[Ada] Add support for subprogram renamings
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *asection;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.asection and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1528 struct dwarf2_cu *cu);
1529
1530 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1531
1532 static struct die_info *die_specification (struct die_info *die,
1533 struct dwarf2_cu **);
1534
1535 static void free_line_header (struct line_header *lh);
1536
1537 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1538 struct dwarf2_cu *cu);
1539
1540 static void dwarf_decode_lines (struct line_header *, const char *,
1541 struct dwarf2_cu *, struct partial_symtab *,
1542 CORE_ADDR, int decode_mapping);
1543
1544 static void dwarf2_start_subfile (const char *, const char *);
1545
1546 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1547 const char *, const char *,
1548 CORE_ADDR);
1549
1550 static struct symbol *new_symbol (struct die_info *, struct type *,
1551 struct dwarf2_cu *);
1552
1553 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1554 struct dwarf2_cu *, struct symbol *);
1555
1556 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1557 struct dwarf2_cu *);
1558
1559 static void dwarf2_const_value_attr (const struct attribute *attr,
1560 struct type *type,
1561 const char *name,
1562 struct obstack *obstack,
1563 struct dwarf2_cu *cu, LONGEST *value,
1564 const gdb_byte **bytes,
1565 struct dwarf2_locexpr_baton **baton);
1566
1567 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1568
1569 static int need_gnat_info (struct dwarf2_cu *);
1570
1571 static struct type *die_descriptive_type (struct die_info *,
1572 struct dwarf2_cu *);
1573
1574 static void set_descriptive_type (struct type *, struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static struct type *die_containing_type (struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1584
1585 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1586
1587 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1588
1589 static char *typename_concat (struct obstack *obs, const char *prefix,
1590 const char *suffix, int physname,
1591 struct dwarf2_cu *cu);
1592
1593 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1594
1595 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1596
1597 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1598
1599 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1600
1601 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1602
1603 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1604 struct dwarf2_cu *, struct partial_symtab *);
1605
1606 static int dwarf2_get_pc_bounds (struct die_info *,
1607 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1608 struct partial_symtab *);
1609
1610 static void get_scope_pc_bounds (struct die_info *,
1611 CORE_ADDR *, CORE_ADDR *,
1612 struct dwarf2_cu *);
1613
1614 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1615 CORE_ADDR, struct dwarf2_cu *);
1616
1617 static void dwarf2_add_field (struct field_info *, struct die_info *,
1618 struct dwarf2_cu *);
1619
1620 static void dwarf2_attach_fields_to_type (struct field_info *,
1621 struct type *, struct dwarf2_cu *);
1622
1623 static void dwarf2_add_member_fn (struct field_info *,
1624 struct die_info *, struct type *,
1625 struct dwarf2_cu *);
1626
1627 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1628 struct type *,
1629 struct dwarf2_cu *);
1630
1631 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1634
1635 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1636
1637 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1638
1639 static struct using_direct **using_directives (enum language);
1640
1641 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1642
1643 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1644
1645 static struct type *read_module_type (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
1648 static const char *namespace_name (struct die_info *die,
1649 int *is_anonymous, struct dwarf2_cu *);
1650
1651 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1652
1653 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1654
1655 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1656 struct dwarf2_cu *);
1657
1658 static struct die_info *read_die_and_siblings_1
1659 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1660 struct die_info *);
1661
1662 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1663 const gdb_byte *info_ptr,
1664 const gdb_byte **new_info_ptr,
1665 struct die_info *parent);
1666
1667 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1668 struct die_info **, const gdb_byte *,
1669 int *, int);
1670
1671 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1672 struct die_info **, const gdb_byte *,
1673 int *);
1674
1675 static void process_die (struct die_info *, struct dwarf2_cu *);
1676
1677 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1678 struct obstack *);
1679
1680 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1681
1682 static const char *dwarf2_full_name (const char *name,
1683 struct die_info *die,
1684 struct dwarf2_cu *cu);
1685
1686 static const char *dwarf2_physname (const char *name, struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static struct die_info *dwarf2_extension (struct die_info *die,
1690 struct dwarf2_cu **);
1691
1692 static const char *dwarf_tag_name (unsigned int);
1693
1694 static const char *dwarf_attr_name (unsigned int);
1695
1696 static const char *dwarf_form_name (unsigned int);
1697
1698 static char *dwarf_bool_name (unsigned int);
1699
1700 static const char *dwarf_type_encoding_name (unsigned int);
1701
1702 static struct die_info *sibling_die (struct die_info *);
1703
1704 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1705
1706 static void dump_die_for_error (struct die_info *);
1707
1708 static void dump_die_1 (struct ui_file *, int level, int max_level,
1709 struct die_info *);
1710
1711 /*static*/ void dump_die (struct die_info *, int max_level);
1712
1713 static void store_in_ref_table (struct die_info *,
1714 struct dwarf2_cu *);
1715
1716 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1717
1718 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1719
1720 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1721 const struct attribute *,
1722 struct dwarf2_cu **);
1723
1724 static struct die_info *follow_die_ref (struct die_info *,
1725 const struct attribute *,
1726 struct dwarf2_cu **);
1727
1728 static struct die_info *follow_die_sig (struct die_info *,
1729 const struct attribute *,
1730 struct dwarf2_cu **);
1731
1732 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1733 struct dwarf2_cu *);
1734
1735 static struct type *get_DW_AT_signature_type (struct die_info *,
1736 const struct attribute *,
1737 struct dwarf2_cu *);
1738
1739 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1740
1741 static void read_signatured_type (struct signatured_type *);
1742
1743 /* memory allocation interface */
1744
1745 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1746
1747 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1748
1749 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1750
1751 static int attr_form_is_block (const struct attribute *);
1752
1753 static int attr_form_is_section_offset (const struct attribute *);
1754
1755 static int attr_form_is_constant (const struct attribute *);
1756
1757 static int attr_form_is_ref (const struct attribute *);
1758
1759 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1760 struct dwarf2_loclist_baton *baton,
1761 const struct attribute *attr);
1762
1763 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1764 struct symbol *sym,
1765 struct dwarf2_cu *cu,
1766 int is_block);
1767
1768 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1769 const gdb_byte *info_ptr,
1770 struct abbrev_info *abbrev);
1771
1772 static void free_stack_comp_unit (void *);
1773
1774 static hashval_t partial_die_hash (const void *item);
1775
1776 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1777
1778 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1779 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1780
1781 static void init_one_comp_unit (struct dwarf2_cu *cu,
1782 struct dwarf2_per_cu_data *per_cu);
1783
1784 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1785 struct die_info *comp_unit_die,
1786 enum language pretend_language);
1787
1788 static void free_heap_comp_unit (void *);
1789
1790 static void free_cached_comp_units (void *);
1791
1792 static void age_cached_comp_units (void);
1793
1794 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1795
1796 static struct type *set_die_type (struct die_info *, struct type *,
1797 struct dwarf2_cu *);
1798
1799 static void create_all_comp_units (struct objfile *);
1800
1801 static int create_all_type_units (struct objfile *);
1802
1803 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1804 enum language);
1805
1806 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1807 enum language);
1808
1809 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1810 enum language);
1811
1812 static void dwarf2_add_dependence (struct dwarf2_cu *,
1813 struct dwarf2_per_cu_data *);
1814
1815 static void dwarf2_mark (struct dwarf2_cu *);
1816
1817 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1818
1819 static struct type *get_die_type_at_offset (sect_offset,
1820 struct dwarf2_per_cu_data *);
1821
1822 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1823
1824 static void dwarf2_release_queue (void *dummy);
1825
1826 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1827 enum language pretend_language);
1828
1829 static void process_queue (void);
1830
1831 static void find_file_and_directory (struct die_info *die,
1832 struct dwarf2_cu *cu,
1833 const char **name, const char **comp_dir);
1834
1835 static char *file_full_name (int file, struct line_header *lh,
1836 const char *comp_dir);
1837
1838 static const gdb_byte *read_and_check_comp_unit_head
1839 (struct comp_unit_head *header,
1840 struct dwarf2_section_info *section,
1841 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1842 int is_debug_types_section);
1843
1844 static void init_cutu_and_read_dies
1845 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1846 int use_existing_cu, int keep,
1847 die_reader_func_ftype *die_reader_func, void *data);
1848
1849 static void init_cutu_and_read_dies_simple
1850 (struct dwarf2_per_cu_data *this_cu,
1851 die_reader_func_ftype *die_reader_func, void *data);
1852
1853 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1854
1855 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1856
1857 static struct dwo_unit *lookup_dwo_unit_in_dwp
1858 (struct dwp_file *dwp_file, const char *comp_dir,
1859 ULONGEST signature, int is_debug_types);
1860
1861 static struct dwp_file *get_dwp_file (void);
1862
1863 static struct dwo_unit *lookup_dwo_comp_unit
1864 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1865
1866 static struct dwo_unit *lookup_dwo_type_unit
1867 (struct signatured_type *, const char *, const char *);
1868
1869 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1870
1871 static void free_dwo_file_cleanup (void *);
1872
1873 static void process_cu_includes (void);
1874
1875 static void check_producer (struct dwarf2_cu *cu);
1876
1877 static void free_line_header_voidp (void *arg);
1878 \f
1879 /* Various complaints about symbol reading that don't abort the process. */
1880
1881 static void
1882 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1883 {
1884 complaint (&symfile_complaints,
1885 _("statement list doesn't fit in .debug_line section"));
1886 }
1887
1888 static void
1889 dwarf2_debug_line_missing_file_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _(".debug_line section has line data without a file"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_end_sequence_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line "
1900 "program sequence without an end"));
1901 }
1902
1903 static void
1904 dwarf2_complex_location_expr_complaint (void)
1905 {
1906 complaint (&symfile_complaints, _("location expression too complex"));
1907 }
1908
1909 static void
1910 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1911 int arg3)
1912 {
1913 complaint (&symfile_complaints,
1914 _("const value length mismatch for '%s', got %d, expected %d"),
1915 arg1, arg2, arg3);
1916 }
1917
1918 static void
1919 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1920 {
1921 complaint (&symfile_complaints,
1922 _("debug info runs off end of %s section"
1923 " [in module %s]"),
1924 get_section_name (section),
1925 get_section_file_name (section));
1926 }
1927
1928 static void
1929 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1930 {
1931 complaint (&symfile_complaints,
1932 _("macro debug info contains a "
1933 "malformed macro definition:\n`%s'"),
1934 arg1);
1935 }
1936
1937 static void
1938 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1939 {
1940 complaint (&symfile_complaints,
1941 _("invalid attribute class or form for '%s' in '%s'"),
1942 arg1, arg2);
1943 }
1944
1945 /* Hash function for line_header_hash. */
1946
1947 static hashval_t
1948 line_header_hash (const struct line_header *ofs)
1949 {
1950 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1951 }
1952
1953 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1954
1955 static hashval_t
1956 line_header_hash_voidp (const void *item)
1957 {
1958 const struct line_header *ofs = item;
1959
1960 return line_header_hash (ofs);
1961 }
1962
1963 /* Equality function for line_header_hash. */
1964
1965 static int
1966 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1967 {
1968 const struct line_header *ofs_lhs = item_lhs;
1969 const struct line_header *ofs_rhs = item_rhs;
1970
1971 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1972 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1973 }
1974
1975 \f
1976 #if WORDS_BIGENDIAN
1977
1978 /* Convert VALUE between big- and little-endian. */
1979 static offset_type
1980 byte_swap (offset_type value)
1981 {
1982 offset_type result;
1983
1984 result = (value & 0xff) << 24;
1985 result |= (value & 0xff00) << 8;
1986 result |= (value & 0xff0000) >> 8;
1987 result |= (value & 0xff000000) >> 24;
1988 return result;
1989 }
1990
1991 #define MAYBE_SWAP(V) byte_swap (V)
1992
1993 #else
1994 #define MAYBE_SWAP(V) (V)
1995 #endif /* WORDS_BIGENDIAN */
1996
1997 /* Read the given attribute value as an address, taking the attribute's
1998 form into account. */
1999
2000 static CORE_ADDR
2001 attr_value_as_address (struct attribute *attr)
2002 {
2003 CORE_ADDR addr;
2004
2005 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2006 {
2007 /* Aside from a few clearly defined exceptions, attributes that
2008 contain an address must always be in DW_FORM_addr form.
2009 Unfortunately, some compilers happen to be violating this
2010 requirement by encoding addresses using other forms, such
2011 as DW_FORM_data4 for example. For those broken compilers,
2012 we try to do our best, without any guarantee of success,
2013 to interpret the address correctly. It would also be nice
2014 to generate a complaint, but that would require us to maintain
2015 a list of legitimate cases where a non-address form is allowed,
2016 as well as update callers to pass in at least the CU's DWARF
2017 version. This is more overhead than what we're willing to
2018 expand for a pretty rare case. */
2019 addr = DW_UNSND (attr);
2020 }
2021 else
2022 addr = DW_ADDR (attr);
2023
2024 return addr;
2025 }
2026
2027 /* The suffix for an index file. */
2028 #define INDEX_SUFFIX ".gdb-index"
2029
2030 /* Try to locate the sections we need for DWARF 2 debugging
2031 information and return true if we have enough to do something.
2032 NAMES points to the dwarf2 section names, or is NULL if the standard
2033 ELF names are used. */
2034
2035 int
2036 dwarf2_has_info (struct objfile *objfile,
2037 const struct dwarf2_debug_sections *names)
2038 {
2039 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2040 if (!dwarf2_per_objfile)
2041 {
2042 /* Initialize per-objfile state. */
2043 struct dwarf2_per_objfile *data
2044 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2045
2046 memset (data, 0, sizeof (*data));
2047 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2048 dwarf2_per_objfile = data;
2049
2050 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2051 (void *) names);
2052 dwarf2_per_objfile->objfile = objfile;
2053 }
2054 return (!dwarf2_per_objfile->info.is_virtual
2055 && dwarf2_per_objfile->info.s.asection != NULL
2056 && !dwarf2_per_objfile->abbrev.is_virtual
2057 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2058 }
2059
2060 /* Return the containing section of virtual section SECTION. */
2061
2062 static struct dwarf2_section_info *
2063 get_containing_section (const struct dwarf2_section_info *section)
2064 {
2065 gdb_assert (section->is_virtual);
2066 return section->s.containing_section;
2067 }
2068
2069 /* Return the bfd owner of SECTION. */
2070
2071 static struct bfd *
2072 get_section_bfd_owner (const struct dwarf2_section_info *section)
2073 {
2074 if (section->is_virtual)
2075 {
2076 section = get_containing_section (section);
2077 gdb_assert (!section->is_virtual);
2078 }
2079 return section->s.asection->owner;
2080 }
2081
2082 /* Return the bfd section of SECTION.
2083 Returns NULL if the section is not present. */
2084
2085 static asection *
2086 get_section_bfd_section (const struct dwarf2_section_info *section)
2087 {
2088 if (section->is_virtual)
2089 {
2090 section = get_containing_section (section);
2091 gdb_assert (!section->is_virtual);
2092 }
2093 return section->s.asection;
2094 }
2095
2096 /* Return the name of SECTION. */
2097
2098 static const char *
2099 get_section_name (const struct dwarf2_section_info *section)
2100 {
2101 asection *sectp = get_section_bfd_section (section);
2102
2103 gdb_assert (sectp != NULL);
2104 return bfd_section_name (get_section_bfd_owner (section), sectp);
2105 }
2106
2107 /* Return the name of the file SECTION is in. */
2108
2109 static const char *
2110 get_section_file_name (const struct dwarf2_section_info *section)
2111 {
2112 bfd *abfd = get_section_bfd_owner (section);
2113
2114 return bfd_get_filename (abfd);
2115 }
2116
2117 /* Return the id of SECTION.
2118 Returns 0 if SECTION doesn't exist. */
2119
2120 static int
2121 get_section_id (const struct dwarf2_section_info *section)
2122 {
2123 asection *sectp = get_section_bfd_section (section);
2124
2125 if (sectp == NULL)
2126 return 0;
2127 return sectp->id;
2128 }
2129
2130 /* Return the flags of SECTION.
2131 SECTION (or containing section if this is a virtual section) must exist. */
2132
2133 static int
2134 get_section_flags (const struct dwarf2_section_info *section)
2135 {
2136 asection *sectp = get_section_bfd_section (section);
2137
2138 gdb_assert (sectp != NULL);
2139 return bfd_get_section_flags (sectp->owner, sectp);
2140 }
2141
2142 /* When loading sections, we look either for uncompressed section or for
2143 compressed section names. */
2144
2145 static int
2146 section_is_p (const char *section_name,
2147 const struct dwarf2_section_names *names)
2148 {
2149 if (names->normal != NULL
2150 && strcmp (section_name, names->normal) == 0)
2151 return 1;
2152 if (names->compressed != NULL
2153 && strcmp (section_name, names->compressed) == 0)
2154 return 1;
2155 return 0;
2156 }
2157
2158 /* This function is mapped across the sections and remembers the
2159 offset and size of each of the debugging sections we are interested
2160 in. */
2161
2162 static void
2163 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2164 {
2165 const struct dwarf2_debug_sections *names;
2166 flagword aflag = bfd_get_section_flags (abfd, sectp);
2167
2168 if (vnames == NULL)
2169 names = &dwarf2_elf_names;
2170 else
2171 names = (const struct dwarf2_debug_sections *) vnames;
2172
2173 if ((aflag & SEC_HAS_CONTENTS) == 0)
2174 {
2175 }
2176 else if (section_is_p (sectp->name, &names->info))
2177 {
2178 dwarf2_per_objfile->info.s.asection = sectp;
2179 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2180 }
2181 else if (section_is_p (sectp->name, &names->abbrev))
2182 {
2183 dwarf2_per_objfile->abbrev.s.asection = sectp;
2184 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2185 }
2186 else if (section_is_p (sectp->name, &names->line))
2187 {
2188 dwarf2_per_objfile->line.s.asection = sectp;
2189 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2190 }
2191 else if (section_is_p (sectp->name, &names->loc))
2192 {
2193 dwarf2_per_objfile->loc.s.asection = sectp;
2194 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2195 }
2196 else if (section_is_p (sectp->name, &names->macinfo))
2197 {
2198 dwarf2_per_objfile->macinfo.s.asection = sectp;
2199 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2200 }
2201 else if (section_is_p (sectp->name, &names->macro))
2202 {
2203 dwarf2_per_objfile->macro.s.asection = sectp;
2204 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2205 }
2206 else if (section_is_p (sectp->name, &names->str))
2207 {
2208 dwarf2_per_objfile->str.s.asection = sectp;
2209 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2210 }
2211 else if (section_is_p (sectp->name, &names->addr))
2212 {
2213 dwarf2_per_objfile->addr.s.asection = sectp;
2214 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2215 }
2216 else if (section_is_p (sectp->name, &names->frame))
2217 {
2218 dwarf2_per_objfile->frame.s.asection = sectp;
2219 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2220 }
2221 else if (section_is_p (sectp->name, &names->eh_frame))
2222 {
2223 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2224 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2225 }
2226 else if (section_is_p (sectp->name, &names->ranges))
2227 {
2228 dwarf2_per_objfile->ranges.s.asection = sectp;
2229 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2230 }
2231 else if (section_is_p (sectp->name, &names->types))
2232 {
2233 struct dwarf2_section_info type_section;
2234
2235 memset (&type_section, 0, sizeof (type_section));
2236 type_section.s.asection = sectp;
2237 type_section.size = bfd_get_section_size (sectp);
2238
2239 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2240 &type_section);
2241 }
2242 else if (section_is_p (sectp->name, &names->gdb_index))
2243 {
2244 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2245 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2246 }
2247
2248 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2249 && bfd_section_vma (abfd, sectp) == 0)
2250 dwarf2_per_objfile->has_section_at_zero = 1;
2251 }
2252
2253 /* A helper function that decides whether a section is empty,
2254 or not present. */
2255
2256 static int
2257 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2258 {
2259 if (section->is_virtual)
2260 return section->size == 0;
2261 return section->s.asection == NULL || section->size == 0;
2262 }
2263
2264 /* Read the contents of the section INFO.
2265 OBJFILE is the main object file, but not necessarily the file where
2266 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2267 of the DWO file.
2268 If the section is compressed, uncompress it before returning. */
2269
2270 static void
2271 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2272 {
2273 asection *sectp;
2274 bfd *abfd;
2275 gdb_byte *buf, *retbuf;
2276
2277 if (info->readin)
2278 return;
2279 info->buffer = NULL;
2280 info->readin = 1;
2281
2282 if (dwarf2_section_empty_p (info))
2283 return;
2284
2285 sectp = get_section_bfd_section (info);
2286
2287 /* If this is a virtual section we need to read in the real one first. */
2288 if (info->is_virtual)
2289 {
2290 struct dwarf2_section_info *containing_section =
2291 get_containing_section (info);
2292
2293 gdb_assert (sectp != NULL);
2294 if ((sectp->flags & SEC_RELOC) != 0)
2295 {
2296 error (_("Dwarf Error: DWP format V2 with relocations is not"
2297 " supported in section %s [in module %s]"),
2298 get_section_name (info), get_section_file_name (info));
2299 }
2300 dwarf2_read_section (objfile, containing_section);
2301 /* Other code should have already caught virtual sections that don't
2302 fit. */
2303 gdb_assert (info->virtual_offset + info->size
2304 <= containing_section->size);
2305 /* If the real section is empty or there was a problem reading the
2306 section we shouldn't get here. */
2307 gdb_assert (containing_section->buffer != NULL);
2308 info->buffer = containing_section->buffer + info->virtual_offset;
2309 return;
2310 }
2311
2312 /* If the section has relocations, we must read it ourselves.
2313 Otherwise we attach it to the BFD. */
2314 if ((sectp->flags & SEC_RELOC) == 0)
2315 {
2316 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2317 return;
2318 }
2319
2320 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2321 info->buffer = buf;
2322
2323 /* When debugging .o files, we may need to apply relocations; see
2324 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2325 We never compress sections in .o files, so we only need to
2326 try this when the section is not compressed. */
2327 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2328 if (retbuf != NULL)
2329 {
2330 info->buffer = retbuf;
2331 return;
2332 }
2333
2334 abfd = get_section_bfd_owner (info);
2335 gdb_assert (abfd != NULL);
2336
2337 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2338 || bfd_bread (buf, info->size, abfd) != info->size)
2339 {
2340 error (_("Dwarf Error: Can't read DWARF data"
2341 " in section %s [in module %s]"),
2342 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2343 }
2344 }
2345
2346 /* A helper function that returns the size of a section in a safe way.
2347 If you are positive that the section has been read before using the
2348 size, then it is safe to refer to the dwarf2_section_info object's
2349 "size" field directly. In other cases, you must call this
2350 function, because for compressed sections the size field is not set
2351 correctly until the section has been read. */
2352
2353 static bfd_size_type
2354 dwarf2_section_size (struct objfile *objfile,
2355 struct dwarf2_section_info *info)
2356 {
2357 if (!info->readin)
2358 dwarf2_read_section (objfile, info);
2359 return info->size;
2360 }
2361
2362 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2363 SECTION_NAME. */
2364
2365 void
2366 dwarf2_get_section_info (struct objfile *objfile,
2367 enum dwarf2_section_enum sect,
2368 asection **sectp, const gdb_byte **bufp,
2369 bfd_size_type *sizep)
2370 {
2371 struct dwarf2_per_objfile *data
2372 = objfile_data (objfile, dwarf2_objfile_data_key);
2373 struct dwarf2_section_info *info;
2374
2375 /* We may see an objfile without any DWARF, in which case we just
2376 return nothing. */
2377 if (data == NULL)
2378 {
2379 *sectp = NULL;
2380 *bufp = NULL;
2381 *sizep = 0;
2382 return;
2383 }
2384 switch (sect)
2385 {
2386 case DWARF2_DEBUG_FRAME:
2387 info = &data->frame;
2388 break;
2389 case DWARF2_EH_FRAME:
2390 info = &data->eh_frame;
2391 break;
2392 default:
2393 gdb_assert_not_reached ("unexpected section");
2394 }
2395
2396 dwarf2_read_section (objfile, info);
2397
2398 *sectp = get_section_bfd_section (info);
2399 *bufp = info->buffer;
2400 *sizep = info->size;
2401 }
2402
2403 /* A helper function to find the sections for a .dwz file. */
2404
2405 static void
2406 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2407 {
2408 struct dwz_file *dwz_file = arg;
2409
2410 /* Note that we only support the standard ELF names, because .dwz
2411 is ELF-only (at the time of writing). */
2412 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2413 {
2414 dwz_file->abbrev.s.asection = sectp;
2415 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2418 {
2419 dwz_file->info.s.asection = sectp;
2420 dwz_file->info.size = bfd_get_section_size (sectp);
2421 }
2422 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2423 {
2424 dwz_file->str.s.asection = sectp;
2425 dwz_file->str.size = bfd_get_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2428 {
2429 dwz_file->line.s.asection = sectp;
2430 dwz_file->line.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2433 {
2434 dwz_file->macro.s.asection = sectp;
2435 dwz_file->macro.size = bfd_get_section_size (sectp);
2436 }
2437 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2438 {
2439 dwz_file->gdb_index.s.asection = sectp;
2440 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2441 }
2442 }
2443
2444 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2445 there is no .gnu_debugaltlink section in the file. Error if there
2446 is such a section but the file cannot be found. */
2447
2448 static struct dwz_file *
2449 dwarf2_get_dwz_file (void)
2450 {
2451 bfd *dwz_bfd;
2452 char *data;
2453 struct cleanup *cleanup;
2454 const char *filename;
2455 struct dwz_file *result;
2456 bfd_size_type buildid_len_arg;
2457 size_t buildid_len;
2458 bfd_byte *buildid;
2459
2460 if (dwarf2_per_objfile->dwz_file != NULL)
2461 return dwarf2_per_objfile->dwz_file;
2462
2463 bfd_set_error (bfd_error_no_error);
2464 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2465 &buildid_len_arg, &buildid);
2466 if (data == NULL)
2467 {
2468 if (bfd_get_error () == bfd_error_no_error)
2469 return NULL;
2470 error (_("could not read '.gnu_debugaltlink' section: %s"),
2471 bfd_errmsg (bfd_get_error ()));
2472 }
2473 cleanup = make_cleanup (xfree, data);
2474 make_cleanup (xfree, buildid);
2475
2476 buildid_len = (size_t) buildid_len_arg;
2477
2478 filename = (const char *) data;
2479 if (!IS_ABSOLUTE_PATH (filename))
2480 {
2481 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2482 char *rel;
2483
2484 make_cleanup (xfree, abs);
2485 abs = ldirname (abs);
2486 make_cleanup (xfree, abs);
2487
2488 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2489 make_cleanup (xfree, rel);
2490 filename = rel;
2491 }
2492
2493 /* First try the file name given in the section. If that doesn't
2494 work, try to use the build-id instead. */
2495 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2496 if (dwz_bfd != NULL)
2497 {
2498 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2499 {
2500 gdb_bfd_unref (dwz_bfd);
2501 dwz_bfd = NULL;
2502 }
2503 }
2504
2505 if (dwz_bfd == NULL)
2506 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2507
2508 if (dwz_bfd == NULL)
2509 error (_("could not find '.gnu_debugaltlink' file for %s"),
2510 objfile_name (dwarf2_per_objfile->objfile));
2511
2512 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2513 struct dwz_file);
2514 result->dwz_bfd = dwz_bfd;
2515
2516 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2517
2518 do_cleanups (cleanup);
2519
2520 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2521 dwarf2_per_objfile->dwz_file = result;
2522 return result;
2523 }
2524 \f
2525 /* DWARF quick_symbols_functions support. */
2526
2527 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2528 unique line tables, so we maintain a separate table of all .debug_line
2529 derived entries to support the sharing.
2530 All the quick functions need is the list of file names. We discard the
2531 line_header when we're done and don't need to record it here. */
2532 struct quick_file_names
2533 {
2534 /* The data used to construct the hash key. */
2535 struct stmt_list_hash hash;
2536
2537 /* The number of entries in file_names, real_names. */
2538 unsigned int num_file_names;
2539
2540 /* The file names from the line table, after being run through
2541 file_full_name. */
2542 const char **file_names;
2543
2544 /* The file names from the line table after being run through
2545 gdb_realpath. These are computed lazily. */
2546 const char **real_names;
2547 };
2548
2549 /* When using the index (and thus not using psymtabs), each CU has an
2550 object of this type. This is used to hold information needed by
2551 the various "quick" methods. */
2552 struct dwarf2_per_cu_quick_data
2553 {
2554 /* The file table. This can be NULL if there was no file table
2555 or it's currently not read in.
2556 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2557 struct quick_file_names *file_names;
2558
2559 /* The corresponding symbol table. This is NULL if symbols for this
2560 CU have not yet been read. */
2561 struct compunit_symtab *compunit_symtab;
2562
2563 /* A temporary mark bit used when iterating over all CUs in
2564 expand_symtabs_matching. */
2565 unsigned int mark : 1;
2566
2567 /* True if we've tried to read the file table and found there isn't one.
2568 There will be no point in trying to read it again next time. */
2569 unsigned int no_file_data : 1;
2570 };
2571
2572 /* Utility hash function for a stmt_list_hash. */
2573
2574 static hashval_t
2575 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2576 {
2577 hashval_t v = 0;
2578
2579 if (stmt_list_hash->dwo_unit != NULL)
2580 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2581 v += stmt_list_hash->line_offset.sect_off;
2582 return v;
2583 }
2584
2585 /* Utility equality function for a stmt_list_hash. */
2586
2587 static int
2588 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2589 const struct stmt_list_hash *rhs)
2590 {
2591 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2592 return 0;
2593 if (lhs->dwo_unit != NULL
2594 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2595 return 0;
2596
2597 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2598 }
2599
2600 /* Hash function for a quick_file_names. */
2601
2602 static hashval_t
2603 hash_file_name_entry (const void *e)
2604 {
2605 const struct quick_file_names *file_data = e;
2606
2607 return hash_stmt_list_entry (&file_data->hash);
2608 }
2609
2610 /* Equality function for a quick_file_names. */
2611
2612 static int
2613 eq_file_name_entry (const void *a, const void *b)
2614 {
2615 const struct quick_file_names *ea = a;
2616 const struct quick_file_names *eb = b;
2617
2618 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2619 }
2620
2621 /* Delete function for a quick_file_names. */
2622
2623 static void
2624 delete_file_name_entry (void *e)
2625 {
2626 struct quick_file_names *file_data = e;
2627 int i;
2628
2629 for (i = 0; i < file_data->num_file_names; ++i)
2630 {
2631 xfree ((void*) file_data->file_names[i]);
2632 if (file_data->real_names)
2633 xfree ((void*) file_data->real_names[i]);
2634 }
2635
2636 /* The space for the struct itself lives on objfile_obstack,
2637 so we don't free it here. */
2638 }
2639
2640 /* Create a quick_file_names hash table. */
2641
2642 static htab_t
2643 create_quick_file_names_table (unsigned int nr_initial_entries)
2644 {
2645 return htab_create_alloc (nr_initial_entries,
2646 hash_file_name_entry, eq_file_name_entry,
2647 delete_file_name_entry, xcalloc, xfree);
2648 }
2649
2650 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2651 have to be created afterwards. You should call age_cached_comp_units after
2652 processing PER_CU->CU. dw2_setup must have been already called. */
2653
2654 static void
2655 load_cu (struct dwarf2_per_cu_data *per_cu)
2656 {
2657 if (per_cu->is_debug_types)
2658 load_full_type_unit (per_cu);
2659 else
2660 load_full_comp_unit (per_cu, language_minimal);
2661
2662 if (per_cu->cu == NULL)
2663 return; /* Dummy CU. */
2664
2665 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2666 }
2667
2668 /* Read in the symbols for PER_CU. */
2669
2670 static void
2671 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2672 {
2673 struct cleanup *back_to;
2674
2675 /* Skip type_unit_groups, reading the type units they contain
2676 is handled elsewhere. */
2677 if (IS_TYPE_UNIT_GROUP (per_cu))
2678 return;
2679
2680 back_to = make_cleanup (dwarf2_release_queue, NULL);
2681
2682 if (dwarf2_per_objfile->using_index
2683 ? per_cu->v.quick->compunit_symtab == NULL
2684 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2685 {
2686 queue_comp_unit (per_cu, language_minimal);
2687 load_cu (per_cu);
2688
2689 /* If we just loaded a CU from a DWO, and we're working with an index
2690 that may badly handle TUs, load all the TUs in that DWO as well.
2691 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2692 if (!per_cu->is_debug_types
2693 && per_cu->cu != NULL
2694 && per_cu->cu->dwo_unit != NULL
2695 && dwarf2_per_objfile->index_table != NULL
2696 && dwarf2_per_objfile->index_table->version <= 7
2697 /* DWP files aren't supported yet. */
2698 && get_dwp_file () == NULL)
2699 queue_and_load_all_dwo_tus (per_cu);
2700 }
2701
2702 process_queue ();
2703
2704 /* Age the cache, releasing compilation units that have not
2705 been used recently. */
2706 age_cached_comp_units ();
2707
2708 do_cleanups (back_to);
2709 }
2710
2711 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2712 the objfile from which this CU came. Returns the resulting symbol
2713 table. */
2714
2715 static struct compunit_symtab *
2716 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2717 {
2718 gdb_assert (dwarf2_per_objfile->using_index);
2719 if (!per_cu->v.quick->compunit_symtab)
2720 {
2721 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2722 increment_reading_symtab ();
2723 dw2_do_instantiate_symtab (per_cu);
2724 process_cu_includes ();
2725 do_cleanups (back_to);
2726 }
2727
2728 return per_cu->v.quick->compunit_symtab;
2729 }
2730
2731 /* Return the CU/TU given its index.
2732
2733 This is intended for loops like:
2734
2735 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2736 + dwarf2_per_objfile->n_type_units); ++i)
2737 {
2738 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2739
2740 ...;
2741 }
2742 */
2743
2744 static struct dwarf2_per_cu_data *
2745 dw2_get_cutu (int index)
2746 {
2747 if (index >= dwarf2_per_objfile->n_comp_units)
2748 {
2749 index -= dwarf2_per_objfile->n_comp_units;
2750 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2751 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2752 }
2753
2754 return dwarf2_per_objfile->all_comp_units[index];
2755 }
2756
2757 /* Return the CU given its index.
2758 This differs from dw2_get_cutu in that it's for when you know INDEX
2759 refers to a CU. */
2760
2761 static struct dwarf2_per_cu_data *
2762 dw2_get_cu (int index)
2763 {
2764 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2765
2766 return dwarf2_per_objfile->all_comp_units[index];
2767 }
2768
2769 /* A helper for create_cus_from_index that handles a given list of
2770 CUs. */
2771
2772 static void
2773 create_cus_from_index_list (struct objfile *objfile,
2774 const gdb_byte *cu_list, offset_type n_elements,
2775 struct dwarf2_section_info *section,
2776 int is_dwz,
2777 int base_offset)
2778 {
2779 offset_type i;
2780
2781 for (i = 0; i < n_elements; i += 2)
2782 {
2783 struct dwarf2_per_cu_data *the_cu;
2784 ULONGEST offset, length;
2785
2786 gdb_static_assert (sizeof (ULONGEST) >= 8);
2787 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2788 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2789 cu_list += 2 * 8;
2790
2791 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2792 struct dwarf2_per_cu_data);
2793 the_cu->offset.sect_off = offset;
2794 the_cu->length = length;
2795 the_cu->objfile = objfile;
2796 the_cu->section = section;
2797 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2798 struct dwarf2_per_cu_quick_data);
2799 the_cu->is_dwz = is_dwz;
2800 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2801 }
2802 }
2803
2804 /* Read the CU list from the mapped index, and use it to create all
2805 the CU objects for this objfile. */
2806
2807 static void
2808 create_cus_from_index (struct objfile *objfile,
2809 const gdb_byte *cu_list, offset_type cu_list_elements,
2810 const gdb_byte *dwz_list, offset_type dwz_elements)
2811 {
2812 struct dwz_file *dwz;
2813
2814 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2815 dwarf2_per_objfile->all_comp_units
2816 = obstack_alloc (&objfile->objfile_obstack,
2817 dwarf2_per_objfile->n_comp_units
2818 * sizeof (struct dwarf2_per_cu_data *));
2819
2820 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2821 &dwarf2_per_objfile->info, 0, 0);
2822
2823 if (dwz_elements == 0)
2824 return;
2825
2826 dwz = dwarf2_get_dwz_file ();
2827 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2828 cu_list_elements / 2);
2829 }
2830
2831 /* Create the signatured type hash table from the index. */
2832
2833 static void
2834 create_signatured_type_table_from_index (struct objfile *objfile,
2835 struct dwarf2_section_info *section,
2836 const gdb_byte *bytes,
2837 offset_type elements)
2838 {
2839 offset_type i;
2840 htab_t sig_types_hash;
2841
2842 dwarf2_per_objfile->n_type_units
2843 = dwarf2_per_objfile->n_allocated_type_units
2844 = elements / 3;
2845 dwarf2_per_objfile->all_type_units
2846 = xmalloc (dwarf2_per_objfile->n_type_units
2847 * sizeof (struct signatured_type *));
2848
2849 sig_types_hash = allocate_signatured_type_table (objfile);
2850
2851 for (i = 0; i < elements; i += 3)
2852 {
2853 struct signatured_type *sig_type;
2854 ULONGEST offset, type_offset_in_tu, signature;
2855 void **slot;
2856
2857 gdb_static_assert (sizeof (ULONGEST) >= 8);
2858 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2859 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2860 BFD_ENDIAN_LITTLE);
2861 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2862 bytes += 3 * 8;
2863
2864 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct signatured_type);
2866 sig_type->signature = signature;
2867 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2868 sig_type->per_cu.is_debug_types = 1;
2869 sig_type->per_cu.section = section;
2870 sig_type->per_cu.offset.sect_off = offset;
2871 sig_type->per_cu.objfile = objfile;
2872 sig_type->per_cu.v.quick
2873 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2874 struct dwarf2_per_cu_quick_data);
2875
2876 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2877 *slot = sig_type;
2878
2879 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2880 }
2881
2882 dwarf2_per_objfile->signatured_types = sig_types_hash;
2883 }
2884
2885 /* Read the address map data from the mapped index, and use it to
2886 populate the objfile's psymtabs_addrmap. */
2887
2888 static void
2889 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2890 {
2891 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2892 const gdb_byte *iter, *end;
2893 struct obstack temp_obstack;
2894 struct addrmap *mutable_map;
2895 struct cleanup *cleanup;
2896 CORE_ADDR baseaddr;
2897
2898 obstack_init (&temp_obstack);
2899 cleanup = make_cleanup_obstack_free (&temp_obstack);
2900 mutable_map = addrmap_create_mutable (&temp_obstack);
2901
2902 iter = index->address_table;
2903 end = iter + index->address_table_size;
2904
2905 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2906
2907 while (iter < end)
2908 {
2909 ULONGEST hi, lo, cu_index;
2910 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2911 iter += 8;
2912 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2913 iter += 8;
2914 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2915 iter += 4;
2916
2917 if (lo > hi)
2918 {
2919 complaint (&symfile_complaints,
2920 _(".gdb_index address table has invalid range (%s - %s)"),
2921 hex_string (lo), hex_string (hi));
2922 continue;
2923 }
2924
2925 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2926 {
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid CU number %u"),
2929 (unsigned) cu_index);
2930 continue;
2931 }
2932
2933 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2934 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2935 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2936 }
2937
2938 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2939 &objfile->objfile_obstack);
2940 do_cleanups (cleanup);
2941 }
2942
2943 /* The hash function for strings in the mapped index. This is the same as
2944 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2945 implementation. This is necessary because the hash function is tied to the
2946 format of the mapped index file. The hash values do not have to match with
2947 SYMBOL_HASH_NEXT.
2948
2949 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2950
2951 static hashval_t
2952 mapped_index_string_hash (int index_version, const void *p)
2953 {
2954 const unsigned char *str = (const unsigned char *) p;
2955 hashval_t r = 0;
2956 unsigned char c;
2957
2958 while ((c = *str++) != 0)
2959 {
2960 if (index_version >= 5)
2961 c = tolower (c);
2962 r = r * 67 + c - 113;
2963 }
2964
2965 return r;
2966 }
2967
2968 /* Find a slot in the mapped index INDEX for the object named NAME.
2969 If NAME is found, set *VEC_OUT to point to the CU vector in the
2970 constant pool and return 1. If NAME cannot be found, return 0. */
2971
2972 static int
2973 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2974 offset_type **vec_out)
2975 {
2976 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2977 offset_type hash;
2978 offset_type slot, step;
2979 int (*cmp) (const char *, const char *);
2980
2981 if (current_language->la_language == language_cplus
2982 || current_language->la_language == language_java
2983 || current_language->la_language == language_fortran
2984 || current_language->la_language == language_d)
2985 {
2986 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2987 not contain any. */
2988
2989 if (strchr (name, '(') != NULL)
2990 {
2991 char *without_params = cp_remove_params (name);
2992
2993 if (without_params != NULL)
2994 {
2995 make_cleanup (xfree, without_params);
2996 name = without_params;
2997 }
2998 }
2999 }
3000
3001 /* Index version 4 did not support case insensitive searches. But the
3002 indices for case insensitive languages are built in lowercase, therefore
3003 simulate our NAME being searched is also lowercased. */
3004 hash = mapped_index_string_hash ((index->version == 4
3005 && case_sensitivity == case_sensitive_off
3006 ? 5 : index->version),
3007 name);
3008
3009 slot = hash & (index->symbol_table_slots - 1);
3010 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3011 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3012
3013 for (;;)
3014 {
3015 /* Convert a slot number to an offset into the table. */
3016 offset_type i = 2 * slot;
3017 const char *str;
3018 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3019 {
3020 do_cleanups (back_to);
3021 return 0;
3022 }
3023
3024 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3025 if (!cmp (name, str))
3026 {
3027 *vec_out = (offset_type *) (index->constant_pool
3028 + MAYBE_SWAP (index->symbol_table[i + 1]));
3029 do_cleanups (back_to);
3030 return 1;
3031 }
3032
3033 slot = (slot + step) & (index->symbol_table_slots - 1);
3034 }
3035 }
3036
3037 /* A helper function that reads the .gdb_index from SECTION and fills
3038 in MAP. FILENAME is the name of the file containing the section;
3039 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3040 ok to use deprecated sections.
3041
3042 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3043 out parameters that are filled in with information about the CU and
3044 TU lists in the section.
3045
3046 Returns 1 if all went well, 0 otherwise. */
3047
3048 static int
3049 read_index_from_section (struct objfile *objfile,
3050 const char *filename,
3051 int deprecated_ok,
3052 struct dwarf2_section_info *section,
3053 struct mapped_index *map,
3054 const gdb_byte **cu_list,
3055 offset_type *cu_list_elements,
3056 const gdb_byte **types_list,
3057 offset_type *types_list_elements)
3058 {
3059 const gdb_byte *addr;
3060 offset_type version;
3061 offset_type *metadata;
3062 int i;
3063
3064 if (dwarf2_section_empty_p (section))
3065 return 0;
3066
3067 /* Older elfutils strip versions could keep the section in the main
3068 executable while splitting it for the separate debug info file. */
3069 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3070 return 0;
3071
3072 dwarf2_read_section (objfile, section);
3073
3074 addr = section->buffer;
3075 /* Version check. */
3076 version = MAYBE_SWAP (*(offset_type *) addr);
3077 /* Versions earlier than 3 emitted every copy of a psymbol. This
3078 causes the index to behave very poorly for certain requests. Version 3
3079 contained incomplete addrmap. So, it seems better to just ignore such
3080 indices. */
3081 if (version < 4)
3082 {
3083 static int warning_printed = 0;
3084 if (!warning_printed)
3085 {
3086 warning (_("Skipping obsolete .gdb_index section in %s."),
3087 filename);
3088 warning_printed = 1;
3089 }
3090 return 0;
3091 }
3092 /* Index version 4 uses a different hash function than index version
3093 5 and later.
3094
3095 Versions earlier than 6 did not emit psymbols for inlined
3096 functions. Using these files will cause GDB not to be able to
3097 set breakpoints on inlined functions by name, so we ignore these
3098 indices unless the user has done
3099 "set use-deprecated-index-sections on". */
3100 if (version < 6 && !deprecated_ok)
3101 {
3102 static int warning_printed = 0;
3103 if (!warning_printed)
3104 {
3105 warning (_("\
3106 Skipping deprecated .gdb_index section in %s.\n\
3107 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3108 to use the section anyway."),
3109 filename);
3110 warning_printed = 1;
3111 }
3112 return 0;
3113 }
3114 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3115 of the TU (for symbols coming from TUs),
3116 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3117 Plus gold-generated indices can have duplicate entries for global symbols,
3118 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3119 These are just performance bugs, and we can't distinguish gdb-generated
3120 indices from gold-generated ones, so issue no warning here. */
3121
3122 /* Indexes with higher version than the one supported by GDB may be no
3123 longer backward compatible. */
3124 if (version > 8)
3125 return 0;
3126
3127 map->version = version;
3128 map->total_size = section->size;
3129
3130 metadata = (offset_type *) (addr + sizeof (offset_type));
3131
3132 i = 0;
3133 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3134 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3135 / 8);
3136 ++i;
3137
3138 *types_list = addr + MAYBE_SWAP (metadata[i]);
3139 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3140 - MAYBE_SWAP (metadata[i]))
3141 / 8);
3142 ++i;
3143
3144 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3145 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3146 - MAYBE_SWAP (metadata[i]));
3147 ++i;
3148
3149 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3150 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3151 - MAYBE_SWAP (metadata[i]))
3152 / (2 * sizeof (offset_type)));
3153 ++i;
3154
3155 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3156
3157 return 1;
3158 }
3159
3160
3161 /* Read the index file. If everything went ok, initialize the "quick"
3162 elements of all the CUs and return 1. Otherwise, return 0. */
3163
3164 static int
3165 dwarf2_read_index (struct objfile *objfile)
3166 {
3167 struct mapped_index local_map, *map;
3168 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3169 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3170 struct dwz_file *dwz;
3171
3172 if (!read_index_from_section (objfile, objfile_name (objfile),
3173 use_deprecated_index_sections,
3174 &dwarf2_per_objfile->gdb_index, &local_map,
3175 &cu_list, &cu_list_elements,
3176 &types_list, &types_list_elements))
3177 return 0;
3178
3179 /* Don't use the index if it's empty. */
3180 if (local_map.symbol_table_slots == 0)
3181 return 0;
3182
3183 /* If there is a .dwz file, read it so we can get its CU list as
3184 well. */
3185 dwz = dwarf2_get_dwz_file ();
3186 if (dwz != NULL)
3187 {
3188 struct mapped_index dwz_map;
3189 const gdb_byte *dwz_types_ignore;
3190 offset_type dwz_types_elements_ignore;
3191
3192 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3193 1,
3194 &dwz->gdb_index, &dwz_map,
3195 &dwz_list, &dwz_list_elements,
3196 &dwz_types_ignore,
3197 &dwz_types_elements_ignore))
3198 {
3199 warning (_("could not read '.gdb_index' section from %s; skipping"),
3200 bfd_get_filename (dwz->dwz_bfd));
3201 return 0;
3202 }
3203 }
3204
3205 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3206 dwz_list_elements);
3207
3208 if (types_list_elements)
3209 {
3210 struct dwarf2_section_info *section;
3211
3212 /* We can only handle a single .debug_types when we have an
3213 index. */
3214 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3215 return 0;
3216
3217 section = VEC_index (dwarf2_section_info_def,
3218 dwarf2_per_objfile->types, 0);
3219
3220 create_signatured_type_table_from_index (objfile, section, types_list,
3221 types_list_elements);
3222 }
3223
3224 create_addrmap_from_index (objfile, &local_map);
3225
3226 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3227 *map = local_map;
3228
3229 dwarf2_per_objfile->index_table = map;
3230 dwarf2_per_objfile->using_index = 1;
3231 dwarf2_per_objfile->quick_file_names_table =
3232 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3233
3234 return 1;
3235 }
3236
3237 /* A helper for the "quick" functions which sets the global
3238 dwarf2_per_objfile according to OBJFILE. */
3239
3240 static void
3241 dw2_setup (struct objfile *objfile)
3242 {
3243 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3244 gdb_assert (dwarf2_per_objfile);
3245 }
3246
3247 /* die_reader_func for dw2_get_file_names. */
3248
3249 static void
3250 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3251 const gdb_byte *info_ptr,
3252 struct die_info *comp_unit_die,
3253 int has_children,
3254 void *data)
3255 {
3256 struct dwarf2_cu *cu = reader->cu;
3257 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3258 struct objfile *objfile = dwarf2_per_objfile->objfile;
3259 struct dwarf2_per_cu_data *lh_cu;
3260 struct line_header *lh;
3261 struct attribute *attr;
3262 int i;
3263 const char *name, *comp_dir;
3264 void **slot;
3265 struct quick_file_names *qfn;
3266 unsigned int line_offset;
3267
3268 gdb_assert (! this_cu->is_debug_types);
3269
3270 /* Our callers never want to match partial units -- instead they
3271 will match the enclosing full CU. */
3272 if (comp_unit_die->tag == DW_TAG_partial_unit)
3273 {
3274 this_cu->v.quick->no_file_data = 1;
3275 return;
3276 }
3277
3278 lh_cu = this_cu;
3279 lh = NULL;
3280 slot = NULL;
3281 line_offset = 0;
3282
3283 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3284 if (attr)
3285 {
3286 struct quick_file_names find_entry;
3287
3288 line_offset = DW_UNSND (attr);
3289
3290 /* We may have already read in this line header (TU line header sharing).
3291 If we have we're done. */
3292 find_entry.hash.dwo_unit = cu->dwo_unit;
3293 find_entry.hash.line_offset.sect_off = line_offset;
3294 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3295 &find_entry, INSERT);
3296 if (*slot != NULL)
3297 {
3298 lh_cu->v.quick->file_names = *slot;
3299 return;
3300 }
3301
3302 lh = dwarf_decode_line_header (line_offset, cu);
3303 }
3304 if (lh == NULL)
3305 {
3306 lh_cu->v.quick->no_file_data = 1;
3307 return;
3308 }
3309
3310 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3311 qfn->hash.dwo_unit = cu->dwo_unit;
3312 qfn->hash.line_offset.sect_off = line_offset;
3313 gdb_assert (slot != NULL);
3314 *slot = qfn;
3315
3316 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3317
3318 qfn->num_file_names = lh->num_file_names;
3319 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3320 lh->num_file_names * sizeof (char *));
3321 for (i = 0; i < lh->num_file_names; ++i)
3322 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3323 qfn->real_names = NULL;
3324
3325 free_line_header (lh);
3326
3327 lh_cu->v.quick->file_names = qfn;
3328 }
3329
3330 /* A helper for the "quick" functions which attempts to read the line
3331 table for THIS_CU. */
3332
3333 static struct quick_file_names *
3334 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3335 {
3336 /* This should never be called for TUs. */
3337 gdb_assert (! this_cu->is_debug_types);
3338 /* Nor type unit groups. */
3339 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3340
3341 if (this_cu->v.quick->file_names != NULL)
3342 return this_cu->v.quick->file_names;
3343 /* If we know there is no line data, no point in looking again. */
3344 if (this_cu->v.quick->no_file_data)
3345 return NULL;
3346
3347 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3348
3349 if (this_cu->v.quick->no_file_data)
3350 return NULL;
3351 return this_cu->v.quick->file_names;
3352 }
3353
3354 /* A helper for the "quick" functions which computes and caches the
3355 real path for a given file name from the line table. */
3356
3357 static const char *
3358 dw2_get_real_path (struct objfile *objfile,
3359 struct quick_file_names *qfn, int index)
3360 {
3361 if (qfn->real_names == NULL)
3362 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3363 qfn->num_file_names, const char *);
3364
3365 if (qfn->real_names[index] == NULL)
3366 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3367
3368 return qfn->real_names[index];
3369 }
3370
3371 static struct symtab *
3372 dw2_find_last_source_symtab (struct objfile *objfile)
3373 {
3374 struct compunit_symtab *cust;
3375 int index;
3376
3377 dw2_setup (objfile);
3378 index = dwarf2_per_objfile->n_comp_units - 1;
3379 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3380 if (cust == NULL)
3381 return NULL;
3382 return compunit_primary_filetab (cust);
3383 }
3384
3385 /* Traversal function for dw2_forget_cached_source_info. */
3386
3387 static int
3388 dw2_free_cached_file_names (void **slot, void *info)
3389 {
3390 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3391
3392 if (file_data->real_names)
3393 {
3394 int i;
3395
3396 for (i = 0; i < file_data->num_file_names; ++i)
3397 {
3398 xfree ((void*) file_data->real_names[i]);
3399 file_data->real_names[i] = NULL;
3400 }
3401 }
3402
3403 return 1;
3404 }
3405
3406 static void
3407 dw2_forget_cached_source_info (struct objfile *objfile)
3408 {
3409 dw2_setup (objfile);
3410
3411 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3412 dw2_free_cached_file_names, NULL);
3413 }
3414
3415 /* Helper function for dw2_map_symtabs_matching_filename that expands
3416 the symtabs and calls the iterator. */
3417
3418 static int
3419 dw2_map_expand_apply (struct objfile *objfile,
3420 struct dwarf2_per_cu_data *per_cu,
3421 const char *name, const char *real_path,
3422 int (*callback) (struct symtab *, void *),
3423 void *data)
3424 {
3425 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3426
3427 /* Don't visit already-expanded CUs. */
3428 if (per_cu->v.quick->compunit_symtab)
3429 return 0;
3430
3431 /* This may expand more than one symtab, and we want to iterate over
3432 all of them. */
3433 dw2_instantiate_symtab (per_cu);
3434
3435 return iterate_over_some_symtabs (name, real_path, callback, data,
3436 objfile->compunit_symtabs, last_made);
3437 }
3438
3439 /* Implementation of the map_symtabs_matching_filename method. */
3440
3441 static int
3442 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3443 const char *real_path,
3444 int (*callback) (struct symtab *, void *),
3445 void *data)
3446 {
3447 int i;
3448 const char *name_basename = lbasename (name);
3449
3450 dw2_setup (objfile);
3451
3452 /* The rule is CUs specify all the files, including those used by
3453 any TU, so there's no need to scan TUs here. */
3454
3455 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3456 {
3457 int j;
3458 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3459 struct quick_file_names *file_data;
3460
3461 /* We only need to look at symtabs not already expanded. */
3462 if (per_cu->v.quick->compunit_symtab)
3463 continue;
3464
3465 file_data = dw2_get_file_names (per_cu);
3466 if (file_data == NULL)
3467 continue;
3468
3469 for (j = 0; j < file_data->num_file_names; ++j)
3470 {
3471 const char *this_name = file_data->file_names[j];
3472 const char *this_real_name;
3473
3474 if (compare_filenames_for_search (this_name, name))
3475 {
3476 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3477 callback, data))
3478 return 1;
3479 continue;
3480 }
3481
3482 /* Before we invoke realpath, which can get expensive when many
3483 files are involved, do a quick comparison of the basenames. */
3484 if (! basenames_may_differ
3485 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3486 continue;
3487
3488 this_real_name = dw2_get_real_path (objfile, file_data, j);
3489 if (compare_filenames_for_search (this_real_name, name))
3490 {
3491 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3492 callback, data))
3493 return 1;
3494 continue;
3495 }
3496
3497 if (real_path != NULL)
3498 {
3499 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3500 gdb_assert (IS_ABSOLUTE_PATH (name));
3501 if (this_real_name != NULL
3502 && FILENAME_CMP (real_path, this_real_name) == 0)
3503 {
3504 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3505 callback, data))
3506 return 1;
3507 continue;
3508 }
3509 }
3510 }
3511 }
3512
3513 return 0;
3514 }
3515
3516 /* Struct used to manage iterating over all CUs looking for a symbol. */
3517
3518 struct dw2_symtab_iterator
3519 {
3520 /* The internalized form of .gdb_index. */
3521 struct mapped_index *index;
3522 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3523 int want_specific_block;
3524 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3525 Unused if !WANT_SPECIFIC_BLOCK. */
3526 int block_index;
3527 /* The kind of symbol we're looking for. */
3528 domain_enum domain;
3529 /* The list of CUs from the index entry of the symbol,
3530 or NULL if not found. */
3531 offset_type *vec;
3532 /* The next element in VEC to look at. */
3533 int next;
3534 /* The number of elements in VEC, or zero if there is no match. */
3535 int length;
3536 /* Have we seen a global version of the symbol?
3537 If so we can ignore all further global instances.
3538 This is to work around gold/15646, inefficient gold-generated
3539 indices. */
3540 int global_seen;
3541 };
3542
3543 /* Initialize the index symtab iterator ITER.
3544 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3545 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3546
3547 static void
3548 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3549 struct mapped_index *index,
3550 int want_specific_block,
3551 int block_index,
3552 domain_enum domain,
3553 const char *name)
3554 {
3555 iter->index = index;
3556 iter->want_specific_block = want_specific_block;
3557 iter->block_index = block_index;
3558 iter->domain = domain;
3559 iter->next = 0;
3560 iter->global_seen = 0;
3561
3562 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3563 iter->length = MAYBE_SWAP (*iter->vec);
3564 else
3565 {
3566 iter->vec = NULL;
3567 iter->length = 0;
3568 }
3569 }
3570
3571 /* Return the next matching CU or NULL if there are no more. */
3572
3573 static struct dwarf2_per_cu_data *
3574 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3575 {
3576 for ( ; iter->next < iter->length; ++iter->next)
3577 {
3578 offset_type cu_index_and_attrs =
3579 MAYBE_SWAP (iter->vec[iter->next + 1]);
3580 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3581 struct dwarf2_per_cu_data *per_cu;
3582 int want_static = iter->block_index != GLOBAL_BLOCK;
3583 /* This value is only valid for index versions >= 7. */
3584 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3585 gdb_index_symbol_kind symbol_kind =
3586 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3587 /* Only check the symbol attributes if they're present.
3588 Indices prior to version 7 don't record them,
3589 and indices >= 7 may elide them for certain symbols
3590 (gold does this). */
3591 int attrs_valid =
3592 (iter->index->version >= 7
3593 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3594
3595 /* Don't crash on bad data. */
3596 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3597 + dwarf2_per_objfile->n_type_units))
3598 {
3599 complaint (&symfile_complaints,
3600 _(".gdb_index entry has bad CU index"
3601 " [in module %s]"),
3602 objfile_name (dwarf2_per_objfile->objfile));
3603 continue;
3604 }
3605
3606 per_cu = dw2_get_cutu (cu_index);
3607
3608 /* Skip if already read in. */
3609 if (per_cu->v.quick->compunit_symtab)
3610 continue;
3611
3612 /* Check static vs global. */
3613 if (attrs_valid)
3614 {
3615 if (iter->want_specific_block
3616 && want_static != is_static)
3617 continue;
3618 /* Work around gold/15646. */
3619 if (!is_static && iter->global_seen)
3620 continue;
3621 if (!is_static)
3622 iter->global_seen = 1;
3623 }
3624
3625 /* Only check the symbol's kind if it has one. */
3626 if (attrs_valid)
3627 {
3628 switch (iter->domain)
3629 {
3630 case VAR_DOMAIN:
3631 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3632 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3633 /* Some types are also in VAR_DOMAIN. */
3634 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3635 continue;
3636 break;
3637 case STRUCT_DOMAIN:
3638 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3639 continue;
3640 break;
3641 case LABEL_DOMAIN:
3642 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3643 continue;
3644 break;
3645 default:
3646 break;
3647 }
3648 }
3649
3650 ++iter->next;
3651 return per_cu;
3652 }
3653
3654 return NULL;
3655 }
3656
3657 static struct compunit_symtab *
3658 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3659 const char *name, domain_enum domain)
3660 {
3661 struct compunit_symtab *stab_best = NULL;
3662 struct mapped_index *index;
3663
3664 dw2_setup (objfile);
3665
3666 index = dwarf2_per_objfile->index_table;
3667
3668 /* index is NULL if OBJF_READNOW. */
3669 if (index)
3670 {
3671 struct dw2_symtab_iterator iter;
3672 struct dwarf2_per_cu_data *per_cu;
3673
3674 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3675
3676 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3677 {
3678 struct symbol *sym, *with_opaque = NULL;
3679 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3680 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3681 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3682
3683 sym = block_find_symbol (block, name, domain,
3684 block_find_non_opaque_type_preferred,
3685 &with_opaque);
3686
3687 /* Some caution must be observed with overloaded functions
3688 and methods, since the index will not contain any overload
3689 information (but NAME might contain it). */
3690
3691 if (sym != NULL
3692 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3693 return stab;
3694 if (with_opaque != NULL
3695 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3696 stab_best = stab;
3697
3698 /* Keep looking through other CUs. */
3699 }
3700 }
3701
3702 return stab_best;
3703 }
3704
3705 static void
3706 dw2_print_stats (struct objfile *objfile)
3707 {
3708 int i, total, count;
3709
3710 dw2_setup (objfile);
3711 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3712 count = 0;
3713 for (i = 0; i < total; ++i)
3714 {
3715 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3716
3717 if (!per_cu->v.quick->compunit_symtab)
3718 ++count;
3719 }
3720 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3721 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3722 }
3723
3724 /* This dumps minimal information about the index.
3725 It is called via "mt print objfiles".
3726 One use is to verify .gdb_index has been loaded by the
3727 gdb.dwarf2/gdb-index.exp testcase. */
3728
3729 static void
3730 dw2_dump (struct objfile *objfile)
3731 {
3732 dw2_setup (objfile);
3733 gdb_assert (dwarf2_per_objfile->using_index);
3734 printf_filtered (".gdb_index:");
3735 if (dwarf2_per_objfile->index_table != NULL)
3736 {
3737 printf_filtered (" version %d\n",
3738 dwarf2_per_objfile->index_table->version);
3739 }
3740 else
3741 printf_filtered (" faked for \"readnow\"\n");
3742 printf_filtered ("\n");
3743 }
3744
3745 static void
3746 dw2_relocate (struct objfile *objfile,
3747 const struct section_offsets *new_offsets,
3748 const struct section_offsets *delta)
3749 {
3750 /* There's nothing to relocate here. */
3751 }
3752
3753 static void
3754 dw2_expand_symtabs_for_function (struct objfile *objfile,
3755 const char *func_name)
3756 {
3757 struct mapped_index *index;
3758
3759 dw2_setup (objfile);
3760
3761 index = dwarf2_per_objfile->index_table;
3762
3763 /* index is NULL if OBJF_READNOW. */
3764 if (index)
3765 {
3766 struct dw2_symtab_iterator iter;
3767 struct dwarf2_per_cu_data *per_cu;
3768
3769 /* Note: It doesn't matter what we pass for block_index here. */
3770 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3771 func_name);
3772
3773 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3774 dw2_instantiate_symtab (per_cu);
3775 }
3776 }
3777
3778 static void
3779 dw2_expand_all_symtabs (struct objfile *objfile)
3780 {
3781 int i;
3782
3783 dw2_setup (objfile);
3784
3785 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3786 + dwarf2_per_objfile->n_type_units); ++i)
3787 {
3788 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3789
3790 dw2_instantiate_symtab (per_cu);
3791 }
3792 }
3793
3794 static void
3795 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3796 const char *fullname)
3797 {
3798 int i;
3799
3800 dw2_setup (objfile);
3801
3802 /* We don't need to consider type units here.
3803 This is only called for examining code, e.g. expand_line_sal.
3804 There can be an order of magnitude (or more) more type units
3805 than comp units, and we avoid them if we can. */
3806
3807 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3808 {
3809 int j;
3810 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3811 struct quick_file_names *file_data;
3812
3813 /* We only need to look at symtabs not already expanded. */
3814 if (per_cu->v.quick->compunit_symtab)
3815 continue;
3816
3817 file_data = dw2_get_file_names (per_cu);
3818 if (file_data == NULL)
3819 continue;
3820
3821 for (j = 0; j < file_data->num_file_names; ++j)
3822 {
3823 const char *this_fullname = file_data->file_names[j];
3824
3825 if (filename_cmp (this_fullname, fullname) == 0)
3826 {
3827 dw2_instantiate_symtab (per_cu);
3828 break;
3829 }
3830 }
3831 }
3832 }
3833
3834 static void
3835 dw2_map_matching_symbols (struct objfile *objfile,
3836 const char * name, domain_enum domain,
3837 int global,
3838 int (*callback) (struct block *,
3839 struct symbol *, void *),
3840 void *data, symbol_compare_ftype *match,
3841 symbol_compare_ftype *ordered_compare)
3842 {
3843 /* Currently unimplemented; used for Ada. The function can be called if the
3844 current language is Ada for a non-Ada objfile using GNU index. As Ada
3845 does not look for non-Ada symbols this function should just return. */
3846 }
3847
3848 static void
3849 dw2_expand_symtabs_matching
3850 (struct objfile *objfile,
3851 expand_symtabs_file_matcher_ftype *file_matcher,
3852 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3853 expand_symtabs_exp_notify_ftype *expansion_notify,
3854 enum search_domain kind,
3855 void *data)
3856 {
3857 int i;
3858 offset_type iter;
3859 struct mapped_index *index;
3860
3861 dw2_setup (objfile);
3862
3863 /* index_table is NULL if OBJF_READNOW. */
3864 if (!dwarf2_per_objfile->index_table)
3865 return;
3866 index = dwarf2_per_objfile->index_table;
3867
3868 if (file_matcher != NULL)
3869 {
3870 struct cleanup *cleanup;
3871 htab_t visited_found, visited_not_found;
3872
3873 visited_found = htab_create_alloc (10,
3874 htab_hash_pointer, htab_eq_pointer,
3875 NULL, xcalloc, xfree);
3876 cleanup = make_cleanup_htab_delete (visited_found);
3877 visited_not_found = htab_create_alloc (10,
3878 htab_hash_pointer, htab_eq_pointer,
3879 NULL, xcalloc, xfree);
3880 make_cleanup_htab_delete (visited_not_found);
3881
3882 /* The rule is CUs specify all the files, including those used by
3883 any TU, so there's no need to scan TUs here. */
3884
3885 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3886 {
3887 int j;
3888 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3889 struct quick_file_names *file_data;
3890 void **slot;
3891
3892 QUIT;
3893
3894 per_cu->v.quick->mark = 0;
3895
3896 /* We only need to look at symtabs not already expanded. */
3897 if (per_cu->v.quick->compunit_symtab)
3898 continue;
3899
3900 file_data = dw2_get_file_names (per_cu);
3901 if (file_data == NULL)
3902 continue;
3903
3904 if (htab_find (visited_not_found, file_data) != NULL)
3905 continue;
3906 else if (htab_find (visited_found, file_data) != NULL)
3907 {
3908 per_cu->v.quick->mark = 1;
3909 continue;
3910 }
3911
3912 for (j = 0; j < file_data->num_file_names; ++j)
3913 {
3914 const char *this_real_name;
3915
3916 if (file_matcher (file_data->file_names[j], data, 0))
3917 {
3918 per_cu->v.quick->mark = 1;
3919 break;
3920 }
3921
3922 /* Before we invoke realpath, which can get expensive when many
3923 files are involved, do a quick comparison of the basenames. */
3924 if (!basenames_may_differ
3925 && !file_matcher (lbasename (file_data->file_names[j]),
3926 data, 1))
3927 continue;
3928
3929 this_real_name = dw2_get_real_path (objfile, file_data, j);
3930 if (file_matcher (this_real_name, data, 0))
3931 {
3932 per_cu->v.quick->mark = 1;
3933 break;
3934 }
3935 }
3936
3937 slot = htab_find_slot (per_cu->v.quick->mark
3938 ? visited_found
3939 : visited_not_found,
3940 file_data, INSERT);
3941 *slot = file_data;
3942 }
3943
3944 do_cleanups (cleanup);
3945 }
3946
3947 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3948 {
3949 offset_type idx = 2 * iter;
3950 const char *name;
3951 offset_type *vec, vec_len, vec_idx;
3952 int global_seen = 0;
3953
3954 QUIT;
3955
3956 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3957 continue;
3958
3959 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3960
3961 if (! (*symbol_matcher) (name, data))
3962 continue;
3963
3964 /* The name was matched, now expand corresponding CUs that were
3965 marked. */
3966 vec = (offset_type *) (index->constant_pool
3967 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3968 vec_len = MAYBE_SWAP (vec[0]);
3969 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3970 {
3971 struct dwarf2_per_cu_data *per_cu;
3972 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3973 /* This value is only valid for index versions >= 7. */
3974 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3975 gdb_index_symbol_kind symbol_kind =
3976 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3977 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3978 /* Only check the symbol attributes if they're present.
3979 Indices prior to version 7 don't record them,
3980 and indices >= 7 may elide them for certain symbols
3981 (gold does this). */
3982 int attrs_valid =
3983 (index->version >= 7
3984 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3985
3986 /* Work around gold/15646. */
3987 if (attrs_valid)
3988 {
3989 if (!is_static && global_seen)
3990 continue;
3991 if (!is_static)
3992 global_seen = 1;
3993 }
3994
3995 /* Only check the symbol's kind if it has one. */
3996 if (attrs_valid)
3997 {
3998 switch (kind)
3999 {
4000 case VARIABLES_DOMAIN:
4001 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4002 continue;
4003 break;
4004 case FUNCTIONS_DOMAIN:
4005 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4006 continue;
4007 break;
4008 case TYPES_DOMAIN:
4009 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4010 continue;
4011 break;
4012 default:
4013 break;
4014 }
4015 }
4016
4017 /* Don't crash on bad data. */
4018 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4019 + dwarf2_per_objfile->n_type_units))
4020 {
4021 complaint (&symfile_complaints,
4022 _(".gdb_index entry has bad CU index"
4023 " [in module %s]"), objfile_name (objfile));
4024 continue;
4025 }
4026
4027 per_cu = dw2_get_cutu (cu_index);
4028 if (file_matcher == NULL || per_cu->v.quick->mark)
4029 {
4030 int symtab_was_null =
4031 (per_cu->v.quick->compunit_symtab == NULL);
4032
4033 dw2_instantiate_symtab (per_cu);
4034
4035 if (expansion_notify != NULL
4036 && symtab_was_null
4037 && per_cu->v.quick->compunit_symtab != NULL)
4038 {
4039 expansion_notify (per_cu->v.quick->compunit_symtab,
4040 data);
4041 }
4042 }
4043 }
4044 }
4045 }
4046
4047 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4048 symtab. */
4049
4050 static struct compunit_symtab *
4051 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4052 CORE_ADDR pc)
4053 {
4054 int i;
4055
4056 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4057 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4058 return cust;
4059
4060 if (cust->includes == NULL)
4061 return NULL;
4062
4063 for (i = 0; cust->includes[i]; ++i)
4064 {
4065 struct compunit_symtab *s = cust->includes[i];
4066
4067 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4068 if (s != NULL)
4069 return s;
4070 }
4071
4072 return NULL;
4073 }
4074
4075 static struct compunit_symtab *
4076 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4077 struct bound_minimal_symbol msymbol,
4078 CORE_ADDR pc,
4079 struct obj_section *section,
4080 int warn_if_readin)
4081 {
4082 struct dwarf2_per_cu_data *data;
4083 struct compunit_symtab *result;
4084
4085 dw2_setup (objfile);
4086
4087 if (!objfile->psymtabs_addrmap)
4088 return NULL;
4089
4090 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4091 if (!data)
4092 return NULL;
4093
4094 if (warn_if_readin && data->v.quick->compunit_symtab)
4095 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4096 paddress (get_objfile_arch (objfile), pc));
4097
4098 result
4099 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4100 pc);
4101 gdb_assert (result != NULL);
4102 return result;
4103 }
4104
4105 static void
4106 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4107 void *data, int need_fullname)
4108 {
4109 int i;
4110 struct cleanup *cleanup;
4111 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4112 NULL, xcalloc, xfree);
4113
4114 cleanup = make_cleanup_htab_delete (visited);
4115 dw2_setup (objfile);
4116
4117 /* The rule is CUs specify all the files, including those used by
4118 any TU, so there's no need to scan TUs here.
4119 We can ignore file names coming from already-expanded CUs. */
4120
4121 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4122 {
4123 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4124
4125 if (per_cu->v.quick->compunit_symtab)
4126 {
4127 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4128 INSERT);
4129
4130 *slot = per_cu->v.quick->file_names;
4131 }
4132 }
4133
4134 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4135 {
4136 int j;
4137 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4138 struct quick_file_names *file_data;
4139 void **slot;
4140
4141 /* We only need to look at symtabs not already expanded. */
4142 if (per_cu->v.quick->compunit_symtab)
4143 continue;
4144
4145 file_data = dw2_get_file_names (per_cu);
4146 if (file_data == NULL)
4147 continue;
4148
4149 slot = htab_find_slot (visited, file_data, INSERT);
4150 if (*slot)
4151 {
4152 /* Already visited. */
4153 continue;
4154 }
4155 *slot = file_data;
4156
4157 for (j = 0; j < file_data->num_file_names; ++j)
4158 {
4159 const char *this_real_name;
4160
4161 if (need_fullname)
4162 this_real_name = dw2_get_real_path (objfile, file_data, j);
4163 else
4164 this_real_name = NULL;
4165 (*fun) (file_data->file_names[j], this_real_name, data);
4166 }
4167 }
4168
4169 do_cleanups (cleanup);
4170 }
4171
4172 static int
4173 dw2_has_symbols (struct objfile *objfile)
4174 {
4175 return 1;
4176 }
4177
4178 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4179 {
4180 dw2_has_symbols,
4181 dw2_find_last_source_symtab,
4182 dw2_forget_cached_source_info,
4183 dw2_map_symtabs_matching_filename,
4184 dw2_lookup_symbol,
4185 dw2_print_stats,
4186 dw2_dump,
4187 dw2_relocate,
4188 dw2_expand_symtabs_for_function,
4189 dw2_expand_all_symtabs,
4190 dw2_expand_symtabs_with_fullname,
4191 dw2_map_matching_symbols,
4192 dw2_expand_symtabs_matching,
4193 dw2_find_pc_sect_compunit_symtab,
4194 dw2_map_symbol_filenames
4195 };
4196
4197 /* Initialize for reading DWARF for this objfile. Return 0 if this
4198 file will use psymtabs, or 1 if using the GNU index. */
4199
4200 int
4201 dwarf2_initialize_objfile (struct objfile *objfile)
4202 {
4203 /* If we're about to read full symbols, don't bother with the
4204 indices. In this case we also don't care if some other debug
4205 format is making psymtabs, because they are all about to be
4206 expanded anyway. */
4207 if ((objfile->flags & OBJF_READNOW))
4208 {
4209 int i;
4210
4211 dwarf2_per_objfile->using_index = 1;
4212 create_all_comp_units (objfile);
4213 create_all_type_units (objfile);
4214 dwarf2_per_objfile->quick_file_names_table =
4215 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4216
4217 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4218 + dwarf2_per_objfile->n_type_units); ++i)
4219 {
4220 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4221
4222 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4223 struct dwarf2_per_cu_quick_data);
4224 }
4225
4226 /* Return 1 so that gdb sees the "quick" functions. However,
4227 these functions will be no-ops because we will have expanded
4228 all symtabs. */
4229 return 1;
4230 }
4231
4232 if (dwarf2_read_index (objfile))
4233 return 1;
4234
4235 return 0;
4236 }
4237
4238 \f
4239
4240 /* Build a partial symbol table. */
4241
4242 void
4243 dwarf2_build_psymtabs (struct objfile *objfile)
4244 {
4245
4246 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4247 {
4248 init_psymbol_list (objfile, 1024);
4249 }
4250
4251 TRY
4252 {
4253 /* This isn't really ideal: all the data we allocate on the
4254 objfile's obstack is still uselessly kept around. However,
4255 freeing it seems unsafe. */
4256 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4257
4258 dwarf2_build_psymtabs_hard (objfile);
4259 discard_cleanups (cleanups);
4260 }
4261 CATCH (except, RETURN_MASK_ERROR)
4262 {
4263 exception_print (gdb_stderr, except);
4264 }
4265 END_CATCH
4266 }
4267
4268 /* Return the total length of the CU described by HEADER. */
4269
4270 static unsigned int
4271 get_cu_length (const struct comp_unit_head *header)
4272 {
4273 return header->initial_length_size + header->length;
4274 }
4275
4276 /* Return TRUE if OFFSET is within CU_HEADER. */
4277
4278 static inline int
4279 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4280 {
4281 sect_offset bottom = { cu_header->offset.sect_off };
4282 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4283
4284 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4285 }
4286
4287 /* Find the base address of the compilation unit for range lists and
4288 location lists. It will normally be specified by DW_AT_low_pc.
4289 In DWARF-3 draft 4, the base address could be overridden by
4290 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4291 compilation units with discontinuous ranges. */
4292
4293 static void
4294 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4295 {
4296 struct attribute *attr;
4297
4298 cu->base_known = 0;
4299 cu->base_address = 0;
4300
4301 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4302 if (attr)
4303 {
4304 cu->base_address = attr_value_as_address (attr);
4305 cu->base_known = 1;
4306 }
4307 else
4308 {
4309 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4310 if (attr)
4311 {
4312 cu->base_address = attr_value_as_address (attr);
4313 cu->base_known = 1;
4314 }
4315 }
4316 }
4317
4318 /* Read in the comp unit header information from the debug_info at info_ptr.
4319 NOTE: This leaves members offset, first_die_offset to be filled in
4320 by the caller. */
4321
4322 static const gdb_byte *
4323 read_comp_unit_head (struct comp_unit_head *cu_header,
4324 const gdb_byte *info_ptr, bfd *abfd)
4325 {
4326 int signed_addr;
4327 unsigned int bytes_read;
4328
4329 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4330 cu_header->initial_length_size = bytes_read;
4331 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4332 info_ptr += bytes_read;
4333 cu_header->version = read_2_bytes (abfd, info_ptr);
4334 info_ptr += 2;
4335 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4336 &bytes_read);
4337 info_ptr += bytes_read;
4338 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4339 info_ptr += 1;
4340 signed_addr = bfd_get_sign_extend_vma (abfd);
4341 if (signed_addr < 0)
4342 internal_error (__FILE__, __LINE__,
4343 _("read_comp_unit_head: dwarf from non elf file"));
4344 cu_header->signed_addr_p = signed_addr;
4345
4346 return info_ptr;
4347 }
4348
4349 /* Helper function that returns the proper abbrev section for
4350 THIS_CU. */
4351
4352 static struct dwarf2_section_info *
4353 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4354 {
4355 struct dwarf2_section_info *abbrev;
4356
4357 if (this_cu->is_dwz)
4358 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4359 else
4360 abbrev = &dwarf2_per_objfile->abbrev;
4361
4362 return abbrev;
4363 }
4364
4365 /* Subroutine of read_and_check_comp_unit_head and
4366 read_and_check_type_unit_head to simplify them.
4367 Perform various error checking on the header. */
4368
4369 static void
4370 error_check_comp_unit_head (struct comp_unit_head *header,
4371 struct dwarf2_section_info *section,
4372 struct dwarf2_section_info *abbrev_section)
4373 {
4374 bfd *abfd = get_section_bfd_owner (section);
4375 const char *filename = get_section_file_name (section);
4376
4377 if (header->version != 2 && header->version != 3 && header->version != 4)
4378 error (_("Dwarf Error: wrong version in compilation unit header "
4379 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4380 filename);
4381
4382 if (header->abbrev_offset.sect_off
4383 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4384 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4385 "(offset 0x%lx + 6) [in module %s]"),
4386 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4387 filename);
4388
4389 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4390 avoid potential 32-bit overflow. */
4391 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4392 > section->size)
4393 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4394 "(offset 0x%lx + 0) [in module %s]"),
4395 (long) header->length, (long) header->offset.sect_off,
4396 filename);
4397 }
4398
4399 /* Read in a CU/TU header and perform some basic error checking.
4400 The contents of the header are stored in HEADER.
4401 The result is a pointer to the start of the first DIE. */
4402
4403 static const gdb_byte *
4404 read_and_check_comp_unit_head (struct comp_unit_head *header,
4405 struct dwarf2_section_info *section,
4406 struct dwarf2_section_info *abbrev_section,
4407 const gdb_byte *info_ptr,
4408 int is_debug_types_section)
4409 {
4410 const gdb_byte *beg_of_comp_unit = info_ptr;
4411 bfd *abfd = get_section_bfd_owner (section);
4412
4413 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4414
4415 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4416
4417 /* If we're reading a type unit, skip over the signature and
4418 type_offset fields. */
4419 if (is_debug_types_section)
4420 info_ptr += 8 /*signature*/ + header->offset_size;
4421
4422 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4423
4424 error_check_comp_unit_head (header, section, abbrev_section);
4425
4426 return info_ptr;
4427 }
4428
4429 /* Read in the types comp unit header information from .debug_types entry at
4430 types_ptr. The result is a pointer to one past the end of the header. */
4431
4432 static const gdb_byte *
4433 read_and_check_type_unit_head (struct comp_unit_head *header,
4434 struct dwarf2_section_info *section,
4435 struct dwarf2_section_info *abbrev_section,
4436 const gdb_byte *info_ptr,
4437 ULONGEST *signature,
4438 cu_offset *type_offset_in_tu)
4439 {
4440 const gdb_byte *beg_of_comp_unit = info_ptr;
4441 bfd *abfd = get_section_bfd_owner (section);
4442
4443 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4444
4445 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4446
4447 /* If we're reading a type unit, skip over the signature and
4448 type_offset fields. */
4449 if (signature != NULL)
4450 *signature = read_8_bytes (abfd, info_ptr);
4451 info_ptr += 8;
4452 if (type_offset_in_tu != NULL)
4453 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4454 header->offset_size);
4455 info_ptr += header->offset_size;
4456
4457 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4458
4459 error_check_comp_unit_head (header, section, abbrev_section);
4460
4461 return info_ptr;
4462 }
4463
4464 /* Fetch the abbreviation table offset from a comp or type unit header. */
4465
4466 static sect_offset
4467 read_abbrev_offset (struct dwarf2_section_info *section,
4468 sect_offset offset)
4469 {
4470 bfd *abfd = get_section_bfd_owner (section);
4471 const gdb_byte *info_ptr;
4472 unsigned int length, initial_length_size, offset_size;
4473 sect_offset abbrev_offset;
4474
4475 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4476 info_ptr = section->buffer + offset.sect_off;
4477 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4478 offset_size = initial_length_size == 4 ? 4 : 8;
4479 info_ptr += initial_length_size + 2 /*version*/;
4480 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4481 return abbrev_offset;
4482 }
4483
4484 /* Allocate a new partial symtab for file named NAME and mark this new
4485 partial symtab as being an include of PST. */
4486
4487 static void
4488 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4489 struct objfile *objfile)
4490 {
4491 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4492
4493 if (!IS_ABSOLUTE_PATH (subpst->filename))
4494 {
4495 /* It shares objfile->objfile_obstack. */
4496 subpst->dirname = pst->dirname;
4497 }
4498
4499 subpst->textlow = 0;
4500 subpst->texthigh = 0;
4501
4502 subpst->dependencies = (struct partial_symtab **)
4503 obstack_alloc (&objfile->objfile_obstack,
4504 sizeof (struct partial_symtab *));
4505 subpst->dependencies[0] = pst;
4506 subpst->number_of_dependencies = 1;
4507
4508 subpst->globals_offset = 0;
4509 subpst->n_global_syms = 0;
4510 subpst->statics_offset = 0;
4511 subpst->n_static_syms = 0;
4512 subpst->compunit_symtab = NULL;
4513 subpst->read_symtab = pst->read_symtab;
4514 subpst->readin = 0;
4515
4516 /* No private part is necessary for include psymtabs. This property
4517 can be used to differentiate between such include psymtabs and
4518 the regular ones. */
4519 subpst->read_symtab_private = NULL;
4520 }
4521
4522 /* Read the Line Number Program data and extract the list of files
4523 included by the source file represented by PST. Build an include
4524 partial symtab for each of these included files. */
4525
4526 static void
4527 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4528 struct die_info *die,
4529 struct partial_symtab *pst)
4530 {
4531 struct line_header *lh = NULL;
4532 struct attribute *attr;
4533
4534 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4535 if (attr)
4536 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4537 if (lh == NULL)
4538 return; /* No linetable, so no includes. */
4539
4540 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4541 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4542
4543 free_line_header (lh);
4544 }
4545
4546 static hashval_t
4547 hash_signatured_type (const void *item)
4548 {
4549 const struct signatured_type *sig_type = item;
4550
4551 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4552 return sig_type->signature;
4553 }
4554
4555 static int
4556 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4557 {
4558 const struct signatured_type *lhs = item_lhs;
4559 const struct signatured_type *rhs = item_rhs;
4560
4561 return lhs->signature == rhs->signature;
4562 }
4563
4564 /* Allocate a hash table for signatured types. */
4565
4566 static htab_t
4567 allocate_signatured_type_table (struct objfile *objfile)
4568 {
4569 return htab_create_alloc_ex (41,
4570 hash_signatured_type,
4571 eq_signatured_type,
4572 NULL,
4573 &objfile->objfile_obstack,
4574 hashtab_obstack_allocate,
4575 dummy_obstack_deallocate);
4576 }
4577
4578 /* A helper function to add a signatured type CU to a table. */
4579
4580 static int
4581 add_signatured_type_cu_to_table (void **slot, void *datum)
4582 {
4583 struct signatured_type *sigt = *slot;
4584 struct signatured_type ***datap = datum;
4585
4586 **datap = sigt;
4587 ++*datap;
4588
4589 return 1;
4590 }
4591
4592 /* Create the hash table of all entries in the .debug_types
4593 (or .debug_types.dwo) section(s).
