Add casts to memory allocation related calls
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 static int dwarf2_get_pc_bounds (struct die_info *,
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
1612
1613 static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
1617 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
1620 static void dwarf2_add_field (struct field_info *, struct die_info *,
1621 struct dwarf2_cu *);
1622
1623 static void dwarf2_attach_fields_to_type (struct field_info *,
1624 struct type *, struct dwarf2_cu *);
1625
1626 static void dwarf2_add_member_fn (struct field_info *,
1627 struct die_info *, struct type *,
1628 struct dwarf2_cu *);
1629
1630 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1631 struct type *,
1632 struct dwarf2_cu *);
1633
1634 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1639
1640 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static struct using_direct **using_directives (enum language);
1643
1644 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
1646 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
1648 static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
1651 static const char *namespace_name (struct die_info *die,
1652 int *is_anonymous, struct dwarf2_cu *);
1653
1654 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1655
1656 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1657
1658 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1659 struct dwarf2_cu *);
1660
1661 static struct die_info *read_die_and_siblings_1
1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1663 struct die_info *);
1664
1665 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
1668 struct die_info *parent);
1669
1670 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
1673
1674 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
1677
1678 static void process_die (struct die_info *, struct dwarf2_cu *);
1679
1680 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
1682
1683 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1684
1685 static const char *dwarf2_full_name (const char *name,
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
1692 static struct die_info *dwarf2_extension (struct die_info *die,
1693 struct dwarf2_cu **);
1694
1695 static const char *dwarf_tag_name (unsigned int);
1696
1697 static const char *dwarf_attr_name (unsigned int);
1698
1699 static const char *dwarf_form_name (unsigned int);
1700
1701 static char *dwarf_bool_name (unsigned int);
1702
1703 static const char *dwarf_type_encoding_name (unsigned int);
1704
1705 static struct die_info *sibling_die (struct die_info *);
1706
1707 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709 static void dump_die_for_error (struct die_info *);
1710
1711 static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
1713
1714 /*static*/ void dump_die (struct die_info *, int max_level);
1715
1716 static void store_in_ref_table (struct die_info *,
1717 struct dwarf2_cu *);
1718
1719 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1720
1721 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1722
1723 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu **);
1726
1727 static struct die_info *follow_die_ref (struct die_info *,
1728 const struct attribute *,
1729 struct dwarf2_cu **);
1730
1731 static struct die_info *follow_die_sig (struct die_info *,
1732 const struct attribute *,
1733 struct dwarf2_cu **);
1734
1735 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738 static struct type *get_DW_AT_signature_type (struct die_info *,
1739 const struct attribute *,
1740 struct dwarf2_cu *);
1741
1742 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1743
1744 static void read_signatured_type (struct signatured_type *);
1745
1746 static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
1750 /* memory allocation interface */
1751
1752 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1753
1754 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1755
1756 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1757
1758 static int attr_form_is_block (const struct attribute *);
1759
1760 static int attr_form_is_section_offset (const struct attribute *);
1761
1762 static int attr_form_is_constant (const struct attribute *);
1763
1764 static int attr_form_is_ref (const struct attribute *);
1765
1766 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
1768 const struct attribute *attr);
1769
1770 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1771 struct symbol *sym,
1772 struct dwarf2_cu *cu,
1773 int is_block);
1774
1775 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
1778
1779 static void free_stack_comp_unit (void *);
1780
1781 static hashval_t partial_die_hash (const void *item);
1782
1783 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
1785 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1787
1788 static void init_one_comp_unit (struct dwarf2_cu *cu,
1789 struct dwarf2_per_cu_data *per_cu);
1790
1791 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
1794
1795 static void free_heap_comp_unit (void *);
1796
1797 static void free_cached_comp_units (void *);
1798
1799 static void age_cached_comp_units (void);
1800
1801 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1802
1803 static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1805
1806 static void create_all_comp_units (struct objfile *);
1807
1808 static int create_all_type_units (struct objfile *);
1809
1810 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
1812
1813 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
1815
1816 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
1819 static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
1822 static void dwarf2_mark (struct dwarf2_cu *);
1823
1824 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
1826 static struct type *get_die_type_at_offset (sect_offset,
1827 struct dwarf2_per_cu_data *);
1828
1829 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1830
1831 static void dwarf2_release_queue (void *dummy);
1832
1833 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
1836 static void process_queue (void);
1837
1838 static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
1840 const char **name, const char **comp_dir);
1841
1842 static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
1845 static const gdb_byte *read_and_check_comp_unit_head
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1849 int is_debug_types_section);
1850
1851 static void init_cutu_and_read_dies
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
1856 static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
1859
1860 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1861
1862 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
1864 static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
1867
1868 static struct dwp_file *get_dwp_file (void);
1869
1870 static struct dwo_unit *lookup_dwo_comp_unit
1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1872
1873 static struct dwo_unit *lookup_dwo_type_unit
1874 (struct signatured_type *, const char *, const char *);
1875
1876 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
1878 static void free_dwo_file_cleanup (void *);
1879
1880 static void process_cu_includes (void);
1881
1882 static void check_producer (struct dwarf2_cu *cu);
1883
1884 static void free_line_header_voidp (void *arg);
1885 \f
1886 /* Various complaints about symbol reading that don't abort the process. */
1887
1888 static void
1889 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_file_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900 }
1901
1902 static void
1903 dwarf2_debug_line_missing_end_sequence_complaint (void)
1904 {
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908 }
1909
1910 static void
1911 dwarf2_complex_location_expr_complaint (void)
1912 {
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914 }
1915
1916 static void
1917 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919 {
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923 }
1924
1925 static void
1926 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927 {
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
1931 get_section_name (section),
1932 get_section_file_name (section));
1933 }
1934
1935 static void
1936 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937 {
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942 }
1943
1944 static void
1945 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946 {
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950 }
1951
1952 /* Hash function for line_header_hash. */
1953
1954 static hashval_t
1955 line_header_hash (const struct line_header *ofs)
1956 {
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958 }
1959
1960 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962 static hashval_t
1963 line_header_hash_voidp (const void *item)
1964 {
1965 const struct line_header *ofs = item;
1966
1967 return line_header_hash (ofs);
1968 }
1969
1970 /* Equality function for line_header_hash. */
1971
1972 static int
1973 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974 {
1975 const struct line_header *ofs_lhs = item_lhs;
1976 const struct line_header *ofs_rhs = item_rhs;
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980 }
1981
1982 \f
1983 #if WORDS_BIGENDIAN
1984
1985 /* Convert VALUE between big- and little-endian. */
1986 static offset_type
1987 byte_swap (offset_type value)
1988 {
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996 }
1997
1998 #define MAYBE_SWAP(V) byte_swap (V)
1999
2000 #else
2001 #define MAYBE_SWAP(V) (V)
2002 #endif /* WORDS_BIGENDIAN */
2003
2004 /* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007 static CORE_ADDR
2008 attr_value_as_address (struct attribute *attr)
2009 {
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032 }
2033
2034 /* The suffix for an index file. */
2035 #define INDEX_SUFFIX ".gdb-index"
2036
2037 /* Try to locate the sections we need for DWARF 2 debugging
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
2041
2042 int
2043 dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
2045 {
2046 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2047 if (!dwarf2_per_objfile)
2048 {
2049 /* Initialize per-objfile state. */
2050 struct dwarf2_per_objfile *data
2051 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2052
2053 memset (data, 0, sizeof (*data));
2054 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2055 dwarf2_per_objfile = data;
2056
2057 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2058 (void *) names);
2059 dwarf2_per_objfile->objfile = objfile;
2060 }
2061 return (!dwarf2_per_objfile->info.is_virtual
2062 && dwarf2_per_objfile->info.s.section != NULL
2063 && !dwarf2_per_objfile->abbrev.is_virtual
2064 && dwarf2_per_objfile->abbrev.s.section != NULL);
2065 }
2066
2067 /* Return the containing section of virtual section SECTION. */
2068
2069 static struct dwarf2_section_info *
2070 get_containing_section (const struct dwarf2_section_info *section)
2071 {
2072 gdb_assert (section->is_virtual);
2073 return section->s.containing_section;
2074 }
2075
2076 /* Return the bfd owner of SECTION. */
2077
2078 static struct bfd *
2079 get_section_bfd_owner (const struct dwarf2_section_info *section)
2080 {
2081 if (section->is_virtual)
2082 {
2083 section = get_containing_section (section);
2084 gdb_assert (!section->is_virtual);
2085 }
2086 return section->s.section->owner;
2087 }
2088
2089 /* Return the bfd section of SECTION.
2090 Returns NULL if the section is not present. */
2091
2092 static asection *
2093 get_section_bfd_section (const struct dwarf2_section_info *section)
2094 {
2095 if (section->is_virtual)
2096 {
2097 section = get_containing_section (section);
2098 gdb_assert (!section->is_virtual);
2099 }
2100 return section->s.section;
2101 }
2102
2103 /* Return the name of SECTION. */
2104
2105 static const char *
2106 get_section_name (const struct dwarf2_section_info *section)
2107 {
2108 asection *sectp = get_section_bfd_section (section);
2109
2110 gdb_assert (sectp != NULL);
2111 return bfd_section_name (get_section_bfd_owner (section), sectp);
2112 }
2113
2114 /* Return the name of the file SECTION is in. */
2115
2116 static const char *
2117 get_section_file_name (const struct dwarf2_section_info *section)
2118 {
2119 bfd *abfd = get_section_bfd_owner (section);
2120
2121 return bfd_get_filename (abfd);
2122 }
2123
2124 /* Return the id of SECTION.
2125 Returns 0 if SECTION doesn't exist. */
2126
2127 static int
2128 get_section_id (const struct dwarf2_section_info *section)
2129 {
2130 asection *sectp = get_section_bfd_section (section);
2131
2132 if (sectp == NULL)
2133 return 0;
2134 return sectp->id;
2135 }
2136
2137 /* Return the flags of SECTION.
2138 SECTION (or containing section if this is a virtual section) must exist. */
2139
2140 static int
2141 get_section_flags (const struct dwarf2_section_info *section)
2142 {
2143 asection *sectp = get_section_bfd_section (section);
2144
2145 gdb_assert (sectp != NULL);
2146 return bfd_get_section_flags (sectp->owner, sectp);
2147 }
2148
2149 /* When loading sections, we look either for uncompressed section or for
2150 compressed section names. */
2151
2152 static int
2153 section_is_p (const char *section_name,
2154 const struct dwarf2_section_names *names)
2155 {
2156 if (names->normal != NULL
2157 && strcmp (section_name, names->normal) == 0)
2158 return 1;
2159 if (names->compressed != NULL
2160 && strcmp (section_name, names->compressed) == 0)
2161 return 1;
2162 return 0;
2163 }
2164
2165 /* This function is mapped across the sections and remembers the
2166 offset and size of each of the debugging sections we are interested
2167 in. */
2168
2169 static void
2170 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2171 {
2172 const struct dwarf2_debug_sections *names;
2173 flagword aflag = bfd_get_section_flags (abfd, sectp);
2174
2175 if (vnames == NULL)
2176 names = &dwarf2_elf_names;
2177 else
2178 names = (const struct dwarf2_debug_sections *) vnames;
2179
2180 if ((aflag & SEC_HAS_CONTENTS) == 0)
2181 {
2182 }
2183 else if (section_is_p (sectp->name, &names->info))
2184 {
2185 dwarf2_per_objfile->info.s.section = sectp;
2186 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2187 }
2188 else if (section_is_p (sectp->name, &names->abbrev))
2189 {
2190 dwarf2_per_objfile->abbrev.s.section = sectp;
2191 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2192 }
2193 else if (section_is_p (sectp->name, &names->line))
2194 {
2195 dwarf2_per_objfile->line.s.section = sectp;
2196 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2197 }
2198 else if (section_is_p (sectp->name, &names->loc))
2199 {
2200 dwarf2_per_objfile->loc.s.section = sectp;
2201 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2202 }
2203 else if (section_is_p (sectp->name, &names->macinfo))
2204 {
2205 dwarf2_per_objfile->macinfo.s.section = sectp;
2206 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2207 }
2208 else if (section_is_p (sectp->name, &names->macro))
2209 {
2210 dwarf2_per_objfile->macro.s.section = sectp;
2211 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2212 }
2213 else if (section_is_p (sectp->name, &names->str))
2214 {
2215 dwarf2_per_objfile->str.s.section = sectp;
2216 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2217 }
2218 else if (section_is_p (sectp->name, &names->addr))
2219 {
2220 dwarf2_per_objfile->addr.s.section = sectp;
2221 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2222 }
2223 else if (section_is_p (sectp->name, &names->frame))
2224 {
2225 dwarf2_per_objfile->frame.s.section = sectp;
2226 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2227 }
2228 else if (section_is_p (sectp->name, &names->eh_frame))
2229 {
2230 dwarf2_per_objfile->eh_frame.s.section = sectp;
2231 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2232 }
2233 else if (section_is_p (sectp->name, &names->ranges))
2234 {
2235 dwarf2_per_objfile->ranges.s.section = sectp;
2236 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2237 }
2238 else if (section_is_p (sectp->name, &names->types))
2239 {
2240 struct dwarf2_section_info type_section;
2241
2242 memset (&type_section, 0, sizeof (type_section));
2243 type_section.s.section = sectp;
2244 type_section.size = bfd_get_section_size (sectp);
2245
2246 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2247 &type_section);
2248 }
2249 else if (section_is_p (sectp->name, &names->gdb_index))
2250 {
2251 dwarf2_per_objfile->gdb_index.s.section = sectp;
2252 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2253 }
2254
2255 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2256 && bfd_section_vma (abfd, sectp) == 0)
2257 dwarf2_per_objfile->has_section_at_zero = 1;
2258 }
2259
2260 /* A helper function that decides whether a section is empty,
2261 or not present. */
2262
2263 static int
2264 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2265 {
2266 if (section->is_virtual)
2267 return section->size == 0;
2268 return section->s.section == NULL || section->size == 0;
2269 }
2270
2271 /* Read the contents of the section INFO.
2272 OBJFILE is the main object file, but not necessarily the file where
2273 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2274 of the DWO file.
2275 If the section is compressed, uncompress it before returning. */
2276
2277 static void
2278 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2279 {
2280 asection *sectp;
2281 bfd *abfd;
2282 gdb_byte *buf, *retbuf;
2283
2284 if (info->readin)
2285 return;
2286 info->buffer = NULL;
2287 info->readin = 1;
2288
2289 if (dwarf2_section_empty_p (info))
2290 return;
2291
2292 sectp = get_section_bfd_section (info);
2293
2294 /* If this is a virtual section we need to read in the real one first. */
2295 if (info->is_virtual)
2296 {
2297 struct dwarf2_section_info *containing_section =
2298 get_containing_section (info);
2299
2300 gdb_assert (sectp != NULL);
2301 if ((sectp->flags & SEC_RELOC) != 0)
2302 {
2303 error (_("Dwarf Error: DWP format V2 with relocations is not"
2304 " supported in section %s [in module %s]"),
2305 get_section_name (info), get_section_file_name (info));
2306 }
2307 dwarf2_read_section (objfile, containing_section);
2308 /* Other code should have already caught virtual sections that don't
2309 fit. */
2310 gdb_assert (info->virtual_offset + info->size
2311 <= containing_section->size);
2312 /* If the real section is empty or there was a problem reading the
2313 section we shouldn't get here. */
2314 gdb_assert (containing_section->buffer != NULL);
2315 info->buffer = containing_section->buffer + info->virtual_offset;
2316 return;
2317 }
2318
2319 /* If the section has relocations, we must read it ourselves.
2320 Otherwise we attach it to the BFD. */
2321 if ((sectp->flags & SEC_RELOC) == 0)
2322 {
2323 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2324 return;
2325 }
2326
2327 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2328 info->buffer = buf;
2329
2330 /* When debugging .o files, we may need to apply relocations; see
2331 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2332 We never compress sections in .o files, so we only need to
2333 try this when the section is not compressed. */
2334 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2335 if (retbuf != NULL)
2336 {
2337 info->buffer = retbuf;
2338 return;
2339 }
2340
2341 abfd = get_section_bfd_owner (info);
2342 gdb_assert (abfd != NULL);
2343
2344 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2345 || bfd_bread (buf, info->size, abfd) != info->size)
2346 {
2347 error (_("Dwarf Error: Can't read DWARF data"
2348 " in section %s [in module %s]"),
2349 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2350 }
2351 }
2352
2353 /* A helper function that returns the size of a section in a safe way.
2354 If you are positive that the section has been read before using the
2355 size, then it is safe to refer to the dwarf2_section_info object's
2356 "size" field directly. In other cases, you must call this
2357 function, because for compressed sections the size field is not set
2358 correctly until the section has been read. */
2359
2360 static bfd_size_type
2361 dwarf2_section_size (struct objfile *objfile,
2362 struct dwarf2_section_info *info)
2363 {
2364 if (!info->readin)
2365 dwarf2_read_section (objfile, info);
2366 return info->size;
2367 }
2368
2369 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2370 SECTION_NAME. */
2371
2372 void
2373 dwarf2_get_section_info (struct objfile *objfile,
2374 enum dwarf2_section_enum sect,
2375 asection **sectp, const gdb_byte **bufp,
2376 bfd_size_type *sizep)
2377 {
2378 struct dwarf2_per_objfile *data
2379 = objfile_data (objfile, dwarf2_objfile_data_key);
2380 struct dwarf2_section_info *info;
2381
2382 /* We may see an objfile without any DWARF, in which case we just
2383 return nothing. */
2384 if (data == NULL)
2385 {
2386 *sectp = NULL;
2387 *bufp = NULL;
2388 *sizep = 0;
2389 return;
2390 }
2391 switch (sect)
2392 {
2393 case DWARF2_DEBUG_FRAME:
2394 info = &data->frame;
2395 break;
2396 case DWARF2_EH_FRAME:
2397 info = &data->eh_frame;
2398 break;
2399 default:
2400 gdb_assert_not_reached ("unexpected section");
2401 }
2402
2403 dwarf2_read_section (objfile, info);
2404
2405 *sectp = get_section_bfd_section (info);
2406 *bufp = info->buffer;
2407 *sizep = info->size;
2408 }
2409
2410 /* A helper function to find the sections for a .dwz file. */
2411
2412 static void
2413 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2414 {
2415 struct dwz_file *dwz_file = arg;
2416
2417 /* Note that we only support the standard ELF names, because .dwz
2418 is ELF-only (at the time of writing). */
2419 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2420 {
2421 dwz_file->abbrev.s.section = sectp;
2422 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2423 }
2424 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2425 {
2426 dwz_file->info.s.section = sectp;
2427 dwz_file->info.size = bfd_get_section_size (sectp);
2428 }
2429 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2430 {
2431 dwz_file->str.s.section = sectp;
2432 dwz_file->str.size = bfd_get_section_size (sectp);
2433 }
2434 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2435 {
2436 dwz_file->line.s.section = sectp;
2437 dwz_file->line.size = bfd_get_section_size (sectp);
2438 }
2439 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2440 {
2441 dwz_file->macro.s.section = sectp;
2442 dwz_file->macro.size = bfd_get_section_size (sectp);
2443 }
2444 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2445 {
2446 dwz_file->gdb_index.s.section = sectp;
2447 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2448 }
2449 }
2450
2451 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2452 there is no .gnu_debugaltlink section in the file. Error if there
2453 is such a section but the file cannot be found. */
2454
2455 static struct dwz_file *
2456 dwarf2_get_dwz_file (void)
2457 {
2458 bfd *dwz_bfd;
2459 char *data;
2460 struct cleanup *cleanup;
2461 const char *filename;
2462 struct dwz_file *result;
2463 bfd_size_type buildid_len_arg;
2464 size_t buildid_len;
2465 bfd_byte *buildid;
2466
2467 if (dwarf2_per_objfile->dwz_file != NULL)
2468 return dwarf2_per_objfile->dwz_file;
2469
2470 bfd_set_error (bfd_error_no_error);
2471 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2472 &buildid_len_arg, &buildid);
2473 if (data == NULL)
2474 {
2475 if (bfd_get_error () == bfd_error_no_error)
2476 return NULL;
2477 error (_("could not read '.gnu_debugaltlink' section: %s"),
2478 bfd_errmsg (bfd_get_error ()));
2479 }
2480 cleanup = make_cleanup (xfree, data);
2481 make_cleanup (xfree, buildid);
2482
2483 buildid_len = (size_t) buildid_len_arg;
2484
2485 filename = (const char *) data;
2486 if (!IS_ABSOLUTE_PATH (filename))
2487 {
2488 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2489 char *rel;
2490
2491 make_cleanup (xfree, abs);
2492 abs = ldirname (abs);
2493 make_cleanup (xfree, abs);
2494
2495 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2496 make_cleanup (xfree, rel);
2497 filename = rel;
2498 }
2499
2500 /* First try the file name given in the section. If that doesn't
2501 work, try to use the build-id instead. */
2502 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2503 if (dwz_bfd != NULL)
2504 {
2505 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2506 {
2507 gdb_bfd_unref (dwz_bfd);
2508 dwz_bfd = NULL;
2509 }
2510 }
2511
2512 if (dwz_bfd == NULL)
2513 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2514
2515 if (dwz_bfd == NULL)
2516 error (_("could not find '.gnu_debugaltlink' file for %s"),
2517 objfile_name (dwarf2_per_objfile->objfile));
2518
2519 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2520 struct dwz_file);
2521 result->dwz_bfd = dwz_bfd;
2522
2523 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2524
2525 do_cleanups (cleanup);
2526
2527 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2528 dwarf2_per_objfile->dwz_file = result;
2529 return result;
2530 }
2531 \f
2532 /* DWARF quick_symbols_functions support. */
2533
2534 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2535 unique line tables, so we maintain a separate table of all .debug_line
2536 derived entries to support the sharing.
2537 All the quick functions need is the list of file names. We discard the
2538 line_header when we're done and don't need to record it here. */
2539 struct quick_file_names
2540 {
2541 /* The data used to construct the hash key. */
2542 struct stmt_list_hash hash;
2543
2544 /* The number of entries in file_names, real_names. */
2545 unsigned int num_file_names;
2546
2547 /* The file names from the line table, after being run through
2548 file_full_name. */
2549 const char **file_names;
2550
2551 /* The file names from the line table after being run through
2552 gdb_realpath. These are computed lazily. */
2553 const char **real_names;
2554 };
2555
2556 /* When using the index (and thus not using psymtabs), each CU has an
2557 object of this type. This is used to hold information needed by
2558 the various "quick" methods. */
2559 struct dwarf2_per_cu_quick_data
2560 {
2561 /* The file table. This can be NULL if there was no file table
2562 or it's currently not read in.
2563 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2564 struct quick_file_names *file_names;
2565
2566 /* The corresponding symbol table. This is NULL if symbols for this
2567 CU have not yet been read. */
2568 struct compunit_symtab *compunit_symtab;
2569
2570 /* A temporary mark bit used when iterating over all CUs in
2571 expand_symtabs_matching. */
2572 unsigned int mark : 1;
2573
2574 /* True if we've tried to read the file table and found there isn't one.
2575 There will be no point in trying to read it again next time. */
2576 unsigned int no_file_data : 1;
2577 };
2578
2579 /* Utility hash function for a stmt_list_hash. */
2580
2581 static hashval_t
2582 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2583 {
2584 hashval_t v = 0;
2585
2586 if (stmt_list_hash->dwo_unit != NULL)
2587 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2588 v += stmt_list_hash->line_offset.sect_off;
2589 return v;
2590 }
2591
2592 /* Utility equality function for a stmt_list_hash. */
2593
2594 static int
2595 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2596 const struct stmt_list_hash *rhs)
2597 {
2598 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2599 return 0;
2600 if (lhs->dwo_unit != NULL
2601 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2602 return 0;
2603
2604 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2605 }
2606
2607 /* Hash function for a quick_file_names. */
2608
2609 static hashval_t
2610 hash_file_name_entry (const void *e)
2611 {
2612 const struct quick_file_names *file_data = e;
2613
2614 return hash_stmt_list_entry (&file_data->hash);
2615 }
2616
2617 /* Equality function for a quick_file_names. */
2618
2619 static int
2620 eq_file_name_entry (const void *a, const void *b)
2621 {
2622 const struct quick_file_names *ea = a;
2623 const struct quick_file_names *eb = b;
2624
2625 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2626 }
2627
2628 /* Delete function for a quick_file_names. */
2629
2630 static void
2631 delete_file_name_entry (void *e)
2632 {
2633 struct quick_file_names *file_data = e;
2634 int i;
2635
2636 for (i = 0; i < file_data->num_file_names; ++i)
2637 {
2638 xfree ((void*) file_data->file_names[i]);
2639 if (file_data->real_names)
2640 xfree ((void*) file_data->real_names[i]);
2641 }
2642
2643 /* The space for the struct itself lives on objfile_obstack,
2644 so we don't free it here. */
2645 }
2646
2647 /* Create a quick_file_names hash table. */
2648
2649 static htab_t
2650 create_quick_file_names_table (unsigned int nr_initial_entries)
2651 {
2652 return htab_create_alloc (nr_initial_entries,
2653 hash_file_name_entry, eq_file_name_entry,
2654 delete_file_name_entry, xcalloc, xfree);
2655 }
2656
2657 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2658 have to be created afterwards. You should call age_cached_comp_units after
2659 processing PER_CU->CU. dw2_setup must have been already called. */
2660
2661 static void
2662 load_cu (struct dwarf2_per_cu_data *per_cu)
2663 {
2664 if (per_cu->is_debug_types)
2665 load_full_type_unit (per_cu);
2666 else
2667 load_full_comp_unit (per_cu, language_minimal);
2668
2669 if (per_cu->cu == NULL)
2670 return; /* Dummy CU. */
2671
2672 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2673 }
2674
2675 /* Read in the symbols for PER_CU. */
2676
2677 static void
2678 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2679 {
2680 struct cleanup *back_to;
2681
2682 /* Skip type_unit_groups, reading the type units they contain
2683 is handled elsewhere. */
2684 if (IS_TYPE_UNIT_GROUP (per_cu))
2685 return;
2686
2687 back_to = make_cleanup (dwarf2_release_queue, NULL);
2688
2689 if (dwarf2_per_objfile->using_index
2690 ? per_cu->v.quick->compunit_symtab == NULL
2691 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2692 {
2693 queue_comp_unit (per_cu, language_minimal);
2694 load_cu (per_cu);
2695
2696 /* If we just loaded a CU from a DWO, and we're working with an index
2697 that may badly handle TUs, load all the TUs in that DWO as well.
2698 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2699 if (!per_cu->is_debug_types
2700 && per_cu->cu != NULL
2701 && per_cu->cu->dwo_unit != NULL
2702 && dwarf2_per_objfile->index_table != NULL
2703 && dwarf2_per_objfile->index_table->version <= 7
2704 /* DWP files aren't supported yet. */
2705 && get_dwp_file () == NULL)
2706 queue_and_load_all_dwo_tus (per_cu);
2707 }
2708
2709 process_queue ();
2710
2711 /* Age the cache, releasing compilation units that have not
2712 been used recently. */
2713 age_cached_comp_units ();
2714
2715 do_cleanups (back_to);
2716 }
2717
2718 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2719 the objfile from which this CU came. Returns the resulting symbol
2720 table. */
2721
2722 static struct compunit_symtab *
2723 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2724 {
2725 gdb_assert (dwarf2_per_objfile->using_index);
2726 if (!per_cu->v.quick->compunit_symtab)
2727 {
2728 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2729 increment_reading_symtab ();
2730 dw2_do_instantiate_symtab (per_cu);
2731 process_cu_includes ();
2732 do_cleanups (back_to);
2733 }
2734
2735 return per_cu->v.quick->compunit_symtab;
2736 }
2737
2738 /* Return the CU/TU given its index.
2739
2740 This is intended for loops like:
2741
2742 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2743 + dwarf2_per_objfile->n_type_units); ++i)
2744 {
2745 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2746
2747 ...;
2748 }
2749 */
2750
2751 static struct dwarf2_per_cu_data *
2752 dw2_get_cutu (int index)
2753 {
2754 if (index >= dwarf2_per_objfile->n_comp_units)
2755 {
2756 index -= dwarf2_per_objfile->n_comp_units;
2757 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2758 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2759 }
2760
2761 return dwarf2_per_objfile->all_comp_units[index];
2762 }
2763
2764 /* Return the CU given its index.
2765 This differs from dw2_get_cutu in that it's for when you know INDEX
2766 refers to a CU. */
2767
2768 static struct dwarf2_per_cu_data *
2769 dw2_get_cu (int index)
2770 {
2771 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2772
2773 return dwarf2_per_objfile->all_comp_units[index];
2774 }
2775
2776 /* A helper for create_cus_from_index that handles a given list of
2777 CUs. */
2778
2779 static void
2780 create_cus_from_index_list (struct objfile *objfile,
2781 const gdb_byte *cu_list, offset_type n_elements,
2782 struct dwarf2_section_info *section,
2783 int is_dwz,
2784 int base_offset)
2785 {
2786 offset_type i;
2787
2788 for (i = 0; i < n_elements; i += 2)
2789 {
2790 struct dwarf2_per_cu_data *the_cu;
2791 ULONGEST offset, length;
2792
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2795 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2796 cu_list += 2 * 8;
2797
2798 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2799 struct dwarf2_per_cu_data);
2800 the_cu->offset.sect_off = offset;
2801 the_cu->length = length;
2802 the_cu->objfile = objfile;
2803 the_cu->section = section;
2804 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2805 struct dwarf2_per_cu_quick_data);
2806 the_cu->is_dwz = is_dwz;
2807 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2808 }
2809 }
2810
2811 /* Read the CU list from the mapped index, and use it to create all
2812 the CU objects for this objfile. */
2813
2814 static void
2815 create_cus_from_index (struct objfile *objfile,
2816 const gdb_byte *cu_list, offset_type cu_list_elements,
2817 const gdb_byte *dwz_list, offset_type dwz_elements)
2818 {
2819 struct dwz_file *dwz;
2820
2821 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2822 dwarf2_per_objfile->all_comp_units =
2823 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2824 dwarf2_per_objfile->n_comp_units);
2825
2826 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2827 &dwarf2_per_objfile->info, 0, 0);
2828
2829 if (dwz_elements == 0)
2830 return;
2831
2832 dwz = dwarf2_get_dwz_file ();
2833 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2834 cu_list_elements / 2);
2835 }
2836
2837 /* Create the signatured type hash table from the index. */
2838
2839 static void
2840 create_signatured_type_table_from_index (struct objfile *objfile,
2841 struct dwarf2_section_info *section,
2842 const gdb_byte *bytes,
2843 offset_type elements)
2844 {
2845 offset_type i;
2846 htab_t sig_types_hash;
2847
2848 dwarf2_per_objfile->n_type_units
2849 = dwarf2_per_objfile->n_allocated_type_units
2850 = elements / 3;
2851 dwarf2_per_objfile->all_type_units =
2852 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2853
2854 sig_types_hash = allocate_signatured_type_table (objfile);
2855
2856 for (i = 0; i < elements; i += 3)
2857 {
2858 struct signatured_type *sig_type;
2859 ULONGEST offset, type_offset_in_tu, signature;
2860 void **slot;
2861
2862 gdb_static_assert (sizeof (ULONGEST) >= 8);
2863 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2864 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2865 BFD_ENDIAN_LITTLE);
2866 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2867 bytes += 3 * 8;
2868
2869 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2870 struct signatured_type);
2871 sig_type->signature = signature;
2872 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2873 sig_type->per_cu.is_debug_types = 1;
2874 sig_type->per_cu.section = section;
2875 sig_type->per_cu.offset.sect_off = offset;
2876 sig_type->per_cu.objfile = objfile;
2877 sig_type->per_cu.v.quick
2878 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2879 struct dwarf2_per_cu_quick_data);
2880
2881 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2882 *slot = sig_type;
2883
2884 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2885 }
2886
2887 dwarf2_per_objfile->signatured_types = sig_types_hash;
2888 }
2889
2890 /* Read the address map data from the mapped index, and use it to
2891 populate the objfile's psymtabs_addrmap. */
2892
2893 static void
2894 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2895 {
2896 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2897 const gdb_byte *iter, *end;
2898 struct obstack temp_obstack;
2899 struct addrmap *mutable_map;
2900 struct cleanup *cleanup;
2901 CORE_ADDR baseaddr;
2902
2903 obstack_init (&temp_obstack);
2904 cleanup = make_cleanup_obstack_free (&temp_obstack);
2905 mutable_map = addrmap_create_mutable (&temp_obstack);
2906
2907 iter = index->address_table;
2908 end = iter + index->address_table_size;
2909
2910 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2911
2912 while (iter < end)
2913 {
2914 ULONGEST hi, lo, cu_index;
2915 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2916 iter += 8;
2917 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2918 iter += 8;
2919 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2920 iter += 4;
2921
2922 if (lo > hi)
2923 {
2924 complaint (&symfile_complaints,
2925 _(".gdb_index address table has invalid range (%s - %s)"),
2926 hex_string (lo), hex_string (hi));
2927 continue;
2928 }
2929
2930 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2931 {
2932 complaint (&symfile_complaints,
2933 _(".gdb_index address table has invalid CU number %u"),
2934 (unsigned) cu_index);
2935 continue;
2936 }
2937
2938 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2939 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2940 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2941 }
2942
2943 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2944 &objfile->objfile_obstack);
2945 do_cleanups (cleanup);
2946 }
2947
2948 /* The hash function for strings in the mapped index. This is the same as
2949 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2950 implementation. This is necessary because the hash function is tied to the
2951 format of the mapped index file. The hash values do not have to match with
2952 SYMBOL_HASH_NEXT.
2953
2954 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2955
2956 static hashval_t
2957 mapped_index_string_hash (int index_version, const void *p)
2958 {
2959 const unsigned char *str = (const unsigned char *) p;
2960 hashval_t r = 0;
2961 unsigned char c;
2962
2963 while ((c = *str++) != 0)
2964 {
2965 if (index_version >= 5)
2966 c = tolower (c);
2967 r = r * 67 + c - 113;
2968 }
2969
2970 return r;
2971 }
2972
2973 /* Find a slot in the mapped index INDEX for the object named NAME.
2974 If NAME is found, set *VEC_OUT to point to the CU vector in the
2975 constant pool and return 1. If NAME cannot be found, return 0. */
2976
2977 static int
2978 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2979 offset_type **vec_out)
2980 {
2981 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2982 offset_type hash;
2983 offset_type slot, step;
2984 int (*cmp) (const char *, const char *);
2985
2986 if (current_language->la_language == language_cplus
2987 || current_language->la_language == language_java
2988 || current_language->la_language == language_fortran
2989 || current_language->la_language == language_d)
2990 {
2991 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2992 not contain any. */
2993
2994 if (strchr (name, '(') != NULL)
2995 {
2996 char *without_params = cp_remove_params (name);
2997
2998 if (without_params != NULL)
2999 {
3000 make_cleanup (xfree, without_params);
3001 name = without_params;
3002 }
3003 }
3004 }
3005
3006 /* Index version 4 did not support case insensitive searches. But the
3007 indices for case insensitive languages are built in lowercase, therefore
3008 simulate our NAME being searched is also lowercased. */
3009 hash = mapped_index_string_hash ((index->version == 4
3010 && case_sensitivity == case_sensitive_off
3011 ? 5 : index->version),
3012 name);
3013
3014 slot = hash & (index->symbol_table_slots - 1);
3015 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3016 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3017
3018 for (;;)
3019 {
3020 /* Convert a slot number to an offset into the table. */
3021 offset_type i = 2 * slot;
3022 const char *str;
3023 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3024 {
3025 do_cleanups (back_to);
3026 return 0;
3027 }
3028
3029 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3030 if (!cmp (name, str))
3031 {
3032 *vec_out = (offset_type *) (index->constant_pool
3033 + MAYBE_SWAP (index->symbol_table[i + 1]));
3034 do_cleanups (back_to);
3035 return 1;
3036 }
3037
3038 slot = (slot + step) & (index->symbol_table_slots - 1);
3039 }
3040 }
3041
3042 /* A helper function that reads the .gdb_index from SECTION and fills
3043 in MAP. FILENAME is the name of the file containing the section;
3044 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3045 ok to use deprecated sections.
3046
3047 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3048 out parameters that are filled in with information about the CU and
3049 TU lists in the section.
3050
3051 Returns 1 if all went well, 0 otherwise. */
3052
3053 static int
3054 read_index_from_section (struct objfile *objfile,
3055 const char *filename,
3056 int deprecated_ok,
3057 struct dwarf2_section_info *section,
3058 struct mapped_index *map,
3059 const gdb_byte **cu_list,
3060 offset_type *cu_list_elements,
3061 const gdb_byte **types_list,
3062 offset_type *types_list_elements)
3063 {
3064 const gdb_byte *addr;
3065 offset_type version;
3066 offset_type *metadata;
3067 int i;
3068
3069 if (dwarf2_section_empty_p (section))
3070 return 0;
3071
3072 /* Older elfutils strip versions could keep the section in the main
3073 executable while splitting it for the separate debug info file. */
3074 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3075 return 0;
3076
3077 dwarf2_read_section (objfile, section);
3078
3079 addr = section->buffer;
3080 /* Version check. */
3081 version = MAYBE_SWAP (*(offset_type *) addr);
3082 /* Versions earlier than 3 emitted every copy of a psymbol. This
3083 causes the index to behave very poorly for certain requests. Version 3
3084 contained incomplete addrmap. So, it seems better to just ignore such
3085 indices. */
3086 if (version < 4)
3087 {
3088 static int warning_printed = 0;
3089 if (!warning_printed)
3090 {
3091 warning (_("Skipping obsolete .gdb_index section in %s."),
3092 filename);
3093 warning_printed = 1;
3094 }
3095 return 0;
3096 }
3097 /* Index version 4 uses a different hash function than index version
3098 5 and later.
3099
3100 Versions earlier than 6 did not emit psymbols for inlined
3101 functions. Using these files will cause GDB not to be able to
3102 set breakpoints on inlined functions by name, so we ignore these
3103 indices unless the user has done
3104 "set use-deprecated-index-sections on". */
3105 if (version < 6 && !deprecated_ok)
3106 {
3107 static int warning_printed = 0;
3108 if (!warning_printed)
3109 {
3110 warning (_("\
3111 Skipping deprecated .gdb_index section in %s.\n\
3112 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3113 to use the section anyway."),
3114 filename);
3115 warning_printed = 1;
3116 }
3117 return 0;
3118 }
3119 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3120 of the TU (for symbols coming from TUs),
3121 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3122 Plus gold-generated indices can have duplicate entries for global symbols,
3123 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3124 These are just performance bugs, and we can't distinguish gdb-generated
3125 indices from gold-generated ones, so issue no warning here. */
3126
3127 /* Indexes with higher version than the one supported by GDB may be no
3128 longer backward compatible. */
3129 if (version > 8)
3130 return 0;
3131
3132 map->version = version;
3133 map->total_size = section->size;
3134
3135 metadata = (offset_type *) (addr + sizeof (offset_type));
3136
3137 i = 0;
3138 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3139 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3140 / 8);
3141 ++i;
3142
3143 *types_list = addr + MAYBE_SWAP (metadata[i]);
3144 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3145 - MAYBE_SWAP (metadata[i]))
3146 / 8);
3147 ++i;
3148
3149 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3150 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3151 - MAYBE_SWAP (metadata[i]));
3152 ++i;
3153
3154 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3155 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3156 - MAYBE_SWAP (metadata[i]))
3157 / (2 * sizeof (offset_type)));
3158 ++i;
3159
3160 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3161
3162 return 1;
3163 }
3164
3165
3166 /* Read the index file. If everything went ok, initialize the "quick"
3167 elements of all the CUs and return 1. Otherwise, return 0. */
3168
3169 static int
3170 dwarf2_read_index (struct objfile *objfile)
3171 {
3172 struct mapped_index local_map, *map;
3173 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3174 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3175 struct dwz_file *dwz;
3176
3177 if (!read_index_from_section (objfile, objfile_name (objfile),
3178 use_deprecated_index_sections,
3179 &dwarf2_per_objfile->gdb_index, &local_map,
3180 &cu_list, &cu_list_elements,
3181 &types_list, &types_list_elements))
3182 return 0;
3183
3184 /* Don't use the index if it's empty. */
3185 if (local_map.symbol_table_slots == 0)
3186 return 0;
3187
3188 /* If there is a .dwz file, read it so we can get its CU list as
3189 well. */
3190 dwz = dwarf2_get_dwz_file ();
3191 if (dwz != NULL)
3192 {
3193 struct mapped_index dwz_map;
3194 const gdb_byte *dwz_types_ignore;
3195 offset_type dwz_types_elements_ignore;
3196
3197 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3198 1,
3199 &dwz->gdb_index, &dwz_map,
3200 &dwz_list, &dwz_list_elements,
3201 &dwz_types_ignore,
3202 &dwz_types_elements_ignore))
3203 {
3204 warning (_("could not read '.gdb_index' section from %s; skipping"),
3205 bfd_get_filename (dwz->dwz_bfd));
3206 return 0;
3207 }
3208 }
3209
3210 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3211 dwz_list_elements);
3212
3213 if (types_list_elements)
3214 {
3215 struct dwarf2_section_info *section;
3216
3217 /* We can only handle a single .debug_types when we have an
3218 index. */
3219 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3220 return 0;
3221
3222 section = VEC_index (dwarf2_section_info_def,
3223 dwarf2_per_objfile->types, 0);
3224
3225 create_signatured_type_table_from_index (objfile, section, types_list,
3226 types_list_elements);
3227 }
3228
3229 create_addrmap_from_index (objfile, &local_map);
3230
3231 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3232 *map = local_map;
3233
3234 dwarf2_per_objfile->index_table = map;
3235 dwarf2_per_objfile->using_index = 1;
3236 dwarf2_per_objfile->quick_file_names_table =
3237 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3238
3239 return 1;
3240 }
3241
3242 /* A helper for the "quick" functions which sets the global
3243 dwarf2_per_objfile according to OBJFILE. */
3244
3245 static void
3246 dw2_setup (struct objfile *objfile)
3247 {
3248 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3249 gdb_assert (dwarf2_per_objfile);
3250 }
3251
3252 /* die_reader_func for dw2_get_file_names. */
3253
3254 static void
3255 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3256 const gdb_byte *info_ptr,
3257 struct die_info *comp_unit_die,
3258 int has_children,
3259 void *data)
3260 {
3261 struct dwarf2_cu *cu = reader->cu;
3262 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3263 struct objfile *objfile = dwarf2_per_objfile->objfile;
3264 struct dwarf2_per_cu_data *lh_cu;
3265 struct line_header *lh;
3266 struct attribute *attr;
3267 int i;
3268 const char *name, *comp_dir;
3269 void **slot;
3270 struct quick_file_names *qfn;
3271 unsigned int line_offset;
3272
3273 gdb_assert (! this_cu->is_debug_types);
3274
3275 /* Our callers never want to match partial units -- instead they
3276 will match the enclosing full CU. */
3277 if (comp_unit_die->tag == DW_TAG_partial_unit)
3278 {
3279 this_cu->v.quick->no_file_data = 1;
3280 return;
3281 }
3282
3283 lh_cu = this_cu;
3284 lh = NULL;
3285 slot = NULL;
3286 line_offset = 0;
3287
3288 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3289 if (attr)
3290 {
3291 struct quick_file_names find_entry;
3292
3293 line_offset = DW_UNSND (attr);
3294
3295 /* We may have already read in this line header (TU line header sharing).
3296 If we have we're done. */
3297 find_entry.hash.dwo_unit = cu->dwo_unit;
3298 find_entry.hash.line_offset.sect_off = line_offset;
3299 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3300 &find_entry, INSERT);
3301 if (*slot != NULL)
3302 {
3303 lh_cu->v.quick->file_names = *slot;
3304 return;
3305 }
3306
3307 lh = dwarf_decode_line_header (line_offset, cu);
3308 }
3309 if (lh == NULL)
3310 {
3311 lh_cu->v.quick->no_file_data = 1;
3312 return;
3313 }
3314
3315 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3316 qfn->hash.dwo_unit = cu->dwo_unit;
3317 qfn->hash.line_offset.sect_off = line_offset;
3318 gdb_assert (slot != NULL);
3319 *slot = qfn;
3320
3321 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3322
3323 qfn->num_file_names = lh->num_file_names;
3324 qfn->file_names =
3325 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3326 for (i = 0; i < lh->num_file_names; ++i)
3327 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3328 qfn->real_names = NULL;
3329
3330 free_line_header (lh);
3331
3332 lh_cu->v.quick->file_names = qfn;
3333 }
3334
3335 /* A helper for the "quick" functions which attempts to read the line
3336 table for THIS_CU. */
3337
3338 static struct quick_file_names *
3339 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3340 {
3341 /* This should never be called for TUs. */
3342 gdb_assert (! this_cu->is_debug_types);
3343 /* Nor type unit groups. */
3344 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3345
3346 if (this_cu->v.quick->file_names != NULL)
3347 return this_cu->v.quick->file_names;
3348 /* If we know there is no line data, no point in looking again. */
3349 if (this_cu->v.quick->no_file_data)
3350 return NULL;
3351
3352 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3353
3354 if (this_cu->v.quick->no_file_data)
3355 return NULL;
3356 return this_cu->v.quick->file_names;
3357 }
3358
3359 /* A helper for the "quick" functions which computes and caches the
3360 real path for a given file name from the line table. */
3361
3362 static const char *
3363 dw2_get_real_path (struct objfile *objfile,
3364 struct quick_file_names *qfn, int index)
3365 {
3366 if (qfn->real_names == NULL)
3367 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3368 qfn->num_file_names, const char *);
3369
3370 if (qfn->real_names[index] == NULL)
3371 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3372
3373 return qfn->real_names[index];
3374 }
3375
3376 static struct symtab *
3377 dw2_find_last_source_symtab (struct objfile *objfile)
3378 {
3379 struct compunit_symtab *cust;
3380 int index;
3381
3382 dw2_setup (objfile);
3383 index = dwarf2_per_objfile->n_comp_units - 1;
3384 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3385 if (cust == NULL)
3386 return NULL;
3387 return compunit_primary_filetab (cust);
3388 }
3389
3390 /* Traversal function for dw2_forget_cached_source_info. */
3391
3392 static int
3393 dw2_free_cached_file_names (void **slot, void *info)
3394 {
3395 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3396
3397 if (file_data->real_names)
3398 {
3399 int i;
3400
3401 for (i = 0; i < file_data->num_file_names; ++i)
3402 {
3403 xfree ((void*) file_data->real_names[i]);
3404 file_data->real_names[i] = NULL;
3405 }
3406 }
3407
3408 return 1;
3409 }
3410
3411 static void
3412 dw2_forget_cached_source_info (struct objfile *objfile)
3413 {
3414 dw2_setup (objfile);
3415
3416 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3417 dw2_free_cached_file_names, NULL);
3418 }
3419
3420 /* Helper function for dw2_map_symtabs_matching_filename that expands
3421 the symtabs and calls the iterator. */
3422
3423 static int
3424 dw2_map_expand_apply (struct objfile *objfile,
3425 struct dwarf2_per_cu_data *per_cu,
3426 const char *name, const char *real_path,
3427 int (*callback) (struct symtab *, void *),
3428 void *data)
3429 {
3430 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3431
3432 /* Don't visit already-expanded CUs. */
3433 if (per_cu->v.quick->compunit_symtab)
3434 return 0;
3435
3436 /* This may expand more than one symtab, and we want to iterate over
3437 all of them. */
3438 dw2_instantiate_symtab (per_cu);
3439
3440 return iterate_over_some_symtabs (name, real_path, callback, data,
3441 objfile->compunit_symtabs, last_made);
3442 }
3443
3444 /* Implementation of the map_symtabs_matching_filename method. */
3445
3446 static int
3447 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3448 const char *real_path,
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
3451 {
3452 int i;
3453 const char *name_basename = lbasename (name);
3454
3455 dw2_setup (objfile);
3456
3457 /* The rule is CUs specify all the files, including those used by
3458 any TU, so there's no need to scan TUs here. */
3459
3460 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3461 {
3462 int j;
3463 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3464 struct quick_file_names *file_data;
3465
3466 /* We only need to look at symtabs not already expanded. */
3467 if (per_cu->v.quick->compunit_symtab)
3468 continue;
3469
3470 file_data = dw2_get_file_names (per_cu);
3471 if (file_data == NULL)
3472 continue;
3473
3474 for (j = 0; j < file_data->num_file_names; ++j)
3475 {
3476 const char *this_name = file_data->file_names[j];
3477 const char *this_real_name;
3478
3479 if (compare_filenames_for_search (this_name, name))
3480 {
3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3482 callback, data))
3483 return 1;
3484 continue;
3485 }
3486
3487 /* Before we invoke realpath, which can get expensive when many
3488 files are involved, do a quick comparison of the basenames. */
3489 if (! basenames_may_differ
3490 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3491 continue;
3492
3493 this_real_name = dw2_get_real_path (objfile, file_data, j);
3494 if (compare_filenames_for_search (this_real_name, name))
3495 {
3496 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3497 callback, data))
3498 return 1;
3499 continue;
3500 }
3501
3502 if (real_path != NULL)
3503 {
3504 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3505 gdb_assert (IS_ABSOLUTE_PATH (name));
3506 if (this_real_name != NULL
3507 && FILENAME_CMP (real_path, this_real_name) == 0)
3508 {
3509 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3510 callback, data))
3511 return 1;
3512 continue;
3513 }
3514 }
3515 }
3516 }
3517
3518 return 0;
3519 }
3520
3521 /* Struct used to manage iterating over all CUs looking for a symbol. */
3522
3523 struct dw2_symtab_iterator
3524 {
3525 /* The internalized form of .gdb_index. */
3526 struct mapped_index *index;
3527 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3528 int want_specific_block;
3529 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3530 Unused if !WANT_SPECIFIC_BLOCK. */
3531 int block_index;
3532 /* The kind of symbol we're looking for. */
3533 domain_enum domain;
3534 /* The list of CUs from the index entry of the symbol,
3535 or NULL if not found. */
3536 offset_type *vec;
3537 /* The next element in VEC to look at. */
3538 int next;
3539 /* The number of elements in VEC, or zero if there is no match. */
3540 int length;
3541 /* Have we seen a global version of the symbol?
3542 If so we can ignore all further global instances.
3543 This is to work around gold/15646, inefficient gold-generated
3544 indices. */
3545 int global_seen;
3546 };
3547
3548 /* Initialize the index symtab iterator ITER.
3549 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3550 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3551
3552 static void
3553 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3554 struct mapped_index *index,
3555 int want_specific_block,
3556 int block_index,
3557 domain_enum domain,
3558 const char *name)
3559 {
3560 iter->index = index;
3561 iter->want_specific_block = want_specific_block;
3562 iter->block_index = block_index;
3563 iter->domain = domain;
3564 iter->next = 0;
3565 iter->global_seen = 0;
3566
3567 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3568 iter->length = MAYBE_SWAP (*iter->vec);
3569 else
3570 {
3571 iter->vec = NULL;
3572 iter->length = 0;
3573 }
3574 }
3575
3576 /* Return the next matching CU or NULL if there are no more. */
3577
3578 static struct dwarf2_per_cu_data *
3579 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3580 {
3581 for ( ; iter->next < iter->length; ++iter->next)
3582 {
3583 offset_type cu_index_and_attrs =
3584 MAYBE_SWAP (iter->vec[iter->next + 1]);
3585 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3586 struct dwarf2_per_cu_data *per_cu;
3587 int want_static = iter->block_index != GLOBAL_BLOCK;
3588 /* This value is only valid for index versions >= 7. */
3589 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3590 gdb_index_symbol_kind symbol_kind =
3591 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3592 /* Only check the symbol attributes if they're present.
3593 Indices prior to version 7 don't record them,
3594 and indices >= 7 may elide them for certain symbols
3595 (gold does this). */
3596 int attrs_valid =
3597 (iter->index->version >= 7
3598 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3599
3600 /* Don't crash on bad data. */
3601 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3602 + dwarf2_per_objfile->n_type_units))
3603 {
3604 complaint (&symfile_complaints,
3605 _(".gdb_index entry has bad CU index"
3606 " [in module %s]"),
3607 objfile_name (dwarf2_per_objfile->objfile));
3608 continue;
3609 }
3610
3611 per_cu = dw2_get_cutu (cu_index);
3612
3613 /* Skip if already read in. */
3614 if (per_cu->v.quick->compunit_symtab)
3615 continue;
3616
3617 /* Check static vs global. */
3618 if (attrs_valid)
3619 {
3620 if (iter->want_specific_block
3621 && want_static != is_static)
3622 continue;
3623 /* Work around gold/15646. */
3624 if (!is_static && iter->global_seen)
3625 continue;
3626 if (!is_static)
3627 iter->global_seen = 1;
3628 }
3629
3630 /* Only check the symbol's kind if it has one. */
3631 if (attrs_valid)
3632 {
3633 switch (iter->domain)
3634 {
3635 case VAR_DOMAIN:
3636 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3637 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3638 /* Some types are also in VAR_DOMAIN. */
3639 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3640 continue;
3641 break;
3642 case STRUCT_DOMAIN:
3643 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case LABEL_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3648 continue;
3649 break;
3650 default:
3651 break;
3652 }
3653 }
3654
3655 ++iter->next;
3656 return per_cu;
3657 }
3658
3659 return NULL;
3660 }
3661
3662 static struct compunit_symtab *
3663 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3664 const char *name, domain_enum domain)
3665 {
3666 struct compunit_symtab *stab_best = NULL;
3667 struct mapped_index *index;
3668
3669 dw2_setup (objfile);
3670
3671 index = dwarf2_per_objfile->index_table;
3672
3673 /* index is NULL if OBJF_READNOW. */
3674 if (index)
3675 {
3676 struct dw2_symtab_iterator iter;
3677 struct dwarf2_per_cu_data *per_cu;
3678
3679 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3680
3681 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3682 {
3683 struct symbol *sym, *with_opaque = NULL;
3684 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3685 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3686 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3687
3688 sym = block_find_symbol (block, name, domain,
3689 block_find_non_opaque_type_preferred,
3690 &with_opaque);
3691
3692 /* Some caution must be observed with overloaded functions
3693 and methods, since the index will not contain any overload
3694 information (but NAME might contain it). */
3695
3696 if (sym != NULL
3697 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3698 return stab;
3699 if (with_opaque != NULL
3700 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3701 stab_best = stab;
3702
3703 /* Keep looking through other CUs. */
3704 }
3705 }
3706
3707 return stab_best;
3708 }
3709
3710 static void
3711 dw2_print_stats (struct objfile *objfile)
3712 {
3713 int i, total, count;
3714
3715 dw2_setup (objfile);
3716 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3717 count = 0;
3718 for (i = 0; i < total; ++i)
3719 {
3720 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3721
3722 if (!per_cu->v.quick->compunit_symtab)
3723 ++count;
3724 }
3725 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3726 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3727 }
3728
3729 /* This dumps minimal information about the index.
3730 It is called via "mt print objfiles".
3731 One use is to verify .gdb_index has been loaded by the
3732 gdb.dwarf2/gdb-index.exp testcase. */
3733
3734 static void
3735 dw2_dump (struct objfile *objfile)
3736 {
3737 dw2_setup (objfile);
3738 gdb_assert (dwarf2_per_objfile->using_index);
3739 printf_filtered (".gdb_index:");
3740 if (dwarf2_per_objfile->index_table != NULL)
3741 {
3742 printf_filtered (" version %d\n",
3743 dwarf2_per_objfile->index_table->version);
3744 }
3745 else
3746 printf_filtered (" faked for \"readnow\"\n");
3747 printf_filtered ("\n");
3748 }
3749
3750 static void
3751 dw2_relocate (struct objfile *objfile,
3752 const struct section_offsets *new_offsets,
3753 const struct section_offsets *delta)
3754 {
3755 /* There's nothing to relocate here. */
3756 }
3757
3758 static void
3759 dw2_expand_symtabs_for_function (struct objfile *objfile,
3760 const char *func_name)
3761 {
3762 struct mapped_index *index;
3763
3764 dw2_setup (objfile);
3765
3766 index = dwarf2_per_objfile->index_table;
3767
3768 /* index is NULL if OBJF_READNOW. */
3769 if (index)
3770 {
3771 struct dw2_symtab_iterator iter;
3772 struct dwarf2_per_cu_data *per_cu;
3773
3774 /* Note: It doesn't matter what we pass for block_index here. */
3775 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3776 func_name);
3777
3778 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3779 dw2_instantiate_symtab (per_cu);
3780 }
3781 }
3782
3783 static void
3784 dw2_expand_all_symtabs (struct objfile *objfile)
3785 {
3786 int i;
3787
3788 dw2_setup (objfile);
3789
3790 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3791 + dwarf2_per_objfile->n_type_units); ++i)
3792 {
3793 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3794
3795 dw2_instantiate_symtab (per_cu);
3796 }
3797 }
3798
3799 static void
3800 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3801 const char *fullname)
3802 {
3803 int i;
3804
3805 dw2_setup (objfile);
3806
3807 /* We don't need to consider type units here.
3808 This is only called for examining code, e.g. expand_line_sal.
3809 There can be an order of magnitude (or more) more type units
3810 than comp units, and we avoid them if we can. */
3811
3812 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3813 {
3814 int j;
3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3816 struct quick_file_names *file_data;
3817
3818 /* We only need to look at symtabs not already expanded. */
3819 if (per_cu->v.quick->compunit_symtab)
3820 continue;
3821
3822 file_data = dw2_get_file_names (per_cu);
3823 if (file_data == NULL)
3824 continue;
3825
3826 for (j = 0; j < file_data->num_file_names; ++j)
3827 {
3828 const char *this_fullname = file_data->file_names[j];
3829
3830 if (filename_cmp (this_fullname, fullname) == 0)
3831 {
3832 dw2_instantiate_symtab (per_cu);
3833 break;
3834 }
3835 }
3836 }
3837 }
3838
3839 static void
3840 dw2_map_matching_symbols (struct objfile *objfile,
3841 const char * name, domain_enum domain,
3842 int global,
3843 int (*callback) (struct block *,
3844 struct symbol *, void *),
3845 void *data, symbol_compare_ftype *match,
3846 symbol_compare_ftype *ordered_compare)
3847 {
3848 /* Currently unimplemented; used for Ada. The function can be called if the
3849 current language is Ada for a non-Ada objfile using GNU index. As Ada
3850 does not look for non-Ada symbols this function should just return. */
3851 }
3852
3853 static void
3854 dw2_expand_symtabs_matching
3855 (struct objfile *objfile,
3856 expand_symtabs_file_matcher_ftype *file_matcher,
3857 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3858 expand_symtabs_exp_notify_ftype *expansion_notify,
3859 enum search_domain kind,
3860 void *data)
3861 {
3862 int i;
3863 offset_type iter;
3864 struct mapped_index *index;
3865
3866 dw2_setup (objfile);
3867
3868 /* index_table is NULL if OBJF_READNOW. */
3869 if (!dwarf2_per_objfile->index_table)
3870 return;
3871 index = dwarf2_per_objfile->index_table;
3872
3873 if (file_matcher != NULL)
3874 {
3875 struct cleanup *cleanup;
3876 htab_t visited_found, visited_not_found;
3877
3878 visited_found = htab_create_alloc (10,
3879 htab_hash_pointer, htab_eq_pointer,
3880 NULL, xcalloc, xfree);
3881 cleanup = make_cleanup_htab_delete (visited_found);
3882 visited_not_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 make_cleanup_htab_delete (visited_not_found);
3886
3887 /* The rule is CUs specify all the files, including those used by
3888 any TU, so there's no need to scan TUs here. */
3889
3890 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3891 {
3892 int j;
3893 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3894 struct quick_file_names *file_data;
3895 void **slot;
3896
3897 QUIT;
3898
3899 per_cu->v.quick->mark = 0;
3900
3901 /* We only need to look at symtabs not already expanded. */
3902 if (per_cu->v.quick->compunit_symtab)
3903 continue;
3904
3905 file_data = dw2_get_file_names (per_cu);
3906 if (file_data == NULL)
3907 continue;
3908
3909 if (htab_find (visited_not_found, file_data) != NULL)
3910 continue;
3911 else if (htab_find (visited_found, file_data) != NULL)
3912 {
3913 per_cu->v.quick->mark = 1;
3914 continue;
3915 }
3916
3917 for (j = 0; j < file_data->num_file_names; ++j)
3918 {
3919 const char *this_real_name;
3920
3921 if (file_matcher (file_data->file_names[j], data, 0))
3922 {
3923 per_cu->v.quick->mark = 1;
3924 break;
3925 }
3926
3927 /* Before we invoke realpath, which can get expensive when many
3928 files are involved, do a quick comparison of the basenames. */
3929 if (!basenames_may_differ
3930 && !file_matcher (lbasename (file_data->file_names[j]),
3931 data, 1))
3932 continue;
3933
3934 this_real_name = dw2_get_real_path (objfile, file_data, j);
3935 if (file_matcher (this_real_name, data, 0))
3936 {
3937 per_cu->v.quick->mark = 1;
3938 break;
3939 }
3940 }
3941
3942 slot = htab_find_slot (per_cu->v.quick->mark
3943 ? visited_found
3944 : visited_not_found,
3945 file_data, INSERT);
3946 *slot = file_data;
3947 }
3948
3949 do_cleanups (cleanup);
3950 }
3951
3952 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3953 {
3954 offset_type idx = 2 * iter;
3955 const char *name;
3956 offset_type *vec, vec_len, vec_idx;
3957 int global_seen = 0;
3958
3959 QUIT;
3960
3961 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3962 continue;
3963
3964 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3965
3966 if (! (*symbol_matcher) (name, data))
3967 continue;
3968
3969 /* The name was matched, now expand corresponding CUs that were
3970 marked. */
3971 vec = (offset_type *) (index->constant_pool
3972 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3973 vec_len = MAYBE_SWAP (vec[0]);
3974 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3975 {
3976 struct dwarf2_per_cu_data *per_cu;
3977 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3978 /* This value is only valid for index versions >= 7. */
3979 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3980 gdb_index_symbol_kind symbol_kind =
3981 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3982 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3983 /* Only check the symbol attributes if they're present.
3984 Indices prior to version 7 don't record them,
3985 and indices >= 7 may elide them for certain symbols
3986 (gold does this). */
3987 int attrs_valid =
3988 (index->version >= 7
3989 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3990
3991 /* Work around gold/15646. */
3992 if (attrs_valid)
3993 {
3994 if (!is_static && global_seen)
3995 continue;
3996 if (!is_static)
3997 global_seen = 1;
3998 }
3999
4000 /* Only check the symbol's kind if it has one. */
4001 if (attrs_valid)
4002 {
4003 switch (kind)
4004 {
4005 case VARIABLES_DOMAIN:
4006 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4007 continue;
4008 break;
4009 case FUNCTIONS_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4011 continue;
4012 break;
4013 case TYPES_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4015 continue;
4016 break;
4017 default:
4018 break;
4019 }
4020 }
4021
4022 /* Don't crash on bad data. */
4023 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4024 + dwarf2_per_objfile->n_type_units))
4025 {
4026 complaint (&symfile_complaints,
4027 _(".gdb_index entry has bad CU index"
4028 " [in module %s]"), objfile_name (objfile));
4029 continue;
4030 }
4031
4032 per_cu = dw2_get_cutu (cu_index);
4033 if (file_matcher == NULL || per_cu->v.quick->mark)
4034 {
4035 int symtab_was_null =
4036 (per_cu->v.quick->compunit_symtab == NULL);
4037
4038 dw2_instantiate_symtab (per_cu);
4039
4040 if (expansion_notify != NULL
4041 && symtab_was_null
4042 && per_cu->v.quick->compunit_symtab != NULL)
4043 {
4044 expansion_notify (per_cu->v.quick->compunit_symtab,
4045 data);
4046 }
4047 }
4048 }
4049 }
4050 }
4051
4052 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4053 symtab. */
4054
4055 static struct compunit_symtab *
4056 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4057 CORE_ADDR pc)
4058 {
4059 int i;
4060
4061 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4062 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4063 return cust;
4064
4065 if (cust->includes == NULL)
4066 return NULL;
4067
4068 for (i = 0; cust->includes[i]; ++i)
4069 {
4070 struct compunit_symtab *s = cust->includes[i];
4071
4072 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4073 if (s != NULL)
4074 return s;
4075 }
4076
4077 return NULL;
4078 }
4079
4080 static struct compunit_symtab *
4081 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4082 struct bound_minimal_symbol msymbol,
4083 CORE_ADDR pc,
4084 struct obj_section *section,
4085 int warn_if_readin)
4086 {
4087 struct dwarf2_per_cu_data *data;
4088 struct compunit_symtab *result;
4089
4090 dw2_setup (objfile);
4091
4092 if (!objfile->psymtabs_addrmap)
4093 return NULL;
4094
4095 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4096 if (!data)
4097 return NULL;
4098
4099 if (warn_if_readin && data->v.quick->compunit_symtab)
4100 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4101 paddress (get_objfile_arch (objfile), pc));
4102
4103 result
4104 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4105 pc);
4106 gdb_assert (result != NULL);
4107 return result;
4108 }
4109
4110 static void
4111 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4112 void *data, int need_fullname)
4113 {
4114 int i;
4115 struct cleanup *cleanup;
4116 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4117 NULL, xcalloc, xfree);
4118
4119 cleanup = make_cleanup_htab_delete (visited);
4120 dw2_setup (objfile);
4121
4122 /* The rule is CUs specify all the files, including those used by
4123 any TU, so there's no need to scan TUs here.
4124 We can ignore file names coming from already-expanded CUs. */
4125
4126 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4127 {
4128 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4129
4130 if (per_cu->v.quick->compunit_symtab)
4131 {
4132 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4133 INSERT);
4134
4135 *slot = per_cu->v.quick->file_names;
4136 }
4137 }
4138
4139 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4140 {
4141 int j;
4142 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4143 struct quick_file_names *file_data;
4144 void **slot;
4145
4146 /* We only need to look at symtabs not already expanded. */
4147 if (per_cu->v.quick->compunit_symtab)
4148 continue;
4149
4150 file_data = dw2_get_file_names (per_cu);
4151 if (file_data == NULL)
4152 continue;
4153
4154 slot = htab_find_slot (visited, file_data, INSERT);
4155 if (*slot)
4156 {
4157 /* Already visited. */
4158 continue;
4159 }
4160 *slot = file_data;
4161
4162 for (j = 0; j < file_data->num_file_names; ++j)
4163 {
4164 const char *this_real_name;
4165
4166 if (need_fullname)
4167 this_real_name = dw2_get_real_path (objfile, file_data, j);
4168 else
4169 this_real_name = NULL;
4170 (*fun) (file_data->file_names[j], this_real_name, data);
4171 }
4172 }
4173
4174 do_cleanups (cleanup);
4175 }
4176
4177 static int
4178 dw2_has_symbols (struct objfile *objfile)
4179 {
4180 return 1;
4181 }
4182
4183 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4184 {
4185 dw2_has_symbols,
4186 dw2_find_last_source_symtab,
4187 dw2_forget_cached_source_info,
4188 dw2_map_symtabs_matching_filename,
4189 dw2_lookup_symbol,
4190 dw2_print_stats,
4191 dw2_dump,
4192 dw2_relocate,
4193 dw2_expand_symtabs_for_function,
4194 dw2_expand_all_symtabs,
4195 dw2_expand_symtabs_with_fullname,
4196 dw2_map_matching_symbols,
4197 dw2_expand_symtabs_matching,
4198 dw2_find_pc_sect_compunit_symtab,
4199 dw2_map_symbol_filenames
4200 };
4201
4202 /* Initialize for reading DWARF for this objfile. Return 0 if this
4203 file will use psymtabs, or 1 if using the GNU index. */
4204
4205 int
4206 dwarf2_initialize_objfile (struct objfile *objfile)
4207 {
4208 /* If we're about to read full symbols, don't bother with the
4209 indices. In this case we also don't care if some other debug
4210 format is making psymtabs, because they are all about to be
4211 expanded anyway. */
4212 if ((objfile->flags & OBJF_READNOW))
4213 {
4214 int i;
4215
4216 dwarf2_per_objfile->using_index = 1;
4217 create_all_comp_units (objfile);
4218 create_all_type_units (objfile);
4219 dwarf2_per_objfile->quick_file_names_table =
4220 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4221
4222 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4223 + dwarf2_per_objfile->n_type_units); ++i)
4224 {
4225 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4226
4227 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4228 struct dwarf2_per_cu_quick_data);
4229 }
4230
4231 /* Return 1 so that gdb sees the "quick" functions. However,
4232 these functions will be no-ops because we will have expanded
4233 all symtabs. */
4234 return 1;
4235 }
4236
4237 if (dwarf2_read_index (objfile))
4238 return 1;
4239
4240 return 0;
4241 }
4242
4243 \f
4244
4245 /* Build a partial symbol table. */
4246
4247 void
4248 dwarf2_build_psymtabs (struct objfile *objfile)
4249 {
4250
4251 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4252 {
4253 init_psymbol_list (objfile, 1024);
4254 }
4255
4256 TRY
4257 {
4258 /* This isn't really ideal: all the data we allocate on the
4259 objfile's obstack is still uselessly kept around. However,
4260 freeing it seems unsafe. */
4261 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4262
4263 dwarf2_build_psymtabs_hard (objfile);
4264 discard_cleanups (cleanups);
4265 }
4266 CATCH (except, RETURN_MASK_ERROR)
4267 {
4268 exception_print (gdb_stderr, except);
4269 }
4270 END_CATCH
4271 }
4272
4273 /* Return the total length of the CU described by HEADER. */
4274
4275 static unsigned int
4276 get_cu_length (const struct comp_unit_head *header)
4277 {
4278 return header->initial_length_size + header->length;
4279 }
4280
4281 /* Return TRUE if OFFSET is within CU_HEADER. */
4282
4283 static inline int
4284 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4285 {
4286 sect_offset bottom = { cu_header->offset.sect_off };
4287 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4288
4289 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4290 }
4291
4292 /* Find the base address of the compilation unit for range lists and
4293 location lists. It will normally be specified by DW_AT_low_pc.
4294 In DWARF-3 draft 4, the base address could be overridden by
4295 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4296 compilation units with discontinuous ranges. */
4297
4298 static void
4299 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4300 {
4301 struct attribute *attr;
4302
4303 cu->base_known = 0;
4304 cu->base_address = 0;
4305
4306 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4307 if (attr)
4308 {
4309 cu->base_address = attr_value_as_address (attr);
4310 cu->base_known = 1;
4311 }
4312 else
4313 {
4314 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4315 if (attr)
4316 {
4317 cu->base_address = attr_value_as_address (attr);
4318 cu->base_known = 1;
4319 }
4320 }
4321 }
4322
4323 /* Read in the comp unit header information from the debug_info at info_ptr.
4324 NOTE: This leaves members offset, first_die_offset to be filled in
4325 by the caller. */
4326
4327 static const gdb_byte *
4328 read_comp_unit_head (struct comp_unit_head *cu_header,
4329 const gdb_byte *info_ptr, bfd *abfd)
4330 {
4331 int signed_addr;
4332 unsigned int bytes_read;
4333
4334 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4335 cu_header->initial_length_size = bytes_read;
4336 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4337 info_ptr += bytes_read;
4338 cu_header->version = read_2_bytes (abfd, info_ptr);
4339 info_ptr += 2;
4340 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4341 &bytes_read);
4342 info_ptr += bytes_read;
4343 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4344 info_ptr += 1;
4345 signed_addr = bfd_get_sign_extend_vma (abfd);
4346 if (signed_addr < 0)
4347 internal_error (__FILE__, __LINE__,
4348 _("read_comp_unit_head: dwarf from non elf file"));
4349 cu_header->signed_addr_p = signed_addr;
4350
4351 return info_ptr;
4352 }
4353
4354 /* Helper function that returns the proper abbrev section for
4355 THIS_CU. */
4356
4357 static struct dwarf2_section_info *
4358 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4359 {
4360 struct dwarf2_section_info *abbrev;
4361
4362 if (this_cu->is_dwz)
4363 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4364 else
4365 abbrev = &dwarf2_per_objfile->abbrev;
4366
4367 return abbrev;
4368 }
4369
4370 /* Subroutine of read_and_check_comp_unit_head and
4371 read_and_check_type_unit_head to simplify them.
4372 Perform various error checking on the header. */
4373
4374 static void
4375 error_check_comp_unit_head (struct comp_unit_head *header,
4376 struct dwarf2_section_info *section,
4377 struct dwarf2_section_info *abbrev_section)
4378 {
4379 bfd *abfd = get_section_bfd_owner (section);
4380 const char *filename = get_section_file_name (section);
4381
4382 if (header->version != 2 && header->version != 3 && header->version != 4)
4383 error (_("Dwarf Error: wrong version in compilation unit header "
4384 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4385 filename);
4386
4387 if (header->abbrev_offset.sect_off
4388 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4389 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4390 "(offset 0x%lx + 6) [in module %s]"),
4391 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4392 filename);
4393
4394 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4395 avoid potential 32-bit overflow. */
4396 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4397 > section->size)
4398 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4399 "(offset 0x%lx + 0) [in module %s]"),
4400 (long) header->length, (long) header->offset.sect_off,
4401 filename);
4402 }
4403
4404 /* Read in a CU/TU header and perform some basic error checking.
4405 The contents of the header are stored in HEADER.
4406 The result is a pointer to the start of the first DIE. */
4407
4408 static const gdb_byte *
4409 read_and_check_comp_unit_head (struct comp_unit_head *header,
4410 struct dwarf2_section_info *section,
4411 struct dwarf2_section_info *abbrev_section,
4412 const gdb_byte *info_ptr,
4413 int is_debug_types_section)
4414 {
4415 const gdb_byte *beg_of_comp_unit = info_ptr;
4416 bfd *abfd = get_section_bfd_owner (section);
4417
4418 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4419
4420 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4421
4422 /* If we're reading a type unit, skip over the signature and
4423 type_offset fields. */
4424 if (is_debug_types_section)
4425 info_ptr += 8 /*signature*/ + header->offset_size;
4426
4427 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4428
4429 error_check_comp_unit_head (header, section, abbrev_section);
4430
4431 return info_ptr;
4432 }
4433
4434 /* Read in the types comp unit header information from .debug_types entry at
4435 types_ptr. The result is a pointer to one past the end of the header. */
4436
4437 static const gdb_byte *
4438 read_and_check_type_unit_head (struct comp_unit_head *header,
4439 struct dwarf2_section_info *section,
4440 struct dwarf2_section_info *abbrev_section,
4441 const gdb_byte *info_ptr,
4442 ULONGEST *signature,
4443 cu_offset *type_offset_in_tu)
4444 {
4445 const gdb_byte *beg_of_comp_unit = info_ptr;
4446 bfd *abfd = get_section_bfd_owner (section);
4447
4448 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4449
4450 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4451
4452 /* If we're reading a type unit, skip over the signature and
4453 type_offset fields. */
4454 if (signature != NULL)
4455 *signature = read_8_bytes (abfd, info_ptr);
4456 info_ptr += 8;
4457 if (type_offset_in_tu != NULL)
4458 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4459 header->offset_size);
4460 info_ptr += header->offset_size;
4461
4462 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4463
4464 error_check_comp_unit_head (header, section, abbrev_section);
4465
4466 return info_ptr;
4467 }
4468
4469 /* Fetch the abbreviation table offset from a comp or type unit header. */
4470
4471 static sect_offset
4472 read_abbrev_offset (struct dwarf2_section_info *section,
4473 sect_offset offset)
4474 {
4475 bfd *abfd = get_section_bfd_owner (section);
4476 const gdb_byte *info_ptr;
4477 unsigned int length, initial_length_size, offset_size;
4478 sect_offset abbrev_offset;
4479
4480 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4481 info_ptr = section->buffer + offset.sect_off;
4482 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4483 offset_size = initial_length_size == 4 ? 4 : 8;
4484 info_ptr += initial_length_size + 2 /*version*/;
4485 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4486 return abbrev_offset;
4487 }
4488
4489 /* Allocate a new partial symtab for file named NAME and mark this new
4490 partial symtab as being an include of PST. */
4491
4492 static void
4493 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4494 struct objfile *objfile)
4495 {
4496 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4497
4498 if (!IS_ABSOLUTE_PATH (subpst->filename))
4499 {
4500 /* It shares objfile->objfile_obstack. */
4501 subpst->dirname = pst->dirname;
4502 }
4503
4504 subpst->textlow = 0;
4505 subpst->texthigh = 0;
4506
4507 subpst->dependencies
4508 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4509 subpst->dependencies[0] = pst;
4510 subpst->number_of_dependencies = 1;
4511
4512 subpst->globals_offset = 0;
4513 subpst->n_global_syms = 0;
4514 subpst->statics_offset = 0;
4515 subpst->n_static_syms = 0;
4516 subpst->compunit_symtab = NULL;
4517 subpst->read_symtab = pst->read_symtab;
4518 subpst->readin = 0;
4519
4520 /* No private part is necessary for include psymtabs. This property
4521 can be used to differentiate between such include psymtabs and
4522 the regular ones. */
4523 subpst->read_symtab_private = NULL;
4524 }
4525
4526 /* Read the Line Number Program data and extract the list of files
4527 included by the source file represented by PST. Build an include
4528 partial symtab for each of these included files. */
4529
4530 static void
4531 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4532 struct die_info *die,
4533 struct partial_symtab *pst)
4534 {
4535 struct line_header *lh = NULL;
4536 struct attribute *attr;
4537
4538 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4539 if (attr)
4540 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4541 if (lh == NULL)
4542 return; /* No linetable, so no includes. */
4543
4544 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4545 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4546
4547 free_line_header (lh);
4548 }
4549
4550 static hashval_t
4551 hash_signatured_type (const void *item)
4552 {
4553 const struct signatured_type *sig_type = item;
4554
4555 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4556 return sig_type->signature;
4557 }
4558
4559 static int
4560 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4561 {
4562 const struct signatured_type *lhs = item_lhs;
4563 const struct signatured_type *rhs = item_rhs;
4564
4565 return lhs->signature == rhs->signature;
4566 }
4567
4568 /* Allocate a hash table for signatured types. */
4569
4570 static htab_t
4571 allocate_signatured_type_table (struct objfile *objfile)
4572 {
4573 return htab_create_alloc_ex (41,
4574 hash_signatured_type,
4575 eq_signatured_type,
4576 NULL,
4577 &objfile->objfile_obstack,
4578 hashtab_obstack_allocate,
4579 dummy_obstack_deallocate);
4580 }
4581
4582 /* A helper function to add a signatured type CU to a table. */
4583
4584 static int
4585 add_signatured_type_cu_to_table (void **slot, void *datum)
4586 {
4587 struct signatured_type *sigt = *slot;
4588 struct signatured_type ***datap = datum;
4589
4590 **datap = sigt;
4591 ++*datap;
4592
4593 return 1;
4594 }
4595
4596 /* Create the hash table of all entries in the .debug_types
4597 (or .debug_types.dwo) section(s).
4598 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4599 otherwise it is NULL.
4600
4601 The result is a pointer to the hash table or NULL if there are no types.
4602
4603 Note: This function processes DWO files only, not DWP files. */
4604
4605 static htab_t
4606 create_debug_types_hash_table (struct dwo_file *dwo_file,
4607 VEC (dwarf2_section_info_def) *types)
4608 {
4609 struct objfile *objfile = dwarf2_per_objfile->objfile;
4610 htab_t types_htab = NULL;
4611 int ix;
4612 struct dwarf2_section_info *section;
4613 struct dwarf2_section_info *abbrev_section;
4614
4615 if (VEC_empty (dwarf2_section_info_def, types))
4616 return NULL;
4617
4618 abbrev_section = (dwo_file != NULL
4619 ? &dwo_file->sections.abbrev
4620 : &dwarf2_per_objfile->abbrev);
4621
4622 if (dwarf_read_debug)
4623 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4624 dwo_file ? ".dwo" : "",
4625 get_section_file_name (abbrev_section));
4626
4627 for (ix = 0;
4628 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4629 ++ix)
4630 {
4631 bfd *abfd;
4632 const gdb_byte *info_ptr, *end_ptr;
4633
4634 dwarf2_read_section (objfile, section);
4635 info_ptr = section->buffer;
4636
4637 if (info_ptr == NULL)
4638 continue;
4639
4640 /* We can't set abfd until now because the section may be empty or
4641 not present, in which case the bfd is unknown. */
4642 abfd = get_section_bfd_owner (section);
4643
4644 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4645 because we don't need to read any dies: the signature is in the
4646 header. */
4647
4648 end_ptr = info_ptr + section->size;
4649 while (info_ptr < end_ptr)
4650 {
4651 sect_offset offset;
4652 cu_offset type_offset_in_tu;
4653 ULONGEST signature;
4654 struct signatured_type *sig_type;
4655 struct dwo_unit *dwo_tu;
4656 void **slot;
4657 const gdb_byte *ptr = info_ptr;
4658 struct comp_unit_head header;
4659 unsigned int length;
4660
4661 offset.sect_off = ptr - section->buffer;
4662
4663 /* We need to read the type's signature in order to build the hash
4664 table, but we don't need anything else just yet. */
4665
4666 ptr = read_and_check_type_unit_head (&header, section,
4667 abbrev_section, ptr,
4668 &signature, &type_offset_in_tu);
4669
4670 length = get_cu_length (&header);
4671
4672 /* Skip dummy type units. */
4673 if (ptr >= info_ptr + length
4674 || peek_abbrev_code (abfd, ptr) == 0)
4675 {
4676 info_ptr += length;
4677 continue;
4678 }
4679
4680 if (types_htab == NULL)
4681 {
4682 if (dwo_file)
4683 types_htab = allocate_dwo_unit_table (objfile);
4684 else
4685 types_htab = allocate_signatured_type_table (objfile);
4686 }
4687
4688 if (dwo_file)
4689 {
4690 sig_type = NULL;
4691 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4692 struct dwo_unit);
4693 dwo_tu->dwo_file = dwo_file;
4694 dwo_tu->signature = signature;
4695 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4696 dwo_tu->section = section;
4697 dwo_tu->offset = offset;
4698 dwo_tu->length = length;
4699 }
4700 else
4701 {
4702 /* N.B.: type_offset is not usable if this type uses a DWO file.
