct line_header *lh,
17216 const char *name,
17217 unsigned int dir_index,
17218 unsigned int mod_time,
17219 unsigned int length)
17220 {
17221 struct file_entry *fe;
17222
17223 if (dwarf_line_debug >= 2)
17224 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17225 lh->num_file_names + 1, name);
17226
17227 /* Grow the array if necessary. */
17228 if (lh->file_names_size == 0)
17229 {
17230 lh->file_names_size = 1; /* for testing */
17231 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17232 }
17233 else if (lh->num_file_names >= lh->file_names_size)
17234 {
17235 lh->file_names_size *= 2;
17236 lh->file_names = xrealloc (lh->file_names,
17237 (lh->file_names_size
17238 * sizeof (*lh->file_names)));
17239 }
17240
17241 fe = &lh->file_names[lh->num_file_names++];
17242 fe->name = name;
17243 fe->dir_index = dir_index;
17244 fe->mod_time = mod_time;
17245 fe->length = length;
17246 fe->included_p = 0;
17247 fe->symtab = NULL;
17248 }
17249
17250 /* A convenience function to find the proper .debug_line section for a CU. */
17251
17252 static struct dwarf2_section_info *
17253 get_debug_line_section (struct dwarf2_cu *cu)
17254 {
17255 struct dwarf2_section_info *section;
17256
17257 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17258 DWO file. */
17259 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17260 section = &cu->dwo_unit->dwo_file->sections.line;
17261 else if (cu->per_cu->is_dwz)
17262 {
17263 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17264
17265 section = &dwz->line;
17266 }
17267 else
17268 section = &dwarf2_per_objfile->line;
17269
17270 return section;
17271 }
17272
17273 /* Read the statement program header starting at OFFSET in
17274 .debug_line, or .debug_line.dwo. Return a pointer
17275 to a struct line_header, allocated using xmalloc.
17276 Returns NULL if there is a problem reading the header, e.g., if it
17277 has a version we don't understand.
17278
17279 NOTE: the strings in the include directory and file name tables of
17280 the returned object point into the dwarf line section buffer,
17281 and must not be freed. */
17282
17283 static struct line_header *
17284 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17285 {
17286 struct cleanup *back_to;
17287 struct line_header *lh;
17288 const gdb_byte *line_ptr;
17289 unsigned int bytes_read, offset_size;
17290 int i;
17291 const char *cur_dir, *cur_file;
17292 struct dwarf2_section_info *section;
17293 bfd *abfd;
17294
17295 section = get_debug_line_section (cu);
17296 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17297 if (section->buffer == NULL)
17298 {
17299 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17300 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17301 else
17302 complaint (&symfile_complaints, _("missing .debug_line section"));
17303 return 0;
17304 }
17305
17306 /* We can't do this until we know the section is non-empty.
17307 Only then do we know we have such a section. */
17308 abfd = get_section_bfd_owner (section);
17309
17310 /* Make sure that at least there's room for the total_length field.
17311 That could be 12 bytes long, but we're just going to fudge that. */
17312 if (offset + 4 >= section->size)
17313 {
17314 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17315 return 0;
17316 }
17317
17318 lh = XNEW (struct line_header);
17319 memset (lh, 0, sizeof (*lh));
17320 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17321 (void *) lh);
17322
17323 lh->offset.sect_off = offset;
17324 lh->offset_in_dwz = cu->per_cu->is_dwz;
17325
17326 line_ptr = section->buffer + offset;
17327
17328 /* Read in the header. */
17329 lh->total_length =
17330 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17331 &bytes_read, &offset_size);
17332 line_ptr += bytes_read;
17333 if (line_ptr + lh->total_length > (section->buffer + section->size))
17334 {
17335 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17336 do_cleanups (back_to);
17337 return 0;
17338 }
17339 lh->statement_program_end = line_ptr + lh->total_length;
17340 lh->version = read_2_bytes (abfd, line_ptr);
17341 line_ptr += 2;
17342 if (lh->version > 4)
17343 {
17344 /* This is a version we don't understand. The format could have
17345 changed in ways we don't handle properly so just punt. */
17346 complaint (&symfile_complaints,
17347 _("unsupported version in .debug_line section"));
17348 return NULL;
17349 }
17350 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17351 line_ptr += offset_size;
17352 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17353 line_ptr += 1;
17354 if (lh->version >= 4)
17355 {
17356 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17357 line_ptr += 1;
17358 }
17359 else
17360 lh->maximum_ops_per_instruction = 1;
17361
17362 if (lh->maximum_ops_per_instruction == 0)
17363 {
17364 lh->maximum_ops_per_instruction = 1;
17365 complaint (&symfile_complaints,
17366 _("invalid maximum_ops_per_instruction "
17367 "in `.debug_line' section"));
17368 }
17369
17370 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17371 line_ptr += 1;
17372 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17373 line_ptr += 1;
17374 lh->line_range = read_1_byte (abfd, line_ptr);
17375 line_ptr += 1;
17376 lh->opcode_base = read_1_byte (abfd, line_ptr);
17377 line_ptr += 1;
17378 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17379
17380 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17381 for (i = 1; i < lh->opcode_base; ++i)
17382 {
17383 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17384 line_ptr += 1;
17385 }
17386
17387 /* Read directory table. */
17388 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17389 {
17390 line_ptr += bytes_read;
17391 add_include_dir (lh, cur_dir);
17392 }
17393 line_ptr += bytes_read;
17394
17395 /* Read file name table. */
17396 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17397 {
17398 unsigned int dir_index, mod_time, length;
17399
17400 line_ptr += bytes_read;
17401 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17402 line_ptr += bytes_read;
17403 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17404 line_ptr += bytes_read;
17405 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17406 line_ptr += bytes_read;
17407
17408 add_file_name (lh, cur_file, dir_index, mod_time, length);
17409 }
17410 line_ptr += bytes_read;
17411 lh->statement_program_start = line_ptr;
17412
17413 if (line_ptr > (section->buffer + section->size))
17414 complaint (&symfile_complaints,
17415 _("line number info header doesn't "
17416 "fit in `.debug_line' section"));
17417
17418 discard_cleanups (back_to);
17419 return lh;
17420 }
17421
17422 /* Subroutine of dwarf_decode_lines to simplify it.
17423 Return the file name of the psymtab for included file FILE_INDEX
17424 in line header LH of PST.
17425 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17426 If space for the result is malloc'd, it will be freed by a cleanup.
17427 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17428
17429 The function creates dangling cleanup registration. */
17430
17431 static const char *
17432 psymtab_include_file_name (const struct line_header *lh, int file_index,
17433 const struct partial_symtab *pst,
17434 const char *comp_dir)
17435 {
17436 const struct file_entry fe = lh->file_names [file_index];
17437 const char *include_name = fe.name;
17438 const char *include_name_to_compare = include_name;
17439 const char *dir_name = NULL;
17440 const char *pst_filename;
17441 char *copied_name = NULL;
17442 int file_is_pst;
17443
17444 if (fe.dir_index && lh->include_dirs != NULL)
17445 dir_name = lh->include_dirs[fe.dir_index - 1];
17446
17447 if (!IS_ABSOLUTE_PATH (include_name)
17448 && (dir_name != NULL || comp_dir != NULL))
17449 {
17450 /* Avoid creating a duplicate psymtab for PST.
17451 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17452 Before we do the comparison, however, we need to account
17453 for DIR_NAME and COMP_DIR.
17454 First prepend dir_name (if non-NULL). If we still don't
17455 have an absolute path prepend comp_dir (if non-NULL).
17456 However, the directory we record in the include-file's
17457 psymtab does not contain COMP_DIR (to match the
17458 corresponding symtab(s)).
17459
17460 Example:
17461
17462 bash$ cd /tmp
17463 bash$ gcc -g ./hello.c
17464 include_name = "hello.c"
17465 dir_name = "."
17466 DW_AT_comp_dir = comp_dir = "/tmp"
17467 DW_AT_name = "./hello.c"
17468
17469 */
17470
17471 if (dir_name != NULL)
17472 {
17473 char *tem = concat (dir_name, SLASH_STRING,
17474 include_name, (char *)NULL);
17475
17476 make_cleanup (xfree, tem);
17477 include_name = tem;
17478 include_name_to_compare = include_name;
17479 }
17480 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17481 {
17482 char *tem = concat (comp_dir, SLASH_STRING,
17483 include_name, (char *)NULL);
17484
17485 make_cleanup (xfree, tem);
17486 include_name_to_compare = tem;
17487 }
17488 }
17489
17490 pst_filename = pst->filename;
17491 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17492 {
17493 copied_name = concat (pst->dirname, SLASH_STRING,
17494 pst_filename, (char *)NULL);
17495 pst_filename = copied_name;
17496 }
17497
17498 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17499
17500 if (copied_name != NULL)
17501 xfree (copied_name);
17502
17503 if (file_is_pst)
17504 return NULL;
17505 return include_name;
17506 }
17507
17508 /* State machine to track the state of the line number program. */
17509
17510 typedef struct
17511 {
17512 /* These are part of the standard DWARF line number state machine. */
17513
17514 unsigned char op_index;
17515 unsigned int file;
17516 unsigned int line;
17517 CORE_ADDR address;
17518 int is_stmt;
17519 unsigned int discriminator;
17520
17521 /* Additional bits of state we need to track. */
17522
17523 /* The last file that we called dwarf2_start_subfile for.
17524 This is only used for TLLs. */
17525 unsigned int last_file;
17526 /* The last file a line number was recorded for. */
17527 struct subfile *last_subfile;
17528
17529 /* The function to call to record a line. */
17530 record_line_ftype *record_line;
17531
17532 /* The last line number that was recorded, used to coalesce
17533 consecutive entries for the same line. This can happen, for
17534 example, when discriminators are present. PR 17276. */
17535 unsigned int last_line;
17536 int line_has_non_zero_discriminator;
17537 } lnp_state_machine;
17538
17539 /* There's a lot of static state to pass to dwarf_record_line.
17540 This keeps it all together. */
17541
17542 typedef struct
17543 {
17544 /* The gdbarch. */
17545 struct gdbarch *gdbarch;
17546
17547 /* The line number header. */
17548 struct line_header *line_header;
17549
17550 /* Non-zero if we're recording lines.
17551 Otherwise we're building partial symtabs and are just interested in
17552 finding include files mentioned by the line number program. */
17553 int record_lines_p;
17554 } lnp_reader_state;
17555
17556 /* Ignore this record_line request. */
17557
17558 static void
17559 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17560 {
17561 return;
17562 }
17563
17564 /* Return non-zero if we should add LINE to the line number table.
17565 LINE is the line to add, LAST_LINE is the last line that was added,
17566 LAST_SUBFILE is the subfile for LAST_LINE.
17567 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17568 had a non-zero discriminator.
17569
17570 We have to be careful in the presence of discriminators.
17571 E.g., for this line:
17572
17573 for (i = 0; i < 100000; i++);
17574
17575 clang can emit four line number entries for that one line,
17576 each with a different discriminator.
17577 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17578
17579 However, we want gdb to coalesce all four entries into one.
17580 Otherwise the user could stepi into the middle of the line and
17581 gdb would get confused about whether the pc really was in the
17582 middle of the line.
17583
17584 Things are further complicated by the fact that two consecutive
17585 line number entries for the same line is a heuristic used by gcc
17586 to denote the end of the prologue. So we can't just discard duplicate
17587 entries, we have to be selective about it. The heuristic we use is
17588 that we only collapse consecutive entries for the same line if at least
17589 one of those entries has a non-zero discriminator. PR 17276.
17590
17591 Note: Addresses in the line number state machine can never go backwards
17592 within one sequence, thus this coalescing is ok. */
17593
17594 static int
17595 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17596 int line_has_non_zero_discriminator,
17597 struct subfile *last_subfile)
17598 {
17599 if (current_subfile != last_subfile)
17600 return 1;
17601 if (line != last_line)
17602 return 1;
17603 /* Same line for the same file that we've seen already.
17604 As a last check, for pr 17276, only record the line if the line
17605 has never had a non-zero discriminator. */
17606 if (!line_has_non_zero_discriminator)
17607 return 1;
17608 return 0;
17609 }
17610
17611 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17612 in the line table of subfile SUBFILE. */
17613
17614 static void
17615 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17616 unsigned int line, CORE_ADDR address,
17617 record_line_ftype p_record_line)
17618 {
17619 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17620
17621 if (dwarf_line_debug)
17622 {
17623 fprintf_unfiltered (gdb_stdlog,
17624 "Recording line %u, file %s, address %s\n",
17625 line, lbasename (subfile->name),
17626 paddress (gdbarch, address));
17627 }
17628
17629 (*p_record_line) (subfile, line, addr);
17630 }
17631
17632 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17633 Mark the end of a set of line number records.
17634 The arguments are the same as for dwarf_record_line_1.
17635 If SUBFILE is NULL the request is ignored. */
17636
17637 static void
17638 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17639 CORE_ADDR address, record_line_ftype p_record_line)
17640 {
17641 if (subfile == NULL)
17642 return;
17643
17644 if (dwarf_line_debug)
17645 {
17646 fprintf_unfiltered (gdb_stdlog,
17647 "Finishing current line, file %s, address %s\n",
17648 lbasename (subfile->name),
17649 paddress (gdbarch, address));
17650 }
17651
17652 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17653 }
17654
17655 /* Record the line in STATE.
17656 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17657
17658 static void
17659 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17660 int end_sequence)
17661 {
17662 const struct line_header *lh = reader->line_header;
17663 unsigned int file, line, discriminator;
17664 int is_stmt;
17665
17666 file = state->file;
17667 line = state->line;
17668 is_stmt = state->is_stmt;
17669 discriminator = state->discriminator;
17670
17671 if (dwarf_line_debug)
17672 {
17673 fprintf_unfiltered (gdb_stdlog,
17674 "Processing actual line %u: file %u,"
17675 " address %s, is_stmt %u, discrim %u\n",
17676 line, file,
17677 paddress (reader->gdbarch, state->address),
17678 is_stmt, discriminator);
17679 }
17680
17681 if (file == 0 || file - 1 >= lh->num_file_names)
17682 dwarf2_debug_line_missing_file_complaint ();
17683 /* For now we ignore lines not starting on an instruction boundary.
17684 But not when processing end_sequence for compatibility with the
17685 previous version of the code. */
17686 else if (state->op_index == 0 || end_sequence)
17687 {
17688 lh->file_names[file - 1].included_p = 1;
17689 if (reader->record_lines_p && is_stmt)
17690 {
17691 if (state->last_subfile != current_subfile || end_sequence)
17692 {
17693 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17694 state->address, state->record_line);
17695 }
17696
17697 if (!end_sequence)
17698 {
17699 if (dwarf_record_line_p (line, state->last_line,
17700 state->line_has_non_zero_discriminator,
17701 state->last_subfile))
17702 {
17703 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17704 line, state->address,
17705 state->record_line);
17706 }
17707 state->last_subfile = current_subfile;
17708 state->last_line = line;
17709 }
17710 }
17711 }
17712 }
17713
17714 /* Initialize STATE for the start of a line number program. */
17715
17716 static void
17717 init_lnp_state_machine (lnp_state_machine *state,
17718 const lnp_reader_state *reader)
17719 {
17720 memset (state, 0, sizeof (*state));
17721
17722 /* Just starting, there is no "last file". */
17723 state->last_file = 0;
17724 state->last_subfile = NULL;
17725
17726 state->record_line = record_line;
17727
17728 state->last_line = 0;
17729 state->line_has_non_zero_discriminator = 0;
17730
17731 /* Initialize these according to the DWARF spec. */
17732 state->op_index = 0;
17733 state->file = 1;
17734 state->line = 1;
17735 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17736 was a line entry for it so that the backend has a chance to adjust it
17737 and also record it in case it needs it. This is currently used by MIPS
17738 code, cf. `mips_adjust_dwarf2_line'. */
17739 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17740 state->is_stmt = reader->line_header->default_is_stmt;
17741 state->discriminator = 0;
17742 }
17743
17744 /* Check address and if invalid nop-out the rest of the lines in this
17745 sequence. */
17746
17747 static void
17748 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17749 const gdb_byte *line_ptr,
17750 CORE_ADDR lowpc, CORE_ADDR address)
17751 {
17752 /* If address < lowpc then it's not a usable value, it's outside the
17753 pc range of the CU. However, we restrict the test to only address
17754 values of zero to preserve GDB's previous behaviour which is to
17755 handle the specific case of a function being GC'd by the linker. */
17756
17757 if (address == 0 && address < lowpc)
17758 {
17759 /* This line table is for a function which has been
17760 GCd by the linker. Ignore it. PR gdb/12528 */
17761
17762 struct objfile *objfile = cu->objfile;
17763 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17764
17765 complaint (&symfile_complaints,
17766 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17767 line_offset, objfile_name (objfile));
17768 state->record_line = noop_record_line;
17769 /* Note: sm.record_line is left as noop_record_line
17770 until we see DW_LNE_end_sequence. */
17771 }
17772 }
17773
17774 /* Subroutine of dwarf_decode_lines to simplify it.
17775 Process the line number information in LH.
17776 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17777 program in order to set included_p for every referenced header. */
17778
17779 static void
17780 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17781 const int decode_for_pst_p, CORE_ADDR lowpc)
17782 {
17783 const gdb_byte *line_ptr, *extended_end;
17784 const gdb_byte *line_end;
17785 unsigned int bytes_read, extended_len;
17786 unsigned char op_code, extended_op;
17787 CORE_ADDR baseaddr;
17788 struct objfile *objfile = cu->objfile;
17789 bfd *abfd = objfile->obfd;
17790 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17791 /* Non-zero if we're recording line info (as opposed to building partial
17792 symtabs). */
17793 int record_lines_p = !decode_for_pst_p;
17794 /* A collection of things we need to pass to dwarf_record_line. */
17795 lnp_reader_state reader_state;
17796
17797 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17798
17799 line_ptr = lh->statement_program_start;
17800 line_end = lh->statement_program_end;
17801
17802 reader_state.gdbarch = gdbarch;
17803 reader_state.line_header = lh;
17804 reader_state.record_lines_p = record_lines_p;
17805
17806 /* Read the statement sequences until there's nothing left. */
17807 while (line_ptr < line_end)
17808 {
17809 /* The DWARF line number program state machine. */
17810 lnp_state_machine state_machine;
17811 int end_sequence = 0;
17812
17813 /* Reset the state machine at the start of each sequence. */
17814 init_lnp_state_machine (&state_machine, &reader_state);
17815
17816 if (record_lines_p && lh->num_file_names >= state_machine.file)
17817 {
17818 /* Start a subfile for the current file of the state machine. */
17819 /* lh->include_dirs and lh->file_names are 0-based, but the
17820 directory and file name numbers in the statement program
17821 are 1-based. */
17822 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17823 const char *dir = NULL;
17824
17825 if (fe->dir_index && lh->include_dirs != NULL)
17826 dir = lh->include_dirs[fe->dir_index - 1];
17827
17828 dwarf2_start_subfile (fe->name, dir);
17829 }
17830
17831 /* Decode the table. */
17832 while (line_ptr < line_end && !end_sequence)
17833 {
17834 op_code = read_1_byte (abfd, line_ptr);
17835 line_ptr += 1;
17836
17837 if (op_code >= lh->opcode_base)
17838 {
17839 /* Special opcode. */
17840 unsigned char adj_opcode;
17841 CORE_ADDR addr_adj;
17842 int line_delta;
17843
17844 adj_opcode = op_code - lh->opcode_base;
17845 addr_adj = (((state_machine.op_index
17846 + (adj_opcode / lh->line_range))
17847 / lh->maximum_ops_per_instruction)
17848 * lh->minimum_instruction_length);
17849 state_machine.address
17850 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17851 state_machine.op_index = ((state_machine.op_index
17852 + (adj_opcode / lh->line_range))
17853 % lh->maximum_ops_per_instruction);
17854 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17855 state_machine.line += line_delta;
17856 if (line_delta != 0)
17857 state_machine.line_has_non_zero_discriminator
17858 = state_machine.discriminator != 0;
17859
17860 dwarf_record_line (&reader_state, &state_machine, 0);
17861 state_machine.discriminator = 0;
17862 }
17863 else switch (op_code)
17864 {
17865 case DW_LNS_extended_op:
17866 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17867 &bytes_read);
17868 line_ptr += bytes_read;
17869 extended_end = line_ptr + extended_len;
17870 extended_op = read_1_byte (abfd, line_ptr);
17871 line_ptr += 1;
17872 switch (extended_op)
17873 {
17874 case DW_LNE_end_sequence:
17875 state_machine.record_line = record_line;
17876 end_sequence = 1;
17877 break;
17878 case DW_LNE_set_address:
17879 {
17880 CORE_ADDR address
17881 = read_address (abfd, line_ptr, cu, &bytes_read);
17882
17883 line_ptr += bytes_read;
17884 check_line_address (cu, &state_machine, line_ptr,
17885 lowpc, address);
17886 state_machine.op_index = 0;
17887 address += baseaddr;
17888 state_machine.address
17889 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17890 }
17891 break;
17892 case DW_LNE_define_file:
17893 {
17894 const char *cur_file;
17895 unsigned int dir_index, mod_time, length;
17896
17897 cur_file = read_direct_string (abfd, line_ptr,
17898 &bytes_read);
17899 line_ptr += bytes_read;
17900 dir_index =
17901 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17902 line_ptr += bytes_read;
17903 mod_time =
17904 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17905 line_ptr += bytes_read;
17906 length =
17907 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17908 line_ptr += bytes_read;
17909 add_file_name (lh, cur_file, dir_index, mod_time, length);
17910 }
17911 break;
17912 case DW_LNE_set_discriminator:
17913 /* The discriminator is not interesting to the debugger;
17914 just ignore it. We still need to check its value though:
17915 if there are consecutive entries for the same
17916 (non-prologue) line we want to coalesce them.
17917 PR 17276. */
17918 state_machine.discriminator
17919 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17920 state_machine.line_has_non_zero_discriminator
17921 |= state_machine.discriminator != 0;
17922 line_ptr += bytes_read;
17923 break;
17924 default:
17925 complaint (&symfile_complaints,
17926 _("mangled .debug_line section"));
17927 return;
17928 }
17929 /* Make sure that we parsed the extended op correctly. If e.g.