4594 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4595 otherwise it is NULL.
4596
4597 The result is a pointer to the hash table or NULL if there are no types.
4598
4599 Note: This function processes DWO files only, not DWP files. */
4600
4601 static htab_t
4602 create_debug_types_hash_table (struct dwo_file *dwo_file,
4603 VEC (dwarf2_section_info_def) *types)
4604 {
4605 struct objfile *objfile = dwarf2_per_objfile->objfile;
4606 htab_t types_htab = NULL;
4607 int ix;
4608 struct dwarf2_section_info *section;
4609 struct dwarf2_section_info *abbrev_section;
4610
4611 if (VEC_empty (dwarf2_section_info_def, types))
4612 return NULL;
4613
4614 abbrev_section = (dwo_file != NULL
4615 ? &dwo_file->sections.abbrev
4616 : &dwarf2_per_objfile->abbrev);
4617
4618 if (dwarf_read_debug)
4619 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4620 dwo_file ? ".dwo" : "",
4621 get_section_file_name (abbrev_section));
4622
4623 for (ix = 0;
4624 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4625 ++ix)
4626 {
4627 bfd *abfd;
4628 const gdb_byte *info_ptr, *end_ptr;
4629
4630 dwarf2_read_section (objfile, section);
4631 info_ptr = section->buffer;
4632
4633 if (info_ptr == NULL)
4634 continue;
4635
4636 /* We can't set abfd until now because the section may be empty or
4637 not present, in which case the bfd is unknown. */
4638 abfd = get_section_bfd_owner (section);
4639
4640 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4641 because we don't need to read any dies: the signature is in the
4642 header. */
4643
4644 end_ptr = info_ptr + section->size;
4645 while (info_ptr < end_ptr)
4646 {
4647 sect_offset offset;
4648 cu_offset type_offset_in_tu;
4649 ULONGEST signature;
4650 struct signatured_type *sig_type;
4651 struct dwo_unit *dwo_tu;
4652 void **slot;
4653 const gdb_byte *ptr = info_ptr;
4654 struct comp_unit_head header;
4655 unsigned int length;
4656
4657 offset.sect_off = ptr - section->buffer;
4658
4659 /* We need to read the type's signature in order to build the hash
4660 table, but we don't need anything else just yet. */
4661
4662 ptr = read_and_check_type_unit_head (&header, section,
4663 abbrev_section, ptr,
4664 &signature, &type_offset_in_tu);
4665
4666 length = get_cu_length (&header);
4667
4668 /* Skip dummy type units. */
4669 if (ptr >= info_ptr + length
4670 || peek_abbrev_code (abfd, ptr) == 0)
4671 {
4672 info_ptr += length;
4673 continue;
4674 }
4675
4676 if (types_htab == NULL)
4677 {
4678 if (dwo_file)
4679 types_htab = allocate_dwo_unit_table (objfile);
4680 else
4681 types_htab = allocate_signatured_type_table (objfile);
4682 }
4683
4684 if (dwo_file)
4685 {
4686 sig_type = NULL;
4687 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4688 struct dwo_unit);
4689 dwo_tu->dwo_file = dwo_file;
4690 dwo_tu->signature = signature;
4691 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4692 dwo_tu->section = section;
4693 dwo_tu->offset = offset;
4694 dwo_tu->length = length;
4695 }
4696 else
4697 {
4698 /* N.B.: type_offset is not usable if this type uses a DWO file.
4699 The real type_offset is in the DWO file. */
4700 dwo_tu = NULL;
4701 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4702 struct signatured_type);
4703 sig_type->signature = signature;
4704 sig_type->type_offset_in_tu = type_offset_in_tu;
4705 sig_type->per_cu.objfile = objfile;
4706 sig_type->per_cu.is_debug_types = 1;
4707 sig_type->per_cu.section = section;
4708 sig_type->per_cu.offset = offset;
4709 sig_type->per_cu.length = length;
4710 }
4711
4712 slot = htab_find_slot (types_htab,
4713 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4714 INSERT);
4715 gdb_assert (slot != NULL);
4716 if (*slot != NULL)
4717 {
4718 sect_offset dup_offset;
4719
4720 if (dwo_file)
4721 {
4722 const struct dwo_unit *dup_tu = *slot;
4723
4724 dup_offset = dup_tu->offset;
4725 }
4726 else
4727 {
4728 const struct signatured_type *dup_tu = *slot;
4729
4730 dup_offset = dup_tu->per_cu.offset;
4731 }
4732
4733 complaint (&symfile_complaints,
4734 _("debug type entry at offset 0x%x is duplicate to"
4735 " the entry at offset 0x%x, signature %s"),
4736 offset.sect_off, dup_offset.sect_off,
4737 hex_string (signature));
4738 }
4739 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4740
4741 if (dwarf_read_debug > 1)
4742 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4743 offset.sect_off,
4744 hex_string (signature));
4745
4746 info_ptr += length;
4747 }
4748 }
4749
4750 return types_htab;
4751 }
4752
4753 /* Create the hash table of all entries in the .debug_types section,
4754 and initialize all_type_units.
4755 The result is zero if there is an error (e.g. missing .debug_types section),
4756 otherwise non-zero. */
4757
4758 static int
4759 create_all_type_units (struct objfile *objfile)
4760 {
4761 htab_t types_htab;
4762 struct signatured_type **iter;
4763
4764 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4765 if (types_htab == NULL)
4766 {
4767 dwarf2_per_objfile->signatured_types = NULL;
4768 return 0;
4769 }
4770
4771 dwarf2_per_objfile->signatured_types = types_htab;
4772
4773 dwarf2_per_objfile->n_type_units
4774 = dwarf2_per_objfile->n_allocated_type_units
4775 = htab_elements (types_htab);
4776 dwarf2_per_objfile->all_type_units
4777 = xmalloc (dwarf2_per_objfile->n_type_units
4778 * sizeof (struct signatured_type *));
4779 iter = &dwarf2_per_objfile->all_type_units[0];
4780 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4781 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4782 == dwarf2_per_objfile->n_type_units);
4783
4784 return 1;
4785 }
4786
4787 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4788 If SLOT is non-NULL, it is the entry to use in the hash table.
4789 Otherwise we find one. */
4790
4791 static struct signatured_type *
4792 add_type_unit (ULONGEST sig, void **slot)
4793 {
4794 struct objfile *objfile = dwarf2_per_objfile->objfile;
4795 int n_type_units = dwarf2_per_objfile->n_type_units;
4796 struct signatured_type *sig_type;
4797
4798 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4799 ++n_type_units;
4800 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4801 {
4802 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4803 dwarf2_per_objfile->n_allocated_type_units = 1;
4804 dwarf2_per_objfile->n_allocated_type_units *= 2;
4805 dwarf2_per_objfile->all_type_units
4806 = xrealloc (dwarf2_per_objfile->all_type_units,
4807 dwarf2_per_objfile->n_allocated_type_units
4808 * sizeof (struct signatured_type *));
4809 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4810 }
4811 dwarf2_per_objfile->n_type_units = n_type_units;
4812
4813 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4814 struct signatured_type);
4815 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4816 sig_type->signature = sig;
4817 sig_type->per_cu.is_debug_types = 1;
4818 if (dwarf2_per_objfile->using_index)
4819 {
4820 sig_type->per_cu.v.quick =
4821 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4822 struct dwarf2_per_cu_quick_data);
4823 }
4824
4825 if (slot == NULL)
4826 {
4827 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4828 sig_type, INSERT);
4829 }
4830 gdb_assert (*slot == NULL);
4831 *slot = sig_type;
4832 /* The rest of sig_type must be filled in by the caller. */
4833 return sig_type;
4834 }
4835
4836 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4837 Fill in SIG_ENTRY with DWO_ENTRY. */
4838
4839 static void
4840 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4841 struct signatured_type *sig_entry,
4842 struct dwo_unit *dwo_entry)
4843 {
4844 /* Make sure we're not clobbering something we don't expect to. */
4845 gdb_assert (! sig_entry->per_cu.queued);
4846 gdb_assert (sig_entry->per_cu.cu == NULL);
4847 if (dwarf2_per_objfile->using_index)
4848 {
4849 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4850 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4851 }
4852 else
4853 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4854 gdb_assert (sig_entry->signature == dwo_entry->signature);
4855 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4856 gdb_assert (sig_entry->type_unit_group == NULL);
4857 gdb_assert (sig_entry->dwo_unit == NULL);
4858
4859 sig_entry->per_cu.section = dwo_entry->section;
4860 sig_entry->per_cu.offset = dwo_entry->offset;
4861 sig_entry->per_cu.length = dwo_entry->length;
4862 sig_entry->per_cu.reading_dwo_directly = 1;
4863 sig_entry->per_cu.objfile = objfile;
4864 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4865 sig_entry->dwo_unit = dwo_entry;
4866 }
4867
4868 /* Subroutine of lookup_signatured_type.
4869 If we haven't read the TU yet, create the signatured_type data structure
4870 for a TU to be read in directly from a DWO file, bypassing the stub.
4871 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4872 using .gdb_index, then when reading a CU we want to stay in the DWO file
4873 containing that CU. Otherwise we could end up reading several other DWO
4874 files (due to comdat folding) to process the transitive closure of all the
4875 mentioned TUs, and that can be slow. The current DWO file will have every
4876 type signature that it needs.
4877 We only do this for .gdb_index because in the psymtab case we already have
4878 to read all the DWOs to build the type unit groups. */
4879
4880 static struct signatured_type *
4881 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4882 {
4883 struct objfile *objfile = dwarf2_per_objfile->objfile;
4884 struct dwo_file *dwo_file;
4885 struct dwo_unit find_dwo_entry, *dwo_entry;
4886 struct signatured_type find_sig_entry, *sig_entry;
4887 void **slot;
4888
4889 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4890
4891 /* If TU skeletons have been removed then we may not have read in any
4892 TUs yet. */
4893 if (dwarf2_per_objfile->signatured_types == NULL)
4894 {
4895 dwarf2_per_objfile->signatured_types
4896 = allocate_signatured_type_table (objfile);
4897 }
4898
4899 /* We only ever need to read in one copy of a signatured type.
4900 Use the global signatured_types array to do our own comdat-folding
4901 of types. If this is the first time we're reading this TU, and
4902 the TU has an entry in .gdb_index, replace the recorded data from
4903 .gdb_index with this TU. */
4904
4905 find_sig_entry.signature = sig;
4906 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4907 &find_sig_entry, INSERT);
4908 sig_entry = *slot;
4909
4910 /* We can get here with the TU already read, *or* in the process of being
4911 read. Don't reassign the global entry to point to this DWO if that's
4912 the case. Also note that if the TU is already being read, it may not
4913 have come from a DWO, the program may be a mix of Fission-compiled
4914 code and non-Fission-compiled code. */
4915
4916 /* Have we already tried to read this TU?
4917 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4918 needn't exist in the global table yet). */
4919 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4920 return sig_entry;
4921
4922 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4923 dwo_unit of the TU itself. */
4924 dwo_file = cu->dwo_unit->dwo_file;
4925
4926 /* Ok, this is the first time we're reading this TU. */
4927 if (dwo_file->tus == NULL)
4928 return NULL;
4929 find_dwo_entry.signature = sig;
4930 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4931 if (dwo_entry == NULL)
4932 return NULL;
4933
4934 /* If the global table doesn't have an entry for this TU, add one. */
4935 if (sig_entry == NULL)
4936 sig_entry = add_type_unit (sig, slot);
4937
4938 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4939 sig_entry->per_cu.tu_read = 1;
4940 return sig_entry;
4941 }
4942
4943 /* Subroutine of lookup_signatured_type.
4944 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4945 then try the DWP file. If the TU stub (skeleton) has been removed then
4946 it won't be in .gdb_index. */
4947
4948 static struct signatured_type *
4949 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4950 {
4951 struct objfile *objfile = dwarf2_per_objfile->objfile;
4952 struct dwp_file *dwp_file = get_dwp_file ();
4953 struct dwo_unit *dwo_entry;
4954 struct signatured_type find_sig_entry, *sig_entry;
4955 void **slot;
4956
4957 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4958 gdb_assert (dwp_file != NULL);
4959
4960 /* If TU skeletons have been removed then we may not have read in any
4961 TUs yet. */
4962 if (dwarf2_per_objfile->signatured_types == NULL)
4963 {
4964 dwarf2_per_objfile->signatured_types
4965 = allocate_signatured_type_table (objfile);
4966 }
4967
4968 find_sig_entry.signature = sig;
4969 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4970 &find_sig_entry, INSERT);
4971 sig_entry = *slot;
4972
4973 /* Have we already tried to read this TU?
4974 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4975 needn't exist in the global table yet). */
4976 if (sig_entry != NULL)
4977 return sig_entry;
4978
4979 if (dwp_file->tus == NULL)
4980 return NULL;
4981 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4982 sig, 1 /* is_debug_types */);
4983 if (dwo_entry == NULL)
4984 return NULL;
4985
4986 sig_entry = add_type_unit (sig, slot);
4987 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4988
4989 return sig_entry;
4990 }
4991
4992 /* Lookup a signature based type for DW_FORM_ref_sig8.
4993 Returns NULL if signature SIG is not present in the table.
4994 It is up to the caller to complain about this. */
4995
4996 static struct signatured_type *
4997 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4998 {
4999 if (cu->dwo_unit
5000 && dwarf2_per_objfile->using_index)
5001 {
5002 /* We're in a DWO/DWP file, and we're using .gdb_index.
5003 These cases require special processing. */
5004 if (get_dwp_file () == NULL)
5005 return lookup_dwo_signatured_type (cu, sig);
5006 else
5007 return lookup_dwp_signatured_type (cu, sig);
5008 }
5009 else
5010 {
5011 struct signatured_type find_entry, *entry;
5012
5013 if (dwarf2_per_objfile->signatured_types == NULL)
5014 return NULL;
5015 find_entry.signature = sig;
5016 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5017 return entry;
5018 }
5019 }
5020 \f
5021 /* Low level DIE reading support. */
5022
5023 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5024
5025 static void
5026 init_cu_die_reader (struct die_reader_specs *reader,
5027 struct dwarf2_cu *cu,
5028 struct dwarf2_section_info *section,
5029 struct dwo_file *dwo_file)
5030 {
5031 gdb_assert (section->readin && section->buffer != NULL);
5032 reader->abfd = get_section_bfd_owner (section);
5033 reader->cu = cu;
5034 reader->dwo_file = dwo_file;
5035 reader->die_section = section;
5036 reader->buffer = section->buffer;
5037 reader->buffer_end = section->buffer + section->size;
5038 reader->comp_dir = NULL;
5039 }
5040
5041 /* Subroutine of init_cutu_and_read_dies to simplify it.
5042 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5043 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5044 already.
5045
5046 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5047 from it to the DIE in the DWO. If NULL we are skipping the stub.
5048 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5049 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5050 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5051 STUB_COMP_DIR may be non-NULL.
5052 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5053 are filled in with the info of the DIE from the DWO file.
5054 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5055 provided an abbrev table to use.
5056 The result is non-zero if a valid (non-dummy) DIE was found. */
5057
5058 static int
5059 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5060 struct dwo_unit *dwo_unit,
5061 int abbrev_table_provided,
5062 struct die_info *stub_comp_unit_die,
5063 const char *stub_comp_dir,
5064 struct die_reader_specs *result_reader,
5065 const gdb_byte **result_info_ptr,
5066 struct die_info **result_comp_unit_die,
5067 int *result_has_children)
5068 {
5069 struct objfile *objfile = dwarf2_per_objfile->objfile;
5070 struct dwarf2_cu *cu = this_cu->cu;
5071 struct dwarf2_section_info *section;
5072 bfd *abfd;
5073 const gdb_byte *begin_info_ptr, *info_ptr;
5074 ULONGEST signature; /* Or dwo_id. */
5075 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5076 int i,num_extra_attrs;
5077 struct dwarf2_section_info *dwo_abbrev_section;
5078 struct attribute *attr;
5079 struct die_info *comp_unit_die;
5080
5081 /* At most one of these may be provided. */
5082 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5083
5084 /* These attributes aren't processed until later:
5085 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5086 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5087 referenced later. However, these attributes are found in the stub
5088 which we won't have later. In order to not impose this complication
5089 on the rest of the code, we read them here and copy them to the
5090 DWO CU/TU die. */
5091
5092 stmt_list = NULL;
5093 low_pc = NULL;
5094 high_pc = NULL;
5095 ranges = NULL;
5096 comp_dir = NULL;
5097
5098 if (stub_comp_unit_die != NULL)
5099 {
5100 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5101 DWO file. */
5102 if (! this_cu->is_debug_types)
5103 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5104 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5105 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5106 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5107 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5108
5109 /* There should be a DW_AT_addr_base attribute here (if needed).
5110 We need the value before we can process DW_FORM_GNU_addr_index. */
5111 cu->addr_base = 0;
5112 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5113 if (attr)
5114 cu->addr_base = DW_UNSND (attr);
5115
5116 /* There should be a DW_AT_ranges_base attribute here (if needed).
5117 We need the value before we can process DW_AT_ranges. */
5118 cu->ranges_base = 0;
5119 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5120 if (attr)
5121 cu->ranges_base = DW_UNSND (attr);
5122 }
5123 else if (stub_comp_dir != NULL)
5124 {
5125 /* Reconstruct the comp_dir attribute to simplify the code below. */
5126 comp_dir = (struct attribute *)
5127 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5128 comp_dir->name = DW_AT_comp_dir;
5129 comp_dir->form = DW_FORM_string;
5130 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5131 DW_STRING (comp_dir) = stub_comp_dir;
5132 }
5133
5134 /* Set up for reading the DWO CU/TU. */
5135 cu->dwo_unit = dwo_unit;
5136 section = dwo_unit->section;
5137 dwarf2_read_section (objfile, section);
5138 abfd = get_section_bfd_owner (section);
5139 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5140 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5141 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5142
5143 if (this_cu->is_debug_types)
5144 {
5145 ULONGEST header_signature;
5146 cu_offset type_offset_in_tu;
5147 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5148
5149 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5150 dwo_abbrev_section,
5151 info_ptr,
5152 &header_signature,
5153 &type_offset_in_tu);
5154 /* This is not an assert because it can be caused by bad debug info. */
5155 if (sig_type->signature != header_signature)
5156 {
5157 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5158 " TU at offset 0x%x [in module %s]"),
5159 hex_string (sig_type->signature),
5160 hex_string (header_signature),
5161 dwo_unit->offset.sect_off,
5162 bfd_get_filename (abfd));
5163 }
5164 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5165 /* For DWOs coming from DWP files, we don't know the CU length
5166 nor the type's offset in the TU until now. */
5167 dwo_unit->length = get_cu_length (&cu->header);
5168 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5169
5170 /* Establish the type offset that can be used to lookup the type.
5171 For DWO files, we don't know it until now. */
5172 sig_type->type_offset_in_section.sect_off =
5173 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5174 }
5175 else
5176 {
5177 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5178 dwo_abbrev_section,
5179 info_ptr, 0);
5180 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5181 /* For DWOs coming from DWP files, we don't know the CU length
5182 until now. */
5183 dwo_unit->length = get_cu_length (&cu->header);
5184 }
5185
5186 /* Replace the CU's original abbrev table with the DWO's.
5187 Reminder: We can't read the abbrev table until we've read the header. */
5188 if (abbrev_table_provided)
5189 {
5190 /* Don't free the provided abbrev table, the caller of
5191 init_cutu_and_read_dies owns it. */
5192 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5193 /* Ensure the DWO abbrev table gets freed. */
5194 make_cleanup (dwarf2_free_abbrev_table, cu);
5195 }
5196 else
5197 {
5198 dwarf2_free_abbrev_table (cu);
5199 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5200 /* Leave any existing abbrev table cleanup as is. */
5201 }
5202
5203 /* Read in the die, but leave space to copy over the attributes
5204 from the stub. This has the benefit of simplifying the rest of
5205 the code - all the work to maintain the illusion of a single
5206 DW_TAG_{compile,type}_unit DIE is done here. */
5207 num_extra_attrs = ((stmt_list != NULL)
5208 + (low_pc != NULL)
5209 + (high_pc != NULL)
5210 + (ranges != NULL)
5211 + (comp_dir != NULL));
5212 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5213 result_has_children, num_extra_attrs);
5214
5215 /* Copy over the attributes from the stub to the DIE we just read in. */
5216 comp_unit_die = *result_comp_unit_die;
5217 i = comp_unit_die->num_attrs;
5218 if (stmt_list != NULL)
5219 comp_unit_die->attrs[i++] = *stmt_list;
5220 if (low_pc != NULL)
5221 comp_unit_die->attrs[i++] = *low_pc;
5222 if (high_pc != NULL)
5223 comp_unit_die->attrs[i++] = *high_pc;
5224 if (ranges != NULL)
5225 comp_unit_die->attrs[i++] = *ranges;
5226 if (comp_dir != NULL)
5227 comp_unit_die->attrs[i++] = *comp_dir;
5228 comp_unit_die->num_attrs += num_extra_attrs;
5229
5230 if (dwarf_die_debug)
5231 {
5232 fprintf_unfiltered (gdb_stdlog,
5233 "Read die from %s@0x%x of %s:\n",
5234 get_section_name (section),
5235 (unsigned) (begin_info_ptr - section->buffer),
5236 bfd_get_filename (abfd));
5237 dump_die (comp_unit_die, dwarf_die_debug);
5238 }
5239
5240 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5241 TUs by skipping the stub and going directly to the entry in the DWO file.
5242 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5243 to get it via circuitous means. Blech. */
5244 if (comp_dir != NULL)
5245 result_reader->comp_dir = DW_STRING (comp_dir);
5246
5247 /* Skip dummy compilation units. */
5248 if (info_ptr >= begin_info_ptr + dwo_unit->length
5249 || peek_abbrev_code (abfd, info_ptr) == 0)
5250 return 0;
5251
5252 *result_info_ptr = info_ptr;
5253 return 1;
5254 }
5255
5256 /* Subroutine of init_cutu_and_read_dies to simplify it.
5257 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5258 Returns NULL if the specified DWO unit cannot be found. */
5259
5260 static struct dwo_unit *
5261 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5262 struct die_info *comp_unit_die)
5263 {
5264 struct dwarf2_cu *cu = this_cu->cu;
5265 struct attribute *attr;
5266 ULONGEST signature;
5267 struct dwo_unit *dwo_unit;
5268 const char *comp_dir, *dwo_name;
5269
5270 gdb_assert (cu != NULL);
5271
5272 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5273 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5274 gdb_assert (attr != NULL);
5275 dwo_name = DW_STRING (attr);
5276 comp_dir = NULL;
5277 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5278 if (attr)
5279 comp_dir = DW_STRING (attr);
5280
5281 if (this_cu->is_debug_types)
5282 {
5283 struct signatured_type *sig_type;
5284
5285 /* Since this_cu is the first member of struct signatured_type,
5286 we can go from a pointer to one to a pointer to the other. */
5287 sig_type = (struct signatured_type *) this_cu;
5288 signature = sig_type->signature;
5289 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5290 }
5291 else
5292 {
5293 struct attribute *attr;
5294
5295 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5296 if (! attr)
5297 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5298 " [in module %s]"),
5299 dwo_name, objfile_name (this_cu->objfile));
5300 signature = DW_UNSND (attr);
5301 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5302 signature);
5303 }
5304
5305 return dwo_unit;
5306 }
5307
5308 /* Subroutine of init_cutu_and_read_dies to simplify it.
5309 See it for a description of the parameters.
5310 Read a TU directly from a DWO file, bypassing the stub.
5311
5312 Note: This function could be a little bit simpler if we shared cleanups
5313 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5314 to do, so we keep this function self-contained. Or we could move this
5315 into our caller, but it's complex enough already. */
5316
5317 static void
5318 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5319 int use_existing_cu, int keep,
5320 die_reader_func_ftype *die_reader_func,
5321 void *data)
5322 {
5323 struct dwarf2_cu *cu;
5324 struct signatured_type *sig_type;
5325 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5326 struct die_reader_specs reader;
5327 const gdb_byte *info_ptr;
5328 struct die_info *comp_unit_die;
5329 int has_children;
5330
5331 /* Verify we can do the following downcast, and that we have the
5332 data we need. */
5333 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5334 sig_type = (struct signatured_type *) this_cu;
5335 gdb_assert (sig_type->dwo_unit != NULL);
5336
5337 cleanups = make_cleanup (null_cleanup, NULL);
5338
5339 if (use_existing_cu && this_cu->cu != NULL)
5340 {
5341 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5342 cu = this_cu->cu;
5343 /* There's no need to do the rereading_dwo_cu handling that
5344 init_cutu_and_read_dies does since we don't read the stub. */
5345 }
5346 else
5347 {
5348 /* If !use_existing_cu, this_cu->cu must be NULL. */
5349 gdb_assert (this_cu->cu == NULL);
5350 cu = xmalloc (sizeof (*cu));
5351 init_one_comp_unit (cu, this_cu);
5352 /* If an error occurs while loading, release our storage. */
5353 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5354 }
5355
5356 /* A future optimization, if needed, would be to use an existing
5357 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5358 could share abbrev tables. */
5359
5360 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5361 0 /* abbrev_table_provided */,
5362 NULL /* stub_comp_unit_die */,
5363 sig_type->dwo_unit->dwo_file->comp_dir,
5364 &reader, &info_ptr,
5365 &comp_unit_die, &has_children) == 0)
5366 {
5367 /* Dummy die. */
5368 do_cleanups (cleanups);
5369 return;
5370 }
5371
5372 /* All the "real" work is done here. */
5373 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5374
5375 /* This duplicates the code in init_cutu_and_read_dies,
5376 but the alternative is making the latter more complex.
5377 This function is only for the special case of using DWO files directly:
5378 no point in overly complicating the general case just to handle this. */
5379 if (free_cu_cleanup != NULL)
5380 {
5381 if (keep)
5382 {
5383 /* We've successfully allocated this compilation unit. Let our
5384 caller clean it up when finished with it. */
5385 discard_cleanups (free_cu_cleanup);
5386
5387 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5388 So we have to manually free the abbrev table. */
5389 dwarf2_free_abbrev_table (cu);
5390
5391 /* Link this CU into read_in_chain. */
5392 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5393 dwarf2_per_objfile->read_in_chain = this_cu;
5394 }
5395 else
5396 do_cleanups (free_cu_cleanup);
5397 }
5398
5399 do_cleanups (cleanups);
5400 }
5401
5402 /* Initialize a CU (or TU) and read its DIEs.
5403 If the CU defers to a DWO file, read the DWO file as well.
5404
5405 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5406 Otherwise the table specified in the comp unit header is read in and used.
5407 This is an optimization for when we already have the abbrev table.
5408
5409 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5410 Otherwise, a new CU is allocated with xmalloc.
5411
5412 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5413 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5414
5415 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5416 linker) then DIE_READER_FUNC will not get called. */
5417
5418 static void
5419 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5420 struct abbrev_table *abbrev_table,
5421 int use_existing_cu, int keep,
5422 die_reader_func_ftype *die_reader_func,
5423 void *data)
5424 {
5425 struct objfile *objfile = dwarf2_per_objfile->objfile;
5426 struct dwarf2_section_info *section = this_cu->section;
5427 bfd *abfd = get_section_bfd_owner (section);
5428 struct dwarf2_cu *cu;
5429 const gdb_byte *begin_info_ptr, *info_ptr;
5430 struct die_reader_specs reader;
5431 struct die_info *comp_unit_die;
5432 int has_children;
5433 struct attribute *attr;
5434 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5435 struct signatured_type *sig_type = NULL;
5436 struct dwarf2_section_info *abbrev_section;
5437 /* Non-zero if CU currently points to a DWO file and we need to
5438 reread it. When this happens we need to reread the skeleton die
5439 before we can reread the DWO file (this only applies to CUs, not TUs). */
5440 int rereading_dwo_cu = 0;
5441
5442 if (dwarf_die_debug)
5443 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5444 this_cu->is_debug_types ? "type" : "comp",
5445 this_cu->offset.sect_off);
5446
5447 if (use_existing_cu)
5448 gdb_assert (keep);
5449
5450 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5451 file (instead of going through the stub), short-circuit all of this. */
5452 if (this_cu->reading_dwo_directly)
5453 {
5454 /* Narrow down the scope of possibilities to have to understand. */
5455 gdb_assert (this_cu->is_debug_types);
5456 gdb_assert (abbrev_table == NULL);
5457 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5458 die_reader_func, data);
5459 return;
5460 }
5461
5462 cleanups = make_cleanup (null_cleanup, NULL);
5463
5464 /* This is cheap if the section is already read in. */
5465 dwarf2_read_section (objfile, section);
5466
5467 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5468
5469 abbrev_section = get_abbrev_section_for_cu (this_cu);
5470
5471 if (use_existing_cu && this_cu->cu != NULL)
5472 {
5473 cu = this_cu->cu;
5474 /* If this CU is from a DWO file we need to start over, we need to
5475 refetch the attributes from the skeleton CU.
5476 This could be optimized by retrieving those attributes from when we
5477 were here the first time: the previous comp_unit_die was stored in
5478 comp_unit_obstack. But there's no data yet that we need this
5479 optimization. */
5480 if (cu->dwo_unit != NULL)
5481 rereading_dwo_cu = 1;
5482 }
5483 else
5484 {
5485 /* If !use_existing_cu, this_cu->cu must be NULL. */
5486 gdb_assert (this_cu->cu == NULL);
5487 cu = xmalloc (sizeof (*cu));
5488 init_one_comp_unit (cu, this_cu);
5489 /* If an error occurs while loading, release our storage. */
5490 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5491 }
5492
5493 /* Get the header. */
5494 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5495 {
5496 /* We already have the header, there's no need to read it in again. */
5497 info_ptr += cu->header.first_die_offset.cu_off;
5498 }
5499 else
5500 {
5501 if (this_cu->is_debug_types)
5502 {
5503 ULONGEST signature;
5504 cu_offset type_offset_in_tu;
5505
5506 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5507 abbrev_section, info_ptr,
5508 &signature,
5509 &type_offset_in_tu);
5510
5511 /* Since per_cu is the first member of struct signatured_type,
5512 we can go from a pointer to one to a pointer to the other. */
5513 sig_type = (struct signatured_type *) this_cu;
5514 gdb_assert (sig_type->signature == signature);
5515 gdb_assert (sig_type->type_offset_in_tu.cu_off
5516 == type_offset_in_tu.cu_off);
5517 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5518
5519 /* LENGTH has not been set yet for type units if we're
5520 using .gdb_index. */
5521 this_cu->length = get_cu_length (&cu->header);
5522
5523 /* Establish the type offset that can be used to lookup the type. */
5524 sig_type->type_offset_in_section.sect_off =
5525 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5526 }
5527 else
5528 {
5529 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5530 abbrev_section,
5531 info_ptr, 0);
5532
5533 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5534 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5535 }
5536 }
5537
5538 /* Skip dummy compilation units. */
5539 if (info_ptr >= begin_info_ptr + this_cu->length
5540 || peek_abbrev_code (abfd, info_ptr) == 0)
5541 {
5542 do_cleanups (cleanups);
5543 return;
5544 }
5545
5546 /* If we don't have them yet, read the abbrevs for this compilation unit.
5547 And if we need to read them now, make sure they're freed when we're
5548 done. Note that it's important that if the CU had an abbrev table
5549 on entry we don't free it when we're done: Somewhere up the call stack
5550 it may be in use. */
5551 if (abbrev_table != NULL)
5552 {
5553 gdb_assert (cu->abbrev_table == NULL);
5554 gdb_assert (cu->header.abbrev_offset.sect_off
5555 == abbrev_table->offset.sect_off);
5556 cu->abbrev_table = abbrev_table;
5557 }
5558 else if (cu->abbrev_table == NULL)
5559 {
5560 dwarf2_read_abbrevs (cu, abbrev_section);
5561 make_cleanup (dwarf2_free_abbrev_table, cu);
5562 }
5563 else if (rereading_dwo_cu)
5564 {
5565 dwarf2_free_abbrev_table (cu);
5566 dwarf2_read_abbrevs (cu, abbrev_section);
5567 }
5568
5569 /* Read the top level CU/TU die. */
5570 init_cu_die_reader (&reader, cu, section, NULL);
5571 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5572
5573 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5574 from the DWO file.
5575 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5576 DWO CU, that this test will fail (the attribute will not be present). */
5577 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5578 if (attr)
5579 {
5580 struct dwo_unit *dwo_unit;
5581 struct die_info *dwo_comp_unit_die;
5582
5583 if (has_children)
5584 {
5585 complaint (&symfile_complaints,
5586 _("compilation unit with DW_AT_GNU_dwo_name"
5587 " has children (offset 0x%x) [in module %s]"),
5588 this_cu->offset.sect_off, bfd_get_filename (abfd));
5589 }
5590 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5591 if (dwo_unit != NULL)
5592 {
5593 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5594 abbrev_table != NULL,
5595 comp_unit_die, NULL,
5596 &reader, &info_ptr,
5597 &dwo_comp_unit_die, &has_children) == 0)
5598 {
5599 /* Dummy die. */
5600 do_cleanups (cleanups);
5601 return;
5602 }
5603 comp_unit_die = dwo_comp_unit_die;
5604 }
5605 else
5606 {
5607 /* Yikes, we couldn't find the rest of the DIE, we only have
5608 the stub. A complaint has already been logged. There's
5609 not much more we can do except pass on the stub DIE to
5610 die_reader_func. We don't want to throw an error on bad
5611 debug info. */
5612 }
5613 }
5614
5615 /* All of the above is setup for this call. Yikes. */
5616 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5617
5618 /* Done, clean up. */
5619 if (free_cu_cleanup != NULL)
5620 {
5621 if (keep)
5622 {
5623 /* We've successfully allocated this compilation unit. Let our
5624 caller clean it up when finished with it. */
5625 discard_cleanups (free_cu_cleanup);
5626
5627 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5628 So we have to manually free the abbrev table. */
5629 dwarf2_free_abbrev_table (cu);
5630
5631 /* Link this CU into read_in_chain. */
5632 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5633 dwarf2_per_objfile->read_in_chain = this_cu;
5634 }
5635 else
5636 do_cleanups (free_cu_cleanup);
5637 }
5638
5639 do_cleanups (cleanups);
5640 }
5641
5642 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5643 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5644 to have already done the lookup to find the DWO file).
5645
5646 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5647 THIS_CU->is_debug_types, but nothing else.
5648
5649 We fill in THIS_CU->length.
5650
5651 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5652 linker) then DIE_READER_FUNC will not get called.
5653
5654 THIS_CU->cu is always freed when done.
5655 This is done in order to not leave THIS_CU->cu in a state where we have
5656 to care whether it refers to the "main" CU or the DWO CU. */
5657
5658 static void
5659 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5660 struct dwo_file *dwo_file,
5661 die_reader_func_ftype *die_reader_func,
5662 void *data)
5663 {
5664 struct objfile *objfile = dwarf2_per_objfile->objfile;
5665 struct dwarf2_section_info *section = this_cu->section;
5666 bfd *abfd = get_section_bfd_owner (section);
5667 struct dwarf2_section_info *abbrev_section;
5668 struct dwarf2_cu cu;
5669 const gdb_byte *begin_info_ptr, *info_ptr;
5670 struct die_reader_specs reader;
5671 struct cleanup *cleanups;
5672 struct die_info *comp_unit_die;
5673 int has_children;
5674
5675 if (dwarf_die_debug)
5676 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5677 this_cu->is_debug_types ? "type" : "comp",
5678 this_cu->offset.sect_off);
5679
5680 gdb_assert (this_cu->cu == NULL);
5681
5682 abbrev_section = (dwo_file != NULL
5683 ? &dwo_file->sections.abbrev
5684 : get_abbrev_section_for_cu (this_cu));
5685
5686 /* This is cheap if the section is already read in. */
5687 dwarf2_read_section (objfile, section);
5688
5689 init_one_comp_unit (&cu, this_cu);
5690
5691 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5692
5693 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5694 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5695 abbrev_section, info_ptr,
5696 this_cu->is_debug_types);
5697
5698 this_cu->length = get_cu_length (&cu.header);
5699
5700 /* Skip dummy compilation units. */
5701 if (info_ptr >= begin_info_ptr + this_cu->length
5702 || peek_abbrev_code (abfd, info_ptr) == 0)
5703 {
5704 do_cleanups (cleanups);
5705 return;
5706 }
5707
5708 dwarf2_read_abbrevs (&cu, abbrev_section);
5709 make_cleanup (dwarf2_free_abbrev_table, &cu);
5710
5711 init_cu_die_reader (&reader, &cu, section, dwo_file);
5712 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5713
5714 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5715
5716 do_cleanups (cleanups);
5717 }
5718
5719 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5720 does not lookup the specified DWO file.
5721 This cannot be used to read DWO files.
5722
5723 THIS_CU->cu is always freed when done.
5724 This is done in order to not leave THIS_CU->cu in a state where we have
5725 to care whether it refers to the "main" CU or the DWO CU.
5726 We can revisit this if the data shows there's a performance issue. */
5727
5728 static void
5729 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5730 die_reader_func_ftype *die_reader_func,
5731 void *data)
5732 {
5733 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5734 }
5735 \f
5736 /* Type Unit Groups.
5737
5738 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5739 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5740 so that all types coming from the same compilation (.o file) are grouped
5741 together. A future step could be to put the types in the same symtab as
5742 the CU the types ultimately came from. */
5743
5744 static hashval_t
5745 hash_type_unit_group (const void *item)
5746 {
5747 const struct type_unit_group *tu_group = item;
5748
5749 return hash_stmt_list_entry (&tu_group->hash);
5750 }
5751
5752 static int
5753 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5754 {
5755 const struct type_unit_group *lhs = item_lhs;
5756 const struct type_unit_group *rhs = item_rhs;
5757
5758 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5759 }
5760
5761 /* Allocate a hash table for type unit groups. */
5762
5763 static htab_t
5764 allocate_type_unit_groups_table (void)
5765 {
5766 return htab_create_alloc_ex (3,
5767 hash_type_unit_group,
5768 eq_type_unit_group,
5769 NULL,
5770 &dwarf2_per_objfile->objfile->objfile_obstack,
5771 hashtab_obstack_allocate,
5772 dummy_obstack_deallocate);
5773 }
5774
5775 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5776 partial symtabs. We combine several TUs per psymtab to not let the size
5777 of any one psymtab grow too big. */
5778 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5779 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5780
5781 /* Helper routine for get_type_unit_group.
5782 Create the type_unit_group object used to hold one or more TUs. */
5783
5784 static struct type_unit_group *
5785 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5786 {
5787 struct objfile *objfile = dwarf2_per_objfile->objfile;
5788 struct dwarf2_per_cu_data *per_cu;
5789 struct type_unit_group *tu_group;
5790
5791 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5792 struct type_unit_group);
5793 per_cu = &tu_group->per_cu;
5794 per_cu->objfile = objfile;
5795
5796 if (dwarf2_per_objfile->using_index)
5797 {
5798 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct dwarf2_per_cu_quick_data);
5800 }
5801 else
5802 {
5803 unsigned int line_offset = line_offset_struct.sect_off;
5804 struct partial_symtab *pst;
5805 char *name;
5806
5807 /* Give the symtab a useful name for debug purposes. */
5808 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5809 name = xstrprintf ("<type_units_%d>",
5810 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5811 else
5812 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5813
5814 pst = create_partial_symtab (per_cu, name);
5815 pst->anonymous = 1;
5816
5817 xfree (name);
5818 }
5819
5820 tu_group->hash.dwo_unit = cu->dwo_unit;
5821 tu_group->hash.line_offset = line_offset_struct;
5822
5823 return tu_group;
5824 }
5825
5826 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5827 STMT_LIST is a DW_AT_stmt_list attribute. */
5828
5829 static struct type_unit_group *
5830 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5831 {
5832 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5833 struct type_unit_group *tu_group;
5834 void **slot;
5835 unsigned int line_offset;
5836 struct type_unit_group type_unit_group_for_lookup;
5837
5838 if (dwarf2_per_objfile->type_unit_groups == NULL)
5839 {
5840 dwarf2_per_objfile->type_unit_groups =
5841 allocate_type_unit_groups_table ();
5842 }
5843
5844 /* Do we need to create a new group, or can we use an existing one? */
5845
5846 if (stmt_list)
5847 {
5848 line_offset = DW_UNSND (stmt_list);
5849 ++tu_stats->nr_symtab_sharers;
5850 }
5851 else
5852 {
5853 /* Ugh, no stmt_list. Rare, but we have to handle it.
5854 We can do various things here like create one group per TU or
5855 spread them over multiple groups to split up the expansion work.
5856 To avoid worst case scenarios (too many groups or too large groups)
5857 we, umm, group them in bunches. */
5858 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5859 | (tu_stats->nr_stmt_less_type_units
5860 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5861 ++tu_stats->nr_stmt_less_type_units;
5862 }
5863
5864 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5865 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5866 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5867 &type_unit_group_for_lookup, INSERT);
5868 if (*slot != NULL)
5869 {
5870 tu_group = *slot;
5871 gdb_assert (tu_group != NULL);
5872 }
5873 else
5874 {
5875 sect_offset line_offset_struct;
5876
5877 line_offset_struct.sect_off = line_offset;
5878 tu_group = create_type_unit_group (cu, line_offset_struct);
5879 *slot = tu_group;
5880 ++tu_stats->nr_symtabs;
5881 }
5882
5883 return tu_group;
5884 }
5885 \f
5886 /* Partial symbol tables. */
5887
5888 /* Create a psymtab named NAME and assign it to PER_CU.
5889
5890 The caller must fill in the following details:
5891 dirname, textlow, texthigh. */
5892
5893 static struct partial_symtab *
5894 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5895 {
5896 struct objfile *objfile = per_cu->objfile;
5897 struct partial_symtab *pst;
5898
5899 pst = start_psymtab_common (objfile, name, 0,
5900 objfile->global_psymbols.next,
5901 objfile->static_psymbols.next);
5902
5903 pst->psymtabs_addrmap_supported = 1;
5904
5905 /* This is the glue that links PST into GDB's symbol API. */
5906 pst->read_symtab_private = per_cu;
5907 pst->read_symtab = dwarf2_read_symtab;
5908 per_cu->v.psymtab = pst;
5909
5910 return pst;
5911 }
5912
5913 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5914 type. */
5915
5916 struct process_psymtab_comp_unit_data
5917 {
5918 /* True if we are reading a DW_TAG_partial_unit. */
5919
5920 int want_partial_unit;
5921
5922 /* The "pretend" language that is used if the CU doesn't declare a
5923 language. */
5924
5925 enum language pretend_language;
5926 };
5927
5928 /* die_reader_func for process_psymtab_comp_unit. */
5929
5930 static void
5931 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5932 const gdb_byte *info_ptr,
5933 struct die_info *comp_unit_die,
5934 int has_children,
5935 void *data)
5936 {
5937 struct dwarf2_cu *cu = reader->cu;
5938 struct objfile *objfile = cu->objfile;
5939 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5940 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5941 struct attribute *attr;
5942 CORE_ADDR baseaddr;
5943 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5944 struct partial_symtab *pst;
5945 int has_pc_info;
5946 const char *filename;
5947 struct process_psymtab_comp_unit_data *info = data;
5948
5949 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5950 return;
5951
5952 gdb_assert (! per_cu->is_debug_types);
5953
5954 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5955
5956 cu->list_in_scope = &file_symbols;
5957
5958 /* Allocate a new partial symbol table structure. */
5959 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5960 if (attr == NULL || !DW_STRING (attr))
5961 filename = "";
5962 else
5963 filename = DW_STRING (attr);
5964
5965 pst = create_partial_symtab (per_cu, filename);
5966
5967 /* This must be done before calling dwarf2_build_include_psymtabs. */
5968 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5969 if (attr != NULL)
5970 pst->dirname = DW_STRING (attr);
5971
5972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5973
5974 dwarf2_find_base_address (comp_unit_die, cu);
5975
5976 /* Possibly set the default values of LOWPC and HIGHPC from
5977 `DW_AT_ranges'. */
5978 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5979 &best_highpc, cu, pst);
5980 if (has_pc_info == 1 && best_lowpc < best_highpc)
5981 /* Store the contiguous range if it is not empty; it can be empty for
5982 CUs with no code. */
5983 addrmap_set_empty (objfile->psymtabs_addrmap,
5984 gdbarch_adjust_dwarf2_addr (gdbarch,
5985 best_lowpc + baseaddr),
5986 gdbarch_adjust_dwarf2_addr (gdbarch,
5987 best_highpc + baseaddr) - 1,
5988 pst);
5989
5990 /* Check if comp unit has_children.
5991 If so, read the rest of the partial symbols from this comp unit.
5992 If not, there's no more debug_info for this comp unit. */
5993 if (has_children)
5994 {
5995 struct partial_die_info *first_die;
5996 CORE_ADDR lowpc, highpc;
5997
5998 lowpc = ((CORE_ADDR) -1);
5999 highpc = ((CORE_ADDR) 0);
6000
6001 first_die = load_partial_dies (reader, info_ptr, 1);
6002
6003 scan_partial_symbols (first_die, &lowpc, &highpc,
6004 ! has_pc_info, cu);
6005
6006 /* If we didn't find a lowpc, set it to highpc to avoid
6007 complaints from `maint check'. */
6008 if (lowpc == ((CORE_ADDR) -1))
6009 lowpc = highpc;
6010
6011 /* If the compilation unit didn't have an explicit address range,
6012 then use the information extracted from its child dies. */
6013 if (! has_pc_info)
6014 {
6015 best_lowpc = lowpc;
6016 best_highpc = highpc;
6017 }
6018 }
6019 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6020 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6021
6022 pst->n_global_syms = objfile->global_psymbols.next -
6023 (objfile->global_psymbols.list + pst->globals_offset);
6024 pst->n_static_syms = objfile->static_psymbols.next -
6025 (objfile->static_psymbols.list + pst->statics_offset);
6026 sort_pst_symbols (objfile, pst);
6027
6028 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6029 {
6030 int i;
6031 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6032 struct dwarf2_per_cu_data *iter;
6033
6034 /* Fill in 'dependencies' here; we fill in 'users' in a
6035 post-pass. */
6036 pst->number_of_dependencies = len;
6037 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6038 len * sizeof (struct symtab *));
6039 for (i = 0;
6040 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6041 i, iter);
6042 ++i)
6043 pst->dependencies[i] = iter->v.psymtab;
6044
6045 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6046 }
6047
6048 /* Get the list of files included in the current compilation unit,
6049 and build a psymtab for each of them. */
6050 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6051
6052 if (dwarf_read_debug)
6053 {
6054 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6055
6056 fprintf_unfiltered (gdb_stdlog,
6057 "Psymtab for %s unit @0x%x: %s - %s"
6058 ", %d global, %d static syms\n",
6059 per_cu->is_debug_types ? "type" : "comp",
6060 per_cu->offset.sect_off,
6061 paddress (gdbarch, pst->textlow),
6062 paddress (gdbarch, pst->texthigh),
6063 pst->n_global_syms, pst->n_static_syms);
6064 }
6065 }
6066
6067 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6068 Process compilation unit THIS_CU for a psymtab. */
6069
6070 static void
6071 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6072 int want_partial_unit,
6073 enum language pretend_language)
6074 {
6075 struct process_psymtab_comp_unit_data info;
6076
6077 /* If this compilation unit was already read in, free the
6078 cached copy in order to read it in again. This is
6079 necessary because we skipped some symbols when we first
6080 read in the compilation unit (see load_partial_dies).
6081 This problem could be avoided, but the benefit is unclear. */
6082 if (this_cu->cu != NULL)
6083 free_one_cached_comp_unit (this_cu);
6084
6085 gdb_assert (! this_cu->is_debug_types);
6086 info.want_partial_unit = want_partial_unit;
6087 info.pretend_language = pretend_language;
6088 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6089 process_psymtab_comp_unit_reader,
6090 &info);
6091
6092 /* Age out any secondary CUs. */
6093 age_cached_comp_units ();
6094 }
6095
6096 /* Reader function for build_type_psymtabs. */
6097
6098 static void
6099 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6100 const gdb_byte *info_ptr,
6101 struct die_info *type_unit_die,
6102 int has_children,
6103 void *data)
6104 {
6105 struct objfile *objfile = dwarf2_per_objfile->objfile;
6106 struct dwarf2_cu *cu = reader->cu;
6107 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6108 struct signatured_type *sig_type;
6109 struct type_unit_group *tu_group;
6110 struct attribute *attr;
6111 struct partial_die_info *first_die;
6112 CORE_ADDR lowpc, highpc;
6113 struct partial_symtab *pst;
6114
6115 gdb_assert (data == NULL);
6116 gdb_assert (per_cu->is_debug_types);
6117 sig_type = (struct signatured_type *) per_cu;
6118
6119 if (! has_children)
6120 return;
6121
6122 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6123 tu_group = get_type_unit_group (cu, attr);
6124
6125 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6126
6127 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6128 cu->list_in_scope = &file_symbols;
6129 pst = create_partial_symtab (per_cu, "");
6130 pst->anonymous = 1;
6131
6132 first_die = load_partial_dies (reader, info_ptr, 1);
6133
6134 lowpc = (CORE_ADDR) -1;
6135 highpc = (CORE_ADDR) 0;
6136 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6137
6138 pst->n_global_syms = objfile->global_psymbols.next -
6139 (objfile->global_psymbols.list + pst->globals_offset);
6140 pst->n_static_syms = objfile->static_psymbols.next -
6141 (objfile->static_psymbols.list + pst->statics_offset);
6142 sort_pst_symbols (objfile, pst);
6143 }
6144
6145 /* Struct used to sort TUs by their abbreviation table offset. */
6146
6147 struct tu_abbrev_offset
6148 {
6149 struct signatured_type *sig_type;
6150 sect_offset abbrev_offset;
6151 };
6152
6153 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6154
6155 static int
6156 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6157 {
6158 const struct tu_abbrev_offset * const *a = ap;
6159 const struct tu_abbrev_offset * const *b = bp;
6160 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6161 unsigned int boff = (*b)->abbrev_offset.sect_off;
6162
6163 return (aoff > boff) - (aoff < boff);
6164 }
6165
6166 /* Efficiently read all the type units.
6167 This does the bulk of the work for build_type_psymtabs.
6168
6169 The efficiency is because we sort TUs by the abbrev table they use and
6170 only read each abbrev table once. In one program there are 200K TUs
6171 sharing 8K abbrev tables.
6172
6173 The main purpose of this function is to support building the
6174 dwarf2_per_objfile->type_unit_groups table.
6175 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6176 can collapse the search space by grouping them by stmt_list.
6177 The savings can be significant, in the same program from above the 200K TUs
6178 share 8K stmt_list tables.
6179
6180 FUNC is expected to call get_type_unit_group, which will create the
6181 struct type_unit_group if necessary and add it to
6182 dwarf2_per_objfile->type_unit_groups. */
6183
6184 static void
6185 build_type_psymtabs_1 (void)
6186 {
6187 struct objfile *objfile = dwarf2_per_objfile->objfile;
6188 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6189 struct cleanup *cleanups;
6190 struct abbrev_table *abbrev_table;
6191 sect_offset abbrev_offset;
6192 struct tu_abbrev_offset *sorted_by_abbrev;
6193 struct type_unit_group **iter;
6194 int i;
6195
6196 /* It's up to the caller to not call us multiple times. */
6197 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6198
6199 if (dwarf2_per_objfile->n_type_units == 0)
6200 return;
6201
6202 /* TUs typically share abbrev tables, and there can be way more TUs than
6203 abbrev tables. Sort by abbrev table to reduce the number of times we
6204 read each abbrev table in.
6205 Alternatives are to punt or to maintain a cache of abbrev tables.
6206 This is simpler and efficient enough for now.
6207
6208 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6209 symtab to use). Typically TUs with the same abbrev offset have the same
6210 stmt_list value too so in practice this should work well.
6211
6212 The basic algorithm here is:
6213
6214 sort TUs by abbrev table
6215 for each TU with same abbrev table:
6216 read abbrev table if first user
6217 read TU top level DIE
6218 [IWBN if DWO skeletons had DW_AT_stmt_list]
6219 call FUNC */
6220
6221 if (dwarf_read_debug)
6222 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6223
6224 /* Sort in a separate table to maintain the order of all_type_units
6225 for .gdb_index: TU indices directly index all_type_units. */
6226 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6227 dwarf2_per_objfile->n_type_units);
6228 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6229 {
6230 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6231
6232 sorted_by_abbrev[i].sig_type = sig_type;
6233 sorted_by_abbrev[i].abbrev_offset =
6234 read_abbrev_offset (sig_type->per_cu.section,
6235 sig_type->per_cu.offset);
6236 }
6237 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6238 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6239 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6240
6241 abbrev_offset.sect_off = ~(unsigned) 0;
6242 abbrev_table = NULL;
6243 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6244
6245 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6246 {
6247 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6248
6249 /* Switch to the next abbrev table if necessary. */
6250 if (abbrev_table == NULL
6251 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6252 {
6253 if (abbrev_table != NULL)
6254 {
6255 abbrev_table_free (abbrev_table);
6256 /* Reset to NULL in case abbrev_table_read_table throws
6257 an error: abbrev_table_free_cleanup will get called. */
6258 abbrev_table = NULL;
6259 }
6260 abbrev_offset = tu->abbrev_offset;
6261 abbrev_table =
6262 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6263 abbrev_offset);
6264 ++tu_stats->nr_uniq_abbrev_tables;
6265 }
6266
6267 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6268 build_type_psymtabs_reader, NULL);
6269 }
6270
6271 do_cleanups (cleanups);
6272 }
6273
6274 /* Print collected type unit statistics. */
6275
6276 static void
6277 print_tu_stats (void)
6278 {
6279 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6280
6281 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6282 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6283 dwarf2_per_objfile->n_type_units);
6284 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6285 tu_stats->nr_uniq_abbrev_tables);
6286 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6287 tu_stats->nr_symtabs);
6288 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6289 tu_stats->nr_symtab_sharers);
6290 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6291 tu_stats->nr_stmt_less_type_units);
6292 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6293 tu_stats->nr_all_type_units_reallocs);
6294 }
6295
6296 /* Traversal function for build_type_psymtabs. */
6297
6298 static int
6299 build_type_psymtab_dependencies (void **slot, void *info)
6300 {
6301 struct objfile *objfile = dwarf2_per_objfile->objfile;
6302 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6303 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6304 struct partial_symtab *pst = per_cu->v.psymtab;
6305 int len = VEC_length (sig_type_ptr, tu_group->tus);
6306 struct signatured_type *iter;
6307 int i;
6308
6309 gdb_assert (len > 0);
6310 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6311
6312 pst->number_of_dependencies = len;
6313 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6314 len * sizeof (struct psymtab *));
6315 for (i = 0;
6316 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6317 ++i)
6318 {
6319 gdb_assert (iter->per_cu.is_debug_types);
6320 pst->dependencies[i] = iter->per_cu.v.psymtab;
6321 iter->type_unit_group = tu_group;
6322 }
6323
6324 VEC_free (sig_type_ptr, tu_group->tus);
6325
6326 return 1;
6327 }
6328
6329 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6330 Build partial symbol tables for the .debug_types comp-units. */
6331
6332 static void
6333 build_type_psymtabs (struct objfile *objfile)
6334 {
6335 if (! create_all_type_units (objfile))
6336 return;
6337
6338 build_type_psymtabs_1 ();
6339 }
6340
6341 /* Traversal function for process_skeletonless_type_unit.
6342 Read a TU in a DWO file and build partial symbols for it. */
6343
6344 static int
6345 process_skeletonless_type_unit (void **slot, void *info)
6346 {
6347 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6348 struct objfile *objfile = info;
6349 struct signatured_type find_entry, *entry;
6350
6351 /* If this TU doesn't exist in the global table, add it and read it in. */
6352
6353 if (dwarf2_per_objfile->signatured_types == NULL)
6354 {
6355 dwarf2_per_objfile->signatured_types
6356 = allocate_signatured_type_table (objfile);
6357 }
6358
6359 find_entry.signature = dwo_unit->signature;
6360 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6361 INSERT);
6362 /* If we've already seen this type there's nothing to do. What's happening
6363 is we're doing our own version of comdat-folding here. */
6364 if (*slot != NULL)
6365 return 1;
6366
6367 /* This does the job that create_all_type_units would have done for
6368 this TU. */
6369 entry = add_type_unit (dwo_unit->signature, slot);
6370 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6371 *slot = entry;
6372
6373 /* This does the job that build_type_psymtabs_1 would have done. */
6374 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6375 build_type_psymtabs_reader, NULL);
6376
6377 return 1;
6378 }
6379
6380 /* Traversal function for process_skeletonless_type_units. */
6381
6382 static int
6383 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6384 {
6385 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6386
6387 if (dwo_file->tus != NULL)
6388 {
6389 htab_traverse_noresize (dwo_file->tus,
6390 process_skeletonless_type_unit, info);
6391 }
6392
6393 return 1;
6394 }
6395
6396 /* Scan all TUs of DWO files, verifying we've processed them.
6397 This is needed in case a TU was emitted without its skeleton.
6398 Note: This can't be done until we know what all the DWO files are. */
6399
6400 static void
6401 process_skeletonless_type_units (struct objfile *objfile)
6402 {
6403 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6404 if (get_dwp_file () == NULL
6405 && dwarf2_per_objfile->dwo_files != NULL)
6406 {
6407 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6408 process_dwo_file_for_skeletonless_type_units,
6409 objfile);
6410 }
6411 }
6412
6413 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6414
6415 static void
6416 psymtabs_addrmap_cleanup (void *o)
6417 {
6418 struct objfile *objfile = o;
6419
6420 objfile->psymtabs_addrmap = NULL;
6421 }
6422
6423 /* Compute the 'user' field for each psymtab in OBJFILE. */
6424
6425 static void
6426 set_partial_user (struct objfile *objfile)
6427 {
6428 int i;
6429
6430 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6431 {
6432 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6433 struct partial_symtab *pst = per_cu->v.psymtab;
6434 int j;
6435
6436 if (pst == NULL)
6437 continue;
6438
6439 for (j = 0; j < pst->number_of_dependencies; ++j)
6440 {
6441 /* Set the 'user' field only if it is not already set. */
6442 if (pst->dependencies[j]->user == NULL)
6443 pst->dependencies[j]->user = pst;
6444 }
6445 }
6446 }
6447
6448 /* Build the partial symbol table by doing a quick pass through the
6449 .debug_info and .debug_abbrev sections. */
6450
6451 static void
6452 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6453 {
6454 struct cleanup *back_to, *addrmap_cleanup;
6455 struct obstack temp_obstack;
6456 int i;
6457
6458 if (dwarf_read_debug)
6459 {
6460 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6461 objfile_name (objfile));
6462 }
6463
6464 dwarf2_per_objfile->reading_partial_symbols = 1;
6465
6466 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6467
6468 /* Any cached compilation units will be linked by the per-objfile
6469 read_in_chain. Make sure to free them when we're done. */
6470 back_to = make_cleanup (free_cached_comp_units, NULL);
6471
6472 build_type_psymtabs (objfile);
6473
6474 create_all_comp_units (objfile);
6475
6476 /* Create a temporary address map on a temporary obstack. We later
6477 copy this to the final obstack. */
6478 obstack_init (&temp_obstack);
6479 make_cleanup_obstack_free (&temp_obstack);
6480 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6481 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6482
6483 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6484 {
6485 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6486
6487 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6488 }
6489
6490 /* This has to wait until we read the CUs, we need the list of DWOs. */
6491 process_skeletonless_type_units (objfile);
6492
6493 /* Now that all TUs have been processed we can fill in the dependencies. */
6494 if (dwarf2_per_objfile->type_unit_groups != NULL)
6495 {
6496 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6497 build_type_psymtab_dependencies, NULL);
6498 }
6499
6500 if (dwarf_read_debug)
6501 print_tu_stats ();
6502
6503 set_partial_user (objfile);
6504
6505 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6506 &objfile->objfile_obstack);
6507 discard_cleanups (addrmap_cleanup);
6508
6509 do_cleanups (back_to);
6510
6511 if (dwarf_read_debug)
6512 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6513 objfile_name (objfile));
6514 }
6515
6516 /* die_reader_func for load_partial_comp_unit. */
6517
6518 static void
6519 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6520 const gdb_byte *info_ptr,
6521 struct die_info *comp_unit_die,
6522 int has_children,
6523 void *data)
6524 {
6525 struct dwarf2_cu *cu = reader->cu;
6526
6527 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6528
6529 /* Check if comp unit has_children.
6530 If so, read the rest of the partial symbols from this comp unit.
6531 If not, there's no more debug_info for this comp unit. */
6532 if (has_children)
6533 load_partial_dies (reader, info_ptr, 0);
6534 }
6535
6536 /* Load the partial DIEs for a secondary CU into memory.
6537 This is also used when rereading a primary CU with load_all_dies. */
6538
6539 static void
6540 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6541 {
6542 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6543 load_partial_comp_unit_reader, NULL);
6544 }
6545
6546 static void
6547 read_comp_units_from_section (struct objfile *objfile,
6548 struct dwarf2_section_info *section,
6549 unsigned int is_dwz,
6550 int *n_allocated,
6551 int *n_comp_units,
6552 struct dwarf2_per_cu_data ***all_comp_units)
6553 {
6554 const gdb_byte *info_ptr;
6555 bfd *abfd = get_section_bfd_owner (section);
6556
6557 if (dwarf_read_debug)
6558 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6559 get_section_name (section),
6560 get_section_file_name (section));
6561
6562 dwarf2_read_section (objfile, section);
6563
6564 info_ptr = section->buffer;
6565
6566 while (info_ptr < section->buffer + section->size)
6567 {
6568 unsigned int length, initial_length_size;
6569 struct dwarf2_per_cu_data *this_cu;
6570 sect_offset offset;
6571
6572 offset.sect_off = info_ptr - section->buffer;
6573
6574 /* Read just enough information to find out where the next
6575 compilation unit is. */
6576 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6577
6578 /* Save the compilation unit for later lookup. */
6579 this_cu = obstack_alloc (&objfile->objfile_obstack,
6580 sizeof (struct dwarf2_per_cu_data));
6581 memset (this_cu, 0, sizeof (*this_cu));
6582 this_cu->offset = offset;
6583 this_cu->length = length + initial_length_size;
6584 this_cu->is_dwz = is_dwz;
6585 this_cu->objfile = objfile;
6586 this_cu->section = section;
6587
6588 if (*n_comp_units == *n_allocated)
6589 {
6590 *n_allocated *= 2;
6591 *all_comp_units = xrealloc (*all_comp_units,
6592 *n_allocated
6593 * sizeof (struct dwarf2_per_cu_data *));
6594 }
6595 (*all_comp_units)[*n_comp_units] = this_cu;
6596 ++*n_comp_units;
6597
6598 info_ptr = info_ptr + this_cu->length;
6599 }
6600 }
6601
6602 /* Create a list of all compilation units in OBJFILE.
6603 This is only done for -readnow and building partial symtabs. */
6604
6605 static void
6606 create_all_comp_units (struct objfile *objfile)
6607 {
6608 int n_allocated;
6609 int n_comp_units;
6610 struct dwarf2_per_cu_data **all_comp_units;
6611 struct dwz_file *dwz;
6612
6613 n_comp_units = 0;
6614 n_allocated = 10;
6615 all_comp_units = xmalloc (n_allocated
6616 * sizeof (struct dwarf2_per_cu_data *));
6617
6618 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6619 &n_allocated, &n_comp_units, &all_comp_units);
6620
6621 dwz = dwarf2_get_dwz_file ();
6622 if (dwz != NULL)
6623 read_comp_units_from_section (objfile, &dwz->info, 1,
6624 &n_allocated, &n_comp_units,
6625 &all_comp_units);
6626
6627 dwarf2_per_objfile->all_comp_units
6628 = obstack_alloc (&objfile->objfile_obstack,
6629 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6630 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6631 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6632 xfree (all_comp_units);
6633 dwarf2_per_objfile->n_comp_units = n_comp_units;
6634 }
6635
6636 /* Process all loaded DIEs for compilation unit CU, starting at
6637 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6638 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6639 DW_AT_ranges). See the comments of add_partial_subprogram on how
6640 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6641
6642 static void
6643 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6644 CORE_ADDR *highpc, int set_addrmap,
6645 struct dwarf2_cu *cu)
6646 {
6647 struct partial_die_info *pdi;
6648
6649 /* Now, march along the PDI's, descending into ones which have
6650 interesting children but skipping the children of the other ones,
6651 until we reach the end of the compilation unit. */
6652
6653 pdi = first_die;
6654
6655 while (pdi != NULL)
6656 {
6657 fixup_partial_die (pdi, cu);
6658
6659 /* Anonymous namespaces or modules have no name but have interesting
6660 children, so we need to look at them. Ditto for anonymous
6661 enums. */
6662
6663 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6664 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6665 || pdi->tag == DW_TAG_imported_unit)
6666 {
6667 switch (pdi->tag)
6668 {
6669 case DW_TAG_subprogram:
6670 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6671 break;
6672 case DW_TAG_constant:
6673 case DW_TAG_variable:
6674 case DW_TAG_typedef:
6675 case DW_TAG_union_type:
6676 if (!pdi->is_declaration)
6677 {
6678 add_partial_symbol (pdi, cu);
6679 }
6680 break;
6681 case DW_TAG_class_type:
6682 case DW_TAG_interface_type:
6683 case DW_TAG_structure_type:
6684 if (!pdi->is_declaration)
6685 {
6686 add_partial_symbol (pdi, cu);
6687 }
6688 break;
6689 case DW_TAG_enumeration_type:
6690 if (!pdi->is_declaration)
6691 add_partial_enumeration (pdi, cu);
6692 break;
6693 case DW_TAG_base_type:
6694 case DW_TAG_subrange_type:
6695 /* File scope base type definitions are added to the partial
6696 symbol table. */
6697 add_partial_symbol (pdi, cu);
6698 break;
6699 case DW_TAG_namespace:
6700 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6701 break;
6702 case DW_TAG_module:
6703 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6704 break;
6705 case DW_TAG_imported_unit:
6706 {
6707 struct dwarf2_per_cu_data *per_cu;
6708
6709 /* For now we don't handle imported units in type units. */
6710 if (cu->per_cu->is_debug_types)
6711 {
6712 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6713 " supported in type units [in module %s]"),
6714 objfile_name (cu->objfile));
6715 }
6716
6717 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6718 pdi->is_dwz,
6719 cu->objfile);
6720
6721 /* Go read the partial unit, if needed. */
6722 if (per_cu->v.psymtab == NULL)
6723 process_psymtab_comp_unit (per_cu, 1, cu->language);
6724
6725 VEC_safe_push (dwarf2_per_cu_ptr,
6726 cu->per_cu->imported_symtabs, per_cu);
6727 }
6728 break;
6729 case DW_TAG_imported_declaration:
6730 add_partial_symbol (pdi, cu);
6731 break;
6732 default:
6733 break;
6734 }
6735 }
6736
6737 /* If the die has a sibling, skip to the sibling. */
6738
6739 pdi = pdi->die_sibling;
6740 }
6741 }
6742
6743 /* Functions used to compute the fully scoped name of a partial DIE.
6744
6745 Normally, this is simple. For C++, the parent DIE's fully scoped
6746 name is concatenated with "::" and the partial DIE's name. For
6747 Java, the same thing occurs except that "." is used instead of "::".
6748 Enumerators are an exception; they use the scope of their parent
6749 enumeration type, i.e. the name of the enumeration type is not
6750 prepended to the enumerator.
6751
6752 There are two complexities. One is DW_AT_specification; in this
6753 case "parent" means the parent of the target of the specification,
6754 instead of the direct parent of the DIE. The other is compilers
6755 which do not emit DW_TAG_namespace; in this case we try to guess
6756 the fully qualified name of structure types from their members'
6757 linkage names. This must be done using the DIE's children rather
6758 than the children of any DW_AT_specification target. We only need
6759 to do this for structures at the top level, i.e. if the target of
6760 any DW_AT_specification (if any; otherwise the DIE itself) does not
6761 have a parent. */
6762
6763 /* Compute the scope prefix associated with PDI's parent, in
6764 compilation unit CU. The result will be allocated on CU's
6765 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6766 field. NULL is returned if no prefix is necessary. */
6767 static const char *
6768 partial_die_parent_scope (struct partial_die_info *pdi,
6769 struct dwarf2_cu *cu)
6770 {
6771 const char *grandparent_scope;
6772 struct partial_die_info *parent, *real_pdi;
6773
6774 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6775 then this means the parent of the specification DIE. */
6776
6777 real_pdi = pdi;
6778 while (real_pdi->has_specification)
6779 real_pdi = find_partial_die (real_pdi->spec_offset,
6780 real_pdi->spec_is_dwz, cu);
6781
6782 parent = real_pdi->die_parent;
6783 if (parent == NULL)
6784 return NULL;
6785
6786 if (parent->scope_set)
6787 return parent->scope;
6788
6789 fixup_partial_die (parent, cu);
6790
6791 grandparent_scope = partial_die_parent_scope (parent, cu);
6792
6793 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6794 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6795 Work around this problem here. */
6796 if (cu->language == language_cplus
6797 && parent->tag == DW_TAG_namespace
6798 && strcmp (parent->name, "::") == 0
6799 && grandparent_scope == NULL)
6800 {
6801 parent->scope = NULL;
6802 parent->scope_set = 1;
6803 return NULL;
6804 }
6805
6806 if (pdi->tag == DW_TAG_enumerator)
6807 /* Enumerators should not get the name of the enumeration as a prefix. */
6808 parent->scope = grandparent_scope;
6809 else if (parent->tag == DW_TAG_namespace
6810 || parent->tag == DW_TAG_module
6811 || parent->tag == DW_TAG_structure_type
6812 || parent->tag == DW_TAG_class_type
6813 || parent->tag == DW_TAG_interface_type
6814 || parent->tag == DW_TAG_union_type
6815 || parent->tag == DW_TAG_enumeration_type)
6816 {
6817 if (grandparent_scope == NULL)
6818 parent->scope = parent->name;
6819 else
6820 parent->scope = typename_concat (&cu->comp_unit_obstack,
6821 grandparent_scope,
6822 parent->name, 0, cu);
6823 }
6824 else
6825 {
6826 /* FIXME drow/2004-04-01: What should we be doing with
6827 function-local names? For partial symbols, we should probably be
6828 ignoring them. */
6829 complaint (&symfile_complaints,
6830 _("unhandled containing DIE tag %d for DIE at %d"),
6831 parent->tag, pdi->offset.sect_off);
6832 parent->scope = grandparent_scope;
6833 }
6834
6835 parent->scope_set = 1;
6836 return parent->scope;
6837 }
6838
6839 /* Return the fully scoped name associated with PDI, from compilation unit
6840 CU. The result will be allocated with malloc. */
6841
6842 static char *
6843 partial_die_full_name (struct partial_die_info *pdi,
6844 struct dwarf2_cu *cu)
6845 {
6846 const char *parent_scope;
6847
6848 /* If this is a template instantiation, we can not work out the
6849 template arguments from partial DIEs. So, unfortunately, we have
6850 to go through the full DIEs. At least any work we do building
6851 types here will be reused if full symbols are loaded later. */
6852 if (pdi->has_template_arguments)
6853 {
6854 fixup_partial_die (pdi, cu);
6855
6856 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6857 {
6858 struct die_info *die;
6859 struct attribute attr;
6860 struct dwarf2_cu *ref_cu = cu;
6861
6862 /* DW_FORM_ref_addr is using section offset. */
6863 attr.name = 0;
6864 attr.form = DW_FORM_ref_addr;
6865 attr.u.unsnd = pdi->offset.sect_off;
6866 die = follow_die_ref (NULL, &attr, &ref_cu);
6867
6868 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6869 }
6870 }
6871
6872 parent_scope = partial_die_parent_scope (pdi, cu);
6873 if (parent_scope == NULL)
6874 return NULL;
6875 else
6876 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6877 }
6878
6879 static void
6880 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6881 {
6882 struct objfile *objfile = cu->objfile;
6883 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6884 CORE_ADDR addr = 0;
6885 const char *actual_name = NULL;
6886 CORE_ADDR baseaddr;
6887 char *built_actual_name;
6888
6889 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6890
6891 built_actual_name = partial_die_full_name (pdi, cu);
6892 if (built_actual_name != NULL)
6893 actual_name = built_actual_name;
6894
6895 if (actual_name == NULL)
6896 actual_name = pdi->name;
6897
6898 switch (pdi->tag)
6899 {
6900 case DW_TAG_subprogram:
6901 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6902 if (pdi->is_external || cu->language == language_ada)
6903 {
6904 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6905 of the global scope. But in Ada, we want to be able to access
6906 nested procedures globally. So all Ada subprograms are stored
6907 in the global scope. */
6908 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6909 objfile); */
6910 add_psymbol_to_list (actual_name, strlen (actual_name),
6911 built_actual_name != NULL,
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->global_psymbols,
6914 0, addr, cu->language, objfile);
6915 }
6916 else
6917 {
6918 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6919 objfile); */
6920 add_psymbol_to_list (actual_name, strlen (actual_name),
6921 built_actual_name != NULL,
6922 VAR_DOMAIN, LOC_BLOCK,
6923 &objfile->static_psymbols,
6924 0, addr, cu->language, objfile);
6925 }
6926 break;
6927 case DW_TAG_constant:
6928 {
6929 struct psymbol_allocation_list *list;
6930
6931 if (pdi->is_external)
6932 list = &objfile->global_psymbols;
6933 else
6934 list = &objfile->static_psymbols;
6935 add_psymbol_to_list (actual_name, strlen (actual_name),
6936 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6937 list, 0, 0, cu->language, objfile);
6938 }
6939 break;
6940 case DW_TAG_variable:
6941 if (pdi->d.locdesc)
6942 addr = decode_locdesc (pdi->d.locdesc, cu);
6943
6944 if (pdi->d.locdesc
6945 && addr == 0
6946 && !dwarf2_per_objfile->has_section_at_zero)
6947 {
6948 /* A global or static variable may also have been stripped
6949 out by the linker if unused, in which case its address
6950 will be nullified; do not add such variables into partial
6951 symbol table then. */
6952 }
6953 else if (pdi->is_external)
6954 {
6955 /* Global Variable.
6956 Don't enter into the minimal symbol tables as there is
6957 a minimal symbol table entry from the ELF symbols already.
6958 Enter into partial symbol table if it has a location
6959 descriptor or a type.
6960 If the location descriptor is missing, new_symbol will create
6961 a LOC_UNRESOLVED symbol, the address of the variable will then
6962 be determined from the minimal symbol table whenever the variable
6963 is referenced.
6964 The address for the partial symbol table entry is not
6965 used by GDB, but it comes in handy for debugging partial symbol
6966 table building. */
6967
6968 if (pdi->d.locdesc || pdi->has_type)
6969 add_psymbol_to_list (actual_name, strlen (actual_name),
6970 built_actual_name != NULL,
6971 VAR_DOMAIN, LOC_STATIC,
6972 &objfile->global_psymbols,
6973 0, addr + baseaddr,
6974 cu->language, objfile);
6975 }
6976 else
6977 {
6978 int has_loc = pdi->d.locdesc != NULL;
6979
6980 /* Static Variable. Skip symbols whose value we cannot know (those
6981 without location descriptors or constant values). */
6982 if (!has_loc && !pdi->has_const_value)
6983 {
6984 xfree (built_actual_name);
6985 return;
6986 }
6987
6988 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6989 mst_file_data, objfile); */
6990 add_psymbol_to_list (actual_name, strlen (actual_name),
6991 built_actual_name != NULL,
6992 VAR_DOMAIN, LOC_STATIC,
6993 &objfile->static_psymbols,
6994 0,
6995 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6996 cu->language, objfile);
6997 }
6998 break;
6999 case DW_TAG_typedef:
7000 case DW_TAG_base_type:
7001 case DW_TAG_subrange_type:
7002 add_psymbol_to_list (actual_name, strlen (actual_name),
7003 built_actual_name != NULL,
7004 VAR_DOMAIN, LOC_TYPEDEF,
7005 &objfile->static_psymbols,
7006 0, (CORE_ADDR) 0, cu->language, objfile);
7007 break;
7008 case DW_TAG_imported_declaration:
7009 case DW_TAG_namespace:
7010 add_psymbol_to_list (actual_name, strlen (actual_name),
7011 built_actual_name != NULL,
7012 VAR_DOMAIN, LOC_TYPEDEF,
7013 &objfile->global_psymbols,
7014 0, (CORE_ADDR) 0, cu->language, objfile);
7015 break;
7016 case DW_TAG_module:
7017 add_psymbol_to_list (actual_name, strlen (actual_name),
7018 built_actual_name != NULL,
7019 MODULE_DOMAIN, LOC_TYPEDEF,
7020 &objfile->global_psymbols,
7021 0, (CORE_ADDR) 0, cu->language, objfile);
7022 break;
7023 case DW_TAG_class_type:
7024 case DW_TAG_interface_type:
7025 case DW_TAG_structure_type:
7026 case DW_TAG_union_type:
7027 case DW_TAG_enumeration_type:
7028 /* Skip external references. The DWARF standard says in the section
7029 about "Structure, Union, and Class Type Entries": "An incomplete
7030 structure, union or class type is represented by a structure,
7031 union or class entry that does not have a byte size attribute
7032 and that has a DW_AT_declaration attribute." */
7033 if (!pdi->has_byte_size && pdi->is_declaration)
7034 {
7035 xfree (built_actual_name);
7036 return;
7037 }
7038
7039 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7040 static vs. global. */
7041 add_psymbol_to_list (actual_name, strlen (actual_name),
7042 built_actual_name != NULL,
7043 STRUCT_DOMAIN, LOC_TYPEDEF,
7044 (cu->language == language_cplus
7045 || cu->language == language_java)
7046 ? &objfile->global_psymbols
7047 : &objfile->static_psymbols,
7048 0, (CORE_ADDR) 0, cu->language, objfile);
7049
7050 break;
7051 case DW_TAG_enumerator:
7052 add_psymbol_to_list (actual_name, strlen (actual_name),
7053 built_actual_name != NULL,
7054 VAR_DOMAIN, LOC_CONST,
7055 (cu->language == language_cplus
7056 || cu->language == language_java)
7057 ? &objfile->global_psymbols
7058 : &objfile->static_psymbols,
7059 0, (CORE_ADDR) 0, cu->language, objfile);
7060 break;
7061 default:
7062 break;
7063 }
7064
7065 xfree (built_actual_name);
7066 }
7067
7068 /* Read a partial die corresponding to a namespace; also, add a symbol
7069 corresponding to that namespace to the symbol table. NAMESPACE is
7070 the name of the enclosing namespace. */
7071
7072 static void
7073 add_partial_namespace (struct partial_die_info *pdi,
7074 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7075 int set_addrmap, struct dwarf2_cu *cu)
7076 {
7077 /* Add a symbol for the namespace. */
7078
7079 add_partial_symbol (pdi, cu);
7080
7081 /* Now scan partial symbols in that namespace. */
7082
7083 if (pdi->has_children)
7084 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7085 }
7086
7087 /* Read a partial die corresponding to a Fortran module. */
7088
7089 static void
7090 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7091 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7092 {
7093 /* Add a symbol for the namespace. */
7094
7095 add_partial_symbol (pdi, cu);
7096
7097 /* Now scan partial symbols in that module. */
7098
7099 if (pdi->has_children)
7100 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7101 }
7102
7103 /* Read a partial die corresponding to a subprogram and create a partial
7104 symbol for that subprogram. When the CU language allows it, this
7105 routine also defines a partial symbol for each nested subprogram
7106 that this subprogram contains. If SET_ADDRMAP is true, record the
7107 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7108 and highest PC values found in PDI.
7109
7110 PDI may also be a lexical block, in which case we simply search
7111 recursively for subprograms defined inside that lexical block.