4703 The real type_offset is in the DWO file. */
4704 dwo_tu = NULL;
4705 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4706 struct signatured_type);
4707 sig_type->signature = signature;
4708 sig_type->type_offset_in_tu = type_offset_in_tu;
4709 sig_type->per_cu.objfile = objfile;
4710 sig_type->per_cu.is_debug_types = 1;
4711 sig_type->per_cu.section = section;
4712 sig_type->per_cu.offset = offset;
4713 sig_type->per_cu.length = length;
4714 }
4715
4716 slot = htab_find_slot (types_htab,
4717 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4718 INSERT);
4719 gdb_assert (slot != NULL);
4720 if (*slot != NULL)
4721 {
4722 sect_offset dup_offset;
4723
4724 if (dwo_file)
4725 {
4726 const struct dwo_unit *dup_tu = *slot;
4727
4728 dup_offset = dup_tu->offset;
4729 }
4730 else
4731 {
4732 const struct signatured_type *dup_tu = *slot;
4733
4734 dup_offset = dup_tu->per_cu.offset;
4735 }
4736
4737 complaint (&symfile_complaints,
4738 _("debug type entry at offset 0x%x is duplicate to"
4739 " the entry at offset 0x%x, signature %s"),
4740 offset.sect_off, dup_offset.sect_off,
4741 hex_string (signature));
4742 }
4743 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4744
4745 if (dwarf_read_debug > 1)
4746 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4747 offset.sect_off,
4748 hex_string (signature));
4749
4750 info_ptr += length;
4751 }
4752 }
4753
4754 return types_htab;
4755 }
4756
4757 /* Create the hash table of all entries in the .debug_types section,
4758 and initialize all_type_units.
4759 The result is zero if there is an error (e.g. missing .debug_types section),
4760 otherwise non-zero. */
4761
4762 static int
4763 create_all_type_units (struct objfile *objfile)
4764 {
4765 htab_t types_htab;
4766 struct signatured_type **iter;
4767
4768 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4769 if (types_htab == NULL)
4770 {
4771 dwarf2_per_objfile->signatured_types = NULL;
4772 return 0;
4773 }
4774
4775 dwarf2_per_objfile->signatured_types = types_htab;
4776
4777 dwarf2_per_objfile->n_type_units
4778 = dwarf2_per_objfile->n_allocated_type_units
4779 = htab_elements (types_htab);
4780 dwarf2_per_objfile->all_type_units =
4781 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4782 iter = &dwarf2_per_objfile->all_type_units[0];
4783 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4784 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4785 == dwarf2_per_objfile->n_type_units);
4786
4787 return 1;
4788 }
4789
4790 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4791 If SLOT is non-NULL, it is the entry to use in the hash table.
4792 Otherwise we find one. */
4793
4794 static struct signatured_type *
4795 add_type_unit (ULONGEST sig, void **slot)
4796 {
4797 struct objfile *objfile = dwarf2_per_objfile->objfile;
4798 int n_type_units = dwarf2_per_objfile->n_type_units;
4799 struct signatured_type *sig_type;
4800
4801 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4802 ++n_type_units;
4803 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4804 {
4805 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4806 dwarf2_per_objfile->n_allocated_type_units = 1;
4807 dwarf2_per_objfile->n_allocated_type_units *= 2;
4808 dwarf2_per_objfile->all_type_units
4809 = XRESIZEVEC (struct signatured_type *,
4810 dwarf2_per_objfile->all_type_units,
4811 dwarf2_per_objfile->n_allocated_type_units);
4812 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4813 }
4814 dwarf2_per_objfile->n_type_units = n_type_units;
4815
4816 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4817 struct signatured_type);
4818 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4819 sig_type->signature = sig;
4820 sig_type->per_cu.is_debug_types = 1;
4821 if (dwarf2_per_objfile->using_index)
4822 {
4823 sig_type->per_cu.v.quick =
4824 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct dwarf2_per_cu_quick_data);
4826 }
4827
4828 if (slot == NULL)
4829 {
4830 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4831 sig_type, INSERT);
4832 }
4833 gdb_assert (*slot == NULL);
4834 *slot = sig_type;
4835 /* The rest of sig_type must be filled in by the caller. */
4836 return sig_type;
4837 }
4838
4839 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4840 Fill in SIG_ENTRY with DWO_ENTRY. */
4841
4842 static void
4843 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4844 struct signatured_type *sig_entry,
4845 struct dwo_unit *dwo_entry)
4846 {
4847 /* Make sure we're not clobbering something we don't expect to. */
4848 gdb_assert (! sig_entry->per_cu.queued);
4849 gdb_assert (sig_entry->per_cu.cu == NULL);
4850 if (dwarf2_per_objfile->using_index)
4851 {
4852 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4853 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4854 }
4855 else
4856 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4857 gdb_assert (sig_entry->signature == dwo_entry->signature);
4858 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4859 gdb_assert (sig_entry->type_unit_group == NULL);
4860 gdb_assert (sig_entry->dwo_unit == NULL);
4861
4862 sig_entry->per_cu.section = dwo_entry->section;
4863 sig_entry->per_cu.offset = dwo_entry->offset;
4864 sig_entry->per_cu.length = dwo_entry->length;
4865 sig_entry->per_cu.reading_dwo_directly = 1;
4866 sig_entry->per_cu.objfile = objfile;
4867 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4868 sig_entry->dwo_unit = dwo_entry;
4869 }
4870
4871 /* Subroutine of lookup_signatured_type.
4872 If we haven't read the TU yet, create the signatured_type data structure
4873 for a TU to be read in directly from a DWO file, bypassing the stub.
4874 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4875 using .gdb_index, then when reading a CU we want to stay in the DWO file
4876 containing that CU. Otherwise we could end up reading several other DWO
4877 files (due to comdat folding) to process the transitive closure of all the
4878 mentioned TUs, and that can be slow. The current DWO file will have every
4879 type signature that it needs.
4880 We only do this for .gdb_index because in the psymtab case we already have
4881 to read all the DWOs to build the type unit groups. */
4882
4883 static struct signatured_type *
4884 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4885 {
4886 struct objfile *objfile = dwarf2_per_objfile->objfile;
4887 struct dwo_file *dwo_file;
4888 struct dwo_unit find_dwo_entry, *dwo_entry;
4889 struct signatured_type find_sig_entry, *sig_entry;
4890 void **slot;
4891
4892 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4893
4894 /* If TU skeletons have been removed then we may not have read in any
4895 TUs yet. */
4896 if (dwarf2_per_objfile->signatured_types == NULL)
4897 {
4898 dwarf2_per_objfile->signatured_types
4899 = allocate_signatured_type_table (objfile);
4900 }
4901
4902 /* We only ever need to read in one copy of a signatured type.
4903 Use the global signatured_types array to do our own comdat-folding
4904 of types. If this is the first time we're reading this TU, and
4905 the TU has an entry in .gdb_index, replace the recorded data from
4906 .gdb_index with this TU. */
4907
4908 find_sig_entry.signature = sig;
4909 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4910 &find_sig_entry, INSERT);
4911 sig_entry = *slot;
4912
4913 /* We can get here with the TU already read, *or* in the process of being
4914 read. Don't reassign the global entry to point to this DWO if that's
4915 the case. Also note that if the TU is already being read, it may not
4916 have come from a DWO, the program may be a mix of Fission-compiled
4917 code and non-Fission-compiled code. */
4918
4919 /* Have we already tried to read this TU?
4920 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4921 needn't exist in the global table yet). */
4922 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4923 return sig_entry;
4924
4925 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4926 dwo_unit of the TU itself. */
4927 dwo_file = cu->dwo_unit->dwo_file;
4928
4929 /* Ok, this is the first time we're reading this TU. */
4930 if (dwo_file->tus == NULL)
4931 return NULL;
4932 find_dwo_entry.signature = sig;
4933 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4934 if (dwo_entry == NULL)
4935 return NULL;
4936
4937 /* If the global table doesn't have an entry for this TU, add one. */
4938 if (sig_entry == NULL)
4939 sig_entry = add_type_unit (sig, slot);
4940
4941 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4942 sig_entry->per_cu.tu_read = 1;
4943 return sig_entry;
4944 }
4945
4946 /* Subroutine of lookup_signatured_type.
4947 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4948 then try the DWP file. If the TU stub (skeleton) has been removed then
4949 it won't be in .gdb_index. */
4950
4951 static struct signatured_type *
4952 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4953 {
4954 struct objfile *objfile = dwarf2_per_objfile->objfile;
4955 struct dwp_file *dwp_file = get_dwp_file ();
4956 struct dwo_unit *dwo_entry;
4957 struct signatured_type find_sig_entry, *sig_entry;
4958 void **slot;
4959
4960 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4961 gdb_assert (dwp_file != NULL);
4962
4963 /* If TU skeletons have been removed then we may not have read in any
4964 TUs yet. */
4965 if (dwarf2_per_objfile->signatured_types == NULL)
4966 {
4967 dwarf2_per_objfile->signatured_types
4968 = allocate_signatured_type_table (objfile);
4969 }
4970
4971 find_sig_entry.signature = sig;
4972 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4973 &find_sig_entry, INSERT);
4974 sig_entry = *slot;
4975
4976 /* Have we already tried to read this TU?
4977 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4978 needn't exist in the global table yet). */
4979 if (sig_entry != NULL)
4980 return sig_entry;
4981
4982 if (dwp_file->tus == NULL)
4983 return NULL;
4984 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4985 sig, 1 /* is_debug_types */);
4986 if (dwo_entry == NULL)
4987 return NULL;
4988
4989 sig_entry = add_type_unit (sig, slot);
4990 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4991
4992 return sig_entry;
4993 }
4994
4995 /* Lookup a signature based type for DW_FORM_ref_sig8.
4996 Returns NULL if signature SIG is not present in the table.
4997 It is up to the caller to complain about this. */
4998
4999 static struct signatured_type *
5000 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5001 {
5002 if (cu->dwo_unit
5003 && dwarf2_per_objfile->using_index)
5004 {
5005 /* We're in a DWO/DWP file, and we're using .gdb_index.
5006 These cases require special processing. */
5007 if (get_dwp_file () == NULL)
5008 return lookup_dwo_signatured_type (cu, sig);
5009 else
5010 return lookup_dwp_signatured_type (cu, sig);
5011 }
5012 else
5013 {
5014 struct signatured_type find_entry, *entry;
5015
5016 if (dwarf2_per_objfile->signatured_types == NULL)
5017 return NULL;
5018 find_entry.signature = sig;
5019 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5020 return entry;
5021 }
5022 }
5023 \f
5024 /* Low level DIE reading support. */
5025
5026 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5027
5028 static void
5029 init_cu_die_reader (struct die_reader_specs *reader,
5030 struct dwarf2_cu *cu,
5031 struct dwarf2_section_info *section,
5032 struct dwo_file *dwo_file)
5033 {
5034 gdb_assert (section->readin && section->buffer != NULL);
5035 reader->abfd = get_section_bfd_owner (section);
5036 reader->cu = cu;
5037 reader->dwo_file = dwo_file;
5038 reader->die_section = section;
5039 reader->buffer = section->buffer;
5040 reader->buffer_end = section->buffer + section->size;
5041 reader->comp_dir = NULL;
5042 }
5043
5044 /* Subroutine of init_cutu_and_read_dies to simplify it.
5045 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5046 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5047 already.
5048
5049 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5050 from it to the DIE in the DWO. If NULL we are skipping the stub.
5051 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5052 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5053 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5054 STUB_COMP_DIR may be non-NULL.
5055 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5056 are filled in with the info of the DIE from the DWO file.
5057 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5058 provided an abbrev table to use.
5059 The result is non-zero if a valid (non-dummy) DIE was found. */
5060
5061 static int
5062 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5063 struct dwo_unit *dwo_unit,
5064 int abbrev_table_provided,
5065 struct die_info *stub_comp_unit_die,
5066 const char *stub_comp_dir,
5067 struct die_reader_specs *result_reader,
5068 const gdb_byte **result_info_ptr,
5069 struct die_info **result_comp_unit_die,
5070 int *result_has_children)
5071 {
5072 struct objfile *objfile = dwarf2_per_objfile->objfile;
5073 struct dwarf2_cu *cu = this_cu->cu;
5074 struct dwarf2_section_info *section;
5075 bfd *abfd;
5076 const gdb_byte *begin_info_ptr, *info_ptr;
5077 ULONGEST signature; /* Or dwo_id. */
5078 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5079 int i,num_extra_attrs;
5080 struct dwarf2_section_info *dwo_abbrev_section;
5081 struct attribute *attr;
5082 struct die_info *comp_unit_die;
5083
5084 /* At most one of these may be provided. */
5085 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5086
5087 /* These attributes aren't processed until later:
5088 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5089 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5090 referenced later. However, these attributes are found in the stub
5091 which we won't have later. In order to not impose this complication
5092 on the rest of the code, we read them here and copy them to the
5093 DWO CU/TU die. */
5094
5095 stmt_list = NULL;
5096 low_pc = NULL;
5097 high_pc = NULL;
5098 ranges = NULL;
5099 comp_dir = NULL;
5100
5101 if (stub_comp_unit_die != NULL)
5102 {
5103 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5104 DWO file. */
5105 if (! this_cu->is_debug_types)
5106 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5107 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5108 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5109 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5110 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5111
5112 /* There should be a DW_AT_addr_base attribute here (if needed).
5113 We need the value before we can process DW_FORM_GNU_addr_index. */
5114 cu->addr_base = 0;
5115 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5116 if (attr)
5117 cu->addr_base = DW_UNSND (attr);
5118
5119 /* There should be a DW_AT_ranges_base attribute here (if needed).
5120 We need the value before we can process DW_AT_ranges. */
5121 cu->ranges_base = 0;
5122 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5123 if (attr)
5124 cu->ranges_base = DW_UNSND (attr);
5125 }
5126 else if (stub_comp_dir != NULL)
5127 {
5128 /* Reconstruct the comp_dir attribute to simplify the code below. */
5129 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5130 comp_dir->name = DW_AT_comp_dir;
5131 comp_dir->form = DW_FORM_string;
5132 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5133 DW_STRING (comp_dir) = stub_comp_dir;
5134 }
5135
5136 /* Set up for reading the DWO CU/TU. */
5137 cu->dwo_unit = dwo_unit;
5138 section = dwo_unit->section;
5139 dwarf2_read_section (objfile, section);
5140 abfd = get_section_bfd_owner (section);
5141 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5142 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5143 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5144
5145 if (this_cu->is_debug_types)
5146 {
5147 ULONGEST header_signature;
5148 cu_offset type_offset_in_tu;
5149 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5150
5151 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5152 dwo_abbrev_section,
5153 info_ptr,
5154 &header_signature,
5155 &type_offset_in_tu);
5156 /* This is not an assert because it can be caused by bad debug info. */
5157 if (sig_type->signature != header_signature)
5158 {
5159 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5160 " TU at offset 0x%x [in module %s]"),
5161 hex_string (sig_type->signature),
5162 hex_string (header_signature),
5163 dwo_unit->offset.sect_off,
5164 bfd_get_filename (abfd));
5165 }
5166 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5167 /* For DWOs coming from DWP files, we don't know the CU length
5168 nor the type's offset in the TU until now. */
5169 dwo_unit->length = get_cu_length (&cu->header);
5170 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5171
5172 /* Establish the type offset that can be used to lookup the type.
5173 For DWO files, we don't know it until now. */
5174 sig_type->type_offset_in_section.sect_off =
5175 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5176 }
5177 else
5178 {
5179 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5180 dwo_abbrev_section,
5181 info_ptr, 0);
5182 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5183 /* For DWOs coming from DWP files, we don't know the CU length
5184 until now. */
5185 dwo_unit->length = get_cu_length (&cu->header);
5186 }
5187
5188 /* Replace the CU's original abbrev table with the DWO's.
5189 Reminder: We can't read the abbrev table until we've read the header. */
5190 if (abbrev_table_provided)
5191 {
5192 /* Don't free the provided abbrev table, the caller of
5193 init_cutu_and_read_dies owns it. */
5194 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5195 /* Ensure the DWO abbrev table gets freed. */
5196 make_cleanup (dwarf2_free_abbrev_table, cu);
5197 }
5198 else
5199 {
5200 dwarf2_free_abbrev_table (cu);
5201 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5202 /* Leave any existing abbrev table cleanup as is. */
5203 }
5204
5205 /* Read in the die, but leave space to copy over the attributes
5206 from the stub. This has the benefit of simplifying the rest of
5207 the code - all the work to maintain the illusion of a single
5208 DW_TAG_{compile,type}_unit DIE is done here. */
5209 num_extra_attrs = ((stmt_list != NULL)
5210 + (low_pc != NULL)
5211 + (high_pc != NULL)
5212 + (ranges != NULL)
5213 + (comp_dir != NULL));
5214 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5215 result_has_children, num_extra_attrs);
5216
5217 /* Copy over the attributes from the stub to the DIE we just read in. */
5218 comp_unit_die = *result_comp_unit_die;
5219 i = comp_unit_die->num_attrs;
5220 if (stmt_list != NULL)
5221 comp_unit_die->attrs[i++] = *stmt_list;
5222 if (low_pc != NULL)
5223 comp_unit_die->attrs[i++] = *low_pc;
5224 if (high_pc != NULL)
5225 comp_unit_die->attrs[i++] = *high_pc;
5226 if (ranges != NULL)
5227 comp_unit_die->attrs[i++] = *ranges;
5228 if (comp_dir != NULL)
5229 comp_unit_die->attrs[i++] = *comp_dir;
5230 comp_unit_die->num_attrs += num_extra_attrs;
5231
5232 if (dwarf_die_debug)
5233 {
5234 fprintf_unfiltered (gdb_stdlog,
5235 "Read die from %s@0x%x of %s:\n",
5236 get_section_name (section),
5237 (unsigned) (begin_info_ptr - section->buffer),
5238 bfd_get_filename (abfd));
5239 dump_die (comp_unit_die, dwarf_die_debug);
5240 }
5241
5242 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5243 TUs by skipping the stub and going directly to the entry in the DWO file.
5244 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5245 to get it via circuitous means. Blech. */
5246 if (comp_dir != NULL)
5247 result_reader->comp_dir = DW_STRING (comp_dir);
5248
5249 /* Skip dummy compilation units. */
5250 if (info_ptr >= begin_info_ptr + dwo_unit->length
5251 || peek_abbrev_code (abfd, info_ptr) == 0)
5252 return 0;
5253
5254 *result_info_ptr = info_ptr;
5255 return 1;
5256 }
5257
5258 /* Subroutine of init_cutu_and_read_dies to simplify it.
5259 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5260 Returns NULL if the specified DWO unit cannot be found. */
5261
5262 static struct dwo_unit *
5263 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5264 struct die_info *comp_unit_die)
5265 {
5266 struct dwarf2_cu *cu = this_cu->cu;
5267 struct attribute *attr;
5268 ULONGEST signature;
5269 struct dwo_unit *dwo_unit;
5270 const char *comp_dir, *dwo_name;
5271
5272 gdb_assert (cu != NULL);
5273
5274 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5275 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5276 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5277
5278 if (this_cu->is_debug_types)
5279 {
5280 struct signatured_type *sig_type;
5281
5282 /* Since this_cu is the first member of struct signatured_type,
5283 we can go from a pointer to one to a pointer to the other. */
5284 sig_type = (struct signatured_type *) this_cu;
5285 signature = sig_type->signature;
5286 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5287 }
5288 else
5289 {
5290 struct attribute *attr;
5291
5292 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5293 if (! attr)
5294 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5295 " [in module %s]"),
5296 dwo_name, objfile_name (this_cu->objfile));
5297 signature = DW_UNSND (attr);
5298 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5299 signature);
5300 }
5301
5302 return dwo_unit;
5303 }
5304
5305 /* Subroutine of init_cutu_and_read_dies to simplify it.
5306 See it for a description of the parameters.
5307 Read a TU directly from a DWO file, bypassing the stub.
5308
5309 Note: This function could be a little bit simpler if we shared cleanups
5310 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5311 to do, so we keep this function self-contained. Or we could move this
5312 into our caller, but it's complex enough already. */
5313
5314 static void
5315 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5316 int use_existing_cu, int keep,
5317 die_reader_func_ftype *die_reader_func,
5318 void *data)
5319 {
5320 struct dwarf2_cu *cu;
5321 struct signatured_type *sig_type;
5322 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5323 struct die_reader_specs reader;
5324 const gdb_byte *info_ptr;
5325 struct die_info *comp_unit_die;
5326 int has_children;
5327
5328 /* Verify we can do the following downcast, and that we have the
5329 data we need. */
5330 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5331 sig_type = (struct signatured_type *) this_cu;
5332 gdb_assert (sig_type->dwo_unit != NULL);
5333
5334 cleanups = make_cleanup (null_cleanup, NULL);
5335
5336 if (use_existing_cu && this_cu->cu != NULL)
5337 {
5338 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5339 cu = this_cu->cu;
5340 /* There's no need to do the rereading_dwo_cu handling that
5341 init_cutu_and_read_dies does since we don't read the stub. */
5342 }
5343 else
5344 {
5345 /* If !use_existing_cu, this_cu->cu must be NULL. */
5346 gdb_assert (this_cu->cu == NULL);
5347 cu = XNEW (struct dwarf2_cu);
5348 init_one_comp_unit (cu, this_cu);
5349 /* If an error occurs while loading, release our storage. */
5350 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5351 }
5352
5353 /* A future optimization, if needed, would be to use an existing
5354 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5355 could share abbrev tables. */
5356
5357 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5358 0 /* abbrev_table_provided */,
5359 NULL /* stub_comp_unit_die */,
5360 sig_type->dwo_unit->dwo_file->comp_dir,
5361 &reader, &info_ptr,
5362 &comp_unit_die, &has_children) == 0)
5363 {
5364 /* Dummy die. */
5365 do_cleanups (cleanups);
5366 return;
5367 }
5368
5369 /* All the "real" work is done here. */
5370 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5371
5372 /* This duplicates the code in init_cutu_and_read_dies,
5373 but the alternative is making the latter more complex.
5374 This function is only for the special case of using DWO files directly:
5375 no point in overly complicating the general case just to handle this. */
5376 if (free_cu_cleanup != NULL)
5377 {
5378 if (keep)
5379 {
5380 /* We've successfully allocated this compilation unit. Let our
5381 caller clean it up when finished with it. */
5382 discard_cleanups (free_cu_cleanup);
5383
5384 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5385 So we have to manually free the abbrev table. */
5386 dwarf2_free_abbrev_table (cu);
5387
5388 /* Link this CU into read_in_chain. */
5389 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5390 dwarf2_per_objfile->read_in_chain = this_cu;
5391 }
5392 else
5393 do_cleanups (free_cu_cleanup);
5394 }
5395
5396 do_cleanups (cleanups);
5397 }
5398
5399 /* Initialize a CU (or TU) and read its DIEs.
5400 If the CU defers to a DWO file, read the DWO file as well.
5401
5402 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5403 Otherwise the table specified in the comp unit header is read in and used.
5404 This is an optimization for when we already have the abbrev table.
5405
5406 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5407 Otherwise, a new CU is allocated with xmalloc.
5408
5409 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5410 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5411
5412 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5413 linker) then DIE_READER_FUNC will not get called. */
5414
5415 static void
5416 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5417 struct abbrev_table *abbrev_table,
5418 int use_existing_cu, int keep,
5419 die_reader_func_ftype *die_reader_func,
5420 void *data)
5421 {
5422 struct objfile *objfile = dwarf2_per_objfile->objfile;
5423 struct dwarf2_section_info *section = this_cu->section;
5424 bfd *abfd = get_section_bfd_owner (section);
5425 struct dwarf2_cu *cu;
5426 const gdb_byte *begin_info_ptr, *info_ptr;
5427 struct die_reader_specs reader;
5428 struct die_info *comp_unit_die;
5429 int has_children;
5430 struct attribute *attr;
5431 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5432 struct signatured_type *sig_type = NULL;
5433 struct dwarf2_section_info *abbrev_section;
5434 /* Non-zero if CU currently points to a DWO file and we need to
5435 reread it. When this happens we need to reread the skeleton die
5436 before we can reread the DWO file (this only applies to CUs, not TUs). */
5437 int rereading_dwo_cu = 0;
5438
5439 if (dwarf_die_debug)
5440 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5441 this_cu->is_debug_types ? "type" : "comp",
5442 this_cu->offset.sect_off);
5443
5444 if (use_existing_cu)
5445 gdb_assert (keep);
5446
5447 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5448 file (instead of going through the stub), short-circuit all of this. */
5449 if (this_cu->reading_dwo_directly)
5450 {
5451 /* Narrow down the scope of possibilities to have to understand. */
5452 gdb_assert (this_cu->is_debug_types);
5453 gdb_assert (abbrev_table == NULL);
5454 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5455 die_reader_func, data);
5456 return;
5457 }
5458
5459 cleanups = make_cleanup (null_cleanup, NULL);
5460
5461 /* This is cheap if the section is already read in. */
5462 dwarf2_read_section (objfile, section);
5463
5464 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5465
5466 abbrev_section = get_abbrev_section_for_cu (this_cu);
5467
5468 if (use_existing_cu && this_cu->cu != NULL)
5469 {
5470 cu = this_cu->cu;
5471 /* If this CU is from a DWO file we need to start over, we need to
5472 refetch the attributes from the skeleton CU.
5473 This could be optimized by retrieving those attributes from when we
5474 were here the first time: the previous comp_unit_die was stored in
5475 comp_unit_obstack. But there's no data yet that we need this
5476 optimization. */
5477 if (cu->dwo_unit != NULL)
5478 rereading_dwo_cu = 1;
5479 }
5480 else
5481 {
5482 /* If !use_existing_cu, this_cu->cu must be NULL. */
5483 gdb_assert (this_cu->cu == NULL);
5484 cu = XNEW (struct dwarf2_cu);
5485 init_one_comp_unit (cu, this_cu);
5486 /* If an error occurs while loading, release our storage. */
5487 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5488 }
5489
5490 /* Get the header. */
5491 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5492 {
5493 /* We already have the header, there's no need to read it in again. */
5494 info_ptr += cu->header.first_die_offset.cu_off;
5495 }
5496 else
5497 {
5498 if (this_cu->is_debug_types)
5499 {
5500 ULONGEST signature;
5501 cu_offset type_offset_in_tu;
5502
5503 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5504 abbrev_section, info_ptr,
5505 &signature,
5506 &type_offset_in_tu);
5507
5508 /* Since per_cu is the first member of struct signatured_type,
5509 we can go from a pointer to one to a pointer to the other. */
5510 sig_type = (struct signatured_type *) this_cu;
5511 gdb_assert (sig_type->signature == signature);
5512 gdb_assert (sig_type->type_offset_in_tu.cu_off
5513 == type_offset_in_tu.cu_off);
5514 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5515
5516 /* LENGTH has not been set yet for type units if we're
5517 using .gdb_index. */
5518 this_cu->length = get_cu_length (&cu->header);
5519
5520 /* Establish the type offset that can be used to lookup the type. */
5521 sig_type->type_offset_in_section.sect_off =
5522 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5523 }
5524 else
5525 {
5526 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5527 abbrev_section,
5528 info_ptr, 0);
5529
5530 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5531 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5532 }
5533 }
5534
5535 /* Skip dummy compilation units. */
5536 if (info_ptr >= begin_info_ptr + this_cu->length
5537 || peek_abbrev_code (abfd, info_ptr) == 0)
5538 {
5539 do_cleanups (cleanups);
5540 return;
5541 }
5542
5543 /* If we don't have them yet, read the abbrevs for this compilation unit.
5544 And if we need to read them now, make sure they're freed when we're
5545 done. Note that it's important that if the CU had an abbrev table
5546 on entry we don't free it when we're done: Somewhere up the call stack
5547 it may be in use. */
5548 if (abbrev_table != NULL)
5549 {
5550 gdb_assert (cu->abbrev_table == NULL);
5551 gdb_assert (cu->header.abbrev_offset.sect_off
5552 == abbrev_table->offset.sect_off);
5553 cu->abbrev_table = abbrev_table;
5554 }
5555 else if (cu->abbrev_table == NULL)
5556 {
5557 dwarf2_read_abbrevs (cu, abbrev_section);
5558 make_cleanup (dwarf2_free_abbrev_table, cu);
5559 }
5560 else if (rereading_dwo_cu)
5561 {
5562 dwarf2_free_abbrev_table (cu);
5563 dwarf2_read_abbrevs (cu, abbrev_section);
5564 }
5565
5566 /* Read the top level CU/TU die. */
5567 init_cu_die_reader (&reader, cu, section, NULL);
5568 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5569
5570 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5571 from the DWO file.
5572 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5573 DWO CU, that this test will fail (the attribute will not be present). */
5574 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5575 if (attr)
5576 {
5577 struct dwo_unit *dwo_unit;
5578 struct die_info *dwo_comp_unit_die;
5579
5580 if (has_children)
5581 {
5582 complaint (&symfile_complaints,
5583 _("compilation unit with DW_AT_GNU_dwo_name"
5584 " has children (offset 0x%x) [in module %s]"),
5585 this_cu->offset.sect_off, bfd_get_filename (abfd));
5586 }
5587 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5588 if (dwo_unit != NULL)
5589 {
5590 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5591 abbrev_table != NULL,
5592 comp_unit_die, NULL,
5593 &reader, &info_ptr,
5594 &dwo_comp_unit_die, &has_children) == 0)
5595 {
5596 /* Dummy die. */
5597 do_cleanups (cleanups);
5598 return;
5599 }
5600 comp_unit_die = dwo_comp_unit_die;
5601 }
5602 else
5603 {
5604 /* Yikes, we couldn't find the rest of the DIE, we only have
5605 the stub. A complaint has already been logged. There's
5606 not much more we can do except pass on the stub DIE to
5607 die_reader_func. We don't want to throw an error on bad
5608 debug info. */
5609 }
5610 }
5611
5612 /* All of the above is setup for this call. Yikes. */
5613 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5614
5615 /* Done, clean up. */
5616 if (free_cu_cleanup != NULL)
5617 {
5618 if (keep)
5619 {
5620 /* We've successfully allocated this compilation unit. Let our
5621 caller clean it up when finished with it. */
5622 discard_cleanups (free_cu_cleanup);
5623
5624 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5625 So we have to manually free the abbrev table. */
5626 dwarf2_free_abbrev_table (cu);
5627
5628 /* Link this CU into read_in_chain. */
5629 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5630 dwarf2_per_objfile->read_in_chain = this_cu;
5631 }
5632 else
5633 do_cleanups (free_cu_cleanup);
5634 }
5635
5636 do_cleanups (cleanups);
5637 }
5638
5639 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5640 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5641 to have already done the lookup to find the DWO file).
5642
5643 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5644 THIS_CU->is_debug_types, but nothing else.
5645
5646 We fill in THIS_CU->length.
5647
5648 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5649 linker) then DIE_READER_FUNC will not get called.
5650
5651 THIS_CU->cu is always freed when done.
5652 This is done in order to not leave THIS_CU->cu in a state where we have
5653 to care whether it refers to the "main" CU or the DWO CU. */
5654
5655 static void
5656 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5657 struct dwo_file *dwo_file,
5658 die_reader_func_ftype *die_reader_func,
5659 void *data)
5660 {
5661 struct objfile *objfile = dwarf2_per_objfile->objfile;
5662 struct dwarf2_section_info *section = this_cu->section;
5663 bfd *abfd = get_section_bfd_owner (section);
5664 struct dwarf2_section_info *abbrev_section;
5665 struct dwarf2_cu cu;
5666 const gdb_byte *begin_info_ptr, *info_ptr;
5667 struct die_reader_specs reader;
5668 struct cleanup *cleanups;
5669 struct die_info *comp_unit_die;
5670 int has_children;
5671
5672 if (dwarf_die_debug)
5673 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5674 this_cu->is_debug_types ? "type" : "comp",
5675 this_cu->offset.sect_off);
5676
5677 gdb_assert (this_cu->cu == NULL);
5678
5679 abbrev_section = (dwo_file != NULL
5680 ? &dwo_file->sections.abbrev
5681 : get_abbrev_section_for_cu (this_cu));
5682
5683 /* This is cheap if the section is already read in. */
5684 dwarf2_read_section (objfile, section);
5685
5686 init_one_comp_unit (&cu, this_cu);
5687
5688 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5689
5690 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5691 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5692 abbrev_section, info_ptr,
5693 this_cu->is_debug_types);
5694
5695 this_cu->length = get_cu_length (&cu.header);
5696
5697 /* Skip dummy compilation units. */
5698 if (info_ptr >= begin_info_ptr + this_cu->length
5699 || peek_abbrev_code (abfd, info_ptr) == 0)
5700 {
5701 do_cleanups (cleanups);
5702 return;
5703 }
5704
5705 dwarf2_read_abbrevs (&cu, abbrev_section);
5706 make_cleanup (dwarf2_free_abbrev_table, &cu);
5707
5708 init_cu_die_reader (&reader, &cu, section, dwo_file);
5709 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5710
5711 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5712
5713 do_cleanups (cleanups);
5714 }
5715
5716 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5717 does not lookup the specified DWO file.
5718 This cannot be used to read DWO files.
5719
5720 THIS_CU->cu is always freed when done.
5721 This is done in order to not leave THIS_CU->cu in a state where we have
5722 to care whether it refers to the "main" CU or the DWO CU.
5723 We can revisit this if the data shows there's a performance issue. */
5724
5725 static void
5726 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5727 die_reader_func_ftype *die_reader_func,
5728 void *data)
5729 {
5730 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5731 }
5732 \f
5733 /* Type Unit Groups.
5734
5735 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5736 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5737 so that all types coming from the same compilation (.o file) are grouped
5738 together. A future step could be to put the types in the same symtab as
5739 the CU the types ultimately came from. */
5740
5741 static hashval_t
5742 hash_type_unit_group (const void *item)
5743 {
5744 const struct type_unit_group *tu_group = item;
5745
5746 return hash_stmt_list_entry (&tu_group->hash);
5747 }
5748
5749 static int
5750 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5751 {
5752 const struct type_unit_group *lhs = item_lhs;
5753 const struct type_unit_group *rhs = item_rhs;
5754
5755 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5756 }
5757
5758 /* Allocate a hash table for type unit groups. */
5759
5760 static htab_t
5761 allocate_type_unit_groups_table (void)
5762 {
5763 return htab_create_alloc_ex (3,
5764 hash_type_unit_group,
5765 eq_type_unit_group,
5766 NULL,
5767 &dwarf2_per_objfile->objfile->objfile_obstack,
5768 hashtab_obstack_allocate,
5769 dummy_obstack_deallocate);
5770 }
5771
5772 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5773 partial symtabs. We combine several TUs per psymtab to not let the size
5774 of any one psymtab grow too big. */
5775 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5776 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5777
5778 /* Helper routine for get_type_unit_group.
5779 Create the type_unit_group object used to hold one or more TUs. */
5780
5781 static struct type_unit_group *
5782 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5783 {
5784 struct objfile *objfile = dwarf2_per_objfile->objfile;
5785 struct dwarf2_per_cu_data *per_cu;
5786 struct type_unit_group *tu_group;
5787
5788 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5789 struct type_unit_group);
5790 per_cu = &tu_group->per_cu;
5791 per_cu->objfile = objfile;
5792
5793 if (dwarf2_per_objfile->using_index)
5794 {
5795 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5796 struct dwarf2_per_cu_quick_data);
5797 }
5798 else
5799 {
5800 unsigned int line_offset = line_offset_struct.sect_off;
5801 struct partial_symtab *pst;
5802 char *name;
5803
5804 /* Give the symtab a useful name for debug purposes. */
5805 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5806 name = xstrprintf ("<type_units_%d>",
5807 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5808 else
5809 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5810
5811 pst = create_partial_symtab (per_cu, name);
5812 pst->anonymous = 1;
5813
5814 xfree (name);
5815 }
5816
5817 tu_group->hash.dwo_unit = cu->dwo_unit;
5818 tu_group->hash.line_offset = line_offset_struct;
5819
5820 return tu_group;
5821 }
5822
5823 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5824 STMT_LIST is a DW_AT_stmt_list attribute. */
5825
5826 static struct type_unit_group *
5827 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5828 {
5829 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5830 struct type_unit_group *tu_group;
5831 void **slot;
5832 unsigned int line_offset;
5833 struct type_unit_group type_unit_group_for_lookup;
5834
5835 if (dwarf2_per_objfile->type_unit_groups == NULL)
5836 {
5837 dwarf2_per_objfile->type_unit_groups =
5838 allocate_type_unit_groups_table ();
5839 }
5840
5841 /* Do we need to create a new group, or can we use an existing one? */
5842
5843 if (stmt_list)
5844 {
5845 line_offset = DW_UNSND (stmt_list);
5846 ++tu_stats->nr_symtab_sharers;
5847 }
5848 else
5849 {
5850 /* Ugh, no stmt_list. Rare, but we have to handle it.
5851 We can do various things here like create one group per TU or
5852 spread them over multiple groups to split up the expansion work.
5853 To avoid worst case scenarios (too many groups or too large groups)
5854 we, umm, group them in bunches. */
5855 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5856 | (tu_stats->nr_stmt_less_type_units
5857 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5858 ++tu_stats->nr_stmt_less_type_units;
5859 }
5860
5861 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5862 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5863 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5864 &type_unit_group_for_lookup, INSERT);
5865 if (*slot != NULL)
5866 {
5867 tu_group = *slot;
5868 gdb_assert (tu_group != NULL);
5869 }
5870 else
5871 {
5872 sect_offset line_offset_struct;
5873
5874 line_offset_struct.sect_off = line_offset;
5875 tu_group = create_type_unit_group (cu, line_offset_struct);
5876 *slot = tu_group;
5877 ++tu_stats->nr_symtabs;
5878 }
5879
5880 return tu_group;
5881 }
5882 \f
5883 /* Partial symbol tables. */
5884
5885 /* Create a psymtab named NAME and assign it to PER_CU.
5886
5887 The caller must fill in the following details:
5888 dirname, textlow, texthigh. */
5889
5890 static struct partial_symtab *
5891 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5892 {
5893 struct objfile *objfile = per_cu->objfile;
5894 struct partial_symtab *pst;
5895
5896 pst = start_psymtab_common (objfile, name, 0,
5897 objfile->global_psymbols.next,
5898 objfile->static_psymbols.next);
5899
5900 pst->psymtabs_addrmap_supported = 1;
5901
5902 /* This is the glue that links PST into GDB's symbol API. */
5903 pst->read_symtab_private = per_cu;
5904 pst->read_symtab = dwarf2_read_symtab;
5905 per_cu->v.psymtab = pst;
5906
5907 return pst;
5908 }
5909
5910 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5911 type. */
5912
5913 struct process_psymtab_comp_unit_data
5914 {
5915 /* True if we are reading a DW_TAG_partial_unit. */
5916
5917 int want_partial_unit;
5918
5919 /* The "pretend" language that is used if the CU doesn't declare a
5920 language. */
5921
5922 enum language pretend_language;
5923 };
5924
5925 /* die_reader_func for process_psymtab_comp_unit. */
5926
5927 static void
5928 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5929 const gdb_byte *info_ptr,
5930 struct die_info *comp_unit_die,
5931 int has_children,
5932 void *data)
5933 {
5934 struct dwarf2_cu *cu = reader->cu;
5935 struct objfile *objfile = cu->objfile;
5936 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5937 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5938 CORE_ADDR baseaddr;
5939 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5940 struct partial_symtab *pst;
5941 int has_pc_info;
5942 const char *filename;
5943 struct process_psymtab_comp_unit_data *info = data;
5944
5945 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5946 return;
5947
5948 gdb_assert (! per_cu->is_debug_types);
5949
5950 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5951
5952 cu->list_in_scope = &file_symbols;
5953
5954 /* Allocate a new partial symbol table structure. */
5955 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5956 if (filename == NULL)
5957 filename = "";
5958
5959 pst = create_partial_symtab (per_cu, filename);
5960
5961 /* This must be done before calling dwarf2_build_include_psymtabs. */
5962 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5963
5964 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5965
5966 dwarf2_find_base_address (comp_unit_die, cu);
5967
5968 /* Possibly set the default values of LOWPC and HIGHPC from
5969 `DW_AT_ranges'. */
5970 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5971 &best_highpc, cu, pst);
5972 if (has_pc_info == 1 && best_lowpc < best_highpc)
5973 /* Store the contiguous range if it is not empty; it can be empty for
5974 CUs with no code. */
5975 addrmap_set_empty (objfile->psymtabs_addrmap,
5976 gdbarch_adjust_dwarf2_addr (gdbarch,
5977 best_lowpc + baseaddr),
5978 gdbarch_adjust_dwarf2_addr (gdbarch,
5979 best_highpc + baseaddr) - 1,
5980 pst);
5981
5982 /* Check if comp unit has_children.
5983 If so, read the rest of the partial symbols from this comp unit.
5984 If not, there's no more debug_info for this comp unit. */
5985 if (has_children)
5986 {
5987 struct partial_die_info *first_die;
5988 CORE_ADDR lowpc, highpc;
5989
5990 lowpc = ((CORE_ADDR) -1);
5991 highpc = ((CORE_ADDR) 0);
5992
5993 first_die = load_partial_dies (reader, info_ptr, 1);
5994
5995 scan_partial_symbols (first_die, &lowpc, &highpc,
5996 ! has_pc_info, cu);
5997
5998 /* If we didn't find a lowpc, set it to highpc to avoid
5999 complaints from `maint check'. */
6000 if (lowpc == ((CORE_ADDR) -1))
6001 lowpc = highpc;
6002
6003 /* If the compilation unit didn't have an explicit address range,
6004 then use the information extracted from its child dies. */
6005 if (! has_pc_info)
6006 {
6007 best_lowpc = lowpc;
6008 best_highpc = highpc;
6009 }
6010 }
6011 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6012 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6013
6014 end_psymtab_common (objfile, pst);
6015
6016 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6017 {
6018 int i;
6019 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6020 struct dwarf2_per_cu_data *iter;
6021
6022 /* Fill in 'dependencies' here; we fill in 'users' in a
6023 post-pass. */
6024 pst->number_of_dependencies = len;
6025 pst->dependencies =
6026 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6027 for (i = 0;
6028 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6029 i, iter);
6030 ++i)
6031 pst->dependencies[i] = iter->v.psymtab;
6032
6033 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6034 }
6035
6036 /* Get the list of files included in the current compilation unit,
6037 and build a psymtab for each of them. */
6038 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6039
6040 if (dwarf_read_debug)
6041 {
6042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6043
6044 fprintf_unfiltered (gdb_stdlog,
6045 "Psymtab for %s unit @0x%x: %s - %s"
6046 ", %d global, %d static syms\n",
6047 per_cu->is_debug_types ? "type" : "comp",
6048 per_cu->offset.sect_off,
6049 paddress (gdbarch, pst->textlow),
6050 paddress (gdbarch, pst->texthigh),
6051 pst->n_global_syms, pst->n_static_syms);
6052 }
6053 }
6054
6055 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6056 Process compilation unit THIS_CU for a psymtab. */
6057
6058 static void
6059 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6060 int want_partial_unit,
6061 enum language pretend_language)
6062 {
6063 struct process_psymtab_comp_unit_data info;
6064
6065 /* If this compilation unit was already read in, free the
6066 cached copy in order to read it in again. This is
6067 necessary because we skipped some symbols when we first
6068 read in the compilation unit (see load_partial_dies).
6069 This problem could be avoided, but the benefit is unclear. */
6070 if (this_cu->cu != NULL)
6071 free_one_cached_comp_unit (this_cu);
6072
6073 gdb_assert (! this_cu->is_debug_types);
6074 info.want_partial_unit = want_partial_unit;
6075 info.pretend_language = pretend_language;
6076 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6077 process_psymtab_comp_unit_reader,
6078 &info);
6079
6080 /* Age out any secondary CUs. */
6081 age_cached_comp_units ();
6082 }
6083
6084 /* Reader function for build_type_psymtabs. */
6085
6086 static void
6087 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6088 const gdb_byte *info_ptr,
6089 struct die_info *type_unit_die,
6090 int has_children,
6091 void *data)
6092 {
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_cu *cu = reader->cu;
6095 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6096 struct signatured_type *sig_type;
6097 struct type_unit_group *tu_group;
6098 struct attribute *attr;
6099 struct partial_die_info *first_die;
6100 CORE_ADDR lowpc, highpc;
6101 struct partial_symtab *pst;
6102
6103 gdb_assert (data == NULL);
6104 gdb_assert (per_cu->is_debug_types);
6105 sig_type = (struct signatured_type *) per_cu;
6106
6107 if (! has_children)
6108 return;
6109
6110 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6111 tu_group = get_type_unit_group (cu, attr);
6112
6113 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6114
6115 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6116 cu->list_in_scope = &file_symbols;
6117 pst = create_partial_symtab (per_cu, "");
6118 pst->anonymous = 1;
6119
6120 first_die = load_partial_dies (reader, info_ptr, 1);
6121
6122 lowpc = (CORE_ADDR) -1;
6123 highpc = (CORE_ADDR) 0;
6124 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6125
6126 end_psymtab_common (objfile, pst);
6127 }
6128
6129 /* Struct used to sort TUs by their abbreviation table offset. */
6130
6131 struct tu_abbrev_offset
6132 {
6133 struct signatured_type *sig_type;
6134 sect_offset abbrev_offset;
6135 };
6136
6137 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6138
6139 static int
6140 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6141 {
6142 const struct tu_abbrev_offset * const *a = ap;
6143 const struct tu_abbrev_offset * const *b = bp;
6144 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6145 unsigned int boff = (*b)->abbrev_offset.sect_off;
6146
6147 return (aoff > boff) - (aoff < boff);
6148 }
6149
6150 /* Efficiently read all the type units.
6151 This does the bulk of the work for build_type_psymtabs.
6152
6153 The efficiency is because we sort TUs by the abbrev table they use and
6154 only read each abbrev table once. In one program there are 200K TUs
6155 sharing 8K abbrev tables.
6156
6157 The main purpose of this function is to support building the
6158 dwarf2_per_objfile->type_unit_groups table.
6159 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6160 can collapse the search space by grouping them by stmt_list.
6161 The savings can be significant, in the same program from above the 200K TUs
6162 share 8K stmt_list tables.
6163
6164 FUNC is expected to call get_type_unit_group, which will create the
6165 struct type_unit_group if necessary and add it to
6166 dwarf2_per_objfile->type_unit_groups. */
6167
6168 static void
6169 build_type_psymtabs_1 (void)
6170 {
6171 struct objfile *objfile = dwarf2_per_objfile->objfile;
6172 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6173 struct cleanup *cleanups;
6174 struct abbrev_table *abbrev_table;
6175 sect_offset abbrev_offset;
6176 struct tu_abbrev_offset *sorted_by_abbrev;
6177 struct type_unit_group **iter;
6178 int i;
6179
6180 /* It's up to the caller to not call us multiple times. */
6181 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6182
6183 if (dwarf2_per_objfile->n_type_units == 0)
6184 return;
6185
6186 /* TUs typically share abbrev tables, and there can be way more TUs than
6187 abbrev tables. Sort by abbrev table to reduce the number of times we
6188 read each abbrev table in.
6189 Alternatives are to punt or to maintain a cache of abbrev tables.
6190 This is simpler and efficient enough for now.
6191
6192 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6193 symtab to use). Typically TUs with the same abbrev offset have the same
6194 stmt_list value too so in practice this should work well.
6195
6196 The basic algorithm here is:
6197
6198 sort TUs by abbrev table
6199 for each TU with same abbrev table:
6200 read abbrev table if first user
6201 read TU top level DIE
6202 [IWBN if DWO skeletons had DW_AT_stmt_list]
6203 call FUNC */
6204
6205 if (dwarf_read_debug)
6206 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6207
6208 /* Sort in a separate table to maintain the order of all_type_units
6209 for .gdb_index: TU indices directly index all_type_units. */
6210 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6211 dwarf2_per_objfile->n_type_units);
6212 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6213 {
6214 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6215
6216 sorted_by_abbrev[i].sig_type = sig_type;
6217 sorted_by_abbrev[i].abbrev_offset =
6218 read_abbrev_offset (sig_type->per_cu.section,
6219 sig_type->per_cu.offset);
6220 }
6221 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6222 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6223 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6224
6225 abbrev_offset.sect_off = ~(unsigned) 0;
6226 abbrev_table = NULL;
6227 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6228
6229 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6230 {
6231 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6232
6233 /* Switch to the next abbrev table if necessary. */
6234 if (abbrev_table == NULL
6235 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6236 {
6237 if (abbrev_table != NULL)
6238 {
6239 abbrev_table_free (abbrev_table);
6240 /* Reset to NULL in case abbrev_table_read_table throws
6241 an error: abbrev_table_free_cleanup will get called. */
6242 abbrev_table = NULL;
6243 }
6244 abbrev_offset = tu->abbrev_offset;
6245 abbrev_table =
6246 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6247 abbrev_offset);
6248 ++tu_stats->nr_uniq_abbrev_tables;
6249 }
6250
6251 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6252 build_type_psymtabs_reader, NULL);
6253 }
6254
6255 do_cleanups (cleanups);
6256 }
6257
6258 /* Print collected type unit statistics. */
6259
6260 static void
6261 print_tu_stats (void)
6262 {
6263 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6264
6265 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6266 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6267 dwarf2_per_objfile->n_type_units);
6268 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6269 tu_stats->nr_uniq_abbrev_tables);
6270 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6271 tu_stats->nr_symtabs);
6272 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6273 tu_stats->nr_symtab_sharers);
6274 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6275 tu_stats->nr_stmt_less_type_units);
6276 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6277 tu_stats->nr_all_type_units_reallocs);
6278 }
6279
6280 /* Traversal function for build_type_psymtabs. */
6281
6282 static int
6283 build_type_psymtab_dependencies (void **slot, void *info)
6284 {
6285 struct objfile *objfile = dwarf2_per_objfile->objfile;
6286 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6287 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6288 struct partial_symtab *pst = per_cu->v.psymtab;
6289 int len = VEC_length (sig_type_ptr, tu_group->tus);
6290 struct signatured_type *iter;
6291 int i;
6292
6293 gdb_assert (len > 0);
6294 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6295
6296 pst->number_of_dependencies = len;
6297 pst->dependencies =
6298 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6299 for (i = 0;
6300 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6301 ++i)
6302 {
6303 gdb_assert (iter->per_cu.is_debug_types);
6304 pst->dependencies[i] = iter->per_cu.v.psymtab;
6305 iter->type_unit_group = tu_group;
6306 }
6307
6308 VEC_free (sig_type_ptr, tu_group->tus);
6309
6310 return 1;
6311 }
6312
6313 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6314 Build partial symbol tables for the .debug_types comp-units. */
6315
6316 static void
6317 build_type_psymtabs (struct objfile *objfile)
6318 {
6319 if (! create_all_type_units (objfile))
6320 return;
6321
6322 build_type_psymtabs_1 ();
6323 }
6324
6325 /* Traversal function for process_skeletonless_type_unit.
6326 Read a TU in a DWO file and build partial symbols for it. */
6327
6328 static int
6329 process_skeletonless_type_unit (void **slot, void *info)
6330 {
6331 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6332 struct objfile *objfile = info;
6333 struct signatured_type find_entry, *entry;
6334
6335 /* If this TU doesn't exist in the global table, add it and read it in. */
6336
6337 if (dwarf2_per_objfile->signatured_types == NULL)
6338 {
6339 dwarf2_per_objfile->signatured_types
6340 = allocate_signatured_type_table (objfile);
6341 }
6342
6343 find_entry.signature = dwo_unit->signature;
6344 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6345 INSERT);
6346 /* If we've already seen this type there's nothing to do. What's happening
6347 is we're doing our own version of comdat-folding here. */
6348 if (*slot != NULL)
6349 return 1;
6350
6351 /* This does the job that create_all_type_units would have done for
6352 this TU. */
6353 entry = add_type_unit (dwo_unit->signature, slot);
6354 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6355 *slot = entry;
6356
6357 /* This does the job that build_type_psymtabs_1 would have done. */
6358 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6359 build_type_psymtabs_reader, NULL);
6360
6361 return 1;
6362 }
6363
6364 /* Traversal function for process_skeletonless_type_units. */
6365
6366 static int
6367 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6368 {
6369 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6370
6371 if (dwo_file->tus != NULL)
6372 {
6373 htab_traverse_noresize (dwo_file->tus,
6374 process_skeletonless_type_unit, info);
6375 }
6376
6377 return 1;
6378 }
6379
6380 /* Scan all TUs of DWO files, verifying we've processed them.
6381 This is needed in case a TU was emitted without its skeleton.
6382 Note: This can't be done until we know what all the DWO files are. */
6383
6384 static void
6385 process_skeletonless_type_units (struct objfile *objfile)
6386 {
6387 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6388 if (get_dwp_file () == NULL
6389 && dwarf2_per_objfile->dwo_files != NULL)
6390 {
6391 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6392 process_dwo_file_for_skeletonless_type_units,
6393 objfile);
6394 }
6395 }
6396
6397 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6398
6399 static void
6400 psymtabs_addrmap_cleanup (void *o)
6401 {
6402 struct objfile *objfile = o;
6403
6404 objfile->psymtabs_addrmap = NULL;
6405 }
6406
6407 /* Compute the 'user' field for each psymtab in OBJFILE. */
6408
6409 static void
6410 set_partial_user (struct objfile *objfile)
6411 {
6412 int i;
6413
6414 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6415 {
6416 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6417 struct partial_symtab *pst = per_cu->v.psymtab;
6418 int j;
6419
6420 if (pst == NULL)
6421 continue;
6422
6423 for (j = 0; j < pst->number_of_dependencies; ++j)
6424 {
6425 /* Set the 'user' field only if it is not already set. */
6426 if (pst->dependencies[j]->user == NULL)
6427 pst->dependencies[j]->user = pst;
6428 }
6429 }
6430 }
6431
6432 /* Build the partial symbol table by doing a quick pass through the
6433 .debug_info and .debug_abbrev sections. */
6434
6435 static void
6436 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6437 {
6438 struct cleanup *back_to, *addrmap_cleanup;
6439 struct obstack temp_obstack;
6440 int i;
6441
6442 if (dwarf_read_debug)
6443 {
6444 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6445 objfile_name (objfile));
6446 }
6447
6448 dwarf2_per_objfile->reading_partial_symbols = 1;
6449
6450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6451
6452 /* Any cached compilation units will be linked by the per-objfile
6453 read_in_chain. Make sure to free them when we're done. */
6454 back_to = make_cleanup (free_cached_comp_units, NULL);
6455
6456 build_type_psymtabs (objfile);
6457
6458 create_all_comp_units (objfile);
6459
6460 /* Create a temporary address map on a temporary obstack. We later
6461 copy this to the final obstack. */
6462 obstack_init (&temp_obstack);
6463 make_cleanup_obstack_free (&temp_obstack);
6464 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6465 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6466
6467 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6468 {
6469 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6470
6471 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6472 }
6473
6474 /* This has to wait until we read the CUs, we need the list of DWOs. */
6475 process_skeletonless_type_units (objfile);
6476
6477 /* Now that all TUs have been processed we can fill in the dependencies. */
6478 if (dwarf2_per_objfile->type_unit_groups != NULL)
6479 {
6480 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6481 build_type_psymtab_dependencies, NULL);
6482 }
6483
6484 if (dwarf_read_debug)
6485 print_tu_stats ();
6486
6487 set_partial_user (objfile);
6488
6489 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6490 &objfile->objfile_obstack);
6491 discard_cleanups (addrmap_cleanup);
6492
6493 do_cleanups (back_to);
6494
6495 if (dwarf_read_debug)
6496 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6497 objfile_name (objfile));
6498 }
6499
6500 /* die_reader_func for load_partial_comp_unit. */
6501
6502 static void
6503 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6504 const gdb_byte *info_ptr,
6505 struct die_info *comp_unit_die,
6506 int has_children,
6507 void *data)
6508 {
6509 struct dwarf2_cu *cu = reader->cu;
6510
6511 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6512
6513 /* Check if comp unit has_children.
6514 If so, read the rest of the partial symbols from this comp unit.
6515 If not, there's no more debug_info for this comp unit. */
6516 if (has_children)
6517 load_partial_dies (reader, info_ptr, 0);
6518 }
6519
6520 /* Load the partial DIEs for a secondary CU into memory.
6521 This is also used when rereading a primary CU with load_all_dies. */
6522
6523 static void
6524 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6525 {
6526 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6527 load_partial_comp_unit_reader, NULL);
6528 }
6529
6530 static void
6531 read_comp_units_from_section (struct objfile *objfile,
6532 struct dwarf2_section_info *section,
6533 unsigned int is_dwz,
6534 int *n_allocated,
6535 int *n_comp_units,
6536 struct dwarf2_per_cu_data ***all_comp_units)
6537 {
6538 const gdb_byte *info_ptr;
6539 bfd *abfd = get_section_bfd_owner (section);
6540
6541 if (dwarf_read_debug)
6542 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6543 get_section_name (section),
6544 get_section_file_name (section));
6545
6546 dwarf2_read_section (objfile, section);
6547
6548 info_ptr = section->buffer;
6549
6550 while (info_ptr < section->buffer + section->size)
6551 {
6552 unsigned int length, initial_length_size;
6553 struct dwarf2_per_cu_data *this_cu;
6554 sect_offset offset;
6555
6556 offset.sect_off = info_ptr - section->buffer;
6557
6558 /* Read just enough information to find out where the next
6559 compilation unit is. */
6560 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6561
6562 /* Save the compilation unit for later lookup. */
6563 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6564 memset (this_cu, 0, sizeof (*this_cu));
6565 this_cu->offset = offset;
6566 this_cu->length = length + initial_length_size;
6567 this_cu->is_dwz = is_dwz;
6568 this_cu->objfile = objfile;
6569 this_cu->section = section;
6570
6571 if (*n_comp_units == *n_allocated)
6572 {
6573 *n_allocated *= 2;
6574 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6575 *all_comp_units, *n_allocated);
6576 }
6577 (*all_comp_units)[*n_comp_units] = this_cu;
6578 ++*n_comp_units;
6579
6580 info_ptr = info_ptr + this_cu->length;
6581 }
6582 }
6583
6584 /* Create a list of all compilation units in OBJFILE.
6585 This is only done for -readnow and building partial symtabs. */
6586
6587 static void
6588 create_all_comp_units (struct objfile *objfile)
6589 {
6590 int n_allocated;
6591 int n_comp_units;
6592 struct dwarf2_per_cu_data **all_comp_units;
6593 struct dwz_file *dwz;
6594
6595 n_comp_units = 0;
6596 n_allocated = 10;
6597 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6598
6599 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6600 &n_allocated, &n_comp_units, &all_comp_units);
6601
6602 dwz = dwarf2_get_dwz_file ();
6603 if (dwz != NULL)
6604 read_comp_units_from_section (objfile, &dwz->info, 1,
6605 &n_allocated, &n_comp_units,
6606 &all_comp_units);
6607
6608 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6609 struct dwarf2_per_cu_data *,
6610 n_comp_units);
6611 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6612 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6613 xfree (all_comp_units);
6614 dwarf2_per_objfile->n_comp_units = n_comp_units;
6615 }
6616
6617 /* Process all loaded DIEs for compilation unit CU, starting at
6618 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6619 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6620 DW_AT_ranges). See the comments of add_partial_subprogram on how
6621 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6622
6623 static void
6624 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6625 CORE_ADDR *highpc, int set_addrmap,
6626 struct dwarf2_cu *cu)
6627 {
6628 struct partial_die_info *pdi;
6629
6630 /* Now, march along the PDI's, descending into ones which have
6631 interesting children but skipping the children of the other ones,
6632 until we reach the end of the compilation unit. */
6633
6634 pdi = first_die;
6635
6636 while (pdi != NULL)
6637 {
6638 fixup_partial_die (pdi, cu);
6639
6640 /* Anonymous namespaces or modules have no name but have interesting
6641 children, so we need to look at them. Ditto for anonymous
6642 enums. */
6643
6644 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6645 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6646 || pdi->tag == DW_TAG_imported_unit)
6647 {
6648 switch (pdi->tag)
6649 {
6650 case DW_TAG_subprogram:
6651 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6652 break;
6653 case DW_TAG_constant:
6654 case DW_TAG_variable:
6655 case DW_TAG_typedef:
6656 case DW_TAG_union_type:
6657 if (!pdi->is_declaration)
6658 {
6659 add_partial_symbol (pdi, cu);
6660 }
6661 break;
6662 case DW_TAG_class_type:
6663 case DW_TAG_interface_type:
6664 case DW_TAG_structure_type:
6665 if (!pdi->is_declaration)
6666 {
6667 add_partial_symbol (pdi, cu);
6668 }
6669 break;
6670 case DW_TAG_enumeration_type:
6671 if (!pdi->is_declaration)
6672 add_partial_enumeration (pdi, cu);
6673 break;
6674 case DW_TAG_base_type:
6675 case DW_TAG_subrange_type:
6676 /* File scope base type definitions are added to the partial
6677 symbol table. */
6678 add_partial_symbol (pdi, cu);
6679 break;
6680 case DW_TAG_namespace:
6681 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6682 break;
6683 case DW_TAG_module:
6684 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6685 break;
6686 case DW_TAG_imported_unit:
6687 {
6688 struct dwarf2_per_cu_data *per_cu;
6689
6690 /* For now we don't handle imported units in type units. */
6691 if (cu->per_cu->is_debug_types)
6692 {
6693 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6694 " supported in type units [in module %s]"),
6695 objfile_name (cu->objfile));
6696 }
6697
6698 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6699 pdi->is_dwz,
6700 cu->objfile);
6701
6702 /* Go read the partial unit, if needed. */
6703 if (per_cu->v.psymtab == NULL)
6704 process_psymtab_comp_unit (per_cu, 1, cu->language);
6705
6706 VEC_safe_push (dwarf2_per_cu_ptr,
6707 cu->per_cu->imported_symtabs, per_cu);
6708 }
6709 break;
6710 case DW_TAG_imported_declaration:
6711 add_partial_symbol (pdi, cu);
6712 break;
6713 default:
6714 break;
6715 }
6716 }
6717
6718 /* If the die has a sibling, skip to the sibling. */
6719
6720 pdi = pdi->die_sibling;
6721 }
6722 }
6723
6724 /* Functions used to compute the fully scoped name of a partial DIE.
6725
6726 Normally, this is simple. For C++, the parent DIE's fully scoped
6727 name is concatenated with "::" and the partial DIE's name. For
6728 Java, the same thing occurs except that "." is used instead of "::".
6729 Enumerators are an exception; they use the scope of their parent
6730 enumeration type, i.e. the name of the enumeration type is not
6731 prepended to the enumerator.
6732
6733 There are two complexities. One is DW_AT_specification; in this
6734 case "parent" means the parent of the target of the specification,
6735 instead of the direct parent of the DIE. The other is compilers
6736 which do not emit DW_TAG_namespace; in this case we try to guess
6737 the fully qualified name of structure types from their members'
6738 linkage names. This must be done using the DIE's children rather
6739 than the children of any DW_AT_specification target. We only need
6740 to do this for structures at the top level, i.e. if the target of
6741 any DW_AT_specification (if any; otherwise the DIE itself) does not
6742 have a parent. */
6743
6744 /* Compute the scope prefix associated with PDI's parent, in
6745 compilation unit CU. The result will be allocated on CU's
6746 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6747 field. NULL is returned if no prefix is necessary. */
6748 static const char *
6749 partial_die_parent_scope (struct partial_die_info *pdi,
6750 struct dwarf2_cu *cu)
6751 {
6752 const char *grandparent_scope;
6753 struct partial_die_info *parent, *real_pdi;
6754
6755 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6756 then this means the parent of the specification DIE. */
6757
6758 real_pdi = pdi;
6759 while (real_pdi->has_specification)
6760 real_pdi = find_partial_die (real_pdi->spec_offset,
6761 real_pdi->spec_is_dwz, cu);
6762
6763 parent = real_pdi->die_parent;
6764 if (parent == NULL)
6765 return NULL;
6766
6767 if (parent->scope_set)
6768 return parent->scope;
6769
6770 fixup_partial_die (parent, cu);
6771
6772 grandparent_scope = partial_die_parent_scope (parent, cu);
6773
6774 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6775 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6776 Work around this problem here. */
6777 if (cu->language == language_cplus
6778 && parent->tag == DW_TAG_namespace
6779 && strcmp (parent->name, "::") == 0
6780 && grandparent_scope == NULL)
6781 {
6782 parent->scope = NULL;
6783 parent->scope_set = 1;
6784 return NULL;
6785 }
6786
6787 if (pdi->tag == DW_TAG_enumerator)
6788 /* Enumerators should not get the name of the enumeration as a prefix. */
6789 parent->scope = grandparent_scope;
6790 else if (parent->tag == DW_TAG_namespace
6791 || parent->tag == DW_TAG_module
6792 || parent->tag == DW_TAG_structure_type
6793 || parent->tag == DW_TAG_class_type
6794 || parent->tag == DW_TAG_interface_type
6795 || parent->tag == DW_TAG_union_type
6796 || parent->tag == DW_TAG_enumeration_type)
6797 {
6798 if (grandparent_scope == NULL)
6799 parent->scope = parent->name;
6800 else
6801 parent->scope = typename_concat (&cu->comp_unit_obstack,
6802 grandparent_scope,
6803 parent->name, 0, cu);
6804 }
6805 else
6806 {
6807 /* FIXME drow/2004-04-01: What should we be doing with
6808 function-local names? For partial symbols, we should probably be
6809 ignoring them. */
6810 complaint (&symfile_complaints,
6811 _("unhandled containing DIE tag %d for DIE at %d"),
6812 parent->tag, pdi->offset.sect_off);
6813 parent->scope = grandparent_scope;
6814 }
6815
6816 parent->scope_set = 1;
6817 return parent->scope;
6818 }
6819
6820 /* Return the fully scoped name associated with PDI, from compilation unit
6821 CU. The result will be allocated with malloc. */
6822
6823 static char *
6824 partial_die_full_name (struct partial_die_info *pdi,
6825 struct dwarf2_cu *cu)
6826 {
6827 const char *parent_scope;
6828
6829 /* If this is a template instantiation, we can not work out the
6830 template arguments from partial DIEs. So, unfortunately, we have
6831 to go through the full DIEs. At least any work we do building
6832 types here will be reused if full symbols are loaded later. */
6833 if (pdi->has_template_arguments)
6834 {
6835 fixup_partial_die (pdi, cu);
6836
6837 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6838 {
6839 struct die_info *die;
6840 struct attribute attr;
6841 struct dwarf2_cu *ref_cu = cu;
6842
6843 /* DW_FORM_ref_addr is using section offset. */
6844 attr.name = 0;
6845 attr.form = DW_FORM_ref_addr;
6846 attr.u.unsnd = pdi->offset.sect_off;
6847 die = follow_die_ref (NULL, &attr, &ref_cu);
6848
6849 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6850 }
6851 }
6852
6853 parent_scope = partial_die_parent_scope (pdi, cu);
6854 if (parent_scope == NULL)
6855 return NULL;
6856 else
6857 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6858 }
6859
6860 static void
6861 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6862 {
6863 struct objfile *objfile = cu->objfile;
6864 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6865 CORE_ADDR addr = 0;
6866 const char *actual_name = NULL;
6867 CORE_ADDR baseaddr;
6868 char *built_actual_name;
6869
6870 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6871
6872 built_actual_name = partial_die_full_name (pdi, cu);
6873 if (built_actual_name != NULL)
6874 actual_name = built_actual_name;
6875
6876 if (actual_name == NULL)
6877 actual_name = pdi->name;
6878
6879 switch (pdi->tag)
6880 {
6881 case DW_TAG_subprogram:
6882 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6883 if (pdi->is_external || cu->language == language_ada)
6884 {
6885 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6886 of the global scope. But in Ada, we want to be able to access
6887 nested procedures globally. So all Ada subprograms are stored
6888 in the global scope. */
6889 add_psymbol_to_list (actual_name, strlen (actual_name),
6890 built_actual_name != NULL,
6891 VAR_DOMAIN, LOC_BLOCK,
6892 &objfile->global_psymbols,
6893 addr, cu->language, objfile);
6894 }
6895 else
6896 {
6897 add_psymbol_to_list (actual_name, strlen (actual_name),
6898 built_actual_name != NULL,
6899 VAR_DOMAIN, LOC_BLOCK,
6900 &objfile->static_psymbols,
6901 addr, cu->language, objfile);
6902 }
6903 break;
6904 case DW_TAG_constant:
6905 {
6906 struct psymbol_allocation_list *list;
6907
6908 if (pdi->is_external)
6909 list = &objfile->global_psymbols;
6910 else
6911 list = &objfile->static_psymbols;
6912 add_psymbol_to_list (actual_name, strlen (actual_name),
6913 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6914 list, 0, cu->language, objfile);
6915 }
6916 break;
6917 case DW_TAG_variable:
6918 if (pdi->d.locdesc)
6919 addr = decode_locdesc (pdi->d.locdesc, cu);
6920
6921 if (pdi->d.locdesc
6922 && addr == 0
6923 && !dwarf2_per_objfile->has_section_at_zero)
6924 {
6925 /* A global or static variable may also have been stripped
6926 out by the linker if unused, in which case its address
6927 will be nullified; do not add such variables into partial
6928 symbol table then. */
6929 }
6930 else if (pdi->is_external)
6931 {
6932 /* Global Variable.
6933 Don't enter into the minimal symbol tables as there is
6934 a minimal symbol table entry from the ELF symbols already.
6935 Enter into partial symbol table if it has a location
6936 descriptor or a type.
6937 If the location descriptor is missing, new_symbol will create
6938 a LOC_UNRESOLVED symbol, the address of the variable will then
6939 be determined from the minimal symbol table whenever the variable
6940 is referenced.
6941 The address for the partial symbol table entry is not
6942 used by GDB, but it comes in handy for debugging partial symbol
6943 table building. */
6944
6945 if (pdi->d.locdesc || pdi->has_type)
6946 add_psymbol_to_list (actual_name, strlen (actual_name),
6947 built_actual_name != NULL,
6948 VAR_DOMAIN, LOC_STATIC,
6949 &objfile->global_psymbols,
6950 addr + baseaddr,
6951 cu->language, objfile);
6952 }
6953 else
6954 {
6955 int has_loc = pdi->d.locdesc != NULL;
6956
6957 /* Static Variable. Skip symbols whose value we cannot know (those
6958 without location descriptors or constant values). */
6959 if (!has_loc && !pdi->has_const_value)
6960 {
6961 xfree (built_actual_name);
6962 return;
6963 }
6964
6965 add_psymbol_to_list (actual_name, strlen (actual_name),
6966 built_actual_name != NULL,
6967 VAR_DOMAIN, LOC_STATIC,
6968 &objfile->static_psymbols,
6969 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6970 cu->language, objfile);
6971 }
6972 break;
6973 case DW_TAG_typedef:
6974 case DW_TAG_base_type:
6975 case DW_TAG_subrange_type:
6976 add_psymbol_to_list (actual_name, strlen (actual_name),
6977 built_actual_name != NULL,
6978 VAR_DOMAIN, LOC_TYPEDEF,
6979 &objfile->static_psymbols,
6980 0, cu->language, objfile);
6981 break;
6982 case DW_TAG_imported_declaration:
6983 case DW_TAG_namespace:
6984 add_psymbol_to_list (actual_name, strlen (actual_name),
6985 built_actual_name != NULL,
6986 VAR_DOMAIN, LOC_TYPEDEF,
6987 &objfile->global_psymbols,
6988 0, cu->language, objfile);
6989 break;
6990 case DW_TAG_module:
6991 add_psymbol_to_list (actual_name, strlen (actual_name),
6992 built_actual_name != NULL,
6993 MODULE_DOMAIN, LOC_TYPEDEF,
6994 &objfile->global_psymbols,
6995 0, cu->language, objfile);
6996 break;
6997 case DW_TAG_class_type:
6998 case DW_TAG_interface_type:
6999 case DW_TAG_structure_type:
7000 case DW_TAG_union_type:
7001 case DW_TAG_enumeration_type:
7002 /* Skip external references. The DWARF standard says in the section
7003 about "Structure, Union, and Class Type Entries": "An incomplete
7004 structure, union or class type is represented by a structure,
7005 union or class entry that does not have a byte size attribute
7006 and that has a DW_AT_declaration attribute." */
7007 if (!pdi->has_byte_size && pdi->is_declaration)
7008 {
7009 xfree (built_actual_name);
7010 return;
7011 }
7012
7013 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7014 static vs. global. */
7015 add_psymbol_to_list (actual_name, strlen (actual_name),
7016 built_actual_name != NULL,
7017 STRUCT_DOMAIN, LOC_TYPEDEF,
7018 (cu->language == language_cplus
7019 || cu->language == language_java)
7020 ? &objfile->global_psymbols
7021 : &objfile->static_psymbols,
7022 0, cu->language, objfile);
7023
7024 break;
7025 case DW_TAG_enumerator:
7026 add_psymbol_to_list (actual_name, strlen (actual_name),
7027 built_actual_name != NULL,
7028 VAR_DOMAIN, LOC_CONST,
7029 (cu->language == language_cplus
7030 || cu->language == language_java)
7031 ? &objfile->global_psymbols
7032 : &objfile->static_psymbols,
7033 0, cu->language, objfile);
7034 break;
7035 default:
7036 break;
7037 }
7038
7039 xfree (built_actual_name);
7040 }
7041
7042 /* Read a partial die corresponding to a namespace; also, add a symbol
7043 corresponding to that namespace to the symbol table. NAMESPACE is
7044 the name of the enclosing namespace. */
7045
7046 static void
7047 add_partial_namespace (struct partial_die_info *pdi,
7048 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7049 int set_addrmap, struct dwarf2_cu *cu)
7050 {
7051 /* Add a symbol for the namespace. */
7052
7053 add_partial_symbol (pdi, cu);
7054
7055 /* Now scan partial symbols in that namespace. */
7056
7057 if (pdi->has_children)
7058 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7059 }
7060
7061 /* Read a partial die corresponding to a Fortran module. */
7062
7063 static void
7064 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7065 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7066 {
7067 /* Add a symbol for the namespace. */
7068
7069 add_partial_symbol (pdi, cu);
7070
7071 /* Now scan partial symbols in that module. */
7072
7073 if (pdi->has_children)
7074 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7075 }
7076
7077 /* Read a partial die corresponding to a subprogram and create a partial
7078 symbol for that subprogram. When the CU language allows it, this
7079 routine also defines a partial symbol for each nested subprogram
7080 that this subprogram contains. If SET_ADDRMAP is true, record the
7081 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7082 and highest PC values found in PDI.
7083
7084 PDI may also be a lexical block, in which case we simply search
7085 recursively for subprograms defined inside that lexical block.
7086 Again, this is only performed when the CU language allows this
7087 type of definitions. */
7088
7089 static void
7090 add_partial_subprogram (struct partial_die_info *pdi,
7091 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7092 int set_addrmap, struct dwarf2_cu *cu)
7093 {
7094 if (pdi->tag == DW_TAG_subprogram)
7095 {
7096 if (pdi->has_pc_info)
7097 {
7098 if (pdi->lowpc < *lowpc)
7099 *lowpc = pdi->lowpc;
7100 if (pdi->highpc > *highpc)
7101 *highpc = pdi->highpc;
7102 if (set_addrmap)
7103 {
7104 struct objfile *objfile = cu->objfile;
7105 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7106 CORE_ADDR baseaddr;
7107 CORE_ADDR highpc;
7108 CORE_ADDR lowpc;
7109
7110 baseaddr = ANOFFSET (objfile->section_offsets,
7111 SECT_OFF_TEXT (objfile));
7112 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7113 pdi->lowpc + baseaddr);
7114 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7115 pdi->highpc + baseaddr);
7116 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7117 cu->per_cu->v.psymtab);
7118 }
7119 }
7120
7121 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7122 {
7123 if (!pdi->is_declaration)
7124 /* Ignore subprogram DIEs that do not have a name, they are
7125 illegal. Do not emit a complaint at this point, we will
7126 do so when we convert this psymtab into a symtab. */
7127 if (pdi->name)
7128 add_partial_symbol (pdi, cu);
7129 }
7130 }
7131
7132 if (! pdi->has_children)
7133 return;
7134
7135 if (cu->language == language_ada)
7136 {
7137 pdi = pdi->die_child;
7138 while (pdi != NULL)
7139 {
7140 fixup_partial_die (pdi, cu);
7141 if (pdi->tag == DW_TAG_subprogram
7142 || pdi->tag == DW_TAG_lexical_block)
7143 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7144 pdi = pdi->die_sibling;
7145 }
7146 }
7147 }
7148
7149 /* Read a partial die corresponding to an enumeration type. */
7150
7151 static void
7152 add_partial_enumeration (struct partial_die_info *enum_pdi,
7153 struct dwarf2_cu *cu)
7154 {
7155 struct partial_die_info *pdi;
7156
7157 if (enum_pdi->name != NULL)
7158 add_partial_symbol (enum_pdi, cu);
7159
7160 pdi = enum_pdi->die_child;
7161 while (pdi)
7162 {
7163 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7164 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7165 else
7166 add_partial_symbol (pdi, cu);
7167 pdi = pdi->die_sibling;
7168 }
7169 }
7170
7171 /* Return the initial uleb128 in the die at INFO_PTR. */
7172
7173 static unsigned int
7174 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7175 {
7176 unsigned int bytes_read;
7177
7178 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7179 }
7180
7181 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7182 Return the corresponding abbrev, or NULL if the number is zero (indicating
7183 an empty DIE). In either case *BYTES_READ will be set to the length of
7184 the initial number. */
7185
7186 static struct abbrev_info *
7187 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7188 struct dwarf2_cu *cu)
7189 {
7190 bfd *abfd = cu->objfile->obfd;
7191 unsigned int abbrev_number;
7192 struct abbrev_info *abbrev;
7193
7194 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7195
7196 if (abbrev_number == 0)
7197 return NULL;
7198
7199 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7200 if (!abbrev)
7201 {
7202 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7203 " at offset 0x%x [in module %s]"),
7204 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7205 cu->header.offset.sect_off, bfd_get_filename (abfd));
7206 }
7207
7208 return abbrev;
7209 }
7210
7211 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7212 Returns a pointer to the end of a series of DIEs, terminated by an empty
7213 DIE. Any children of the skipped DIEs will also be skipped. */
7214
7215 static const gdb_byte *
7216 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7217 {
7218 struct dwarf2_cu *cu = reader->cu;
7219 struct abbrev_info *abbrev;
7220 unsigned int bytes_read;
7221
7222 while (1)
7223 {
7224 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7225 if (abbrev == NULL)
7226 return info_ptr + bytes_read;
7227 else
7228 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7229 }
7230 }
7231
7232 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7233 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7234 abbrev corresponding to that skipped uleb128 should be passed in
7235 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7236 children. */
7237
7238 static const gdb_byte *
7239 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7240 struct abbrev_info *abbrev)
7241 {
7242 unsigned int bytes_read;
7243 struct attribute attr;
7244 bfd *abfd = reader->abfd;
7245 struct dwarf2_cu *cu = reader->cu;
7246 const gdb_byte *buffer = reader->buffer;
7247 const gdb_byte *buffer_end = reader->buffer_end;
7248 const gdb_byte *start_info_ptr = info_ptr;
7249 unsigned int form, i;
7250
7251 for (i = 0; i < abbrev->num_attrs; i++)
7252 {
7253 /* The only abbrev we care about is DW_AT_sibling. */
7254 if (abbrev->attrs[i].name == DW_AT_sibling)
7255 {
7256 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7257 if (attr.form == DW_FORM_ref_addr)
7258 complaint (&symfile_complaints,
7259 _("ignoring absolute DW_AT_sibling"));
7260 else
7261 {
7262 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7263 const gdb_byte *sibling_ptr = buffer + off;
7264
7265 if (sibling_ptr < info_ptr)
7266 complaint (&symfile_complaints,
7267 _("DW_AT_sibling points backwards"));
7268 else if (sibling_ptr > reader->buffer_end)
7269 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7270 else
7271 return sibling_ptr;
7272 }
7273 }
7274
7275 /* If it isn't DW_AT_sibling, skip this attribute. */
7276 form = abbrev->attrs[i].form;
7277 skip_attribute:
7278 switch (form)
7279 {
7280 case DW_FORM_ref_addr:
7281 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7282 and later it is offset sized. */
7283 if (cu->header.version == 2)
7284 info_ptr += cu->header.addr_size;
7285 else
7286 info_ptr += cu->header.offset_size;
7287 break;
7288 case DW_FORM_GNU_ref_alt:
7289 info_ptr += cu->header.offset_size;
7290 break;
7291 case DW_FORM_addr:
7292 info_ptr += cu->header.addr_size;
7293 break;
7294 case DW_FORM_data1:
7295 case DW_FORM_ref1:
7296 case DW_FORM_flag:
7297 info_ptr += 1;
7298 break;
7299 case DW_FORM_flag_present:
7300 break;
7301 case DW_FORM_data2:
7302 case DW_FORM_ref2:
7303 info_ptr += 2;
7304 break;
7305 case DW_FORM_data4:
7306 case DW_FORM_ref4:
7307 info_ptr += 4;
7308 break;
7309 case DW_FORM_data8:
7310 case DW_FORM_ref8:
7311 case DW_FORM_ref_sig8:
7312 info_ptr += 8;
7313 break;
7314 case DW_FORM_string:
7315 read_direct_string (abfd, info_ptr, &bytes_read);
7316 info_ptr += bytes_read;
7317 break;
7318 case DW_FORM_sec_offset:
7319 case DW_FORM_strp:
7320 case DW_FORM_GNU_strp_alt:
7321 info_ptr += cu->header.offset_size;
7322 break;
7323 case DW_FORM_exprloc:
7324 case DW_FORM_block:
7325 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7326 info_ptr += bytes_read;
7327 break;
7328 case DW_FORM_block1:
7329 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7330 break;
7331 case DW_FORM_block2:
7332 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7333 break;
7334 case DW_FORM_block4:
7335 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7336 break;
7337 case DW_FORM_sdata:
7338 case DW_FORM_udata:
7339 case DW_FORM_ref_udata:
7340 case DW_FORM_GNU_addr_index:
7341 case DW_FORM_GNU_str_index:
7342 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7343 break;
7344 case DW_FORM_indirect:
7345 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7346 info_ptr += bytes_read;
7347 /* We need to continue parsing from here, so just go back to
7348 the top. */
7349 goto skip_attribute;
7350
7351 default:
7352 error (_("Dwarf Error: Cannot handle %s "
7353 "in DWARF reader [in module %s]"),
7354 dwarf_form_name (form),
7355 bfd_get_filename (abfd));
7356 }
7357 }
7358
7359 if (abbrev->has_children)
7360 return skip_children (reader, info_ptr);
7361 else
7362 return info_ptr;
7363 }
7364
7365 /* Locate ORIG_PDI's sibling.