17930 we expected a different address size than the producer used,
17931 we may have read the wrong number of bytes. */
17932 if (line_ptr != extended_end)
17933 {
17934 complaint (&symfile_complaints,
17935 _("mangled .debug_line section"));
17936 return;
17937 }
17938 break;
17939 case DW_LNS_copy:
17940 dwarf_record_line (&reader_state, &state_machine, 0);
17941 state_machine.discriminator = 0;
17942 break;
17943 case DW_LNS_advance_pc:
17944 {
17945 CORE_ADDR adjust
17946 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17947 CORE_ADDR addr_adj;
17948
17949 addr_adj = (((state_machine.op_index + adjust)
17950 / lh->maximum_ops_per_instruction)
17951 * lh->minimum_instruction_length);
17952 state_machine.address
17953 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17954 state_machine.op_index = ((state_machine.op_index + adjust)
17955 % lh->maximum_ops_per_instruction);
17956 line_ptr += bytes_read;
17957 }
17958 break;
17959 case DW_LNS_advance_line:
17960 {
17961 int line_delta
17962 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17963
17964 state_machine.line += line_delta;
17965 if (line_delta != 0)
17966 state_machine.line_has_non_zero_discriminator
17967 = state_machine.discriminator != 0;
17968 line_ptr += bytes_read;
17969 }
17970 break;
17971 case DW_LNS_set_file:
17972 {
17973 /* The arrays lh->include_dirs and lh->file_names are
17974 0-based, but the directory and file name numbers in
17975 the statement program are 1-based. */
17976 struct file_entry *fe;
17977 const char *dir = NULL;
17978
17979 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17980 &bytes_read);
17981 line_ptr += bytes_read;
17982 if (state_machine.file == 0
17983 || state_machine.file - 1 >= lh->num_file_names)
17984 dwarf2_debug_line_missing_file_complaint ();
17985 else
17986 {
17987 fe = &lh->file_names[state_machine.file - 1];
17988 if (fe->dir_index && lh->include_dirs != NULL)
17989 dir = lh->include_dirs[fe->dir_index - 1];
17990 if (record_lines_p)
17991 {
17992 state_machine.last_subfile = current_subfile;
17993 state_machine.line_has_non_zero_discriminator
17994 = state_machine.discriminator != 0;
17995 dwarf2_start_subfile (fe->name, dir);
17996 }
17997 }
17998 }
17999 break;
18000 case DW_LNS_set_column:
18001 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18002 line_ptr += bytes_read;
18003 break;
18004 case DW_LNS_negate_stmt:
18005 state_machine.is_stmt = (!state_machine.is_stmt);
18006 break;
18007 case DW_LNS_set_basic_block:
18008 break;
18009 /* Add to the address register of the state machine the
18010 address increment value corresponding to special opcode
18011 255. I.e., this value is scaled by the minimum
18012 instruction length since special opcode 255 would have
18013 scaled the increment. */
18014 case DW_LNS_const_add_pc:
18015 {
18016 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18017 CORE_ADDR addr_adj;
18018
18019 addr_adj = (((state_machine.op_index + adjust)
18020 / lh->maximum_ops_per_instruction)
18021 * lh->minimum_instruction_length);
18022 state_machine.address
18023 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18024 state_machine.op_index = ((state_machine.op_index + adjust)
18025 % lh->maximum_ops_per_instruction);
18026 }
18027 break;
18028 case DW_LNS_fixed_advance_pc:
18029 {
18030 CORE_ADDR addr_adj;
18031
18032 addr_adj = read_2_bytes (abfd, line_ptr);
18033 state_machine.address
18034 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18035 state_machine.op_index = 0;
18036 line_ptr += 2;
18037 }
18038 break;
18039 default:
18040 {
18041 /* Unknown standard opcode, ignore it. */
18042 int i;
18043
18044 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18045 {
18046 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18047 line_ptr += bytes_read;
18048 }
18049 }
18050 }
18051 }
18052
18053 if (!end_sequence)
18054 dwarf2_debug_line_missing_end_sequence_complaint ();
18055
18056 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18057 in which case we still finish recording the last line). */
18058 dwarf_record_line (&reader_state, &state_machine, 1);
18059 }
18060 }
18061
18062 /* Decode the Line Number Program (LNP) for the given line_header
18063 structure and CU. The actual information extracted and the type
18064 of structures created from the LNP depends on the value of PST.
18065
18066 1. If PST is NULL, then this procedure uses the data from the program
18067 to create all necessary symbol tables, and their linetables.
18068
18069 2. If PST is not NULL, this procedure reads the program to determine
18070 the list of files included by the unit represented by PST, and
18071 builds all the associated partial symbol tables.
18072
18073 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18074 It is used for relative paths in the line table.
18075 NOTE: When processing partial symtabs (pst != NULL),
18076 comp_dir == pst->dirname.
18077
18078 NOTE: It is important that psymtabs have the same file name (via strcmp)
18079 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18080 symtab we don't use it in the name of the psymtabs we create.
18081 E.g. expand_line_sal requires this when finding psymtabs to expand.
18082 A good testcase for this is mb-inline.exp.
18083
18084 LOWPC is the lowest address in CU (or 0 if not known).
18085
18086 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18087 for its PC<->lines mapping information. Otherwise only the filename
18088 table is read in. */
18089
18090 static void
18091 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18092 struct dwarf2_cu *cu, struct partial_symtab *pst,
18093 CORE_ADDR lowpc, int decode_mapping)
18094 {
18095 struct objfile *objfile = cu->objfile;
18096 const int decode_for_pst_p = (pst != NULL);
18097
18098 if (decode_mapping)
18099 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18100
18101 if (decode_for_pst_p)
18102 {
18103 int file_index;
18104
18105 /* Now that we're done scanning the Line Header Program, we can
18106 create the psymtab of each included file. */
18107 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18108 if (lh->file_names[file_index].included_p == 1)
18109 {
18110 const char *include_name =
18111 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18112 if (include_name != NULL)
18113 dwarf2_create_include_psymtab (include_name, pst, objfile);
18114 }
18115 }
18116 else
18117 {
18118 /* Make sure a symtab is created for every file, even files
18119 which contain only variables (i.e. no code with associated
18120 line numbers). */
18121 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18122 int i;
18123
18124 for (i = 0; i < lh->num_file_names; i++)
18125 {
18126 const char *dir = NULL;
18127 struct file_entry *fe;
18128
18129 fe = &lh->file_names[i];
18130 if (fe->dir_index && lh->include_dirs != NULL)
18131 dir = lh->include_dirs[fe->dir_index - 1];
18132 dwarf2_start_subfile (fe->name, dir);
18133
18134 if (current_subfile->symtab == NULL)
18135 {
18136 current_subfile->symtab
18137 = allocate_symtab (cust, current_subfile->name);
18138 }
18139 fe->symtab = current_subfile->symtab;
18140 }
18141 }
18142 }
18143
18144 /* Start a subfile for DWARF. FILENAME is the name of the file and
18145 DIRNAME the name of the source directory which contains FILENAME
18146 or NULL if not known.
18147 This routine tries to keep line numbers from identical absolute and
18148 relative file names in a common subfile.
18149
18150 Using the `list' example from the GDB testsuite, which resides in
18151 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18152 of /srcdir/list0.c yields the following debugging information for list0.c:
18153
18154 DW_AT_name: /srcdir/list0.c
18155 DW_AT_comp_dir: /compdir
18156 files.files[0].name: list0.h
18157 files.files[0].dir: /srcdir
18158 files.files[1].name: list0.c
18159 files.files[1].dir: /srcdir
18160
18161 The line number information for list0.c has to end up in a single
18162 subfile, so that `break /srcdir/list0.c:1' works as expected.
18163 start_subfile will ensure that this happens provided that we pass the
18164 concatenation of files.files[1].dir and files.files[1].name as the
18165 subfile's name. */
18166
18167 static void
18168 dwarf2_start_subfile (const char *filename, const char *dirname)
18169 {
18170 char *copy = NULL;
18171
18172 /* In order not to lose the line information directory,
18173 we concatenate it to the filename when it makes sense.
18174 Note that the Dwarf3 standard says (speaking of filenames in line
18175 information): ``The directory index is ignored for file names
18176 that represent full path names''. Thus ignoring dirname in the
18177 `else' branch below isn't an issue. */
18178
18179 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18180 {
18181 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18182 filename = copy;
18183 }
18184
18185 start_subfile (filename);
18186
18187 if (copy != NULL)
18188 xfree (copy);
18189 }
18190
18191 /* Start a symtab for DWARF.
18192 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18193
18194 static struct compunit_symtab *
18195 dwarf2_start_symtab (struct dwarf2_cu *cu,
18196 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18197 {
18198 struct compunit_symtab *cust
18199 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18200
18201 record_debugformat ("DWARF 2");
18202 record_producer (cu->producer);
18203
18204 /* We assume that we're processing GCC output. */
18205 processing_gcc_compilation = 2;
18206
18207 cu->processing_has_namespace_info = 0;
18208
18209 return cust;
18210 }
18211
18212 static void
18213 var_decode_location (struct attribute *attr, struct symbol *sym,
18214 struct dwarf2_cu *cu)
18215 {
18216 struct objfile *objfile = cu->objfile;
18217 struct comp_unit_head *cu_header = &cu->header;
18218
18219 /* NOTE drow/2003-01-30: There used to be a comment and some special
18220 code here to turn a symbol with DW_AT_external and a
18221 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18222 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18223 with some versions of binutils) where shared libraries could have
18224 relocations against symbols in their debug information - the
18225 minimal symbol would have the right address, but the debug info
18226 would not. It's no longer necessary, because we will explicitly
18227 apply relocations when we read in the debug information now. */
18228
18229 /* A DW_AT_location attribute with no contents indicates that a
18230 variable has been optimized away. */
18231 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18232 {
18233 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18234 return;
18235 }
18236
18237 /* Handle one degenerate form of location expression specially, to
18238 preserve GDB's previous behavior when section offsets are
18239 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18240 then mark this symbol as LOC_STATIC. */
18241
18242 if (attr_form_is_block (attr)
18243 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18244 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18245 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18246 && (DW_BLOCK (attr)->size
18247 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18248 {
18249 unsigned int dummy;
18250
18251 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18252 SYMBOL_VALUE_ADDRESS (sym) =
18253 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18254 else
18255 SYMBOL_VALUE_ADDRESS (sym) =
18256 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18257 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18258 fixup_symbol_section (sym, objfile);
18259 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18260 SYMBOL_SECTION (sym));
18261 return;
18262 }
18263
18264 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18265 expression evaluator, and use LOC_COMPUTED only when necessary
18266 (i.e. when the value of a register or memory location is
18267 referenced, or a thread-local block, etc.). Then again, it might
18268 not be worthwhile. I'm assuming that it isn't unless performance
18269 or memory numbers show me otherwise. */
18270
18271 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18272
18273 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18274 cu->has_loclist = 1;
18275 }
18276
18277 /* Given a pointer to a DWARF information entry, figure out if we need
18278 to make a symbol table entry for it, and if so, create a new entry
18279 and return a pointer to it.
18280 If TYPE is NULL, determine symbol type from the die, otherwise
18281 used the passed type.
18282 If SPACE is not NULL, use it to hold the new symbol. If it is
18283 NULL, allocate a new symbol on the objfile's obstack. */
18284
18285 static struct symbol *
18286 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18287 struct symbol *space)
18288 {
18289 struct objfile *objfile = cu->objfile;
18290 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18291 struct symbol *sym = NULL;
18292 const char *name;
18293 struct attribute *attr = NULL;
18294 struct attribute *attr2 = NULL;
18295 CORE_ADDR baseaddr;
18296 struct pending **list_to_add = NULL;
18297
18298 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18299
18300 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18301
18302 name = dwarf2_name (die, cu);
18303 if (name)
18304 {
18305 const char *linkagename;
18306 int suppress_add = 0;
18307
18308 if (space)
18309 sym = space;
18310 else
18311 sym = allocate_symbol (objfile);
18312 OBJSTAT (objfile, n_syms++);
18313
18314 /* Cache this symbol's name and the name's demangled form (if any). */
18315 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18316 linkagename = dwarf2_physname (name, die, cu);
18317 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18318
18319 /* Fortran does not have mangling standard and the mangling does differ
18320 between gfortran, iFort etc. */
18321 if (cu->language == language_fortran
18322 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18323 symbol_set_demangled_name (&(sym->ginfo),
18324 dwarf2_full_name (name, die, cu),
18325 NULL);
18326
18327 /* Default assumptions.
18328 Use the passed type or decode it from the die. */
18329 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18330 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18331 if (type != NULL)
18332 SYMBOL_TYPE (sym) = type;
18333 else
18334 SYMBOL_TYPE (sym) = die_type (die, cu);
18335 attr = dwarf2_attr (die,
18336 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18337 cu);
18338 if (attr)
18339 {
18340 SYMBOL_LINE (sym) = DW_UNSND (attr);
18341 }
18342
18343 attr = dwarf2_attr (die,
18344 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18345 cu);
18346 if (attr)
18347 {
18348 int file_index = DW_UNSND (attr);
18349
18350 if (cu->line_header == NULL
18351 || file_index > cu->line_header->num_file_names)
18352 complaint (&symfile_complaints,
18353 _("file index out of range"));
18354 else if (file_index > 0)
18355 {
18356 struct file_entry *fe;
18357
18358 fe = &cu->line_header->file_names[file_index - 1];
18359 symbol_set_symtab (sym, fe->symtab);
18360 }
18361 }
18362
18363 switch (die->tag)
18364 {
18365 case DW_TAG_label:
18366 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18367 if (attr)
18368 {
18369 CORE_ADDR addr;
18370
18371 addr = attr_value_as_address (attr);
18372 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18373 SYMBOL_VALUE_ADDRESS (sym) = addr;
18374 }
18375 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18376 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18377 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18378 add_symbol_to_list (sym, cu->list_in_scope);
18379 break;
18380 case DW_TAG_subprogram:
18381 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18382 finish_block. */
18383 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18384 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18385 if ((attr2 && (DW_UNSND (attr2) != 0))
18386 || cu->language == language_ada)
18387 {
18388 /* Subprograms marked external are stored as a global symbol.
18389 Ada subprograms, whether marked external or not, are always
18390 stored as a global symbol, because we want to be able to
18391 access them globally. For instance, we want to be able
18392 to break on a nested subprogram without having to
18393 specify the context. */
18394 list_to_add = &global_symbols;
18395 }
18396 else
18397 {
18398 list_to_add = cu->list_in_scope;
18399 }
18400 break;
18401 case DW_TAG_inlined_subroutine:
18402 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18403 finish_block. */
18404 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18405 SYMBOL_INLINED (sym) = 1;
18406 list_to_add = cu->list_in_scope;
18407 break;
18408 case DW_TAG_template_value_param:
18409 suppress_add = 1;
18410 /* Fall through. */
18411 case DW_TAG_constant:
18412 case DW_TAG_variable:
18413 case DW_TAG_member:
18414 /* Compilation with minimal debug info may result in
18415 variables with missing type entries. Change the
18416 misleading `void' type to something sensible. */
18417 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18418 SYMBOL_TYPE (sym)
18419 = objfile_type (objfile)->nodebug_data_symbol;
18420
18421 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18422 /* In the case of DW_TAG_member, we should only be called for
18423 static const members. */
18424 if (die->tag == DW_TAG_member)
18425 {
18426 /* dwarf2_add_field uses die_is_declaration,
18427 so we do the same. */
18428 gdb_assert (die_is_declaration (die, cu));
18429 gdb_assert (attr);
18430 }
18431 if (attr)
18432 {
18433 dwarf2_const_value (attr, sym, cu);
18434 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18435 if (!suppress_add)
18436 {
18437 if (attr2 && (DW_UNSND (attr2) != 0))
18438 list_to_add = &global_symbols;
18439 else
18440 list_to_add = cu->list_in_scope;
18441 }
18442 break;
18443 }
18444 attr = dwarf2_attr (die, DW_AT_location, cu);
18445 if (attr)
18446 {
18447 var_decode_location (attr, sym, cu);
18448 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18449
18450 /* Fortran explicitly imports any global symbols to the local
18451 scope by DW_TAG_common_block. */
18452 if (cu->language == language_fortran && die->parent
18453 && die->parent->tag == DW_TAG_common_block)
18454 attr2 = NULL;
18455
18456 if (SYMBOL_CLASS (sym) == LOC_STATIC
18457 && SYMBOL_VALUE_ADDRESS (sym) == 0
18458 && !dwarf2_per_objfile->has_section_at_zero)
18459 {
18460 /* When a static variable is eliminated by the linker,
18461 the corresponding debug information is not stripped
18462 out, but the variable address is set to null;
18463 do not add such variables into symbol table. */
18464 }
18465 else if (attr2 && (DW_UNSND (attr2) != 0))
18466 {
18467 /* Workaround gfortran PR debug/40040 - it uses
18468 DW_AT_location for variables in -fPIC libraries which may
18469 get overriden by other libraries/executable and get
18470 a different address. Resolve it by the minimal symbol
18471 which may come from inferior's executable using copy
18472 relocation. Make this workaround only for gfortran as for
18473 other compilers GDB cannot guess the minimal symbol
18474 Fortran mangling kind. */
18475 if (cu->language == language_fortran && die->parent
18476 && die->parent->tag == DW_TAG_module
18477 && cu->producer
18478 && startswith (cu->producer, "GNU Fortran "))
18479 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18480
18481 /* A variable with DW_AT_external is never static,
18482 but it may be block-scoped. */
18483 list_to_add = (cu->list_in_scope == &file_symbols
18484 ? &global_symbols : cu->list_in_scope);
18485 }
18486 else
18487 list_to_add = cu->list_in_scope;
18488 }
18489 else
18490 {
18491 /* We do not know the address of this symbol.
18492 If it is an external symbol and we have type information
18493 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18494 The address of the variable will then be determined from
18495 the minimal symbol table whenever the variable is
18496 referenced. */
18497 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18498
18499 /* Fortran explicitly imports any global symbols to the local
18500 scope by DW_TAG_common_block. */
18501 if (cu->language == language_fortran && die->parent
18502 && die->parent->tag == DW_TAG_common_block)
18503 {
18504 /* SYMBOL_CLASS doesn't matter here because
18505 read_common_block is going to reset it. */
18506 if (!suppress_add)
18507 list_to_add = cu->list_in_scope;
18508 }
18509 else if (attr2 && (DW_UNSND (attr2) != 0)
18510 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18511 {
18512 /* A variable with DW_AT_external is never static, but it
18513 may be block-scoped. */
18514 list_to_add = (cu->list_in_scope == &file_symbols
18515 ? &global_symbols : cu->list_in_scope);
18516
18517 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18518 }
18519 else if (!die_is_declaration (die, cu))
18520 {
18521 /* Use the default LOC_OPTIMIZED_OUT class. */
18522 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18523 if (!suppress_add)
18524 list_to_add = cu->list_in_scope;
18525 }
18526 }
18527 break;
18528 case DW_TAG_formal_parameter:
18529 /* If we are inside a function, mark this as an argument. If
18530 not, we might be looking at an argument to an inlined function
18531 when we do not have enough information to show inlined frames;
18532 pretend it's a local variable in that case so that the user can
18533 still see it. */
18534 if (context_stack_depth > 0
18535 && context_stack[context_stack_depth - 1].name != NULL)
18536 SYMBOL_IS_ARGUMENT (sym) = 1;
18537 attr = dwarf2_attr (die, DW_AT_location, cu);
18538 if (attr)
18539 {
18540 var_decode_location (attr, sym, cu);
18541 }
18542 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18543 if (attr)
18544 {
18545 dwarf2_const_value (attr, sym, cu);
18546 }
18547
18548 list_to_add = cu->list_in_scope;
18549 break;
18550 case DW_TAG_unspecified_parameters:
18551 /* From varargs functions; gdb doesn't seem to have any
18552 interest in this information, so just ignore it for now.