7112 Again, this is only performed when the CU language allows this
7113 type of definitions. */
7114
7115 static void
7116 add_partial_subprogram (struct partial_die_info *pdi,
7117 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7118 int set_addrmap, struct dwarf2_cu *cu)
7119 {
7120 if (pdi->tag == DW_TAG_subprogram)
7121 {
7122 if (pdi->has_pc_info)
7123 {
7124 if (pdi->lowpc < *lowpc)
7125 *lowpc = pdi->lowpc;
7126 if (pdi->highpc > *highpc)
7127 *highpc = pdi->highpc;
7128 if (set_addrmap)
7129 {
7130 struct objfile *objfile = cu->objfile;
7131 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7132 CORE_ADDR baseaddr;
7133 CORE_ADDR highpc;
7134 CORE_ADDR lowpc;
7135
7136 baseaddr = ANOFFSET (objfile->section_offsets,
7137 SECT_OFF_TEXT (objfile));
7138 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7139 pdi->lowpc + baseaddr);
7140 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7141 pdi->highpc + baseaddr);
7142 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7143 cu->per_cu->v.psymtab);
7144 }
7145 }
7146
7147 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7148 {
7149 if (!pdi->is_declaration)
7150 /* Ignore subprogram DIEs that do not have a name, they are
7151 illegal. Do not emit a complaint at this point, we will
7152 do so when we convert this psymtab into a symtab. */
7153 if (pdi->name)
7154 add_partial_symbol (pdi, cu);
7155 }
7156 }
7157
7158 if (! pdi->has_children)
7159 return;
7160
7161 if (cu->language == language_ada)
7162 {
7163 pdi = pdi->die_child;
7164 while (pdi != NULL)
7165 {
7166 fixup_partial_die (pdi, cu);
7167 if (pdi->tag == DW_TAG_subprogram
7168 || pdi->tag == DW_TAG_lexical_block)
7169 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7170 pdi = pdi->die_sibling;
7171 }
7172 }
7173 }
7174
7175 /* Read a partial die corresponding to an enumeration type. */
7176
7177 static void
7178 add_partial_enumeration (struct partial_die_info *enum_pdi,
7179 struct dwarf2_cu *cu)
7180 {
7181 struct partial_die_info *pdi;
7182
7183 if (enum_pdi->name != NULL)
7184 add_partial_symbol (enum_pdi, cu);
7185
7186 pdi = enum_pdi->die_child;
7187 while (pdi)
7188 {
7189 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7190 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7191 else
7192 add_partial_symbol (pdi, cu);
7193 pdi = pdi->die_sibling;
7194 }
7195 }
7196
7197 /* Return the initial uleb128 in the die at INFO_PTR. */
7198
7199 static unsigned int
7200 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7201 {
7202 unsigned int bytes_read;
7203
7204 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7205 }
7206
7207 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7208 Return the corresponding abbrev, or NULL if the number is zero (indicating
7209 an empty DIE). In either case *BYTES_READ will be set to the length of
7210 the initial number. */
7211
7212 static struct abbrev_info *
7213 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7214 struct dwarf2_cu *cu)
7215 {
7216 bfd *abfd = cu->objfile->obfd;
7217 unsigned int abbrev_number;
7218 struct abbrev_info *abbrev;
7219
7220 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7221
7222 if (abbrev_number == 0)
7223 return NULL;
7224
7225 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7226 if (!abbrev)
7227 {
7228 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7229 " at offset 0x%x [in module %s]"),
7230 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7231 cu->header.offset.sect_off, bfd_get_filename (abfd));
7232 }
7233
7234 return abbrev;
7235 }
7236
7237 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7238 Returns a pointer to the end of a series of DIEs, terminated by an empty
7239 DIE. Any children of the skipped DIEs will also be skipped. */
7240
7241 static const gdb_byte *
7242 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7243 {
7244 struct dwarf2_cu *cu = reader->cu;
7245 struct abbrev_info *abbrev;
7246 unsigned int bytes_read;
7247
7248 while (1)
7249 {
7250 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7251 if (abbrev == NULL)
7252 return info_ptr + bytes_read;
7253 else
7254 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7255 }
7256 }
7257
7258 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7259 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7260 abbrev corresponding to that skipped uleb128 should be passed in
7261 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7262 children. */
7263
7264 static const gdb_byte *
7265 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7266 struct abbrev_info *abbrev)
7267 {
7268 unsigned int bytes_read;
7269 struct attribute attr;
7270 bfd *abfd = reader->abfd;
7271 struct dwarf2_cu *cu = reader->cu;
7272 const gdb_byte *buffer = reader->buffer;
7273 const gdb_byte *buffer_end = reader->buffer_end;
7274 const gdb_byte *start_info_ptr = info_ptr;
7275 unsigned int form, i;
7276
7277 for (i = 0; i < abbrev->num_attrs; i++)
7278 {
7279 /* The only abbrev we care about is DW_AT_sibling. */
7280 if (abbrev->attrs[i].name == DW_AT_sibling)
7281 {
7282 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7283 if (attr.form == DW_FORM_ref_addr)
7284 complaint (&symfile_complaints,
7285 _("ignoring absolute DW_AT_sibling"));
7286 else
7287 {
7288 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7289 const gdb_byte *sibling_ptr = buffer + off;
7290
7291 if (sibling_ptr < info_ptr)
7292 complaint (&symfile_complaints,
7293 _("DW_AT_sibling points backwards"));
7294 else if (sibling_ptr > reader->buffer_end)
7295 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7296 else
7297 return sibling_ptr;
7298 }
7299 }
7300
7301 /* If it isn't DW_AT_sibling, skip this attribute. */
7302 form = abbrev->attrs[i].form;
7303 skip_attribute:
7304 switch (form)
7305 {
7306 case DW_FORM_ref_addr:
7307 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7308 and later it is offset sized. */
7309 if (cu->header.version == 2)
7310 info_ptr += cu->header.addr_size;
7311 else
7312 info_ptr += cu->header.offset_size;
7313 break;
7314 case DW_FORM_GNU_ref_alt:
7315 info_ptr += cu->header.offset_size;
7316 break;
7317 case DW_FORM_addr:
7318 info_ptr += cu->header.addr_size;
7319 break;
7320 case DW_FORM_data1:
7321 case DW_FORM_ref1:
7322 case DW_FORM_flag:
7323 info_ptr += 1;
7324 break;
7325 case DW_FORM_flag_present:
7326 break;
7327 case DW_FORM_data2:
7328 case DW_FORM_ref2:
7329 info_ptr += 2;
7330 break;
7331 case DW_FORM_data4:
7332 case DW_FORM_ref4:
7333 info_ptr += 4;
7334 break;
7335 case DW_FORM_data8:
7336 case DW_FORM_ref8:
7337 case DW_FORM_ref_sig8:
7338 info_ptr += 8;
7339 break;
7340 case DW_FORM_string:
7341 read_direct_string (abfd, info_ptr, &bytes_read);
7342 info_ptr += bytes_read;
7343 break;
7344 case DW_FORM_sec_offset:
7345 case DW_FORM_strp:
7346 case DW_FORM_GNU_strp_alt:
7347 info_ptr += cu->header.offset_size;
7348 break;
7349 case DW_FORM_exprloc:
7350 case DW_FORM_block:
7351 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7352 info_ptr += bytes_read;
7353 break;
7354 case DW_FORM_block1:
7355 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7356 break;
7357 case DW_FORM_block2:
7358 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7359 break;
7360 case DW_FORM_block4:
7361 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7362 break;
7363 case DW_FORM_sdata:
7364 case DW_FORM_udata:
7365 case DW_FORM_ref_udata:
7366 case DW_FORM_GNU_addr_index:
7367 case DW_FORM_GNU_str_index:
7368 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7369 break;
7370 case DW_FORM_indirect:
7371 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7372 info_ptr += bytes_read;
7373 /* We need to continue parsing from here, so just go back to
7374 the top. */
7375 goto skip_attribute;
7376
7377 default:
7378 error (_("Dwarf Error: Cannot handle %s "
7379 "in DWARF reader [in module %s]"),
7380 dwarf_form_name (form),
7381 bfd_get_filename (abfd));
7382 }
7383 }
7384
7385 if (abbrev->has_children)
7386 return skip_children (reader, info_ptr);
7387 else
7388 return info_ptr;
7389 }
7390
7391 /* Locate ORIG_PDI's sibling.
7392 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7393
7394 static const gdb_byte *
7395 locate_pdi_sibling (const struct die_reader_specs *reader,
7396 struct partial_die_info *orig_pdi,
7397 const gdb_byte *info_ptr)
7398 {
7399 /* Do we know the sibling already? */
7400
7401 if (orig_pdi->sibling)
7402 return orig_pdi->sibling;
7403
7404 /* Are there any children to deal with? */
7405
7406 if (!orig_pdi->has_children)
7407 return info_ptr;
7408
7409 /* Skip the children the long way. */
7410
7411 return skip_children (reader, info_ptr);
7412 }
7413
7414 /* Expand this partial symbol table into a full symbol table. SELF is
7415 not NULL. */
7416
7417 static void
7418 dwarf2_read_symtab (struct partial_symtab *self,
7419 struct objfile *objfile)
7420 {
7421 if (self->readin)
7422 {
7423 warning (_("bug: psymtab for %s is already read in."),
7424 self->filename);
7425 }
7426 else
7427 {
7428 if (info_verbose)
7429 {
7430 printf_filtered (_("Reading in symbols for %s..."),
7431 self->filename);
7432 gdb_flush (gdb_stdout);
7433 }
7434
7435 /* Restore our global data. */
7436 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7437
7438 /* If this psymtab is constructed from a debug-only objfile, the
7439 has_section_at_zero flag will not necessarily be correct. We
7440 can get the correct value for this flag by looking at the data
7441 associated with the (presumably stripped) associated objfile. */
7442 if (objfile->separate_debug_objfile_backlink)
7443 {
7444 struct dwarf2_per_objfile *dpo_backlink
7445 = objfile_data (objfile->separate_debug_objfile_backlink,
7446 dwarf2_objfile_data_key);
7447
7448 dwarf2_per_objfile->has_section_at_zero
7449 = dpo_backlink->has_section_at_zero;
7450 }
7451
7452 dwarf2_per_objfile->reading_partial_symbols = 0;
7453
7454 psymtab_to_symtab_1 (self);
7455
7456 /* Finish up the debug error message. */
7457 if (info_verbose)
7458 printf_filtered (_("done.\n"));
7459 }
7460
7461 process_cu_includes ();
7462 }
7463 \f
7464 /* Reading in full CUs. */
7465
7466 /* Add PER_CU to the queue. */
7467
7468 static void
7469 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7470 enum language pretend_language)
7471 {
7472 struct dwarf2_queue_item *item;
7473
7474 per_cu->queued = 1;
7475 item = xmalloc (sizeof (*item));
7476 item->per_cu = per_cu;
7477 item->pretend_language = pretend_language;
7478 item->next = NULL;
7479
7480 if (dwarf2_queue == NULL)
7481 dwarf2_queue = item;
7482 else
7483 dwarf2_queue_tail->next = item;
7484
7485 dwarf2_queue_tail = item;
7486 }
7487
7488 /* If PER_CU is not yet queued, add it to the queue.
7489 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7490 dependency.
7491 The result is non-zero if PER_CU was queued, otherwise the result is zero
7492 meaning either PER_CU is already queued or it is already loaded.
7493
7494 N.B. There is an invariant here that if a CU is queued then it is loaded.
7495 The caller is required to load PER_CU if we return non-zero. */
7496
7497 static int
7498 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7499 struct dwarf2_per_cu_data *per_cu,
7500 enum language pretend_language)
7501 {
7502 /* We may arrive here during partial symbol reading, if we need full
7503 DIEs to process an unusual case (e.g. template arguments). Do
7504 not queue PER_CU, just tell our caller to load its DIEs. */
7505 if (dwarf2_per_objfile->reading_partial_symbols)
7506 {
7507 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7508 return 1;
7509 return 0;
7510 }
7511
7512 /* Mark the dependence relation so that we don't flush PER_CU
7513 too early. */
7514 if (dependent_cu != NULL)
7515 dwarf2_add_dependence (dependent_cu, per_cu);
7516
7517 /* If it's already on the queue, we have nothing to do. */
7518 if (per_cu->queued)
7519 return 0;
7520
7521 /* If the compilation unit is already loaded, just mark it as
7522 used. */
7523 if (per_cu->cu != NULL)
7524 {
7525 per_cu->cu->last_used = 0;
7526 return 0;
7527 }
7528
7529 /* Add it to the queue. */
7530 queue_comp_unit (per_cu, pretend_language);
7531
7532 return 1;
7533 }
7534
7535 /* Process the queue. */
7536
7537 static void
7538 process_queue (void)
7539 {
7540 struct dwarf2_queue_item *item, *next_item;
7541
7542 if (dwarf_read_debug)
7543 {
7544 fprintf_unfiltered (gdb_stdlog,
7545 "Expanding one or more symtabs of objfile %s ...\n",
7546 objfile_name (dwarf2_per_objfile->objfile));
7547 }
7548
7549 /* The queue starts out with one item, but following a DIE reference
7550 may load a new CU, adding it to the end of the queue. */
7551 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7552 {
7553 if ((dwarf2_per_objfile->using_index
7554 ? !item->per_cu->v.quick->compunit_symtab
7555 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7556 /* Skip dummy CUs. */
7557 && item->per_cu->cu != NULL)
7558 {
7559 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7560 unsigned int debug_print_threshold;
7561 char buf[100];
7562
7563 if (per_cu->is_debug_types)
7564 {
7565 struct signatured_type *sig_type =
7566 (struct signatured_type *) per_cu;
7567
7568 sprintf (buf, "TU %s at offset 0x%x",
7569 hex_string (sig_type->signature),
7570 per_cu->offset.sect_off);
7571 /* There can be 100s of TUs.
7572 Only print them in verbose mode. */
7573 debug_print_threshold = 2;
7574 }
7575 else
7576 {
7577 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7578 debug_print_threshold = 1;
7579 }
7580
7581 if (dwarf_read_debug >= debug_print_threshold)
7582 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7583
7584 if (per_cu->is_debug_types)
7585 process_full_type_unit (per_cu, item->pretend_language);
7586 else
7587 process_full_comp_unit (per_cu, item->pretend_language);
7588
7589 if (dwarf_read_debug >= debug_print_threshold)
7590 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7591 }
7592
7593 item->per_cu->queued = 0;
7594 next_item = item->next;
7595 xfree (item);
7596 }
7597
7598 dwarf2_queue_tail = NULL;
7599
7600 if (dwarf_read_debug)
7601 {
7602 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7603 objfile_name (dwarf2_per_objfile->objfile));
7604 }
7605 }
7606
7607 /* Free all allocated queue entries. This function only releases anything if
7608 an error was thrown; if the queue was processed then it would have been
7609 freed as we went along. */
7610
7611 static void
7612 dwarf2_release_queue (void *dummy)
7613 {
7614 struct dwarf2_queue_item *item, *last;
7615
7616 item = dwarf2_queue;
7617 while (item)
7618 {
7619 /* Anything still marked queued is likely to be in an
7620 inconsistent state, so discard it. */
7621 if (item->per_cu->queued)
7622 {
7623 if (item->per_cu->cu != NULL)
7624 free_one_cached_comp_unit (item->per_cu);
7625 item->per_cu->queued = 0;
7626 }
7627
7628 last = item;
7629 item = item->next;
7630 xfree (last);
7631 }
7632
7633 dwarf2_queue = dwarf2_queue_tail = NULL;
7634 }
7635
7636 /* Read in full symbols for PST, and anything it depends on. */
7637
7638 static void
7639 psymtab_to_symtab_1 (struct partial_symtab *pst)
7640 {
7641 struct dwarf2_per_cu_data *per_cu;
7642 int i;
7643
7644 if (pst->readin)
7645 return;
7646
7647 for (i = 0; i < pst->number_of_dependencies; i++)
7648 if (!pst->dependencies[i]->readin
7649 && pst->dependencies[i]->user == NULL)
7650 {
7651 /* Inform about additional files that need to be read in. */
7652 if (info_verbose)
7653 {
7654 /* FIXME: i18n: Need to make this a single string. */
7655 fputs_filtered (" ", gdb_stdout);
7656 wrap_here ("");
7657 fputs_filtered ("and ", gdb_stdout);
7658 wrap_here ("");
7659 printf_filtered ("%s...", pst->dependencies[i]->filename);
7660 wrap_here (""); /* Flush output. */
7661 gdb_flush (gdb_stdout);
7662 }
7663 psymtab_to_symtab_1 (pst->dependencies[i]);
7664 }
7665
7666 per_cu = pst->read_symtab_private;
7667
7668 if (per_cu == NULL)
7669 {
7670 /* It's an include file, no symbols to read for it.
7671 Everything is in the parent symtab. */
7672 pst->readin = 1;
7673 return;
7674 }
7675
7676 dw2_do_instantiate_symtab (per_cu);
7677 }
7678
7679 /* Trivial hash function for die_info: the hash value of a DIE
7680 is its offset in .debug_info for this objfile. */
7681
7682 static hashval_t
7683 die_hash (const void *item)
7684 {
7685 const struct die_info *die = item;
7686
7687 return die->offset.sect_off;
7688 }
7689
7690 /* Trivial comparison function for die_info structures: two DIEs
7691 are equal if they have the same offset. */
7692
7693 static int
7694 die_eq (const void *item_lhs, const void *item_rhs)
7695 {
7696 const struct die_info *die_lhs = item_lhs;
7697 const struct die_info *die_rhs = item_rhs;
7698
7699 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7700 }
7701
7702 /* die_reader_func for load_full_comp_unit.
7703 This is identical to read_signatured_type_reader,
7704 but is kept separate for now. */
7705
7706 static void
7707 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7708 const gdb_byte *info_ptr,
7709 struct die_info *comp_unit_die,
7710 int has_children,
7711 void *data)
7712 {
7713 struct dwarf2_cu *cu = reader->cu;
7714 enum language *language_ptr = data;
7715
7716 gdb_assert (cu->die_hash == NULL);
7717 cu->die_hash =
7718 htab_create_alloc_ex (cu->header.length / 12,
7719 die_hash,
7720 die_eq,
7721 NULL,
7722 &cu->comp_unit_obstack,
7723 hashtab_obstack_allocate,
7724 dummy_obstack_deallocate);
7725
7726 if (has_children)
7727 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7728 &info_ptr, comp_unit_die);
7729 cu->dies = comp_unit_die;
7730 /* comp_unit_die is not stored in die_hash, no need. */
7731
7732 /* We try not to read any attributes in this function, because not
7733 all CUs needed for references have been loaded yet, and symbol
7734 table processing isn't initialized. But we have to set the CU language,
7735 or we won't be able to build types correctly.
7736 Similarly, if we do not read the producer, we can not apply
7737 producer-specific interpretation. */
7738 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7739 }
7740
7741 /* Load the DIEs associated with PER_CU into memory. */
7742
7743 static void
7744 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7745 enum language pretend_language)
7746 {
7747 gdb_assert (! this_cu->is_debug_types);
7748
7749 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7750 load_full_comp_unit_reader, &pretend_language);
7751 }
7752
7753 /* Add a DIE to the delayed physname list. */
7754
7755 static void
7756 add_to_method_list (struct type *type, int fnfield_index, int index,
7757 const char *name, struct die_info *die,
7758 struct dwarf2_cu *cu)
7759 {
7760 struct delayed_method_info mi;
7761 mi.type = type;
7762 mi.fnfield_index = fnfield_index;
7763 mi.index = index;
7764 mi.name = name;
7765 mi.die = die;
7766 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7767 }
7768
7769 /* A cleanup for freeing the delayed method list. */
7770
7771 static void
7772 free_delayed_list (void *ptr)
7773 {
7774 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7775 if (cu->method_list != NULL)
7776 {
7777 VEC_free (delayed_method_info, cu->method_list);
7778 cu->method_list = NULL;
7779 }
7780 }
7781
7782 /* Compute the physnames of any methods on the CU's method list.
7783
7784 The computation of method physnames is delayed in order to avoid the
7785 (bad) condition that one of the method's formal parameters is of an as yet
7786 incomplete type. */
7787
7788 static void
7789 compute_delayed_physnames (struct dwarf2_cu *cu)
7790 {
7791 int i;
7792 struct delayed_method_info *mi;
7793 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7794 {
7795 const char *physname;
7796 struct fn_fieldlist *fn_flp
7797 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7798 physname = dwarf2_physname (mi->name, mi->die, cu);
7799 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7800 = physname ? physname : "";
7801 }
7802 }
7803
7804 /* Go objects should be embedded in a DW_TAG_module DIE,
7805 and it's not clear if/how imported objects will appear.
7806 To keep Go support simple until that's worked out,
7807 go back through what we've read and create something usable.
7808 We could do this while processing each DIE, and feels kinda cleaner,
7809 but that way is more invasive.
7810 This is to, for example, allow the user to type "p var" or "b main"
7811 without having to specify the package name, and allow lookups
7812 of module.object to work in contexts that use the expression
7813 parser. */
7814
7815 static void
7816 fixup_go_packaging (struct dwarf2_cu *cu)
7817 {
7818 char *package_name = NULL;
7819 struct pending *list;
7820 int i;
7821
7822 for (list = global_symbols; list != NULL; list = list->next)
7823 {
7824 for (i = 0; i < list->nsyms; ++i)
7825 {
7826 struct symbol *sym = list->symbol[i];
7827
7828 if (SYMBOL_LANGUAGE (sym) == language_go
7829 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7830 {
7831 char *this_package_name = go_symbol_package_name (sym);
7832
7833 if (this_package_name == NULL)
7834 continue;
7835 if (package_name == NULL)
7836 package_name = this_package_name;
7837 else
7838 {
7839 if (strcmp (package_name, this_package_name) != 0)
7840 complaint (&symfile_complaints,
7841 _("Symtab %s has objects from two different Go packages: %s and %s"),
7842 (symbol_symtab (sym) != NULL
7843 ? symtab_to_filename_for_display
7844 (symbol_symtab (sym))
7845 : objfile_name (cu->objfile)),
7846 this_package_name, package_name);
7847 xfree (this_package_name);
7848 }
7849 }
7850 }
7851 }
7852
7853 if (package_name != NULL)
7854 {
7855 struct objfile *objfile = cu->objfile;
7856 const char *saved_package_name
7857 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7858 package_name,
7859 strlen (package_name));
7860 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7861 saved_package_name, objfile);
7862 struct symbol *sym;
7863
7864 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7865
7866 sym = allocate_symbol (objfile);
7867 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7868 SYMBOL_SET_NAMES (sym, saved_package_name,
7869 strlen (saved_package_name), 0, objfile);
7870 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7871 e.g., "main" finds the "main" module and not C's main(). */
7872 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7873 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7874 SYMBOL_TYPE (sym) = type;
7875
7876 add_symbol_to_list (sym, &global_symbols);
7877
7878 xfree (package_name);
7879 }
7880 }
7881
7882 /* Return the symtab for PER_CU. This works properly regardless of
7883 whether we're using the index or psymtabs. */
7884
7885 static struct compunit_symtab *
7886 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7887 {
7888 return (dwarf2_per_objfile->using_index
7889 ? per_cu->v.quick->compunit_symtab
7890 : per_cu->v.psymtab->compunit_symtab);
7891 }
7892
7893 /* A helper function for computing the list of all symbol tables
7894 included by PER_CU. */
7895
7896 static void
7897 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7898 htab_t all_children, htab_t all_type_symtabs,
7899 struct dwarf2_per_cu_data *per_cu,
7900 struct compunit_symtab *immediate_parent)
7901 {
7902 void **slot;
7903 int ix;
7904 struct compunit_symtab *cust;
7905 struct dwarf2_per_cu_data *iter;
7906
7907 slot = htab_find_slot (all_children, per_cu, INSERT);
7908 if (*slot != NULL)
7909 {
7910 /* This inclusion and its children have been processed. */
7911 return;
7912 }
7913
7914 *slot = per_cu;
7915 /* Only add a CU if it has a symbol table. */
7916 cust = get_compunit_symtab (per_cu);
7917 if (cust != NULL)
7918 {
7919 /* If this is a type unit only add its symbol table if we haven't
7920 seen it yet (type unit per_cu's can share symtabs). */
7921 if (per_cu->is_debug_types)
7922 {
7923 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7924 if (*slot == NULL)
7925 {
7926 *slot = cust;
7927 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7928 if (cust->user == NULL)
7929 cust->user = immediate_parent;
7930 }
7931 }
7932 else
7933 {
7934 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7935 if (cust->user == NULL)
7936 cust->user = immediate_parent;
7937 }
7938 }
7939
7940 for (ix = 0;
7941 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7942 ++ix)
7943 {
7944 recursively_compute_inclusions (result, all_children,
7945 all_type_symtabs, iter, cust);
7946 }
7947 }
7948
7949 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7950 PER_CU. */
7951
7952 static void
7953 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7954 {
7955 gdb_assert (! per_cu->is_debug_types);
7956
7957 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7958 {
7959 int ix, len;
7960 struct dwarf2_per_cu_data *per_cu_iter;
7961 struct compunit_symtab *compunit_symtab_iter;
7962 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7963 htab_t all_children, all_type_symtabs;
7964 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7965
7966 /* If we don't have a symtab, we can just skip this case. */
7967 if (cust == NULL)
7968 return;
7969
7970 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7971 NULL, xcalloc, xfree);
7972 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7973 NULL, xcalloc, xfree);
7974
7975 for (ix = 0;
7976 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7977 ix, per_cu_iter);
7978 ++ix)
7979 {
7980 recursively_compute_inclusions (&result_symtabs, all_children,
7981 all_type_symtabs, per_cu_iter,
7982 cust);
7983 }
7984
7985 /* Now we have a transitive closure of all the included symtabs. */
7986 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7987 cust->includes
7988 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7989 (len + 1) * sizeof (struct compunit_symtab *));
7990 for (ix = 0;
7991 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7992 compunit_symtab_iter);
7993 ++ix)
7994 cust->includes[ix] = compunit_symtab_iter;
7995 cust->includes[len] = NULL;
7996
7997 VEC_free (compunit_symtab_ptr, result_symtabs);
7998 htab_delete (all_children);
7999 htab_delete (all_type_symtabs);
8000 }
8001 }
8002
8003 /* Compute the 'includes' field for the symtabs of all the CUs we just
8004 read. */
8005
8006 static void
8007 process_cu_includes (void)
8008 {
8009 int ix;
8010 struct dwarf2_per_cu_data *iter;
8011
8012 for (ix = 0;
8013 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8014 ix, iter);
8015 ++ix)
8016 {
8017 if (! iter->is_debug_types)
8018 compute_compunit_symtab_includes (iter);
8019 }
8020
8021 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8022 }
8023
8024 /* Generate full symbol information for PER_CU, whose DIEs have
8025 already been loaded into memory. */
8026
8027 static void
8028 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8029 enum language pretend_language)
8030 {
8031 struct dwarf2_cu *cu = per_cu->cu;
8032 struct objfile *objfile = per_cu->objfile;
8033 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8034 CORE_ADDR lowpc, highpc;
8035 struct compunit_symtab *cust;
8036 struct cleanup *back_to, *delayed_list_cleanup;
8037 CORE_ADDR baseaddr;
8038 struct block *static_block;
8039 CORE_ADDR addr;
8040
8041 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8042
8043 buildsym_init ();
8044 back_to = make_cleanup (really_free_pendings, NULL);
8045 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8046
8047 cu->list_in_scope = &file_symbols;
8048
8049 cu->language = pretend_language;
8050 cu->language_defn = language_def (cu->language);
8051
8052 /* Do line number decoding in read_file_scope () */
8053 process_die (cu->dies, cu);
8054
8055 /* For now fudge the Go package. */
8056 if (cu->language == language_go)
8057 fixup_go_packaging (cu);
8058
8059 /* Now that we have processed all the DIEs in the CU, all the types
8060 should be complete, and it should now be safe to compute all of the
8061 physnames. */
8062 compute_delayed_physnames (cu);
8063 do_cleanups (delayed_list_cleanup);
8064
8065 /* Some compilers don't define a DW_AT_high_pc attribute for the
8066 compilation unit. If the DW_AT_high_pc is missing, synthesize
8067 it, by scanning the DIE's below the compilation unit. */
8068 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8069
8070 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8071 static_block = end_symtab_get_static_block (addr, 0, 1);
8072
8073 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8074 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8075 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8076 addrmap to help ensure it has an accurate map of pc values belonging to
8077 this comp unit. */
8078 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8079
8080 cust = end_symtab_from_static_block (static_block,
8081 SECT_OFF_TEXT (objfile), 0);
8082
8083 if (cust != NULL)
8084 {
8085 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8086
8087 /* Set symtab language to language from DW_AT_language. If the
8088 compilation is from a C file generated by language preprocessors, do
8089 not set the language if it was already deduced by start_subfile. */
8090 if (!(cu->language == language_c
8091 && COMPUNIT_FILETABS (cust)->language != language_c))
8092 COMPUNIT_FILETABS (cust)->language = cu->language;
8093
8094 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8095 produce DW_AT_location with location lists but it can be possibly
8096 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8097 there were bugs in prologue debug info, fixed later in GCC-4.5
8098 by "unwind info for epilogues" patch (which is not directly related).
8099
8100 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8101 needed, it would be wrong due to missing DW_AT_producer there.
8102
8103 Still one can confuse GDB by using non-standard GCC compilation
8104 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8105 */
8106 if (cu->has_loclist && gcc_4_minor >= 5)
8107 cust->locations_valid = 1;
8108
8109 if (gcc_4_minor >= 5)
8110 cust->epilogue_unwind_valid = 1;
8111
8112 cust->call_site_htab = cu->call_site_htab;
8113 }
8114
8115 if (dwarf2_per_objfile->using_index)
8116 per_cu->v.quick->compunit_symtab = cust;
8117 else
8118 {
8119 struct partial_symtab *pst = per_cu->v.psymtab;
8120 pst->compunit_symtab = cust;
8121 pst->readin = 1;
8122 }
8123
8124 /* Push it for inclusion processing later. */
8125 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8126
8127 do_cleanups (back_to);
8128 }
8129
8130 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8131 already been loaded into memory. */
8132
8133 static void
8134 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8135 enum language pretend_language)
8136 {
8137 struct dwarf2_cu *cu = per_cu->cu;
8138 struct objfile *objfile = per_cu->objfile;
8139 struct compunit_symtab *cust;
8140 struct cleanup *back_to, *delayed_list_cleanup;
8141 struct signatured_type *sig_type;
8142
8143 gdb_assert (per_cu->is_debug_types);
8144 sig_type = (struct signatured_type *) per_cu;
8145
8146 buildsym_init ();
8147 back_to = make_cleanup (really_free_pendings, NULL);
8148 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8149
8150 cu->list_in_scope = &file_symbols;
8151
8152 cu->language = pretend_language;
8153 cu->language_defn = language_def (cu->language);
8154
8155 /* The symbol tables are set up in read_type_unit_scope. */
8156 process_die (cu->dies, cu);
8157
8158 /* For now fudge the Go package. */
8159 if (cu->language == language_go)
8160 fixup_go_packaging (cu);
8161
8162 /* Now that we have processed all the DIEs in the CU, all the types
8163 should be complete, and it should now be safe to compute all of the
8164 physnames. */
8165 compute_delayed_physnames (cu);
8166 do_cleanups (delayed_list_cleanup);
8167
8168 /* TUs share symbol tables.
8169 If this is the first TU to use this symtab, complete the construction
8170 of it with end_expandable_symtab. Otherwise, complete the addition of
8171 this TU's symbols to the existing symtab. */
8172 if (sig_type->type_unit_group->compunit_symtab == NULL)
8173 {
8174 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8175 sig_type->type_unit_group->compunit_symtab = cust;
8176
8177 if (cust != NULL)
8178 {
8179 /* Set symtab language to language from DW_AT_language. If the
8180 compilation is from a C file generated by language preprocessors,
8181 do not set the language if it was already deduced by
8182 start_subfile. */
8183 if (!(cu->language == language_c
8184 && COMPUNIT_FILETABS (cust)->language != language_c))
8185 COMPUNIT_FILETABS (cust)->language = cu->language;
8186 }
8187 }
8188 else
8189 {
8190 augment_type_symtab ();
8191 cust = sig_type->type_unit_group->compunit_symtab;
8192 }
8193
8194 if (dwarf2_per_objfile->using_index)
8195 per_cu->v.quick->compunit_symtab = cust;
8196 else
8197 {
8198 struct partial_symtab *pst = per_cu->v.psymtab;
8199 pst->compunit_symtab = cust;
8200 pst->readin = 1;
8201 }
8202
8203 do_cleanups (back_to);
8204 }
8205
8206 /* Process an imported unit DIE. */
8207
8208 static void
8209 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8210 {
8211 struct attribute *attr;
8212
8213 /* For now we don't handle imported units in type units. */
8214 if (cu->per_cu->is_debug_types)
8215 {
8216 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8217 " supported in type units [in module %s]"),
8218 objfile_name (cu->objfile));
8219 }
8220
8221 attr = dwarf2_attr (die, DW_AT_import, cu);
8222 if (attr != NULL)
8223 {
8224 struct dwarf2_per_cu_data *per_cu;
8225 struct symtab *imported_symtab;
8226 sect_offset offset;
8227 int is_dwz;
8228
8229 offset = dwarf2_get_ref_die_offset (attr);
8230 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8231 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8232
8233 /* If necessary, add it to the queue and load its DIEs. */
8234 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8235 load_full_comp_unit (per_cu, cu->language);
8236
8237 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8238 per_cu);
8239 }
8240 }
8241
8242 /* Reset the in_process bit of a die. */
8243
8244 static void
8245 reset_die_in_process (void *arg)
8246 {
8247 struct die_info *die = arg;
8248
8249 die->in_process = 0;
8250 }
8251
8252 /* Process a die and its children. */
8253
8254 static void
8255 process_die (struct die_info *die, struct dwarf2_cu *cu)
8256 {
8257 struct cleanup *in_process;
8258
8259 /* We should only be processing those not already in process. */
8260 gdb_assert (!die->in_process);
8261
8262 die->in_process = 1;
8263 in_process = make_cleanup (reset_die_in_process,die);
8264
8265 switch (die->tag)
8266 {
8267 case DW_TAG_padding:
8268 break;
8269 case DW_TAG_compile_unit:
8270 case DW_TAG_partial_unit:
8271 read_file_scope (die, cu);
8272 break;
8273 case DW_TAG_type_unit:
8274 read_type_unit_scope (die, cu);
8275 break;
8276 case DW_TAG_subprogram:
8277 case DW_TAG_inlined_subroutine:
8278 read_func_scope (die, cu);
8279 break;
8280 case DW_TAG_lexical_block:
8281 case DW_TAG_try_block:
8282 case DW_TAG_catch_block:
8283 read_lexical_block_scope (die, cu);
8284 break;
8285 case DW_TAG_GNU_call_site:
8286 read_call_site_scope (die, cu);
8287 break;
8288 case DW_TAG_class_type:
8289 case DW_TAG_interface_type:
8290 case DW_TAG_structure_type:
8291 case DW_TAG_union_type:
8292 process_structure_scope (die, cu);
8293 break;
8294 case DW_TAG_enumeration_type:
8295 process_enumeration_scope (die, cu);
8296 break;
8297
8298 /* These dies have a type, but processing them does not create
8299 a symbol or recurse to process the children. Therefore we can
8300 read them on-demand through read_type_die. */
8301 case DW_TAG_subroutine_type:
8302 case DW_TAG_set_type:
8303 case DW_TAG_array_type:
8304 case DW_TAG_pointer_type:
8305 case DW_TAG_ptr_to_member_type:
8306 case DW_TAG_reference_type:
8307 case DW_TAG_string_type:
8308 break;
8309
8310 case DW_TAG_base_type:
8311 case DW_TAG_subrange_type:
8312 case DW_TAG_typedef:
8313 /* Add a typedef symbol for the type definition, if it has a
8314 DW_AT_name. */
8315 new_symbol (die, read_type_die (die, cu), cu);
8316 break;
8317 case DW_TAG_common_block:
8318 read_common_block (die, cu);
8319 break;
8320 case DW_TAG_common_inclusion:
8321 break;
8322 case DW_TAG_namespace:
8323 cu->processing_has_namespace_info = 1;
8324 read_namespace (die, cu);
8325 break;
8326 case DW_TAG_module:
8327 cu->processing_has_namespace_info = 1;
8328 read_module (die, cu);
8329 break;
8330 case DW_TAG_imported_declaration:
8331 cu->processing_has_namespace_info = 1;
8332 if (read_namespace_alias (die, cu))
8333 break;
8334 /* The declaration is not a global namespace alias: fall through. */
8335 case DW_TAG_imported_module:
8336 cu->processing_has_namespace_info = 1;
8337 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8338 || cu->language != language_fortran))
8339 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8340 dwarf_tag_name (die->tag));
8341 read_import_statement (die, cu);
8342 break;
8343
8344 case DW_TAG_imported_unit:
8345 process_imported_unit_die (die, cu);
8346 break;
8347
8348 default:
8349 new_symbol (die, NULL, cu);
8350 break;
8351 }
8352
8353 do_cleanups (in_process);
8354 }
8355 \f
8356 /* DWARF name computation. */
8357
8358 /* A helper function for dwarf2_compute_name which determines whether DIE
8359 needs to have the name of the scope prepended to the name listed in the
8360 die. */
8361
8362 static int
8363 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8364 {
8365 struct attribute *attr;
8366
8367 switch (die->tag)
8368 {
8369 case DW_TAG_namespace:
8370 case DW_TAG_typedef:
8371 case DW_TAG_class_type:
8372 case DW_TAG_interface_type:
8373 case DW_TAG_structure_type:
8374 case DW_TAG_union_type:
8375 case DW_TAG_enumeration_type:
8376 case DW_TAG_enumerator:
8377 case DW_TAG_subprogram:
8378 case DW_TAG_inlined_subroutine:
8379 case DW_TAG_member:
8380 case DW_TAG_imported_declaration:
8381 return 1;
8382
8383 case DW_TAG_variable:
8384 case DW_TAG_constant:
8385 /* We only need to prefix "globally" visible variables. These include
8386 any variable marked with DW_AT_external or any variable that
8387 lives in a namespace. [Variables in anonymous namespaces
8388 require prefixing, but they are not DW_AT_external.] */
8389
8390 if (dwarf2_attr (die, DW_AT_specification, cu))
8391 {
8392 struct dwarf2_cu *spec_cu = cu;
8393
8394 return die_needs_namespace (die_specification (die, &spec_cu),
8395 spec_cu);
8396 }
8397
8398 attr = dwarf2_attr (die, DW_AT_external, cu);
8399 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8400 && die->parent->tag != DW_TAG_module)
8401 return 0;
8402 /* A variable in a lexical block of some kind does not need a
8403 namespace, even though in C++ such variables may be external
8404 and have a mangled name. */
8405 if (die->parent->tag == DW_TAG_lexical_block
8406 || die->parent->tag == DW_TAG_try_block
8407 || die->parent->tag == DW_TAG_catch_block
8408 || die->parent->tag == DW_TAG_subprogram)
8409 return 0;
8410 return 1;
8411
8412 default:
8413 return 0;
8414 }
8415 }
8416
8417 /* Retrieve the last character from a mem_file. */
8418
8419 static void
8420 do_ui_file_peek_last (void *object, const char *buffer, long length)
8421 {
8422 char *last_char_p = (char *) object;
8423
8424 if (length > 0)
8425 *last_char_p = buffer[length - 1];
8426 }
8427
8428 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8429 compute the physname for the object, which include a method's:
8430 - formal parameters (C++/Java),
8431 - receiver type (Go),
8432 - return type (Java).
8433
8434 The term "physname" is a bit confusing.
8435 For C++, for example, it is the demangled name.
8436 For Go, for example, it's the mangled name.
8437
8438 For Ada, return the DIE's linkage name rather than the fully qualified
8439 name. PHYSNAME is ignored..
8440
8441 The result is allocated on the objfile_obstack and canonicalized. */
8442
8443 static const char *
8444 dwarf2_compute_name (const char *name,
8445 struct die_info *die, struct dwarf2_cu *cu,
8446 int physname)
8447 {
8448 struct objfile *objfile = cu->objfile;
8449
8450 if (name == NULL)
8451 name = dwarf2_name (die, cu);
8452
8453 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8454 compute it by typename_concat inside GDB. */
8455 if (cu->language == language_ada
8456 || (cu->language == language_fortran && physname))
8457 {
8458 /* For Ada unit, we prefer the linkage name over the name, as
8459 the former contains the exported name, which the user expects
8460 to be able to reference. Ideally, we want the user to be able
8461 to reference this entity using either natural or linkage name,
8462 but we haven't started looking at this enhancement yet. */
8463 struct attribute *attr;
8464
8465 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8466 if (attr == NULL)
8467 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8468 if (attr && DW_STRING (attr))
8469 return DW_STRING (attr);
8470 }
8471
8472 /* These are the only languages we know how to qualify names in. */
8473 if (name != NULL
8474 && (cu->language == language_cplus || cu->language == language_java
8475 || cu->language == language_fortran || cu->language == language_d))
8476 {
8477 if (die_needs_namespace (die, cu))
8478 {
8479 long length;
8480 const char *prefix;
8481 struct ui_file *buf;
8482 char *intermediate_name;
8483 const char *canonical_name = NULL;
8484
8485 prefix = determine_prefix (die, cu);
8486 buf = mem_fileopen ();
8487 if (*prefix != '\0')
8488 {
8489 char *prefixed_name = typename_concat (NULL, prefix, name,
8490 physname, cu);
8491
8492 fputs_unfiltered (prefixed_name, buf);
8493 xfree (prefixed_name);
8494 }
8495 else
8496 fputs_unfiltered (name, buf);
8497
8498 /* Template parameters may be specified in the DIE's DW_AT_name, or
8499 as children with DW_TAG_template_type_param or
8500 DW_TAG_value_type_param. If the latter, add them to the name
8501 here. If the name already has template parameters, then
8502 skip this step; some versions of GCC emit both, and
8503 it is more efficient to use the pre-computed name.
8504
8505 Something to keep in mind about this process: it is very
8506 unlikely, or in some cases downright impossible, to produce
8507 something that will match the mangled name of a function.
8508 If the definition of the function has the same debug info,
8509 we should be able to match up with it anyway. But fallbacks
8510 using the minimal symbol, for instance to find a method
8511 implemented in a stripped copy of libstdc++, will not work.
8512 If we do not have debug info for the definition, we will have to
8513 match them up some other way.
8514
8515 When we do name matching there is a related problem with function
8516 templates; two instantiated function templates are allowed to
8517 differ only by their return types, which we do not add here. */
8518
8519 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8520 {
8521 struct attribute *attr;
8522 struct die_info *child;
8523 int first = 1;
8524
8525 die->building_fullname = 1;
8526
8527 for (child = die->child; child != NULL; child = child->sibling)
8528 {
8529 struct type *type;
8530 LONGEST value;
8531 const gdb_byte *bytes;
8532 struct dwarf2_locexpr_baton *baton;
8533 struct value *v;
8534
8535 if (child->tag != DW_TAG_template_type_param
8536 && child->tag != DW_TAG_template_value_param)
8537 continue;
8538
8539 if (first)
8540 {
8541 fputs_unfiltered ("<", buf);
8542 first = 0;
8543 }
8544 else
8545 fputs_unfiltered (", ", buf);
8546
8547 attr = dwarf2_attr (child, DW_AT_type, cu);
8548 if (attr == NULL)
8549 {
8550 complaint (&symfile_complaints,
8551 _("template parameter missing DW_AT_type"));
8552 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8553 continue;
8554 }
8555 type = die_type (child, cu);
8556
8557 if (child->tag == DW_TAG_template_type_param)
8558 {
8559 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8560 continue;
8561 }
8562
8563 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8564 if (attr == NULL)
8565 {
8566 complaint (&symfile_complaints,
8567 _("template parameter missing "
8568 "DW_AT_const_value"));
8569 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8570 continue;
8571 }
8572
8573 dwarf2_const_value_attr (attr, type, name,
8574 &cu->comp_unit_obstack, cu,
8575 &value, &bytes, &baton);
8576
8577 if (TYPE_NOSIGN (type))
8578 /* GDB prints characters as NUMBER 'CHAR'. If that's
8579 changed, this can use value_print instead. */
8580 c_printchar (value, type, buf);
8581 else
8582 {
8583 struct value_print_options opts;
8584
8585 if (baton != NULL)
8586 v = dwarf2_evaluate_loc_desc (type, NULL,
8587 baton->data,
8588 baton->size,
8589 baton->per_cu);
8590 else if (bytes != NULL)
8591 {
8592 v = allocate_value (type);
8593 memcpy (value_contents_writeable (v), bytes,
8594 TYPE_LENGTH (type));
8595 }
8596 else
8597 v = value_from_longest (type, value);
8598
8599 /* Specify decimal so that we do not depend on
8600 the radix. */
8601 get_formatted_print_options (&opts, 'd');
8602 opts.raw = 1;
8603 value_print (v, buf, &opts);
8604 release_value (v);
8605 value_free (v);
8606 }
8607 }
8608
8609 die->building_fullname = 0;
8610
8611 if (!first)
8612 {
8613 /* Close the argument list, with a space if necessary
8614 (nested templates). */
8615 char last_char = '\0';
8616 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8617 if (last_char == '>')
8618 fputs_unfiltered (" >", buf);
8619 else
8620 fputs_unfiltered (">", buf);
8621 }
8622 }
8623
8624 /* For Java and C++ methods, append formal parameter type
8625 information, if PHYSNAME. */
8626
8627 if (physname && die->tag == DW_TAG_subprogram
8628 && (cu->language == language_cplus
8629 || cu->language == language_java))
8630 {
8631 struct type *type = read_type_die (die, cu);
8632
8633 c_type_print_args (type, buf, 1, cu->language,
8634 &type_print_raw_options);
8635
8636 if (cu->language == language_java)
8637 {
8638 /* For java, we must append the return type to method
8639 names. */
8640 if (die->tag == DW_TAG_subprogram)
8641 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8642 0, 0, &type_print_raw_options);
8643 }
8644 else if (cu->language == language_cplus)
8645 {
8646 /* Assume that an artificial first parameter is
8647 "this", but do not crash if it is not. RealView
8648 marks unnamed (and thus unused) parameters as
8649 artificial; there is no way to differentiate
8650 the two cases. */
8651 if (TYPE_NFIELDS (type) > 0
8652 && TYPE_FIELD_ARTIFICIAL (type, 0)
8653 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8654 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8655 0))))
8656 fputs_unfiltered (" const", buf);
8657 }
8658 }
8659
8660 intermediate_name = ui_file_xstrdup (buf, &length);
8661 ui_file_delete (buf);
8662
8663 if (cu->language == language_cplus)
8664 canonical_name
8665 = dwarf2_canonicalize_name (intermediate_name, cu,
8666 &objfile->per_bfd->storage_obstack);
8667
8668 /* If we only computed INTERMEDIATE_NAME, or if
8669 INTERMEDIATE_NAME is already canonical, then we need to
8670 copy it to the appropriate obstack. */
8671 if (canonical_name == NULL || canonical_name == intermediate_name)
8672 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8673 intermediate_name,
8674 strlen (intermediate_name));
8675 else
8676 name = canonical_name;
8677
8678 xfree (intermediate_name);
8679 }
8680 }
8681
8682 return name;
8683 }
8684
8685 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8686 If scope qualifiers are appropriate they will be added. The result
8687 will be allocated on the storage_obstack, or NULL if the DIE does
8688 not have a name. NAME may either be from a previous call to
8689 dwarf2_name or NULL.
8690
8691 The output string will be canonicalized (if C++/Java). */
8692
8693 static const char *
8694 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8695 {
8696 return dwarf2_compute_name (name, die, cu, 0);
8697 }
8698
8699 /* Construct a physname for the given DIE in CU. NAME may either be
8700 from a previous call to dwarf2_name or NULL. The result will be
8701 allocated on the objfile_objstack or NULL if the DIE does not have a
8702 name.
8703
8704 The output string will be canonicalized (if C++/Java). */
8705
8706 static const char *
8707 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8708 {
8709 struct objfile *objfile = cu->objfile;
8710 struct attribute *attr;
8711 const char *retval, *mangled = NULL, *canon = NULL;
8712 struct cleanup *back_to;
8713 int need_copy = 1;
8714
8715 /* In this case dwarf2_compute_name is just a shortcut not building anything
8716 on its own. */
8717 if (!die_needs_namespace (die, cu))
8718 return dwarf2_compute_name (name, die, cu, 1);
8719
8720 back_to = make_cleanup (null_cleanup, NULL);
8721
8722 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8723 if (!attr)
8724 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8725
8726 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8727 has computed. */
8728 if (attr && DW_STRING (attr))
8729 {
8730 char *demangled;
8731
8732 mangled = DW_STRING (attr);
8733
8734 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8735 type. It is easier for GDB users to search for such functions as
8736 `name(params)' than `long name(params)'. In such case the minimal
8737 symbol names do not match the full symbol names but for template
8738 functions there is never a need to look up their definition from their
8739 declaration so the only disadvantage remains the minimal symbol
8740 variant `long name(params)' does not have the proper inferior type.
8741 */
8742
8743 if (cu->language == language_go)
8744 {
8745 /* This is a lie, but we already lie to the caller new_symbol_full.
8746 new_symbol_full assumes we return the mangled name.
8747 This just undoes that lie until things are cleaned up. */
8748 demangled = NULL;
8749 }
8750 else
8751 {
8752 demangled = gdb_demangle (mangled,
8753 (DMGL_PARAMS | DMGL_ANSI
8754 | (cu->language == language_java
8755 ? DMGL_JAVA | DMGL_RET_POSTFIX
8756 : DMGL_RET_DROP)));
8757 }
8758 if (demangled)
8759 {
8760 make_cleanup (xfree, demangled);
8761 canon = demangled;
8762 }
8763 else
8764 {
8765 canon = mangled;
8766 need_copy = 0;
8767 }
8768 }
8769
8770 if (canon == NULL || check_physname)
8771 {
8772 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8773
8774 if (canon != NULL && strcmp (physname, canon) != 0)
8775 {
8776 /* It may not mean a bug in GDB. The compiler could also
8777 compute DW_AT_linkage_name incorrectly. But in such case
8778 GDB would need to be bug-to-bug compatible. */
8779
8780 complaint (&symfile_complaints,
8781 _("Computed physname <%s> does not match demangled <%s> "
8782 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8783 physname, canon, mangled, die->offset.sect_off,
8784 objfile_name (objfile));
8785
8786 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8787 is available here - over computed PHYSNAME. It is safer
8788 against both buggy GDB and buggy compilers. */
8789
8790 retval = canon;
8791 }
8792 else
8793 {
8794 retval = physname;
8795 need_copy = 0;
8796 }
8797 }
8798 else
8799 retval = canon;
8800
8801 if (need_copy)
8802 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8803 retval, strlen (retval));
8804
8805 do_cleanups (back_to);
8806 return retval;
8807 }
8808
8809 /* Inspect DIE in CU for a namespace alias. If one exists, record
8810 a new symbol for it.
8811
8812 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8813
8814 static int
8815 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8816 {
8817 struct attribute *attr;
8818
8819 /* If the die does not have a name, this is not a namespace
8820 alias. */
8821 attr = dwarf2_attr (die, DW_AT_name, cu);
8822 if (attr != NULL)
8823 {
8824 int num;
8825 struct die_info *d = die;
8826 struct dwarf2_cu *imported_cu = cu;
8827
8828 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8829 keep inspecting DIEs until we hit the underlying import. */
8830 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8831 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8832 {
8833 attr = dwarf2_attr (d, DW_AT_import, cu);
8834 if (attr == NULL)
8835 break;
8836
8837 d = follow_die_ref (d, attr, &imported_cu);
8838 if (d->tag != DW_TAG_imported_declaration)
8839 break;
8840 }
8841
8842 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8843 {
8844 complaint (&symfile_complaints,
8845 _("DIE at 0x%x has too many recursively imported "
8846 "declarations"), d->offset.sect_off);
8847 return 0;
8848 }
8849
8850 if (attr != NULL)
8851 {
8852 struct type *type;
8853 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8854
8855 type = get_die_type_at_offset (offset, cu->per_cu);
8856 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8857 {
8858 /* This declaration is a global namespace alias. Add
8859 a symbol for it whose type is the aliased namespace. */
8860 new_symbol (die, type, cu);
8861 return 1;
8862 }
8863 }
8864 }
8865
8866 return 0;
8867 }
8868
8869 /* Return the using directives repository (global or local?) to use in the
8870 current context for LANGUAGE.
8871
8872 For Ada, imported declarations can materialize renamings, which *may* be
8873 global. However it is impossible (for now?) in DWARF to distinguish
8874 "external" imported declarations and "static" ones. As all imported
8875 declarations seem to be static in all other languages, make them all CU-wide
8876 global only in Ada. */
8877
8878 static struct using_direct **
8879 using_directives (enum language language)
8880 {
8881 if (language == language_ada && context_stack_depth == 0)
8882 return &global_using_directives;
8883 else
8884 return &local_using_directives;
8885 }
8886
8887 /* Read the import statement specified by the given die and record it. */
8888
8889 static void
8890 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8891 {
8892 struct objfile *objfile = cu->objfile;
8893 struct attribute *import_attr;
8894 struct die_info *imported_die, *child_die;
8895 struct dwarf2_cu *imported_cu;
8896 const char *imported_name;
8897 const char *imported_name_prefix;
8898 const char *canonical_name;
8899 const char *import_alias;
8900 const char *imported_declaration = NULL;
8901 const char *import_prefix;
8902 VEC (const_char_ptr) *excludes = NULL;
8903 struct cleanup *cleanups;
8904
8905 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8906 if (import_attr == NULL)
8907 {
8908 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8909 dwarf_tag_name (die->tag));
8910 return;
8911 }
8912
8913 imported_cu = cu;
8914 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8915 imported_name = dwarf2_name (imported_die, imported_cu);
8916 if (imported_name == NULL)
8917 {
8918 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8919
8920 The import in the following code:
8921 namespace A
8922 {
8923 typedef int B;
8924 }
8925
8926 int main ()
8927 {
8928 using A::B;
8929 B b;
8930 return b;
8931 }
8932
8933 ...
8934 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8935 <52> DW_AT_decl_file : 1
8936 <53> DW_AT_decl_line : 6
8937 <54> DW_AT_import : <0x75>
8938 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8939 <59> DW_AT_name : B
8940 <5b> DW_AT_decl_file : 1
8941 <5c> DW_AT_decl_line : 2
8942 <5d> DW_AT_type : <0x6e>
8943 ...
8944 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8945 <76> DW_AT_byte_size : 4
8946 <77> DW_AT_encoding : 5 (signed)
8947
8948 imports the wrong die ( 0x75 instead of 0x58 ).
8949 This case will be ignored until the gcc bug is fixed. */
8950 return;
8951 }
8952
8953 /* Figure out the local name after import. */
8954 import_alias = dwarf2_name (die, cu);
8955
8956 /* Figure out where the statement is being imported to. */
8957 import_prefix = determine_prefix (die, cu);
8958
8959 /* Figure out what the scope of the imported die is and prepend it
8960 to the name of the imported die. */
8961 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8962
8963 if (imported_die->tag != DW_TAG_namespace
8964 && imported_die->tag != DW_TAG_module)
8965 {
8966 imported_declaration = imported_name;
8967 canonical_name = imported_name_prefix;
8968 }
8969 else if (strlen (imported_name_prefix) > 0)
8970 canonical_name = obconcat (&objfile->objfile_obstack,
8971 imported_name_prefix,
8972 (cu->language == language_d ? "." : "::"),
8973 imported_name, (char *) NULL);
8974 else
8975 canonical_name = imported_name;
8976
8977 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8978
8979 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8980 for (child_die = die->child; child_die && child_die->tag;
8981 child_die = sibling_die (child_die))
8982 {
8983 /* DWARF-4: A Fortran use statement with a “rename list” may be
8984 represented by an imported module entry with an import attribute
8985 referring to the module and owned entries corresponding to those
8986 entities that are renamed as part of being imported. */
8987
8988 if (child_die->tag != DW_TAG_imported_declaration)
8989 {
8990 complaint (&symfile_complaints,
8991 _("child DW_TAG_imported_declaration expected "
8992 "- DIE at 0x%x [in module %s]"),
8993 child_die->offset.sect_off, objfile_name (objfile));
8994 continue;
8995 }
8996
8997 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8998 if (import_attr == NULL)
8999 {
9000 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9001 dwarf_tag_name (child_die->tag));
9002 continue;
9003 }
9004
9005 imported_cu = cu;
9006 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9007 &imported_cu);
9008 imported_name = dwarf2_name (imported_die, imported_cu);
9009 if (imported_name == NULL)
9010 {
9011 complaint (&symfile_complaints,
9012 _("child DW_TAG_imported_declaration has unknown "
9013 "imported name - DIE at 0x%x [in module %s]"),
9014 child_die->offset.sect_off, objfile_name (objfile));
9015 continue;
9016 }
9017
9018 VEC_safe_push (const_char_ptr, excludes, imported_name);
9019
9020 process_die (child_die, cu);
9021 }
9022
9023 add_using_directive (using_directives (cu->language),
9024 import_prefix,
9025 canonical_name,
9026 import_alias,
9027 imported_declaration,
9028 excludes,
9029 0,
9030 &objfile->objfile_obstack);
9031
9032 do_cleanups (cleanups);
9033 }
9034
9035 /* Cleanup function for handle_DW_AT_stmt_list. */
9036
9037 static void
9038 free_cu_line_header (void *arg)
9039 {
9040 struct dwarf2_cu *cu = arg;
9041
9042 free_line_header (cu->line_header);
9043 cu->line_header = NULL;
9044 }
9045
9046 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9047 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9048 this, it was first present in GCC release 4.3.0. */
9049
9050 static int
9051 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9052 {
9053 if (!cu->checked_producer)
9054 check_producer (cu);
9055
9056 return cu->producer_is_gcc_lt_4_3;
9057 }
9058
9059 static void
9060 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9061 const char **name, const char **comp_dir)
9062 {
9063 struct attribute *attr;
9064
9065 *name = NULL;
9066 *comp_dir = NULL;
9067
9068 /* Find the filename. Do not use dwarf2_name here, since the filename
9069 is not a source language identifier. */
9070 attr = dwarf2_attr (die, DW_AT_name, cu);
9071 if (attr)
9072 {
9073 *name = DW_STRING (attr);
9074 }
9075
9076 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9077 if (attr)
9078 *comp_dir = DW_STRING (attr);
9079 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9080 && IS_ABSOLUTE_PATH (*name))
9081 {
9082 char *d = ldirname (*name);
9083
9084 *comp_dir = d;
9085 if (d != NULL)
9086 make_cleanup (xfree, d);
9087 }
9088 if (*comp_dir != NULL)
9089 {
9090 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9091 directory, get rid of it. */
9092 char *cp = strchr (*comp_dir, ':');
9093
9094 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9095 *comp_dir = cp + 1;
9096 }
9097
9098 if (*name == NULL)
9099 *name = "<unknown>";
9100 }
9101
9102 /* Handle DW_AT_stmt_list for a compilation unit.
9103 DIE is the DW_TAG_compile_unit die for CU.
9104 COMP_DIR is the compilation directory. LOWPC is passed to
9105 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9106
9107 static void
9108 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9109 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9110 {
9111 struct objfile *objfile = dwarf2_per_objfile->objfile;
9112 struct attribute *attr;
9113 unsigned int line_offset;
9114 struct line_header line_header_local;
9115 hashval_t line_header_local_hash;
9116 unsigned u;
9117 void **slot;
9118 int decode_mapping;
9119
9120 gdb_assert (! cu->per_cu->is_debug_types);
9121
9122 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9123 if (attr == NULL)
9124 return;
9125
9126 line_offset = DW_UNSND (attr);
9127
9128 /* The line header hash table is only created if needed (it exists to
9129 prevent redundant reading of the line table for partial_units).
9130 If we're given a partial_unit, we'll need it. If we're given a
9131 compile_unit, then use the line header hash table if it's already
9132 created, but don't create one just yet. */
9133
9134 if (dwarf2_per_objfile->line_header_hash == NULL
9135 && die->tag == DW_TAG_partial_unit)
9136 {
9137 dwarf2_per_objfile->line_header_hash
9138 = htab_create_alloc_ex (127, line_header_hash_voidp,
9139 line_header_eq_voidp,
9140 free_line_header_voidp,
9141 &objfile->objfile_obstack,
9142 hashtab_obstack_allocate,
9143 dummy_obstack_deallocate);
9144 }
9145
9146 line_header_local.offset.sect_off = line_offset;
9147 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9148 line_header_local_hash = line_header_hash (&line_header_local);
9149 if (dwarf2_per_objfile->line_header_hash != NULL)
9150 {
9151 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9152 &line_header_local,
9153 line_header_local_hash, NO_INSERT);
9154
9155 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9156 is not present in *SLOT (since if there is something in *SLOT then
9157 it will be for a partial_unit). */
9158 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9159 {
9160 gdb_assert (*slot != NULL);
9161 cu->line_header = *slot;
9162 return;
9163 }
9164 }
9165
9166 /* dwarf_decode_line_header does not yet provide sufficient information.
9167 We always have to call also dwarf_decode_lines for it. */
9168 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9169 if (cu->line_header == NULL)
9170 return;
9171
9172 if (dwarf2_per_objfile->line_header_hash == NULL)
9173 slot = NULL;
9174 else
9175 {
9176 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9177 &line_header_local,
9178 line_header_local_hash, INSERT);
9179 gdb_assert (slot != NULL);
9180 }
9181 if (slot != NULL && *slot == NULL)
9182 {
9183 /* This newly decoded line number information unit will be owned
9184 by line_header_hash hash table. */
9185 *slot = cu->line_header;
9186 }
9187 else
9188 {
9189 /* We cannot free any current entry in (*slot) as that struct line_header
9190 may be already used by multiple CUs. Create only temporary decoded
9191 line_header for this CU - it may happen at most once for each line
9192 number information unit. And if we're not using line_header_hash
9193 then this is what we want as well. */
9194 gdb_assert (die->tag != DW_TAG_partial_unit);
9195 make_cleanup (free_cu_line_header, cu);
9196 }
9197 decode_mapping = (die->tag != DW_TAG_partial_unit);
9198 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9199 decode_mapping);
9200 }
9201
9202 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9203
9204 static void
9205 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9206 {
9207 struct objfile *objfile = dwarf2_per_objfile->objfile;
9208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9209 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9210 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9211 CORE_ADDR highpc = ((CORE_ADDR) 0);
9212 struct attribute *attr;
9213 const char *name = NULL;
9214 const char *comp_dir = NULL;
9215 struct die_info *child_die;
9216 bfd *abfd = objfile->obfd;
9217 CORE_ADDR baseaddr;
9218
9219 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9220
9221 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9222
9223 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9224 from finish_block. */
9225 if (lowpc == ((CORE_ADDR) -1))
9226 lowpc = highpc;
9227 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9228
9229 find_file_and_directory (die, cu, &name, &comp_dir);
9230
9231 prepare_one_comp_unit (cu, die, cu->language);
9232
9233 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9234 standardised yet. As a workaround for the language detection we fall
9235 back to the DW_AT_producer string. */
9236 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9237 cu->language = language_opencl;
9238
9239 /* Similar hack for Go. */
9240 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9241 set_cu_language (DW_LANG_Go, cu);
9242
9243 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9244
9245 /* Decode line number information if present. We do this before
9246 processing child DIEs, so that the line header table is available
9247 for DW_AT_decl_file. */
9248 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9249
9250 /* Process all dies in compilation unit. */
9251 if (die->child != NULL)
9252 {
9253 child_die = die->child;
9254 while (child_die && child_die->tag)
9255 {
9256 process_die (child_die, cu);
9257 child_die = sibling_die (child_die);
9258 }
9259 }
9260
9261 /* Decode macro information, if present. Dwarf 2 macro information
9262 refers to information in the line number info statement program
9263 header, so we can only read it if we've read the header
9264 successfully. */
9265 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9266 if (attr && cu->line_header)
9267 {
9268 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9269 complaint (&symfile_complaints,
9270 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9271
9272 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9273 }
9274 else
9275 {
9276 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9277 if (attr && cu->line_header)
9278 {
9279 unsigned int macro_offset = DW_UNSND (attr);
9280
9281 dwarf_decode_macros (cu, macro_offset, 0);
9282 }
9283 }
9284
9285 do_cleanups (back_to);
9286 }
9287
9288 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9289 Create the set of symtabs used by this TU, or if this TU is sharing
9290 symtabs with another TU and the symtabs have already been created
9291 then restore those symtabs in the line header.
9292 We don't need the pc/line-number mapping for type units. */
9293
9294 static void
9295 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9296 {
9297 struct objfile *objfile = dwarf2_per_objfile->objfile;
9298 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9299 struct type_unit_group *tu_group;
9300 int first_time;
9301 struct line_header *lh;
9302 struct attribute *attr;
9303 unsigned int i, line_offset;
9304 struct signatured_type *sig_type;
9305
9306 gdb_assert (per_cu->is_debug_types);
9307 sig_type = (struct signatured_type *) per_cu;
9308
9309 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9310
9311 /* If we're using .gdb_index (includes -readnow) then
9312 per_cu->type_unit_group may not have been set up yet. */
9313 if (sig_type->type_unit_group == NULL)
9314 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9315 tu_group = sig_type->type_unit_group;
9316
9317 /* If we've already processed this stmt_list there's no real need to
9318 do it again, we could fake it and just recreate the part we need
9319 (file name,index -> symtab mapping). If data shows this optimization
9320 is useful we can do it then. */
9321 first_time = tu_group->compunit_symtab == NULL;
9322
9323 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9324 debug info. */
9325 lh = NULL;
9326 if (attr != NULL)
9327 {
9328 line_offset = DW_UNSND (attr);
9329 lh = dwarf_decode_line_header (line_offset, cu);
9330 }
9331 if (lh == NULL)
9332 {
9333 if (first_time)
9334 dwarf2_start_symtab (cu, "", NULL, 0);
9335 else
9336 {
9337 gdb_assert (tu_group->symtabs == NULL);
9338 restart_symtab (tu_group->compunit_symtab, "", 0);
9339 }
9340 return;
9341 }
9342
9343 cu->line_header = lh;
9344 make_cleanup (free_cu_line_header, cu);
9345
9346 if (first_time)
9347 {
9348 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9349
9350 tu_group->num_symtabs = lh->num_file_names;
9351 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9352
9353 for (i = 0; i < lh->num_file_names; ++i)
9354 {
9355 const char *dir = NULL;
9356 struct file_entry *fe = &lh->file_names[i];
9357
9358 if (fe->dir_index && lh->include_dirs != NULL)
9359 dir = lh->include_dirs[fe->dir_index - 1];
9360 dwarf2_start_subfile (fe->name, dir);
9361
9362 if (current_subfile->symtab == NULL)
9363 {
9364 /* NOTE: start_subfile will recognize when it's been passed
9365 a file it has already seen. So we can't assume there's a
9366 simple mapping from lh->file_names to subfiles, plus
9367 lh->file_names may contain dups. */
9368 current_subfile->symtab
9369 = allocate_symtab (cust, current_subfile->name);
9370 }
9371
9372 fe->symtab = current_subfile->symtab;
9373 tu_group->symtabs[i] = fe->symtab;
9374 }
9375 }
9376 else
9377 {
9378 restart_symtab (tu_group->compunit_symtab, "", 0);
9379
9380 for (i = 0; i < lh->num_file_names; ++i)
9381 {
9382 struct file_entry *fe = &lh->file_names[i];
9383
9384 fe->symtab = tu_group->symtabs[i];
9385 }
9386 }
9387
9388 /* The main symtab is allocated last. Type units don't have DW_AT_name
9389 so they don't have a "real" (so to speak) symtab anyway.
9390 There is later code that will assign the main symtab to all symbols
9391 that don't have one. We need to handle the case of a symbol with a
9392 missing symtab (DW_AT_decl_file) anyway. */
9393 }
9394
9395 /* Process DW_TAG_type_unit.
9396 For TUs we want to skip the first top level sibling if it's not the
9397 actual type being defined by this TU. In this case the first top
9398 level sibling is there to provide context only. */
9399
9400 static void
9401 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9402 {
9403 struct die_info *child_die;
9404
9405 prepare_one_comp_unit (cu, die, language_minimal);
9406
9407 /* Initialize (or reinitialize) the machinery for building symtabs.
9408 We do this before processing child DIEs, so that the line header table
9409 is available for DW_AT_decl_file. */
9410 setup_type_unit_groups (die, cu);
9411
9412 if (die->child != NULL)
9413 {
9414 child_die = die->child;
9415 while (child_die && child_die->tag)
9416 {
9417 process_die (child_die, cu);
9418 child_die = sibling_die (child_die);
9419 }
9420 }
9421 }
9422 \f
9423 /* DWO/DWP files.
9424
9425 http://gcc.gnu.org/wiki/DebugFission
9426 http://gcc.gnu.org/wiki/DebugFissionDWP
9427
9428 To simplify handling of both DWO files ("object" files with the DWARF info)
9429 and DWP files (a file with the DWOs packaged up into one file), we treat
9430 DWP files as having a collection of virtual DWO files. */
9431
9432 static hashval_t
9433 hash_dwo_file (const void *item)
9434 {
9435 const struct dwo_file *dwo_file = item;
9436 hashval_t hash;
9437
9438 hash = htab_hash_string (dwo_file->dwo_name);
9439 if (dwo_file->comp_dir != NULL)
9440 hash += htab_hash_string (dwo_file->comp_dir);
9441 return hash;
9442 }
9443
9444 static int
9445 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9446 {
9447 const struct dwo_file *lhs = item_lhs;
9448 const struct dwo_file *rhs = item_rhs;
9449
9450 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9451 return 0;
9452 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9453 return lhs->comp_dir == rhs->comp_dir;
9454 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9455 }
9456
9457 /* Allocate a hash table for DWO files. */
9458
9459 static htab_t
9460 allocate_dwo_file_hash_table (void)
9461 {
9462 struct objfile *objfile = dwarf2_per_objfile->objfile;
9463
9464 return htab_create_alloc_ex (41,
9465 hash_dwo_file,
9466 eq_dwo_file,
9467 NULL,
9468 &objfile->objfile_obstack,
9469 hashtab_obstack_allocate,
9470 dummy_obstack_deallocate);
9471 }
9472
9473 /* Lookup DWO file DWO_NAME. */
9474
9475 static void **
9476 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9477 {
9478 struct dwo_file find_entry;
9479 void **slot;
9480
9481 if (dwarf2_per_objfile->dwo_files == NULL)
9482 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9483
9484 memset (&find_entry, 0, sizeof (find_entry));
9485 find_entry.dwo_name = dwo_name;
9486 find_entry.comp_dir = comp_dir;
9487 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9488
9489 return slot;
9490 }
9491
9492 static hashval_t
9493 hash_dwo_unit (const void *item)
9494 {
9495 const struct dwo_unit *dwo_unit = item;
9496
9497 /* This drops the top 32 bits of the id, but is ok for a hash. */
9498 return dwo_unit->signature;
9499 }
9500
9501 static int
9502 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9503 {
9504 const struct dwo_unit *lhs = item_lhs;
9505 const struct dwo_unit *rhs = item_rhs;
9506
9507 /* The signature is assumed to be unique within the DWO file.
9508 So while object file CU dwo_id's always have the value zero,
9509 that's OK, assuming each object file DWO file has only one CU,
9510 and that's the rule for now. */
9511 return lhs->signature == rhs->signature;
9512 }
9513
9514 /* Allocate a hash table for DWO CUs,TUs.
9515 There is one of these tables for each of CUs,TUs for each DWO file. */
9516
9517 static htab_t
9518 allocate_dwo_unit_table (struct objfile *objfile)
9519 {
9520 /* Start out with a pretty small number.
9521 Generally DWO files contain only one CU and maybe some TUs. */
9522 return htab_create_alloc_ex (3,
9523 hash_dwo_unit,
9524 eq_dwo_unit,
9525 NULL,
9526 &objfile->objfile_obstack,
9527 hashtab_obstack_allocate,
9528 dummy_obstack_deallocate);
9529 }
9530
9531 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9532
9533 struct create_dwo_cu_data
9534 {
9535 struct dwo_file *dwo_file;
9536 struct dwo_unit dwo_unit;
9537 };
9538
9539 /* die_reader_func for create_dwo_cu. */
9540
9541 static void
9542 create_dwo_cu_reader (const struct die_reader_specs *reader,
9543 const gdb_byte *info_ptr,
9544 struct die_info *comp_unit_die,
9545 int has_children,
9546 void *datap)
9547 {
9548 struct dwarf2_cu *cu = reader->cu;
9549 struct objfile *objfile = dwarf2_per_objfile->objfile;
9550 sect_offset offset = cu->per_cu->offset;
9551 struct dwarf2_section_info *section = cu->per_cu->section;
9552 struct create_dwo_cu_data *data = datap;
9553 struct dwo_file *dwo_file = data->dwo_file;
9554 struct dwo_unit *dwo_unit = &data->dwo_unit;
9555 struct attribute *attr;
9556
9557 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9558 if (attr == NULL)
9559 {
9560 complaint (&symfile_complaints,
9561 _("Dwarf Error: debug entry at offset 0x%x is missing"
9562 " its dwo_id [in module %s]"),
9563 offset.sect_off, dwo_file->dwo_name);
9564 return;
9565 }
9566
9567 dwo_unit->dwo_file = dwo_file;
9568 dwo_unit->signature = DW_UNSND (attr);
9569 dwo_unit->section = section;
9570 dwo_unit->offset = offset;
9571 dwo_unit->length = cu->per_cu->length;
9572
9573 if (dwarf_read_debug)
9574 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9575 offset.sect_off, hex_string (dwo_unit->signature));
9576 }
9577
9578 /* Create the dwo_unit for the lone CU in DWO_FILE.
9579 Note: This function processes DWO files only, not DWP files. */
9580
9581 static struct dwo_unit *
9582 create_dwo_cu (struct dwo_file *dwo_file)
9583 {
9584 struct objfile *objfile = dwarf2_per_objfile->objfile;
9585 struct dwarf2_section_info *section = &dwo_file->sections.info;
9586 bfd *abfd;
9587 htab_t cu_htab;
9588 const gdb_byte *info_ptr, *end_ptr;
9589 struct create_dwo_cu_data create_dwo_cu_data;
9590 struct dwo_unit *dwo_unit;
9591
9592 dwarf2_read_section (objfile, section);
9593 info_ptr = section->buffer;
9594
9595 if (info_ptr == NULL)
9596 return NULL;
9597
9598 /* We can't set abfd until now because the section may be empty or
9599 not present, in which case section->asection will be NULL. */
9600 abfd = get_section_bfd_owner (section);
9601
9602 if (dwarf_read_debug)
9603 {
9604 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9605 get_section_name (section),
9606 get_section_file_name (section));
9607 }
9608
9609 create_dwo_cu_data.dwo_file = dwo_file;
9610 dwo_unit = NULL;
9611
9612 end_ptr = info_ptr + section->size;
9613 while (info_ptr < end_ptr)
9614 {
9615 struct dwarf2_per_cu_data per_cu;
9616
9617 memset (&create_dwo_cu_data.dwo_unit, 0,
9618 sizeof (create_dwo_cu_data.dwo_unit));
9619 memset (&per_cu, 0, sizeof (per_cu));
9620 per_cu.objfile = objfile;
9621 per_cu.is_debug_types = 0;
9622 per_cu.offset.sect_off = info_ptr - section->buffer;
9623 per_cu.section = section;
9624
9625 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9626 create_dwo_cu_reader,
9627 &create_dwo_cu_data);
9628
9629 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9630 {
9631 /* If we've already found one, complain. We only support one
9632 because having more than one requires hacking the dwo_name of
9633 each to match, which is highly unlikely to happen. */
9634 if (dwo_unit != NULL)
9635 {
9636 complaint (&symfile_complaints,
9637 _("Multiple CUs in DWO file %s [in module %s]"),
9638 dwo_file->dwo_name, objfile_name (objfile));
9639 break;
9640 }
9641
9642 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9643 *dwo_unit = create_dwo_cu_data.dwo_unit;
9644 }
9645
9646 info_ptr += per_cu.length;
9647 }
9648
9649 return dwo_unit;
9650 }
9651
9652 /* DWP file .debug_{cu,tu}_index section format:
9653 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9654
9655 DWP Version 1:
9656
9657 Both index sections have the same format, and serve to map a 64-bit
9658 signature to a set of section numbers. Each section begins with a header,
9659 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9660 indexes, and a pool of 32-bit section numbers. The index sections will be
9661 aligned at 8-byte boundaries in the file.
9662
9663 The index section header consists of:
9664
9665 V, 32 bit version number
9666 -, 32 bits unused
9667 N, 32 bit number of compilation units or type units in the index
9668 M, 32 bit number of slots in the hash table
9669
9670 Numbers are recorded using the byte order of the application binary.
9671
9672 The hash table begins at offset 16 in the section, and consists of an array
9673 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9674 order of the application binary). Unused slots in the hash table are 0.
9675 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9676
9677 The parallel table begins immediately after the hash table
9678 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9679 array of 32-bit indexes (using the byte order of the application binary),
9680 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9681 table contains a 32-bit index into the pool of section numbers. For unused
9682 hash table slots, the corresponding entry in the parallel table will be 0.
9683
9684 The pool of section numbers begins immediately following the hash table
9685 (at offset 16 + 12 * M from the beginning of the section). The pool of
9686 section numbers consists of an array of 32-bit words (using the byte order
9687 of the application binary). Each item in the array is indexed starting
9688 from 0. The hash table entry provides the index of the first section
9689 number in the set. Additional section numbers in the set follow, and the
9690 set is terminated by a 0 entry (section number 0 is not used in ELF).
9691
9692 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9693 section must be the first entry in the set, and the .debug_abbrev.dwo must
9694 be the second entry. Other members of the set may follow in any order.
9695
9696 ---
9697
9698 DWP Version 2:
9699
9700 DWP Version 2 combines all the .debug_info, etc. sections into one,
9701 and the entries in the index tables are now offsets into these sections.
9702 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9703 section.
9704
9705 Index Section Contents:
9706 Header
9707 Hash Table of Signatures dwp_hash_table.hash_table
9708 Parallel Table of Indices dwp_hash_table.unit_table
9709 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9710 Table of Section Sizes dwp_hash_table.v2.sizes
9711
9712 The index section header consists of:
9713
9714 V, 32 bit version number
9715 L, 32 bit number of columns in the table of section offsets
9716 N, 32 bit number of compilation units or type units in the index
9717 M, 32 bit number of slots in the hash table
9718
9719 Numbers are recorded using the byte order of the application binary.
9720
9721 The hash table has the same format as version 1.
9722 The parallel table of indices has the same format as version 1,
9723 except that the entries are origin-1 indices into the table of sections
9724 offsets and the table of section sizes.
9725
9726 The table of offsets begins immediately following the parallel table
9727 (at offset 16 + 12 * M from the beginning of the section). The table is
9728 a two-dimensional array of 32-bit words (using the byte order of the
9729 application binary), with L columns and N+1 rows, in row-major order.
9730 Each row in the array is indexed starting from 0. The first row provides
9731 a key to the remaining rows: each column in this row provides an identifier
9732 for a debug section, and the offsets in the same column of subsequent rows
9733 refer to that section. The section identifiers are:
9734
9735 DW_SECT_INFO 1 .debug_info.dwo
9736 DW_SECT_TYPES 2 .debug_types.dwo
9737 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9738 DW_SECT_LINE 4 .debug_line.dwo
9739 DW_SECT_LOC 5 .debug_loc.dwo
9740 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9741 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9742 DW_SECT_MACRO 8 .debug_macro.dwo
9743
9744 The offsets provided by the CU and TU index sections are the base offsets
9745 for the contributions made by each CU or TU to the corresponding section
9746 in the package file. Each CU and TU header contains an abbrev_offset
9747 field, used to find the abbreviations table for that CU or TU within the
9748 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9749 be interpreted as relative to the base offset given in the index section.
9750 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9751 should be interpreted as relative to the base offset for .debug_line.dwo,
9752 and offsets into other debug sections obtained from DWARF attributes should
9753 also be interpreted as relative to the corresponding base offset.
9754
9755 The table of sizes begins immediately following the table of offsets.
9756 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9757 with L columns and N rows, in row-major order. Each row in the array is
9758 indexed starting from 1 (row 0 is shared by the two tables).
9759
9760 ---
9761
9762 Hash table lookup is handled the same in version 1 and 2:
9763
9764 We assume that N and M will not exceed 2^32 - 1.
9765 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9766
9767 Given a 64-bit compilation unit signature or a type signature S, an entry
9768 in the hash table is located as follows:
9769
9770 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9771 the low-order k bits all set to 1.
9772
9773 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9774
9775 3) If the hash table entry at index H matches the signature, use that
9776 entry. If the hash table entry at index H is unused (all zeroes),
9777 terminate the search: the signature is not present in the table.
9778
9779 4) Let H = (H + H') modulo M. Repeat at Step 3.
9780
9781 Because M > N and H' and M are relatively prime, the search is guaranteed
9782 to stop at an unused slot or find the match. */
9783
9784 /* Create a hash table to map DWO IDs to their CU/TU entry in
9785 .debug_{info,types}.dwo in DWP_FILE.
9786 Returns NULL if there isn't one.
9787 Note: This function processes DWP files only, not DWO files. */
9788
9789 static struct dwp_hash_table *
9790 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9791 {
9792 struct objfile *objfile = dwarf2_per_objfile->objfile;
9793 bfd *dbfd = dwp_file->dbfd;
9794 const gdb_byte *index_ptr, *index_end;
9795 struct dwarf2_section_info *index;
9796 uint32_t version, nr_columns, nr_units, nr_slots;
9797 struct dwp_hash_table *htab;
9798
9799 if (is_debug_types)
9800 index = &dwp_file->sections.tu_index;
9801 else
9802 index = &dwp_file->sections.cu_index;
9803
9804 if (dwarf2_section_empty_p (index))
9805 return NULL;
9806 dwarf2_read_section (objfile, index);
9807
9808 index_ptr = index->buffer;
9809 index_end = index_ptr + index->size;
9810
9811 version = read_4_bytes (dbfd, index_ptr);
9812 index_ptr += 4;
9813 if (version == 2)
9814 nr_columns = read_4_bytes (dbfd, index_ptr);
9815 else
9816 nr_columns = 0;
9817 index_ptr += 4;
9818 nr_units = read_4_bytes (dbfd, index_ptr);
9819 index_ptr += 4;
9820 nr_slots = read_4_bytes (dbfd, index_ptr);
9821 index_ptr += 4;
9822
9823 if (version != 1 && version != 2)
9824 {
9825 error (_("Dwarf Error: unsupported DWP file version (%s)"
9826 " [in module %s]"),
9827 pulongest (version), dwp_file->name);
9828 }
9829 if (nr_slots != (nr_slots & -nr_slots))
9830 {
9831 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9832 " is not power of 2 [in module %s]"),
9833 pulongest (nr_slots), dwp_file->name);
9834 }
9835
9836 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9837 htab->version = version;
9838 htab->nr_columns = nr_columns;
9839 htab->nr_units = nr_units;
9840 htab->nr_slots = nr_slots;
9841 htab->hash_table = index_ptr;
9842 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9843
9844 /* Exit early if the table is empty. */
9845 if (nr_slots == 0 || nr_units == 0
9846 || (version == 2 && nr_columns == 0))
9847 {
9848 /* All must be zero. */
9849 if (nr_slots != 0 || nr_units != 0
9850 || (version == 2 && nr_columns != 0))
9851 {
9852 complaint (&symfile_complaints,
9853 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9854 " all zero [in modules %s]"),
9855 dwp_file->name);
9856 }
9857 return htab;
9858 }
9859
9860 if (version == 1)
9861 {
9862 htab->section_pool.v1.indices =
9863 htab->unit_table + sizeof (uint32_t) * nr_slots;
9864 /* It's harder to decide whether the section is too small in v1.