7366 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7367
7368 static const gdb_byte *
7369 locate_pdi_sibling (const struct die_reader_specs *reader,
7370 struct partial_die_info *orig_pdi,
7371 const gdb_byte *info_ptr)
7372 {
7373 /* Do we know the sibling already? */
7374
7375 if (orig_pdi->sibling)
7376 return orig_pdi->sibling;
7377
7378 /* Are there any children to deal with? */
7379
7380 if (!orig_pdi->has_children)
7381 return info_ptr;
7382
7383 /* Skip the children the long way. */
7384
7385 return skip_children (reader, info_ptr);
7386 }
7387
7388 /* Expand this partial symbol table into a full symbol table. SELF is
7389 not NULL. */
7390
7391 static void
7392 dwarf2_read_symtab (struct partial_symtab *self,
7393 struct objfile *objfile)
7394 {
7395 if (self->readin)
7396 {
7397 warning (_("bug: psymtab for %s is already read in."),
7398 self->filename);
7399 }
7400 else
7401 {
7402 if (info_verbose)
7403 {
7404 printf_filtered (_("Reading in symbols for %s..."),
7405 self->filename);
7406 gdb_flush (gdb_stdout);
7407 }
7408
7409 /* Restore our global data. */
7410 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7411
7412 /* If this psymtab is constructed from a debug-only objfile, the
7413 has_section_at_zero flag will not necessarily be correct. We
7414 can get the correct value for this flag by looking at the data
7415 associated with the (presumably stripped) associated objfile. */
7416 if (objfile->separate_debug_objfile_backlink)
7417 {
7418 struct dwarf2_per_objfile *dpo_backlink
7419 = objfile_data (objfile->separate_debug_objfile_backlink,
7420 dwarf2_objfile_data_key);
7421
7422 dwarf2_per_objfile->has_section_at_zero
7423 = dpo_backlink->has_section_at_zero;
7424 }
7425
7426 dwarf2_per_objfile->reading_partial_symbols = 0;
7427
7428 psymtab_to_symtab_1 (self);
7429
7430 /* Finish up the debug error message. */
7431 if (info_verbose)
7432 printf_filtered (_("done.\n"));
7433 }
7434
7435 process_cu_includes ();
7436 }
7437 \f
7438 /* Reading in full CUs. */
7439
7440 /* Add PER_CU to the queue. */
7441
7442 static void
7443 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7444 enum language pretend_language)
7445 {
7446 struct dwarf2_queue_item *item;
7447
7448 per_cu->queued = 1;
7449 item = XNEW (struct dwarf2_queue_item);
7450 item->per_cu = per_cu;
7451 item->pretend_language = pretend_language;
7452 item->next = NULL;
7453
7454 if (dwarf2_queue == NULL)
7455 dwarf2_queue = item;
7456 else
7457 dwarf2_queue_tail->next = item;
7458
7459 dwarf2_queue_tail = item;
7460 }
7461
7462 /* If PER_CU is not yet queued, add it to the queue.
7463 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7464 dependency.
7465 The result is non-zero if PER_CU was queued, otherwise the result is zero
7466 meaning either PER_CU is already queued or it is already loaded.
7467
7468 N.B. There is an invariant here that if a CU is queued then it is loaded.
7469 The caller is required to load PER_CU if we return non-zero. */
7470
7471 static int
7472 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7473 struct dwarf2_per_cu_data *per_cu,
7474 enum language pretend_language)
7475 {
7476 /* We may arrive here during partial symbol reading, if we need full
7477 DIEs to process an unusual case (e.g. template arguments). Do
7478 not queue PER_CU, just tell our caller to load its DIEs. */
7479 if (dwarf2_per_objfile->reading_partial_symbols)
7480 {
7481 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7482 return 1;
7483 return 0;
7484 }
7485
7486 /* Mark the dependence relation so that we don't flush PER_CU
7487 too early. */
7488 if (dependent_cu != NULL)
7489 dwarf2_add_dependence (dependent_cu, per_cu);
7490
7491 /* If it's already on the queue, we have nothing to do. */
7492 if (per_cu->queued)
7493 return 0;
7494
7495 /* If the compilation unit is already loaded, just mark it as
7496 used. */
7497 if (per_cu->cu != NULL)
7498 {
7499 per_cu->cu->last_used = 0;
7500 return 0;
7501 }
7502
7503 /* Add it to the queue. */
7504 queue_comp_unit (per_cu, pretend_language);
7505
7506 return 1;
7507 }
7508
7509 /* Process the queue. */
7510
7511 static void
7512 process_queue (void)
7513 {
7514 struct dwarf2_queue_item *item, *next_item;
7515
7516 if (dwarf_read_debug)
7517 {
7518 fprintf_unfiltered (gdb_stdlog,
7519 "Expanding one or more symtabs of objfile %s ...\n",
7520 objfile_name (dwarf2_per_objfile->objfile));
7521 }
7522
7523 /* The queue starts out with one item, but following a DIE reference
7524 may load a new CU, adding it to the end of the queue. */
7525 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7526 {
7527 if ((dwarf2_per_objfile->using_index
7528 ? !item->per_cu->v.quick->compunit_symtab
7529 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7530 /* Skip dummy CUs. */
7531 && item->per_cu->cu != NULL)
7532 {
7533 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7534 unsigned int debug_print_threshold;
7535 char buf[100];
7536
7537 if (per_cu->is_debug_types)
7538 {
7539 struct signatured_type *sig_type =
7540 (struct signatured_type *) per_cu;
7541
7542 sprintf (buf, "TU %s at offset 0x%x",
7543 hex_string (sig_type->signature),
7544 per_cu->offset.sect_off);
7545 /* There can be 100s of TUs.
7546 Only print them in verbose mode. */
7547 debug_print_threshold = 2;
7548 }
7549 else
7550 {
7551 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7552 debug_print_threshold = 1;
7553 }
7554
7555 if (dwarf_read_debug >= debug_print_threshold)
7556 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7557
7558 if (per_cu->is_debug_types)
7559 process_full_type_unit (per_cu, item->pretend_language);
7560 else
7561 process_full_comp_unit (per_cu, item->pretend_language);
7562
7563 if (dwarf_read_debug >= debug_print_threshold)
7564 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7565 }
7566
7567 item->per_cu->queued = 0;
7568 next_item = item->next;
7569 xfree (item);
7570 }
7571
7572 dwarf2_queue_tail = NULL;
7573
7574 if (dwarf_read_debug)
7575 {
7576 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7577 objfile_name (dwarf2_per_objfile->objfile));
7578 }
7579 }
7580
7581 /* Free all allocated queue entries. This function only releases anything if
7582 an error was thrown; if the queue was processed then it would have been
7583 freed as we went along. */
7584
7585 static void
7586 dwarf2_release_queue (void *dummy)
7587 {
7588 struct dwarf2_queue_item *item, *last;
7589
7590 item = dwarf2_queue;
7591 while (item)
7592 {
7593 /* Anything still marked queued is likely to be in an
7594 inconsistent state, so discard it. */
7595 if (item->per_cu->queued)
7596 {
7597 if (item->per_cu->cu != NULL)
7598 free_one_cached_comp_unit (item->per_cu);
7599 item->per_cu->queued = 0;
7600 }
7601
7602 last = item;
7603 item = item->next;
7604 xfree (last);
7605 }
7606
7607 dwarf2_queue = dwarf2_queue_tail = NULL;
7608 }
7609
7610 /* Read in full symbols for PST, and anything it depends on. */
7611
7612 static void
7613 psymtab_to_symtab_1 (struct partial_symtab *pst)
7614 {
7615 struct dwarf2_per_cu_data *per_cu;
7616 int i;
7617
7618 if (pst->readin)
7619 return;
7620
7621 for (i = 0; i < pst->number_of_dependencies; i++)
7622 if (!pst->dependencies[i]->readin
7623 && pst->dependencies[i]->user == NULL)
7624 {
7625 /* Inform about additional files that need to be read in. */
7626 if (info_verbose)
7627 {
7628 /* FIXME: i18n: Need to make this a single string. */
7629 fputs_filtered (" ", gdb_stdout);
7630 wrap_here ("");
7631 fputs_filtered ("and ", gdb_stdout);
7632 wrap_here ("");
7633 printf_filtered ("%s...", pst->dependencies[i]->filename);
7634 wrap_here (""); /* Flush output. */
7635 gdb_flush (gdb_stdout);
7636 }
7637 psymtab_to_symtab_1 (pst->dependencies[i]);
7638 }
7639
7640 per_cu = pst->read_symtab_private;
7641
7642 if (per_cu == NULL)
7643 {
7644 /* It's an include file, no symbols to read for it.
7645 Everything is in the parent symtab. */
7646 pst->readin = 1;
7647 return;
7648 }
7649
7650 dw2_do_instantiate_symtab (per_cu);
7651 }
7652
7653 /* Trivial hash function for die_info: the hash value of a DIE
7654 is its offset in .debug_info for this objfile. */
7655
7656 static hashval_t
7657 die_hash (const void *item)
7658 {
7659 const struct die_info *die = item;
7660
7661 return die->offset.sect_off;
7662 }
7663
7664 /* Trivial comparison function for die_info structures: two DIEs
7665 are equal if they have the same offset. */
7666
7667 static int
7668 die_eq (const void *item_lhs, const void *item_rhs)
7669 {
7670 const struct die_info *die_lhs = item_lhs;
7671 const struct die_info *die_rhs = item_rhs;
7672
7673 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7674 }
7675
7676 /* die_reader_func for load_full_comp_unit.
7677 This is identical to read_signatured_type_reader,
7678 but is kept separate for now. */
7679
7680 static void
7681 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7682 const gdb_byte *info_ptr,
7683 struct die_info *comp_unit_die,
7684 int has_children,
7685 void *data)
7686 {
7687 struct dwarf2_cu *cu = reader->cu;
7688 enum language *language_ptr = data;
7689
7690 gdb_assert (cu->die_hash == NULL);
7691 cu->die_hash =
7692 htab_create_alloc_ex (cu->header.length / 12,
7693 die_hash,
7694 die_eq,
7695 NULL,
7696 &cu->comp_unit_obstack,
7697 hashtab_obstack_allocate,
7698 dummy_obstack_deallocate);
7699
7700 if (has_children)
7701 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7702 &info_ptr, comp_unit_die);
7703 cu->dies = comp_unit_die;
7704 /* comp_unit_die is not stored in die_hash, no need. */
7705
7706 /* We try not to read any attributes in this function, because not
7707 all CUs needed for references have been loaded yet, and symbol
7708 table processing isn't initialized. But we have to set the CU language,
7709 or we won't be able to build types correctly.
7710 Similarly, if we do not read the producer, we can not apply
7711 producer-specific interpretation. */
7712 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7713 }
7714
7715 /* Load the DIEs associated with PER_CU into memory. */
7716
7717 static void
7718 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7719 enum language pretend_language)
7720 {
7721 gdb_assert (! this_cu->is_debug_types);
7722
7723 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7724 load_full_comp_unit_reader, &pretend_language);
7725 }
7726
7727 /* Add a DIE to the delayed physname list. */
7728
7729 static void
7730 add_to_method_list (struct type *type, int fnfield_index, int index,
7731 const char *name, struct die_info *die,
7732 struct dwarf2_cu *cu)
7733 {
7734 struct delayed_method_info mi;
7735 mi.type = type;
7736 mi.fnfield_index = fnfield_index;
7737 mi.index = index;
7738 mi.name = name;
7739 mi.die = die;
7740 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7741 }
7742
7743 /* A cleanup for freeing the delayed method list. */
7744
7745 static void
7746 free_delayed_list (void *ptr)
7747 {
7748 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7749 if (cu->method_list != NULL)
7750 {
7751 VEC_free (delayed_method_info, cu->method_list);
7752 cu->method_list = NULL;
7753 }
7754 }
7755
7756 /* Compute the physnames of any methods on the CU's method list.
7757
7758 The computation of method physnames is delayed in order to avoid the
7759 (bad) condition that one of the method's formal parameters is of an as yet
7760 incomplete type. */
7761
7762 static void
7763 compute_delayed_physnames (struct dwarf2_cu *cu)
7764 {
7765 int i;
7766 struct delayed_method_info *mi;
7767 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7768 {
7769 const char *physname;
7770 struct fn_fieldlist *fn_flp
7771 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7772 physname = dwarf2_physname (mi->name, mi->die, cu);
7773 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7774 = physname ? physname : "";
7775 }
7776 }
7777
7778 /* Go objects should be embedded in a DW_TAG_module DIE,
7779 and it's not clear if/how imported objects will appear.
7780 To keep Go support simple until that's worked out,
7781 go back through what we've read and create something usable.
7782 We could do this while processing each DIE, and feels kinda cleaner,
7783 but that way is more invasive.
7784 This is to, for example, allow the user to type "p var" or "b main"
7785 without having to specify the package name, and allow lookups
7786 of module.object to work in contexts that use the expression
7787 parser. */
7788
7789 static void
7790 fixup_go_packaging (struct dwarf2_cu *cu)
7791 {
7792 char *package_name = NULL;
7793 struct pending *list;
7794 int i;
7795
7796 for (list = global_symbols; list != NULL; list = list->next)
7797 {
7798 for (i = 0; i < list->nsyms; ++i)
7799 {
7800 struct symbol *sym = list->symbol[i];
7801
7802 if (SYMBOL_LANGUAGE (sym) == language_go
7803 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7804 {
7805 char *this_package_name = go_symbol_package_name (sym);
7806
7807 if (this_package_name == NULL)
7808 continue;
7809 if (package_name == NULL)
7810 package_name = this_package_name;
7811 else
7812 {
7813 if (strcmp (package_name, this_package_name) != 0)
7814 complaint (&symfile_complaints,
7815 _("Symtab %s has objects from two different Go packages: %s and %s"),
7816 (symbol_symtab (sym) != NULL
7817 ? symtab_to_filename_for_display
7818 (symbol_symtab (sym))
7819 : objfile_name (cu->objfile)),
7820 this_package_name, package_name);
7821 xfree (this_package_name);
7822 }
7823 }
7824 }
7825 }
7826
7827 if (package_name != NULL)
7828 {
7829 struct objfile *objfile = cu->objfile;
7830 const char *saved_package_name
7831 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7832 package_name,
7833 strlen (package_name));
7834 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7835 saved_package_name, objfile);
7836 struct symbol *sym;
7837
7838 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7839
7840 sym = allocate_symbol (objfile);
7841 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7842 SYMBOL_SET_NAMES (sym, saved_package_name,
7843 strlen (saved_package_name), 0, objfile);
7844 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7845 e.g., "main" finds the "main" module and not C's main(). */
7846 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7847 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7848 SYMBOL_TYPE (sym) = type;
7849
7850 add_symbol_to_list (sym, &global_symbols);
7851
7852 xfree (package_name);
7853 }
7854 }
7855
7856 /* Return the symtab for PER_CU. This works properly regardless of
7857 whether we're using the index or psymtabs. */
7858
7859 static struct compunit_symtab *
7860 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7861 {
7862 return (dwarf2_per_objfile->using_index
7863 ? per_cu->v.quick->compunit_symtab
7864 : per_cu->v.psymtab->compunit_symtab);
7865 }
7866
7867 /* A helper function for computing the list of all symbol tables
7868 included by PER_CU. */
7869
7870 static void
7871 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7872 htab_t all_children, htab_t all_type_symtabs,
7873 struct dwarf2_per_cu_data *per_cu,
7874 struct compunit_symtab *immediate_parent)
7875 {
7876 void **slot;
7877 int ix;
7878 struct compunit_symtab *cust;
7879 struct dwarf2_per_cu_data *iter;
7880
7881 slot = htab_find_slot (all_children, per_cu, INSERT);
7882 if (*slot != NULL)
7883 {
7884 /* This inclusion and its children have been processed. */
7885 return;
7886 }
7887
7888 *slot = per_cu;
7889 /* Only add a CU if it has a symbol table. */
7890 cust = get_compunit_symtab (per_cu);
7891 if (cust != NULL)
7892 {
7893 /* If this is a type unit only add its symbol table if we haven't
7894 seen it yet (type unit per_cu's can share symtabs). */
7895 if (per_cu->is_debug_types)
7896 {
7897 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7898 if (*slot == NULL)
7899 {
7900 *slot = cust;
7901 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7902 if (cust->user == NULL)
7903 cust->user = immediate_parent;
7904 }
7905 }
7906 else
7907 {
7908 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7909 if (cust->user == NULL)
7910 cust->user = immediate_parent;
7911 }
7912 }
7913
7914 for (ix = 0;
7915 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7916 ++ix)
7917 {
7918 recursively_compute_inclusions (result, all_children,
7919 all_type_symtabs, iter, cust);
7920 }
7921 }
7922
7923 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7924 PER_CU. */
7925
7926 static void
7927 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7928 {
7929 gdb_assert (! per_cu->is_debug_types);
7930
7931 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7932 {
7933 int ix, len;
7934 struct dwarf2_per_cu_data *per_cu_iter;
7935 struct compunit_symtab *compunit_symtab_iter;
7936 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7937 htab_t all_children, all_type_symtabs;
7938 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7939
7940 /* If we don't have a symtab, we can just skip this case. */
7941 if (cust == NULL)
7942 return;
7943
7944 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7945 NULL, xcalloc, xfree);
7946 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7947 NULL, xcalloc, xfree);
7948
7949 for (ix = 0;
7950 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7951 ix, per_cu_iter);
7952 ++ix)
7953 {
7954 recursively_compute_inclusions (&result_symtabs, all_children,
7955 all_type_symtabs, per_cu_iter,
7956 cust);
7957 }
7958
7959 /* Now we have a transitive closure of all the included symtabs. */
7960 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7961 cust->includes
7962 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7963 struct compunit_symtab *, len + 1);
7964 for (ix = 0;
7965 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7966 compunit_symtab_iter);
7967 ++ix)
7968 cust->includes[ix] = compunit_symtab_iter;
7969 cust->includes[len] = NULL;
7970
7971 VEC_free (compunit_symtab_ptr, result_symtabs);
7972 htab_delete (all_children);
7973 htab_delete (all_type_symtabs);
7974 }
7975 }
7976
7977 /* Compute the 'includes' field for the symtabs of all the CUs we just
7978 read. */
7979
7980 static void
7981 process_cu_includes (void)
7982 {
7983 int ix;
7984 struct dwarf2_per_cu_data *iter;
7985
7986 for (ix = 0;
7987 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7988 ix, iter);
7989 ++ix)
7990 {
7991 if (! iter->is_debug_types)
7992 compute_compunit_symtab_includes (iter);
7993 }
7994
7995 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7996 }
7997
7998 /* Generate full symbol information for PER_CU, whose DIEs have
7999 already been loaded into memory. */
8000
8001 static void
8002 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8003 enum language pretend_language)
8004 {
8005 struct dwarf2_cu *cu = per_cu->cu;
8006 struct objfile *objfile = per_cu->objfile;
8007 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8008 CORE_ADDR lowpc, highpc;
8009 struct compunit_symtab *cust;
8010 struct cleanup *back_to, *delayed_list_cleanup;
8011 CORE_ADDR baseaddr;
8012 struct block *static_block;
8013 CORE_ADDR addr;
8014
8015 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8016
8017 buildsym_init ();
8018 back_to = make_cleanup (really_free_pendings, NULL);
8019 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8020
8021 cu->list_in_scope = &file_symbols;
8022
8023 cu->language = pretend_language;
8024 cu->language_defn = language_def (cu->language);
8025
8026 /* Do line number decoding in read_file_scope () */
8027 process_die (cu->dies, cu);
8028
8029 /* For now fudge the Go package. */
8030 if (cu->language == language_go)
8031 fixup_go_packaging (cu);
8032
8033 /* Now that we have processed all the DIEs in the CU, all the types
8034 should be complete, and it should now be safe to compute all of the
8035 physnames. */
8036 compute_delayed_physnames (cu);
8037 do_cleanups (delayed_list_cleanup);
8038
8039 /* Some compilers don't define a DW_AT_high_pc attribute for the
8040 compilation unit. If the DW_AT_high_pc is missing, synthesize
8041 it, by scanning the DIE's below the compilation unit. */
8042 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8043
8044 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8045 static_block = end_symtab_get_static_block (addr, 0, 1);
8046
8047 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8048 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8049 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8050 addrmap to help ensure it has an accurate map of pc values belonging to
8051 this comp unit. */
8052 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8053
8054 cust = end_symtab_from_static_block (static_block,
8055 SECT_OFF_TEXT (objfile), 0);
8056
8057 if (cust != NULL)
8058 {
8059 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8060
8061 /* Set symtab language to language from DW_AT_language. If the
8062 compilation is from a C file generated by language preprocessors, do
8063 not set the language if it was already deduced by start_subfile. */
8064 if (!(cu->language == language_c
8065 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8066 COMPUNIT_FILETABS (cust)->language = cu->language;
8067
8068 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8069 produce DW_AT_location with location lists but it can be possibly
8070 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8071 there were bugs in prologue debug info, fixed later in GCC-4.5
8072 by "unwind info for epilogues" patch (which is not directly related).
8073
8074 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8075 needed, it would be wrong due to missing DW_AT_producer there.
8076
8077 Still one can confuse GDB by using non-standard GCC compilation
8078 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8079 */
8080 if (cu->has_loclist && gcc_4_minor >= 5)
8081 cust->locations_valid = 1;
8082
8083 if (gcc_4_minor >= 5)
8084 cust->epilogue_unwind_valid = 1;
8085
8086 cust->call_site_htab = cu->call_site_htab;
8087 }
8088
8089 if (dwarf2_per_objfile->using_index)
8090 per_cu->v.quick->compunit_symtab = cust;
8091 else
8092 {
8093 struct partial_symtab *pst = per_cu->v.psymtab;
8094 pst->compunit_symtab = cust;
8095 pst->readin = 1;
8096 }
8097
8098 /* Push it for inclusion processing later. */
8099 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8100
8101 do_cleanups (back_to);
8102 }
8103
8104 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8105 already been loaded into memory. */
8106
8107 static void
8108 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8109 enum language pretend_language)
8110 {
8111 struct dwarf2_cu *cu = per_cu->cu;
8112 struct objfile *objfile = per_cu->objfile;
8113 struct compunit_symtab *cust;
8114 struct cleanup *back_to, *delayed_list_cleanup;
8115 struct signatured_type *sig_type;
8116
8117 gdb_assert (per_cu->is_debug_types);
8118 sig_type = (struct signatured_type *) per_cu;
8119
8120 buildsym_init ();
8121 back_to = make_cleanup (really_free_pendings, NULL);
8122 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8123
8124 cu->list_in_scope = &file_symbols;
8125
8126 cu->language = pretend_language;
8127 cu->language_defn = language_def (cu->language);
8128
8129 /* The symbol tables are set up in read_type_unit_scope. */
8130 process_die (cu->dies, cu);
8131
8132 /* For now fudge the Go package. */
8133 if (cu->language == language_go)
8134 fixup_go_packaging (cu);
8135
8136 /* Now that we have processed all the DIEs in the CU, all the types
8137 should be complete, and it should now be safe to compute all of the
8138 physnames. */
8139 compute_delayed_physnames (cu);
8140 do_cleanups (delayed_list_cleanup);
8141
8142 /* TUs share symbol tables.
8143 If this is the first TU to use this symtab, complete the construction
8144 of it with end_expandable_symtab. Otherwise, complete the addition of
8145 this TU's symbols to the existing symtab. */
8146 if (sig_type->type_unit_group->compunit_symtab == NULL)
8147 {
8148 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8149 sig_type->type_unit_group->compunit_symtab = cust;
8150
8151 if (cust != NULL)
8152 {
8153 /* Set symtab language to language from DW_AT_language. If the
8154 compilation is from a C file generated by language preprocessors,
8155 do not set the language if it was already deduced by
8156 start_subfile. */
8157 if (!(cu->language == language_c
8158 && COMPUNIT_FILETABS (cust)->language != language_c))
8159 COMPUNIT_FILETABS (cust)->language = cu->language;
8160 }
8161 }
8162 else
8163 {
8164 augment_type_symtab ();
8165 cust = sig_type->type_unit_group->compunit_symtab;
8166 }
8167
8168 if (dwarf2_per_objfile->using_index)
8169 per_cu->v.quick->compunit_symtab = cust;
8170 else
8171 {
8172 struct partial_symtab *pst = per_cu->v.psymtab;
8173 pst->compunit_symtab = cust;
8174 pst->readin = 1;
8175 }
8176
8177 do_cleanups (back_to);
8178 }
8179
8180 /* Process an imported unit DIE. */
8181
8182 static void
8183 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8184 {
8185 struct attribute *attr;
8186
8187 /* For now we don't handle imported units in type units. */
8188 if (cu->per_cu->is_debug_types)
8189 {
8190 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8191 " supported in type units [in module %s]"),
8192 objfile_name (cu->objfile));
8193 }
8194
8195 attr = dwarf2_attr (die, DW_AT_import, cu);
8196 if (attr != NULL)
8197 {
8198 struct dwarf2_per_cu_data *per_cu;
8199 struct symtab *imported_symtab;
8200 sect_offset offset;
8201 int is_dwz;
8202
8203 offset = dwarf2_get_ref_die_offset (attr);
8204 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8205 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8206
8207 /* If necessary, add it to the queue and load its DIEs. */
8208 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8209 load_full_comp_unit (per_cu, cu->language);
8210
8211 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8212 per_cu);
8213 }
8214 }
8215
8216 /* Reset the in_process bit of a die. */
8217
8218 static void
8219 reset_die_in_process (void *arg)
8220 {
8221 struct die_info *die = arg;
8222
8223 die->in_process = 0;
8224 }
8225
8226 /* Process a die and its children. */
8227
8228 static void
8229 process_die (struct die_info *die, struct dwarf2_cu *cu)
8230 {
8231 struct cleanup *in_process;
8232
8233 /* We should only be processing those not already in process. */
8234 gdb_assert (!die->in_process);
8235
8236 die->in_process = 1;
8237 in_process = make_cleanup (reset_die_in_process,die);
8238
8239 switch (die->tag)
8240 {
8241 case DW_TAG_padding:
8242 break;
8243 case DW_TAG_compile_unit:
8244 case DW_TAG_partial_unit:
8245 read_file_scope (die, cu);
8246 break;
8247 case DW_TAG_type_unit:
8248 read_type_unit_scope (die, cu);
8249 break;
8250 case DW_TAG_subprogram:
8251 case DW_TAG_inlined_subroutine:
8252 read_func_scope (die, cu);
8253 break;
8254 case DW_TAG_lexical_block:
8255 case DW_TAG_try_block:
8256 case DW_TAG_catch_block:
8257 read_lexical_block_scope (die, cu);
8258 break;
8259 case DW_TAG_GNU_call_site:
8260 read_call_site_scope (die, cu);
8261 break;
8262 case DW_TAG_class_type:
8263 case DW_TAG_interface_type:
8264 case DW_TAG_structure_type:
8265 case DW_TAG_union_type:
8266 process_structure_scope (die, cu);
8267 break;
8268 case DW_TAG_enumeration_type:
8269 process_enumeration_scope (die, cu);
8270 break;
8271
8272 /* These dies have a type, but processing them does not create
8273 a symbol or recurse to process the children. Therefore we can
8274 read them on-demand through read_type_die. */
8275 case DW_TAG_subroutine_type:
8276 case DW_TAG_set_type:
8277 case DW_TAG_array_type:
8278 case DW_TAG_pointer_type:
8279 case DW_TAG_ptr_to_member_type:
8280 case DW_TAG_reference_type:
8281 case DW_TAG_string_type:
8282 break;
8283
8284 case DW_TAG_base_type:
8285 case DW_TAG_subrange_type:
8286 case DW_TAG_typedef:
8287 /* Add a typedef symbol for the type definition, if it has a
8288 DW_AT_name. */
8289 new_symbol (die, read_type_die (die, cu), cu);
8290 break;
8291 case DW_TAG_common_block:
8292 read_common_block (die, cu);
8293 break;
8294 case DW_TAG_common_inclusion:
8295 break;
8296 case DW_TAG_namespace:
8297 cu->processing_has_namespace_info = 1;
8298 read_namespace (die, cu);
8299 break;
8300 case DW_TAG_module:
8301 cu->processing_has_namespace_info = 1;
8302 read_module (die, cu);
8303 break;
8304 case DW_TAG_imported_declaration:
8305 cu->processing_has_namespace_info = 1;
8306 if (read_namespace_alias (die, cu))
8307 break;
8308 /* The declaration is not a global namespace alias: fall through. */
8309 case DW_TAG_imported_module:
8310 cu->processing_has_namespace_info = 1;
8311 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8312 || cu->language != language_fortran))
8313 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8314 dwarf_tag_name (die->tag));
8315 read_import_statement (die, cu);
8316 break;
8317
8318 case DW_TAG_imported_unit:
8319 process_imported_unit_die (die, cu);
8320 break;
8321
8322 default:
8323 new_symbol (die, NULL, cu);
8324 break;
8325 }
8326
8327 do_cleanups (in_process);
8328 }
8329 \f
8330 /* DWARF name computation. */
8331
8332 /* A helper function for dwarf2_compute_name which determines whether DIE
8333 needs to have the name of the scope prepended to the name listed in the
8334 die. */
8335
8336 static int
8337 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8338 {
8339 struct attribute *attr;
8340
8341 switch (die->tag)
8342 {
8343 case DW_TAG_namespace:
8344 case DW_TAG_typedef:
8345 case DW_TAG_class_type:
8346 case DW_TAG_interface_type:
8347 case DW_TAG_structure_type:
8348 case DW_TAG_union_type:
8349 case DW_TAG_enumeration_type:
8350 case DW_TAG_enumerator:
8351 case DW_TAG_subprogram:
8352 case DW_TAG_inlined_subroutine:
8353 case DW_TAG_member:
8354 case DW_TAG_imported_declaration:
8355 return 1;
8356
8357 case DW_TAG_variable:
8358 case DW_TAG_constant:
8359 /* We only need to prefix "globally" visible variables. These include
8360 any variable marked with DW_AT_external or any variable that
8361 lives in a namespace. [Variables in anonymous namespaces
8362 require prefixing, but they are not DW_AT_external.] */
8363
8364 if (dwarf2_attr (die, DW_AT_specification, cu))
8365 {
8366 struct dwarf2_cu *spec_cu = cu;
8367
8368 return die_needs_namespace (die_specification (die, &spec_cu),
8369 spec_cu);
8370 }
8371
8372 attr = dwarf2_attr (die, DW_AT_external, cu);
8373 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8374 && die->parent->tag != DW_TAG_module)
8375 return 0;
8376 /* A variable in a lexical block of some kind does not need a
8377 namespace, even though in C++ such variables may be external
8378 and have a mangled name. */
8379 if (die->parent->tag == DW_TAG_lexical_block
8380 || die->parent->tag == DW_TAG_try_block
8381 || die->parent->tag == DW_TAG_catch_block
8382 || die->parent->tag == DW_TAG_subprogram)
8383 return 0;
8384 return 1;
8385
8386 default:
8387 return 0;
8388 }
8389 }
8390
8391 /* Retrieve the last character from a mem_file. */
8392
8393 static void
8394 do_ui_file_peek_last (void *object, const char *buffer, long length)
8395 {
8396 char *last_char_p = (char *) object;
8397
8398 if (length > 0)
8399 *last_char_p = buffer[length - 1];
8400 }
8401
8402 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8403 compute the physname for the object, which include a method's:
8404 - formal parameters (C++/Java),
8405 - receiver type (Go),
8406 - return type (Java).
8407
8408 The term "physname" is a bit confusing.
8409 For C++, for example, it is the demangled name.
8410 For Go, for example, it's the mangled name.
8411
8412 For Ada, return the DIE's linkage name rather than the fully qualified
8413 name. PHYSNAME is ignored..
8414
8415 The result is allocated on the objfile_obstack and canonicalized. */
8416
8417 static const char *
8418 dwarf2_compute_name (const char *name,
8419 struct die_info *die, struct dwarf2_cu *cu,
8420 int physname)
8421 {
8422 struct objfile *objfile = cu->objfile;
8423
8424 if (name == NULL)
8425 name = dwarf2_name (die, cu);
8426
8427 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8428 but otherwise compute it by typename_concat inside GDB.
8429 FIXME: Actually this is not really true, or at least not always true.
8430 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8431 Fortran names because there is no mangling standard. So new_symbol_full
8432 will set the demangled name to the result of dwarf2_full_name, and it is
8433 the demangled name that GDB uses if it exists. */
8434 if (cu->language == language_ada
8435 || (cu->language == language_fortran && physname))
8436 {
8437 /* For Ada unit, we prefer the linkage name over the name, as
8438 the former contains the exported name, which the user expects
8439 to be able to reference. Ideally, we want the user to be able
8440 to reference this entity using either natural or linkage name,
8441 but we haven't started looking at this enhancement yet. */
8442 const char *linkage_name;
8443
8444 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8445 if (linkage_name == NULL)
8446 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8447 if (linkage_name != NULL)
8448 return linkage_name;
8449 }
8450
8451 /* These are the only languages we know how to qualify names in. */
8452 if (name != NULL
8453 && (cu->language == language_cplus || cu->language == language_java
8454 || cu->language == language_fortran || cu->language == language_d))
8455 {
8456 if (die_needs_namespace (die, cu))
8457 {
8458 long length;
8459 const char *prefix;
8460 struct ui_file *buf;
8461 char *intermediate_name;
8462 const char *canonical_name = NULL;
8463
8464 prefix = determine_prefix (die, cu);
8465 buf = mem_fileopen ();
8466 if (*prefix != '\0')
8467 {
8468 char *prefixed_name = typename_concat (NULL, prefix, name,
8469 physname, cu);
8470
8471 fputs_unfiltered (prefixed_name, buf);
8472 xfree (prefixed_name);
8473 }
8474 else
8475 fputs_unfiltered (name, buf);
8476
8477 /* Template parameters may be specified in the DIE's DW_AT_name, or
8478 as children with DW_TAG_template_type_param or
8479 DW_TAG_value_type_param. If the latter, add them to the name
8480 here. If the name already has template parameters, then
8481 skip this step; some versions of GCC emit both, and
8482 it is more efficient to use the pre-computed name.
8483
8484 Something to keep in mind about this process: it is very
8485 unlikely, or in some cases downright impossible, to produce
8486 something that will match the mangled name of a function.
8487 If the definition of the function has the same debug info,
8488 we should be able to match up with it anyway. But fallbacks
8489 using the minimal symbol, for instance to find a method
8490 implemented in a stripped copy of libstdc++, will not work.
8491 If we do not have debug info for the definition, we will have to
8492 match them up some other way.
8493
8494 When we do name matching there is a related problem with function
8495 templates; two instantiated function templates are allowed to
8496 differ only by their return types, which we do not add here. */
8497
8498 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8499 {
8500 struct attribute *attr;
8501 struct die_info *child;
8502 int first = 1;
8503
8504 die->building_fullname = 1;
8505
8506 for (child = die->child; child != NULL; child = child->sibling)
8507 {
8508 struct type *type;
8509 LONGEST value;
8510 const gdb_byte *bytes;
8511 struct dwarf2_locexpr_baton *baton;
8512 struct value *v;
8513
8514 if (child->tag != DW_TAG_template_type_param
8515 && child->tag != DW_TAG_template_value_param)
8516 continue;
8517
8518 if (first)
8519 {
8520 fputs_unfiltered ("<", buf);
8521 first = 0;
8522 }
8523 else
8524 fputs_unfiltered (", ", buf);
8525
8526 attr = dwarf2_attr (child, DW_AT_type, cu);
8527 if (attr == NULL)
8528 {
8529 complaint (&symfile_complaints,
8530 _("template parameter missing DW_AT_type"));
8531 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8532 continue;
8533 }
8534 type = die_type (child, cu);
8535
8536 if (child->tag == DW_TAG_template_type_param)
8537 {
8538 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8539 continue;
8540 }
8541
8542 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8543 if (attr == NULL)
8544 {
8545 complaint (&symfile_complaints,
8546 _("template parameter missing "
8547 "DW_AT_const_value"));
8548 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8549 continue;
8550 }
8551
8552 dwarf2_const_value_attr (attr, type, name,
8553 &cu->comp_unit_obstack, cu,
8554 &value, &bytes, &baton);
8555
8556 if (TYPE_NOSIGN (type))
8557 /* GDB prints characters as NUMBER 'CHAR'. If that's
8558 changed, this can use value_print instead. */
8559 c_printchar (value, type, buf);
8560 else
8561 {
8562 struct value_print_options opts;
8563
8564 if (baton != NULL)
8565 v = dwarf2_evaluate_loc_desc (type, NULL,
8566 baton->data,
8567 baton->size,
8568 baton->per_cu);
8569 else if (bytes != NULL)
8570 {
8571 v = allocate_value (type);
8572 memcpy (value_contents_writeable (v), bytes,
8573 TYPE_LENGTH (type));
8574 }
8575 else
8576 v = value_from_longest (type, value);
8577
8578 /* Specify decimal so that we do not depend on
8579 the radix. */
8580 get_formatted_print_options (&opts, 'd');
8581 opts.raw = 1;
8582 value_print (v, buf, &opts);
8583 release_value (v);
8584 value_free (v);
8585 }
8586 }
8587
8588 die->building_fullname = 0;
8589
8590 if (!first)
8591 {
8592 /* Close the argument list, with a space if necessary
8593 (nested templates). */
8594 char last_char = '\0';
8595 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8596 if (last_char == '>')
8597 fputs_unfiltered (" >", buf);
8598 else
8599 fputs_unfiltered (">", buf);
8600 }
8601 }
8602
8603 /* For Java and C++ methods, append formal parameter type
8604 information, if PHYSNAME. */
8605
8606 if (physname && die->tag == DW_TAG_subprogram
8607 && (cu->language == language_cplus
8608 || cu->language == language_java))
8609 {
8610 struct type *type = read_type_die (die, cu);
8611
8612 c_type_print_args (type, buf, 1, cu->language,
8613 &type_print_raw_options);
8614
8615 if (cu->language == language_java)
8616 {
8617 /* For java, we must append the return type to method
8618 names. */
8619 if (die->tag == DW_TAG_subprogram)
8620 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8621 0, 0, &type_print_raw_options);
8622 }
8623 else if (cu->language == language_cplus)
8624 {
8625 /* Assume that an artificial first parameter is
8626 "this", but do not crash if it is not. RealView
8627 marks unnamed (and thus unused) parameters as
8628 artificial; there is no way to differentiate
8629 the two cases. */
8630 if (TYPE_NFIELDS (type) > 0
8631 && TYPE_FIELD_ARTIFICIAL (type, 0)
8632 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8633 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8634 0))))
8635 fputs_unfiltered (" const", buf);
8636 }
8637 }
8638
8639 intermediate_name = ui_file_xstrdup (buf, &length);
8640 ui_file_delete (buf);
8641
8642 if (cu->language == language_cplus)
8643 canonical_name
8644 = dwarf2_canonicalize_name (intermediate_name, cu,
8645 &objfile->per_bfd->storage_obstack);
8646
8647 /* If we only computed INTERMEDIATE_NAME, or if
8648 INTERMEDIATE_NAME is already canonical, then we need to
8649 copy it to the appropriate obstack. */
8650 if (canonical_name == NULL || canonical_name == intermediate_name)
8651 name = ((const char *)
8652 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8653 intermediate_name,
8654 strlen (intermediate_name)));
8655 else
8656 name = canonical_name;
8657
8658 xfree (intermediate_name);
8659 }
8660 }
8661
8662 return name;
8663 }
8664
8665 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8666 If scope qualifiers are appropriate they will be added. The result
8667 will be allocated on the storage_obstack, or NULL if the DIE does
8668 not have a name. NAME may either be from a previous call to
8669 dwarf2_name or NULL.
8670
8671 The output string will be canonicalized (if C++/Java). */
8672
8673 static const char *
8674 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8675 {
8676 return dwarf2_compute_name (name, die, cu, 0);
8677 }
8678
8679 /* Construct a physname for the given DIE in CU. NAME may either be
8680 from a previous call to dwarf2_name or NULL. The result will be
8681 allocated on the objfile_objstack or NULL if the DIE does not have a
8682 name.
8683
8684 The output string will be canonicalized (if C++/Java). */
8685
8686 static const char *
8687 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8688 {
8689 struct objfile *objfile = cu->objfile;
8690 struct attribute *attr;
8691 const char *retval, *mangled = NULL, *canon = NULL;
8692 struct cleanup *back_to;
8693 int need_copy = 1;
8694
8695 /* In this case dwarf2_compute_name is just a shortcut not building anything
8696 on its own. */
8697 if (!die_needs_namespace (die, cu))
8698 return dwarf2_compute_name (name, die, cu, 1);
8699
8700 back_to = make_cleanup (null_cleanup, NULL);
8701
8702 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8703 if (mangled == NULL)
8704 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8705
8706 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8707 has computed. */
8708 if (mangled != NULL)
8709 {
8710 char *demangled;
8711
8712 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8713 type. It is easier for GDB users to search for such functions as
8714 `name(params)' than `long name(params)'. In such case the minimal
8715 symbol names do not match the full symbol names but for template
8716 functions there is never a need to look up their definition from their
8717 declaration so the only disadvantage remains the minimal symbol
8718 variant `long name(params)' does not have the proper inferior type.
8719 */
8720
8721 if (cu->language == language_go)
8722 {
8723 /* This is a lie, but we already lie to the caller new_symbol_full.
8724 new_symbol_full assumes we return the mangled name.
8725 This just undoes that lie until things are cleaned up. */
8726 demangled = NULL;
8727 }
8728 else
8729 {
8730 demangled = gdb_demangle (mangled,
8731 (DMGL_PARAMS | DMGL_ANSI
8732 | (cu->language == language_java
8733 ? DMGL_JAVA | DMGL_RET_POSTFIX
8734 : DMGL_RET_DROP)));
8735 }
8736 if (demangled)
8737 {
8738 make_cleanup (xfree, demangled);
8739 canon = demangled;
8740 }
8741 else
8742 {
8743 canon = mangled;
8744 need_copy = 0;
8745 }
8746 }
8747
8748 if (canon == NULL || check_physname)
8749 {
8750 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8751
8752 if (canon != NULL && strcmp (physname, canon) != 0)
8753 {
8754 /* It may not mean a bug in GDB. The compiler could also
8755 compute DW_AT_linkage_name incorrectly. But in such case
8756 GDB would need to be bug-to-bug compatible. */
8757
8758 complaint (&symfile_complaints,
8759 _("Computed physname <%s> does not match demangled <%s> "
8760 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8761 physname, canon, mangled, die->offset.sect_off,
8762 objfile_name (objfile));
8763
8764 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8765 is available here - over computed PHYSNAME. It is safer
8766 against both buggy GDB and buggy compilers. */
8767
8768 retval = canon;
8769 }
8770 else
8771 {
8772 retval = physname;
8773 need_copy = 0;
8774 }
8775 }
8776 else
8777 retval = canon;
8778
8779 if (need_copy)
8780 retval = ((const char *)
8781 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8782 retval, strlen (retval)));
8783
8784 do_cleanups (back_to);
8785 return retval;
8786 }
8787
8788 /* Inspect DIE in CU for a namespace alias. If one exists, record
8789 a new symbol for it.
8790
8791 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8792
8793 static int
8794 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8795 {
8796 struct attribute *attr;
8797
8798 /* If the die does not have a name, this is not a namespace
8799 alias. */
8800 attr = dwarf2_attr (die, DW_AT_name, cu);
8801 if (attr != NULL)
8802 {
8803 int num;
8804 struct die_info *d = die;
8805 struct dwarf2_cu *imported_cu = cu;
8806
8807 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8808 keep inspecting DIEs until we hit the underlying import. */
8809 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8810 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8811 {
8812 attr = dwarf2_attr (d, DW_AT_import, cu);
8813 if (attr == NULL)
8814 break;
8815
8816 d = follow_die_ref (d, attr, &imported_cu);
8817 if (d->tag != DW_TAG_imported_declaration)
8818 break;
8819 }
8820
8821 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8822 {
8823 complaint (&symfile_complaints,
8824 _("DIE at 0x%x has too many recursively imported "
8825 "declarations"), d->offset.sect_off);
8826 return 0;
8827 }
8828
8829 if (attr != NULL)
8830 {
8831 struct type *type;
8832 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8833
8834 type = get_die_type_at_offset (offset, cu->per_cu);
8835 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8836 {
8837 /* This declaration is a global namespace alias. Add
8838 a symbol for it whose type is the aliased namespace. */
8839 new_symbol (die, type, cu);
8840 return 1;
8841 }
8842 }
8843 }
8844
8845 return 0;
8846 }
8847
8848 /* Return the using directives repository (global or local?) to use in the
8849 current context for LANGUAGE.
8850
8851 For Ada, imported declarations can materialize renamings, which *may* be
8852 global. However it is impossible (for now?) in DWARF to distinguish
8853 "external" imported declarations and "static" ones. As all imported
8854 declarations seem to be static in all other languages, make them all CU-wide
8855 global only in Ada. */
8856
8857 static struct using_direct **
8858 using_directives (enum language language)
8859 {
8860 if (language == language_ada && context_stack_depth == 0)
8861 return &global_using_directives;
8862 else
8863 return &local_using_directives;
8864 }
8865
8866 /* Read the import statement specified by the given die and record it. */
8867
8868 static void
8869 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8870 {
8871 struct objfile *objfile = cu->objfile;
8872 struct attribute *import_attr;
8873 struct die_info *imported_die, *child_die;
8874 struct dwarf2_cu *imported_cu;
8875 const char *imported_name;
8876 const char *imported_name_prefix;
8877 const char *canonical_name;
8878 const char *import_alias;
8879 const char *imported_declaration = NULL;
8880 const char *import_prefix;
8881 VEC (const_char_ptr) *excludes = NULL;
8882 struct cleanup *cleanups;
8883
8884 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8885 if (import_attr == NULL)
8886 {
8887 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8888 dwarf_tag_name (die->tag));
8889 return;
8890 }
8891
8892 imported_cu = cu;
8893 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8894 imported_name = dwarf2_name (imported_die, imported_cu);
8895 if (imported_name == NULL)
8896 {
8897 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8898
8899 The import in the following code:
8900 namespace A
8901 {
8902 typedef int B;
8903 }
8904
8905 int main ()
8906 {
8907 using A::B;
8908 B b;
8909 return b;
8910 }
8911
8912 ...
8913 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8914 <52> DW_AT_decl_file : 1
8915 <53> DW_AT_decl_line : 6
8916 <54> DW_AT_import : <0x75>
8917 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8918 <59> DW_AT_name : B
8919 <5b> DW_AT_decl_file : 1
8920 <5c> DW_AT_decl_line : 2
8921 <5d> DW_AT_type : <0x6e>
8922 ...
8923 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8924 <76> DW_AT_byte_size : 4
8925 <77> DW_AT_encoding : 5 (signed)
8926
8927 imports the wrong die ( 0x75 instead of 0x58 ).
8928 This case will be ignored until the gcc bug is fixed. */
8929 return;
8930 }
8931
8932 /* Figure out the local name after import. */
8933 import_alias = dwarf2_name (die, cu);
8934
8935 /* Figure out where the statement is being imported to. */
8936 import_prefix = determine_prefix (die, cu);
8937
8938 /* Figure out what the scope of the imported die is and prepend it
8939 to the name of the imported die. */
8940 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8941
8942 if (imported_die->tag != DW_TAG_namespace
8943 && imported_die->tag != DW_TAG_module)
8944 {
8945 imported_declaration = imported_name;
8946 canonical_name = imported_name_prefix;
8947 }
8948 else if (strlen (imported_name_prefix) > 0)
8949 canonical_name = obconcat (&objfile->objfile_obstack,
8950 imported_name_prefix,
8951 (cu->language == language_d ? "." : "::"),
8952 imported_name, (char *) NULL);
8953 else
8954 canonical_name = imported_name;
8955
8956 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8957
8958 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8959 for (child_die = die->child; child_die && child_die->tag;
8960 child_die = sibling_die (child_die))
8961 {
8962 /* DWARF-4: A Fortran use statement with a “rename list” may be
8963 represented by an imported module entry with an import attribute
8964 referring to the module and owned entries corresponding to those
8965 entities that are renamed as part of being imported. */
8966
8967 if (child_die->tag != DW_TAG_imported_declaration)
8968 {
8969 complaint (&symfile_complaints,
8970 _("child DW_TAG_imported_declaration expected "
8971 "- DIE at 0x%x [in module %s]"),
8972 child_die->offset.sect_off, objfile_name (objfile));
8973 continue;
8974 }
8975
8976 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8977 if (import_attr == NULL)
8978 {
8979 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8980 dwarf_tag_name (child_die->tag));
8981 continue;
8982 }
8983
8984 imported_cu = cu;
8985 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8986 &imported_cu);
8987 imported_name = dwarf2_name (imported_die, imported_cu);
8988 if (imported_name == NULL)
8989 {
8990 complaint (&symfile_complaints,
8991 _("child DW_TAG_imported_declaration has unknown "
8992 "imported name - DIE at 0x%x [in module %s]"),
8993 child_die->offset.sect_off, objfile_name (objfile));
8994 continue;
8995 }
8996
8997 VEC_safe_push (const_char_ptr, excludes, imported_name);
8998
8999 process_die (child_die, cu);
9000 }
9001
9002 add_using_directive (using_directives (cu->language),
9003 import_prefix,
9004 canonical_name,
9005 import_alias,
9006 imported_declaration,
9007 excludes,
9008 0,
9009 &objfile->objfile_obstack);
9010
9011 do_cleanups (cleanups);
9012 }
9013
9014 /* Cleanup function for handle_DW_AT_stmt_list. */
9015
9016 static void
9017 free_cu_line_header (void *arg)
9018 {
9019 struct dwarf2_cu *cu = arg;
9020
9021 free_line_header (cu->line_header);
9022 cu->line_header = NULL;
9023 }
9024
9025 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9026 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9027 this, it was first present in GCC release 4.3.0. */
9028
9029 static int
9030 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9031 {
9032 if (!cu->checked_producer)
9033 check_producer (cu);
9034
9035 return cu->producer_is_gcc_lt_4_3;
9036 }
9037
9038 static void
9039 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9040 const char **name, const char **comp_dir)
9041 {
9042 /* Find the filename. Do not use dwarf2_name here, since the filename
9043 is not a source language identifier. */
9044 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9045 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9046
9047 if (*comp_dir == NULL
9048 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9049 && IS_ABSOLUTE_PATH (*name))
9050 {
9051 char *d = ldirname (*name);
9052
9053 *comp_dir = d;
9054 if (d != NULL)
9055 make_cleanup (xfree, d);
9056 }
9057 if (*comp_dir != NULL)
9058 {
9059 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9060 directory, get rid of it. */
9061 char *cp = strchr (*comp_dir, ':');
9062
9063 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9064 *comp_dir = cp + 1;
9065 }
9066
9067 if (*name == NULL)
9068 *name = "<unknown>";
9069 }
9070
9071 /* Handle DW_AT_stmt_list for a compilation unit.
9072 DIE is the DW_TAG_compile_unit die for CU.
9073 COMP_DIR is the compilation directory. LOWPC is passed to
9074 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9075
9076 static void
9077 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9078 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9079 {
9080 struct objfile *objfile = dwarf2_per_objfile->objfile;
9081 struct attribute *attr;
9082 unsigned int line_offset;
9083 struct line_header line_header_local;
9084 hashval_t line_header_local_hash;
9085 unsigned u;
9086 void **slot;
9087 int decode_mapping;
9088
9089 gdb_assert (! cu->per_cu->is_debug_types);
9090
9091 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9092 if (attr == NULL)
9093 return;
9094
9095 line_offset = DW_UNSND (attr);
9096
9097 /* The line header hash table is only created if needed (it exists to
9098 prevent redundant reading of the line table for partial_units).
9099 If we're given a partial_unit, we'll need it. If we're given a
9100 compile_unit, then use the line header hash table if it's already
9101 created, but don't create one just yet. */
9102
9103 if (dwarf2_per_objfile->line_header_hash == NULL
9104 && die->tag == DW_TAG_partial_unit)
9105 {
9106 dwarf2_per_objfile->line_header_hash
9107 = htab_create_alloc_ex (127, line_header_hash_voidp,
9108 line_header_eq_voidp,
9109 free_line_header_voidp,
9110 &objfile->objfile_obstack,
9111 hashtab_obstack_allocate,
9112 dummy_obstack_deallocate);
9113 }
9114
9115 line_header_local.offset.sect_off = line_offset;
9116 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9117 line_header_local_hash = line_header_hash (&line_header_local);
9118 if (dwarf2_per_objfile->line_header_hash != NULL)
9119 {
9120 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9121 &line_header_local,
9122 line_header_local_hash, NO_INSERT);
9123
9124 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9125 is not present in *SLOT (since if there is something in *SLOT then
9126 it will be for a partial_unit). */
9127 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9128 {
9129 gdb_assert (*slot != NULL);
9130 cu->line_header = *slot;
9131 return;
9132 }
9133 }
9134
9135 /* dwarf_decode_line_header does not yet provide sufficient information.
9136 We always have to call also dwarf_decode_lines for it. */
9137 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9138 if (cu->line_header == NULL)
9139 return;
9140
9141 if (dwarf2_per_objfile->line_header_hash == NULL)
9142 slot = NULL;
9143 else
9144 {
9145 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9146 &line_header_local,
9147 line_header_local_hash, INSERT);
9148 gdb_assert (slot != NULL);
9149 }
9150 if (slot != NULL && *slot == NULL)
9151 {
9152 /* This newly decoded line number information unit will be owned
9153 by line_header_hash hash table. */
9154 *slot = cu->line_header;
9155 }
9156 else
9157 {
9158 /* We cannot free any current entry in (*slot) as that struct line_header
9159 may be already used by multiple CUs. Create only temporary decoded
9160 line_header for this CU - it may happen at most once for each line
9161 number information unit. And if we're not using line_header_hash
9162 then this is what we want as well. */
9163 gdb_assert (die->tag != DW_TAG_partial_unit);
9164 make_cleanup (free_cu_line_header, cu);
9165 }
9166 decode_mapping = (die->tag != DW_TAG_partial_unit);
9167 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9168 decode_mapping);
9169 }
9170
9171 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9172
9173 static void
9174 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9175 {
9176 struct objfile *objfile = dwarf2_per_objfile->objfile;
9177 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9178 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9179 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9180 CORE_ADDR highpc = ((CORE_ADDR) 0);
9181 struct attribute *attr;
9182 const char *name = NULL;
9183 const char *comp_dir = NULL;
9184 struct die_info *child_die;
9185 bfd *abfd = objfile->obfd;
9186 CORE_ADDR baseaddr;
9187
9188 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9189
9190 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9191
9192 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9193 from finish_block. */
9194 if (lowpc == ((CORE_ADDR) -1))
9195 lowpc = highpc;
9196 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9197
9198 find_file_and_directory (die, cu, &name, &comp_dir);
9199
9200 prepare_one_comp_unit (cu, die, cu->language);
9201
9202 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9203 standardised yet. As a workaround for the language detection we fall
9204 back to the DW_AT_producer string. */
9205 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9206 cu->language = language_opencl;
9207
9208 /* Similar hack for Go. */
9209 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9210 set_cu_language (DW_LANG_Go, cu);
9211
9212 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9213
9214 /* Decode line number information if present. We do this before
9215 processing child DIEs, so that the line header table is available
9216 for DW_AT_decl_file. */
9217 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9218
9219 /* Process all dies in compilation unit. */
9220 if (die->child != NULL)
9221 {
9222 child_die = die->child;
9223 while (child_die && child_die->tag)
9224 {
9225 process_die (child_die, cu);
9226 child_die = sibling_die (child_die);
9227 }
9228 }
9229
9230 /* Decode macro information, if present. Dwarf 2 macro information
9231 refers to information in the line number info statement program
9232 header, so we can only read it if we've read the header
9233 successfully. */
9234 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9235 if (attr && cu->line_header)
9236 {
9237 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9238 complaint (&symfile_complaints,
9239 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9240
9241 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9242 }
9243 else
9244 {
9245 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9246 if (attr && cu->line_header)
9247 {
9248 unsigned int macro_offset = DW_UNSND (attr);
9249
9250 dwarf_decode_macros (cu, macro_offset, 0);
9251 }
9252 }
9253
9254 do_cleanups (back_to);
9255 }
9256
9257 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9258 Create the set of symtabs used by this TU, or if this TU is sharing
9259 symtabs with another TU and the symtabs have already been created
9260 then restore those symtabs in the line header.
9261 We don't need the pc/line-number mapping for type units. */
9262
9263 static void
9264 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9265 {
9266 struct objfile *objfile = dwarf2_per_objfile->objfile;
9267 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9268 struct type_unit_group *tu_group;
9269 int first_time;
9270 struct line_header *lh;
9271 struct attribute *attr;
9272 unsigned int i, line_offset;
9273 struct signatured_type *sig_type;
9274
9275 gdb_assert (per_cu->is_debug_types);
9276 sig_type = (struct signatured_type *) per_cu;
9277
9278 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9279
9280 /* If we're using .gdb_index (includes -readnow) then
9281 per_cu->type_unit_group may not have been set up yet. */
9282 if (sig_type->type_unit_group == NULL)
9283 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9284 tu_group = sig_type->type_unit_group;
9285
9286 /* If we've already processed this stmt_list there's no real need to
9287 do it again, we could fake it and just recreate the part we need
9288 (file name,index -> symtab mapping). If data shows this optimization
9289 is useful we can do it then. */
9290 first_time = tu_group->compunit_symtab == NULL;
9291
9292 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9293 debug info. */
9294 lh = NULL;
9295 if (attr != NULL)
9296 {
9297 line_offset = DW_UNSND (attr);
9298 lh = dwarf_decode_line_header (line_offset, cu);
9299 }
9300 if (lh == NULL)
9301 {
9302 if (first_time)
9303 dwarf2_start_symtab (cu, "", NULL, 0);
9304 else
9305 {
9306 gdb_assert (tu_group->symtabs == NULL);
9307 restart_symtab (tu_group->compunit_symtab, "", 0);
9308 }
9309 return;
9310 }
9311
9312 cu->line_header = lh;
9313 make_cleanup (free_cu_line_header, cu);
9314
9315 if (first_time)
9316 {
9317 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9318
9319 tu_group->num_symtabs = lh->num_file_names;
9320 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9321
9322 for (i = 0; i < lh->num_file_names; ++i)
9323 {
9324 const char *dir = NULL;
9325 struct file_entry *fe = &lh->file_names[i];
9326
9327 if (fe->dir_index && lh->include_dirs != NULL)
9328 dir = lh->include_dirs[fe->dir_index - 1];
9329 dwarf2_start_subfile (fe->name, dir);
9330
9331 if (current_subfile->symtab == NULL)
9332 {
9333 /* NOTE: start_subfile will recognize when it's been passed
9334 a file it has already seen. So we can't assume there's a
9335 simple mapping from lh->file_names to subfiles, plus
9336 lh->file_names may contain dups. */
9337 current_subfile->symtab
9338 = allocate_symtab (cust, current_subfile->name);
9339 }
9340
9341 fe->symtab = current_subfile->symtab;
9342 tu_group->symtabs[i] = fe->symtab;
9343 }
9344 }
9345 else
9346 {
9347 restart_symtab (tu_group->compunit_symtab, "", 0);
9348
9349 for (i = 0; i < lh->num_file_names; ++i)
9350 {
9351 struct file_entry *fe = &lh->file_names[i];
9352
9353 fe->symtab = tu_group->symtabs[i];
9354 }
9355 }
9356
9357 /* The main symtab is allocated last. Type units don't have DW_AT_name
9358 so they don't have a "real" (so to speak) symtab anyway.
9359 There is later code that will assign the main symtab to all symbols
9360 that don't have one. We need to handle the case of a symbol with a
9361 missing symtab (DW_AT_decl_file) anyway. */
9362 }
9363
9364 /* Process DW_TAG_type_unit.
9365 For TUs we want to skip the first top level sibling if it's not the
9366 actual type being defined by this TU. In this case the first top
9367 level sibling is there to provide context only. */
9368
9369 static void
9370 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9371 {
9372 struct die_info *child_die;
9373
9374 prepare_one_comp_unit (cu, die, language_minimal);
9375
9376 /* Initialize (or reinitialize) the machinery for building symtabs.
9377 We do this before processing child DIEs, so that the line header table
9378 is available for DW_AT_decl_file. */
9379 setup_type_unit_groups (die, cu);
9380
9381 if (die->child != NULL)
9382 {
9383 child_die = die->child;
9384 while (child_die && child_die->tag)
9385 {
9386 process_die (child_die, cu);
9387 child_die = sibling_die (child_die);
9388 }
9389 }
9390 }
9391 \f
9392 /* DWO/DWP files.
9393
9394 http://gcc.gnu.org/wiki/DebugFission
9395 http://gcc.gnu.org/wiki/DebugFissionDWP
9396
9397 To simplify handling of both DWO files ("object" files with the DWARF info)
9398 and DWP files (a file with the DWOs packaged up into one file), we treat
9399 DWP files as having a collection of virtual DWO files. */
9400
9401 static hashval_t
9402 hash_dwo_file (const void *item)
9403 {
9404 const struct dwo_file *dwo_file = item;
9405 hashval_t hash;
9406
9407 hash = htab_hash_string (dwo_file->dwo_name);
9408 if (dwo_file->comp_dir != NULL)
9409 hash += htab_hash_string (dwo_file->comp_dir);
9410 return hash;
9411 }
9412
9413 static int
9414 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9415 {
9416 const struct dwo_file *lhs = item_lhs;
9417 const struct dwo_file *rhs = item_rhs;
9418
9419 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9420 return 0;
9421 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9422 return lhs->comp_dir == rhs->comp_dir;
9423 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9424 }
9425
9426 /* Allocate a hash table for DWO files. */
9427
9428 static htab_t
9429 allocate_dwo_file_hash_table (void)
9430 {
9431 struct objfile *objfile = dwarf2_per_objfile->objfile;
9432
9433 return htab_create_alloc_ex (41,
9434 hash_dwo_file,
9435 eq_dwo_file,
9436 NULL,
9437 &objfile->objfile_obstack,
9438 hashtab_obstack_allocate,
9439 dummy_obstack_deallocate);
9440 }
9441
9442 /* Lookup DWO file DWO_NAME. */
9443
9444 static void **
9445 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9446 {
9447 struct dwo_file find_entry;
9448 void **slot;
9449
9450 if (dwarf2_per_objfile->dwo_files == NULL)
9451 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9452
9453 memset (&find_entry, 0, sizeof (find_entry));
9454 find_entry.dwo_name = dwo_name;
9455 find_entry.comp_dir = comp_dir;
9456 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9457
9458 return slot;
9459 }
9460
9461 static hashval_t
9462 hash_dwo_unit (const void *item)
9463 {
9464 const struct dwo_unit *dwo_unit = item;
9465
9466 /* This drops the top 32 bits of the id, but is ok for a hash. */
9467 return dwo_unit->signature;
9468 }
9469
9470 static int
9471 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9472 {
9473 const struct dwo_unit *lhs = item_lhs;
9474 const struct dwo_unit *rhs = item_rhs;
9475
9476 /* The signature is assumed to be unique within the DWO file.
9477 So while object file CU dwo_id's always have the value zero,
9478 that's OK, assuming each object file DWO file has only one CU,
9479 and that's the rule for now. */
9480 return lhs->signature == rhs->signature;
9481 }
9482
9483 /* Allocate a hash table for DWO CUs,TUs.
9484 There is one of these tables for each of CUs,TUs for each DWO file. */
9485
9486 static htab_t
9487 allocate_dwo_unit_table (struct objfile *objfile)
9488 {
9489 /* Start out with a pretty small number.
9490 Generally DWO files contain only one CU and maybe some TUs. */
9491 return htab_create_alloc_ex (3,
9492 hash_dwo_unit,
9493 eq_dwo_unit,
9494 NULL,
9495 &objfile->objfile_obstack,
9496 hashtab_obstack_allocate,
9497 dummy_obstack_deallocate);
9498 }
9499
9500 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9501
9502 struct create_dwo_cu_data
9503 {
9504 struct dwo_file *dwo_file;
9505 struct dwo_unit dwo_unit;
9506 };
9507
9508 /* die_reader_func for create_dwo_cu. */
9509
9510 static void
9511 create_dwo_cu_reader (const struct die_reader_specs *reader,
9512 const gdb_byte *info_ptr,
9513 struct die_info *comp_unit_die,
9514 int has_children,
9515 void *datap)
9516 {
9517 struct dwarf2_cu *cu = reader->cu;
9518 struct objfile *objfile = dwarf2_per_objfile->objfile;
9519 sect_offset offset = cu->per_cu->offset;
9520 struct dwarf2_section_info *section = cu->per_cu->section;
9521 struct create_dwo_cu_data *data = datap;
9522 struct dwo_file *dwo_file = data->dwo_file;
9523 struct dwo_unit *dwo_unit = &data->dwo_unit;
9524 struct attribute *attr;
9525
9526 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9527 if (attr == NULL)
9528 {
9529 complaint (&symfile_complaints,
9530 _("Dwarf Error: debug entry at offset 0x%x is missing"
9531 " its dwo_id [in module %s]"),
9532 offset.sect_off, dwo_file->dwo_name);
9533 return;
9534 }
9535
9536 dwo_unit->dwo_file = dwo_file;
9537 dwo_unit->signature = DW_UNSND (attr);
9538 dwo_unit->section = section;
9539 dwo_unit->offset = offset;
9540 dwo_unit->length = cu->per_cu->length;
9541
9542 if (dwarf_read_debug)
9543 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9544 offset.sect_off, hex_string (dwo_unit->signature));
9545 }
9546
9547 /* Create the dwo_unit for the lone CU in DWO_FILE.
9548 Note: This function processes DWO files only, not DWP files. */
9549
9550 static struct dwo_unit *
9551 create_dwo_cu (struct dwo_file *dwo_file)
9552 {
9553 struct objfile *objfile = dwarf2_per_objfile->objfile;
9554 struct dwarf2_section_info *section = &dwo_file->sections.info;
9555 bfd *abfd;
9556 htab_t cu_htab;
9557 const gdb_byte *info_ptr, *end_ptr;
9558 struct create_dwo_cu_data create_dwo_cu_data;
9559 struct dwo_unit *dwo_unit;
9560
9561 dwarf2_read_section (objfile, section);
9562 info_ptr = section->buffer;
9563
9564 if (info_ptr == NULL)
9565 return NULL;
9566
9567 /* We can't set abfd until now because the section may be empty or
9568 not present, in which case section->asection will be NULL. */
9569 abfd = get_section_bfd_owner (section);
9570
9571 if (dwarf_read_debug)
9572 {
9573 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9574 get_section_name (section),
9575 get_section_file_name (section));
9576 }
9577
9578 create_dwo_cu_data.dwo_file = dwo_file;
9579 dwo_unit = NULL;
9580
9581 end_ptr = info_ptr + section->size;
9582 while (info_ptr < end_ptr)
9583 {
9584 struct dwarf2_per_cu_data per_cu;
9585
9586 memset (&create_dwo_cu_data.dwo_unit, 0,
9587 sizeof (create_dwo_cu_data.dwo_unit));
9588 memset (&per_cu, 0, sizeof (per_cu));
9589 per_cu.objfile = objfile;
9590 per_cu.is_debug_types = 0;
9591 per_cu.offset.sect_off = info_ptr - section->buffer;
9592 per_cu.section = section;
9593
9594 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9595 create_dwo_cu_reader,
9596 &create_dwo_cu_data);
9597
9598 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9599 {
9600 /* If we've already found one, complain. We only support one
9601 because having more than one requires hacking the dwo_name of
9602 each to match, which is highly unlikely to happen. */
9603 if (dwo_unit != NULL)
9604 {
9605 complaint (&symfile_complaints,
9606 _("Multiple CUs in DWO file %s [in module %s]"),
9607 dwo_file->dwo_name, objfile_name (objfile));
9608 break;
9609 }
9610
9611 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9612 *dwo_unit = create_dwo_cu_data.dwo_unit;
9613 }
9614
9615 info_ptr += per_cu.length;
9616 }
9617
9618 return dwo_unit;
9619 }
9620
9621 /* DWP file .debug_{cu,tu}_index section format:
9622 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9623
9624 DWP Version 1:
9625
9626 Both index sections have the same format, and serve to map a 64-bit
9627 signature to a set of section numbers. Each section begins with a header,
9628 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9629 indexes, and a pool of 32-bit section numbers. The index sections will be
9630 aligned at 8-byte boundaries in the file.
9631
9632 The index section header consists of:
9633
9634 V, 32 bit version number
9635 -, 32 bits unused
9636 N, 32 bit number of compilation units or type units in the index
9637 M, 32 bit number of slots in the hash table
9638
9639 Numbers are recorded using the byte order of the application binary.
9640
9641 The hash table begins at offset 16 in the section, and consists of an array
9642 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9643 order of the application binary). Unused slots in the hash table are 0.
9644 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9645
9646 The parallel table begins immediately after the hash table
9647 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9648 array of 32-bit indexes (using the byte order of the application binary),
9649 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9650 table contains a 32-bit index into the pool of section numbers. For unused
9651 hash table slots, the corresponding entry in the parallel table will be 0.
9652
9653 The pool of section numbers begins immediately following the hash table
9654 (at offset 16 + 12 * M from the beginning of the section). The pool of
9655 section numbers consists of an array of 32-bit words (using the byte order
9656 of the application binary). Each item in the array is indexed starting
9657 from 0. The hash table entry provides the index of the first section
9658 number in the set. Additional section numbers in the set follow, and the
9659 set is terminated by a 0 entry (section number 0 is not used in ELF).
9660
9661 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9662 section must be the first entry in the set, and the .debug_abbrev.dwo must
9663 be the second entry. Other members of the set may follow in any order.
9664
9665 ---
9666
9667 DWP Version 2:
9668
9669 DWP Version 2 combines all the .debug_info, etc. sections into one,
9670 and the entries in the index tables are now offsets into these sections.
9671 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9672 section.
9673
9674 Index Section Contents:
9675 Header
9676 Hash Table of Signatures dwp_hash_table.hash_table
9677 Parallel Table of Indices dwp_hash_table.unit_table
9678 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9679 Table of Section Sizes dwp_hash_table.v2.sizes
9680
9681 The index section header consists of:
9682
9683 V, 32 bit version number
9684 L, 32 bit number of columns in the table of section offsets
9685 N, 32 bit number of compilation units or type units in the index
9686 M, 32 bit number of slots in the hash table
9687
9688 Numbers are recorded using the byte order of the application binary.
9689
9690 The hash table has the same format as version 1.
9691 The parallel table of indices has the same format as version 1,
9692 except that the entries are origin-1 indices into the table of sections
9693 offsets and the table of section sizes.
9694
9695 The table of offsets begins immediately following the parallel table
9696 (at offset 16 + 12 * M from the beginning of the section). The table is
9697 a two-dimensional array of 32-bit words (using the byte order of the
9698 application binary), with L columns and N+1 rows, in row-major order.
9699 Each row in the array is indexed starting from 0. The first row provides
9700 a key to the remaining rows: each column in this row provides an identifier
9701 for a debug section, and the offsets in the same column of subsequent rows
9702 refer to that section. The section identifiers are:
9703
9704 DW_SECT_INFO 1 .debug_info.dwo
9705 DW_SECT_TYPES 2 .debug_types.dwo
9706 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9707 DW_SECT_LINE 4 .debug_line.dwo
9708 DW_SECT_LOC 5 .debug_loc.dwo
9709 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9710 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9711 DW_SECT_MACRO 8 .debug_macro.dwo
9712
9713 The offsets provided by the CU and TU index sections are the base offsets
9714 for the contributions made by each CU or TU to the corresponding section
9715 in the package file. Each CU and TU header contains an abbrev_offset
9716 field, used to find the abbreviations table for that CU or TU within the
9717 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9718 be interpreted as relative to the base offset given in the index section.
9719 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9720 should be interpreted as relative to the base offset for .debug_line.dwo,
9721 and offsets into other debug sections obtained from DWARF attributes should
9722 also be interpreted as relative to the corresponding base offset.
9723
9724 The table of sizes begins immediately following the table of offsets.
9725 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9726 with L columns and N rows, in row-major order. Each row in the array is
9727 indexed starting from 1 (row 0 is shared by the two tables).
9728
9729 ---
9730
9731 Hash table lookup is handled the same in version 1 and 2:
9732
9733 We assume that N and M will not exceed 2^32 - 1.
9734 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9735
9736 Given a 64-bit compilation unit signature or a type signature S, an entry
9737 in the hash table is located as follows:
9738
9739 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9740 the low-order k bits all set to 1.
9741
9742 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9743
9744 3) If the hash table entry at index H matches the signature, use that
9745 entry. If the hash table entry at index H is unused (all zeroes),
9746 terminate the search: the signature is not present in the table.
9747
9748 4) Let H = (H + H') modulo M. Repeat at Step 3.
9749
9750 Because M > N and H' and M are relatively prime, the search is guaranteed
9751 to stop at an unused slot or find the match. */
9752
9753 /* Create a hash table to map DWO IDs to their CU/TU entry in
9754 .debug_{info,types}.dwo in DWP_FILE.
9755 Returns NULL if there isn't one.
9756 Note: This function processes DWP files only, not DWO files. */
9757
9758 static struct dwp_hash_table *
9759 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9760 {
9761 struct objfile *objfile = dwarf2_per_objfile->objfile;
9762 bfd *dbfd = dwp_file->dbfd;
9763 const gdb_byte *index_ptr, *index_end;
9764 struct dwarf2_section_info *index;
9765 uint32_t version, nr_columns, nr_units, nr_slots;
9766 struct dwp_hash_table *htab;
9767
9768 if (is_debug_types)
9769 index = &dwp_file->sections.tu_index;
9770 else
9771 index = &dwp_file->sections.cu_index;
9772
9773 if (dwarf2_section_empty_p (index))
9774 return NULL;
9775 dwarf2_read_section (objfile, index);
9776
9777 index_ptr = index->buffer;
9778 index_end = index_ptr + index->size;
9779
9780 version = read_4_bytes (dbfd, index_ptr);
9781 index_ptr += 4;
9782 if (version == 2)
9783 nr_columns = read_4_bytes (dbfd, index_ptr);
9784 else
9785 nr_columns = 0;
9786 index_ptr += 4;
9787 nr_units = read_4_bytes (dbfd, index_ptr);
9788 index_ptr += 4;
9789 nr_slots = read_4_bytes (dbfd, index_ptr);
9790 index_ptr += 4;
9791
9792 if (version != 1 && version != 2)
9793 {
9794 error (_("Dwarf Error: unsupported DWP file version (%s)"
9795 " [in module %s]"),
9796 pulongest (version), dwp_file->name);
9797 }
9798 if (nr_slots != (nr_slots & -nr_slots))
9799 {
9800 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9801 " is not power of 2 [in module %s]"),
9802 pulongest (nr_slots), dwp_file->name);
9803 }
9804
9805 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9806 htab->version = version;
9807 htab->nr_columns = nr_columns;
9808 htab->nr_units = nr_units;
9809 htab->nr_slots = nr_slots;
9810 htab->hash_table = index_ptr;
9811 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9812
9813 /* Exit early if the table is empty. */
9814 if (nr_slots == 0 || nr_units == 0
9815 || (version == 2 && nr_columns == 0))
9816 {
9817 /* All must be zero. */
9818 if (nr_slots != 0 || nr_units != 0
9819 || (version == 2 && nr_columns != 0))
9820 {
9821 complaint (&symfile_complaints,
9822 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9823 " all zero [in modules %s]"),
9824 dwp_file->name);
9825 }
9826 return htab;
9827 }
9828
9829 if (version == 1)
9830 {
9831 htab->section_pool.v1.indices =
9832 htab->unit_table + sizeof (uint32_t) * nr_slots;
9833 /* It's harder to decide whether the section is too small in v1.
9834 V1 is deprecated anyway so we punt. */
9835 }
9836 else
9837 {
9838 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9839 int *ids = htab->section_pool.v2.section_ids;
9840 /* Reverse map for error checking. */
9841 int ids_seen[DW_SECT_MAX + 1];
9842 int i;
9843
9844 if (nr_columns < 2)
9845 {
9846 error (_("Dwarf Error: bad DWP hash table, too few columns"
9847 " in section table [in module %s]"),
9848 dwp_file->name);
9849 }
9850 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9851 {
9852 error (_("Dwarf Error: bad DWP hash table, too many columns"
9853 " in section table [in module %s]"),
9854 dwp_file->name);
9855 }
9856 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9857 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9858 for (i = 0; i < nr_columns; ++i)
9859 {
9860 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9861
9862 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9863 {
9864 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9865 " in section table [in module %s]"),
9866 id, dwp_file->name);
9867 }
9868 if (ids_seen[id] != -1)
9869 {
9870 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9871 " id %d in section table [in module %s]"),
9872 id, dwp_file->name);
9873 }
9874 ids_seen[id] = i;
9875 ids[i] = id;
9876 }
9877 /* Must have exactly one info or types section. */
9878 if (((ids_seen[DW_SECT_INFO] != -1)
9879 + (ids_seen[DW_SECT_TYPES] != -1))
9880 != 1)
9881 {
9882 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9883 " DWO info/types section [in module %s]"),
9884 dwp_file->name);
9885 }
9886 /* Must have an abbrev section. */
9887 if (ids_seen[DW_SECT_ABBREV] == -1)
9888 {
9889 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9890 " section [in module %s]"),
9891 dwp_file->name);
9892 }
9893 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9894 htab->section_pool.v2.sizes =
9895 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9896 * nr_units * nr_columns);
9897 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9898 * nr_units * nr_columns))
9899 > index_end)
9900 {
9901 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9902 " [in module %s]"),
9903 dwp_file->name);
9904 }
9905 }
9906
9907 return htab;
9908 }
9909
9910 /* Update SECTIONS with the data from SECTP.
9911
9912 This function is like the other "locate" section routines that are
9913 passed to bfd_map_over_sections, but in this context the sections to
9914 read comes from the DWP V1 hash table, not the full ELF section table.
9915
9916 The result is non-zero for success, or zero if an error was found. */
9917
9918 static int
9919 locate_v1_virtual_dwo_sections (asection *sectp,
9920 struct virtual_v1_dwo_sections *sections)
9921 {
9922 const struct dwop_section_names *names = &dwop_section_names;
9923
9924 if (section_is_p (sectp->name, &names->abbrev_dwo))
9925 {
9926 /* There can be only one. */
9927 if (sections->abbrev.s.section != NULL)
9928 return 0;
9929 sections->abbrev.s.section = sectp;
9930 sections->abbrev.size = bfd_get_section_size (sectp);
9931 }
9932 else if (section_is_p (sectp->name, &names->info_dwo)
9933 || section_is_p (sectp->name, &names->types_dwo))
9934 {
9935 /* There can be only one. */
9936 if (sections->info_or_types.s.section != NULL)
9937 return 0;
9938 sections->info_or_types.s.section = sectp;
9939 sections->info_or_types.size = bfd_get_section_size (sectp);
9940 }
9941 else if (section_is_p (sectp->name, &names->line_dwo))
9942 {
9943 /* There can be only one. */
9944 if (sections->line.s.section != NULL)
9945 return 0;
9946 sections->line.s.section = sectp;
9947 sections->line.size = bfd_get_section_size (sectp);
9948 }
9949 else if (section_is_p (sectp->name, &names->loc_dwo))
9950 {
9951 /* There can be only one. */
9952 if (sections->loc.s.section != NULL)
9953 return 0;
9954 sections->loc.s.section = sectp;
9955 sections->loc.size = bfd_get_section_size (sectp);
9956 }
9957 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9958 {
9959 /* There can be only one. */
9960 if (sections->macinfo.s.section != NULL)
9961 return 0;
9962 sections->macinfo.s.section = sectp;
9963 sections->macinfo.size = bfd_get_section_size (sectp);
9964 }
9965 else if (section_is_p (sectp->name, &names->macro_dwo))
9966 {
9967 /* There can be only one. */
9968 if (sections->macro.s.section != NULL)
9969 return 0;
9970 sections->macro.s.section = sectp;
9971 sections->macro.size = bfd_get_section_size (sectp);
9972 }
9973 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9974 {
9975 /* There can be only one. */
9976 if (sections->str_offsets.s.section != NULL)
9977 return 0;
9978 sections->str_offsets.s.section = sectp;
9979 sections->str_offsets.size = bfd_get_section_size (sectp);
9980 }
9981 else
9982 {
9983 /* No other kind of section is valid. */
9984 return 0;
9985 }
9986
9987 return 1;
9988 }
9989
9990 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9991 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9992 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9993 This is for DWP version 1 files. */
9994
9995 static struct dwo_unit *
9996 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9997 uint32_t unit_index,
9998 const char *comp_dir,
9999 ULONGEST signature, int is_debug_types)
10000 {
10001 struct objfile *objfile = dwarf2_per_objfile->objfile;
10002 const struct dwp_hash_table *dwp_htab =
10003 is_debug_types ? dwp_file->tus : dwp_file->cus;
10004 bfd *dbfd = dwp_file->dbfd;
10005 const char *kind = is_debug_types ? "TU" : "CU";
10006 struct dwo_file *dwo_file;
10007 struct dwo_unit *dwo_unit;
10008 struct virtual_v1_dwo_sections sections;
10009 void **dwo_file_slot;
10010 char *virtual_dwo_name;
10011 struct dwarf2_section_info *cutu;
10012 struct cleanup *cleanups;
10013 int i;
10014
10015 gdb_assert (dwp_file->version == 1);
10016
10017 if (dwarf_read_debug)
10018 {
10019 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10020 kind,
10021 pulongest (unit_index), hex_string (signature),
10022 dwp_file->name);
10023 }
10024
10025 /* Fetch the sections of this DWO unit.