18553 (FIXME?) */
18554 break;
18555 case DW_TAG_template_type_param:
18556 suppress_add = 1;
18557 /* Fall through. */
18558 case DW_TAG_class_type:
18559 case DW_TAG_interface_type:
18560 case DW_TAG_structure_type:
18561 case DW_TAG_union_type:
18562 case DW_TAG_set_type:
18563 case DW_TAG_enumeration_type:
18564 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18565 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18566
18567 {
18568 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18569 really ever be static objects: otherwise, if you try
18570 to, say, break of a class's method and you're in a file
18571 which doesn't mention that class, it won't work unless
18572 the check for all static symbols in lookup_symbol_aux
18573 saves you. See the OtherFileClass tests in
18574 gdb.c++/namespace.exp. */
18575
18576 if (!suppress_add)
18577 {
18578 list_to_add = (cu->list_in_scope == &file_symbols
18579 && (cu->language == language_cplus
18580 || cu->language == language_java)
18581 ? &global_symbols : cu->list_in_scope);
18582
18583 /* The semantics of C++ state that "struct foo {
18584 ... }" also defines a typedef for "foo". A Java
18585 class declaration also defines a typedef for the
18586 class. */
18587 if (cu->language == language_cplus
18588 || cu->language == language_java
18589 || cu->language == language_ada
18590 || cu->language == language_d)
18591 {
18592 /* The symbol's name is already allocated along
18593 with this objfile, so we don't need to
18594 duplicate it for the type. */
18595 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18596 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18597 }
18598 }
18599 }
18600 break;
18601 case DW_TAG_typedef:
18602 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18603 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18604 list_to_add = cu->list_in_scope;
18605 break;
18606 case DW_TAG_base_type:
18607 case DW_TAG_subrange_type:
18608 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18609 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18610 list_to_add = cu->list_in_scope;
18611 break;
18612 case DW_TAG_enumerator:
18613 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18614 if (attr)
18615 {
18616 dwarf2_const_value (attr, sym, cu);
18617 }
18618 {
18619 /* NOTE: carlton/2003-11-10: See comment above in the
18620 DW_TAG_class_type, etc. block. */
18621
18622 list_to_add = (cu->list_in_scope == &file_symbols
18623 && (cu->language == language_cplus
18624 || cu->language == language_java)
18625 ? &global_symbols : cu->list_in_scope);
18626 }
18627 break;
18628 case DW_TAG_imported_declaration:
18629 case DW_TAG_namespace:
18630 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18631 list_to_add = &global_symbols;
18632 break;
18633 case DW_TAG_module:
18634 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18635 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18636 list_to_add = &global_symbols;
18637 break;
18638 case DW_TAG_common_block:
18639 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18640 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18641 add_symbol_to_list (sym, cu->list_in_scope);
18642 break;
18643 default:
18644 /* Not a tag we recognize. Hopefully we aren't processing
18645 trash data, but since we must specifically ignore things
18646 we don't recognize, there is nothing else we should do at
18647 this point. */
18648 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18649 dwarf_tag_name (die->tag));
18650 break;
18651 }
18652
18653 if (suppress_add)
18654 {
18655 sym->hash_next = objfile->template_symbols;
18656 objfile->template_symbols = sym;
18657 list_to_add = NULL;
18658 }
18659
18660 if (list_to_add != NULL)
18661 add_symbol_to_list (sym, list_to_add);
18662
18663 /* For the benefit of old versions of GCC, check for anonymous
18664 namespaces based on the demangled name. */
18665 if (!cu->processing_has_namespace_info
18666 && cu->language == language_cplus)
18667 cp_scan_for_anonymous_namespaces (sym, objfile);
18668 }
18669 return (sym);
18670 }
18671
18672 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18673
18674 static struct symbol *
18675 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18676 {
18677 return new_symbol_full (die, type, cu, NULL);
18678 }
18679
18680 /* Given an attr with a DW_FORM_dataN value in host byte order,
18681 zero-extend it as appropriate for the symbol's type. The DWARF
18682 standard (v4) is not entirely clear about the meaning of using
18683 DW_FORM_dataN for a constant with a signed type, where the type is
18684 wider than the data. The conclusion of a discussion on the DWARF
18685 list was that this is unspecified. We choose to always zero-extend
18686 because that is the interpretation long in use by GCC. */
18687
18688 static gdb_byte *
18689 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18690 struct dwarf2_cu *cu, LONGEST *value, int bits)
18691 {
18692 struct objfile *objfile = cu->objfile;
18693 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18694 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18695 LONGEST l = DW_UNSND (attr);
18696
18697 if (bits < sizeof (*value) * 8)
18698 {
18699 l &= ((LONGEST) 1 << bits) - 1;
18700 *value = l;
18701 }
18702 else if (bits == sizeof (*value) * 8)
18703 *value = l;
18704 else
18705 {
18706 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18707 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18708 return bytes;
18709 }
18710
18711 return NULL;
18712 }
18713
18714 /* Read a constant value from an attribute. Either set *VALUE, or if
18715 the value does not fit in *VALUE, set *BYTES - either already
18716 allocated on the objfile obstack, or newly allocated on OBSTACK,
18717 or, set *BATON, if we translated the constant to a location
18718 expression. */
18719
18720 static void
18721 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18722 const char *name, struct obstack *obstack,
18723 struct dwarf2_cu *cu,
18724 LONGEST *value, const gdb_byte **bytes,
18725 struct dwarf2_locexpr_baton **baton)
18726 {
18727 struct objfile *objfile = cu->objfile;
18728 struct comp_unit_head *cu_header = &cu->header;
18729 struct dwarf_block *blk;
18730 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18731 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18732
18733 *value = 0;
18734 *bytes = NULL;
18735 *baton = NULL;
18736
18737 switch (attr->form)
18738 {
18739 case DW_FORM_addr:
18740 case DW_FORM_GNU_addr_index:
18741 {
18742 gdb_byte *data;
18743
18744 if (TYPE_LENGTH (type) != cu_header->addr_size)
18745 dwarf2_const_value_length_mismatch_complaint (name,
18746 cu_header->addr_size,
18747 TYPE_LENGTH (type));
18748 /* Symbols of this form are reasonably rare, so we just
18749 piggyback on the existing location code rather than writing
18750 a new implementation of symbol_computed_ops. */
18751 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18752 (*baton)->per_cu = cu->per_cu;
18753 gdb_assert ((*baton)->per_cu);
18754
18755 (*baton)->size = 2 + cu_header->addr_size;
18756 data = obstack_alloc (obstack, (*baton)->size);
18757 (*baton)->data = data;
18758
18759 data[0] = DW_OP_addr;
18760 store_unsigned_integer (&data[1], cu_header->addr_size,
18761 byte_order, DW_ADDR (attr));
18762 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18763 }
18764 break;
18765 case DW_FORM_string:
18766 case DW_FORM_strp:
18767 case DW_FORM_GNU_str_index:
18768 case DW_FORM_GNU_strp_alt:
18769 /* DW_STRING is already allocated on the objfile obstack, point
18770 directly to it. */
18771 *bytes = (const gdb_byte *) DW_STRING (attr);
18772 break;
18773 case DW_FORM_block1:
18774 case DW_FORM_block2:
18775 case DW_FORM_block4:
18776 case DW_FORM_block:
18777 case DW_FORM_exprloc:
18778 blk = DW_BLOCK (attr);
18779 if (TYPE_LENGTH (type) != blk->size)
18780 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18781 TYPE_LENGTH (type));
18782 *bytes = blk->data;
18783 break;
18784
18785 /* The DW_AT_const_value attributes are supposed to carry the
18786 symbol's value "represented as it would be on the target
18787 architecture." By the time we get here, it's already been
18788 converted to host endianness, so we just need to sign- or
18789 zero-extend it as appropriate. */
18790 case DW_FORM_data1:
18791 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18792 break;
18793 case DW_FORM_data2:
18794 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18795 break;
18796 case DW_FORM_data4:
18797 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18798 break;
18799 case DW_FORM_data8:
18800 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18801 break;
18802
18803 case DW_FORM_sdata:
18804 *value = DW_SND (attr);
18805 break;
18806
18807 case DW_FORM_udata:
18808 *value = DW_UNSND (attr);
18809 break;
18810
18811 default:
18812 complaint (&symfile_complaints,
18813 _("unsupported const value attribute form: '%s'"),
18814 dwarf_form_name (attr->form));
18815 *value = 0;
18816 break;
18817 }
18818 }
18819
18820
18821 /* Copy constant value from an attribute to a symbol. */
18822
18823 static void
18824 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18825 struct dwarf2_cu *cu)
18826 {
18827 struct objfile *objfile = cu->objfile;
18828 struct comp_unit_head *cu_header = &cu->header;
18829 LONGEST value;
18830 const gdb_byte *bytes;
18831 struct dwarf2_locexpr_baton *baton;
18832
18833 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18834 SYMBOL_PRINT_NAME (sym),
18835 &objfile->objfile_obstack, cu,
18836 &value, &bytes, &baton);
18837
18838 if (baton != NULL)
18839 {
18840 SYMBOL_LOCATION_BATON (sym) = baton;
18841 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18842 }
18843 else if (bytes != NULL)
18844 {
18845 SYMBOL_VALUE_BYTES (sym) = bytes;
18846 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18847 }
18848 else
18849 {
18850 SYMBOL_VALUE (sym) = value;
18851 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18852 }
18853 }
18854
18855 /* Return the type of the die in question using its DW_AT_type attribute. */
18856
18857 static struct type *
18858 die_type (struct die_info *die, struct dwarf2_cu *cu)
18859 {
18860 struct attribute *type_attr;
18861
18862 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18863 if (!type_attr)
18864 {
18865 /* A missing DW_AT_type represents a void type. */
18866 return objfile_type (cu->objfile)->builtin_void;
18867 }
18868
18869 return lookup_die_type (die, type_attr, cu);
18870 }
18871
18872 /* True iff CU's producer generates GNAT Ada auxiliary information
18873 that allows to find parallel types through that information instead
18874 of having to do expensive parallel lookups by type name. */
18875
18876 static int
18877 need_gnat_info (struct dwarf2_cu *cu)
18878 {
18879 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18880 of GNAT produces this auxiliary information, without any indication
18881 that it is produced. Part of enhancing the FSF version of GNAT
18882 to produce that information will be to put in place an indicator
18883 that we can use in order to determine whether the descriptive type
18884 info is available or not. One suggestion that has been made is
18885 to use a new attribute, attached to the CU die. For now, assume
18886 that the descriptive type info is not available. */
18887 return 0;
18888 }
18889
18890 /* Return the auxiliary type of the die in question using its
18891 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18892 attribute is not present. */
18893
18894 static struct type *
18895 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18896 {
18897 struct attribute *type_attr;
18898
18899 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18900 if (!type_attr)
18901 return NULL;
18902
18903 return lookup_die_type (die, type_attr, cu);
18904 }
18905
18906 /* If DIE has a descriptive_type attribute, then set the TYPE's
18907 descriptive type accordingly. */
18908
18909 static void
18910 set_descriptive_type (struct type *type, struct die_info *die,
18911 struct dwarf2_cu *cu)
18912 {
18913 struct type *descriptive_type = die_descriptive_type (die, cu);
18914
18915 if (descriptive_type)
18916 {
18917 ALLOCATE_GNAT_AUX_TYPE (type);
18918 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18919 }
18920 }
18921
18922 /* Return the containing type of the die in question using its
18923 DW_AT_containing_type attribute. */
18924
18925 static struct type *
18926 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18927 {
18928 struct attribute *type_attr;
18929
18930 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18931 if (!type_attr)
18932 error (_("Dwarf Error: Problem turning containing type into gdb type "
18933 "[in module %s]"), objfile_name (cu->objfile));
18934
18935 return lookup_die_type (die, type_attr, cu);
18936 }
18937
18938 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18939
18940 static struct type *
18941 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18942 {
18943 struct objfile *objfile = dwarf2_per_objfile->objfile;
18944 char *message, *saved;
18945
18946 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18947 objfile_name (objfile),
18948 cu->header.offset.sect_off,
18949 die->offset.sect_off);
18950 saved = obstack_copy0 (&objfile->objfile_obstack,
18951 message, strlen (message));
18952 xfree (message);
18953
18954 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18955 }
18956
18957 /* Look up the type of DIE in CU using its type attribute ATTR.
18958 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18959 DW_AT_containing_type.
18960 If there is no type substitute an error marker. */
18961
18962 static struct type *
18963 lookup_die_type (struct die_info *die, const struct attribute *attr,
18964 struct dwarf2_cu *cu)
18965 {
18966 struct objfile *objfile = cu->objfile;
18967 struct type *this_type;
18968
18969 gdb_assert (attr->name == DW_AT_type
18970 || attr->name == DW_AT_GNAT_descriptive_type
18971 || attr->name == DW_AT_containing_type);
18972
18973 /* First see if we have it cached. */
18974
18975 if (attr->form == DW_FORM_GNU_ref_alt)
18976 {
18977 struct dwarf2_per_cu_data *per_cu;
18978 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18979
18980 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18981 this_type = get_die_type_at_offset (offset, per_cu);
18982 }
18983 else if (attr_form_is_ref (attr))
18984 {
18985 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18986
18987 this_type = get_die_type_at_offset (offset, cu->per_cu);
18988 }
18989 else if (attr->form == DW_FORM_ref_sig8)
18990 {
18991 ULONGEST signature = DW_SIGNATURE (attr);
18992
18993 return get_signatured_type (die, signature, cu);
18994 }
18995 else
18996 {
18997 complaint (&symfile_complaints,
18998 _("Dwarf Error: Bad type attribute %s in DIE"
18999 " at 0x%x [in module %s]"),
19000 dwarf_attr_name (attr->name), die->offset.sect_off,
19001 objfile_name (objfile));
19002 return build_error_marker_type (cu, die);
19003 }
19004
19005 /* If not cached we need to read it in. */
19006
19007 if (this_type == NULL)
19008 {
19009 struct die_info *type_die = NULL;
19010 struct dwarf2_cu *type_cu = cu;
19011
19012 if (attr_form_is_ref (attr))
19013 type_die = follow_die_ref (die, attr, &type_cu);
19014 if (type_die == NULL)
19015 return build_error_marker_type (cu, die);
19016 /* If we find the type now, it's probably because the type came
19017 from an inter-CU reference and the type's CU got expanded before
19018 ours. */
19019 this_type = read_type_die (type_die, type_cu);
19020 }
19021
19022 /* If we still don't have a type use an error marker. */
19023
19024 if (this_type == NULL)
19025 return build_error_marker_type (cu, die);
19026
19027 return this_type;
19028 }
19029
19030 /* Return the type in DIE, CU.
19031 Returns NULL for invalid types.
19032
19033 This first does a lookup in die_type_hash,
19034 and only reads the die in if necessary.
19035
19036 NOTE: This can be called when reading in partial or full symbols. */
19037
19038 static struct type *
19039 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19040 {
19041 struct type *this_type;
19042
19043 this_type = get_die_type (die, cu);
19044 if (this_type)
19045 return this_type;
19046
19047 return read_type_die_1 (die, cu);
19048 }
19049
19050 /* Read the type in DIE, CU.
19051 Returns NULL for invalid types. */
19052
19053 static struct type *
19054 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19055 {
19056 struct type *this_type = NULL;
19057
19058 switch (die->tag)
19059 {
19060 case DW_TAG_class_type:
19061 case DW_TAG_interface_type:
19062 case DW_TAG_structure_type:
19063 case DW_TAG_union_type:
19064 this_type = read_structure_type (die, cu);
19065 break;
19066 case DW_TAG_enumeration_type:
19067 this_type = read_enumeration_type (die, cu);
19068 break;
19069 case DW_TAG_subprogram:
19070 case DW_TAG_subroutine_type:
19071 case DW_TAG_inlined_subroutine:
19072 this_type = read_subroutine_type (die, cu);
19073 break;
19074 case DW_TAG_array_type:
19075 this_type = read_array_type (die, cu);
19076 break;
19077 case DW_TAG_set_type:
19078 this_type = read_set_type (die, cu);
19079 break;
19080 case DW_TAG_pointer_type:
19081 this_type = read_tag_pointer_type (die, cu);
19082 break;
19083 case DW_TAG_ptr_to_member_type:
19084 this_type = read_tag_ptr_to_member_type (die, cu);
19085 break;
19086 case DW_TAG_reference_type:
19087 this_type = read_tag_reference_type (die, cu);
19088 break;
19089 case DW_TAG_const_type:
19090 this_type = read_tag_const_type (die, cu);
19091 break;
19092 case DW_TAG_volatile_type:
19093 this_type = read_tag_volatile_type (die, cu);
19094 break;
19095 case DW_TAG_restrict_type:
19096 this_type = read_tag_restrict_type (die, cu);
19097 break;
19098 case DW_TAG_string_type:
19099 this_type = read_tag_string_type (die, cu);
19100 break;
19101 case DW_TAG_typedef:
19102 this_type = read_typedef (die, cu);
19103 break;
19104 case DW_TAG_subrange_type:
19105 this_type = read_subrange_type (die, cu);
19106 break;
19107 case DW_TAG_base_type:
19108 this_type = read_base_type (die, cu);
19109 break;
19110 case DW_TAG_unspecified_type:
19111 this_type = read_unspecified_type (die, cu);
19112 break;
19113 case DW_TAG_namespace:
19114 this_type = read_namespace_type (die, cu);
19115 break;
19116 case DW_TAG_module:
19117 this_type = read_module_type (die, cu);
19118 break;
19119 case DW_TAG_atomic_type:
19120 this_type = read_tag_atomic_type (die, cu);
19121 break;
19122 default:
19123 complaint (&symfile_complaints,
19124 _("unexpected tag in read_type_die: '%s'"),
19125 dwarf_tag_name (die->tag));
19126 break;
19127 }
19128
19129 return this_type;
19130 }
19131
19132 /* See if we can figure out if the class lives in a namespace. We do
19133 this by looking for a member function; its demangled name will
19134 contain namespace info, if there is any.
19135 Return the computed name or NULL.
19136 Space for the result is allocated on the objfile's obstack.
19137 This is the full-die version of guess_partial_die_structure_name.
19138 In this case we know DIE has no useful parent. */
19139
19140 static char *
19141 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19142 {
19143 struct die_info *spec_die;
19144 struct dwarf2_cu *spec_cu;
19145 struct die_info *child;
19146
19147 spec_cu = cu;
19148 spec_die = die_specification (die, &spec_cu);
19149 if (spec_die != NULL)
19150 {
19151 die = spec_die;
19152 cu = spec_cu;
19153 }
19154
19155 for (child = die->child;
19156 child != NULL;
19157 child = child->sibling)
19158 {
19159 if (child->tag == DW_TAG_subprogram)
19160 {
19161 const char *linkage_name;
19162
19163 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19164 if (linkage_name == NULL)
19165 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19166 cu);
19167 if (linkage_name != NULL)
19168 {
19169 char *actual_name
19170 = language_class_name_from_physname (cu->language_defn,
19171 linkage_name);
19172 char *name = NULL;
19173
19174 if (actual_name != NULL)
19175 {
19176 const char *die_name = dwarf2_name (die, cu);
19177
19178 if (die_name != NULL
19179 && strcmp (die_name, actual_name) != 0)
19180 {
19181 /* Strip off the class name from the full name.
19182 We want the prefix. */
19183 int die_name_len = strlen (die_name);
19184 int actual_name_len = strlen (actual_name);
19185
19186 /* Test for '::' as a sanity check. */
19187 if (actual_name_len > die_name_len + 2
19188 && actual_name[actual_name_len
19189 - die_name_len - 1] == ':')
19190 name =
19191 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19192 actual_name,
19193 actual_name_len - die_name_len - 2);
19194 }
19195 }
19196 xfree (actual_name);
19197 return name;
19198 }
19199 }
19200 }
19201
19202 return NULL;
19203 }
19204
19205 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19206 prefix part in such case. See
19207 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19208
19209 static char *
19210 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19211 {
19212 struct attribute *attr;
19213 char *base;
19214
19215 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19216 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19217 return NULL;
19218
19219 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19220 return NULL;
19221
19222 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19223 if (attr == NULL)
19224 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19225 if (attr == NULL || DW_STRING (attr) == NULL)
19226 return NULL;
19227
19228 /* dwarf2_name had to be already called. */
19229 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19230
19231 /* Strip the base name, keep any leading namespaces/classes. */
19232 base = strrchr (DW_STRING (attr), ':');
19233 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19234 return "";
19235
19236 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19237 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19238 }
19239
19240 /* Return the name of the namespace/class that DIE is defined within,
19241 or "" if we can't tell. The caller should not xfree the result.
19242
19243 For example, if we're within the method foo() in the following
19244 code:
19245
19246 namespace N {
19247 class C {
19248 void foo () {
19249 }
19250 };
19251 }
19252
19253 then determine_prefix on foo's die will return "N::C". */
19254
19255 static const char *
19256 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19257 {
19258 struct die_info *parent, *spec_die;
19259 struct dwarf2_cu *spec_cu;
19260 struct type *parent_type;
19261 char *retval;
19262
19263 if (cu->language != language_cplus && cu->language != language_java
19264 && cu->language != language_fortran && cu->language != language_d)
19265 return "";
19266
19267 retval = anonymous_struct_prefix (die, cu);
19268 if (retval)
19269 return retval;
19270
19271 /* We have to be careful in the presence of DW_AT_specification.
19272 For example, with GCC 3.4, given the code
19273
19274 namespace N {
19275 void foo() {
19276 // Definition of N::foo.
19277 }
19278 }
19279
19280 then we'll have a tree of DIEs like this:
19281
19282 1: DW_TAG_compile_unit
19283 2: DW_TAG_namespace // N
19284 3: DW_TAG_subprogram // declaration of N::foo
19285 4: DW_TAG_subprogram // definition of N::foo
19286 DW_AT_specification // refers to die #3
19287
19288 Thus, when processing die #4, we have to pretend that we're in
19289 the context of its DW_AT_specification, namely the contex of die
19290 #3. */
19291 spec_cu = cu;
19292 spec_die = die_specification (die, &spec_cu);
19293 if (spec_die == NULL)
19294 parent = die->parent;
19295 else
19296 {
19297 parent = spec_die->parent;
19298 cu = spec_cu;
19299 }
19300
19301 if (parent == NULL)
19302 return "";
19303 else if (parent->building_fullname)
19304 {
19305 const char *name;
19306 const char *parent_name;
19307
19308 /* It has been seen on RealView 2.2 built binaries,
19309 DW_TAG_template_type_param types actually _defined_ as
19310 children of the parent class:
19311
19312 enum E {};
19313 template class <class Enum> Class{};
19314 Class<enum E> class_e;
19315
19316 1: DW_TAG_class_type (Class)
19317 2: DW_TAG_enumeration_type (E)
19318 3: DW_TAG_enumerator (enum1:0)
19319 3: DW_TAG_enumerator (enum2:1)
19320 ...
19321 2: DW_TAG_template_type_param
19322 DW_AT_type DW_FORM_ref_udata (E)
19323
19324 Besides being broken debug info, it can put GDB into an
19325 infinite loop. Consider:
19326
19327 When we're building the full name for Class<E>, we'll start
19328 at Class, and go look over its template type parameters,
19329 finding E. We'll then try to build the full name of E, and
19330 reach here. We're now trying to build the full name of E,
19331 and look over the parent DIE for containing scope. In the
19332 broken case, if we followed the parent DIE of E, we'd again
19333 find Class, and once again go look at its template type
19334 arguments, etc., etc. Simply don't consider such parent die
19335 as source-level parent of this die (it can't be, the language
19336 doesn't allow it), and break the loop here. */
19337 name = dwarf2_name (die, cu);
19338 parent_name = dwarf2_name (parent, cu);
19339 complaint (&symfile_complaints,
19340 _("template param type '%s' defined within parent '%s'"),
19341 name ? name : "<unknown>",
19342 parent_name ? parent_name : "<unknown>");
19343 return "";
19344 }
19345 else
19346 switch (parent->tag)
19347 {
19348 case DW_TAG_namespace:
19349 parent_type = read_type_die (parent, cu);
19350 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19351 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19352 Work around this problem here. */
19353 if (cu->language == language_cplus
19354 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19355 return "";
19356 /* We give a name to even anonymous namespaces. */
19357 return TYPE_TAG_NAME (parent_type);
19358 case DW_TAG_class_type:
19359 case DW_TAG_interface_type:
19360 case DW_TAG_structure_type:
19361 case DW_TAG_union_type:
19362 case DW_TAG_module:
19363 parent_type = read_type_die (parent, cu);
19364 if (TYPE_TAG_NAME (parent_type) != NULL)
19365 return TYPE_TAG_NAME (parent_type);
19366 else
19367 /* An anonymous structure is only allowed non-static data
19368 members; no typedefs, no member functions, et cetera.
19369 So it does not need a prefix. */
19370 return "";
19371 case DW_TAG_compile_unit:
19372 case DW_TAG_partial_unit:
19373 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19374 if (cu->language == language_cplus
19375 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19376 && die->child != NULL
19377 && (die->tag == DW_TAG_class_type
19378 || die->tag == DW_TAG_structure_type
19379 || die->tag == DW_TAG_union_type))
19380 {
19381 char *name = guess_full_die_structure_name (die, cu);
19382 if (name != NULL)
19383 return name;
19384 }
19385 return "";
19386 case DW_TAG_enumeration_type:
19387 parent_type = read_type_die (parent, cu);
19388 if (TYPE_DECLARED_CLASS (parent_type))
19389 {
19390 if (TYPE_TAG_NAME (parent_type) != NULL)
19391 return TYPE_TAG_NAME (parent_type);
19392 return "";
19393 }
19394 /* Fall through. */
19395 default:
19396 return determine_prefix (parent, cu);
19397 }
19398 }
19399
19400 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19401 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19402 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19403 an obconcat, otherwise allocate storage for the result. The CU argument is
19404 used to determine the language and hence, the appropriate separator. */
19405
19406 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19407
19408 static char *
19409 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19410 int physname, struct dwarf2_cu *cu)
19411 {
19412 const char *lead = "";
19413 const char *sep;
19414
19415 if (suffix == NULL || suffix[0] == '\0'
19416 || prefix == NULL || prefix[0] == '\0')
19417 sep = "";
19418 else if (cu->language == language_java)
19419 sep = ".";
19420 else if (cu->language == language_d)
19421 {
19422 /* For D, the 'main' function could be defined in any module, but it
19423 should never be prefixed. */
19424 if (strcmp (suffix, "D main") == 0)
19425 {
19426 prefix = "";
19427 sep = "";
19428 }
19429 else
19430 sep = ".";
19431 }
19432 else if (cu->language == language_fortran && physname)
19433 {
19434 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19435 DW_AT_MIPS_linkage_name is preferred and used instead. */
19436
19437 lead = "__";
19438 sep = "_MOD_";
19439 }
19440 else
19441 sep = "::";
19442
19443 if (prefix == NULL)
19444 prefix = "";
19445 if (suffix == NULL)
19446 suffix = "";
19447
19448 if (obs == NULL)
19449 {
19450 char *retval
19451 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19452
19453 strcpy (retval, lead);
19454 strcat (retval, prefix);
19455 strcat (retval, sep);
19456 strcat (retval, suffix);
19457 return retval;
19458 }
19459 else
19460 {
19461 /* We have an obstack. */
19462 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19463 }
19464 }
19465
19466 /* Return sibling of die, NULL if no sibling. */
19467
19468 static struct die_info *
19469 sibling_die (struct die_info *die)
19470 {
19471 return die->sibling;
19472 }
19473
19474 /* Get name of a die, return NULL if not found. */
19475
19476 static const char *
19477 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19478 struct obstack *obstack)
19479 {
19480 if (name && cu->language == language_cplus)
19481 {
19482 char *canon_name = cp_canonicalize_string (name);
19483
19484 if (canon_name != NULL)
19485 {
19486 if (strcmp (canon_name, name) != 0)
19487 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19488 xfree (canon_name);
19489 }
19490 }
19491
19492 return name;
19493 }
19494
19495 /* Get name of a die, return NULL if not found.
19496 Anonymous namespaces are converted to their magic string. */
19497
19498 static const char *
19499 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19500 {
19501 struct attribute *attr;
19502
19503 attr = dwarf2_attr (die, DW_AT_name, cu);
19504 if ((!attr || !DW_STRING (attr))
19505 && die->tag != DW_TAG_namespace
19506 && die->tag != DW_TAG_class_type
19507 && die->tag != DW_TAG_interface_type
19508 && die->tag != DW_TAG_structure_type
19509 && die->tag != DW_TAG_union_type)
19510 return NULL;
19511
19512 switch (die->tag)
19513 {
19514 case DW_TAG_compile_unit:
19515 case DW_TAG_partial_unit:
19516 /* Compilation units have a DW_AT_name that is a filename, not
19517 a source language identifier. */
19518 case DW_TAG_enumeration_type:
19519 case DW_TAG_enumerator:
19520 /* These tags always have simple identifiers already; no need
19521 to canonicalize them. */
19522 return DW_STRING (attr);
19523
19524 case DW_TAG_namespace:
19525 if (attr != NULL && DW_STRING (attr) != NULL)
19526 return DW_STRING (attr);
19527 return CP_ANONYMOUS_NAMESPACE_STR;
19528
19529 case DW_TAG_subprogram:
19530 /* Java constructors will all be named "<init>", so return
19531 the class name when we see this special case. */
19532 if (cu->language == language_java
19533 && DW_STRING (attr) != NULL
19534 && strcmp (DW_STRING (attr), "<init>") == 0)
19535 {
19536 struct dwarf2_cu *spec_cu = cu;
19537 struct die_info *spec_die;
19538
19539 /* GCJ will output '<init>' for Java constructor names.
19540 For this special case, return the name of the parent class. */
19541
19542 /* GCJ may output subprogram DIEs with AT_specification set.