9865 V1 is deprecated anyway so we punt. */
9866 }
9867 else
9868 {
9869 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9870 int *ids = htab->section_pool.v2.section_ids;
9871 /* Reverse map for error checking. */
9872 int ids_seen[DW_SECT_MAX + 1];
9873 int i;
9874
9875 if (nr_columns < 2)
9876 {
9877 error (_("Dwarf Error: bad DWP hash table, too few columns"
9878 " in section table [in module %s]"),
9879 dwp_file->name);
9880 }
9881 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9882 {
9883 error (_("Dwarf Error: bad DWP hash table, too many columns"
9884 " in section table [in module %s]"),
9885 dwp_file->name);
9886 }
9887 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9888 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9889 for (i = 0; i < nr_columns; ++i)
9890 {
9891 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9892
9893 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9894 {
9895 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9896 " in section table [in module %s]"),
9897 id, dwp_file->name);
9898 }
9899 if (ids_seen[id] != -1)
9900 {
9901 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9902 " id %d in section table [in module %s]"),
9903 id, dwp_file->name);
9904 }
9905 ids_seen[id] = i;
9906 ids[i] = id;
9907 }
9908 /* Must have exactly one info or types section. */
9909 if (((ids_seen[DW_SECT_INFO] != -1)
9910 + (ids_seen[DW_SECT_TYPES] != -1))
9911 != 1)
9912 {
9913 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9914 " DWO info/types section [in module %s]"),
9915 dwp_file->name);
9916 }
9917 /* Must have an abbrev section. */
9918 if (ids_seen[DW_SECT_ABBREV] == -1)
9919 {
9920 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9921 " section [in module %s]"),
9922 dwp_file->name);
9923 }
9924 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9925 htab->section_pool.v2.sizes =
9926 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9927 * nr_units * nr_columns);
9928 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9929 * nr_units * nr_columns))
9930 > index_end)
9931 {
9932 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9933 " [in module %s]"),
9934 dwp_file->name);
9935 }
9936 }
9937
9938 return htab;
9939 }
9940
9941 /* Update SECTIONS with the data from SECTP.
9942
9943 This function is like the other "locate" section routines that are
9944 passed to bfd_map_over_sections, but in this context the sections to
9945 read comes from the DWP V1 hash table, not the full ELF section table.
9946
9947 The result is non-zero for success, or zero if an error was found. */
9948
9949 static int
9950 locate_v1_virtual_dwo_sections (asection *sectp,
9951 struct virtual_v1_dwo_sections *sections)
9952 {
9953 const struct dwop_section_names *names = &dwop_section_names;
9954
9955 if (section_is_p (sectp->name, &names->abbrev_dwo))
9956 {
9957 /* There can be only one. */
9958 if (sections->abbrev.s.asection != NULL)
9959 return 0;
9960 sections->abbrev.s.asection = sectp;
9961 sections->abbrev.size = bfd_get_section_size (sectp);
9962 }
9963 else if (section_is_p (sectp->name, &names->info_dwo)
9964 || section_is_p (sectp->name, &names->types_dwo))
9965 {
9966 /* There can be only one. */
9967 if (sections->info_or_types.s.asection != NULL)
9968 return 0;
9969 sections->info_or_types.s.asection = sectp;
9970 sections->info_or_types.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->line_dwo))
9973 {
9974 /* There can be only one. */
9975 if (sections->line.s.asection != NULL)
9976 return 0;
9977 sections->line.s.asection = sectp;
9978 sections->line.size = bfd_get_section_size (sectp);
9979 }
9980 else if (section_is_p (sectp->name, &names->loc_dwo))
9981 {
9982 /* There can be only one. */
9983 if (sections->loc.s.asection != NULL)
9984 return 0;
9985 sections->loc.s.asection = sectp;
9986 sections->loc.size = bfd_get_section_size (sectp);
9987 }
9988 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9989 {
9990 /* There can be only one. */
9991 if (sections->macinfo.s.asection != NULL)
9992 return 0;
9993 sections->macinfo.s.asection = sectp;
9994 sections->macinfo.size = bfd_get_section_size (sectp);
9995 }
9996 else if (section_is_p (sectp->name, &names->macro_dwo))
9997 {
9998 /* There can be only one. */
9999 if (sections->macro.s.asection != NULL)
10000 return 0;
10001 sections->macro.s.asection = sectp;
10002 sections->macro.size = bfd_get_section_size (sectp);
10003 }
10004 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10005 {
10006 /* There can be only one. */
10007 if (sections->str_offsets.s.asection != NULL)
10008 return 0;
10009 sections->str_offsets.s.asection = sectp;
10010 sections->str_offsets.size = bfd_get_section_size (sectp);
10011 }
10012 else
10013 {
10014 /* No other kind of section is valid. */
10015 return 0;
10016 }
10017
10018 return 1;
10019 }
10020
10021 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10022 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10023 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10024 This is for DWP version 1 files. */
10025
10026 static struct dwo_unit *
10027 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10028 uint32_t unit_index,
10029 const char *comp_dir,
10030 ULONGEST signature, int is_debug_types)
10031 {
10032 struct objfile *objfile = dwarf2_per_objfile->objfile;
10033 const struct dwp_hash_table *dwp_htab =
10034 is_debug_types ? dwp_file->tus : dwp_file->cus;
10035 bfd *dbfd = dwp_file->dbfd;
10036 const char *kind = is_debug_types ? "TU" : "CU";
10037 struct dwo_file *dwo_file;
10038 struct dwo_unit *dwo_unit;
10039 struct virtual_v1_dwo_sections sections;
10040 void **dwo_file_slot;
10041 char *virtual_dwo_name;
10042 struct dwarf2_section_info *cutu;
10043 struct cleanup *cleanups;
10044 int i;
10045
10046 gdb_assert (dwp_file->version == 1);
10047
10048 if (dwarf_read_debug)
10049 {
10050 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10051 kind,
10052 pulongest (unit_index), hex_string (signature),
10053 dwp_file->name);
10054 }
10055
10056 /* Fetch the sections of this DWO unit.
10057 Put a limit on the number of sections we look for so that bad data
10058 doesn't cause us to loop forever. */
10059
10060 #define MAX_NR_V1_DWO_SECTIONS \
10061 (1 /* .debug_info or .debug_types */ \
10062 + 1 /* .debug_abbrev */ \
10063 + 1 /* .debug_line */ \
10064 + 1 /* .debug_loc */ \
10065 + 1 /* .debug_str_offsets */ \
10066 + 1 /* .debug_macro or .debug_macinfo */ \
10067 + 1 /* trailing zero */)
10068
10069 memset (&sections, 0, sizeof (sections));
10070 cleanups = make_cleanup (null_cleanup, 0);
10071
10072 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10073 {
10074 asection *sectp;
10075 uint32_t section_nr =
10076 read_4_bytes (dbfd,
10077 dwp_htab->section_pool.v1.indices
10078 + (unit_index + i) * sizeof (uint32_t));
10079
10080 if (section_nr == 0)
10081 break;
10082 if (section_nr >= dwp_file->num_sections)
10083 {
10084 error (_("Dwarf Error: bad DWP hash table, section number too large"
10085 " [in module %s]"),
10086 dwp_file->name);
10087 }
10088
10089 sectp = dwp_file->elf_sections[section_nr];
10090 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10091 {
10092 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10093 " [in module %s]"),
10094 dwp_file->name);
10095 }
10096 }
10097
10098 if (i < 2
10099 || dwarf2_section_empty_p (&sections.info_or_types)
10100 || dwarf2_section_empty_p (&sections.abbrev))
10101 {
10102 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10103 " [in module %s]"),
10104 dwp_file->name);
10105 }
10106 if (i == MAX_NR_V1_DWO_SECTIONS)
10107 {
10108 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10109 " [in module %s]"),
10110 dwp_file->name);
10111 }
10112
10113 /* It's easier for the rest of the code if we fake a struct dwo_file and
10114 have dwo_unit "live" in that. At least for now.
10115
10116 The DWP file can be made up of a random collection of CUs and TUs.
10117 However, for each CU + set of TUs that came from the same original DWO
10118 file, we can combine them back into a virtual DWO file to save space
10119 (fewer struct dwo_file objects to allocate). Remember that for really
10120 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10121
10122 virtual_dwo_name =
10123 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10124 get_section_id (&sections.abbrev),
10125 get_section_id (&sections.line),
10126 get_section_id (&sections.loc),
10127 get_section_id (&sections.str_offsets));
10128 make_cleanup (xfree, virtual_dwo_name);
10129 /* Can we use an existing virtual DWO file? */
10130 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10131 /* Create one if necessary. */
10132 if (*dwo_file_slot == NULL)
10133 {
10134 if (dwarf_read_debug)
10135 {
10136 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10137 virtual_dwo_name);
10138 }
10139 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10140 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10141 virtual_dwo_name,
10142 strlen (virtual_dwo_name));
10143 dwo_file->comp_dir = comp_dir;
10144 dwo_file->sections.abbrev = sections.abbrev;
10145 dwo_file->sections.line = sections.line;
10146 dwo_file->sections.loc = sections.loc;
10147 dwo_file->sections.macinfo = sections.macinfo;
10148 dwo_file->sections.macro = sections.macro;
10149 dwo_file->sections.str_offsets = sections.str_offsets;
10150 /* The "str" section is global to the entire DWP file. */
10151 dwo_file->sections.str = dwp_file->sections.str;
10152 /* The info or types section is assigned below to dwo_unit,
10153 there's no need to record it in dwo_file.
10154 Also, we can't simply record type sections in dwo_file because
10155 we record a pointer into the vector in dwo_unit. As we collect more
10156 types we'll grow the vector and eventually have to reallocate space
10157 for it, invalidating all copies of pointers into the previous
10158 contents. */
10159 *dwo_file_slot = dwo_file;
10160 }
10161 else
10162 {
10163 if (dwarf_read_debug)
10164 {
10165 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10166 virtual_dwo_name);
10167 }
10168 dwo_file = *dwo_file_slot;
10169 }
10170 do_cleanups (cleanups);
10171
10172 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10173 dwo_unit->dwo_file = dwo_file;
10174 dwo_unit->signature = signature;
10175 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10176 sizeof (struct dwarf2_section_info));
10177 *dwo_unit->section = sections.info_or_types;
10178 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10179
10180 return dwo_unit;
10181 }
10182
10183 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10184 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10185 piece within that section used by a TU/CU, return a virtual section
10186 of just that piece. */
10187
10188 static struct dwarf2_section_info
10189 create_dwp_v2_section (struct dwarf2_section_info *section,
10190 bfd_size_type offset, bfd_size_type size)
10191 {
10192 struct dwarf2_section_info result;
10193 asection *sectp;
10194
10195 gdb_assert (section != NULL);
10196 gdb_assert (!section->is_virtual);
10197
10198 memset (&result, 0, sizeof (result));
10199 result.s.containing_section = section;
10200 result.is_virtual = 1;
10201
10202 if (size == 0)
10203 return result;
10204
10205 sectp = get_section_bfd_section (section);
10206
10207 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10208 bounds of the real section. This is a pretty-rare event, so just
10209 flag an error (easier) instead of a warning and trying to cope. */
10210 if (sectp == NULL
10211 || offset + size > bfd_get_section_size (sectp))
10212 {
10213 bfd *abfd = sectp->owner;
10214
10215 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10216 " in section %s [in module %s]"),
10217 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10218 objfile_name (dwarf2_per_objfile->objfile));
10219 }
10220
10221 result.virtual_offset = offset;
10222 result.size = size;
10223 return result;
10224 }
10225
10226 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10227 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10228 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10229 This is for DWP version 2 files. */
10230
10231 static struct dwo_unit *
10232 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10233 uint32_t unit_index,
10234 const char *comp_dir,
10235 ULONGEST signature, int is_debug_types)
10236 {
10237 struct objfile *objfile = dwarf2_per_objfile->objfile;
10238 const struct dwp_hash_table *dwp_htab =
10239 is_debug_types ? dwp_file->tus : dwp_file->cus;
10240 bfd *dbfd = dwp_file->dbfd;
10241 const char *kind = is_debug_types ? "TU" : "CU";
10242 struct dwo_file *dwo_file;
10243 struct dwo_unit *dwo_unit;
10244 struct virtual_v2_dwo_sections sections;
10245 void **dwo_file_slot;
10246 char *virtual_dwo_name;
10247 struct dwarf2_section_info *cutu;
10248 struct cleanup *cleanups;
10249 int i;
10250
10251 gdb_assert (dwp_file->version == 2);
10252
10253 if (dwarf_read_debug)
10254 {
10255 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10256 kind,
10257 pulongest (unit_index), hex_string (signature),
10258 dwp_file->name);
10259 }
10260
10261 /* Fetch the section offsets of this DWO unit. */
10262
10263 memset (&sections, 0, sizeof (sections));
10264 cleanups = make_cleanup (null_cleanup, 0);
10265
10266 for (i = 0; i < dwp_htab->nr_columns; ++i)
10267 {
10268 uint32_t offset = read_4_bytes (dbfd,
10269 dwp_htab->section_pool.v2.offsets
10270 + (((unit_index - 1) * dwp_htab->nr_columns
10271 + i)
10272 * sizeof (uint32_t)));
10273 uint32_t size = read_4_bytes (dbfd,
10274 dwp_htab->section_pool.v2.sizes
10275 + (((unit_index - 1) * dwp_htab->nr_columns
10276 + i)
10277 * sizeof (uint32_t)));
10278
10279 switch (dwp_htab->section_pool.v2.section_ids[i])
10280 {
10281 case DW_SECT_INFO:
10282 case DW_SECT_TYPES:
10283 sections.info_or_types_offset = offset;
10284 sections.info_or_types_size = size;
10285 break;
10286 case DW_SECT_ABBREV:
10287 sections.abbrev_offset = offset;
10288 sections.abbrev_size = size;
10289 break;
10290 case DW_SECT_LINE:
10291 sections.line_offset = offset;
10292 sections.line_size = size;
10293 break;
10294 case DW_SECT_LOC:
10295 sections.loc_offset = offset;
10296 sections.loc_size = size;
10297 break;
10298 case DW_SECT_STR_OFFSETS:
10299 sections.str_offsets_offset = offset;
10300 sections.str_offsets_size = size;
10301 break;
10302 case DW_SECT_MACINFO:
10303 sections.macinfo_offset = offset;
10304 sections.macinfo_size = size;
10305 break;
10306 case DW_SECT_MACRO:
10307 sections.macro_offset = offset;
10308 sections.macro_size = size;
10309 break;
10310 }
10311 }
10312
10313 /* It's easier for the rest of the code if we fake a struct dwo_file and
10314 have dwo_unit "live" in that. At least for now.
10315
10316 The DWP file can be made up of a random collection of CUs and TUs.
10317 However, for each CU + set of TUs that came from the same original DWO
10318 file, we can combine them back into a virtual DWO file to save space
10319 (fewer struct dwo_file objects to allocate). Remember that for really
10320 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10321
10322 virtual_dwo_name =
10323 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10324 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10325 (long) (sections.line_size ? sections.line_offset : 0),
10326 (long) (sections.loc_size ? sections.loc_offset : 0),
10327 (long) (sections.str_offsets_size
10328 ? sections.str_offsets_offset : 0));
10329 make_cleanup (xfree, virtual_dwo_name);
10330 /* Can we use an existing virtual DWO file? */
10331 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10332 /* Create one if necessary. */
10333 if (*dwo_file_slot == NULL)
10334 {
10335 if (dwarf_read_debug)
10336 {
10337 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10338 virtual_dwo_name);
10339 }
10340 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10341 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10342 virtual_dwo_name,
10343 strlen (virtual_dwo_name));
10344 dwo_file->comp_dir = comp_dir;
10345 dwo_file->sections.abbrev =
10346 create_dwp_v2_section (&dwp_file->sections.abbrev,
10347 sections.abbrev_offset, sections.abbrev_size);
10348 dwo_file->sections.line =
10349 create_dwp_v2_section (&dwp_file->sections.line,
10350 sections.line_offset, sections.line_size);
10351 dwo_file->sections.loc =
10352 create_dwp_v2_section (&dwp_file->sections.loc,
10353 sections.loc_offset, sections.loc_size);
10354 dwo_file->sections.macinfo =
10355 create_dwp_v2_section (&dwp_file->sections.macinfo,
10356 sections.macinfo_offset, sections.macinfo_size);
10357 dwo_file->sections.macro =
10358 create_dwp_v2_section (&dwp_file->sections.macro,
10359 sections.macro_offset, sections.macro_size);
10360 dwo_file->sections.str_offsets =
10361 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10362 sections.str_offsets_offset,
10363 sections.str_offsets_size);
10364 /* The "str" section is global to the entire DWP file. */
10365 dwo_file->sections.str = dwp_file->sections.str;
10366 /* The info or types section is assigned below to dwo_unit,
10367 there's no need to record it in dwo_file.
10368 Also, we can't simply record type sections in dwo_file because
10369 we record a pointer into the vector in dwo_unit. As we collect more
10370 types we'll grow the vector and eventually have to reallocate space
10371 for it, invalidating all copies of pointers into the previous
10372 contents. */
10373 *dwo_file_slot = dwo_file;
10374 }
10375 else
10376 {
10377 if (dwarf_read_debug)
10378 {
10379 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10380 virtual_dwo_name);
10381 }
10382 dwo_file = *dwo_file_slot;
10383 }
10384 do_cleanups (cleanups);
10385
10386 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10387 dwo_unit->dwo_file = dwo_file;
10388 dwo_unit->signature = signature;
10389 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10390 sizeof (struct dwarf2_section_info));
10391 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10392 ? &dwp_file->sections.types
10393 : &dwp_file->sections.info,
10394 sections.info_or_types_offset,
10395 sections.info_or_types_size);
10396 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10397
10398 return dwo_unit;
10399 }
10400
10401 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10402 Returns NULL if the signature isn't found. */
10403
10404 static struct dwo_unit *
10405 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10406 ULONGEST signature, int is_debug_types)
10407 {
10408 const struct dwp_hash_table *dwp_htab =
10409 is_debug_types ? dwp_file->tus : dwp_file->cus;
10410 bfd *dbfd = dwp_file->dbfd;
10411 uint32_t mask = dwp_htab->nr_slots - 1;
10412 uint32_t hash = signature & mask;
10413 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10414 unsigned int i;
10415 void **slot;
10416 struct dwo_unit find_dwo_cu, *dwo_cu;
10417
10418 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10419 find_dwo_cu.signature = signature;
10420 slot = htab_find_slot (is_debug_types
10421 ? dwp_file->loaded_tus
10422 : dwp_file->loaded_cus,
10423 &find_dwo_cu, INSERT);
10424
10425 if (*slot != NULL)
10426 return *slot;
10427
10428 /* Use a for loop so that we don't loop forever on bad debug info. */
10429 for (i = 0; i < dwp_htab->nr_slots; ++i)
10430 {
10431 ULONGEST signature_in_table;
10432
10433 signature_in_table =
10434 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10435 if (signature_in_table == signature)
10436 {
10437 uint32_t unit_index =
10438 read_4_bytes (dbfd,
10439 dwp_htab->unit_table + hash * sizeof (uint32_t));
10440
10441 if (dwp_file->version == 1)
10442 {
10443 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10444 comp_dir, signature,
10445 is_debug_types);
10446 }
10447 else
10448 {
10449 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10450 comp_dir, signature,
10451 is_debug_types);
10452 }
10453 return *slot;
10454 }
10455 if (signature_in_table == 0)
10456 return NULL;
10457 hash = (hash + hash2) & mask;
10458 }
10459
10460 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10461 " [in module %s]"),
10462 dwp_file->name);
10463 }
10464
10465 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10466 Open the file specified by FILE_NAME and hand it off to BFD for
10467 preliminary analysis. Return a newly initialized bfd *, which
10468 includes a canonicalized copy of FILE_NAME.
10469 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10470 SEARCH_CWD is true if the current directory is to be searched.
10471 It will be searched before debug-file-directory.
10472 If successful, the file is added to the bfd include table of the
10473 objfile's bfd (see gdb_bfd_record_inclusion).
10474 If unable to find/open the file, return NULL.
10475 NOTE: This function is derived from symfile_bfd_open. */
10476
10477 static bfd *
10478 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10479 {
10480 bfd *sym_bfd;
10481 int desc, flags;
10482 char *absolute_name;
10483 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10484 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10485 to debug_file_directory. */
10486 char *search_path;
10487 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10488
10489 if (search_cwd)
10490 {
10491 if (*debug_file_directory != '\0')
10492 search_path = concat (".", dirname_separator_string,
10493 debug_file_directory, NULL);
10494 else
10495 search_path = xstrdup (".");
10496 }
10497 else
10498 search_path = xstrdup (debug_file_directory);
10499
10500 flags = OPF_RETURN_REALPATH;
10501 if (is_dwp)
10502 flags |= OPF_SEARCH_IN_PATH;
10503 desc = openp (search_path, flags, file_name,
10504 O_RDONLY | O_BINARY, &absolute_name);
10505 xfree (search_path);
10506 if (desc < 0)
10507 return NULL;
10508
10509 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10510 xfree (absolute_name);
10511 if (sym_bfd == NULL)
10512 return NULL;
10513 bfd_set_cacheable (sym_bfd, 1);
10514
10515 if (!bfd_check_format (sym_bfd, bfd_object))
10516 {
10517 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10518 return NULL;
10519 }
10520
10521 /* Success. Record the bfd as having been included by the objfile's bfd.
10522 This is important because things like demangled_names_hash lives in the
10523 objfile's per_bfd space and may have references to things like symbol
10524 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10525 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10526
10527 return sym_bfd;
10528 }
10529
10530 /* Try to open DWO file FILE_NAME.
10531 COMP_DIR is the DW_AT_comp_dir attribute.
10532 The result is the bfd handle of the file.
10533 If there is a problem finding or opening the file, return NULL.
10534 Upon success, the canonicalized path of the file is stored in the bfd,
10535 same as symfile_bfd_open. */
10536
10537 static bfd *
10538 open_dwo_file (const char *file_name, const char *comp_dir)
10539 {
10540 bfd *abfd;
10541
10542 if (IS_ABSOLUTE_PATH (file_name))
10543 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10544
10545 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10546
10547 if (comp_dir != NULL)
10548 {
10549 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10550
10551 /* NOTE: If comp_dir is a relative path, this will also try the
10552 search path, which seems useful. */
10553 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10554 xfree (path_to_try);
10555 if (abfd != NULL)
10556 return abfd;
10557 }
10558
10559 /* That didn't work, try debug-file-directory, which, despite its name,
10560 is a list of paths. */
10561
10562 if (*debug_file_directory == '\0')
10563 return NULL;
10564
10565 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10566 }
10567
10568 /* This function is mapped across the sections and remembers the offset and
10569 size of each of the DWO debugging sections we are interested in. */
10570
10571 static void
10572 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10573 {
10574 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10575 const struct dwop_section_names *names = &dwop_section_names;
10576
10577 if (section_is_p (sectp->name, &names->abbrev_dwo))
10578 {
10579 dwo_sections->abbrev.s.asection = sectp;
10580 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10581 }
10582 else if (section_is_p (sectp->name, &names->info_dwo))
10583 {
10584 dwo_sections->info.s.asection = sectp;
10585 dwo_sections->info.size = bfd_get_section_size (sectp);
10586 }
10587 else if (section_is_p (sectp->name, &names->line_dwo))
10588 {
10589 dwo_sections->line.s.asection = sectp;
10590 dwo_sections->line.size = bfd_get_section_size (sectp);
10591 }
10592 else if (section_is_p (sectp->name, &names->loc_dwo))
10593 {
10594 dwo_sections->loc.s.asection = sectp;
10595 dwo_sections->loc.size = bfd_get_section_size (sectp);
10596 }
10597 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10598 {
10599 dwo_sections->macinfo.s.asection = sectp;
10600 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10601 }
10602 else if (section_is_p (sectp->name, &names->macro_dwo))
10603 {
10604 dwo_sections->macro.s.asection = sectp;
10605 dwo_sections->macro.size = bfd_get_section_size (sectp);
10606 }
10607 else if (section_is_p (sectp->name, &names->str_dwo))
10608 {
10609 dwo_sections->str.s.asection = sectp;
10610 dwo_sections->str.size = bfd_get_section_size (sectp);
10611 }
10612 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10613 {
10614 dwo_sections->str_offsets.s.asection = sectp;
10615 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10616 }
10617 else if (section_is_p (sectp->name, &names->types_dwo))
10618 {
10619 struct dwarf2_section_info type_section;
10620
10621 memset (&type_section, 0, sizeof (type_section));
10622 type_section.s.asection = sectp;
10623 type_section.size = bfd_get_section_size (sectp);
10624 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10625 &type_section);
10626 }
10627 }
10628
10629 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10630 by PER_CU. This is for the non-DWP case.
10631 The result is NULL if DWO_NAME can't be found. */
10632
10633 static struct dwo_file *
10634 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10635 const char *dwo_name, const char *comp_dir)
10636 {
10637 struct objfile *objfile = dwarf2_per_objfile->objfile;
10638 struct dwo_file *dwo_file;
10639 bfd *dbfd;
10640 struct cleanup *cleanups;
10641
10642 dbfd = open_dwo_file (dwo_name, comp_dir);
10643 if (dbfd == NULL)
10644 {
10645 if (dwarf_read_debug)
10646 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10647 return NULL;
10648 }
10649 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10650 dwo_file->dwo_name = dwo_name;
10651 dwo_file->comp_dir = comp_dir;
10652 dwo_file->dbfd = dbfd;
10653
10654 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10655
10656 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10657
10658 dwo_file->cu = create_dwo_cu (dwo_file);
10659
10660 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10661 dwo_file->sections.types);
10662
10663 discard_cleanups (cleanups);
10664
10665 if (dwarf_read_debug)
10666 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10667
10668 return dwo_file;
10669 }
10670
10671 /* This function is mapped across the sections and remembers the offset and
10672 size of each of the DWP debugging sections common to version 1 and 2 that
10673 we are interested in. */
10674
10675 static void
10676 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10677 void *dwp_file_ptr)
10678 {
10679 struct dwp_file *dwp_file = dwp_file_ptr;
10680 const struct dwop_section_names *names = &dwop_section_names;
10681 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10682
10683 /* Record the ELF section number for later lookup: this is what the
10684 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10685 gdb_assert (elf_section_nr < dwp_file->num_sections);
10686 dwp_file->elf_sections[elf_section_nr] = sectp;
10687
10688 /* Look for specific sections that we need. */
10689 if (section_is_p (sectp->name, &names->str_dwo))
10690 {
10691 dwp_file->sections.str.s.asection = sectp;
10692 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10693 }
10694 else if (section_is_p (sectp->name, &names->cu_index))
10695 {
10696 dwp_file->sections.cu_index.s.asection = sectp;
10697 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10698 }
10699 else if (section_is_p (sectp->name, &names->tu_index))
10700 {
10701 dwp_file->sections.tu_index.s.asection = sectp;
10702 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10703 }
10704 }
10705
10706 /* This function is mapped across the sections and remembers the offset and
10707 size of each of the DWP version 2 debugging sections that we are interested
10708 in. This is split into a separate function because we don't know if we
10709 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10710
10711 static void
10712 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10713 {
10714 struct dwp_file *dwp_file = dwp_file_ptr;
10715 const struct dwop_section_names *names = &dwop_section_names;
10716 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10717
10718 /* Record the ELF section number for later lookup: this is what the
10719 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10720 gdb_assert (elf_section_nr < dwp_file->num_sections);
10721 dwp_file->elf_sections[elf_section_nr] = sectp;
10722
10723 /* Look for specific sections that we need. */
10724 if (section_is_p (sectp->name, &names->abbrev_dwo))
10725 {
10726 dwp_file->sections.abbrev.s.asection = sectp;
10727 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10728 }
10729 else if (section_is_p (sectp->name, &names->info_dwo))
10730 {
10731 dwp_file->sections.info.s.asection = sectp;
10732 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10733 }
10734 else if (section_is_p (sectp->name, &names->line_dwo))
10735 {
10736 dwp_file->sections.line.s.asection = sectp;
10737 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10738 }
10739 else if (section_is_p (sectp->name, &names->loc_dwo))
10740 {
10741 dwp_file->sections.loc.s.asection = sectp;
10742 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10743 }
10744 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10745 {
10746 dwp_file->sections.macinfo.s.asection = sectp;
10747 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10748 }
10749 else if (section_is_p (sectp->name, &names->macro_dwo))
10750 {
10751 dwp_file->sections.macro.s.asection = sectp;
10752 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10753 }
10754 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10755 {
10756 dwp_file->sections.str_offsets.s.asection = sectp;
10757 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10758 }
10759 else if (section_is_p (sectp->name, &names->types_dwo))
10760 {
10761 dwp_file->sections.types.s.asection = sectp;
10762 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10763 }
10764 }
10765
10766 /* Hash function for dwp_file loaded CUs/TUs. */
10767
10768 static hashval_t
10769 hash_dwp_loaded_cutus (const void *item)
10770 {
10771 const struct dwo_unit *dwo_unit = item;
10772
10773 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10774 return dwo_unit->signature;
10775 }
10776
10777 /* Equality function for dwp_file loaded CUs/TUs. */
10778
10779 static int
10780 eq_dwp_loaded_cutus (const void *a, const void *b)
10781 {
10782 const struct dwo_unit *dua = a;
10783 const struct dwo_unit *dub = b;
10784
10785 return dua->signature == dub->signature;
10786 }
10787
10788 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10789
10790 static htab_t
10791 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10792 {
10793 return htab_create_alloc_ex (3,
10794 hash_dwp_loaded_cutus,
10795 eq_dwp_loaded_cutus,
10796 NULL,
10797 &objfile->objfile_obstack,
10798 hashtab_obstack_allocate,
10799 dummy_obstack_deallocate);
10800 }
10801
10802 /* Try to open DWP file FILE_NAME.
10803 The result is the bfd handle of the file.
10804 If there is a problem finding or opening the file, return NULL.
10805 Upon success, the canonicalized path of the file is stored in the bfd,
10806 same as symfile_bfd_open. */
10807
10808 static bfd *
10809 open_dwp_file (const char *file_name)
10810 {
10811 bfd *abfd;
10812
10813 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10814 if (abfd != NULL)
10815 return abfd;
10816
10817 /* Work around upstream bug 15652.
10818 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10819 [Whether that's a "bug" is debatable, but it is getting in our way.]
10820 We have no real idea where the dwp file is, because gdb's realpath-ing
10821 of the executable's path may have discarded the needed info.
10822 [IWBN if the dwp file name was recorded in the executable, akin to
10823 .gnu_debuglink, but that doesn't exist yet.]
10824 Strip the directory from FILE_NAME and search again. */
10825 if (*debug_file_directory != '\0')
10826 {
10827 /* Don't implicitly search the current directory here.
10828 If the user wants to search "." to handle this case,
10829 it must be added to debug-file-directory. */
10830 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10831 0 /*search_cwd*/);
10832 }
10833
10834 return NULL;
10835 }
10836
10837 /* Initialize the use of the DWP file for the current objfile.
10838 By convention the name of the DWP file is ${objfile}.dwp.
10839 The result is NULL if it can't be found. */
10840
10841 static struct dwp_file *
10842 open_and_init_dwp_file (void)
10843 {
10844 struct objfile *objfile = dwarf2_per_objfile->objfile;
10845 struct dwp_file *dwp_file;
10846 char *dwp_name;
10847 bfd *dbfd;
10848 struct cleanup *cleanups;
10849
10850 /* Try to find first .dwp for the binary file before any symbolic links
10851 resolving. */
10852 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10853 cleanups = make_cleanup (xfree, dwp_name);
10854
10855 dbfd = open_dwp_file (dwp_name);
10856 if (dbfd == NULL
10857 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10858 {
10859 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10860 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10861 make_cleanup (xfree, dwp_name);
10862 dbfd = open_dwp_file (dwp_name);
10863 }
10864
10865 if (dbfd == NULL)
10866 {
10867 if (dwarf_read_debug)
10868 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10869 do_cleanups (cleanups);
10870 return NULL;
10871 }
10872 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10873 dwp_file->name = bfd_get_filename (dbfd);
10874 dwp_file->dbfd = dbfd;
10875 do_cleanups (cleanups);
10876
10877 /* +1: section 0 is unused */
10878 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10879 dwp_file->elf_sections =
10880 OBSTACK_CALLOC (&objfile->objfile_obstack,
10881 dwp_file->num_sections, asection *);
10882
10883 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10884
10885 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10886
10887 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10888
10889 /* The DWP file version is stored in the hash table. Oh well. */
10890 if (dwp_file->cus->version != dwp_file->tus->version)
10891 {
10892 /* Technically speaking, we should try to limp along, but this is
10893 pretty bizarre. We use pulongest here because that's the established
10894 portability solution (e.g, we cannot use %u for uint32_t). */
10895 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10896 " TU version %s [in DWP file %s]"),
10897 pulongest (dwp_file->cus->version),
10898 pulongest (dwp_file->tus->version), dwp_name);
10899 }
10900 dwp_file->version = dwp_file->cus->version;
10901
10902 if (dwp_file->version == 2)
10903 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10904
10905 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10906 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10907
10908 if (dwarf_read_debug)
10909 {
10910 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10911 fprintf_unfiltered (gdb_stdlog,
10912 " %s CUs, %s TUs\n",
10913 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10914 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10915 }
10916
10917 return dwp_file;
10918 }
10919
10920 /* Wrapper around open_and_init_dwp_file, only open it once. */
10921
10922 static struct dwp_file *
10923 get_dwp_file (void)
10924 {
10925 if (! dwarf2_per_objfile->dwp_checked)
10926 {
10927 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10928 dwarf2_per_objfile->dwp_checked = 1;
10929 }
10930 return dwarf2_per_objfile->dwp_file;
10931 }
10932
10933 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10934 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10935 or in the DWP file for the objfile, referenced by THIS_UNIT.
10936 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10937 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10938
10939 This is called, for example, when wanting to read a variable with a
10940 complex location. Therefore we don't want to do file i/o for every call.
10941 Therefore we don't want to look for a DWO file on every call.
10942 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10943 then we check if we've already seen DWO_NAME, and only THEN do we check
10944 for a DWO file.
10945
10946 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10947 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10948
10949 static struct dwo_unit *
10950 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10951 const char *dwo_name, const char *comp_dir,
10952 ULONGEST signature, int is_debug_types)
10953 {
10954 struct objfile *objfile = dwarf2_per_objfile->objfile;
10955 const char *kind = is_debug_types ? "TU" : "CU";
10956 void **dwo_file_slot;
10957 struct dwo_file *dwo_file;
10958 struct dwp_file *dwp_file;
10959
10960 /* First see if there's a DWP file.
10961 If we have a DWP file but didn't find the DWO inside it, don't
10962 look for the original DWO file. It makes gdb behave differently
10963 depending on whether one is debugging in the build tree. */
10964
10965 dwp_file = get_dwp_file ();
10966 if (dwp_file != NULL)
10967 {
10968 const struct dwp_hash_table *dwp_htab =
10969 is_debug_types ? dwp_file->tus : dwp_file->cus;
10970
10971 if (dwp_htab != NULL)
10972 {
10973 struct dwo_unit *dwo_cutu =
10974 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10975 signature, is_debug_types);
10976
10977 if (dwo_cutu != NULL)
10978 {
10979 if (dwarf_read_debug)
10980 {
10981 fprintf_unfiltered (gdb_stdlog,
10982 "Virtual DWO %s %s found: @%s\n",
10983 kind, hex_string (signature),
10984 host_address_to_string (dwo_cutu));
10985 }
10986 return dwo_cutu;
10987 }
10988 }
10989 }
10990 else
10991 {
10992 /* No DWP file, look for the DWO file. */
10993
10994 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10995 if (*dwo_file_slot == NULL)
10996 {
10997 /* Read in the file and build a table of the CUs/TUs it contains. */
10998 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10999 }
11000 /* NOTE: This will be NULL if unable to open the file. */
11001 dwo_file = *dwo_file_slot;
11002
11003 if (dwo_file != NULL)
11004 {
11005 struct dwo_unit *dwo_cutu = NULL;
11006
11007 if (is_debug_types && dwo_file->tus)
11008 {
11009 struct dwo_unit find_dwo_cutu;
11010
11011 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11012 find_dwo_cutu.signature = signature;
11013 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
11014 }
11015 else if (!is_debug_types && dwo_file->cu)
11016 {
11017 if (signature == dwo_file->cu->signature)
11018 dwo_cutu = dwo_file->cu;
11019 }
11020
11021 if (dwo_cutu != NULL)
11022 {
11023 if (dwarf_read_debug)
11024 {
11025 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11026 kind, dwo_name, hex_string (signature),
11027 host_address_to_string (dwo_cutu));
11028 }
11029 return dwo_cutu;
11030 }
11031 }
11032 }
11033
11034 /* We didn't find it. This could mean a dwo_id mismatch, or
11035 someone deleted the DWO/DWP file, or the search path isn't set up
11036 correctly to find the file. */
11037
11038 if (dwarf_read_debug)
11039 {
11040 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11041 kind, dwo_name, hex_string (signature));
11042 }
11043
11044 /* This is a warning and not a complaint because it can be caused by
11045 pilot error (e.g., user accidentally deleting the DWO). */
11046 {
11047 /* Print the name of the DWP file if we looked there, helps the user
11048 better diagnose the problem. */
11049 char *dwp_text = NULL;
11050 struct cleanup *cleanups;
11051
11052 if (dwp_file != NULL)
11053 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11054 cleanups = make_cleanup (xfree, dwp_text);
11055
11056 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11057 " [in module %s]"),
11058 kind, dwo_name, hex_string (signature),
11059 dwp_text != NULL ? dwp_text : "",
11060 this_unit->is_debug_types ? "TU" : "CU",
11061 this_unit->offset.sect_off, objfile_name (objfile));
11062
11063 do_cleanups (cleanups);
11064 }
11065 return NULL;
11066 }
11067
11068 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11069 See lookup_dwo_cutu_unit for details. */
11070
11071 static struct dwo_unit *
11072 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11073 const char *dwo_name, const char *comp_dir,
11074 ULONGEST signature)
11075 {
11076 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11077 }
11078
11079 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11080 See lookup_dwo_cutu_unit for details. */
11081
11082 static struct dwo_unit *
11083 lookup_dwo_type_unit (struct signatured_type *this_tu,
11084 const char *dwo_name, const char *comp_dir)
11085 {
11086 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11087 }
11088
11089 /* Traversal function for queue_and_load_all_dwo_tus. */
11090
11091 static int
11092 queue_and_load_dwo_tu (void **slot, void *info)
11093 {
11094 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11095 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11096 ULONGEST signature = dwo_unit->signature;
11097 struct signatured_type *sig_type =
11098 lookup_dwo_signatured_type (per_cu->cu, signature);
11099
11100 if (sig_type != NULL)
11101 {
11102 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11103
11104 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11105 a real dependency of PER_CU on SIG_TYPE. That is detected later
11106 while processing PER_CU. */
11107 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11108 load_full_type_unit (sig_cu);
11109 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11110 }
11111
11112 return 1;
11113 }
11114
11115 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11116 The DWO may have the only definition of the type, though it may not be
11117 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11118 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11119
11120 static void
11121 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11122 {
11123 struct dwo_unit *dwo_unit;
11124 struct dwo_file *dwo_file;
11125
11126 gdb_assert (!per_cu->is_debug_types);
11127 gdb_assert (get_dwp_file () == NULL);
11128 gdb_assert (per_cu->cu != NULL);
11129
11130 dwo_unit = per_cu->cu->dwo_unit;
11131 gdb_assert (dwo_unit != NULL);
11132
11133 dwo_file = dwo_unit->dwo_file;
11134 if (dwo_file->tus != NULL)
11135 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11136 }
11137
11138 /* Free all resources associated with DWO_FILE.
11139 Close the DWO file and munmap the sections.
11140 All memory should be on the objfile obstack. */
11141
11142 static void
11143 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11144 {
11145 int ix;
11146 struct dwarf2_section_info *section;
11147
11148 /* Note: dbfd is NULL for virtual DWO files. */
11149 gdb_bfd_unref (dwo_file->dbfd);
11150
11151 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11152 }
11153
11154 /* Wrapper for free_dwo_file for use in cleanups. */
11155
11156 static void
11157 free_dwo_file_cleanup (void *arg)
11158 {
11159 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11160 struct objfile *objfile = dwarf2_per_objfile->objfile;
11161
11162 free_dwo_file (dwo_file, objfile);
11163 }
11164
11165 /* Traversal function for free_dwo_files. */
11166
11167 static int
11168 free_dwo_file_from_slot (void **slot, void *info)
11169 {
11170 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11171 struct objfile *objfile = (struct objfile *) info;
11172
11173 free_dwo_file (dwo_file, objfile);
11174
11175 return 1;
11176 }
11177
11178 /* Free all resources associated with DWO_FILES. */
11179
11180 static void
11181 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11182 {
11183 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11184 }
11185 \f
11186 /* Read in various DIEs. */
11187
11188 /* qsort helper for inherit_abstract_dies. */
11189
11190 static int
11191 unsigned_int_compar (const void *ap, const void *bp)
11192 {
11193 unsigned int a = *(unsigned int *) ap;
11194 unsigned int b = *(unsigned int *) bp;
11195
11196 return (a > b) - (b > a);
11197 }
11198
11199 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11200 Inherit only the children of the DW_AT_abstract_origin DIE not being
11201 already referenced by DW_AT_abstract_origin from the children of the
11202 current DIE. */
11203
11204 static void
11205 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11206 {
11207 struct die_info *child_die;
11208 unsigned die_children_count;
11209 /* CU offsets which were referenced by children of the current DIE. */
11210 sect_offset *offsets;
11211 sect_offset *offsets_end, *offsetp;
11212 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11213 struct die_info *origin_die;
11214 /* Iterator of the ORIGIN_DIE children. */
11215 struct die_info *origin_child_die;
11216 struct cleanup *cleanups;
11217 struct attribute *attr;
11218 struct dwarf2_cu *origin_cu;
11219 struct pending **origin_previous_list_in_scope;
11220
11221 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11222 if (!attr)
11223 return;
11224
11225 /* Note that following die references may follow to a die in a
11226 different cu. */
11227
11228 origin_cu = cu;
11229 origin_die = follow_die_ref (die, attr, &origin_cu);
11230
11231 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11232 symbols in. */
11233 origin_previous_list_in_scope = origin_cu->list_in_scope;
11234 origin_cu->list_in_scope = cu->list_in_scope;
11235
11236 if (die->tag != origin_die->tag
11237 && !(die->tag == DW_TAG_inlined_subroutine
11238 && origin_die->tag == DW_TAG_subprogram))
11239 complaint (&symfile_complaints,
11240 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11241 die->offset.sect_off, origin_die->offset.sect_off);
11242
11243 child_die = die->child;
11244 die_children_count = 0;
11245 while (child_die && child_die->tag)
11246 {
11247 child_die = sibling_die (child_die);
11248 die_children_count++;
11249 }
11250 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11251 cleanups = make_cleanup (xfree, offsets);
11252
11253 offsets_end = offsets;
11254 for (child_die = die->child;
11255 child_die && child_die->tag;
11256 child_die = sibling_die (child_die))
11257 {
11258 struct die_info *child_origin_die;
11259 struct dwarf2_cu *child_origin_cu;
11260
11261 /* We are trying to process concrete instance entries:
11262 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11263 it's not relevant to our analysis here. i.e. detecting DIEs that are
11264 present in the abstract instance but not referenced in the concrete
11265 one. */
11266 if (child_die->tag == DW_TAG_GNU_call_site)
11267 continue;
11268
11269 /* For each CHILD_DIE, find the corresponding child of
11270 ORIGIN_DIE. If there is more than one layer of
11271 DW_AT_abstract_origin, follow them all; there shouldn't be,
11272 but GCC versions at least through 4.4 generate this (GCC PR
11273 40573). */
11274 child_origin_die = child_die;
11275 child_origin_cu = cu;
11276 while (1)
11277 {
11278 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11279 child_origin_cu);
11280 if (attr == NULL)
11281 break;
11282 child_origin_die = follow_die_ref (child_origin_die, attr,
11283 &child_origin_cu);
11284 }
11285
11286 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11287 counterpart may exist. */
11288 if (child_origin_die != child_die)
11289 {
11290 if (child_die->tag != child_origin_die->tag
11291 && !(child_die->tag == DW_TAG_inlined_subroutine
11292 && child_origin_die->tag == DW_TAG_subprogram))
11293 complaint (&symfile_complaints,
11294 _("Child DIE 0x%x and its abstract origin 0x%x have "
11295 "different tags"), child_die->offset.sect_off,
11296 child_origin_die->offset.sect_off);
11297 if (child_origin_die->parent != origin_die)
11298 complaint (&symfile_complaints,
11299 _("Child DIE 0x%x and its abstract origin 0x%x have "
11300 "different parents"), child_die->offset.sect_off,
11301 child_origin_die->offset.sect_off);
11302 else
11303 *offsets_end++ = child_origin_die->offset;
11304 }
11305 }
11306 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11307 unsigned_int_compar);
11308 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11309 if (offsetp[-1].sect_off == offsetp->sect_off)
11310 complaint (&symfile_complaints,
11311 _("Multiple children of DIE 0x%x refer "
11312 "to DIE 0x%x as their abstract origin"),
11313 die->offset.sect_off, offsetp->sect_off);
11314
11315 offsetp = offsets;
11316 origin_child_die = origin_die->child;
11317 while (origin_child_die && origin_child_die->tag)
11318 {
11319 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11320 while (offsetp < offsets_end
11321 && offsetp->sect_off < origin_child_die->offset.sect_off)
11322 offsetp++;
11323 if (offsetp >= offsets_end
11324 || offsetp->sect_off > origin_child_die->offset.sect_off)
11325 {
11326 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11327 Check whether we're already processing ORIGIN_CHILD_DIE.
11328 This can happen with mutually referenced abstract_origins.
11329 PR 16581. */
11330 if (!origin_child_die->in_process)
11331 process_die (origin_child_die, origin_cu);
11332 }
11333 origin_child_die = sibling_die (origin_child_die);
11334 }
11335 origin_cu->list_in_scope = origin_previous_list_in_scope;
11336
11337 do_cleanups (cleanups);
11338 }
11339
11340 static void
11341 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11342 {
11343 struct objfile *objfile = cu->objfile;
11344 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11345 struct context_stack *newobj;
11346 CORE_ADDR lowpc;
11347 CORE_ADDR highpc;
11348 struct die_info *child_die;
11349 struct attribute *attr, *call_line, *call_file;
11350 const char *name;
11351 CORE_ADDR baseaddr;
11352 struct block *block;
11353 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11354 VEC (symbolp) *template_args = NULL;
11355 struct template_symbol *templ_func = NULL;
11356
11357 if (inlined_func)
11358 {
11359 /* If we do not have call site information, we can't show the
11360 caller of this inlined function. That's too confusing, so
11361 only use the scope for local variables. */
11362 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11363 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11364 if (call_line == NULL || call_file == NULL)
11365 {
11366 read_lexical_block_scope (die, cu);
11367 return;
11368 }
11369 }
11370
11371 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11372
11373 name = dwarf2_name (die, cu);
11374
11375 /* Ignore functions with missing or empty names. These are actually
11376 illegal according to the DWARF standard. */
11377 if (name == NULL)
11378 {
11379 complaint (&symfile_complaints,
11380 _("missing name for subprogram DIE at %d"),
11381 die->offset.sect_off);
11382 return;
11383 }
11384
11385 /* Ignore functions with missing or invalid low and high pc attributes. */
11386 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11387 {
11388 attr = dwarf2_attr (die, DW_AT_external, cu);
11389 if (!attr || !DW_UNSND (attr))
11390 complaint (&symfile_complaints,
11391 _("cannot get low and high bounds "
11392 "for subprogram DIE at %d"),
11393 die->offset.sect_off);
11394 return;
11395 }
11396
11397 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11398 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11399
11400 /* If we have any template arguments, then we must allocate a
11401 different sort of symbol. */
11402 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11403 {
11404 if (child_die->tag == DW_TAG_template_type_param
11405 || child_die->tag == DW_TAG_template_value_param)
11406 {
11407 templ_func = allocate_template_symbol (objfile);
11408 templ_func->base.is_cplus_template_function = 1;
11409 break;
11410 }
11411 }
11412
11413 newobj = push_context (0, lowpc);
11414 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11415 (struct symbol *) templ_func);
11416
11417 /* If there is a location expression for DW_AT_frame_base, record
11418 it. */
11419 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11420 if (attr)
11421 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11422
11423 cu->list_in_scope = &local_symbols;
11424
11425 if (die->child != NULL)
11426 {
11427 child_die = die->child;
11428 while (child_die && child_die->tag)
11429 {
11430 if (child_die->tag == DW_TAG_template_type_param
11431 || child_die->tag == DW_TAG_template_value_param)
11432 {
11433 struct symbol *arg = new_symbol (child_die, NULL, cu);
11434
11435 if (arg != NULL)
11436 VEC_safe_push (symbolp, template_args, arg);
11437 }
11438 else
11439 process_die (child_die, cu);
11440 child_die = sibling_die (child_die);
11441 }
11442 }
11443
11444 inherit_abstract_dies (die, cu);
11445
11446 /* If we have a DW_AT_specification, we might need to import using
11447 directives from the context of the specification DIE. See the
11448 comment in determine_prefix. */
11449 if (cu->language == language_cplus
11450 && dwarf2_attr (die, DW_AT_specification, cu))
11451 {
11452 struct dwarf2_cu *spec_cu = cu;
11453 struct die_info *spec_die = die_specification (die, &spec_cu);
11454
11455 while (spec_die)
11456 {
11457 child_die = spec_die->child;
11458 while (child_die && child_die->tag)
11459 {
11460 if (child_die->tag == DW_TAG_imported_module)
11461 process_die (child_die, spec_cu);
11462 child_die = sibling_die (child_die);
11463 }
11464
11465 /* In some cases, GCC generates specification DIEs that
11466 themselves contain DW_AT_specification attributes. */
11467 spec_die = die_specification (spec_die, &spec_cu);
11468 }
11469 }
11470
11471 newobj = pop_context ();
11472 /* Make a block for the local symbols within. */
11473 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11474 lowpc, highpc);
11475
11476 /* For C++, set the block's scope. */
11477 if ((cu->language == language_cplus
11478 || cu->language == language_fortran
11479 || cu->language == language_d)
11480 && cu->processing_has_namespace_info)
11481 block_set_scope (block, determine_prefix (die, cu),
11482 &objfile->objfile_obstack);
11483
11484 /* If we have address ranges, record them. */
11485 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11486
11487 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11488
11489 /* Attach template arguments to function. */
11490 if (! VEC_empty (symbolp, template_args))
11491 {
11492 gdb_assert (templ_func != NULL);
11493
11494 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11495 templ_func->template_arguments
11496 = obstack_alloc (&objfile->objfile_obstack,
11497 (templ_func->n_template_arguments
11498 * sizeof (struct symbol *)));
11499 memcpy (templ_func->template_arguments,
11500 VEC_address (symbolp, template_args),
11501 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11502 VEC_free (symbolp, template_args);
11503 }
11504
11505 /* In C++, we can have functions nested inside functions (e.g., when
11506 a function declares a class that has methods). This means that
11507 when we finish processing a function scope, we may need to go
11508 back to building a containing block's symbol lists. */
11509 local_symbols = newobj->locals;
11510 local_using_directives = newobj->local_using_directives;
11511
11512 /* If we've finished processing a top-level function, subsequent
11513 symbols go in the file symbol list. */
11514 if (outermost_context_p ())
11515 cu->list_in_scope = &file_symbols;
11516 }
11517
11518 /* Process all the DIES contained within a lexical block scope. Start
11519 a new scope, process the dies, and then close the scope. */
11520
11521 static void
11522 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11523 {
11524 struct objfile *objfile = cu->objfile;
11525 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11526 struct context_stack *newobj;
11527 CORE_ADDR lowpc, highpc;
11528 struct die_info *child_die;
11529 CORE_ADDR baseaddr;
11530
11531 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11532
11533 /* Ignore blocks with missing or invalid low and high pc attributes. */
11534 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11535 as multiple lexical blocks? Handling children in a sane way would
11536 be nasty. Might be easier to properly extend generic blocks to
11537 describe ranges. */
11538 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11539 return;
11540 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11541 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11542
11543 push_context (0, lowpc);
11544 if (die->child != NULL)
11545 {
11546 child_die = die->child;
11547 while (child_die && child_die->tag)
11548 {
11549 process_die (child_die, cu);
11550 child_die = sibling_die (child_die);
11551 }
11552 }
11553 inherit_abstract_dies (die, cu);
11554 newobj = pop_context ();
11555
11556 if (local_symbols != NULL || local_using_directives != NULL)
11557 {
11558 struct block *block
11559 = finish_block (0, &local_symbols, newobj->old_blocks,
11560 newobj->start_addr, highpc);
11561
11562 /* Note that recording ranges after traversing children, as we
11563 do here, means that recording a parent's ranges entails
11564 walking across all its children's ranges as they appear in
11565 the address map, which is quadratic behavior.
11566
11567 It would be nicer to record the parent's ranges before
11568 traversing its children, simply overriding whatever you find
11569 there. But since we don't even decide whether to create a
11570 block until after we've traversed its children, that's hard
11571 to do. */
11572 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11573 }
11574 local_symbols = newobj->locals;
11575 local_using_directives = newobj->local_using_directives;
11576 }
11577
11578 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11579
11580 static void
11581 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11582 {
11583 struct objfile *objfile = cu->objfile;
11584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11585 CORE_ADDR pc, baseaddr;
11586 struct attribute *attr;
11587 struct call_site *call_site, call_site_local;
11588 void **slot;
11589 int nparams;
11590 struct die_info *child_die;
11591
11592 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11593
11594 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11595 if (!attr)
11596 {
11597 complaint (&symfile_complaints,
11598 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11599 "DIE 0x%x [in module %s]"),
11600 die->offset.sect_off, objfile_name (objfile));
11601 return;
11602 }
11603 pc = attr_value_as_address (attr) + baseaddr;
11604 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11605
11606 if (cu->call_site_htab == NULL)
11607 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11608 NULL, &objfile->objfile_obstack,
11609 hashtab_obstack_allocate, NULL);
11610 call_site_local.pc = pc;
11611 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11612 if (*slot != NULL)
11613 {
11614 complaint (&symfile_complaints,
11615 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11616 "DIE 0x%x [in module %s]"),
11617 paddress (gdbarch, pc), die->offset.sect_off,
11618 objfile_name (objfile));
11619 return;
11620 }
11621
11622 /* Count parameters at the caller. */
11623
11624 nparams = 0;
11625 for (child_die = die->child; child_die && child_die->tag;
11626 child_die = sibling_die (child_die))
11627 {
11628 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11629 {
11630 complaint (&symfile_complaints,
11631 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11632 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11633 child_die->tag, child_die->offset.sect_off,
11634 objfile_name (objfile));
11635 continue;
11636 }
11637
11638 nparams++;
11639 }
11640
11641 call_site = obstack_alloc (&objfile->objfile_obstack,
11642 (sizeof (*call_site)
11643 + (sizeof (*call_site->parameter)
11644 * (nparams - 1))));
11645 *slot = call_site;
11646 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11647 call_site->pc = pc;
11648
11649 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11650 {
11651 struct die_info *func_die;
11652
11653 /* Skip also over DW_TAG_inlined_subroutine. */
11654 for (func_die = die->parent;
11655 func_die && func_die->tag != DW_TAG_subprogram
11656 && func_die->tag != DW_TAG_subroutine_type;
11657 func_die = func_die->parent);
11658
11659 /* DW_AT_GNU_all_call_sites is a superset
11660 of DW_AT_GNU_all_tail_call_sites. */
11661 if (func_die
11662 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11663 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11664 {
11665 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11666 not complete. But keep CALL_SITE for look ups via call_site_htab,
11667 both the initial caller containing the real return address PC and
11668 the final callee containing the current PC of a chain of tail
11669 calls do not need to have the tail call list complete. But any
11670 function candidate for a virtual tail call frame searched via
11671 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11672 determined unambiguously. */
11673 }
11674 else
11675 {
11676 struct type *func_type = NULL;
11677
11678 if (func_die)
11679 func_type = get_die_type (func_die, cu);
11680 if (func_type != NULL)
11681 {
11682 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11683
11684 /* Enlist this call site to the function. */
11685 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11686 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11687 }
11688 else
11689 complaint (&symfile_complaints,
11690 _("Cannot find function owning DW_TAG_GNU_call_site "
11691 "DIE 0x%x [in module %s]"),
11692 die->offset.sect_off, objfile_name (objfile));
11693 }
11694 }
11695
11696 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11697 if (attr == NULL)
11698 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11699 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11700 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11701 /* Keep NULL DWARF_BLOCK. */;
11702 else if (attr_form_is_block (attr))
11703 {
11704 struct dwarf2_locexpr_baton *dlbaton;
11705
11706 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11707 dlbaton->data = DW_BLOCK (attr)->data;
11708 dlbaton->size = DW_BLOCK (attr)->size;
11709 dlbaton->per_cu = cu->per_cu;
11710
11711 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11712 }
11713 else if (attr_form_is_ref (attr))
11714 {
11715 struct dwarf2_cu *target_cu = cu;
11716 struct die_info *target_die;
11717
11718 target_die = follow_die_ref (die, attr, &target_cu);
11719 gdb_assert (target_cu->objfile == objfile);
11720 if (die_is_declaration (target_die, target_cu))
11721 {
11722 const char *target_physname = NULL;
11723 struct attribute *target_attr;
11724
11725 /* Prefer the mangled name; otherwise compute the demangled one. */
11726 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11727 if (target_attr == NULL)
11728 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11729 target_cu);
11730 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11731 target_physname = DW_STRING (target_attr);
11732 else
11733 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11734 if (target_physname == NULL)
11735 complaint (&symfile_complaints,
11736 _("DW_AT_GNU_call_site_target target DIE has invalid "
11737 "physname, for referencing DIE 0x%x [in module %s]"),
11738 die->offset.sect_off, objfile_name (objfile));
11739 else
11740 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11741 }
11742 else
11743 {
11744 CORE_ADDR lowpc;
11745
11746 /* DW_AT_entry_pc should be preferred. */
11747 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11748 complaint (&symfile_complaints,
11749 _("DW_AT_GNU_call_site_target target DIE has invalid "
11750 "low pc, for referencing DIE 0x%x [in module %s]"),
11751 die->offset.sect_off, objfile_name (objfile));
11752 else
11753 {
11754 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11755 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11756 }
11757 }
11758 }
11759 else
11760 complaint (&symfile_complaints,
11761 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11762 "block nor reference, for DIE 0x%x [in module %s]"),
11763 die->offset.sect_off, objfile_name (objfile));
11764
11765 call_site->per_cu = cu->per_cu;
11766
11767 for (child_die = die->child;
11768 child_die && child_die->tag;
11769 child_die = sibling_die (child_die))
11770 {
11771 struct call_site_parameter *parameter;
11772 struct attribute *loc, *origin;
11773
11774 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11775 {
11776 /* Already printed the complaint above. */
11777 continue;
11778 }
11779
11780 gdb_assert (call_site->parameter_count < nparams);
11781 parameter = &call_site->parameter[call_site->parameter_count];
11782
11783 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11784 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11785 register is contained in DW_AT_GNU_call_site_value. */
11786
11787 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11788 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11789 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11790 {
11791 sect_offset offset;
11792
11793 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11794 offset = dwarf2_get_ref_die_offset (origin);
11795 if (!offset_in_cu_p (&cu->header, offset))
11796 {
11797 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11798 binding can be done only inside one CU. Such referenced DIE
11799 therefore cannot be even moved to DW_TAG_partial_unit. */
11800 complaint (&symfile_complaints,
11801 _("DW_AT_abstract_origin offset is not in CU for "
11802 "DW_TAG_GNU_call_site child DIE 0x%x "
11803 "[in module %s]"),
11804 child_die->offset.sect_off, objfile_name (objfile));
11805 continue;
11806 }
11807 parameter->u.param_offset.cu_off = (offset.sect_off
11808 - cu->header.offset.sect_off);
11809 }
11810 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11811 {
11812 complaint (&symfile_complaints,
11813 _("No DW_FORM_block* DW_AT_location for "
11814 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11815 child_die->offset.sect_off, objfile_name (objfile));
11816 continue;
11817 }
11818 else
11819 {
11820 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11821 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11822 if (parameter->u.dwarf_reg != -1)
11823 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11824 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11825 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11826 &parameter->u.fb_offset))
11827 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11828 else
11829 {
11830 complaint (&symfile_complaints,
11831 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11832 "for DW_FORM_block* DW_AT_location is supported for "
11833 "DW_TAG_GNU_call_site child DIE 0x%x "
11834 "[in module %s]"),
11835 child_die->offset.sect_off, objfile_name (objfile));
11836 continue;
11837 }
11838 }
11839
11840 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11841 if (!attr_form_is_block (attr))
11842 {
11843 complaint (&symfile_complaints,
11844 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11845 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11846 child_die->offset.sect_off, objfile_name (objfile));
11847 continue;
11848 }
11849 parameter->value = DW_BLOCK (attr)->data;
11850 parameter->value_size = DW_BLOCK (attr)->size;
11851
11852 /* Parameters are not pre-cleared by memset above. */
11853 parameter->data_value = NULL;
11854 parameter->data_value_size = 0;
11855 call_site->parameter_count++;
11856
11857 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11858 if (attr)
11859 {
11860 if (!attr_form_is_block (attr))
11861 complaint (&symfile_complaints,
11862 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11863 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11864 child_die->offset.sect_off, objfile_name (objfile));
11865 else
11866 {
11867 parameter->data_value = DW_BLOCK (attr)->data;
11868 parameter->data_value_size = DW_BLOCK (attr)->size;
11869 }
11870 }
11871 }
11872 }
11873
11874 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11875 Return 1 if the attributes are present and valid, otherwise, return 0.
11876 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11877
11878 static int
11879 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11880 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11881 struct partial_symtab *ranges_pst)
11882 {
11883 struct objfile *objfile = cu->objfile;
11884 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11885 struct comp_unit_head *cu_header = &cu->header;
11886 bfd *obfd = objfile->obfd;
11887 unsigned int addr_size = cu_header->addr_size;
11888 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11889 /* Base address selection entry. */
11890 CORE_ADDR base;
11891 int found_base;
11892 unsigned int dummy;
11893 const gdb_byte *buffer;
11894 CORE_ADDR marker;
11895 int low_set;
11896 CORE_ADDR low = 0;
11897 CORE_ADDR high = 0;
11898 CORE_ADDR baseaddr;
11899
11900 found_base = cu->base_known;
11901 base = cu->base_address;
11902
11903 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11904 if (offset >= dwarf2_per_objfile->ranges.size)
11905 {
11906 complaint (&symfile_complaints,
11907 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11908 offset);
11909 return 0;
11910 }
11911 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11912
11913 /* Read in the largest possible address. */
11914 marker = read_address (obfd, buffer, cu, &dummy);
11915 if ((marker & mask) == mask)
11916 {
11917 /* If we found the largest possible address, then
11918 read the base address. */
11919 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11920 buffer += 2 * addr_size;
11921 offset += 2 * addr_size;
11922 found_base = 1;
11923 }
11924
11925 low_set = 0;
11926
11927 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11928
11929 while (1)
11930 {
11931 CORE_ADDR range_beginning, range_end;
11932
11933 range_beginning = read_address (obfd, buffer, cu, &dummy);
11934 buffer += addr_size;
11935 range_end = read_address (obfd, buffer, cu, &dummy);
11936 buffer += addr_size;
11937 offset += 2 * addr_size;
11938
11939 /* An end of list marker is a pair of zero addresses. */
11940 if (range_beginning == 0 && range_end == 0)
11941 /* Found the end of list entry. */
11942 break;
11943
11944 /* Each base address selection entry is a pair of 2 values.
11945 The first is the largest possible address, the second is
11946 the base address. Check for a base address here. */
11947 if ((range_beginning & mask) == mask)
11948 {
11949 /* If we found the largest possible address, then
11950 read the base address. */
11951 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11952 found_base = 1;
11953 continue;
11954 }
11955
11956 if (!found_base)
11957 {
11958 /* We have no valid base address for the ranges
11959 data. */
11960 complaint (&symfile_complaints,
11961 _("Invalid .debug_ranges data (no base address)"));
11962 return 0;
11963 }
11964
11965 if (range_beginning > range_end)
11966 {
11967 /* Inverted range entries are invalid. */
11968 complaint (&symfile_complaints,
11969 _("Invalid .debug_ranges data (inverted range)"));
11970 return 0;
11971 }
11972
11973 /* Empty range entries have no effect. */
11974 if (range_beginning == range_end)
11975 continue;
11976
11977 range_beginning += base;
11978 range_end += base;
11979
11980 /* A not-uncommon case of bad debug info.
11981 Don't pollute the addrmap with bad data. */
11982 if (range_beginning + baseaddr == 0
11983 && !dwarf2_per_objfile->has_section_at_zero)
11984 {
11985 complaint (&symfile_complaints,
11986 _(".debug_ranges entry has start address of zero"
11987 " [in module %s]"), objfile_name (objfile));
11988 continue;
11989 }
11990
11991 if (ranges_pst != NULL)
11992 {
11993 CORE_ADDR lowpc;
11994 CORE_ADDR highpc;
11995
11996 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11997 range_beginning + baseaddr);
11998 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11999 range_end + baseaddr);
12000 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12001 ranges_pst);
12002 }
12003
12004 /* FIXME: This is recording everything as a low-high
12005 segment of consecutive addresses. We should have a
12006 data structure for discontiguous block ranges
12007 instead. */
12008 if (! low_set)
12009 {
12010 low = range_beginning;
12011 high = range_end;
12012 low_set = 1;
12013 }
12014 else
12015 {
12016 if (range_beginning < low)
12017 low = range_beginning;
12018 if (range_end > high)
12019 high = range_end;
12020 }
12021 }
12022
12023 if (! low_set)
12024 /* If the first entry is an end-of-list marker, the range
12025 describes an empty scope, i.e. no instructions. */
12026 return 0;
12027
12028 if (low_return)
12029 *low_return = low;
12030 if (high_return)
12031 *high_return = high;
12032 return 1;
12033 }
12034
12035 /* Get low and high pc attributes from a die. Return 1 if the attributes
12036 are present and valid, otherwise, return 0. Return -1 if the range is
12037 discontinuous, i.e. derived from DW_AT_ranges information. */
12038
12039 static int
12040 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12041 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12042 struct partial_symtab *pst)
12043 {
12044 struct attribute *attr;
12045 struct attribute *attr_high;
12046 CORE_ADDR low = 0;
12047 CORE_ADDR high = 0;
12048 int ret = 0;
12049
12050 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12051 if (attr_high)
12052 {
12053 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12054 if (attr)
12055 {
12056 low = attr_value_as_address (attr);
12057 high = attr_value_as_address (attr_high);
12058 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12059 high += low;
12060 }
12061 else
12062 /* Found high w/o low attribute. */
12063 return 0;
12064
12065 /* Found consecutive range of addresses. */
12066 ret = 1;
12067 }
12068 else
12069 {
12070 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12071 if (attr != NULL)
12072 {
12073 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12074 We take advantage of the fact that DW_AT_ranges does not appear
12075 in DW_TAG_compile_unit of DWO files. */
12076 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12077 unsigned int ranges_offset = (DW_UNSND (attr)
12078 + (need_ranges_base
12079 ? cu->ranges_base
12080 : 0));
12081
12082 /* Value of the DW_AT_ranges attribute is the offset in the
12083 .debug_ranges section. */
12084 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12085 return 0;
12086 /* Found discontinuous range of addresses. */
12087 ret = -1;
12088 }
12089 }
12090
12091 /* read_partial_die has also the strict LOW < HIGH requirement. */
12092 if (high <= low)
12093 return 0;
12094
12095 /* When using the GNU linker, .gnu.linkonce. sections are used to
12096 eliminate duplicate copies of functions and vtables and such.
12097 The linker will arbitrarily choose one and discard the others.
12098 The AT_*_pc values for such functions refer to local labels in
12099 these sections. If the section from that file was discarded, the
12100 labels are not in the output, so the relocs get a value of 0.
12101 If this is a discarded function, mark the pc bounds as invalid,
12102 so that GDB will ignore it. */
12103 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12104 return 0;
12105
12106 *lowpc = low;
12107 if (highpc)
12108 *highpc = high;
12109 return ret;
12110 }
12111
12112 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12113 its low and high PC addresses. Do nothing if these addresses could not
12114 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12115 and HIGHPC to the high address if greater than HIGHPC. */
12116
12117 static void
12118 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12120 struct dwarf2_cu *cu)
12121 {
12122 CORE_ADDR low, high;
12123 struct die_info *child = die->child;
12124
12125 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12126 {
12127 *lowpc = min (*lowpc, low);
12128 *highpc = max (*highpc, high);
12129 }
12130
12131 /* If the language does not allow nested subprograms (either inside
12132 subprograms or lexical blocks), we're done. */
12133 if (cu->language != language_ada)
12134 return;
12135
12136 /* Check all the children of the given DIE. If it contains nested
12137 subprograms, then check their pc bounds. Likewise, we need to
12138 check lexical blocks as well, as they may also contain subprogram
12139 definitions. */
12140 while (child && child->tag)
12141 {
12142 if (child->tag == DW_TAG_subprogram
12143 || child->tag == DW_TAG_lexical_block)
12144 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12145 child = sibling_die (child);
12146 }
12147 }
12148
12149 /* Get the low and high pc's represented by the scope DIE, and store
12150 them in *LOWPC and *HIGHPC. If the correct values can't be
12151 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12152
12153 static void
12154 get_scope_pc_bounds (struct die_info *die,
12155 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12156 struct dwarf2_cu *cu)
12157 {
12158 CORE_ADDR best_low = (CORE_ADDR) -1;
12159 CORE_ADDR best_high = (CORE_ADDR) 0;
12160 CORE_ADDR current_low, current_high;
12161
12162 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12163 {
12164 best_low = current_low;
12165 best_high = current_high;
12166 }
12167 else
12168 {
12169 struct die_info *child = die->child;
12170
12171 while (child && child->tag)
12172 {
12173 switch (child->tag) {
12174 case DW_TAG_subprogram:
12175 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12176 break;
12177 case DW_TAG_namespace:
12178 case DW_TAG_module:
12179 /* FIXME: carlton/2004-01-16: Should we do this for
12180 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12181 that current GCC's always emit the DIEs corresponding
12182 to definitions of methods of classes as children of a
12183 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12184 the DIEs giving the declarations, which could be
12185 anywhere). But I don't see any reason why the
12186 standards says that they have to be there. */
12187 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12188
12189 if (current_low != ((CORE_ADDR) -1))
12190 {
12191 best_low = min (best_low, current_low);
12192 best_high = max (best_high, current_high);
12193 }
12194 break;
12195 default:
12196 /* Ignore. */
12197 break;
12198 }
12199
12200 child = sibling_die (child);
12201 }
12202 }
12203
12204 *lowpc = best_low;
12205 *highpc = best_high;
12206 }
12207
12208 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12209 in DIE. */
12210
12211 static void
12212 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12213 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12214 {
12215 struct objfile *objfile = cu->objfile;
12216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12217 struct attribute *attr;
12218 struct attribute *attr_high;
12219
12220 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12221 if (attr_high)
12222 {
12223 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12224 if (attr)
12225 {
12226 CORE_ADDR low = attr_value_as_address (attr);
12227 CORE_ADDR high = attr_value_as_address (attr_high);
12228
12229 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12230 high += low;
12231
12232 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12233 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12234 record_block_range (block, low, high - 1);
12235 }
12236 }
12237
12238 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12239 if (attr)
12240 {
12241 bfd *obfd = objfile->obfd;
12242 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12243 We take advantage of the fact that DW_AT_ranges does not appear
12244 in DW_TAG_compile_unit of DWO files. */
12245 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12246
12247 /* The value of the DW_AT_ranges attribute is the offset of the
12248 address range list in the .debug_ranges section. */
12249 unsigned long offset = (DW_UNSND (attr)
12250 + (need_ranges_base ? cu->ranges_base : 0));
12251 const gdb_byte *buffer;
12252
12253 /* For some target architectures, but not others, the
12254 read_address function sign-extends the addresses it returns.
12255 To recognize base address selection entries, we need a
12256 mask. */
12257 unsigned int addr_size = cu->header.addr_size;
12258 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12259
12260 /* The base address, to which the next pair is relative. Note
12261 that this 'base' is a DWARF concept: most entries in a range
12262 list are relative, to reduce the number of relocs against the
12263 debugging information. This is separate from this function's
12264 'baseaddr' argument, which GDB uses to relocate debugging
12265 information from a shared library based on the address at
12266 which the library was loaded. */
12267 CORE_ADDR base = cu->base_address;
12268 int base_known = cu->base_known;
12269
12270 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12271 if (offset >= dwarf2_per_objfile->ranges.size)
12272 {
12273 complaint (&symfile_complaints,
12274 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12275 offset);
12276 return;
12277 }
12278 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12279
12280 for (;;)
12281 {
12282 unsigned int bytes_read;
12283 CORE_ADDR start, end;
12284
12285 start = read_address (obfd, buffer, cu, &bytes_read);
12286 buffer += bytes_read;
12287 end = read_address (obfd, buffer, cu, &bytes_read);
12288 buffer += bytes_read;
12289
12290 /* Did we find the end of the range list? */
12291 if (start == 0 && end == 0)
12292 break;
12293
12294 /* Did we find a base address selection entry? */
12295 else if ((start & base_select_mask) == base_select_mask)
12296 {
12297 base = end;
12298 base_known = 1;
12299 }
12300
12301 /* We found an ordinary address range. */
12302 else
12303 {
12304 if (!base_known)
12305 {
12306 complaint (&symfile_complaints,
12307 _("Invalid .debug_ranges data "
12308 "(no base address)"));
12309 return;
12310 }
12311
12312 if (start > end)
12313 {
12314 /* Inverted range entries are invalid. */
12315 complaint (&symfile_complaints,
12316 _("Invalid .debug_ranges data "
12317 "(inverted range)"));
12318 return;
12319 }
12320
12321 /* Empty range entries have no effect. */
12322 if (start == end)
12323 continue;
12324
12325 start += base + baseaddr;
12326 end += base + baseaddr;
12327
12328 /* A not-uncommon case of bad debug info.
12329 Don't pollute the addrmap with bad data. */
12330 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12331 {
12332 complaint (&symfile_complaints,
12333 _(".debug_ranges entry has start address of zero"
12334 " [in module %s]"), objfile_name (objfile));
12335 continue;
12336 }
12337
12338 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12339 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12340 record_block_range (block, start, end - 1);
12341 }
12342 }
12343 }
12344 }
12345
12346 /* Check whether the producer field indicates either of GCC < 4.6, or the
12347 Intel C/C++ compiler, and cache the result in CU. */
12348
12349 static void
12350 check_producer (struct dwarf2_cu *cu)
12351 {
12352 const char *cs;
12353 int major, minor;
12354
12355 if (cu->producer == NULL)
12356 {
12357 /* For unknown compilers expect their behavior is DWARF version
12358 compliant.
12359
12360 GCC started to support .debug_types sections by -gdwarf-4 since
12361 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12362 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12363 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12364 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12365 }
12366 else if (producer_is_gcc (cu->producer, &major, &minor))
12367 {
12368 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12369 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12370 }
12371 else if (startswith (cu->producer, "Intel(R) C"))
12372 cu->producer_is_icc = 1;
12373 else
12374 {
12375 /* For other non-GCC compilers, expect their behavior is DWARF version
12376 compliant. */
12377 }
12378
12379 cu->checked_producer = 1;
12380 }
12381
12382 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12383 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12384 during 4.6.0 experimental. */
12385
12386 static int
12387 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12388 {
12389 if (!cu->checked_producer)
12390 check_producer (cu);
12391
12392 return cu->producer_is_gxx_lt_4_6;
12393 }
12394
12395 /* Return the default accessibility type if it is not overriden by
12396 DW_AT_accessibility. */
12397
12398 static enum dwarf_access_attribute
12399 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12400 {
12401 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12402 {
12403 /* The default DWARF 2 accessibility for members is public, the default
12404 accessibility for inheritance is private. */
12405
12406 if (die->tag != DW_TAG_inheritance)
12407 return DW_ACCESS_public;
12408 else
12409 return DW_ACCESS_private;
12410 }
12411 else
12412 {
12413 /* DWARF 3+ defines the default accessibility a different way. The same
12414 rules apply now for DW_TAG_inheritance as for the members and it only
12415 depends on the container kind. */
12416
12417 if (die->parent->tag == DW_TAG_class_type)
12418 return DW_ACCESS_private;
12419 else
12420 return DW_ACCESS_public;
12421 }
12422 }
12423
12424 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12425 offset. If the attribute was not found return 0, otherwise return
12426 1. If it was found but could not properly be handled, set *OFFSET
12427 to 0. */
12428
12429 static int
12430 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12431 LONGEST *offset)
12432 {
12433 struct attribute *attr;
12434
12435 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12436 if (attr != NULL)
12437 {
12438 *offset = 0;
12439
12440 /* Note that we do not check for a section offset first here.
12441 This is because DW_AT_data_member_location is new in DWARF 4,
12442 so if we see it, we can assume that a constant form is really
12443 a constant and not a section offset. */
12444 if (attr_form_is_constant (attr))
12445 *offset = dwarf2_get_attr_constant_value (attr, 0);
12446 else if (attr_form_is_section_offset (attr))
12447 dwarf2_complex_location_expr_complaint ();
12448 else if (attr_form_is_block (attr))
12449 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12450 else
12451 dwarf2_complex_location_expr_complaint ();
12452
12453 return 1;
12454 }
12455
12456 return 0;
12457 }
12458
12459 /* Add an aggregate field to the field list. */
12460
12461 static void
12462 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12463 struct dwarf2_cu *cu)
12464 {
12465 struct objfile *objfile = cu->objfile;
12466 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12467 struct nextfield *new_field;
12468 struct attribute *attr;
12469 struct field *fp;
12470 const char *fieldname = "";
12471
12472 /* Allocate a new field list entry and link it in. */
12473 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12474 make_cleanup (xfree, new_field);
12475 memset (new_field, 0, sizeof (struct nextfield));
12476
12477 if (die->tag == DW_TAG_inheritance)
12478 {
12479 new_field->next = fip->baseclasses;
12480 fip->baseclasses = new_field;
12481 }
12482 else
12483 {
12484 new_field->next = fip->fields;
12485 fip->fields = new_field;
12486 }
12487 fip->nfields++;
12488
12489 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12490 if (attr)
12491 new_field->accessibility = DW_UNSND (attr);
12492 else
12493 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12494 if (new_field->accessibility != DW_ACCESS_public)
12495 fip->non_public_fields = 1;
12496
12497 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12498 if (attr)
12499 new_field->virtuality = DW_UNSND (attr);
12500 else
12501 new_field->virtuality = DW_VIRTUALITY_none;
12502
12503 fp = &new_field->field;
12504
12505 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12506 {
12507 LONGEST offset;
12508
12509 /* Data member other than a C++ static data member. */
12510
12511 /* Get type of field. */
12512 fp->type = die_type (die, cu);
12513
12514 SET_FIELD_BITPOS (*fp, 0);
12515
12516 /* Get bit size of field (zero if none). */
12517 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12518 if (attr)
12519 {
12520 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12521 }
12522 else
12523 {
12524 FIELD_BITSIZE (*fp) = 0;
12525 }
12526
12527 /* Get bit offset of field. */
12528 if (handle_data_member_location (die, cu, &offset))
12529 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12530 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12531 if (attr)
12532 {
12533 if (gdbarch_bits_big_endian (gdbarch))
12534 {
12535 /* For big endian bits, the DW_AT_bit_offset gives the
12536 additional bit offset from the MSB of the containing
12537 anonymous object to the MSB of the field. We don't
12538 have to do anything special since we don't need to
12539 know the size of the anonymous object. */
12540 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12541 }
12542 else
12543 {
12544 /* For little endian bits, compute the bit offset to the
12545 MSB of the anonymous object, subtract off the number of
12546 bits from the MSB of the field to the MSB of the
12547 object, and then subtract off the number of bits of
12548 the field itself. The result is the bit offset of
12549 the LSB of the field. */
12550 int anonymous_size;
12551 int bit_offset = DW_UNSND (attr);
12552
12553 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12554 if (attr)
12555 {
12556 /* The size of the anonymous object containing
12557 the bit field is explicit, so use the
12558 indicated size (in bytes). */
12559 anonymous_size = DW_UNSND (attr);
12560 }
12561 else
12562 {
12563 /* The size of the anonymous object containing
12564 the bit field must be inferred from the type
12565 attribute of the data member containing the
12566 bit field. */
12567 anonymous_size = TYPE_LENGTH (fp->type);
12568 }
12569 SET_FIELD_BITPOS (*fp,
12570 (FIELD_BITPOS (*fp)
12571 + anonymous_size * bits_per_byte
12572 - bit_offset - FIELD_BITSIZE (*fp)));
12573 }
12574 }
12575
12576 /* Get name of field. */
12577 fieldname = dwarf2_name (die, cu);
12578 if (fieldname == NULL)
12579 fieldname = "";
12580
12581 /* The name is already allocated along with this objfile, so we don't
12582 need to duplicate it for the type. */
12583 fp->name = fieldname;
12584
12585 /* Change accessibility for artificial fields (e.g. virtual table
12586 pointer or virtual base class pointer) to private. */
12587 if (dwarf2_attr (die, DW_AT_artificial, cu))
12588 {
12589 FIELD_ARTIFICIAL (*fp) = 1;
12590 new_field->accessibility = DW_ACCESS_private;
12591 fip->non_public_fields = 1;
12592 }
12593 }
12594 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12595 {
12596 /* C++ static member. */
12597
12598 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12599 is a declaration, but all versions of G++ as of this writing
12600 (so through at least 3.2.1) incorrectly generate
12601 DW_TAG_variable tags. */
12602
12603 const char *physname;
12604
12605 /* Get name of field. */
12606 fieldname = dwarf2_name (die, cu);
12607 if (fieldname == NULL)
12608 return;
12609
12610 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12611 if (attr
12612 /* Only create a symbol if this is an external value.