10026 Put a limit on the number of sections we look for so that bad data
10027 doesn't cause us to loop forever. */
10028
10029 #define MAX_NR_V1_DWO_SECTIONS \
10030 (1 /* .debug_info or .debug_types */ \
10031 + 1 /* .debug_abbrev */ \
10032 + 1 /* .debug_line */ \
10033 + 1 /* .debug_loc */ \
10034 + 1 /* .debug_str_offsets */ \
10035 + 1 /* .debug_macro or .debug_macinfo */ \
10036 + 1 /* trailing zero */)
10037
10038 memset (&sections, 0, sizeof (sections));
10039 cleanups = make_cleanup (null_cleanup, 0);
10040
10041 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10042 {
10043 asection *sectp;
10044 uint32_t section_nr =
10045 read_4_bytes (dbfd,
10046 dwp_htab->section_pool.v1.indices
10047 + (unit_index + i) * sizeof (uint32_t));
10048
10049 if (section_nr == 0)
10050 break;
10051 if (section_nr >= dwp_file->num_sections)
10052 {
10053 error (_("Dwarf Error: bad DWP hash table, section number too large"
10054 " [in module %s]"),
10055 dwp_file->name);
10056 }
10057
10058 sectp = dwp_file->elf_sections[section_nr];
10059 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10060 {
10061 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10062 " [in module %s]"),
10063 dwp_file->name);
10064 }
10065 }
10066
10067 if (i < 2
10068 || dwarf2_section_empty_p (&sections.info_or_types)
10069 || dwarf2_section_empty_p (&sections.abbrev))
10070 {
10071 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10072 " [in module %s]"),
10073 dwp_file->name);
10074 }
10075 if (i == MAX_NR_V1_DWO_SECTIONS)
10076 {
10077 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10078 " [in module %s]"),
10079 dwp_file->name);
10080 }
10081
10082 /* It's easier for the rest of the code if we fake a struct dwo_file and
10083 have dwo_unit "live" in that. At least for now.
10084
10085 The DWP file can be made up of a random collection of CUs and TUs.
10086 However, for each CU + set of TUs that came from the same original DWO
10087 file, we can combine them back into a virtual DWO file to save space
10088 (fewer struct dwo_file objects to allocate). Remember that for really
10089 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10090
10091 virtual_dwo_name =
10092 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10093 get_section_id (&sections.abbrev),
10094 get_section_id (&sections.line),
10095 get_section_id (&sections.loc),
10096 get_section_id (&sections.str_offsets));
10097 make_cleanup (xfree, virtual_dwo_name);
10098 /* Can we use an existing virtual DWO file? */
10099 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10100 /* Create one if necessary. */
10101 if (*dwo_file_slot == NULL)
10102 {
10103 if (dwarf_read_debug)
10104 {
10105 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10106 virtual_dwo_name);
10107 }
10108 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10109 dwo_file->dwo_name
10110 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10111 virtual_dwo_name,
10112 strlen (virtual_dwo_name));
10113 dwo_file->comp_dir = comp_dir;
10114 dwo_file->sections.abbrev = sections.abbrev;
10115 dwo_file->sections.line = sections.line;
10116 dwo_file->sections.loc = sections.loc;
10117 dwo_file->sections.macinfo = sections.macinfo;
10118 dwo_file->sections.macro = sections.macro;
10119 dwo_file->sections.str_offsets = sections.str_offsets;
10120 /* The "str" section is global to the entire DWP file. */
10121 dwo_file->sections.str = dwp_file->sections.str;
10122 /* The info or types section is assigned below to dwo_unit,
10123 there's no need to record it in dwo_file.
10124 Also, we can't simply record type sections in dwo_file because
10125 we record a pointer into the vector in dwo_unit. As we collect more
10126 types we'll grow the vector and eventually have to reallocate space
10127 for it, invalidating all copies of pointers into the previous
10128 contents. */
10129 *dwo_file_slot = dwo_file;
10130 }
10131 else
10132 {
10133 if (dwarf_read_debug)
10134 {
10135 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10136 virtual_dwo_name);
10137 }
10138 dwo_file = *dwo_file_slot;
10139 }
10140 do_cleanups (cleanups);
10141
10142 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10143 dwo_unit->dwo_file = dwo_file;
10144 dwo_unit->signature = signature;
10145 dwo_unit->section =
10146 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10147 *dwo_unit->section = sections.info_or_types;
10148 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10149
10150 return dwo_unit;
10151 }
10152
10153 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10154 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10155 piece within that section used by a TU/CU, return a virtual section
10156 of just that piece. */
10157
10158 static struct dwarf2_section_info
10159 create_dwp_v2_section (struct dwarf2_section_info *section,
10160 bfd_size_type offset, bfd_size_type size)
10161 {
10162 struct dwarf2_section_info result;
10163 asection *sectp;
10164
10165 gdb_assert (section != NULL);
10166 gdb_assert (!section->is_virtual);
10167
10168 memset (&result, 0, sizeof (result));
10169 result.s.containing_section = section;
10170 result.is_virtual = 1;
10171
10172 if (size == 0)
10173 return result;
10174
10175 sectp = get_section_bfd_section (section);
10176
10177 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10178 bounds of the real section. This is a pretty-rare event, so just
10179 flag an error (easier) instead of a warning and trying to cope. */
10180 if (sectp == NULL
10181 || offset + size > bfd_get_section_size (sectp))
10182 {
10183 bfd *abfd = sectp->owner;
10184
10185 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10186 " in section %s [in module %s]"),
10187 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10188 objfile_name (dwarf2_per_objfile->objfile));
10189 }
10190
10191 result.virtual_offset = offset;
10192 result.size = size;
10193 return result;
10194 }
10195
10196 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10197 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10198 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10199 This is for DWP version 2 files. */
10200
10201 static struct dwo_unit *
10202 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10203 uint32_t unit_index,
10204 const char *comp_dir,
10205 ULONGEST signature, int is_debug_types)
10206 {
10207 struct objfile *objfile = dwarf2_per_objfile->objfile;
10208 const struct dwp_hash_table *dwp_htab =
10209 is_debug_types ? dwp_file->tus : dwp_file->cus;
10210 bfd *dbfd = dwp_file->dbfd;
10211 const char *kind = is_debug_types ? "TU" : "CU";
10212 struct dwo_file *dwo_file;
10213 struct dwo_unit *dwo_unit;
10214 struct virtual_v2_dwo_sections sections;
10215 void **dwo_file_slot;
10216 char *virtual_dwo_name;
10217 struct dwarf2_section_info *cutu;
10218 struct cleanup *cleanups;
10219 int i;
10220
10221 gdb_assert (dwp_file->version == 2);
10222
10223 if (dwarf_read_debug)
10224 {
10225 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10226 kind,
10227 pulongest (unit_index), hex_string (signature),
10228 dwp_file->name);
10229 }
10230
10231 /* Fetch the section offsets of this DWO unit. */
10232
10233 memset (&sections, 0, sizeof (sections));
10234 cleanups = make_cleanup (null_cleanup, 0);
10235
10236 for (i = 0; i < dwp_htab->nr_columns; ++i)
10237 {
10238 uint32_t offset = read_4_bytes (dbfd,
10239 dwp_htab->section_pool.v2.offsets
10240 + (((unit_index - 1) * dwp_htab->nr_columns
10241 + i)
10242 * sizeof (uint32_t)));
10243 uint32_t size = read_4_bytes (dbfd,
10244 dwp_htab->section_pool.v2.sizes
10245 + (((unit_index - 1) * dwp_htab->nr_columns
10246 + i)
10247 * sizeof (uint32_t)));
10248
10249 switch (dwp_htab->section_pool.v2.section_ids[i])
10250 {
10251 case DW_SECT_INFO:
10252 case DW_SECT_TYPES:
10253 sections.info_or_types_offset = offset;
10254 sections.info_or_types_size = size;
10255 break;
10256 case DW_SECT_ABBREV:
10257 sections.abbrev_offset = offset;
10258 sections.abbrev_size = size;
10259 break;
10260 case DW_SECT_LINE:
10261 sections.line_offset = offset;
10262 sections.line_size = size;
10263 break;
10264 case DW_SECT_LOC:
10265 sections.loc_offset = offset;
10266 sections.loc_size = size;
10267 break;
10268 case DW_SECT_STR_OFFSETS:
10269 sections.str_offsets_offset = offset;
10270 sections.str_offsets_size = size;
10271 break;
10272 case DW_SECT_MACINFO:
10273 sections.macinfo_offset = offset;
10274 sections.macinfo_size = size;
10275 break;
10276 case DW_SECT_MACRO:
10277 sections.macro_offset = offset;
10278 sections.macro_size = size;
10279 break;
10280 }
10281 }
10282
10283 /* It's easier for the rest of the code if we fake a struct dwo_file and
10284 have dwo_unit "live" in that. At least for now.
10285
10286 The DWP file can be made up of a random collection of CUs and TUs.
10287 However, for each CU + set of TUs that came from the same original DWO
10288 file, we can combine them back into a virtual DWO file to save space
10289 (fewer struct dwo_file objects to allocate). Remember that for really
10290 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10291
10292 virtual_dwo_name =
10293 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10294 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10295 (long) (sections.line_size ? sections.line_offset : 0),
10296 (long) (sections.loc_size ? sections.loc_offset : 0),
10297 (long) (sections.str_offsets_size
10298 ? sections.str_offsets_offset : 0));
10299 make_cleanup (xfree, virtual_dwo_name);
10300 /* Can we use an existing virtual DWO file? */
10301 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10302 /* Create one if necessary. */
10303 if (*dwo_file_slot == NULL)
10304 {
10305 if (dwarf_read_debug)
10306 {
10307 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10308 virtual_dwo_name);
10309 }
10310 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10311 dwo_file->dwo_name
10312 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10313 virtual_dwo_name,
10314 strlen (virtual_dwo_name));
10315 dwo_file->comp_dir = comp_dir;
10316 dwo_file->sections.abbrev =
10317 create_dwp_v2_section (&dwp_file->sections.abbrev,
10318 sections.abbrev_offset, sections.abbrev_size);
10319 dwo_file->sections.line =
10320 create_dwp_v2_section (&dwp_file->sections.line,
10321 sections.line_offset, sections.line_size);
10322 dwo_file->sections.loc =
10323 create_dwp_v2_section (&dwp_file->sections.loc,
10324 sections.loc_offset, sections.loc_size);
10325 dwo_file->sections.macinfo =
10326 create_dwp_v2_section (&dwp_file->sections.macinfo,
10327 sections.macinfo_offset, sections.macinfo_size);
10328 dwo_file->sections.macro =
10329 create_dwp_v2_section (&dwp_file->sections.macro,
10330 sections.macro_offset, sections.macro_size);
10331 dwo_file->sections.str_offsets =
10332 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10333 sections.str_offsets_offset,
10334 sections.str_offsets_size);
10335 /* The "str" section is global to the entire DWP file. */
10336 dwo_file->sections.str = dwp_file->sections.str;
10337 /* The info or types section is assigned below to dwo_unit,
10338 there's no need to record it in dwo_file.
10339 Also, we can't simply record type sections in dwo_file because
10340 we record a pointer into the vector in dwo_unit. As we collect more
10341 types we'll grow the vector and eventually have to reallocate space
10342 for it, invalidating all copies of pointers into the previous
10343 contents. */
10344 *dwo_file_slot = dwo_file;
10345 }
10346 else
10347 {
10348 if (dwarf_read_debug)
10349 {
10350 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10351 virtual_dwo_name);
10352 }
10353 dwo_file = *dwo_file_slot;
10354 }
10355 do_cleanups (cleanups);
10356
10357 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10358 dwo_unit->dwo_file = dwo_file;
10359 dwo_unit->signature = signature;
10360 dwo_unit->section =
10361 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10362 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10363 ? &dwp_file->sections.types
10364 : &dwp_file->sections.info,
10365 sections.info_or_types_offset,
10366 sections.info_or_types_size);
10367 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10368
10369 return dwo_unit;
10370 }
10371
10372 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10373 Returns NULL if the signature isn't found. */
10374
10375 static struct dwo_unit *
10376 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10377 ULONGEST signature, int is_debug_types)
10378 {
10379 const struct dwp_hash_table *dwp_htab =
10380 is_debug_types ? dwp_file->tus : dwp_file->cus;
10381 bfd *dbfd = dwp_file->dbfd;
10382 uint32_t mask = dwp_htab->nr_slots - 1;
10383 uint32_t hash = signature & mask;
10384 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10385 unsigned int i;
10386 void **slot;
10387 struct dwo_unit find_dwo_cu, *dwo_cu;
10388
10389 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10390 find_dwo_cu.signature = signature;
10391 slot = htab_find_slot (is_debug_types
10392 ? dwp_file->loaded_tus
10393 : dwp_file->loaded_cus,
10394 &find_dwo_cu, INSERT);
10395
10396 if (*slot != NULL)
10397 return *slot;
10398
10399 /* Use a for loop so that we don't loop forever on bad debug info. */
10400 for (i = 0; i < dwp_htab->nr_slots; ++i)
10401 {
10402 ULONGEST signature_in_table;
10403
10404 signature_in_table =
10405 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10406 if (signature_in_table == signature)
10407 {
10408 uint32_t unit_index =
10409 read_4_bytes (dbfd,
10410 dwp_htab->unit_table + hash * sizeof (uint32_t));
10411
10412 if (dwp_file->version == 1)
10413 {
10414 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10415 comp_dir, signature,
10416 is_debug_types);
10417 }
10418 else
10419 {
10420 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10421 comp_dir, signature,
10422 is_debug_types);
10423 }
10424 return *slot;
10425 }
10426 if (signature_in_table == 0)
10427 return NULL;
10428 hash = (hash + hash2) & mask;
10429 }
10430
10431 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10432 " [in module %s]"),
10433 dwp_file->name);
10434 }
10435
10436 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10437 Open the file specified by FILE_NAME and hand it off to BFD for
10438 preliminary analysis. Return a newly initialized bfd *, which
10439 includes a canonicalized copy of FILE_NAME.
10440 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10441 SEARCH_CWD is true if the current directory is to be searched.
10442 It will be searched before debug-file-directory.
10443 If successful, the file is added to the bfd include table of the
10444 objfile's bfd (see gdb_bfd_record_inclusion).
10445 If unable to find/open the file, return NULL.
10446 NOTE: This function is derived from symfile_bfd_open. */
10447
10448 static bfd *
10449 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10450 {
10451 bfd *sym_bfd;
10452 int desc, flags;
10453 char *absolute_name;
10454 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10455 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10456 to debug_file_directory. */
10457 char *search_path;
10458 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10459
10460 if (search_cwd)
10461 {
10462 if (*debug_file_directory != '\0')
10463 search_path = concat (".", dirname_separator_string,
10464 debug_file_directory, NULL);
10465 else
10466 search_path = xstrdup (".");
10467 }
10468 else
10469 search_path = xstrdup (debug_file_directory);
10470
10471 flags = OPF_RETURN_REALPATH;
10472 if (is_dwp)
10473 flags |= OPF_SEARCH_IN_PATH;
10474 desc = openp (search_path, flags, file_name,
10475 O_RDONLY | O_BINARY, &absolute_name);
10476 xfree (search_path);
10477 if (desc < 0)
10478 return NULL;
10479
10480 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10481 xfree (absolute_name);
10482 if (sym_bfd == NULL)
10483 return NULL;
10484 bfd_set_cacheable (sym_bfd, 1);
10485
10486 if (!bfd_check_format (sym_bfd, bfd_object))
10487 {
10488 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10489 return NULL;
10490 }
10491
10492 /* Success. Record the bfd as having been included by the objfile's bfd.
10493 This is important because things like demangled_names_hash lives in the
10494 objfile's per_bfd space and may have references to things like symbol
10495 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10496 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10497
10498 return sym_bfd;
10499 }
10500
10501 /* Try to open DWO file FILE_NAME.
10502 COMP_DIR is the DW_AT_comp_dir attribute.
10503 The result is the bfd handle of the file.
10504 If there is a problem finding or opening the file, return NULL.
10505 Upon success, the canonicalized path of the file is stored in the bfd,
10506 same as symfile_bfd_open. */
10507
10508 static bfd *
10509 open_dwo_file (const char *file_name, const char *comp_dir)
10510 {
10511 bfd *abfd;
10512
10513 if (IS_ABSOLUTE_PATH (file_name))
10514 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10515
10516 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10517
10518 if (comp_dir != NULL)
10519 {
10520 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10521
10522 /* NOTE: If comp_dir is a relative path, this will also try the
10523 search path, which seems useful. */
10524 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10525 xfree (path_to_try);
10526 if (abfd != NULL)
10527 return abfd;
10528 }
10529
10530 /* That didn't work, try debug-file-directory, which, despite its name,
10531 is a list of paths. */
10532
10533 if (*debug_file_directory == '\0')
10534 return NULL;
10535
10536 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10537 }
10538
10539 /* This function is mapped across the sections and remembers the offset and
10540 size of each of the DWO debugging sections we are interested in. */
10541
10542 static void
10543 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10544 {
10545 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10546 const struct dwop_section_names *names = &dwop_section_names;
10547
10548 if (section_is_p (sectp->name, &names->abbrev_dwo))
10549 {
10550 dwo_sections->abbrev.s.section = sectp;
10551 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10552 }
10553 else if (section_is_p (sectp->name, &names->info_dwo))
10554 {
10555 dwo_sections->info.s.section = sectp;
10556 dwo_sections->info.size = bfd_get_section_size (sectp);
10557 }
10558 else if (section_is_p (sectp->name, &names->line_dwo))
10559 {
10560 dwo_sections->line.s.section = sectp;
10561 dwo_sections->line.size = bfd_get_section_size (sectp);
10562 }
10563 else if (section_is_p (sectp->name, &names->loc_dwo))
10564 {
10565 dwo_sections->loc.s.section = sectp;
10566 dwo_sections->loc.size = bfd_get_section_size (sectp);
10567 }
10568 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10569 {
10570 dwo_sections->macinfo.s.section = sectp;
10571 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10572 }
10573 else if (section_is_p (sectp->name, &names->macro_dwo))
10574 {
10575 dwo_sections->macro.s.section = sectp;
10576 dwo_sections->macro.size = bfd_get_section_size (sectp);
10577 }
10578 else if (section_is_p (sectp->name, &names->str_dwo))
10579 {
10580 dwo_sections->str.s.section = sectp;
10581 dwo_sections->str.size = bfd_get_section_size (sectp);
10582 }
10583 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10584 {
10585 dwo_sections->str_offsets.s.section = sectp;
10586 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10587 }
10588 else if (section_is_p (sectp->name, &names->types_dwo))
10589 {
10590 struct dwarf2_section_info type_section;
10591
10592 memset (&type_section, 0, sizeof (type_section));
10593 type_section.s.section = sectp;
10594 type_section.size = bfd_get_section_size (sectp);
10595 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10596 &type_section);
10597 }
10598 }
10599
10600 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10601 by PER_CU. This is for the non-DWP case.
10602 The result is NULL if DWO_NAME can't be found. */
10603
10604 static struct dwo_file *
10605 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10606 const char *dwo_name, const char *comp_dir)
10607 {
10608 struct objfile *objfile = dwarf2_per_objfile->objfile;
10609 struct dwo_file *dwo_file;
10610 bfd *dbfd;
10611 struct cleanup *cleanups;
10612
10613 dbfd = open_dwo_file (dwo_name, comp_dir);
10614 if (dbfd == NULL)
10615 {
10616 if (dwarf_read_debug)
10617 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10618 return NULL;
10619 }
10620 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10621 dwo_file->dwo_name = dwo_name;
10622 dwo_file->comp_dir = comp_dir;
10623 dwo_file->dbfd = dbfd;
10624
10625 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10626
10627 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10628
10629 dwo_file->cu = create_dwo_cu (dwo_file);
10630
10631 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10632 dwo_file->sections.types);
10633
10634 discard_cleanups (cleanups);
10635
10636 if (dwarf_read_debug)
10637 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10638
10639 return dwo_file;
10640 }
10641
10642 /* This function is mapped across the sections and remembers the offset and
10643 size of each of the DWP debugging sections common to version 1 and 2 that
10644 we are interested in. */
10645
10646 static void
10647 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10648 void *dwp_file_ptr)
10649 {
10650 struct dwp_file *dwp_file = dwp_file_ptr;
10651 const struct dwop_section_names *names = &dwop_section_names;
10652 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10653
10654 /* Record the ELF section number for later lookup: this is what the
10655 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10656 gdb_assert (elf_section_nr < dwp_file->num_sections);
10657 dwp_file->elf_sections[elf_section_nr] = sectp;
10658
10659 /* Look for specific sections that we need. */
10660 if (section_is_p (sectp->name, &names->str_dwo))
10661 {
10662 dwp_file->sections.str.s.section = sectp;
10663 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10664 }
10665 else if (section_is_p (sectp->name, &names->cu_index))
10666 {
10667 dwp_file->sections.cu_index.s.section = sectp;
10668 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10669 }
10670 else if (section_is_p (sectp->name, &names->tu_index))
10671 {
10672 dwp_file->sections.tu_index.s.section = sectp;
10673 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10674 }
10675 }
10676
10677 /* This function is mapped across the sections and remembers the offset and
10678 size of each of the DWP version 2 debugging sections that we are interested
10679 in. This is split into a separate function because we don't know if we
10680 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10681
10682 static void
10683 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10684 {
10685 struct dwp_file *dwp_file = dwp_file_ptr;
10686 const struct dwop_section_names *names = &dwop_section_names;
10687 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10688
10689 /* Record the ELF section number for later lookup: this is what the
10690 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10691 gdb_assert (elf_section_nr < dwp_file->num_sections);
10692 dwp_file->elf_sections[elf_section_nr] = sectp;
10693
10694 /* Look for specific sections that we need. */
10695 if (section_is_p (sectp->name, &names->abbrev_dwo))
10696 {
10697 dwp_file->sections.abbrev.s.section = sectp;
10698 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10699 }
10700 else if (section_is_p (sectp->name, &names->info_dwo))
10701 {
10702 dwp_file->sections.info.s.section = sectp;
10703 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10704 }
10705 else if (section_is_p (sectp->name, &names->line_dwo))
10706 {
10707 dwp_file->sections.line.s.section = sectp;
10708 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10709 }
10710 else if (section_is_p (sectp->name, &names->loc_dwo))
10711 {
10712 dwp_file->sections.loc.s.section = sectp;
10713 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10714 }
10715 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10716 {
10717 dwp_file->sections.macinfo.s.section = sectp;
10718 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10719 }
10720 else if (section_is_p (sectp->name, &names->macro_dwo))
10721 {
10722 dwp_file->sections.macro.s.section = sectp;
10723 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10724 }
10725 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10726 {
10727 dwp_file->sections.str_offsets.s.section = sectp;
10728 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10729 }
10730 else if (section_is_p (sectp->name, &names->types_dwo))
10731 {
10732 dwp_file->sections.types.s.section = sectp;
10733 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10734 }
10735 }
10736
10737 /* Hash function for dwp_file loaded CUs/TUs. */
10738
10739 static hashval_t
10740 hash_dwp_loaded_cutus (const void *item)
10741 {
10742 const struct dwo_unit *dwo_unit = item;
10743
10744 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10745 return dwo_unit->signature;
10746 }
10747
10748 /* Equality function for dwp_file loaded CUs/TUs. */
10749
10750 static int
10751 eq_dwp_loaded_cutus (const void *a, const void *b)
10752 {
10753 const struct dwo_unit *dua = a;
10754 const struct dwo_unit *dub = b;
10755
10756 return dua->signature == dub->signature;
10757 }
10758
10759 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10760
10761 static htab_t
10762 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10763 {
10764 return htab_create_alloc_ex (3,
10765 hash_dwp_loaded_cutus,
10766 eq_dwp_loaded_cutus,
10767 NULL,
10768 &objfile->objfile_obstack,
10769 hashtab_obstack_allocate,
10770 dummy_obstack_deallocate);
10771 }
10772
10773 /* Try to open DWP file FILE_NAME.
10774 The result is the bfd handle of the file.
10775 If there is a problem finding or opening the file, return NULL.
10776 Upon success, the canonicalized path of the file is stored in the bfd,
10777 same as symfile_bfd_open. */
10778
10779 static bfd *
10780 open_dwp_file (const char *file_name)
10781 {
10782 bfd *abfd;
10783
10784 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10785 if (abfd != NULL)
10786 return abfd;
10787
10788 /* Work around upstream bug 15652.
10789 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10790 [Whether that's a "bug" is debatable, but it is getting in our way.]
10791 We have no real idea where the dwp file is, because gdb's realpath-ing
10792 of the executable's path may have discarded the needed info.
10793 [IWBN if the dwp file name was recorded in the executable, akin to
10794 .gnu_debuglink, but that doesn't exist yet.]
10795 Strip the directory from FILE_NAME and search again. */
10796 if (*debug_file_directory != '\0')
10797 {
10798 /* Don't implicitly search the current directory here.
10799 If the user wants to search "." to handle this case,
10800 it must be added to debug-file-directory. */
10801 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10802 0 /*search_cwd*/);
10803 }
10804
10805 return NULL;
10806 }
10807
10808 /* Initialize the use of the DWP file for the current objfile.
10809 By convention the name of the DWP file is ${objfile}.dwp.
10810 The result is NULL if it can't be found. */
10811
10812 static struct dwp_file *
10813 open_and_init_dwp_file (void)
10814 {
10815 struct objfile *objfile = dwarf2_per_objfile->objfile;
10816 struct dwp_file *dwp_file;
10817 char *dwp_name;
10818 bfd *dbfd;
10819 struct cleanup *cleanups;
10820
10821 /* Try to find first .dwp for the binary file before any symbolic links
10822 resolving. */
10823 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10824 cleanups = make_cleanup (xfree, dwp_name);
10825
10826 dbfd = open_dwp_file (dwp_name);
10827 if (dbfd == NULL
10828 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10829 {
10830 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10831 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10832 make_cleanup (xfree, dwp_name);
10833 dbfd = open_dwp_file (dwp_name);
10834 }
10835
10836 if (dbfd == NULL)
10837 {
10838 if (dwarf_read_debug)
10839 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10840 do_cleanups (cleanups);
10841 return NULL;
10842 }
10843 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10844 dwp_file->name = bfd_get_filename (dbfd);
10845 dwp_file->dbfd = dbfd;
10846 do_cleanups (cleanups);
10847
10848 /* +1: section 0 is unused */
10849 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10850 dwp_file->elf_sections =
10851 OBSTACK_CALLOC (&objfile->objfile_obstack,
10852 dwp_file->num_sections, asection *);
10853
10854 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10855
10856 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10857
10858 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10859
10860 /* The DWP file version is stored in the hash table. Oh well. */
10861 if (dwp_file->cus->version != dwp_file->tus->version)
10862 {
10863 /* Technically speaking, we should try to limp along, but this is
10864 pretty bizarre. We use pulongest here because that's the established
10865 portability solution (e.g, we cannot use %u for uint32_t). */
10866 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10867 " TU version %s [in DWP file %s]"),
10868 pulongest (dwp_file->cus->version),
10869 pulongest (dwp_file->tus->version), dwp_name);
10870 }
10871 dwp_file->version = dwp_file->cus->version;
10872
10873 if (dwp_file->version == 2)
10874 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10875
10876 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10877 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10878
10879 if (dwarf_read_debug)
10880 {
10881 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10882 fprintf_unfiltered (gdb_stdlog,
10883 " %s CUs, %s TUs\n",
10884 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10885 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10886 }
10887
10888 return dwp_file;
10889 }
10890
10891 /* Wrapper around open_and_init_dwp_file, only open it once. */
10892
10893 static struct dwp_file *
10894 get_dwp_file (void)
10895 {
10896 if (! dwarf2_per_objfile->dwp_checked)
10897 {
10898 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10899 dwarf2_per_objfile->dwp_checked = 1;
10900 }
10901 return dwarf2_per_objfile->dwp_file;
10902 }
10903
10904 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10905 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10906 or in the DWP file for the objfile, referenced by THIS_UNIT.
10907 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10908 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10909
10910 This is called, for example, when wanting to read a variable with a
10911 complex location. Therefore we don't want to do file i/o for every call.
10912 Therefore we don't want to look for a DWO file on every call.
10913 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10914 then we check if we've already seen DWO_NAME, and only THEN do we check
10915 for a DWO file.
10916
10917 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10918 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10919
10920 static struct dwo_unit *
10921 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10922 const char *dwo_name, const char *comp_dir,
10923 ULONGEST signature, int is_debug_types)
10924 {
10925 struct objfile *objfile = dwarf2_per_objfile->objfile;
10926 const char *kind = is_debug_types ? "TU" : "CU";
10927 void **dwo_file_slot;
10928 struct dwo_file *dwo_file;
10929 struct dwp_file *dwp_file;
10930
10931 /* First see if there's a DWP file.
10932 If we have a DWP file but didn't find the DWO inside it, don't
10933 look for the original DWO file. It makes gdb behave differently
10934 depending on whether one is debugging in the build tree. */
10935
10936 dwp_file = get_dwp_file ();
10937 if (dwp_file != NULL)
10938 {
10939 const struct dwp_hash_table *dwp_htab =
10940 is_debug_types ? dwp_file->tus : dwp_file->cus;
10941
10942 if (dwp_htab != NULL)
10943 {
10944 struct dwo_unit *dwo_cutu =
10945 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10946 signature, is_debug_types);
10947
10948 if (dwo_cutu != NULL)
10949 {
10950 if (dwarf_read_debug)
10951 {
10952 fprintf_unfiltered (gdb_stdlog,
10953 "Virtual DWO %s %s found: @%s\n",
10954 kind, hex_string (signature),
10955 host_address_to_string (dwo_cutu));
10956 }
10957 return dwo_cutu;
10958 }
10959 }
10960 }
10961 else
10962 {
10963 /* No DWP file, look for the DWO file. */
10964
10965 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10966 if (*dwo_file_slot == NULL)
10967 {
10968 /* Read in the file and build a table of the CUs/TUs it contains. */
10969 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10970 }
10971 /* NOTE: This will be NULL if unable to open the file. */
10972 dwo_file = *dwo_file_slot;
10973
10974 if (dwo_file != NULL)
10975 {
10976 struct dwo_unit *dwo_cutu = NULL;
10977
10978 if (is_debug_types && dwo_file->tus)
10979 {
10980 struct dwo_unit find_dwo_cutu;
10981
10982 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10983 find_dwo_cutu.signature = signature;
10984 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10985 }
10986 else if (!is_debug_types && dwo_file->cu)
10987 {
10988 if (signature == dwo_file->cu->signature)
10989 dwo_cutu = dwo_file->cu;
10990 }
10991
10992 if (dwo_cutu != NULL)
10993 {
10994 if (dwarf_read_debug)
10995 {
10996 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10997 kind, dwo_name, hex_string (signature),
10998 host_address_to_string (dwo_cutu));
10999 }
11000 return dwo_cutu;
11001 }
11002 }
11003 }
11004
11005 /* We didn't find it. This could mean a dwo_id mismatch, or
11006 someone deleted the DWO/DWP file, or the search path isn't set up
11007 correctly to find the file. */
11008
11009 if (dwarf_read_debug)
11010 {
11011 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11012 kind, dwo_name, hex_string (signature));
11013 }
11014
11015 /* This is a warning and not a complaint because it can be caused by
11016 pilot error (e.g., user accidentally deleting the DWO). */
11017 {
11018 /* Print the name of the DWP file if we looked there, helps the user
11019 better diagnose the problem. */
11020 char *dwp_text = NULL;
11021 struct cleanup *cleanups;
11022
11023 if (dwp_file != NULL)
11024 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11025 cleanups = make_cleanup (xfree, dwp_text);
11026
11027 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11028 " [in module %s]"),
11029 kind, dwo_name, hex_string (signature),
11030 dwp_text != NULL ? dwp_text : "",
11031 this_unit->is_debug_types ? "TU" : "CU",
11032 this_unit->offset.sect_off, objfile_name (objfile));
11033
11034 do_cleanups (cleanups);
11035 }
11036 return NULL;
11037 }
11038
11039 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11040 See lookup_dwo_cutu_unit for details. */
11041
11042 static struct dwo_unit *
11043 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11044 const char *dwo_name, const char *comp_dir,
11045 ULONGEST signature)
11046 {
11047 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11048 }
11049
11050 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11051 See lookup_dwo_cutu_unit for details. */
11052
11053 static struct dwo_unit *
11054 lookup_dwo_type_unit (struct signatured_type *this_tu,
11055 const char *dwo_name, const char *comp_dir)
11056 {
11057 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11058 }
11059
11060 /* Traversal function for queue_and_load_all_dwo_tus. */
11061
11062 static int
11063 queue_and_load_dwo_tu (void **slot, void *info)
11064 {
11065 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11066 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11067 ULONGEST signature = dwo_unit->signature;
11068 struct signatured_type *sig_type =
11069 lookup_dwo_signatured_type (per_cu->cu, signature);
11070
11071 if (sig_type != NULL)
11072 {
11073 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11074
11075 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11076 a real dependency of PER_CU on SIG_TYPE. That is detected later
11077 while processing PER_CU. */
11078 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11079 load_full_type_unit (sig_cu);
11080 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11081 }
11082
11083 return 1;
11084 }
11085
11086 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11087 The DWO may have the only definition of the type, though it may not be
11088 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11089 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11090
11091 static void
11092 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11093 {
11094 struct dwo_unit *dwo_unit;
11095 struct dwo_file *dwo_file;
11096
11097 gdb_assert (!per_cu->is_debug_types);
11098 gdb_assert (get_dwp_file () == NULL);
11099 gdb_assert (per_cu->cu != NULL);
11100
11101 dwo_unit = per_cu->cu->dwo_unit;
11102 gdb_assert (dwo_unit != NULL);
11103
11104 dwo_file = dwo_unit->dwo_file;
11105 if (dwo_file->tus != NULL)
11106 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11107 }
11108
11109 /* Free all resources associated with DWO_FILE.
11110 Close the DWO file and munmap the sections.
11111 All memory should be on the objfile obstack. */
11112
11113 static void
11114 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11115 {
11116 int ix;
11117 struct dwarf2_section_info *section;
11118
11119 /* Note: dbfd is NULL for virtual DWO files. */
11120 gdb_bfd_unref (dwo_file->dbfd);
11121
11122 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11123 }
11124
11125 /* Wrapper for free_dwo_file for use in cleanups. */
11126
11127 static void
11128 free_dwo_file_cleanup (void *arg)
11129 {
11130 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11131 struct objfile *objfile = dwarf2_per_objfile->objfile;
11132
11133 free_dwo_file (dwo_file, objfile);
11134 }
11135
11136 /* Traversal function for free_dwo_files. */
11137
11138 static int
11139 free_dwo_file_from_slot (void **slot, void *info)
11140 {
11141 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11142 struct objfile *objfile = (struct objfile *) info;
11143
11144 free_dwo_file (dwo_file, objfile);
11145
11146 return 1;
11147 }
11148
11149 /* Free all resources associated with DWO_FILES. */
11150
11151 static void
11152 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11153 {
11154 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11155 }
11156 \f
11157 /* Read in various DIEs. */
11158
11159 /* qsort helper for inherit_abstract_dies. */
11160
11161 static int
11162 unsigned_int_compar (const void *ap, const void *bp)
11163 {
11164 unsigned int a = *(unsigned int *) ap;
11165 unsigned int b = *(unsigned int *) bp;
11166
11167 return (a > b) - (b > a);
11168 }
11169
11170 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11171 Inherit only the children of the DW_AT_abstract_origin DIE not being
11172 already referenced by DW_AT_abstract_origin from the children of the
11173 current DIE. */
11174
11175 static void
11176 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11177 {
11178 struct die_info *child_die;
11179 unsigned die_children_count;
11180 /* CU offsets which were referenced by children of the current DIE. */
11181 sect_offset *offsets;
11182 sect_offset *offsets_end, *offsetp;
11183 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11184 struct die_info *origin_die;
11185 /* Iterator of the ORIGIN_DIE children. */
11186 struct die_info *origin_child_die;
11187 struct cleanup *cleanups;
11188 struct attribute *attr;
11189 struct dwarf2_cu *origin_cu;
11190 struct pending **origin_previous_list_in_scope;
11191
11192 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11193 if (!attr)
11194 return;
11195
11196 /* Note that following die references may follow to a die in a
11197 different cu. */
11198
11199 origin_cu = cu;
11200 origin_die = follow_die_ref (die, attr, &origin_cu);
11201
11202 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11203 symbols in. */
11204 origin_previous_list_in_scope = origin_cu->list_in_scope;
11205 origin_cu->list_in_scope = cu->list_in_scope;
11206
11207 if (die->tag != origin_die->tag
11208 && !(die->tag == DW_TAG_inlined_subroutine
11209 && origin_die->tag == DW_TAG_subprogram))
11210 complaint (&symfile_complaints,
11211 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11212 die->offset.sect_off, origin_die->offset.sect_off);
11213
11214 child_die = die->child;
11215 die_children_count = 0;
11216 while (child_die && child_die->tag)
11217 {
11218 child_die = sibling_die (child_die);
11219 die_children_count++;
11220 }
11221 offsets = XNEWVEC (sect_offset, die_children_count);
11222 cleanups = make_cleanup (xfree, offsets);
11223
11224 offsets_end = offsets;
11225 for (child_die = die->child;
11226 child_die && child_die->tag;
11227 child_die = sibling_die (child_die))
11228 {
11229 struct die_info *child_origin_die;
11230 struct dwarf2_cu *child_origin_cu;
11231
11232 /* We are trying to process concrete instance entries:
11233 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11234 it's not relevant to our analysis here. i.e. detecting DIEs that are
11235 present in the abstract instance but not referenced in the concrete
11236 one. */
11237 if (child_die->tag == DW_TAG_GNU_call_site)
11238 continue;
11239
11240 /* For each CHILD_DIE, find the corresponding child of
11241 ORIGIN_DIE. If there is more than one layer of
11242 DW_AT_abstract_origin, follow them all; there shouldn't be,
11243 but GCC versions at least through 4.4 generate this (GCC PR
11244 40573). */
11245 child_origin_die = child_die;
11246 child_origin_cu = cu;
11247 while (1)
11248 {
11249 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11250 child_origin_cu);
11251 if (attr == NULL)
11252 break;
11253 child_origin_die = follow_die_ref (child_origin_die, attr,
11254 &child_origin_cu);
11255 }
11256
11257 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11258 counterpart may exist. */
11259 if (child_origin_die != child_die)
11260 {
11261 if (child_die->tag != child_origin_die->tag
11262 && !(child_die->tag == DW_TAG_inlined_subroutine
11263 && child_origin_die->tag == DW_TAG_subprogram))
11264 complaint (&symfile_complaints,
11265 _("Child DIE 0x%x and its abstract origin 0x%x have "
11266 "different tags"), child_die->offset.sect_off,
11267 child_origin_die->offset.sect_off);
11268 if (child_origin_die->parent != origin_die)
11269 complaint (&symfile_complaints,
11270 _("Child DIE 0x%x and its abstract origin 0x%x have "
11271 "different parents"), child_die->offset.sect_off,
11272 child_origin_die->offset.sect_off);
11273 else
11274 *offsets_end++ = child_origin_die->offset;
11275 }
11276 }
11277 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11278 unsigned_int_compar);
11279 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11280 if (offsetp[-1].sect_off == offsetp->sect_off)
11281 complaint (&symfile_complaints,
11282 _("Multiple children of DIE 0x%x refer "
11283 "to DIE 0x%x as their abstract origin"),
11284 die->offset.sect_off, offsetp->sect_off);
11285
11286 offsetp = offsets;
11287 origin_child_die = origin_die->child;
11288 while (origin_child_die && origin_child_die->tag)
11289 {
11290 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11291 while (offsetp < offsets_end
11292 && offsetp->sect_off < origin_child_die->offset.sect_off)
11293 offsetp++;
11294 if (offsetp >= offsets_end
11295 || offsetp->sect_off > origin_child_die->offset.sect_off)
11296 {
11297 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11298 Check whether we're already processing ORIGIN_CHILD_DIE.
11299 This can happen with mutually referenced abstract_origins.
11300 PR 16581. */
11301 if (!origin_child_die->in_process)
11302 process_die (origin_child_die, origin_cu);
11303 }
11304 origin_child_die = sibling_die (origin_child_die);
11305 }
11306 origin_cu->list_in_scope = origin_previous_list_in_scope;
11307
11308 do_cleanups (cleanups);
11309 }
11310
11311 static void
11312 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11313 {
11314 struct objfile *objfile = cu->objfile;
11315 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11316 struct context_stack *newobj;
11317 CORE_ADDR lowpc;
11318 CORE_ADDR highpc;
11319 struct die_info *child_die;
11320 struct attribute *attr, *call_line, *call_file;
11321 const char *name;
11322 CORE_ADDR baseaddr;
11323 struct block *block;
11324 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11325 VEC (symbolp) *template_args = NULL;
11326 struct template_symbol *templ_func = NULL;
11327
11328 if (inlined_func)
11329 {
11330 /* If we do not have call site information, we can't show the
11331 caller of this inlined function. That's too confusing, so
11332 only use the scope for local variables. */
11333 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11334 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11335 if (call_line == NULL || call_file == NULL)
11336 {
11337 read_lexical_block_scope (die, cu);
11338 return;
11339 }
11340 }
11341
11342 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11343
11344 name = dwarf2_name (die, cu);
11345
11346 /* Ignore functions with missing or empty names. These are actually
11347 illegal according to the DWARF standard. */
11348 if (name == NULL)
11349 {
11350 complaint (&symfile_complaints,
11351 _("missing name for subprogram DIE at %d"),
11352 die->offset.sect_off);
11353 return;
11354 }
11355
11356 /* Ignore functions with missing or invalid low and high pc attributes. */
11357 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11358 {
11359 attr = dwarf2_attr (die, DW_AT_external, cu);
11360 if (!attr || !DW_UNSND (attr))
11361 complaint (&symfile_complaints,
11362 _("cannot get low and high bounds "
11363 "for subprogram DIE at %d"),
11364 die->offset.sect_off);
11365 return;
11366 }
11367
11368 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11369 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11370
11371 /* If we have any template arguments, then we must allocate a
11372 different sort of symbol. */
11373 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11374 {
11375 if (child_die->tag == DW_TAG_template_type_param
11376 || child_die->tag == DW_TAG_template_value_param)
11377 {
11378 templ_func = allocate_template_symbol (objfile);
11379 templ_func->base.is_cplus_template_function = 1;
11380 break;
11381 }
11382 }
11383
11384 newobj = push_context (0, lowpc);
11385 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11386 (struct symbol *) templ_func);
11387
11388 /* If there is a location expression for DW_AT_frame_base, record
11389 it. */
11390 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11391 if (attr)
11392 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11393
11394 /* If there is a location for the static link, record it. */
11395 newobj->static_link = NULL;
11396 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11397 if (attr)
11398 {
11399 newobj->static_link
11400 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11401 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11402 }
11403
11404 cu->list_in_scope = &local_symbols;
11405
11406 if (die->child != NULL)
11407 {
11408 child_die = die->child;
11409 while (child_die && child_die->tag)
11410 {
11411 if (child_die->tag == DW_TAG_template_type_param
11412 || child_die->tag == DW_TAG_template_value_param)
11413 {
11414 struct symbol *arg = new_symbol (child_die, NULL, cu);
11415
11416 if (arg != NULL)
11417 VEC_safe_push (symbolp, template_args, arg);
11418 }
11419 else
11420 process_die (child_die, cu);
11421 child_die = sibling_die (child_die);
11422 }
11423 }
11424
11425 inherit_abstract_dies (die, cu);
11426
11427 /* If we have a DW_AT_specification, we might need to import using
11428 directives from the context of the specification DIE. See the
11429 comment in determine_prefix. */
11430 if (cu->language == language_cplus
11431 && dwarf2_attr (die, DW_AT_specification, cu))
11432 {
11433 struct dwarf2_cu *spec_cu = cu;
11434 struct die_info *spec_die = die_specification (die, &spec_cu);
11435
11436 while (spec_die)
11437 {
11438 child_die = spec_die->child;
11439 while (child_die && child_die->tag)
11440 {
11441 if (child_die->tag == DW_TAG_imported_module)
11442 process_die (child_die, spec_cu);
11443 child_die = sibling_die (child_die);
11444 }
11445
11446 /* In some cases, GCC generates specification DIEs that
11447 themselves contain DW_AT_specification attributes. */
11448 spec_die = die_specification (spec_die, &spec_cu);
11449 }
11450 }
11451
11452 newobj = pop_context ();
11453 /* Make a block for the local symbols within. */
11454 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11455 newobj->static_link, lowpc, highpc);
11456
11457 /* For C++, set the block's scope. */
11458 if ((cu->language == language_cplus
11459 || cu->language == language_fortran
11460 || cu->language == language_d)
11461 && cu->processing_has_namespace_info)
11462 block_set_scope (block, determine_prefix (die, cu),
11463 &objfile->objfile_obstack);
11464
11465 /* If we have address ranges, record them. */
11466 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11467
11468 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11469
11470 /* Attach template arguments to function. */
11471 if (! VEC_empty (symbolp, template_args))
11472 {
11473 gdb_assert (templ_func != NULL);
11474
11475 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11476 templ_func->template_arguments
11477 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11478 templ_func->n_template_arguments);
11479 memcpy (templ_func->template_arguments,
11480 VEC_address (symbolp, template_args),
11481 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11482 VEC_free (symbolp, template_args);
11483 }
11484
11485 /* In C++, we can have functions nested inside functions (e.g., when
11486 a function declares a class that has methods). This means that
11487 when we finish processing a function scope, we may need to go
11488 back to building a containing block's symbol lists. */
11489 local_symbols = newobj->locals;
11490 local_using_directives = newobj->local_using_directives;
11491
11492 /* If we've finished processing a top-level function, subsequent
11493 symbols go in the file symbol list. */
11494 if (outermost_context_p ())
11495 cu->list_in_scope = &file_symbols;
11496 }
11497
11498 /* Process all the DIES contained within a lexical block scope. Start
11499 a new scope, process the dies, and then close the scope. */
11500
11501 static void
11502 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11503 {
11504 struct objfile *objfile = cu->objfile;
11505 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11506 struct context_stack *newobj;
11507 CORE_ADDR lowpc, highpc;
11508 struct die_info *child_die;
11509 CORE_ADDR baseaddr;
11510
11511 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11512
11513 /* Ignore blocks with missing or invalid low and high pc attributes. */
11514 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11515 as multiple lexical blocks? Handling children in a sane way would
11516 be nasty. Might be easier to properly extend generic blocks to
11517 describe ranges. */
11518 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11519 return;
11520 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11521 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11522
11523 push_context (0, lowpc);
11524 if (die->child != NULL)
11525 {
11526 child_die = die->child;
11527 while (child_die && child_die->tag)
11528 {
11529 process_die (child_die, cu);
11530 child_die = sibling_die (child_die);
11531 }
11532 }
11533 inherit_abstract_dies (die, cu);
11534 newobj = pop_context ();
11535
11536 if (local_symbols != NULL || local_using_directives != NULL)
11537 {
11538 struct block *block
11539 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11540 newobj->start_addr, highpc);
11541
11542 /* Note that recording ranges after traversing children, as we
11543 do here, means that recording a parent's ranges entails
11544 walking across all its children's ranges as they appear in
11545 the address map, which is quadratic behavior.
11546
11547 It would be nicer to record the parent's ranges before
11548 traversing its children, simply overriding whatever you find
11549 there. But since we don't even decide whether to create a
11550 block until after we've traversed its children, that's hard
11551 to do. */
11552 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11553 }
11554 local_symbols = newobj->locals;
11555 local_using_directives = newobj->local_using_directives;
11556 }
11557
11558 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11559
11560 static void
11561 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11562 {
11563 struct objfile *objfile = cu->objfile;
11564 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11565 CORE_ADDR pc, baseaddr;
11566 struct attribute *attr;
11567 struct call_site *call_site, call_site_local;
11568 void **slot;
11569 int nparams;
11570 struct die_info *child_die;
11571
11572 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11573
11574 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11575 if (!attr)
11576 {
11577 complaint (&symfile_complaints,
11578 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11579 "DIE 0x%x [in module %s]"),
11580 die->offset.sect_off, objfile_name (objfile));
11581 return;
11582 }
11583 pc = attr_value_as_address (attr) + baseaddr;
11584 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11585
11586 if (cu->call_site_htab == NULL)
11587 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11588 NULL, &objfile->objfile_obstack,
11589 hashtab_obstack_allocate, NULL);
11590 call_site_local.pc = pc;
11591 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11592 if (*slot != NULL)
11593 {
11594 complaint (&symfile_complaints,
11595 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11596 "DIE 0x%x [in module %s]"),
11597 paddress (gdbarch, pc), die->offset.sect_off,
11598 objfile_name (objfile));
11599 return;
11600 }
11601
11602 /* Count parameters at the caller. */
11603
11604 nparams = 0;
11605 for (child_die = die->child; child_die && child_die->tag;
11606 child_die = sibling_die (child_die))
11607 {
11608 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11609 {
11610 complaint (&symfile_complaints,
11611 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11612 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11613 child_die->tag, child_die->offset.sect_off,
11614 objfile_name (objfile));
11615 continue;
11616 }
11617
11618 nparams++;
11619 }
11620
11621 call_site
11622 = ((struct call_site *)
11623 obstack_alloc (&objfile->objfile_obstack,
11624 sizeof (*call_site)
11625 + (sizeof (*call_site->parameter) * (nparams - 1))));
11626 *slot = call_site;
11627 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11628 call_site->pc = pc;
11629
11630 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11631 {
11632 struct die_info *func_die;
11633
11634 /* Skip also over DW_TAG_inlined_subroutine. */
11635 for (func_die = die->parent;
11636 func_die && func_die->tag != DW_TAG_subprogram
11637 && func_die->tag != DW_TAG_subroutine_type;
11638 func_die = func_die->parent);
11639
11640 /* DW_AT_GNU_all_call_sites is a superset
11641 of DW_AT_GNU_all_tail_call_sites. */
11642 if (func_die
11643 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11644 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11645 {
11646 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11647 not complete. But keep CALL_SITE for look ups via call_site_htab,
11648 both the initial caller containing the real return address PC and
11649 the final callee containing the current PC of a chain of tail
11650 calls do not need to have the tail call list complete. But any
11651 function candidate for a virtual tail call frame searched via
11652 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11653 determined unambiguously. */
11654 }
11655 else
11656 {
11657 struct type *func_type = NULL;
11658
11659 if (func_die)
11660 func_type = get_die_type (func_die, cu);
11661 if (func_type != NULL)
11662 {
11663 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11664
11665 /* Enlist this call site to the function. */
11666 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11667 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11668 }
11669 else
11670 complaint (&symfile_complaints,
11671 _("Cannot find function owning DW_TAG_GNU_call_site "
11672 "DIE 0x%x [in module %s]"),
11673 die->offset.sect_off, objfile_name (objfile));
11674 }
11675 }
11676
11677 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11678 if (attr == NULL)
11679 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11680 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11681 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11682 /* Keep NULL DWARF_BLOCK. */;
11683 else if (attr_form_is_block (attr))
11684 {
11685 struct dwarf2_locexpr_baton *dlbaton;
11686
11687 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11688 dlbaton->data = DW_BLOCK (attr)->data;
11689 dlbaton->size = DW_BLOCK (attr)->size;
11690 dlbaton->per_cu = cu->per_cu;
11691
11692 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11693 }
11694 else if (attr_form_is_ref (attr))
11695 {
11696 struct dwarf2_cu *target_cu = cu;
11697 struct die_info *target_die;
11698
11699 target_die = follow_die_ref (die, attr, &target_cu);
11700 gdb_assert (target_cu->objfile == objfile);
11701 if (die_is_declaration (target_die, target_cu))
11702 {
11703 const char *target_physname;
11704
11705 /* Prefer the mangled name; otherwise compute the demangled one. */
11706 target_physname = dwarf2_string_attr (target_die,
11707 DW_AT_linkage_name,
11708 target_cu);
11709 if (target_physname == NULL)
11710 target_physname = dwarf2_string_attr (target_die,
11711 DW_AT_MIPS_linkage_name,
11712 target_cu);
11713 if (target_physname == NULL)
11714 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11715 if (target_physname == NULL)
11716 complaint (&symfile_complaints,
11717 _("DW_AT_GNU_call_site_target target DIE has invalid "
11718 "physname, for referencing DIE 0x%x [in module %s]"),
11719 die->offset.sect_off, objfile_name (objfile));
11720 else
11721 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11722 }
11723 else
11724 {
11725 CORE_ADDR lowpc;
11726
11727 /* DW_AT_entry_pc should be preferred. */
11728 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11729 complaint (&symfile_complaints,
11730 _("DW_AT_GNU_call_site_target target DIE has invalid "
11731 "low pc, for referencing DIE 0x%x [in module %s]"),
11732 die->offset.sect_off, objfile_name (objfile));
11733 else
11734 {
11735 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11736 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11737 }
11738 }
11739 }
11740 else
11741 complaint (&symfile_complaints,
11742 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11743 "block nor reference, for DIE 0x%x [in module %s]"),
11744 die->offset.sect_off, objfile_name (objfile));
11745
11746 call_site->per_cu = cu->per_cu;
11747
11748 for (child_die = die->child;
11749 child_die && child_die->tag;
11750 child_die = sibling_die (child_die))
11751 {
11752 struct call_site_parameter *parameter;
11753 struct attribute *loc, *origin;
11754
11755 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11756 {
11757 /* Already printed the complaint above. */
11758 continue;
11759 }
11760
11761 gdb_assert (call_site->parameter_count < nparams);
11762 parameter = &call_site->parameter[call_site->parameter_count];
11763
11764 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11765 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11766 register is contained in DW_AT_GNU_call_site_value. */
11767
11768 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11769 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11770 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11771 {
11772 sect_offset offset;
11773
11774 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11775 offset = dwarf2_get_ref_die_offset (origin);
11776 if (!offset_in_cu_p (&cu->header, offset))
11777 {
11778 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11779 binding can be done only inside one CU. Such referenced DIE
11780 therefore cannot be even moved to DW_TAG_partial_unit. */
11781 complaint (&symfile_complaints,
11782 _("DW_AT_abstract_origin offset is not in CU for "
11783 "DW_TAG_GNU_call_site child DIE 0x%x "
11784 "[in module %s]"),
11785 child_die->offset.sect_off, objfile_name (objfile));
11786 continue;
11787 }
11788 parameter->u.param_offset.cu_off = (offset.sect_off
11789 - cu->header.offset.sect_off);
11790 }
11791 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11792 {
11793 complaint (&symfile_complaints,
11794 _("No DW_FORM_block* DW_AT_location for "
11795 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11796 child_die->offset.sect_off, objfile_name (objfile));
11797 continue;
11798 }
11799 else
11800 {
11801 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11802 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11803 if (parameter->u.dwarf_reg != -1)
11804 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11805 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11806 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11807 &parameter->u.fb_offset))
11808 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11809 else
11810 {
11811 complaint (&symfile_complaints,
11812 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11813 "for DW_FORM_block* DW_AT_location is supported for "
11814 "DW_TAG_GNU_call_site child DIE 0x%x "
11815 "[in module %s]"),
11816 child_die->offset.sect_off, objfile_name (objfile));
11817 continue;
11818 }
11819 }
11820
11821 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11822 if (!attr_form_is_block (attr))
11823 {
11824 complaint (&symfile_complaints,
11825 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11826 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11827 child_die->offset.sect_off, objfile_name (objfile));
11828 continue;
11829 }
11830 parameter->value = DW_BLOCK (attr)->data;
11831 parameter->value_size = DW_BLOCK (attr)->size;
11832
11833 /* Parameters are not pre-cleared by memset above. */
11834 parameter->data_value = NULL;
11835 parameter->data_value_size = 0;
11836 call_site->parameter_count++;
11837
11838 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11839 if (attr)
11840 {
11841 if (!attr_form_is_block (attr))
11842 complaint (&symfile_complaints,
11843 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11844 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11845 child_die->offset.sect_off, objfile_name (objfile));
11846 else
11847 {
11848 parameter->data_value = DW_BLOCK (attr)->data;
11849 parameter->data_value_size = DW_BLOCK (attr)->size;
11850 }
11851 }
11852 }
11853 }
11854
11855 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11856 Return 1 if the attributes are present and valid, otherwise, return 0.
11857 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11858
11859 static int
11860 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11861 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11862 struct partial_symtab *ranges_pst)
11863 {
11864 struct objfile *objfile = cu->objfile;
11865 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11866 struct comp_unit_head *cu_header = &cu->header;
11867 bfd *obfd = objfile->obfd;
11868 unsigned int addr_size = cu_header->addr_size;
11869 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11870 /* Base address selection entry. */
11871 CORE_ADDR base;
11872 int found_base;
11873 unsigned int dummy;
11874 const gdb_byte *buffer;
11875 CORE_ADDR marker;
11876 int low_set;
11877 CORE_ADDR low = 0;
11878 CORE_ADDR high = 0;
11879 CORE_ADDR baseaddr;
11880
11881 found_base = cu->base_known;
11882 base = cu->base_address;
11883
11884 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11885 if (offset >= dwarf2_per_objfile->ranges.size)
11886 {
11887 complaint (&symfile_complaints,
11888 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11889 offset);
11890 return 0;
11891 }
11892 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11893
11894 /* Read in the largest possible address. */
11895 marker = read_address (obfd, buffer, cu, &dummy);
11896 if ((marker & mask) == mask)
11897 {
11898 /* If we found the largest possible address, then
11899 read the base address. */
11900 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11901 buffer += 2 * addr_size;
11902 offset += 2 * addr_size;
11903 found_base = 1;
11904 }
11905
11906 low_set = 0;
11907
11908 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11909
11910 while (1)
11911 {
11912 CORE_ADDR range_beginning, range_end;
11913
11914 range_beginning = read_address (obfd, buffer, cu, &dummy);
11915 buffer += addr_size;
11916 range_end = read_address (obfd, buffer, cu, &dummy);
11917 buffer += addr_size;
11918 offset += 2 * addr_size;
11919
11920 /* An end of list marker is a pair of zero addresses. */
11921 if (range_beginning == 0 && range_end == 0)
11922 /* Found the end of list entry. */
11923 break;
11924
11925 /* Each base address selection entry is a pair of 2 values.
11926 The first is the largest possible address, the second is
11927 the base address. Check for a base address here. */
11928 if ((range_beginning & mask) == mask)
11929 {
11930 /* If we found the largest possible address, then
11931 read the base address. */
11932 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11933 found_base = 1;
11934 continue;
11935 }
11936
11937 if (!found_base)
11938 {
11939 /* We have no valid base address for the ranges
11940 data. */
11941 complaint (&symfile_complaints,
11942 _("Invalid .debug_ranges data (no base address)"));
11943 return 0;
11944 }
11945
11946 if (range_beginning > range_end)
11947 {
11948 /* Inverted range entries are invalid. */
11949 complaint (&symfile_complaints,
11950 _("Invalid .debug_ranges data (inverted range)"));
11951 return 0;
11952 }
11953
11954 /* Empty range entries have no effect. */
11955 if (range_beginning == range_end)
11956 continue;
11957
11958 range_beginning += base;
11959 range_end += base;
11960
11961 /* A not-uncommon case of bad debug info.
11962 Don't pollute the addrmap with bad data. */
11963 if (range_beginning + baseaddr == 0
11964 && !dwarf2_per_objfile->has_section_at_zero)
11965 {
11966 complaint (&symfile_complaints,
11967 _(".debug_ranges entry has start address of zero"
11968 " [in module %s]"), objfile_name (objfile));
11969 continue;
11970 }
11971
11972 if (ranges_pst != NULL)
11973 {
11974 CORE_ADDR lowpc;
11975 CORE_ADDR highpc;
11976
11977 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11978 range_beginning + baseaddr);
11979 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11980 range_end + baseaddr);
11981 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11982 ranges_pst);
11983 }
11984
11985 /* FIXME: This is recording everything as a low-high
11986 segment of consecutive addresses. We should have a
11987 data structure for discontiguous block ranges
11988 instead. */
11989 if (! low_set)
11990 {
11991 low = range_beginning;
11992 high = range_end;
11993 low_set = 1;
11994 }
11995 else
11996 {
11997 if (range_beginning < low)
11998 low = range_beginning;
11999 if (range_end > high)
12000 high = range_end;
12001 }
12002 }
12003
12004 if (! low_set)
12005 /* If the first entry is an end-of-list marker, the range
12006 describes an empty scope, i.e. no instructions. */
12007 return 0;
12008
12009 if (low_return)
12010 *low_return = low;
12011 if (high_return)
12012 *high_return = high;
12013 return 1;
12014 }
12015
12016 /* Get low and high pc attributes from a die. Return 1 if the attributes
12017 are present and valid, otherwise, return 0. Return -1 if the range is
12018 discontinuous, i.e. derived from DW_AT_ranges information. */
12019
12020 static int
12021 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12022 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12023 struct partial_symtab *pst)
12024 {
12025 struct attribute *attr;
12026 struct attribute *attr_high;
12027 CORE_ADDR low = 0;
12028 CORE_ADDR high = 0;
12029 int ret = 0;
12030
12031 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12032 if (attr_high)
12033 {
12034 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12035 if (attr)
12036 {
12037 low = attr_value_as_address (attr);
12038 high = attr_value_as_address (attr_high);
12039 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12040 high += low;
12041 }
12042 else
12043 /* Found high w/o low attribute. */
12044 return 0;
12045
12046 /* Found consecutive range of addresses. */
12047 ret = 1;
12048 }
12049 else
12050 {
12051 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12052 if (attr != NULL)
12053 {
12054 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12055 We take advantage of the fact that DW_AT_ranges does not appear
12056 in DW_TAG_compile_unit of DWO files. */
12057 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12058 unsigned int ranges_offset = (DW_UNSND (attr)
12059 + (need_ranges_base
12060 ? cu->ranges_base
12061 : 0));
12062
12063 /* Value of the DW_AT_ranges attribute is the offset in the
12064 .debug_ranges section. */
12065 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12066 return 0;
12067 /* Found discontinuous range of addresses. */
12068 ret = -1;
12069 }
12070 }
12071
12072 /* read_partial_die has also the strict LOW < HIGH requirement. */
12073 if (high <= low)
12074 return 0;
12075
12076 /* When using the GNU linker, .gnu.linkonce. sections are used to
12077 eliminate duplicate copies of functions and vtables and such.
12078 The linker will arbitrarily choose one and discard the others.
12079 The AT_*_pc values for such functions refer to local labels in
12080 these sections. If the section from that file was discarded, the
12081 labels are not in the output, so the relocs get a value of 0.
12082 If this is a discarded function, mark the pc bounds as invalid,
12083 so that GDB will ignore it. */
12084 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12085 return 0;
12086
12087 *lowpc = low;
12088 if (highpc)
12089 *highpc = high;
12090 return ret;
12091 }
12092
12093 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12094 its low and high PC addresses. Do nothing if these addresses could not
12095 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12096 and HIGHPC to the high address if greater than HIGHPC. */
12097
12098 static void
12099 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12100 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12101 struct dwarf2_cu *cu)
12102 {
12103 CORE_ADDR low, high;
12104 struct die_info *child = die->child;
12105
12106 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12107 {
12108 *lowpc = min (*lowpc, low);
12109 *highpc = max (*highpc, high);
12110 }
12111
12112 /* If the language does not allow nested subprograms (either inside
12113 subprograms or lexical blocks), we're done. */
12114 if (cu->language != language_ada)
12115 return;
12116
12117 /* Check all the children of the given DIE. If it contains nested
12118 subprograms, then check their pc bounds. Likewise, we need to
12119 check lexical blocks as well, as they may also contain subprogram
12120 definitions. */
12121 while (child && child->tag)
12122 {
12123 if (child->tag == DW_TAG_subprogram
12124 || child->tag == DW_TAG_lexical_block)
12125 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12126 child = sibling_die (child);
12127 }
12128 }
12129
12130 /* Get the low and high pc's represented by the scope DIE, and store
12131 them in *LOWPC and *HIGHPC. If the correct values can't be
12132 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12133
12134 static void
12135 get_scope_pc_bounds (struct die_info *die,
12136 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12137 struct dwarf2_cu *cu)
12138 {
12139 CORE_ADDR best_low = (CORE_ADDR) -1;
12140 CORE_ADDR best_high = (CORE_ADDR) 0;
12141 CORE_ADDR current_low, current_high;
12142
12143 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12144 {
12145 best_low = current_low;
12146 best_high = current_high;
12147 }
12148 else
12149 {
12150 struct die_info *child = die->child;
12151
12152 while (child && child->tag)
12153 {
12154 switch (child->tag) {
12155 case DW_TAG_subprogram:
12156 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12157 break;
12158 case DW_TAG_namespace:
12159 case DW_TAG_module:
12160 /* FIXME: carlton/2004-01-16: Should we do this for
12161 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12162 that current GCC's always emit the DIEs corresponding
12163 to definitions of methods of classes as children of a
12164 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12165 the DIEs giving the declarations, which could be
12166 anywhere). But I don't see any reason why the
12167 standards says that they have to be there. */
12168 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12169
12170 if (current_low != ((CORE_ADDR) -1))
12171 {
12172 best_low = min (best_low, current_low);
12173 best_high = max (best_high, current_high);
12174 }
12175 break;
12176 default:
12177 /* Ignore. */
12178 break;
12179 }
12180
12181 child = sibling_die (child);
12182 }
12183 }
12184
12185 *lowpc = best_low;
12186 *highpc = best_high;
12187 }
12188
12189 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12190 in DIE. */
12191
12192 static void
12193 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12194 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12195 {
12196 struct objfile *objfile = cu->objfile;
12197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12198 struct attribute *attr;
12199 struct attribute *attr_high;
12200
12201 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12202 if (attr_high)
12203 {
12204 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12205 if (attr)
12206 {
12207 CORE_ADDR low = attr_value_as_address (attr);
12208 CORE_ADDR high = attr_value_as_address (attr_high);
12209
12210 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12211 high += low;
12212
12213 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12214 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12215 record_block_range (block, low, high - 1);
12216 }
12217 }
12218
12219 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12220 if (attr)
12221 {
12222 bfd *obfd = objfile->obfd;
12223 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12224 We take advantage of the fact that DW_AT_ranges does not appear
12225 in DW_TAG_compile_unit of DWO files. */
12226 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12227
12228 /* The value of the DW_AT_ranges attribute is the offset of the
12229 address range list in the .debug_ranges section. */
12230 unsigned long offset = (DW_UNSND (attr)
12231 + (need_ranges_base ? cu->ranges_base : 0));
12232 const gdb_byte *buffer;
12233
12234 /* For some target architectures, but not others, the
12235 read_address function sign-extends the addresses it returns.
12236 To recognize base address selection entries, we need a
12237 mask. */
12238 unsigned int addr_size = cu->header.addr_size;
12239 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12240
12241 /* The base address, to which the next pair is relative. Note
12242 that this 'base' is a DWARF concept: most entries in a range
12243 list are relative, to reduce the number of relocs against the
12244 debugging information. This is separate from this function's
12245 'baseaddr' argument, which GDB uses to relocate debugging
12246 information from a shared library based on the address at
12247 which the library was loaded. */
12248 CORE_ADDR base = cu->base_address;
12249 int base_known = cu->base_known;
12250
12251 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12252 if (offset >= dwarf2_per_objfile->ranges.size)
12253 {
12254 complaint (&symfile_complaints,
12255 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12256 offset);
12257 return;
12258 }
12259 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12260
12261 for (;;)
12262 {
12263 unsigned int bytes_read;
12264 CORE_ADDR start, end;
12265
12266 start = read_address (obfd, buffer, cu, &bytes_read);
12267 buffer += bytes_read;
12268 end = read_address (obfd, buffer, cu, &bytes_read);
12269 buffer += bytes_read;
12270
12271 /* Did we find the end of the range list? */
12272 if (start == 0 && end == 0)
12273 break;
12274
12275 /* Did we find a base address selection entry? */
12276 else if ((start & base_select_mask) == base_select_mask)
12277 {
12278 base = end;
12279 base_known = 1;
12280 }
12281
12282 /* We found an ordinary address range. */
12283 else
12284 {
12285 if (!base_known)
12286 {
12287 complaint (&symfile_complaints,
12288 _("Invalid .debug_ranges data "
12289 "(no base address)"));
12290 return;
12291 }
12292
12293 if (start > end)
12294 {
12295 /* Inverted range entries are invalid. */
12296 complaint (&symfile_complaints,
12297 _("Invalid .debug_ranges data "
12298 "(inverted range)"));
12299 return;
12300 }
12301
12302 /* Empty range entries have no effect. */
12303 if (start == end)
12304 continue;
12305
12306 start += base + baseaddr;
12307 end += base + baseaddr;
12308
12309 /* A not-uncommon case of bad debug info.
12310 Don't pollute the addrmap with bad data. */
12311 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12312 {
12313 complaint (&symfile_complaints,
12314 _(".debug_ranges entry has start address of zero"
12315 " [in module %s]"), objfile_name (objfile));
12316 continue;
12317 }
12318
12319 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12320 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12321 record_block_range (block, start, end - 1);
12322 }
12323 }
12324 }
12325 }
12326
12327 /* Check whether the producer field indicates either of GCC < 4.6, or the
12328 Intel C/C++ compiler, and cache the result in CU. */
12329
12330 static void
12331 check_producer (struct dwarf2_cu *cu)
12332 {
12333 const char *cs;
12334 int major, minor;
12335
12336 if (cu->producer == NULL)
12337 {
12338 /* For unknown compilers expect their behavior is DWARF version
12339 compliant.
12340
12341 GCC started to support .debug_types sections by -gdwarf-4 since
12342 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12343 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12344 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12345 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12346 }
12347 else if (producer_is_gcc (cu->producer, &major, &minor))
12348 {
12349 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12350 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12351 }
12352 else if (startswith (cu->producer, "Intel(R) C"))
12353 cu->producer_is_icc = 1;
12354 else
12355 {
12356 /* For other non-GCC compilers, expect their behavior is DWARF version
12357 compliant. */
12358 }
12359
12360 cu->checked_producer = 1;
12361 }
12362
12363 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12364 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12365 during 4.6.0 experimental. */
12366
12367 static int
12368 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12369 {
12370 if (!cu->checked_producer)
12371 check_producer (cu);
12372
12373 return cu->producer_is_gxx_lt_4_6;
12374 }
12375
12376 /* Return the default accessibility type if it is not overriden by
12377 DW_AT_accessibility. */
12378
12379 static enum dwarf_access_attribute
12380 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12381 {
12382 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12383 {
12384 /* The default DWARF 2 accessibility for members is public, the default
12385 accessibility for inheritance is private. */
12386
12387 if (die->tag != DW_TAG_inheritance)
12388 return DW_ACCESS_public;
12389 else
12390 return DW_ACCESS_private;
12391 }
12392 else
12393 {
12394 /* DWARF 3+ defines the default accessibility a different way. The same
12395 rules apply now for DW_TAG_inheritance as for the members and it only
12396 depends on the container kind. */
12397
12398 if (die->parent->tag == DW_TAG_class_type)
12399 return DW_ACCESS_private;
12400 else
12401 return DW_ACCESS_public;
12402 }
12403 }
12404
12405 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12406 offset. If the attribute was not found return 0, otherwise return
12407 1. If it was found but could not properly be handled, set *OFFSET
12408 to 0. */
12409
12410 static int
12411 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12412 LONGEST *offset)
12413 {
12414 struct attribute *attr;
12415
12416 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12417 if (attr != NULL)
12418 {
12419 *offset = 0;
12420
12421 /* Note that we do not check for a section offset first here.
12422 This is because DW_AT_data_member_location is new in DWARF 4,
12423 so if we see it, we can assume that a constant form is really
12424 a constant and not a section offset. */
12425 if (attr_form_is_constant (attr))
12426 *offset = dwarf2_get_attr_constant_value (attr, 0);
12427 else if (attr_form_is_section_offset (attr))
12428 dwarf2_complex_location_expr_complaint ();
12429 else if (attr_form_is_block (attr))
12430 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12431 else
12432 dwarf2_complex_location_expr_complaint ();
12433
12434 return 1;
12435 }
12436
12437 return 0;
12438 }
12439
12440 /* Add an aggregate field to the field list. */
12441
12442 static void
12443 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12444 struct dwarf2_cu *cu)
12445 {
12446 struct objfile *objfile = cu->objfile;
12447 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12448 struct nextfield *new_field;
12449 struct attribute *attr;
12450 struct field *fp;
12451 const char *fieldname = "";
12452
12453 /* Allocate a new field list entry and link it in. */
12454 new_field = XNEW (struct nextfield);
12455 make_cleanup (xfree, new_field);
12456 memset (new_field, 0, sizeof (struct nextfield));
12457
12458 if (die->tag == DW_TAG_inheritance)
12459 {
12460 new_field->next = fip->baseclasses;
12461 fip->baseclasses = new_field;
12462 }
12463 else
12464 {
12465 new_field->next = fip->fields;
12466 fip->fields = new_field;
12467 }
12468 fip->nfields++;
12469
12470 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12471 if (attr)
12472 new_field->accessibility = DW_UNSND (attr);
12473 else
12474 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12475 if (new_field->accessibility != DW_ACCESS_public)
12476 fip->non_public_fields = 1;
12477
12478 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12479 if (attr)
12480 new_field->virtuality = DW_UNSND (attr);
12481 else
12482 new_field->virtuality = DW_VIRTUALITY_none;
12483
12484 fp = &new_field->field;
12485
12486 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12487 {
12488 LONGEST offset;
12489
12490 /* Data member other than a C++ static data member. */
12491
12492 /* Get type of field. */
12493 fp->type = die_type (die, cu);
12494
12495 SET_FIELD_BITPOS (*fp, 0);
12496
12497 /* Get bit size of field (zero if none). */
12498 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12499 if (attr)
12500 {
12501 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12502 }
12503 else
12504 {
12505 FIELD_BITSIZE (*fp) = 0;
12506 }
12507
12508 /* Get bit offset of field. */
12509 if (handle_data_member_location (die, cu, &offset))
12510 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12511 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12512 if (attr)
12513 {
12514 if (gdbarch_bits_big_endian (gdbarch))
12515 {
12516 /* For big endian bits, the DW_AT_bit_offset gives the
12517 additional bit offset from the MSB of the containing
12518 anonymous object to the MSB of the field. We don't
12519 have to do anything special since we don't need to
12520 know the size of the anonymous object. */
12521 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12522 }
12523 else
12524 {
12525 /* For little endian bits, compute the bit offset to the
12526 MSB of the anonymous object, subtract off the number of
12527 bits from the MSB of the field to the MSB of the
12528 object, and then subtract off the number of bits of
12529 the field itself. The result is the bit offset of
12530 the LSB of the field. */
12531 int anonymous_size;
12532 int bit_offset = DW_UNSND (attr);
12533
12534 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12535 if (attr)
12536 {
12537 /* The size of the anonymous object containing
12538 the bit field is explicit, so use the
12539 indicated size (in bytes). */
12540 anonymous_size = DW_UNSND (attr);
12541 }
12542 else
12543 {
12544 /* The size of the anonymous object containing
12545 the bit field must be inferred from the type
12546 attribute of the data member containing the
12547 bit field. */
12548 anonymous_size = TYPE_LENGTH (fp->type);
12549 }
12550 SET_FIELD_BITPOS (*fp,
12551 (FIELD_BITPOS (*fp)
12552 + anonymous_size * bits_per_byte
12553 - bit_offset - FIELD_BITSIZE (*fp)));
12554 }
12555 }
12556
12557 /* Get name of field. */
12558 fieldname = dwarf2_name (die, cu);
12559 if (fieldname == NULL)
12560 fieldname = "";
12561
12562 /* The name is already allocated along with this objfile, so we don't
12563 need to duplicate it for the type. */
12564 fp->name = fieldname;
12565
12566 /* Change accessibility for artificial fields (e.g. virtual table
12567 pointer or virtual base class pointer) to private. */
12568 if (dwarf2_attr (die, DW_AT_artificial, cu))
12569 {
12570 FIELD_ARTIFICIAL (*fp) = 1;
12571 new_field->accessibility = DW_ACCESS_private;
12572 fip->non_public_fields = 1;
12573 }
12574 }
12575 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12576 {
12577 /* C++ static member. */
12578
12579 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12580 is a declaration, but all versions of G++ as of this writing
12581 (so through at least 3.2.1) incorrectly generate
12582 DW_TAG_variable tags. */
12583
12584 const char *physname;
12585
12586 /* Get name of field. */
12587 fieldname = dwarf2_name (die, cu);
12588 if (fieldname == NULL)
12589 return;
12590
12591 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12592 if (attr
12593 /* Only create a symbol if this is an external value.