19543 If so, use the name of the specified DIE. */
19544 spec_die = die_specification (die, &spec_cu);
19545 if (spec_die != NULL)
19546 return dwarf2_name (spec_die, spec_cu);
19547
19548 do
19549 {
19550 die = die->parent;
19551 if (die->tag == DW_TAG_class_type)
19552 return dwarf2_name (die, cu);
19553 }
19554 while (die->tag != DW_TAG_compile_unit
19555 && die->tag != DW_TAG_partial_unit);
19556 }
19557 break;
19558
19559 case DW_TAG_class_type:
19560 case DW_TAG_interface_type:
19561 case DW_TAG_structure_type:
19562 case DW_TAG_union_type:
19563 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19564 structures or unions. These were of the form "._%d" in GCC 4.1,
19565 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19566 and GCC 4.4. We work around this problem by ignoring these. */
19567 if (attr && DW_STRING (attr)
19568 && (startswith (DW_STRING (attr), "._")
19569 || startswith (DW_STRING (attr), "<anonymous")))
19570 return NULL;
19571
19572 /* GCC might emit a nameless typedef that has a linkage name. See
19573 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19574 if (!attr || DW_STRING (attr) == NULL)
19575 {
19576 char *demangled = NULL;
19577
19578 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19579 if (attr == NULL)
19580 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19581
19582 if (attr == NULL || DW_STRING (attr) == NULL)
19583 return NULL;
19584
19585 /* Avoid demangling DW_STRING (attr) the second time on a second
19586 call for the same DIE. */
19587 if (!DW_STRING_IS_CANONICAL (attr))
19588 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19589
19590 if (demangled)
19591 {
19592 char *base;
19593
19594 /* FIXME: we already did this for the partial symbol... */
19595 DW_STRING (attr)
19596 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19597 demangled, strlen (demangled));
19598 DW_STRING_IS_CANONICAL (attr) = 1;
19599 xfree (demangled);
19600
19601 /* Strip any leading namespaces/classes, keep only the base name.
19602 DW_AT_name for named DIEs does not contain the prefixes. */
19603 base = strrchr (DW_STRING (attr), ':');
19604 if (base && base > DW_STRING (attr) && base[-1] == ':')
19605 return &base[1];
19606 else
19607 return DW_STRING (attr);
19608 }
19609 }
19610 break;
19611
19612 default:
19613 break;
19614 }
19615
19616 if (!DW_STRING_IS_CANONICAL (attr))
19617 {
19618 DW_STRING (attr)
19619 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19620 &cu->objfile->per_bfd->storage_obstack);
19621 DW_STRING_IS_CANONICAL (attr) = 1;
19622 }
19623 return DW_STRING (attr);
19624 }
19625
19626 /* Return the die that this die in an extension of, or NULL if there
19627 is none. *EXT_CU is the CU containing DIE on input, and the CU
19628 containing the return value on output. */
19629
19630 static struct die_info *
19631 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19632 {
19633 struct attribute *attr;
19634
19635 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19636 if (attr == NULL)
19637 return NULL;
19638
19639 return follow_die_ref (die, attr, ext_cu);
19640 }
19641
19642 /* Convert a DIE tag into its string name. */
19643
19644 static const char *
19645 dwarf_tag_name (unsigned tag)
19646 {
19647 const char *name = get_DW_TAG_name (tag);
19648
19649 if (name == NULL)
19650 return "DW_TAG_<unknown>";
19651
19652 return name;
19653 }
19654
19655 /* Convert a DWARF attribute code into its string name. */
19656
19657 static const char *
19658 dwarf_attr_name (unsigned attr)
19659 {
19660 const char *name;
19661
19662 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19663 if (attr == DW_AT_MIPS_fde)
19664 return "DW_AT_MIPS_fde";
19665 #else
19666 if (attr == DW_AT_HP_block_index)
19667 return "DW_AT_HP_block_index";
19668 #endif
19669
19670 name = get_DW_AT_name (attr);
19671
19672 if (name == NULL)
19673 return "DW_AT_<unknown>";
19674
19675 return name;
19676 }
19677
19678 /* Convert a DWARF value form code into its string name. */
19679
19680 static const char *
19681 dwarf_form_name (unsigned form)
19682 {
19683 const char *name = get_DW_FORM_name (form);
19684
19685 if (name == NULL)
19686 return "DW_FORM_<unknown>";
19687
19688 return name;
19689 }
19690
19691 static char *
19692 dwarf_bool_name (unsigned mybool)
19693 {
19694 if (mybool)
19695 return "TRUE";
19696 else
19697 return "FALSE";
19698 }
19699
19700 /* Convert a DWARF type code into its string name. */
19701
19702 static const char *
19703 dwarf_type_encoding_name (unsigned enc)
19704 {
19705 const char *name = get_DW_ATE_name (enc);
19706
19707 if (name == NULL)
19708 return "DW_ATE_<unknown>";
19709
19710 return name;
19711 }
19712
19713 static void
19714 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19715 {
19716 unsigned int i;
19717
19718 print_spaces (indent, f);
19719 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19720 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19721
19722 if (die->parent != NULL)
19723 {
19724 print_spaces (indent, f);
19725 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19726 die->parent->offset.sect_off);
19727 }
19728
19729 print_spaces (indent, f);
19730 fprintf_unfiltered (f, " has children: %s\n",
19731 dwarf_bool_name (die->child != NULL));
19732
19733 print_spaces (indent, f);
19734 fprintf_unfiltered (f, " attributes:\n");
19735
19736 for (i = 0; i < die->num_attrs; ++i)
19737 {
19738 print_spaces (indent, f);
19739 fprintf_unfiltered (f, " %s (%s) ",
19740 dwarf_attr_name (die->attrs[i].name),
19741 dwarf_form_name (die->attrs[i].form));
19742
19743 switch (die->attrs[i].form)
19744 {
19745 case DW_FORM_addr:
19746 case DW_FORM_GNU_addr_index:
19747 fprintf_unfiltered (f, "address: ");
19748 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19749 break;
19750 case DW_FORM_block2:
19751 case DW_FORM_block4:
19752 case DW_FORM_block:
19753 case DW_FORM_block1:
19754 fprintf_unfiltered (f, "block: size %s",
19755 pulongest (DW_BLOCK (&die->attrs[i])->size));
19756 break;
19757 case DW_FORM_exprloc:
19758 fprintf_unfiltered (f, "expression: size %s",
19759 pulongest (DW_BLOCK (&die->attrs[i])->size));
19760 break;
19761 case DW_FORM_ref_addr:
19762 fprintf_unfiltered (f, "ref address: ");
19763 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19764 break;
19765 case DW_FORM_GNU_ref_alt:
19766 fprintf_unfiltered (f, "alt ref address: ");
19767 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19768 break;
19769 case DW_FORM_ref1:
19770 case DW_FORM_ref2:
19771 case DW_FORM_ref4:
19772 case DW_FORM_ref8:
19773 case DW_FORM_ref_udata:
19774 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19775 (long) (DW_UNSND (&die->attrs[i])));
19776 break;
19777 case DW_FORM_data1:
19778 case DW_FORM_data2:
19779 case DW_FORM_data4:
19780 case DW_FORM_data8:
19781 case DW_FORM_udata:
19782 case DW_FORM_sdata:
19783 fprintf_unfiltered (f, "constant: %s",
19784 pulongest (DW_UNSND (&die->attrs[i])));
19785 break;
19786 case DW_FORM_sec_offset:
19787 fprintf_unfiltered (f, "section offset: %s",
19788 pulongest (DW_UNSND (&die->attrs[i])));
19789 break;
19790 case DW_FORM_ref_sig8:
19791 fprintf_unfiltered (f, "signature: %s",
19792 hex_string (DW_SIGNATURE (&die->attrs[i])));
19793 break;
19794 case DW_FORM_string:
19795 case DW_FORM_strp:
19796 case DW_FORM_GNU_str_index:
19797 case DW_FORM_GNU_strp_alt:
19798 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19799 DW_STRING (&die->attrs[i])
19800 ? DW_STRING (&die->attrs[i]) : "",
19801 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19802 break;
19803 case DW_FORM_flag:
19804 if (DW_UNSND (&die->attrs[i]))
19805 fprintf_unfiltered (f, "flag: TRUE");
19806 else
19807 fprintf_unfiltered (f, "flag: FALSE");
19808 break;
19809 case DW_FORM_flag_present:
19810 fprintf_unfiltered (f, "flag: TRUE");
19811 break;
19812 case DW_FORM_indirect:
19813 /* The reader will have reduced the indirect form to
19814 the "base form" so this form should not occur. */
19815 fprintf_unfiltered (f,
19816 "unexpected attribute form: DW_FORM_indirect");
19817 break;
19818 default:
19819 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19820 die->attrs[i].form);
19821 break;
19822 }
19823 fprintf_unfiltered (f, "\n");
19824 }
19825 }
19826
19827 static void
19828 dump_die_for_error (struct die_info *die)
19829 {
19830 dump_die_shallow (gdb_stderr, 0, die);
19831 }
19832
19833 static void
19834 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19835 {
19836 int indent = level * 4;
19837
19838 gdb_assert (die != NULL);
19839
19840 if (level >= max_level)
19841 return;
19842
19843 dump_die_shallow (f, indent, die);
19844
19845 if (die->child != NULL)
19846 {
19847 print_spaces (indent, f);
19848 fprintf_unfiltered (f, " Children:");
19849 if (level + 1 < max_level)
19850 {
19851 fprintf_unfiltered (f, "\n");
19852 dump_die_1 (f, level + 1, max_level, die->child);
19853 }
19854 else
19855 {
19856 fprintf_unfiltered (f,
19857 " [not printed, max nesting level reached]\n");
19858 }
19859 }
19860
19861 if (die->sibling != NULL && level > 0)
19862 {
19863 dump_die_1 (f, level, max_level, die->sibling);
19864 }
19865 }
19866
19867 /* This is called from the pdie macro in gdbinit.in.
19868 It's not static so gcc will keep a copy callable from gdb. */
19869
19870 void
19871 dump_die (struct die_info *die, int max_level)
19872 {
19873 dump_die_1 (gdb_stdlog, 0, max_level, die);
19874 }
19875
19876 static void
19877 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19878 {
19879 void **slot;
19880
19881 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19882 INSERT);
19883
19884 *slot = die;
19885 }
19886
19887 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19888 required kind. */
19889
19890 static sect_offset
19891 dwarf2_get_ref_die_offset (const struct attribute *attr)
19892 {
19893 sect_offset retval = { DW_UNSND (attr) };
19894
19895 if (attr_form_is_ref (attr))
19896 return retval;
19897
19898 retval.sect_off = 0;
19899 complaint (&symfile_complaints,
19900 _("unsupported die ref attribute form: '%s'"),
19901 dwarf_form_name (attr->form));
19902 return retval;
19903 }
19904
19905 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19906 * the value held by the attribute is not constant. */
19907
19908 static LONGEST
19909 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19910 {
19911 if (attr->form == DW_FORM_sdata)
19912 return DW_SND (attr);
19913 else if (attr->form == DW_FORM_udata
19914 || attr->form == DW_FORM_data1
19915 || attr->form == DW_FORM_data2
19916 || attr->form == DW_FORM_data4
19917 || attr->form == DW_FORM_data8)
19918 return DW_UNSND (attr);
19919 else
19920 {
19921 complaint (&symfile_complaints,
19922 _("Attribute value is not a constant (%s)"),
19923 dwarf_form_name (attr->form));
19924 return default_value;
19925 }
19926 }
19927
19928 /* Follow reference or signature attribute ATTR of SRC_DIE.
19929 On entry *REF_CU is the CU of SRC_DIE.
19930 On exit *REF_CU is the CU of the result. */
19931
19932 static struct die_info *
19933 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19934 struct dwarf2_cu **ref_cu)
19935 {
19936 struct die_info *die;
19937
19938 if (attr_form_is_ref (attr))
19939 die = follow_die_ref (src_die, attr, ref_cu);
19940 else if (attr->form == DW_FORM_ref_sig8)
19941 die = follow_die_sig (src_die, attr, ref_cu);
19942 else
19943 {
19944 dump_die_for_error (src_die);
19945 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19946 objfile_name ((*ref_cu)->objfile));
19947 }
19948
19949 return die;
19950 }
19951
19952 /* Follow reference OFFSET.
19953 On entry *REF_CU is the CU of the source die referencing OFFSET.
19954 On exit *REF_CU is the CU of the result.
19955 Returns NULL if OFFSET is invalid. */
19956
19957 static struct die_info *
19958 follow_die_offset (sect_offset offset, int offset_in_dwz,
19959 struct dwarf2_cu **ref_cu)
19960 {
19961 struct die_info temp_die;
19962 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19963
19964 gdb_assert (cu->per_cu != NULL);
19965
19966 target_cu = cu;
19967
19968 if (cu->per_cu->is_debug_types)
19969 {
19970 /* .debug_types CUs cannot reference anything outside their CU.
19971 If they need to, they have to reference a signatured type via
19972 DW_FORM_ref_sig8. */
19973 if (! offset_in_cu_p (&cu->header, offset))
19974 return NULL;
19975 }
19976 else if (offset_in_dwz != cu->per_cu->is_dwz
19977 || ! offset_in_cu_p (&cu->header, offset))
19978 {
19979 struct dwarf2_per_cu_data *per_cu;
19980
19981 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19982 cu->objfile);
19983
19984 /* If necessary, add it to the queue and load its DIEs. */
19985 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19986 load_full_comp_unit (per_cu, cu->language);
19987
19988 target_cu = per_cu->cu;
19989 }
19990 else if (cu->dies == NULL)
19991 {
19992 /* We're loading full DIEs during partial symbol reading. */
19993 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19994 load_full_comp_unit (cu->per_cu, language_minimal);
19995 }
19996
19997 *ref_cu = target_cu;
19998 temp_die.offset = offset;
19999 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
20000 }
20001
20002 /* Follow reference attribute ATTR of SRC_DIE.
20003 On entry *REF_CU is the CU of SRC_DIE.
20004 On exit *REF_CU is the CU of the result. */
20005
20006 static struct die_info *
20007 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20008 struct dwarf2_cu **ref_cu)
20009 {
20010 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20011 struct dwarf2_cu *cu = *ref_cu;
20012 struct die_info *die;
20013
20014 die = follow_die_offset (offset,
20015 (attr->form == DW_FORM_GNU_ref_alt
20016 || cu->per_cu->is_dwz),
20017 ref_cu);
20018 if (!die)
20019 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20020 "at 0x%x [in module %s]"),
20021 offset.sect_off, src_die->offset.sect_off,
20022 objfile_name (cu->objfile));
20023
20024 return die;
20025 }
20026
20027 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20028 Returned value is intended for DW_OP_call*. Returned
20029 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20030
20031 struct dwarf2_locexpr_baton
20032 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20033 struct dwarf2_per_cu_data *per_cu,
20034 CORE_ADDR (*get_frame_pc) (void *baton),
20035 void *baton)
20036 {
20037 struct dwarf2_cu *cu;
20038 struct die_info *die;
20039 struct attribute *attr;
20040 struct dwarf2_locexpr_baton retval;
20041
20042 dw2_setup (per_cu->objfile);
20043
20044 if (per_cu->cu == NULL)
20045 load_cu (per_cu);
20046 cu = per_cu->cu;
20047 if (cu == NULL)
20048 {
20049 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20050 Instead just throw an error, not much else we can do. */
20051 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20052 offset.sect_off, objfile_name (per_cu->objfile));
20053 }
20054
20055 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20056 if (!die)
20057 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20058 offset.sect_off, objfile_name (per_cu->objfile));
20059
20060 attr = dwarf2_attr (die, DW_AT_location, cu);
20061 if (!attr)
20062 {
20063 /* DWARF: "If there is no such attribute, then there is no effect.".
20064 DATA is ignored if SIZE is 0. */
20065
20066 retval.data = NULL;
20067 retval.size = 0;
20068 }
20069 else if (attr_form_is_section_offset (attr))
20070 {
20071 struct dwarf2_loclist_baton loclist_baton;
20072 CORE_ADDR pc = (*get_frame_pc) (baton);
20073 size_t size;
20074
20075 fill_in_loclist_baton (cu, &loclist_baton, attr);
20076
20077 retval.data = dwarf2_find_location_expression (&loclist_baton,
20078 &size, pc);
20079 retval.size = size;
20080 }
20081 else
20082 {
20083 if (!attr_form_is_block (attr))
20084 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20085 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20086 offset.sect_off, objfile_name (per_cu->objfile));
20087
20088 retval.data = DW_BLOCK (attr)->data;
20089 retval.size = DW_BLOCK (attr)->size;
20090 }
20091 retval.per_cu = cu->per_cu;
20092
20093 age_cached_comp_units ();
20094
20095 return retval;
20096 }
20097
20098 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20099 offset. */
20100
20101 struct dwarf2_locexpr_baton
20102 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20103 struct dwarf2_per_cu_data *per_cu,
20104 CORE_ADDR (*get_frame_pc) (void *baton),
20105 void *baton)
20106 {
20107 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20108
20109 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20110 }
20111
20112 /* Write a constant of a given type as target-ordered bytes into
20113 OBSTACK. */
20114
20115 static const gdb_byte *
20116 write_constant_as_bytes (struct obstack *obstack,
20117 enum bfd_endian byte_order,
20118 struct type *type,
20119 ULONGEST value,
20120 LONGEST *len)
20121 {
20122 gdb_byte *result;
20123
20124 *len = TYPE_LENGTH (type);
20125 result = obstack_alloc (obstack, *len);
20126 store_unsigned_integer (result, *len, byte_order, value);
20127
20128 return result;
20129 }
20130
20131 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20132 pointer to the constant bytes and set LEN to the length of the
20133 data. If memory is needed, allocate it on OBSTACK. If the DIE
20134 does not have a DW_AT_const_value, return NULL. */
20135
20136 const gdb_byte *
20137 dwarf2_fetch_constant_bytes (sect_offset offset,
20138 struct dwarf2_per_cu_data *per_cu,
20139 struct obstack *obstack,
20140 LONGEST *len)
20141 {
20142 struct dwarf2_cu *cu;
20143 struct die_info *die;
20144 struct attribute *attr;
20145 const gdb_byte *result = NULL;
20146 struct type *type;
20147 LONGEST value;
20148 enum bfd_endian byte_order;
20149
20150 dw2_setup (per_cu->objfile);
20151
20152 if (per_cu->cu == NULL)
20153 load_cu (per_cu);
20154 cu = per_cu->cu;
20155 if (cu == NULL)
20156 {
20157 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20158 Instead just throw an error, not much else we can do. */
20159 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20160 offset.sect_off, objfile_name (per_cu->objfile));
20161 }
20162
20163 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20164 if (!die)
20165 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20166 offset.sect_off, objfile_name (per_cu->objfile));
20167
20168
20169 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20170 if (attr == NULL)
20171 return NULL;
20172
20173 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20174 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20175
20176 switch (attr->form)
20177 {
20178 case DW_FORM_addr:
20179 case DW_FORM_GNU_addr_index:
20180 {
20181 gdb_byte *tem;
20182
20183 *len = cu->header.addr_size;
20184 tem = obstack_alloc (obstack, *len);
20185 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20186 result = tem;
20187 }
20188 break;
20189 case DW_FORM_string:
20190 case DW_FORM_strp:
20191 case DW_FORM_GNU_str_index:
20192 case DW_FORM_GNU_strp_alt:
20193 /* DW_STRING is already allocated on the objfile obstack, point
20194 directly to it. */
20195 result = (const gdb_byte *) DW_STRING (attr);
20196 *len = strlen (DW_STRING (attr));
20197 break;
20198 case DW_FORM_block1:
20199 case DW_FORM_block2:
20200 case DW_FORM_block4:
20201 case DW_FORM_block:
20202 case DW_FORM_exprloc:
20203 result = DW_BLOCK (attr)->data;
20204 *len = DW_BLOCK (attr)->size;
20205 break;
20206
20207 /* The DW_AT_const_value attributes are supposed to carry the
20208 symbol's value "represented as it would be on the target
20209 architecture." By the time we get here, it's already been
20210 converted to host endianness, so we just need to sign- or
20211 zero-extend it as appropriate. */
20212 case DW_FORM_data1:
20213 type = die_type (die, cu);
20214 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20215 if (result == NULL)
20216 result = write_constant_as_bytes (obstack, byte_order,
20217 type, value, len);
20218 break;
20219 case DW_FORM_data2:
20220 type = die_type (die, cu);
20221 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20222 if (result == NULL)
20223 result = write_constant_as_bytes (obstack, byte_order,
20224 type, value, len);
20225 break;
20226 case DW_FORM_data4:
20227 type = die_type (die, cu);
20228 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20229 if (result == NULL)
20230 result = write_constant_as_bytes (obstack, byte_order,
20231 type, value, len);
20232 break;
20233 case DW_FORM_data8:
20234 type = die_type (die, cu);
20235 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20236 if (result == NULL)
20237 result = write_constant_as_bytes (obstack, byte_order,
20238 type, value, len);
20239 break;
20240
20241 case DW_FORM_sdata:
20242 type = die_type (die, cu);
20243 result = write_constant_as_bytes (obstack, byte_order,
20244 type, DW_SND (attr), len);
20245 break;
20246
20247 case DW_FORM_udata:
20248 type = die_type (die, cu);
20249 result = write_constant_as_bytes (obstack, byte_order,
20250 type, DW_UNSND (attr), len);
20251 break;
20252
20253 default:
20254 complaint (&symfile_complaints,
20255 _("unsupported const value attribute form: '%s'"),
20256 dwarf_form_name (attr->form));
20257 break;
20258 }
20259
20260 return result;
20261 }
20262
20263 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20264 PER_CU. */
20265
20266 struct type *
20267 dwarf2_get_die_type (cu_offset die_offset,
20268 struct dwarf2_per_cu_data *per_cu)
20269 {
20270 sect_offset die_offset_sect;
20271
20272 dw2_setup (per_cu->objfile);
20273
20274 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20275 return get_die_type_at_offset (die_offset_sect, per_cu);
20276 }
20277
20278 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20279 On entry *REF_CU is the CU of SRC_DIE.
20280 On exit *REF_CU is the CU of the result.
20281 Returns NULL if the referenced DIE isn't found. */
20282
20283 static struct die_info *
20284 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20285 struct dwarf2_cu **ref_cu)
20286 {
20287 struct objfile *objfile = (*ref_cu)->objfile;
20288 struct die_info temp_die;
20289 struct dwarf2_cu *sig_cu;
20290 struct die_info *die;
20291
20292 /* While it might be nice to assert sig_type->type == NULL here,
20293 we can get here for DW_AT_imported_declaration where we need
20294 the DIE not the type. */
20295
20296 /* If necessary, add it to the queue and load its DIEs. */
20297
20298 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20299 read_signatured_type (sig_type);
20300
20301 sig_cu = sig_type->per_cu.cu;
20302 gdb_assert (sig_cu != NULL);
20303 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20304 temp_die.offset = sig_type->type_offset_in_section;
20305 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20306 temp_die.offset.sect_off);
20307 if (die)
20308 {
20309 /* For .gdb_index version 7 keep track of included TUs.
20310 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20311 if (dwarf2_per_objfile->index_table != NULL
20312 && dwarf2_per_objfile->index_table->version <= 7)
20313 {
20314 VEC_safe_push (dwarf2_per_cu_ptr,
20315 (*ref_cu)->per_cu->imported_symtabs,
20316 sig_cu->per_cu);
20317 }
20318
20319 *ref_cu = sig_cu;
20320 return die;
20321 }
20322
20323 return NULL;
20324 }
20325
20326 /* Follow signatured type referenced by ATTR in SRC_DIE.