12613 new_symbol checks this and puts the value in the global symbol
12614 table, which we want. If it is not external, new_symbol
12615 will try to put the value in cu->list_in_scope which is wrong. */
12616 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12617 {
12618 /* A static const member, not much different than an enum as far as
12619 we're concerned, except that we can support more types. */
12620 new_symbol (die, NULL, cu);
12621 }
12622
12623 /* Get physical name. */
12624 physname = dwarf2_physname (fieldname, die, cu);
12625
12626 /* The name is already allocated along with this objfile, so we don't
12627 need to duplicate it for the type. */
12628 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12629 FIELD_TYPE (*fp) = die_type (die, cu);
12630 FIELD_NAME (*fp) = fieldname;
12631 }
12632 else if (die->tag == DW_TAG_inheritance)
12633 {
12634 LONGEST offset;
12635
12636 /* C++ base class field. */
12637 if (handle_data_member_location (die, cu, &offset))
12638 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12639 FIELD_BITSIZE (*fp) = 0;
12640 FIELD_TYPE (*fp) = die_type (die, cu);
12641 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12642 fip->nbaseclasses++;
12643 }
12644 }
12645
12646 /* Add a typedef defined in the scope of the FIP's class. */
12647
12648 static void
12649 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12650 struct dwarf2_cu *cu)
12651 {
12652 struct objfile *objfile = cu->objfile;
12653 struct typedef_field_list *new_field;
12654 struct attribute *attr;
12655 struct typedef_field *fp;
12656 char *fieldname = "";
12657
12658 /* Allocate a new field list entry and link it in. */
12659 new_field = xzalloc (sizeof (*new_field));
12660 make_cleanup (xfree, new_field);
12661
12662 gdb_assert (die->tag == DW_TAG_typedef);
12663
12664 fp = &new_field->field;
12665
12666 /* Get name of field. */
12667 fp->name = dwarf2_name (die, cu);
12668 if (fp->name == NULL)
12669 return;
12670
12671 fp->type = read_type_die (die, cu);
12672
12673 new_field->next = fip->typedef_field_list;
12674 fip->typedef_field_list = new_field;
12675 fip->typedef_field_list_count++;
12676 }
12677
12678 /* Create the vector of fields, and attach it to the type. */
12679
12680 static void
12681 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12682 struct dwarf2_cu *cu)
12683 {
12684 int nfields = fip->nfields;
12685
12686 /* Record the field count, allocate space for the array of fields,
12687 and create blank accessibility bitfields if necessary. */
12688 TYPE_NFIELDS (type) = nfields;
12689 TYPE_FIELDS (type) = (struct field *)
12690 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12691 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12692
12693 if (fip->non_public_fields && cu->language != language_ada)
12694 {
12695 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12696
12697 TYPE_FIELD_PRIVATE_BITS (type) =
12698 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12699 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12700
12701 TYPE_FIELD_PROTECTED_BITS (type) =
12702 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12703 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12704
12705 TYPE_FIELD_IGNORE_BITS (type) =
12706 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12707 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12708 }
12709
12710 /* If the type has baseclasses, allocate and clear a bit vector for
12711 TYPE_FIELD_VIRTUAL_BITS. */
12712 if (fip->nbaseclasses && cu->language != language_ada)
12713 {
12714 int num_bytes = B_BYTES (fip->nbaseclasses);
12715 unsigned char *pointer;
12716
12717 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12718 pointer = TYPE_ALLOC (type, num_bytes);
12719 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12720 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12721 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12722 }
12723
12724 /* Copy the saved-up fields into the field vector. Start from the head of
12725 the list, adding to the tail of the field array, so that they end up in
12726 the same order in the array in which they were added to the list. */
12727 while (nfields-- > 0)
12728 {
12729 struct nextfield *fieldp;
12730
12731 if (fip->fields)
12732 {
12733 fieldp = fip->fields;
12734 fip->fields = fieldp->next;
12735 }
12736 else
12737 {
12738 fieldp = fip->baseclasses;
12739 fip->baseclasses = fieldp->next;
12740 }
12741
12742 TYPE_FIELD (type, nfields) = fieldp->field;
12743 switch (fieldp->accessibility)
12744 {
12745 case DW_ACCESS_private:
12746 if (cu->language != language_ada)
12747 SET_TYPE_FIELD_PRIVATE (type, nfields);
12748 break;
12749
12750 case DW_ACCESS_protected:
12751 if (cu->language != language_ada)
12752 SET_TYPE_FIELD_PROTECTED (type, nfields);
12753 break;
12754
12755 case DW_ACCESS_public:
12756 break;
12757
12758 default:
12759 /* Unknown accessibility. Complain and treat it as public. */
12760 {
12761 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12762 fieldp->accessibility);
12763 }
12764 break;
12765 }
12766 if (nfields < fip->nbaseclasses)
12767 {
12768 switch (fieldp->virtuality)
12769 {
12770 case DW_VIRTUALITY_virtual:
12771 case DW_VIRTUALITY_pure_virtual:
12772 if (cu->language == language_ada)
12773 error (_("unexpected virtuality in component of Ada type"));
12774 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12775 break;
12776 }
12777 }
12778 }
12779 }
12780
12781 /* Return true if this member function is a constructor, false
12782 otherwise. */
12783
12784 static int
12785 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12786 {
12787 const char *fieldname;
12788 const char *type_name;
12789 int len;
12790
12791 if (die->parent == NULL)
12792 return 0;
12793
12794 if (die->parent->tag != DW_TAG_structure_type
12795 && die->parent->tag != DW_TAG_union_type
12796 && die->parent->tag != DW_TAG_class_type)
12797 return 0;
12798
12799 fieldname = dwarf2_name (die, cu);
12800 type_name = dwarf2_name (die->parent, cu);
12801 if (fieldname == NULL || type_name == NULL)
12802 return 0;
12803
12804 len = strlen (fieldname);
12805 return (strncmp (fieldname, type_name, len) == 0
12806 && (type_name[len] == '\0' || type_name[len] == '<'));
12807 }
12808
12809 /* Add a member function to the proper fieldlist. */
12810
12811 static void
12812 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12813 struct type *type, struct dwarf2_cu *cu)
12814 {
12815 struct objfile *objfile = cu->objfile;
12816 struct attribute *attr;
12817 struct fnfieldlist *flp;
12818 int i;
12819 struct fn_field *fnp;
12820 const char *fieldname;
12821 struct nextfnfield *new_fnfield;
12822 struct type *this_type;
12823 enum dwarf_access_attribute accessibility;
12824
12825 if (cu->language == language_ada)
12826 error (_("unexpected member function in Ada type"));
12827
12828 /* Get name of member function. */
12829 fieldname = dwarf2_name (die, cu);
12830 if (fieldname == NULL)
12831 return;
12832
12833 /* Look up member function name in fieldlist. */
12834 for (i = 0; i < fip->nfnfields; i++)
12835 {
12836 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12837 break;
12838 }
12839
12840 /* Create new list element if necessary. */
12841 if (i < fip->nfnfields)
12842 flp = &fip->fnfieldlists[i];
12843 else
12844 {
12845 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12846 {
12847 fip->fnfieldlists = (struct fnfieldlist *)
12848 xrealloc (fip->fnfieldlists,
12849 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12850 * sizeof (struct fnfieldlist));
12851 if (fip->nfnfields == 0)
12852 make_cleanup (free_current_contents, &fip->fnfieldlists);
12853 }
12854 flp = &fip->fnfieldlists[fip->nfnfields];
12855 flp->name = fieldname;
12856 flp->length = 0;
12857 flp->head = NULL;
12858 i = fip->nfnfields++;
12859 }
12860
12861 /* Create a new member function field and chain it to the field list
12862 entry. */
12863 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12864 make_cleanup (xfree, new_fnfield);
12865 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12866 new_fnfield->next = flp->head;
12867 flp->head = new_fnfield;
12868 flp->length++;
12869
12870 /* Fill in the member function field info. */
12871 fnp = &new_fnfield->fnfield;
12872
12873 /* Delay processing of the physname until later. */
12874 if (cu->language == language_cplus || cu->language == language_java)
12875 {
12876 add_to_method_list (type, i, flp->length - 1, fieldname,
12877 die, cu);
12878 }
12879 else
12880 {
12881 const char *physname = dwarf2_physname (fieldname, die, cu);
12882 fnp->physname = physname ? physname : "";
12883 }
12884
12885 fnp->type = alloc_type (objfile);
12886 this_type = read_type_die (die, cu);
12887 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12888 {
12889 int nparams = TYPE_NFIELDS (this_type);
12890
12891 /* TYPE is the domain of this method, and THIS_TYPE is the type
12892 of the method itself (TYPE_CODE_METHOD). */
12893 smash_to_method_type (fnp->type, type,
12894 TYPE_TARGET_TYPE (this_type),
12895 TYPE_FIELDS (this_type),
12896 TYPE_NFIELDS (this_type),
12897 TYPE_VARARGS (this_type));
12898
12899 /* Handle static member functions.
12900 Dwarf2 has no clean way to discern C++ static and non-static
12901 member functions. G++ helps GDB by marking the first
12902 parameter for non-static member functions (which is the this
12903 pointer) as artificial. We obtain this information from
12904 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12905 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12906 fnp->voffset = VOFFSET_STATIC;
12907 }
12908 else
12909 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12910 dwarf2_full_name (fieldname, die, cu));
12911
12912 /* Get fcontext from DW_AT_containing_type if present. */
12913 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12914 fnp->fcontext = die_containing_type (die, cu);
12915
12916 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12917 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12918
12919 /* Get accessibility. */
12920 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12921 if (attr)
12922 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12923 else
12924 accessibility = dwarf2_default_access_attribute (die, cu);
12925 switch (accessibility)
12926 {
12927 case DW_ACCESS_private:
12928 fnp->is_private = 1;
12929 break;
12930 case DW_ACCESS_protected:
12931 fnp->is_protected = 1;
12932 break;
12933 }
12934
12935 /* Check for artificial methods. */
12936 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12937 if (attr && DW_UNSND (attr) != 0)
12938 fnp->is_artificial = 1;
12939
12940 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12941
12942 /* Get index in virtual function table if it is a virtual member
12943 function. For older versions of GCC, this is an offset in the
12944 appropriate virtual table, as specified by DW_AT_containing_type.
12945 For everyone else, it is an expression to be evaluated relative
12946 to the object address. */
12947
12948 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12949 if (attr)
12950 {
12951 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12952 {
12953 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12954 {
12955 /* Old-style GCC. */
12956 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12957 }
12958 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12959 || (DW_BLOCK (attr)->size > 1
12960 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12961 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12962 {
12963 struct dwarf_block blk;
12964 int offset;
12965
12966 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12967 ? 1 : 2);
12968 blk.size = DW_BLOCK (attr)->size - offset;
12969 blk.data = DW_BLOCK (attr)->data + offset;
12970 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12971 if ((fnp->voffset % cu->header.addr_size) != 0)
12972 dwarf2_complex_location_expr_complaint ();
12973 else
12974 fnp->voffset /= cu->header.addr_size;
12975 fnp->voffset += 2;
12976 }
12977 else
12978 dwarf2_complex_location_expr_complaint ();
12979
12980 if (!fnp->fcontext)
12981 {
12982 /* If there is no `this' field and no DW_AT_containing_type,
12983 we cannot actually find a base class context for the
12984 vtable! */
12985 if (TYPE_NFIELDS (this_type) == 0
12986 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12987 {
12988 complaint (&symfile_complaints,
12989 _("cannot determine context for virtual member "
12990 "function \"%s\" (offset %d)"),
12991 fieldname, die->offset.sect_off);
12992 }
12993 else
12994 {
12995 fnp->fcontext
12996 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12997 }
12998 }
12999 }
13000 else if (attr_form_is_section_offset (attr))
13001 {
13002 dwarf2_complex_location_expr_complaint ();
13003 }
13004 else
13005 {
13006 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13007 fieldname);
13008 }
13009 }
13010 else
13011 {
13012 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13013 if (attr && DW_UNSND (attr))
13014 {
13015 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13016 complaint (&symfile_complaints,
13017 _("Member function \"%s\" (offset %d) is virtual "
13018 "but the vtable offset is not specified"),
13019 fieldname, die->offset.sect_off);
13020 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13021 TYPE_CPLUS_DYNAMIC (type) = 1;
13022 }
13023 }
13024 }
13025
13026 /* Create the vector of member function fields, and attach it to the type. */
13027
13028 static void
13029 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13030 struct dwarf2_cu *cu)
13031 {
13032 struct fnfieldlist *flp;
13033 int i;
13034
13035 if (cu->language == language_ada)
13036 error (_("unexpected member functions in Ada type"));
13037
13038 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13039 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13040 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13041
13042 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13043 {
13044 struct nextfnfield *nfp = flp->head;
13045 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13046 int k;
13047
13048 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13049 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13050 fn_flp->fn_fields = (struct fn_field *)
13051 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13052 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13053 fn_flp->fn_fields[k] = nfp->fnfield;
13054 }
13055
13056 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13057 }
13058
13059 /* Returns non-zero if NAME is the name of a vtable member in CU's
13060 language, zero otherwise. */
13061 static int
13062 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13063 {
13064 static const char vptr[] = "_vptr";
13065 static const char vtable[] = "vtable";
13066
13067 /* Look for the C++ and Java forms of the vtable. */
13068 if ((cu->language == language_java
13069 && startswith (name, vtable))
13070 || (startswith (name, vptr)
13071 && is_cplus_marker (name[sizeof (vptr) - 1])))
13072 return 1;
13073
13074 return 0;
13075 }
13076
13077 /* GCC outputs unnamed structures that are really pointers to member
13078 functions, with the ABI-specified layout. If TYPE describes
13079 such a structure, smash it into a member function type.
13080
13081 GCC shouldn't do this; it should just output pointer to member DIEs.
13082 This is GCC PR debug/28767. */
13083
13084 static void
13085 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13086 {
13087 struct type *pfn_type, *self_type, *new_type;
13088
13089 /* Check for a structure with no name and two children. */
13090 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13091 return;
13092
13093 /* Check for __pfn and __delta members. */
13094 if (TYPE_FIELD_NAME (type, 0) == NULL
13095 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13096 || TYPE_FIELD_NAME (type, 1) == NULL
13097 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13098 return;
13099
13100 /* Find the type of the method. */
13101 pfn_type = TYPE_FIELD_TYPE (type, 0);
13102 if (pfn_type == NULL
13103 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13104 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13105 return;
13106
13107 /* Look for the "this" argument. */
13108 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13109 if (TYPE_NFIELDS (pfn_type) == 0
13110 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13111 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13112 return;
13113
13114 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13115 new_type = alloc_type (objfile);
13116 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13117 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13118 TYPE_VARARGS (pfn_type));
13119 smash_to_methodptr_type (type, new_type);
13120 }
13121
13122 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13123 (icc). */
13124
13125 static int
13126 producer_is_icc (struct dwarf2_cu *cu)
13127 {
13128 if (!cu->checked_producer)
13129 check_producer (cu);
13130
13131 return cu->producer_is_icc;
13132 }
13133
13134 /* Called when we find the DIE that starts a structure or union scope
13135 (definition) to create a type for the structure or union. Fill in
13136 the type's name and general properties; the members will not be
13137 processed until process_structure_scope. A symbol table entry for
13138 the type will also not be done until process_structure_scope (assuming
13139 the type has a name).
13140
13141 NOTE: we need to call these functions regardless of whether or not the
13142 DIE has a DW_AT_name attribute, since it might be an anonymous
13143 structure or union. This gets the type entered into our set of
13144 user defined types. */
13145
13146 static struct type *
13147 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13148 {
13149 struct objfile *objfile = cu->objfile;
13150 struct type *type;
13151 struct attribute *attr;
13152 const char *name;
13153
13154 /* If the definition of this type lives in .debug_types, read that type.
13155 Don't follow DW_AT_specification though, that will take us back up
13156 the chain and we want to go down. */
13157 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13158 if (attr)
13159 {
13160 type = get_DW_AT_signature_type (die, attr, cu);
13161
13162 /* The type's CU may not be the same as CU.
13163 Ensure TYPE is recorded with CU in die_type_hash. */
13164 return set_die_type (die, type, cu);
13165 }
13166
13167 type = alloc_type (objfile);
13168 INIT_CPLUS_SPECIFIC (type);
13169
13170 name = dwarf2_name (die, cu);
13171 if (name != NULL)
13172 {
13173 if (cu->language == language_cplus
13174 || cu->language == language_java
13175 || cu->language == language_d)
13176 {
13177 const char *full_name = dwarf2_full_name (name, die, cu);
13178
13179 /* dwarf2_full_name might have already finished building the DIE's
13180 type. If so, there is no need to continue. */
13181 if (get_die_type (die, cu) != NULL)
13182 return get_die_type (die, cu);
13183
13184 TYPE_TAG_NAME (type) = full_name;
13185 if (die->tag == DW_TAG_structure_type
13186 || die->tag == DW_TAG_class_type)
13187 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13188 }
13189 else
13190 {
13191 /* The name is already allocated along with this objfile, so
13192 we don't need to duplicate it for the type. */
13193 TYPE_TAG_NAME (type) = name;
13194 if (die->tag == DW_TAG_class_type)
13195 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13196 }
13197 }
13198
13199 if (die->tag == DW_TAG_structure_type)
13200 {
13201 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13202 }
13203 else if (die->tag == DW_TAG_union_type)
13204 {
13205 TYPE_CODE (type) = TYPE_CODE_UNION;
13206 }
13207 else
13208 {
13209 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13210 }
13211
13212 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13213 TYPE_DECLARED_CLASS (type) = 1;
13214
13215 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13216 if (attr)
13217 {
13218 TYPE_LENGTH (type) = DW_UNSND (attr);
13219 }
13220 else
13221 {
13222 TYPE_LENGTH (type) = 0;
13223 }
13224
13225 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13226 {
13227 /* ICC does not output the required DW_AT_declaration
13228 on incomplete types, but gives them a size of zero. */
13229 TYPE_STUB (type) = 1;
13230 }
13231 else
13232 TYPE_STUB_SUPPORTED (type) = 1;
13233
13234 if (die_is_declaration (die, cu))
13235 TYPE_STUB (type) = 1;
13236 else if (attr == NULL && die->child == NULL
13237 && producer_is_realview (cu->producer))
13238 /* RealView does not output the required DW_AT_declaration
13239 on incomplete types. */
13240 TYPE_STUB (type) = 1;
13241
13242 /* We need to add the type field to the die immediately so we don't
13243 infinitely recurse when dealing with pointers to the structure
13244 type within the structure itself. */
13245 set_die_type (die, type, cu);
13246
13247 /* set_die_type should be already done. */
13248 set_descriptive_type (type, die, cu);
13249
13250 return type;
13251 }
13252
13253 /* Finish creating a structure or union type, including filling in
13254 its members and creating a symbol for it. */
13255
13256 static void
13257 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13258 {
13259 struct objfile *objfile = cu->objfile;
13260 struct die_info *child_die;
13261 struct type *type;
13262
13263 type = get_die_type (die, cu);
13264 if (type == NULL)
13265 type = read_structure_type (die, cu);
13266
13267 if (die->child != NULL && ! die_is_declaration (die, cu))
13268 {
13269 struct field_info fi;
13270 VEC (symbolp) *template_args = NULL;
13271 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13272
13273 memset (&fi, 0, sizeof (struct field_info));
13274
13275 child_die = die->child;
13276
13277 while (child_die && child_die->tag)
13278 {
13279 if (child_die->tag == DW_TAG_member
13280 || child_die->tag == DW_TAG_variable)
13281 {
13282 /* NOTE: carlton/2002-11-05: A C++ static data member
13283 should be a DW_TAG_member that is a declaration, but
13284 all versions of G++ as of this writing (so through at
13285 least 3.2.1) incorrectly generate DW_TAG_variable
13286 tags for them instead. */
13287 dwarf2_add_field (&fi, child_die, cu);
13288 }
13289 else if (child_die->tag == DW_TAG_subprogram)
13290 {
13291 /* C++ member function. */
13292 dwarf2_add_member_fn (&fi, child_die, type, cu);
13293 }
13294 else if (child_die->tag == DW_TAG_inheritance)
13295 {
13296 /* C++ base class field. */
13297 dwarf2_add_field (&fi, child_die, cu);
13298 }
13299 else if (child_die->tag == DW_TAG_typedef)
13300 dwarf2_add_typedef (&fi, child_die, cu);
13301 else if (child_die->tag == DW_TAG_template_type_param
13302 || child_die->tag == DW_TAG_template_value_param)
13303 {
13304 struct symbol *arg = new_symbol (child_die, NULL, cu);
13305
13306 if (arg != NULL)
13307 VEC_safe_push (symbolp, template_args, arg);
13308 }
13309
13310 child_die = sibling_die (child_die);
13311 }
13312
13313 /* Attach template arguments to type. */
13314 if (! VEC_empty (symbolp, template_args))
13315 {
13316 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13317 TYPE_N_TEMPLATE_ARGUMENTS (type)
13318 = VEC_length (symbolp, template_args);
13319 TYPE_TEMPLATE_ARGUMENTS (type)
13320 = obstack_alloc (&objfile->objfile_obstack,
13321 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13322 * sizeof (struct symbol *)));
13323 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13324 VEC_address (symbolp, template_args),
13325 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13326 * sizeof (struct symbol *)));
13327 VEC_free (symbolp, template_args);
13328 }
13329
13330 /* Attach fields and member functions to the type. */
13331 if (fi.nfields)
13332 dwarf2_attach_fields_to_type (&fi, type, cu);
13333 if (fi.nfnfields)
13334 {
13335 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13336
13337 /* Get the type which refers to the base class (possibly this
13338 class itself) which contains the vtable pointer for the current
13339 class from the DW_AT_containing_type attribute. This use of
13340 DW_AT_containing_type is a GNU extension. */
13341
13342 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13343 {
13344 struct type *t = die_containing_type (die, cu);
13345
13346 set_type_vptr_basetype (type, t);
13347 if (type == t)
13348 {
13349 int i;
13350
13351 /* Our own class provides vtbl ptr. */
13352 for (i = TYPE_NFIELDS (t) - 1;
13353 i >= TYPE_N_BASECLASSES (t);
13354 --i)
13355 {
13356 const char *fieldname = TYPE_FIELD_NAME (t, i);
13357
13358 if (is_vtable_name (fieldname, cu))
13359 {
13360 set_type_vptr_fieldno (type, i);
13361 break;
13362 }
13363 }
13364
13365 /* Complain if virtual function table field not found. */
13366 if (i < TYPE_N_BASECLASSES (t))
13367 complaint (&symfile_complaints,
13368 _("virtual function table pointer "
13369 "not found when defining class '%s'"),
13370 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13371 "");
13372 }
13373 else
13374 {
13375 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13376 }
13377 }
13378 else if (cu->producer
13379 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13380 {
13381 /* The IBM XLC compiler does not provide direct indication
13382 of the containing type, but the vtable pointer is
13383 always named __vfp. */
13384
13385 int i;
13386
13387 for (i = TYPE_NFIELDS (type) - 1;
13388 i >= TYPE_N_BASECLASSES (type);
13389 --i)
13390 {
13391 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13392 {
13393 set_type_vptr_fieldno (type, i);
13394 set_type_vptr_basetype (type, type);
13395 break;
13396 }
13397 }
13398 }
13399 }
13400
13401 /* Copy fi.typedef_field_list linked list elements content into the
13402 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13403 if (fi.typedef_field_list)
13404 {
13405 int i = fi.typedef_field_list_count;
13406
13407 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13408 TYPE_TYPEDEF_FIELD_ARRAY (type)
13409 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13410 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13411
13412 /* Reverse the list order to keep the debug info elements order. */
13413 while (--i >= 0)
13414 {
13415 struct typedef_field *dest, *src;
13416
13417 dest = &TYPE_TYPEDEF_FIELD (type, i);
13418 src = &fi.typedef_field_list->field;
13419 fi.typedef_field_list = fi.typedef_field_list->next;
13420 *dest = *src;
13421 }
13422 }
13423
13424 do_cleanups (back_to);
13425
13426 if (HAVE_CPLUS_STRUCT (type))
13427 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13428 }
13429
13430 quirk_gcc_member_function_pointer (type, objfile);
13431
13432 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13433 snapshots) has been known to create a die giving a declaration
13434 for a class that has, as a child, a die giving a definition for a
13435 nested class. So we have to process our children even if the
13436 current die is a declaration. Normally, of course, a declaration
13437 won't have any children at all. */
13438
13439 child_die = die->child;
13440
13441 while (child_die != NULL && child_die->tag)
13442 {
13443 if (child_die->tag == DW_TAG_member
13444 || child_die->tag == DW_TAG_variable
13445 || child_die->tag == DW_TAG_inheritance
13446 || child_die->tag == DW_TAG_template_value_param
13447 || child_die->tag == DW_TAG_template_type_param)
13448 {
13449 /* Do nothing. */
13450 }
13451 else
13452 process_die (child_die, cu);
13453
13454 child_die = sibling_die (child_die);
13455 }
13456
13457 /* Do not consider external references. According to the DWARF standard,
13458 these DIEs are identified by the fact that they have no byte_size
13459 attribute, and a declaration attribute. */
13460 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13461 || !die_is_declaration (die, cu))
13462 new_symbol (die, type, cu);
13463 }
13464
13465 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13466 update TYPE using some information only available in DIE's children. */
13467
13468 static void
13469 update_enumeration_type_from_children (struct die_info *die,
13470 struct type *type,
13471 struct dwarf2_cu *cu)
13472 {
13473 struct obstack obstack;
13474 struct die_info *child_die;
13475 int unsigned_enum = 1;
13476 int flag_enum = 1;
13477 ULONGEST mask = 0;
13478 struct cleanup *old_chain;
13479
13480 obstack_init (&obstack);
13481 old_chain = make_cleanup_obstack_free (&obstack);
13482
13483 for (child_die = die->child;
13484 child_die != NULL && child_die->tag;
13485 child_die = sibling_die (child_die))
13486 {
13487 struct attribute *attr;
13488 LONGEST value;
13489 const gdb_byte *bytes;
13490 struct dwarf2_locexpr_baton *baton;
13491 const char *name;
13492
13493 if (child_die->tag != DW_TAG_enumerator)
13494 continue;
13495
13496 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13497 if (attr == NULL)
13498 continue;
13499
13500 name = dwarf2_name (child_die, cu);
13501 if (name == NULL)
13502 name = "<anonymous enumerator>";
13503
13504 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13505 &value, &bytes, &baton);
13506 if (value < 0)
13507 {
13508 unsigned_enum = 0;
13509 flag_enum = 0;
13510 }
13511 else if ((mask & value) != 0)
13512 flag_enum = 0;
13513 else
13514 mask |= value;
13515
13516 /* If we already know that the enum type is neither unsigned, nor
13517 a flag type, no need to look at the rest of the enumerates. */
13518 if (!unsigned_enum && !flag_enum)
13519 break;
13520 }
13521
13522 if (unsigned_enum)
13523 TYPE_UNSIGNED (type) = 1;
13524 if (flag_enum)
13525 TYPE_FLAG_ENUM (type) = 1;
13526
13527 do_cleanups (old_chain);
13528 }
13529
13530 /* Given a DW_AT_enumeration_type die, set its type. We do not
13531 complete the type's fields yet, or create any symbols. */
13532
13533 static struct type *
13534 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13535 {
13536 struct objfile *objfile = cu->objfile;
13537 struct type *type;
13538 struct attribute *attr;
13539 const char *name;
13540
13541 /* If the definition of this type lives in .debug_types, read that type.
13542 Don't follow DW_AT_specification though, that will take us back up
13543 the chain and we want to go down. */
13544 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13545 if (attr)
13546 {
13547 type = get_DW_AT_signature_type (die, attr, cu);
13548
13549 /* The type's CU may not be the same as CU.
13550 Ensure TYPE is recorded with CU in die_type_hash. */
13551 return set_die_type (die, type, cu);
13552 }
13553
13554 type = alloc_type (objfile);
13555
13556 TYPE_CODE (type) = TYPE_CODE_ENUM;
13557 name = dwarf2_full_name (NULL, die, cu);
13558 if (name != NULL)
13559 TYPE_TAG_NAME (type) = name;
13560
13561 attr = dwarf2_attr (die, DW_AT_type, cu);
13562 if (attr != NULL)
13563 {
13564 struct type *underlying_type = die_type (die, cu);
13565
13566 TYPE_TARGET_TYPE (type) = underlying_type;
13567 }
13568
13569 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13570 if (attr)
13571 {
13572 TYPE_LENGTH (type) = DW_UNSND (attr);
13573 }
13574 else
13575 {
13576 TYPE_LENGTH (type) = 0;
13577 }
13578
13579 /* The enumeration DIE can be incomplete. In Ada, any type can be
13580 declared as private in the package spec, and then defined only
13581 inside the package body. Such types are known as Taft Amendment
13582 Types. When another package uses such a type, an incomplete DIE
13583 may be generated by the compiler. */
13584 if (die_is_declaration (die, cu))
13585 TYPE_STUB (type) = 1;
13586
13587 /* Finish the creation of this type by using the enum's children.
13588 We must call this even when the underlying type has been provided
13589 so that we can determine if we're looking at a "flag" enum. */
13590 update_enumeration_type_from_children (die, type, cu);
13591
13592 /* If this type has an underlying type that is not a stub, then we
13593 may use its attributes. We always use the "unsigned" attribute
13594 in this situation, because ordinarily we guess whether the type
13595 is unsigned -- but the guess can be wrong and the underlying type
13596 can tell us the reality. However, we defer to a local size
13597 attribute if one exists, because this lets the compiler override
13598 the underlying type if needed. */
13599 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13600 {
13601 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13602 if (TYPE_LENGTH (type) == 0)
13603 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13604 }
13605
13606 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13607
13608 return set_die_type (die, type, cu);
13609 }
13610
13611 /* Given a pointer to a die which begins an enumeration, process all
13612 the dies that define the members of the enumeration, and create the
13613 symbol for the enumeration type.
13614
13615 NOTE: We reverse the order of the element list. */
13616
13617 static void
13618 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13619 {
13620 struct type *this_type;
13621
13622 this_type = get_die_type (die, cu);
13623 if (this_type == NULL)
13624 this_type = read_enumeration_type (die, cu);
13625
13626 if (die->child != NULL)
13627 {
13628 struct die_info *child_die;
13629 struct symbol *sym;
13630 struct field *fields = NULL;
13631 int num_fields = 0;
13632 const char *name;
13633
13634 child_die = die->child;
13635 while (child_die && child_die->tag)
13636 {
13637 if (child_die->tag != DW_TAG_enumerator)
13638 {
13639 process_die (child_die, cu);
13640 }
13641 else
13642 {
13643 name = dwarf2_name (child_die, cu);
13644 if (name)
13645 {
13646 sym = new_symbol (child_die, this_type, cu);
13647
13648 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13649 {
13650 fields = (struct field *)
13651 xrealloc (fields,
13652 (num_fields + DW_FIELD_ALLOC_CHUNK)
13653 * sizeof (struct field));
13654 }
13655
13656 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13657 FIELD_TYPE (fields[num_fields]) = NULL;
13658 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13659 FIELD_BITSIZE (fields[num_fields]) = 0;
13660
13661 num_fields++;
13662 }
13663 }
13664
13665 child_die = sibling_die (child_die);
13666 }
13667
13668 if (num_fields)
13669 {
13670 TYPE_NFIELDS (this_type) = num_fields;
13671 TYPE_FIELDS (this_type) = (struct field *)
13672 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13673 memcpy (TYPE_FIELDS (this_type), fields,
13674 sizeof (struct field) * num_fields);
13675 xfree (fields);
13676 }
13677 }
13678
13679 /* If we are reading an enum from a .debug_types unit, and the enum
13680 is a declaration, and the enum is not the signatured type in the
13681 unit, then we do not want to add a symbol for it. Adding a
13682 symbol would in some cases obscure the true definition of the
13683 enum, giving users an incomplete type when the definition is
13684 actually available. Note that we do not want to do this for all
13685 enums which are just declarations, because C++0x allows forward
13686 enum declarations. */
13687 if (cu->per_cu->is_debug_types
13688 && die_is_declaration (die, cu))
13689 {
13690 struct signatured_type *sig_type;
13691
13692 sig_type = (struct signatured_type *) cu->per_cu;
13693 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13694 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13695 return;
13696 }
13697
13698 new_symbol (die, this_type, cu);
13699 }
13700
13701 /* Extract all information from a DW_TAG_array_type DIE and put it in
13702 the DIE's type field. For now, this only handles one dimensional
13703 arrays. */
13704
13705 static struct type *
13706 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13707 {
13708 struct objfile *objfile = cu->objfile;
13709 struct die_info *child_die;
13710 struct type *type;
13711 struct type *element_type, *range_type, *index_type;
13712 struct type **range_types = NULL;
13713 struct attribute *attr;
13714 int ndim = 0;
13715 struct cleanup *back_to;
13716 const char *name;
13717 unsigned int bit_stride = 0;
13718
13719 element_type = die_type (die, cu);
13720
13721 /* The die_type call above may have already set the type for this DIE. */
13722 type = get_die_type (die, cu);
13723 if (type)
13724 return type;
13725
13726 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13727 if (attr != NULL)
13728 bit_stride = DW_UNSND (attr) * 8;
13729
13730 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13731 if (attr != NULL)
13732 bit_stride = DW_UNSND (attr);
13733
13734 /* Irix 6.2 native cc creates array types without children for
13735 arrays with unspecified length. */
13736 if (die->child == NULL)
13737 {
13738 index_type = objfile_type (objfile)->builtin_int;
13739 range_type = create_static_range_type (NULL, index_type, 0, -1);
13740 type = create_array_type_with_stride (NULL, element_type, range_type,
13741 bit_stride);
13742 return set_die_type (die, type, cu);
13743 }
13744
13745 back_to = make_cleanup (null_cleanup, NULL);
13746 child_die = die->child;
13747 while (child_die && child_die->tag)
13748 {
13749 if (child_die->tag == DW_TAG_subrange_type)
13750 {
13751 struct type *child_type = read_type_die (child_die, cu);
13752
13753 if (child_type != NULL)
13754 {
13755 /* The range type was succesfully read. Save it for the
13756 array type creation. */
13757 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13758 {
13759 range_types = (struct type **)
13760 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13761 * sizeof (struct type *));
13762 if (ndim == 0)
13763 make_cleanup (free_current_contents, &range_types);
13764 }
13765 range_types[ndim++] = child_type;
13766 }
13767 }
13768 child_die = sibling_die (child_die);
13769 }
13770
13771 /* Dwarf2 dimensions are output from left to right, create the
13772 necessary array types in backwards order. */
13773
13774 type = element_type;
13775
13776 if (read_array_order (die, cu) == DW_ORD_col_major)
13777 {
13778 int i = 0;
13779
13780 while (i < ndim)
13781 type = create_array_type_with_stride (NULL, type, range_types[i++],
13782 bit_stride);
13783 }
13784 else
13785 {
13786 while (ndim-- > 0)
13787 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13788 bit_stride);
13789 }
13790
13791 /* Understand Dwarf2 support for vector types (like they occur on
13792 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13793 array type. This is not part of the Dwarf2/3 standard yet, but a
13794 custom vendor extension. The main difference between a regular
13795 array and the vector variant is that vectors are passed by value
13796 to functions. */
13797 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13798 if (attr)
13799 make_vector_type (type);
13800
13801 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13802 implementation may choose to implement triple vectors using this
13803 attribute. */
13804 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13805 if (attr)
13806 {
13807 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13808 TYPE_LENGTH (type) = DW_UNSND (attr);
13809 else
13810 complaint (&symfile_complaints,
13811 _("DW_AT_byte_size for array type smaller "
13812 "than the total size of elements"));
13813 }
13814
13815 name = dwarf2_name (die, cu);
13816 if (name)
13817 TYPE_NAME (type) = name;
13818
13819 /* Install the type in the die. */
13820 set_die_type (die, type, cu);
13821
13822 /* set_die_type should be already done. */
13823 set_descriptive_type (type, die, cu);
13824
13825 do_cleanups (back_to);
13826
13827 return type;
13828 }
13829
13830 static enum dwarf_array_dim_ordering
13831 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13832 {
13833 struct attribute *attr;
13834
13835 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13836
13837 if (attr)
13838 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13839
13840 /* GNU F77 is a special case, as at 08/2004 array type info is the
13841 opposite order to the dwarf2 specification, but data is still
13842 laid out as per normal fortran.
13843
13844 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13845 version checking. */
13846
13847 if (cu->language == language_fortran
13848 && cu->producer && strstr (cu->producer, "GNU F77"))
13849 {
13850 return DW_ORD_row_major;
13851 }
13852
13853 switch (cu->language_defn->la_array_ordering)
13854 {
13855 case array_column_major:
13856 return DW_ORD_col_major;
13857 case array_row_major:
13858 default:
13859 return DW_ORD_row_major;
13860 };
13861 }
13862
13863 /* Extract all information from a DW_TAG_set_type DIE and put it in
13864 the DIE's type field. */
13865
13866 static struct type *
13867 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13868 {
13869 struct type *domain_type, *set_type;
13870 struct attribute *attr;
13871
13872 domain_type = die_type (die, cu);
13873
13874 /* The die_type call above may have already set the type for this DIE. */
13875 set_type = get_die_type (die, cu);
13876 if (set_type)
13877 return set_type;
13878
13879 set_type = create_set_type (NULL, domain_type);
13880
13881 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13882 if (attr)
13883 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13884
13885 return set_die_type (die, set_type, cu);
13886 }
13887
13888 /* A helper for read_common_block that creates a locexpr baton.
13889 SYM is the symbol which we are marking as computed.
13890 COMMON_DIE is the DIE for the common block.
13891 COMMON_LOC is the location expression attribute for the common
13892 block itself.
13893 MEMBER_LOC is the location expression attribute for the particular
13894 member of the common block that we are processing.
13895 CU is the CU from which the above come. */
13896
13897 static void
13898 mark_common_block_symbol_computed (struct symbol *sym,
13899 struct die_info *common_die,
13900 struct attribute *common_loc,
13901 struct attribute *member_loc,
13902 struct dwarf2_cu *cu)
13903 {
13904 struct objfile *objfile = dwarf2_per_objfile->objfile;
13905 struct dwarf2_locexpr_baton *baton;
13906 gdb_byte *ptr;
13907 unsigned int cu_off;
13908 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13909 LONGEST offset = 0;
13910
13911 gdb_assert (common_loc && member_loc);
13912 gdb_assert (attr_form_is_block (common_loc));
13913 gdb_assert (attr_form_is_block (member_loc)
13914 || attr_form_is_constant (member_loc));
13915
13916 baton = obstack_alloc (&objfile->objfile_obstack,
13917 sizeof (struct dwarf2_locexpr_baton));
13918 baton->per_cu = cu->per_cu;
13919 gdb_assert (baton->per_cu);
13920
13921 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13922
13923 if (attr_form_is_constant (member_loc))
13924 {
13925 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13926 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13927 }
13928 else
13929 baton->size += DW_BLOCK (member_loc)->size;
13930
13931 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13932 baton->data = ptr;
13933
13934 *ptr++ = DW_OP_call4;
13935 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13936 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13937 ptr += 4;
13938
13939 if (attr_form_is_constant (member_loc))
13940 {
13941 *ptr++ = DW_OP_addr;
13942 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13943 ptr += cu->header.addr_size;
13944 }
13945 else
13946 {
13947 /* We have to copy the data here, because DW_OP_call4 will only
13948 use a DW_AT_location attribute. */
13949 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13950 ptr += DW_BLOCK (member_loc)->size;
13951 }
13952
13953 *ptr++ = DW_OP_plus;
13954 gdb_assert (ptr - baton->data == baton->size);
13955
13956 SYMBOL_LOCATION_BATON (sym) = baton;
13957 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13958 }
13959
13960 /* Create appropriate locally-scoped variables for all the
13961 DW_TAG_common_block entries. Also create a struct common_block
13962 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13963 is used to sepate the common blocks name namespace from regular
13964 variable names. */
13965
13966 static void
13967 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13968 {
13969 struct attribute *attr;
13970
13971 attr = dwarf2_attr (die, DW_AT_location, cu);
13972 if (attr)
13973 {
13974 /* Support the .debug_loc offsets. */
13975 if (attr_form_is_block (attr))
13976 {
13977 /* Ok. */
13978 }
13979 else if (attr_form_is_section_offset (attr))
13980 {
13981 dwarf2_complex_location_expr_complaint ();
13982 attr = NULL;
13983 }
13984 else
13985 {
13986 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13987 "common block member");
13988 attr = NULL;
13989 }
13990 }
13991
13992 if (die->child != NULL)
13993 {
13994 struct objfile *objfile = cu->objfile;
13995 struct die_info *child_die;
13996 size_t n_entries = 0, size;
13997 struct common_block *common_block;
13998 struct symbol *sym;
13999
14000 for (child_die = die->child;
14001 child_die && child_die->tag;
14002 child_die = sibling_die (child_die))
14003 ++n_entries;
14004
14005 size = (sizeof (struct common_block)
14006 + (n_entries - 1) * sizeof (struct symbol *));
14007 common_block = obstack_alloc (&objfile->objfile_obstack, size);
14008 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14009 common_block->n_entries = 0;
14010
14011 for (child_die = die->child;
14012 child_die && child_die->tag;
14013 child_die = sibling_die (child_die))
14014 {
14015 /* Create the symbol in the DW_TAG_common_block block in the current
14016 symbol scope. */
14017 sym = new_symbol (child_die, NULL, cu);
14018 if (sym != NULL)
14019 {
14020 struct attribute *member_loc;
14021
14022 common_block->contents[common_block->n_entries++] = sym;
14023
14024 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14025 cu);
14026 if (member_loc)
14027 {
14028 /* GDB has handled this for a long time, but it is
14029 not specified by DWARF. It seems to have been
14030 emitted by gfortran at least as recently as:
14031 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14032 complaint (&symfile_complaints,
14033 _("Variable in common block has "
14034 "DW_AT_data_member_location "
14035 "- DIE at 0x%x [in module %s]"),
14036 child_die->offset.sect_off,
14037 objfile_name (cu->objfile));
14038
14039 if (attr_form_is_section_offset (member_loc))
14040 dwarf2_complex_location_expr_complaint ();
14041 else if (attr_form_is_constant (member_loc)
14042 || attr_form_is_block (member_loc))
14043 {
14044 if (attr)
14045 mark_common_block_symbol_computed (sym, die, attr,
14046 member_loc, cu);
14047 }
14048 else
14049 dwarf2_complex_location_expr_complaint ();
14050 }
14051 }
14052 }
14053
14054 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14055 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14056 }
14057 }
14058
14059 /* Create a type for a C++ namespace. */
14060
14061 static struct type *
14062 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14063 {
14064 struct objfile *objfile = cu->objfile;
14065 const char *previous_prefix, *name;
14066 int is_anonymous;
14067 struct type *type;
14068
14069 /* For extensions, reuse the type of the original namespace. */
14070 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14071 {
14072 struct die_info *ext_die;
14073 struct dwarf2_cu *ext_cu = cu;
14074
14075 ext_die = dwarf2_extension (die, &ext_cu);
14076 type = read_type_die (ext_die, ext_cu);
14077
14078 /* EXT_CU may not be the same as CU.
14079 Ensure TYPE is recorded with CU in die_type_hash. */
14080 return set_die_type (die, type, cu);
14081 }
14082
14083 name = namespace_name (die, &is_anonymous, cu);
14084
14085 /* Now build the name of the current namespace. */
14086
14087 previous_prefix = determine_prefix (die, cu);
14088 if (previous_prefix[0] != '\0')
14089 name = typename_concat (&objfile->objfile_obstack,
14090 previous_prefix, name, 0, cu);
14091
14092 /* Create the type. */
14093 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14094 objfile);
14095 TYPE_NAME (type) = name;
14096 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14097
14098 return set_die_type (die, type, cu);
14099 }
14100
14101 /* Read a namespace scope. */
14102
14103 static void
14104 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14105 {
14106 struct objfile *objfile = cu->objfile;
14107 int is_anonymous;
14108
14109 /* Add a symbol associated to this if we haven't seen the namespace
14110 before. Also, add a using directive if it's an anonymous
14111 namespace. */
14112
14113 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14114 {
14115 struct type *type;
14116
14117 type = read_type_die (die, cu);
14118 new_symbol (die, type, cu);
14119
14120 namespace_name (die, &is_anonymous, cu);
14121 if (is_anonymous)
14122 {
14123 const char *previous_prefix = determine_prefix (die, cu);
14124
14125 add_using_directive (using_directives (cu->language),
14126 previous_prefix, TYPE_NAME (type), NULL,
14127 NULL, NULL, 0, &objfile->objfile_obstack);
14128 }
14129 }
14130
14131 if (die->child != NULL)
14132 {
14133 struct die_info *child_die = die->child;
14134
14135 while (child_die && child_die->tag)
14136 {
14137 process_die (child_die, cu);
14138 child_die = sibling_die (child_die);
14139 }
14140 }
14141 }
14142
14143 /* Read a Fortran module as type. This DIE can be only a declaration used for
14144 imported module. Still we need that type as local Fortran "use ... only"
14145 declaration imports depend on the created type in determine_prefix. */
14146
14147 static struct type *
14148 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14149 {
14150 struct objfile *objfile = cu->objfile;
14151 const char *module_name;
14152 struct type *type;
14153
14154 module_name = dwarf2_name (die, cu);
14155 if (!module_name)
14156 complaint (&symfile_complaints,
14157 _("DW_TAG_module has no name, offset 0x%x"),
14158 die->offset.sect_off);
14159 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14160
14161 /* determine_prefix uses TYPE_TAG_NAME. */
14162 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14163
14164 return set_die_type (die, type, cu);
14165 }
14166
14167 /* Read a Fortran module. */
14168
14169 static void
14170 read_module (struct die_info *die, struct dwarf2_cu *cu)
14171 {
14172 struct die_info *child_die = die->child;
14173 struct type *type;
14174
14175 type = read_type_die (die, cu);
14176 new_symbol (die, type, cu);
14177
14178 while (child_die && child_die->tag)
14179 {
14180 process_die (child_die, cu);
14181 child_die = sibling_die (child_die);
14182 }
14183 }
14184
14185 /* Return the name of the namespace represented by DIE. Set
14186 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14187 namespace. */
14188
14189 static const char *
14190 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14191 {
14192 struct die_info *current_die;
14193 const char *name = NULL;
14194
14195 /* Loop through the extensions until we find a name. */
14196
14197 for (current_die = die;
14198 current_die != NULL;
14199 current_die = dwarf2_extension (die, &cu))
14200 {
14201 /* We don't use dwarf2_name here so that we can detect the absence
14202 of a name -> anonymous namespace. */
14203 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14204
14205 if (attr != NULL)
14206 name = DW_STRING (attr);
14207 if (name != NULL)
14208 break;
14209 }
14210
14211 /* Is it an anonymous namespace? */
14212
14213 *is_anonymous = (name == NULL);
14214 if (*is_anonymous)
14215 name = CP_ANONYMOUS_NAMESPACE_STR;
14216
14217 return name;
14218 }
14219
14220 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14221 the user defined type vector. */
14222
14223 static struct type *
14224 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14225 {
14226 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14227 struct comp_unit_head *cu_header = &cu->header;
14228 struct type *type;
14229 struct attribute *attr_byte_size;
14230 struct attribute *attr_address_class;
14231 int byte_size, addr_class;
14232 struct type *target_type;
14233
14234 target_type = die_type (die, cu);
14235
14236 /* The die_type call above may have already set the type for this DIE. */
14237 type = get_die_type (die, cu);
14238 if (type)
14239 return type;
14240
14241 type = lookup_pointer_type (target_type);
14242
14243 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14244 if (attr_byte_size)
14245 byte_size = DW_UNSND (attr_byte_size);
14246 else
14247 byte_size = cu_header->addr_size;
14248
14249 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14250 if (attr_address_class)
14251 addr_class = DW_UNSND (attr_address_class);
14252 else
14253 addr_class = DW_ADDR_none;
14254
14255 /* If the pointer size or address class is different than the
14256 default, create a type variant marked as such and set the
14257 length accordingly. */
14258 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14259 {
14260 if (gdbarch_address_class_type_flags_p (gdbarch))
14261 {
14262 int type_flags;
14263
14264 type_flags = gdbarch_address_class_type_flags
14265 (gdbarch, byte_size, addr_class);
14266 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14267 == 0);
14268 type = make_type_with_address_space (type, type_flags);
14269 }
14270 else if (TYPE_LENGTH (type) != byte_size)
14271 {
14272 complaint (&symfile_complaints,
14273 _("invalid pointer size %d"), byte_size);
14274 }
14275 else
14276 {
14277 /* Should we also complain about unhandled address classes? */
14278 }
14279 }
14280
14281 TYPE_LENGTH (type) = byte_size;
14282 return set_die_type (die, type, cu);
14283 }
14284
14285 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14286 the user defined type vector. */
14287
14288 static struct type *
14289 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14290 {
14291 struct type *type;
14292 struct type *to_type;
14293 struct type *domain;
14294
14295 to_type = die_type (die, cu);
14296 domain = die_containing_type (die, cu);
14297
14298 /* The calls above may have already set the type for this DIE. */
14299 type = get_die_type (die, cu);
14300 if (type)
14301 return type;
14302
14303 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14304 type = lookup_methodptr_type (to_type);
14305 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14306 {
14307 struct type *new_type = alloc_type (cu->objfile);
14308
14309 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14310 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14311 TYPE_VARARGS (to_type));
14312 type = lookup_methodptr_type (new_type);
14313 }
14314 else
14315 type = lookup_memberptr_type (to_type, domain);
14316
14317 return set_die_type (die, type, cu);
14318 }
14319
14320 /* Extract all information from a DW_TAG_reference_type DIE and add to
14321 the user defined type vector. */
14322
14323 static struct type *
14324 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14325 {
14326 struct comp_unit_head *cu_header = &cu->header;
14327 struct type *type, *target_type;
14328 struct attribute *attr;
14329
14330 target_type = die_type (die, cu);
14331
14332 /* The die_type call above may have already set the type for this DIE. */
14333 type = get_die_type (die, cu);
14334 if (type)
14335 return type;
14336
14337 type = lookup_reference_type (target_type);
14338 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14339 if (attr)
14340 {
14341 TYPE_LENGTH (type) = DW_UNSND (attr);
14342 }
14343 else
14344 {
14345 TYPE_LENGTH (type) = cu_header->addr_size;
14346 }
14347 return set_die_type (die, type, cu);
14348 }
14349
14350 /* Add the given cv-qualifiers to the element type of the array. GCC
14351 outputs DWARF type qualifiers that apply to an array, not the
14352 element type. But GDB relies on the array element type to carry
14353 the cv-qualifiers. This mimics section 6.7.3 of the C99
14354 specification. */
14355
14356 static struct type *
14357 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14358 struct type *base_type, int cnst, int voltl)
14359 {
14360 struct type *el_type, *inner_array;
14361
14362 base_type = copy_type (base_type);
14363 inner_array = base_type;
14364
14365 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14366 {
14367 TYPE_TARGET_TYPE (inner_array) =
14368 copy_type (TYPE_TARGET_TYPE (inner_array));
14369 inner_array = TYPE_TARGET_TYPE (inner_array);
14370 }
14371
14372 el_type = TYPE_TARGET_TYPE (inner_array);
14373 cnst |= TYPE_CONST (el_type);
14374 voltl |= TYPE_VOLATILE (el_type);
14375 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14376
14377 return set_die_type (die, base_type, cu);
14378 }
14379
14380 static struct type *
14381 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14382 {
14383 struct type *base_type, *cv_type;
14384
14385 base_type = die_type (die, cu);
14386
14387 /* The die_type call above may have already set the type for this DIE. */
14388 cv_type = get_die_type (die, cu);
14389 if (cv_type)
14390 return cv_type;
14391
14392 /* In case the const qualifier is applied to an array type, the element type
14393 is so qualified, not the array type (section 6.7.3 of C99). */
14394 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14395 return add_array_cv_type (die, cu, base_type, 1, 0);
14396
14397 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14398 return set_die_type (die, cv_type, cu);
14399 }
14400
14401 static struct type *
14402 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14403 {
14404 struct type *base_type, *cv_type;
14405
14406 base_type = die_type (die, cu);
14407
14408 /* The die_type call above may have already set the type for this DIE. */
14409 cv_type = get_die_type (die, cu);
14410 if (cv_type)
14411 return cv_type;
14412
14413 /* In case the volatile qualifier is applied to an array type, the
14414 element type is so qualified, not the array type (section 6.7.3
14415 of C99). */
14416 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14417 return add_array_cv_type (die, cu, base_type, 0, 1);
14418
14419 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14420 return set_die_type (die, cv_type, cu);
14421 }
14422
14423 /* Handle DW_TAG_restrict_type. */
14424
14425 static struct type *
14426 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14427 {
14428 struct type *base_type, *cv_type;
14429
14430 base_type = die_type (die, cu);
14431
14432 /* The die_type call above may have already set the type for this DIE. */
14433 cv_type = get_die_type (die, cu);
14434 if (cv_type)
14435 return cv_type;
14436
14437 cv_type = make_restrict_type (base_type);
14438 return set_die_type (die, cv_type, cu);
14439 }
14440
14441 /* Handle DW_TAG_atomic_type. */
14442
14443 static struct type *
14444 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14445 {
14446 struct type *base_type, *cv_type;
14447
14448 base_type = die_type (die, cu);
14449
14450 /* The die_type call above may have already set the type for this DIE. */
14451 cv_type = get_die_type (die, cu);
14452 if (cv_type)
14453 return cv_type;
14454
14455 cv_type = make_atomic_type (base_type);
14456 return set_die_type (die, cv_type, cu);
14457 }
14458
14459 /* Extract all information from a DW_TAG_string_type DIE and add to
14460 the user defined type vector. It isn't really a user defined type,
14461 but it behaves like one, with other DIE's using an AT_user_def_type
14462 attribute to reference it. */
14463
14464 static struct type *
14465 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14466 {
14467 struct objfile *objfile = cu->objfile;
14468 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14469 struct type *type, *range_type, *index_type, *char_type;
14470 struct attribute *attr;
14471 unsigned int length;
14472
14473 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14474 if (attr)
14475 {
14476 length = DW_UNSND (attr);
14477 }
14478 else
14479 {
14480 /* Check for the DW_AT_byte_size attribute. */
14481 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14482 if (attr)
14483 {
14484 length = DW_UNSND (attr);
14485 }
14486 else
14487 {
14488 length = 1;
14489 }
14490 }
14491
14492 index_type = objfile_type (objfile)->builtin_int;
14493 range_type = create_static_range_type (NULL, index_type, 1, length);
14494 char_type = language_string_char_type (cu->language_defn, gdbarch);
14495 type = create_string_type (NULL, char_type, range_type);
14496
14497 return set_die_type (die, type, cu);
14498 }
14499
14500 /* Assuming that DIE corresponds to a function, returns nonzero
14501 if the function is prototyped. */
14502
14503 static int
14504 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14505 {
14506 struct attribute *attr;
14507
14508 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14509 if (attr && (DW_UNSND (attr) != 0))
14510 return 1;
14511
14512 /* The DWARF standard implies that the DW_AT_prototyped attribute
14513 is only meaninful for C, but the concept also extends to other
14514 languages that allow unprototyped functions (Eg: Objective C).
14515 For all other languages, assume that functions are always
14516 prototyped. */
14517 if (cu->language != language_c
14518 && cu->language != language_objc
14519 && cu->language != language_opencl)
14520 return 1;
14521
14522 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14523 prototyped and unprototyped functions; default to prototyped,
14524 since that is more common in modern code (and RealView warns
14525 about unprototyped functions). */
14526 if (producer_is_realview (cu->producer))
14527 return 1;
14528
14529 return 0;
14530 }
14531
14532 /* Handle DIES due to C code like:
14533
14534 struct foo
14535 {
14536 int (*funcp)(int a, long l);
14537 int b;
14538 };
14539
14540 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14541
14542 static struct type *
14543 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14544 {
14545 struct objfile *objfile = cu->objfile;
14546 struct type *type; /* Type that this function returns. */
14547 struct type *ftype; /* Function that returns above type. */
14548 struct attribute *attr;
14549
14550 type = die_type (die, cu);
14551
14552 /* The die_type call above may have already set the type for this DIE. */
14553 ftype = get_die_type (die, cu);
14554 if (ftype)
14555 return ftype;
14556
14557 ftype = lookup_function_type (type);
14558
14559 if (prototyped_function_p (die, cu))
14560 TYPE_PROTOTYPED (ftype) = 1;
14561
14562 /* Store the calling convention in the type if it's available in
14563 the subroutine die. Otherwise set the calling convention to
14564 the default value DW_CC_normal. */
14565 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14566 if (attr)
14567 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14568 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14569 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14570 else
14571 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14572
14573 /* Record whether the function returns normally to its caller or not
14574 if the DWARF producer set that information. */
14575 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14576 if (attr && (DW_UNSND (attr) != 0))
14577 TYPE_NO_RETURN (ftype) = 1;
14578
14579 /* We need to add the subroutine type to the die immediately so
14580 we don't infinitely recurse when dealing with parameters
14581 declared as the same subroutine type. */
14582 set_die_type (die, ftype, cu);
14583
14584 if (die->child != NULL)
14585 {
14586 struct type *void_type = objfile_type (objfile)->builtin_void;
14587 struct die_info *child_die;
14588 int nparams, iparams;
14589
14590 /* Count the number of parameters.
14591 FIXME: GDB currently ignores vararg functions, but knows about
14592 vararg member functions. */
14593 nparams = 0;
14594 child_die = die->child;
14595 while (child_die && child_die->tag)
14596 {
14597 if (child_die->tag == DW_TAG_formal_parameter)
14598 nparams++;
14599 else if (child_die->tag == DW_TAG_unspecified_parameters)
14600 TYPE_VARARGS (ftype) = 1;
14601 child_die = sibling_die (child_die);
14602 }
14603
14604 /* Allocate storage for parameters and fill them in. */
14605 TYPE_NFIELDS (ftype) = nparams;
14606 TYPE_FIELDS (ftype) = (struct field *)
14607 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14608
14609 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14610 even if we error out during the parameters reading below. */
14611 for (iparams = 0; iparams < nparams; iparams++)
14612 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14613
14614 iparams = 0;
14615 child_die = die->child;
14616 while (child_die && child_die->tag)
14617 {
14618 if (child_die->tag == DW_TAG_formal_parameter)
14619 {
14620 struct type *arg_type;
14621
14622 /* DWARF version 2 has no clean way to discern C++
14623 static and non-static member functions. G++ helps
14624 GDB by marking the first parameter for non-static
14625 member functions (which is the this pointer) as
14626 artificial. We pass this information to
14627 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14628
14629 DWARF version 3 added DW_AT_object_pointer, which GCC
14630 4.5 does not yet generate. */
14631 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14632 if (attr)
14633 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14634 else
14635 {
14636 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14637
14638 /* GCC/43521: In java, the formal parameter
14639 "this" is sometimes not marked with DW_AT_artificial. */
14640 if (cu->language == language_java)
14641 {
14642 const char *name = dwarf2_name (child_die, cu);
14643
14644 if (name && !strcmp (name, "this"))
14645 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14646 }
14647 }
14648 arg_type = die_type (child_die, cu);
14649
14650 /* RealView does not mark THIS as const, which the testsuite
14651 expects. GCC marks THIS as const in method definitions,
14652 but not in the class specifications (GCC PR 43053). */
14653 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14654 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14655 {
14656 int is_this = 0;
14657 struct dwarf2_cu *arg_cu = cu;
14658 const char *name = dwarf2_name (child_die, cu);
14659
14660 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14661 if (attr)
14662 {
14663 /* If the compiler emits this, use it. */
14664 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14665 is_this = 1;
14666 }
14667 else if (name && strcmp (name, "this") == 0)
14668 /* Function definitions will have the argument names. */
14669 is_this = 1;
14670 else if (name == NULL && iparams == 0)
14671 /* Declarations may not have the names, so like
14672 elsewhere in GDB, assume an artificial first
14673 argument is "this". */
14674 is_this = 1;
14675
14676 if (is_this)
14677 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14678 arg_type, 0);
14679 }
14680
14681 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14682 iparams++;
14683 }
14684 child_die = sibling_die (child_die);
14685 }
14686 }
14687
14688 return ftype;
14689 }
14690
14691 static struct type *
14692 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14693 {
14694 struct objfile *objfile = cu->objfile;
14695 const char *name = NULL;
14696 struct type *this_type, *target_type;
14697
14698 name = dwarf2_full_name (NULL, die, cu);
14699 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14700 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14701 TYPE_NAME (this_type) = name;
14702 set_die_type (die, this_type, cu);
14703 target_type = die_type (die, cu);
14704 if (target_type != this_type)
14705 TYPE_TARGET_TYPE (this_type) = target_type;
14706 else
14707 {
14708 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14709 spec and cause infinite loops in GDB. */
14710 complaint (&symfile_complaints,
14711 _("Self-referential DW_TAG_typedef "
14712 "- DIE at 0x%x [in module %s]"),
14713 die->offset.sect_off, objfile_name (objfile));
14714 TYPE_TARGET_TYPE (this_type) = NULL;
14715 }
14716 return this_type;
14717 }
14718
14719 /* Find a representation of a given base type and install
14720 it in the TYPE field of the die. */
14721
14722 static struct type *
14723 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14724 {
14725 struct objfile *objfile = cu->objfile;
14726 struct type *type;
14727 struct attribute *attr;
14728 int encoding = 0, size = 0;
14729 const char *name;
14730 enum type_code code = TYPE_CODE_INT;
14731 int type_flags = 0;
14732 struct type *target_type = NULL;
14733
14734 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14735 if (attr)
14736 {
14737 encoding = DW_UNSND (attr);
14738 }
14739 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14740 if (attr)
14741 {
14742 size = DW_UNSND (attr);
14743 }
14744 name = dwarf2_name (die, cu);
14745 if (!name)
14746 {
14747 complaint (&symfile_complaints,
14748 _("DW_AT_name missing from DW_TAG_base_type"));
14749 }
14750
14751 switch (encoding)
14752 {
14753 case DW_ATE_address:
14754 /* Turn DW_ATE_address into a void * pointer. */
14755 code = TYPE_CODE_PTR;
14756 type_flags |= TYPE_FLAG_UNSIGNED;
14757 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14758 break;
14759 case DW_ATE_boolean:
14760 code = TYPE_CODE_BOOL;
14761 type_flags |= TYPE_FLAG_UNSIGNED;
14762 break;
14763 case DW_ATE_complex_float:
14764 code = TYPE_CODE_COMPLEX;
14765 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14766 break;
14767 case DW_ATE_decimal_float:
14768 code = TYPE_CODE_DECFLOAT;
14769 break;
14770 case DW_ATE_float:
14771 code = TYPE_CODE_FLT;
14772 break;
14773 case DW_ATE_signed:
14774 break;
14775 case DW_ATE_unsigned:
14776 type_flags |= TYPE_FLAG_UNSIGNED;
14777 if (cu->language == language_fortran
14778 && name
14779 && startswith (name, "character("))
14780 code = TYPE_CODE_CHAR;
14781 break;
14782 case DW_ATE_signed_char:
14783 if (cu->language == language_ada || cu->language == language_m2
14784 || cu->language == language_pascal
14785 || cu->language == language_fortran)
14786 code = TYPE_CODE_CHAR;
14787 break;
14788 case DW_ATE_unsigned_char:
14789 if (cu->language == language_ada || cu->language == language_m2
14790 || cu->language == language_pascal
14791 || cu->language == language_fortran)
14792 code = TYPE_CODE_CHAR;
14793 type_flags |= TYPE_FLAG_UNSIGNED;
14794 break;
14795 case DW_ATE_UTF:
14796 /* We just treat this as an integer and then recognize the
14797 type by name elsewhere. */
14798 break;
14799
14800 default:
14801 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14802 dwarf_type_encoding_name (encoding));
14803 break;
14804 }
14805
14806 type = init_type (code, size, type_flags, NULL, objfile);
14807 TYPE_NAME (type) = name;
14808 TYPE_TARGET_TYPE (type) = target_type;
14809
14810 if (name && strcmp (name, "char") == 0)
14811 TYPE_NOSIGN (type) = 1;
14812
14813 return set_die_type (die, type, cu);
14814 }
14815
14816 /* Parse dwarf attribute if it's a block, reference or constant and put the
14817 resulting value of the attribute into struct bound_prop.
14818 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14819
14820 static int
14821 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14822 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14823 {
14824 struct dwarf2_property_baton *baton;
14825 struct obstack *obstack = &cu->objfile->objfile_obstack;
14826
14827 if (attr == NULL || prop == NULL)
14828 return 0;
14829
14830 if (attr_form_is_block (attr))
14831 {
14832 baton = obstack_alloc (obstack, sizeof (*baton));
14833 baton->referenced_type = NULL;
14834 baton->locexpr.per_cu = cu->per_cu;
14835 baton->locexpr.size = DW_BLOCK (attr)->size;
14836 baton->locexpr.data = DW_BLOCK (attr)->data;
14837 prop->data.baton = baton;
14838 prop->kind = PROP_LOCEXPR;
14839 gdb_assert (prop->data.baton != NULL);
14840 }
14841 else if (attr_form_is_ref (attr))
14842 {
14843 struct dwarf2_cu *target_cu = cu;
14844 struct die_info *target_die;
14845 struct attribute *target_attr;
14846
14847 target_die = follow_die_ref (die, attr, &target_cu);
14848 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14849 if (target_attr == NULL)
14850 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14851 target_cu);
14852 if (target_attr == NULL)
14853 return 0;
14854
14855 switch (target_attr->name)
14856 {
14857 case DW_AT_location:
14858 if (attr_form_is_section_offset (target_attr))
14859 {
14860 baton = obstack_alloc (obstack, sizeof (*baton));
14861 baton->referenced_type = die_type (target_die, target_cu);
14862 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14863 prop->data.baton = baton;
14864 prop->kind = PROP_LOCLIST;
14865 gdb_assert (prop->data.baton != NULL);
14866 }
14867 else if (attr_form_is_block (target_attr))
14868 {
14869 baton = obstack_alloc (obstack, sizeof (*baton));
14870 baton->referenced_type = die_type (target_die, target_cu);
14871 baton->locexpr.per_cu = cu->per_cu;
14872 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14873 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14874 prop->data.baton = baton;
14875 prop->kind = PROP_LOCEXPR;
14876 gdb_assert (prop->data.baton != NULL);
14877 }
14878 else
14879 {
14880 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14881 "dynamic property");
14882 return 0;
14883 }
14884 break;
14885 case DW_AT_data_member_location:
14886 {
14887 LONGEST offset;
14888
14889 if (!handle_data_member_location (target_die, target_cu,
14890 &offset))
14891 return 0;
14892
14893 baton = obstack_alloc (obstack, sizeof (*baton));
14894 baton->referenced_type = read_type_die (target_die->parent,
14895 target_cu);
14896 baton->offset_info.offset = offset;
14897 baton->offset_info.type = die_type (target_die, target_cu);
14898 prop->data.baton = baton;
14899 prop->kind = PROP_ADDR_OFFSET;
14900 break;
14901 }
14902 }
14903 }
14904 else if (attr_form_is_constant (attr))
14905 {
14906 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14907 prop->kind = PROP_CONST;
14908 }
14909 else
14910 {
14911 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14912 dwarf2_name (die, cu));
14913 return 0;
14914 }
14915
14916 return 1;
14917 }
14918
14919 /* Read the given DW_AT_subrange DIE. */
14920
14921 static struct type *
14922 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14923 {
14924 struct type *base_type, *orig_base_type;
14925 struct type *range_type;
14926 struct attribute *attr;
14927 struct dynamic_prop low, high;
14928 int low_default_is_valid;
14929 int high_bound_is_count = 0;
14930 const char *name;
14931 LONGEST negative_mask;
14932
14933 orig_base_type = die_type (die, cu);
14934 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14935 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14936 creating the range type, but we use the result of check_typedef
14937 when examining properties of the type. */
14938 base_type = check_typedef (orig_base_type);
14939
14940 /* The die_type call above may have already set the type for this DIE. */
14941 range_type = get_die_type (die, cu);
14942 if (range_type)
14943 return range_type;
14944
14945 low.kind = PROP_CONST;
14946 high.kind = PROP_CONST;
14947 high.data.const_val = 0;
14948
14949 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14950 omitting DW_AT_lower_bound. */
14951 switch (cu->language)
14952 {
14953 case language_c:
14954 case language_cplus:
14955 low.data.const_val = 0;
14956 low_default_is_valid = 1;
14957 break;
14958 case language_fortran:
14959 low.data.const_val = 1;
14960 low_default_is_valid = 1;
14961 break;
14962 case language_d:
14963 case language_java:
14964 case language_objc:
14965 low.data.const_val = 0;
14966 low_default_is_valid = (cu->header.version >= 4);
14967 break;
14968 case language_ada:
14969 case language_m2:
14970 case language_pascal:
14971 low.data.const_val = 1;
14972 low_default_is_valid = (cu->header.version >= 4);
14973 break;
14974 default:
14975 low.data.const_val = 0;
14976 low_default_is_valid = 0;
14977 break;
14978 }
14979
14980 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14981 if (attr)
14982 attr_to_dynamic_prop (attr, die, cu, &low);
14983 else if (!low_default_is_valid)
14984 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14985 "- DIE at 0x%x [in module %s]"),
14986 die->offset.sect_off, objfile_name (cu->objfile));
14987
14988 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14989 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14990 {
14991 attr = dwarf2_attr (die, DW_AT_count, cu);
14992 if (attr_to_dynamic_prop (attr, die, cu, &high))
14993 {
14994 /* If bounds are constant do the final calculation here. */
14995 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14996 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14997 else
14998 high_bound_is_count = 1;
14999 }
15000 }
15001
15002 /* Dwarf-2 specifications explicitly allows to create subrange types
15003 without specifying a base type.
15004 In that case, the base type must be set to the type of
15005 the lower bound, upper bound or count, in that order, if any of these
15006 three attributes references an object that has a type.
15007 If no base type is found, the Dwarf-2 specifications say that
15008 a signed integer type of size equal to the size of an address should
15009 be used.
15010 For the following C code: `extern char gdb_int [];'
15011 GCC produces an empty range DIE.
15012 FIXME: muller/2010-05-28: Possible references to object for low bound,
15013 high bound or count are not yet handled by this code. */
15014 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15015 {
15016 struct objfile *objfile = cu->objfile;
15017 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15018 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15019 struct type *int_type = objfile_type (objfile)->builtin_int;
15020
15021 /* Test "int", "long int", and "long long int" objfile types,
15022 and select the first one having a size above or equal to the
15023 architecture address size. */
15024 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15025 base_type = int_type;
15026 else
15027 {
15028 int_type = objfile_type (objfile)->builtin_long;
15029 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15030 base_type = int_type;
15031 else
15032 {
15033 int_type = objfile_type (objfile)->builtin_long_long;
15034 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15035 base_type = int_type;
15036 }
15037 }
15038 }
15039
15040 /* Normally, the DWARF producers are expected to use a signed
15041 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15042 But this is unfortunately not always the case, as witnessed
15043 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15044 is used instead. To work around that ambiguity, we treat
15045 the bounds as signed, and thus sign-extend their values, when
15046 the base type is signed. */
15047 negative_mask =
15048 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15049 if (low.kind == PROP_CONST
15050 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15051 low.data.const_val |= negative_mask;
15052 if (high.kind == PROP_CONST
15053 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15054 high.data.const_val |= negative_mask;
15055
15056 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15057
15058 if (high_bound_is_count)
15059 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15060
15061 /* Ada expects an empty array on no boundary attributes. */
15062 if (attr == NULL && cu->language != language_ada)
15063 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15064
15065 name = dwarf2_name (die, cu);
15066 if (name)
15067 TYPE_NAME (range_type) = name;
15068
15069 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15070 if (attr)
15071 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15072
15073 set_die_type (die, range_type, cu);
15074
15075 /* set_die_type should be already done. */
15076 set_descriptive_type (range_type, die, cu);
15077
15078 return range_type;
15079 }
15080
15081 static struct type *
15082 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15083 {
15084 struct type *type;
15085
15086 /* For now, we only support the C meaning of an unspecified type: void. */
15087
15088 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15089 TYPE_NAME (type) = dwarf2_name (die, cu);
15090
15091 return set_die_type (die, type, cu);
15092 }
15093
15094 /* Read a single die and all its descendents. Set the die's sibling
15095 field to NULL; set other fields in the die correctly, and set all
15096 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15097 location of the info_ptr after reading all of those dies. PARENT
15098 is the parent of the die in question. */
15099
15100 static struct die_info *
15101 read_die_and_children (const struct die_reader_specs *reader,
15102 const gdb_byte *info_ptr,
15103 const gdb_byte **new_info_ptr,
15104 struct die_info *parent)
15105 {
15106 struct die_info *die;
15107 const gdb_byte *cur_ptr;
15108 int has_children;
15109
15110 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15111 if (die == NULL)
15112 {
15113 *new_info_ptr = cur_ptr;
15114 return NULL;
15115 }
15116 store_in_ref_table (die, reader->cu);
15117
15118 if (has_children)
15119 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15120 else
15121 {
15122 die->child = NULL;
15123 *new_info_ptr = cur_ptr;
15124 }
15125
15126 die->sibling = NULL;
15127 die->parent = parent;
15128 return die;
15129 }
15130
15131 /* Read a die, all of its descendents, and all of its siblings; set
15132 all of the fields of all of the dies correctly. Arguments are as
15133 in read_die_and_children. */
15134
15135 static struct die_info *
15136 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15137 const gdb_byte *info_ptr,
15138 const gdb_byte **new_info_ptr,
15139 struct die_info *parent)
15140 {
15141 struct die_info *first_die, *last_sibling;
15142 const gdb_byte *cur_ptr;
15143
15144 cur_ptr = info_ptr;
15145 first_die = last_sibling = NULL;
15146
15147 while (1)
15148 {
15149 struct die_info *die
15150 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15151
15152 if (die == NULL)
15153 {
15154 *new_info_ptr = cur_ptr;
15155 return first_die;
15156 }
15157
15158 if (!first_die)
15159 first_die = die;
15160 else
15161 last_sibling->sibling = die;
15162
15163 last_sibling = die;
15164 }
15165 }
15166
15167 /* Read a die, all of its descendents, and all of its siblings; set
15168 all of the fields of all of the dies correctly. Arguments are as
15169 in read_die_and_children.
15170 This the main entry point for reading a DIE and all its children. */
15171
15172 static struct die_info *
15173 read_die_and_siblings (const struct die_reader_specs *reader,
15174 const gdb_byte *info_ptr,
15175 const gdb_byte **new_info_ptr,
15176 struct die_info *parent)
15177 {
15178 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15179 new_info_ptr, parent);
15180
15181 if (dwarf_die_debug)
15182 {
15183 fprintf_unfiltered (gdb_stdlog,
15184 "Read die from %s@0x%x of %s:\n",
15185 get_section_name (reader->die_section),
15186 (unsigned) (info_ptr - reader->die_section->buffer),
15187 bfd_get_filename (reader->abfd));
15188 dump_die (die, dwarf_die_debug);
15189 }
15190
15191 return die;
15192 }
15193
15194 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15195 attributes.
15196 The caller is responsible for filling in the extra attributes
15197 and updating (*DIEP)->num_attrs.
15198 Set DIEP to point to a newly allocated die with its information,
15199 except for its child, sibling, and parent fields.
15200 Set HAS_CHILDREN to tell whether the die has children or not. */
15201
15202 static const gdb_byte *
15203 read_full_die_1 (const struct die_reader_specs *reader,
15204 struct die_info **diep, const gdb_byte *info_ptr,
15205 int *has_children, int num_extra_attrs)
15206 {
15207 unsigned int abbrev_number, bytes_read, i;
15208 sect_offset offset;
15209 struct abbrev_info *abbrev;
15210 struct die_info *die;
15211 struct dwarf2_cu *cu = reader->cu;
15212 bfd *abfd = reader->abfd;
15213
15214 offset.sect_off = info_ptr - reader->buffer;
15215 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15216 info_ptr += bytes_read;
15217 if (!abbrev_number)
15218 {
15219 *diep = NULL;
15220 *has_children = 0;
15221 return info_ptr;
15222 }
15223
15224 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15225 if (!abbrev)
15226 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15227 abbrev_number,
15228 bfd_get_filename (abfd));
15229
15230 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15231 die->offset = offset;
15232 die->tag = abbrev->tag;
15233 die->abbrev = abbrev_number;
15234
15235 /* Make the result usable.
15236 The caller needs to update num_attrs after adding the extra
15237 attributes. */
15238 die->num_attrs = abbrev->num_attrs;
15239
15240 for (i = 0; i < abbrev->num_attrs; ++i)
15241 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15242 info_ptr);
15243
15244 *diep = die;
15245 *has_children = abbrev->has_children;
15246 return info_ptr;
15247 }
15248
15249 /* Read a die and all its attributes.
15250 Set DIEP to point to a newly allocated die with its information,
15251 except for its child, sibling, and parent fields.
15252 Set HAS_CHILDREN to tell whether the die has children or not. */
15253
15254 static const gdb_byte *
15255 read_full_die (const struct die_reader_specs *reader,
15256 struct die_info **diep, const gdb_byte *info_ptr,
15257 int *has_children)
15258 {
15259 const gdb_byte *result;
15260
15261 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15262
15263 if (dwarf_die_debug)
15264 {
15265 fprintf_unfiltered (gdb_stdlog,
15266 "Read die from %s@0x%x of %s:\n",
15267 get_section_name (reader->die_section),
15268 (unsigned) (info_ptr - reader->die_section->buffer),
15269 bfd_get_filename (reader->abfd));
15270 dump_die (*diep, dwarf_die_debug);
15271 }
15272
15273 return result;
15274 }
15275 \f
15276 /* Abbreviation tables.
15277
15278 In DWARF version 2, the description of the debugging information is
15279 stored in a separate .debug_abbrev section. Before we read any
15280 dies from a section we read in all abbreviations and install them
15281 in a hash table. */
15282
15283 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15284
15285 static struct abbrev_info *
15286 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15287 {
15288 struct abbrev_info *abbrev;
15289
15290 abbrev = (struct abbrev_info *)
15291 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15292 memset (abbrev, 0, sizeof (struct abbrev_info));
15293 return abbrev;
15294 }
15295
15296 /* Add an abbreviation to the table. */
15297
15298 static void
15299 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15300 unsigned int abbrev_number,
15301 struct abbrev_info *abbrev)
15302 {
15303 unsigned int hash_number;
15304
15305 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15306 abbrev->next = abbrev_table->abbrevs[hash_number];
15307 abbrev_table->abbrevs[hash_number] = abbrev;
15308 }
15309
15310 /* Look up an abbrev in the table.
15311 Returns NULL if the abbrev is not found. */
15312
15313 static struct abbrev_info *
15314 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15315 unsigned int abbrev_number)
15316 {
15317 unsigned int hash_number;
15318 struct abbrev_info *abbrev;
15319
15320 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15321 abbrev = abbrev_table->abbrevs[hash_number];
15322
15323 while (abbrev)
15324 {
15325 if (abbrev->number == abbrev_number)
15326 return abbrev;
15327 abbrev = abbrev->next;
15328 }
15329 return NULL;
15330 }
15331
15332 /* Read in an abbrev table. */
15333
15334 static struct abbrev_table *
15335 abbrev_table_read_table (struct dwarf2_section_info *section,
15336 sect_offset offset)
15337 {
15338 struct objfile *objfile = dwarf2_per_objfile->objfile;
15339 bfd *abfd = get_section_bfd_owner (section);
15340 struct abbrev_table *abbrev_table;
15341 const gdb_byte *abbrev_ptr;
15342 struct abbrev_info *cur_abbrev;
15343 unsigned int abbrev_number, bytes_read, abbrev_name;
15344 unsigned int abbrev_form;
15345 struct attr_abbrev *cur_attrs;
15346 unsigned int allocated_attrs;
15347
15348 abbrev_table = XNEW (struct abbrev_table);
15349 abbrev_table->offset = offset;
15350 obstack_init (&abbrev_table->abbrev_obstack);
15351 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15352 (ABBREV_HASH_SIZE
15353 * sizeof (struct abbrev_info *)));
15354 memset (abbrev_table->abbrevs, 0,
15355 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15356
15357 dwarf2_read_section (objfile, section);
15358 abbrev_ptr = section->buffer + offset.sect_off;
15359 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15360 abbrev_ptr += bytes_read;
15361
15362 allocated_attrs = ATTR_ALLOC_CHUNK;
15363 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15364
15365 /* Loop until we reach an abbrev number of 0. */
15366 while (abbrev_number)
15367 {
15368 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15369
15370 /* read in abbrev header */
15371 cur_abbrev->number = abbrev_number;
15372 cur_abbrev->tag
15373 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15374 abbrev_ptr += bytes_read;
15375 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15376 abbrev_ptr += 1;
15377
15378 /* now read in declarations */
15379 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15380 abbrev_ptr += bytes_read;
15381 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15382 abbrev_ptr += bytes_read;
15383 while (abbrev_name)
15384 {
15385 if (cur_abbrev->num_attrs == allocated_attrs)
15386 {
15387 allocated_attrs += ATTR_ALLOC_CHUNK;
15388 cur_attrs
15389 = xrealloc (cur_attrs, (allocated_attrs
15390 * sizeof (struct attr_abbrev)));
15391 }
15392
15393 cur_attrs[cur_abbrev->num_attrs].name
15394 = (enum dwarf_attribute) abbrev_name;
15395 cur_attrs[cur_abbrev->num_attrs++].form
15396 = (enum dwarf_form) abbrev_form;
15397 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15398 abbrev_ptr += bytes_read;
15399 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15400 abbrev_ptr += bytes_read;
15401 }
15402
15403 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15404 (cur_abbrev->num_attrs
15405 * sizeof (struct attr_abbrev)));
15406 memcpy (cur_abbrev->attrs, cur_attrs,
15407 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15408
15409 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15410
15411 /* Get next abbreviation.
15412 Under Irix6 the abbreviations for a compilation unit are not
15413 always properly terminated with an abbrev number of 0.
15414 Exit loop if we encounter an abbreviation which we have
15415 already read (which means we are about to read the abbreviations
15416 for the next compile unit) or if the end of the abbreviation
15417 table is reached. */
15418 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15419 break;
15420 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15421 abbrev_ptr += bytes_read;
15422 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15423 break;
15424 }
15425
15426 xfree (cur_attrs);
15427 return abbrev_table;
15428 }
15429
15430 /* Free the resources held by ABBREV_TABLE. */
15431
15432 static void
15433 abbrev_table_free (struct abbrev_table *abbrev_table)
15434 {
15435 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15436 xfree (abbrev_table);
15437 }
15438
15439 /* Same as abbrev_table_free but as a cleanup.