12594 new_symbol checks this and puts the value in the global symbol
12595 table, which we want. If it is not external, new_symbol
12596 will try to put the value in cu->list_in_scope which is wrong. */
12597 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12598 {
12599 /* A static const member, not much different than an enum as far as
12600 we're concerned, except that we can support more types. */
12601 new_symbol (die, NULL, cu);
12602 }
12603
12604 /* Get physical name. */
12605 physname = dwarf2_physname (fieldname, die, cu);
12606
12607 /* The name is already allocated along with this objfile, so we don't
12608 need to duplicate it for the type. */
12609 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12610 FIELD_TYPE (*fp) = die_type (die, cu);
12611 FIELD_NAME (*fp) = fieldname;
12612 }
12613 else if (die->tag == DW_TAG_inheritance)
12614 {
12615 LONGEST offset;
12616
12617 /* C++ base class field. */
12618 if (handle_data_member_location (die, cu, &offset))
12619 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12620 FIELD_BITSIZE (*fp) = 0;
12621 FIELD_TYPE (*fp) = die_type (die, cu);
12622 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12623 fip->nbaseclasses++;
12624 }
12625 }
12626
12627 /* Add a typedef defined in the scope of the FIP's class. */
12628
12629 static void
12630 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12631 struct dwarf2_cu *cu)
12632 {
12633 struct objfile *objfile = cu->objfile;
12634 struct typedef_field_list *new_field;
12635 struct attribute *attr;
12636 struct typedef_field *fp;
12637 char *fieldname = "";
12638
12639 /* Allocate a new field list entry and link it in. */
12640 new_field = XCNEW (struct typedef_field_list);
12641 make_cleanup (xfree, new_field);
12642
12643 gdb_assert (die->tag == DW_TAG_typedef);
12644
12645 fp = &new_field->field;
12646
12647 /* Get name of field. */
12648 fp->name = dwarf2_name (die, cu);
12649 if (fp->name == NULL)
12650 return;
12651
12652 fp->type = read_type_die (die, cu);
12653
12654 new_field->next = fip->typedef_field_list;
12655 fip->typedef_field_list = new_field;
12656 fip->typedef_field_list_count++;
12657 }
12658
12659 /* Create the vector of fields, and attach it to the type. */
12660
12661 static void
12662 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12663 struct dwarf2_cu *cu)
12664 {
12665 int nfields = fip->nfields;
12666
12667 /* Record the field count, allocate space for the array of fields,
12668 and create blank accessibility bitfields if necessary. */
12669 TYPE_NFIELDS (type) = nfields;
12670 TYPE_FIELDS (type) = (struct field *)
12671 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12672 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12673
12674 if (fip->non_public_fields && cu->language != language_ada)
12675 {
12676 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12677
12678 TYPE_FIELD_PRIVATE_BITS (type) =
12679 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12680 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12681
12682 TYPE_FIELD_PROTECTED_BITS (type) =
12683 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12684 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12685
12686 TYPE_FIELD_IGNORE_BITS (type) =
12687 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12688 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12689 }
12690
12691 /* If the type has baseclasses, allocate and clear a bit vector for
12692 TYPE_FIELD_VIRTUAL_BITS. */
12693 if (fip->nbaseclasses && cu->language != language_ada)
12694 {
12695 int num_bytes = B_BYTES (fip->nbaseclasses);
12696 unsigned char *pointer;
12697
12698 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12699 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12700 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12701 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12702 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12703 }
12704
12705 /* Copy the saved-up fields into the field vector. Start from the head of
12706 the list, adding to the tail of the field array, so that they end up in
12707 the same order in the array in which they were added to the list. */
12708 while (nfields-- > 0)
12709 {
12710 struct nextfield *fieldp;
12711
12712 if (fip->fields)
12713 {
12714 fieldp = fip->fields;
12715 fip->fields = fieldp->next;
12716 }
12717 else
12718 {
12719 fieldp = fip->baseclasses;
12720 fip->baseclasses = fieldp->next;
12721 }
12722
12723 TYPE_FIELD (type, nfields) = fieldp->field;
12724 switch (fieldp->accessibility)
12725 {
12726 case DW_ACCESS_private:
12727 if (cu->language != language_ada)
12728 SET_TYPE_FIELD_PRIVATE (type, nfields);
12729 break;
12730
12731 case DW_ACCESS_protected:
12732 if (cu->language != language_ada)
12733 SET_TYPE_FIELD_PROTECTED (type, nfields);
12734 break;
12735
12736 case DW_ACCESS_public:
12737 break;
12738
12739 default:
12740 /* Unknown accessibility. Complain and treat it as public. */
12741 {
12742 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12743 fieldp->accessibility);
12744 }
12745 break;
12746 }
12747 if (nfields < fip->nbaseclasses)
12748 {
12749 switch (fieldp->virtuality)
12750 {
12751 case DW_VIRTUALITY_virtual:
12752 case DW_VIRTUALITY_pure_virtual:
12753 if (cu->language == language_ada)
12754 error (_("unexpected virtuality in component of Ada type"));
12755 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12756 break;
12757 }
12758 }
12759 }
12760 }
12761
12762 /* Return true if this member function is a constructor, false
12763 otherwise. */
12764
12765 static int
12766 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12767 {
12768 const char *fieldname;
12769 const char *type_name;
12770 int len;
12771
12772 if (die->parent == NULL)
12773 return 0;
12774
12775 if (die->parent->tag != DW_TAG_structure_type
12776 && die->parent->tag != DW_TAG_union_type
12777 && die->parent->tag != DW_TAG_class_type)
12778 return 0;
12779
12780 fieldname = dwarf2_name (die, cu);
12781 type_name = dwarf2_name (die->parent, cu);
12782 if (fieldname == NULL || type_name == NULL)
12783 return 0;
12784
12785 len = strlen (fieldname);
12786 return (strncmp (fieldname, type_name, len) == 0
12787 && (type_name[len] == '\0' || type_name[len] == '<'));
12788 }
12789
12790 /* Add a member function to the proper fieldlist. */
12791
12792 static void
12793 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12794 struct type *type, struct dwarf2_cu *cu)
12795 {
12796 struct objfile *objfile = cu->objfile;
12797 struct attribute *attr;
12798 struct fnfieldlist *flp;
12799 int i;
12800 struct fn_field *fnp;
12801 const char *fieldname;
12802 struct nextfnfield *new_fnfield;
12803 struct type *this_type;
12804 enum dwarf_access_attribute accessibility;
12805
12806 if (cu->language == language_ada)
12807 error (_("unexpected member function in Ada type"));
12808
12809 /* Get name of member function. */
12810 fieldname = dwarf2_name (die, cu);
12811 if (fieldname == NULL)
12812 return;
12813
12814 /* Look up member function name in fieldlist. */
12815 for (i = 0; i < fip->nfnfields; i++)
12816 {
12817 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12818 break;
12819 }
12820
12821 /* Create new list element if necessary. */
12822 if (i < fip->nfnfields)
12823 flp = &fip->fnfieldlists[i];
12824 else
12825 {
12826 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12827 {
12828 fip->fnfieldlists = (struct fnfieldlist *)
12829 xrealloc (fip->fnfieldlists,
12830 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12831 * sizeof (struct fnfieldlist));
12832 if (fip->nfnfields == 0)
12833 make_cleanup (free_current_contents, &fip->fnfieldlists);
12834 }
12835 flp = &fip->fnfieldlists[fip->nfnfields];
12836 flp->name = fieldname;
12837 flp->length = 0;
12838 flp->head = NULL;
12839 i = fip->nfnfields++;
12840 }
12841
12842 /* Create a new member function field and chain it to the field list
12843 entry. */
12844 new_fnfield = XNEW (struct nextfnfield);
12845 make_cleanup (xfree, new_fnfield);
12846 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12847 new_fnfield->next = flp->head;
12848 flp->head = new_fnfield;
12849 flp->length++;
12850
12851 /* Fill in the member function field info. */
12852 fnp = &new_fnfield->fnfield;
12853
12854 /* Delay processing of the physname until later. */
12855 if (cu->language == language_cplus || cu->language == language_java)
12856 {
12857 add_to_method_list (type, i, flp->length - 1, fieldname,
12858 die, cu);
12859 }
12860 else
12861 {
12862 const char *physname = dwarf2_physname (fieldname, die, cu);
12863 fnp->physname = physname ? physname : "";
12864 }
12865
12866 fnp->type = alloc_type (objfile);
12867 this_type = read_type_die (die, cu);
12868 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12869 {
12870 int nparams = TYPE_NFIELDS (this_type);
12871
12872 /* TYPE is the domain of this method, and THIS_TYPE is the type
12873 of the method itself (TYPE_CODE_METHOD). */
12874 smash_to_method_type (fnp->type, type,
12875 TYPE_TARGET_TYPE (this_type),
12876 TYPE_FIELDS (this_type),
12877 TYPE_NFIELDS (this_type),
12878 TYPE_VARARGS (this_type));
12879
12880 /* Handle static member functions.
12881 Dwarf2 has no clean way to discern C++ static and non-static
12882 member functions. G++ helps GDB by marking the first
12883 parameter for non-static member functions (which is the this
12884 pointer) as artificial. We obtain this information from
12885 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12886 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12887 fnp->voffset = VOFFSET_STATIC;
12888 }
12889 else
12890 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12891 dwarf2_full_name (fieldname, die, cu));
12892
12893 /* Get fcontext from DW_AT_containing_type if present. */
12894 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12895 fnp->fcontext = die_containing_type (die, cu);
12896
12897 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12898 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12899
12900 /* Get accessibility. */
12901 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12902 if (attr)
12903 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12904 else
12905 accessibility = dwarf2_default_access_attribute (die, cu);
12906 switch (accessibility)
12907 {
12908 case DW_ACCESS_private:
12909 fnp->is_private = 1;
12910 break;
12911 case DW_ACCESS_protected:
12912 fnp->is_protected = 1;
12913 break;
12914 }
12915
12916 /* Check for artificial methods. */
12917 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12918 if (attr && DW_UNSND (attr) != 0)
12919 fnp->is_artificial = 1;
12920
12921 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12922
12923 /* Get index in virtual function table if it is a virtual member
12924 function. For older versions of GCC, this is an offset in the
12925 appropriate virtual table, as specified by DW_AT_containing_type.
12926 For everyone else, it is an expression to be evaluated relative
12927 to the object address. */
12928
12929 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12930 if (attr)
12931 {
12932 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12933 {
12934 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12935 {
12936 /* Old-style GCC. */
12937 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12938 }
12939 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12940 || (DW_BLOCK (attr)->size > 1
12941 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12942 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12943 {
12944 struct dwarf_block blk;
12945 int offset;
12946
12947 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12948 ? 1 : 2);
12949 blk.size = DW_BLOCK (attr)->size - offset;
12950 blk.data = DW_BLOCK (attr)->data + offset;
12951 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12952 if ((fnp->voffset % cu->header.addr_size) != 0)
12953 dwarf2_complex_location_expr_complaint ();
12954 else
12955 fnp->voffset /= cu->header.addr_size;
12956 fnp->voffset += 2;
12957 }
12958 else
12959 dwarf2_complex_location_expr_complaint ();
12960
12961 if (!fnp->fcontext)
12962 {
12963 /* If there is no `this' field and no DW_AT_containing_type,
12964 we cannot actually find a base class context for the
12965 vtable! */
12966 if (TYPE_NFIELDS (this_type) == 0
12967 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12968 {
12969 complaint (&symfile_complaints,
12970 _("cannot determine context for virtual member "
12971 "function \"%s\" (offset %d)"),
12972 fieldname, die->offset.sect_off);
12973 }
12974 else
12975 {
12976 fnp->fcontext
12977 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12978 }
12979 }
12980 }
12981 else if (attr_form_is_section_offset (attr))
12982 {
12983 dwarf2_complex_location_expr_complaint ();
12984 }
12985 else
12986 {
12987 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12988 fieldname);
12989 }
12990 }
12991 else
12992 {
12993 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12994 if (attr && DW_UNSND (attr))
12995 {
12996 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12997 complaint (&symfile_complaints,
12998 _("Member function \"%s\" (offset %d) is virtual "
12999 "but the vtable offset is not specified"),
13000 fieldname, die->offset.sect_off);
13001 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13002 TYPE_CPLUS_DYNAMIC (type) = 1;
13003 }
13004 }
13005 }
13006
13007 /* Create the vector of member function fields, and attach it to the type. */
13008
13009 static void
13010 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13011 struct dwarf2_cu *cu)
13012 {
13013 struct fnfieldlist *flp;
13014 int i;
13015
13016 if (cu->language == language_ada)
13017 error (_("unexpected member functions in Ada type"));
13018
13019 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13020 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13021 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13022
13023 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13024 {
13025 struct nextfnfield *nfp = flp->head;
13026 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13027 int k;
13028
13029 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13030 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13031 fn_flp->fn_fields = (struct fn_field *)
13032 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13033 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13034 fn_flp->fn_fields[k] = nfp->fnfield;
13035 }
13036
13037 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13038 }
13039
13040 /* Returns non-zero if NAME is the name of a vtable member in CU's
13041 language, zero otherwise. */
13042 static int
13043 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13044 {
13045 static const char vptr[] = "_vptr";
13046 static const char vtable[] = "vtable";
13047
13048 /* Look for the C++ and Java forms of the vtable. */
13049 if ((cu->language == language_java
13050 && startswith (name, vtable))
13051 || (startswith (name, vptr)
13052 && is_cplus_marker (name[sizeof (vptr) - 1])))
13053 return 1;
13054
13055 return 0;
13056 }
13057
13058 /* GCC outputs unnamed structures that are really pointers to member
13059 functions, with the ABI-specified layout. If TYPE describes
13060 such a structure, smash it into a member function type.
13061
13062 GCC shouldn't do this; it should just output pointer to member DIEs.
13063 This is GCC PR debug/28767. */
13064
13065 static void
13066 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13067 {
13068 struct type *pfn_type, *self_type, *new_type;
13069
13070 /* Check for a structure with no name and two children. */
13071 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13072 return;
13073
13074 /* Check for __pfn and __delta members. */
13075 if (TYPE_FIELD_NAME (type, 0) == NULL
13076 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13077 || TYPE_FIELD_NAME (type, 1) == NULL
13078 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13079 return;
13080
13081 /* Find the type of the method. */
13082 pfn_type = TYPE_FIELD_TYPE (type, 0);
13083 if (pfn_type == NULL
13084 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13085 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13086 return;
13087
13088 /* Look for the "this" argument. */
13089 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13090 if (TYPE_NFIELDS (pfn_type) == 0
13091 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13092 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13093 return;
13094
13095 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13096 new_type = alloc_type (objfile);
13097 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13098 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13099 TYPE_VARARGS (pfn_type));
13100 smash_to_methodptr_type (type, new_type);
13101 }
13102
13103 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13104 (icc). */
13105
13106 static int
13107 producer_is_icc (struct dwarf2_cu *cu)
13108 {
13109 if (!cu->checked_producer)
13110 check_producer (cu);
13111
13112 return cu->producer_is_icc;
13113 }
13114
13115 /* Called when we find the DIE that starts a structure or union scope
13116 (definition) to create a type for the structure or union. Fill in
13117 the type's name and general properties; the members will not be
13118 processed until process_structure_scope. A symbol table entry for
13119 the type will also not be done until process_structure_scope (assuming
13120 the type has a name).
13121
13122 NOTE: we need to call these functions regardless of whether or not the
13123 DIE has a DW_AT_name attribute, since it might be an anonymous
13124 structure or union. This gets the type entered into our set of
13125 user defined types. */
13126
13127 static struct type *
13128 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13129 {
13130 struct objfile *objfile = cu->objfile;
13131 struct type *type;
13132 struct attribute *attr;
13133 const char *name;
13134
13135 /* If the definition of this type lives in .debug_types, read that type.
13136 Don't follow DW_AT_specification though, that will take us back up
13137 the chain and we want to go down. */
13138 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13139 if (attr)
13140 {
13141 type = get_DW_AT_signature_type (die, attr, cu);
13142
13143 /* The type's CU may not be the same as CU.
13144 Ensure TYPE is recorded with CU in die_type_hash. */
13145 return set_die_type (die, type, cu);
13146 }
13147
13148 type = alloc_type (objfile);
13149 INIT_CPLUS_SPECIFIC (type);
13150
13151 name = dwarf2_name (die, cu);
13152 if (name != NULL)
13153 {
13154 if (cu->language == language_cplus
13155 || cu->language == language_java
13156 || cu->language == language_d)
13157 {
13158 const char *full_name = dwarf2_full_name (name, die, cu);
13159
13160 /* dwarf2_full_name might have already finished building the DIE's
13161 type. If so, there is no need to continue. */
13162 if (get_die_type (die, cu) != NULL)
13163 return get_die_type (die, cu);
13164
13165 TYPE_TAG_NAME (type) = full_name;
13166 if (die->tag == DW_TAG_structure_type
13167 || die->tag == DW_TAG_class_type)
13168 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13169 }
13170 else
13171 {
13172 /* The name is already allocated along with this objfile, so
13173 we don't need to duplicate it for the type. */
13174 TYPE_TAG_NAME (type) = name;
13175 if (die->tag == DW_TAG_class_type)
13176 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13177 }
13178 }
13179
13180 if (die->tag == DW_TAG_structure_type)
13181 {
13182 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13183 }
13184 else if (die->tag == DW_TAG_union_type)
13185 {
13186 TYPE_CODE (type) = TYPE_CODE_UNION;
13187 }
13188 else
13189 {
13190 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13191 }
13192
13193 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13194 TYPE_DECLARED_CLASS (type) = 1;
13195
13196 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13197 if (attr)
13198 {
13199 TYPE_LENGTH (type) = DW_UNSND (attr);
13200 }
13201 else
13202 {
13203 TYPE_LENGTH (type) = 0;
13204 }
13205
13206 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13207 {
13208 /* ICC does not output the required DW_AT_declaration
13209 on incomplete types, but gives them a size of zero. */
13210 TYPE_STUB (type) = 1;
13211 }
13212 else
13213 TYPE_STUB_SUPPORTED (type) = 1;
13214
13215 if (die_is_declaration (die, cu))
13216 TYPE_STUB (type) = 1;
13217 else if (attr == NULL && die->child == NULL
13218 && producer_is_realview (cu->producer))
13219 /* RealView does not output the required DW_AT_declaration
13220 on incomplete types. */
13221 TYPE_STUB (type) = 1;
13222
13223 /* We need to add the type field to the die immediately so we don't
13224 infinitely recurse when dealing with pointers to the structure
13225 type within the structure itself. */
13226 set_die_type (die, type, cu);
13227
13228 /* set_die_type should be already done. */
13229 set_descriptive_type (type, die, cu);
13230
13231 return type;
13232 }
13233
13234 /* Finish creating a structure or union type, including filling in
13235 its members and creating a symbol for it. */
13236
13237 static void
13238 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13239 {
13240 struct objfile *objfile = cu->objfile;
13241 struct die_info *child_die;
13242 struct type *type;
13243
13244 type = get_die_type (die, cu);
13245 if (type == NULL)
13246 type = read_structure_type (die, cu);
13247
13248 if (die->child != NULL && ! die_is_declaration (die, cu))
13249 {
13250 struct field_info fi;
13251 VEC (symbolp) *template_args = NULL;
13252 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13253
13254 memset (&fi, 0, sizeof (struct field_info));
13255
13256 child_die = die->child;
13257
13258 while (child_die && child_die->tag)
13259 {
13260 if (child_die->tag == DW_TAG_member
13261 || child_die->tag == DW_TAG_variable)
13262 {
13263 /* NOTE: carlton/2002-11-05: A C++ static data member
13264 should be a DW_TAG_member that is a declaration, but
13265 all versions of G++ as of this writing (so through at
13266 least 3.2.1) incorrectly generate DW_TAG_variable
13267 tags for them instead. */
13268 dwarf2_add_field (&fi, child_die, cu);
13269 }
13270 else if (child_die->tag == DW_TAG_subprogram)
13271 {
13272 /* C++ member function. */
13273 dwarf2_add_member_fn (&fi, child_die, type, cu);
13274 }
13275 else if (child_die->tag == DW_TAG_inheritance)
13276 {
13277 /* C++ base class field. */
13278 dwarf2_add_field (&fi, child_die, cu);
13279 }
13280 else if (child_die->tag == DW_TAG_typedef)
13281 dwarf2_add_typedef (&fi, child_die, cu);
13282 else if (child_die->tag == DW_TAG_template_type_param
13283 || child_die->tag == DW_TAG_template_value_param)
13284 {
13285 struct symbol *arg = new_symbol (child_die, NULL, cu);
13286
13287 if (arg != NULL)
13288 VEC_safe_push (symbolp, template_args, arg);
13289 }
13290
13291 child_die = sibling_die (child_die);
13292 }
13293
13294 /* Attach template arguments to type. */
13295 if (! VEC_empty (symbolp, template_args))
13296 {
13297 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13298 TYPE_N_TEMPLATE_ARGUMENTS (type)
13299 = VEC_length (symbolp, template_args);
13300 TYPE_TEMPLATE_ARGUMENTS (type)
13301 = XOBNEWVEC (&objfile->objfile_obstack,
13302 struct symbol *,
13303 TYPE_N_TEMPLATE_ARGUMENTS (type));
13304 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13305 VEC_address (symbolp, template_args),
13306 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13307 * sizeof (struct symbol *)));
13308 VEC_free (symbolp, template_args);
13309 }
13310
13311 /* Attach fields and member functions to the type. */
13312 if (fi.nfields)
13313 dwarf2_attach_fields_to_type (&fi, type, cu);
13314 if (fi.nfnfields)
13315 {
13316 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13317
13318 /* Get the type which refers to the base class (possibly this
13319 class itself) which contains the vtable pointer for the current
13320 class from the DW_AT_containing_type attribute. This use of
13321 DW_AT_containing_type is a GNU extension. */
13322
13323 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13324 {
13325 struct type *t = die_containing_type (die, cu);
13326
13327 set_type_vptr_basetype (type, t);
13328 if (type == t)
13329 {
13330 int i;
13331
13332 /* Our own class provides vtbl ptr. */
13333 for (i = TYPE_NFIELDS (t) - 1;
13334 i >= TYPE_N_BASECLASSES (t);
13335 --i)
13336 {
13337 const char *fieldname = TYPE_FIELD_NAME (t, i);
13338
13339 if (is_vtable_name (fieldname, cu))
13340 {
13341 set_type_vptr_fieldno (type, i);
13342 break;
13343 }
13344 }
13345
13346 /* Complain if virtual function table field not found. */
13347 if (i < TYPE_N_BASECLASSES (t))
13348 complaint (&symfile_complaints,
13349 _("virtual function table pointer "
13350 "not found when defining class '%s'"),
13351 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13352 "");
13353 }
13354 else
13355 {
13356 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13357 }
13358 }
13359 else if (cu->producer
13360 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13361 {
13362 /* The IBM XLC compiler does not provide direct indication
13363 of the containing type, but the vtable pointer is
13364 always named __vfp. */
13365
13366 int i;
13367
13368 for (i = TYPE_NFIELDS (type) - 1;
13369 i >= TYPE_N_BASECLASSES (type);
13370 --i)
13371 {
13372 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13373 {
13374 set_type_vptr_fieldno (type, i);
13375 set_type_vptr_basetype (type, type);
13376 break;
13377 }
13378 }
13379 }
13380 }
13381
13382 /* Copy fi.typedef_field_list linked list elements content into the
13383 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13384 if (fi.typedef_field_list)
13385 {
13386 int i = fi.typedef_field_list_count;
13387
13388 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13389 TYPE_TYPEDEF_FIELD_ARRAY (type)
13390 = ((struct typedef_field *)
13391 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13392 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13393
13394 /* Reverse the list order to keep the debug info elements order. */
13395 while (--i >= 0)
13396 {
13397 struct typedef_field *dest, *src;
13398
13399 dest = &TYPE_TYPEDEF_FIELD (type, i);
13400 src = &fi.typedef_field_list->field;
13401 fi.typedef_field_list = fi.typedef_field_list->next;
13402 *dest = *src;
13403 }
13404 }
13405
13406 do_cleanups (back_to);
13407
13408 if (HAVE_CPLUS_STRUCT (type))
13409 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13410 }
13411
13412 quirk_gcc_member_function_pointer (type, objfile);
13413
13414 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13415 snapshots) has been known to create a die giving a declaration
13416 for a class that has, as a child, a die giving a definition for a
13417 nested class. So we have to process our children even if the
13418 current die is a declaration. Normally, of course, a declaration
13419 won't have any children at all. */
13420
13421 child_die = die->child;
13422
13423 while (child_die != NULL && child_die->tag)
13424 {
13425 if (child_die->tag == DW_TAG_member
13426 || child_die->tag == DW_TAG_variable
13427 || child_die->tag == DW_TAG_inheritance
13428 || child_die->tag == DW_TAG_template_value_param
13429 || child_die->tag == DW_TAG_template_type_param)
13430 {
13431 /* Do nothing. */
13432 }
13433 else
13434 process_die (child_die, cu);
13435
13436 child_die = sibling_die (child_die);
13437 }
13438
13439 /* Do not consider external references. According to the DWARF standard,
13440 these DIEs are identified by the fact that they have no byte_size
13441 attribute, and a declaration attribute. */
13442 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13443 || !die_is_declaration (die, cu))
13444 new_symbol (die, type, cu);
13445 }
13446
13447 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13448 update TYPE using some information only available in DIE's children. */
13449
13450 static void
13451 update_enumeration_type_from_children (struct die_info *die,
13452 struct type *type,
13453 struct dwarf2_cu *cu)
13454 {
13455 struct obstack obstack;
13456 struct die_info *child_die;
13457 int unsigned_enum = 1;
13458 int flag_enum = 1;
13459 ULONGEST mask = 0;
13460 struct cleanup *old_chain;
13461
13462 obstack_init (&obstack);
13463 old_chain = make_cleanup_obstack_free (&obstack);
13464
13465 for (child_die = die->child;
13466 child_die != NULL && child_die->tag;
13467 child_die = sibling_die (child_die))
13468 {
13469 struct attribute *attr;
13470 LONGEST value;
13471 const gdb_byte *bytes;
13472 struct dwarf2_locexpr_baton *baton;
13473 const char *name;
13474
13475 if (child_die->tag != DW_TAG_enumerator)
13476 continue;
13477
13478 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13479 if (attr == NULL)
13480 continue;
13481
13482 name = dwarf2_name (child_die, cu);
13483 if (name == NULL)
13484 name = "<anonymous enumerator>";
13485
13486 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13487 &value, &bytes, &baton);
13488 if (value < 0)
13489 {
13490 unsigned_enum = 0;
13491 flag_enum = 0;
13492 }
13493 else if ((mask & value) != 0)
13494 flag_enum = 0;
13495 else
13496 mask |= value;
13497
13498 /* If we already know that the enum type is neither unsigned, nor
13499 a flag type, no need to look at the rest of the enumerates. */
13500 if (!unsigned_enum && !flag_enum)
13501 break;
13502 }
13503
13504 if (unsigned_enum)
13505 TYPE_UNSIGNED (type) = 1;
13506 if (flag_enum)
13507 TYPE_FLAG_ENUM (type) = 1;
13508
13509 do_cleanups (old_chain);
13510 }
13511
13512 /* Given a DW_AT_enumeration_type die, set its type. We do not
13513 complete the type's fields yet, or create any symbols. */
13514
13515 static struct type *
13516 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13517 {
13518 struct objfile *objfile = cu->objfile;
13519 struct type *type;
13520 struct attribute *attr;
13521 const char *name;
13522
13523 /* If the definition of this type lives in .debug_types, read that type.
13524 Don't follow DW_AT_specification though, that will take us back up
13525 the chain and we want to go down. */
13526 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13527 if (attr)
13528 {
13529 type = get_DW_AT_signature_type (die, attr, cu);
13530
13531 /* The type's CU may not be the same as CU.
13532 Ensure TYPE is recorded with CU in die_type_hash. */
13533 return set_die_type (die, type, cu);
13534 }
13535
13536 type = alloc_type (objfile);
13537
13538 TYPE_CODE (type) = TYPE_CODE_ENUM;
13539 name = dwarf2_full_name (NULL, die, cu);
13540 if (name != NULL)
13541 TYPE_TAG_NAME (type) = name;
13542
13543 attr = dwarf2_attr (die, DW_AT_type, cu);
13544 if (attr != NULL)
13545 {
13546 struct type *underlying_type = die_type (die, cu);
13547
13548 TYPE_TARGET_TYPE (type) = underlying_type;
13549 }
13550
13551 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13552 if (attr)
13553 {
13554 TYPE_LENGTH (type) = DW_UNSND (attr);
13555 }
13556 else
13557 {
13558 TYPE_LENGTH (type) = 0;
13559 }
13560
13561 /* The enumeration DIE can be incomplete. In Ada, any type can be
13562 declared as private in the package spec, and then defined only
13563 inside the package body. Such types are known as Taft Amendment
13564 Types. When another package uses such a type, an incomplete DIE
13565 may be generated by the compiler. */
13566 if (die_is_declaration (die, cu))
13567 TYPE_STUB (type) = 1;
13568
13569 /* Finish the creation of this type by using the enum's children.
13570 We must call this even when the underlying type has been provided
13571 so that we can determine if we're looking at a "flag" enum. */
13572 update_enumeration_type_from_children (die, type, cu);
13573
13574 /* If this type has an underlying type that is not a stub, then we
13575 may use its attributes. We always use the "unsigned" attribute
13576 in this situation, because ordinarily we guess whether the type
13577 is unsigned -- but the guess can be wrong and the underlying type
13578 can tell us the reality. However, we defer to a local size
13579 attribute if one exists, because this lets the compiler override
13580 the underlying type if needed. */
13581 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13582 {
13583 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13584 if (TYPE_LENGTH (type) == 0)
13585 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13586 }
13587
13588 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13589
13590 return set_die_type (die, type, cu);
13591 }
13592
13593 /* Given a pointer to a die which begins an enumeration, process all
13594 the dies that define the members of the enumeration, and create the
13595 symbol for the enumeration type.
13596
13597 NOTE: We reverse the order of the element list. */
13598
13599 static void
13600 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13601 {
13602 struct type *this_type;
13603
13604 this_type = get_die_type (die, cu);
13605 if (this_type == NULL)
13606 this_type = read_enumeration_type (die, cu);
13607
13608 if (die->child != NULL)
13609 {
13610 struct die_info *child_die;
13611 struct symbol *sym;
13612 struct field *fields = NULL;
13613 int num_fields = 0;
13614 const char *name;
13615
13616 child_die = die->child;
13617 while (child_die && child_die->tag)
13618 {
13619 if (child_die->tag != DW_TAG_enumerator)
13620 {
13621 process_die (child_die, cu);
13622 }
13623 else
13624 {
13625 name = dwarf2_name (child_die, cu);
13626 if (name)
13627 {
13628 sym = new_symbol (child_die, this_type, cu);
13629
13630 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13631 {
13632 fields = (struct field *)
13633 xrealloc (fields,
13634 (num_fields + DW_FIELD_ALLOC_CHUNK)
13635 * sizeof (struct field));
13636 }
13637
13638 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13639 FIELD_TYPE (fields[num_fields]) = NULL;
13640 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13641 FIELD_BITSIZE (fields[num_fields]) = 0;
13642
13643 num_fields++;
13644 }
13645 }
13646
13647 child_die = sibling_die (child_die);
13648 }
13649
13650 if (num_fields)
13651 {
13652 TYPE_NFIELDS (this_type) = num_fields;
13653 TYPE_FIELDS (this_type) = (struct field *)
13654 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13655 memcpy (TYPE_FIELDS (this_type), fields,
13656 sizeof (struct field) * num_fields);
13657 xfree (fields);
13658 }
13659 }
13660
13661 /* If we are reading an enum from a .debug_types unit, and the enum
13662 is a declaration, and the enum is not the signatured type in the
13663 unit, then we do not want to add a symbol for it. Adding a
13664 symbol would in some cases obscure the true definition of the
13665 enum, giving users an incomplete type when the definition is
13666 actually available. Note that we do not want to do this for all
13667 enums which are just declarations, because C++0x allows forward
13668 enum declarations. */
13669 if (cu->per_cu->is_debug_types
13670 && die_is_declaration (die, cu))
13671 {
13672 struct signatured_type *sig_type;
13673
13674 sig_type = (struct signatured_type *) cu->per_cu;
13675 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13676 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13677 return;
13678 }
13679
13680 new_symbol (die, this_type, cu);
13681 }
13682
13683 /* Extract all information from a DW_TAG_array_type DIE and put it in
13684 the DIE's type field. For now, this only handles one dimensional
13685 arrays. */
13686
13687 static struct type *
13688 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13689 {
13690 struct objfile *objfile = cu->objfile;
13691 struct die_info *child_die;
13692 struct type *type;
13693 struct type *element_type, *range_type, *index_type;
13694 struct type **range_types = NULL;
13695 struct attribute *attr;
13696 int ndim = 0;
13697 struct cleanup *back_to;
13698 const char *name;
13699 unsigned int bit_stride = 0;
13700
13701 element_type = die_type (die, cu);
13702
13703 /* The die_type call above may have already set the type for this DIE. */
13704 type = get_die_type (die, cu);
13705 if (type)
13706 return type;
13707
13708 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13709 if (attr != NULL)
13710 bit_stride = DW_UNSND (attr) * 8;
13711
13712 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13713 if (attr != NULL)
13714 bit_stride = DW_UNSND (attr);
13715
13716 /* Irix 6.2 native cc creates array types without children for
13717 arrays with unspecified length. */
13718 if (die->child == NULL)
13719 {
13720 index_type = objfile_type (objfile)->builtin_int;
13721 range_type = create_static_range_type (NULL, index_type, 0, -1);
13722 type = create_array_type_with_stride (NULL, element_type, range_type,
13723 bit_stride);
13724 return set_die_type (die, type, cu);
13725 }
13726
13727 back_to = make_cleanup (null_cleanup, NULL);
13728 child_die = die->child;
13729 while (child_die && child_die->tag)
13730 {
13731 if (child_die->tag == DW_TAG_subrange_type)
13732 {
13733 struct type *child_type = read_type_die (child_die, cu);
13734
13735 if (child_type != NULL)
13736 {
13737 /* The range type was succesfully read. Save it for the
13738 array type creation. */
13739 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13740 {
13741 range_types = (struct type **)
13742 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13743 * sizeof (struct type *));
13744 if (ndim == 0)
13745 make_cleanup (free_current_contents, &range_types);
13746 }
13747 range_types[ndim++] = child_type;
13748 }
13749 }
13750 child_die = sibling_die (child_die);
13751 }
13752
13753 /* Dwarf2 dimensions are output from left to right, create the
13754 necessary array types in backwards order. */
13755
13756 type = element_type;
13757
13758 if (read_array_order (die, cu) == DW_ORD_col_major)
13759 {
13760 int i = 0;
13761
13762 while (i < ndim)
13763 type = create_array_type_with_stride (NULL, type, range_types[i++],
13764 bit_stride);
13765 }
13766 else
13767 {
13768 while (ndim-- > 0)
13769 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13770 bit_stride);
13771 }
13772
13773 /* Understand Dwarf2 support for vector types (like they occur on
13774 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13775 array type. This is not part of the Dwarf2/3 standard yet, but a
13776 custom vendor extension. The main difference between a regular
13777 array and the vector variant is that vectors are passed by value
13778 to functions. */
13779 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13780 if (attr)
13781 make_vector_type (type);
13782
13783 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13784 implementation may choose to implement triple vectors using this
13785 attribute. */
13786 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13787 if (attr)
13788 {
13789 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13790 TYPE_LENGTH (type) = DW_UNSND (attr);
13791 else
13792 complaint (&symfile_complaints,
13793 _("DW_AT_byte_size for array type smaller "
13794 "than the total size of elements"));
13795 }
13796
13797 name = dwarf2_name (die, cu);
13798 if (name)
13799 TYPE_NAME (type) = name;
13800
13801 /* Install the type in the die. */
13802 set_die_type (die, type, cu);
13803
13804 /* set_die_type should be already done. */
13805 set_descriptive_type (type, die, cu);
13806
13807 do_cleanups (back_to);
13808
13809 return type;
13810 }
13811
13812 static enum dwarf_array_dim_ordering
13813 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13814 {
13815 struct attribute *attr;
13816
13817 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13818
13819 if (attr)
13820 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13821
13822 /* GNU F77 is a special case, as at 08/2004 array type info is the
13823 opposite order to the dwarf2 specification, but data is still
13824 laid out as per normal fortran.
13825
13826 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13827 version checking. */
13828
13829 if (cu->language == language_fortran
13830 && cu->producer && strstr (cu->producer, "GNU F77"))
13831 {
13832 return DW_ORD_row_major;
13833 }
13834
13835 switch (cu->language_defn->la_array_ordering)
13836 {
13837 case array_column_major:
13838 return DW_ORD_col_major;
13839 case array_row_major:
13840 default:
13841 return DW_ORD_row_major;
13842 };
13843 }
13844
13845 /* Extract all information from a DW_TAG_set_type DIE and put it in
13846 the DIE's type field. */
13847
13848 static struct type *
13849 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13850 {
13851 struct type *domain_type, *set_type;
13852 struct attribute *attr;
13853
13854 domain_type = die_type (die, cu);
13855
13856 /* The die_type call above may have already set the type for this DIE. */
13857 set_type = get_die_type (die, cu);
13858 if (set_type)
13859 return set_type;
13860
13861 set_type = create_set_type (NULL, domain_type);
13862
13863 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13864 if (attr)
13865 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13866
13867 return set_die_type (die, set_type, cu);
13868 }
13869
13870 /* A helper for read_common_block that creates a locexpr baton.
13871 SYM is the symbol which we are marking as computed.
13872 COMMON_DIE is the DIE for the common block.
13873 COMMON_LOC is the location expression attribute for the common
13874 block itself.
13875 MEMBER_LOC is the location expression attribute for the particular
13876 member of the common block that we are processing.
13877 CU is the CU from which the above come. */
13878
13879 static void
13880 mark_common_block_symbol_computed (struct symbol *sym,
13881 struct die_info *common_die,
13882 struct attribute *common_loc,
13883 struct attribute *member_loc,
13884 struct dwarf2_cu *cu)
13885 {
13886 struct objfile *objfile = dwarf2_per_objfile->objfile;
13887 struct dwarf2_locexpr_baton *baton;
13888 gdb_byte *ptr;
13889 unsigned int cu_off;
13890 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13891 LONGEST offset = 0;
13892
13893 gdb_assert (common_loc && member_loc);
13894 gdb_assert (attr_form_is_block (common_loc));
13895 gdb_assert (attr_form_is_block (member_loc)
13896 || attr_form_is_constant (member_loc));
13897
13898 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13899 baton->per_cu = cu->per_cu;
13900 gdb_assert (baton->per_cu);
13901
13902 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13903
13904 if (attr_form_is_constant (member_loc))
13905 {
13906 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13907 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13908 }
13909 else
13910 baton->size += DW_BLOCK (member_loc)->size;
13911
13912 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13913 baton->data = ptr;
13914
13915 *ptr++ = DW_OP_call4;
13916 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13917 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13918 ptr += 4;
13919
13920 if (attr_form_is_constant (member_loc))
13921 {
13922 *ptr++ = DW_OP_addr;
13923 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13924 ptr += cu->header.addr_size;
13925 }
13926 else
13927 {
13928 /* We have to copy the data here, because DW_OP_call4 will only
13929 use a DW_AT_location attribute. */
13930 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13931 ptr += DW_BLOCK (member_loc)->size;
13932 }
13933
13934 *ptr++ = DW_OP_plus;
13935 gdb_assert (ptr - baton->data == baton->size);
13936
13937 SYMBOL_LOCATION_BATON (sym) = baton;
13938 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13939 }
13940
13941 /* Create appropriate locally-scoped variables for all the
13942 DW_TAG_common_block entries. Also create a struct common_block
13943 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13944 is used to sepate the common blocks name namespace from regular
13945 variable names. */
13946
13947 static void
13948 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13949 {
13950 struct attribute *attr;
13951
13952 attr = dwarf2_attr (die, DW_AT_location, cu);
13953 if (attr)
13954 {
13955 /* Support the .debug_loc offsets. */
13956 if (attr_form_is_block (attr))
13957 {
13958 /* Ok. */
13959 }
13960 else if (attr_form_is_section_offset (attr))
13961 {
13962 dwarf2_complex_location_expr_complaint ();
13963 attr = NULL;
13964 }
13965 else
13966 {
13967 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13968 "common block member");
13969 attr = NULL;
13970 }
13971 }
13972
13973 if (die->child != NULL)
13974 {
13975 struct objfile *objfile = cu->objfile;
13976 struct die_info *child_die;
13977 size_t n_entries = 0, size;
13978 struct common_block *common_block;
13979 struct symbol *sym;
13980
13981 for (child_die = die->child;
13982 child_die && child_die->tag;
13983 child_die = sibling_die (child_die))
13984 ++n_entries;
13985
13986 size = (sizeof (struct common_block)
13987 + (n_entries - 1) * sizeof (struct symbol *));
13988 common_block
13989 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
13990 size);
13991 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13992 common_block->n_entries = 0;
13993
13994 for (child_die = die->child;
13995 child_die && child_die->tag;
13996 child_die = sibling_die (child_die))
13997 {
13998 /* Create the symbol in the DW_TAG_common_block block in the current
13999 symbol scope. */
14000 sym = new_symbol (child_die, NULL, cu);
14001 if (sym != NULL)
14002 {
14003 struct attribute *member_loc;
14004
14005 common_block->contents[common_block->n_entries++] = sym;
14006
14007 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14008 cu);
14009 if (member_loc)
14010 {
14011 /* GDB has handled this for a long time, but it is
14012 not specified by DWARF. It seems to have been
14013 emitted by gfortran at least as recently as:
14014 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14015 complaint (&symfile_complaints,
14016 _("Variable in common block has "
14017 "DW_AT_data_member_location "
14018 "- DIE at 0x%x [in module %s]"),
14019 child_die->offset.sect_off,
14020 objfile_name (cu->objfile));
14021
14022 if (attr_form_is_section_offset (member_loc))
14023 dwarf2_complex_location_expr_complaint ();
14024 else if (attr_form_is_constant (member_loc)
14025 || attr_form_is_block (member_loc))
14026 {
14027 if (attr)
14028 mark_common_block_symbol_computed (sym, die, attr,
14029 member_loc, cu);
14030 }
14031 else
14032 dwarf2_complex_location_expr_complaint ();
14033 }
14034 }
14035 }
14036
14037 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14038 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14039 }
14040 }
14041
14042 /* Create a type for a C++ namespace. */
14043
14044 static struct type *
14045 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14046 {
14047 struct objfile *objfile = cu->objfile;
14048 const char *previous_prefix, *name;
14049 int is_anonymous;
14050 struct type *type;
14051
14052 /* For extensions, reuse the type of the original namespace. */
14053 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14054 {
14055 struct die_info *ext_die;
14056 struct dwarf2_cu *ext_cu = cu;
14057
14058 ext_die = dwarf2_extension (die, &ext_cu);
14059 type = read_type_die (ext_die, ext_cu);
14060
14061 /* EXT_CU may not be the same as CU.
14062 Ensure TYPE is recorded with CU in die_type_hash. */
14063 return set_die_type (die, type, cu);
14064 }
14065
14066 name = namespace_name (die, &is_anonymous, cu);
14067
14068 /* Now build the name of the current namespace. */
14069
14070 previous_prefix = determine_prefix (die, cu);
14071 if (previous_prefix[0] != '\0')
14072 name = typename_concat (&objfile->objfile_obstack,
14073 previous_prefix, name, 0, cu);
14074
14075 /* Create the type. */
14076 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14077 objfile);
14078 TYPE_NAME (type) = name;
14079 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14080
14081 return set_die_type (die, type, cu);
14082 }
14083
14084 /* Read a namespace scope. */
14085
14086 static void
14087 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14088 {
14089 struct objfile *objfile = cu->objfile;
14090 int is_anonymous;
14091
14092 /* Add a symbol associated to this if we haven't seen the namespace
14093 before. Also, add a using directive if it's an anonymous
14094 namespace. */
14095
14096 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14097 {
14098 struct type *type;
14099
14100 type = read_type_die (die, cu);
14101 new_symbol (die, type, cu);
14102
14103 namespace_name (die, &is_anonymous, cu);
14104 if (is_anonymous)
14105 {
14106 const char *previous_prefix = determine_prefix (die, cu);
14107
14108 add_using_directive (using_directives (cu->language),
14109 previous_prefix, TYPE_NAME (type), NULL,
14110 NULL, NULL, 0, &objfile->objfile_obstack);
14111 }
14112 }
14113
14114 if (die->child != NULL)
14115 {
14116 struct die_info *child_die = die->child;
14117
14118 while (child_die && child_die->tag)
14119 {
14120 process_die (child_die, cu);
14121 child_die = sibling_die (child_die);
14122 }
14123 }
14124 }
14125
14126 /* Read a Fortran module as type. This DIE can be only a declaration used for
14127 imported module. Still we need that type as local Fortran "use ... only"
14128 declaration imports depend on the created type in determine_prefix. */
14129
14130 static struct type *
14131 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14132 {
14133 struct objfile *objfile = cu->objfile;
14134 const char *module_name;
14135 struct type *type;
14136
14137 module_name = dwarf2_name (die, cu);
14138 if (!module_name)
14139 complaint (&symfile_complaints,
14140 _("DW_TAG_module has no name, offset 0x%x"),
14141 die->offset.sect_off);
14142 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14143
14144 /* determine_prefix uses TYPE_TAG_NAME. */
14145 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14146
14147 return set_die_type (die, type, cu);
14148 }
14149
14150 /* Read a Fortran module. */
14151
14152 static void
14153 read_module (struct die_info *die, struct dwarf2_cu *cu)
14154 {
14155 struct die_info *child_die = die->child;
14156 struct type *type;
14157
14158 type = read_type_die (die, cu);
14159 new_symbol (die, type, cu);
14160
14161 while (child_die && child_die->tag)
14162 {
14163 process_die (child_die, cu);
14164 child_die = sibling_die (child_die);
14165 }
14166 }
14167
14168 /* Return the name of the namespace represented by DIE. Set
14169 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14170 namespace. */
14171
14172 static const char *
14173 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14174 {
14175 struct die_info *current_die;
14176 const char *name = NULL;
14177
14178 /* Loop through the extensions until we find a name. */
14179
14180 for (current_die = die;
14181 current_die != NULL;
14182 current_die = dwarf2_extension (die, &cu))
14183 {
14184 /* We don't use dwarf2_name here so that we can detect the absence
14185 of a name -> anonymous namespace. */
14186 name = dwarf2_string_attr (die, DW_AT_name, cu);
14187
14188 if (name != NULL)
14189 break;
14190 }
14191
14192 /* Is it an anonymous namespace? */
14193
14194 *is_anonymous = (name == NULL);
14195 if (*is_anonymous)
14196 name = CP_ANONYMOUS_NAMESPACE_STR;
14197
14198 return name;
14199 }
14200
14201 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14202 the user defined type vector. */
14203
14204 static struct type *
14205 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14206 {
14207 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14208 struct comp_unit_head *cu_header = &cu->header;
14209 struct type *type;
14210 struct attribute *attr_byte_size;
14211 struct attribute *attr_address_class;
14212 int byte_size, addr_class;
14213 struct type *target_type;
14214
14215 target_type = die_type (die, cu);
14216
14217 /* The die_type call above may have already set the type for this DIE. */
14218 type = get_die_type (die, cu);
14219 if (type)
14220 return type;
14221
14222 type = lookup_pointer_type (target_type);
14223
14224 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14225 if (attr_byte_size)
14226 byte_size = DW_UNSND (attr_byte_size);
14227 else
14228 byte_size = cu_header->addr_size;
14229
14230 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14231 if (attr_address_class)
14232 addr_class = DW_UNSND (attr_address_class);
14233 else
14234 addr_class = DW_ADDR_none;
14235
14236 /* If the pointer size or address class is different than the
14237 default, create a type variant marked as such and set the
14238 length accordingly. */
14239 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14240 {
14241 if (gdbarch_address_class_type_flags_p (gdbarch))
14242 {
14243 int type_flags;
14244
14245 type_flags = gdbarch_address_class_type_flags
14246 (gdbarch, byte_size, addr_class);
14247 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14248 == 0);
14249 type = make_type_with_address_space (type, type_flags);
14250 }
14251 else if (TYPE_LENGTH (type) != byte_size)
14252 {
14253 complaint (&symfile_complaints,
14254 _("invalid pointer size %d"), byte_size);
14255 }
14256 else
14257 {
14258 /* Should we also complain about unhandled address classes? */
14259 }
14260 }
14261
14262 TYPE_LENGTH (type) = byte_size;
14263 return set_die_type (die, type, cu);
14264 }
14265
14266 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14267 the user defined type vector. */
14268
14269 static struct type *
14270 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14271 {
14272 struct type *type;
14273 struct type *to_type;
14274 struct type *domain;
14275
14276 to_type = die_type (die, cu);
14277 domain = die_containing_type (die, cu);
14278
14279 /* The calls above may have already set the type for this DIE. */
14280 type = get_die_type (die, cu);
14281 if (type)
14282 return type;
14283
14284 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14285 type = lookup_methodptr_type (to_type);
14286 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14287 {
14288 struct type *new_type = alloc_type (cu->objfile);
14289
14290 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14291 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14292 TYPE_VARARGS (to_type));
14293 type = lookup_methodptr_type (new_type);
14294 }
14295 else
14296 type = lookup_memberptr_type (to_type, domain);
14297
14298 return set_die_type (die, type, cu);
14299 }
14300
14301 /* Extract all information from a DW_TAG_reference_type DIE and add to
14302 the user defined type vector. */
14303
14304 static struct type *
14305 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14306 {
14307 struct comp_unit_head *cu_header = &cu->header;
14308 struct type *type, *target_type;
14309 struct attribute *attr;
14310
14311 target_type = die_type (die, cu);
14312
14313 /* The die_type call above may have already set the type for this DIE. */
14314 type = get_die_type (die, cu);
14315 if (type)
14316 return type;
14317
14318 type = lookup_reference_type (target_type);
14319 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14320 if (attr)
14321 {
14322 TYPE_LENGTH (type) = DW_UNSND (attr);
14323 }
14324 else
14325 {
14326 TYPE_LENGTH (type) = cu_header->addr_size;
14327 }
14328 return set_die_type (die, type, cu);
14329 }
14330
14331 /* Add the given cv-qualifiers to the element type of the array. GCC
14332 outputs DWARF type qualifiers that apply to an array, not the
14333 element type. But GDB relies on the array element type to carry
14334 the cv-qualifiers. This mimics section 6.7.3 of the C99
14335 specification. */
14336
14337 static struct type *
14338 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14339 struct type *base_type, int cnst, int voltl)
14340 {
14341 struct type *el_type, *inner_array;
14342
14343 base_type = copy_type (base_type);
14344 inner_array = base_type;
14345
14346 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14347 {
14348 TYPE_TARGET_TYPE (inner_array) =
14349 copy_type (TYPE_TARGET_TYPE (inner_array));
14350 inner_array = TYPE_TARGET_TYPE (inner_array);
14351 }
14352
14353 el_type = TYPE_TARGET_TYPE (inner_array);
14354 cnst |= TYPE_CONST (el_type);
14355 voltl |= TYPE_VOLATILE (el_type);
14356 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14357
14358 return set_die_type (die, base_type, cu);
14359 }
14360
14361 static struct type *
14362 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14363 {
14364 struct type *base_type, *cv_type;
14365
14366 base_type = die_type (die, cu);
14367
14368 /* The die_type call above may have already set the type for this DIE. */
14369 cv_type = get_die_type (die, cu);
14370 if (cv_type)
14371 return cv_type;
14372
14373 /* In case the const qualifier is applied to an array type, the element type
14374 is so qualified, not the array type (section 6.7.3 of C99). */
14375 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14376 return add_array_cv_type (die, cu, base_type, 1, 0);
14377
14378 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14379 return set_die_type (die, cv_type, cu);
14380 }
14381
14382 static struct type *
14383 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14384 {
14385 struct type *base_type, *cv_type;
14386
14387 base_type = die_type (die, cu);
14388
14389 /* The die_type call above may have already set the type for this DIE. */
14390 cv_type = get_die_type (die, cu);
14391 if (cv_type)
14392 return cv_type;
14393
14394 /* In case the volatile qualifier is applied to an array type, the
14395 element type is so qualified, not the array type (section 6.7.3
14396 of C99). */
14397 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14398 return add_array_cv_type (die, cu, base_type, 0, 1);
14399
14400 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14401 return set_die_type (die, cv_type, cu);
14402 }
14403
14404 /* Handle DW_TAG_restrict_type. */
14405
14406 static struct type *
14407 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14408 {
14409 struct type *base_type, *cv_type;
14410
14411 base_type = die_type (die, cu);
14412
14413 /* The die_type call above may have already set the type for this DIE. */
14414 cv_type = get_die_type (die, cu);
14415 if (cv_type)
14416 return cv_type;
14417
14418 cv_type = make_restrict_type (base_type);
14419 return set_die_type (die, cv_type, cu);
14420 }
14421
14422 /* Handle DW_TAG_atomic_type. */
14423
14424 static struct type *
14425 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14426 {
14427 struct type *base_type, *cv_type;
14428
14429 base_type = die_type (die, cu);
14430
14431 /* The die_type call above may have already set the type for this DIE. */
14432 cv_type = get_die_type (die, cu);
14433 if (cv_type)
14434 return cv_type;
14435
14436 cv_type = make_atomic_type (base_type);
14437 return set_die_type (die, cv_type, cu);
14438 }
14439
14440 /* Extract all information from a DW_TAG_string_type DIE and add to
14441 the user defined type vector. It isn't really a user defined type,
14442 but it behaves like one, with other DIE's using an AT_user_def_type
14443 attribute to reference it. */
14444
14445 static struct type *
14446 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14447 {
14448 struct objfile *objfile = cu->objfile;
14449 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14450 struct type *type, *range_type, *index_type, *char_type;
14451 struct attribute *attr;
14452 unsigned int length;
14453
14454 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14455 if (attr)
14456 {
14457 length = DW_UNSND (attr);
14458 }
14459 else
14460 {
14461 /* Check for the DW_AT_byte_size attribute. */
14462 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14463 if (attr)
14464 {
14465 length = DW_UNSND (attr);
14466 }
14467 else
14468 {
14469 length = 1;
14470 }
14471 }
14472
14473 index_type = objfile_type (objfile)->builtin_int;
14474 range_type = create_static_range_type (NULL, index_type, 1, length);
14475 char_type = language_string_char_type (cu->language_defn, gdbarch);
14476 type = create_string_type (NULL, char_type, range_type);
14477
14478 return set_die_type (die, type, cu);
14479 }
14480
14481 /* Assuming that DIE corresponds to a function, returns nonzero
14482 if the function is prototyped. */
14483
14484 static int
14485 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14486 {
14487 struct attribute *attr;
14488
14489 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14490 if (attr && (DW_UNSND (attr) != 0))
14491 return 1;
14492
14493 /* The DWARF standard implies that the DW_AT_prototyped attribute
14494 is only meaninful for C, but the concept also extends to other
14495 languages that allow unprototyped functions (Eg: Objective C).
14496 For all other languages, assume that functions are always
14497 prototyped. */
14498 if (cu->language != language_c
14499 && cu->language != language_objc
14500 && cu->language != language_opencl)
14501 return 1;
14502
14503 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14504 prototyped and unprototyped functions; default to prototyped,
14505 since that is more common in modern code (and RealView warns
14506 about unprototyped functions). */
14507 if (producer_is_realview (cu->producer))
14508 return 1;
14509
14510 return 0;
14511 }
14512
14513 /* Handle DIES due to C code like:
14514
14515 struct foo
14516 {
14517 int (*funcp)(int a, long l);
14518 int b;
14519 };
14520
14521 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14522
14523 static struct type *
14524 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14525 {
14526 struct objfile *objfile = cu->objfile;
14527 struct type *type; /* Type that this function returns. */
14528 struct type *ftype; /* Function that returns above type. */
14529 struct attribute *attr;
14530
14531 type = die_type (die, cu);
14532
14533 /* The die_type call above may have already set the type for this DIE. */
14534 ftype = get_die_type (die, cu);
14535 if (ftype)
14536 return ftype;
14537
14538 ftype = lookup_function_type (type);
14539
14540 if (prototyped_function_p (die, cu))
14541 TYPE_PROTOTYPED (ftype) = 1;
14542
14543 /* Store the calling convention in the type if it's available in
14544 the subroutine die. Otherwise set the calling convention to
14545 the default value DW_CC_normal. */
14546 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14547 if (attr)
14548 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14549 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14550 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14551 else
14552 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14553
14554 /* Record whether the function returns normally to its caller or not
14555 if the DWARF producer set that information. */
14556 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14557 if (attr && (DW_UNSND (attr) != 0))
14558 TYPE_NO_RETURN (ftype) = 1;
14559
14560 /* We need to add the subroutine type to the die immediately so
14561 we don't infinitely recurse when dealing with parameters
14562 declared as the same subroutine type. */
14563 set_die_type (die, ftype, cu);
14564
14565 if (die->child != NULL)
14566 {
14567 struct type *void_type = objfile_type (objfile)->builtin_void;
14568 struct die_info *child_die;
14569 int nparams, iparams;
14570
14571 /* Count the number of parameters.
14572 FIXME: GDB currently ignores vararg functions, but knows about
14573 vararg member functions. */
14574 nparams = 0;
14575 child_die = die->child;
14576 while (child_die && child_die->tag)
14577 {
14578 if (child_die->tag == DW_TAG_formal_parameter)
14579 nparams++;
14580 else if (child_die->tag == DW_TAG_unspecified_parameters)
14581 TYPE_VARARGS (ftype) = 1;
14582 child_die = sibling_die (child_die);
14583 }
14584
14585 /* Allocate storage for parameters and fill them in. */
14586 TYPE_NFIELDS (ftype) = nparams;
14587 TYPE_FIELDS (ftype) = (struct field *)
14588 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14589
14590 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14591 even if we error out during the parameters reading below. */
14592 for (iparams = 0; iparams < nparams; iparams++)
14593 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14594
14595 iparams = 0;
14596 child_die = die->child;
14597 while (child_die && child_die->tag)
14598 {
14599 if (child_die->tag == DW_TAG_formal_parameter)
14600 {
14601 struct type *arg_type;
14602
14603 /* DWARF version 2 has no clean way to discern C++
14604 static and non-static member functions. G++ helps
14605 GDB by marking the first parameter for non-static
14606 member functions (which is the this pointer) as
14607 artificial. We pass this information to
14608 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14609
14610 DWARF version 3 added DW_AT_object_pointer, which GCC
14611 4.5 does not yet generate. */
14612 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14613 if (attr)
14614 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14615 else
14616 {
14617 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14618
14619 /* GCC/43521: In java, the formal parameter
14620 "this" is sometimes not marked with DW_AT_artificial. */
14621 if (cu->language == language_java)
14622 {
14623 const char *name = dwarf2_name (child_die, cu);
14624
14625 if (name && !strcmp (name, "this"))
14626 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14627 }
14628 }
14629 arg_type = die_type (child_die, cu);
14630
14631 /* RealView does not mark THIS as const, which the testsuite
14632 expects. GCC marks THIS as const in method definitions,
14633 but not in the class specifications (GCC PR 43053). */
14634 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14635 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14636 {
14637 int is_this = 0;
14638 struct dwarf2_cu *arg_cu = cu;
14639 const char *name = dwarf2_name (child_die, cu);
14640
14641 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14642 if (attr)
14643 {
14644 /* If the compiler emits this, use it. */
14645 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14646 is_this = 1;
14647 }
14648 else if (name && strcmp (name, "this") == 0)
14649 /* Function definitions will have the argument names. */
14650 is_this = 1;
14651 else if (name == NULL && iparams == 0)
14652 /* Declarations may not have the names, so like
14653 elsewhere in GDB, assume an artificial first
14654 argument is "this". */
14655 is_this = 1;
14656
14657 if (is_this)
14658 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14659 arg_type, 0);
14660 }
14661
14662 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14663 iparams++;
14664 }
14665 child_die = sibling_die (child_die);
14666 }
14667 }
14668
14669 return ftype;
14670 }
14671
14672 static struct type *
14673 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14674 {
14675 struct objfile *objfile = cu->objfile;
14676 const char *name = NULL;
14677 struct type *this_type, *target_type;
14678
14679 name = dwarf2_full_name (NULL, die, cu);
14680 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14681 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14682 TYPE_NAME (this_type) = name;
14683 set_die_type (die, this_type, cu);
14684 target_type = die_type (die, cu);
14685 if (target_type != this_type)
14686 TYPE_TARGET_TYPE (this_type) = target_type;
14687 else
14688 {
14689 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14690 spec and cause infinite loops in GDB. */
14691 complaint (&symfile_complaints,
14692 _("Self-referential DW_TAG_typedef "
14693 "- DIE at 0x%x [in module %s]"),
14694 die->offset.sect_off, objfile_name (objfile));
14695 TYPE_TARGET_TYPE (this_type) = NULL;
14696 }
14697 return this_type;
14698 }
14699
14700 /* Find a representation of a given base type and install
14701 it in the TYPE field of the die. */
14702
14703 static struct type *
14704 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14705 {
14706 struct objfile *objfile = cu->objfile;
14707 struct type *type;
14708 struct attribute *attr;
14709 int encoding = 0, size = 0;
14710 const char *name;
14711 enum type_code code = TYPE_CODE_INT;
14712 int type_flags = 0;
14713 struct type *target_type = NULL;
14714
14715 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14716 if (attr)
14717 {
14718 encoding = DW_UNSND (attr);
14719 }
14720 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14721 if (attr)
14722 {
14723 size = DW_UNSND (attr);
14724 }
14725 name = dwarf2_name (die, cu);
14726 if (!name)
14727 {
14728 complaint (&symfile_complaints,
14729 _("DW_AT_name missing from DW_TAG_base_type"));
14730 }
14731
14732 switch (encoding)
14733 {
14734 case DW_ATE_address:
14735 /* Turn DW_ATE_address into a void * pointer. */
14736 code = TYPE_CODE_PTR;
14737 type_flags |= TYPE_FLAG_UNSIGNED;
14738 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14739 break;
14740 case DW_ATE_boolean:
14741 code = TYPE_CODE_BOOL;
14742 type_flags |= TYPE_FLAG_UNSIGNED;
14743 break;
14744 case DW_ATE_complex_float:
14745 code = TYPE_CODE_COMPLEX;
14746 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14747 break;
14748 case DW_ATE_decimal_float:
14749 code = TYPE_CODE_DECFLOAT;
14750 break;
14751 case DW_ATE_float:
14752 code = TYPE_CODE_FLT;
14753 break;
14754 case DW_ATE_signed:
14755 break;
14756 case DW_ATE_unsigned:
14757 type_flags |= TYPE_FLAG_UNSIGNED;
14758 if (cu->language == language_fortran
14759 && name
14760 && startswith (name, "character("))
14761 code = TYPE_CODE_CHAR;
14762 break;
14763 case DW_ATE_signed_char:
14764 if (cu->language == language_ada || cu->language == language_m2
14765 || cu->language == language_pascal
14766 || cu->language == language_fortran)
14767 code = TYPE_CODE_CHAR;
14768 break;
14769 case DW_ATE_unsigned_char:
14770 if (cu->language == language_ada || cu->language == language_m2
14771 || cu->language == language_pascal
14772 || cu->language == language_fortran)
14773 code = TYPE_CODE_CHAR;
14774 type_flags |= TYPE_FLAG_UNSIGNED;
14775 break;
14776 case DW_ATE_UTF:
14777 /* We just treat this as an integer and then recognize the
14778 type by name elsewhere. */
14779 break;
14780
14781 default:
14782 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14783 dwarf_type_encoding_name (encoding));
14784 break;
14785 }
14786
14787 type = init_type (code, size, type_flags, NULL, objfile);
14788 TYPE_NAME (type) = name;
14789 TYPE_TARGET_TYPE (type) = target_type;
14790
14791 if (name && strcmp (name, "char") == 0)
14792 TYPE_NOSIGN (type) = 1;
14793
14794 return set_die_type (die, type, cu);
14795 }
14796
14797 /* Parse dwarf attribute if it's a block, reference or constant and put the
14798 resulting value of the attribute into struct bound_prop.
14799 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14800
14801 static int
14802 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14803 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14804 {
14805 struct dwarf2_property_baton *baton;
14806 struct obstack *obstack = &cu->objfile->objfile_obstack;
14807
14808 if (attr == NULL || prop == NULL)
14809 return 0;
14810
14811 if (attr_form_is_block (attr))
14812 {
14813 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14814 baton->referenced_type = NULL;
14815 baton->locexpr.per_cu = cu->per_cu;
14816 baton->locexpr.size = DW_BLOCK (attr)->size;
14817 baton->locexpr.data = DW_BLOCK (attr)->data;
14818 prop->data.baton = baton;
14819 prop->kind = PROP_LOCEXPR;
14820 gdb_assert (prop->data.baton != NULL);
14821 }
14822 else if (attr_form_is_ref (attr))
14823 {
14824 struct dwarf2_cu *target_cu = cu;
14825 struct die_info *target_die;
14826 struct attribute *target_attr;
14827
14828 target_die = follow_die_ref (die, attr, &target_cu);
14829 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14830 if (target_attr == NULL)
14831 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14832 target_cu);
14833 if (target_attr == NULL)
14834 return 0;
14835
14836 switch (target_attr->name)
14837 {
14838 case DW_AT_location:
14839 if (attr_form_is_section_offset (target_attr))
14840 {
14841 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14842 baton->referenced_type = die_type (target_die, target_cu);
14843 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14844 prop->data.baton = baton;
14845 prop->kind = PROP_LOCLIST;
14846 gdb_assert (prop->data.baton != NULL);
14847 }
14848 else if (attr_form_is_block (target_attr))
14849 {
14850 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14851 baton->referenced_type = die_type (target_die, target_cu);
14852 baton->locexpr.per_cu = cu->per_cu;
14853 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14854 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14855 prop->data.baton = baton;
14856 prop->kind = PROP_LOCEXPR;
14857 gdb_assert (prop->data.baton != NULL);
14858 }
14859 else
14860 {
14861 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14862 "dynamic property");
14863 return 0;
14864 }
14865 break;
14866 case DW_AT_data_member_location:
14867 {
14868 LONGEST offset;
14869
14870 if (!handle_data_member_location (target_die, target_cu,
14871 &offset))
14872 return 0;
14873
14874 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14875 baton->referenced_type = read_type_die (target_die->parent,
14876 target_cu);
14877 baton->offset_info.offset = offset;
14878 baton->offset_info.type = die_type (target_die, target_cu);
14879 prop->data.baton = baton;
14880 prop->kind = PROP_ADDR_OFFSET;
14881 break;
14882 }
14883 }
14884 }
14885 else if (attr_form_is_constant (attr))
14886 {
14887 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14888 prop->kind = PROP_CONST;
14889 }
14890 else
14891 {
14892 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14893 dwarf2_name (die, cu));
14894 return 0;
14895 }
14896
14897 return 1;
14898 }
14899
14900 /* Read the given DW_AT_subrange DIE. */
14901
14902 static struct type *
14903 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14904 {
14905 struct type *base_type, *orig_base_type;
14906 struct type *range_type;
14907 struct attribute *attr;
14908 struct dynamic_prop low, high;
14909 int low_default_is_valid;
14910 int high_bound_is_count = 0;
14911 const char *name;
14912 LONGEST negative_mask;
14913
14914 orig_base_type = die_type (die, cu);
14915 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14916 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14917 creating the range type, but we use the result of check_typedef
14918 when examining properties of the type. */
14919 base_type = check_typedef (orig_base_type);
14920
14921 /* The die_type call above may have already set the type for this DIE. */
14922 range_type = get_die_type (die, cu);
14923 if (range_type)
14924 return range_type;
14925
14926 low.kind = PROP_CONST;
14927 high.kind = PROP_CONST;
14928 high.data.const_val = 0;
14929
14930 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14931 omitting DW_AT_lower_bound. */
14932 switch (cu->language)
14933 {
14934 case language_c:
14935 case language_cplus:
14936 low.data.const_val = 0;
14937 low_default_is_valid = 1;
14938 break;
14939 case language_fortran:
14940 low.data.const_val = 1;
14941 low_default_is_valid = 1;
14942 break;
14943 case language_d:
14944 case language_java:
14945 case language_objc:
14946 low.data.const_val = 0;
14947 low_default_is_valid = (cu->header.version >= 4);
14948 break;
14949 case language_ada:
14950 case language_m2:
14951 case language_pascal:
14952 low.data.const_val = 1;
14953 low_default_is_valid = (cu->header.version >= 4);
14954 break;
14955 default:
14956 low.data.const_val = 0;
14957 low_default_is_valid = 0;
14958 break;
14959 }
14960
14961 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14962 if (attr)
14963 attr_to_dynamic_prop (attr, die, cu, &low);
14964 else if (!low_default_is_valid)
14965 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14966 "- DIE at 0x%x [in module %s]"),
14967 die->offset.sect_off, objfile_name (cu->objfile));
14968
14969 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14970 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14971 {
14972 attr = dwarf2_attr (die, DW_AT_count, cu);
14973 if (attr_to_dynamic_prop (attr, die, cu, &high))
14974 {
14975 /* If bounds are constant do the final calculation here. */
14976 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14977 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14978 else
14979 high_bound_is_count = 1;
14980 }
14981 }
14982
14983 /* Dwarf-2 specifications explicitly allows to create subrange types
14984 without specifying a base type.
14985 In that case, the base type must be set to the type of
14986 the lower bound, upper bound or count, in that order, if any of these
14987 three attributes references an object that has a type.
14988 If no base type is found, the Dwarf-2 specifications say that
14989 a signed integer type of size equal to the size of an address should
14990 be used.
14991 For the following C code: `extern char gdb_int [];'
14992 GCC produces an empty range DIE.
14993 FIXME: muller/2010-05-28: Possible references to object for low bound,
14994 high bound or count are not yet handled by this code. */
14995 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14996 {
14997 struct objfile *objfile = cu->objfile;
14998 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14999 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15000 struct type *int_type = objfile_type (objfile)->builtin_int;
15001
15002 /* Test "int", "long int", and "long long int" objfile types,
15003 and select the first one having a size above or equal to the
15004 architecture address size. */
15005 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15006 base_type = int_type;
15007 else
15008 {
15009 int_type = objfile_type (objfile)->builtin_long;
15010 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15011 base_type = int_type;
15012 else
15013 {
15014 int_type = objfile_type (objfile)->builtin_long_long;
15015 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15016 base_type = int_type;
15017 }
15018 }
15019 }
15020
15021 /* Normally, the DWARF producers are expected to use a signed
15022 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15023 But this is unfortunately not always the case, as witnessed
15024 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15025 is used instead. To work around that ambiguity, we treat
15026 the bounds as signed, and thus sign-extend their values, when
15027 the base type is signed. */
15028 negative_mask =
15029 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15030 if (low.kind == PROP_CONST
15031 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15032 low.data.const_val |= negative_mask;
15033 if (high.kind == PROP_CONST
15034 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15035 high.data.const_val |= negative_mask;
15036
15037 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15038
15039 if (high_bound_is_count)
15040 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15041
15042 /* Ada expects an empty array on no boundary attributes. */
15043 if (attr == NULL && cu->language != language_ada)
15044 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15045
15046 name = dwarf2_name (die, cu);
15047 if (name)
15048 TYPE_NAME (range_type) = name;
15049
15050 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15051 if (attr)
15052 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15053
15054 set_die_type (die, range_type, cu);
15055
15056 /* set_die_type should be already done. */
15057 set_descriptive_type (range_type, die, cu);
15058
15059 return range_type;
15060 }
15061
15062 static struct type *
15063 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15064 {
15065 struct type *type;
15066
15067 /* For now, we only support the C meaning of an unspecified type: void. */
15068
15069 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15070 TYPE_NAME (type) = dwarf2_name (die, cu);
15071
15072 return set_die_type (die, type, cu);
15073 }
15074
15075 /* Read a single die and all its descendents. Set the die's sibling
15076 field to NULL; set other fields in the die correctly, and set all
15077 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15078 location of the info_ptr after reading all of those dies. PARENT
15079 is the parent of the die in question. */
15080
15081 static struct die_info *
15082 read_die_and_children (const struct die_reader_specs *reader,
15083 const gdb_byte *info_ptr,
15084 const gdb_byte **new_info_ptr,
15085 struct die_info *parent)
15086 {
15087 struct die_info *die;
15088 const gdb_byte *cur_ptr;
15089 int has_children;
15090
15091 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15092 if (die == NULL)
15093 {
15094 *new_info_ptr = cur_ptr;
15095 return NULL;
15096 }
15097 store_in_ref_table (die, reader->cu);
15098
15099 if (has_children)
15100 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15101 else
15102 {
15103 die->child = NULL;
15104 *new_info_ptr = cur_ptr;
15105 }
15106
15107 die->sibling = NULL;
15108 die->parent = parent;
15109 return die;
15110 }
15111
15112 /* Read a die, all of its descendents, and all of its siblings; set
15113 all of the fields of all of the dies correctly. Arguments are as
15114 in read_die_and_children. */
15115
15116 static struct die_info *
15117 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15118 const gdb_byte *info_ptr,
15119 const gdb_byte **new_info_ptr,
15120 struct die_info *parent)
15121 {
15122 struct die_info *first_die, *last_sibling;
15123 const gdb_byte *cur_ptr;
15124
15125 cur_ptr = info_ptr;
15126 first_die = last_sibling = NULL;
15127
15128 while (1)
15129 {
15130 struct die_info *die
15131 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15132
15133 if (die == NULL)
15134 {
15135 *new_info_ptr = cur_ptr;
15136 return first_die;
15137 }
15138
15139 if (!first_die)
15140 first_die = die;
15141 else
15142 last_sibling->sibling = die;
15143
15144 last_sibling = die;
15145 }
15146 }
15147
15148 /* Read a die, all of its descendents, and all of its siblings; set
15149 all of the fields of all of the dies correctly. Arguments are as
15150 in read_die_and_children.
15151 This the main entry point for reading a DIE and all its children. */
15152
15153 static struct die_info *
15154 read_die_and_siblings (const struct die_reader_specs *reader,
15155 const gdb_byte *info_ptr,
15156 const gdb_byte **new_info_ptr,
15157 struct die_info *parent)
15158 {
15159 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15160 new_info_ptr, parent);
15161
15162 if (dwarf_die_debug)
15163 {
15164 fprintf_unfiltered (gdb_stdlog,
15165 "Read die from %s@0x%x of %s:\n",
15166 get_section_name (reader->die_section),
15167 (unsigned) (info_ptr - reader->die_section->buffer),
15168 bfd_get_filename (reader->abfd));
15169 dump_die (die, dwarf_die_debug);
15170 }
15171
15172 return die;
15173 }
15174
15175 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15176 attributes.
15177 The caller is responsible for filling in the extra attributes
15178 and updating (*DIEP)->num_attrs.
15179 Set DIEP to point to a newly allocated die with its information,
15180 except for its child, sibling, and parent fields.
15181 Set HAS_CHILDREN to tell whether the die has children or not. */
15182
15183 static const gdb_byte *
15184 read_full_die_1 (const struct die_reader_specs *reader,
15185 struct die_info **diep, const gdb_byte *info_ptr,
15186 int *has_children, int num_extra_attrs)
15187 {
15188 unsigned int abbrev_number, bytes_read, i;
15189 sect_offset offset;
15190 struct abbrev_info *abbrev;
15191 struct die_info *die;
15192 struct dwarf2_cu *cu = reader->cu;
15193 bfd *abfd = reader->abfd;
15194
15195 offset.sect_off = info_ptr - reader->buffer;
15196 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15197 info_ptr += bytes_read;
15198 if (!abbrev_number)
15199 {
15200 *diep = NULL;
15201 *has_children = 0;
15202 return info_ptr;
15203 }
15204
15205 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15206 if (!abbrev)
15207 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15208 abbrev_number,
15209 bfd_get_filename (abfd));
15210
15211 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15212 die->offset = offset;
15213 die->tag = abbrev->tag;
15214 die->abbrev = abbrev_number;
15215
15216 /* Make the result usable.
15217 The caller needs to update num_attrs after adding the extra
15218 attributes. */
15219 die->num_attrs = abbrev->num_attrs;
15220
15221 for (i = 0; i < abbrev->num_attrs; ++i)
15222 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15223 info_ptr);
15224
15225 *diep = die;
15226 *has_children = abbrev->has_children;
15227 return info_ptr;
15228 }
15229
15230 /* Read a die and all its attributes.
15231 Set DIEP to point to a newly allocated die with its information,
15232 except for its child, sibling, and parent fields.
15233 Set HAS_CHILDREN to tell whether the die has children or not. */
15234
15235 static const gdb_byte *
15236 read_full_die (const struct die_reader_specs *reader,
15237 struct die_info **diep, const gdb_byte *info_ptr,
15238 int *has_children)
15239 {
15240 const gdb_byte *result;
15241
15242 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15243
15244 if (dwarf_die_debug)
15245 {
15246 fprintf_unfiltered (gdb_stdlog,
15247 "Read die from %s@0x%x of %s:\n",
15248 get_section_name (reader->die_section),
15249 (unsigned) (info_ptr - reader->die_section->buffer),
15250 bfd_get_filename (reader->abfd));
15251 dump_die (*diep, dwarf_die_debug);
15252 }
15253
15254 return result;
15255 }
15256 \f
15257 /* Abbreviation tables.
15258
15259 In DWARF version 2, the description of the debugging information is
15260 stored in a separate .debug_abbrev section. Before we read any
15261 dies from a section we read in all abbreviations and install them
15262 in a hash table. */
15263
15264 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15265
15266 static struct abbrev_info *
15267 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15268 {
15269 struct abbrev_info *abbrev;
15270
15271 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15272 memset (abbrev, 0, sizeof (struct abbrev_info));
15273
15274 return abbrev;
15275 }
15276
15277 /* Add an abbreviation to the table. */
15278
15279 static void
15280 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15281 unsigned int abbrev_number,
15282 struct abbrev_info *abbrev)
15283 {
15284 unsigned int hash_number;
15285
15286 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15287 abbrev->next = abbrev_table->abbrevs[hash_number];
15288 abbrev_table->abbrevs[hash_number] = abbrev;
15289 }
15290
15291 /* Look up an abbrev in the table.
15292 Returns NULL if the abbrev is not found. */
15293
15294 static struct abbrev_info *
15295 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15296 unsigned int abbrev_number)
15297 {
15298 unsigned int hash_number;
15299 struct abbrev_info *abbrev;
15300
15301 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15302 abbrev = abbrev_table->abbrevs[hash_number];
15303
15304 while (abbrev)
15305 {
15306 if (abbrev->number == abbrev_number)
15307 return abbrev;
15308 abbrev = abbrev->next;
15309 }
15310 return NULL;
15311 }
15312
15313 /* Read in an abbrev table. */
15314
15315 static struct abbrev_table *
15316 abbrev_table_read_table (struct dwarf2_section_info *section,
15317 sect_offset offset)
15318 {
15319 struct objfile *objfile = dwarf2_per_objfile->objfile;
15320 bfd *abfd = get_section_bfd_owner (section);
15321 struct abbrev_table *abbrev_table;
15322 const gdb_byte *abbrev_ptr;
15323 struct abbrev_info *cur_abbrev;
15324 unsigned int abbrev_number, bytes_read, abbrev_name;
15325 unsigned int abbrev_form;
15326 struct attr_abbrev *cur_attrs;
15327 unsigned int allocated_attrs;
15328
15329 abbrev_table = XNEW (struct abbrev_table);
15330 abbrev_table->offset = offset;
15331 obstack_init (&abbrev_table->abbrev_obstack);
15332 abbrev_table->abbrevs =
15333 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15334 ABBREV_HASH_SIZE);
15335 memset (abbrev_table->abbrevs, 0,
15336 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15337
15338 dwarf2_read_section (objfile, section);
15339 abbrev_ptr = section->buffer + offset.sect_off;
15340 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15341 abbrev_ptr += bytes_read;
15342
15343 allocated_attrs = ATTR_ALLOC_CHUNK;
15344 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15345
15346 /* Loop until we reach an abbrev number of 0. */
15347 while (abbrev_number)
15348 {
15349 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15350
15351 /* read in abbrev header */
15352 cur_abbrev->number = abbrev_number;
15353 cur_abbrev->tag
15354 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15355 abbrev_ptr += bytes_read;
15356 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15357 abbrev_ptr += 1;
15358
15359 /* now read in declarations */
15360 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15361 abbrev_ptr += bytes_read;
15362 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15363 abbrev_ptr += bytes_read;
15364 while (abbrev_name)
15365 {
15366 if (cur_abbrev->num_attrs == allocated_attrs)
15367 {
15368 allocated_attrs += ATTR_ALLOC_CHUNK;
15369 cur_attrs
15370 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15371 }
15372
15373 cur_attrs[cur_abbrev->num_attrs].name
15374 = (enum dwarf_attribute) abbrev_name;
15375 cur_attrs[cur_abbrev->num_attrs++].form
15376 = (enum dwarf_form) abbrev_form;
15377 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15378 abbrev_ptr += bytes_read;
15379 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15380 abbrev_ptr += bytes_read;
15381 }
15382
15383 cur_abbrev->attrs =
15384 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15385 cur_abbrev->num_attrs);
15386 memcpy (cur_abbrev->attrs, cur_attrs,
15387 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15388
15389 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15390
15391 /* Get next abbreviation.
15392 Under Irix6 the abbreviations for a compilation unit are not
15393 always properly terminated with an abbrev number of 0.
15394 Exit loop if we encounter an abbreviation which we have
15395 already read (which means we are about to read the abbreviations
15396 for the next compile unit) or if the end of the abbreviation
15397 table is reached. */
15398 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15399 break;
15400 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15401 abbrev_ptr += bytes_read;
15402 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15403 break;
15404 }
15405
15406 xfree (cur_attrs);
15407 return abbrev_table;
15408 }
15409
15410 /* Free the resources held by ABBREV_TABLE. */
15411
15412 static void
15413 abbrev_table_free (struct abbrev_table *abbrev_table)
15414 {
15415 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15416 xfree (abbrev_table);
15417 }
15418
15419 /* Same as abbrev_table_free but as a cleanup.
15420 We pass in a pointer to the pointer to the table so that we can
15421 set the pointer to NULL when we're done. It also simplifies
15422 build_type_psymtabs_1. */
15423
15424 static void
15425 abbrev_table_free_cleanup (void *table_ptr)
15426 {
15427 struct abbrev_table **abbrev_table_ptr = table_ptr;
15428
15429 if (*abbrev_table_ptr != NULL)
15430 abbrev_table_free (*abbrev_table_ptr);
15431 *abbrev_table_ptr = NULL;
15432 }
15433
15434 /* Read the abbrev table for CU from ABBREV_SECTION. */
15435
15436 static void
15437 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15438 struct dwarf2_section_info *abbrev_section)
15439 {
15440 cu->abbrev_table =
15441 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15442 }
15443
15444 /* Release the memory used by the abbrev table for a compilation unit. */
15445
15446 static void
15447 dwarf2_free_abbrev_table (void *ptr_to_cu)
15448 {
15449 struct dwarf2_cu *cu = ptr_to_cu;
15450
15451 if (cu->abbrev_table != NULL)
15452 abbrev_table_free (cu->abbrev_table);
15453 /* Set this to NULL so that we SEGV if we try to read it later,
15454 and also because free_comp_unit verifies this is NULL. */
15455 cu->abbrev_table = NULL;
15456 }
15457 \f
15458 /* Returns nonzero if TAG represents a type that we might generate a partial
15459 symbol for. */
15460
15461 static int
15462 is_type_tag_for_partial (int tag)
15463 {
15464 switch (tag)
15465 {
15466 #if 0
15467 /* Some types that would be reasonable to generate partial symbols for,
15468 that we don't at present. */
15469 case DW_TAG_array_type:
15470 case DW_TAG_file_type:
15471 case DW_TAG_ptr_to_member_type:
15472 case DW_TAG_set_type:
15473 case DW_TAG_string_type:
15474 case DW_TAG_subroutine_type:
15475 #endif
15476 case DW_TAG_base_type:
15477 case DW_TAG_class_type:
15478 case DW_TAG_interface_type:
15479 case DW_TAG_enumeration_type:
15480 case DW_TAG_structure_type:
15481 case DW_TAG_subrange_type:
15482 case DW_TAG_typedef:
15483 case DW_TAG_union_type:
15484 return 1;
15485 default:
15486 return 0;
15487 }
15488 }
15489
15490 /* Load all DIEs that are interesting for partial symbols into memory. */
15491
15492 static struct partial_die_info *
15493 load_partial_dies (const struct die_reader_specs *reader,
15494 const gdb_byte *info_ptr, int building_psymtab)
15495 {
15496 struct dwarf2_cu *cu = reader->cu;
15497 struct objfile *objfile = cu->objfile;
15498 struct partial_die_info *part_die;
15499 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15500 struct abbrev_info *abbrev;
15501 unsigned int bytes_read;
15502 unsigned int load_all = 0;
15503 int nesting_level = 1;
15504
15505 parent_die = NULL;
15506 last_die = NULL;
15507
15508 gdb_assert (cu->per_cu != NULL);
15509 if (cu->per_cu->load_all_dies)
15510 load_all = 1;
15511
15512 cu->partial_dies
15513 = htab_create_alloc_ex (cu->header.length / 12,
15514 partial_die_hash,
15515 partial_die_eq,
15516 NULL,
15517 &cu->comp_unit_obstack,
15518 hashtab_obstack_allocate,
15519 dummy_obstack_deallocate);
15520
15521 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15522
15523 while (1)
15524 {
15525 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15526
15527 /* A NULL abbrev means the end of a series of children. */
15528 if (abbrev == NULL)
15529 {
15530 if (--nesting_level == 0)
15531 {
15532 /* PART_DIE was probably the last thing allocated on the
15533 comp_unit_obstack, so we could call obstack_free
15534 here. We don't do that because the waste is small,
15535 and will be cleaned up when we're done with this
15536 compilation unit. This way, we're also more robust
15537 against other users of the comp_unit_obstack. */
15538 return first_die;
15539 }
15540 info_ptr += bytes_read;
15541 last_die = parent_die;
15542 parent_die = parent_die->die_parent;
15543 continue;
15544 }
15545
15546 /* Check for template arguments. We never save these; if
15547 they're seen, we just mark the parent, and go on our way. */
15548 if (parent_die != NULL
15549 && cu->language == language_cplus
15550 && (abbrev->tag == DW_TAG_template_type_param
15551 || abbrev->tag == DW_TAG_template_value_param))
15552 {
15553 parent_die->has_template_arguments = 1;
15554
15555 if (!load_all)
15556 {
15557 /* We don't need a partial DIE for the template argument. */
15558 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15559 continue;
15560 }
15561 }
15562
15563 /* We only recurse into c++ subprograms looking for template arguments.