20327 On entry *REF_CU is the CU of SRC_DIE.
20328 On exit *REF_CU is the CU of the result.
20329 The result is the DIE of the type.
20330 If the referenced type cannot be found an error is thrown. */
20331
20332 static struct die_info *
20333 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20334 struct dwarf2_cu **ref_cu)
20335 {
20336 ULONGEST signature = DW_SIGNATURE (attr);
20337 struct signatured_type *sig_type;
20338 struct die_info *die;
20339
20340 gdb_assert (attr->form == DW_FORM_ref_sig8);
20341
20342 sig_type = lookup_signatured_type (*ref_cu, signature);
20343 /* sig_type will be NULL if the signatured type is missing from
20344 the debug info. */
20345 if (sig_type == NULL)
20346 {
20347 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20348 " from DIE at 0x%x [in module %s]"),
20349 hex_string (signature), src_die->offset.sect_off,
20350 objfile_name ((*ref_cu)->objfile));
20351 }
20352
20353 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20354 if (die == NULL)
20355 {
20356 dump_die_for_error (src_die);
20357 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20358 " from DIE at 0x%x [in module %s]"),
20359 hex_string (signature), src_die->offset.sect_off,
20360 objfile_name ((*ref_cu)->objfile));
20361 }
20362
20363 return die;
20364 }
20365
20366 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20367 reading in and processing the type unit if necessary. */
20368
20369 static struct type *
20370 get_signatured_type (struct die_info *die, ULONGEST signature,
20371 struct dwarf2_cu *cu)
20372 {
20373 struct signatured_type *sig_type;
20374 struct dwarf2_cu *type_cu;
20375 struct die_info *type_die;
20376 struct type *type;
20377
20378 sig_type = lookup_signatured_type (cu, signature);
20379 /* sig_type will be NULL if the signatured type is missing from
20380 the debug info. */
20381 if (sig_type == NULL)
20382 {
20383 complaint (&symfile_complaints,
20384 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20385 " from DIE at 0x%x [in module %s]"),
20386 hex_string (signature), die->offset.sect_off,
20387 objfile_name (dwarf2_per_objfile->objfile));
20388 return build_error_marker_type (cu, die);
20389 }
20390
20391 /* If we already know the type we're done. */
20392 if (sig_type->type != NULL)
20393 return sig_type->type;
20394
20395 type_cu = cu;
20396 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20397 if (type_die != NULL)
20398 {
20399 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20400 is created. This is important, for example, because for c++ classes
20401 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20402 type = read_type_die (type_die, type_cu);
20403 if (type == NULL)
20404 {
20405 complaint (&symfile_complaints,
20406 _("Dwarf Error: Cannot build signatured type %s"
20407 " referenced from DIE at 0x%x [in module %s]"),
20408 hex_string (signature), die->offset.sect_off,
20409 objfile_name (dwarf2_per_objfile->objfile));
20410 type = build_error_marker_type (cu, die);
20411 }
20412 }
20413 else
20414 {
20415 complaint (&symfile_complaints,
20416 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20417 " from DIE at 0x%x [in module %s]"),
20418 hex_string (signature), die->offset.sect_off,
20419 objfile_name (dwarf2_per_objfile->objfile));
20420 type = build_error_marker_type (cu, die);
20421 }
20422 sig_type->type = type;
20423
20424 return type;
20425 }
20426
20427 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20428 reading in and processing the type unit if necessary. */
20429
20430 static struct type *
20431 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20432 struct dwarf2_cu *cu) /* ARI: editCase function */
20433 {
20434 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20435 if (attr_form_is_ref (attr))
20436 {
20437 struct dwarf2_cu *type_cu = cu;
20438 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20439
20440 return read_type_die (type_die, type_cu);
20441 }
20442 else if (attr->form == DW_FORM_ref_sig8)
20443 {
20444 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20445 }
20446 else
20447 {
20448 complaint (&symfile_complaints,
20449 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20450 " at 0x%x [in module %s]"),
20451 dwarf_form_name (attr->form), die->offset.sect_off,
20452 objfile_name (dwarf2_per_objfile->objfile));
20453 return build_error_marker_type (cu, die);
20454 }
20455 }
20456
20457 /* Load the DIEs associated with type unit PER_CU into memory. */
20458
20459 static void
20460 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20461 {
20462 struct signatured_type *sig_type;
20463
20464 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20465 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20466
20467 /* We have the per_cu, but we need the signatured_type.
20468 Fortunately this is an easy translation. */
20469 gdb_assert (per_cu->is_debug_types);
20470 sig_type = (struct signatured_type *) per_cu;
20471
20472 gdb_assert (per_cu->cu == NULL);
20473
20474 read_signatured_type (sig_type);
20475
20476 gdb_assert (per_cu->cu != NULL);
20477 }
20478
20479 /* die_reader_func for read_signatured_type.
20480 This is identical to load_full_comp_unit_reader,
20481 but is kept separate for now. */
20482
20483 static void
20484 read_signatured_type_reader (const struct die_reader_specs *reader,
20485 const gdb_byte *info_ptr,
20486 struct die_info *comp_unit_die,
20487 int has_children,
20488 void *data)
20489 {
20490 struct dwarf2_cu *cu = reader->cu;
20491
20492 gdb_assert (cu->die_hash == NULL);
20493 cu->die_hash =
20494 htab_create_alloc_ex (cu->header.length / 12,
20495 die_hash,
20496 die_eq,
20497 NULL,
20498 &cu->comp_unit_obstack,
20499 hashtab_obstack_allocate,
20500 dummy_obstack_deallocate);
20501
20502 if (has_children)
20503 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20504 &info_ptr, comp_unit_die);
20505 cu->dies = comp_unit_die;
20506 /* comp_unit_die is not stored in die_hash, no need. */
20507
20508 /* We try not to read any attributes in this function, because not
20509 all CUs needed for references have been loaded yet, and symbol
20510 table processing isn't initialized. But we have to set the CU language,
20511 or we won't be able to build types correctly.
20512 Similarly, if we do not read the producer, we can not apply
20513 producer-specific interpretation. */
20514 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20515 }
20516
20517 /* Read in a signatured type and build its CU and DIEs.
20518 If the type is a stub for the real type in a DWO file,
20519 read in the real type from the DWO file as well. */
20520
20521 static void
20522 read_signatured_type (struct signatured_type *sig_type)
20523 {
20524 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20525
20526 gdb_assert (per_cu->is_debug_types);
20527 gdb_assert (per_cu->cu == NULL);
20528
20529 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20530 read_signatured_type_reader, NULL);
20531 sig_type->per_cu.tu_read = 1;
20532 }
20533
20534 /* Decode simple location descriptions.
20535 Given a pointer to a dwarf block that defines a location, compute
20536 the location and return the value.
20537
20538 NOTE drow/2003-11-18: This function is called in two situations
20539 now: for the address of static or global variables (partial symbols
20540 only) and for offsets into structures which are expected to be
20541 (more or less) constant. The partial symbol case should go away,
20542 and only the constant case should remain. That will let this
20543 function complain more accurately. A few special modes are allowed
20544 without complaint for global variables (for instance, global
20545 register values and thread-local values).
20546
20547 A location description containing no operations indicates that the
20548 object is optimized out. The return value is 0 for that case.
20549 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20550 callers will only want a very basic result and this can become a
20551 complaint.
20552
20553 Note that stack[0] is unused except as a default error return. */
20554
20555 static CORE_ADDR
20556 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20557 {
20558 struct objfile *objfile = cu->objfile;
20559 size_t i;
20560 size_t size = blk->size;
20561 const gdb_byte *data = blk->data;
20562 CORE_ADDR stack[64];
20563 int stacki;
20564 unsigned int bytes_read, unsnd;
20565 gdb_byte op;
20566
20567 i = 0;
20568 stacki = 0;
20569 stack[stacki] = 0;
20570 stack[++stacki] = 0;
20571
20572 while (i < size)
20573 {
20574 op = data[i++];
20575 switch (op)
20576 {
20577 case DW_OP_lit0:
20578 case DW_OP_lit1:
20579 case DW_OP_lit2:
20580 case DW_OP_lit3:
20581 case DW_OP_lit4:
20582 case DW_OP_lit5:
20583 case DW_OP_lit6:
20584 case DW_OP_lit7:
20585 case DW_OP_lit8:
20586 case DW_OP_lit9:
20587 case DW_OP_lit10:
20588 case DW_OP_lit11:
20589 case DW_OP_lit12:
20590 case DW_OP_lit13:
20591 case DW_OP_lit14:
20592 case DW_OP_lit15:
20593 case DW_OP_lit16:
20594 case DW_OP_lit17:
20595 case DW_OP_lit18:
20596 case DW_OP_lit19:
20597 case DW_OP_lit20:
20598 case DW_OP_lit21:
20599 case DW_OP_lit22:
20600 case DW_OP_lit23:
20601 case DW_OP_lit24:
20602 case DW_OP_lit25:
20603 case DW_OP_lit26:
20604 case DW_OP_lit27:
20605 case DW_OP_lit28:
20606 case DW_OP_lit29:
20607 case DW_OP_lit30:
20608 case DW_OP_lit31:
20609 stack[++stacki] = op - DW_OP_lit0;
20610 break;
20611
20612 case DW_OP_reg0:
20613 case DW_OP_reg1:
20614 case DW_OP_reg2:
20615 case DW_OP_reg3:
20616 case DW_OP_reg4:
20617 case DW_OP_reg5:
20618 case DW_OP_reg6:
20619 case DW_OP_reg7:
20620 case DW_OP_reg8:
20621 case DW_OP_reg9:
20622 case DW_OP_reg10:
20623 case DW_OP_reg11:
20624 case DW_OP_reg12:
20625 case DW_OP_reg13:
20626 case DW_OP_reg14:
20627 case DW_OP_reg15:
20628 case DW_OP_reg16:
20629 case DW_OP_reg17:
20630 case DW_OP_reg18:
20631 case DW_OP_reg19:
20632 case DW_OP_reg20:
20633 case DW_OP_reg21:
20634 case DW_OP_reg22:
20635 case DW_OP_reg23:
20636 case DW_OP_reg24:
20637 case DW_OP_reg25:
20638 case DW_OP_reg26:
20639 case DW_OP_reg27:
20640 case DW_OP_reg28:
20641 case DW_OP_reg29:
20642 case DW_OP_reg30:
20643 case DW_OP_reg31:
20644 stack[++stacki] = op - DW_OP_reg0;
20645 if (i < size)
20646 dwarf2_complex_location_expr_complaint ();
20647 break;
20648
20649 case DW_OP_regx:
20650 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20651 i += bytes_read;
20652 stack[++stacki] = unsnd;
20653 if (i < size)
20654 dwarf2_complex_location_expr_complaint ();
20655 break;
20656
20657 case DW_OP_addr:
20658 stack[++stacki] = read_address (objfile->obfd, &data[i],
20659 cu, &bytes_read);
20660 i += bytes_read;
20661 break;
20662
20663 case DW_OP_const1u:
20664 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20665 i += 1;
20666 break;
20667
20668 case DW_OP_const1s:
20669 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20670 i += 1;
20671 break;
20672
20673 case DW_OP_const2u:
20674 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20675 i += 2;
20676 break;
20677
20678 case DW_OP_const2s:
20679 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20680 i += 2;
20681 break;
20682
20683 case DW_OP_const4u:
20684 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20685 i += 4;
20686 break;
20687
20688 case DW_OP_const4s:
20689 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20690 i += 4;
20691 break;
20692
20693 case DW_OP_const8u:
20694 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20695 i += 8;
20696 break;
20697
20698 case DW_OP_constu:
20699 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20700 &bytes_read);
20701 i += bytes_read;
20702 break;
20703
20704 case DW_OP_consts:
20705 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20706 i += bytes_read;
20707 break;
20708
20709 case DW_OP_dup:
20710 stack[stacki + 1] = stack[stacki];
20711 stacki++;
20712 break;
20713
20714 case DW_OP_plus:
20715 stack[stacki - 1] += stack[stacki];
20716 stacki--;
20717 break;
20718
20719 case DW_OP_plus_uconst:
20720 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20721 &bytes_read);
20722 i += bytes_read;
20723 break;
20724
20725 case DW_OP_minus:
20726 stack[stacki - 1] -= stack[stacki];
20727 stacki--;
20728 break;
20729
20730 case DW_OP_deref:
20731 /* If we're not the last op, then we definitely can't encode
20732 this using GDB's address_class enum. This is valid for partial
20733 global symbols, although the variable's address will be bogus
20734 in the psymtab. */
20735 if (i < size)
20736 dwarf2_complex_location_expr_complaint ();
20737 break;
20738
20739 case DW_OP_GNU_push_tls_address:
20740 /* The top of the stack has the offset from the beginning
20741 of the thread control block at which the variable is located. */
20742 /* Nothing should follow this operator, so the top of stack would
20743 be returned. */
20744 /* This is valid for partial global symbols, but the variable's
20745 address will be bogus in the psymtab. Make it always at least
20746 non-zero to not look as a variable garbage collected by linker
20747 which have DW_OP_addr 0. */
20748 if (i < size)
20749 dwarf2_complex_location_expr_complaint ();
20750 stack[stacki]++;
20751 break;
20752
20753 case DW_OP_GNU_uninit:
20754 break;
20755
20756 case DW_OP_GNU_addr_index:
20757 case DW_OP_GNU_const_index:
20758 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20759 &bytes_read);
20760 i += bytes_read;
20761 break;
20762
20763 default:
20764 {
20765 const char *name = get_DW_OP_name (op);
20766
20767 if (name)
20768 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20769 name);
20770 else
20771 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20772 op);
20773 }
20774
20775 return (stack[stacki]);
20776 }
20777
20778 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20779 outside of the allocated space. Also enforce minimum>0. */
20780 if (stacki >= ARRAY_SIZE (stack) - 1)
20781 {
20782 complaint (&symfile_complaints,
20783 _("location description stack overflow"));
20784 return 0;
20785 }
20786
20787 if (stacki <= 0)
20788 {
20789 complaint (&symfile_complaints,
20790 _("location description stack underflow"));
20791 return 0;
20792 }
20793 }
20794 return (stack[stacki]);
20795 }
20796
20797 /* memory allocation interface */
20798
20799 static struct dwarf_block *
20800 dwarf_alloc_block (struct dwarf2_cu *cu)
20801 {
20802 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20803 }
20804
20805 static struct die_info *
20806 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20807 {
20808 struct die_info *die;
20809 size_t size = sizeof (struct die_info);
20810
20811 if (num_attrs > 1)
20812 size += (num_attrs - 1) * sizeof (struct attribute);
20813
20814 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20815 memset (die, 0, sizeof (struct die_info));
20816 return (die);
20817 }
20818
20819 \f
20820 /* Macro support. */
20821
20822 /* Return file name relative to the compilation directory of file number I in
20823 *LH's file name table. The result is allocated using xmalloc; the caller is
20824 responsible for freeing it. */
20825
20826 static char *
20827 file_file_name (int file, struct line_header *lh)
20828 {
20829 /* Is the file number a valid index into the line header's file name
20830 table? Remember that file numbers start with one, not zero. */
20831 if (1 <= file && file <= lh->num_file_names)
20832 {
20833 struct file_entry *fe = &lh->file_names[file - 1];
20834
20835 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20836 || lh->include_dirs == NULL)
20837 return xstrdup (fe->name);
20838 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20839 fe->name, NULL);
20840 }
20841 else
20842 {
20843 /* The compiler produced a bogus file number. We can at least
20844 record the macro definitions made in the file, even if we
20845 won't be able to find the file by name. */
20846 char fake_name[80];
20847
20848 xsnprintf (fake_name, sizeof (fake_name),
20849 "<bad macro file number %d>", file);
20850
20851 complaint (&symfile_complaints,
20852 _("bad file number in macro information (%d)"),
20853 file);
20854
20855 return xstrdup (fake_name);
20856 }
20857 }
20858
20859 /* Return the full name of file number I in *LH's file name table.
20860 Use COMP_DIR as the name of the current directory of the
20861 compilation. The result is allocated using xmalloc; the caller is
20862 responsible for freeing it. */
20863 static char *
20864 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20865 {
20866 /* Is the file number a valid index into the line header's file name
20867 table? Remember that file numbers start with one, not zero. */
20868 if (1 <= file && file <= lh->num_file_names)
20869 {
20870 char *relative = file_file_name (file, lh);
20871
20872 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20873 return relative;
20874 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20875 }
20876 else
20877 return file_file_name (file, lh);
20878 }
20879
20880
20881 static struct macro_source_file *
20882 macro_start_file (int file, int line,
20883 struct macro_source_file *current_file,
20884 struct line_header *lh)
20885 {
20886 /* File name relative to the compilation directory of this source file. */
20887 char *file_name = file_file_name (file, lh);
20888
20889 if (! current_file)
20890 {
20891 /* Note: We don't create a macro table for this compilation unit
20892 at all until we actually get a filename. */
20893 struct macro_table *macro_table = get_macro_table ();
20894
20895 /* If we have no current file, then this must be the start_file
20896 directive for the compilation unit's main source file. */
20897 current_file = macro_set_main (macro_table, file_name);
20898 macro_define_special (macro_table);
20899 }
20900 else
20901 current_file = macro_include (current_file, line, file_name);
20902
20903 xfree (file_name);
20904
20905 return current_file;
20906 }
20907
20908
20909 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20910 followed by a null byte. */
20911 static char *
20912 copy_string (const char *buf, int len)
20913 {
20914 char *s = xmalloc (len + 1);
20915
20916 memcpy (s, buf, len);
20917 s[len] = '\0';
20918 return s;
20919 }
20920
20921
20922 static const char *
20923 consume_improper_spaces (const char *p, const char *body)
20924 {
20925 if (*p == ' ')
20926 {
20927 complaint (&symfile_complaints,
20928 _("macro definition contains spaces "
20929 "in formal argument list:\n`%s'"),
20930 body);
20931
20932 while (*p == ' ')
20933 p++;
20934 }
20935
20936 return p;
20937 }
20938
20939
20940 static void
20941 parse_macro_definition (struct macro_source_file *file, int line,
20942 const char *body)
20943 {
20944 const char *p;
20945
20946 /* The body string takes one of two forms. For object-like macro
20947 definitions, it should be:
20948
20949 <macro name> " " <definition>
20950
20951 For function-like macro definitions, it should be:
20952
20953 <macro name> "() " <definition>
20954 or
20955 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20956
20957 Spaces may appear only where explicitly indicated, and in the
20958 <definition>.
20959
20960 The Dwarf 2 spec says that an object-like macro's name is always
20961 followed by a space, but versions of GCC around March 2002 omit
20962 the space when the macro's definition is the empty string.
20963
20964 The Dwarf 2 spec says that there should be no spaces between the
20965 formal arguments in a function-like macro's formal argument list,
20966 but versions of GCC around March 2002 include spaces after the
20967 commas. */
20968
20969
20970 /* Find the extent of the macro name. The macro name is terminated
20971 by either a space or null character (for an object-like macro) or
20972 an opening paren (for a function-like macro). */
20973 for (p = body; *p; p++)
20974 if (*p == ' ' || *p == '(')
20975 break;
20976
20977 if (*p == ' ' || *p == '\0')
20978 {
20979 /* It's an object-like macro. */
20980 int name_len = p - body;
20981 char *name = copy_string (body, name_len);
20982 const char *replacement;
20983
20984 if (*p == ' ')
20985 replacement = body + name_len + 1;
20986 else
20987 {
20988 dwarf2_macro_malformed_definition_complaint (body);
20989 replacement = body + name_len;
20990 }
20991
20992 macro_define_object (file, line, name, replacement);
20993
20994 xfree (name);
20995 }
20996 else if (*p == '(')
20997 {
20998 /* It's a function-like macro. */
20999 char *name = copy_string (body, p - body);
21000 int argc = 0;
21001 int argv_size = 1;
21002 char **argv = XNEWVEC (char *, argv_size);
21003
21004 p++;
21005
21006 p = consume_improper_spaces (p, body);
21007
21008 /* Parse the formal argument list. */
21009 while (*p && *p != ')')
21010 {
21011 /* Find the extent of the current argument name. */
21012 const char *arg_start = p;
21013
21014 while (*p && *p != ',' && *p != ')' && *p != ' ')
21015 p++;
21016
21017 if (! *p || p == arg_start)
21018 dwarf2_macro_malformed_definition_complaint (body);
21019 else
21020 {
21021 /* Make sure argv has room for the new argument. */
21022 if (argc >= argv_size)
21023 {
21024 argv_size *= 2;
21025 argv = xrealloc (argv, argv_size * sizeof (*argv));
21026 }
21027
21028 argv[argc++] = copy_string (arg_start, p - arg_start);
21029 }
21030
21031 p = consume_improper_spaces (p, body);
21032
21033 /* Consume the comma, if present. */
21034 if (*p == ',')
21035 {
21036 p++;
21037
21038 p = consume_improper_spaces (p, body);
21039 }
21040 }
21041
21042 if (*p == ')')
21043 {
21044 p++;
21045
21046 if (*p == ' ')
21047 /* Perfectly formed definition, no complaints. */
21048 macro_define_function (file, line, name,
21049 argc, (const char **) argv,
21050 p + 1);
21051 else if (*p == '\0')
21052 {
21053 /* Complain, but do define it. */
21054 dwarf2_macro_malformed_definition_complaint (body);
21055 macro_define_function (file, line, name,
21056 argc, (const char **) argv,
21057 p);
21058 }
21059 else
21060 /* Just complain. */
21061 dwarf2_macro_malformed_definition_complaint (body);
21062 }
21063 else
21064 /* Just complain. */
21065 dwarf2_macro_malformed_definition_complaint (body);
21066
21067 xfree (name);
21068 {
21069 int i;
21070
21071 for (i = 0; i < argc; i++)
21072 xfree (argv[i]);
21073 }
21074 xfree (argv);
21075 }
21076 else
21077 dwarf2_macro_malformed_definition_complaint (body);
21078 }
21079
21080 /* Skip some bytes from BYTES according to the form given in FORM.
21081 Returns the new pointer. */
21082
21083 static const gdb_byte *
21084 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21085 enum dwarf_form form,
21086 unsigned int offset_size,
21087 struct dwarf2_section_info *section)
21088 {
21089 unsigned int bytes_read;
21090
21091 switch (form)
21092 {
21093 case DW_FORM_data1:
21094 case DW_FORM_flag:
21095 ++bytes;
21096 break;
21097
21098 case DW_FORM_data2:
21099 bytes += 2;
21100 break;
21101
21102 case DW_FORM_data4:
21103 bytes += 4;
21104 break;
21105
21106 case DW_FORM_data8:
21107 bytes += 8;
21108 break;
21109
21110 case DW_FORM_string:
21111 read_direct_string (abfd, bytes, &bytes_read);
21112 bytes += bytes_read;
21113 break;
21114
21115 case DW_FORM_sec_offset:
21116 case DW_FORM_strp:
21117 case DW_FORM_GNU_strp_alt:
21118 bytes += offset_size;
21119 break;
21120
21121 case DW_FORM_block:
21122 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21123 bytes += bytes_read;
21124 break;
21125
21126 case DW_FORM_block1:
21127 bytes += 1 + read_1_byte (abfd, bytes);
21128 break;
21129 case DW_FORM_block2:
21130 bytes += 2 + read_2_bytes (abfd, bytes);
21131 break;
21132 case DW_FORM_block4:
21133 bytes += 4 + read_4_bytes (abfd, bytes);
21134 break;
21135
21136 case DW_FORM_sdata:
21137 case DW_FORM_udata:
21138 case DW_FORM_GNU_addr_index:
21139 case DW_FORM_GNU_str_index:
21140 bytes = gdb_skip_leb128 (bytes, buffer_end);
21141 if (bytes == NULL)
21142 {
21143 dwarf2_section_buffer_overflow_complaint (section);
21144 return NULL;
21145 }
21146 break;
21147
21148 default:
21149 {
21150 complain:
21151 complaint (&symfile_complaints,
21152 _("invalid form 0x%x in `%s'"),
21153 form, get_section_name (section));
21154 return NULL;
21155 }
21156 }
21157
21158 return bytes;
21159 }
21160
21161 /* A helper for dwarf_decode_macros that handles skipping an unknown
21162 opcode. Returns an updated pointer to the macro data buffer; or,
21163 on error, issues a complaint and returns NULL. */
21164
21165 static const gdb_byte *
21166 skip_unknown_opcode (unsigned int opcode,
21167 const gdb_byte **opcode_definitions,
21168 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21169 bfd *abfd,
21170 unsigned int offset_size,
21171 struct dwarf2_section_info *section)
21172 {
21173 unsigned int bytes_read, i;
21174 unsigned long arg;
21175 const gdb_byte *defn;
21176
21177 if (opcode_definitions[opcode] == NULL)
21178 {
21179 complaint (&symfile_complaints,
21180 _("unrecognized DW_MACFINO opcode 0x%x"),
21181 opcode);
21182 return NULL;
21183 }
21184
21185 defn = opcode_definitions[opcode];
21186 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21187 defn += bytes_read;
21188
21189 for (i = 0; i < arg; ++i)
21190 {
21191 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21192 (enum dwarf_form) defn[i], offset_size,
21193 section);
21194 if (mac_ptr == NULL)
21195 {
21196 /* skip_form_bytes already issued the complaint. */
21197 return NULL;
21198 }
21199 }
21200
21201 return mac_ptr;
21202 }
21203
21204 /* A helper function which parses the header of a macro section.