15440 We pass in a pointer to the pointer to the table so that we can
15441 set the pointer to NULL when we're done. It also simplifies
15442 build_type_psymtabs_1. */
15443
15444 static void
15445 abbrev_table_free_cleanup (void *table_ptr)
15446 {
15447 struct abbrev_table **abbrev_table_ptr = table_ptr;
15448
15449 if (*abbrev_table_ptr != NULL)
15450 abbrev_table_free (*abbrev_table_ptr);
15451 *abbrev_table_ptr = NULL;
15452 }
15453
15454 /* Read the abbrev table for CU from ABBREV_SECTION. */
15455
15456 static void
15457 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15458 struct dwarf2_section_info *abbrev_section)
15459 {
15460 cu->abbrev_table =
15461 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15462 }
15463
15464 /* Release the memory used by the abbrev table for a compilation unit. */
15465
15466 static void
15467 dwarf2_free_abbrev_table (void *ptr_to_cu)
15468 {
15469 struct dwarf2_cu *cu = ptr_to_cu;
15470
15471 if (cu->abbrev_table != NULL)
15472 abbrev_table_free (cu->abbrev_table);
15473 /* Set this to NULL so that we SEGV if we try to read it later,
15474 and also because free_comp_unit verifies this is NULL. */
15475 cu->abbrev_table = NULL;
15476 }
15477 \f
15478 /* Returns nonzero if TAG represents a type that we might generate a partial
15479 symbol for. */
15480
15481 static int
15482 is_type_tag_for_partial (int tag)
15483 {
15484 switch (tag)
15485 {
15486 #if 0
15487 /* Some types that would be reasonable to generate partial symbols for,
15488 that we don't at present. */
15489 case DW_TAG_array_type:
15490 case DW_TAG_file_type:
15491 case DW_TAG_ptr_to_member_type:
15492 case DW_TAG_set_type:
15493 case DW_TAG_string_type:
15494 case DW_TAG_subroutine_type:
15495 #endif
15496 case DW_TAG_base_type:
15497 case DW_TAG_class_type:
15498 case DW_TAG_interface_type:
15499 case DW_TAG_enumeration_type:
15500 case DW_TAG_structure_type:
15501 case DW_TAG_subrange_type:
15502 case DW_TAG_typedef:
15503 case DW_TAG_union_type:
15504 return 1;
15505 default:
15506 return 0;
15507 }
15508 }
15509
15510 /* Load all DIEs that are interesting for partial symbols into memory. */
15511
15512 static struct partial_die_info *
15513 load_partial_dies (const struct die_reader_specs *reader,
15514 const gdb_byte *info_ptr, int building_psymtab)
15515 {
15516 struct dwarf2_cu *cu = reader->cu;
15517 struct objfile *objfile = cu->objfile;
15518 struct partial_die_info *part_die;
15519 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15520 struct abbrev_info *abbrev;
15521 unsigned int bytes_read;
15522 unsigned int load_all = 0;
15523 int nesting_level = 1;
15524
15525 parent_die = NULL;
15526 last_die = NULL;
15527
15528 gdb_assert (cu->per_cu != NULL);
15529 if (cu->per_cu->load_all_dies)
15530 load_all = 1;
15531
15532 cu->partial_dies
15533 = htab_create_alloc_ex (cu->header.length / 12,
15534 partial_die_hash,
15535 partial_die_eq,
15536 NULL,
15537 &cu->comp_unit_obstack,
15538 hashtab_obstack_allocate,
15539 dummy_obstack_deallocate);
15540
15541 part_die = obstack_alloc (&cu->comp_unit_obstack,
15542 sizeof (struct partial_die_info));
15543
15544 while (1)
15545 {
15546 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15547
15548 /* A NULL abbrev means the end of a series of children. */
15549 if (abbrev == NULL)
15550 {
15551 if (--nesting_level == 0)
15552 {
15553 /* PART_DIE was probably the last thing allocated on the
15554 comp_unit_obstack, so we could call obstack_free
15555 here. We don't do that because the waste is small,
15556 and will be cleaned up when we're done with this
15557 compilation unit. This way, we're also more robust
15558 against other users of the comp_unit_obstack. */
15559 return first_die;
15560 }
15561 info_ptr += bytes_read;
15562 last_die = parent_die;
15563 parent_die = parent_die->die_parent;
15564 continue;
15565 }
15566
15567 /* Check for template arguments. We never save these; if
15568 they're seen, we just mark the parent, and go on our way. */
15569 if (parent_die != NULL
15570 && cu->language == language_cplus
15571 && (abbrev->tag == DW_TAG_template_type_param
15572 || abbrev->tag == DW_TAG_template_value_param))
15573 {
15574 parent_die->has_template_arguments = 1;
15575
15576 if (!load_all)
15577 {
15578 /* We don't need a partial DIE for the template argument. */
15579 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15580 continue;
15581 }
15582 }
15583
15584 /* We only recurse into c++ subprograms looking for template arguments.
15585 Skip their other children. */
15586 if (!load_all
15587 && cu->language == language_cplus
15588 && parent_die != NULL
15589 && parent_die->tag == DW_TAG_subprogram)
15590 {
15591 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15592 continue;
15593 }
15594
15595 /* Check whether this DIE is interesting enough to save. Normally
15596 we would not be interested in members here, but there may be
15597 later variables referencing them via DW_AT_specification (for
15598 static members). */
15599 if (!load_all
15600 && !is_type_tag_for_partial (abbrev->tag)
15601 && abbrev->tag != DW_TAG_constant
15602 && abbrev->tag != DW_TAG_enumerator
15603 && abbrev->tag != DW_TAG_subprogram
15604 && abbrev->tag != DW_TAG_lexical_block
15605 && abbrev->tag != DW_TAG_variable
15606 && abbrev->tag != DW_TAG_namespace
15607 && abbrev->tag != DW_TAG_module
15608 && abbrev->tag != DW_TAG_member
15609 && abbrev->tag != DW_TAG_imported_unit
15610 && abbrev->tag != DW_TAG_imported_declaration)
15611 {
15612 /* Otherwise we skip to the next sibling, if any. */
15613 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15614 continue;
15615 }
15616
15617 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15618 info_ptr);
15619
15620 /* This two-pass algorithm for processing partial symbols has a
15621 high cost in cache pressure. Thus, handle some simple cases
15622 here which cover the majority of C partial symbols. DIEs
15623 which neither have specification tags in them, nor could have
15624 specification tags elsewhere pointing at them, can simply be
15625 processed and discarded.
15626
15627 This segment is also optional; scan_partial_symbols and
15628 add_partial_symbol will handle these DIEs if we chain
15629 them in normally. When compilers which do not emit large
15630 quantities of duplicate debug information are more common,
15631 this code can probably be removed. */
15632
15633 /* Any complete simple types at the top level (pretty much all
15634 of them, for a language without namespaces), can be processed
15635 directly. */
15636 if (parent_die == NULL
15637 && part_die->has_specification == 0
15638 && part_die->is_declaration == 0
15639 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15640 || part_die->tag == DW_TAG_base_type
15641 || part_die->tag == DW_TAG_subrange_type))
15642 {
15643 if (building_psymtab && part_die->name != NULL)
15644 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15645 VAR_DOMAIN, LOC_TYPEDEF,
15646 &objfile->static_psymbols,
15647 0, (CORE_ADDR) 0, cu->language, objfile);
15648 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15649 continue;
15650 }
15651
15652 /* The exception for DW_TAG_typedef with has_children above is
15653 a workaround of GCC PR debug/47510. In the case of this complaint
15654 type_name_no_tag_or_error will error on such types later.
15655
15656 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15657 it could not find the child DIEs referenced later, this is checked
15658 above. In correct DWARF DW_TAG_typedef should have no children. */
15659
15660 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15661 complaint (&symfile_complaints,
15662 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15663 "- DIE at 0x%x [in module %s]"),
15664 part_die->offset.sect_off, objfile_name (objfile));
15665
15666 /* If we're at the second level, and we're an enumerator, and
15667 our parent has no specification (meaning possibly lives in a
15668 namespace elsewhere), then we can add the partial symbol now
15669 instead of queueing it. */
15670 if (part_die->tag == DW_TAG_enumerator
15671 && parent_die != NULL
15672 && parent_die->die_parent == NULL
15673 && parent_die->tag == DW_TAG_enumeration_type
15674 && parent_die->has_specification == 0)
15675 {
15676 if (part_die->name == NULL)
15677 complaint (&symfile_complaints,
15678 _("malformed enumerator DIE ignored"));
15679 else if (building_psymtab)
15680 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15681 VAR_DOMAIN, LOC_CONST,
15682 (cu->language == language_cplus
15683 || cu->language == language_java)
15684 ? &objfile->global_psymbols
15685 : &objfile->static_psymbols,
15686 0, (CORE_ADDR) 0, cu->language, objfile);
15687
15688 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15689 continue;
15690 }
15691
15692 /* We'll save this DIE so link it in. */
15693 part_die->die_parent = parent_die;
15694 part_die->die_sibling = NULL;
15695 part_die->die_child = NULL;
15696
15697 if (last_die && last_die == parent_die)
15698 last_die->die_child = part_die;
15699 else if (last_die)
15700 last_die->die_sibling = part_die;
15701
15702 last_die = part_die;
15703
15704 if (first_die == NULL)
15705 first_die = part_die;
15706
15707 /* Maybe add the DIE to the hash table. Not all DIEs that we
15708 find interesting need to be in the hash table, because we
15709 also have the parent/sibling/child chains; only those that we
15710 might refer to by offset later during partial symbol reading.
15711
15712 For now this means things that might have be the target of a
15713 DW_AT_specification, DW_AT_abstract_origin, or
15714 DW_AT_extension. DW_AT_extension will refer only to
15715 namespaces; DW_AT_abstract_origin refers to functions (and
15716 many things under the function DIE, but we do not recurse
15717 into function DIEs during partial symbol reading) and
15718 possibly variables as well; DW_AT_specification refers to
15719 declarations. Declarations ought to have the DW_AT_declaration
15720 flag. It happens that GCC forgets to put it in sometimes, but
15721 only for functions, not for types.
15722
15723 Adding more things than necessary to the hash table is harmless
15724 except for the performance cost. Adding too few will result in
15725 wasted time in find_partial_die, when we reread the compilation
15726 unit with load_all_dies set. */
15727
15728 if (load_all
15729 || abbrev->tag == DW_TAG_constant
15730 || abbrev->tag == DW_TAG_subprogram
15731 || abbrev->tag == DW_TAG_variable
15732 || abbrev->tag == DW_TAG_namespace
15733 || part_die->is_declaration)
15734 {
15735 void **slot;
15736
15737 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15738 part_die->offset.sect_off, INSERT);
15739 *slot = part_die;
15740 }
15741
15742 part_die = obstack_alloc (&cu->comp_unit_obstack,
15743 sizeof (struct partial_die_info));
15744
15745 /* For some DIEs we want to follow their children (if any). For C
15746 we have no reason to follow the children of structures; for other
15747 languages we have to, so that we can get at method physnames
15748 to infer fully qualified class names, for DW_AT_specification,
15749 and for C++ template arguments. For C++, we also look one level
15750 inside functions to find template arguments (if the name of the
15751 function does not already contain the template arguments).
15752
15753 For Ada, we need to scan the children of subprograms and lexical
15754 blocks as well because Ada allows the definition of nested
15755 entities that could be interesting for the debugger, such as
15756 nested subprograms for instance. */
15757 if (last_die->has_children
15758 && (load_all
15759 || last_die->tag == DW_TAG_namespace
15760 || last_die->tag == DW_TAG_module
15761 || last_die->tag == DW_TAG_enumeration_type
15762 || (cu->language == language_cplus
15763 && last_die->tag == DW_TAG_subprogram
15764 && (last_die->name == NULL
15765 || strchr (last_die->name, '<') == NULL))
15766 || (cu->language != language_c
15767 && (last_die->tag == DW_TAG_class_type
15768 || last_die->tag == DW_TAG_interface_type
15769 || last_die->tag == DW_TAG_structure_type
15770 || last_die->tag == DW_TAG_union_type))
15771 || (cu->language == language_ada
15772 && (last_die->tag == DW_TAG_subprogram
15773 || last_die->tag == DW_TAG_lexical_block))))
15774 {
15775 nesting_level++;
15776 parent_die = last_die;
15777 continue;
15778 }
15779
15780 /* Otherwise we skip to the next sibling, if any. */
15781 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15782
15783 /* Back to the top, do it again. */
15784 }
15785 }
15786
15787 /* Read a minimal amount of information into the minimal die structure. */
15788
15789 static const gdb_byte *
15790 read_partial_die (const struct die_reader_specs *reader,
15791 struct partial_die_info *part_die,
15792 struct abbrev_info *abbrev, unsigned int abbrev_len,
15793 const gdb_byte *info_ptr)
15794 {
15795 struct dwarf2_cu *cu = reader->cu;
15796 struct objfile *objfile = cu->objfile;
15797 const gdb_byte *buffer = reader->buffer;
15798 unsigned int i;
15799 struct attribute attr;
15800 int has_low_pc_attr = 0;
15801 int has_high_pc_attr = 0;
15802 int high_pc_relative = 0;
15803
15804 memset (part_die, 0, sizeof (struct partial_die_info));
15805
15806 part_die->offset.sect_off = info_ptr - buffer;
15807
15808 info_ptr += abbrev_len;
15809
15810 if (abbrev == NULL)
15811 return info_ptr;
15812
15813 part_die->tag = abbrev->tag;
15814 part_die->has_children = abbrev->has_children;
15815
15816 for (i = 0; i < abbrev->num_attrs; ++i)
15817 {
15818 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15819
15820 /* Store the data if it is of an attribute we want to keep in a
15821 partial symbol table. */
15822 switch (attr.name)
15823 {
15824 case DW_AT_name:
15825 switch (part_die->tag)
15826 {
15827 case DW_TAG_compile_unit:
15828 case DW_TAG_partial_unit:
15829 case DW_TAG_type_unit:
15830 /* Compilation units have a DW_AT_name that is a filename, not
15831 a source language identifier. */
15832 case DW_TAG_enumeration_type:
15833 case DW_TAG_enumerator:
15834 /* These tags always have simple identifiers already; no need
15835 to canonicalize them. */
15836 part_die->name = DW_STRING (&attr);
15837 break;
15838 default:
15839 part_die->name
15840 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15841 &objfile->per_bfd->storage_obstack);
15842 break;
15843 }
15844 break;
15845 case DW_AT_linkage_name:
15846 case DW_AT_MIPS_linkage_name:
15847 /* Note that both forms of linkage name might appear. We
15848 assume they will be the same, and we only store the last
15849 one we see. */
15850 if (cu->language == language_ada)
15851 part_die->name = DW_STRING (&attr);
15852 part_die->linkage_name = DW_STRING (&attr);
15853 break;
15854 case DW_AT_low_pc:
15855 has_low_pc_attr = 1;
15856 part_die->lowpc = attr_value_as_address (&attr);
15857 break;
15858 case DW_AT_high_pc:
15859 has_high_pc_attr = 1;
15860 part_die->highpc = attr_value_as_address (&attr);
15861 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15862 high_pc_relative = 1;
15863 break;
15864 case DW_AT_location:
15865 /* Support the .debug_loc offsets. */
15866 if (attr_form_is_block (&attr))
15867 {
15868 part_die->d.locdesc = DW_BLOCK (&attr);
15869 }
15870 else if (attr_form_is_section_offset (&attr))
15871 {
15872 dwarf2_complex_location_expr_complaint ();
15873 }
15874 else
15875 {
15876 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15877 "partial symbol information");
15878 }
15879 break;
15880 case DW_AT_external:
15881 part_die->is_external = DW_UNSND (&attr);
15882 break;
15883 case DW_AT_declaration:
15884 part_die->is_declaration = DW_UNSND (&attr);
15885 break;
15886 case DW_AT_type:
15887 part_die->has_type = 1;
15888 break;
15889 case DW_AT_abstract_origin:
15890 case DW_AT_specification:
15891 case DW_AT_extension:
15892 part_die->has_specification = 1;
15893 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15894 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15895 || cu->per_cu->is_dwz);
15896 break;
15897 case DW_AT_sibling:
15898 /* Ignore absolute siblings, they might point outside of
15899 the current compile unit. */
15900 if (attr.form == DW_FORM_ref_addr)
15901 complaint (&symfile_complaints,
15902 _("ignoring absolute DW_AT_sibling"));
15903 else
15904 {
15905 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15906 const gdb_byte *sibling_ptr = buffer + off;
15907
15908 if (sibling_ptr < info_ptr)
15909 complaint (&symfile_complaints,
15910 _("DW_AT_sibling points backwards"));
15911 else if (sibling_ptr > reader->buffer_end)
15912 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15913 else
15914 part_die->sibling = sibling_ptr;
15915 }
15916 break;
15917 case DW_AT_byte_size:
15918 part_die->has_byte_size = 1;
15919 break;
15920 case DW_AT_const_value:
15921 part_die->has_const_value = 1;
15922 break;
15923 case DW_AT_calling_convention:
15924 /* DWARF doesn't provide a way to identify a program's source-level
15925 entry point. DW_AT_calling_convention attributes are only meant
15926 to describe functions' calling conventions.
15927
15928 However, because it's a necessary piece of information in
15929 Fortran, and because DW_CC_program is the only piece of debugging
15930 information whose definition refers to a 'main program' at all,
15931 several compilers have begun marking Fortran main programs with
15932 DW_CC_program --- even when those functions use the standard
15933 calling conventions.
15934
15935 So until DWARF specifies a way to provide this information and
15936 compilers pick up the new representation, we'll support this
15937 practice. */
15938 if (DW_UNSND (&attr) == DW_CC_program
15939 && cu->language == language_fortran)
15940 set_objfile_main_name (objfile, part_die->name, language_fortran);
15941 break;
15942 case DW_AT_inline:
15943 if (DW_UNSND (&attr) == DW_INL_inlined
15944 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15945 part_die->may_be_inlined = 1;
15946 break;
15947
15948 case DW_AT_import:
15949 if (part_die->tag == DW_TAG_imported_unit)
15950 {
15951 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15952 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15953 || cu->per_cu->is_dwz);
15954 }
15955 break;
15956
15957 default:
15958 break;
15959 }
15960 }
15961
15962 if (high_pc_relative)
15963 part_die->highpc += part_die->lowpc;
15964
15965 if (has_low_pc_attr && has_high_pc_attr)
15966 {
15967 /* When using the GNU linker, .gnu.linkonce. sections are used to
15968 eliminate duplicate copies of functions and vtables and such.
15969 The linker will arbitrarily choose one and discard the others.
15970 The AT_*_pc values for such functions refer to local labels in
15971 these sections. If the section from that file was discarded, the
15972 labels are not in the output, so the relocs get a value of 0.
15973 If this is a discarded function, mark the pc bounds as invalid,
15974 so that GDB will ignore it. */
15975 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15976 {
15977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15978
15979 complaint (&symfile_complaints,
15980 _("DW_AT_low_pc %s is zero "
15981 "for DIE at 0x%x [in module %s]"),
15982 paddress (gdbarch, part_die->lowpc),
15983 part_die->offset.sect_off, objfile_name (objfile));
15984 }
15985 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15986 else if (part_die->lowpc >= part_die->highpc)
15987 {
15988 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15989
15990 complaint (&symfile_complaints,
15991 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15992 "for DIE at 0x%x [in module %s]"),
15993 paddress (gdbarch, part_die->lowpc),
15994 paddress (gdbarch, part_die->highpc),
15995 part_die->offset.sect_off, objfile_name (objfile));
15996 }
15997 else
15998 part_die->has_pc_info = 1;
15999 }
16000
16001 return info_ptr;
16002 }
16003
16004 /* Find a cached partial DIE at OFFSET in CU. */
16005
16006 static struct partial_die_info *
16007 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16008 {
16009 struct partial_die_info *lookup_die = NULL;
16010 struct partial_die_info part_die;
16011
16012 part_die.offset = offset;
16013 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
16014 offset.sect_off);
16015
16016 return lookup_die;
16017 }
16018
16019 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16020 except in the case of .debug_types DIEs which do not reference
16021 outside their CU (they do however referencing other types via
16022 DW_FORM_ref_sig8). */
16023
16024 static struct partial_die_info *
16025 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16026 {
16027 struct objfile *objfile = cu->objfile;
16028 struct dwarf2_per_cu_data *per_cu = NULL;
16029 struct partial_die_info *pd = NULL;
16030
16031 if (offset_in_dwz == cu->per_cu->is_dwz
16032 && offset_in_cu_p (&cu->header, offset))
16033 {
16034 pd = find_partial_die_in_comp_unit (offset, cu);
16035 if (pd != NULL)
16036 return pd;
16037 /* We missed recording what we needed.
16038 Load all dies and try again. */
16039 per_cu = cu->per_cu;
16040 }
16041 else
16042 {
16043 /* TUs don't reference other CUs/TUs (except via type signatures). */
16044 if (cu->per_cu->is_debug_types)
16045 {
16046 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16047 " external reference to offset 0x%lx [in module %s].\n"),
16048 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16049 bfd_get_filename (objfile->obfd));
16050 }
16051 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16052 objfile);
16053
16054 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16055 load_partial_comp_unit (per_cu);
16056
16057 per_cu->cu->last_used = 0;
16058 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16059 }
16060
16061 /* If we didn't find it, and not all dies have been loaded,
16062 load them all and try again. */
16063
16064 if (pd == NULL && per_cu->load_all_dies == 0)
16065 {
16066 per_cu->load_all_dies = 1;
16067
16068 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16069 THIS_CU->cu may already be in use. So we can't just free it and
16070 replace its DIEs with the ones we read in. Instead, we leave those
16071 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16072 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16073 set. */
16074 load_partial_comp_unit (per_cu);
16075
16076 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16077 }
16078
16079 if (pd == NULL)
16080 internal_error (__FILE__, __LINE__,
16081 _("could not find partial DIE 0x%x "
16082 "in cache [from module %s]\n"),
16083 offset.sect_off, bfd_get_filename (objfile->obfd));
16084 return pd;
16085 }
16086
16087 /* See if we can figure out if the class lives in a namespace. We do
16088 this by looking for a member function; its demangled name will
16089 contain namespace info, if there is any. */
16090
16091 static void
16092 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16093 struct dwarf2_cu *cu)
16094 {
16095 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16096 what template types look like, because the demangler
16097 frequently doesn't give the same name as the debug info. We
16098 could fix this by only using the demangled name to get the
16099 prefix (but see comment in read_structure_type). */
16100
16101 struct partial_die_info *real_pdi;
16102 struct partial_die_info *child_pdi;
16103
16104 /* If this DIE (this DIE's specification, if any) has a parent, then
16105 we should not do this. We'll prepend the parent's fully qualified
16106 name when we create the partial symbol. */
16107
16108 real_pdi = struct_pdi;
16109 while (real_pdi->has_specification)
16110 real_pdi = find_partial_die (real_pdi->spec_offset,
16111 real_pdi->spec_is_dwz, cu);
16112
16113 if (real_pdi->die_parent != NULL)
16114 return;
16115
16116 for (child_pdi = struct_pdi->die_child;
16117 child_pdi != NULL;
16118 child_pdi = child_pdi->die_sibling)
16119 {
16120 if (child_pdi->tag == DW_TAG_subprogram
16121 && child_pdi->linkage_name != NULL)
16122 {
16123 char *actual_class_name
16124 = language_class_name_from_physname (cu->language_defn,
16125 child_pdi->linkage_name);
16126 if (actual_class_name != NULL)
16127 {
16128 struct_pdi->name
16129 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16130 actual_class_name,
16131 strlen (actual_class_name));
16132 xfree (actual_class_name);
16133 }
16134 break;
16135 }
16136 }
16137 }
16138
16139 /* Adjust PART_DIE before generating a symbol for it. This function
16140 may set the is_external flag or change the DIE's name. */
16141
16142 static void
16143 fixup_partial_die (struct partial_die_info *part_die,
16144 struct dwarf2_cu *cu)
16145 {
16146 /* Once we've fixed up a die, there's no point in doing so again.
16147 This also avoids a memory leak if we were to call
16148 guess_partial_die_structure_name multiple times. */
16149 if (part_die->fixup_called)
16150 return;
16151
16152 /* If we found a reference attribute and the DIE has no name, try
16153 to find a name in the referred to DIE. */
16154
16155 if (part_die->name == NULL && part_die->has_specification)
16156 {
16157 struct partial_die_info *spec_die;
16158
16159 spec_die = find_partial_die (part_die->spec_offset,
16160 part_die->spec_is_dwz, cu);
16161
16162 fixup_partial_die (spec_die, cu);
16163
16164 if (spec_die->name)
16165 {
16166 part_die->name = spec_die->name;
16167
16168 /* Copy DW_AT_external attribute if it is set. */
16169 if (spec_die->is_external)
16170 part_die->is_external = spec_die->is_external;
16171 }
16172 }
16173
16174 /* Set default names for some unnamed DIEs. */
16175
16176 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16177 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16178
16179 /* If there is no parent die to provide a namespace, and there are
16180 children, see if we can determine the namespace from their linkage
16181 name. */
16182 if (cu->language == language_cplus
16183 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16184 && part_die->die_parent == NULL
16185 && part_die->has_children
16186 && (part_die->tag == DW_TAG_class_type
16187 || part_die->tag == DW_TAG_structure_type
16188 || part_die->tag == DW_TAG_union_type))
16189 guess_partial_die_structure_name (part_die, cu);
16190
16191 /* GCC might emit a nameless struct or union that has a linkage
16192 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16193 if (part_die->name == NULL
16194 && (part_die->tag == DW_TAG_class_type
16195 || part_die->tag == DW_TAG_interface_type
16196 || part_die->tag == DW_TAG_structure_type
16197 || part_die->tag == DW_TAG_union_type)
16198 && part_die->linkage_name != NULL)
16199 {
16200 char *demangled;
16201
16202 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16203 if (demangled)
16204 {
16205 const char *base;
16206
16207 /* Strip any leading namespaces/classes, keep only the base name.
16208 DW_AT_name for named DIEs does not contain the prefixes. */
16209 base = strrchr (demangled, ':');
16210 if (base && base > demangled && base[-1] == ':')
16211 base++;
16212 else
16213 base = demangled;
16214
16215 part_die->name
16216 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16217 base, strlen (base));
16218 xfree (demangled);
16219 }
16220 }
16221
16222 part_die->fixup_called = 1;
16223 }
16224
16225 /* Read an attribute value described by an attribute form. */
16226
16227 static const gdb_byte *
16228 read_attribute_value (const struct die_reader_specs *reader,
16229 struct attribute *attr, unsigned form,
16230 const gdb_byte *info_ptr)
16231 {
16232 struct dwarf2_cu *cu = reader->cu;
16233 struct objfile *objfile = cu->objfile;
16234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16235 bfd *abfd = reader->abfd;
16236 struct comp_unit_head *cu_header = &cu->header;
16237 unsigned int bytes_read;
16238 struct dwarf_block *blk;
16239
16240 attr->form = (enum dwarf_form) form;
16241 switch (form)
16242 {
16243 case DW_FORM_ref_addr:
16244 if (cu->header.version == 2)
16245 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16246 else
16247 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16248 &cu->header, &bytes_read);
16249 info_ptr += bytes_read;
16250 break;
16251 case DW_FORM_GNU_ref_alt:
16252 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16253 info_ptr += bytes_read;
16254 break;
16255 case DW_FORM_addr:
16256 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16257 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16258 info_ptr += bytes_read;
16259 break;
16260 case DW_FORM_block2:
16261 blk = dwarf_alloc_block (cu);
16262 blk->size = read_2_bytes (abfd, info_ptr);
16263 info_ptr += 2;
16264 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16265 info_ptr += blk->size;
16266 DW_BLOCK (attr) = blk;
16267 break;
16268 case DW_FORM_block4:
16269 blk = dwarf_alloc_block (cu);
16270 blk->size = read_4_bytes (abfd, info_ptr);
16271 info_ptr += 4;
16272 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16273 info_ptr += blk->size;
16274 DW_BLOCK (attr) = blk;
16275 break;
16276 case DW_FORM_data2:
16277 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16278 info_ptr += 2;
16279 break;
16280 case DW_FORM_data4:
16281 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16282 info_ptr += 4;
16283 break;
16284 case DW_FORM_data8:
16285 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16286 info_ptr += 8;
16287 break;
16288 case DW_FORM_sec_offset:
16289 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16290 info_ptr += bytes_read;
16291 break;
16292 case DW_FORM_string:
16293 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16294 DW_STRING_IS_CANONICAL (attr) = 0;
16295 info_ptr += bytes_read;
16296 break;
16297 case DW_FORM_strp:
16298 if (!cu->per_cu->is_dwz)
16299 {
16300 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16301 &bytes_read);
16302 DW_STRING_IS_CANONICAL (attr) = 0;
16303 info_ptr += bytes_read;
16304 break;
16305 }
16306 /* FALLTHROUGH */
16307 case DW_FORM_GNU_strp_alt:
16308 {
16309 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16310 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16311 &bytes_read);
16312
16313 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16314 DW_STRING_IS_CANONICAL (attr) = 0;
16315 info_ptr += bytes_read;
16316 }
16317 break;
16318 case DW_FORM_exprloc:
16319 case DW_FORM_block:
16320 blk = dwarf_alloc_block (cu);
16321 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16322 info_ptr += bytes_read;
16323 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16324 info_ptr += blk->size;
16325 DW_BLOCK (attr) = blk;
16326 break;
16327 case DW_FORM_block1:
16328 blk = dwarf_alloc_block (cu);
16329 blk->size = read_1_byte (abfd, info_ptr);
16330 info_ptr += 1;
16331 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16332 info_ptr += blk->size;
16333 DW_BLOCK (attr) = blk;
16334 break;
16335 case DW_FORM_data1:
16336 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16337 info_ptr += 1;
16338 break;
16339 case DW_FORM_flag:
16340 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16341 info_ptr += 1;
16342 break;
16343 case DW_FORM_flag_present:
16344 DW_UNSND (attr) = 1;
16345 break;
16346 case DW_FORM_sdata:
16347 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16348 info_ptr += bytes_read;
16349 break;
16350 case DW_FORM_udata:
16351 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16352 info_ptr += bytes_read;
16353 break;
16354 case DW_FORM_ref1:
16355 DW_UNSND (attr) = (cu->header.offset.sect_off
16356 + read_1_byte (abfd, info_ptr));
16357 info_ptr += 1;
16358 break;
16359 case DW_FORM_ref2:
16360 DW_UNSND (attr) = (cu->header.offset.sect_off
16361 + read_2_bytes (abfd, info_ptr));
16362 info_ptr += 2;
16363 break;
16364 case DW_FORM_ref4:
16365 DW_UNSND (attr) = (cu->header.offset.sect_off
16366 + read_4_bytes (abfd, info_ptr));
16367 info_ptr += 4;
16368 break;
16369 case DW_FORM_ref8:
16370 DW_UNSND (attr) = (cu->header.offset.sect_off
16371 + read_8_bytes (abfd, info_ptr));
16372 info_ptr += 8;
16373 break;
16374 case DW_FORM_ref_sig8:
16375 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16376 info_ptr += 8;
16377 break;
16378 case DW_FORM_ref_udata:
16379 DW_UNSND (attr) = (cu->header.offset.sect_off
16380 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16381 info_ptr += bytes_read;
16382 break;
16383 case DW_FORM_indirect:
16384 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16385 info_ptr += bytes_read;
16386 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16387 break;
16388 case DW_FORM_GNU_addr_index:
16389 if (reader->dwo_file == NULL)
16390 {
16391 /* For now flag a hard error.
16392 Later we can turn this into a complaint. */
16393 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16394 dwarf_form_name (form),
16395 bfd_get_filename (abfd));
16396 }
16397 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16398 info_ptr += bytes_read;
16399 break;
16400 case DW_FORM_GNU_str_index:
16401 if (reader->dwo_file == NULL)
16402 {
16403 /* For now flag a hard error.
16404 Later we can turn this into a complaint if warranted. */
16405 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16406 dwarf_form_name (form),
16407 bfd_get_filename (abfd));
16408 }
16409 {
16410 ULONGEST str_index =
16411 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16412
16413 DW_STRING (attr) = read_str_index (reader, str_index);
16414 DW_STRING_IS_CANONICAL (attr) = 0;
16415 info_ptr += bytes_read;
16416 }
16417 break;
16418 default:
16419 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16420 dwarf_form_name (form),
16421 bfd_get_filename (abfd));
16422 }
16423
16424 /* Super hack. */
16425 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16426 attr->form = DW_FORM_GNU_ref_alt;
16427
16428 /* We have seen instances where the compiler tried to emit a byte
16429 size attribute of -1 which ended up being encoded as an unsigned
16430 0xffffffff. Although 0xffffffff is technically a valid size value,
16431 an object of this size seems pretty unlikely so we can relatively
16432 safely treat these cases as if the size attribute was invalid and
16433 treat them as zero by default. */
16434 if (attr->name == DW_AT_byte_size
16435 && form == DW_FORM_data4
16436 && DW_UNSND (attr) >= 0xffffffff)
16437 {
16438 complaint
16439 (&symfile_complaints,
16440 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16441 hex_string (DW_UNSND (attr)));
16442 DW_UNSND (attr) = 0;
16443 }
16444
16445 return info_ptr;
16446 }
16447
16448 /* Read an attribute described by an abbreviated attribute. */
16449
16450 static const gdb_byte *
16451 read_attribute (const struct die_reader_specs *reader,
16452 struct attribute *attr, struct attr_abbrev *abbrev,
16453 const gdb_byte *info_ptr)
16454 {
16455 attr->name = abbrev->name;
16456 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16457 }
16458
16459 /* Read dwarf information from a buffer. */
16460
16461 static unsigned int
16462 read_1_byte (bfd *abfd, const gdb_byte *buf)
16463 {
16464 return bfd_get_8 (abfd, buf);
16465 }
16466
16467 static int
16468 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16469 {
16470 return bfd_get_signed_8 (abfd, buf);
16471 }
16472
16473 static unsigned int
16474 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16475 {
16476 return bfd_get_16 (abfd, buf);
16477 }
16478
16479 static int
16480 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16481 {
16482 return bfd_get_signed_16 (abfd, buf);
16483 }
16484
16485 static unsigned int
16486 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16487 {
16488 return bfd_get_32 (abfd, buf);
16489 }
16490
16491 static int
16492 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16493 {
16494 return bfd_get_signed_32 (abfd, buf);
16495 }
16496
16497 static ULONGEST
16498 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16499 {
16500 return bfd_get_64 (abfd, buf);
16501 }
16502
16503 static CORE_ADDR
16504 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16505 unsigned int *bytes_read)
16506 {
16507 struct comp_unit_head *cu_header = &cu->header;
16508 CORE_ADDR retval = 0;
16509
16510 if (cu_header->signed_addr_p)
16511 {
16512 switch (cu_header->addr_size)
16513 {
16514 case 2:
16515 retval = bfd_get_signed_16 (abfd, buf);
16516 break;
16517 case 4:
16518 retval = bfd_get_signed_32 (abfd, buf);
16519 break;
16520 case 8:
16521 retval = bfd_get_signed_64 (abfd, buf);
16522 break;
16523 default:
16524 internal_error (__FILE__, __LINE__,
16525 _("read_address: bad switch, signed [in module %s]"),
16526 bfd_get_filename (abfd));
16527 }
16528 }
16529 else
16530 {
16531 switch (cu_header->addr_size)
16532 {
16533 case 2:
16534 retval = bfd_get_16 (abfd, buf);
16535 break;
16536 case 4:
16537 retval = bfd_get_32 (abfd, buf);
16538 break;
16539 case 8:
16540 retval = bfd_get_64 (abfd, buf);
16541 break;
16542 default:
16543 internal_error (__FILE__, __LINE__,
16544 _("read_address: bad switch, "
16545 "unsigned [in module %s]"),
16546 bfd_get_filename (abfd));
16547 }
16548 }
16549
16550 *bytes_read = cu_header->addr_size;
16551 return retval;
16552 }
16553
16554 /* Read the initial length from a section. The (draft) DWARF 3
16555 specification allows the initial length to take up either 4 bytes
16556 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16557 bytes describe the length and all offsets will be 8 bytes in length
16558 instead of 4.
16559
16560 An older, non-standard 64-bit format is also handled by this
16561 function. The older format in question stores the initial length
16562 as an 8-byte quantity without an escape value. Lengths greater
16563 than 2^32 aren't very common which means that the initial 4 bytes
16564 is almost always zero. Since a length value of zero doesn't make
16565 sense for the 32-bit format, this initial zero can be considered to
16566 be an escape value which indicates the presence of the older 64-bit
16567 format. As written, the code can't detect (old format) lengths
16568 greater than 4GB. If it becomes necessary to handle lengths
16569 somewhat larger than 4GB, we could allow other small values (such
16570 as the non-sensical values of 1, 2, and 3) to also be used as
16571 escape values indicating the presence of the old format.
16572
16573 The value returned via bytes_read should be used to increment the
16574 relevant pointer after calling read_initial_length().
16575
16576 [ Note: read_initial_length() and read_offset() are based on the
16577 document entitled "DWARF Debugging Information Format", revision
16578 3, draft 8, dated November 19, 2001. This document was obtained
16579 from:
16580
16581 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16582
16583 This document is only a draft and is subject to change. (So beware.)
16584
16585 Details regarding the older, non-standard 64-bit format were
16586 determined empirically by examining 64-bit ELF files produced by
16587 the SGI toolchain on an IRIX 6.5 machine.
16588
16589 - Kevin, July 16, 2002
16590 ] */
16591
16592 static LONGEST
16593 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16594 {
16595 LONGEST length = bfd_get_32 (abfd, buf);
16596
16597 if (length == 0xffffffff)
16598 {
16599 length = bfd_get_64 (abfd, buf + 4);
16600 *bytes_read = 12;
16601 }
16602 else if (length == 0)
16603 {
16604 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16605 length = bfd_get_64 (abfd, buf);
16606 *bytes_read = 8;
16607 }
16608 else
16609 {
16610 *bytes_read = 4;
16611 }
16612
16613 return length;
16614 }
16615
16616 /* Cover function for read_initial_length.
16617 Returns the length of the object at BUF, and stores the size of the
16618 initial length in *BYTES_READ and stores the size that offsets will be in
16619 *OFFSET_SIZE.
16620 If the initial length size is not equivalent to that specified in
16621 CU_HEADER then issue a complaint.
16622 This is useful when reading non-comp-unit headers. */
16623
16624 static LONGEST
16625 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16626 const struct comp_unit_head *cu_header,
16627 unsigned int *bytes_read,
16628 unsigned int *offset_size)
16629 {
16630 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16631
16632 gdb_assert (cu_header->initial_length_size == 4
16633 || cu_header->initial_length_size == 8
16634 || cu_header->initial_length_size == 12);
16635
16636 if (cu_header->initial_length_size != *bytes_read)
16637 complaint (&symfile_complaints,
16638 _("intermixed 32-bit and 64-bit DWARF sections"));
16639
16640 *offset_size = (*bytes_read == 4) ? 4 : 8;
16641 return length;
16642 }
16643
16644 /* Read an offset from the data stream. The size of the offset is
16645 given by cu_header->offset_size. */
16646
16647 static LONGEST
16648 read_offset (bfd *abfd, const gdb_byte *buf,
16649 const struct comp_unit_head *cu_header,
16650 unsigned int *bytes_read)
16651 {
16652 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16653
16654 *bytes_read = cu_header->offset_size;
16655 return offset;
16656 }
16657
16658 /* Read an offset from the data stream. */
16659
16660 static LONGEST
16661 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16662 {
16663 LONGEST retval = 0;
16664
16665 switch (offset_size)
16666 {
16667 case 4:
16668 retval = bfd_get_32 (abfd, buf);
16669 break;
16670 case 8:
16671 retval = bfd_get_64 (abfd, buf);
16672 break;
16673 default:
16674 internal_error (__FILE__, __LINE__,
16675 _("read_offset_1: bad switch [in module %s]"),
16676 bfd_get_filename (abfd));
16677 }
16678
16679 return retval;
16680 }
16681
16682 static const gdb_byte *
16683 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16684 {
16685 /* If the size of a host char is 8 bits, we can return a pointer
16686 to the buffer, otherwise we have to copy the data to a buffer
16687 allocated on the temporary obstack. */
16688 gdb_assert (HOST_CHAR_BIT == 8);
16689 return buf;
16690 }
16691
16692 static const char *
16693 read_direct_string (bfd *abfd, const gdb_byte *buf,
16694 unsigned int *bytes_read_ptr)
16695 {
16696 /* If the size of a host char is 8 bits, we can return a pointer
16697 to the string, otherwise we have to copy the string to a buffer
16698 allocated on the temporary obstack. */
16699 gdb_assert (HOST_CHAR_BIT == 8);
16700 if (*buf == '\0')
16701 {
16702 *bytes_read_ptr = 1;
16703 return NULL;
16704 }
16705 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16706 return (const char *) buf;
16707 }
16708
16709 static const char *
16710 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16711 {
16712 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16713 if (dwarf2_per_objfile->str.buffer == NULL)
16714 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16715 bfd_get_filename (abfd));
16716 if (str_offset >= dwarf2_per_objfile->str.size)
16717 error (_("DW_FORM_strp pointing outside of "
16718 ".debug_str section [in module %s]"),
16719 bfd_get_filename (abfd));
16720 gdb_assert (HOST_CHAR_BIT == 8);
16721 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16722 return NULL;
16723 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16724 }
16725
16726 /* Read a string at offset STR_OFFSET in the .debug_str section from
16727 the .dwz file DWZ. Throw an error if the offset is too large. If
16728 the string consists of a single NUL byte, return NULL; otherwise
16729 return a pointer to the string. */
16730
16731 static const char *
16732 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16733 {
16734 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16735
16736 if (dwz->str.buffer == NULL)
16737 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16738 "section [in module %s]"),
16739 bfd_get_filename (dwz->dwz_bfd));
16740 if (str_offset >= dwz->str.size)
16741 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16742 ".debug_str section [in module %s]"),
16743 bfd_get_filename (dwz->dwz_bfd));
16744 gdb_assert (HOST_CHAR_BIT == 8);
16745 if (dwz->str.buffer[str_offset] == '\0')
16746 return NULL;
16747 return (const char *) (dwz->str.buffer + str_offset);
16748 }
16749
16750 static const char *
16751 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16752 const struct comp_unit_head *cu_header,
16753 unsigned int *bytes_read_ptr)
16754 {
16755 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16756
16757 return read_indirect_string_at_offset (abfd, str_offset);
16758 }
16759
16760 static ULONGEST
16761 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16762 unsigned int *bytes_read_ptr)
16763 {
16764 ULONGEST result;
16765 unsigned int num_read;
16766 int i, shift;
16767 unsigned char byte;
16768
16769 result = 0;
16770 shift = 0;
16771 num_read = 0;
16772 i = 0;
16773 while (1)
16774 {
16775 byte = bfd_get_8 (abfd, buf);
16776 buf++;
16777 num_read++;
16778 result |= ((ULONGEST) (byte & 127) << shift);
16779 if ((byte & 128) == 0)
16780 {
16781 break;
16782 }
16783 shift += 7;
16784 }
16785 *bytes_read_ptr = num_read;
16786 return result;
16787 }
16788
16789 static LONGEST
16790 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16791 unsigned int *bytes_read_ptr)
16792 {
16793 LONGEST result;
16794 int i, shift, num_read;
16795 unsigned char byte;
16796
16797 result = 0;
16798 shift = 0;
16799 num_read = 0;
16800 i = 0;
16801 while (1)
16802 {
16803 byte = bfd_get_8 (abfd, buf);
16804 buf++;
16805 num_read++;
16806 result |= ((LONGEST) (byte & 127) << shift);
16807 shift += 7;
16808 if ((byte & 128) == 0)
16809 {
16810 break;
16811 }
16812 }
16813 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16814 result |= -(((LONGEST) 1) << shift);
16815 *bytes_read_ptr = num_read;
16816 return result;
16817 }
16818
16819 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16820 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16821 ADDR_SIZE is the size of addresses from the CU header. */
16822
16823 static CORE_ADDR
16824 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16825 {
16826 struct objfile *objfile = dwarf2_per_objfile->objfile;
16827 bfd *abfd = objfile->obfd;
16828 const gdb_byte *info_ptr;
16829
16830 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16831 if (dwarf2_per_objfile->addr.buffer == NULL)
16832 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16833 objfile_name (objfile));
16834 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16835 error (_("DW_FORM_addr_index pointing outside of "
16836 ".debug_addr section [in module %s]"),
16837 objfile_name (objfile));
16838 info_ptr = (dwarf2_per_objfile->addr.buffer
16839 + addr_base + addr_index * addr_size);
16840 if (addr_size == 4)
16841 return bfd_get_32 (abfd, info_ptr);
16842 else
16843 return bfd_get_64 (abfd, info_ptr);
16844 }
16845
16846 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16847
16848 static CORE_ADDR
16849 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16850 {
16851 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16852 }
16853
16854 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16855
16856 static CORE_ADDR
16857 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16858 unsigned int *bytes_read)
16859 {
16860 bfd *abfd = cu->objfile->obfd;
16861 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16862
16863 return read_addr_index (cu, addr_index);
16864 }
16865
16866 /* Data structure to pass results from dwarf2_read_addr_index_reader
16867 back to dwarf2_read_addr_index. */
16868
16869 struct dwarf2_read_addr_index_data
16870 {
16871 ULONGEST addr_base;
16872 int addr_size;
16873 };
16874
16875 /* die_reader_func for dwarf2_read_addr_index. */
16876
16877 static void
16878 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16879 const gdb_byte *info_ptr,
16880 struct die_info *comp_unit_die,
16881 int has_children,
16882 void *data)
16883 {
16884 struct dwarf2_cu *cu = reader->cu;
16885 struct dwarf2_read_addr_index_data *aidata =
16886 (struct dwarf2_read_addr_index_data *) data;
16887
16888 aidata->addr_base = cu->addr_base;
16889 aidata->addr_size = cu->header.addr_size;
16890 }
16891
16892 /* Given an index in .debug_addr, fetch the value.
16893 NOTE: This can be called during dwarf expression evaluation,
16894 long after the debug information has been read, and thus per_cu->cu
16895 may no longer exist. */
16896
16897 CORE_ADDR
16898 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16899 unsigned int addr_index)
16900 {
16901 struct objfile *objfile = per_cu->objfile;
16902 struct dwarf2_cu *cu = per_cu->cu;
16903 ULONGEST addr_base;
16904 int addr_size;
16905
16906 /* This is intended to be called from outside this file. */
16907 dw2_setup (objfile);
16908
16909 /* We need addr_base and addr_size.
16910 If we don't have PER_CU->cu, we have to get it.
16911 Nasty, but the alternative is storing the needed info in PER_CU,
16912 which at this point doesn't seem justified: it's not clear how frequently
16913 it would get used and it would increase the size of every PER_CU.
16914 Entry points like dwarf2_per_cu_addr_size do a similar thing
16915 so we're not in uncharted territory here.
16916 Alas we need to be a bit more complicated as addr_base is contained
16917 in the DIE.
16918
16919 We don't need to read the entire CU(/TU).
16920 We just need the header and top level die.
16921
16922 IWBN to use the aging mechanism to let us lazily later discard the CU.
16923 For now we skip this optimization. */
16924
16925 if (cu != NULL)
16926 {
16927 addr_base = cu->addr_base;
16928 addr_size = cu->header.addr_size;
16929 }
16930 else
16931 {
16932 struct dwarf2_read_addr_index_data aidata;
16933
16934 /* Note: We can't use init_cutu_and_read_dies_simple here,
16935 we need addr_base. */
16936 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16937 dwarf2_read_addr_index_reader, &aidata);
16938 addr_base = aidata.addr_base;
16939 addr_size = aidata.addr_size;
16940 }
16941
16942 return read_addr_index_1 (addr_index, addr_base, addr_size);
16943 }
16944
16945 /* Given a DW_FORM_GNU_str_index, fetch the string.
16946 This is only used by the Fission support. */
16947
16948 static const char *
16949 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16950 {
16951 struct objfile *objfile = dwarf2_per_objfile->objfile;
16952 const char *objf_name = objfile_name (objfile);
16953 bfd *abfd = objfile->obfd;
16954 struct dwarf2_cu *cu = reader->cu;
16955 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16956 struct dwarf2_section_info *str_offsets_section =
16957 &reader->dwo_file->sections.str_offsets;
16958 const gdb_byte *info_ptr;
16959 ULONGEST str_offset;
16960 static const char form_name[] = "DW_FORM_GNU_str_index";
16961
16962 dwarf2_read_section (objfile, str_section);
16963 dwarf2_read_section (objfile, str_offsets_section);
16964 if (str_section->buffer == NULL)
16965 error (_("%s used without .debug_str.dwo section"
16966 " in CU at offset 0x%lx [in module %s]"),
16967 form_name, (long) cu->header.offset.sect_off, objf_name);
16968 if (str_offsets_section->buffer == NULL)
16969 error (_("%s used without .debug_str_offsets.dwo section"
16970 " in CU at offset 0x%lx [in module %s]"),
16971 form_name, (long) cu->header.offset.sect_off, objf_name);
16972 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16973 error (_("%s pointing outside of .debug_str_offsets.dwo"
16974 " section in CU at offset 0x%lx [in module %s]"),
16975 form_name, (long) cu->header.offset.sect_off, objf_name);
16976 info_ptr = (str_offsets_section->buffer
16977 + str_index * cu->header.offset_size);
16978 if (cu->header.offset_size == 4)
16979 str_offset = bfd_get_32 (abfd, info_ptr);
16980 else
16981 str_offset = bfd_get_64 (abfd, info_ptr);
16982 if (str_offset >= str_section->size)
16983 error (_("Offset from %s pointing outside of"
16984 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16985 form_name, (long) cu->header.offset.sect_off, objf_name);
16986 return (const char *) (str_section->buffer + str_offset);
16987 }
16988
16989 /* Return the length of an LEB128 number in BUF. */
16990
16991 static int
16992 leb128_size (const gdb_byte *buf)
16993 {
16994 const gdb_byte *begin = buf;
16995 gdb_byte byte;
16996
16997 while (1)
16998 {
16999 byte = *buf++;
17000 if ((byte & 128) == 0)
17001 return buf - begin;
17002 }
17003 }
17004
17005 static void
17006 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17007 {
17008 switch (lang)
17009 {
17010 case DW_LANG_C89:
17011 case DW_LANG_C99:
17012 case DW_LANG_C11:
17013 case DW_LANG_C:
17014 case DW_LANG_UPC:
17015 cu->language = language_c;
17016 break;
17017 case DW_LANG_C_plus_plus:
17018 case DW_LANG_C_plus_plus_11:
17019 case DW_LANG_C_plus_plus_14:
17020 cu->language = language_cplus;
17021 break;
17022 case DW_LANG_D:
17023 cu->language = language_d;
17024 break;
17025 case DW_LANG_Fortran77:
17026 case DW_LANG_Fortran90:
17027 case DW_LANG_Fortran95:
17028 case DW_LANG_Fortran03:
17029 case DW_LANG_Fortran08:
17030 cu->language = language_fortran;
17031 break;
17032 case DW_LANG_Go:
17033 cu->language = language_go;
17034 break;
17035 case DW_LANG_Mips_Assembler:
17036 cu->language = language_asm;
17037 break;
17038 case DW_LANG_Java:
17039 cu->language = language_java;
17040 break;
17041 case DW_LANG_Ada83:
17042 case DW_LANG_Ada95:
17043 cu->language = language_ada;
17044 break;
17045 case DW_LANG_Modula2:
17046 cu->language = language_m2;
17047 break;
17048 case DW_LANG_Pascal83:
17049 cu->language = language_pascal;
17050 break;
17051 case DW_LANG_ObjC:
17052 cu->language = language_objc;
17053 break;
17054 case DW_LANG_Cobol74:
17055 case DW_LANG_Cobol85:
17056 default:
17057 cu->language = language_minimal;
17058 break;
17059 }
17060 cu->language_defn = language_def (cu->language);
17061 }
17062
17063 /* Return the named attribute or NULL if not there. */
17064
17065 static struct attribute *
17066 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17067 {
17068 for (;;)
17069 {
17070 unsigned int i;
17071 struct attribute *spec = NULL;
17072
17073 for (i = 0; i < die->num_attrs; ++i)
17074 {
17075 if (die->attrs[i].name == name)
17076 return &die->attrs[i];
17077 if (die->attrs[i].name == DW_AT_specification
17078 || die->attrs[i].name == DW_AT_abstract_origin)
17079 spec = &die->attrs[i];
17080 }
17081
17082 if (!spec)
17083 break;
17084
17085 die = follow_die_ref (die, spec, &cu);
17086 }
17087
17088 return NULL;
17089 }
17090
17091 /* Return the named attribute or NULL if not there,
17092 but do not follow DW_AT_specification, etc.
17093 This is for use in contexts where we're reading .debug_types dies.
17094 Following DW_AT_specification, DW_AT_abstract_origin will take us
17095 back up the chain, and we want to go down. */
17096
17097 static struct attribute *
17098 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17099 {
17100 unsigned int i;
17101
17102 for (i = 0; i < die->num_attrs; ++i)
17103 if (die->attrs[i].name == name)
17104 return &die->attrs[i];
17105
17106 return NULL;
17107 }
17108
17109 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17110 and holds a non-zero value. This function should only be used for
17111 DW_FORM_flag or DW_FORM_flag_present attributes. */
17112
17113 static int
17114 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17115 {
17116 struct attribute *attr = dwarf2_attr (die, name, cu);
17117
17118 return (attr && DW_UNSND (attr));
17119 }
17120
17121 static int
17122 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17123 {
17124 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17125 which value is non-zero. However, we have to be careful with
17126 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17127 (via dwarf2_flag_true_p) follows this attribute. So we may
17128 end up accidently finding a declaration attribute that belongs
17129 to a different DIE referenced by the specification attribute,
17130 even though the given DIE does not have a declaration attribute. */
17131 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17132 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17133 }
17134
17135 /* Return the die giving the specification for DIE, if there is
17136 one. *SPEC_CU is the CU containing DIE on input, and the CU
17137 containing the return value on output. If there is no
17138 specification, but there is an abstract origin, that is
17139 returned. */
17140
17141 static struct die_info *
17142 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17143 {
17144 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17145 *spec_cu);
17146
17147 if (spec_attr == NULL)
17148 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17149
17150 if (spec_attr == NULL)
17151 return NULL;
17152 else
17153 return follow_die_ref (die, spec_attr, spec_cu);
17154 }
17155
17156 /* Free the line_header structure *LH, and any arrays and strings it
17157 refers to.
17158 NOTE: This is also used as a "cleanup" function. */
17159
17160 static void
17161 free_line_header (struct line_header *lh)
17162 {
17163 if (lh->standard_opcode_lengths)
17164 xfree (lh->standard_opcode_lengths);
17165
17166 /* Remember that all the lh->file_names[i].name pointers are
17167 pointers into debug_line_buffer, and don't need to be freed. */
17168 if (lh->file_names)
17169 xfree (lh->file_names);
17170
17171 /* Similarly for the include directory names. */
17172 if (lh->include_dirs)
17173 xfree (lh->include_dirs);
17174
17175 xfree (lh);
17176 }
17177
17178 /* Stub for free_line_header to match void * callback types. */
17179
17180 static void
17181 free_line_header_voidp (void *arg)
17182 {
17183 struct line_header *lh = arg;
17184
17185 free_line_header (lh);
17186 }
17187
17188 /* Add an entry to LH's include directory table. */
17189
17190 static void
17191 add_include_dir (struct line_header *lh, const char *include_dir)
17192 {
17193 if (dwarf_line_debug >= 2)
17194 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17195 lh->num_include_dirs + 1, include_dir);
17196
17197 /* Grow the array if necessary. */
17198 if (lh->include_dirs_size == 0)
17199 {
17200 lh->include_dirs_size = 1; /* for testing */
17201 lh->include_dirs = xmalloc (lh->include_dirs_size
17202 * sizeof (*lh->include_dirs));
17203 }
17204 else if (lh->num_include_dirs >= lh->include_dirs_size)
17205 {
17206 lh->include_dirs_size *= 2;
17207 lh->include_dirs = xrealloc (lh->include_dirs,
17208 (lh->include_dirs_size
17209 * sizeof (*lh->include_dirs)));
17210 }
17211
17212 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17213 }
17214
17215 /* Add an entry to LH's file name table. */
17216
17217 static void
17218 add_file_name (struct line_header *lh,
17219 const char *name,
17220 unsigned int dir_index,
17221 unsigned int mod_time,
17222 unsigned int length)
17223 {
17224 struct file_entry *fe;
17225
17226 if (dwarf_line_debug >= 2)
17227 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17228 lh->num_file_names + 1, name);
17229
17230 /* Grow the array if necessary. */
17231 if (lh->file_names_size == 0)
17232 {
17233 lh->file_names_size = 1; /* for testing */
17234 lh->file_names = xmalloc (lh->file_names_size
17235 * sizeof (*lh->file_names));
17236 }
17237 else if (lh->num_file_names >= lh->file_names_size)
17238 {
17239 lh->file_names_size *= 2;
17240 lh->file_names = xrealloc (lh->file_names,
17241 (lh->file_names_size
17242 * sizeof (*lh->file_names)));
17243 }
17244
17245 fe = &lh->file_names[lh->num_file_names++];
17246 fe->name = name;
17247 fe->dir_index = dir_index;
17248 fe->mod_time = mod_time;
17249 fe->length = length;
17250 fe->included_p = 0;
17251 fe->symtab = NULL;
17252 }
17253
17254 /* A convenience function to find the proper .debug_line section for a CU. */
17255
17256 static struct dwarf2_section_info *
17257 get_debug_line_section (struct dwarf2_cu *cu)
17258 {
17259 struct dwarf2_section_info *section;
17260
17261 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17262 DWO file. */
17263 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17264 section = &cu->dwo_unit->dwo_file->sections.line;
17265 else if (cu->per_cu->is_dwz)
17266 {
17267 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17268
17269 section = &dwz->line;
17270 }
17271 else
17272 section = &dwarf2_per_objfile->line;
17273
17274 return section;
17275 }
17276
17277 /* Read the statement program header starting at OFFSET in
17278 .debug_line, or .debug_line.dwo. Return a pointer
17279 to a struct line_header, allocated using xmalloc.
17280 Returns NULL if there is a problem reading the header, e.g., if it
17281 has a version we don't understand.
17282
17283 NOTE: the strings in the include directory and file name tables of
17284 the returned object point into the dwarf line section buffer,
17285 and must not be freed. */
17286
17287 static struct line_header *
17288 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17289 {
17290 struct cleanup *back_to;
17291 struct line_header *lh;
17292 const gdb_byte *line_ptr;
17293 unsigned int bytes_read, offset_size;
17294 int i;
17295 const char *cur_dir, *cur_file;
17296 struct dwarf2_section_info *section;
17297 bfd *abfd;
17298
17299 section = get_debug_line_section (cu);
17300 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17301 if (section->buffer == NULL)
17302 {
17303 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17304 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17305 else
17306 complaint (&symfile_complaints, _("missing .debug_line section"));
17307 return 0;
17308 }
17309
17310 /* We can't do this until we know the section is non-empty.
17311 Only then do we know we have such a section. */
17312 abfd = get_section_bfd_owner (section);
17313
17314 /* Make sure that at least there's room for the total_length field.
17315 That could be 12 bytes long, but we're just going to fudge that. */
17316 if (offset + 4 >= section->size)
17317 {
17318 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17319 return 0;
17320 }
17321
17322 lh = xmalloc (sizeof (*lh));
17323 memset (lh, 0, sizeof (*lh));
17324 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17325 (void *) lh);
17326
17327 lh->offset.sect_off = offset;
17328 lh->offset_in_dwz = cu->per_cu->is_dwz;
17329
17330 line_ptr = section->buffer + offset;
17331
17332 /* Read in the header. */
17333 lh->total_length =
17334 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17335 &bytes_read, &offset_size);
17336 line_ptr += bytes_read;
17337 if (line_ptr + lh->total_length > (section->buffer + section->size))
17338 {
17339 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17340 do_cleanups (back_to);
17341 return 0;
17342 }
17343 lh->statement_program_end = line_ptr + lh->total_length;
17344 lh->version = read_2_bytes (abfd, line_ptr);
17345 line_ptr += 2;
17346 if (lh->version > 4)
17347 {
17348 /* This is a version we don't understand. The format could have
17349 changed in ways we don't handle properly so just punt. */
17350 complaint (&symfile_complaints,
17351 _("unsupported version in .debug_line section"));
17352 return NULL;
17353 }
17354 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17355 line_ptr += offset_size;
17356 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17357 line_ptr += 1;
17358 if (lh->version >= 4)
17359 {
17360 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17361 line_ptr += 1;
17362 }
17363 else
17364 lh->maximum_ops_per_instruction = 1;
17365
17366 if (lh->maximum_ops_per_instruction == 0)
17367 {
17368 lh->maximum_ops_per_instruction = 1;
17369 complaint (&symfile_complaints,
17370 _("invalid maximum_ops_per_instruction "
17371 "in `.debug_line' section"));
17372 }
17373
17374 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17375 line_ptr += 1;
17376 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17377 line_ptr += 1;
17378 lh->line_range = read_1_byte (abfd, line_ptr);
17379 line_ptr += 1;
17380 lh->opcode_base = read_1_byte (abfd, line_ptr);
17381 line_ptr += 1;
17382 lh->standard_opcode_lengths
17383 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17384
17385 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17386 for (i = 1; i < lh->opcode_base; ++i)
17387 {
17388 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17389 line_ptr += 1;
17390 }
17391
17392 /* Read directory table. */
17393 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17394 {
17395 line_ptr += bytes_read;
17396 add_include_dir (lh, cur_dir);
17397 }
17398 line_ptr += bytes_read;
17399
17400 /* Read file name table. */
17401 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17402 {
17403 unsigned int dir_index, mod_time, length;
17404
17405 line_ptr += bytes_read;
17406 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17407 line_ptr += bytes_read;
17408 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17409 line_ptr += bytes_read;
17410 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17411 line_ptr += bytes_read;
17412
17413 add_file_name (lh, cur_file, dir_index, mod_time, length);
17414 }
17415 line_ptr += bytes_read;
17416 lh->statement_program_start = line_ptr;
17417
17418 if (line_ptr > (section->buffer + section->size))
17419 complaint (&symfile_complaints,
17420 _("line number info header doesn't "
17421 "fit in `.debug_line' section"));
17422
17423 discard_cleanups (back_to);
17424 return lh;
17425 }
17426
17427 /* Subroutine of dwarf_decode_lines to simplify it.
17428 Return the file name of the psymtab for included file FILE_INDEX
17429 in line header LH of PST.
17430 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17431 If space for the result is malloc'd, it will be freed by a cleanup.
17432 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17433
17434 The function creates dangling cleanup registration. */
17435
17436 static const char *
17437 psymtab_include_file_name (const struct line_header *lh, int file_index,
17438 const struct partial_symtab *pst,
17439 const char *comp_dir)
17440 {
17441 const struct file_entry fe = lh->file_names [file_index];
17442 const char *include_name = fe.name;
17443 const char *include_name_to_compare = include_name;
17444 const char *dir_name = NULL;
17445 const char *pst_filename;
17446 char *copied_name = NULL;
17447 int file_is_pst;
17448
17449 if (fe.dir_index && lh->include_dirs != NULL)
17450 dir_name = lh->include_dirs[fe.dir_index - 1];
17451
17452 if (!IS_ABSOLUTE_PATH (include_name)
17453 && (dir_name != NULL || comp_dir != NULL))
17454 {
17455 /* Avoid creating a duplicate psymtab for PST.
17456 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17457 Before we do the comparison, however, we need to account
17458 for DIR_NAME and COMP_DIR.
17459 First prepend dir_name (if non-NULL). If we still don't
17460 have an absolute path prepend comp_dir (if non-NULL).
17461 However, the directory we record in the include-file's
17462 psymtab does not contain COMP_DIR (to match the
17463 corresponding symtab(s)).
17464
17465 Example:
17466
17467 bash$ cd /tmp
17468 bash$ gcc -g ./hello.c
17469 include_name = "hello.c"
17470 dir_name = "."
17471 DW_AT_comp_dir = comp_dir = "/tmp"
17472 DW_AT_name = "./hello.c"
17473
17474 */
17475
17476 if (dir_name != NULL)
17477 {
17478 char *tem = concat (dir_name, SLASH_STRING,
17479 include_name, (char *)NULL);
17480
17481 make_cleanup (xfree, tem);
17482 include_name = tem;
17483 include_name_to_compare = include_name;
17484 }
17485 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17486 {
17487 char *tem = concat (comp_dir, SLASH_STRING,
17488 include_name, (char *)NULL);
17489
17490 make_cleanup (xfree, tem);
17491 include_name_to_compare = tem;
17492 }
17493 }
17494
17495 pst_filename = pst->filename;
17496 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17497 {
17498 copied_name = concat (pst->dirname, SLASH_STRING,
17499 pst_filename, (char *)NULL);
17500 pst_filename = copied_name;
17501 }
17502
17503 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17504
17505 if (copied_name != NULL)
17506 xfree (copied_name);
17507
17508 if (file_is_pst)
17509 return NULL;
17510 return include_name;
17511 }
17512
17513 /* State machine to track the state of the line number program. */
17514
17515 typedef struct
17516 {
17517 /* These are part of the standard DWARF line number state machine. */
17518
17519 unsigned char op_index;
17520 unsigned int file;
17521 unsigned int line;
17522 CORE_ADDR address;
17523 int is_stmt;
17524 unsigned int discriminator;
17525
17526 /* Additional bits of state we need to track. */
17527
17528 /* The last file that we called dwarf2_start_subfile for.
17529 This is only used for TLLs. */
17530 unsigned int last_file;
17531 /* The last file a line number was recorded for. */
17532 struct subfile *last_subfile;
17533
17534 /* The function to call to record a line. */
17535 record_line_ftype *record_line;
17536
17537 /* The last line number that was recorded, used to coalesce
17538 consecutive entries for the same line. This can happen, for
17539 example, when discriminators are present. PR 17276. */
17540 unsigned int last_line;
17541 int line_has_non_zero_discriminator;
17542 } lnp_state_machine;
17543
17544 /* There's a lot of static state to pass to dwarf_record_line.
17545 This keeps it all together. */
17546
17547 typedef struct
17548 {
17549 /* The gdbarch. */
17550 struct gdbarch *gdbarch;
17551
17552 /* The line number header. */
17553 struct line_header *line_header;
17554
17555 /* Non-zero if we're recording lines.
17556 Otherwise we're building partial symtabs and are just interested in
17557 finding include files mentioned by the line number program. */
17558 int record_lines_p;
17559 } lnp_reader_state;
17560
17561 /* Ignore this record_line request. */
17562
17563 static void
17564 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17565 {
17566 return;
17567 }
17568
17569 /* Return non-zero if we should add LINE to the line number table.
17570 LINE is the line to add, LAST_LINE is the last line that was added,
17571 LAST_SUBFILE is the subfile for LAST_LINE.
17572 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17573 had a non-zero discriminator.
17574
17575 We have to be careful in the presence of discriminators.
17576 E.g., for this line:
17577
17578 for (i = 0; i < 100000; i++);
17579
17580 clang can emit four line number entries for that one line,
17581 each with a different discriminator.
17582 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17583
17584 However, we want gdb to coalesce all four entries into one.
17585 Otherwise the user could stepi into the middle of the line and
17586 gdb would get confused about whether the pc really was in the
17587 middle of the line.
17588
17589 Things are further complicated by the fact that two consecutive
17590 line number entries for the same line is a heuristic used by gcc
17591 to denote the end of the prologue. So we can't just discard duplicate
17592 entries, we have to be selective about it. The heuristic we use is
17593 that we only collapse consecutive entries for the same line if at least
17594 one of those entries has a non-zero discriminator. PR 17276.
17595
17596 Note: Addresses in the line number state machine can never go backwards
17597 within one sequence, thus this coalescing is ok. */
17598
17599 static int
17600 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17601 int line_has_non_zero_discriminator,
17602 struct subfile *last_subfile)
17603 {
17604 if (current_subfile != last_subfile)
17605 return 1;
17606 if (line != last_line)
17607 return 1;
17608 /* Same line for the same file that we've seen already.
17609 As a last check, for pr 17276, only record the line if the line
17610 has never had a non-zero discriminator. */
17611 if (!line_has_non_zero_discriminator)
17612 return 1;
17613 return 0;
17614 }
17615
17616 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17617 in the line table of subfile SUBFILE. */
17618
17619 static void
17620 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17621 unsigned int line, CORE_ADDR address,
17622 record_line_ftype p_record_line)
17623 {
17624 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17625
17626 if (dwarf_line_debug)
17627 {
17628 fprintf_unfiltered (gdb_stdlog,
17629 "Recording line %u, file %s, address %s\n",
17630 line, lbasename (subfile->name),
17631 paddress (gdbarch, address));
17632 }
17633
17634 (*p_record_line) (subfile, line, addr);
17635 }
17636
17637 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17638 Mark the end of a set of line number records.
17639 The arguments are the same as for dwarf_record_line_1.
17640 If SUBFILE is NULL the request is ignored. */
17641
17642 static void
17643 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17644 CORE_ADDR address, record_line_ftype p_record_line)
17645 {
17646 if (subfile == NULL)
17647 return;
17648
17649 if (dwarf_line_debug)
17650 {
17651 fprintf_unfiltered (gdb_stdlog,
17652 "Finishing current line, file %s, address %s\n",
17653 lbasename (subfile->name),
17654 paddress (gdbarch, address));
17655 }
17656
17657 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17658 }
17659
17660 /* Record the line in STATE.
17661 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17662
17663 static void
17664 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17665 int end_sequence)
17666 {
17667 const struct line_header *lh = reader->line_header;
17668 unsigned int file, line, discriminator;
17669 int is_stmt;
17670
17671 file = state->file;
17672 line = state->line;
17673 is_stmt = state->is_stmt;
17674 discriminator = state->discriminator;
17675
17676 if (dwarf_line_debug)
17677 {
17678 fprintf_unfiltered (gdb_stdlog,
17679 "Processing actual line %u: file %u,"
17680 " address %s, is_stmt %u, discrim %u\n",
17681 line, file,
17682 paddress (reader->gdbarch, state->address),
17683 is_stmt, discriminator);
17684 }
17685
17686 if (file == 0 || file - 1 >= lh->num_file_names)
17687 dwarf2_debug_line_missing_file_complaint ();
17688 /* For now we ignore lines not starting on an instruction boundary.
17689 But not when processing end_sequence for compatibility with the
17690 previous version of the code. */
17691 else if (state->op_index == 0 || end_sequence)
17692 {
17693 lh->file_names[file - 1].included_p = 1;
17694 if (reader->record_lines_p && is_stmt)
17695 {
17696 if (state->last_subfile != current_subfile || end_sequence)
17697 {
17698 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17699 state->address, state->record_line);
17700 }
17701
17702 if (!end_sequence)
17703 {
17704 if (dwarf_record_line_p (line, state->last_line,
17705 state->line_has_non_zero_discriminator,
17706 state->last_subfile))
17707 {
17708 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17709 line, state->address,
17710 state->record_line);
17711 }
17712 state->last_subfile = current_subfile;
17713 state->last_line = line;
17714 }
17715 }
17716 }
17717 }
17718
17719 /* Initialize STATE for the start of a line number program. */
17720
17721 static void
17722 init_lnp_state_machine (lnp_state_machine *state,
17723 const lnp_reader_state *reader)
17724 {
17725 memset (state, 0, sizeof (*state));
17726
17727 /* Just starting, there is no "last file". */
17728 state->last_file = 0;
17729 state->last_subfile = NULL;
17730
17731 state->record_line = record_line;
17732
17733 state->last_line = 0;
17734 state->line_has_non_zero_discriminator = 0;
17735
17736 /* Initialize these according to the DWARF spec. */
17737 state->op_index = 0;
17738 state->file = 1;
17739 state->line = 1;
17740 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17741 was a line entry for it so that the backend has a chance to adjust it
17742 and also record it in case it needs it. This is currently used by MIPS
17743 code, cf. `mips_adjust_dwarf2_line'. */
17744 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17745 state->is_stmt = reader->line_header->default_is_stmt;
17746 state->discriminator = 0;
17747 }
17748
17749 /* Check address and if invalid nop-out the rest of the lines in this
17750 sequence. */
17751
17752 static void
17753 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17754 const gdb_byte *line_ptr,
17755 CORE_ADDR lowpc, CORE_ADDR address)
17756 {
17757 /* If address < lowpc then it's not a usable value, it's outside the
17758 pc range of the CU. However, we restrict the test to only address
17759 values of zero to preserve GDB's previous behaviour which is to
17760 handle the specific case of a function being GC'd by the linker. */
17761
17762 if (address == 0 && address < lowpc)
17763 {
17764 /* This line table is for a function which has been
17765 GCd by the linker. Ignore it. PR gdb/12528 */
17766
17767 struct objfile *objfile = cu->objfile;
17768 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17769
17770 complaint (&symfile_complaints,
17771 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17772 line_offset, objfile_name (objfile));
17773 state->record_line = noop_record_line;
17774 /* Note: sm.record_line is left as noop_record_line
17775 until we see DW_LNE_end_sequence. */
17776 }
17777 }
17778
17779 /* Subroutine of dwarf_decode_lines to simplify it.
17780 Process the line number information in LH.
17781 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17782 program in order to set included_p for every referenced header. */
17783
17784 static void
17785 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17786 const int decode_for_pst_p, CORE_ADDR lowpc)
17787 {
17788 const gdb_byte *line_ptr, *extended_end;
17789 const gdb_byte *line_end;
17790 unsigned int bytes_read, extended_len;
17791 unsigned char op_code, extended_op;
17792 CORE_ADDR baseaddr;
17793 struct objfile *objfile = cu->objfile;
17794 bfd *abfd = objfile->obfd;
17795 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17796 /* Non-zero if we're recording line info (as opposed to building partial
17797 symtabs). */
17798 int record_lines_p = !decode_for_pst_p;
17799 /* A collection of things we need to pass to dwarf_record_line. */
17800 lnp_reader_state reader_state;
17801
17802 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17803
17804 line_ptr = lh->statement_program_start;
17805 line_end = lh->statement_program_end;
17806
17807 reader_state.gdbarch = gdbarch;
17808 reader_state.line_header = lh;
17809 reader_state.record_lines_p = record_lines_p;
17810
17811 /* Read the statement sequences until there's nothing left. */
17812 while (line_ptr < line_end)
17813 {
17814 /* The DWARF line number program state machine. */
17815 lnp_state_machine state_machine;
17816 int end_sequence = 0;
17817
17818 /* Reset the state machine at the start of each sequence. */
17819 init_lnp_state_machine (&state_machine, &reader_state);
17820
17821 if (record_lines_p && lh->num_file_names >= state_machine.file)
17822 {
17823 /* Start a subfile for the current file of the state machine. */
17824 /* lh->include_dirs and lh->file_names are 0-based, but the
17825 directory and file name numbers in the statement program
17826 are 1-based. */
17827 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17828 const char *dir = NULL;
17829
17830 if (fe->dir_index && lh->include_dirs != NULL)
17831 dir = lh->include_dirs[fe->dir_index - 1];
17832
17833 dwarf2_start_subfile (fe->name, dir);
17834 }
17835
17836 /* Decode the table. */
17837 while (line_ptr < line_end && !end_sequence)
17838 {
17839 op_code = read_1_byte (abfd, line_ptr);
17840 line_ptr += 1;
17841
17842 if (op_code >= lh->opcode_base)
17843 {
17844 /* Special opcode. */
17845 unsigned char adj_opcode;
17846 CORE_ADDR addr_adj;
17847 int line_delta;
17848
17849 adj_opcode = op_code - lh->opcode_base;
17850 addr_adj = (((state_machine.op_index
17851 + (adj_opcode / lh->line_range))
17852 / lh->maximum_ops_per_instruction)
17853 * lh->minimum_instruction_length);
17854 state_machine.address
17855 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17856 state_machine.op_index = ((state_machine.op_index
17857 + (adj_opcode / lh->line_range))
17858 % lh->maximum_ops_per_instruction);
17859 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17860 state_machine.line += line_delta;
17861 if (line_delta != 0)
17862 state_machine.line_has_non_zero_discriminator
17863 = state_machine.discriminator != 0;
17864
17865 dwarf_record_line (&reader_state, &state_machine, 0);
17866 state_machine.discriminator = 0;
17867 }
17868 else switch (op_code)
17869 {
17870 case DW_LNS_extended_op:
17871 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17872 &bytes_read);
17873 line_ptr += bytes_read;
17874 extended_end = line_ptr + extended_len;
17875 extended_op = read_1_byte (abfd, line_ptr);
17876 line_ptr += 1;
17877 switch (extended_op)
17878 {
17879 case DW_LNE_end_sequence:
17880 state_machine.record_line = record_line;
17881 end_sequence = 1;
17882 break;
17883 case DW_LNE_set_address:
17884 {
17885 CORE_ADDR address
17886 = read_address (abfd, line_ptr, cu, &bytes_read);
17887
17888 line_ptr += bytes_read;
17889 check_line_address (cu, &state_machine, line_ptr,
17890 lowpc, address);
17891 state_machine.op_index = 0;
17892 address += baseaddr;
17893 state_machine.address
17894 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17895 }
17896 break;
17897 case DW_LNE_define_file:
17898 {
17899 const char *cur_file;
17900 unsigned int dir_index, mod_time, length;
17901
17902 cur_file = read_direct_string (abfd, line_ptr,
17903 &bytes_read);
17904 line_ptr += bytes_read;
17905 dir_index =
17906 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17907 line_ptr += bytes_read;
17908 mod_time =
17909 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17910 line_ptr += bytes_read;
17911 length =
17912 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17913 line_ptr += bytes_read;
17914 add_file_name (lh, cur_file, dir_index, mod_time, length);
17915 }
17916 break;
17917 case DW_LNE_set_discriminator:
17918 /* The discriminator is not interesting to the debugger;
17919 just ignore it. We still need to check its value though:
17920 if there are consecutive entries for the same
17921 (non-prologue) line we want to coalesce them.
17922 PR 17276. */
17923 state_machine.discriminator
17924 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17925 state_machine.line_has_non_zero_discriminator
17926 |= state_machine.discriminator != 0;
17927 line_ptr += bytes_read;
17928 break;
17929 default:
17930 complaint (&symfile_complaints,
17931 _("mangled .debug_line section"));
17932 return;
17933 }
17934 /* Make sure that we parsed the extended op correctly. If e.g.
17935 we expected a different address size than the producer used,
17936 we may have read the wrong number of bytes. */
17937 if (line_ptr != extended_end)
17938 {
17939 complaint (&symfile_complaints,
17940 _("mangled .debug_line section"));
17941 return;
17942 }
17943 break;
17944 case DW_LNS_copy:
17945 dwarf_record_line (&reader_state, &state_machine, 0);
17946 state_machine.discriminator = 0;
17947 break;
17948 case DW_LNS_advance_pc:
17949 {
17950 CORE_ADDR adjust
17951 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17952 CORE_ADDR addr_adj;
17953
17954 addr_adj = (((state_machine.op_index + adjust)
17955 / lh->maximum_ops_per_instruction)
17956 * lh->minimum_instruction_length);
17957 state_machine.address
17958 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17959 state_machine.op_index = ((state_machine.op_index + adjust)
17960 % lh->maximum_ops_per_instruction);
17961 line_ptr += bytes_read;
17962 }
17963 break;
17964 case DW_LNS_advance_line:
17965 {
17966 int line_delta
17967 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17968
17969 state_machine.line += line_delta;
17970 if (line_delta != 0)
17971 state_machine.line_has_non_zero_discriminator
17972 = state_machine.discriminator != 0;
17973 line_ptr += bytes_read;
17974 }
17975 break;
17976 case DW_LNS_set_file:
17977 {
17978 /* The arrays lh->include_dirs and lh->file_names are
17979 0-based, but the directory and file name numbers in
17980 the statement program are 1-based. */
17981 struct file_entry *fe;
17982 const char *dir = NULL;
17983
17984 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17985 &bytes_read);
17986 line_ptr += bytes_read;
17987 if (state_machine.file == 0
17988 || state_machine.file - 1 >= lh->num_file_names)
17989 dwarf2_debug_line_missing_file_complaint ();
17990 else
17991 {
17992 fe = &lh->file_names[state_machine.file - 1];
17993 if (fe->dir_index && lh->include_dirs != NULL)
17994 dir = lh->include_dirs[fe->dir_index - 1];
17995 if (record_lines_p)
17996 {
17997 state_machine.last_subfile = current_subfile;
17998 state_machine.line_has_non_zero_discriminator
17999 = state_machine.discriminator != 0;
18000 dwarf2_start_subfile (fe->name, dir);
18001 }
18002 }
18003 }
18004 break;
18005 case DW_LNS_set_column:
18006 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18007 line_ptr += bytes_read;
18008 break;
18009 case DW_LNS_negate_stmt:
18010 state_machine.is_stmt = (!state_machine.is_stmt);
18011 break;
18012 case DW_LNS_set_basic_block:
18013 break;
18014 /* Add to the address register of the state machine the
18015 address increment value corresponding to special opcode
18016 255. I.e., this value is scaled by the minimum
18017 instruction length since special opcode 255 would have
18018 scaled the increment. */
18019 case DW_LNS_const_add_pc:
18020 {
18021 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18022 CORE_ADDR addr_adj;
18023
18024 addr_adj = (((state_machine.op_index + adjust)
18025 / lh->maximum_ops_per_instruction)
18026 * lh->minimum_instruction_length);
18027 state_machine.address
18028 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18029 state_machine.op_index = ((state_machine.op_index + adjust)
18030 % lh->maximum_ops_per_instruction);
18031 }
18032 break;
18033 case DW_LNS_fixed_advance_pc:
18034 {
18035 CORE_ADDR addr_adj;
18036
18037 addr_adj = read_2_bytes (abfd, line_ptr);
18038 state_machine.address
18039 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18040 state_machine.op_index = 0;
18041 line_ptr += 2;
18042 }
18043 break;
18044 default:
18045 {
18046 /* Unknown standard opcode, ignore it. */
18047 int i;
18048
18049 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18050 {
18051 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18052 line_ptr += bytes_read;
18053 }
18054 }
18055 }
18056 }
18057
18058 if (!end_sequence)
18059 dwarf2_debug_line_missing_end_sequence_complaint ();
18060
18061 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18062 in which case we still finish recording the last line). */
18063 dwarf_record_line (&reader_state, &state_machine, 1);
18064 }
18065 }
18066
18067 /* Decode the Line Number Program (LNP) for the given line_header
18068 structure and CU. The actual information extracted and the type
18069 of structures created from the LNP depends on the value of PST.