15564 Skip their other children. */
15565 if (!load_all
15566 && cu->language == language_cplus
15567 && parent_die != NULL
15568 && parent_die->tag == DW_TAG_subprogram)
15569 {
15570 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15571 continue;
15572 }
15573
15574 /* Check whether this DIE is interesting enough to save. Normally
15575 we would not be interested in members here, but there may be
15576 later variables referencing them via DW_AT_specification (for
15577 static members). */
15578 if (!load_all
15579 && !is_type_tag_for_partial (abbrev->tag)
15580 && abbrev->tag != DW_TAG_constant
15581 && abbrev->tag != DW_TAG_enumerator
15582 && abbrev->tag != DW_TAG_subprogram
15583 && abbrev->tag != DW_TAG_lexical_block
15584 && abbrev->tag != DW_TAG_variable
15585 && abbrev->tag != DW_TAG_namespace
15586 && abbrev->tag != DW_TAG_module
15587 && abbrev->tag != DW_TAG_member
15588 && abbrev->tag != DW_TAG_imported_unit
15589 && abbrev->tag != DW_TAG_imported_declaration)
15590 {
15591 /* Otherwise we skip to the next sibling, if any. */
15592 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15593 continue;
15594 }
15595
15596 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15597 info_ptr);
15598
15599 /* This two-pass algorithm for processing partial symbols has a
15600 high cost in cache pressure. Thus, handle some simple cases
15601 here which cover the majority of C partial symbols. DIEs
15602 which neither have specification tags in them, nor could have
15603 specification tags elsewhere pointing at them, can simply be
15604 processed and discarded.
15605
15606 This segment is also optional; scan_partial_symbols and
15607 add_partial_symbol will handle these DIEs if we chain
15608 them in normally. When compilers which do not emit large
15609 quantities of duplicate debug information are more common,
15610 this code can probably be removed. */
15611
15612 /* Any complete simple types at the top level (pretty much all
15613 of them, for a language without namespaces), can be processed
15614 directly. */
15615 if (parent_die == NULL
15616 && part_die->has_specification == 0
15617 && part_die->is_declaration == 0
15618 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15619 || part_die->tag == DW_TAG_base_type
15620 || part_die->tag == DW_TAG_subrange_type))
15621 {
15622 if (building_psymtab && part_die->name != NULL)
15623 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15624 VAR_DOMAIN, LOC_TYPEDEF,
15625 &objfile->static_psymbols,
15626 0, cu->language, objfile);
15627 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15628 continue;
15629 }
15630
15631 /* The exception for DW_TAG_typedef with has_children above is
15632 a workaround of GCC PR debug/47510. In the case of this complaint
15633 type_name_no_tag_or_error will error on such types later.
15634
15635 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15636 it could not find the child DIEs referenced later, this is checked
15637 above. In correct DWARF DW_TAG_typedef should have no children. */
15638
15639 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15640 complaint (&symfile_complaints,
15641 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15642 "- DIE at 0x%x [in module %s]"),
15643 part_die->offset.sect_off, objfile_name (objfile));
15644
15645 /* If we're at the second level, and we're an enumerator, and
15646 our parent has no specification (meaning possibly lives in a
15647 namespace elsewhere), then we can add the partial symbol now
15648 instead of queueing it. */
15649 if (part_die->tag == DW_TAG_enumerator
15650 && parent_die != NULL
15651 && parent_die->die_parent == NULL
15652 && parent_die->tag == DW_TAG_enumeration_type
15653 && parent_die->has_specification == 0)
15654 {
15655 if (part_die->name == NULL)
15656 complaint (&symfile_complaints,
15657 _("malformed enumerator DIE ignored"));
15658 else if (building_psymtab)
15659 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15660 VAR_DOMAIN, LOC_CONST,
15661 (cu->language == language_cplus
15662 || cu->language == language_java)
15663 ? &objfile->global_psymbols
15664 : &objfile->static_psymbols,
15665 0, cu->language, objfile);
15666
15667 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15668 continue;
15669 }
15670
15671 /* We'll save this DIE so link it in. */
15672 part_die->die_parent = parent_die;
15673 part_die->die_sibling = NULL;
15674 part_die->die_child = NULL;
15675
15676 if (last_die && last_die == parent_die)
15677 last_die->die_child = part_die;
15678 else if (last_die)
15679 last_die->die_sibling = part_die;
15680
15681 last_die = part_die;
15682
15683 if (first_die == NULL)
15684 first_die = part_die;
15685
15686 /* Maybe add the DIE to the hash table. Not all DIEs that we
15687 find interesting need to be in the hash table, because we
15688 also have the parent/sibling/child chains; only those that we
15689 might refer to by offset later during partial symbol reading.
15690
15691 For now this means things that might have be the target of a
15692 DW_AT_specification, DW_AT_abstract_origin, or
15693 DW_AT_extension. DW_AT_extension will refer only to
15694 namespaces; DW_AT_abstract_origin refers to functions (and
15695 many things under the function DIE, but we do not recurse
15696 into function DIEs during partial symbol reading) and
15697 possibly variables as well; DW_AT_specification refers to
15698 declarations. Declarations ought to have the DW_AT_declaration
15699 flag. It happens that GCC forgets to put it in sometimes, but
15700 only for functions, not for types.
15701
15702 Adding more things than necessary to the hash table is harmless
15703 except for the performance cost. Adding too few will result in
15704 wasted time in find_partial_die, when we reread the compilation
15705 unit with load_all_dies set. */
15706
15707 if (load_all
15708 || abbrev->tag == DW_TAG_constant
15709 || abbrev->tag == DW_TAG_subprogram
15710 || abbrev->tag == DW_TAG_variable
15711 || abbrev->tag == DW_TAG_namespace
15712 || part_die->is_declaration)
15713 {
15714 void **slot;
15715
15716 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15717 part_die->offset.sect_off, INSERT);
15718 *slot = part_die;
15719 }
15720
15721 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15722
15723 /* For some DIEs we want to follow their children (if any). For C
15724 we have no reason to follow the children of structures; for other
15725 languages we have to, so that we can get at method physnames
15726 to infer fully qualified class names, for DW_AT_specification,
15727 and for C++ template arguments. For C++, we also look one level
15728 inside functions to find template arguments (if the name of the
15729 function does not already contain the template arguments).
15730
15731 For Ada, we need to scan the children of subprograms and lexical
15732 blocks as well because Ada allows the definition of nested
15733 entities that could be interesting for the debugger, such as
15734 nested subprograms for instance. */
15735 if (last_die->has_children
15736 && (load_all
15737 || last_die->tag == DW_TAG_namespace
15738 || last_die->tag == DW_TAG_module
15739 || last_die->tag == DW_TAG_enumeration_type
15740 || (cu->language == language_cplus
15741 && last_die->tag == DW_TAG_subprogram
15742 && (last_die->name == NULL
15743 || strchr (last_die->name, '<') == NULL))
15744 || (cu->language != language_c
15745 && (last_die->tag == DW_TAG_class_type
15746 || last_die->tag == DW_TAG_interface_type
15747 || last_die->tag == DW_TAG_structure_type
15748 || last_die->tag == DW_TAG_union_type))
15749 || (cu->language == language_ada
15750 && (last_die->tag == DW_TAG_subprogram
15751 || last_die->tag == DW_TAG_lexical_block))))
15752 {
15753 nesting_level++;
15754 parent_die = last_die;
15755 continue;
15756 }
15757
15758 /* Otherwise we skip to the next sibling, if any. */
15759 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15760
15761 /* Back to the top, do it again. */
15762 }
15763 }
15764
15765 /* Read a minimal amount of information into the minimal die structure. */
15766
15767 static const gdb_byte *
15768 read_partial_die (const struct die_reader_specs *reader,
15769 struct partial_die_info *part_die,
15770 struct abbrev_info *abbrev, unsigned int abbrev_len,
15771 const gdb_byte *info_ptr)
15772 {
15773 struct dwarf2_cu *cu = reader->cu;
15774 struct objfile *objfile = cu->objfile;
15775 const gdb_byte *buffer = reader->buffer;
15776 unsigned int i;
15777 struct attribute attr;
15778 int has_low_pc_attr = 0;
15779 int has_high_pc_attr = 0;
15780 int high_pc_relative = 0;
15781
15782 memset (part_die, 0, sizeof (struct partial_die_info));
15783
15784 part_die->offset.sect_off = info_ptr - buffer;
15785
15786 info_ptr += abbrev_len;
15787
15788 if (abbrev == NULL)
15789 return info_ptr;
15790
15791 part_die->tag = abbrev->tag;
15792 part_die->has_children = abbrev->has_children;
15793
15794 for (i = 0; i < abbrev->num_attrs; ++i)
15795 {
15796 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15797
15798 /* Store the data if it is of an attribute we want to keep in a
15799 partial symbol table. */
15800 switch (attr.name)
15801 {
15802 case DW_AT_name:
15803 switch (part_die->tag)
15804 {
15805 case DW_TAG_compile_unit:
15806 case DW_TAG_partial_unit:
15807 case DW_TAG_type_unit:
15808 /* Compilation units have a DW_AT_name that is a filename, not
15809 a source language identifier. */
15810 case DW_TAG_enumeration_type:
15811 case DW_TAG_enumerator:
15812 /* These tags always have simple identifiers already; no need
15813 to canonicalize them. */
15814 part_die->name = DW_STRING (&attr);
15815 break;
15816 default:
15817 part_die->name
15818 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15819 &objfile->per_bfd->storage_obstack);
15820 break;
15821 }
15822 break;
15823 case DW_AT_linkage_name:
15824 case DW_AT_MIPS_linkage_name:
15825 /* Note that both forms of linkage name might appear. We
15826 assume they will be the same, and we only store the last
15827 one we see. */
15828 if (cu->language == language_ada)
15829 part_die->name = DW_STRING (&attr);
15830 part_die->linkage_name = DW_STRING (&attr);
15831 break;
15832 case DW_AT_low_pc:
15833 has_low_pc_attr = 1;
15834 part_die->lowpc = attr_value_as_address (&attr);
15835 break;
15836 case DW_AT_high_pc:
15837 has_high_pc_attr = 1;
15838 part_die->highpc = attr_value_as_address (&attr);
15839 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15840 high_pc_relative = 1;
15841 break;
15842 case DW_AT_location:
15843 /* Support the .debug_loc offsets. */
15844 if (attr_form_is_block (&attr))
15845 {
15846 part_die->d.locdesc = DW_BLOCK (&attr);
15847 }
15848 else if (attr_form_is_section_offset (&attr))
15849 {
15850 dwarf2_complex_location_expr_complaint ();
15851 }
15852 else
15853 {
15854 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15855 "partial symbol information");
15856 }
15857 break;
15858 case DW_AT_external:
15859 part_die->is_external = DW_UNSND (&attr);
15860 break;
15861 case DW_AT_declaration:
15862 part_die->is_declaration = DW_UNSND (&attr);
15863 break;
15864 case DW_AT_type:
15865 part_die->has_type = 1;
15866 break;
15867 case DW_AT_abstract_origin:
15868 case DW_AT_specification:
15869 case DW_AT_extension:
15870 part_die->has_specification = 1;
15871 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15872 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15873 || cu->per_cu->is_dwz);
15874 break;
15875 case DW_AT_sibling:
15876 /* Ignore absolute siblings, they might point outside of
15877 the current compile unit. */
15878 if (attr.form == DW_FORM_ref_addr)
15879 complaint (&symfile_complaints,
15880 _("ignoring absolute DW_AT_sibling"));
15881 else
15882 {
15883 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15884 const gdb_byte *sibling_ptr = buffer + off;
15885
15886 if (sibling_ptr < info_ptr)
15887 complaint (&symfile_complaints,
15888 _("DW_AT_sibling points backwards"));
15889 else if (sibling_ptr > reader->buffer_end)
15890 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15891 else
15892 part_die->sibling = sibling_ptr;
15893 }
15894 break;
15895 case DW_AT_byte_size:
15896 part_die->has_byte_size = 1;
15897 break;
15898 case DW_AT_const_value:
15899 part_die->has_const_value = 1;
15900 break;
15901 case DW_AT_calling_convention:
15902 /* DWARF doesn't provide a way to identify a program's source-level
15903 entry point. DW_AT_calling_convention attributes are only meant
15904 to describe functions' calling conventions.
15905
15906 However, because it's a necessary piece of information in
15907 Fortran, and because DW_CC_program is the only piece of debugging
15908 information whose definition refers to a 'main program' at all,
15909 several compilers have begun marking Fortran main programs with
15910 DW_CC_program --- even when those functions use the standard
15911 calling conventions.
15912
15913 So until DWARF specifies a way to provide this information and
15914 compilers pick up the new representation, we'll support this
15915 practice. */
15916 if (DW_UNSND (&attr) == DW_CC_program
15917 && cu->language == language_fortran)
15918 set_objfile_main_name (objfile, part_die->name, language_fortran);
15919 break;
15920 case DW_AT_inline:
15921 if (DW_UNSND (&attr) == DW_INL_inlined
15922 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15923 part_die->may_be_inlined = 1;
15924 break;
15925
15926 case DW_AT_import:
15927 if (part_die->tag == DW_TAG_imported_unit)
15928 {
15929 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15930 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15931 || cu->per_cu->is_dwz);
15932 }
15933 break;
15934
15935 default:
15936 break;
15937 }
15938 }
15939
15940 if (high_pc_relative)
15941 part_die->highpc += part_die->lowpc;
15942
15943 if (has_low_pc_attr && has_high_pc_attr)
15944 {
15945 /* When using the GNU linker, .gnu.linkonce. sections are used to
15946 eliminate duplicate copies of functions and vtables and such.
15947 The linker will arbitrarily choose one and discard the others.
15948 The AT_*_pc values for such functions refer to local labels in
15949 these sections. If the section from that file was discarded, the
15950 labels are not in the output, so the relocs get a value of 0.
15951 If this is a discarded function, mark the pc bounds as invalid,
15952 so that GDB will ignore it. */
15953 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15954 {
15955 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15956
15957 complaint (&symfile_complaints,
15958 _("DW_AT_low_pc %s is zero "
15959 "for DIE at 0x%x [in module %s]"),
15960 paddress (gdbarch, part_die->lowpc),
15961 part_die->offset.sect_off, objfile_name (objfile));
15962 }
15963 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15964 else if (part_die->lowpc >= part_die->highpc)
15965 {
15966 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15967
15968 complaint (&symfile_complaints,
15969 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15970 "for DIE at 0x%x [in module %s]"),
15971 paddress (gdbarch, part_die->lowpc),
15972 paddress (gdbarch, part_die->highpc),
15973 part_die->offset.sect_off, objfile_name (objfile));
15974 }
15975 else
15976 part_die->has_pc_info = 1;
15977 }
15978
15979 return info_ptr;
15980 }
15981
15982 /* Find a cached partial DIE at OFFSET in CU. */
15983
15984 static struct partial_die_info *
15985 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15986 {
15987 struct partial_die_info *lookup_die = NULL;
15988 struct partial_die_info part_die;
15989
15990 part_die.offset = offset;
15991 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15992 offset.sect_off);
15993
15994 return lookup_die;
15995 }
15996
15997 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15998 except in the case of .debug_types DIEs which do not reference
15999 outside their CU (they do however referencing other types via
16000 DW_FORM_ref_sig8). */
16001
16002 static struct partial_die_info *
16003 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16004 {
16005 struct objfile *objfile = cu->objfile;
16006 struct dwarf2_per_cu_data *per_cu = NULL;
16007 struct partial_die_info *pd = NULL;
16008
16009 if (offset_in_dwz == cu->per_cu->is_dwz
16010 && offset_in_cu_p (&cu->header, offset))
16011 {
16012 pd = find_partial_die_in_comp_unit (offset, cu);
16013 if (pd != NULL)
16014 return pd;
16015 /* We missed recording what we needed.
16016 Load all dies and try again. */
16017 per_cu = cu->per_cu;
16018 }
16019 else
16020 {
16021 /* TUs don't reference other CUs/TUs (except via type signatures). */
16022 if (cu->per_cu->is_debug_types)
16023 {
16024 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16025 " external reference to offset 0x%lx [in module %s].\n"),
16026 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16027 bfd_get_filename (objfile->obfd));
16028 }
16029 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16030 objfile);
16031
16032 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16033 load_partial_comp_unit (per_cu);
16034
16035 per_cu->cu->last_used = 0;
16036 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16037 }
16038
16039 /* If we didn't find it, and not all dies have been loaded,
16040 load them all and try again. */
16041
16042 if (pd == NULL && per_cu->load_all_dies == 0)
16043 {
16044 per_cu->load_all_dies = 1;
16045
16046 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16047 THIS_CU->cu may already be in use. So we can't just free it and
16048 replace its DIEs with the ones we read in. Instead, we leave those
16049 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16050 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16051 set. */
16052 load_partial_comp_unit (per_cu);
16053
16054 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16055 }
16056
16057 if (pd == NULL)
16058 internal_error (__FILE__, __LINE__,
16059 _("could not find partial DIE 0x%x "
16060 "in cache [from module %s]\n"),
16061 offset.sect_off, bfd_get_filename (objfile->obfd));
16062 return pd;
16063 }
16064
16065 /* See if we can figure out if the class lives in a namespace. We do
16066 this by looking for a member function; its demangled name will
16067 contain namespace info, if there is any. */
16068
16069 static void
16070 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16071 struct dwarf2_cu *cu)
16072 {
16073 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16074 what template types look like, because the demangler
16075 frequently doesn't give the same name as the debug info. We
16076 could fix this by only using the demangled name to get the
16077 prefix (but see comment in read_structure_type). */
16078
16079 struct partial_die_info *real_pdi;
16080 struct partial_die_info *child_pdi;
16081
16082 /* If this DIE (this DIE's specification, if any) has a parent, then
16083 we should not do this. We'll prepend the parent's fully qualified
16084 name when we create the partial symbol. */
16085
16086 real_pdi = struct_pdi;
16087 while (real_pdi->has_specification)
16088 real_pdi = find_partial_die (real_pdi->spec_offset,
16089 real_pdi->spec_is_dwz, cu);
16090
16091 if (real_pdi->die_parent != NULL)
16092 return;
16093
16094 for (child_pdi = struct_pdi->die_child;
16095 child_pdi != NULL;
16096 child_pdi = child_pdi->die_sibling)
16097 {
16098 if (child_pdi->tag == DW_TAG_subprogram
16099 && child_pdi->linkage_name != NULL)
16100 {
16101 char *actual_class_name
16102 = language_class_name_from_physname (cu->language_defn,
16103 child_pdi->linkage_name);
16104 if (actual_class_name != NULL)
16105 {
16106 struct_pdi->name
16107 = ((const char *)
16108 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16109 actual_class_name,
16110 strlen (actual_class_name)));
16111 xfree (actual_class_name);
16112 }
16113 break;
16114 }
16115 }
16116 }
16117
16118 /* Adjust PART_DIE before generating a symbol for it. This function
16119 may set the is_external flag or change the DIE's name. */
16120
16121 static void
16122 fixup_partial_die (struct partial_die_info *part_die,
16123 struct dwarf2_cu *cu)
16124 {
16125 /* Once we've fixed up a die, there's no point in doing so again.
16126 This also avoids a memory leak if we were to call
16127 guess_partial_die_structure_name multiple times. */
16128 if (part_die->fixup_called)
16129 return;
16130
16131 /* If we found a reference attribute and the DIE has no name, try
16132 to find a name in the referred to DIE. */
16133
16134 if (part_die->name == NULL && part_die->has_specification)
16135 {
16136 struct partial_die_info *spec_die;
16137
16138 spec_die = find_partial_die (part_die->spec_offset,
16139 part_die->spec_is_dwz, cu);
16140
16141 fixup_partial_die (spec_die, cu);
16142
16143 if (spec_die->name)
16144 {
16145 part_die->name = spec_die->name;
16146
16147 /* Copy DW_AT_external attribute if it is set. */
16148 if (spec_die->is_external)
16149 part_die->is_external = spec_die->is_external;
16150 }
16151 }
16152
16153 /* Set default names for some unnamed DIEs. */
16154
16155 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16156 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16157
16158 /* If there is no parent die to provide a namespace, and there are
16159 children, see if we can determine the namespace from their linkage
16160 name. */
16161 if (cu->language == language_cplus
16162 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16163 && part_die->die_parent == NULL
16164 && part_die->has_children
16165 && (part_die->tag == DW_TAG_class_type
16166 || part_die->tag == DW_TAG_structure_type
16167 || part_die->tag == DW_TAG_union_type))
16168 guess_partial_die_structure_name (part_die, cu);
16169
16170 /* GCC might emit a nameless struct or union that has a linkage
16171 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16172 if (part_die->name == NULL
16173 && (part_die->tag == DW_TAG_class_type
16174 || part_die->tag == DW_TAG_interface_type
16175 || part_die->tag == DW_TAG_structure_type
16176 || part_die->tag == DW_TAG_union_type)
16177 && part_die->linkage_name != NULL)
16178 {
16179 char *demangled;
16180
16181 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16182 if (demangled)
16183 {
16184 const char *base;
16185
16186 /* Strip any leading namespaces/classes, keep only the base name.
16187 DW_AT_name for named DIEs does not contain the prefixes. */
16188 base = strrchr (demangled, ':');
16189 if (base && base > demangled && base[-1] == ':')
16190 base++;
16191 else
16192 base = demangled;
16193
16194 part_die->name
16195 = ((const char *)
16196 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16197 base, strlen (base)));
16198 xfree (demangled);
16199 }
16200 }
16201
16202 part_die->fixup_called = 1;
16203 }
16204
16205 /* Read an attribute value described by an attribute form. */
16206
16207 static const gdb_byte *
16208 read_attribute_value (const struct die_reader_specs *reader,
16209 struct attribute *attr, unsigned form,
16210 const gdb_byte *info_ptr)
16211 {
16212 struct dwarf2_cu *cu = reader->cu;
16213 struct objfile *objfile = cu->objfile;
16214 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16215 bfd *abfd = reader->abfd;
16216 struct comp_unit_head *cu_header = &cu->header;
16217 unsigned int bytes_read;
16218 struct dwarf_block *blk;
16219
16220 attr->form = (enum dwarf_form) form;
16221 switch (form)
16222 {
16223 case DW_FORM_ref_addr:
16224 if (cu->header.version == 2)
16225 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16226 else
16227 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16228 &cu->header, &bytes_read);
16229 info_ptr += bytes_read;
16230 break;
16231 case DW_FORM_GNU_ref_alt:
16232 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16233 info_ptr += bytes_read;
16234 break;
16235 case DW_FORM_addr:
16236 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16237 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16238 info_ptr += bytes_read;
16239 break;
16240 case DW_FORM_block2:
16241 blk = dwarf_alloc_block (cu);
16242 blk->size = read_2_bytes (abfd, info_ptr);
16243 info_ptr += 2;
16244 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16245 info_ptr += blk->size;
16246 DW_BLOCK (attr) = blk;
16247 break;
16248 case DW_FORM_block4:
16249 blk = dwarf_alloc_block (cu);
16250 blk->size = read_4_bytes (abfd, info_ptr);
16251 info_ptr += 4;
16252 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16253 info_ptr += blk->size;
16254 DW_BLOCK (attr) = blk;
16255 break;
16256 case DW_FORM_data2:
16257 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16258 info_ptr += 2;
16259 break;
16260 case DW_FORM_data4:
16261 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16262 info_ptr += 4;
16263 break;
16264 case DW_FORM_data8:
16265 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16266 info_ptr += 8;
16267 break;
16268 case DW_FORM_sec_offset:
16269 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16270 info_ptr += bytes_read;
16271 break;
16272 case DW_FORM_string:
16273 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16274 DW_STRING_IS_CANONICAL (attr) = 0;
16275 info_ptr += bytes_read;
16276 break;
16277 case DW_FORM_strp:
16278 if (!cu->per_cu->is_dwz)
16279 {
16280 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16281 &bytes_read);
16282 DW_STRING_IS_CANONICAL (attr) = 0;
16283 info_ptr += bytes_read;
16284 break;
16285 }
16286 /* FALLTHROUGH */
16287 case DW_FORM_GNU_strp_alt:
16288 {
16289 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16290 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16291 &bytes_read);
16292
16293 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16294 DW_STRING_IS_CANONICAL (attr) = 0;
16295 info_ptr += bytes_read;
16296 }
16297 break;
16298 case DW_FORM_exprloc:
16299 case DW_FORM_block:
16300 blk = dwarf_alloc_block (cu);
16301 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16302 info_ptr += bytes_read;
16303 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16304 info_ptr += blk->size;
16305 DW_BLOCK (attr) = blk;
16306 break;
16307 case DW_FORM_block1:
16308 blk = dwarf_alloc_block (cu);
16309 blk->size = read_1_byte (abfd, info_ptr);
16310 info_ptr += 1;
16311 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16312 info_ptr += blk->size;
16313 DW_BLOCK (attr) = blk;
16314 break;
16315 case DW_FORM_data1:
16316 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16317 info_ptr += 1;
16318 break;
16319 case DW_FORM_flag:
16320 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16321 info_ptr += 1;
16322 break;
16323 case DW_FORM_flag_present:
16324 DW_UNSND (attr) = 1;
16325 break;
16326 case DW_FORM_sdata:
16327 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16328 info_ptr += bytes_read;
16329 break;
16330 case DW_FORM_udata:
16331 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16332 info_ptr += bytes_read;
16333 break;
16334 case DW_FORM_ref1:
16335 DW_UNSND (attr) = (cu->header.offset.sect_off
16336 + read_1_byte (abfd, info_ptr));
16337 info_ptr += 1;
16338 break;
16339 case DW_FORM_ref2:
16340 DW_UNSND (attr) = (cu->header.offset.sect_off
16341 + read_2_bytes (abfd, info_ptr));
16342 info_ptr += 2;
16343 break;
16344 case DW_FORM_ref4:
16345 DW_UNSND (attr) = (cu->header.offset.sect_off
16346 + read_4_bytes (abfd, info_ptr));
16347 info_ptr += 4;
16348 break;
16349 case DW_FORM_ref8:
16350 DW_UNSND (attr) = (cu->header.offset.sect_off
16351 + read_8_bytes (abfd, info_ptr));
16352 info_ptr += 8;
16353 break;
16354 case DW_FORM_ref_sig8:
16355 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16356 info_ptr += 8;
16357 break;
16358 case DW_FORM_ref_udata:
16359 DW_UNSND (attr) = (cu->header.offset.sect_off
16360 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16361 info_ptr += bytes_read;
16362 break;
16363 case DW_FORM_indirect:
16364 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16365 info_ptr += bytes_read;
16366 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16367 break;
16368 case DW_FORM_GNU_addr_index:
16369 if (reader->dwo_file == NULL)
16370 {
16371 /* For now flag a hard error.
16372 Later we can turn this into a complaint. */
16373 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16374 dwarf_form_name (form),
16375 bfd_get_filename (abfd));
16376 }
16377 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16378 info_ptr += bytes_read;
16379 break;
16380 case DW_FORM_GNU_str_index:
16381 if (reader->dwo_file == NULL)
16382 {
16383 /* For now flag a hard error.
16384 Later we can turn this into a complaint if warranted. */
16385 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16386 dwarf_form_name (form),
16387 bfd_get_filename (abfd));
16388 }
16389 {
16390 ULONGEST str_index =
16391 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16392
16393 DW_STRING (attr) = read_str_index (reader, str_index);
16394 DW_STRING_IS_CANONICAL (attr) = 0;
16395 info_ptr += bytes_read;
16396 }
16397 break;
16398 default:
16399 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16400 dwarf_form_name (form),
16401 bfd_get_filename (abfd));
16402 }
16403
16404 /* Super hack. */
16405 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16406 attr->form = DW_FORM_GNU_ref_alt;
16407
16408 /* We have seen instances where the compiler tried to emit a byte
16409 size attribute of -1 which ended up being encoded as an unsigned
16410 0xffffffff. Although 0xffffffff is technically a valid size value,
16411 an object of this size seems pretty unlikely so we can relatively
16412 safely treat these cases as if the size attribute was invalid and
16413 treat them as zero by default. */
16414 if (attr->name == DW_AT_byte_size
16415 && form == DW_FORM_data4
16416 && DW_UNSND (attr) >= 0xffffffff)
16417 {
16418 complaint
16419 (&symfile_complaints,
16420 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16421 hex_string (DW_UNSND (attr)));
16422 DW_UNSND (attr) = 0;
16423 }
16424
16425 return info_ptr;
16426 }
16427
16428 /* Read an attribute described by an abbreviated attribute. */
16429
16430 static const gdb_byte *
16431 read_attribute (const struct die_reader_specs *reader,
16432 struct attribute *attr, struct attr_abbrev *abbrev,
16433 const gdb_byte *info_ptr)
16434 {
16435 attr->name = abbrev->name;
16436 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16437 }
16438
16439 /* Read dwarf information from a buffer. */
16440
16441 static unsigned int
16442 read_1_byte (bfd *abfd, const gdb_byte *buf)
16443 {
16444 return bfd_get_8 (abfd, buf);
16445 }
16446
16447 static int
16448 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16449 {
16450 return bfd_get_signed_8 (abfd, buf);
16451 }
16452
16453 static unsigned int
16454 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16455 {
16456 return bfd_get_16 (abfd, buf);
16457 }
16458
16459 static int
16460 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16461 {
16462 return bfd_get_signed_16 (abfd, buf);
16463 }
16464
16465 static unsigned int
16466 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16467 {
16468 return bfd_get_32 (abfd, buf);
16469 }
16470
16471 static int
16472 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16473 {
16474 return bfd_get_signed_32 (abfd, buf);
16475 }
16476
16477 static ULONGEST
16478 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16479 {
16480 return bfd_get_64 (abfd, buf);
16481 }
16482
16483 static CORE_ADDR
16484 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16485 unsigned int *bytes_read)
16486 {
16487 struct comp_unit_head *cu_header = &cu->header;
16488 CORE_ADDR retval = 0;
16489
16490 if (cu_header->signed_addr_p)
16491 {
16492 switch (cu_header->addr_size)
16493 {
16494 case 2:
16495 retval = bfd_get_signed_16 (abfd, buf);
16496 break;
16497 case 4:
16498 retval = bfd_get_signed_32 (abfd, buf);
16499 break;
16500 case 8:
16501 retval = bfd_get_signed_64 (abfd, buf);
16502 break;
16503 default:
16504 internal_error (__FILE__, __LINE__,
16505 _("read_address: bad switch, signed [in module %s]"),
16506 bfd_get_filename (abfd));
16507 }
16508 }
16509 else
16510 {
16511 switch (cu_header->addr_size)
16512 {
16513 case 2:
16514 retval = bfd_get_16 (abfd, buf);
16515 break;
16516 case 4:
16517 retval = bfd_get_32 (abfd, buf);
16518 break;
16519 case 8:
16520 retval = bfd_get_64 (abfd, buf);
16521 break;
16522 default:
16523 internal_error (__FILE__, __LINE__,
16524 _("read_address: bad switch, "
16525 "unsigned [in module %s]"),
16526 bfd_get_filename (abfd));
16527 }
16528 }
16529
16530 *bytes_read = cu_header->addr_size;
16531 return retval;
16532 }
16533
16534 /* Read the initial length from a section. The (draft) DWARF 3
16535 specification allows the initial length to take up either 4 bytes
16536 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16537 bytes describe the length and all offsets will be 8 bytes in length
16538 instead of 4.
16539
16540 An older, non-standard 64-bit format is also handled by this
16541 function. The older format in question stores the initial length
16542 as an 8-byte quantity without an escape value. Lengths greater
16543 than 2^32 aren't very common which means that the initial 4 bytes
16544 is almost always zero. Since a length value of zero doesn't make
16545 sense for the 32-bit format, this initial zero can be considered to
16546 be an escape value which indicates the presence of the older 64-bit
16547 format. As written, the code can't detect (old format) lengths
16548 greater than 4GB. If it becomes necessary to handle lengths
16549 somewhat larger than 4GB, we could allow other small values (such
16550 as the non-sensical values of 1, 2, and 3) to also be used as
16551 escape values indicating the presence of the old format.
16552
16553 The value returned via bytes_read should be used to increment the
16554 relevant pointer after calling read_initial_length().
16555
16556 [ Note: read_initial_length() and read_offset() are based on the
16557 document entitled "DWARF Debugging Information Format", revision
16558 3, draft 8, dated November 19, 2001. This document was obtained
16559 from:
16560
16561 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16562
16563 This document is only a draft and is subject to change. (So beware.)
16564
16565 Details regarding the older, non-standard 64-bit format were
16566 determined empirically by examining 64-bit ELF files produced by
16567 the SGI toolchain on an IRIX 6.5 machine.
16568
16569 - Kevin, July 16, 2002
16570 ] */
16571
16572 static LONGEST
16573 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16574 {
16575 LONGEST length = bfd_get_32 (abfd, buf);
16576
16577 if (length == 0xffffffff)
16578 {
16579 length = bfd_get_64 (abfd, buf + 4);
16580 *bytes_read = 12;
16581 }
16582 else if (length == 0)
16583 {
16584 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16585 length = bfd_get_64 (abfd, buf);
16586 *bytes_read = 8;
16587 }
16588 else
16589 {
16590 *bytes_read = 4;
16591 }
16592
16593 return length;
16594 }
16595
16596 /* Cover function for read_initial_length.
16597 Returns the length of the object at BUF, and stores the size of the
16598 initial length in *BYTES_READ and stores the size that offsets will be in
16599 *OFFSET_SIZE.
16600 If the initial length size is not equivalent to that specified in
16601 CU_HEADER then issue a complaint.
16602 This is useful when reading non-comp-unit headers. */
16603
16604 static LONGEST
16605 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16606 const struct comp_unit_head *cu_header,
16607 unsigned int *bytes_read,
16608 unsigned int *offset_size)
16609 {
16610 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16611
16612 gdb_assert (cu_header->initial_length_size == 4
16613 || cu_header->initial_length_size == 8
16614 || cu_header->initial_length_size == 12);
16615
16616 if (cu_header->initial_length_size != *bytes_read)
16617 complaint (&symfile_complaints,
16618 _("intermixed 32-bit and 64-bit DWARF sections"));
16619
16620 *offset_size = (*bytes_read == 4) ? 4 : 8;
16621 return length;
16622 }
16623
16624 /* Read an offset from the data stream. The size of the offset is
16625 given by cu_header->offset_size. */
16626
16627 static LONGEST
16628 read_offset (bfd *abfd, const gdb_byte *buf,
16629 const struct comp_unit_head *cu_header,
16630 unsigned int *bytes_read)
16631 {
16632 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16633
16634 *bytes_read = cu_header->offset_size;
16635 return offset;
16636 }
16637
16638 /* Read an offset from the data stream. */
16639
16640 static LONGEST
16641 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16642 {
16643 LONGEST retval = 0;
16644
16645 switch (offset_size)
16646 {
16647 case 4:
16648 retval = bfd_get_32 (abfd, buf);
16649 break;
16650 case 8:
16651 retval = bfd_get_64 (abfd, buf);
16652 break;
16653 default:
16654 internal_error (__FILE__, __LINE__,
16655 _("read_offset_1: bad switch [in module %s]"),
16656 bfd_get_filename (abfd));
16657 }
16658
16659 return retval;
16660 }
16661
16662 static const gdb_byte *
16663 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16664 {
16665 /* If the size of a host char is 8 bits, we can return a pointer
16666 to the buffer, otherwise we have to copy the data to a buffer
16667 allocated on the temporary obstack. */
16668 gdb_assert (HOST_CHAR_BIT == 8);
16669 return buf;
16670 }
16671
16672 static const char *
16673 read_direct_string (bfd *abfd, const gdb_byte *buf,
16674 unsigned int *bytes_read_ptr)
16675 {
16676 /* If the size of a host char is 8 bits, we can return a pointer
16677 to the string, otherwise we have to copy the string to a buffer
16678 allocated on the temporary obstack. */
16679 gdb_assert (HOST_CHAR_BIT == 8);
16680 if (*buf == '\0')
16681 {
16682 *bytes_read_ptr = 1;
16683 return NULL;
16684 }
16685 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16686 return (const char *) buf;
16687 }
16688
16689 static const char *
16690 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16691 {
16692 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16693 if (dwarf2_per_objfile->str.buffer == NULL)
16694 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16695 bfd_get_filename (abfd));
16696 if (str_offset >= dwarf2_per_objfile->str.size)
16697 error (_("DW_FORM_strp pointing outside of "
16698 ".debug_str section [in module %s]"),
16699 bfd_get_filename (abfd));
16700 gdb_assert (HOST_CHAR_BIT == 8);
16701 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16702 return NULL;
16703 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16704 }
16705
16706 /* Read a string at offset STR_OFFSET in the .debug_str section from
16707 the .dwz file DWZ. Throw an error if the offset is too large. If
16708 the string consists of a single NUL byte, return NULL; otherwise
16709 return a pointer to the string. */
16710
16711 static const char *
16712 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16713 {
16714 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16715
16716 if (dwz->str.buffer == NULL)
16717 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16718 "section [in module %s]"),
16719 bfd_get_filename (dwz->dwz_bfd));
16720 if (str_offset >= dwz->str.size)
16721 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16722 ".debug_str section [in module %s]"),
16723 bfd_get_filename (dwz->dwz_bfd));
16724 gdb_assert (HOST_CHAR_BIT == 8);
16725 if (dwz->str.buffer[str_offset] == '\0')
16726 return NULL;
16727 return (const char *) (dwz->str.buffer + str_offset);
16728 }
16729
16730 static const char *
16731 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16732 const struct comp_unit_head *cu_header,
16733 unsigned int *bytes_read_ptr)
16734 {
16735 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16736
16737 return read_indirect_string_at_offset (abfd, str_offset);
16738 }
16739
16740 static ULONGEST
16741 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16742 unsigned int *bytes_read_ptr)
16743 {
16744 ULONGEST result;
16745 unsigned int num_read;
16746 int i, shift;
16747 unsigned char byte;
16748
16749 result = 0;
16750 shift = 0;
16751 num_read = 0;
16752 i = 0;
16753 while (1)
16754 {
16755 byte = bfd_get_8 (abfd, buf);
16756 buf++;
16757 num_read++;
16758 result |= ((ULONGEST) (byte & 127) << shift);
16759 if ((byte & 128) == 0)
16760 {
16761 break;
16762 }
16763 shift += 7;
16764 }
16765 *bytes_read_ptr = num_read;
16766 return result;
16767 }
16768
16769 static LONGEST
16770 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16771 unsigned int *bytes_read_ptr)
16772 {
16773 LONGEST result;
16774 int i, shift, num_read;
16775 unsigned char byte;
16776
16777 result = 0;
16778 shift = 0;
16779 num_read = 0;
16780 i = 0;
16781 while (1)
16782 {
16783 byte = bfd_get_8 (abfd, buf);
16784 buf++;
16785 num_read++;
16786 result |= ((LONGEST) (byte & 127) << shift);
16787 shift += 7;
16788 if ((byte & 128) == 0)
16789 {
16790 break;
16791 }
16792 }
16793 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16794 result |= -(((LONGEST) 1) << shift);
16795 *bytes_read_ptr = num_read;
16796 return result;
16797 }
16798
16799 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16800 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16801 ADDR_SIZE is the size of addresses from the CU header. */
16802
16803 static CORE_ADDR
16804 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16805 {
16806 struct objfile *objfile = dwarf2_per_objfile->objfile;
16807 bfd *abfd = objfile->obfd;
16808 const gdb_byte *info_ptr;
16809
16810 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16811 if (dwarf2_per_objfile->addr.buffer == NULL)
16812 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16813 objfile_name (objfile));
16814 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16815 error (_("DW_FORM_addr_index pointing outside of "
16816 ".debug_addr section [in module %s]"),
16817 objfile_name (objfile));
16818 info_ptr = (dwarf2_per_objfile->addr.buffer
16819 + addr_base + addr_index * addr_size);
16820 if (addr_size == 4)
16821 return bfd_get_32 (abfd, info_ptr);
16822 else
16823 return bfd_get_64 (abfd, info_ptr);
16824 }
16825
16826 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16827
16828 static CORE_ADDR
16829 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16830 {
16831 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16832 }
16833
16834 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16835
16836 static CORE_ADDR
16837 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16838 unsigned int *bytes_read)
16839 {
16840 bfd *abfd = cu->objfile->obfd;
16841 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16842
16843 return read_addr_index (cu, addr_index);
16844 }
16845
16846 /* Data structure to pass results from dwarf2_read_addr_index_reader
16847 back to dwarf2_read_addr_index. */
16848
16849 struct dwarf2_read_addr_index_data
16850 {
16851 ULONGEST addr_base;
16852 int addr_size;
16853 };
16854
16855 /* die_reader_func for dwarf2_read_addr_index. */
16856
16857 static void
16858 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16859 const gdb_byte *info_ptr,
16860 struct die_info *comp_unit_die,
16861 int has_children,
16862 void *data)
16863 {
16864 struct dwarf2_cu *cu = reader->cu;
16865 struct dwarf2_read_addr_index_data *aidata =
16866 (struct dwarf2_read_addr_index_data *) data;
16867
16868 aidata->addr_base = cu->addr_base;
16869 aidata->addr_size = cu->header.addr_size;
16870 }
16871
16872 /* Given an index in .debug_addr, fetch the value.
16873 NOTE: This can be called during dwarf expression evaluation,
16874 long after the debug information has been read, and thus per_cu->cu
16875 may no longer exist. */
16876
16877 CORE_ADDR
16878 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16879 unsigned int addr_index)
16880 {
16881 struct objfile *objfile = per_cu->objfile;
16882 struct dwarf2_cu *cu = per_cu->cu;
16883 ULONGEST addr_base;
16884 int addr_size;
16885
16886 /* This is intended to be called from outside this file. */
16887 dw2_setup (objfile);
16888
16889 /* We need addr_base and addr_size.
16890 If we don't have PER_CU->cu, we have to get it.
16891 Nasty, but the alternative is storing the needed info in PER_CU,
16892 which at this point doesn't seem justified: it's not clear how frequently
16893 it would get used and it would increase the size of every PER_CU.
16894 Entry points like dwarf2_per_cu_addr_size do a similar thing
16895 so we're not in uncharted territory here.
16896 Alas we need to be a bit more complicated as addr_base is contained
16897 in the DIE.
16898
16899 We don't need to read the entire CU(/TU).
16900 We just need the header and top level die.
16901
16902 IWBN to use the aging mechanism to let us lazily later discard the CU.
16903 For now we skip this optimization. */
16904
16905 if (cu != NULL)
16906 {
16907 addr_base = cu->addr_base;
16908 addr_size = cu->header.addr_size;
16909 }
16910 else
16911 {
16912 struct dwarf2_read_addr_index_data aidata;
16913
16914 /* Note: We can't use init_cutu_and_read_dies_simple here,
16915 we need addr_base. */
16916 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16917 dwarf2_read_addr_index_reader, &aidata);
16918 addr_base = aidata.addr_base;
16919 addr_size = aidata.addr_size;
16920 }
16921
16922 return read_addr_index_1 (addr_index, addr_base, addr_size);
16923 }
16924
16925 /* Given a DW_FORM_GNU_str_index, fetch the string.
16926 This is only used by the Fission support. */
16927
16928 static const char *
16929 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16930 {
16931 struct objfile *objfile = dwarf2_per_objfile->objfile;
16932 const char *objf_name = objfile_name (objfile);
16933 bfd *abfd = objfile->obfd;
16934 struct dwarf2_cu *cu = reader->cu;
16935 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16936 struct dwarf2_section_info *str_offsets_section =
16937 &reader->dwo_file->sections.str_offsets;
16938 const gdb_byte *info_ptr;
16939 ULONGEST str_offset;
16940 static const char form_name[] = "DW_FORM_GNU_str_index";
16941
16942 dwarf2_read_section (objfile, str_section);
16943 dwarf2_read_section (objfile, str_offsets_section);
16944 if (str_section->buffer == NULL)
16945 error (_("%s used without .debug_str.dwo section"
16946 " in CU at offset 0x%lx [in module %s]"),
16947 form_name, (long) cu->header.offset.sect_off, objf_name);
16948 if (str_offsets_section->buffer == NULL)
16949 error (_("%s used without .debug_str_offsets.dwo section"
16950 " in CU at offset 0x%lx [in module %s]"),
16951 form_name, (long) cu->header.offset.sect_off, objf_name);
16952 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16953 error (_("%s pointing outside of .debug_str_offsets.dwo"
16954 " section in CU at offset 0x%lx [in module %s]"),
16955 form_name, (long) cu->header.offset.sect_off, objf_name);
16956 info_ptr = (str_offsets_section->buffer
16957 + str_index * cu->header.offset_size);
16958 if (cu->header.offset_size == 4)
16959 str_offset = bfd_get_32 (abfd, info_ptr);
16960 else
16961 str_offset = bfd_get_64 (abfd, info_ptr);
16962 if (str_offset >= str_section->size)
16963 error (_("Offset from %s pointing outside of"
16964 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16965 form_name, (long) cu->header.offset.sect_off, objf_name);
16966 return (const char *) (str_section->buffer + str_offset);
16967 }
16968
16969 /* Return the length of an LEB128 number in BUF. */
16970
16971 static int
16972 leb128_size (const gdb_byte *buf)
16973 {
16974 const gdb_byte *begin = buf;
16975 gdb_byte byte;
16976
16977 while (1)
16978 {
16979 byte = *buf++;
16980 if ((byte & 128) == 0)
16981 return buf - begin;
16982 }
16983 }
16984
16985 static void
16986 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16987 {
16988 switch (lang)
16989 {
16990 case DW_LANG_C89:
16991 case DW_LANG_C99:
16992 case DW_LANG_C11:
16993 case DW_LANG_C:
16994 case DW_LANG_UPC:
16995 cu->language = language_c;
16996 break;
16997 case DW_LANG_C_plus_plus:
16998 case DW_LANG_C_plus_plus_11:
16999 case DW_LANG_C_plus_plus_14:
17000 cu->language = language_cplus;
17001 break;
17002 case DW_LANG_D:
17003 cu->language = language_d;
17004 break;
17005 case DW_LANG_Fortran77:
17006 case DW_LANG_Fortran90:
17007 case DW_LANG_Fortran95:
17008 case DW_LANG_Fortran03:
17009 case DW_LANG_Fortran08:
17010 cu->language = language_fortran;
17011 break;
17012 case DW_LANG_Go:
17013 cu->language = language_go;
17014 break;
17015 case DW_LANG_Mips_Assembler:
17016 cu->language = language_asm;
17017 break;
17018 case DW_LANG_Java:
17019 cu->language = language_java;
17020 break;
17021 case DW_LANG_Ada83:
17022 case DW_LANG_Ada95:
17023 cu->language = language_ada;
17024 break;
17025 case DW_LANG_Modula2:
17026 cu->language = language_m2;
17027 break;
17028 case DW_LANG_Pascal83:
17029 cu->language = language_pascal;
17030 break;
17031 case DW_LANG_ObjC:
17032 cu->language = language_objc;
17033 break;
17034 case DW_LANG_Cobol74:
17035 case DW_LANG_Cobol85:
17036 default:
17037 cu->language = language_minimal;
17038 break;
17039 }
17040 cu->language_defn = language_def (cu->language);
17041 }
17042
17043 /* Return the named attribute or NULL if not there. */
17044
17045 static struct attribute *
17046 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17047 {
17048 for (;;)
17049 {
17050 unsigned int i;
17051 struct attribute *spec = NULL;
17052
17053 for (i = 0; i < die->num_attrs; ++i)
17054 {
17055 if (die->attrs[i].name == name)
17056 return &die->attrs[i];
17057 if (die->attrs[i].name == DW_AT_specification
17058 || die->attrs[i].name == DW_AT_abstract_origin)
17059 spec = &die->attrs[i];
17060 }
17061
17062 if (!spec)
17063 break;
17064
17065 die = follow_die_ref (die, spec, &cu);
17066 }
17067
17068 return NULL;
17069 }
17070
17071 /* Return the named attribute or NULL if not there,
17072 but do not follow DW_AT_specification, etc.
17073 This is for use in contexts where we're reading .debug_types dies.
17074 Following DW_AT_specification, DW_AT_abstract_origin will take us
17075 back up the chain, and we want to go down. */
17076
17077 static struct attribute *
17078 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17079 {
17080 unsigned int i;
17081
17082 for (i = 0; i < die->num_attrs; ++i)
17083 if (die->attrs[i].name == name)
17084 return &die->attrs[i];
17085
17086 return NULL;
17087 }
17088
17089 /* Return the string associated with a string-typed attribute, or NULL if it
17090 is either not found or is of an incorrect type. */
17091
17092 static const char *
17093 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17094 {
17095 struct attribute *attr;
17096 const char *str = NULL;
17097
17098 attr = dwarf2_attr (die, name, cu);
17099
17100 if (attr != NULL)
17101 {
17102 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17103 || attr->form == DW_FORM_GNU_strp_alt)
17104 str = DW_STRING (attr);
17105 else
17106 complaint (&symfile_complaints,
17107 _("string type expected for attribute %s for "
17108 "DIE at 0x%x in module %s"),
17109 dwarf_attr_name (name), die->offset.sect_off,
17110 objfile_name (cu->objfile));
17111 }
17112
17113 return str;
17114 }
17115
17116 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17117 and holds a non-zero value. This function should only be used for
17118 DW_FORM_flag or DW_FORM_flag_present attributes. */
17119
17120 static int
17121 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17122 {
17123 struct attribute *attr = dwarf2_attr (die, name, cu);
17124
17125 return (attr && DW_UNSND (attr));
17126 }
17127
17128 static int
17129 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17130 {
17131 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17132 which value is non-zero. However, we have to be careful with
17133 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17134 (via dwarf2_flag_true_p) follows this attribute. So we may
17135 end up accidently finding a declaration attribute that belongs
17136 to a different DIE referenced by the specification attribute,
17137 even though the given DIE does not have a declaration attribute. */
17138 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17139 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17140 }
17141
17142 /* Return the die giving the specification for DIE, if there is
17143 one. *SPEC_CU is the CU containing DIE on input, and the CU
17144 containing the return value on output. If there is no
17145 specification, but there is an abstract origin, that is
17146 returned. */
17147
17148 static struct die_info *
17149 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17150 {
17151 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17152 *spec_cu);
17153
17154 if (spec_attr == NULL)
17155 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17156
17157 if (spec_attr == NULL)
17158 return NULL;
17159 else
17160 return follow_die_ref (die, spec_attr, spec_cu);
17161 }
17162
17163 /* Free the line_header structure *LH, and any arrays and strings it
17164 refers to.
17165 NOTE: This is also used as a "cleanup" function. */
17166
17167 static void
17168 free_line_header (struct line_header *lh)
17169 {
17170 if (lh->standard_opcode_lengths)
17171 xfree (lh->standard_opcode_lengths);
17172
17173 /* Remember that all the lh->file_names[i].name pointers are
17174 pointers into debug_line_buffer, and don't need to be freed. */
17175 if (lh->file_names)
17176 xfree (lh->file_names);
17177
17178 /* Similarly for the include directory names. */
17179 if (lh->include_dirs)
17180 xfree (lh->include_dirs);
17181
17182 xfree (lh);
17183 }
17184
17185 /* Stub for free_line_header to match void * callback types. */
17186
17187 static void
17188 free_line_header_voidp (void *arg)
17189 {
17190 struct line_header *lh = arg;
17191
17192 free_line_header (lh);
17193 }
17194
17195 /* Add an entry to LH's include directory table. */
17196
17197 static void
17198 add_include_dir (struct line_header *lh, const char *include_dir)
17199 {
17200 if (dwarf_line_debug >= 2)
17201 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17202 lh->num_include_dirs + 1, include_dir);
17203
17204 /* Grow the array if necessary. */
17205 if (lh->include_dirs_size == 0)
17206 {
17207 lh->include_dirs_size = 1; /* for testing */
17208 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17209 }
17210 else if (lh->num_include_dirs >= lh->include_dirs_size)
17211 {
17212 lh->include_dirs_size *= 2;
17213 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17214 lh->include_dirs_size);
17215 }
17216
17217 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17218 }
17219
17220 /* Add an entry to LH's file name table. */
17221
17222 static void
17223 add_file_name (struct line_header *lh,
17224 const char *name,
17225 unsigned int dir_index,
17226 unsigned int mod_time,
17227 unsigned int length)
17228 {
17229 struct file_entry *fe;
17230
17231 if (dwarf_line_debug >= 2)
17232 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17233 lh->num_file_names + 1, name);
17234
17235 /* Grow the array if necessary. */
17236 if (lh->file_names_size == 0)
17237 {
17238 lh->file_names_size = 1; /* for testing */
17239 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17240 }
17241 else if (lh->num_file_names >= lh->file_names_size)
17242 {
17243 lh->file_names_size *= 2;
17244 lh->file_names
17245 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17246 }
17247
17248 fe = &lh->file_names[lh->num_file_names++];
17249 fe->name = name;
17250 fe->dir_index = dir_index;
17251 fe->mod_time = mod_time;
17252 fe->length = length;
17253 fe->included_p = 0;
17254 fe->symtab = NULL;
17255 }
17256
17257 /* A convenience function to find the proper .debug_line section for a CU. */
17258
17259 static struct dwarf2_section_info *
17260 get_debug_line_section (struct dwarf2_cu *cu)
17261 {
17262 struct dwarf2_section_info *section;
17263
17264 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17265 DWO file. */
17266 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17267 section = &cu->dwo_unit->dwo_file->sections.line;
17268 else if (cu->per_cu->is_dwz)
17269 {
17270 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17271
17272 section = &dwz->line;
17273 }
17274 else
17275 section = &dwarf2_per_objfile->line;
17276
17277 return section;
17278 }
17279
17280 /* Read the statement program header starting at OFFSET in
17281 .debug_line, or .debug_line.dwo. Return a pointer
17282 to a struct line_header, allocated using xmalloc.
17283 Returns NULL if there is a problem reading the header, e.g., if it
17284 has a version we don't understand.
17285
17286 NOTE: the strings in the include directory and file name tables of
17287 the returned object point into the dwarf line section buffer,
17288 and must not be freed. */
17289
17290 static struct line_header *
17291 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17292 {
17293 struct cleanup *back_to;
17294 struct line_header *lh;
17295 const gdb_byte *line_ptr;
17296 unsigned int bytes_read, offset_size;
17297 int i;
17298 const char *cur_dir, *cur_file;
17299 struct dwarf2_section_info *section;
17300 bfd *abfd;
17301
17302 section = get_debug_line_section (cu);
17303 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17304 if (section->buffer == NULL)
17305 {
17306 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17307 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17308 else
17309 complaint (&symfile_complaints, _("missing .debug_line section"));
17310 return 0;
17311 }
17312
17313 /* We can't do this until we know the section is non-empty.
17314 Only then do we know we have such a section. */
17315 abfd = get_section_bfd_owner (section);
17316
17317 /* Make sure that at least there's room for the total_length field.
17318 That could be 12 bytes long, but we're just going to fudge that. */
17319 if (offset + 4 >= section->size)
17320 {
17321 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17322 return 0;
17323 }
17324
17325 lh = XNEW (struct line_header);
17326 memset (lh, 0, sizeof (*lh));
17327 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17328 (void *) lh);
17329
17330 lh->offset.sect_off = offset;
17331 lh->offset_in_dwz = cu->per_cu->is_dwz;
17332
17333 line_ptr = section->buffer + offset;
17334
17335 /* Read in the header. */
17336 lh->total_length =
17337 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17338 &bytes_read, &offset_size);
17339 line_ptr += bytes_read;
17340 if (line_ptr + lh->total_length > (section->buffer + section->size))
17341 {
17342 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17343 do_cleanups (back_to);
17344 return 0;
17345 }
17346 lh->statement_program_end = line_ptr + lh->total_length;
17347 lh->version = read_2_bytes (abfd, line_ptr);
17348 line_ptr += 2;
17349 if (lh->version > 4)
17350 {
17351 /* This is a version we don't understand. The format could have
17352 changed in ways we don't handle properly so just punt. */
17353 complaint (&symfile_complaints,
17354 _("unsupported version in .debug_line section"));
17355 return NULL;
17356 }
17357 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17358 line_ptr += offset_size;
17359 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17360 line_ptr += 1;
17361 if (lh->version >= 4)
17362 {
17363 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17364 line_ptr += 1;
17365 }
17366 else
17367 lh->maximum_ops_per_instruction = 1;
17368
17369 if (lh->maximum_ops_per_instruction == 0)
17370 {
17371 lh->maximum_ops_per_instruction = 1;
17372 complaint (&symfile_complaints,
17373 _("invalid maximum_ops_per_instruction "
17374 "in `.debug_line' section"));
17375 }
17376
17377 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17378 line_ptr += 1;
17379 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17380 line_ptr += 1;
17381 lh->line_range = read_1_byte (abfd, line_ptr);
17382 line_ptr += 1;
17383 lh->opcode_base = read_1_byte (abfd, line_ptr);
17384 line_ptr += 1;
17385 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17386
17387 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17388 for (i = 1; i < lh->opcode_base; ++i)
17389 {
17390 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17391 line_ptr += 1;
17392 }
17393
17394 /* Read directory table. */
17395 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17396 {
17397 line_ptr += bytes_read;
17398 add_include_dir (lh, cur_dir);
17399 }
17400 line_ptr += bytes_read;
17401
17402 /* Read file name table. */
17403 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17404 {
17405 unsigned int dir_index, mod_time, length;
17406
17407 line_ptr += bytes_read;
17408 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17409 line_ptr += bytes_read;
17410 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17411 line_ptr += bytes_read;
17412 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17413 line_ptr += bytes_read;
17414
17415 add_file_name (lh, cur_file, dir_index, mod_time, length);
17416 }
17417 line_ptr += bytes_read;
17418 lh->statement_program_start = line_ptr;
17419
17420 if (line_ptr > (section->buffer + section->size))
17421 complaint (&symfile_complaints,
17422 _("line number info header doesn't "
17423 "fit in `.debug_line' section"));
17424
17425 discard_cleanups (back_to);
17426 return lh;
17427 }
17428
17429 /* Subroutine of dwarf_decode_lines to simplify it.
17430 Return the file name of the psymtab for included file FILE_INDEX
17431 in line header LH of PST.
17432 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17433 If space for the result is malloc'd, it will be freed by a cleanup.
17434 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17435
17436 The function creates dangling cleanup registration. */
17437
17438 static const char *
17439 psymtab_include_file_name (const struct line_header *lh, int file_index,
17440 const struct partial_symtab *pst,
17441 const char *comp_dir)
17442 {
17443 const struct file_entry fe = lh->file_names [file_index];
17444 const char *include_name = fe.name;
17445 const char *include_name_to_compare = include_name;
17446 const char *dir_name = NULL;
17447 const char *pst_filename;
17448 char *copied_name = NULL;
17449 int file_is_pst;
17450
17451 if (fe.dir_index && lh->include_dirs != NULL)
17452 dir_name = lh->include_dirs[fe.dir_index - 1];
17453
17454 if (!IS_ABSOLUTE_PATH (include_name)
17455 && (dir_name != NULL || comp_dir != NULL))
17456 {
17457 /* Avoid creating a duplicate psymtab for PST.
17458 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17459 Before we do the comparison, however, we need to account
17460 for DIR_NAME and COMP_DIR.
17461 First prepend dir_name (if non-NULL). If we still don't
17462 have an absolute path prepend comp_dir (if non-NULL).
17463 However, the directory we record in the include-file's
17464 psymtab does not contain COMP_DIR (to match the
17465 corresponding symtab(s)).
17466
17467 Example:
17468
17469 bash$ cd /tmp
17470 bash$ gcc -g ./hello.c
17471 include_name = "hello.c"
17472 dir_name = "."
17473 DW_AT_comp_dir = comp_dir = "/tmp"
17474 DW_AT_name = "./hello.c"
17475
17476 */
17477
17478 if (dir_name != NULL)
17479 {
17480 char *tem = concat (dir_name, SLASH_STRING,
17481 include_name, (char *)NULL);
17482
17483 make_cleanup (xfree, tem);
17484 include_name = tem;
17485 include_name_to_compare = include_name;
17486 }
17487 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17488 {
17489 char *tem = concat (comp_dir, SLASH_STRING,
17490 include_name, (char *)NULL);
17491
17492 make_cleanup (xfree, tem);
17493 include_name_to_compare = tem;
17494 }
17495 }
17496
17497 pst_filename = pst->filename;
17498 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17499 {
17500 copied_name = concat (pst->dirname, SLASH_STRING,
17501 pst_filename, (char *)NULL);
17502 pst_filename = copied_name;
17503 }
17504
17505 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17506
17507 if (copied_name != NULL)
17508 xfree (copied_name);
17509
17510 if (file_is_pst)
17511 return NULL;
17512 return include_name;
17513 }
17514
17515 /* State machine to track the state of the line number program. */
17516
17517 typedef struct
17518 {
17519 /* These are part of the standard DWARF line number state machine. */
17520
17521 unsigned char op_index;
17522 unsigned int file;
17523 unsigned int line;
17524 CORE_ADDR address;
17525 int is_stmt;
17526 unsigned int discriminator;
17527
17528 /* Additional bits of state we need to track. */
17529
17530 /* The last file that we called dwarf2_start_subfile for.
17531 This is only used for TLLs. */
17532 unsigned int last_file;
17533 /* The last file a line number was recorded for. */
17534 struct subfile *last_subfile;
17535
17536 /* The function to call to record a line. */
17537 record_line_ftype *record_line;
17538
17539 /* The last line number that was recorded, used to coalesce
17540 consecutive entries for the same line. This can happen, for
17541 example, when discriminators are present. PR 17276. */
17542 unsigned int last_line;
17543 int line_has_non_zero_discriminator;
17544 } lnp_state_machine;
17545
17546 /* There's a lot of static state to pass to dwarf_record_line.
17547 This keeps it all together. */
17548
17549 typedef struct
17550 {
17551 /* The gdbarch. */
17552 struct gdbarch *gdbarch;
17553
17554 /* The line number header. */
17555 struct line_header *line_header;
17556
17557 /* Non-zero if we're recording lines.
17558 Otherwise we're building partial symtabs and are just interested in
17559 finding include files mentioned by the line number program. */
17560 int record_lines_p;
17561 } lnp_reader_state;
17562
17563 /* Ignore this record_line request. */
17564
17565 static void
17566 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17567 {
17568 return;
17569 }
17570
17571 /* Return non-zero if we should add LINE to the line number table.
17572 LINE is the line to add, LAST_LINE is the last line that was added,
17573 LAST_SUBFILE is the subfile for LAST_LINE.
17574 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17575 had a non-zero discriminator.
17576
17577 We have to be careful in the presence of discriminators.
17578 E.g., for this line:
17579
17580 for (i = 0; i < 100000; i++);
17581
17582 clang can emit four line number entries for that one line,
17583 each with a different discriminator.
17584 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17585
17586 However, we want gdb to coalesce all four entries into one.
17587 Otherwise the user could stepi into the middle of the line and
17588 gdb would get confused about whether the pc really was in the
17589 middle of the line.
17590
17591 Things are further complicated by the fact that two consecutive
17592 line number entries for the same line is a heuristic used by gcc
17593 to denote the end of the prologue. So we can't just discard duplicate
17594 entries, we have to be selective about it. The heuristic we use is
17595 that we only collapse consecutive entries for the same line if at least
17596 one of those entries has a non-zero discriminator. PR 17276.
17597
17598 Note: Addresses in the line number state machine can never go backwards
17599 within one sequence, thus this coalescing is ok. */
17600
17601 static int
17602 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17603 int line_has_non_zero_discriminator,
17604 struct subfile *last_subfile)
17605 {
17606 if (current_subfile != last_subfile)
17607 return 1;
17608 if (line != last_line)
17609 return 1;
17610 /* Same line for the same file that we've seen already.
17611 As a last check, for pr 17276, only record the line if the line
17612 has never had a non-zero discriminator. */
17613 if (!line_has_non_zero_discriminator)
17614 return 1;
17615 return 0;
17616 }
17617
17618 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17619 in the line table of subfile SUBFILE. */
17620
17621 static void
17622 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17623 unsigned int line, CORE_ADDR address,
17624 record_line_ftype p_record_line)
17625 {
17626 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17627
17628 if (dwarf_line_debug)
17629 {
17630 fprintf_unfiltered (gdb_stdlog,
17631 "Recording line %u, file %s, address %s\n",
17632 line, lbasename (subfile->name),
17633 paddress (gdbarch, address));
17634 }
17635
17636 (*p_record_line) (subfile, line, addr);
17637 }
17638
17639 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17640 Mark the end of a set of line number records.
17641 The arguments are the same as for dwarf_record_line_1.
17642 If SUBFILE is NULL the request is ignored. */
17643
17644 static void
17645 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17646 CORE_ADDR address, record_line_ftype p_record_line)
17647 {
17648 if (subfile == NULL)
17649 return;
17650
17651 if (dwarf_line_debug)
17652 {
17653 fprintf_unfiltered (gdb_stdlog,
17654 "Finishing current line, file %s, address %s\n",
17655 lbasename (subfile->name),
17656 paddress (gdbarch, address));
17657 }
17658
17659 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17660 }
17661
17662 /* Record the line in STATE.
17663 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17664
17665 static void
17666 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17667 int end_sequence)
17668 {
17669 const struct line_header *lh = reader->line_header;
17670 unsigned int file, line, discriminator;
17671 int is_stmt;
17672
17673 file = state->file;
17674 line = state->line;
17675 is_stmt = state->is_stmt;
17676 discriminator = state->discriminator;
17677
17678 if (dwarf_line_debug)
17679 {
17680 fprintf_unfiltered (gdb_stdlog,
17681 "Processing actual line %u: file %u,"
17682 " address %s, is_stmt %u, discrim %u\n",
17683 line, file,
17684 paddress (reader->gdbarch, state->address),
17685 is_stmt, discriminator);
17686 }
17687
17688 if (file == 0 || file - 1 >= lh->num_file_names)
17689 dwarf2_debug_line_missing_file_complaint ();
17690 /* For now we ignore lines not starting on an instruction boundary.
17691 But not when processing end_sequence for compatibility with the
17692 previous version of the code. */
17693 else if (state->op_index == 0 || end_sequence)
17694 {
17695 lh->file_names[file - 1].included_p = 1;
17696 if (reader->record_lines_p && is_stmt)
17697 {
17698 if (state->last_subfile != current_subfile || end_sequence)
17699 {
17700 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17701 state->address, state->record_line);
17702 }
17703
17704 if (!end_sequence)
17705 {
17706 if (dwarf_record_line_p (line, state->last_line,
17707 state->line_has_non_zero_discriminator,
17708 state->last_subfile))
17709 {
17710 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17711 line, state->address,
17712 state->record_line);
17713 }
17714 state->last_subfile = current_subfile;
17715 state->last_line = line;
17716 }
17717 }
17718 }
17719 }
17720
17721 /* Initialize STATE for the start of a line number program. */
17722
17723 static void
17724 init_lnp_state_machine (lnp_state_machine *state,
17725 const lnp_reader_state *reader)
17726 {
17727 memset (state, 0, sizeof (*state));
17728
17729 /* Just starting, there is no "last file". */
17730 state->last_file = 0;
17731 state->last_subfile = NULL;
17732
17733 state->record_line = record_line;
17734
17735 state->last_line = 0;
17736 state->line_has_non_zero_discriminator = 0;
17737
17738 /* Initialize these according to the DWARF spec. */
17739 state->op_index = 0;
17740 state->file = 1;
17741 state->line = 1;
17742 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17743 was a line entry for it so that the backend has a chance to adjust it
17744 and also record it in case it needs it. This is currently used by MIPS
17745 code, cf. `mips_adjust_dwarf2_line'. */
17746 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17747 state->is_stmt = reader->line_header->default_is_stmt;
17748 state->discriminator = 0;
17749 }
17750
17751 /* Check address and if invalid nop-out the rest of the lines in this
17752 sequence. */
17753
17754 static void
17755 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17756 const gdb_byte *line_ptr,
17757 CORE_ADDR lowpc, CORE_ADDR address)
17758 {
17759 /* If address < lowpc then it's not a usable value, it's outside the
17760 pc range of the CU. However, we restrict the test to only address
17761 values of zero to preserve GDB's previous behaviour which is to
17762 handle the specific case of a function being GC'd by the linker. */
17763
17764 if (address == 0 && address < lowpc)
17765 {
17766 /* This line table is for a function which has been
17767 GCd by the linker. Ignore it. PR gdb/12528 */
17768
17769 struct objfile *objfile = cu->objfile;
17770 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17771
17772 complaint (&symfile_complaints,
17773 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17774 line_offset, objfile_name (objfile));
17775 state->record_line = noop_record_line;
17776 /* Note: sm.record_line is left as noop_record_line
17777 until we see DW_LNE_end_sequence. */
17778 }
17779 }
17780
17781 /* Subroutine of dwarf_decode_lines to simplify it.
17782 Process the line number information in LH.
17783 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17784 program in order to set included_p for every referenced header. */
17785
17786 static void
17787 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17788 const int decode_for_pst_p, CORE_ADDR lowpc)
17789 {
17790 const gdb_byte *line_ptr, *extended_end;
17791 const gdb_byte *line_end;
17792 unsigned int bytes_read, extended_len;
17793 unsigned char op_code, extended_op;
17794 CORE_ADDR baseaddr;
17795 struct objfile *objfile = cu->objfile;
17796 bfd *abfd = objfile->obfd;
17797 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17798 /* Non-zero if we're recording line info (as opposed to building partial
17799 symtabs). */
17800 int record_lines_p = !decode_for_pst_p;
17801 /* A collection of things we need to pass to dwarf_record_line. */
17802 lnp_reader_state reader_state;
17803
17804 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17805
17806 line_ptr = lh->statement_program_start;
17807 line_end = lh->statement_program_end;
17808
17809 reader_state.gdbarch = gdbarch;
17810 reader_state.line_header = lh;
17811 reader_state.record_lines_p = record_lines_p;
17812
17813 /* Read the statement sequences until there's nothing left. */
17814 while (line_ptr < line_end)
17815 {
17816 /* The DWARF line number program state machine. */
17817 lnp_state_machine state_machine;
17818 int end_sequence = 0;
17819
17820 /* Reset the state machine at the start of each sequence. */
17821 init_lnp_state_machine (&state_machine, &reader_state);
17822
17823 if (record_lines_p && lh->num_file_names >= state_machine.file)
17824 {
17825 /* Start a subfile for the current file of the state machine. */
17826 /* lh->include_dirs and lh->file_names are 0-based, but the
17827 directory and file name numbers in the statement program
17828 are 1-based. */
17829 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17830 const char *dir = NULL;
17831
17832 if (fe->dir_index && lh->include_dirs != NULL)
17833 dir = lh->include_dirs[fe->dir_index - 1];
17834
17835 dwarf2_start_subfile (fe->name, dir);
17836 }
17837
17838 /* Decode the table. */
17839 while (line_ptr < line_end && !end_sequence)
17840 {
17841 op_code = read_1_byte (abfd, line_ptr);
17842 line_ptr += 1;
17843
17844 if (op_code >= lh->opcode_base)
17845 {
17846 /* Special opcode. */
17847 unsigned char adj_opcode;
17848 CORE_ADDR addr_adj;
17849 int line_delta;
17850
17851 adj_opcode = op_code - lh->opcode_base;
17852 addr_adj = (((state_machine.op_index
17853 + (adj_opcode / lh->line_range))
17854 / lh->maximum_ops_per_instruction)
17855 * lh->minimum_instruction_length);
17856 state_machine.address
17857 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17858 state_machine.op_index = ((state_machine.op_index
17859 + (adj_opcode / lh->line_range))
17860 % lh->maximum_ops_per_instruction);
17861 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17862 state_machine.line += line_delta;
17863 if (line_delta != 0)
17864 state_machine.line_has_non_zero_discriminator
17865 = state_machine.discriminator != 0;
17866
17867 dwarf_record_line (&reader_state, &state_machine, 0);
17868 state_machine.discriminator = 0;
17869 }
17870 else switch (op_code)
17871 {
17872 case DW_LNS_extended_op:
17873 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17874 &bytes_read);
17875 line_ptr += bytes_read;
17876 extended_end = line_ptr + extended_len;
17877 extended_op = read_1_byte (abfd, line_ptr);
17878 line_ptr += 1;
17879 switch (extended_op)
17880 {
17881 case DW_LNE_end_sequence:
17882 state_machine.record_line = record_line;
17883 end_sequence = 1;
17884 break;
17885 case DW_LNE_set_address:
17886 {
17887 CORE_ADDR address
17888 = read_address (abfd, line_ptr, cu, &bytes_read);
17889
17890 line_ptr += bytes_read;
17891 check_line_address (cu, &state_machine, line_ptr,
17892 lowpc, address);
17893 state_machine.op_index = 0;
17894 address += baseaddr;
17895 state_machine.address
17896 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17897 }
17898 break;
17899 case DW_LNE_define_file:
17900 {
17901 const char *cur_file;
17902 unsigned int dir_index, mod_time, length;
17903
17904 cur_file = read_direct_string (abfd, line_ptr,
17905 &bytes_read);
17906 line_ptr += bytes_read;
17907 dir_index =
17908 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17909 line_ptr += bytes_read;
17910 mod_time =
17911 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17912 line_ptr += bytes_read;
17913 length =
17914 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17915 line_ptr += bytes_read;
17916 add_file_name (lh, cur_file, dir_index, mod_time, length);
17917 }
17918 break;
17919 case DW_LNE_set_discriminator:
17920 /* The discriminator is not interesting to the debugger;
17921 just ignore it. We still need to check its value though:
17922 if there are consecutive entries for the same
17923 (non-prologue) line we want to coalesce them.
17924 PR 17276. */
17925 state_machine.discriminator
17926 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17927 state_machine.line_has_non_zero_discriminator
17928 |= state_machine.discriminator != 0;
17929 line_ptr += bytes_read;
17930 break;
17931 default:
17932 complaint (&symfile_complaints,
17933 _("mangled .debug_line section"));
17934 return;
17935 }
17936 /* Make sure that we parsed the extended op correctly. If e.g.
17937 we expected a different address size than the producer used,
17938 we may have read the wrong number of bytes. */
17939 if (line_ptr != extended_end)
17940 {
17941 complaint (&symfile_complaints,
17942 _("mangled .debug_line section"));
17943 return;
17944 }
17945 break;
17946 case DW_LNS_copy:
17947 dwarf_record_line (&reader_state, &state_machine, 0);
17948 state_machine.discriminator = 0;
17949 break;
17950 case DW_LNS_advance_pc:
17951 {
17952 CORE_ADDR adjust
17953 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17954 CORE_ADDR addr_adj;
17955
17956 addr_adj = (((state_machine.op_index + adjust)
17957 / lh->maximum_ops_per_instruction)
17958 * lh->minimum_instruction_length);
17959 state_machine.address
17960 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17961 state_machine.op_index = ((state_machine.op_index + adjust)
17962 % lh->maximum_ops_per_instruction);
17963 line_ptr += bytes_read;
17964 }
17965 break;
17966 case DW_LNS_advance_line:
17967 {
17968 int line_delta
17969 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17970
17971 state_machine.line += line_delta;
17972 if (line_delta != 0)
17973 state_machine.line_has_non_zero_discriminator
17974 = state_machine.discriminator != 0;
17975 line_ptr += bytes_read;
17976 }
17977 break;
17978 case DW_LNS_set_file:
17979 {
17980 /* The arrays lh->include_dirs and lh->file_names are
17981 0-based, but the directory and file name numbers in
17982 the statement program are 1-based. */
17983 struct file_entry *fe;
17984 const char *dir = NULL;
17985
17986 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17987 &bytes_read);
17988 line_ptr += bytes_read;
17989 if (state_machine.file == 0
17990 || state_machine.file - 1 >= lh->num_file_names)
17991 dwarf2_debug_line_missing_file_complaint ();
17992 else
17993 {
17994 fe = &lh->file_names[state_machine.file - 1];
17995 if (fe->dir_index && lh->include_dirs != NULL)
17996 dir = lh->include_dirs[fe->dir_index - 1];
17997 if (record_lines_p)
17998 {
17999 state_machine.last_subfile = current_subfile;
18000 state_machine.line_has_non_zero_discriminator
18001 = state_machine.discriminator != 0;
18002 dwarf2_start_subfile (fe->name, dir);
18003 }
18004 }
18005 }
18006 break;
18007 case DW_LNS_set_column:
18008 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18009 line_ptr += bytes_read;
18010 break;
18011 case DW_LNS_negate_stmt:
18012 state_machine.is_stmt = (!state_machine.is_stmt);
18013 break;
18014 case DW_LNS_set_basic_block:
18015 break;
18016 /* Add to the address register of the state machine the
18017 address increment value corresponding to special opcode
18018 255. I.e., this value is scaled by the minimum
18019 instruction length since special opcode 255 would have
18020 scaled the increment. */
18021 case DW_LNS_const_add_pc:
18022 {
18023 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18024 CORE_ADDR addr_adj;
18025
18026 addr_adj = (((state_machine.op_index + adjust)
18027 / lh->maximum_ops_per_instruction)
18028 * lh->minimum_instruction_length);
18029 state_machine.address
18030 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18031 state_machine.op_index = ((state_machine.op_index + adjust)
18032 % lh->maximum_ops_per_instruction);
18033 }
18034 break;
18035 case DW_LNS_fixed_advance_pc:
18036 {
18037 CORE_ADDR addr_adj;
18038
18039 addr_adj = read_2_bytes (abfd, line_ptr);
18040 state_machine.address
18041 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18042 state_machine.op_index = 0;
18043 line_ptr += 2;
18044 }
18045 break;
18046 default:
18047 {
18048 /* Unknown standard opcode, ignore it. */
18049 int i;
18050
18051 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18052 {
18053 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18054 line_ptr += bytes_read;
18055 }
18056 }
18057 }
18058 }
18059
18060 if (!end_sequence)
18061 dwarf2_debug_line_missing_end_sequence_complaint ();
18062
18063 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18064 in which case we still finish recording the last line). */
18065 dwarf_record_line (&reader_state, &state_machine, 1);
18066 }
18067 }
18068
18069 /* Decode the Line Number Program (LNP) for the given line_header
18070 structure and CU. The actual information extracted and the type
18071 of structures created from the LNP depends on the value of PST.
18072
18073 1. If PST is NULL, then this procedure uses the data from the program
18074 to create all necessary symbol tables, and their linetables.
18075
18076 2. If PST is not NULL, this procedure reads the program to determine
18077 the list of files included by the unit represented by PST, and
18078 builds all the associated partial symbol tables.
18079
18080 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18081 It is used for relative paths in the line table.
18082 NOTE: When processing partial symtabs (pst != NULL),
18083 comp_dir == pst->dirname.
18084
18085 NOTE: It is important that psymtabs have the same file name (via strcmp)
18086 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18087 symtab we don't use it in the name of the psymtabs we create.
18088 E.g. expand_line_sal requires this when finding psymtabs to expand.
18089 A good testcase for this is mb-inline.exp.
18090
18091 LOWPC is the lowest address in CU (or 0 if not known).
18092
18093 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18094 for its PC<->lines mapping information. Otherwise only the filename
18095 table is read in. */
18096
18097 static void
18098 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18099 struct dwarf2_cu *cu, struct partial_symtab *pst,
18100 CORE_ADDR lowpc, int decode_mapping)
18101 {
18102 struct objfile *objfile = cu->objfile;
18103 const int decode_for_pst_p = (pst != NULL);
18104
18105 if (decode_mapping)
18106 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18107
18108 if (decode_for_pst_p)
18109 {
18110 int file_index;
18111
18112 /* Now that we're done scanning the Line Header Program, we can
18113 create the psymtab of each included file. */
18114 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18115 if (lh->file_names[file_index].included_p == 1)
18116 {
18117 const char *include_name =
18118 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18119 if (include_name != NULL)
18120 dwarf2_create_include_psymtab (include_name, pst, objfile);
18121 }
18122 }
18123 else
18124 {
18125 /* Make sure a symtab is created for every file, even files
18126 which contain only variables (i.e. no code with associated
18127 line numbers). */
18128 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18129 int i;
18130
18131 for (i = 0; i < lh->num_file_names; i++)
18132 {
18133 const char *dir = NULL;
18134 struct file_entry *fe;
18135
18136 fe = &lh->file_names[i];
18137 if (fe->dir_index && lh->include_dirs != NULL)
18138 dir = lh->include_dirs[fe->dir_index - 1];
18139 dwarf2_start_subfile (fe->name, dir);
18140
18141 if (current_subfile->symtab == NULL)
18142 {
18143 current_subfile->symtab
18144 = allocate_symtab (cust, current_subfile->name);
18145 }
18146 fe->symtab = current_subfile->symtab;
18147 }
18148 }
18149 }
18150
18151 /* Start a subfile for DWARF. FILENAME is the name of the file and
18152 DIRNAME the name of the source directory which contains FILENAME
18153 or NULL if not known.