21205 If the macro section is the extended (for now called "GNU") type,
21206 then this updates *OFFSET_SIZE. Returns a pointer to just after
21207 the header, or issues a complaint and returns NULL on error. */
21208
21209 static const gdb_byte *
21210 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21211 bfd *abfd,
21212 const gdb_byte *mac_ptr,
21213 unsigned int *offset_size,
21214 int section_is_gnu)
21215 {
21216 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21217
21218 if (section_is_gnu)
21219 {
21220 unsigned int version, flags;
21221
21222 version = read_2_bytes (abfd, mac_ptr);
21223 if (version != 4)
21224 {
21225 complaint (&symfile_complaints,
21226 _("unrecognized version `%d' in .debug_macro section"),
21227 version);
21228 return NULL;
21229 }
21230 mac_ptr += 2;
21231
21232 flags = read_1_byte (abfd, mac_ptr);
21233 ++mac_ptr;
21234 *offset_size = (flags & 1) ? 8 : 4;
21235
21236 if ((flags & 2) != 0)
21237 /* We don't need the line table offset. */
21238 mac_ptr += *offset_size;
21239
21240 /* Vendor opcode descriptions. */
21241 if ((flags & 4) != 0)
21242 {
21243 unsigned int i, count;
21244
21245 count = read_1_byte (abfd, mac_ptr);
21246 ++mac_ptr;
21247 for (i = 0; i < count; ++i)
21248 {
21249 unsigned int opcode, bytes_read;
21250 unsigned long arg;
21251
21252 opcode = read_1_byte (abfd, mac_ptr);
21253 ++mac_ptr;
21254 opcode_definitions[opcode] = mac_ptr;
21255 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21256 mac_ptr += bytes_read;
21257 mac_ptr += arg;
21258 }
21259 }
21260 }
21261
21262 return mac_ptr;
21263 }
21264
21265 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21266 including DW_MACRO_GNU_transparent_include. */
21267
21268 static void
21269 dwarf_decode_macro_bytes (bfd *abfd,
21270 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21271 struct macro_source_file *current_file,
21272 struct line_header *lh,
21273 struct dwarf2_section_info *section,
21274 int section_is_gnu, int section_is_dwz,
21275 unsigned int offset_size,
21276 htab_t include_hash)
21277 {
21278 struct objfile *objfile = dwarf2_per_objfile->objfile;
21279 enum dwarf_macro_record_type macinfo_type;
21280 int at_commandline;
21281 const gdb_byte *opcode_definitions[256];
21282
21283 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21284 &offset_size, section_is_gnu);
21285 if (mac_ptr == NULL)
21286 {
21287 /* We already issued a complaint. */
21288 return;
21289 }
21290
21291 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21292 GDB is still reading the definitions from command line. First
21293 DW_MACINFO_start_file will need to be ignored as it was already executed
21294 to create CURRENT_FILE for the main source holding also the command line
21295 definitions. On first met DW_MACINFO_start_file this flag is reset to
21296 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21297
21298 at_commandline = 1;
21299
21300 do
21301 {
21302 /* Do we at least have room for a macinfo type byte? */
21303 if (mac_ptr >= mac_end)
21304 {
21305 dwarf2_section_buffer_overflow_complaint (section);
21306 break;
21307 }
21308
21309 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21310 mac_ptr++;
21311
21312 /* Note that we rely on the fact that the corresponding GNU and
21313 DWARF constants are the same. */
21314 switch (macinfo_type)
21315 {
21316 /* A zero macinfo type indicates the end of the macro
21317 information. */
21318 case 0:
21319 break;
21320
21321 case DW_MACRO_GNU_define:
21322 case DW_MACRO_GNU_undef:
21323 case DW_MACRO_GNU_define_indirect:
21324 case DW_MACRO_GNU_undef_indirect:
21325 case DW_MACRO_GNU_define_indirect_alt:
21326 case DW_MACRO_GNU_undef_indirect_alt:
21327 {
21328 unsigned int bytes_read;
21329 int line;
21330 const char *body;
21331 int is_define;
21332
21333 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21334 mac_ptr += bytes_read;
21335
21336 if (macinfo_type == DW_MACRO_GNU_define
21337 || macinfo_type == DW_MACRO_GNU_undef)
21338 {
21339 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21340 mac_ptr += bytes_read;
21341 }
21342 else
21343 {
21344 LONGEST str_offset;
21345
21346 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21347 mac_ptr += offset_size;
21348
21349 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21350 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21351 || section_is_dwz)
21352 {
21353 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21354
21355 body = read_indirect_string_from_dwz (dwz, str_offset);
21356 }
21357 else
21358 body = read_indirect_string_at_offset (abfd, str_offset);
21359 }
21360
21361 is_define = (macinfo_type == DW_MACRO_GNU_define
21362 || macinfo_type == DW_MACRO_GNU_define_indirect
21363 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21364 if (! current_file)
21365 {
21366 /* DWARF violation as no main source is present. */
21367 complaint (&symfile_complaints,
21368 _("debug info with no main source gives macro %s "
21369 "on line %d: %s"),
21370 is_define ? _("definition") : _("undefinition"),
21371 line, body);
21372 break;
21373 }
21374 if ((line == 0 && !at_commandline)
21375 || (line != 0 && at_commandline))
21376 complaint (&symfile_complaints,
21377 _("debug info gives %s macro %s with %s line %d: %s"),
21378 at_commandline ? _("command-line") : _("in-file"),
21379 is_define ? _("definition") : _("undefinition"),
21380 line == 0 ? _("zero") : _("non-zero"), line, body);
21381
21382 if (is_define)
21383 parse_macro_definition (current_file, line, body);
21384 else
21385 {
21386 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21387 || macinfo_type == DW_MACRO_GNU_undef_indirect
21388 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21389 macro_undef (current_file, line, body);
21390 }
21391 }
21392 break;
21393
21394 case DW_MACRO_GNU_start_file:
21395 {
21396 unsigned int bytes_read;
21397 int line, file;
21398
21399 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21400 mac_ptr += bytes_read;
21401 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21402 mac_ptr += bytes_read;
21403
21404 if ((line == 0 && !at_commandline)
21405 || (line != 0 && at_commandline))
21406 complaint (&symfile_complaints,
21407 _("debug info gives source %d included "
21408 "from %s at %s line %d"),
21409 file, at_commandline ? _("command-line") : _("file"),
21410 line == 0 ? _("zero") : _("non-zero"), line);
21411
21412 if (at_commandline)
21413 {
21414 /* This DW_MACRO_GNU_start_file was executed in the
21415 pass one. */
21416 at_commandline = 0;
21417 }
21418 else
21419 current_file = macro_start_file (file, line, current_file, lh);
21420 }
21421 break;
21422
21423 case DW_MACRO_GNU_end_file:
21424 if (! current_file)
21425 complaint (&symfile_complaints,
21426 _("macro debug info has an unmatched "
21427 "`close_file' directive"));
21428 else
21429 {
21430 current_file = current_file->included_by;
21431 if (! current_file)
21432 {
21433 enum dwarf_macro_record_type next_type;
21434
21435 /* GCC circa March 2002 doesn't produce the zero
21436 type byte marking the end of the compilation
21437 unit. Complain if it's not there, but exit no
21438 matter what. */
21439
21440 /* Do we at least have room for a macinfo type byte? */
21441 if (mac_ptr >= mac_end)
21442 {
21443 dwarf2_section_buffer_overflow_complaint (section);
21444 return;
21445 }
21446
21447 /* We don't increment mac_ptr here, so this is just
21448 a look-ahead. */
21449 next_type
21450 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21451 mac_ptr);
21452 if (next_type != 0)
21453 complaint (&symfile_complaints,
21454 _("no terminating 0-type entry for "
21455 "macros in `.debug_macinfo' section"));
21456
21457 return;
21458 }
21459 }
21460 break;
21461
21462 case DW_MACRO_GNU_transparent_include:
21463 case DW_MACRO_GNU_transparent_include_alt:
21464 {
21465 LONGEST offset;
21466 void **slot;
21467 bfd *include_bfd = abfd;
21468 struct dwarf2_section_info *include_section = section;
21469 struct dwarf2_section_info alt_section;
21470 const gdb_byte *include_mac_end = mac_end;
21471 int is_dwz = section_is_dwz;
21472 const gdb_byte *new_mac_ptr;
21473
21474 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21475 mac_ptr += offset_size;
21476
21477 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21478 {
21479 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21480
21481 dwarf2_read_section (objfile, &dwz->macro);
21482
21483 include_section = &dwz->macro;
21484 include_bfd = get_section_bfd_owner (include_section);
21485 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21486 is_dwz = 1;
21487 }
21488
21489 new_mac_ptr = include_section->buffer + offset;
21490 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21491
21492 if (*slot != NULL)
21493 {
21494 /* This has actually happened; see
21495 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21496 complaint (&symfile_complaints,
21497 _("recursive DW_MACRO_GNU_transparent_include in "
21498 ".debug_macro section"));
21499 }
21500 else
21501 {
21502 *slot = (void *) new_mac_ptr;
21503
21504 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21505 include_mac_end, current_file, lh,
21506 section, section_is_gnu, is_dwz,
21507 offset_size, include_hash);
21508
21509 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21510 }
21511 }
21512 break;
21513
21514 case DW_MACINFO_vendor_ext:
21515 if (!section_is_gnu)
21516 {
21517 unsigned int bytes_read;
21518 int constant;
21519
21520 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21521 mac_ptr += bytes_read;
21522 read_direct_string (abfd, mac_ptr, &bytes_read);
21523 mac_ptr += bytes_read;
21524
21525 /* We don't recognize any vendor extensions. */
21526 break;
21527 }
21528 /* FALLTHROUGH */
21529
21530 default:
21531 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21532 mac_ptr, mac_end, abfd, offset_size,
21533 section);
21534 if (mac_ptr == NULL)
21535 return;
21536 break;
21537 }
21538 } while (macinfo_type != 0);
21539 }
21540
21541 static void
21542 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21543 int section_is_gnu)
21544 {
21545 struct objfile *objfile = dwarf2_per_objfile->objfile;
21546 struct line_header *lh = cu->line_header;
21547 bfd *abfd;
21548 const gdb_byte *mac_ptr, *mac_end;
21549 struct macro_source_file *current_file = 0;
21550 enum dwarf_macro_record_type macinfo_type;
21551 unsigned int offset_size = cu->header.offset_size;
21552 const gdb_byte *opcode_definitions[256];
21553 struct cleanup *cleanup;
21554 htab_t include_hash;
21555 void **slot;
21556 struct dwarf2_section_info *section;
21557 const char *section_name;
21558
21559 if (cu->dwo_unit != NULL)
21560 {
21561 if (section_is_gnu)
21562 {
21563 section = &cu->dwo_unit->dwo_file->sections.macro;
21564 section_name = ".debug_macro.dwo";
21565 }
21566 else
21567 {
21568 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21569 section_name = ".debug_macinfo.dwo";
21570 }
21571 }
21572 else
21573 {
21574 if (section_is_gnu)
21575 {
21576 section = &dwarf2_per_objfile->macro;
21577 section_name = ".debug_macro";
21578 }
21579 else
21580 {
21581 section = &dwarf2_per_objfile->macinfo;
21582 section_name = ".debug_macinfo";
21583 }
21584 }
21585
21586 dwarf2_read_section (objfile, section);
21587 if (section->buffer == NULL)
21588 {
21589 complaint (&symfile_complaints, _("missing %s section"), section_name);
21590 return;
21591 }
21592 abfd = get_section_bfd_owner (section);
21593
21594 /* First pass: Find the name of the base filename.
21595 This filename is needed in order to process all macros whose definition
21596 (or undefinition) comes from the command line. These macros are defined
21597 before the first DW_MACINFO_start_file entry, and yet still need to be
21598 associated to the base file.
21599
21600 To determine the base file name, we scan the macro definitions until we
21601 reach the first DW_MACINFO_start_file entry. We then initialize
21602 CURRENT_FILE accordingly so that any macro definition found before the
21603 first DW_MACINFO_start_file can still be associated to the base file. */
21604
21605 mac_ptr = section->buffer + offset;
21606 mac_end = section->buffer + section->size;
21607
21608 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21609 &offset_size, section_is_gnu);
21610 if (mac_ptr == NULL)
21611 {
21612 /* We already issued a complaint. */
21613 return;
21614 }
21615
21616 do
21617 {
21618 /* Do we at least have room for a macinfo type byte? */
21619 if (mac_ptr >= mac_end)
21620 {
21621 /* Complaint is printed during the second pass as GDB will probably
21622 stop the first pass earlier upon finding
21623 DW_MACINFO_start_file. */
21624 break;
21625 }
21626
21627 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21628 mac_ptr++;
21629
21630 /* Note that we rely on the fact that the corresponding GNU and
21631 DWARF constants are the same. */
21632 switch (macinfo_type)
21633 {
21634 /* A zero macinfo type indicates the end of the macro
21635 information. */
21636 case 0:
21637 break;
21638
21639 case DW_MACRO_GNU_define:
21640 case DW_MACRO_GNU_undef:
21641 /* Only skip the data by MAC_PTR. */
21642 {
21643 unsigned int bytes_read;
21644
21645 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21646 mac_ptr += bytes_read;
21647 read_direct_string (abfd, mac_ptr, &bytes_read);
21648 mac_ptr += bytes_read;
21649 }
21650 break;
21651
21652 case DW_MACRO_GNU_start_file:
21653 {
21654 unsigned int bytes_read;
21655 int line, file;
21656
21657 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21658 mac_ptr += bytes_read;
21659 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21660 mac_ptr += bytes_read;
21661
21662 current_file = macro_start_file (file, line, current_file, lh);
21663 }
21664 break;
21665
21666 case DW_MACRO_GNU_end_file:
21667 /* No data to skip by MAC_PTR. */
21668 break;
21669
21670 case DW_MACRO_GNU_define_indirect:
21671 case DW_MACRO_GNU_undef_indirect:
21672 case DW_MACRO_GNU_define_indirect_alt:
21673 case DW_MACRO_GNU_undef_indirect_alt:
21674 {
21675 unsigned int bytes_read;
21676
21677 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21678 mac_ptr += bytes_read;
21679 mac_ptr += offset_size;
21680 }
21681 break;
21682
21683 case DW_MACRO_GNU_transparent_include:
21684 case DW_MACRO_GNU_transparent_include_alt:
21685 /* Note that, according to the spec, a transparent include
21686 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21687 skip this opcode. */
21688 mac_ptr += offset_size;
21689 break;
21690
21691 case DW_MACINFO_vendor_ext:
21692 /* Only skip the data by MAC_PTR. */
21693 if (!section_is_gnu)
21694 {
21695 unsigned int bytes_read;
21696
21697 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21698 mac_ptr += bytes_read;
21699 read_direct_string (abfd, mac_ptr, &bytes_read);
21700 mac_ptr += bytes_read;
21701 }
21702 /* FALLTHROUGH */
21703
21704 default:
21705 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21706 mac_ptr, mac_end, abfd, offset_size,
21707 section);
21708 if (mac_ptr == NULL)
21709 return;
21710 break;
21711 }
21712 } while (macinfo_type != 0 && current_file == NULL);
21713
21714 /* Second pass: Process all entries.
21715
21716 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21717 command-line macro definitions/undefinitions. This flag is unset when we
21718 reach the first DW_MACINFO_start_file entry. */
21719
21720 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21721 NULL, xcalloc, xfree);
21722 cleanup = make_cleanup_htab_delete (include_hash);
21723 mac_ptr = section->buffer + offset;
21724 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21725 *slot = (void *) mac_ptr;
21726 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21727 current_file, lh, section,
21728 section_is_gnu, 0, offset_size, include_hash);
21729 do_cleanups (cleanup);
21730 }
21731
21732 /* Check if the attribute's form is a DW_FORM_block*
21733 if so return true else false. */
21734
21735 static int
21736 attr_form_is_block (const struct attribute *attr)
21737 {
21738 return (attr == NULL ? 0 :
21739 attr->form == DW_FORM_block1
21740 || attr->form == DW_FORM_block2
21741 || attr->form == DW_FORM_block4
21742 || attr->form == DW_FORM_block
21743 || attr->form == DW_FORM_exprloc);
21744 }
21745
21746 /* Return non-zero if ATTR's value is a section offset --- classes
21747 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21748 You may use DW_UNSND (attr) to retrieve such offsets.
21749
21750 Section 7.5.4, "Attribute Encodings", explains that no attribute
21751 may have a value that belongs to more than one of these classes; it
21752 would be ambiguous if we did, because we use the same forms for all
21753 of them. */
21754
21755 static int
21756 attr_form_is_section_offset (const struct attribute *attr)
21757 {
21758 return (attr->form == DW_FORM_data4
21759 || attr->form == DW_FORM_data8
21760 || attr->form == DW_FORM_sec_offset);
21761 }
21762
21763 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21764 zero otherwise. When this function returns true, you can apply
21765 dwarf2_get_attr_constant_value to it.
21766
21767 However, note that for some attributes you must check
21768 attr_form_is_section_offset before using this test. DW_FORM_data4
21769 and DW_FORM_data8 are members of both the constant class, and of
21770 the classes that contain offsets into other debug sections
21771 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21772 that, if an attribute's can be either a constant or one of the
21773 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21774 taken as section offsets, not constants. */
21775
21776 static int
21777 attr_form_is_constant (const struct attribute *attr)
21778 {
21779 switch (attr->form)
21780 {
21781 case DW_FORM_sdata:
21782 case DW_FORM_udata:
21783 case DW_FORM_data1:
21784 case DW_FORM_data2:
21785 case DW_FORM_data4:
21786 case DW_FORM_data8:
21787 return 1;
21788 default:
21789 return 0;
21790 }
21791 }
21792
21793
21794 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21795 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21796
21797 static int
21798 attr_form_is_ref (const struct attribute *attr)
21799 {
21800 switch (attr->form)
21801 {
21802 case DW_FORM_ref_addr:
21803 case DW_FORM_ref1:
21804 case DW_FORM_ref2:
21805 case DW_FORM_ref4:
21806 case DW_FORM_ref8:
21807 case DW_FORM_ref_udata:
21808 case DW_FORM_GNU_ref_alt:
21809 return 1;
21810 default:
21811 return 0;
21812 }
21813 }
21814
21815 /* Return the .debug_loc section to use for CU.
21816 For DWO files use .debug_loc.dwo. */
21817
21818 static struct dwarf2_section_info *
21819 cu_debug_loc_section (struct dwarf2_cu *cu)
21820 {
21821 if (cu->dwo_unit)
21822 return &cu->dwo_unit->dwo_file->sections.loc;
21823 return &dwarf2_per_objfile->loc;
21824 }
21825
21826 /* A helper function that fills in a dwarf2_loclist_baton. */
21827
21828 static void
21829 fill_in_loclist_baton (struct dwarf2_cu *cu,
21830 struct dwarf2_loclist_baton *baton,
21831 const struct attribute *attr)
21832 {
21833 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21834
21835 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21836
21837 baton->per_cu = cu->per_cu;
21838 gdb_assert (baton->per_cu);
21839 /* We don't know how long the location list is, but make sure we
21840 don't run off the edge of the section. */
21841 baton->size = section->size - DW_UNSND (attr);
21842 baton->data = section->buffer + DW_UNSND (attr);
21843 baton->base_address = cu->base_address;
21844 baton->from_dwo = cu->dwo_unit != NULL;
21845 }
21846
21847 static void
21848 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21849 struct dwarf2_cu *cu, int is_block)
21850 {
21851 struct objfile *objfile = dwarf2_per_objfile->objfile;
21852 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21853
21854 if (attr_form_is_section_offset (attr)
21855 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21856 the section. If so, fall through to the complaint in the
21857 other branch. */
21858 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21859 {
21860 struct dwarf2_loclist_baton *baton;
21861
21862 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21863
21864 fill_in_loclist_baton (cu, baton, attr);
21865
21866 if (cu->base_known == 0)
21867 complaint (&symfile_complaints,
21868 _("Location list used without "
21869 "specifying the CU base address."));
21870
21871 SYMBOL_ACLASS_INDEX (sym) = (is_block
21872 ? dwarf2_loclist_block_index
21873 : dwarf2_loclist_index);
21874 SYMBOL_LOCATION_BATON (sym) = baton;
21875 }
21876 else
21877 {
21878 struct dwarf2_locexpr_baton *baton;
21879
21880 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21881 baton->per_cu = cu->per_cu;
21882 gdb_assert (baton->per_cu);
21883
21884 if (attr_form_is_block (attr))
21885 {
21886 /* Note that we're just copying the block's data pointer
21887 here, not the actual data. We're still pointing into the
21888 info_buffer for SYM's objfile; right now we never release
21889 that buffer, but when we do clean up properly this may
21890 need to change. */
21891 baton->size = DW_BLOCK (attr)->size;
21892 baton->data = DW_BLOCK (attr)->data;
21893 }
21894 else
21895 {
21896 dwarf2_invalid_attrib_class_complaint ("location description",
21897 SYMBOL_NATURAL_NAME (sym));
21898 baton->size = 0;
21899 }
21900
21901 SYMBOL_ACLASS_INDEX (sym) = (is_block
21902 ? dwarf2_locexpr_block_index
21903 : dwarf2_locexpr_index);
21904 SYMBOL_LOCATION_BATON (sym) = baton;
21905 }
21906 }
21907
21908 /* Return the OBJFILE associated with the compilation unit CU. If CU
21909 came from a separate debuginfo file, then the master objfile is
21910 returned. */
21911
21912 struct objfile *
21913 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21914 {
21915 struct objfile *objfile = per_cu->objfile;
21916
21917 /* Return the master objfile, so that we can report and look up the
21918 correct file containing this variable. */
21919 if (objfile->separate_debug_objfile_backlink)
21920 objfile = objfile->separate_debug_objfile_backlink;
21921
21922 return objfile;
21923 }
21924
21925 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21926 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21927 CU_HEADERP first. */
21928
21929 static const struct comp_unit_head *
21930 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21931 struct dwarf2_per_cu_data *per_cu)
21932 {
21933 const gdb_byte *info_ptr;
21934
21935 if (per_cu->cu)
21936 return &per_cu->cu->header;
21937
21938 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21939
21940 memset (cu_headerp, 0, sizeof (*cu_headerp));
21941 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21942
21943 return cu_headerp;
21944 }
21945
21946 /* Return the address size given in the compilation unit header for CU. */
21947
21948 int
21949 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21950 {
21951 struct comp_unit_head cu_header_local;
21952 const struct comp_unit_head *cu_headerp;
21953
21954 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21955
21956 return cu_headerp->addr_size;
21957 }
21958
21959 /* Return the offset size given in the compilation unit header for CU. */
21960
21961 int
21962 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21963 {
21964 struct comp_unit_head cu_header_local;
21965 const struct comp_unit_head *cu_headerp;
21966
21967 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21968
21969 return cu_headerp->offset_size;
21970 }
21971
21972 /* See its dwarf2loc.h declaration. */
21973
21974 int
21975 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21976 {
21977 struct comp_unit_head cu_header_local;
21978 const struct comp_unit_head *cu_headerp;
21979
21980 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21981
21982 if (cu_headerp->version == 2)
21983 return cu_headerp->addr_size;
21984 else
21985 return cu_headerp->offset_size;
21986 }
21987
21988 /* Return the text offset of the CU. The returned offset comes from
21989 this CU's objfile. If this objfile came from a separate debuginfo
21990 file, then the offset may be different from the corresponding
21991 offset in the parent objfile. */
21992
21993 CORE_ADDR
21994 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21995 {
21996 struct objfile *objfile = per_cu->objfile;
21997
21998 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21999 }
22000
22001 /* Locate the .debug_info compilation unit from CU's objfile which contains
22002 the DIE at OFFSET. Raises an error on failure. */
22003
22004 static struct dwarf2_per_cu_data *
22005 dwarf2_find_containing_comp_unit (sect_offset offset,
22006 unsigned int offset_in_dwz,
22007 struct objfile *objfile)
22008 {
22009 struct dwarf2_per_cu_data *this_cu;
22010 int low, high;
22011 const sect_offset *cu_off;
22012
22013 low = 0;
22014 high = dwarf2_per_objfile->n_comp_units - 1;
22015 while (high > low)
22016 {
22017 struct dwarf2_per_cu_data *mid_cu;
22018 int mid = low + (high - low) / 2;
22019
22020 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22021 cu_off = &mid_cu->offset;
22022 if (mid_cu->is_dwz > offset_in_dwz
22023 || (mid_cu->is_dwz == offset_in_dwz
22024 && cu_off->sect_off >= offset.sect_off))
22025 high = mid;
22026 else
22027 low = mid + 1;
22028 }
22029 gdb_assert (low == high);
22030 this_cu = dwarf2_per_objfile->all_comp_units[low];
22031 cu_off = &this_cu->offset;
22032 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22033 {
22034 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22035 error (_("Dwarf Error: could not find partial DIE containing "
22036 "offset 0x%lx [in module %s]"),
22037 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22038
22039 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22040 <= offset.sect_off);
22041 return dwarf2_per_objfile->all_comp_units[low-1];
22042 }
22043 else
22044 {
22045 this_cu = dwarf2_per_objfile->all_comp_units[low];
22046 if (low == dwarf2_per_objfile->n_comp_units - 1
22047 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22048 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22049 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22050 return this_cu;
22051 }
22052 }
22053
22054 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22055
22056 static void
22057 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22058 {
22059 memset (cu, 0, sizeof (*cu));
22060 per_cu->cu = cu;
22061 cu->per_cu = per_cu;
22062 cu->objfile = per_cu->objfile;
22063 obstack_init (&cu->comp_unit_obstack);
22064 }
22065
22066 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22067
22068 static void
22069 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22070 enum language pretend_language)
22071 {
22072 struct attribute *attr;
22073
22074 /* Set the language we're debugging. */
22075 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22076 if (attr)
22077 set_cu_language (DW_UNSND (attr), cu);
22078 else
22079 {
22080 cu->language = pretend_language;
22081 cu->language_defn = language_def (cu->language);
22082 }
22083
22084 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22085 }
22086
22087 /* Release one cached compilation unit, CU. We unlink it from the tree
22088 of compilation units, but we don't remove it from the read_in_chain;
22089 the caller is responsible for that.