18070
18071 1. If PST is NULL, then this procedure uses the data from the program
18072 to create all necessary symbol tables, and their linetables.
18073
18074 2. If PST is not NULL, this procedure reads the program to determine
18075 the list of files included by the unit represented by PST, and
18076 builds all the associated partial symbol tables.
18077
18078 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18079 It is used for relative paths in the line table.
18080 NOTE: When processing partial symtabs (pst != NULL),
18081 comp_dir == pst->dirname.
18082
18083 NOTE: It is important that psymtabs have the same file name (via strcmp)
18084 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18085 symtab we don't use it in the name of the psymtabs we create.
18086 E.g. expand_line_sal requires this when finding psymtabs to expand.
18087 A good testcase for this is mb-inline.exp.
18088
18089 LOWPC is the lowest address in CU (or 0 if not known).
18090
18091 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18092 for its PC<->lines mapping information. Otherwise only the filename
18093 table is read in. */
18094
18095 static void
18096 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18097 struct dwarf2_cu *cu, struct partial_symtab *pst,
18098 CORE_ADDR lowpc, int decode_mapping)
18099 {
18100 struct objfile *objfile = cu->objfile;
18101 const int decode_for_pst_p = (pst != NULL);
18102
18103 if (decode_mapping)
18104 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18105
18106 if (decode_for_pst_p)
18107 {
18108 int file_index;
18109
18110 /* Now that we're done scanning the Line Header Program, we can
18111 create the psymtab of each included file. */
18112 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18113 if (lh->file_names[file_index].included_p == 1)
18114 {
18115 const char *include_name =
18116 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18117 if (include_name != NULL)
18118 dwarf2_create_include_psymtab (include_name, pst, objfile);
18119 }
18120 }
18121 else
18122 {
18123 /* Make sure a symtab is created for every file, even files
18124 which contain only variables (i.e. no code with associated
18125 line numbers). */
18126 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18127 int i;
18128
18129 for (i = 0; i < lh->num_file_names; i++)
18130 {
18131 const char *dir = NULL;
18132 struct file_entry *fe;
18133
18134 fe = &lh->file_names[i];
18135 if (fe->dir_index && lh->include_dirs != NULL)
18136 dir = lh->include_dirs[fe->dir_index - 1];
18137 dwarf2_start_subfile (fe->name, dir);
18138
18139 if (current_subfile->symtab == NULL)
18140 {
18141 current_subfile->symtab
18142 = allocate_symtab (cust, current_subfile->name);
18143 }
18144 fe->symtab = current_subfile->symtab;
18145 }
18146 }
18147 }
18148
18149 /* Start a subfile for DWARF. FILENAME is the name of the file and
18150 DIRNAME the name of the source directory which contains FILENAME
18151 or NULL if not known.
18152 This routine tries to keep line numbers from identical absolute and
18153 relative file names in a common subfile.
18154
18155 Using the `list' example from the GDB testsuite, which resides in
18156 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18157 of /srcdir/list0.c yields the following debugging information for list0.c:
18158
18159 DW_AT_name: /srcdir/list0.c
18160 DW_AT_comp_dir: /compdir
18161 files.files[0].name: list0.h
18162 files.files[0].dir: /srcdir
18163 files.files[1].name: list0.c
18164 files.files[1].dir: /srcdir
18165
18166 The line number information for list0.c has to end up in a single
18167 subfile, so that `break /srcdir/list0.c:1' works as expected.
18168 start_subfile will ensure that this happens provided that we pass the
18169 concatenation of files.files[1].dir and files.files[1].name as the
18170 subfile's name. */
18171
18172 static void
18173 dwarf2_start_subfile (const char *filename, const char *dirname)
18174 {
18175 char *copy = NULL;
18176
18177 /* In order not to lose the line information directory,
18178 we concatenate it to the filename when it makes sense.
18179 Note that the Dwarf3 standard says (speaking of filenames in line
18180 information): ``The directory index is ignored for file names
18181 that represent full path names''. Thus ignoring dirname in the
18182 `else' branch below isn't an issue. */
18183
18184 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18185 {
18186 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18187 filename = copy;
18188 }
18189
18190 start_subfile (filename);
18191
18192 if (copy != NULL)
18193 xfree (copy);
18194 }
18195
18196 /* Start a symtab for DWARF.
18197 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18198
18199 static struct compunit_symtab *
18200 dwarf2_start_symtab (struct dwarf2_cu *cu,
18201 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18202 {
18203 struct compunit_symtab *cust
18204 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18205
18206 record_debugformat ("DWARF 2");
18207 record_producer (cu->producer);
18208
18209 /* We assume that we're processing GCC output. */
18210 processing_gcc_compilation = 2;
18211
18212 cu->processing_has_namespace_info = 0;
18213
18214 return cust;
18215 }
18216
18217 static void
18218 var_decode_location (struct attribute *attr, struct symbol *sym,
18219 struct dwarf2_cu *cu)
18220 {
18221 struct objfile *objfile = cu->objfile;
18222 struct comp_unit_head *cu_header = &cu->header;
18223
18224 /* NOTE drow/2003-01-30: There used to be a comment and some special
18225 code here to turn a symbol with DW_AT_external and a
18226 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18227 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18228 with some versions of binutils) where shared libraries could have
18229 relocations against symbols in their debug information - the
18230 minimal symbol would have the right address, but the debug info
18231 would not. It's no longer necessary, because we will explicitly
18232 apply relocations when we read in the debug information now. */
18233
18234 /* A DW_AT_location attribute with no contents indicates that a
18235 variable has been optimized away. */
18236 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18237 {
18238 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18239 return;
18240 }
18241
18242 /* Handle one degenerate form of location expression specially, to
18243 preserve GDB's previous behavior when section offsets are
18244 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18245 then mark this symbol as LOC_STATIC. */
18246
18247 if (attr_form_is_block (attr)
18248 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18249 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18250 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18251 && (DW_BLOCK (attr)->size
18252 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18253 {
18254 unsigned int dummy;
18255
18256 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18257 SYMBOL_VALUE_ADDRESS (sym) =
18258 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18259 else
18260 SYMBOL_VALUE_ADDRESS (sym) =
18261 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18262 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18263 fixup_symbol_section (sym, objfile);
18264 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18265 SYMBOL_SECTION (sym));
18266 return;
18267 }
18268
18269 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18270 expression evaluator, and use LOC_COMPUTED only when necessary
18271 (i.e. when the value of a register or memory location is
18272 referenced, or a thread-local block, etc.). Then again, it might
18273 not be worthwhile. I'm assuming that it isn't unless performance
18274 or memory numbers show me otherwise. */
18275
18276 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18277
18278 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18279 cu->has_loclist = 1;
18280 }
18281
18282 /* Given a pointer to a DWARF information entry, figure out if we need
18283 to make a symbol table entry for it, and if so, create a new entry
18284 and return a pointer to it.
18285 If TYPE is NULL, determine symbol type from the die, otherwise
18286 used the passed type.
18287 If SPACE is not NULL, use it to hold the new symbol. If it is
18288 NULL, allocate a new symbol on the objfile's obstack. */
18289
18290 static struct symbol *
18291 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18292 struct symbol *space)
18293 {
18294 struct objfile *objfile = cu->objfile;
18295 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18296 struct symbol *sym = NULL;
18297 const char *name;
18298 struct attribute *attr = NULL;
18299 struct attribute *attr2 = NULL;
18300 CORE_ADDR baseaddr;
18301 struct pending **list_to_add = NULL;
18302
18303 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18304
18305 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18306
18307 name = dwarf2_name (die, cu);
18308 if (name)
18309 {
18310 const char *linkagename;
18311 int suppress_add = 0;
18312
18313 if (space)
18314 sym = space;
18315 else
18316 sym = allocate_symbol (objfile);
18317 OBJSTAT (objfile, n_syms++);
18318
18319 /* Cache this symbol's name and the name's demangled form (if any). */
18320 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18321 linkagename = dwarf2_physname (name, die, cu);
18322 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18323
18324 /* Fortran does not have mangling standard and the mangling does differ
18325 between gfortran, iFort etc. */
18326 if (cu->language == language_fortran
18327 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18328 symbol_set_demangled_name (&(sym->ginfo),
18329 dwarf2_full_name (name, die, cu),
18330 NULL);
18331
18332 /* Default assumptions.
18333 Use the passed type or decode it from the die. */
18334 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18335 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18336 if (type != NULL)
18337 SYMBOL_TYPE (sym) = type;
18338 else
18339 SYMBOL_TYPE (sym) = die_type (die, cu);
18340 attr = dwarf2_attr (die,
18341 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18342 cu);
18343 if (attr)
18344 {
18345 SYMBOL_LINE (sym) = DW_UNSND (attr);
18346 }
18347
18348 attr = dwarf2_attr (die,
18349 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18350 cu);
18351 if (attr)
18352 {
18353 int file_index = DW_UNSND (attr);
18354
18355 if (cu->line_header == NULL
18356 || file_index > cu->line_header->num_file_names)
18357 complaint (&symfile_complaints,
18358 _("file index out of range"));
18359 else if (file_index > 0)
18360 {
18361 struct file_entry *fe;
18362
18363 fe = &cu->line_header->file_names[file_index - 1];
18364 symbol_set_symtab (sym, fe->symtab);
18365 }
18366 }
18367
18368 switch (die->tag)
18369 {
18370 case DW_TAG_label:
18371 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18372 if (attr)
18373 {
18374 CORE_ADDR addr;
18375
18376 addr = attr_value_as_address (attr);
18377 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18378 SYMBOL_VALUE_ADDRESS (sym) = addr;
18379 }
18380 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18381 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18382 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18383 add_symbol_to_list (sym, cu->list_in_scope);
18384 break;
18385 case DW_TAG_subprogram:
18386 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18387 finish_block. */
18388 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18389 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18390 if ((attr2 && (DW_UNSND (attr2) != 0))
18391 || cu->language == language_ada)
18392 {
18393 /* Subprograms marked external are stored as a global symbol.
18394 Ada subprograms, whether marked external or not, are always
18395 stored as a global symbol, because we want to be able to
18396 access them globally. For instance, we want to be able
18397 to break on a nested subprogram without having to
18398 specify the context. */
18399 list_to_add = &global_symbols;
18400 }
18401 else
18402 {
18403 list_to_add = cu->list_in_scope;
18404 }
18405 break;
18406 case DW_TAG_inlined_subroutine:
18407 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18408 finish_block. */
18409 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18410 SYMBOL_INLINED (sym) = 1;
18411 list_to_add = cu->list_in_scope;
18412 break;
18413 case DW_TAG_template_value_param:
18414 suppress_add = 1;
18415 /* Fall through. */
18416 case DW_TAG_constant:
18417 case DW_TAG_variable:
18418 case DW_TAG_member:
18419 /* Compilation with minimal debug info may result in
18420 variables with missing type entries. Change the
18421 misleading `void' type to something sensible. */
18422 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18423 SYMBOL_TYPE (sym)
18424 = objfile_type (objfile)->nodebug_data_symbol;
18425
18426 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18427 /* In the case of DW_TAG_member, we should only be called for
18428 static const members. */
18429 if (die->tag == DW_TAG_member)
18430 {
18431 /* dwarf2_add_field uses die_is_declaration,
18432 so we do the same. */
18433 gdb_assert (die_is_declaration (die, cu));
18434 gdb_assert (attr);
18435 }
18436 if (attr)
18437 {
18438 dwarf2_const_value (attr, sym, cu);
18439 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18440 if (!suppress_add)
18441 {
18442 if (attr2 && (DW_UNSND (attr2) != 0))
18443 list_to_add = &global_symbols;
18444 else
18445 list_to_add = cu->list_in_scope;
18446 }
18447 break;
18448 }
18449 attr = dwarf2_attr (die, DW_AT_location, cu);
18450 if (attr)
18451 {
18452 var_decode_location (attr, sym, cu);
18453 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18454
18455 /* Fortran explicitly imports any global symbols to the local
18456 scope by DW_TAG_common_block. */
18457 if (cu->language == language_fortran && die->parent
18458 && die->parent->tag == DW_TAG_common_block)
18459 attr2 = NULL;
18460
18461 if (SYMBOL_CLASS (sym) == LOC_STATIC
18462 && SYMBOL_VALUE_ADDRESS (sym) == 0
18463 && !dwarf2_per_objfile->has_section_at_zero)
18464 {
18465 /* When a static variable is eliminated by the linker,
18466 the corresponding debug information is not stripped
18467 out, but the variable address is set to null;
18468 do not add such variables into symbol table. */
18469 }
18470 else if (attr2 && (DW_UNSND (attr2) != 0))
18471 {
18472 /* Workaround gfortran PR debug/40040 - it uses
18473 DW_AT_location for variables in -fPIC libraries which may
18474 get overriden by other libraries/executable and get
18475 a different address. Resolve it by the minimal symbol
18476 which may come from inferior's executable using copy
18477 relocation. Make this workaround only for gfortran as for
18478 other compilers GDB cannot guess the minimal symbol
18479 Fortran mangling kind. */
18480 if (cu->language == language_fortran && die->parent
18481 && die->parent->tag == DW_TAG_module
18482 && cu->producer
18483 && startswith (cu->producer, "GNU Fortran "))
18484 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18485
18486 /* A variable with DW_AT_external is never static,
18487 but it may be block-scoped. */
18488 list_to_add = (cu->list_in_scope == &file_symbols
18489 ? &global_symbols : cu->list_in_scope);
18490 }
18491 else
18492 list_to_add = cu->list_in_scope;
18493 }
18494 else
18495 {
18496 /* We do not know the address of this symbol.
18497 If it is an external symbol and we have type information
18498 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18499 The address of the variable will then be determined from
18500 the minimal symbol table whenever the variable is
18501 referenced. */
18502 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18503
18504 /* Fortran explicitly imports any global symbols to the local
18505 scope by DW_TAG_common_block. */
18506 if (cu->language == language_fortran && die->parent
18507 && die->parent->tag == DW_TAG_common_block)
18508 {
18509 /* SYMBOL_CLASS doesn't matter here because
18510 read_common_block is going to reset it. */
18511 if (!suppress_add)
18512 list_to_add = cu->list_in_scope;
18513 }
18514 else if (attr2 && (DW_UNSND (attr2) != 0)
18515 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18516 {
18517 /* A variable with DW_AT_external is never static, but it
18518 may be block-scoped. */
18519 list_to_add = (cu->list_in_scope == &file_symbols
18520 ? &global_symbols : cu->list_in_scope);
18521
18522 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18523 }
18524 else if (!die_is_declaration (die, cu))
18525 {
18526 /* Use the default LOC_OPTIMIZED_OUT class. */
18527 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18528 if (!suppress_add)
18529 list_to_add = cu->list_in_scope;
18530 }
18531 }
18532 break;
18533 case DW_TAG_formal_parameter:
18534 /* If we are inside a function, mark this as an argument. If
18535 not, we might be looking at an argument to an inlined function
18536 when we do not have enough information to show inlined frames;
18537 pretend it's a local variable in that case so that the user can
18538 still see it. */
18539 if (context_stack_depth > 0
18540 && context_stack[context_stack_depth - 1].name != NULL)
18541 SYMBOL_IS_ARGUMENT (sym) = 1;
18542 attr = dwarf2_attr (die, DW_AT_location, cu);
18543 if (attr)
18544 {
18545 var_decode_location (attr, sym, cu);
18546 }
18547 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18548 if (attr)
18549 {
18550 dwarf2_const_value (attr, sym, cu);
18551 }
18552
18553 list_to_add = cu->list_in_scope;
18554 break;
18555 case DW_TAG_unspecified_parameters:
18556 /* From varargs functions; gdb doesn't seem to have any
18557 interest in this information, so just ignore it for now.
18558 (FIXME?) */
18559 break;
18560 case DW_TAG_template_type_param:
18561 suppress_add = 1;
18562 /* Fall through. */
18563 case DW_TAG_class_type:
18564 case DW_TAG_interface_type:
18565 case DW_TAG_structure_type:
18566 case DW_TAG_union_type:
18567 case DW_TAG_set_type:
18568 case DW_TAG_enumeration_type:
18569 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18570 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18571
18572 {
18573 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18574 really ever be static objects: otherwise, if you try
18575 to, say, break of a class's method and you're in a file
18576 which doesn't mention that class, it won't work unless
18577 the check for all static symbols in lookup_symbol_aux
18578 saves you. See the OtherFileClass tests in
18579 gdb.c++/namespace.exp. */
18580
18581 if (!suppress_add)
18582 {
18583 list_to_add = (cu->list_in_scope == &file_symbols
18584 && (cu->language == language_cplus
18585 || cu->language == language_java)
18586 ? &global_symbols : cu->list_in_scope);
18587
18588 /* The semantics of C++ state that "struct foo {
18589 ... }" also defines a typedef for "foo". A Java
18590 class declaration also defines a typedef for the
18591 class. */
18592 if (cu->language == language_cplus
18593 || cu->language == language_java
18594 || cu->language == language_ada
18595 || cu->language == language_d)
18596 {
18597 /* The symbol's name is already allocated along
18598 with this objfile, so we don't need to
18599 duplicate it for the type. */
18600 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18601 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18602 }
18603 }
18604 }
18605 break;
18606 case DW_TAG_typedef:
18607 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18608 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18609 list_to_add = cu->list_in_scope;
18610 break;
18611 case DW_TAG_base_type:
18612 case DW_TAG_subrange_type:
18613 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18614 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18615 list_to_add = cu->list_in_scope;
18616 break;
18617 case DW_TAG_enumerator:
18618 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18619 if (attr)
18620 {
18621 dwarf2_const_value (attr, sym, cu);
18622 }
18623 {
18624 /* NOTE: carlton/2003-11-10: See comment above in the
18625 DW_TAG_class_type, etc. block. */
18626
18627 list_to_add = (cu->list_in_scope == &file_symbols
18628 && (cu->language == language_cplus
18629 || cu->language == language_java)
18630 ? &global_symbols : cu->list_in_scope);
18631 }
18632 break;
18633 case DW_TAG_imported_declaration:
18634 case DW_TAG_namespace:
18635 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18636 list_to_add = &global_symbols;
18637 break;
18638 case DW_TAG_module:
18639 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18640 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18641 list_to_add = &global_symbols;
18642 break;
18643 case DW_TAG_common_block:
18644 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18645 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18646 add_symbol_to_list (sym, cu->list_in_scope);
18647 break;
18648 default:
18649 /* Not a tag we recognize. Hopefully we aren't processing
18650 trash data, but since we must specifically ignore things
18651 we don't recognize, there is nothing else we should do at
18652 this point. */
18653 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18654 dwarf_tag_name (die->tag));
18655 break;
18656 }
18657
18658 if (suppress_add)
18659 {
18660 sym->hash_next = objfile->template_symbols;
18661 objfile->template_symbols = sym;
18662 list_to_add = NULL;
18663 }
18664
18665 if (list_to_add != NULL)
18666 add_symbol_to_list (sym, list_to_add);
18667
18668 /* For the benefit of old versions of GCC, check for anonymous
18669 namespaces based on the demangled name. */
18670 if (!cu->processing_has_namespace_info
18671 && cu->language == language_cplus)
18672 cp_scan_for_anonymous_namespaces (sym, objfile);
18673 }
18674 return (sym);
18675 }
18676
18677 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18678
18679 static struct symbol *
18680 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18681 {
18682 return new_symbol_full (die, type, cu, NULL);
18683 }
18684
18685 /* Given an attr with a DW_FORM_dataN value in host byte order,
18686 zero-extend it as appropriate for the symbol's type. The DWARF
18687 standard (v4) is not entirely clear about the meaning of using
18688 DW_FORM_dataN for a constant with a signed type, where the type is
18689 wider than the data. The conclusion of a discussion on the DWARF
18690 list was that this is unspecified. We choose to always zero-extend
18691 because that is the interpretation long in use by GCC. */
18692
18693 static gdb_byte *
18694 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18695 struct dwarf2_cu *cu, LONGEST *value, int bits)
18696 {
18697 struct objfile *objfile = cu->objfile;
18698 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18699 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18700 LONGEST l = DW_UNSND (attr);
18701
18702 if (bits < sizeof (*value) * 8)
18703 {
18704 l &= ((LONGEST) 1 << bits) - 1;
18705 *value = l;
18706 }
18707 else if (bits == sizeof (*value) * 8)
18708 *value = l;
18709 else
18710 {
18711 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18712 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18713 return bytes;
18714 }
18715
18716 return NULL;
18717 }
18718
18719 /* Read a constant value from an attribute. Either set *VALUE, or if
18720 the value does not fit in *VALUE, set *BYTES - either already
18721 allocated on the objfile obstack, or newly allocated on OBSTACK,
18722 or, set *BATON, if we translated the constant to a location
18723 expression. */
18724
18725 static void
18726 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18727 const char *name, struct obstack *obstack,
18728 struct dwarf2_cu *cu,
18729 LONGEST *value, const gdb_byte **bytes,
18730 struct dwarf2_locexpr_baton **baton)
18731 {
18732 struct objfile *objfile = cu->objfile;
18733 struct comp_unit_head *cu_header = &cu->header;
18734 struct dwarf_block *blk;
18735 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18736 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18737
18738 *value = 0;
18739 *bytes = NULL;
18740 *baton = NULL;
18741
18742 switch (attr->form)
18743 {
18744 case DW_FORM_addr:
18745 case DW_FORM_GNU_addr_index:
18746 {
18747 gdb_byte *data;
18748
18749 if (TYPE_LENGTH (type) != cu_header->addr_size)
18750 dwarf2_const_value_length_mismatch_complaint (name,
18751 cu_header->addr_size,
18752 TYPE_LENGTH (type));
18753 /* Symbols of this form are reasonably rare, so we just
18754 piggyback on the existing location code rather than writing
18755 a new implementation of symbol_computed_ops. */
18756 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18757 (*baton)->per_cu = cu->per_cu;
18758 gdb_assert ((*baton)->per_cu);
18759
18760 (*baton)->size = 2 + cu_header->addr_size;
18761 data = obstack_alloc (obstack, (*baton)->size);
18762 (*baton)->data = data;
18763
18764 data[0] = DW_OP_addr;
18765 store_unsigned_integer (&data[1], cu_header->addr_size,
18766 byte_order, DW_ADDR (attr));
18767 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18768 }
18769 break;
18770 case DW_FORM_string:
18771 case DW_FORM_strp:
18772 case DW_FORM_GNU_str_index:
18773 case DW_FORM_GNU_strp_alt:
18774 /* DW_STRING is already allocated on the objfile obstack, point
18775 directly to it. */
18776 *bytes = (const gdb_byte *) DW_STRING (attr);
18777 break;
18778 case DW_FORM_block1:
18779 case DW_FORM_block2:
18780 case DW_FORM_block4:
18781 case DW_FORM_block:
18782 case DW_FORM_exprloc:
18783 blk = DW_BLOCK (attr);
18784 if (TYPE_LENGTH (type) != blk->size)
18785 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18786 TYPE_LENGTH (type));
18787 *bytes = blk->data;
18788 break;
18789
18790 /* The DW_AT_const_value attributes are supposed to carry the
18791 symbol's value "represented as it would be on the target
18792 architecture." By the time we get here, it's already been
18793 converted to host endianness, so we just need to sign- or
18794 zero-extend it as appropriate. */
18795 case DW_FORM_data1:
18796 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18797 break;
18798 case DW_FORM_data2:
18799 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18800 break;
18801 case DW_FORM_data4:
18802 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18803 break;
18804 case DW_FORM_data8:
18805 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18806 break;
18807
18808 case DW_FORM_sdata:
18809 *value = DW_SND (attr);
18810 break;
18811
18812 case DW_FORM_udata:
18813 *value = DW_UNSND (attr);
18814 break;
18815
18816 default:
18817 complaint (&symfile_complaints,
18818 _("unsupported const value attribute form: '%s'"),
18819 dwarf_form_name (attr->form));
18820 *value = 0;
18821 break;
18822 }
18823 }
18824
18825
18826 /* Copy constant value from an attribute to a symbol. */
18827
18828 static void
18829 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18830 struct dwarf2_cu *cu)
18831 {
18832 struct objfile *objfile = cu->objfile;
18833 struct comp_unit_head *cu_header = &cu->header;
18834 LONGEST value;
18835 const gdb_byte *bytes;
18836 struct dwarf2_locexpr_baton *baton;
18837
18838 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18839 SYMBOL_PRINT_NAME (sym),
18840 &objfile->objfile_obstack, cu,
18841 &value, &bytes, &baton);
18842
18843 if (baton != NULL)
18844 {
18845 SYMBOL_LOCATION_BATON (sym) = baton;
18846 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18847 }
18848 else if (bytes != NULL)
18849 {
18850 SYMBOL_VALUE_BYTES (sym) = bytes;
18851 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18852 }
18853 else
18854 {
18855 SYMBOL_VALUE (sym) = value;
18856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18857 }
18858 }
18859
18860 /* Return the type of the die in question using its DW_AT_type attribute. */
18861
18862 static struct type *
18863 die_type (struct die_info *die, struct dwarf2_cu *cu)
18864 {
18865 struct attribute *type_attr;
18866
18867 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18868 if (!type_attr)
18869 {
18870 /* A missing DW_AT_type represents a void type. */
18871 return objfile_type (cu->objfile)->builtin_void;
18872 }
18873
18874 return lookup_die_type (die, type_attr, cu);
18875 }
18876
18877 /* True iff CU's producer generates GNAT Ada auxiliary information
18878 that allows to find parallel types through that information instead
18879 of having to do expensive parallel lookups by type name. */
18880
18881 static int
18882 need_gnat_info (struct dwarf2_cu *cu)
18883 {
18884 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18885 of GNAT produces this auxiliary information, without any indication
18886 that it is produced. Part of enhancing the FSF version of GNAT
18887 to produce that information will be to put in place an indicator
18888 that we can use in order to determine whether the descriptive type
18889 info is available or not. One suggestion that has been made is
18890 to use a new attribute, attached to the CU die. For now, assume
18891 that the descriptive type info is not available. */
18892 return 0;
18893 }
18894
18895 /* Return the auxiliary type of the die in question using its
18896 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18897 attribute is not present. */
18898
18899 static struct type *
18900 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18901 {
18902 struct attribute *type_attr;
18903
18904 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18905 if (!type_attr)
18906 return NULL;
18907
18908 return lookup_die_type (die, type_attr, cu);
18909 }
18910
18911 /* If DIE has a descriptive_type attribute, then set the TYPE's
18912 descriptive type accordingly. */
18913
18914 static void
18915 set_descriptive_type (struct type *type, struct die_info *die,
18916 struct dwarf2_cu *cu)
18917 {
18918 struct type *descriptive_type = die_descriptive_type (die, cu);
18919
18920 if (descriptive_type)
18921 {
18922 ALLOCATE_GNAT_AUX_TYPE (type);
18923 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18924 }
18925 }
18926
18927 /* Return the containing type of the die in question using its
18928 DW_AT_containing_type attribute. */
18929
18930 static struct type *
18931 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18932 {
18933 struct attribute *type_attr;
18934
18935 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18936 if (!type_attr)
18937 error (_("Dwarf Error: Problem turning containing type into gdb type "
18938 "[in module %s]"), objfile_name (cu->objfile));
18939
18940 return lookup_die_type (die, type_attr, cu);
18941 }
18942
18943 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18944
18945 static struct type *
18946 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18947 {
18948 struct objfile *objfile = dwarf2_per_objfile->objfile;
18949 char *message, *saved;
18950
18951 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18952 objfile_name (objfile),
18953 cu->header.offset.sect_off,
18954 die->offset.sect_off);
18955 saved = obstack_copy0 (&objfile->objfile_obstack,
18956 message, strlen (message));
18957 xfree (message);
18958
18959 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18960 }
18961
18962 /* Look up the type of DIE in CU using its type attribute ATTR.
18963 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18964 DW_AT_containing_type.
18965 If there is no type substitute an error marker. */
18966
18967 static struct type *
18968 lookup_die_type (struct die_info *die, const struct attribute *attr,
18969 struct dwarf2_cu *cu)
18970 {
18971 struct objfile *objfile = cu->objfile;
18972 struct type *this_type;
18973
18974 gdb_assert (attr->name == DW_AT_type
18975 || attr->name == DW_AT_GNAT_descriptive_type
18976 || attr->name == DW_AT_containing_type);
18977
18978 /* First see if we have it cached. */
18979
18980 if (attr->form == DW_FORM_GNU_ref_alt)
18981 {
18982 struct dwarf2_per_cu_data *per_cu;
18983 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18984
18985 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18986 this_type = get_die_type_at_offset (offset, per_cu);
18987 }
18988 else if (attr_form_is_ref (attr))
18989 {
18990 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18991
18992 this_type = get_die_type_at_offset (offset, cu->per_cu);
18993 }
18994 else if (attr->form == DW_FORM_ref_sig8)
18995 {
18996 ULONGEST signature = DW_SIGNATURE (attr);
18997
18998 return get_signatured_type (die, signature, cu);
18999 }
19000 else
19001 {
19002 complaint (&symfile_complaints,
19003 _("Dwarf Error: Bad type attribute %s in DIE"
19004 " at 0x%x [in module %s]"),
19005 dwarf_attr_name (attr->name), die->offset.sect_off,
19006 objfile_name (objfile));
19007 return build_error_marker_type (cu, die);
19008 }
19009
19010 /* If not cached we need to read it in. */
19011
19012 if (this_type == NULL)
19013 {
19014 struct die_info *type_die = NULL;
19015 struct dwarf2_cu *type_cu = cu;
19016
19017 if (attr_form_is_ref (attr))
19018 type_die = follow_die_ref (die, attr, &type_cu);
19019 if (type_die == NULL)
19020 return build_error_marker_type (cu, die);
19021 /* If we find the type now, it's probably because the type came
19022 from an inter-CU reference and the type's CU got expanded before
19023 ours. */
19024 this_type = read_type_die (type_die, type_cu);
19025 }
19026
19027 /* If we still don't have a type use an error marker. */
19028
19029 if (this_type == NULL)
19030 return build_error_marker_type (cu, die);
19031
19032 return this_type;
19033 }
19034
19035 /* Return the type in DIE, CU.
19036 Returns NULL for invalid types.
19037
19038 This first does a lookup in die_type_hash,
19039 and only reads the die in if necessary.
19040
19041 NOTE: This can be called when reading in partial or full symbols. */
19042
19043 static struct type *
19044 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19045 {
19046 struct type *this_type;
19047
19048 this_type = get_die_type (die, cu);
19049 if (this_type)
19050 return this_type;
19051
19052 return read_type_die_1 (die, cu);
19053 }
19054
19055 /* Read the type in DIE, CU.
19056 Returns NULL for invalid types. */
19057
19058 static struct type *
19059 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19060 {
19061 struct type *this_type = NULL;
19062
19063 switch (die->tag)
19064 {
19065 case DW_TAG_class_type:
19066 case DW_TAG_interface_type:
19067 case DW_TAG_structure_type:
19068 case DW_TAG_union_type:
19069 this_type = read_structure_type (die, cu);
19070 break;
19071 case DW_TAG_enumeration_type:
19072 this_type = read_enumeration_type (die, cu);
19073 break;
19074 case DW_TAG_subprogram:
19075 case DW_TAG_subroutine_type:
19076 case DW_TAG_inlined_subroutine:
19077 this_type = read_subroutine_type (die, cu);
19078 break;
19079 case DW_TAG_array_type:
19080 this_type = read_array_type (die, cu);
19081 break;
19082 case DW_TAG_set_type:
19083 this_type = read_set_type (die, cu);
19084 break;
19085 case DW_TAG_pointer_type:
19086 this_type = read_tag_pointer_type (die, cu);
19087 break;
19088 case DW_TAG_ptr_to_member_type:
19089 this_type = read_tag_ptr_to_member_type (die, cu);
19090 break;
19091 case DW_TAG_reference_type:
19092 this_type = read_tag_reference_type (die, cu);
19093 break;
19094 case DW_TAG_const_type:
19095 this_type = read_tag_const_type (die, cu);
19096 break;
19097 case DW_TAG_volatile_type:
19098 this_type = read_tag_volatile_type (die, cu);
19099 break;
19100 case DW_TAG_restrict_type:
19101 this_type = read_tag_restrict_type (die, cu);
19102 break;
19103 case DW_TAG_string_type:
19104 this_type = read_tag_string_type (die, cu);
19105 break;
19106 case DW_TAG_typedef:
19107 this_type = read_typedef (die, cu);
19108 break;
19109 case DW_TAG_subrange_type:
19110 this_type = read_subrange_type (die, cu);
19111 break;
19112 case DW_TAG_base_type:
19113 this_type = read_base_type (die, cu);
19114 break;
19115 case DW_TAG_unspecified_type:
19116 this_type = read_unspecified_type (die, cu);
19117 break;
19118 case DW_TAG_namespace:
19119 this_type = read_namespace_type (die, cu);
19120 break;
19121 case DW_TAG_module:
19122 this_type = read_module_type (die, cu);
19123 break;
19124 case DW_TAG_atomic_type:
19125 this_type = read_tag_atomic_type (die, cu);
19126 break;
19127 default:
19128 complaint (&symfile_complaints,
19129 _("unexpected tag in read_type_die: '%s'"),
19130 dwarf_tag_name (die->tag));
19131 break;
19132 }
19133
19134 return this_type;
19135 }
19136
19137 /* See if we can figure out if the class lives in a namespace. We do
19138 this by looking for a member function; its demangled name will
19139 contain namespace info, if there is any.
19140 Return the computed name or NULL.
19141 Space for the result is allocated on the objfile's obstack.
19142 This is the full-die version of guess_partial_die_structure_name.
19143 In this case we know DIE has no useful parent. */
19144
19145 static char *
19146 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19147 {
19148 struct die_info *spec_die;
19149 struct dwarf2_cu *spec_cu;
19150 struct die_info *child;
19151
19152 spec_cu = cu;
19153 spec_die = die_specification (die, &spec_cu);
19154 if (spec_die != NULL)
19155 {
19156 die = spec_die;
19157 cu = spec_cu;
19158 }
19159
19160 for (child = die->child;
19161 child != NULL;
19162 child = child->sibling)
19163 {
19164 if (child->tag == DW_TAG_subprogram)
19165 {
19166 struct attribute *attr;
19167
19168 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
19169 if (attr == NULL)
19170 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
19171 if (attr != NULL)
19172 {
19173 char *actual_name
19174 = language_class_name_from_physname (cu->language_defn,
19175 DW_STRING (attr));
19176 char *name = NULL;
19177
19178 if (actual_name != NULL)
19179 {
19180 const char *die_name = dwarf2_name (die, cu);
19181
19182 if (die_name != NULL
19183 && strcmp (die_name, actual_name) != 0)
19184 {
19185 /* Strip off the class name from the full name.
19186 We want the prefix. */
19187 int die_name_len = strlen (die_name);
19188 int actual_name_len = strlen (actual_name);
19189
19190 /* Test for '::' as a sanity check. */
19191 if (actual_name_len > die_name_len + 2
19192 && actual_name[actual_name_len
19193 - die_name_len - 1] == ':')
19194 name =
19195 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19196 actual_name,
19197 actual_name_len - die_name_len - 2);
19198 }
19199 }
19200 xfree (actual_name);
19201 return name;
19202 }
19203 }
19204 }
19205
19206 return NULL;
19207 }
19208
19209 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19210 prefix part in such case. See
19211 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19212
19213 static char *
19214 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19215 {
19216 struct attribute *attr;
19217 char *base;
19218
19219 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19220 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19221 return NULL;
19222
19223 attr = dwarf2_attr (die, DW_AT_name, cu);
19224 if (attr != NULL && DW_STRING (attr) != NULL)
19225 return NULL;
19226
19227 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19228 if (attr == NULL)
19229 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19230 if (attr == NULL || DW_STRING (attr) == NULL)
19231 return NULL;
19232
19233 /* dwarf2_name had to be already called. */
19234 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19235
19236 /* Strip the base name, keep any leading namespaces/classes. */
19237 base = strrchr (DW_STRING (attr), ':');
19238 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19239 return "";
19240
19241 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19242 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19243 }
19244
19245 /* Return the name of the namespace/class that DIE is defined within,
19246 or "" if we can't tell. The caller should not xfree the result.
19247
19248 For example, if we're within the method foo() in the following
19249 code:
19250
19251 namespace N {
19252 class C {
19253 void foo () {
19254 }
19255 };
19256 }
19257
19258 then determine_prefix on foo's die will return "N::C". */
19259
19260 static const char *
19261 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19262 {
19263 struct die_info *parent, *spec_die;
19264 struct dwarf2_cu *spec_cu;
19265 struct type *parent_type;
19266 char *retval;
19267
19268 if (cu->language != language_cplus && cu->language != language_java
19269 && cu->language != language_fortran && cu->language != language_d)
19270 return "";
19271
19272 retval = anonymous_struct_prefix (die, cu);
19273 if (retval)
19274 return retval;
19275
19276 /* We have to be careful in the presence of DW_AT_specification.
19277 For example, with GCC 3.4, given the code
19278
19279 namespace N {
19280 void foo() {
19281 // Definition of N::foo.
19282 }
19283 }
19284
19285 then we'll have a tree of DIEs like this:
19286
19287 1: DW_TAG_compile_unit
19288 2: DW_TAG_namespace // N
19289 3: DW_TAG_subprogram // declaration of N::foo
19290 4: DW_TAG_subprogram // definition of N::foo
19291 DW_AT_specification // refers to die #3
19292
19293 Thus, when processing die #4, we have to pretend that we're in
19294 the context of its DW_AT_specification, namely the contex of die
19295 #3. */
19296 spec_cu = cu;
19297 spec_die = die_specification (die, &spec_cu);
19298 if (spec_die == NULL)
19299 parent = die->parent;
19300 else
19301 {
19302 parent = spec_die->parent;
19303 cu = spec_cu;
19304 }
19305
19306 if (parent == NULL)
19307 return "";
19308 else if (parent->building_fullname)
19309 {
19310 const char *name;
19311 const char *parent_name;
19312
19313 /* It has been seen on RealView 2.2 built binaries,
19314 DW_TAG_template_type_param types actually _defined_ as
19315 children of the parent class:
19316
19317 enum E {};
19318 template class <class Enum> Class{};
19319 Class<enum E> class_e;
19320
19321 1: DW_TAG_class_type (Class)
19322 2: DW_TAG_enumeration_type (E)
19323 3: DW_TAG_enumerator (enum1:0)
19324 3: DW_TAG_enumerator (enum2:1)
19325 ...
19326 2: DW_TAG_template_type_param
19327 DW_AT_type DW_FORM_ref_udata (E)
19328
19329 Besides being broken debug info, it can put GDB into an
19330 infinite loop. Consider:
19331
19332 When we're building the full name for Class<E>, we'll start
19333 at Class, and go look over its template type parameters,
19334 finding E. We'll then try to build the full name of E, and
19335 reach here. We're now trying to build the full name of E,
19336 and look over the parent DIE for containing scope. In the
19337 broken case, if we followed the parent DIE of E, we'd again
19338 find Class, and once again go look at its template type
19339 arguments, etc., etc. Simply don't consider such parent die
19340 as source-level parent of this die (it can't be, the language
19341 doesn't allow it), and break the loop here. */
19342 name = dwarf2_name (die, cu);
19343 parent_name = dwarf2_name (parent, cu);
19344 complaint (&symfile_complaints,
19345 _("template param type '%s' defined within parent '%s'"),
19346 name ? name : "<unknown>",
19347 parent_name ? parent_name : "<unknown>");
19348 return "";
19349 }
19350 else
19351 switch (parent->tag)
19352 {
19353 case DW_TAG_namespace:
19354 parent_type = read_type_die (parent, cu);
19355 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19356 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19357 Work around this problem here. */
19358 if (cu->language == language_cplus
19359 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19360 return "";
19361 /* We give a name to even anonymous namespaces. */
19362 return TYPE_TAG_NAME (parent_type);
19363 case DW_TAG_class_type:
19364 case DW_TAG_interface_type:
19365 case DW_TAG_structure_type:
19366 case DW_TAG_union_type:
19367 case DW_TAG_module:
19368 parent_type = read_type_die (parent, cu);
19369 if (TYPE_TAG_NAME (parent_type) != NULL)
19370 return TYPE_TAG_NAME (parent_type);
19371 else
19372 /* An anonymous structure is only allowed non-static data
19373 members; no typedefs, no member functions, et cetera.
19374 So it does not need a prefix. */
19375 return "";
19376 case DW_TAG_compile_unit:
19377 case DW_TAG_partial_unit:
19378 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19379 if (cu->language == language_cplus
19380 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19381 && die->child != NULL
19382 && (die->tag == DW_TAG_class_type
19383 || die->tag == DW_TAG_structure_type
19384 || die->tag == DW_TAG_union_type))
19385 {
19386 char *name = guess_full_die_structure_name (die, cu);
19387 if (name != NULL)
19388 return name;
19389 }
19390 return "";
19391 case DW_TAG_enumeration_type:
19392 parent_type = read_type_die (parent, cu);
19393 if (TYPE_DECLARED_CLASS (parent_type))
19394 {
19395 if (TYPE_TAG_NAME (parent_type) != NULL)
19396 return TYPE_TAG_NAME (parent_type);
19397 return "";
19398 }
19399 /* Fall through. */
19400 default:
19401 return determine_prefix (parent, cu);
19402 }
19403 }
19404
19405 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19406 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19407 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19408 an obconcat, otherwise allocate storage for the result. The CU argument is
19409 used to determine the language and hence, the appropriate separator. */
19410
19411 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19412
19413 static char *
19414 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19415 int physname, struct dwarf2_cu *cu)
19416 {
19417 const char *lead = "";
19418 const char *sep;
19419
19420 if (suffix == NULL || suffix[0] == '\0'
19421 || prefix == NULL || prefix[0] == '\0')
19422 sep = "";
19423 else if (cu->language == language_java)
19424 sep = ".";
19425 else if (cu->language == language_d)
19426 {
19427 /* For D, the 'main' function could be defined in any module, but it
19428 should never be prefixed. */
19429 if (strcmp (suffix, "D main") == 0)
19430 {
19431 prefix = "";
19432 sep = "";
19433 }
19434 else
19435 sep = ".";
19436 }
19437 else if (cu->language == language_fortran && physname)
19438 {
19439 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19440 DW_AT_MIPS_linkage_name is preferred and used instead. */
19441
19442 lead = "__";
19443 sep = "_MOD_";
19444 }
19445 else
19446 sep = "::";
19447
19448 if (prefix == NULL)
19449 prefix = "";
19450 if (suffix == NULL)
19451 suffix = "";
19452
19453 if (obs == NULL)
19454 {
19455 char *retval
19456 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19457
19458 strcpy (retval, lead);
19459 strcat (retval, prefix);
19460 strcat (retval, sep);
19461 strcat (retval, suffix);
19462 return retval;
19463 }
19464 else
19465 {
19466 /* We have an obstack. */
19467 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19468 }
19469 }
19470
19471 /* Return sibling of die, NULL if no sibling. */
19472
19473 static struct die_info *
19474 sibling_die (struct die_info *die)
19475 {
19476 return die->sibling;
19477 }
19478
19479 /* Get name of a die, return NULL if not found. */
19480
19481 static const char *
19482 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19483 struct obstack *obstack)
19484 {
19485 if (name && cu->language == language_cplus)
19486 {
19487 char *canon_name = cp_canonicalize_string (name);
19488
19489 if (canon_name != NULL)
19490 {
19491 if (strcmp (canon_name, name) != 0)
19492 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19493 xfree (canon_name);
19494 }
19495 }
19496
19497 return name;
19498 }
19499
19500 /* Get name of a die, return NULL if not found.
19501 Anonymous namespaces are converted to their magic string. */
19502
19503 static const char *
19504 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19505 {
19506 struct attribute *attr;
19507
19508 attr = dwarf2_attr (die, DW_AT_name, cu);
19509 if ((!attr || !DW_STRING (attr))
19510 && die->tag != DW_TAG_namespace
19511 && die->tag != DW_TAG_class_type
19512 && die->tag != DW_TAG_interface_type
19513 && die->tag != DW_TAG_structure_type
19514 && die->tag != DW_TAG_union_type)
19515 return NULL;
19516
19517 switch (die->tag)
19518 {
19519 case DW_TAG_compile_unit:
19520 case DW_TAG_partial_unit:
19521 /* Compilation units have a DW_AT_name that is a filename, not
19522 a source language identifier. */
19523 case DW_TAG_enumeration_type:
19524 case DW_TAG_enumerator:
19525 /* These tags always have simple identifiers already; no need
19526 to canonicalize them. */
19527 return DW_STRING (attr);
19528
19529 case DW_TAG_namespace:
19530 if (attr != NULL && DW_STRING (attr) != NULL)
19531 return DW_STRING (attr);
19532 return CP_ANONYMOUS_NAMESPACE_STR;
19533
19534 case DW_TAG_subprogram:
19535 /* Java constructors will all be named "<init>", so return
19536 the class name when we see this special case. */
19537 if (cu->language == language_java
19538 && DW_STRING (attr) != NULL
19539 && strcmp (DW_STRING (attr), "<init>") == 0)
19540 {
19541 struct dwarf2_cu *spec_cu = cu;
19542 struct die_info *spec_die;
19543
19544 /* GCJ will output '<init>' for Java constructor names.
19545 For this special case, return the name of the parent class. */
19546
19547 /* GCJ may output subprogram DIEs with AT_specification set.
19548 If so, use the name of the specified DIE. */
19549 spec_die = die_specification (die, &spec_cu);
19550 if (spec_die != NULL)
19551 return dwarf2_name (spec_die, spec_cu);
19552
19553 do
19554 {
19555 die = die->parent;
19556 if (die->tag == DW_TAG_class_type)
19557 return dwarf2_name (die, cu);
19558 }
19559 while (die->tag != DW_TAG_compile_unit
19560 && die->tag != DW_TAG_partial_unit);
19561 }
19562 break;
19563
19564 case DW_TAG_class_type:
19565 case DW_TAG_interface_type:
19566 case DW_TAG_structure_type:
19567 case DW_TAG_union_type:
19568 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19569 structures or unions. These were of the form "._%d" in GCC 4.1,
19570 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19571 and GCC 4.4. We work around this problem by ignoring these. */
19572 if (attr && DW_STRING (attr)
19573 && (startswith (DW_STRING (attr), "._")
19574 || startswith (DW_STRING (attr), "<anonymous")))
19575 return NULL;
19576
19577 /* GCC might emit a nameless typedef that has a linkage name. See
19578 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19579 if (!attr || DW_STRING (attr) == NULL)
19580 {
19581 char *demangled = NULL;
19582
19583 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19584 if (attr == NULL)
19585 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19586
19587 if (attr == NULL || DW_STRING (attr) == NULL)
19588 return NULL;
19589
19590 /* Avoid demangling DW_STRING (attr) the second time on a second
19591 call for the same DIE. */
19592 if (!DW_STRING_IS_CANONICAL (attr))
19593 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19594
19595 if (demangled)
19596 {
19597 char *base;
19598
19599 /* FIXME: we already did this for the partial symbol... */
19600 DW_STRING (attr)
19601 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19602 demangled, strlen (demangled));
19603 DW_STRING_IS_CANONICAL (attr) = 1;
19604 xfree (demangled);
19605
19606 /* Strip any leading namespaces/classes, keep only the base name.
19607 DW_AT_name for named DIEs does not contain the prefixes. */
19608 base = strrchr (DW_STRING (attr), ':');
19609 if (base && base > DW_STRING (attr) && base[-1] == ':')
19610 return &base[1];
19611 else
19612 return DW_STRING (attr);
19613 }
19614 }
19615 break;
19616
19617 default:
19618 break;
19619 }
19620
19621 if (!DW_STRING_IS_CANONICAL (attr))
19622 {
19623 DW_STRING (attr)
19624 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19625 &cu->objfile->per_bfd->storage_obstack);
19626 DW_STRING_IS_CANONICAL (attr) = 1;
19627 }
19628 return DW_STRING (attr);
19629 }
19630
19631 /* Return the die that this die in an extension of, or NULL if there
19632 is none. *EXT_CU is the CU containing DIE on input, and the CU
19633 containing the return value on output. */
19634
19635 static struct die_info *
19636 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19637 {
19638 struct attribute *attr;
19639
19640 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19641 if (attr == NULL)
19642 return NULL;
19643
19644 return follow_die_ref (die, attr, ext_cu);
19645 }
19646
19647 /* Convert a DIE tag into its string name. */
19648
19649 static const char *
19650 dwarf_tag_name (unsigned tag)
19651 {
19652 const char *name = get_DW_TAG_name (tag);
19653
19654 if (name == NULL)
19655 return "DW_TAG_<unknown>";
19656
19657 return name;
19658 }
19659
19660 /* Convert a DWARF attribute code into its string name. */
19661
19662 static const char *
19663 dwarf_attr_name (unsigned attr)
19664 {
19665 const char *name;
19666
19667 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19668 if (attr == DW_AT_MIPS_fde)
19669 return "DW_AT_MIPS_fde";
19670 #else
19671 if (attr == DW_AT_HP_block_index)
19672 return "DW_AT_HP_block_index";
19673 #endif
19674
19675 name = get_DW_AT_name (attr);
19676
19677 if (name == NULL)
19678 return "DW_AT_<unknown>";
19679
19680 return name;
19681 }
19682
19683 /* Convert a DWARF value form code into its string name. */
19684
19685 static const char *
19686 dwarf_form_name (unsigned form)
19687 {
19688 const char *name = get_DW_FORM_name (form);
19689
19690 if (name == NULL)
19691 return "DW_FORM_<unknown>";
19692
19693 return name;
19694 }
19695
19696 static char *
19697 dwarf_bool_name (unsigned mybool)
19698 {
19699 if (mybool)
19700 return "TRUE";
19701 else
19702 return "FALSE";
19703 }
19704
19705 /* Convert a DWARF type code into its string name. */
19706
19707 static const char *
19708 dwarf_type_encoding_name (unsigned enc)
19709 {
19710 const char *name = get_DW_ATE_name (enc);
19711
19712 if (name == NULL)
19713 return "DW_ATE_<unknown>";
19714
19715 return name;
19716 }
19717
19718 static void
19719 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19720 {
19721 unsigned int i;
19722
19723 print_spaces (indent, f);
19724 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19725 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19726
19727 if (die->parent != NULL)
19728 {
19729 print_spaces (indent, f);
19730 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19731 die->parent->offset.sect_off);
19732 }
19733
19734 print_spaces (indent, f);
19735 fprintf_unfiltered (f, " has children: %s\n",
19736 dwarf_bool_name (die->child != NULL));
19737
19738 print_spaces (indent, f);
19739 fprintf_unfiltered (f, " attributes:\n");
19740
19741 for (i = 0; i < die->num_attrs; ++i)
19742 {
19743 print_spaces (indent, f);
19744 fprintf_unfiltered (f, " %s (%s) ",
19745 dwarf_attr_name (die->attrs[i].name),
19746 dwarf_form_name (die->attrs[i].form));
19747
19748 switch (die->attrs[i].form)
19749 {
19750 case DW_FORM_addr:
19751 case DW_FORM_GNU_addr_index:
19752 fprintf_unfiltered (f, "address: ");
19753 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19754 break;
19755 case DW_FORM_block2:
19756 case DW_FORM_block4:
19757 case DW_FORM_block:
19758 case DW_FORM_block1:
19759 fprintf_unfiltered (f, "block: size %s",
19760 pulongest (DW_BLOCK (&die->attrs[i])->size));
19761 break;
19762 case DW_FORM_exprloc:
19763 fprintf_unfiltered (f, "expression: size %s",
19764 pulongest (DW_BLOCK (&die->attrs[i])->size));
19765 break;
19766 case DW_FORM_ref_addr:
19767 fprintf_unfiltered (f, "ref address: ");
19768 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19769 break;
19770 case DW_FORM_GNU_ref_alt:
19771 fprintf_unfiltered (f, "alt ref address: ");
19772 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19773 break;
19774 case DW_FORM_ref1:
19775 case DW_FORM_ref2:
19776 case DW_FORM_ref4:
19777 case DW_FORM_ref8:
19778 case DW_FORM_ref_udata:
19779 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19780 (long) (DW_UNSND (&die->attrs[i])));
19781 break;
19782 case DW_FORM_data1:
19783 case DW_FORM_data2:
19784 case DW_FORM_data4:
19785 case DW_FORM_data8:
19786 case DW_FORM_udata:
19787 case DW_FORM_sdata:
19788 fprintf_unfiltered (f, "constant: %s",
19789 pulongest (DW_UNSND (&die->attrs[i])));
19790 break;
19791 case DW_FORM_sec_offset:
19792 fprintf_unfiltered (f, "section offset: %s",
19793 pulongest (DW_UNSND (&die->attrs[i])));
19794 break;
19795 case DW_FORM_ref_sig8:
19796 fprintf_unfiltered (f, "signature: %s",
19797 hex_string (DW_SIGNATURE (&die->attrs[i])));
19798 break;
19799 case DW_FORM_string:
19800 case DW_FORM_strp:
19801 case DW_FORM_GNU_str_index:
19802 case DW_FORM_GNU_strp_alt:
19803 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19804 DW_STRING (&die->attrs[i])
19805 ? DW_STRING (&die->attrs[i]) : "",
19806 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19807 break;
19808 case DW_FORM_flag:
19809 if (DW_UNSND (&die->attrs[i]))
19810 fprintf_unfiltered (f, "flag: TRUE");
19811 else
19812 fprintf_unfiltered (f, "flag: FALSE");
19813 break;
19814 case DW_FORM_flag_present:
19815 fprintf_unfiltered (f, "flag: TRUE");
19816 break;
19817 case DW_FORM_indirect:
19818 /* The reader will have reduced the indirect form to
19819 the "base form" so this form should not occur. */
19820 fprintf_unfiltered (f,
19821 "unexpected attribute form: DW_FORM_indirect");
19822 break;
19823 default:
19824 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19825 die->attrs[i].form);
19826 break;
19827 }
19828 fprintf_unfiltered (f, "\n");
19829 }
19830 }
19831
19832 static void
19833 dump_die_for_error (struct die_info *die)
19834 {
19835 dump_die_shallow (gdb_stderr, 0, die);
19836 }
19837
19838 static void
19839 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19840 {
19841 int indent = level * 4;
19842
19843 gdb_assert (die != NULL);
19844
19845 if (level >= max_level)
19846 return;
19847
19848 dump_die_shallow (f, indent, die);
19849
19850 if (die->child != NULL)
19851 {
19852 print_spaces (indent, f);
19853 fprintf_unfiltered (f, " Children:");
19854 if (level + 1 < max_level)
19855 {
19856 fprintf_unfiltered (f, "\n");
19857 dump_die_1 (f, level + 1, max_level, die->child);
19858 }
19859 else
19860 {
19861 fprintf_unfiltered (f,
19862 " [not printed, max nesting level reached]\n");
19863 }
19864 }
19865
19866 if (die->sibling != NULL && level > 0)
19867 {
19868 dump_die_1 (f, level, max_level, die->sibling);
19869 }
19870 }
19871
19872 /* This is called from the pdie macro in gdbinit.in.
19873 It's not static so gcc will keep a copy callable from gdb. */
19874
19875 void
19876 dump_die (struct die_info *die, int max_level)
19877 {
19878 dump_die_1 (gdb_stdlog, 0, max_level, die);
19879 }
19880
19881 static void
19882 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19883 {
19884 void **slot;
19885
19886 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19887 INSERT);
19888
19889 *slot = die;
19890 }
19891
19892 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19893 required kind. */
19894
19895 static sect_offset
19896 dwarf2_get_ref_die_offset (const struct attribute *attr)
19897 {
19898 sect_offset retval = { DW_UNSND (attr) };
19899
19900 if (attr_form_is_ref (attr))
19901 return retval;
19902
19903 retval.sect_off = 0;
19904 complaint (&symfile_complaints,
19905 _("unsupported die ref attribute form: '%s'"),
19906 dwarf_form_name (attr->form));
19907 return retval;
19908 }
19909
19910 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19911 * the value held by the attribute is not constant. */
19912
19913 static LONGEST
19914 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19915 {
19916 if (attr->form == DW_FORM_sdata)
19917 return DW_SND (attr);
19918 else if (attr->form == DW_FORM_udata
19919 || attr->form == DW_FORM_data1
19920 || attr->form == DW_FORM_data2
19921 || attr->form == DW_FORM_data4
19922 || attr->form == DW_FORM_data8)
19923 return DW_UNSND (attr);
19924 else
19925 {
19926 complaint (&symfile_complaints,
19927 _("Attribute value is not a constant (%s)"),
19928 dwarf_form_name (attr->form));
19929 return default_value;
19930 }
19931 }
19932
19933 /* Follow reference or signature attribute ATTR of SRC_DIE.
19934 On entry *REF_CU is the CU of SRC_DIE.
19935 On exit *REF_CU is the CU of the result. */
19936
19937 static struct die_info *
19938 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19939 struct dwarf2_cu **ref_cu)
19940 {
19941 struct die_info *die;
19942
19943 if (attr_form_is_ref (attr))
19944 die = follow_die_ref (src_die, attr, ref_cu);
19945 else if (attr->form == DW_FORM_ref_sig8)
19946 die = follow_die_sig (src_die, attr, ref_cu);
19947 else
19948 {
19949 dump_die_for_error (src_die);
19950 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19951 objfile_name ((*ref_cu)->objfile));
19952 }
19953
19954 return die;
19955 }
19956
19957 /* Follow reference OFFSET.
19958 On entry *REF_CU is the CU of the source die referencing OFFSET.
19959 On exit *REF_CU is the CU of the result.
19960 Returns NULL if OFFSET is invalid. */
19961
19962 static struct die_info *
19963 follow_die_offset (sect_offset offset, int offset_in_dwz,
19964 struct dwarf2_cu **ref_cu)
19965 {
19966 struct die_info temp_die;
19967 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19968
19969 gdb_assert (cu->per_cu != NULL);
19970
19971 target_cu = cu;
19972
19973 if (cu->per_cu->is_debug_types)
19974 {
19975 /* .debug_types CUs cannot reference anything outside their CU.
19976 If they need to, they have to reference a signatured type via
19977 DW_FORM_ref_sig8. */
19978 if (! offset_in_cu_p (&cu->header, offset))
19979 return NULL;
19980 }
19981 else if (offset_in_dwz != cu->per_cu->is_dwz
19982 || ! offset_in_cu_p (&cu->header, offset))
19983 {
19984 struct dwarf2_per_cu_data *per_cu;
19985
19986 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19987 cu->objfile);
19988
19989 /* If necessary, add it to the queue and load its DIEs. */
19990 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19991 load_full_comp_unit (per_cu, cu->language);
19992
19993 target_cu = per_cu->cu;
19994 }
19995 else if (cu->dies == NULL)
19996 {
19997 /* We're loading full DIEs during partial symbol reading. */
19998 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19999 load_full_comp_unit (cu->per_cu, language_minimal);
20000 }
20001
20002 *ref_cu = target_cu;
20003 temp_die.offset = offset;
20004 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
20005 }
20006
20007 /* Follow reference attribute ATTR of SRC_DIE.
20008 On entry *REF_CU is the CU of SRC_DIE.
20009 On exit *REF_CU is the CU of the result. */
20010
20011 static struct die_info *
20012 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20013 struct dwarf2_cu **ref_cu)
20014 {
20015 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20016 struct dwarf2_cu *cu = *ref_cu;
20017 struct die_info *die;
20018
20019 die = follow_die_offset (offset,
20020 (attr->form == DW_FORM_GNU_ref_alt
20021 || cu->per_cu->is_dwz),
20022 ref_cu);
20023 if (!die)
20024 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20025 "at 0x%x [in module %s]"),
20026 offset.sect_off, src_die->offset.sect_off,
20027 objfile_name (cu->objfile));
20028
20029 return die;
20030 }
20031
20032 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20033 Returned value is intended for DW_OP_call*. Returned
20034 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20035
20036 struct dwarf2_locexpr_baton
20037 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20038 struct dwarf2_per_cu_data *per_cu,
20039 CORE_ADDR (*get_frame_pc) (void *baton),
20040 void *baton)
20041 {
20042 struct dwarf2_cu *cu;
20043 struct die_info *die;
20044 struct attribute *attr;
20045 struct dwarf2_locexpr_baton retval;
20046
20047 dw2_setup (per_cu->objfile);
20048
20049 if (per_cu->cu == NULL)
20050 load_cu (per_cu);
20051 cu = per_cu->cu;
20052 if (cu == NULL)
20053 {
20054 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20055 Instead just throw an error, not much else we can do. */
20056 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20057 offset.sect_off, objfile_name (per_cu->objfile));
20058 }
20059
20060 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20061 if (!die)
20062 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20063 offset.sect_off, objfile_name (per_cu->objfile));
20064
20065 attr = dwarf2_attr (die, DW_AT_location, cu);
20066 if (!attr)
20067 {
20068 /* DWARF: "If there is no such attribute, then there is no effect.".
20069 DATA is ignored if SIZE is 0. */
20070
20071 retval.data = NULL;
20072 retval.size = 0;
20073 }
20074 else if (attr_form_is_section_offset (attr))
20075 {
20076 struct dwarf2_loclist_baton loclist_baton;
20077 CORE_ADDR pc = (*get_frame_pc) (baton);
20078 size_t size;
20079
20080 fill_in_loclist_baton (cu, &loclist_baton, attr);
20081
20082 retval.data = dwarf2_find_location_expression (&loclist_baton,
20083 &size, pc);
20084 retval.size = size;
20085 }
20086 else
20087 {
20088 if (!attr_form_is_block (attr))
20089 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20090 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20091 offset.sect_off, objfile_name (per_cu->objfile));
20092
20093 retval.data = DW_BLOCK (attr)->data;
20094 retval.size = DW_BLOCK (attr)->size;
20095 }
20096 retval.per_cu = cu->per_cu;
20097
20098 age_cached_comp_units ();
20099
20100 return retval;
20101 }
20102
20103 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20104 offset. */
20105
20106 struct dwarf2_locexpr_baton
20107 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20108 struct dwarf2_per_cu_data *per_cu,
20109 CORE_ADDR (*get_frame_pc) (void *baton),
20110 void *baton)
20111 {
20112 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20113
20114 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20115 }
20116
20117 /* Write a constant of a given type as target-ordered bytes into
20118 OBSTACK. */
20119
20120 static const gdb_byte *
20121 write_constant_as_bytes (struct obstack *obstack,
20122 enum bfd_endian byte_order,
20123 struct type *type,
20124 ULONGEST value,
20125 LONGEST *len)
20126 {
20127 gdb_byte *result;
20128
20129 *len = TYPE_LENGTH (type);
20130 result = obstack_alloc (obstack, *len);
20131 store_unsigned_integer (result, *len, byte_order, value);
20132
20133 return result;
20134 }
20135
20136 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20137 pointer to the constant bytes and set LEN to the length of the
20138 data. If memory is needed, allocate it on OBSTACK. If the DIE
20139 does not have a DW_AT_const_value, return NULL. */
20140
20141 const gdb_byte *
20142 dwarf2_fetch_constant_bytes (sect_offset offset,
20143 struct dwarf2_per_cu_data *per_cu,
20144 struct obstack *obstack,
20145 LONGEST *len)
20146 {
20147 struct dwarf2_cu *cu;
20148 struct die_info *die;
20149 struct attribute *attr;
20150 const gdb_byte *result = NULL;
20151 struct type *type;
20152 LONGEST value;
20153 enum bfd_endian byte_order;
20154
20155 dw2_setup (per_cu->objfile);
20156
20157 if (per_cu->cu == NULL)
20158 load_cu (per_cu);
20159 cu = per_cu->cu;
20160 if (cu == NULL)
20161 {
20162 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20163 Instead just throw an error, not much else we can do. */
20164 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20165 offset.sect_off, objfile_name (per_cu->objfile));
20166 }
20167
20168 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20169 if (!die)
20170 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20171 offset.sect_off, objfile_name (per_cu->objfile));
20172
20173
20174 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20175 if (attr == NULL)
20176 return NULL;
20177
20178 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20179 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20180
20181 switch (attr->form)
20182 {
20183 case DW_FORM_addr:
20184 case DW_FORM_GNU_addr_index:
20185 {
20186 gdb_byte *tem;
20187
20188 *len = cu->header.addr_size;
20189 tem = obstack_alloc (obstack, *len);
20190 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20191 result = tem;
20192 }
20193 break;
20194 case DW_FORM_string:
20195 case DW_FORM_strp:
20196 case DW_FORM_GNU_str_index:
20197 case DW_FORM_GNU_strp_alt:
20198 /* DW_STRING is already allocated on the objfile obstack, point
20199 directly to it. */
20200 result = (const gdb_byte *) DW_STRING (attr);
20201 *len = strlen (DW_STRING (attr));
20202 break;
20203 case DW_FORM_block1:
20204 case DW_FORM_block2:
20205 case DW_FORM_block4:
20206 case DW_FORM_block:
20207 case DW_FORM_exprloc:
20208 result = DW_BLOCK (attr)->data;
20209 *len = DW_BLOCK (attr)->size;
20210 break;
20211
20212 /* The DW_AT_const_value attributes are supposed to carry the
20213 symbol's value "represented as it would be on the target
20214 architecture." By the time we get here, it's already been
20215 converted to host endianness, so we just need to sign- or
20216 zero-extend it as appropriate. */
20217 case DW_FORM_data1:
20218 type = die_type (die, cu);
20219 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20220 if (result == NULL)
20221 result = write_constant_as_bytes (obstack, byte_order,
20222 type, value, len);
20223 break;
20224 case DW_FORM_data2:
20225 type = die_type (die, cu);
20226 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20227 if (result == NULL)
20228 result = write_constant_as_bytes (obstack, byte_order,
20229 type, value, len);
20230 break;
20231 case DW_FORM_data4:
20232 type = die_type (die, cu);
20233 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20234 if (result == NULL)
20235 result = write_constant_as_bytes (obstack, byte_order,
20236 type, value, len);
20237 break;
20238 case DW_FORM_data8:
20239 type = die_type (die, cu);
20240 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20241 if (result == NULL)
20242 result = write_constant_as_bytes (obstack, byte_order,
20243 type, value, len);
20244 break;
20245
20246 case DW_FORM_sdata:
20247 type = die_type (die, cu);
20248 result = write_constant_as_bytes (obstack, byte_order,
20249 type, DW_SND (attr), len);
20250 break;
20251
20252 case DW_FORM_udata:
20253 type = die_type (die, cu);
20254 result = write_constant_as_bytes (obstack, byte_order,
20255 type, DW_UNSND (attr), len);
20256 break;
20257
20258 default:
20259 complaint (&symfile_complaints,
20260 _("unsupported const value attribute form: '%s'"),
20261 dwarf_form_name (attr->form));
20262 break;
20263 }
20264
20265 return result;
20266 }
20267
20268 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20269 PER_CU. */
20270
20271 struct type *
20272 dwarf2_get_die_type (cu_offset die_offset,
20273 struct dwarf2_per_cu_data *per_cu)
20274 {
20275 sect_offset die_offset_sect;
20276
20277 dw2_setup (per_cu->objfile);
20278
20279 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20280 return get_die_type_at_offset (die_offset_sect, per_cu);
20281 }
20282
20283 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20284 On entry *REF_CU is the CU of SRC_DIE.
20285 On exit *REF_CU is the CU of the result.
20286 Returns NULL if the referenced DIE isn't found. */
20287
20288 static struct die_info *
20289 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20290 struct dwarf2_cu **ref_cu)
20291 {
20292 struct objfile *objfile = (*ref_cu)->objfile;
20293 struct die_info temp_die;
20294 struct dwarf2_cu *sig_cu;
20295 struct die_info *die;
20296
20297 /* While it might be nice to assert sig_type->type == NULL here,
20298 we can get here for DW_AT_imported_declaration where we need
20299 the DIE not the type. */
20300
20301 /* If necessary, add it to the queue and load its DIEs. */
20302
20303 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20304 read_signatured_type (sig_type);
20305
20306 sig_cu = sig_type->per_cu.cu;
20307 gdb_assert (sig_cu != NULL);
20308 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20309 temp_die.offset = sig_type->type_offset_in_section;
20310 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20311 temp_die.offset.sect_off);
20312 if (die)
20313 {
20314 /* For .gdb_index version 7 keep track of included TUs.
20315 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20316 if (dwarf2_per_objfile->index_table != NULL
20317 && dwarf2_per_objfile->index_table->version <= 7)
20318 {
20319 VEC_safe_push (dwarf2_per_cu_ptr,
20320 (*ref_cu)->per_cu->imported_symtabs,
20321 sig_cu->per_cu);
20322 }
20323
20324 *ref_cu = sig_cu;
20325 return die;
20326 }
20327
20328 return NULL;
20329 }
20330
20331 /* Follow signatured type referenced by ATTR in SRC_DIE.
20332 On entry *REF_CU is the CU of SRC_DIE.
20333 On exit *REF_CU is the CU of the result.
20334 The result is the DIE of the type.
20335 If the referenced type cannot be found an error is thrown. */
20336
20337 static struct die_info *
20338 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20339 struct dwarf2_cu **ref_cu)
20340 {
20341 ULONGEST signature = DW_SIGNATURE (attr);
20342 struct signatured_type *sig_type;
20343 struct die_info *die;
20344
20345 gdb_assert (attr->form == DW_FORM_ref_sig8);
20346
20347 sig_type = lookup_signatured_type (*ref_cu, signature);
20348 /* sig_type will be NULL if the signatured type is missing from
20349 the debug info. */
20350 if (sig_type == NULL)
20351 {
20352 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20353 " from DIE at 0x%x [in module %s]"),
20354 hex_string (signature), src_die->offset.sect_off,
20355 objfile_name ((*ref_cu)->objfile));
20356 }
20357
20358 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20359 if (die == NULL)
20360 {
20361 dump_die_for_error (src_die);
20362 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20363 " from DIE at 0x%x [in module %s]"),
20364 hex_string (signature), src_die->offset.sect_off,
20365 objfile_name ((*ref_cu)->objfile));
20366 }
20367
20368 return die;
20369 }
20370
20371 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20372 reading in and processing the type unit if necessary. */
20373
20374 static struct type *
20375 get_signatured_type (struct die_info *die, ULONGEST signature,
20376 struct dwarf2_cu *cu)
20377 {
20378 struct signatured_type *sig_type;
20379 struct dwarf2_cu *type_cu;
20380 struct die_info *type_die;
20381 struct type *type;
20382
20383 sig_type = lookup_signatured_type (cu, signature);
20384 /* sig_type will be NULL if the signatured type is missing from
20385 the debug info. */
20386 if (sig_type == NULL)
20387 {
20388 complaint (&symfile_complaints,
20389 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20390 " from DIE at 0x%x [in module %s]"),
20391 hex_string (signature), die->offset.sect_off,
20392 objfile_name (dwarf2_per_objfile->objfile));
20393 return build_error_marker_type (cu, die);
20394 }
20395
20396 /* If we already know the type we're done. */
20397 if (sig_type->type != NULL)
20398 return sig_type->type;
20399
20400 type_cu = cu;
20401 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20402 if (type_die != NULL)
20403 {
20404 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20405 is created. This is important, for example, because for c++ classes
20406 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20407 type = read_type_die (type_die, type_cu);
20408 if (type == NULL)
20409 {
20410 complaint (&symfile_complaints,
20411 _("Dwarf Error: Cannot build signatured type %s"
20412 " referenced from DIE at 0x%x [in module %s]"),
20413 hex_string (signature), die->offset.sect_off,
20414 objfile_name (dwarf2_per_objfile->objfile));
20415 type = build_error_marker_type (cu, die);
20416 }
20417 }
20418 else
20419 {
20420 complaint (&symfile_complaints,
20421 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20422 " from DIE at 0x%x [in module %s]"),
20423 hex_string (signature), die->offset.sect_off,
20424 objfile_name (dwarf2_per_objfile->objfile));
20425 type = build_error_marker_type (cu, die);
20426 }
20427 sig_type->type = type;
20428
20429 return type;
20430 }
20431
20432 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20433 reading in and processing the type unit if necessary. */
20434
20435 static struct type *
20436 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20437 struct dwarf2_cu *cu) /* ARI: editCase function */
20438 {
20439 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20440 if (attr_form_is_ref (attr))
20441 {
20442 struct dwarf2_cu *type_cu = cu;
20443 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20444
20445 return read_type_die (type_die, type_cu);
20446 }
20447 else if (attr->form == DW_FORM_ref_sig8)
20448 {
20449 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20450 }
20451 else
20452 {
20453 complaint (&symfile_complaints,
20454 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20455 " at 0x%x [in module %s]"),
20456 dwarf_form_name (attr->form), die->offset.sect_off,
20457 objfile_name (dwarf2_per_objfile->objfile));
20458 return build_error_marker_type (cu, die);
20459 }
20460 }
20461
20462 /* Load the DIEs associated with type unit PER_CU into memory. */
20463
20464 static void
20465 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20466 {
20467 struct signatured_type *sig_type;
20468
20469 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20470 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20471
20472 /* We have the per_cu, but we need the signatured_type.
20473 Fortunately this is an easy translation. */
20474 gdb_assert (per_cu->is_debug_types);
20475 sig_type = (struct signatured_type *) per_cu;
20476
20477 gdb_assert (per_cu->cu == NULL);
20478
20479 read_signatured_type (sig_type);
20480
20481 gdb_assert (per_cu->cu != NULL);
20482 }
20483
20484 /* die_reader_func for read_signatured_type.
20485 This is identical to load_full_comp_unit_reader,
20486 but is kept separate for now. */
20487
20488 static void
20489 read_signatured_type_reader (const struct die_reader_specs *reader,
20490 const gdb_byte *info_ptr,
20491 struct die_info *comp_unit_die,
20492 int has_children,
20493 void *data)
20494 {
20495 struct dwarf2_cu *cu = reader->cu;
20496
20497 gdb_assert (cu->die_hash == NULL);
20498 cu->die_hash =
20499 htab_create_alloc_ex (cu->header.length / 12,
20500 die_hash,
20501 die_eq,
20502 NULL,
20503 &cu->comp_unit_obstack,
20504 hashtab_obstack_allocate,
20505 dummy_obstack_deallocate);
20506
20507 if (has_children)
20508 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20509 &info_ptr, comp_unit_die);
20510 cu->dies = comp_unit_die;
20511 /* comp_unit_die is not stored in die_hash, no need. */
20512
20513 /* We try not to read any attributes in this function, because not
20514 all CUs needed for references have been loaded yet, and symbol
20515 table processing isn't initialized. But we have to set the CU language,
20516 or we won't be able to build types correctly.
20517 Similarly, if we do not read the producer, we can not apply
20518 producer-specific interpretation. */
20519 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20520 }
20521
20522 /* Read in a signatured type and build its CU and DIEs.
20523 If the type is a stub for the real type in a DWO file,
20524 read in the real type from the DWO file as well. */
20525
20526 static void
20527 read_signatured_type (struct signatured_type *sig_type)
20528 {
20529 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20530
20531 gdb_assert (per_cu->is_debug_types);
20532 gdb_assert (per_cu->cu == NULL);
20533
20534 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20535 read_signatured_type_reader, NULL);
20536 sig_type->per_cu.tu_read = 1;
20537 }
20538
20539 /* Decode simple location descriptions.
20540 Given a pointer to a dwarf block that defines a location, compute
20541 the location and return the value.
20542
20543 NOTE drow/2003-11-18: This function is called in two situations
20544 now: for the address of static or global variables (partial symbols
20545 only) and for offsets into structures which are expected to be
20546 (more or less) constant. The partial symbol case should go away,
20547 and only the constant case should remain. That will let this
20548 function complain more accurately. A few special modes are allowed
20549 without complaint for global variables (for instance, global
20550 register values and thread-local values).
20551
20552 A location description containing no operations indicates that the
20553 object is optimized out. The return value is 0 for that case.
20554 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20555 callers will only want a very basic result and this can become a
20556 complaint.
20557
20558 Note that stack[0] is unused except as a default error return. */
20559
20560 static CORE_ADDR
20561 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20562 {
20563 struct objfile *objfile = cu->objfile;
20564 size_t i;
20565 size_t size = blk->size;
20566 const gdb_byte *data = blk->data;
20567 CORE_ADDR stack[64];
20568 int stacki;
20569 unsigned int bytes_read, unsnd;
20570 gdb_byte op;
20571
20572 i = 0;
20573 stacki = 0;
20574 stack[stacki] = 0;
20575 stack[++stacki] = 0;
20576
20577 while (i < size)
20578 {
20579 op = data[i++];
20580 switch (op)
20581 {
20582 case DW_OP_lit0:
20583 case DW_OP_lit1:
20584 case DW_OP_lit2:
20585 case DW_OP_lit3:
20586 case DW_OP_lit4:
20587 case DW_OP_lit5:
20588 case DW_OP_lit6:
20589 case DW_OP_lit7:
20590 case DW_OP_lit8:
20591 case DW_OP_lit9:
20592 case DW_OP_lit10:
20593 case DW_OP_lit11:
20594 case DW_OP_lit12:
20595 case DW_OP_lit13:
20596 case DW_OP_lit14:
20597 case DW_OP_lit15:
20598 case DW_OP_lit16:
20599 case DW_OP_lit17:
20600 case DW_OP_lit18:
20601 case DW_OP_lit19:
20602 case DW_OP_lit20:
20603 case DW_OP_lit21:
20604 case DW_OP_lit22:
20605 case DW_OP_lit23:
20606 case DW_OP_lit24:
20607 case DW_OP_lit25:
20608 case DW_OP_lit26:
20609 case DW_OP_lit27:
20610 case DW_OP_lit28:
20611 case DW_OP_lit29:
20612 case DW_OP_lit30:
20613 case DW_OP_lit31:
20614 stack[++stacki] = op - DW_OP_lit0;
20615 break;
20616
20617 case DW_OP_reg0:
20618 case DW_OP_reg1:
20619 case DW_OP_reg2:
20620 case DW_OP_reg3:
20621 case DW_OP_reg4:
20622 case DW_OP_reg5:
20623 case DW_OP_reg6:
20624 case DW_OP_reg7:
20625 case DW_OP_reg8:
20626 case DW_OP_reg9:
20627 case DW_OP_reg10:
20628 case DW_OP_reg11:
20629 case DW_OP_reg12:
20630 case DW_OP_reg13:
20631 case DW_OP_reg14:
20632 case DW_OP_reg15:
20633 case DW_OP_reg16:
20634 case DW_OP_reg17:
20635 case DW_OP_reg18:
20636 case DW_OP_reg19:
20637 case DW_OP_reg20:
20638 case DW_OP_reg21:
20639 case DW_OP_reg22:
20640 case DW_OP_reg23:
20641 case DW_OP_reg24:
20642 case DW_OP_reg25:
20643 case DW_OP_reg26:
20644 case DW_OP_reg27:
20645 case DW_OP_reg28:
20646 case DW_OP_reg29:
20647 case DW_OP_reg30:
20648 case DW_OP_reg31:
20649 stack[++stacki] = op - DW_OP_reg0;
20650 if (i < size)
20651 dwarf2_complex_location_expr_complaint ();
20652 break;
20653
20654 case DW_OP_regx:
20655 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20656 i += bytes_read;
20657 stack[++stacki] = unsnd;
20658 if (i < size)
20659 dwarf2_complex_location_expr_complaint ();
20660 break;
20661
20662 case DW_OP_addr:
20663 stack[++stacki] = read_address (objfile->obfd, &data[i],
20664 cu, &bytes_read);
20665 i += bytes_read;
20666 break;
20667
20668 case DW_OP_const1u:
20669 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20670 i += 1;
20671 break;
20672
20673 case DW_OP_const1s:
20674 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20675 i += 1;
20676 break;
20677
20678 case DW_OP_const2u:
20679 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20680 i += 2;
20681 break;
20682
20683 case DW_OP_const2s:
20684 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20685 i += 2;
20686 break;
20687
20688 case DW_OP_const4u:
20689 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20690 i += 4;
20691 break;
20692
20693 case DW_OP_const4s:
20694 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20695 i += 4;
20696 break;
20697
20698 case DW_OP_const8u:
20699 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20700 i += 8;
20701 break;
20702
20703 case DW_OP_constu:
20704 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20705 &bytes_read);
20706 i += bytes_read;
20707 break;
20708
20709 case DW_OP_consts:
20710 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20711 i += bytes_read;
20712 break;
20713
20714 case DW_OP_dup:
20715 stack[stacki + 1] = stack[stacki];
20716 stacki++;
20717 break;
20718
20719 case DW_OP_plus:
20720 stack[stacki - 1] += stack[stacki];
20721 stacki--;
20722 break;
20723
20724 case DW_OP_plus_uconst:
20725 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20726 &bytes_read);
20727 i += bytes_read;
20728 break;
20729
20730 case DW_OP_minus:
20731 stack[stacki - 1] -= stack[stacki];
20732 stacki--;
20733 break;
20734
20735 case DW_OP_deref:
20736 /* If we're not the last op, then we definitely can't encode
20737 this using GDB's address_class enum. This is valid for partial
20738 global symbols, although the variable's address will be bogus
20739 in the psymtab. */
20740 if (i < size)
20741 dwarf2_complex_location_expr_complaint ();
20742 break;
20743
20744 case DW_OP_GNU_push_tls_address:
20745 /* The top of the stack has the offset from the beginning
20746 of the thread control block at which the variable is located. */
20747 /* Nothing should follow this operator, so the top of stack would
20748 be returned. */
20749 /* This is valid for partial global symbols, but the variable's
20750 address will be bogus in the psymtab. Make it always at least
20751 non-zero to not look as a variable garbage collected by linker
20752 which have DW_OP_addr 0. */
20753 if (i < size)
20754 dwarf2_complex_location_expr_complaint ();
20755 stack[stacki]++;
20756 break;
20757
20758 case DW_OP_GNU_uninit:
20759 break;
20760
20761 case DW_OP_GNU_addr_index:
20762 case DW_OP_GNU_const_index:
20763 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20764 &bytes_read);
20765 i += bytes_read;
20766 break;
20767
20768 default:
20769 {
20770 const char *name = get_DW_OP_name (op);
20771
20772 if (name)
20773 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20774 name);
20775 else
20776 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20777 op);
20778 }
20779
20780 return (stack[stacki]);
20781 }
20782
20783 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20784 outside of the allocated space. Also enforce minimum>0. */
20785 if (stacki >= ARRAY_SIZE (stack) - 1)
20786 {
20787 complaint (&symfile_complaints,
20788 _("location description stack overflow"));
20789 return 0;
20790 }
20791
20792 if (stacki <= 0)
20793 {
20794 complaint (&symfile_complaints,
20795 _("location description stack underflow"));
20796 return 0;
20797 }
20798 }
20799 return (stack[stacki]);
20800 }
20801
20802 /* memory allocation interface */
20803
20804 static struct dwarf_block *
20805 dwarf_alloc_block (struct dwarf2_cu *cu)
20806 {
20807 struct dwarf_block *blk;
20808
20809 blk = (struct dwarf_block *)
20810 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20811 return (blk);
20812 }
20813
20814 static struct die_info *
20815 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20816 {
20817 struct die_info *die;
20818 size_t size = sizeof (struct die_info);
20819
20820 if (num_attrs > 1)
20821 size += (num_attrs - 1) * sizeof (struct attribute);
20822
20823 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20824 memset (die, 0, sizeof (struct die_info));
20825 return (die);
20826 }
20827
20828 \f
20829 /* Macro support. */
20830
20831 /* Return file name relative to the compilation directory of file number I in
20832 *LH's file name table. The result is allocated using xmalloc; the caller is
20833 responsible for freeing it. */
20834
20835 static char *
20836 file_file_name (int file, struct line_header *lh)
20837 {
20838 /* Is the file number a valid index into the line header's file name
20839 table? Remember that file numbers start with one, not zero. */
20840 if (1 <= file && file <= lh->num_file_names)
20841 {
20842 struct file_entry *fe = &lh->file_names[file - 1];
20843
20844 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20845 || lh->include_dirs == NULL)
20846 return xstrdup (fe->name);
20847 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20848 fe->name, NULL);
20849 }
20850 else
20851 {
20852 /* The compiler produced a bogus file number. We can at least
20853 record the macro definitions made in the file, even if we
20854 won't be able to find the file by name. */
20855 char fake_name[80];
20856
20857 xsnprintf (fake_name, sizeof (fake_name),
20858 "<bad macro file number %d>", file);
20859
20860 complaint (&symfile_complaints,
20861 _("bad file number in macro information (%d)"),
20862 file);
20863
20864 return xstrdup (fake_name);
20865 }
20866 }
20867
20868 /* Return the full name of file number I in *LH's file name table.