18154 This routine tries to keep line numbers from identical absolute and
18155 relative file names in a common subfile.
18156
18157 Using the `list' example from the GDB testsuite, which resides in
18158 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18159 of /srcdir/list0.c yields the following debugging information for list0.c:
18160
18161 DW_AT_name: /srcdir/list0.c
18162 DW_AT_comp_dir: /compdir
18163 files.files[0].name: list0.h
18164 files.files[0].dir: /srcdir
18165 files.files[1].name: list0.c
18166 files.files[1].dir: /srcdir
18167
18168 The line number information for list0.c has to end up in a single
18169 subfile, so that `break /srcdir/list0.c:1' works as expected.
18170 start_subfile will ensure that this happens provided that we pass the
18171 concatenation of files.files[1].dir and files.files[1].name as the
18172 subfile's name. */
18173
18174 static void
18175 dwarf2_start_subfile (const char *filename, const char *dirname)
18176 {
18177 char *copy = NULL;
18178
18179 /* In order not to lose the line information directory,
18180 we concatenate it to the filename when it makes sense.
18181 Note that the Dwarf3 standard says (speaking of filenames in line
18182 information): ``The directory index is ignored for file names
18183 that represent full path names''. Thus ignoring dirname in the
18184 `else' branch below isn't an issue. */
18185
18186 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18187 {
18188 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18189 filename = copy;
18190 }
18191
18192 start_subfile (filename);
18193
18194 if (copy != NULL)
18195 xfree (copy);
18196 }
18197
18198 /* Start a symtab for DWARF.
18199 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18200
18201 static struct compunit_symtab *
18202 dwarf2_start_symtab (struct dwarf2_cu *cu,
18203 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18204 {
18205 struct compunit_symtab *cust
18206 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18207
18208 record_debugformat ("DWARF 2");
18209 record_producer (cu->producer);
18210
18211 /* We assume that we're processing GCC output. */
18212 processing_gcc_compilation = 2;
18213
18214 cu->processing_has_namespace_info = 0;
18215
18216 return cust;
18217 }
18218
18219 static void
18220 var_decode_location (struct attribute *attr, struct symbol *sym,
18221 struct dwarf2_cu *cu)
18222 {
18223 struct objfile *objfile = cu->objfile;
18224 struct comp_unit_head *cu_header = &cu->header;
18225
18226 /* NOTE drow/2003-01-30: There used to be a comment and some special
18227 code here to turn a symbol with DW_AT_external and a
18228 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18229 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18230 with some versions of binutils) where shared libraries could have
18231 relocations against symbols in their debug information - the
18232 minimal symbol would have the right address, but the debug info
18233 would not. It's no longer necessary, because we will explicitly
18234 apply relocations when we read in the debug information now. */
18235
18236 /* A DW_AT_location attribute with no contents indicates that a
18237 variable has been optimized away. */
18238 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18239 {
18240 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18241 return;
18242 }
18243
18244 /* Handle one degenerate form of location expression specially, to
18245 preserve GDB's previous behavior when section offsets are
18246 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18247 then mark this symbol as LOC_STATIC. */
18248
18249 if (attr_form_is_block (attr)
18250 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18251 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18252 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18253 && (DW_BLOCK (attr)->size
18254 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18255 {
18256 unsigned int dummy;
18257
18258 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18259 SYMBOL_VALUE_ADDRESS (sym) =
18260 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18261 else
18262 SYMBOL_VALUE_ADDRESS (sym) =
18263 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18264 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18265 fixup_symbol_section (sym, objfile);
18266 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18267 SYMBOL_SECTION (sym));
18268 return;
18269 }
18270
18271 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18272 expression evaluator, and use LOC_COMPUTED only when necessary
18273 (i.e. when the value of a register or memory location is
18274 referenced, or a thread-local block, etc.). Then again, it might
18275 not be worthwhile. I'm assuming that it isn't unless performance
18276 or memory numbers show me otherwise. */
18277
18278 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18279
18280 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18281 cu->has_loclist = 1;
18282 }
18283
18284 /* Given a pointer to a DWARF information entry, figure out if we need
18285 to make a symbol table entry for it, and if so, create a new entry
18286 and return a pointer to it.
18287 If TYPE is NULL, determine symbol type from the die, otherwise
18288 used the passed type.
18289 If SPACE is not NULL, use it to hold the new symbol. If it is
18290 NULL, allocate a new symbol on the objfile's obstack. */
18291
18292 static struct symbol *
18293 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18294 struct symbol *space)
18295 {
18296 struct objfile *objfile = cu->objfile;
18297 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18298 struct symbol *sym = NULL;
18299 const char *name;
18300 struct attribute *attr = NULL;
18301 struct attribute *attr2 = NULL;
18302 CORE_ADDR baseaddr;
18303 struct pending **list_to_add = NULL;
18304
18305 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18306
18307 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18308
18309 name = dwarf2_name (die, cu);
18310 if (name)
18311 {
18312 const char *linkagename;
18313 int suppress_add = 0;
18314
18315 if (space)
18316 sym = space;
18317 else
18318 sym = allocate_symbol (objfile);
18319 OBJSTAT (objfile, n_syms++);
18320
18321 /* Cache this symbol's name and the name's demangled form (if any). */
18322 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18323 linkagename = dwarf2_physname (name, die, cu);
18324 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18325
18326 /* Fortran does not have mangling standard and the mangling does differ
18327 between gfortran, iFort etc. */
18328 if (cu->language == language_fortran
18329 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18330 symbol_set_demangled_name (&(sym->ginfo),
18331 dwarf2_full_name (name, die, cu),
18332 NULL);
18333
18334 /* Default assumptions.
18335 Use the passed type or decode it from the die. */
18336 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18337 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18338 if (type != NULL)
18339 SYMBOL_TYPE (sym) = type;
18340 else
18341 SYMBOL_TYPE (sym) = die_type (die, cu);
18342 attr = dwarf2_attr (die,
18343 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18344 cu);
18345 if (attr)
18346 {
18347 SYMBOL_LINE (sym) = DW_UNSND (attr);
18348 }
18349
18350 attr = dwarf2_attr (die,
18351 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18352 cu);
18353 if (attr)
18354 {
18355 int file_index = DW_UNSND (attr);
18356
18357 if (cu->line_header == NULL
18358 || file_index > cu->line_header->num_file_names)
18359 complaint (&symfile_complaints,
18360 _("file index out of range"));
18361 else if (file_index > 0)
18362 {
18363 struct file_entry *fe;
18364
18365 fe = &cu->line_header->file_names[file_index - 1];
18366 symbol_set_symtab (sym, fe->symtab);
18367 }
18368 }
18369
18370 switch (die->tag)
18371 {
18372 case DW_TAG_label:
18373 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18374 if (attr)
18375 {
18376 CORE_ADDR addr;
18377
18378 addr = attr_value_as_address (attr);
18379 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18380 SYMBOL_VALUE_ADDRESS (sym) = addr;
18381 }
18382 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18383 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18384 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18385 add_symbol_to_list (sym, cu->list_in_scope);
18386 break;
18387 case DW_TAG_subprogram:
18388 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18389 finish_block. */
18390 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18391 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18392 if ((attr2 && (DW_UNSND (attr2) != 0))
18393 || cu->language == language_ada)
18394 {
18395 /* Subprograms marked external are stored as a global symbol.
18396 Ada subprograms, whether marked external or not, are always
18397 stored as a global symbol, because we want to be able to
18398 access them globally. For instance, we want to be able
18399 to break on a nested subprogram without having to
18400 specify the context. */
18401 list_to_add = &global_symbols;
18402 }
18403 else
18404 {
18405 list_to_add = cu->list_in_scope;
18406 }
18407 break;
18408 case DW_TAG_inlined_subroutine:
18409 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18410 finish_block. */
18411 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18412 SYMBOL_INLINED (sym) = 1;
18413 list_to_add = cu->list_in_scope;
18414 break;
18415 case DW_TAG_template_value_param:
18416 suppress_add = 1;
18417 /* Fall through. */
18418 case DW_TAG_constant:
18419 case DW_TAG_variable:
18420 case DW_TAG_member:
18421 /* Compilation with minimal debug info may result in
18422 variables with missing type entries. Change the
18423 misleading `void' type to something sensible. */
18424 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18425 SYMBOL_TYPE (sym)
18426 = objfile_type (objfile)->nodebug_data_symbol;
18427
18428 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18429 /* In the case of DW_TAG_member, we should only be called for
18430 static const members. */
18431 if (die->tag == DW_TAG_member)
18432 {
18433 /* dwarf2_add_field uses die_is_declaration,
18434 so we do the same. */
18435 gdb_assert (die_is_declaration (die, cu));
18436 gdb_assert (attr);
18437 }
18438 if (attr)
18439 {
18440 dwarf2_const_value (attr, sym, cu);
18441 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18442 if (!suppress_add)
18443 {
18444 if (attr2 && (DW_UNSND (attr2) != 0))
18445 list_to_add = &global_symbols;
18446 else
18447 list_to_add = cu->list_in_scope;
18448 }
18449 break;
18450 }
18451 attr = dwarf2_attr (die, DW_AT_location, cu);
18452 if (attr)
18453 {
18454 var_decode_location (attr, sym, cu);
18455 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18456
18457 /* Fortran explicitly imports any global symbols to the local
18458 scope by DW_TAG_common_block. */
18459 if (cu->language == language_fortran && die->parent
18460 && die->parent->tag == DW_TAG_common_block)
18461 attr2 = NULL;
18462
18463 if (SYMBOL_CLASS (sym) == LOC_STATIC
18464 && SYMBOL_VALUE_ADDRESS (sym) == 0
18465 && !dwarf2_per_objfile->has_section_at_zero)
18466 {
18467 /* When a static variable is eliminated by the linker,
18468 the corresponding debug information is not stripped
18469 out, but the variable address is set to null;
18470 do not add such variables into symbol table. */
18471 }
18472 else if (attr2 && (DW_UNSND (attr2) != 0))
18473 {
18474 /* Workaround gfortran PR debug/40040 - it uses
18475 DW_AT_location for variables in -fPIC libraries which may
18476 get overriden by other libraries/executable and get
18477 a different address. Resolve it by the minimal symbol
18478 which may come from inferior's executable using copy
18479 relocation. Make this workaround only for gfortran as for
18480 other compilers GDB cannot guess the minimal symbol
18481 Fortran mangling kind. */
18482 if (cu->language == language_fortran && die->parent
18483 && die->parent->tag == DW_TAG_module
18484 && cu->producer
18485 && startswith (cu->producer, "GNU Fortran "))
18486 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18487
18488 /* A variable with DW_AT_external is never static,
18489 but it may be block-scoped. */
18490 list_to_add = (cu->list_in_scope == &file_symbols
18491 ? &global_symbols : cu->list_in_scope);
18492 }
18493 else
18494 list_to_add = cu->list_in_scope;
18495 }
18496 else
18497 {
18498 /* We do not know the address of this symbol.
18499 If it is an external symbol and we have type information
18500 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18501 The address of the variable will then be determined from
18502 the minimal symbol table whenever the variable is
18503 referenced. */
18504 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18505
18506 /* Fortran explicitly imports any global symbols to the local
18507 scope by DW_TAG_common_block. */
18508 if (cu->language == language_fortran && die->parent
18509 && die->parent->tag == DW_TAG_common_block)
18510 {
18511 /* SYMBOL_CLASS doesn't matter here because
18512 read_common_block is going to reset it. */
18513 if (!suppress_add)
18514 list_to_add = cu->list_in_scope;
18515 }
18516 else if (attr2 && (DW_UNSND (attr2) != 0)
18517 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18518 {
18519 /* A variable with DW_AT_external is never static, but it
18520 may be block-scoped. */
18521 list_to_add = (cu->list_in_scope == &file_symbols
18522 ? &global_symbols : cu->list_in_scope);
18523
18524 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18525 }
18526 else if (!die_is_declaration (die, cu))
18527 {
18528 /* Use the default LOC_OPTIMIZED_OUT class. */
18529 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18530 if (!suppress_add)
18531 list_to_add = cu->list_in_scope;
18532 }
18533 }
18534 break;
18535 case DW_TAG_formal_parameter:
18536 /* If we are inside a function, mark this as an argument. If
18537 not, we might be looking at an argument to an inlined function
18538 when we do not have enough information to show inlined frames;
18539 pretend it's a local variable in that case so that the user can
18540 still see it. */
18541 if (context_stack_depth > 0
18542 && context_stack[context_stack_depth - 1].name != NULL)
18543 SYMBOL_IS_ARGUMENT (sym) = 1;
18544 attr = dwarf2_attr (die, DW_AT_location, cu);
18545 if (attr)
18546 {
18547 var_decode_location (attr, sym, cu);
18548 }
18549 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18550 if (attr)
18551 {
18552 dwarf2_const_value (attr, sym, cu);
18553 }
18554
18555 list_to_add = cu->list_in_scope;
18556 break;
18557 case DW_TAG_unspecified_parameters:
18558 /* From varargs functions; gdb doesn't seem to have any
18559 interest in this information, so just ignore it for now.
18560 (FIXME?) */
18561 break;
18562 case DW_TAG_template_type_param:
18563 suppress_add = 1;
18564 /* Fall through. */
18565 case DW_TAG_class_type:
18566 case DW_TAG_interface_type:
18567 case DW_TAG_structure_type:
18568 case DW_TAG_union_type:
18569 case DW_TAG_set_type:
18570 case DW_TAG_enumeration_type:
18571 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18572 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18573
18574 {
18575 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18576 really ever be static objects: otherwise, if you try
18577 to, say, break of a class's method and you're in a file
18578 which doesn't mention that class, it won't work unless
18579 the check for all static symbols in lookup_symbol_aux
18580 saves you. See the OtherFileClass tests in
18581 gdb.c++/namespace.exp. */
18582
18583 if (!suppress_add)
18584 {
18585 list_to_add = (cu->list_in_scope == &file_symbols
18586 && (cu->language == language_cplus
18587 || cu->language == language_java)
18588 ? &global_symbols : cu->list_in_scope);
18589
18590 /* The semantics of C++ state that "struct foo {
18591 ... }" also defines a typedef for "foo". A Java
18592 class declaration also defines a typedef for the
18593 class. */
18594 if (cu->language == language_cplus
18595 || cu->language == language_java
18596 || cu->language == language_ada
18597 || cu->language == language_d)
18598 {
18599 /* The symbol's name is already allocated along
18600 with this objfile, so we don't need to
18601 duplicate it for the type. */
18602 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18603 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18604 }
18605 }
18606 }
18607 break;
18608 case DW_TAG_typedef:
18609 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18610 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18611 list_to_add = cu->list_in_scope;
18612 break;
18613 case DW_TAG_base_type:
18614 case DW_TAG_subrange_type:
18615 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18616 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18617 list_to_add = cu->list_in_scope;
18618 break;
18619 case DW_TAG_enumerator:
18620 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18621 if (attr)
18622 {
18623 dwarf2_const_value (attr, sym, cu);
18624 }
18625 {
18626 /* NOTE: carlton/2003-11-10: See comment above in the
18627 DW_TAG_class_type, etc. block. */
18628
18629 list_to_add = (cu->list_in_scope == &file_symbols
18630 && (cu->language == language_cplus
18631 || cu->language == language_java)
18632 ? &global_symbols : cu->list_in_scope);
18633 }
18634 break;
18635 case DW_TAG_imported_declaration:
18636 case DW_TAG_namespace:
18637 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18638 list_to_add = &global_symbols;
18639 break;
18640 case DW_TAG_module:
18641 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18642 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18643 list_to_add = &global_symbols;
18644 break;
18645 case DW_TAG_common_block:
18646 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18647 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18648 add_symbol_to_list (sym, cu->list_in_scope);
18649 break;
18650 default:
18651 /* Not a tag we recognize. Hopefully we aren't processing
18652 trash data, but since we must specifically ignore things
18653 we don't recognize, there is nothing else we should do at
18654 this point. */
18655 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18656 dwarf_tag_name (die->tag));
18657 break;
18658 }
18659
18660 if (suppress_add)
18661 {
18662 sym->hash_next = objfile->template_symbols;
18663 objfile->template_symbols = sym;
18664 list_to_add = NULL;
18665 }
18666
18667 if (list_to_add != NULL)
18668 add_symbol_to_list (sym, list_to_add);
18669
18670 /* For the benefit of old versions of GCC, check for anonymous
18671 namespaces based on the demangled name. */
18672 if (!cu->processing_has_namespace_info
18673 && cu->language == language_cplus)
18674 cp_scan_for_anonymous_namespaces (sym, objfile);
18675 }
18676 return (sym);
18677 }
18678
18679 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18680
18681 static struct symbol *
18682 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18683 {
18684 return new_symbol_full (die, type, cu, NULL);
18685 }
18686
18687 /* Given an attr with a DW_FORM_dataN value in host byte order,
18688 zero-extend it as appropriate for the symbol's type. The DWARF
18689 standard (v4) is not entirely clear about the meaning of using
18690 DW_FORM_dataN for a constant with a signed type, where the type is
18691 wider than the data. The conclusion of a discussion on the DWARF
18692 list was that this is unspecified. We choose to always zero-extend
18693 because that is the interpretation long in use by GCC. */
18694
18695 static gdb_byte *
18696 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18697 struct dwarf2_cu *cu, LONGEST *value, int bits)
18698 {
18699 struct objfile *objfile = cu->objfile;
18700 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18701 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18702 LONGEST l = DW_UNSND (attr);
18703
18704 if (bits < sizeof (*value) * 8)
18705 {
18706 l &= ((LONGEST) 1 << bits) - 1;
18707 *value = l;
18708 }
18709 else if (bits == sizeof (*value) * 8)
18710 *value = l;
18711 else
18712 {
18713 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18714 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18715 return bytes;
18716 }
18717
18718 return NULL;
18719 }
18720
18721 /* Read a constant value from an attribute. Either set *VALUE, or if
18722 the value does not fit in *VALUE, set *BYTES - either already
18723 allocated on the objfile obstack, or newly allocated on OBSTACK,
18724 or, set *BATON, if we translated the constant to a location
18725 expression. */
18726
18727 static void
18728 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18729 const char *name, struct obstack *obstack,
18730 struct dwarf2_cu *cu,
18731 LONGEST *value, const gdb_byte **bytes,
18732 struct dwarf2_locexpr_baton **baton)
18733 {
18734 struct objfile *objfile = cu->objfile;
18735 struct comp_unit_head *cu_header = &cu->header;
18736 struct dwarf_block *blk;
18737 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18738 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18739
18740 *value = 0;
18741 *bytes = NULL;
18742 *baton = NULL;
18743
18744 switch (attr->form)
18745 {
18746 case DW_FORM_addr:
18747 case DW_FORM_GNU_addr_index:
18748 {
18749 gdb_byte *data;
18750
18751 if (TYPE_LENGTH (type) != cu_header->addr_size)
18752 dwarf2_const_value_length_mismatch_complaint (name,
18753 cu_header->addr_size,
18754 TYPE_LENGTH (type));
18755 /* Symbols of this form are reasonably rare, so we just
18756 piggyback on the existing location code rather than writing
18757 a new implementation of symbol_computed_ops. */
18758 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18759 (*baton)->per_cu = cu->per_cu;
18760 gdb_assert ((*baton)->per_cu);
18761
18762 (*baton)->size = 2 + cu_header->addr_size;
18763 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18764 (*baton)->data = data;
18765
18766 data[0] = DW_OP_addr;
18767 store_unsigned_integer (&data[1], cu_header->addr_size,
18768 byte_order, DW_ADDR (attr));
18769 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18770 }
18771 break;
18772 case DW_FORM_string:
18773 case DW_FORM_strp:
18774 case DW_FORM_GNU_str_index:
18775 case DW_FORM_GNU_strp_alt:
18776 /* DW_STRING is already allocated on the objfile obstack, point
18777 directly to it. */
18778 *bytes = (const gdb_byte *) DW_STRING (attr);
18779 break;
18780 case DW_FORM_block1:
18781 case DW_FORM_block2:
18782 case DW_FORM_block4:
18783 case DW_FORM_block:
18784 case DW_FORM_exprloc:
18785 blk = DW_BLOCK (attr);
18786 if (TYPE_LENGTH (type) != blk->size)
18787 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18788 TYPE_LENGTH (type));
18789 *bytes = blk->data;
18790 break;
18791
18792 /* The DW_AT_const_value attributes are supposed to carry the
18793 symbol's value "represented as it would be on the target
18794 architecture." By the time we get here, it's already been
18795 converted to host endianness, so we just need to sign- or
18796 zero-extend it as appropriate. */
18797 case DW_FORM_data1:
18798 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18799 break;
18800 case DW_FORM_data2:
18801 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18802 break;
18803 case DW_FORM_data4:
18804 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18805 break;
18806 case DW_FORM_data8:
18807 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18808 break;
18809
18810 case DW_FORM_sdata:
18811 *value = DW_SND (attr);
18812 break;
18813
18814 case DW_FORM_udata:
18815 *value = DW_UNSND (attr);
18816 break;
18817
18818 default:
18819 complaint (&symfile_complaints,
18820 _("unsupported const value attribute form: '%s'"),
18821 dwarf_form_name (attr->form));
18822 *value = 0;
18823 break;
18824 }
18825 }
18826
18827
18828 /* Copy constant value from an attribute to a symbol. */
18829
18830 static void
18831 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18832 struct dwarf2_cu *cu)
18833 {
18834 struct objfile *objfile = cu->objfile;
18835 struct comp_unit_head *cu_header = &cu->header;
18836 LONGEST value;
18837 const gdb_byte *bytes;
18838 struct dwarf2_locexpr_baton *baton;
18839
18840 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18841 SYMBOL_PRINT_NAME (sym),
18842 &objfile->objfile_obstack, cu,
18843 &value, &bytes, &baton);
18844
18845 if (baton != NULL)
18846 {
18847 SYMBOL_LOCATION_BATON (sym) = baton;
18848 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18849 }
18850 else if (bytes != NULL)
18851 {
18852 SYMBOL_VALUE_BYTES (sym) = bytes;
18853 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18854 }
18855 else
18856 {
18857 SYMBOL_VALUE (sym) = value;
18858 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18859 }
18860 }
18861
18862 /* Return the type of the die in question using its DW_AT_type attribute. */
18863
18864 static struct type *
18865 die_type (struct die_info *die, struct dwarf2_cu *cu)
18866 {
18867 struct attribute *type_attr;
18868
18869 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18870 if (!type_attr)
18871 {
18872 /* A missing DW_AT_type represents a void type. */
18873 return objfile_type (cu->objfile)->builtin_void;
18874 }
18875
18876 return lookup_die_type (die, type_attr, cu);
18877 }
18878
18879 /* True iff CU's producer generates GNAT Ada auxiliary information
18880 that allows to find parallel types through that information instead
18881 of having to do expensive parallel lookups by type name. */
18882
18883 static int
18884 need_gnat_info (struct dwarf2_cu *cu)
18885 {
18886 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18887 of GNAT produces this auxiliary information, without any indication
18888 that it is produced. Part of enhancing the FSF version of GNAT
18889 to produce that information will be to put in place an indicator
18890 that we can use in order to determine whether the descriptive type
18891 info is available or not. One suggestion that has been made is
18892 to use a new attribute, attached to the CU die. For now, assume
18893 that the descriptive type info is not available. */
18894 return 0;
18895 }
18896
18897 /* Return the auxiliary type of the die in question using its
18898 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18899 attribute is not present. */
18900
18901 static struct type *
18902 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18903 {
18904 struct attribute *type_attr;
18905
18906 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18907 if (!type_attr)
18908 return NULL;
18909
18910 return lookup_die_type (die, type_attr, cu);
18911 }
18912
18913 /* If DIE has a descriptive_type attribute, then set the TYPE's
18914 descriptive type accordingly. */
18915
18916 static void
18917 set_descriptive_type (struct type *type, struct die_info *die,
18918 struct dwarf2_cu *cu)
18919 {
18920 struct type *descriptive_type = die_descriptive_type (die, cu);
18921
18922 if (descriptive_type)
18923 {
18924 ALLOCATE_GNAT_AUX_TYPE (type);
18925 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18926 }
18927 }
18928
18929 /* Return the containing type of the die in question using its
18930 DW_AT_containing_type attribute. */
18931
18932 static struct type *
18933 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18934 {
18935 struct attribute *type_attr;
18936
18937 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18938 if (!type_attr)
18939 error (_("Dwarf Error: Problem turning containing type into gdb type "
18940 "[in module %s]"), objfile_name (cu->objfile));
18941
18942 return lookup_die_type (die, type_attr, cu);
18943 }
18944
18945 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18946
18947 static struct type *
18948 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18949 {
18950 struct objfile *objfile = dwarf2_per_objfile->objfile;
18951 char *message, *saved;
18952
18953 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18954 objfile_name (objfile),
18955 cu->header.offset.sect_off,
18956 die->offset.sect_off);
18957 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18958 message, strlen (message));
18959 xfree (message);
18960
18961 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18962 }
18963
18964 /* Look up the type of DIE in CU using its type attribute ATTR.
18965 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18966 DW_AT_containing_type.
18967 If there is no type substitute an error marker. */
18968
18969 static struct type *
18970 lookup_die_type (struct die_info *die, const struct attribute *attr,
18971 struct dwarf2_cu *cu)
18972 {
18973 struct objfile *objfile = cu->objfile;
18974 struct type *this_type;
18975
18976 gdb_assert (attr->name == DW_AT_type
18977 || attr->name == DW_AT_GNAT_descriptive_type
18978 || attr->name == DW_AT_containing_type);
18979
18980 /* First see if we have it cached. */
18981
18982 if (attr->form == DW_FORM_GNU_ref_alt)
18983 {
18984 struct dwarf2_per_cu_data *per_cu;
18985 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18986
18987 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18988 this_type = get_die_type_at_offset (offset, per_cu);
18989 }
18990 else if (attr_form_is_ref (attr))
18991 {
18992 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18993
18994 this_type = get_die_type_at_offset (offset, cu->per_cu);
18995 }
18996 else if (attr->form == DW_FORM_ref_sig8)
18997 {
18998 ULONGEST signature = DW_SIGNATURE (attr);
18999
19000 return get_signatured_type (die, signature, cu);
19001 }
19002 else
19003 {
19004 complaint (&symfile_complaints,
19005 _("Dwarf Error: Bad type attribute %s in DIE"
19006 " at 0x%x [in module %s]"),
19007 dwarf_attr_name (attr->name), die->offset.sect_off,
19008 objfile_name (objfile));
19009 return build_error_marker_type (cu, die);
19010 }
19011
19012 /* If not cached we need to read it in. */
19013
19014 if (this_type == NULL)
19015 {
19016 struct die_info *type_die = NULL;
19017 struct dwarf2_cu *type_cu = cu;
19018
19019 if (attr_form_is_ref (attr))
19020 type_die = follow_die_ref (die, attr, &type_cu);
19021 if (type_die == NULL)
19022 return build_error_marker_type (cu, die);
19023 /* If we find the type now, it's probably because the type came
19024 from an inter-CU reference and the type's CU got expanded before
19025 ours. */
19026 this_type = read_type_die (type_die, type_cu);
19027 }
19028
19029 /* If we still don't have a type use an error marker. */
19030
19031 if (this_type == NULL)
19032 return build_error_marker_type (cu, die);
19033
19034 return this_type;
19035 }
19036
19037 /* Return the type in DIE, CU.
19038 Returns NULL for invalid types.
19039
19040 This first does a lookup in die_type_hash,
19041 and only reads the die in if necessary.
19042
19043 NOTE: This can be called when reading in partial or full symbols. */
19044
19045 static struct type *
19046 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19047 {
19048 struct type *this_type;
19049
19050 this_type = get_die_type (die, cu);
19051 if (this_type)
19052 return this_type;
19053
19054 return read_type_die_1 (die, cu);
19055 }
19056
19057 /* Read the type in DIE, CU.
19058 Returns NULL for invalid types. */
19059
19060 static struct type *
19061 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19062 {
19063 struct type *this_type = NULL;
19064
19065 switch (die->tag)
19066 {
19067 case DW_TAG_class_type:
19068 case DW_TAG_interface_type:
19069 case DW_TAG_structure_type:
19070 case DW_TAG_union_type:
19071 this_type = read_structure_type (die, cu);
19072 break;
19073 case DW_TAG_enumeration_type:
19074 this_type = read_enumeration_type (die, cu);
19075 break;
19076 case DW_TAG_subprogram:
19077 case DW_TAG_subroutine_type:
19078 case DW_TAG_inlined_subroutine:
19079 this_type = read_subroutine_type (die, cu);
19080 break;
19081 case DW_TAG_array_type:
19082 this_type = read_array_type (die, cu);
19083 break;
19084 case DW_TAG_set_type:
19085 this_type = read_set_type (die, cu);
19086 break;
19087 case DW_TAG_pointer_type:
19088 this_type = read_tag_pointer_type (die, cu);
19089 break;
19090 case DW_TAG_ptr_to_member_type:
19091 this_type = read_tag_ptr_to_member_type (die, cu);
19092 break;
19093 case DW_TAG_reference_type:
19094 this_type = read_tag_reference_type (die, cu);
19095 break;
19096 case DW_TAG_const_type:
19097 this_type = read_tag_const_type (die, cu);
19098 break;
19099 case DW_TAG_volatile_type:
19100 this_type = read_tag_volatile_type (die, cu);
19101 break;
19102 case DW_TAG_restrict_type:
19103 this_type = read_tag_restrict_type (die, cu);
19104 break;
19105 case DW_TAG_string_type:
19106 this_type = read_tag_string_type (die, cu);
19107 break;
19108 case DW_TAG_typedef:
19109 this_type = read_typedef (die, cu);
19110 break;
19111 case DW_TAG_subrange_type:
19112 this_type = read_subrange_type (die, cu);
19113 break;
19114 case DW_TAG_base_type:
19115 this_type = read_base_type (die, cu);
19116 break;
19117 case DW_TAG_unspecified_type:
19118 this_type = read_unspecified_type (die, cu);
19119 break;
19120 case DW_TAG_namespace:
19121 this_type = read_namespace_type (die, cu);
19122 break;
19123 case DW_TAG_module:
19124 this_type = read_module_type (die, cu);
19125 break;
19126 case DW_TAG_atomic_type:
19127 this_type = read_tag_atomic_type (die, cu);
19128 break;
19129 default:
19130 complaint (&symfile_complaints,
19131 _("unexpected tag in read_type_die: '%s'"),
19132 dwarf_tag_name (die->tag));
19133 break;
19134 }
19135
19136 return this_type;
19137 }
19138
19139 /* See if we can figure out if the class lives in a namespace. We do
19140 this by looking for a member function; its demangled name will
19141 contain namespace info, if there is any.
19142 Return the computed name or NULL.
19143 Space for the result is allocated on the objfile's obstack.
19144 This is the full-die version of guess_partial_die_structure_name.
19145 In this case we know DIE has no useful parent. */
19146
19147 static char *
19148 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19149 {
19150 struct die_info *spec_die;
19151 struct dwarf2_cu *spec_cu;
19152 struct die_info *child;
19153
19154 spec_cu = cu;
19155 spec_die = die_specification (die, &spec_cu);
19156 if (spec_die != NULL)
19157 {
19158 die = spec_die;
19159 cu = spec_cu;
19160 }
19161
19162 for (child = die->child;
19163 child != NULL;
19164 child = child->sibling)
19165 {
19166 if (child->tag == DW_TAG_subprogram)
19167 {
19168 const char *linkage_name;
19169
19170 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19171 if (linkage_name == NULL)
19172 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19173 cu);
19174 if (linkage_name != NULL)
19175 {
19176 char *actual_name
19177 = language_class_name_from_physname (cu->language_defn,
19178 linkage_name);
19179 char *name = NULL;
19180
19181 if (actual_name != NULL)
19182 {
19183 const char *die_name = dwarf2_name (die, cu);
19184
19185 if (die_name != NULL
19186 && strcmp (die_name, actual_name) != 0)
19187 {
19188 /* Strip off the class name from the full name.
19189 We want the prefix. */
19190 int die_name_len = strlen (die_name);
19191 int actual_name_len = strlen (actual_name);
19192
19193 /* Test for '::' as a sanity check. */
19194 if (actual_name_len > die_name_len + 2
19195 && actual_name[actual_name_len
19196 - die_name_len - 1] == ':')
19197 name = (char *) obstack_copy0 (
19198 &cu->objfile->per_bfd->storage_obstack,
19199 actual_name, actual_name_len - die_name_len - 2);
19200 }
19201 }
19202 xfree (actual_name);
19203 return name;
19204 }
19205 }
19206 }
19207
19208 return NULL;
19209 }
19210
19211 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19212 prefix part in such case. See
19213 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19214
19215 static char *
19216 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19217 {
19218 struct attribute *attr;
19219 char *base;
19220
19221 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19222 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19223 return NULL;
19224
19225 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19226 return NULL;
19227
19228 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19229 if (attr == NULL)
19230 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19231 if (attr == NULL || DW_STRING (attr) == NULL)
19232 return NULL;
19233
19234 /* dwarf2_name had to be already called. */
19235 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19236
19237 /* Strip the base name, keep any leading namespaces/classes. */
19238 base = strrchr (DW_STRING (attr), ':');
19239 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19240 return "";
19241
19242 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19243 DW_STRING (attr),
19244 &base[-1] - DW_STRING (attr));
19245 }
19246
19247 /* Return the name of the namespace/class that DIE is defined within,
19248 or "" if we can't tell. The caller should not xfree the result.
19249
19250 For example, if we're within the method foo() in the following
19251 code:
19252
19253 namespace N {
19254 class C {
19255 void foo () {
19256 }
19257 };
19258 }
19259
19260 then determine_prefix on foo's die will return "N::C". */
19261
19262 static const char *
19263 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19264 {
19265 struct die_info *parent, *spec_die;
19266 struct dwarf2_cu *spec_cu;
19267 struct type *parent_type;
19268 char *retval;
19269
19270 if (cu->language != language_cplus && cu->language != language_java
19271 && cu->language != language_fortran && cu->language != language_d)
19272 return "";
19273
19274 retval = anonymous_struct_prefix (die, cu);
19275 if (retval)
19276 return retval;
19277
19278 /* We have to be careful in the presence of DW_AT_specification.
19279 For example, with GCC 3.4, given the code
19280
19281 namespace N {
19282 void foo() {
19283 // Definition of N::foo.
19284 }
19285 }
19286
19287 then we'll have a tree of DIEs like this:
19288
19289 1: DW_TAG_compile_unit
19290 2: DW_TAG_namespace // N
19291 3: DW_TAG_subprogram // declaration of N::foo
19292 4: DW_TAG_subprogram // definition of N::foo
19293 DW_AT_specification // refers to die #3
19294
19295 Thus, when processing die #4, we have to pretend that we're in
19296 the context of its DW_AT_specification, namely the contex of die
19297 #3. */
19298 spec_cu = cu;
19299 spec_die = die_specification (die, &spec_cu);
19300 if (spec_die == NULL)
19301 parent = die->parent;
19302 else
19303 {
19304 parent = spec_die->parent;
19305 cu = spec_cu;
19306 }
19307
19308 if (parent == NULL)
19309 return "";
19310 else if (parent->building_fullname)
19311 {
19312 const char *name;
19313 const char *parent_name;
19314
19315 /* It has been seen on RealView 2.2 built binaries,
19316 DW_TAG_template_type_param types actually _defined_ as
19317 children of the parent class:
19318
19319 enum E {};
19320 template class <class Enum> Class{};
19321 Class<enum E> class_e;
19322
19323 1: DW_TAG_class_type (Class)
19324 2: DW_TAG_enumeration_type (E)
19325 3: DW_TAG_enumerator (enum1:0)
19326 3: DW_TAG_enumerator (enum2:1)
19327 ...
19328 2: DW_TAG_template_type_param
19329 DW_AT_type DW_FORM_ref_udata (E)
19330
19331 Besides being broken debug info, it can put GDB into an
19332 infinite loop. Consider:
19333
19334 When we're building the full name for Class<E>, we'll start
19335 at Class, and go look over its template type parameters,
19336 finding E. We'll then try to build the full name of E, and
19337 reach here. We're now trying to build the full name of E,
19338 and look over the parent DIE for containing scope. In the
19339 broken case, if we followed the parent DIE of E, we'd again
19340 find Class, and once again go look at its template type
19341 arguments, etc., etc. Simply don't consider such parent die
19342 as source-level parent of this die (it can't be, the language
19343 doesn't allow it), and break the loop here. */
19344 name = dwarf2_name (die, cu);
19345 parent_name = dwarf2_name (parent, cu);
19346 complaint (&symfile_complaints,
19347 _("template param type '%s' defined within parent '%s'"),
19348 name ? name : "<unknown>",
19349 parent_name ? parent_name : "<unknown>");
19350 return "";
19351 }
19352 else
19353 switch (parent->tag)
19354 {
19355 case DW_TAG_namespace:
19356 parent_type = read_type_die (parent, cu);
19357 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19358 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19359 Work around this problem here. */
19360 if (cu->language == language_cplus
19361 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19362 return "";
19363 /* We give a name to even anonymous namespaces. */
19364 return TYPE_TAG_NAME (parent_type);
19365 case DW_TAG_class_type:
19366 case DW_TAG_interface_type:
19367 case DW_TAG_structure_type:
19368 case DW_TAG_union_type:
19369 case DW_TAG_module:
19370 parent_type = read_type_die (parent, cu);
19371 if (TYPE_TAG_NAME (parent_type) != NULL)
19372 return TYPE_TAG_NAME (parent_type);
19373 else
19374 /* An anonymous structure is only allowed non-static data
19375 members; no typedefs, no member functions, et cetera.
19376 So it does not need a prefix. */
19377 return "";
19378 case DW_TAG_compile_unit:
19379 case DW_TAG_partial_unit:
19380 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19381 if (cu->language == language_cplus
19382 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19383 && die->child != NULL
19384 && (die->tag == DW_TAG_class_type
19385 || die->tag == DW_TAG_structure_type
19386 || die->tag == DW_TAG_union_type))
19387 {
19388 char *name = guess_full_die_structure_name (die, cu);
19389 if (name != NULL)
19390 return name;
19391 }
19392 return "";
19393 case DW_TAG_enumeration_type:
19394 parent_type = read_type_die (parent, cu);
19395 if (TYPE_DECLARED_CLASS (parent_type))
19396 {
19397 if (TYPE_TAG_NAME (parent_type) != NULL)
19398 return TYPE_TAG_NAME (parent_type);
19399 return "";
19400 }
19401 /* Fall through. */
19402 default:
19403 return determine_prefix (parent, cu);
19404 }
19405 }
19406
19407 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19408 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19409 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19410 an obconcat, otherwise allocate storage for the result. The CU argument is
19411 used to determine the language and hence, the appropriate separator. */
19412
19413 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19414
19415 static char *
19416 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19417 int physname, struct dwarf2_cu *cu)
19418 {
19419 const char *lead = "";
19420 const char *sep;
19421
19422 if (suffix == NULL || suffix[0] == '\0'
19423 || prefix == NULL || prefix[0] == '\0')
19424 sep = "";
19425 else if (cu->language == language_java)
19426 sep = ".";
19427 else if (cu->language == language_d)
19428 {
19429 /* For D, the 'main' function could be defined in any module, but it
19430 should never be prefixed. */
19431 if (strcmp (suffix, "D main") == 0)
19432 {
19433 prefix = "";
19434 sep = "";
19435 }
19436 else
19437 sep = ".";
19438 }
19439 else if (cu->language == language_fortran && physname)
19440 {
19441 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19442 DW_AT_MIPS_linkage_name is preferred and used instead. */
19443
19444 lead = "__";
19445 sep = "_MOD_";
19446 }
19447 else
19448 sep = "::";
19449
19450 if (prefix == NULL)
19451 prefix = "";
19452 if (suffix == NULL)
19453 suffix = "";
19454
19455 if (obs == NULL)
19456 {
19457 char *retval
19458 = ((char *)
19459 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19460
19461 strcpy (retval, lead);
19462 strcat (retval, prefix);
19463 strcat (retval, sep);
19464 strcat (retval, suffix);
19465 return retval;
19466 }
19467 else
19468 {
19469 /* We have an obstack. */
19470 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19471 }
19472 }
19473
19474 /* Return sibling of die, NULL if no sibling. */
19475
19476 static struct die_info *
19477 sibling_die (struct die_info *die)
19478 {
19479 return die->sibling;
19480 }
19481
19482 /* Get name of a die, return NULL if not found. */
19483
19484 static const char *
19485 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19486 struct obstack *obstack)
19487 {
19488 if (name && cu->language == language_cplus)
19489 {
19490 char *canon_name = cp_canonicalize_string (name);
19491
19492 if (canon_name != NULL)
19493 {
19494 if (strcmp (canon_name, name) != 0)
19495 name = (const char *) obstack_copy0 (obstack, canon_name,
19496 strlen (canon_name));
19497 xfree (canon_name);
19498 }
19499 }
19500
19501 return name;
19502 }
19503
19504 /* Get name of a die, return NULL if not found.
19505 Anonymous namespaces are converted to their magic string. */
19506
19507 static const char *
19508 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19509 {
19510 struct attribute *attr;
19511
19512 attr = dwarf2_attr (die, DW_AT_name, cu);
19513 if ((!attr || !DW_STRING (attr))
19514 && die->tag != DW_TAG_namespace
19515 && die->tag != DW_TAG_class_type
19516 && die->tag != DW_TAG_interface_type
19517 && die->tag != DW_TAG_structure_type
19518 && die->tag != DW_TAG_union_type)
19519 return NULL;
19520
19521 switch (die->tag)
19522 {
19523 case DW_TAG_compile_unit:
19524 case DW_TAG_partial_unit:
19525 /* Compilation units have a DW_AT_name that is a filename, not
19526 a source language identifier. */
19527 case DW_TAG_enumeration_type:
19528 case DW_TAG_enumerator:
19529 /* These tags always have simple identifiers already; no need
19530 to canonicalize them. */
19531 return DW_STRING (attr);
19532
19533 case DW_TAG_namespace:
19534 if (attr != NULL && DW_STRING (attr) != NULL)
19535 return DW_STRING (attr);
19536 return CP_ANONYMOUS_NAMESPACE_STR;
19537
19538 case DW_TAG_subprogram:
19539 /* Java constructors will all be named "<init>", so return
19540 the class name when we see this special case. */
19541 if (cu->language == language_java
19542 && DW_STRING (attr) != NULL
19543 && strcmp (DW_STRING (attr), "<init>") == 0)
19544 {
19545 struct dwarf2_cu *spec_cu = cu;
19546 struct die_info *spec_die;
19547
19548 /* GCJ will output '<init>' for Java constructor names.
19549 For this special case, return the name of the parent class. */
19550
19551 /* GCJ may output subprogram DIEs with AT_specification set.
19552 If so, use the name of the specified DIE. */
19553 spec_die = die_specification (die, &spec_cu);
19554 if (spec_die != NULL)
19555 return dwarf2_name (spec_die, spec_cu);
19556
19557 do
19558 {
19559 die = die->parent;
19560 if (die->tag == DW_TAG_class_type)
19561 return dwarf2_name (die, cu);
19562 }
19563 while (die->tag != DW_TAG_compile_unit
19564 && die->tag != DW_TAG_partial_unit);
19565 }
19566 break;
19567
19568 case DW_TAG_class_type:
19569 case DW_TAG_interface_type:
19570 case DW_TAG_structure_type:
19571 case DW_TAG_union_type:
19572 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19573 structures or unions. These were of the form "._%d" in GCC 4.1,
19574 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19575 and GCC 4.4. We work around this problem by ignoring these. */
19576 if (attr && DW_STRING (attr)
19577 && (startswith (DW_STRING (attr), "._")
19578 || startswith (DW_STRING (attr), "<anonymous")))
19579 return NULL;
19580
19581 /* GCC might emit a nameless typedef that has a linkage name. See
19582 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19583 if (!attr || DW_STRING (attr) == NULL)
19584 {
19585 char *demangled = NULL;
19586
19587 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19588 if (attr == NULL)
19589 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19590
19591 if (attr == NULL || DW_STRING (attr) == NULL)
19592 return NULL;
19593
19594 /* Avoid demangling DW_STRING (attr) the second time on a second
19595 call for the same DIE. */
19596 if (!DW_STRING_IS_CANONICAL (attr))
19597 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19598
19599 if (demangled)
19600 {
19601 char *base;
19602
19603 /* FIXME: we already did this for the partial symbol... */
19604 DW_STRING (attr)
19605 = ((const char *)
19606 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19607 demangled, strlen (demangled)));
19608 DW_STRING_IS_CANONICAL (attr) = 1;
19609 xfree (demangled);
19610
19611 /* Strip any leading namespaces/classes, keep only the base name.
19612 DW_AT_name for named DIEs does not contain the prefixes. */
19613 base = strrchr (DW_STRING (attr), ':');
19614 if (base && base > DW_STRING (attr) && base[-1] == ':')
19615 return &base[1];
19616 else
19617 return DW_STRING (attr);
19618 }
19619 }
19620 break;
19621
19622 default:
19623 break;
19624 }
19625
19626 if (!DW_STRING_IS_CANONICAL (attr))
19627 {
19628 DW_STRING (attr)
19629 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19630 &cu->objfile->per_bfd->storage_obstack);
19631 DW_STRING_IS_CANONICAL (attr) = 1;
19632 }
19633 return DW_STRING (attr);
19634 }
19635
19636 /* Return the die that this die in an extension of, or NULL if there
19637 is none. *EXT_CU is the CU containing DIE on input, and the CU
19638 containing the return value on output. */
19639
19640 static struct die_info *
19641 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19642 {
19643 struct attribute *attr;
19644
19645 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19646 if (attr == NULL)
19647 return NULL;
19648
19649 return follow_die_ref (die, attr, ext_cu);
19650 }
19651
19652 /* Convert a DIE tag into its string name. */
19653
19654 static const char *
19655 dwarf_tag_name (unsigned tag)
19656 {
19657 const char *name = get_DW_TAG_name (tag);
19658
19659 if (name == NULL)
19660 return "DW_TAG_<unknown>";
19661
19662 return name;
19663 }
19664
19665 /* Convert a DWARF attribute code into its string name. */
19666
19667 static const char *
19668 dwarf_attr_name (unsigned attr)
19669 {
19670 const char *name;
19671
19672 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19673 if (attr == DW_AT_MIPS_fde)
19674 return "DW_AT_MIPS_fde";
19675 #else
19676 if (attr == DW_AT_HP_block_index)
19677 return "DW_AT_HP_block_index";
19678 #endif
19679
19680 name = get_DW_AT_name (attr);
19681
19682 if (name == NULL)
19683 return "DW_AT_<unknown>";
19684
19685 return name;
19686 }
19687
19688 /* Convert a DWARF value form code into its string name. */
19689
19690 static const char *
19691 dwarf_form_name (unsigned form)
19692 {
19693 const char *name = get_DW_FORM_name (form);
19694
19695 if (name == NULL)
19696 return "DW_FORM_<unknown>";
19697
19698 return name;
19699 }
19700
19701 static char *
19702 dwarf_bool_name (unsigned mybool)
19703 {
19704 if (mybool)
19705 return "TRUE";
19706 else
19707 return "FALSE";
19708 }
19709
19710 /* Convert a DWARF type code into its string name. */
19711
19712 static const char *
19713 dwarf_type_encoding_name (unsigned enc)
19714 {
19715 const char *name = get_DW_ATE_name (enc);
19716
19717 if (name == NULL)
19718 return "DW_ATE_<unknown>";
19719
19720 return name;
19721 }
19722
19723 static void
19724 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19725 {
19726 unsigned int i;
19727
19728 print_spaces (indent, f);
19729 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19730 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19731
19732 if (die->parent != NULL)
19733 {
19734 print_spaces (indent, f);
19735 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19736 die->parent->offset.sect_off);
19737 }
19738
19739 print_spaces (indent, f);
19740 fprintf_unfiltered (f, " has children: %s\n",
19741 dwarf_bool_name (die->child != NULL));
19742
19743 print_spaces (indent, f);
19744 fprintf_unfiltered (f, " attributes:\n");
19745
19746 for (i = 0; i < die->num_attrs; ++i)
19747 {
19748 print_spaces (indent, f);
19749 fprintf_unfiltered (f, " %s (%s) ",
19750 dwarf_attr_name (die->attrs[i].name),
19751 dwarf_form_name (die->attrs[i].form));
19752
19753 switch (die->attrs[i].form)
19754 {
19755 case DW_FORM_addr:
19756 case DW_FORM_GNU_addr_index:
19757 fprintf_unfiltered (f, "address: ");
19758 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19759 break;
19760 case DW_FORM_block2:
19761 case DW_FORM_block4:
19762 case DW_FORM_block:
19763 case DW_FORM_block1:
19764 fprintf_unfiltered (f, "block: size %s",
19765 pulongest (DW_BLOCK (&die->attrs[i])->size));
19766 break;
19767 case DW_FORM_exprloc:
19768 fprintf_unfiltered (f, "expression: size %s",
19769 pulongest (DW_BLOCK (&die->attrs[i])->size));
19770 break;
19771 case DW_FORM_ref_addr:
19772 fprintf_unfiltered (f, "ref address: ");
19773 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19774 break;
19775 case DW_FORM_GNU_ref_alt:
19776 fprintf_unfiltered (f, "alt ref address: ");
19777 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19778 break;
19779 case DW_FORM_ref1:
19780 case DW_FORM_ref2:
19781 case DW_FORM_ref4:
19782 case DW_FORM_ref8:
19783 case DW_FORM_ref_udata:
19784 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19785 (long) (DW_UNSND (&die->attrs[i])));
19786 break;
19787 case DW_FORM_data1:
19788 case DW_FORM_data2:
19789 case DW_FORM_data4:
19790 case DW_FORM_data8:
19791 case DW_FORM_udata:
19792 case DW_FORM_sdata:
19793 fprintf_unfiltered (f, "constant: %s",
19794 pulongest (DW_UNSND (&die->attrs[i])));
19795 break;
19796 case DW_FORM_sec_offset:
19797 fprintf_unfiltered (f, "section offset: %s",
19798 pulongest (DW_UNSND (&die->attrs[i])));
19799 break;
19800 case DW_FORM_ref_sig8:
19801 fprintf_unfiltered (f, "signature: %s",
19802 hex_string (DW_SIGNATURE (&die->attrs[i])));
19803 break;
19804 case DW_FORM_string:
19805 case DW_FORM_strp:
19806 case DW_FORM_GNU_str_index:
19807 case DW_FORM_GNU_strp_alt:
19808 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19809 DW_STRING (&die->attrs[i])
19810 ? DW_STRING (&die->attrs[i]) : "",
19811 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19812 break;
19813 case DW_FORM_flag:
19814 if (DW_UNSND (&die->attrs[i]))
19815 fprintf_unfiltered (f, "flag: TRUE");
19816 else
19817 fprintf_unfiltered (f, "flag: FALSE");
19818 break;
19819 case DW_FORM_flag_present:
19820 fprintf_unfiltered (f, "flag: TRUE");
19821 break;
19822 case DW_FORM_indirect:
19823 /* The reader will have reduced the indirect form to
19824 the "base form" so this form should not occur. */
19825 fprintf_unfiltered (f,
19826 "unexpected attribute form: DW_FORM_indirect");
19827 break;
19828 default:
19829 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19830 die->attrs[i].form);
19831 break;
19832 }
19833 fprintf_unfiltered (f, "\n");
19834 }
19835 }
19836
19837 static void
19838 dump_die_for_error (struct die_info *die)
19839 {
19840 dump_die_shallow (gdb_stderr, 0, die);
19841 }
19842
19843 static void
19844 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19845 {
19846 int indent = level * 4;
19847
19848 gdb_assert (die != NULL);
19849
19850 if (level >= max_level)
19851 return;
19852
19853 dump_die_shallow (f, indent, die);
19854
19855 if (die->child != NULL)
19856 {
19857 print_spaces (indent, f);
19858 fprintf_unfiltered (f, " Children:");
19859 if (level + 1 < max_level)
19860 {
19861 fprintf_unfiltered (f, "\n");
19862 dump_die_1 (f, level + 1, max_level, die->child);
19863 }
19864 else
19865 {
19866 fprintf_unfiltered (f,
19867 " [not printed, max nesting level reached]\n");
19868 }
19869 }
19870
19871 if (die->sibling != NULL && level > 0)
19872 {
19873 dump_die_1 (f, level, max_level, die->sibling);
19874 }
19875 }
19876
19877 /* This is called from the pdie macro in gdbinit.in.
19878 It's not static so gcc will keep a copy callable from gdb. */
19879
19880 void
19881 dump_die (struct die_info *die, int max_level)
19882 {
19883 dump_die_1 (gdb_stdlog, 0, max_level, die);
19884 }
19885
19886 static void
19887 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19888 {
19889 void **slot;
19890
19891 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19892 INSERT);
19893
19894 *slot = die;
19895 }
19896
19897 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19898 required kind. */
19899
19900 static sect_offset
19901 dwarf2_get_ref_die_offset (const struct attribute *attr)
19902 {
19903 sect_offset retval = { DW_UNSND (attr) };
19904
19905 if (attr_form_is_ref (attr))
19906 return retval;
19907
19908 retval.sect_off = 0;
19909 complaint (&symfile_complaints,
19910 _("unsupported die ref attribute form: '%s'"),
19911 dwarf_form_name (attr->form));
19912 return retval;
19913 }
19914
19915 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19916 * the value held by the attribute is not constant. */
19917
19918 static LONGEST
19919 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19920 {
19921 if (attr->form == DW_FORM_sdata)
19922 return DW_SND (attr);
19923 else if (attr->form == DW_FORM_udata
19924 || attr->form == DW_FORM_data1
19925 || attr->form == DW_FORM_data2
19926 || attr->form == DW_FORM_data4
19927 || attr->form == DW_FORM_data8)
19928 return DW_UNSND (attr);
19929 else
19930 {
19931 complaint (&symfile_complaints,
19932 _("Attribute value is not a constant (%s)"),
19933 dwarf_form_name (attr->form));
19934 return default_value;
19935 }
19936 }
19937
19938 /* Follow reference or signature attribute ATTR of SRC_DIE.
19939 On entry *REF_CU is the CU of SRC_DIE.
19940 On exit *REF_CU is the CU of the result. */
19941
19942 static struct die_info *
19943 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19944 struct dwarf2_cu **ref_cu)
19945 {
19946 struct die_info *die;
19947
19948 if (attr_form_is_ref (attr))
19949 die = follow_die_ref (src_die, attr, ref_cu);
19950 else if (attr->form == DW_FORM_ref_sig8)
19951 die = follow_die_sig (src_die, attr, ref_cu);
19952 else
19953 {
19954 dump_die_for_error (src_die);
19955 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19956 objfile_name ((*ref_cu)->objfile));
19957 }
19958
19959 return die;
19960 }
19961
19962 /* Follow reference OFFSET.
19963 On entry *REF_CU is the CU of the source die referencing OFFSET.
19964 On exit *REF_CU is the CU of the result.
19965 Returns NULL if OFFSET is invalid. */
19966
19967 static struct die_info *
19968 follow_die_offset (sect_offset offset, int offset_in_dwz,
19969 struct dwarf2_cu **ref_cu)
19970 {
19971 struct die_info temp_die;
19972 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19973
19974 gdb_assert (cu->per_cu != NULL);
19975
19976 target_cu = cu;
19977
19978 if (cu->per_cu->is_debug_types)
19979 {
19980 /* .debug_types CUs cannot reference anything outside their CU.
19981 If they need to, they have to reference a signatured type via
19982 DW_FORM_ref_sig8. */
19983 if (! offset_in_cu_p (&cu->header, offset))
19984 return NULL;
19985 }
19986 else if (offset_in_dwz != cu->per_cu->is_dwz
19987 || ! offset_in_cu_p (&cu->header, offset))
19988 {
19989 struct dwarf2_per_cu_data *per_cu;
19990
19991 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19992 cu->objfile);
19993
19994 /* If necessary, add it to the queue and load its DIEs. */
19995 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19996 load_full_comp_unit (per_cu, cu->language);
19997
19998 target_cu = per_cu->cu;
19999 }
20000 else if (cu->dies == NULL)
20001 {
20002 /* We're loading full DIEs during partial symbol reading. */
20003 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20004 load_full_comp_unit (cu->per_cu, language_minimal);
20005 }
20006
20007 *ref_cu = target_cu;
20008 temp_die.offset = offset;
20009 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
20010 }
20011
20012 /* Follow reference attribute ATTR of SRC_DIE.
20013 On entry *REF_CU is the CU of SRC_DIE.
20014 On exit *REF_CU is the CU of the result. */
20015
20016 static struct die_info *
20017 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20018 struct dwarf2_cu **ref_cu)
20019 {
20020 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20021 struct dwarf2_cu *cu = *ref_cu;
20022 struct die_info *die;
20023
20024 die = follow_die_offset (offset,
20025 (attr->form == DW_FORM_GNU_ref_alt
20026 || cu->per_cu->is_dwz),
20027 ref_cu);
20028 if (!die)
20029 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20030 "at 0x%x [in module %s]"),
20031 offset.sect_off, src_die->offset.sect_off,
20032 objfile_name (cu->objfile));
20033
20034 return die;
20035 }
20036
20037 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20038 Returned value is intended for DW_OP_call*. Returned
20039 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20040
20041 struct dwarf2_locexpr_baton
20042 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20043 struct dwarf2_per_cu_data *per_cu,
20044 CORE_ADDR (*get_frame_pc) (void *baton),
20045 void *baton)
20046 {
20047 struct dwarf2_cu *cu;
20048 struct die_info *die;
20049 struct attribute *attr;
20050 struct dwarf2_locexpr_baton retval;
20051
20052 dw2_setup (per_cu->objfile);
20053
20054 if (per_cu->cu == NULL)
20055 load_cu (per_cu);
20056 cu = per_cu->cu;
20057 if (cu == NULL)
20058 {
20059 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20060 Instead just throw an error, not much else we can do. */
20061 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20062 offset.sect_off, objfile_name (per_cu->objfile));
20063 }
20064
20065 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20066 if (!die)
20067 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20068 offset.sect_off, objfile_name (per_cu->objfile));
20069
20070 attr = dwarf2_attr (die, DW_AT_location, cu);
20071 if (!attr)
20072 {
20073 /* DWARF: "If there is no such attribute, then there is no effect.".
20074 DATA is ignored if SIZE is 0. */
20075
20076 retval.data = NULL;
20077 retval.size = 0;
20078 }
20079 else if (attr_form_is_section_offset (attr))
20080 {
20081 struct dwarf2_loclist_baton loclist_baton;
20082 CORE_ADDR pc = (*get_frame_pc) (baton);
20083 size_t size;
20084
20085 fill_in_loclist_baton (cu, &loclist_baton, attr);
20086
20087 retval.data = dwarf2_find_location_expression (&loclist_baton,
20088 &size, pc);
20089 retval.size = size;
20090 }
20091 else
20092 {
20093 if (!attr_form_is_block (attr))
20094 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20095 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20096 offset.sect_off, objfile_name (per_cu->objfile));
20097
20098 retval.data = DW_BLOCK (attr)->data;
20099 retval.size = DW_BLOCK (attr)->size;
20100 }
20101 retval.per_cu = cu->per_cu;
20102
20103 age_cached_comp_units ();
20104
20105 return retval;
20106 }
20107
20108 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20109 offset. */
20110
20111 struct dwarf2_locexpr_baton
20112 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20113 struct dwarf2_per_cu_data *per_cu,
20114 CORE_ADDR (*get_frame_pc) (void *baton),
20115 void *baton)
20116 {
20117 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20118
20119 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20120 }
20121
20122 /* Write a constant of a given type as target-ordered bytes into
20123 OBSTACK. */
20124
20125 static const gdb_byte *
20126 write_constant_as_bytes (struct obstack *obstack,
20127 enum bfd_endian byte_order,
20128 struct type *type,
20129 ULONGEST value,
20130 LONGEST *len)
20131 {
20132 gdb_byte *result;
20133
20134 *len = TYPE_LENGTH (type);
20135 result = (gdb_byte *) obstack_alloc (obstack, *len);
20136 store_unsigned_integer (result, *len, byte_order, value);
20137
20138 return result;
20139 }
20140
20141 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20142 pointer to the constant bytes and set LEN to the length of the
20143 data. If memory is needed, allocate it on OBSTACK. If the DIE
20144 does not have a DW_AT_const_value, return NULL. */
20145
20146 const gdb_byte *
20147 dwarf2_fetch_constant_bytes (sect_offset offset,
20148 struct dwarf2_per_cu_data *per_cu,
20149 struct obstack *obstack,
20150 LONGEST *len)
20151 {
20152 struct dwarf2_cu *cu;
20153 struct die_info *die;
20154 struct attribute *attr;
20155 const gdb_byte *result = NULL;
20156 struct type *type;
20157 LONGEST value;
20158 enum bfd_endian byte_order;
20159
20160 dw2_setup (per_cu->objfile);
20161
20162 if (per_cu->cu == NULL)
20163 load_cu (per_cu);
20164 cu = per_cu->cu;
20165 if (cu == NULL)
20166 {
20167 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20168 Instead just throw an error, not much else we can do. */
20169 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20170 offset.sect_off, objfile_name (per_cu->objfile));
20171 }
20172
20173 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20174 if (!die)
20175 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20176 offset.sect_off, objfile_name (per_cu->objfile));
20177
20178
20179 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20180 if (attr == NULL)
20181 return NULL;
20182
20183 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20184 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20185
20186 switch (attr->form)
20187 {
20188 case DW_FORM_addr:
20189 case DW_FORM_GNU_addr_index:
20190 {
20191 gdb_byte *tem;
20192
20193 *len = cu->header.addr_size;
20194 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20195 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20196 result = tem;
20197 }
20198 break;
20199 case DW_FORM_string:
20200 case DW_FORM_strp:
20201 case DW_FORM_GNU_str_index:
20202 case DW_FORM_GNU_strp_alt:
20203 /* DW_STRING is already allocated on the objfile obstack, point
20204 directly to it. */
20205 result = (const gdb_byte *) DW_STRING (attr);
20206 *len = strlen (DW_STRING (attr));
20207 break;
20208 case DW_FORM_block1:
20209 case DW_FORM_block2:
20210 case DW_FORM_block4:
20211 case DW_FORM_block:
20212 case DW_FORM_exprloc:
20213 result = DW_BLOCK (attr)->data;
20214 *len = DW_BLOCK (attr)->size;
20215 break;
20216
20217 /* The DW_AT_const_value attributes are supposed to carry the
20218 symbol's value "represented as it would be on the target
20219 architecture." By the time we get here, it's already been
20220 converted to host endianness, so we just need to sign- or
20221 zero-extend it as appropriate. */
20222 case DW_FORM_data1:
20223 type = die_type (die, cu);
20224 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20225 if (result == NULL)
20226 result = write_constant_as_bytes (obstack, byte_order,
20227 type, value, len);
20228 break;
20229 case DW_FORM_data2:
20230 type = die_type (die, cu);
20231 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20232 if (result == NULL)
20233 result = write_constant_as_bytes (obstack, byte_order,
20234 type, value, len);
20235 break;
20236 case DW_FORM_data4:
20237 type = die_type (die, cu);
20238 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20239 if (result == NULL)
20240 result = write_constant_as_bytes (obstack, byte_order,
20241 type, value, len);
20242 break;
20243 case DW_FORM_data8:
20244 type = die_type (die, cu);
20245 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20246 if (result == NULL)
20247 result = write_constant_as_bytes (obstack, byte_order,
20248 type, value, len);
20249 break;
20250
20251 case DW_FORM_sdata:
20252 type = die_type (die, cu);
20253 result = write_constant_as_bytes (obstack, byte_order,
20254 type, DW_SND (attr), len);
20255 break;
20256
20257 case DW_FORM_udata:
20258 type = die_type (die, cu);
20259 result = write_constant_as_bytes (obstack, byte_order,
20260 type, DW_UNSND (attr), len);
20261 break;
20262
20263 default:
20264 complaint (&symfile_complaints,
20265 _("unsupported const value attribute form: '%s'"),
20266 dwarf_form_name (attr->form));
20267 break;
20268 }
20269
20270 return result;
20271 }
20272
20273 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20274 PER_CU. */
20275
20276 struct type *
20277 dwarf2_get_die_type (cu_offset die_offset,
20278 struct dwarf2_per_cu_data *per_cu)
20279 {
20280 sect_offset die_offset_sect;
20281
20282 dw2_setup (per_cu->objfile);
20283
20284 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20285 return get_die_type_at_offset (die_offset_sect, per_cu);
20286 }
20287
20288 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20289 On entry *REF_CU is the CU of SRC_DIE.
20290 On exit *REF_CU is the CU of the result.
20291 Returns NULL if the referenced DIE isn't found. */
20292
20293 static struct die_info *
20294 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20295 struct dwarf2_cu **ref_cu)
20296 {
20297 struct objfile *objfile = (*ref_cu)->objfile;
20298 struct die_info temp_die;
20299 struct dwarf2_cu *sig_cu;
20300 struct die_info *die;
20301
20302 /* While it might be nice to assert sig_type->type == NULL here,
20303 we can get here for DW_AT_imported_declaration where we need
20304 the DIE not the type. */
20305
20306 /* If necessary, add it to the queue and load its DIEs. */
20307
20308 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20309 read_signatured_type (sig_type);
20310
20311 sig_cu = sig_type->per_cu.cu;
20312 gdb_assert (sig_cu != NULL);
20313 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20314 temp_die.offset = sig_type->type_offset_in_section;
20315 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20316 temp_die.offset.sect_off);
20317 if (die)
20318 {
20319 /* For .gdb_index version 7 keep track of included TUs.
20320 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20321 if (dwarf2_per_objfile->index_table != NULL
20322 && dwarf2_per_objfile->index_table->version <= 7)
20323 {
20324 VEC_safe_push (dwarf2_per_cu_ptr,
20325 (*ref_cu)->per_cu->imported_symtabs,
20326 sig_cu->per_cu);
20327 }
20328
20329 *ref_cu = sig_cu;
20330 return die;
20331 }
20332
20333 return NULL;
20334 }
20335
20336 /* Follow signatured type referenced by ATTR in SRC_DIE.
20337 On entry *REF_CU is the CU of SRC_DIE.
20338 On exit *REF_CU is the CU of the result.
20339 The result is the DIE of the type.
20340 If the referenced type cannot be found an error is thrown. */
20341
20342 static struct die_info *
20343 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20344 struct dwarf2_cu **ref_cu)
20345 {
20346 ULONGEST signature = DW_SIGNATURE (attr);
20347 struct signatured_type *sig_type;
20348 struct die_info *die;
20349
20350 gdb_assert (attr->form == DW_FORM_ref_sig8);
20351
20352 sig_type = lookup_signatured_type (*ref_cu, signature);
20353 /* sig_type will be NULL if the signatured type is missing from
20354 the debug info. */
20355 if (sig_type == NULL)
20356 {
20357 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20358 " from DIE at 0x%x [in module %s]"),
20359 hex_string (signature), src_die->offset.sect_off,
20360 objfile_name ((*ref_cu)->objfile));
20361 }
20362
20363 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20364 if (die == NULL)
20365 {
20366 dump_die_for_error (src_die);
20367 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20368 " from DIE at 0x%x [in module %s]"),
20369 hex_string (signature), src_die->offset.sect_off,
20370 objfile_name ((*ref_cu)->objfile));
20371 }
20372
20373 return die;
20374 }
20375
20376 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20377 reading in and processing the type unit if necessary. */
20378
20379 static struct type *
20380 get_signatured_type (struct die_info *die, ULONGEST signature,
20381 struct dwarf2_cu *cu)
20382 {
20383 struct signatured_type *sig_type;
20384 struct dwarf2_cu *type_cu;
20385 struct die_info *type_die;
20386 struct type *type;
20387
20388 sig_type = lookup_signatured_type (cu, signature);
20389 /* sig_type will be NULL if the signatured type is missing from
20390 the debug info. */
20391 if (sig_type == NULL)
20392 {
20393 complaint (&symfile_complaints,
20394 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20395 " from DIE at 0x%x [in module %s]"),
20396 hex_string (signature), die->offset.sect_off,
20397 objfile_name (dwarf2_per_objfile->objfile));
20398 return build_error_marker_type (cu, die);
20399 }
20400
20401 /* If we already know the type we're done. */
20402 if (sig_type->type != NULL)
20403 return sig_type->type;
20404
20405 type_cu = cu;
20406 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20407 if (type_die != NULL)
20408 {
20409 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20410 is created. This is important, for example, because for c++ classes
20411 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20412 type = read_type_die (type_die, type_cu);
20413 if (type == NULL)
20414 {
20415 complaint (&symfile_complaints,
20416 _("Dwarf Error: Cannot build signatured type %s"
20417 " referenced from DIE at 0x%x [in module %s]"),
20418 hex_string (signature), die->offset.sect_off,
20419 objfile_name (dwarf2_per_objfile->objfile));
20420 type = build_error_marker_type (cu, die);
20421 }
20422 }
20423 else
20424 {
20425 complaint (&symfile_complaints,
20426 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20427 " from DIE at 0x%x [in module %s]"),
20428 hex_string (signature), die->offset.sect_off,
20429 objfile_name (dwarf2_per_objfile->objfile));
20430 type = build_error_marker_type (cu, die);
20431 }
20432 sig_type->type = type;
20433
20434 return type;
20435 }
20436
20437 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20438 reading in and processing the type unit if necessary. */
20439
20440 static struct type *
20441 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20442 struct dwarf2_cu *cu) /* ARI: editCase function */
20443 {
20444 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20445 if (attr_form_is_ref (attr))
20446 {
20447 struct dwarf2_cu *type_cu = cu;
20448 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20449
20450 return read_type_die (type_die, type_cu);
20451 }
20452 else if (attr->form == DW_FORM_ref_sig8)
20453 {
20454 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20455 }
20456 else
20457 {
20458 complaint (&symfile_complaints,
20459 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20460 " at 0x%x [in module %s]"),
20461 dwarf_form_name (attr->form), die->offset.sect_off,
20462 objfile_name (dwarf2_per_objfile->objfile));
20463 return build_error_marker_type (cu, die);
20464 }
20465 }
20466
20467 /* Load the DIEs associated with type unit PER_CU into memory. */
20468
20469 static void
20470 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20471 {
20472 struct signatured_type *sig_type;
20473
20474 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20475 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20476
20477 /* We have the per_cu, but we need the signatured_type.
20478 Fortunately this is an easy translation. */
20479 gdb_assert (per_cu->is_debug_types);
20480 sig_type = (struct signatured_type *) per_cu;
20481
20482 gdb_assert (per_cu->cu == NULL);
20483
20484 read_signatured_type (sig_type);
20485
20486 gdb_assert (per_cu->cu != NULL);
20487 }
20488
20489 /* die_reader_func for read_signatured_type.
20490 This is identical to load_full_comp_unit_reader,
20491 but is kept separate for now. */
20492
20493 static void
20494 read_signatured_type_reader (const struct die_reader_specs *reader,
20495 const gdb_byte *info_ptr,
20496 struct die_info *comp_unit_die,
20497 int has_children,
20498 void *data)
20499 {
20500 struct dwarf2_cu *cu = reader->cu;
20501
20502 gdb_assert (cu->die_hash == NULL);
20503 cu->die_hash =
20504 htab_create_alloc_ex (cu->header.length / 12,
20505 die_hash,
20506 die_eq,
20507 NULL,
20508 &cu->comp_unit_obstack,
20509 hashtab_obstack_allocate,
20510 dummy_obstack_deallocate);
20511
20512 if (has_children)
20513 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20514 &info_ptr, comp_unit_die);
20515 cu->dies = comp_unit_die;
20516 /* comp_unit_die is not stored in die_hash, no need. */
20517
20518 /* We try not to read any attributes in this function, because not
20519 all CUs needed for references have been loaded yet, and symbol
20520 table processing isn't initialized. But we have to set the CU language,
20521 or we won't be able to build types correctly.
20522 Similarly, if we do not read the producer, we can not apply
20523 producer-specific interpretation. */
20524 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20525 }
20526
20527 /* Read in a signatured type and build its CU and DIEs.
20528 If the type is a stub for the real type in a DWO file,
20529 read in the real type from the DWO file as well. */
20530
20531 static void
20532 read_signatured_type (struct signatured_type *sig_type)
20533 {
20534 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20535
20536 gdb_assert (per_cu->is_debug_types);
20537 gdb_assert (per_cu->cu == NULL);
20538
20539 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20540 read_signatured_type_reader, NULL);
20541 sig_type->per_cu.tu_read = 1;
20542 }
20543
20544 /* Decode simple location descriptions.
20545 Given a pointer to a dwarf block that defines a location, compute
20546 the location and return the value.
20547
20548 NOTE drow/2003-11-18: This function is called in two situations
20549 now: for the address of static or global variables (partial symbols
20550 only) and for offsets into structures which are expected to be
20551 (more or less) constant. The partial symbol case should go away,
20552 and only the constant case should remain. That will let this
20553 function complain more accurately. A few special modes are allowed
20554 without complaint for global variables (for instance, global
20555 register values and thread-local values).
20556
20557 A location description containing no operations indicates that the
20558 object is optimized out. The return value is 0 for that case.
20559 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20560 callers will only want a very basic result and this can become a
20561 complaint.
20562
20563 Note that stack[0] is unused except as a default error return. */
20564
20565 static CORE_ADDR
20566 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20567 {
20568 struct objfile *objfile = cu->objfile;
20569 size_t i;
20570 size_t size = blk->size;
20571 const gdb_byte *data = blk->data;
20572 CORE_ADDR stack[64];
20573 int stacki;
20574 unsigned int bytes_read, unsnd;
20575 gdb_byte op;
20576
20577 i = 0;
20578 stacki = 0;
20579 stack[stacki] = 0;
20580 stack[++stacki] = 0;
20581
20582 while (i < size)
20583 {
20584 op = data[i++];
20585 switch (op)
20586 {
20587 case DW_OP_lit0:
20588 case DW_OP_lit1:
20589 case DW_OP_lit2:
20590 case DW_OP_lit3:
20591 case DW_OP_lit4:
20592 case DW_OP_lit5:
20593 case DW_OP_lit6:
20594 case DW_OP_lit7:
20595 case DW_OP_lit8:
20596 case DW_OP_lit9:
20597 case DW_OP_lit10:
20598 case DW_OP_lit11:
20599 case DW_OP_lit12:
20600 case DW_OP_lit13:
20601 case DW_OP_lit14:
20602 case DW_OP_lit15:
20603 case DW_OP_lit16:
20604 case DW_OP_lit17:
20605 case DW_OP_lit18:
20606 case DW_OP_lit19:
20607 case DW_OP_lit20:
20608 case DW_OP_lit21:
20609 case DW_OP_lit22:
20610 case DW_OP_lit23:
20611 case DW_OP_lit24:
20612 case DW_OP_lit25:
20613 case DW_OP_lit26:
20614 case DW_OP_lit27:
20615 case DW_OP_lit28:
20616 case DW_OP_lit29:
20617 case DW_OP_lit30:
20618 case DW_OP_lit31:
20619 stack[++stacki] = op - DW_OP_lit0;
20620 break;
20621
20622 case DW_OP_reg0:
20623 case DW_OP_reg1:
20624 case DW_OP_reg2:
20625 case DW_OP_reg3:
20626 case DW_OP_reg4:
20627 case DW_OP_reg5:
20628 case DW_OP_reg6:
20629 case DW_OP_reg7:
20630 case DW_OP_reg8:
20631 case DW_OP_reg9:
20632 case DW_OP_reg10:
20633 case DW_OP_reg11:
20634 case DW_OP_reg12:
20635 case DW_OP_reg13:
20636 case DW_OP_reg14:
20637 case DW_OP_reg15:
20638 case DW_OP_reg16:
20639 case DW_OP_reg17:
20640 case DW_OP_reg18:
20641 case DW_OP_reg19:
20642 case DW_OP_reg20:
20643 case DW_OP_reg21:
20644 case DW_OP_reg22:
20645 case DW_OP_reg23:
20646 case DW_OP_reg24:
20647 case DW_OP_reg25:
20648 case DW_OP_reg26:
20649 case DW_OP_reg27:
20650 case DW_OP_reg28:
20651 case DW_OP_reg29:
20652 case DW_OP_reg30:
20653 case DW_OP_reg31:
20654 stack[++stacki] = op - DW_OP_reg0;
20655 if (i < size)
20656 dwarf2_complex_location_expr_complaint ();
20657 break;
20658
20659 case DW_OP_regx:
20660 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20661 i += bytes_read;
20662 stack[++stacki] = unsnd;
20663 if (i < size)
20664 dwarf2_complex_location_expr_complaint ();
20665 break;
20666
20667 case DW_OP_addr:
20668 stack[++stacki] = read_address (objfile->obfd, &data[i],
20669 cu, &bytes_read);
20670 i += bytes_read;
20671 break;
20672
20673 case DW_OP_const1u:
20674 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20675 i += 1;
20676 break;
20677
20678 case DW_OP_const1s:
20679 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20680 i += 1;
20681 break;
20682
20683 case DW_OP_const2u:
20684 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20685 i += 2;
20686 break;
20687
20688 case DW_OP_const2s:
20689 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20690 i += 2;
20691 break;
20692
20693 case DW_OP_const4u:
20694 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20695 i += 4;
20696 break;
20697
20698 case DW_OP_const4s:
20699 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20700 i += 4;
20701 break;
20702
20703 case DW_OP_const8u:
20704 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20705 i += 8;
20706 break;
20707
20708 case DW_OP_constu:
20709 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20710 &bytes_read);
20711 i += bytes_read;
20712 break;
20713
20714 case DW_OP_consts:
20715 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20716 i += bytes_read;
20717 break;
20718
20719 case DW_OP_dup:
20720 stack[stacki + 1] = stack[stacki];
20721 stacki++;
20722 break;
20723
20724 case DW_OP_plus:
20725 stack[stacki - 1] += stack[stacki];
20726 stacki--;
20727 break;
20728
20729 case DW_OP_plus_uconst:
20730 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20731 &bytes_read);
20732 i += bytes_read;
20733 break;
20734
20735 case DW_OP_minus:
20736 stack[stacki - 1] -= stack[stacki];
20737 stacki--;
20738 break;
20739
20740 case DW_OP_deref:
20741 /* If we're not the last op, then we definitely can't encode
20742 this using GDB's address_class enum. This is valid for partial
20743 global symbols, although the variable's address will be bogus
20744 in the psymtab. */
20745 if (i < size)
20746 dwarf2_complex_location_expr_complaint ();
20747 break;
20748
20749 case DW_OP_GNU_push_tls_address:
20750 /* The top of the stack has the offset from the beginning
20751 of the thread control block at which the variable is located. */
20752 /* Nothing should follow this operator, so the top of stack would
20753 be returned. */
20754 /* This is valid for partial global symbols, but the variable's
20755 address will be bogus in the psymtab. Make it always at least
20756 non-zero to not look as a variable garbage collected by linker
20757 which have DW_OP_addr 0. */
20758 if (i < size)
20759 dwarf2_complex_location_expr_complaint ();
20760 stack[stacki]++;
20761 break;
20762
20763 case DW_OP_GNU_uninit:
20764 break;
20765
20766 case DW_OP_GNU_addr_index:
20767 case DW_OP_GNU_const_index:
20768 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20769 &bytes_read);
20770 i += bytes_read;
20771 break;
20772
20773 default:
20774 {
20775 const char *name = get_DW_OP_name (op);
20776
20777 if (name)
20778 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20779 name);
20780 else
20781 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20782 op);
20783 }
20784
20785 return (stack[stacki]);
20786 }
20787
20788 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20789 outside of the allocated space. Also enforce minimum>0. */
20790 if (stacki >= ARRAY_SIZE (stack) - 1)
20791 {
20792 complaint (&symfile_complaints,
20793 _("location description stack overflow"));
20794 return 0;
20795 }
20796
20797 if (stacki <= 0)
20798 {
20799 complaint (&symfile_complaints,
20800 _("location description stack underflow"));
20801 return 0;
20802 }
20803 }
20804 return (stack[stacki]);
20805 }
20806
20807 /* memory allocation interface */
20808
20809 static struct dwarf_block *
20810 dwarf_alloc_block (struct dwarf2_cu *cu)
20811 {
20812 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20813 }
20814
20815 static struct die_info *
20816 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20817 {
20818 struct die_info *die;
20819 size_t size = sizeof (struct die_info);
20820
20821 if (num_attrs > 1)
20822 size += (num_attrs - 1) * sizeof (struct attribute);
20823
20824 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20825 memset (die, 0, sizeof (struct die_info));
20826 return (die);
20827 }
20828
20829 \f
20830 /* Macro support. */
20831
20832 /* Return file name relative to the compilation directory of file number I in
20833 *LH's file name table. The result is allocated using xmalloc; the caller is
20834 responsible for freeing it. */
20835
20836 static char *
20837 file_file_name (int file, struct line_header *lh)
20838 {
20839 /* Is the file number a valid index into the line header's file name
20840 table? Remember that file numbers start with one, not zero. */
20841 if (1 <= file && file <= lh->num_file_names)
20842 {
20843 struct file_entry *fe = &lh->file_names[file - 1];
20844
20845 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20846 || lh->include_dirs == NULL)
20847 return xstrdup (fe->name);
20848 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20849 fe->name, NULL);
20850 }
20851 else
20852 {
20853 /* The compiler produced a bogus file number. We can at least
20854 record the macro definitions made in the file, even if we
20855 won't be able to find the file by name. */
20856 char fake_name[80];
20857
20858 xsnprintf (fake_name, sizeof (fake_name),
20859 "<bad macro file number %d>", file);
20860
20861 complaint (&symfile_complaints,
20862 _("bad file number in macro information (%d)"),
20863 file);
20864
20865 return xstrdup (fake_name);
20866 }
20867 }
20868
20869 /* Return the full name of file number I in *LH's file name table.