22090 NOTE: DATA is a void * because this function is also used as a
22091 cleanup routine. */
22092
22093 static void
22094 free_heap_comp_unit (void *data)
22095 {
22096 struct dwarf2_cu *cu = data;
22097
22098 gdb_assert (cu->per_cu != NULL);
22099 cu->per_cu->cu = NULL;
22100 cu->per_cu = NULL;
22101
22102 obstack_free (&cu->comp_unit_obstack, NULL);
22103
22104 xfree (cu);
22105 }
22106
22107 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22108 when we're finished with it. We can't free the pointer itself, but be
22109 sure to unlink it from the cache. Also release any associated storage. */
22110
22111 static void
22112 free_stack_comp_unit (void *data)
22113 {
22114 struct dwarf2_cu *cu = data;
22115
22116 gdb_assert (cu->per_cu != NULL);
22117 cu->per_cu->cu = NULL;
22118 cu->per_cu = NULL;
22119
22120 obstack_free (&cu->comp_unit_obstack, NULL);
22121 cu->partial_dies = NULL;
22122 }
22123
22124 /* Free all cached compilation units. */
22125
22126 static void
22127 free_cached_comp_units (void *data)
22128 {
22129 struct dwarf2_per_cu_data *per_cu, **last_chain;
22130
22131 per_cu = dwarf2_per_objfile->read_in_chain;
22132 last_chain = &dwarf2_per_objfile->read_in_chain;
22133 while (per_cu != NULL)
22134 {
22135 struct dwarf2_per_cu_data *next_cu;
22136
22137 next_cu = per_cu->cu->read_in_chain;
22138
22139 free_heap_comp_unit (per_cu->cu);
22140 *last_chain = next_cu;
22141
22142 per_cu = next_cu;
22143 }
22144 }
22145
22146 /* Increase the age counter on each cached compilation unit, and free
22147 any that are too old. */
22148
22149 static void
22150 age_cached_comp_units (void)
22151 {
22152 struct dwarf2_per_cu_data *per_cu, **last_chain;
22153
22154 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22155 per_cu = dwarf2_per_objfile->read_in_chain;
22156 while (per_cu != NULL)
22157 {
22158 per_cu->cu->last_used ++;
22159 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22160 dwarf2_mark (per_cu->cu);
22161 per_cu = per_cu->cu->read_in_chain;
22162 }
22163
22164 per_cu = dwarf2_per_objfile->read_in_chain;
22165 last_chain = &dwarf2_per_objfile->read_in_chain;
22166 while (per_cu != NULL)
22167 {
22168 struct dwarf2_per_cu_data *next_cu;
22169
22170 next_cu = per_cu->cu->read_in_chain;
22171
22172 if (!per_cu->cu->mark)
22173 {
22174 free_heap_comp_unit (per_cu->cu);
22175 *last_chain = next_cu;
22176 }
22177 else
22178 last_chain = &per_cu->cu->read_in_chain;
22179
22180 per_cu = next_cu;
22181 }
22182 }
22183
22184 /* Remove a single compilation unit from the cache. */
22185
22186 static void
22187 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22188 {
22189 struct dwarf2_per_cu_data *per_cu, **last_chain;
22190
22191 per_cu = dwarf2_per_objfile->read_in_chain;
22192 last_chain = &dwarf2_per_objfile->read_in_chain;
22193 while (per_cu != NULL)
22194 {
22195 struct dwarf2_per_cu_data *next_cu;
22196
22197 next_cu = per_cu->cu->read_in_chain;
22198
22199 if (per_cu == target_per_cu)
22200 {
22201 free_heap_comp_unit (per_cu->cu);
22202 per_cu->cu = NULL;
22203 *last_chain = next_cu;
22204 break;
22205 }
22206 else
22207 last_chain = &per_cu->cu->read_in_chain;
22208
22209 per_cu = next_cu;
22210 }
22211 }
22212
22213 /* Release all extra memory associated with OBJFILE. */
22214
22215 void
22216 dwarf2_free_objfile (struct objfile *objfile)
22217 {
22218 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22219
22220 if (dwarf2_per_objfile == NULL)
22221 return;
22222
22223 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22224 free_cached_comp_units (NULL);
22225
22226 if (dwarf2_per_objfile->quick_file_names_table)
22227 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22228
22229 if (dwarf2_per_objfile->line_header_hash)
22230 htab_delete (dwarf2_per_objfile->line_header_hash);
22231
22232 /* Everything else should be on the objfile obstack. */
22233 }
22234
22235 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22236 We store these in a hash table separate from the DIEs, and preserve them
22237 when the DIEs are flushed out of cache.
22238
22239 The CU "per_cu" pointer is needed because offset alone is not enough to
22240 uniquely identify the type. A file may have multiple .debug_types sections,
22241 or the type may come from a DWO file. Furthermore, while it's more logical
22242 to use per_cu->section+offset, with Fission the section with the data is in
22243 the DWO file but we don't know that section at the point we need it.
22244 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22245 because we can enter the lookup routine, get_die_type_at_offset, from
22246 outside this file, and thus won't necessarily have PER_CU->cu.
22247 Fortunately, PER_CU is stable for the life of the objfile. */
22248
22249 struct dwarf2_per_cu_offset_and_type
22250 {
22251 const struct dwarf2_per_cu_data *per_cu;
22252 sect_offset offset;
22253 struct type *type;
22254 };
22255
22256 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22257
22258 static hashval_t
22259 per_cu_offset_and_type_hash (const void *item)
22260 {
22261 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22262
22263 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22264 }
22265
22266 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22267
22268 static int
22269 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22270 {
22271 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22272 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22273
22274 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22275 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22276 }
22277
22278 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22279 table if necessary. For convenience, return TYPE.
22280
22281 The DIEs reading must have careful ordering to:
22282 * Not cause infite loops trying to read in DIEs as a prerequisite for
22283 reading current DIE.
22284 * Not trying to dereference contents of still incompletely read in types
22285 while reading in other DIEs.
22286 * Enable referencing still incompletely read in types just by a pointer to
22287 the type without accessing its fields.
22288
22289 Therefore caller should follow these rules:
22290 * Try to fetch any prerequisite types we may need to build this DIE type
22291 before building the type and calling set_die_type.
22292 * After building type call set_die_type for current DIE as soon as
22293 possible before fetching more types to complete the current type.
22294 * Make the type as complete as possible before fetching more types. */
22295
22296 static struct type *
22297 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22298 {
22299 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22300 struct objfile *objfile = cu->objfile;
22301 struct attribute *attr;
22302 struct dynamic_prop prop;
22303
22304 /* For Ada types, make sure that the gnat-specific data is always
22305 initialized (if not already set). There are a few types where
22306 we should not be doing so, because the type-specific area is
22307 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22308 where the type-specific area is used to store the floatformat).
22309 But this is not a problem, because the gnat-specific information
22310 is actually not needed for these types. */
22311 if (need_gnat_info (cu)
22312 && TYPE_CODE (type) != TYPE_CODE_FUNC
22313 && TYPE_CODE (type) != TYPE_CODE_FLT
22314 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22315 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22316 && TYPE_CODE (type) != TYPE_CODE_METHOD
22317 && !HAVE_GNAT_AUX_INFO (type))
22318 INIT_GNAT_SPECIFIC (type);
22319
22320 /* Read DW_AT_data_location and set in type. */
22321 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22322 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22323 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22324
22325 if (dwarf2_per_objfile->die_type_hash == NULL)
22326 {
22327 dwarf2_per_objfile->die_type_hash =
22328 htab_create_alloc_ex (127,
22329 per_cu_offset_and_type_hash,
22330 per_cu_offset_and_type_eq,
22331 NULL,
22332 &objfile->objfile_obstack,
22333 hashtab_obstack_allocate,
22334 dummy_obstack_deallocate);
22335 }
22336
22337 ofs.per_cu = cu->per_cu;
22338 ofs.offset = die->offset;
22339 ofs.type = type;
22340 slot = (struct dwarf2_per_cu_offset_and_type **)
22341 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22342 if (*slot)
22343 complaint (&symfile_complaints,
22344 _("A problem internal to GDB: DIE 0x%x has type already set"),
22345 die->offset.sect_off);
22346 *slot = XOBNEW (&objfile->objfile_obstack,
22347 struct dwarf2_per_cu_offset_and_type);
22348 **slot = ofs;
22349 return type;
22350 }
22351
22352 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22353 or return NULL if the die does not have a saved type. */
22354
22355 static struct type *
22356 get_die_type_at_offset (sect_offset offset,
22357 struct dwarf2_per_cu_data *per_cu)
22358 {
22359 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22360
22361 if (dwarf2_per_objfile->die_type_hash == NULL)
22362 return NULL;
22363
22364 ofs.per_cu = per_cu;
22365 ofs.offset = offset;
22366 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22367 if (slot)
22368 return slot->type;
22369 else
22370 return NULL;
22371 }
22372
22373 /* Look up the type for DIE in CU in die_type_hash,
22374 or return NULL if DIE does not have a saved type. */
22375
22376 static struct type *
22377 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22378 {
22379 return get_die_type_at_offset (die->offset, cu->per_cu);
22380 }
22381
22382 /* Add a dependence relationship from CU to REF_PER_CU. */
22383
22384 static void
22385 dwarf2_add_dependence (struct dwarf2_cu *cu,
22386 struct dwarf2_per_cu_data *ref_per_cu)
22387 {
22388 void **slot;
22389
22390 if (cu->dependencies == NULL)
22391 cu->dependencies
22392 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22393 NULL, &cu->comp_unit_obstack,
22394 hashtab_obstack_allocate,
22395 dummy_obstack_deallocate);
22396
22397 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22398 if (*slot == NULL)
22399 *slot = ref_per_cu;
22400 }
22401
22402 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22403 Set the mark field in every compilation unit in the
22404 cache that we must keep because we are keeping CU. */
22405
22406 static int
22407 dwarf2_mark_helper (void **slot, void *data)
22408 {
22409 struct dwarf2_per_cu_data *per_cu;
22410
22411 per_cu = (struct dwarf2_per_cu_data *) *slot;
22412
22413 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22414 reading of the chain. As such dependencies remain valid it is not much
22415 useful to track and undo them during QUIT cleanups. */
22416 if (per_cu->cu == NULL)
22417 return 1;
22418
22419 if (per_cu->cu->mark)
22420 return 1;
22421 per_cu->cu->mark = 1;
22422
22423 if (per_cu->cu->dependencies != NULL)
22424 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22425
22426 return 1;
22427 }
22428
22429 /* Set the mark field in CU and in every other compilation unit in the
22430 cache that we must keep because we are keeping CU. */
22431
22432 static void
22433 dwarf2_mark (struct dwarf2_cu *cu)
22434 {
22435 if (cu->mark)
22436 return;
22437 cu->mark = 1;
22438 if (cu->dependencies != NULL)
22439 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22440 }
22441
22442 static void
22443 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22444 {
22445 while (per_cu)
22446 {
22447 per_cu->cu->mark = 0;
22448 per_cu = per_cu->cu->read_in_chain;
22449 }
22450 }
22451
22452 /* Trivial hash function for partial_die_info: the hash value of a DIE
22453 is its offset in .debug_info for this objfile. */
22454
22455 static hashval_t
22456 partial_die_hash (const void *item)
22457 {
22458 const struct partial_die_info *part_die = item;
22459
22460 return part_die->offset.sect_off;
22461 }
22462
22463 /* Trivial comparison function for partial_die_info structures: two DIEs
22464 are equal if they have the same offset. */
22465
22466 static int
22467 partial_die_eq (const void *item_lhs, const void *item_rhs)
22468 {
22469 const struct partial_die_info *part_die_lhs = item_lhs;
22470 const struct partial_die_info *part_die_rhs = item_rhs;
22471
22472 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22473 }
22474
22475 static struct cmd_list_element *set_dwarf_cmdlist;
22476 static struct cmd_list_element *show_dwarf_cmdlist;
22477
22478 static void
22479 set_dwarf_cmd (char *args, int from_tty)
22480 {
22481 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22482 gdb_stdout);
22483 }
22484
22485 static void
22486 show_dwarf_cmd (char *args, int from_tty)
22487 {
22488 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22489 }
22490
22491 /* Free data associated with OBJFILE, if necessary. */
22492
22493 static void
22494 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22495 {
22496 struct dwarf2_per_objfile *data = d;
22497 int ix;
22498
22499 /* Make sure we don't accidentally use dwarf2_per_objfile while
22500 cleaning up. */
22501 dwarf2_per_objfile = NULL;
22502
22503 for (ix = 0; ix < data->n_comp_units; ++ix)
22504 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22505
22506 for (ix = 0; ix < data->n_type_units; ++ix)
22507 VEC_free (dwarf2_per_cu_ptr,
22508 data->all_type_units[ix]->per_cu.imported_symtabs);
22509 xfree (data->all_type_units);
22510
22511 VEC_free (dwarf2_section_info_def, data->types);
22512
22513 if (data->dwo_files)
22514 free_dwo_files (data->dwo_files, objfile);
22515 if (data->dwp_file)
22516 gdb_bfd_unref (data->dwp_file->dbfd);
22517
22518 if (data->dwz_file && data->dwz_file->dwz_bfd)
22519 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22520 }
22521
22522 \f
22523 /* The "save gdb-index" command. */
22524
22525 /* The contents of the hash table we create when building the string
22526 table. */
22527 struct strtab_entry
22528 {
22529 offset_type offset;
22530 const char *str;
22531 };
22532
22533 /* Hash function for a strtab_entry.
22534
22535 Function is used only during write_hash_table so no index format backward
22536 compatibility is needed. */
22537
22538 static hashval_t
22539 hash_strtab_entry (const void *e)
22540 {
22541 const struct strtab_entry *entry = e;
22542 return mapped_index_string_hash (INT_MAX, entry->str);
22543 }
22544
22545 /* Equality function for a strtab_entry. */
22546
22547 static int
22548 eq_strtab_entry (const void *a, const void *b)
22549 {
22550 const struct strtab_entry *ea = a;
22551 const struct strtab_entry *eb = b;
22552 return !strcmp (ea->str, eb->str);
22553 }
22554
22555 /* Create a strtab_entry hash table. */
22556
22557 static htab_t
22558 create_strtab (void)
22559 {
22560 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22561 xfree, xcalloc, xfree);
22562 }
22563
22564 /* Add a string to the constant pool. Return the string's offset in
22565 host order. */
22566
22567 static offset_type
22568 add_string (htab_t table, struct obstack *cpool, const char *str)
22569 {
22570 void **slot;
22571 struct strtab_entry entry;
22572 struct strtab_entry *result;
22573
22574 entry.str = str;
22575 slot = htab_find_slot (table, &entry, INSERT);
22576 if (*slot)
22577 result = *slot;
22578 else
22579 {
22580 result = XNEW (struct strtab_entry);
22581 result->offset = obstack_object_size (cpool);
22582 result->str = str;
22583 obstack_grow_str0 (cpool, str);
22584 *slot = result;
22585 }
22586 return result->offset;
22587 }
22588
22589 /* An entry in the symbol table. */
22590 struct symtab_index_entry
22591 {
22592 /* The name of the symbol. */
22593 const char *name;
22594 /* The offset of the name in the constant pool. */
22595 offset_type index_offset;
22596 /* A sorted vector of the indices of all the CUs that hold an object
22597 of this name. */
22598 VEC (offset_type) *cu_indices;
22599 };
22600
22601 /* The symbol table. This is a power-of-2-sized hash table. */
22602 struct mapped_symtab
22603 {
22604 offset_type n_elements;
22605 offset_type size;
22606 struct symtab_index_entry **data;
22607 };
22608
22609 /* Hash function for a symtab_index_entry. */
22610
22611 static hashval_t
22612 hash_symtab_entry (const void *e)
22613 {
22614 const struct symtab_index_entry *entry = e;
22615 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22616 sizeof (offset_type) * VEC_length (offset_type,
22617 entry->cu_indices),
22618 0);
22619 }
22620
22621 /* Equality function for a symtab_index_entry. */
22622
22623 static int
22624 eq_symtab_entry (const void *a, const void *b)
22625 {
22626 const struct symtab_index_entry *ea = a;
22627 const struct symtab_index_entry *eb = b;
22628 int len = VEC_length (offset_type, ea->cu_indices);
22629 if (len != VEC_length (offset_type, eb->cu_indices))
22630 return 0;
22631 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22632 VEC_address (offset_type, eb->cu_indices),
22633 sizeof (offset_type) * len);
22634 }
22635
22636 /* Destroy a symtab_index_entry. */
22637
22638 static void
22639 delete_symtab_entry (void *p)
22640 {
22641 struct symtab_index_entry *entry = p;
22642 VEC_free (offset_type, entry->cu_indices);
22643 xfree (entry);
22644 }
22645
22646 /* Create a hash table holding symtab_index_entry objects. */
22647
22648 static htab_t
22649 create_symbol_hash_table (void)
22650 {
22651 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22652 delete_symtab_entry, xcalloc, xfree);
22653 }
22654
22655 /* Create a new mapped symtab object. */
22656
22657 static struct mapped_symtab *
22658 create_mapped_symtab (void)
22659 {
22660 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22661 symtab->n_elements = 0;
22662 symtab->size = 1024;
22663 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22664 return symtab;
22665 }
22666
22667 /* Destroy a mapped_symtab. */
22668
22669 static void
22670 cleanup_mapped_symtab (void *p)
22671 {
22672 struct mapped_symtab *symtab = p;
22673 /* The contents of the array are freed when the other hash table is
22674 destroyed. */
22675 xfree (symtab->data);
22676 xfree (symtab);
22677 }
22678
22679 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22680 the slot.
22681
22682 Function is used only during write_hash_table so no index format backward
22683 compatibility is needed. */
22684
22685 static struct symtab_index_entry **
22686 find_slot (struct mapped_symtab *symtab, const char *name)
22687 {
22688 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22689
22690 index = hash & (symtab->size - 1);
22691 step = ((hash * 17) & (symtab->size - 1)) | 1;
22692
22693 for (;;)
22694 {
22695 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22696 return &symtab->data[index];
22697 index = (index + step) & (symtab->size - 1);
22698 }
22699 }
22700
22701 /* Expand SYMTAB's hash table. */
22702
22703 static void
22704 hash_expand (struct mapped_symtab *symtab)
22705 {
22706 offset_type old_size = symtab->size;
22707 offset_type i;
22708 struct symtab_index_entry **old_entries = symtab->data;
22709
22710 symtab->size *= 2;
22711 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22712
22713 for (i = 0; i < old_size; ++i)
22714 {
22715 if (old_entries[i])
22716 {
22717 struct symtab_index_entry **slot = find_slot (symtab,
22718 old_entries[i]->name);
22719 *slot = old_entries[i];
22720 }
22721 }
22722
22723 xfree (old_entries);
22724 }
22725
22726 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22727 CU_INDEX is the index of the CU in which the symbol appears.
22728 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22729
22730 static void
22731 add_index_entry (struct mapped_symtab *symtab, const char *name,
22732 int is_static, gdb_index_symbol_kind kind,
22733 offset_type cu_index)
22734 {
22735 struct symtab_index_entry **slot;
22736 offset_type cu_index_and_attrs;
22737
22738 ++symtab->n_elements;
22739 if (4 * symtab->n_elements / 3 >= symtab->size)
22740 hash_expand (symtab);
22741
22742 slot = find_slot (symtab, name);
22743 if (!*slot)
22744 {
22745 *slot = XNEW (struct symtab_index_entry);
22746 (*slot)->name = name;
22747 /* index_offset is set later. */
22748 (*slot)->cu_indices = NULL;
22749 }
22750
22751 cu_index_and_attrs = 0;
22752 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22753 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22754 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22755
22756 /* We don't want to record an index value twice as we want to avoid the
22757 duplication.
22758 We process all global symbols and then all static symbols
22759 (which would allow us to avoid the duplication by only having to check
22760 the last entry pushed), but a symbol could have multiple kinds in one CU.