20869 Use COMP_DIR as the name of the current directory of the
20870 compilation. The result is allocated using xmalloc; the caller is
20871 responsible for freeing it. */
20872 static char *
20873 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20874 {
20875 /* Is the file number a valid index into the line header's file name
20876 table? Remember that file numbers start with one, not zero. */
20877 if (1 <= file && file <= lh->num_file_names)
20878 {
20879 char *relative = file_file_name (file, lh);
20880
20881 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20882 return relative;
20883 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20884 }
20885 else
20886 return file_file_name (file, lh);
20887 }
20888
20889
20890 static struct macro_source_file *
20891 macro_start_file (int file, int line,
20892 struct macro_source_file *current_file,
20893 struct line_header *lh)
20894 {
20895 /* File name relative to the compilation directory of this source file. */
20896 char *file_name = file_file_name (file, lh);
20897
20898 if (! current_file)
20899 {
20900 /* Note: We don't create a macro table for this compilation unit
20901 at all until we actually get a filename. */
20902 struct macro_table *macro_table = get_macro_table ();
20903
20904 /* If we have no current file, then this must be the start_file
20905 directive for the compilation unit's main source file. */
20906 current_file = macro_set_main (macro_table, file_name);
20907 macro_define_special (macro_table);
20908 }
20909 else
20910 current_file = macro_include (current_file, line, file_name);
20911
20912 xfree (file_name);
20913
20914 return current_file;
20915 }
20916
20917
20918 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20919 followed by a null byte. */
20920 static char *
20921 copy_string (const char *buf, int len)
20922 {
20923 char *s = xmalloc (len + 1);
20924
20925 memcpy (s, buf, len);
20926 s[len] = '\0';
20927 return s;
20928 }
20929
20930
20931 static const char *
20932 consume_improper_spaces (const char *p, const char *body)
20933 {
20934 if (*p == ' ')
20935 {
20936 complaint (&symfile_complaints,
20937 _("macro definition contains spaces "
20938 "in formal argument list:\n`%s'"),
20939 body);
20940
20941 while (*p == ' ')
20942 p++;
20943 }
20944
20945 return p;
20946 }
20947
20948
20949 static void
20950 parse_macro_definition (struct macro_source_file *file, int line,
20951 const char *body)
20952 {
20953 const char *p;
20954
20955 /* The body string takes one of two forms. For object-like macro
20956 definitions, it should be:
20957
20958 <macro name> " " <definition>
20959
20960 For function-like macro definitions, it should be:
20961
20962 <macro name> "() " <definition>
20963 or
20964 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20965
20966 Spaces may appear only where explicitly indicated, and in the
20967 <definition>.
20968
20969 The Dwarf 2 spec says that an object-like macro's name is always
20970 followed by a space, but versions of GCC around March 2002 omit
20971 the space when the macro's definition is the empty string.
20972
20973 The Dwarf 2 spec says that there should be no spaces between the
20974 formal arguments in a function-like macro's formal argument list,
20975 but versions of GCC around March 2002 include spaces after the
20976 commas. */
20977
20978
20979 /* Find the extent of the macro name. The macro name is terminated
20980 by either a space or null character (for an object-like macro) or
20981 an opening paren (for a function-like macro). */
20982 for (p = body; *p; p++)
20983 if (*p == ' ' || *p == '(')
20984 break;
20985
20986 if (*p == ' ' || *p == '\0')
20987 {
20988 /* It's an object-like macro. */
20989 int name_len = p - body;
20990 char *name = copy_string (body, name_len);
20991 const char *replacement;
20992
20993 if (*p == ' ')
20994 replacement = body + name_len + 1;
20995 else
20996 {
20997 dwarf2_macro_malformed_definition_complaint (body);
20998 replacement = body + name_len;
20999 }
21000
21001 macro_define_object (file, line, name, replacement);
21002
21003 xfree (name);
21004 }
21005 else if (*p == '(')
21006 {
21007 /* It's a function-like macro. */
21008 char *name = copy_string (body, p - body);
21009 int argc = 0;
21010 int argv_size = 1;
21011 char **argv = xmalloc (argv_size * sizeof (*argv));
21012
21013 p++;
21014
21015 p = consume_improper_spaces (p, body);
21016
21017 /* Parse the formal argument list. */
21018 while (*p && *p != ')')
21019 {
21020 /* Find the extent of the current argument name. */
21021 const char *arg_start = p;
21022
21023 while (*p && *p != ',' && *p != ')' && *p != ' ')
21024 p++;
21025
21026 if (! *p || p == arg_start)
21027 dwarf2_macro_malformed_definition_complaint (body);
21028 else
21029 {
21030 /* Make sure argv has room for the new argument. */
21031 if (argc >= argv_size)
21032 {
21033 argv_size *= 2;
21034 argv = xrealloc (argv, argv_size * sizeof (*argv));
21035 }
21036
21037 argv[argc++] = copy_string (arg_start, p - arg_start);
21038 }
21039
21040 p = consume_improper_spaces (p, body);
21041
21042 /* Consume the comma, if present. */
21043 if (*p == ',')
21044 {
21045 p++;
21046
21047 p = consume_improper_spaces (p, body);
21048 }
21049 }
21050
21051 if (*p == ')')
21052 {
21053 p++;
21054
21055 if (*p == ' ')
21056 /* Perfectly formed definition, no complaints. */
21057 macro_define_function (file, line, name,
21058 argc, (const char **) argv,
21059 p + 1);
21060 else if (*p == '\0')
21061 {
21062 /* Complain, but do define it. */
21063 dwarf2_macro_malformed_definition_complaint (body);
21064 macro_define_function (file, line, name,
21065 argc, (const char **) argv,
21066 p);
21067 }
21068 else
21069 /* Just complain. */
21070 dwarf2_macro_malformed_definition_complaint (body);
21071 }
21072 else
21073 /* Just complain. */
21074 dwarf2_macro_malformed_definition_complaint (body);
21075
21076 xfree (name);
21077 {
21078 int i;
21079
21080 for (i = 0; i < argc; i++)
21081 xfree (argv[i]);
21082 }
21083 xfree (argv);
21084 }
21085 else
21086 dwarf2_macro_malformed_definition_complaint (body);
21087 }
21088
21089 /* Skip some bytes from BYTES according to the form given in FORM.
21090 Returns the new pointer. */
21091
21092 static const gdb_byte *
21093 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21094 enum dwarf_form form,
21095 unsigned int offset_size,
21096 struct dwarf2_section_info *section)
21097 {
21098 unsigned int bytes_read;
21099
21100 switch (form)
21101 {
21102 case DW_FORM_data1:
21103 case DW_FORM_flag:
21104 ++bytes;
21105 break;
21106
21107 case DW_FORM_data2:
21108 bytes += 2;
21109 break;
21110
21111 case DW_FORM_data4:
21112 bytes += 4;
21113 break;
21114
21115 case DW_FORM_data8:
21116 bytes += 8;
21117 break;
21118
21119 case DW_FORM_string:
21120 read_direct_string (abfd, bytes, &bytes_read);
21121 bytes += bytes_read;
21122 break;
21123
21124 case DW_FORM_sec_offset:
21125 case DW_FORM_strp:
21126 case DW_FORM_GNU_strp_alt:
21127 bytes += offset_size;
21128 break;
21129
21130 case DW_FORM_block:
21131 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21132 bytes += bytes_read;
21133 break;
21134
21135 case DW_FORM_block1:
21136 bytes += 1 + read_1_byte (abfd, bytes);
21137 break;
21138 case DW_FORM_block2:
21139 bytes += 2 + read_2_bytes (abfd, bytes);
21140 break;
21141 case DW_FORM_block4:
21142 bytes += 4 + read_4_bytes (abfd, bytes);
21143 break;
21144
21145 case DW_FORM_sdata:
21146 case DW_FORM_udata:
21147 case DW_FORM_GNU_addr_index:
21148 case DW_FORM_GNU_str_index:
21149 bytes = gdb_skip_leb128 (bytes, buffer_end);
21150 if (bytes == NULL)
21151 {
21152 dwarf2_section_buffer_overflow_complaint (section);
21153 return NULL;
21154 }
21155 break;
21156
21157 default:
21158 {
21159 complain:
21160 complaint (&symfile_complaints,
21161 _("invalid form 0x%x in `%s'"),
21162 form, get_section_name (section));
21163 return NULL;
21164 }
21165 }
21166
21167 return bytes;
21168 }
21169
21170 /* A helper for dwarf_decode_macros that handles skipping an unknown
21171 opcode. Returns an updated pointer to the macro data buffer; or,
21172 on error, issues a complaint and returns NULL. */
21173
21174 static const gdb_byte *
21175 skip_unknown_opcode (unsigned int opcode,
21176 const gdb_byte **opcode_definitions,
21177 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21178 bfd *abfd,
21179 unsigned int offset_size,
21180 struct dwarf2_section_info *section)
21181 {
21182 unsigned int bytes_read, i;
21183 unsigned long arg;
21184 const gdb_byte *defn;
21185
21186 if (opcode_definitions[opcode] == NULL)
21187 {
21188 complaint (&symfile_complaints,
21189 _("unrecognized DW_MACFINO opcode 0x%x"),
21190 opcode);
21191 return NULL;
21192 }
21193
21194 defn = opcode_definitions[opcode];
21195 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21196 defn += bytes_read;
21197
21198 for (i = 0; i < arg; ++i)
21199 {
21200 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21201 (enum dwarf_form) defn[i], offset_size,
21202 section);
21203 if (mac_ptr == NULL)
21204 {
21205 /* skip_form_bytes already issued the complaint. */
21206 return NULL;
21207 }
21208 }
21209
21210 return mac_ptr;
21211 }
21212
21213 /* A helper function which parses the header of a macro section.
21214 If the macro section is the extended (for now called "GNU") type,
21215 then this updates *OFFSET_SIZE. Returns a pointer to just after
21216 the header, or issues a complaint and returns NULL on error. */
21217
21218 static const gdb_byte *
21219 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21220 bfd *abfd,
21221 const gdb_byte *mac_ptr,
21222 unsigned int *offset_size,
21223 int section_is_gnu)
21224 {
21225 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21226
21227 if (section_is_gnu)
21228 {
21229 unsigned int version, flags;
21230
21231 version = read_2_bytes (abfd, mac_ptr);
21232 if (version != 4)
21233 {
21234 complaint (&symfile_complaints,
21235 _("unrecognized version `%d' in .debug_macro section"),
21236 version);
21237 return NULL;
21238 }
21239 mac_ptr += 2;
21240
21241 flags = read_1_byte (abfd, mac_ptr);
21242 ++mac_ptr;
21243 *offset_size = (flags & 1) ? 8 : 4;
21244
21245 if ((flags & 2) != 0)
21246 /* We don't need the line table offset. */
21247 mac_ptr += *offset_size;
21248
21249 /* Vendor opcode descriptions. */
21250 if ((flags & 4) != 0)
21251 {
21252 unsigned int i, count;
21253
21254 count = read_1_byte (abfd, mac_ptr);
21255 ++mac_ptr;
21256 for (i = 0; i < count; ++i)
21257 {
21258 unsigned int opcode, bytes_read;
21259 unsigned long arg;
21260
21261 opcode = read_1_byte (abfd, mac_ptr);
21262 ++mac_ptr;
21263 opcode_definitions[opcode] = mac_ptr;
21264 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21265 mac_ptr += bytes_read;
21266 mac_ptr += arg;
21267 }
21268 }
21269 }
21270
21271 return mac_ptr;
21272 }
21273
21274 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21275 including DW_MACRO_GNU_transparent_include. */
21276
21277 static void
21278 dwarf_decode_macro_bytes (bfd *abfd,
21279 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21280 struct macro_source_file *current_file,
21281 struct line_header *lh,
21282 struct dwarf2_section_info *section,
21283 int section_is_gnu, int section_is_dwz,
21284 unsigned int offset_size,
21285 htab_t include_hash)
21286 {
21287 struct objfile *objfile = dwarf2_per_objfile->objfile;
21288 enum dwarf_macro_record_type macinfo_type;
21289 int at_commandline;
21290 const gdb_byte *opcode_definitions[256];
21291
21292 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21293 &offset_size, section_is_gnu);
21294 if (mac_ptr == NULL)
21295 {
21296 /* We already issued a complaint. */
21297 return;
21298 }
21299
21300 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21301 GDB is still reading the definitions from command line. First
21302 DW_MACINFO_start_file will need to be ignored as it was already executed
21303 to create CURRENT_FILE for the main source holding also the command line
21304 definitions. On first met DW_MACINFO_start_file this flag is reset to
21305 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21306
21307 at_commandline = 1;
21308
21309 do
21310 {
21311 /* Do we at least have room for a macinfo type byte? */
21312 if (mac_ptr >= mac_end)
21313 {
21314 dwarf2_section_buffer_overflow_complaint (section);
21315 break;
21316 }
21317
21318 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21319 mac_ptr++;
21320
21321 /* Note that we rely on the fact that the corresponding GNU and
21322 DWARF constants are the same. */
21323 switch (macinfo_type)
21324 {
21325 /* A zero macinfo type indicates the end of the macro
21326 information. */
21327 case 0:
21328 break;
21329
21330 case DW_MACRO_GNU_define:
21331 case DW_MACRO_GNU_undef:
21332 case DW_MACRO_GNU_define_indirect:
21333 case DW_MACRO_GNU_undef_indirect:
21334 case DW_MACRO_GNU_define_indirect_alt:
21335 case DW_MACRO_GNU_undef_indirect_alt:
21336 {
21337 unsigned int bytes_read;
21338 int line;
21339 const char *body;
21340 int is_define;
21341
21342 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21343 mac_ptr += bytes_read;
21344
21345 if (macinfo_type == DW_MACRO_GNU_define
21346 || macinfo_type == DW_MACRO_GNU_undef)
21347 {
21348 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21349 mac_ptr += bytes_read;
21350 }
21351 else
21352 {
21353 LONGEST str_offset;
21354
21355 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21356 mac_ptr += offset_size;
21357
21358 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21359 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21360 || section_is_dwz)
21361 {
21362 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21363
21364 body = read_indirect_string_from_dwz (dwz, str_offset);
21365 }
21366 else
21367 body = read_indirect_string_at_offset (abfd, str_offset);
21368 }
21369
21370 is_define = (macinfo_type == DW_MACRO_GNU_define
21371 || macinfo_type == DW_MACRO_GNU_define_indirect
21372 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21373 if (! current_file)
21374 {
21375 /* DWARF violation as no main source is present. */
21376 complaint (&symfile_complaints,
21377 _("debug info with no main source gives macro %s "
21378 "on line %d: %s"),
21379 is_define ? _("definition") : _("undefinition"),
21380 line, body);
21381 break;
21382 }
21383 if ((line == 0 && !at_commandline)
21384 || (line != 0 && at_commandline))
21385 complaint (&symfile_complaints,
21386 _("debug info gives %s macro %s with %s line %d: %s"),
21387 at_commandline ? _("command-line") : _("in-file"),
21388 is_define ? _("definition") : _("undefinition"),
21389 line == 0 ? _("zero") : _("non-zero"), line, body);
21390
21391 if (is_define)
21392 parse_macro_definition (current_file, line, body);
21393 else
21394 {
21395 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21396 || macinfo_type == DW_MACRO_GNU_undef_indirect
21397 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21398 macro_undef (current_file, line, body);
21399 }
21400 }
21401 break;
21402
21403 case DW_MACRO_GNU_start_file:
21404 {
21405 unsigned int bytes_read;
21406 int line, file;
21407
21408 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21409 mac_ptr += bytes_read;
21410 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21411 mac_ptr += bytes_read;
21412
21413 if ((line == 0 && !at_commandline)
21414 || (line != 0 && at_commandline))
21415 complaint (&symfile_complaints,
21416 _("debug info gives source %d included "
21417 "from %s at %s line %d"),
21418 file, at_commandline ? _("command-line") : _("file"),
21419 line == 0 ? _("zero") : _("non-zero"), line);
21420
21421 if (at_commandline)
21422 {
21423 /* This DW_MACRO_GNU_start_file was executed in the
21424 pass one. */
21425 at_commandline = 0;
21426 }
21427 else
21428 current_file = macro_start_file (file, line, current_file, lh);
21429 }
21430 break;
21431
21432 case DW_MACRO_GNU_end_file:
21433 if (! current_file)
21434 complaint (&symfile_complaints,
21435 _("macro debug info has an unmatched "
21436 "`close_file' directive"));
21437 else
21438 {
21439 current_file = current_file->included_by;
21440 if (! current_file)
21441 {
21442 enum dwarf_macro_record_type next_type;
21443
21444 /* GCC circa March 2002 doesn't produce the zero
21445 type byte marking the end of the compilation
21446 unit. Complain if it's not there, but exit no
21447 matter what. */
21448
21449 /* Do we at least have room for a macinfo type byte? */
21450 if (mac_ptr >= mac_end)
21451 {
21452 dwarf2_section_buffer_overflow_complaint (section);
21453 return;
21454 }
21455
21456 /* We don't increment mac_ptr here, so this is just
21457 a look-ahead. */
21458 next_type
21459 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21460 mac_ptr);
21461 if (next_type != 0)
21462 complaint (&symfile_complaints,
21463 _("no terminating 0-type entry for "
21464 "macros in `.debug_macinfo' section"));
21465
21466 return;
21467 }
21468 }
21469 break;
21470
21471 case DW_MACRO_GNU_transparent_include:
21472 case DW_MACRO_GNU_transparent_include_alt:
21473 {
21474 LONGEST offset;
21475 void **slot;
21476 bfd *include_bfd = abfd;
21477 struct dwarf2_section_info *include_section = section;
21478 struct dwarf2_section_info alt_section;
21479 const gdb_byte *include_mac_end = mac_end;
21480 int is_dwz = section_is_dwz;
21481 const gdb_byte *new_mac_ptr;
21482
21483 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21484 mac_ptr += offset_size;
21485
21486 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21487 {
21488 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21489
21490 dwarf2_read_section (objfile, &dwz->macro);
21491
21492 include_section = &dwz->macro;
21493 include_bfd = get_section_bfd_owner (include_section);
21494 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21495 is_dwz = 1;
21496 }
21497
21498 new_mac_ptr = include_section->buffer + offset;
21499 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21500
21501 if (*slot != NULL)
21502 {
21503 /* This has actually happened; see
21504 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21505 complaint (&symfile_complaints,
21506 _("recursive DW_MACRO_GNU_transparent_include in "
21507 ".debug_macro section"));
21508 }
21509 else
21510 {
21511 *slot = (void *) new_mac_ptr;
21512
21513 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21514 include_mac_end, current_file, lh,
21515 section, section_is_gnu, is_dwz,
21516 offset_size, include_hash);
21517
21518 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21519 }
21520 }
21521 break;
21522
21523 case DW_MACINFO_vendor_ext:
21524 if (!section_is_gnu)
21525 {
21526 unsigned int bytes_read;
21527 int constant;
21528
21529 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21530 mac_ptr += bytes_read;
21531 read_direct_string (abfd, mac_ptr, &bytes_read);
21532 mac_ptr += bytes_read;
21533
21534 /* We don't recognize any vendor extensions. */
21535 break;
21536 }
21537 /* FALLTHROUGH */
21538
21539 default:
21540 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21541 mac_ptr, mac_end, abfd, offset_size,
21542 section);
21543 if (mac_ptr == NULL)
21544 return;
21545 break;
21546 }
21547 } while (macinfo_type != 0);
21548 }
21549
21550 static void
21551 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21552 int section_is_gnu)
21553 {
21554 struct objfile *objfile = dwarf2_per_objfile->objfile;
21555 struct line_header *lh = cu->line_header;
21556 bfd *abfd;
21557 const gdb_byte *mac_ptr, *mac_end;
21558 struct macro_source_file *current_file = 0;
21559 enum dwarf_macro_record_type macinfo_type;
21560 unsigned int offset_size = cu->header.offset_size;
21561 const gdb_byte *opcode_definitions[256];
21562 struct cleanup *cleanup;
21563 htab_t include_hash;
21564 void **slot;
21565 struct dwarf2_section_info *section;
21566 const char *section_name;
21567
21568 if (cu->dwo_unit != NULL)
21569 {
21570 if (section_is_gnu)
21571 {
21572 section = &cu->dwo_unit->dwo_file->sections.macro;
21573 section_name = ".debug_macro.dwo";
21574 }
21575 else
21576 {
21577 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21578 section_name = ".debug_macinfo.dwo";
21579 }
21580 }
21581 else
21582 {
21583 if (section_is_gnu)
21584 {
21585 section = &dwarf2_per_objfile->macro;
21586 section_name = ".debug_macro";
21587 }
21588 else
21589 {
21590 section = &dwarf2_per_objfile->macinfo;
21591 section_name = ".debug_macinfo";
21592 }
21593 }
21594
21595 dwarf2_read_section (objfile, section);
21596 if (section->buffer == NULL)
21597 {
21598 complaint (&symfile_complaints, _("missing %s section"), section_name);
21599 return;
21600 }
21601 abfd = get_section_bfd_owner (section);
21602
21603 /* First pass: Find the name of the base filename.
21604 This filename is needed in order to process all macros whose definition
21605 (or undefinition) comes from the command line. These macros are defined
21606 before the first DW_MACINFO_start_file entry, and yet still need to be
21607 associated to the base file.
21608
21609 To determine the base file name, we scan the macro definitions until we
21610 reach the first DW_MACINFO_start_file entry. We then initialize
21611 CURRENT_FILE accordingly so that any macro definition found before the
21612 first DW_MACINFO_start_file can still be associated to the base file. */
21613
21614 mac_ptr = section->buffer + offset;
21615 mac_end = section->buffer + section->size;
21616
21617 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21618 &offset_size, section_is_gnu);
21619 if (mac_ptr == NULL)
21620 {
21621 /* We already issued a complaint. */
21622 return;
21623 }
21624
21625 do
21626 {
21627 /* Do we at least have room for a macinfo type byte? */
21628 if (mac_ptr >= mac_end)
21629 {
21630 /* Complaint is printed during the second pass as GDB will probably
21631 stop the first pass earlier upon finding
21632 DW_MACINFO_start_file. */
21633 break;
21634 }
21635
21636 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21637 mac_ptr++;
21638
21639 /* Note that we rely on the fact that the corresponding GNU and
21640 DWARF constants are the same. */
21641 switch (macinfo_type)
21642 {
21643 /* A zero macinfo type indicates the end of the macro
21644 information. */
21645 case 0:
21646 break;
21647
21648 case DW_MACRO_GNU_define:
21649 case DW_MACRO_GNU_undef:
21650 /* Only skip the data by MAC_PTR. */
21651 {
21652 unsigned int bytes_read;
21653
21654 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21655 mac_ptr += bytes_read;
21656 read_direct_string (abfd, mac_ptr, &bytes_read);
21657 mac_ptr += bytes_read;
21658 }
21659 break;
21660
21661 case DW_MACRO_GNU_start_file:
21662 {
21663 unsigned int bytes_read;
21664 int line, file;
21665
21666 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21667 mac_ptr += bytes_read;
21668 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21669 mac_ptr += bytes_read;
21670
21671 current_file = macro_start_file (file, line, current_file, lh);
21672 }
21673 break;
21674
21675 case DW_MACRO_GNU_end_file:
21676 /* No data to skip by MAC_PTR. */
21677 break;
21678
21679 case DW_MACRO_GNU_define_indirect:
21680 case DW_MACRO_GNU_undef_indirect:
21681 case DW_MACRO_GNU_define_indirect_alt:
21682 case DW_MACRO_GNU_undef_indirect_alt:
21683 {
21684 unsigned int bytes_read;
21685
21686 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21687 mac_ptr += bytes_read;
21688 mac_ptr += offset_size;
21689 }
21690 break;
21691
21692 case DW_MACRO_GNU_transparent_include:
21693 case DW_MACRO_GNU_transparent_include_alt:
21694 /* Note that, according to the spec, a transparent include
21695 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21696 skip this opcode. */
21697 mac_ptr += offset_size;
21698 break;
21699
21700 case DW_MACINFO_vendor_ext:
21701 /* Only skip the data by MAC_PTR. */
21702 if (!section_is_gnu)
21703 {
21704 unsigned int bytes_read;
21705
21706 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21707 mac_ptr += bytes_read;
21708 read_direct_string (abfd, mac_ptr, &bytes_read);
21709 mac_ptr += bytes_read;
21710 }
21711 /* FALLTHROUGH */
21712
21713 default:
21714 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21715 mac_ptr, mac_end, abfd, offset_size,
21716 section);
21717 if (mac_ptr == NULL)
21718 return;
21719 break;
21720 }
21721 } while (macinfo_type != 0 && current_file == NULL);
21722
21723 /* Second pass: Process all entries.
21724
21725 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21726 command-line macro definitions/undefinitions. This flag is unset when we
21727 reach the first DW_MACINFO_start_file entry. */
21728
21729 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21730 NULL, xcalloc, xfree);
21731 cleanup = make_cleanup_htab_delete (include_hash);
21732 mac_ptr = section->buffer + offset;
21733 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21734 *slot = (void *) mac_ptr;
21735 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21736 current_file, lh, section,
21737 section_is_gnu, 0, offset_size, include_hash);
21738 do_cleanups (cleanup);
21739 }
21740
21741 /* Check if the attribute's form is a DW_FORM_block*
21742 if so return true else false. */
21743
21744 static int
21745 attr_form_is_block (const struct attribute *attr)
21746 {
21747 return (attr == NULL ? 0 :
21748 attr->form == DW_FORM_block1
21749 || attr->form == DW_FORM_block2
21750 || attr->form == DW_FORM_block4
21751 || attr->form == DW_FORM_block
21752 || attr->form == DW_FORM_exprloc);
21753 }
21754
21755 /* Return non-zero if ATTR's value is a section offset --- classes
21756 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21757 You may use DW_UNSND (attr) to retrieve such offsets.
21758
21759 Section 7.5.4, "Attribute Encodings", explains that no attribute
21760 may have a value that belongs to more than one of these classes; it
21761 would be ambiguous if we did, because we use the same forms for all
21762 of them. */
21763
21764 static int
21765 attr_form_is_section_offset (const struct attribute *attr)
21766 {
21767 return (attr->form == DW_FORM_data4
21768 || attr->form == DW_FORM_data8
21769 || attr->form == DW_FORM_sec_offset);
21770 }
21771
21772 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21773 zero otherwise. When this function returns true, you can apply
21774 dwarf2_get_attr_constant_value to it.
21775
21776 However, note that for some attributes you must check
21777 attr_form_is_section_offset before using this test. DW_FORM_data4
21778 and DW_FORM_data8 are members of both the constant class, and of
21779 the classes that contain offsets into other debug sections
21780 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21781 that, if an attribute's can be either a constant or one of the
21782 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21783 taken as section offsets, not constants. */
21784
21785 static int
21786 attr_form_is_constant (const struct attribute *attr)
21787 {
21788 switch (attr->form)
21789 {
21790 case DW_FORM_sdata:
21791 case DW_FORM_udata:
21792 case DW_FORM_data1:
21793 case DW_FORM_data2:
21794 case DW_FORM_data4:
21795 case DW_FORM_data8:
21796 return 1;
21797 default:
21798 return 0;
21799 }
21800 }
21801
21802
21803 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21804 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21805
21806 static int
21807 attr_form_is_ref (const struct attribute *attr)
21808 {
21809 switch (attr->form)
21810 {
21811 case DW_FORM_ref_addr:
21812 case DW_FORM_ref1:
21813 case DW_FORM_ref2:
21814 case DW_FORM_ref4:
21815 case DW_FORM_ref8:
21816 case DW_FORM_ref_udata:
21817 case DW_FORM_GNU_ref_alt:
21818 return 1;
21819 default:
21820 return 0;
21821 }
21822 }
21823
21824 /* Return the .debug_loc section to use for CU.
21825 For DWO files use .debug_loc.dwo. */
21826
21827 static struct dwarf2_section_info *
21828 cu_debug_loc_section (struct dwarf2_cu *cu)
21829 {
21830 if (cu->dwo_unit)
21831 return &cu->dwo_unit->dwo_file->sections.loc;
21832 return &dwarf2_per_objfile->loc;
21833 }
21834
21835 /* A helper function that fills in a dwarf2_loclist_baton. */
21836
21837 static void
21838 fill_in_loclist_baton (struct dwarf2_cu *cu,
21839 struct dwarf2_loclist_baton *baton,
21840 const struct attribute *attr)
21841 {
21842 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21843
21844 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21845
21846 baton->per_cu = cu->per_cu;
21847 gdb_assert (baton->per_cu);
21848 /* We don't know how long the location list is, but make sure we
21849 don't run off the edge of the section. */
21850 baton->size = section->size - DW_UNSND (attr);
21851 baton->data = section->buffer + DW_UNSND (attr);
21852 baton->base_address = cu->base_address;
21853 baton->from_dwo = cu->dwo_unit != NULL;
21854 }
21855
21856 static void
21857 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21858 struct dwarf2_cu *cu, int is_block)
21859 {
21860 struct objfile *objfile = dwarf2_per_objfile->objfile;
21861 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21862
21863 if (attr_form_is_section_offset (attr)
21864 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21865 the section. If so, fall through to the complaint in the
21866 other branch. */
21867 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21868 {
21869 struct dwarf2_loclist_baton *baton;
21870
21871 baton = obstack_alloc (&objfile->objfile_obstack,
21872 sizeof (struct dwarf2_loclist_baton));
21873
21874 fill_in_loclist_baton (cu, baton, attr);
21875
21876 if (cu->base_known == 0)
21877 complaint (&symfile_complaints,
21878 _("Location list used without "
21879 "specifying the CU base address."));
21880
21881 SYMBOL_ACLASS_INDEX (sym) = (is_block
21882 ? dwarf2_loclist_block_index
21883 : dwarf2_loclist_index);
21884 SYMBOL_LOCATION_BATON (sym) = baton;
21885 }
21886 else
21887 {
21888 struct dwarf2_locexpr_baton *baton;
21889
21890 baton = obstack_alloc (&objfile->objfile_obstack,
21891 sizeof (struct dwarf2_locexpr_baton));
21892 baton->per_cu = cu->per_cu;
21893 gdb_assert (baton->per_cu);
21894
21895 if (attr_form_is_block (attr))
21896 {
21897 /* Note that we're just copying the block's data pointer
21898 here, not the actual data. We're still pointing into the
21899 info_buffer for SYM's objfile; right now we never release
21900 that buffer, but when we do clean up properly this may
21901 need to change. */
21902 baton->size = DW_BLOCK (attr)->size;
21903 baton->data = DW_BLOCK (attr)->data;
21904 }
21905 else
21906 {
21907 dwarf2_invalid_attrib_class_complaint ("location description",
21908 SYMBOL_NATURAL_NAME (sym));
21909 baton->size = 0;
21910 }
21911
21912 SYMBOL_ACLASS_INDEX (sym) = (is_block
21913 ? dwarf2_locexpr_block_index
21914 : dwarf2_locexpr_index);
21915 SYMBOL_LOCATION_BATON (sym) = baton;
21916 }
21917 }
21918
21919 /* Return the OBJFILE associated with the compilation unit CU. If CU
21920 came from a separate debuginfo file, then the master objfile is
21921 returned. */
21922
21923 struct objfile *
21924 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21925 {
21926 struct objfile *objfile = per_cu->objfile;
21927
21928 /* Return the master objfile, so that we can report and look up the
21929 correct file containing this variable. */
21930 if (objfile->separate_debug_objfile_backlink)
21931 objfile = objfile->separate_debug_objfile_backlink;
21932
21933 return objfile;
21934 }
21935
21936 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21937 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21938 CU_HEADERP first. */
21939
21940 static const struct comp_unit_head *
21941 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21942 struct dwarf2_per_cu_data *per_cu)
21943 {
21944 const gdb_byte *info_ptr;
21945
21946 if (per_cu->cu)
21947 return &per_cu->cu->header;
21948
21949 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21950
21951 memset (cu_headerp, 0, sizeof (*cu_headerp));
21952 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21953
21954 return cu_headerp;
21955 }
21956
21957 /* Return the address size given in the compilation unit header for CU. */
21958
21959 int
21960 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21961 {
21962 struct comp_unit_head cu_header_local;
21963 const struct comp_unit_head *cu_headerp;
21964
21965 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21966
21967 return cu_headerp->addr_size;
21968 }
21969
21970 /* Return the offset size given in the compilation unit header for CU. */
21971
21972 int
21973 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21974 {
21975 struct comp_unit_head cu_header_local;
21976 const struct comp_unit_head *cu_headerp;
21977
21978 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21979
21980 return cu_headerp->offset_size;
21981 }
21982
21983 /* See its dwarf2loc.h declaration. */
21984
21985 int
21986 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21987 {
21988 struct comp_unit_head cu_header_local;
21989 const struct comp_unit_head *cu_headerp;
21990
21991 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21992
21993 if (cu_headerp->version == 2)
21994 return cu_headerp->addr_size;
21995 else
21996 return cu_headerp->offset_size;
21997 }
21998
21999 /* Return the text offset of the CU. The returned offset comes from
22000 this CU's objfile. If this objfile came from a separate debuginfo
22001 file, then the offset may be different from the corresponding
22002 offset in the parent objfile. */
22003
22004 CORE_ADDR
22005 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22006 {
22007 struct objfile *objfile = per_cu->objfile;
22008
22009 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22010 }
22011
22012 /* Locate the .debug_info compilation unit from CU's objfile which contains
22013 the DIE at OFFSET. Raises an error on failure. */
22014
22015 static struct dwarf2_per_cu_data *
22016 dwarf2_find_containing_comp_unit (sect_offset offset,
22017 unsigned int offset_in_dwz,
22018 struct objfile *objfile)
22019 {
22020 struct dwarf2_per_cu_data *this_cu;
22021 int low, high;
22022 const sect_offset *cu_off;
22023
22024 low = 0;
22025 high = dwarf2_per_objfile->n_comp_units - 1;
22026 while (high > low)
22027 {
22028 struct dwarf2_per_cu_data *mid_cu;
22029 int mid = low + (high - low) / 2;
22030
22031 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22032 cu_off = &mid_cu->offset;
22033 if (mid_cu->is_dwz > offset_in_dwz
22034 || (mid_cu->is_dwz == offset_in_dwz
22035 && cu_off->sect_off >= offset.sect_off))
22036 high = mid;
22037 else
22038 low = mid + 1;
22039 }
22040 gdb_assert (low == high);
22041 this_cu = dwarf2_per_objfile->all_comp_units[low];
22042 cu_off = &this_cu->offset;
22043 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22044 {
22045 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22046 error (_("Dwarf Error: could not find partial DIE containing "
22047 "offset 0x%lx [in module %s]"),
22048 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22049
22050 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22051 <= offset.sect_off);
22052 return dwarf2_per_objfile->all_comp_units[low-1];
22053 }
22054 else
22055 {
22056 this_cu = dwarf2_per_objfile->all_comp_units[low];
22057 if (low == dwarf2_per_objfile->n_comp_units - 1
22058 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22059 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22060 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22061 return this_cu;
22062 }
22063 }
22064
22065 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22066
22067 static void
22068 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22069 {
22070 memset (cu, 0, sizeof (*cu));
22071 per_cu->cu = cu;
22072 cu->per_cu = per_cu;
22073 cu->objfile = per_cu->objfile;
22074 obstack_init (&cu->comp_unit_obstack);
22075 }
22076
22077 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22078
22079 static void
22080 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22081 enum language pretend_language)
22082 {
22083 struct attribute *attr;
22084
22085 /* Set the language we're debugging. */
22086 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22087 if (attr)
22088 set_cu_language (DW_UNSND (attr), cu);
22089 else
22090 {
22091 cu->language = pretend_language;
22092 cu->language_defn = language_def (cu->language);
22093 }
22094
22095 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
22096 if (attr)
22097 cu->producer = DW_STRING (attr);
22098 }
22099
22100 /* Release one cached compilation unit, CU. We unlink it from the tree
22101 of compilation units, but we don't remove it from the read_in_chain;
22102 the caller is responsible for that.
22103 NOTE: DATA is a void * because this function is also used as a
22104 cleanup routine. */
22105
22106 static void
22107 free_heap_comp_unit (void *data)
22108 {
22109 struct dwarf2_cu *cu = data;
22110
22111 gdb_assert (cu->per_cu != NULL);
22112 cu->per_cu->cu = NULL;
22113 cu->per_cu = NULL;
22114
22115 obstack_free (&cu->comp_unit_obstack, NULL);
22116
22117 xfree (cu);
22118 }
22119
22120 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22121 when we're finished with it. We can't free the pointer itself, but be
22122 sure to unlink it from the cache. Also release any associated storage. */
22123
22124 static void
22125 free_stack_comp_unit (void *data)
22126 {
22127 struct dwarf2_cu *cu = data;
22128
22129 gdb_assert (cu->per_cu != NULL);
22130 cu->per_cu->cu = NULL;
22131 cu->per_cu = NULL;
22132
22133 obstack_free (&cu->comp_unit_obstack, NULL);
22134 cu->partial_dies = NULL;
22135 }
22136
22137 /* Free all cached compilation units. */
22138
22139 static void
22140 free_cached_comp_units (void *data)
22141 {
22142 struct dwarf2_per_cu_data *per_cu, **last_chain;
22143
22144 per_cu = dwarf2_per_objfile->read_in_chain;
22145 last_chain = &dwarf2_per_objfile->read_in_chain;
22146 while (per_cu != NULL)
22147 {
22148 struct dwarf2_per_cu_data *next_cu;
22149
22150 next_cu = per_cu->cu->read_in_chain;
22151
22152 free_heap_comp_unit (per_cu->cu);
22153 *last_chain = next_cu;
22154
22155 per_cu = next_cu;
22156 }
22157 }
22158
22159 /* Increase the age counter on each cached compilation unit, and free
22160 any that are too old. */
22161
22162 static void
22163 age_cached_comp_units (void)
22164 {
22165 struct dwarf2_per_cu_data *per_cu, **last_chain;
22166
22167 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22168 per_cu = dwarf2_per_objfile->read_in_chain;
22169 while (per_cu != NULL)
22170 {
22171 per_cu->cu->last_used ++;
22172 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22173 dwarf2_mark (per_cu->cu);
22174 per_cu = per_cu->cu->read_in_chain;
22175 }
22176
22177 per_cu = dwarf2_per_objfile->read_in_chain;
22178 last_chain = &dwarf2_per_objfile->read_in_chain;
22179 while (per_cu != NULL)
22180 {
22181 struct dwarf2_per_cu_data *next_cu;
22182
22183 next_cu = per_cu->cu->read_in_chain;
22184
22185 if (!per_cu->cu->mark)
22186 {
22187 free_heap_comp_unit (per_cu->cu);
22188 *last_chain = next_cu;
22189 }
22190 else
22191 last_chain = &per_cu->cu->read_in_chain;
22192
22193 per_cu = next_cu;
22194 }
22195 }
22196
22197 /* Remove a single compilation unit from the cache. */
22198
22199 static void
22200 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22201 {
22202 struct dwarf2_per_cu_data *per_cu, **last_chain;
22203
22204 per_cu = dwarf2_per_objfile->read_in_chain;
22205 last_chain = &dwarf2_per_objfile->read_in_chain;
22206 while (per_cu != NULL)
22207 {
22208 struct dwarf2_per_cu_data *next_cu;
22209
22210 next_cu = per_cu->cu->read_in_chain;
22211
22212 if (per_cu == target_per_cu)
22213 {
22214 free_heap_comp_unit (per_cu->cu);
22215 per_cu->cu = NULL;
22216 *last_chain = next_cu;
22217 break;
22218 }
22219 else
22220 last_chain = &per_cu->cu->read_in_chain;
22221
22222 per_cu = next_cu;
22223 }
22224 }
22225
22226 /* Release all extra memory associated with OBJFILE. */
22227
22228 void
22229 dwarf2_free_objfile (struct objfile *objfile)
22230 {
22231 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22232
22233 if (dwarf2_per_objfile == NULL)
22234 return;
22235
22236 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22237 free_cached_comp_units (NULL);
22238
22239 if (dwarf2_per_objfile->quick_file_names_table)
22240 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22241
22242 if (dwarf2_per_objfile->line_header_hash)
22243 htab_delete (dwarf2_per_objfile->line_header_hash);
22244
22245 /* Everything else should be on the objfile obstack. */
22246 }
22247
22248 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22249 We store these in a hash table separate from the DIEs, and preserve them
22250 when the DIEs are flushed out of cache.
22251
22252 The CU "per_cu" pointer is needed because offset alone is not enough to
22253 uniquely identify the type. A file may have multiple .debug_types sections,
22254 or the type may come from a DWO file. Furthermore, while it's more logical
22255 to use per_cu->section+offset, with Fission the section with the data is in
22256 the DWO file but we don't know that section at the point we need it.
22257 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22258 because we can enter the lookup routine, get_die_type_at_offset, from
22259 outside this file, and thus won't necessarily have PER_CU->cu.
22260 Fortunately, PER_CU is stable for the life of the objfile. */
22261
22262 struct dwarf2_per_cu_offset_and_type
22263 {
22264 const struct dwarf2_per_cu_data *per_cu;
22265 sect_offset offset;
22266 struct type *type;
22267 };
22268
22269 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22270
22271 static hashval_t
22272 per_cu_offset_and_type_hash (const void *item)
22273 {
22274 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22275
22276 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22277 }
22278
22279 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22280
22281 static int
22282 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22283 {
22284 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22285 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22286
22287 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22288 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22289 }
22290
22291 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22292 table if necessary. For convenience, return TYPE.
22293
22294 The DIEs reading must have careful ordering to:
22295 * Not cause infite loops trying to read in DIEs as a prerequisite for
22296 reading current DIE.
22297 * Not trying to dereference contents of still incompletely read in types
22298 while reading in other DIEs.
22299 * Enable referencing still incompletely read in types just by a pointer to
22300 the type without accessing its fields.
22301
22302 Therefore caller should follow these rules:
22303 * Try to fetch any prerequisite types we may need to build this DIE type
22304 before building the type and calling set_die_type.
22305 * After building type call set_die_type for current DIE as soon as
22306 possible before fetching more types to complete the current type.
22307 * Make the type as complete as possible before fetching more types. */
22308
22309 static struct type *
22310 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22311 {
22312 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22313 struct objfile *objfile = cu->objfile;
22314 struct attribute *attr;
22315 struct dynamic_prop prop;
22316
22317 /* For Ada types, make sure that the gnat-specific data is always
22318 initialized (if not already set). There are a few types where
22319 we should not be doing so, because the type-specific area is
22320 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22321 where the type-specific area is used to store the floatformat).
22322 But this is not a problem, because the gnat-specific information
22323 is actually not needed for these types. */
22324 if (need_gnat_info (cu)
22325 && TYPE_CODE (type) != TYPE_CODE_FUNC
22326 && TYPE_CODE (type) != TYPE_CODE_FLT
22327 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22328 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22329 && TYPE_CODE (type) != TYPE_CODE_METHOD
22330 && !HAVE_GNAT_AUX_INFO (type))
22331 INIT_GNAT_SPECIFIC (type);
22332
22333 /* Read DW_AT_data_location and set in type. */
22334 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22335 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22336 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22337
22338 if (dwarf2_per_objfile->die_type_hash == NULL)
22339 {
22340 dwarf2_per_objfile->die_type_hash =
22341 htab_create_alloc_ex (127,
22342 per_cu_offset_and_type_hash,
22343 per_cu_offset_and_type_eq,
22344 NULL,
22345 &objfile->objfile_obstack,
22346 hashtab_obstack_allocate,
22347 dummy_obstack_deallocate);
22348 }
22349
22350 ofs.per_cu = cu->per_cu;
22351 ofs.offset = die->offset;
22352 ofs.type = type;
22353 slot = (struct dwarf2_per_cu_offset_and_type **)
22354 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22355 if (*slot)
22356 complaint (&symfile_complaints,
22357 _("A problem internal to GDB: DIE 0x%x has type already set"),
22358 die->offset.sect_off);
22359 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22360 **slot = ofs;
22361 return type;
22362 }
22363
22364 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22365 or return NULL if the die does not have a saved type. */
22366
22367 static struct type *
22368 get_die_type_at_offset (sect_offset offset,
22369 struct dwarf2_per_cu_data *per_cu)
22370 {
22371 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22372
22373 if (dwarf2_per_objfile->die_type_hash == NULL)
22374 return NULL;
22375
22376 ofs.per_cu = per_cu;
22377 ofs.offset = offset;
22378 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22379 if (slot)
22380 return slot->type;
22381 else
22382 return NULL;
22383 }
22384
22385 /* Look up the type for DIE in CU in die_type_hash,
22386 or return NULL if DIE does not have a saved type. */
22387
22388 static struct type *
22389 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22390 {
22391 return get_die_type_at_offset (die->offset, cu->per_cu);
22392 }
22393
22394 /* Add a dependence relationship from CU to REF_PER_CU. */
22395
22396 static void
22397 dwarf2_add_dependence (struct dwarf2_cu *cu,
22398 struct dwarf2_per_cu_data *ref_per_cu)
22399 {
22400 void **slot;
22401
22402 if (cu->dependencies == NULL)
22403 cu->dependencies
22404 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22405 NULL, &cu->comp_unit_obstack,
22406 hashtab_obstack_allocate,
22407 dummy_obstack_deallocate);
22408
22409 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22410 if (*slot == NULL)
22411 *slot = ref_per_cu;
22412 }
22413
22414 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22415 Set the mark field in every compilation unit in the
22416 cache that we must keep because we are keeping CU. */
22417
22418 static int
22419 dwarf2_mark_helper (void **slot, void *data)
22420 {
22421 struct dwarf2_per_cu_data *per_cu;
22422
22423 per_cu = (struct dwarf2_per_cu_data *) *slot;
22424
22425 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22426 reading of the chain. As such dependencies remain valid it is not much
22427 useful to track and undo them during QUIT cleanups. */
22428 if (per_cu->cu == NULL)
22429 return 1;
22430
22431 if (per_cu->cu->mark)
22432 return 1;
22433 per_cu->cu->mark = 1;
22434
22435 if (per_cu->cu->dependencies != NULL)
22436 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22437
22438 return 1;
22439 }
22440
22441 /* Set the mark field in CU and in every other compilation unit in the
22442 cache that we must keep because we are keeping CU. */
22443
22444 static void
22445 dwarf2_mark (struct dwarf2_cu *cu)
22446 {
22447 if (cu->mark)
22448 return;
22449 cu->mark = 1;
22450 if (cu->dependencies != NULL)
22451 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22452 }
22453
22454 static void
22455 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22456 {
22457 while (per_cu)
22458 {
22459 per_cu->cu->mark = 0;
22460 per_cu = per_cu->cu->read_in_chain;
22461 }
22462 }
22463
22464 /* Trivial hash function for partial_die_info: the hash value of a DIE
22465 is its offset in .debug_info for this objfile. */
22466
22467 static hashval_t
22468 partial_die_hash (const void *item)
22469 {
22470 const struct partial_die_info *part_die = item;
22471
22472 return part_die->offset.sect_off;
22473 }
22474
22475 /* Trivial comparison function for partial_die_info structures: two DIEs
22476 are equal if they have the same offset. */
22477
22478 static int
22479 partial_die_eq (const void *item_lhs, const void *item_rhs)
22480 {
22481 const struct partial_die_info *part_die_lhs = item_lhs;
22482 const struct partial_die_info *part_die_rhs = item_rhs;
22483
22484 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22485 }
22486
22487 static struct cmd_list_element *set_dwarf_cmdlist;
22488 static struct cmd_list_element *show_dwarf_cmdlist;
22489
22490 static void
22491 set_dwarf_cmd (char *args, int from_tty)
22492 {
22493 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22494 gdb_stdout);
22495 }
22496
22497 static void
22498 show_dwarf_cmd (char *args, int from_tty)
22499 {
22500 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22501 }
22502
22503 /* Free data associated with OBJFILE, if necessary. */
22504
22505 static void
22506 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22507 {
22508 struct dwarf2_per_objfile *data = d;
22509 int ix;
22510
22511 /* Make sure we don't accidentally use dwarf2_per_objfile while
22512 cleaning up. */
22513 dwarf2_per_objfile = NULL;
22514
22515 for (ix = 0; ix < data->n_comp_units; ++ix)
22516 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22517
22518 for (ix = 0; ix < data->n_type_units; ++ix)
22519 VEC_free (dwarf2_per_cu_ptr,
22520 data->all_type_units[ix]->per_cu.imported_symtabs);
22521 xfree (data->all_type_units);
22522
22523 VEC_free (dwarf2_section_info_def, data->types);
22524
22525 if (data->dwo_files)
22526 free_dwo_files (data->dwo_files, objfile);
22527 if (data->dwp_file)
22528 gdb_bfd_unref (data->dwp_file->dbfd);
22529
22530 if (data->dwz_file && data->dwz_file->dwz_bfd)
22531 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22532 }
22533
22534 \f
22535 /* The "save gdb-index" command. */
22536
22537 /* The contents of the hash table we create when building the string
22538 table. */
22539 struct strtab_entry
22540 {
22541 offset_type offset;
22542 const char *str;
22543 };
22544
22545 /* Hash function for a strtab_entry.
22546
22547 Function is used only during write_hash_table so no index format backward
22548 compatibility is needed. */
22549
22550 static hashval_t
22551 hash_strtab_entry (const void *e)
22552 {
22553 const struct strtab_entry *entry = e;
22554 return mapped_index_string_hash (INT_MAX, entry->str);
22555 }
22556
22557 /* Equality function for a strtab_entry. */
22558
22559 static int
22560 eq_strtab_entry (const void *a, const void *b)
22561 {
22562 const struct strtab_entry *ea = a;
22563 const struct strtab_entry *eb = b;
22564 return !strcmp (ea->str, eb->str);
22565 }
22566
22567 /* Create a strtab_entry hash table. */
22568
22569 static htab_t
22570 create_strtab (void)
22571 {
22572 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22573 xfree, xcalloc, xfree);
22574 }
22575
22576 /* Add a string to the constant pool. Return the string's offset in
22577 host order. */
22578
22579 static offset_type
22580 add_string (htab_t table, struct obstack *cpool, const char *str)
22581 {
22582 void **slot;
22583 struct strtab_entry entry;
22584 struct strtab_entry *result;
22585
22586 entry.str = str;
22587 slot = htab_find_slot (table, &entry, INSERT);
22588 if (*slot)
22589 result = *slot;
22590 else
22591 {
22592 result = XNEW (struct strtab_entry);
22593 result->offset = obstack_object_size (cpool);
22594 result->str = str;
22595 obstack_grow_str0 (cpool, str);
22596 *slot = result;
22597 }
22598 return result->offset;
22599 }
22600
22601 /* An entry in the symbol table. */
22602 struct symtab_index_entry
22603 {
22604 /* The name of the symbol. */
22605 const char *name;
22606 /* The offset of the name in the constant pool. */
22607 offset_type index_offset;
22608 /* A sorted vector of the indices of all the CUs that hold an object
22609 of this name. */
22610 VEC (offset_type) *cu_indices;
22611 };
22612
22613 /* The symbol table. This is a power-of-2-sized hash table. */
22614 struct mapped_symtab
22615 {
22616 offset_type n_elements;
22617 offset_type size;
22618 struct symtab_index_entry **data;
22619 };
22620
22621 /* Hash function for a symtab_index_entry. */
22622
22623 static hashval_t
22624 hash_symtab_entry (const void *e)
22625 {
22626 const struct symtab_index_entry *entry = e;
22627 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22628 sizeof (offset_type) * VEC_length (offset_type,
22629 entry->cu_indices),
22630 0);
22631 }
22632
22633 /* Equality function for a symtab_index_entry. */
22634
22635 static int
22636 eq_symtab_entry (const void *a, const void *b)
22637 {
22638 const struct symtab_index_entry *ea = a;
22639 const struct symtab_index_entry *eb = b;
22640 int len = VEC_length (offset_type, ea->cu_indices);
22641 if (len != VEC_length (offset_type, eb->cu_indices))
22642 return 0;
22643 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22644 VEC_address (offset_type, eb->cu_indices),
22645 sizeof (offset_type) * len);
22646 }
22647
22648 /* Destroy a symtab_index_entry. */
22649
22650 static void
22651 delete_symtab_entry (void *p)
22652 {
22653 struct symtab_index_entry *entry = p;
22654 VEC_free (offset_type, entry->cu_indices);
22655 xfree (entry);
22656 }
22657
22658 /* Create a hash table holding symtab_index_entry objects. */
22659
22660 static htab_t
22661 create_symbol_hash_table (void)
22662 {
22663 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22664 delete_symtab_entry, xcalloc, xfree);
22665 }
22666
22667 /* Create a new mapped symtab object. */
22668
22669 static struct mapped_symtab *
22670 create_mapped_symtab (void)
22671 {
22672 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22673 symtab->n_elements = 0;
22674 symtab->size = 1024;
22675 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22676 return symtab;
22677 }
22678
22679 /* Destroy a mapped_symtab. */
22680
22681 static void
22682 cleanup_mapped_symtab (void *p)
22683 {
22684 struct mapped_symtab *symtab = p;
22685 /* The contents of the array are freed when the other hash table is
22686 destroyed. */
22687 xfree (symtab->data);
22688 xfree (symtab);
22689 }
22690
22691 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22692 the slot.
22693
22694 Function is used only during write_hash_table so no index format backward
22695 compatibility is needed. */
22696
22697 static struct symtab_index_entry **
22698 find_slot (struct mapped_symtab *symtab, const char *name)
22699 {
22700 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22701
22702 index = hash & (symtab->size - 1);
22703 step = ((hash * 17) & (symtab->size - 1)) | 1;
22704
22705 for (;;)
22706 {
22707 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22708 return &symtab->data[index];
22709 index = (index + step) & (symtab->size - 1);
22710 }
22711 }
22712
22713 /* Expand SYMTAB's hash table. */
22714
22715 static void
22716 hash_expand (struct mapped_symtab *symtab)
22717 {
22718 offset_type old_size = symtab->size;
22719 offset_type i;
22720 struct symtab_index_entry **old_entries = symtab->data;
22721
22722 symtab->size *= 2;
22723 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22724
22725 for (i = 0; i < old_size; ++i)
22726 {
22727 if (old_entries[i])
22728 {
22729 struct symtab_index_entry **slot = find_slot (symtab,
22730 old_entries[i]->name);
22731 *slot = old_entries[i];
22732 }
22733 }
22734
22735 xfree (old_entries);
22736 }
22737
22738 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22739 CU_INDEX is the index of the CU in which the symbol appears.
22740 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22741
22742 static void
22743 add_index_entry (struct mapped_symtab *symtab, const char *name,
22744 int is_static, gdb_index_symbol_kind kind,
22745 offset_type cu_index)
22746 {
22747 struct symtab_index_entry **slot;
22748 offset_type cu_index_and_attrs;
22749
22750 ++symtab->n_elements;
22751 if (4 * symtab->n_elements / 3 >= symtab->size)
22752 hash_expand (symtab);
22753
22754 slot = find_slot (symtab, name);
22755 if (!*slot)
22756 {
22757 *slot = XNEW (struct symtab_index_entry);
22758 (*slot)->name = name;
22759 /* index_offset is set later. */
22760 (*slot)->cu_indices = NULL;
22761 }
22762
22763 cu_index_and_attrs = 0;
22764 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22765 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22766 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22767
22768 /* We don't want to record an index value twice as we want to avoid the
22769 duplication.
22770 We process all global symbols and then all static symbols
22771 (which would allow us to avoid the duplication by only having to check
22772 the last entry pushed), but a symbol could have multiple kinds in one CU.
22773 To keep things simple we don't worry about the duplication here and
22774 sort and uniqufy the list after we've processed all symbols. */
22775 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22776 }
22777
22778 /* qsort helper routine for uniquify_cu_indices. */
22779
22780 static int
22781 offset_type_compare (const void *ap, const void *bp)
22782 {
22783 offset_type a = *(offset_type *) ap;
22784 offset_type b = *(offset_type *) bp;
22785
22786 return (a > b) - (b > a);
22787 }
22788
22789 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22790
22791 static void
22792 uniquify_cu_indices (struct mapped_symtab *symtab)
22793 {
22794 int i;
22795
22796 for (i = 0; i < symtab->size; ++i)
22797 {
22798 struct symtab_index_entry *entry = symtab->data[i];
22799
22800 if (entry
22801 && entry->cu_indices != NULL)
22802 {
22803 unsigned int next_to_insert, next_to_check;
22804 offset_type last_value;
22805
22806 qsort (VEC_address (offset_type, entry->cu_indices),
22807 VEC_length (offset_type, entry->cu_indices),
22808 sizeof (offset_type), offset_type_compare);
22809
22810 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22811 next_to_insert = 1;
22812 for (next_to_check = 1;
22813 next_to_check < VEC_length (offset_type, entry->cu_indices);
22814 ++next_to_check)
22815 {
22816 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22817 != last_value)
22818 {
22819 last_value = VEC_index (offset_type, entry->cu_indices,
22820 next_to_check);
22821 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22822 last_value);
22823 ++next_to_insert;
22824 }
22825 }
22826 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22827 }
22828 }
22829 }
22830
22831 /* Add a vector of indices to the constant pool. */
22832
22833 static offset_type
22834 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22835 struct symtab_index_entry *entry)
22836 {
22837 void **slot;
22838
22839 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22840 if (!*slot)
22841 {
22842 offset_type len = VEC_length (offset_type, entry->cu_indices);
22843 offset_type val = MAYBE_SWAP (len);
22844 offset_type iter;
22845 int i;
22846
22847 *slot = entry;
22848 entry->index_offset = obstack_object_size (cpool);
22849
22850 obstack_grow (cpool, &val, sizeof (val));
22851 for (i = 0;
22852 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22853 ++i)
22854 {
22855 val = MAYBE_SWAP (iter);
22856 obstack_grow (cpool, &val, sizeof (val));
22857 }
22858 }
22859 else
22860 {
22861 struct symtab_index_entry *old_entry = *slot;
22862 entry->index_offset = old_entry->index_offset;
22863 entry = old_entry;
22864 }
22865 return entry->index_offset;
22866 }
22867
22868 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22869 constant pool entries going into the obstack CPOOL. */
22870
22871 static void
22872 write_hash_table (struct mapped_symtab *symtab,
22873 struct obstack *output, struct obstack *cpool)
22874 {
22875 offset_type i;
22876 htab_t symbol_hash_table;
22877 htab_t str_table;
22878
22879 symbol_hash_table = create_symbol_hash_table ();
22880 str_table = create_strtab ();
22881
22882 /* We add all the index vectors to the constant pool first, to
22883 ensure alignment is ok. */
22884 for (i = 0; i < symtab->size; ++i)
22885 {
22886 if (symtab->data[i])
22887 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22888 }
22889
22890 /* Now write out the hash table. */
22891 for (i = 0; i < symtab->size; ++i)
22892 {
22893 offset_type str_off, vec_off;
22894
22895 if (symtab->data[i])
22896 {
22897 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22898 vec_off = symtab->data[i]->index_offset;
22899 }
22900 else
22901 {
22902 /* While 0 is a valid constant pool index, it is not valid
22903 to have 0 for both offsets. */
22904 str_off = 0;
22905 vec_off = 0;
22906 }
22907
22908 str_off = MAYBE_SWAP (str_off);
22909 vec_off = MAYBE_SWAP (vec_off);
22910
22911 obstack_grow (output, &str_off, sizeof (str_off));
22912 obstack_grow (output, &vec_off, sizeof (vec_off));
22913 }
22914
22915 htab_delete (str_table);
22916 htab_delete (symbol_hash_table);
22917 }
22918
22919 /* Struct to map psymtab to CU index in the index file. */
22920 struct psymtab_cu_index_map
22921 {
22922 struct partial_symtab *psymtab;
22923 unsigned int cu_index;
22924 };
22925
22926 static hashval_t
22927 hash_psymtab_cu_index (const void *item)
22928 {
22929 const struct psymtab_cu_index_map *map = item;
22930
22931 return htab_hash_pointer (map->psymtab);
22932 }
22933
22934 static int
22935 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22936 {
22937 const struct psymtab_cu_index_map *lhs = item_lhs;
22938 const struct psymtab_cu_index_map *rhs = item_rhs;
22939
22940 return lhs->psymtab == rhs->psymtab;
22941 }
22942
22943 /* Helper struct for building the address table. */
22944 struct addrmap_index_data
22945 {
22946 struct objfile *objfile;
22947 struct obstack *addr_obstack;
22948 htab_t cu_index_htab;
22949
22950 /* Non-zero if the previous_* fields are valid.
22951 We can't write an entry until we see the next entry (since it is only then
22952 that we know the end of the entry). */
22953 int previous_valid;
22954 /* Index of the CU in the table of all CUs in the index file. */
22955 unsigned int previous_cu_index;
22956 /* Start address of the CU. */
22957 CORE_ADDR previous_cu_start;
22958 };
22959
22960 /* Write an address entry to OBSTACK. */
22961
22962 static void
22963 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22964 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22965 {
22966 offset_type cu_index_to_write;
22967 gdb_byte addr[8];
22968 CORE_ADDR baseaddr;
22969
22970 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22971
22972 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22973 obstack_grow (obstack, addr, 8);
22974 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22975 obstack_grow (obstack, addr, 8);
22976 cu_index_to_write = MAYBE_SWAP (cu_index);
22977 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22978 }
22979
22980 /* Worker function for traversing an addrmap to build the address table. */
22981
22982 static int
22983 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22984 {
22985 struct addrmap_index_data *data = datap;
22986 struct partial_symtab *pst = obj;
22987
22988 if (data->previous_valid)
22989 add_address_entry (data->objfile, data->addr_obstack,
22990 data->previous_cu_start, start_addr,
22991 data->previous_cu_index);
22992
22993 data->previous_cu_start = start_addr;
22994 if (pst != NULL)
22995 {
22996 struct psymtab_cu_index_map find_map, *map;
22997 find_map.psymtab = pst;
22998 map = htab_find (data->cu_index_htab, &find_map);
22999 gdb_assert (map != NULL);
23000 data->previous_cu_index = map->cu_index;
23001 data->previous_valid = 1;
23002 }
23003 else
23004 data->previous_valid = 0;
23005
23006 return 0;
23007 }
23008
23009 /* Write OBJFILE's address map to OBSTACK.
23010 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23011 in the index file. */
23012
23013 static void
23014 write_address_map (struct objfile *objfile, struct obstack *obstack,
23015 htab_t cu_index_htab)
23016 {
23017 struct addrmap_index_data addrmap_index_data;
23018
23019 /* When writing the address table, we have to cope with the fact that
23020 the addrmap iterator only provides the start of a region; we have to
23021 wait until the next invocation to get the start of the next region. */
23022
23023 addrmap_index_data.objfile = objfile;
23024 addrmap_index_data.addr_obstack = obstack;
23025 addrmap_index_data.cu_index_htab = cu_index_htab;
23026 addrmap_index_data.previous_valid = 0;
23027
23028 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23029 &addrmap_index_data);
23030
23031 /* It's highly unlikely the last entry (end address = 0xff...ff)
23032 is valid, but we should still handle it.
23033 The end address is recorded as the start of the next region, but that
23034 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23035 anyway. */
23036 if (addrmap_index_data.previous_valid)
23037 add_address_entry (objfile, obstack,
23038 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23039 addrmap_index_data.previous_cu_index);
23040 }
23041
23042 /* Return the symbol kind of PSYM. */
23043
23044 static gdb_index_symbol_kind
23045 symbol_kind (struct partial_symbol *psym)
23046 {
23047 domain_enum domain = PSYMBOL_DOMAIN (psym);
23048 enum address_class aclass = PSYMBOL_CLASS (psym);
23049
23050 switch (domain)
23051 {
23052 case VAR_DOMAIN:
23053 switch (aclass)
23054 {
23055 case LOC_BLOCK:
23056 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23057 case LOC_TYPEDEF:
23058 return GDB_INDEX_SYMBOL_KIND_TYPE;
23059 case LOC_COMPUTED:
23060 case LOC_CONST_BYTES:
23061 case LOC_OPTIMIZED_OUT:
23062 case LOC_STATIC:
23063 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23064 case LOC_CONST:
23065 /* Note: It's currently impossible to recognize psyms as enum values
23066 short of reading the type info. For now punt. */
23067 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23068 default:
23069 /* There are other LOC_FOO values that one might want to classify
23070 as variables, but dwarf2read.c doesn't currently use them. */
23071 return GDB_INDEX_SYMBOL_KIND_OTHER;
23072 }
23073 case STRUCT_DOMAIN:
23074 return GDB_INDEX_SYMBOL_KIND_TYPE;
23075 default:
23076 return GDB_INDEX_SYMBOL_KIND_OTHER;
23077 }
23078 }
23079
23080 /* Add a list of partial symbols to SYMTAB. */
23081
23082 static void
23083 write_psymbols (struct mapped_symtab *symtab,
23084 htab_t psyms_seen,
23085 struct partial_symbol **psymp,
23086 int count,
23087 offset_type cu_index,
23088 int is_static)
23089 {
23090 for (; count-- > 0; ++psymp)
23091 {
23092 struct partial_symbol *psym = *psymp;
23093 void **slot;
23094
23095 if (SYMBOL_LANGUAGE (psym) == language_ada)
23096 error (_("Ada is not currently supported by the index"));
23097
23098 /* Only add a given psymbol once. */
23099 slot = htab_find_slot (psyms_seen, psym, INSERT);
23100 if (!*slot)
23101 {
23102 gdb_index_symbol_kind kind = symbol_kind (psym);
23103
23104 *slot = psym;
23105 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23106 is_static, kind, cu_index);
23107 }
23108 }
23109 }
23110
23111 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23112 exception if there is an error. */
23113
23114 static void
23115 write_obstack (FILE *file, struct obstack *obstack)
23116 {
23117 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23118 file)
23119 != obstack_object_size (obstack))
23120 error (_("couldn't data write to file"));
23121 }
23122
23123 /* Unlink a file if the argument is not NULL. */
23124
23125 static void
23126 unlink_if_set (void *p)
23127 {
23128 char **filename = p;
23129 if (*filename)
23130 unlink (*filename);
23131 }
23132
23133 /* A helper struct used when iterating over debug_types. */
23134 struct signatured_type_index_data
23135 {
23136 struct objfile *objfile;
23137 struct mapped_symtab *symtab;
23138 struct obstack *types_list;
23139 htab_t psyms_seen;
23140 int cu_index;
23141 };
23142
23143 /* A helper function that writes a single signatured_type to an
23144 obstack. */
23145
23146 static int
23147 write_one_signatured_type (void **slot, void *d)
23148 {
23149 struct signatured_type_index_data *info = d;
23150 struct signatured_type *entry = (struct signatured_type *) *slot;
23151 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23152 gdb_byte val[8];
23153
23154 write_psymbols (info->symtab,
23155 info->psyms_seen,
23156 info->objfile->global_psymbols.list
23157 + psymtab->globals_offset,
23158 psymtab->n_global_syms, info->cu_index,
23159 0);
23160 write_psymbols (info->symtab,
23161 info->psyms_seen,
23162 info->objfile->static_psymbols.list
23163 + psymtab->statics_offset,
23164 psymtab->n_static_syms, info->cu_index,
23165 1);
23166
23167 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23168 entry->per_cu.offset.sect_off);
23169 obstack_grow (info->types_list, val, 8);
23170 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23171 entry->type_offset_in_tu.cu_off);
23172 obstack_grow (info->types_list, val, 8);
23173 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23174 obstack_grow (info->types_list, val, 8);
23175
23176 ++info->cu_index;
23177
23178 return 1;
23179 }
23180
23181 /* Recurse into all "included" dependencies and write their symbols as
23182 if they appeared in this psymtab. */
23183
23184 static void
23185 recursively_write_psymbols (struct objfile *objfile,
23186 struct partial_symtab *psymtab,
23187 struct mapped_symtab *symtab,
23188 htab_t psyms_seen,
23189 offset_type cu_index)
23190 {
23191 int i;
23192
23193 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23194 if (psymtab->dependencies[i]->user != NULL)
23195 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23196 symtab, psyms_seen, cu_index);
23197
23198 write_psymbols (symtab,
23199 psyms_seen,
23200 objfile->global_psymbols.list + psymtab->globals_offset,
23201 psymtab->n_global_syms, cu_index,
23202 0);
23203 write_psymbols (symtab,
23204 psyms_seen,
23205 objfile->static_psymbols.list + psymtab->statics_offset,
23206 psymtab->n_static_syms, cu_index,
23207 1);
23208 }
23209
23210 /* Create an index file for OBJFILE in the directory DIR. */
23211
23212 static void
23213 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23214 {
23215 struct cleanup *cleanup;
23216 char *filename, *cleanup_filename;
23217 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23218 struct obstack cu_list, types_cu_list;
23219 int i;
23220 FILE *out_file;
23221 struct mapped_symtab *symtab;
23222 offset_type val, size_of_contents, total_len;
23223 struct stat st;
23224 htab_t psyms_seen;
23225 htab_t cu_index_htab;
23226 struct psymtab_cu_index_map *psymtab_cu_index_map;
23227
23228 if (dwarf2_per_objfile->using_index)
23229 error (_("Cannot use an index to create the index"));
23230
23231 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23232 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23233
23234 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23235 return;
23236
23237 if (stat (objfile_name (objfile), &st) < 0)
23238 perror_with_name (objfile_name (objfile));
23239
23240 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23241 INDEX_SUFFIX, (char *) NULL);
23242 cleanup = make_cleanup (xfree, filename);
23243
23244 out_file = gdb_fopen_cloexec (filename, "wb");
23245 if (!out_file)
23246 error (_("Can't open `%s' for writing"), filename);
23247
23248 cleanup_filename = filename;
23249 make_cleanup (unlink_if_set, &cleanup_filename);
23250
23251 symtab = create_mapped_symtab ();
23252 make_cleanup (cleanup_mapped_symtab, symtab);
23253
23254 obstack_init (&addr_obstack);
23255 make_cleanup_obstack_free (&addr_obstack);
23256
23257 obstack_init (&cu_list);
23258 make_cleanup_obstack_free (&cu_list);
23259
23260 obstack_init (&types_cu_list);
23261 make_cleanup_obstack_free (&types_cu_list);
23262
23263 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23264 NULL, xcalloc, xfree);
23265 make_cleanup_htab_delete (psyms_seen);
23266
23267 /* While we're scanning CU's create a table that maps a psymtab pointer
23268 (which is what addrmap records) to its index (which is what is recorded
23269 in the index file). This will later be needed to write the address
23270 table. */
23271 cu_index_htab = htab_create_alloc (100,
23272 hash_psymtab_cu_index,
23273 eq_psymtab_cu_index,
23274 NULL, xcalloc, xfree);
23275 make_cleanup_htab_delete (cu_index_htab);
23276 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23277 xmalloc (sizeof (struct psymtab_cu_index_map)
23278 * dwarf2_per_objfile->n_comp_units);
23279 make_cleanup (xfree, psymtab_cu_index_map);
23280
23281 /* The CU list is already sorted, so we don't need to do additional
23282 work here. Also, the debug_types entries do not appear in
23283 all_comp_units, but only in their own hash table. */
23284 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23285 {
23286 struct dwarf2_per_cu_data *per_cu
23287 = dwarf2_per_objfile->all_comp_units[i];
23288 struct partial_symtab *psymtab = per_cu->v.psymtab;
23289 gdb_byte val[8];
23290 struct psymtab_cu_index_map *map;
23291 void **slot;
23292
23293 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23294 It may be referenced from a local scope but in such case it does not
23295 need to be present in .gdb_index. */
23296 if (psymtab == NULL)
23297 continue;
23298
23299 if (psymtab->user == NULL)
23300 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23301
23302 map = &psymtab_cu_index_map[i];
23303 map->psymtab = psymtab;
23304 map->cu_index = i;
23305 slot = htab_find_slot (cu_index_htab, map, INSERT);
23306 gdb_assert (slot != NULL);
23307 gdb_assert (*slot == NULL);
23308 *slot = map;
23309
23310 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23311 per_cu->offset.sect_off);
23312 obstack_grow (&cu_list, val, 8);
23313 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23314 obstack_grow (&cu_list, val, 8);
23315 }
23316
23317 /* Dump the address map. */
23318 write_address_map (objfile, &addr_obstack, cu_index_htab);
23319
23320 /* Write out the .debug_type entries, if any. */
23321 if (dwarf2_per_objfile->signatured_types)
23322 {
23323 struct signatured_type_index_data sig_data;
23324
23325 sig_data.objfile = objfile;
23326 sig_data.symtab = symtab;
23327 sig_data.types_list = &types_cu_list;
23328 sig_data.psyms_seen = psyms_seen;
23329 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23330 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23331 write_one_signatured_type, &sig_data);
23332 }
23333
23334 /* Now that we've processed all symbols we can shrink their cu_indices
23335 lists. */
23336 uniquify_cu_indices (symtab);
23337
23338 obstack_init (&constant_pool);
23339 make_cleanup_obstack_free (&constant_pool);
23340 obstack_init (&symtab_obstack);
23341 make_cleanup_obstack_free (&symtab_obstack);
23342 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23343
23344 obstack_init (&contents);
23345 make_cleanup_obstack_free (&contents);
23346 size_of_contents = 6 * sizeof (offset_type);
23347 total_len = size_of_contents;
23348
23349 /* The version number. */
23350 val = MAYBE_SWAP (8);
23351 obstack_grow (&contents, &val, sizeof (val));
23352
23353 /* The offset of the CU list from the start of the file. */
23354 val = MAYBE_SWAP (total_len);
23355 obstack_grow (&contents, &val, sizeof (val));
23356 total_len += obstack_object_size (&cu_list);
23357
23358 /* The offset of the types CU list from the start of the file. */
23359 val = MAYBE_SWAP (total_len);
23360 obstack_grow (&contents, &val, sizeof (val));
23361 total_len += obstack_object_size (&types_cu_list);
23362
23363 /* The offset of the address table from the start of the file. */
23364 val = MAYBE_SWAP (total_len);
23365 obstack_grow (&contents, &val, sizeof (val));
23366 total_len += obstack_object_size (&addr_obstack);
23367
23368 /* The offset of the symbol table from the start of the file. */
23369 val = MAYBE_SWAP (total_len);
23370 obstack_grow (&contents, &val, sizeof (val));
23371 total_len += obstack_object_size (&symtab_obstack);
23372
23373 /* The offset of the constant pool from the start of the file. */
23374 val = MAYBE_SWAP (total_len);
23375 obstack_grow (&contents, &val, sizeof (val));
23376 total_len += obstack_object_size (&constant_pool);
23377
23378 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23379
23380 write_obstack (out_file, &contents);
23381 write_obstack (out_file, &cu_list);
23382 write_obstack (out_file, &types_cu_list);
23383 write_obstack (out_file, &addr_obstack);
23384 write_obstack (out_file, &symtab_obstack);
23385 write_obstack (out_file, &constant_pool);
23386
23387 fclose (out_file);
23388
23389 /* We want to keep the file, so we set cleanup_filename to NULL
23390 here. See unlink_if_set. */
23391 cleanup_filename = NULL;
23392
23393 do_cleanups (cleanup);
23394 }
23395
23396 /* Implementation of the `save gdb-index' command.
23397
23398 Note that the file format used by this command is documented in the
23399 GDB manual. Any changes here must be documented there. */
23400
23401 static void
23402 save_gdb_index_command (char *arg, int from_tty)
23403 {
23404 struct objfile *objfile;
23405
23406 if (!arg || !*arg)
23407 error (_("usage: save gdb-index DIRECTORY"));
23408
23409 ALL_OBJFILES (objfile)
23410 {
23411 struct stat st;
23412
23413 /* If the objfile does not correspond to an actual file, skip it. */
23414 if (stat (objfile_name (objfile), &st) < 0)
23415 continue;
23416
23417 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23418 if (dwarf2_per_objfile)
23419 {
23420
23421 TRY
23422 {
23423 write_psymtabs_to_index (objfile, arg);
23424 }
23425 CATCH (except, RETURN_MASK_ERROR)
23426 {
23427 exception_fprintf (gdb_stderr, except,
23428 _("Error while writing index for `%s': "),
23429 objfile_name (objfile));
23430 }
23431 END_CATCH
23432 }
23433 }
23434 }
23435
23436 \f
23437
23438 int dwarf_always_disassemble;
23439
23440 static void
23441 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23442 struct cmd_list_element *c, const char *value)
23443 {
23444 fprintf_filtered (file,
23445 _("Whether to always disassemble "
23446 "DWARF expressions is %s.\n"),
23447 value);
23448 }
23449
23450 static void
23451 show_check_physname (struct ui_file *file, int from_tty,
23452 struct cmd_list_element *c, const char *value)
23453 {
23454 fprintf_filtered (file,
23455 _("Whether to check \"physname\" is %s.\n"),
23456 value);
23457 }
23458
23459 void _initialize_dwarf2_read (void);
23460
23461 void
23462 _initialize_dwarf2_read (void)
23463 {
23464 struct cmd_list_element *c;
23465
23466 dwarf2_objfile_data_key
23467 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23468
23469 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23470 Set DWARF specific variables.\n\
23471 Configure DWARF variables such as the cache size"),
23472 &set_dwarf_cmdlist, "maintenance set dwarf ",
23473 0/*allow-unknown*/, &maintenance_set_cmdlist);
23474
23475 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23476 Show DWARF specific variables\n\
23477 Show DWARF variables such as the cache size"),
23478 &show_dwarf_cmdlist, "maintenance show dwarf ",
23479 0/*allow-unknown*/, &maintenance_show_cmdlist);
23480
23481 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23482 &dwarf_max_cache_age, _("\
23483 Set the upper bound on the age of cached DWARF compilation units."), _("\
23484 Show the upper bound on the age of cached DWARF compilation units."), _("\
23485 A higher limit means that cached compilation units will be stored\n\
23486 in memory longer, and more total memory will be used. Zero disables\n\
23487 caching, which can slow down startup."),
23488 NULL,
23489 show_dwarf_max_cache_age,
23490 &set_dwarf_cmdlist,
23491 &show_dwarf_cmdlist);
23492
23493 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23494 &dwarf_always_disassemble, _("\
23495 Set whether `info address' always disassembles DWARF expressions."), _("\
23496 Show whether `info address' always disassembles DWARF expressions."), _("\
23497 When enabled, DWARF expressions are always printed in an assembly-like\n\
23498 syntax. When disabled, expressions will be printed in a more\n\
23499 conversational style, when possible."),
23500 NULL,
23501 show_dwarf_always_disassemble,
23502 &set_dwarf_cmdlist,
23503 &show_dwarf_cmdlist);
23504
23505 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23506 Set debugging of the DWARF reader."), _("\
23507 Show debugging of the DWARF reader."), _("\
23508 When enabled (non-zero), debugging messages are printed during DWARF\n\
23509 reading and symtab expansion. A value of 1 (one) provides basic\n\
23510 information. A value greater than 1 provides more verbose information."),
23511 NULL,
23512 NULL,
23513 &setdebuglist, &showdebuglist);
23514
23515 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23516 Set debugging of the DWARF DIE reader."), _("\
23517 Show debugging of the DWARF DIE reader."), _("\
23518 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23519 The value is the maximum depth to print."),
23520 NULL,
23521 NULL,
23522 &setdebuglist, &showdebuglist);
23523
23524 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23525 Set debugging of the dwarf line reader."), _("\
23526 Show debugging of the dwarf line reader."), _("\
23527 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23528 A value of 1 (one) provides basic information.\n\
23529 A value greater than 1 provides more verbose information."),
23530 NULL,
23531 NULL,
23532 &setdebuglist, &showdebuglist);
23533
23534 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23535 Set cross-checking of \"physname\" code against demangler."), _("\
23536 Show cross-checking of \"physname\" code against demangler."), _("\
23537 When enabled, GDB's internal \"physname\" code is checked against\n\
23538 the demangler."),
23539 NULL, show_check_physname,
23540 &setdebuglist, &showdebuglist);
23541
23542 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23543 no_class, &use_deprecated_index_sections, _("\
23544 Set whether to use deprecated gdb_index sections."), _("\
23545 Show whether to use deprecated gdb_index sections."), _("\
23546 When enabled, deprecated .gdb_index sections are used anyway.\n\
23547 Normally they are ignored either because of a missing feature or\n\
23548 performance issue.\n\
23549 Warning: This option must be enabled before gdb reads the file."),
23550 NULL,
23551 NULL,
23552 &setlist, &showlist);
23553
23554 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23555 _("\
23556 Save a gdb-index file.\n\
23557 Usage: save gdb-index DIRECTORY"),
23558 &save_cmdlist);
23559 set_cmd_completer (c, filename_completer);
23560
23561 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23562 &dwarf2_locexpr_funcs);
23563 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23564 &dwarf2_loclist_funcs);
23565
23566 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23567 &dwarf2_block_frame_base_locexpr_funcs);
23568 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23569 &dwarf2_block_frame_base_loclist_funcs);
23570 }