20870 Use COMP_DIR as the name of the current directory of the
20871 compilation. The result is allocated using xmalloc; the caller is
20872 responsible for freeing it. */
20873 static char *
20874 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20875 {
20876 /* Is the file number a valid index into the line header's file name
20877 table? Remember that file numbers start with one, not zero. */
20878 if (1 <= file && file <= lh->num_file_names)
20879 {
20880 char *relative = file_file_name (file, lh);
20881
20882 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20883 return relative;
20884 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20885 }
20886 else
20887 return file_file_name (file, lh);
20888 }
20889
20890
20891 static struct macro_source_file *
20892 macro_start_file (int file, int line,
20893 struct macro_source_file *current_file,
20894 struct line_header *lh)
20895 {
20896 /* File name relative to the compilation directory of this source file. */
20897 char *file_name = file_file_name (file, lh);
20898
20899 if (! current_file)
20900 {
20901 /* Note: We don't create a macro table for this compilation unit
20902 at all until we actually get a filename. */
20903 struct macro_table *macro_table = get_macro_table ();
20904
20905 /* If we have no current file, then this must be the start_file
20906 directive for the compilation unit's main source file. */
20907 current_file = macro_set_main (macro_table, file_name);
20908 macro_define_special (macro_table);
20909 }
20910 else
20911 current_file = macro_include (current_file, line, file_name);
20912
20913 xfree (file_name);
20914
20915 return current_file;
20916 }
20917
20918
20919 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20920 followed by a null byte. */
20921 static char *
20922 copy_string (const char *buf, int len)
20923 {
20924 char *s = (char *) xmalloc (len + 1);
20925
20926 memcpy (s, buf, len);
20927 s[len] = '\0';
20928 return s;
20929 }
20930
20931
20932 static const char *
20933 consume_improper_spaces (const char *p, const char *body)
20934 {
20935 if (*p == ' ')
20936 {
20937 complaint (&symfile_complaints,
20938 _("macro definition contains spaces "
20939 "in formal argument list:\n`%s'"),
20940 body);
20941
20942 while (*p == ' ')
20943 p++;
20944 }
20945
20946 return p;
20947 }
20948
20949
20950 static void
20951 parse_macro_definition (struct macro_source_file *file, int line,
20952 const char *body)
20953 {
20954 const char *p;
20955
20956 /* The body string takes one of two forms. For object-like macro
20957 definitions, it should be:
20958
20959 <macro name> " " <definition>
20960
20961 For function-like macro definitions, it should be:
20962
20963 <macro name> "() " <definition>
20964 or
20965 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20966
20967 Spaces may appear only where explicitly indicated, and in the
20968 <definition>.
20969
20970 The Dwarf 2 spec says that an object-like macro's name is always
20971 followed by a space, but versions of GCC around March 2002 omit
20972 the space when the macro's definition is the empty string.
20973
20974 The Dwarf 2 spec says that there should be no spaces between the
20975 formal arguments in a function-like macro's formal argument list,
20976 but versions of GCC around March 2002 include spaces after the
20977 commas. */
20978
20979
20980 /* Find the extent of the macro name. The macro name is terminated
20981 by either a space or null character (for an object-like macro) or
20982 an opening paren (for a function-like macro). */
20983 for (p = body; *p; p++)
20984 if (*p == ' ' || *p == '(')
20985 break;
20986
20987 if (*p == ' ' || *p == '\0')
20988 {
20989 /* It's an object-like macro. */
20990 int name_len = p - body;
20991 char *name = copy_string (body, name_len);
20992 const char *replacement;
20993
20994 if (*p == ' ')
20995 replacement = body + name_len + 1;
20996 else
20997 {
20998 dwarf2_macro_malformed_definition_complaint (body);
20999 replacement = body + name_len;
21000 }
21001
21002 macro_define_object (file, line, name, replacement);
21003
21004 xfree (name);
21005 }
21006 else if (*p == '(')
21007 {
21008 /* It's a function-like macro. */
21009 char *name = copy_string (body, p - body);
21010 int argc = 0;
21011 int argv_size = 1;
21012 char **argv = XNEWVEC (char *, argv_size);
21013
21014 p++;
21015
21016 p = consume_improper_spaces (p, body);
21017
21018 /* Parse the formal argument list. */
21019 while (*p && *p != ')')
21020 {
21021 /* Find the extent of the current argument name. */
21022 const char *arg_start = p;
21023
21024 while (*p && *p != ',' && *p != ')' && *p != ' ')
21025 p++;
21026
21027 if (! *p || p == arg_start)
21028 dwarf2_macro_malformed_definition_complaint (body);
21029 else
21030 {
21031 /* Make sure argv has room for the new argument. */
21032 if (argc >= argv_size)
21033 {
21034 argv_size *= 2;
21035 argv = XRESIZEVEC (char *, argv, argv_size);
21036 }
21037
21038 argv[argc++] = copy_string (arg_start, p - arg_start);
21039 }
21040
21041 p = consume_improper_spaces (p, body);
21042
21043 /* Consume the comma, if present. */
21044 if (*p == ',')
21045 {
21046 p++;
21047
21048 p = consume_improper_spaces (p, body);
21049 }
21050 }
21051
21052 if (*p == ')')
21053 {
21054 p++;
21055
21056 if (*p == ' ')
21057 /* Perfectly formed definition, no complaints. */
21058 macro_define_function (file, line, name,
21059 argc, (const char **) argv,
21060 p + 1);
21061 else if (*p == '\0')
21062 {
21063 /* Complain, but do define it. */
21064 dwarf2_macro_malformed_definition_complaint (body);
21065 macro_define_function (file, line, name,
21066 argc, (const char **) argv,
21067 p);
21068 }
21069 else
21070 /* Just complain. */
21071 dwarf2_macro_malformed_definition_complaint (body);
21072 }
21073 else
21074 /* Just complain. */
21075 dwarf2_macro_malformed_definition_complaint (body);
21076
21077 xfree (name);
21078 {
21079 int i;
21080
21081 for (i = 0; i < argc; i++)
21082 xfree (argv[i]);
21083 }
21084 xfree (argv);
21085 }
21086 else
21087 dwarf2_macro_malformed_definition_complaint (body);
21088 }
21089
21090 /* Skip some bytes from BYTES according to the form given in FORM.
21091 Returns the new pointer. */
21092
21093 static const gdb_byte *
21094 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21095 enum dwarf_form form,
21096 unsigned int offset_size,
21097 struct dwarf2_section_info *section)
21098 {
21099 unsigned int bytes_read;
21100
21101 switch (form)
21102 {
21103 case DW_FORM_data1:
21104 case DW_FORM_flag:
21105 ++bytes;
21106 break;
21107
21108 case DW_FORM_data2:
21109 bytes += 2;
21110 break;
21111
21112 case DW_FORM_data4:
21113 bytes += 4;
21114 break;
21115
21116 case DW_FORM_data8:
21117 bytes += 8;
21118 break;
21119
21120 case DW_FORM_string:
21121 read_direct_string (abfd, bytes, &bytes_read);
21122 bytes += bytes_read;
21123 break;
21124
21125 case DW_FORM_sec_offset:
21126 case DW_FORM_strp:
21127 case DW_FORM_GNU_strp_alt:
21128 bytes += offset_size;
21129 break;
21130
21131 case DW_FORM_block:
21132 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21133 bytes += bytes_read;
21134 break;
21135
21136 case DW_FORM_block1:
21137 bytes += 1 + read_1_byte (abfd, bytes);
21138 break;
21139 case DW_FORM_block2:
21140 bytes += 2 + read_2_bytes (abfd, bytes);
21141 break;
21142 case DW_FORM_block4:
21143 bytes += 4 + read_4_bytes (abfd, bytes);
21144 break;
21145
21146 case DW_FORM_sdata:
21147 case DW_FORM_udata:
21148 case DW_FORM_GNU_addr_index:
21149 case DW_FORM_GNU_str_index:
21150 bytes = gdb_skip_leb128 (bytes, buffer_end);
21151 if (bytes == NULL)
21152 {
21153 dwarf2_section_buffer_overflow_complaint (section);
21154 return NULL;
21155 }
21156 break;
21157
21158 default:
21159 {
21160 complain:
21161 complaint (&symfile_complaints,
21162 _("invalid form 0x%x in `%s'"),
21163 form, get_section_name (section));
21164 return NULL;
21165 }
21166 }
21167
21168 return bytes;
21169 }
21170
21171 /* A helper for dwarf_decode_macros that handles skipping an unknown
21172 opcode. Returns an updated pointer to the macro data buffer; or,
21173 on error, issues a complaint and returns NULL. */
21174
21175 static const gdb_byte *
21176 skip_unknown_opcode (unsigned int opcode,
21177 const gdb_byte **opcode_definitions,
21178 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21179 bfd *abfd,
21180 unsigned int offset_size,
21181 struct dwarf2_section_info *section)
21182 {
21183 unsigned int bytes_read, i;
21184 unsigned long arg;
21185 const gdb_byte *defn;
21186
21187 if (opcode_definitions[opcode] == NULL)
21188 {
21189 complaint (&symfile_complaints,
21190 _("unrecognized DW_MACFINO opcode 0x%x"),
21191 opcode);
21192 return NULL;
21193 }
21194
21195 defn = opcode_definitions[opcode];
21196 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21197 defn += bytes_read;
21198
21199 for (i = 0; i < arg; ++i)
21200 {
21201 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21202 (enum dwarf_form) defn[i], offset_size,
21203 section);
21204 if (mac_ptr == NULL)
21205 {
21206 /* skip_form_bytes already issued the complaint. */
21207 return NULL;
21208 }
21209 }
21210
21211 return mac_ptr;
21212 }
21213
21214 /* A helper function which parses the header of a macro section.
21215 If the macro section is the extended (for now called "GNU") type,
21216 then this updates *OFFSET_SIZE. Returns a pointer to just after
21217 the header, or issues a complaint and returns NULL on error. */
21218
21219 static const gdb_byte *
21220 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21221 bfd *abfd,
21222 const gdb_byte *mac_ptr,
21223 unsigned int *offset_size,
21224 int section_is_gnu)
21225 {
21226 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21227
21228 if (section_is_gnu)
21229 {
21230 unsigned int version, flags;
21231
21232 version = read_2_bytes (abfd, mac_ptr);
21233 if (version != 4)
21234 {
21235 complaint (&symfile_complaints,
21236 _("unrecognized version `%d' in .debug_macro section"),
21237 version);
21238 return NULL;
21239 }
21240 mac_ptr += 2;
21241
21242 flags = read_1_byte (abfd, mac_ptr);
21243 ++mac_ptr;
21244 *offset_size = (flags & 1) ? 8 : 4;
21245
21246 if ((flags & 2) != 0)
21247 /* We don't need the line table offset. */
21248 mac_ptr += *offset_size;
21249
21250 /* Vendor opcode descriptions. */
21251 if ((flags & 4) != 0)
21252 {
21253 unsigned int i, count;
21254
21255 count = read_1_byte (abfd, mac_ptr);
21256 ++mac_ptr;
21257 for (i = 0; i < count; ++i)
21258 {
21259 unsigned int opcode, bytes_read;
21260 unsigned long arg;
21261
21262 opcode = read_1_byte (abfd, mac_ptr);
21263 ++mac_ptr;
21264 opcode_definitions[opcode] = mac_ptr;
21265 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21266 mac_ptr += bytes_read;
21267 mac_ptr += arg;
21268 }
21269 }
21270 }
21271
21272 return mac_ptr;
21273 }
21274
21275 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21276 including DW_MACRO_GNU_transparent_include. */
21277
21278 static void
21279 dwarf_decode_macro_bytes (bfd *abfd,
21280 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21281 struct macro_source_file *current_file,
21282 struct line_header *lh,
21283 struct dwarf2_section_info *section,
21284 int section_is_gnu, int section_is_dwz,
21285 unsigned int offset_size,
21286 htab_t include_hash)
21287 {
21288 struct objfile *objfile = dwarf2_per_objfile->objfile;
21289 enum dwarf_macro_record_type macinfo_type;
21290 int at_commandline;
21291 const gdb_byte *opcode_definitions[256];
21292
21293 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21294 &offset_size, section_is_gnu);
21295 if (mac_ptr == NULL)
21296 {
21297 /* We already issued a complaint. */
21298 return;
21299 }
21300
21301 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21302 GDB is still reading the definitions from command line. First
21303 DW_MACINFO_start_file will need to be ignored as it was already executed
21304 to create CURRENT_FILE for the main source holding also the command line
21305 definitions. On first met DW_MACINFO_start_file this flag is reset to
21306 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21307
21308 at_commandline = 1;
21309
21310 do
21311 {
21312 /* Do we at least have room for a macinfo type byte? */
21313 if (mac_ptr >= mac_end)
21314 {
21315 dwarf2_section_buffer_overflow_complaint (section);
21316 break;
21317 }
21318
21319 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21320 mac_ptr++;
21321
21322 /* Note that we rely on the fact that the corresponding GNU and
21323 DWARF constants are the same. */
21324 switch (macinfo_type)
21325 {
21326 /* A zero macinfo type indicates the end of the macro
21327 information. */
21328 case 0:
21329 break;
21330
21331 case DW_MACRO_GNU_define:
21332 case DW_MACRO_GNU_undef:
21333 case DW_MACRO_GNU_define_indirect:
21334 case DW_MACRO_GNU_undef_indirect:
21335 case DW_MACRO_GNU_define_indirect_alt:
21336 case DW_MACRO_GNU_undef_indirect_alt:
21337 {
21338 unsigned int bytes_read;
21339 int line;
21340 const char *body;
21341 int is_define;
21342
21343 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21344 mac_ptr += bytes_read;
21345
21346 if (macinfo_type == DW_MACRO_GNU_define
21347 || macinfo_type == DW_MACRO_GNU_undef)
21348 {
21349 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21350 mac_ptr += bytes_read;
21351 }
21352 else
21353 {
21354 LONGEST str_offset;
21355
21356 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21357 mac_ptr += offset_size;
21358
21359 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21360 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21361 || section_is_dwz)
21362 {
21363 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21364
21365 body = read_indirect_string_from_dwz (dwz, str_offset);
21366 }
21367 else
21368 body = read_indirect_string_at_offset (abfd, str_offset);
21369 }
21370
21371 is_define = (macinfo_type == DW_MACRO_GNU_define
21372 || macinfo_type == DW_MACRO_GNU_define_indirect
21373 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21374 if (! current_file)
21375 {
21376 /* DWARF violation as no main source is present. */
21377 complaint (&symfile_complaints,
21378 _("debug info with no main source gives macro %s "
21379 "on line %d: %s"),
21380 is_define ? _("definition") : _("undefinition"),
21381 line, body);
21382 break;
21383 }
21384 if ((line == 0 && !at_commandline)
21385 || (line != 0 && at_commandline))
21386 complaint (&symfile_complaints,
21387 _("debug info gives %s macro %s with %s line %d: %s"),
21388 at_commandline ? _("command-line") : _("in-file"),
21389 is_define ? _("definition") : _("undefinition"),
21390 line == 0 ? _("zero") : _("non-zero"), line, body);
21391
21392 if (is_define)
21393 parse_macro_definition (current_file, line, body);
21394 else
21395 {
21396 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21397 || macinfo_type == DW_MACRO_GNU_undef_indirect
21398 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21399 macro_undef (current_file, line, body);
21400 }
21401 }
21402 break;
21403
21404 case DW_MACRO_GNU_start_file:
21405 {
21406 unsigned int bytes_read;
21407 int line, file;
21408
21409 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21410 mac_ptr += bytes_read;
21411 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21412 mac_ptr += bytes_read;
21413
21414 if ((line == 0 && !at_commandline)
21415 || (line != 0 && at_commandline))
21416 complaint (&symfile_complaints,
21417 _("debug info gives source %d included "
21418 "from %s at %s line %d"),
21419 file, at_commandline ? _("command-line") : _("file"),
21420 line == 0 ? _("zero") : _("non-zero"), line);
21421
21422 if (at_commandline)
21423 {
21424 /* This DW_MACRO_GNU_start_file was executed in the
21425 pass one. */
21426 at_commandline = 0;
21427 }
21428 else
21429 current_file = macro_start_file (file, line, current_file, lh);
21430 }
21431 break;
21432
21433 case DW_MACRO_GNU_end_file:
21434 if (! current_file)
21435 complaint (&symfile_complaints,
21436 _("macro debug info has an unmatched "
21437 "`close_file' directive"));
21438 else
21439 {
21440 current_file = current_file->included_by;
21441 if (! current_file)
21442 {
21443 enum dwarf_macro_record_type next_type;
21444
21445 /* GCC circa March 2002 doesn't produce the zero
21446 type byte marking the end of the compilation
21447 unit. Complain if it's not there, but exit no
21448 matter what. */
21449
21450 /* Do we at least have room for a macinfo type byte? */
21451 if (mac_ptr >= mac_end)
21452 {
21453 dwarf2_section_buffer_overflow_complaint (section);
21454 return;
21455 }
21456
21457 /* We don't increment mac_ptr here, so this is just
21458 a look-ahead. */
21459 next_type
21460 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21461 mac_ptr);
21462 if (next_type != 0)
21463 complaint (&symfile_complaints,
21464 _("no terminating 0-type entry for "
21465 "macros in `.debug_macinfo' section"));
21466
21467 return;
21468 }
21469 }
21470 break;
21471
21472 case DW_MACRO_GNU_transparent_include:
21473 case DW_MACRO_GNU_transparent_include_alt:
21474 {
21475 LONGEST offset;
21476 void **slot;
21477 bfd *include_bfd = abfd;
21478 struct dwarf2_section_info *include_section = section;
21479 struct dwarf2_section_info alt_section;
21480 const gdb_byte *include_mac_end = mac_end;
21481 int is_dwz = section_is_dwz;
21482 const gdb_byte *new_mac_ptr;
21483
21484 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21485 mac_ptr += offset_size;
21486
21487 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21488 {
21489 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21490
21491 dwarf2_read_section (objfile, &dwz->macro);
21492
21493 include_section = &dwz->macro;
21494 include_bfd = get_section_bfd_owner (include_section);
21495 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21496 is_dwz = 1;
21497 }
21498
21499 new_mac_ptr = include_section->buffer + offset;
21500 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21501
21502 if (*slot != NULL)
21503 {
21504 /* This has actually happened; see
21505 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21506 complaint (&symfile_complaints,
21507 _("recursive DW_MACRO_GNU_transparent_include in "
21508 ".debug_macro section"));
21509 }
21510 else
21511 {
21512 *slot = (void *) new_mac_ptr;
21513
21514 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21515 include_mac_end, current_file, lh,
21516 section, section_is_gnu, is_dwz,
21517 offset_size, include_hash);
21518
21519 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21520 }
21521 }
21522 break;
21523
21524 case DW_MACINFO_vendor_ext:
21525 if (!section_is_gnu)
21526 {
21527 unsigned int bytes_read;
21528 int constant;
21529
21530 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21531 mac_ptr += bytes_read;
21532 read_direct_string (abfd, mac_ptr, &bytes_read);
21533 mac_ptr += bytes_read;
21534
21535 /* We don't recognize any vendor extensions. */
21536 break;
21537 }
21538 /* FALLTHROUGH */
21539
21540 default:
21541 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21542 mac_ptr, mac_end, abfd, offset_size,
21543 section);
21544 if (mac_ptr == NULL)
21545 return;
21546 break;
21547 }
21548 } while (macinfo_type != 0);
21549 }
21550
21551 static void
21552 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21553 int section_is_gnu)
21554 {
21555 struct objfile *objfile = dwarf2_per_objfile->objfile;
21556 struct line_header *lh = cu->line_header;
21557 bfd *abfd;
21558 const gdb_byte *mac_ptr, *mac_end;
21559 struct macro_source_file *current_file = 0;
21560 enum dwarf_macro_record_type macinfo_type;
21561 unsigned int offset_size = cu->header.offset_size;
21562 const gdb_byte *opcode_definitions[256];
21563 struct cleanup *cleanup;
21564 htab_t include_hash;
21565 void **slot;
21566 struct dwarf2_section_info *section;
21567 const char *section_name;
21568
21569 if (cu->dwo_unit != NULL)
21570 {
21571 if (section_is_gnu)
21572 {
21573 section = &cu->dwo_unit->dwo_file->sections.macro;
21574 section_name = ".debug_macro.dwo";
21575 }
21576 else
21577 {
21578 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21579 section_name = ".debug_macinfo.dwo";
21580 }
21581 }
21582 else
21583 {
21584 if (section_is_gnu)
21585 {
21586 section = &dwarf2_per_objfile->macro;
21587 section_name = ".debug_macro";
21588 }
21589 else
21590 {
21591 section = &dwarf2_per_objfile->macinfo;
21592 section_name = ".debug_macinfo";
21593 }
21594 }
21595
21596 dwarf2_read_section (objfile, section);
21597 if (section->buffer == NULL)
21598 {
21599 complaint (&symfile_complaints, _("missing %s section"), section_name);
21600 return;
21601 }
21602 abfd = get_section_bfd_owner (section);
21603
21604 /* First pass: Find the name of the base filename.
21605 This filename is needed in order to process all macros whose definition
21606 (or undefinition) comes from the command line. These macros are defined
21607 before the first DW_MACINFO_start_file entry, and yet still need to be
21608 associated to the base file.
21609
21610 To determine the base file name, we scan the macro definitions until we
21611 reach the first DW_MACINFO_start_file entry. We then initialize
21612 CURRENT_FILE accordingly so that any macro definition found before the
21613 first DW_MACINFO_start_file can still be associated to the base file. */
21614
21615 mac_ptr = section->buffer + offset;
21616 mac_end = section->buffer + section->size;
21617
21618 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21619 &offset_size, section_is_gnu);
21620 if (mac_ptr == NULL)
21621 {
21622 /* We already issued a complaint. */
21623 return;
21624 }
21625
21626 do
21627 {
21628 /* Do we at least have room for a macinfo type byte? */
21629 if (mac_ptr >= mac_end)
21630 {
21631 /* Complaint is printed during the second pass as GDB will probably
21632 stop the first pass earlier upon finding
21633 DW_MACINFO_start_file. */
21634 break;
21635 }
21636
21637 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21638 mac_ptr++;
21639
21640 /* Note that we rely on the fact that the corresponding GNU and
21641 DWARF constants are the same. */
21642 switch (macinfo_type)
21643 {
21644 /* A zero macinfo type indicates the end of the macro
21645 information. */
21646 case 0:
21647 break;
21648
21649 case DW_MACRO_GNU_define:
21650 case DW_MACRO_GNU_undef:
21651 /* Only skip the data by MAC_PTR. */
21652 {
21653 unsigned int bytes_read;
21654
21655 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21656 mac_ptr += bytes_read;
21657 read_direct_string (abfd, mac_ptr, &bytes_read);
21658 mac_ptr += bytes_read;
21659 }
21660 break;
21661
21662 case DW_MACRO_GNU_start_file:
21663 {
21664 unsigned int bytes_read;
21665 int line, file;
21666
21667 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21668 mac_ptr += bytes_read;
21669 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21670 mac_ptr += bytes_read;
21671
21672 current_file = macro_start_file (file, line, current_file, lh);
21673 }
21674 break;
21675
21676 case DW_MACRO_GNU_end_file:
21677 /* No data to skip by MAC_PTR. */
21678 break;
21679
21680 case DW_MACRO_GNU_define_indirect:
21681 case DW_MACRO_GNU_undef_indirect:
21682 case DW_MACRO_GNU_define_indirect_alt:
21683 case DW_MACRO_GNU_undef_indirect_alt:
21684 {
21685 unsigned int bytes_read;
21686
21687 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21688 mac_ptr += bytes_read;
21689 mac_ptr += offset_size;
21690 }
21691 break;
21692
21693 case DW_MACRO_GNU_transparent_include:
21694 case DW_MACRO_GNU_transparent_include_alt:
21695 /* Note that, according to the spec, a transparent include
21696 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21697 skip this opcode. */
21698 mac_ptr += offset_size;
21699 break;
21700
21701 case DW_MACINFO_vendor_ext:
21702 /* Only skip the data by MAC_PTR. */
21703 if (!section_is_gnu)
21704 {
21705 unsigned int bytes_read;
21706
21707 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21708 mac_ptr += bytes_read;
21709 read_direct_string (abfd, mac_ptr, &bytes_read);
21710 mac_ptr += bytes_read;
21711 }
21712 /* FALLTHROUGH */
21713
21714 default:
21715 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21716 mac_ptr, mac_end, abfd, offset_size,
21717 section);
21718 if (mac_ptr == NULL)
21719 return;
21720 break;
21721 }
21722 } while (macinfo_type != 0 && current_file == NULL);
21723
21724 /* Second pass: Process all entries.
21725
21726 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21727 command-line macro definitions/undefinitions. This flag is unset when we
21728 reach the first DW_MACINFO_start_file entry. */
21729
21730 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21731 NULL, xcalloc, xfree);
21732 cleanup = make_cleanup_htab_delete (include_hash);
21733 mac_ptr = section->buffer + offset;
21734 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21735 *slot = (void *) mac_ptr;
21736 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21737 current_file, lh, section,
21738 section_is_gnu, 0, offset_size, include_hash);
21739 do_cleanups (cleanup);
21740 }
21741
21742 /* Check if the attribute's form is a DW_FORM_block*
21743 if so return true else false. */
21744
21745 static int
21746 attr_form_is_block (const struct attribute *attr)
21747 {
21748 return (attr == NULL ? 0 :
21749 attr->form == DW_FORM_block1
21750 || attr->form == DW_FORM_block2
21751 || attr->form == DW_FORM_block4
21752 || attr->form == DW_FORM_block
21753 || attr->form == DW_FORM_exprloc);
21754 }
21755
21756 /* Return non-zero if ATTR's value is a section offset --- classes
21757 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21758 You may use DW_UNSND (attr) to retrieve such offsets.
21759
21760 Section 7.5.4, "Attribute Encodings", explains that no attribute
21761 may have a value that belongs to more than one of these classes; it
21762 would be ambiguous if we did, because we use the same forms for all
21763 of them. */
21764
21765 static int
21766 attr_form_is_section_offset (const struct attribute *attr)
21767 {
21768 return (attr->form == DW_FORM_data4
21769 || attr->form == DW_FORM_data8
21770 || attr->form == DW_FORM_sec_offset);
21771 }
21772
21773 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21774 zero otherwise. When this function returns true, you can apply
21775 dwarf2_get_attr_constant_value to it.
21776
21777 However, note that for some attributes you must check
21778 attr_form_is_section_offset before using this test. DW_FORM_data4
21779 and DW_FORM_data8 are members of both the constant class, and of
21780 the classes that contain offsets into other debug sections
21781 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21782 that, if an attribute's can be either a constant or one of the
21783 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21784 taken as section offsets, not constants. */
21785
21786 static int
21787 attr_form_is_constant (const struct attribute *attr)
21788 {
21789 switch (attr->form)
21790 {
21791 case DW_FORM_sdata:
21792 case DW_FORM_udata:
21793 case DW_FORM_data1:
21794 case DW_FORM_data2:
21795 case DW_FORM_data4:
21796 case DW_FORM_data8:
21797 return 1;
21798 default:
21799 return 0;
21800 }
21801 }
21802
21803
21804 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21805 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21806
21807 static int
21808 attr_form_is_ref (const struct attribute *attr)
21809 {
21810 switch (attr->form)
21811 {
21812 case DW_FORM_ref_addr:
21813 case DW_FORM_ref1:
21814 case DW_FORM_ref2:
21815 case DW_FORM_ref4:
21816 case DW_FORM_ref8:
21817 case DW_FORM_ref_udata:
21818 case DW_FORM_GNU_ref_alt:
21819 return 1;
21820 default:
21821 return 0;
21822 }
21823 }
21824
21825 /* Return the .debug_loc section to use for CU.
21826 For DWO files use .debug_loc.dwo. */
21827
21828 static struct dwarf2_section_info *
21829 cu_debug_loc_section (struct dwarf2_cu *cu)
21830 {
21831 if (cu->dwo_unit)
21832 return &cu->dwo_unit->dwo_file->sections.loc;
21833 return &dwarf2_per_objfile->loc;
21834 }
21835
21836 /* A helper function that fills in a dwarf2_loclist_baton. */
21837
21838 static void
21839 fill_in_loclist_baton (struct dwarf2_cu *cu,
21840 struct dwarf2_loclist_baton *baton,
21841 const struct attribute *attr)
21842 {
21843 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21844
21845 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21846
21847 baton->per_cu = cu->per_cu;
21848 gdb_assert (baton->per_cu);
21849 /* We don't know how long the location list is, but make sure we
21850 don't run off the edge of the section. */
21851 baton->size = section->size - DW_UNSND (attr);
21852 baton->data = section->buffer + DW_UNSND (attr);
21853 baton->base_address = cu->base_address;
21854 baton->from_dwo = cu->dwo_unit != NULL;
21855 }
21856
21857 static void
21858 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21859 struct dwarf2_cu *cu, int is_block)
21860 {
21861 struct objfile *objfile = dwarf2_per_objfile->objfile;
21862 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21863
21864 if (attr_form_is_section_offset (attr)
21865 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21866 the section. If so, fall through to the complaint in the
21867 other branch. */
21868 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21869 {
21870 struct dwarf2_loclist_baton *baton;
21871
21872 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21873
21874 fill_in_loclist_baton (cu, baton, attr);
21875
21876 if (cu->base_known == 0)
21877 complaint (&symfile_complaints,
21878 _("Location list used without "
21879 "specifying the CU base address."));
21880
21881 SYMBOL_ACLASS_INDEX (sym) = (is_block
21882 ? dwarf2_loclist_block_index
21883 : dwarf2_loclist_index);
21884 SYMBOL_LOCATION_BATON (sym) = baton;
21885 }
21886 else
21887 {
21888 struct dwarf2_locexpr_baton *baton;
21889
21890 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21891 baton->per_cu = cu->per_cu;
21892 gdb_assert (baton->per_cu);
21893
21894 if (attr_form_is_block (attr))
21895 {
21896 /* Note that we're just copying the block's data pointer
21897 here, not the actual data. We're still pointing into the
21898 info_buffer for SYM's objfile; right now we never release
21899 that buffer, but when we do clean up properly this may
21900 need to change. */
21901 baton->size = DW_BLOCK (attr)->size;
21902 baton->data = DW_BLOCK (attr)->data;
21903 }
21904 else
21905 {
21906 dwarf2_invalid_attrib_class_complaint ("location description",
21907 SYMBOL_NATURAL_NAME (sym));
21908 baton->size = 0;
21909 }
21910
21911 SYMBOL_ACLASS_INDEX (sym) = (is_block
21912 ? dwarf2_locexpr_block_index
21913 : dwarf2_locexpr_index);
21914 SYMBOL_LOCATION_BATON (sym) = baton;
21915 }
21916 }
21917
21918 /* Return the OBJFILE associated with the compilation unit CU. If CU
21919 came from a separate debuginfo file, then the master objfile is
21920 returned. */
21921
21922 struct objfile *
21923 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21924 {
21925 struct objfile *objfile = per_cu->objfile;
21926
21927 /* Return the master objfile, so that we can report and look up the
21928 correct file containing this variable. */
21929 if (objfile->separate_debug_objfile_backlink)
21930 objfile = objfile->separate_debug_objfile_backlink;
21931
21932 return objfile;
21933 }
21934
21935 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21936 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21937 CU_HEADERP first. */
21938
21939 static const struct comp_unit_head *
21940 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21941 struct dwarf2_per_cu_data *per_cu)
21942 {
21943 const gdb_byte *info_ptr;
21944
21945 if (per_cu->cu)
21946 return &per_cu->cu->header;
21947
21948 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21949
21950 memset (cu_headerp, 0, sizeof (*cu_headerp));
21951 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21952
21953 return cu_headerp;
21954 }
21955
21956 /* Return the address size given in the compilation unit header for CU. */
21957
21958 int
21959 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21960 {
21961 struct comp_unit_head cu_header_local;
21962 const struct comp_unit_head *cu_headerp;
21963
21964 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21965
21966 return cu_headerp->addr_size;
21967 }
21968
21969 /* Return the offset size given in the compilation unit header for CU. */
21970
21971 int
21972 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21973 {
21974 struct comp_unit_head cu_header_local;
21975 const struct comp_unit_head *cu_headerp;
21976
21977 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21978
21979 return cu_headerp->offset_size;
21980 }
21981
21982 /* See its dwarf2loc.h declaration. */
21983
21984 int
21985 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21986 {
21987 struct comp_unit_head cu_header_local;
21988 const struct comp_unit_head *cu_headerp;
21989
21990 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21991
21992 if (cu_headerp->version == 2)
21993 return cu_headerp->addr_size;
21994 else
21995 return cu_headerp->offset_size;
21996 }
21997
21998 /* Return the text offset of the CU. The returned offset comes from
21999 this CU's objfile. If this objfile came from a separate debuginfo
22000 file, then the offset may be different from the corresponding
22001 offset in the parent objfile. */
22002
22003 CORE_ADDR
22004 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22005 {
22006 struct objfile *objfile = per_cu->objfile;
22007
22008 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22009 }
22010
22011 /* Locate the .debug_info compilation unit from CU's objfile which contains
22012 the DIE at OFFSET. Raises an error on failure. */
22013
22014 static struct dwarf2_per_cu_data *
22015 dwarf2_find_containing_comp_unit (sect_offset offset,
22016 unsigned int offset_in_dwz,
22017 struct objfile *objfile)
22018 {
22019 struct dwarf2_per_cu_data *this_cu;
22020 int low, high;
22021 const sect_offset *cu_off;
22022
22023 low = 0;
22024 high = dwarf2_per_objfile->n_comp_units - 1;
22025 while (high > low)
22026 {
22027 struct dwarf2_per_cu_data *mid_cu;
22028 int mid = low + (high - low) / 2;
22029
22030 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22031 cu_off = &mid_cu->offset;
22032 if (mid_cu->is_dwz > offset_in_dwz
22033 || (mid_cu->is_dwz == offset_in_dwz
22034 && cu_off->sect_off >= offset.sect_off))
22035 high = mid;
22036 else
22037 low = mid + 1;
22038 }
22039 gdb_assert (low == high);
22040 this_cu = dwarf2_per_objfile->all_comp_units[low];
22041 cu_off = &this_cu->offset;
22042 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22043 {
22044 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22045 error (_("Dwarf Error: could not find partial DIE containing "
22046 "offset 0x%lx [in module %s]"),
22047 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22048
22049 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22050 <= offset.sect_off);
22051 return dwarf2_per_objfile->all_comp_units[low-1];
22052 }
22053 else
22054 {
22055 this_cu = dwarf2_per_objfile->all_comp_units[low];
22056 if (low == dwarf2_per_objfile->n_comp_units - 1
22057 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22058 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22059 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22060 return this_cu;
22061 }
22062 }
22063
22064 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22065
22066 static void
22067 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22068 {
22069 memset (cu, 0, sizeof (*cu));
22070 per_cu->cu = cu;
22071 cu->per_cu = per_cu;
22072 cu->objfile = per_cu->objfile;
22073 obstack_init (&cu->comp_unit_obstack);
22074 }
22075
22076 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22077
22078 static void
22079 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22080 enum language pretend_language)
22081 {
22082 struct attribute *attr;
22083
22084 /* Set the language we're debugging. */
22085 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22086 if (attr)
22087 set_cu_language (DW_UNSND (attr), cu);
22088 else
22089 {
22090 cu->language = pretend_language;
22091 cu->language_defn = language_def (cu->language);
22092 }
22093
22094 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22095 }
22096
22097 /* Release one cached compilation unit, CU. We unlink it from the tree
22098 of compilation units, but we don't remove it from the read_in_chain;
22099 the caller is responsible for that.
22100 NOTE: DATA is a void * because this function is also used as a
22101 cleanup routine. */
22102
22103 static void
22104 free_heap_comp_unit (void *data)
22105 {
22106 struct dwarf2_cu *cu = data;
22107
22108 gdb_assert (cu->per_cu != NULL);
22109 cu->per_cu->cu = NULL;
22110 cu->per_cu = NULL;
22111
22112 obstack_free (&cu->comp_unit_obstack, NULL);
22113
22114 xfree (cu);
22115 }
22116
22117 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22118 when we're finished with it. We can't free the pointer itself, but be
22119 sure to unlink it from the cache. Also release any associated storage. */
22120
22121 static void
22122 free_stack_comp_unit (void *data)
22123 {
22124 struct dwarf2_cu *cu = data;
22125
22126 gdb_assert (cu->per_cu != NULL);
22127 cu->per_cu->cu = NULL;
22128 cu->per_cu = NULL;
22129
22130 obstack_free (&cu->comp_unit_obstack, NULL);
22131 cu->partial_dies = NULL;
22132 }
22133
22134 /* Free all cached compilation units. */
22135
22136 static void
22137 free_cached_comp_units (void *data)
22138 {
22139 struct dwarf2_per_cu_data *per_cu, **last_chain;
22140
22141 per_cu = dwarf2_per_objfile->read_in_chain;
22142 last_chain = &dwarf2_per_objfile->read_in_chain;
22143 while (per_cu != NULL)
22144 {
22145 struct dwarf2_per_cu_data *next_cu;
22146
22147 next_cu = per_cu->cu->read_in_chain;
22148
22149 free_heap_comp_unit (per_cu->cu);
22150 *last_chain = next_cu;
22151
22152 per_cu = next_cu;
22153 }
22154 }
22155
22156 /* Increase the age counter on each cached compilation unit, and free
22157 any that are too old. */
22158
22159 static void
22160 age_cached_comp_units (void)
22161 {
22162 struct dwarf2_per_cu_data *per_cu, **last_chain;
22163
22164 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22165 per_cu = dwarf2_per_objfile->read_in_chain;
22166 while (per_cu != NULL)
22167 {
22168 per_cu->cu->last_used ++;
22169 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22170 dwarf2_mark (per_cu->cu);
22171 per_cu = per_cu->cu->read_in_chain;
22172 }
22173
22174 per_cu = dwarf2_per_objfile->read_in_chain;
22175 last_chain = &dwarf2_per_objfile->read_in_chain;
22176 while (per_cu != NULL)
22177 {
22178 struct dwarf2_per_cu_data *next_cu;
22179
22180 next_cu = per_cu->cu->read_in_chain;
22181
22182 if (!per_cu->cu->mark)
22183 {
22184 free_heap_comp_unit (per_cu->cu);
22185 *last_chain = next_cu;
22186 }
22187 else
22188 last_chain = &per_cu->cu->read_in_chain;
22189
22190 per_cu = next_cu;
22191 }
22192 }
22193
22194 /* Remove a single compilation unit from the cache. */
22195
22196 static void
22197 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22198 {
22199 struct dwarf2_per_cu_data *per_cu, **last_chain;
22200
22201 per_cu = dwarf2_per_objfile->read_in_chain;
22202 last_chain = &dwarf2_per_objfile->read_in_chain;
22203 while (per_cu != NULL)
22204 {
22205 struct dwarf2_per_cu_data *next_cu;
22206
22207 next_cu = per_cu->cu->read_in_chain;
22208
22209 if (per_cu == target_per_cu)
22210 {
22211 free_heap_comp_unit (per_cu->cu);
22212 per_cu->cu = NULL;
22213 *last_chain = next_cu;
22214 break;
22215 }
22216 else
22217 last_chain = &per_cu->cu->read_in_chain;
22218
22219 per_cu = next_cu;
22220 }
22221 }
22222
22223 /* Release all extra memory associated with OBJFILE. */
22224
22225 void
22226 dwarf2_free_objfile (struct objfile *objfile)
22227 {
22228 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22229
22230 if (dwarf2_per_objfile == NULL)
22231 return;
22232
22233 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22234 free_cached_comp_units (NULL);
22235
22236 if (dwarf2_per_objfile->quick_file_names_table)
22237 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22238
22239 if (dwarf2_per_objfile->line_header_hash)
22240 htab_delete (dwarf2_per_objfile->line_header_hash);
22241
22242 /* Everything else should be on the objfile obstack. */
22243 }
22244
22245 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22246 We store these in a hash table separate from the DIEs, and preserve them
22247 when the DIEs are flushed out of cache.
22248
22249 The CU "per_cu" pointer is needed because offset alone is not enough to
22250 uniquely identify the type. A file may have multiple .debug_types sections,
22251 or the type may come from a DWO file. Furthermore, while it's more logical
22252 to use per_cu->section+offset, with Fission the section with the data is in
22253 the DWO file but we don't know that section at the point we need it.
22254 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22255 because we can enter the lookup routine, get_die_type_at_offset, from
22256 outside this file, and thus won't necessarily have PER_CU->cu.
22257 Fortunately, PER_CU is stable for the life of the objfile. */
22258
22259 struct dwarf2_per_cu_offset_and_type
22260 {
22261 const struct dwarf2_per_cu_data *per_cu;
22262 sect_offset offset;
22263 struct type *type;
22264 };
22265
22266 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22267
22268 static hashval_t
22269 per_cu_offset_and_type_hash (const void *item)
22270 {
22271 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22272
22273 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22274 }
22275
22276 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22277
22278 static int
22279 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22280 {
22281 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22282 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22283
22284 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22285 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22286 }
22287
22288 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22289 table if necessary. For convenience, return TYPE.
22290
22291 The DIEs reading must have careful ordering to:
22292 * Not cause infite loops trying to read in DIEs as a prerequisite for
22293 reading current DIE.
22294 * Not trying to dereference contents of still incompletely read in types
22295 while reading in other DIEs.
22296 * Enable referencing still incompletely read in types just by a pointer to
22297 the type without accessing its fields.
22298
22299 Therefore caller should follow these rules:
22300 * Try to fetch any prerequisite types we may need to build this DIE type
22301 before building the type and calling set_die_type.
22302 * After building type call set_die_type for current DIE as soon as
22303 possible before fetching more types to complete the current type.
22304 * Make the type as complete as possible before fetching more types. */
22305
22306 static struct type *
22307 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22308 {
22309 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22310 struct objfile *objfile = cu->objfile;
22311 struct attribute *attr;
22312 struct dynamic_prop prop;
22313
22314 /* For Ada types, make sure that the gnat-specific data is always
22315 initialized (if not already set). There are a few types where
22316 we should not be doing so, because the type-specific area is
22317 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22318 where the type-specific area is used to store the floatformat).
22319 But this is not a problem, because the gnat-specific information
22320 is actually not needed for these types. */
22321 if (need_gnat_info (cu)
22322 && TYPE_CODE (type) != TYPE_CODE_FUNC
22323 && TYPE_CODE (type) != TYPE_CODE_FLT
22324 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22325 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22326 && TYPE_CODE (type) != TYPE_CODE_METHOD
22327 && !HAVE_GNAT_AUX_INFO (type))
22328 INIT_GNAT_SPECIFIC (type);
22329
22330 /* Read DW_AT_data_location and set in type. */
22331 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22332 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22333 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22334
22335 if (dwarf2_per_objfile->die_type_hash == NULL)
22336 {
22337 dwarf2_per_objfile->die_type_hash =
22338 htab_create_alloc_ex (127,
22339 per_cu_offset_and_type_hash,
22340 per_cu_offset_and_type_eq,
22341 NULL,
22342 &objfile->objfile_obstack,
22343 hashtab_obstack_allocate,
22344 dummy_obstack_deallocate);
22345 }
22346
22347 ofs.per_cu = cu->per_cu;
22348 ofs.offset = die->offset;
22349 ofs.type = type;
22350 slot = (struct dwarf2_per_cu_offset_and_type **)
22351 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22352 if (*slot)
22353 complaint (&symfile_complaints,
22354 _("A problem internal to GDB: DIE 0x%x has type already set"),
22355 die->offset.sect_off);
22356 *slot = XOBNEW (&objfile->objfile_obstack,
22357 struct dwarf2_per_cu_offset_and_type);
22358 **slot = ofs;
22359 return type;
22360 }
22361
22362 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22363 or return NULL if the die does not have a saved type. */
22364
22365 static struct type *
22366 get_die_type_at_offset (sect_offset offset,
22367 struct dwarf2_per_cu_data *per_cu)
22368 {
22369 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22370
22371 if (dwarf2_per_objfile->die_type_hash == NULL)
22372 return NULL;
22373
22374 ofs.per_cu = per_cu;
22375 ofs.offset = offset;
22376 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22377 if (slot)
22378 return slot->type;
22379 else
22380 return NULL;
22381 }
22382
22383 /* Look up the type for DIE in CU in die_type_hash,
22384 or return NULL if DIE does not have a saved type. */
22385
22386 static struct type *
22387 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22388 {
22389 return get_die_type_at_offset (die->offset, cu->per_cu);
22390 }
22391
22392 /* Add a dependence relationship from CU to REF_PER_CU. */
22393
22394 static void
22395 dwarf2_add_dependence (struct dwarf2_cu *cu,
22396 struct dwarf2_per_cu_data *ref_per_cu)
22397 {
22398 void **slot;
22399
22400 if (cu->dependencies == NULL)
22401 cu->dependencies
22402 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22403 NULL, &cu->comp_unit_obstack,
22404 hashtab_obstack_allocate,
22405 dummy_obstack_deallocate);
22406
22407 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22408 if (*slot == NULL)
22409 *slot = ref_per_cu;
22410 }
22411
22412 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22413 Set the mark field in every compilation unit in the
22414 cache that we must keep because we are keeping CU. */
22415
22416 static int
22417 dwarf2_mark_helper (void **slot, void *data)
22418 {
22419 struct dwarf2_per_cu_data *per_cu;
22420
22421 per_cu = (struct dwarf2_per_cu_data *) *slot;
22422
22423 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22424 reading of the chain. As such dependencies remain valid it is not much
22425 useful to track and undo them during QUIT cleanups. */
22426 if (per_cu->cu == NULL)
22427 return 1;
22428
22429 if (per_cu->cu->mark)
22430 return 1;
22431 per_cu->cu->mark = 1;
22432
22433 if (per_cu->cu->dependencies != NULL)
22434 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22435
22436 return 1;
22437 }
22438
22439 /* Set the mark field in CU and in every other compilation unit in the
22440 cache that we must keep because we are keeping CU. */
22441
22442 static void
22443 dwarf2_mark (struct dwarf2_cu *cu)
22444 {
22445 if (cu->mark)
22446 return;
22447 cu->mark = 1;
22448 if (cu->dependencies != NULL)
22449 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22450 }
22451
22452 static void
22453 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22454 {
22455 while (per_cu)
22456 {
22457 per_cu->cu->mark = 0;
22458 per_cu = per_cu->cu->read_in_chain;
22459 }
22460 }
22461
22462 /* Trivial hash function for partial_die_info: the hash value of a DIE
22463 is its offset in .debug_info for this objfile. */
22464
22465 static hashval_t
22466 partial_die_hash (const void *item)
22467 {
22468 const struct partial_die_info *part_die = item;
22469
22470 return part_die->offset.sect_off;
22471 }
22472
22473 /* Trivial comparison function for partial_die_info structures: two DIEs
22474 are equal if they have the same offset. */
22475
22476 static int
22477 partial_die_eq (const void *item_lhs, const void *item_rhs)
22478 {
22479 const struct partial_die_info *part_die_lhs = item_lhs;
22480 const struct partial_die_info *part_die_rhs = item_rhs;
22481
22482 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22483 }
22484
22485 static struct cmd_list_element *set_dwarf_cmdlist;
22486 static struct cmd_list_element *show_dwarf_cmdlist;
22487
22488 static void
22489 set_dwarf_cmd (char *args, int from_tty)
22490 {
22491 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22492 gdb_stdout);
22493 }
22494
22495 static void
22496 show_dwarf_cmd (char *args, int from_tty)
22497 {
22498 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22499 }
22500
22501 /* Free data associated with OBJFILE, if necessary. */
22502
22503 static void
22504 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22505 {
22506 struct dwarf2_per_objfile *data = d;
22507 int ix;
22508
22509 /* Make sure we don't accidentally use dwarf2_per_objfile while
22510 cleaning up. */
22511 dwarf2_per_objfile = NULL;
22512
22513 for (ix = 0; ix < data->n_comp_units; ++ix)
22514 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22515
22516 for (ix = 0; ix < data->n_type_units; ++ix)
22517 VEC_free (dwarf2_per_cu_ptr,
22518 data->all_type_units[ix]->per_cu.imported_symtabs);
22519 xfree (data->all_type_units);
22520
22521 VEC_free (dwarf2_section_info_def, data->types);
22522
22523 if (data->dwo_files)
22524 free_dwo_files (data->dwo_files, objfile);
22525 if (data->dwp_file)
22526 gdb_bfd_unref (data->dwp_file->dbfd);
22527
22528 if (data->dwz_file && data->dwz_file->dwz_bfd)
22529 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22530 }
22531
22532 \f
22533 /* The "save gdb-index" command. */
22534
22535 /* The contents of the hash table we create when building the string
22536 table. */
22537 struct strtab_entry
22538 {
22539 offset_type offset;
22540 const char *str;
22541 };
22542
22543 /* Hash function for a strtab_entry.
22544
22545 Function is used only during write_hash_table so no index format backward
22546 compatibility is needed. */
22547
22548 static hashval_t
22549 hash_strtab_entry (const void *e)
22550 {
22551 const struct strtab_entry *entry = e;
22552 return mapped_index_string_hash (INT_MAX, entry->str);
22553 }
22554
22555 /* Equality function for a strtab_entry. */
22556
22557 static int
22558 eq_strtab_entry (const void *a, const void *b)
22559 {
22560 const struct strtab_entry *ea = a;
22561 const struct strtab_entry *eb = b;
22562 return !strcmp (ea->str, eb->str);
22563 }
22564
22565 /* Create a strtab_entry hash table. */
22566
22567 static htab_t
22568 create_strtab (void)
22569 {
22570 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22571 xfree, xcalloc, xfree);
22572 }
22573
22574 /* Add a string to the constant pool. Return the string's offset in
22575 host order. */
22576
22577 static offset_type
22578 add_string (htab_t table, struct obstack *cpool, const char *str)
22579 {
22580 void **slot;
22581 struct strtab_entry entry;
22582 struct strtab_entry *result;
22583
22584 entry.str = str;
22585 slot = htab_find_slot (table, &entry, INSERT);
22586 if (*slot)
22587 result = *slot;
22588 else
22589 {
22590 result = XNEW (struct strtab_entry);
22591 result->offset = obstack_object_size (cpool);
22592 result->str = str;
22593 obstack_grow_str0 (cpool, str);
22594 *slot = result;
22595 }
22596 return result->offset;
22597 }
22598
22599 /* An entry in the symbol table. */
22600 struct symtab_index_entry
22601 {
22602 /* The name of the symbol. */
22603 const char *name;
22604 /* The offset of the name in the constant pool. */
22605 offset_type index_offset;
22606 /* A sorted vector of the indices of all the CUs that hold an object
22607 of this name. */
22608 VEC (offset_type) *cu_indices;
22609 };
22610
22611 /* The symbol table. This is a power-of-2-sized hash table. */
22612 struct mapped_symtab
22613 {
22614 offset_type n_elements;
22615 offset_type size;
22616 struct symtab_index_entry **data;
22617 };
22618
22619 /* Hash function for a symtab_index_entry. */
22620
22621 static hashval_t
22622 hash_symtab_entry (const void *e)
22623 {
22624 const struct symtab_index_entry *entry = e;
22625 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22626 sizeof (offset_type) * VEC_length (offset_type,
22627 entry->cu_indices),
22628 0);
22629 }
22630
22631 /* Equality function for a symtab_index_entry. */
22632
22633 static int
22634 eq_symtab_entry (const void *a, const void *b)
22635 {
22636 const struct symtab_index_entry *ea = a;
22637 const struct symtab_index_entry *eb = b;
22638 int len = VEC_length (offset_type, ea->cu_indices);
22639 if (len != VEC_length (offset_type, eb->cu_indices))
22640 return 0;
22641 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22642 VEC_address (offset_type, eb->cu_indices),
22643 sizeof (offset_type) * len);
22644 }
22645
22646 /* Destroy a symtab_index_entry. */
22647
22648 static void
22649 delete_symtab_entry (void *p)
22650 {
22651 struct symtab_index_entry *entry = p;
22652 VEC_free (offset_type, entry->cu_indices);
22653 xfree (entry);
22654 }
22655
22656 /* Create a hash table holding symtab_index_entry objects. */
22657
22658 static htab_t
22659 create_symbol_hash_table (void)
22660 {
22661 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22662 delete_symtab_entry, xcalloc, xfree);
22663 }
22664
22665 /* Create a new mapped symtab object. */
22666
22667 static struct mapped_symtab *
22668 create_mapped_symtab (void)
22669 {
22670 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22671 symtab->n_elements = 0;
22672 symtab->size = 1024;
22673 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22674 return symtab;
22675 }
22676
22677 /* Destroy a mapped_symtab. */
22678
22679 static void
22680 cleanup_mapped_symtab (void *p)
22681 {
22682 struct mapped_symtab *symtab = p;
22683 /* The contents of the array are freed when the other hash table is
22684 destroyed. */
22685 xfree (symtab->data);
22686 xfree (symtab);
22687 }
22688
22689 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22690 the slot.
22691
22692 Function is used only during write_hash_table so no index format backward
22693 compatibility is needed. */
22694
22695 static struct symtab_index_entry **
22696 find_slot (struct mapped_symtab *symtab, const char *name)
22697 {
22698 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22699
22700 index = hash & (symtab->size - 1);
22701 step = ((hash * 17) & (symtab->size - 1)) | 1;
22702
22703 for (;;)
22704 {
22705 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22706 return &symtab->data[index];
22707 index = (index + step) & (symtab->size - 1);
22708 }
22709 }
22710
22711 /* Expand SYMTAB's hash table. */
22712
22713 static void
22714 hash_expand (struct mapped_symtab *symtab)
22715 {
22716 offset_type old_size = symtab->size;
22717 offset_type i;
22718 struct symtab_index_entry **old_entries = symtab->data;
22719
22720 symtab->size *= 2;
22721 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22722
22723 for (i = 0; i < old_size; ++i)
22724 {
22725 if (old_entries[i])
22726 {
22727 struct symtab_index_entry **slot = find_slot (symtab,
22728 old_entries[i]->name);
22729 *slot = old_entries[i];
22730 }
22731 }
22732
22733 xfree (old_entries);
22734 }
22735
22736 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22737 CU_INDEX is the index of the CU in which the symbol appears.
22738 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22739
22740 static void
22741 add_index_entry (struct mapped_symtab *symtab, const char *name,
22742 int is_static, gdb_index_symbol_kind kind,
22743 offset_type cu_index)
22744 {
22745 struct symtab_index_entry **slot;
22746 offset_type cu_index_and_attrs;
22747
22748 ++symtab->n_elements;
22749 if (4 * symtab->n_elements / 3 >= symtab->size)
22750 hash_expand (symtab);
22751
22752 slot = find_slot (symtab, name);
22753 if (!*slot)
22754 {
22755 *slot = XNEW (struct symtab_index_entry);
22756 (*slot)->name = name;
22757 /* index_offset is set later. */
22758 (*slot)->cu_indices = NULL;
22759 }
22760
22761 cu_index_and_attrs = 0;
22762 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22763 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22764 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22765
22766 /* We don't want to record an index value twice as we want to avoid the
22767 duplication.
22768 We process all global symbols and then all static symbols
22769 (which would allow us to avoid the duplication by only having to check
22770 the last entry pushed), but a symbol could have multiple kinds in one CU.
22771 To keep things simple we don't worry about the duplication here and
22772 sort and uniqufy the list after we've processed all symbols. */
22773 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22774 }
22775
22776 /* qsort helper routine for uniquify_cu_indices. */
22777
22778 static int
22779 offset_type_compare (const void *ap, const void *bp)
22780 {
22781 offset_type a = *(offset_type *) ap;
22782 offset_type b = *(offset_type *) bp;
22783
22784 return (a > b) - (b > a);
22785 }
22786
22787 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22788
22789 static void
22790 uniquify_cu_indices (struct mapped_symtab *symtab)
22791 {
22792 int i;
22793
22794 for (i = 0; i < symtab->size; ++i)
22795 {
22796 struct symtab_index_entry *entry = symtab->data[i];
22797
22798 if (entry
22799 && entry->cu_indices != NULL)
22800 {
22801 unsigned int next_to_insert, next_to_check;
22802 offset_type last_value;
22803
22804 qsort (VEC_address (offset_type, entry->cu_indices),
22805 VEC_length (offset_type, entry->cu_indices),
22806 sizeof (offset_type), offset_type_compare);
22807
22808 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22809 next_to_insert = 1;
22810 for (next_to_check = 1;
22811 next_to_check < VEC_length (offset_type, entry->cu_indices);
22812 ++next_to_check)
22813 {
22814 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22815 != last_value)
22816 {
22817 last_value = VEC_index (offset_type, entry->cu_indices,
22818 next_to_check);
22819 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22820 last_value);
22821 ++next_to_insert;
22822 }
22823 }
22824 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22825 }
22826 }
22827 }
22828
22829 /* Add a vector of indices to the constant pool. */
22830
22831 static offset_type
22832 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22833 struct symtab_index_entry *entry)
22834 {
22835 void **slot;
22836
22837 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22838 if (!*slot)
22839 {
22840 offset_type len = VEC_length (offset_type, entry->cu_indices);
22841 offset_type val = MAYBE_SWAP (len);
22842 offset_type iter;
22843 int i;
22844
22845 *slot = entry;
22846 entry->index_offset = obstack_object_size (cpool);
22847
22848 obstack_grow (cpool, &val, sizeof (val));
22849 for (i = 0;
22850 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22851 ++i)
22852 {
22853 val = MAYBE_SWAP (iter);
22854 obstack_grow (cpool, &val, sizeof (val));
22855 }
22856 }
22857 else
22858 {
22859 struct symtab_index_entry *old_entry = *slot;
22860 entry->index_offset = old_entry->index_offset;
22861 entry = old_entry;
22862 }
22863 return entry->index_offset;
22864 }
22865
22866 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22867 constant pool entries going into the obstack CPOOL. */
22868
22869 static void
22870 write_hash_table (struct mapped_symtab *symtab,
22871 struct obstack *output, struct obstack *cpool)
22872 {
22873 offset_type i;
22874 htab_t symbol_hash_table;
22875 htab_t str_table;
22876
22877 symbol_hash_table = create_symbol_hash_table ();
22878 str_table = create_strtab ();
22879
22880 /* We add all the index vectors to the constant pool first, to
22881 ensure alignment is ok. */
22882 for (i = 0; i < symtab->size; ++i)
22883 {
22884 if (symtab->data[i])
22885 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22886 }
22887
22888 /* Now write out the hash table. */
22889 for (i = 0; i < symtab->size; ++i)
22890 {
22891 offset_type str_off, vec_off;
22892
22893 if (symtab->data[i])
22894 {
22895 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22896 vec_off = symtab->data[i]->index_offset;
22897 }
22898 else
22899 {
22900 /* While 0 is a valid constant pool index, it is not valid
22901 to have 0 for both offsets. */
22902 str_off = 0;
22903 vec_off = 0;
22904 }
22905
22906 str_off = MAYBE_SWAP (str_off);
22907 vec_off = MAYBE_SWAP (vec_off);
22908
22909 obstack_grow (output, &str_off, sizeof (str_off));
22910 obstack_grow (output, &vec_off, sizeof (vec_off));
22911 }
22912
22913 htab_delete (str_table);
22914 htab_delete (symbol_hash_table);
22915 }
22916
22917 /* Struct to map psymtab to CU index in the index file. */
22918 struct psymtab_cu_index_map
22919 {
22920 struct partial_symtab *psymtab;
22921 unsigned int cu_index;
22922 };
22923
22924 static hashval_t
22925 hash_psymtab_cu_index (const void *item)
22926 {
22927 const struct psymtab_cu_index_map *map = item;
22928
22929 return htab_hash_pointer (map->psymtab);
22930 }
22931
22932 static int
22933 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22934 {
22935 const struct psymtab_cu_index_map *lhs = item_lhs;
22936 const struct psymtab_cu_index_map *rhs = item_rhs;
22937
22938 return lhs->psymtab == rhs->psymtab;
22939 }
22940
22941 /* Helper struct for building the address table. */
22942 struct addrmap_index_data
22943 {
22944 struct objfile *objfile;
22945 struct obstack *addr_obstack;
22946 htab_t cu_index_htab;
22947
22948 /* Non-zero if the previous_* fields are valid.
22949 We can't write an entry until we see the next entry (since it is only then
22950 that we know the end of the entry). */
22951 int previous_valid;
22952 /* Index of the CU in the table of all CUs in the index file. */
22953 unsigned int previous_cu_index;
22954 /* Start address of the CU. */
22955 CORE_ADDR previous_cu_start;
22956 };
22957
22958 /* Write an address entry to OBSTACK. */
22959
22960 static void
22961 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22962 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22963 {
22964 offset_type cu_index_to_write;
22965 gdb_byte addr[8];
22966 CORE_ADDR baseaddr;
22967
22968 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22969
22970 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22971 obstack_grow (obstack, addr, 8);
22972 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22973 obstack_grow (obstack, addr, 8);
22974 cu_index_to_write = MAYBE_SWAP (cu_index);
22975 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22976 }
22977
22978 /* Worker function for traversing an addrmap to build the address table. */
22979
22980 static int
22981 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22982 {
22983 struct addrmap_index_data *data = datap;
22984 struct partial_symtab *pst = obj;
22985
22986 if (data->previous_valid)
22987 add_address_entry (data->objfile, data->addr_obstack,
22988 data->previous_cu_start, start_addr,
22989 data->previous_cu_index);
22990
22991 data->previous_cu_start = start_addr;
22992 if (pst != NULL)
22993 {
22994 struct psymtab_cu_index_map find_map, *map;
22995 find_map.psymtab = pst;
22996 map = htab_find (data->cu_index_htab, &find_map);
22997 gdb_assert (map != NULL);
22998 data->previous_cu_index = map->cu_index;
22999 data->previous_valid = 1;
23000 }
23001 else
23002 data->previous_valid = 0;
23003
23004 return 0;
23005 }
23006
23007 /* Write OBJFILE's address map to OBSTACK.
23008 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23009 in the index file. */
23010
23011 static void
23012 write_address_map (struct objfile *objfile, struct obstack *obstack,
23013 htab_t cu_index_htab)
23014 {
23015 struct addrmap_index_data addrmap_index_data;
23016
23017 /* When writing the address table, we have to cope with the fact that
23018 the addrmap iterator only provides the start of a region; we have to
23019 wait until the next invocation to get the start of the next region. */
23020
23021 addrmap_index_data.objfile = objfile;
23022 addrmap_index_data.addr_obstack = obstack;
23023 addrmap_index_data.cu_index_htab = cu_index_htab;
23024 addrmap_index_data.previous_valid = 0;
23025
23026 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23027 &addrmap_index_data);
23028
23029 /* It's highly unlikely the last entry (end address = 0xff...ff)
23030 is valid, but we should still handle it.
23031 The end address is recorded as the start of the next region, but that
23032 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23033 anyway. */
23034 if (addrmap_index_data.previous_valid)
23035 add_address_entry (objfile, obstack,
23036 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23037 addrmap_index_data.previous_cu_index);
23038 }
23039
23040 /* Return the symbol kind of PSYM. */
23041
23042 static gdb_index_symbol_kind
23043 symbol_kind (struct partial_symbol *psym)
23044 {
23045 domain_enum domain = PSYMBOL_DOMAIN (psym);
23046 enum address_class aclass = PSYMBOL_CLASS (psym);
23047
23048 switch (domain)
23049 {
23050 case VAR_DOMAIN:
23051 switch (aclass)
23052 {
23053 case LOC_BLOCK:
23054 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23055 case LOC_TYPEDEF:
23056 return GDB_INDEX_SYMBOL_KIND_TYPE;
23057 case LOC_COMPUTED:
23058 case LOC_CONST_BYTES:
23059 case LOC_OPTIMIZED_OUT:
23060 case LOC_STATIC:
23061 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23062 case LOC_CONST:
23063 /* Note: It's currently impossible to recognize psyms as enum values
23064 short of reading the type info. For now punt. */
23065 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23066 default:
23067 /* There are other LOC_FOO values that one might want to classify
23068 as variables, but dwarf2read.c doesn't currently use them. */
23069 return GDB_INDEX_SYMBOL_KIND_OTHER;
23070 }
23071 case STRUCT_DOMAIN:
23072 return GDB_INDEX_SYMBOL_KIND_TYPE;
23073 default:
23074 return GDB_INDEX_SYMBOL_KIND_OTHER;
23075 }
23076 }
23077
23078 /* Add a list of partial symbols to SYMTAB. */
23079
23080 static void
23081 write_psymbols (struct mapped_symtab *symtab,
23082 htab_t psyms_seen,
23083 struct partial_symbol **psymp,
23084 int count,
23085 offset_type cu_index,
23086 int is_static)
23087 {
23088 for (; count-- > 0; ++psymp)
23089 {
23090 struct partial_symbol *psym = *psymp;
23091 void **slot;
23092
23093 if (SYMBOL_LANGUAGE (psym) == language_ada)
23094 error (_("Ada is not currently supported by the index"));
23095
23096 /* Only add a given psymbol once. */
23097 slot = htab_find_slot (psyms_seen, psym, INSERT);
23098 if (!*slot)
23099 {
23100 gdb_index_symbol_kind kind = symbol_kind (psym);
23101
23102 *slot = psym;
23103 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23104 is_static, kind, cu_index);
23105 }
23106 }
23107 }
23108
23109 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23110 exception if there is an error. */
23111
23112 static void
23113 write_obstack (FILE *file, struct obstack *obstack)
23114 {
23115 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23116 file)
23117 != obstack_object_size (obstack))
23118 error (_("couldn't data write to file"));
23119 }
23120
23121 /* Unlink a file if the argument is not NULL. */
23122
23123 static void
23124 unlink_if_set (void *p)
23125 {
23126 char **filename = p;
23127 if (*filename)
23128 unlink (*filename);
23129 }
23130
23131 /* A helper struct used when iterating over debug_types. */
23132 struct signatured_type_index_data
23133 {
23134 struct objfile *objfile;
23135 struct mapped_symtab *symtab;
23136 struct obstack *types_list;
23137 htab_t psyms_seen;
23138 int cu_index;
23139 };
23140
23141 /* A helper function that writes a single signatured_type to an
23142 obstack. */
23143
23144 static int
23145 write_one_signatured_type (void **slot, void *d)
23146 {
23147 struct signatured_type_index_data *info = d;
23148 struct signatured_type *entry = (struct signatured_type *) *slot;
23149 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23150 gdb_byte val[8];
23151
23152 write_psymbols (info->symtab,
23153 info->psyms_seen,
23154 info->objfile->global_psymbols.list
23155 + psymtab->globals_offset,
23156 psymtab->n_global_syms, info->cu_index,
23157 0);
23158 write_psymbols (info->symtab,
23159 info->psyms_seen,
23160 info->objfile->static_psymbols.list
23161 + psymtab->statics_offset,
23162 psymtab->n_static_syms, info->cu_index,
23163 1);
23164
23165 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23166 entry->per_cu.offset.sect_off);
23167 obstack_grow (info->types_list, val, 8);
23168 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23169 entry->type_offset_in_tu.cu_off);
23170 obstack_grow (info->types_list, val, 8);
23171 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23172 obstack_grow (info->types_list, val, 8);
23173
23174 ++info->cu_index;
23175
23176 return 1;
23177 }
23178
23179 /* Recurse into all "included" dependencies and write their symbols as
23180 if they appeared in this psymtab. */
23181
23182 static void
23183 recursively_write_psymbols (struct objfile *objfile,
23184 struct partial_symtab *psymtab,
23185 struct mapped_symtab *symtab,
23186 htab_t psyms_seen,
23187 offset_type cu_index)
23188 {
23189 int i;
23190
23191 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23192 if (psymtab->dependencies[i]->user != NULL)
23193 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23194 symtab, psyms_seen, cu_index);
23195
23196 write_psymbols (symtab,
23197 psyms_seen,
23198 objfile->global_psymbols.list + psymtab->globals_offset,
23199 psymtab->n_global_syms, cu_index,
23200 0);
23201 write_psymbols (symtab,
23202 psyms_seen,
23203 objfile->static_psymbols.list + psymtab->statics_offset,
23204 psymtab->n_static_syms, cu_index,
23205 1);
23206 }
23207
23208 /* Create an index file for OBJFILE in the directory DIR. */
23209
23210 static void
23211 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23212 {
23213 struct cleanup *cleanup;
23214 char *filename, *cleanup_filename;
23215 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23216 struct obstack cu_list, types_cu_list;
23217 int i;
23218 FILE *out_file;
23219 struct mapped_symtab *symtab;
23220 offset_type val, size_of_contents, total_len;
23221 struct stat st;
23222 htab_t psyms_seen;
23223 htab_t cu_index_htab;
23224 struct psymtab_cu_index_map *psymtab_cu_index_map;
23225
23226 if (dwarf2_per_objfile->using_index)
23227 error (_("Cannot use an index to create the index"));
23228
23229 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23230 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23231
23232 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23233 return;
23234
23235 if (stat (objfile_name (objfile), &st) < 0)
23236 perror_with_name (objfile_name (objfile));
23237
23238 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23239 INDEX_SUFFIX, (char *) NULL);
23240 cleanup = make_cleanup (xfree, filename);
23241
23242 out_file = gdb_fopen_cloexec (filename, "wb");
23243 if (!out_file)
23244 error (_("Can't open `%s' for writing"), filename);
23245
23246 cleanup_filename = filename;
23247 make_cleanup (unlink_if_set, &cleanup_filename);
23248
23249 symtab = create_mapped_symtab ();
23250 make_cleanup (cleanup_mapped_symtab, symtab);
23251
23252 obstack_init (&addr_obstack);
23253 make_cleanup_obstack_free (&addr_obstack);
23254
23255 obstack_init (&cu_list);
23256 make_cleanup_obstack_free (&cu_list);
23257
23258 obstack_init (&types_cu_list);
23259 make_cleanup_obstack_free (&types_cu_list);
23260
23261 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23262 NULL, xcalloc, xfree);
23263 make_cleanup_htab_delete (psyms_seen);
23264
23265 /* While we're scanning CU's create a table that maps a psymtab pointer
23266 (which is what addrmap records) to its index (which is what is recorded
23267 in the index file). This will later be needed to write the address
23268 table. */
23269 cu_index_htab = htab_create_alloc (100,
23270 hash_psymtab_cu_index,
23271 eq_psymtab_cu_index,
23272 NULL, xcalloc, xfree);
23273 make_cleanup_htab_delete (cu_index_htab);
23274 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23275 dwarf2_per_objfile->n_comp_units);
23276 make_cleanup (xfree, psymtab_cu_index_map);
23277
23278 /* The CU list is already sorted, so we don't need to do additional
23279 work here. Also, the debug_types entries do not appear in
23280 all_comp_units, but only in their own hash table. */
23281 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23282 {
23283 struct dwarf2_per_cu_data *per_cu
23284 = dwarf2_per_objfile->all_comp_units[i];
23285 struct partial_symtab *psymtab = per_cu->v.psymtab;
23286 gdb_byte val[8];
23287 struct psymtab_cu_index_map *map;
23288 void **slot;
23289
23290 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23291 It may be referenced from a local scope but in such case it does not
23292 need to be present in .gdb_index. */
23293 if (psymtab == NULL)
23294 continue;
23295
23296 if (psymtab->user == NULL)
23297 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23298
23299 map = &psymtab_cu_index_map[i];
23300 map->psymtab = psymtab;
23301 map->cu_index = i;
23302 slot = htab_find_slot (cu_index_htab, map, INSERT);
23303 gdb_assert (slot != NULL);
23304 gdb_assert (*slot == NULL);
23305 *slot = map;
23306
23307 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23308 per_cu->offset.sect_off);
23309 obstack_grow (&cu_list, val, 8);
23310 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23311 obstack_grow (&cu_list, val, 8);
23312 }
23313
23314 /* Dump the address map. */
23315 write_address_map (objfile, &addr_obstack, cu_index_htab);
23316
23317 /* Write out the .debug_type entries, if any. */
23318 if (dwarf2_per_objfile->signatured_types)
23319 {
23320 struct signatured_type_index_data sig_data;
23321
23322 sig_data.objfile = objfile;
23323 sig_data.symtab = symtab;
23324 sig_data.types_list = &types_cu_list;
23325 sig_data.psyms_seen = psyms_seen;
23326 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23327 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23328 write_one_signatured_type, &sig_data);
23329 }
23330
23331 /* Now that we've processed all symbols we can shrink their cu_indices
23332 lists. */
23333 uniquify_cu_indices (symtab);
23334
23335 obstack_init (&constant_pool);
23336 make_cleanup_obstack_free (&constant_pool);
23337 obstack_init (&symtab_obstack);
23338 make_cleanup_obstack_free (&symtab_obstack);
23339 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23340
23341 obstack_init (&contents);
23342 make_cleanup_obstack_free (&contents);
23343 size_of_contents = 6 * sizeof (offset_type);
23344 total_len = size_of_contents;
23345
23346 /* The version number. */
23347 val = MAYBE_SWAP (8);
23348 obstack_grow (&contents, &val, sizeof (val));
23349
23350 /* The offset of the CU list from the start of the file. */
23351 val = MAYBE_SWAP (total_len);
23352 obstack_grow (&contents, &val, sizeof (val));
23353 total_len += obstack_object_size (&cu_list);
23354
23355 /* The offset of the types CU list from the start of the file. */
23356 val = MAYBE_SWAP (total_len);
23357 obstack_grow (&contents, &val, sizeof (val));
23358 total_len += obstack_object_size (&types_cu_list);
23359
23360 /* The offset of the address table from the start of the file. */
23361 val = MAYBE_SWAP (total_len);
23362 obstack_grow (&contents, &val, sizeof (val));
23363 total_len += obstack_object_size (&addr_obstack);
23364
23365 /* The offset of the symbol table from the start of the file. */
23366 val = MAYBE_SWAP (total_len);
23367 obstack_grow (&contents, &val, sizeof (val));
23368 total_len += obstack_object_size (&symtab_obstack);
23369
23370 /* The offset of the constant pool from the start of the file. */
23371 val = MAYBE_SWAP (total_len);
23372 obstack_grow (&contents, &val, sizeof (val));
23373 total_len += obstack_object_size (&constant_pool);
23374
23375 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23376
23377 write_obstack (out_file, &contents);
23378 write_obstack (out_file, &cu_list);
23379 write_obstack (out_file, &types_cu_list);
23380 write_obstack (out_file, &addr_obstack);
23381 write_obstack (out_file, &symtab_obstack);
23382 write_obstack (out_file, &constant_pool);
23383
23384 fclose (out_file);
23385
23386 /* We want to keep the file, so we set cleanup_filename to NULL
23387 here. See unlink_if_set. */
23388 cleanup_filename = NULL;
23389
23390 do_cleanups (cleanup);
23391 }
23392
23393 /* Implementation of the `save gdb-index' command.
23394
23395 Note that the file format used by this command is documented in the
23396 GDB manual. Any changes here must be documented there. */
23397
23398 static void
23399 save_gdb_index_command (char *arg, int from_tty)
23400 {
23401 struct objfile *objfile;
23402
23403 if (!arg || !*arg)
23404 error (_("usage: save gdb-index DIRECTORY"));
23405
23406 ALL_OBJFILES (objfile)
23407 {
23408 struct stat st;
23409
23410 /* If the objfile does not correspond to an actual file, skip it. */
23411 if (stat (objfile_name (objfile), &st) < 0)
23412 continue;
23413
23414 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23415 if (dwarf2_per_objfile)
23416 {
23417
23418 TRY
23419 {
23420 write_psymtabs_to_index (objfile, arg);
23421 }
23422 CATCH (except, RETURN_MASK_ERROR)
23423 {
23424 exception_fprintf (gdb_stderr, except,
23425 _("Error while writing index for `%s': "),
23426 objfile_name (objfile));
23427 }
23428 END_CATCH
23429 }
23430 }
23431 }
23432
23433 \f
23434
23435 int dwarf_always_disassemble;
23436
23437 static void
23438 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23439 struct cmd_list_element *c, const char *value)
23440 {
23441 fprintf_filtered (file,
23442 _("Whether to always disassemble "
23443 "DWARF expressions is %s.\n"),
23444 value);
23445 }
23446
23447 static void
23448 show_check_physname (struct ui_file *file, int from_tty,
23449 struct cmd_list_element *c, const char *value)
23450 {
23451 fprintf_filtered (file,
23452 _("Whether to check \"physname\" is %s.\n"),
23453 value);
23454 }
23455
23456 void _initialize_dwarf2_read (void);
23457
23458 void
23459 _initialize_dwarf2_read (void)
23460 {
23461 struct cmd_list_element *c;
23462
23463 dwarf2_objfile_data_key
23464 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23465
23466 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23467 Set DWARF specific variables.\n\
23468 Configure DWARF variables such as the cache size"),
23469 &set_dwarf_cmdlist, "maintenance set dwarf ",
23470 0/*allow-unknown*/, &maintenance_set_cmdlist);
23471
23472 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23473 Show DWARF specific variables\n\
23474 Show DWARF variables such as the cache size"),
23475 &show_dwarf_cmdlist, "maintenance show dwarf ",
23476 0/*allow-unknown*/, &maintenance_show_cmdlist);
23477
23478 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23479 &dwarf_max_cache_age, _("\
23480 Set the upper bound on the age of cached DWARF compilation units."), _("\
23481 Show the upper bound on the age of cached DWARF compilation units."), _("\
23482 A higher limit means that cached compilation units will be stored\n\
23483 in memory longer, and more total memory will be used. Zero disables\n\
23484 caching, which can slow down startup."),
23485 NULL,
23486 show_dwarf_max_cache_age,
23487 &set_dwarf_cmdlist,
23488 &show_dwarf_cmdlist);
23489
23490 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23491 &dwarf_always_disassemble, _("\
23492 Set whether `info address' always disassembles DWARF expressions."), _("\
23493 Show whether `info address' always disassembles DWARF expressions."), _("\
23494 When enabled, DWARF expressions are always printed in an assembly-like\n\
23495 syntax. When disabled, expressions will be printed in a more\n\
23496 conversational style, when possible."),
23497 NULL,
23498 show_dwarf_always_disassemble,
23499 &set_dwarf_cmdlist,
23500 &show_dwarf_cmdlist);
23501
23502 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23503 Set debugging of the DWARF reader."), _("\
23504 Show debugging of the DWARF reader."), _("\
23505 When enabled (non-zero), debugging messages are printed during DWARF\n\
23506 reading and symtab expansion. A value of 1 (one) provides basic\n\
23507 information. A value greater than 1 provides more verbose information."),
23508 NULL,
23509 NULL,
23510 &setdebuglist, &showdebuglist);
23511
23512 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23513 Set debugging of the DWARF DIE reader."), _("\
23514 Show debugging of the DWARF DIE reader."), _("\
23515 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23516 The value is the maximum depth to print."),
23517 NULL,
23518 NULL,
23519 &setdebuglist, &showdebuglist);
23520
23521 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23522 Set debugging of the dwarf line reader."), _("\
23523 Show debugging of the dwarf line reader."), _("\
23524 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23525 A value of 1 (one) provides basic information.\n\
23526 A value greater than 1 provides more verbose information."),
23527 NULL,
23528 NULL,
23529 &setdebuglist, &showdebuglist);
23530
23531 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23532 Set cross-checking of \"physname\" code against demangler."), _("\
23533 Show cross-checking of \"physname\" code against demangler."), _("\
23534 When enabled, GDB's internal \"physname\" code is checked against\n\
23535 the demangler."),
23536 NULL, show_check_physname,
23537 &setdebuglist, &showdebuglist);
23538
23539 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23540 no_class, &use_deprecated_index_sections, _("\
23541 Set whether to use deprecated gdb_index sections."), _("\
23542 Show whether to use deprecated gdb_index sections."), _("\
23543 When enabled, deprecated .gdb_index sections are used anyway.\n\
23544 Normally they are ignored either because of a missing feature or\n\
23545 performance issue.\n\
23546 Warning: This option must be enabled before gdb reads the file."),
23547 NULL,
23548 NULL,
23549 &setlist, &showlist);
23550
23551 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23552 _("\
23553 Save a gdb-index file.\n\
23554 Usage: save gdb-index DIRECTORY"),
23555 &save_cmdlist);
23556 set_cmd_completer (c, filename_completer);
23557
23558 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23559 &dwarf2_locexpr_funcs);
23560 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23561 &dwarf2_loclist_funcs);
23562
23563 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23564 &dwarf2_block_frame_base_locexpr_funcs);
23565 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23566 &dwarf2_block_frame_base_loclist_funcs);
23567 }