22761 To keep things simple we don't worry about the duplication here and
22762 sort and uniqufy the list after we've processed all symbols. */
22763 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22764 }
22765
22766 /* qsort helper routine for uniquify_cu_indices. */
22767
22768 static int
22769 offset_type_compare (const void *ap, const void *bp)
22770 {
22771 offset_type a = *(offset_type *) ap;
22772 offset_type b = *(offset_type *) bp;
22773
22774 return (a > b) - (b > a);
22775 }
22776
22777 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22778
22779 static void
22780 uniquify_cu_indices (struct mapped_symtab *symtab)
22781 {
22782 int i;
22783
22784 for (i = 0; i < symtab->size; ++i)
22785 {
22786 struct symtab_index_entry *entry = symtab->data[i];
22787
22788 if (entry
22789 && entry->cu_indices != NULL)
22790 {
22791 unsigned int next_to_insert, next_to_check;
22792 offset_type last_value;
22793
22794 qsort (VEC_address (offset_type, entry->cu_indices),
22795 VEC_length (offset_type, entry->cu_indices),
22796 sizeof (offset_type), offset_type_compare);
22797
22798 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22799 next_to_insert = 1;
22800 for (next_to_check = 1;
22801 next_to_check < VEC_length (offset_type, entry->cu_indices);
22802 ++next_to_check)
22803 {
22804 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22805 != last_value)
22806 {
22807 last_value = VEC_index (offset_type, entry->cu_indices,
22808 next_to_check);
22809 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22810 last_value);
22811 ++next_to_insert;
22812 }
22813 }
22814 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22815 }
22816 }
22817 }
22818
22819 /* Add a vector of indices to the constant pool. */
22820
22821 static offset_type
22822 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22823 struct symtab_index_entry *entry)
22824 {
22825 void **slot;
22826
22827 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22828 if (!*slot)
22829 {
22830 offset_type len = VEC_length (offset_type, entry->cu_indices);
22831 offset_type val = MAYBE_SWAP (len);
22832 offset_type iter;
22833 int i;
22834
22835 *slot = entry;
22836 entry->index_offset = obstack_object_size (cpool);
22837
22838 obstack_grow (cpool, &val, sizeof (val));
22839 for (i = 0;
22840 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22841 ++i)
22842 {
22843 val = MAYBE_SWAP (iter);
22844 obstack_grow (cpool, &val, sizeof (val));
22845 }
22846 }
22847 else
22848 {
22849 struct symtab_index_entry *old_entry = *slot;
22850 entry->index_offset = old_entry->index_offset;
22851 entry = old_entry;
22852 }
22853 return entry->index_offset;
22854 }
22855
22856 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22857 constant pool entries going into the obstack CPOOL. */
22858
22859 static void
22860 write_hash_table (struct mapped_symtab *symtab,
22861 struct obstack *output, struct obstack *cpool)
22862 {
22863 offset_type i;
22864 htab_t symbol_hash_table;
22865 htab_t str_table;
22866
22867 symbol_hash_table = create_symbol_hash_table ();
22868 str_table = create_strtab ();
22869
22870 /* We add all the index vectors to the constant pool first, to
22871 ensure alignment is ok. */
22872 for (i = 0; i < symtab->size; ++i)
22873 {
22874 if (symtab->data[i])
22875 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22876 }
22877
22878 /* Now write out the hash table. */
22879 for (i = 0; i < symtab->size; ++i)
22880 {
22881 offset_type str_off, vec_off;
22882
22883 if (symtab->data[i])
22884 {
22885 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22886 vec_off = symtab->data[i]->index_offset;
22887 }
22888 else
22889 {
22890 /* While 0 is a valid constant pool index, it is not valid
22891 to have 0 for both offsets. */
22892 str_off = 0;
22893 vec_off = 0;
22894 }
22895
22896 str_off = MAYBE_SWAP (str_off);
22897 vec_off = MAYBE_SWAP (vec_off);
22898
22899 obstack_grow (output, &str_off, sizeof (str_off));
22900 obstack_grow (output, &vec_off, sizeof (vec_off));
22901 }
22902
22903 htab_delete (str_table);
22904 htab_delete (symbol_hash_table);
22905 }
22906
22907 /* Struct to map psymtab to CU index in the index file. */
22908 struct psymtab_cu_index_map
22909 {
22910 struct partial_symtab *psymtab;
22911 unsigned int cu_index;
22912 };
22913
22914 static hashval_t
22915 hash_psymtab_cu_index (const void *item)
22916 {
22917 const struct psymtab_cu_index_map *map = item;
22918
22919 return htab_hash_pointer (map->psymtab);
22920 }
22921
22922 static int
22923 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22924 {
22925 const struct psymtab_cu_index_map *lhs = item_lhs;
22926 const struct psymtab_cu_index_map *rhs = item_rhs;
22927
22928 return lhs->psymtab == rhs->psymtab;
22929 }
22930
22931 /* Helper struct for building the address table. */
22932 struct addrmap_index_data
22933 {
22934 struct objfile *objfile;
22935 struct obstack *addr_obstack;
22936 htab_t cu_index_htab;
22937
22938 /* Non-zero if the previous_* fields are valid.
22939 We can't write an entry until we see the next entry (since it is only then
22940 that we know the end of the entry). */
22941 int previous_valid;
22942 /* Index of the CU in the table of all CUs in the index file. */
22943 unsigned int previous_cu_index;
22944 /* Start address of the CU. */
22945 CORE_ADDR previous_cu_start;
22946 };
22947
22948 /* Write an address entry to OBSTACK. */
22949
22950 static void
22951 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22952 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22953 {
22954 offset_type cu_index_to_write;
22955 gdb_byte addr[8];
22956 CORE_ADDR baseaddr;
22957
22958 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22959
22960 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22961 obstack_grow (obstack, addr, 8);
22962 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22963 obstack_grow (obstack, addr, 8);
22964 cu_index_to_write = MAYBE_SWAP (cu_index);
22965 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22966 }
22967
22968 /* Worker function for traversing an addrmap to build the address table. */
22969
22970 static int
22971 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22972 {
22973 struct addrmap_index_data *data = datap;
22974 struct partial_symtab *pst = obj;
22975
22976 if (data->previous_valid)
22977 add_address_entry (data->objfile, data->addr_obstack,
22978 data->previous_cu_start, start_addr,
22979 data->previous_cu_index);
22980
22981 data->previous_cu_start = start_addr;
22982 if (pst != NULL)
22983 {
22984 struct psymtab_cu_index_map find_map, *map;
22985 find_map.psymtab = pst;
22986 map = htab_find (data->cu_index_htab, &find_map);
22987 gdb_assert (map != NULL);
22988 data->previous_cu_index = map->cu_index;
22989 data->previous_valid = 1;
22990 }
22991 else
22992 data->previous_valid = 0;
22993
22994 return 0;
22995 }
22996
22997 /* Write OBJFILE's address map to OBSTACK.
22998 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22999 in the index file. */
23000
23001 static void
23002 write_address_map (struct objfile *objfile, struct obstack *obstack,
23003 htab_t cu_index_htab)
23004 {
23005 struct addrmap_index_data addrmap_index_data;
23006
23007 /* When writing the address table, we have to cope with the fact that
23008 the addrmap iterator only provides the start of a region; we have to
23009 wait until the next invocation to get the start of the next region. */
23010
23011 addrmap_index_data.objfile = objfile;
23012 addrmap_index_data.addr_obstack = obstack;
23013 addrmap_index_data.cu_index_htab = cu_index_htab;
23014 addrmap_index_data.previous_valid = 0;
23015
23016 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23017 &addrmap_index_data);
23018
23019 /* It's highly unlikely the last entry (end address = 0xff...ff)
23020 is valid, but we should still handle it.
23021 The end address is recorded as the start of the next region, but that
23022 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23023 anyway. */
23024 if (addrmap_index_data.previous_valid)
23025 add_address_entry (objfile, obstack,
23026 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23027 addrmap_index_data.previous_cu_index);
23028 }
23029
23030 /* Return the symbol kind of PSYM. */
23031
23032 static gdb_index_symbol_kind
23033 symbol_kind (struct partial_symbol *psym)
23034 {
23035 domain_enum domain = PSYMBOL_DOMAIN (psym);
23036 enum address_class aclass = PSYMBOL_CLASS (psym);
23037
23038 switch (domain)
23039 {
23040 case VAR_DOMAIN:
23041 switch (aclass)
23042 {
23043 case LOC_BLOCK:
23044 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23045 case LOC_TYPEDEF:
23046 return GDB_INDEX_SYMBOL_KIND_TYPE;
23047 case LOC_COMPUTED:
23048 case LOC_CONST_BYTES:
23049 case LOC_OPTIMIZED_OUT:
23050 case LOC_STATIC:
23051 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23052 case LOC_CONST:
23053 /* Note: It's currently impossible to recognize psyms as enum values
23054 short of reading the type info. For now punt. */
23055 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23056 default:
23057 /* There are other LOC_FOO values that one might want to classify
23058 as variables, but dwarf2read.c doesn't currently use them. */
23059 return GDB_INDEX_SYMBOL_KIND_OTHER;
23060 }
23061 case STRUCT_DOMAIN:
23062 return GDB_INDEX_SYMBOL_KIND_TYPE;
23063 default:
23064 return GDB_INDEX_SYMBOL_KIND_OTHER;
23065 }
23066 }
23067
23068 /* Add a list of partial symbols to SYMTAB. */
23069
23070 static void
23071 write_psymbols (struct mapped_symtab *symtab,
23072 htab_t psyms_seen,
23073 struct partial_symbol **psymp,
23074 int count,
23075 offset_type cu_index,
23076 int is_static)
23077 {
23078 for (; count-- > 0; ++psymp)
23079 {
23080 struct partial_symbol *psym = *psymp;
23081 void **slot;
23082
23083 if (SYMBOL_LANGUAGE (psym) == language_ada)
23084 error (_("Ada is not currently supported by the index"));
23085
23086 /* Only add a given psymbol once. */
23087 slot = htab_find_slot (psyms_seen, psym, INSERT);
23088 if (!*slot)
23089 {
23090 gdb_index_symbol_kind kind = symbol_kind (psym);
23091
23092 *slot = psym;
23093 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23094 is_static, kind, cu_index);
23095 }
23096 }
23097 }
23098
23099 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23100 exception if there is an error. */
23101
23102 static void
23103 write_obstack (FILE *file, struct obstack *obstack)
23104 {
23105 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23106 file)
23107 != obstack_object_size (obstack))
23108 error (_("couldn't data write to file"));
23109 }
23110
23111 /* Unlink a file if the argument is not NULL. */
23112
23113 static void
23114 unlink_if_set (void *p)
23115 {
23116 char **filename = p;
23117 if (*filename)
23118 unlink (*filename);
23119 }
23120
23121 /* A helper struct used when iterating over debug_types. */
23122 struct signatured_type_index_data
23123 {
23124 struct objfile *objfile;
23125 struct mapped_symtab *symtab;
23126 struct obstack *types_list;
23127 htab_t psyms_seen;
23128 int cu_index;
23129 };
23130
23131 /* A helper function that writes a single signatured_type to an
23132 obstack. */
23133
23134 static int
23135 write_one_signatured_type (void **slot, void *d)
23136 {
23137 struct signatured_type_index_data *info = d;
23138 struct signatured_type *entry = (struct signatured_type *) *slot;
23139 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23140 gdb_byte val[8];
23141
23142 write_psymbols (info->symtab,
23143 info->psyms_seen,
23144 info->objfile->global_psymbols.list
23145 + psymtab->globals_offset,
23146 psymtab->n_global_syms, info->cu_index,
23147 0);
23148 write_psymbols (info->symtab,
23149 info->psyms_seen,
23150 info->objfile->static_psymbols.list
23151 + psymtab->statics_offset,
23152 psymtab->n_static_syms, info->cu_index,
23153 1);
23154
23155 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23156 entry->per_cu.offset.sect_off);
23157 obstack_grow (info->types_list, val, 8);
23158 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23159 entry->type_offset_in_tu.cu_off);
23160 obstack_grow (info->types_list, val, 8);
23161 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23162 obstack_grow (info->types_list, val, 8);
23163
23164 ++info->cu_index;
23165
23166 return 1;
23167 }
23168
23169 /* Recurse into all "included" dependencies and write their symbols as
23170 if they appeared in this psymtab. */
23171
23172 static void
23173 recursively_write_psymbols (struct objfile *objfile,
23174 struct partial_symtab *psymtab,
23175 struct mapped_symtab *symtab,
23176 htab_t psyms_seen,
23177 offset_type cu_index)
23178 {
23179 int i;
23180
23181 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23182 if (psymtab->dependencies[i]->user != NULL)
23183 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23184 symtab, psyms_seen, cu_index);
23185
23186 write_psymbols (symtab,
23187 psyms_seen,
23188 objfile->global_psymbols.list + psymtab->globals_offset,
23189 psymtab->n_global_syms, cu_index,
23190 0);
23191 write_psymbols (symtab,
23192 psyms_seen,
23193 objfile->static_psymbols.list + psymtab->statics_offset,
23194 psymtab->n_static_syms, cu_index,
23195 1);
23196 }
23197
23198 /* Create an index file for OBJFILE in the directory DIR. */
23199
23200 static void
23201 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23202 {
23203 struct cleanup *cleanup;
23204 char *filename, *cleanup_filename;
23205 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23206 struct obstack cu_list, types_cu_list;
23207 int i;
23208 FILE *out_file;
23209 struct mapped_symtab *symtab;
23210 offset_type val, size_of_contents, total_len;
23211 struct stat st;
23212 htab_t psyms_seen;
23213 htab_t cu_index_htab;
23214 struct psymtab_cu_index_map *psymtab_cu_index_map;
23215
23216 if (dwarf2_per_objfile->using_index)
23217 error (_("Cannot use an index to create the index"));
23218
23219 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23220 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23221
23222 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23223 return;
23224
23225 if (stat (objfile_name (objfile), &st) < 0)
23226 perror_with_name (objfile_name (objfile));
23227
23228 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23229 INDEX_SUFFIX, (char *) NULL);
23230 cleanup = make_cleanup (xfree, filename);
23231
23232 out_file = gdb_fopen_cloexec (filename, "wb");
23233 if (!out_file)
23234 error (_("Can't open `%s' for writing"), filename);
23235
23236 cleanup_filename = filename;
23237 make_cleanup (unlink_if_set, &cleanup_filename);
23238
23239 symtab = create_mapped_symtab ();
23240 make_cleanup (cleanup_mapped_symtab, symtab);
23241
23242 obstack_init (&addr_obstack);
23243 make_cleanup_obstack_free (&addr_obstack);
23244
23245 obstack_init (&cu_list);
23246 make_cleanup_obstack_free (&cu_list);
23247
23248 obstack_init (&types_cu_list);
23249 make_cleanup_obstack_free (&types_cu_list);
23250
23251 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23252 NULL, xcalloc, xfree);
23253 make_cleanup_htab_delete (psyms_seen);
23254
23255 /* While we're scanning CU's create a table that maps a psymtab pointer
23256 (which is what addrmap records) to its index (which is what is recorded
23257 in the index file). This will later be needed to write the address
23258 table. */
23259 cu_index_htab = htab_create_alloc (100,
23260 hash_psymtab_cu_index,
23261 eq_psymtab_cu_index,
23262 NULL, xcalloc, xfree);
23263 make_cleanup_htab_delete (cu_index_htab);
23264 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23265 dwarf2_per_objfile->n_comp_units);
23266 make_cleanup (xfree, psymtab_cu_index_map);
23267
23268 /* The CU list is already sorted, so we don't need to do additional
23269 work here. Also, the debug_types entries do not appear in
23270 all_comp_units, but only in their own hash table. */
23271 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23272 {
23273 struct dwarf2_per_cu_data *per_cu
23274 = dwarf2_per_objfile->all_comp_units[i];
23275 struct partial_symtab *psymtab = per_cu->v.psymtab;
23276 gdb_byte val[8];
23277 struct psymtab_cu_index_map *map;
23278 void **slot;
23279
23280 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23281 It may be referenced from a local scope but in such case it does not
23282 need to be present in .gdb_index. */
23283 if (psymtab == NULL)
23284 continue;
23285
23286 if (psymtab->user == NULL)
23287 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23288
23289 map = &psymtab_cu_index_map[i];
23290 map->psymtab = psymtab;
23291 map->cu_index = i;
23292 slot = htab_find_slot (cu_index_htab, map, INSERT);
23293 gdb_assert (slot != NULL);
23294 gdb_assert (*slot == NULL);
23295 *slot = map;
23296
23297 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23298 per_cu->offset.sect_off);
23299 obstack_grow (&cu_list, val, 8);
23300 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23301 obstack_grow (&cu_list, val, 8);
23302 }
23303
23304 /* Dump the address map. */
23305 write_address_map (objfile, &addr_obstack, cu_index_htab);
23306
23307 /* Write out the .debug_type entries, if any. */
23308 if (dwarf2_per_objfile->signatured_types)
23309 {
23310 struct signatured_type_index_data sig_data;
23311
23312 sig_data.objfile = objfile;
23313 sig_data.symtab = symtab;
23314 sig_data.types_list = &types_cu_list;
23315 sig_data.psyms_seen = psyms_seen;
23316 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23317 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23318 write_one_signatured_type, &sig_data);
23319 }
23320
23321 /* Now that we've processed all symbols we can shrink their cu_indices
23322 lists. */
23323 uniquify_cu_indices (symtab);
23324
23325 obstack_init (&constant_pool);
23326 make_cleanup_obstack_free (&constant_pool);
23327 obstack_init (&symtab_obstack);
23328 make_cleanup_obstack_free (&symtab_obstack);
23329 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23330
23331 obstack_init (&contents);
23332 make_cleanup_obstack_free (&contents);
23333 size_of_contents = 6 * sizeof (offset_type);
23334 total_len = size_of_contents;
23335
23336 /* The version number. */
23337 val = MAYBE_SWAP (8);
23338 obstack_grow (&contents, &val, sizeof (val));
23339
23340 /* The offset of the CU list from the start of the file. */
23341 val = MAYBE_SWAP (total_len);
23342 obstack_grow (&contents, &val, sizeof (val));
23343 total_len += obstack_object_size (&cu_list);
23344
23345 /* The offset of the types CU list from the start of the file. */
23346 val = MAYBE_SWAP (total_len);
23347 obstack_grow (&contents, &val, sizeof (val));
23348 total_len += obstack_object_size (&types_cu_list);
23349
23350 /* The offset of the address table from the start of the file. */
23351 val = MAYBE_SWAP (total_len);
23352 obstack_grow (&contents, &val, sizeof (val));
23353 total_len += obstack_object_size (&addr_obstack);
23354
23355 /* The offset of the symbol table from the start of the file. */
23356 val = MAYBE_SWAP (total_len);
23357 obstack_grow (&contents, &val, sizeof (val));
23358 total_len += obstack_object_size (&symtab_obstack);
23359
23360 /* The offset of the constant pool from the start of the file. */
23361 val = MAYBE_SWAP (total_len);
23362 obstack_grow (&contents, &val, sizeof (val));
23363 total_len += obstack_object_size (&constant_pool);
23364
23365 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23366
23367 write_obstack (out_file, &contents);
23368 write_obstack (out_file, &cu_list);
23369 write_obstack (out_file, &types_cu_list);
23370 write_obstack (out_file, &addr_obstack);
23371 write_obstack (out_file, &symtab_obstack);
23372 write_obstack (out_file, &constant_pool);
23373
23374 fclose (out_file);
23375
23376 /* We want to keep the file, so we set cleanup_filename to NULL
23377 here. See unlink_if_set. */
23378 cleanup_filename = NULL;
23379
23380 do_cleanups (cleanup);
23381 }
23382
23383 /* Implementation of the `save gdb-index' command.
23384
23385 Note that the file format used by this command is documented in the
23386 GDB manual. Any changes here must be documented there. */
23387
23388 static void
23389 save_gdb_index_command (char *arg, int from_tty)
23390 {
23391 struct objfile *objfile;
23392
23393 if (!arg || !*arg)
23394 error (_("usage: save gdb-index DIRECTORY"));
23395
23396 ALL_OBJFILES (objfile)
23397 {
23398 struct stat st;
23399
23400 /* If the objfile does not correspond to an actual file, skip it. */
23401 if (stat (objfile_name (objfile), &st) < 0)
23402 continue;
23403
23404 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23405 if (dwarf2_per_objfile)
23406 {
23407
23408 TRY
23409 {
23410 write_psymtabs_to_index (objfile, arg);
23411 }
23412 CATCH (except, RETURN_MASK_ERROR)
23413 {
23414 exception_fprintf (gdb_stderr, except,
23415 _("Error while writing index for `%s': "),
23416 objfile_name (objfile));
23417 }
23418 END_CATCH
23419 }
23420 }
23421 }
23422
23423 \f
23424
23425 int dwarf_always_disassemble;
23426
23427 static void
23428 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23429 struct cmd_list_element *c, const char *value)
23430 {
23431 fprintf_filtered (file,
23432 _("Whether to always disassemble "
23433 "DWARF expressions is %s.\n"),
23434 value);
23435 }
23436
23437 static void
23438 show_check_physname (struct ui_file *file, int from_tty,
23439 struct cmd_list_element *c, const char *value)
23440 {
23441 fprintf_filtered (file,
23442 _("Whether to check \"physname\" is %s.\n"),
23443 value);
23444 }
23445
23446 void _initialize_dwarf2_read (void);
23447
23448 void
23449 _initialize_dwarf2_read (void)
23450 {
23451 struct cmd_list_element *c;
23452
23453 dwarf2_objfile_data_key
23454 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23455
23456 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23457 Set DWARF specific variables.\n\
23458 Configure DWARF variables such as the cache size"),
23459 &set_dwarf_cmdlist, "maintenance set dwarf ",
23460 0/*allow-unknown*/, &maintenance_set_cmdlist);
23461
23462 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23463 Show DWARF specific variables\n\
23464 Show DWARF variables such as the cache size"),
23465 &show_dwarf_cmdlist, "maintenance show dwarf ",
23466 0/*allow-unknown*/, &maintenance_show_cmdlist);
23467
23468 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23469 &dwarf_max_cache_age, _("\
23470 Set the upper bound on the age of cached DWARF compilation units."), _("\
23471 Show the upper bound on the age of cached DWARF compilation units."), _("\
23472 A higher limit means that cached compilation units will be stored\n\
23473 in memory longer, and more total memory will be used. Zero disables\n\
23474 caching, which can slow down startup."),
23475 NULL,
23476 show_dwarf_max_cache_age,
23477 &set_dwarf_cmdlist,
23478 &show_dwarf_cmdlist);
23479
23480 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23481 &dwarf_always_disassemble, _("\
23482 Set whether `info address' always disassembles DWARF expressions."), _("\
23483 Show whether `info address' always disassembles DWARF expressions."), _("\
23484 When enabled, DWARF expressions are always printed in an assembly-like\n\
23485 syntax. When disabled, expressions will be printed in a more\n\
23486 conversational style, when possible."),
23487 NULL,
23488 show_dwarf_always_disassemble,
23489 &set_dwarf_cmdlist,
23490 &show_dwarf_cmdlist);
23491
23492 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23493 Set debugging of the DWARF reader."), _("\
23494 Show debugging of the DWARF reader."), _("\
23495 When enabled (non-zero), debugging messages are printed during DWARF\n\
23496 reading and symtab expansion. A value of 1 (one) provides basic\n\
23497 information. A value greater than 1 provides more verbose information."),
23498 NULL,
23499 NULL,
23500 &setdebuglist, &showdebuglist);
23501
23502 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23503 Set debugging of the DWARF DIE reader."), _("\
23504 Show debugging of the DWARF DIE reader."), _("\
23505 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23506 The value is the maximum depth to print."),
23507 NULL,
23508 NULL,
23509 &setdebuglist, &showdebuglist);
23510
23511 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23512 Set debugging of the dwarf line reader."), _("\
23513 Show debugging of the dwarf line reader."), _("\
23514 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23515 A value of 1 (one) provides basic information.\n\
23516 A value greater than 1 provides more verbose information."),
23517 NULL,
23518 NULL,
23519 &setdebuglist, &showdebuglist);
23520
23521 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23522 Set cross-checking of \"physname\" code against demangler."), _("\
23523 Show cross-checking of \"physname\" code against demangler."), _("\
23524 When enabled, GDB's internal \"physname\" code is checked against\n\
23525 the demangler."),
23526 NULL, show_check_physname,
23527 &setdebuglist, &showdebuglist);
23528
23529 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23530 no_class, &use_deprecated_index_sections, _("\
23531 Set whether to use deprecated gdb_index sections."), _("\
23532 Show whether to use deprecated gdb_index sections."), _("\
23533 When enabled, deprecated .gdb_index sections are used anyway.\n\
23534 Normally they are ignored either because of a missing feature or\n\
23535 performance issue.\n\
23536 Warning: This option must be enabled before gdb reads the file."),
23537 NULL,
23538 NULL,
23539 &setlist, &showlist);
23540
23541 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23542 _("\
23543 Save a gdb-index file.\n\
23544 Usage: save gdb-index DIRECTORY"),
23545 &save_cmdlist);
23546 set_cmd_completer (c, filename_completer);
23547
23548 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23549 &dwarf2_locexpr_funcs);
23550 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23551 &dwarf2_loclist_funcs);
23552
23553 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23554 &dwarf2_block_frame_base_locexpr_funcs);
23555 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23556 &dwarf2_block_frame_base_loclist_funcs);
23557 }